APPLICATION OF RADIO TO TEACHING

ELEMENTARY MATHEMATICS IN A DEVELOPING COUNTRY

Klaus Golda, Jose Gonzalez
Barbara Searle, and Jamesine Friend

with the assistance of
Alicia Q. de Quintanille, Norma Guadamur Cormeno, Juan Jose Montenegro Pineda, Marvin Saballos Ramirez, and Vitalia R. Vrooman

September 1, 1979

The research in this report was supported by the
U. 8. Agency for International Development, Department of State, Contract No. AID/CM-ta-C-73-40.
institute for mathematical studies in the social sciences STANFORD UNIVERSITY

STANFORD, CALIFORNIA

Sixth Annual Report
Afency for International Development

APPLICATION OF RADIO TO TEACHING,
 elementary mathematics in a drvfloping country

Klaus Galda, Joge Gonzalez,
Barbara Searle, and Jamesine Friend
with the assistance of
Alicia G. de Quintanilla, Norma Guadamiz Cermeno, Juan Joae Montenegro Pineda, Marvin Saballon Ramirez, and Vitalia R. Vrnoman

September 1, 1979

The research in this report was supported by the U. S. Apency for Internationnl Dejelopment, Department of ithte, Contract No. AIN/mi-tn-C.-73-40.

INSTITUTR FOR MATHFAATICAL STIIITFS IN THP, SOCIAL SGITIIGPS
stanfont imilufrsity

STANFORD, CALIFORHIA
Page
INTRODUCTION 1
PROJECT CALENDAR 7

1. FOURTH-GRADE INSTRUCTIONAL PROGRAM 9
A. Curriculun Development 9
B. Sumpative Evaluation 9
Sample selection
Tent design Results
2. Other evaluation activities 17
A. Numeration Tent 17
B. Addition-subtraction Test 17
C. Stanford Mental Arithmetic Test 18
D. Logic Test 20
E. Spanish Test 20
3. rio san juan implementation 23
4. OTHER 1978 RESEARCH ACTIVITIES 25
A. Worksheet Experiment 25
B. Children Interviewa 29
C. World Bank Textbook Experiment 30
D. Out-of-school Listener Survey 31
E. Teacher's Promotion Practices Survey 32
5. STANPORD EXIT FROM NICARAGUA 35
A. Project Office Move 35
B. 1979 Pollow-up Nicaragua Visit 35
C. Materials Received 38
6. HORR PLANS FOR 1979 AND 1980 41
A. Replication in Thailand 41
B. Seminars About Work of the Radio Mathematica Project 41
C. Preparation of Sample Lesson Tapes in Various Languages 41
D. Tranalation of Radio Script: into Rnglish 41
R. Book on How to Hrite Radio Lessons 42
7. dissemination and utilization of results 43
A. Project Information Recipients 43
B. Project Papera and Publicationn 44
C. Script Translation 44
D. Third Surreary Volume 44
F. Conferences Attended 45
Fifth Interamerican Conference onMathematical Education, Campinas. RrazilFebruary 13-16. 1979Seminar on Broadcasting in Mational Development,Jamaica, June 2-6. 1979
8. INVOLVEMPNT OF MIMORITY PFP.SONNEL AHD IMMER 47
9. REFERE:ICFS 49
APPENDIX A. 1977-78 Fourth-prade Posttest 51
APPRNDIX R. Changes to First-prade Lessons (w/o worksheets) 61
APPENDIX C. Profect Bibliogradhy 69

INTRODUCTION

The Radio Mathematics Project was established to" design, implement, and evaluate a prototype system of teaching elementory mathematice, using radio as the major medium of inatruction. Since June 1974, the Institute for Mathematical Studies in the Social Sciences of Stanford University (funded by the United States Agency for International Development) and the Government of Nicaragua have been collaborating on the development of such an inatructional propram for use in the primary achools of Micarapia.

In this report we summarize the work accomplished during 1978--the last on-site operational year of Stanford involvement in the project-and the first half of 1979. A more detalled account of the protect activities during 1978 uill be presented in a book to be published later this year.

In many ways 1978 was a crucial year in the history of the Radio Mathematica Profect. As 1978 was intended to be a transitional year, Nicaraguan staff members were primarily responsible for the development and production of the fourth-prade proprams. In developing the fourth-grade programb, as well as in the use of the feedback aystem and in much of the formal evaluation, Stanford otaff memhera aerved mainly in a consulting capacity. About the middle of the vear Profect Director Jamesine $\operatorname{Friend~left~Micarapua~(to~conalt~uith~a~radio~profect~in~the~}$ Philippines), leaving Klaus Galda as the only expatriate in the nrolect office. Galda left Nicaragua on Janiary Sth, 1979. The Nicararuan Ministry of Education is now completely responsible for the operation of the Radio Mathematics Project.

During 1978 the project atnff distributed materials to nver 300 classrooms uaing project lessons. About 10,000 students in these classroons listened to the programa. The number of achoola, clanses, and atudents uaing radio leasons in 1978 hy grade are presented in Table 1. There uas also a inrge lintening audience nutaide of thene cinnaroomn. both in achools and at home, hut theae did not recelve nupplementarv matorials.

The project alao lind an exceptionally heavy pre- and poattoating achedule in 1978, adminintering pre- and ponttentn in ourr 20 n clannen in Cradea 1 throuph 4 in the three demartmenta of Mannin. Ciannada, and Carazo. Approximatrly 90 firnt-prade clanaen from the unckahert experiment proupa, control proup, and texthonk proun from the World Bank cextbook experiment were included in thin tenting nragram. The necond Rrade evaluation (includine 40 radin and control elnanea) wan renented to obenin further data. Twenty-four third-arade radin clanane were tented in order to mennure the cumalntivn effect of radin exnerience in muccenalive yearn on mathematien achievenent. Pinaliv. a formal evaluntion of the fourth-grade prop ani wne conducted, herimning with the tentine of the control group in 1977 and contlmulna with the tentinn of the radin group and World hank textbook proup in 1978. All of the formal evalintinn actsultion ware muccenafully complated in apite of n urry time nchedile and adverne political conditionn in Nicaramun in lo7R. A totnilen ranort of all formal evaluation actioltion will he preaented in the nrnfort hank

Table 1
Nuiber of Schonis, Cianses, and Students Usine Radio lessons in 1978 by Grade and Mepartment

Department	1 of schools	nf clasgen				$\begin{aligned} & \text { nff } \\ & \text { studenta } \end{aligned}$			
		1	2	3	4	1	2	3	4
Hasaya	40	38	28	25	30	1,824	776	6.P	400
Granada	25	22	18	17	16	1,056	508	424	320
Carazo	23	22	17	15	17	1.114	479	373	360
Rio San Juan	39		46	25			1.258	428	
TOTAL	127	82	109	82	63	3.994	3.021	1,853	1,280

In preparation. The results of the fourth-arade evaluation are ammarized in this report.

In addition to the develnpment and broadcant of the fourth-arade lessons and the evaluation of the firat- through fourth-arade proprama. a large number of other activities were olanned and carried out in 1978. For the first time project programs were officlally used outalde of the experimental area--in the Department of Rio San Juan, a thinly populated, largely undeveloped rural area atretching alone the Conta Rican border betwecn lake Nicaragun and the Caribbean. Radios for the achools in Rin San Juan were purchased by the Ministry of Education, uaina the monev wnn in the Japan Prize competition of 1977. Fducation officials in Rio San Juan cooperated fully with the project, as did the Proyecto Rio San Juan, a povernment aponsored integrated rural development propram in the aren. In Pehruary aeveral supervisora from the departmental inapectorate of education in Rio San Juan spent more than a week at the Radin Mathematics Project office, being trained to provide tencher training for local teachera. These aupervisora alno cransported and distributed profect materials in their local arean. Accordinp to n report sent from the Proyecto Rio San Juan to the Miniatry of fiducation, the radio mathematica leasons vare among the mont auccessful of all the actioftics in pio San Juan in 1978.

Numerous other testink activities vere condurted in 1978 wifh followed up previous project research in elementary mathematicn learnine. Some of these activitica. like the addicion-bubtraction tent administered In Managua, were direct offapring of earlier tenta; others, like the numeration and lopic testa, wera nev ceata. The protect alno deatgned and adminiatered a test of language arta to necond-grade ranio and control clasen, to attempt to determine wiether enhanced nathematirn achievement in the radio clasien wan galned at the expenan of neplectinp other auhlect arean. There was also a apecial teat in mathemation piven to flfth- alid alxth-grade atudenta deafened to help the Nicarapunn ntaff plan the radio curriculun for thone arades. Earlier project work with the Stanford Mental Arlthmetic Teat wan alao continued; the tent wan piven to radin clasaes in Giradea 2 throuph 4 so that resulta rould be compared vith thana obtalned for 1976 contral clanien.

In addition to the extenalve tentinf propram dencritimil ntove. additional reanarch rulated activirten uere planned. (Mot nll of flifan wern eondurted becnume of the nolitical nituneton.) In late Allatint. the profect planned n aerien of innpection vialte ronall of the
 usagr. In addition, thear vialta uere auppnacit to nhenin inforention reparding the tenchera ifenn ahout the radio proernat and related activitien. Unfortinately, thene vinitn had to he laroplvennerlled due to the unntable nolfteal alelintion at elie time. The nentect alan
 renearch into educatimal unatage (dropout and renetliton problema) in the Hicaragian edurational ayater. Vinally. in renonome to rencietn of increaning. unage nf the radin mathonation ninoramm by nut-nf-achool lietenera, an axtenalve informal murver wan enndicted in ahour gion hamen.
nelacted fron the experimental aren an well an Managur. Thia aurjey was conducted in order to eatimate the magnitude and characteristica of the out-of-school listeninf andipncp. Detalled renults of thene auryey studies will be puhlished in the forthcomine book.

Two additional researh artioities were carried on in 1978. ihe first of these was the World Bank textbook experiment. For thin experiment, free textbooks uere distributed to 20 firat-grade and ? fourth-riade clasien. These rlanacs were subsenuently aliven nre- and pestesta and compared to clasaps not using textbooks. The other experiment concerned the use of worksheets in the first-srade radio lessons. Due to the cost and diatribution prohlems involved uith the use of the unikheets, there has heen a preat deal of intereat in whether the first-grade lessons could be reuritten so as to eliminate thrir une without nacrificing the effectivenean of the leasons. In order to test the feasibility of this nuprestion, the lant 40 firat-prade leasonn were rewritten to eliminate dependence on workhhets and retaped. These revised lessons were played by tape recorder in 24 experimental clasaronms. Immediately prior to the hepinning of the experiment and inmediately after the last leason, achievement teatn vere administered to hoth the group using worksheets and the proup uaing the revined leasons.

