VITAMIN A DEFICIENCY

Health, Survival, and Vision

Alfred Sommer, M.D., M.H.S.
Professor of Ophthalmology,
Epidemiology and International Health
Johns Hopkins University
Dean
Johns Hopkins School of Hygiene and Public Health

Keith P. West, Jr., Dr.P.H., R.D.
Associate Professor of International Health and Ophthalmology
Johns Hopkins University

With
James A. Olson, Ph.D.,
Distinguished Professor of Liberal Arts & Sciences,
Iowa State University

A. Catharine Ross, Ph.D.,
Professor of Biochemistry,
Pennsylvania State University

New York Oxford
OXFORD UNIVERSITY PRESS
1996
To our wives, Jill and Marie,
but especially to our children,
Charles and Marni Sommer and Natalie West,
who have put up with peripatetic lives and fathers,

—and to all those children of the developing world
who suffered needlessly until we recognized
the source of their tragedy, and
who suffer still because governments and
the international community have yet
to respond in full measure
My first book on this subject, *Nutritional Blindness*, was published in 1982. As the title suggests, it concentrated on the ocular complications of vitamin A deficiency, the primary clinical concern of half a century. The next year colleagues and I published the first of a series of studies demonstrating that vitamin A deficiency is a public menace of multiple dimensions, including reduced resistance to severe infection and markedly increased childhood mortality. The ocular changes, xerophthalmia and keratomalacia, are relatively late complications of more severe deficiency among children who manage to survive. These data, it turns out, merely confirm conclusions drawn by investigators over 60 years ago but since ignored, forgotten or considered irrelevant to the problems of today’s impoverished populations.

It now seems clear that improving the vitamin A status of deficient children would not only prevent 5 million to 10 million cases of xerophthalmia and half a million children from going blind each year, but save a million or more lives annually as well. In the past two years, specialized agencies of the United Nations (WHO, UNICEF, FAO) have raised their level of concern and commitment. The UNICEF Governing Board, the World Health Assembly, the World Summit for Children and the International Conference on Nutrition have all called for the control or elimination of vitamin A deficiency by the year 2000.

This book therefore reframes the issue of vitamin A deficiency in its broader context of child health and survival, taking up the story where the original volume left off. A great deal more attention is paid to the systemic complications of vitamin A deficiency and the data from which they are derived.

Ocular manifestations are still dealt with in considerable depth and the information and references updated where warranted. Pertinent material from the original work is retained in the present volume, either intact or rewritten depending upon the amount and substance of intervening reports. But the reader is referred to *Nutritional Blindness* and the original references for detailed presentations of that data.
I wrote *Nutritional Blindness* by myself. The present volume is a joint effort. Dr. Keith P. West, Jr., a close colleague and collaborator for the past dozen years, has joined me as co-author. The recent explosion in knowledge about the basic biochemistry of vitamin A and its impact on the immune system, which has begun to explain the clinical and public health observations at the heart of this book, requires more thorough and knowledgeable discussion than I can provide. Drs. James Olson and Catharine Ross have graciously assumed responsibility for these two chapters.

The goal and spirit of the original volume have, I hope, been retained in this sequel.

That this book will prove useful to pediatricians, nutritionists, ophthalmologists, scientists and public health practitioners and officials engaged in designing and implementing programs aimed at curbing vitamin A deficiency and its consequences and reducing the terrible and needless loss of sight and life.

Baltimore
A S
May 1995
Acknowledgments

It has been two decades since one of us (A S) first turned his attention to the problems related to vitamin A deficiency and its control. The past twelve years have witnessed an ever-widening circle of friends and colleagues concerned and involved with these issues. In particular, thanks are due to the staff and faculty of the Dana Center for Preventive Ophthalmology, fellow travelers in the field. In particular, Drs James Tielsch, Joanne Katz, Jean Humphrey, Hugh Taylor, and Richard Semba, Ms Lisa Mele, Kate Burns, Lihana Clement, Agatha Rider, Lee Shu-Fune Wu, Elizabeth Kimbrough Pradhan, and Messrs Paul Conner and Steve LeClerq.

Our work could not have been conducted without the active collaboration of colleagues in over a dozen countries around the world. While it is impossible to mention them all, our seminal studies would never have taken place without our family of Indonesian friends and co-investigators (Drs I Tarwotjo, D Karyadi, Muhilal, S K M Soekirman, G Natadisastra, A Pandji, E Djunaedi, and Kusdiono), Drs Florentino Solon, Rudi Florentino, and Luluth Lucero in the Philippines, Drs R P Pokhrel, M R Pandey, S K Khatry, B D Chataut, R K Adhikari, Nils Daulaire, and Mr S R Shrestha in Nepal, Dr G Venkataswamy and Mr Thulasiraj of India, Drs Festo Kavishe, Allen Foster, Andrew Barclay, and Joe Taylor of Tanzania, Dr Moses Chirambo of Malawi, and Drs T Sukwa, D Kwendakwena, and M Mukunyandela of Zambia.

Many of our major undertakings were facilitated by colleagues and friends at Helen Keller International, particularly Messrs Jeff Watson and Rolf Klemm (Philippines), Mr Steve Wilbur and Dr Robert Tilden (Indonesia), Dr Susan Pettiss, Dr Martin Bloem, Ms Anne Ralte, and Executive Director Mr John M Palmer III.

The thoughts, analyses, and conclusions presented in this book have been influenced over the years by colleagues at the International Vitamin A Consultative Group (IVACG) Professor Abraham Horwitz—its Chairman, Director-General Emeritus of the Pan American Health Organization, and Chairman of...
the United Nations Administrative Committee on Coordination/Subcommittee on Nutrition—has been a consistent source of inspiration and encouragement.

Further, our work might not have been possible at all without the unflagging support of the Office of Nutrition, United States Agency for International Development (USAID). Its former Director, the late Dr. Martin Foreman, was personally responsible for identifying vitamin A deficiency and its control as an important international priority. His staff, especially Drs. Frances Davidson and John McKigney, developed the mechanisms that facilitated programming of our activities and offered useful and substantive advice throughout USAID Mission Health Officers, particularly Dr. David Calde, Mr. David Piet, and Ms. Molly Gingrich, have been pillars of support.

The House of Representatives Select Committee on Hunger, under the chairmanship of the late Congressman Mickey Leland, is responsible for recognizing the importance and promise of our work, and for the priority status now accorded control of vitamin A deficiency by the U.S. Congress. The current Chairman of the Committee, Congressman Tony Hall, continues the passionately supportive legacy of his predecessor.

Among the numerous foundations and other agencies to which we are indebted, special recognition is due Task Force Sight and Life of Hoffman LaRoche, Basle, its past Director Dr. John Gmunder, and its past President Dr. Guido Richterich, and the Rockefeller Foundation for giving one of us (AS) the opportunity to think and write at its Study Center on the inspiring shores of Lake Como.

This book was prepared under Cooperative Agreement No. DAN 0045-A-5094 between Johns Hopkins University and the United States Agency for International Development.

The manuscript was prepared by the ever diligent and compulsive Lynn Hutt, and by Rhonda Skinner.
Contents

I Introduction

1 Background, 3
 Historical Development, 3
 Modern Perspective, 5
 Vitamin A, 6
 Xerophthalmia's Relationship to Vitamin A Status, 8

II Consequences of Vitamin A Deficiency

2 Child Survival, 19
 Mortality Associated with Moderate to Severe Deficiency (Xerophthalmia), 20
 Vitamin A Supplementation Reduces Preschool-Age Mortality, 27
 Vitamin A Therapy Reduces Measles Mortality, 48

3 Infectious Morbidity, 62
 Diarrhea, 65
 Measles, 71
 Respiratory Disease, 76
 Urinary Tract Infection, 82
 Otitis, 82
 Other (HIV), 83
 Conclusions and Pathogenesis, 83

4 Xerophthalmia and Keratomalacia, 99
 Retina and Nightblindness (XN, XF), 101
 Conjunctiva (X1A, X1B), 104
 Cornea (X2, X3A, X3B), 113
5 Anemia and Iron Metabolism, 150
 Effect of Vitamin A on Anemia, 151
 Extent of Vitamin A Deficiency-Associated Anemia, 154
 Potential Mechanisms, 156
6 Growth, 163
 Animals, 163
 Children, 165
 Conclusions, 179

III Mechanisms

7 Contributory and Precipitating Events, 191
 Systemic Infections, 193
 Protein Energy Malnutrition, 206
8 Biochemistry of Vitamin A and Carotenoids, James A Olson, 221
 Chemistry and Nomenclature, 221
 Physiologic Processes, 224
 Metabolic Processes, 230
 Functions of Vitamin A and Carotenoids, 232
 Recommended Intakes, 238
 Biochemical Consequences of Inadequate Intakes, 239
 Toxicity, 242
 Conclusions, 245
9 The Relationship between Immunocompetence and Vitamin A Status A Catharine Ross, 251
 Lymphoid Organs and Hematopoiesis, 254
 Cell-Mediated Immunity, 256
 Humoral Immunity, 257
 Effect of Vitamin A Administration on Immune Response, 262
 Identification of and Requirements for Immunoregulatory Retinoids, 264
 Conclusions, 266

IV Treatment

10 Treatment of Vitamin A Deficiency and Xerophthalmia, 277
 Use of Systemic Vitamin A, 278
 Treating Xerophthalmia, 284
 Treating Measles, 289
 Treating Other Infections, 290
V Assessment and Prevention

11 Assessment of Vitamin A Status, 299
 Vitamin A Deficiency as a Public Health Problem, 299
 Vitamin A Status, 301
 Dietary Intake, 303
 Indices of Vitamin A Status, 304
 Functional Tests of Vitamin A Status, 314
 Interpretation, 322

12 Epidemiology of Deficiency, 335
 Magnitude, 335
 Age, 336
 Sex, 339
 Socioeconomic Status, 339
 Location, 340
 Periodicity, 342
 Diet, 343
 Weaning Diet, 345

13 Dietary Intervention, 355
 Food Sources of Vitamin A, 357
 Recommended Intakes, 359
 Targeting and Selecting Interventions, 360
 Efficacy of Dietary Interventions, 363
 Effectiveness of Dietary Interventions, 373
 Summary, 377

14 Supplementation, 388
 Absorption and Retention, 390
 Prophylactic Efficacy, 390
 Safety, 394
 Effectiveness, 399
 Implementation, 400

15 Fortification of Dietary Items with Vitamin A, 410
 Vitamin A Fortification in Developing Countries, 411
 Alternative Vehicles for Vitamin A Fortification, 421
 Summary, 425

Index, 433
Introduction

While they were saying among themselves it could not be done, behold it was done

—Helen Keller
Background

We feel confident that these cases of xerophthalmia reported by Mon and Bloch should be looked upon as a deficiency disease not hitherto recognized in its true relationship to diet

—E V McCollum, 1917

The disease [vitamin A deficiency] is ushered in by failure to gain weight. These children are liable to be attacked by some infectious disease. These infections are extraordinarily persistent and often have a fatal issue. An increased susceptibility and a diminished power of resistance to infections are therefore present. The eye lesion does not appear as a rule until late in the disease.

—C E Bloch, 1924

Vitamin A Suspicion Confirmed. There is no longer any reason to wait. Vitamin A supplements have taken their place alongside the handful of other low-cost strategies that could now significantly reduce illness and death among the children of the developing world.

—The State of the World's Children, 1993

Historical Development

Vitamin A deficiency is one of the oldest recorded medical conditions, long recognized for its striking and unique ocular manifestations. Nightblindness and its successful treatment with animal liver was known to the ancient Egyptians at least 3500 years ago, and is mentioned by Hippocrates. Corneal destruction resulting in permanent blindness was certainly recognized by eighteenth and nineteenth century physicians, usually in association with severe systemic conditions.
illnesses like meningitis, tuberculosis, typhoid, and severe protein energy malnutrition.

In 1816, Magendie demonstrated that dogs "starved" on sugar and distilled water suffered corneal ulceration, suggesting a specific nutritional basis for the ocular lesions. Hubbenet observed children in a French orphanage and described the progression of xerophthalmia from nightblindness through conjunctival and corneal involvement, attributing it to a faulty diet.

By the mid-1800s, xerophthalmia was recognized in many areas of Europe, particularly in Russia during the long Lenten fasts, the United States, and elsewhere around the world. In a particularly thoughtful and well-documented study published in 1881, Snell demonstrated that cod liver oil would cure both nightblindness and Bitot's spots. Within a decade, meat, milk, and cod liver oil were routinely administered for corneal ulceration and dissolution (keratomalacia).

In 1904, Mori published an exhaustive description of "Hikan," as the disease was known in Japan. Not only did he recognize the entire sequence of ocular changes constituting xerophthalmia, but also the central role of dietary deficiency of fats (particularly fish liver oils) resulting from either a faulty diet or faulty absorption, the role of diarrhea, kwashiorkor, and other contributory and precipitating events, and the curative value of cod liver oil administered orally or intramuscularly.

The first two decades of the 1900s witnessed the flowering of "basic" nutritional research. The use of animal models in the search for specific dietary factors and their role in human health and disease. Hopkins, McCollum, and Osborne and Mendel led the way. Animals fed "pure" diets of fats, starch, protein, and inorganic salts ceased to grow, lost weight, became susceptible to infections, and generally died of overwhelming sepsis, only those that survived developed inflammatory corneal ulceration. Administration of "accessory factors" present in the lipid fraction of milk, eggs, butter, and cod liver oil reversed the process. McCollum termed the critical factor "Fat Soluble A" and Goldschmidt equated these diet-dependent ocular changes in animals with human xerophthalmia.

Bloch, a Danish pediatrician, confirmed McCollum's suppositions. In a series of papers that represent classics of clinical epidemiology, he described the full spectrum of human disease and its etiology, prevention and cure. Seeking an explanation of why children living in one dormitory of a Danish orphanage failed to thrive compared with children housed in other wards, he discovered the latter received more generous helpings of butterfat and whole milk. Extending from 1912 through at least 1919, Bloch's studies convinced him that, in humans as in McCollum's animals, the earliest manifestations of progressive vitamin A deficiency were growth retardation accompanied by reduced resistance to infection (particularly of the respiratory and urinary tracts and the middle ear), and only subsequently by the appearance of the ocular changes of xerophthalmia. Hence the title of one of his seminal publications contained the words...
Background

"xerophthalmia et dystrophia alipogenetica" (xerophthalmia and growth failure related to lack of a dietary lipid) He found he could cure all these manifestations, including otherwise severe and seemingly intractable infections, with cod liver oil, butterfat or whole milk. Upon learning of McCollum's description of fat-soluble A, Bloch declared that its deficiency was the sole factor responsible for the disease.

Thus, by 1920 the clinical manifestations of vitamin A deficiency and their cause and cure were well established. Not until many years later was vitamin A crystallized or were xerophthalmic patients shown to have decreased levels in their blood.

Modern Perspective

From that moment (December 21, 1917), everyone ate butter instead of margarine and since then there has been no xerophthalmia in Denmark. It is impossible with certainty to throw any light on the extent to which change of diet in 1918 and 1919 affected the two other conditions associated with xerophthalmia in young children, viz. dystrophy and the reduced power of resistance towards infection.

---C E Bloch, 1921

Recent research seems to have crystallized into the belief that vitamin A is concerned with raising the resistance of the animal body as a whole to various bacterial invasions. The comparative scarcity of human investigations on this subject may perhaps be attributed to the fact it is not easy to point to any clearly defined group of symptoms associated with a deficiency of this factor in man in any way analogous to the syndromes of rickets and scurvy. There is, however, good evidence for the belief that concentrates rich in this vitamin are valuable as prophylactics against infections.

---J B Ellison, 1932

In retrospect, a profound amnesia appears to have settled over the broader context of vitamin A deficiency once it ceased to be a major concern of wealthier countries. Although animal studies and clinical observations had seemingly delineated the wide spectrum of disease associated with vitamin A deficiency, particularly growth retardation and reduced resistance to infection, clinical interest soon fixated on the ocular manifestations (xerophthalmia and keratomalacia). To what can we ascribe this relative indifference to the systemic consequences of vitamin A deficiency and its potentially profound impact on the health and survival of young children? No clear answers exist, though a constellation of factors were probably responsible.

1. Despite periodic but scattered reports attesting to the potential relationship between vitamin A status and infection, it is unclear whether
this thesis was ever widely accepted or altered the practices of the medical profession (in the absence of xerophthalmia)

2 Scientific curiosity reached its peak in Europe, Japan, and the United States when vitamin A deficiency was a readily recognized local phenomenon. As these countries succeeded in eliminating severe deficiency (xerophthalmia) through alterations in diet, the problem became less apparent and urgent. Scientific and public health interest turned elsewhere.

3 In contrast to xerophthalmia, which is associated with a dramatic and readily recognized constellation of signs and symptoms, the systemic consequences of vitamin A deficiency are more protean, insidious and, less specific. As the quotation from Bloch makes clear, even he was unsure whether improved child health and survival in Denmark was a direct consequence of the marked and abrupt increase in vitamin A intake. Too many factors seemingly influenced childhood morbidity and mortality to ascribe a major role to a single nutrient.

4 The poverty and deprivation afflicting children in the developing world have long presented complex, overwhelming challenges to their health. Given contaminated water supplies, poor hygiene, and multiple nutritional deficiencies, many scientists, including a panel of the National Academy of Sciences, doubted that vitamin A deficiency alone could account for a significant proportion of severe childhood infections and death. Nor were they convinced that improving vitamin A nutrition by itself would improve health and reduce mortality.

The significance of “mild” vitamin A deficiency as an important determinant of child survival was overlooked until the chance observation that mild xerophthalmia (or, as we now recognize, moderate vitamin A deficiency) was closely associated, in a dose-dependent relationship, to mortality among children who seemed otherwise healthy and well nourished. That was more than ten years ago, it took another decade of observational studies and controlled clinical trials to convince ourselves and the broader scientific and public health communities that improving the vitamin A status of deficient children could, by itself, dramatically reduce their morbidity and mortality.

Vitamin A

“Vitamin A” is a generic term for a variety of related compounds. Briefly, they include retinol, its esters (e.g., retinyl palmitate), and retinoic acid. The biochemistry and cellular and molecular biology of vitamin A are detailed in Chapter 8, but a short overview will help orient the reader.

Vitamin A is a fat-soluble substance found in ester form (usually as retinyl palmitate) in animal and dairy products. It is hydrolyzed in cells of the small
Background

intestine to alcohol (retinol). Carotene, the naturally occurring progenitor of vitamin A found in certain vegetables and fruits, is split in the intestinal cells to retinaldehyde, most of which is promptly reduced to retinol. All-trans beta-carotene is the most active of the provitamin A carotenoids. The bioavailability of provitamin A carotenoids varies widely with the way in which food is prepared and consumed.

Dietary lipids, pancreatic enzymes, and bile salts play an important role in the digestion and assimilation of these agents.

Most of the absorbed retinol is re-esterified, enters chylomicra and makes its way to the bloodstream via the lymphatics. Under normal conditions, over 90% of vitamin A is stored in the liver, mostly as retinyl palmitate. This is why fish and animal livers (and their oils, like cod liver oil) are such potent sources of vitamin A.

Liver stores are drained to maintain serum levels and the delivery of adequate amounts of retinol to target tissues. When released from the liver, retinol is bound to a specific transport protein, RBP (retinol-binding protein). By itself the protein is known as apo-RBP. Bound to retinol, the complex is called holo-RBP. Interference with protein metabolism can depress RBP synthesis and holo-RBP release. Conversely, pure vitamin A deficiency results in the accumulation of apo-RBP in the liver. Administration of a bolus of retinyl ester will cause a sudden outpouring of holo-RBP. This response is the basis for indirect assessment of liver stores (the relative dose-response [RDR]), see Chapter 11.

A variety of intracellular retinol binding proteins have been identified. Some in the intestines participate in the absorption of vitamin A, others promote its storage in the liver's stellate cells. Retinol's role in the visual cycle of photoreceptors, remarkably well worked out, only begins to tell the story. Exciting new molecular studies indicate that vitamin A influences the expression of over 300 genes, in most instances after oxidation to retinoic acid which then binds to nuclear receptors (RAR). The retinoic acid-RAR complex is thought to bind to DNA sequences (retinoic acid-responsive elements [RARE]) in the vicinity of target genes and thereby regulate their expression.

While retinoic acid-responsive genes are involved in a host of activities, including production of structural proteins, they clearly play a major role in cellular differentiation. Vitamin A's impact on cellular differentiation and morphogenesis affects (among other things) the epithelial lining of a number of organs, including the eye and the respiratory and genitourinary tract, and the differentiation of cells related to the immune response (Chapter 9).

Indices of vitamin A status and their interpretation are detailed in Chapter 11. For purposes of this overview, suffice it to say that no single measure alone provides a complete story of vitamin A nutriture at the cellular and organismic level.

A variety of body tissues and biochemical techniques have been used to assess vitamin A "status." Serum "vitamin A" has a certain historical pride of
Table 1-1 Serum Vitamin A Classification of Vitamin A "Status"

<table>
<thead>
<tr>
<th>µg/dl</th>
<th>µmol/liter</th>
<th>Vitamin A "Status"</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 20</td>
<td>≥ 0.7</td>
<td>Normal</td>
</tr>
<tr>
<td>10–20</td>
<td>0.35–0.69</td>
<td>Low</td>
</tr>
<tr>
<td>< 10</td>
<td>< 0.35</td>
<td>Deficient</td>
</tr>
</tbody>
</table>

*Serum levels were traditionally expressed as µg/dl. They are increasingly reported as µmol/liter (28.57 µg/dl = 1 µmol/liter). In still older literature, "international units" were used. The reader is cautioned to pay close attention to the unit of measurement.

place, having been first measured and correlated with clinical status (xerophthalmia) in the 1930s. Despite a number of well-recognized limitations, it has been the most common biochemical measure of vitamin A "status" and the basis upon which much of our knowledge about vitamin A status and its clinical correlates rests.

Vitamin A levels have traditionally been categorized (Table 1–1).

Not surprisingly, interpretation of serum levels in any one individual is fraught with problems. Aside from laboratory artifact, biologic variation dictates that an "abnormal" level in one individual is perfectly "normal" in another. Hence "normal" levels of vitamin A are best considered a "range" with considerable overlap.

While serum retinol levels above 20 µg/dl (0.7 µmol/liter) are generally considered normal, there are important caveats:

- Carefully monitored vitamin A depletion of otherwise healthy adults demonstrates impaired dark adaptation at serum vitamin A levels between 20 µg/dl–30 µg/dl or higher.
- Non-xerophthalmic children with serum levels above 20 µg/dl have evidence of subclinical functional disturbances, like conjunctival metaplasia, which are directly associated with other health consequences (Chapters 2, 11).
- A significant proportion of children with clinical xerophthalmia have serum levels above 20 µg/dl, while an even larger proportion with seemingly normal eyes have levels below 20 µg/dl (Table 1–3).

Direct measures of various vitamin A-dependent functions (impression cytology, dark adaptation, etc) provide a snapshot of that particular function, but little about the adequacy of other functions or vitamin A reserves.

Xerophthalmia's Relationship to Vitamin A Status

As the pathognomonic clinical sign of vitamin A deficiency, the presence and severity of xerophthalmia has classically served as a surrogate for "vitamin A status" in studies investigating the relationship between vitamin A deficiency
and factors with which it might interact. A detailed description of the clinical entity appears in Chapter 4 and elsewhere.

The term “xerophthalmia” was coined nearly 200 years ago to describe dry eyes (Greek *xeros*, dryness), unrelated to the nutritional condition under discussion (cited in MacKenzie16). While a number of pathologic processes interfering with mucus or tear production may give rise to “dry eye,” these are exceedingly rare among children in developing countries. “Xerophthalmia” has since become synonymous with the ocular manifestations of vitamin A deficiency. Historically, the signs and symptoms covered by the term have varied from excluding nightblindness to including a variety of permutations and combinations of conjunctival and corneal abnormalities.79,84

In 1974, participants at an international conference85 proposed following the inclusive practice of Oomen and McLaren86,87. “Xerophthalmia” includes all ocular signs and symptoms of vitamin A deficiency, from nightblindness to keratomalacia. A standardized classification (modified after ten Doesschate86) has since been refined following clinical studies in Indonesia (Table 1–2).1,89

Nightblindness (XN), conjunctival xerosis (X1A), Bitot’s spots (X1B), and corneal xerosis (X2) are entirely reversible. Loss of corneal stroma (X3) will result in permanent sequelae (XS); a circumscribed ulcer (Latin *ulcus*) will leave a scar, “keratomalacia” (Greek *keras*, horn, *malakos*, soft), full thickness, often limbal-to-limbal necrosis of the entire cornea, commonly results in a blind, shrunken globe.

Despite limitations of serum vitamin A as a guide to all aspects of vitamin A status, particularly among individual subjects, it is a useful basis for assessing the relative status between groups of individuals. Indonesian studies documented a direct, dose-dependent relationship between serum vitamin A levels and the prevalence and severity of xerophthalmia (Table 1–3).1

While a significant proportion of preschool children with mild xerophthalmia had serum levels above 20 μg/dl, the prevalence and severity of disease increased markedly as levels fell below 20 μg/dl, particularly below 10 μg/dl–15 μg/dl. Mean serum vitamin A among children with keratomalacia was well below 10 μg/dl (0.35 μmol/liter).90,91

<table>
<thead>
<tr>
<th>Table 1-2</th>
<th>Clinical Classification of Xerophthalmia (WHO, 1981 Revision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightblindness (XN)</td>
<td></td>
</tr>
<tr>
<td>Conjunctival xerosis (X1A)</td>
<td></td>
</tr>
<tr>
<td>Bitot’s spots (X1B)</td>
<td></td>
</tr>
<tr>
<td>Corneal xerosis (X2)</td>
<td></td>
</tr>
<tr>
<td>Corneal ulceration/keratomalacia <1/3 corneal surface (X3A)</td>
<td></td>
</tr>
<tr>
<td>Corneal ulceration/keratomalacia ≥1/3 corneal surface (X3B)</td>
<td></td>
</tr>
<tr>
<td>Corneal scar (XS)</td>
<td></td>
</tr>
<tr>
<td>Xerophthalmia fundus (XF)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1—3 Association Between Xerophthalmia Status and Serum Vitamin A

<table>
<thead>
<tr>
<th>Clinical Status</th>
<th>Deficient (<10 µg/dl)</th>
<th>Low (10-20 µg/dl)</th>
<th>Adequate (>20 µg/dl)</th>
<th>Total</th>
<th>Mean (µg/dl)</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>XN (+), X1B (-)</td>
<td>27%</td>
<td>55%</td>
<td>18%</td>
<td>100%</td>
<td>13.9</td>
<td>174</td>
</tr>
<tr>
<td>XN (-), X1B (-)</td>
<td>31%</td>
<td>57%</td>
<td>12%</td>
<td>100%</td>
<td>13.4</td>
<td>51</td>
</tr>
<tr>
<td>XN (+), X1B (+)</td>
<td>38%</td>
<td>53%</td>
<td>9%</td>
<td>100%</td>
<td>12.1</td>
<td>79</td>
</tr>
<tr>
<td>Neighborhood controls</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>17.7</td>
<td>282</td>
</tr>
<tr>
<td>Random sample</td>
<td>8%</td>
<td>37%</td>
<td>55%</td>
<td>100%</td>
<td>20.0</td>
<td>268</td>
</tr>
</tbody>
</table>

Modified from Sommer et al.—community based study

Modified from Sommer et al.—hospital-based study

XN = nightblindness X1B = Bitot's spots, controls = neighborhood peers of same age and sex random sample = peers from throughout the six villages studied X2 = corneal xerosis X3A = ulcers and localized keratomalacia, X3B = widespread corneal necrosis (keratomalacia), "random sample" distribution of serum retinol for XN(—)/X1B(—)

Data on XN, X1B, controls and random sample from a six village field study outside Bandung, Indonesia. Data on corneal cases were children seen at the Cicendo Eye Hospital, Bandung.

Serum levels among children with X1B appeared only slightly lower than among children with isolated XN, this may partially reflect inclusion of children with Bitot's spots that persisted despite a more adequate (if not necessarily normal) vitamin A nutrition (Chapter 4).

Correlation between children with "normal" eyes and serum vitamin A levels reveals an interesting aspect of vitamin A status among children without evident xerophthalmia. Seemingly normal children living in the vicinity of an active case of xerophthalmia ("neighborhood controls") had serum levels higher than the neighboring case, but lower than those of children of the same age and sex living farther from the explicit case ("random sample"). This finding indicates the influence of local, shared community and environmental factors on vitamin A status (e.g., dietary practices, sanitation, educational levels).

NOTE In Indonesia in the late 1970s, the mean serum vitamin A level of control children without xerophthalmia was at, or below, 20 µg/dl (0.70 µmol/liter). In other words, roughly half the population of seemingly normal, free-
living, rural Indonesian children had serum vitamin A levels classified as "low", serum levels in the remaining "normal" children were not much higher.

References

22. Hildreth JS. Anasthese der cornea mit gleichzeitig verminderter Wirkung des Atro-
12

Introduction

pins auf die Iris, und deren einfluss auf ulcerative hornhautentzundung Arch f Augen u Ohrenh 1870,1 200–202

23 Leber T Ueber die Xerosis der Bindehaut und die infantile Hornhautverschwarzung nebst Bemerkungen uber die Entstehung des Xerophthalmus Graefe's Arch Ophthalmol 1883,29 225–290

24 Arlt CF Clinical studies on diseases of the eye, including those of the conjunctiva, cornea, sclerotic, iris, and ciliary body Edinburgh YJ Pentland 1885 110, 138–139

25 Blessig, 1866 Cited In Blegvad O Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924,7 89–117

26 Hicks RJ Night-blindness in the Confederate Army The Richmond Medical Journal 1867,3 34–44

27 Gama Lobo Ophthalmia brasiliana Klin Mbl Augenhk 1866,4 65

28 Teuscher R Jenaische Zeitschr f Med U Naturwissenschaft 1867,3 103

29 Weeks JE Xerosis conjunctivae bei Sauglingen und Kindern Archiv fur Augenheilkunde 1887,17 193–202

30 Herbert H Epithelial xerosis in natives of India Trans Ophthalmol Soc UK 1896, 18 103–104

31 Morri M Uber den sog Hikan (Xerosis conjunctivae infantum ev Keratomalacie) Jahrb Kinderheilk 1904,59 175–194

33 Spicer H Ophthalmologica Society Kerato-malacia in young children (editorial) Lancet 1890,1 1387–1388

34 Falta W, Noeggerath CT Futterungsversuche mit kunstlicher Nahrung Beitr Chem Physiol Path 1906,7 313–322

35 Knapp P Experimenteller Beitrag zur Ernahrung von Ratten vt kunstlicher nahrung und zum Zusammenhang von Ernahrungsstorungen mit Erkrankungen der Conjunctiva Zeitschrift fur Experimentelle Pathologie und Therapie 5, 1909 147–169

36 Green HN, Mellanby E Vitamin A as an anti-infective agent Br Med J 1928,October 2 691–696

37 Stephenson M, Clark AB A contribution to the study of keratomalacia among rats Biochem J 1920,14 502–521

38 Hopkins FG Feeding experiments illustrating the importance of accessory factors in normal dietaries J Physiol (London) 1912,49 425–460

39 McCollum EV, Davis M The necessity of certain lipids in the diet during growth J Biol Chem 1913,15 167–175

40 Osborne TB, Mendel LB The influence of butter-fat on growth J Biol Chem 1913,16 423–437

41 Osborne TB, Mendel LB The influence of cod liver oil and some other fats on growth J Biol Chem 1914,16 423–437

43 McCollum EV, Davis M The essential factors in the diet during growth J Biol Chem 1915,23 231–254

44 McCollum EV, Simmonds N A biological analysis of pellagra-producing diets II The minimum requirements of the two unidentified dietary factors for maintenance as contrasted with growth J Biol Chem 1917,32 181–194

45 McCollum EV, Simmonds N A biological analysis of pellagra-producing diets I The
dietary properties of mixtures of maize kernel and bean J Biol Chem 1917,32 29–61
46 Bloch CE Fat deficiency disturbances in infants JAMA 1917,68 1516
47 Bloch CE Decline in immunity as a symptom due to deficiency in A-vitamine and in C-vitamine Acta Paediatr 1928,7(suppl 2) 61–64
49 DeHaas JH, Meulemans P Vitamin A and carotinoids in blood Deficiencies in children suffering from xerophthalmia Lancet 1938,1 1110–1111
50 Ellison JB Intensive vitamin therapy in measles Br Med J 1932,2 708–711
52 Clausen SW Carotinemia and resistance to infection Am J Dis Child 1931,42 698–699
53 Panel of the Committee on International Nutrition Programs Possible health benefits of vitamin A prophylaxis programs in addition to prevention of xerophthalmia and blindness Washington DC National Academy of Sciences, National Research Council 1976
54 Sommer A Vitamin A deficiency and childhood mortality (editorial) Lancet 1992 339 864
55 The Bellagio Declaration Overcoming hunger in the 1990s Report of a meeting held at the Rockefeller Foundation Study and Conference Center, Bellagio, Italy, November 13–16, 1989 Alan Shawn Feinstein World Hunger Program, Brown University, Providence, Rhode Island
56 Beaton GH, Martorell R, L’Abbe KA, Edmonston B, McCabe G, Ross AC, Harvey B Effectiveness of vitamin A supplementation in the control of young child morbidity and mortality in developing countries Final Report to CIDA, University of Toronto, Toronto, Canada 1992
57 Vitamin A and measles (editorial) Lancet 1990,2 304
60 Vitamin A and malnutrition/infection complex in developing countries (editorial) Lancet 1990,336 1349–1351
61 Vitamin A for measles (editorial) Lancet 1987,1 1067–1068
62 Fall and rise of the anti-infective vitamin (editorial) Lancet 1986,1 1191
63 Keusch GT Vitamin A supplements—too good not to be true N Engl J Med 1990,323 985–987
64 Bellagio Meeting on Vitamin A Deficiency & Childhood Mortality Proceedings of “Public Health Significance of Vitamin A Deficiency and its Control” New York Helen Keller International 1993
66 Petkovich M Regulation of gene expression by vitamin A the role of nuclear retinoic acid receptors Annu Rev Nutr 1992,12 443–471
68 Blomhoff R Transport and metabolism of vitamin A Nutr Rev 1994,52 S13–S23
69 Mangelsdorf DJ Vitamin A receptors Nutr Rev 1994,52 S32–S44
70 Ong DE Cellular transport and metabolism of vitamin A roles of the cellular retinoid-binding proteins Nutr Rev 1994,52 S24–S31
72 Wolf G Recent progress in vitamin A research nuclear retinoic acid receptors and their interaction with gene elements J Nutr Biochem 1990,1 284–289
75 Sherman MI, ed Retinoids and Cell Differentiation Boca Raton, Florida CRC Press 1986
77 Hume EM, Krebs HA Vitamin A requirement of human adults an experimental study of vitamin A deprivation in man Vitamin A Sub-committee on the Accessory Food Factors Committee Medical Research Council, Special Report Series No 264, 1949 7–145
79 Blackfan K, Wolbach SB Vitamin A deficiency in infants A clinical and pathological study J Pediatr 1933,5 679–706
80 Yap KT Protein deficiency in keratomalacia Br J Ophthalmol 1956,40 502–503
82 Rodger FC, Saiduzzafar H Grover AD, Fazal A Nutritional lesions of the external eye and their relationship to plasma levels of vitamin A and the light thresholds Acta Ophthalmol 1964,42 1–24
83 Blegvad 0 Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924,7 89–117
84 Sauter JJM Xerophthalmia and Measles in Kenya Groningen Drukkerij Van Den Denderen B V 1976
87 McLaren DS, Oomen HAPC, Escapini H Ocular manifestations of vitamin A deficiency in man Bull WHO 1966,34 357–361
88 ten Doesschate J Causes of Blindness In and Around Surabaja, East Java, Indonesia Thesis, University of Indonesia, Jakarta 1968 159–241

Consequences of Vitamin A Deficiency
Child Survival

Our results suggest that the existence of even mild xerophthalmia in a community justifies vigorous intervention measures, as much to reduce childhood mortality as to prevent blindness

—A. Sommer et al., 1983

Where it is the limiting nutrient, vitamin A deficiency causes anemia, growth retardation and xerophthalmia; increases the incidence and/or severity of infectious episodes; and reduces childhood survival. Reduced survival is the most severe and potentially the most widespread consequence of vitamin A deficiency, and the one that has generated the most interest recently. The international Child Survival Initiative, a program directed at reducing the 14 million childhood deaths each year, has helped focus attention on mortality. Improvement in vitamin A status is now viewed as one of the most cost-effective measures to achieve the Initiative's goal, joining immunization, breast-feeding and related strategies.

Vitamin A-deficient animals die much earlier and at a far higher rate than vitamin-A sufficient controls. Under experimental conditions of gradual, progressive deficiency, mortality begins to take its toll even before the appearance of xerophthalmia (Fig. 2–1). Indeed, one of the problems in creating an experimental animal model to study xerophthalmia has been keeping such animals alive long enough to develop ocular changes.

The situation in humans is far more complex. Vitamin A deficiency rarely occurs as an isolated disturbance; when it does, it is rarely recognized in the absence of severe xerophthalmia, a condition long associated with increased mortality.
Mortality Associated with Moderate to Severe Deficiency (Xerophthalmia)

Severe xerophthalmia, particularly keratomalacia, has traditionally been associated with extraordinary mortality. This is hardly surprising since early reports were generally confined to children who went blind during chronic, debilitating illnesses like encephalitis and tuberculosis, complicated by severe pneumonia, diarrhea and emaciation—children like those recalled by Elliot (Chapter 4).\(^6\) In 1868, Hirschberg reported mortality rates of 100\(^7\), and authors early in this century cited rates of 50\%–80\%.\(^8,9\) Given the lack of understanding and means to treat kwashiorkor and underlying infections at that time, these rates probably approximate the natural, untreated outcome of keratomalacia today.

It seems reasonable to suspect these extraordinary mortality rates were determined, at least in part, by concomitant infections and protein-energy malnutrition (PEM). Indonesian children presenting with severe (e.g., corneal) xerophthalmia to the Cicendo Eye Hospital in Bandung received the recommended course of vitamin therapy (200,000 IU on two successive days and again one month later), as well as protein-rich diets and antibiotics appropriate for systemic infections. Cumulative mortality over the fourteen months of follow-up was 12.6\%,\(^10\) most of the deaths occurring within two months of initial presentation. PEM status at admission was the single most important determinant of mortality in this treated group of subjects: children with severe PEM (edema, serum albumin \(\leq 2.5 \mu \text{g/dl} \) or weight for height < 70\% of standard) died at almost seven times the rate of those who were better nourished (25.7\% versus 3.8\% respectively).
Years before, 30%–35% of severely malnourished children treated in the central hospital in Jakarta died whether or not they had accompanying xerophthalmia. Only 8% of xerophthalmic children (most but not all of whom had PEM) treated at a nutrition rehabilitation center in India died, versus 10% of non-xerophthalmic, but more malnourished, children. Children hospitalized for xerophthalmia in El Salvador had an in-hospital mortality of 21%; among those most severely malnourished, mortality was 25%.

On the other hand, several reports suggest that all else being equal, xerophthalmia (e.g., severe vitamin A deficiency) can increase the risk of mortality among malnourished, hospitalized children. Of severely malnourished children hospitalized in El Salvador, 16% with xerophthalmia died; that rate was only 11% among those without xerophthalmia. In South Africa, overall hospital mortality for severely malnourished children (25%) rose to 30% for those with ulcerated corneal lesions. In Bangladesh, children hospitalized with severe malnutrition died at a 50% higher rate if they were xerophthalmic (10% versus 15%). This difference was not statistically significant, however, and closer examination revealed that the xerophthalmic children were even more undernourished and hypoproteinemic than their non-xerophthalmic peers.

McLaren long ago argued that xerophthalmia increased mortality among malnourished children. Mortality among hospitalized xerophthalmic children was 56%–64%, four times the rate among non-xerophthalmic children of similar PEM status (judged by broad classifications). Pereira et al. reported similar though less dramatic results in Vellore, South India: mortality among children with both keratomalacia and kwashiorkor was 28%, twice the mortality rate among children with kwashiorkor alone. Given the observations in Bangladesh that xerophthalmic children were generally more malnourished than non-xerophthalmic children, even when confined to the same broad nutritional categories, more detailed examination of nutritional status in McLaren’s and Pereira’s studies would have been valuable.

Among girls in El Salvador hospitalized for severe malnutrition, the mortality rate of those with xerophthalmia was twice that of girls without xerophthalmia; mortality rates among xerophthalmic and non-xerophthalmic boys, however, were similar. This was interpreted as evidence that admission of females with xerophthalmia was delayed, by which time they had become more malnourished. Scragg and Rubidge reported in-hospital mortality of 52% among 1565 severely malnourished African children (over 90% with edema). In general, those who died had lower serum protein values than those who survived. Fourteen had rapidly progressive corneal perforation in eyes that had appeared normal the previous day. The mortality in this subgroup was an astounding 93% (thirteen of fourteen). Five had been admitted “in extremis,” dying within a few hours.

Before 1980, therefore, evidence had linked xerophthalmia to mortality; unfortunately, it was primarily limited to children hospitalized with concomitant,
severe malnutrition. The data suggested that severe PEM (a strong predictor of mortality20-22) was a greater determinant of survival than was xerophthalmia, but also indicated, tentatively, that severe xerophthalmia (vitamin A deficiency) might further exacerbate the underlying risk of death.

The contribution of vitamin A deficiency to child mortality, isolated from the confounding effects of severe PEM, was identified in a prospective, longitudinal observational study of generally healthy, free-living rural Indonesian children.1,23,24 Approximately 3500 preschool-age children up to six years of age were followed for eighteen months (Figure 2–2).1,10,23 After baseline examination, the children were reexamined by the same team every three months, resulting in seven examinations encompassing six intervals. Serum samples were obtained at baseline from children with mild xerophthalmia (XN, X1B), from age, sex, neighborhood matched controls, and from a representative subsample of the study population (Table 1–3). Any child with advanced xerophthalmia (i.e., X2, X3) was immediately given 200,000 IU vitamin A by mouth and hospitalized for treatment.

Each child was assigned the ocular status present at the interval-initiating examination. Mortality for that interval was ascertained at the follow-up examination three months later. The process was repeated and summed across all six intervals. The data relate solely to children with mild xerophthalmia (XN, X1B) compared with peers with normal eyes (but not necessarily normal vitamin A status).

The incidence of mild xerophthalmia rose dramatically during the first four years of life, to 7% (5% XN, 2% X1B). No child under one year of age had evidence of xerophthalmia. Of the 132 deaths, 24 occurred in children within the three-month interval after the exam at which they were diagnosed with xerophthalmia (Table 2–1). Age-specific mortality among these mildly xerophthalmic children was four to twelve times the rate among their non-xerophthalmic peers.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig22.png}
\caption{Fig. 2–2. Approximately 3500 preschool-age Indonesian children in Purwakarta District, Indonesia, were reexamined in their village every three months for eighteen months. Vitamin A status was based on the presence or absence of xerophthalmia at the examination initiating each three-month interval. Mortality rates were calculated for each interval, by xerophthalmia status at the start of the interval, and summed over the six intervals. (From A. Sommer et al.1)}
\end{figure}
Table 2–1. Mortality in Relation to Xerophthalmia (Vitamin A) Status

<table>
<thead>
<tr>
<th>Ocular Status</th>
<th>Child Intervals</th>
<th>Deaths</th>
<th>Mortality (per 1000)</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>19,889</td>
<td>108</td>
<td>5.4</td>
<td>1.0</td>
</tr>
<tr>
<td>XN (+), X1B (−)</td>
<td>547</td>
<td>8</td>
<td>14.6</td>
<td>2.7</td>
</tr>
<tr>
<td>XN (−), X1B (+)</td>
<td>269</td>
<td>6</td>
<td>35.5</td>
<td>6.6</td>
</tr>
<tr>
<td>XN (+), X1B (+)</td>
<td>215</td>
<td>10</td>
<td>46.5</td>
<td>8.6</td>
</tr>
</tbody>
</table>

From A Sommer et al. Refer to Table 1–3 for relationship between serum vitamin A status and clinical xerophthalmia at baseline examination.

It is important to note that the association between vitamin A status and mortality was dose-dependent: the greater the degree of vitamin A deficiency, the greater the mortality. Children with only nightblindness died at almost three times the rate of their non-xerophthalmic peers; children with Bitot’s spots, at almost seven times the rate; and children with both nightblindness and Bitot’s spots (a cleaner group than XN (−) X1B (+), in whom Bitot’s spots were more likely to be residua of past deficiency), at almost nine times the rate (test for trend, p < .05).

At the interval-initiating examinations, respiratory infection (diagnosed by the pediatrician on the basis of wheezing, rhonchi, or rales) was more prevalent at the interval-initiating examinations among xerophthalmic than among non-xerophthalmic children (by 40%–90%). Since it was uncertain whether respiratory infection precipitated the xerophthalmia or xerophthalmia the infection (Chapters 3, 7), and respiratory infection could have contributed to the increased mortality seemingly associated with xerophthalmia, mortality rates were stratified for respiratory status at each interval-initiating examination (Table 2–2).

Even among children without respiratory disease at baseline, mortality increased in direct association with the severity of vitamin A deficiency. Though the numbers are much smaller, the same relationship is evident among children with respiratory disease at the start of the interval.

To simultaneously account for potential associations between age, mortality and respiratory disease, age-specific mortality was plotted for each degree of xerophthalmia (vitamin A deficiency) (Table 1–3 excluding children with respiratory disease at the interval-initiating round (Fig. 2–3). Each age group exhibited a dose-response relationship between the severity of vitamin A deficiency and subsequent mortality.

Wasting (as percent of median weight-for-height) was equally prevalent among children with and without xerophthalmia. Increased mortality was associated with xerophthalmia in the same monotonic, dose-dependent manner whether or not wasting was present (Table 2–3).25 At every age, xerophthalmic
Table 2-2. Respiratory Disease, Xerophthalmia and Mortality

<table>
<thead>
<tr>
<th>Respiratory Infection at Initiating Exam</th>
<th>Ocular Status at Initiating Exam</th>
<th>Child Intervals</th>
<th>Deaths</th>
<th>Mortality (per 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSENT</td>
<td>Normal</td>
<td>18,321</td>
<td>93</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>XN (+), XIB (-)</td>
<td>486</td>
<td>6</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>XN (-), XIB (+)</td>
<td>235</td>
<td>6</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>XN (+), XIB (+)</td>
<td>183</td>
<td>7</td>
<td>38.3</td>
</tr>
<tr>
<td>PRESENT</td>
<td>Normal</td>
<td>1568</td>
<td>15</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>XN (+), XIB (-)</td>
<td>61</td>
<td>2</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>XN (-), XIB (+)</td>
<td>34</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>XN (+), XIB (+)</td>
<td>32</td>
<td>3</td>
<td>93.8</td>
</tr>
</tbody>
</table>

From A Sommer et al.\(^1\)

Fig. 2-3. Mortality per 1000 child intervals among children who were 2 to 4 years of age (at the first of their interval-initiating rounds). All children with respiratory disease at an interval-initiating round have been excluded. (From A. Sommer et al.\(^1\))

24
Based on the median of the "Harvard Standard." From D B Jelliffe et al.

The number of children with severe wasting (< 80%) was negligible. From A Sommer et al.

Children who were not wasted suffered a higher mortality than mildly wasted children who were not xerophthalmic. In this population at least, moderately severe vitamin A deficiency (mild xerophthalmia—XN, X1B) was a more important predictor (determinant?) of mortality than was mild PEM (Fig. 2–4). Even though weight-for-height was a powerful predictor of mortality, the same results were obtained when the population was stratified by height-for-age.

If anything, this study underestimates the increased risk of mortality associated with moderate vitamin A deficiency (xerophthalmia).

- Children with severe deficiency (corneal xerophthalmia—X2, X3) were hospitalized, treated, and excluded from the study, removing those xerophthalmic children having the highest mortality.
- Although children were reexamined and their ocular status reclassified at the start of each three-month interval, ocular status could vary within the interval—some xerophthalmic children exhibited improved vitamin A status and developed normal eyes, and vice versa. This dilutes the distinction between non-xerophthalmic and xerophthalmic (mild and more severely deficient) children, hence the relationship between vitamin A status and subsequent mortality. A similar time-related leveling is observed in the association between wasting PEM and mortality.
- Treatment and referral of children with severe systemic disease or malnu-
Fig. 2–4. At every degree of xerophthalmia, wasted children (< 90% weight-for-height; open bars) died at a higher rate than children of better anthropometric status (black bars). Within each anthropometric stratum, children with xerophthalmia were less likely to survive than were children without xerophthalmia. Wasted children (< 90% weight-for-height) without xerophthalmia (open bar, “normal” ocular status) had a lower mortality than nonwasted children with mild xerophthalmia (black bars, “XN” through “XN,X1B”). (From A. Sommer et al.123)

As we’ve seen (Table 1–3), normal eyes do not necessarily mean normal vitamin A status. At least half the “non-xerophthalmic” children had serum levels considered “low” (below 20 μg/dl); and levels in the other half were not much higher. Given the dose-dependent relationship between mild xerophthalmia and increased mortality, this monotonic trend might well be expected to extend downward to non-xerophthalmic, deficient children. Their mortality was two to three times higher than it might have been had their vitamin A status been truly normal (exactly what was observed in the vitamin A supplementation trials). A lower mortality among vitamin A-sufficient, non-xerophthalmic children would have increased the relative risk of death associated with mild xerophthalmia at least twofold (see Table 2–13).

Despite these factors, which individually and collectively drove results toward a conservative estimate of the increased mortality associated with xerophthalmia, the attributable risk was still substantial. Eliminating excess mortality associated solely with identifiable (mild) xerophthalmia in this population would reduce...
overall mortality by at least 16%1,23 Given the conservative estimate of relative risk associated with mild xerophthalmia, the estimates of attributable risk and excess mortality are undoubtedly conservative as well (see Table 2–13).

The high relative risks, statistical significance, dose-dependent relationships, and internal consistency suggest a direct and probably causal relationship between vitamin A status and risk of childhood death, and provide a quantitative estimate of its potential magnitude.

Observational data collected in subsequent community intervention trials support these conclusions. Vijayaraghavan and colleagues28 found that mortality among mildly xerophthalmic children in Hyderabad was more than twice as high as among their less deficient (i.e., non-xerophthalmic) peers.

In Tamil Nadu,29 mortality was 50% higher among xerophthalmic compared with non-xerophthalmic children (10.6 versus 7.2 per 1000), even though they reportedly received supplemental vitamin A. The absence of comparative data stratified or adjusted for potential differences in age and other variables limit the ability to fully interpret the significance of these observations.

Herrera and colleagues30 (who treated mildly xerophthalmic children and therefore could not directly study the connection between xerophthalmia and mortality) noted an inverse relationship between mortality and dietary vitamin A intake among Sudanese children. This relationship persisted after adjusting for a number of potentially confounding variables. Greater intake was particularly protective among children with chronic protein energy malnutrition or diarrhea.31 Those in the highest quintiles of vitamin A intake (at or above the Recommended Daily Allowance [RDA]) died at only half the rate of those in the lowest quintile.

Vitamin A Supplementation Reduces Preschool-Age Mortality

A further strong reason to promote programmes intended to control vitamin A deficiency and associated blindness is the now conclusive evidence that they can be expected to also significantly reduce mortality in young children and late infancy .

—United Nations Administrative Committee on Coordination/Subcommittee on Nutrition, 199332

The observation that mild xerophthalmia might be responsible for a substantial proportion of deaths in preschool-age children1,23 resulted in a series of community-based controlled mortality trials to:

- determine whether intervention programs that improved vitamin A status of deficient populations would, by themselves, reduce overall childhood mortality;
- quantify the magnitude of reduction in mortality that might be expected in different cultures and environments;
- identify factors that might account for variations in the level of impact.

Eight major controlled community mortality prevention trials (CPTs) have been conducted. In each trial, one group of children received vitamin A supplements (the simplest means of improving vitamin A status for the purposes of these studies) and a comparable group did not. These studies indicate that any approach that significantly improves vitamin A status of deficient populations has a high likelihood of materially reducing preschool (six months to six years) childhood mortality.32–39 Younger children (up to five months) may represent a more complex situation.40

Six studies were carried out in Asia (two each in Indonesia, India and Nepal) and two in sub-Saharan Africa (the Sudan and Ghana) (Table 2–4). Six employed periodic distribution (every four to six months) of large-dose vitamin A (i.e., 200,000 IU for children over twelve months of age; smaller amounts for those younger); one distributed smaller amounts (equivalent to a week’s RDA) on a weekly basis; and one fortified a commonly consumed condiment (monosodium glutamate [MSG]) with vitamin A.

The first of these studies, conducted in the Aceh province of North Sumatra41 served as the stimulus and model upon which the subsequent trials were built and refined. Half of the 25,000 preschool children in 450 villages were randomized, by village, to receive high-dose vitamin A from a local resident twice in one year. The first dose was administered one to three months after the baseline

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Vitamin A Supplement</th>
<th>Reported Mortality Reductiona</th>
<th>Primary Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh</td>
<td>Indonesia</td>
<td>Large dose every 6 mo</td>
<td>34%b</td>
<td>Sommer et al.41</td>
</tr>
<tr>
<td>Bogor</td>
<td>Indonesia</td>
<td>Vitamin A fortified MSG</td>
<td>45%</td>
<td>Muhilal et al.42</td>
</tr>
<tr>
<td>NNIPS</td>
<td>Nepal</td>
<td>Large-dose every 4 mo</td>
<td>30%</td>
<td>West et al 44</td>
</tr>
<tr>
<td>Jumla</td>
<td>Nepal</td>
<td>One large dose follow-up at 5 mo</td>
<td>29%</td>
<td>Daulaire et al 45</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>India</td>
<td>Weekly RDA</td>
<td>54%</td>
<td>Rahmathullah et al 29</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>India</td>
<td>Large dose every 6 mo</td>
<td>6% (not SS)c</td>
<td>Vijayaraghavan et al 28</td>
</tr>
<tr>
<td>Khartoum</td>
<td>Sudan</td>
<td>Large dose every 6 mo</td>
<td>(+6%, not SS)d</td>
<td>Herrera et al 30</td>
</tr>
<tr>
<td>VAST</td>
<td>Ghana</td>
<td>Large dose every 4 mo</td>
<td>19%</td>
<td>Ghana VAST Study Team 47</td>
</tr>
</tbody>
</table>

aSix months and older at baseline (one year or older if younger children not reported separately)

bAlternative analyses suggest at least 40% to > 50%

cAs calculated from data in their publication but not reported as such
Child Survival

examination, and the second dose six months later. The second Indonesian study, among 11,000 children, was conducted in Bogor, Java, 1200 miles away.42-43 MSG bound for markets serving one set of villages was fortified to a level of ~ 810 μg RE/g MSG (MSG-A) calculated to provide children with half their RDA of vitamin A. MSG sold in an adjacent, control area was unfortified.

The larger and more comprehensive of the two Nepal trials (Nepal Nutrition Intervention Project, Sarlahi [NNIPS]) randomized 28,000 children (by ward) to receive large-dose vitamin A or placebo every four months.44 It was carried out in the southern Terai, a region ecologically, culturally, and demographically contiguous with the Gangetic flood plain of South Asia. The other45 was conducted in Jumla, a mountainous region in the far west with extraordinarily high childhood mortality. Unique to this intervention trial was that data collection and vital registration had been in place for several years as part of a community-based pneumonia case management trial. When it ended, a brief vitamin A intervention study was randomly implemented in eight of sixteen subdistricts: a large dose was provided at baseline in half the subdistricts, and mortality assessed five months later.

The more detailed of the two Indian trials was conducted outside Madurai, in Tamil Nadu.29 Over 15,000 children in 206 clusters were randomized by cluster to receive a weekly supplement consisting of 8133 IU (8.7 μmol) vitamin A (one week’s RDA) or placebo. The second Indian study, outside Hyderabad, randomized 15,000 children in 84 villages, by village, to either large-dose vitamin A or placebo every six months,28 with tri-monthly morbidity monitoring and almost monthly contacts at the household level by trained health workers.46

Two studies were conducted in Africa: one in the Sudan and one in Ghana. In the Sudan, over 28,000 children living outside the capital of Khartoum were randomized by household (the only study to employ this logistically difficult approach) to receive either large-dose vitamin A or placebo every six months.30 The Ghana VAST (Vitamin A Supplementation Trial) mortality study randomized 22,000 children in 185 clusters, by compound, to receive a large dose or placebo every four months.47 It was conducted adjacent to a detailed morbidity trial.47,48

All studies reported their results on an “intent-to-treat” basis: mortality was compared for all enrolled children, whether or not they actually received the prescribed supplement. In six of the eight studies, the supplemented group had a significantly lower mortality, ranging from 46%–81% of the control group; two of the studies (Hyderabad and Sudan) recorded no discernable impact (Fig. 2–5). Cumulative mortality curves following baseline enumeration for Aceh, Jumla and NNIPS all revealed reduced mortality among program children shortly after administration of the first large vitamin A dose (Figs. 2–6 to 2–8). Tamil Nadu and Bogor, trials in which smaller supplements were provided more frequently, produced comparable results after a brief delay (Figs. 2–9, 2–10). Smaller doses probably resulted in superior absorption and retention.49,50 In addition, more
frequent supplementation, as in Tamil Nadu, probably achieved a higher “effective” compliance: since children were sought out individually for supplementation each week, they were more likely to receive at least some of their extra vitamin A. When dosing occurs only once every four to six months, however, one or two consecutive noncompliant contacts greatly reduces the potential impact.

The two Nepal studies continued to follow all children after the formal study was completed, and vitamin A was administered to the control groups. In both instances, mortality among the former control children dropped precipitously,
approximating mortality rates of those assigned to receive vitamin A from the start (Fig. 2–11) (Nils Daulaire, personal communication, February 1993).51

At least four independent meta-analyses33–35,37–39,52 addressed the crucial question: Would improvement in vitamin A status of deficient populations similar to those enrolled in the controlled community-based supplementation trials reduce overall preschool-age child mortality? All four unequivocally concluded that it
would. Each suggested a similar level of anticipated impact, but these should be viewed only as rough orders of magnitude; the actual size of the anticipated impact will vary with local conditions.

The first of the meta-analyses, prepared by Dr. James Tonascia for the Bellagio meeting,34-36 covered the six Asian trials (a more homogeneous group and the only trials published at that time) using “child-intervals at risk” (Fig. 2–12). The 34% estimated reduction in mortality attributed to vitamin A supplementation of children six months and older was exceedingly robust: eliminating any one of the trials, weighting factors that adjust a trial’s contribution to the esti-

Fig. 2–9. Cumulative deaths of preschool-age children as reported for Tamil Nadu (India) trial. Recalculated (using denominator) as mortality, instead of absolute deaths, yields similar curves. (From L. Rahmathullah et al.29)

Fig. 2–10. Cumulative mortality of preschool-age children in Bogor (Indonesia) MSG fortification trial. (Drawn from data provided by the authors.42)
Fig. 2—11. Preschool-age mortality in vitamin A-supplemented (white bars) and -unsupplemented (black bars) villages in NNIPS trial. Vitamin A capsule distribution every four months was extended to control wards during round 4 (months 12–16) onward, when the trial ceased. By the sixth interval (months 20–24), mortality in the previously control (placebo-recipient) wards had fallen to the same level as in the treatment (vitamin A-recipient) wards. RR = relative risk. (From R.P. Pokhrel et al.51)

Estimated impact in relation to the trial’s variance, or substituting a random-effects for a fixed-effects model failed to materially alter the results.

The meta-analysis of Beaton et al.,33 commissioned by the Canadian government at the request of the United Nations Administrative Committee on Coordination/Subcommittee on Nutrition (ACC/SCN), included all eight major studies ultimately undertaken (the six Asian and two subsequent African trials). The estimated overall reduction in mortality was a robust 23% (CL 95 0.12–0.32) (Fig. 2–13). When Beaton and colleagues limited their analysis to the six Asian trials, their estimated impact was 30%, remarkably similar to Tonascia’s 34% using different analytic techniques and a different age range. The other meta-analyses arrived at much the same conclusions.

Fig. 2—12. Meta-analysis of six Asian community preschool-age mortality intervention trials. The results accorded each trial were weighted by its relative variance. (Prepared by J. Tonascia.34,36)
The meta-analyses confirm that the reduction in preschool-age mortality associated with community-based improvement in vitamin A status is unlikely to have been due to chance (p < .00000002). These results are remarkably consistent considering the enormous heterogeneity across populations that differed in their culture, ecology, xerophthalmia prevalence and underlying mortality; and the wide variations in trial design, mode of supplementation, number and size of clusters, dosing intervals, size of the vitamin A dose, duration of supplementation, and type and degree of study supervision and quality control.

All eight trials were conducted in populations in which children were considerably vitamin A-deficient. In all but Ghana, xerophthalmia rates surpassed World Health Organization (WHO) criteria for a public health problem; in Ghana the prevalence of severely depressed serum retinol levels was high.

Age-Specific Effects and Anthropometric Status

The Beaton meta-analysis concluded that the level of impact on child mortality did not predictably vary with either age or anthropometric status. Subsequent data from the NNIPS study, and a reassessment of the other trials, suggest this may not, in fact, be entirely the case.

Age-specific mortality data, reported for six of the studies, are shown in Tables 2–5 to 2–11. In all six studies, vitamin A supplementation substantially reduced mortality among children six months and older. Except for Tamil Nadu, there was a distinct tendency for the benefit to increase with age. There was
Table 2-5. Age-Specific Mortality—Aceh

<table>
<thead>
<tr>
<th>Age at Baseline (years)</th>
<th>Program Villages</th>
<th>Control</th>
<th>Program Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths Children</td>
<td>Deaths Children</td>
<td>Mortality (per 1000)</td>
</tr>
<tr>
<td>1</td>
<td>19 1979</td>
<td>22 1941</td>
<td>9.6</td>
</tr>
<tr>
<td>2</td>
<td>14 2086</td>
<td>25 2072</td>
<td>6.7</td>
</tr>
<tr>
<td>3</td>
<td>11 2274</td>
<td>8 2016</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>5 1887</td>
<td>7 1724</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>4 2686</td>
<td>13 2465</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>53 10,917</td>
<td>75 10,230</td>
<td>4.9</td>
</tr>
</tbody>
</table>

*Mortality per 1000 children
*p < .05

From N Daulaire et al

Table 2-6. Age-Specific Mortality—Bogor, 22 Months after MSG-A Marketed

<table>
<thead>
<tr>
<th>Age at Baseline (months)</th>
<th>Program</th>
<th>Control</th>
<th>Program Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths Children</td>
<td>Deaths Children</td>
<td>Mortality (per 1000)</td>
</tr>
<tr>
<td>< 12</td>
<td>109 1199</td>
<td>116 1134</td>
<td>91</td>
</tr>
<tr>
<td>12-60</td>
<td>77 4556</td>
<td>134 4311</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>186 5775</td>
<td>250 5445</td>
<td>32</td>
</tr>
</tbody>
</table>

*Mortality per 1000 children
*p < .05

From Muhilal et al

Table 2-7. Age-Specific Mortality, June-October 1989, Jumla

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Program</th>
<th>Control</th>
<th>Program Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths Mortality*</td>
<td>Deaths Mortality*</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>20 166</td>
<td>19 168</td>
<td>0.99</td>
</tr>
<tr>
<td>6-11</td>
<td>24 133</td>
<td>41 260</td>
<td>0.51</td>
</tr>
<tr>
<td>12-23</td>
<td>62 179</td>
<td>71 221</td>
<td>0.81</td>
</tr>
<tr>
<td>24-35</td>
<td>19 62</td>
<td>22 81</td>
<td>0.77</td>
</tr>
<tr>
<td>36-47</td>
<td>11 39</td>
<td>11 46</td>
<td>0.85</td>
</tr>
<tr>
<td>48-59</td>
<td>2 8</td>
<td>3 13</td>
<td>0.59</td>
</tr>
<tr>
<td>1-59</td>
<td>138 93</td>
<td>167 126</td>
<td>0.74*</td>
</tr>
</tbody>
</table>

*Mortality per 1000 child-years at risk
*p < .05

From N Daulaire et al
Table 2-8 Age-Specific Mortality—NNIPS

<table>
<thead>
<tr>
<th>Age at Dosing (months)</th>
<th>Vitamin A</th>
<th>Control</th>
<th>Relative Risk (Vitamin A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>Mortality*</td>
<td>Deaths</td>
</tr>
<tr>
<td>0–5</td>
<td>150</td>
<td>57.1</td>
<td>130</td>
</tr>
<tr>
<td>6–11</td>
<td>39</td>
<td>28.0</td>
<td>47</td>
</tr>
<tr>
<td>12–23</td>
<td>53</td>
<td>19.0</td>
<td>75</td>
</tr>
<tr>
<td>24–35</td>
<td>27</td>
<td>9.9</td>
<td>31</td>
</tr>
<tr>
<td>36–47</td>
<td>18</td>
<td>6.8</td>
<td>28</td>
</tr>
<tr>
<td>48–59</td>
<td>13</td>
<td>4.9</td>
<td>25</td>
</tr>
<tr>
<td>60–72</td>
<td>2</td>
<td>2.1</td>
<td>4</td>
</tr>
<tr>
<td>Total 6–72</td>
<td>152</td>
<td>11.5</td>
<td>210</td>
</tr>
</tbody>
</table>

*per 1000 child-years
*p < 01

Data on 0–5 months from extended, twenty-four-month trial (West et al), all other ages from twelve-month trial (K P West et al)

Little if any effect on overall mortality during the first six months of life. The overall reduction in mortality for Aceh children (one through five years of age at baseline) was 34%. However, as vitamin A was not administered until one to three months after the baseline examination, a more appropriate estimate would exclude deaths, in program and control groups, for the initial period. This scenario raises mortality reduction to at least 41%.

Overall mortality in program villages in the Bogor MSG study was 30% lower than in the program villages; among children one year and older it was 45%. Jumla children in vitamin A villages died at only 74% (CLO. 0.55–0.99) the rate of control children, a reduction of 26%. The effect was seen solely among children six months and older, for whom the reduction in mortality averaged 29%. Mortality rates in control areas remained consistent with those of prior years. Mortality in NNIPS program children six months and older was 70% of their controls, a reduction of 30%.

Table 2-9. Age-Specific Mortality—Tamil Nadu

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Vitamin A Children</th>
<th>Control Children</th>
<th>Relative Risk (Vitamin A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>Mortality*</td>
<td>Deaths</td>
</tr>
<tr>
<td>6–11</td>
<td>689</td>
<td>4</td>
<td>678</td>
</tr>
<tr>
<td>12–35</td>
<td>3179</td>
<td>24</td>
<td>3185</td>
</tr>
<tr>
<td>≥ 36</td>
<td>3896</td>
<td>9</td>
<td>3792</td>
</tr>
<tr>
<td>Total</td>
<td>7764</td>
<td>37</td>
<td>7655</td>
</tr>
</tbody>
</table>

*Mortality per 1000 children
*p < 05

Accidental deaths excluded

From L. Rahmathullah et al. 29
In Tamil Nadu, mortality of children six months and older in program villages was only 46% (CL95 0.29—0.71) of the mortality in control villages, a 54% reduction. Tamil Nadu is the only trial in which the benefit clearly declined with age. It is uncertain whether this represents chance variation or a real difference, natural or imposed by study design (Tamil Nadu had weekly contacts).

In Ghana, the vitamin A-supplemented clusters experienced mortality rates 19% lower than that of control clusters (RR 0.81; P ~ .05). The relative risk of dying was reduced for five of the seven age groups, but in no consistent pattern. The concomitant but separate morbidity trial conducted in an adjacent area of Ghana also recorded fewer deaths in the vitamin A group (6 out of ~ 730) than in the placebo supplemented arm (20 out of ~ 720 children), a potential reduction in mortality of ~70%. The impact on mortality occurred despite vitamin A treatment and subsequent exclusion of all cases of clinical xerophthal-

Table 2-10 Age-Specific Mortality (0 to 5 Months)—NNIPS

<table>
<thead>
<tr>
<th>Age at Dosing (months)</th>
<th>Vitamin A</th>
<th>Control</th>
<th>Relative Risk (Vitamin A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>Mortality</td>
<td>Deaths</td>
</tr>
<tr>
<td>0</td>
<td>38</td>
<td>142</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>90</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>49</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>1-3</td>
<td>83</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>4-5</td>
<td>29</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>0-5</td>
<td>150</td>
<td>57</td>
<td>130</td>
</tr>
</tbody>
</table>

50,000 IU at < 1 month of life, 100,000 IU dose for children 1-5 months of age

*per 1000 child-years

CL95 (0.86—1.42)

From K West et al.

Table 2-11. Age-Specific Mortality (0–12 Months) after 50,000 IU Vitamin A or Placebo at Birth

<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Vitamin A Recipients</th>
<th>Placebo Recipients</th>
<th>Relative Risk (Vitamin A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Child-Years</td>
<td>Deaths</td>
<td>Mortality (%)</td>
</tr>
<tr>
<td>Low (< 2500 gm)</td>
<td>88</td>
<td>6</td>
<td>68.3</td>
</tr>
<tr>
<td>Normal (≥ 2500 gm)</td>
<td>882</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Total</td>
<td>970</td>
<td>7</td>
<td>7.2</td>
</tr>
</tbody>
</table>

From J Humphrey et al.
Vitamin A Deficiency

Consequences of Vitamin A Deficiency

nia and measles diagnosed at weekly visits, and referral of particularly sick children to clinics and hospitals.

The internal consistency of results within and between studies is remarkable. Despite the instability that small sample size imposes on age-specific estimates of mortality, in almost all of these individual trials the supplemented group (six months and older) had a lower mortality at every age.

Only NNIPS was designed to fully assess mortality under six months of age.\(^4^0\) As in the Jumla trial,\(^4^5\) which had many fewer children, overall mortality for children up to five months old at dosing was similar in program and control groups (Table 2–8). NNIPS data suggest that a very large dose (100,000 IU in a single bolus) may be detrimental during the first few months of life, becoming protective only at the fourth or fifth month (Table 2–10). Children initially dosed under one month of age (50,000 IU) died at the same rate as their controls. Children initially dosed at one to three months old (100,000 IU) appeared to die at a higher rate than their controls.

The apparent absence of a protective effect before four months may reflect special circumstances of the newborn, breast-fed child, who will have inherited considerable immunity from its mother and obtained additional passive immunity and vitamin A from breast milk. As xerophthalmia is rare among the youngest children (under two years of age), so, presumably, is moderate to severe vitamin A deficiency. However, a hospital-based study to be discussed later suggests 50,000 IU nearer birth is not only safe but offers considerable survival advantage.\(^5^4\)

Less clear is the reason why the youngest children (one to three months) given large doses of vitamin A (100,000 IU) may have suffered increased mortality. Very young infants probably metabolize vitamin A differently than older infants with more mature metabolic systems. Premature infants, for example, are born with negligible vitamin A stores that generally decline during the first few weeks and months of life.\(^5^5^-^6^0\) Although not the case with older children (Chapter 10), parenteral supplementation is more effective than oral in raising serum retinol in newborns, at least for the first one to four weeks of life.\(^6^1\) Even more surprisingly, the apparent (but not statistically significant) excess mortality is predominantly confined to the best-nourished (i.e., least wasted) children (Fig. 2–14) (West KP, Katz J, Sommer A, unpublished data).\(^9^0\)

The foregoing observations are consistent with preliminary reports from one morbidity trial suggesting that an apparent increase in acute lower respiratory infection (ALRI) is most pronounced among better-nourished children receiving high-dose vitamin A.\(^6^2\) These unexpected findings await confirmation and a biologic explanation. They do suggest, however, that in determining whether to establish a high dose supplementation program to reduce mortality among very young infants, it may be prudent to consider both the vitamin A status and the anthropometric status of the population. The potential risk must be kept in perspective: in the Nepalese population studied, high-dose supplementation of children six months and older prevented over 150 deaths for each death to which
it may have contributed among younger children. A smaller dose (i.e., 50,000 IU) may be entirely safe, as it appears to have been in children less than one month of age, or even protective, as was found in an Indonesian hospital-based trial.

The safety and value of directly dosing the youngest children (newborns) is supported by data from a sophisticated clinical trial recently completed in Indonesia. Newborn infants in Bandung received either 50,000 IU vitamin A or placebo in randomized masked fashion, within one to three days of birth. Over the succeeding twelve months, vitamin A recipients died at only 36% the rate of their controls (although associated confidence limits were wide). The benefit was most apparent during the second through fourth months of life (after the initial, high mortality associated with congenital malformations and neonatal tetanus, the intrinsic high death rate associated with low birth weight, and other causes of death during the first month unlikely to be affected by vitamin A status) (Fig. 2–15). However, the impact of supplementation was considerably less positive in low-birth-weight infants (< 2500 gm) (Table 2–11).

A Bangladesh study of complex design and potentially confounding variables compared infant mortality among children born to mothers supplemented within three months after giving birth (300,000 IU). The findings suggest a sizeable reduction in mortality (≥ 30%) attributable to the maternal dose supplementation. These observations close the loop. Previous reports have demonstrated that maternal supplementation raises maternal stores, vitamin A levels of breast...
Consequences of Vitamin A Deficiency

Fig. 2-15. Survival curves for children in Bandung, Indonesia, randomized to receive either 50,000 IU vitamin A or placebo at birth. The marked reduction in mortality observed among vitamin A recipients occurred almost exclusively during the 2d through 4th months of life. (From J. Humphrey et al.54,63)

milk, and serum retinol of breast-fed children.65,66 We now have evidence of the anticipated, beneficial impact upon infant mortality.

The implications of these potentially complex interrelationships among the youngest infants will remain uncertain until further study, though it seems likely that 50,000 IU supplements to infants and newborns is a safe and potentially effective prophylaxis against early childhood mortality (Chapter 15).

The relationship between various baseline anthropometric indices and the impact of vitamin A supplementation is variable. The meta-analysis by Beaton et al. failed to establish a consistent pattern.33 This is hardly surprising. The interpretation of various indices and their relationship to subsequent mortality is far more complex than was once assumed; indeed, the importance of individual indices on subsequent mortality varies with age.26

Further, a child’s anthropometric status can result from a number of interrelated factors that may or may not bear on the importance of vitamin A status. For example, the Tamil Nadu study29 found that stunted children were more likely to benefit from supplementation than were wasted children. The authors concluded that this link was probably related to protein deficiency—which indeed may be the case (Chapter 7). However, vitamin A deficiency itself may contribute to stunting (Chapter 6), as do repeated infections. It is possible that the authors’ observation reflects the fact that from the start, children at greatest risk of severe, fatal infectious episodes (and offering the greatest opportunity for positive impact) are those who are most vitamin A-deficient, suffering the highest exposure to infections, or both.
Cause-Specific Mortality

In the four trials in which cause-specific mortality was studied (NNIPS, Jumla, Tamil Nadu, and Ghana), vitamin A had its most profound and consistent effects on diarrhea/dysentery and measles. Results are summarized in Table 2–12.

Measles

All four studies show a consistent reduction in measles mortality, ranging from 18%–76%, which is particularly remarkable given the generally small numbers of cases involved. The average impact is almost identical to results of the measles treatment trials, to be discussed later in this chapter.

Diarrhea/Dysentery

All four studies reported a consistent reduction in diarrheal mortality of about 35%–50%. The number of diarrheal deaths were sufficiently numerous that the difference reached statistical significance in each of the individual trials. The Ghana trial reported that the reduction in mortality associated with chronic diarrhea or malnutrition (22 versus 36, RR = 0.67) was as sizeable as that associated with acute gastroenteritis.

Table 2–12. Cause-Specific Mortality, Vitamin A Supplementation Community Prevention Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Symptoms/Diseases</th>
<th>Measles</th>
<th></th>
<th>Diarrhea</th>
<th></th>
<th>Respiratory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vitamin A</td>
<td>Control</td>
<td>Vitamin A</td>
<td>Control</td>
<td>Vitamin A</td>
<td>Control</td>
<td>Vitamin A</td>
</tr>
<tr>
<td>TAMIL NADU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths (n)</td>
<td>7</td>
<td>12</td>
<td>16</td>
<td>33</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>0.58</td>
<td>0.48</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths (n)</td>
<td>3</td>
<td>12</td>
<td>39</td>
<td>62</td>
<td>36</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>0.24</td>
<td>0.61</td>
<td>1.29/1.00^</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUMLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths (n)</td>
<td>3</td>
<td>4</td>
<td>94</td>
<td>129</td>
<td>18</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>0.67</td>
<td>0.65</td>
<td>0.95^</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHANA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths (n)</td>
<td>61</td>
<td>72</td>
<td>69</td>
<td>111</td>
<td>47</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>0.82</td>
<td>0.66^</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^RR (Relative Risk) Cause-specific mortality rate of vitamin A group divided by rate in control group

Original published results
^RR = 1.29, reanalysis as an associated cause that recognizes other underlying causes

K.P. West, unpublished data

Pneumonia case management program may have confounded results

Defined as “acute gastroenteritis”

Except for Jumla, findings relate to children already ≥ 6 months of age when supplemented
Respiratory Infections

Excluding the tiny number of respiratory deaths in Tamil Nadu (2 in the vitamin A group versus 3 among controls), there was little evidence that vitamin A supplementation had any impact on the rate of respiratory deaths. A special WHO working group and related meta-analyses reached the same conclusion.67,68

Other Causes

Three of the studies recorded a significant reduction in mortality from less certain causes:

- Tamil Nadu—“convulsions” were reduced by 75% (p < .05), as were “other (infections)”;
- NNIPS—“uncertain (infections)” were reduced by 48% (p < .02 by Z-test—unpublished data);
- Ghana—“meningitis” was reduced by 34%, “other” by 27%, and “not known” by 19% (individually, none of these differences were statistically significant).

The results of these four trials are particularly striking. None was designed with sufficient power to detect cause-specific mortality; each was hampered by difficulties in assigning cause of death from often complex, multi-system derangements,69 frequently using data collected weeks to months after the event from medically unsophisticated relatives of the deceased child. Even trained health workers present at the time of death can have difficulty accurately designating the cause of death in children with multiple illnesses. An autopsy study at the International Center for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), in Dhaka, revealed that pneumonia was the underlying cause of death in 40% of children hospitalized with severe diarrhea.70

Magnitude of Mortality Reduction

Vitamin A status probably modulates the incidence and severity of disease caused by a variety of pathogenic organisms. The impact that vitamin A supplementation will have on mortality will therefore depend upon a constellation of factors, including the prevalence and severity of vitamin A deficiency, the frequency of exposure to pathogenic organisms, size of the inoculum, and their virulence; and the presence and degree of other adverse influences with which the young child must contend (e.g., malnutrition, parasitic load).

—A. Sommer et al., 198641
The observational studies and community prevention trials provide sufficient data to assure policy makers (with 98% confidence) that improving the vitamin A status of their own populations, if similar to those studied, will almost certainly reduce preschool age mortality. What remains unclear is the size of the reduction. Two major reasons account for this uncertainty: the precise extent of the impact in the studies already undertaken; and local factors that might modify the outcomes.

The published meta-analyses provide rough estimates of potential impact, but these were recognized to be "ballpark" figures related, in part, to the ways in which these analyses were prepared. The Tonascia analysis34-36 (Fig. 2–12) employed results reported by the individual investigators of the six Asian trials as, for the most part, "deaths per child-intervals at risk." Beaton (George Beaton, personal communication, XIV IVACG Meeting, Arusha, Tanzania, February 1993) agreed this was the preferred method; but since he was unable to gather sufficient data to incorporate all eight trials into this approach, he employed the simpler device of calculating the proportion of enrolled children who died, ignoring their duration at risk (Fig. 2–13). These pooled estimates, ranging from a 23%33 to a 34%35 reduction in all-cause mortality, should not be taken at face value. They reflect reported reductions in all-cause mortality ranging from 0%30 to 54%,29 results that themselves are likely to underestimate the potential impact:

1. Several studies reported overly conservative estimates. The initial Aceh publication (34% reduction) evaluated the reduction in preschool (one to six years) deaths by including all deaths, even though large-dose supplements were first administered one to three months after baseline enumeration.41 Simple exclusion of all deaths during the first three months raises the apparent impact to 41%.53

2. The intent-to-treat analysis reported by each of the studies provides an estimate of the impact likely to be observed in a particularly well-sustained supplementation program. But it underestimates efficacy: the impact potentially achieved if all target children received the intervention (perhaps through fortification of an item consumed by all children, full coverage with supplements, or a universal change in dietary behavior among those who were most deficient). In most public health intervention programs, those who fail to participate (noncompliers) are generally those who would benefit most.71 In Aceh, for example (Fig. 2–16), children assigned to the first vitamin A dose who didn’t receive it died during the ensuing six months at three times the rate of controls.72 After the first distribution, almost all deaths in “vitamin A villages” were among children who had not received a vitamin A capsule: fifteen deaths among 2256 children who did not receive their capsule versus three deaths among 9573 children who did. Higher mortality among nonrecipients than among controls reflects selective, nonrandom participation. It is unlikely the Hawthorne
Fig. 2-16. Mortality in the Aceh trial among children in treatment villages who did and did not receive their intended vitamin A dose, compared with children in control villages. Mortality was higher among children assigned to receive vitamin A but didn’t get it than for any other group, including children in control villages. (Drawn from I. Tarwojo et al.)

Effect played a significant role in this disparity since contacts in the Aceh study were rare and infrequent. Noncompliance is therefore an important impediment to any intervention, and its impact on outcome disproportionate to the percentage of target children reached.

The actual level of impact among participants (efficacy) can be approximated directly by comparing mortality among only those who actually received their assigned supplement, or indirectly through a statistical approach if a placebo was not used. In Aceh, the efficacy was estimated at 72% (CL₉₅ 41%, 87%). This does not mean that the reduction in mortality in Aceh would have been 72% if all children assigned to participate actually did. We have no way of knowing the degree to which dosing would reduce mortality among children who failed to participate: it might be more or less than the 72% estimated for those who did participate. It would surely be greater than zero, which is the assumption inherent in the intent-to-treat analysis; and the overall impact would therefore certainly have exceeded the estimated 34%–41% reported. Small, frequent dosing in Madurai (Tamil Nadu), with its inherently higher effective compliance, might explain (at least in part) the greater impact observed in the Tamil Nadu trial (54%).

3. In most studies, children with xerophthalmia were identified (at least at baseline and sometimes at interim visits) and treated. Thus, children at the highest risk of dying, and therefore with the most to gain from vitamin A, were effectively removed from the controlled comparison.
4. Periodic large-dose vitamin A supplementation every four to six months may prevent xerophthalmia and blindness, \(^{10}\) but provides less than optimal vitamin A nutriment. \(^{73-76}\) In moderately to severely deficient populations, large-dose periodic administration may increase serum retinol for only two to four months, \(^{75}\) and in mildly deficient populations it maintains a normal relative dose-response (RDR) (a surrogate for "safe" liver stores) for only four to six months. \(^{74}\) More frequent administration, as in Tamil Nadu, \(^{29}\) was probably more physiologic, causing greater vitamin A retention \(^{49-50}\) and a more sustained improvement in vitamin A status. While weekly dosing requires a prodigious infrastructure, fortification, as in Bogor, \(^{42,43}\) provides a relatively inexpensive mechanism for achieving the same end (Chapter 15).

5. The maximum measurable impact of isolated alteration in vitamin A status requires a sustained improvement in the vitamin A status of program children (optimally into the "normal" or "sufficient" range), with little or no change in the vitamin A status of control children or in the underlying pattern of childhood disease responsible for their preschool mortality. Few, if any, of the intervention trials achieved this ideal. The effect of even minor, transient alterations in any of these factors is readily apparent from the "spontaneous" variation in mortality observed among placebo recipients in NNIPS (Fig. 2–11). \(^{51}\)

If a trial does not cause a meaningful difference in vitamin A status between the two comparison groups, or if it reduces the background level of disease and mortality upon which the vitamin A was to act, it becomes difficult if not impossible to demonstrate a measurable impact. These problems are thought to have interfered with the Hyderabad and Sudan studies, the two trials with the lowest (and nonstatistically significant) alterations in mortality. \(^{33}\) They may in fact represent valuable exceptions that help prove the rule. Mortality rates in Hyderabad, even in the control arm, were far lower than anticipated, an outcome attributed by the authors to frequent home visits by trained health workers attached to the study. \(^{46}\) Not only did this drastically reduce the power of the trial to detect a difference in mortality (as evidenced by its wide confidence limits [Figs. 2–12, 2–13]), but may have specifically reduced just those forms of mortality most susceptible to vitamin A status. Further, a potentially larger impact may have been obscured by differential loss to follow-up in the two study arms and the relatively low level of subject compliance. \(^{33,77,78}\)

The Sudan trial may have created relatively little difference in the vitamin A status between the two groups studied, \(^{33}\) as represented by the negligible impact of supplementation on subsequent rates of xerophthalmia (both groups appear to have had the same prevalence of xerophthalmia at the end of the trial [Table II in their original report]) \(^{30,79}\). The population might not have been particularly deficient to begin with (reported xerophthalmia rates notwithstanding, almost half the children lived in houses with latrines and piped-in water
supplies, atypical of disadvantaged Third World children). Even if the remaining children in the Sudan trial were deficient, the effective sample size was halved and the power to detect a difference in outcome reduced accordingly.

The authors of the Sudan study suggest 200,000 IU every six months may have been inadequate supplementation for their population. As Beaton et al. point out, while this may have been the case, there is no evidence to support it. Indeed, this explanation seems highly unlikely. As seen from the cumulative mortality curves (Figs. 2–6 to 2–8), a single large dose affects mortality within a very short period, certainly before a second dose is given. While there is reason to suspect a large dose may not produce optimal vitamin A status over a sustained period, 200,000 IU should have been adequate, even in the Sudan, to yield an effective response for at least half to two-thirds the inter-dose interval, thereby producing half to two-thirds the estimated impact (rather than none at all).

Quite apart from the individual trials to date, and their pooled (if imperfect) estimates of impact, one would expect outcomes of intervention programs to vary in relation to local population and ecological factors that determine the potential for impact; and in the nature and success of the programs themselves. Local variables include the severity and prevalence of underlying vitamin A status, and the impact it exerts on residual causes of childhood mortality. In both Ghana and Tamil Nadu, vitamin A supplementation reduced measles and diarrhea-related deaths to a similar degree. In Ghana, but not in Tamil Nadu, 23% of all preschool deaths were attributed to malaria, a cause of death seemingly unaffected by vitamin A supplementation. Hence, all else being equal (which is rarely the case), improvement in vitamin A status would reduce all-cause mortality to a greater degree in Tamil Nadu than in Ghana—exactly what was observed.

Similarly, the dramatic reduction in measles mortality associated with vitamin A supplementation will have less impact on all-cause mortality where measles immunization rates are high than in populations where they are low and measles epidemics are therefore common. Comparable considerations may explain, in part, why vitamin A has limited potential for protection among some children less than five months of age, but a strong beneficial impact among older children. Pneumonia is a leading cause of death in children under five months, and seems relatively impervious to vitamin A status; diarrhea accounts for almost half the deaths among older children, and is sensitive to vitamin A status.

The impact of intervention will also be determined by the degree to which it improves vitamin A status, particularly among those who are most deficient. Simply raising mean serum vitamin A levels to a normal range is not necessarily indicative of success. Raising levels among the most compliant children, who generally need help the least, may increase the overall average without ever impacting on more deficient, noncompliant children who need it most. Individuals who fail to comply with public health interventions are almost always at higher intrinsic risk than their peers seeking better health, whether the outcome is
mortality,28,29,53,72 high cholesterol83,84 or cholera.71 As already noted, in Aceh the noncompliers died at twenty times the rate of vitamin A recipients and \textit{three times the rate of controls}.72 Similar results were reported from Hyderabad.28,46

\textbf{Mortality Attributable to Mild Vitamin A Deficiency}

Despite the many factors working to minimize the \textit{apparent} impact of vitamin A supplementation on childhood mortality, these “underestimates” exceed the estimated excess mortality attributable to clinical xerophthalmia (moderate vitamin A deficiency). For example, the most conservative intent-to-treat analyses, for Aceh and Bogor, suggest a mortality reduction of 34\%–41\%. In contrast, the observational study in West Java1,23 (having the same xerophthalmia prevalence observed in Aceh during the trial) predicted that prevention of all xerophthalmia would reduce mortality by only 16\%.

It therefore seems likely that the vast majority of preschool children with mild or marginal vitamin A deficiency, but not xerophthalmia, suffer excess mortality as well.36,85 This should come as no surprise, as xerophthalmia is a relatively late manifestation of slow depletion of vitamin A stores. It generally follows keratinizing metaplasia of the respiratory and genitourinary tracts; altered impression cytology (and other histologic manifestations of abnormal cellular differentiation) (Chapters 4, 11); reduction in immune system response (Chapter 9); anemia (Chapter 5); and perhaps growth failure (Chapter 6) and other evidence of impaired physiology. As has been shown in vitamin A-deprived animals, mortality rises sharply long before the appearance of xerophthalmia (Fig. 2–1).

Hence, while much of the mortality reduction associated with improved vitamin A status may be related to preventing severe deficiency associated with xerophthalmia, a significant proportion, perhaps a majority, of deaths averted may represent reduced mortality among the larger number of children who are less deficient.1,23 The 16\% of childhood deaths attributable to xerophthalmia in Indonesia was calculated from the comparison in mortality between mildly xerophthalmic (XN and/or X1B) children and their non-xerophthalmic (but apparently deficient) controls (RR = 1). Improving the vitamin A status of the mildly deficient, non-xerophthalmic controls by raising their serum vitamin A from 18 \(\mu\)g/dl–20 \(\mu\)g/dl to 30 \(\mu\)g/dl would conservatively be expected to reduce their mortality rate by 30\%–50\%, as suggested by the CPTs. Accordingly, Table 2–13 revises the estimated excess mortality associated with inadequate vitamin A nutriture of varying severity. If improving the vitamin A status of the deficient but non-xerophthalmic controls halves their mortality, it doubles the relative mortality of all the groups followed in the Indonesian observational study, and correspondingly contributes to excess deaths. While the assumptions employed are approximations, they provide a useful order of magnitude.

Because decreased survival is directly related to the severity of deficiency, xerophthalmic children (with the most severe deficiency) will have the highest
Table 2-13. Vitamin A Status and Extrapolated Excess Mortality—Indonesia

<table>
<thead>
<tr>
<th>Vitamin A Status</th>
<th>Extrapolated Mortality (as Relative Risk)</th>
<th>Extrapolated Proportion of “Excess” Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed in Observational Study</td>
<td>Proportion of all Children</td>
</tr>
<tr>
<td></td>
<td>(~1/2)</td>
<td></td>
</tr>
<tr>
<td>Adequate (supplemented)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Deficient (non-xerophthalmic)</td>
<td>2</td>
<td>40.0%</td>
</tr>
<tr>
<td>“controls”</td>
<td></td>
<td>56%</td>
</tr>
<tr>
<td>XN+, X1B−</td>
<td>3</td>
<td>3.3%</td>
</tr>
<tr>
<td>XN−, X1B+</td>
<td>6</td>
<td>0.9%</td>
</tr>
<tr>
<td>XN+, X1B+</td>
<td>9</td>
<td>1.4%</td>
</tr>
<tr>
<td>X2</td>
<td>—</td>
<td>< 1%</td>
</tr>
<tr>
<td>X3</td>
<td>100+</td>
<td>< 1%</td>
</tr>
</tbody>
</table>

*See Table 2-1

*bRR rescaled from preceding column based on CPTs, field epidemiologic data and hospital experience (X2/X3)

Untreated X3 probably has an absolute mortality rate approaching 95%.

*Among “controls” (“random sample” Table 1-3) 45% had serum levels < 20µg/dl, of whom 5% had xerophthalmia. Assume X2 + X3 = 0.08%.

Proportion of excess deaths = excess deaths in that stratum of deficiency / total excess deaths among all “deficient” children.

Relative mortality; but children with less severe vitamin A deficiency (and proportionately lower excess mortality) represent a larger segment of the population, and therefore a significant proportion of all unnecessary deaths.

Calculations suggest vitamin A deficiency may be responsible for as many as 1 million to 2.5 million deaths annually worldwide.

Vitamin A Therapy Reduces Measles Mortality

Measles represents a special case of vitamin A deficiency-related morbidity, mortality and blindness (Chapters 3, 4, 7). Measles not only accounts for a large proportion of preventable childhood blindness, particularly in Africa (Chapter 4), but acute and delayed mortality as well. Measles-associated mortality was consistently reduced by ~50% in the four CPTs in which cause-specific mortality was investigated (Table 2-12).

In a recent observational study, Markowitz and co-workers studied 283 children up to five years of age hospitalized in Zaire with moderate to severe measles. Overall case fatality was an astounding 26%. In univariate and multivariate analyses (adjusting for wasting, among other variables), depressed serum vitamin A (< 5 µg/dl) was associated with a threefold risk of mortality (RR = 2.9 [CL_{95} 2.3, 6.8]), but only among children less than twenty-four months old.
Depressed vitamin A levels were also associated with younger age, wasting, and the presence of pneumonia at the time of admission. Similar observations link severity of measles illness with lower serum retinol in the United States.91

Three controlled measles treatment trials (MTTs) have demonstrated that vitamin A treatment, after the onset of measles, reduces associated mortality.92-94 A fourth study by Coutsoudis et al. carefully assessed the impact of treatment on morbidity (Chapter 3).95,96 The first of the most recent trials was conducted in Tanzania.

Tanzanian Trial

Soon after recognizing the relationship between vitamin A status and all-cause mortality1 (indeed, before the report had even appeared), a hospital-based study was designed to test the hypothesis that vitamin A deficiency contributed to measles mortality in Africa; and that vitamin A supplementation might reduce such mortality, even if administered after the onset of disease.

Children admitted to a Tanzanian missionary hospital with moderate to severe measles were randomly assigned to receive either standard therapy alone (including antibiotics where indicated) or standard therapy in combination with 200,000 IU vitamin A administered orally on admission and again the following day.92 Children who presented with xerophthalmia or corneal ulcers were immediately treated with vitamin A and excluded from the trial. Only 9% of subjects had serum vitamin A levels above 0.35 μmol/liter ("low"), despite the exclusion of cases with clinical xerophthalmia.

Nineteen children died: six of the eighty-eight vitamin A recipients; and twelve of the ninety-two controls (Table 2-14). The vitamin A group suffered only half the mortality of the controls. All of the benefit was confined to children below two years of age (p < .05). Vitamin A recipients fared better than controls in every category of weight-for-age (p < .05) (Table 2-15).92 Complications accompanying measles, usually present on admission, were common in both groups. In every instance, mortality among vitamin A recipients was lower than among controls, particularly for croup/laryngotracheobronchitis (LTB) (Table 2-16).

By the time these data were published, results of the Indonesian observational study1,23 and Aceh intervention trial41 were widely known. So, too, were the increased risks of respiratory and diarrheal disease in vitamin A deficient children,24 and the increased risk of xerophthalmia among those with systemic infections—particularly measles.11 Within four months of publication of the Tanzanian vitamin A treatment trial, WHO and UNICEF issued a Joint Statement recommending immediate high dose supplementation of all children with measles from communities where vitamin A deficiency was a "recognized problem" or where measles case-fatality rates were 1% or greater.99,100 This recommendation was meant as much to reduce mortality as to prevent blindness. WHO and
Table 2-14. Measles Mortality—Tanzanian Trial

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Vitamin A</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Children</td>
<td>Deaths</td>
</tr>
<tr>
<td>< 9</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>9-11</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>12-23</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>0-23</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>24-35</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>36-47</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>48-59</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>≥ 60</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>24- ≥ 60</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>0- ≤ 60</td>
<td>88</td>
<td>6</td>
</tr>
</tbody>
</table>

*p < 0.05

From A. Barclay et al.92

UNICEF also suggested serious consideration be given to instituting programs to prevent vitamin A deficiency and its exacerbation by measles (with its attendant increase in morbidity and mortality) by initiating routine high-dose supplementation of all preschool-age children. As was pointed out in an invited commentary, the latter approach has the potential for greater impact.101 Attempting to boost vitamin A reserves only among children who present with measles "is like putting out a raging fire: some homes will be saved but a substantial proportion will burn down before aid arrives."101

Table 2-15. Measles Mortality by Nutritional Status—Tanzania

<table>
<thead>
<tr>
<th>Weight-for-Agea</th>
<th>Vitamin A</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Children</td>
<td>Deaths</td>
</tr>
<tr>
<td>> 80%</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>60-80%</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>< 60%</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>6</td>
</tr>
</tbody>
</table>

aPercent median NCHS standards 96

From A. Barclay et al.92
Table 2–16. Measles Mortality by Complications—Tanzania

<table>
<thead>
<tr>
<th>Complications</th>
<th>Vitamin A</th>
<th>Controls</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number With Complications</td>
<td>Mortality (%)</td>
<td>Number With Complications</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>38</td>
<td>3</td>
<td>8.0</td>
</tr>
<tr>
<td>Otitis media</td>
<td>19</td>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>Croup/LTB</td>
<td>8</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Dysentery</td>
<td>2</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>Hemorrhagic rash</td>
<td>28</td>
<td>1</td>
<td>4.0</td>
</tr>
<tr>
<td>Oral candida</td>
<td>9</td>
<td>1</td>
<td>11.0</td>
</tr>
</tbody>
</table>

From A. Barclay et al.92

Cape Town Trial

A superbly conducted hospital-based trial, similar in design to the Tanzanian study, was reported from Cape Town, South Africa, in 1990.94 Children with measles requiring admission for treatment of complications were randomly assigned to receive 200,000 IU water-miscible vitamin A or placebo orally on admission, and again the following day. Children who had already received vitamin A, suffered from xerophthalmia (none in this instance), or had a rash more than four days old were excluded. All subjects received oxygen, intravenous fluids, and antibiotics as appropriate. Two-thirds of the subjects were below twelve months of age and 85% were under two years. Serum retinol was below 20 μg/dl (0.7 μmol/liter) in 92% of the children; almost 50% had levels below 10 μg/dl (0.35 μmol/liter).

