的 WAS:M4NGTON, S. C. 29823 BIBLIOGRAPHIC INPUT SHEET				BATCAMS COR AHD UNEY
1. aramet *) Arsi- Hication	4. תnmen*- TEAPORARY			
	3. 30.ensenm			
2 Tuthe and subidit for projeet planning				
3. Aelphonster; Thesen, Ame; Motiwalla, Juzar: Seshadri, Neelakantan				
4. DOCUMENTY DATE 1977		5. Nymedegf pages	6. ARC NUMBER are	

9. ABSTRACI DEMENT RED)
"This volume is a collection of techniques drawn from a variety of disciplines and presented in a standard format in order to bring together various means to a common end--better development project design. The organizing theme is a systerms approach to project planning. The techniques are means to developing project. designs which are comprehensive, future-oriented, and pragmatically shaped by the realities of power and uncertainty."

10. CONTROL NUMEER PN-AAD-365	"t. PRACE OF DOCumENT
12. DESCRAPTORS	13. PROIECT NuMger
	14. CONTRACT NLIMEBER CSD-2958 211(d)
	15. TYPE OF DOCUMENT

Systems Tools for Project Planning

Systems Tools for Project Planning

PeterDelp
Arne Thesen
Juzar Motiwalla Neelakantan Seshadri

International Development Institute Whliam J. Siffin, Director
Indiana University
Bloomington, Indiana

This publicarion was financrd by a grant from MUCLA's Program of Advanced Stucies in finstimetion Baidimg and Terhmical Assistance Methodolosy, which as funded by a 21 lidid grant from USADD. Cuntractors anderwhing projects under wovernmonat sponsorship ate cocourayed to express freely their protessional judgment in the conduct of the project Hoints of wiew or opinions stated do nat, therefore, necussarily represeme official All position or fohncy.

1SEN 0-89279-021-7
Printed in the Unimed Staste of Americal 1977

Lithary of Cugress Cataloging ina Pubilication Data
Dela, Pates
Sustoms twobs for project glaming.
Bibliograthy: po

1. Sucial sciences Miethodoiosw- E, Deip, Peer.
$194+$ Il. Pasitam.

ISHN O-89249-021-7

Contents

Illustrations vii
Foreword si
Preface xiii
Acknowledgments x
Tool Abbreviations xvii
Introduction xix
I GENERATING IDEAS
Brainstorming 3
Synecrics 6
Morphological Analysis 10
Nominal Group Technique 14
Questionnaires 19
Interviews 23
II ASSESSING QUALTTATIVE FACTORS
Rating Scales 29
Multiple Criteria Utility Assessment 32
Surveys 36
Organizational Climate Analysis 40
III DEFINING OBJECTIVES
Function Expansion 45
Objective Trees 49
Intent Structures 55
IV DESCRIBING COMPLEX RELATIONSHIPS
System Definition Matrix 67
Tree Diagrams 74
Oval Diagramming 81
Interaction Matrix Diagramming 92
v ANALYZING COAPLEX PROCESSES
Flowchart: 107
Decision Tables 113
Computer Simulation Models 120
Gaming 124
VI ACCOUNTING FOR ALTERNATIVE OUTCOMES
Histograms 131
Subjective Probability Assessment 137
Decision Trees 141
Contingency Analysis 147

VII FORECAST AND PREDICTION

Exponential Smoothing Forecasts i55
Regression Forecasting 160
Scenarios 164
Deiphi 168
VII ANALYZING PROJECTS
Cash Flow Analysis 177
Discounting 184
Net Present Worth 188
Benefit-Cost latio 194
Internal Rate of Return 200
Impact-incidence Matrix 207
Cost-Bencfit Analysis 212
Cost-Effectiveness Analysis 219
IX PLANNING, CONTROLLING, AND EVALUATING PROJECTS
Program Planning Method 227
IDEALS Strategy 231
Planning, Programming, and Budgeting 236
Critical Path Method 241
Gantr Chares 252
Logical Framework 260
List of Cross-References 265
Glossary 267

List of Figures

Morphological Analysis

1. Attributes for an Energy Policy Situation 11
2. One Combination of Attributes In dicated in a Morphological Chart 12
Nominal Group Technique
3. Index Card Illustrating Rank-Order Voting Process 17
Rating Scales
4. Examples of Rating Scales Applied to Discrimination Among Three Projects 30
Multiple Criteria Utility Assessment
5. Utility Matrix for Evaluating Alternatives 32
6. Utility Function 33
7. Utility Functions for Evaluating Farmer Contact Strategies 34
8. Utility Matrix for Ministry of Agriculture Fatmer Contact Strategy 35
Organizational Climate Analysis
9. Dimensions to Be Considered in Climate Assessment 41
Function Expansion
10. Function Hierarchy for Employment System 46
11. Forecasting the Function Expansion on the Most Regularly Occurring Concern 48
12. Function Expansion List for Employment Service 48
Objective Trees
13. An Example of a PartialObjective Tree Developed for a Hydro-Electric Project 50
14. Examples of Quantitative. Binary-Event and Qualitative Objectives Classified by Methods of Measurement 51
15. An Example of an Objective Tree Developed for a Hydro-Electric Project 53
Intent Structures
16. Format for Intent Stricture 56
17. Logic Elements for Intent Structures 56
18. Use of ANL Logic Element 58
19. Use of OR Logic Element 58
20. Use of the Exclusive OR (XOR) Logic Element 59
21. Irtent Structure for Hydro-Electric Reservoir Proiect 62
System Definition Matrix
22. System Definition Matrix Format: A Hospital System 68
23. System Definition Matrix in List Format for Alcoholics Treatment Center 70
Tree Diagrams
24. Tree Graph Form 75
25. Fundamentals of Tree Diagram Construction 76
26. Relevance Tree Examples for Family Planning Program 77
27. Tree Diagram to Start Oval Diagram for Nomad Pastoralism Ecu-System 79
Oval Diagramming
28. Oval Diagram for Nomad Pastoralism Eco-Syssem 82
29. Multiple Causal Relazionships 84
30. Types of Interaction Between Two Variabies, A and B 84
31. Illustration of Threshold Relationships 85
32. Mustration of Ir eversible Effects 85
33. Sumnary of Symbols and Notation for Oval Diagramming 87
34. Influence Tree Diagram Prepared toStart Oval Diagram of Nomad Pastoralism Eco-System 88
35. The Initial Steps in Constructing an Oval Diagram from a Tree Diagram 89
36. Oval Diagzam Depicting Causal Loops in Nomad Pastoralism Eco-System 90
Interaction Matrix Diagramming
37. Interaction Matrix Diagram Derived from Oval Diagram of Nomad Pastoralism Relationships 93
38. Properties of Relationships 94
39. Examining an Interaction Matrix for Intransitive Relationships 97
40. Reduced Cross-Interaction Matrix for Environmental Assessment 98
41. Oval Diagram for Nomad Pastoralism Eco-System 100
42. Revised Interaction Matrix Diagram Showing Influences on Interventions in System 101
43. Tree Diagram Clarifying the Influence Relationships in the Interaction Matrix Diagrame Example 102
Flowcharts
44. A Flowchart for the Task of Constructing a Flowchart 108
45. Examples of Decision Points for Flowcharting 110
46. Behavioral Model of Development Administration 111
Decision Tables
47. Decision Table Used by Donor Agency for Depositing Loan Funds into Special Program Account 114
48. Flowchart of Interpolation Procedure to Determine Internal Rate of Return 116
49. Mixed Entry Decision Table for Determining Internal Rate of Remrn by Interpolation 118
Histograms
50. Sample Histogram for Raw Data 132
51. Histogram for Clustered Data 133
52. Mean and Standard Deviation of Raw Data Values 135
53. ive:an of Grouped Data 136
54. Standard Deviation of Grouped Data 136
Subjective Probability Assessment
55. A Probability Density Function 138
56. A Probability Density Function for the Tourist Industry of Temasek 40
Decision Trees
57. Decision Tres for Farmer with Cheice of New Seed Variety and Double Cropping 142
58. The Decision Tree Representation of a Decision Under Risk 144
59. Analyzing the Decision Tree to Determine Maximum Expected Profit/Hectare 145
Contingency Analysis
60. Contingency Table with Qualitative Evaluation of Plan Performance 148
61. Contingency Table for Agricuitural Strategy Planning 150
Exponential Smoothing Forecasts
62. Plots of Pase Data 156
63. Work Sheet for Exponential Smoothing 159
Regression Forecasting
64. Graph of Regression Line 161
65. Regression Computation 163
Scenarios
66. A Standard Format for a Scemario 166
Delphi
67. Schedale for Delphi 170
68. Frequency Distribution of Estimates of Minimum Wage 171
Cash Flow Analysis
69. Graphic Illustration of Cash Flows for a Project 178
70. Small Farmer Tractor Utilization: Purchase Option 180
71. Computing the Net Incremental Benefit or Cash Flow Resuling from a Prcject 182
Discounting
72. Computing the Present Worth of a Series of Nonuniform Payments 186
Net Present Worth
73. Computing the Net Present Worth: Small Farmer Tractor Utilization-Purchase Option 190
74. Cash Flow Analysis: Small Farmer Tractor Utilization--Rental Option 191
75. Net Present Worth Calculated from Discounted Cash Flow for Tractor Utilization-Rental Option 192
Benefit-Cost Ratio
76. Computing the Benefit-Cost Ratio for Small Farmer Tractor Utilization: Purchase Opion 196
77. Cash Flow Analysis: Small Farmer Tractor Utilization- Tractor Cooperative Option 197
78. Computing Benefit-Cost Ratios for Smail Farmer Tractor Utilization: Cooperation Option 198
Internal Rate of Retarn
79. Flowchart of interpolation Procedure to Determine Internal Rate of Rearm 202
80. Te Arnual and Total Cash Flows for the Small Farmer Tractor Ufilization Options 203
81. Compatation of the Internal Rate of Return for the Small Farmer Tractor Options 204
Impact-Incidence Matrix
82. Impact-Incidence Matrix for Cost-Benent Analysis 208
83. Impact-Incidence Matrix Example: Tractor Training Program 210
Cosr-Benefit Analysis
84. Summary of Assumprions for Small Farmer Tractor Utilization 216
85. Comparing the Small Farmer Tractor Utilization Oprions 216
Cost-Effectiveness Analysis
86. Reliability and Acceprance Rates for Alternanive Means of Birth Control 222
87. Cost Analysis of Alternative Means of Birth Control 222
88. Cost-Effectiveness of Alternative Birth Control Means 223
1DEALS Strazegy
89. Fanction Hierarchy for IDEALS Strategy 232
90. Identifying Measures of Effectiveness. Regularities. and Ideal Concepts 233
91. Peeliminary System Definition Matrix for a jobInformation System 234
Plannirg, Programming, and Budgeting
92. Goals and Programs forthe Federal Economic Development Administration238
93. Analysis of Program Alternatives 239
Critical Path Method
94. Project Network for the Activities Necessary to Arrange a Seminar 242
95. Activity Card with Location of Notations 244
96. Table Format for Computation of Critical Path 245
97. Immediate Precedessor and Successor Relationships 246
98. Completed Acrivity Table for Activizies to Arrange a Seminar 249
99. Completed Project Network Showing Critical Path and Milestones 250
Gante Charts
100. A Gantt Chart Example: Planning and Conductinga Survey 253
101. Critical Path Network for Survey Project 256
102. Activity Table for Survey Project 257
103. Gantt Chart for Survey Example after Adjustments for Limited Manpower 258
Logical Framework
104. The "Logical Framework"261
105. An Example of a Logical Framework 263

Foreword

This is a toolbook.

It can be used either as a text or a reference by people stadying or doing such things as project analysis.

In principle, analysis is the mother of rationality. The word analysis labels a large array of orderly efforts to transform the imponderable into the manageable. People try through analysis to identify the key properties of problematical situations, to contrive promising solutions. and to frame these solutions in convincing ways.

Three things affect the success of such efforts-ithe nature of the "reality" being examined, the power of the analysis tools that are used, ard the decisional urrangements to which analysis contributes. What is out there and our interest in it set the basic requirments of analysis. The tools and their use determine what we sce and influence what we then try to do. This volume focuses upon tools and their uses. It indicates how they car be applied to study various kinds of realities, or to imposing a sense of order upon real-world concems. It does not address the third faci-w which affects the success of analysis effortsthe decision-mabing sertings in which the tools are applied.

The trend of our times is to demand more and better analysis tools in order to try to solve increasingly complicated problems through planned, managed action. The solutions often breed new problems. The expanding pressure to diagnose and resolve outruns our ability to respond. One American sociologist speculates that the ultimate outcome of this dynamic imbalance might be the collapse of societies in "the stufidity neath," as the needs to interpret and manage fatally exceed the capacity to do so.

No single book will solve that problem. This one may make some incremental concributions to the intelligent use of analysis in sensible problent-definition and informed solution-seeking. For example, it presents a wide range of analytical tools-about forty-and it classifies them into nine functional categories, from methods of generating ideas to techniques for controlling and evaluating results. There is an important implication here: there are many kinds of analysis which can be used for a wariety of purposes.

Why does this matter? Partly because the formal analysis strategies of social and economic change organzations are usually quite selective. They are usually skewed in favor of certain kinds of issues and techniques. The pattern of this book at least shows that there are significant categories of analysis beyond the economic and financial, and beyond determinate systems techniques for plamaing
implementation. This is important because some of the best-established, most conventional techniques of analysis, used undiscerningly, make it possible to design unworkable programs and projects.

This book reflects anocher importane idea: unatysis is not solely the province of insulated experts with littic responsibilizy for entrepreneurship or implementation. Some of the techniques presemed here are as useful to "operators" as to "analysts." All of them cat profitably be understood by people primarily concerned with promoting and executing projects.

In practice, the interplay of analysis and action is quite complicated. How it works depends chietly upon the ethird factor mentioned at the beginning of this brief essay: the decisional arrangements to which analysis contributes.

In most organizations which rely upon analysis as an important input into decisions about programs and projects, systernatic analysis and decisional action tend to be racher toosely linked.

A good part of this looseness is necessary and desirable. Studying things and doing things are frequently very different kinds of accivity engaged in by different kinds of people. Even so. decision makers and people with discretionary responsibility for executing decisions bad better understand the nature-and the limitations-of the analytic techniques upon which their decisions and their mandases may be based; just as analysis specialists will be wise to perceive the practical usefuness of their products and the limits thereof.

Various kinds of analyses produce knowledge for use in designing, reviewing, deciding, and executing programs and projects. Such analysis, coupled with criteria about goalls and stardards, helps produce decisional frameworiks and programmaric targers. It also helps produce decisions about particular plans or proposals: Do they tit within the frameworks? Are they likely to achieve acceptable targets? By helping answer these questions, the analysis may reduce the uncertainty of efforts to shape the future and lessen the need to rely upon hope and intuition. Evem when uncertainty defies dissipation, the authoritative use of systernatic analysis techniques imposes a degree of order and fecus upon decision making.

Order is a much valued quality in circumstances where uncertainty abounds. It is also a limited, potentially perverse quality. The quest for order somerimes buries real uncertainzies beneath exhaustive analyses. These analyses tools apply techniques which look like furnulas or secipes for calculating, deciding, and planning. Ther are often treated as if they are formulas or recipes. But they are not
decisiomal recipes. Analysis tecturaques only produce atredidute for cooking in decision-makitng pots, and for
 these ingredients thac productsut analysis-can be wed in corking ap programs and projects. Wut they ate readily ysusiused trow.

The tendency toward misuse is encouraged by the lopsided. mabatanced quality of our aggregation of taols. The more intrinsicully detacymuthe the tools, the more attractive they ate Leconomic andyses and finaminal analyses. and schemes for "mapping" formalized plans of action (which are actually techaigues for Hopefully idealizing what is intended; are attractive, Quamtitative malyses of costs and bencfirs, of cash flows, of serasitivities, and so forth, produce determinate answers, ewen if important data must offen be stipulated. Projected maps of future serfuences of events thave the appeal of appatent certitude, cven if they do not tell us how these secquences are going to be caused and controlled, or how plausible they are.

To say these things is nor to reject the merit of quantitative analyses and precise-looking maps of furure courses of action. Both can be waluable, just as both are dangerous in the hands of those whe tahe the products as "true." Unfortunately, these inurinsically determinate techmiques ate not matched and balanced by methods for analyzing
 seriad resoburce neteds and ways to metat them, hase tu sperify the incentine which will increase the probability of success, and hom tw macasare rhe fatil rugge of effects. Our tools fur doing these latter things are at best rather messy and zmprecise, So decisions zend to tum more upon the findings and projections of the meater techniques: and mdesseffor goes into retiming and applying them.

This gemeral obsenvation is reflected in the conments of this book. It does present hearistic techniques for adidressing some of the trowblesome problems of design-generatiny ideas, pinning dowt objectives, and trying to map complex relationships, for example, But, understandably,
much of its buk presents reliatively dezarminate computational rooss. Because these are the tools wr have.

A longer essiyy on the interplay of analy sis and action would address other inportant aspects of the subject, such as the use of znalysis to mamipulate consent and acceptance and the mamipuldtion of analysis to secure acceptance for for proposalls. The function of analysis in the decisiomal processes of dewelopment agencies is not limited to the uncontamimate -4 gencration of unassailable objective premaises, nor can it cwer be solimited.

But the ultimate jusrification of analysis as a kind of activity is its contribution to berter knowledge. better understameing. better decisions-to the reduction of error and the criargement of humant capacities for auspicious action. it is to these aims that this roolbook is dedicated.

The book itsolff is the evemtual product of a question put to two young industrial engineers at the University of Wiscorsinn a few years ago: "What sorts of tools and rechmiçues do you peuple use in defiring problems and shaping solutions which might be transferrable to the field of ecomomic and social development?" Here are the answers provided by Professors Delp and Thesen and their associates.

These answers are meirther exhaustive nor definitive; there is little lirnit to the futl array of tools that might be cited. Many of the indiwidual tools offered here are themselves subiects of more tham one book. But this work is a waluable imtroduction and averview. Each tool is presented in a way which facilitares intelligemt fudgment about its use. The tool descriptions are buttressed by citations which enable the reader to pursue topics of special interest.

If this book should somehow cause one conseqtential error to be avoided, in the design or implementation of a single project symificantly affecting the lives and weilbeing of some prople. the enterprise which has produced it will stand justified. Giwen the limits of our ability to anabyze certain kinds of catuse-effect relations we shall never Snow.

Preface

The word "tool." in its strictest sense, refers to an implement a means for effecting some purpose. When we started the project which led to this volume. we used techniques. methodologies. and tools synonymously to describe various means for planning. On reflection. perhaps the stricter definition is also inappropriate. for this collection represents a set of implements-tools for implemenating a systems approach to planning.

Systerns, system models, and the systems approach tend to blur together into a conceptual mass whose canigible aspects are represented as tools. We ve cailed them "system tools," not because they are necessarily ficrived from systems concepts or systems enginearing, bur because they are tools which facilitate a systems approach to plaming. A systems analyst uses techniques which shape plans from a systems perspective. The wholistic. furureoriented, inter-relatedness of systems thinking models the situation facing development planmers-situations filled with myriad interdependencies, uncertain futures, an illdefined present, and a data-deficisnt past. The aiternatives to a systems approach tend to produce fragmented. incrementally effective (if not counter-productive) developmentefforts.

Action-oriented development activities are implemented as policies, programs, or projects. We have used the project concept to represent both programs and policies in the sense that one or more projects are specific activities in order co implement a program or policy of action. The distinction between a project and a system is not always clear.

Often the system tools descr be techniques for planning a project or a system. For ex. aque, cost-effectiveness analysis is u_ed to evaluate 1) alternative components of a system, 2) alternative systems, or 3) alternative projects (which may involve many interacting systems). In many cases. techniçues for project design and techniques for system design are indisringuishable.

Planning, as we have used the term. encompasses the entire range of activities associated with acheving development ends. Planning a project requires that all aspects of the project be designed or specified. This includes identifying objectives, sub-objectives, and criteria for evaluating the achievement of objectives. It includes specifying the essentials of implementation-those messy details of getting from an idea to a project. A systems approach to planning requires that the requisites of management be incor-
porated into the design and that the essentials of evaluation be considered in the planthing process. Short-term Feedback systems to provide management informationark designed to complement long-term feedback of project impace in order co infurm development planners. This broad view of planming and its intimate connection toinplementation has guided our selection of rechmiques and their descriprions.

One aspect of the descriprion which needs elaborating is our distinction between decision makers and analysts. Certain eechniques require special skills for successtul implementation cog. Surveys, Cost-Benthit Analysis: An analyst. possessing these needed skills. way also be the decision maker. In some techniques the two roles are distincs Delphi. Program Planming Method; while in others the separation of roles is not important. A decision maker has discretionary control over resources incheding those required for analysis. Therefore, he views the problems of projece plaming from a different perspective from the analyst and usually a different degree of accountabilityThis reflects nor only the way techniques are employed. but the decision to employ a particular tool. The classic case is an analyst who meeds information recommending a sample survey, and the decision maker reconsidering this approach because of political sensitivities. Wa have incinded this distinction where relarive to the application of the technique.

While we have sought to be comprehensive in our coverage of systems rools for planning. we recognize the omission of a great body of planning techniques developed in suchat flelds as econometrics. business, and operations research. Linear programming. input-output models. ormarix algebra are useful planning rools, but chey represent a level of sophistication. a rigidiry of models. and a dependency on accurate data and computer implementation which seem inappropriate for the intended andicnce of this volume.

This collection of techniques and methodologies is intended for pracritioners in the many diverse fields in which development toucines both the peoples' lives and livelihood. Our examples are drawn from agriculture. education, health. family planning, employment, and resource management to underscore our belief in the universal urility of these tocis in planning. We have focussed on project design and implementation as the action interface of planned development.

Acknowledgments

Producing a volume of this scope is a long and difficult process. The support. constructive criticism. and encouragcment of many have helpedus in this endeavor.

We must begin by thanking the many authors who developed the techniques described in this volume. We have tried to give appropriate credit in the last sections of each tool description, citing the originators of the techniques whete appropriate.

We are particularly indebsed to our colleagues at the University of Wisconsin. Professors Andre Delbecq. Dave Gustafson, Howard Harrison, and Gerald Nadler. Their names will be found throughour the bibliographies for the technigues. We grazefolly acknowledge their contributions, while excusing them for all responsibility for any errors or misinuerpretations in our renditions.

Valuable criticism and support were provided by Dr. Richard Blue and Dan Crecdon, United States Agency for international Developraent: Richard Hook and John Thomas. Harvard Institute for International Development, William Siffin. Russell Stout, and Paul Cunningham, Indiana University. Dr. Siffin's promotion, support. and professional guidance of this project from conception to
final product was highly valued by the authors.
We are indebted to the Program for Advanced Studies in Institution Building and Technical Assistance (PASiTAM for providing the support necessary for redrafting materials used in this volume.

Final cdising and production has been the responsibility of Marianne Platt who deserves major credit for transforming the writing of system engineers into useful commumication. Ms. Platt worked closely with Peter Delp over the course of a vear. edititrg and revising the work of four authors into a coheremt volume. Other members of the PASITAM production staff deserve much credit for professional work. especially Clancey Maloney who inked the many diagrams appearing in the volume.

We need also to thank Pat Hochmuth who edited the first working drafe. and Suzanne Machett and Doreen Marquarde who cheer fully endured our endless demands in order to produce a first draft.

A final tribute is due our families and friends. especially Sandra Kalschear, without whose support. encouragement. and often direct assistance. completion of this work would nor have been possible.

Abbreviations

BCR	Benefit-Cost Ratio	IRR	Internal Rate of Return
BSG	Brainstorming	IVW	Interviews
CBA	Cost-Benefit Analysis	LGF	Logical Framework
CEA	Cost-Etfectiveness Analysis	MCU	Multiple Criteria Utility Assessment
CFA	Cash Flow Analysis	MPA	Morphological Analysis
CCA	Contingency Analysis	NGT	Nominal Group Technique
CPM	Critical Path Method	NPW	Net Present Worth
CSM	Computer Simulation Models	OBT	Objective Trees
DIS	Discounting	OCA	Organizational Climate Analysis
DEP	Delphi	OVD	Oval Diagramming
DTB	Decision Tables	PPB	Planning. Programming and Budgeting
PTR	Decision Trees	PPM	Program Planning Method
EXF	Exponential Smoothing Forecasts	QTN	Questionnaires
FEX	Function Expansion	RGF	Regression Forecasting
FLW	Flowcharts	RTS	Rating Scales
GAM	Gaming	SCN	Scemarios
GNT	Gantt Charts	SDM	System Definition Matrix
HIS	Histograms	SPA	Subjective Probability Assessment
IDL	IDEALS Strategy	SVY	Surveys
IMD	Interaction Matrix Diagramming	SYN	Synecrics
INS	Intent Structures	TRD	Tree Diagrams
IPX	Impact-Incidence Matrix		

Introduction

Designing development projects requires some form of "systems" approach. If any plan is to succeed, the factors that will probably determine the outcome must be identified. and their relationships must be established There will always be surprises as implementation proceeds, for our ability to predict and control the future is limited. The object of planning and design is to keep those surprises at a minimum. A systems approach, properly used, can serve this aim.

There is another ivetification for a systematic approach to project planning and design: Even the simplest interventions have secondary effects-consequences which are easily overlooked because they are incidental or even irrel. evant to the project itself. An irrigation project. designed to raise farmer income through increased productivity, may threaten established social and economic relationships. It may introduce water-borne disease vectors. It may have other unintended consequences which, in some cases, are more important than the direct impact of the project.

In the West, the word "systems" has acquired, for some people, a certain magical quality. The term is used promis cuously, vaguely, and enthusiastically. The problem lies not in the meaning of that term, but in the way in which it is applied.

Conceptually, a system is simply a set of interactive elements. In conventional usage, the term refers to a set of factors which are known (or assumed) to be necessary and sufficient to some purpose or effect. Systems thinkers
often work backward. beginning with a desired objective and then determinning what factors are needed to accomplish that objective and how those factors must be related. The success of this approach to design depends not on the use of the term "system." but on the ability of the designers to truiy know what is aecessary to the desired effect.

There are many areas where such knowiedge exists. for example, in designing an electric motor. an automobile. an airplane, a computerized data processing program. or a water control system. In these and similat examples. the system can be thought of, for all practical purposes. as "closed." It is a tidy system. There is relatively perfect knowledge of its parts. and of sheir relation to a desired effect. And the essential relationships between the system and its environment can be known and controiled.

Problems arise when this alluring idea of "system" is transferred from the fields of determinate design into the messy world of "open systems." These are loose and not necessanily stable arrangemenrs in which the environment of an action system, such as a government program. an enterprise, or a farming venture is always affecring the working of that system.

In the langrage of systems, the "environment" consists of the factors which affect the system's working but which are not subject to full control from within the system. The weather is an important environmental factor in agricultural systems, "Politics" constantly affects the behavior and potential of a bureaucratic program system. In short, open systems are not nearly so determinate or so capable
of precise specification as the more closed sysiems of insulated enginecring. There are two potential dangers in applying the idea of a system to designing development projects.

The first is the danger of failing to identify essential elements of an open system. or to effectively judge their probable working. A systems perspective cannot guarantee against this danger. It cannot tell you ahead of time what the factors are or how they will work. It can, however, make you aware that they exist and that you had better try to find and assess them.

The second danger might be labeled "undue narrowness." the danger that "incidental" effects may be ignored or undervalued. This can result from systems analyses which, as nored above. start with some desired aim or geal and then work backward ti identify the necessary and sufficient factors for meeting the goal withour also considering the orher effects which those facrors vill have.

It is possible to examine and analyze the larger array of effects produced by any system. Some systems approaches fail to address this vital matter, but only a broad systems perspective can consider these effects in a reasonably orderly way. Thereforc, the systems approaches reflected in this collection of tools and techniques are comprehensive. The aim is to help people search systematically for the broad implications of planned change. The approaches supported by these tec:miques are futureoriented. They offer help in trying to forecast immediate and longer-term effects in open systems designs. The approaches supported by the following tocls are essentially pragmatic. They address the realities of the socio-political environment of any of the kinds of systems likely to concernus.

In these approaches, the systems analyst attemprs to deal with unbounded complexity by identifying a ser of salient variables which describe the problem. The organizing concept is the notion of a system, defined not as a static but as a dynamic entity. The values of descriptive variables and the status of relationships are projectedinto the future in order to look at the consequences of planned interventions. The systems designer recognizes both the limitations of deterministic anaiysis and the realities of power as it invariably affects the best laid plans. Consequently, a hallmark of a systems approach is pre-planned adaptability, Adaptive systems are better equipped to deal with uncertain futures, the vagaries of power, and the realities of complex political, social, and technical interactions.

Engineers have long straddled both hard and soft approaches to problems. In true engineering fashion, he/she uses whatever technique fits the task or promises insights into solutions. For the non-technical aspects of problems. the systems engineer must rurn to other disciplines.

APPLYING ASYSTEMS APPROACH

Tackling complex problems requires a variety of techniques. Flowcharts (FLW, page 10 Th. a diagramming tech. nique which flourishes in the computer sciences, show the logic and sequence of complex computer programs. Not much imagination is required to adapt the technique to the complex decision processes confronting development planners. The aim for design remains the same: using the technique to understand the determinants of decision and action.

This adaptation of systems technology (software) to the complex realm of human behavior is a two-way street. Behavioral scientists have developed systems oriented techniques which have been readily adopted by project designers. Brainstorming (BSG, page 3) and Nominal Group Technique (NGT. page 14) emerged from a marrage of small group theory and empirical crearive process analysis. System designers utilize the techniques because of their demonstrated power in generating ideas and innovative solutions.

Criteria used for selecting for exeluding' techniques from the volume were based on the needs of the intended audience. Many sophisticated techniques utilizing optimization theory and computer technology fill the systems literature ani scem inappropriate for meeting the needs of a project planmer in the field. Consequently, linear programming techniques, queuing and game theory, inputoutput models, and cross-impact matrices have not been included. By and large nothing more sophisticated than a pocket calculator is required for any of the tools. The exception is Computer Simulation Models (CSM, page 120). which was judged sufficiently important that a summary description was included. Complex mathematical formulations have been awoided, except where a step-by-step procedure can be described (see Regression Forecasting, RGF, page 160. and Discounting, DIS, page 184).

TOOL DESCRIPTIONS

Each tool describes what the project planner needs to know in order to 1) select a tcol. 2) utilize the tool, and 3) understand its implications and underlying theory.

To aid selection, each tool begins with a brief statement of purpose and a summary of uses. A short description follows (supplemented by key definitions) and is augmented by a listing of advantages and limitations. The decision maker is thus given a brief overview of the tool to help him decide if the technique is a candidate for addressing a problem. To this end, a section on required resources (effort, skills, tirne) concludes the first part of each zool description.

In order to use a tool, a derailed description is needed, beginning with required inputs, expected outputs, and int
portant assumptions. Moving from inputs to ourputs involves a procedure, which is cescribed for the tools at differing levels of detail. An example illustrates the procedure.

Finally, a brief section on the underlying theory and a bibliography conclude the tool description. Together with the listing of assumptions and limitations. these attempt to give each tool a theoretical base, while leading the reader to additional sources.

Ideally, each tool description should be self-sufficient. but in order to save space and provide essential continuity, the prerequisites of each tool precede the description. For example, the description of cost-benefit amalysis (CBA. page 212) takes the form of a summary linking prerequisite tool descriptions comprehensively. In some cases. a common example iscartied through several tools.

The examples draw on a broad range of problems and situations confronting project planners in the development fields, ranging from education and health to agricultare and economic policy, Most of the examples refer to the developing country of Temasek which (for convenience) has a widely varying climate and diverse ecological zones. The population is mostly agrarian. The examples are drawn frem in $3 t$-hand experiences, hypothetical situations, or the literaturc.

USING THE SYSTEM TOOLS HANDBOOK

The tools included in this volume fall into a number of categories: generating ideas; assessing qualitative factors; defining objectives; describing complex relationships; analyzing complex processes; accounting for alternative ontcomes; forecass and prediction; analyzing projects; and planning, controlling, and evaluating projects. Clearly, many techniques could be included in more than one caiegory. For example, computer simulation models (CSM, page 120) could be used for the last six purposes listed. It is presented in analyzing complex processes because that is the most basic use of computer simulation.

Each tool is designed to stand alone as a source of information for a decision maker, as an aid to the analyst, and as a catalyst for multidisciplinary design teams. The tool description (together with any prereguisite tools) provides a basis for action and/or the evaluation of actions by others (e.g., permitting a decision maker to interpret the models used by analysts).

DEVELOPING SYSTEMMODELS

Three tools are paramount to the destription of any system: Tree Diagrams (TRD, page 74), Oval Diagramming (OVD, page 81), and Interaction Metrix Dtagramming (IMD, page 92). Each describes the complex relation-
ships of a system and defines a systern as distinet from its enviromment.

One possible sequence for wsing the tools is given in figure 1a. The analyst uses a tree dagram (more specifically, an intluence trect to develop the relationships which prescribe systeri behavior. This leads to a specificarion of system variables and envirommental factors which infliucnce variables within the system. At some point. the tree diagram is redrawts as an oval diagram to show the feedback relationships and multiple interactions of system variables. If the ovall diagram becomes too unuteldy. the amalyst may turn to a matrix description. This has the distinct advantage of systematically pinpointing every possible interaction among system and environmental waiables, while refining the oval diagram.

The amalyst may wish to begin with an interaction matrix diagram rather tham a tree diagram (see figure 1 b). This approach appeals to those who are more comfortable separating the idemrification of variables from she speciffcation of relationships. A tree diagram or an oval diagram is then used to interpret the interaction matrix in a form which permits tracing the sequence of cause andeffect. An interaction matrix diagram is parcicularly useful in breaking down information-gathering and analysis tasks into distinct groups, thes facilitating task assignments.

The oval diagram constitutes a first attempt at acausal model of the system: it presents an explicit statement about key variables as well as hypotheses about cause and

FIGURE la

FIGURE 1b

effect relationships. These thypotheses may be tested by fegewsion analysis sec RGF. page 160 jand then quantita tively modeled. The oval diagram is then used in various ways to gaingeater understanding of system behavior isec fygure 2). For exampic. a computer simulatitom model (CSM. paye 120) can be constructed in order to predict the consegutence of changes in the system. A scemario (SCN. page 164 may be doveloped using the oval diagram as a basis for describing the base state and the kinds of changes expected in the future.

FIGURE 2

GENERATING AND ANALYZING ALTERNATIVE PLANS OF ACTION

Tree diagtams in the form of ends-means diagrams see TRD, page 74) are useful for braking a system into componcuts or an objective into alternative means. This begtms a sequence using several techniques to awalyze alternative plans (see figure 3). The central tool in this process is the Decision Tree (DTP, page 141). Branches of a decision tree map diternative actions and probabilistic ourcomes. The alternatives may be identified by the tree diagram branching process or the matrix format of morphological andlvsis (MPA, page 10). The probabilities of various outcomes are often subjectively assessed (SPA. page 137). Closely related to the decision trec, concingency analysis

CGA page 147 tabulates alennative plars against the various possible states of nature which affece th. outcomes.

Outcomes for both techriques are expressed either 25 monetary units (costs and benefits) or as utilities, wing a concept which translates prefercnees for an outcome into a dimension on an interval scale (see RTS. page 29\%. Unilities assessed for various criteria are combined in Multiple Criteria Laliry Assessment (MCU. page 32).

In short. these possible sequences of tools (figure 3) describe a process of antlysis which begins with generating atermatives and results in an evaluation of alzernative outconres. The end use may be employed for a cost-benefit analysis of for the selection of plan elements.

CO-OPTING CLIENTS, RESOURCE CONTROLLERS, AND EXPERTS INTO THE PLANNING PROCESS

There is a ses of tecnmiques which claim their greatest strength in their ability to generate cooperation among various actors on the plinning stage. The central tool is the Program Planming Method (PPM, page 227). Supporting this tool are a number of techniques. each of which is powerfult when used alone and potentially more so when incorporated into a srrategy see figure 4 . The Nominal Group Tecknique (NGT, page 14) permits maximum efficiency in generaring ideas. It is particularly effective when used by diversely composed groups.

A companion techrigue is the Delphi process (DLP. page 168 : is whin experts and decisior makers contribute with out face-fo-face confrontation. This anonymity is often mecessary if the pursuir of ideas and constructive problem exploration is not to be hindered by social and bureaucratic sanctions. The Delphi utilizes repeared rounds of questionnaires $\mathrm{QTN}^{\text {, page 19]. }}$

The Program Plaming Method combines these techniques to produce plans which co-opt clients, resource controllers, and experts in a carefully orchestrated planningprocess.

FigURE 3

A NORMATIVE APPROACHTO PLANNING

One planning strategy begins with a normative concept of the ideal system, rather than analyzing what could be

FIGURE 4

FIGURE 5

wrong with the existing one. This strategy is embedied in the IDEALS Strategy (IDL, page 231). Two other techniques support this approach (see figure 5).

Function expansion (FEX. .ge 45) forces the system designer to think in terrs of the purpose of the system desired-what the system should be doing. This leads to a specification of the "ideal system target" which becomes the basis for designing a feasible system, using essentially the system design strategy. The form of the specification is the system definition matrix (SDM, page 67), which is the output of the IDEALS process.

Focusing on funcrion rather than on problems gets people involved in a constructive assessment of what should be, rather than what's wrong and who's to blame. There are sound arg-ments for both approaches. The IDEALS Strategy often comes under attack because its emphasis or normative specification may possibly ignore experiences gained from problems with the existing system. If the ideal system target proposes a radical change, where only incremental changes are acceptable, normative prescriptions may be counterproductive. Still, there is an intuitive appeal to any process that encourages minds to explore an unlimited problem-solution space, unbounded by existing system descriptions.

USING SAMPLE SURVEYS TO GATHER INFORMATION

A sequence of zechniques is particularly useful for gathering information across a broad spectrum. The principal technique is the sample survey (SVY . page 36), which begins the design of the survey questionnaire (see figure 6). Where subjective assessments are to be quantified and aggregated, the questionnaire may incorporate rating scales (see RTS, page 29).

The questionnaire (QTN, page 19) musi be pretested and refined so that the objectives of the survey may be realized. The means for obtaining the desired information may vary greatly, but one useful technique is the direct interview (see IVW, page 23). This is asually the preferred approach in pretesting the survey because it requires less time and gives more design information tham mailed questionnaires. The latter technique, however, is widely used

FIGERE 6

when a large sample is to be covered by the survey. even though a high return is seldom possible.

The survey results are quantified and aggregated, often in the form of histograms from which statistics may be compured HIS. page 131 . These results are then used to formulaze policics, zo specify systern design see System Definition Matrix. SDM. page 67, to quantify costs and benefirs (CBA. page 212), and to evaliate programs : see Logical Framework. LGF. page 260 .

PROJECT FINANCIAL ANAIYSIS

The financial analysis of projects is a sequential process which begins by identifying costs and benefit time streams (Cash Flow Analysis. CFA. page 177) and culminates in the presentation of recommendations and assumptions to decision makers (see figure 7). Many rechniques sup port this analysis at each stage. A survey may be necessary to gather financial and production data. The sarious impacts of a project may be tabulated across directly and indirectly affected groups in an impact-incidence matrix (IPX, page 207). This technique attempts not only to quantify all impacts of a project. but nonmonetary impacts of a project using rating scales RTS. page 29).

The time streams of costs and benefits are discounted to give their present value in order to compare project alcernatives (see Discounting, DIS page 184). The criterion for comparison may be met present worth (NPW, page 188), benefit-cost ratio (BCR, page 194), internal rate of return (IRR, page 200), or a combination of these.

The cash flow analysis, the evaluation criteriz, and the impact-incidence amalysis are brought together in costbenefit analysis (CBA, page 212). The end result may take the form of a single go-no go decision on any one project, or a ranking of alternative projects for funding.

FIGURE 7

THE "CONVENTIONAL" SYSTEMS APPROACH

Systems analysis begins with identifying objecrives. sperifyin, alternative means, specifying the criteria for selecring ameng the alternatives, and then synthesizing a system or plan from the choices. A sequence of techniques for applying the systems analysis strategy begins with Ob jective Trees (OBT. page 49) and/or Intent Structures (INS, page 55) tsee figure 8). Brainstorming, Nominal Grour Technique, or morphological analysis may be used to specify aiternative means (see also Tree Diagrams. TRD. page ' 4). The alternatives are analyzed using either aecision trees or contingency analysis to develop the project plan. Costeffective aralysis, multiple criteria urility assessment, or both are used as criteria for evaluating alternatives. The plan may be specified as a System Definition Matrix, Loyical Ftamework, or as am operating Planning, Programming, and Bu, Ageting system (PPB, page 236). This strategy is not altegether different from the IDEALS apprcach; however, the starting point of the latter is the function of the system rather than objectives for a project.

PLANNING PROJECT ACTIVITIES FOR IMPLEMENTATION AND CONTROL

Two complementary techniques which specifically address the scheduling of project activities are the Critical Path Method (CPM, page 241) and Gantt Charts (GNT, page 252). The techniques may be incorporated into a strategy which plans and facilitates the implementation of a project.

Critical path techniques begin with a list of projectactivities essential to the achievement of project goals (see figure 9). The list may be generated using techniques such as brainstorming or, more formally, from a system

FIGURE 8

FIGURE 9

specification (see System Definition Matrix). From the critical path network, a Gantt (bar) Chart may be prepared, enabling a planner or manager to schedule acrivities and resources. He may wish to presamt the activities and officers responsible in an interaction matrix (IMD, page 92) in order to emphasize both the interrelatedness of tasks and the multiple staff responsibilities. A Logical

Framework may also be used to sharpen the identification of objectively identifiable indicators of progress. These milestones are shown as vertical lines on specific dates of the Gantt Chart and written on the Critical Path Method network at the appropriate nodes.

Altogether, the techniques serve to ease the manager's job by breaking down a complex project into finite tasks with planned start and end dates. Progress monitoring permits effective use of staff which is essential to successful project implementation.

ANALYSIS AND PROGRAMMING OF DECISION PROCESSES

A decision-making system exists for a specific purpose. The first step in any analysis is a function expansion to specify that purpose (FEX, page 45) (see figure 10). The aim is to soecify the key decision points and the conditions which lead to particular actions, i.e., the decisionmaking policies. Two processes may be used to obtain this information. If the system exists, decision makers may be interviewed (IVW, page 23). If the task is to design a system, then idea generating techniques (e.g. Brainstorming. BSG. page 3) are used.

FIGURE 10

The results of this analysis are presented in the form of flowcharts (FLW, page 107) or decision tables (DTB. page 113). The flowchart uses different symbols to display and analyze complex processes. The decision table presents the decision as a preprogrammed process by specifying the conditions which precede-and the action which fol-lows-a decision. Both techniques are usefully employed in management training as well as in diagnosis of potential problems in implementation.

QUALITATIVE FORECASTING

A scenario draws on a variety of expertise to produce a map of the future states of a system (SCN, page 164). It is
the result of a strategy which incorporates intwition and judgments into a coherent framework see figtre 11:.

FIGURE 11

The Delphi technique DLP, page 168; begins by directing questionnaires to a selected group of prognosticators. The results of each round are summarized for the Delphi group, often in the form of a histogram which aggregates the individual judgments. Rating scales attempt to quantify priorities and opinions. The Delphirounds are then used to prodace the successive state descriptions of the scenario. The desired result is a clearer understanding of the forces and constraints which are involved in planned chatge.

PROBLEM ANALYSIS STRATEGIES

Problents in systems whether ongoing organizations or newly designed projects' may be analyzed by tusing a number of techniques. none of which guarantees a solution. Racher. they promise a greater understanding of the dimensions of the problem. Two techniques are central to the analysis of problematic behavior: Oval Diagramming (OVD, page 81) and Organizationd Climate Analysis (OCA, page 40; ;see figure 12).

FIGURE 12

Problems are first identified using a technique such as Intent Structures (INS, page 55) to specify conflicting objectives and competing interest groups. The Nominal Group Technique (NGT, page 14) or brainstorming (BSG, page 3) may also be used. The problems lists may be ent ployed to guide the information-gathering, the interview-
ing nucessary for an analysis of organizational climate, or the tackling of identified problems by a Synectic prob-lem-solving team (SYN, page 6). The very least to be expected from a Synectics group is a better definition of the problem and a creative attempt at a solution.

One highly recommended technique for combining all these analyses is an oval diagram which describes the sys tem or organization. Most problematic behavior stems from poorly designed feedback of information withim a system, and poor understanding of the far-reaching effects of actions.

The analyst may nitimately wish to test the problem analysis by using management games (sec Gaming, GAM, page 124) which are catefully designed to identify
problems which arise from simulated interaction among system and organizational components.

CONCEUSIONS

This volume is a collection of techniques drawn from a variety of disciplines and presented in a standard format in order to bring together various means to a common end better development project design. The organizing theme is a systems approach to project planning. The rechniques are means to developing project designs which are comprahensive, future-oriented, and pragmatically shaped by the realities of power and uncertainty. While no single technique is the systems engineer's unique contribution, all should concribute to better project design.

I
 Generating Ideas

Brainstorming
Synectics
Morpholcgical Analysis
Nominal Group Technique
Questionnaires
Interviews

Techniques for generating ideas and gathering information are essential for project planning. Eliciting information from clients, experts, and decision makers in order to generate innovative alternatives is a crucial step in a systems approach. The selected techniques structure group "creativiry" (Brainstorming, Nominal Group Technique, and Synectics), promote systematic synthesis of alternatives (Morphological Analysis) and formalize interpersonal communication (Interviews and Questionnaires). Two of the techniques gain their strength through interacting group processes (Brainstorming and Synectics) in contrast to carefully structured group interaction (Nominai Groap Technique).

Brainstorming

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

Brainstorming is a group creative process used to generate alternative ideas and suggestions in response to a stated question or problem.

USES

Brainstorming is used to:

1) Generate many alternative solutions to a problem.
2) Generate alternative ways of locking at a problem.
3) Identify experts who will aid in different problemsolving phases.

SHORT DESCRIPTION

Brainstorming is a group process where the members, usually from different backgrounds, respond to a central question or theme. Emphasis is placed on generating a large number of ideas while deferring criticism and svaluation. Brainstorming is especially useful for attacking new problems or for identifying new ways of looking at old problems.

ADVANTAGES

1) Origimal and innovative ideas may be generated if ptrmature criticism is not allowed to inhibit spontaneity.
2) Cross-fertilization of ideas occurs, especially when the group is composed of experts from different fields.
3. The relatively unstructured narure of brainsturming is sometimes preferred over methods like the Neminal Group Technique (NGT, page 14 .

LIMRTATIONS

1) Brainstorming mas be umproductive if the grot P members are meeting each other for the first une during the session. The eftectiveress of a brainstorning session is gready enhanced when the members knowe each other before the session and when they are morivated to solve the - problem under consideration (Bouchard, 1971).
2) Superior-subordinate relationships outside the session may affect the free interchange of ideas within the session.
3) A brainstorming session often inwolves misclirected discussion which may be unproductive and a waste of time.
4) Discussion may be dominated by one or two members, and may stifle the parcicipation of other members. This is in contrast with Nominal Group Technique (NGT, page 14).

REQUIREDRESOURCES

LEVELGFEFFORT

for bramstofning sessions to be effective all parting
 tate zta crosh fortilization of didecs. fr may requite some adort by aroup wembers wh defer then naturd tendency fecriticiocer otherwise evaluate the ideas preserted.

SKILI.I.EV!L

No, special wills are requirad. Some practice may be necessary betort bainstommang sessions are productive. Gomedly, membets will bring expert shitls. but they mast be able to atrapolate beyond alheir own experience. The gronal lead with be more effective if he has some trainimg or experkence in wonductmg branstorming sessions- par
 misdirected.