There were a number of disnemination nctivittes conducted in 1978. In April, footage for a 16 memor film was ahot on location in the experimental area by llearat Metrotone, under contract to the Acndemy for Educational nevalopment. The film wa produced; ito premiere tnok place at the Workshop on Conminication in Rural Development, anonsored by USAID in Wanhington, D.C. In June 1979. (Rvaluntion reaulta of the workshop rated the 81 m very highly.) A numer of viattorn, both foreipn and Nicarapuan, came to the prolect office. Poreipn viaitorn included individuals from Pi Snlvador, Colombia, and Chile. Nicararuan vinitora included aroups from Inatituto de hienestar Campesino (IMVIFRNO) and the curriculum aection of the Minintry of Fiducation. Noth of these rroupn recelved craining from profect etaff in differelle aspecta of niofect operation. INVIERNO van designing an educational program in apriculture for Ngcarapuan reananta and uned mone of the ideas ab well an ataff from the Radio Mathematica Profect. There wan alan collaboration with the RATES project in Manlla. Philippinen, in the form of a four-month consulting period with Jameaine Friend. Ratps in n prolect designing educational radin proprame for nchonin in the Philinpinen. Many of the Radio Mathematice prolect'n methodn in curriculum plaining nod feedhack a' © currently being implemented thare. Protect artivition wore nlmo deacribed at conferencen in Arazil. Ghile, Alnaka, and Jamaica. Tha profect nimo entabliahed clone enntact vith the Rural Educational Radio project in Puncto Cateran, zelnya. Nicaraqua. Thin prolect in adminintered Jofntly by USall, Hinconein Partnere of the American, and the Nicarapuan lifinitity of fiducation. Plana were made to une radin nathemation prorramn experimentally in the Puertn rabezas area on the northeant coant of Micaranue.

Nineteen hundred and eovanty-alaht wan a politicallv unatahle year in Wicaragun. In addition to the haninning of civil var in September.
there were several peneral strikes and an atmosphere of unrest dirinn the entire year. As indicated shove, however, a malority of profect activities were completed as planned in apite of many obstaclen. The exceptions were the cancellation of clansronm inspection visits and the arministration of the mental arithmetic test tofirst-prade clasaes. The office had to be closed for short periods on several occasions (two of these when homemade bombs landed on the office rrounds). Many irreplaceable materials were renoved from the office during times of crisia and stored at the American Pmbnsay. The primary aetback in 1978 was not to the office directly but to the validity of some of the evaluation activities. This is due to the extrene irrerularity of school attendance during much of the achool year, especially in Masaya and Carazo. In spite of these difficulcies, however, by the end of the year most planned activities had been completed and there was an orderly tranafer to Nicaraguan project administration. This report sumarizes the resulta of some of the activities mentioned above.

PROJECT CAI.ENDAR
January 1, 1978 to June 30, 1979

January $20-30$	Training for school inspectors from Rio San Juan
Pebruary 15-17	Teacher training for Masaya, Granada, Carazo
Pebruary 17 - March 1	Vitalia Rojas at conference in Arazil
Pebruary 21 - March 15	Pretesta administered to over 200 clasarooms in Grades 1 threugh 4
February 23	Aroadcast of project leasong for Grades 1 through 4 began
April 6-13	Training for INVIERNO staff
April 25 - May 3	Footage shot for project film by Metrotone
May 20-29	Juan Joge Montenegro at conference "Transfer of Technolopy in Pducation". Vina del Mar, Chile
June 15 - October 15	Jamesine Priend in Philippines at Patrs proiect
June 28 - July 1	Rerbara Searle participated in Seminar in Padio Pducation, Caribbean Repion, Ocho Rios, Jamaica
July - September	Mental Arithmetic Tests administered in radio classes, Grades 2 through 4
July 3-10	Addition-subtraction test administered in Manapua
July 1-7	Viait from director of prosrnmming etv ri Saljador
July 25	Visit from Puerto Cabezan Hibconain Proipct
August 1-3	Listener Survey conducted
Aupust 2-11	Numeration tert ndminiatered, in Mannpun to Ciraden 1 throuph 6
August 12	Training for tenchion uainf new firat-mande leanama
Aupunt 14-21	Pretent for undmbiect exneriment in 48 cinmen
August $14-28$	Lopic tent in Manapun and experimental nema
August $16-18$	Barbara Searie at the Audin Conference of "Educntionnl Trlecommintentinna for Alankn." apanamed by the Northupar Keaional Pducational l,aboratory

Previous Page Ela....

Aupuat 18	Une of new first-arade lessons (without worksheets) in 24 clansrnoms with cassettea heran
Aupust 28-31	Clasarnom inspection visita began
Oct 3 - Nov 9	Posttestinp of over 200 classes rrades 1 thrnuph 4
October 9-11	Special test to 40 fifth and sixth prade classes
October 13-31	Spanish test to 40 second-prade clarres
October 21	Teachers questionnaire on promotion Riven to 96 teachers
November 16-20	Klaus Galda nt Puerto Cabezas Hisconsin protect
December 1978	Second volume of series of bonks on profect published
January 5, 1979	Stanford participation in Nicararua ended
Pebruary 10-13	Klaus Calda at 5th Interamerican Conference on Mathematical Education at Campinas, Brazil.
March 18-28	Pollow-up visit to Nicaragua
June 1-7	Klaus Galda at Conference on Communicstions in Developrent, Jamaica
June 29	Project film shown nt Workahop on Communicatione in Rural Development, Washinfton, D.C.

1. FOURTH-GRADE INSTRUCTIONAI, PROGRAM

Abstract

A. Curriculum Development

Curriculum development for fourth grade followed the same procedures as deocribed in earlier annual reports for lower grade levels. The curriculum covered the mafor topics of numeration, addition, subtraction, multiplication, and divigion, extending these basic arithmetic processes to both fractions and decimals. Table 2 describes the curriculum content and indicates how the 404 exercise classes of the curriculum are distributed amons strands.

B. Summative Evaluation

Sample belection. A summative evaluation of the fourth-grade instructional program was conducted during the same vear that the progran was being developed. The basic comparison for the fourth-rrade summative evaluation is between an experimental rroup of 30 classes pre- and posttested in 1978 and a control reroup of 21 classes pre- and posttested in 1977. The control group was tested during the 1977 school year for two reasons. First, when administered a year in advance, the fourth-grade pretest provided data for use in curriculum development. Second, as the programs were beginning to be better known it was increasingly difficult to assure the existence of an uncontaminated control proup. There is a posible drawback in testing the control group a year earlier, however, since there is the possibility that other cunditions will not be eauivalent in two different years. That is in fact what did happen to the fourth-rrade evaluation.

A ratio of approximately five rural classrooms to three urban classrooms was used in the fourth grade experimental and control proups because declining enrollments in rural schools in the upper prades resulted in smaller class sizes. Of the 21 control classes, ${ }^{8}$ were urban and 13 were rural; of the 30 radio classes, 12 vere urban and 18 were rural.

The procedure for randomly assigning schools to treatment condition and then randonly assipning. closses within achools is descrihed in the Fourth Annual Report (Searle, Friend, Suppes, \& Tilann, 1977). The conparison reported below io between randomly anlected classrooms stratified by achool location (rural/urhan), department, and years of previous radio experience.

Test desipn. Inlike the fourth-grade pritest which was administered with recorded instructions, the fourth-grade ponttest wns entirely written. The teat administrator worked throuph n standard set of examples with the children and then the children worked through the test on their own. No time limit was imposed, so that all the children could finish the test.

Tahle 2
Distribution of Fxercise Classes for Fourth-orade Curriculum

The fourth-arade poatteat used a matrix-aampling deaign. It conalated of four forma which were evenly diatilhuted in each clagaronm. For a discusaion of thia type of test deaign ace Searle, Mathewa, Suppen, and Prient, 1974 (p. 104ff).

As mentioned above, the fourth-grade control groun was toated In 1977 and the experimental groun in 1978. Due to the irreablarities in the 1978 echool yea. in Hicaragua, described in the introduction to this report, the posteat reaulta for the control and exnerimental proups are not atrictly comparable. In 1978 there were abieral neriods in which most schoola were not functonlan at all for one to threr weeks at a tire. Even at other tama achool attendance was much lovar than in normal yeara. On repular achool daya anny arhoola damaaed clasaea early, which probably affected the fourth-arade radio proup due to the relatively late broadcant tme of the fourth-grade leanona. The foureh-prade radin group was alan postefted abour threce ureka earliter in the achool year than the 1977 control groun because of a threatened carly cloaure of phe achoola in 1978. Tiese condictons should be constiderect wen interneting the fourth-grade pootteat reanla.

Benulta. Fourth-qrade pretent realite are preaented in Table 3.
 Appendix A, Table (en Tllann, Sea:le, Friend, h Suphen, 1978) The
 than the control aroup. In adisplon, both the urlian and rural rallo krouna acored hipher than cheir control counterparta. The rural radto proun had the higheat acore of any of thene prompa.

The allghty better performane of the radfo proub on the nereat seame to the due to the preaence of nebdenta vich varlous amounta of

 increnaea with the amount of prlit radso apertener. (in Tatile 4 only Individual tiena fron the efat are uned due eo the onall number of rlanaen in aome of the groupa.) stadenta in radfo clandea wioh had no prior radin expertence neored alighely lower than the control proup of atoitenta.

Table s preaenta the reaulea of the fourth-prate ponfeat.

 Manto fa not difterent from 0 (that fir the fortate rtouti.

Table 3
Results of Fourth-grade Pretest ${ }^{\text {a }}$

Group	$\begin{gathered} \text { of } \\ \text { classes } \end{gathered}$	$\begin{aligned} & \text { of } \\ & \text { students } \end{aligned}$	Hean \% correct	S.D.	Qanpe
1977 control	21	318	47.8	27.5	n-95.8
urban	8	154	48.3	28.3	0-100
rural	13	164	47.4	27.9	0-96.2
1978 radio	30	486	51.1	27.6	0-94.0
urban	12	305	51.0	28.9	0-96.2
rural	18	181	52.4	27.6	0-100

Table 4

Group	$\begin{gathered} \begin{array}{c} \text { of } \\ \text { classes } \end{array} \end{gathered}$	$\begin{gathered} \text { of } \\ \text { students } \end{gathered}$	Mean 2 correct	s.n.	Range
No experience	8	111	45.1	17.4	0-100
Previous experience	22	375	54.0	19.6	n-93.2
1 year	11	156	51.5	20.4	0-10n
2 years	5	88	50.5	21.3	0-100
3 years	6	131	59.5	17.7	0-96.9
total	30	486	51.9	19.4	1.1-91.7

Note. Difference in mean scores for no experience and previous experience groups, $t=2.80, p<.01$.
${ }^{\text {a }}$ Results based only on 68 individual items.

Table 5

Group	$\begin{gathered} \text { of } \\ \text { classes } \end{gathered}$	* of students	Mean X correct	S.D.	Panre
1977 control	19	283	34.1	26.3	n-9n.1
urban	7	139	35.0	27.5	n-97.1
rural	12	144	33.3	26.0	n-91.9
1978 radio	29	450	34.5	27.1	0-92.9
urban	12	257	35.3	28.1	0-92.2
rural	17	193	33.3	26.3	0-93.8

${ }^{\text {a }} 144$ items, with each student taking 36.

Table 6

Regression of Prior Radio Experience on Posttest		
Deterwining variable	B	t
PRETEST	.907	19.17
PRIOR RADIO	-1.706	-1.57
NO PRIOR RADIO	.195	.13
URBAN	1.576	1.55
SEX	-.214	.21
CONSTANT	-8.615	
R 2	.429	

also indicates that therp are no sirnificant differences between lirban and rural Rroupa, alld no difference within urhan and rural groups between the radio and control classes.

2. OTHER EVALUATION ACTIVITIES

One of the many research activities of the project in Nicaragua has been a series of diapnostic tests to discover and classify sources of student error in elementary mathematics. Results from some these tests and other evaluation activities have been used extensively to aid in curriculum planning for the profect's radio lessons.

A. Numeration Test

As part of the project's ongoing research program, a special numeration test was designed. It was administered in all six grades to about 1500 students in the llanagua public schools in August 1978. The test had been field tested in two schools in the Masaya area during July.