Mortality was markedly reduced in the vitamin A group (Table 2–17).

Hussey and Klein subsequently compared the results of their controlled trial with outcomes in a much larger number of children followed in uncontrolled fashion. They examined their hospital records before (1985–1986) and after (1989–1990) vitamin A supplementation (200,000 IU for two successive days) had become routine therapy.102 The latter group, which received vitamin A as a matter of course, experienced lower mortality (1.6% versus 5%, p < .001), a shorter hospital stay (10 versus 13 days, p < .001), and less frequent need for intensive care (4.3% versus 10.5%, p < .001).

London Trial

Ellison carried out a long overlooked hospital-based clinical trial in London fifty years before the Cape Town trial took place.93 Understandably, it employed a somewhat cruder design.33 Children admitted to the Grove Hospital were assigned
Table 2-17. Measles Mortality—Cape Town Trial

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>Vitamin A</th>
<th>Controls</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mortality (%)</td>
<td>Mortality (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children</td>
<td>Deaths</td>
<td></td>
</tr>
<tr>
<td>< 6</td>
<td>4</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>6–12</td>
<td>53</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>13–23</td>
<td>19</td>
<td>1</td>
<td>5.3</td>
</tr>
<tr>
<td>0–23</td>
<td>76</td>
<td>2</td>
<td>2.6</td>
</tr>
<tr>
<td>≥ 24</td>
<td>16</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

From G. Hussey et al. 84

routine therapy or routine therapy plus 1 ounce of cod liver oil (high in vitamins A and D) daily. Results were virtually identical to those of the Tanzanian and Cape Town studies. Mortality among controls under two years old was 16%; mortality among cod liver oil recipients was half that of the controls (Table 2–18). As in Tanzania, mortality was reduced among cases already complicated by pneumonia.

To bolster his conclusions, Ellison compared the mortality rates of controls with nearly 5,000 previous measles admissions (October 1929–July 1930); age-specific and overall mortality (8.1%) were virtually identical.93 Ellison concluded the value of cod liver oil came from its vitamin A, since previous studies103 had failed to demonstrate any association between vitamin D and infection.

Overview

Mortality among control children up to 23 months of age was similar in all three treatment trials, as was the reduction in mortality among their vitamin A-recipient

Table 2–18. Measles Mortality Trial—London

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Treated</th>
<th>Mortality (%)</th>
<th>Controls</th>
<th>Mortality (%)</th>
<th>Relative Risk Control Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Children</td>
<td>Deaths</td>
<td></td>
<td>Children</td>
<td>Deaths</td>
</tr>
<tr>
<td>0–1</td>
<td>31</td>
<td>1</td>
<td>3.0</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>1–2</td>
<td>101</td>
<td>8</td>
<td>8.0</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>2–3</td>
<td>55</td>
<td>1</td>
<td>2.0</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>3–4</td>
<td>61</td>
<td>1</td>
<td>2.0</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>4–5</td>
<td>52</td>
<td>0</td>
<td>—</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>11</td>
<td>3.7</td>
<td>300</td>
<td>25</td>
</tr>
</tbody>
</table>

From J. Ellison 91
peers. The great bulk of all deaths (among controls) was in children under two years.

Given the small sample sizes and great differences in geography, population, time, age distribution, and case management, overall reductions in mortality in the three studies are remarkably consistent (Fig. 2–17).

Reduction in measles mortality by treatment with vitamin A suggests that a change in vitamin A status can rapidly alter basic physiologic functions concerned with cellular repair and resistance to infection; a conclusion for which there is growing evidence at the molecular level. It also suggests these changes should be reflected in a reduction in the incidence and/or severity of measles complications, phenomena well documented by Hussey and Klein,94 Coutsoudis,95,96 and others (Chapter 3).

However, unpublished trials conducted in three hospitals in the Philippines (personal communications, L. Lucero, 1993), terminated prior to reaching statistical significance, suggest the issues may sometimes be more complex. The Philippines studies used only half the vitamin A dose of the two large hospital-based MTFs (and Coutsoudis’ morbidity study) in Africa. Two of the Philippine hospitals recorded reduced case fatality among vitamin A recipients; one reported increased mortality. The latter, a tertiary pneumonia referral hospital, differed from the other two hospitals (and the African treatment trials) by requiring the presence of severe pneumonia on admission, and by enrolling children long past the onset of their disease (as long as eighteen days, versus less than five days post-onset of rash). In addition, the children were all severely ill and severely malnourished; but only a third had low or deficient serum vitamin A levels. The significance of these results is difficult to ascertain, though they suggest vitamin

![Fig. 2-17. Measles case-fatality rates among hospitalized patients randomized to receive high-dose vitamin A (cod liver oil in the London trial) compared with those of their controls. Vitamin A supplementation reduced mortality by ~ 50% in all three trials.92,93,94](image-url)
Consequences of Vitamin A Deficiency

A supplementation may be more effective earlier in the course of complicated measles. The principal investigator of this study, Dr. Luluth Lucero, undertook a meta-analysis of extant trials and concluded that even in the Philippines, children hospitalized with measles should receive large-dose supplemental vitamin A regardless of the severity of illness.

To explain the lack of clinically recognized xerophthalmia in their Cape Town population, Hussey and others proposed that vitamin A was not reaching target tissues (hyporetinemia) in children with otherwise adequate vitamin A stores. The suggestion is consistent with the claim that administering a very large dose of vitamin A at a critical moment overcomes a measles-induced block of vitamin A metabolism, rather than addressing underlying measles-induced exacerbation of vitamin A deficiency. However, there is little evidence that this is the case. Quite the contrary. Measles mortality was reduced to the same degree in the CPTs (Table 2–12, Fig. 2–18) even though large doses were never used (Tamil Nadu) or were not timed to an acute measles episode. It seems more likely that measles mortality was reduced secondary to the improvement of vitamin A status of deficient children. For the same reasons it is highly doubtful that the impact observed in the hospital treatment trials represents a nonspecific “adjuvant” effect of a large-dose of vitamin A.

Most likely, children studied by Hussey and Klein had suboptimal vitamin A stores to begin with and their status was further eroded by their severe measles. This would help account for other observations, including recent associations between measles morbidity and mortality and low serum levels in the United States. These considerations again raise the issue of treating measles versus prophylactically improving the vitamin A status of all children. Both approaches appear

![Bar chart](image-url)

Fig. 2–18. Reduction in measles-related mortality among children in vitamin A-recipient villages compared with measles-related mortality among children in control villages. Results are comparable to those of the hospital-based measles treatment trials (Fig. 2–17). Only four of the eight major community mortality prophylaxis trials investigated cause-specific mortality.
to have the same level of impact among recipients. Even from the narrow perspective of measles, improving the vitamin A status of all children will increase their ability to withstand a measles attack and thereby protect them from developing serious complications in the first place, from which they might well die or suffer long-term sequelae before ever reaching a hospital. It is also the only way to help those who haven’t access to urgent care.

On the other hand, this strategy will take considerable time to accomplish, particularly since the long-term goal is normal, not merely improved, vitamin A status. Therefore, treatment with vitamin A of all cases of measles, as has been repeatedly urged, makes enormous good sense. It not only provides vitamin A to those who may still be deficient, but also increases their chances of maintaining an adequate vitamin A status afterward. As Berggren insightfully points out, widespread measles coverage under the WHO Expanded Program on Immunization (EPI) should not alter this policy. Since many children develop measles before they are old enough to be successfully vaccinated, and with vaccine efficacy considerably less than 100% among current recipients in Third World countries, a million children die of measles annually despite EPI efforts. Vitamin A therapy offers a safe, simple, inexpensive, accessible and effective means for further reducing this number. Even the American Academy of Pediatrics recommends vitamin A treatment of measles in selected patients in the United States.

It should be noted that the two African measles mortality trials (and Cout-soudis’ important morbidity study [Chapter 3]) all administered vitamin A on two successive days (in the South African studies, water-miscible, not oil-miscible, vitamin A was used; the Tanzanian trial used standard, oil-miscible preparations). Until studies demonstrate that a single dose is just as effective as a dose on two successive days, it is probably prudent to follow the double-dose schedule already proven rather than the single-dose treatment recommended by WHO and UNICEF. Indeed, EPI has recently expanded the indications for use of vitamin A in measles to “all cases of severe measles,” not just to children from populations where vitamin A deficiency is known to exist or where measles case fatality exceeds 1%.

References

Consequences of Vitamin A Deficiency

45. Daulaire NMP, Starbuck ES, Houston RM, Church MS, Stukel TA, Pandey MR.
58 Consequences of Vitamin A Deficiency

68. Potential interventions for the provision of childhood pneumonia in developing countries: a meta-analysis of data from field trials to assess the impact of vitamin A supplementation on pneumonia morbidity and mortality—The Vitamin A and Pneumonia Working Group. (Submitted to Bull WHO) 1995; in press.

81. Fauveau V, Stewart MK, Chakraborty J, Khan SA. Impact on mortality of a commu-
Consequences of Vitamin A Deficiency

Infectious Morbidity

It is, in fact, difficult to avoid the conclusion that an important, and probably the chief, function of vitamin A from a practical standpoint is as an anti-infective agent, and that a large number of common infective conditions are due to a deficiency of this substance in the diet of many people.

—Green and Mellanby, 1928

No nutritional deficiency is more consistently synergistic with infectious disease than that of vitamin A.

—Scrimshaw et al., 1968

The strong impact of vitamin A status on mortality (Chapter 2) must be mediated, in large part, by its effect on the incidence and/or severity of life-threatening infections. Vitamin A prophylaxis and treatment have their clearest efficacy in reducing mortality associated with diarrhea and measles. An understanding of the relationship(s) between vitamin A status and infection is important in identifying the mechanisms that account for altered mortality and in quantifying the burden of infectious morbidity associated with vitamin A deficiency. These relationships are being examined with growing interest.

As already noted, animals develop infections relatively early in the course of vitamin A deficiency, often dying of overwhelming sepsis before developing xerophthalmia. In 1924, Webster reported that mice raised on “McCollum’s complete diet” were much more resistant to the lethal consequences of an oral challenge with mouse typhoid bacillus than were apparently equally healthy mice raised on the standard Rockefeller Institute diet. By 1930, Green and Mellanby had demonstrated a dose-dependent relationship between dietary carotene intake and the risk and severity of infection in rats. Vitamin A-deficient animals raised in a germ-free environment grow better and live longer than animals
Infectious Morbidity

Raised in conventional facilities. Survival of conventionally reared, deficient animals can be dramatically extended by the use of broad spectrum antibiotics. Organs particularly susceptible to infection in deficient animals include the respiratory, genitourinary, and gastrointestinal tracks. Massive infection involving the respiratory tract is often a terminal event, though sometimes more apparent at autopsy than antemortem.

Early clinical reports, largely anecdotal, suggested similar relationships existed between vitamin A status and human infection. Thus, blinding xerophthalmia (severe vitamin A deficiency) has been associated with respiratory tract infections, diarrhea, tuberculosis, childhood exanthems (chickenpox and measles), pertussis, scarlet fever, typhoid, malaria, encephalitis, and urinary tract and other infections. It is no surprise that severe, chronic infections leading to debilitating malnutrition and dehydration are complicated by severe vitamin A deficiency and xerophthalmia. Also well known is that decompensation of borderline vitamin A status by infections that have a particularly deleterious effect on vitamin A metabolism (such as measles) result in acutely severe vitamin A deficiency. The issue is whether vitamin A deficiency, per se, increases the incidence and/or severity and outcome of infectious episodes. Interpretation of most cross-sectional associations, whether clinical reports or population-based surveys, is complicated by

- the bidirectional relationship between vitamin A status and infection—each appears to increase the risk of the other (Chapter 7 deals with evidence that systemic infections increase the risk of subsequent vitamin A deficiency and xerophthalmia),
- the frequency with which xerophthalmia and diseases with which it has long been associated occur in developing countries (turn-of-the-century Europe as much as today’s Third World) where the risks of infection, malnutrition, and poverty are deeply entwined,
- the varying nature of the studies, populations, instruments, and definitions employed,
- differences in the clinical recognition and significance of infectious episodes

Some of the earliest clinical reports suggested the possibility that vitamin A deficiency, by itself, might specifically increase susceptibility to infection. Bloch noted that among children on vitamin A-poor diets, growth failure was commonly followed by infections, particularly of the respiratory tract, urinary tract, and middle ear. These infections, which had otherwise been resistant to conventional therapy, disappeared after treatment with vitamin A (as cod liver oil, butter, cream, or whole milk).

By 1934, Mellanby had concluded that humans became more susceptible to infection long before vitamin A reserves were depleted or xerophthalmia was
<table>
<thead>
<tr>
<th>Report</th>
<th>Origin of Subjects</th>
<th>Vitamin A Status</th>
<th>Cough/LRI</th>
<th>Diarrhea/GI</th>
<th>Measles</th>
<th>TB</th>
<th>UTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANGLADESH</td>
<td>C/H</td>
<td>XN-X3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mahalanabas et al</td>
<td>C/H</td>
<td>XN/X1B/X2/X3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanton et al</td>
<td>Pop</td>
<td>XN</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIA</td>
<td>Pop</td>
<td>XN/X1B</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEPAL</td>
<td>Pop</td>
<td>X1B</td>
<td>—</td>
<td>+</td>
<td>+/−</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THAILAND</td>
<td>Pop, serum retinol</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>Pop</td>
<td>XN/X1B</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>INDONESIA</td>
<td>Pop, C/H</td>
<td>X1B</td>
<td>+</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer et al</td>
<td>C/H</td>
<td>X2/X3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JORDAN</td>
<td>Pop</td>
<td>X1</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUATEMALA</td>
<td>Pop, serum retinol</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERU</td>
<td>H/Pop</td>
<td>serum retinol</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALAWI</td>
<td>Pop</td>
<td>XN/X1B</td>
<td>+</td>
<td>—</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHIOPIA</td>
<td>Pop</td>
<td>XN-X3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICRONESIA</td>
<td>Pop</td>
<td>CIC</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Pop = Population-based data
C/H = Clinic or hospital-based data
CIC = Conjunctival impression cytology
*UTI = Urinary tract infection
LRI = Lower respiratory infection
GI = Gastroenteritis
TB = Tuberculosis
Clausen found that children with low levels of plasma “carotenoids” ran a higher risk of repeated respiratory infection, and that children receiving supplemental cod liver oil or carotene-rich vegetables experienced a lower incidence and severity of infection. He further reported that carrots caused rapid improvement of severe otitis in children seemingly destined to suffer mastoiditis.

Ramalingaswami observed twenty children two to nine years of age who presented with watery diarrhea, usually of one to two months duration. All were emaciated with varying degrees of xerophthalmia (mostly nightblindness or Bitot’s spots). Serum vitamin A was severely depressed (< 10 µg/dl) in all cases in which it was measured, and fever and bilateral rhonchi were present in twelve of the children. When the diet of fifteen of the severest cases was supplemented with vitamin A concentrate (72,000 IU per day), there was a dramatic reduction in their diarrhea within forty-eight hours. In five of the remaining mildest cases (Bitot’s spots and diarrhea), the diarrhea persisted until vitamin A was added to the treatment regimen.

Henning and co-workers found vitamin A treatment did not alter the course of acute, watery diarrhea. On the other hand, the average episode lasted only two days, not a particularly long window in which potential benefits could be observed, particularly if these were likely to require replacement of damaged intestinal mucosa. Further, those treated with vitamin A had a smaller rise in serum vitamin A and a lower level at twenty-four hours than those given placebo. The potential failure of vitamin A treatment to relieve acute, self-limited diarrhea is in contrast to its apparent beneficial effect on persistent diarrhea. This finding is consistent with vitamin A deficiency’s stronger association with persistent diarrhea (≥ 14 days) than with acute diarrhea.

In the 1930s, Blackfan and Wolbach found early keratinizing metaplasia (evidence of mild to moderate vitamin A deficiency) in infants who died of a variety of infections without clinically apparent xerophthalmia.

A vast array of relevant data have become available over the past two decades. These include cross-sectional associations based on clinic or hospital patients and population surveys, population-based longitudinal observational studies, and controlled intervention trials. These data provide overwhelming evidence that vitamin A status alters the incidence and/or severity of a variety of infections, particularly diarrhea, measles, urinary tract infection, and probably some forms of respiratory disease.

Diarrhea

Vitamin A supplementation has been shown to reduce diarrhea-specific mortality (Table 2–12), thus, vitamin A status must affect the frequency or outcome of clinically significant gastrointestinal disease, as Ramalingaswami’s early clinical study suggested.
At least twelve cross-sectional studies have found a strong association between impaired vitamin A status (usually defined by mild xerophthalmia) and the presence, or a recent history, of diarrhea (Table 3–1). Diarrhea was often the strongest risk factor associated with xerophthalmia in these studies. In Nepal, the odds ratio was 20, in Indonesia, 12 (diarrhea during the past week) to 23 (diarrhea during the past month)\(^\text{57-58}\) The associations were often strongest for "persistent," "chronic," or "severe" diarrhea or dysentery\(^\text{56,59-62}\) Gastroenteritis was present in three times as many cases of severe xerophthalmia (X2, X3) as in cases of milder disease (X1B) presenting to the Cicendo Eye Hospital in Indonesia, and twice as common in corneal cases as in their controls\(^\text{45}\) A Guatemalan study found that gastroenteritis was more frequent among children with serum retinol levels < 10 μg/dl\(^\text{63}\) In Truk, Micronesia, diarrhea was almost three times more common among children with abnormal conjunctival impression cytology (CIC)\(^\text{64}\) In Thailand, a 1 μmol/liter increase in serum retinol was associated with a 50% reduction in the prevalence of diarrhea\(^\text{65}\) Children in Lima, Peru, hospitalized with dehydrating diarrhea had serum retinol levels half that of matched controls, 75% versus 14% had levels below 20 μg/dl\(^\text{66}\) In the Sudan, children with three watery stools during the past 24 hours were 20% more likely to have Bitot's spots, even after multivariate analyses controlled for other contributory factors\(^\text{67}\)

Despite the consistent association between indices of vitamin A deficiency and evidence of recent or existing diarrhea (especially protracted or severe diarrhea), it is not always clear which occurs first (Chapter 7). The Indonesian observational study\(^\text{68}\) suggests that children with preexisting, mild xerophthalmia (closely correlated in this population with serum retinol)\(^\text{69}\) (Table 3–1) are more likely to develop subsequent diarrhea (Table 3–2).\(^\text{70}\)

Table 3–2 Age-Specific Incidence of Diarrheal Disease among Children With and Without Xerophthalmia

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Child-Intervals</th>
<th>Cases of Diarrhea</th>
<th>Rate (per 1000)</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-N</td>
<td>X-X</td>
<td>N-N</td>
<td>X-X</td>
</tr>
<tr>
<td>≤ 1</td>
<td>5425</td>
<td>36</td>
<td>421</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3014</td>
<td>135</td>
<td>202</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>3018</td>
<td>160</td>
<td>151</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>2958</td>
<td>147</td>
<td>93</td>
<td>14</td>
</tr>
<tr>
<td>≥ 5</td>
<td>3624</td>
<td>183</td>
<td>87</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>18,039</td>
<td>661</td>
<td>954</td>
<td>95</td>
</tr>
</tbody>
</table>

*Without xerophthalmia (N-N)—children with normal eyes at both the start and end of the three-month observational interval, with xerophthalmia (X-X)—children with mild xerophthalmia (nightblindness and/or Bitot's spots) at both the start and end of the interval

*\(p < 0.001\)

From A Sommer et al.\(^\text{70}\)
vitamin A status fluctuates over time, a child's xerophthalmia status was reclassified at each interval-initiating examination. Given the lag between a change in vitamin A status and a change in signs and symptoms of xerophthalmia, vitamin A status was defined as follows:

- **N–N**: no evidence of xerophthalmia at either the interval-initiating or interval-ending examination (best vitamin A status),
- **X–X**: xerophthalmia at start and end of the interval (poorest vitamin A status),
- **X–N, N–X**: vitamin A status in transition, improving in the former, declining in the latter.

Diarrhea was three times more common among X–X than N–N children at every age (Table 3–2). The excess risk of diarrhea, at each age, was consistent across nutritional strata (height-for-age and weight-for-height) (Fig 3–1). As might be expected, the rate of diarrheal disease among children whose vitamin

![Graph](image-url)

Fig. 3–1. Incidence of diarrhea among children with normal (N-N) or xerophthalmic eyes (X-X) at the examination initiating and ending the same three-month interval, summed over all six intervals. The upper graph includes only children with superior nutritional status (weight-for-length/height 90% of standard). The lower graph indicates that the same relationship exists for wasted children (< 90% weight-for-length/height). In both anthropometric strata, diarrhea was associated with the presence of xerophthalmia. At every age, better-nourished xerophthalmic children (upper graph) had higher rates of diarrhea than less-well-nourished, non-xerophthalmic children (lower graph) (From A Sommer et al 70).
A status was improving (X—N) was similar to the rate among children with normal eyes (N—N)

Further, vitamin A status seemed even more important than general nutritional status (weight-for-height or height-for-age) as a determinant of diarrheal incidence. Well-nourished xerophthalmic children were at greater risk of diarrhea than poorly nourished children with normal eyes (127 versus 61 per 1000, p < .001), which is consistent with prior observations that the risk of developing diarrhea is independent of anthropometric status.72-74

Following publication of the Indonesian study, investigators at the Indian National Institute of Nutrition reanalyzed data from one of their earlier studies in a comparable manner.75 Over 1500 slum-dwelling, preschool-age children were examined at baseline, six months, and one year, morbidity data were collected at weekly home visits.76 The study differed in several regards from Indonesia. Children were classified by their ocular status only at the interval-initiating round, a milder definition of diarrhea was used (three or more loose stools in one day), and more frequent (weekly) home visits collected additional data, but also had a far greater likelihood of inducing a Hawthorne Effect.

The risk of diarrhea was no greater among “xerophthalmic” than “normal” children. However, the subsequent vitamin A mortality prevention trial (Chapter 2) conducted by the same institution77 studied this issue prospectively. Children were examined for xerophthalmia at baseline and again six months later. Field workers visited homes every three months to collect information about diarrhea (three or more loose stools a day) and other morbidity. Children were classified, as in the original Indonesian study, by their ocular status at the examinations initiating and ending a six-month interval (Table 3—3). It is unclear whether the analysis was limited (as it should have been) to children in the placebo arm. All three xerophthalmia categories registered increased rates of subsequent diarrhea (relative risks ranging from 1.13 to 1.31), the greatest risk (as for respiratory disease) was among children who developed xerophthalmia during the six-month interval (the clearest evidence for active vitamin A deficiency in a population prone to persistent X1A and X1B).

<table>
<thead>
<tr>
<th>Clinical Vitamin A Status</th>
<th>Incidence (%)</th>
<th>Relative Risk</th>
<th>Incidence (%)</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 6 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild xerophthalmia</td>
<td>8.6</td>
<td>1.19</td>
<td>16.6</td>
<td>1.29*</td>
</tr>
<tr>
<td>Mild xerophthalmia</td>
<td>8.2</td>
<td>1.12</td>
<td>17.5</td>
<td>1.35*</td>
</tr>
<tr>
<td>Normal</td>
<td>9.5</td>
<td>1.31</td>
<td>22.5</td>
<td>1.74**</td>
</tr>
<tr>
<td>Normal</td>
<td>7.3</td>
<td>1.00</td>
<td>12.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*p < .05

**p < .01

From Vijayaraghavan et al.7
Infectious Morbidity

The weaker association between xerophthalmia and diarrhea observed in India compared with Indonesia may reflect a real difference between the two populations. Alternatively, it may reflect the dilutional effect within the Indian study from use of X1A, widely regarded as unreliable evidence of vitamin A deficiency, a longer (six months) interval that leads to less precise temporal classification of vitamin A status, and the milder definition of diarrhea, which may have recorded more trivial, less clinically significant, life-threatening events.

In a similar vein, a small study (n = 146) of Thai children failed to demonstrate a relationship between baseline serum retinol and the incidence of subsequent diarrhea (Table 3–11).

The impact of vitamin A supplementation on subsequent diarrheal morbidity was studied in several of the mortality trials discussed in Chapter 2 (usually as incident or point-prevalent events at the completion of the study), and in controlled trials specifically designed to assess morbidity. With the exception of two small trials, these uniformly failed to find any statistically significant difference in the “incidence” of mild diarrhea (usually defined as ≥3 or 4 loose stools a day) Nor should they necessarily have been expected to. Given a conservative estimate of relative risk (RR) of diarrhea among mildly xerophthalmic (XN, X1B) compared with non-xerophthalmic children of 2.0, a 2% prevalence of mild xerophthalmia, and an expected four such diarrheal episodes annually for all children (Madurai recorded an average of 5.6), elimination of xerophthalmia and its excess risk of diarrhea would reduce the overall incidence of diarrhea in the study population by a mere 2%. Even if xerophthalmia were twice as prevalent, the reduction would still be only 4%. If, in addition, the relative risk of more mildly deficient children was elevated proportionately (e.g., RR = 1.2), these children constituted 35% of the study population, and the intervention was 100% effective, the maximum potential reduction in the overall incidence of mild diarrhea would be less than 8%. By comparison, mortality trials were launched with an anticipated reduction of at least 20%–25%. The difference lies in the higher relative risk of vitamin A deficiency for death than for incident (presumably trivial) episodes of diarrhea.

Since vitamin A supplementation caused a consistent reduction in diarrheal-related deaths, it should also reduce the incidence of severe diarrhea. There is growing evidence that this indeed is the case. In northeastern Brazil, 1240 non-xerophthalmic children six to forty-eight months of age received large-dose vitamin A supplements or placebo every four months for one year. The vitamin A-supplemented group was at lower risk of subsequent diarrhea. The more severe the diarrhea, the greater the benefit (Table 3–4). The protection afforded by the vitamin A dose lasted only three to four months. Despite the striking difference in rates of “severe diarrhea” as defined by the frequency of movements, there was no difference in “severity” as defined by either blood or mucous in the stool. This finding is consistent with observations that most diarrheal deaths in young children are secondary to dehydration. Of particular interest,
Table 3-4 Diarrheal Episodes by Frequency of Movements—Brazil

<table>
<thead>
<tr>
<th>Number of Loose Movements</th>
<th>Relative Risk (Vitamin A Group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>0.90*</td>
</tr>
<tr>
<td>5</td>
<td>0.80**</td>
</tr>
<tr>
<td>6</td>
<td>0.77**</td>
</tr>
</tbody>
</table>

*p < 0.05
**p < 0.01

From M. Barreto et al.84

the Brazilian population is considered only mildly vitamin A-deficient and free of xerophthalmia.

A smaller study in Calcutta randomized 174 preschool-age children to 200,000 IU or placebo. The subsequent rate of mild diarrheal episodes was similar (1.35 versus 1.73 respectively), though the difference in the mean duration of each episode (2.05 days versus 3.03 days) and mean diarrheal days per child (5.29 versus 8.42) during the six month follow-up period were highly significant.85

A controlled morbidity intervention trial specifically designed to assess severity was conducted in Ghana85,87 in proximity to the VAST mortality trial. Almost 1500 children six months to fifty-nine months of age were randomized to either high-dose vitamin A or placebo every four months, and were followed weekly. All children with measles or xerophthalmia received vitamin A and were excluded from further analyses. Ill children were referred to clinics and severely ill children were hospitalized. Careful records were maintained of all such referrals and hospitalizations. While there was no difference in the apparent incidence or prevalence of trivial diarrhea between the two groups, supplementation had a marked impact on the severity of illness. The vitamin A group experienced fewer diarrheal episodes with high stool frequency (> 6 movements per day, RR = 0.92) or signs of dehydration (sunken eyes, RR = 0.90, p < 0.04, drowsiness, RR = 0.70, p < 0.01), findings that are consistent with the results from Brazil.84 In addition, all-cause clinic attendance was reduced by 12% and hospitalization by 38% (Tables 3-5, 3-6). Diarrhea-specific clinic attendance of the vitamin A group was reduced by 17% (p < 0.02) and hospitalization by 32%. The vitamin A group also had fewer clinic revisits (p < 0.02), suggesting less severe disease among those who attended clinic.

Table 3-5 Clinic and Hospital Attendance—Ghana VAST Health Study Trial

<table>
<thead>
<tr>
<th></th>
<th>Vitamin A (N)</th>
<th>Placebo (N)</th>
<th>Relative Risk (CL95 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinic attendance</td>
<td>1193</td>
<td>1341</td>
<td>0.88 (0.81, 0.95)*</td>
</tr>
<tr>
<td>Hospital admissions</td>
<td>36</td>
<td>57</td>
<td>0.62 (0.42, 0.93)**</td>
</tr>
</tbody>
</table>

*p < 0.001
**p < 0.02

From Ghana VAST Study Team.85
Infectious Morbidity

Table 3-6 Hospital Discharge Diagnoses—Ghana VAST Health Study Trial

<table>
<thead>
<tr>
<th>Condition</th>
<th>Vitamin A (N)</th>
<th>Placebo (N)</th>
<th>Relative Risk (CI95 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>12</td>
<td>18</td>
<td>0.68 (0.33, 1.41)</td>
</tr>
<tr>
<td>ALRI</td>
<td>5</td>
<td>10</td>
<td>0.48 (0.16, 1.45)</td>
</tr>
<tr>
<td>AURI</td>
<td>9</td>
<td>15</td>
<td>0.61 (0.27, 1.38)</td>
</tr>
<tr>
<td>Malaria</td>
<td>17</td>
<td>25</td>
<td>0.70 (0.38, 1.29)</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>5</td>
<td>7</td>
<td>0.69 (0.22, 2.15)</td>
</tr>
<tr>
<td>Measles</td>
<td>3</td>
<td>6</td>
<td>0.48 (0.12, 1.92)</td>
</tr>
<tr>
<td>Anemia</td>
<td>5</td>
<td>15</td>
<td>0.33 (0.25, 0.94)</td>
</tr>
</tbody>
</table>

From Ghana VAST Study Team.

In summary, it appears that improvement in the vitamin A status of deficient populations protects preschool-age children from severe, dehydrating, life-threatening diarrhea, but may have little if any impact on the frequency of trivial diarrheal episodes.

Measles

Measles bears a striking relationship to vitamin A status. Measles precipitates a large proportion of X3 (Chapters 4, 7), which partially accounts for the strong association between a history (or presence) of measles and corneal destruction. But vitamin A status also modifies the severity and outcome of measles and its systemic complications, as amply demonstrated in all four measles treatment trials and by reductions in measles-related deaths in the four community-based vitamin A prophylaxis studies (CPTs) that examined cause-specific mortality (Table 2-12). Measles is the only specific pathogen for which we have direct, overwhelming evidence that vitamin A status influences morbidity (severity) and mortality.

Vitamin A deficiency clearly increases the severity of measles. Whether vitamin A supplements are administered prophylactically on a community-wide basis before children have measles, or as treatment for moderately severe, hospitalized cases of measles, mortality is reduced by roughly half. The striking similarity in the magnitude of the reduction of measles-associated mortality under these two very different conditions strongly suggests that

- vitamin A supplementation, even as high-dose treatment, influences outcome by correcting underlying vitamin A deficiency rather than by a nonspecific, adjuvancy effect,
- it is unlikely that vitamin A status materially affects the incidence of measles, since the entire impact of supplementation can be explained by the reduction in case fatality.
The dramatic and consistent reduction in case fatality associated with vitamin A supplementation is mirrored by a corresponding reduction in the severity of measles and its complications. These issues were carefully evaluated by Hussey and Klein in their Cape Town mortality trial, and by Coutsoudis et al. in a measles morbidity trial in Durban.

In the Cape Town trial, placebo recipients fared far worse than children given high-dose vitamin A (Table 3-7). Pneumonia lasted longer (p < 0.01) and chronic pneumonia (≥ 10 days) was more frequent (p < 0.01), diarrhea lasted longer (p < 0.01) and chronic diarrhea was more frequent (p < 0.05), post-measles croup was twice as common (p < 0.05) and post measles croup requiring airway intervention, three times as common, herpes stomatitis was almost five times as frequent, the need for intensive care was three times as common, and surviving children were hospitalized 50% longer (p < 0.01). Most adverse outcomes (75 of 77) occurred in children less than two years of age (p < 0.01).

The detailed hospital-based measles treatment trial conducted in Durban evaluated the impact of vitamin A therapy on both short- and long-term measles-associated morbidity and the related immune response. Sixty African children four months to twenty-four months of age with measles rash less than five days complicated by concomitant pneumonia and diarrhea were randomized to high-dose, water-miscible vitamin A (100,000 IU if < 1 year, 200,000 IU if ≥ 1 year) or placebo on admission, and again on days 2, 8, and 42 (a post-hospitalization return visit). The children were also asked to return at six months.

As with the shorter follow-up in Cape Town, vitamin A recipients responded rapidly to treatment (Table 3-8). They recovered more quickly than placebo recipients from pneumonia (p < 0.05), diarrhea, and fever. Almost all vitamin A recipients, but only two-thirds of placebo recipients, recovered fully by day 7 (p < 0.002). The beneficial effects of vitamin A supplementation persisted beyond the initial hospitalization. An “integrated morbidity score” (IMS) was developed by pooling the presence and severity of clinical complications (diarrhea, upper respiratory tract infection, pneumonia, laryngotracheobronchitis [LTB], herpes,

| Table 3-7 Measles Complications—Cape Town Vitamin A Controlled Treatment Trial |
|---------------------------------|----------------|----------------|
| **Complication** | **Vitamin A (N)** | **Controls (N)** | **Relative Risk** |
| Pneumonia ≥ 10 days | 12 | 29 | 0.44 (0.24, 0.80) |
| Diarrhea ≤ 10 days | 8 | 21 | 0.40 (0.19, 0.86) |
| Post-measles croup | 13 | 27 | 0.51 (0.28, 0.92) |
| Requiring airway | 3 | 9 | 0.35 (0.10, 1.26) |
| Herpes stomatitis | 2 | 9 | 0.23 (0.05, 1.06) |
| Intensive care | 4 | 11 | 0.38 (0.13, 1.16) |
| Hospital days | 1054 | 1524 | p < 0.004 |

From G. Hussey et al.
Table 3—8 Hospital Outcome—Durban Measles Vitamin A Controlled Treatment Trial

| Outcome | Vitamin A
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 29)</td>
<td>Placebo</td>
</tr>
<tr>
<td>Duration (days)—pneumonia</td>
<td>3.8 ± 0.4</td>
</tr>
<tr>
<td>Duration (days)—diarrhea</td>
<td>3.2 ± 0.7</td>
</tr>
<tr>
<td>Duration (days)—fever</td>
<td>3.6 ± 0.3</td>
</tr>
<tr>
<td>Clinical recovery in < 8 days</td>
<td>28 (96%)</td>
</tr>
<tr>
<td>IMS on day 8^</td>
<td>0.24 ± 0.15</td>
</tr>
</tbody>
</table>

* Integrated Morbidity Score *

From A Coutsoudis et al 91,92

and x-ray evidence of pulmonary involvement) Vitamin A recipients did better at every IMS assessment, including the six-month visit (Fig 3—2)

The 61% reduction in IMS at six weeks and 85% reduction at six months largely reflect differences in the subsequent frequency and severity of pneumonia (Table 3—9) Since measles commonly precipitates severe deterioration of general nutritional status, which subsequent and recurrent complications exacerbate, it’s not surprising that vitamin A recipients gained considerably more weight by six weeks (p < 05) and that this advantage continued for at least six months

The persistent benefits conferred by repeated vitamin A supplementation (a fourth dose at day 42) are consistent with improved vitamin A status during the prolonged period it often takes children with severe measles to regain their pre-morbid health and nutritional status, and also with the high rate of post-measles

Fig. 3—2. Integrated morbidity scores (IMS) on follow-up of children admitted with acute measles to hospital in Durban, South Africa, and randomized to large-dose vitamin A or placebo (IMS described in text) Follow-up lasted six months post-baseline, when children still seemed to benefit from earlier vitamin A supplementation (From A Coutsoudis et al 91,92)
Table 3-9 Post-Hospital Outcome—Durban Measles Vitamin A Controlled Treatment Trial

<table>
<thead>
<tr>
<th></th>
<th>6 Weeks</th>
<th></th>
<th>6 Months</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vitamin A (N = 24)</td>
<td>Placebo (N = 24)</td>
<td>Vitamin A (N = 20)</td>
<td>Placebo (N = 16)</td>
</tr>
<tr>
<td>Weight gain (kg)</td>
<td>1.29 ± 0.17</td>
<td>0.90 ± 0.14</td>
<td>2.89 ± 0.23</td>
<td>2.37 ± 0.20</td>
</tr>
<tr>
<td>Diarrhea episodes</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Score/episode—diarrhea</td>
<td>2.17 ± 0.31</td>
<td>2.25 ± 0.25</td>
<td>1.67 ± 0.67</td>
<td>2.17 ± 0.31</td>
</tr>
<tr>
<td>URI episodes</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Score/episode—URI</td>
<td>1.71 ± 0.28</td>
<td>2.66 ± 0.17</td>
<td>2.00 ± 0.58</td>
<td>2.37 ± 0.18</td>
</tr>
<tr>
<td>Pneumonia episodes</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Score/episode—pneumonia</td>
<td>4.40 ± 0.98</td>
<td>6.67 ± 0.67</td>
<td>—</td>
<td>6.67 ± 0.67</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score ≥ 3</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IMS</td>
<td>2.21 ± 0.45</td>
<td>5.74 ± 1.17</td>
<td>0.60 ± 0.22</td>
<td>4.12 ± 1.13</td>
</tr>
</tbody>
</table>

From A. Coutsoudis et al. 1982

Illness, malnutrition, and delayed mortality that commonly follow an acute measles episode 93-95

Less detailed intervention trials support the results of Hussey et al. and Coutsoudis. A single large oral dose of vitamin A administered to Kenyan children hospitalized with measles reduced the risk of severe, progressive LTB and otitis media, and the duration and severity of diarrhea.96 Finally, a small, village-based vitamin A prophylactic trial conducted in West Bengal, India, in 1972 on 153 preschool children (100,000 IU, or a placebo every four months for one year) yielded forty cases of measles.97-99 While there was no difference in the incidence of measles between the two groups, "associated complications such as pneumonia, diarrhea, and eye discharge were significantly higher in the placebo group.

Results of the community- and hospital-based intervention trials indicate the powerful influence vitamin A status exerts in reducing the severity and complications of measles. There is relatively little evidence to suggest any impact on incidence. Most of the hospital and population-based cross-sectional associations noted between xerophthalmia and measles relate to severe corneal disease (X3), for which measles is a common precipitating event (Chapters 4, 7), or less frequently, acute decompensation of chronic, underlying vitamin A deficiency exacerbated by recurrent complications (pneumonia, diarrhea, protein-energy malnutrition), and changes in dietary patterns that commonly follow measles.

Since measles and vitamin A deficiency both impair immune competence, it is reasonable to expect the combined impact is devastating to host defenses. Depressed measles antibodies and lymphopenia are associated with more severe measles and a fatal outcome.92 102 103 Measles antibody titers are lower in children with lower serum vitamin A,104 while African children with measles treated with
Fig. 3-3. Measles immune (IgG) response among children randomized to vitamin A or placebo supplementation upon hospitalization in Durban, South Africa, for acute measles. Vitamin A-supplemented children achieved higher IgG titers (From A. Coutsoudis et al. 92)

a large dose of vitamin A mount a stronger measles IgG response to the natural disease than do unsupplemented children (Fig 3–3) 92

Pasatiempo and colleagues105 demonstrated that vitamin A supplementation of deficient rats as late as one day after an antigenic challenge increased the antibody response to near normal levels. Semba et al. 106 found a similar phenomenon among deficient children given a large dose of vitamin A (200,000 IU) two weeks prior to immunization with tetanus toxoid (Fig 3–4)

Fig. 3–4. Primary IgG response to tetanus immunization administered two weeks after supplementation with large-dose vitamin A or placebo among Indonesian children (From R. Semba et al. 106)
Consequences of Vitamin A Deficiency

A preliminary but intriguing report suggests large-dose vitamin A supplementation simultaneous with measles immunization may inhibit immune conversion among six-month-olds with preexisting high levels of maternal blocking antibody, further suggesting that vitamin A might be interfering with replication of the live vaccine virus. If so, it would help explain vitamin A's beneficial effect on morbidity and mortality associated with infection with the wild strain virus. One small study in Ndola, Zambia, failed to elicit and enhance the measles antibody response among children receiving vitamin A during an acute measles episode. However, the children did not require hospitalization, received only a single vitamin A dose, and already had mean serum retinol levels well within the normal range (> 40 μg/dl).

Respiratory Disease

The effect of vitamin A status on respiratory disease is clearly shown in animal models of vitamin A deficiency, clinical and autopsy studies in children, and observational incidence data in human populations. However, population-based prophylaxis trials, whether for morbidity or mortality, imply the situation is more complex and uncertain than it first appears.

Clinical and histopathologic studies of vitamin A-deficient animals reveal early metaplasia of the tracheobronchial tree. Clinical and histopathologic studies in deficient children parallel observations in deficient animals. Lower respiratory disease was associated with vitamin A deficiency in eight of the cross-sectional clinic and population-based studies (Table 3–1). In Guatemala, respiratory disease was more common among children with serum retinol < 10 μg/dl. In Thailand, an increase of 1 μmol/liter of serum vitamin A was associated with an 80% reduction in respiratory disease. In the Lower Shire Valley of Malawi, the prevalence of mild, active xerophthalmia (XN, X1B) was one-third more common among children with a history of cough and fever during the preceding week. In the mono-crop regions of Ethiopia, severe respiratory disease (unable to walk and play for at least five days) was twice as common among cases of xerophthalmia as among controls. Lower respiratory disease (fever plus rales) was the most common infection accompanying xerophthalmic children presenting to the Cicendo Eye Hospital. The prevalence increased with the severity of xerophthalmia/vitamin A deficiency (p < 01). Lower respiratory disease was seven times more common among cases of X3 than among their controls (64% versus 9%, p < 01).

While these cross-sectional associations could, by themselves, be explained by the impact of respiratory disease on vitamin A status rather than the other way around (Chapter 7), natural history studies confirm the increased risk of respiratory disease in children with preexisting vitamin A deficiency.
Infectious Morbidity

Fig. 3-5. The prevalence of respiratory disease among Indonesian children presenting to the Cicendo Eye Hospital increased with the severity of their xerophthalmia ($p < 0.01$ for linear trend) (From A Sommer6)

In the Indonesian observational study (Chapter 2, Fig 2-2), respiratory disease was defined as “clinically significant cough, rhonchi or rales” leading the examining pediatrician to diagnose “bronchitis or pneumonia.”70 The incidence of respiratory disease was almost twice as common among X-X as N-N children (RR = 1.8, $p < 0.01$) This relationship was consistent across age and nutritional strata (Fig 3-6) As with diarrhea, the incidence of acute respiratory infection (ARI) among children whose vitamin A status was improving (X-N) was similar to that among children with normal eyes (N-N). Also, vitamin A status seemed a more important determinant of respiratory disease than did weight-for-height or height-for-age (Fig 3-7) Well-nourished xerophthalmic children were at greater risk of subsequently developing respiratory infections than were their more poorly nourished, non-xerophthalmic peers (92 versus 72 per 1000, $p < 0.05$).

The study from Hyderabad, India76 yielded virtually identical results (RR = 2.0, $p = 0.06$) (Table 3-10) An excess rate of subsequent respiratory disease was associated with xerophthalmia at every age over twelve months.

In their vitamin A mortality intervention trial, Vijayaraghavan et al confirmed the increased risk of respiratory disease among children with vitamin A deficiency. 77 The risk was greatest among children who began the study with normal eyes but developed mild xerophthalmia by the time of the ocular follow-up, six months later, indicating deteriorating vitamin A status (Table 3-3).

The placebo arm of the MORVITA trial displayed a similar relationship between vitamin A deficiency (as determined by baseline serum retinol) and subsequent cough—acute lower respiratory infection (ALRI). 110

The small Thai study6 demonstrated that the risk of subsequent respiratory disease (a history of “clinically significant” respiratory complaints accompanied by fever) was related, in a dose-dependent manner, with vitamin A status at baseline (Table 3-11) The rate of respiratory disease among children with “deficient” serum retinol levels ($< 0.35 \mu \text{mol/liter}$) was nearly four times that among children with “adequate” levels ($> 0.70 \mu \text{mol/liter}$, $p < 0.01$).
Fig. 3-6. As with diarrhea (Fig. 3-1), the incidence of respiratory disease in the Indonesian observational study was greater at every age among children with xerophthalmia at the start and end of an interval (X-X), summed over all six intervals of observation. A comparison of upper and lower graphs indicates that at each age, nonwasted children with xerophthalmia had a higher incidence of respiratory disease than wasted children without xerophthalmia (From A Sommer et al.)

Fig. 3-7. The relationship between wasting, xerophthalmia, and the incidence of respiratory disease suggests that at every age (years), xerophthalmia is a more important determinant of subsequent respiratory infection than is moderate wasting (Drawn from A Sommer et al.)
Table 3-10 Incidence of Respiratory Disease among Children Age < 5 Years With and Without Mild Xerophthalmia* in India

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Child Intervals</th>
<th>Cases of Disease</th>
<th>Rate (per 1000)</th>
<th>Relative Riskb</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1</td>
<td>1540</td>
<td>3</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>724</td>
<td>11</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>756</td>
<td>21</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>27</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>Total < 5</td>
<td>3620</td>
<td>62</td>
<td>267</td>
<td>9</td>
</tr>
</tbody>
</table>

*aWithout xerophthalmia (N—N) with xerophthalmia (X—X) See text for definitions

*bRatio of rate per 1000 child intervals with vitamin A deficiency to rate per 1000 child intervals without vitamin A deficiency

Six-month intervals

From R. Milton et al.

In an intriguing report from the United States, respiratory syncytial virus (RSV) infection was associated with a transient but dramatic decline in serum retinol. Infants with the lowest serum retinol values ran the greatest risk of requiring respiratory assistance (6/7 versus 4/16, for serum retinol levels below and above 10 μg/dl, respectively, p < 0.02). RSV, like measles, is a paramyxovirus that replicates in the respiratory track.

In addition to the strong and consistent relationship between vitamin A deficiency, histopathologic changes, and subsequent risk of respiratory infection, vitamin A morbidity supplementation trials suggest a potential reduction in the severity of respiratory events (if not necessarily their frequency) 85-87. The detailed Ghana morbidity trial 85,87 recorded similar rates of respiratory illness among vitamin A and placebo groups, including the mean duration of "probable" ALRI, but the vitamin A group had less frequent episodes of wheeze, stridor, and other observed "respiratory noises" (RR = 0.86, p < 0.02), and of "rapid breathing".

Table 3-11 Relationship between Risk of Respiratory Disease and Serum Retinol—Thailand

<table>
<thead>
<tr>
<th>Serum Retinol at T = 0</th>
<th>Incidence of Respiratory Disease (3 mo follow-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td>Deficient (0-0.35 μmol/liter)</td>
<td>23</td>
</tr>
<tr>
<td>Marginal (0.35-0.70 μmol/liter)</td>
<td>68</td>
</tr>
<tr>
<td>Adequate (> 0.70 μmol/liter)</td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
</tr>
</tbody>
</table>

*CI = confidence interval

5Significant difference (p < 0.01) between the group of children with "deficient" and that with "adequate" levels of serum retinol

From M. Bioem et al. 85

From R. Milton et al.
with cough (RR = 0.92, p = 0.08). Pyrexia (axillary temperature ≥ 101°) was also less common in the vitamin A group (RR = 0.87, p = 0.07). The authors concluded that vitamin A reduced the severity of illness, and that the more acute the indicator of severity, the greater the impact. In the Brazilian population, in which xerophthalmia is rare, there were similar incidence rates of mild ALRI among vitamin A and placebo recipients, and a nonstatistically significant reduction in the incidence of pneumonia (RR = 0.94) among the vitamin A group.

A meta-analysis of available data from mortality and morbidity intervention trials failed to indicate any consistent impact of vitamin A supplementation on the incidence of ALRI, a conclusion supported by a World Health Organization (WHO) ad hoc review panel. Results of individual studies, however, varied. The small but unique Thai trial recorded three times more respiratory disease in the control group at two months (not statistically significant), an apparent protection that persisted for at least four months among one-to-two year olds (the group not attending day care centers, among whom the opportunity for transmission was probably lower [RR = 2.5, p < 0.05]). A small controlled clinical intervention trial (one large dose at six-month intervals) in Hebei, China reported a marked reduction in the incidence and duration of respiratory illness in the vitamin A group, which was statistically significant at every age except infancy (six months to eleven months). Though the numbers were small, the difference in the rate of hospitalizations between the two groups was marked: 4/78 controls (three with pneumonia) versus 0/98 vitamin A recipients. In contrast, a preliminary report from the MORVITA morbidity trial in Central Java reported an increase in cough (RR = 1.07) and ALRI (cough and rapid breathing, RR = 1.40) among vitamin A recipients, particularly among children less than one year of age. The apparent increased risk associated with high-dose supplementation was largely confined to children with the best vitamin A and anthropometric indices at baseline.

While meta-analyses concluded there was no convincing evidence that large-dose vitamin A supplementation increased the risk of respiratory disease, particularly life-threatening pneumonia, the MORVITA report is consistent with the apparent increase in the risk of death observed in the best-nourished, youngest Nepalese infants supplemented with large-dose vitamin A (100,000 IU) during the second through fourth months of life (Chapter 2). These unexpected, but potentially related, observations suggest prophylactic massive dose supplementation of very young children needs careful consideration—particularly the size of the dose, especially in populations where a substantial proportion of children are otherwise healthy, vitamin A-sufficient, and well nourished. Nonetheless, improving vitamin A status of deficient children reduces the risk of severe respiratory disease, life-threatening diarrhea, and all-cause mortality. There is no evidence that increasing retinol levels above 20 μg/dl is harmful; indeed, levels of 30 μg/dl–40 μg/dl are the norm in well-nourished Western countries. The concern, if any, centers on the appropriate size of a single large bolus administered to a
very young infant. It should be recalled that 50,000 IU at birth can dramatically reduce subsequent mortality.15,16

It is, of course, possible the two observations are unrelated, and increased cough in vitamin A-supplemented children simply reflects their recovered ability to generate a cough subsequent to the reversal of keratinizing metaplasia of the respiratory tract with return of mucous-producing epithelium. When deficient Bangladeshi mothers received a 300,000 IU supplement within three months of delivering, it reduced subsequent infant mortality by 30%, while at the same time increasing the incidence of clinically detectable ALRI and diarrhea (but not dysentery)117. The authors speculate that improved vitamin A status increased the infants' ability to respond to infections—making them more readily apparent—rather than increasing the risk of infection itself. On the other hand, the Indonesian children supplemented with 50,000 IU at birth were less likely to seek medical attention for cough and fever (e.g., suffer medically significant respiratory disease) during the first three months of life.115,116

Unexplained is the discrepancy between the apparent increased susceptibility of vitamin A-deficient children to severe respiratory disease, and the general failure of vitamin A supplementation to reduce respiratory-related deaths (except in measles89,91). This stands in marked contrast to the dramatic reductions observed in measles and diarrheal deaths. This difference may be real, accounting for the relative lack of impact of vitamin A supplementation on all-cause mortality during the first few months of life, when the predominant cause of infectious death is respiratory disease. Alternatively, the impact may have been obscured by one or more limitations of study design, particularly the relatively blunt instruments utilized for identifying respiratory-related deaths. A number of mortality intervention trials recorded significant reductions in death from "unspecified" or "infection-nonspecific" causes, categories that might have harbored respiratory disease. There is no proof, however, that this was the case or would account for these seemingly incompatible phenomena. Despite the value of vitamin A as treatment for measles and its respiratory complications, there is little evidence such treatment affects the outcome of non-measles associated ALRI.118

While beyond the scope of this text, two areas of investigation bear on other aspects of vitamin A status and respiratory function. Pinnock and co-workers observed that otherwise healthy, well-nourished, seemingly vitamin A-replete preschool-age Australian children with a history of frequent respiratory illness supplemented with one RDA of vitamin A daily experienced a 25% reduction in their rate of lower respiratory infection, despite the absence of any increase in serum retinol.119 In a follow-up study120 of different design, vitamin A supplementation had no apparent impact on preschool children who had suffered from a prior episode of RSV in infancy. The significance of these observations remains to be clarified.

In a series of studies related to problems of low birth weight, Shenai and co-workers found such infants to be particularly vitamin A-deficient at birth and
for months thereafter. In a small controlled clinical trial, vitamin A supplementa-
tion at birth appeared to reduce the incidence of bronchopulmonary dysplasia
(BPD) by 50%, though not “all-cause” mortality. A subsequent study in North
Carolina failed to confirm these results, but control infants received twice the
vitamin A as did controls in Shenai’s Vanderbilt study, and few had serum levels
< 20 µg/dl. Further, all subjects received more elaborate neonatal care, including
steroids and surfactant. Given the growing number of low-birth-weight in-
fants, their complex management needs, low survival, and high risk of BPD and
blinding retinopathy, this is an important area in need of further work, particularly
in the developed world.

Urinary Tract Infection

Urinary tract infections are among the most consistently reported clinical accom-
paniments of vitamin A deficiency. Bloch repeatedly reported their presence
in deficient children, as well as their response to vitamin A. Fifty years later,
Brown and co-workers compared infections in children hospitalized for severe
malnutrition. Those with active xerophthalmia were even more malnourished
and ill than those with normal eyes. The most striking difference, however, was
their rate of bacteruria: 78% versus 17%. The prevalence of bacteruria increased
with the severity of xerophthalmia (hence vitamin A deficiency), from 40% in
children with XN to 92% in those with X3. Little else is known about this clinical
manifestation, not even whether it represents colonization or true tissue invasion.
More than likely, it represents both vitamin A-deficient animals and (autopsied)
infants frequently display pyelonephritis.

Otitis

Like bacteruria, otitis was one of the first infections to be associated with vitamin
A deficiency in humans and reported to respond to vitamin A therapy. Animal
studies confirm that squamous metaplasia of the middle ear occurs early in
deficiency and greatly increases the risk of otitis media.

In a recent clinic-based investigation in Truk, children with abnormal CIC
indicative of mild, “subclinical” vitamin A deficiency were at three to four times
greater risk of middle ear infection than children with normal CIC.

Only one of the community intervention trials (NNIPS) attempted to assess
the impact of vitamin A supplementation on the prevalence of “drippy ear.”
Given the comparatively low relative risk suggested in Truk, and low incidence of
the disease in the NNIPS trial, the absence of an apparent effect is not surprising
or necessarily definitive.
Otitis media is responsible for a good deal of hearing loss and disability in the developing world, and its relationship to vitamin A status deserves greater attention than it has received to date.

Other (HIV)

AIDS is the only other important infectious entity whose relationship to vitamin A status has begun to receive significant attention. Studies in this area are recent and often preliminary in nature, and their biologic implications uncertain. Nevertheless, they may well be charting an important new course in understanding the pathogenesis of the pandemic, and in identifying potentially valuable approaches to treatment and control. Vitamin A levels are reportedly depressed in a significant proportion of asymptomatic individuals infected with HIV—1, high doses of beta-carotene increase CD4 levels in HIV—1 infected adults, cytokine production may be retinol-responsive, the more advanced and severe the disease, the lower the serum retinol level, subsequent mortality is higher among AIDS patients with lower retinol levels, even after adjusting for CD4 cell counts, and HIV—1 infected mothers who are vitamin A-deficient are (much) more likely to pass the infection to their offspring than are infected mothers with higher serum retinol values (women with levels < 20 μg/dl were four times more likely to infect their offspring than were mothers with levels ≥ 40 μg/dl (32.4% versus 7.2% respectively, p < 0.001). Among HIV-infected mothers, infant mortality was an astounding 90+% if maternal serum retinol was below 20 μg/dl. While we must await supplementation trials to determine whether these relationships can be influenced, Coutsoudis et al. have already shown that vitamin A supplementation of HIV-infected infants reduces the eighteen-month incidence of diarrhea, prolonged diarrhea, and thrush by 50%, and hospital admissions for diarrhea by 80%.

No doubt research interest and activity in this area will continue to accelerate in the years to come.

Conclusions and Pathogenesis

why is vitamin A so very important? Dr. McCollum smiled. *The simplest way is to say this: vitamin A builds fences that keep germs out.*

—McCall’s magazine, 1935

It is clear from a wide range of evidence that vitamin A status and infection, particularly non-trivial, severe morbidity, are closely associated. Difficulties in mounting scientifically definitive, ethically acceptable investigations preclude
quantification of the total burden of infectious morbidity suffered by vitamin A-deficient populations. As a large proportion of mortality averted by vitamin A supplementation has been from unspecified causes, it is likely these mirror a corresponding reduction in unrecognized infectious morbidity as well.

In contrast with other investigations, one report claimed an increase in both diarrheal and respiratory morbidity among supplemented children. These results, however, were widely considered uninterpretable given the high loss to follow-up and low compliance of study children (two-thirds of all children were lost to follow-up and only one-third received the three prescribed doses), the simultaneous introduction of other public health interventions which were neither detailed nor evaluated, disproportionate interview rates in the “two groups”, and general weaknesses in study design (yielding for example, an estimated twenty-four or more diarrheal episodes annually per child, five times the rate reported from other developing countries).

There are a variety of mechanisms by which vitamin A status might influence the risk of life-threatening infections. Their relative roles and importance are not well delineated, indeed, it is likely they vary with the particular pathogen and the state of the host. What is known of these complex relationships is detailed in Chapter 9.

Vitamin A deficiency must either lower the body’s ability to prevent a pathogen from invading its tissues (establishing “clinical” or “subclinical” infection) in the first place, or its ability to cope with such invasion once it occurs. Both factors may be important alterations in the epithelial lining of vital organs involved in serious infections (e.g., the respiratory and genitourinary tracts) occur early in vitamin A deficiency, suggesting a potentially important role for their “barrier function.” The speed with which seriously ill measles patients respond to vitamin A indicates the ability for coping with established and sometimes disseminated infections after they have occurred. The critical function vitamin A plays in regulating cellular differentiation provides a unique, “core” mechanism that would explain, at least in part, its influence on epithelial barriers, immune competence, and cellular/tissue/organisms function, healing, resistance and recovery.

The rapid and dramatic clinical response to vitamin A supplementation observed in severe measles mirrors the rapid and global biochemical response recognized at the molecular level. Vitamin A influences the expression of over 300 genes (a number rising rapidly), vitamin A supplementation of deficient animals alters gene products within one to four hours.

Epithelial Metaplasia

The high rates of infection, particularly pulmonary infection, observed in vitamin A-depleted animals led to a concerted search for its origins. More was the first to systematically study histopathologic changes in the vitamin A-
deficient rat, describing keratinizing metaplasia of normally mucous-secreting
ciliated epithelium of the tracheo-bronchial tree, with complete loss of goblet
(mucous producing) cells followed by an "inflammatory process" that often
terminated in bronchopneumonia, the cause of most deaths.

Wolbach and Howe extended these observations by systematically observing
the sequence of histopathologic changes in the vitamin A-depleted rat. They
concluded the specific pathology was "wide-spread keratinization." Gross pathol-
ogy revealed atrophy of a number of organs (e.g., the submaxillary and Harderian
glands, testes, and parotid). Desquamated keratinized cells partially filled the
bladder, and ureteral blockage caused dilatation of the ureter and renal pelvis.
Keratinization was specifically noted in the respiratory tract (nares, sinuses,
larynx, trachea, and bronchi), the alimentary tract (submaxillary, parotid and
accessory salivary glands), the genitourinary tract (bladder, ureter, renal pelvis,
uterus and oviducts, epididymis, prostate), and the eyes (conjunctiva, meibomian
ducts, cornea, and the lacrimal, Harderian, and extra-orbital lacrimal glands).

In some areas, particularly glandular ducts, atrophy and hypoplasia may have
preceded the appearance of keratinizing epithelium. Infection, which was com-
mon, was clearly secondary to and followed the metaplastic changes.

Wolbach and Howe were able to follow the temporal sequence most readily
in the respiratory tract. It began as multiple foci that subsequently spread to
adjacent columnar epithelium, infection, when it occurred, followed these
changes. As a rule, keratinization affected the respiratory tract before involving
the genitourinary tract. Bronchectasis appeared to be secondary to occlusion
of bronchi by desquamated keratinized cells. The spleen became increasingly
depleted of lymphoid and "erythrocyte-forming cells." Extreme atrophy of the
thymus was universal, indeed, it "practically disappears" (an important observa-
tion that will bear on the subsequent recognition of compromised immune status).

Wolbach and Howe noted that histopathologic abnormalities of the eye
followed those of the respiratory tract. Tilden et al. made the same observation
in the monkey. Nine of eleven animals had widespread keratinization of other
organs without ever involving the eye.

Although early investigators failed to recognize vitamin A-dependent meta-
plastic changes of the gut (indeed, Wolbach and Howe specifically noted their
absence), more recent observations in the mouse reveal a substantial reduction
in the number of goblet cells per duodenal villus when compared with control
and pair-fed animals, and a reduction in gastric mucosal and luminal mucous.
Decreased cellular division precedes histologic abnormalities in mildly defi-
cient animals.

The findings of Wolbach and Howe were confirmed in animal models in which
the possibility of concomitant vitamin D deficiency was rigorously excluded.

Green and Mellanby produced vitamin A-deficient animals supplemented
with vitamin D. Their animals were "uniformly attacked and ultimately killed
by infective and pyogenic complications." They concluded that supplementation
with vitamin D actually hastened the onset of infection, conjecturing that growth stimulation (among animals initially deprived of both A and D) "made a greater call on the vitamin A stores of the body." This is exactly the same reasoning advanced to explain the sudden appearance of xerophthalmia among starved children fed high-protein supplements (unfortified by vitamin A), and the seasonal variation of xerophthalmia, which often peaks during the spring growth spurt.

Green and Mellanby also found that xerophthalmia was a relatively late phenomenon even advanced infections were common in its absence. Infections of the urinary tract were particularly prominent: 44% of animals had pyelonephritis or cystitis. They suggested that a "favorable medium," provided by obstruction and a keratinized surface, accounted for at least some of the reduced resistance to infection. Certainly the overgrowth of the xerosis bacillus on xerotic conjunctiva supports the concept that a keratinized surface provides a conducive substrate for bacterial replication.

It has also been shown that replenishing vitamin A-deficient rats causes relatively prompt reversal of the metaplastic process and healing with little organ destruction.

By 1937, the catalogue of animal species in which vitamin A deficiency induced typical keratinization of the epithelium included rats, mice, guinea pigs, monkeys, swine, dogs, rabbits, cattle, domestic fowl, and humans. Wolbach coined the process "keratinizing metaplasia." More recent studies have directly demonstrated the importance of vitamin A to the keratinizing process. Vitamin A-deficient rats display alterations in epithelial cytokeratin expression of the genitourinary tract, conjunctiva, and salivary glands before histologic evidence of metaplasia becomes apparent. Huang and colleagues have traced the impact of vitamin A-free cell cultivation of hamster trachea to increased keratin synthesis and the appearance of novel keratin species not normally present in mucociliary tracheal epithelium—an area of research of enormous current interest. Earlier, Feli had demonstrated the ability of vitamin A-enriched cell culture medium to transform normally keratinized epithelium into columnar, non-keratinized epithelium. Compared with pair-fed controls, marginally depleted guinea pigs suffer significant reductions in goblet cell density and secretory granules before any change in the number of ciliated epithelium of the tracheobronchial epithelium.

The first detailed pathologic description of human vitamin A deficiency was provided by Leber. 30 years before the existence of "fat-soluble A" was recognized or any pathology accounts of controlled animal depletion studies had been reported. He described marked keratinizing metaplasia of the renal pelvis, which he considered the same process that affected the cornea and conjunctiva.

Forty years later, Wilson described autopsy findings in a five-month-old infant who presented with corneal xerophthalmia, irregular fever (as high as 104°F), and semistuporous condition. Eighteen days later the corneas perforated.
and the child died. The histopathologic changes mirrored those described in deficient animals. The necropsy material was subsequently reexamined by Wolbach, who considered keratinization of the lungs, uterus, and submaxillary glands, and severe atrophy of the thymus, identical to that of the rat. The only thing Wilson and DuBois had overlooked was keratinization of the epithelium lining the renal pelvis. The lungs were striking for the metaplasia of the broncholar epithelium, the presence of bronchiectatic abscesses, and purulent infiltration of alveoli. Wilson's description was followed by additional, isolated reports.

Ten years later, Blackfan and Wolbach described an extensive series of cases from the same institution. These were particularly noteworthy for the absence of clinical xerophthalmia in seven of the eleven children (almost all were infants), the diagnosis of vitamin A deficiency having been based on keratinization of one or more epithelial-lined organs. Keratinizing metaplasia of the trachea and bronchi was the earliest and most consistent finding. Blackfan and Wolbach ascribed the frequently lethal pneumonia to "loss of protective powers of the epithelium due to diminished or absent mucous secretion and loss of ciliary motion." The organ next most frequently involved was the renal pelvis. In fact, keratinized epithelial cells were found in the urine of at least four of the eleven cases. Wolbach subsequently concluded that "In the human being, as in the rat, involvement of the eye occurs later." Sweet and Kang reviewed autopsy material available from cases of xerophthalmia and keratomalacia in Beijing. In contrast to "experimental animals on well controlled diets, these patients were almost always suffering from multiple deficiencies." Yet the conditions were similar to those described previously, including Blackfan's seven cases that had not yet developed clinically detectable xerophthalmia. In Sweet's series of more advanced deficiency, eight of seventeen had evident metaplasia of the trachea (in more severe cases, extending to the smaller branches of the bronchi), five had definite keratinization of the esophageal mucosa (in some it was "so marked that the mucosa closely resembled hyperkeratotic epidermis"). Only three cases displayed metaplasia of the urinary tract. In numerous instances systemic infections clearly complicated or followed the onset of ocular lesions. The most common was respiratory disease, which Sweet believed was probably related to lowered resistance secondary to metaplastic changes.

In summary, histopathologic alterations accompanying vitamin A deficiency in animals and humans indicate that keratinizing metaplasia affects a multiplicity of vital organs, most dramatically the respiratory and genitourinary tracts. This may well affect the ability of organ surface linings to protect the tissue from bacterial (and viral) invasion. Chandra demonstrated that the number of bacteria adhering to nasopharyngeal cells obtained by saline lavage from Indian children was inversely related to their serum retinol levels. The conjunctival surface of xerophthalmic children shows large numbers of bacteria. Bitot's spots sometimes
being a pure “culture” of the xerosis bacillus (Chapter 4). In addition to attracting or serving as a supportive medium for bacteria and/or increasing the ability of pathogens to invade tissue layers, keratinizing metaplasia might (as suggested in both animals and humans) initiate locally destructive changes in the lung and elsewhere that then become secondarily infected. Rotavirus infection of vitamin A-deficient mice causes almost complete destruction of the tips of intestinal villi, changes not seen in non-deficient animals.

While keratinizing metaplasia must, perforce, act locally, widespread distribution of these keratinizing changes provides one potential explanation for multiorgan involvement. In addition, serious infection in any organ can lead, systemically, to more generalized complications. In an early experiment, Lassen found that vitamin A-deficient rats were more susceptible to systemic infection and death from paratyphoid bacillus, whether it was given orally or subcutaneously. Mellanby, on the other hand, concluded from his own data that vitamin A played a greater role in “mucous membrane resistance” than in “general resistance” to infection (e.g., the ability to deal with established septicemia). Eusterman also favored the importance of the integrity of the epithelial linings, but acknowledged that too little was known about the role of vitamin A in systemic resistance.

Immune Competence

It is unlikely that keratinizing metaplasia explains all the infectious phenomena associated with vitamin A deficiency. The severe course of measles in vitamin A deficiency and its rapid response (therapeutic and protective) to vitamin A supplementation suggest more profound and rapidly reversible mechanisms that control resistance and cope with established, systemic infections. The relationship between vitamin A status and immune competence is detailed in Chapter 9.

Clinically, persistent measles in malnourished children and prolonged or disseminated herpes recrudescence, blamed on especially severe immune depression accompanying some cases of measles, might well have its genesis (at least in part) in vitamin A deficiency. Treating measles with vitamin A may reduce the incidence (or speed healing) of herpes and yield a more vigorous measles immune response.

In a classic experiment, Bang demonstrated that vitamin A-deficient chicks become susceptible to influenza A infection, a virus to which they are normally resistant, and shed 100 times more Newcastle Disease Virus (NDV) than do normally fed controls. In a follow-up study it was shown that NDV greatly exaggerates lymphocyte depletion of the thymus and bursa caused by vitamin A deficiency, offering further evidence of the devastating interaction between vitamin A deficiency and infection. Vitamin A deficiency not only increases the severity of disease caused by Newcastle Disease Virus, but NDV further depresses already marginal plasma levels of vitamin A through increased retinol utilization and by inhibition of retinol release from the liver. Thus, in this single animal...
Infectious Morbidity

model we find vitamin A deficiency affecting the population of lymphoid structures and resistance to established infection (as seen in more severe disease and persistent viral shedding), while NDV infection further reduces vitamin A status and impairs already compromised immune competence.

An enormous body of literature explores the relationship between vitamin A status and immunocompetence in animals. Human data is far more limited and somewhat contradictory, reflecting problems in studying human subjects and the rarity with which modern techniques have been applied to deficient, remote, Third World populations. With all its limitations, recent work suggests significantly impaired immune response in marginally vitamin A-deficient children and marked improvement following vitamin A supplementation.

It is worth recalling that early anatomic studies in vitamin A-deficient animals and humans noted profound atrophy of both the thymus and spleen. In previously deficient rats, the spleen begins to regenerate within six to eight days of vitamin A supplementation.

The complex and emerging relationship between vitamin A status and immune competence is addressed by Ross in Chapter 9.

Other

No doubt there are other, as yet unidentified, mechanisms that modulate the severity of infectious episodes (as well as other clinical manifestations of vitamin A status). Filteau et al. report that children who benefitted most from vitamin A supplementation in the Ghana morbidity trial, primarily by experiencing less vomiting, severe diarrhea, or dehydration, had a tendency for increased levels of serum acute phase proteins (alpha1-acid glycoprotein, C-reactive protein and amyloid A) compared with matched placebo recipients. They suggest synthesis of these or other APP may be an important mechanism in conferring the beneficial effects of improved vitamin A status.

References

Consequences of Vitamin A Deficiency

7 McCollum EV. The supplementary dietary relationships among our natural food-stuffs. JAMA 1917, 68:1379–1386
8 Mori S. The changes in the para-ocular glands which follow the administration of diets low in fat-soluble A, with notes of the effect of the same diets on the salivary glands and the mucosa of the larynx and trachea. Johns Hopkins Hospital Bulletin 1922, 33:357–359
14 Bieri JG, McDaniel EG, Rogers WE. Survival of germfree rats without vitamin A. Science 1969, 163:574–575
18 Bloch CE. Clinical investigation of xerophthalma and dystrophy in infants and young children (xerophthalma et dystropia alpigenetica). J Hygiene (Cambridge) 1921, 19:283–301
24 Nguyen Dinh Cat. La keratomalacie infantile au Viet Nam. XVIII Cong Ophthalmol, Belgium 1958:1127–1135
25 Hildreth JS. Anasthesie der cornea mit gleichzeitig vermindeter Wirkung des Atropins auf die Iris, und deren einfluss auf ulcerative hornhoutentzundung. Arch f Augenh u Ohrenh 1870, 1:200–202
27 Herbert H Epithelial xerosis in natives of India Trans Ophthalmol Soc UK 1896, 18 103–104
28 Brockman D Commenting on Stephenson's paper Trans Ophthalmol Soc UK 1896, 18 100–101
30 Graefe A Hornhautverschwarung bei infantiler encephalitis Graefe's Arch Ophthalmol 1866,12 250–256
34 Sauter JJM Xerophthalmia and measles in Kenya Groningen Drukkerij Van Denderen B V 1976 1–235
37 Bezold F Keratomalacie nach morbillen Klin Wochenschr 1874,11 408–411
38 Hiro Y, Yamada M Die Masern und die Keratomalacie Monatsschr Kinderheilk 1936,65 438–445
41 Arlt CF Die Krankheiten des Auges Prague 1851 211–215
43 Bloch CE Blindness and other diseases in children arising from deficient nutrition (lack of fat-soluble A factor) Am J Dis Child 1924,27 139–148
45 Sommer A Nutritional Blindness Xerophthalma and Keratomalacia In New York, Oxford University Press 1982
47 Clausen SW, McCord AB The carotinoids and vitamin A of the blood J Pediatr 1938,13 635–650
48 Sommer A, Tarwotjo I, Katz J Increased risk of xerophthalma following diarrhea and respiratory disease Am J Clin Nutr 1987,45 977–980
49 Mellanby E Nutrition and infection (chapter IV) In Nutrition and Disease The interaction of clinical and experimental work Edinburgh Oliver and Boyd 1934 74–97
50 Clausen SW Nutrition and infection JAMA 1935,104 793–798
51 Clausen SW Carotinemia and resistance to infection Am J Dis Child 1931,42 698–699
Consequences of Vitamin A Deficiency

52 Ramalingaswami V Nutritional diarrhoea due to vitamin A deficiency Ind J Med Sci 1948,2 665–674
54 Zile M, Bunge E, DeLuca HF Effect of vitamin A deficiency on intestinal cell proliferation in the rat J Nutr 1977 107 552–560
56 Stanton BF, Clemens JD, Wojtyniak B, Khar T Risk factors for developing mild nutritional blindness in urban Bangladesh Am J Dis Child 1986,140 584–588
57 In Brilliant GE, ed Xerophthalmia, keratomalacia, and childhood blindness The Epidemiology of Blindness in urban Bangladesh Am J Dis Child 1986,140 584–588
60 Patwardhan VN Hypovitaminosis A and epidemiology of xerophthalmia Am J Clin Nutr 1969,22 1106–1118
63 Arroyave G, Aguilar JR, Flores M, Guzman MA Evaluation of sugar fortification with vitamin A at the national level Scientific Publication No 384, PAHO, Washington, DC 1979
66 Salazar-Lindo E, Alvarez JO Association of diarrhea and low serum retinol in Peruvian children Am J Clin Nutr 1993,58 110–113

Consequences of Vitamin A Deficiency

113 Potential interventions for the provision of childhood pneumonia in developing countries: a meta-analysis of data from field trials to assess the impact of vitamin A supplementation on pneumonia morbidity and mortality. The Vitamin A and Pneumonia Working Group. (Bull WHO 1995, in press.)

123 Pearson E, Bose C, Snidow T, Ransom L, Young T, Bose G, Stiles A. Trial of vitamin
Consequences of Vitamin A Deficiency

A supplementation in very low birth weight infants at risk for bronchopulmonary dysplasia J Pediatr 1992,121 420—427
124 Shenai JP, Rush MG, Stahlanan MT, Chyti F Vitamin A supplementation and bronchopulmonary dysplasia—revisited J Pediatr 1992 121 399—401
125 Chole RA Squamous metaplasia of the middle ear mucosa during vitamin A deprivation Otolaryngol Head Neck Surg 1979,87 837—844
132 Semba RD, Graham NMH, Caaffa WT, Margolick JB, Clement L, Vlahov D Increased mortality associated with vitamin A deficiency during human immunodeficiency virus type 1 infection Arch Intern Med 1993,153 2149—2154
139 Sommer A Vitamin A supplementation and childhood morbidity (letter) Lancet 1993,342 1420
141 Semba R, Hussey G Vitamin A supplementation and childhood morbidity (letter) Lancet 1993,342 1176
144 Sherman MI Retinoids and cell differentiation Boca Raton, Florida CRC Press, 1986
145 Chytil F The lungs and vitamin A (review) Am J Physiol 1992,262 L517–L527
146 Chytil F, Riaz-ul-Haq Vitamin A mediated gene expression Critical Reviews in Eukaryotic Gene Expression 1990,1 61–73
147 Wolf G Recent progress in vitamin A research nuclear retinoic acid receptors and their interaction with gene elements J Nutr Biochem 1990,1284–289
148 Petkovich M Regulation of gene expression by vitamin A the role of nuclear retinoic acid receptors Annu Rev Nutr 1992 12 443–471
149 Drummond JC Researches on the fat-soluble accessory substance II Observations on its role in nutrition and influence on fat metabolism Biochem J 1919,13 95–102
150 Cramer W, Kingsbury AN Local and general defences against infections and the effect on them of vitamin-deficiency Br J Exp Pathol 1924,5 300–304
151 Mori S Primary changes in eyes of rats which result from deficiency of fat-soluble A in diet JAMA 1922,79,197–200
152 Mori S The pathological anatomy of ophthalmia produced by diets containing fatsoluble A, but unfavorable contents of certain inorganic elements Am J Hyg 1923,3 99–102
153 Tilden EB, Miller EG Jr The response of the monkey (macacus rhesus) to withdrawal of vitamin A from the diet J Nutr 1930,3 121–140
154 Ahmed F, Jones DB, Jackson AA The interaction of vitamin A deficiency and rotavirus infection in the mouse Br J Nutr 1990,63 363–373
157 Blegvad O Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthal mol 1924,7 89–117
159 Tyson MD, Smith AH Tissue changes associated with vitamin A deficiency in the rat Am J Pathol 1929,5 57–69
160 Wolbach SB The pathologic changes resulting from vitamin deficiency JAMA 1937 198 7–13
162 Huang L, Roop DR, DeLuca LM Vitamin A deficiency and keratin biosynthesis in cultured hamster trachea In Vitro Cellular & Developmental Biology 1986,22 223–230
163 Edmondson SW, Wu R, Mossman BT Regulation of differentiation and keratin protein expression by vitamin A in primary cultures of hamster tracheal epithelial cells J Cell Physiol 1990,142 21–30
164 Lancellotti F, Darwiche N, Celli G, De Luca LM Retinoid status and the control

165 Fell HB, Mellanby E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J Physiol 1953, 119:470-488

171 Lassen HCA. Vitamin A deficiency and resistance against a specific infection. J Hygiene 1930, 30:300-310

172 Eusterman GB, Wilbur DL. Clinical features of vitamin A deficiency. JAMA 1932, 98:2054-2060

179 Sijtsma SR, West CE, Rombout JHWM, van der Zijpp AJ. The interaction between vitamin A status and Newcastle disease virus infection in chickens. J Nutr 1989, 119:952-939

Xerophthalmia and Keratomalacia

Never whilst memory lasts, can one obliterate the mental pictures of those pitiful little bundles of marasmic, apathetic humanity. Their faint, feeble, fretful wails ring still in one's ears today—summoning up visions of wasted, stick-like limbs, of distended abdomens, of dry, mealy, scurfy, scaly skins, of hair scanty, brittle and dry, and of sightless desiccated eyes.

—R. H. Elliot, 1920

A carotenoid-free world would be drab to behold and a retinoid-free world would be swathed for us in eternal darkness.

—J. A. Olson, 1993

Xerophthalmia (xeros, dry, ophtalmia, inflamed eye) is a constellation of ocular manifestations long associated with vitamin A deficiency, representing the "classical" presentation and (with rare exceptions) pathognomonic signs and symptoms of this particular form of malnutrition. In some ways, xerophthalmia has been too closely associated with vitamin A deficiency.

• While xerophthalmia is the leading cause of acquired pediatric blindness in the world, responsible for 5 million–10 million cases of milder ocular disease (XN–X2) every year, it is sufficiently infrequent on a population-wide basis that health officials have often overlooked its existence and therefore have been misled into assuming that vitamin A deficiency was absent or not a significant health problem.
• The more severe forms of xerophthalmia (X2–X3) are so often associated with severe malnutrition and life-threatening systemic disease that it is
these associated conditions that have been held solely responsible for the problem, masking the underlying effects of vitamin A deficiency

- The high mortality associated with severe, blinding disease (and its accompanying illnesses) means that the number of surviving, blinded children (XS) identified in population-based surveys is extremely small, minimizing the apparent size of the problem.

- The clinical appearance is so dramatic that it has diverted attention from the more common and prevalent systemic consequences of vitamin A deficiency, as a result, xerophthalmia, rather than its underlying cause and associated systemic consequences, has received the lion’s share of clinical attention and research.

Table 4—1 Clinical Classification of Xerophthalmia

| Nightblindness (XN) | Conjunctival xerosis (X1A) | Bitot's spots (X1B) | Corneal xerosis (X2) | Corneal ulceration/keratomalacia < 1/3 corneal surface (X3A) | Corneal ulceration/keratomalacia ≥ 1/3 corneal surface (X3B) | Corneal scar (XS) | Xerophthalmia fundus (XF) |
For a more extensive discussion of clinical, historical, histologic and epidemiologic data relevant to xerophthalmia, consult *Nutritional Blindness*.

Retina and Nightblindness (XN, XF)

Nightblindness (XN) and fundus specks (XF) were the first and last of the signs and symptoms of xerophthalmia to be described. They both arise from faulty retinal metabolism associated with vitamin A deficiency. Nightblindness is the earliest and most ubiquitous clinical sign and symptom of vitamin A deficiency; XF is largely a clinical oddity.

While there are a number of causes of nightblindness (nyctalopia), they generally fall into two major categories: hereditary abnormalities (that may not show up until later life) and acquired disease. Among children of the developing world, acquired nightblindness is almost always a manifestation of vitamin A deficiency.

Under normal conditions, retinal photoreceptors (rods and cones) produce photosensitive pigments that respond to light, triggering neural impulses that eventually make their way to the brain. Rhodopsin, the photosensitive “visual purple” synthesized by the rods and responsible for vision under low levels of illumination (scotopic vision), contains vitamin A. Synthesis of rhodopsin, and therefore the ability to see under low levels of illumination, will depend upon the availability of vitamin A. Under scotopic illumination, high levels of rhodopsin are generated in the rods and the sensitivity of the eye to light is greatly increased. Full “dark adaptation” normally takes twenty to thirty minutes. The cones, which dark adapt in five to seven minutes, are responsible for color and fine, reading vision, but never become sufficiently sensitive to low levels of illumination to provide scotopic vision. It is scotopic vision that normally permits a child or adult to find his way about the house or village at dusk or dawn, or by the light of a weak flame.

The ancient Egyptians and Greeks recognized nyctalopia and treated it with calf’s or goat’s liver (high in vitamin A content). By the nineteenth century, nightblindness was known to occur primarily among the poorer strata of society, particularly during periods of dietary deprivation, exacerbated by photic stress (which bleached so much rhodopsin that synthesis could not keep up with demand, causing borderline deficiency to become manifest as nightblindness), and could be effectively treated with liver or liver oils. In fact, most other manifestations of xerophthalmia were first recognized by their association with nightblindness. Nightblindness (without evidence of xerophthalmia) was reported to have disabled Confederate soldiers between dawn and dusk, and to have affected whole regiments during the Crimean War.

Hence, when vitamin A deficiency becomes a limiting factor, rhodopsin levels decline, rod thresholds rise, and nightblindness ensues. Treatment may quickly
Consequences of Vitamin A Deficiency

restore adequate levels of rhodopsin, but animal work suggests full return of retinal sensitivity awaits regeneration of rod outer segments damaged from prolonged deficiency.

Despite the tremendous avidity of retinal pigment epithelium for vitamin A, impaired dark adaptation is the earliest clinical manifestation of xerophthalmia. In vitamin A-deprived rats and human volunteers, elevated rod thresholds and nightblindness precede other ocular manifestations of deficiency. Impaired dark adaptation identifies previously unrecognized deficiency in older adults and children suffering from a variety of malabsorptive states. Clinically (and functionally) significant nightblindness characteristically occurs in the second, but principally the third, trimesters of pregnancy in marginally deficient populations, usually in the absence of other signs of xerophthalmia.

Deficiency initially results in slowing of rod adaptation followed by reduction in threshold sensitivity and, lastly, abnormal cone adaptation. As expected, these parameters respond to vitamin A in reverse order. Standard electroretinographic abnormalities probably appear later, beginning with disappearance of the a-wave.

As befitting the earliest manifestation of deficiency, nightblindness is commonly the most prevalent form of xerophthalmia and the ocular abnormality associated with the least depression in serum vitamin A levels (Table 1-3). These associations have sometimes been obscured by complicating diagnostic issues. The two most important are the sensitivity and specificity of a history of nightblindness as provided by the child's parent or guardian (Chapter 11), and the specificity of X1A and X1B as evidence of active vitamin A deficiency. In Indonesia, careful assessment revealed that more than three-fourths of children with vitamin A-responsive conjunctival xerosis (X1B) were nightblind.

Although vitamin A levels of 20 µg/dl have traditionally been considered indicative of normal vitamin A status, almost 20% of children with nightblindness (and 10% with nightblindness plus Bitot's spots) have higher levels. Carefully controlled depletion studies reveal impaired dark adaptation at vitamin A levels between 20 µg/dl to 30 µg/dl.

Nightblindness of nutritional origin responds rapidly (often within hours) to the administration of vitamin A. More sensitive indices of dark adaptation may take days or weeks to fully recover.

It is often unnecessary to measure dark adaptation (a cumbersome procedure, particularly in young children under field conditions) to determine whether or not a child is nightblind. Many cultures have locally appropriate, specific terms that show high sensitivity and specificity for the condition. Presumably these are populations in which vitamin A deficiency has been endemic for many years. Some communities may not have such terms. The critical issue is in identifying this specific, often extremely local term and an individual who can reliably report the status of the child (e.g., a parent or older sibling). Nightblind-
ness generally goes unrecognized until the child begins to ambulate (one to two years of age)39 The condition is exacerbated by photic stress, as when the child has flown a kite on a sunny day or watched too much television1

A new, simplified technique is showing promise for objectively assessing dark adaptation in young children using the consensual pupillary response to a graduated light stimulus (Chapter 11)59

Fine, white dots or mottling of the retina has been noted in children with xerophthalmia since the turn of the century12,60-64 In 1928, Uyemura64 reported their disappearance following vitamin A supplementation

On ophthalmoscopy, the retinal lesions appear to be small, discrete yellowish-white dots deep to the vessels and distributed about the equatorial region and periphery of both eyes (Plates 1–2)27,64-66 Although they occasionally approach the disc,47,62 the lesions remain outside the temporal vascular arcade Closer examination under magnification afforded by the slit lamp and contact lens, and by fluorescein angiography, suggest mottled depigmentation at the level of the pigment epithelium47

The number of lesions increases with the chronicity of deficiency In a case of self-imposed dietary deprivation, the lesions became more numerous over time69 In Indonesia, fundus changes were more prevalent in older xerophthalmic children and in children with more severe vitamin A deficiency70

In most instances, the retinal lesions fade within one to three months of vitamin A therapy47,64-65,67,66,70 They can also recur with considerable speed,47 presumably representing either a predisposition to the retinopathy of vitamin A deficiency or, more likely, persistent pigmentary alterations that enhance visibility of new lesions or related retinal changes1

XF may represent disrupted outer segments of rods (and possibly cones) with accompanying alterations in the retinal pigment epithelium (RPE)47 Impairment of dark adaptation in vitamin A-deprived animals is accompanied by decreased production of photoreceptor outer segments71 and declining levels of the opsins of which they are composed18,72, degeneration of both rods and cones, beginning with the distal portions of their outer segment18,72-76, and alterations and loss of pigment epithelium18,75 The latter appears related to the inanition and generalized interference with cellular metabolism that accompanies severe vitamin A deficiency, rather than specific interference in synthesis of visual pigment46 Although there is a paucity of correlative histopathology,77 one monkey that developed typical retinal lesions had degenerated rods, cones, and RPE75 Retinal whitening (corn-motio) in owl monkeys suffering traumatic retinopathy, which can have a similar clinical and angiographic appearance, is related to disruption of outer segments of rods and cones, and their phagocytosis by cells originating in the RPE78

Degeneration of a large proportion of rods and cones should cause correlative alterations in the visual field Although some reports claim patients have normal fields, vitamin A-responsive constriction of the visual fields has been noted in a
number of deficient subjects, including two carefully studied cases with fundus lesions. In one of these, the defect was absolute and congruent with the area of retinal involvement. Clinical recovery appears to proceed in three stages: nightblindness disappears within four days, presumably as vitamin A becomes available for regeneration of rhodopsin in outer segments outside the area of structural damage, visual fields return to normal one week later, perhaps as still-viable rods and cones in the affected area manufacture sufficient opsin (and terminal outer segments) to become functional, and retinal lesions fade within one to three months as the histologic alterations are reversed. Functional and histologic deterioration and restoration follow a similar time course in vitamin A-deficient rats and cats.

Conjunctiva (X1A, X1B)

The epithelial surface of the conjunctiva and cornea participate in the same process of keratinizing metaplasia induced by vitamin A deficiency in other organs. When sufficiently advanced and severe, they become clinically visible as conjunctival and corneal xerosis (xeros, dry). Conjunctival xerosis (X1A) almost always precedes corneal xerosis (X2), an advanced (though still reversible) lesion representing more severe, prolonged vitamin A deficiency.

Histologic abnormalities are widespread prior to their clinical recognition. Biopsy specimens of clinically normal conjunctiva from the inferonasal quadrant of children with temporal xerosis or Bitot's spots reveal early metaplastic changes. Keratinized cells and occasionally a prominent granular cell layer may be present. More subtle involvement can be demonstrated in milder deficiency by conjunctival impression cytology (CIC) (Chapter 11). Epithelial surface layers removed by adhesion to a millipore filter and examined by light microscopy range from normal sheets of small, uniform, nonkeratinized epithelial cells with abundant mucous-containing goblet cells to abnormally irregular and fragmented sheets of large, often keratinized epithelial cells devoid of goblet cells. In young children, there is ordinarily a direct correlation between the prevalence of abnormal CIC specimens and the severity of vitamin A deficiency (Tables 11-5, 11-6). Almost half the children with "normal" eyes (void of clinical xerophthalmia) and serum retinol levels below 20 µg/dl had abnormal CIC, compared with 6% of children whose eyes looked the same but whose serum vitamin A was above 25 µg/dl. Not all individuals with abnormal CIC will have depressed serum retinol (Chapter 11).

When vitamin A deficiency is sufficiently severe and chronic, keratinization becomes apparent as a dry, corrugated, irregular surface. The tear film or lacrimal lake may cover the surface and mask the irregularity. Only after the tears have
Xerophthalmia and Keratomalacia

been allowed to drain will the abnormal area appear "like sandbanks at receding tide" (Plate 5) 88

The abnormal surface is almost always associated with some degree of overlying, white, foamy, or "cheesy" material. This material, generally consisting of desquamated keratin and a heavy growth of bacteria (commonly the xerosis bacillus, a gram positive diphtheroid), is easily wiped away, revealing the xerotic base below. The overlying material reaccumulates within hours.

For the most part, Bitot's spots (X1B) are the "sine qua non" of conjunctival xerosis. "Pure" xerosis, in the absence of a fine or gross foamy/cheesy surface (X1A), is probably rare and overdiagnosed, as such, it is an unreliable sign of xerophthalmia and not acceptable evidence of vitamin A deficiency (Chapter 11). 45, 90

Bitot's spots first appear temporal to the limbus, in a characteristic oval or triangular shape. This is not, however, invariable (Plates 6–11). With more severe deficiency the nasal, inferior, and lastly the superior quadrants become involved. 19 By then, vitamin A deficiency is usually severe, corneal xerosis (X2) apparent, and the conjunctiva has a thickened, corrugated, skin-like appearance (Plates 20, 28) (Table 4–2).

The histopathologic appearance of conjunctival xerosis/Bitot's spots is well described. A thickened, superficial layer of flattened cells commonly containing a keratinized surface, a prominent granular cell layer, acanthotic thickening accompanied by an irregular maturational sequence with mild to moderate disorganization of the basal layer and enlarged cells and nuclei with prominent nucleoli, complete absence of goblet cells (from areas in which they are usually dense), and in some instances, mild, chronic inflammatory infiltration of the substantia propria (Figs 4–1, 4–2). As noted, the surface is frequently covered by a frayed mass of keratin intermixed with gram-positive bacilli, other bacteria, and even fungi. In cheesy lesions, the surface debris sometimes reaches mammoth proportions.

Bitot's spots are so closely associated with vitamin A deficiency and xerophthalmia, and so misunderstood, that it is useful to review their character and significance. The lesions were recognized in the early 1800s among patients with liver disease (presumably deficient from interference with intake, absorption and

Table 4–2 Geographic Extent of Conjunctival Involvement

<table>
<thead>
<tr>
<th>Patient's Clinical Classification</th>
<th>Number of Eyes</th>
<th>0</th>
<th>Temporal</th>
<th>Temporal + Nasal</th>
<th>≥ 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>100</td>
<td>5</td>
<td>37</td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>X2</td>
<td>106</td>
<td>4</td>
<td>9</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>X2/X3</td>
<td>167</td>
<td>8</td>
<td>12</td>
<td>35</td>
<td>45</td>
</tr>
</tbody>
</table>

*Difference in distribution between X1 and X2 (or X2/X3), p < .01

From A. Sommer et al. 88
Fig 4-1. Top left By light microscopy, pretreatment temporal conjunctival biopsy (right eye) reveals a prominently keratinized surface (Dane s, \times 528) Top right Phase-contrast microscopy of same area resolves surface keratinization keratohyaline granules, acanthosis and dyskeratosis (paraphenylenediamine, \times 480) Bottom left Biopsy of temporal conjunctiva (left eye) seven days following systemic vitamin A appears normal by light microscopy (hematoxylin-eosin, \times 528) Middle right Phase contrast photomicrograph of same area shows decrease in epithelial thickness (cf top right, paraphenylenediamine, \times 480) Bottom right TEM (transmission electron microscopy) of same area illustrates partial return of surface membrane infoldings and microvillae (\times 10,700) (From A Sommer et al)

utilization of the vitamin) 107,108 These cases must have represented relatively late, chronic, severe deficiency 38 In 1860, Hubbenet described progressive epithelial dryness and scaling of the conjunctiva (and cornea) in undernourished nightblind soldiers, which responded to intake of beef liver 8 In 1863, Bitot described the same association between silvery-white, foamy conjunctival lesions in nightblind, but otherwise healthy, children 15 With rare disagreement, 109 the association be-
Fig. 4-2. A 13-year-old female with nonresponsive foamy Bitot's spots Top left Light microscopy of temporal conjunctival biopsy (right eye) exhibits abrupt transition (arrowhead) between the abnormal, heavily keratinized surface (right) and more normal adjacent conjunctiva (left) (Dane's, × 495) Top right Another section from the same specimen similarly demonstrates by light microscopy the abrupt transition between normal epithelium (left) and abnormal epithelium (right) with keratin, granular cell layer, and irregular maturational sequence (PAS, × 495) Bottom inset Phase contrast photomicrograph of inferonasal conjunctiva illustrates chronic inflammatory infiltrate of the stroma, predominantly composed of plasma cells (circled) (paraphenylenediamine, × 450) Bottom TEM of area circled in inset reveals clustered plasma cells having typical nuclear and cytoplasmic features (× 5700) (From A Sommer et al 4)
tween XN and X1B has been repeatedly confirmed. It is not, however, invariable.

Graefe's failure to recognize the connection between Bitot's "hemeralopic spot" and the corneal destruction he witnessed in the same children was credited as long ago as 18830 with fostering an artificial division between these two abnormalities, despite subsequent reports suggesting they arose from the same underlying condition10110114 and that both could respond to cod liver oil.

What has confused investigators and clinicians alike is the observation that Bitot's spots do not always reflect active vitamin A deficiency or necessarily respond to vitamin A treatment. This apparent discrepancy is readily explained by studying the clinical and histopathologic response in children treated with vitamin A. Results separate subjects into two relatively distinct groups: those in whom the Bitot's spots are a manifestation of active, systemic vitamin A deficiency, and those in whom they are not. In the "active" group, the Bitot's spots contract or disappear entirely within two weeks, in the latter group, they persist largely unchanged. The histologic characteristics of responsive and nonresponsive lesions are virtually identical, what distinguishes one from the other is the appearance of the surrounding conjunctiva. Nonresponsive lesions are sharply demarcated (Fig 4-2). In contrast, the histologic abnormalities of the responsive lesions merge with widespread but milder metaplasia of the rest of the conjunctiva, including the distantly located inferior nasal quadrant. Animal models confirm the presence of generalized metaplasia of the conjunctiva in vitamin A deficiency, manifested as widespread disappearance of goblet cells. It would appear that responsive lesions are accompanied by active vitamin A deficiency, while nonresponsive lesions are not.

Characteristics of children with responsive and nonresponsive lesions support this thesis. Children with nonresponsive lesions are older (almost 80% were ≥ 6 years, versus 11% of responsive children), have higher serum retinol levels (29.5 ± 4.7 μg/dl versus 13.5 ± 1.47 μg/dl), their temporal Bitot's spots (present in all subjects) are less likely to be accompanied by nasal spots (6% versus 66%), and concomitant nightblindness and punctate keratopathy (the earliest corneal manifestation of vitamin A deficiency) are far less prevalent (punctate keratopathy, 13% versus 96%, nightblindness 0%–33% versus 78%–91%). Recent studies confirm higher serum retinol values and lower rates of abnormal relative dose-response (RDR) (0% versus 32%) among nonresponsive cases.