TMEREQUIRED

hannstorming sessions which last longer thath an foour are asadly utaproductive. The time sfan is proportional ro The mumber of partiviputs. It dow de pends on the movelts of the question mader comsideration.

SPECALREQUREMENTS

Blachboard and chaik. or athp chart ad marking feris. are used to record all suggested idesas. Wrining materidio tor cay member dre needied. A tape recorder may be unted to record the session.

DESCRIPTION OF TOOL

REQUIRED INPUTS

1) A statenent on the problem, wasually in the form of a question, focuses participans" ideas. e.g., "How can the itacrease in Temaseh"s population be stopped?"
2) Participants may be experts, consumers, chents, or practitioners. Contritutions, however, may be made by experts or cratise people from unctlated fields.

TOOL OUTPUT

The principal result of a brainsrorming session is a large number of ideas which may serve as possible annswers to the question. Fot example, brainstormed amswers to the froblem of slowing popalation increase may be:

Educate on family phannimg
Makecontraceptives free
Shout people regulatly
Steribize men or wome:n
Howe men and women separately
These answers are not quatified or evaluated. The evaleatton is deme by using zecknifures Hike Decision Trecs IDTR. page 141. our Cost-ibemefit Amaysis (CBA. page 212). Secmingly oundandish ideas are not immediavely rejucted: they may yenetate more pracical alternatives.

MMPORTANT ASSUMPTIONS

1 Tha brainstorming techmigue assumes that the wroap process of gencratimg ideas will be more effective than independernt effores it nor in total number of ideas.

2. It is assumed that participants will overcomve fincir imbibitions and discuss ideas trevily.

METHON OF USE

GENERAL PROCEDURE

The procedure is addressed to the person who whll wonduct tine brabatermingsossion.

1. Organize the group.

1.1 Idenaty putential participants. keeping is mind the mature ot the problem. For example, 年 the problem conewens popuiarion soncrol. poremat tharticipasts are a physimian, a pswchologist. a gorernmetnt offichaf. a dueatith care administrator. commennity workers. potential chents, atc. The organizers on a bramstorming session way use the
 parnis for tuture problem-solving groups.
1.2 Limit tiat group size to seven so ten. Somerimes latger groups are tised, though they tend to decremse the taseininess of the sessions.
2. Instract the participants.
2. Explain the four griding principles of brainstorming:
a) There are no correct or incorrect ideas. All ideas are accepted on eqtal ground.
b. Novel and creative ideas are encouraged regardless of how boolish they may seem. C-iticism is notallowed.
c. Emphasis is on generaking a large number of idess in order to get "all around" the problem.
d) Combinations and extensions of ideas are ancouraged.
2.2 State the guestion or problem under consideration and discuss it brienly in order to clear up misunderstandings. Let the participants thinh about the problem for a few minutes. Indicate that they can make notes. but discourage any ourbursts like. "Tve got the selution."
3. Conduct the session.
3.1 Ask a participant to respond to the question and to briefly explain it. Participants may take turns. giving one idea at a time, or the process may be spontaneous. in both cases, an idea suggested by one member often trigyers an idea from another. This is referred to as "leap-frogging." Encourage "ieap-frogging" in the group. since one aim is the gencration of a large number of ideas. However. the leader should exercise his yudgment in kecping order in the session.
3.2 If necessary. remind members about the rules of brainstorming during the session. Sometmes members need a new direction, or they mat be tactfully asked to curtail extrancous discussion. An atmosphere of cordiality and free expression must be mainedined at all rimes. The session leader must exercise careful judgment.
3.3 Sometimes it is useful to present a mock problem to the group to familiarize members with the method. An exercise where members generate all possible uses of a machine or rechnique is helpiul. A problen example might be "list conventional and unconvencional uses for a bicycle." Sinda an exercise might relax the members and make the main session more effective.
3.4 Have all ideas recorded as they are generated. A tape recorder may be used to provide a record, but this method doesn't allow for immediate feference to previous responses. When no more ideas are generated, end the session.

EXANPLE

Consider a situation where the butp and athentity on local governmeat ofticial is aceded to implement atherfeh care project. The problem is how to odeam the conereta tion of this persons in a reasomably short rime, Comy mandecring burcaucratic support trom lis higher athors. ties can often be a lengthy and uncertaim process.

A branstorming session is orgatimeti. Parthipant- in clude the project leader, a local person afthiteded with ohe project. a troubleshouter in an dection campaign. ect. Some brainstormed suygestions ate givers below.

1) Appeal to the localofficial. cmphasizing the imper tance of the project.
2) Bribe the heed official.
3. Bribe the higher anthority siggered trom idea 2.
4. Disregard ancinority and do withour lowat hetp.
5) Move to another ared where the local ofticial in mote cooprative.
6) Use the rutdiat to apply policiati pressure on the aythoritaes.
7) Convince the lacal elite of the importunce of the project and work througth peer pressure.

THEORY

One principle in the theory of ercativity is that evaluating or ranking an idea stitles the generation of further ideas. Therefore, gemeration should be separated trom wahation. Another principle states that group prewesses may be more effective than individual efforts in generating ideas. largely becaase of cross-fertilization. See bouchard 1971 and Osborm 1963 for a more detailed discussion of the theoretical bases of brainstorming.

BIBLIOGRAPHY

Bouchard. T. J. "Whatever Happened to Brainstorming:" Joumal of Creatice Behaviar 541971:182-89.

Osborn. A. F. Apphied imaginarions and Creativity. New York: Charles Scribmer and Sons, 1963.

Synectics

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

Synectics is an interacting group process for generating creative ideas in response to a problem.

USES

Synectics is used to:

1) Identify possible solutions to a given problem.
2) Infuse novel thinking into one technology or discipline by transferring knowledge and expertise from another technology.

SHORT DESCRIPTION

A group effort is directed to problem definition and creative problem solving. The group discussion relies on two basic concepts: "making the strange familiar" ard "making the familar strange" (Gordon, 1961).

Synecrics depends, first of all, on finding analogies to a strange or novel situation (in the problem context) in order to make it familiar (making the strange familiar). In
contrast, "making the familiar strange" means to enhance the possibility of new solutions by looking at something familiar from a different viewpoint.

Different kinds of analogy are used during a Synectics session to draw out these ideas, e.g., comparing parallel situations in different fields. The group's ideas may then be explored and developed into possible solutions, often by a technical staff member who sits in on the session.

ADVANTAGES

1) Solutions generated by the Synectics method may be quite novel and innovarive. The technique draws ont the creative expression of participants.
2) Different analogies used in Synectics provide creative insights into the problem.
3) After participating in repeared Synectics sessions, a trained team is available for attacking new problems.
4) Regular participation in Synectics sessions may improve a member's creative thinking outside of the sessions.

LIMITATIONS

1) Synectics requires that the members communicate freely and of en impersonare indnimate objects or abstract ideas. Some people may be inhibited and may not pariicipate actively in the group sessions. Also, superiorsubordinate relationships outside the sessions may limit
discussion. If such problems are anticipated, Nominal Group Technique (NGT. page 14) may be a better method to employ.
2. Initial use of the Synectics method may nor be productive. However, experience with trial problems increases the effectiveness of the method.

REQUIRED RESOURCES

LEVEL OF EFFORT

A Synectics session includes cight to twolve nembers. They must mect and be organized into a group session. Participants must be made familiar with the technigue. It is of ten possible in organizations to arrange a pool of potential members for Synectics sessions. This will minimize the effort iequited to arrange any one Synectics meving.

SKILL LEVEI.

A Syncetics group usually includes one or two technical experts in the problem area. Other members should be able to fantasize, empathize. and role play. The group leader needs a thorough understanding of the technigue. as well as some training as a session leader.

TIME REQUIRED

Most problems require only one session lasting at most four hours. The novelry of the problem situation and the vancty in the background of the members affect the length of the session. Progress is also affeced if group members are inexperienced or overly inhibited.

DESCRIPTION OF TOOL

DEFINTIIONS

1) Personal analogy is used in Synectics sessions where a group member identifies with an element of the problen and loo!.s at it as though he were that element. For example, if the problem is to develop inexpensive ways to dry and store grain in a wet climate, a member identifies with a single grain in a storage bin.
2) Direct analogy compares the problem being faced to a parallel situation in another field, technology, or discipline. For example. the grain storage problem may be compared to a bacterial colony whose propagation is to be controlled against disturbances in moisture and airflow.
3) Symbolic analogy describes the problem by objective and impersonal titles. These titles are used to identify other problems which may be deseribed by the same title.

They are generally expersed in two words, unsally de scribing two conflicting attributes of the probien for as ample, the grain storage problem may us "Crowded Sega ration" to describe the tacets of the probletm that of packed storage and that of sufticient gain xparatom:allow for airtlow.

4 funtacy dudeg is the participart whint hamh ing that the problem may solve itself or cease tescine. For example, in the graim storage problem, one tatamy ar dlogy may be that "(irains do not germinate. even in semad most." This leads to the idea of irradiating the grain in order to ccase germination.

REQUIRED INPUTS

1) A statement of the problem is necessaty. For ex ample. "Graims must be dried and stored economically ist at poor region where the climate is wet."
2) Participants in a Synectics session are - xperts concerned with the problem. along with sin to cighe atien members preferably from a variety of disciplines.

TOOLOUTPUT

1) A restatement of the probiem definition can be ex pected. In the grain storage problem, the restatement maty be. "It is required to store grain so that it does not sponl."
2) A Synectics session restifes in a number of possible solutions to the problem.e.g. - irradiate grain and store in emy ordinary place." "store with bags of chemicals that absorb moisture." or "plane crop so that the harvest is in at dry season." The merits of each solution may then be evaluated for feasibility.

IMPORTANT ASSUMPTIONS

People vary greatly in their ability to utilize analogies. and consequently, their coneribution to a Synectics group will differ markedly. The assumption behind Synectics is that cross-fertilization of ideas will head to innovation and creative responses.

METHOD OF USE

GENERAL PROCEDURE

A Synectics session has basically two phises. The first phase is to introduce the problem to the group and obtain a redefinition of the problem. The second phase utilizes four analogy methods to generate possible solutions. It is sometimes necessary to identify new and related problems that must be solved before the original problem solution can be attempted.

The fandowne is agade for whe Syectics leader.
i. Detine the problem.

Present the problem to the group. Have a technical expert or the decision mater brietly explain and analye the problem.
2. Purge ideas and criticisms.
2.1 Ask that the members sugest any solutions or ideas immediately atce: the presentation of the problera.
 dbility at thest deds an they are sugested. This give pathoipatate a betars and dieper anderstandiag of the problems.
3. Restate the problem.
3.1 Ash the participatats to prophoce rectatemacras of the problen.
3.2 Sclect onk definition that secms most accept dble to participants.
4. Useducot analogies.
4. 1 Ank evenarive questions to generate a number of ditect andonies by drating trom similat problems in wther fields.
4.2 Choos one anatogy for farther exploration.
5. Use personal analonics.
5.1 Request some mer abers of the group to phay the roles of some elements of the problemi. The elcment may be amimate of inamimate. For champhe participants might be asked to be trees and cxamime the problem of preventing forest tives. ldas and teelings expresed by parricipants may trigger solations to the problem.
5.2 It may be necessary to ask questions of participants to generate farther insight iato the problem.
6. Use symbolic analogies.
0. 1 Ask participants to generate symbolic tithes for the problem. Such titles stowld be expressed in two words. usually describing two conthicting attributes of the problem.
6.2 Select one analogy and have members explore it.
7. Use fantasy analogies.
7.1 Suggest some physical or theoretical impossibilities related to the problem that may eliminate or simplify the problem.
7.2 Let partisipumes suggest otimet fantasy analogins. These ideas ofters gencrate possible scoutions.

8. Force fir some analogics.

8.1 If the atalogies do not directly ind in solving the of igitual probelem then "torce fit an analogy.
8.2 State somme appece of the problem und them apply it direcely to the abulogy to provide greater insiget into the comatratme and circumbstances wif ene problem situation. For example. stored grabs germatrates it is gets wet. What
 difect malugy :

9. Repear necessary steps.

 cout order. fr way be acecesary to mase one or mante wit these a atratiogies during the diaccussifonn.
 combinaitus or bex belp the members force fit an whillers:
10. Rede fine the problem or present the solucions.
10.1 Deternnime it the revelto witye sessionn are satib factory. di met. it may be "uccosary to go bact to suap 3 and tedetine the problemi. Sometimes orther rellatcd problemis may be identified whicis shlwuld sirst be solved.
1 10. 2 Prustent the surnmariaced results to the greap and call the sumberat to an erad.

EXAMPLE

The tuhlowimg example gives sume excerpts from the discussion in a Swnectics session. The steps are identified in parcratizoses.

 ayedelwary.

 Eat the gronp wrder the symbols the show their chances Purge;
EXPERT: But the omembers may mor be sble to retain the assosiation, ${ }^{\circ} \mathrm{C}_{2}$ rism of ldeas during Purge!.
 ads weed wanià yu doE Personal Analogyt Pater, wî̀: : - menonstrate chac methad.
 None chownse the symb : on thenger wourchoice of alconatiocs.

AAT	
19TER：	time
1．W9ET ${ }^{\text {a }}$	 are 3 at todncithe．
IEAJPK：	
KA1A	fiond oud which at pertos．
1．9T：	
HETER：	 ingifut
LEMDER：	
PAT：	diferemt timds．
R37A	 be solucerd．
LEADER：	scribe this：Symolic Andoys
PETER：	 achoret．
IUZAR：	imus．

yen：


```
*a*)
```



```
****,
```


THEORY

BIBLIOGRAPHY

 $143-61$.
就：

Morphological Analysis

PREREQUISITETOOLS

Nome.

USAGE

PURPOSE

Morphological amalysis gencrates a large number of element combinations for further examination.

USES

Morphologicalanalysis can be used to:

1) Analyze a problem systemarically.
2) Develop alternative projects and programs.
3) Identity a number of possible future states in a problem situation.

KEYIDEFINITIONS

1) An element is a part of a problem description, e.j.population. land use, and climate may be some of the elements in ant agricultural policy program.
2) An atribuite of a system includes the elements or components of the system and their relationships.

SHORTDESCRIPTION

Morphological analysis invoives decomposing a problem into its clements, identifying a number of alternative
attributes for cach element, and synthesizing alternative solutions by combining the attributes in differene ways. The attributes are written in the form of a matrix to simplity the process sec figure 1). The elements may describe a future entiromment, in which case the combinations will be different tutures.

ADVANTAGES

1) A large number of possible solutions are generated.

2, The merhod's exhaustive nature decreases rhe likelihood of overiooking possible solurions. It often identifies solurions that may have been overlooked if other methods, such as Nominal Group Technique (NGT. page 14 , were used.
3) Because the process of synthesizing alternative solutions in morphological analysis is systematic. the biases and prejudices held by the person using the tool are avoided while generating ideas.

LIMITATIONS

1) Large probiems lead to a large number of elements and atributes. In such cases, morphological analysis leads to so many possible solutions that evaluation becomes unwieldy.
${ }^{2}$ If any significant element in a problem is overlooked, the morphological analysis suffers accordinglyThis is the major imitation of the technique: it does not ensure that all elements are specified. The systems defini-

FIGURE 1
Attributes for an Energy Policy Situation

ELEMENTS	ATTRIBUTES				
Encrgy Demand	Low Demand	High Dermand			
Growth Rate	Zero Grewth	Slow Increase	Rapid Increase		
Primary Source of Energy	Oil	Gas	Solar	Nuclear	Fuw $\mathrm{CeH}^{\text {d }}$
Primaty Use of Energy	Industrial	Household	Tramsportation		

tion matrix (SDM, page 67, or Tree Diagrams TRD. page 74) may be usefulim this regard.

REQUIRED RESOURCES

SKILL LEVEL

Knowledge relating to the problem area and the skill to decompose the problem into its elements are essential to use this approach effectively. The analyst requires the ability to recognize potentially interestime combinations.

TIME REQUIRED

The time requited depends on the complexity of the probiem and the number of elements identified A simple problem may need less than a day. The time required intcreases very rapidly as more elements are identitied.

DESCRIPTION OF TOOL

REQUIRED INPUTS

A statement of the problem is necessary, such as "Give possible descriptions of the energy situation in Temasek" or "A primary health care program needs to be developed."

TOOLOUTPLT

Morpholugical analysis results in a number of atternative solutions to the problem statememr symethesired troner combinations of attributes for the difiterent dements identified as part of the problem situation. For example, a table with six ellemente and four atoributes can have $i^{\circ}=$ 4096 possible combinations. However, many of theser combinations may be physically if not theoretically inpossible or meaningless. The remaining fasible conabinazions represent the product of a morphological andysis. However, even illogical combinations may triger trasible altermative solutions.

IMPORTANT ASSUMPTIONS

A problem or task is divisible inno discrete elements. each of whict hat one or more alternative attributes. This is not a limiting assumption since the analysts may always define a problem in such a way that decomposition is feasible.

METHODOF USE

GENERAL PROCEDURE

1. Identify elements and their atributes.

1.1 Consider the problem as stated and think of the
derments that are part of the problern situation. Many ulements can be identified directly from the problem seatermem. For example. clemenes like "type of cattla," "method of raising." and "scak of industry" follow directly from "it is reguited : develop a meat packing industry." Ede in of these dements may be described by different witributes.

1. 2 Geratate as 3 many atributes as possible. An attribute aften comacs to mind befere the element. For example. the utribute "qovermant subsidy" mady lead to the clement "somted of reventre," Other attributes for the clement are then identitird, w. "private donations" or "iottery tickets."
2. Develop the table of atribates.
2.1 (rigamive the efomentendatributes intoratabular torsta see figure 1 :
2.2 List che demprat per fow with its ataribures. The Lable will have as foday fows as the tre ate detments identificd. oftern, the process of filling in the table will angerst new elements or attributes. Imelude them in the table.
3. Synthesize alternatives.
3.1 select whe atribute from each dement row ise danned lime, ingure 2:-
3.2 Combinc the attributes to describe a particular alltermative.
3.3 Throw out combinations which are unfeasible or iniogical.
3.4 Exumime the remaining combinations for possible problem solutions or feasible alternatives.

EXAMPLE

In order to develop an encrgy policy a government decides to use contingency amaly sis CGA. page 147, A number of possible tuture states meed co be identified. Morpholegical analysis was used as follows:

Some oft the elementsate discovered humediately.e.g. "emerys demand" and "source of criergy ."Other clements Hite "use of energy" and "rate ot growtit of economy" follow. A table tor these derrbutes is gisen in figure 1 . Alternative future states are syathesized from the table:

1. A situation of hagh enurgy tumand with a rapid ecomonic growth: thu bargest source of energy is oil used primarily um uramportanco showa in Eigute 2).
2. A zero grawth econemy with low energy demarid using sollat energy primarily for household consumption. Eighty-etgitur other combinations were possible. though only a few were used in the contingency analysis.

FIGURE?
One Combination of Auributes Indicated in a Morphohugical Chart

El.EMENTS	ATTRIBUTES				
Encigy Demand	Low Demand				
Growth Rate	Zero Growth	 Slow Ancrease	Rupid increas: 1		
Primary Source of Energy		Gas	Solar	Nuclear	Fuel Cell
Primary Use of Energy	 Industrial	Household			

THEORY

Morphological analysis was developed by Zwicky (1969) and used cxtensively in a varicty of contextstarying from new product development to problem solvingWissema (1976) reports an interesting application of the sechnigue in technological forecasting. particularly emphasizing that morphologiral analysis could be used to construct scenarios (SCN. page 164) and Delphi questionmaires (DLP page 168).

Kaufman (1968) deals with dice problem of rawking the combinations of attributes to facilitate the selection of feasible alternatives. He explores the inplications for decision theory. The parallel between the morphotogical bon representation of a problem and interaction matrix dia-

BIBLIOGRAPHY

 Yook: World University lithrary, Mctisaw thith, 1968 page 23+41.

 garion." futures (Apoil 1976: 148,53.

 mailhan. 19969.

Nominal Group Technique

PREREQUISITETOOLS

None.

USAGE

PURPOSE

The Nominal Group Techmique (NGT) is a group process for eliciting opinions and aggregatiag judgments to increase rationality and creativity when faced with an unstructured problem situation.

USES

NGT may be used to:

1) Identify the elements of a problem. especially where there are political, social. and cultural elements.
2) Identify and rank goals or priorities.
3) Identify experts whose experiences or skills may be uschul in other decision-making techniques.
4) involve personnel at all levels in the decisionmaking process in order to promote the acceptability of the final decision.

KEY DEFINTIONS

1) A nominal group is a group process in which the members work independently but in each other's presence.
2. An interractingt grouep permits discussion between parricipants teg. Brainstorming. BSG. page 3. is an interacring group process;
3) Ruank-ordering is the process of weighung one item against others and then ordering the items by weight on a scalle such as importance or priority.

SHORT DESCRIPTION

The Nominal Group Techmique is a structured process which taps the experiences, skills, or feelings of participants. A question is posed to the group. Each member urites down as many responses as possible. The group leader asks each member in turm to state an idea from his or her list and writes it on a flip chart placed before the group. No discussiom is permitted until all ideas have been listed. Each item is then briefly discatssed in an interacting group format. The participants indicate their preference for important items by ank-ordering, a process which may be repeated with incervening discussion and argument.

The ourcome of the process is the mathematical aggregation of each member's preferences to give the group 's ranking of responses to the question.

ADVANTAGES

1) Dominance by high-status, aggressive, or articulate mernbers is reduced since each thas an equal opporturity to participate.
2) The group remains problem-conscious: and prematate evaluation, criticism, or focusing on ideas is avoided.
3) The silent generation of ideas mimimizes the interruptions in cach person's thought processes.
4) A written record increases the group's ability to deal with a large number of ideas. It alse avoids the loss of ideas.
5) Discussion only to clarify items helps climinate misuaderstanding, without reducing the group's efficiency.
6) Some studies have shown that, compared to interacting group processes. e.g., Brainstorming (BSG. page 3), the Nomisal Group Technique (NGT) enhances the conditions for creativity when generating information on a problem. It avoids rambling discourse and orner deficiencies found in group processes.

LIMITATIONS

1) Cross-fertilization of iceas is diminished due to the structure imposed by the NGT.
2) The NGT may reduce flexibility, e.g., some group members may feel that the purpose of the meeting or the question posed is irrelevant or misleading, but they have no opportunity to change it.
3) Bringing group members togectier may be costprohibitive.

REQUIRED RESOURCES

LEVEI OF EFFORT

Some administrative effort is required to determine the purpose of the meeting and to structure the proposed question. Porential group members need to be identified, notified, and assembled.

SKill Level

The leader of the nominal group should not bias the group toward his view; yet he must control unwanted group behavior without alienating people.

TIME REQUIRED

In a study quoted by Delbecq, et ai. (1975), the total administrative man-hours to prepare, conduct, and follow through for one group required an average of 4.4 hours for NGT, 4.2 hours for interacting processes, and 7.1 hours for the Delphi process (DLP, page 168).

SPECIAL REQUIREMENTS

A flip charr and marking pens are aceded for wach group. Index cards (or similar small cards), approximately six per participane, foulitate the voting process.

The seating arrangement must allow all members to casily focus on the ideas listed on the flip chart. Some meams of displaying the completed chart pages is necessary teg.. tacks or masking tape so atix them to the walls:

DESCRIPTION OF TOOL.

SUPPLEMENTAL DEFINITION

Roudtd-robin is a process for seriailly recording ideas where each participant provides ans idea in turn. No discussion occurs. although the leader may wisk for a show of hands on how many participants had a similar idea. This is moted mext to the item on the lise.j Those responding then eliminate that idea from their respectiwe lists. The process may contimue in a circular fashion until ali participants" lists are exhausted.

REQUIRED INPUTS

The nominal groap gemerally includes five to nine members. Less than five members may not allow for the qualiry and diversiry of opinions required. Large groups produce more interpersonall differences, which lengthens the process withour a substantial increase in the quality of outpur. If more than ten pursons must participate, it is better to divide the group for the round-robin and combine them for final discussion and voting.

The group leader may be directly involved in generaring and discussing ideas. The composirion of the group may be homogeneous or heterogeneous. Studes have shown that heterogeneous groups exhibit more creativity Delbecg, 1975). But interpersomal differences and commanicarion problems may increase for such groups.

The NGT question provides the basis for generating the ideas. It should be worded to prevent misunderstanding and should be stated as objectively as possible.

TOOL OUTPUT

The NGT produces a list of idees and a ramk-ordering of their importance. The group leader may wish to combine overlapping ideas umder a common heading.

METHOD OF USE

CENERAL PROCEDURE

The general procedure for the Nominal Group Technique is straightforward. But becouse it runs connter to

The raperience of twont prople in leadiag groups or
 fenhowed leosely. Wird this in mind rhe guidelines frescrited by the ungitators of whe Nomitual Growp
 1975. figure 3.7. page 67.699:

1. Silctat genactation of ideca in writung
 writiong.
1.2 Verbuilly fead the question
1.3 Plantrate jevet of abstraction and scope desired with exauphe wheth does not distort lead; pronul repornts.
1-4 Avom other requests for clamification.
1.5 Chatge sine group to write ideas im briet phataces or xtatuments.
1.6) Ask grout nambers to work stamenty and madejemderaty.
1.7 Moded good grollp behavior.
A.8 Sanction disrugtions of the silent. andependent activity by comments dedressed to growip as a whole.

Benefits:

1) ProviAks adeguate time for thinking.
2) Ficilitates hard work by the madel of orher group nacmbers reflecting and wrimg-
3) Avoids interruptim of zach orfarers thanking
4) Avoids prembature focusing on single ideas.
5) Eliminates dommance by higla-status or ageressive members in idea generation.
6) Kecps the sroup problem-anarad.
2. Round-robias recording of ideas on a Mip pad.
2.1 Indicate objective of the step is to map the group's thinking.
2.2 Explaim need to present ideas in brief words or Phastas.
2.3 Explain process of taking one ide: senally from cach nember.
2.4 Explaira group members must decide if items arc duplicates.
2.5 Explain that an individual may "pass" wher he mas no further items, but may "re-enter" larer.
2.6 Expross the desirability of hitchhiking and adding new ideas even if they are mot on individual nominal worisheets.
2.7 Explain inappropriateness of discussion prior to completion of histiag.

- From Groag Techaziawes for Program Plammeng by André L 12ulteca, Andrew vande Ven and irwad Gustafson. Copryight (4) 1975 by Scott Foresman and Company. Ruquinted by permans ant
2.8 Recond ideas as :upidly as possibic.
2.9 Record ideas in the words used by group members.
2.10 Prowide assistance in abbrewiationg only in special sitamations.
2.11 Malke the cnuire bist wisible by tearing off complewed sibeet and taping them on ar area waisibic to aill group matmbers.
2.12 Sumetion group as a whole it individualis engage in side conversations or ateempt to discuss items prior tuc complening the listing.

Benefits:

1) Equituracsopportumiry to present ideas
2) Assina in separaumg ideas trom persomatities.

3 Provides a wristen recurd and gride:
a) Hucruases group"s ability re deal winh a larger nember at ideas.
b) Avoids los of ideas-
c. Comitronts the group with an arrate of clues.
d: Encourages thitahunking-
4: Plates comilicring ideas comfortably in frome of gTOMP.

5i. Forces gine group to faliy explote the problem.
3. Seraal discussion for clarification.
3.1 Vurbally define the perpose of the step:
di) Tou clarity the meaning of items.
b. To explain reasons for agreentent or disagremment.
3.2 Indicate that fimall judgmenes will be expressed by woting. so arguments are ennccessary.
3.3 Prace time group so zhat alliteas receive sutficient time for clartitacation.
3.7 Avoid forciaty the member who originally lists the idea to be solely responsible for clarifying the itwerm.

Bemefics:

1) Avoids having dircussion focus unduly on any particular idea or subset of ideas.

2 Helps eliminate misemderstanding-
3) Prowides opporrunity to express the logic behind items.
4) Allows mumbers ta disagree without argumentarion.

4. Preliminary vate on item importance.

4.1 Ask the group to select from the entire list a specific number $\mathbb{T}^{7} \pm 2$ of pricrity (important) items. ${ }^{*}$

[^0]FIGURE 1
Index Card Illustrating Rank-Order Voring Process

4.2 Place cach priority iteni on a separate 3×5 cardor rating form $\mid \mathrm{sec}$ figure 1 1 .
4.3 Rank-order or rate the solected priority irems.
4.4 Collect the cards or rating forms and sinuffle them to retain anonymity.
4.5 Tally the vote and record the results ow the flip chate in front of the group.

Benefits:

1) Obtaining malependent judgnents in writing helps climinate social pressures.
2) Expressing judgments mathematically by ramikordering or rating increases accuracy of judgments
3) Displaying the array of individual votes clearly thighlights areas needing further clatification or discussion.

5. Discussion of the preliminary vote.

5.1 Define the role of the suep as clarification, not pressure toward artificial consensus.
5.2 Keep the discussion wrief.
5.3 Caution group members to thank curefuly abous any changes they make an their roting-

Benefits:

1) Provides group members a final opportunity to clarify their positions.
2) Ensures that "spread" votes really retiected differences in judgment nos unequal information or misunderstanding.

6. Final vote.

6.1 Repeat step 4.
6.2 Closure to the meeting.

Benefirs:

Accurate aggegation of group judgments and error reduction.

EXAMPLE

The steps of the Nominal Group Fechaifuc bave berm presented in a statighthorwad procedtate whinh rethete a stractared grourp precess. The fedifowing example hegh lights some of the hev perints in this procers and tillestantes
 nque"

 The evaluation seati dected to wse the Nomanat Growex
 cians. rural health techaichans. pablic lecalth aremmand.
 fercont incourne and sociat chasses.

Sifeme Gencration of̈ ldeas in Writusg

The assemided participants werc brokeminteg givupo of
 wat vecupations.
 the Nominal Group Tectanaque and the objectines for :he
 with fhe fulthow ing yuestion:

WHAT ARE THE BARRICRS TO RECRIVAOG; ADEQUATEHEALTHCARENOUR COUNTR Y?

The particifpants ware allowed 15 manues to list resparnses tirum their own viewpants.

Recording of Ideas on a Flip Ped

The leader for wach group a member of the ewalluation staff trained in NGT actedias the recorder to serially list the ideas. Some of the ideas gemerated by one group in chuded:

1) Nompnay to pay for services
2. Lach of adequate facilities
3. Tuo many doctors in the cities
4. Dor enough trained personnel
5) Ower reliance on traditional remedies
6. Not enouyh doctors

Note that this lisz contains some contradictions. The leader deferred discussion surnil time nexi step. However. when itetn of was wied. someone asked whether this was the same as item 4 since doctors are included in traned personnel. The leader asked the participant if he thought item 6 should bedropped. The reply was negariwe, and che round-cobin recording continued. All of the groups generated 15 or more items.

[^1]
Serialliscustion for Clarification

Duriag the discussion of achatitm, the participarato elarified their responses. cequ since trathed persomnel can rephae tanay fatations of the plyysilian, items 4 and 6 deserved separate comsideration. Item 5 incleded going to a tradiriona willage healer instead of the nearest clinic.

Preliminary Vote on Itern Importance

Fach participarat was asked to ramk from the list, the five mosi siquificant barriers to receiving adeguate thealth ture. The tally of the vore was recorded on the flip cllate. usinge, the numbers from the iterns. A vote of five meant that de participant viewed ritat item as the moost signiffcan burriet. The wotes for the first sin iteons were:

Item Number	Votes	Tosal
$1 ;$	4.1	5
$2 j$	5.7	9
$3 ;$	2.2 .4	8
$4)$	3.5 .3	11
$5)$	1	1
$4)$	3.5	8

Discrassion and Final Vow

During the discussion tollowing the first vote, the participhot whe had presented iten 5 expressed his amazemacor that the other members bad not found the interterence of superstitions and wraditional heakers to be abarrier. Orher participants were not swayed by ling arguments, and the final wote on the item was unchanged. Totaling the individual ranhings for each of the above items gave item 4 the most weight (11) followed by item 2 (9) and item 6 (8). Note that this example is incomplete since the rest of the list has not Eeen presented. but the essential idea remains the same. A group with rather latge status differences was able to use the Nominal Group Techminue to identify and rank problems in receiving health care.

THEORY

The Nominal Group Techmique is the result of analysis and experimentation with group processes for effective plaming and decision making, and is credited to Van de Vern and Delbecy Delbecq.et al... 1975). The creativity of a group is an importan determinant of its success. Types of group processes and leadership techniques for allowing creativity have been discussed widely Maier. 1970: Ostorn. 1957 : Collims and Guetzkow. 1964 .

The Nominal Group Technigue wilizes the mathematical aggregation of group judgments to come to a group decwion. The theory is disesssed by Huber and Delbecq 1972. The advantages ovet conventional means for coming to a growp decision (e.g. consemsus or majority rule) ure describerd by Delbecq, eval. (1975).

BIBLIOGRAPHY

Collins. B. E.. and Guetzkow, H. A Social Psychology of Groap Processes for Decision-ihuking. New York: Jom Wiles \& Sons. 1964.
Delbecs. André: Van de Ven. Andrew: and Gustafson. Dawid. Growps Techandeses for Program Plamaing: A Guside wo Nommintal Grotup und Delphi. Chicago: Scott Foresmann 1975.
Huber. George. and Delbecq, André. "Guidelines for Combining the Judgmerur of Individual Members in Decision Cunferences." Academ:y of Maragement Jounual 15. June 1972i: 161-74.

Mater. Norman R. F. Problem Solving mol Creartity in Individueds oned Groups. Belmont, Calif.: Brooks/Cole. 1970.

Osborn. A. F. Applied imugination. New York: Charles Scribner's Sons. 1957.

Questionnaires

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

Questionnaires generate ideas, opinions, or information from a selected target population.

USES

Questionnaires are used to:

1) Structure the content of an interview Interviews. IVW, page 23).
2) Obtain responses for a sample survey (Surveys. SVY, page 36).
3) Provide the format for communicating with Delphi participants (Delphi, DLP, page 168;.

KEY DEFINITIONS

1) Open questions permit the respondent to answer as he or she chooses.
2) Closed questions require the respondent to limit responses to prespecified categories, e.g., Yes/No, Oprion. A, B.
3) Frequency distributionts, or histograms. plor the frequency of different categories of response (see Histograms, HIS , page 131)

SHORT DESCRIPTION

Questionmaire design is an art with scientithe elements determined by the purpose of the questionnaire, the type of responses desired, the characteristies of the respondent. and the method of distribution. Questionnaires may be distributed by mail, by phone, or directly. The responses may be obtained from a direct interview or by a self. administered questionnaire which is then collected teg.. by recurn mailj, The length and format of the questionnaire are crucial factors affecting the return rate. the validity of responses, and umintentional biases or distortion.

ADVANTAGES

1) Selt̂-administered questionnares allow the participant time to ponder the questions.
2) Mailed questionnaires may be distributed to a populacion at less cest than interviews.
3) Phone questionmaires involve minimum cost and maximum speed of response.
4) The anonymity of the respondents may be cnsured.

LIMITATIONS

1) The return rate for mailed questionnaires is usually very low.
2) Those who do return the questionnaire may share a common interest that biases the sample.

3, ansibution by mal is oftan impactica becanse of reliablaty dmd time comstrames.

4; Self administered questionmaires are rigid and in-
 ata fatervicwer.
 for illiturate or seminlimente populationsen and may lead to wroneous responsest for liceate but mined-culture tiarget 5014p.

REQUIREI RESOURCES

HIVELOREFIGRT

13y far the yreatest effort mant go into destgning ard tusting the tommat wathe quentionmarc. Other tushs, such as distribution and analysis, are proportional to the number af respondents. the number of openetoded anestious, and the kemeth of the grestionnatio.

SKILLLEVEL

Questionnate design rexuires skilis which are only gatued by caperience, it is impossible to anticipatur the misintarpretations and personallogic in responses therefore pretesting the sacstionnare is inportant to sucess.

TIMEREQLIRED

A comprehemsive yucstionnaite design might tate several days. Time must be athowed for pretestime dis tributing tire fuestionamites or interviewing:, and ant alyoing resuits. Allowing tame to ancourage retarns of mailed questionmaires is cssentiat it the remurn rate is to be reasonably high.

SPECIAL REQUIREMENTS

The necessity to duphicate and dssemble the duestionnaire copies must not be ignored. Manalal analysis of responses can be tedious, and dectronic comparation equipmont including specially programmed digital compurers; is a great redict. Where such mitans are costedfective, the Tesponse fomat should be designed with computer coding in miad.

DESCRIPTION OF TOOL

REQUIRED INPUTS

Questionnaire design begins with the purpose and rarger population clearly identified see Surveys. SVY. page 36 .

Man facitithus and selleaddressed samped envelopes are essential for mathed yuestiomaires. Include a cower leteer describing the purpose and decalis of the ydestionnaire. cven if the target population has been previously informed. For example. Delphipariciparsesternvolued tha serves of guestionmaires whicin are returned in a two-way commamication sea Delphi. DLP page 168 ;

TOOL OUTPET

Individeat questionmates are not the und product ot qucsionmaite desiga the degregated responses of the participants is desircd. Consequenty an incomplete or matilated questionnate that is returned is talid intommation tor the asedysit.

Decision maters demand information in an easily digested form. This incledxs summarico ot eypical responses as wedil as andications of the pattern out responsen ces... a graph of the trequency of watcgorical responats see Histograms. HBS, patw 13!.

Lisually the questioneaire restilts will be an intermediane product in turther analysis which may or may not be eranminted to decision makers. Bue mose of the Eime it
 36, and Delphin. DLP page 168;

LMPOK ГANT ASSUMPTIONS

A guestionnaint is a madsuring instrument. It is atransmitter ofi intornation from a selected individeal to an ant alyst. Tine respumses must be accepted at tace value in the absence of amy other infurmetion. Therefore, the andyst assumes that responses were given by the seleced inditidud. that the responses were freely given, that the tespondent was nor just erying to please dint. ctc. Some of these neecssaty assumpeions may be validated by randomly spot-checking returned questionnaires. eg- by directinterview or phone.

METHODOF USE

GENERAL PROCEDURE

1. Specify the purpose of the qutestionnaire.
1.1 ldentify the topics to be covered-heep the number wa minimum.
1.2 Identify the target population and any special cultural or educational characteristics it might litave.
1.3 Determine the means of distribution and collection of the questionnaire.
1.4 Specify an acceptable return rate and adjust the sample number of questionmaires accordingly. A
retarn rate for mailed questionaires may be anywhere from 15% to 90%, depending on the motivation of the respondents and the topics selected.
2. Design the questionnaire (Phillips. 1966).
2.1 Start with basic information about the respondent; consider only that information essemtial for analyzing the results. Ensure anonymity if desired.
2.2 On any topic. begin with general questions. Then get more specific.
2.3 Arrange the questions logically and avoid abrupt transitions.
2.4 Examine the order for questions which may exert an undesired influence on the response to subsequent questions. c.g.. a dquestion which is Thely to ancagonize the respondent should be placed near the end of the questionnaire.
2.5 If necessary, code the questionnaire so that responses and parricipants may be correlated. e.g.. arrange questions in different sequences.
3. Edit each question after completing the list.
3.1 Avoid long questions.
3.2 Eliminate ambiguities and double cotendres by incorporating examples or by serting the question in context.
3.3 Determine if an open-ended question can be rewitten as a closed question.
3.4 Make certain that the categories of respense for closed guestions are sufficiently comprohensive. e.g. by including a "none of the above" category.
3.5 Eliminate emotionally charged words and leading or loaded questions.

4. Design validating questions into the survey.

4.1 Repeat the same question (rephrased) at a later point in the questionnaire.
4.2 Include collaborating questions where memory or personal biases are likely to influence the response, e.g., "How many bushels per acre did your last crop yield:" may be followed by a question "What was the tax on your harvest?"

5. Pretest the questionnaire.

5.1 Try the questionnaire out on fellow staffers and analyze the zesults to sce whether the desired information has been elicited.
5.2 Administer the questionnaire to one or more members of the target population, checking particularly for cuitural or educational anomalies.
6. Dismibute the questionmaire.
6.1 hachede a cover leter in a maited grestamentere.
6.2 In-fude a self addressed sumpederesinsw.
 questionnaires and pich thene up on se Fedulte.
 Antervewing. IVW.page 23:-
7. Analyze the results.
 is returned.
7.2 Summarice the answors to opetr afacention be hes
 terences in respermes.
7.3 Aggregate the tesponses to whosed yuturemens and tabulate the trectucncie's in order tor premate . hiteogram Histogram, HIS page 131 .
 the originat yutstionnaire as atu apperndin.

EXAMPLE

The following questions were tathern trotis in uquenthennaire designed to alicir basic data on farm wageo anpart of A cost-benchit analysis (CBA. page 212. The surget propu lation is the farmers along the Mai River in the coventry of Temasek.

1. Nams :uptional.
2. Address optional
3. Generailecertion of farm chech one:
[north of Mail Riversench of river
north of village
Q south of vilage
4. Size of tarm:smailer than one hectare
Betwen one hectare and rwo hectures
larger than two hectares
5. Number of farm workers including members of family,
Available at harvese time?
6. Did you hire farm labor this year?

Yes ..--... No
7. If yes how much did you pay? per hour" -- - per day ${ }^{\text {a }}$
8. How many did you hire?

The gevestimmatre begins with general neutral; questions. Question 3 is a chesed question whercas guestion 5 is apera but quantificd.

If the number of farm workers needs to be cross cheched the garstions on members of the family avalabite for farm work can be used. However. evera such relatively strighaforward questions can lead to unreliable responses. How dies the farmat deline "family"? Is the extended fanily inciuded? A careful pretest would probably result ina better specification of these questions.

THEORY

The theory of yuestionnaire design is documented in a number of rexts addressed to survey research Festinger and Katz. 1953 ; Warwick and Linnager. 1975). The theory is based on mumerous cmpirical studies including the effects on the return rate of facturs such as differem ques. rionamire layouts, the color of paper, or the lengeh of the
questionnaire. However, there is no strbstitute for experience (including pre-resting: : each situation is uthigue.

BIBLIOGRAPHY

Clover. Vernon T. Business Research: Basic Principles and Tecturidues. Lubbock. Texas: Rodgers Litho. 1958. pp. 101-72.
Fescinger. 1... and Katz. i). Research Methods in the BeHuriorul Sciences. New York: Holt, Rinehart and Winston. 1953.
Phillips. Bermard S. Social Researfo Smategy and Tactics. New York: Macmillan. 1966. pp. 107-24.
Warwick, Donald P.. and Lininger, Charles A. The Sample Survey: Theory suded Practica. New York: McGrawHill. 1975.
Young. Pauline V. Scientific Socid Surveys and Research. Englewaod Cliffs, N.I.: Prentice-Hall, 1956, pp. 176-204.

Interviews

PREREQUISITE TOOLS

Questionnaires (QTN, page i9).

USAGE

PURPOSE

An interview generates ideas and gathers iniformation by posing relevant questions to the respondent(s).

USES

Interviewing is useful for:
i) Obtaining background information about a problem situation.
2) Collecting information and ideas from a selecred sample within a target population (see Surveys. SVY. page 36).
3) Eliciting information and ideas from experts or professionals, e.g., agency representatives.

KEY DEFINITION

An interview schedule is the plan for conducting an interview. It includes the questions to be posed.

SHORT DESCRIPTION

Interviews involve interpersonal transactions. The preparation, conduct, and results of the interview are de-
termined largelly by the participants. The interviewer may be specially trained. The interniew schechate musy be struc tured colosed questions or unstructured werent questans and discussionj, The respondene may be a professional. a projece participant, or a randomly selected member of a zarget population. The combination of these factors is dictated by the purpose of the imterview and the topic of inquary.

ADVANTAGES

i) An interview provides a degree of llesibility in obtaining information and generating idess that is not likely to occur in impersonal transactions, e.g., a mailed questionnaire.
2) The questions may be adapted during the course of the interview in response to immediate feedback trom the respondemt.
3) Face-to-face interaction tends to heighten the respondent's interest in participation and forces him or her to consider the questions immediately.
4) Where intormation must be gathered from an illiterate or semi-literate population, interviews may be the only effective instrument.
5) The interviewer can use cues other than the content of responses to assess their validity.

LIMITATIONS

1) When several people have to be interviewed on similar topics, or where a wide range of issues has to be
cowerd, the aecossary resources may be cost prohibitive whan conpared to using guestionnaires QTN. page 19 .
2) An intervicwer without the necessary skills may alienate the respondents or allow him or her to dominate the exchange.
3. Where the repondens is not motivated, the answers are hikedy wo be madegatu.

4: It crativity on the dibassion and ovaluation of Mdasat fequised group grocessh suchas Nominal Growp Tre imique NGT, page 14; or Braiastorming © BSG page . 3 ma y be more appopriatc.

5: The anomymity of respondents and theus their candorjanmot be ensured.

REQUIREDRESOURCES

LEVEIOFEFFORT

Gathering intormation by direct interviews can be a major effort bownded by the amount of information sulught and the number of interviews desired. A follow-up intervicw may be necusary. Special training is required for intervicwers.

SKill LFVEL

An intereicwer must have certain skills to ensure proper andeffective inturaction (Bocchino. 1972):

1) Traming to recognize his/her own prejudices in order to maintain an open mind.
2) Giving credit wherever due and publicly acknowledging hedra,
3) Emphasizing courtesy andrespect.
4) Respecting the skills of the respondent.
5) Listening more than talking.

TIMEREQUARED

Preparing for an interview takes about a day. An interview lasting longer than an hour usually results it diminishing returns. Time must be budgeted to write the interview report.

SPECIAL REQUIREMENTS

Electronic recording (audio or video) of questions and tesponses can be a great time-saver and can allow the interviewer to give full attention to the responses. However. there are some costs, such as transcription expenses and the possible loss of candor by the respondent. If electronic cquipment is to be used, the respondent's prior permission is cssential.
deally, the interview should take place in a location free from distraction (noises, teliephone calls. children or other onlookers. etc. . One technique used in a village thousehold survey in India was to provide a bighly visible distraction in the cemfer of the willage while the interview team discretely circulated among the houses.

DESCRIPTION OF TOOL

REQUIRED INPUTS

The purpose of the interview must be established and should guide subsequern decisions. If the interview is the measurimg instrument for a sumple surwey (SVY, page 30.. the target popalation will bave been selected and a questionnaire designed ©TN, page 19.

If the interview seeks ideas and information fromexperts in different felds. the preparations and the training of the intervicwer will differ. In all cases. however. the purposes mest be established in advance.

TOOL OUTPET

Au innterviess usually results in a report or tabulated responses which unay be analyeed and uransmited to decision makers. The data may be in the form of a histogram HBS, page $13 \mathrm{~B} \%$ a statement of preferences, etc. Often. the report will be strengthened by including illustrative responses to key questions, but unprocessed responses are seldom usctul.

MPORTANT ASSUMPTIONS

The interviewer is assumed to be an unbiased, noninteractive transmiter of information and ideas. Where this is not the case either by design or circumstancej, the information must be appropriately interpeted. For example. the manner and style of the interviewer may rigger more megative for positive) responses tham expected for a neutral reporting instrument ie.g. a self-administered questionnaire

METHOD OF USE

GENERAL PROCEDURE

The following steps are useful guidelines for planning and conducting an interview.

1. Specify the purpose of the interview.
2. Determine who is to be interviewed.
3. Prepare an interview schedule.
3.1 Design the questionnaire and determine the type of responses to be ahlowed Questionnaires. QTN. pase 19 .
3.2 Determine how the responses are to be recorded and. if necessary, derelopa coded iorm.
3.3 Make provisions for tanscribing dectronically recorded interviews (optional).
4. Select and train interviewers (optional).
4.1 Select interviewers based on the rypes of respondents.
4.2 Train interviewers to chminate biases and provide for uniform reporting.
4.3 Pretest all questions and anticipate ambiguities.
5. Conduct the interviews.
5.1 Arrange for transportation.
5.2 Norify respondents in advance loptional.
5.3 Arrange for immediate collection of reports.
6. Synthesize and analyze the responses.
6.1 Begin immediately to chminate ambiguous ts sponses in case corrections ate necessary.
6.2 Report the overall results in a form suitable for transmission to others ecg., comsider such tactors as anonymity of respondents, biases of interviewers. and systematic distortions in responses).