The numeration test was designed to test vircually all topics related to numeration; knowledge of counting, reading and writing numerals, order of numbers, comparison of numbers by size, seauences, and place value. Most of these topics were tested by several different kinds of tasks. For example, counting was tested by four different taska:

1. Circle N objects of M given objecta.
2. Drav N objecta.
3. Count objects and write the number.
4. Count packaged objects (2s, 5s, 108, and 18, etc.).

The format of the numeration test was similar to the ununl profect mathematice achievement tests, that is, a matrix sample design with pretaped oral inatructiona. The data from the numeration test are presently heing analyzed at Stinford University and will be nublished in a future report.

B. Addition-subtraction Test

In July 1978 the protect administered an addition and subtraction test, the purpoee of which wnn to analyze student skilla in addition and aubtractinn. Tlif test was a refined veraion of n teat piven marlier in Nicaragua. (Sec Searle et nl., 1977 and Tilson et nl., 1978.) The nregent veraion wan denipanel to determine the relative raten nt which the varinus akilla that enter into addition and subtraction nre learned by children. Another of the interenta in giving thin teat una to make crosa-culturni comparinoun in lenrning raten for thene nkllia. Thum the teat wan alan Riven in the Philippinen and in to he given in the ll.s. by the foturational Tenting Serifce. (Thene lateren activitien are not aupportart by the ath contract.) In Nicaragun, the addition and nubtraction teat man niven to children in Gradea 2 throuph f in Mannpun. Abmit 320 n fhiliten tome the
test, approximately evenly divided amonp the five praden. Results from this test being reported siparatelv.

Jamesine Friend presented the resulta of nrevious administrations of the addition and subtraction test at the annual meetinn of the American Educational Research Association (AFRA) in San Francisco in April 1970. Friend's paper has been atded to the Fiducational Reaparch Information Clearinghouse (EPIC) collection, and will be published in Children's Mathenatical Behavinr.

Amons the peneralizations reparding, addition skills that friend makes on the basis of her analyses are the following:

1. The number of colums in an addition exercise does not affect the difficulty level when there is more than one column.
2. More addends do not incrense exercise difficulty.
3. If there are zeros in an exercise, the exercise is significantly more difficult.
4. Carrying is a mator contributor to difficulty.
5. Carrying a number preater than 1 is more difficult than carryinp 1.
6. Passing (exercines in which the leftmost column has a two-difit gum) is less difficult than carring.

The data base has been used hy Dr. John Seely B:own of Xerox Palo Alto Research Center in the design of a computer propran that diasnoses student computition errors.
C. Stanford Mental Arithmetic Test

In 1976 the profect pave a version of the Stanford Mental Arithmetic Test to n number of control classen in the experimental area. The design, administration, and results of this test are described in Sachar (1978). In order to compare the mental arithmetic ability of radio etudenta uith that of control groun students, the sare test oiven in the control schooln in 1976 uan Riven to radio studenta in gradea 2 throuph 4 In 1978. The tines of tast adminintration were carefully chonen so that each arade was teated at the mame time of the year in both 1976 and 197 . The teat wan not gisen to the firnt-arade radjo dise the nolitical situation at the time that the test adminiatration wan planned.

Table 7 comparen the renulta for the 1976 control rinneen in Rrades 2 throuph 4 with those for the 1978 radin cinnses. Althourh the radio clamea acorad aliohtly highar in arades 3 and 4 , tho differencen are not etatinticnliveipnificant at the. 0 g level. Due to the dinruption

Table 7
Reaults of the Stanford Mental Arithmetic Tent

Grade	Group	Year	Mean Z correct	S.D.
2	Control	1976	40.5	18.7
2	Radio	1978	40.1	28.0
3	Control	1976	53.5	21.0
3	Radio	1978	56.4	26.7
4	Control	1976	65.9	17.7
4	Radio	1978	71.1	28.9

of the 1978 school year, the two tost years are not atrictly comparable, limiting the validity of inferences made from these test results.
D. Logic Test

A logic test uas niven to about 1500 Nicarafuan children in August 1978 as part of a series of cross-cultural comparianons conficted hy the profect in Nicaragua during the past few years. The lnofc teat given in Nicaragua is a translated and sliphtly modified version of a test developed at Stanford and given to California school children some years ago (Hill, 1960).

The test uses n number of examples of elementary lopical argumenta drawn from situations familiar to primary school children. A taded, individually administered version was given to children in Grades l through 3; a written, group administered version was used in Grades 4 through 6.

The test was given in a fairly wide spectrum of Niraraguan schoola, including public and private schools in Manapua and a number of schnols in the project experimental area. In order to test the hypothesia that the radio mathematics lessons help to improve lopical reasoning skills, both control and radio schools in the protect area were tested. Resilts from the test are stlll being analyzed at Stanford and will he published in a separate report.

F. Spanish Test

Dne of the posible criticisms of the Radin Mathematica Profect is that perhaps the lesson broadcasts are increasing mathematics achievement at the expense of achievement in other school sublects. In order to refute this criticism completely it would be necesarv to deripn and administer an entire batery of teste (based on the official Nicarapuan curricula for the various school suhiecta) to radio and control ciasses. Unfortunately no such tests exist and a mator effort would be reauired to design them. The project staff decided that it would be worthwile to at least begin a study of this issue.

A test was designed by the profect evaluation department to meabure achievement on thosp topics included in the official aecnnd-prade language arta curriculun. The format of the teat is aimilar to the taper mathematics achlevement tests used in the formal evaluntion of the nrofect mathematics prorams. The lanpuare arta test in an oral taned teat ubing n matrix anmpling deripn. There are three forma of the teat, randomly dintributed among all of the scond-rrade radio and control clasarooma.

The teat was adminiatered at approximately the ame timn na the reqular mathematica posteat. Table R proments the number of clamernome taking the teat arcordinf th the various stratificationa. The clasaen used are the mame as thnae taking the 1978 aecond-prade mathematica

Tahle 8

Results of Lanpuape Arts Test

Type of school	$\begin{gathered} \text { of } \\ \text { classes } \end{gathered}$	A of students	Mean \% correct	S.D.	Panpe
Urban	2.0	456	61.6	28.2	4.0-99.n
Rural	20	223	54.9	28.2	5.0-99.0
Radio	20	331	58.5	29.5	4.n-99.n
Control	20	348	59.5	27.2	9.0 - 98.0

postest. Table 8 also presents the results for the Spanish test for the various groups. The difference between the control aroun and the radin group is not statistically significant. In contrast, the radio proup scored significantly ($\mathrm{p}<.001$) higher in 1978 on the mathematics posttest than the second-grade control sroup. This result indicates that, at least in this case, the radio mathematics broadcasts increase mathematics achievement without apparently affecting other achnol subjects.

3. RIO SAN JUAN IMPLEMENTATION

The Fifth Annual Report (Tilson et al., 1978) discusses the plans and preliminary activities of the profect in relation to the implementation of the radio lessons in the Department of Rio San Juan, a poar and isolated region near the border with Costa Rica. The Ministry of Education assigned two of its staff members to supervise the implementation of the radio mathematics lessons as part of their overall duties in Rio San Juan. The two supervisors, after receiving training by the project, developed and carried out a brief teacher training program for teachers in Rio San Juan during February 1978. They then continued to oversee the implementation of the project there. More than 1500 second- and third-grade students in 39 schools (of the 45 in the department) utilized the radio mathematics lessons in Rio San Juan during 1978.

A. Worksheet Experiment

Two of the main objectives in establishinf, the Radio Mathematics Project in 1974 were to develop a system with low operatinp costs and one that could function easily with a minimum of administrative problems. The use of worksheets in the first-grade radio lessons substantially increases the operational costs of the first-grade programs and introduces a number of logistical problems in the creation and distribution of profect materials. It seems desirable, if at all possible, to eliminate the worksheets. However, it is not known to what extent the effectiveness of first-grade lessons depends on the use of individual student worksheetr.

In order to investigate the relationship between posttest scores and the use of worksheets the project staff conducted an experiment in 1978 in which a subset of the first-prade lessons was rewritten to eliminate their dependence on worksheets. In the time that had elapsed between writing the oripinal first-grade lessons in 1975 (revised in 1976) and 1978, the project staff had gained considerable experience in devising alternative and effective means for presenting the mathematical content of the radio broadcasts. In particular, second-grade lessons use (with apparent effectiveness) the teacher and the hlackboard to eliminate dependence on supplementary materials.

Ideally the project staff wnted to revise the complete set of first-grade lessons in such a way as to minimize or completelv eliminate the use of worksheets. However, material and time conatrainta made a revision of that magnitude impossible. Consenuently, it was decifed to rewrite only the last 40 firat-grade leasons, that 18 , Lessons lll-150. Revision of these late lessons would be easier to nconmplish than a comparable revision of the early lessons because their content is aimilar to that of the early second-grade lessons that had already heen written without the use of workshects. Of the 40 first-prade lessons involved in the experiment, 37 nctunlly involved the use of warksheets; the other 3 were not revised. of the approximately 370 mathematical segments in the 40 lessons, about 65% used workshecta; the remnining acements did not. More than 60% of the segments uginf worksheets were in the radin broadeant portion of the lessons; the others were in the teacher directed post-brondcast portion.

The project staff conaldered two different methods for accomplishing the revision. The first of theac wan to do n eomplete revision, possibly inproving the quality of the leagona, that uould utilize all the experience that the profect had pained in uritine radin mathenatica lemana. The second alternative wan to kern the rontent and inatructional at rategien of the leanonn enaentially the anme, and ainnly substitute the uac of atufent notehookn and the hlackhonrd for atudent workhiceta. The necond alternative was chonen for two reannms to increase the preciaion of the experinantal romparisen and to mindmize the resources needed to nccomplinh the chnnyen.

A complete list of the chanpen needed in the 37 lennans is Riven In Appendix B. Only the mafor tynea of changes are outlined here. These can be broadly classified into the following six typen:

1. children copy exerciacs from the blackhoard inatead of hetno Riven the exercines on the uniksheers;
2. children urite answers to oral exprciaps in their notehnoks Instead of on the workshecte;
3. the tacher draws almalified lllustrations on che hiackhoard and children urite mumerical antwert in their notroooks;
4. a very feu megnenta are comiletely elininated;
5. some radio negmente are chanepd 0 nomp-hroatcant activitien;
6. some extrefnen are preaented in a different format.