The origin of the nonresponsive spots is uncertain and may involve a variety of factors. Given the location and age of the population, it is conceivable they represent persistent sequelae of previous vitamin A deficiency, perhaps exacerbated by chronicity and by local factors. Nonresponsive lesions were much more common in older than younger children and more likely to have been present longer. Most of the nonresponsive patients examined by Sie-Boen-Lian and Metivier claimed their lesions had first appeared in early childhood, suggesting...
that their Bitot's spots (and/or their vitamin A deficiency) were more longstand-
ing. Sinha made the interesting observation that treatment with high-dose vitamin
A every four months prevented the development of Bitot's spots in preschool
Indian children previously free of xerophthalmia, but had no impact on the
seasonal reappearance of Bitot's spots among children in whom they had been
previously present. Although vitamin A induces keratinizing metaplasia throughout the bulbar
conjunctiva, clinically visible involvement is ordinarily most frequent, most pro-
nounced, and slowest to resolve temporally, and temporal lesions are usually
the only ones to become nonresponsive. Vulnerability of the temporal perilimbal
area may be related to the underlying conjunctival histology; it is the area most
devoid of mucous secreting goblet cells. Lying along the interpalpebral zone, it is also the area of bulbar conjunctiva most exposed to the outside environment
and least wiped clean of bacteria and debris (which may be concentrated, by lid
action, in this vicinity). Appelmans reported a Bitot's spot located on the
superior bulbar conjunctiva, in an area exposed by a coloboma of the upper lid.
McLare reported a Bitot's spot in the inferior bulbar conjunctiva exposed
by ectropion of the lower lid. Metivier reported two instances of unilateral
(nonresponsive) lesions, one in an eye propossed by an orbital osteoma. We
observed the disappearance of severe, plaque-like xerosis on the protuberant
surface of a staphyloma (a consequence of keratomalacia) in a xerophthalmic
child following systemic vitamin A. Total excision of nonresponsive spots pre-
vents their return, unless, of course, vitamin A deficiency recurs.

Since a child's vitamin A status may improve despite persistence of the Bitot's
spots, the population prevalence of X1B is a poor basis by which to assess the
impact of an intervention program. Furthermore, given the greater frequency
of nonresponsive lesions among older children, only X1B in children younger
than six years is considered a suitably reliable index of vitamin A deficiency to
serve as an acceptable prevalence criterion for establishing the vitamin A status
of a community (Chapter 11).

The fact that human volunteers enrolled in depletion studies generally fail
to develop Bitot's spots merely confirms other evidence that these subjects
never became particularly deficient. The previously healthy, well-nourished case
reported by Bors and Fells was allegedly on a diet devoid of vitamin A for five
years before developing significant ocular pathology. Finally, the absence of
typical Bitot's spots in some cases of classical corneal melting speaks
to the complexity of vitamin A-related corneal necrosis and the corresponding
conjunctival response. As noted elsewhere, a precipitous "collapse" in vitamin
A metabolism will result in corneal melting before metaplastic changes become
clinically evident. In addition, conjunctival inflammation that often accompanies
corneal ulceration (particularly when secondarily infected) can reverse or other-
wise mask underlying xerosis. Studies on conjunctival transdifferentiation in
rabbits support the potential influence that vascular flow can have on epithelial
differentiation, perhaps through alterations in the local availability of vitamin A.\(^\text{140-141}\)

Despite recognition that inflammation\(^\text{89-93, 142-144}\) and sudden deterioration of vitamin A status\(^\text{29, 89, 121, 145-146}\) can modify the clinical appearance of potentially blinding xerophthalmia, cases have been denied therapy because of the absence of classical conjunctival xerosis.\(^\text{135}\) Pillat's suggestion\(^\text{102}\) that "examination of the conjunctiva is the only guard against a mistaken diagnosis" is unfortunately, and sometimes tragically, incorrect. It costs little, and is entirely safe and appropriate to treat every case of suspected xerophthalmia and keratomalacia with high-dose systemic vitamin A (Chapter 10).

Active Bitot's spots (and more extensive xerosis) are almost always bilateral and respond rapidly to systemic vitamin A. All lesions will improve within five to seven days, and most will have disappeared entirely by two weeks.\(^\text{144}\) In his classic report of 1881, Snell\(^\text{13}\) noted that most spots began to resolve within four days of taking cod liver oil and disappeared within ten days. Similar results have been reported by others.\(^\text{93, 101-102, 147}\) As they heal, the lesions shrink and lose their covering debris. Before disappearing entirely, they appear as small xerotic patches or tiny epithelial blisters located 1 mm to 2 mm from the limbus. Healing usually progresses symmetrically in the two eyes, nasal lesions usually disappearing before temporal ones.\(^\text{44, 102}\) In a closely followed case reminiscent of Sinha's observation, the originally sizeable spots shrank by day 20 to two tiny temporal bubbles, at both one and two months they had reexpanded into small classical Bitot's spots, at four months, both eyes were clear of all abnormalities, but by six months the temporal bubbles had reappeared, despite serum vitamin A levels remaining at their post-treatment high (> 25 \(\mu\)g/dl).

Histologic and clinical responses proceed in parallel. Keratin and granular cell layers are usually gone within one to two weeks of treatment. It takes considerably longer to repopulate the conjunctiva, particularly the inferonasal quadrant, with a normal complement of goblet cells.\(^\text{47, 62, 137, 148}\)

An important consideration for both assessing the vitamin A status of a population (Chapter 11) and evaluating the impact of an intervention program (Chapters 11, 13-15) is the proportion of cases of Bitot's spots that represent active vitamin A deficiency and are therefore likely to respond to improvement in vitamin A status. This will depend upon the prevalence of clinically active vitamin A deficiency in the age group studied and their propensity for developing nonresponsive lesions. A therapeutic clinical trial was conducted during the last of seven rounds of observations in rural Indonesian preschool children (200,000 IU versus 700 IU vitamin A), and the children reexamined in double-masked fashion by the same ophthalmologist two to three weeks later. Bitot's spots had disappeared in nearly 80% of high-dose recipients (versus a spontaneous "cure" rate of 50%, \(p < .05\))\(^\text{1}\). An 80% cure rate in only two to three weeks is equivalent to a nearly 100% cure rate over a longer follow-up.\(^\text{1}\)
Table 4–3 Prevalence of Bitot’s Spots (X1B) at Follow-Up—Aceh Mortality Trial

<table>
<thead>
<tr>
<th>Vitamin A villages</th>
<th>No Bitot’s Spots at Baseline</th>
<th>Bitot’s Spots at Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Children</td>
<td>X1B, Number (%)</td>
<td>Number of Children</td>
</tr>
<tr>
<td>12,277</td>
<td>15 (0.12)</td>
<td>140</td>
</tr>
<tr>
<td>11,342</td>
<td>55 (0.48)</td>
<td>160</td>
</tr>
</tbody>
</table>

Vitamin A villages 12,277 15 (0.12) 140 20 (14.3)
Non-vitamin A villages 11,342 55 (0.48) 160 20 (12.5)

From E. Djunaedi et al.

Xerophthalmia rates were also assessed at baseline and follow-up examination (one year after initial dosing and three to four months after the second dose) in the Aceh mortality trial. The prevalence of new cases of X1B was five times greater in the control group than in the treatment group (0.1% versus 0.5%). But the total prevalence of X1B (new and old cases—despite treatment of all “old cases” at baseline) was only twice as great as the prevalence of new cases, representing persistence of refractory or recurrent lesions. Among children assigned to the vitamin A prophylaxis group, and who had Bitot’s spots at baseline (and received immediate high-dose treatment), the prevalence of Bitot’s spots at follow-up was 100 times greater than among those children who didn’t have Bitot’s spots at baseline (Table 4–3), reminiscent of Sinha’s experience. Hence, over the course of the year in which children with baseline Bitot’s spots in the vitamin A group received baseline high-dose treatment for existing lesions and subsequent high-dose prophylaxis, X1B disappeared in 85% of the original cases. This is consistent with the “cure” rate of 80%–100% noted above among preschool children followed on Java, six years earlier and 1200 miles away. Persistence of Bitot’s spots in the other 15%, however, created a point-prevalence of the same order of magnitude created by incident cases among non-vitamin A recipients.

In the Sudan, where baseline vitamin A status was probably considerably better to begin with, large dose prophylaxis reduced the incidence of new cases, but to a lesser degree than total vitamin A intake (e.g., from dietary sources).

In the MSG-vitamin A fortification trial on Java, Bitot’s spots prevalence in the fortified villages declined 73% by the five-month follow-up, and 85% by the final examination at eleven months. Rates in the unfortified villages remained essentially unchanged.

Nonresponsive lesions have reportedly been more prevalent in parts of India, even among young children. In the intervention trial conducted by Sinha in West Bengal, the prevalence of Bitot’s spots fluctuated between 8% and 20%, over half representing nonresponsive lesions. Similarly, almost one-third of Indian children treated for “conjunctival xerosis” at a day care center failed to respond to massive dose vitamin A over a five-week follow-up period. In Bangladesh, the prevalence of XN in communities decreased in relation to vitamin A coverage. Bitot’s spots prevalence declined much less. The relative prevalence of XN and...
Fig. 4-3. The prevalence of Bitot's spots among children from Indonesian villages purchasing vitamin A-fortified MSG fell precipitously. Bitot's spots prevalence in control villages remained essentially unchanged (From Muhilal et al.19)

X1B among those who did not receive a large dose compared with those who did was similar in Indonesia and Bangladesh, 1.9 and 2.7 for XN, and 1.3 for X1B.132

As already indicated, individuals with responsive lesions are more likely to have other evidence of active vitamin A deficiency (e.g., nightblindness, punctate keratopathy) or lesions pathognomonic of the condition (e.g., bilateral Bitot's spots present nasally and temporally). However, the prevalence of coexisting evidence or pathognomonic signs is insufficient to distinguish active from inactive vitamin A deficiency on an individual basis. For example, a high proportion of children presenting to clinic with Bitot's spots will be nightblind, since it is often the reason help is sought in the first place—80% at the Cicendo Eye Hospital, with comparable rates elsewhere.13, 15, 48, 93, 97, 10, 1, 52, 153 But the proportion of X1B accompanied by recognized XN in the field is likely to be lower, representing varying reliability of a history of nightblindness when patients are not sufficiently aware or moved by the condition to seek help. It was said to affect only 61% of children with Bitot's spots examined at their homes in neighboring West Java.39 Where an appropriate local expression for XN is not available, the rate can be 10% or less, which may have been the case in the Sudan.58

Conjunctival pigmentation, much commented on in the past,63, 88, 142, 154 is a chronic change, if in fact it is related to vitamin A deficiency at all.14, 44, 89, 95, 115, 117, 121, 155, 156 It is not a reliable component or criterion for diagnosing Bitot's spots.

Brief interest in the use of "vital stains" (e.g., rose Bengal and lissamine green) to enhance the visibility of conjunctival xerosis17, 157 has waned following careful trials indicating the technique is neither sufficiently sensitive nor specific.151, 158-161
Xerophthalmic corneal destruction is classically said to occur in noninflamed “white and quiet” eyes (Plates 17, 22–23) Nonetheless, conjunctival inflammation (of varying degree) is the rule, not the exception, in corneal ulceration (Plates 13, 15 24–26, 29) It may result from secondary infection, concomitant illness (e.g., measles), or simply corneal destruction itself It is clear that inflammation often masks or otherwise reverses conjunctival xerosis

Cornea (X2, X3A, X3B)

Corneal changes of vitamin A deficiency, particularly ulceration and keratomalacia, were probably recognized even before those of the conjunctiva Over 250 years ago, Duddel described corneal necrosis in poor children and “sometimes after measles” There is no mistaking Brown’s early 19th century description of a “case of ulcerated cornea from inanition” in a “poor babe” Hubbenet, who first reported the “hemeralopic spot” for which Bitot became famous, may also have been the first to describe early changes in the cornea as the disease progresses the cornea itself becomes cloudy the vision becomes blurred, and consequently the patient has poor vision in artificial light, objects appearing to him as if they were wrapped in a halo—exactly what one would expect from early metaplasia (and xerosis) of the corneal epithelium

Within six years of Hubbenet’s observations, Blessig described the entire spectrum of ocular manifestations, from nightblindness through corneal melting, in the presence of conjunctival xerosis Excellent descriptions of conjunctival and corneal xerosis, some progressing to ulceration and widespread necrosis, followed Concluding with Bloch, these early investigators had associated diverse ocular abnormalities with the lack of a specific nutrient, often precipitated by severe infections, and responding to foods rich in “fat-soluble A”

A number of classifications for these ocular changes were suggested over the years The one officially recognized today (Table 4–1) arose from a long-used scheme in Indonesia, modified in 1974 and minimally revised in 1980 It retains the practical distinction between reversible corneal changes that heal entirely without sequelae (X2) and those that do not (X3) The latter is further divided into X3A and X3B, for practical purposes, X3A represents localized corneal destruction that, when healed, will leave a scar but preserve central vision, X3B is more extensive, invariably resulting in loss of most or all useful vision

The following discussion refers to a more detailed classification of corneal alterations developed solely for investigational purposes (Table 4–4)

Punctate Keratopathy

The earliest, mildest corneal change observed in vitamin A-deficient individuals appears to be a fine, fluorescein-positive, superficial punctate keratopathy (SPK)
Corneal Xerophthalmia Developed for Investigational Purposes

Table 4-4 Detailed Classification of Corneal Xerophthalmia Developed for Investigational Purposes

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>Corneal xerosis</td>
</tr>
<tr>
<td>X3A</td>
<td>Corneal ulcers with xerosis</td>
</tr>
<tr>
<td>X3B (I)</td>
<td>Keratomalacia (localized)</td>
</tr>
<tr>
<td>X3B (II)</td>
<td>Keratomalacia (generalized)</td>
</tr>
</tbody>
</table>

Minimal inferior haze apparent on handlight examination, through frankly thick, elevated, keratinized plaques on the corneal surface

Stromal loss in the form of relatively small, round to oblong, sharply demarcated, shallow to full-thickness ulcers accompanied in most (but not all) instances, by evidence of X2

Localized corneal dissolution or necrosis

Generalized corneal dissolution or necrosis of one or both eyes

Cases with punctate keratopathy but otherwise clear corneas (on handlight examination) are classified by their other manifestations of vitamin A deficiency (XN or X1)

From Sommer

(Plate 12), usually beginning inferiorly, especially inferonasally (Fig 4-4) As the disease progresses, the lesions become more numerous, concentrated, and affect a larger portion of the corneal surface. Sixty percent of corneas of patients with confirmed nightblindness and 75% of patients with vitamin A-responsive conjunctival xerosis were affected, even though their corneas appeared crystal clear on handlight examination. Among controls and patients with nonresponsive Bitot’s spots, punctate keratopathy was far less prevalent and sparse (Fig 4-4) Similar lesions, responsive to systemic vitamin A, have recently been reported in putatively deficient but otherwise asymptomatic adults.

Punctate keratopathy responds rapidly to vitamin A, improving within one week of a single oral dose of 200,000 IU vitamin A. Healing begins with loss of staining, producing a mixture of staining and nonstaining white specks. Within one to two weeks, many of the nonstaining specks become lightly pigmented. By the fourth week only nonstaining, pigmented epithelial or subepithelial specks remain, most prominently inferiorly, where they may persist for months. Eighteen eyes of ten patients with Bitot’s spots received low-dose (700 IU) vitamin A as controls. By the end of the month none had improved and eleven (61%) had actually deteriorated, four of them alarmingly so. These patients were then

Fig. 4-4. In early xerophthalmia, fluorescein-staining punctate lesions have a strong predilection for the inferior and nasal aspects of the cornea (From A Sommer et al.)
treated with a single oral dose of 200,000 IU vitamin A, all improved within nine days.

By the time punctate keratopathy covers most of the corneal surface, involvement is generally apparent on handlight examination, thus qualifying for the designation "corneal xerosis" (X2).

Corneal Xerosis (X2)

The first visible change on handlight examination is a haziness of the corneal surface, usually most pronounced adjacent to the inferior limbus but occasionally centrally instead (Plates 10–11). The haziness becomes more distinct a few seconds after the lids have been retracted, the tear film having had a chance to run off revealing the dry, "nonwettable," finely irregular surface below. Mild involvement may be missed by the casual observer. Many such cases were referred to us for nightblindness or Bitot's spots. In more advanced disease, haziness and decreased wettability are apparent over a larger portion of the corneal surface, although usually remaining most pronounced inferiorly. In the vast majority of cases both eyes are involved, usually symmetrically.

The most prominent abnormalities seen on slit-lamp examination are the punctate epithelial changes already described (Plate 12). Some corneas present with a mixture of staining and nonstaining specks, suggesting previous episodes of active disease. An occasional case presents with nonstaining, fine epithelial microcysts with or without more typical punctate lesions (SPK) interspersed between them. These cysts are often water repellent, appearing even less fluorescent than the tear film itself. Within one to two days of systemic therapy the cysts usually disappear, being replaced in many instances by typical staining punctate lesions.

The other abnormality apparent on slit-lamp examination is stromal edema. As with the surface changes, the inferior aspect of the cornea is usually affected first and most severely.

The extent of corneal haze is directly related to the density and extent of the punctate changes and to the degree of stromal edema. Dense accumulations of healed, residually pigmented specks may cause inferior haziness to persist indefinitely. Central corneal haze, when present, is therefore a better index of active disease. Corneas with active disease often have a ground-glass appearance on retroillumination. This is most prominent in areas of dense punctate keratopathy. The same sites at which tear film break-up time is usually briefest.

In more severe involvement the corneal surface has a dry, granular, peau d'orange appearance (Plates 14, 20), which is usually most prominent inferiorly, either adjacent to the limbus or as a horizontally oval area 2 mm to 3 mm above it. Occasionally these changes first become apparent one to two days after initiation of therapy. Multiple patches of similar appearance are sometimes distributed about the corneal surface. Involvement is generally symmetrical in the two eyes. Haziness tends to be more severe.
The frankly xerotic nature of the changes is often apparent, even on handlight examination of the fluorescein stained cornea. Many eyes have severe, dense punctate staining, while in others the fluorescein stains or pools in cracks on the cornified surface, presenting a "treebark" appearance (Plates 16, 18–19).

"Treebarking" appears to represent a solid sheet of cornified epithelium. Although fluorescein pools in the cracks, the surface is usually free of punctate staining (Plate 16). Following therapy, the cornified layer loses its attachment to the surface below and peels off (Plate 16). The free end may fold over, or break off and slough. The central, interpalpebral zone is generally the last to clear, presumably because of its protection from abrasive lid action (compare Plates 18, 19).

The severity of edema tends to be greater than in milder disease. Corneal thickness was at least twice normal in over one-fifth of eyes.

Thick, elevated, frankly xerotic plaques are the most severe form of nonulcerating surface change (Plates 18–19, 21). Relative protection from lid abrasion and the greater potential for exposure probably account for their preponderance in the interpalpebral zone. Particularly heavy plaques are foamy or amorphous in nature, suggesting an agglomeration of bacteria and fragmented keratin as in thick Bitot's spots. Plaques, xerosis, and corneal haziness are present in both eyes. Punctate keratopathy is of the densest sort, especially surrounding the plaques. The surface of the plaques themselves generally stain as linear or whorl-like crevices. With healing, the plaques fragment and slough, sometimes being (transiently) replaced by areas of densely packed, fluorescein-positive punctate lesions.

Stromal edema is universally present.

At least one-third of our fifty-three cases of X2 presented with a chief complaint compatible with corneal derangement. Twelve because they were keeping their eyes closed, six because they were avoiding bright lights, and two because they had "itchy eyes." A twenty-four-year-old woman with corneal involvement denied any foreign-body sensation, grittiness, or dryness, but was moderately to severely photophobic.

Aside from their ocular appearance, there was little to distinguish cases of mild to moderate X2. Patients with severe X2, however, were sicker and more protein-deficient.

- Serum albumen and transferrin were lower in severe X2 (2.5 µg/dl versus 3.4 µg/dl and 151 mg/dl versus 159 mg/dl respectively, p < 0.1), and pedal edema was far more prevalent (60% versus 15%, p < 0.01). Standard anthropometric indices were below normal but similar for all degrees of X2.
- A history of recent febrile illness was more common and clinical illness scores more severe in advanced X2, as reflected in their mortality rates (42%, 12.5%, and 40.0% for mild, moderate, and severe X2 respectively).
Stromal Loss (X3)

It is more difficult to devise a meaningful clinical subdivision for cases with stromal loss, since different mechanisms, with potentially similar outcomes, might be responsible. Categories 4 and 6 contain cases with active, locally destructive corneal lesions of distinctive appearance. Category 5 contains cases with large, often perforating ulcers that may represent a transitional stage between the other two. Categories 7 and 8 contain cases with complete corneal destruction of one or both eyes.

The prevalence of binocular stromal loss increased with the severity of loss in the worst affected eye (24% versus 93% for Categories 4-5 and 7-8 respectively, \(p < 0.01 \))

X3A Corneal Ulceration (Categories 4-5)

Category 4 was characterized by the presence of one or more sharply demarcated ulcers of varying depth. The most common form of stromal loss, present in over 70% of these cases, was a punched-out, smooth-walled, cylindrical ulcer, looking as if a cork borer or trephine had been applied to the eye (Plates 22, 24). The margins were regular, not undermined, and, in only a minority of instances, swollen. In 13% of affected eyes the worst lesion was a smooth, saucer-shaped depression, otherwise similar in appearance to the punched-out form. Infiltration, if present, was slight and confined to the base, inner wall, or a thin rim around the ulcer (Plate 26). In rare instances a pinpoint infiltrate was present at a distance from the main ulcer, occasionally at the base of an erosion or second, superficial ulcer. In an additional 7% of eyes, such shallow, saucer-shaped, infiltrated ulcers represented the most severe lesion. In 9%, the worst lesion was a mild, seemingly transitional stage in which a large, subepithelial bulla (sometimes encountered in corneal xerosis [XS]) ruptured, leaving a densely staining erosion or superficial ulcer.

Ninety-one percent of affected eyes contained only a single ulcer, the remainder contained two or three. Over three-fourths of all ulcers were located in the inferior and/or nasal quadrants, most commonly the former. Over 90% were 0 mm to 2 mm in diameter regardless of location. Of those in the inferior quadrant, 45% were horizontally oval, 1 mm to 3 mm in length, and at least 1 mm to 2 mm above the limbus (Plates 17, 25).

The main ulcer was usually between one-fourth and one-half corneal thickness. In only one instance (2.4%) was it greater than three-fourths depth.

Among the forty-four cases in which both corneas were xerophthalmic, ulcers were present bilaterally in eight. In all but one of these eight, the location, shape, size, and depth of the lesions were symmetrical in both eyes.

Conjunctival injection, of varying intensity, was present in a majority (79%) of eyes with ulcers. A hypopyon, usually less than 20% in size, was present in
one-third of eyes with ulcers (Plates 25–26). It was almost twice as prevalent (34%) among eyes with conjunctival injection as among those without (18%), and often adherent to the posterior surface of the cornea immediately deep to the ulcer.

Two patients with corneal xerosis included in Categories 2 and 3 developed ulcers while under observation. Both children were ill and severely protein-deficient. Their cases illustrate potential mechanisms by which corneal ulceration might develop in xerotic corneas.

Case 200/068 A two-year-old, severely malnourished child with rhonchi, pedal edema, stomatitis, and draining right ear was referred for Bitot’s spots. Both eyes had extensive corneal xerosis with a treebark, cornified layer in the inferonasal quadrant. With hospital therapy, his general condition and eyes improved. By day 3, the pedal edema had largely subsided, the conjunctival xerosis had disappeared, and the cornified layer had begun to break up and slough. By day 7, the cornified layer was completely gone. During the second week, the child’s general condition deteriorated. He developed diarrhea, anorexia (requiring a feeding tube), and the pedal edema returned. Although the diarrhea was soon controlled, serum albumin had fallen further. Both corneas deteriorated by day 15, numerous fluorescein-positive punctate lesions and nonstaining epithelial microcysts appeared inferiorly despite good lid closure. On day 17, the surface of the inferior portion of the right cornea developed an irregular appearance due to the presence of five small bubble-like mounds, all sharply demarcated cystic swellings in the superficial stroma. The tear film in both eyes was irregular and unstable. Within five days, a sharply demarcated, perfectly clear, intensely staining non-infiltrated shallow ulcer replaced the bubble-like mounds inferocentrally. The ulcer was surrounded by a moderately hazy zone, the rest of the cornea was minimally hazy, studded with SPK, and 1.5 times normal thickness. Three days later, the left cornea assumed an identical appearance. By day 28, the erosion/ulcer of the left eye had healed without a trace. The child died on day 37.

Case 200/069 A severely ill and malnourished three-year-old boy with bloody diarrhea was seen with skin-like changes of his entire conjunctiva, and heavy xerosis with treebark cornification and adherent amorphous white plaques inferiorly in both corneas (Plate 18). His serum albumin was 1.9 and holo-RBP 1. Two days after admission and initiation of therapy, a sharp-margined, punched-out, fluorescein-positive depression formed at the receding, inferior edge of the xerotic plaque (Plate 19). This presented a striking appearance, the crevices of the remainder of the plaque converging on the ulcer, suggesting that underlying epithelium, and perhaps stromas as well, had been lost when the overlying plaque sloughed. There was no evidence of infiltration and the margins were not swollen. By day 8, the xerotic plaque in the left eye was confined to a small, nasally...
remote area inferiorly What remained of the cornified layer was folded upon itself some distance from where the ulcer had been The ulcer itself had reepithelialized, forming a clear, nonstaining, shallow depression The child's general condition also improved, his edema disappeared, and his albumin rose to 2.6 by the end of the first week

A number of cases presented simultaneously with ulcers and potentially precursor lesions In some, ulcers were located amid treebark cornification, in others, they were associated with stromal bullae In one case a classical punched-out ulcer evolved from a cluster of bullae

Case 200/168 The left eye of a two-year-old girl contained a grayish-white, cystic, bulging, necrotic lesion (Category 6) However, the right eye appeared, on handlight examination, to contain a classically small (1 mm) circular, sharply demarcated, hazy lesion with central staining, suggesting a punched-out ulcer Slit lamp examination revealed that the lesion actually consisted of a rosette of clear epithelial or subepithelial microcysts The central cyst had apparently broken, resulting in the staining Of perhaps greater significance was a clear cleft parallel to the surface in the anterior stroma Although centered below the more superficial bullae, and widest at that point, it extended beyond their area of involvement Serum albumin was 3.3 g/dl and vitamin A 1 μg/dl The child received 200 000 IU vitamin A in oil orally and topical retinoic acid By day 4, the bullous lesion had become a classical, one-fourth depth punched-out ulcer By day 10, the ulcer had healed, leaving a small leukoma behind

Another case presented an extraordinary picture containing many of the elements already discussed and suggesting the potential role of localized desiccation and dellen formation 172-175

Case 200/160 A nineteen-month-old boy had a serum vitamin A of 4 μg/dl, albumin of 3.2 g/dl, and a weight-for-height greater than 90% of standard The right eye was white and quiet, with conjunctival xerosis involving the inferior 180 degrees of bulbar conjunctiva and heavy punctate keratopathy, though the cornea still appeared clear by handlight examination The conjunctiva of the left eye appeared injected but not xerotic Centrally, the corneal surface was irregular (Plate 26), due to alternating mounds (clear epithelial or thin-walled superficial stromal vesicles) and depressions, the latter looking as if there were stromal loss or more likely, desiccation, as in dellen If these were, in fact, dellen, they were atypical areas of superficial desiccation overlying stroma two to three times normal thickness None of these irregularities stained (Plate 27) Breakup time (BUT) in the area was zero seconds Inferior to this irregular patch were two ulcers of peculiar appearance Both were oval with saucer-shaped, gently sloping, nonstaining walls of one-fourth corneal depth (Plate 26) Midway between the outer rim and center of each ulcer, the walls abruptly assumed a more typically cylindrical-shaped, punched-out, intensely staining configuration extending an
additional one-fourth to one-half depth into the stroma (see smaller ulcer, Plate 27). It is tempting to speculate that a clear, central stromal vesicle had broken, resulting in a typically punched-out, staining ulcer surrounded by a nonstaining, epithelial covered, dellen-like depression.

As part of a therapeutic trial, the child received 200,000 IU oil-miscible vitamin A intramuscularly, and topical retinoic acid to the left eye three times daily. The inferior ulcer proceeded to heal uneventfully at day 2, a sharply demarcated area of whitish (presumably) infiltration appeared at the base, the only area still staining. By the next examination, on day 5, the entire area of the ulcer had become a clear, nonstaining corneal depression. At day 2, the area of irregularity superior to this ulcer was unchanged (Plate 27). By day 5, however, it had an identical appearance to the inferior ulcer—the alternating bumps (clear, intrastromal cystic spaces) and depressions had been replaced by a clear, nonstaining, saucer-like depression, and the generalized stromal edema in the area had disappeared.

The temporal ulcer did not fare as well as the inferior one. By day 2, the complex saucer/cylindrical shape had been converted to a deeper "V"-shaped gutter, now staining edge-to-edge (Plate 27). Although topical antibiotic therapy (garamycin/bacitracin five times daily) was instituted at this point, the ulcer continued to deteriorate. By day 5 the area was opaque, its surface a fluorescein-positive bulging mass, like an abscess more typical of cases in Category 6. The patient was removed from the hospital on day 6 and when next seen at three months, had two leukomas—a dense one in the area of the initial temporal ulcer, and a much paler one in the area of the initial inferior ulcer. The depression found in the area of original irregularity was barely discernible. At least a partial explanation for the poor response in this patient was the use of oil-miscible vitamin A intramuscularly; the vitamin A level, initially 4 μg/dl, peaked at 9 μg/dl at 4 h, and was back down to 4 μg/dl at 1 day, where it persisted. His serum albumin was a reasonable 3.2 g/dl.

As already suggested, one of the earliest responses to therapy is formation of a whitish, presumably infiltrated area, usually at the base or within the wall of the ulcer. In some instances, especially where infiltration is prominent or the ulcer large, deep, or adjacent to the limbus, the ulcer "fills in" with marked infiltration/edema in the base and surrounding area, and eventually scars over. Shallow, central ulcers tend to reepithelialize uneventfully, usually within two to three days, forming clear depressions easily missed on routine handlight examination.

Variations in the appearance of localized stromal loss were distinguished by the presence, in at least one eye, of a large, full-thickness, stromal ulcer (reaching to or beyond Descemet's membrane) (Category 5). These cases were also more likely to have bilateral stromal defects. The corneal defects were all localized and sharply-margined. They probably represent a modification or late stage of the processes encountered in Categories 4 (surface ulcers) and 6 (necrotic stroma).
Most cases provide interesting transitional changes between these two other groups, often containing lesions typical of one or the other in the same or fellow eye. Two such cases are presented below, others elsewhere.

Case 200/091 A three-year-old boy with kwashiorkor, albumin of 28 g/dl, and transferrin of 30 mg/dl presented with a right cornea that was three times normal thickness and contained a sharp-margined ulcer that had perforated centrally. The walls around the perforation were more swollen and opaque than characteristic for Category 4. The anterior chamber was flat. The left eye had two distinct areas of treebark xerosis: one inferiorly adjacent to the limbus, and another, a sickle-shaped swath 2 mm above the first, which terminated nasally in a 1 mm ulcer of one-half depth and slightly edematous, shaggy appearance. Both corneas healed without consequence, the right as an inferior adhereul leukoma, the left as a small inferonasal leukoma.

Case 200/158 A severely ill, three-year-old female with marasmic-kwashiorkor died on the day of admission. Serum vitamin A had been 4 μg/dl, albumin 1.9 g/dl, and transferrin 20 mg/dl. The right eye contained a classical punched-out 2 mm shallow ulcer superotemporally of one-quarter corneal depth and two pinpoint ulcers superonasally (Plate 22). Although an anterior synechia had not been noted initially, slit lamp examination following dilation revealed densely pigmented tissue caught up in the posterior aspect of the cornea deep to the shallow ulcer, with clinically normal stroma in between. The left cornea displayed a large (5 mm), central, perfectly round, punched-out, full-thickness defect, through which Descemet’s membrane and iris behind were bulging (Plate 23). The inferior margin of the defect was moderately hazy.

The age distribution of Categories 4 and 5 were identical, but cases in the latter group were clearly sicker and more malnourished. The prevalence of respiratory tract infection, fever, anorexia, pedal edema, and "life threatening illness" was at least twice as common as among cases in category 4, while their mean serum levels of vitamin A (3.3 versus 7.6 μg/dl), albumin (2.7 versus 3.2 g/dl) and transferrin (75 versus 134 mg/dl) were roughly half as high.

X3B Corneal Necrosis (Categories 6-8)

Except for the size of the area involved, the clinical appearance of these lesions is identical and readily distinguished from those of milder damage.

Category 6 was characterized by the presence of localized, deep stromal necrosis. The lesions were opaque, grey to yellow in color, and ranged in size from 2 mm to involvement of almost the entire cornea (by definition the cutoff between Categories 6 and 7/8) (Fig 4–5, Plates 29, 31).

In general, greyish lesions were extremely edematous and cystic. Although their surface often appeared flush with (or even protruding above) surrounding,
In the vast majority of cases of xerophthalmia with focal corneal necrosis (Category 6), the lesions were located in the inferior and/or nasal quadrants (From A Sommer).

Generally edematous cornea, they lacked much if not most, of their stroma. With treatment, edema disappeared and the lesions collapsed. Previously indistinct borders contracted down to sharply demarcated, deep stromal defects, often considerably smaller than was originally anticipated (compare Plates 29 with 30, 31 with 32), suggesting reversible changes surrounding an area of sharply focal, irreversible cylindrical dissolution. Occasionally, some of the edematous tissue sloughed. Deep stromal loss was attended by descemetoceles. With inadvertent pressure, these could rupture, resulting in perforation and iris prolapse. There was rarely any evidence of infiltration about the lesions.

Other lesions were yellowish in color, suggesting heavy, focal inflammatory cell infiltration rather than quiet dissolution. Some of these cases represented a different stage in the same process. In a number of instances, these formed protuberant, dome-shaped lesions (Plates 29, 31), sometimes with smooth, glistening surfaces. Several failed to stain with fluorescein at the time of admission, suggesting that necrosis might have proceeded below an intact epithelium. On the other hand, almost all began to stain within one to three days. Whether initial absence of staining was due to some unrecognized factor masking epithelial
loss, or subsequent staining was secondary to changes induced by the reparative process, is uncertain. The necrotic tissue sloughed, revealing a descemetocele below. Purulent discharge was rarely present.

Descemetoceles, especially large (≥ 3/4 corneal surface) perforated ones, scarred extremely slowly. Small ones (< 1/4 corneal surface) reepithelialized rapidly (two to five days) and scarred quickly (especially if some stroma remained to serve as scaffolding). The smaller, rapidly healing lesions became adherent leukomas, while the larger, more recalcitrant ones became anterior staphylomas (eventuating in shrunken, phthisical globes).

The inferior quadrant was most commonly affected (Fig 4–5), though the lesions often extended beyond its borders. The nasal quadrant was more commonly involved than the temporal.

Serum levels of vitamin A and transferrin tended to be lower among patients with larger lesions.

In Categories 6–8, the cornea of the second eye was more severely affected than among cases in Category 4. 44% suffered stromal loss (versus 18%). Fully 88% had some degree of frank xerophthalmic involvement. Of the four corneas seemingly clear on handlight examination, three had extensive SPK and the other had bilateral conjunctival xerosis.

Typical necrotic lesions were present bilaterally in nine cases in all, the size and location of the lesions in the two eyes were virtually identical. In the six instances in which the stromal lesion in the second eye was milder (Category 4, punched-out type) the location of the lesions in the two eyes was still symmetrical.

Generalized stromal edema was extremely common, and often severe. Corneal thickness was sometimes three to four times normal with marked shallowing of the anterior chamber, even in the absence of corneal perforation. Only rarely was there evidence of corneal exposure.

The following case illustrates the reversibility of some areas of apparent necrosis.

Case 200/171 A three-year-old girl presented with conjunctival xerosis and two small, classically punched-out staining ulcers in the right eye, and a large, greyish, opaque, nonstaining bulging lesion involving three-fourths of her left cornea. Her protein status was reasonably good (serum transferrin 102 mg/dl, albumin 3.5 g/dl), but serum vitamin A was only 2 μg/dl. She received 200,000 IU vitamin A orally on admission and again the following day. By day 1, the surface of the swollen, opaque lesion in the left eye had begun to stain. By day 5, the last follow-up, it had already shrunk to one-third its original size and involved only the inferior area. Except for some mild, generalized edema (reduced from three times normal thickness on admission), the rest of the cornea appeared normal. This is an extreme example of the fact that areas of apparent "necrosis" are sometimes largely (and rapidly) reversible.
In the following case of vitamin A and protein deficiency, classical focal necrosis was precipitated by measles, an all-too-common story (Chapter 7), the rest of the globe was seemingly free of clinical disease, and the extent of irreversible destruction turned out to be less extensive than it initially appeared.

Case 200/124 Measles rash and "conjunctivitis" appeared in this nineteen-month-old boy ten days prior to presentation. Three days later he closed both eyes and had kept them closed since. On admission he was noted to have a "healing" measles rash, pneumonia, and marasmic-kwashiorkor. Serum albumin was 2.6 g/dl, transferrin, 115 mg/dl, vitamin A, 4 μg/dl, and holo-RBP 2 μg/ml. Both conjunctivae were injected, without evidence of xerosis. Neither cornea looked xerotic. In the inferior half of the right cornea was a horizontally oval, sharply demarcated, slit-like, one-half thickness ulcer surrounded by an area of moderately heavy haze, which itself was surrounded by less dense haze. An opaque, necrotic, "mushy" looking lesion with central descemetocele and probable iris prolapse occupied the inferior one-half to two-thirds of the left cornea. The opaque area was greyish and edematous. The transition between the lesions and remaining cornea (superiorly) was dramatic, especially in the left eye, where it was crystal clear and free of SPK. On vitamin A therapy the two eyes healed uneventfully, the right eye as a faint macula, the left as an adherent leukoma involving only the inferior two-thirds of the extent of the original lesion.

In cases with the most severe damage, the necrotizing or melting process involved the entire cornea. In some instances the cornea resembled a relatively firm, yellowish-white abscess whose surface was seemingly intact (Plate 28). In others, what cornea was left resembled thick mush or gelatin (Plates 13, 15). The final result was the same: the corneal stroma sloughed, usually within one to three days, resulting in an enormous descemetocele (occasionally retaining a thin stromal or fibrinous covering) (Plate 23) or (rarely) complete prolapse. The peripheral 1 mm corneal/limbal zone was spared; it was usually edematous and opaque on admission but remained vital (Plates 13, 15, 23, 28). Unlike some instances in Category 6 where the surface of the localized "abscess" did not stain initially, all lesions in Categories 7–8 did.

Two forms of healing are seen, depending upon the amount of residual stroma. Where some stroma remains, a mixture of scarring and (often multiple) descemetoceles develop, all of which eventually scar over. Where all stromal tissue has melted away, a peculiarly cross-banded star pattern of iris covered by Descemet's membrane bulges forward in the quadrants (Plate 23). This scars slowly, and the person remains at risk of complete prolapse for weeks to months. Both situations commonly result in a large, protuberant staphyloma, which may later shrink as the eye becomes phthisical.

In some cases the "necrotic" cornea is completely clear, white, and cystic. In one instance, a clear descemetocele was present centrally, as if there were
insufficient stroma left to swell and produce the characteristically opaque appearance. In this instance the anterior chamber was formed and iris was in its normal position, it healed as a flat, vascularized scar.

The clinical course in several patients suggested that the initial process is one of stromal dissolution, followed by infiltration of the devitalized tissue.

Case 200/096 A two year-old girl with kwashiorkor and serum vitamin A of 3 μg/dl, holo-RBP of 2 μg/ml, albumin of 2.9 g/dl, and transferrin of 20 mg/dl presented with an almost pure descemetocele of the right cornea, and white, opaque dissolution of the entire left cornea. One to two days later the left cornea was yellow, more opaque, and bulging.

In only a single case in Category 7 was the opposite eye entirely normal on handlight examination, while 54% (7/13) of cases suffered bilateral stromal loss. By definition, all cases in Category 8 suffered complete, bilateral corneal destruction. Otherwise the two groups of cases did not differ, clinically or biochemically.

Clinical-Histopathologic Correlations

Despite detailed descriptions of the ocular manifestations observed in vitamin A deficiency and a good deal of animal experimentation, the pathogenesis of corneal destruction remains unclear. Clinical-histopathologic correlations, though limited in number, help to illuminate what those processes might be. The following largely represent Indonesian study participants who either died or underwent enucleation.

Corneal Xerosis (X2)

Two patients with corneal xerosis, both responding poorly to therapy, died while their corneas were hazy. In neither case was there clinical evidence of residual keratinization. Histologic appearance was remarkable only for occasional areas of epithelial thinning and facettes in one of the cases. The superficial facettes may represent healing of earlier, superficial ulceration.

Stromal Loss (Ulceration/Necrosis) (X3)

Histologic material was available from three study participants with active corneal destruction of varying severity and duration.

Case 200/101, with relatively fresh disease, is among the most informative in the literature. One cornea contained small, classically punched-out ulcers. The other cornea was almost entirely a descemetocele. Light and electron microscopy confirmed the sharply focal nature of both sets of lesions, scarcity of inflammatory cells in many areas of active necrosis, the absence of bacteria, and what appeared to be an intact (if keratinized) epithelium.
Case 200/101 A severely marasmic (weight-for-height < 60% of standard) one-year-old boy had a serum albumin of 2.2 g/dl, transferrin of 40 mg/dl, vitamin A of 10 \(\mu \)g/dl, and holo-RBP of 2 \(\mu \)g/ml. He had a history of nightblindness. The right cornea was largely replaced by a near limbal to limbal descemetocele. The left cornea contained two three-quarters depth, sharply punched-out, adjacent ulcers, each 1 mm in diameter, and a deep, intact, anterior chamber. These ulcers were surrounded by a moderate (1 mm) rim of infiltrate. The child received 200,000 IU vitamin A orally on admission and again the following day, and frequent topical antibiotics and systemic penicillin and streptomycin. On day 1, the ulcers were clearly filling in, a process which was more advanced by day 2. On the morning of day 3 the child died and both corneas were biopsied. The right cornea, which had received topical retinoic acid in addition to the other agents, had remained unchanged throughout.

Histopathologic examination of the right cornea revealed keratinized epithelium overlying a thin layer of lush, young, fibrous tissue lined posteriorly by iris (Fig 4–6a). The iris was infiltrated with mononuclear cells. No bacteria were noted.

The left cornea contained keratinized epithelium that was markedly edematous but lacking a granular cell layer. The basal layer contained large, plump cells with prominent nucleoli. There was an abrupt loss of Bowmen's layer and corneal stroma in a wedge-shaped configuration extending three-fourths of the way through the stroma (Fig 4–6b). This area contained strands of necrotic...
collagen, a greater number of plump, spindle-stellate-appearing fibroblasts than normal, and marked stromal edema, all below an intact epithelium. Most significantly, there was little inflammatory infiltrate and no bacteria in the area of collagen dissolution. The keratocytes had been replaced by large fibroblastic-type cells. At either side of this sharply demarcated area the stroma was normal except for a paucity of keratocytes. In some areas, Descemet's membrane was broached despite the absence of clinical evidence for perforation. Such areas were covered anteriorly by edematous, necrotic material, and overlying epithelium (Figs 4-6c, 4-6d).

In the second case, 200/037, corneal material was obtained shortly after widespread necrosis replaced small, sharply demarcated ulcers. Although inflammatory infiltration was extensive, it was often most intense in otherwise normal areas surrounding involved stroma.

Case 200/037 Ten days prior to admission, an eight-year-old girl developed high fever, five days later, a hemorrhagic rash on her face and extremities, and two days later, "white spots" on both corneas. On admission, she was considered moderately ill and only mildly (grade I) malnourished. The conjunctiva of both eyes was injected and the corneas hazy, especially inferiorly, 1 mm to 2 mm oval, sharp-margined shallow ulcers were present 2 mm above the inferior limbus, within the area of densest haze. Serum transferrin was 58 mg/dl and albumin 2.2 g/dl, which was surprising given the absence of edema or other evidence of kwashirkor, suggesting acute decompensation of protein metabolism. Gentamicin and mycitracin were administered five times a day to the right eye. The lids
Fig. 4–6c. Same eye as in Fig 4–6b, showing central area of lesion. Most of the stroma is destroyed, as is Descemet's membrane behind. The sharply delineated saucer-shaped configuration of involvement is readily apparent. The entire area is covered by keratinized epithelium (hematoxylin-eosin, × 30) (From A Sommer et al).

Fig. 4–6d. Higher-power view of section shown in Fig 4–6c. The sharply focal nature of the lesion, and lack of both bacteria and significant inflammatory infiltrate, are readily apparent (hematoxylin-eosin, × 100) (From A Sommer et al.)
were well opposed during the next two days and the eyes showed minimal improvement. On day 3 she became comatose and the lower half of both eyes were noted to be exposed. The conjunctivae were white and quiet O.U. The entire right cornea had a yellow, opaque, necrotic appearance. The left cornea was gelatinous centrally, with iris seen through the center. She died within a few hours and the nasal quadrants of both corneas were biopsied.

Histopathologic changes in the right cornea included necrosis and foci of gram-negative rods. Some areas of necrosis were acellular, but surrounded by otherwise normal stroma infiltrated by neutrophils. Gram-negative bacilli were present.

The specimen from the left eye was lined in places by keratinized epithelium. There was an abrupt transition to stromal necrosis with fraying of collagen. Polymorphonuclear leukocytes were present throughout the stroma, sometimes surrounding rather than within the area of necrosis. Actinomyces-like organisms lined the exposed margin of necrotic stroma in the peripheral area of the descemetocele.

The last and most chronic of the three cases, 200/006, documents the risk of secondary bacterial infection and endophthalmitis in the xerophthalmic eye. It is also another example of xerophthalmic necrosis precipitated by measles (Chapter 7).

Case 200/006 A four-year-old boy presented with a history of measles, fever, and diarrhea one month prior to admission, and a red, tearing, photophobic eye of two weeks’ duration. He had received antibiotic eye drops, pills, and injections. Serum vitamin A was 6 μg/dl, and albumin 2.4 g/dl. The conjunctiva and cornea of the right eye were mildly xerotic. The conjunctiva of the left eye appeared mildly injected but not xerotic. The left cornea was yellow, soft, necrotic, and bulging, with a gelatin-like central protrusion of vitreous or lens. The peripheral corneal/limbal ring was normal. A small biopsy was taken of the centrally necrotic and perforated cornea. 100,000 IU water-soluble vitamin A was given intramuscularly and preparations made for enucleation of the left eye the following day. In the interim, the left eye developed a purulent exudate. The biopsy specimen resembled a fibrinous exudate containing a segment of Descemet’s membrane and, in some areas, moderate numbers of diplococci. Examination of the enucleation specimen revealed an abrupt transition between peripheral cornea, which was relatively intact except for fraying of collagen bundles and areas of acute inflammatory cell infiltrate and vascularization, and the central fibrinopurulent full-thickness exudate. The margins of preserved stroma showed a dense neutrophilic infiltrate. Epithelium covering the limbal cornea showed minimal keratinization. Large gram-positive cocci were noted in the vitreous abscess.
Local Pathogenic Factors

A dry (xerotic) ocular surface can result from physical desiccation (a deficiency in the quantity or quality of the tear film) or from primary keratinizing metaplasia. Mori thought xerosis accompanying vitamin A deficiency was secondary to disturbed secretions of the lacrimal gland, in part because he noted that tears were, as a rule, scanty or absent in children with xerophthalmia. Wolbach correctly identified keratinizing metaplasia as the primary event, at least in rats, the lacrimal glands were unaffected until late in the disease. Since then, lacrimation has rarely been mentioned, tear production is said to remain unchanged in xerophthalmic rabbits.

Despite these negative reports and difficulties in assessing basal tear secretion, children with xerophthalmia are more likely to suffer markedly reduced tearing than age-sex-neighborhood-matched controls (Table 4-5). There is a direct relationship between the severity of xerophthalmia (e.g., degree of vitamin A deficiency) and the proportion of children with reduced basal tearing.

Corneal cases suffered a particularly severe reduction in tearing; over 30% of X2/X3, but only 5% of their controls, had < 5 mm wetting.

At least some of this relationship seems to have been a direct result of vitamin A status. Among otherwise normally nourished children (serum albumin ≥ 3.5 g/dl and weight-for-height ≥ 80% of standard), the more severe the xerophthalmia, the higher the prevalence of deficient tearing. Further, tearing responded to vitamin A therapy. In an analysis restricted to outpatients (whose therapy consisted solely of high-dose vitamin A) followed for seven to ten days, the proportion of eyes in which tearing increased was significantly greater than the proportion in which it decreased (p < 0.01 for corneal cases, p < 0.01 for all xerophthalmia). In a recent report, half the fifteen adults with hepatic dysfunction studied for subclinical vitamin A deficiency had marked reductions in tearing (though there was allegedly little correlation with individual serum retinol levels).

Other factors besides vitamin A status may well play a role. Tear production is also associated with protein status; the prevalence of deficient tear production is inversely related to serum transferrin. Almost half the cases of X2 with

<table>
<thead>
<tr>
<th>Clinical Classification</th>
<th>Eyes (N)</th>
<th>Eyes with < 15mm Wetting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>X1</td>
<td>46</td>
<td>18</td>
</tr>
<tr>
<td>X2/X3</td>
<td>54</td>
<td>32</td>
</tr>
</tbody>
</table>

*Controls age sex-neighborhood matched to cases of X2/X3
Test for linear trend p < 0.01
From Sommer et al
transferrin levels < 50 mg/dl had < 5 mm of wetting, compared with a fifth of cases with higher transferrin levels (p < 0.01). This may, in part, be secondary to functional dehydration, since many of these children appeared “dry” despite pedal edema.

The concomitant presence of dehydration, vitamin A deficiency, and protein deficiency should have a marked effect on tear production, and probably explains the severity of corneal xerosis among cases in the severest category of X2.

Kogbe et al. observed that normal children “produced tears much more readily” than children with measles. Whether this is associated in any way with measles-related corneal destruction is uncertain, but they note that all but one child still available for study at three weeks were too ill to provide tear samples, they “had dry eyes as they just cried noisily without shedding any tears.” It seems most had secondary systemic infection and malnutrition, presumably they may have been dehydrated as well.

Considerably more attention has been given to the loss of mucous-producing goblet cells, which virtually disappear from the bulbar conjunctiva by the time conjunctival xerosis (X1) appears. Goblet cell density is a sensitive indicator of ocular surface disorders, including vitamin A deficiency. Within two weeks of systemic vitamin A treatment of corneal xerophthalmia, goblet cells begin to repopulate the inferonasal quadrant, they reach normal densities within one month.

Mucous stabilizes the tear film by interfacing between its aqueous component and the hydrophobic surface of the cornea. It seems reasonable to suspect that its loss results in rapid tear-film breakup and epithelial “exposure,” with consequent drying and damage to the corneal epithelium, much like primary mucous-deficient states. Goblet cells are not, however, the only source of mucin-like glycoproteins in the tear film, and goblet cell counts can be profoundly depressed—out of all proportion to relatively modest reductions in tear film mucin. This is consistent with observations that corneal healing in xerophthalmia proceeds more rapidly than does the repopulation of conjunctival goblet cells.

While alterations in the quantity and quality of the tear film might exacerbate vitamin A-related xerosis, they do not initiate it, most evidence suggests tear film alterations occur part passu with other changes. Keratinizing metaplasia of the corneal epithelium is almost certainly the direct consequence of altered vitamin A metabolism, just as it is in the epithelium of the bladder and renal pelvis despite their constant bathing by an aqueous medium. Corneal keratinization, in the rat at least, precedes alterations in the lacrimal gland, and in both the rat and guinea pig occurs in the presence of abundant conjunctival goblet cells. Since goblet cells have already disappeared in mild conjunctival xerosis, it is difficult to imagine how their absence could account for more severe disease, and corneal healing, of all degrees of severity, begins within one to three days and is often completed within four to seven days, long before goblet...
cells return in any numbers (see Table 10–1). Except for early punctate epithelial erosions,172 ocular changes in keratoconjunctivitis sicca and other dry-eye states,172.194–198 generally do not resemble vitamin A-related xerophthalmia even though dry eye states may be deficient in both tears and goblet cells.185 199–201 Although it is possible that alterations in the amount of mucus produced by the lacrimal gland202 203 could account for some of these differences, histopathologic changes in rats whose lacrimal glands are surgically removed are far milder than in those made vitamin A deficient.204 Occasionally patients with Sjögren’s syndrome associated with rheumatoid arthritis develop steep-margined, non-infiltrated ulcers similar to those of mild X3.205

Composition of skin surface lipids is altered in protein-energy malnutrition.206 It is conceivable that comparable changes in the lipid phase of the tear film could contribute to the xerophthalmic process. This, however, has received little attention.

Even if changes in tear film dynamics are not responsible for initiating keratinizing metaplasia, they may contribute to the predilection to mild corneal abnormalities (punctate keratopathy and early haze) for the inferior and nasal quadrants, the exaggerated accumulation of keratin debris in severe corneal xerosis, and dellen formation, epithelial degeneration, and the like, especially in functionally dehydrated individuals.

Although the vast majority of cases studied in Indonesia appeared to have complete lid closure and a normal Bell’s phenomenon, exposure may exaggerate the effects of tear film instability. Patients with keratitis sicca who are presumed to have incomplete lid closure during sleep206 develop punctate keratitis and intraepithelial microcysts in the inferior cornea. Some even develop sterile ulcers, most commonly inferonasally, though not of the circular, punched-out variety typical of xerophthalmia.

Accumulation of heavy plaques in the interpalpebral zone may be influenced by the relative exposure and lack of lid action at this site.

The potential role of tears as a normal and essential mechanism for delivering physiologically active vitamin A to the ocular surface has only recently received attention. Topical retinoic acid can speed xerophthalmic corneal healing (Chapter 10).206–210 Ubels has shown that in rabbits the lacrimal gland stores vitamin A as fatty acyl esters211 and maintains a 2 μm retinol concentration in tears,212 similar to the minimal concentration of topically applied retinoic acid needed to reverse corneal epithelial keratinization in vitamin A-deficient rabbits.213 A single large oral dose of vitamin A (110 mg retinyl palmitate) produced a significant increase in tear fluid retinol levels in marginally nourished Thai children.214

The keratinized surface of xerophthalmic eyes presents a good culture medium for a host of bacteria, particularly the xerosis bacillus, but also Staphylococcus, Pneumococcus, Hemophilus and others, which are commonly encountered in large numbers.96 102 154 215 There is less evidence to support suggestions that infection, as opposed to colonization, is more common or responsible for stromal
ulceration and necrosis [121, 131, 135, 216, 217]. The large numbers of bacteria Pillat discovered in smears from corneal cases disappeared following vitamin A therapy [102].

In advanced experimental xerophthalmia of rats, necrotic corneas frequently contain large numbers of bacteria [215, 216, 218]. But these could be secondary infections and need not reflect the situation in humans. Ocular and periorcular inflammation, conspicuous in xerophthalmic rats, is often minimal or absent in the human condition [121, 145, 165, 166].

Clinical reports generally describe isolated instances of positive cultures from ulcerated eyes [135, 137]. But a culture does not distinguish primary from secondary infection, or either from mere colonization. Only a tiny proportion of eyes harboring *Pseudomonas* [219] or *Staph aureus* [220] are ulcerated. To be of pathogenic significance, positive cultures should be more prevalent in ulcerated than in nonulcerated eyes. Valenton et al. [217] found that the frequency of recovery of pathogenic organisms (*Pseudomonas, Pneumococci, Moraxella, S pyogenes, Klebsiella, E Coli, or Proteus*) increased with the severity of clinical xerophthalmia. But in another study [121] that claimed to demonstrate the importance of infection, positive cultures in malnourished children were no more prevalent in those with ulcerated corneas than in those without, even the spectrum of organisms was the same.

One bacteriologic study included controls, as well as eyes with xerophthalmia of varying severity [1]. Conjunctival/corneal swabs (and scrapings in ulcerated/necrotic corneas) grew a wide variety of organisms. The most common and potentially pathogenic were *Pseudomonas, Staph aureus,* and *E Coli.* Positive cultures were more prevalent among eyes of cases with active xerophthalmia than among controls, though not to a statistically significant degree (Table 4–6).

<table>
<thead>
<tr>
<th>Table 4–6</th>
<th>Positive Bacterial Cultures in Controls and Cases of Corneal Xerophthalmia (Study II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal Status</td>
<td>Total Eyes (N)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>50</td>
</tr>
<tr>
<td>X2 (1–3)</td>
<td>117</td>
</tr>
<tr>
<td>X3A (4–5)</td>
<td>65</td>
</tr>
<tr>
<td>X3B (6)</td>
<td>44</td>
</tr>
<tr>
<td>X3B (7–8)</td>
<td>35</td>
</tr>
</tbody>
</table>

Relative rate of positive cultures (comparison between eyes of different corneal status shown in first column):

X2/control	1.04	1.25	2.25	1.15
X3A/X2	1.24	0.93	1.56	1.13
X3B (6)/X2	1.44	0.77	1.22	1.08
X3B (7–8)/X2	1.24	1.13	1.22	1.02

From A. Sommer [1]
The prevalence of positive cultures among ulcerated and nonulcerated eyes of xerophthalmic patients was similar, even by pair-wise comparison of ulcerated and nonulcerated eyes in the same patient (n = 33). Other organisms, which included strains of *Hemophilus*, *Strep viridans*, diptheroids, and *Aerobacter*, were common in all groups. *Proteus* was cultured from a single eye (with corneal xerosis).

Various fungi, which may have been contaminants, were recovered from seventeen eyes (*Penicillium* [twelve eyes], *Aspergillus* [three eyes], and *Candida* [two eyes]). There was no consistent difference in the frequency of positive isolates among the various forms of corneal ulcer/necrosis. Positive isolates were more frequent from ulcerated/necrotic corneas (9%) than from purely xerotic ones (3.4%) (p < 0.07).

The lack of etiologic significance of locally infectious agents was confirmed by a formal diagnostic/therapeutic trial: one eye of each patient was systematically assigned to receive frequent topical antibiotic ointment (at a minimum, gentamicin plus bacitracin five times a day). Twenty-seven consecutive hospitalized patients with bilateral corneal ulceration were studied before a single nonrecipient eye was found to fare worse than its matched recipient. Despite the fact that similar initial deterioration was occasionally observed in eyes receiving antibiotic, the trial was discontinued at this point and all subsequent cases of ulceration were treated with both topical and systemic antibiotics.

Unfortunately, the formal trial was not conclusive: most cases required and received systemic antibiotic therapy for nonocular conditions (tuberculosis, respiratory tract infection, gastroenteritis, etc.). By including patients outside the formal trial (because they refused hospitalization), observations were available on twenty-two ulcerated (Category 4) or locally necrotic (Category 6) corneas unexposed to either topical or systemic antibiotics. All but two (9%) healed rapidly and uneventfully on systemic vitamin A therapy alone. One of the two exceptions cultured only a coagulase-negative *Staph albus*, the other contained an ulcer (Category 4) that had enlarged by the next visit, at day 4, but began to resolve spontaneously by day 6.

The noninfected clinical appearance of most ulcers, the frequent absence of bacteria and fungi from areas of stromal dissolution studied histopathologically, and the rapid healing induced by vitamin A and retinoic acid (see Chapter 10) combined with the previous observations, suggest that local bacterial and fungal "infections" rarely initiate and only occasionally contribute to xerophthalmic ulceration or melting. However, there is no reason why ulcerated or perforating lesions should not become secondarily infected and even lead, on occasion, to panophthalmitis. Sweet and K'ang noted the same sequence observed in our patients: corneal edema, then necrosis, eventually followed by "ulceration and secondary bacterial infection." But even *Pseudomonas*—which releases proteases and exotoxin—attracts collagenase and proteolytic enzyme-producing leukocytes, and can cause rapid corneal melting—has a different clinical appear-
ance whereas keratomalacia (Categories 7–8) invariably spares peripheral cornea, *Pseudomonas* recognizes no such limits. Even though *Pseudomonas* and other pathogenic organisms are sometimes more frequently encountered in severely xerophthalmic eyes of malnourished children, this may merely represent a potentially transient change in flora, such as observed among burn patients.

Animal experiments suggest advanced corneal xerosis increases susceptibility to ulceration from topically applied *Pseudomonas*, the relevance of this observation to corneal melting in human xerophthalmia is uncertain.

Because of the complexity and significance of the relationship between measles, systemic vitamin A status, and ocular viral invasion (by measles and herpes simplex), these issues are dealt with separately (Chapter 7).

Evolution of Corneal Lesions

Surface changes clearly predominate early in the disease (X2). Minimal punctate keratopathy and inferior haze can occur in the absence of obvious histopathologic alterations on light microscopy, though a presumably similar clinical appearance in the rabbit corresponds to focal areas of squamous metaplasia. In many instances, punctate erosions are preceded by, and probably arise from, nonstaining intra-epithelial microcysts. These changes are earlier than those generally described. Even “prexerosis” was more consistent with changes observed in Category 2 xerosis. Pillati described a case in which slit-lamp examination revealed “a remarkable number of vacuoles in the epithelial layer,” but it is unclear whether this referred to Bitot’s spot-like material, attached to or floating on the corneal surface, intra-epithelial microcysts, or the peau d’orange effect.

The haziness spreads and patches of cornified epithelium begin to cover the surface, initially inferiorly, but eventually the entire cornea. In particularly ill, malnourished children, amorphous, localized plaques may cover the cornified surface, especially in the intrapalpebral zone. Their strong resemblance to Bitot’s spots suggests aggregation of desquamated keratin and bacteria. Histopathologic observations at this stage of the disease, in both humans and animals, indicate frank keratinization of the corneal surface.

The mildest stromal change is generalized edema, which also begins inferiorly. Whether this is secondary to changes in the epithelium or endothelium, or a primary effect of vitamin A deficiency on the stroma itself, is unclear. In general, the severity of edema parallels the severity of surface changes. But it also parallels the severity of vitamin A deficiency quite independently of surface changes, as evidenced by the fact that edema was more prominent in nonulcerated xerotic “other” eyes of cases in Category 6 (focal necrosis) than in Category 4 (punched-out ulcers). (There is no convincing histopathologic evidence of endothelial alterations early in the course of corneal xerophthalmia, although vacuolated endothelial cells and a reduction in mean endothelial cell counts have been observed in the vitamin A-deficient rabbit.)
Stromal loss appears to occur through a multiplicity of mechanisms, some primarily anterior (Categories 4–5), others posterior or at least simultaneously full thickness in nature (Categories 6–8).

Traumatic baring, if not loss of anterior stroma, probably initiates the process in some heavily xerotic corneas. As pieces of the cornified layer are sloughed, they may take a full-thickness plug of epithelium (with or without deeper tissue) with them. In one case, the ulcer was located adjacent to a large plaque, exactly at the point where a large, inferior segment had recently broken off and sloughed. These ulcers might also represent a breakdown of dellen caused by their proximity to a steep-margined plaque.

The other mechanism of anterior stromal baring or loss does not require a heavily keratinized surface, and, in fact, commonly occurs in its absence. Deep epithelial or superficial stromal bullae, observed in our cases as well as the vitamin A-deficient rabbit, may rupture. The mechanism of cyst formation is unclear. In several of our cases, it appeared to result from dellen formation in a central, depressed, nonstaining area of apparently superficial stromal desiccation. In at least one animal model, drying is most intense centrally, occasionally resulting in epithelial loss followed by stromal dissolution.

Posterior and rapid full-thickness stromal necrosis, in some instances apparently deep to an intact epithelial layer, is not easily explained by currently accepted mechanisms of stromal dissolution. It is appealing to think that collagenases and other proteases known to be released by regenerating epithelium, infiltrating leukocytes, and even keratocytes, and present in the stroma of ulcerating eyes, may be responsible for corneal melting in xerophthalmia. Apparently epithelial changes may even control polymorphonuclear cell infiltration. Whether this accounts for the cylindrical shape of anterior-posterior ulcers and sharply demarcated appearance of (localized) full-thickness necrosis remains to be seen. But it fails to explain deep stromal necrosis beneath a seemingly intact epithelium, as suggested by several of our cases, those reported previously, and occasionally seen in the vitamin A-deficient rat. An intriguing report suggests the existence of a collagenase gene promoter that is specifically repressed by retinoic acid, and that the retinoic acid-receptor (RAR) may exert its effect through protein-protein interaction that inactivates a protein that normally enhances collagenase gene expression.

Especially disturbing is the paucity of inflammatory cells in the recently melted cornea. Conneal "infiltration" has been described as an early, prominent component of the xerophthalmic process, before epithelial integrity is lost. But it is unclear whether these observations refer to inflammatory cell infiltration, which in our experience and those of others rarely occurs until late in the course of human disease, or merely stromal edema. Although inflammatory cell infiltration is prominent histopathologically in corneas of vitamin A-deficient animals, it has not been convincingly demonstrated in pre-ulcerated or newly ulcerated xerophthalmic human corneas. Most important, several cases,
especially those in which histopathologic material was obtained soon after necrosis commenced, contain large areas devoid of keratocytes and suffering collagen fragmentation and dissolution in the absence of significant numbers of inflammatory cells. Smith also commented on the paucity of inflammatory cells in his relatively recent case of keratomalacia. This suggests the possibility that sufficiently impaired vitamin A metabolism results in devitalization of corneal stroma, with secondary infiltration by inflammatory cells. The intact keratinized rabbit cornea displays autolysis of superficial epithelial cells and stromal keratocytes in the absence of inflammatory cells and myeloperoxidase activity. The ulcerating cornea is invaded by inflammatory cells and protease levels rise only after the epithelial layer is scraped off. As in the few human specimens, dense infiltrations are observed at the edge of the ulcer, with fewer cells in the central ulcerating region. The cornea of the vitamin A-deficient rat is more susceptible to melting following trauma than is that of pair-fed controls, while epithelial wounds heal more slowly.

Specific vitamin A receptors have been found in corneal epithelium, stroma, and endothelium, among other tissues, while vitamin A appears to be required for normal glycoprotein biosynthesis in the rat cornea. The manner in which protein deficiency may contribute to these changes, and the role of systemic infection, will be dealt with later. The beneficial effects of ascorbate therapy in the burned rabbit cornea suggest an additional mechanism that may bear on the problem, though corneal melting is not observed in classical scurvy. Nor were our cases clinically scurvy.

Punched-out ulcers (X3A, Category 4) can proceed to typical necrosis (keratomalacia). Whether this is the common course of events or merely incidental is unknown. The fact that all xerophthalmic alterations can be seen in the same case and occasionally in the same eye suggests that if one does not contribute to the other, they at least represent staging posts along the course of a common disease.

Corneal dissolution is sharply focal, both clinically and histopathologically. The area of ultimate stromal loss may be considerably smaller than initial clinical observation suggests, particularly in focal necrotic cases (X3B, Category 6). Perhaps the area of (seemingly) normal collagen devoid of keratocytes that surrounds a focus of infiltration and frank dissolution represents viable and reversible corneal damage. Alternatively, we may simply be witnessing resolution of optically disruptive edema, or in some instances, inflammatory infiltration.

References

Consequences of Vitamin A Deficiency

2 Elliot RH Night-blindness In Tropical Ophthalmology London Henry Frowde, Hodder & Stoughton 1920 75–86
3 Olson JA 1992 Atwater Lecture The irresistible fascination of carotenoids and vitamin A Am J Clin Nutr 1993,57 883–889
4 Fridericia LS, Holm E Experimental contribution to the study of the relation between night blindness and malnutrition influence of deficiency of fat-soluble A-vitamin in the diet on the visual purple in the eyes of rats Am J Physiol 1925, 73 63–78
5 Wald G The photoreceptor process in vision Am J Ophthalmol 1955,40 18–41
7 Wolf G A historical note on the mode of administration of vitamin A for the cure of night blindness Am J Clin Nutr 1978,31 290–292
8 Hubbenet M Observations sur l’hémeralopie Ann Oculist (Paris) 1860,44 293
9 Bampfield RW A practical essay on Hemeralopia or nightblindness, commonly called nyctalopia, as it affects seamen and others, in the East and West Indies, China, the Mediterranean, and all tropical climates, in which a successful method of curing the disease is detailed Medico-Chirurgical Trans 1814,5 32–66
10 DeGouvea H Beitrag zur Kenntnis der Hemeralopie und Xerophthalmie aus Ernahrungsstorungen Graefe’s Arch Ophthalmol 1883,29 167–200
11 Bailie H Observations on hemeralopia or nightblindness Medico-Chirurgical J and Review 1816,2 179–182
12 Stephenson S On epithelial xerosis of the conjunctiva Trans Ophthalmol Soc UK 1896,18 55–102
13 Snell S On nyctalopia with peculiar appearances on the conjunctiva Trans Ophthalmol Soc UK 1880/81,1 207–215
14 Kubli T Zur Lehre von der epidemischen Hemeralopie Archiv für Augenh 1887, 17 409–411
15 Bitot C Sur une lesion conjunctivale non encore decrite, coïncidant avec l’hémeralo- pie Gazette Hebdomadaire de Medecine et de Chirurgie 1863,10 284–288
16 Hicks RJ Night-blindness in the Confederate Army The Richmond Medical Journal 1867,3 34–38
17 Quaglino A Hemeralopia The Richmond Medical Journal 1867,3 44–50
18 Dowling JE, Wald G Vitamin A deficiency and night blindness Proc Natl Acad Sci 1958,44 648–661
19 Kemp CM, Jacobson SG, Borruat F-X, Chaitin MH Rhodopsin levels and retinal function in cats during recovery from vitamin A deficiency Exp Eye Res 1989, 49 49–65
21 Bridges CDB Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye Exp Eye Res 1976,22 435–455
22 Robson WG, Kuwabara T Vitamin A storage and peroxisomes in retinal pigment epithelium and liver Ophthalmol Vis Sci 1977,16 1110–1117
Xerophthalmia and Keratomalacia

34 Weinstein A. Uber Nacht- und Tag-bhndheit. Wurzburg 1858
of massive doses of vitamin A on nutritional blindness in Bangladesh. Am J Clin Nutr 1987,45 970–976
60 Brockman D Commenting on Stephenson’s paper. Trans Ophthalmol Soc UK 1896,18 100–101
63 Wright RE Keratomalacia in Southern India. Br J Ophthalmol 1922,6 164–175
65 Fuchs A White spots of the fundus combined with night blindness and xerosis (Uyemura’s Syndrome). Am J Ophthalmol 1959,48 101–103
Xerophthalmia and Keratomalacia

66 Fuchs A Ein Fall von weisspunktiertem Fundus bei hemeralopie mit xerose Klin Monatsbl Augenhe 1928,81 849—850
67 Teng-Khyoen-Hing Fundus changes in hypovitaminosis A Ophthalmologica (Basel) 1959,137 81—85
70 Teng KH Further contributions to the fundus xerophthalmicus Ophthalmologica 1965,150 219—238
71 Herron WL, Riegel BW Production rate and removal of rod outer segment material in vitamin A deficiency Invest Ophthalmol Vis Sci 1974,13 46—53
73 Tansley K Factors affecting the development and regeneration of visual purple in the mammalian retina Proc R Soc London 1933,114 79—103
74 Johnson ML Degeneration and repair of the rat retina in avitaminosis A Arch Ophthalmol 1943,29 793—810
75 Ramalingaswami V, Leach EH, Srimachar S Ocular structure in vitamin A deficiency in the monkey Q J Exp Physiol 1955,40 337—347
76 Hayes KC Retinal degeneration in monkeys induced by deficiencies of vitamin E or A Invest Ophthalmol 1974,13 499—510
77 Pillat A The klassischen symptome der vitamin A-mangels und der vitamin A-mangel als gesamterkrankung des korpers Klin Wochenschr 1940,53 779—783
78 Sipperley JO, Quigley HA, Gass JDM Traumatic retinopathy in primates, the explanation of Commotio Retinae Arch Ophthalmol 1978,96 2267—2273
80 Sloan LL Rate of dark adaptation and regional threshold gradient of the dark-adapted eye physiologic and clinical studies Am J Ophthalmol 1947,30 705—720
81 Sommer A Effects of vitamin A deficiency on the ocular surface Ophthalmology 1983,90 592—600
83 Tseng SCG Staging of conjunctival squamous metaplasia by impression cytology Ophthalmology 1985,92 728—733
84 Hatchell DL, Sommer A Detection of ocular surface abnormalities in experimental vitamin A deficiency Arch Ophthalmol 1984,102 1389—1393
85 Witttpenn JR, Tseng SCG, Sommer A Detection of early xerophthalmia by impression cytology Arch Ophthalmol 1986,104 237—239
88 McLaren DS, Oomen HAPC, Escapini H Ocular manifestations of vitamin A deficiency in man Bull WHO 1966,34 357—361
89 Hypovitaminosis A Round table discussion Fed Proc 1958,17 103—143
Consequences of Vitamin A Deficiency

92 Sommer A Conjunctival appearance in corneal xerophthalmia Arch Ophthalmol 1982,100,951–952
93 Mori M Uber den sog Hikan (Xerosis conjunctivae infantum ev Keratomalacia) Jahrb Kinderheilk 1904,59 175–194
94 Spicer H Ophthalmological Society Kerato-malacia in young children (editorial) Lancet 1892,2 1387–1388
96 Leber T Ueber die Xerosis der Bindehaut und die infantile Hornhautverschwarzung nebst Bemerkungen über die Entstehung des Xerophthalmus Graefe’s Arch Ophthalmol 1883,29 225–290
97 Mayou MS II Diseases of the conjunctiva 1 The pathological anatomy of the plaques in epithelial xerosis Trans Ophthalmol Soc UK 1904,24 9–16
100 Rodger FC, Sauduzzafar H, Grover AD, Fazal A A reappraisal of the ocular lesion known as Bitot’s spots Br J Nutr 1963,17 475–485
102 Pillat A Does keratomalacia exist in adults? Arch Ophthalmol 1929,2 256–287
104 Herbert H Comments on paper of Mayou Trans Ophthalmol Soc UK 1904,24 15–16
105 Damiean-Gillet M Conjunctival lesions in avitaminosis A A histopathological study Trop Geogr Med 1958,10 233–238
106 Kessing SV Mucous gland system of the conjunctiva Acta Ophthalmol 1968,95 9–133
107 MacKenzie W A practical treatise on diseases of the eye London Longman, 1830 88–199
108 Baas KL Ueber eine Ophthalma hepatica Nebst beitragen zur kenntniss der xerosis conjunctivae und zur pathologie der augenmuskelerkrankungen Graefe’s Arch Ophthalmol 1894,40 212–246
109 Neter C Paleoethnologie—Deouverte d’instruments de Page de pierre en Arabe et en Egypte (Lettre de M Richard a M le President) hebdom Seanc Acad Sci, Paris 1870,70 577
110 Blessig, 1866 Cited In Blegvad O Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924,7 89–117
111 Nelson VE, Lamb AR, Heller VG The vitamin requirement of various species of animals III The production and cure of xerophthalmia in the suckling Am J Dis Child 1922,23 518–520
112 Kollock CW A form of xerosis Ophthalmic Review 1890,9 249–251
113 Graefe A. Hornhautverschwarzung bei infantiler encephalitis. Graefe’s Arch Ophthalmol 1866,12 250–256
114 Bloch CE. Fat deficiency disturbances in infants. JAMA 1917,68 1516
122 Rodger FC. The ocular effects of vitamin A deficiency in man in the tropics. Exp Eye Res 1964,3 367–372
126 Sovani I, Humphrey JH, Kuntalbronto DR, Natadasstra G, Muhlul, Telsch JM. Response of Bitot’s spots to a single oral 100,000- or 200,000-IU dose of vitamin A. Am J Ophthalmol 1994,118 792–796
133 Sommer A, West KP. Using Bitot’s spot prevalence to assess vitamin A status—proceed with caution. Xerophthalmia Club Bulletin 1989,41 2–3
134 Booher LE, Callison EC, Hewston EM. An experimental determination of the minimum vitamin A requirements of normal adults. J Nutr 1939,17 317–331
136 John I. The disturbances of sensibility of the cornea and conjunctiva in xerosis and keratomalacia of adults. With a contribution to the explanation of the genesis of these diseases. Arch Ophthalmol 1931,5 374–391
Consequences of Vitamin A Deficiency

139 McLaren DS A study of the factors underlying the special incidence of keratomalacia in Oriya children in the Phulbani and Ganjam districts of Orissa, India J Trop Pediatr 1956,2 135–140
140 Tseng SCG, Farazdaghi M, Rider AA Conjunctival transdifferentiation induced by systemic vitamin A deficiency in vascularized rabbit corneas Invest Ophthalmol Vis Sci 1987,28 1497–1504
142 Herbert H Epithelial xerosis in natives of India Trans Ophthalmol Soc UK 1896,18 103–104
143 Bloch CE Blindness and other diseases in children arising from deficient nutrition (lack of fat-soluble A factor) Am J Dis Child 1924,27 139–148
144 Wille WA Xerophthalmia, a deficiency disease Trans Far Eastern Assoc Trop Med 4th Cong 1921,1 245–254
145 Blegvad Ø Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924,7 89–117
146 Waslien CI A study of the effect of vitamin A supplementation in Egyptian children In Vitamin A Deficiency and Blindness Prevention American Foundation Overseas Blind 1974 13–17
147 Vaughan DG Xerophthalmia Arch Ophthalmol 1954,51 789–798
150 Muhilal, Permeisih D, Idjaradina YR, Muherdiyantingsih, Karyadi D Vitamin A-fortified monosodium glutamate and health, growth, and survival of children a controlled field trial Am J Clin Nutr 1988,48 1271–1276
152 MacKenzie A Bitot's spots (letter) Lancet 1939,2 341
153 Dujardin D Une epidemie de xerosis hemeralopique J des Sciences Medicales de Lille 1895,16 361–369
154 Pillet A Bacteriological findings in praexerosis cornea Arch Ophthalmol 1930,125 173–206
156 Pillet A Production of pigment in the conjunctiva in nightblindness, prexerosis, xerosis and keratomalacia of adults Arch Ophthalmol 1933,9 25–47
157 Sauter JIM Diagnosis of xerophthalma by vital staining Trop Doctor 1976,6 91–93
158 Emran N, Sommer A Lissamme green staining in the clinical diagnosis of xerophthalma Arch Ophthalmol 1979,97 2333–2335
159 Kusin JA, Sinaga HSRP, Marpaung AM Xerophthalma in North Sumatra Trop Geogr Med 1977,29 41–46
160 Kusin JA, Soewondo W, Sinaga HSRP Rose Bengal and lissamme green vital stains
useful diagnostic aids for early stages of xerophthalmia\(^9\) (letter) Am J Clin Nutr 1979, 32 1559–1561

162 Airlt CF Clinical studies on diseases of the eye, including those of the conjunctiva, cornea, sclerotic, iris, and ciliary body Edinburgh YJ Pentland 1885 110, 138–139

164 Brown J Case of ulcerated cornea from inanition Edinburgh J Med Sci (corres) 1827, 3 218

165 Westhoff CHA Einge opkmerkingen omtrent oogziekten op Java Geneesk Tijdschr Ned Indie 1911 141

166 Bloch CE Clinical investigation of xerophthalmia and dystrophy in infants and young children (xerophthalmia et dystrophia alpogenetica) J Hygiene (Cambridge) 1921, 19 283–301

168 Sommer A Vitamin A Deficiency and Its Consequences a field guide to detection and control Third Edition Geneva World Health Organization 1995

171 Sommer A, Sugana T Corneal xerophthalmia and keratomalacia Arch Ophthalmol 1982, 100 404–411

177 Mori S The pathological anatomy of ophthalmia produced by diets containing fat-soluble A, but unfavorable contents of certain inorganic elements Am J Hyg 1923, 3 99–102

178 Mori S The changes in the para-ocular glands which follow the administration of diets low in fat-soluble A, with notes of the effect of the same diets on the salivary glands and the mucosa of the larynx and trachea Johns Hopkins Hospital Bull 1922, 33 357–359

179 Wolbach SB Howe PR Tissue changes following deprivation of fat-soluble A vitamin J Exp Med 1925 42 753–777

Xerophthalmia and Keratomalacia

205 Pfister RR, Murphy GE Corneal ulceration and perforation associated with Sjogren’s syndrome Arch Ophthalmol 1980,98 89–94

211 Ubels J, Osgood TB, Foley KM Vitamin A is stored as fatty acyl esters of retinol in the lacrimal gland Curr Eye Res 1988,7 1009–1016

215 Mori S Primary changes in eyes of rats which result from deficiency of fat-soluble A in diet JAMA 1922,79,197–200

216 Stephenson M, Clark AB A contribution to the study of keratomalacia among rats Biochem J 1920,14 502–521

218 Goldschmidt M Experimenteller Beitrag zur Aetiology der Keratomalacie Graefe’s Arch Ophthalmol 1915,90 354–366

Consequences of Vitamin A Deficiency

225 Eiferman RA Cryotherapy of pseudomonas keratitis and scleritis Arch Ophthalmol 1979,97 1637–1639
226 DeCarlo JD, Van Horn DL, Hynduk RA, Davis SD Increased susceptibility to infection in experimental xerophthalmia Arch Ophthalmol 1981,99 1614–1617
227 Wason IM Ophthalmol associated with a dietary deficiency in fat-soluble vitamin (A) study of the pathology JAMA 1921,76 908–912
228 Farazdaghi M, Tseng SCG, Prendergast RA Corneal endothelial changes in rabbit xerophthalmia (abstract) Invest Ophthalmol Vis Sci 1986,27 175
231 Slansky HH, Freeman MI, Itoi M Collagenolytic activity in bovine corneal epithelium Arch Ophthalmol 1968,80 496–498
237 Johnson-Muller B, Gross J Regulation of corneal collagenase production epithelial-stromal cell interaction Proc Nat Acad Sci USA 1978,75 4417–4421
240 Wolf G The molecular basis of the inhibition of collagenase by vitamin A Nutr Rev 1992,50 292–294
Xerophthalmia and Keratomalacia

Anemia has long been recognized as a potential consequence of vitamin A deficiency. Soon after the discovery of vitamin A, Bloch noted that Danish orphans with xerophthalmia were “weak and thin, markedly anemic.”! Wolbach and Howe noticed loss of stem cells in the marrow of vitamin A-deficient rats, with advanced deficiency they found an even more striking void of hematopoietic and lymphoid cells, accompanied by heavy hemosiderin deposits in the spleen. Hematopoietic disturbances characterized by a fall in hemoglobin (Hb) and pallor of red blood cells preceded eye signs and inanition in vitamin A-deficient rats. Koessler was convinced that “blood regeneration” could not take place without vitamin A, and he prescribed a vitamin A and carotenoid-rich diet for anemia. Berglund described a form of anemia in China that he thought was secondary to vitamin A deficiency and that responded to cod liver oil. Blackfan and Wolbach observed sequestered iron deposits (as hemosiderin) in the liver or spleen of almost all malnourished infants who had died with histopathologic evidence of vitamin A deficiency.

Early investigators also recognized that the hematologic response to vitamin A deficiency was biphasic, characterized by an initial fall in both Hb level and erythrocyte count followed by their rise late in deficiency. This pattern was attributed to initial interference with hemoglobin production, succeeded by hemococoncentration secondary to dehydration from reduced water intake (and possibly diarrhea) as vitamin A deficiency became more severe. These early observations have withstood the test of time.

Although as early as the 1930s anemia was viewed as one of several consequences of vitamin A deficiency, it was not considered an important public health factor until forty years later, following the classic study by Hodges and colleagues in the mid-1970s. Five of eight healthy, adult, male volunteers maintained on a vitamin A-deficient/iron-sufficient diet for up to approximately two years became...
both vitamin A-deficient (evidenced by serum retinol <10 μg/dl or abnormal dark adaptation) and moderately anemic (mean Hb declined from 161 g/liter to 114 g/liter) The anemia was refractive to medicinal iron, but responded to minimal amounts of vitamin A or beta-carotene (up to 150 μg retinol equivalents [RE] per day, or ~25% of the FAO-recommended intake17) introduced into the diet 18

Effect of Vitamin A on Anemia

Controlled trials that followed the work of Hodges and associates confirmed the hemoglobin response to improved vitamin A nutriture—whether achieved through food fortification, daily supplementation, or single, large periodic dosing (Table 5-1) In Indonesia,19 the mean Hb level of preschool-aged children rose ~10 g/liter over baseline and exceeded the levels in control children after vitamin

Table 5-1 Randomized, Controlled Trials of the Impact of Vitamin A Supplementation on Hemoglobin Level

<table>
<thead>
<tr>
<th>Country/Reference</th>
<th>Age (years)</th>
<th>Treatment</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia<sup>15</sup></td>
<td>< 6</td>
<td>Control</td>
<td>0 RE</td>
</tr>
<tr>
<td>MSG-A</td>
<td>0.24 mg RE/d</td>
<td>205 113 (16) 123 (16)**</td>
<td></td>
</tr>
<tr>
<td>Guatemala<sup>21</sup></td>
<td>1–8</td>
<td>Placebo</td>
<td>0 RE/0 Fe</td>
</tr>
<tr>
<td>VA</td>
<td>≤ 3 mg RE/d</td>
<td>25 103 (8) 112 (8)*</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>3 mg/kg/d</td>
<td>30 105 (6) 119 (9)***</td>
<td></td>
</tr>
<tr>
<td>VA & FE</td>
<td>Both</td>
<td>24 106 (6) 120 (7)***</td>
<td></td>
</tr>
<tr>
<td>Indonesia<sup>22</sup></td>
<td>17–35 (pregnant)</td>
<td>Placebo</td>
<td>0 RE/0 Fe</td>
</tr>
<tr>
<td>VA</td>
<td>2.4 mg RE/d</td>
<td>63 103 (4) 109 (5)***</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>60 mg/d</td>
<td>63 103 (5) 113 (6)***</td>
<td></td>
</tr>
<tr>
<td>VA & FE</td>
<td>Both</td>
<td>63 103 (5) 118 (6)***</td>
<td></td>
</tr>
<tr>
<td>Thailand<sup>24</sup></td>
<td>3–9</td>
<td>Control</td>
<td>0 RE</td>
</tr>
<tr>
<td>VA</td>
<td>60 mg RE</td>
<td>54 115 (—) 118 (—)*</td>
<td></td>
</tr>
<tr>
<td>Thailand<sup>25</sup></td>
<td>1–8</td>
<td>Control</td>
<td>0</td>
</tr>
<tr>
<td>VA</td>
<td>60 mg RE</td>
<td>61 112 (—) 116 (—)</td>
<td></td>
</tr>
</tbody>
</table>

^aFortification trial was not randomized
^b(—), SD not reported
[*]p < 0.05
^{**}p < 0.01
^{***}p < 0.001
A-fortified monosodium glutamate (MSG-A) was consumed for five months (providing ~810 µg RE/d, or about twice the FAO-recommended safe level) (Chapter 15) Supplemented children still maintained this Hb advantage (not shown) six months later, although it did not increase further, raising the possibility that dietary iron may have been required to normalize hematologic status. Hodge's work suggests that the amount of vitamin A actually required to evoke this further improvement may have been less than was administered. In another field trial in Indonesia, brick salt was fortified with vitamin A at a level of intake that provided preschool-age children with only ~135 µg RE/d (< 50% the FAO level). After six months, the prevalence of anemia (hematocrit < 35%) among recipients was reduced by one-third (26%, versus 38% among controls, p < 0.02).

Randomized clinical trials have clearly demonstrated the value of vitamin A supplementation in reducing anemia and improving iron status in children and pregnant women (Table 5-1). Two months after approximately 100 anemic children in Guatemala were assigned to receive 1500–3000 µg RE/d, Hb concentration rose by 9 g/liter on average, compared with a 3 g/liter increment among placebo recipients (Δ = +6 g/liter). This response was consistent with improvements in indices of iron status. Serum iron in vitamin A recipients increased by 16 µg/dl (p ≤ 0.01) and percent transferrin saturation (% TS) rose by 4.5% (p < 0.07) over the mean changes observed in placebo controls. Children receiving iron without vitamin A showed an even greater increase in Hb over controls (Δ = +11 g/liter). Adding vitamin A to iron did not increase Hb further, though serum iron and % TS improved further in children given both nutrients. This suggests vitamin A deficiency impairs iron utilization, hence, vitamin A alone can improve such utilization, usually by increasing Hb to the point that available iron becomes the limiting factor. Adequate iron supplementation by itself, however, seems capable of compensating for the reduced efficiency of iron utilization imposed by vitamin A deficiency.

An additive effect of vitamin A over iron supplementation alone was reported among Indonesian women who were enrolled in a randomized trial between their fourth and sixth months of pregnancy. After two months of daily vitamin A supplementation (2400 µg RE/d), Hb levels increased by 4 g/liter over that seen in placebo controls. Although daily iron supplementation elevated Hb by 8 g/liter over controls, the greatest response was observed in women taking both vitamin A and iron tablets, in whom Hb increased by 13 g/liter over controls. The response to vitamin A alone reduced the prevalence of anemia (Hb < 110 g/liter) by 23% compared with controls, whereas iron alone reduced anemia by 62%. Double supplementation virtually eliminated nutritional anemia (98% reduction). The hematologic response to a vitamin A-plus-iron supplement was also superior to iron alone in a study among pregnant women in India. There appears to be a hematologic response to a high-potency vitamin A supplement (e.g., 200,000 IU), but the effect on Hb or hematocrit (Hct) may be
Anemia and Iron Metabolism

less sustained than when vitamin A intake is improved by increased daily intake (Table 5-1). In one of two randomized trials in Thailand, vitamin A supplementation increased mean Hb concentration by 3 g/liter two weeks after a single large supplement, but children were not followed further. In a second trial, a single high-potency dose of vitamin A failed to elicit a positive Hb (or Hct) response as long as two months to four months following supplementation. A third trial, in Indonesia, observed no change in mean Hb five weeks after a large-dose supplement, although Hb levels had improved in children who were initially anemic (Hb < 110 g/liter) at baseline. These findings suggest that Hb may be elevated for only a short duration (possibly for a month or less) following a single, large dose of vitamin A, paralleling the rise and fall of serum vitamin A. However, in each of these trials one or more indicators of iron status (serum ferritin, serum iron, or % TS) responded favorably, suggesting an early and perhaps more sustained effect on iron mobilization than on Hb.

Since the most sustained Hb response is associated with daily ingestion of vitamin A in amounts that are close to recommended levels of intake, reduction in anemia following vitamin A supplementation appears to represent a normal, physiologic response to the reduction in vitamin A deficiency rather than a pharmacologic effect.

Sugar Fortification with Vitamin A in Guatemala

As a case study, Guatemala's experience with vitamin A-fortified sugar (Chapter 15) offers unique insights into the impact produced by increasing dietary vitamin A intake over a prolonged period of time. A cohort of some seventy-five preschool-age children routinely consuming vitamin A-fortified sugar (~15 μg RE/g) that increased their dietary intake threefold (~350 μg RE) were followed for two years. Changes in serum vitamin A and in multiple indices of iron status (serum ferritin, serum iron, total iron-binding capacity [TIBC], and % TS) were evaluated, although Hb measurements were not taken. At the end of six months, serum retinol had increased, consistent with a positive effect on vitamin A status (Table 5-2). Serum iron rose while serum ferritin declined, reflecting changes in iron status consistent with mobilization of existing iron from body stores. TIBC also increased initially, suggesting that the iron-carrying capacity of transferrin may have improved as part of a broader response of protein synthesis to this initial improvement in vitamin A nutriture.

At the next evaluation, at twelve months, serum iron and TIBC had both declined slightly. Serum ferritin had begun to rise, while % TS was unchanged relative to baseline. None of these increments was statistically significant, but each appeared to foretell a shift in the longer-term response to improved vitamin A nutriture that became evident by eighteen and twenty-four months. At these visits serum iron, % TS, and serum ferritin were all significantly elevated over
Table 5–2 Change in Serum Retinol and Iron Status in Preschool Children Following Sugar Fortification with Vitamin A in Guatemala

<table>
<thead>
<tr>
<th>Interval (months)</th>
<th>0–6 (N = 77)</th>
<th>0–12 (N = 75)</th>
<th>0–18 (N = 46)</th>
<th>0–24 (N = 51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinol (µg/dl)</td>
<td>+ 51*</td>
<td>+ 52*</td>
<td>+ 36*</td>
<td>+ 25*</td>
</tr>
<tr>
<td>Serum iron (µg/dl)</td>
<td>+ 45*</td>
<td>−3 6</td>
<td>+13 1*</td>
<td>+ 9 1*</td>
</tr>
<tr>
<td>TIBC (µg/dl)</td>
<td>+ 18 3*</td>
<td>−8 8</td>
<td>− 7 8</td>
<td>−13 6</td>
</tr>
<tr>
<td>% TS</td>
<td>+ 0 6</td>
<td>−1 0</td>
<td>+ 3 8*</td>
<td>+ 2 2*</td>
</tr>
<tr>
<td>Serum ferritin (ng/ml)</td>
<td>− 3 3*</td>
<td>+ 2 1</td>
<td>+ 5 5*</td>
<td>+ 4 9*</td>
</tr>
</tbody>
</table>

*p ≤ 0.05

From Mejia 1982

Baseline while TIBC was lower, although not significantly so. Dietary iron intake remained stable throughout the intervention period.

Mejia et al. concluded that the increase in vitamin A intake achieved via fortified sugar initially enhanced iron mobilization (and presumably its utilization in erythropoiesis), leading to an initial decline in iron stores. They hypothesized that lower stores triggered an increase in the efficiency of iron absorption in the presence of a constant dietary iron intake. The improved absorption gradually restored and maintained iron reserves and stabilized the delivery of essential iron for hematopoiesis at levels that were significantly higher than before sugar fortification with vitamin A had begun. Although not controlled, the longitudinal changes observed in this study are consistent with iron kinetics of animals and humans, and suggest the likelihood and magnitude of changes in hemoglobin and iron status that may be expected from programs that control vitamin A deficiency (in communities of similar nutritional status, dietary intakes of vitamin A and iron, and rates of disease).

Extent of Vitamin A Deficiency-Associated Anemia

Preadolescent children and women of reproductive age appear to be the principal groups at risk of anemia due to vitamin A deficiency. Although the extent of this form of anemia remains to be elucidated, the problem appears widespread where vitamin A deficiency exists, regardless of dietary iron intake (which is generally suboptimal).

Children

Cross-sectional studies generally show that chronically mild-to-moderately vitamin A-deficient children are anemic relative to their non-deficient peers.
Hb or Hct levels have been observed among school-aged children with xerophthalmia or serum retinol < 0.70 μmol/liter. In Central America, Africa, and South Asia, significant correlations of $r = -0.20$ to 0.30 have regularly been reported between serum retinol and Hb, suggesting that serum retinol explains 4% to 10% of the variation in Hb level among preadolescent children. A stronger correlation among anemic or vitamin A-deficient children supports findings that Hb is more responsive to vitamin A in the presence of anemia.

In preschool children, the association between circulating retinol and Hb levels is similar to that in older children, although usually not significant. The relationship is clearer with respect to clinical (more severe) vitamin A deficiency. Preschool-aged children with mild xerophthalmia exhibit Hb levels that are lower than non-xerophthalmic children. In the western Pacific, where xerophthalmia and subclinical vitamin A deficiency are widespread in the relative absence of wasting malnutrition, distributions of Hb and Hct were shifted to the left among preschoolers with abnormal conjunctival impression cytology (CIC). This suggests that children with physiologically impairing vitamin A deficiency (but without severe clinically detectable vitamin A deficiency or wasting malnutrition) are more prone to anemia than children with apparently normal vitamin A-related function and status (Fig 5-1).

That anemia of vitamin A deficiency is responsive to vitamin A repletion is apparent from the findings of Mejia et al., which show that ~65% of the Hb response in anemic children can be obtained by increasing the intake of vitamin A alone.

Fig. 5-1. Relationship between hemoglobin level and prevalence of vitamin A deficiency assessed by conjunctival impression cytology (CIC) in children 3–6 years of age in Truk, Micronesia (From MA Lloyd-Puryear et al.)
156 Consequences of Vitamin A Deficiency

Women of Reproductive Age

Following their initial study in the 1970s, Hodges and his associates carried out an ecologic reanalysis of data on nonpregnant, nonlactating women who were examined during the nutrition surveys conducted by the Interdepartmental Committee on Nutrition for the National Defense (ICNND) in the 1960s. In eight developing countries, selected for low estimated dietary vitamin A intakes, there was a linear relationship between mean plasma vitamin A and mean Hb levels ($r = 0.77$, $p < 0.05$). In Indonesia, hemoglobin and hematocrit, in addition to serum iron levels, were significantly and positively associated with serum retinol in pregnant women after adjustment for multiple confounders. An initial estimate of the extent of vitamin A deficiency-induced anemia can be derived from the findings of Suharno and coworkers in Indonesia. They observed that approximately one-third of the Hb decline in anemic, pregnant women (in a population where 85% of all pregnant women were anemic [Hb < 110 g/liter]) could be attributed to vitamin A deficiency, and that improving vitamin A intake through daily, low-level supplementation could eliminate anemia in a quarter of these women.

Potential Mechanisms

Anemia observed in vitamin A-deficient children and women may be due to impaired release or transport of iron from body stores, sequestration of iron in tissue depots in response to infection, defective hematopoiesis within bone marrow, or any combination of these and other factors.