EXAMPLES

Rather than present the protocol of an interview, the following examples describe recommended procedures for conducting two very differne kinds of interviews.

Interviewing a Peasant Population

for an Aid Projecr
The following considerations were recommended by a colleague with extensive field experimees in data gathering (Ingersoll, 19:6).

1. Entry

If the interview is not simply an academic pursuit of knowledge but project centered, the parricipant will have a much greater incentive to participate. Facrors to consider in planning the interview include: cultural values, the inturence of the extended family, outsiders sitting in on the interview, and differences in perceptions of space. rime and quantity.

2. Respondent in center

Make the respondent the center of attention during the interview. Be setusitive to participants who need cues to
 to the mechanics of filling ums torms.

3. The interviewer's posture

The ideal is meutrality, athough it may be mesement to te positive so the respundeme"s wiew in wher tor the wete vicw to proceed. Receive ell reffiles with intervest. Awod
 repeating exactly what tite pretsort wots. Ducide lione sow
 tion or giving an example. Note suy further grobe witu, z aydestion for inclusion int the report of the interwew.

4. Departure

 mucdiate ressull of hin participation. (ive somme pronise if mese iniormarion and adeas have been vollumtered, Saynult the: end of the formul interview, ceg. closime up the ctiphthant
 talk. One may thave to come wack with mone fluestrate?

Interviewing a Professional or allecision Mather

The situarion is sur differeme when the rispenderte : cupies a status pasation in ann academbic, busimess. or goverramerstall orgunization, Hartiman i 968 ; ; racommends whe following steps for a successful intervicw:

1. Prepare for the interview.

1.1 Research the background of the respondent ten be come famifiar witin amy special terminowngy or jargon.
1.2 Schedule the intervanw well in advamee to :nllow the respondent time to prepare".
1.3 Artange the interview through the responderut's immediate superior where this is frasible to as sure the respondent that his participation is important and approved.
1.4 Get the respondems's correct mame and title in advance.
1.5 Avaid scheduling interviews for late in the day. just after mealtime. or just before a weekend.

2. Conduct the interview.

2.1 Introduce yourself and clarify the parpose of the interview even if there has been prior nonification.
2.2 Keep the interview to the subject-respect the demands on eachin other"s time.
23 Start the interview with broad questions.
2.- If the responses are not satisfactory, emphasize the importance of the respondent's wiews for the decision-making process.
2.5 Allow the respondent so think during oceasronal pariods of silence.
2.6 When a reply is unclear. ask the respondene to separate opinions from facts.
2.7 Don't let note-taking interrupt the normal flow of discussion; use abbrewiations amd symbols or clectronic recording (with prior permission).
2.8 Conclade the interview by allowing a few minutes for informal conversation and summation, Often these camments may divulge useful information and may give an indication of the validity or sincerity of the previous responses.
3. Follow up the interview.
3.1 Prepare the report of the interview immediately.
3.2 If a follow-up interview is necessary, send the report for a dyest of the first interview) to the respondent in dedvance.
3.3 In all cases, send a formal thank you to the respomdent and his supervisor acknowledging their cooperation.

THEORY

These is no theory of imterviewing in the sense of general laws or "traths." Each interview is different. However, there is some merit to taking a systems approach to the design of an interview, particularly when used as the micasuring instument for sample surveys (Surveys, SVY, page 36).

An interwiew is analogous to a communication system having four principal componerts (Warwick and Lininger. 1975, p. 184):

The interviewer
The respondens
The study content or topic
The interview situation

Each of these factors interact to determine the efficiency and effectiveness of the interview. The efficiency concerns the amount of information gathered per unit of time and cost. The effectiveness relates to the usefulness of the ideas or information gathered. For example, the interviewer andfor the respondent can incrodece both biases and distortion into the information gathered. Consequendy, if interviewing is to be an effecrive tecllnique, the specification of any one of the components must take into account the interaction with the other factors. i.c., designed as an information-gathering system (Hartmar, ef al. 1968 .

BIBLIOGRAPHY

Becchino, William A. Mamagement Informanion Systems: Tools and Technigues. Englewood Cliffs, N.J.: Prentice-Hall. 1972. pp. 83-84.

Hartman. W.; Matthes, H.; and Procme. A. Information Systems Handbook. Apeldoorn, The Nerherlands: N.V. Philips-Electrologica, 1968. Section 6-3.1, pp. 1. 10 .

Imgersoll, Jay. "Decture to Development Studies Program." U.S. Agency for International Development. Washiragton. D.C., Spring 1976.

Kahm, R.L.. and Cannelil, C.F. The Dynamics of Interviewirng: Theory, Techniques and Cuses. New York: John Wiley and Soms, 1966.

Warwich, Donald P., and Lininger, Charles A. The Sample Survey: Theory und Practice. New York: McGrawHill. 1975.

II

Assessing Qualitative Factors

Rating Scales
Multiple Criteria Utility Assessment
Surveys
Organizational Climate Analysis

There is a danger in project design and systems modeling of overlooking a factor because it is not in quantitative form. Techniques for assessing quaitative factors are essential to a systems approach, and four such rechniques are described. Two are scaling procedures (Rating Scales and Multiple Criteria Utility Assessment). The other techniques are broadly based assessment procedures (Surveys and Organizational Climate Analysis"). All four provide a means of transforming qualitative attributes into quantitative measures. though clearly the latter two have a variety of uses.

Rating Scales

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

A rating scale measures the degree to which an entity possesses or exhibits a specifed property, as either an absolute or a relative judgment.

USES

Rating scales are used to quantify factors which may be highly subjective or qualitative in mature. Once the judgment is scaled, the quantitative measure may be incorporated into analyses such as:

1) Rating the individual utilities of various criteria using Multiple Criteria Utility Assessment (MCU, page 32).
2) Evaluating alternative decision sequences in a decision tree (DTR, page 141).
3) Evaluating alternative plans, given various contingencies which may be expected to occur (Contingency Analysis, CGA, page 147).
4) Ranking altertatives as in Nominal Group Technique (NGT, page 14) and Delphi (DLP, page 168).

KEY DEFINTTIONS

There are four primary cypes of fating scalcs (sce figure 1

1) Nownalal scales simply catcgorize different factors. e.g., mot/cold. dark/light. and black/gray/white represent mominal scales for hear. iffumination, and color.

2 Oruithul scciles are used to rank-order a ser of simiflar objects along a criterion dimension which reflects a basis for comparison, but not the degree of difference, e.g. warm, warmer. hot hotere, hotrest are ordinal ramkings of heat sensation.
3) Intervul scules reflect not only the rank of one factor over another, but the degree to which one excee-is the ocher. The difference berween therr corresponds zo a length of scale interval. The zero point is arbitrary.
4) A ratios scule is an interval scatle for wimich the dimension of comparison has a maturaitzero poini, e.gn - Ihe centigrade temperanure scale.

SHORT DESCRIPTIGN

Rating scales are described by their uses:

1) To rank the preferences for a ser of factors:ordional and interch scales.
2) To classify or categorize a dissimailar set of factors: nominull scales.

FIGCRE:

1. anguples of Rating Scalrs Applicd to Dixcrinmination Among Threc Projects

Ordinal Scale

Interval Scalle

3) Ta imdicate thac dacgre one factor execeds amonther wa a socilied basis of comparison: interwal and ratiou seales.

The scale sclected determines how discrimanatinde the rater can be.

ADVANTAGES

Katiag wales allow a guantitarive comparisom, If the comparion mavives several facturs. the discrimination between factors is emhanced by rellating it to a physical dimansing (the position ce inturnal on watio scales).

Factors quantified on rating seales may be combined to weflect a cquatatitative assessment of cumblative effect, e.g. the pooled judgments of a gronporf raters.

LMITATIONS

Rating seales are constructed by subjecrive judgnemts in the assignment of ramk or interval on the scale. This fact is sometimes lost when the rating is tratsterred to other task or used as information in other tasks.

REQUIRED RESOURCES

IEVELOFEFFORT

The major tosk is to assign the rating for each factor. This may be an involved or a straightforward process, depending on the ultimate use of the rating. For example. fating may be used directly as part of cost-benefit analysis (CBA, page 212) or as an aggregated form to reflect muntiple dimensions of discrimination (MCU, page 32). The aggryation process tends to mimimize the contribution of any one rating-

SKiLl LEVEL

Expertise is required in selecting the appropriate kind of rating scalle and its parameters. The tating process is su5jective and may combinas the indiwidual judgments of experts or project clients (see Delphi, DLP, page 168).

TMEREQUIRED

Nominal wales usually require little timie sime only classificetion is imwolwed. Ordinat scalles can be constracted quaichily, particutiarly it andy a tew tactors are co be ranked. inturval and riatio scalles medy require more time to construct and estublishy rating becatuse more juldment is inwolved.

DESCRIPTION OF TOOL

REQUIRED INPUTS

The inputs required are simply the scale selected for the ratings (menninal, ordinal. etc.) and the set of factors to be rated. If the rating is to be conducted by someone orher tharn the person who construcred the scale, a sample rating is useful ta illestrate the process. The dimensiom on which the comparisons and contrasts are to be made must be clearly identifiled and understood.

TOOL OUTPUT

The output is a rating scale which quancifies the subjective assessment of the factors.

MPORTANT ASSUMPTIONS

The construction and applicarion of rating scales rest on the assumprion that humams can discriminate along the
rating dimension. There are two limiting factors involved: comparative and absolute judgrment. The first suggests that humans are limited in their ability to diseriminate between two adjacent factors along dimensions such as color, tonc, volume, smell, size, length, etc. The second suggests that the number of discrete intervals which may be recognized along any one dimension is limited. For example. we recognize only four different tastes: sweet. sour, salt, and bitter. Discrimination is based on a cumbination of taste, texture, smell, and appearance. The implication is that it would be unproductive (and misleading) to ask the rater to distinguish more intervals than he is psychophysiologicallyable to (Garncr, 1960).

METHOD OF USE

GENERAL PROCEDURE

1. Determine the atributes or factors to be rated.
2. Determine the best scale for rating the factor.
2.1 Consider the degree of subjective judgment that is feasible.
2.3 Determine the time available and the discrimimaमion desired.
3. Construct the rating scale.
4. Rate the attributes or factors.
5. Verify the consistency of the ratings.

EXAMPLES

Nominal Scale

Any classification system represents a nominal scaling of variables. For example, the tools in this handbook are categerized nominally by their major purpose. In general. the nominal classification of items is possible only if the categories are mutually exclusive and exhaustive. The latter requirement is usually mer by a catch-all category. e.g., "none of the above."

Ordinal Scale

There are several examples of the construction and application of ordinal scales in this handbook, e.g., the rankordering method described in Nominal Group Techniques (see NGT, page 14).

Interval and Ratio Scales

 isee Multiple.Cyiteria bility Assesmmeme. MCl: Fuge 32. Subjective Probability Assessmemt SPA. page 13 ${ }^{*}$. requires an interval calle to rate the likelihemot of events occurring. 末rueckeberg (1974) describes the use of rating scales in urbam planning.

THEORY

Rating scales are based on the thatory ot prwetra physical measurement Garmer. 1960:. The hiterature ob psychology. sociology and decision making abomads with cmpirical stadies on the subject.

Two works are of particular interest A autrean : 1976? describes rating scales in a treatment of a systems dpp proach to identifying and solving problems. Knuppreth. et al. 1972 catalog a number of difierent wortha dsersement tectamiques. Other sterdies (Huber. ete al. 1969) deal with the issues of the aggregating group judgmemts. The results are significant. partictliarly where priorities are to bo ranked in such a way that second and nind chovecs ane included.

BLBLIOGRAPHY

Garner, W, R, "Ratiag Scales, Discriminability, and fuformation Transmission." The Psychological Reviewie 67 November 1950: 343-52.

Huber, G.: Sahney, V.: and Ford, D. "A Study of Subjeative Evaiuation Models." Be hauthoral Science (Nowember, 1969).

Kaufman, Roger. Adentifyiag and Solwing Problems: A Systems Approachin Lalla. Calif.: University Associates. 1976.

Kneppreth, N. P.: Gustatsom, D. G.; and Lifer, R. P. The Assessment of horth: Techaiques. Madison: Depantment of Imdustrial Engimeering. University of Wiscon$\sin , 1972$.

Krueckeberg, Donald, et al. Crbane Phonning Analysis. New York: John Wiley and Sons, 1974.

Miller, G. A. "The Magic Number Seven \pm Two." Joumul of Experimental Psycinlogy.

Multiple Criteria Utility Assessment

PREREQUISITE TOOLS

None.

USAGE

PERPOSE

Multiple criteria utility assessment is a systematic procedure for assessing the worth of complex alternatives.

USES

Unility assessment provides a common scale for combining judgments on more than one dimension. The technique is used to:

1) Evaluate alternatives using more than one criterion-
2) Combine effectiveness measures into a single aggregated utility, e.g. as in cost-effectiveness analysis (CEA. page 219).
3) Determine a common criterion for valuing the possible outcomes in a decision under risk (see Decision Trees. DTR, page 141).
4) Provide a common measure for comparing the performance of alternative plans (e.g, Contingency Analysis, CGA, page 147).

KEY DEFINTTIONS

1) Utility is a quantitative expression of the worth or satisfaction asseciated with an outcome.
2. A urilizy function associates the pessible levels acriterion may take with the urilities for those levels.
3) A unility matrix presents the elements of a decision under certainty: alternatives, criteria for evaluaning the alternatives. weights indicating the relative impertance of the criteria. and the assessed urilixies (see figure 1 ;

FIGURE 1
Uniliry Marrix for Evaluating Alrornarives
ALTERNATIVES

CRITERLA	WEIGHT	Alternatives	
		A	B
x_{1}	we^{1}	$U_{\text {Al }}$	U_{BI}
x_{2}	${ }^{2} 2$	$U_{A} 2$	$\mathrm{UB2}^{2}$
x_{3}	$\operatorname{la}^{2} 3$	$\mathrm{U}_{\mathrm{A} 3}$	$\mathrm{UB3}$
Total Weighted Utility		U_{A}	U_{B}

SHORT DESCRIPTION

In order to compare and waluate various alternatives (A, B, ...), several criteria (x_{1}, x_{2}, \ldots) are first specified (see figure 1)- The decision maker considers each criterion separately, assessing the relacive urility for different criterion levels. The criteria are weighted to represent their relative irnportance to the decision maker. The aggregate utility for cach alternative is determined by computing the weighted sum of the individual utilities for each criterion. Alcernatives are compared on the basis of overall utilities.

ADVANTAGES

Valuing alternatives using measures like expected payoff or costs ignores the preferences the decision maker may have for incremental benefits or costs. Utility assessments transform these preferences into quantitative scalcs which can be combined to deterninc aggregate atility.

Where a complex altemative must be evaluated. this technique requires the decision maker to consider only one criterion at a time. This simplifies the assessment ash and inereases the consistency of subjective judgunents.

LIMITATIONS

Not all qualitative criteria can be assessed quanticatively. e.g., political acceptability. Multiple criteria utidity assessment makes no allowance for preferences which change over time.

REQUIRED RESOURCES

LEVELOF EFFORT

Multiple criteria utility assessment reguires the cooper ation of the analyst and the decision maker. The andyst frames the decision situation by identifying alternatives and working with the decision maker to specify criteria for evaluating the alternatives. The decision maker quantifies his preferences in the form of a atility function for cach criterion. Aggregating utilities is then a straightforward analytical task.

SN:年L LEVEL

Effecrive coumunication between analyst and decision maker is essential for eliciting uality functions and weighting criteria. The analyse maisi be able to evaluate the degree to which each alternative meets the criterion in ques tion, a process which can involve subjective judgment.

TIME REQUIRED

Determining utility functions and checking for consistency can take half a day. Otherwise, the computations and evaluations are not time-consuming, provided neces" sary information is available.

DESCRIPTION OF TOOL

REQUIRED INPUTS

The criteria by which the aiternatives are judged must be specified. The criteria may be derived from an analysis of objectives (Objective Trees, OBT, page 49) or from the nature of the decision situation. The alternatives must be

「IGCRI2
Coility Function

suffictently detailed so that the decision mather cun fudge" the extent to whicheach meets the criteria.

TOOLOUTPUT

The first products of the mulriple criteria utility assessment techinque are the atility functions corresponding to each criterion (see figure 2). These transfer the criterion levels to utilities e.g. the atility of 65 bushels per hectare is 75^{*}). Urility funcrions cam be analyzed to indicate the underlying preferences of the decision makers. e.g. a preference to avoid risk (see Bierman. et al.. 1973).

In a decision siruation. the ultimate result is a quantitative ranking of the alternatives by decreasing ageregate urility. This measure can be used in orher techniques where alternatives are evaluated using multiple citeria ieg. Cost-Effectiveness Amatysis, CEA, page 219.-

IMPORTANT ASSUMPTIONS

Utility is a measure of satisfaction with an outcone and has the property of additiviry. Utilities assessed for more than one criterion may be added to indicate a preference based on complex multi-dimensional judgments see Rating Scales, RTS, page 29i.

The criteria applicable to a decision are fixed dimensions for assessing the degree to which ani alternative possesses each of the attributes, e.z. the dimensions do not vary from altemative to alternative in the decision situation although the criterion level for each alternative varies. That is, subjective preferences are consistently applied to all alternatives in the decision sitnation.

- Uitilites are dinensionless, but may be thoughe of as percentage relative to complete satistaction i $100^{\circ} 0^{\circ}$: with a criterion lewal.

METKOD OF USE

GENERAL PROCEDURE

1. Identify the decision criteria used to assess each alternative.
1.1 Determine nominal scale categories for the qualitative criteria (see Rating Scales, RTS, page 29).
3.2 Determine the practical limits for quantifiable criteria. e.g., yield per hectare may range from 10 to 105 bushels.
2. Constract a utility function for each qualitative criterion.
2.1 Identify a most preferred and a least preferred level.
2.2 Assign utilities of 100% and 0% satisfaction.
2.3 Assess the utilities for indermediate levels of the criterion.
3. Construct utility functions for each quanticative criterion.
3.1 Assign 100% utilizy to the quantitative criterion level, just beyond the practical limit which is most preferred.
3.2 Assign 0\% utility to the criterion level at the other extreme of the practical range of values.
3.3 Assess the utility value which indicates the percentage satisfaction with intermediate criterion levels, e.g, "if your satisfaction with a harvest of 105 bushels is 100% then what is your satisfaction with 60 bushels per hectare?"
3.4 Connect a curved line through the intermediate utility values (sec figure 2).
4. Test the internal consistency of the utility assessments4.1 Pose questions like: "You have said that you would be 25% satisfied with 35 bushels and 75% satisfied with 60 bushels. Are 60 bushels actually preferred three times as much as 35 bushels?"
4.2 If the answer is no. then adjust one or both utility assessments.
5. Considering one criterion at a time, determine the utility for each alternative.
5.1 Construct the utility matrix (figure 1).
5.2 Using the utility function for the respective criterion, evaluate the udilities for the various alternatives by assessing the criterion level achieved by each and then using the utility function to read off the corresponding utility.
5.3 Enter these percentages in the rows corresponding to that criterion of the utility metrix.

FIGURE 3
Utility Functions for Evaluating Farmer Contact Scrategies

Number of tarmers conatacteridmanally
Criterion 2: Percentage of farmers contacted who own loss eltan 10 hectares

Critenon 3: Accossibility by farmers

6. Weight the criteria.
6.1 Ask the decision maker to order the criteria by increasing importance to the decision.
6.2 Assign a weight of 1.0 to the most important criteria.
6.3 Ask the decision maker to indicate the fraction corresponding to each remaining criteria, e.g., "is this criterion one-half or one-third as important as the most important criterion?"
7. Compute the aggregated utilities.
7.1 Multiply each utility by the weight assigned to the respective criterion for that row of the matrix.
7.2 Compute the aggregated utility for an alternarive by summing the weighted utilities across all criteria, Referring to figure 1 , for alternative A :

Aggregate utility of $\mathrm{A}=\mathrm{w}_{1} \mathrm{U}_{\mathrm{A} 1}+\ldots+\mathrm{w}_{n} \mathrm{U}_{\mathrm{A}}$ where
$U_{A n}=$ utility of alsernative A for criterion n $w_{n}=$ weight of $n^{\text {th }}$ criterion (a positive fraction less than 1)
7.3 Rank-order the alternatives by descending values of their aggregated utility. The alternative giving the greatest satisfaction is the one having the greatest aggregated utility.

EXAMPLE

The Temasek Ministry of Agriculture was considering two alternatives for disseminating innovations to small farmers: A) establishing farmer training centers at strategic locations in the region, or B) strengthening and expanding the agricultural extension service. The effectiveness of the alternatives were evaluated using three criteria: 1) the number of farmers contacted per year: 2) the percentage of farmers contacted having holdings of 10 hectares or less; and 3) the accessibility of the approach. Criterion (3) was formulated as a qualitative assessment of the ease with which farmers could use the system.

Utility functions were derived for the three criteria (see figure 3). The Ministry of Agriculture decision makers placed a high utility on reaching a significant percentage of small farmers. Also, no utility was associated with reaching less than 500 farmers as this was the present level of contact for the existing extension program. The practical limit for criterion (1) was the total number of farmers in the region, estimated at 10,000 .

A utility matrix was constructed, and the utilities of the alternatives were evaluated (see figure 4). Considering criterion (2), the mobile extension workers could be more selective in contacting farmers, while only the larger farmers would tend to use the training center services.

FIGURE4
Utility Matrix for Ministry of Agriculture
Farmer Contact Strategy

		Alcermative	
Criteria W	令	A! Training Centers	B: Strengthered Extensions
1. Total farmers contacted 2. Percentage small farmers 3. Accessibility	1.0 0.5 0.5	90 75 25	60 50 75
Weigheed total		140	$122.5=123$

The importance of each criterion was evaluated and weights were assigned (see fyure 4). The total number of farmers reached was judged to be twice as important as the other decision criteria. The weighted aggregate utility for each utility was computed. For example:

$$
\text { Aggregate utility for alternative } A=(1.0)(90)+0.5)(75)
$$

$$
=(0.5)(25)=140
$$

The weighted aggregate utility for alternative B was computed at 123. Consequently, the farmer training center strategy was preferred. The aggregared utilities were then compared to projected costs (see Cost-Effectiveness Analysis, CEA, page 219).

THEORY

Huber (1974) identifies two methods by which multiple criteria utility assessment is carried out. The method shown here has been the client-explicated model, since the client (decision maker) indicates his utility for various "evels of each criterion. In the observer-derived model, the client is asked to make a grobal judgment of the overall urility associated with a set of criterion levels. The client estimates the utility for several such sets; regression analysis (see Regression Forecasting, RGF, page 160) is used to estimate the utilities associated with each criterion.

BIBLIOGRAPHY

Bierman, Harold, Jr.; Bonini, Charles P.; and Hausman, Warren H. Qucntitatùe Analysis for Business Decisions. Homewood, Ill: Richard D. Irwin, 1973.
Huber, George P. "Methods for Quantifying Subjective Probabilities and Multi-Attribute Utilities." Decision Sciences 5 (July 1974): 430-58.

Surveys

PREREQUISITE TOOLS

Questionnaires, UTN, paye 19.

USAGE

PURPOSE

A sample survey is used to gather information from a fraction of a subject population in order to idemsify and measure its attributes.

USES

A sample survey can be used to:

1) Explore the issues, opinions, and attitudes of inhabirants of a region or a selected targer popularion.
2) Test Fundamental hypotheses and assmptions which have been developed by a pillos study or orther experiment.
3) Provide feedback on the progress of a project by measuring the delivery of services.
4) Form the basis for a post facto evaiuation of the overall effectiveness of a project by measuring its impact on recipients and non-recipients.
5) Quantify statistical data used in the cost-benefir analysis (CBA. page 212) and cost-effectiveness analysis CEA. page 219) of proposed projects.

KEY DEFINTIIONS

1) A subject population is the set of all events or entities which possess certain specified characteristics, e.g., all married couples in a region of the country of Temaseh.
2) A sample is a subset selected from a subject population. the atributes of which are assumed to twid true for the total population.
3) A measuring instrument is a technique for eliciring and measuring responses from a subject.
4. A census is a sunvey of all members of a subject population.
3) Participant observation is the gathering of informanion about and impressions of a selected group by direct interaction over an extended period of time, e.g. a social scientist living in a willage to interact and observe behavior patterns, social relationships, and economic structures

SHORT DESCRIPTION

A sample survey is a means of gathering maximum information at mimimum cost. A sample of the subject population is selected based on the parpose of the survey and time and cost limitations. Two common measturing instruments are used to gather information: interviews (IVW. page 23) and questionnaires (QTN, page 19). They may be used together and administered by trained personnel.

Survey results are tabulated and analyzed in order to assess characteristics of the subject population. Surveys
are used in evaluation research for the "assessme nt of the process and/or consequences of deliberate and planmed interventions" (Warwich and inninger, 1975. page 51 ;. Using rating scales (RTS, page 29) and statistics see Histograms. HIS, page 131, the analyst makes inferences about the need for the progress of and the impact of development projects. These inferences are tested using the sambple survey results.

ADVANTAGES

1) Information about a popularion may be gathered from a fraction of the population. This minimizes expersive data gathering costs.
2) A great deal of information can be gathered by making a careful selection of a representative sample.
3) In contrast to participant observation. a carefully designed survey permits generalization about the characteristics of the population as a whole.
4) Because fewer interviewers are required than for a census, the training and control over them is usually berter.

LIMITATIONS

Even a small survey may be prohibitively expensive. particularly if accessibility to the subject population and training personnel are factors.

Biases in the information garhered and the sampling procedure may lead to erroneous inferences.

The return for mailed questionnaires is rypically very low and may jeopardize the validity of the results. How: ever, personal interviews introduce an additional source of bias (see Interviews. IVW, paye 23).

A sample survey is less usefult rian participant observation when the analyst knows little about the society under study.

REQUIRED RESOURCES

LEVEL OF EFFORT

Surveys are normally major undertakings. The decision maker will have to weight the costs against the benefits (see Cost-Benefit Analysis, CBA, page 212) before undertaking the survey. The analyst will expend the major effort in designing the survey and analyzing the responses. If interviewing is desirable, the selection, training, and supervision of incerviewers is crucial.

SKILL LEVEL

Survey design requires a good deal of research knowledge and statistical sophistication. Skills in selecting representative samples. constructing questionnaires, and analyzing data are essential.

TIME REQUIRED

A sample survey cam be a very cime-consuming proces. not only in actually conducting the survey but in the pian ning and analysis stages. A critical path schedule is presented as an example in Gantt Charts (GNT. page 253 for a 33-day task.

SPECIAL REQUIREAENTS

A variety of statistic-l packages are available on computer programs. However, to use them to analyze sample survey results. the data must be coded in compatible formats see Quertionnaires. QTN, puge 19; Thumbig not wictly necessary computerized technifues have the groat advantage of shorrening the time required to analyze results and permitring complex statistical meastres to be derived from the dara.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) A simple ramdom sample is made so that every member of the target population has an equal probability of selection.
2) A strutiffed sample selects a proportional sample at randow from each of the groups in a stratification of the total population. e.g., the sample includes an equal number of randomly selecred individuals from low. middle. and nigh income strata.
3) Chaster saripling is the process of randomly selecting several clusters of subgroups from the total population and surveying all members of the selected subgroups. e.g. only three villages are selected in the region of the subject popularion. but every inhabitant of the village is interviewed.
4) Multi-stage samping draws random samples in stages. The first stage selects random groups within the target popularion. A second stage randomly select. subgroups ior individuals) from urthin the groups, and so on.

REQUIRED INPUTS

The problem definition, the desired supject population, the measuring instrumens, and the sample size are
necessary inputs for a survey. The dection maker has to interact with the analyst to determine the satopie size. The size will affect costs as well as reliability. A choiee between potential measuring instruments is made dependiacon the type of problem being faced the costs of using the instrument, and the expected time lag before arriving at a final analysis.

TOOL OUTPUT

The tabulation of the responses is of primary interest to the decision maker. The simplest type of ousput would be marginal tabulations. indicating how the population is distributed across a list of categories. For example:

Religion	Percentage of Population
Protestan	15%
Catholic	5%
Muslim	30%
Bucdhist	40%
Other	10%
TOTAL	100%

Hence. Mushims would form 30% of the subiect popuiation (see Histograms. HIS. page 131).

Another output is "correlation analysis." This analysis shows how variables are related to each other. For example:

	Response on Birth Control		
	Opposed	Indifferent	Agree
Protestant	5%	5%	90%
Catholic	60%	30%	10%
Mustim	35%	10%	35%
Buddhist	10%	10%	80%
Other	2%	15%	83%

This output would indicate that Catholics and Muslims generally oppose birth control. Hence, the decision maker may have to consider strategies to establish linkages with Catholic and Muslim priests if birth control is to be implemented (see Regression Forecasting, RGF, page 160).

A final type of output is due to "longitudinal research," where the attributes of a population are measured at two or more points in ime. The results are used to indicate changes in measured attributes which are caused by planned interventions. For example. the effectiveness of a birth control education program would be assessed by tepeating the survey of attitudes at several intervals after the program had started.

MPPORTANT ASSUMPTEONS

A sample population can be randomly selected to be representative of the stbject population. Measuring instruments arc unbiased. The inferences from the sample results to the targer population are statistically valid.

METHOD OF USE

GENERAL PROCEDURE

Since sample surveys vary greatily in purpose, design. and exccution, below is a broad sketch of the steps involved (for a more detailed description. see. for example. Warwick and Lininger, 1975).

1. Specify the purpose of the survey and irs uses.
2. Idencify the subject population.
2.1 Consider the kinds of inferences which are to be made.
2.2 Consider the accessibility and cooperativeness of the subject population (they may have already been saturated by sarveys or experiments;.
3. Select a sample method:
a) Simple random sampling.
b) Stratifed sampling.
c) Cluster sampling or
d) Multi-stage sampling.

4. Determine the best sampling size.
4.1 Consider the desired accuracy and reliability of the survey results: the larger the sample, the more reliable the inferences about the target popula tion. *
4.2 Consider the cost of gathering data: the larger the sample, the more time or personnel required.
4.3 Consider the cost of processing the data: unless the results are processed automatically, the smaller the sample. the less the cost in both time and effort.
4.4 Consider the desired discrimination** in target population: the more homogeneous the target population, the smaller the sample may be.

[^2]5. Specify the measuring instrument and train persoment.
5.1 If a questionnaire is used. deterroine how it will be administered (see Questionnaires. QTN, page 19 .
5.2 If direct interviews are used, select and train the interviewers, taking into accomnt cultural compatibility with the target population.
6. Design the survey çuestionnaire and pretest (see Ques tionnaires, QTN, page 19).
6.1 Determine if both open-ended and close-ended questions are mecessary. The former will reguire more training and interpretive analysis of results.
6.2 Correct any deficiencies in design by prexesting on a small sample of the target population. If this is not desirable. then pretest on a group which matches communication characteristics of the target population, e.g., hiteracy level. candor, cooperativeness.
7. Conduct the survey.
7.1 Arrange necessary mansportanion.
7.2 Monitor intervicwers by spor-checking sarvey results.
7.3 Start analyzing results immediately in casc adiustments to the questionmaire or the interviewing procedure are necessary.
8. Tabulate and analyze results.
8.1 Prepare histograms for quantitative measures and compute descripuive statistics see Histograms, HIS, page 131).
8.2 Interpret and summarize open-ended responses (see Delphi, DLP. page 168).
8.3 Analyze results to test statistical inferences.

9. Report conclusions.

9.1 Include questionnaire and sampling procedure as appendices.
9.2 In addition to presemting data and summary statistics, reflect on implications of the results.

EXAMPLES

The examples of sample sarveys cross many fields and address a variety of purposes. Glock (1967) provides examples of how surveys have been used in sociology, economics, social work, and education.

The Survey Research Unit (Illo and Lynch, 1975) has been extensively involved in data gathering for the Bicol River Integrated Development Program in the Phillipimes The issues addressed range from social indicaiors such as "The Quality of Life" to yield data on rice production.

Mann (1974) describes a compreternsive survey cont ducted in Africe to deneity the problems ot smediliarmers

THEORY

Survey research has deweloped into a theoretical areat ith it oum right Festinger and Katz. 1953. and Warwick and Linimger. 1975 . Effective use of measuring incirnumats are described in Young (1956) and Cucourch (1964).

The underlying theory upon which sample surveys aro tased is the process of statistical inferemace and hyphothersors testing. Meyers and Crossen 1974 twscribc basite statictical mechods, and Smith 0 1975; gives a uscfull tratome ne of these methods in relation to sample survess designed ton gather quanditarive project datal Keart 1976 presembs collection of experiences, ratesofthemb. and common sense in the design and execution of sample surveys

BIBLIOGRAPHY

Cicourel. Aaron V. Methods and Meaztremone in Socion Lugy. New York: The Free Fress. 1964.
Festinger. L. and Katz. D. Research Methods in the Rehavioral Sciences. New York: Holt. Rinchart and Wituston. 1953.
Glock. Charles Y., ed. Survey Researchin the Social Sciences. New York: Russell Sage Foundation. 1967.
Illo. Jcanne Frances, and Lytrch, Frank. "Patterns of Income Distribution and Household Spending in the Bicol River Basim." Social Survey Research Unit Research Report Series. No. 13. Bicol River Basin Development Program Naga City. Phillipines. 1975.
Kcarl. Bryant, ed. Field Data Collection in the SociulSciences: Experiences in Africa and the Middle Last. New York: Agricultural Development Council. 1976.
Kerlinger. Fred N. Foundarions of Behaviora! Research. New York: Holr Rinehart and Winston, 1964.
Mann. R.D. Rural Africa Development Project: IelentifyFng the Problems of Small Farmers. London: Intermediate Technology Publications, 1974.
Meyers, Lawtence S., and Grossen, Neal E. Rehavioral Research: Theory, Procedure, and Design. San Francisco, Calif.: W.H. Freeman. 1974.
Smith. Ken F. Statistical Survey and Analysis Handbook. Manila, Phillipines: United States Agency for International Develcprizent, March 1975.
Warwick, Donald P., and Lininger, Charles A. The Sample Suntey: Theory and Practice. New York: MoGrawHill. 1975.
Young, Pauline V. Scientific Social Suneys and Research. Engleword Cliffs. N.J.: Prentice-Hall, 1956.

Organizational Climate Analysis

PREREQUISITETOOLS

Nonc.

USAGE

PURPOSE

Organizational Climate Analysis determinas the oryumizationdel climater required to achieve desired behavior froma targer group within an organization.

uses

Climate analysis may be used to:

1) Identify orgunizationul witrithutes (climate) which affect behavior.
2) Compare the climates of similar organizations, e.g. secondary schools within a country, or divisions within an army.

KEY UEFINITIONS

1) Organizational climate is the relatively encuring quality of the internal environment of an organizarion that (a) is experienced by its members, b) influences their pehavior, and (c) cari be described in terms of the values of a particular set of characteristics (or artributes) (Tagiuri, 1968).
2) A turger group is mumber of individuals with some commont roles or characteristics. Examples are students in a school and employees in a governmentagency.
3) Organizatichnal artributes include the elements or components of an organizational system and the interrelationships amongs them.
4. Heasuming instrumenas are rechniques for eliciting and measurimg responses from a subjecr. Examples are чwestionmaires (OTN. page 19) and interviews (VW. page 23.

SHORT DESCRIPTION

A set of measurable orgamizational attributes which can be used as criteria for describingan organization'sclimare is determimed. Meanaring instruments, which engage people within the organization, are then utilized to determine the desired values of these attributes and thus the desired organizational climate. The present organizational climate is then determined through observing and objectively measuring the behavior or performance of the target group. Anallysis of the climate and behavior then leads to a proposed organizational climate which can encourage desired behavios.

ADVANTAGES

Quanritative measures of organizational attributes are identified which help to derermine the achievement of the desired organizational climate.

LIMITATIONS

1) If the people within an organization are unable to express their perceptions about the organizational attributes. then adequate measurements canot be obtained.
2) The analysis requires an exteran consultant whose services may be expensive.
3) If the cooperation of the targer group is mot forthcoming, the results of the chmate analysis may be invalid or unacceptable to rhe targer group.

REQUIRED RESOURCES

LEVEL OF EFFORT

The analyst will expend consideable effort helping the decision maker to identify the desired types of behavior and the organizational attributes of the climate: to provide measures for these attributes. to construct measuring instruments (and possibly adminstering chem; and to analyze the results obtained.

SKILL LEVEL

The analyst should have a strong background in organizationai theory and its related aspects in psychology and sociology.

TEME REQUIRED

The climate analysis is a major effort which takes at least a month. The time reguired varies with the size of the target group, the number of organizations, and the accuracy desired.

DESCRIPTIONORTOOL

REQUIPEDINPUTS

Perceptions about the organizational climate are solicited mot only from the target group, but from other individuals withen the organization.

Behavior may be judged by several criteria. inciuding routine job performance, creativity, and scholastic ability. These are operationaized into measurable criteria, such as number of cars assembled per hour, number of ideas generated and grade point average, respectively, Objective Trees (OBT, page 49) may be a useful rechnique for determining these criteria.

Sells (1968) identifies eight criteria to be considered in climate assessment (see figure 1).

FIGERE 1
Dimensions to Be Considered in Climate Assesment

1. Objective and Goals
a. Remoteness of goais
b. Formal ws informai mode of denignathos
c. Unitary wo multiple goats
2. Philosophy and Value Systems
 sues of property. profite tuantiont cta
b. Status and valuc accorded che individuat. mimorities. dependent indivaduals. and growes.
3. Personne Composition
a. Inellectual potential
b. Physical trairs
c. Position in status hierarchy
4. Orgamization
a. Size
b. Differentiation
\therefore Autenomy
5. Technology
d. Products and services involved
b. Typus and degrec of technoleggat complexity
6. Physical Environment
a. Social isolation
b. Types of furnisthings
7. Social-Cultural Environment
a. Language
b. Living standards and routines
c. Recreations
8. Temporal Characteristics
a. Duration of individual participation
b. Extemt of daily participation

TOOL OUTPET

The analyst will tell the organizational decision makerts's which organizational attributes are aiding and which are hindering achiewement of the desired behavior. Discussion between the amalyst and the decision maker will then determine the changes to be made in the organizational climate.

METHOD OF USE

GENERAL PROCEDURE

This procedure may be followed in a climate analysis. Note that these steps are meant to provide only a gencral understanding.

1. Wetermine the basis for a climate analysis.
1.1 Identify the targetgroup in consultation with the decision makeri.
9.2 Befine desired tehavior from the target group-
1.3 If comparison of organizations is to be done. determine the number to be included in the study.
2. Ohtain operational definitions of climate and behavior.
3. 1 Identify one or more measurable astributes for the orgamizationd climate. The attributes may be commehensive or they may be selectively perceived.
2.2 Define objective criteria for measuring behavior.
4. Measure climate and behavior.
3.1 Identify individuals in the target groups
3.2 Construct a measuring mstrument for discoverimy individual perceptions (see kating Scales. RTE. page 29, and Questionmaires, QTN, page 191.
3.3 Administer the measuring instrument (see lntervicws, IVW, page 23 .
3.4 Obtain objective measures of individual behavior by observation and from past tecords.
5. Analyzeresults.
6. 1 Analyze the responses to determine the perceptions of the organizational climate.
4.2 Agregate the responses for ach organization to provide a measure of chmate for the organization.
4.3 Compare the measured attributes with the measures of behavior to determine which attributes significantly affect behavior (see Regression Forecasting RGF. page 1607.
7. Propose the desired organizational climate.
5.1 Identify those attributes which seem to significantly affect the desired behavior.
5.2 Propose an orgenizational cimate which may achieve the desired behavior.

EXAMPLES

Shukla (1974) interviewed 25 people (faculty, students, staff in a university department to assess the organizational climate. This climate analysis was intended to serve as a basis for: 1) changing policies in the deparment by the top management, 2) identifying teaching needs of the faculty, and 3) changing orgamizationalatributes and practices. Some of the organizational attributes identified were decentralized decision making, interpersonal relafionships, cohesiveness. rewards from teaching, faculty workload distribution (research. teaching, and advising), flexibility in choice of courses for students. student and
faculty perceptions of independent study, departmental goals, and admission regumirements.

Pace (1968) synthesized the results of several climate analyses related to the measurement of college enwironments. Dimensions of the college climate were scholarship (e.g.- imellectual orientation of students), awareness (e.g. self-expression), practicalizy (c.g., vocational stadent culturc), burcaucracy (e.g. faculty affiliation;, and propriery (e.g. social conformity). These dimensions and their attributes were then related to some measure of behavior. e.g. high productivicy of schollars, research work.

THEORY

The analysis of organizations encompasses a variety of discipines including politicall science, social psychology. sociology, public administration. microeconomics, business and matagement science. and industrial engineeringThe analytical buas depends largely upon the functiom of the organization.

Orgmazational Climate Amalysis focuses on identifying the atraibutes which will enable a diagnosis of problems in the orgamizational enviromment, and assessing qualitative factors with which to measure improwement. The focus is largely on interpersonal factors and the orientation is socia!-psychological.

BIBLIOGRAPHY

Pace. C. Robers. "The Measurement of College Environmemrs," In Organizational Climate: Explorations of a Concepr. edited by Renato Tagiari and George $\mathrm{K}_{\text {. }}$ Litwin. Boston. Mass.: Graduate School of Business Administration. Harvard University. 1968.
Sells, S. B. "An Approach to the Nature of Organizational Climate." In Organizational Climate: Explorations of a Concept, edited by Renato Tagiuri and George H. Litwin. Boston, Mass.: Gradtate School of Business Administration. Harvard University, 1968.
Shukła, Ramesh. "Report to the Graduate Task Force on Department Climate Analysis." Department of Industrial Engineering. University of Wisconsin, 1974.
Tagiuri, Renato. *The Concept of Organizational Climate." In Onganizational Climate: Explorations of a Concept, edited by Renato Tagiuri and George H. Litwin. Bostom, Mass-: Graduate School of Business Administration. Harvard University, 1968.
Tagiuri. Renato, and Lirwin, George H., eds. Organizarional Climate: Explorations of a Concept. Boston, Mass.: Graduare School of Business Administrarion, Harvard University, 1968.

III

Defining Objectives

Function Expansion
Objective Trees
Intent Structures

Defining project objectives is a universal imperative of a systems approach. Objectives are often unspecified, ill-defined, nonconsensual, and/or time-varying. Three techniques were selected which address thesecharacteristics. Two techniques focus on structuring objectives in a hierarchy (Objective Trees and Inteme Structures), A chird cool derives from systems engineering and represents a hierarchical view of system fumction (Function Expansion). All three assume that defining objectives is a realizable task.

Function Expansion

PREREQUISITETOOLS

None.

USAGE

PURPOSE

Function expansion idensifies the function of a system and relates it to a fruction hienarchy.

USES

Function expansion can be used to:

1) Generate a hierazchy of functions.
2) Select a necessary funcrion in the hierarchy for which a system is to be designed.
3) Communicate and facilitate understanding of the system's function in a hierarchy of systems.
4) Create cohesiveness among group members in moving roward a common funcrion and related project goads.
5) Provide input to other tools, e.g. IDEALS 3rrategy (IDL, page 231).

KEY DEFINITIONS

1) The function is the primary concern of a system. e.g., the mission of a project.
2) A system is a collection of components which interact to achieve a common function.
3. Famation biersachy is an ordering of swem functions from the mose specifie to the broadest function see figure $1 ;$
4. The goult of a project is walue judgmemt which satistics one or more needs. It measures the effectiventess of achiewing a funcrion. For this tool a goull is typicalty to minimize costs, maximize profits. or reduce overtime.

SHORT DESCRIPTION

A function expansion is a lise of transitive action verbs which describe the fumctions of systems. A function expansion exchudes terms surh as "make a profir" or "inimimize costs," simect these are groals or desired neasures of effectiveness for achieving a function. The function of a system describes what a system should achiever the syrem ourput describes what form the achievement rakes.

A function hierarchy is created irom the function expansion list. It corresponds to an expanding perspective on the defined scope of a system-each system is part of a larger system, and so on (see figure 1).

ADVANTAGES

1) Efforts to identify problems with the existing sys tem usually make people defensive and uncooperative. By concentrating on the funcrions of the system being analyzed or disigned. all people may be effectively int volved.
rigure:
I wan riona licearclay for Employment System
```
Mont Valque Spocific Function
    1. Howide hist of jef apportumites
    2. Comatranicatc job opporturitices
        (f) umentirycd prople
    3. Matcly ju speciticaticons with applicuni
        syce ification
    4. Get prople ard who together
    5. Find cmployment for peopla
    6. Jin vacancies in conapatores and wowernment
7. Have joins and servees carrived out
8. Get jobs done
9. Provide services
10. Kerpecomomy fanctioning
11. Promote gerectal weltate
```


Most Geacral Function

2) Attention to tuactions, father dan goals facilitates diternutive idea getaeration because a goal (as defined atove) imples an evaluation criteria. Evaluation must be deferred when greactating deas see Branstorming, BSG. page 3).
3) Srativity in developing solations is encouraged by hatowias dil the levels in the herarky of fanctions. The Aecision mater can focus on system fanction rather than on doscribing unnecessary carment activitics.

himitations

1) Adentifying the red functions of a system may be no casiot than identifying problems. It requires insight and krowledge abont the system.
2) Systems are of ten composed of many sabsystems. each with a variety of functions. Identifying all of them can be taxing- Urdering the function expansion in a hierarchy gives structure or priorities to the functions. There may be no agreement on the final order.
3) Most analysts send te contuse goals with functions. Specifying a system's goal rather than its function does not really characterize the system's primary concerm.

REQUIRED RESOUKCES

1.EVELOF EFFORT

A unction expansion group exercise must be organized and directed. The Nommal Group Techmeque ©NGT. page 14j is oftern used tw identify functions or purposes. though interacting groups catm be used.

SKHLL LEVEL

Function exparsion grouy exercises require skill in leadershthp and experience in group processes. Someone muse be able ro direct and chraminel the discussions. avoiding time-comsuming dagressions about problems and problem identification.

4

TIME REQUIRED

The time required depends spon:
1; The complexity of the system under stody.
2: Previnus knowledge af the system or similar sysfums.

Compleringa tunction expansion typically reguires less than a duy. In the design process. more time may $b e$ reyained rorevise the funterion herarchy.

SPECIALREQUIREAESTS

A group tunction expansion exercise is facilituted by asingy a blackboard or thip chart and marking pens. Space for postiang flip chart payes for easy viewing is desitable.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINTTIONS

1: A regulanity is the most trequently occurring or the nost importamt condition of severall characteristics.
2) Outputs are the desired and the undesired results of the transformation process of a systemn. The desired results enable the system ro achinve its fumction.

REQUIRED INPUTS

Developing a funcrion expamsion for a system requires:

1) Familiarity with system or source of expressed need.
2) Expertise in leading group processes.
3) Participation of peopie in the system, users of the ststem results, experts. and decision makers.

TOOL OUTPUT

A furaction expansion produces a list of all passible functions of the system. arranged in a hierarchy. This hererarchy can be used as an input to the design of systems using other methods such as the IDEALS Strategy (IDL. page 231).

The hierarchy provides a greater understanding of the system under study and its relation to larget systems, of which the system may be a component.