All revised lestona were conpletely re-recorded to asold editing difficultien and the resulting inferior guality of flie rajised inpes. As much an posible all extraneous differences betwern the two verstona of the leasona vere eliminated. For example, the mame actorm uere uned In both veratona of the leasonn. Flaally, a feat deal of care wan taken so that the npeed of aperch. lengeh of pausea, etce were emaentially the aame in the tuo veratona. Prodaction of the reviard leanons heanal ahout the middle of June 1978 and wan finimhed in Orenber l97月. leagonn uere preaented by canemete recorder. ln oriter to keen the uat of blie revined lessons parallel to flie repular radio lesuons the teachera vere inatructad not to stop or replay any portion of flif leason tapes.
 uaed the regular leanona vith wnabheet. i 24 uar the reitaed deanona.
 accordance with the uanal projert attatifed random ammilinu proceas. and then randomly dizided into the ivo eroups. At the heylntite of flie year

 Which ahows no difference in prefent ncorea betvecn lice iwo promba,

 of the experinent the ermina vere feated uatif fie ofatidafilfter-pide

 poniteat for the expertment. The reaule of thexe ivo adnifisifalime nf the firatmarade pratieat are mivan in Talife 10 . Nane of plad differencan

Table 9

Group	$\begin{gathered} \text { of } \\ \text { classes } \end{gathered}$	$\begin{aligned} & \text { of } \\ & \text { students } \end{aligned}$	Mean \% correct
With worksheets	24	549	78.9
Urban	12	310	79.4
Rural	12	239	78.2
Without worksheets	24	589	77.0
Urban	12	356	77.9
Rural	12	233	75.6

Table 10
Results of 1978 First-prade Posttest for Radio Classes With and Without Worksheeta

Group	Mean 7 correct (August)	```Mean % correct (November)```
With worksheets	59.3	62.2
Urban	61.7	67.7
Rural	55.6	56.8
Without worksheets	56.7	62.8
Urban	55.7	65.0
Rural	58.5	59.9

between the with-worksheet and without-worksheet groups is significant, supporting the hypothesis that there is no loss of lesson effectiveness when worksheets are eliminated. It is interesting to note in Table 10 that in both groups (with and without workshects) the urban classes made larger gains on the achievement test between August and November than did the rural classes. We have no explanation for this phenomenon.

The Nicaraguan civil war of 1978 erupted in the middle of this experiment, so it was conducted under atypical conditions. It is likely that some teachers played the tapes at other than the scheduled times and perhaps repeated some of the lessons. Due to the greater flexibility in the use of tapes, the radio group without worksheets may have been at a slight advantage, especially at a time of irregular school attendance.

In general we can say that the experiment was at least a limiter success. The test results indicate that the children without worksheets accomplish the obfectives of the last part of the first-prade program as well as those with worksheets. As a result of the staff's earlier experiences with other prades it was relatively easy for these lessons to be rewritten so as to eliminate the worksheets. Although the new format required more work on the part of the teachers, they appeared to accept the extra obligations.

One of the drawhacks of the revised lessons (1.e., without worksheets) is that the broadcast time is increased. The lessons using. workshects seem to be more efficient. A comparison of radio broadcast duration of the lessons used in the experiment shows that the lessons using worksheets averape 21.8 minutes in lenpth while the anme leasons without worksheets average 26.4 minutes. All of the lessons without worksheets were longer than the corresponding lessons with worksheets; the differences ranpe approximately from 1 to 10 minutes.

The results of this experiment are encourasing. It still remains to be determined whether the first part of the first-grade program can also be effectively rewritten to eliminate the use of worksheets.

B. Children's Interviews

In July 1977, Marvin Saballos, n staff psycholopist for the Radio Mathematics Project, interviewed 19 radio mathematics students in order to increase the project's understanding of the thinkinp, processes students use while solving arithmetic exercises. In previous analves of incorrect responses to test itema patterns of errors had heen found that could be explained by hypothesizing, the use of well-defined, hut incorrect algorithms. One of the purposes of the interviews was to find out if the children's verbal descriptin, of thetr thinking process confirms these hypotheses. Analysis of errors in written reanonaca can account for only half of the errors with any denree of certainty. Hence, a aecondary purpose of the interviewa was to provide additional further hypotheser.

The interviewed students were randomly selected from six nonrandomy selected third-grade classes in Masaya. Each child was interviewed privately. The interview consisted of dictating six subtraction exercises which the child copied and then solver, explaining each step of the solution as he did it. The interviewer used the same instruction for each child when dictating the exercises but was free to use whatever phrases he felt useful when it was necessary to prompta student to verhalize.

The chiliren were quite cooperative and responded well without undue prompting. In some cases the children seemed .oot to be able to explain their thinking, about basic combinations and prompting did not help. The excellent cooperation we received from the chiliren may have been in part because of their participation in the radio mathematica profect, either because radio lessons had helped to increase their ahility to verbalize, or because they were familiar with the interviewer who had previously visited the classrooms on several occasions. It is possihle that children from traditional classrooms would not respond as well.

The errors observed held few surprises and the children's description of the processes confiraed many of the hypotheses. For example, it was found that the greatest difficulty lies in borrowing and specifically that the difficulty is in the decision to borrow and not in the borrowing process. In addition, the radio students sfopted some of the phrasinf, used by the radio lessons, but in peneral did not seem hetter able to express themselves than students from traditional clsasrooms. These findings have clear implications for instructional desion, many of which were incorporated into later lessons.

In 1978, follow-up interviews were conducted. The follow-up interviews were refined versions of the earlier ones. Unfortunately results from these interviews were lost during the political disturbances.

C. The World Bank Textbook Pixperiment

In 1978 the profect participated in one of acries of texthook studies supported by the World Rank in various develoning countries of the world. The purpose of these experiments is to determine the effect on achievement of providing every student with a texthook.

In Nicaragua, 20 first-Rrade and 20 fourth-rrade clasaes participated in the texthook experiment. Mathemntica textbooks (paid for by the World Bank) were supplied for free diatrihution to all studenta. All of the teachers asked to use textbooks participated in a mort training oession mimilar to the trainina session usuallv received by the tenchern using the radio programa.

The standard Radio Mathematics Profect nre- and nosteren in mathematice were administered to nll of these classes. Thum, for Grades 1 and 4 a chree-wny (control, radio, textbook) comparison for the formal evaluation is possible. In March 1979 profect ataff membern made follow-in
visits to all of the achools in the textbook proup to determine the extent of textbook usage and evential fate of the textbooks. In addition, teachers' comments on the textbooks were collected. The results of the textbook experiment will be published in the near future.

D. Out-of-school Listeners Survey

An informal investipation into the aize and other characteristica of the home listenins audience of the Padio Mathematics Profect was conducted in early 1978. The study wis prompted, first, by the many letters received from students in nonparticipating achonla and from individuals who, on their own initiative, follow the lessona nad, second, by the results of a listener survey that showed Radindifusorn Nacional amonk the top 10 radio stations for only three proprams: n folk music program, a question nnd answer show, and the Radio Mnthematica Profect lessoris. These two kinds of evidence about informal listening, motivated the administrators of the project to invertigate the size of the home listening audience and to compare the numbers of listeners in rurnl and urban communitiea, in lower and middle class areas, and in communtites in which experimental schools were and were not locnted.

The burvey was conducted in communitien in three departments (provinces) of Nicarnpun--Mabnya, Granada, and Manapua--that upre chosen because of their accessibility and the protect staff's familinrity uith them. A different type of comparison was made in ench department. In Hasaya n comparison wan made of comminitiea in which there ia an experfmental achool and those in which the achool did not use ratin lessons; all of these comminities are rural ani lower clasa. Also in Granada communities with nid without expertmental schoola were compared, but these commanties were nll urban and mixed middle and lower clana. In Managua, where there nre no communities with experimental achoola, the comparison was between middle class and lower clann nelghorhoods.

Of the 476 households sampled, 37% of the houncholda aurveved reported liftening. (at nome time) to the Radio 'iathematicn profert leanons. This io n alzable nudience for nn educational radio prosinm, and ita aize in particularly nurprifing. in viru of the fact that the profect does not advertge itn lemann and unen n nention with n generally amall liftenfag audience. Almost half the houncholdn lintenine to radin leanonn do an regularlv, with the mnjorlty of thene houncholdn lintening every dav of the weck. Althoush the remaining houmohoidn do not linten repularly, almost all nee familine mough with the profernm to be nhle to ldentify the grate levela of the lenaons they lintan to.

The ntudy found that rurnl and lowir clann hounoholdn are more lakoly to linten reqularly than urban and midden cinna hounelinitn and that, nt leant in mirnl nrenn, the prenence of n nelinol uning the radin leanons atitulaten lintening.

Fivaluntion ntudian (Sancle, Matthown, Sunnan, K Pripan, 197R) have shoun that the Radio Mathematien Profect lenaone alenificantly ralac the
achievament levals of the school children using the propram. The effectiveness of the lessons for the howe audience has not yet heen demonstrated, but the popularity of the propram suppests that the lessons could serve to reach the large rural, lower class adult population that has not in the past receised an adequate primary education.

A wore complete and detailed discussion of the results of the out-of-school listener survey will be presented in the forthcoming profect book.

E. Teacher's Promotion Practices Survey

For the last several years, the Radio Mathematics Project has been investigating the patterns of promotion, repetition, and dropout among primary-school children in Nicaragua. In 1978 the nrofect Investigated two possible determinants of educational unstage, the stratesies used by classroon teachers in making promotion (pass-fail) decisions and the teacher and student characteristics influencing these decisions. By surveying first- throuph fourth-arade teachers, this investigation attempted to describe more completely the atudent and teacher characteristics influencing pass-fail decisions.

The teacher promotion practices aurvey extended previous work (Searle, Sheehan, Gonzalez, \& George, 1978) in three ways:

1. more grade levels are included,
2. teachers are specifically asked about their promotion policies and practices,
3. teachers are asked to make a promotion decision for each of a set of hypothetical ntudents presented to them.

In particular, first- through fourth-grade teachers were invited to respond to a pair of survey instruments -- a five-part questionnaire and a set of three listh of hypothetical students. Both instruments ware preaented to the teachers in alngle packape of materiala and at a single session. The five-part questionnaire wan adminiatered hefore the three lists of hypothetical atudents. Part A of the questlonnaire collected demopraphic datn from ench teacher: prade, rerion, nex, are, yeara of education, coaching experience, etc. Parta \quad throuph D anked the teachera about their policy reqarding final examinations, their promotion criterin, the Minlatry of Pducation promotion reauirementa, and the influence of atendance on their promotion decialona. Part F. aaked them to provide recent promotion, dronout, and repetition data from their nchool recorde.

The firat lint of hypothetical studenta preapented to ench teacher was in the form of a clnan reqinter. The teachern unce told that thene studenta repremented the marginal menhere of a clansroom. Pach teacher was asked to recommend prosinting (pasaing) or falling ench of the studenta.

The teachers were given the following information about each student; sex (implicitly given in the name of the student), ase, repetition history, attendance record (in days), and achievement record. In order to maximize the plausibility of the hypothetical students presented to each teacher in the class registers not all possible combinations of ape and repetition history were included. (Of course, this is also the case in an actual classroom.) In order to diaentangle the relative effects of a student's age and repetition history, two additional lists of students were presented to the teachers. The students presented in these lists varied only with regard to their sex (not explicitly stater, but implicitly given in the name of the student), age, and repetition history. All of these students had identical attendance and achievement records. By forcins teachers to pass some of these students and fall the rest we hoped to differentiate between the relative effects of age and repetition, which are penerally seen as one compound effect.

In summary, student achievement was found to be the nrimary factor influencing the promotion decisions of Nicarapuan first-throuph fourth-grade teachers. Teachers seem to have specific and oblective criteria relating achlevement to promotion. Attendance "requirements", however, are flexible and subjectively applied.

Both attendance and achievement criteria are formulated in ignorance of (or fonoring) the official Ministry of Fducation promotion regulations. Indeed, only two of the 96 teachers survpyed applied the Ministry of Education promotion regulations to the hypothetical class register. One-third of the teachers surveyed exhibit no identifiable individual promotion atratepy.

Apart from achievement, a student's age is the other student characteristic which significantly influences teacher promotion deciaions. Older students are promoted significantly more often in younger atudents. In this respect the findinge of Searle et al. (1978) uinge data from actual classes are verified using hypothetical student lists. In addition, the effect of age on teacher promotion decisions was found to be significantly preater than that of repetition.