Effects on Iron Storage

Vitamin A deficiency in experimental animals restricts the release of depot iron, as evidenced by a consistent rise in hepatic and splenic iron reserves. The rise in iron storage in the vitamin A-deficient rat occurs regardless of the presence of infection, suggesting that these dynamics are not mediated solely by concomitant, infection-induced sequestration of iron. The relationship between iron stores and vitamin A deficiency is not as clear in humans as in animals, in part because human studies generally employ serum ferritin as a proxy for iron reserves. Although serum ferritin is widely considered a sensitive indicator of iron tissue storage, it is also a positive acute phase reactant affected by infection and acute malnutrition. Where wasting malnutrition, vitamin A deficiency, and chronic infection coexist, serum ferritin is increased. This may reflect higher iron stores (as seen in vitamin A-deficient animals), the acute phase response of ferritin to infection, or the chronic
response seen in patients with long-term inflammatory, malignant or hepatic disorders.

Serum ferritin is often found to be unassociated, or only weakly so, with hyporetinemia and mild xerophthalmia, even where protein-energy malnutrition (PEM) is less severe and infection is not obvious. Serum ferritin can be unresponsive to vitamin A for as long as four months after supplementation, during which time the risk of serious infection should have been reduced. However, other studies have produced different results.

In Indonesia, serum ferritin increased (+11.4 µg/liter versus placebo, p < 0.001) within five weeks after vitamin A-deficient children (half of whom had xerophthalmia) were dosed with 209 µmol (200,000 IU) of vitamin A. Mechanisms underlying this response are unknown, but may involve a rapid increase in iron absorption in response to the rapid correction of vitamin A deficiency in severely deficient children who had only marginally depleted iron stores (serum ferritin = 27 µg/liter). In Guatemala, serum ferritin initially decreased but then slowly increased in children over the two years that followed sugar fortification with vitamin A. Change in serum ferritin was inversely correlated with change in serum retinol (r = -0.29, p < 0.05). The gradual, positive response in serum ferritin in these children was consistent with improved iron uptake and release following prolonged increases in vitamin A intake and improvement in vitamin A status.

Effects on Iron Transport

Vitamin A deficiency may impair the mobilization and transport of iron. Cross-sectional studies in children and women indicate serum iron varies directly with serum retinol, with correlations generally ranging from r = 0.17 to 0.42. That preschoolers with nightblindness had a mean serum iron concentration that was ~70% the level among their non-xerophthalmic peers (p < 0.01). A similar but nonsignificant difference was observed in India among hyporetinemic children, some of whom had mild xerophthalmia. In the vitamin A-compromised state the decline in plasma iron is often accompanied by a fall in % TS, reflecting impaired capacity to deliver iron to the bone marrow.

Vitamin A supplementation appears to mobilize the delivery of iron to the erythron in poorly nourished populations. Increases in both circulating (plasma) iron and % TS have been observed in randomized, clinical trials two weeks to two months following known vitamin A administration to children and pregnant women, whether the vitamin A was delivered as a daily supplement or a high-potency (209 µmol) capsule. Increases in both serum iron and % TS among vitamin A-supplemented children were 25% greater than the increase in controls. Relative increases of these two indices in pregnant women have been more modest than in children (≤ +5%).
Effects on Hematopoiesis

Vitamin A is required for normal hematopoiesis in the presence of apparently adequate iron bioavailability. Most of the advances in our understanding of the mechanisms responsible, however, have emerged from in vitro studies of the regulatory effects of retinoids on maturation of hematopoietic cell lines (e.g., the HL-60 human promyelocytic cell line)64-66. Retinoids, but particularly all-trans retinoic acid, induce differentiation and proliferation of pluripotent hematopoietic cells derived from bone marrow66-68. The nature of the effects appears to depend on the type of cell, stage of maturation, nature of stimulus, type of retinoid being tested, and many other factors66.

In animals, experimentally controlled vitamin A depletion produces an unequivocal decrease in Hb and Hct3,4,7,10-12,47,48,67. This is accompanied by decreased uptake of isotopically labeled iron by erythrocytes compared with controls,11 indicating a defect in heme formation. Rats on a low-vitamin A diet develop mild anemia concurrent with their decline in vitamin A status weeks before showing other signs of impaired iron metabolism, including changes in iron storage and absorption12. This suggests that deranged erythropoiesis may initiate anemia in vitamin A deficiency, which could, in turn, lead to impaired iron metabolism rather than vice versa12,64.

Available data suggest that vitamin A deficiency is an important contributing factor in nutritional anemia. The responsiveness of Hb and indices of iron metabolism following vitamin A supplementation, alone or in combination with supplemental iron, in diverse populations suggests that vitamin A-responsive anemia is widespread. A number of mechanisms might be involved, including disruptions in the transport, absorption, and storage of iron, as well as a direct influence on hematopoiesis. The anemia of vitamin A deficiency may be expected to initiate or contribute to the same cascade of defects in oxygen transport and metabolism,68 reduced resistance to infection,68,69 and impaired cognition and performance70-72 attributed to primary iron deficiency anemia of similar severity. The prevention of vitamin A deficiency should be considered, along with iron supplementation, as a potentially important approach to the control of nutritional anemia.

References

5 Berglund H, Keefer CS, Yang CS Deficiency anemia in Chinese, responding to cod liver oil Proc Soc Exper Biol Med 1929,26 418–421
6 Blackfan KD, Wolbach SB Vitamin A deficiency in infants A clinical and pathological study J Pediatr 1933,3 679–706
7 McLaren DS, Tchalian M, Ajans ZA Biochemical and hematologic changes in the vitamin A-deficient rat Am J Clin Nutr 1965,17 131–137
8 Amine EK, Corey J, Hegsted DM, Hayes KC Comparative hematology during deficiencies of iron and vitamin A in the rat J Nutr 1970,100 1033–1040
10 Mejia LA, Hodges RE, Rucker RB Clinical signs of anemia in vitamin A-deficient rats Am J Clin Nutr 1979,32 1439–1444
11 Mejia LA, Hodges RE, Rucker RB Role of vitamin A in the absorption, retention and distribution of iron in the rat J Nutr 1979,109 129–137
12 Roodenburg AJC, West CE, Yu S, Beynen AC Comparison between time-dependent changes in iron metabolism of rats as induced by marginal deficiency of either vitamin A or iron Br J Nutr 1994,71 687–699
19 Muhilal, Permaesih D, Idjradinata YR, Muherdiyantiingsih, Karyadi D Vitamin A fortified monosodium glutamate and health, growth, and survival of children a controlled field trial Am J Clin Nutr 1988,48 1271–1276
20 Husam O Pengunaan garam fortifikasi untuk menanggulangi masalah kurang vitamin A Doctoral dissertation, Fakultas Pasca Sarjana Institut Pertanian, Bogor, Indonesia 1982
21 Mejia LA, Chew F Hematological effect of supplementing anemic children with vitamin A alone and in combination with iron Am J Clin Nutr 1988,48 595–600
23 Panth M, Shatrugna V, Yasodhara P, Sivakumar B Effect of vitamin A supplementation on haemoglobin and vitamin A levels during pregnancy Brit J Nutr 1990,64 351–358
Consequences of Vitamin A Deficiency

28 Humphrey JH, West KP Jr, Muhilal, See LC, Natadisastra G, Sommer A. A priming dose of oral vitamin A given to preschool children may extend protection conferred by a subsequent large dose of vitamin A. J Nutr 1993, 123:1363–1369

Consequences of Vitamin A Deficiency

Growth

There is no low plane of intake of vitamin A which can be said to maintain an animal without loss of vitality. When the minimal amount necessary for the prevention of loss of weight is approached, the life of the animal is jeopardized if the diet is persisted in.

—McCollum and Simmonds, 1917

Mammalian growth requires vitamin A. A mixed diet apparently satisfactory in energy and all other nutrients will not sustain growth, vigor, or life in a young animal without a minimum amount of vitamin A. This discovery, made eighty years ago by McCollum and Davis and almost concurrently by Osborne and Mendell, provoked an enduring interest in the nature, timing and sequence, mechanisms, conditioning factors, and consequences of vitamin A deficiency. As a result, the growth response to changes in vitamin A nutriture has been reliably established in several animal models. Inevitably, this has proven difficult to study in children due to the numerous influences on their growth that are difficult to control.

The basic growth response to vitamin A in well-controlled animal experiments provides insight into this relationship in children. More important, it also establishes approximate thresholds at which vitamin A deficiency may restrict child growth, other factors remaining stable.

Animals

The effects of vitamin A deficiency on growth have clearly and consistently been observed in animals. The sensitive changes in weight gain of rats fed varied amounts of an ether-soluble fraction of egg yolk and butter originally led to
the discovery of "fat-soluble factor A", its deficiency led to growth cessation (Fig 6-1)1-3 In the phase of vitamin A depletion leading up to growth failure, however, animals are not mildly deficient in vitamin A. Rather, they are systematically depleted in vitamin A with attendant health complications, including a rapid rise in mortality 1

Only after several weeks on a vitamin A-deficient diet do small animals begin to grow poorly, characterized by deceleration in weight gain. This is followed by a stable weight "plateau" and, eventually, precipitous weight loss 2-9 Liver stores of vitamin A are generally depleted several weeks before an animal reaches the weight plateau 10,11 During the pre-plateau phase, slowing weight gain coincides with declining levels of circulating retinol 9,12 Presumably, recycling of extrahepatic retinol helps to sustain peripheral availability of vitamin A 13 and extends the duration of near-normal tissue function, including those mechanisms involved in growth. However, numerous other functional abnormalities appear before hepatic vitamin A is depleted, or weight gain ceases. These include an increase in cerebral spinal fluid pressure, 14,15 defects in cellular and humoral immune response (Chapter 9), epithelial changes in the intestinal mucosa, 16,17 and epidermoid metaplasia of the respiratory 18-20 glandular and urinary 21 tracts. Reductions in weight gain velocity also correspond to losses in efficiency of protein and energy metabolism 22-25 Risk of infection and death increase prior to weight plateau, often long before xerophthalmic eye signs appear 11,26,27 Cessation of weight gain heralds clinically apparent, severe vitamin A deficiency, and signals a collapse of normal metabolic adaptation

Fig. 6-1. Growth curve of rat number 141, reported by E V McCollum in 1913, showing (1) initial, slightly subnormal weight gain while consuming a purified ration lacking a small amount of butterfat with "fat-soluble A", (2) growth faltering (slowed rate followed by a "plateau" and weight loss) during advanced deficiency, and (3) a distinct and rapid ponderal growth response following reintroduction of butterfat 2
Repletion of an experimentally deficient diet with small amounts of vitamin A (inadequate to return hepatic or circulating retinol levels to normal) can enhance survival, halt weight loss and reestablish normal or even catch-up ponderal growth. Thus, weight gain in the young animal is not easily disturbed by vitamin A deficiency, it lags behind depletion and responds rapidly to a diet containing a minimum amount of vitamin A.

In contrast to the well-defined vitamin A-related change in weight, the effects of dietary vitamin A manipulation on linear growth, bone formation and body composition in animals are less clear. Early studies reported continued growth in tail and total body length during chronic vitamin A deficiency despite deceleration and loss in body weight, raising questions about the utility of weight change as a valid, single index of permanent growth of animals. Subsequent studies in calves and ponies have shown little to no effect of vitamin A supplementation on (witheral) height. This apparent absence of effect is surprising given data demonstrating retarded endochondral growth in the epiphyses, and a consequent shortening of long bones of vitamin A-deficient dogs, chicks, ducks, and rats. Some have attributed these endochondral changes in vitamin A deficiency to inanition that accompanies advanced vitamin A deficiency and not to a specific effect of vitamin A deficiency itself. Others have demonstrated abnormal sulfation of cartilaginous bone in the vitamin A-deficient rat, as well as deficient somatomedin production in vitamin A-deficient children. These observations support a regulatory role for vitamin A in osteogenesis that could, in part, underlie linear growth stunting in vitamin A deficiency.

The need for body vitamin A stores to be exhausted, or nearly so, before ponderal growth is affected in animals may be relevant to understanding ponderal growth of vitamin A-deficient and supplemented children.

Children

Few would doubt the importance of vitamin A in child growth. However, the ability to conclusively demonstrate its precise impact is difficult given the different environments in which children live, with variations in their status of other nutrients, nutritional demands (i.e., as posed by repeated infection), and study designs. Children are often deficient, to varying degrees, in other nutrients essential for growth. Thus, vitamin A deficiency may truly limit growth when it is the most deficient of the essential nutrients, or may be associated with poor growth when it is correlated with another, growth-limiting factor. The association would be evident by a lower attained growth or a deceleration in growth rate in children who are vitamin A-deficient, especially those with severe deficiency (e.g., xerophthalmia). Children in whom vitamin A deficiency is truly "growth-limiting" would be expected to respond to vitamin A replenishment, at least to the point at which other nutrients become limiting. Where vitamin A deficiency is not the most
limiting factor, replenishment may not result in a measurable growth response, although it might still induce other health benefits (such as a reduction in mortality).

Attained Growth during Vitamin A Deficiency

Cross-sectional studies reveal instances in which vitamin A status and attained growth are associated. Children with vitamin A deficiency are often stunted and occasionally wasted compared with apparently normal children of similar age. Differences inevitably represent a mix of direct and indirect effects, the latter often secondary to generalized malnutrition and infection that can accompany vitamin A deficiency. Indeed, vitamin A deficiency could increase the frequency, severity, and duration of infections (Chapter 3), which in turn affect vitamin A and general nutritional status (the "infection-malnutrition complex"). While static assessment cannot establish temporality or cause-and-effect, the consistency with which poor achieved growth and vitamin A deficiency coincide suggests a causal role for the nutrient.

Height-for-Age

Children with corneal xerophthalmia are almost always stunted in linear growth, an association that is more strongly correlated with age (as a surrogate for duration of deficiency) than degree of corneal involvement. Older preschool children with active corneal disease tend to be more severely stunted than younger children, reflecting, in part, the cumulative impact of underlying malnutrition and repeated infection that occur with age and may precede blinding xerophthalmia. The first Indonesian countrywide survey in 1978–1979 identified a sufficient number of cases with which to examine this relationship (n = 20, 1–4 years, n = 1 at age 5). Stunting was severe among all children with active corneal disease (X2/X3), but was relatively more severe in children three to four years of age (Fig 6–2), suggesting a longer duration of preexisting deficiency.

Growth stunting is also observed at less severe stages of vitamin A deficiency. Frequently, though not always, children with mild xerophthalmia (XN or X1B) are stunted compared with non-xerophthalmic children. Indonesian children with X1B were shorter at every age, by an average of 2.6 cm, from 1 to 5 years compared with matched controls and the national random sample of children (Fig 6–2), suggesting that vitamin A deficiency and linear growth retardation coexist very early in life. The constant difference in stature with age might indicate that children with xerophthalmia, possibly once recovered, tend to reestablish a growth rate comparable to that of the non-xerophthalmic (but still vitamin A-deficient) population norm, but do not exhibit catch-up linear growth. The absence of catch-up growth was documented in a longitudinal study of vitamin A supplemented xerophthalmic children. Where a xerophthalmia-
Fig. 6-2. Height-for-age and ocular status of Indonesian children assessed during the countrywide survey of 1978–1979. Children with corneal disease (X2/X3) were shorter than children who had Bitot’s spots (X1B) (p < 0.01). Children with X1B were shorter than their matched controls (p < 0.01). There were no significant differences in height between randomly sampled children without xerophthalmia (normal random sample) and matched controls.

Stunting relationship has not been observed, it may be that other, more widespread and severe nutritional deficiencies are limiting growth in the population as a whole (with which the xerophthalmic children’s growth is compared).

Stunting appears less consistently at subclinical stages of deficiency, at which point competing determinants of poor linear growth might dominate. Excess stunting has been observed among children with abnormal conjunctival impression cytology (CIC), an index of functional vitamin A deficiency (Chapter 11). In Micronesia, the prevalence of vitamin A deficiency (abnormal CIC) rose in a dose-responsive fashion with the severity of low height-for-age (Fig 6-3). Senegalese preschool children with abnormal CIC were 1.7 times (95% CI 1.4–2.0) more likely to be stunted (<−2 height-for-age Z-scores [HAZ]) than their normal peers. An inability to obtain CIC specimens from a large proportion of subjects may have biased findings of a recent study that failed to show this relationship.

Stunting is often associated with hyporetinemia among both preschoolers and school-aged children, although not, as expected, in all populations studied. Age- and neighborhood-matched controls of xerophthalmic children in Indonesia—who had a lower serum mean retinol and, therefore, were at higher risk of subclinical vitamin A deficiency than children in other neighborhoods due to its tendency to cluster (Table 12-2)—also did not differ appreciably in height from the rest of the population (Fig 6-2). Few studies have attempted
to relate attained growth to dietary intake of vitamin A. One such study in Peru that incorporated longitudinal dietary assessment for a number of years prior to status assessment found that long-term beta-carotene intake was strongly associated with attained stature, independent of dietary protein, energy, and other nutrient intakes, but only in male children. While not fully understood, the gender effect is consistent with a propensity for boys to be more vitamin A-deficient than girls. Sex-specific differences in growth responses to vitamin A deficiency and repletion have been repeatedly observed in animals.

Seasonality may confound the relationship between vitamin A status and attained height-for-age, given the sharp seasonal variation of the former and modulated or lagged seasonality that can attend the latter.

In aggregate, the above findings suggest that vitamin A deficiency needs to be severe enough to impact on linear growth. Prospective studies and intervention trials tend to bear this out.

Weight-for-Height

Children with corneal xerophthalmia are nearly always wasted, reflecting their general state of frailty. This fact has been recognized for over half a century. Less obvious is that children with non-corneal xerophthalmia (XN or X1B) may also be thinner than normal, or more so than hospitalized, malnourished peers matched on similar anthropometric categories. Occasionally, in food-sufficient populations, mildly xerophthalmic or subclinically vitamin A-deficient children are observed to be slightly more wasted than their normal peers.
below two years of age. Otherwise the association cannot be seen, perhaps because of higher rates of mortality among wasted children with xerophthalmia. On the other hand, mild degrees of wasting, reflected by a lower weight-for-height or arm circumference, often accompany non-corneal xerophthalmia in populations that face chronic food shortage. This relationship is especially apparent during drought, when both wasting malnutrition and high rates of mild xerophthalmia coexist.

Weight-for-Age

Weight-for-age represents the combined effects of stunting and wasting malnutrition, corrected for age. Because some studies have only reported anthropometric status by weight-for-age, they shed little light on the wasting-stunting continuum in relation to vitamin A status.

Growth Velocity during Vitamin A Deficiency

The extent to which vitamin A deficiency may alter growth velocity of children can best be gleaned from prospective, natural history studies such as that conducted in West Java from 1978–79. Growth measurements were repeated at regular intervals as children waxed and waned in their clinical vitamin A status. Height and weight were measured and an ocular examination was conducted on ~4000 preschool children every three months over an eighteen-month period. Growth increments were determined in temporal relation to xerophthalmia status (XN or X1B), adjusted for age, sex, history of diarrhea, and clinically evident respiratory illness at the outset of an interval. The clinical examination of children at the beginning and end of 15,816 intervals permitted interval status to be classified as (1) normal (N–N), (2) xerophthalmic (X–X), (3) deteriorating in vitamin A status as children went from normal status at one exam to having xerophthalmia three months later (N–X), or (4) improving in vitamin A status as children recovered from xerophthalmia during an interval (X–N).

Compared with children who remained normal (N–N) those who developed xerophthalmia during a 3-month interval (N–X) showed a decline in ponderal and linear growth velocities by 199 g and 0.28 cm respectively. Children who were mildly xerophthalmic on two consecutive occasions (X–X), reflecting a state of chronic vitamin A deficiency, gained 120 g less in weight and 0.21 cm less in height than children who were clinically normal but subclinically deficient (with nearly half having a serum vitamin A < 0.70 μmol/liter). This is equivalent to an annual deficit of ~560 g and ~0.9 cm for children who develop xerophthalmia and do not improve during the year.

In contrast, children who recovered from xerophthalmia during an interval (X–N) gained more weight (+124 g) than normal children, accounting for more than half of the 200 g decrement in weight gain that occurred during periods of
Table 6-1 Differences in Three-Month Weight Gain and Linear Growth between Xerophthalmic and Non-Xerophthalmic Preschool Indonesian Children

<table>
<thead>
<tr>
<th>Interval</th>
<th>Change in Weight (g)</th>
<th>Change in Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical Status</td>
<td>3-Month Interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervals (N)</td>
</tr>
<tr>
<td>N—N</td>
<td></td>
<td>14,743</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N—X</td>
<td></td>
<td>353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X—X</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X—N</td>
<td></td>
<td>368</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Difference from N—N	3-Month Interval	N—N Difference from N—N	Crude	Adjusted
		Intervals (N)			
N—N		14743	348	—	—
			(6)	—	—
N—X		353	139	—209	—199
			(43)	(57)	(57)
X—X		252	211	—137	—120
			(43)	(36)	(36)
X—N		368	459	+111	+124
			(41)	(41)	(41)

*N—N Clinically normal at the outset and end

N—X Clinically normal at the outset and xerophthalmic at the end

X—X Xerophthalmic at the outset and end

X—N Xerophthalmic at the outset and clinically normal at the end

bAdjusted by least squares linear regression for age, sex, presence of respiratory infection and history of diarrhea at the start of each interval

c± 1 SEM

From Tarwoto et al., 1992.

Consequences of Vitamin A Deficiency

decreasing vitamin A status Thereafter, clinically recovered children continued to gain weight (at least through the next interval) at a rate that was comparable to normals as long as they remained free from xerophthalmia. However, recovering children only slowly caught up in linear growth relative to normals (who themselves had mean vitamin A levels below 20 µg/dl) 0.09 and 0.06 cm more, respectively, during concurrent and subsequent three-month intervals.

Although cause and effect cannot be conclusively inferred, these findings suggest that vitamin A deficiency, at a level that is consistent with mild xerophthalmia, can indeed modulate the tempo of weight gain and linear growth in children. The estimates may also be used to define the range of relative weight gain (up to ~500 g/yr) and linear growth (up to ~1 cm/yr) velocity that could be singly affected by vitamin A deficiency and, therefore, responsive to vitamin A intervention, given that some of the total growth response during periods of recovery might well be due to an overall improvement in health and diet.

In this study, recovery from xerophthalmia favored catch-up weight gain in the short term but a slower response in linear growth, similar to that seen in early animal studies. Presumably growth improved up to a nutritional plane where other deficiencies became restrictive. These growth dynamics could underlie the frequently seen pattern of minimal wasting with more apparent
stunting of mildly xerophthalmic children, particularly where episodes of xerophthalmia repeatedly occur throughout the preschool years.

Given a tendency for stunting among subclinically vitamin A-deficient children, it may be expected that such children grow less than their peers. However, this was not the case in rural Nepal, where a cohort of non-xerophthalmic preschool-aged children participated in a control group of a randomized community trial. They were classified as CIC-normal (n = 222) or CIC-abnormal (n = 64) at baseline, and their growth was followed every four months. CIC status was not reclassified at each visit, as was done in the study in West Java. Nonetheless, age- and baseline status-adjusted changes in linear growth, weight, arm circumference, and skinfold thickness of CIC-abnormal children were comparable to children with normal CIC status throughout sixteen months of follow-up (K P West et al, unpublished data, 1995). It appears that mild vitamin A deficiency (abnormal CIC), consistent with early epithelial metaplasia, may not be growth-limiting in a markedly stunted (mean HAZ = -2.5) and wasted (mean WHZ = -1.00) population potentially suffering other factors more influential to growth.

Growth Response to Vitamin A

Vitamin A supplementation trials provide an opportunity to investigate the specific contribution of vitamin A status, in and by itself, to growth. Well-designed, randomized, controlled trials conducted in different populations and with varying constructs have yielded differing results. These range from improvement in ponderal and linear growth and apparent body composition in certain groups of children, to little or no effect in others. This is not surprising given the complexity and apparent nonspecificity of growth to a host of factors (diet, infection) under free-living conditions. Variation in response to vitamin A supplementation depends on the nutritional ecology of the population, including the coincident severity and seasonality of protein-energy malnutrition (PEM), vitamin A and other micronutrient deficiencies, the age, health status, breast-feeding, and other coexisting dietary habits of children, and perhaps the frequency, duration, and dosage of vitamin A supplementation.

Large-Dose Vitamin A Supplementation

Data from a randomized, double-masked community trial in Nepal (NNIPS) permit a detailed inspection of the growth response to periodic vitamin A supplementation in a moderately stunted and chronically wasted population. A cohort of approximately 3500 children aged twelve months to sixty months were dosed with 200,000 IU or 1000 IU (control group) of vitamin A at baseline and every four months for sixteen months. A smaller group of infants was also followed after receiving 50,000 IU (less than one month old) or 100,000 IU.
Consequences of Vitamin A Deficiency

(one month to eleven months old) versus placebo. Linear and ponderal growth, including changes in height or length, weight, and mid-upper arm circumference (MUAC), were evaluated at each visit. Subscapular and tricipital skinfolds, permitting derivation of upper arm muscle (including humoral bone) and fat areas, were also measured at the first and fifth visits.

Non-Xerophthalmic Children. The basic question posed by this trial, as with other intervention studies, was whether vitamin A supplementation alone could improve overall child growth in an area of endemic vitamin A deficiency. The response was modest in clinically normal children (without xerophthalmia at baseline) who were twelve months of age or older at the outset (Table 6–2). All growth comparisons were adjusted by sex, age and indicator status at baseline. Vitamin A supplementation appeared to exert small, relative effects on weight gain that were seasonally dependent. During the first periharvest four-month interval, vitamin A-supplemented children gained 121 g less weight than controls. This represented less gain in soft tissue, reflected by a —0.11 relative change in WHZ (p < 0.001), with similar rates of linear growth in both groups. During the next eight "leaner" months, throughout which rates of weight gain fell in both groups and arm circumference remained relatively constant (K P West et al., unpublished data, 1995), vitamin A-supplemented children gained slightly more weight than controls, leaving essentially no difference between groups after the first year of intervention (differences in ΔWHZ = 0.02 and ΔHAZ = 0.01). During the last (periharvest) four-month interval observed in the trial, weight gain was again smaller in the vitamin A group, causing the relative deficit in weight gain (—72 g) and WHZ (—0.07) (p < 0.01) to reappear in the continued absence of any effect on linear growth.

Changes in upper arm muscle and fat and truncal fat suggested that the periharvest deficit in weight gain relative to controls may have been due to reduced accumulation of fat. Arm circumference initially increased by 0.16 cm in the vitamin A group over unsupplemented controls, a modest advantage that was generally maintained throughout the trial. After sixteen months, the difference between groups was due entirely to a 25 mm² increase in muscle (plus bone) area (p < 0.001) (Table 6–2), similar to what was seen among boys receiving vitamin A in the Indonesian Aceh Study. While this difference accounted for only 2% of the children's initial muscle area (≈ 1100 mm²), it represented a 30% relative increase over the muscle growth of controls. However, since long-term change in weight-for-height (WHZ) was more strongly correlated with apparent change in fatness (r = 0.65 for skinfolds) than with change in musculature (r = 0.32 for MA), seasonal fluctuations that were observed in WHZ were more likely to have been reflecting variation in body fat than in lean body mass.

Growth effects observed in (non-xerophthalmic) infants were far more perplexing and require considerable investigation. In a baseline cohort of infants under six months of age who were dosed and followed for sixteen months, vita-
Table 6–2 Differences (Δ)* in Growth Increments between Non-Xerophthalmic Children in the Vitamin A (VA) and Control (Ct) Supplement Groups, 12–60 Months of Age at Baseline, Sarlahi, Nepal

<table>
<thead>
<tr>
<th>Number</th>
<th>WT(g)*</th>
<th>HT(cm)</th>
<th>AC(cm)</th>
<th>MA(mm²)</th>
<th>FA(mm²)</th>
<th>SS(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ct</td>
<td>VA</td>
<td>Δ</td>
<td>SE</td>
<td>Δ</td>
<td>SE</td>
</tr>
<tr>
<td>4 mo</td>
<td>1450</td>
<td>1592</td>
<td>-121</td>
<td>19**</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>12 mo</td>
<td>1405</td>
<td>1578</td>
<td>38</td>
<td>16</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>16 mo</td>
<td>1361</td>
<td>1481</td>
<td>-72</td>
<td>27*</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

*Differences represent VA group minus CT group increments estimated by a regression coefficient (b) adjusted for sex, age and measurement status at baseline.

*WT = weight, HT = length (12–23 mo) or height (≥ 24 mo), AC = left mid-upper arm circumference, MA = upper arm muscle area, FA = upper arm fat area, SS = left subscapular skinfold, Δ = VA increment minus CT increment, SE = standard error of b.

*p ≤ 0.01

**p ≤ 0.0001

From West et al., 1995.
Consequences of Vitamin A Deficiency

Vitamin A supplementation was associated with decrements of 0.16 cm in MUAC (p < 0.05) and 23 mm² in arm fat area (p < 0.05) relative to controls, that is, by the time these infants reached sixteen months to twenty months of age. All other indicators also showed slower growth but were not significant. On the other hand, when initial four-month increments were examined for infants enrolled across all visits and seasons of the trial, there were practically identical rates of linear growth, weight gain, and MUAC for infants one month to 5 months of age. But neonates less than one month of age, who received 50,000 IU, showed improved weight (290 g, p < 0.03) and MUAC increases (+0.3 cm, p < 0.08) over controls (K P West et al., unpublished data, 1995).

These data suggest seasonal, age, and cohort effects of vitamin A supplementation on the growth of children. However, they also indicate the possibility that 50,000 IU or less may be preferred to 100,000 IU when supplementing very young infants.

Xerophthalmic Children Unlike the apparently modest impact of vitamin A supplementation on the growth of non-xerophthalmic children, consistent and positive differences in growth were evident among xerophthalmic children (with XN and/or X1B) supplemented with vitamin A (Table 6-3). At baseline, they weighed more and were taller than non-xerophthalmic children because they tended to be older (after age-adjustment, the status of xerophthalmia cases was poorer than normals). Four months after being treated with 400,000 IU and referred at baseline because of their xerophthalmia, cases in the unsupplemented control group (who received no additional vitamin A from field teams after their initial treatment) gained more weight (256 g) than non-xerophthalmic children, yielding a ΔWHZ advantage of +0.16 (p ≤ 0.05) in the absence of a discernable, initial effect on height (+0.1 cm), their relative gain in arm circumference was 0.21 cm (p ≤ 0.01). Sixteen months later, the treated xerophthalmic cases (in the control group) exhibited greater gains in both ponderal (+280 g) and linear (+0.7 cm) growth. This was reflected by a relative increase by cases in height-for-age (+0.12 HAZ, p < 0.05), but no difference in weight-for-height (ΔWHZ = 0.04). Although the early advantage in MUAC had largely disappeared, upper arm muscle area of cases increased by 24 mm² over unsupplemented controls but this was not statistically significant (p < 0.1). Thus, a single, large dose of vitamin A given to xerophthalmic children may have increased the efficiency of dietary protein and energy utilization in the short run, reflected by greater tissue deposition. This appeared to translate into a modest increase in linear growth (a cumulative, nonreversible effect) and, perhaps muscle mass discernable more than a year following treatment.

Xerophthalmic children in the vitamin A-supplemented group (Table 6-3) received the same 400,000 IU vitamin A treatment and referral (plus an additional 200,000 IU dose at home) and continued to be dosed with vitamin A every four months along with their peers. Their initial (four-month) increment in soft tissue
Table 6-3 Differences (Δ) in Growth Increments between Xerophthalmic Children Treated with Vitamin A and Non-Xerophthalmic Children within Supplement Groups, 12-60 Months of Age at Baseline, Sarlahi, Nepal

<table>
<thead>
<tr>
<th>Number</th>
<th>WT (g)</th>
<th>HT (cm)</th>
<th>AC (cm)</th>
<th>MA (mm²)</th>
<th>FA (mm²)</th>
<th>SS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nml</td>
<td>Xero</td>
<td>Δ</td>
<td>SE</td>
<td>Δ</td>
<td>SE</td>
</tr>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 mo Δ</td>
<td>1450</td>
<td>57</td>
<td>256</td>
<td>74***</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>12 mo Δ</td>
<td>1405</td>
<td>55</td>
<td>284</td>
<td>86***</td>
<td>0.4</td>
<td>0.2*</td>
</tr>
<tr>
<td>16 mo Δ</td>
<td>1361</td>
<td>52</td>
<td>282</td>
<td>106***</td>
<td>0.7</td>
<td>0.2**</td>
</tr>
</tbody>
</table>

Vitamin A

<table>
<thead>
<tr>
<th>Number</th>
<th>WT (g)</th>
<th>HT (cm)</th>
<th>AC (cm)</th>
<th>MA (mm²)</th>
<th>FA (mm²)</th>
<th>SS (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nml</td>
<td>Xero</td>
<td>Δ</td>
<td>SE</td>
<td>Δ</td>
<td>SE</td>
</tr>
<tr>
<td>4 mo Δ</td>
<td>1592</td>
<td>47</td>
<td>160</td>
<td>79*</td>
<td>0.4</td>
<td>0.1*</td>
</tr>
<tr>
<td>12 mo Δ</td>
<td>1578</td>
<td>45</td>
<td>279</td>
<td>93**</td>
<td>0.7</td>
<td>0.2**</td>
</tr>
<tr>
<td>16 mo Δ</td>
<td>1481</td>
<td>44</td>
<td>413</td>
<td>109**</td>
<td>0.9</td>
<td>0.3***</td>
</tr>
</tbody>
</table>

*p ≤ 0.05
**p ≤ 0.01
***p ≤ 0.001

From West et al., 1995a.

* Differences represent xerophthalmic child minus non-xerophthalmic child increments, estimated by a regression coefficient b adjusted for sex, age, and measurement status at baseline.

b Nml = non-xerophthalmic, clinically sound children, xero = xerophthalmia cases. See Table 6-2 for other abbreviations.
mass was similar to that of xerophthalmic children in the control group an
ditional gain of 160 g in weight, 0.4 cm in height and 0.17 cm in MUAC (all
\(p < 0.05 \)) over non-xerophthalmic children However, unlike cases in the control
group who were only treated at baseline, periodically supplemented cases con-
tued to experience some relative gain thereafter by sixteen months those who
were initially xerophthalmic had gained over 400 g more in weight, 0.9 cm more
in height (reflected by gains in both \(\Delta \text{HAZ} \ [+0.19, p < 0.01] \) and \(\Delta \text{WAZ} \ [+0.18,
\(p < 0.05 \)]), 0.38 cm more in arm circumference and 0.6 mm more in subscapular
skinfold over the growth rates of their non-xerophthalmic, supplemented peers
Upper arm muscle and fat areas increased by 52 mm\(^2\) (\(p < 0.001 \)) and 26 mm\(^2\)
(\(p < 0.1 \)) respectively in initially xerophthalmic cases over that of clinically
normal children

The longer-term growth advantage from periodic supplementation remained
when initially xerophthalmic children in the two supplemented groups were
compared Subjects who were treated and continued to be periodically dosed
showed slightly more gain in weight (+103 g) and height (+0.2 cm), although
these differences were not statistically significant More evident was the continued
relative increase in arm circumference (+0.34 cm, \(p < 0.1 \)), arm muscle area
(+50 mm, \(p < 0.1 \)) and subscapular skinfolds (+0.5 mm, \(p < 0.05 \)), compared
with children with xerophthalmia in the assigned control group, who were treated
only at baseline \(^{102}\)

The poorer initial status, sustained growth, and apparent change in body
composition of children who initially had moderate-to-severe vitamin A defi-
ciency (i.e., xerophthalmia), after adjusting for baseline differences, suggest that
vitamin A deficiency was more likely to have been growth-limiting in these
children than in less deficient children Xerophthalmic subjects, however, were
also likely to have returned to a deficient state (given an inadequate diet that
continues long after treatment \(^{112}\) and no change in their environment) during
the intervals between dosing, explaining why subsequent dosing had some cumu-

The effects observed in Nepal can be reconciled, at least partly, with growth
responses to a large dose of vitamin A in other settings One randomized, con-
trolled trial in a cohort of 312 preschool-aged children in West Bengal, India,\(^{80}\)
showed that four-monthly vitamin A supplementation (200,000 IU) for a year
reduced incident xerophthalmia\(^{113}\) but had no effect on the incidence of diarrhea,
respiratory infection, or on growth by weight-for-age \(^{85}\) However, growth effects
were not analyzed longitudinally, partitioned into ponderal and linear compo-
nents, or stratified by initial xerophthalmia status Secondary analysis by others
suggested that general nutritional status may have declined among female vitamin
A recipients late in the dry season, a period of declining food availability and
growth that may have affected the efficacy of the supplement \(^{114}\) A second, larger
randomized trial among children under three years of age (\(n = 592 \)) in Vellore,
India, also found no significant effects of vitamin A on annual weight gain (+30
g), increase in arm circumference (+0.04 cm), or linear growth (+0.19 cm). Skinfolds were not measured to allow arm muscle and fat area changes to be derived. Children with xerophthalmia were also treated with vitamin A and, unfortunately, excluded from further study. Findings from Nepal suggest a growth and body composition response might well have occurred among such children.

A community-based, clinical trial in China among 168 children six months to thirty months of age observed no significant change in weight gain (−300 g, \(p = 0.17 \)) or linear growth (+0.6 cm, \(p = 0.22 \)) following two doses (one, and another six months later) of vitamin A (200,000 IU). Absence of xerophthalmia among all subjects suggests that vitamin A deficiency may not have been severe enough to limit growth.

In the nonwasted population of Aceh, Indonesian children twelve months to seventy-one months of age (\(n = 2012 \)) were randomized by village to receive two six-monthly rounds of vitamin A (200,000 IU) over a twelve-month period. Vitamin A enhanced ponderal growth over the year, reflected by age-specific relative increases of 110 g to 263 g in weight gain (\(p < 0.05 \)) and 0.2 cm in arm circumference (\(p < 0.05 \)), the latter mostly explained by a 36 mm² increase in arm muscle area (\(p < 0.05 \)) (Fig. 6–4). While these changes were similar to those seen in Nepal, the effects were observed only beyond the breast-fed years (two years to five years of age), only in males, and not restricted to xerophthalmic.

Fig. 6–4. Age-specific, annualized growth increments (\(\Delta \)) (± 2 standard error of the mean) of boys in vitamin A distribution (●) and control (○) villages during the Aceh (Indonesia) study. A, length (< 2 years) or height (2–5 years) (HT); B, weight (WT); C, left mid-upper-arm circumference (AC); D, arm muscle area (MA). (From K.P. West et al.)
children. There were no consistent effects observed in females and no linear growth response in either sex.

Gender differences in the ponderal growth and body composition following vitamin A dosing in Aceh may reflect a combination of phenotypic variation, based on animal evidence showing that male animals respond more rapidly and completely to both vitamin A depletion and repletion. However, these influences may also be dominated by environmental factors such as sex-related differences in dietary intake of vitamin A. While the sex- and growth-specific findings from Aceh are difficult to reconcile with other studies, the growth response in older males was internally consistent with their higher prevalence of (and more complete recovery from) xerophthalmia and the greater impact of vitamin A on male mortality.

Significantly faster weight gain, in association with more rapid recovery, has also been observed in measles cases following large-dose vitamin A treatment. Children with moderate to severe measles who were randomized to receive 400,000 IU on two consecutive days following hospital admission had gained 1290 g versus 900 g among placebo recipients (+390 g, p < 0.05) by six weeks after hospital discharge, at which time an additional 200,000 IU or placebo supplement was administered. Four and a half months later (six-month post-admission follow-up), vitamin A-recipients had gained an additional 1600 g versus 1470 g among controls (no length or body composition measures were reported). Although not statistically significant, the latter difference suggests that the early ponderal response associated with vitamin A treatment was sustained for at least six months. These growth changes occurred in the presence of a significant reduction in the incidence and severity of secondary infections. In a population-based survey in Malawi, recent fever was associated with a sixfold increase in risk of wasting (< −2 WHZ) among children under thirty months of age. However, this risk was halved (and no longer statistically significant) among children who had been dosed with vitamin A during the preceding six months, suggesting less severe febrile episodes and a nutritional “sparing” effect among vitamin A-replete children. It is, therefore, difficult to distinguish a primary effect of vitamin A on growth from a secondary effect mediated through its impact on infection and morbidity.

Frequent Vitamin A Supplementation

Providing a physiologic supplement of vitamin A on a frequent, routine basis may elicit a growth response different from that to large, periodic doses. Small, frequent supplements reverse depletion more slowly, but produce a more incremental, sustained impact on survival. In West Java, Indonesia, the routine consumption over eleven months of commercially marketed monosodium glutamate fortified with ~810 IU of vitamin A (MSG-A), at usual levels of MSG intake for age, reduced preschool-child mortality (Chapter 2), increased hemoglobin
levels by ~ 10 g/liter (Chapter 5), and produced a ~ 1 cm increase in linear growth at each year of age ($p \leq 0.05$) compared with controls. However, there was no apparent effect on weight gain. The initial vitamin A status of growth responders was not known, nor was it known whether short-term changes in weight had occurred during the study.

During the Guatemalan national vitamin A-sugar fortification program evaluation, the seasonally adjusted prevalence of severe stunting (<85% of the median height-for-age) decreased from $\sim 22\%$ to $\sim 16\%$, consistent with the impact on linear growth observed in Indonesia.

In drought-prone Tamil Nadu, southern India, delivery of a small, weekly dose of vitamin A (8333 IU or $\sim 9 \mu$mol) for a year to preschool children older than six months ($n = 15,419$) had a much less obvious effect, increasing annual linear growth by ~ 0.27 cm only in nonwasted (≥ -2 WHZ) children ($p < 0.05$). Supplementation had no effect on linear growth in wasted children nor, as in the Indonesian MSG trial, any impact on weight gain in any subgroup. The population was clearly suffering from vitamin A deficiency, evidenced by a 38% prevalence of hyporetinemia ($< 0.70 \mu$mol/liter) and an 11% xerophthalmia rate at the outset of the trial, and by a 54% reduction in mortality attributed to the vitamin A intervention. The population was also clearly wasted at the start of the trial (42% < -2 WHZ), presumably due to drought. This situation dramatically improved, along with diet, during the study, which may have masked a potential vitamin A effect on growth. Unfortunately the growth responses of xerophthalmic children were not analyzed separately.

These three studies suggest that slight improvement in linear growth may occur when adequate preformed vitamin A is consumed on a regular basis by (presumably) subclinically vitamin A-deficient children (free of xerophthalmia). The role of protein-energy status in modifying vitamin A effects on growth remains unclear.

Conclusions

It is thus quite logical to assume that adequacies of dietary protein, energy vitamins and minerals can individually or in combination determine how well an individual approaches his or her genetic potential.

—George G. Graham 1981

Our understanding of the mechanisms and conditioning factors that determine the role of vitamin A in child growth remains incomplete. Animal experiments identify specific and, at times, sequentially reliable tissue responses to changes in vitamin A nutriture. However, differences attributable to species and experimental design abound, leaving most questions relevant to humans—other than the basic essentiality of vitamin A for mammalian growth—unanswered. There
may be a general nutritional threshold, or series of tissue-specific thresholds,125 that must be transgressed relative to other growth-determining nutrients in order for vitamin A deficiency to retard linear and ponderal growth, or affect body composition. The effect among children with ocular involvement (xerophthalmia), reflecting severe vitamin A deficiency, indicates that a linear, ponderal, or body compositional vitamin A-responsive deficit may exist. Xerophthalmia also indicates the need for sustained dietary intervention beyond immediate treatment.112,126 Unless the child's diet or environment is changed, deficiency will likely recur14,127–129 with its attendant consequences for growth, health, and survival.

Given the wide variations in the prevalence and severity of other environmentally critical factors, the effect of vitamin A supplementation on less deficient children is variable. In communities characterized by food insufficiency and wasting malnutrition, there is evidence that routine supplementation can protect or increase lean body mass despite seasonal effects on weight gain,102 and may produce a small increase in linear growth among nonwasted children over the course of a year.106 In more food sufficient cultures, where less severe (non-xerophthalmic) vitamin A deficiency limits growth, supplementation may stimulate modest increases in weight gain103 or linear growth.66,105 Animal studies suggest that the type and extent of the growth response probably depends on the quality117,130–138 and quantity of diet available to the child. Indeed, there is also some evidence in animals that vitamin A repletion increases appetite,7 suggesting yet another intermediary mechanism for a vitamin A influence on growth. Similar explanations may also apply to the effects of other micronutrients on growth.63

The variability and nonspecificity of the observed growth response to vitamin A supplementation in children suggests that improved growth should not be a criterion for assessing the efficacy or effectiveness of a vitamin A intervention program. Studies that seek to measure growth effects of vitamin A supplementation need to enroll adequate numbers of potential responders (i.e., children with significant vitamin A deficiency), include a battery of measurements to observe changes in body composition in addition to linear growth and weight gain, consider the child's environment and other factors that may influence growth, and reexamine children frequently and for a sufficient duration to characterize the complex growth response.

References

4 Osborne TB, Mendel LB The influence of butter-fat on growth J Biol Chem 1913,16 423–437
5 Orr JB, Richards MB Growth and vitamin A deficiency Biochem J 1934,28 1259–1273
7 Anzano MA, Lamb AJ, Olson JA Growth, appetite, sequence of pathological signs and survival following the induction of rapid, synchronous vitamin A deficiency in the rat J Nutr 1979,109 1419–1431
8 Gupta MP, Dogra SC, Khanduja KL, Sharma RR Effect of vitamin A deficiency on the level of glutathione and glutathione S-transferase activity in rat colon and liver Acta Vitaminol Enzymol 1983,5 141–145
10 Lewis JM, Bodansky O, Falk KG, McGuire G Vitamin A requirements in the rat The relation of vitamin A intake to growth and to concentration of vitamin A in the blood plasma, liver and retina J Nutr 1942,23 351–363
12 Roodenburg AJC, West CE, Yu S, Beynen AC Comparison between time-dependent changes in iron metabolism of rats as induced by marginal deficiency of either vitamin A or iron Br J Nutr 1994,71 687–699
13 Hicks VA, Gunning DB, Olson JA Metabolism, plasma transport and biliary excretion of radioactive vitamin A and its metabolites as a function of liver reserves of vitamin A in the rat J Nutr 1984,114 1327–1333
15 Hayes KC, Cousins RJ Vitamin A deficiency and bone growth I Altered drift patterns Calc Tiss Res 1970,6 120–132
16 Zile MH, Bunge EC, DeLuca HF Effect of vitamin A deficiency on intestinal cell proliferation in the rat J Nutr 1977,107 552–560
17 Rojanapo W, Lamb AJ, Olson JA The prevalence, metabolism and migration of goblet cells in rat intestine following the induction of rapid, synchronous vitamin A deficiency J Nutr 1980,110 178–188
18 Thatcher HS, Sure B A vitaminosis III Pathologic changes in tissues of the albino rat during early stages of vitamin A deficiency Arch Path 1932,13 753–765
19 McDowell EM, Keenan KP, Huang M Effects of vitamin A deprivation on hamster tracheal epithelium A quantitative morphologic study Virchows Arch B Cell Pathol 1984,45 197–219
20 Strum JM, Latham PS, Schmidt ML, McDowell EM Vitamin A deprivation in hamsters Virchows Arch B Cell Pathol 1985,50 43–57
21 Wolbach SB, Howe PR Tissue changes following deprivation of fat-soluble A vitamin J Exp Med 1925,42 753–777
23 Patterson JM, McHenry EW, Crandall WA A specific effect upon body weight and body composition in the albino rat Biochem J 1942,36 792–794
24 McLaren DS Influence of protein deficiency and sex on the development of ocular
Consequences of Vitamin A Deficiency

lesions and survival time of the vitamin A-deficient rat Br J Ophthalmol 1959,43 234–241
26 Stephenson S On sloughing corneae in infants an account based upon the records of thirty-one cases Ophthalmoscope 1910,8 782–818
28 Sherman HC, MacLeod FL The relation of vitamin A to growth reproduction and longevity J Am Chem Soc 1925,47 1658–1662
29 Sherman HC, Campbell HL, Udiljak M, Yarmolinsky H Vitamin A in relation to aging and to length of life Proc Nat Acad Sci 1945,31 107–109
30 Baumann CA, Rusing BM, Steenbock H Fat-soluble vitamins The absorption and storage of vitamin A in the rat J Biol Chem 1934,107 705–715
31 Paul HE, Paul MF The relation of vitamin A intake to length of life, growth, tooth structure and eye condition J Nutr 1946,31 67–78
33 McCollum EV The supplementary dietary relationships among our natural foodstuffs JAMA 1917,68 1379–1386
36 Wolbach SB, Hegsted DM Vitamin A deficiency in the chick Skeletal growth and the central nervous system AMA Arch Path 1952,54 13–29
37 Wolbach SB, Hegsted DM Vitamin A deficiency in the duck Skeletal growth and the central nervous system AMA Arch Path 1952,54 548–563
38 Baume LJ Differential response of condylar, epiphyseal, synchondrotic, and articular cartilages of the rat to varying levels of vitamin A Am J Orthodon 1970,58 537–551
42 Bloch CE Clinical investigation of xerophthalmia and dystrophy in infants and young children (xerophthalmia et dystrophia alipogenetica) J Hygiene 1921,19 283–304
43 ten Doesschate JC Causes of blindness in and around Surabaja, East Java, Indonesia Thesis, University of Indonesia, Jakarta, Indonesia 1968 159–241
44 Sommer, A Nutritional Blindness Xerophthalmia and Keratomalacia New York, NY Oxford University Press 1982
46 Van Lerberghe W Linear growth retardation and mortality In Waterlow JC, ed
Linear Growth Retardation in Less Developed Countries Nestle Nutrition Workshop Series New York, NY Raven Press 1988 245—264

49 Tomkins A The risk of morbidity in a stunted child In Waterlow JC, ed Linear Growth Retardation in Less Developed Countries Nestle Nutrition Workshop Series New York, NY Raven Press 1988 185—199

52 Santos LMP, Dricot JM, Asciutti LS, Dricot-D’Ans C Xerophthalmia in the state of Paraiba, northeast of Brazil clinical findings Am J Clin Nutr 1983,38 139—144

63 Allen LH The nutrition CRSP What is marginal malnutrition, and does it affect human function Nutr Rev 1993,51 255—267

64 Lloyd-Puryear MA, Mahoney J, Humphrey JH, Mahoney F, Siren N, Moorman C,
Consequences of Vitamin A Deficiency

77 Tielsch JM, Sommer A. The epidemiology of vitamin A deficiency and xerophthalmia. Ann Rev Nutr 1984,4 183–205

85 Sinha DP. The children of Ichag—a longitudinal study of health and disease in rural West Bengal. Doctoral thesis. The Johns Hopkins School of Hygiene and Public Health, Baltimore 1976

87 Perera SM, Begum A. Failure of a massive single oral dose of vitamin A to prevent deficiency. Arch Dis Child 1971;46:525-527

98 Pizzarello LD. Age specific xerophthalmia rates among displaced Ethiopians. Arch Dis Child 1986;61:1100-1103

118 Coward KH. The relation between the increase in weight of rats during the dosing period of vitamin A and B1 determinations and the standard deviation of that increase. Biochem J 1942, 36:795–796.

127 Humphrey JH, West KP Jr, Muhilal, See LC, Natadisastra G, Sommer A. A priming dose of oral vitamin A given to preschool children may extend protection conferred by a subsequent large dose of vitamin A. J Nutr 1993, 123:1363–1369

130 Sharma HS, Misra UK. Distribution of vitamin A in various organs of rats in relation to the quality and the quantity of dietary proteins. Z Ernahrungswiss 1987, 26:43–51

136 Underwood BA, Loerch JD, Lewis KC. Effects of dietary vitamin A deficiency, retinol acid and protein quantity and quality on serially obtained plasma and liver levels of vitamin A in rats. J Nutr 1979, 109:796–806

Mechanisms
Contributory and Precipitating Events

Children with respiratory and/or diarrheal disease are more likely to become vitamin A deficient. This in turn reduces their resistance to infection, increasing their susceptibility to (severe) respiratory disease and diarrhea, with further consequences for their vitamin A status, sight and lives.

—Sommer et al. 1987

It is doubtful whether a deficiency disease ever occurs uncomplicated in man or animals.

—E. V. McCollum et al. 1925

Vitamin A deficiency exists in a complex milieu of food availability and dietary preference, child rearing practices and educational background, hygiene standards and health services. As a rule, severe, blinding deficiency thrives under conditions of social deprivation and poverty. But materially poorer populations sometimes suffer less severe deficiency than richer ones by virtue of dietary habits, hygiene practices or immunization coverage. For example, income, clothing, housing and other indices of economic well-being were better in West Java than in East Java, but the xerophthalmia rates were far higher as well. Furthermore, milder, nonblinding deficiency, widespread throughout the Third World (and pockets of wealthier Western societies), may account for half of all vitamin A deficiency-related deaths.

Recent recognition of the public health significance of milder deficiency makes it more important, but also more difficult, to document the many factors that contribute to it. Xerophthalmia is the only readily recognized, clinically distinct manifestation of vitamin A deficiency, it is therefore the one for which we have the most cause-related data. The situation will certainly change as studies...
Mechanisms

increasingly employ more sensitive tests capable of identifying non-xerophthalmic children who are nonetheless vitamin A deficient (Chapter 11) 8-30 In almost all instances, however, vitamin A deficiency will prove to be the product of multiple, intersecting influences

Vitamin A deficiency, particularly its severe, blinding form, is largely (but not wholly) a disease of preschool-age children (Fig 12-2). This age group is most vulnerable to dietary deprivation (dependent as it is on fetal stores, breast feeding and weaning practices), diarrhea and other common infections related to poor sanitation, and to childhood exanthems. It overlaps with the peak ages of protein-energy malnutrition (PEM) and the “malnutrition/infection complex” 1,12

A number of diseases have traditionally been associated with xerophthalmia. For some, like cystic fibrosis13-19 and chronic small bowel disease,20-24 vitamin A malabsorption is clearly responsible. For others, like liver disease, the relationship is more complex.25-31 It may be due to poor diet,32,33 impaired absorption,21,23,32,34,35 decreased capacity for storing or transporting the vitamin,21,36-38 urinary loss,39-41 or the influence of concomitant disease.

Seventy years ago, Bloch recognized that vitamin A deficiency arose from three basic sources: an inadequate diet, malabsorption, and infections,42-41 to which he and others added a fourth, the “spring growth spurt” and other factors that increase metabolic demand (Chapter 6).

The association with infectious diseases is the most prevalent and complex of all, hardly surprising given the ubiquity of these diseases in developing cultures (turn-of-the-century Europe as much as today’s Third World) and their intimate interaction with nutritional status, feeding practices, and one another. Despite the consistent, repeated associations between indices of vitamin A deficiency and evidence of infectious episodes (Table 3-1), it is not always clear from these data “which was the chicken and which the egg.” In some instances, vitamin A deficiency clearly increases the risk of infectious morbidity, in other instances, it seems that the association is better explained (in part or in whole) by the impact infection has on vitamin A status. These differences depend on factors such as how a study was conducted, the particular infection, and the manifestation of vitamin A deficiency with which it was “associated.” For example, chronic diarrhea probably leads to progressive vitamin A deficiency, which may in part explain the frequent, strong correlation between a past history of diarrhea and the presence of Bitot’s spots. Measles, on the other hand, is more consistently associated with acute corneal dissolution (X3) and systemic infectious complications in the absence of preexisting clinical xerosis, suggesting acute decompensation of previously marginal vitamin A status. The evidence that vitamin A deficiency increases the risk of severe infectious episodes was described in Chapters 2 and 3. Here we examine the other side of this potentially vicious cycle: infections and other systemic conditions, notably PEM, that contribute to the development of vitamin A deficiency and its clinical expression.
Systemic Infections

As already noted, vitamin A-deprived weanling rats raised in conventional surroundings grow for only a short period of time, with cessation of growth soon followed by death. When equally deprived rats are maintained in a germ-free environment, growth continues, albeit at a reduced rate, and the animals survive longer. It seems likely that the germ-free environment reduces vitamin A demand and otherwise prolongs vitamin A stores.

Serum retinol levels decline in a variety of infections, sometimes by as much as 20 μg/dl to 30 μg/dl. In some instances, the degree of decline is related to the severity and duration of the infection. In part this represents a nonspecific response to fever, which may persist for days after the temperature has returned to normal. In children with rheumatic fever, serum levels dropped by 50% when their temperature exceeded 100°F. Elevation in acute phase proteins, evidence of significant (if subclinical) infection, is associated with reduced serum retinol. Following nonspecific insults like myocardial infarction and surgery, C-reactive protein levels rise and the concentration of serum retinol binding protein (RBP) declines, the latter returning to baseline value after three to seven days. Rosales et al. suggest RBP production may be reduced under these circumstances, acting like albumin as a "negative acute-phase reactant." In some regions malaria probably constitutes a significant proportion of such morbidity.

The magnitude and rapidity of the fall and subsequent recovery of serum retinol in children with some acute infections and/or fever suggests direct interference with vitamin A release and transport, in addition to the potential depleting effects of impaired absorption and increased utilization and excretion. The degree to which an infection diverts vitamin A to other sites, reduces its release from the liver, or actually increases metabolism and excretion and thereby reduces stores probably varies with the specific pathogen and the state of the child. As we shall see, measles seems to do some or all of the above, causing a marked but transient decrease in serum retinol that may or may not return to normal following the acute insult.

An unforeseen outbreak of chickenpox vividly demonstrates the devastating impact that common childhood exanthems can have on vitamin A reserves. Serum vitamin A and RDR values were obtained on "deprived" children attending day care centers in Recife, Brazil, at baseline (before administering a dose of 200,000 IU vitamin A) and again at one, four, and six months. An outbreak of chickenpox, at about three months, affected thirty-six of the ninety-three original subjects. The vitamin A status of the infected children began to diverge from the others at the next evaluation, one month later. By the six-month exam (three months after the epidemic), 74% of infected children, but only 10% of noninfected children, had an abnormal RDR (Table 7-1).

These results are particularly dramatic because the children seem to have begun with serum vitamin A levels traditionally considered well within the normal
Table 7-1 Effect of Varicella Infection on Vitamin A Status

<table>
<thead>
<tr>
<th>Days after Supplementation</th>
<th>Number of Infected Children</th>
<th>Retinol (µg/dl)</th>
<th>RDR Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>36</td>
<td>57</td>
<td>37 ± 14</td>
</tr>
<tr>
<td>42</td>
<td>30</td>
<td>42</td>
<td>49 ± 9</td>
</tr>
<tr>
<td>120</td>
<td>31</td>
<td>31</td>
<td>38 ± 7</td>
</tr>
<tr>
<td>180</td>
<td>31</td>
<td>29</td>
<td>26 ± 9*</td>
</tr>
</tbody>
</table>

*Varicella infection at approximately three months

*p < .001 for difference between infected and control groups

From FACS Campos et al

range (mean = 38 µg/dl) Further, the relative dose-response (RDR), as a surrogate for liver stores, was abnormal in a greater proportion of children after the large dose of vitamin A and subsequent infection than it had been at baseline, before the large dose was given. As expected, the opposite was true for the cohort of uninfected children.

Baseline status nonetheless affected the outcome. Among the infected children, over 90% (10/11) who had been RDR positive at baseline were again RDR positive at six months, compared with only 63% (12/19) who had been RDR negative at baseline. The former group, with poorer vitamin A status to begin with, continued to exist in a more vitamin A deprived environment and/or the large dose did not adequately compensate for their original degree of vitamin A depletion, particularly given the stress of the intervening exanthematous infection.

Infection-related reduction in vitamin A reserves may be sufficient to result in xerophthalmia (moderate to severe vitamin A deficiency). In Bangladesh, a history of recent chickenpox was associated with subsequent xerophthalmia (Odds Ratio [OR] = 1.48).

As already described (Chapter 2), over 3000 rural preschool Indonesian children were reexamined every three months for eighteen months. The risk of a child developing xerophthalmia (XN/X1B) by the end of each interval was calculated for children with and without respiratory disease and with and without diarrhea at the start of each interval.

Children with respiratory disease were more than twice as likely to develop mild xerophthalmia (XN, X1B) than were their peers (p < .05) (Table 7-2). The excess cases occurred among children three years and older, in whom the rate was increased threefold to sixfold. The magnitude of the increased risk of xerophthalmia associated with prior respiratory disease was relatively constant across strata of different degrees of wasting malnutrition.

The relationship between a history of diarrhea during the month preceding the start of an interval and the presence of xerophthalmia three months later...
Table 7-2 Age-Specific Incidence of Xerophthalmia for Children with and without Respiratory Disease

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Child Intervals</th>
<th>Developed Xerophthalmia</th>
<th>Xerophthalmia Rate (per 1000)</th>
<th>Relative Risk of Xerophthalmia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Respiratory Disease</td>
<td>Respiratory Disease</td>
<td>Respiratory Disease</td>
<td>Respiratory Disease</td>
</tr>
<tr>
<td>≤ 1</td>
<td>5533</td>
<td>595</td>
<td>6 + 0</td>
<td>11 + 0</td>
</tr>
<tr>
<td>2</td>
<td>3001</td>
<td>417</td>
<td>8 + 1</td>
<td>27 + 2</td>
</tr>
<tr>
<td>3</td>
<td>3061</td>
<td>257</td>
<td>10 + 3</td>
<td>33 + 11</td>
</tr>
<tr>
<td>4</td>
<td>3042</td>
<td>170</td>
<td>11 + 2</td>
<td>36 + 11</td>
</tr>
<tr>
<td>≥ 5</td>
<td>3657</td>
<td>137</td>
<td>13 + 3</td>
<td>36 + 21</td>
</tr>
<tr>
<td>Total</td>
<td>18,294</td>
<td>1576</td>
<td>48 + 9</td>
<td>26 + 57</td>
</tr>
</tbody>
</table>

*Presence or absence of respiratory disease at examination initiating the three-month interval

Table 7-3 Age-Specific Incidence of Xerophthalmia for Children with and without Diarrhea

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Child Intervals</th>
<th>Developed Xerophthalmia</th>
<th>Xerophthalmia Rate (per 1000)</th>
<th>Relative Risk of Xerophthalmia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diarrhea</td>
<td>Diarrhea</td>
<td>Diarrhea</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>≤ 1</td>
<td>4990</td>
<td>465</td>
<td>4 + 2</td>
<td>08 + 43</td>
</tr>
<tr>
<td>2</td>
<td>3038</td>
<td>289</td>
<td>8 + 1</td>
<td>26 + 35</td>
</tr>
<tr>
<td>3</td>
<td>3045</td>
<td>172</td>
<td>11 + 1</td>
<td>36 + 58</td>
</tr>
<tr>
<td>4</td>
<td>2979</td>
<td>151</td>
<td>11 + 2</td>
<td>37 + 132</td>
</tr>
<tr>
<td>≥ 5</td>
<td>3644</td>
<td>93</td>
<td>14 + 2</td>
<td>38 + 21.5</td>
</tr>
<tr>
<td>Total</td>
<td>17,696</td>
<td>1170</td>
<td>48 + 8</td>
<td>27 + 68</td>
</tr>
</tbody>
</table>

*Presence or absence of a history of four or more loose stools one or more days within the month preceding the examination initiating the three-month interval

Table 7-3 Age-Specific Incidence of Xerophthalmia for Children with and without Diarrhea

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Child Intervals</th>
<th>Developed Xerophthalmia</th>
<th>Xerophthalmia Rate (per 1000)</th>
<th>Relative Risk of Xerophthalmia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diarrhea</td>
<td>Diarrhea</td>
<td>Diarrhea</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>≤ 1</td>
<td>4990</td>
<td>465</td>
<td>4 + 2</td>
<td>08 + 43</td>
</tr>
<tr>
<td>2</td>
<td>3038</td>
<td>289</td>
<td>8 + 1</td>
<td>26 + 35</td>
</tr>
<tr>
<td>3</td>
<td>3045</td>
<td>172</td>
<td>11 + 1</td>
<td>36 + 58</td>
</tr>
<tr>
<td>4</td>
<td>2979</td>
<td>151</td>
<td>11 + 2</td>
<td>37 + 132</td>
</tr>
<tr>
<td>≥ 5</td>
<td>3644</td>
<td>93</td>
<td>14 + 2</td>
<td>38 + 21.5</td>
</tr>
<tr>
<td>Total</td>
<td>17,696</td>
<td>1170</td>
<td>48 + 8</td>
<td>27 + 68</td>
</tr>
</tbody>
</table>

*Presence or absence of a history of four or more loose stools one or more days within the month preceding the examination initiating the three-month interval

Result was even more pronounced (Table 7-3). A positive association was present at every age, with an average relative risk (RR) of 2.5 (p < 0.05). Once again, the relative risk associated with diarrhea was comparatively constant across strata of wasting malnutrition 20 and 28 for wasted (<90% weight-for-height) and better nourished children respectively.

Results are particularly striking because the children at greatest risk of xerophthalmia (e.g., those with the most severe respiratory disease and diarrhea)
Mechanisms were provided symptomatic treatment and referred to local health centers in the interim.

It is evident that infectious episodes can materially affect vitamin A status. If, as seems likely, vitamin A deficiency increases the risk of diarrhea and respiratory disease, while respiratory disease and diarrhea impair vitamin A status, children get trapped in a particularly lethal cycle that induces and perpetuates ocular and systemic morbidity.

Diarrhea and Gastroenteritis

Aside from the incidence data noted above, most evidence linking diarrhea to vitamin A status stems from cross-sectional prevalence surveys (Table 3-1), with their inherent difficulties in distinguishing cause from effect. Data relating the severity of vitamin A deficiency with diarrheal illness also comes from hospital and clinic-based studies. Differences in vitamin A status were more pronounced for children presenting to the Cicendo Eye Hospital with a history of diarrhea (≥ 4 loose stools in a single day during the preceding month) than for children with clinically detectable gastroenteritis, presumably because of the cumulative impact of past diarrhea on vitamin A status. Sixty-six percent of cases of X1B and 75% of X2/X3 had a positive history, versus 23% of the controls of corneal cases (RR > 3.0, p < 0.01). By case-control analysis, children with a history of diarrhea during the previous month were at thirteen times the risk of active corneal disease than were children with a negative history. Interestingly, a majority of the diarrheal episodes were said to have occurred within the previous week—it's unclear whether this was an acute, precipitating event or merely a surrogate for frequent diarrhea in the past, confounded by the historical nature of the data.

The Indonesian countrywide survey yielded comparable results, supporting the ability to generalize findings to the population of Indonesian children at large. A history of diarrhea in the past two months was present in 61% of cases of X1B (close to the 66% in the clinic study), and a recent history (during the past week) was three times as common as among controls (10.1% versus 3.5%, p < 0.01). Among children presenting to the Dhaka Hospital of ICDDR,B in Bangladesh, Indonesia, those with xerophthalmia (XN) had lower serum retinol levels, were more undernourished, and were significantly more likely to have suffered a prolonged illness with dysentery attributed to *Shigella* and *E. Histolytica*. A community-based survey in the same city demonstrated that protracted diarrhea was significantly associated with the presence of XN (OR = 4.1). In a population-based study in southern Nepal, the risk of xerophthalmia increased with the reported duration of dysentery during the previous week (OR = 2.1 if 1–6 days, 5.8 if ≥ 7 days).

In contrast with the high frequency of diarrhea among patients admitted to the Cicendo Hospital, gastroenteritis was present in only 2% (1/50) of children.
Contributory and Precipitating Events

presenting with responsive Bitot's spots (X1B), and in 7% (11/156) with active corneal disease (X2/X3). The prevalence of gastroenteritis was twice as common in cases of corneal involvement than it was in their matched controls. Whether the gastroenteritis was a result of severe vitamin A deficiency, the significant PEM that frequently accompanies corneal involvement, and/or a precipitating cause of acute, severe vitamin A deficiency is uncertain. It's likely that one or all three factors were at work, to different degrees in different children.

Feachem has pointed to the inevitable difficulties in sorting out cause and effect, and of isolating direct relationships from the confounding issues of nutritional and socio-educational status. Two approaches help. The strongest epidemiologic evidence is the consistency and strength of the relationship across multiple studies. The other is the existence of biological mechanisms to explain the relationship. These include anorexia, reduced absorption of ingested vitamin A that accompanies diarrhea, and cultural practices such as the prescription of food during diarrhea. Absorption is seriously impaired in steatorrhea, in gastroenteritis not accompanied by fat malabsorption, in mild to moderate undifferentiated diarrhea, in chronic salmonellosis, and even in asymptomatic infection with parvovirus and strains of E. coli.

A recent study of Peruvian children suggests acute diarrhea, particularly from rotavirus, increases urinary excretion of vitamin A tenfold. Much of the increase appears to have been related to accompanying fever. Diarrhea may be associated with Giardia and Ascaris, both of which reduce vitamin A absorption, in some instances by as much as 70%. Parasitic infestation may therefore exaggerate the effects of borderline dietary intake, though the mechanisms are not entirely clear. A recent report failed to identify increased absorption of vitamin A by Ascaris or increased excretion of orally administered vitamin A in the stools of infected children.

Vitamin A deficiency and parasitic infections are commonly linked in the popular mind. Indonesian villagers refer to Bitot's spots as "worm feces" and blame roundworm infestation for their presence. Although roundworms are found in a large proportion of xerophthalmic patients, worm infestation is so prevalent in depressed communities that it is difficult to assess the significance of this observation in the absence of suitable controls. In a cross-sectional survey in the Philippines, roundworms were no more common in cases of (mild) xerophthalmia than in the rest of the population, although in Jordan they were—at least 43% of normals and 60% of abnormalities harbored the parasites.

In the representative Indonesian countrywide survey, a history of shedding worms during the preceding month was present in 22% of children with Bitot's spots, 14% of their matched controls, and 9% of other children (p < 0.01 for linear trend). Although the beneficial effect of deworming on vitamin A absorption lasts at least two months, reinfection is extremely common. Deworming in combination with a large oral dose of vitamin A (200,000 IU) every six months was not superior to vitamin A alone in boosting and maintaining serum retinol
among urban slum-dwelling Indian children. But in Brazil, where *T. trichuris*, *A. lumbricoides* and *G. lamblia* are common, treatment with mebendazole and metronidazole prior to relatively small daily doses of vitamin A (500 mg retinyl acetate) was essential for increasing serum retinol.

Since Third World children generally obtain a significant proportion of their vitamin A from beta carotene, and the absorption and conversion of dietary sources of carotene to vitamin A is even more susceptible to intestinal alterations, the true health impact of intestinal infections on vitamin A status is probably greater than isolated studies on preformed vitamin A (or even carotene) might suggest.

Milder degrees of vitamin A deficiency are only beginning to be studied, primarily through tests of physiologic function like conjunctival impression cytology (CIC) and measures of body stores such as RDR. Indian children with mild, chronic diarrhea and entirely normal eyes were much more likely to have abnormal CIC and RDR than their age-sex-neighborhood matched controls.

Diarrhea affects a variety of intestinal functions, which lead not only to vitamin A deficiency but also to PEM, another vicious cycle with which disadvantaged children must contend. The impact of PEM on multiple facets of vitamin A metabolism is discussed below.

Respiratory Disease

Respiratory disease, like diarrhea, is strongly associated with mild xerophthalmia (Chapter 3). The evidence is about equal that respiratory disease influences vitamin A status and that vitamin A status influences the risk of respiratory disease.

Active respiratory disease (fever plus cough/rales) was the most common condition accompanying xerophthalmia in children presenting to the Cicendo Eye Hospital in Bandung, Indonesia. The prevalence of respiratory disease increased dramatically with the severity of vitamin A deficiency (xerophthalmia) (Fig 3-5). This is made all the more striking by the fact that the children presented for their eye problems, not for their systemic disease. As with diarrhea, a recent history of respiratory disease suggests it is contributory to, rather than merely a consequence of, vitamin A deficiency. A history of significant cough was more common in severe deficiency (X3B) than in milder xerophthalmia (X2, X3A), 27% versus 16% respectively (p < 0.01). It was also more common among corneal cases (X2/X3) than among their matched controls (30% versus 9%, p < 0.05).

A number of factors may explain the particularly high frequency of respiratory disease among cases of corneal necrosis (X3B). These children were generally more malnourished and debilitated than children with milder disease, conditions generally associated with a high prevalence of respiratory infection. As already discussed (Chapter 3), vitamin A deficiency may increase the risk (or severity).
of subsequent respiratory tract infection, while severe or repeated respiratory
disease can have a profound influence on vitamin A status (which in turn contribu-
tes to the severity of vitamin A deficiency and xerophthalmia).

Serum vitamin A levels are routinely depressed in respiratory disease. Ordinarily, vitamin A does not appear in the urine, but during respiratory infections, enormous amounts (in excess of 3000 IU/d) may be lost by this route. Recent studies in patients with severe pneumonia and sepsis suggest retinol excretion results from impaired retention of retinol binding protein (RBP). Respiratory infections also interfere with absorption of beta carotene and vitamin A. Beta carotene absorption may fall by as much as 50%–80%, remaining at this level for as long as two weeks after the last day of fever. Dietary intake ordinarily capable of raising serum vitamin A may fail to maintain preexisting levels. Absorption of vitamin A administered in moderate amounts, usually 90% or higher, may fall to as low as 30% (mean of 74%). The average rise in serum vitamin A levels following a massive oral dose in persons with tuberculosis is only half that in normals.

A history of recent respiratory disease, like a history of recent diarrhea, is also more common among children with mild ("pre-xerophthalmia") vitamin A deficiency detected by CIC. Micronesian children with abnormal CIC were 2.6, 2.3, and 1.7 times more likely, respectively, to have reported diarrhea (>4 loose stools), respiratory illness (frequent cough with rapid breathing, \(p < .05 \)), and high fever, during the prior two weeks than were their CIC normal controls. Results were comparable for an earlier, clinic-based study using similar techniques. In the United States, serum vitamin A levels dropped over the first months of life in very-low-birth-weight (VLBW) infants with repeated episodes of airway infection when compared with controls.

Measles

One of the most intriguing aspects of the vitamin A "story" to unfold in the past two decades has been our increased understanding of the interrelationship between measles infection and vitamin A status, and its implications for sight and life.

As already discussed (Chapters 3, 4), vitamin A status plays a major role in determining the incidence and severity of measles complications and associated blindness and mortality. By the same token, measles impacts on vitamin A status.

During the acute phase of measles, vitamin A levels are markedly depressed in comparison to the predisease state or a noninfected reference population. As many as a quarter or more of children studied have had deficient levels (<10 μg/dl), even in New York. Serum retinol often rises spontaneously and dramatically once the acute phase of measles has passed.

The genesis of the decline in vitamin A levels accompanying active measles is uncertain but probably multifactorial. Given its acute and often transient...
Mechanisms

nature, it is unlikely to reflect reduced intake and absorption. More likely, there is a disturbance in the release and transport of vitamin A stores coupled with a dramatic increase in metabolic demand secondary to an intensely catabolic state. The latter results from measles invasion, epithelial desquamation, fever, and secondary infection. Measles induces a protein-loosing enteropathy that exacerbates underlying PEM, providing an additional mechanism to explain reduced RBP syntheses and release in the face of potentially adequate hepatic reserves. A number of issues remain puzzling the near-universal depression in circulating retinol and spontaneous recovery despite a persistent ability to mount a holo-RBP response to exogenous sources of vitamin A, and the low incidence of vitamin A deficiency-related clinical complications in children who are otherwise well nourished and have good vitamin A reserves—as if serum retinol does not necessarily reflect the physiologic adequacy of vitamin A at the level of target tissues. Nonetheless, sudden, dramatic, and severe depression in circulating retinol can and does occur during the acute phase of measles. Levels are most depressed in children with severe disease, complications, pneumonia, high and persistent fever, and PEM.

In addition to its acute impact on vitamin A status, measles can initiate events leading to increasingly severe, chronically progressive vitamin A deficiency and PEM. The latter exacerbating the former. Voorhoeve described the typical course in a Nigerian child: initial acute measles-associated ocular discomfort resolved spontaneously, but measles-induced diarrhea persisted for four weeks when the child presented as a “marasmic skeleton” with perforations of both eyes. By itself, fever accompanying measles increases protein breakdown in excess of synthesis, resulting in negative protein balance. This is quite apart from measles-induced protein-loosing enteropathy, dietary intake that is reduced by anorexia, stomatitis, and common cultural practices that dictate withholding food and fluid from children with measles, and recurrent diarrhea and pneumonia, which occur as long as six months or more after the original measles attack.

It is hardly surprising that in some instances a quarter of affected children lose 10% of their body weight, or that measles is frequently cited as an important precipitating event in severe PEM. They are dragged downward into the spiral of the “malnutrition/infection complex,” which may have a significant, negative impact on growth that persists for years. Vitamin A supplementation during the acute attack can reduce the risk of growth faltering and malnutrition, at least in part, by reducing post-measles infections.

Measles has long been associated with corneal ulceration and melting resembling severe xerophthalmia. Given the impact of measles on vitamin A status, it is not surprising Duddell makes reference to it in his treatise on the cornea of 1729. Measles was included by Spicer, in 1892, as one of several systemic diseases precipitating “large perforating ulcers.” Bloch described a Danish case of keratomalacia that “appeared simultaneously with measles.” Since then,
Contributory and Precipitating Events

a number of authors have called attention to the potential relationship. Corneal ulceration resembling xerophthalmia has been observed to follow measles in Europe,25 27 42,119 121 122 the Middle East,109 123 Asia,74 124-127 and Africa.107 111 128-134 Fifty-seven percent of El Salvadorian135 and 16% of Haitian136 children with corneal scarring typical of xerophthalmia claimed that their active disease had been accompanied by measles.

Malnourished, hospitalized children in El Salvador with typical corneal ulceration and necrosis were more likely to have had a recent history of measles than were malnourished children with normal eyes.137 In the Indonesian nationwide survey, 36% of cases of X2/X3 claimed to have had measles during the preceding month, a rate ten times that of the rest of the population, 79% of X3 and 51% of XS claimed the onset of ocular disease had been preceded, by one to four weeks, by measles.3 This is in sharp contrast with cases of X1B, which were as likely to have suffered measles during the past month as their non-xerophthalmic peers (4.8%),3,138 a finding consistent with that of the Philippines and Nepal.77,139

Among xerophthalmia patients with X2/X3 presenting to the Cicendo Eye Hospital in Bandung, almost 10% had evidence of active or recent measles, usually within the preceding month.3 They were likely to have the severest forms of corneal necrosis, and all were markedly vitamin A-deficient. One case is particularly illustrative. He was first seen twelve days after onset of measles. The cornea contained three inferocentral, saucer-shaped, infiltrated ulcers in a perfectly straight horizontal line in the left eye, and a linear central ulcer resembling a traumatic lesion in the right eye. He had been successfully treated for nightblindness with low-dose vitamin A pills at a local clinic three months previously. A week prior to admission he developed fever, cough, diarrhea, and measles rash coincident with the return of nightblindness. Initial serum retinol was extremely low (5 μg/dl) but protein status was reasonable (serum albumen 3.5 g/dl and transferrin 244 mg/dl). He was given high-dose vitamin A, and the ulcerations disappeared within three days.

As in the nationwide survey, none of the patients presenting to Cicendo Eye Hospital with Bitot's spots (and normal corneas) had a recent history of measles.3

Classical xerophthalmia, with conjunctival and corneal involvement, has been long recognized following post-measles deterioration of vitamin A status.111,129-131,140-142 Sudden corneal ulceration and necrosis accompanying the acute phase of measles, often without coexisting conjunctival xerophthalmia and occasionally in populations in which xerophthalmia is not commonly recognized, have obscured the central role vitamin A plays in a significant number of cases. This has been especially true in Africa, where measles-associated corneal destruction is commonly cited as the major cause of acquired pediatric blindness.110,128,143-153 The situation has been further clouded by the common African practice of placing herbal medicines in the eyes of children with active measles.112,154,155 An area of Zambia in which the problem was once particularly common, the Luapula Valley, achieved notoriety as "the valley of the blind."146 "Luapula blindness" came to
Mechanisms

be attributed to the "three Ms" muti (local medicines), malnutrition, and measles. Most children with corneal complications suffered particularly virulent measles and significant malnutrition. The virulence of their measles may have been related to concomitant malnutrition, overcrowding, vitamin A deficiency, and other factors. Indeed, blindness was noted to be much less prevalent in Luapula Valley communities in which red palm oil (an excellent source of provitamin A carotenoids) was consumed than in those in which it was not.

In 1978, Whittle and colleagues called attention to the potential role of herpes simplex in measles complications, particularly those affecting the eye. They identified herpes virus by culture or immunofluorescence in a significant proportion of ulcerating eyes. Most of the subjects were malnourished, those with the worst corneal necrosis, severely so. The researchers concluded that the combined immunosuppressant effects of measles and PEM predisposed to secondary (presumably recrudescent) herpes. Vitamin A deficiency was considered less important, because a significant proportion of cases had serum RBP levels considered by the authors to be in the "normal range." The latter conclusion is arguable. Half the cases of clinical corneal xerophthalmia unassociated with measles reported from India and Indonesia had similar levels, above 15 μg/dl.

Typical herpetic corneal lesions have been observed in children with concomitant measles and malnutrition in Africa and elsewhere. Children with measles and malnutrition are particularly immunocompromised and susceptible to secondary herpes. Indeed, fatal herpes in neonatal African children is frequently preceded by measles. This does not necessarily mean vitamin A deficiency plays no role concurrent measles and malnutrition cause greater depression of vitamin A than either condition alone, and vitamin A deficiency reduces immune-competence (Chapter 9)—combined with measles and PEM, the suppression should be even greater. Vitamin A-deficient rats infected with herpes simplex virus (HSV-1) placed on mildly abraded epithelium in the early stages of vitamin A deficiency (prior to or at the start of the weight plateau) develop more rapid and severe epithelial ulceration and corneal necrosis than do their pair-fed controls. They are also more likely to develop disseminated disease. Interestingly, topical application of herpes virus to nonabraded, keratinized corneas of rabbits with more severe, prolonged vitamin A deficiency produced less extensive epithelial infection, a difference ascribed to an increased barrier to infection provided by the heavily keratinized corneal surface.

McLaren, long a pioneer in this area, drew attention to Foster's contribution to sorting out the pathogenesis of measles-associated corneal ulceration. Foster studied 130 Tanzanian children with active corneal ulceration from all causes by clinical examination, response to therapy, and biochemical parameters. Herpes simplex was responsible for one-third of the ulcers, vitamin A deficiency, for one-quarter, and traditional medicines, for one-seventh (Fig 7-1). Vitamin A deficiency was associated with more severe disease and a less favorable out-
Contributory and Precipitating Events

Fig. 7-1. The presumptive etiology of corneal ulcers among 130 children presenting to the Mvumi Hospital in Central Tanzania. Measles was responsible for less than 4%, vitamin A deficiency, for more than 25% (From A Foster et al.184)

In over one-third of the children, both eyes were ulcerated. Vitamin A deficiency was responsible for over half such cases, herpes, for less than a quarter.

A history of measles within the preceding month was present in over one-third of all cases of corneal ulceration and in 57% of those with bilateral ulcers. Vitamin A deficiency was responsible for half the measles-associated corneal ulcers, herpes, for one-fifth, and traditional medicines, for nearly 17% (Fig 7-2).

In this same study, three-quarters of all corneal ulcers due to vitamin A deficiency, but only one-fifth of those caused by herpes simplex, had a recent history of measles. The longer the duration between measles and onset of ulceration, the more likely that the ulcer was secondary to vitamin A deficiency, suggesting late sequelae of chronic, post-measles deterioration of vitamin A status.

The clinical diagnosis was almost always supported by the biochemical data (Fig 7-3). Occasional discrepancies between clinical diagnoses and serum retinol values point up the complexity and multifactorial nature of corneal ulceration in rural African children. In retrospect, two cases diagnosed as xerophthalmia that appeared to have normal vitamin A levels may have been caused by traditional medicines. One case of measles-associated ulceration with extremely low vitamin A and RBP levels had initially been diagnosed as xerophthalmia, but the diagnosis was changed to "traditional medicines" when the child failed to respond to vitamin A therapy. There is no reason the child could not have suffered from both.

Eleven percent of measles-associated ulcers were round, epithelial, and central, occurring within ten days of onset of rash. These healed quickly on antibiotics and patching and probably represented confluent measles keratitis accentuated...
Fig. 7-2. Over one-third of the children presenting to the Mvumi Hospital with corneal ulcers had a history of measles within one month of onset of their corneal lesions. In half these measles-associated cases, the underlying etiology was vitamin A deficiency (n = 48 children) (From A Foster et al).
by desiccation of the cornea from exposure. Herpetic ulcers were usually unilateral, mild, and limited to the epithelium.

Foster and Yorston compared childhood corneal ulcers at one hospital for the periods 1982–1984 and 1986–1988, during an interval when measles immunization rates rose from 30% to 80%. Measles admissions fell 78%, ulcers “associated with measles” (through whatever mechanism) fell 87%, and ulcers due to vitamin A deficiency (frequently precipitated by measles) fell more than 75%.

In conclusion, measles can precipitate severe vitamin A deficiency, resulting not only in increased systemic morbidity and mortality, but corneal ulceration and blindness. The exact mixture of contributory causes of measles-associated blindness are likely to vary from one population to another, but the constituents seem clear. Measles directly invades the conjunctiva and cornea, giving rise to punctate keratitis of varying severity. The lesions, however, are superficial and generally resolve spontaneously. In a number of children, herpes simplex ulceration occurs. Exactly how or why is uncertain. Given the common recurrence of herpes lesions elsewhere, principally the skin and mouth, it is likely these reflect reactivation secondary to reduced immune competence from measles, PEM, vitamin A deficiency, and quite possibly other factors, such as malaria, alone or in combination. Herpes lesions are generally unilateral and superficial, rarely leaving the child blind.

At the same time, vitamin A deficiency appears to account for the majority of cases of measles-associated bilateral, severe, blinding corneal ulceration.

Two factors that seem to have most confused investigations in the past are the frequent absence of other evidence of xerophthalmia (X1B/X2) in measles cases, and the seeming rarity of mild xerophthalmia in the population at large. The latter may simply reflect failure to adequately assess the status of poor, often rural, remote populations (personal communication, Erika Sutter, 1979). On a first consultation to Tanzania (by A S) in 1981, the existing “lore” concluded xerophthalmia was a rarity, despite claims by Sauter that vitamin A prophylaxis would prevent serious measles-associated corneal ulceration in that country. Active surveillance subsequently identified large numbers of cases, later confirmed by formal surveys.

Typical xerophthalmia, in the absence of precipitating measles, has been observed in most areas of Africa in which measles-associated blindness occurs and in which it has been sought out. Estimates that one-fourth to one-half the cases of corneal involvement are associated with measles are consistent with observations in Indonesia and reports from El Salvador, Vietnam, Japan, and Jordan.

It is also likely that most children in Africa, as elsewhere, have mild vitamin A deficiency (e.g., are “pre-xerophthalmic”). Where measles leads to chronic, repeated reinfections, diarrhea, and PEM, vitamin A status may deteriorate slowly, providing ample opportunity for nightblindness and keratinizing metapla-
Mecanisms (X1/X2) to become apparent. But where measles is severe and vitamin A status precarious, precipitous deterioration of “borderline” deficiency (“marginal status”) results in rapid stromal melting (ulceration and keratomalacia, X3) before clinically detectable xerosis develops. In some instances, corneal ulceration and its attendant ocular inflammation may reverse or otherwise mask preexisting conjunctival xerosis (Chapter 4).

Measles may also work through local ocular factors to potentiate the xerophthalmic process. Measles keratitis no doubt increases corneal requirements for vitamin A and may contribute to those still-obscure processes responsible for xerophthalmic melting of the corneal stroma. Measles is also associated with reduced tearing and alterations in tear composition. While the importance of tears for the delivery of vitamin A to ocular tissues is uncertain, tears do contain vitamin A in a concentration that varies with vitamin A status.

The mutual interaction between measles and vitamin A nutriture, and their effect, in turn, on systemic morbidity, mortality, and blindness, provide a powerful and urgent incentive for further enhancing measles immunization. The facts are that immunization coverage falls well below 100%, immunization does not protect a substantial proportion of those reached, and children too young to be successfully immunized (less than six months to nine months) are at risk of blinding and deadly measles. These are cogent reasons for ensuring that all children with measles receive large-dose vitamin A treatment—as should all children who have less than adequate vitamin A stores.

Interestingly, five cases of post-measles corneal melting were observed in Leipzig, Germany, in a three-month period in 1955. The authors could not explain its genesis. Although the children were generally very ill, the authors ruled out vitamin A deficiency by the absence of any significant clinical response to vitamin A therapy. But the vitamin A was administered as an oily injection (which is relatively ineffective) late in the course of corneal disease (when little viable corneal tissue may still have been present). One of the earliest reports of classical vitamin A deficiency (by dietary history) and xerophthalmia had been published from this same clinic forty years earlier.

Protein Energy Malnutrition

The association between PEM and the presence or risk of vitamin A deficiency, particularly severe, blinding xerophthalmia and measles-related corneal destruction, has been repeatedly noted. In Indonesia, the severity of xerophthalmia, especially corneal xerophthalmia, was linked with the severity of PEM as measured by a variety of indices, including anthropometric status, pedal edema, and serum levels of albumen and transferrin. Seventy percent of cases of corneal xerophthalmia, but only 30% of vitamin A-responsive Bitot’s spots (and none of the matched controls), had serum albumin levels below 3.5
Contributory and Precipitating Events

Children with nightblindness (XN) admitted to ICDDR,B’s Dhaka facility were more likely to be malnourished than were their non-xerophthalmic peers. The pervasive relationship between malnutrition, particularly protein deficiency, and vitamin A status can arise from at least two sources. The first is common origins—dietary habits, hygiene standards, and their interplay (the “infection/malnutrition complex”). In general, children deficient in protein are likely to be deficient in other nutrients as well. This noncausal relationship helps explain individual variations in the association between protein and vitamin A status.

The presence of PEM increases the subsequent risk of xerophthalmia (by roughly the same order of magnitude as does the presence of respiratory disease or diarrhea). This suggests a second source of association, arising from a direct, causal interaction between protein status and vitamin A metabolism. As discussed in Chapter 8, protein plays an important role in transporting vitamin A from liver stores to target cells. RBP synthesis, hence retinol transport from the liver (as holo-RBP), depends on an adequate supply of both vitamin A and protein. Rats deprived of vitamin A suffer a fall in serum and liver vitamin A concentration, but a fourfold rise in liver apo-RBP. Administration of a large dose of vitamin A results in a rapid outpouring of holo-RBP. Rats deprived of both vitamin A and protein suffer a much more muted holo-RBP response.

Children react in much the same way. Serum retinol levels of protein-deficient children are depressed, even in the presence of adequate vitamin A liver stores, and rise in response to a high protein diet (serum retinol and RBP doubling within eight days). By the same token, the rapidity and extent of the holo-RBP response following a large (oral or parenteral) dose of vitamin A is directly related to a child’s baseline protein status. These biochemical differences have their clinical counterparts. While most cases of xerophthalmia will respond to a massive dose of vitamin A (even in the presence of severe protein deficiency), protein status affects the speed and duration of that response. Corneal xerophthalmia healed uneventfully in 74% of Indonesian children with PEM given standard, large-dose vitamin A, the response, however, was slower than that of better-nourished children. Fully 90% of cases that suffered clinical relapse had significant PEM (serum albumin < 3.0 g/dl or transferrin < 50 mg/dl, weight for height < 70%, or pedal edema). The transient nature of the clinical and holo-RBP response to large-dose vitamin A therapy suggests impaired vitamin A transport and storage. In rats, at least, protein deficiency can interfere with liver storage of vitamin A.

While the complexity and nuances of vitamin A and protein interaction are only beginning to be understood, even crude attempts to quantify their relationship are revealing. Despite the multiple factors that can transiently alter serum retinol levels (rendering it a relatively coarse index of vitamin A status), the cross correlation between serum retinol and albumin (a surrogate for protein
Mechanisms

"status") provides a reasonably sensitive and specific biochemical index for differentiating xerophthalmia patients of varying clinical severity—an index superior to either of its components alone. These relationships are internally consistent. For example, in non-xerophthalmic children, one expects and finds a positive correlation between serum albumin and retinol. This contrasts with xerophthalmic corneal dissolution, where vitamin A metabolism has presumably collapsed. In this extreme circumstance, patients whose protein status is relatively normal would need to be severely retinol depleted, those only modestly vitamin A deficient would need to be severely protein deficient. As a result, the slope of serum vitamin A on albumin would be negative, which indeed can be the case. This would explain why serum carotene levels are sometimes higher in xerophthalmic children with kwashiorkor than in those without, with their better protein status, children without kwashiorkor must be more severely deprived of vitamin A to develop xerophthalmia. Further, this observation is consistent with the frequent finding that the severest forms of xerophthalmia are commonly accompanied by protein deficiency, and that in the absence of severe (primary) vitamin A deficiency serious xerophthalmia is largely limited to severely malnourished individuals.

It remains uncertain whether defects in vitamin A transport secondary to protein deficiency or other factors can result in clinical xerophthalmia in the absence of at least some degree of primary vitamin A deficiency. Hussey has raised this possibility to explain measles-related, vitamin A-responsive complications among children thought to have been otherwise vitamin A sufficient. As important as protein status may be to vitamin A metabolism, it clearly does not dominate the clinical manifestation of vitamin A status. How else to describe the wide variation in the frequency and severity of ocular involvement reported in kwashiorkor, or the ability of large-dose vitamin A to produce a modulated but effective therapeutic response in the majority of severely malnourished patients?

It is likely that protein deficiency acts at multiple loci of vitamin A-dependent function. In addition to affecting apo-RBP production, cellular RBP may be depressed in protein deficiency. Protein status would also be expected to influence vitamin A regulation of gene expression—whose primary outcome, after all, is the production of highly specific proteins.

Chronic protein deficiency can have a paradoxical effect on vitamin A status by inhibiting growth and reducing metabolic demands. It may conserve existing vitamin A stores. Protein deficient rats utilize RBP at only half to two-thirds the normal rate. Hence, anything that increases vitamin A demands, including a protein-induced growth spurt, can precipitate deficiency and its consequences among individuals with marginal vitamin A stores. Gopalan observed malnourished children fed protein-rich diets develop xerophthalmia. Bloch attributed the seasonality of xerophthalmia in Denmark to demands placed on limited vitamin A reserves by the spring growth spurt.
Our understanding of the molecular mechanisms by which protein status affects vitamin A-dependent functions remains extremely limited, particularly as it relates to the myriad of subtle, non-ocular consequences of "vitamin A deficiency". In the meantime, it is clear that successful prevention and treatment of vitamin A deficiency and its consequences require careful attention to the population's protein status.