IMPORTANT ASSUMPTIONS

1) A system is designated as such because it hasa function or functions.
2) Every systom is part of a larger system.
3) Every system may be divided into subsystems or components.
4) A hierarchy of functions corresponds to the hierarchy of systems (and subsystems).

The System Definition Matrix (SDM. page 67) discusses these assumprions.

METHOD OF USE

GENERAL PROCEDURE

1. Generate function statements by considering desirable outputs.
1.1 Involve concerned people in genarating function statements using, for example, a Nominal Grotp Technique (NGT, page 14). The group should be heterogeneous, involving cifents. workers, deci. sion makers and managers.
1.2 Define a function statement in the form of a transitive action verb and an object. This allows members of the project group to readily visualize a system's action. Typical functionsare:

Suppiy services

Donate manpower
Distribute health supplies
1.3 Avoid verbs which imply the movemert of the present condition toward a more desirable state. These are more often end goals or objectives. rather than the purpose or primary concern. Some constructions to avoid are:

Increase profits Decreasa expenses Make money Improve productivity

Optimize material usage Avoid waste
Increase machine utilization

A Bumetion statement is the aime or result "that a system achieves, or is expected tor achieve, withe mox seferemee to how who. where. when. atce' or how well quatrities quathices the :ysteta uperater wr is expected to operate" Joherson. b975:.
1.4 Avoid tying multiple funcrions tugether with words like "and" or "in order to."
2. Select the mose specific primary tunction of the system.
2.1 Sulect the initial specific tunction from the lise of possibile tumetions by using a conparison rest. Pok a question like. "ls the tunction of the systent to fumetion 1 in order to function 2 or vice versa:" For example, is the function of the system to "irrigate fields" in order to "regulate water flow." or is the tunction to "regulate water thow" in order to "irrigate fields"? Clearly "regulate water flow" is a function of the more narrowly defined system. Similarly, to "irrigate butds" is a more specific function of a system io "grow crops."
2.2 Write the selected function at the top of a large sheet of paper or flip chart.
3. Expand the funcrion into a hierarchy.
3.1 Ask the group. "What is the most inmediate or direct finction of this identified function?" For example. the function of the system to "regulate water" is to "irrigate fields." Ask the same question for irrigating fielas.
3.2 Repeat step 3.1 urtil newly identified functions are beyond the scope of study. The functions are thus arranged in a hicarchy. This process will stimulate the creativity of the group and identity functions that were not on the original ilst.
4. Select the function level on which planning and design should concentrate.
The recommended solution or system resulting from such efforts should achieve at lease this function.

Precautions

i) Do not confuse a goal or end result with a function. "Make a profit" or'edecrease poverty" are goals, noc functions.
2) Do not branch away from the main function in an attempt to include all possible sub-iunctions. The function expansion will become too unwieldy. The concept of regularity helps avoid this pirfall. If the function expansion is not focussed on the most regular, dominant function in the system, then the expansion may go off on tangential, less important functions.

For example, the function expansion for a hbrary may develop as shown in figure 2. The functions are arranged from the most general to the most specific functions.

FIGURE 2
Forecasting the Function Expansion on the Most Regularly Occurring Concern

3) Do not make big leaps in the function herarchy. The logical thow from specific to more general functions must be mantained. It is better to be redundamt, e.g. rephrasing a function with slightly different words, than to risk being incomplete.

EXAMPLE

A function expansion was to be developed for an employment service system, the initial step in the design of the system. The functions generated in the first step are insted in figure 3 . Some were identified as goals rather than functions and were not considered further.

FIGURE 3
Function Expansion List for Employment Service

The most specific function was identified as "to provide list of job opportumities." The function hicrarchy was then developed using some of the other functions see hgure 1 .

This example is continued in IDEALS Strategy (IDL, page 231;

THEORY

Function expansion is based on the fundamentalcharacteristic of a system: irs function (Nadler. 1967). A system is a collection of eftements and dimensions which interact to achieve a commonfunction (see System Definitiom Matrix, SDM, page 67).

Starting with the basic premise that a system is designated as such because it acheves an identifiable function. functions cam be identiffed for a hierarchy of systemes. The principle of svstem hierarchy has two parts:

1) Every system is part of al larger system.
2) Every system can be divided into subsystems or components.
Since cach system in a hierarchy of systems has a function, the herarchy of fanctionscorresponds to the hierarchy of systems. The fumction hierarchy begins with the most specific primary function and extends to the ultimate. more gencral function of the largest system of interest fregion. state. nation world. etc.i.

Many of these ideas about systems and systems descriptions draw upon the body of knowledge identified as General Sysrems Theory.

The effectiveness of the group exercise has been supported by empirical research into design strategies Nutt. 1974).

BIBLIOGRAPHY

Johnston. James. Class Notes for IE 126." Dept. of Indastrial Engineerimg. University of WisconsinMadison. 1975.
Nadler, Gerald. Hork Design. Homewood. MI.: R.D. Irwin, 1970.

Nadler. Gerald. Work Systems Design: The IDEALS Concept. Homewood, Ill.: R.D. irwin, 1967.
Nutz. P.C. "Design Methods Research: An Experimental Comparison of the Effectiveness of Planning Procedures." Ph.D. Dissertation, Dept. of Industrial Engineering, University of Wisconsin-Madison, May 1974.

Objective Trees

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

The objective tree technique helps to define project objectives and prevides a way to order them in a hierarchical stucture.

USES

An objective tree is used to:

1) Provide a guiding rationale for systems design and evaluation.
2) Indicate how the attainment of sub-objectives contributes to the accomplishment of higher level objectives.
3) Show how objectives for a project are interrelated.
4) ldentify criteria for evaliating alternative means.
5) Help assess the level of impact or scope of a project.
6) Provide necessary inputs to other techniques, such as Logical Framework (LGF, page 260) and Planning, Programming, and Budgering (PPB, page 236).

KEY DEFINITIONS

1) An objective is a specific statement of purpose expressing a desiredend. The usual form is:

Infinitive + Object + Qualifying Phrases

 (see figure 1)2; A rece graph is a set of himked elements where only one link exists between any two tactors bee Tree Dia grams. TRD, page 74; The clements in an objective tree are the objective statements or phrases see hagure 1 .
 rive actions to achneve specitied ends.

SHORTDESCRIPTION

Objective trees may be constrected to aid project design and evaltation. An objective eree consists of project objectives linked loferarchically in a tree $\mathrm{graph}^{\mathrm{H}}$: objectives at a lower lewel contribute to the attamment of an objecrive at a higher lewel see flgure 1 , The objectives which are measured to indicate the success of a project are asually found ar the lowest level.

Objective trees are one of the many forms of tre diagrams TRD. page 74 ; and are closely related to meansends auchysis.

ADVANTAGES

1) The objective tree allows a nigorous development of explicit and comprehensive objectives. This thelps the design or implementation of a project to achieve the desired ends.

FIGURE 1
An Example of a Partial Objective Tree Developed for a Hydro-Etectric Project

2) Since the objectives are made explicit. the diagram is useful to commanicate the relationship berween objectives to other decision makers and interested groups.
3) Objective trees may incorporate both quantitative and qualitative objecrives. Qualitative objectives may be expressed at a lower level of the hieraretuy.
4) The process of developing the tree often indicates interlinking of related objectives which might not otherwise be considered.

LIMITATIONS

1) No single objective tree is valid for a particular project. Each person will construct ant objective tree in a different manner. There is inherent uncertainty and ambigutity in specifying objectives.
2) The stated and the actual objectives of personnel in an organization may differ significantly. Determining actual objectives is a difficult (if not impossible) task.
3) There may be confusion over means vs. ends. An objective tree structures the statement of goals (or ends) by identifying sub-objective (means) to their attainment.

REQUIRED RESOURCES

SKILL LEVEL

Strong interpersonal skills are useful to successfully obtain the appropriate information for constructiag an objective tree. The ability to logically decompose objectives is necessary,

TIMEREQUIRED

The wime required depends on the ambiguity and uncertainry of the objecrives and the level of detail desired for the objective tree. A tree may be constructed within a few hours or ower several days, depending on the scope of the project and the claniry of objectives.

SPECIALREQUIREMENTS

Indes cards ior any small uniform blank cardi) are usefulf for laving out objectives in a hierarchy.

DESCRIPTION OF TOOL

SUPPLEMENTALDEFINITIONS

The following definitions are illustrated in figure 2:

1) A quantitative objective represents a quantifiably verifiable end or result.
2) A binaryevent objective either clearly occurs or does not occur.
3) Qualiturive objectives are judged subjectively to determine if they have been accomplished.
4) A deterministic measurement of an objective is where the realization of the objective is unequivocally determined from numerical data.
5) A probubilistic measurement of an objective occurs when the attainment of the objective may not be determined with certainty, e.g., because of variability of the data.
6) A logical measurenent determines whether a bi-mary-event objective has or has not cccurrea.
7) An axiological metustrcment involves value judyments, where the data necessary to determine accompiisinment of an objective are gathered wa subjective methods. e.g., intervicws (IVW. page 23) or sarveys (SVY. page 36 ..

REQUIRED NPUTS

One step in designing an objective tree involves classifying the types of objectives. Warfield and $\mathrm{Hill}(1972$) classify objectives according to whether they are guantatative. binaryevert, or qualitative, as well as by the method used to measure the attainment of the objectives. These classifications are shown with examples in figure 2.

A quantitative objective may be measured either by deterministic or probabilistic method. A detertmituistic measurement is made when defrite attainment of am objective is determined from numerical data.

A probabilistic measurement is made when the colllected data are insufficiest to determine with certainty that an objective has been attained. This is the case when data are collected on only a sample of the target population (sce Surveys, SVY, page 36).

A binary-event objective clearly occurs or does mor occur. Logical measurement is used as a basis for derermining whether a binary event objective has occurred.

Qualitative objectives are those judged subjectively to decide it they have bern attained. Axtological measurement or measurement which is judgmental yer more or less evident, may be accomplished through interviews (IVW, page 23) or surveys (SVY. page 36).

TOOL OUTPUT

The oupput will be an objective tree which identifies and links objectives (see figure 1). This is essentiai for other tools, e.g., Intent Structure (INS, page 53) and Planning, Programming, and Budgeting (PPB. page 236).

IMPORTANT ASSUMPTIONS

The major assumption underlying the cbjective tree is the hicrarchical relation berween objectives. The objectives for a project may be uncertann or ambiguous because they have not been articulated by the interested parties. and because goals are not constant over time. The objective tree technique assumes that the objectives higher in the tree are less variable over time, and that they are shared by a larger number of interest groups (Granger, 1964).

The assumprion chat qualitative objectives can be subdivided into quantifiable sub-objectives is implicit in the

FIGURE2
Examples of Quantitative, Binary-Event and Qualitative Objectives Classiffed by Acthods of Acusurement

Quanitative Obyectives
Detertrainistic theasurememy

3. Ta sin iny 500 unvits withe preduat
 par tove

Probabilistic Bicasurcment

2. To producs the produce wish mo mente than th de fective
 belles

5. To inctease wite ex pectancy by tay years

Burdary-Event Objectives

Logricall Measarmement

1. Tu lanai rhap plarac watily
2. Tu timd the loust shup
3. Toacugutu dhe nacw subsidity
4. To commplute construmenn of the hospitait
5. To land ar rabor an Mars and bring it bacin sutioly int theis cutatury.

Quatithative Otyecrives

2. To prowide a pratusame and coumfortable rider foxp passefriters
3. Tig maprowe tion healtiont the citizers
4. Tu buind a mantitul library

 by fohn N. Wartield and J. Doughas Hith by permissiun of wattelike
 mosriture.
technique. Its validity does not atfect the use of the objective tree to explicitly reveal goals and ends, whether they are measurable or not.

METHOD OF USE

GENERALPROCEDURE

When beginniag the construction of an objective tree. one should not strive for perfection. Imitially gerting started is important, for the interaction between objeccives cannor become apparent untili an inirial framework or tree has been constructed. As the tree evolves. one
bugins to cotsider mure carefully and refine the tree. Based on the work of Wafficld and Hill (1972j, the following stepsate recommended.

1. Gencrate an mixiallist of objeceives.
1.1 Definc the problemarea.
1.2 Identify the people who will be involved in devigning or directing the progect.
1.3 Elicit theit project-telated objectives.

IA Identify as many project objectives as possible. without attempting to structure the objectives.
2. Identify an overall objective.
2.) Ndeatify an overali objective for the project. to which all other objuctives will reliate. This objective will reflect a value judgment, and ir will reed axiological measurement. Examples of suchobjectives are: "to macet the needs of the community" or "To achinw equality in housiag benefirs."
2.2 This objective is positioned at the first level of the trec, i.c... at the tep of the tree All oriher objectives will be posicioned below it.
3. Extend the treconclevel down.
3.1 Select objectives for the naext level down from the list generated in step 1 , or generate additiontail objectives by asking "what are the sub-objectives necessary to accomplishs these objectives?" This is the branching rude for this rype of tree diagram (sce Tree Diagrams, TRD. page 74).
3.2 Draw lines on the tree to connect these lower level objectives to the objective they help achiave.
4. Extend the tree to the next lowest level.
4. 1 Choose one of the objectives histed at the carrent lowest level of the tree. Identify the sububjective(s) which help to achieve it.
4.2 Kepeat step 3 for all other objectives at the level most recently constructed. Another level of objectives results when all the objectives in this level are dealt wirh.
5. Review the tree.
5.1 Keview the tree constancted so far. It may be found that:
a) Some objectives are missing;
b) An intermediate level of objectives may be added:
c) It is possible to extend the tree upuards from the first (top) level:or
d) An objectuve at a level is seen to achieve more than one objective at some higher level. In this case. redefinition of the objectives is mecessary.
5.2 If the tree appears complete. go to step 6. Otherwise. return to step 4.
6. Chech the measurability of lowest level objectives.
6.1 Tate atr objective at the lowest level of the objective tree. Ask the grestion: Is this objective medsurable: This is the stopping rule for the tree diagram. The measurability of an objective depends on two processes:
aif The selection of a measure or wint by which the attanment of objectives will be assessed. (This measure of umit should be objectively yerifiabler:
b) The design of a mexasurement scale and data collecrion process, to aid in determining the degree to which an objective may be seathed (see Ruting Scales. RTS. page 29;
6.2 Generally the objectives at the lowest level will be quantitative or binary event. Quantitative objestivas generally fuave a mumericat threshold to indicate what pertormance is acceptible.
6.3 If the lowest level objective is not measurabie, then extend the objective down one more level. i.e., remurn to step 4.
6.4 Repeat step 5 for cach of the lowest level objectives.

EXAMPLE

The grovernment of Temasek was considering the construction of a large fudro-electric power project for Mek River Valley. The dam would form a large reservoir with uses other tham driving the power plant turbines. In order to understand the altermative objectives of such a largestaile project, tive Minister of Plamming asked his staff to develop an objective tree.

Generating an Initial List of Objectives

The staff identified the problem: provide energy for the growth of the region and country. They assembled a group of indusurial leaders, merchants, farmers, and laborers from the region. The Nominal Group Technique NGT, page 14) was used to identify a list of objectives: provide energy, permit irrigarion, promote navigation, control flooding, and promore the welifare of the region.

Identifying an Overall Objective

The group discussed the list and selected the last item as the overall objective. This was the top of the tree. Promoting the region's welfare requires a value judgment since it is not directly maeasurable. Yet the group shared the view that this was a wrorthwhile goal.

FIGURE 3
An Example of an Objective Tree Developed for a llydro. Electric Project

Extending the Trec
 to Lower kevels

The remaining objectives wete positioned in the mranclat of an objective nece see figure 1 . Then addithomal objectives were identified. including a higher objec. tive: promote national weifare (see figure 3). This acknowleder dhat saving lives, increasing eniployment, and prom-sing commerce serve higher objectives than those of the region.

Onc techaiguc for fachitating the construction of the rest of the trec is to list each objective on a separate index card. The index cards may them be laid out on a table to determine their hietatchical relationships. Additiomal objectiveswe inserted as needed.

Checking the Measurability of Lowest Level Objectives

The objective tree exercise was complered by considertug the measurability of each erd of the branches. For example, rumimg irigation pumps and harvesting fish can be eneasured quantitatively. However, the transformation of the hood plain is a qualitative objective and mulst be broken down further in order so identify yuantitative measures (ceg.. increase in deable cropping brought about by farmers who no longer risk flood damage).

Several objectives achieve more than one lnigher level objective (e.g., providing electricity and regulating water). The staff decided to show the interconnection with broken lines rather than redefining objectives, thougth the later may be preferred. Regulating water for irrigation may be at cross-purposes, and the objective tree should reveal this to planmers.

This latter point illastrates how the objective tree might be used to influence the scope of the project. The decision makers mast decide at which level in the set of
objectives the project will beaddressed. This in part determines the breacth of of the project. ag.. is the hydrowectric project to address the irrigator's needs as well as the demand for cheap clectic power?

This example is developed ferther in Ineent Seructures iNS. page 35:.

THEORY

The sirucrure of objective ares derives from the theory of graphs and networts Wartield, 1973\%. The identification and measurement of the attainment of objectives is rooted in worth assessment and value theory. See. for example, DeNewfitille and Stafford 1971%.

Interaction matrix diagrams (MD. page 92) may show the relationships among the multiple objectives. The correspondence between a matrix representation and a eree diagram makes the joint use of the eechniques a logical extension of objective trees.

BIBLIOGRAPHY

DeNcufville. K.. and Stafford. J.H. Systems Ahalysis for Enginecrs und Mnagers. New York: McGraw-Hill. 1971.

Granger, C. Fi. "The Hierarchy of Objectives." Harvard Review of business May-lune 1964).
Warfield. John N. -Intent Structures."IEEE Tramsactions on Systems. Mann aned Cybernetics SMC-3 March 1973: 133-40.
Warfield. John N. amd Hill. J. Douglas. A Lniffied Systems Engineering Concept. Columbus. Ohio: Bartelle Memorial Institute, 1972.

Intent Structures

PREREQUISITE TOOLS

Objective Trees (OBT, page 49 .

USAGE

PURPOSE

An intent structure defines objectives, identifies the owners associated with each objective, and describes the logical relationships among the objectives.

USES

An intent structure is used in the same mamer as an objective tree (see OBT, page 49). In adition an intent structure

1) Distinguishes objectives held by various interest groups.
2) Reveals possible conflicts among sub-objectives.
3) Defines alternative objectives in a logicaily consistent framework.

KEY DEFINITIONS

1) An owner is one or more organizations or persons who possess intent for, or have vested interest in, a project. For example, the Ministy of Agriculture's prime objective is the increase of food production: the farmer has an interest in higher farmgate prices.
2) A lonic ellement is a symbol indicating the natere of the relanionship between two or more objectives at adjacent levels in a hierarchy:

SHORT DESCRIPTION

Objectives for various interest groups, or owners, afe defined and arranged hierarchically so that any objective is achieved only if the specified sub-objectives are realized : see figure 1 . The owner(s) of each objective is identified on che diagram.

An intent structure may also show the relation among objecives at different levels by connecting logic eftments isee figure 2). These specify three possible conmections: whether all, any, or only one of the sub-objectives must be achieved in order to attain the higher level objective.

An objective tree is simply an intent structure for which all sub-objectives must be realized, and in which the owner of each objective is not designateci. Wrarfield (1973) developed the intent strucrure to cortect deficiencies in the simple objective tree approath.

ADVANTAGES

An intent structure defines the relationships between objectives so that the analyst is encouraged to think about the various interest groups. Consequently, the intent structure may be employed to clarify thinking, to

FIGURE 1
Format for Intent Structure

FIGURE 2
Logic Elements for Intent Strucrures

ELEMENT		LINKING LOGIC
Symbol	Name	For the achievement of the higher level objective:
AND	And	All sub-objectives are mecessary
OR	Inclusive Or	Any one or combination of sub-objectives must be attained
XOR	Exclusive Or	Any one, but only one sub-abjective must be attained

indectrinate new personnel. and to identify possible conflicts in objectives.

The logical elements give the analyst the option of describing alternative and interacting objectives, and a means to examine the consistency of relationships.

As the project evolves. the intent structure can be easily modified to incorporate new directions.

LMMTATIONS

There is no single intent structure which is valid for a particular project since people will constract and intemi structure differently.

REQUIRED RESOURCES

LEVEL OF EFFORT

The primary rask is to identify objectives amd associated owners. Representatives of concerned interest groups should be idenified for this purpose. The secondary task is to arrange the objectives in an intent structure which reflects the intertelationstipe of grals.

SKILL LEVEL

In addition to the interpersonal skills necessary to elicit objeccives from possibly disparate sources, the analyst must be able to logically sort out the objectives and fill in the missing or unstated sub-objectives. There is no substitute for practice; however, skili ar constructing simple objective trees (OBT, page 49) and fanction expansions (FEX, page 45) is usefuil.

TIME REQUIRED

If a group discussion techmicque, e.g. Nominal Group Technigue (NGT, page 14) is ased to generate objectives, about half a day will be necessary. This does not include the time required to assemble the group. Actual construction of the intent structure should take an additional rwo to four days, depending on the scope of the project and the number of owners involved.

SPECIAL REQUIREMENTS

The method of construction given in the following sections requires small ($3^{\prime \prime} \times 5^{\prime \prime}$) cards and tape. Warfield (1973) has developed computer programs for the same purpose.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) The . WD logic elemertatinks whobjectives to objecrives where all sub-abjectives must be achicved in order so attain the higher level objectiwe st see figure 3).
2) The OR logic eldement links abjectives where the ataimment of any one or a combination ol sublb sbjectives will acthieve the hagther level objective see figure 4 .
3) The XOR logic element linths murualiy exchusive sub-objectives to the higher level objectivers (see theure 5. Ore sub-whyective alone achieves the begher kred objective. Uswally the sub-objecerises are mutually exathsive only if they are incompatible, on the the compene for the same limmited resources.

REQUIRED INPUTS

The intent strwetwe utilizes the input of several people, directly or indirecrly associated wath the project. to generate the list of objectives. These people and organizational representatives may also be tnvolved is reviewing the finished structure and in modifying it to betrer reflect their interests relative to the other owners.

TOOL OUTPUT

The most general type of inturt struenure incorporates both ownere and logic elements in a hierarchical stracture of objectives see flagure ly. Three modifications are commonly used:

1) The Owner-Free fmeme Structure is normally used when the owner is the same throughowt the structure. making it anmecessary to list the owner with the objectives.
2) The Logic-Free Intent Structure (or Objective Graph) omits the logic elements from the intent structure. Deletion of the logic may make the intent structure less confusing in some cases. and thus easier to read.

3 The Objective Tree OBT, page 49 is a special kind of Objective Graph in which une strecture of the graph is a uree diagram TRD, page 74,

IMPORTANT ASSUMPTIONS

Intent structures correct some of the deficiencies which occur when trying to represemt complex project objectives as a stmple objecrive tree fise OBT, page 49. However, similar assumprions must hold, i.e., the objectives are discernable and the objectives have some degree of constancy over time. The problem of consensus

FIGURES
Liw of AND Logic Elemerat

FIGLRE 7
Ascof OR Logic Elemasht

FIGCRE 5
Use of the Exclusive OR (XOR) Logic Elemwery
a) Mutually Exclusive Objectives Means for Reducime Birthrate

b) Conflicting Objectives for the Use of Reservoir Water

among the various endites assoclated with the objectives is explicinly utcated by identifying owners, assuming that the correct owners can be foumd.

METHOH OF USE

GENERALPROCEDURE

Intent structures may be constracted by a procedure simblar to the way objective trees OBT. page 49; ate develuped Warticld. 973 .

1. Generate a list of objectives.
1.1 Idemify the owners and owner representatives who have an itaterest in the project.
1.2 Generate as many objectives as possible. Make no attempt to structure the objectives. Braimstorming : BSG . pate 3, or Delphi (DLP, page 168 ; may be used to thit the opinions of the owners; representatives.
2. Constract an intent structure.
2.1 Write cach objective on separate cards and indicate its owner(s).
2.2 Lay the cards on a flat surface. Begn arranging them in an intent structure. Note:
a) If objective A must be accomplished in order to accomplish objective B, A lies below B in the structure.
b) If accomplishment of objective \mathbb{C}, either separately or in combinatior with obler objectives. represents an alternative way of accomplishing objective D. C lies below D in the structure.
2.3 In arranging the cards. begin with any objecrive level. It is not necessary to begin with the objective ar the top of the structure.
3.4 if, in the process of arranging the objectuves. some objectives are missing or are irrelevant, then add new objectives or diseard them.
2.5 Once a suitable arrangement has evolved, tape the cards to a large sheet of paper.
2.6 Review the intent strurture to see if the arrangement is logical.
3. Incorporate the logic elements \{oprional).
3.1 Introduce the legic elements into the intent structure by asking if all. any, or only one of the linked sub-objecrives must be met in order to attain each objective higher in the structure.
3.2 Re-examinc the owners associated with each objective in light of the logical links between sub-objectives.
3.3 If necessary, redraw the diagrum for distribution to others exg. represemeatives of "owner" orgamizations; Include a simple key for the logical elements see figure z)-

EXAMPLE

An objective tree was deweloped for a hydro-electric reservir project sete UBT, thgare 3. page 33. The objec. tives for be proviecs inchuded generating energy, permitring irtigention. promuting the tisthing industry and nawigat sh. and saving lives and damage thrologith llood comtrol.

An intent structure was prepared whicth ex pands on the origisal objective tree see figure 6. . He included some of the owners of the objectives and the lowic elements relating the sub-abjectives to higher level objectives. The owners of each of these objectives could be idertified in most cascs. e.g., farmers destring ir:igation. shippers wanting matigation facilitated. the govermment and citizens wantingy jobs.

All the lhigher level objectives were brought together under the objective "PROMOTE THE REGIONAL WELFARE" through the logical "OR" relation. Regional weltare is promoted by achieving any one or more of the sub-objecrives. However, one might argue that the logic clemme should be an "exclusive OR" (XOR) because sub-obigwives are conflicting. For example, releasing water for irrigation may be complerely counter to providing a uniform flow fo: rurbines. The competinon between certain sub-objectives can be shown on the intent structare using the logic elements which connect the objectives.

THEORY

Intent structures have been developed by Warfield (March. 1973 a), supported by the Battelle Memorial Institute.

Warfield \{April, 1973\} applies the intent structure technique to the analysis of a U.N. Document. "Towards Accelerated Development: Proposals for the Second United Nations Development Decade." published in 1970. Warfield's intent structure reveals ways to build on a committee planning approach 'as well as some of the weaknesses of its [the committee's! product" (page 8-1). In particular, Warfeid evamines the logic and consistency of the relations among the stated objectives.

This application of the technique emphasizes the utility of the intent structure as a basis for logical analysis of project purposes and goals. The logicall relationships between objectives permit the structuring process to be antomated on a computer (Watfield, March 1973b). Then, through computer manipulations. the hierarchical relationships are constructed by synthesizing the simple subjective judgments of the relationship between each two objectives. These latter judgments are still the domain of humans as is the identification of objectives. These points are explored further in Interaction Matrix Diagramming ($\mathrm{MD}_{\text {, page } 92 \text {). }}$

BIBLIOGRAPHY

Warfield. Iohn N. An Assautt on Complexiry Battethe Monograph No. 3. Columbus. Ohio: Bartelle Memorial Institute, April 1973.
Warfield, John N. "Intent Struceurcs." IENE Transuctions on Systems, Man. and Cybernetics SMC-3 (March 1973a): 133-40.
Warfield, John N. "On Arranging Elements of a Hierarchy in Graphic Forma." fEEEE Trapsadetions on Systems, Man, and Cybernetis SMC-3:2 March 19736; 121-31.

FIGURE 6
Intent Structure for Hydro-Electric Reservoir Project

IV

Describing Complex Relationships

System Definition Matrix:
Tree Diagrams
Oval Diagramming
Interaction Matrix Diagramming

Abstract

A system is a collection of components which interacts to achieve a specific function er purpose. This versatile concept permits the analyst to describe the problem and prescribe a solution [System Definition Marrix]. Itencifying the salient variables and describing the relationships among them is a necessary ingredient in the systems approach. Each of the tools in this section approaches this problem in slightly different ways. Hierarchical relationships (Tree Diagramming), causal loops and feedback retationships (Oval Diagrams), and crossinteraction relationships (Interaction Matrix Diagrams; present approaches to structuring complex relationships. These techniques rely primarily on risual representarions to define the system and are linked by a common example. The problems of nomad pastoralists are described as a system of ecological. economic, and social-cultural varizbles and relationships.

System Definition Matrix

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

The System Definition Matrix is a prescriptive model for identifying the conditions and details that need to be specitied in developing a plan or design. It is also a descriptive model for understanding and specifying the components of a system and the interrelationships of the components to the system function and enwironment.

USES

The System Definition Matrix may be used as:

1) A comprehensive means for identifying and modeling the essential components of a system in order to commanicate and to help understand the system's function in its environment.
2) A checklist to guide information-gathering for design or analysis.
3) A format for specifying details of a system design.

KEY DEFINITIONS

1) A descriptive model is a representation or imaginary entity containing information in a predefined form, in-
terreded to be interpreted by its user rulles (Thesen, 1973;
2) Cosaponests are the entities in a system which maty be elemental. or they may be subsysterns haviseg distinct components.
3) A systern is a coillection of components which interact to achieve a common function.
4. The fanction is the primary toncern of the system. It is the fundamental dimension of purpose. Note that functions are not the goalls, or the desired results. of the system. This distinction is further clarified in Function Expansion FEX. page 45.

5; A checkist is used in design or analysis where items are marked or otherwise noted item by item.

SHORT DESCRIPTION

The System Definition Matrix has eight dements (rows of the matrix:- purpose, thput, output, sequence, emviron ment, physical catalysts, theman agents, and ingformation catulysts.

Each of the system elements can be described in five dimensions (columns of the matrix; fundamental, rute. control, inrerface, and state dimensions.

The specification of elements by these dimensions composes the System Defimition Matrix (see figure 1).

ADVANTAGES

1) The System Definition Matrix emables clear separation and identification of the interrelationships among

FIGURE 1
System Defmition Matrix Format: A Hospital System

	DIMENSIONS				
	FUNDAMENTAI,	RATE	CONTROL	INTERFACE	State
PURPOSE	Treat patients		Mulptactice suits filed		Provide preventive cate
INPUT	Ill and injured people	50 cases/day	Schedule surgery refertills	Emergency medical service	
OUTPUT	Patients released	40 releases/week	Hospital review board	Outpatient refergals morgre	
\% SEQUENCE	Sce flowchart*	Average stay: 2 days	Monthly bod cheek (tandomi)		
ELEMEN ENVIRONMENT	Location, humidity, temperiture Supportive climate		Allomatic control, Stiff Tggoup		
PHYSICAL CATALYSTS	Structure: beds, equipment, supplies	Depreciate on 10 year cycle, weekly purchase	Atudit quarterly		Double capacity in 10 years
HUMAN AGENTS	Medizal staff, secretarial staff, custodial staff		Hospital review bond	Medical school system	
INFORMATION CATALYSTS	Staff assignments, patient tare, chats planned, referrals			County public heath office	Computerized patient care system

${ }^{*}$ See Flowcharts, FiLW, page 107.
components of a system in order to characterize the system structure.
2) It provides a more detailed model than that found in Logical Eramework (LGF, page 260).
3) Specifying rate, control, and state dimensions requires a dynamic view of the system. This explicit tueat ment of time facilitates planning and project control.
4) Simply specifying the fundamental aspects of each element cun be advantageous, e.g. the breakdown of the system may be used in other tools (for example. Scenarios. SCN, page 164, and Computer Simulation Models, CSM. page 120).
5) Complex systems can be structured by treating each row. column, or cell as a System Definition Matrix. This can be extended as far as necessary to handle the comnplexities.

LIMITATIONS

1) A somewhat mechanistic approach (inpui \rightarrow sequence \rightarrow output) may not be palatable to project personnel. Describing a project in a matrix may be alien to their way of thinking. Other techmigues for characterizing system structure (see Section IV tools) may avoid this.
2) A System Definition Marix is seldom completely specified since components may not be identifiable, of their specification may not be relevant to the description. Confusion may arise over where a system componeat belongs in the matrix.

REQUIRED RESOURCES

LEVEL OF EFFORT

Considerable effort is required to completely specify five dimensions for each of the eight elements, particularly since entries in the matrix may be hard to define. However, simply completing the fundamental dimension requires the least effort and may give the greatest return.

SKILL LEVEL

Identifying or specifying matrix entries requires a thorough understanding of each entry in the matrix. Working through examples of familiar systems and comparing thern with similar efforts will provide confidence in developing System Definition Matrices. Function expansion (FEX, page 45) is useful in developing relevant skills.

TIME REQUIRED

The time required is directly proportional to the complexity of the system and the degree of marix complete-
ness desired. For design problems, the degree of creativity one is able to exercise in specifying entries intuwners the time.

DESCRIPTION OF TOOL

SUPPLEMENTALDEFINITIONS

1) The chwirownent the the of all factors which are salient to the understanding af systems relationstupp. Bus which are outside the influence of the system variables.
2. Inputs are the peophe, information, andfor physicui items which enter the system to be transformed by a seguence into outputs of the system, exg. the rew materishs of the project.
3) Outpuats are the desired and underioned reseltes of the transformation process of a system. The desired results enabi, the system to achieve its function. Patients leaving a hospitall cured or not. are ontpuss of a hospital system.
4) A sequemate is the process by whict the inputs are worked on, transformed, or processed into outputs. ustually with the aid of catalysts, e.g., the steps in diagnesing. treating, and curing a patient.
5) Physicul catalysts are the equipment, facilities. totc. which are necessary for the imputs to be tramsformed into outputs, but which are not themselves inpurs or outputs of the system.
6) Human agents are che personnel who may be necessary for che system to achjeve its function, yet are not themselves inputs or ourputs of the system, eg., medical staff for a hospitall system.
7) Information catalysts are the communication (written or verbal) and the knowledge which enable the system process to occur, yet which are nor inpers or outpurs of the system, eqg, staffing assignments at a hospital.
8) A fandamental dimension is the basic characteristic of the eight system elements. The hospital building is the fundamental dimension of the physical catalyst element of the hospital system.
9) The rate dimension is the performance measure for a system element. For example, a hospital system may have as its imput 50 new cases per day; the rate dimension of output may be 40 releases per week.
10) The controldimension evaluates and regulates any element's specification, e.g., more than two mortalities per weeh (rate dimension of outpur) in a surgery unit may resuit in corrective action (control dimension) by the Hospital Review Committee. This dimension measures each element as the system operates, compares the measure to what is designed or desired, and takes action if the difference is greater than desired.
11) Interface dimension is the relation to other systems or elements-a linking entry to related System Defi-

FIGURE 2
System Definition Matrix in List Format for Alcoholics Treatment Center

Function

Fundanertal Dimension:	Treat alcoholics
Rate Dimension:	Reduce alcoholism
Control Dimension:	County deparment of health rewiew
Interface Dimension:	Disease treatment
Futare State Dinension:	Treatment centers expand to meer nising demand

Input

Fundamental Dimension:

Rate Dimension:
Control Dimension:
Interface Dimension:
Futare State Dimension:

Output

Fundamental Dimension:	Detoxified clients
Rate Dimension:	100 percent release
Control Dimension:	Check for subsequent referral
Interface Dimension:	None
Furure State Dimension:	Not specified

Sequence

Fundamental Dimension:
Rate Dimension:
Control Dimension:
Interface Dimension:
Future State Dimension:

Clients
Approximately ten per day Check that no more than two turned away per month Client identification, cleam bedding fom laundry system In five ycars may take drug referrals, eliminate repeaters

Sign in, contact relative, detain, examine, release
Detain 24 hours, monify selatives within 2 hours
Check that noclients detained more than 48 hours
Physical examination system
Not specified

FIGURE 2
Continued

Environment

Fundamental Dimension:	Social: unsupported, political, decriminalized
	treatmenc. physical: pleasant surnoumdings

Physical Catalysts

Fundamental Dimension:
Rate Dimension:
Control Dimension:
Interface Dimension:
Future State Dimension:

Human Agents

Fundamental Dimension:
Rate Dimension:
Control Dinensiom:
Interface Dimension:
Furure State Dimension:

Information Catalysts

Fundamental Dimension:
Rate Dimension:
Control Dimension:
Interface Dimension:
Future State Dimension:

Beds toilets. hor coffee
Ten beds available per might
Check for clean bedding
Laundry system for bedding
Not specified

Social worker, family coumselor policel. physicians aid 24-hour staff on hand
Shift staff so maximum use hours
Police referral. Alcolnolics Anonymaus
Not specitied

Admission and release forms, client identification
N.A.

Four weeks supply of forms on hand as syfery stock
Police record system
No police record in three years
mition Watuices. ceg the input of a hospital sysem is hinked to the sutpur of an emergerncy transport service.

12, Suctc dimatasion is a specification of anticipated thanges and plans in specific time horizons for each of the four finacmans. fors example. expanding the number of feds (physical catalyse; in two years or ploysiciame thumam aycurs, in thece years ata barspital.

REQUIREDINPITS

The primay iaput for specifying or developing adexriquive System Definition Matrix is to gain a familiarity with the existing system. For designing or planning a syswera, see HDEALS MDL, pege 231).

TOOLOUTPUT

The output as the System Definition Matrix with a par tial or complete specification of ciements and dimemsions. The System Definition Matris may then be used in other tools, such as Scncarios (SCN, page 164), Gaming (GAM. page 124), Cost-menefit Andysis (CBA, page 212), and Computer Simmation Models (CSM. page 120). The HeALS Strategy (1DL, page 231 unses the System Definition Matrix as a format to specify resales.

An alternative breahdown of system elements which describes public service agencies may be used to avoid athe inpar \rightarrow sequence \rightarrow output teminology. The terminology avoids the jargon used ior the System Definition Marrix clements. The Tist and questions which may be associated with cach element and the corresponding matrix element are:

Purposes (function): Why? What is the mission?
Background (information): What do I know? What are their previous states?
Clients (inputs): Who? What are their present states?
Results (outputs): What are the changed states of clients?
Method (sequence): What ways? How to get results?
Setting (environment): What is political or social atmosphere?
People human agents): Who are the doers?
Facilities (physical catalysts): What is needed to do it?
Dollars (inputs): What are the costs?

IMPORTANT ASSUMPTIONS

The development of a System Definition Matrix assumes that a system can be broken dowia morphologically into distinct components. The distinction berween inputs, cutpurs, and catalysts may often be blurred. This is particularly true if the same set of components is involved in
tyeite different funcrions. For example, hospital staff are human agemes im a parient meatment system and inputs to the hospizal management control system.

METHODOF USE

GENERALPROCEDURE

The development of a System Definition Matrix maty be a creative as well as ank analytical exercise. ConsequentHy inwolwing knowledgeable staff is productive. Nomitral Group Technique NGT. page 14) or brainstorming (BSG, page 3) may be used to discover entries.

The procedure begins with function specification, but rony repeat and buck track as reccessary.

1. Specify :he function.
1.1 Discuss the sysem to determine its function (a function expansiom. FEX. prage 45 . may be used.
1.2 Proced so the fundzmental specificarion of other clemerits before specifying the orher four dimensioms of the system fumction.
2. Hedentify inpuats and other syssem elements.
2.1 Try to complete all the entries for the fundamental dimension column of the matrix.
2.2 If a list formar is being used, skip dimensions of rate, control, etc. and returm to them aftur other elements have been specified. An aicohol workshop identified the inpurs for the treatment system as "chents with a drinking problem" (see figure 2).
3. Conplete the dimensions for each element.
3.1 Complete the rate, control, and state dimensions for all elements except function. It may not be possible to specify all ceils in the matrix, and they may be temporarily left blamk.
3.2 If an element of the system does not include a particular dimension, indicate "none required" or "not applicable, N.A." in the matrix to show that the passibility has nor been overlooked, e.g., there may be no contral dimension for system inputs. Figure 2 contains a description of a partially specified alcoholic treatment system.
4. Complete system funcrion dimension.
4.1 Complete the dimension specifications of system function if possibie.
4.2 In this row, indicate foreseeable changes to the systern function.
4.3 Note interfaces with orher systems.
5. Complete interface dimensions.

Where appropriate, complete the interface column of the System Definition Matrix for the cight clements. For example. the alcoholic treatment system inputs (clients) may interface with the output of public serwiec agencies (e. g., the police).
6. Check the matrix for completeness. Finl blank cells as addirional informarion is gathered.
7. Repeat process to desired level of detail
kepeat the process for particular cells. For exaruple, the control dimension of system outpur may suggest a subsystem whose function. inputs, outputs. etc. may be specified in a separate matrix. In this way, a wery detailed morphological breakdown of a system and its subsy stenns may be modeled.

EXAMPLE

Figure 2 presents a partially specified System Defimition Matrix (in list format) for an alcohchic treatment system.

THEORY

The theoretical basis for the Sysecme Detimitiun Mare in is founded in the theory of sostembs. findething what is meant by a systern. different terminology and ucvels of
 developed.

The System Detinition Matrix impuses an men phollowical structure on a conceptual model top produce a descriptions of the system components. This may differ from sintullat swistms descriptions tat the expheit treatment of systern
 (1970) is responsible for efre System Detiraition Matrix

BBLIOGRAPHY

 1970.
 Homewood. inl.: Re. D. Irwin. 1967.
Thesctu, A. "Some Notes on Sistems Moskels and Mudel-
 $1973 j+1+5-52$.

Tree Diagrams

PREREQUISITETOOLS

None.

USAGE

PURPOSE

A tree diagram illustrates a set of complex relationships by fituing them into a buerurclyy of related factors.

USES

Tree diagrams are used to:

1) Describe the relationships among objectives of a project (see Objective Trees, OBT, page 49 .
2) Describe the relationships among altermatives, $a s$ in mexns-efids analysis or Decisiom Trees (DTR, page 141\%.
3) Clarify sequences of relationships in Interaction Matrix Diagrams (MD, page 92).
4) Deveiop relationships among variables of a system as in inflamence trees which may then be redrawn as oval diagrams (OVD, page 81).
5) Provide a measure of the degree of relatedness among different sets of factors, as in relevance trees.

KEY DEFENTTIONS

1) A hierarchy is an ordered strucrure illustrating which factors are subordinate to others.
2) Meansentas analysis is the identification of altermarive actions to achiewe specified ends.
3) An imfluence tree diagranns the variables which influence other wariables which are higher in the tree.
4) A relewance tree diagrams the relationships among different sets of factors at each level of a hierarchy.
5_{i}^{3} A model is a representarion or an imaginary entity that conrains in formarion in a cerrain predefimed form and has specified rules for interpretation (Thesem, 1973).
5) A aree graph is a set of linked elements where only one link exists berween any two factors (see figure 1).
6) A branching rule governs the constru-cion of relanionships in a tree diagramn (see figure 2)-

SHORTDESCRIPTION

A tree diagram is a mode! which describes a set of relationships by using a tree grapht (see figure 1). The branching points are factors related to each other according to a branchinge rule. The types of factors shown and the branching rule used are determined by the purpose of the diagram isee figure 2). For exampte, projecrobjectives are modeled as objective trees (see OBT. page 49 j ro describe subordimate relarionships. More information may be added to the diagram to facilitate analysis and to clarify relationships, e.g., to idemtify the lewels of a relewance tree or to assign weights to alternative outcomes.

FIGURE 1
Tree Graph Form

KEY:
0 Factors (varimbles objectives. alterratives. evt..)
= Relationships (causal. influence, subordinate. etc.

ADVANTAGES

A tree diagram is constructed by doing a logical breakdown of complex relationships. The branches of the diagram reduce a set of relationships to its essential components to expedite analysis.

LIMITATIONS

A sree diagram implies a level of determinacy which may be unwarranted. All clements of the diagram can seldom be determined in advance-a fact which must not be overlooked during subsequent analysis.

REQUIRED RESOURCES

SKHiLEVEL

Tree diagramming can be learned rapidly with practice. Becanse other techniques may be required to make maximum use of the tree diagram, the shill level required depends on the purpose.

TIME REQUIRED

Tree diagrams may be diawn rapidy an tibe dewclop. ment is useally quite logical. Some time is mecessory topy informationgarinering and amalysis. depending on the particular type of tree diugatm.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) A systewn is a collection of componems which inter act to achieve a common function.
2) A compontent of a system is an entity which may bro elemental or it may be a subsystem having distince cemponents.
3) A stopping rale deecrmincs when any branch of the tree diagram should end.
4) An influence relationship occurs when one variable's change in watue influences change in another variable, e-g. the ACCEPTANCE OF INNOVATIONS is inthenced by the YIELD FROMCROPS.
5. There is a producer-product relationstip when one variable is a product of the other (c-g., RANGE FEED is a product of AVALLABLEPASTURE:.

REQUIRED INPUTS

The purpose of the tree diagram should be clearly established prior to its construction eo determine the types of factors to be shown and the relarionships to be described. Some fanmiliarity with the problem context is necessary in order to be able to depict relationships and identify factors.

TOOLOUTPUT

Tree diagramming results in a descripsion of a complex set of relationships. Simply developing the tree diagram may be sufficient for gaining an umderstanding into the structure of relationships and the span of relevance of wariout factors.

However, tree diagrams are tustally the intermediate ourput of a more detafled amalysis, eg. influence disgrams may be converted into ovaí diagrams OVD, page 81), and addirional information can be gathered to complete a decision tree (DTR, page 141).

IMPORTANT ASSUMPTIONS

A hierarchical relationship is assumed to exist among the elements of a tree diagram. For example, if the set of complex relationships describes a system, then the sree diagram decomposes the system inro components, each of

FIGURE 2
Fundamentals of Tree Diagram Construction

TIGEE DIAGRAM TYPE	FACTORS DIACRAMMED	BRANCHINGRULE
INFLUENCE TREE	SYSTEM VARIABLES	IDEN'TIFY THE VARIADLES WHICH INTIUENCE THE VARIABLE
RELEVANCE TREE	SETS OF PROCRAM FACTORS	IDENTIFY THE FACTORS ASSOC:IATED WITH EACH FACTOR IN NEXT HIGHEST IEVEL OF THE TREE
OBJECTIVE TREE	OBJECJIVES	IDENTHY THEOBJECITVES NECLSSARY TO ACHILVE EACH HIGHER LEVEL OMDECIVE:
MEANS ENDS TRIEE	IENDS AND AITTERNATIVIS ACTIONS	WORK DOWN 'IHE TREE: HOW IS THES ACTION TO BE ACHEVED? WORK UP THE TRELE: HOW IS THIS ACTION TOBE UNDERTAKEN?
DECESION TREE	ALTTERNATIVE ACIIONS AND EVEN'TS WHICH AFFECTT OUTCOME OF ACTIONS	IDENTIFY Alternativi Actions: IDIENTIFY EVENTS. repeat until. aliternativis ale exiausted.

FIGURE3
Relevance Tree Examples for Family Plaming Progran

which may be further broken into components, etc. Or every systen may be subdivided into subsystems. and consequently, every systers is a component of some larger system.

METHOD OF USE

GENERALPLOCEDURE

1. Determine the type of factors to be shown on the diagram.
2. Determine the appropriate branching rule.
3. Betermine the starting factor of the tree.
4. Identify related factors using the branching rule and show them as branches stenming from the starting factor.
5. Determine the appropriate stopping rule.
6. Repeat step 4 for each newly iatentified factor unless the stopping rule applics.
7. Review the rree for consistency of rale application.

8 . Add any information necessary for analysis.

EXAMPLES

Two examples will be nsed to illustrate the tree diagramming technique. Other applications are found in the Objective Trees (OBT. paye 49). Decision Tress (DTR, page 141), and Interaction Matrix Diegrams (MD, page 92.

Relevance Tree Diagram

A relevance tree can be used to describe the relationships of different clements in a family planning program (see figure 3).