Three tencher characteristics were found to be related to atudent promotion. Rural, upper-grade, and male tenchers make relativelv more pass decisiona than urban, lower-prade, or fenale tenchers. In addition, certain student varinbles interact with nome tencher or school variablea. For example, the effect of atudent are in different in urban and rurnl repiona. The selective promotion of older gtudents was found to he more markedly n rural phenomenon.

A more conplete and detailed diacussion of the renulta of the teacher's promotion practices surjey will be nreacnted in the fortheoming projact bonk.

5. STANFORD EXIT PROM NICARAGUA

On January 1, 1979 the project was placed entirely under Nicararuan administration. On January 6, 1979 Klaus Galda, the last expatriate with the project, left Nicaragua ending direct Stanford involverient with the Nicaraguan project.

A. Project Office Move

At the beginning of February 1979 the project office was moved from Masaya to offices in Manaqua built for the Ministry of pducation with USAID support. Th: present location is near Km. 8 of the North Highway. The move was nade in the course of about a week, but the large items were all hauled by a large truck on the same day. There seemed to have been some damage th typewriters and tape recorders occanioned by the move.

At present the project is occupying four larpe offices (each one about the size of a classroom). One of these, the only one that is air conditioned, is used as a production studio and small conference room. Desks are distributed aming the other three offices. The building is fairly new but not very pleasant. There seems to be adenuate space and light. However, the buildings are quite hot, which seems to be affecting work adversely.

Administratively the project is under the auspices of CFNPC (Centro Nacional de Fducacion y Ciencias), although for 1979 the onerating funds are still being channeled through the Ministry's Department of Planning.

B. 1979 Follow-up Nicaragun Visit

A follow-up viait to Nicaragua was made by Klaus Galda between March 19 to March 27, 1979. The profect office in CPNPC in Managua vaa viaited briefly on Monday afternoon, March 19, all of Tueariny and Priday afternoons of that week, and the entire day on Tueaday March 27. Reports recelved by the Stanford ataff that esaentially nothing hat been accomplished durina the month of January and the bepinning of Pebruary 1979 were confirmed by the Nicarapuan profect ntaff. However, n preat deal of progresn had been made in the month prior to falda's arrival.
l.ensona for Grades 2, 3, and 4 (develnped in nrevinus yeara) vare belng broadcast dally over Radin Nacional at R:30, 9:0n, and 10:30, respectively. Since March 5, when hroadcantine heran, no tayn hat hern missed. llowever, the radio atation frequently atarted the oropramn 10 to 15 minuten behind mehedule.

The radio mathematica lennonn were belne uned officinily in ealected achooln in the departments of Managua, Manayn, Granada, and Carazo, an well as in virtunlly the antire denartmant of Rio San duan.

The profect staff estimated that approximately 10,000 students were listening to the radio mathematics programs in the schools that had received radios and teachers' guides. There were undoubtedly many more schoole and homes listeninp to the nroprams independently. The unual three-hour training session had been given to teachers from about 30 schools in Manapua, as well as to a similar number from the three departments that had formerly made up the experimental area. Profect staff members also trained 6 inspectors from Rio San Jusn, who in turn were responsible for training teachers in more than 30 schools in that department.

Pretests were administered in the second-, third-, and fourth-prade Managua classes where materials had been distributed. Ahout 30 afternoon shift schools were being used as control proups in those same three prades. The purpose of pre- and posttesting in these Managua schools was to see whether the results obtained frow the formal evaluation in Masaya, Granada, and Carazo are valid for Managua schoole as well.

In spite of a late start, work was also underway on developing the fifth-grade prop,rams. The fourth-grade postest was given as n nretest to 17 experimental classes. However, it appeared that there would be no formal evaluation of fifth grade this year, since there was no control group. Of the 17 [ifth-grade classes, 12 were in Managua, and the remainder were in Masaya (3 urban and 2 rural). Production began about two or three weeks late and the first fifth-Rrade lessons were not broadcent until two weeke after the other grades. At the time of the viait, production seened to be on achedule.

The fifth-grade lessons were not being broadcast on the radio, but dietributed on cassette tapes to the experimental classrooms. This was creating a number of problems. Lesaons had to be recorded almost two weeke prior to broadcast in order to have time for the reproduction and distribution of the caseette coples. Some of the tape recorders were malfunctioning and it was likely that there would be shortape of functioning recorders. Apparently the decision to use tanes was molivated by two factors. One was no that control schools (of wich there seemed to be none yet) would not listen to the proprana; the other was uncertainty about being able to obtain vehicles for claseroon observation exactly at the ame hour every day. The achoole using tapes atagered their mathematics classes so that it was possible at any hour of the mornina to observe some fifth-grade clase.

All of the first twalve fifth-grade lessons had been nbserver. Weekly teatink had not begun yet, but was scheduled to begin the week after Holy Heek (the mifdle of April). It appeared that plannink fir the teate was progresalng reasonably well. The master plan for fifth grade and the curriculum were also discuaned in some detali. The manter plan seemed to be renmonably complete, although disorannized.

The profect organization was changed nliahtly after itanford's departure. Alicia Cordilio and two analatenta were producing the waekly teste and tha flfth-arade pretesta. Marvin Sabsilos and two aneistants
were responsible for the remainder of the testing propram. Juan Jose Montenegro was in charge of the observations, teachers training, reproduction of materials (tapes, etc.), and teachers puides. He hat three profesaional people and a secretary working with him. The teachers guides were being written by Montenegro, David Cardoza, and Franciaco Herrera, using the same weekly format as the fourth-grade guides. Norma Guadamuz was in charge of script writing, and radio production, with four staff assistants, one of whom is part-time. of these, two had previous script writing experience; the other two were being trained. The tapes were delivered each morning to Radiodifusora Nacional by the project driver, who also delivered the fifth-grade tapes and teachers guides weekly to the 17 schools using them. Elba Garcia was in charpe of curriculum development. She also participated in some of the script writing. There were 26 people working for the protect at the time of Galda's visit, including the professionals already mentioned and 4 secretaries, a driver, a maid, an office boy, and William Binns (formerly the project bookkeeper) who worked in the CENEC administration office and performed some work for the project.

Not surprisingly, the project has encountered a large nusuer of problems since the departure of the Stanford staff. The list of mator problems given below was drawn up jointly by Galda and the Nicaraguan staff. The problems are not listed in order of importance. Although the problems are stressed here, one should not overlook the impressive amount of work accomplished since February.

1. Materials and equipment -- vehicles, cassette recorders, and office equipment, are not maintained properly or replaced when required.
2. The curriculum -- only one staff member, not an expert in curriculum, was working, in this area at the time of falda's visit. The project curriculum expert was too husy with administrative matters to contribute in this area.
3. There is a general lack of direction within the project, a general lack of coordination among the profect activities.
4. There is a feeling that the intereats of the profect were not being represented in CENEC or within the Ministry of Education and that the project would aoon be swallowed up.
5. There was a cut in the budgeted operating funds for 1979.

The Stanford ataff felt that it would he interesting and uscful to get suggentions from the Nicarapuan project ataff membera as to what might have been done in Nicarapua that would have contributed to n amonther transition of the project to Nicaraquan control. Hany augfeations were recelved. Among these were the following:

1. The project ahould have built its own atudio at the inceptinn of operations instend of relying on rented facilitien, not
that profect staff members should have been trained to nnerate the necessary equipment.
2. The profect shonld have used the radio more extensively for teacher activities (and training) and relied less erclusivelv on the teachers puides.
3. More should have been clone to actively involve the teachers in the radio mathematics programs.
4. Profect staff members should have rotated so that at least every senior staff member would be familiar with all asnects of the propram.
5. More should have been done, especially in 1978 but also in previous years, to define the position of the profect within the Ministry of Education.
6. The profect staff should have been more concerned in the past four or five years with informing government officials, inside and outside of the Mintatry of Education, academic officials, and the general public about what the project was doing and could do for the future of Nicaragua.
7. The project should have encouraped expansion of the programs while still in the development stage.
8. The Stanford staff members should have begun shifting responsibility to the Nicaraguans somewhat earlier and more pradually rather than leaving it all to 1978.

Pinally, the project was planning to alowly expand and serve as a mucleus for work in radio programs in other curriculum areas in primary education, adult and perhapa secondary education (especially in mathematics), and teacher training proprams. A concrete result of falda's visit was the agreement to start immediately on a nublicity campaipn for the Radio Mathematics prosrams, especially to inform schoola and out-of-school listeners that third and fourth grades could be used even though they did not have the project materials. There seems to be n lot of interest in uaing the programs.

C. Materiale Rereived

Pifth-grade materials have regularly been received at IMSSS since the March 1979 follow-up vinit to the project office (descrihed above). The following fifth-grade materialn have heen received from Nicarapua:

1. Tapen of lensons 6 through 32 .
2. Scriptn for lemann 1 through 40.
3. Teacher's guides for Lessons 4 throuph 9.
4. Daily observation sheets for Lessons 1 through 24 and 26through 37.
5. Results for the first weekly test.
6. Pretest results for the experimental schools in Managua andthe Masaya area.
Due to the intensification of the Nicaraguan civil war in June the office has apparently ceased regular production of program materials.

6. WORK PLANS FOR 1979 AND 1980

The Institute for Mathematical Studies in the Social Sciences will continue the work of the Radio Mathematics Projects by engaging in a series of replication and dissemination activities. These activities fall into 5 separate components. The components are described helow.

A. Replication in Thailand

The project will assist the Thai Ministry of Pducation in adaptinp the second-grade Radio Mathematics lessons for use in Thailand as part of their World Bank Radio Education project. The Thai school year starts in June. The field trial will occupy the very end of the first profect year and most of the second project year (June 1980 to March 1981). The first project year will be occupled with translating lessons and providing technical assistance to the Thai MOE, which will be preparing lesson tapes. The project will assist the MOE in evaluating the field trial. To this end, the pretest and posttest will be field tested nenr the end of the 1979-1980 school year (January 1980) using appropriate student populations. At this time about ten lessons will also be tried out in n dozen schools.
B. Seminars About Work of the Radio Mathemacica Profect

The Profect staff will conduct two types of diasemination activities in LDCs. Pirst, we will make short country viaits during which a staff member will make a brief presentation (uainf the film or slide tape show as nppropriate) and will be avallahle for conaultations with interested people. Fach such visit is anticipated to lant one or two days. The sccond type of activity will conafat of n return viait for consultation in depth with countrien that ahow n more auntained interest in using the results of the Radio Mathematics Proiect in a local effort.

C. Preparation of Sample Lesaon Tapes in Varinus Langungea

The project will produce anmple leatona in four different languages. The produrt will be multiple copien of tapen of two lemaona In Spaniah, Fingliah, French, and Arabic. The leanona will he nelected from becond and fourth grade. The accond-srade lenaone flluatrate typical clasaroom unc of the profort lefnona. The fourth-rinde lennona are designed for use both in nad nutnide of clasaronna nnd hence can serve as modeln for project leanone in nonformal educational anttine.

D. Transintion of Radio Scripta into finglish

The project will tranilate all lnmon acrinte into lingifali th make them morn readily nisilahir for unc in non-intin Amorican countriene The leamona for Grade 2 will be tranalated an nart of the renlication in

Thailand. (Part of thin work in already underway.) Leasona for the other chree grades uill be translated and leasons for all four pradea uill be printed for distrihution.
R. Book on How to Urite Radio leamona

The rooject ulll mublish a field quide to the important anpecta of che operation of the profect, focusing particislarly on how radio lessona were written and produced by the profect.