References

Mechanisms

20 Russell RM, Muttack R, Rosenberg IH, Smith VC, Knill AE Dark-adaptation testing for diagnosis of subclinical vitamin-A deficiency and evaluation of therapy Lancet 1973,2 1161–1163
23 Clausen SW, McCord AB The carotinoids and vitamin A of the blood J Pediatr 1938,15 635–650
26 Leber T Ueber die Xerosis der Bindehaut und die infantile Hornhautverschwarzung nebst Bemerkungen uber die Entstehung des Xerophthalmus Graefe's Arch Ophthalmol 1883,29 225–290
27 Fischer JN Keratomalacie nach Masern Lehrbuch degesant Entztundungen 1843 275
28 Uhthoff W Untersuchungen uber den Einfluss des chronischen Alkoholismus auf das menschliche Sehorgan Klin Wochenshr 1887,24 227/716–717
29 Fuchs A The influence of general metabolic and nutritional disturbances upon the resistance of the cornea Am J Ophthalmol 1947,30 721–727
30 Ettl A, Daxecker F Xerophthalmie bei Leberzirrhose Richtige Diagnose nach 15 Jahren (Xerophthalmia in cirrhosis of the liver Correct diagnosis after 15 years) Ophthalmologica 1992,204 63–66
33 Bernhard Hemeralopie und Xerosis conjunctivae bei Potatoren Thesis, Tubingen University 1902
34 Vaughan DG Xerophthalmia Arch Ophthalmol 1954,51 789–798
36 Smith FR, Goodman DS The effects of diseases of the liver, thyroid, and kidneys on the transport of vitamin A in human plasma J Clin Invest 1971,50 2426–2436
37 Russell RM, Iber FL, Krasinski SD, Miller P Protein-energy malnutrition and liver dysfunction limit the usefulness of the relative dose response (RDR) test for predicting vitamin A deficiency Human Nutr Clin Nutr 1983,37 361–371
38 Nyberg A, Berne B, Nordlinger H, Busch C, Eriksson U, Loof L, Vahlquist A Impaired release of vitamin A from liver in primary biliary cirrhosis Hepatology 1988,8 136–141
Contributory and Precipitating Events

79 Reddy V, Vijayaraghavan K, Mathur KK. Effect of deworming and vitamin A
Contributory and Precipitating Events

administration on serum vitamin A levels in preschool children J Trop Ped 1986, 32 196–199

85 Usha N, Sankaranarayanan A, Walia BNS, Ganguly NK Early detection of vitamin A deficiency in children with persistent diarrhoea Lancet 1990,1 422

88 Lala VR, Reddy V Absorption of B-carotene from green leafy vegetables in undernourished children Am J Clin Nutr 1970,23 110–113

89 Lindqvist T Untersuchungen über das vitamin A bei Pneumonie Klin Wochenschr 1937,16 1345–1348

90 Lawrie NR, Moore T, Rajagopal KR The excretion of vitamin A in urine Biochem J 1941,35 825–836

91 Breese BB, Watkins E, McCoord AB The absorption of vitamin A in tuberculosis JAMA 1942,119 3–4

93 Shenai JP, Stahlman MT, Parker RA, Chytii F Vitamin A status and infection in very-low-birth-weight neonates (abstract) Pediatr Res 1994,35 320A

119 Duddell B. Treatise of the diseases of the horny-coat of the eye. London: John Clark 1729; 32, 50, 57–58
Contributory and Precipitating Events

121 Trantus (1900), Baer (1901). Cited in Groenouw, A, Graefe’s Saemisch Handbuch, 3rd ed, Verlag Von Julius Springer, Berlin 1920 624–628

122 Bezold F. Keratomalacia nach morbillen Klin Wochenschr. 1874;11:408–411

126 Nguyen Dinh Cat. La keratomalacie infantile au Viet Nam. XVIII Cong Ophthalmol, Belgium 1958 1127–1135

128 Sauter JJM. Causes of blindness detected in 19 schools for the blind in Tanzania. Final Report, September 1978

141 Budden FH. Blindness in Northern Nigeria. Report on an investigation carried out in November–December 1974 as a WHO short-term consultant WHO Vit/PBL/75 I 1975

142 Awdry PN, Cobb B. Vitamin A deficiency and blindness in the Luapula Valley of Northern Rhodesia. (review/abstract) Exp Eye Res 1964,3:373

Contributory and Precipitating Events 217

188 Genton B, Al-Yaman F, Semba RD, Gunyi M, Tareaika J, Alpers MP. Vitamin A

190 Foster A, Kavishe F, Sommer A, Taylor HR A simple surveillance system for xerophthalmia and childhood corneal ulceration Bull WHO 1986,64 725–728

195 Rodger FC, Sinclair HM Vitamin deficiencies, Chapter 5 In Metabolic and Nutritional Eye Diseases Springfield Charles C Thomas 1969 177–264

199 Sommer A Conjunctival appearance in corneal xerophthalmia Arch Ophthalmol 1982,100,951–952

203 Vitamin A and measles Lancet 1990,2 304

204 Vitamin A for measles (editorial) Lancet 1987,1 1067–1068

207 Blatz G Hornhautenschmelzung nach Masern Klin Monatsbl Augenh 1956 129 763–772

Contributory and Precipitating Events

212 Bloch CE. Fat deficiency disturbances in infants. JAMA 1917, 68: 1516.

230 Sommer A Vitamin A, xerophthalmia, and diarrhoea (letter) Lancet 1980, 1411–1412
231 Moore T Vitamin A and proteins Vitam Horm 1960 18 431–437
232 Baumann CA, Foster EG, Moore PR Effect of dibenzanthracene, of alcohol, and of other agents on vitamin A in rat Biol Chem 1942 142 597–608
233 Basu NM, De NK Storage of vitamin A in liver under different conditions of protein and carbohydrate intake Sci and Cult (Calcutta) 1941, 6 672
234 Blegvad O Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924, 7 89–117
236 Annual Report National Institute of Nutrition Hyderabad, India 1981
Our understanding of the biochemistry of vision developed much more rapidly than that of cellular differentiation. Since the identification in 1987 of nuclear receptors for retinoic acid that induce gene expression, however, we have been rapidly gaining insight into the nature of the latter process. Our past and present knowledge about vitamin A and carotenoids has been summarized elsewhere.\(^1\) \(^2\) \(^3\)

Nature, insofar as possible, protects us from the ill effects of both inadequate and excessive intakes of the vitamin. The physiological and biochemical processes underlying this protection are described in this chapter.

Chemistry and Nomenclature

Chemical Aspects

Vitamin A and more than 600 carotenoids have been crystallized and fully characterized by a variety of chemical and physical methods. Furthermore, vitamin A and many of its analogs, as well as selected carotenoids, have been synthesized chemically from simple, readily available precursors. Mainly because of the structure of conjugated double bonds that are characteristic of both vitamin A and carotenoids, these substances are sensitive to oxidation.\(^2\) \(^3\)

Vitamin A is now considered chemically as a subgroup of the retinoids, which are defined as a class of compounds consisting of four isoprenoid units joined...
Mechanisms

in a head-to-tail manner and customarily containing five conjugated double bonds. The term "vitamin A" is used as a generic descriptor for retinoids exhibiting qualitatively the biologic activity of retinol. The numbering system for all-trans retinol is depicted in Figure 8–1 (point A). Other naturally occurring retinoids of biologic interest, shown in this figure, are B through J. Retinoids K and L are synthetic compounds with high biological activity.

The nomenclature of carotenoids primarily is based on β-carotene or, more formally, on β,β-carotene. The formulas and numbering system for β-carotene and α-carotene are given in Figure 8–1 (points M and N). The term provitamin A carotenoids is used as a generic descriptor for all carotenoids exhibiting qualitatively the biologic activity of vitamin A.

A large number of geometric isomers both of retinol (n = 16) and of β-carotene (n = 272) can exist. All sixteen of the vitamin A isomers and several of the β-carotene isomers have been synthesized. Interestingly, the all-trans and three of the four mono-cis isomers of vitamin A—the 9-cis, 11-cis, and 13-cis forms—are known to play specific physiologic roles in nature.

Fig. 8–1. Formulas and numbering systems for retinoids and carotenoids. A, all-trans retinol; B, all-trans retinal; C, all-trans retinoic acid; D, 3-dehydroretinol (vitamin A₂); E, 11-cis retinal; F, 4-oxoretinoic acid; G, retinyl palmitate; H, retinyl phosphate; I, retinoyl β-glucuronide; J, retinotaurine; K, trimethylmethoxyphenyl analogue of ethyl retinoate; L, tetrahydro, tetramethylanthrylsopropenylbenzoic acid; M, all-trans β-carotene; N, α-carotene. (From JA Olson)
Vitamin A and carotenoids are soluble in most organic solvents, but not in water. In their extraction from plasma and tissues, therefore, the cell structure must be disrupted, the proteins denatured, and the lipid fraction dissolved in some solvent, such as hexane or dichloromethane, which is immiscible with water. In crystalline form or when dissolved in oil containing an antioxidant, vitamin A is stable for long periods, providing it is kept in the dark in a sealed container under a dry nitrogen or argon atmosphere. Carotenoids, although less stable than retinol, are also preserved well under similar conditions.

Vitamin A and the carotenoids are sensitive to oxidation, isomerization, and polymerization when dissolved in dilute solution under light in the presence of oxygen, particularly at elevated temperatures. The destruction of these compounds is particularly rapid when they are adsorbed as a thin surface film in the presence of light and oxygen.

Vitamin A is stable when stored in frozen liver tissue in the dark at a temperature below −20°C, and in frozen serum stored at −70°C in sealed vials under ideal conditions. Carotenoids present in stored frozen serum or tissues tend to be more sensitive than vitamin A to destruction, but are stable at −70°C in the dark under argon.

Vitamin A and carotenoids are usually separated by high-pressure liquid chromatography and detected by UV-visible absorption spectrophotometry, although other physical and chemical procedures for detection exist. Vitamin A shows a characteristic ultraviolet (UV) absorption spectrum with an absorption maximum (λmax) of 325 nm and a molecular extinction coefficient of 53,000 cm²/M (ε1% of 1850) in hexane. Carotenoids also show characteristic absorption spectra, β-carotene, for example, has a λmax of 450 nm in hexane with a molecular extinction coefficient of 136,900 cm²/M (ε1% of 2550).

Biologic Aspects

Whenever appropriate, vitamin A and individual retinoids and carotenoids are preferentially expressed in molar terms in accord with the Systeme International (SI). Thus, serum concentrations of retinol are given in micromolar terms (µmol/liter) rather than in micrograms per deciliter (µg/dl), and liver concentrations are given as micromoles per gram, not as micrograms per gram. In this expression, 1 µg retinol is equal to 0.003491 µmol or, conversely, 1 µmol of retinol equals 286.46 µg of retinol. SI units are less applicable to food sources.

In nutrition, the primary unit of biologic activity for vitamin A is 1 µg of all-trans retinol, whether present as the free alcohol or as one of several natural or synthetic fatty acyl esters.

To express both preformed vitamin A and provitamin A carotenoids in foods as a single nutritive value, the retinol equivalent (RE) was created. One µg RE is equal to 1 µg of all-trans retinol, to 6 µg of all-trans β-carotene, or to 12 µg of provitamin A carotenoids.
Mechanisms of other provitamin A carotenoids in foods. The bioavailability of carotenoids varies greatly, however, depending on their physical state in foods. Thus, carotenoids in oil are well utilized, but those in uncooked whole vegetables are poorly absorbed.

A unit of historical value, which is still extensively used in food composition tables and in labeling of vitamin A supplements, is the International Unit, or IU. One IU equals 0.300 μg of all-trans retinol, or a corresponding amount of retinol in ester linkage. Thus, whether the vitamin A in a given solution is present as free retinol, retinyl acetate, or retinyl palmitate, the number of IUs will be the same. One IU of all-trans β-carotene was defined at 0.6 μg. The nutritional equivalency of β-carotene relative to vitamin A is three times higher when this nomenclature is used than when RE is employed. Thus, it is useful to distinguish IU as IUₐ for vitamin A, and as IUₜ for β-carotene. The RE system, which is better based physiologically, is less confusing and, consequently, is preferred.

The all-trans isomers of both vitamin A and provitamin A carotenoids are the most nutritionally active forms, cis-isomers usually show 50% or lower activities relative to the all-trans forms.

Physiologic Processes

Digestion and Absorption

Preformed vitamin A and carotenoids in the diet are largely released from protein during proteolysis in the stomach. Vitamin A and carotenoids tend to aggregate with lipids into globules, which then pass into the small intestine. The upper intestine is the major site of lipid hydrolysis. Dietary fat, protein, and their hydrolytic products stimulate, through cholecystokinin, the secretion of bile, which first emulsifies lipids and then forms micelles. Bile salts also stimulate pancreatic lipase, which hydrolyzes triglycerides and other esterases that hydrolyze retinyl esters and cholesteryl esters. Retinyl esters are hydrolyzed primarily by an enzyme located in the brush border of intestinal mucosal cells. Hydrolysis of retinyl esters greatly enhances the bioavailability of vitamin A. The product, retinol, in a bile salt-containing micelle is well absorbed (70% to 90%) by mucosal cells of the small intestine. Vitamin A seems to be absorbed by a carrier-mediated process at low concentrations, but mainly by diffusion from the micellar phase at high doses.

Hydrocarbon carotenoids are not as well absorbed as retinol, possibly because of their awkward length and their specific requirement for bile salts. In the presence of fat, 30%–50% of moderate amounts (< 15 mg) of carotenoids are absorbed by humans. As the amount increases, however, the absorption efficiency declines. Highly polar carotenoids are poorly absorbed.
Plasma Transport

Chylomicra

Within intestinal cells, newly formed chylomicra contain retinyl ester, cholesteryl ester, some retinol, phospholipids, much triglyceride, and apolipoproteins A-1, A-4, B, and several others. In the complex conversion of the secreted chylomicra into chylomicron remnants in the plasma, the triglyceride content is markedly reduced by the hydrolytic action of lipoprotein lipase, the predominant apolipoproteins on the chylomicron remnant become B and E, and the relative concentrations of retinyl ester increase per remnant particle.

Retinol-Binding Protein (RBP)

Human RBP, a single polypeptide chain with 182 amino acids in a known sequence, has a molecular weight of 21,230. The protein contains an eight-stranded anti-parallel β-barrel at its core, within which all-trans retinol is bound. Thus, little if any bound retinol is exposed at the surface of the protein. The 1:1 molar complex of all-trans retinol and RBP is called "holo-RBP." Within the plasma, holo-RBP is found in large part as a 1:1 complex with transthyretin (prealbumin), which specifically binds one thyroxine molecule per tetramer.

In well-nourished adults, the total RBP concentration in plasma is 1.9 μmol/liter to 2.4 μmol/liter (40 μg/ml to 50 μg/ml), 80% to 90% of which exists as holo-RBP. In children up to the age of puberty, the total RBP concentration is approximately 60% of the adult level. Protein-energy malnutrition, infections, and parasitic infestations all lower steady state concentrations of holo-RBP. Thus, the vitamin A status of an individual often is not predictable on the basis of holo-RBP concentrations alone (Chapter 11).

Serum Retinoids and Carotenoids

Mean values and ranges of retinoids in serum as a function of age and sex are presented in Table 8-1. These values, drawn from the first U.S. National Health and Nutrition Examination Survey in 1971–1974 (NHANES I), clearly show that mean plasma retinol concentrations in young children are approximately 60% of adult values until puberty, when they increase. Male and female children show the same serum retinol values, whereas adult males have values 20% higher than adult females.

The concentrations of specific and total carotenoids in the plasma are highly dependent on diet. Of the six major carotenoids in the plasma of American residents, lycopene is the most common, followed by lutein plus zeaxanthin and then by β-carotene. Of the total plasma carotenoids, the percentage of provitamin
Table 8-1 Serum Retinol Concentrations (μmol/liter) as a Function of Age and Sex in American Residents, 1971-1974

<table>
<thead>
<tr>
<th>Age</th>
<th>Total</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5 yr</td>
<td>1.28 (0.73-2.0)</td>
<td>1.29 (0.70-2.1)</td>
<td>1.26 (0.77-2.0)</td>
</tr>
<tr>
<td>n</td>
<td>1414</td>
<td>725</td>
<td>689</td>
</tr>
<tr>
<td>6-11 yr</td>
<td>1.31 (0.84-1.9)</td>
<td>1.30 (0.84-1.9)</td>
<td>1.32 (0.84-1.9)</td>
</tr>
<tr>
<td>n</td>
<td>1857</td>
<td>930</td>
<td>927</td>
</tr>
<tr>
<td>12-17 yr</td>
<td>1.58 (1.0-2.3)</td>
<td>1.62 (1.1-2.3)</td>
<td>1.53 (1.0-2.2)</td>
</tr>
<tr>
<td>n</td>
<td>2035</td>
<td>1026</td>
<td>1009</td>
</tr>
<tr>
<td>18-44 yr</td>
<td>1.94 (1.2-2.9)</td>
<td>2.08 (1.4-3.0)</td>
<td>1.80 (1.1-2.8)</td>
</tr>
<tr>
<td>n</td>
<td>7035</td>
<td>2164</td>
<td>4871</td>
</tr>
<tr>
<td>45-74 yr</td>
<td>2.20 (1.3-3.3)</td>
<td>2.29 (1.4-3.5)</td>
<td>2.11 (1.3-3.2)</td>
</tr>
<tr>
<td>n</td>
<td>6111</td>
<td>2911</td>
<td>3200</td>
</tr>
</tbody>
</table>

*The 5th and 95th percentile values are given in parentheses

Derived from S M Pilch

A carotenoids in adults is usually 40%–50% The plasma carotenoid patterns in adults have been fairly well studied, but as yet few studies have been conducted in children Serum carotenoid patterns from these studies are summarized in Table 8-2. In malnourished children in Senegal, serum concentrations of both retinol and total carotenoids were approximately half those in well-nourished American children, although provitamin A carotenoid concentrations were similar (Table 8-2).

In addition to retinol and the cited carotenoids, lower steady-state concentrations (< 0.1 μmol/liter) of retinyl esters, retinoic acid, retinol β-glucuronide, retinyl β-glucuronide, and at least twelve other carotenoids have been identified in fasting plasma. Besides retinoic acid, some of these minor components may also play significant roles in nutrition and function.

Tissue Uptake and Storage

Uptake of Chylomicron Remnants

By interaction with cell surface receptors on liver parenchymal cells for apolipoprotein E, and possibly for apolipoprotein B, chylomicron remnants are internalized by receptor-mediated endocytosis. Retinyl esters are hydrolyzed, combined with cellular retinol-binding protein (CRBP) in the cytosol of the hepatocyte, and then subjected to several possible metabolic routes. Lipid-rich chylomicra are cleared more slowly from plasma than are lipid-poor chylomicra. Chylomicron remnants are also taken up well, presumably by a similar mechanism, by bone marrow, and to a lesser degree by other peripheral tissues.
Table 8-2 Mean Serum Carotenoid Values (μmol/liter) as a Function of Nutritional Status and Age

<table>
<thead>
<tr>
<th>Years</th>
<th>Place</th>
<th>Sex</th>
<th>Number</th>
<th>State</th>
<th>Nutritional</th>
<th>Carotenoids<sup>a</sup></th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β-Car</td>
<td>α-Car</td>
</tr>
<tr>
<td>2–4</td>
<td>Senegal</td>
<td>MF</td>
<td>271</td>
<td>Poor</td>
<td>0.61</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.22</td>
<td>±0.14</td>
<td>±0.06</td>
</tr>
<tr>
<td>2–14</td>
<td>Michigan</td>
<td>MF</td>
<td>10</td>
<td>Good</td>
<td>1.42</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.45</td>
<td>±0.12</td>
<td>±0.02</td>
</tr>
<tr>
<td>18–45+</td>
<td>Boston, MA</td>
<td>M</td>
<td>137</td>
<td>Good</td>
<td>2.22</td>
<td>0.34</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.3–3.3)</td>
<td>(0.13–1.1)</td>
<td>(0.01–0.20)</td>
</tr>
<tr>
<td>18–45+</td>
<td>Boston, MA</td>
<td>F</td>
<td>193</td>
<td>Good</td>
<td>1.85</td>
<td>0.59</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.1–2.8)</td>
<td>(0.11–1.4)</td>
<td>(0.02–0.40)</td>
</tr>
<tr>
<td>59±10</td>
<td>Washington, DC</td>
<td>M</td>
<td>55</td>
<td>Good</td>
<td>2.69</td>
<td>0.31</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.64</td>
<td>±0.20</td>
<td>±0.04</td>
</tr>
<tr>
<td>59±7</td>
<td>Washington, DC</td>
<td>F</td>
<td>55</td>
<td>Good</td>
<td>2.36</td>
<td>0.44</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.66</td>
<td>±0.27</td>
<td>±0.04</td>
</tr>
</tbody>
</table>

^aUnder the mean values, values in parentheses are 5th and 95th percentile values whereas ± values are standard deviations.

^bAbbreviations: ROL, retinol; β-Car, β-carotene; α-Car, α-carotene; β-Cryptox, β-cryptoxanthin; Lut, Lutein; Lyc, Lycopene.

^cTotal carotenoids are estimated as the sum of measured components.

^dLutein values include a minor portion (ca 20%) of zeaxanthin.
Mechanisms

Uptake from Holo-RBP

Holo-RBP, derived largely from the liver but also from other tissues, is taken up from plasma by all tissues of the body. Two mechanisms have been postulated: (1) interaction of holo-RBP with a specific cell-surface receptor, followed by internalization of the complex, and (2) dissociation of holo-RBP into apo-RBP and retinol, followed by incorporation of retinol into the plasma membrane. Thereafter, CRBP may draw retinol out of the membrane into the cytosol.

Although the retinal pigment epithelial cells apparently possess cell-surface receptors for holo-RBP on their external surfaces, their presence on other cells is much less clear. Whatever the mechanism of uptake, however, retinol and its esters are found in significant amounts in adipose tissue, kidney, tests, lung, bone marrow, and the eye, in addition to the liver, and in smaller amounts in other tissues.

Storage

Retinyl esters in chylomicron remnants are hydrolyzed within hepatocytes to retinol, which then can be esterified with long-chain fatty acid esters and stored in specialized lipid globules.

Alternatively, retinol may be transferred to stellate cells, also termed lipocytes, Ito cells, and fat-storing cells, where retinol is also esterified and stored in vitamin A-containing globules. Under normal physiologic conditions, stellate cells contain 80% to 90% of the stored vitamin A, hepatocytes 10% to 20%, and other liver cells only a few percent. The retinyl ester stored in stellate cells and hepatocytes can be readily and completely mobilized and used by the organism.

The major ester of stored retinyl esters is the palmitate, with smaller amounts of the stearate, linoleate, oleate, and others. The major synthetic route is by transacylation from the α-position of phospholipids, although direct acylation via coenzyme A derivatives can also occur.

Although the liver clearly is the major storage site, most other tissues also possess stellate cells and store retinyl esters. Retinol may be transferred from parenchymal cells to stellate cells as intact holo-RBP, as free retinol, or by yet unidentified carriers or processes.

Release from Tissues

Within the hepatocyte, a precursor of RBP—preapo-RBP—is first formed. It is then proteolytically cleaved, with the loss of a peptide, to apo-RBP. All-trans retinol combines with apo-RBP in a specific 1:1 molecular complex to form holo-
RBP The latter is transported through the Golgi apparatus and then is secreted into the plasma, probably as a complex with transthyretin.

Retinol might be released into plasma from liver stellate cells by three routes (1) by its transfer back to parenchymal cells, followed by holo-RBP release, (2) by its direct release into the plasma as an endogenously formed RBP complex, or (3) by its transfer to extracellular apo-RBP at the cell membrane. Whether all of these routes are active and, if so, which route predominates under given physiological conditions is uncertain.

Although vitamin A is primarily stored in the liver, all tissues contain some vitamin A. Because messenger ribonucleic acid (mRNA) for RBP has been identified in the kidney, lacrimal gland, adipose tissue, and bone marrow as well as in the liver, nonhepatic tissues may well synthesize and secrete RBP. RBP in plasma from hepatic and extrahepatic tissues, however, seems to be identical. Thus, it has not yet been possible to ascertain the relative amount derived from each tissue.

Recycling and Excretion

Retinol released as holo-RBP from the liver is taken up by peripheral tissues. Much of this retinol is later released from peripheral tissues as holo-RBP, as lipoprotein-bound retinyl esters, or as water-soluble retinyl β-glucuronides. All of these forms are then transported back to the liver. This recycling is extensive and efficient, as shown by in vivo kinetic analysis. When vitamin A intakes are very low, the efficiency of recycling increases.

The glucuronides of vitamin A, which are secreted in the bile, are also reabsorbed from the intestinal lumen and transported back to the liver. This enterohepatic circulation also helps to maintain the vitamin A status of an individual during periods of low intakes.

Approximately 5% to 20% of ingested vitamin A and a larger percentage of carotenoids, depending on their nature, bioavailability, and amount, are not absorbed from the intestinal tract and consequently are excreted in the feces. A significant portion (10% to 40%) of absorbed vitamin A is oxidized or conjugated in the liver and then is secreted into the bile. Although, as already mentioned, some of these biliary metabolites, such as retinoyl β-glucuronide, are reabsorbed in the intestine and transported back to the liver, most of the biliary metabolites are excreted in the feces.

Vitamin A that is oxidized and chain-shortened in various tissues ultimately is excreted in the urine. Finally, carbon dioxide that is released by the oxidation and cleavage of the side chain of vitamin A is excreted in the expired air. In quantitative terms, an average of 10% of dietary vitamin A is not absorbed, 20% appears in the feces through the bile, 17% is excreted in the urine, 3% is released as CO₂, and 50% is stored, primarily in the liver.
Metabolic Processes

Binding Proteins

In addition to plasma RBP, a set of specific binding proteins for retinol, retinal, and retinoic acid has been identified within cells, as well as in the intercellular matrix between the retinal pigment epithelium and the rod outer segments. Major specific binding proteins of mammals are listed in Table 8–3.

Other retinoid-binding proteins that are at least partly characterized have been identified in the epididymis, uterus, fetal liver, and Sertoli cells. Some other proteins, such as several fatty acid-binding proteins, serum albumin, and β-lactoglobulin, also bind retinoids and, in particular, retinoic acid. Several of these proteins are closely related structurally.

Thus, the retinoids clearly are chaperoned by a set of highly specific proteins in vivo and can bind as well to other structurally related proteins. Specific binding proteins seem to function as transport agents, as sequestering entities, as coenzymes in enzymatic transformations, and as coenzymes in genetic expression. The physiologic role played by nonspecific binding proteins is still unclear.

Vitamin A

The major reactions of vitamin A metabolism are esterification, oxidation at C-15, oxidation at C-4, conjugation, isomerization, other miscellaneous oxidative reactions, and chain cleavage. Retinol and retinal, as well as other metabolites reversibly converted to them, all possess significant biologic activity. Retinoic acid and its glucuronide are active in growth but not in vision or, in most species, in reproduction. Except for 14-hydroxy-retinol, more oxidized products—such as 4-hydroxyretinoic acid, 5,6-epoxyretinoic acid, and C-19 metabolites—are largely devoid of biologic activity.

Retinoyl β-glucuronide, retinyl β-glucuronide, and retinoic acid, as already mentioned, are normally present in small amounts (3 nmol/liter to 11 nmol/liter, or 1 μg/liter to 5 μg/liter) in human plasma. Retinoyl β-glucuronide is not hydrolyzed in some cells and only slowly in vivo. Retinoic acid, besides being physically bound by serum albumin and by cytosolic and nuclear binding proteins, can also be covalently bound to proteins, possibly by means of a coenzyme A intermediate. The cellular retinol-binding proteins play a major role in the oxidation/reduction and transesterification of retinol. Intestinal CRBP-II, CRBP, and CRABP have been particularly well studied in this regard.

Stored retinyl esters are hydrolyzed to free retinol by a group of intracellular retinyl ester hydrolases. Some of these hydrolases depend on the presence of bile salts or other detergents, and some do not. Apo-CRBP stimulates hydrolase activity, presumably by serving as an acceptor of released retinol.
Table 8–3 Major Retinoid-Binding Proteins

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Location</th>
<th>Molecular Weight (kDa)</th>
<th>Major Ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinol-binding protein</td>
<td>RBP</td>
<td>Plasma</td>
<td>21.2</td>
<td>all-trans retinol</td>
</tr>
<tr>
<td>Interphotoreceptor retinol-binding protein</td>
<td>IRBP</td>
<td>Extracellular matrix of the eye</td>
<td>13.5</td>
<td>11-cis & all-trans retinol</td>
</tr>
<tr>
<td>Cellular retinol-binding protein, type I</td>
<td>CRBP-I</td>
<td>Cytosol</td>
<td>15.7</td>
<td>all-trans retinol</td>
</tr>
<tr>
<td></td>
<td>CRBP-II</td>
<td>Cytosol small intestine</td>
<td>15.6</td>
<td>all-trans retinol</td>
</tr>
<tr>
<td></td>
<td>CRABP-I</td>
<td>Cytosol</td>
<td>15.5</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td></td>
<td>CRABP-II</td>
<td>Cytosol fetal tissues</td>
<td>15.0</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td></td>
<td>CRALBP</td>
<td>Cytosol eye</td>
<td>36.0</td>
<td>11-cis retinol, 11-cis retinal</td>
</tr>
<tr>
<td>Retinoic acid receptor-α</td>
<td>RARα</td>
<td>Nucleus</td>
<td>50</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td>Retinoic acid receptor-β</td>
<td>RARβ</td>
<td>Nucleus</td>
<td>50</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td>Retinoic acid receptor-γ</td>
<td>RARγ</td>
<td>Nucleus mainly skin</td>
<td>50</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td>Retinoid X receptor-α</td>
<td>RXRα</td>
<td>Nucleus</td>
<td>51</td>
<td>9-cis retinoic acid</td>
</tr>
<tr>
<td>Retinoid X receptor-β</td>
<td>RXRβ</td>
<td>Nucleus</td>
<td>51</td>
<td>9-cis retinoic acid</td>
</tr>
<tr>
<td>Retinoid X receptor-γ</td>
<td>RXRγ</td>
<td>Nucleus</td>
<td>51</td>
<td>9-cis retinoic acid</td>
</tr>
</tbody>
</table>

Carotenoids

Most provitamin A carotenoids can be cleaved by a carotenoid 15,15'-dioxygenase in the cytosol of the intestinal mucosa, of hepatocytes, and of some other tissue cells. β-carotene yields two molecules of retinal, which are in large part reduced and esterified to retinyl ester. The cleavage enzyme requires molecular oxygen and apparently contains a metal, possibly iron, at its catalytic site. β-carotene and some other carotenoids can also be cleaved asymmetrically to yield β-apocarotenals that, in turn, are converted to retinal, or possibly directly to retinoic acid. At the level of retinal, therefore, that is reversibly reduced to retinol by alcohol dehydrogenases in many tissues, the metabolism of carotenoids and that of preformed vitamin A usually coincide. β-carotene can also be oxidized to biologically inactive products by lipoxygenase and other oxidative enzymes. Much less is known about the metabolism and excretion of carotenoids other
than carotene. Each carotenoid, however, seems to show a specific pattern of absorption, metabolism, and transport.

The overall metabolism of carotenoids has recently been reviewed.

Functions of Vitamin A and Carotenoids

Vitamin A

Vitamin A is important for vision, cellular differentiation, morphogenesis, and transmembrane transport (in bacteria). Many other complex physiologic processes in animals, such as growth, reproduction, and the immune response (Chapter 9), seem to be affected by these central functions.

Vision

The role of vitamin A in vision is well defined (Chapter 4). In the outer segment of rod cells in the retina, 11-cis retinal forms a protonated Schiff base with a specific lysine residue of the membrane-bound protein, opsin, to yield rhodopsin, with an absorption maximum of 498 nm. Similar complexes exist in human cone cells to give three specific iodopsins that absorb maximally at 420 nm (blue cones), 534 nm (green cones), and 563 nm (red cones).

When a photon of light strikes the dark-adapted retina, the 11-cis bond of retinal in rhodopsin is isomerized to the all-trans form. This isomerization destabilizes rhodopsin, which passes through a series of different conformational states. The light-activated transformation of rhodopsin ultimately results in a reduction in the sodium ion current into the rod outer segment, which induces hyperpolarization of the membrane. In the probable sequence of steps in this amplification cascade, light converts rhodopsin to the active intermediate, metarhodopsin II. The latter induces the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on a disk protein termed “transducin.” Transducin contains three subunits, and the complex of GTP with transducin activates phosphodiesterase, which in turn hydrolyzes cyclic guanosine monophosphate (cGMP) to GMP. As the concentration of cGMP falls, the sodium channel closes, leading to membrane hyperpolarization.

The cascade is turned off by the time-dependent decay of metarhodopsin II to opsin and all-trans retinal, by the conversion of metarhodopsin II to an inactive phosphorylated form, and by the hydrolysis of bound GTP by the inherent GTPase activity of transducin.

A number of proteins are involved in this complex cascade besides those already cited: rod cell spectrin, the 63-KDa protein and the Na++-Ca++ 220 KDa exchange protein, the Na+ channel, peripherin, and the rim protein of the...
disc membrane, recovering, phosducin, arrestin, and many others. Specific roles in the cascade have been defined for many, but not for all, of the twenty or more characterized protein components involved in the visual cycle.

All-trans retinal may be isomerized back to the 11-cis form in the rod outer segment by light in the presence of certain phospholipids. In the dark, however, 11-cis-retinol is formed by the action of all-trans 11-cis retinyl ester isomerase, a membrane-bound enzyme in retinal pigment epithelial cells. This enzyme might better be called an isomerohydrolase, in that the energy released in the hydrolysis of the retinyl ester bond is directly coupled to the formation of the energy-rich 11-cis retinol. The 11-cis forms of retinol and retinal are then transported on IRBP to the rod outer segment, whereas all-trans retinol is shuttled back on IRBP.

Both all-trans and 11-cis retinyl esters are also stored in the retinyl pigment epithelial cells, often in lipid-rich globules. Retinyl esters are formed in the eye by a trans-acylation reaction from phospholipids, whereas retinyl ester hydrolases, both in the eye and elsewhere, act preferentially on the cis-isomers.

Cellular Differentiation

In vitamin A deficiency, mucus-secreting cells are replaced by keratin-producing cells in many tissues of the body. Conversely, the addition of vitamin A to vitamin A-deficient keratinizing cells in tissue culture induces a shift to mucus-producing cells. Retinoids also rapidly induce F-9 teratocarcinoma cells, as well as many other cell lines, to differentiate. In this process, a number of new proteins appear in the newly differentiated cells. Thus, vitamin A and its analogues, both in vivo and in vitro, markedly influence the way in which cells differentiate.

The mechanism by which retinoids induce cellular differentiation is becoming clear. Within tissue cells, all-trans retinol, in association with CRBP, can be oxidized to all-trans retinoic acid and presumably can also be isomerized to 9-cis retinol, which in turn can be oxidized to 9-cis retinoic acid. Another likely route for the synthesis of 9-cis retinol is by oxidative cleavage of 9-cis β-carotene. All-trans or 9-cis retinoic acid is transported on CRABP or on other retinoid-binding proteins to the nucleus, where it is tightly bound to one or more of the three (α, β, γ) retinoid acid receptors (RAR) or to one or more of the three (α, β, γ) retinoid X receptors (RXR) respectively. In the activation of retinoic acid-responsive genes, a heterodimer of RAR and RXR, or in some cases a homodimer of RXR, binds to the response element of the gene to initiate transcription. RXR also serves as a coregulator for the expression of genes responsive to triiodothyronine, to calcitriol, and perhaps to other hormones, but not to estrogen. In this latter role, RXR forms a heterodimer with the appropriate nuclear receptor for other hormones, thereby enhancing its affinity for the response element of the gene. The quantitative balance among RAR, RXR, and other nuclear proteins may also contribute to gene regulation.
Fig. 8-2. Roles of retinoids in the differentiation of target cells. All retinoids are considered to be all-trans isomers unless otherwise specified. Abbreviations are ROL, retinol, RAL, retinal, RA, retinoic acid, 9cRA, 9-cis retinoic acid, RAG, retinoyl β-glucuronide, RBP, plasma retinol-binding protein, TTR, transthyretin, RAR, retinoic acid receptor, RXR, retinoic acid receptor that specifically binds 9cRA, VDR, vitamin D receptor, TR, thyroxine receptor, DNA, deoxynucleic acid, mRNA, messenger ribonucleic acid, X, unknown precursors (possibly carotenoids) of 9cRA, O, □, △, and ▽, heterodimers of various nuclear receptors.

The RAR and RXR receptors, like other nuclear hormone receptors, possess six protein domains with specific functions. At the N-terminal end, domains A and B serve as physiologic activators of the receptor, domain C, which is highly conserved, contains zinc-sulfhydryl interactions ("zinc fingers") that bind to DNA, domain D is a hinge region that provides the necessary conformation of the receptor, domain E binds the ligand, and domain F, at the C-terminal end, enhances dimerization. All nuclear retinoid receptors contain approximately 460 amino acids and have molecular weights of approximately 50 kDa.

Retinoic acid directly activates the genes for CRBP-I, CRBP-II, RARβ, Hox-16, laminin B1, and transglutaminase in diverse types of cells. The sequence by which other genes are subsequently activated is not clear. Various isoforms of transforming growth factor β (TGFβ) can be induced or suppressed by retinoic acid, depending on conditions. Although attention has centered on the activation of gene expression, retinoids can also suppress transcription.

Some retinoids may stimulate differentiation by a different pathway; for example, retinoyl β-glucuronide does not bind to CRBP, CRABP, or nuclear RAR, but nonetheless is highly active biologically. Similarly, B lymphocytes differentiate in response to 14-hydroxy-retro-retinol, but not to all-trans retinoic acid. Retinoids also show some physiologic effects in enucleated cells. Thus, probably by several mechanisms, retinoids seem to play a central role in the development and maintenance of many tissues.

Morphogenesis

Both a deficiency and an excess of vitamin A and of most other retinoids adversely affect embryogenesis. In a more physiologic context, pattern formation in the
skin might well be affected by gradients of vitamin A. The hypothesis that all-
trans retinoic acid might well be one of a presumed host of morphogens that
control embryologic development originated with the demonstration that an
implant containing all-trans retinoic acid, when placed in the anterior part of the
developing chick limb bud, mimics the activity of the naturally occurring zone
of polarizing activity (ZPA).

There are two major hypotheses to explain the dramatic effects of retinoic
acid and of many other retinoids on the embryo: (1) that a morphogenic gradient
of retinoic acid exists in the developing limb, which in turn provides signals to
cells at a given position in the embryo, thereby inducing them to differentiate
in a specific way or to migrate in a given direction, and (2) that retinoic acid
induces the differentiation of a specific group of cells the ZPA, which in turn
provides as yet unidentified signals to nearby cells, thereby causing them to
act in specific ways. Although evidence supports both hypotheses, the second
suggestion seems to be the most viable.

Both cytosolic retinoid-binding proteins and nuclear retinoic acid receptors
appear in different groups of cells at different times in development. Retinoic
acid also induces the formation of many Hox genes, which have been closely
linked to developmental processes. Further, retinoic acid induces programmed
cell death, or apoptosis, in the developing embryo. Apoptosis is a normal process
in development, but can also cause terata if not regulated. Thus, clarification
of the mechanisms of action of retinoids in development, whatever they might
be, will enrich our understanding of these complex but important processes.

Other Functions

The Immune Response Vitamin A has long been termed the "anti-infective"
vitamin based on the increased number of infections noted in vitamin A-deficient
animals and humans. In vitamin A deficiency, both specific and nonspecific
protective mechanisms are impaired: the humoral response to bacterial, parasitic,
and viral infections, cell-mediated immunity, mucosal immunity, natural killer
cell activity, and phagocytosis. In addition to vitamin A, both nutritionally active
(β-carotene) and nutritionally inactive (canthaxanthin) carotenoids enhance
the immune response in animals by as yet undefined mechanisms. The roles of
vitamin A in these various processes have been recently reviewed. This
important topic is considered in detail in Chapter 9.

Intercellular Communication Both retinoids and, at much higher concen-
trations, carotenoids enhance communication between cells by inducing the forma-
tion of connexin 43, a gap-junctional protein. These interesting observations
may be relevant both to cellular patterns in tissues and to the suppression of
neoplastic growth.
Transmembrane Transport Bacteriorhodopsin, a light-sensitive, retinal-containing protein similar to rhodopsin, is found in the purple patches on membranes of *Halobacterium halobium*. In response to light, this protein also undergoes a series of conformational changes ultimately linked to the transfer of a proton from the cytosol to the external medium. During this cycle, however, the 13-cis and all-trans isomers of retinal are involved, rather than the 11-cis and all-trans forms as in the vertebrate visual cycle. Several related light-sensitive retinal-binding proteins with different functions have been identified in this and other like organisms.

Whether retinoids play somewhat similar roles in animal cells is not clear.

Complex Tissue Involvements

Vitamin A is essential, either directly or indirectly, for the proper functioning of most organs of the body. For example, reproductive processes in both males and females and bone development and maintenance are particularly dependent on adequate vitamin A status. Whether these complex physiologic processes have unique needs for vitamin A or rely primarily on the action of vitamin A in cellular differentiation is not clear. Because vitamin A influences the synthesis and secretion of a variety of cytokines and growth factors, some of its effects may well be induced via the action of such factors on cells.

Carotenoids

Carotenoids are necessary for many biological processes, show interesting, usually beneficial effects against abnormal conditions and diseases, and have been associated as possible protective factors against several chronic diseases. Their manifold activities can be classified as functions, actions, or associations.

Functions

Carotenoids function in many ways in nature as accessory pigments in photosynthesis, as protectants against light-induced photo-oxidation of chlorophyll and of other readily peroxidized molecules in plants and bacteria, and as protective coloration in birds, insects, and other species. The only well-established function of carotenoids elucidated in humans to date is the formation of vitamin A. Only 50 of the approximately 600 characterized carotenoids in nature, however, serve as provitamin A molecules. The carotenoid-dependent coloration of many fruits, vegetables, and flowers, which both please the senses and stimulate appetite, might also be considered as a human function, but largely on aesthetic rather than on technical grounds.
Actions

Chemical Carotenoids, because of their physical properties, show both chemical and biological actions that are not shown by vitamin A. Thus, carotenoids are very effective in quenching singlet oxygen and in serving as antioxidants. Carotenoids can quench singlet oxygen without being modified chemically, can consume free radicals and hence serve as antioxidants, or can be autoxidized without a reduction in free-radical concentrations. All three of these reactions occur biologically. The products of both antioxidant and autoxidant reactions are a set of epoxides, aldehydes and ketones, often produced by carbon-carbon bond cleavage. Carotenoids are much more effective than vitamin A in these reactions because they possess a much longer conjugated double bond system, e.g., eleven in β-carotene versus five in retinol.

β-Carotene, and presumably other carotenoids, can also interact with other antioxidants, such as α-tocopherol and ascorbic acid. Therefore, β-carotene may serve as part of an antioxidant network within cells.

Biological Carotenoids show a variety of protective effects in experimental systems, namely a reduction in free-radicals, in photoinduced neoplasm, in mutagenesis, in sister chromatid exchange, and in cell transformation. In humans, treatment with β-carotene reduced leukoplakia, the number of micronuclei in the buccal mucosa of betel-nut chewers, and photo-induced skin disorders in inherited light-sensitivity diseases. β-carotene supplements can also enhance various facets of the immune response in the elderly and can block the immunosuppressive actions of ultraviolet light and of HIV infection in human subjects. Thus, carotenoids seem to show moderately beneficial effects in humans with various types of diseases and stresses.

Associations In epidemiologic studies, carotenoid ingestion has been associated with protective effects against several types of cancer, and particularly against lung cancer, as well as against senile cataract. In an intervention trial, the incidence of cardiovascular incidents in a small, high-risk group of physicians treated with β-carotene was reported to be lower than in a similar placebo group.

One must bear in mind, however, that these results are preliminary and often depend on the ingestion of pharmacologic rather than physiologic amounts, in quantities that could not be readily approached from dietary sources. Potential benefits observed among individuals consuming larger dietary intakes may be related to other differences in their diet, such as being lower in fat than diets predominantly containing animal foods, or other physical activity, and smoking and drinking behavior. These potential beneficial effects of carotenoids seem unrelated to their provitamin A activities.
Recommended Intakes

In defining dietary requirements for vitamin A, four options are available (A) an average intake that satisfies the needs of 50% of subjects, (B) an intake that satisfies the needs of nearly all subjects, (C) an intake that provides suitable reserves for 50% of subjects, and (D) an intake that provides suitable reserves for nearly all subjects.

A reserve of 0.07 μmol/g wet weight of liver, or approximately 160 μmoles for a 70-kg person, serves as the basis for establishing the intake needed under option D. Experimentally, the intake of vitamin A needed to satisfy option C is approximately twice that needed for option A. Because the coefficient of variation for plasma levels of vitamin A in humans and for dietary requirements in animals is approximately 20%, two standard deviations are usually used to correct option A to option B and option C to option D. Thus, the relative intakes needed to satisfy options A, B, C, and D are in the ratio 1:1.42:2:8, respectively. The recommended nutrient intakes adopted by the FAO/WHO, proposed for the European Community and approved by the National Academy of Sciences in the United States, are given in Table 8-4.

The Food and Agriculture Organization and the World Health Organization have selected options B and D in a two-tier system, termed “basal and safe levels” of vitamin A requirements. Similarly, the Nordic Committee on Food defined a two-tier system for micronutrients, called “lower limits” and “recommended intakes.” Other countries, including the United States, have selected single values for a given age and sex, based mainly on option D.

<table>
<thead>
<tr>
<th>Table 8-4</th>
<th>Recommended and Proposed Dietary Intakes of Vitamin A in μg Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Age (years)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Infants</td>
<td>0-05</td>
</tr>
<tr>
<td></td>
<td>0-5-10</td>
</tr>
<tr>
<td>Children</td>
<td>1-10</td>
</tr>
<tr>
<td>Males</td>
<td>10-14/15</td>
</tr>
<tr>
<td></td>
<td>14/15-70+</td>
</tr>
<tr>
<td>Females</td>
<td>10-14/15</td>
</tr>
<tr>
<td></td>
<td>14/15-70+</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>+100</td>
</tr>
<tr>
<td>Lactation</td>
<td>0-05</td>
</tr>
<tr>
<td></td>
<td>> 05</td>
</tr>
</tbody>
</table>

⁶⁴Recommended dietary allowance
The proposed values for the European Community are a three-tier system based on statistical considerations. The population reference intake (PRI) is similar in nature to the recommended nutrient intakes (RNI, RDA) established in many countries, i.e., option D. The average requirement (AR) in all likelihood is option C, and the lowest threshold intake (LTI), which is defined as an intake below which nearly all individuals will be unable to maintain metabolic integrity according to the criterion chosen, is closest to option A. In any case, values for AR and PRI for European adults, if adjusted for higher reference body weights than those used by FAO/WHO, are both very similar to those adopted by the FAO/WHO and nearly identical to the calculated average requirements and RNI values for vitamin A suggested for use in the United States. Both of the latter recommendations, by the way, are based on an adequate total body reserve.

For infants and children, the selected “safe” (PRI, RNI, RDA) intake is essentially the same in all recommendations—350 µg–375 µg retinol equivalents. This recommendation is based, however, on the mean daily volume and the concentration of vitamin A present in the breast milk of well-nourished mothers (0.5 µg retinol equivalents/ml x 700–750 ml milk/day) rather than on a scientific assessment of requirement. In this regard, breast-fed Indian infants grow normally on approximately 100 µg retinol equivalents, largely as vitamin A, although they probably possess little or no reserves. Human milk also contains carotenoids (0.2 µg/ml–0.3 µg/ml), of which 20%–30% are vitamin A precursors. Because the transfer of vitamin A to the fetus is regulated by the placenta, the vitamin A reserves in newborn infants, even from well-nourished mothers, are low. Thus, breast milk plays a crucial role in providing sufficient vitamin A for growth, vision, and cell differentiation.

The bioavailability of carotenoids can vary greatly, as already mentioned, being highest when given in an oily or detergent solution and lowest when provided in uncooked vegetables. The difficulty in correctly assessing the vitamin A value of ingested carotenoids has been thoughtfully discussed. In part because of the difficulties involved in accurately assessing both the dietary intake of carotenoids and their utilization, a variety of other assessment indicators has been developed. The assessment of vitamin A status is specifically considered elsewhere in this volume.

Biochemical Consequences of Inadequate Intakes

Vitamin A deficiency ultimately affects most tissues of the body. In humans, the eye is affected in two major ways: (1) a reduction in the rhodopsin concentration in the retina, which is noted clinically by abnormal dark adaptation (night-blindness), and (2) keratinization of the epithelial layers of the conjunctiva and
cornea, which in severe cases can lead to rupture of the cornea and loss of sight. The pathological consequences of these changes, and the specific signs associated with them, are discussed in Chapter 4.

Physiologic Dynamics

Vitamin A deficiency does not affect to any major extent the absorption of the vitamin from the intestinal tract. The cleavage of provitamin A to vitamin A in the gut, however, may be depressed by accompanying protein-calorie malnutrition. In the presence of some dietary fat, vitamin A and carotenoids are transported more or less normally in the form of chylomicra in the plasma. On the other hand, the efficiency of storage of vitamin A in the liver is markedly depressed when initial liver stores are very low. This reduced storage may be due in part to a lack of uptake of vitamin A by hepatocytes as well as to its reduced transfer from hepatocytes to liver stellate cells. Humans that suffer from vitamin A deficiency may well show similar defects in the storage of vitamin A. For example, a few vitamin A-depleted, malnourished Indonesian children who received 200,000 IU of vitamin A as a single dose developed signs of vitamin A deficiency within a two- to three-month period. Thus, by apparently activating the liver storage mechanism by an initial low oral dose of vitamin A, a subsequent large oral dose was better utilized by preschool Indonesian children than was a single large dose alone.

During the initial stages of depletion of vitamin A reserves, the vitamin A content of the liver falls, vitamin A concentrations in the plasma and retina remain at normal levels, and in some tissues like the kidney, the concentrations actually increase. The excretion of metabolites of vitamin A is reduced, and recycling mechanisms become more efficient. Moreover, the turnover rate of plasma retinol becomes slower. That vitamin A deficiency is very difficult to induce in adult human volunteers with initially adequate total body reserves attests to the effectiveness of these conservation mechanisms.

As depletion becomes more severe, however, homeostatic mechanisms no longer can cope with the situation. Plasma retinol values fall, although plasma concentrations of RBP, increasingly in the apo form, are less affected. The vitamin A concentration in the saliva also decreases. Apo-RBP, however, builds up in parenchymal cells of the liver.

Retina

The rods and cones of the retina tenaciously maintain their vitamin A levels until the body is fairly well depleted. Nonetheless, an early sign of vitamin A deficiency in both humans and experimental animals is night blindness, i.e., impaired dark adaptation. The sensitivity of dark adaptation is directly related to the amount of rhodopsin present in the eye. Consequently, as the vitamin A in
the eye falls, the total amount of rhodopsin present also decreases, and then dark adaptation becomes abnormal. This defect in rhodopsin formation is further exacerbated by protein-calorie malnutrition and by zinc deficiency. In protein-calorie malnutrition, the pigment epithelial cells show abnormalities, and in zinc deficiency, the concentration of opsin seems to be depressed. Thus, multiple nutritional deficiencies, which are commonly found in human populations suffering from vitamin A deficiency in animals, enhance these abnormalities in dark adaptation. In prolonged, severe vitamin A deficiency, the outer segments of the rod irreversibly deteriorate and blindness results.

Cornea and Conjunctiva

Since the cornea and conjunctiva are avascular, the manner in which vitamin A is transferred to corneal cells has aroused considerable interest. Possible routes of transfer are (1) the migration of holo-RBP from blood capillaries in the limbus region, (2) the direct uptake of vitamin A from the tear fluid, and (3) the transfer of vitamin A from the aqueous humor.

Holo-RBP has been identified in the cornea at about 2% of its concentration in the plasma, and a gradient in holo-RBP concentration from the limbus to the center of the cornea exists. Retinol is present in human tears at a concentration of 0.1 μmol/liter, approximately 5% of that in plasma. The concentration of retinol in the aqueous humor, however, is barely detectable. Thus, diffusion from the limbus and the tear fluid seem to be the major sources of vitamin A for the cornea.

In vitamin A deficiency, plasma values of vitamin A are very low, and vitamin A disappears from the tear fluid. As a result, the amount of vitamin A delivered to the cornea markedly falls, which gives rise to the histological changes described elsewhere (Chapter 4).

Skin

Vitamin A is essential for the normal differentiation and maintenance of the skin. Holo-RBP diffuses into the dermis and then into the epidermis from capillaries in the skin. The concentration of RBP in the intercellular fluid of the skin is one-third to one-half that in the serum, whereas the concentration of retinol is somewhat lower. Vitamin A and carotenoids are found in higher concentration in the subcutis than in the plasma, although significant amounts are present in the epidermis and dermis as well. Of particular interest is the presence in the epidermis of dehydroretinol, an analog not found in the serum. Upon entering cells of the skin, retinol presumably is bound by CRBP, and after its oxidation to retinoic acid, by CRABP. CRABP has also been identified in the cytosol of the sebaceous follicle.
Vitamin A has a marked effect on the terminal differentiation of human keratinocytes. Under normal conditions, human keratinocytes synthesize keratins with molecular weights of 40,000 and 52,000, as well as many others. When vitamin A is absent, these “small” keratins are replaced by larger keratins (molecular weight ≥ 67,000) characteristic of the stratum corneum. Retinoids stimulate basal cell proliferation but inhibit the transcription of several epidermal keratins, probably by interacting with RARα or RARγ in the skin. TGFα and TGFβ also influence skin development, but in different ways. Hair follicles, which are particularly sensitive to vitamin A, become obstructed and enlarged in the deficient condition and are replaced by mucus-secreting glands in vitamin A excess. In all likelihood, vitamin A deficiency sets in motion a large number of changes in skin structure and metabolism that ultimately lead to the observed pathologic signs.

Because vitamin A is absorbed quite well through the skin, local application yields improvement of specific skin lesions. Of course, general improvement in the vitamin A status of an individual also ameliorates skin abnormalities.

Other Epithelial Tissues

The trachea, salivary gland, and vaginal epithelium, as well as many other epithelial tissues, are adversely affected by vitamin A deficiency. In general, mucus-secreting cells tend to be replaced by squamous and keratinized epithelium. This dramatic shift from mucus-secreting to keratinized cells in the trachea and in the vagina has been used as a quantitative biological assay for the effectiveness of retinoids in animals. Changes that occur in the tracheal epithelium as a result of vitamin A deficiency have been carefully documented by electron microscopy.

Toxicity

One of the most commonly used strategies for counteracting vitamin A deficiency in less-industrialized countries has been the oral administration of periodic large doses (usually 0.21 mmoles (60 mg, or 200,000 IU), of retinyl palmitate in oil. Transient side effects have been noted in some children at this or at even lower doses (Chapter 15). Thus, safety is an important issue in dealing with intervention strategies, particularly in regard to very young children and to pregnant and lactating women, even perceived toxicity may reduce public acceptance of the program.

Carotenoids, even when taken in extremely large doses for long periods, are generally nontoxic. The only known exception is canthaxanthin, which can induce retinopathy when it is ingested in large amounts for long periods.
Acute

When a single dose of more than 0.7 mmol of vitamin A (> 200 mg, or > 660,000 IUa) is ingested by adults or when a dose larger than 0.35 mmol (> 100 mg or > 330,000 IUa) is ingested by children, the results may be nausea, vomiting, headache, increased cerebrospinal pressure, vertigo, blurred (double) vision, muscular incoordination, and (in infants) bulging of the fontanelle. Some infants can be adversely affected by single doses of only 0.1 mmol. These signs are generally transient and subside within one to two days (Chapter 15). When the dose is extremely large, it is soon followed by drowsiness, malaise, inappetence, reduced physical activity, skin exfoliation, itching (particularly around the eyes), and recurrent vomiting.

Young monkeys, when given lethal doses by intramuscular injection, fall into a deep coma, often have convulsions and respiratory irregularities, and finally die of either respiratory failure or convulsions. The median lethal dose (LD50 value) of vitamin A injected intramuscularly in a water-miscible form in the young monkey is 0.6 mmol (168 mg) retinol/kg body weight. Extrapolated to a 3-kg child and a 70-kg adult, the total LD50 dose would be 1.8 mmol (500 mg) and 41 mmol (11.8 g) respectively. A newborn child, who mistakenly was given 0.09 mmol (25 mg) daily, or 28 μmol/kg, for eleven days died of apparent vitamin A toxicity. The total dose received was 0.31 mmol/kg, or half of the LD50 value for young monkeys. Such enormous amounts of vitamin A are present only in high-potency preparations of vitamin A or in large amounts (~500 g) of livers particularly rich in vitamin A (> 0.035 mmol/g or > 10 mg/g).

Chronic

Chronic toxicity is induced by the recurrent intake of vitamin A in amounts at least ten times the RDA, that is, 13 μmol (375 mg retinol equivalents or 12,500 IUa) for an infant or 35 μmol (10 mg retinol equivalents or 33,300 IUa) for an adult. A health-food enthusiast who ingested 26 μmol (25,000 IUa) of vitamin A as a supplement daily plus a similar amount in food over a prolonged period showed severe signs of toxicity. Approximately 50 signs of chronic toxicity have been reported, of which the most frequent are alopecia, ataxia, bone and muscle pain, cheilitis, conjunctivitis, headache, hepatotoxicity, hyperlipemia, hyperostosis, membrane dryness, pruritus, pseudotumor cerebri, various skin disorders, and visual impairment. When the supplemental intake of vitamin A is eliminated, these signs usually disappear over a period of weeks to months, but not always.

In chronic hypervitaminosis A, holo-RBP in the plasma is not much elevated, whereas retinyl esters are usually increased markedly. Factors that enhance toxicity include alcohol ingestion, low protein intake, viral hepatitis, other dis-
Mechanisms of toxicity are ill defined.

Teratogenic

Vitamin A and other retinoids are teratogenic, both in experimental animals and in women. In experimental animals, all-trans retinoic acid is four times more teratogenic than all-trans vitamin A or its ester. A single extremely large dose of either retinyl ester or retinoic acid, or exposure for as short as a week on high daily doses of retinoic acid (0.1 mmol to 0.3 mmol, or 30 mg to 90 mg), during early pregnancy can induce spontaneous abortions or major fetal malformations. Long-term daily intakes of greater than 26 μmol of retinyl ester (25,000 IU, or 7,500 RE) have also been associated with birth defects in human fetuses, but causality has not been established. Common defects are craniofacial abnormalities, including microcephaly, microtia, and harelip, congenital heart disease, kidney defects, thymic abnormalities, and central nervous system disorders. The extent of induction of RARβ2 by retinoids correlates well with their teratogenic actions. Permanent learning disabilities have been noted in otherwise normal rat pups whose dams received nonteratogenic doses of vitamin A, as well as in children exposed to large doses of 13-cis retinoic acid (Accutane) early in fetal life. Synergism between vitamin A and other teratogens, such as alcohol and drugs, at nonteratogenic doses of each is probable. Thus, women who are pregnant, or who might become so, should carefully control their intake of vitamin A, in regard both to rich foods sources, such as liver, and to vitamin A supplements.

Healthy women who routinely ingest diets containing adequate fruits and green leafy vegetables do not require supplements of vitamin A during pregnancy. In cases where supplementation is advisable, the total daily intake should not exceed 10 μmol (approximately 3 mg or 10,000 IU) of vitamin A. It should be noted that vitamin A deficiency, just as its excess, adversely affects the reproductive process.
Conclusions

Vitamin A and carotenoids are essential for basic physiologic processes in many living organisms. As a consequence, nature has devised ingenious ways to protect us both from an inadequacy and from an excess of vitamin A. The biochemistry of vitamin A and carotenoids in mammals deals largely with nature's clever devices: the efficient absorption of preformed vitamin A, its transport, in large part, on protein chaperones within the body, special mechanisms for its storage, efficient recycling, effective homeostasis, and a regulated catabolic and excretory system. Because carotenoids, until recently, have served as major dietary sources of vitamin A, their bioconversion to vitamin A has evolved as a slow and regulated process, thereby protecting us in large part from the toxic effects of dietary excess.

But vitamin A inadequacy, ironically, remains a major nutritional problem in the world, despite nature's care in trying to prevent it. The reasons underlying this important problem, and some of the strategies designed to address it, are the major focus of this book.

Acknowledgments

This chapter is based in part on generous support from the National Institutes of Health (DK-39733, CA-46406, HD-27994), the U.S. Department of Agriculture (CDFIN/ISU 91–34115–5903), the Thrasher Research Fund (2808–2) and the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011, U.S.A., Journal Paper J-15533, Project No. 3035.

References

1 Moore T. Vitamin A. Amsterdam: Elsevier, 1957. 645
5 Nomenclature Policy. J Nutr 1990, 120, 12–19
9 Olson JA Vitamin A In Machlin LJ, ed Handbook of vitamins 2nd ed New York Marcel Dekker 1990 1–57
10 Ross AC Overview of retinoid metabolism J Nutr 1993,123 346–350
12 Cowan SW, Newcomer ME, Jones TA Crystallographic refinement of human serum retinol binding protein at 2A resolution Proteins Struct Funct Genet 1990,8 44–61
16 Stacewicz-Sapuntzakis M Bowen PE, Kikendall JW, Burgess M Simultaneous determination of serum retinol and various carotenoids their distribution in middle-aged men and women J Micronutr Anal 1987,3 27–45
20 Barua AB, Kostic D, Olson JA Simplified procedures for the extraction and simultaneous HPLC analysis of retinol, tocopherols and carotenoids in human serum J Chromatog 1993,617 257–264
23 Creek KE, St Hilaire P, Hodam JR A comparison of the uptake, metabolism and biologic effects of retinol delivered to human keratinocytes either free or bound to retinol-binding protein J Nutr 1993,123 356–361
25 Green MH, Green JB, Lewis KC Variation in retinol utilization rate with the vitamin A status of the rat J Nutr 1987,117 694–703
26 Ong DE, Newcomer ME, Chytil F Cellular retinoid-binding proteins In Sporn MB,
Biochemistry of Vitamin A and Carotenoids

44. Olson JA. The biological role of vitamin A in maintaining epithelial tissues. Israel J Med Sci, 1972, 8: 1170-1178

46 Slack JMW Embryonic induction Mech Develop 1993,41 91—107
47 Ross AC, Hammerling U Retinoids and the immune system In Sporn MB, Roberts AB, Goodman DS, eds The retinoids biology, chemistry and medicine 2nd ed New York Raven Press 1994 521—543
49 Hossain MZ, Zhang L-X, Bertram JS Mechanistic studies of cancer chemoprevention by retinoids and carotenoids In Livrea MA, Packer L, eds Retinoids progress in research and clinical applications New York Marcel Dekker 1993 361—381
51 Bollag W, Peck R Modulation of cell proliferation and differentiation by retinoids, cytokines and their combination experimental and clinical aspects In Livrea MA, Packer L, eds Retinoids progress in research and clinical applications New York Marcel Dekker 1993 311—328
52 Olson JA Biological actions of carotenoids J Nutr 1989,119 94—95
53 Krinsky NI The biological properties of carotenoids Pure Appl Chem 1994,66 1003—1010
54 Liebler DC Antioxidant reactions of carotenoids Ann NY Acad Sci 1993,691 20—31
56 Mordi RC, Walton JC, Burton GW, Hughes L, Ingold KU Lindsay DA, Moffatt DJ Oxidative degradation of β-carotene and βb-apo-8’ carotenal Tetrahedron 1993, 49 911—928
57 Packer L Antioxidant action of carotenoids in vitro and in vivo and protection against oxidation of human low-density lipoproteins Ann NY Acad Sci 1993,691 48—60
58 Krinsky NI Actions of carotenoids in biological systems Annu Rev Nutr 1993,13 561—587
59 Bendich A Olson JA Biological actions of carotenoids FASEB J 1989,3 1927—1932
60 Olson JA Molecular actions of carotenoids Ann NY Acad Sci 1993,691 156—166
61 Bendich A Biological functions of dietary carotenoids Ann NY Acad Sci 1993, 691 61—67
62 Mathews-Roth MM Carotenoids in erythropoietic protoporphyrina and other photosensitivity diseases Ann NY Acad Sci 1993,691 127—138
63 Singh VM Role of β-carotene in disease prevention with special reference to cancer In Ong ASH, Packer L, eds Lipid-soluble antioxidants biochemistry and clinical applications Basel Birkhauser Verlag 1992 208—226
64 Olson JA Marabou Conference Needs and sources of carotenoids and vitamin A Nutr Rev 1994,52 S67—S73
67 Food and Nutrition Board Recommended dietary allowances, 10th ed National Research Council Washington DC National Academy Press 1989 284
Biochemistry of Vitamin A and Carotenoids

68 Nordic Committee on Food Nordic nutrition recommendations, 2nd ed Stockholm Nordic Council of Ministers 1989 16

69 Olson JA Recommended dietary intakes (RDI) of vitamin A in humans Am J Clin Nutr 1987, 45 693–703

71 Olson JA Measurement of vitamin A status Netherlands J Nutr 1992, 53 163–167

72 Underwood BA, Olson JA, eds A brief guide to current methods of assessing vitamin A status Washington DC Intern Vitam A Consult Gp, ILSI-Nutr Fndn 1993 37

73 Olson JA Physiological and metabolic basis of major signs of vitamin A deficiency In Bauernfeind JC, ed Vitamin A deficiency and its control Orlando, FL Academic Press 1986 19–67

74 Humphrey JH, West KP Jr, Mulhail, See LC, Natadisastra C, Sommer A A priming dose of oral vitamin A given to preschool children may extend protection conferred by a subsequent large dose of vitamin A J Nutr 1993, 123 1363–1369

75 Vahlquist A, Torma H Vitamin A metabolism and retinoid acid receptors in relation to epidermal disorders and retinoid therapy In Livrea MA, Packer L, eds Retinoids progress in research and clinical applications New York Marcel Dekker, 1993 361–381

78 McDowell EM, Keenan KP, Huang M Effects of vitamin A-deprivation on hamster tracheal epithelium a quantitative morphological study Virchow’s Arch B 1984, 45 197–219

80 Bauernfeind JC The safe use of vitamin A Washington DC Intern Vitam A Consult Gp, Nutr Fndn 1980 44

81 Hathcock JN, Hattan DO, Jenkins MY, McDonald JT, Sundaresan PR, Wilkenin VL Evaluation of vitamin A toxicity Am J Clin Nutr 1990, 52 183–202

83 Bush ME, Dahms BB Fatal hypervitaminosis A in a neonate Arch Pathol Lab Med 1984, 108 838–842

84 Olson JA Upper limits of vitamin A in infant formulas, with some comments on vitamin K J Nutr 1989, 119 1820–1824

88 Soprano DR, Harnish DC, Soprano KJ, Kochhar DM, Jiang H Correlations of RAR
isoforms and cellular retinoid-binding proteins in RNA levels with retinoid-induced teratogenesis J Nutr 1993,123 367–371

89 Adams J Neural and behavioral pathology following prenatal exposure to retinoids In Koren G, ed Retinoids in clinical practice New York Marcel Dekker 1993 111–128

90 Underwood BA The safe use of vitamin A by women during the reproductive years Washington DC Int Vitam A Consult Gp, ILSI Nutr Fndn 1986 4
Plate 1. Xerophthalmic retinopathy in a 24-year-old otherwise well-nourished Indonesian woman who presented with night blindness, constricted visual fields, and severe conjunctival and corneal xerosis.

Plate 2. Two months after vitamin A therapy the small yellowish-white retinal lesions seen in the patient in Plate 1 have largely disappeared.

Plate 3. Impression cytology specimen (CIC-A) of normal conjunctiva revealing abundant PAS-positive mucus-secreting goblet cells amid a sheet of small, regular epithelial cells (PAS and Harris' hematoxylin, ×400).

Plate 4. CIC-A specimen of abnormal conjunctiva from a vitamin A-deficient child. Epithelial cells are large and irregular (though not yet keratinized) and lack goblet cells (PAS and Harris' hematoxylin, ×400).
Plate 5. Localized area of dry, granular conjunctival xerosis temporally in a 5-year-old Indonesian boy.

Plate 6. Tiny, localized areas of foam or bubbles of conjunctival xerosis in a 4-year-old Indonesian boy.

Plate 7. Classical foamy Bitot's spot in a 29-year-old Indonesian man that largely resolved within 2 months of vitamin A therapy.

Plate 8. Classical Bitot's spot in a 20-year-old Indonesian man. The superior aspect is foamy in character, the inferior aspect is denser and cheesy in appearance. There was no history of nightblindness and the Bitot's spot failed to respond to vitamin A therapy.
Plate 9. Foamy Bitot's spot in a 3-year-old girl from South India. Note the heavily pigmented appearance of the conjunctiva.

Plate 10. Thick, stiffened temporal conjunctiva in a 4-year-old Indonesian girl with advanced conjunctival xerosis. Haziness of the inferior cornea represents mild corneal xerosis.

Plate 11. Thickened skinlike temporal conjunctiva in a 1-year-old Indonesian boy with early corneal xerosis. The eye had been stained with Rose Bengal.

Plate 12. Extensive punctate keratopathy in a 10-month-old Indonesian boy. The cornea appeared crystal clear to handlight examination, but fluorescein-staining punctate epithelial lesions were apparent on examination with the slit-lamp biomicroscope. The cornea of the other eye was entirely necrotic (Plate 13).
Plate 13. Fellow eye of subject described in Plate 12. The cornea was entirely necrotic and bulging forward. Dark, pigmented iris is visible in areas where most of the stroma had already sloughed.

Plate 14. Inferior corneal xerosis in a severely malnourished 3-year-old Indonesian boy. The keratinized surface is sharply demarcated. The cornea of the other eye was entirely necrotic (Plate 15).

Plate 15. Fellow eye of case described in Plate 14. Except for the peripheral 1 mm, the cornea is entirely necrotic, most having already sloughed, resulting in a large central descemetocoele. The conjunctiva is moderately inflamed and without evident xerosis.

Plate 16. Heavily keratinized corneal surface in the eye of a 2-year-old Indonesian girl two days after initiation of therapy. A portion of the keratinized surface has already peeled off inferiorly, forming a scroll below. The clear area is now devoid of its keratinized layer. At the initial examination, the identical area of the other eye contained a typical ulcer (Plate 17).
Plate 17. Fellow eye of case described in Plate 16. A typical, sharp-margined oval ulcer is present inferiorly. The conjunctiva is not inflamed and contains extensive xerosis which is most apparent in the inferior quadrant adjacent to the cornea.

Plate 18. Extensive conjunctival xerosis and heavily keratinized corneal surface in a 3-year-old Indonesian boy.

Plate 19. Same eye shown in Plate 18, two days following initiation of therapy. The heavily keratinized corneal plaque inferiorly has sloughed leaving a small round sharply demarcated superficial ulcer in its place. Crevices of the surrounding keratinized surface converge on the ulcer, most apparently above the inferior limbus. Keratinized plaques are still present in the interpalpebral zone.

Plate 20. External appearance of one eye of the case described in Plate 1. Marked xerosis of both the conjunctiva and cornea is present.
Plate 21. Heavily keratinized corneal plaque in a 2-year-old Indonesian girl with poor lid closure and severe malnutrition. Conjunctival and corneal xerosis is extensive.

Plate 22. Right eye of a 3-year-old Indonesian girl. A classical punched-out, shallow round ulcer was present anteriorly, with pigment (presumably adherent iris surface left behind following dilatation) posteriorly, and normal-appearing stroma in between. Two pinpoint ulcers are present superiorly. The left eye is shown in Plate 23.

Plate 23. Left eye of case described in Plate 22. A large, circumscribed area of cornea is missing centrally with iris bulging through the defect. The surrounding cornea was hazy but viable. The conjunctiva was xerotic and not inflamed.

Plate 24. The left eye of a 4-year-old Indonesian boy. Corneal xerosis is apparent inferiorly, and a classically sharp, round, punched-out three-fourths depth ulcer is evident superonasally. The ulcer reached Descemet’s membrane.
Plate 25. A characteristically fluorescein-staining oval, inferior corneal ulcer in a 2-year-old Indonesian girl. A small hypopyon is present and the conjunctiva is inflamed.

Plate 26. A 19-month-old Indonesian boy. The right eye contained extensive conjunctival xerosis and punctate keratopathy. The left eye, shown here one day following initiation of vitamin A therapy contained three areas of surface abnormality. One area was irregular, composed of mounds (clear epithelial or superficial stromal vesicles) alternating with dellen-like depressions. Temporal to this area was a depression. In its center was a sharp, deeper, cylindrical ulcer, the only part that stained with fluorescein. A second, larger depression with a centrally staining ulcer was present more temporally. The bases of the two ulcers, originally clear, were by now moderately opaque. A small hypopyon was present and the conjunctiva was inflamed.

Plate 27. Same eye shown in Plate 26, three days after presentation, stained with fluorescein and observed through a blue filter. The superonasal area is less irregular and the adjacent ulcer has largely healed. But now the most temporal ulcer has enlarged, the entire area of depression being deeper and staining edge-to-edge. The hypopyon has increased.

Plate 28. Opague, necrotic cornea in a 2-year-old Indonesian boy. The conjunctiva is both xerotic and inflamed. The fellow eye contained an area of inferior focal, corneal necrosis.
Plate 29. Sharply focal necrotic lesion in the right eye of a 2-year-old Indonesian boy. The stroma has largely sloughed, a bulging descemctocele filling the defect. The rest of the cornea is hazy and xerotic. The conjunctiva is inflamed. The other eye had moderately severe corneal xerosis.

Plate 30. Same eye shown in Plate 29 two months later. The defect has healed as a remarkably small, peripheral adherent leukoma, leaving a clear pupillary zone.

Plate 31. Left eye of an otherwise well-nourished 2-year-old Indonesian boy. A large, nonstaining, focally necrotic bulging, opaque corneal lesion is present inferiorly. The conjunctiva is both inflamed and xerotic. Abnormalities in the other eye were limited to dense punctate keratopathy.

Plate 32. Same eye shown in Plate 31, one month later. The previous lesion has healed as a surprisingly small adherent leukoma, preserving a clear central pupillary zone.
The Relationship between Immunocompetence and Vitamin A Status

A. CATHARINE ROSS

A role for vitamin A in maintaining the structure and function of the immune system was recognized in very general terms as early as the 1920s. Based on a comprehensive light-microscopic study of vitamin A-deficient rats, Wolbach and Howe concluded that deficiency is associated with marked morphological alterations in the epithelia of numerous organs (e.g., the trachea and cornea). The tissues of vitamin A-deficient rats showed abnormal keratinization in place of the normal mucus-secreting phenotype, and abnormal flattening (squamous metaplasia) in place of the normal columnar or cuboidal form. In the lymphoid organs, thymic atrophy was observed with advanced vitamin A deficiency, and cellular changes indicative of accumulation of debris were described in the lymph nodes. Wolbach and Howe commented that these epithelial changes occurred quite apart from evidence of infection. A few years later, Green and Mellanby reported that vitamin A-deficient rats often died with histopathologic evidence of infection, in contrast to their well-nourished counterparts. From a study of morbidity and mortality in rats infected with a specific pathogen (paratyphoid bacillus), Lassen concluded that both vitamin A-deficient and control rats became infected, but that few of the vitamin A-deficient rats recovered from their infection.

Over the years, numerous observations in a variety of experimental animals have made it clear that resistance to infection is often reduced by chronic vitamin A deficiency (Table 9–1). The concept that improving the vitamin A status of
Table 9-1 Some Observations on Resistance to Infection in Vitamin A-Deficient Animals

<table>
<thead>
<tr>
<th>Observations</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histopathologic evidence of infection</td>
<td>rat</td>
<td>Green²</td>
</tr>
<tr>
<td>† Resistance to typhoid, anthrax, and paratyphoid bacilli</td>
<td>rat</td>
<td>Lassen¹</td>
</tr>
<tr>
<td>† Resistance to endogenous infection</td>
<td>rat</td>
<td>Ongsakul⁸</td>
</tr>
<tr>
<td>† Resistance to E. coli infection</td>
<td>chick</td>
<td>Friedman⁹</td>
</tr>
<tr>
<td>Longer survival of vitamin A-deficient animals when germ-free or given antibiotics</td>
<td>rat</td>
<td>Bieri⁶⁶</td>
</tr>
<tr>
<td></td>
<td>chick</td>
<td>Raice⁶¹</td>
</tr>
<tr>
<td></td>
<td>rat</td>
<td>Anzano⁶²</td>
</tr>
<tr>
<td></td>
<td>chick</td>
<td>Rodgers⁶³</td>
</tr>
<tr>
<td>† Corneal inflammation, ulceration, and necrosis after herpes virus infection</td>
<td>rat</td>
<td>Nauss⁴⁴</td>
</tr>
<tr>
<td>† Leukocyte infiltration and corneal ulceration after P. aeruginosa infection</td>
<td>rabbit</td>
<td>DeCarlo⁵⁵</td>
</tr>
<tr>
<td>Impaired clearance of parasites and † worm burden</td>
<td>rat, mouse</td>
<td>Parent⁸⁶</td>
</tr>
<tr>
<td>Intestinal villus destruction in vitamin A deficiency combined with rotavirus infection</td>
<td>mouse</td>
<td>Ahmed³⁶,³⁷</td>
</tr>
<tr>
<td>† Clearance of E. coli and in vitro phagocytic activity</td>
<td>rat</td>
<td>Ongsakul⁶⁶</td>
</tr>
<tr>
<td>† Antibody response to Schistosoma mansoni infection</td>
<td>rat</td>
<td>Parent⁶⁶</td>
</tr>
<tr>
<td>† Antibody response to Newcastle disease virus or Salmonella pullorum antigen</td>
<td>chick</td>
<td>Sijtsma²⁷</td>
</tr>
<tr>
<td>No difference in worm burden or replication following infection with Trichinella spiralis but † anti-IgG response</td>
<td>mouse</td>
<td>Carman⁴⁸</td>
</tr>
</tbody>
</table>

From Proceedings of Public Health Significance of Vitamin A Deficiency and Its Control ⁴¹

Humans may be an effective way to decrease infectious morbidity and mortality has gained strength from recent controlled community trials (Chapters 2, 3), and particularly from hospital-based studies of vitamin A supplementation in children with severe measles,⁴-⁶ an infection known to produce a rapid and profound immunosuppression.⁷ In addition, randomized, controlled community studies designed to examine morbidity have shown few differences in the prevalence of infectious diseases, but a reduction in the severity of infection (particularly diarrheal disease), in vitamin A-supplemented children (Chapters 2, 3).⁸⁹¹⁰

How does vitamin A maintain health, specifically as related to infectious disease? Two plausible hypotheses are suggested in Table 9-2, one focusing on epithelial barriers and the other on immunological functions. It is possible that vitamin A reduces mortality by maintaining epithelial barriers and, hence, reduces the rate of infection. This hypothesis (which has its origins in the work of Wolbach and Howe) puts the major emphasis on the role of vitamin A in maintaining structural integrity, i.e., normal tissue differentiation. Although it is often said that epithelial barriers provide a "first line of defense" in resistance to infection, it is more precise to define this role as an offensive one, related in
Table 9-2: Hypotheses Concerning the Protective Role of Vitamin A

<table>
<thead>
<tr>
<th>Epithelial Barrier Hypothesis</th>
<th>Immunologic Response Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principally offensive protects against initial infection</td>
<td>Principally defensive responds to pathogens or non-self antigens</td>
</tr>
<tr>
<td>Structural integrity paramount</td>
<td>Functional integrity emphasized, but cell differentiation also important</td>
</tr>
<tr>
<td>Predicts resistance to infection will be reduced by vitamin A deficiency</td>
<td>Predicts response to infections will be reduced by vitamin A</td>
</tr>
<tr>
<td>Predicted major effect decreased incidence of infection</td>
<td>Predicted major effect decreased duration or severity of infection</td>
</tr>
</tbody>
</table>

part to mucus secretion and the movement of cilia, which serve to entrap and disable pathogens. A reasonable expectation from this hypothesis is that providing vitamin A to deficient individuals will reduce the incidence of infections compared with equally deficient, but untreated, controls. However, a consistent reduction in the incidence of infection after vitamin A supplementation has not been detected (Chapter 3). From these data, it should not be concluded that vitamin A supplementation in at-risk children has no beneficial effects on the epithelia of the corneal, gastrointestinal, and respiratory tracts, but rather that supplementation does not appear to be a major explanation for the dramatic effects of vitamin A on child survival.

It is also plausible that the main action of vitamin A is to maintain immunocompetence. The immune system is primarily a defensive network that has evolved to make highly specific responses to nonself antigens and pathogens and to generate long-lived protection through antigen-specific memory. Immunocompetence requires both structural maintenance in terms of a continual renewal of lymphoid cells (lymphopoiesis in bone marrow and subsequent differentiation of lymphoid cells in the primary lymphoid organs) and functional maintenance in terms of cell-cell signaling required to generate appropriate responses to microbial infections or other immunogenic stimuli. A requirement for vitamin A in immunocompetence might be revealed as a decrease in the incidence of infection following supplementation, but would more likely be seen as a reduction in either the duration or severity of illness. Most of the community-based studies were not designed to examine duration or severity of disease in detail and, therefore, little data are available. However, as noted above, a reduction in the severity of infection (particularly diarrheal disease) has now been reported in vitamin A-supplemented children (Chapters 2, 3). These data, and especially the therapeutic effect of vitamin A on severe measles, suggest that improvements in immunocompetence and the response to infection may explain the ability of vitamin A to decrease mortality without having an observable effect on the incidence of infection.

Over the years, experimental studies, mostly with animal models, have provided insight regarding the requirements for vitamin A in the immune system.
This chapter will focus on six main issues concerning vitamin A and immunocompetence. First, the consequences of vitamin A deficiency will be considered as they relate to three aspects of immunity: lymphoid organs and hematopoiesis, "cell-mediated immunity," and humoral immunity. How vitamin A administration affects immune responses will be considered next. This subject has been studied from two viewpoints: (1) whether vitamin A is effective in rehabilitating the immune responses of vitamin A-deficient animals or humans, and (2) whether vitamin A has any immunostimulatory activity in individuals whose vitamin A status is normal. Finally, two issues will be explored that may or may not have practical implications but are nonetheless of interest for understanding the nature of the requirement for vitamin A. First, which forms of vitamin A have immunostimulatory activity, and second, is vitamin A always essential, or are there circumstances in which other immune factors can circumvent the requirement for this nutrient?

Lymphoid Organs and Hematopoiesis

Does vitamin A deficiency have a major effect on the organs or cells of the immune system? Changes in the size, weight, and cellularity of lymphoid organs have been reported in experimental models of vitamin A deficiency,11,12 however, the consistency of these findings is not strong because, depending on the species studied, both increases and decreases in spleen and lymph node weight or leukocyte number have been reported. For example, severely vitamin A-deficient mice were reported to have significantly enlarged spleens and lymph nodes,13 whereas vitamin A-depleted rats either showed no change in organ mass or cell number prior to the onset of symptoms of vitamin A deficiency, or the thymus and spleen weights and cellularity were reduced after symptoms had developed.14–16 Lymph node weights of severely vitamin A-deficient rats, like mice, were reported to be elevated.14 In the gut-associated lymphoid tissues of the guinea pig, vitamin A deficiency was associated with fewer intestinal Peyer's patches and immunoglobulin-bearing cells.17

Total leukocyte and differential counts have been determined in some animal models of vitamin A deficiency, and specific lymphocyte populations have been enumerated by flow cytometry after staining with cell type-specific monoclonal antibodies. Although in the aggregate the results point to disturbances in hematopoiesis, the results of these investigations have also varied considerably among different models of vitamin A deficiency. A study of vitamin A-deficient mice showed no organ-specific changes in lymphocytes, B cells, T cells or macrophages, but a calculation of the number of cells per mouse revealed significant increases in B cells and macrophages.13 T cell subsets, determined by expression of surface glycoproteins, did not differ between vitamin A-sufficient and -deficient mice.13 In contrast, studies of rats with a single nutrient deficiency of vitamin A have shown a reduction in circulating lymphocytes and an elevation in granulo-
Within the lymphocyte population, the balance between B and T cells and between CD4+ (helper) and CD8+ (cytotoxic/suppressor) T cells was normal in two reports. Recently we completed a study of the numbers and proportions of lymphocytes and subsets including B and T lymphocytes and natural killer (NK) cells (Zhao and Ross, unpublished results). The number of peripheral blood lymphocytes of vitamin A-deficient rats was consistently reduced, while the number of granulocytes was elevated. Among lymphocyte populations, decreases on the order of ~20%—25% were found for B cells in blood and the spleen respectively, as well as for total T cells and CD4+ T cells of the spleen. The largest relative differences in the cell populations of vitamin A-deficient rats were observed for the numbers of NK cells, which were reduced by 36% and 57% in the spleen and peripheral blood respectively. However, after deficient rats were repleted with retinoic acid for 4.5 days, their blood lymphocyte counts and the numbers of B, T, and NK cells increased significantly to values that equaled or exceeded those of vitamin A-sufficient controls.

In humans, vitamin A deficiency appears to be associated with low lymphocyte counts. In a study of African children (four months to twenty-four months old) with complicated measles, blood lymphocyte counts were depressed relative to those of noninfected children. In measles-infected children who received vitamin A (three doses equivalent to 30 mg or 60 mg of retinol), the total lymphocyte counts increased significantly. In a study of the relationship of low vitamin A status (manifested as xerophthalmia) to immune function in preschool Indonesian children, the ratio of T cells bearing CD4+ and CD8+ antigens was marginally lower in the peripheral blood lymphocytes of thirty xerophthalmic children, as compared with twenty-five non-xerophthalmic controls. However, five weeks after both groups of children were supplemented with vitamin A (equal to 60 mg of retinol), the proportion of CD4+ to CD8+ T cells and the percentage of naive CD4+ T lymphocytes increased in comparison to the children given a placebo.

As these data indicate, the results from animal and human studies vary considerably, and yet nearly all studies support the general hypothesis that lymphopoiesis and/or maturation of lymphocytes are altered (generally, reduced) by a lack of vitamin A. It is questionable whether the magnitude of cellular depletion, which often has been modest when observed at all, is great enough to account for some of the very dramatic defects in immune function. However, in addition to the observations regarding vitamin A deficiency, there are other reasons to believe that vitamin A plays an important role in hematopoiesis. Retinoids have been effective in controlling the differentiation of cell lines of hematopoietic and nonhematopoietic origin in vitro. The recent success of all-trans-retinoic acid in the "differentiation therapy" of patients with acute promyelocytic leukemia has dramatically illustrated the ability of retinoids to regulate at least some aspects of leukocyte maturation. Further investigations of the role of vitamin A in hematopoiesis, with discrimination among lymphocytic,
Mechanisms

monocytic, and granulocytic lineages, should be revealing in understanding the requirements for vitamin A and the mechanisms of action of various retinoids

Cell-Mediated Immunity

The term "cell-mediated immunity" (CMI) was originally used to describe localized reactions to pathogens that are mediated principally by lymphocytes and macrophages, and in which antibodies play a subsidiary role. However, this terminology is imprecise due to the numerous overlaps between CMI and humoral immunity. For example, CD4+ T cells provide help to cytotoxic T cells in CMI and to B cells in the humoral response, while interleukins or cytokines released by T cells or macrophages play regulatory roles in both cell-mediated reactions and antibody production, and antibodies are intimately involved in some mechanisms of cytotoxicity. The major effector cells in CMI are the cytotoxic (CD8+) T lymphocytes, NK cells, and macrophages ("professional phagocytes"), which destroy infected or foreign cells through direct contact or via secreted, soluble factors.

Experimental vitamin A deficiency has been reported to affect several measures of CMI, including the blastogenic transformation of lymphocytes in response to mitogens, T cell cytotoxic responses, and delayed-type hypersensitivity (DTH) responses. Both decreases and increases in mitogen-induced lymphocyte transformation have been reported (with differences apparently related to the lymphoid organ source of cells, the type of mitogen, and the duration or stage of vitamin A deficiency). In most cases, the blastogenic response of spleen cells to T cell mitogens has been reduced. The response of Peyer's patch lymphocytes to B and T cell mitogens was also reduced. The cytotoxicity of T lymphocytes was low in vitamin A-deficient chicks challenged with Newcastle disease virus. Similarly, DTH responses, often used to assess CMI, were significantly reduced in vitamin A-deficient mice and chicks. In contrast, however, a study of children in Bangladesh reported no change in the DTH response before and after vitamin A supplementation. With the latter exception, the studies to date are consistent with the hypothesis that CMI responses, shown or presumed to be mediated by T cells, depend on adequate vitamin A.

Vitamin A deficiency has also been observed to reduce the "natural cytotoxicity" expressed by NK cells. NK cells function in immune defenses through cytotoxic killing of virus-infected (or tumor) cells, and are also thought to play a broader immunoregulatory role by secreting soluble factors (e.g., interferon [IFN]-gamma and tumor necrosis factor [TNF]-alpha) that modulate antibacterial responses. Vitamin A deficiency in rats was associated with large decreases in the NK cell cytotoxic activity of spleen, and was correlated with a significant reduction in the release of IFN from mitogen-stimulated spleen cells of the same animals. It may be relevant that the NK cytotoxicity of peripheral blood was
low in young children with acute measles. Although this observation was not shown to be correlated with a lack of vitamin A, reduction in the plasma concentration of retinol during acute infection is well documented (Chapters 9, 11).

Recently, the cause of low NK cell activity in vitamin A-deficient rats was investigated using a specific monoclonal antibody to determine NK cell number. The cytotoxic activity of NK cells in blood and spleen was reduced by ~56% compared with controls, and most of the decrease was accounted for by low NK cell numbers (reductions of 57% in blood and 36% in spleen). After correction for low NK cell number, the NK cell lytic efficiency (cytotoxicity per NK cell) was normal (in blood) or only marginally reduced (in spleen), even in the vitamin A-deficient state. Moreover, the NK cells of vitamin A-deficient rats retained their ability to be activated by lymphokines in vivo and in vitro. Thus, in the case of NK cell cytotoxicity, the predominant defect appears to be a reduction in hematopoiesis (whether due to changes in bone marrow or subsequent maturation steps is still unknown), rather than a functional impairment in the cytolytic capability or activation potential of mature NK cells.

Humoral Immunity

Antibody responses are integral to successful vaccination and to recovery from natural infections such as measles. The relationship of vitamin A deficiency to antibody production has been addressed in detail recently. This discussion of individual studies will be limited, instead, an attempt will be made to draw some generalizations from current experimental studies of the antibody response.

Vitamin A deficiency compromises the antibody response to some types of antigens, but not to others. The primary antibody response has been investigated in vitamin A-deficient rats, mice, or chicks immunized with a number of T cell-dependent (TD) antigens (e.g., proteins such as tetanus toxoid, hemocyanin, and albumin, or heterologous red blood cells). The primary antibody response has been consistently low compared with the response of vitamin A-sufficient, pair-fed, or age-matched controls. In studies that included previously vitamin A-deficient animals after repletion with vitamin A, antibody production was normal or even somewhat increased, even when retinol was not provided until the day after immunization. These observations are consistent with the idea that the initial interactions between antigen, antigen-presenting cells, and other cells does not depend on vitamin A. In addition, antigen-presenting cells of vitamin A-deficient mice functioned as well in vitro as those from vitamin A-sufficient controls. From these depletion and repletion studies it seems clear that a single nutrient deficiency of vitamin A is responsible for the reduced specific antibody response, and that retinol by itself is able to reverse this immunodeficiency. These data do not diminish the importance of general nutrition, including adequate protein and calories, but they do illustrate that vitamin A-deficient animals,
even compared with pair-fed controls that may themselves be somewhat under-
nourished, respond poorly to TD antigens and that restoration of retinol alone
reverses their immunodeficiency.

These results from animal studies are borne out by recent studies of the
response to vaccination in young children. Indonesian children who received a
single 60 mg dose of vitamin A two weeks before immunization with DPT vaccine
produced anti-tetanus titers that were higher than pre-vitamin A levels, whether
or not they had preexisting signs of vitamin A deficiency (mild xerophthalmia).
It is noteworthy that before treatment with vitamin A, approximately half of the
children, regardless of ocular status, had mean low plasma retinol concentrations
(\(\leq 0.7 \mu\text{mol/liter or } 200 \mu\text{g/liter}\)), and that these levels increased significantly in
the vitamin A-supplemented groups. Thus, vitamin A status and the response
to TD antigens are also correlated in humans.

An investigation of the antibody response of vitamin A-deficient rats to two
capsular polysaccharides (from *S. pneumoniae* and *N. meningitidis*) also revealed
marked immunosuppression (\(\leq 20\%\) of control), similar to the results described
above for TD antigens. A significant reduction in the antibody response to
pneumococcal polysaccharide was detected as early as two weeks after young
rats were weaned onto a vitamin A-free diet, well before any physical signs of
vitamin A deficiency would have been apparent. Conversely, antigen-specific
antibody concentrations were normal after repletion with retinol, even in animals
whose previous vitamin A deficiency had been severe. Although polysaccharide
antigens such as pneumococcal polysaccharide have been characterized as T cell-
independent (TI) antigens (based on the ability of athymic nude mice to respond),
additional studies of euthymic animals showed that the magnitude of the antibody
response to pneumococcal polysaccharide is regulated by T cells. These antigens
have now been subclassified as TI type 2 (TI-2) antigens. The similar depressions
in antibody responses to both TD and TI-2 antigens in vitamin A-deficient
animals may, therefore, be consistent with impairments in T cell functions and/or
T cell–B cell interactions.

In marked contrast, the ability of vitamin A-deficient rats to produce an
antigen-specific response to two lipopolysaccharides (both TI type I [TI-I] ant-
gens that can stimulate B cells directly) was normal, even after rats had progressed
to the stage of frank, symptomatic vitamin A deficiency. These contrasting
results with experimental immunizations lead to at least two conclusions. First,
it is clear that at least certain populations of B cells from vitamin A-deficient
animals retain the ability to respond to antigen and to synthesize and secrete
antigen-specific antibody. Therefore, the basic "machinery" of antibody produc-
tion must be intact, even in severe deficiency. Second, the contrasting results
between TD and TI-2 antigens versus TI-I antigens imply that the requirement
for vitamin A in the antibody response to natural infections may also depend
strongly on particular features of a pathogen's antigenic components or the type
of response it elicits. One might reasonably predict that, in the case of natural
Infections, there also will be situations in which the immune response is compromised by a lack of vitamin A deficiency and other situations in which vitamin A deficiency, or its reversal by supplemental vitamin A, will have little impact on the course of infection or the formation of protective antibodies or immune cells.

The generalizations in Table 9–3 are proposed based on the similar results with TD and TI-2 antigens in experimental animals and the opposite findings with TI-1 antigens. The underlying reasons for the differences in response among these types of antigens are not yet understood. It is known, however, that bacterial lipopolysaccharides strongly elicit the secretion of certain soluble factors, such as TNF-alpha from macrophages. Therefore, it is possible that these TI-1 antigens trigger a pathway that is relatively insensitive to vitamin A deficiency, or that the particular factors released after stimulation with TI-1 antigens are functional even in the absence of vitamin A. Additional studies with other antigens will be of interest to further test these generalizations and to clarify which particular features of the immune response actually require vitamin A. The immunogenicity of lipopolysaccharide antigens in vitamin A-deficient animals also raises the possibility that factors elicited by such antigens might have immune enhancing (adjuvant) activity toward other antigens (such as TD or TI-2 antigens), even during vitamin A deficiency.

There is a dichotomy between the levels of total IgG and antigen-specific IgG in vitamin A-deficient animals. It is interesting and seemingly paradoxical that, despite the low antigen-specific responses observed for TD or TI-2 antigens, the total IgM or IgG concentrations were elevated in vitamin A-deficient rats, mice, or chicks. For example, young chicks exposed to Newcastle disease virus produced a low virus-specific antibody titer even though nonspecific IgM and

<table>
<thead>
<tr>
<th>Table 9–3 Possible Generalizations from Studies of Antibody Production in Vitamin A-Deficient Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETINOL IS REQUIRED FOR THE ANTIBODY RESPONSE TO T CELL DEPENDENT (TD) AND T CELL-INDEPENDENT TYPE 2 (TI-2) ANTIGENS</td>
</tr>
<tr>
<td>TD antigens</td>
</tr>
<tr>
<td>Tetanus toxoid</td>
</tr>
<tr>
<td>Heterologous red blood cells</td>
</tr>
<tr>
<td>Proteins (e.g., hemocyanin, albumin)</td>
</tr>
<tr>
<td>Viral infections</td>
</tr>
<tr>
<td>Parasitic infections</td>
</tr>
<tr>
<td>TI-2 antigens</td>
</tr>
<tr>
<td>Pneumococcal polysaccharide</td>
</tr>
<tr>
<td>Meningococcal polysaccharide</td>
</tr>
<tr>
<td>RETINOL IS NOT ESSENTIAL FOR THE ANTIBODY RESPONSE TO TI TYPE 1 (TI-1) ANTIGENS</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa lipopolysaccharide</td>
</tr>
<tr>
<td>Serratia marcescens lipopolysaccharide</td>
</tr>
<tr>
<td>Brucella abortus</td>
</tr>
</tbody>
</table>

Summarized from results described in detail in Ross et al.
IgG were increased. In rats, total (nonspecific) IgG increased in an age-dependent manner from twenty days to seventy days of age regardless of whether rats were fed a vitamin A-free or -adequate diet, however, concomitant with the appearance of signs of vitamin A deficiency at about fifty-five to sixty days of age, the concentration of total IgG was significantly elevated compared with vitamin A-sufficient controls These data further support the conclusion that the B cells of vitamin A-deficient animals retained their ability to synthesize and secrete immunoglobulin, even though antigen-specific responses to TD and TI-2 antigens were very low in the same animals.

There are qualitative as well as quantitative differences in the antibody response of vitamin A-deficient animals. The immunoglobulin G class in humans and rodents commonly used in immunological research comprises four distinct subclasses, each regulated by a specific gene within the heavy chain gene cluster. Current evidence supports the view that cytokines, especially IL-4, IFN-gamma, and transforming growth factor-beta, regulate the expression of the constant heavy genes that encode the Ig classes. For example, in the mouse, IL-4 increases the magnitude of IgG1 responses to TD, TI-1 and TI-2 antigens, while IFN-gamma increases IgG2a and often IgG3 responses. Thus, the cytokines released by T lymphocytes, NK cells, or other cells during the response to antigen, together with direct cell-cell interactions, determine the qualitative as well as quantitative characteristics of the antibody response. A retrospective examination of the Ig classes formed during a particular antibody response may sometimes provide clues as to the cytokines that have regulated it.

There is evidence, although from a small number of experiments, for subclass-specific impairment in the antibody response to TD antigens. When vitamin A-deficient mice were immunized with TD protein antigens, their IgG responses decreased to a greater extent than IgM responses and, among IgG subclasses, reductions were observed for both antigen-specific IgG1 and IgG3. The low IgG1 may imply a reduction of IL-4, while the low IgG3 would be consistent with a reduction in IFN-gamma. The low primary anti-tetanus IgG concentration in vitamin A-deficient rats (whose IgG subclass nomenclature differs from that of the mouse) was due almost entirely to a low level of anti-tetanus IgG2b, in contrast, the concentrations of anti-tetanus IgG1 and IgG2a were both equal to those of the control group. These data may imply that IL-4 production and/or signaling was not significantly impaired, but a reduction in IFN could

*In humans, mice, and rats, IgG is made up of four subclasses with distinct heavy chain constant regions. The four IgG subclasses of humans, mice and rats have apparently diverged during gene evolution and, although similar nomenclature has been adopted, the IgG subclasses with similar names in different species are not necessarily homologous. In humans, the four subclasses (isotypes) are designated as IgG1, IgG2, IgG3, and IgG4, in mice, as IgG1, IgG2a, IgG2b, and IgG3, and in rats, as IgG1, IgG2a, IgG2b, and IgG2c. Among rodents, mouse IgG2a/2b and rat IgG2b have been shown to be similar in structure and function. IFN-gamma increased murine IgG2a responses. IFN was implicated in rat anti-IgG2b production.
underlie the low IgG2b response. In support of this, spleen cells from vitamin A-deficient rats were observed to release less antiviral IFN in response to mitogenic stimulation. Conversely, preliminary studies have implicated an elevation of IFN in the increased production of rat anti-tetanus IgG2b. Abnormalities in IFN production are suggested by results from both vitamin A-deficient rats and mice, although the type of change seems to differ substantially between the two models. Dysregulation of cytokine production or secretion is also suggested from experiments in vitamin A-deficient mice in which T helper cells of the Th1 type (which mainly secrete lymphokines [IL-2, IFN-gamma] that stimulate cell-mediated immunity) predominated early in the antibody response, this shift away from the Th2 clonotype (associated more with antibody responses) may be important in the poor antibody response in the vitamin A-deficient state.