The starting variable is a simple identification of the mission of the program. The branching sule is in forr parts:

1) What are the goals which correspond to this mission?
2) What are the objectives which correspond to each goal?
3) What are the targets for each objective?
4) What are the instruments relevant to each target for accomplishing the objective?

Idenaifying the instruments completes the tree and thus decomposes a complex program into its various clements.

Influence Tree Diagram

Much of the success of this technique depends on the art and expertise of the analyst. The example that follows examines some of the relationships which describe the nomad pastoralism eco-sy stem.

The following excerpts from a description of an M.I.T. study describe the factors affecting the conditions in the Sahel:

In tin Subel live the nomads. who follow the rains to the north cwery tear and recteat to the sousth in the dry scason. Their numthers bawe waditionally been limied partially by the number of cows and zoats the lated was able to support. and by the distance between water holes. Western agencies working in the arca ciuring the past decade made the cbvious bue iili-alvised mowe of digying wells throughour the grazing commons, The numbers of cautic, and peoplo. grew proportionately, using much of the grazing land for the greater purt of the year instead of scasonally, allowing the land no cime to recower. The therds moving soerthward during the dry stason have been foreed to travel over land that has already been overgruzed and, finding water but no forage, have licerally starved at the water holes. . .

It is this widespread oweruse char is preverting the land from recowering ewen when rain cows fall. Ansicad of being absorbed, the rain fulling on mbe vigctation-stripped ground merely washes off the consoili. The cyche-overgrazing, wind, rain-is causing the dosertificution of much of the land."

The variables and relationskips which describe the influences on livestock population are shown in figure 4. The starting variable selected was HERD SIZE, an aggregated represerncation of all domesticated grazing animals in the Saledian region. NOMAD POPULATION is an equally appropriate starting variable. but the cone of the excepers suggests that the relationships between animal populations and range conditions are central to describing the eco-system.

The following branching rule was applied to each newly identified variable:

Identify the variables which intluence this variable.

Other relarionships can be diagrammed by inserting "produces" or "causes this variable to change" in the branching rule. The rule specifies the relationship. whether it is cause-effect producer-product, or simply the influence of one variable on another.

If the branching fulle were changed to:

Identify variables which are influenced by this variable,

the direction of influence implied by the tree structure would be reversed. Generally, it is easier to start with observed effects and attempt to identify causes.

Two stopping rules were used to terminate the branching process:

1) Stop with any variable which is already shown on the diagram, or
*S.I. N., *"Tragedy of dee Commons' in Atrica," Tecfanology Re, wew (Ottober-November, 1974), pp. 73-74.

FIGURE 4
Influence 'free Diagram for Nomad Patstoralism EcoSystem

2) Stop with any variable which is considered ourside the purpose of the system, and which is not likely to be influenced by any other factor previousily identified.

Rule 2 applicd for variables like SEASONAL RAINFALL and SOCIAL VALUE ON CONSUMPTION (see fig4). Assuming that the eco-system functions to sustain life on the Sahel, these variabies are considered outside the influence of factors within the system.

Rule 1 applied several zimes (e.g., HERD SIZE) and was employed to avoid redundant branching. When rumerous branches terminate with the same variable, an oval diagram is a more economical form of representation for the complex relationships. This example is continued in the description of the oval diagramming technique (OVD, page 81).

THEORY

Tree diagrams are rooted in graph theory and the representation of hierarchical relationships (Warfield. 1973). The adoption of tree graphs for the tree diagramming technigue rclates more closely to systems theory than to mathematical topology,

Warfield (1974) has described the structural representations of complexity which emphasize the correspondeace between a matrix and a graph of relationships. A tree diagram may be used to trace the linkages in an interaction matrix diagram (MD. page 92) in order to clarify the interactions.

The decomposition of a set of complex relationships by techniques, which Harrison (1972) has called a process of "repeated-subdivision," assumes that the relationships form a hierarchy. The hierarchy may be a chain of causeeffect relationships, the nesting of one set of components within a larger component of a system, or the ordering of objectives f-om the specific to the general.

Relevance trees have been discussed extensively in the technological forecasting literature (Alderson and Sproull, 1972) as one of the more wseful qualitative tech niques. Attempts to quantify the order and strength of the relationships in a relevance tree (Fischer, 1970) are beyond the scope of this presentation.

BIBLIOGRAPHY

Alderson, R. C., and Sprouni, W. C. "Requirement Analysis, Need Forecasting, and Technology Planning Using the Honeywell Pattern Technique." Technological Forecasting and Social Change 3 (1972): 255-65.
Fischer, Manfred. "Toward a Marhematical Theory of Relevance Trees." Technological Forecasting and Social Change 1(1970): 381-89.
Harrison. Howard. "Creative Aspects of Modeling a Complex System for Which the Model-Building Starting Point is Not Easily Determined." Deparment of Mechanical Engineering, University of Wisconsin, Madison, 1972.
Thesen, A. "Some Notes on System Models and ModelIng." International Joumal of Systems Science, 1973.

Warfield, John N. An Assault on Complexity. A Battelle Monograph, No. 3. Columbus, Ohio: Batrelle Memoriall Imstitute, 1973.
Warfield. John N. "On Arranging Elements of a Hierarchy in Graphic Form." IEEE Transactions on Systems, Man, and Cybernetics SMC-3: 2 (March 1973): 121-31.
Warfield. Johr N. Structuring Complex Systems. A Battelle Monograph, No. 4, Columbus, Ohio: Battelle Memorial Institute, 1974.

Oval Diagramming

PREREQUISITE TOOLS

Tree Diagrams (TRD, page 74).

USAGE

PURPOSE

Oval diagramming describes a problem as a set of complex relationships among system ariables and variables in the system environznent.

USES

An oval diagram provides an explicit statement of cause and effect relationships within a system and between the system and its environment. This diagram may be used to:

1) Examine the internal consistency of the analyst's conceprion of the complex relationships.
2) Communicate the analyst's understanding of causal relationships to others and to provide a graphic definition of the system.
3) Promote further study of hypothesized causes and observed effects, particularly when these represent problematic behavior.
4) Provide an input for techniques such as Computer Simulation Models (CSM, page 120) and Scenarios (SCN, page 164).

KEY DEFINTTIONS

1) A vuriable is a factor used to describe a system which may change value as a function of cime.
2) The environment of a system is the set of all factors which are salient to the understanding of systems relationships, but which are outside the influence of the system variables.
3) Dynamic behavior is a consequence of delayed interactions among system variables. The dynamic state of a system depends on the prior values of state variables.

SHORTDESCRIPTION

An oval diagram is a model which identifies system variables (in ovals) and the connecting arrows which link the variables together (see figure 1). The type of interaction is deterrined by considering the effect of a small change in one variable on the magnitude of another.

An oval diagram is constructed by drawing on the experiences, observations, and intuition of the analyst(s) in order to translate mental models into an explicit statement. This statement forms the framework for testing hyporheses, gathering additional data, or analyzing the system's dynamic behavior.

ADVANTAGES

1) In oval diagramming, complex causes and effects are seen as expanding sequences starting from a key variable.

FIGURE 1
Oval Diagram for Nomad Pastotalism Eco-System

2) The thought that goes into oval diagramming often uncovers relationships that may be the key to a further understanding of system behavior.
3) Oval diagrams facilitate communication between analysts and decision makers by highlighting andesirable effects and relationships that require careful attention.
4) By treating assumptions and hypotheses explicitly. oval diagrams may resolve discrepancies or deficiencies in the mental models used by decision makers.
5) The span of relcvant factors is casily shown in the oval diagram so that changes in the problem scope can be atcommodated by changing the diagram.

LIMITATIONS

1) Diagramming ali conceivable interactions results in a complex and unwieldy diagram. On the other hand, highly aggregated models may lead to false inferences abour system behavior (see DeNeufville and Stafford, 1969).
2) The validity of the oval diagram can only be in. ferred by relation to experience. Any hypothesized relationship may be proven false by a statistical analysis of data, but failure to do so does not validate the relationship. For eiample, it may be demonstrated that a relationship between NUMBER OF EXTENSION WORKERS and NUMBER OF FARMERS ENTERING A PROGRAM does not exist; however, no test will assure one that there is a causal relationship.
3) An oval diagram may be idiosyncratic because there is no unique representation of a complex set of relationships.
4) The selection of salient variables and relationships reflects the biases of the analyst, even chough the diagrannmer may atcempt to incorporate shated values into the hypothesized relationships.
5) The oval diagram is a descriptive model ondy-the complex interaction of multiple variables and relationships can only be inferred. Other tecinniques are required to folly understand the behavior of the ensire system isee Computer Simulation Models, CSM, page 120).

REQUIREDRESOURCES

LEVEL OF EFFORT

The level of effort required depends on the plamed use for the tool.

1) If the oval diagram is a firststep in complex modeling and systems analysis, then the effort will match the input requirements of the tool used in the next step.
2) If the tool output is used for communication. discussion, or iraining, then more eftort may be spens on refining the finat tiagram.
3) If the tool is designed to facilitate understanding as an aid to decision making. or for clanifying issues. then more attention must be given to the developmont process and explicir treatment of assumptions and hypotheses.

SKILL EEVEL

Tiee analyst must be able to see the problem and enviromment as a system. A System Defairion Matrix SDM. page 67) may be aseful here.

When idemifying variables, there is a tendency to think only in terms of system components, eg. organizational uniss. Thus skills wued to fidentify system functions (Function Expansion. FEX. page 45) and system periormance measures Logical Framework, LGF, page 260\% can be dseful. Owal diagramming mest be fearned by repeated attempers at describing complex relationships.

TIME REQUIRED

Oval diagrans may be constructed either in a short time: (less than an hour) or over a longer time (e.g., the life of a project), depending on the level of detail and internal consistency desired.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINTTIONS

1) A cuncal chain is a sequence of cause and effect relationships between variables (see figtre 2).
2) A cuasalloop is a causal chain which is commecred so that a change in any variable ewentually feeds back through the chatr so affect this wariable. A causal loop has a feedbuck effect (see figure 2).
3. Authailly-cuusal wariables occur when a change in one variable causes a change in another which is fed back to affect the first, e.g., a causal loop involving only cwo wariables (see figure 2^{7}.
4) Feedback structure is the set of relationships describing a systern that inwolves one or more interlocking causal loops isee figure 1 i.
5) Correhations is an observed relationship between two or more variables in which the changes in one variable may be associated with predictable changes in another; the relationship, however, is not necessarily cause-effecr.
6) Logical inconsistencies occur when hypothesized relationships among variables are inconsistent. This may result from an imprecise variable definition, fanlty logic, or a confusion of correlative behavior with cause-effect relationships.

FIGURE 3
Types of Interaction Berween
Two Vanables, A and B

EXAMPLES.
HYBRID SEED YEELDS Vartable A) influence NUMBER OF NEW ADOPTERS (Variable By
POPLLATTON OF FERTELE FEMALES (Variable A) produces NLMBER OF BHRTHS (Variable B)
FERTLEIZER APPLLED iVariable A) calses CROP YIELD (Variable B

EXAMPLES:
AKTI-SMOKING ADVERTISING (variable A) influences CIGARETTE CONSUMPTION (Variable B)
EXTENT OF FLOODING (Variable A) produces CROP YIELDS (Variable B)
COATRACEPTIVES AVALLABLE (Varinble A) causes NUMBER OF BIRTHS (Variable B)

FIGURE 4
Illustration of Trreshold Relationships

Inverted Threstrold Effect	A must increase significantly before a decerases or A. thetst decrease significantly before B increases

EXAMPLE:

When POLITICAL AGITATION A, excecds a level of tolerance, the LEVEI OR CIVIL LIBERTIES $\left\{\begin{array}{l}\mathrm{B} j\end{array}\right.$ affected.

EXAMPIE:
When COOPERATIVE MEMBERSHIP A A vxeceds a threshold manber. FARMGATE PRICES (B) may affected

FIGURE 3
Illustration of irreversible Effects

REQUIREDINPUTS

Oval diagramming is most effective when the purpose is to inctease snderstanding of a complex problem. Familiarity with the probiera situation is therefore desirable, though much of the input will come from a basic understanding of relationships, e.g., the mental models that are formed from experience and observation.

When oval diagrams are constructed by a team, the members should broadly represent those concerned with the problem. More than five people working on one diagram limits effecriveness.

Tree diagrams (TRD, page 74) may be used to help identify variables. Am interaction matrix dagram (MDD page 92) is also useful for identifying the significant interactions.

TOOLOUTPUT

The output is an oval diagram which provides a graphic statement of the variables and relationships necessary to describe the system. The boundary of the system and the scope of possible interventions are defined.

The oval diagram focuses attention on the need for further information-gathering and testing of hypothesized relationships. The oval diagram provides the basic inpur to other techniques such as Scenarios (SCN, page 164) to gain greater understanding of system dynamic behawior.

IMPORTANT ASSUMPTIONS

Decision anakers use mental models as well as more format models to understand behavior and select choices of action. Mental models may be very complex, yet they are seldom made explicit except by inference from the actions of the decision makers. Oval diagramming depends on the ability of analysts (and decision makers) to picrure the hypothesized relationships and the assumed causes and effects.

The assumed interactions between variables is identified by considering small changes in the causal variable. Relationships often change character when large magnitude variations occur, but an examination of this behavior is outside the province of this technique.

The oval diagram represents a definition of the system that is distinct from the environment. Setting a boundary between the system and its environment assumes a hierarchical relationship between systems and the larger systems which contain them. Hence, any environmental variable is part of an expanding systems hierarchy (see Tree Diagrems, TRD, page 74).

METHODOFUSE

GENERAL PROCEDURE

Oval Alagramming is essentally a trial and error process. Therefore it is important to start diagramming immediately. The recommended procedure is to start* with a simple tree diagram (TRD. page 74) and when many factors keep reoccurring in different branches of the uee. to switch to an oval diagram.

1. Construct a tree diagrami of the system.

1.1 Identify variables for an influence tree.
1.2 Select a starting variable which describes the condition or swmptom of the problem in neutral terms.
1.3 Construct the tree branches after each variable by identifying the variables which influence (or produce or cause) this variable to change value.
2. Convert the influence tree to oval diagram form.
2.1 Locate the s=arting variable in the center.
2.2 Cluster the influencing variables around it.
2.3 Indicate the branching relationships as arrows between ovals.
2.4 Form cansal chains of variables.
2.5 Do not repeat variables on the diagram. Form causal loops back to prewiously shown variables-
3. Identify the rypes of interactions between variables-
3.1 isolate two variables and imagine the effect that a small increase in the causal variable will have on the affected variable, assuming that all other factors do not change.
3.2 Indicate whe ther the relationship is a direct or inverted effect (see figure 3).
3.3 Indicate if a threshold effect is hypothesized (see figure 4).
3.4 Indicate if the variable interaction is irreversible (see fighure 5).
4. Identify variables outside the system.
4.1 Apply the influence tree stopping rule (TRD, page 74) to idemify any factor which is outside the influence of other variables within the system.
4.2 Enclose these variables in a box to distingush them from system variables (optional),

5. Review the diagram for consistency-

5.1 See if the variables reflect a similar level of detail/ aggregation.

[^3]FIGURE 6
Summary of Symbols and Notation for Oval Diagramming
NABOL
5.2 Einminate amy tedundart telationships.
3.3 Look for spurious correlutions, e.g. rwo variables which are shown as catustlly related where the apparent catbe and effect interaction is actually the effect of a thit d variable. The classic exarupte is the comdation between FIRE TRUCKS and FIRE BAMAGE. The number of fire tracks responding to a fire dow mot cause the amount of damage, the size of the fire affects both variables (DeNeufville. 19691.
5.4 Test the cavsal chams of tapotheses by considerimg the fadiating effect of a small change itu a wariabie in the chain. Are the segumences of inecractions consistent with the observed behaviar fin the systema?
6. Complete the diagran for display or analy sis.
6.1 If necessary, acdraw the diagram so clarify relatimenhtips (sec figure 6).
6.2 bsolate causal loups and key wathables by highlight ing of diantamanang them sparately.

EXAMPLE

The eco-system problem which was diagrammed as an influchec trec :sec Tree Diagrams. TRD page 74) will Be contimued.

Construct a Tree Diagram of the System

The tree didgram represents factors which interact to cause the nomad popularion's problems in the droughtstrichen Sahel. A stamting wariable for the diagrame was wlected by first stating the known condition on exmpam which describes the problema the region is overpopulated with both people and animalls. The aroc daytatia could have been stated with OVERPOPULATION OF NOMADS of OVERSIZED HERDS. However these variables are not neural, e-g., overpopalation is only relative to avaitable resostces. Consequendy, HERD SIZE was selected* because it may cither increase or decrease in reilation to other variables. This permits the problem to be represented as the interaction among system variables.

Kepeated application of the branching rule. "ldemuity the variables which infleence this variable," for each newy, identified variabie resulted in the completed diagram shown in figure 7 (see Tree Diagrams. TRD, page 74). In practice, only a partial tree is needed to start the oval diagram.

Convert the Imfluence Tree so an Owal Diagram

The startingy wariable was drawn in the center with the wariables whichin influence is ciustered around see figgre 8, The branches of the Ete diagram became arrows be. tweetn the variables which became owal. Each branch became a causal chairn and when a variable was repeated in the tree diagram ceg. HERD SIZE a causall loop was
 Twewi HERDSHZE and WATER AVALABLE,

FIGURE 7
Hutlucnce Tree Dagram Ptepared to Start Oval Diagrama of
Nomad Pastoralism Eco-System

[^4]FIGURE 8
The Initial Steps in Constructing an Oval Diagran from a Tree Diagram

Identify the Types of Interactions Between Variables
If HERD SIZE were to increase by some small amount. the WATER AVAILABLE would decrease if ali orther factors were held constant. The - sign by the arrowhead on the relationship shown in figure 9 indicated this inverted relationship. By posing simitar changes berween each pair of related variables (considering only one relationship at a time), the analyst indicated on the diagram the hypothesized interaction between the variables.

One such hypothesis concerned the relationship between the RATE OF PASTURE RECOVERY and the AVAILABLE PASTURE. If the RATE increased slightly. the AVAILABLE PASTURE was directly affected If the rate decreased below some threshold value, the relationship became distorted (DESERTIFICATION increased irreversibly, which decreased the AVAILABLE PASTURE). These hypotheses were noted on the oval diagram using the symbols shown in figure 9.

Identify Variables Outside the System

The SEASONAL RAINFALL was shown as a variable* which was outside the system. Although this variable produced the WATER AVALLABLE and influenced the

RATE OF PASTURE RECOVERY, nothing within the system diagram was loypurisestzed to influence the SEA. SONAL RAINFALL.

Other factors were added to the oval diagramp see figure 1; to show the effects of external itherventions on the sysicm. e-g. digying DEEP WELLS or imposing RANGE LIMITATIONS and HERD CONTROL on the nomads by government interference. Eachin of these actions were determined by lewels of variables within the system and could also be shown on the diagram" "e.g. the reta. tionship between GRAZING PRESSURE and HERD SIZECONTROL:

Revicw the Diagram for Consistency

One of che bigyest problems in oval diagranaming is to show widely varying levels of detail diaugregated variables;. In this example, all momads and all livestoch were aggregated into just two variables: POPULATION and HERD SIZE. The oval diagram could be restruntured sor show regronal variables or tribal groups. but this detailing should follow affrstaterape at a more general model.

A redundane relationship was shown initally in the oval diagram betwcer: HERD SIZE and RANCE FEED (compare figure 9 with figure 1). GRAZING PRESSURE was defined to link HERD SIZE wirh RATE OF PASTURE RECOVERY. When reviewing the diagram, it was observed that the effect of HERD SIZE on RANGE FEED was accounted for by the linkage Ehrough GRAZING PRESSURE.

Social value relation haips were shown rather ambiguously on the diagram. A relationship berween DESIRED HERD SIZE and NOMAD POPULATION was hypothesized to include not unly the DEMAND FOR FOOD text a set of CUITURAL. NORMS. The norm may be a tradition that X catde are desired for Y family members. Such a hyporhesis requires that information be gathered for furtherstudy.

SOCIAL VALUES : CONSUMPTION influence how the YIELD from the HERD was to be taken-either to ef fecr FOOD SUPPLY or to produce INCOME from milk or beef sales. The $\mathbb{N C O M E}$ may be applied to further build up the HERD SIZE. By constructing these narratives. the hypothesized relationships represented in the oval diagram were systematically examined. It is important. however, to consider both increases and decreases in key variables.

It wonld have been an error to depirt DROEGHT as a variable since this is just a very low level wf the mentral variahle. SEA. SONALRANFALL.

[^5]FIGURE9
Oval Diagram Depicting Camal Loops in Nomad Pastoralistn LeoSysten

Complete the Diagram for Display or Analysis
There were a number of interacting causal loops which ied to the problems of the nomads. Each of these loops could be isolated for further analysis and perhaps programmed on a computer simulation model (CSM, page 120) (Picardi, 1974). For purposes of presentation to decision makers, it is desirable to isolate these magor effects by redrawing the diagram or highilghting the relationships involved. Transparent overlays are effecrive in constructing the model before an audience. Color-coding and geometric shapes (other than ovals) are also effective in clarifying the complex causal hypotheses.

At the very least. this example illustrates the kinds of interactions which help to orient efficient informationgathering for detailed analysis a"d design.

THEORY

Oval diagramming, or causal modeing, draws from many disciplines including economics. sociology, business, and engineering. DeNeufville and Stafford (1969) describe the use of "arrow diagrams" to model the causal relationships between variables. The field of Systems Dynamics (Forrester, 1968) sterns from efforts to model the complex relationships which lead to problematic behavior in industrial organizations. The MTT group subsequently atrempted to model cities (Forrester, 1969) and the world (Meadows, 1972).

While these efforts were mannly concerned witin developing a computer simulation model to test hyportheses and demonstrate the probable consequences of different policies, each must start with a causal model or oval diagram of the relationships w be tested.

The work of Harrison (1972) and Abraham (1975) is particularly noteworthy in sheir attempts to translate complex techniques inxo straightforward models of problemaric system behavior.

A second approach concentrates on identifying the structure of interactions (see Interaction Matrix Diagrams. IMD, page 92). Interpretive Structural Modeling (Warfield, April, September. 1973; 1974) relies on computer assistance to manipulate the matrices of relationships into a model. An interaction matrix has a direct correspondence to an oval diagram and provides a powerfull technique for automatically analyzing large numbers of complex interactions. Gerardin (1973) describes an apphication of the technique to planning, and at a recent conference (IEEE Conference, 1976) several authors applied the technique to development problems.

BIBLIOGRAPHY

Abraham. Stanky, "How to Apprechate Using Sincewn of Feedback Loops: A Sct of Instruchions." WP 13-75. Graduate School of Management, UCLA. February 1975.
Baldwin. Maynard M. ed. Portraits of Complexiry: Applications of Systems Merhodologies to Societal Problems. Battellic Monograph. No. 9. Columbus. Ohio: Batelle Memorial Institurc. June 1975.
DeNeufville, R.. and Stafford. J. Systems Atulysits yor İggineers and Managers. New York: McGraw-Hill. 1969.

Forrester, Jay W. System Dypumics. Cambridge. Mass.: MHT Press, 1968.
Forrester. Jay W. Erbay Dynumuics. Cambridge. Mass.: MIT Press. 1969.
Gerardin. Lucien A. "Systems Approarkes to Developing Countries." Proceedings cf the Symposium sponsored by IFAC and IFORS. Algiers. Algeria May 28-31. 1973.

Gordon, Geoffrey. System Simulurion. Engtewood Chiffs. N.J.: Prentice-Hall. 1969.

Harrison, H.L. "Creative Aspects of Modeling a Complex System for Which the Crwative Model-Building Swarting Point is Nor Easily Determined." Department of Mechanical Engineering, University of Wisconsin. 1972.

Meadows, D. H., et al. The Limeits of Groweh. New York: Uniserse Books, 1972.
Picardi, Anthony C. "A Systems Analysis of Pastoralism in the West Africam Sahel." Annex 5 of A Frumewurk for Evaluating Long Term Srrategies for the Development of the Subtel-Studan Region. Center for Policy Alteratives, M.I.T.. December 31, 1974.
Proceedings of 1976 IEEE Conference on Cybernetics and Sociey, Washington. D.C.: IEEE, 1976.
Warfield, John N. An Asciult on Complexity. A Batrelle Monograph, No. 3. Columbus, Ohio: Barelle Memorial Institute, Aprill 1973.
Warfield, John N. "Binary Matrices in System Modeling." HEEE Transactions on Systems, Mant, and Cybernetics. Vol. SMC-3. No. 5, Seprember 1973, pp-441-49.
Warfield, John N. Structuring Complox Systems. A Batrelle Morograph, No. 4. Columbus Ohio: Batrelle Memorial Institute. 1974.

Interaction Matrix

 Diagramming
PREREQUISITETOOLS

Trec Diagtams (TRD, page 74 and Oval Diagramming (OVD. page 81).

USAGE

PURPOSE

Interaction matrix diagrams describe complex relationships by identifying self-inecractions within members of a set and cross-interactions between members of different sets of elements.

USES

Interaction matrices may be used singly or in combination to:

1) Identify the elements eey, objectives constraints. or system variables relevant to the description of a problem, project, or system).
2) Systematically explore the possible interactions within a set of dements. using a self-mteraction matrix.
3) Indicate the existence, strength, importance. or direction of an interaction between any two elements.
4) Identify the interactions between two different sets of factors. c.g. between project objectives and acrivities.
5) Provide a matrix checklist for record heeping, commumication, and planning.

KEY DEFINTIIONS

1. A matrix is a mathematical and graphical representation in rwo dimensiors.

2 A self-interaction matrix represents relationships withina single ser of variubles.
3. A cross-interaction marrix represents relationships between dissimillar sets of wariables.

4 A reduced matrix is tormed by omiting one or more rows or columns from the original matrix.
5. A set is a collection of elements having some common property.
6) A mutrix erniry is the symbol used to indicate the existence or absence of a relationship berween the element in the row and the dement in the column (which together define the entry;

SHORT DESCRIPTION

Interaction matrices provide a technique for first idenritying the members of a set of elements. e.g., the objectives for a project, atid then systematically examining all the possible interacrions among members of the set. If the factors can be categorized, the cross-interacrions berween members of different categories can be determined see figure 1. A murrix entry may show a range of information, including whether the relarionship between the two elenents has been hypothetically or empirically determired. or whether the relationship is or would be desirable if it were established. The matrix entry may also show the
relative strength or importance of the interaction. Interaction matrices correspond directly to tree diagrams (TRD, page 74) and oval diagrams (OVD, page 81).

ADVANTAGES

1) All factors relevant to the description of a problem or system are identified in a separate exercise prior to specifying interactions.
2) All possible interactions between elements are examined in a systematic procedure which minimizes onnssions and tests for inconsistencies.
3) The existence of a relationship is determined without having to further specify the type or degree of interaction.
4) A large number of variables may be analyzed without significantly affecring the claripy or urility.
5) The matrix provides a convenient means of recording information and tasks for further study.
6) The procedure lerids irself to a multi-disciplinary approach.

LIMITATIONS

1) Separating the tasks of generating elements and identifying relationships may run counter to thought processes, e.g., tracing cause-effect chains or the order of preterence among descriptive elements. In these processes. new elements often emerge as relationships are examined (see Trec Diagrams. TRD, page 74).
2) The number of relationships to be examined increases as the square of the number of matrix clements. e-g. there are mine possible interaction pairs among three elements. Fortunately, mot all interactions meed to be examined, but the process cum be fime-consuming.

- This ascumes that the inturaction of an chement withy itsalf must becesaminted.

FIGURE 1
Interaction Matrix Diagram Derived from Oval Diagram of Nomad Pastoralism Relationships

94 / DHSCRIBING: COMPLEX RELATIONSHIPS

3) Tracing cyclical relationships, and other linkages through the matrix structure can be confusing. An oval or tree diagram provides grater clarity that the matrix format.

REQUIREDRESOURCES

LIEVEL OF EFFORT

Construction of interaction matrix diagrams requires two distinct tasks: identifying relevant clements, and andyoing imferactions among them. The first task may exploit the collective judgment of a large group using brainstorming (BSC. paye 3) or the Nominal Group Tech nique (NGT, page 14). Secondary information sources may also be used to develop the list.

The task of identifying telationships requires considerable effort and expertise. This may be a team wask if care is taken to explain the elemenes and the relationship which is to be examined.

SKILiLEVEL

Some skill is required to diagram the interaction matrices in order to preserve clarity, and to interpret the linkages between elements.

TME REQUIRED

The construction of an interaction matrix for a relatively sma": number of factors may take hours, depending on ones ability to assess the matrix enties and the amount of information included.

SPECIAL REQUIREMENTS

Interaction matrix diagrams may be constructed using special compster programs. This greatly facilizates the systematic analysis of many clements and permits quick and accurate performance of matrix operations Warfield. 1974.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) A rransitive redationship requires that a direcred relationship among three or more elements be consisfent, en., if A is preferred to B, and if B is preferred to C, then A mast be preferred to C (see figare 2).
2) A directed relationhip specifies that the existence of the relationship is dependent on the order in which the two elements are considered. e.g. "is influenced by," "is preferred to." and "is subordinate to."

FIGURE 2 Properties of Relationships

Selffincruction Martix of Relationship R

 the wienuents.

SYMBOL DEFANHTMNS:
a. b. c. d. and e are chaments of a set.
i, jume ant two clemants.
F denotes 3 selationstipip Serwetn any two elements, a N b sigmifies that mement a is related to element b by tine relationship R.
MATR1X RELATIONSHPP PROPERTIES
 i \mathbb{R} i. If mot. the relationship is irreflexive because all the diagorat elemuents are" "o."
Symametry- A redationsinip berween two chatments is swmerrical if when i \mathbb{R} j, then j R i. For example, Grompf A "communicates winf qie" Group B. An this cast. the rwo haives of the matrix are symmetrical abowat the diagomal. If not, than the relationship is sompetricat
Transifuits. A relariomship is tra sitive if when a $\mathbb{R} b$ and $b \mathbb{R} d$ then a \mathbb{R}. For example, project A "is preterred to $R^{\text {n }}$ projece B whith is preferfed to Project D. elvertiore Project A must be preferred to Project D. if mot, the rehationship is mitrazzsitiver. The enories at columar a of ruws 费 and e are differeme, indicatiny an entransitive fellationshup for an inconsistencmatrix cmery;
3) A reflexive relationship occurs when the variable interacts with itself (sce flgure 2).
4) A symmetrical relationsizip means that the relationship between two clements is non-directed, i.e. the etements interact independent of the order in which they are considered (see figure 2).
5) Linearly linked matrices have a common set of rows or columns.
6) Orthogonally linked matrices have the same set of elements in the rows cf one matrix and the columms of the other matrix.

REQUIRED INPUTS

If the interaction matrix diagram is to be a group effort. team members should be familiar with the problem or project. They should have diverse backgrounds in order to provide a brcad perspective on relevant ciements and possible relationships.

TOOLOUTPUT

The interaction matrix diagram provides a useful model, but may also be an intermediate product which is used to guide further information-gathering and srudy.

IMPORTANT ASSUMPTIONS

The diagramming process represents a mapping of an internal mental model to an explicir format matrices? The technique systematizes the mapping process by examining only one pair of elements at a time. This may result in a relationship between two elements which is inconsistent with the interaction of each element to other elements (e.g.. a rransitive relationship among clements is violated). In this case, it must be assumed that the mental model is incorrect. though a cognitively complex view of the relationship may be the source of the discrepancy.

METHOD OF USE

GENERAL PROCEDURE

Throughout the following procedure, remember that interaction matrices are constructed by simply making an entry at the intersection of a row and column which indicates wherher there is a specified relationship between the corresponding elements.

1. Specify the type of elements and the relationship. 1.1 Specify if the element set is objectives, constraints, agencies, needs, variables, interventions, erc.
1.2 Specify if the relationship is directed or mondirected. e.g. non-directed relationships imchude "is associated with." "commumeates with." and "interacts with."
3.3 If the relarionship is directed. i.c.. from one element te the other. then specify if the adh tionship is tratusitive or intransitive isee defnitions in figare 2%.
1.4 Specify if the relationship is reflexive or not see figure 2).

3. Generate a list of elements for each set.

2.1 Ask the question: What clements are necessary to describe the (type of element) for the contextis For example. "What elementsare necessary to describe the objectives of an integrated rural development project?"
2.2 Combinc individual answers to this question if a group process is used. cog.- brainstorming BSG. page 3). Nominal Group Technique (NGT, page 14). or Delphi (DLP, page 168).

3. Construct the interaction matrices.

3.1 List all the elements of one type in the rows of a matrix.
3.2 Prepare a self-interaction matrix by repeating this lise of efements as the columns of the matrix to form a square (see figure 1).
3.3 Prepare a cross-imteraction matrix by listing elements from a different set in the columas of the matrix to form a rectangular matrix see figure 1).
4. Determine matrix entries.
4.1 Specify the symbol for a posicive entry to indicate the existence of a relationship, e.g. $\cdots /$, "-X." or "1" (see also figure 1).
4.2 Specify the symbol which indicates that there is no interaction berween two variables (e.g., "o' or blank).
4.3 Beginning with the first row of the matrix. apply the relationship test to the row element and each columm element. Test by asking: Is (element i) (relationship) (element j)? For example. "Is Project A preferred to Project B?" or "ls variable X influenced by variable Y ?"
4.4 If the answer to the relationship test is positive. then the corresponding matrix entry is the positive symbol specified in step 4.1. If not. either enter " 0 " or make no entry.
4.5 If a group process is used to examine each relationship, use a majority vote or group consensus to answer the relationship test.
4.6 Repeat this test for the entries in the remaining matrix rows until all possible matrix entries have been determined.
5. Examine the matrix for consistency.
5.1 If the relationship is reflexive. confirm that the diagonal entries are positive (sce example. figure 2).
5.2 If the relationship is irreflexive. the diagonal entries should be zero.
5.3 If the relationship is symmetrical e.g. a nondirected relationship such as "is associated with ${ }^{+1}$; , then confirm that each positive towicolamn j entry in a self-interaction matrix has a corresponding row icolumn ientry which is positive. Otherwise, the matrix emtry is inconsistent (sec example. figure 2).
5.4 If the relationship is directed and transitive. follow the iterative procedure shown in figure 3 to test whether an intransitive relationship has been erroneously entered in the matrix. For example, assume that the matrix in flgure 2 describes a rclationship between elements which is transitive, e-g. element i is subordinate to dement j. Comparing the positive entries in the bottom row e) with the positive entries in row b (step 7 in the test sequence) indicates that the column a entries are inconsistent. If e is subordinate to b, and if b is subor dinate to a, then e must be subordinate to a or the relationships would be intransitive.
6. Specify the relative degree that the relationship applies (optional).
6.1 Determine a scale to indicate the degree of interaction (e.g., 0 to 10 , or 0 to 3) (see Rating Scales, RTS, page 29).
6.2 For each row, assign a scale value to the entries which indicates a relationship. The value determined should reflect the relative degree to which the relationship applies compared to the other relationships in that row, e.g., the strength of interaction between the two variable alements (see example on page 99).
7. Construct a reduced matrix (optional).
7.1 Eliminate any elements from a cross-interaction matrix which have no positive relationships with elements in the other ser by striking the row or column from the matrix.
7.2 Eliminate any element in a self-interaction matrix only if it has no positive row and column entries. e.g., it does not interact with any other element within the set.
7.3 Eliminate any element where the degree of relationship is shown as an enery if none of the entries for that clement are above a specified scale value (see example on page 99).
8. Construct an interaction matrix diagram (opiional).
8.1 Two interaction matrices may be linked together by repeating one or more elements of one set in both matrices (see HERD SIZE in matrices A and C in figure 1).
8.2 Matrices may be linked together by alternating cross- and sedf-interaction matrices isee figure 1 to form linearly linked matrices or ortho gonally linked matrices. For the latter, the self-imteraction matrix becomes a pivot point between two cross-interaction matrices.
9. Clatify the interaction matrix by constructing a tree diagrara (oprional).
9.1 Select a row of the matrix as the starting elcment of the tree (see Tree Diagrams. TRD, page 74).
9.2 Branch the tree at each positive column entry. Tine element on the branch conresponds to the colummelement.
9.3 For cach of these elements the process may be repeated by branching at the positive entries on their respective rows. For the matrix in figure 2, a tree started with the element would first branch to elements band c. each of which would branch to element ai. The branching rale in this procedure is simply the interaction matrix relationship, e.g., identify all the elements to which this element is subordinate.
9.4 To tree diagram the converse of the relationship. repeat the above procedure, but branch in each case at the positive entries in the column of the element. The branching rule then becomes in effect flippe:" sound e.g.. identify all the elements which are subordinate to this element. The oval diagram in figure 2 resembles such a tree structure, except that elemente is mot shown twice.
10. Clarify the interaction matrix by constructing an oval diagram (optional).
10.1 Select the row elemenr with the most positive entries as the starting element.
10.2 Cluster all the elements which have positive column entrics about the starting element.
10.3 Draw limes which correspond to the relationship between each of the elements of a positive matrix entry.

FigURE 3
Examining an Interaction Matrix for Intransitive Relationships

FIGURE 4
Reduced Cross-Interaction Matrix for Environmental Assessment
Actions which cant
inpact environment

KEY:

SOURCE: Agency for International Development. Environmental Assessment Guidelines Manual. Washington, D.C.: USAID, September 1974.
10.4 If the relationship is directed. e.g.. "a is preferred to b." locate the arrowhead at the end of the linkage in a way consistent with the meaning of the relationship. For example. the oval diagram for the matrix in figure 2 places the arrowhead at the oval surrounding the element which is second in the relationship "b is subordinate to a."
10.5 Add remaining elements and links to the diagram where each link corresponds to a positive entry on the matrix.
10.6 If the relationship is symmetrical. only the positive entries on one side of the matrix diagonal need to be diagrammed.
10.7 If the relationship is reflexive, an arrow may be shown emitting from the oval and looping back to it, though such links are often omitted.
10.8 If the reiationship is transitive, the matrix will contain a number of entrics which represent redundant links on an oval diagram. These may be omitted as shown in the link arrows frome to a and doa in figure 2.
10.9 An intransitive relationship may be oval diagrammed as a feedback loop, e.g., the relathonship "is affected by."
10.10 Confirm that the diagram is complete by counting the number of connecting arrows. any omitted reflexive loops. and any omitted redundant intransitive links. The iotal should equal the number of positive matrix entries.
10.11 The information on degree of relationship may be transferred to the oval diagram by associating the scale number with the connecting arrow (e.g., either adjacent to the arrowhead or on a box on the arrow).

EXAMPLES

Constructing a Reduced Cross-Interaction Matrix

A set of existing environmental characteristics or conditions. such as water quality and erosion, were identified and listed by various categories to reflect the environmental concerns of donor-funded development projects (Environmental Assessment Guidelines Mantal, 1974). A second set of actions which can influtence the environment were also identified by using several categories of actions. These included "alteration of ground cover," energy generation,"etc.

A sample environmental assessment was then conducted by constructing a cross-interaction matrix which listed the environmental characteristics as rows and the actions as columns (see figure 4). Matrix entries were scaled
from 1 to 10 (see Rating Scalcs, RTS. page 29). The tirst cntry for each combination of condition was determined by an assessment of the relative strength of the inter action. This was done for cvery probable combinstion. A second entry assessed the relatire significance of the interaction. Finally, a reduced cross-interaction matrix wa formed by eliminating the rows and columas. The redeceal matrix contained only those elemenes whose interaction had a strength or significance greater than 2 on the relative scalc.

This matrix pinpointed the piabable areas where project actions may have either a strong or significant environmental impact.

An Interaction Matrix Diagram of the Nomad Pastoralism Eco-System

The problems of the nomads in the drought-strickent Sanel were represented as a tree diagram TRD. page 74 and an oval diagram (OVD, page 81). The oval diagram showed the relationships among a ser of wartables which described the nomad pastoralist eco-system. and key ecomornic and social variables such as the SOCIAL VixLUE ON CONSUMPTION (see figure 5). Selfinteraction matrices were constructed for the two parts of this diagram: the livestock-environ:mental and the populationsocioeconomic variables see figure 1 , matrices A and C. In each case. the outside interventions (shown as boxed wariables in figure 5 were diagrammed as separate matrices (Band D).

The interaction matrix diagram provides a systematic way of examining the multiple imteractions between an ontside intervention and the internal system variables.

The cross-interacrion matrices AXB and CXD were constructed to determine which systcm wariables were influenced by the ourside interventions (see figure 1). As the oval diagram indicates (figure 5), these interventions were originally diagrammed as affecting only a single system variable.

The cross-interaction matrix AXB was further specified by starting with the column DEEP WELES and asking. for each row variable: Does this intervention figging deep wells) influence this variable? Addinional positive entries are shown in figure 6 as slashes in the cross-interaction matrix.

In order to determine the possible influence of system variables on the intervention (i.e., mutual-catsal relatiom-ships-see OVD, page 81) the BXA and DXC crossinteraction matrices ${ }^{2}$ were constructed, and the entries for each row element (incervention) were determined by

[^6]FIGURE 5
Oval Diagram for Nomad Pastoralism Eco-System

the relationship test: Does this column variable influcace this row intervention in the system? Positive responses are shown as slashes entered on the diagram (see figure 6).

Subjecting the diagram to this systematic process revealed some omissions in the original conception of the complex eco-system relationships. For example, HERD SIZE CONTROL affected a muber of other variables besides the HERD SIZE. One im particular which should not have been slighted is the necessity to influence the DESIRED HERD SIZE variable of the nomad pastoralist decision maker. Also, the cruciai interaction between HERD SIZE CONTROI and RANGE LIMITATIONS is pinpointed. Orher intervemrions sucfu as VETERINARY SER VICES can be added to examine further imeracrions.

The oval diagram may then have been redrawn to form the interaction matrix diagram to show these addirional hypothesized relationships.

Constructing a Tree Diagrain to Clanity Rellutionships

Multuple reiationships may be los: mothe complexity of the marrix forman. A simple way to clarity the diagram is to construct a tree diagram (TRD. page 74) of the itrect actierns. A tree diagram is shown tor the relationships of HERD SIZE CONTROL to other elements of the description (see figure 7h. The righthand tree lists the factors which influemse the intervemtion of HERD SIZE CON. TROL. The righthand Eranches represent the posinive entries the the columan labeled HERD SIZE CONTROL. The left side describes variables which are influenced by this interwention. The leftehand branches are the entries in the row with the same label.

Some items are duplicated on tuoth insts, indicating that atterraptimg to control HERD SIZE is a complex process involving feedback of variables such as HERD SIZE and GRAZING PRESSURE on range lamds.

FIGURE 6
Revised Interaction Matrix Diagram Showing Influences on Interventions in Systern

FIGLRE 7
Tree Diagram Clarifying the Influence Relationships in the Interaction Matrix Diagrame Fxample

Variables Influenced By itatervention	Interyention	Variables Influencing Intervention
HE*D $\mathrm{STZE} \longrightarrow$		
RANGT FEED		
HESERTVFICATION—听 - PASTURE RECOVERY RATE		
HASTURERECOVERY RATE—吸 - GRAZING PRESSURE		
GRAZINGPRESSURE———_- SEASONAL RAINFALL		
DEEP WFHES		
RANGE LIMMTATIGNS— - RANGE LIMITATIONS		
FOOM SUPPLY _ COETURAL NORMS: HERD SILE		
YIELD FROM HERI \qquad ——YEEL FROM HERD		

The problems of the nomad pastoralists in the Sabell have been addressed using Interpretive Structural Models in two tecent rapers (Geiger and Fitz. i976. and Hormbach. tt al, 1976). The papers present oval and tree diangrams which were derived with the assistance of special computer programs designed to transfer the interaction matrix representainens.

THEORY

The matrix representation of relationships takes many forms, and the relevant theory depends on the particular application. Beckett (1971) traces the representation of systems from directed graphs (oval diagrams) to matrix modeis (interaction matrices) to Markov transition modeis. The later buidds on probatility theory with the matrix entries representing the probability of a tramsition from one system state to another.

Interaction matrix diagramming owes a great deal to the efforts of Warfield and othersat the Battelle Memorial Instimute (Hill and Warfield. 1972). Their "Unified Program Planning" uses the self-interaction and crossinteraction matrix approach to structure the following sets of planning elements:

Constrainus

Needs
Objectives and measures)
Alterables
Agencies fand agents:
Acriwiries (and measures)
Socieral sectors

These techniques and orthers are described in Portruts of Complexaty y 1975 .

Interpretive Structural Modeling is the tabel for a range of computer-assisted diagramming tectuniques which grew out of the work at Battelle Warfield, April, September, 1973: 1974). It relies on computer assistance to manipulate the matrices of relationships into a model and provides a powerful technigue for autoriatically analyzing large numbers of complex interactions. The basis for computer assistance is found in the properties of directed graphs and matrix partirioning. These techniques may be performed manually, but are tedious for large matrices.

Gerardin (1973) describes an application of the technique to plaming, ard at a receat conference (IEEE Conference. 1976) several auchors applied the technique to development problerns.

The interaction matrix diagramming technigure exFracts the most useful elements of lnterpretive Structural Modeling and the more heuristically oriented Uniffed Program Planning.

BIBLIOGRAPHY

Baldwin. Maynard M., ed. Portraits of Complexity: Applications of Systems Methodologies to Sorietal Protblems. A Batzelle Monograph. No. 9. Columbus, Ohio: Battclle Memorial Institute, Aprii 1973.
Beckert. John A. Management Dynamics: The New Synthesis. New York: Megraw-Hill, 1971.
Enwironmental Assessment Guädelines Ahanal. Washington. D.C.: USAID, September 1974.
Geiger. Domald, and Fitz, Raymond. "Structural Modelingt and Normative Planning for Eco-systems." Proceedings of 1976 IEEE COnference on Cybernerics und Society. Washington, D.C.: November 1976.

Gerardin, iucien A. "Topological Structural Systems Analysis." Systems Approaches to Developing Countries, Proceedings of the Symposiam Sponsored
by HFAC and HOORS. Algiers. Algeris. Mav 2E 31. 1973.

Hill. Wouglas I. and Wartich. John N. "Unotied Program
 Cyiemerics Vol. SWC-2, No. 5. Nowember 1972
Hormbach. Damiel: Calfee Jucy: and Zamerowshi. Edward. "Ancicipaning the Comseupences of Development Projects: An Example of a Hater Ctilization Project." Proccedinus of 1976 IFAEA: Cowferewtes ow Cybernefics arich Socicty. Washumgron. D, E. Nowerm ber 1976.
 Scerarty. Washingrom. D.C.: 1976.
Warfield. John N. An Asoult on Complexity A Wattelle Monograph. No. 3. Columbus. Ohio: Battellle Memorial Institute. April 1973.
Warficld. John N. "Eitrary Matrices in System Modeling" IEEEE Transuctions on Systems, Man, atyad Cyberwetics. Vol. SMC-3. No. 5. September 1973. pp44149.

Warfield. Jome N. Stracturing Comptex Systems. A Battelle Momograph. No. F. Columbus. Ohio: Battelle Mem iall Institute, 19?

V
 Analyzing Complex Processes

Flowcharts

Decision Tables
Computer Simulation Models
Gaming

Project planning demands analysis of the complex processes of development. Static descriptions are usefnl for characterizing complex relationships but dynamic analysis takes the description into the time dimension. A powerful technique for dynamic analysis utilizes the versatility of electronic computers (Computer Simulation Models) :o examine the processes which bring aboat changes in systems. The computer is not an absolute requirement, as other means of simulation can be used to explore complex processes. Two analysis techniques (Flowcharts and Decision Tables) focus direcrly on the sequences of decision and action which characterize systems performance.

Flowcharts

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

A flowchart represents complex processes as a connected sequence of decisions and alternative actions.