Although not part of the formal agreenent hetueen lisss and lisaln. the project otaff will continue analysia and renorting of the data collected in Nicaragua rerarding atudent performance and determinance of dropout and repetition.

7. DISSEMINATION AND UTILIZATION OF RFSEARCH RESULTS

A. Project Information Recipienta

The project has received many inquiries from all parts of the world, particularly since the project won the Japan Prize in 1977. Representatives from the following 67 countries have been sent projert publications or materials since January 1977.

In addition in the requemen from abroal, thero have han manv inquirien from within the linited itatoa -- univaraltion, nuhlir metinnl dyetem. and radin and imiodimion miationm. lirolect publicatinna and

B. Project Papers and Puhlications

A full list of the papers and publications predared under the auspices of the Radio Mathematica Project are listed in Appendix C.
C. Script Translation

The following lessons have heen translated af of June 30 , 1979:

Grade

Lessons

The second-grade lessons have been sent to Thailand for use in a World Bank sponsored radio education project.
D. Third Surmary Volume

A third summary volume is presently being prepared for publication in the fall of 1979 . It will report on the work of the profect during 1978 and 1979. The following chapters are being written for the summir volume:

1. Idministrative History of the Radio Mathematics Project.
2. Pormal Rvaluation of the Radio Mathematics Project: Grades 1 through 4.
3. The Radio Mathematics Project Curriculum.
4. The Radio Mathematica Profect'n Pormative Pvaluation Syetem.
5. Survey of the Out-of -schonl Lintening Audience of the Radio Mathematics Prolect.
6. Teacher Promotion Practices in Nicaraquan Pirat through Pourth Gradea.
7. Student Dropout and Repetition Patterna.
8. Nonobtrusive Meamuren of Profert Pffectivenene.

B. Conferences Attended

Project staff members prepared a number of presentations for various interested organizations, provided consultation and participater In the following international conferences:

Fifth Interamerican Conference on Mathematical Education.
Campinas, Brazil, February 13-16, 1979
Klaus Galda participated in the Fifth Interamerican Conference on Mathematical Education, presenting, a paper about the Radio Mathematics Profect. The conference was attended by approximately 1000 deople, primarily Portuguese- and Spanish-speaking with ahout 20 to 30 Americans, Canadians and Curopeans. General sessions were held in the mornings featuring presentations and panel discussions on the following four general topics:

1. Geometry teaching in light of new developments in mathematics education.
2. The impact of calculators and computers in mathematics education.
3. Nontraditional methods of teaching in mathematics education.
4. New tendencies in mathematics teaching and evaluation.

Galda's presentation on the Radio Mathematics Protect was siven on Pebruary 13. It was attended by about 50 to 60 people. Although the paper was in English the oral presentation was in Spanish due to the relatively snall number of people who were fluent in Engliah. The presentation was received with interest, as there were many questions during and after the presentation. More than a fozen peonle from a number of different countries in Latin America and Africa requested further information on the project.

Seminar on Broadcasting in National Development
Jamaica, June 2-6. 1979
This seminar was sponsored by IISAID and the Jamaican Rroadcantinp. Corporation, in cooperation with the Academy for P.ducational nevelonment. At the request of the Academy, Klaus Galdn particinated in the conference. The conferonce uas divided into two parts, corresionding to its two goaln. The first part of the conference wan held in Kinpaton and conaistrif of n number of presentationa and warkshops concerning the role of rommunications developing, countries. At this part of the conference. Ginda presented the Radio Hathemntica Project alide-tane show, nad anort talk atressing the Implications of the protect for educatinnal aynteris and anme of the napecta of profect work which are applicable outside the ratio mathematics framework. An extanalve discunnion period involvinp, many of the conference participanto followed falin'in pranentation.

The second part of the conference was held in Mandeville, a small town in central Jamaica. The Mandeville area is the site of an extensive USAID project in rural development, the Pindars River -- Twn Meetings Inteprated Rural Develonment Profect. A new addition to this nrofect is a local radio station. It will he primarily responsible for arricultural (among other subjects) education necessarv to improve the stantard of living in the area. Galda conducted a workshop using a working paper specially written for this part of the conference. Instructional Objectives in Agriculture." Using the experience gained in the Radio Hathematics Profect, a partial outline for a curriculum in noricultural education programs was developed. Following the conference. Falda and other consultants, topether with some of the Jamaican participants used much of the material from the various workshops to develop a detailed operating plan for the radio station.

8. INVOLVEMEIT OF MINORITY PERSONNEL AND WOMRN

During the period covered by this report, the profect employen three full time and several part time professionals. of the full time profescionals, one is a woman and one has a Spanish surname. IMSSS has, during its entire history, maintained a conpenial atmosphere for both men and women of all types of backprounda. Although the project has no plans for increasing the size of its staff, any replacements will he made within the polic: guide! ines for Stanford University that call for active recruiting of women and minority personnel.

9. REFPRENCES

Hill, S. A study of the logical abilities of children. Ph.D. dissertation, Stanford University, 1960.

Sachar, J. Nicaraguan standardization of the Stanford Mental Arithmetic Test. In In Suppes, P., Searle, B., \& Priend, J. (Bda.). The Radio Mathematice Project: Nicaragua, 1976-1977. Stanford, Calif.: Stanford University, Institute for Mathematical Studies in the Social Sciences, 1978.

Searle, B., Friend, J., \& Suppes, P. The Radio Mathematics Project: Nicaragua, 1974-1975. Stanford, Calif.: Stanford University, Institute for Mathematical Studies in the Social Sciences, 1976.

Searle, B., Friend, J., Suppes, P., \& Tilson, T. Application of radio to teaching elementary mathematica in a developing country (4th annual report). Stanford, Calif.: Stanford University, Institute for Mathematical Studies in the Sncial Sciences, 1977. (PRIC Clearinghoure accession No. IR 005317 April 1978 RIE)

Searle, B., Matthews, P., Suppes, P., \& Friend, J. Formal evaluation of the 1976 first-grade instructional program. In Suppes, P., Saarle, B., \& Priend, J. (Eds.). The Radio Mathematics Profect: Nicaragua, 1976-1977. Stanford, Calif.: Stanford Univeraity, Inatitute for Mathematical Studies in the Social Sciences, 1978.

Searle, B., Sheehan, J., Gonzalez, J., \& George, F. Patterns of promotion and vastage for Nicaraguan first-grade students. In Suppes, P., Searle, B.. \& Priend, J. (Edn.). The Radio Mathematica Project: Nicaragun, 1976-1 ${ }^{\text {7. }}$. Stanford, Calif.: Stanford Univeraity, Inatitute for Mathematical Studies in the Social Sciences, 1978.

Tileon, T., Searle, B., Priend, J., \& Suppes, P. Application of radio to teaching elomentary mathomatics in a develoning country (5th annual report). Stanford, Calif.: Stanford Univeraity, Inntitute for Mathematical Stuiliea in the Socinl Sciencea, 1978.

APPERDIX A: 1977-78 POURTH-GRADE POSTTRST
 Performance of Pxnerimental and Control Students on Fourth-grade Posttest

Exercise	Item form	Percentare correct		Description of exercise
		Experinental	Control	
1	I	50.4	60.6	Vrite one of these symbols (<, >) between the numbers. $1 . . .9$
1	II	44.7	46.4	Urite 350 in roman numerals.
1	III	51.8	411	Hrite 2.036 in words.
1	IV	77.7	81.7	Urite 6.000 in words.
2	1	21.2	11.3	Gircle the larpest fraction. $\begin{array}{lll} 1 / 4 & 1 / 2 & 1 / 3 \end{array}$
2	II	81.6	84.1	Circle the larpest fraction 2/5 4/5
2	III	5.4	19.2	Hrite $40 / 100$ as a percentage.
2	IV	17.0	36.6	Write four percent using nunhers and the percent aign.
3	1	69.9	40.9	Vrite the number that comen before 400 .
3	II	64.0	59.1	$\begin{array}{r} 3.38 \\ +92 . ? \\ \hline \end{array}$
3	III	64.3	49.3	$\begin{array}{r} 4.92 \\ +5 \\ \hline \end{array}$
3	IV	6R.A	43.7	2/5+1/5=
6	1	27.4	62.0	2/3 $\times 5 / 7-$
4	11	25.6	10.1	$\begin{array}{r} \mathrm{Hn} .2 \\ -\quad 7.8 \\ \hline \end{array}$
4	III	49.1	2R.A	$\begin{array}{r} 1.7 \\ -n .8 \\ \hline \end{array}$

Exerciae	Item form	Percentape correct		Description of exercise
		Experimental	Control	
4	IV	. 9	0	$\begin{array}{r} 6.5 \\ -3.08 \\ \hline \end{array}$
5	1	6.2	29.6	Write $1 / 10$ in decimal form.
5	II	9.7	14.5	Write seven tenths in decimal form.
5	III	16.1	11.0	Write this ordinal in words: 27th.
5	IV	33.0	46.5	Write the number that is the same an this roman numeral. C.IX $=$
6	1	29.2	36.6	Write the number 0.4 in words.
6	II	6.1	15.9	Write 20\% na a fraction.
6	III	17.9	15.1	Circle the smallest fraction. $2 / 3 \quad 4 / 10$
6	IV	88.4	85.9	Circle the largest numher. $2.75 \quad 6.13 \quad 8.47$
7	1	26.6	19.7	How many centimetera are there in 4 netere?
7	II	R6. 0	82.6	$\begin{array}{r} 35 \\ +78 \\ \hline \end{array}$
7	III	79.5	87.7	$27+62=$
7	IV	74.1	62.0	$\begin{array}{r} 3.26 \\ +4.1 \\ \hline \end{array}$
8	1	23.0	9.9	$\begin{array}{r} 3005 \\ -1268 \\ \hline \end{array}$
8	II	61.4	53.6	$\begin{array}{r} 5.75 \\ -2.74 \\ \hline \end{array}$
0	III	1月. 8	19.2	$\begin{array}{r} 700 \\ -584 \\ \hline \end{array}$

Execise	Item form	Percentare correct		Descrintion of exercise
		Experimental	Control	
8	IV	49.1	42.3	$\begin{array}{r} 613 \\ -207 \\ \hline \end{array}$
9	I	32.7	18.3	Urite the ordinal llth in words.
9	II	41.2	20.3	Write 1.9 in words.
9	III	9.8	15.1	Write two and five tenths in decimal form.
9	IV	2.7	0	Write two and seven hundreths in decimal form.
10	1	2.7	2.9	Circle the largest number. 4.054 .014 .1
10	II	21.1	26.1	Write five and one half in numbers.
10	III	5.4	24.7	Write a factor of 27.
10	IV	61.6	62.0	Circle the largeat number. $112 / 10 \quad 2$
11	1	70.8	73.2	$\begin{array}{r} 340 \\ \times \quad 3 \\ \hline \end{array}$
11	II	54.4	36.2	$\begin{array}{r} 7.6 \\ +5.9 \\ \hline \end{array}$
11	III	73.2	65.8	$\begin{array}{r} 695 \\ +\quad 8 \\ \hline \end{array}$
11	IV	20.5	18.3	$51+23$
12	1	9.7	7.1	$\begin{array}{r} 60.05 \\ -59.29 \\ \hline \end{array}$
12	II	15.1	13.0	$\begin{array}{r} 4023 \\ -2375 \\ \hline \end{array}$
12	III	43.8	37.0	$\begin{array}{r} 425 \\ -779 \\ \hline \end{array}$