Immunologic memory may be formed, even when the humoral antibody response is low. The results of studies with TD antigens have revealed a dichotomy between the primary antibody response, which is low in the vitamin A-deficient condition, as previously described, and the formation of immunologic memory, which appears to be normal. A study was designed to examine the secondary anti-tetanus response of previously vitamin A-deficient rats that were repleted with retinol before reimmunization. The secondary response of these retinol-repleted rats displayed normal quantitative and qualitative characteristics (higher anti-tetanus IgG titers and normal IgG subclass proportions in the secondary response of retinol-repleted rats). The inference drawn from these studies, illustrated as a model in Figure 9–1, was that immunologic memory had

Fig. 9–1. Model of the consequences of vitamin A deficiency on the formation of memory B and T cells and antibody secreting plasma cells (PC) in the primary and secondary response to tetanus toxoid (TT). 1 = reduced in vitamin A deficiency (specific for anti-TT IgG2b), 2 = normal in vitamin A deficiency, 3 = reduced in vitamin A deficiency but normal or increased in previously deficient rats after repletion with retinol (Modified from M Kinoshita and A C Ross)
been established and retained in the vitamin A-deficient condition, and that memory could be activated later, provided that retinol status had improved, to produce the secondary response. From these data one might speculate that if vitamin A-deficient humans, like rats, also form immunologic memory when they are vaccinated (even if their initial antibody response is low), then vaccination may still provide protection if the individual's vitamin A status is subsequently improved.

Thus, the overall picture of changes in the humoral immune response of vitamin A-deficient animals and humans points to dysregulation in T cell signaling or T cell–B cell interactions, but not to a general impairment in antibody production. The data also indicate that assays of the primary antibody response do not necessarily correlate with the formation of antigen-specific memory. Finally, the idea that vitamin A may be important for the production of particular classes or subclasses of antibody fits conceptually with dysregulation in the synthesis, release, or signaling pathways of certain immunoregulatory cytokines such as IFN.

Effect of Vitamin A Administration on Immune Response

Animals or humans have been treated with retinol for at least two purposes: first, to test the ability of the vitamin to reverse immunodeficiencies and, second, to determine whether retinol (or other retinoids) has immunostimulatory activity in individuals whose vitamin A status is thought to be normal.

Repletion in the Vitamin A-Deficient State

As noted previously, in essentially all situations of immunocompromise due to vitamin A deficiency, immune responses were normal after animals were repleted with vitamin A. Human studies also support the ability of orally administered vitamin A to increase immune functions. Following administration of a bolus (oral) dose of vitamin A, plasma levels of retinol rise within a few hours as newly absorbed chylomicron retinyl esters enter the circulation, are cleared into liver, and retinol is released in association with retinol-binding protein (RBP) (Chapter 8).

Kinetics studies have been conducted to determine the rate of tissue repletion in vitamin A-deficient animals given vitamin A as large or small oral boluses or in the diet. In vitamin A-deficient animals, provision of even small doses of retinyl ester rapidly restored plasma retinol to normal levels, whereas repletion of liver vitamin A depended on the vitamin A dose. Following administration of vitamin A in quantities sufficient to cause deposition in liver, a state of vitamin A sufficiency may be maintained for several months. After treating vitamin A-deficient rats with a single, large oral dose of retinyl ester,
there was an elevation of vitamin A in the spleen and thymus during the post-absorptive phase, followed by a decline after ~24 hours. There is limited evidence that immune responses can be stimulated, even in comparison to the vitamin A-sufficient state, when vitamin A-deficient animals are repleted with retinol near the time of immunization. For example, when vitamin A-deficient rats were immunized with tetanus toxoid and repleted with a single oral dose (footnote) of vitamin A the next day, their anti-tetanus response not only increased significantly compared with vitamin A-deficient rats, but was approximately twice that of the vitamin A-sufficient control group. The mechanism(s) through which retinol might cause immune enhancement have not been identified, but they may be related to the uptake of retinol by macrophages (or other cells participating in immune responses). It is conceivable that during vitamin A deficiency there are compensatory increases in the expression of certain receptors or other molecules involved in vitamin A-regulated responses, and that greater-than-normal signaling might occur shortly after vitamin A is available but before such receptors have been readjusted to normal levels.

Adjuvant Properties in Vitamin A-Sufficient Animals and Cells

Some situations have been described in which retinol or retinoic acid appear to function as immune stimulants (adjuvants), increasing the responses to specific antigens or tumors. The adjuvant properties of retinol in the antibody response were first reported by Dresser, who immunized mice with soluble bovine gamma-globulin (a nonimmunogenic protein in the mouse) and observed that specific antibody production was induced in a dose-dependent manner when large quantities of retinol (1 mg–10 mg per mouse) were administered before immunization. However, Dresser did not administer retinol orally and it is unclear whether this stimulation of antibody production by retinol was due to its action as the vitamin or as an oily vehicle, similar in effect to mineral oil. In addition to stimulating antibody production, measures of CMI have also been reported to increase following treatment with retinoids in vitro or in vivo, including lymphocyte proliferation, expression of IL-2 receptors on T cells and NK cells, and production of IL-2 and IFN-gamma. However, it should be noted that in nearly all of these studies, retinoids were administered by nonphysiological routes.

Animal studies also support the idea that high doses of vitamin A may stimulate phagocytosis and cell-mediated killing of pathogens, examples of the functions performed by the nonspecific arm of the immune system. The clearance of gram-negative and gram-positive bacteria or fungus was greater in normal

A dose of 15 mg of retinol used in studies of rats weighing approximately 200 g is roughly comparable, based on either straight body weight or metabolic body weight (Wt/0.75), to administration of 200,000 IU of vitamin A (60 mg retinol) to a 10-kg human.
mice pretreated with high doses of vitamin A palmitate, injected intraperitoneally, as was macrophage phagocytosis after vitamin A was added to the diet. Semiweekly administration of vitamin A palmitate (totaling 16 mg, intraperitoneally, over five weeks) enhanced the ability of rats to clear a sublethal dose of S. typhimurium from blood and tissues, as did pretreatment with a diet very high in vitamin A. These treatments, however, also resulted in an elevation of serum retinol. An intriguing connection between normal chylomicron vitamin A metabolism and macrophage function is suggested by the observation that macrophage-like cells of bone marrow assimilated and then released chylomicron vitamin A. Since the quantity of chylomicron vitamin A in the circulation is related directly to recent ingestion of the vitamin, the amount of vitamin A available to chylomicron-metabolizing cells could be great following administration of large oral doses of the vitamin.

Regarding the therapeutic action of vitamin A in children with severe measles, it is unclear whether it involves the adjuvant properties or the nutritional activity of the vitamin, or both. Indeed, the pharmacological and physiological modes of action may be very difficult to distinguish in the vitamin A-deficient individual. Based on studies of both vitamin A-deficient and -sufficient animals, it seems plausible that high doses of vitamin A not only provide nutritional rehabilitation (resulting in release of retinol and its binding protein from liver, delivery of retinol to tissues, and subsequent repair of mucosae), but may also activate phagocytes and/or T cells in an adjuvant-like fashion, as observed in vitamin A-deficient animals. Each of these mechanisms has the potential to contribute to clinical improvement.

Identification of and Requirements for Immunoregulatory Retinoids

Which vitamin A metabolites regulate immune functions? Isomers of retinoic acid (all-trans, 9-cis) have been shown to regulate gene expression or cell differentiation both in vivo and in vitro, and the concept is now well accepted that this oxidized metabolite of retinol (Chapter 8) is the principal activated form of vitamin A. Therefore, it was surprising when Buck et al. reported that a metabolite of retinol may have regulatory functions in the immune system. In in vitro assays of the growth of virus-transformed human B cells and the proliferative response of thymocytes or T cell lines, retinol-containing serum or exogenous retinol was required, in contrast, retinoic acid had little activity. A new metabolite of retinol produced by the transformed B cell cultures was isolated, identified as 14-hydroxy-4,14-retro-retinol (14-HRR), and shown to have growth-promoting properties on these B cells. From these studies, Buck, Hammerling and coworkers proposed that retinoids at the oxidation level of retinol (e.g., 14-HRR) (Fig. 9–2) function as regulators or costimulatory molecules in the immune system.
Immunocompetence and Vitamin A Status

Retinol ↔ Retinaldehyde ↔ Retinoic acid
(All-trans-and 9-cis isomers)

- supports growth of cultured B cells (66)
- supports signaling and proliferation of T cell lines and thymocytes (67)
- functions as an adjuvant in vitamin A sufficient animals (55)
- supports in vitro antibody responses (53, 72)
- restores NK cell number and enhances activity (71)
- restores in vivo antibody responses to T cell dependent antigens (E Gardner, unpublished data)

Fig 9-2. Potential role of retinoids as regulators of the immune system

In contrast, other results from in vitro and in vivo experiments support a role for retinoic acid. Retinoic acid has not been shown to be reduced to retinol in vivo (Fig 9-2), and therefore it is not expected to function as a precursor for retinol metabolites. The growth-promoting activity of retinoic acid in vitamin A-deficient animals is well known. The hematocrit, white blood cell count, and the lymphocyte transformation response, all reduced in vitamin A deficiency, were increased toward normal after administration of retinoic acid. The number of immune cells, including lymphocytes and NK cells, was also normalized in previously vitamin A-deficient rats fed a retinoic acid-supplemented diet. Retinoic acid also appears to adequately support the antibody response to TD antigens in vitro and in vivo. When retinoic acid was added to TD antigen-primed cells from vitamin A-deficient mice, the antigen-specific IgG1 response was restored. Compared with retinol, retinoic acid was approximately 100 times more effective, leading Chun et al. to conclude that “retinoic acid is probably the physiological metabolite for sustaining IgG immune responses in vivo.” Other in vitro studies showed increased antibody production by mitogen-stimulated B cells in the presence of retinoic acid-treated T cells. In vivo, repletion of vitamin A-deficient rats with oral retinoic acid increased their anti-tetanus IgG response to a level comparable to retinol-repleted rats (E Gardner, D Arora, and A C Ross, unpublished data).

As these contrasting results indicate, exactly which retinoids have immunoregulatory properties under physiological conditions is not yet clear. Whether one or more metabolites of retinol, other than retinoic acid, is essential for immune responses in vivo deserves further consideration, but this idea requires reconciliation with the ability of retinoic acid to restore complex immune responses in retinol-depleted animals.
Is the role of retinoids obligatory? Certain immune responses do not seem to require that the host's vitamin A status be normal. For other immune responses that are low during vitamin A deficiency, the requirement for vitamin A apparently can be obviated by a high level of certain cytokines. As noted previously, the antibody response to lipopolysaccharides (TI-1 antigens) was normal in vitamin A-deficient rats. This observation, and evidence that lipopolysaccharides may function as adjuvants toward TD responses, prompted us to ask whether the antibody response to TD or TI-2 antigens could be increased in vitamin A-deficient rats through simultaneous immunization with lipopolysaccharide. When vitamin A-deficient animals were immunized with tetanus toxoid and *P. aeruginosa* lipopolysaccharide, or with pneumococcal polysaccharide and lipopolysaccharide, their specific anti-tetanus or anti-capsular polysaccharide responses were markedly elevated. Because lipopolysaccharides are known to elicit the release from macrophages of a number of cytokines (among which TNF and IL-1-beta are predominant), these data led us to question whether administration of purified cytokines might also stimulate immunity in the absence of retinol. Indeed, when vitamin A-deficient rats were immunized with tetanus toxoid and treated with recombinant TNF, their anti-tetanus IgG response was increased more than eightfold. Similarly, the cytotoxicity of NK cells of vitamin A-deficient animals was activated, similar to normal NK cells, after induction of IFN release in vivo or by the addition of IL-2 or IFN to leukocytes in vitro. Nevertheless, the combination of stimulation with TNF and provision of oral retinol at the time of immunization resulted in an even greater anti-tetanus response in previously vitamin A-deficient rats. One interpretation of these results is that, although TNF is stimulatory by itself, the full activity of this cytokine in the anti-tetanus response requires the presence of vitamin A. Similarly, the addition of IFN-gamma to anti-CD3-stimulated T cells in vitro circumvented the requirement for retinol in T cell proliferation, but the combination of IFN-gamma and retinol produced the largest stimulation.

Together, the studies illustrate that antigen-specific responses to both TD and TI-2 antigens are possible during vitamin A deficiency as long as additional strong stimuli are provided. Further, these observations raise the possibility that purified cytokines, or other biological response modifiers that elicit cytokine production in vivo, may be useful as adjuvants to vaccination and would be effective even in the vitamin A-deficient condition.

Conclusions

Although the exact role of vitamin A in maintaining immunocompetence has yet to be made clear, a few broad generalizations can be drawn from the results described in the preceding section. First, vitamin A plays an important part in maintaining the lymphocyte pool. Whereas lymphocyte counts are generally low during vitamin A deficiency, administration of retinol to vitamin A-deficient
animals or humans, or of retinoic acid to retinol-depleted animals, increases the number and/or proportion of lymphocytes in blood and spleen. This change, occurring over several days, would be consistent with a likely role for vitamin A in the proliferation and differentiation of progenitor cells of the lymphocytic lineage. In animals treated with retinoic acid, lymphocytes of both B and T lineages and subsets of both CD4+ and CD8+ cells increased concomitantly, in normal proportions. Similarly, the number of NK cells, an immunoregulatory subpopulation of lymphocytes, was substantially decreased by vitamin A deficiency, but increased to normal values following retinoid administration. Although lymphocytes are among the best characterized of cells with regard to their surface receptors and adhesion molecules, knowledge of lymphocyte subsets and their functions is still incomplete. It is clear that surface features can change rapidly, for example, during the course of cell activation, and it is possible that future studies will reveal subpopulations of cells that are particularly dependent on vitamin A.

Second, there is strong and consistent evidence that vitamin A functions in T cell-mediated responses. This requirement is made evident in vitamin A deficiency by low cell-mediated immune responses measured by a number of different assays, and by low antibody responses to a variety of T cell-dependent and T cell-regulated antigens. Where supplementation with vitamin A has been studied, responses have almost uniformly been restored. It is remarkable that some immune functions are well preserved in the vitamin A-deficient state, for example, that total antibody levels are not reduced. The discrepancy between antigen-specific and total antibody production implies that vitamin A is not fundamental per se to the synthesis and secretion of immunoglobulins. Similarly, the ability of vitamin A-deficient animals to mount a strong cytokine response after appropriate stimulation also leads to the conclusion that at least portions of the "response machinery" are not seriously impaired. The low level of antigen-specific, T cell-dependent responses supports the contention that vitamin A plays some type of signaling role unique to the activation or propagation of antigen-specific responses, perhaps related to the proliferation and clonal expansion of antigen-specific cells.

Another paradox—the failure to produce a normal antibody response and, at the same time, the formation of long-term memory—suggests that there may be some particular defects involving signaling or interactions between subpopulations of T and B cells. Despite the formation of memory to antigen in vitamin A-deficient animals, a normal secondary response occurred only after deficient animals were repleted with vitamin A before reimmunization. Thus, even though memory T cells appear to have been generated, they required retinol (or retinoic acid) to activate the B cells' antibody production in the secondary response, similar to the requirement observed for the primary antibody response.

There is evidence from a small number of studies that the requirement for vitamin A in T cell-dependent responses may be circumvented when the production or availability of certain cytokines is high. Normal antibody responses and
NK cell activation have been observed in vitamin A-deficient animals following cytokine elicitation in vivo, and after addition of IFN-gamma to T cells cultured in the absence of retinoids in vitro. A new hypothesis may be suggested from these data that vitamin A and cytokines function as costimulatory molecules, or as coregulators in the same signaling pathways. It is possible that vitamin A reduces the cytokine dose-dependency of certain immune responses, but that vitamin A produces no additional effect when high, saturating concentrations of cytokines are present.

Third, there is reasonably good evidence that vitamin A can stimulate nonspecific immunity, such as the activation of macrophages. Stimulation of phagocytosis and bacterial clearance has been observed in vitamin A-sufficient animals after administration of quantities of vitamin A that are clearly supra-physiologic. The mechanism of this stimulation is unknown. Regarding the use of vitamin A in humans, it is unclear whether the improvement seen, for example, in children with severe measles is due at least in part to the pharmacological properties of high doses of vitamin A.

Now that the basic mechanism of action of retinoic acid on gene expression has been identified, it should be possible to make rapid progress in understanding which genes are responsive to retinoids, and whether regulation is tissue-specific. In terms of the immune system, it will be important to learn which retinoids are formed within it, or taken up from plasma, and their mode of action. Future investigations of these basic issues in retinoid metabolism should help clarify the specific biochemical and molecular actions of the retinoids, while clinical studies on the efficacy of vitamin A toward different types of infections should improve our understanding of this essential nutrient's therapeutic potential.

References

Immunocompetence and Vitamin A Status

Immunocompetence and Vitamin A Status

Study and Conference Center of the Rockefeller Foundation New York Helen Keller International, Inc 1993

47 Bossie A, Vitetta ES IFN-γ enhances secretion of IgG2a and IgG2a-committed LPS-stimulated murine B cells implications for the role of IFN-γ in class switching Cell Immunol 1991,135 95–104

51 Cantorna MT, Nashold FE, Hayes CE In vitamin A deficiency multiple mechanisms establish a regulatory T helper cell imbalance with excess Th1 and insufficient Th2 function J Immunol 1994,152 1515–1522

57 Dresser DW Adjuvanticity of vitamin A Nature 1963,217 527–529

63 Morinuchi S, Werner L, Watson RR High dietary vitamin A (retinyl palmiate) and cellular immune functions in mice Immunol 1985,56 169–177

85 DeCarlo JD, VanHorn DL, Hyndiuk RA, Davis SD Increased susceptibility to infection in experimental xerophthalmia Arch Ophthalmol 1981, 99:1614–1617

87 Ahmed F, Jones DB, Jackson AA The interaction of vitamin A deficiency and rotavirus infection in the mouse Br J Nutr 1990, 63:363–373

Treatment
Treatment of Vitamin A Deficiency and Xerophthalmia

I have no experience treating nightblindness by incarcerating sufferers in a darkened room, as advised by Wharton and Netter. Nobody can be astonished however that patients declare themselves cured after a longer or shorter confinement in places of the sort

—S. Stephenson, 1896

The effect [of cod liver oil on nightblindness and conjunctival xerosis] is very marked. It appears, in fact, almost specific

—S. Snell, 1881

Virtual elimination of vitamin A deficiency and its consequences,

—Nutrition Goals for the Year 2000, World Summit for Children

The distinction between “treatment” and “prevention” is somewhat arbitrary since treatment is always meant to prevent a more serious event. As a practical matter, however, it is helpful to distinguish between the two.

Optimal health requires the maintenance of normal vitamin A status, including adequate stores to withstand acute insults and seasonal dietary deprivation. Prevention programs aim to sustain normal vitamin A nutriture among populations that would otherwise be deficient, particularly the most vulnerable groups (traditionally infants and young children from poorer socioeconomic strata). The initial consequence of such broad, population-based programs will be improvement in the vitamin A status of the population and a decline in the prevalence and severity of vitamin A deficiency. Ideally, vitamin A deficiency will disappear entirely except for rare, isolated events that can be recognized and effectively
treated within existing health care services. This might well serve as an operative definition of the stated goal of the International Conference on Nutrition.

Treatment differs from prevention in focusing on the urgent need of an individual for prompt improvement in vitamin A status to prevent imminent risks to sight and life (classic instances being xerophthalmia and measles).

Only a decade ago, “treatment” referred solely to the management of xerophthalmia. Admonitions to provide high dose vitamin A to children with severe measles, protein-energy malnutrition (PEM), or diarrhea were considered a form of “targeted prevention” for those at particularly high risk of further deterioration of vitamin A status. Newer knowledge concerning the risks that milder vitamin A deficiency poses to life and sight has expanded the scope and indications for “treatment.”

Vitamin A status can be improved, and mild xerophthalmia cured, within one to three weeks of instituting the frequent feeding of inexpensive foods rich in provitamin A carotenoids. But when sight and life are at imminent risk, as they are in xerophthalmia and measles, improvement in vitamin A status is a medical emergency requiring prompt administration of large-dose vitamin A supplements. A recent study from Senegal indicated that supplementation with high dose beta carotene (1,200,000 IU) was equivalent to 200,000 IU retinyl palmitate in reversing abnormal impression cytology (within seven weeks of administration). In theory, large dose beta-carotene has fewer side effects than vitamin A, but whether it produces the rapid clinical response needed to prevent further corneal destruction or measles mortality remains to be determined. Even more questionable are the biologic availability and physiologic impact of beta-carotene provided as food rather than pure concentrate (Chapter 13).

Use of Systemic Vitamin A

As discussed earlier (Chapters 1, 8), regulation of circulating levels of physiologically active vitamin A is a complex affair governed, in part, by the availability of both retinyl esters and retinol-binding protein (RBP). In the rat, vitamin A deficiency results in a loss of liver stores, but accumulation of RBP to four times normal levels. Administration of vitamin A causes a prompt outpouring of holo-RBP and rise in serum levels in both animals and humans. Severe protein deficiency can limit the availability of RBP and blunt the response. Regulation of vitamin A status of target tissues is probably even more complex (Chapter 8). Recent data suggest retinoic acid and even retinyl esters may enter cells directly without the need for transport proteins.

Large-dose vitamin A is meant to correct systemic deficiency as rapidly as possible, inducing a positive clinical response. Early recommendations advised intramuscular injection of water-miscible vitamin to circumvent potential problems of malabsorption, particularly in children with intestinal parasites and
diarrhea, and because parenteral administration appeared to result in a greater increase in (total) serum A (retinol plus retinyl ester). It is now accepted, however, that oral vitamin A, whether water- or oil-miscible, is as effective as parenteral vitamin A. Given its greater availability, safety of administration, and lower cost, oral vitamin A is generally the treatment of choice. Piñe has suggested that oral therapy is also less likely to produce side effects since the vitamin A is presented to the liver within its natural vehicle (chylomicra) and, being more slowly absorbed, tends not to produce toxic levels of circulating esters.

A randomized controlled clinical trial studied the relative effectiveness of intramuscular, water-miscible vitamin A (100,000 IU), followed the next day by an oral dose (200,000 IU), compared with purely oral dosing (200,000 IU on two successive days). The subjects were children with corneal xerophthalmia (severe vitamin A deficiency), many of whom suffered concomitant diarrhea, pneumonia, and PEM. The clinical response in the two groups was virtually identical, indicating they achieved comparable degrees of physiologically satisfactory nutrition at the level of the target tissues (Table 10-1). This was supported by the biochemical response (Table 10-2).

As anticipated, total serum vitamin A (including esters) reached greater levels among parenteral recipients, though never the heights reported by Srikantia for non-xerophthalmic children. More important, the holo-RBP response (the form in which physiologically active vitamin A is transported) was virtually identical in the two groups. These results are similar to those reported following parenteral dosing of severely malnourished xerophthalmic Indian children, and a controlled trial of oral versus parenteral vitamin A dosing of non-xerophthalmic, vitamin A-deficient children with varying forms and severity of PEM.

At baseline, 90% of non-xerophthalmic controls had holo-RBP levels above 3 μg/ml, 90% of the children with corneal xerophthalmia had holo-

<table>
<thead>
<tr>
<th>Days Since Worse</th>
<th>State</th>
<th>Improved</th>
<th>Cured</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapy</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Oral ×2</td>
<td>3</td>
<td>(6)</td>
<td>29</td>
<td>(62)</td>
</tr>
<tr>
<td>IM + Oral</td>
<td>7</td>
<td>(23)</td>
<td>16</td>
<td>(53)</td>
</tr>
<tr>
<td>2–4 Oral ×2</td>
<td>7</td>
<td>(10)</td>
<td>11</td>
<td>(16)</td>
</tr>
<tr>
<td>IM + Oral</td>
<td>3</td>
<td>(7)</td>
<td>14</td>
<td>(30)</td>
</tr>
<tr>
<td>6–8 Oral ×2</td>
<td>—</td>
<td>(—)</td>
<td>4</td>
<td>(6)</td>
</tr>
<tr>
<td>IM + Oral</td>
<td>2</td>
<td>(4)</td>
<td>—</td>
<td>(—)</td>
</tr>
<tr>
<td>12–16 Oral ×2</td>
<td>—</td>
<td>(—)</td>
<td>1</td>
<td>(2)</td>
</tr>
<tr>
<td>IM + Oral</td>
<td>2</td>
<td>(5)</td>
<td>0</td>
<td>(0)</td>
</tr>
</tbody>
</table>

*Oral therapy—200,000 IU oil-miscible vitamin A PO on two successive days, IM—100,000 IU water-miscible vitamin A intramuscularly on day 1, followed by the oral dose the next day.

Percent of all eyes in series examined in the interval.

From A Sommer
Table 10-2: Serum Vitamin A and Holo-RBP Response among Double-Dose Vitamin A Recipients

<table>
<thead>
<tr>
<th>Time Since Initial Dose</th>
<th>Vitamin A (µg/dl)</th>
<th>Holo-RBP (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>IM</td>
</tr>
<tr>
<td>0 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{x}</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>35</td>
</tr>
<tr>
<td>4 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{x}</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>36</td>
</tr>
<tr>
<td>1 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{x}</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>35</td>
</tr>
<tr>
<td>3 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{x}</td>
<td>28.4</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>34.1</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>37</td>
</tr>
<tr>
<td>7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{x}</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>37</td>
</tr>
</tbody>
</table>

Limited to cases of corneal involvement included in the analysis of clinical response, on whom at least two values were available. Oral 200,000 IU oil-miscible vitamin A at 0 hours and 1 day. IM 100,000 IU water-miscible vitamin A intramuscularly at 0 hours, plus 200,000 IU oil-miscible vitamin A orally at 1 day.

*Difference between oral and parenteral (IM) group statistically significant at p < 0.05

**Difference between oral and parenteral (IM) group statistically significant at p < 0.001

From A Sommer et al.

RBP levels below 3 µg/ml imply four hours of the first oral dose, 90% of the xerophthalmic children had levels ≥ 5 µg/ml. The only difference in the pattern of biochemical response was the mild drop in serum vitamin A and holo-RBP among oral recipients preceding the second oral dose (T4–T2). As noted, this had no effect on the clinical response, which is hardly surprising even at T24, over 90% of oral recipients had holo-RBP values > 3 µg/ml.

Diarrhea reduces absorption of orally administered vitamin A. Recent studies with tritium labeled vitamin A indicate children without diarrhea absorbed 94% of a dose of 100,000 IU water-miscible vitamin A administered orally, and retained 87%. Children with diarrhea (five to ten loose stools per day) absorbed 74% and retained roughly 70%. Hence, while absorption of a large oral dose is reduced in acute diarrhea, a substantial proportion is still absorbed, sufficient to cause a rise in serum vitamin A. This is to be expected. The liver of a healthy, 7.5-kg child between the ages of two and three contains roughly 30,000 IU vitamin A. Even if absorption were reduced 70% from the use of oil-
miscible preparations32,33 and the presence of concomitant diarrhea and intestinal parasites,25,24,36 a 200,000 IU dose would still deliver more vitamin A than the liver normally contains. As would be anticipated, children in the corneal xerophthalmia clinical trial14 who had diarrhea not only healed as quickly on oral (PO-PO) as on parenteral (IM-PO) vitamin A, but almost as quickly as children without diarrhea.4,37

Because protein deficiency reduces synthesis and release of RBP from the liver,38 it can blunt the response to a massive dose of vitamin A.39-41 Smith and co-workers reported that 100,000 IU parenteral vitamin A failed to elicit an RBP response in Thai children with xerophthalmia and PEM42 However, most studies have found some response, even if it is suboptimal15,22,24

As reported elsewhere,15 the holo-RBP response in the Indonesian randomized treatment trial was closely related to baseline protein status (Table 10—3)42 The lower the baseline serum albumin, the lower the initial holo-RBP response, regardless of the route of administration. But a statistically significant holo-RBP response occurred even among children with severe PEM. Thus, rise in physiologically active holo-RBP can be masked by the presence of incompetent, denatured apo-RBP if only total (immunologically detectable) RBP is measured24,42,43

Although protein deficiency may limit the retinol and RBP response,38,43-46 it clearly does not eliminate it15,22 The initial clinical response of corneal xerophthalmia in children with PEM (albumin < 3 g/dl, transferrin < 50 mg/dl, weight-for-height < 70\% or pedal edema) was almost as good as in better-nourished children,43,37 indicating that their holo-RBP response, even if blunted, was nonetheless clinically effective. However, the clinical response was not as well maintained.

One case (200/011) was particularly illustrative. A severely malnourished two-year-old with corneal xerosis and ulceration refused hospitalization and received only a single oral dose of vitamin A.4 Despite persistently depressed albumin (1.5 g/dl–1.7 g/dl) and transferrin (≤ 20 mg/dl–25 mg/dl), he mounted a brisk (if short-lived) holo-RBP response (Table 10—4) and was free of all clinical evidence of active xerophthalmia by day 9. By day 15 he developed punctate keratopathy and by day 23, bilateral corneal ulceration. Holo-RBP had dropped to 0. A second oral dose was given, along with a high protein diet and liquids. Both corneas improved by the following day. Four other severely malnourished children suffered clinical relapses three to four weeks after initial treatment and a favorable response (two had received PO-PO and two had received IM-PO vitamin A).4

The three modern measles intervention trials support the effectiveness of large-dose oral vitamin A. One trial employed oil-miscible vitamin A,47 the other two, water-miscible vitamin A.45-50 In all three trials, the children suffered from moderate to severe measles, and many also had diarrhea, pneumonia, and significant PEM. The beneficial impact of vitamin A was profound in each study (Chapters 2, 3)
Table 10-3 Holo-RBP Response in Cases of Corneal Xerophthalmia (µg/dl)

<table>
<thead>
<tr>
<th>Time Since Dose (hours)</th>
<th>Serum Albumin (g/100 ml)</th>
<th>3.5</th>
<th>3.4-3.0</th>
<th>2.9-2.5</th>
<th>< 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORAL DOSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>n</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>17</td>
<td>13</td>
<td>0.3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>0-4</td>
<td>n</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>+262^c</td>
<td>+14.5^c</td>
<td>+8.7^c</td>
<td>+5.8^c</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>17.2</td>
<td>3.4</td>
<td>5.0</td>
<td>1.7</td>
</tr>
<tr>
<td>4-24</td>
<td>n</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>-10.7^b</td>
<td>-8.0^b</td>
<td>-3.6</td>
<td>+0.3</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>15.2</td>
<td>4.2</td>
<td>6.0</td>
<td>3.2</td>
</tr>
<tr>
<td>IM DOSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>n</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>0.0</td>
<td>1.3</td>
<td>0.9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.0</td>
<td>0.8</td>
<td>0.9</td>
<td>—</td>
</tr>
<tr>
<td>0-4</td>
<td>n</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>+26.5^c</td>
<td>+12.3^c</td>
<td>+6.7^b</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>7.8</td>
<td>6.3</td>
<td>8.2</td>
<td>—</td>
</tr>
<tr>
<td>4-24</td>
<td>n</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>-30</td>
<td>+1.1</td>
<td>+9.2b</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>—</td>
<td>7.0</td>
<td>8.9</td>
<td>—</td>
</tr>
</tbody>
</table>

^aOral 200,000 IU oil-miscible vitamin A PO at time 0 IM 100,000 IU water-miscible vitamin A intramuscularly at time 0. Δ are all paired comparisons. Cases at 0 h are those available for paired comparison at 4 h. Δ correlated with serum albumin category.

Oral change at 0-4 h, p < .05, change at 4-24 h, p < .001 IM change at 0-4 h, p < .01, change at 4-24 h, p < .05

^bNet change (Δ), p < .05

^cNet change (Δ), p < .01

From A. Sommer et al. 42

Not only is high-dose oral vitamin A as effective as parenteral, water-miscible vitamin A, but it is also cheaper, safer, more widely available, and does not require needles and syringes (with their attendant risks of blood-borne infections). Oral vitamin A is therefore the systemic preparation of choice. Although parenteral vitamin A is considered an option for children unable to swallow or with severe, repeated vomiting, such instances are extremely rare. It was not necessary to use injectable preparations in any of the measles and corneal xerophthalmia treatment trials, though occasionally nasogastric tubes facilitated hydration, feeding, and administration of vitamin A.

If parenteral therapy is contemplated, only water-miscible preparations should be employed. Oil-miscible injections can occasionally reverse xerophthalmia, but the clinical response is delayed and the serum retinol response, even to 200,000
Table 10-4 Serial Blood Chemistries Case 200/011

<table>
<thead>
<tr>
<th>Time Since Therapy</th>
<th>Serum Vitamin A (μg/dl)</th>
<th>Serum Holo-RBP (μg/ml)</th>
<th>Serum Carotene (μg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>4 h</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1 day</td>
<td>9</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2 days</td>
<td>16</td>
<td>—</td>
<td>14</td>
</tr>
<tr>
<td>4 days</td>
<td>31</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>7 days</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>23 days</td>
<td>—</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

*200,000 IU vitamin A in oil orally

From A Sommer

IU in divided doses, is negligible (Table 10-5) 4 If systemic vitamin A therapy is necessary and the only available preparation is oil-miscible parenteral vitamin A, it should be administered by mouth.

The potential side effects of large, multiple doses of vitamin A, in appropriate amounts, are negligible compared with the benefits of treatment. None of the measles or corneal xerophthalmia trials recorded significant or persistent toxicity.

Table 10-5 Serum Vitamin A among Single-Dose Vitamin A Recipients

<table>
<thead>
<tr>
<th>Time Since Initial Dose</th>
<th>Oral</th>
<th>IM (water)</th>
<th>IM (oil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>8.0</td>
<td>9.7</td>
<td>5.8</td>
</tr>
<tr>
<td>SD</td>
<td>4.7</td>
<td>5.1</td>
<td>4.2</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4 h</td>
<td>41.4</td>
<td>70.0</td>
<td>6.0</td>
</tr>
<tr>
<td>SD</td>
<td>32.6</td>
<td>44.1</td>
<td>4.5</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1 day</td>
<td>28.0</td>
<td>108.7</td>
<td>7.6</td>
</tr>
<tr>
<td>SD</td>
<td>13.6</td>
<td>47.3</td>
<td>10.0</td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>3 days</td>
<td>30.5</td>
<td>83.5</td>
<td>9.4</td>
</tr>
<tr>
<td>SD</td>
<td>33.5</td>
<td>46.7</td>
<td>6.1</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>7 days</td>
<td>24.4</td>
<td>28.0</td>
<td>15.9</td>
</tr>
<tr>
<td>SD</td>
<td>10.3</td>
<td>6.7</td>
<td>13.4</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

*Limited to cases of corneal involvement included in the analysis of clinical response. Holo-RBP response omitted because numbers very small. Serum vitamin A in μg/dl

*Oral 200,000 IU oil-miscible vitamin A PO IM (water) 100,000 IU water-miscible vitamin A intramuscularly IM (oil) 200,000 IU oil-miscible vitamin A intramuscularly

From A Sommer 4
Of thirty xerophthalmia cases in which the posterior pole of the eye could be seen within two days of initial dosing, only two children (6.7%) developed transient, low-grade papilledema. A malnourished three-month-old was inadvertently given 200,000 IU on two successive days. He developed a bulging fontanelle but not papilledema, supporting the evidence from Doppler studies that bulging fontanelles in young infants in response to large-dose prophylactic vitamin A is evidence of increased intracranial fluid, but not necessarily significantly increased intracranial pressure (Chapter 15).

Rosales and Kjølhede reported young children who received multiple massive doses over a brief period of time (one, a twelve-month-old, received 1.6 million IU in divided doses over three weeks) without evidence of toxicity.

Treating Xerophthalmia

Xerophthalmia is a manifestation of moderate to severe vitamin A deficiency. It is therefore a medical emergency, as much to prevent death as to prevent blindness.

Systemic Vitamin A

For millennia, nightblindness has been treated with substances rich in vitamin A. Ancient Egyptians, Hippocrates, Paul of Aegina, Galen all recommended liver, a popular folk remedy in India, Japan, and Europe. Wolf observed that the Papyrus Ebers (c. 1520 B.C.) did not mention eating the liver, but rather, recommended applying it directly to the eye. In speculating on how the vitamin A made its way from the conjunctival sack in the front of the eye to the retina behind, he suggested that it might trickle down the lacrimal duct and eventually be absorbed. Topical application of liver juices remains a popular remedy in rural Indonesia, where the mode of action is more obvious after completing the prescribed topical “treatment” as in ancient Egypt, the patient is fed the remaining organ. Although the Indonesian villager does not consider the latter action an essential part of therapy, Aetius prescribed exactly this sequence.

During the nineteenth and early twentieth centuries, clinicians became increasingly familiar with the therapeutic value of fish liver oil, especially that of the cod. Schiele discovered that he could cure xerophthalmia in breastfed children by feeding cod liver oil to their mothers.

Both Mori and Blegvad (cited by Bloch) administered cod liver oil parenterally with allegedly beneficial results. Bloch was convinced that the addition of parenteral to oral therapy speeded clinical recovery, and recommended its use in cases of corneal involvement. Oily injections were once widely used and are capable of temporarily curing xerophthalmia, but as we’ve seen (Table 10–5), biochemical studies indicate that relatively little vitamin A is actually released from the injection site.
Oral vitamin A is clearly the clinical preparation of choice. The first large dose should be administered immediately upon diagnosis or suspicion of xerophthalmia, and an additional dose administered the following day (Table 10-6). This appears to reduce the potential relapse rate. A third, "prophylactic dose" is provided within one to four weeks to further "top-up" liver reserves. While data are scarce that directly compare the protective value of two versus three doses, recent studies suggest that a single dose of 200,000 IU protects xerophthalmic children longer than a 100,000 IU dose and that administration of two sequential doses, one week apart, is superior to a single dose, even if the first dose is relatively small (25,000 IU). Presumably, the first, "priming" dose improves absorption and retention of the second, larger dose (Chapter 15).

Active xerophthalmia begins to respond almost immediately, regardless of whether or not the child had diarrhea or significant PEM. In closely monitored controlled trials, 70% of corneal lesions (X2/X3) improved within four days, and 95% within one week (Table 10-1). The vast majority were entirely healed within two weeks. The early response among single-dose recipients was virtually identical to those who received doses on two successive days, however, it was not as prolonged, particularly among children with significant PEM. The relapse rate among single-dose recipients was nearly four times as great as among children given two doses (38% versus 10%).

Case 200/003 A four-year-old boy with an initial albumin of 27 g/dl presented with localized necrosis in the right eye. He received 100,000 IU water-miscible vitamin A IM, both eyes were healing well by day 5. Serum vitamin A was 8 μg/dl on admission, rose to 145 μg/dl by day 1, and declined to 30 μg/dl by day 4. On day 6, however, the tissue covering the perforation in the right eye began to thin, by day 12, the perforation was twice its original size. Active pulmonary tuberculosis was confirmed radiologically and classical varicella skin lesions appeared. Serum vitamin A had fallen to 17 μg/dl. He was given 200,000 IU vitamin A orally. By day 19, serum vitamin A had risen to 32 μg/dl, and healing of the perforation had resumed. When seen on day 54, serum vitamin A was 29 μg/dl.

<table>
<thead>
<tr>
<th>Table 10-6</th>
<th>Recommended Xerophthalmia Treatment Schedule—Oil-Miscible Oral Vitamin A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 1 Year of Age</td>
</tr>
<tr>
<td>Immediately</td>
<td>100,000 IU</td>
</tr>
<tr>
<td>Next day</td>
<td>100,000 IU</td>
</tr>
<tr>
<td>2-4 wk later</td>
<td>100,000 IU</td>
</tr>
</tbody>
</table>

*Women of reproductive age require special attention because of the potential teratogenic effects of very high dose retinol early in pregnancy. As corneal lesions are a severe medical emergency, apply the full therapeutic regimen described above. If the woman is otherwise healthy and only suffering from nightblindness or Bitot's spots, treat instead with daily doses of 10,000 IU orally for two weeks.
and the right eye entirely healed, with an inferonasal adherent leukoma and clear pupillary zone. It seems likely that the original, single IM dose provided insufficient vitamin A to withstand the added stress of chickenpox exacerbated by active tuberculosis. However, double dosing does not entirely eliminate the problem of early relapse, particularly in severely ill, malnourished children. Corneal relapses were observed in four such children, three of whom died shortly thereafter. Others have reported cases in which the corneas responded rapidly to systemic vitamin A even though the children died soon afterward. Osborne recalled the same phenomenon in animals.

The single most important determinant of mortality among treated corneal cases was severe PEM (Table 10-7). A quarter of these children died, most within the first month. Only 4% of better-nourished children died (usually more than a month after initial treatment).

Protein and Calories

As has been seen, xerophthalmia will respond to isolated administration of vitamin A even in the presence of significant PEM. Moor noted clinical improvement "soon after" administering cod liver oil to children with kwashiorkor. Reddy described the disappearance of corneal xerosis after giving vitamin A to children with PEM who refused hospitalization. Community-based prophylaxis trials result in marked reductions in the incidence of xerophthalmia, including

<table>
<thead>
<tr>
<th>Table 10-7, Mortality among Treated Cases of Active Corneal Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Follow-Up</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1 wk</td>
</tr>
<tr>
<td>2 wk</td>
</tr>
<tr>
<td>1 mo</td>
</tr>
<tr>
<td>2 mo</td>
</tr>
<tr>
<td>3-4 mo</td>
</tr>
<tr>
<td>5-6 mo</td>
</tr>
<tr>
<td>7-8 mo</td>
</tr>
<tr>
<td>9-10 mo</td>
</tr>
<tr>
<td>11-12 mo</td>
</tr>
<tr>
<td>13-14 mo</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*aSevere malnutrition defined as any of the following edema, albumin < 2.5 g/dl, or weight-for-height < 70% of standard

Difference in mortality between the two groups p < .01

From A. Sommer
keratomalacia \(^{\text{a1}}\) A substantial proportion of the children who benefitted, particularly in the slums of Hyderabad, must have been significantly malnourished.

While the xerophthalmic response can be attributed to the small but definite rise in holo-RBP, retinol\(^{\text{c2}}\) and retinoic acid can apparently enter at least some cell lines even when free of the RBP transport protein.

Treating PEM is an important component of xerophthalmia therapy, both to prolong the response and to reduce associated morbidity and mortality.

Case 200/147 A two-year-old presented with complete necrosis of the right cornea and a 2 mm ulcer in the left. She was severely malnourished, with frank anasarca, serum albumin of 1.9 g/dl and transferrin \(\leq 20\ \mu g/ml\). She was given 200,000 IU vitamin A orally on two successive days. The ulcer was definitely improved by day 3 and essentially healed by day 5. At two weeks the ulcer appeared to be deteriorating, but the mother insisted the child be discharged. When next seen, at three weeks, serum albumen was still only 1.8 g/dl and a central ulcer occupied 75% of the corneal surface. An additional oral dose of vitamin A was given. A week later, the ulcer had completely healed, leaving a dense leukoma.

Repeated massive dosing with vitamin A every two to four weeks is advisable until protein status improves \(^{\text{18,19,22}}\).

Physicians, like patients, have a fascination with injectable preparations. They must be repeatedly reminded of the advantages (in terms of safety, practicality and efficacy) of oral vitamin A \(^{\text{83}}\). Otherwise, they run the risk of inadvertently using oil-miscible preparations parenterally \(^{\text{84}}\).

One unusual circumstance forms an exception, largely relevant only to wealthy countries: the poor vitamin A stores of ventilator-dependent very low-birth-weight infants (< 1300 g) may be more effectively raised during the first seven days of life by frequent, small, periodic doses of water-miscible vitamin A by IM injection rather than by mouth, though not necessarily to a clinically significant degree \(^{\text{85}}\). As already indicted, some individuals with severe malabsorption, usually from cystic fibrosis, may require periodic parenteral supplementation, though most can be adequately managed with large-dose oral therapy (with or without enzyme replacement).

Topical Vitamin A

Despite its long popularity as a folk remedy, \(^{\text{55-58}}\) topical administration of vitamin A is neither recommended nor regularly employed. Systemic administration, required to reach distant sites and build up liver stores, also induces corneal healing. \(^{\text{57,68,70,85-87}}\) Unfortunately, the corneal response to systemic therapy is often delayed two to four days, during which time the cornea may deteriorate further, \(^{\text{88-89}}\) especially among children with severe PEM. Pirie\(^{\text{90}}\) suggested that PEM-associated depression of RBP synthesis might be responsible for this delay.
and demonstrated that topically applied retinoic acid had a beneficial effect on the cornea of vitamin A depleted rats. Topical retinoic acid speeds reversal of corneal keratinization in vitamin A-deficient rabbits, whether administered alone92,93 or in conjunction with systemic vitamin A.94 Retinoic acid supports normal epithelial differentiation95 and apparently does not circulate in association with a specific transport protein.96,97

Shortly after the initial report by Pine, a controlled clinical trial of topical retinoic acid in conjunction with systemic vitamin A was carried out in Indonesia.89,98 Topical retinoic acid clearly speeded corneal healing among eyes randomized to receive it, however, more rapid healing rarely made a clinically significant difference and ulcerated eyes treated with topical retinoic acid occasionally healed with denser scarring.98

Subsequent animal studies suggest that weaker preparations of retinoic acid93 or retinol itself92,99,100 might be less irritating and equally effective in reversing keratinizing metaplasia of the cornea. Given the relatively small practical advantage of adjunct topical vitamin A therapy, the potential for increased scarring (especially problematic in centrally ulcerated corneas), and the difficulty of maintaining sterility and adequate supervision in the field, topical retinoic acid (or retinol) probably has a limited role until further studies better define appropriate formulations and dosage. Whether retinoic acid offers any advantages over retinol is unclear in addition to the animal studies noted above, Bors86 reported that vitamin A drops (150,000 IU/ml) every two hours provided symptomatic improvement in an adult case (but so did topical chloramphenicol101, suggesting a local lubricant effect of the vehicle). Recent studies indicate that vitamin A is present in tears of humans and animals,102,103 is actively secreted by the lacrimal gland,104 and that oral supplementation of mildly deficient children results in increased levels of retinol in tears.105 Considering the prevalence of reduced tearing in xerophthalma (Chapter 4) and the possibility that retinol can directly enter some cell lines, tears may play an important role in the normal delivery of vitamin A to the ocular surface. If so, topical delivery of an appropriate vitamin A formulation might one day prove a useful addition to our therapeutic armamentarium. Since vitamin A deficiency is a systemic condition, with widespread systemic implications, topical vitamin A will never be more than adjunct therapy to mandatory systemic administration.

Adjunct Therapy

A variety of other therapeutic modalities can prove decisive.18,106 In addition to the correction of vitamin A deficiency and PEM, children require appropriate management of concomitant systemic infections (e.g., gastroenteritis, respiratory infections, malaria, tuberculosis) and dehydration. Adequate lid closure is necessary to prevent corneal exposure in semistuporous or comatose patients, and can be achieved by temporarily taping the lids shut. While it is unlikely that
bacterial infections initiate xerophthalmic ulceration, they can certainly exacerbate it (Chapter 4) Careful, sterile techniques should be used when approaching the globe and consideration given to the use of broad spectrum topical antibiotics to prevent secondary bacterial infections Any evidence of corneal infection should be vigorously treated with appropriate topical and systemic antibiotics

Surgical Intervention

In general, active xerophthalmia does not lend itself to surgical intervention Ben-Sira et al 107 reported successful use of “covering grafts” in children with active xerophthalmic corneal ulceration In 48/50 eyes, the anterior chamber was eventually restored In 41/50 eyes with eccentric ulcers, the corneas eventually healed with clear pupillary zones These results are no different from those of our (entirely nonsurgical) series The vast majority of ulcers are eccentric and become plugged with iris, thereby preserving the anterior chamber They subsequently heal rapidly on vitamin A therapy Complete corneal necrosis precludes any possibility of corneal grafting In those few instances in which localized ulcers are too large or central for spontaneous maintenance or restoration of the anterior chamber, the angle is usually already lost by the time the child first presents

Treating Measles

As has been made clear, measles can be a devastating disease and high-dose vitamin A is an effective means of reducing attendant morbidity and mortality (Chapters 2–4) The World Health Organization and UNICEF recommend immediate administration of a large dose of vitamin A to all children with measles from communities where vitamin A deficiency is a “recognized problem” or where measles case-fatality rates are 1% or greater 108,109 While a single large dose may be adequate, all three controlled measles intervention trials administered a large dose on two successive days47,48, the Durban trial provided additional doses on days 8 and 42 49,50 Until controlled trials demonstrate that a single dose is just as effective as a dose on two successive days, it is probably prudent to follow the double-dose schedule

Since children with complicated measles often come from vitamin A-deficient communities (to which they return), the full xerophthalmic treatment schedule should probably be administered (Table 10–6) 19 Because of the recent resurgence of measles and measles deaths in Europe and the United States110 consideration should be given to the judicious use of supplemental large-dose vitamin A in the treatment of measles among individuals from high-risk communities, as recommended by the American Academy of Pediatrics 111
Treating Other Infections

There is as yet no consensus on treating other illnesses with vitamin A (other than as a convenient means of targeting prophylaxis to children likely to be or to become deficient). On the other hand, since a host of data suggest a close and potentially causal relationship between vitamin A status and the severity and chronicity of some infections (Chapter 3), high-dose vitamin A therapy might be considered potentially therapeutic in selected cases. The strongest evidence exists for chronic dehydrating diarrhea. Community intervention trials regularly reduced diarrhea-specific mortality (Table 2-12) and morbidity. Whether high-dose treatment has the same effect once diarrhea sets in, as reported decades ago by Ramalingaswami, remains to be seen. Considerable attention is being given to combining vitamin A supplementation with oral rehydration. One study reported that vitamin A treatment had no impact on the course of non-cholera, watery diarrhea. This is hardly surprising since the episodes terminated among placebo recipients within two days, leaving little opportunity for demonstrating an effect, and serum vitamin A levels were unchanged by supplementation. Nonetheless, the results are consistent with the apparent absence of any significant impact of community prophylaxis on the incidence of frequent, trivial diarrhea (Chapter 3).

References

1 Stephenson S. On epithelial xerosis of the conjunctiva. Trans Ophthalmol Soc UK 1896,18:55-102
4 Sommer A. Nutritional Blindness, xerophthalmia and keratomalacia. New York Oxford University Press 1982
9 Manath JGR, Lima MCC Santos LMP. Vitamin A activity of buriti (Mauritia
Treatment of Vitamin A Deficiency

winef era mart) and its effectiveness in the treatment and prevention of xerophthal-

21 Sommer A, Muhilal. Nutritional factors in corneal xerophthalmia and keratomalacia Arch Ophthalmol 1982,100:399–403
23 Srikantha SG, Reddy V. Effect of a single massive dose of vitamin A on serum and liver levels of the vitamin Am J Clin Nutr 1970,23:114–118
30 Suthutvoravoot S, Olson JA Plasma and liver concentrations of vitamin A in a normal population of urban Thai Am J Clin Nutr 1974,27 883–891
31 Olson JA The prevention of childhood blindness by the administration of massive doses of vitamin A Isr J Med Sci 1972,8 1199–1206
34 Mahalanabis D, Simpson TW, Chakraborty ML, Ganguli C, Bhattacharjee AK, Mukherjee KL Malabsorption of water miscible vitamin A in children with giardiasis and ascariasis J Nutr 1979,32 313–318
35 Mahalanabis D, Jalan KN, Maitra TK, Agarwal SK Vitamin A absorption in ascariasis Am J Clin Nutr 1976,29 1372–1375
37 Sommer A Vitamin A, xerophthalmia and diarrhoea (letter) Lancet 1980,1 1411–1412
Treatment of Vitamin A Deficiency

52 Agoestina T, Humphrey JH, Taylor GA, Usman A, Subardja D, Hidayat S, Nurachim Wu L, Friedman DS, West KP Jr, Sommer A Safety of one 52 μmol (50,000 IU) oral dose of vitamin A administered to neonates Bull WHO 1994,72 859–868

53 Rosales FJ, Kjolhede CK Multiple high dose vitamin A supplementation A report on five cases Trop Geogr Med 1995,45 41–43

54 Holcomb RC Nightblindness JAMA 1934,102 786–787

55 Wolf G A historical note on the mode of administration of vitamin A for the cure of night blindness Am J Clin Nutr 1978,31 290–292

57 Mori M Uber den sog Hikan (Xerosis conjunctivae infantum ev Keratomalacie) Jahrb Kinderheilk 1904,59 175–194

59 Banister R A treatise of one hundred and thirteen diseases of the eyes and eye lids London Thomas Mann (2nd edition) 1622

60 Spicer H Ophthalmological Society Kerato-malacia in young children (editorial) Lancet 1892,2 1387–1388

61 Bloch CE Clinical investigation of xerophthalmia and dystrophy in infants and young children (xerophthalmia et dystrophia alipogenetica) J Hygiene (Cambridge) 1921,19 283–301

62 Kollock CW A form of xerosis Ophthalmic Review 1890,9 249–251

63 le DeRomary M A propos de l'hémeralopie essentielle Le Caducee 1903,3 50

64 Elliot RH Night-blindness In Tropical Ophthalmology London Henry Frowde, Hodder & Stoughton 1920 75–86

65 Bloch CE Further clinical investigations into the diseases arising in consequence of a deficiency in the fat-soluble A factor Am J Dis Child 1924,28 659–667

66 ten Doesschate J Causes of blindness in and around Surabaja, East Java, Indonesia Thesis University of Indonesia, Jakarta 1968 159–241

68 Chu FT, Lin CK Efficacy of parenteral vitamin A administration in vitamin A deficiency, clinical study of 9 cases Chin Med J 1938,53 413–426

70 Vaughan DG Xerophthalmia Arch Ophthalmol 1954,51 789–798

71 Humphrey JH Natadisastra G, Muhilal, Friedman DS, Tielsch JM, West KP Jr,
Sommer A. A 210 μmol dose of vitamin A provides more prolonged impact on vitamin A status than 105 μmol among preschool children. J Nutr 1994,124 1172–1178

72 Sovani I, Humphrey JH, Kuntinahbronto DR, Natadasastra G, Muhilal, Tielsch JM. Response of Bitot's spots to a single oral 100,000-IU or 200,000-IU dose of vitamin A. Am J Ophthalmol 1994,118 792–796

73 Humphrey JH, West KP Jr, Muhilal, See LC, Natadasastra G, Sommer A. A priming dose of oral vitamin A given to preschool children may extend protection conferred by a subsequent large dose of vitamin A. J Nutr 1993,123 1363–1369

74 Campos FACs, Flores H, Underwood BA. Effect of an infection on vitamin A status of children as measured by the relative dose response (RDR). Am J Clin Nutr 1987,46 91–94

75 Breese BB, Watkins E, McCord AB. The absorption of vitamin A in tuberculosis. JAMA 1942,119 3–4

78 Osborne TB, Mendel LB. Ophthalmia and diet. JAMA 1942,119 3–4

82 Saari JC, Bredberg L, Futterman S. Esterification of retinol by retinoblastoma cell lines WERI-Rb1 and Y79. Invest Ophthalmol Vis Sci 1980,19 1301–1308

90 May OL, Wolff E. Case of xerophthalmia. Lancet 1938,2 252–253

95 Dowling JE, Wald G The biological function of vitamin A acid Proc Nat Acad Sci 1960,46 587–608
97 Ott DB, Lachance PA Retinoic acid a review Am J Clin Nutr 1979,32 2522–2531
102 Ubels JL, MacRae SM Vitamin A is present as retinol in the tears of humans and rabbits Curr Eye Res 1984,3 815–822
111 Vitamin A for measles (editorial) Lancet 1987,1 1067–1068
113 American Academy of Pediatrics Committee on Infectious Diseases Vitamin A treatment of measles Pediatrics 1993,91 1014–1015
116 Ghana VAST Study Team Vitamin A supplementation in northern Ghana effects on clinic attendances, hospital admissions, and child mortality Lancet 1993,342 7–12
119 Ramalingaswami V Nutritional diarrhoea due to vitamin A deficiency Ind J Med Sci 1948,2 665–674
Assessment and Prevention
Assessment of Vitamin A Status

We know too much to take the older views as to the criteria of vitamin A malnutrition seriously, and we know too little to lay down specific rules as to what criteria should be used according to recent knowledge.

—E Mellanby, 1934

Faced with the challenge of “virtually eliminating vitamin A deficiency and its consequences,” health officials must determine the existence, severity and extent of vitamin A deficiency in the population. Approaches range from accepting findings from similar countries or environments to preliminary “case-finding” and, where warranted, detailed population-based investigations of vitamin A status and its determinants. These are essential in identifying a problem and its cause, and in establishing a baseline against which to assess the impact of subsequent control measures. The reliability of such assessments ultimately depends on the validity and interpretation of the measures of vitamin A “status” employed.

Vitamin A Deficiency as a Public Health Problem

In 1974, specific prevalence rates of xerophthalmia (among preschool-age children) were recommended as criteria for the existence of a “public health problem.” These were revised in 1982 to reflect the relative ratio of prevalence rates actually observed in a large-scale field survey (Table 11-1). The choice of criteria arose from concerns of the time.

- The main issue was identifying countries in which potentially blinding vitamin A deficiency was a significant problem.
Since clinical prevalence rates spoke directly to this principal concern, they seemed the most appropriate criteria for establishing policy and evaluating progress.

Xerophthalmia was the only "pathognomonic" manifestation of vitamin A deficiency, and was unlikely to be confused with other etiologies.

Where vitamin A deficiency was a serious problem, xerophthalmia prevalence rates were anticipated to be relatively high.

Biochemical criteria were only of secondary value because of their tenuous relationship to the main public health concern and to continuing issues of reliability and analysis.

Dietary intake data were considered too imprecise to serve as the basis for major policy initiatives, and for that reason, they were not included as acceptable criteria.

We now need new approaches. Since more children die than are blinded each year as a consequence of vitamin A deficiency, while still others are at increased risk of serious infection and other health problems, more sensitive indices are required to recognize communities where these broader public health problems may exist.

Practical, reliable, field-based techniques for assessing vitamin A status are increasingly in demand. Not so much to determine whether particular individuals need vitamin A—at 4g for 200,000 IU it will always be easier, cheaper, and safer to assume that they do—but as a way of identifying deficient populations that require community-based intervention (Chapters 12–15). Despite this focus, the validity of any assessment technique ultimately rests on its ability to distinguish between populations of differing vitamin A nutritional status.

Table 11-1 Criteria for Assessing the Public Health Significance of Xerophthalmia and Vitamin A Deficiency, Based on the Prevalence among Children Less than Six Years Old in the Community (1982 Revision)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Minimum Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLINICAL (PRIMARY)</td>
<td></td>
</tr>
<tr>
<td>Nightblindness (XN)</td>
<td>1.0%</td>
</tr>
<tr>
<td>Bitot's spots (X1B)</td>
<td>0.5%</td>
</tr>
<tr>
<td>Corneal xerosis and/or ulceration/keratomalacia (X2 + X3A + X3B)</td>
<td>0.01%</td>
</tr>
<tr>
<td>Xerophthalmia-related corneal scars (XS)</td>
<td>0.05%</td>
</tr>
<tr>
<td>BIOCHEMICAL (SUPPORTIVE)</td>
<td></td>
</tr>
<tr>
<td>Serum retinol (vitamin A) less than 0.35 μmol/liter (10 μg/dl)</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Vitamin A Status

Olson divides vitamin A status into five categories: "deficient," "marginal," "satisfactory," "excessive," and "toxic." As we are principally concerned with the more massive and compelling problem of inadequate vitamin A, we will restrict this discussion to that end of the spectrum.

Traditional views of vitamin A status no longer apply. "Deficiency" has been characterized as "the presence of xerophthalmia," and "marginal" as "inadequate reserves of vitamin A in the absence of xerophthalmia." However, it is now clear that children suffer consequences of inadequate vitamin A nutriture long before they ever become xerophthalmic: increased rates of severe infection, anemia, mortality, and quite possibly growth retardation (Fig 11-1).

Xerophthalmia represents relatively severe deficiency. If "marginal" has any precise meaning, it is the absence of deleterious effects of vitamin A deficiency under ordinary conditions, but a degree of adequacy so precarious that relatively mild events (e.g., prolonged diarrhea, childhood exanthems, and an unusually extended interval between harvests) can sufficiently undermine vitamin A status as to result in functional disturbances secondary to deficiency. A sufficient state is one in which there are adequate reserves to protect against deficiency during unusual periods of stress or transient reductions in vitamin A intake. Most countries' recommended nutrient intakes (RNI) (variously named recommended dietary allowance [RDA], recommended dietary intakes [RDI], reference nutrient intakes [RNI]) seek to provide a nutrient status well within the "satisfactory"

Fig. 11-1 The effect of declining vitamin A nutriture on vitamin A-dependent clinical status. The shape of the curve is illustrative only. Reduced survival, growth, and hematopoiesis appear before the onset of xerophthalmia, however, the point at which they first begin to be affected, and the quantitative relationship between their severity and vitamin A status, have not been established (From A Sommer)
Olson has provided a detailed and convincing argument that “satisfactory vitamin A status, meeting all physiologic needs plus a four-month reserve, is achieved at liver concentrations of 20 μg vitamin A/g liver (0.07 μmol/g), which is readily achieved by consuming 600 to 700 retinal equivalents (RE) per day by women and men respectively, and 400 RE by preschool-age children” (Chapter 8). It is easier to define status than to demonstrate it! Recognition that deficient children (without xerophthalmia) are at increased risk of life-threatening infections and death comes mostly from observations on the response of large groups of children to vitamin A supplements—not from special tests identifying increased susceptibility to disease. While a large number and variety of tests of vitamin A “status” exist, none precisely and accurately detects when a particular child has passed from the state of physiologic “adequacy” to “deficiency.” Increased knowledge gained from molecular biology might some day change that. Vitamin A has already been shown to influence the expression of over 300 genes. Administration of oral vitamin A to deficient rats can, within one to four hours, measurably alter a wide variety of gene products. Once we recognize which gene products are affected early in “deficiency,” at a time when vitamin A nutrition first becomes a limiting factor to normal metabolic functions essential for health and survival, we will be in a position to define the exact threshold of “deficiency.” It may well be that other metabolic alterations will prove even more sensitive, providing a means for defining “marginal” status either expressed by alterations in gene products or metabolic function not essential to health and survival, or by some form of “stress test” that predicts the severity of insult (either the degree and/or duration of increased metabolic demand, or decline and duration of vitamin A intake) necessary to precipitate such changes. Olson, on the other hand, would define status on the basis of total vitamin A stores rather than on measure of functions (James A. Olson, personal communication, October 1994).

Meanwhile, until we gain more knowledge we remain dependent on relatively gross, indirect indices such as vitamin A “intake” (which by itself is rarely an indicator of status), retinol concentration of a variety of tissues (e.g., blood and liver), and vitamin A-dependent functions altered relatively late in the course of deficiency. All such indices are far removed from the ideal threshold determinants described above, and each has serious practical limitations.

It is perhaps easiest to think of the available indices in relation to one another and to some hypothetical state of “satisfactory” vitamin A nutriture (Fig. 11–2). But that is all it is—an “idealized” conceptual framework. Actual comparisons of the prevalence of the various indicators do not always demonstrate higher rates for those thought to be affected earliest. Some of the variance from the “ideal” no doubt reflects confounding factors that affect the individual indicator (e.g., infection on serum retinol), homeostatic mechanisms that tend to maintain normal function (and to a lesser degree, serum retinol) in the face of falling...
Assessment of Vitamin A Status

Fig. 11-2. Schematic relationship between the decline in vitamin A status and the onset of potentially relevant indicators of inadequate vitamin A nutriture. The shape of the curve is illustrative only.

Dietary Intake

In theory, vitamin A intake should be a leading indicator of vitamin A status. Since consuming too little vitamin A is bound to result in vitamin A deficiency, this fact forms the basis for the variety of officially sanctioned dietary recommendations. While they provide guidance for government food policies, these recommendations fall short in that they assume the needs of an "average" population and are not intended for assessing individual status. The major problem is the imprecision that pervades the entire system (one reason they are not called "requirements"). The kernel of human data upon which the recommendations rest was largely obtained on small numbers of healthy adults under controlled conditions. Such information is likely to differ significantly from the needs of children in developing countries, varying as they do in metabolic demand, protein-energy malnutrition (PEM), and in the influence of repeated infections, parasitic infections, the form of the dietary sources and the impact of other food items (especially oils) on bioavailability, absorption, storage and transport of the vitamin. Therefore, even in the absence of other confounding issues, there is little data that directly and precisely relate food intake to requirements of different Third World populations.

A number of practical issues further compound the problem. The vitamin A content of particular foods varies with the local form of that food, its degree of maturation (ripeness), and how it is prepared for consumption. For example, at least three carefully controlled studies have recently failed to demonstrate that...
supplements of cooked green leafy vegetables or carrots materially affect serum levels of either beta-carotene or retinol (Chapter 13),15-17 although the same is not true of purified beta-carotene.15,16 Food composition tables, moreover, are often inaccurate (Chapter 13) Finally, and perhaps most difficult and imprecise, is establishing exactly how much vitamin A-containing food individuals actually ingest over clinically relevant periods of time under routine field conditions.18

Several vitamin A dietary-assessment techniques have been advocated to identify individuals and populations at risk of vitamin A deficiency19-21, but few have been extensively correlated with indices of vitamin A status. The simplest and most practical food frequency assessment (used in the Indonesian studies of 1976–197922) identifies relative differences in dietary pattern between groups of children shown by other indices (xerophthalmia, serum retinol) to differ in their vitamin A status.22-28 There is less evidence that practical field tools exist for identifying differences in vitamin A intake (let alone status) of populations in absolute terms.

One widely used prototype19 has sometimes proved difficult, time-consuming,30 and poorly correlated with other measures of vitamin A status.31-33 Yet, in an Indonesian study, three food items alone, not necessarily those that provided the most vitamin A, were best correlated with maternal vitamin A status.34 Providing useful clues to directions in which dietary intervention should move. Careful development of locally appropriate tools may suggest simpler approaches.

Dietary data can certainly be predictive in extreme situations (such as famines, absence of breast-feeding, dietary exclusion of vitamin and provitamin A-rich foods). Dietary assessment might also prove helpful in educating populations about proper foods and designing effective intervention strategies,19,20 but these are other issues.

\section*{Indices of Vitamin A Status}

\subsection*{Tissue Concentrations of Vitamin A}

Tissue concentrations provide a more direct measure of bodily vitamin A content than do estimates of dietary intake.

\subsection*{Serum Vitamin}

As already noted, serum retinol has the longest history and probably the widest use as a measure of vitamin A "status.35-39 It correlates well with the prevalence and severity of xerophthalmia (Table 1–3) and reflects changes in vitamin A status secondary to intervention.40-46 For over three decades specific labels have equated serum retinol levels with vitamin A "status" (Table 1–3), though given
Assessment of Vitamin A Status

305

biologic variation they are more appropriately applied to populations than to
the classification of individual subjects.

While these traditional labels can provide useful guidelines, they can also be
misleading. The earliest manifestations of clinical dysfunction secondary to vita-
min A deficiency can occur at levels above 30 μg/dl, though these are uncommon
and mild. Traditional hallmarks of xerophthalmia (XN, X1B) occur at levels
above 20 μg/dl, though increasingly so below. Severe (corneal) xerophthalmia
begins to occur at levels under 15 μg/dl, particularly below 10 μg/dl, a range at
which xerophthalmia is common (Table 1–3). In counterpoint, the average
serum retinol level among Indonesian children without xerophthalmia in 1978 was 20
μg/dl (Table 1–3), yet at that level vitamin A supplementation can have a
profound impact on childhood morbidity and mortality (Chapters 2, 3).

Considering the health significance of milder degrees of “inadequacy,” the
classification scheme needs to be revised, perhaps along the following lines:
<15 μg/dl, “severe” deficiency (high risk of binding keratomalacia and death),
15 μg/dl–25 μg/dl, “moderate” deficiency (increased risk of milder xeroph-
thalmia, serious infection and death), 25 μg/dl–40 μg/dl, “marginal” deficiency,
≥40 μg/dl, “adequate/sufficient.” While serious dysfunction is probably rare
at levels above 30 μg/dl, any overt stress (e.g., measles) or prolonged dietary
deprivation can result in frank and potentially serious physiologic and clinical
consequences.

Local characteristics, particularly the prevalence of chronic infec-
tions like malaria, might require modest adjustments in these classifications.

Since we are interested in criteria for identifying populations at risk, we
need to choose prevalence rates of specific serum concentrations that place the
population at risk of vitamin A deficiency-related disturbance (ill health) suffi-
cient to justify community intervention. Currently, the only traditional and widely
accepted biochemical criterion is a 5% prevalence of serum retinol levels <10
μg/dl—an infrequent rate at the extreme range of deficiency. As this commonly
accompanies a 40% or greater prevalence of serum retinol levels <20 μg/dl, the
existing index could be made more sensitive and the field test more practical.
A 40% or greater prevalence of serum retinol levels <20 μg/dl needs only one-
eighth the sample size required to establish the presence of a public health
problem identified by the current 10 μg/dl criterion. However, a number of
caveats apply. The first is that the distribution of vitamin A values in the pediatric
population will not always follow the same curve. For example, many children
may have values at or just below 20 μg/dl, with few if any below 10 μg/dl. This
may not be important, as we now know 20 μg/dl is itself “inadequate” and
associated with significant health risks. On the other hand, the Ghana VAST
trial achieved a 20% reduction in mortality with a relatively modest increase
in mean serum retinol (~10%–18%), but a sharp decline in prevalence of the
lowest levels (Fig 11–3) (Ghana VAST Survival Study Team, personal communi-
cation, September 1994). If serum retinol levels can be obtained and accurately
determined, their distribution in the community can probably differentiate popu-
Serum retinol distribution of study population of preschool children at baseline and at the end of vitamin A intervention program. The figure includes only those children randomized to receive vitamin A supplements, once every four months. (From the Ghana VAST Survival Trial [personal communication, Ghana VAST Survival Study Team, September 1994])

Flores et al. suggest that an appropriate criterion for a "safe" serum retinol distribution is provided by their experience with a population of deprived Brazilian children following supplementation with vitamin A. Supplementation eliminated the lowest values and all relative dose-response (RDR) positive tests without changing the basic shape of the distribution curve. This is an interesting finding. If it can be generalized, one might obtain the same insights by simply using the prevalence of serum values < 30 μg/dl. However, the "deprived" children in Flores's study had serum retinol levels equal to or greater than those of the general US childhood population before they received their vitamin A supplement. This unlikely scenario highlights the vagaries of biochemical measurements even by highly respected laboratories.

An important issue relates to the "stability" and validity of serum retinol as an index of vitamin A status. After all, blood is merely a medium for transporting vitamin A from (largely liver) stores to target cells. A variety of factors influence serum retinol concentrations independent of the size of those stores or the adequacy of vitamin A-dependent function. In general, as vitamin A stores are depleted to maintain delivery to target cells, circulating levels of vitamin A are sustained disproportionate to the decrease in liver reserves. By the same token, as stores become seriously depleted, the rate of vitamin A metabolism declines (at least in rats), and hepatic release slows. A variety of other factors...
influence the rate of holo-RBP (retinol-binding protein) release from the liver, including liver function, other organ disease, protein status, the adequacy of other nutrients (like zinc), and infection and other metabolic insults. Further, cellular metabolism affects the rate at which vitamin A is "consumed." Fever, infection (measles is a classic example), and other factors can all cause transient changes in serum concentration unrelated to any change in vitamin A "stores." Filteau et al. estimate malaria eradication could have a dramatic impact on serum retinol distribution in Ghanaian children by influencing serum concentration regardless of vitamin A "status" (or liver stores). In Papua, New Guinea, where xerophthalmia is rare but malaria widespread, half the preschool-age children allegedly have serum retinol levels below 10 μg/dl. Whether this is true or laboratory artifact, it raises serious questions concerning the value of serum retinol biochemical determinations and their derivatives. The only certain relationship between serum retinol levels and body reserves is that high circulating levels of vitamin A preclude significantly depressed stores.

None of these caveats necessarily precludes the use of serum retinol as an important (perhaps currently the ideal) index of vitamin A status given existing alternatives. One might, for example, be able to achieve more precision by adjusting for confounding systemic morbidity through simultaneously measuring acute phase proteins. Nevertheless, major logistical issues still arise. These include the feasibility of collecting and handling blood samples under representative field conditions, particularly given growing concerns about transmitting HIV infection and hepatitis, and the reliability of the determinations. Serum analyses are notoriously susceptible to variations in collection, transport, and storage of specimens, and the choice of laboratory procedures. A new system for collecting and transporting a "blood spot," subsequently analyzed for its holo-RBP content, might well minimize some of these logistical impediments. Results correlated well with serum retinol determined by high performance liquid chromatography (HPLC) (r = 0.9).

What has been measured and reported as "vitamin A" varies widely. Modern laboratories strive to report levels of serum "retinol." Too often, "total" vitamin A (including retinyl esters) are included in the measurement, and laboratory methods are themselves finicky. Several techniques are used for measuring serum vitamin A. Older laboratories still rely on the Neeld-Pearson technique and its variants. At most modern laboratories, high performance liquid chromatography (HPLC) has become the method of choice. Still, results from different laboratories often vary significantly (Variability of 25 laboratories measuring vitamin A levels of human sera by HPLC reported by NIST Personal communication, L. Riva, February 14, 1990). The problem is compounded in developing countries where sophisticated training and facilities are unavailable or difficult to maintain.
• Despite seemingly reasonable stability under carefully controlled laboratory conditions, the manner in which samples are collected, transported, and stored in the field seems to have a marked impact on the measured results.

Thus, variations in techniques result in wide variations between even the most dedicated laboratories, less sophisticated laboratories, or instances in which determinations are conducted at considerable distance from the site of sample collection, pose additional problems. As a result, criteria for "normal" serum levels are best adjusted to local standards and validated by whatever means is most suitable to local conditions (e.g., compare samples drawn two weeks apart from vitamin A-supplemented and -nonsupplemented children).

An alternative, simpler method for gauging serum "vitamin A" concentrations is the immunologic assay of circulating levels of RBP. RBP analyses are methodologically simpler than those for retinol, but can be less meaningful. Immuno-assay of RBP does not distinguish between holo-RBP (RBP to which a molecule of retinol is attached) and the "bare" apo-RBP carrier. The latter continues to circulate in significant amounts, even in the presence of severe vitamin A deficiency. Nonetheless, as we now seek more sensitive indices of inadequacy than in the past, the failure of RBP levels to track retinol into the lowest ranges may no longer pose the same handicap it once did, and higher thresholds (reflecting "mild deficiency" or "marginal" to "satisfactory" status) may prove more revealing. But criteria for such levels have yet to be determined, and circulating RBP is depressed in protein malnutrition and other transient metabolic insults (like infection).

A specialized technique for specifically assaying holo-RBP was developed by Glover and colleagues. While accurate and precise, it proved complex. HPLC determination of serum retinol (essentially all of which is bound to RBP) is simpler and has since replaced Glover's method, although the new "blood spot" technique might revise its value.

Liver Vitamin A (including RDR and MRDR)

Under normal circumstances, 90% of vitamin A reserves are stored in the liver, in severely deficient individuals it may account for as little as 50% of total stores. Liver vitamin A should therefore directly reflect the availability of vitamin A to meet bodily needs. As long as stores are high, there is sufficient vitamin A to meet any reasonable contingency, from increased metabolic demand to prolonged dietary deprivation. As such, the liver is perhaps the best measure of "adequacy" of stores as they relate to "satisfactory" status, though an inability to transport and use those stores might result in functional "deficiency" at the level of target tissues.
High liver stores can coexist with depressed serum levels, presumably because protein deficiency limits the synthesis of RBP and release of holo-RBP. Similar phenomena may explain depressed serum retinol in the face of elevated acute phase proteins. High liver stores and low serum levels also exist in primary biliary cirrhosis. Whether these secondarily depressed serum levels have functional consequences for target cells is unknown.

Correlations between serum and liver vitamin A concentrations in animals and humans and comparisons with total vitamin A stores determined by isotope dilution suggest liver vitamin A concentrations of ≥ 20 µg/g (0.07 µmol/g) represent "satisfactory" reserves. All the healthy adults in Furr's isotope dilution studies exceeded this level, most by three to five times.

In recommending liver vitamin A concentration of 20 µg/g as a criterion for "satisfactory" status, Olson points out that at this level

- clinical signs of deficiency have not been encountered,
- RDR tests are negative, suggesting sufficient stores to maintain steady-state plasma retinol levels,
- retinol kinetics indicate this is sufficient to protect an adult from deficiency during transient periods of metabolic stress or over an extended period (four months) of a vitamin A-free diet.

Liver samples are generally obtained from the central portion of the right lobe, either at the time of surgery or autopsy. Despite considerable variation in the distribution of vitamin A in the liver with age and vitamin A content, macro-samples and even micro (needle) biopsy of as little as 7 mg of liver tissue reportedly provide reasonably accurate estimates of overall liver concentrations.

The problem is that people autopsied, even those who died in accidents, are not necessarily representative of the target population. Exactly who they represent is often unclear. Unless one accepts laboratory error, it is hard to explain why 35% of apparently well-nourished and previously healthy New York adults would have liver vitamin A concentrations below 40 µg/g, and 8%, below 20 µg/g—while in Recife, Brazil, where subclinical deficiency is common, all but one accident victim had normal stores.

Relative Dose-Response (RDR) The RDR is a novel approach to estimating "adequacy" of hepatic vitamin A reserves indirectly, without need for a liver sample. As already described, both apo-RBP and vitamin A are needed for the liver to release holo-RBP (the active transport form of retinol) into the serum. When inadequate hepatic vitamin A is the limiting factor, apo-RBP accumulates in the liver, an exogenous bolus of vitamin A will result in a surge in holo-RBP release and a rise in serum retinol. Underwood and colleagues proposed to quantify this relationship to distinguish animals (and possibly hu-
mans) with low serum retinol secondary to inadequate hepatic reserves from those with adequate reserves in whom holo-RBP release was depressed for other reasons. The RDR is calculated as the ratio of the difference between baseline serum retinol \((A_0) \) and serum retinol five hours after the test bolus of retinyl ester \((A_5) \)

\[
RDR = \frac{A_5 - A_0}{A_5} \times 100
\]

Initial animal experiments suggested a correlation between RDR and liver vitamin A concentrations, but not a simple one. RDR values > 40% were almost always associated with liver concentrations below 8 μg/g–10 μg/g, but some animals with lower liver concentrations had smaller RDRs. Hence the “specificity” seemed reasonably good but the sensitivity poor. One confounding variable was the baseline (pre-dose) plasma level. Where these were low (< 30 μg/dl) the correlation was better. Whether the problem is inherent in the use of a relative change or is intrinsic to attempts to simplify, standardize, and quantify a more complex and variable metabolic relationship (or both) remains unclear.

While the test has received wide currency and use in special studies of human populations, there are little consistent data to validate its assumptions or to identify its particular niche in the arsenal of population assessment techniques. Most investigators accept RDR as a more sensitive index of suboptimal (“inadequate”) vitamin A status than serum retinol, principally because subjects may have relatively “normal” serum retinol levels (according to existing nomenclature, ~20 μg/dl) while their liver reserves are low (< 20 μg/g). The problem in proving this, as in validating some of the functional tests of vitamin A adequacy discussed below, is the absence of a “gold standard” for vitamin A “status” against which tests (of function and reserves) can be compared. Over one-third of pregnant women with a “normal” RDR (< 20%) had serum retinol levels < 20 μg/dl, while more than half of Indonesian children with concomitant nightblindness and vitamin A-responsive Bitot’s spots, as well as children with serum retinol levels < 10 μg/dl, had “normal” RDRs.

The only direct comparison between oral RDR and liver stores was conducted on twelve well-nourished adults, only one of whom actually had a liver concentration < 20 μg/g (it was 14 μg/g), his RDR was 28%. The next lowest reserves were 30 μg/g, yielding an RDR of 15%. Both individuals were given vitamin A supplements, their RDRs subsequently dropped below 10%. The authors suggested an abnormal RDR corresponds to 20%. As in the previous rat experiments, there was poor correlation between hepatic reserves and lower RDR levels; an RDR of 11% occurred with an hepatic concentration of 58 μg/g, 0%, with 94 μg/g, and 8% and 12%, with 114 μg/g (Table 11–2).

A second comparison by the same group applied an intravenous bolus of vitamin A to children with liver disease. Six of the twelve children had initial
Table 11-2 Baseline Serum Retinol, Liver Vitamin A and RDR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Initial Serum Retinol µg/dl</th>
<th>Liver Vitamin A µg/g</th>
<th>RDR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>58</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>107</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>72</td>
<td>112</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
<td>114</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>114</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>53</td>
<td>137</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>38</td>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
<td>434</td>
<td>0</td>
</tr>
</tbody>
</table>

From O Amedee-Manesme et al.*

Liver concentrations < 20 µg/g, five of the six had positive RDRs ranging from 21% to 90% (median 43%) (The sixth "deficient" subject, with a liver level of 15 µg/g, had an RDR of 0%) None of the children with "adequate" liver concentrations had an RDR > 20% (somewhat surprisingly, the highest was only 4% and the median was 0%) This suggested that a liver concentration of 20 µg/g, recommended as a criterion for the lower limit of "safe" (therefore "adequate") status, was actually a fixed, absolute, definitive threshold with little if any individual variation, tightly tied to an RDR of 20% Somewhat disconcertingly, however, RDR values among children with "inadequate" stores correlated poorly with their liver concentrations.

While the above data provide a strong theoretical basis for the RDR test, the best correlative data, particularly under field conditions, comes from Brazil. Flores's meticulous comparison of serum retinol and RDR at baseline and following large-dose supplementation is perhaps the most convincing evidence of the reliability of the test when carefully performed and considered. The RDR cutoff (20%) was customized to the variance observed in their own laboratory, and serum for baseline levels and RDR were collected on fasting children. After the initial RDR, all children received 200,000 IU vitamin A and were retested at 30, 120, and 180 days. In this instance, baseline RDR displayed an impressive monotonic ("dose-dependent") relationship between baseline serum retinol and the proportion of RDR positive children (Table 11-3).

All children with serum levels < 20µg/dl had an abnormal RDR, as did a majority of children with levels between 21 µg/dl and 29 µg/dl. Thirty days after the large dose, mean and median serum retinol had risen, the distribution of serum retinol shifted to the right, reducing the number with low values (an
Table 11-3 Relationship Between Serum Retinol and RDR at Baseline and 180 Days Following Vitamin A Supplementation

<table>
<thead>
<tr>
<th>Serum Retinol (μg/dl)</th>
<th>Day 0</th>
<th>Day 180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RDR+ (≥ 20%)</td>
<td>Children (number)</td>
</tr>
<tr>
<td>≤ 20</td>
<td>100%</td>
<td>12</td>
</tr>
<tr>
<td>21–29</td>
<td>86%</td>
<td>21</td>
</tr>
<tr>
<td>30–40</td>
<td>26%</td>
<td>19</td>
</tr>
<tr>
<td>> 40</td>
<td>3%</td>
<td>39</td>
</tr>
</tbody>
</table>

From H Flores et al.47

important outcome for intervention programs44,58), and the RDR response became normal in all subjects. Abnormal RDRs did not return in significant numbers until 180 days, in roughly the same relationship to serum levels observed at baseline. If this close relationship can be confirmed in other laboratories and under other field conditions, it would suggest the following:

- RDR is indeed a useful surrogate for some predetermined level of "adequate" liver reserves, whether they correspond to 20 μg/g liver or not. This would be a powerful tool for special studies requiring precise determination of the status of vitamin A reserves in individual subjects with otherwise "adequate" serum retinol levels.

- The distribution of serum retinol in the target population (or the prevalence of values below 20 μg/dl or 30 μg/dl) may be as useful (and more practical) for identifying populations at risk of inadequate liver reserves and vitamin A deficiency. The RDR adds little additional information on either individuals or populations when serum retinol values are low.99

The same investigators made use of the unexpected occurrence of chickenpox in some of their subjects to demonstrate the dramatic impact of infection on serum retinol levels and RDR (Chapter 7).100

A number of issues remain to be resolved in interpreting and using RDR more widely. The impact of protein status and cirrhosis on choice of an appropriate threshold101–105, intra-individual variability (a critical issue if it is to be valuable in special investigations of individuals subjects, but one that is also dependent on the reliability of the laboratory performing the assay106,107), and the range of baseline serum levels at which it becomes a valid measure. As Usha99 points out, very low levels of A₀ (e.g., 5 μg/dl–10 μg/dl) almost guarantee a large proportion of positive RDR values secondary to the impact of biologic and methodologic variation108.

Exactly what RDR actually measures in terms of "liver adequacy" remains uncertain. Nonetheless, results support clinical data and studies of liver kinetics that suggest retinol levels between 20 μg/dl and 40 μg/dl do not necessarily
denote "safe" or "adequate" vitamin A nutriture. Both the RDR and its variants, particularly MRDR, are areas of intense investigation. They will be plagued by the practical problems of obtaining valid and reproducible serum retinol values, and the cooperation of children who must remain under controlled conditions at the test site for the five-hour interval required.

Modified Relative Dose-Response (MRDR) The RDR has some practical disadvantages apart from its reliance on potentially difficult serum retinol determinations. Children must be tested in a fasting state and two bloods must be drawn, separated by a five-hour interval. To address at least one of these drawbacks, Tanumihardjo, Olson and colleagues developed a modified approach requiring only a single serum specimen. Orally administered 3,5 dihydroretinyl acetate is converted only slowly, if at all, to retinol (R) and will therefore not affect serum retinol values. As dehydroretinol (DR), it will combine with apo-RBP stored in the liver, if the apo-RBP levels are elevated secondary to retinol deficiency, a surge of DR will appear in the serum. The ratio of DR to R serves the same purpose as the RDR ratio.

The test was easily applied to young, well-nourished children in the United States and deficient children in Indonesia. Among apparently healthy American children, the DR-R peak plateau occurred between five and ten hours after their DR dose, only three of the twenty-four subjects had DR-R ratios > 0.03 at 5 hours. Two of the children with elevated ratios received vitamin A treatment and were retested two weeks later, their DR-R fell below 0.03. A criterion of > 0.03 at five hours suggests that 62% of children studied in West Java had less than adequate vitamin A reserves, a proportion only slightly higher than the prevalence of serum retinol values < 20 μg/dl. As with RDR, the proportion of children with a positive MRDR was monotonically related to baseline serum retinol.

Subsequent comparisons with abnormal conjunctival impression cytology (CIC) led the investigators to provisionally revise the DR-R threshold to ≥ 0.006. This appears to be reasonably appropriate for lactating women with serum levels below 20 μg/dl. However, other studies from Indonesia, India, and Bangladesh suggest further revisions may be in order. The Bangladesh studies indicate that for the criterion chosen, an abnormal MRDR was far less prevalent than either an abnormal RDR or serum retinol (< 20 μg/dl). Since the response may depend in part on body size (and/or age), the originators of the MRDR test have suggested that "cut-off" criteria may be affected by the dose of DR-acetate employed.

Reproducibility (of individual classification) can be high. Both RDR and MRDR are yet to be validated in severely malnourished populations. But that is not necessarily where their value would lie. Both may prove most useful in investigating vitamin A nutriture in individual subjects, where serum retinol alone may be a misleading index of vitamin A "adequacy."
(particularly when in the marginal range) Even with the simplicity of the MRDR test, however, it is unlikely either of these approaches will prove suitable for routine field use, where the major operational challenge lies in identifying populations likely to be vitamin A deficient.

Isotope Dilution

The most precise assessment of vitamin A "reserves" should be the direct measure of total body stores. This can be safely accomplished by the use of stable isotope dilution. Unfortunately, the deuterium labeled isotope needed for the test is not readily available, sophisticated and expensive laboratory instrumentation (HPLC and gas chromatography—mass spectrometry) is required, and is not usually accessible in Third World countries, and several weeks are needed between administering the isotope and collecting blood samples in order for equilibrium to be achieved. Isotope dilution has not been used in field studies and is unlikely to prove practical under most routine field conditions.

Functional Tests of Vitamin A Status

While vitamin A is essential for a host of bodily functions, two abnormalities in particular have attracted interest as potentially practical indices of vitamin A deficiency: impaired dark adaptation and keratinizing metaplasia. Both are relatively early abnormalities in relation to xerophthalmia, but both probably follow the decline in body stores because they represent vitamin A-delimited physiological disturbance of target tissues.

Vitamin A is an essential component of rhodopsin, the visual pigment that composes the outer segments of rods. These are photosensitive cells responsible for vision under low levels of illumination. Deficiency results in impaired dark adaptation, at a clinically significant degree it is manifest as nightblindness (XN), which can often be recognized in children by questioning adults familiar with their behavior (Chapter 4).

A variety of new techniques have been employed to detect milder, "preclinical" evidence of impaired dark adaptation (longer duration until full adaptation and/or an elevated light threshold). Traditional techniques require sensitive and sophisticated equipment, 20–30 minutes of observation and recording, and a very cooperative subject. Such tests are simply not practical under field conditions, particularly among young preschool-age children.

Vision Restoration Time (VRT)

One new approach relies on the ability of a bleached eye to recognize a letter under low levels of illumination. After two minutes of exposure to 10,000
candela/mm², the time to identify a letter illuminated with 0.15 candela/mm² is recorded. Trials in well-nourished schoolchildren suggested a normal value (±SD) of 122 ± 46 seconds. A VRT of > 180 seconds (90th percentile) was provisionally suggested as abnormal. (Note the inherent specificity will be, at best, 90%).

School-age children in Thailand with minimal to marginal vitamin A deficiency (and perhaps more significantly, zinc deficiency), a high prevalence of abnormal CIC (see below), and prolonged VRT received vitamin A and zinc alone and in combination, or placebo. Vitamin A with or without zinc reduced CIC abnormality, but only zinc normalized the VRT. While it appears zinc is an important determinant of VRT, the value of the test for establishing vitamin A deficiency, particularly in preschool children, remains unclear.

Scotopic Vision Tester

In his 1867 account of nightblindness in the Confederate army, Hicks recognized that soldiers thought to be malingering were actually nightblind, based on the inability of their pupils to constrict normally at night when examined by candlelight. Modern psychophysical studies indicate the weakest threshold of light visible in the dark-adapted state is roughly the same intensity needed to cause pupillary contraction (as recognized by a sophisticated pupillometer). Further, the two pupils normally respond together when only one is exposed to a light stimulus (direct and consensual response). These two observations led to the development of a simple instrument that briefly illuminates the retina of one eye (Ganzfield response) while the observer visually monitors the response of the other pupil under low levels of illumination. Studies on normal American children as young as one year established a “normal” threshold curve for children with brown irides. Studies on Indonesian and Indian children demonstrated a close correlation between vitamin A status and the light threshold that elicited a pupillary response or a verbal recognition that the stimulus was observed (Table 11–4).

Table 11–4: Pupillary Response to Threshold Light Stimulus

<table>
<thead>
<tr>
<th>Population</th>
<th>Mean Serum Retinol (µg/dl)</th>
<th>Mean Light Threshold (log candela/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy American children</td>
<td></td>
<td>1.335</td>
</tr>
<tr>
<td>Indonesian children, 6 mo following 200,000 IU vitamin A</td>
<td>24.3</td>
<td>0.985</td>
</tr>
<tr>
<td>Indian children with mild xerophthalmia (XN and/or X1B)</td>
<td>16.9</td>
<td>0.622</td>
</tr>
</tbody>
</table>

*Not measured, but healthy American children generally run levels > 35 µg/dl

*The lower the threshold, the more light-sensitive the dark-adapted retina. Results determined from pupillary response. Test for trend p < 0.001.

From N. Congdon and A. Sanchez et al [11, 28]
Greater sensitivity (lower light thresholds) was needed for children to recognize a stimulus than for observers to record a pupillary response. The greater amount of light required to cause a pupillary response than a visual one reflects the insensitivity of reproducibly recognizing a pupillary response without sophisticated pupillometric equipment. Even though the visual thresholds were more sensitive than the pupillary thresholds, the two were closely correlated (children with the lowest light sensitivity by visual response tended to have the lowest light sensitivity measured by the pupillary response). As expected, pupillary responses could be reproducibly performed on younger children, often only one year of age, the more subjective, visual response required children three to four years of age. Under field conditions (forty different villages), 90% of Indian children could be effectively tested for their pupillary response, over 72% of them as young as two years of age. There was a close relationship between the mean serum retinol and pupillary score (the higher the score, the brighter the light threshold and lower the retinal sensitivity) (Fig. 11-4).

Indonesian and Indian children with abnormal thresholds had higher RDR ($p < 0.01$) and lower serum retinol values ($p < 0.05$) than children with normal thresholds, thresholds significantly improved following large-dose vitamin A but not following placebo supplementation (Fig. 11-5).

Further testing is under way in other vitamin A-deprived populations using special night vision devices to better view the consensual pupillary response. If these confirm the results in Indonesia and India, consensual pupillary threshold light response might well prove a valuable, practical field technique for identifying populations in need of a vitamin A intervention program, as well as a quantitative and convenient method for evaluating the impact of intervention. A change in distribution of light thresholds, with a decline in the least sensitive (most vitamin

Fig. 11-4. Comparison of serum retinol level and pupillary threshold. The lower the serum retinol, the higher the pupillary score—that is, the brighter the light needed to elicit a response ($p < 0.01$) (From A Sanchez et al).
Assessment of Vitamin A Status

Fig. 11-5. Light threshold fell (e.g., retinal sensitivity to light rose) after study children were supplemented with vitamin A, whether measured by the consensual pupillary response or by the subject's verbal indication of ability to distinguish a light stimulus. Placebo supplementation was associated with a smaller, and statistically non-significant, change (From N Congdon et al 124)

A-deficient) part of the curve, would be even more meaningful and informative than simply a change in mean values

Conjunctival Impression Cytology (CIC)

Another approach to recognizing mild physiologic disturbance seeks evidence of keratinizing metaplasia, an early consequence of vitamin A deficiency in animals and humans (Chapters 1–4).

The concept is not new. Alterations in vaginal smear cytology have long been used as an animal assay for vitamin A status, as well as for determining vitamin A "activity" of pharmacologic agents 126. In their first series of clinico-histopathologic correlations of vitamin A deficiency in children, Blackfan and Wolbach recommended the presence of keratinized epithelial cells in the scrapings of cornea, nose, mouth, and vagina as a diagnostic tool 127. Their suggestion was echoed by Sweet and K’ang,128 and later by Agarwal.129 None of these studies, however, were quantitative in nature or validated against other indices of vitamin A status, none seem to have persisted beyond their original description.

More detailed knowledge about the normal and deficient nature of conjunctival epithelium, particularly the geographic distribution of goblet cells130 and their response to vitamin A deficiency,131 has created renewed interest in this approach. Unresponsive and responsive Bitot’s spots132 have an identical biologic appearance: principally the absence of mucous-secreting goblet cells and the presence
of larger, irregular, keratinized cells (Chapter 4) 6,131 Of particular interest, eyes with localized but responsive lesions have histopathologic abnormalities that involve all of the bulbar conjunctiva. 131,133 In contrast, the pathologic abnormalities in eyes with unresponsive lesions are limited to the area of the Bitot's spot itself. Following oral vitamin A, the conjunctiva in eyes with responsive Bitot's spots return to normal 131,134 While this finding suggested a new approach to identify active vitamin A deficiency, the biopsies necessary to document these changes were clearly not practical under field conditions. Preliminary trials with "scrapings" were unsuccessful, given contamination by keratinized cells of the lid margin and (potentially unresponsive) Bitot's spots.

Egbert and Lauber,135 Nelson,136 and others described a system of "simple conjunctival biopsy." A cellulose acetate filter briefly applied to the conjunctival surface will remove the superficial layers of the conjunctival epithelium. By 1984, this surface "biopsy" technique (subsequently named "conjunctival impression cytology" [CIC]) had been applied to vitamin A-deficient rabbits before they became clinically xerophthalmic. 137 The proportion of microscopic fields containing enlarged epithelial cells increased while the proportion containing goblet cells decreased in linear fashion as the animals became increasingly vitamin A-depleted, beginning at least four to six weeks before clinical changes first became apparent (Fig 11-6).

Initial trials demonstrated markedly abnormal CIC from clinically uninvolved conjunctival areas of children with mild xerophthalmia (XN, XIB) when compared with comparable specimens obtained from normal children or after vitamin A treatment (Plates 3-4). 138,139 A larger follow-up study revealed a close, monotonic relationship between the degree of CIC abnormality and serum vitamin A levels. 139 The mean retinol among children with normal CIC specimens was 22.2

![Graph](image)

Fig. 11-6. As rabbits become increasingly vitamin A-deficient, the percentage of microscopic fields of conjunctival biopsies containing epithelial goblet cells declines and the percentage of fields containing large, irregular epithelial cells increases, even before the appearance of clinical abnormalities. (From D.L. Hatchell et al. 137)
± 5.5 μg/dl, versus 15.2 ± 4.5 μg/dl, among those with any degree of abnormality. These data were subsequently analyzed to assess the prevalence of abnormal specimens in relation to the subjects, “true” vitamin A status. The analysis faced the same problems as the RDR test “validation” the absence of a reliable standard for vitamin A “status.” In this instance, “status” was approached by stratifying all subjects according to the likelihood of severity of vitamin A deficiency as suggested by a combination of clinical and biochemical criteria (Table 11–5).