USES

A flowchart is used to:

1) Present the analysis of a complex decision situation or procedure which can be broken down into identifiable processes.
2) Depict a complex sequential process such as the steps in planning and implementing a project.
3) Indicate how a repetitive activity is to be carried out. e.g., the routine tasks in controling project disbursements.
4) Design, analyze, and debug computer programs.

KEY DEFINITIONS

1) A process symbol represents an action which takes place over time (see figure 1).
2) A decision symbol represents a step in a process where there is a choice among two or more alternative acerions (see figure 1).
3) A state symbol represents a tangible product. requirment, or specific condition associated with a process sequence (see figure 1).
4) A directed tine links two symbols together wirh in arrowhead indicating the sequence see figure 1%.

SHORT DESCRIPTION

A flowchart comsists of process, state. and decision symbols whicli are combined to show the sequence or flow of a complex process. The process may be the steps necessary to achieve a task a series of decisions where choices are dependent on earlier choices. or the routing of information and materials in a system (see System Definitions Matrix, SDM, page 67 .

The symbols are linked by directed lines to indicate the order of occurrence (see figure 1). If a decision has an alternative which requires the reperition of a process of decision, then the flowchart depicts the feedback loop.

ADVANTAGES

1) Flowchars are relatively simple to use and have wide applicability.
2) The grapthic description of a complex process makes it easier to communicare with others.

FIGURE 1
A Flowchart for the Task of Conistructing a Flowchart

3) Alternative courses of action are related ec succes sive steps by their location on the flowchart.
4) The position of an activity in the overall task is cleater than in prose desctiptions.
5) Logical inconsistencies in decision seguences can be identified, e.g., a portion of a computer program that cannot be executed because no action sequence leads to it.

LIMITATIONS

1) Constructing a flowchart may be somewhat more difficult than a simple prose account or the construction of a decision table (DTB, page 113). It is casier to overlook processes and decisions.
2) Modifying to include new processes or decision choices may reguire redrawing the flowchare.
3) A flowchart is less effective as an analysis tool where a large number of options are associated with a decision.

REQUIRED RESOURCES

LEVELOF EFFORT

Effort is expended in identifying possible decisions. determining the processes required to carry out the activity, and constructing a flowchart which links these decisions and processes.

SKILLLEVEL

Flowcharting requites the ability to anticipate the scope of the project and to break down the project intoa sequence of activities. Flowcharring becomes casier with practice.

TIME REQUIRED

The time required depends on the number of activities and the complexity of the sequence. A flowchart describing a sequence of 100 steps may take approximately a day to construct and refine for clarity.

DESCRIPTION OF TOOL

REQUIRED INPUTS

Flowcharts are combinations of symbols:
The process symbol describes an action or step in the overall process. The legel of detail necessary to describe a process depends on how the chart is to be used (greater detail could lead to cluttering the diagram). Consequently,
flowcharting requires iuentiteation of distimet actions. withim the complex process or system.

The decision symbol is another building block tor flowcharts. If always concains a question like:

1) Did a particular event occur?
2) Has a specified criterion been met?
3) Is a prior process complete?

Question 1 is answered by a simple Binary choice wes or no. These answers are associated with the arrows emitting from the decision symbol and leading to subsequent symbols in the chart.

Quesrion 2 may be answered by yes or no. or the specific criteria may be shown as branches emitring from the Howchart decision symbol see figure 2\%-

Question 3 is a specific case of question 1 ithe event is the completion of the prior stepy and illustrates a common occurtence in the flowchart. The branch labeled NO will likely loop back to the prior symbol if the process cannot contimue umtid that step is completed (see figure 2).

The stute symbol is an optional. though useful, compoment of floweharts. It is used to ideneify the resoutces needed inputs or the result of a process ousiputs. The state symbol can also indicate the state of the activity at a specified point in time, e.g., the conditions necessary before disbursement of loan payments to a host coumtry.

A pair of conmector syrubols, often used in floweharts to promate clarity, permits breaking the line linking two symbols to avoid crossing lines or to connect portions of a flowchart on separate pages see figture 1 . The same letter or number should be used in each circle.

Any number of other symbols can be used in Howcharting as long as a suitable explanation of the significance of the shape is given. Otherwise. the different symbols may fail to communicate a complex decision process.

The Deltat chart idescribed by Wartich and Hill. 1971 is a flowchart designed specifically as a plananing and control tool. It provides more symbols eng. logic elements, and incorporazes a larger amonnt of data teg., the person or organization responsible for a process and the time involved in carrying out a process).

TOOL OUTPUT

The flowchart is a planning tool that indicates how an activity can be carried our in the future. The planner may find the flowchart useful as a control tool if he identifies who is responsible for what process and if he specifies the timing of the processes.

The flowchart provides a description not only for design and analysis parposes, but for repeated use in the operazional phases of a project. The operator follows the

FIGURE 2
Examples of Decision Poines for Flowcharting

sequence of processes described and branches att each decision point according to the current conditions affecting the decision, hat this regard, the decision table may be more aseful than a tlowctars (see DTB. page 113).

IMPORTANT ASSUMPTIONS

Flowcharts belong to a set of techniques which, even though allowing for various contingencies, assurne that a fundamental determinacy underlies the diagrammed process. There is an underlying logic or basic rationality which must hold for the process. Otherwise the combination of decisions, actions. and states is meaningless.

This feature of flowcharts suggests their use in testing the logic and coherence of a prose description of a complex process. If the charted sequence does not "flow" logically, then perhaps the process being described is incoherent or inconsistent.

METHOD OF USE

GENERAL PROCEDURE

Constructing a flowchart is primarily a hearistic task: only general guidelines can be given. Be careful not to get bogged down in details: rather. start with a high level of abstraction to capture the basic processes and major decistion points. The first chart should give a broad representation of the overall process. More detail may be added in successive versions.

The following steps are useful guidelines for describing a compliex process which follows a more or less logical sequence from start to finish.

1. Lennify major processes and decisions.
2. Single out those processes (and decisions) which represent the basic acrivity accomplished.
3. Order these in a sequence of successive symbols and sketch the basic flow by showing only the connections which represent the most likely choice at each decision point.
4. Idenify the conditions which must be met before each decision can be made and connect them by arrows entering the flow before the decision point.
5. Identify the alternatives at each decision point and show these as labeled branches emitting from the decision swmbol.
6. Rather than show a symbol for a precess which must be repeated, loop back to the symbol representing the first occurrence of that process.
7. Examine the charr for consistency.
8. If further detail is desired, break the processes into subprocesses and insert additional decision points as required.

If the complex process is primarily a series of decisions. then the ordering in step 3 should reflect the logic of the questions asked. e.g. from general to specific, or in a selection process, those decisions which lead to an early acceptance or rejection, e.g., minimum qualifications which must be met for job applicants.

FIGURE 3

Behavioral Model of Development Administration

EXAMPLE

The degree to which the public reacts to a plan which calls for public participation significantly affects the planning process and the ultimate course of action. Montgomery (1974) poses a series of questions which lead to three actions: 1) the government camies out the plan without public participation except as compelled by arbitration or adjudication; 2) the public participates in carrying out the plan; or 3) the plan is abandoned. Figure 3 presents a flowchart of the questions for determining which alternative is likely to occur.

Other examples may be found in the descriptions of Interaction Matrix Diagrams (IMD, page 92) and Scenarios (SCN, page 164).

THEORY

Flowcharts belong to a set of approaches for pictorially describing complex processes. Nadler (1970) describes many of these variations all of which depend on the amalyst's ability to abstract complex decisions and operations. This is a particularly useful skill for computer programmers where the logical flow of calculations and data manipulation may be traced.

The same idea may be used to describe any system or deterministic task. Signal flow graphs and networks are flowcharts with different symbols for representing the ele-
ments (Whitehouse, 1973). Basic laws have been developed for simplifying these representations, though their application to flowcharts is more difficult.

Decision tables have a one-to-one correspondence to flowcharts (see DTB, page 113). This format for analyzing a complex process lends itself to certain principles of simplification (see Lewis, 1970).

BIBLIOGRAPHY

Lewis, Briam N. Decisiont Logic Tables for Algorithms and Logical Trees. London: Her Majesty's Stationery Office, 1970.

Montgomery, John D. Technology and Civic Liffe: Making and Implementing Development Decistons. Cambridge, Mass.: MIT Press. 1974.
Nader. Gerald. Hork Design: A Systems Concept. Homewood, Ill.: Richard D. Irwin, 1970, pp. 258-62.
Warfield, John N., and Hill, J. D. "The Delta Chart: A Method for \mathbb{R} \& D Project Portrayal.' IEEE Transactions on Engineering Management EM-18. 4 (November 1971): 132-38.

Whitehouse, Gary. Systems Analysis and Design Using Network Technigues. Englewood Cliffs. N.J.: Prenrice-Hall, 1973.

Decision Tables

PREREQUISITETOOLS

None.

USAGE

PURPOSE

A decision table documents a decision-making process by describing actions to be followed under different conditions in a given environment.

USES

Decision tables are used to:

1) Analyze complex decision siruations.
2) Provide a documented procedure for handling decisions which may re-occur under different conditions.
3) Record and communicate procedural rules and regulations within organizations.
4) Provide the basis for writing computer programs for use in tools such as Computer Simulation Models (CSM, page 120).

KEY DEFINTTIONS

1) The condition stub is that portion of a decision zable which lists the factors to be considered when making decisions in a given situation. Each factor is written in the
form of a question, eg., "Are loan funds available?"
2) The condition entries are the conditions of each factor (or question) listed in the condition stub, e.g.. "YES-loan funds are available."
3) The action stub is that portion of a decision table which ists the actions or decisions to be taken if a particwhar combination of circumstances occurs, e.g., "submi" fund transfer request."
4) The decision rules are the action entries of a decision table which link a particular combination of condition entries to specified actions.

SHORT DESCRIPTION

A decision table is a tabular representation of a complex decision process where a number of factors affect the choice of action(s). The table has four parts: the condition stub, the condition entries or contingencies, the action stub, and the action entries or decision rules (see figure 1). The table is used by first determining the conditions which apply (e.g., loan funds are available, but the government has not deposited its contribution, and then by matching the condition entries to this contingency to determine the decision rule column (e.g., column 2). The actions to be taken (or the decision choices) are indicated by X 's in the column. The " X " may be interpreted thusly: If these conditions occur, then these actions are specified.

Decision tables may be interconnected to present complex sequential decision processes.

FIGURE 1
Decision Table Used by Donor Agency for Depositing Loan Funds into Special Program Account

CONDITIONS		DECISION RULES				
$\begin{aligned} & \frac{2}{C} \\ & \frac{5}{3} \\ & \frac{3}{2} \\ & \frac{3}{6} \end{aligned}$		1	2	3	4	$\begin{aligned} & \text { Z } \\ & \frac{9}{3} \\ & \frac{2}{3} \\ & \frac{3}{3} \end{aligned}$
	Are loan funds available?	NO	YES	YES	YES	
	Has govermment contribution been deposited?	-	NO	YES	YES	
	Has release of funds been authorized by government?	-	-	NO	YES	
$\underset{y}{z}$	ACTIONS					
	Submit fund transfer request.	X				
	Resolve constraints with Ministry.		X	X		
	Deposit funds in SSPA.*			X	X	
	Authorize relcase of funds from SSPA.				X	

-Special Scgregated Program Account for disiursement of funds to programs.

ADVANTAGES

1) Decision tables are a concise method of describing situations.
2) Standard techniques are available to ascertain that there are no omissions or inconsistencies in the table.
3) Decision tables aid in understanding and communicating complex situations.
4) The decision table is casily adapted for compurer programming.
5) A complex decision involving several factors each of which may assume multiple values) typically requires a specification of a differentaction for each combination of factor values. This process is more easily represented on a decision table than by a prose description or a flowehart (sec FLW, page 107).

LIMITATIONS

1) A flowchart has greater visual clarity for understanding the different courses of action in a complex procedure.
2) Decision tables are relatively little used and may deter the uninitiated until the mechanics are mastered.

REQUIRED RESOURCES

LEVELOF EFFORT

Effort is required to identify the different conditions in a situation and the actions to be taken when specific conditions occur. Developing the table requires litele additional effort.

SKILL LEVEL

The ability to logically break down a decision into relevant factors and decision rules for action is fundamental to comstructing decision tables. Their use requites litrle skill once the format is understood.

TIME REQURED

The time required to develop a decision table depends on the complexity of the decision situation. Less than an hour is required to develop a decision table with $5-8$ conditions, $8-10$ actions, and $10-15$ rules. Additional time is required if several interconnected tables are needed to describe the situation.

DESCRIPTION OF TOOL

SUPPLEMENTALDEFINTTIONS

1) A limited entry decision table permits only a himited set of condition and action enaries in the decision rule columns, e.g., YES or NO (see figure 1).
2) A mixed entry decision table permits extended entries sach as a range of values for a question, "What is the size of the land holding?" in the condision stab.
3) The ELSE rule is a column in the decision table which applies when no other decision rules may be atded to cover the case or where no combination of conditions applies.

REQUIRED INPUTS

Construction of a decision table requires a breaidown of the factors relevant to the decision and the possible action choices. The analyst must consult with the decision maker on policy and conditions affecting the policy if the table is to be used as a guide for action.

TOOL OITTPUT

The dec.sion table ecchnigue results in an analysis of the conditions and actions which compose a particular decision. The process may be valuable in itself to point out inconsistencies in procedure or areas where further specification of action is in order.

IMPORTANT ASSUMPTIONS

The decision table technique assumes that the decision process can be rationalized. and thus actions are prespecified. All relevant conditions mast be identified a priori, i.e., all the actions which follow from a given sct of conditions can be specified. The implication of a preprogrammed automatic response is somewhat counteracted by including an ELSE rule in the set of decision rules. This permits an escape clause if none of the relevant conditions hold, or if the anslyst -hooses not to specify every possible combination of circumstances. The action for the ELSE rule is almost always to call it to the attention of a supervisor or higher level decision-making authority.

METHOD OF USE

GENERAL PROCEDURE

Constructing a Limited Entry Table

1. Fill in the condition stab of the table (upper lefr quadrant).
1.1 Determine the conditions which are relevant to the decision.
1.2 Write each condition in the form of a yes/no question.
1.3 List the conditions in the condition stub.
2. Fill in the action stub of the table flower left quadrant).
2.1 Determine the action options which correspond to each possible combination of conditions.
2.2 List the actions in the action stab.
3. Specify all possible contingencies (upper right quadrant).
3.1 Enter a YES or NO to the first condition for simply Y on N$\}$ in the table at the first rule column see tigure I:
3.2 If the other condirions are relevant, criter a Y ES or NO for cach remaining condition in that column: if not.entera"*".
3.3 Repeat this for the remaining coltums until all possible combinations of conditions are matked. Each combination represents a contingency and occupies a single column in the table.
3.4 Confirm that if there are n questions its the condi. tion stub, then there are 2^{n} concingencies \{umless some combinarions are not feasible:.
4. Enter the decision rules (lower right quadrant).
4.1 Start with the first contingency (columr 1) and indicate the appropriate :ction with and X at the interseciion of the colurnn with the corresponding action row.
4.2 Repwat this process for each contingency until all columms have ar least one entry in the bottom portion of the table.
5. Simplify the table if possible.
3.1 Order the decision rules from left to ritht so that the rule which is indifferent to the most number of conditions is the first decision rule column.
5.2 Order the condition questions so ihat the decision rules are applied first to the contingency where the least number of yuestions must be asked. Steps 5.1 and 5.2 should result in the condinion entries occupying the upper right triangle with an increasing number of indifferent enteries: - in the lower left portion (see figure 1i.
5.3 Combine any two decision rule columns which differ only by the answer to one condition question and mark the enury as indifferent. since the choice of action will not be affected.

Constructing an Extended Entry or Mixed Entry Table

Extended entries permit more flexibility in the formulation of conditions and decision rules. Otherwise, the procedure is the same. For example, step 1.2 requires only that the question be posed in such a way thar a finite set of conditions can be writtert in the contingencies portion of

FIGURE 2
Flow chart of Itterpolation Procedure to Determine Internal Rate of Return

the rable (e.g., farm size in hectares). Furthermore, the decision rule entries need not only refer to the action row. but may indicate:

1) A further specification of the action, such as the quantity of fertilizer to be distributed. or
2) Instructions to go to another step or to ancther decision table.

A column may be added which includes all contingencies not otherwise described. This ELSE ruie is to th followed when none of the combinations of conditions apply.

A mixed entry table combines $\begin{aligned} & \text { imaited entry symbols }\end{aligned}$ (e.g., Y, N, X) with extended entries. These may include a decision rule to go to anothet decision table if a particular contingency occurs or the ELSE rule.

EXAMPLES

Limited Entry Decision Table

A capital projects development officer for a major donor agency wanted to ensure thar funds released by his agency were matched by the reguired ratio of fumds from the host government.* The government had failed to comtribute their share of fumds in the past. Often, when the required funds were budgeted, they were later diverted to other programs.

In order to exercise more control over the use of the donor's funds and the requirement for cost-sharing by the government, a Special Segregated Program Accomnt (SSPA) was established. The donor agency mission would then deposit and release funds if the Ministry of Finamce had fulfilied its obligations. A limited-entry decision zable was prepared to guide the disbursement folicy (see figure 1).

The decision table was arranged so that the capital development officer need not examine the other conditions unless the necessary initial conditions occurred, e.g.. loan funds are available.

Mixed Entry Decision Table

Compuring the internal rate of return ($\operatorname{IR} \mathbb{R}$) for a project is an iterative process: the discount rate, r, must be found which gives a net present value, $N P V$, equal to zers (see Internal Rate of Return, IRR, page 200). However, if one has computed both a positive $\left(N P V_{1}\right)$ and megative $\left(N P V_{2}\right)$ net present value using two different trial dis-

[^7]count rates, r_{1} ard r_{2}, respectively, the $I \mathbb{R} R$ may be interpolated using the sollowing formula: "
$$
\mathrm{RR}=r_{1}+\left(r_{2}-r_{1}\right) \times \frac{N P V_{1}}{\left(N P V_{1}-N P V_{2}\right)}
$$

The sters mecessary to calculate the 1 RK can be represented as a flowchart (see figure 2). Recouching this prow cedure it the decision cable format requires the combination of a sequential procedure with ath iterative process. This may be necessary im order to ger both posiaive and nequative NPV's (secfigure 3).

The ELSE rule was employed where the NPV determined from a trial n is zero, in which case the IRK equais r.

The decision rable (figure 3 is a mixed entry table becatuse the iterative actions include extended entries.

An illustration of interpolating the DRR for a projeat cash flow is given in the rechnigue description $\mathbb{I R R}^{(R)}$ page 200).

THEORY

Decision tables beiong to a class of techniques which are categorized as logical trees or algorithms (Lewis. 19703. The underlying idea is the linking of contingencies (combinations of conditions) with rite appropriate action according to a ser of prespecified decision rules. The decision table has a ome-to-one correspondence with a flowchart (see FLW, page 107). Each rule in the decision table corresponds to a path in the chart. Decision rables may be simplified by applying certain rules of logic so that. if the same actions apply, it is usually unnecessary to show every sequence of alternatives or every combination of conditions. This is treated in more detail in Fergus (1974), Hartman (1968), and McDaniel (1970).

Extenced enuries add more flexibility to the decision table, but they require more care in construction. Nadler (1970) and Pollack, et all (1971) give more information on the technique.

BIBLIOGRAPHY

Ferges. K. M. "Decision Tables: What, Why and How," In Systems Aralysis aned Techniques, edised by :. D. Gouger and R. W. Knapp. New York: John Wiley and Sons, 1974, pp. 162-80.

[^8]FIGURE 3
Mixcén Entry Decision Table for Determining loternal Ratc of Return by Interpolation

9. Divide NPV which is positive by sum compated in step 8
10. Compate differemce betweera tins trial t and pre-- Toustrialt
11. Compate product of difference and quotient comprated in step 9
12. Add this product to lower of the llast two trial discount rates
13. Result is the $I R R$

NOTE: $:=$ discount rate: $I R R=$ internal rate of return; $\mathrm{NP} \mathrm{V}=$ net preseme walue

Harman. W.; Matthes, H.: and Proeme, A. Information Systems Handbook. Appledoorn. Netherlands: Philips Data Systems, 1968.

Lewis, Brian N. Decision Logic Tables for Algorithms and Logical Trees. London: Her Majesty's Stationery Office, 1970.

McDaniel, H. Applications of Decision Tables. Brandon/ Systems Press, 1970.

Nadler, Gerald. Work Design: A Systems Concept. Homewood. Ill.: Richard D. Irwin, 1970. pp-258-62.

Pollack. S. £.: Hicks, H. T.: and Harmon. W. J. Decision Tables: Theory and Practice. New York: WileyInterscience. John Wiley and Sons. 1971.

Computer Simulation Models

PREREQUISITETOOLS

None.

USAGE

PURPOSE

Computer simulation models simulate dynamic system processes in order to analyze complex interactions.

USES

Computer simulation is used to:

1) Forecast future systems behavior.
2) Forecast the effects different decisions have on system variables.
3) Aid in understanding system processes.
4) Be used in tools like Gaming (GAM, page 124).
5) Compare alternative system behavior or determine optimum system design parameters.

KEY DEFINTIONS

1) A system is a collection of components which interact to achieve a common function.
2) A variable is a factor word to describe a system which may change value as a function of time.
3) A parameter is a quantity with only one value over the entire range of che system behavior being simulated. The distinction between a parameter and a variable is sometimes only a matter of degree of change. In the model, the paramezer is assumed not to change during the course of a parcicular simulation, e.g., "the price of gold" may be a parameter in an economic system.
4) Verification is testing a computer simulation program to see chat the program functions as intended. It is 2 process of eliminating logical errors in the program.
5) Fildarion is testing whether a computer simulation program simulates the observed system behavior. It is a process of simulating the past and checking the simulated data against actual data.

SHORT DESCRIPTION

A computer simulation involves:

1) Developing a model of the simulated system.
2) Programming the model in a computer.
3) Verifying the internal consistency of the model.
4) Validating the model by comparing it with observed system behavior. Past and present data are needed in all stages of computer simulation.

Compurer simulazions are exploited by changing parameters to correspond with expected changes in the system. Present and future system behavior is them inferred.

ADVANTAGES

1) Computer simulation is useful for problems which cannot be studied analytically. Typically, problems necessitating computer simulation involve detailed models of complex systems with non-linear and probabilistic behavior.
2) Systems which require expensive or impractical experimertation may be simulated in a computer. For example, the performance of a dam or zeservoir can be studied using a computer simulation rather than by building different dams.
3) A wide range of alternatives can be studied. since changing computer models is relatively fast and casy.
4) Complex assumptions can be easily incorporated into a computer model. For example, in a macro-economic model, a wide range of assumptions, including those about price stability, exchange rate, limitations of natural resources, and climatic catastrophes, can be incorporated in a simulation model.
5) Computer simulation may provide insight into the causal structure of the system by revealing dynamic behavior.

LIMITATIONS

1) Data may not be available to construct andfor testa computer simulation model.
2) Computer simulation models may become so complex that assumptions are hidden and the ability to infer underlying sy stem processes is lost.
3) Developing large computer simulation models is time-consuming. Verifying and validating entire models are often difficult.
4) A computer simulation provides only a specific instance of system behavior, Generalized inferences do not always follow.
5) Conclusions derived from a computer simulation are only as reliable as the model upon which the simulation is based. The user of the results may forget that the model is an abstraction based on the developer's assumptions. Too much weight may be placed on the results and conclusions because they are quantified.

REQUIRED RESOURCES

LEVELOF EFFORT

Gathering data, developing a model, and veritying and validating the computer simulations are necessary, Using specialized computer simulation languages will often reduce the amount of effort involved.

Techniques are available that aid in developing models for computer simuletion: Oval Diagramming (OVD. page 81). Interaction Matrix: Diagramming (MD, page 92). and Decision Tables (DTB, page 113).

Several compurer languages also simplify the process. e.g. DYINAMO, GPSS, and GASP isee Gordon. 1969).

SKILL LEVEL

Knowing about the systern being simulated is required. An analyst mus: have the computer usage skills and the basic statistical knowledge needed to develop and use computer simulation models.

TIME REQUIRED

Time required dependi on the number of variables included in the model and the availability of data. Typically. developing the model may take a week; programming the model may need another week: verifying and validating the model take 3 third week. However, the complexity of the system model (number of wariables and relationships) will greatly influence the time it takes to develop, verify. and validate the model. Testing alternatives by simulation may sequire several runs or it may continue for the duration of the project. These estimates assume that the data required are easily available. Additional time may be needed if Surveys (SVY, page 36). Questionnaires (QTN. page 19), or other cools have to be used ro obtain data.

SPECIAL REQUIREMENTS

Access to a digital computer is necessary. Many specialized simulation languages may be used successifully on a remore computer terminal using purchased computer access time.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) Tuning is the process of making changes in the parameters and initial values for variables in order to minimize the errors between expected and actual simulation output or the errors berween observed or simulated data.
2) A continuous model creats variables that change continuously over time, e.g. population.
3) A discrete stochastic model describes the changes in variables at definite points in time, e.g. money supply increases on the day the Federal Bank releases notes. Often, the time interval between these points in time varies randomly.

REQUIRED INPUTS

The purpose for simulation must be stated before a simulation can be developed. Data necessary for modeling the system and for validating results are required. though the data need not be gathered until variables and parameters ate defined. If a particular programming language is preferred, a comparible computer must be available.

TOOL OUTPUT

The results from computer simulation models include:

1) A computer simulation model of the system under question.
2) Forecasts of system behavior under different assumptions (e.g., alternative parameter values).
3) A better understanding of the system and its behavior.

IMPORTANT ASSUMPTIONS

All the relevant variables and relationships can be quanrified and all necessary dara are avalable. It is assumed that all variables and relationships can be identified and defined explicitly.

METHOD OF USE

GENERALPROCEDURE

Compater simulation cannor be described fully without reference to a specific type of model or a particular application. The following outlines only the steps basic to all computer simulations.

1. Define the problem.
1.1 Recognize the system problem.
1.2 Identify the system boundaries.
1.3 Observe current and past system behavior.
1.4 Formulate problem objectives.
2. Develop the descriprive model.
2.1 Identify the important variables and the causeeffect relationships in the system.
2.2 Identify the parameters of the system.
2.3 Select the type of model to be developed.
2.4 Develop the model to represent system behavior.

Two types of models will be discussed:

1) The continuous model where the change in the variables is expected to occur continuously (see Forrester, 1969). Computer languages like DYNAMO can be used here.
2) The discrete stochastic model where the change in the variables is expected to occur at specific points in time. These models are very popular in simulation. Many languages. including GASP and GPSS, are available for this model.

The model of system behavior may be traced through Flowcharts (FLW, page 107), Oval Diagramming (OVD, page 81). Decision Tables (DTB. page 113). or Interaction Matrix Diagrams (MD, page 92).

3. Compurerize the model.

3.1 Select a programming langrage.
3.2 Program the model.
3.3 Ferify the model.
4. Validate the model using observed system data.
4.1 Tune the simulation model to correspond with past systern behavior.
4.2 Design experiments to test parameter values.
4.3 Analyze the results of the experimental simulation.
4.4 Statistically compare resules with observed data.
5. Simutare and infer.
5.1 Express policies or decisions as changes in parameter values or in some structural relationships.
5.2 After making these changes, simulate the system model behavior and forecast the effects of these changes.

EXAMPLE

Continuous system models have been used by Forrester to model urbant dymamics 1969). The Club of Rome has developed a model of the world predicting major changes in population, economy, etc. (Meadows, 1972).

Discrete event simulation has been used in a large and complex model of Nigerian agriculture (Abkin and Manetsch, 1973.. Some 22 alternate policies and strategies were tested using this model.

THEORY

There are many types of simulation models that can be used. However, the types discussed above are the most popular and most widely used. Analogue computer simulation. where variables are represented analogously by currents and voltages in an electronic system constructed to resemble the observed systern, can also be used. Also
used are more complicated continuous models that include variables which are probabilistic in nazure. Forrester (1968) discusses such models.

The use (and misuse) of large computer simulation models for arban problem solving is treated extensively by Brewer (1973). Standard textbooks on simulation methodology include Gordon (1969) and Emshoff and Sisson (1970).

BIBLIOGRAPHY

Abkin. M. H., and Manetsch. T. J. "A Generalized System Simulation Approach to Agricultural Developmear Planning and Policy Making."Systems Approaches to Developing Countries. Proceedings of the IFAL and IFORS Symposium, Algiers, Algeria, May 1973.
 A Critique of Libup Problem Solving. New Vork: Basic Books, 1973.

Emshoff, I. R., ama Sisson. R. L. Design and Lse of Compater Simulation Models. New York: Macmillan. 1970.

Forrester, Jay W. System Dynamirs. Cambridye. Mass.: The M.I.T. Press. 1968.
Forrester. Jay W. Erburt Dynamics. Cambridge. Mass.: The M.IT. Press. 1969.

Cordon, Geoffrey. System Simulution. Englewaod Cliths. N.I.: Prentice-Hall, 1969.

Meadows, D. H., ct al. The Limizs of Grouth. New York: Universe Boaks, 1972.

Gaming

PREREQUISTTETOOLS

None.

USAGE

PURPOSE

Gaming provides decision makers with experience in a simulated problem environment in order to analyze complex processes.

USES

Gaming is used ro:

1) Generate possible alternative actions in a problem situation (operational gaming).
2) Forecast effects of alternative actions
3) Train present and potential decision makers management gaming).
4) Provide experience in using different tools that as sist in decision making, such as Contingency Analysis (CGA, page 147), Scenarios (SCN, page 164), and Computer Simulation Models (CSM, page 120).

KEYDEFINTTIONS

1) The problem environment is the set of variables and relationships which are germaine to the decision process under sudy.
2) Governing rules describe the relationships between decisions made by the participants and the resulting changes in the simulated environment. For example, in an economic game a governing rule may dictate that a decision to expand money supply leads to intlation.
3. Scoring in games is used as feedback to the participants to reflect the effecciveness of their decisions. Scores are usually related to the objectives of the game. For example, "overall growth rate" may be used as a score in an economic game.

SHORT DESCRIPTION

Gaming consists of a controlled situation where people or teams compete either against each other and/or against a simulated problem enviromment to ateain predetermined objectives. Games include a problem environnent, severat governing rules, and scoring, all of which are designed to represent a real situation. In games where two or more teams are participating, one team's decisions influence other teams' reactions and decisions. A single team may compete against a problern enviromment in which one or more variables are beyond the team's direct control. There are programmed relationships between the players' decisions and the resulning changes in the enviromment. However. the mature of the relationships is ustally not known to the participating teams, and chus participants become involved in analyzing complex processes.

ADVANTAGES

1) Decision makers gain experience without paying the real-life penalties for wrong decisions.
2) A game can be designed to be very flexible and can provide a wide range of problem siruations.
3) Because the time element is limited, the player can make as many decisions in a few hours as he would make in a few years in real life.
4) Gaming helps everyone inyolved, including the analyst who designed the game. to understand a problem.
5) Games have been developed for typical problem environments and can be applied directly. The American Management Association provides alist of such games.

LIMITATIONS

1) Games representing large and complex real situations may be difficult to construct.
2) A game requiring four to fifteen hours requires comsiderable concentration from the participants.
3) The compressed time element in a game may mislead the decision maker as to the real nature of the dynamic change in the problem environment.
4) Governing rules in a game reflec: the designer's knowledge and experience in the problem situation and thus are a limited representation of reality. Often novel approaches, which may be appropriate in reall Hife. work poorly in garnes, stifling the decision maker's creasivity.

REQUIRED RESOURCES

LEVELOF EFFORT

A considerable amount of effort is required to develop a game for a problem situation. A moderate amount of effort is required from the participants. Some elaborate game situations may use analysts and staff assistants as participants to assist the decision maker.

SKILI LEVEL

Developing a game requires expertise, primarily in the problem environment being simulated. Complex games require a team of experts. For example, developing a game for national economic policy making may require economists to develop the governing rules, psychologists and educators to design the format of intermediate results, computer specialists to automate the game, etc.

The skills required for playing a game are minimal when used for training purposes only. If the game is used to generate alternative actions and forecast their effects, an enperienced decision maker needs to participate.

TIME REQUIRED

The time required to develop a game depends on the complexity of the enviroment being simulated and on the amount of detail required. It also depends on the number of participanes. Generally, a few weeks are necessary.

A typical session of game play may vary from two hours to cight or ten hours. Occasionally. games are played over a period of two or three days.

SPECIAL REQUIREMENTS

Games may be played on a digital computer isec Computer Simulation Models. CSM. page 120 so that the pro grammed relarionships are automated. In this case. access to computer facilities, including a remote terminal, is required.

DESCRIPTION OF TOOL

REQUIRED INPUTS

Before the actual playing of the game, there are two stages of prepararion:

For the design of a game:

1) Definition of the problem area. e.g, agriculaural development programs.
2) Statement of the purpose, e.g.s to consider the effect of aiternative programs or to train area extension servica agents.
3) A tesign team (as specified in Skills section) should be distinguished from the participating team.

For the playing of a game:
4) Specific starting values of variables.
5) Commiment from the players.

TOOL OUTPUT

Effects of alternate decisions on the sinulated environment are obtained, e-g., in an agricultural program game, the "effect of distriburing free fertilizers led to misuse of fertilizers and low productivity." while the "effect of increasing number of extension agents and subsidizing fertilizers led to higher productiviry." This leads to a greater understanding of the complex processes described in the gaming situation.

IMPORTANT ASSUMPTIONS

Games are used with an implicir assumption that the decision makers obtain an understanding about the problem environment when they participate. This assumption is oftem challenged. Some educators believe that participants learn only by reacting to the changes in the simu-
lated environment and do not try to understand the reasons for the changes. If this is true, games can have a detri mental effect on a participant's decision-making ability. However, this can be avoided by supplementing the game with lectures or literature abour the problem envionment.

METHOD OF USE

GENERAL PROCEDURE

1. Design the game.
1.1 dentify the specific purpose of the game.
1.2 Identify how a game will heip meet the purposes. Sec if there are any games currently available that will mect the purposes (see Advantages).
1.3 Identify the decision-making level of the participants. A game designed for top management may be unsuitable for supervisor-level participants.
1.4 Idenuify the nature of decisions that a participant must make duringgame play.
1.5 Decide how many teams the game involves and whether the game reguired the use of a computer.
1.6 Outline a model of the environment (sec Tree Diagrams, TRD, page 74; Oval Diagramming. OVD, page 81; and lnteraction Matrix Diagramming, $I M D$, page 192). Identify important variables in the environment and establish the relationships between them in order to determine the relationship between the decisions made by the players and their effects.
1.7 The time period of these relationships must be determined. This period depends on the nature of a game and the decision-making level (strategic, operational) of the participants. For example, the time period could be a week when the participants are to schedule nurses in a rural area. On the other hand, the period would be a yearif the participants are to plan for national development.
1.8 Determine the format and content of the intermediate results to be presented to the partici pant. In a computer assisted game, the intermediate results will be the computer print-out. This should be designed to provide sufficient information for participants to make further decisions and to be realistic, i.e., it provides only the type of information that can be obtained in real situations
1.9 If necessary, repear 1.6 through 1.8 to refine details of the model. The players' instruction manual must then be written. outlining the necessary
instructions for playing the game. The design of the game itself should be documented separately for subsequent review if necessary.
1.10 Test the game and the instructor manual using trial sessions. This may reveal any errors in the computer program if one is used and any other limitations of the game.

2. Play the game.

2.1 Introduce the participanes to the simulated problem environment and familiarize them with the type of decisionts they are required to make. The instruction manual for the game should cover this.
2.2 Start the game session by giving initial values to the variables in the game. For example, population, men-women ratio, and fertility rate may be variables initialized in a "demographic game."
2.3 Point out that the participants are required to mect some objectives during game play. Examples of objectives may be "reduce population growth to zero," and "increase per capita nutrition."
2.4 Let the participants play the game.
2.5 Determine the final results of the game-usually some measure of participant performance. The effectiveness of alternative decisions ir meeting the objectives can be seen from the final results. These results can be used to mab- -eal decisions. The fimal results can also be used to evaluate the participants if the purpose of the game was training. An optional (bur often useful) conclusion to the gaming exercise is to permit the participants to freely discuss the game and their participation.

EXAMPLE

Helmer and Quade describe an approach te the study of a developing economy using operational gaming (Quade and Boucher, 1968, pages 329-33). They discuss using games to analyze the processes of development and the involvement of various experts in the excercise.

Other examples of games applied in a variety of situations can be foumd in Helmer, 1972, and Kibee, 1961.

THEORY

Gaming is described in the literature as management games, coraputer simulation gemes, and operational games (see Quade and Boucher, 1968). Operational games at all
levels are used for training as well as for assisting decision maxing, particularly in Defense Department applications (e.g., war games).

In industrial situations, management games are used to aid in production planning, scheduling, marketing. and long-rerm planning.

In the public sector, operational games are used to aid in making decisions, e.g., urban housing policies mass transit decisions, and economic planning.

BIBLIOGRAPHY

Helmer. Olaf. "Operational Gaming." Futures (1972): 149-67.
Kibee. J. M.: Craft. C. J.: and Nanus. B. Management Games. New York: Rimhold Publishing, 1961.
Quade. E. S.. and Boucher, W. 1.. eds. Systems Analysis and Public Policy: Applications in Defense. New York: Amcrican Elsevicr. 1968.

VI
 Accounting for Alternative Outcomes

Histograms
Subjective Probability Assessment
Decision Trees
Conringency Analysis

Project planners must deal with uncertainty. Information must be aggregated into statistics which summarize the variability of the data. The likelinood of alternative outcomes must be estimated (Subjective Probability Assessment). Two rechniques are specifically structured to enable the analyst to deal with aiternative ourcomes or contingencies (Decision Trees and Coningency Analysis). Uncertainty is resolved in various ways, but all of the tools attempt to give a project designer a grasp on the indeterminacy and inherent varia'siity of development processes.

Histograms

PREREQUISITETOOLS

None.

USAGE

PURPOSE

Histograms diagram alternative outcomes which permit the inspection of characteristic patterns and the quantification of sample statisrics.

USES

Histograms can be used to:

1) Show the frequency of the values of a discrete variable, such as categories of responses in a question.
2) Graph the frequency of contimuous variable values within consecutive discrete intervals, e.g., a profile of income distribution for farmers.
3) Indicate the rarge of the variable.
4) Suggest a central tendency of the variable.
5) Summarize responses from a sample survey (SVY, page 36) or Delphi (DLP, page 168).

KEY DEFINITIONS

1) The central tendency is the most likely, or average, value of the variable.
2) A sample statistic is a quantitative parameter which
characterizes some aspect of the population from which a set of data is drawn.
3) A continuous variable takes on an infinite number of values over some range of possible values, eg., the temperature measured as a fixed location at different times, or measured simultaneonsly at various locations.
4) A discrete variable has only a finite number of values which are multiples of a basic unit, e.g., the numbers of members in an organization.

SHORT DESCRIPTION

A histogram ploss the frequency with which different values of a variable uccur (see figure 1). If che variable is discrete. the histogram may be a series of bars centered over each value. If the variable is continuows over some fixed range or if discrere walues are grouped, the histogram is a series of steps which correspond to fixed intervals of the variable.

ADVANTAGES

1) A histogram provides a clearer description of data patterns than a simple tabetation of the values. The length of the bar transforms a frequency distribution into a linear measure.
2. Sample statistics may be shown directly on the horizontal scale of the variable. Gross errors in computation can be idenrified by inspection.

FIGURE 1
Sample Histogram for Raw Data

LIMITATIONS

Histograms may be misleading if the observation of the frequency is over too short a time or inchudes too few measurements, or if the variable intervals are too large.

REQUIRED RESOURCES

LEVEL OF EFFORT

Assuming the data are at hand, the effort required is a function of the number of discrete values or intervals.

SKILL LEVEL

Judgment is necessary to mark off the scale for the variable (e.g., the range and number of intervals for a continuous vatiable must be specified to give the desired clarity). Computing statistics from frequency data requires simple algebra.

TIME REQUIRED

Histograms may be constucred quite rapidly, if the data are well organized.

SPECLAL REQUIREMENTS

A hand calculator speeds up computation, and many have been preprogrammed for this purpose. If data are stored on a general purpose digital computer, a frequency histogram can be generated with a minimum of complexity.

DESCRIPTION OF TOOL

SUPPEEMENTALDEFINTHONS

1) The mean is the average value or central rendency of the data.

FIGURE 2
Histogram for Clustered Data

2) The wads 鹃 be walue or class interval which occurs most frequently.
3) The meduan is the value corresponding to the midpoirt of the data points.
4) The staviturd cleviation is the measure of the dis persion of the data values about the mean.
5) A chas interval is antiform diwiston of the wariable range.
6) Clustered data are used to aggregate the data into fow pontsts for andysis and plotning.

REQUIRED INPUTS

The data giving the frequency dismibution of discrete values of the variable are the only required input. The duta may be the restilt of responses to as Survey (SVY. parge 36) or Delphi (DLP, page 168) 4ucstionmairs. If the wariable represents a gualitative judgment, then a rating scalle should be wsed (see RTS, page 29).

TOOLOUTPUT

The techorique prodnces a frequency histogram which may include the mean, mode, and mediam of the data. Tosether, thest constitute the analysis for reporting the results of a survey or for feedback to Delphiparticipants.

IMPORTANT ASSUMPTIONS

Plotring measurements of a variable in a histogram is a straigheforward mechanical process. Valid inferences abour the general characteristics of the phenomenon represented by the variable depend on am assumption that the measurements are an adequate and umbiased sample of all possible values of the variable. For example, if the temperature at the Temasek lmermational Aipport was measured each day at noon, the resulting dena would enable inferences about midday temperature at that location. However, without different data, not much could be said about temperatures at oriher times or at orther locations.

METHOD OF USE

GENERAL PROCEDURE

Frequency Histogram for a Discrete Variable

1. Compute the range of the variable by funcing the difference between the largest and smallest data values.
2. Determine the limits of the histogram's honizontal axis.
2.1 Include the range of the vatiable within the Iamits.
2.2 Marth off the tares on the axis of the graph.
3. Decide if the data are to be grouped and how many groups are necessary to give the desired detail (from 8 to 25 isems)
4. Determine the class interval size by dividing the range of the variable by the number of groups desired.
5. Determine the frequency distribution of variable values within each class interval and tabulate fsee figure 2 j .
6. Detcrmine the limits of the vert.eal axis.
6.1 Sulces an upper limit which is at lease as large as the maximum frequency compured in step 5.
6.2 Setlect a lower lixnit which is enther zero or the mumuma frequency compured in step 5.
7. Plot the frequencies above the center of each class interval of the variable.
8. Examine the plot to determine if the histogram shows the desined degree of cietail.
8.1 Expand the scalle of the frequency wisif mecessary:
8.2 Change the size of the class imtervals to change the corresponding frequencies.
9. Finish the histogram by adding conaecting bars and labels (see figure 1).
10. Compute the mean and standard deviation for raw (ungrouped) data.
10.1 Encer the data walles amd their respective frequemciesin a talle see figure 3).
10.2 Compute the mean of the data series usingequation 1. figure 3.
10.3 Cormpure the difference of cach darum value from the meam and tabulate.
10.4 Compute the stamdard deviation equation 2. figure 3).
10.5 Indicate the mean valne on the horizontal axis of the histogram (see figure 1).
11. Compute the median of the data series (oprionall).
11.1 Order all the data points in ascending value.
11.2 Divide the mamber of data points by two.
11.3 Use this number to determine the conresponding data point in the ordered sequence.

FIGCRE 3
Mean and Standard Deviation of Raw Data Valwes

Datum	Datum Value	Differmes From Mran Valus	Differetuce Suared
1			
2			
3			
	$\mathrm{SUM}_{1}=$		$\mathrm{SUM}_{2}=$

Mean $=\mathrm{SUM}_{1} /$ Number of data points
Standard Deviation $=\sqrt{ } \operatorname{SUM}_{2} /$ Number of data poimats
11.4 If there are an ceven number of data points. the median will be the atwrage of the ewo data points which split the ordered sequence into two equal parts; otherwise, the median is the midpoint in the seguence.
11.5 The median value may be sketcned on the motugram (note that this does not necessarily correspond to the mean valuej.
12. Determine and mark the mode(s) of the histogramby derermining the variable value (or interval) which occurs most frequently (oprional).
13. Compure the mean of grouped data-
13.1 Enter the upper and lower limits of the class intervals used for constructing the histogramn (see figure 4 .
13.2 Compute the midpoint of each class interwal.
13.3 Compute the mean of the grouped data using equation 3 , figure 4.
13.4 Indicate the mean value on the horizontal axis of the histogram (see fegure 2;
14. Compute the standard deviation of grouped data.
14.1 Enter the class intervals and frequencies on a zabular worksheer (see figure 5).
14.2 Determine the origin-che class interail winch contains the mean value computed in step 13;
14.3 Determine the difference between each class interval and the origin in multiples of class intervals, e.g. $\pm 1, \pm 2, \ldots$, intervals from the origin (see figure 4).
14.4 Compute the standard deviation usingequation 4 , figure 5 . The sums are computed by completing each row of the table and then adding the appropriate columms.

Frequendy Distogrann for a Contunous Variable
The procedure is cosentially atbe sumpe do tor a discrete wariable except that the variable values maty be it trac tional muitiplies of a basic unte meavatec. The data ure gouped into class intervals, and every valle fating within the typer and lower walles of the interval cermotitute wac occurrence we that interval.

EXAMPLE

 trater seweral interestine pointo. Figure 2 represemen deles-
 intervalls off ewo units cach. Note che leyss of detail in the

 the clustering of the data willes dow hawe and ethect on the standard deviation.
 Hillustrated in Subjentive Probability Asmomment SPA. page 135, Delphi DIP. page 168, and Survers SVY. page 36.

THEORY

Frequency histogerams are based on the cwacept of ran dom wariables and the theory of probability . Probabilhty is the frequency of occurrence of a particular event-a discrete value of a value within an interval. Thought this event may be random. the result of many repeated measuremenes gemerates the frequency distriburion fumetion of the randorn wariable. It is convenient so categonize these finjuctions insto chatacteristic forms. wey. the uniform distribution characterizes a variable which is equally likely to take on any walue within its ratge. The corresponding histogram would be mearly ilat.

Frequency histograms represent the distribution of a finite sample of measurements. The ability to generalize to the basic phenomenon measured is a function of sample size.

Smith 1975) gives an excellent treatmemt of data analysis and statistical computation. For example, saying that all response choices for a questionnaire are equally tikely is the same as saying that the response histogram is uniform (llat) over the range of response. For a small sample, this is. not likely to be the case.

BIBLIOGRAP:YY

Smith. Kenneth F. Stutiaticall Surrey and Analywis Handbook. Manila, Puilippines: USAID, March 1. 1975.

FIGURE 4
Mcan of Grouped Data

CLASS INTERVAL				Midpoire X Frequency
Lower Limit	Upper Limit	Midpoint	Frequency	
0.5	2.49	1.5	24	36
2.5	4.49	3.5	15	52.5
4.5	6.49	5.5	10	55
6.5	8.49	7.5	1	7.5
8.5	10.49	9.5	10	9.5

MEAN OF GROUPED DATA $=\mathrm{SUM}_{2} / \mathrm{SUM}_{1}=246 / 60=4.1$

FIGURE 5
Standard Deviation of Grouped Data

Midpoint of Class Interval	Frequency	Difference Fron Mean Ciass Interval	Frequency X Difference	Difference Squared	Frequency X Difference Squared
1.5	24	2	24	1	24
3.5	15	9	0	0	0
5.5	10	1	10	1	10
7.5	1	2	2	9	4
9.5	10	3	30	9	98

STANDARD DEVIATION CALCUEATION: *

1) $\mathrm{SUM}_{1} \div \mathrm{SUM}_{1}=128 / 60=2.13$
2) Square root (4) $=1.43$
3) $\mathrm{SUM}_{2} \div \mathrm{SUM}_{1}=18160=0.3$
4) Size of Class Intervai $=2$
5) Square of (2) $=0.09$
6) Multiply (5) $\times(6)=2 \times 1.43=2.86$
7) Difference: $1--\{3\}=2.13-.09=2.04$

STANDARD DEVIATION $=2.86$
$* S T A N D A R D$ DEVIATION $\left.\left.=\underset{\text { SIZE OF }}{\underset{\text { CLASS }}{\text { CLERVAL }}} \times \quad \times \quad \sqrt{\text { STSUM }} / \mathrm{SUM}_{1}\right)-\left\{\mathrm{SUM}_{2} / \mathrm{SUM}_{2}\right)^{2}\right\}=3.05$

Subjective Probability Assessment

PREREQUISITETOOLS

None.