Exercise	Item form	Percentape correct		Description of exercise
		Experimental	Control	
12	IV	25.9	14.1	$\begin{array}{r} 402 \\ -236 \\ \hline \end{array}$
13	1	11.5	21.1	Write a diviser of 2340.
13	II	75.4	66.7	Write the number that comes after 349.
13	III	24.1	15.1	Write 4.32 in words.
13	IV	0	16.9	Write $26 / 100$ in decimal form.
14	1	72.6	76.1	Write two thousand nine hundred ninety-nine in numbers.
14	II	0	0	Urite 216 in words.
14	III	75.0	76.7	Circle the larpest number. $\begin{array}{lll} 3.21 & 2.67 & 1.91 \end{array}$
14	IV	27.7	31.0	Hrite three and two thirds in numbers.
15	I	82.3	77.5	$\begin{array}{r} 64 \\ +71 \\ \hline \end{array}$
15	II	85.1	79.7	$\begin{array}{r} 26 \\ +\quad 3 \\ \hline \end{array}$
15	III	55.4	34.3	$\begin{array}{r} 53.7 \\ -\quad 2.4 \\ \hline \end{array}$
15	IV	91.1	84.5	$\begin{array}{r} 6 \\ +40 \\ \hline \end{array}$
16	1	71.7	62.0	$\begin{array}{r} 2.5 \\ +4.3 \\ \hline \end{array}$
16	II	64.0	68.1	$\begin{array}{r} 82 \\ -59 \\ \hline \end{array}$
16	III	4.5	2.7	$1 / 3+1 / 6=$

Exercise	Item form	Percentage correct		nescription of exercise
		Experimental	Control	
16	IV	29.5	29.6	$\begin{array}{r} 4.3 \\ -2.8 \\ \hline \end{array}$
17	1	85.0	85.9	$84+6=$
17	II	1.8	1.5	$\begin{gathered} 4 \\ -2.8 \\ \hline \end{gathered}$
17	III	49.1	61.6	5/10-2/10 $=$
17	IV	75.0	76.1	$\begin{array}{r} 539 \\ 126 \\ +217 \\ \hline \end{array}$
18	I	79.7	80.3	$\begin{array}{r} 376 \\ -\quad 56 \\ \hline \end{array}$
18	II	21.9	31.9	$\begin{array}{r} 431 \\ \times 100 \\ \hline \end{array}$
18	III	55.4	34.3	$\begin{array}{r} 2.3 \\ \times \quad 5 \\ \hline \end{array}$
18	IV	12.5	11.3	$\begin{array}{r} 639 \\ \times \quad 70 \\ \hline \end{array}$
19	I	30.1	40.9	$\begin{array}{r} 35 \\ \times 47 \\ \hline \end{array}$
19	II	43.0	56.5	95+5
19	III	30.4	41.1	$560+7$
19	IV	2.7	8.5	$\begin{array}{r} 0.64 \\ \times \quad 0.2 \\ \hline \end{array}$
20	1	15.9	15.5	293+14
20	II	36.8	39.1	$375+4$
20	III	12.5	17.A	378+17
20	IV	10.7	12.7	6.4+2

Exercise	Item form	Percentage correct		Description of exercise
		Experimental	Control	
21	1	68.1	59.2	$18+4$
21	II	7.9	8.7	$7.4+2$
21	III	25.0	8.2	$\begin{array}{r} 60.2 \\ -57.4 \\ \hline \end{array}$
21	IV	30.4	19.7	$\begin{array}{r} 64.2 \\ -\quad 8.8 \\ \hline \end{array}$
22	I	73.5	62.0	$\begin{array}{r} 5.3 \\ -2.1 \\ \hline \end{array}$
22	II	34.2	40.6	$\begin{array}{r} 503 \\ \times \quad 28 \\ \hline \end{array}$
22	III	19.6	31.5	$\begin{array}{r} 20 \\ \times 50 \\ \hline \end{array}$
22	IV	0	2.8	3/5-2/6 =
23	1	. 9	4.2	$\begin{array}{r} 4.2 \\ \times 0.5 \\ \hline \end{array}$
23	II	24.6	13.0	$6 \times 2 / 5=$
23	III	57.1	52.1	$49+4$
23	IV	40.2	54.9	$488+6$
24	1	6.2	8.5	$272+42$
24	II	22.8	13.0	$643+32$
24	III	8.0	12.3	$1165+23$
24	IV	46.4	35.2	$804+4$
25	1	20.4	33.8	$\begin{array}{r} 32 \\ \times 50 \\ \hline \end{array}$
25	II	0	0	$1 / 2+1 / 3=$

Exercise	$\begin{aligned} & \text { Item } \\ & \text { form } \end{aligned}$	Percentare correct		Descrintion of pxerctae
		Expertmental	Control	
29	III	67.9	76.7	Julio liad 7? wampy in hin alhum. Yesterday he nasted 29 more aramna in hita athun. Mou many atanos does he have now in his album?
29	IV	55.0	63.4	Mra. Lifa went shophlap. Then alie asked for rlim hill chev told her it wat cs?bs. Sifece alie asked for a deacount alic oulv natd rs?43. How murh discount did they alve her?
30	1	2.7	0	$2 / 3+1 / 2=$
30	11	69.3	79.7	$5+13+1+20=$
30	III	47.3	58.9	$\begin{array}{r} 9497 \\ 8 \\ 675 \\ +\quad 83 \\ \hline \end{array}$
30	IV	2.7	5.6	Solva 14936-37
31	1	30.1	22.5	2912. 1
31	II	71.1	63.8	Circle the larpeat number. 2341 1694 989
31	111	25.0	19.2	Write nexr ro the nand of each country the nare of ien rurrency. Honduraa Conta Hica Nicarapua Guaterala PI Sintuador
31	IV	5.4	11.3	pounda it repe at the napter. l.nier he pouplie? arroliao and ?ll noumin of bernag. llav marli doen exervelifor he is carrylne valpli:

Exercise	$\begin{aligned} & \text { Item } \\ & \text { form } \\ & \hline \end{aligned}$	Percentage correct		Description of exercise
		Experimental	Control	
32	I	0	0	Circle all the fractions less than 1. $\begin{array}{lllll} 1 / 2 & 9 / 7 & 4 / 3 & 5 / 9 & 10 / 12 \end{array}$
32	II	8.8	7.3	Circle the fraction that is equal to $21 / 4$. $\begin{array}{lllll}3 / 4 & 3 / 6 & 9 / 4 & 7 / 4 & 6 / 4\end{array}$
32	III	9.8	16.4	```Circle the fraction equal to 2/4. 3/4```
32	IV	. 9	1.4	Circle all the fractiona that are equal to 4. $\begin{array}{lllll}4 / 4 & 8 / 2 & 1 / 4 & 12 / 3 & 20 / 5\end{array}$
33	1	43.4	50.7	$\begin{array}{r} 1761 \\ 6583 \\ 9894 \\ +2662 \\ \hline \end{array}$
33	II	9.7	2.9	$5863+25$
33	III	58.9	54.8	Circle the largent number. $\begin{array}{lllll} 4 & 3 / 4 & 7 & 1 / 2 & 7 \end{array}$
33	IV	. 9	4.2	```Write 94.1 + 5 vertically and nolve it.```
34	1	0	4.2	3/5-2/10 $=$
34	11	4.4	4.4	$1491+43$
34	III	2.7	5.5	$31841+53$
34	IV	13.5	21.1	Prom one piece of clath 375 yardn lona, a ntore clark cut plecra mennurling 4 yarda ench. How many piecen did nhe rut?
35	1	27.4	26. 8	A achond nrincipal han gne nlecen of chalk for five clannrooma. llow many niecea of chalk in he poing in rive to nach clann?

Exercise	Item form	Percentape correct		Description of exercise
		Experimental	Control	
35	II	74.6	87.0	Marcos houpht a nair of socks for C C $\$ 10$, a nalr of shoes for C C $\$ 62$, and o shirt for C $\$ 55$. How much did he nay all topether?
35	III	31.3	34.3	Rosita qave 51 dolls to her four children. How manv dolls did she pive to each one?
35	IV	35.1	28.2	I had one tortilla. I divided it into five enual pieces. I nte two of those nieces. Write the fraction that represents the amount I ate.
36	I	8.0	7.0	In nrder to frame somp nicturen I hought n plece of wood 7 yards and 2 feet long. Since that wasn't enouph I hourhe another piece 2 vards and ? feet long. How much did I huv all together?
36	II	8.8	5.8	Mrs. Rosaura had 7 nuintalea and 2 arroban of rice. She sold 4 oufntales and 20 pounda. How much rice does she ntlll have?
36	III	1.8	4.1	In order to decorate mome Areanea I bouphe 19 varda of ribbon. I noly used 10 yarda nnd 2 fert. Hou much did I have loft nver?
36	IV	5.4	8.5	Anawer thane nuentionn unine. the information in the praph. What Contral Amertean country prodiced the mont coffer in 19737 that conintry produced the loant?

APPENDIX B. CHANGES TO FIRST-GRADE LRSSONS (H/O GORRSHEETS)

6. Count by $5^{\prime} \mathrm{s}$, write answer.

R:1 $\mathrm{T}: \mathrm{O}$
7. Count by $10^{1} \mathrm{~s}$, write answer.
8. Count by 10's and I's. write answer or give answer orally.
ω
9. Count by 10's and l's, with R:3 horizontal addition.

R:10 T: $\frac{0}{10}$

"En cada caja hay 5 lápices. Contemos de 5 en 5.:
(Similar to above.)

"En cada bolsa hay 10 bolitas, y 3 afuera. Piensen cuántas bolitas hay por todo."

-Encierren 10 bolitas... Encierren otras 10... Contemos de 10 en 10."

Pictures will be drawn on blackboard by teacher. Children will write answer in notebook.
(Same as above. 1
(Same as above.)

Illustration witl be drawn on blackboard by teacher. During iroadcast children will copy exercises.

The 2 radio segements will be changed to postbroadcast activities. The children will use objects instead of pictures.

OROER OF MUBERS

11. Circle greatest (least) nuber.	$\begin{array}{r} R: 14 \\ T: \frac{0}{14} \end{array}$	35 45 "Encierren al nemero mayor."	Children will copy numbers from blackboard.
12. Mrite successor.	$\begin{aligned} & R: 1 \\ & T: \frac{1}{2} \end{aligned}$	$\begin{aligned} & 25 \\ & 36 \end{aligned}$	Children will copy exercises from blackboard.
12. K-1te successor, then eircle greatest (least) numer.	$\begin{aligned} & \text { R:4 } \\ & \text { T:0 } \\ & \hline \end{aligned}$	59 \qquad Escriban el nemero que va despuess de ese... Encierren el nfimero mayor.	Children will copy exercises from blackboard.
14. Mrite predecessor.	$\begin{aligned} & R: 0 \\ & T: \frac{2}{2} \end{aligned}$	- 35	Children will copy exercises from blackboard.
15. Mrite successor and predeccessor, then circle greatest (least) numer.	$\begin{aligned} & R: 2 \\ & T: \frac{0}{2} \end{aligned}$	34	Children will copy exercises from blackboard.
FRACTIONS			
16. Circle the named fraction.	$\begin{aligned} & R: 4 \\ & T: 0 \\ & \frac{1}{4} \end{aligned}$	$\frac{1}{2} \quad \frac{1}{3}$ "Encierren donde dice un medio.:	Fractions will be mritten on blackboard for children to read. MMiren el primer nemero. Léanio. Miren el otro namero. Léanlo. Ahora miren donde dice un medio. Diganme, lqué es el nuinero de abajo."