There is a strikingly close correlation between the prevalence of abnormal CIC and the severity of deficiency suggested by the composite indices of relative vitamin A status. 93% of children with clinically responsive xerophthalmia and low vitamin A levels (further confirming active deficiency) had abnormal cytology. At the other extreme, only 6% of children with normal eyes and serum levels (largely between 25 μg/dl and 29 μg/dl) had abnormal CIC, suggesting a specificity of approximately 5% to 10%. This range was confirmed by samples taken from 100 healthy young women in the United States (J. Humphrey and D. Hazelwood, personal communication, 1995). The prevalence of abnormal CIC among children of less definite status fell between these extremes. An important finding was that almost half the children without xerophthalmia but with serum levels < 20 μg/dl had abnormal CIC, suggesting a definite functional correlate to their “low” serum retinol levels. Since half the children in Indonesia

<table>
<thead>
<tr>
<th>Vitamin A Status</th>
<th>Patient Characteristics</th>
<th>Prevalence of Abnormal CIC</th>
<th>Abnormal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite deficiency</td>
<td>XN(+) plus X1B(+) responding to vitamin A</td>
<td>14</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Serum retinol < 20 μg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable deficiency</td>
<td>Bilateral X1B(+) responding to vitamin A</td>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td>Probable deficiency</td>
<td>XN(+) responding to vitamin A</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Serum retinol < 20 μg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible deficiency</td>
<td>Unilateral X1B(+) [XN(−)] responding to vitamin A</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Possible deficiency</td>
<td>Normal exam</td>
<td>26</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Serum retinol < 20 μg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline deficiency</td>
<td>XN(+) plus retinol ≥ 20 μg/dl or normal exam and retinol 20–25 μg/dl</td>
<td>43</td>
<td>14</td>
</tr>
<tr>
<td>‘Normal’</td>
<td>Normal exam</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Serum retinol > 25 μg/dl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Level > 30 μg/dl would have been preferred, but there were too few such subjects.

From G. Natadisastra et al.16
(Table 1–3) and many other developing countries have serum levels in this range, it is likely that at least 25% of all children in these countries suffer demonstrable functional consequences of vitamin A deficiency (at the level of CIC) in the absence of clinically detectable xerophthalmia (Chapter 2).

A similar study was conducted by Coutsoudis and coworkers\(^\text{141}\) (A Coutsoudis, personal communication, 1992) in South Africa. The prevalence of abnormal CIC ranged from 78% among clinically normal children with serum retinol < 10 μg/dl to 6% among “normal” children with levels > 25 μg/dl—results extraordinarily similar to those from Indonesia.

The validity of CIC has been further confirmed by the following comparison of liver concentrations and RDR in French children with normal eyes but hepatic disease\(^\text{142}\), comparisons of abnormal CIC rates in xerophthalmic and non-xerophthalmic children in India\(^\text{144-146}\) and Micronesia\(^\text{145-146}\), correlation of CIC with serum and breast-milk retinol in Indonesian women and the response of all three parameters to vitamin A therapy\(^\text{147}\), an equivalent (> 50%) reversion to normal within seven weeks among Senegalese children receiving high-dose vitamin A or beta-carotene\(^\text{148}\), and by correlation of CIC with other parameters of vitamin A status\(^\text{59,149-151}\) and manifestations of functional impairment commonly associated with vitamin A deficiency (anemia, otitis, stunting, chronic diarrhea, etc) \(^\text{99,145,146,152}\).

In one particularly revealing study, Usha and colleagues performed CIC and RDR on twenty-three children under five years of age who suffered persistent diarrhea but did not have xerophthalmia\(^\text{99}\). CIC, RDR, and serum vitamin A were correlated with one another (Table 11–6) (Serum retinol levels seem extraordinarily low for children without xerophthalmia, reinforcing the likely variability of retinol determinations between laboratories or an extraordinary, if often transient, impact of infection on serum retinol, confounding the use of serum retinol in establishing the state of an individual’s vitamin A nutriture).

While CIC is now widely employed around the world, a variety of modifications have been proposed to simplify procedures and/or improve the quality of the specimens obtained\(^\text{153}\). This has been partially accomplished by substituting a small circular disk held by a suction device instead of the rectangular paper, making handling easier and more precise\(^\text{154}\). It correlates as well or better than the strip technique with other indices of vitamin A status (Fig 11–7)\(^\text{20}\).

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>CIC</th>
<th>Serum Retinol (μg/dl)</th>
<th>RDR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—Persistent diarrhea</td>
<td>17</td>
<td>abnormal</td>
<td>1 ± 1</td>
<td>88 ± 14</td>
</tr>
<tr>
<td>2—Persistent diarrhea</td>
<td>6</td>
<td>normal</td>
<td>8 ± 4</td>
<td>16 ± 12</td>
</tr>
<tr>
<td>Normal controls</td>
<td>23</td>
<td>normal</td>
<td>19 ± 8</td>
<td>—</td>
</tr>
</tbody>
</table>

From N Usha et al\(^\text{99}\) Subjects were all free of “xerophthalmia”
Another modification, introduced by Amedee-Manesme and co-workers, simplifies the subsequent processing of specimens by immediately transferring the collected epithelium from the acetate filter to a glass slide (impression cytology with transfer [ICT]). While Amedee-Manesme and colleagues have found the technique useful and highly specific, they have reported losing 7% to 20% of their specimens during the transfer process. As in CIC, results have been affected by the presence of active conjunctivitis; trachoma apparently increases the (false) positive rate.

Regardless of CIC technique, procurement of specimens is simple, even under field conditions, as is the handling, storage, and transport of specimens. They keep indefinitely in preservative. Processing of specimens needs no more than running water and appropriate glassware and stains. Interpretation of the specimens, however, remains nettlesome, requiring considerable training and standardization, with two to four days of “hands-on” experience. A detailed manual, while helpful, is no substitute for practical experience. Reproducibility is high, but variations in criteria, particularly of specimens intermediate in appearance (not clearly abnormal or normal), can have a significant impact on the presumed prevalence of deficiency.

Despite the plethora of reports indicating a close correlation between CIC and other parameters of vitamin A status, and its response in controlled trials to vitamin A or beta-carotene (dietary) supplementation, several reports have questioned its validity and/or interpretation. Just over 200 children in Guatemala were studied by CIC and RDR. Significantly, perhaps, the population was more vitamin A “sufficient” than most others that have been investigated.
only 8% had a positive RDR, 18% had a serum retinol < 20 μg/dl, and 13% had an abnormal CIC. Even more important, the prevalence of RDR abnormality was lower than the prevalence of retinol deficiency, raising doubts about the reliability of the biochemical determinations. This would explain the relatively small difference found between the serum vitamin A levels of children with normal and abnormal CIC (an experience inconsistent with most other reports). Finally, study analysis describes RDR as the “gold standard” for determining “sensitivity, specificity and positive predictive value” of CIC, which is as inappropriate as using CIC as the “gold standard” for calculating similar indices for RDR. Not only does RDR have its own shortcomings, but even more significant, RDR is an indirect surrogate for liver (hence body) stores, while CIC is a measure of functional status at the tissue level. What is important is whether these different indices distinguish populations at risk of vitamin A “deficiency” and its consequences, regardless of their correlation with one another on specific individuals. In aggregate, most studies have found remarkably similar prevalence rates for abnormal CIC, serum retinol, and RDR for the population as a whole, even when the tests were abnormal in different individuals.

Essentially all studies that have followed CIC status serially report that abnormalities resolve within two weeks to two months after vitamin A supplementation, longer follow-up reveals CIC abnormalities frequently return by six months. In some (if not most) instances this probably reflects an actual change in vitamin A status. It must be remembered, however, that abnormal CIC is basically a microscopic Bitot’s spot. As such, some will persist even after vitamin A status has been normalized, while others will disappear but subsequently return for reasons that are poorly understood (Chapter 4).

Clinical Xerophthalmia

Xerophthalmia is the classical, but late, clinically recognizable expression of gross functional disturbance secondary to severe vitamin A deficiency. Conjunctival xerosis (X1) is the visible equivalent of abnormal CIC. Corneal xerosis and keratomalacia are more devastating consequences. A history of XN, where a suitable, local term exists, is generally the most practical and prevalent manifestation of vitamin A deficiency. The clinical manifestations of xerophthalmia are described in detail in Chapter 4. They are far less prevalent than subclinical functional abnormalities and biochemical evidence of deficiency and marginal stores.

Interpretation

As noted in the introduction to this chapter, our current understanding of the significance of vitamin A deficiency for health, sight, and survival requires that
we utilize better tools for identifying populations in need of community-based intervention programs.

More sensitive indices of deficiency must be employed. This will have a dual effect: by detecting earlier, milder deficiency, populations will be identified in which frank xerophthalmia does not occur, or occurs so rarely it is impractical to detect by clinically related prevalence surveys. The associated consequence is that more sensitive parameter will also be more prevalent, hence sample size requirements for representative surveys will be much smaller. For example, a prevalence of CIC abnormality of 50% may be equivalent to the currently accepted serum retinol criterion of < 10 μg/dl in ≥ 5% of children, while its documentation would be far simpler and less costly.

Of course, a CIC abnormality rate of 50% may not be the relevant criterion. CIC, scotopic vision, and other sensitive indices must be correlated with the population's risk of health consequences from vitamin A deficiency. To set policy, decision makers need to know the health consequences of vitamin A status of different degrees established by alternative indices. As with all resource-based policy decisions, concerns for cost versus benefit and competing priorities will need to be taken into account and are likely to differ from one country to another. Olson, a WHO "consultation," and others have tentatively suggested criteria for a variety of parameters, these can serve as useful points of departure for future discussion and evaluation.

None of the available indices are ideal. All are surrogates for a more basic expression of vitamin A status. They therefore suffer from considerable variability and "background noise." Clinical criteria are relatively rare, particularly when seeking more sensitive measures of mild deficiency. The various biochemical indices of vitamin A stores (actually measures of tissue concentration) are handicapped by the vulnerability of tissue samples (primarily blood) to sometimes transient systemic confounders and laboratory variability. The growing prevalence of HIV infection (not to mention the more common and persistent issue of viral hepatitis) poses additional concerns. Nonetheless, there have been considerable advances in what these tests can offer, which may make their vicissitudes more acceptable. Future advances are likely to make tissue-related tests more practical and reliable under field conditions.

For the moment, measures of functional impairment seem to carry the most promise. CIC, for example, does not require sophisticated laboratories, storage or transport. However, it is not without its limitations. In theory (though not necessarily in practice) an ideal criterion would detect deficiency before it has occurred, when stores are below "safe" levels capable of withstanding a sudden insult or prolonged deprivation but prior to physiologic disturbance. By definition, a functional abnormality is evidence that physiologically significant deficiency already exists. From a public health perspective, this is not necessarily a problem since our concern is with identifying populations at risk, rather than individuals. A less prevalent criterion could be employed for the population at
large, thus catching most subjects before they suffer serious consequences of deficiency. This is analogous to equating a rate of X3B (keratomalacia) of 1/10,000 (a terrible individual outcome but a rare event) to a rate of XN (nightblindness) of 2% (a mild, reversible, but prevalent abnormality). Aside from CIC, which still requires further standardization, other functional tests have yet to be validated by widespread field experience. The ideal test would be entirely objective, free of samples requiring laboratory analysis, and capable of being performed on the youngest children under the most primitive circumstances. Considerable progress toward this goal has been made in the past ten years—we can expect acceleration of the process. A brief review of several existing tests and those in various stages of preliminary development and testing has recently been published.²⁰

References

1 Mellanby E Nutrition and infection (chapter IV) In Nutrition and Disease The interaction of clinical and experimental work Edinburgh Oliver and Boyd 1934 74–97
3 Sommer A Vitamin A Deficiency and its Consequences a field guide to detection and control Third Edition Geneva World Health Organization 1995
6 Sommer A Nutritional Blindness, xerophthalmia and keratomalacia New York Oxford University Press 1982
10 Olson JA Recommended dietary intakes (RDIs) of vitamin A in humans Am J Clin Nutr 1987,45 704–716
12 Suharno D, West CE, Muhial Karyadi D, Hautvast JGAJ Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia Lancet 1993,342 1325–1328
13 Hume EM, Krebs HA Vitamin A requirement of human adults an experimental study of vitamin A deprivation in man Vitamin A Sub-committee on the Accessory
Assessment of Vitamin A Status

Food Factors Committee Medical Research Council, Special Report Series No 264, 1949

17. Muhilal, Karyadi D. A study on the bioavailability of vegetable carotenes and preformed vitamin A in preschool children. Presented at the IVACG meeting, May 18–20, 1977, Geneva

Assessment of Vitamin A Status

46 Ghana VAST Study Team Vitamin A supplementation in northern Ghana effects on clinic attendances, hospital admissions, and child mortality Lancet 1993,342 7—12
47 Flores H, Campos F, Araujo CRC, Underwood BA Assessment of marginal vitamin A deficiency in Brazilian children using the relative dose response procedure Am J Clin Nutr 1984,40 1281—1289
49 Flores H, Azevedo MNA, Campos FACS, Barreto-Lins MC, Cavalcanti AA, Salzano AC, Varela RM, Underwood BA Serum vitamin A distribution curve for children aged 2—6 y known to have adequate vitamin A status a reference population Am J Clin Nutr 1991,54 707—711
50 Pilch SM Analysis of vitamin A data from the health and nutrition examination surveys J Nutr 1987,117 636—640
51 Underwood BA, Siegel H, Weisell RC, Dolinski M Liver stores of vitamin A in a normal population dying suddenly or rapidly from unnatural causes in New York City Am J Clin Nutr 1979,23 1037—1042
52 Dowling JE, Wald G Vitamin A deficiency and night blindness Proc Natl Acad Sci 1958,44 648—661
53 Suthutvoravoot S, Olson JA Plasma and liver concentrations of vitamin A in a normal population of urban Thai Am J Clin Nutr 1974,27 883—891
55 Green MH, Green JB, Lewis KC Variation in retinol utilization rate with vitamin A status in the rat J Nutr 1987,117 694—703
56 Nyberg A, Berne B, Nordlinder H, Busch C, Eriksson U, Loof L, Vahlquist A Impaired release of vitamin A from liver in primary biliary cirrhosis Hepatology 1988,8 136—141
57 Smith FR, Goodman DS The effects of diseases of the liver, thyroid, and kidneys on the transport of vitamin A in human plasma J Clin Invest 1971,50 2426—2436
58 Muhilal H, Glover J Effects of dietary deficiencies of protein and retinol on the plasma level of retinol-binding protein in the rat Br J Nutr 1974,32 549—558
59 Tanumihardjo SA, Olson JA The reproducibility of the modified relative dose response (MRDR) assay in healthy individuals over time and its comparison with conjunctival impression cytology (CIC) Eur J Clin Nutr 1991,45 407—411
60 Carney SM, Underwood BA, Loerch JD Effects of zinc and vitamin A deficient diets on the hepatic mobilization and urinary excretion of vitamin A in rats J Nutr 1976,106 1773—1781

68 Neeld JR, Pearson WN Macro and micromethods for the determination of serum vitamin A using trifluoroacetic acid J Nutr 1963,97 545–546

69 Bessey OA, Lowry OH, Brock MJ, Lopez JA The determination of vitamin A and carotene in small quantities of blood serum J Biol Chem 1946,166 177–188

70 Bieri JO, Tolliver TJ, Catignani GL Simultaneous determination of A-Tocopherol and retinol in plasma or red cells by high pressure liquid chromatography Am J Clin Nutr 1979,32 2143–2149

72 Rider AA, Foard MA, Sommer A Studies on the stability of vitamin A and related compounds in blood subjected to adverse conditions prior to serum separation Nutrition Reports International 1984,29 1307–1314

73 Mancini G, Carbonara AO, Heremans JF Immunochemical quantitation of antigens by single radial immunodiffusion Immunochemistry 1965,2 235–254

77 Moore T The distribution of vitamin A and carotene in the body of the rat Biochem J 1931,25 275–286

Assessment of Vitamin A Status

84 Olson JA. Liver vitamin A reserves of neonate and preschool children and adults dying of various causes in Salvador, Brazil. Arch Lat Am Nutr 1979, 29:521–545
86 Flores H, de Araujo CRC. Liver levels of retinol in unselected necropsy specimens: a prevalence survey of vitamin A deficiency in Recife, Brazil. Am J Clin Nutr 1984, 40:146–152
88 Amedee-Manesme O, Furr HC, Olson JA. The correlation between liver vitamin A concentrations in micro- (needle biopsy) and macrosamples of human liver specimens obtained at autopsy. Am J Clin Nutr 1984, 39:315–319
89 Loerch JD, Underwood BA, Lewis KC. Response of plasma levels of vitamin A to a dose of vitamin A as an indicator of hepatic vitamin A reserves in rats. J Nutr 1979, 109:778–786
95 Sovani I, Humphrey JH, Kuntinalibronto DR, Natadisastra G, Muhilal, Tielsch JM. Response of Bitot’s spots to a single oral 100,000- or 200,000-IU dose of vitamin A. Am J Ophthalmol 1994, 118:792–796

110 Tanumihardjo SA, Olson JA. A modified relative dose-response assay employing 3,4-didehydroretinol (vitamin A2) in rats. J Nutr 1988, 118:598-603

115 Tanumihardjo SA, Permaesih D, Muherdiyantingsih, Dahro AM, Rustan E, Mulhilal, Karyadi D, Olson JA. Comparisons of vitamin A assessment techniques in Indonesian children and further refinement of the modified relative dose response.
Assessment of Vitamin A Status

(MRDR) In Toward Comprehensive Programs to Reduce Vitamin A Deficiency A Report of the XV IVACG Meeting, Arusha, Tanzania Washington DC The Nutrition Foundation 1993

116 Dawiesah S, Dibley MJ, Tanuminhardjo SA Vitamin A status in preschool Indonesian children as measured by the modified relative-dose response assay In Toward Comprehensive Programs to Reduce Vitamin A Deficiency A Report of the XV IVACG Meeting, Arusha, Tanzania Washington DC The Nutrition Foundation 1993

120 Clifford AJ, Jones AD, Furr HC Stable isotope dilution mass spectrometry to assess vitamin A status Methods Enzymol 1990 189 94—104

121 Hicks RJ Night-blindness in the Confederate Army The Richmond Medical Journal 1867,3 34—38

123 Stewart BE, Young RSL Pupillary response an index of visual threshold Applied Optics 1989,28 1122—1127

125 Sanchez AM, Congdon NO, Sommor A, Rahmathullah L, Venkatasamy P Pupillary threshold as an index of population vitamin A status in India Invest Ophthalmol Vis Sci 1995,36 5863

126 Goss H, Guilbert HR The minimum vitamin A and carotene requirement of the rat J Nutr 1939,19 169—179

127 Blackfan K, Wolbach SB Vitamin A deficiency in infants A clinical and pathological study J Pediatr 1933,5 679—706

129 Agarwal L, Malhoutra R Conjunctival smear cytology in xerosis Ophthalmologica 1955,130 378—386

130 Kessing SV Mucous gland system of the conjunctiva Acta Ophthalmol 1968, 95 9—133

133 Sommer A. Effects of vitamin A deficiency on the ocular surface. Ophthalmology 1983, 90: 592–600
Assessment of Vitamin A Status

167 Mehta M, Mehta NJ. Subclinical vitamin A-deficiency in slum children from Bombay: assessment by cellular impression cytology (CIC), and dietary intervention with dark green leafy vegetables (DGLV). In Two Decades of Progress: Linking

Epidemiology of Deficiency

Prevention, at the community level, seeks to improve and sustain adequate vitamin A nutriture among individuals who would otherwise be deficient, thereby blocking the morbid consequences of vitamin A deficiency. Successful prevention would reduce the extent and severity of vitamin A deficiency so as to minimize or eliminate entirely its health consequences.

A number of fundamental epidemiologic characteristics of xerophthalmia and vitamin A deficiency help to identify high-risk groups and aid in understanding its genesis. These include its magnitude and distribution by age, sex, socioeconomic status, location, and season (periodicity), and associated dietary patterns and infectious disease risk factors (addressed in Chapter 3). These characteristics provide a basis for selecting and designing appropriate intervention strategies. Effective prevention policy and action depend on a solid knowledge of occurrence of deficiency (by place, time, and person) and an understanding of its determinants (diet, morbidity [Chapters 2–3], and related factors).

Magnitude

The global dimension of vitamin A deficiency is evident in Figure 12–1: it persists, as xerophthalmia and subclinically, as an international public health problem, especially in the southern and perinequatorial regions of the world. Xerophthalmia is known to occur in some seventy-three countries, which can be categorized by likely severity based on existing evidence. The list of high-risk countries remains remarkably similar to that drawn up by Oomen, McLaren, and Escapini three decades ago. "Blank" (and poor) countries on the map usually represent an absence of data rather than an absence of risk.
Population-based data suggest that 5 million to 10 million children develop xerophthalmia each year, a half million of whom go blind. Estimates of the extent of all stages of vitamin A deficiency vary widely due to imprecise data and definition of terms. As many as 190 million to 240 million children have been estimated to be “at risk of subclinical vitamin A deficiency” (B. Underwood, personal communication, 1994) although there is little agreement about what “at risk” means. From existing population-based survey, community trial, and standard demographic data, it seems likely that about 125 million children of preschool age are vitamin A-deficient, 1 million to 2.5 million of whom die annually. The magnitude of this problem and its consequences for child survival give us a clear imperative for understanding the population characteristics of vitamin A deficiency and seeking its prevention.

Age

Strategies to prevent vitamin A deficiency normally target children in the preschool years. Deficiency, particularly severe deficiency, is most prevalent among this age group and only compounds the greater risk of infectious morbidity and mortality that affects them (Chapter 2).

The incidence of corneal xerophthalmia traditionally peaks after weaning which, in many cultures, occurs from the second to fourth years of life, an age at which dietary intake of vitamin A may be low and risk of precipitating
infections high. In two large series of patients with corneal xerophthalmia (X2, X3) presenting at referral eye centers over twenty-four-month periods in Indonesia (n = 162) and Nepal (n = 295), 85%–90% of children were below age five, another 5%–7% of cases were five years old. This indicates that effective control of vitamin A deficiency in the preschool years would practically eliminate nutritional blindness (Fig 12–2). Although corneal disease is relatively rare under twelve months of age, keratomalacia may becoming more frequent among young infants living in poor, transitional populations. It has been suggested infants of marginal status are being weaned at an earlier age onto milk products or other weaning foods that have little vitamin A value.

The prevalence of mild xerophthalmia (XN and/or X1B) typically increases with age through the preschool years. This relationship appears to hold across different cultures, regardless of age-specific rates of xerophthalmia (Fig 12–3, A-D), providing a clear rationale for supplementing children through the sixth year of life. For example, the prevalence of xerophthalmia declined in Indonesia from 1978 to 1992 following a sustained, national prevention program, but the classical demographic association persisted (Fig 12–3, D). The increased risk of moderate-to-severe vitamin A deficiency with age during early childhood is a likely consequence of chronic dietary inadequacy (discussed later in this chapter) combined with nutritional demands of continued growth and repeated infections. Subclinical vitamin A deficiency (reflected by low serum retinol or abnormal CIC) would be expected to increase through early childhood, but this has not been well established.

Fig. 12–2. Distribution of consecutive cases with corneal xerophthalmia (X2 or X3) presenting to the Cicendo Eye Hospital (n = 162), Bandung, Indonesia, from 1978–1979 (black bars), and to the Lahan Eye Hospital (n = 295), Lahan, Nepal, from 1986–1988.
Although the risks of severe deficiency with associated blindness and the risk of overall mortality decline with age, vitamin A deficiency frequently extends into adolescence and early adulthood, when prevalence rates of mild xerophthalmia (XN or X1B) sometimes exceed those of preschoolers. The apparent sustained impact of vitamin A supplementation in reducing mortality into the early school-age years also suggests that the health consequences of vitamin A deficiency extend into these older years. On the Indian subcontinent, vitamin A deficiency has long been known to exist among adults, especially among women of reproductive age.

Nightblindness during pregnancy and lactation is an evident consequence of the exacerbation of chronic vitamin A deficiency. The condition is especially common in South Asia, where nightblindness may occur in 15%–20% of all pregnancies, recur in subsequent pregnancies, and ultimately affect up to half of all women of reproductive age residing in poor, rural areas. The potential health consequences to both mother and fetus, the program implications, and the relevance of moderate-to-severe maternal vitamin A deficiency to offspring are only beginning to be recognized and delineated. It is already evident that impressive gains in maternal and infant vitamin A status and possibly improved survival of breastfeeding infants can be obtained by supplementing mothers shortly after giving birth with a single, large dose of vitamin A (Table 14–4), although the impact on maternal health and survival are yet unknown.
Epidemiology of Deficiency

Sex

Boys have generally been found to be at higher risk of mild xerophthalmia (XN,X1B) than girls during the preschool and early school-age years, although sex differences are less evident with respect to severe (corneal) xerophthalmia. Greater male vulnerability to vitamin A deficiency is repeatedly seen in animals (Chapter 6), however, cultural differences in how boys and girls are fed and cared for may, in some populations, explain the observed variation by sex. To date, not enough attention has been paid to sex-specific causes of vitamin A deficiency for these differences in risk to have utility in designing prevention programs.

Socioeconomic Status

Vitamin A deficiency affects vulnerable groups from lower socioeconomic strata of poor countries. This relationship may be explained, in part, by the extent to which xerophthalmia and socioeconomic status (and presumably, dietary habits) covary by community. In the countrywide survey and Aceh study in Indonesia, families of xerophthalmic children were of lower socioeconomic status than families of age-matched, non-xerophthalmic controls from the same villages who, in turn, were worse off than all other non-xerophthalmic families in other surveyed areas (Table 12-1). This suggests that villages in which xerophthalmia is present are more economically deprived than villages in which xerophthalmia is not seen.

Households with mildly xerophthalmic children have fewer possessions such as radios, watches or bicycles, fewer draft and grazing animals and smaller landholdings, and poorer housing with fewer hygienic amenities.

<table>
<thead>
<tr>
<th>Household Characteristic</th>
<th>Cases (%) (N = 466)</th>
<th>Village-Matched Controls (%) (N = 466)</th>
<th>Aceh Study Households (%) (N = 15,915)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprotected water source</td>
<td>47.5</td>
<td>43.8</td>
<td>41.1*</td>
</tr>
<tr>
<td>No private latrine</td>
<td>86.7</td>
<td>83.6</td>
<td>71.3*</td>
</tr>
<tr>
<td>Bamboo house walls</td>
<td>47.1</td>
<td>33.5</td>
<td>31.6*</td>
</tr>
<tr>
<td>Household head farms</td>
<td>57.3</td>
<td>55.5</td>
<td>53.4</td>
</tr>
<tr>
<td>Mother has < 6 yr education</td>
<td>94.3</td>
<td>86.6</td>
<td>80.3*</td>
</tr>
<tr>
<td>History of child death</td>
<td>12.1</td>
<td>9.7</td>
<td>7.5*</td>
</tr>
</tbody>
</table>

*Significant linear trend in proportions, p < 0.001

From Mele et al., 1991.
ties7,59–62 than families without xerophthalmic children. Parents of cases are less educated14,24,32,39,60,62,65 and more likely to have had one or more children die than are control families.7,24,59 These characteristics of poor socioeconomic status tend to be consistently associated with a 1.5 to 3.0 times higher risk (odds ratio) of xerophthalmia, although the factors by themselves cannot be used to predict the occurrence of xerophthalmia (i.e., often have predictive values of \(\leq 12\% \), K P West et al., unpublished data, 1995).

Location

Xerophthalmia has been found to cluster within provinces or districts7,62,64,65 (Figure 12–4), subdistricts,63 villages,7,29,59,66 and even households.29 As already shown, non-xerophthalmic (i.e., clinically "normal") children living in the same vicinity as a case of XN or X1B have a lower serum retinol (Table 1–3)67 and are likely to come from poorer families (Table 12–1)7,59 than non-xerophthalmic children from other neighborhoods.

Clustering presumably arises from shared practices and environments. Population-based surveys in Africa and Asia have shown that children living in villages where at least one other child has xerophthalmia are at a 1.2 to 2.3 times higher risk of having xerophthalmia than children in villages where no other cases exist.

![Bangladesh map](image_url)

Fig. 12–4. Regional clustering of xerophthalmia (vitamin A deficiency) by severity and district in Bangladesh (From N Cohen et al.).
The risk increases further within households. Siblings of cases are 7–13 times more likely to have, or develop, xerophthalmia once they enter the high-risk age group than children living in households without a xerophthalmic sibling. These levels of clustering are stronger than have been observed for wasting or stunting. Risk within the household extends to the mother-child dyad, in Bangladesh, preschool-age children were 5–10 times more likely to have nightblindness if their mothers were nightblind than were children whose mothers had normal night vision.

Knowing the levels at which vitamin A deficiency clusters can facilitate the design, targeting, and estimation of cost-effectiveness of prevention programs. Combining region-specific prevalence rates of vitamin A deficiency with relevant population census data permits numbers of cases to be estimated and the likely costs associated with achieving coverage ("efficiency") to be considered when targeting interventions. In Nepal, for example, it was estimated to be 7–34 times more efficient to first prevent vitamin A deficiency in the population-dense, high-risk, low-lying plains than in sparsely populated, less-accessible communities at higher, mountainous elevations.

These data stress the value and efficiency of implementing prevention programs in communities of greatest need (i.e., achieving high specificity) according to the available resources. Where community-wide outreach is restricted, households in which (a history of) xerophthalmia exists should be targeted to screen and treat cases, supplement high-risk members with vitamin A, and provide counseling on diet or food growing. More broadly, entire communities in which

<table>
<thead>
<tr>
<th>Table 12-2</th>
<th>Crude and Age-Adjusted Village and Household Pairwise Odds Ratios for Risk of Xerophthalmia among Preschool Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio</td>
<td>Malawi</td>
</tr>
<tr>
<td>Village</td>
<td>n</td>
</tr>
<tr>
<td>CRUDE</td>
<td></td>
</tr>
<tr>
<td>Village</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(1.0–1.4)</td>
</tr>
<tr>
<td>Household</td>
<td>2899</td>
</tr>
<tr>
<td></td>
<td>(2.2–8.8)</td>
</tr>
<tr>
<td>AGE-ADJUSTED</td>
<td></td>
</tr>
<tr>
<td>Village</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(1.0–1.5)</td>
</tr>
<tr>
<td>Household</td>
<td>7.3</td>
</tr>
</tbody>
</table>

'Numbers of children < 6 years of age in each country: Malawi (n = 5441), Zambia (n = 4316), Indonesia (n = 28,586), and Nepal (n = 4764).

Pairwise odds ratio based on alternating logit regression.

95% confidence intervals in parentheses.

From Katz et al., 1993.
Assessment and Prevention

xerophthalmic children have been identified or districts in which prevalence rates of xerophthalmia exceed minimums should be targeted for intervention

Periodicity

Seasonality is a distinguishing feature of vitamin A deficiency in parts of the world where climatic variation and attending patterns of food availability and infectious diseases are distinct. Early in the twentieth century seasonal peaks in xerophthalmia were observed to coincide with the hot, humid "diarrhea season" in Japan and London, scarcity of green leafy vegetables in China, and the spring growth spurt in Denmark. The decline in apparent incidence of xerophthalmia in Danish children was attributed, in part, to a possible increase in the vitamin A content of cow's milk following the shift from stall (winter) to pasture (summer) feeding.

In recent years the seasonality of vitamin A deficiency has perhaps been most clearly described in the village of Ichag, West Bengal. Sinha and Bang weekly tracked the incidence of mild xerophthalmia (both XN and X1B) and other diseases in a cohort of approximately 300 children for over two years before and during the conduct of a vitamin A field trial. A pre-monsoon peak in the incidence of X1B and, to a lesser extent, XN occurred in May and June, which has been observed repeatedly elsewhere.

The seasonal appearance and subsidence of xerophthalmia probably reflects variation in nutrient demand and intake in marginally nourished populations. In South Asia, the ascending curve in March and April follows a typical growth spurt during the months after the major December rice harvest that, in many poor areas, also corresponds with a period of increased caloric availability through community food-for-work programs. This period, however, also parallels lower

![Graph](image-url)

Fig. 12-5. Seasonality of Bitot's spots (X1B) and nightblindness (XN) in the village of Ichag, West Bengal, India, over a two-year period. Data to the right of the arrow reflect control group only from a field trial (From D P Sinha)
Epidemiology of Deficiency

dietary intakes of carotenoid-rich vegetables and yellow fruits among the poor, coinciding with a concomitant fall in serum retinol levels. An increased frequency of diarrhea and measles in May and June places greater demands on vitamin A nutriture, which can exacerbate moderate-to-severe deficiency. Xerophthalmia usually begins to wane by mid-monsoon, following increased intakes of vitamin A during the mango season in June. Slower growth among South Asian children during the latter half of the monsoon season reduces metabolic demand, which may further contribute to "improved" vitamin A status.

Interventions should strive to prevent seasonal peaks in vitamin A deficiency. Large-dose vitamin A supplementation should be timed to precede the peak risk months (e.g., about March/April in India, Bangladesh and Nepal), the alternate dosing period (every six months) should come before, at least in South Asia, the major rice harvest. This "alignment" of supplementation by season effectively mutes the seasonal peaks in xerophthalmia and mortality (Chapter 2). Longer-term, food-based programs should place special emphasis on increasing the availability and consumption of beta-carotene-rich foods during the dry season (coupled with at least a minimum amount of preformed vitamin A year-round).

Not surprisingly, the incidence of xerophthalmia rises during drought. This has been documented on the Indian subcontinent, where rates of (predominantly mild) xerophthalmia during drought can exceed 10% among preschool-age children. Periodic drought and food shortage may be better predicted in the future through practical early warning systems, which could permit preemptive intervention (e.g., vitamin A supplementation or enhanced availability of food sources of vitamin A).

Diet

A diet lacking the needed amounts of vitamin A, either preformed or as provitamin A carotenoids, is the basic underlying cause of vitamin A deficiency as a public health problem. Several aspects of diet in infancy and early childhood appear to be particularly critical to a child's vitamin A status and the risk of xerophthalmia and other consequences of deficiency. In particular are the adequacy of breast-feeding, and the quality of the diet offered to children during and after weaning from the breast.

Breast-Feeding

Nurslings of Russian mothers, severely malnourished from the Lenten Quadragesima fast, developed keratomalacia (cited in Blegvad, 1924), suggesting that a minimally adequate maternal diet was required to protect infants from early nutritional blindness. Both Stephenson and Bloch noted that xerophthalmia...
rarely occurred in children suckled by a healthy mother who was "capable of yielding sufficient milk."

There is substantial evidence that frequent and sustained breast-feeding protects infants and young children from severe vitamin A deficiency through the fourth year of life, under all but the harshest conditions. Children who remain breast-fed are ~65% to 90% less likely to develop xerophthalmia (i.e., odds ratios of ~0.10 to 0.35) than children of similar age who are fully weaned from the breast (Fig. 12–6). There also appears to be a dose-responsive, protective effect related to frequency of breast-feeding. Adjusting for age, Nepalese children breast-feeding up to about ten times per day had a 68% lower risk of xerophthalmia than their non-breast-fed peers (Odds Ratio [OR] = 0.32, 95% confidence interval [CI] 0.15–0.66), children breast-feeding more frequently had an 88% lower risk (OR = 0.12, 95% CI 0.03–0.54).

In Malawi, mothers of xerophthalmic children began to wean their children one month earlier, on average, than the mothers of non-xerophthalmic controls (at age three months versus four months) by giving soft porridge daily or every other day (p ≤ 0.05). This practice may have contributed to the threefold greater risk of children with xerophthalmia having been fully weaned before eighteen months (OR = 3.4, 95% CI 1.4–7.5). Premature introduction of solid foods leading to earlier cessation of breast-feeding appeared to have shortened the weaning interval (p < 0.005) during which cases could otherwise have benefited from breast-feeding. Similar findings were reported from Ethiopia. In both African studies children with xerophthalmia had been weaned from the

![Fig. 12–6. Association between percent of children breast-feeding and mild xerophthalmia (XN,X1B), by age. Open bar, non-xerophthalmic children, black bar, cases A, Indonesia; B, Nepal; C, Bangladesh; D, Malawi.](image)
breast approximately six months earlier than non-xerophthalmic children, suggesting that potential benefits may accrue from successful promotion of (any) extended breast-feeding.

As these studies make clear, premature onset of weaning, less frequent sucking, and early cessation of breast-feeding, relative to local norms, may increase the risk of xerophthalmia in the preschool years. Exactly why mothers of high- and lower-risk children breast-feed differently is not always readily apparent: mothers of xerophthalmic and non-xerophthalmic children often give the same reasons for stopping breast-feeding, usually because the mother thinks it is no longer needed or because she has become pregnant.

The protection of breast-feeding against clinical xerophthalmia has not yet been demonstrated for subclinical vitamin A deficiency, but there is every reason to suspect it will since subclinical deficiency precedes severe deficiency and vitamin A supplementation of breast-feeding, nonxerophthalmic weanlings (approximately six months to thirty-five months of age) reduces their mortality (Chapter 2). Maternal vitamin A deficiency, which can result in lower milk retinol levels, may limit the extent to which simply prolonging breast-feeding can protect a weanling child from the adverse effects of subclinical vitamin A deficiency. In some situations the duration of breast-feeding may be less important than the composition of the weaning diet.

Weaning Diet

As breast-feeding declines, once a child begins to wean, the choice of foods becomes increasingly important. During the first twelve months of weaning, Indonesian preschool, xerophthalmic children were less likely to be fed vitamin A-rich foods on a routine basis (i.e., daily or every other day) than non-xerophthalmic controls (Fig. 12–7). Infrequent consumption of dark green leafy vegetables (DGLV) or yellow fruits and vegetables (with provitamin A carotenoids) was associated with a fourfold to sixfold increase in the risk (odds ratio) of xerophthalmia, the effect of not consuming egg, meat (presumably including some liver), fish and milk (sources of preformed retinol) was associated with a twofold to threefold increased risk. Exclusion of all of these foods from a child’s diet during weaning increased the risk of xerophthalmia ~3.5 times, after adjusting for current dietary intake. It is likely that liver retinol stores fell during weaning, as the regular household diet was inadequate to build or maintain reserves.

Childhood Diet

For many children, a weaning diet deficient in vitamin A predicts a vitamin A deficient diet through the rest of early childhood, and possibly beyond. Intakes
Assessment and Prevention

Fig. 12-7 Relative risk (case-control odds ratio) (± 95% CI) of mild xerophthalmia (vitamin A deficiency) by type of food reportedly consumed by children daily or every other day during their first twelve months of weaning (From L. Mele et al).

of vitamin A (or provitamin A carotenoids) of children with moderate-to-severe vitamin A deficiency have regularly been found to be lower than those of children without apparent vitamin A deficiency, yielding a remarkable degree of consistency given the diversity of the populations studied and dietary assessment techniques employed. Most epidemiologic studies in recent years have relied on food-frequency questionnaires, designed to assess consumption patterns over a specified period of time (e.g., past month, week, few days, or twenty-four hours). These methods have proven capable of distinguishing intake distributions of key vitamin A foods by clinical or biochemical status, thus providing a potential basis for estimating risk and for understanding, in part, the dietary basis of vitamin A deficiency and the rationale for developing food-based prevention approaches.

In the Indonesian countrywide survey of 1978 and the Aceh study that followed, xerophthalmic children were compared with a random sample of children and matched controls without xerophthalmia from the same villages. In both studies the risk of xerophthalmia rose to a similar extent, in a dose-response manner, with a fall in the frequency of mango/papaya, dark green leaf and egg consumption (Table 12-3). Children eating these foods one to three times per month were at 1.3 to 2.4 times the risk of having xerophthalmia than children eating these foods at least weekly, those who rarely ate them incurred a 2.0 to 4.0 times higher risk. Mango and papaya consumption were especially protective in children under three years old (age-adjusted OR ~3.0 to 9.0 for never versus weekly), though less so above this age (OR range 1.0 - 3.8). This finding coincides with a normal progression in diet from breast-milk to soft,
Table 12–3 Usual Frequency of Intake of Key Food Sources of Vitamin A by Xerophthalmia Status, Indonesia 1978 and 1983

<table>
<thead>
<tr>
<th>Food Source</th>
<th>Frequency of Intake (%)</th>
<th>Odds Ratio</th>
<th>N</th>
<th>Countrywide Survey 1978</th>
<th>1–5 Years</th>
<th>Aceh Study, 1983</th>
<th>2–5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mango/papaya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases (XIB)</td>
<td>351</td>
<td>59</td>
<td>29</td>
<td>12</td>
<td>1.00</td>
<td>1.34</td>
<td>2.07</td>
</tr>
<tr>
<td>Normals</td>
<td>5112</td>
<td>68</td>
<td>25</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark green leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases (XIB)</td>
<td>351</td>
<td>68</td>
<td>13</td>
<td>19</td>
<td>1.00</td>
<td>2.41</td>
<td>1.92</td>
</tr>
<tr>
<td>Normals</td>
<td>5112</td>
<td>82</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases (XIB)</td>
<td>351</td>
<td>24</td>
<td>28</td>
<td>49</td>
<td>1.00</td>
<td>1.84</td>
<td>2.44</td>
</tr>
<tr>
<td>Normals</td>
<td>5112</td>
<td>40</td>
<td>26</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Tarwojto et al. 1982 and Mele et al. 1991 for the countrywide survey, and Mele et al. 1991 for the Aceh Study

sweet, yellow and orange fruit. A dose-responsive, protective effect of egg consumption was present at each age from one to five years, similar to findings elsewhere. The validity of dietary findings obtained by food frequency was supported in a substudy by comparative lower serum carotene levels (generally reflecting usual dietary intake). Other population-based studies, though varying in design and purpose, have documented similar relationships. Bangladeshi children with XN were 2.5 to 5 times less likely to have consumed DGLVs, yellow fruits, eggs, milk, fish, and meat during the previous three days than children without XN, after adjusting for multiple sociodemographic and dietary factors. In the Philippines, the proportion of surveyed children who consumed egg, liver, and mango during the previous week fell in association with lower vitamin A status (serum retinol levels at > 20, 10–19, < 10 μg/dl). In West Java, children with xerophthalmia
were less likely to consume liver. Distributions of vitamin A-rich food intake in Malawi were not significantly different between xerophthalmic cases and their controls, although markedly lower intakes were reported among children with X1B versus normals in Ethiopia. In the Sudan, twenty-four recalls (conducted \(\leq 3 \times \text{over two years} \) revealed significant relative risks of 1.3 to 2.3 for incident xerophthalmia and mortality respectively among children consuming food sources of vitamin A and carotenoids (<10th versus >90th percentiles of intake). Detailed food weighing and compositional studies of diets of children with and without X1B in Tanzania found lower intakes of retinol, folic acid, and iron in mildly xerophthalmic children, which agreed with observed inadequate intakes of green leaves and dairy products compared with controls.

When planning an intervention, food preferences should be considered in addition to the size and strength of the association between vitamin A status and particular dietary components. For example, in Aceh, children who did not consume kangkong (*Ipomoea aquatica*) or drumstick leaves (*Moringa oleifera*) during the month before examination were at a 1.7 times higher risk of xerophthalmia (OR) than those who did, yet, 7 times as many controls had eaten kangkong in the recent past than drumstick leaves (74% versus 10% respectively). This reflects a stronger preference for kangkong among children, and indicates greater potential to enhance its intake (compared with drumstick leaves).

Household Diet

Poor dietary intake of vitamin A-rich foods by children is not synonymous with lack of availability of such foods in a household. In the countrywide Indonesian study, there were no differences in household consumption of DGLV, mango/papaya, and egg, even though xerophthalmic children had consumed these foods less frequently than non-xerophthalmic controls. Results are similar for Nepal, where households of children with and without a history of xerophthalmia have similar access to gardens and market food sources of vitamin A, however, children with a known history of previous xerophthalmia routinely consumed DGLVs (as well as dairy products) less frequently than their non-xerophthalmic controls.

Knowledge of these and other pertinent epidemiologic features of xerophthalmia and vitamin A deficiency at the local level can lead to more effective and efficient design, targeting and implementation of prevention strategies aimed at improving the local diet and intakes of deficient children and mothers.

References

47 Starbuck ES Night blindness during pregnancy as a risk marker for early infant death in Jumla, Nepal Thesis The Johns Hopkins School of Hygiene and Public Health, Baltimore 1993
49 Panth M, Shatrugna V, Yasodhara P, Sivakumar B Effect of vitamin A supplementation on haemoglobin and vitamin A levels during pregnancy Brit J Nutr 1990, 64 351–358
53 Djunaedi E, Sommer A, Pandji A, Kusdiono, Taylor HR, Aceh Study Group Impact of vitamin A supplementation on xerophthalmia a randomized controlled community trial Arch Ophtalmol 1988,106 218–222
55 De Sole G, Belay Y, Zegeye B Vitamin A deficiency in southern Ethiopia Am J Clin Nutr 1987,45 780–784
58 West KP Jr Dietary vitamin A deficiency effects on growth, infection, and mortality Food Nutr Bull 1991,13 119–131

76. Stephenson S. On sloughing corneae in infants: an account based upon the records of thirty-one cases. Ophthalmoscope 1910;8:782-818.

Epidemiology of Deficiency

82 Schaefer AE. Can nutritional status be determined from food consumption or other measures? In Assembly of Life Sciences Committee on Food Consumption, ed Assessing Changing Food Consumption Patterns Washington DC National Academy Press 1981 207–219

84 Foster A, Sommer A. Corneal ulceration, measles, and childhood blindness in Tanzania Br J Ophthalmol 1987,71 331–343

85 Desai NC, Desai S, Desai R. Xerophthalmia clinics in rural eye camps Int Ophthalmol 1992,16 139–145

87 Daulaire NMP, Starbuck ES, Houston RM, Church MS, Stukel TA, Pandey MR. Childhood mortality after a high dose of vitamin A in a high risk population BMJ 1992,304 207–210

90 Bloch CE. Blindness and other diseases in children arising from deficient nutrition (lack of fat-soluble A factor) Am J Dis Child 1924,27 139–148

92 Stanton UF, Clemens JD, Wojtyniak B, Khair T. Risk factors for developing mild nutritional blindness in urban Bangladesh Am J Dis Child 1986 140 584–588

93 Mahalanabis D. Breast feeding and vitamin A deficiency among children attending a diarrhoea treatment centre in Bangladesh a case-control study BMJ 1991,303 493–496

95 Muhilal, Permaesih D, Idjradinata YR, Muherdyantininggh Karyad D. Vitamin A-fortified monosodium glutamate and health, growth, and survival of children a controlled field trial Am J Clin Nutr 1988,48 1271–1276

97 Ghana VAST Study Team. Vitamin A supplementation in northern Ghana effects on clinic attendances, hospital admissions, and child mortality Lancet 1993,342 7–12

100 Blankhart DM. Individual intake of food in young children in relation to malnutrition and nightblindness Trop Geogr Med 1967,19 144–153

Dietary Intervention

A large number of foods contain substantial amounts of either vitamin A or carotenoids and many of these foods are widespread and inexpensive, even for the very poor. Thus, in a logical sense, no reason exists for vitamin A deficiency to be a worldwide problem. But it is a worldwide problem.

—James Allen Olson, 1994

Vitamin A deficiency is fundamentally a nutritional disorder and thus appears to have an obvious, dietary solution: increase the intake of foods rich in “vitamin A” (preformed retinyl esters or provitamin A carotenoids) to a satisfactory level among those who are deficient. Finding effective dietary approaches to prevent vitamin A deficiency in most developing countries, however, is not straightforward, despite a generally sufficient supply of “vitamin A” in available foods. Where foods containing vitamin A are already available, affordable, and used by most households, the most vulnerable groups (low-income families, children) frequently do not consume adequate amounts. These populations would be expected to benefit from effective programs aimed at changing the dietary behavior (e.g., eating practices) of those in need.

Where vitamin A-rich foods are not locally available or affordable, one faces the greater challenge of both creating demand (for a better diet) and increasing the available, affordable supply. The latter goal has been approached by encouraging food production for personal consumption and creation of local micro-enterprises that increase availability at the marketplace.

Most attempts at changing dietary habits have concentrated on increasing the intake of plant sources of (provitamin A) carotene. It is possible, however, that more modest increases in the consumption of vitamin A-containing foods (e.g., eggs, milk, liver) may prove feasible and more effective in some situations.
The form in which dietary "vitamin A" is consumed may make a greater difference than has been generally recognized. In Asia and Africa, for example, provitamin A carotenoids are the major source of dietary vitamin A, with plant sources reportedly providing more than 80% of the total vitamin A intake (Fig 13-1) \(^7\) \(^\text{-}\)\(^10\) These are also the regions of the world where vitamin A deficiency is most widespread and severe,\(^11\)\(^12\) raising intriguing and important questions about the degree to which, and conditions under which, plant carotenoids can substitute entirely for preformed sources of vitamin A. Further, inter-regional variation in dietary "vitamin A" is greatest (per capita) for availability of preformed vitamin A (retinyl esters), not for total "vitamin A activity" in the food supply (Fig 13–1) \(^7\) While there is enormous variation in the supposed consumption of "vitamin A-rich" foods across and within geographic, demographic, and socioeconomic strata,\(^10\)\(^11\) severe vitamin A deficiency generally does not exist as a public health problem where 40% or more of the vitamin A in the food supply is provided as preformed retinyl esters\(^7\)\(^14\) (with the notable exception of "pockets" of xerophthalmia in Latin America\(^15\) and the western Pacific\(^16\)\(^-\)\(^18\)) This ecologic association suggests that food policies aimed at preventing vitamin A deficiency might well include ways to increase the availability and consumption of dietary sources of preformed vitamin A among high-risk groups as a potentially critical component of any food-based strategy for improving vitamin A status. It does not prove, however, that this will work, given the complex and varied conditions that accompany these different consumption patterns.

![Fig. 13-1. Food supply of total vitamin A partitioned by the percentage available from provitamin A carotenoids (black segments, % indicated) and preformed vitamin A food sources (open segments), for the period 1979–1981 (From the Food and Agricultural Organization of the United Nations \(^7\))](image-url)
Dietary approaches to controlling vitamin A deficiency require adequate understanding of (1) the content of preformed retinyl esters and provitamin A carotenoids in different foods, (2) the bioavailability of vitamin A from these foods given achievable conditions of storage and usual methods of preparation, and (3) the existing shortfall in vitamin A intake by the target (most vulnerable) populations.

Preformed retinol from animal sources (e.g., eggs, milk, cheese, liver, fish oils) or retinyl ester-fortified products is generally assumed to be 70% to 90% bioavailable (i.e., absorbed and utilized) when consumed in usual amounts. Provitamin A carotenoids are less well utilized, they are obtained especially from deeply colored vegetables (e.g., dark green leaves, carrots), tubers (e.g., yellow sweet potatoes) and fruits (e.g., mango, papaya, red palm). Although more than fifty provitamin A carotenoids have been identified, beta-carotene is the most ubiquitous and active. Absorption and bioconversion to retinol of provitamin A carotenoids in food is generally assumed to occur with an efficiency of 16% for beta-carotene (6:1 ratio) and 8% for other vitamin A precursors (12:1) relative to preformed retinol (Table 13-1). Indian data suggest a 4:1 conversion ratio is more appropriate for beta-carotene. This “conversion ratio,” however, is at best a gross average, and furthermore not constant. The same foods prepared and consumed in exactly the same way will vary in their bioavailability of vitamin A depending on the vitamin A status of the consumer. It can be expected to be lower than 6 (or 4, more efficient) in vitamin A-deficient individuals and considerably higher than 6 (less efficient) in those who are vitamin A-replete.

Although rather crude, these conversion ratios provide a convenient and uniform basis for estimating retinol equivalency of different diets and foods.

<table>
<thead>
<tr>
<th>1 Retinol Equivalent (μg RE)</th>
<th>6 μg beta-carotene</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 12 μg other provitamin A carotenoids</td>
<td></td>
</tr>
<tr>
<td>= 3.33 IU vitamin A (VA) activity from retinol</td>
<td></td>
</tr>
<tr>
<td>= 10 IU VA activity from beta-carotene</td>
<td></td>
</tr>
<tr>
<td>= 5 IU VA activity from other provitamin A carotenoids</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 International Unit (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0.30 μg RE</td>
</tr>
<tr>
<td>= 0.344 μg retinyl acetate</td>
</tr>
<tr>
<td>= 0.55 μg retinyl palmitate</td>
</tr>
<tr>
<td>= 0.60 μg beta-carotene</td>
</tr>
<tr>
<td>= 1.20 μg other provitamin A carotenoids</td>
</tr>
<tr>
<td>= 0.00105 μmol retinol (SI unit)</td>
</tr>
</tbody>
</table>

Table 13-1 Vitamin A Conversion Units

Estimates of food vitamin A content, however, are affected by the accuracy of regional, national, or local food composition tables, which vary considerably. "Errors" in estimation for individual foods arise from differences in vitamin A activity associated with variations between cultivars and within species, age of the plant and degree of vegetable or fruit ripeness, seasonality, climate and soil conditions, transport and handling, processing and methods of cooking. Sampling and analytical mistakes are also important sources of error in estimation. Older published vitamin A values are found to both underestimate and overestimate values derived by modern analytic techniques. Further, modern estimates by allegedly reliable methods (compiled by the U.S. Department of Agriculture) of the beta-carotene content of a single, "high-vitamin A" food—the carrot—vary by as much as ~13,000 µg per 100 g raw weight, a range that encompasses nearly all estimates (derived by other means) (Fig 13–2).

Profound misclassification with respect to adequacy of vitamin A intake of individuals and communities can occur when large discrepancies exist between actual and estimated values for widely consumed foods. Given the variability of multiple factors involved in estimating the vitamin A content of a particular dietary item, planning an appropriate change in diet can be equally hazardous and difficult. These issues become especially troublesome when attempting to assign "risk" of vitamin A deficiency to a group, or design a food-based intervention solely on supposed dietary consumption.

Fig 13–2. Variability in estimated beta-carotene content of the carrot based on assays in standardized laboratories (U.S. Department of Agriculture) with range depicted from multiple, independent estimates. United States and Food and Agricultural Organization (FAO), East Africa, Egypt, Spain, Malaysia, India, Nepal, Guatemala.
Recommended Intakes

Vitamin A intake recommended by the United Nations' Food and Agricultural Organization (FAO) or nationally established recommended dietary allowances (RDAs) (usually specified as μg of retinol equivalents [RE] per day [Table 13-2]) identify levels of routine intake that are safe and will sustain health and adequate nutrient reserves in the vast majority (i.e., mean +2 SD, or ~97%) of presumably healthy individuals in a population. In addition, the FAO has estimated "basal requirements" for vitamin A needed to prevent clinical deficiency and functional impairment in the average member of a population. Basal requirements are likely to be the most relevant, initial goals for dietary interventions seeking to control vitamin A deficiency and its health consequences in a high-risk population. An RDA of vitamin A for preschool children is typically ~350 μg–450 μg RE/day, for pregnant or lactating women it is 600 μg–950 μg RE/day (depending on the reference), corresponding "basal" levels are assumed to be roughly half these levels, or 200 μg RE and 370 μg–450 μg RE respectively. It should be emphasized that an RDA (or

<table>
<thead>
<tr>
<th></th>
<th>FAO</th>
<th>India</th>
<th>Philippines</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILDREN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 yr</td>
<td>180</td>
<td>350</td>
<td>300</td>
<td>325</td>
</tr>
<tr>
<td>1–3 yr</td>
<td>200</td>
<td>400</td>
<td>400</td>
<td>375</td>
</tr>
<tr>
<td>4–6 yr</td>
<td>200</td>
<td>400</td>
<td>400</td>
<td>375</td>
</tr>
<tr>
<td>7–10 yr</td>
<td>250</td>
<td>400</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>WOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 18 yr</td>
<td>270</td>
<td>500</td>
<td>600</td>
<td>450</td>
</tr>
<tr>
<td>Pregnant</td>
<td>370</td>
<td>600</td>
<td>950</td>
<td>475</td>
</tr>
<tr>
<td>Lactating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st 6 mo</td>
<td>450</td>
<td>850</td>
<td>950</td>
<td>775</td>
</tr>
<tr>
<td>2nd 6 mo</td>
<td>450</td>
<td>850</td>
<td>950</td>
<td>725</td>
</tr>
</tbody>
</table>

Cut offs for some age groups vary among references. This table is provided for general comparison. Readers should consult original reference for exact age specifications.

"Basal" requirement is the amount of vitamin A needed (averaged over time) to prevent demonstrable impairment in function. "Safe" level of intake should maintain function and adequate nutrient reserves in nearly all healthy individuals. From FAO 1988.

Indian tables are based on a beta-carotene retinol conversion ratio of 4:1 (versus 6:1 used elsewhere). From Gopalan et al., 1989.

From the Food and Nutrition Research Foundation 1989.

From the U.S. National Research Council 1989.
equivalent) is a policy tool based on the distribution of needs and use of foods across a population, it best serves as a guideline for setting population dietary goals, interpreting the general adequacy of the diet of a population, setting nutrient concentrations for food fortification, and serving as a surrogate for the success of food-based intervention programs. Persons who do not appear to meet their RDA for vitamin A, or a specified fraction thereof (e.g., two-thirds), should not necessarily be construed as being vitamin A-deficient without direct, physiologic evidence of impaired status\(^4\)\(^4\)\(^6\) (Chapters 2–4, 10)

Targeting and Selecting Interventions

Epidemiologic profiles of deficiency (Chapter 12) help guide the targeting and choice of food-based initiatives. Initially, infants and preschool-age children\(^4\)\(^5\)\(^9\)\(^5\)\(^1\) and their pregnant or lactating mothers\(^5\)\(^2\)\(^–\)\(^5\)\(^6\) should be targeted, especially within poorer districts and communities\(^4\)\(^5\)\(^9\)\(^5\)\(^7\)\(^8\) based on the degree to which vitamin A deficiency clusters at each of these levels.\(^2\)\(^6\)\(^9\) Dietary strategies should emphasize extended breast feeding (through the second and third years of life, when possible)\(^4\)\(^5\)\(^6\)\(^1\)\(^4\) and enhancing the young child’s diet with foods that make “age-specific sense.” These should be sufficiently concentrated with preformed or provitamin A to achieve and maintain an adequate vitamin A status, and be accessible to the target population.

Strategies for increasing vitamin A consumption and improving the vitamin A status of preschool-age children should emphasize increased intakes of soft yellow fruits (e.g., mangos and papayas) during the first three years of life, yellow and orange vegetables and tubers and dark green leaves between the ages of one and five, and sources of preformed retinol such as egg, milk, curd, and liver (of animals or fish) from mid-infancy onward (Fig 13–3). This generic “template” has been derived from studies in numerous cultures, its specifics will depend on local circumstances.

The primary goal of “dietary diversification” is to ensure a sufficient supply of plant and animal foods rich in vitamin A,\(^6\)\(^5\) and to promote their adequate consumption. Initiatives that would enhance production and consumption of local food sources of vitamin A are widely regarded as culturally appropriate, economically attractive, and sustainable in the long run.\(^6\)\(^6\) Access to a nutritious, balanced diet is also considered a basic right that underlies human development.\(^6\)\(^7\) These goals have been pursued through nutrition education that seeks to enhance intake of existing vitamin A-rich foods,\(^2\)\(^6\)\(^8\) and encourage gardening and food preservation practices that increase and improve the quality of the vitamin A food supply. Either or both approaches may be indicated, depending on local capacity and needs.
Improving Dietary Intake from Existing Foods

In Indonesia, the Philippines, and Nepal, the availability of home gardens and the frequency with which vitamin A-rich foods were consumed by household members were similar among families with and without xerophthalmic children (XN, XI), but xerophthalmic youngsters ate these foods less frequently than their better-nourished peers (Fig 12–3). The fact that children without xerophthalmia consume vitamin A-rich vegetables, fruits, eggs, and dairy products more frequently than do (the far less numerous) children with xerophthalmia from the same villages attests to the possibility that children can be influenced to eat a more nutritious diet from the local fare. This appears to extend to dark green leaves. While dietary surveys often indicate that young children routinely consume less than 15 g of green leafy vegetables per day, preschool-age children in Bangladesh readily consumed ~40 g (raw weight) of cooked green leaves at a single meal when they were prepared in an attractive manner. This amount theoretically meets the daily vitamin A needs of a young child and, when consumed regularly, has been shown to reverse mild xerophthalmia. Further, mothers were receptive to the notion of feeding their children betacarotene-rich vegetables. Mothers who were counseled and participated in the appropriate preparation of vegetables (while their children underwent treatment at a diarrhea clinic) were twice as likely to be feeding vegetables to their children two months later than were other mothers from the same community. Intensive and expert dietary counseling at such an individual level, however, is impractical.
Assessment and Prevention

for population-oriented programs "Social marketing," a communications process that attempts to create widespread demand for an improved diet, has begun to show promise as a population-based tool for increasing "consumer demand" for carotene-rich vegetables and vitamin A intakes of children (and their mothers)

Improving Dietary Availability and Content

In some instances, vitamin A-rich foods may not be adequately available or affordable to families who are most at risk. These foods can often be locally grown or (in the case of domesticated animals) raised in home, school, or other community gardens (e.g., kebun in Indonesia) for personal consumption or as cash crops as part of microeconomic schemes. For such efforts to effectively raise food availability, the populace requires high-quality and inexpensive seeds or seedlings, water, organic or inorganic fertilizer, protective fencing, pest control, other extension services to enhance preservation, storage conditions, and marketing, and labor time. Combined, these needs represent significant outlays by poor families and communities. Dietary quantity and variety can also be improved by encouraging greater awareness and consumption of indigenous ("wild") vegetables and fruits.

Seasonal scarcity of vegetables and fruits in the diet can be alleviated to some extent by local food preservation. In most tropical, rural areas this is done by drying foods in direct sunlight, often resulting in a 65% or greater loss of provitamin A activity from vegetables and fruits. These losses can be cut by 25%–50% through improved (village-based) solar- and shade-drying methods that avoid direct ultraviolet light exposure. Other local processing methods are being developed that can extend shelf life, food value, and acceptability of leaf and tuberous vegetables.

Even if provitamin A-rich foods are available, they may be prepared improperly, reducing their potential nutritional benefit. Carotenoids in plant food matrices are typically associated with protein complexes (carotenoproteins) and polysaccharides (such as pectin, hemicellulose, lignin) in the plant cell wall that "trap" carotenoids and inhibit their digestion and absorption. For this reason, carotene absorption from uncooked, unprocessed vegetables can be practically nil (e.g., < 2% from raw, ungrated carrots). Cooking, chopping, or pureeing vegetables partially breaks down these structural complexes and reduces particle size, greatly increasing carotene "presentation" to the human digestive system and resulting in improved absorption (to 25%–70%). This can be achieved without important food carotene losses, blanching or boiling, or, better yet, steaming fresh vegetables with minimal amounts of water for several minutes typically results in losses in vitamin A activity of only 10% to 20%.

Carotenoids appear to be fairly resistant to heat. However, excessive cooking of vegetables can markedly reduce provitamin A carotenoid activity through...
oxidation and isomerization (from all-trans to less biologically active cis- configurations)

Prolonged boiling for more than one hour, for example, or boiling followed by frying (a common practice in many traditional settings) doubles provitamin A losses (to 20%—45%) These cooking losses can be partly offset by adding the cooking water or oil used in frying back into the foods to be consumed Of course, losses can also be overcome by consuming more of the vegetable

Modifying traditional dietary behavior to improve nutrient availability, however, will require substantial, innovative, and persistent (targeted) consumer education

It is generally accepted that gardening and better food preservation and processing methods, integrated with educational efforts to change feeding practices, will prove effective in improving vitamin A status of a population Unfortunately, there is scant experimental or programmatic evidence that this indeed happens

Efficacy of Dietary Interventions

There are indications that human beings in contrast to herbivorous animals, may not assimilate much of the fat-soluble A derived from plants

—Olaf Blegvad, 1924

Never let sleeping dogmas lie

—Bertrand Russell

Although changes in knowledge about or behavioral responses to dietary intervention, such as gardening and cooking practices and food consumption, provide a valid basis for evaluation, efficacy (improved vitamin A nutriture) is the "gold standard" It represents the degree to which vitamin A status among known recipients of the intervention changes relative to appropriate controls This information permits dietary change to be evaluated in its own right as an approach to combat vitamin A deficiency

Interventions of all sorts have generally been evaluated by the degree to which they change serum retinol levels Serum retinol, however, tends to be under homeostatic control and is relatively insensitive to variation in vitamin A (and beta-carotene) intake among individuals with adequate vitamin A status

However, serum retinol is a sensitive indicator of changed nutriture in vitamin A-deficient subjects and, therefore, effective for evaluating the impact of dietary interventions This is particularly true if one focuses on the degree to which the prevalence of low serum retinol levels declines (i.e., a shift in the distribution of serum retinol levels to the right, as seen with fortification in Fig 15-1 and supplementation in Fig 11-3)
Circulating beta-carotene is generally assumed to reflect recent beta-carotene intake. However, there is considerable, unexplained inter- and intra-individual variation in the change in serum carotenoids in response to changes in dietary intake, reflecting gaps in our understanding of the kinetics of carotenoid absorption and metabolism. This can make serum beta-carotene a difficult and unpredictable indicator to interpret, especially in the "adequate" ranges of intake, with respect to evaluating the impact of a provitamin-A dietary intervention on vitamin A status.

Vitamin A Status Response to Foods

Evidence that the absorption of provitamin A carotenoids from vegetables and fruits is sufficient to improve vitamin A status is surprisingly weak. This may relate to variation in study designs, differences between species and cultivars of the foods tested (which can influence absorption or bioconversion), food preparation and dietary habits, nutritional and disease states, and, perhaps consistently most important, differences in baseline vitamin A status (which can alter carotenoid absorption and conversion to vitamin A).

Individuals with Marginal-to-Adequate Status

Among individuals of marginal-to-adequate vitamin A status (e.g., mean serum retinol > 25 μg/dl), increased consumption of provitamin A carotenoids from vegetables produces a variable effect on circulating beta-carotene levels and appears to have little or no impact on vitamin A status. In contrast, purified beta-carotene supplements generally increase serum beta-carotene and vitamin A, at least among individuals who are marginally vitamin A-nourished at the outset. In a recent controlled trial by de Pee et al in Indonesia, lactating women with a mean serum retinol of ~0.85 μmol/liter (and Hb < 120 g/liter) in one village were assigned to receive a morning serving of cooked, local, green vegetables (containing ~3.5 mg beta-carotene, or ~585 μg RE) prepared with added fat. In a nearby village, similarly nourished, lactating women were randomized in double-masked fashion to receive a morning snack wafer that was either fortified with beta-carotene (also ~3.5 mg) or not (0.1 mg) (Table 13–3). Supervised feedings were given five days per week in a manner that appeared to induce no other effects on existing meal patterns. After twelve weeks, serum and breast milk retinol levels, as well as serum beta-carotene levels, rose significantly among women given the beta-carotene-fortified wafer, suggesting that the beta-carotene supplement was well-absorbed, converted to vitamin A, and transferred to breast milk. However, there was no apparent response of any indicator of vitamin A status (or, indeed, even of serum beta-carotene) among women consuming cooked vegetables daily, suggesting poor absorption of beta-carotene from the cooked, leafy green and other provitamin A-rich vegetables.
Table 13–3 Vitamin A Status Responses of Lactating, Anemic Women before and after Consuming Test Foods Daily for Twelve Weeks, West Java, Indonesia

<table>
<thead>
<tr>
<th></th>
<th>Beta-Carotene-Fortified Wafer</th>
<th>Control Wafer</th>
<th>Local Vegetables</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERUM RETINOL (µmol/liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>62</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>Baseline, x(SD)</td>
<td>0.84(0.31)</td>
<td>0.81(0.32)</td>
<td>0.89(0.33)</td>
</tr>
<tr>
<td>Change, x</td>
<td>+0.32*</td>
<td>+0.02</td>
<td>+0.06</td>
</tr>
<tr>
<td>(95% CI)*</td>
<td>(0.27–0.41)</td>
<td>(–0.07–0.09)</td>
<td>(–0.02–0.14)</td>
</tr>
<tr>
<td>BREAST MILK RETINOL (µmol/liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>59</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>Baseline, x(SD)</td>
<td>0.88(0.59)</td>
<td>0.84(0.51)</td>
<td>0.98(0.92)</td>
</tr>
<tr>
<td>Change, x</td>
<td>+0.59**</td>
<td>+0.17</td>
<td>–0.04</td>
</tr>
<tr>
<td>(95% CI)*</td>
<td>(0.37–0.83)</td>
<td>(0.02–0.31)</td>
<td>(–0.26–0.22)</td>
</tr>
<tr>
<td>SERUM BETA-CAROTENE (µmol/liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>56</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>Baseline, x(SD)</td>
<td>0.20(0.12)</td>
<td>0.17(0.09)</td>
<td>0.19(0.12)</td>
</tr>
<tr>
<td>Change, x</td>
<td>+0.91**</td>
<td>–0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(95% CI)*</td>
<td>(0.58–0.89)</td>
<td>(–0.04–0.00)</td>
<td>(0.00–0.04)</td>
</tr>
</tbody>
</table>

*p < 0.001 between groups adjusted for age of breastfeeding child and maternal weight changes

**p < 0.01, between groups adjusted for above factors plus breast-milk fat changes

From dePee et al (1994)

ence in response between consumption of a pure carotene supplement and consumption of vegetables was independent of the women’s baseline nutritional and health status

The study by dePee et al in Indonesia is not alone in finding little impact of vegetable consumption on vitamin A nutriture under carefully controlled conditions of evaluation. The response of both circulating beta-carotene and retinol was also muted among Guatemalan school children randomized to receive a daily 50 g serving of carrots for three weeks (cooked with 10 g added oil, providing ~1000 µg RE/day). Other groups received beta-carotene or vitamin A palmitate supplements (also providing 1000 µg RE) or a placebo (Table 13–4). Ascariasis or Trichuriasis infestation were common, however, baseline vitamin A status was generally adequate, with mean serum retinol at 35 µg/dl and only four children with serum retinol levels < 20 µg/dl. Daily, cooked carrot intake had no measurable effect on either plasma beta-carotene or plasma retinol. In contrast, plasma beta-carotene levels rose steeply among children ingesting the purified beta-carotene supplement but, unlike the results in Indonesian women, there was no discernable increase in serum retinol (Fig 13–4), probably because their vitamin A status was adequate from the outset. Retinol levels did not rise
Table 13-4 Impact of Provitamin A Carotenoid Foods in Individuals with Marginal-to-Adequate Vitamin A Status

<table>
<thead>
<tr>
<th>Country (Ref)</th>
<th>Age</th>
<th>Duration (Days)</th>
<th>Treatment Group (n)</th>
<th>Dose (μg RE)</th>
<th>Mean ± SD (μg/dl)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serum Beta-Carotene Baseline</td>
<td>Serum Retinol F/up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serum Beta-Carotene F/up</td>
<td>Serum Retinol Baseline</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala48</td>
<td>7-12 yr</td>
<td>20</td>
<td>Placebo (17)</td>
<td>0</td>
<td>14±12</td>
<td>16±5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carrots (17)</td>
<td>1000</td>
<td>13±10</td>
<td>14±5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beta-carotene (16)</td>
<td>1000</td>
<td>14±9</td>
<td>47±9*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vitamin A (17)</td>
<td>1000</td>
<td>14±10</td>
<td>13±11</td>
</tr>
<tr>
<td>Thailand133</td>
<td>Preschool</td>
<td>14</td>
<td>Control (15)</td>
<td>0</td>
<td>44±16</td>
<td>27±9*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ivy gourd leaves (15)</td>
<td>180</td>
<td>27±9</td>
<td>106±35*</td>
</tr>
<tr>
<td>Thailand133</td>
<td>Preschool</td>
<td>14</td>
<td>Ivy gourd leaves (15)</td>
<td>198</td>
<td>36±12</td>
<td>87±22*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multi-vitamin (15)</td>
<td>450</td>
<td>87±22</td>
<td>57±15*</td>
</tr>
</tbody>
</table>

*p < 0.01, follow-up versus baseline within group

Control = historical control period for same subjects later crossed over to receive ivy gourd leaves

Ivy gourd = same group of children later crossed over to receive multivitamin supplements
even among those ingesting vitamin A palmitate. A similar lack of serum retinol response (in the presence of a significant serum beta-carotene increment) has been repeatedly observed in well-nourished adults.120,122,126,132

Two supervised but noncontrolled feeding studies of adequately vitamin A-nourished Thai orphans produced varied results. After a two-week control period during which beta-carotene and vitamin A status declined, daily provision of \(\sim 35 \) g of cooked ivy gourd (\textit{Coccinia indica}) for two weeks markedly raised serum beta-carotene (from 27 \(\mu \)g/dl to 106 \(\mu \)g/dl) and serum retinol (from 25 \(\mu \)g/dl to 49 \(\mu \)g/dl).133 The reported magnitude of the response (over so brief a period) is virtually unique. The second Thai study produced a similar rise in beta-carotene after two weeks of increased ivy gourd intake (from 36 \(\mu \)g/dl to 87 \(\mu \)g/dl), but no change in serum retinol (35 \(\mu \)g/dl at both baseline and follow-up). This was followed by a two-week multivitamin supplementation period (without ivy gourd) in the same children. Serum beta-carotene fell (presumably from decreased vegetable intake, as seen elsewhere)120 while serum retinol rose.133 Conceivably, the differences in the retinol response to dietary greens in the two Thai studies related to differences in baseline vitamin A nutriture. Whereas children in the first study were of marginal status at the outset (mean serum retinol = 25 \(\mu \)g/dl), those in the second study had a higher, "adequate" baseline serum retinol (35 \(\mu \)g/dl). This may be a level of vitamin A status at which conversion of beta-carotene to retinol is far less efficient.25 The children with adequate serum retinol, however, still responded to the vitamin A (multivitamin) supplement (serum retinol rose to 48 \(\mu \)g/dl), which is in contrast to results reported for other vitamin A-sufficient groups.
Increased intake of carotenoid-rich vegetables is likely to improve vitamin A status of children with marginal-to-deficient vitamin A status (serum retinol < 25 μg/dl), the more deficient the baseline vitamin A status, the more pronounced the effect, regardless of fat intake. This is in accordance with the inverse (protective) association often observed between the frequency of consumption of green vegetables and yellow fruit and the risk of xerophthalmia (moderate-to-severe vitamin A deficiency) (Chapter 12). However, as far as the available literature is concerned, the extent to which a sustained increase in vegetable (and presumably fruit) intake can improve vitamin A status appears to have its limits. In India, a 50% increase in serum retinol was observed (from ~14 μg/dl to 21 μg/dl) after vitamin A-deficient children were fed drumstick (Moringa oleifera) or fenugreek (Trigonella foenum) leaves daily for two and a half months (theoretically providing a half to a full RDA, depending on the assumed content from food composition tables and conversion ratio [Table 13-2]). Fresh and dried (not shown) vegetables had the same beneficial effect over controls as a purified beta-carotene supplement, even without added fat to the meals. But although the benefit was sizable, neither pure beta-carotene nor the green leaf regimen raised vitamin A status to a truly adequate level (Table 13-5). A similar effect was observed among Indian children randomized to a combination of raw carrot, coriander-mint chutney, and papaya five days per week. After one month, serum retinol in those receiving the added vegetables and fruit was 25 μg/dl, versus 15 μg/dl among the nonsupplemented controls (p < 0.05), only 5% of intervened children had serum retinol below 20 μg/dl at follow-up, compared with 91% of the controls (p ≤ 0.005) (Table 13-4).

In Indonesia, vitamin A-deficient, preschool-age children with ascariasis (mean serum retinol < 20 μg/dl) were randomized to a placebo or midday meal of either vegetables (red sweet potato and green leaves, providing ~845 μg RE/day) or added dietary fat only (15 g–25 g), with or without being dewormed with levamisole (Fig 13–5). Beta-carotene-rich vegetables (B) given daily for three weeks raised serum retinol 5 μg/dl more than did the placebo (p < 0.01), adding deworming (B + D) or dietary fat (B + F) to the vegetable meal raised the serum retinol 7 μg/dl and 9 μg/dl, respectively, more than in the controls (both p < 0.001). The biggest change occurred among children with the lowest baseline retinol concentrations, even so, the dietary (carotenoid) intervention was unable to raise the average serum retinol level above ~25 μg/dl.

Two studies have reached contrasting conclusions regarding the clear but apparently limited improvement in vitamin A nutriture that results from increased carotenoid consumption among vitamin A-deficient children. One study reported a rise of serum retinol into the normal range while another reported no impact at all (Table 13-5). In India, Lala and Reddy reported that ~40 g of cooked amaranth leaves (amaranthus tricolor) fed with 2 g–3 g oil daily for two
Table 13-5 Impact of Provitamin A Carotenoid Foods in Individuals with Marginal-to-Deficient Vitamin A Status

<table>
<thead>
<tr>
<th>Country (Ref)</th>
<th>Age</th>
<th>Duration (Days)</th>
<th>Treatment Group (n)</th>
<th>Dose (µg RE)</th>
<th>Mean ± SD (µg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serum Beta-Carotene</td>
<td>Serum Retinol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F/up Baseline</td>
<td>F/up Baseline</td>
<td>F/up</td>
</tr>
<tr>
<td>India²</td>
<td>4-5 yr</td>
<td>75</td>
<td>Control (15)</td>
<td>0</td>
<td>12±11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beta-carotene (15)</td>
<td>200</td>
<td>14±9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fenugreek leaves (15)</td>
<td>200</td>
<td>14±12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drumstick leaves (15)</td>
<td>200</td>
<td>12±11</td>
</tr>
<tr>
<td>India¹</td>
<td>7-12 yr</td>
<td>28</td>
<td>Control (54)</td>
<td>0</td>
<td>15±19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carotene foods (60)</td>
<td>545</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>25±22*</td>
</tr>
<tr>
<td>India²⁻²⁻²</td>
<td>2-6 yr</td>
<td>15</td>
<td>Control (6)</td>
<td>0</td>
<td>25±19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amaranth leaves (29)</td>
<td>200</td>
<td>22±10</td>
</tr>
<tr>
<td>Indonesia⁶</td>
<td>3-5 yr</td>
<td>74</td>
<td>Vegetables (32)</td>
<td>300</td>
<td>16±10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salt+A (43)</td>
<td>306</td>
<td>19±18</td>
</tr>
</tbody>
</table>

p < 0.05 experimental versus controls at follow up

*p < 0.10 experimental versus control at follow up

*1*p < 0.05 follow up versus baseline within group

Fig. 13-5. Increment in serum retinol among Indonesian children with *Ascaris* infestation, 3 to 7 years of age, following intake for three weeks of a single, midday meal containing "placebo" (P), beta-carotene-rich vegetables and tubers (B, ~750 µg RE), with deworming with levamisole (B+D) or with added fat (B+F, ~15 g) (From F Jalal 15)

weeks to undernourished children (20% with X1A/X1B) raised mean serum retinol from 22 µg/dl to 32 µg/dl, while unsupplemented controls remained in their marginal state (Table 13-4) 109 Balance studies in four children suggested that beta-carotene absorption from amaranth had been good (~70%), perhaps explaining the exemplary serum retinol response. However, absorption was worse in two children with acute lower respiratory infections (though data were not given), echoing observations six decades ago in the United States that "carotene" absorption can be halved (to ~35%) in infants with acute respiratory infections 129.

The other study, an early Indonesian trial among preschoolers with marginal-to-deficient vitamin A status (mean serum retinol ≤ 20 µg/dl), found no change in their serum retinol after two and a half months of eating cooked vegetables (amaranth, kangkong, cassava leaves, yardlong beans, or yellow sweet potato) twice a day (providing ~300 µg RE/day) Carotenoid absorption from this mix of vegetables was only 34% (perhaps insufficient for a retinol response), in line with previous estimates from mixed diets 23,104,136. In contrast, 97% of preformed vitamin A (from fortified salt) was absorbed by children in a second intervention group. Their serum retinol rose, although only marginally, from 19 µg/dl to 23 µg/dl 106. A similar rise in serum beta-carotene levels in both groups suggested other (noninterventional) dietary factors may have been at work.

From a review of these studies, one is struck by the apparent inadequacy of dietary carotene to fully supply vitamin A demands. There are a host of possible explanations: inadequate fat, insufficient amount or duration (total dose) of vegetable intake, poor digestibility and bioavailability of vegetable carotene.
(regardless of amount consumed), intestinal helminths that may hinder absorption, complicating illnesses, or other important but as yet unrecognized factors.

Experience with Atypical Foods

Unusually rich sources of carotene have been tested for their ability to improve vitamin A status. Crude or red palm oil (RPO) \((Elaeis guineensis)\) theoretically serves a dual purpose, as an oil thought to be valuable for maximizing carotene absorption, and as an excellent source of provitamin A carotenoid\(^{127,128}\) that retains \(70\% - 90\%\) potency after normal cooking.\(^{129}\) Red palm oil appears comparable to sources of preformed vitamin A in improving vitamin A status and preventing clinical deficiency. After two months of consuming a sweet semolina prepared with RPO (providing one RDA daily), school-age Indian children showed striking improvement in vitamin A status (serum retinol and modified relative dose response), similar to those taking a daily vitamin A supplement (also providing one RDA)\(^{130}\) (Table 13-6). These findings agree with earlier studies in which RPO cured nightblindness\(^{131}\) and increased serum retinol,\(^{132}\) and survey data from West Africa linking routine RPO intake with elevated serum carotene and retinol levels and with reduced risk of xerophthalmia\(^ {133-135}\). Unfortunately, while RPO is available in many developing countries,\(^ {136}\) it is disliked in other countries, the “red” carotene is purposely destroyed during commercial processing, this rids the product of both its off-flavor and its vitamin A value. Currently, efforts are under way to resolve the undesirable organoleptic problems with RPO without eliminating its provitamin A content.\(^ {137}\)

An indigenous food of exceptional provitamin A content is the “sweet paste” of buriti \((Mauritia vinsfera)\) fruit from northeastern Brazil and the Amazon region. Its therapeutic effect was tested (unfortunately without controls) in twelve

<table>
<thead>
<tr>
<th>Table 13-6 Serum Retinol and DR R Ratio of Indian Children before and 60 Days after Daily Supplementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Palm Oil ((N = 12))</td>
</tr>
<tr>
<td>Serum retinol ((\mu)mol/liter)</td>
</tr>
<tr>
<td>Before</td>
</tr>
<tr>
<td>After</td>
</tr>
<tr>
<td>MRDR DR R ratio(^b)</td>
</tr>
<tr>
<td>Before</td>
</tr>
<tr>
<td>After</td>
</tr>
</tbody>
</table>

\(^a\)Mean (SEM)

\(^b\)Modified relative dose-response based on the ratio of serum dihydroretinol (DR) retinol (R) ratio measured \(\sim 5\) hours after a test dose of DR (cut off > 0.06 taken to reflect low liver stores of vitamin A)\(^ {117}\)

From Rukmini 1994\(^ {118}\)
children with mild xerophthalmia (eleven with X1B, one with XN) All were given 12 g of buriti sweet daily, containing ~800 μg beta-carotene (~134 μg RE), for twenty days Xerophthalmia disappeared entirely in six and improved clinically in four others, the relative dose response (RDR) test became normal in nine of the ten children who were initially RDR+. When buriti sweet was fed to another thirty-two school-age children, the RDR test normalized in all six children who were initially RDR+. These few studies should encourage further investigations into the acceptability, efficacy and practicality of utilizing indigenous food sources of vitamin A to help control vitamin A deficiency.

Influence of Dietary Fat

We believe that the high incidence of vitamin A deficiency in Ruanda-Urundi is primarily linked with the very low intake of foods of animal origin in that region.

—O A Roels et al 1958

Carotenoids and vitamin A are fat-soluble. Since dietary fat stimulates the release of pancreatic enzymes and bile salts that are important in forming mixed micelles required for hydrolysis and absorption of carotenoids from the gut. Therefore, a small amount of dietary fat is assumed necessary for optimal carotene absorption. A number of experts have, in fact, asserted that a considerable proportion of vitamin A deficiency is secondary to inadequate consumption of dietary fat; they have stressed the importance of adding sufficient fat to the diet.

The impetus for at least some of these urgings came from the classic observation by Roels et al of seventeen school-age children with X1B in whom absorption of beta-carotene from raw, grated carrots apparently rose more than fivefold (from <5% to ~25%) when consumed with 19 g of olive oil. However, even these authors believed that fat intake was less important than preformed vitamin A in maintaining adequate vitamin A status. Seventy-five percent of the dietary carotenoid consumed by their subjects (with a generous amount of oil) was still excreted.

In an equally revealing, controlled trial among preschool-age Indian children fed cooked spinach daily for a month, the addition of either 5 g or 10 g of fat (as groundnut oil) to meals increased serum retinol by 5 μg/dl to 7 μg/dl over those not receiving added fat (leading to an often-quoted belief that at least 5 g of dietary fat is necessary to facilitate provitamin A absorption). The value of added oil, however, was only observed among children with better vitamin A nutriture to begin with (baseline serum retinol > 20 μg/dl, mean ~26 μg/dl). Children more deficient at baseline (~20 μg/dl, mean serum retinol ~14 μg/dl) did not benefit from the added oil. In those who ate their spinach meals with no additional fat, serum retinol increased by 10 μg/dl—virtually the same...
Table 13-7 Efficacy of Adding Dietary Fat to a Daily Spinach (and Rice) Meal by Initial Vitamin A Status

<table>
<thead>
<tr>
<th>Treatment/Initial Serum Retinol (μg/dl)</th>
<th>Number</th>
<th>Serum Retinol (μg/dl)</th>
<th>Baseline</th>
<th>4 Weeks Later</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No added fat</td>
<td>26</td>
<td></td>
<td>20 ± 8</td>
<td>24 ± 6</td>
<td>+4</td>
</tr>
<tr>
<td>≤ 20</td>
<td>12</td>
<td></td>
<td>13 ± 4</td>
<td>23 ± 5</td>
<td>+10</td>
</tr>
<tr>
<td>> 20</td>
<td>14</td>
<td></td>
<td>27 ± 5</td>
<td>26 ± 6</td>
<td>-1</td>
</tr>
<tr>
<td>+5 g fat</td>
<td>22</td>
<td></td>
<td>20 ± 9</td>
<td>28 ± 9</td>
<td>+8</td>
</tr>
<tr>
<td>≤ 20</td>
<td>14</td>
<td></td>
<td>16 ± 4</td>
<td>25 ± 8</td>
<td>+9</td>
</tr>
<tr>
<td>> 20</td>
<td>8</td>
<td></td>
<td>27 ± 4</td>
<td>34 ± 7</td>
<td>+7</td>
</tr>
<tr>
<td>+10 g fat</td>
<td>22</td>
<td></td>
<td>21 ± 7</td>
<td>29 ± 6</td>
<td>+8</td>
</tr>
<tr>
<td>≤ 20</td>
<td>8</td>
<td></td>
<td>12 ± 4</td>
<td>26 ± 5</td>
<td>+13</td>
</tr>
<tr>
<td>> 20</td>
<td>14</td>
<td></td>
<td>25 ± 4</td>
<td>31 ± 5</td>
<td>+5</td>
</tr>
</tbody>
</table>

*Mean ± SD

From Jayarajan and Reddy

level of increase experienced by deficient children who received added fat (Table 13-7)

Taken together, the various studies suggest that dietary fat probably facilitates carotenoid absorption, but lack of fat is unlikely to play a major role in producing moderate-to-severe vitamin A deficiency.

Other Influencing Factors

Dietary carotenoid absorption is influenced by other factors prevalent in vitamin A-deficient populations. Chronic protein restriction may be expected to reduce absorption, as seen in animals. This may also occur in moderately-to-severely malnourished children, although milder protein-energy malnutrition (determined anthropometrically) seems to exert less, if any, effect on beta-carotene absorption in children. Infectious diseases and intestinal infestation can impair both preformed vitamin A and carotenoid absorption and utilization. Exogenous factors such as high dietary fiber may limit carotenoid bioavailability.

Vitamin A status, itself, may be the strongest determinant of carotene bioavailability. There are also a host of unknown factors that influence absorption and utilization of dietary carotenoids, evidenced by variations in absorption within and between otherwise healthy individuals.

Effectiveness of Dietary Interventions

To be effective, dietary interventions (such as home gardening, domestic animal production, nutrition education, and social marketing) must first produce an
increase in the intake of vitamin A-rich foods by those who are vitamin A-deficient. Second, the increased intake must improve their vitamin A status. As already noted, the second condition cannot be taken for granted. Uncertainties about the value of carotenoid-based dietary interventions under controlled conditions are magnified when considering large, “scaled-up” programs given the inefficiencies that usually accompany such expansions. Although guidelines exist for evaluating the educational impact of nutrition communications programs, there have been few controlled evaluations of the actual impact such programs have on the vitamin A status of target populations. Experiences from some well-executed, small-scale programs illustrate the challenges facing larger-scale dietary interventions.

In northeast Thailand, a multimedia, social marketing intervention was carefully implemented, focusing on raising awareness and increasing the availability and consumption of dark green leaves (especially the ivy gourd) by pregnant and lactating women and preschool-age children. This followed previous studies that suggested a beneficial impact of adding ivy gourd and other greens to children’s diets (Table 13-4). Home gardening, proper food preparation, and mother-and-child feeding practices were promoted through a comprehensive, community-based strategy. Outcomes were critically evaluated two years later by comparing twelve villages in the intervention district with sixteen villages in a nearby control district. Knowledge, attitudes, and reported behavior of women with respect to vitamin A-rich foods significantly improved in the intervention areas, moreover, daily vitamin A intake of pregnant and lactating women in program areas improved over that of controls (—~220 μg RE, p < 0.04). Mothers of preschoolers reportedly grew and cooked ivy gourd at home and reported use of vegetable oil in cooking much more often than did controls (Table 13-8). Daily intake of vitamin A by preschool-age children reportedly improved (+138 μg RE) compared with controls (+65 μg RE), presumably from increased consumption of ivy gourd and other vegetables. The impact on vitamin A status, however, was disappointing. Serum retinol levels, which were comparable at baseline, decreased significantly among preschoolers in the intervention group, while reportedly increasing among their controls (Table 13-8).

This important investigation highlights the complexity of factors (some known, many not) that affect real or measurable surrogates of vitamin A status. As previously noted (Chapter 11), serum retinol is an uncertain surrogate for vitamin A status. Yet the difference in the serum retinol response in the two groups of villagers is difficult to explain on this basis. If it represents a real (and not chance) phenomenon, and assuming that no major, unrecognized changes in other aspects of health and diet differentially affected the two groups of villages, it raises the question of whether a primary (and highly successful) focus on green leaf consumption may have failed to have its intended effect. This could have happened either by leading mothers to displace sources of preformed vitamin A from their children’s diets in favor of less bioavailable sources of
Table 13-8 Effects of a Two-Year Social Marketing Ivy Gourd Campaign in Northeast Thailand

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTHERS OF PRESCHOOLERS (FOLLOW-UP ONLY)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>109</td>
<td>108</td>
</tr>
<tr>
<td>Growing ivy gourd at home, %</td>
<td>78.2</td>
<td>21.8</td>
</tr>
<tr>
<td>Cooking ivy gourd > 1x/week, %</td>
<td>54.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Cooking with oil, %</td>
<td>24.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

PRESCHOOLER VITAMIN A INTAKE (µg RE)

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>112</td>
<td>113</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>182(245)</td>
<td>157(198)</td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>105</td>
<td>104</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>322(784)</td>
<td>222(202)</td>
</tr>
</tbody>
</table>

PRESCHOOLER VITAMIN A STATUS (µg/dl)

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>301(10.0)</td>
<td>318(10.8)</td>
</tr>
<tr>
<td>% < 20 µg/dl</td>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>274(11.1)</td>
<td>326(9.0)</td>
</tr>
<tr>
<td>% < 20 µg/dl</td>
<td>20.0</td>
<td>4.3</td>
</tr>
</tbody>
</table>

*Intervention versus control, p < 0.001 by Z-test

*Intervention versus control, p ≤ 0.01 by Z-test

From S. Smitsiri, 1994.18-164

It is widely held that a shift in dietary behavior that is perceived as beneficial is a sufficient basis for inferring improved nutritional status, but, as the above confirms, this may not always be the case. In the Philippines, a weak negative correlation (r = -0.10, p = 0.12) was observed between the frequency of dark-green-leafy-vegetable (DGLV) intake and serum retinol levels in preschool-age children, suggesting a similar, inverse effect. These results illustrate the importance of evaluating the benefits of dietary interventions, at least in part, on their actual impact on vitamin A nutriture, and not solely on changes in knowledge, attitudes, or even feeding practices.

Projects have begun to evaluate the effect of gardening on vitamin A status, in addition to changes in knowledge, attitudes, practices (KAP) and other measures of well-being. Unfortunately, none have been adequately con-
Assessment and Prevention

trolled A three-year gardening and nutrition education project in twenty-one subdistricts (thanas) in Rangpur, Bangladesh, emphasized raising people's awareness of nightblindness and increasing home production and consumption of DGLV by mothers and children. The program may have had a modest impact on the prevalence of XN, which decreased from ~6% to ~5% in children below nine years of age ($p < 0.05$).

In India, a home gardening project using volunteers was carried out in 2350 households in two drought-prone districts. Each year households received vegetable seeds and seedlings from local nurseries. Nutrition messages were reinforced through the media (posters, drama, demonstrations, etc.). After three years, the proportion of families growing carotene-rich vegetables rose from 5% at baseline to an astounding 49%, four-fifths of whom consumed some of their produce each season. Although DGLV intake by preschool-age children remained unchanged (7 g/d to 11 g/day), their intake of papaya and mango rose by 28 g, from 11 g/d to 39 g/day. The prevalence of X1B among children whose families had participated for the entire length of the project was half (6%) that of children whose families had been gardening for only one year (12%).

While findings from both of these project evaluations are consistent with a beneficial impact on vitamin A status, the lack of control village data makes it impossible to distinguish program effects from secular trends and other potentially confounding influences.

Gardening intervention was included in one of three treatment arms (public health intervention, vitamin A supplementation, MSG + A fortification, Chapter 15) in a field trial in the Philippines. Families in four barrios were provided with seeds and seedlings of local, beta-carotene-rich vegetables, along with extension services. Although reported dietary vitamin A intake increased significantly, rates of xerophthalmia (XN, X1B, X2/X3) among children declined only marginally (from 49% to 34%, NS), and far less than in the barrios where children received vitamin A capsules (80% reduction) or vitamin A-fortified MSG (76% reduction). Serum retinol levels supported the clinical observations. In light of the findings from the efficacy studies, the unclear implications of this intervention are not surprising.

Home gardening programs are anticipated to confer benefits beyond making vitamin A-rich foods available. One such benefit is economic. Since homestead gardens are normally tended by women, gardening might selectively enhance purchasing power of mothers and, thus, their nutritional (including vitamin A) status and that of their young children. However, extensive reviews of the literature show little controlled evidence that this actually occurs.

On the contrary, in one eleven-year gardening project in a Senegalese village, women (n = 64) operating home gardens saw their personal incomes rise, but there were no significant increases in vitamin A (or in any other nutrient or energy) intake by family members, including young children. This negative nutritional
effect was attributed to the selling of produce and the use of profits for non-food purposes.

Summary

The overall value of a balanced diet that contains fruits and vegetables notwithstanding, it is clear that important and unresolved questions exist about the extent to which programs specifically targeted at increasing the intake of carotene-rich foods, particularly dark green leaves, will improve vitamin A status. Vegetables (and presumably fruits) taken in adequate amounts appear efficacious in protecting children from severe vitamin A deficiency (low plasma retinol and xerophthalmia), this was evident from the Indian children who responded to beta-carotene diets alone. The importance of carotene-rich foods is supported by the therapeutic value of cooked green leaves in the treatment of xerophthalmia and the repeated observation that low vegetable and fruit intakes are associated with increased risk of xerophthalmia (Table 12-3, Fig 13-3). Therefore, it seems reasonable to conclude that dietary sources of provitamin A carotenoids, prepared appropriately, can be made acceptable to children and can improve their vitamin A status, particularly among individuals who are moderately to severely vitamin A-deficient (Table 13-5). Fat, it seems, is not a limiting factor under these circumstances.

However, vegetables and fruits may be less effective in raising vitamin A status to optimal levels once subjects are no longer moderately to severely deficient (e.g., xerophthalmic or with serum retinol < 20 μg/dl). A modest increase in dietary fat may help improve the value of dietary carotene among mildly deficient individuals (serum retinol 20 μg/dl–25 μg/dl). Among those of better vitamin A status (e.g., serum retinol > 25 μg/dl) increased consumption of provitamin A vegetables and fruits may have little, if any, impact.

Given available data, there is ample reason to suspect that a minimum amount of preformed vitamin A, at least occasionally, may be essential to achieving and maintaining satisfactory vitamin A nutriture.