USAGE

PURPOSE

Subjective probability assessment quantifies expert judgments about the chance of specific events occurring

USES

Subjective probability assessment is used to:

1) Provide the probability distributions required for using certain techniques, such as Decision Trees (DTR, page 141).
2) Make individual judgments explicit so that they can be compared or aggregated with each other.

KEY DEFINITIONS

1) An event is a future outcome, the occurrence of which is uncertain, e.g, "favorable trading conditions with Temasek next year."
2) A subjective probsbility is a quantified judgment of the chance of an event occurring.
3. A probubility distribution associates each event in che ser with its probability of cccurrence.
4) A set of discrete events consists of a finite number of mutually exclusive events. For example, the possible outcomes, or events, for casting a die would be mumbered $1,2,3, \ldots, 6$ and "monsoon arrives earlier than estul," "monsoon arrives as usual." "monsoon arrives later than usual."
5) An assessor estimates the probability distribution of a set of events.
6) The relative chance reflects whether one event witi occur tarher than another.
7) The ratio method estimazes probabilities for a set of events by first obraining the relarive chance of pairs of events for all possible pairs.

SHORT DESCRIPTION

Assessment of subjective probabilities requires the identification of a set of discrets events. An assesson them considers these events, two at a cime, to determine che relarive chances of those events occurring. This procedure is known as the ratio meriod. Simple computations then determine the probability distribution for the set of discrete events. Subjective probabilities may also be obtained for a set of continuons events by rnodifying it inco a discrete set.

ADVANTAGES

1. Probability assessment makes the yudgnents of an individual explicit thus allowing others to understand and respond.
2) The ratio method is casy to use because the probabilities are assessed indirectly by comparing the chances of occurrence for pairs of events.

LIMITATIONS

1) When the assessor is not motivated to perform and to think about the analyst's questions. :he probabilities obtained may not be valuable. In addition. an assessor with no background in probability theory will not perform as well as one familiar with the technique.
2) When there is a large number of cvents. the ratio method becomes tedious. This method may also lead to inconsistencies which may be difficult to resolve.

REQUIRED RESOURCES

LEVEL OF EFFORT

After the assessor considers and gives his estimates for the relative chances of various events, the analyst performs minor computations to arrive at a probability distribution.

SKILLLEVEL

The analyst should be able to interact effectively wich the assessor through skilled interviewing (IVW, page 23). An assessor with a basic understanding of probability will be better able so ģuatify his judgments.

TIME REQUIRED

Considering a ser of ten events takes about 30 minutes. The time required depends on the number of events.

DESCRIPTION OF TOOL

SUPPLEMENTALDEFINITIONS

1) A set of continuous events consists of A infinite number of events. For example, the gross national product (GNP) for a coming year may range from one billion to five billion dollars and may actually be any value in that range. This may be modifed by grouping the continuous events into discrete events. One evers in the GNP example would be "less than two billion dollars"; another event would be "between two billion and three billion dollars." etc.

FiGURE 1
A Probabiliry Density Function

2. A probability density function represents the probability distribucion of a set of concinuous events. The function may be expressed as a curve (see figure 1). The area under the curve for any interval of values is the probability that one of the values in that interval will occur. For example. she shaded area in figure 1 represents the probability that any value from four to five occurs.

REQUIRED INPUTS

A se: of events will generally be defined by the decision maker by using a technique like the Delphi (DLP, page 168.

The events in a set may be described in quantitative or qualitative terms. A quantizative description e.g. dollar value of exports of beef: may be classified im qualitative terms e.g.. high. mediam, or low dollar exports;. A qualitative description always describes a ser of discrete events. Whereas a quancitarive descriprion may apply to a set of discrete or to a set of concinuous events.

The assessor will generally be someone whose prior experiences, knowledge, or insights are pertinent to the set of events being considered. He may be an external expert or the decision maker.

The sribjective probability of a single assessor is frequently mor as accurate as the aggregated estimates from several assessors. One way to improve the assessments is to have a group discussion on the questions posed by the analyst. Another way is to use a Delphi (DLP, page 168) in which the assessments of each individual are fed back to others in the group.

TOOLOUTPUT

For a set of discrete events, the output is a probability distribution. For a set of continnous events, the output is in the form of a probability density function (see figure 1).

For any interval of values. the area beneath the curve represents the probability that one of the values in that interval will occur. For example, the shaded area represents the probability that any value from four to five will occur.

METHOD OF USE

GENERAL PROCEDURE AND EXAMPLE

The ratio method is used to elicit probabilities for a set of discrete events. ${ }^{*}$ The following steps are involved:

1. Identify and label set of events.

Give each event a label, such as $x_{1}, x_{2} \ldots, x_{n}$. For example. take the set of possible events: "number of tourists coming to Temasek over the next five years." Identify and label three e:ents in the set:
$x_{1}=$ higher number of tourists than tast fite ycars
$x_{2}=$ same number of tourists as last five years
$x_{3}=$ lower number of tourists than last five years
2. Assess relarive chances.

21 Consider events two at a time. First, ask an assessor to estimate the relative chance for events x_{1} and x_{2}. Then assess events x_{2} and x_{3}, x_{3} and x_{4}, x_{4} and x_{5}, and so forth until all pairs up to and including x_{n-1} and x_{n} are covered. For the tourist example, the analyst may ask: How many times is it more likely for the event "higher number of rourists" to occur rather than the event "same number of tourists"? If the assessor answers 1.5, this is represented mathematically as:

$$
\begin{equation*}
P\left(x_{1}\right) / P\left(x_{2}\right)=3 / 2 \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{P}\left(x_{1}\right)=1.5 \times \mathrm{P}\left(x_{2}\right) \tag{2}
\end{equation*}
$$

where

$$
\mathbf{P}\left(x_{i}\right)=\text { probability of event } x_{i}, i=1, \ldots n
$$

2.2 Similarly, he may assess:

$$
\begin{equation*}
P\left(x_{2}\right) / P\left(x_{3}\right)=1 / 2 \tag{3}
\end{equation*}
$$

or

$$
P\left(x_{2}\right)=0.5 \times P\left(x_{3}\right)
$$

Continue this process for each pair of events.
3. Examine probabilities for inconsistencies.
3.1 Check inconsistencies by asking the assessor to estimate the relative chance of a combination of two events which has not been assessed in step 2 . For the tourist example, the assessor may be asked to estimate the relative chance of events x_{1} and x_{3}, i.e., what is his subjective feeling for

$$
\mathrm{P}\left(x_{1}\right) /\left(x_{3}\right) ?
$$

[^9]His answer should mathematically reflect his previous answers. In checking. it is seen that:

$$
\begin{align*}
& =3.2 \times 1 / 2 \\
& =3.4 \tag{151}
\end{align*}
$$

0

$$
P_{i} x_{\mathbb{1}}=0.75 \times P x_{3}
$$

If his answer differs from 3 4. the inconsisaency would have to be resolved by having the assessor re-stimate the relative chances of events x_{1} and x_{2}, or of x_{2} and x_{3}.
3.2 Another method of checking inconsiszenctes is to directly ask the assessor to estimate the probabill ity of an event. This is compared to the compured probabilities done in step 4 .
4. Compute the probability distribution.

Compute the subjective probability of each event based on the assessed ratios of the paired events. By defmition, all the probabilities must sum to unity:

$$
P\left(x_{1}+P x_{2}+P x_{3}=1.6\right.
$$

Equations $\lfloor 2] \cdot[4]$, and $[6]$ can then be solved simultancously to give:

$$
\begin{aligned}
& P\left(x_{1}=1 / 3\right. \\
& P\left(x_{2}\right)=29 \\
& B_{3}=49
\end{aligned}
$$

Hence, the subjective probabilities of the three events are 1/3, 2;9. and 4/9.

The assessment of a prebability distribution for the continuous case is similar to the discrete case. For the continuous case, there is a range of values which may satisfy the set of events. This range is divided into intervals, and each interval is treated as an event in order to reduce the continuous case to a discrete event problem.

1. Identify and label set of events.
1.1 Identify the likely range of values which the set of events may take on, e.g., the number of tourists visiting Temasek in the next five years may range from one to three million (see Raving Scales. $R 2 S$. page 29).
1.2 Divide the likely range of values into equal intervals, the number of intervals generally being between six and eight. Values less than the lower limit of the range are intervals, as are values greater than the upper limit. Six intervals for the tourist example may be:
less than 1 million tcurists
1 to 1.5 million tourists
1.5 to 2 milition tournsts

2 to 2.5 million tomrists
2.3 io 3 milliton tourists
more than 3 million tourists
1.3 Label the intervals " $x_{1}, x_{2}, \ldots, x_{n}$.
2. Assess relative changes (see discrete case, step 2).
3. Check inconsistencies (see discrete case, step 3).
4. Compste the probability distribution (see discrete case. step 4).

Keep in mind that the cvents for the conrimuous case are intervals comprising a large number of values. Plot a probability distribution in the form of a probability density function. For the towrist example, the graph may look like figure 2. Each rectangle represents the probability of occurrence for the event (or interval). Draw a curve through the mid-points of each rectangle's height for the respective intervals. This curve is approximately the probability density function for the continuous see of events being considered.

THEORY

There are several other methods of assessing subjective probabilities. Huber (1974) identifies a Vaniable Interval Method for a set of continuous events. as comtrasted to the use of fixed intervals. Other methods involve the use of betting or wagering (Lichtemstein and Slovic, 1972: Winklet. 1972).

BIBLIOCRAPHY

Huber. George P. "Methods for Quantifying Subjective Probabilities and Multi-Atrribute Utilities." Decision Sciences 5 July 1974): 430-58.
Lichtenstein, S., and Slovic. Paul. "Response-Induced Reversals of Preference in Gambling: An Extended Replication in Las Vegas" Jonmai of Experimental Psychology 101 (1972): 16-20.
Winkler, Robert L. An Introduction to Bayesian Inference and Decision. New York: Holt. Rimehart and Winston. 1972. see especially chapters 2,3 , and 4 .

DecisionTrees

PREREQUISITETOOLS

None.

USAGE

PURPOSE

The decision tree technique accounts for alternative outcomes by represencing and analyzing the choices of action and the expected consequences.

USES

The decision tree enables an analyst to:

1) Represent the decision situation corfronting the decision maker.
2) Qualitatively assess a sequence of decisions and the chance events which may affect outcomes.
3) Compute the expected payoff values for agven sequence of decisions.
4) Determine a desired sequence of decisions according to the decision maker's criterion, e.go, maximizing payoff.
5) Determine the expected benefic by pursuing further information regarding the consequences of decision choices.

KEY DEFINITIONS

1) The payoff values represent the gain resulting from the occurrence of a particular action-event path.
2) An action-event path is the sequence of alternative actions and relevant events represented by the branches of a decision tree. Deciding to plant new seed varieries and to double crop and then having fertilizer available and an early monsoon is one action-event path in figure 1.
3) Utility is a quanticative expression of the worth or sarisfaction associated with an outcome.

SHORT DESCRIPTION

A decision tree diagrams alternative choices available in a decision-making situation, the events which affect each altermative, and the payoffs that would result from making the various decisions. Sequences of decisions and events are diagrammed as successive branches on a tree graph (see figure 1). The probabilities of each event occurring are escimated and used to compute expected payoffs of various alternatives. These are used to select a sequence of decisions which maximize the probable payoff.

ADVANTAGES

The decision tree:

1) Forces explicit consideration of alternative actions and events which affect the actions and payoffs.

FIGURE 1
Decision Tree fes Farmer with Choice of New Seed Variety and Double Cropping

STAGE ONE
DECISION

STAGE TWO
DECISION EVENT

2) Helps the decision maker to quantify the decision process.
3) Provides a comparison between alternatives even when absolute measures for evaluating alternatives are difficult to obtain.
4) Easily communicates a complex problem situation as a sequence of decisions.

LIMITATIONS

1) The probabilities of different furure events may be difficult to ootain, thereby limiting the reliability of the decision.
2) The expected payoff may be difficult to quantify; and surrogate measures, such as urility, may have to be used (see Multiple Criteria Utility Assessment, MCU, page 32).

REQUIRED RESOURCES

Skill leyel

The analysis is straightforward; but estimating probabilities and evaluating the merits of the different actionevent paths require judgment. Subjective probability assessment (SPA, page 137) and multiple criteria utility assessment (MCU, page 32) may be used.

THME REQUIRED

Obtaining the data for the analysis may require the most time-from a few hours to severat months. For instance, a survey (SVY, page 36) or opinion poll may be needed to estimate the probabilities of the public accepting an innovative change.

Analysis requires an hour or less, depending on the complexity of the tree.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) Mutwally-exclusive events are such that the occurrence of any one precludes the occurrence of the others. e.g, rolling a die (six events are possible).
2) Collectively-exhoustive events have the property that the sum of their individual probability of occurrence is 1.0 .
3) A contingency table is a matrix representation of a decision involving multiple alternatives (rows) and mutu-ally-exclusive, collectively-exhaustive states of nature (events) (see figure 2). An outcome corresponds to each intersection of an alternative and a chance state of nature (see Contingency Analysis, CGA, page 147).

REQUIRED INPUTS

The decision tree tecinique requites a grasp of the decision situation with regard to both the range of options and the events which affect the outcomes. The probability of each chance event must be estimated and the value associated with each outcome must be determined if the tree is to be used to select the desired decision. This may require preliminary data gathering.

TOOL OUTPUT

The decision tree provides a representation of the decision situation which, without further quantification and analysis, can be useful to decision makers. However, further analysis permits the determination of the sequence of decisions which yields the best possible outcome for a given decision criterion, e.g, maximizing payoff.

IMPORTANT ASSUMPTIONS

All the decision options can be determined a priori, i.e., no new options develop as a consequence of future events.

All events affecting the outcome of an alternative action are mutually exclusive and collectively exhaustive.

METHOD OF USE

PROCEDURE

1. Construct the first decision-event stage-
1.1 Identify the decision alternatives.
1.2 Arrange the action alternatives as the branches from a decision node (diamond) (see Tree Diagrams. TRD. page 74).
1.3 Identify the chance events which affect the various outcomes of the decision alternatives.
1.4 Arrange the events as branches emitting from the chance node (circle) at the end of each alternative action (see figure 2).
2. Construct successive decision-event stages as necessary-
2.1 Identify subsequent decisions which may affect the outcome of the initial alternatives.
2.2 Add these to the appropriate branch as a second stage decision (see figure 1).
2.3 Identify events which affect the various outcomes of the second stage decision.
2.4 Add these events as branches to complete the secondstage.
2.5 Repear the above process for successive decisions and chance events which affect the outcomes.
3. Determine the event probabilities necessary for analyzing the decision situation.
3.1 Estimate the probabilities for the occt-ance of each event affecting the decision-event stages (see Subjective Probabiity Assessment, SPA, page 137).
3.2 Write the probabilities on the branches corresponding to each altermative event (see figure 2).
3.3 Verify that the probabilities for all branches emitting from any chance node sum to 1.0 .
4. Determine the payoff or urility associated with each outcome.
4.1 Estimate the value of each ontcome which results from the occurrence of an alternative action sequence and chance evemts. The value may be the cost, payoff, or utitity of the outcome (see Multiple Criteria Utility Assessnent, MCU, page 32).
4.2 Write the associated value in a box at the end of each tee branch (see figure 2).
5. Determine the desired sequence of decisions
5.1 Determine the criteria for selecting among alternatives:
a) Maximizingexpected payoff,
b) Maximizing expected utility, or
c) Minimizingexpected costs.

FIGURE 2
The Decision Tree Representation of a Decision Under Risk

b) Corresponding Contingency Table for Single State

	Chance Events/States of Nature		
	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
Probability	$\mathrm{P}_{1}=$	$\mathrm{P}_{2}=$	$\mathrm{o}_{3}=$
Alternative a_{1}	$\mathrm{~V}_{11}$	$\mathrm{~V}_{12}$	$\mathrm{~V}_{13}$
Alternative a_{2}	$\mathrm{~V}_{21}$	$\mathrm{~V}_{22}$	$\mathrm{~V}_{23}$

NOTE: Computing position values:
Node $1=$ maximum (minimum) of position values for Nodes 2 and 3;
Node $3=P_{1} \cdot V_{21}+P_{2} \cdot V_{22}+P_{3} \cdot V_{23}$

FIGURE 3
Analyzing the Decision Tree to Determine Maximum Expected Profit/Hectare

5.2 Beginning at the terminal decision stage the end of the tree), sompure the position value of each chance node. Surr the products formed by the probability of each event ard the valye associated with the outcome of the event Write the computed tozal beside each node (see figgre 2).
5.3 Worting toward the beginning of the tree devermine the position value of each decision mode. Appiy the criterion to select among the values at each event node branch. For example. if the criterion is to maximize payoff or usility, then select the larg est value; if t ? criterion is to mimimize costs, then select the mallest value among the successive posision values. Write the selected wathe adjacent to the decision node (see fygure 2).
5.4 Repeat the above process for each stage of the decision tree untilt the position value of the first decision node tas been determined. The desired sequence of decision alternatives is the marked branches in the trec.

EXAMPLE

A farmer is confronted with the following decision situation * (see figure 1):

He may plant a new seed variety which promises to increase yields, but only if fertilizer is applied at the right time. There is a 50% chance that a fertilizer shortage will arise which will nullify the benefit of planting the new va-siety-

The new variety has a 90 -day maturation period compared to the 120 days before the sld varieties can be harvested. Thus. if the monsoons are favorable, the farmer may double crop to further increase his yields (but not necessarily to double that of the single harvest output). This is risky because the chance of am early monsoon season has been forecast at 80%. The farmer risks losing not only the second crop, but overall profits are reduced by the additional planting costs.

This decision situation was diagrammed as a two-stage decision tree, and the expected profir was estimated for each outcome (see figure 3). In is not necessary to consider the touble cropping choice decision if the traditional seed varieties are planted. Also, the event of an early monsoon does not affect the single crop alternative because of the shorter growing season.

[^10]Computing the desired sequence of decisions is simply a matter of working back through the tree computing the position values ar aach node. The position values of the chance nodes (3.6. and 7) were computed using the expected value of the chance events, which is the sum of the product: formed by multiplying the probability of the event and the estimated value associated with that outcome. For example, the position value of node 6 is:

$$
E(v)=(0.8) \times(110)+(0.2) \times(200)=128
$$

This wallue was writeen by the node (see figure 2).
The posicion value at each decision node (1,4, and 5) was determined from the criterion to maximize the profit Consequemtly. the branch was chosen which gave the maximmen expected value. The position value of node 4, for example. is 130 . imdicating that planting only a single crop maximizes the expected profic. However, applying the same criterion $2 t$ mode 5 indicates that. in the case of a fercilizer shortage, the expected profit is maximized by planting the secomd crop (even though early monsoons are likelyy. These preferred choices were indicated on the tree diagram as double lines.

The analysis indicates that planting the new seed warety is likely to be the most profitable choice. However, the decision to double crop depends on the probability of fa vorable monsoons.

THEORY

Deciion trees are an outgrowth of statistical decision theory and probability theory (Magee, 1964). The technique is one method of dealing with decision-under-risk. The analyst atrempts to account for alternative outcomes by determining the probabilities of chance events. The elements of the decision are the alternative courses of action, the possible states of nature, and the probability of each state occurring (see flgure 2). The correspondence between the decision tree sepresentation and the contingency table format should be apparemr (see Contingency Analysis, CSA, page 147). Diviveufville and Stafford (1971) treat the problems in selecting a criterion and valuing the alternative outcomes.

BIBLIOGRAPHY

DeNeufville, R., and Stafford, J. Systerns Analysisfor Engineers and Menagers. New York- McGraw-Hill, 1971.

Magee, J.F. "Decision Trees for Decision Making." Harvard Business Review (July-Augus5, 1964): 126-38.

Contingency Analysis

PREREQUISITETOOLS

Decision Trees, DTR, page 141.

USAGE

PURPOSE

Contingency analysis helps a decision naker choose among alternative planis designed for various contingencies.

USES

Contingency analysis is used to:

1) Inform decision makers about longrange plans.
2) Select strategies to achieve specified objectives in uncertain situations, e.g., a health delivery strategy under unknown disease conditions.
3) Choose actions when meior changes in the problem environment are expected and winere there is uncartainty about the nature of the change.

KEY DEFINTHON

A contingency is a particular combination of factors that describes a future envircnment. For example, a contingency in agricultural planning may describe an environment where there is a large deficit in world food proiuc-
tion, failuse of monsoons for two consecurive years, a large unce -nourished population, and a poor trade balance.

SHORT DESCRIPTION

Possible fucure states associated with a problem situation are described by consingencies. Alrermative plans are developed for each contingency (see fugare 1). Each plan is evaluated either qualitacively or quantitatively using techniques such as cost-effectiveness analysis (CEA, page 219). Plans are compared for a specific contingency as well as across contingencies using varions crieria to simplify the analysis. A contingency table is prepared and recommendations are formulaced for the decision maker.

ADVANTAGES

Much of systems analysis assumes a tevel of determinacy which ign ores the many uncertainties invilved. Contingency analysis specifically encourages planning for at temative outcomes. Consuquendy, the plans selected and implemented are generally more flexible than those which are developed for only one possible future state.

LIMITATIONS

There is always the danger of ovelooking comingencies, partly becatise of the necessity of planning at one

FIGURE
Contirgency Table with Qualitative Evaluation or Plan Petformance

ALTERNATVES	CONTHEGEMCES				
	A	13	c	D	E
Plan 1	good	far	oxceilicne	prorr	NA*
Plan 2	poor	fair	poor	NA	NA
Plan 3**	Gair	grod	NA	gocd	fair

NOTE: Pans are cualiated on asealen wary poor-poor-fair-good-cxcellemerelative to the particular contingency.
*Plan not applicable to tilus contingency.

+ PPlan 3 was desimed specifally for Contingerey E.
point in time. The future situation may be shaped by the present planning decisions, making contingency amalysis an entremely complex process.

REQUREDRESOURCES

LEVEL OFEFFORT

The effort required to develip a phan for a stingle fartare state is multiplied by the number of contingemcies identhed. The task of fientifying contingencies and amalyzing phans adds to the sotal effort.

SKILI IEVEI

The analyst must add foresight and intuinon to his basic plannimg skills in order to identify alternative curtcomes and account for their consequences. A multidisciphinary team brings useforl skills to the task and is recommended.

TMEREQURED

The time needed depends on the complexity of the planning required. Time is proportional to the number of coningencies considered and the novelty of the situation.

[^11]
DESCRIPTION OF TOOL

SUPPLEMENTAI DEFINTIONS

1) Bestestimuate analysis selects the plan which was developed for the most likely contingency.
2) Worst-case analysis selects the plan which was developed for the most adverse conringency.
3) A fortiori analysis is a process of excluding alternatives which sell perform benly relative to the others, even whem designed for the most favorable contimgency.
4) Sensitivity andysis is a process of varying the estimated values of selected parameters in the design to determine the sensitivity of the results to the uncertainty of the estinates.

REQUIRED INPUTS

Contingency analysis requires a grasp of the many factors which contribute to uncertainty in planning. The plans must be developed wsing a variety of trechniques and expertise. The more points of view brought to bear on che planning process the more likely that contingencies will not be overlooked A multi-disciplinary team approach is preferred.

TOOLOUTPUT

Contingeney analysis presents the decision maker with an array of options which reflects the analyst's understanding of furture uncertainties. A plan may be recom-
mended as a result of the andysis. The very least the dection maker can expect is an analysis of the array of contagent factors and plemning assumptions (DeGreenc. 1973).

TMPORTANTASSUMPTMNS

All relevant contingencies have been identified and only these contingencies are likely to occut.

Measures of plan or system effectiveness which arc appropriate for one contingency can alsobe applied to other contingencies.

METHODOFUSE

GENERALPROCEDURE

1. Analyze the problems in order to derermine the factors (social, technological, polisical, or environmental) associated with an uncertain futme.
2. Identify likely combinations of factors: these contingencies describe possibie futures (see Scenarios, SCN, page 164).
3. Specify alternative plans for dealing with each contingency (see IDEALS Strategy, IDL, page 231), and Program Planning Method, PPM, page 227).
4. Identify criteria for evaluating the expected effectiveness, benefits, or utility for each plan see Cost-Effectiveness Analysis, CEA, page 219; Cost-Benefit Analysis, CBA, page 212; or Multiple Criteria Utility Assessment, MCU, page 32).
5. Considering only one contingency at a time, evaluate each alternative relative to the other alternatives and tabulate results (see figure 1) to provide a comprehensive picture of the decision parameters.
6. Apply one of the following criteria to reduce the number of contingencies:
a) Best-estimate analysis: Assume that all uncertain factors are determined by the analyst's best estimates. Design alternative plans accordingly.
b) Worst-case analysis: Assume that the most adverse contingency will occur. Design a plan (or select the alternative) for this contingency on the assumption that if it works for the worst case, it will work for the more favorable contingencies.
c) A fortiori analysis: Assume that all uncertainties are resolved as optimistically as possible. Design for select) a plan for this case and compare its performance to the others. If it still performs bady, discard that alternative.
7. Use sensitivity analysis to examine assumptions andior eliminate variables which have little influence on
the expected periformance of aternasives (see Cost-Effecsivencs Arsalysis, CEA. page 2191.
8. As a lastresert, consider plans which either:
a) Buy time untili the secial political or technolog ical siruation chamges;
b) Buy information in order to resolve some of the wncentainties affecting the decision, e.g-g gather more data;or
c) Buy alexibility in design, Ee. plant systems with the capatility to adapt to various contiregenctes.

There are additiona costs associated with each of these options. but they may te che bese way of dealing with the winctaunties of planming for yarions contingerajes.

EXABPIE

The Temaseí Covernment wanted to dewelop a strategy for increasing agricultural productivity in a region populated by smallfiolders. A list of unknown factors was gemerated: the degree of cooperation among farmers, the migration rates from (or to) the region, the awailability of necessary climazic and technobogical variables (e.g. the response of new seed varieties to ursfavarable monsoon conditions).

Two contingencies were formalated and preliminary plans were sketched for each.

Contingency A

The people in the region are expected tc cooperate with government efforts. There is low migration of population to urban areas. Favorable monsoons are predicted. Fertilizers are available.

Plan 1: Educate the people about the need for increased productiviry, mew seed varieties, and new agricultural techniques. Distribure fertilizer and encourage its use. Subsidizecommercialcredit.

Plan 2: Form farm cooperatives with government parricipation. Acquire farm machinery with the financial strength developed, using modern techniques on consolidated holdings.

Contingency E

The people in the region may be hostile to intervention and are not receptive to improved farming methods. These is migration of population to urban areas. Monsoons are expected to be erraric and poor. A fertilizer shortage is expected

Plan 3: Nationalize productive holdings. Import labor if needed. Farm large tracts of land using mechanical farming and irrigation methods.

FIGURE 2
Contingency Table for Agricultural Strategy Planning

	Contingency A Optimistic	Contingency B Pessimistic;
Plan 1: Education Strategy	10%	-5%
Plan 2: Cooperatives Strategy	15%	4%
Plari 3: Nationalization Strategy	7%	9%
Plan 4: Incentives Strategy	2%	1%

NOTE: Effectiveness measure: Percentage increase in agrictutural production for the region.
*Estimated decrease of 5% if Plan A is selected and Contingency B occurs.

Plan 4: Encourage private faming. Develop irrigation facilities and help finance. Provide incentives for farmers to immigrate from other regions if necessary.

A contingency table was prepared to represent the decision elements (see figure 2). The analysts then estimated the effectiveness of each plan using the criterion: expected percentage increase in agricultural production given a particular contingency. Analysis across contingencies followed:

Sestestimate analysis: Only plans 1 and 2 need be considered because contingency A is assumed to be the future environment. From these two, plan 2 was pre ferred.

Worst-case analysis: Only plans 3 and 4 were considered. Ptan 4 was chosen due to the higher expected increase in production.

A fortiori analysis: Plan 1, designed for the most optimistic set of factors, was still less effective thar pilan 2. Therefore, plan 1 was "dominated" by plan 2 and was not considered further (although parts of the plan were considered in synthesizing a flexible, adaptive strategy).

Sensitivity analysis: Agricultural productivity estimates were found to be highly sensitive to weather conditions. Consequently, the planners decided to delay adopting a particular strategy untl pilot fied trials were conducted in the region. Meanwhile, a sample survey was commissioned to examine farmer attitudes on cooperation and modernization.

THEORY

Contingency amalysis falls under a category of statistical decision theary idenuifted as decision-underuncertainty Peston and Coddington. 1968. This situation is conrrasted with models for decision-under-risk exemplified by decision tree analysis (DTR, page 141). A decision-umder-uncertainty is transformed to a decision-under-risk if probabilities of each of the states of nature contingencies) can be estimated (see Subjective Probability Assessment, SPA. page 137).

Schlesinger (1968, page 385) describes contingency planming from two different points of view. One group of plamners "believe that the array and character of future contingencies can be specified in adwance, and that $d e$ tailed advance plaming can be done to deal with whichewer one does occur [original italics]." A second group believes "that contingencies canmot be specified precisely in advance," and that plans must be designed with the capability of adapting to unforeseen contingemeies. Alchough the description of comringency analysis was written from the viewpoint of the firsig giop, the complexities of development project planning strongly support the more cautious approach of the second group.

BIBLIOGRAPHY

Attaway, L.D. "Criteria and the Measurement of Effectiveness." In Systems Analysis and Policy Planning, edited by R.S. Quade and W.I. Boucher. New York: American Elseviex, 1968.

DeGreene. Kenyon B. Sociotechnical Systems: Factors in Analysis, Designt, and Management. Englewood Cliffs, N. J.: Prentice-Hall 1973, pp. 194-95.

Madansky, Albert. "Uncertainty." In Systems Analysis and Policy Planning, edited by R.S. Quade and W.I. Boucher. New York: American Elsevier, 1968.

Peston. Maurice. and Coddington. Alan Statistical Decision Theory. CAS Occasional Paper No. 7. London: Her Majesty's Stationery Office. 1968.
Schlesinger. James R. "The Changing Enviromment for Systems Analysis." In Systems Analysis and Policy Plamning. edited by E.S. Quade and W.I. Bowcher. New York: American Elsevier. 1968.

VII

Forecast and Prediction

Exponential Smoothing Forecasts
Regression Forecasting
Scenarios
Delphi

The selected forecasting technigues fit into two categories. Extrapolative techniques (Exponential Smoothing Forecasts and Regression Forecasting base forecasts of future behavior on past performance data and assumptions about the underlying processes which have generated the data. Intaitive techniques (Scemarios and Delphi) systematically combine the observations not only of past and present conditions, but predictions of furure performance, constraints, and forces for change.

Exponential Smocthing Forecasts

PREREQUISITE TOOLS

None-

USAGE

PURPOSE

Exponential smoothing provides short-term forecasts of variables by extrapolating from past cata.

USES

Exponential smoothing is used to:

1) Forecast demand for services or goods.
2) Obtain economic forecasts.
3) Forecast any variable where past behavior is expected to continue.
4) Provide forecasts at regular intervals.
5) Trace an underlying trend or pattern for a variable when random fuctuations in the data obscure that trend.

KEY DEFINITIONS

1) The smoothed value is an estimate of the average value of the variable being forecast. It is calculated each period by the equation:

$$
\mathrm{S}_{t}=\mathrm{S}_{z-1}+a\left(x_{t}-\mathrm{S}_{\mathrm{r}-1}\right)
$$

where

$$
\begin{aligned}
& S_{q}=\text { the new smoothed value } \\
& S_{r-1}=\text { the old smoothed value } \\
& a=\text { a smoothing constant } \\
& x_{q}=\text { new datum }
\end{aligned}
$$

2) The period of a time series is the time interval between successive observations of the underlying process. This interval may be a day, a week, a month. or cne or more years. For example, the period would be a week if the datum is the weekly total of immunizations performed.

SHORT DESCRIPTION

A smoothed value of the average of the data is the basis for forecasting by exponential smoothing. This value is calculated for each period using the data for that period and the smoothed value from the previous period. The new smoothed value becomes the forecast for the next period if the average value for the variable is expected to remain constant (see figure la). However, variables with a steadily increasing or decreasing average (a trend) can also be forecast by obtaining a smoothed value for the average and a smoothed estimate for the trend component. The forecast for the next period is the sum of the two estimates (see figure 1b).

FIGURE 1
Plots of Past Data
a) Plot for a Variable with Constant Average

b) Plot for a Variable with Linear Trend

$$
\begin{aligned}
& \text { KEY: } \\
& - \text { Data } \\
& ---\quad \text { Underlying process }
\end{aligned}
$$

ADVANTAGES

1) Exponential smoothing is easy to understand and use since it relies on intuition and simple mathematics.
2) When changes occur in the behavior of the variabie being forecast, exponential smoothing can continue to be used since gross errors in forecasting smooth out after a few periods.
3) Large quantities of past data need not be retained (see Regression Forecasting, RGF, page 160).

LIMIT ATIONS

1) Exponential smoothing is not a causal model; it only extrapolates from past data. Since past behavior only partiy explains the future, exponential smoothing may not always be sufficient.
2) A more complex smoothing model is necessary to accurately forecast cyclic variations in data (see Montgomery, 1968).

REQUIRED RESOURCES

LEVEL OFEFFORT

Exponential smoothing involves the substitution of numerical values into simple formulae. The effort required is minimal.

SKILI LEVEL

Basic anithmetic skills are needed to use exponential smoothing. Some experience in choosing the smoothing constant is necessary to obtain good forecasts.

TMEREQUIRED

Once the smoothing constant has been selected the forecast calculations are straightforward and require little time. It may be desirable to keep track of the errors in each forecast and take corrective action should they become too large (see Brown, 1965). This requires a minimum of extra time.

SPECIAL REQUIREMENTS

A slide rule or a calculator may be used to do the calculations. A digital computer may be desirable to forecast a large number of variables.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) The smoothing constant is a fraction between 0 and 1 that indicates the degree of confidence placed on the most recene darum. It is denoted by "a" in |ll.
$2 ; x_{p}$ and x_{5} are data values observed at time t and $t-1$ respectively.
2) S_{t} is the smoothed estimate of the average value of the variable for the time period i.
3) A : is an estimate tor the hinear trend for period t.
4) T is the forecast lead time. or the number of periods ince the future for which the forecast is being made.
5) a and β denote the smoothing constants whose values lie between 0 and 1 .
6) x_{t-1} and x_{t+1} are forecasted estimates of the variable x calculated at time t for the mext period and for T periods ahead, respectively.

REQUIRED INPUTS

Some understanding of the variable being forecast helps in estimating any trend that may be observable in past data. The data may be plotted on a graph against time (see figure 1). The variation of the data is shown in these plors. Visual inspection indicates the presence of an increasing trend in the plot shown in fygure $\mathbf{1 6}$.

Selecting a smoothing constant is also necessary before forecasting can be done. The function of the smoothing constant is to control the amount of importance given to the past data. The constant is greater than 0 and is ustally less than 0.3 . The smaller the smoothing constant, the greater is the importance given to past data, signaling confidence that the past behavior of the variable will continue. On the other hand, a large smoothing constant (but always less than 1) gives more importance to the current datam. However, a large smoorhing constant may lead to large errors in the forecasts. A value of 0.2 is recommended for most applications.

Initial values for the smoothed estimates are needed before forecasting. The starting smoothed value cap be taken from the plot of the past data. When the graph indieates that the data have no trend, only the smoothed value for the average needs to be estimated. This can be taken as the height of the horizontal line drawn through the data (see figure 1a). If the variable appears to follow a trend, starting values for both an average value and a trend component are required.

TOOLOUTPUT

The output is a short-term forecast of the future values of the variable. The forecast is computed from the estimate of the average value or from the estimates of the average value and the tend component, whichever is appropriate.

IMPORTANT ASSUMPTIONS

The model presented here is based on the assumption that the process which produced the behavior of the forecasted variable does not change with time. That is, the vaniable is assumed to have cither a constant average or a constant linear tre d. Higher order exponential smoothing models may be used if these assumptions are not valid for a variable (see Brown, 1965).

METHOD OF USE

GENERALPROCEDURE

Forecasting by exponential smoothing is done in two steps:

1) Updating the smoothed values.
2) Obtaining a forecast from the smoothed values-

In the case of a variable with constant average, step 1 will be used to update the smoothed value for the average. In case of a variable with a trend. step 1 will be used to estimate the trend and the average valne by smoothing.

Variable wir!s Constant Average

1. Update smoothed values.

The smoorhed value for the average is obtained by the following equation:

$$
\begin{equation*}
S_{z}=S_{t-1}+a\left\{x_{t}-S_{t-1}\right\} \tag{1}
\end{equation*}
$$

The difference between tha new datum and the old smoothed value gives an idea of the error in the forecast. A fraction, a, of this error is added to the old smoothed value to obtain a new smoothed value.
2. Obtain the forecast.

The forecast is given by the following equation:

$$
\begin{equation*}
x_{t+1}=S_{I} \tag{2}
\end{equation*}
$$

This equation is used since the variable is assumed to have a constant average estimated by the smoothed value and no trends. When datum for the next period, x_{t+1}, is obtained, the new smoothed value becomes the old smoothed value for the next period, and forecasting is continued by computing the smoothed value for that period. These calculations are repeated.

Variable with Trend

1. Update smoothed values.

Obtain a smoothed walue for the average and an estimate for the trend. The equations used for the two are similar. Equation [1] is used to estimate the average. The equation used for estimating the trend is:

$$
A_{s}=A_{t-1}+3\left\|\left(S_{g} \quad \cdot S_{t-1}\right)-A_{t-1}\right\|
$$

2. Obtain the forecast.

Add the trend estimate to the smoothed value that has been mewly calculated. The forecast isgiven by the fol lowing equation:

$$
x_{\mathrm{r}+\pi}=S_{t}+A_{t} \quad i+t
$$

If forecasting is to be dome for more than one time period ahead. the increase (or decrease) due to the trend componeat needs to be accounted for. The forecast for Ttime periods in the future is given by:

$$
\begin{equation*}
x_{T}+T=S_{t}+T\left(A_{t}\right) \tag{151}
\end{equation*}
$$

Note that in case of a variable with no trend component. the forecast for one period ahead and the forecast for many periods ahead is the same.

As before. when a new datum is available, the new smoothed value anc the trendestimate become the old smoorhed value and the old trend estimate for the next period. The callculations are repeated in order to update smoothed values.

Worksheet

A worksheet can be used to facilitate the calculation of forecasts on a regular basis isee figure 2). The collumns int figure 2 represent difterent stages in the calcularion, with the forecast given in the final column and the datum given in t ge first columin. Each row corresponds to a time period.

EXAMPLE

It is necessary to forecast the number of births in a dismict each month in order to procure child immumization medicine. Exponential suroothing is used to forecast the number of births. A slight increasing trend is assumed to be present in the data (see figure 2 for the calculations).

The worksheet shows that the forecast for births in February is 207 . The S_{r-1} and A_{i-1} values for March can be written in the row corresponding to March.

THEORY

The basic smoothing equation in exponential smoothing is [1], which can be rewritten as:

$$
\begin{equation*}
S_{t}=a\left(x_{z}\right\}+(1-a) S_{z-1} \tag{161}
\end{equation*}
$$

FIGURE 2
Work Sheet for Expoaential Smoothing

The smoothed value for the previous time period was given by.

$$
\begin{equation*}
S_{t-1}=a\left(x_{t-1}\right)+(1-a\} S_{t-2} \tag{7}
\end{equation*}
$$

and the inoothed valuz for the period before is

$$
S_{t-2}+a\left(n_{t-2}\right)+a(1-a) S_{t \cdot 3}
$$ and so on. By repeated substitution for S_{t-1} into $|6|$ and then for S_{t-2} into 171 , we obsain:

$$
\begin{equation*}
\left.s_{t}=a\left(x_{2}\right)+a \leq 1-a\right) r_{t-1}+\ldots+a 1-a x^{2} x_{-48} \tag{191}
\end{equation*}
$$

From this equation it can be seen that past data $\left[x_{t-1}, x_{t-2}\right.$. x_{t-3}, etc.) have decteasing exponential weights. Hence the name exponential smootsing. The weights of the past dara decrease with the age of the data because a is less thata i. This makes intuitive suase as more recent data are given mote weight. The actual weights depend on the smoothing constant. The earlier discussion on the value of the smoothing constant follows directly from \{8].
$*_{t}=$ present time, therefore 7.1 is one time period prior, $t-2$ is two time periods prior, etc.

Similar formularions of exponential smoothing have been developed to forecast data that have a cyclic variarion or a combination of a trend and cyclic variation. Montgomery (1968) and Brown (1963) discuss these cases at length.

BIBLIOGRAPHY

Brown, R. G. Smoothinug, Forecasting and Predic:ion of Tima Sertes. Engilewood Clift, N.J.: Prentice-Hall, 1965

Charnhers. John C.: Muthick. Satinder K.: and Sinith. Donalil D. "How to Choose the gight Forecasting Tcchnique." Harrark Business Reaiew y fuly. Augnst 1971: 45-74.
Montgomery, D. C. -Itatroduction co Share Term Forecasting." Jovarnal of Industrial Engineering (October 1968):500-03.

Regression Forecasting

PREREQUISITETOOLS

Nene.

USAGE

PURPOSE

Regression forecasting obtains the relationships between two (or more) variables based on pairs (or sets) of past data values.

USES

Regression forecasting is used to:

1) Obtain economic forecasts.
2) Forecast demand for services and products.
3) Forecast any variable where past behavior is assumed to continue.

KEY DEFINITIONS

1) An independent variable is the non-random variable whicn is used for forecasting other variables using the regression. M is the independent variable in:

$$
\begin{equation*}
\mathrm{B}=a+(b \times \mathrm{M}) \tag{1}
\end{equation*}
$$

where
$B=$ number of births
$\mathrm{M}=$ number of marriages registered
$a, b=$ constants
2) A deprendent variable in regression forecasting is the variable being forecast. Ir is writren in che regression equarion as being dependent on the independent variable. For example, in 【1】 the dependent variable is "number of birchs."
3) A variable is regressed on another when the former is dependent on the latter. In $\mathbb{1} 1$, the "number of births" is regressed on the "number of marriages registered."
4) Correlative behavior is an assumed relationship between two or more variables in which the changes in one vaiiable may be associated with predictable changes in the others. The change, however, is not necessarily causeeffect.

SHORTDESCRIPTION

Regression relates a dependent variable with an independent variable in the form of a mathematical equation. The independent variable is usually time, and regression extrapolates the past into the future. The equation is obtained from past data gathered in pairs (a value of the dependent variable corresponding to a value of the independent variablel.

If the relationship is assumed to be linear, the regression of the dependent variable on the independent variable is a straight line when plotted on a graph (see figure 1). The simple linear regression equation is used to obtain forecasts of the dependent variable for a given value of the independent variable. A dependent variable may be regressed on two or more independent variables, but this is

FIGUREI
Graph of Regression Line

not easily visualized on a graph. The forecasting method is similar, however, to simple linear regression.

ADVANTAGES

1) Regression is a simple and straightforward process.
2) Regression can be used in a wide variety of situ-
ations and is often the only recourse for forecasting. For example, in many social and economic contex cs. causal or predictive models based on theoretical grounds are diffcult to construct. Regression gives an empirical model which can be used for forecasting.

LMITATIONS

1) Regression models estimate the correlation betweem variables. This correlotive behovior is often mistaken as meaning "a chamge in the independent variable causes a change in the dependent variable." This may lead to false assumptions about causal relarionships (see Oval Diagramming, $O V D$, page 81).
2) Regression forecasting extrapolates the data in order to obtain the forecasts. The relationship outained from the data does not necessirity hold outside the range of awailable data, and erroneous forecasts are obtained. For example, the relarionship between two variables may be linear only in the region examined and non-linear in other regions.

REQUIRED RESOURCES

LEVELOF EFFORT

The effort required is minimal if the data for the regression model are available. However, a considerable amount of effort may be required if data collection is necessary. For example, surveys (SVY, page 36) may be needed to obtain the data.

SKILI LEVEL

Some statistical knowledge is needed to fully understand and use regression.

TME REQUIRED

The time required to gather the data depends on the nature of the variable and the amoune of data needed. Adequate regression models can be cbtained using 20 to 50 pairs of data points. Once the data are obrained, the calculations require only a few hours. Regression on more than one variable takes more time depending on the number of variables being considered.

SPECIAL REQUIREMENTS

A calculator or a slide rule is useful in making the cal culations.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITIONS

1) The regression coefficient is the coefficient of the independent variable in a regression equation. In [1]. " b " is the regression coefficicnt.
2) Symbols:
x is the independent variable
y is the dependent variable
a and b are regression coefficients.

REQUIRED INPUTS

Knowledge about the variables defined in the regression equation is needed. Berween 20 and 50 sets of data points are needed to obtain the regression equation. The higher the number of data sets, the higher the reliability of the regression equation.

TOOL OUTPUT

The output is the regression equation model relating the variables. The model may then be used to forecast values of the dependent variable for given values of the independent variable.

IMPORTANT ASSUMPTIONS

Regression models assume that the independent variable is deterministic (non-random) and can be measured with an accuracy that is much higher than that involved in meastring the dependent variable. Often both the variables are random, and the variable which can be measured with less error is chosen as the independent variable. However, most often observations of one variable are made at intervals of time. Time becomes the independent variable in the regression equation, and the assumption about the independent variable is then valid.

METHOD OF USE

general procedure

Linear regression fits alinear equation between the variables (see figure 1). The regression coefficients of the equation are selected so that the data values have minimum deviation from the line.

The following procedure is recommended to develop a regression equation.

1. Obtain the data.

Once the independent and dependent variables are determined, the data vahes are obtained in pairs, ie., a
datum point for the dependent variable corresponds to each vatue for the independent variable. The data should be recent and shoulla be representative of the trend. Consider a situation where the total industrial outpur in a region for the next year is to be torecast. The industrial output is known to be correlated to the annual steel production. The industrial output will be regressed on the steel production. Data for past five years are used to obtain the equation (see figure 2).

2. Determine the equation coefficients

If the relarionship between the variables is assumed to be linear (see figgure 1), the regression equation used is:

$$
\begin{equation*}
y=a+b x \tag{2}
\end{equation*}
$$

The tegression coefficients are calculated using:

$$
b=\stackrel{R}{-}\left(x-x^{\prime}\right)\left(y-y^{\prime \prime}\right){ }^{\prime \prime}\left(x-x^{\prime \prime}\right)^{2}
$$

whatere,
$x^{\prime} y^{\prime}=$ averages of n data points for x and y
$\stackrel{y}{x}=$ summation of all terms in parentheses computed from data points
The calculations for [3] are easily done using a table (see figure $2 b$). The data points for x and y are first filled in and the averages x^{\prime} and y^{\prime} calculated. Using these averages, the rest of the table is filled in. The totals for columns ($x-x^{\prime}$) and $\left(y-y^{\prime}\right.$) should be zero. This can be used as a check for calculations. The ratio of the totals in columms 5 and 6 then gives the value of b :

$$
b=26.86 / 11.70=2.29
$$

The coefficient a is calculated by

$$
\begin{equation*}
a=y^{\prime}-b x^{\prime} \tag{4}
\end{equation*}
$$

In the example,

$$
a=16.2-(2.29 \times 5.5)=3.6
$$

the regression equation is

$$
y=3.6+2.29 \times x
$$

3. Forecast using the equation.

The forecast of a new value of the dependent variable is made by firting the corresponding new value for the independent variable into the equation. For example, steel production is known to be six million tons. The industrial outpur is estimated by substituting in [5], so that:

$$
\begin{equation*}
(y)=3.6+2.29 \times 6=17.34 \tag{6}
\end{equation*}
$$

The industrial output (y) is estimated at $\$ 17.34$ million using the linear regression equation.