17. Circle the fraction that corresponds to the shaded figure.
 T: $\frac{0}{3}$

19. Copy fraction.

3

20. Mrite fraction from dictation.

21. Circle the appropriate
figure, given oral
$R: 2$
$T: \frac{0}{2}$

"Encierren el numero que dice cual parte está pintada."

"Escriban cuasnto esta pintado."
$\frac{7}{3}$
"Copien ese numero."

Escriban el numero dos tercios."

Encierren el circulo que ests divido en medios."

Teacher will draw illustration on blackboard. Children will a answer orally. In Lesson 143 children will copy correct fraction.

Illustration will be drawn on blackboard. Children will write answer in notebooks.

Fractions will be written on blackboard. Children will copy them in their notebooks.

Children will write fraction in their notebooks instead of on worksheet.

Illustration will be drawn on blackboard. Children will answer orally."primero" or "segundo."

Linear measurememt

22. Heasure figure, write length.
R:3
T:4

TIIE
23. Tell tine, oral.
24. Circle clock, given time orelly.
25. Hrite time, given picture
 of clock.

$\Phi_{26 .}$ Drew short hand on clock.

MONEY

27. Mrite value of a set
of coins.
28. Mrite value of a set of bills.

R:2
I: $\frac{0}{2}$

R:0 T: $\frac{0}{2}$

Las \qquad

Encterren el reloj que marca las nueve."

APPENDIX C: PROJECT RIRLIOGRAPHY

hnoks

Searle, B., Friend, J., \& Suppes, P. The Radin Mathematics Protect: Nicaragua, 1974-1975. Stanford, Calif.: Stanford Universitv. Institute for Mathenatical Sturies in the Social Sriences, 1976.

Suppes, P., Searle, R., \& Friend, J. (Fids.). The Radin Mathematics Project: N1caragua, 1976-1977 Stanford, Calif.: Stanford University, Institute for Mathematical itudies in the Social Sciences, 1978.

ARTICLES

Jamison, D. The cost of ingtructional radio in Nicaragua: An early assessment. In C. B. Chadwick (Ed.), Revista de technolnoia educativa. Caracas: Centro de Venezuela del Proyecto Multinacional de Tecnologia Fducativa, 1976, 2. 329-340.

Searle, B., Mathews, P., Suppes, P., \& Friend, J. Formal evaluation of the radio mathematics instructional propram. In T. Cook (P. .) , Evaluation studies review annual (Vol. 3). Beverly Hills, Calif.: Sage, 1978.

Searle, B., \& Suppes, P. The Nicararuan Radio Mathematics Profect. Pducational Rroadcasting Internationnl 1975. 8, 117-120.

Scarle, B., \& Suppes. P. The Nicaraguan Radio Mathematica Profect. The llathenatics Tencher (Indian edition). Janunry 1976, 11A, 47-51.

Searle, B., \& Suppes, P. The Nicaragunn Padio Mathematics Profect. In Proccedings. International Conference on Evaluation and Research in Piducational Brandeastina Ianuary 1977. (Also In T. Ratea \& J. Robinaon (Eds.), Fionlunting educotional taloviainn and radin. Milton Keynes, Fingland: Open Univeraity Press, 1977.]

Searle, B., S Sunnea. P. Achiciement levela of atudenta learnine primary-achonl mathematicn by radio in ilfarasua. Studica in Scimece and ! Inthematira Filication, 1778, ! 63-70.

Searle, B., Suppen, P., \&Friend, J. The Hicarnpunn Madio linthematica Project. In P. Sipaln, D. Inminon, AF. McAnanv (rin.). Katin for chucation and development: Cane aturion (Vol. l). Vamhington, D.C.: Vorld Bnnk. 1977.

Suppea P., \& Searlo, R. Survev of the inatructional line of radio, celevinion, and computcra in the linited itnten. Inurnal of the Society of Inntrument nind control rininemen (innanearedirinn). 1976. 15.712-720.

PAPFRS

Friend, J. Column aditition skills. Paper presented at the American Educational Research Association Convention, San Francisco, April 1979.

Galda, K. The Nicaraguan Radio Mathematica Profect. Paper presented at Sth International Conference on Mathematical Education, Campinas, Brazil, February 1979.

Galda, K. Instructional objectives in agriculture. Paper presented at Seminar on Broadcasting in National Development, Jamaica, June 2-6, 1979.

Jamison, D. The cost of instructional radio in Nicaragua: An early assessment. Proceedings of International Conference on Evaluation and Research in Educational Broadcasting. Milton Keynes, England: Open University. Institute of Educational Technology, 1976.

Jamison, D. Radio education and atudent repetition in Nicaragua. Paper presented at the Annual Meetinp of the Comparative and International Education Society, Mexico City, March 1978.

Jamison, D., \& McNally, K. Factors influencing the demand for schooling In Nicarasua. Paper presented at the meeting of the Rconometric Society, Dallas, December 1975.

Searle, B. Instructional radio: The Nicaraguan connection. Paper presented at the fiftieth Convention of the National Association of Educational Broadcasters, Las Vegas, November 1974. (FRIC Document Reproduction Service No. FD 100 307)

Searle, B. Curriculum design for radio instruction. Paper presented at the mecting of the Educational Testing Service, Princeton, N.J., September 1975. (ERIC Document Reproduction Service No. (FD 112 887)

Searle, B. Teaching mathematics by radio in Nicaragua. Paper presented at the annual meeting of the National Councti of Teachern of Mathematice, At lanta, April 1976.

Searle, B., Matthews, P., Suppes, P., 6 Priend, J. Evaluation of the ridio mathematica inntructional program Nicaragua-firnde 1. 1976. Paper presented at the Annual Meeting of the Comparative and International Pducation Society, Mexico City, March, 197 .

Searle, B., \& Suppes, P. Computer unnre in the Nicararua Radio Mathematica Profect. In J. A., Jortan Jr.. \& K. Malaivonkn (Eds.). Proceadinge of the International Conferonce on Computer Applicationa in Developing Countrien. hangkoki Aaian Inntitute of Technolory, 1977.

Suppes, P., Zanotti, M., \& Searle, B. Nicaragua Radio Mathematics Project: The role of probabilistic models in data analysis. Proceedings of the 41 st Session of the International Statistical Institute. New Delhi, India: Indian Statistical Institute, December 1977.

Vrooman, V. Enseñanza de matemática usando radio. [Teaching mathematics by radio.] Paper presented at a conference sponsored by PRONTEL, Rio de Janeiro, Brazil, February 1978.
papers presented at the international conference on the use of radio as an instructional tool in primary schools, managua, nicaragua, september 1976
(The following papers are available in Spanish and English)
de Quintanilla, A. The weekly teats for first and gecond grade.
Priend, J. Closing the feedback loop.
Priend, J. The flexible master plan.
Friend, J. Planning for change.
Guadamuz, N. Forma of entertainment for radio mathematics.
Ledee, J. Creating and producing the radio lessons.
McNally, K. The costb of radio inatruction in Nicaragua.
Montenegro, J. Difitribution of materials and teacher training.
Ramirez, L., \& Friend, J. An inveatigation of addition and subtraction-
Searle, B. Why teach mathematics hy radio? An introduction to the Nicaragua Radio Mathematica Project.

Searle, $B ., \&$ Priend, J. Uaing teats to meamure atudent achievement.
Tilson, T. Teacher'n perceptiona of the Radio Mathematicn Project.
Vrooman, V. The leabonn of the Radio Mathematica Project.
Vrooman, V. Writing the Inatructions.
unpublishfi maniscripts
Priend, J. The Radio Marhematica Profect. Unpubliahed manuncript, Stanford Univeralty, Inatituto Por Mathemntionl studina in the Social Sciences, 1976.

Friend, J., Searle, B., Suppes, P., \& Zanotti, M. Research plan: Radio Mathematics Project. Unpublished manuscript, Stanford Univeraity, Institute for Mathematical Studies in the Social Sciences, 1976.

Institute for Mathematical Studies in the Social Sciences. Final report: Conference on the Use of Radio as an Instructional Toni in Primary Schools. Unpublished manuscript, Stanford University, Institute for Mathematical Studies in the Social Sciences, 1976.

Saballos, M., Galda, K., \& Gonzalez, J. Survey of the home liatening
 Stanford University, Institute for Mathematical Studies in the Social Sciences, 1979.

Sachar, J., \& Suppes, P. Estimating total-test scorea from partial scores in a matrix sampling design. Unpublished manuscript, Stanford University, Institute for Mathematical Studies in the Social Sciences, 1977.

Searle, B. Site selection process: Radio Mathematics Project. Unpublished manuscript, Stanford University, Institute for Mathematical Studies in the Soctal Sciencea, 1974.

Searle, B. The impact of project goals on organization: A cane study of the Nicaragua Radio Mathematica Project. Unpublished manuscript, Stanford University, Inatitute for Mathematical Studice in the Soctal Sciences, 1978.

Searle, B., Friend, J., Jamison, D., Suppes, P., Tilson, T., \& Zanotit, M. Reacarch plan: Radio Mathematics Project. Unpublished manuncript. Stanford University, Institute for Mathematical Studien in the Social Sciences, 1974.

Searle, B., \& Gonzhlez, J. Teaching mathematica hy radio: A project to improve the quality of primary achool education. Unpublinifed manuscript, Stanford University, Insticute for Mathematical Studiea in the Social Sciences, 1979.

Searle, B., Shechan, J., Gonzflez, J., \& Georre, F. Paternh of promotion and wastage for Nicarngunn firnt-grade ntuients. Unpublinhed manacript, Stanford Univernity, Institute for Mnthematical Studies in the Socinl Sciencen, 1978.

ANNUAI, REPORTS
Galda, K.. Gonzaler, J., Senrle, B., K Priend, I. Appliention of radio to teaching alementary mathematien in a developing rointry (foth annual report). Stanfori, Calif.: stanford Univaralty, Inneftite for Mathematical Studien in the Social Sciencen, 1979.

Searle, B. Application of radio to tenching elementary mathematical in a developing country (lat annual report). Stanford, Caltf.: Stanford Univeraity, Institute for Mathematical Studies in the Social Sciences, 1974. (ERIC Document Reprodurtion Service No. ED 094 791)

Searle, B., Friend, J., \& Suppea, P. Applifation of radio to teaching elementary mathematica in a developing country (2nd annual report). Stanford, Calff: Stantord Univeralty, Intitute for Mathematical Studfes in the Social Sciences. 1975. (FIIC Document Reproduction Service No. (1) 111666)

Searle, B., Friend, J., Supper, P., \& Tilaon, T. Anplication of radio to teaching clementary mathematios in a developing country (3rit annual report). Stanford, Calif.: stanford linforeriey, Inatitute for Mathematical Studtes in the Social Sclences, 1976. (fric Document Reproduction Service N: ED 125 609)

Searle, B., Friend, J., Suppen, P.. \& Thlaon. T. Aphlication of radin to tenching elementary mathemates in a developing rountry (4eh
 for Mathematical Studies in the Sinctal Sctences, 1971. (F4IC

Tileon, T., Searle, h., Friend, J., 6 Suppen, D. Appliencton of radio to tenching elementary mathemntich in a dreeloping enumery (sth annunl report). Stanford, callf.: "innford linturatey, Inneftute for Mathematical studien in the soctal sefencen, 197 A .