References

4 Sommer, A. *Nutritional Blindness Xerophthalmia and Keratomalacia* New York, NY Oxford University Press 1982
9 Simpson KL. Relative value of carotenoids as precursors of vitamin A. Proc Nutr Soc 1983,42 7–17
10 Rao BSN. Use of B-carotene rich foods for combating vitamin A deficiency. NFI Bull (India) 1991,12 1
13 Kühnlein HV. Food sources of vitamin A and provitamin A. Food Nutr Bull 1992,14 3–5
20 Olson JA. Recommended dietary intakes (RDI) of vitamin A in humans. Am J Clin Nutr 1987,45 704–716

29 West CE, Poortvliet EJ. The Carotenoid Content of Foods With Special Reference to Developing Countries. Vitamin A Field Support Project (VITAL) and International Science and Technology Institute, eds. Arlington, VA: Vitamin A Field Support Project (VITAL) 1993

33 Food composition tables for use in Latin America. Guatemala: The Institute of Nutrition of Central America and Panama, and National Institute of Health 1961

34 Food composition tables for use in Latin America. Guatemala: The Institute of Nutrition of Central America and Panama, and National Institute of Health 1961

35 Booth SL, Johns T, Kuhnlein HV. Natural food sources of vitamin A and provitamin A. Food Nutr Bull 1992, 14 6

41 Rahman MM, Wahed MA, Mahalanabis D, Sack RB. Sun dried green leafy vegeta-

Butao RP, A study to determine the carotene content of local used vegetables, both wild and domesticated, and the effect of traditional sundrying. Lilongwe, Malawi: Bunda College of Agriculture, University of Malawi, 1981.

114 Mitra M The role of nutrition education in the control of vitamin A deficiency and nutritional blindness in Bangladesh In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Prevention & Control Bangladesh Helen Keller International 1989 161–170

115 Brownrigg L Home Gardening in International Development What the Literature Shows Washington DC League for International Food Education 1985

116 Soleri D, Cleveland DA, Wood AH Vitamin A nutrition and gardens bibliography Arizona University of Arizona, VITAL 1991

117 Blegvad O Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924,7 89–117

118 Olson JA Serum levels of vitamin A and carotenoids as reflectors of nutritional status J NCI 1984,73 1439–1444

121 Costantino JP, Kuller LH, Begg L, Redmond CK, Bates MW Serum level changes after administration of a pharmacologic dose of B-carotene Am J Clin Nutr 1988,48 1277–1283

122 Willett WC Stampfer MJ, Underwood BA, Taylor JO, Hennekens CH Vitamin A, E, and carotene effects of supplementation on their plasma levels Am J Clin Nutr 1988,38 559–566

131 dePee S, West CE, Muhilal, Karyadi D, Hautvast JGAJ Increased consumption of dark green leafy vegetables does not improve vitamin A status of anaemic breastfeeding women in Indonesia Lancet 1995 (in press)
Dietary Intervention

132 Urbach C, Hickman K, Harris PL. Effect of individual vitamins A, C, E, and carotene administered at high levels of their concentration in the blood. Exp Med Surg 1952, 10:7–20

140 Rukmini C. Red palm oil to combat vitamin A deficiency in developing countries. Food Nutr Bull 1994, 15:126–129

146 Rao BSN. Palm oil as an edible oil in India and its role in meeting the nutritional needs of its population. Nutr Res 1992, 12:53–521

154 James WH, Elghindi IM Utilization of carotene I As affected by certain proteins in the diet of growing albino rats J Nutr 1953,51 97–108
155 Kramer M, Tarzan R Studies on carotene metabolism I The effect of different dietary proteins on carotene metabolism Int Z Vitaminforsch 1958 28 289
157 Deshmukh DS, Ganguly J Effect of dietary protein contents on the intestinal conversion of B-carotene to vitamin A in rats Ind J Biochem 1964,1 204–207
159 Mahalanabis D, Simpson TW, Chakaraborty ML, Ganguli C, Bhattacharjee AK, Mukherjee KL Malabsorption of water miscible vitamin A in children with giardiasis and ascariasis J Nutr 1979,32 313–318
164 Smutsan S Advocating a multidimensional evaluation approach for comprehensive nutrition communication programs Attig GA, Dhanamitta S, eds Thailand Institute of Nutrition, Mahidol University 1994
165 Talukder A, Bloem MW Homegarding activities in Bangladesh Dhaka, Bangladesh Helen Keller International 1992
166 Islam N Success of communication programme in reducing vitamin-A deficiency through changing dietary habit Washington DC International Vitamin A Consultative Group (IVACG) 1993
169 Characterization of vitamin A deficiency and xerophthalmia and the design of effective intervention programs Nutritional Blindness Prevention Project, Final Report New York, NY Helen Keller International 1980

Supplementation

Giving children a large dose of vitamin A at periodic intervals offers a direct, versatile, and relatively rapid means of improving vitamin A status and preventing associated blindness, morbidity, and mortality. Children twelve months of age and older are provided an oral dose of vitamin A (200,000 IU, 209 μmol or 60,000 μg retinol equivalents [RE]) contained in a gelatinous capsule or, as in India, an oily solution (Fig. 14-1) every three to six months. A half dose (100,000 IU) is normally administered to infants six to eleven months of age, one-quarter of a dose (or less) may be given to infants under six months of age, particularly if they are not breast-feeding. Women may also be dosed with 200,000 IU within the first two months post-partum or six weeks post-partum if not breast-feeding to prevent vitamin A deficiency (Table 14-1).

The nutritional aim of large-dose, periodic supplementation is to improve vitamin A status by increasing liver stores and tissue concentrations of retinol, thereby reducing the risk and severity of vitamin A deficiency and its ocular and other consequences for several months, while minimizing the risk of acute hypervitaminosis A. Supplementation can be done through a network of health and other sectoral services (discussed later in this chapter).

Prophylactic vitamin A dosing does not address the underlying cause(s) of vitamin A deficiency. Its use should be accompanied, whenever possible, by dietary counseling. Supplementation is intended as a means of preventing vitamin A deficiency in high-risk individuals and populations until adequate and sustainable food-based programs become effective (through increased intake of foods naturally rich or fortified with vitamin A). In practice, it has generally proven difficult to withdraw periodic vitamin A supplementation due to delays in implementing effective dietary and other food-based strategies.
Fig. 14-1. Standard high-potency vitamin A supplements typically contain 200,000 IU.
Table 14–1 Universal Vitamin A Distribution Schedule for Preschool Children and Lactating Mothers

<table>
<thead>
<tr>
<th>Group</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children 1–6 yr</td>
<td>200,000 IU of vitamin A orally every 3–6 mo</td>
</tr>
<tr>
<td>Infants 6–11 mo</td>
<td>100,000 IU of vitamin A orally every 3–6 mo Immunization against measles provides a good opportunity to give one of these doses (see note)</td>
</tr>
<tr>
<td>Lactating mothers</td>
<td>200,000 IU of vitamin A orally once at delivery or during the first 8 wk post-partum if breast-feeding or first 6 wk if not breast-feeding to protect the mother and raise breast milk vitamin A levels to help protect the breast-fed infant</td>
</tr>
</tbody>
</table>

NOTE When infants less than six months old are not being breast-fed, supplementation with 50,000 IU of vitamin A as single dose or as divided doses of 25,000 IU, should be considered before they reach six months.

Absorption and Retention

Apparently healthy preschool-age children absorb approximately 75% of a large (200,000 IU) oral dose of vitamin A in oil and retain 50% [11–13]. Although similar data are lacking in clinically ill or wasted children, utilization of a large dose is probably also lower in these children, since absorption of a small dose (3000 IU) decreases from nearly 100% in healthy children [11,14] to 75% during diarrhea or respiratory infection [14,15] and retention decreases from roughly 80% to 60% respectively [11,14,15]. Peak (six-hour) serum retinol levels in children with diarrhea are 55%–85% that of non-ill controls following oral ingestion of doses ranging from 40,000 IU to 150,000 IU of vitamin A [16,17]. Under conditions of malnutrition and infection prevailing in many developing countries, 30%–50% of a large oral dose of vitamin A can be expected to be retained [18]. Despite reduced retention, high-potency vitamin A in oil is sufficiently well absorbed, even during severe diarrhea, to markedly raise serum retinol (RBP and holo-RBP) levels and achieve a therapeutic response in xerophthalmic children (Chapter 10) [19,20].

Prophylactic Efficacy

Preschool Children and Infants

An early field trial in Indonesia individually randomized nearly 2500 preschool-age children to receive 200,000 IU vitamin A or placebo over two consecutive, six-month periods. Vitamin A reduced the incidence of mild eye signs (mostly X1B) during the two follow-up intervals by 87% and 91% (RR = 0.13 and 0.09 respectively) (Table 14–2). [21] In the village of Ichag in West Bengal, nightblindness was virtually eliminated and the incidence of X1B among children who had never
Table 14–2 Incidence of Mild Xerophthalmia in Indonesian Children 12–60 Months of Age at Outset of a Vitamin A Supplementation Trial

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Vitamin A (200,000 IU)</th>
<th>Control (Placebo)</th>
<th>RR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Cases (%)</td>
<td>Number</td>
<td>Cases (%)</td>
</tr>
<tr>
<td>1st 6 mo</td>
<td>X1A/X1B</td>
<td>1286c</td>
<td>6</td>
<td>0.47</td>
</tr>
<tr>
<td>2nd 6 mo</td>
<td>X1B</td>
<td>1197c</td>
<td>3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

RR = relative risk, incidence in vitamin A/incidence in control groups

95% CI = 95% confidence interval

Number of children free of xerophthalmia at the outset of each time period. 200 children lost to follow-up in second interval, similarly distributed by treatment group.

From Tarwotjo et al., 1976.

had it before was reduced by 91% (RR = 0.09) when preschool-age children were supplemented with 200,000 IU vitamin A every four months for a year, although preexisting Bitot’s spots tended to persist or recur. Randomized trials have not measured the impact of high-potency vitamin A in controlling corneal xerophthalmia (X2/X3). However, in India, receipt of 200,000 IU every six months appeared to reduce the risk of corneal disease by 92% (Odds Ratio [OR] = 0.08, 95% confidence interval [CI] 0.02–0.35) based on the findings of a case-control study conducted among urban slums of Hyderabad. This estimate assumed full and regular coverage with vitamin A in the community (i.e., an estimate of efficacy).

Thus, high-potency vitamin A supplementation can be expected to reduce the incidence of both noncorneal and corneal xerophthalmia by 90% in young children. Failure to prevent the remaining 10% of cases may reflect either an inability of 200,000 IU to protect individuals who are at particularly high risk (severe deficiency initially, virtually absent dietary sources, repeated infections) for the full four to six months or, alternatively, may have been due to inadequate administration, misrecording, partial delivery of the intended dose, or other reasons. A loss of protection from a large dose was evident in the rising proportion of initially xerophthalmic (and, less so, non-xerophthalmic) children in Indonesia (Fig. 14–2) who relapsed to a deficient vitamin A status (serum retinol < 0.70 µmol/liter) after receiving one to two doses of vitamin A (within a week) totaling 200,000 IU–400,000 IU. Over 75% of initially xerophthalmic children (n = 64) were hyporetinemic at the outset. Whereas serum retinol levels of these children were normal two months after dosing, nearly 40% had become deficient a year later. Early recurrence of vitamin A deficiency is likely to reflect, in part, particularly poor dietary intake of vitamin A combined with infectious diseases that lower vitamin A reserves.

Although ingestion of 200,000 IU causes side effects in a small proportion of children (discussed later in this chapter), reducing the dose shortens the interval of protection for high-risk children. In Indonesia, children were randomized...
Fig. 14-2 Percent of children 3–5 years of age (with and without xerophthalmia at baseline) with serum retinol < 0.70 μmol/liter (< 20 μg/dl) at baseline and two, four, six and twelve months after being dosed with 60,000 μg RE–120,000 μg RE (200,000 IU–400,000 IU). Test for linear trend, p < 0.0001 for initially xerophthalmic and p < 0.03 for non-xerophthalmic children after baseline (From JH Humphrey, et al.24)

to a single 100,000 IU (105 μmol) or 200,000 IU (210 μmol) dosage of vitamin A and followed (Table 14-3). The larger dose was superior to 100,000 IU of vitamin A in maintaining serum retinol above 20 μg/dl for six months in children who were initially most severely vitamin A-deficient (xerophthalmic and with a positive relative dose-response [RDR+]). A smaller but significant increment in vitamin A status was evident with the larger dose in less severely deficient children (xerophthalmia or RDR+), whereas in normal children (no xerophthalmia, normal RDR) both dosages were equivalent (Table 14-3).25

These findings indicate that the recommended dose of 200,000 IU every four–six months (Table 14-1)17 18 27 28 is clinically effective and probably superior to 100,000 IU,29 even if serum levels decline with potential nonocular consequences.

Mothers and Breast-Fed Infants

Vitamin A status of mothers, as well as their breast-fed infants, improves when women are supplemented with a large dose of vitamin A during the first two months post-partum. In Bangladesh, women given 200,000 IU vitamin A within twenty-four hours after delivery experienced an elevation in serum retinol above control levels for at least one month (~55 μg/dl versus ~38 μg/dl, p < 0.05). Serum retinol remained ~12 μg/dl higher than among controls (p < 0.02) at three months post-partum for supplemented, nutritionally wasted mothers (body mass index [BMI] < 18), but no further effect was observed in better-nourished
Table 14-3 Effect of Different Dosages of Oral Vitamin A on Serum Retinol among Indonesian Preschoolers by Baseline Vitamin A Status

<table>
<thead>
<tr>
<th>Baseline Status/Dosage</th>
<th>Serum Retinol (μmol/liter)</th>
<th>3 Months</th>
<th>6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO XEROPHTHALMIA AND NEGATIVE RDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 μmol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (n)</td>
<td>0.63 (85)</td>
<td>0.59 (61)</td>
<td>0.95 (63)</td>
</tr>
<tr>
<td>SD</td>
<td>0.24</td>
<td>0.20</td>
<td>0.32</td>
</tr>
<tr>
<td>210 μmol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (n)</td>
<td>0.64 (81)</td>
<td>0.64 (60)</td>
<td>0.96 (63)</td>
</tr>
<tr>
<td>SD</td>
<td>0.27</td>
<td>0.30</td>
<td>0.38</td>
</tr>
<tr>
<td>difference</td>
<td>-0.01</td>
<td>-0.05</td>
<td>-0.01</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(-0.09-0.07)</td>
<td>(-0.14-0.04)</td>
<td>(-0.13-0.11)</td>
</tr>
</tbody>
</table>

XEROPHTHALMIA OR POSITIVE RDR

105 μmol			
mean (n)	0.52 (70)	0.49 (48)	0.70 (57)
SD	0.36	0.18	0.26
210 μmol			
mean (n)	0.49 (67)	0.59 (51)	0.80 (55)
SD	0.21	0.20	0.32
difference	0.03	-0.10*	-0.10
(95% CI)	(-0.07-0.13)	(-0.18--0.02)	(-0.21-0.01)

XEROPHTHALMIA AND POSITIVE RDR

105 μmol			
mean (n)	0.31 (19)	0.41 (14)	0.64 (17)
SD	0.14	0.13	0.32
210 μmol			
mean (n)	0.29 (21)	0.68 (13)	0.91 (14)
SD	0.18	0.27	0.25
difference	0.02	-0.28*	-0.27*
(95% CI)	(-0.08-0.12)	(-0.44-0.10)	(-0.48--0.06)

*105 μmol versus 210 μmol p < 0.02
*105 μmol versus 210 μmol, p < 0.01

From Humphrey et al 1994

Women (BMI ≥ 18). Breast-milk levels remained 5 μg/dl–10 μg/dl above controls (NS) through the first six months of lactation. The vitamin A status of breast-feeding infants was not, unfortunately, measured.

In a double-masked, randomized clinical trial (RCT) in Indonesia, postpartum changes were followed in both maternal and infant status after supplementation. Dosing mothers with 312 μmol (300,000 IU) vitamin A within three weeks after giving birth improved maternal vitamin A status (by serum retinol
and conjunctival impression cytology (CIC) compared with controls through six months, breast-milk levels through eight months, and infant vitamin A status (by serum retinol and RDR) through six months post-partum (Table 14-4). This was particularly impressive as the baseline status of control women was better than that of the vitamin A recipients at the outset of the study. As expected, serum breast-milk levels of controls dropped precipitously during the post-partum period. Vitamin A recipients had an increase followed by a more gradual decline.

Safety

The toxicology of vitamin A and retinoids in humans has been reviewed in detail elsewhere. Here, we are particularly concerned with the safe use of prophylactic dosages of 50,000 to 200,000 IU vitamin A in preschool children, infants, and post-partum women and the use of smaller, more frequent doses of vitamin A by women of reproductive age in developing countries where vitamin A deficiency is prevalent.

Preschool Children (One–Six Years)

Early evaluations of large-dose programs suggested that up to 4% of children may experience acute, transient side effects (nausea, vomiting, headache, fever) after receiving high-potency vitamin A (200,000 IU or 300,000 IU). The only randomized trial of sufficient size to carefully examine the effect in preschool children was conducted in the Philippines. Children given 200,000 IU (209 μmol) of vitamin A were four times to seven times more likely to develop headache, nausea, or vomiting after dosing than placebo recipients, those receiving 100,000 IU (105 μmol) had roughly twice the risk of these symptoms (Table 14-5). High-dose recipients were twice as likely than controls to develop one or more symptoms. Most episodes (> 70%) began within twenty-four hours of dosing and resolved within twelve hours to twenty-four hours of onset. While the smaller (100,000 IU) dose reduced the risk of acute side effects, as we have already seen, it also reduces the duration of protection.

Older Infants (Six–Eleven Months)

At present, the World Health Organization (WHO) advises that infants six months to eleven months of age be given half a standard dose, or 100,000 IU (105 μmol), for prophylaxis. However, there have been no controlled trials on the incidence in this age group of acute side effects following receipt of a half dose or alternative-sized doses of vitamin A. In the Filipino trial, children one year of age receiving 100,000 IU of vitamin A experienced a ~2% absolute
Table 14-4 Effect of Maternal Vitamin A Supplementation (312 μmol) Post-Partum on Mother's and Infant's Vitamin A Status

<table>
<thead>
<tr>
<th>Status Indicator/ Treatment Group</th>
<th>0.5 Months (Baseline)</th>
<th>3 Months</th>
<th>6 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTHER'S SERUM RETINOL (μmol/liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (n)</td>
<td>1.17 (69)</td>
<td>1.39 (70)</td>
<td>1.23 (67)</td>
</tr>
<tr>
<td>SD</td>
<td>0.45</td>
<td>0.49</td>
<td>0.34</td>
</tr>
<tr>
<td>% < 1.05 μmol/liter</td>
<td>45</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.31 (71)</td>
<td>1.24 (69)</td>
<td>1.08 (72)</td>
</tr>
<tr>
<td>SD</td>
<td>0.51</td>
<td>0.43</td>
<td>0.37</td>
</tr>
<tr>
<td>% < 1.05 μmol/liter</td>
<td>31</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td>MOTHER'S MILK RETINOL (μmol/liter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (n)</td>
<td>2.30 (70)</td>
<td>2.45 (57)</td>
<td>2.36 (66)</td>
</tr>
<tr>
<td>SD</td>
<td>1.42</td>
<td>1.23</td>
<td>1.17</td>
</tr>
<tr>
<td>% < 1.05 μmol/liter</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Placebo</td>
<td>2.69 (66)</td>
<td>1.82 (60)</td>
<td>1.77 (70)</td>
</tr>
<tr>
<td>SD</td>
<td>1.53</td>
<td>1.28</td>
<td>0.97</td>
</tr>
<tr>
<td>% < 1.05 μmol/liter</td>
<td>8</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>MOTHER'S CIC (≥ 1 eye abnormal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% abnormal (n)</td>
<td>32 (77)</td>
<td>23 (74)</td>
<td>13 (69)</td>
</tr>
<tr>
<td>Placebo</td>
<td>28 (76)</td>
<td>23 (74)</td>
<td>23 (73)</td>
</tr>
<tr>
<td>INFANT'S SERUM RETINOL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% < 0.52 μmol/liter (n)</td>
<td>—</td>
<td>—</td>
<td>15 (68)</td>
</tr>
<tr>
<td>Placebo</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>% ≥ 0.52 μmol/liter (n)</td>
<td>—</td>
<td>—</td>
<td>36 (70)</td>
</tr>
<tr>
<td>INFANT'S RDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% ≥ 20% (n)</td>
<td>—</td>
<td>—</td>
<td>10 (67)</td>
</tr>
<tr>
<td>Placebo</td>
<td>—</td>
<td>—</td>
<td>23 (64)</td>
</tr>
</tbody>
</table>

Note 1.05 μmol/liter = 30 μg/dl

*Vitamin A versus placebo, p < 0.05

*Vitamin A versus placebo, p < 0.01

*Placebo 6 months versus placebo 0.5 months, p < 0.01

*χ² test for trend over time, p < 0.01

From Stoltzfus et al., 1993
Table 14-5 Incidence of Side Effects in Preschool Filipino Children within Seven Days of Receiving Vitamin A or Placebo Supplement

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>200,000 IU (n = 832)</th>
<th>100,000 IU (n = 803)</th>
<th>Placebo (n = 836)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
<td>Relative Risk</td>
</tr>
<tr>
<td>Headache</td>
<td>49</td>
<td>5.9%</td>
<td>7.4</td>
</tr>
<tr>
<td>Nausea/vomiting</td>
<td>73</td>
<td>8.8%</td>
<td>1.0</td>
</tr>
<tr>
<td>Fever</td>
<td>66</td>
<td>7.9%</td>
<td>1.3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>50</td>
<td>6.0%</td>
<td>1.1</td>
</tr>
<tr>
<td>≥ 1 symptom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within 24 hr</td>
<td>143</td>
<td>17.2%</td>
<td>2.2</td>
</tr>
<tr>
<td>1–7 days later</td>
<td>47</td>
<td>5.6%</td>
<td>1.2</td>
</tr>
<tr>
<td>≥ 2 symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within 24 hr</td>
<td>34</td>
<td>4.1%</td>
<td>6.8</td>
</tr>
<tr>
<td>1–7 days later</td>
<td>6</td>
<td>0.7%</td>
<td>1.4</td>
</tr>
</tbody>
</table>

NOTE: 200,000 IU = 209 μmol (or 60,000 μg RE)

*Row (symptom) differences by chi-square test (2 df), p < 0.001

From Florentino et al, 1990."
increase in the incidence of vomiting and/or nausea (5.5% versus 3.6% in controls, NS) Applying these rates to late infancy (for lack of other suitable data), the enormous survival potential at this age far outweighs the mild, transient, increased risk of acute side effects.

Younger Infants (Less than Six Months)

Young infants appear to tolerate a single, 50,000 IU (52 μmol) oral dose of vitamin A. Indonesian newborns randomized to this dosage within forty-eight hours after birth (n = 2067) were at only 1.8 times the risk of developing a transiently “tense or bulging” fontanel within 48 hours after dosing compared with placebo controls (7.5% versus 4.1%) (p ≤ 0.001). Change in intracranial pressure (ICP) in half of all infants was monitored at baseline and at twenty-four hours by Doppler ultrasonography, a noninvasive device that measures blood flow within the anterior cerebral artery, yielding a “resistive index” (RI = 100 [peak systole-peak diastole]/peak systole) that reflects ICP. None of the children developed a resistive index indicative of elevated ICP. Indeed, the ICP of infants with a bulging fontanel was normal in both groups. Fontanelles were all clinically normal within seventy-two hours. Affected infants showed no increased irritability, lethargy or vomiting on repeated clinical examination over a forty-eight-hour period. These findings suggest that transient bulging of the anterior fontanel in the small percentage of newborns who received vitamin A (and in those who did not) is benign and, in the absence of any detectable rise in intracranial pressure, likely to be clinically insignificant.

In Nepal, infants under one month of age participating in an RCT (n = 223) showed no increase over placebo controls in the risk of bulging fontanel, vomiting, irritability or other morbid symptoms twenty-four hours after receiving 52 μmol (50,000 IU) of vitamin A. Among infants one month to six months of age (n = 2617), receipt of 105 μmol (100,000 IU) of vitamin A was associated with a (nonsignificant) 1.6% absolute increase in both forceful vomiting (95% CI 0.2%–3.0%) and fever (95% CI 0.7%–3.9%), and a 0.5% excess risk of bulging fontanel (95% CI −0.1%–1.1%).

The incidence of side effects may increase when infants receive repeated large doses, as in the Expanded Programme for Immunization (EPI). Field trials (RCTs) in Bangladesh provided infants with 50,000 IU or 25,000 IU of vitamin A at each of the program’s three diphtheria-pertussis-tetanus (DPT) visits (that occurred at ~6, 11 and 16–17 weeks of age). In all these studies, there was a sizable increase in the number of infants who developed a bulging anterior fontanel following vitamin A supplementation compared with controls (Table 14–6), 10%–15% versus 1%–3%. In all three trials, the incidence of bulging fontanel increased with each successive visit, suggesting a cumulative response to repeated vitamin A dosing over the ten-week interval. While posing little apparent health risk, high rates of bulging fontanel may be negatively
Table 14–6 Infants Developing a Bulging Anterior Fontanel during Randomized Vitamin A Supplementation–EPI* Trials in Bangladesh

<table>
<thead>
<tr>
<th>Study Author (Ref)</th>
<th>Vitamin A</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Francisco et al (^{46})</td>
<td>50,000 IU</td>
<td>0</td>
</tr>
<tr>
<td>Dosage per visit, IU</td>
<td>97</td>
<td>94</td>
</tr>
<tr>
<td>Number infants</td>
<td>11(11.5)</td>
<td>1(1.1)*</td>
</tr>
<tr>
<td>Bulge, number infants (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mahalanabis et al \(^{47}\)	50,000 IU	0
Dosage per visit IU	40	40
Number infants	6(15.0)	1(2.5)
Bulge, number infants (%)		

Baqu et al \(^{48}\)	25,000 IU	0
Dosage per visit IU	86	81
Number infants	9(10.5)	2(2.5)**
Bulge, number infants (%)		

*Infants received stated dose of vitamin A or placebo at each of three EPI (Expanded Programme for Immunization) visits at ~6, ~11, and ~14 weeks of age (varies slightly by study)

*\(p < 0.10\)

**\(p < 0.01\)

perceived by mothers, which could adversely affect compliance with a supplementation or, worse, with an EPI program. This would argue for giving a smaller prophylactic dose of vitamin A (e.g., ≤ 50,000 IU) only once in early infancy, preferably soon after birth, or, alternatively, only two doses at longer intervals (e.g., 25,000 IU at six weeks and again at sixteen weeks).

Infants appear to tolerate a large dose of vitamin A (up to 50,000 IU) with, at worst, a low incidence of mild, transient side effects. While it is, therefore, unlikely they will suffer any subsequent defects, there are little data on chronic risks. In Nepal, a 27% increase in four-month mortality was observed among infants one month to three months of age who received a 105 μmol (100,000 IU) dose of vitamin A. Although not statistically significant (95% CI: -11% to 89%), the direction and size of the effect, coupled with a (nonsignificant) trend of increased mortality in recipients of better nutritional status (by arm circumference), suggest that this dosage may be excessive for infants under four months of age. Further, in Indonesia, half this amount (52 μmol) given at birth\(^{50}\) was safe and highly effective in reducing infant mortality\(^{50}\).

Investigations are under way to carefully search for any potential subtle developmental changes in the third year of life that may be associated with bulging fontanels induced by vitamin A supplementation (50,000 IU), or occurring spontaneously, immediately after birth (J Humphrey, personal communication, 1995).
Maternal and Fetal Effects

There have been no reports of maternal intolerance to a large oral dose of vitamin A given soon after childbirth. Because "excessive" maternal intake of vitamin A early in pregnancy has the potential for being teratogenic, it is prudent to ensure that targeted women are only dosed post-partum with a large dose of vitamin A, prior to the return of ovulatory menses and risk of conception. Such risk is virtually absent in women who are dosed within one month following childbirth, in breast-feeding populations, fewer than 1% of women conceive before the third month post-partum. Therefore, the potential risk of teratogenicity is exceedingly low for maternal, high-potency vitamin A supplementation within two months of giving birth. These restrictions do not apply to women of childbearing age at risk of going blind from xerophthalmia (Chapter 10).

Effectiveness

One reasonably high goal for high-potency vitamin A effectiveness would be a 90% reduction (i.e., estimated efficacy) in the incidence of xerophthalmia in preschool-age children. Program impact would, on average, be expected to be lower since reduction depends on both efficacy and program performance, such as the adequacy of target-group definition and routine levels of coverage achieved. However, community-based programs for dosing preschool-age children have received insufficient (controlled) evaluation.

The Aceh study assessed program impact using a randomized design. 229 of 450 villages were assigned to the government’s semiannual, universal vitamin A capsule distribution (UNIVAC) program, which achieved 78% coverage of preschoolers at both rounds. After one year, vitamin A supplementation reduced the prevalence of new cases of XN by 70% and X1B by 80% (RR = 0.30 and 0.20 respectively), a level of impact that indicated there was an unusual lack of bias in coverage (expected reduction 90% x 78% = 70%). Nearly identical reductions in new, prevalent cases of XN (73%), X1B (66%), and in the two conditions combined (78%) were observed among preschoolers in Sarlahi, Nepal, following sixteen months (four rounds) of high-potency vitamin A supplementation compared with controls.

During each of the five years of vitamin A distribution in the urban slums of Hyderabad, India, the relative risk of corneal xerophthalmia (X2/X3), based on reported admissions to hospitals serving program and nonprogram areas, was RR = 0.59, 0.44, 0.12, 0.16, and 0.17 respectively, suggesting that a cumulative effect may have occurred during the first three years. Thereafter, the impact leveled off, possibly due to imperfections in program coverage (estimated to have been ~87%).
As a rule, vitamin A supplementation programs can be expected to have little impact on xerophthalmia if coverage is below 25%. Reasonable control of xerophthalmia can be expected when capsule coverage exceeds 65%, and may approach the limits of efficacy once 85% or more of children are reached. But without concerted effort to dose the most disadvantaged children and communities, effectiveness will suffer. A survey-based evaluation in Bangladesh suggested that the national vitamin A program had reduced the prevalence of corneal xerophthalmia by only ~53% in high-coverage areas (> 75% capsule receipt in the previous six months), the estimated reduction in XN was only 37%–47%, and in X1B, less than 25%. This modest impact of a program in the presence of apparently adequate coverage was probably due to low coverage of highest-risk children.

Of course, effectiveness can also be evaluated with respect to other outcomes (such as impact on mortality reduction) that can be expected with vitamin A prophylaxis, for which estimates linked to coverage have been made. In addition, Beaton et al. have estimated the probabilities of achieving levels of mortality reduction based on results of mortality studies (Chapter 2).

Implementation

Vitamin A capsules containing 200,000 IU as retinyl palmitate (and 40 IU vitamin E) in oil are available to most countries from UNICEF through the Essential Drugs Programme of WHO. They can also be purchased directly, provided by various organizations, or, as in India, manufactured locally. In 1993 alone, UNICEF supplied over 125 million high-potency capsules to sixty-three countries under routine and emergency conditions (J Csete, UNICEF, personal communication, 1994) at a delivered cost of approximately US$0.02 per capsule. India distributes in-country another 50 million doses as an oily syrup each year (Fig. 14–1). Shelf life of large-dose vitamin A supplements generally appears to be excellent. Manufacturer tests for vitamin A content of capsules stored in closed containers at 23°C for up to thirty-one months have shown 97% retention. Capsules retained 98% of their original retinol activity after two months of sea and overland transport in Africa. Periodic analysis of capsules during large community trials suggests that 85%–90% of vitamin A in supplements is retained after twelve months to eighteen months’ storage under field conditions.

High-potency vitamin A supplementation can be targeted by location, age, and season according to local epidemiologic features (Chapter 12). Vitamin A supplementation programs normally target (initially) children six months to seventy-two months of age, concentrating in areas where xerophthalmia (or vitamin A deficiency) constitutes a public health problem and where child mortality rates are high. Where seasonality is distinct (Chapter 12), steps should be taken to ensure distribution is timed to precede the high-risk season.
The supplemental doses can be delivered to children through different mechanisms, chosen to achieve different levels of coverage of those at risk (program sensitivity). The lowest coverage and cost for an impact is obtained by targeting children with xerophthalmia, measles, and other clinical illnesses or malnutrition presenting to health workers, clinics and hospitals (Chapters 7, 10). Wider coverage of children in high-risk areas can be achieved through clinics or community-based outreach services, but these generally omit the remote, high-risk underserved areas. The third approach is the distribution to all children in high-risk areas (universal distribution). Regardless of the approach taken, effective supplementation programs clearly identify their target groups, set standards of performance, and achieve high vitamin A coverage of those targeted through an organization that is adequately staffed, trained, supervised, and supplied for the chosen level of activity. Periodic careful evaluation of both process (are the capsules reaching warehouses and clinics, and being distributed?) and outcome (did xerophthalmia rates at least decline?) are essential to ensuring continued program rigor and effectiveness.

Treatment (Medical or Therapeutic Approach)

Adequate provisions for effective treatment of vitamin A-deficient children should be the goal of any national vitamin A prophylaxis strategy. Health workers staffing health facilities where vitamin A deficiency exists should be trained in the diagnosis and treatment of xerophthalmia and other precipitating conditions, such as measles. Administration of high-potency vitamin A for “treatment” represents a subset of targeted delivery. It focuses on preventing blindness, severe morbidity, and death related to vitamin A deficiency by supplementing children who are obviously deficient, ill, or wasted (it has high specificity). Incremental costs relate to training existing staff, maintaining records, and ensuring a continuous and adequate supply of vitamin A supplements to health facilities. Even with program elements in place, however, effectiveness is naturally limited by health care utilization patterns.

Targeted Distribution

This approach offers the greatest flexibility and cost effectiveness (hence potential for sustainable vitamin A supplementation) to reach more than those few children who present to health care facilities. It takes full advantage of existing contacts between health providers (and other sectoral workers) and the community to get vitamin A to children in high-risk areas. The approach requires substantial planning and coordination across sectors—from ministerial through local levels—to set goals, to implement, and to evaluate progress. A variety of health services can be included—sickness and growth monitoring clinics, antenatal and postnatal services, and community-based home-visiting, family-planning,
Fig. 14-3. Cumulative percent of Ghanaian children having a "valid" immunization contact, that is, at which a high-potency vitamin A supplement could be given (i.e., ≥ 6 months of age for a first contact or subsequent contacts at least four months apart, 55% of children had an initial valid contact during the latter half of infancy [6–11 months], 48% of children had a second valid contact by 24 months of age) (From D C Arhin et al.)

birth-attending, and immunization45 services. Access can be further increased through schools and their outreach capabilities, agricultural extensions, and community services of local and international nongovernmental organizations. In refugee settings, vitamin A should be made available to children during registration, food distribution, and immunization4 All of these scenarios represent "windows of opportunity" for prophylaxis72

If one relies primarily on a passive system of targeted distribution, providing supplements only to children attending health facilities, then low and sporadic health clinic utilization will lead to poor coverage173-75 Greater coverage requires outreach and active community-based programs. In the Bolgatanga-Frafra District of Ghana, 55% of surveyed, preschool-age children between six months and eleven months of age received at least one EPI contact during which a vitamin A capsule could be administered, this had increased to 84% by 24 months of age (Fig. 14–3)76 The age and level of coverage varies widely from country to country. The spacing of immunization (and other) contacts becomes important for evaluating the probability of dosing children two or more times with vitamin A. In the Ghanaian study, 48% of the children had received two properly spaced immunizations (≥ 4 months apart) before twenty-four months of age, representing an of opportunity to reach half of all children twice with vitamin A, albeit irregularly, between six months and 23 months of age76 As overlapping program options are explored, home-based documentation of capsule receipt may become important to ensuring appropriate spacing of vitamin A supplements.
Universal Distribution

"Universal" distribution involves community-wide delivery of vitamin A to target-age children on a regular basis in high-risk areas. Although WHO recommends three-month to six-month intervals between doses, most programs are organized as semannual distribution campaigns. Existing health auxiliary or other, local volunteer staff are mobilized to administer the supplement, usually on a house-to-house basis.

Factors that predict adequate coverage remain poorly defined, although local empowerment appears to play an important role in program performance. In Indonesia, children were more likely to be dosed with vitamin A if their mothers were aware of the potential benefits of capsule distribution and the consequences of xerophthalmia. Health volunteers who routinely offered health education to the community also achieved higher rates of capsule coverage. Involvement of local women's groups raised attendance, and vitamin A capsule coverage, at the monthly "pos yandu" clinics in Eastern Indonesia.

In Aceh, where distribu-

![Vitamin A Coverage Chart]

Fig. 14-4. Determinants of vitamin A supplement coverage achieved by community health workers ("anganwadi" workers) in the Integrated Child Development Services, Gujarat, India. Nutrition score was based on seven questions (maximum score = 7) related to child feeding and other practices. Number of visits refers to the times an auxiliary nurse-midwife (ANM) visited the anganwadi worker in the previous three months. Level of assistance was based on activity of the ANM in helping an anganwadi (maximum score = 9). The composite profile takes the coverage of workers who had a combination of no high school education, a nutrition score ≥ 4, ≥ 1 ANM visit, and an assistance score of ≥ 2 by the ANM, and compares this with workers who had the complement of these scores. All differences, p < 0.0001, except for high school comparison (NS) (From S. Gujral et al. [8])
tors were predominantly male (86%), capsule coverage was higher in smaller, more rural villages than in urban areas. Volunteers representing the local "status quo" (farmers or nonfarmers with little education) were better distributors than those who were "upwardly mobile" (higher education, wealthier and more urbanized). In an evaluation of India's Integrated Child Development Scheme, vitamin A supplement coverage (one of a number of services) was twice as high when female community health workers ("anganwadi" workers) understood basic nutrition or received frequent visits or encouragement from supervising auxiliary nurse-midwives. Combining these factors led to a twelvefold increase in coverage (20%, versus 2% in their absence) (Fig 14-4), although overall delivery rates remained low and unexplained.

The relative strengths and weaknesses of universal distribution have been reviewed in detail. Difficulties most often encountered include recurrent depletion of central stores, transport delays and breakdowns in local procurement that lead to peripheral capsule shortages, poor supervision and motivation of local workers (partly related to a lack of incentives), and inadequate local coordination and record-keeping. Children may be incorrectly targeted (i.e., outside the designated age group) or receive the wrong dose. Mothers may become noncompliant if negative perceptions are not addressed in a timely manner. Finally, policy questions exist about how and on what criteria to phase out and eventually halt community-based vitamin A supplementation. Answers will emerge when, and if, alternatives (such as food-based dietary strategies or fortification) are developed and shown by evaluation to ensure adequate, more sustainable improvement in the vitamin A status of target children in high-risk areas (Chapter 13).

References

6 Controlling vitamin A deficiency. A report based on the ACC/SCN Consultative Group Meeting on Strategies for the Control of Vitamin A Deficiency, Ottawa, Canada, 1993 Gillespie S, Mason J, eds, Geneva, Switzerland. Administrative Committee on Coordination-Sub Committee on Nutrition (ACC/SCN) 1994

8 Underwood BA. The safe use of vitamin A by women during the reproductive years. Washington DC, The Nutrition Foundation Inc. 1986

9 Bauernfeind JC. Vitamin A technology and applications. World Rev Nutr Diet 1983, 41 110–199

24 Humphrey JH, West KP Jr, Muhilal, See LC, Natadisastra G, Sommer A. A priming
dose of oral vitamin A given to preschool children may extend protection conferred by a subsequent large dose of vitamin A. J Nutr 1993,123 1363–1369
26 Humphrey JH, Natadisastra G, Muhlal, Friedman DS, Tielsch JM, West KP Jr, Sommer A A 210-μmol dose of vitamin A provides more prolonged impact on vitamin A status than 105 μmol among preschool children J Nutr 1994,124 1172–1178
29 Sovami I, Humphrey JH, Kuntinalibronto DR, Natadisastra G, Muhlal, Tielsch JM Response of Bitot's spots to a single oral 100,000- or 200,000-IU dose of vitamin A Am J Ophthalmol 1994,118 792–796
30 Roy SK, Islam A, Molla A Akramuzzaman SM Dynamics of vitamin A levels in the breastmilk of mothers of low socio-economic status in Bangladesh In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Prevention & Control Dhaka, Bangladesh Helen Keller International 1989 107–115
34 Bisalski HK Comparative assessment of the toxicology of vitamin A and retinoids in man Toxicology 1989,57 117–161
40 Agoestina T, Humphrey JH, Taylor GA, Usman A, Subardja D, Hidayat S, Nurachim M, Wu L, Friedman DS, West KP Jr, Sommer A Safety of one 52-μmol (50,000 IU) oral dose of vitamin A administered to neonates Bull WHO 1994,72
41 Seibert JI, McCowen TC, Chadduck WM, Adametz JR, Glasier CM, Williamson SL.
Supplementation

43 Ichord RN. Vitamin A supplements for newborns: the significance of a bulging fontanelle. The Johns Hopkins School of Medicine, Baltimore, MD 1994 (unpublished)

48 Baqui AH, de Francisco A, Anfeen SE, Siddique AK, and Sack RB. Bulging fontanelle after supplementation with 25,000 IU vitamin A in infancy using EPI contacts. International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, March, 1994

58 Shaaban MM, Kennedy KI, Sayed GH, Ghanemah SA, Abdel-Aleem AM. The
recovery of fertility during breast-feeding in Assuit, Egypt J Biosoc Sci 1990,22 19–32
59 Diaz S Determinants of lactational amenorrhea Int J Gynecol Obstet 1989,1 83–89
64 Reddy V Control of vitamin A deficiency and blindness the Indian experience In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Prevention & Control Dhaka, Bangladesh Helen Keller International 1989 124–129
68 Reddy V Vitamin A deficiency control in India In Bauernfeind JC ed Vitamin A Deficiency and its Control Orlando Florida Academic Press 1986 389–404
71 Tuason CS, Klemm RDW Integration of vitamin A capsule supplementation into Operation Timbang A team approach Report of the XV IVACG Meeting, Arusha, Tanzania Washington DC The Nutrition Foundation Inc 1993
73 Evaluation of a program to prevent xerophthalmia in Haiti New York, NY Helen Keller International Inc 1979
74 Parlato R, Sobel E Evaluation of a program to prevent xerophthalmia in Haiti New York NY Helen Keller International 1983
75 Northrup RS Vitamin A capsule distribution in Bangladesh-current situation Alternate strategies Cohen N, ed Dhaka, Bangladesh Helen Keller International 1982 1–25
76 Arhin DC, Ross DA, Kufour F Costs of vitamin A supplementation the opportunity for integration with immunization in Ghana Health Policy Plan 1993,8 339–348
77 Hadi H, Dibley MJ, Kusnanto H Factors associated with coverage of vitamin A capsule distribution in a district in Central Java, Indonesia, 1991 Report of the
Supplementation

XV IVACG Meeting, Arusha, Tanzania Washington DC The Nutrition Foundation Inc 1993

80 Tandon BN ICDS evaluation and research 1975–1988 Ansar Nagar, India Central Technical Committee New Delhi, India Department of Gastroenterology, All India Institute of Medical Sciences 1990

82 Vijayaraghavan K Rao NP An evaluation of the national prophylaxis programme against blindness due to vitamin A deficiency Nutr Rpts Int 1982,25 431–441

83 Tarwotjo I, Tilden R, Satibi 1, Nendrawati H Vitamin A deficiency control in Indonesia In Bauernfeind JC, ed Vitamin A Deficiency and its Control Orlando, Florida Academic Press Inc 1986 445–460

84 Rahman MH History and current status of the vitamin A capsule (VAC) distribution programme of Bangladesh In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Prevention & Control Dhaka, Bangladesh Helen Keller International 1989 79–87

85 Underwood BA Vitamin A prophylaxis programs in developing countries past experiences and future prospects Nutr Rev 1990,48 265–274

86 Greiner T Prerequisites for the imitation of “universal” VAC distribution A policy think piece Report of the XV IVACG Meeting, Arusha, Tanzania Washington DC The Nutrition Foundation Inc 1993

Fortification of Dietary Items with Vitamin A

There are two kinds of developing countries: those that have begun to fortify and those that have not yet begun to fortify their food supply.

Food fortification involves adding nutrients to foods in order to maintain or improve the quality of the diet of a targeted group or population. Fortification has long been an accepted strategy for improving vitamin A nutriture in industrialized countries. The epidemic of xerophthalmia in Denmark during World War I that paralleled the substitution of margarine (lacking “fat-soluble A”) for butter in the Danish food supply foretold the clear need to fortify such products. Margarine is now among those food items most frequently fortified with vitamin A in the world. Universal iodization of salt to prevent iodine deficiency disorders (IDD) is a rapidly approaching achievement.

Today, the motivation to fortify foods or condiments with vitamin A in developing countries continues to be the prevention of vitamin A deficiency and its health consequences (xerophthalmia, other morbidity, mortality). Although “targeting high-risk groups” is a guiding principle, broader segments of a population (not always specifically targeted) may gain nutritional and health benefits through fortification as well.

Food fortification (or nutrification) offers a direct, effective and potentially sustainable way to correct vitamin A deficiency. Criteria for food fortification have been discussed extensively elsewhere. The aim is to add vitamin A to a regular dietary constituent (food or condiment) of the targeted population at a specified level (e.g., half the RDA) that will correct an existing dietary deficiency without posing significant risks of overdosing those who habitually consume the largest quantity of the fortified product. This means that, ideally, the amount of carrier food consumed by the population would be within a relatively narrow
Fortification of Dietary Items with Vitamin A

range, so that the selected fortified level can be both effective (even for low food-carrier consumers) and safe (for high consumers).

As with any fortificant, the added vitamin A should not appreciably alter the dietary carrier’s appearance, color, texture or organoleptic properties (taste, smell). Further, potency should remain high under usual conditions of processing, transport, storage and cooking. As a minimum criterion, the product should retain potency for six months to cover time between production and consumption, and whatever loss that ensues should occur at a predictable rate. In most circumstances, fortification should be a relatively centralized process, this limits capital outlay and manpower requirements and simplifies maintenance of quality control.

Once a fortified product is developed and ready for the market, international standards for maintaining quality assurance and labeling are provided by the Codex Alimentarius of the Food and Agricultural Organization of the United Nations (FAO) and the World Health Organization (WHO).

Food fortification is often called “passive” supplementation because it offers an opportunity to improve dietary (micronutrient) quality without necessarily changing existing food habits. The concept is straightforward. However, successful implementation of vitamin A fortification has proved challenging. Thorough product development and testing has been required, along with persistent explanation and advocacy within both the public and private sectors to gain support, alleviate anxieties and misconceptions, and ultimately ensure success. One need only be reminded of the long history of salt iodization, a simple technology that first met all the requirements of fortification and has effectively controlled IDD in North America and Europe for the past six decades. Yet thirty years after successful pilot projects were launched in South and Central America, salt iodization has still to be effectively instituted to control IDD in South Asia and Africa—although it is now a stated international goal.

Vitamin A Fortification in Developing Countries

Experiences in developing countries with vitamin A fortification highlight the nutritional benefits to be gained, as well as the challenges faced, by this promising strategy. Foods that have been fortified with vitamin A or imported as fortified products in developing countries include sugar, monosodium glutamate (MSG, a popular flavor enhancer), wheat, rice and other grain products, tea, dairy foods (especially dried skim milk), margarine, edible oils, formula foods, and specialty items. However, to date, only vitamin A-fortified MSG (in Southeast Asia) and sugar (in Central America) stand out as products that have undergone extensive testing, have been distributed widely in-country, and have been evaluated for their public health impact.
Monosodium Glutamate In Indonesia and the Philippines

Two countries, Indonesia and the Philippines, have pioneered the use of MSG for vitamin A fortification MSG+A. Their experiences provide valuable insight into the process, from identifying a suitable vehicle, or carrier, for the nutrient to testing and attempting to scale-up production.

Vehicle Selection

In the late 1970s, national surveys in Indonesia investigated potential dietary vehicles for vitamin A fortification. MSG was observed to be consumed at least weekly by three-fourths of the children one year to five years of age (including 70% of children with X1B), the proportion rose to over 80% for children two years and older. In contrast, only 50%–55% of children consumed other potentially fortifiable staples such as wheat or sugar. An economic analysis suggested that MSG would be less expensive to fortify than other products, since less vitamin A would be wasted on the nontarget population. Further, in Indonesia, MSG is centrally processed by only two companies. Per capita intake was reportedly 0.6 g/day (standard deviation [SD] ±0.7 g). Preschool children were found to consume, on average, 0.2 g to 0.3 g/day (SD ±0.3 g). Although the coefficient of variation for intake was ~100%, variability in consumption across socioeconomic and demographic strata was smaller for MSG than for other potential vehicles, reducing the risk of excessive vitamin A intake by the largest consumers. Further, it was feasible to segregate a product “stream” of MSG for fortification. The 50% of production packaged in the smallest containers (1.5 g) that penetrated the target markets (poorer consumers). In a scaled-up program this would cut the recurrent manufacturing costs in half by restricting vitamin A addition to MSG sold in the poorer markets. Also, by spreading the cost over all MSG consumed, the marginal cost of fortified MSG purchased by poor communities would be halved. This strategy also permits a higher concentration of vitamin A, boosting the supplementary intake of those in greatest need without running the risk of overdosing larger consumers, who were far less likely to need the added vitamin A.

The Philippines pioneered the use of MSG for vitamin A fortification even before Indonesia. A single manufacturer, coupled with nearly full-market penetration (~94% of Cebuano children one year to sixteen years of age reportedly consumed MSG each week), made MSG an attractive candidate for fortification. Families normally purchased two small sachets per day for a per capita intake of ~0.7 g/day, similar to Indonesia, although preschool-child intakes were not specified. Breads, biscuits, corn grits, and table salt were also nearly universally consumed by children, however, these foods were either not centrally processed or difficult to fortify with vitamin A.
MSG has been fortified by first coating dry vitamin A palmitate beadlets (Type 250 CWS [cold water soluble], Roche) with a whitener and flow agent to make a premix, this is then metered into crystalline MSG at a ratio of 2:98 and mechanically mixed to ensure homogeneous dispersal of the product. Strict quality control standards have been established for MSG+A. Laboratory tests have shown excellent vitamin A retention (~75%) at high temperature (37°C) for six months and a half-life of over two years under dark, dry conditions, although potency can rapidly deteriorate with continuous exposure to light and moisture.

Both countries deemed MSG to be safe based on toxicological and epidemiological evidence, its inclusion on the generally-recognized-as-safe (GRAS) list of the U.S. Food and Drug Administration, and its widespread consumption. Fortification levels that would provide an approximate RDA for Filipino children (2,050 µg RE/g) and half an RDA for Indonesian preschool children (810 µg RE/g) were chosen, based on dietary intake data for MSG and dietary vitamin A and the nutritional goals of each country.

Prophylactic Efficacy of MSG+A

Preliminary trials suggested that consumption of both vitamin A-fortified MSG and sugar could significantly improve vitamin A status of vulnerable groups. In Cebu, ensured intake of MSG+A (provided free, directly to families as two 2.2 g sachets daily, for nearly two years) raised serum retinol levels of Filipino children from a mean of 21 µg/dl to 29 µg/dl, compared with no change or a modest decline in serum retinol among children of other barrios who were either dosed semiannually with vitamin A or whose families received a package of public health interventions (PHI) (Table 15–1). Regular intake of MSG+A decreased the proportion of deficient (< 20 µg/dl) children relative to the PHI group, whose vitamin A status appeared to change little. The largest reduction in the prevalence of xerophthalmia also occurred among MSG+A recipients.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Number of Children</th>
<th>Serum Retinol (µg/dl)</th>
<th>Baseline</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>MSG-A</td>
<td>387</td>
<td>21</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>Vitamin A supplements*</td>
<td>343</td>
<td>20</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>PHI</td>
<td>391</td>
<td>19</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

*Six monthly 200,000 IU (60,000 µg RE) vitamin A distribution

*Public health intervention (PHI) package including gardening, nutrition and health education, and sanitation inputs

*MSG+A versus PHI, p < 0.01

From Solon et al., 1979
Assessment and Prevention

(declining from 42% to 10%), though capsule recipients were not far behind (31% to 6%). There was little change in xerophthalmia rates among those exposed to PHI/gardening intervention (4.9% at baseline versus 3.4% at follow-up) 40-42 Although the study was not randomized and the number of barrios was small (n = 12 barrios, 4 per group), the effect may be considered an estimate of the potential “efficacy” of vitamin A-fortified MSG consumption (directed to families who routinely consume this product).

The positive impact of MSG+A on serum and breast-milk retinol in Indonesia, under actual program conditions (providing an estimate of effectiveness, discussed below), supports the benefits of MSG+A reported from the Philippines 20,49 The apparent lack of effect of the PHI/gardening intervention in Cebu remains unexplained, though it seems likely that it either failed to change behavior or account for intermediary determinants of vitamin A status (e.g., measles and diarrheal rates, which were not reported). In addition, the degree to which vegetable gardening raises vitamin A status of children remains questionable (Chapter 13).

Effectiveness of MSG+A

“Effectiveness” represents the impact of an intervention under usual conditions, it is the net effect of efficacy (biologic impact under conditions of full coverage and compliance) modulated by the inefficiencies (interrupted supplies, hostile environments, noncompliance, etc., that reduce coverage) of program operation. MSG+A has proven effective in raising the vitamin A status of a target population when delivered through usual marketing channels, resulting in a consistent shift in serum retinol levels to the right (reducing the proportion of the population most deficient). As expected, the impact increases with the duration of fortification, at least through the first year or more of operation (Fig. 15-1).

In Indonesia, MSG+A was distributed and sold without advertising or promotion through small village shops in forty-eight subvillages, shops in forty-four nearby subvillages (serving as controls) continued to receive unfortified MSG. Children living in program villages experienced incremental increases in serum retinol at six months and, again, 11 months after beginning fortification (Table 15-2, Fig. 15-1, Panel A), 28 while breast-milk retinol of lactating mothers rose relative to controls (Fig. 15-2). 49 These improvements in biochemical indices of vitamin A status had a demonstrable health impact: a reduction in the prevalence.

Fig. 15-1 Changes over time in serum retinol distribution in children following vitamin A fortification. Panel A, West Java, Indonesia. Baseline, five and eleven months after introduction of MSG+A through normal markets. 28 Panel B, Cebu (control) and Northern Vizcaya and Marinduque (intervention provinces) after almost two years of MSG+A through markets. 49 Panel C, Guatemala. Baseline, six and twelve months after introduction of vitamin A-fortified sugar as a national program.
Table 15–2 Serum Retinol of Children before and during MSG + A Marketing, Bogor, Indonesia

<table>
<thead>
<tr>
<th></th>
<th>MSG + A Program</th>
<th>MSG Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>x</td>
</tr>
<tr>
<td>Baseline</td>
<td>205</td>
<td>0.67</td>
</tr>
<tr>
<td>5 mo</td>
<td>258</td>
<td>0.78</td>
</tr>
<tr>
<td>11 mo</td>
<td>217</td>
<td>0.92</td>
</tr>
</tbody>
</table>

*p < 0.001 (increase) compared with baseline in program area.

**p < 0.05 (decrease) compared with baseline in control area

From Muhtial et al., 1982
c

of X1B (by 85% after eleven months), a ~10 g/iter rise in hemoglobin (Chapter 5), improved linear growth (Chapter 6), and a 46% reduction in preschool-child mortality (Chapter 2). The breadth of these changes strikingly illustrates the potential health benefits to a high-risk population of vitamin A fortification of commonly consumed dietary items.

In the Philippines, a scaled-up, pilot fortification program in two provinces (Nueva Vizcaya and Marinduque) followed the successful preliminary demonstration of efficacy, cost-effectiveness, and cost-benefit projections for MSG+A noted above. Vitamin A-fortified MSG was sold in 2 g sachets in the test provinces. The province of Cebu, receiving nonfortified MSG, served as the control. At baseline, serum retinol levels of preschool-age children in the combined program provinces (n = 1156) were virtually identical to those of Cebuano children (n = 591) (not shown). After twenty months of selling MSG+A, the mean increase in serum retinol was modest [28 μg/dl to 31 μg/dl (p < 0.01) and 31 μg/dl to 32 μg/dl in the two test provinces, versus 29 μg/dl to 31 μg/dl in Cebu]. However, children in the test provinces (n = 1291) showed a distinct

Fig. 15-2. Mean (±2 SD) breastmilk retinol (vitamin A) levels of women in MSG+A villages (solid line) and control villages (broken line) at baseline, five and eleven months after introduction of MSG+A, West Java, Indonesia (From Muhtial et al.)
Fortification of Dietary Items with Vitamin A

shift to the right of their serum retinol distribution compared with children in the control province (n = 608) (Fig 15–1, Panel B) The proportion of children most deficient in vitamin A was reduced, and as a consequence, xerophthalmia rates declined (from ~3% to 1%) At least three factors explain the absence of an even greater impact (1) mean serum vitamin A at the outset was already near the normal range (~30 μg/dl), (2) the technology for packaging MSG+A caused problems because the fine premix powder interfered with complete sealing of the sachets against humidity, resulting in clumping of MSG, loss of vitamin A potency, and lower area sales, and (3) the added cost of fortification was passed on to the consumer in the form of reduced MSG content per sachet, prompting consumers to switch to larger, nonfortified packets

Cost Considerations

Initial cost projections from the Philippines were ~US$0.11 per capita (during the first few years) for MSG+A production and distribution (including set-up costs), decreasing to under $0.10 over a five-year period. Indonesia learning from the lessons in the Philippines, recognized that while the full cost must eventually be borne by the consumer to insulate consumption from the uncertainties of the health budget, it needed to be done in a less obvious and more gradual manner One plan was to spread the marginal cost of vitamin A fortification (~24% of the fortified amount) over the cost of all MSG produced and packaged in the country Since only half would be fortified (small sachets consumed by the targeted poor markets), the marginal increase in purchase price would be ~12% to all MSG consumers The government considered a partial subsidy of two-thirds of the cost during the first year, phasing it out over three years The consumer would, therefore, face an annual 3%–4% increase in the price of (all) MSG, against a background inflation rate of ~10%, for three years, after which the cost of fortification would be self-sustaining

After nearly two decades of research and development demonstrating clear nutritional and health benefits from MSG fortification with vitamin A, production has not yet gone full scale in either Indonesia or the Philippines This has been largely due to problems with physico-chemical instability of the MSG+A as fortified in the pilot trials, serving to emphasize that fortification technology (for large-scale programs) should be based on a fully tested and proven “industry standard.” Although a whiter, free-flowing vitamin A palmitate premix has been recently developed and laboratory tested, in-country testing remains to be completed These technical difficulties have increased resistance on the part of major MSG manufacturers to collaborate (S Wilbur, personal communication, 1994), stalling efforts in both countries and resulting in zero effectiveness This, despite a willingness on the part of the Indonesian government to adopt regulatory legislation mandating fortification of MSG as part of its national strategy for preventing vitamin A deficiency.
Sugar Guatemala and Other Areas of Latin America

Vehicle Selection

In the early 1970s, white, refined sugar was identified as a potentially fortifiable food carrier for vitamin A in a number of Central and South American countries. Tests in Chile\(^5\) and Guatemala\(^7\) found vitamin A-fortified sugar (sugar+A) to be bioavailable,\(^4\) organoleptically acceptable, and stable under ambient, humid conditions (90% retention after six—eight months) and after cooking (85%—99% retention in a wide range of products). Ongoing tests (in the 1990s) continue to show 50% to 85% vitamin A potency after nine months\(^5\) In Guatemala, from where most data are available, white sugar was found to be nearly universally consumed (85%—90% of all sugar consumption was white sugar, the remainder was brown, unprocessed panela, mostly used in remote, rural areas). Sugar was also centrally manufactured, by a small number of refineries, and distributed nationwide through established market channels.\(^7\)

Fortification of sugar with vitamin A is straightforward. A premix is prepared by combining vitamin A palmitate (CWS 250) with refined sugar (in a ratio of 22.76), followed by adding a stabilizer/vegetable oil solution (2 parts per 100) during continuous mixing.\(^7\) In Guatemala, the premix is distributed to seventeen sugar refineries and mechanically added to the sugar at a ratio of 1/1000 prior to drying the sugar, providing a calculated vitamin A concentration of 15 μg RE/g.\(^5\) This level was chosen on the basis of extensive dietary data showing average preschool-child intakes of sugar to be 33 g/day (range 10 g—50 g) in rural areas. The selected level of concentration provides ~100% of a child's RDA (~400 μg RE) (Table 13—2) through fortified sugar, after allowing for programmatic losses.\(^7\) Similar goals have been set for Honduras, Costa Rica, and Panama.\(^7\)

Efficacy of Sugar+A

Early studies among children and adults in Chile\(^5\) and school-age children in Brazil\(^7\) indicated a positive impact of fortified sugar on vitamin A status. Four remote Andean villages in Chile (per capita sugar intake ~40 g/day) were supplied with vitamin A-fortified sugar (38 μg RE/g) as their sole source of sugar, through local shops. After three months the percentage of children (< 18 yr, n = 160) with serum retinol < 20 μg/dl declined from 76% to 29%. Fortified sugar was then discontinued, three months later the prevalence of deficient serum retinol (< 20 μg/dl) had risen to 51%. Adults showed a similar pattern.\(^7\) The two controlled, Brazilian studies were conducted among non-xerophthalmic nursery school children (eight months to eighty-nine months) with extremely low and highly variable serum retinol levels (baseline means of 7 μg/dl—12 μg/dl, SDs ranging from 7 μg/dl—50 μg/dl). Six months later the proportion with deficient
values appeared to have declined57,58 although the variability was too great to reliably interpret.

In an El Salvadoran clinical trial, pregnant women given \(~30\) g of fortified sugar per day (at \(~11\) µg RE/g) from the last trimester through the first four months post-partum (\(n, = 25\)) had their serum retinol levels raised by \(~10\) µg/dl over controls (\(p < 0.01\))59 The increased vitamin A intake appeared to attenuate the post-partum decline in breast-milk retinol observed among the controls. Infants breast-fed by mothers who received the fortified sugar experienced a gradual increase in serum retinol relative to controls for at least the first four months of life (\(+0.6\) µg/dl at birth, \(+1.1\) µg/dl at two months, \(+2.4\) µg/dl at four months), although the differences were not statistically significant59.

These preliminary studies provided the basis for instituting vitamin A fortification of white sugar, particularly in Guatemala7,54,60.

Effectiveness of Sugar+A

Because sugar fortification was mandated nationwide, the Guatemalan evaluation lacks concomitant controls. But semiannual nutritional surveillance during the first two years of start-up provided strong evidence that the program was achieving an impact on vitamin A status, as evidenced by the shift in serum retinol levels toward greater adequacy (Fig. 15–1, Panel C)7,54,59 Increases in serum retinol were observed in wasted and nonwasted children, indicating that fortified sugar was reaching even the most disadvantaged children7. Sugar fortification also appeared to improve the mobilization and utilization of body iron (Chapter 5), and may have enhanced seasonally adjusted linear growth as evidenced by increased height-for-age7. Breast-milk retinol levels rose from a mean of \(~25\) µg/dl to a mean of \(~40\) µg/dl during the first two years,7,54 which was estimated to provide a dietary increment to the breast-fed infant of \(~90\) µg RE/day (\(~60\%\) increase to infants consuming 600 ml of breast-milk daily)7.

Subsequently, sugar fortification in Guatemala was suspended for nearly eight years due to civil conflict, lack of enforcement of the fortification law,55 a glut in the international sugar market (reducing market prices and profits), and a rise in the Swiss franc on the international currency exchange (raising the price of vitamin A). Failure of the program during this period was a direct result of its mandated financing scheme. Sugar manufacturers were required by law to absorb all of the cost of fortifying sugar with vitamin A7,60. When changes in world markets combined to render sugar fortification too expensive, the program was stopped—providing a vivid example of why consumers ultimately must bear the cost of fortification if it is to be sustained. Fortification also ceased in Costa Rica, El Salvador and Panama, although it continued to some extent in Honduras55.

Sugar fortification was restarted in Guatemala in 1988,55 and more recently in El Salvador, partly motivated by discoveries relating increased vitamin A
nutriture to improved child survival. Renewal in Guatemala offered a second opportunity to evaluate program performance and, at the same time, assess the devastating impact of its suspension for much of the previous decade. A new "baseline" survey reported hyporetinemia (< 20 μg/dl) in 26% of preschool children and an abnormal relative dose response (RDR+) in 33%, serum retinol levels that were lower than they had been before the first fortification program began in 1975. Six months after restarting fortification, the percentages of vitamin A-deficient children by serum retinol and RDR+ had declined to 10% and 14% respectively (Fig. 15–3) (when population coverage was 89%). Although other factors that might account for improved vitamin A status cannot be ruled out, the findings are consistent with renewed impact.

Since it was restarted in 1988, program performance has fluctuated. Formal estimates of the proportion of sugar fortified for domestic consumption is 100% for Guatemala, 40% for El Salvador and 30% for Honduras. However, a household survey in periurban Guatemala City in 1990 (n = 91) showed low and erratic levels of vitamin A in the sugar consumed. The mean (SD) vitamin A content was 5.5 μg/g, or one-third the intended amount. The median content was 3.3 μg/g (range, 0–30 μg/g), in line with quality control checks that found 94% of all samples containing some vitamin A (up from 0% in 1987) but only 30% with acceptable levels (12 μg/g–18 μg/g). Even at this low concentration, however, fortified sugar was providing ~25% of a young child's daily vitamin A intake (79 μg RE/day).

Cost Considerations

Recently the Guatemalan sugar fortification law was revised to exempt sugar intended for industrial purposes (i.e., non-human consumption), relax the...
ceptable range” to 10 μg–20 μg RE/g (making it easier for producers to comply with standards), and provide tax incentives for fortifying imported sugar. However, producers must still shoulder the costs of fortifying sugar with vitamin A. Originally, the estimated production cost per recipient in the population (1976 dollars) was $0.07 per capita, representing 1.1% of the retail price of sugar. Today, sugar+A is estimated to cost $0.29 per recipient (1993 dollars), still representing only 1.6% of sugar’s retail price. Given Guatemala’s earlier experience, however, it is not clear whether the above legislative changes will ensure a sustainable, effective program.

Alternative Vehicles for Vitamin A Fortification

Beyond MSG and sugar, which have received most of the attention, other vehicles may offer opportunities to control vitamin A deficiency. These include rice, wheat, dairy products, edible oils, and margarine, and other foods such as tea and (perhaps) certain types of salt. The list has largely been limited by lack of imagination—many of the choice carriers need to be identified through exploration of locally available options, keeping an open mind about all dietary staples consumed by the target population.

Rice

As a staple grain consumed by half of the world’s population, rice could be an attractive vehicle in some settings. Its first and most immediate limitation is that the rural poor often produce their own rice, or procure it from thousands of local millers, precluding carefully supervised addition of vitamin A fortificant. The technology for adding vitamin A to rice exists, however. One promising technique, advanced in Thailand two decades ago, involves preparing a premix of nutrient-dense, simulated-rice granules, extruded either from pasta or rice flour, that are metered into the bulk grain (e.g., 1–2 parts per 100). Vitamin A content of premix granules synthesized from rice flour, with added antioxidants, appears stable under tropical conditions of storage (half-life of two to three months) and cooking (~55%–96% retention). Bioavailability, based on RDR results in recipient Brazilian children, is comparable to that of preformed vitamin A on an equimolar basis. Sensory panel testing favored the fortified over the nonfortified rice.

Vitamin A fortification of rice may be effective and practical where centrally processed or distributed rice targets the poor (such as government food-for-work programs or subsidized ration outlets), and in refugee feeding or dry-ration distribution. Otherwise, feasibility, cost, and quality control constraints pose major challenges.
Wheat Flour

With consumption of wheat increasing in many developing countries (in response to such factors as constraints in the supply of rice and the development of affordable, commercial wheat products), wheat fortification with vitamin A may provide a growing opportunity to improve vitamin A intake of the poor. The technology for fortifying wheat flour with dry vitamin A palmitate (250 SD) exists. Vitamin A retention in low-extraction wheat flour exceeds 95% for up to a year under temperatures of $\geq 40^\circ$C, although high moisture content may increase losses markedly. Approximately 70% of vitamin A activity remained after baking traditional bread products with fortified flour. Organoleptic properties of fortified wheat flour appear unchanged from those of the unfortified product.

Many tropical countries import wheat, either through commercial channels or as food aid, the latter route tends to self-target the poor and, therefore, presumably the most vitamin A-deficient. Imported wheat is often milled at a limited number of private (e.g., Philippines, Indonesia) or government (e.g., Sri Lanka) mills prior to national distribution, making centralized fortification feasible. Wheat (and other grain) flours exported from the United States under Public Law 480 are already fortified with 2200 IU—2645 IU vitamin A per 100 g, but their consumption and impact on vitamin A status in high-risk populations are unknown.

During the late 1960s, a concerted effort was launched to fortify wheat flour with vitamin A (240 μg RE per 100 g) in major, government-owned bakeries in Bombay and other Indian cities, however, its economic success and nutritional impact are unknown.

Locally grown and milled wheat suffers many of the same practical problems as locally grown and milled rice. Two decades ago, Vaghefi and Delgosha proposed that vitamin A be added to baker's yeast tablets rather than mixed into the wheat flour. The tablets were produced in Iran's only yeast plant, thus serving the centralized and quality control needs of vitamin A fortification. Although yeast may be a poor matrix to standardize for such a purpose, tests showed ~70% vitamin A retention in Persian breads baked by this method. The idea has not yet been seriously pursued.

Milk Products

Vitamin A naturally occurs in milk but is lost when the butterfat is removed, making it necessary to reintroduce fat-soluble vitamin A (and D) to nonfat dry (skim) milk (DSM). This is especially important when it is intended as food aid for developing countries, particularly in disaster relief situations where children are at high risk of blinding xerophthalmia. While high-protein refeeding of severely malnourished children (without apparent vitamin A deficiency)
may improve hepatic mobilization of vitamin A from the liver,77-79 it may also precipitate vitamin A deficiency78 and even xerophthalmia77,80 in vitamin A-depleted children. Feeding non-vitamin A-fortified milk products (e.g., sweetened, condensed milk) to infants has been repeatedly implicated as the underlying cause of widespread deficiency and keratomalacia30,31 Years ago, infants given isonitrogenous, isocaloric DSM (plus fat) formulas for three months, with (5,000 IU/100 g) or without vitamin A, showed comparable growth. However, those not receiving vitamin A suffered a marked reduction in serum retinol (declining from 25 \(\mu\)g/dl at baseline to 16 \(\mu\)g/dl at follow-up, versus infants consuming vitamin A-fortified formulas, who maintained levels of \(\sim 30 \mu g/dl\) \(p < 0.012\)).31

Since 1959, WHO/FAO/UNICEF have recommended that DSM intended for use in malnourished populations be fortified with 5000 IU vitamin A per 100 g 28,29 All DSM shipped from the United States under Public Law No. 480 (Title II, Food for Peace Program) has been fortified with vitamin A since 1965,32 initially at levels of only 2200 IU–4400 IU per 100 g,28,33 these were raised in recent years to 5000 IU–7000 IU per 100 g.70,84 Other donor countries have been slower in meeting the recommendations.33,73

Edible Oils

In some countries, processed oils and fats are increasingly penetrating lower socioeconomic markets and, therefore, may prove suitable as carriers of vitamin A. An outstanding recent example is a popular margarine in the Philippines that has been highly hydrogenated (and, therefore, does not require refrigeration) in Cebu, the margarine was found to be consumed weekly by \(~40\%\) of children under six years,41 usually spread on cooked rice. A double-masked, placebo-controlled trial was jointly implemented by the government and the local manufacturer. Two tablespoons (\(~27\) g) of a fortified version of the margarine (providing \(431 \mu g\) RE per two tablespoons) was consumed daily by one group of preschool-age children three years to six years old (\(n = 296\)) and a similar amount of the standard, nonfortified product by controls (\(n = 285\)). After six months, the mean serum retinol level of children who ate the fortified margarine increased by \(3 \mu g/dl\) (from 26 \(\mu g/dl\) to 29 \(\mu g/dl\)), while values among controls declined by \(2 \mu g/dl\) (from 27 \(\mu g/dl\) to 25 \(\mu g/dl\)) (final difference between groups, \(p < 0.001\)).35 The prevalence of hyporetinemia (< 20 \(\mu g/dl\)) in the intervened group decreased from 26% at baseline to 10% at follow-up, but remained unchanged (27%) among controls (Fig 15–4). Xerophthalmia also disappeared among children receiving fortified margarine, but developed in \(~2\%\) of controls.35 The product earned a limited endorsement by the Department of Health, two months later, product sales rose by \(~20\%\) over the previous year (F Solon, personal communication, 1994). This example indicates that fortification, when appropriately done, can be profitable to the private sector while benefiting the population at risk.
Fig. 15-4. Proportion of preschool-age children with serum retinol levels < 20 μg/dl at baseline (open bars) and after six months (black bars) of providing vitamin A-fortified margarine (experimental) or nonfortified margarine (control) to households in the Philippines (From F S Solon et al)

In Brazil, consumption of centrally processed soy bean oil is rising rapidly among lower socioeconomic groups. Vitamin A-fortified soy oil is undergoing testing at a level of 200 IU (60 μg RE) per g, which could provide an FAO safe level of intake (300 μg–450 μg RE) to children consuming 5 g–10 g, or two teaspoons, per day. Stability has been found to be excellent for up to six months (~98%), although it has varied thereafter depending on conditions of storage (e.g., ~40% retention after eighteen months). Repeated use of the same oil in cooking also reduces potency by ~50% Trials documenting impact on vitamin A status have not yet been done.

Other Foods

Tea

An effective technology for fortifying tea (dust) with vitamin A (~125 IU/g–250 IU/g or 375 IU–750 IU per brewed, 150 ml cup) was established long ago in India and Pakistan. Stability (using powdered or emulsified vitamin A palmate) was excellent after one hour of continuous boiling. Though tea fortification continues to offer a potentially effective option, little further work has been devoted to this approach, largely because the youngest children do not consume adequate quantities, if any, of tea. It is conceivable that national supplementation via this route might have a beneficial effect by raising the levels among women of childbearing age.

Salt

Given its ubiquitous use, its controlled processing, and its proven efficacy as a carrier for iodine, salt has been repeatedly suggested as a potential vehicle for
Fortification of Dietary Items with Vitamin A

Table 15–3 Impact of Consuming Brick Salt Fortified with Vitamin A (440 IU/g) on Serum Retinol, West Java, Indonesia, 1982

<table>
<thead>
<tr>
<th>Serum Retinol (µg/dl)</th>
<th>Vitamin A-Fortified</th>
<th>Control</th>
<th>Vitamin A-Fortified</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>< 10</td>
<td>33</td>
<td>17.2</td>
<td>25</td>
<td>13.5</td>
</tr>
<tr>
<td>10–19</td>
<td>103</td>
<td>53.6</td>
<td>97</td>
<td>52.4</td>
</tr>
<tr>
<td>≥ 20</td>
<td>56</td>
<td>29.2</td>
<td>63</td>
<td>34.1</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
<td>100.0</td>
<td>185</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Baseline X = 157 p = 0.46
Six months X = 36.49 p < 0.001
From Hussaini 1982

Vitamin A fortification A field trial in West Java, Indonesia, evaluated the effect of fortified brick salt (440 IU/g) on vitamin A status of preschool-age children (one year to six years) living on rubber plantations. Consumption of ~4.5 g of salt (~1 teaspoon providing 2000 IU of vitamin A per day) (n = 192) daily for six months markedly raised vitamin A status over placebo recipients (750 IU capsule x 1) (n = 185). In children who ate the fortified salt, the percentage with serum retinol < 10 µg/dl declined from 13.5% at baseline to 1.6% at follow-up, the percentage with serum retinol between 10 µg/dl–19 µg/dl decreased from 54% to 38%. The vitamin A status of placebo controls remained essentially unchanged (Table 15–3). Although salt as a vehicle is encouraging, the hygroscopic (water-absorbent) qualities and impurities (that accelerate the destruction of vitamin A) of more commonly consumed, coarse salt have limited its potential usefulness.

Biscuits

For years, biscuits and crackers have been investigated as potentially fortifiable vehicles for vitamin A. A recent randomized trial among lactating women in Indonesia (Table 13–3) demonstrated the value of feeding wafers fortified with beta-carotene. Daily consumption of these wafers (providing 3.5 mg or ~585 µg RE/day) resulted in a significant rise in serum beta-carotene and serum and breast-milk retinol compared with controls.

Summary

Despite the apparent success of vitamin A fortification of a wide assortment of dietary items in wealthier market economies like the United States, it has not yet met with similar acceptance and implementation in developing countries.
Food fortification with vitamin A clearly can be effective, it should be aggressively pursued as a potential intervention strategy. But with the exception of the national sugar fortification program in Guatemala and (more variably) its neighboring countries, most projects in developing nations have consisted of small demonstration and feasibility studies. This appears to reflect, in part, the limited choices of viable vehicles, but also a lack of imagination. Vigilance is needed to identify and exploit all potential vehicles, particularly since they are likely to increase with time. More aggressive pursuit of fortification may yet yield broader applicability and impact.

It should be clear that implementing a national fortification program is a major undertaking that requires sound scientific rationale, industrial capacity, training, advocacy, adequate legislative support, economic viability, community acceptance and long-term sustainability, monitoring and quality control.

References

2. Crowley PR Current approaches for the prevention of vitamin A deficiencies—food fortification Jakarta, Indonesia World Health Organization 1974
5. Blegvad O Xerophthalmia, keratomalacia and xerosis conjunctivae Am J Ophthalmol 1924, 7 89–117
12. Bhuyan MAH The rationale of fortification with emphasis on selected vitamin A fortification programmes In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Prevention & Control Dhaka, Bangladesh Helen Keller International 1989 138–147
Fortification of Dietary Items with Vitamin A

Assessment and Prevention

37 Favaro R, Ferreira JF, Desai ID, Dutra de Oliveira JE. Studies on the fortification of refined soybean oil with all-trans-retinyl palmitate in Brazil: stability during cooking and storage. University of San Paulo Medical School and University of British Columbia 1990

43 Murphy P, Hsu KW, Fratzke A, Hauck C. Fortification of monosodium glutamate with “white” vitamin A in Indonesia. Iowa State University, Ames, Iowa 1987

44 Wilson LK. Proposed quality assurance guidelines for the fortification of MSG with vitamin A in Indonesia. Iowa State University, Ames, Iowa 1988

45 Muhilal. A pioneering project for combating vitamin A deficiency and xerophthalmia with MSG fortified with vitamin A. Bogor, Indonesia: Center for Research and Development of Nutrition 1986

49 Muhilal, Permaesh D, Idjradinata YR, Muherdiyantingsih, Karyadi D. Vitamin A-
Fortification of Dietary Items with Vitamin A

fortified monosodium glutamate and health, growth, and survival of children a controlled field trial Am J Clin Nutr 1988,48 1271–1276

50 Muhilal Impact of vitamin A fortified MSG on vitamin A status and health a controlled field trial In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Prevention & Control Dhaka, Bangladesh Helen Keller International 1989 148–151

52 Arroyave G Distribution of vitamin A to population groups Proc West Hemsp Nutr Congr 1971,3 68–79

53 Pineda O. Fortification of sugar with vitamin A Nutriview 1993,2 6–7

54 Arroyave G Vitamin A deficiency control in Central America In Bauernfeind JC, ed Vitamin A Deficiency and its Control Orlando, Florida Academic Press Inc 1986 405–424

55 Dary O. Avances en el proceso de fortificacion de azucar con vitamina A en Centro America Boletin de la Oficina Sanartaria Pan Americana 1994,117 529–536

60 Arroyave G The program of fortification of sugar with vitamin A in Guatemala Some factors bearing on its implementation and maintenance In Scrimshaw NS, Wallerstein MB, eds Nutrition Policy Implementation Issues and experience New York Plenum Press 1982 75–88

61 Arroyave G, Mejia LA, Aguilar JR The effect of vitamin A fortification of sugar on the serum vitamin A levels of preschool Guatemalan children a longitudinal evaluation Am J Clin Nutr 1981,34 41–49

62 Krause, VM The development and relative validity of a pictorial instrument for vitamin A intake assessment in groups of peri-urban Guatemalan toddlers Montreal, Canada Universite de Montreal 1994

65 Parrish DB, Herod L, Ponte JG, Jr, Seib PA, Tsen CC, Adams KA Recovery of
vitamin A in processed foods made from fortified flours J Food Sci 1980, 45
1438–1439
66 Liu L, Parrish DB Biopotency of vitamin A in fortified flour after accelerated storage
J Agnc Food Chem 1979, 27 1134–1136
67 Borenstein B Vitamin A fortification of flour and corn meal a technical discussion
Northwest Miller 1969, 276 18–40
68 Vaghefi SB, Delgosha M Fortification of Persian-type bread with vitamin a Cereal
Chem 1975, 52 753–756
69 Drexler AE Fortification of wheat for disadvantaged groups in Bangladesh a demon-
stration project In Darnton-Hill I, ed Vitamin A Deficiency in Bangladesh Pre-
vention & Control Dhaka, Bangladesh Helen Keller International 1989 152–160
70 United States Department of Agriculture (USDA) Commodity specifications for
various products procured for title II PL480 program Kansas City, Missouri USDA
Kansas City Commodity Office 1994
71 Scott KI, Bishop DR, Zechalko A, Edwards-Webb JD Nutrient content of liquid
milk I Vitamins A, D, C and of the B complex in pasteurized bulk liquid milk
J Dairy Res 1984, 51 37–50
72 Coulter ST, Thomas EL Enrichment and fortification of dairy products and margarine
J Agnc Fd Chem 1968, 16 158
73 Nieburg P, Waldman RJ, Leavell R, Sommer A, DeMaeyer EM Vitamin A supple-
mentation for refugees and famine victims Bull WHO 1988, 66 689–697
74 Guidelines for the Use of Vitamin A in Emergency and Relief Operations A Report
of the International Vitamin A Consultative Group (IVACG) Washington DC
IVACG/Nutrition Foundation 1988
75 Pizzarello LD Age specific xerophthalmia rates among displaced Ethiopians Arch
Dis Child 1986, 61 1100–1103
76 Pizzarello LD Xerophthalmia rates in children in Ethiopia and Sudan Am J Ophthal-
mol 1985, 99 734–735
77 Gopalan C, Venkatachalam PS, Bhavani B Studies of vitamin A deficiency in children
Am J Clin Nutr 1960, 8 833–840
78 Arroyave G, Wilson D, Mendez J, Behar M, Scrimshaw NS Serum and liver vitamin
79 Roels OA, Djaem S, Trout ME, Lauw TG, Heath A, Poey SH, Tarwoyto MS, Suhadi
B The effect of protein and fat supplements on vitamin A-deficient Indonesian
80 Voorhoeve HWA Xerophthalmia in the presence of kwashiorkor in Nigeria Trop
Geogr Med 1966, 18 15–19
81 Underwood BA Vitamin A deficiency in infancy Report of the XV IVACG Meeting,
Arusha, Tanzania Washington DC The Nutrition Foundation Inc 1993
82 Protein Advisory Group statement Restricted document Geneva WHO/FAO/UNI-
CEF 1959
83 United States Department of Agriculture (USDA) Announcement PV-M-2 Purchase
of fortified spray process nonfat dry milk for export programs Shawnee Missin,
Kansas 1976
84 Fortification of PL-480 foods Arlington, VA OMNI 1994
85 Requirements of vitamin A, iron, folate and vitamin B12 Report of a joint FAO/
WHO expert consultation Rome, Italy Food and Agriculture Organization of the

88 Crowley PR. Fortification of food with vitamin A. Washington, DC US Department of Agriculture 1986

Index

Aceh study, 28–36, 43–4, 47, 172, 177–8
Acute phase reactants, 89, 193
AIDS, 83
Albumin, serum, 130, 201, 286–7
Anemia, 71, 150–6
 in pregnancy, 151–2, 156
Anganwadi worker, 403–4
Anthropometric status, 23, 25–6, 34,
 38–40, 49–50, 130, 166–9
Arm circumference, 172–7
Arm muscle and fat areas, 172–8
Attributable risk, 27, 47–8
Australia, 81

Bacterial infection, secondary, 129, 132–4
Bangladesh, 21, 39, 64, 81, 196, 340, 343–4,
 361, 376, 392–3, 397–8, 400
Body composition, 172–178
Brazil, 69–70, 193, 371–2, 421, 424
Breast-feeding, 38, 343–5
Breast-milk, 364–5, 392–5, 414–6, 419
Bronchopulmonary dysplasia (BPD),
 81–2
Buriti 371–2

Carotenoids, 7, 221–5, 227, 231–2
 absorption, 224, 364–73
antioxidant properties, 237
bioavailability, 364–73
chemical properties, 221–3
digestion, 224
excretion, 229
food sources, 355–8
 functions, 236–7
impact on vitamin A status, 364–72
and infection, 65
nomenclature, 222
retinol equivalency, 357
serum values, 227, 283
toxicity, 242
transport, 225

Chicken pox, 193
Child survival See Mortality, child
Chile, 418–9
China, 87, 177
Chylomicrons, 225–6
Cod liver oil, 52
Commotio, 103
Community prevention trials (CPTs),
 27–48, 71
Conjunctival impression cytology (CIC)
 See Vitamin A status
Conjunctival pigmentation, 112
Conversion units, 233–4, 357

Dark adaptation, 101–4, 240–1
Denmark, 342, 410
Diarrhea, 65–71, 194–8
Dietary fat, 7, 368–70, 372–3

Dietary vitamin A
 assessment, 303–4
bioavailability, 7, 362–3
effectiveness, 373–7
efficacy, 363–73
food availability with respect to, 355–6
food sources, 355–8, 357–8, 361–3
intakes, 6–7, 303–4, 343–8
Dietary vitamin A (Continued)
 recommended intakes, 238–9, 359–60
 interventions, 355–77
Drought, 169, 179, 343
El Salvador, 21, 201, 205
Epidemiology, 191–209, 335–48 See also
 Risk factors
Epithelial metaplasia, 47, 84–8,
 104–137, 251–3
Ethiopia, 64, 76
Expanded Programme on Immunization
 (EPI), 35, 398
Fontanel, anterior bulging, 397–8
Fortification of, vitamin A
 biscuits, 425
 margarine, 423
 milk products, 422–3
 monosodium glutamate (MSG)
 cost considerations, 417
 impact on anemia, 151–2
 impact on mortality, 28–36, 47
 impact on vitamin A status, 111–2,
 413–7
in Indonesia, 28–36, 47, 111–2,
 178–9, 412–7
in the Philippines, 412–7
oils, edible, 423–4
rice, 421
salt, 411, 424–5
sugar
 cost considerations, 420–1
 in Guatemala (and Latin America),
 418–21
 impact on anemia, 151, 153–4
 impact on vitamin A status, 418–20
 tea, 424
 vehicle selection, 412–3, 418
 wheat flour, 422
Gardening, home, 375–7
Ghana (VAST), 28–9, 33–4, 37, 41–2, 46,
 54–5, 70–1, 79–80, 305–6, 402
Growth
 animal, 163–5
 child, 73–4, 165–80
Guatemala, 64, 76, 151, 153–4, 179,
 366–7, 418–21
Hawthorne effect, 43–4, 68
Height-for-age, 166–8 See also
 Anthropometric status
Helminths, intestinal, 197–8, 365, 373
Hematopoiesis, 158, 254–6
Hemoglobin See Anemia
Hikam, 4
Historical accounts, 3–5, 84–7, 101, 105–8,
 113, 150, 163, 315, 343–4
Holo-RBP See Retinoid-binding proteins
Human immunodeficiency virus (HIV),
 83
Hyderabad study, 28–34, 42, 44–5
Immunity, 74–6, 88–9, 235, 251–68
 cell-mediated, 256–7, 263–8
 humoral, 257–68
Immunocompetence See Immunity
Impression cytology with transfer (ICT),
 321
India, 21, 27–36, 45–6, 54, 64, 68–70, 77,
 109, 176, 179, 338, 342–3, 359,
 368–72, 376, 399, 403–4, 422
Indonesia, 9, 20, 22–40, 64–8, 75–8, 110–3,
 151–2, 156, 166, 169–70, 177–9,
 194–8, 206, 279–87, 337–41, 344,
 346–8, 364–5, 368–70, 393–4,
 399–400, 403–4, 412–7, 425
Infant mortality See Mortality, child
Infections, 23–4, 41, 48–55, 62–89,
 192–206, 251–68
 and vitamin A status, 62–89
Intent-to-treat (analysis), 29–30, 43–5
Intracranial pressure, 397
Iodine deficiency disorders (IDD), 410–1
Iron-binding capacity, total (TIBC),
 153–4
Iron status, storage and transport,
 152–4, 156–7
Japan, 4, 205
Jordan, 64
Jumla study, 28–38, 41, 45, 54
Keratinization See Epithelial metaplasia
Lymphoid organs, 254–6
Index

Madurai See Tamil Nadu
Malaria, 193
Malawi, 64, 76, 178, 344
 case-fatality for, 41, 48–55
 and vitamin A deficiency, 199–206
 vitamin A treatment for, 48–55, 289
Meta-analysis, 31–34, 40, 43, 80
Micronesia, Federated States of, 64, 82, 155, 167–8, 199
Monosodium glutamate (MSG) See Fortification
Morbidity See Infections
Morphogenesis, 234–5
Mortality, animal, 19–20
Mortality, child
 age-specific, 34–39, 50, 52
 associated with
 diarrhea, 41
 measles, 41, 48–55
 nutritional status, 21–5, 38–40, 49–50
 respiratory infection, 23–4, 42
 xerophthalmia, 20–7
 attributable to vitamin A deficiency, 47–8
 cumulative, 30–2, 39–40
 impact of vitamin A on, 20–55
 by age, 34–9
 by birth weight, 37–9
 by cause, 41–2, 48–55
 by dosage to infants, 37–9
 magnitude in reduction of, 42–7
 measles-related, 41, 48–55
 meta-analyses to assess impact on, 31–4, 40, 43
MORVITA (Indonesia), 77, 80
New Castle Disease Virus, 88–9
NHANES, serum retinol values, 225–6
Nightblindness See Xerophthalmia
NNIPS (Nepal), 28–31, 33–8, 41–2, 45, 54, 82, 171–7
Nyctalopia See Xerophthalmia, nightblindness
Otitis, 65, 82–3
Parasites See Helminths, intestinal
Peru, 64, 197
Philippines, 53–4, 64, 359, 376, 394, 395–7, 412–7, 423–4
Pneumonia, 72–4 See also Respiratory disease
Protein-energy malnutrition (PEM), 22–6, 157, 206–9, 281, 286–7
 and vitamin A status, 206–9
Public Law No 480, US, 422–3
Red palm oil, 202, 371
Relative dose response See Vitamin A status
Respiratory disease, 23–4, 42, 72–82, 194–9
Respiratory syncytial virus, 79
Retinal function, 101–4, 315–7 See also Rhodopsin
Retinal pigment epithelium, 102–3
Retinoic acid receptors, 7, 233–5, 242
Retinoid-binding proteins (RBP), 7, 225–31, 233–5, 240–1, 278–83, 308–9
Retinoids, 221–36 See also Vitamin A
Retinol See Vitamin A
Retinol, serum See Vitamin A status, indices of, vitamin A supplementation
Rhodopsin, 101, 104, 236, 314
Risk factors
 age, 336–8
 breast-feeding, 343–5
 clustering, geographic, 340–2
 diarrhea, 194–8
 diet, 343–8
 infectious morbidity, 62–9, 192–206
 measles, 199–206
 periodicity See Seasonality
 protein-energy status, 22–6, 209, 286–7 See also Anthropometric status
 respiratory infection, 23–4, 194–5, 198–9
 seasonality, 168–9, 172–4, 342–3
 sex, 339
 socioeconomic status, 339–40
Russia, 343
Safety of vitamin A, 38–40, 242–4, 357
Sarlahi. See Nepal, NNIPS
Senegal, 167, 278, 376
Sex differences, 30, 168, 177–8
Skinfolds, 172–7
Social marketing, 362, 374–5
South Africa, 51–4, 72–5, 178
Stunting. See Anthropometric status
Sudan study, 27–8, 33–4, 45–6, 111
Supplementation, vitamin A
absorption and retention, 390
dosing schedule, 388–90
impact on
anemia, 71, 151–4
breast milk retinol, 392–4. See also
Breast-feeding
conjunctival impression cytology, 395
diarrhea, 69–71. See also Diarrhea,
Infections
growth, in animals, 165
growth, in children, 73–4, 171–9
immunocompetence, 74–6. See also
Immunity
measles complications, 41, 48–55,
71–6, 264
mortality (all causes), 27–55
mortality, age-specific, 34–9
otitis media, 82–3
respiratory disease, 72–4, 79–82. See also
Respiratory disease,
Pneumonia, Infections
retinol, serum 392–4
urinary tract infection, 82
visual thresholds, 315–7
vitamin A status, 392–5
xerophthalmia, 109, 390–2, 399–400
implementation, approaches 400–4
targeted, 401–2
treatment, 401
universal, 403–4
shelf life of capsules, 400

Tamil Nadu study, 28–37, 40–2, 44–6,
54, 69
Tanzania, 49–55, 202–5
Tear production, 9, 130–2, 241
Teratogenicity, 244–5, 399

Thailand, 64, 69, 77, 79, 151–3, 366–7,
374–5
Transferrin, serum, 131, 201
Treatment, 20, 49–50, 109, 277–90

United Kingdom, 51–3
United States, 54–5, 79, 81–2, 199, 225

Viet Nam, 205
Visual cycle, 101, 232–3, 236
Vital signs, 112

Vitamin A. See also Dietary vitamin A,
Supplementation, Vitamin A,
Vitamin A deficiency, Vitamin A status
absorption, 224, 390
adjuvant properties, 263–4
biochemical properties, 221–3
in the diet. See Dietary vitamin A
digestion, 224
effects on
acute-phase reactants, 89
cellular differentiation, 84–8, 233–4,
241–2. See also Epithelial
metaplasia
immunoregulation, 88–9, 251–68. See also
Immunity
iron status and anemia, 150–8
morphogenesis, 234–5
resistance to infection, 251–68
retinal function, 239–41
excretion, 199, 229
metabolism, 6–7, 230
nomenclature, 221–3
recycling, 229
release from tissues, 228–9
retinol equivalency, 233–4, 357
safety, 38–40, 242–4, 394–9
storage in tissues, 226–9
supplementation. See Supplementation
with vitamin A
teratogenicity, 244–5, 399
uptake by tissues, 226–8
toxicity, 242–4. See also Safety,
Teratogenicity
acute, 243
chronic, 243–4
transport of, 225–9
urinary losses See Vitamin A, excretion of

Vitamin A deficiency
contributing or precipitating factors
diarrhea, 196–8
gastroenteritis, 196–8
growth spurt, 192, 208
infections, systemic, 193–5
measles, 199–206
protein energy malnutrition, 130–1, 206–9
respiratory disease, 198–9
criteria, public health (WHO), 299–300
epidemiology See Risk factors
magnitude, 335–6

Vitamin A status
associations with
anemia in children, 154–5
anemia in women, 156
dark adaptation, 102
diarrhea, 64–9
growth
attained, 166–9 See also
Anthropometric status
velocity, 163–4, 169–71, 192, 208
hematopoiesis, 158 See also Anemia
HIV infection, 83
immune status, 251–62 See also
Immunity, Infections
iron storage, 156–7
iron transport, 157
morbidity (general), 62–5
nutritional status, 130–1, 165–70
respiratory disease, 76–9
xerophthalmia, 8–11

indices of, 7–8
clinical xerophthalmia, 8–11, 99–137, 322–4 See also Xerophthalmia
isotope dilution, 314
liver concentration, 310–1 See also relative dose response
modified relative dose response (MRDR), 313–4

relative dose response (RDR), 7, 45, 193–4, 308–13, 372, 392, 420
retinol, breast-milk, 392–5, 414–6
scotopic vision testing, 315–7
vision restoration time (VRT), 314–5
interpretation of, 8–10, 299–303, 322–4

Vitamin D, 85–6

Wasting, 22–3, 25 See also
Anthropometric status, PEM
Weight-for-age, 169
Weight-for-height, 168–9 See also
Anthropometric status, PEM
WHO criteria for public health problem, 299–300
WHO/UNICEF Joint Statement on
Vitamin A and Measles, 49–50, 55

Xerophthalmia
Bitot’s spots (X1B), 9–10, 102, 105–13
clinical cases studies, 118–29
clinical classification, 9, 99–100
clinical histopathological correlates, 125–37
conjunctival xerosis (X1A), 9, 99–100, 104–13
corneal necrosis See keratomalacia
corneal ulceration (X3A), 9–10, 117–29, 202–6
corneal xerosis (X2), 9–10, 115–29
endophthalmitis with, 129
growth patterns with, 165–71, 174–6
incidence, 22, 194–6
keratomalacia (X3B), 9–10, 100, 121–5
mortality risk with, 20–7
nightblindness (XN), 9–10, 101–4, 112, 314, 338
punctate keratopathy of, 113–8, 135
recommendations, 285
risk factors for See Risk factors
stromal changes of, 115–29, 135–7
tear production with, 130–2, 241
treatment of
adjunct, 288–9
antibiotic, 134
Xerophthalma (Continued)
antihelminthic, 198
dietary, 286–7
surgical, 289
with vitamin A, 20, 109, 277–90
systemic (oral), 49–50, 109, 278–86
topical, 287–8

WHO criteria for public health
significance, 299–300
xerophthalmic fundus (XF), 101, 103

Zaire, 48
Zambia, 76, 201–2, 338, 341