EXAMPLE

Many examples of regression analysis may be found in the literatric. Fredericks (1976) analysis of cooperative

FIGURE 2
Regression Computation
a) Data for Forecasting Induserial Ourput

Year	1970	1971	1972	1973	1974
Steel Production/yr (milhon of tons)	7.5	6.8	3.1	5.2	4.9
Industrial Output/yr (millions of 5)	20.3	19.2	10.3	15.8	15.6

b) Table for Computing Regression Coefficients

	(1) x	2	$\begin{gathered} 3 \\ x-x^{x} \end{gathered}$	$y-y^{\prime}$	$\left\|\begin{array}{c} 3 \\ \left(x-x^{\prime}\right)\left(y-y^{\prime \prime}\right. \end{array}\right\|$	$\begin{gathered} (6) \\ \left(x-x^{\prime}\right)^{2} \end{gathered}$
	7.5	20.3	2.2	4.1	8.2	4.0
	6.8	19.2	1.3	3.0	3.9	1.69
	3.1	10.3	-2.4	-5.9	14.16	5.76
	5.2	15.8	-0.3	-0.4	. 12	. 09
	4.9	15.4	-0.6	-0.8	. 48	. 36
TOTALS	27.5	81.0	0.0	0.0	26.86	11.70
AVERAGES	$x^{\prime}=5.5$	$\mathrm{y}^{\prime}=16.2$	0.0	9.0)	$b=\frac{26.86}{11.70}$	$=2.29$

moveme ts in West Malaysia is illustrative and instructive. Twelve : rructural variables were included in the analysis of structurai development.

THEORY

Regression equation models are widely treated in statistics texts (Fryer 1966, or Wetherill 1972). The theory is based on strmming the squares of the deviation of each data point from the corresponding value of the model, and then selecting coefficients of the model which minimize this sum. If the model eguation is a straight line, the coefficients fit a linear regression model. Non-limear regression models are used to fit equation coefficients to data which do not appear to fall on a straight line.

Mutiple regression models use the same basic principle to fit the observed data to two or more independent vaniables. The forecaster is referred to specialized texts (Draper, 1966) for details.

Bedworth (1973) has an excellent presentation of regression forecasting when the independent variable is time.

BIBLIOGRAPHY

Bedworth. D. D. Inchastrial Systems. New York: Ronald PressCompany, 1973, pp. 84113.
Drapci, N. R., and Smith, H. Applied Regression Analysis. New York: John Wiley and Sons. 1966.

Fredericks, L.J. "A Trend Analysis of the Stracture of the Cooperative Movement in West Malay=ia, 19221967." Cooperative Information, ILO, January 1976.

Fryer, H. C. Concepts and Methos of Experimental Statistics. Boston: Allyn and Bacon, 1966.

Wetherill, G. Barne. Elementary Statistical Methods. London: Chapman and Hall, 1972

Scenarios

PREREQUISITETOOLS

None.

USSGE

PURPOSE

A scemaric forecasts che fucure stare (s) of a system based upon assumptions aboust interactions and external conditions.

USES

Scemarios may be emptoyed to:

1) Jdenvify and clarify major issues for debaze among polity makers and interest groups.
2) Fommulate a natrative for dynamic behavior of a social system, erg, for interpreting Owal Diagramming (OVD, page 81).
3) Provide the inpat for techaigues such as Gaming (GAM, page 124).
4) Provide a framework for nomative forecass of dritred funureconditions.

KEYDEFEVTIONS

1) A aystem is a colimection of componems which interact th achieve a common function.
2) A state scenamio describes conditions and events (the state of the system and the external context) at a single future poimt in time.
3) A transient scenaurno forecasts the changes in and the alternative actions on a system at vartous stages in the evoHution of the systern.

SHORTDESCRIPFION

A scemaio is a narrative fortecast of the furane states of a systenh. It is developed froma description of the present conditions and an extrapolated forenest of frame conditions. The forecast is based on the extermal constraints to change, and the likely inderactions between systemat varithes in the progression from cument conditions to some future state.

A scenario may be cicher a state scenario for a single point in the farme or a trunsient scenazio tracing the evolation of the sy stem ower cime.

ADVANTAGES

1) Scenarios help illuminate the interaction of psychological, social, conomic, cultural, polinical, and milizary dimensions in a form that permits understanding many such interactions at once. They are especially uneful for policy decisions.
2) Kahm and wiener (1967) argue that scemarios call attention to the larger range of possibilities that mast be considereajs the amalysis of the furme.
3) Scenarios help stimulate and disciplime the imagination.
4) Scenarios generally have an ithustrative and pedagogeal value for the decision maker.

LIMITATIONS

1) It is a formidable task to take into account and successfully predict the interplay of the various dimensions (e.g., sucial, political).
2) Scenarios suffer from umiqueness; they represent only the views of those experts who constructed them. and there is no guatantee that the fusure is accurately predicted.

REQUIRED RESOURCES

LEVEL OF EFFORT

The decision maker and the analyst collaboratively define the subject of the sceliario. The analyst identifies, or ganizes, and interacts with a group of experts to understand the present system and to construct the scenarios.

SKILL LEVEL

The analyst and experts should be able to identify the major dimensions and attributes of the presentr system in order to identify new developments and understand their character and significance.

TIME REQUIRED

The time required depends on the complexity of the system being studied and the time span of the scenario. The analyst and the experts may spend scyeral days zonstructing from three to five different scenarios which describe the same general situation.

DESCRIPTION OF TOOL

SUPPLEMENTALDEFINITIONS

1) The dimensions of a system are collections of its attributes, where each collection represents a major aspect of the system, e.g., political, economic, social, or psychological.
2) The attributes of a system include the elements or components of the system and the interrelationships among them.
3) A goul is a value judgment which satisfies one or more human needs, e.g., "to promote equality in schooling."
 causes changes in the systern state ower time.
4) The bease system state is the set on eurreme comatitions which deseribe the essential characteristics of the scenario. It is denoted by $S(t)$ where 4 is the present fime.

6: An internadiate inmage, $S_{(t}+$ mh. duseribes the state of the system atter a time interval n.

7: The external contexi yeprescuts che consmants on the base system.

REQUIRED NNPUTS

Scenario construction requires prior agrement on the kind of scenario either tread or stute\%. the subject of eline scenario. and the time span to be included.

The subject of the secnario is geiterally a sestem on sector of a country or region, ex..., the courist indasiry or the energy situation for the country of Temaseh or the social structure of a river basin population.

The time spar varies according to the anpor tance of the system under consideration. The time span of the scenario, for most situations. shouid cover at least 15 years to project beyond characteristics of the present situation. Future images became increasingly blurred as the time span is extended, effectively limiting a scenario to 30 years.

The amalyst may wish to assemble a group or experts. each familiar with a major dimension of the system, though the scenario may be developed using a Delphi (DLP. page 168).

TOOI OUTPUT

The scenario technique generates a marrative description of the future state(s) of the system. The format is the base system stare description and one or more intermeduate imanges, together with a description of the external context and the driving forces behind the forecasted changes isee fugure 1 .

One or more scenarios may be constructed:

1) Several alternative state scenarios for a single point in time, or
2) One (or perhaps twoy transient scenarios which forecast the effects of different policies on the evolution of system conditions.

These scenarios may be compared and contrasted for review by decision makers and interested parties.

IMPORTANT ASSUMPTIONS

A scenario is constructed by extrapolating future conditions from present conditiens and foreseeable driving

FIGURE 1
A Simdard Format for a Scenario

forces for change. Consequently, a fundamental assumption concorning dynamic system behavior is implied: a system exhibits current conditions which are the result of all the previous current and prior forces on the system. However, social systems are self-organizing and anticipatory, and the current system state may be influenced by anticipated future conditions. Accounting for these factors in scenario construction requires that the analyst be aware of the possible effect of anticipated actions on the fiture state of the system.

METHOD OF USE

GENERAL PROCEDURE

The following steps describe the development of a transient scenario and are based on the work of Durand (1972) and Gerardin (1973):

1. Construct the basc systeri state.
1.1 Idenitity the major subgroups in the base system.
1.2 Idemtify the atribues of the subgroups.
1.3 Chuose one of the ateributes as the driving force for change in the systera.
2. Identify the external context.
2.1 Formulate lypotheses about the constraints on change in the base system state.
2.2 Consider constraints which may change during the cime span of tine system.
3. Develop the progression to the first intermediate image-
3.i Identify any trends the interaction between attributes of the base systena for time interval n. wheren is typicatly 5-10 years.
3.2 Adentity any changes in the external constraints for time intersaln.
3.3 If ahternutive or compering trends are likely. construct an intermediate image at cime $t+n$ for each major trend.
4. Construct the intermediate image-
4.1 Using the dimensions and atributes identified in step 1 . describe the likely system state or conditionsat timet + ne
4.2 Tane into account the forces for change, the external constraints. and the trends internal to the sysrem.
5. Repeat steps 3 and 4 until the desired time span has been covered.
5.1 The last intermediate image becomes the new base system state.
5.2 To progress to the next intermediate image. consider changes for the interval from rime $t+n$ to timet $\frac{1}{2 n} 2$ etc.
5.3 End the scenario with the last intermediare image.

If a normarive scenario is being developed, the procedure in step 4 is inverted. Instead of predicting the intermediate image the analyst tries to identify the alternative actions or policies that are necessary to achieve a desired system state. This is typically an iterative process, where first one set of policies, the internal trends of the system and the external context, are used to forecast a likely progression. The discrepancy with the normative system state is then used to indicate altenative policies undil the desired and the predicted intermediate image merge.

EXAMPLE

A scenario was developed for the cattle industry in the country of Temasek. The goal was "to improve the çuality of life for all Temasehians." Two criteria indicate achievement of this goal: a decrease of nutritional deficiencies among the popalation, and an increase in toreign eschange.

The base system state was described:
Four subgroups have been idenrified: the herdsmar, the middempern, the meat-paching industry and the comsumers rat beef The herdsmen are gencratly nomadic and own 90 percont ci the cattio in Temasch. Catrle breedins and fecding practices are moflicient. The nomads lave a strong whotional attactement to thecir catde as they equate the owrership of cattle with prentige.

The hetdmen sell their cattie tomidelemen. The catele faches consumets aiter going through several levels of maddlemen. thon inflating the price of bect.

The mat-packing industry is sfanall at present but is wowned by a big multi-national company. The ber is packed manly for caport...

The atributes of the subgroups were the value system of each subgroup, the economic hathages between the subgroups, and major institutions. The meat-packing industry was selected as the driving force for the scenario because it wanted to increase its growth rate.

The external context may be described as:
There will be maintenance of favorable trading conditions with the developed commajes. No adwerse weather conditions will occur. . . .

Starting with the base and external context. the progression was formulated to give th, following scenario:

It is the vear 1977. The demand for bent developed coumerivs is seen to inctease greatly over the next seven years. To meet this demand a multi-nationa company invests 20 milion dellars in a meat-packing plant geared for both domestic and owerseas womsamprion of becf.

Educational efforts are carried out to malie the trerdsturn settle and learn better cattle breeding and feeding practices. This wilh ensure a regutar supply of beef for the meat-paching plant. There is considerable eesentment by the herdsmen. Sinee only a few herdsmen react positively to the cfforts, the herdsmen are not allowed to graze on land wherever or whenever they wish thus forcing them to settle.

By 1982 the meat-packing plant has been estabished and mosit herdsmen have reluctandy serted. The multi-national compary pays the hardsmen high prices for their cartle. The midelemen find themselves being forced out of their maditiona? supply lings. The middlemen, who handie many foodstuffs other than beef, organize into a cohesive unit and in 1985 go on strike. There is mass hoard-

 scrutinl foxdictatio. . .

Several sucit sectarios were formulated ber revew and evaluation by the decision maker.

THEORY

Scenarios are constructed based on a phanming phohesophy which might be called "futures-creative" (iotardin. 1973. Scenarios are effective decision aids it the devisions
 be designad which is in line with statedgods. A fueure will not be accepted if it is simply atn exurapolation on exien sion of past events.

Secharios have been used widely and are espectally use ful for policy making. Kahm and Wiener (1967) constructed scemarios for intermational political systems. Durand 1972 , and Gerardin (1973) recorded seweral applications in France including regional development planning. Kraemer : 1973 cites a study in urban plammes. Rrowa (1968, describes political wenarios dome at the Deparment of Delense.

BIBLIOGRAPHY

arown, Sevorm. -Secnarios in Sysemb Atalysis." An Systemes Ahatysis and Policy Phuming: Applications in Defense, edited by E. S. Quade and W.L. Boucher. New York: American Elswier, 1968.

Durand, Jacques. "A New Method for Constructing Scenarios." Futures (December 1972): 325-30.
Gerardin, Lucien. "-Study of Alternative Futures: A Scemario Writing Method." In A Guide fo Pructical Techawlogical Forecasting, edited by Janes R. Bright and Milion E.F. Schoeman. Englewood Cliffs. N'.J.: Prentice-Hall, 1973. pp. 276-88.

Kahn. Herman, and Wiener, Anthony ?. The Year 2000: A Framework for Speculation on tite Next Thirty-Three Years. New York: Macmillan. :967.

Kraerner, Kenneth L. Policy Analysis in Local Government: A Systems Approach to Decision Luking. Washingtom, D.C.: International Ciry Management Association, 1973.pp. 128-32.

Delphi

PREREQUISITETOOLS

None.

USAGE

PURPOSE

The Delphi is 2 group process technique for eliciting, collating, and generally directing informed (expert) judgmens towards a consensus on a particular topic.

USES

The Delphimay be used in:

1) Establishing goals and their priorities.
2) Identifying the dimensions and the astributes of a problem.
3) Providing forecasts (e.g., identifying future developments and their effects).
4) Clanifying positions and delineating differences between group members.
5) Gathering information from a group whose members do not meet face-to-face (either by choice or practicality) and wish to retain their anonymity.

SHORT DESCRIPTION

The Delphi is a method whereby individuals are allowed to focus on and debate issues anonymously. The
study is typicaliy conducred by mail through several rounds of questionnaires (QTN, pare 19). The results of each round are coliected, collated, and analyzed by a design team. Based on this analysis. questions for the subsequent round are developed. The Delphi gerexilly promotes convergence of opinions, although it ma $\underset{\xi}{ } \bar{F}^{-}$-ovide the basis for disagreement.

ADVANTAGES

1) The anonymity provided by the Delphi precludes some undesirable aspects of face-ro-face communicanion, such as dominance by certain personahities and inhibition of expressiom.
2) A Delphi participant may respond with opimions which more truly represent his or her feelings.
3) Individuals who may not otherwise afford the time required for a group meering may participate.
4) With the Delphi, a large heterogeneous group can participate on an equal basis.
5) The Delphi is obviously useful when the respondents are geographically scattere:-.

LIMITATKONS

1) The Delphii is precluded when there is a limited time available to aggregate parricipants' judgments, because of the delay in gathering and assimilating responses.
2) The Delphi should not be used with individuals who have difficulty reading or expressing themselves in written communication.
3) High participant intercst and commitment is assumed or the quantity and quality of responses decreases with successive rounds.
4) Desirable features of a group mecting, such as instant communication and intellectual stimulation, are compromised.

REQUIRED RESOURCES

LEVEL OF EFFORT

The design team will have to spend a significant amournt of time designing questionnaires and analyzing completed questionnaires. Integration between the decision maker and Delphi design team is necessary to ensure that we goals or requirements of the decision maker are understood by the design team.

SKiLl Level

The design team must be able to establish unblased guest:onnaire designs which relate the Delphi exercise to its purpose (see QTN, page 19). The feedback of comments and reactions to the respondents should be succinct and representative withour reflecting the bias of the design team. Members of the design team who are knowledgeable in the subject matter greanly facilitate this crucia! process.

TIME REQUIRED

Approximately six weeks are reguired to complete ar Delphi exercise which consists of four rounds of questionnaires (see figure 1). Since eight days are allowed for each set of responses (inciuding three days for dunningi. she Delphi requires only about two weeks of actual effort.

The continual motivation of the respondents is important in order to get a quick response and good return percentage. Consequently, the design team needs to minimize the delay between receip of questionnaires and transmitcal of the next one to participants. Analysis of the returned questionnaires and design of the subsequent questionnaires should begin immediazely rather than waiting until the expected return for each round.

DESCRIPTION OF TOOL

DEFINTTIONS

1) Durning is the process of recontacting participants who have failed to return their questionnaires.
2) A target group is a set of persons with certain common characteristics, e.g., all experts possessing knowledge about a particular problem, of farmers with land in the same river basin.

KEQUIREI INPLTS

Since Delphin is a tool to a id dection making. it will be most effective if the decision mather is invelved throughout the process.

Respondents should be con- dered who:
1; Hawe special experience or howledge toshare:
2) Representa cross-section of opinionsiand
3. Can be motivized to participate.

The size af the desige team will wary from two to five. in direct propartion to the size of the respondent group. Delbecy, ef all. (1975) found them, bin their experience. 30 wellechosem respondents were sufficient: few additionall ideas were gemerated by havimg more participants. Abour 15 ow of the sefected participamts will dechime.

For the questionnare wo commumicate shaccessinnlly. the quescions should:

1. Beas short as possible.

2 Be adlapted to the languaye mose familiar to the respondent's area of expertise (c.g. healefh or education:.
3. Elicit useful responses at the level ot abstraction vequired ines., gemeral vs. specific:-

TOOLOUTPUT

The output of the Deliphi exercise will gencrafly be a convergence at opinion.

One sype cif ontput may be a frequency distribution or histogram of forccasts (see HIS, page 131). For example. the respondents may estimate what the legal minimum wage should be for the country of Temasel in 1980 in order to ensure adequate housing and food for citizens. The frequency distribution graph in figure 2 indicates that an interval of $\$ 75$ to 5100 was favored by most respondents as the desirable minimum wage. It also shows that a great majority of the respondents would not set a minamum wage below $\$ 75$. The mean and srandard deviation may be compured for the responses and added to the graph (His, page 131).

Azother type of outpur is the ranking of responses to a particular question. For example, the respondents may list the problerns they perceive in the health field. The output is a vote on the importance of the problems.

METHOD OF USE

GENERAL PROCEDURE

Deibecq, et al. 1975; recommend rate the following steps be followed in designing and imperenenting a Delphi exercise. This procedure is only one way in which a Delphi exercise may be carried out. The number of rounds of

FIGURE 1
Schedule for Delphi

Activitics

1. Develop problem statement
2. Select respondents
3. Contast respondents
4. Develop questionnaire $\# 1$ and test
5. Type and send out
6. Kesponse time
7. Dunning time (ff used)
8. Analysis of questionnaire $\# 1$
9. Develop questionmaire $\# 2$ and test
10. Type and send out
11. Response time
12. Dunning time (if used)
13. Analysis of questionnaire $=2$
14. Develop questionnaire $\# 3$ and test
15. Type and serd our
16. Response time
17. Dunning time (if used)
18. Analysis of questionnaire $\# 3$
19. Develop questionnaire 4 and test
20. Type and send out
21. Response time
22. Dunning time (if used)
23. Analysis of questionnaire 4
24. Prepare report
25. Type report and send out
26. Prepare respondents' report
s7. Type report and send out

Minimum Tinc Required
$\left.\begin{array}{l}\text { I/ day } \\ \because \text { day }\end{array}\right\} \quad$ one day

1/day
1 day
5 days
3 days
1/day
is day $\}$ twodays
I day
5 days
3 days
1s day
thay twodays
1 day
5 days
3 days
ta day
1/2day twodays

5 days
3 days
1 day
1 day
1 day
1/2 day
1 day

The minimum time is 47 days, allowing 8 days (including dunning) for each response.

SOURCE: Andre Delbecq et al., Group Techniques for Program Planning: A Guide to Nominal Group and Delphi (Chicago, ill.: Scott Foresman, 1975), p. 87.

FIGURE 2
Frequency Distribution of Estimates afininimum Wage $^{\text {Bin }}$

Estimated Minimuma Wage (S)
questionnaires, the types of questions, the responses required, and the analyses performed will vary depending on the type of application and the actual situation.

1. Determine the basis for a Delphi.

1.1 A statement of objectives or problems is developed by the decision maker in cooperation with the rest of the design team.
1.2 Target groups of respondents (e.g., agricultural economists, engineers, planners, etc. in an agricaltural development exercise) are generated by the design team. Names of potential respondents are then identified.
1.3 Telephone or personal contact is made with the potential respondent. The respondent is informed of the objecrives of the Delphi, the nature of the respondentgroup, the obligations involved, how long the Delphi will take, how the Delphi works, and how his or her participation will be mutually advanrageous. The safeguards on anonymity may be explained.
2. Design questionnaire $\ddot{\#}$.
2.1 The initial task of the respondents is generally to gene-_te a list of items. Examples of such
items would be barriers to delivery of services. perceived problems, or potential developments.
2.2 The design team formulates questions which are consistent with the statement of objectives (see Questionnaires, QTN. page 19).
2.3 A short cover letter outlines the task and reiterates the agreement reached in the initial contact with the respondent in step 1 .
3. Solicir responses for questionnaire -1 .
3.1 If possible, the questionnaire is pretested to ensure that questions are not misinterpreted. The group may be composed of several typical respondents from the Delphi group.
3.2 The questignnaire and cover lecter are distributed to all respondents. Requrn of the complited questionnaires should be prearranged (e-g., by enclosing self-addressed stamped envelopes).
3.3 If sufficient questionnaires are not returned by the specified date, dunning, or arefully composed reminders, should be directed to the Delphi group. A response rate of 85% is usually considered acceprable.
4. Analyzequestionanaire $\overline{=1}$
4.1 Kesponses are copied and cut into slips so that each member of the design team has a set for cach question. For example, for the question. "What agricuitural developments do you foresce for Temasek in the next 15 years?" the slips may read "tinore effective fertilizers." "lining of irigation ditches with concrete,"etc.
4.2 Each member sorts the response items for all questions into stacks representing similar responses to a question. The stacks are then labeled, eg.. for agricultura: development. "Irrigation." "Education," "Tccinology."
4.3 A member of the team reads his stack of labels. Through group discussion, the design team agrees upon categories of responses.
4.4 Response slips are reordered according to the category labels. Obvious duplications are climinated, and closely related items are combined. Statements expressing the resulting items within each stack are formulated. The result of this effort constitutes the list of items for questionnaire $\# 2$.
5. Design questionnaire \#2.
5.1 Questionnaire $\# 2$ should help respendents understand, clarify, criticize, and support items identified in questionnaire \#1
5.2 Several things may be asked of the respondentHe may b: asked to forecast wher a development may take place or if the items identify potential future developments. He may be asked to identify what impacts such a development might have, or he may be asked to vote on the items. The respordent is encouraged to provide comments, e.g., he may state why he thinks a problemi is important.
5.3 If the respondent is to vote on the items, the rank-order procedure may be used (see Nominal Group Technique, NGT, page 14).
6. Solicit responses for questionnaire $\# 2$.

Repeat step 3, including pretest and dunning if necessary).
7. Analyze questionnaire $\# 2$.
7.1 The comments for each item are placed in stacks (see step 4) to be summarized and comnmunicated to the respondent in questionnaire \#3.
7.2 If voting has taken place, the results are aggregated and the items are ranked according to
their votes. If quanticative forccasts have been made. a frequency distribution is constructed (see figure 2) and distributed to the respondents. in the next questionnaire (see Histograms. HIS, page 131).
7.3 The responses are revirwed to see if they are useful in achieving the objectives set up in step . If necessary, the next questionnaire can be altered by cncouraging a different kind of comment or by making responses more specific.

8. Design questionnaire $\# 3$.

8.1 This questionnaire aims to explore disagreements identifical in questionair: $=2$.
8.2 The results of step 7 -the ranking of the iterns. the aggregated horecasts, and the summariced comments-are given te the respoidents.
8.3 The cover letter informs the respondents that they should react to any questions are criticisms and should lobty for or against items they feel strongly about.
9. Solicit responses for quescionnaire $\# 3$.

Repeat step 3, though a pretest is selidom necessary.
10. Analyze questionnaire -3 .

The design team reviews the roxtions to the comments and summarizes them in a procedure similar to that outlined in step 4 .
11. Design questionnaire 4 (optivnal).
11.1 This is a final attempt towards consensui.
11.2 Questionnaire $\# 4$ is similar to $\# 3$ eac-pt that is also provides a summary of respondeets' reactions.
11.3 The respondents consider the final reactions and are asked to provide a vote or grantitative forecast similar to that indicated in questionnaire $\div 2$.
12. Solicit responses to questionnaire 4 (optional). Repeat step 3, omiring the pretest.
13. Analyze questionnaire $\# 4$ (optional).

The rankings are rotaled for each item to identify its importance. Where forecasts were made, final frequency distributions are constructed.
14. Closure.

The participants are informed of the results to provide a sense of closure.

EXAMPLE

In dealing with a country's economy, the decision maker determines that continued inflation is major piublem. To comhat the problem, he must idenafy the factors causing inflaticn and its effects. Target groups tray be economists, corporation heads, consumer advocates. trade wnion leaders, and agricultural experts.

Questionnaire $\# 1$ asks, "What are the factors which may contribute to inflation over the next five years?" The respondents answer by listing several items tiney feet are important:

> Increase price of ox
> Strengthen border defenses
> Shortage of rice

Questionnaire ${ }^{-2} 2$ lists all the responses, and sach ret spondent provides comments and votes by giving each item a numerical value which corresponds to the importance of that item,

Item	Vote
Increas price	3
of oil	
Strengtinen defenses on furder	0
Shortage of rice	4

Commaterts
If new sources of ail are fornd, price increase may be less
High likelithood of military aid fromi arbother comary
import prices and nusuber of tonsof rice imported will increase

The responses for questionnaire $\# 2$ are analyzed. The votes are aggregated and comments are summarized. Questionnaire +3 asks for reactions to the aggegated votes and comments. One respondent's reaction may be:

Item	Vore	Comment	Reacrion
Strengthen	153	High likelihood	The other country
defenses		of military aid	£ailec co support
on border		from another	ou county last
		country	year despire
			previous pledges

Questicnnaire $=4$ then circalates all scactions and asks for a final vote.

THEOR V

A rumber of theoretical argmuents have been made to support the clainn that the Delphin method ts superior to conventional uses of groups in reoblem solving or forecasting. In 19e4, Gordon and Fielmer haid the foundutions for the Deiphi. Delbecu, et al. (19-5, cumpared the character:stics and performances of interacting, nominal. and Delpti groups. Dalkey (1969) provided enuparical arguments for the relative accaracy of Delphin estimates compared to individual or face-re-face groupestimates.

BIBLIOGRAPHY

Dalkey, N. "An Experimental Sudy or Group Opinion." Futures 1 Uume 1969): 282-88.

Delbecq. Andre: van de Ven. Andrew: and Gustafsom. David. Group Tectnigues for Program Ploming: A Guide to Nominal Group and Delphi. Chicago, ill.: Score Foresman. 1975.

Gordon. Theodore J., and Helmer, Olaf. Report on a Long-Runge Forecasting Stuigy. Kand Paper P-2982. Santa Monica, Calif.: Rand Corporation. September 1964.

Helmer, Olaf; Gordon, Theodore I.; Enzer, Selwyn; de: Brigard, Ratl; and Rochber, Richard. Development of Long-Range Forecasting Methods for Connecticut: A Summary. IFF Report R-5. Middletown, Conn.: The Institute for the Future. September 1969.

Martinu, Joseph P. Technological Forecasting for Decisionmaking. New York: American Elsevier, 1972, pp.18-64.

VIII

Analyzing Projects

Cash Flow Analysis
Discounting
Net Present Worth
Benefit-Cost Ratio
Internal Rate of Return
Impact-Incidence Matrix
Cost-Benefit Analysis
Cost-Effectiveness Analysis

The financial and cconomic analysis of projects requires the synthesis of many techniques. The primary process is the weighing of project benefirs against the costs (CostBenefit Analysis). The time stream of benefits and costs must be considered (Cash Flow Analysis) and weighted (Discounting) in order to make project alternatives comparable. Distribution effects are an essential factor in a systems approach to economic amalysis (ImpactIncidence Matrix). Various criteria are used to decide the merits of projects (Net Present Worth, Benefit-Cost Ratio, and Internal Rate of Return).

The effectiveness of projects (or systems) is weighed against cests (Cost-Effectiveness Analysis) to evaluate the degree to which vanious alternatives achieve given objectives. This is a criterion not unlike those used for analyzing benefit-costs, except that benefits are not valued in monetary units.

Cash Flow Analysis

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

Cash flow analysis determines the difference between the incremental costs and the incremental benefits for each year of a project in order to evaluate its financial viability.

USES

Analyzing cash flows:

1) Provides an overall picture of the costs and benefits accruing from a project over the estimated life of the project.
2) Enables calculation of the total cash flow or the net incremental benefit of the project.
3) Indicates any negative cash flow years which may affect project viability.
4) Provides the basis for calculating measures which account for the time value of money (e.g., Ner Present Worth, NPW, page 188; Benefit-Cost Ratio, BCR, page 194; and Internal Rate of Return, IRR, page 200).

KEY DEFINITIONS

i) fracremental costs and benefits are computed by subrracting the "withou" project" values from the "with project" values. They represent the changes the project is expected to produce compared to what would otherwise occur. Note that this is not the same as computing "before" and "after" project values, since conditions may be predicted to change whether or not the project is implemented (see Sirker. or Gittinger. 1972).
2) Annual cash flow is the net incremental "benetits" for each year of a project and the difference between the incremental benefirs and costs.
3) Total casfi flow is the sump of annual cash flows for the life of the project. It is an undiscounted measure ${ }^{*}$ of the aggregate change expected from implementing a project.
4) Fincucial andysis is done from the viewpoint of the individual, group, or business which will directly gain on lose because of the project. All costs and bentits are valued at market prices.
5) Economic analysis is done from the viewpoint of the national govermment and the economy. Taxes, interest, custom duties, etc., are excluded from the calculation of costs and benefits, and labor and foreign exchange may be shadow-priced.

[^12]FIGURE 1
Graphic Illustration of Cash Flow for a Project

6) Shadow prices are adjusted marker prices which reflect the true benefit or cost to the economy, cug. the diftference between che market (subsidized) price of fertilizer and the world price the govemment must pay.

SHORT DESCRIPTION

Cash flow analysis is a central part of the finameial and economic evaluation of projects. Distinguishing berween "wirh project" and "without project" benefits giras tine incremental benefit (Gittiager, 1972) and the changes in benefits that are projected during each year of the project. Incremental costs are computed using the same distinction.

The anandal cash flow is the difference between incremental benefits and incremenval costs in that year. A typical project has an early negative and a later posinive cash flow when the incremental bencfits exceed incremental costs (see figure 1).

Cash flow andysis for developmens projects distinguishes between financial and economic analysis (see Cost-Benefit Analysis, CBA. page 212). This distinction affects the identification and estimation of project costs and benefits. Otherwise, the subsequent computation procedure is the same.

ADVANTAGES

Cash flow analysis shows the changes that the project is expected to bring about in boch increased bemefits and increased costs. There may be changes in the amounts of benefirs or costs as well as in the soturces (USDA. 1971). The project may replace an existing service or production arrangement whose costs and benefits represent the "without project" financial situation.

The total cash flow for a project gives am indication of the performance of a project during its life.

A negative annual cash flow may indicate financing problems for the project, and credit may meed to be arranged.

LIMITATIONS

The annual cash flow of a progect is an aggregated measure of the complex interaction among gross benefits and costs from "with project" and "withour project" estimates. As a consequence, many assumptions about individual project-induced changes in the enviroment may be lost in the aggregate data.

The total cash nlow for a project fails ro account for the time value of meney. Cash fiow analysis does not account for bemefits or costs which canner be assigned a monetary value (e-g, good will, customer confidence, or a farmer's sense of security).

REQUIREDRESOURCES

LEVELOF EFFORT

Casly flow analysis demands externsive data gatherithey and forecasting of costa and bementes. "Thecu cushes should not be underestimated. particularly sunce custin thow analysis is msually the first step in a sequerce heading to do analysis of the cemomie and manciall teasibility of a projece.

SKILL LEVEL

Skills in casin accournting. batunced by the ability ro judge tuture disbursememts, are essentiall. If datta are uswillable, the subscquent computations are rather mechanicall. But at all times the meaning behind the figares mase temper their use. This is sudourbtedly a skillily which must be learmed from amalyzing related projects ini similar environments.

TIMEREQUHRED

Several days to seweral weeks may be required for data gathering. A longer period :r mecessary if a survey is involved SVY, page 36). The analysis showld not require more than a few hours.

SPECIAL REQUIREMENTS

Budgetary data and computation dewices fe-g.. band calculators are useful.

DESCRIPTION OF TOOL

RequIred INPUTS

Cash flow analysis requives an estimation of costs and benefits over the life of a project. Where accouncing information is available and reliable. the determination of capitall and operating costs and projected profirs is straightforward. However, the indirect costs and benefits which may not be casily derived require considerable astuteness and imformation-gathering.

TOOL GUTPUT

Cash flow analysis gives a partern of benefits and costs which can be aralyzed directly to influence investment decisions figure 1). For example, if a casln fiow in any year is negarive, the project may have to be redesigned or credit may have to be provided. Typically, however, the data will be used to compute oxher criteria of economic feasibility, e.g., the Net Present Worth (NPW, page 188) ard the Bene-fit-Cost Ratio (ECR, page 194).

LMPORTANT ASSUMPTIONS

It is assumed that the relewatat costs and benefte bave been identfice and guanifice in monetary mniss. Where this is irmpossible. the casly fow artalysis gives ondy an abbrenated picture of an inwestmant decisiom. Other riensures, sucti as Cost-Effectiverics Aralysis (CEA. Page 219), must then be used.

METHOD OF USE

GENERALPROCEDURE

1. Identify the cost and bemefit romponemas of the projiect. 1dentify the target population - the people who art: to directy benefit from the investrment or projec isec Impacr-Incidence Matrix, IPX, page \%..7;
1.1 ist the costs which will be chatrgud as a reswitu ot the project. These inciude changes in the cosis ot goods. services. labor, and mathagement idemtitud by contrastitag the "whth project" and the"without project" siftation. The "withowt projuct* costs are zero if the inwestment is mos replacitig a cument practice or productive maturprist.
1.2 List the categories of benefits which will ber changed as a resuli of the project. Increased prom duction efficiency. higher yields, and more mar ketable products comtrast *widh project" botorita with the "without project" bemefits.
1.3 If the cash flow andalysis is part of a fimaracialdandysis of the project, ideraify zace costs and benatits which affect the individual, cooperativer group. enterptise, or targer pophiation. These inchudr taxes, the subsidized prices of inpurts, and the prevailing market prices for vields.
1.4 If the cash How amalysis is part of an ecomonnic analysis, identify the costs and bunetits ion the carger population which represemt a return or cose co the whole sociery. Tavesare exidnaded, and the unsubsidized price of inputs and the world prices of exportable produce are used. Shadow priats must be determined for imported goods and labor (see Gittinger, 1972).
2. Determine the life of the project or the sime span of analysis.
2.1 Estimate the effective life of any major capial equipment. e, zm tactors, pumps, buitidngs.
2.2 Estimate the probable cime span for the fonlif realizavion of benefits.

[^13]

 ece yeatr.

 yow un whiththeg occur.

 prokerat It mayy be necessary to conducta survey to

 proyect for cach yrar.

42 Suiberact the wross "withour projuct" cests trever

 whie as athange due to Ithe projec:
 benefors.
3. 1 Compate the ammat cash flows by subtran engethe incremiental costs fromithe imercmentaill beractits to give the ret incremerntall bemenit.
 progect by surmining the ammeal cash thows. The compntarions in steps 4 and 5 are illustrated in figure 3.
6. Diagram the anmoal casis tlows oprionalt.
6.1 Plot rime inctememtal costs catsin onstlowe and benefits cans indont: see tygure 1 .
6.2 Phot ithe inef incrememall bemefirs anmual cah How to reveai the fluctuations an bemetits which may occur throughore the project dife. These graphs art particulariy useful in compurimg the inEernal Rate of Return, IRR, page 200.

FIGURE 3
Compusus the Net Incrmental Benefit or Cash Flrow Resultitng from a Progect

	Citase Coses	Gross Benufts	Nut
With troject	C	E	B C
Withomit Project	C^{\prime}	\%"	s* ${ }^{*}$
Anetumeat	$C \quad C^{\prime}=C$ Bermmont Coxt CASH OUTFLON	$82 x^{2}=\mathbb{x}$ CASHENFL. ${ }^{\circ}$	$\mathrm{E} \therefore$ Sue Incrememall yendit CASHOUTFLOW

EXAMPLE

A small farmer in Temasek average folding of sewem acresj has an average amal production cost of 4100 O lunis. the Temaseh curmency note). These costs include kand preparation, cultivation. secd, and other production inpats. The carrent ammal benefits were 0160 . giving the farmer anet protit of 060 peryear.

The Ministry of Anricutrure wanted ro introduce mindll walking tractors (Give to ten horsepower). A techanical analysis of power requirements wacicated that such atractor would enable the farme. In altivate more intensiwely (ce. doubts cropping) and to expand this holdings. int creasing his production by 200 ere (see Balis, 1974). This would eventually lead to a 10360 rise in ammal benefirs with corresponding production costs of th30." Trector cost wete imitially a 6500 investment with to 50 for aperation and maintenance per year. The estmated life was ten years with no sulvage value.

The Minisury of Agriculture field staff prepared a finamcial cash flow analysis from the viewpoint of a typued farmer see flyare 2), by acounting convention, all costs and receipts were assumed to be paid at the end of each year. For example, the purchase price of the tractor was listed as an cxpense tor the first year.

A diagran of the annual cash flows was constructed to clarify the components of the net incremental benefits. The analyst noted that, in the first year, the farmer would have a negative cash flow of $\$ 380$. Therefore, many farmers needed financial assistance to purchase the tractor. Feasible loan arrangements were included in subsequent cash flows analyses. The interest costs of borrowing money were entered in the gross "with project" costs.

[^14][^15]The nea ancremental berefies were estimated at 10700 aver the tern-iwur tractor life. Since the farmer wewld make W700 more than the wowld otherwise, the project seemed to be justifined.

The cconomiz anatysis of the furmer'. uractor purchase option would look at the targes group as whole and the inpact of rits ractor purchases on the economy as a whonc. Tuis andysis involves many assumprions abour the cffective shadow peices for meecsaty farme inpurs eg. fiel for the tractorsand spare partsk, the cost of llabor. and affiects on foreign exchange. This is beyond the scopit of a non-ecomomist. The reader is referred to the many texts on ecomomic amalysis ex. Gitcinger, 1972.

THEORY

Cash fiow analysis concepralizes a stream of casin flowing ous ot a propict or enterprise and an incoming stream. The casin oneflow past for capitall goods, scrvices. management. and latwor for the profect. The cash inflow is the bemefit streani or ferams to the projece. The mer cash tlow, she difference berwern casm ntlow and outfow. describes the dymamic transuctions of ehe project at yearly intervals.
\because he description of cash flow analysis is drawn largely from Girringer 19^{-2}, amd the Economic Development Institute of the World Bark. The distinction betweem "with project" and "withous project" situations is less critical tham the difference berween financial and economic analysis. Aín mecessaty. ""winhour project" values can be incorporated into the determination of the benefits expected trom the project es., reduced labor costs brought abour by a product can be treated as an incremental bemetis of the project\%.

However. :he difference betweem financial and economic analysis sigmificantly affects the inputs to the cash

flow analysis and the conclusions which may be drawn from the results. Adjustment of market prices by using shadow prices or some other multiphier is a complex process (see, for example, Bruce, 1976: Lirtle and Mirices. 1968: Squire and van der Tak. 1975; and Weckstein, 1971-72) and is the subject of some debate.

BIBLIOGRAPHY

Balis, Joha S. The Utilization of Small Tractors in futegrated Agricultural Development: The Tractor Evaluation Project Applied." Cornell Agriculturail Economics Staff Paper No. 74-15. Hthacia N.Y.: Departmerat of Agricultural Economics. Comell University, June 1974.

Bruce, Coinn. "Social Cosr-Benefit Analysis: A Guide for Country and Project Economists to the Derivation and Application of Economic amd Social Accoumting Prices." World Bank Staff Working Paper Nc. 239. Washington, D.C.t International mank for Recomstruction and Development. August 1976.
 ects. Ealtimore. Md.: Johms Fopkins Linwerwint Press. 1972.
 ect Analysis in Developing Curntries. Vol. 2. Paris: OECD Dewhiopment Cenerr. 1968.

Sirker. Isving A. "Cost-Benefit Analysis: The Teclarique. lis User and Limitations." Praper prepared for the Economic Dewelopment Hastitute, World Baik. Whather son.D.C...n.d.

Squire. Lyn, and wan der Tall, Herman co. Hewmemaic Andyest of Projects. A World Bank Rescauctu Publica tion. Sallimore, Md..: Jolms Hophins University Pres. 1975.
 jington, D,C.: USDA. 1971.pp. FAL-67.
Wechstein. R. S. "Shadow Prices and Project Evaluatiors in Lessedoviloped Countries." Fconomic Dewher mentand Cudtwul Change 20 (1971-72;-474.4.4.

Discounting

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

Biscounting provides a basis for analyzing and comparing future streams of costs and benefits by reducing them to their equivalent present worth

USES

1) Future payments, either single, a uniform series annaity; or an irregalar series can be converted to their preseat worth by using diaconom factors compured from an appropriate discosont rate.
2) The difference between payments made now and payments made in the furure can be translated into a constant discount rate to measure the preference for present as opposed to future benefits.
3) Discounting permits inclusion of time preference in analyzing the net value of a single project, and in comparing two or more projects with dissimitar time-streams of costs and benefits.

KEY DEFINITIONS

1) Phesent uorth is the value today of a furure payment.
2) Discount rate is a percentage rate (usually amual) which equates the presemr and the future worth of a paymens.
3. A discosme factor is a fraction berweenzero and one which gives the present worth of one monetary unit spent or received.
\$ Time preference is the general preference of individtals for present over furure receipts and for furdre over present expendirures.
5) Opportunity cost is the cose of committing resources to a particular use as measured by the highest reTurn that could have been obtained by committing the same resources to an aiternative tuse.

SHORT DESCRIPTION

Discounting is a process of converting a single future payment or series of furure payments to their equivalent present worth. The compuration requires specifying a discount rate from which a discount factor may be determined.

Discounting future payments accounts for the time preference for present rather than future benefirs. By dis counting, payments that occur at various rimes throughour the life of a project can be made equivalent to present paymenrs. A complex flow of payments can be converted to a single ner figure, facilitating the valuation of one project or a comparison between projects in a way that reflects cime preference and oppurtamity cost. It is the reverse of the compoundi interest process.

ADVANTAGES

1) Discounting provides a logical basis time prefer-ence-opportunity cost) for comparing payments at vatious times. It facilitates the valuation of a single projece or a comparison between projects.
2) Discounting puts more value on near-term than on distant payments. Since more distant forccasts ate generally less rehable than short-term forecasts. discounting increases the degree of confidence that the analyst may have in his valuation.

LIMITATIONS

1) Establishing the discount rate is a theorerically complex and practically difficult chore. it may be based on the longterm market interest rates on relatively safe investments, e.g. government bonds are investment secur. ities after taxes. Most analysts would argue that this is too low. and the discount rate should be estimated from the opportunity costs of capital DeNeufville and Stafford. 1971). Gittinger (1972. page 90, reports that must countries use discount rates of 8% ro 15% in their analysis, with 12% being used most often. in practice. a high rate is preferable to a low one,
2) The choice of a particular rate will influence the attractiveness of a project and may determine the tanking among alternative prospets. It is often desirable to repeat the analysis with varying discount rates. all of which are considered reasonable on some basis. If the results differ widely, the decision maker should be made aware of the significance of the choice of rate.
3) The appropriate discount rate, like orher interest rates, might be expected to vary over time yet discounting generally treats the rate as a constant parameter. In is of course, possible to use varying discount rates for warying future periods if you have a basis for making such derailed forecasts.

REQUIRED RESOURCES

LEVELOF EFFORT

Discounting can be time consuming. but it is not a difficult task. First, the appropriate discount rate must be determined. Then the discount factor is either computed or read from tables. Finally, the present worth is computed by multiplying the future payment by the discount factor. A pocket calculator and pretabulated discount factors reduce the effort.

SKHLL LEVEL

Establishing the appropriate dicount rate requires some expertise and subyective judgment. The oppormaity cost of capital mesr be essimated. requiring a krowtedge of the best retum trom alternative sources of ineestrmeren.

The rest of the discounting process is ruther mechanical and has a huill-ia self-checking process see Gemeral Procesdure".

TIME REQUIRED

The time required to discount a series of parmentisis a function of 1 the number of payrments. 2 whether they arc winform or irregular, and 3 the avalabitity of calcula tors and discoume eables. This time is insiguiticant compared to the effort and time regrired to essimate the cash flow of futwre payments see CFA. page 177 .

SPECIALREQUIREMENTS

A pocke calculator and a set of discount eables not only speed up the process, they help to eliminate simple ereors in comphtation.

DESCRIPTION OR TOOL

SUPPLEMENTALDEFINITIONS

1: DF $\|T / n\|=$ discount farsor of an amount paid at emd of yearnatr discountrate ω^{2},
 rate for for years.
3) PW \mid rin $\}=$ present worth at discount tate r 雷 on announs paid during n years.

For example. $\mathrm{PW}\left[15^{5 \%} 10 \|=500 \mathrm{DF}[15 \mathrm{~m} \|+120\right.$ ADF [15\% $10!$ is the present worth at a discount rate of 15°; of a single disbursement of 500 units at year 1 and receipts of an annuity of 120 units for 10 years.

REQURED INPUTS

Compuring the present worth requires:

1) The specification of the appropriate discount rate see. for example. Himrichs. 1969).
2. A sabulation of the ftrare payments costs or benefits for each year see Cash Flow Analysis, CFA, page 177 :

TOOL OUTPET

Discounting gives the presene worth of a furure payment or stream of payments. This discounted valuecan be
used to compute financial criteria for project evaluation:

1) the net present worth (NPW. page 188);
2) the benefit-cost ratio (BCR, page 194); and/or
3) the internal rate of return (IRR. page 200).

Any one of these measures may be used in the costbenefit analysis of a single project or multiple projects.

IMPORTANT ASSUMPTIONS

Discounting reflects the preference for benefits now rather than as some later time. This time preference assumes that there is an opportunity cost in waiting to receive the benefits. One cost is the opportunity to invest in an alternative project which will yield a greater return than the amount invested. The second cost is the uncertaingy of recciving delayed payments. The risk increases with the period of delay.

METHOD OF USE

GENERAL PROCEDURE AND EXAMPLES

Discounting a Single Future Payment

1. Determine the discount rate, τ (see Net Present Worth, NPW, page 188).
2. Compute the discount factor, DF $[r / n]$:

$$
\begin{equation*}
\mathrm{DF}[r / n]=1 /[1+[r / 100]]^{n} \tag{1}
\end{equation*}
$$

where
$n=$ number of years hence that the payment will occur
$r=$ discount rate $(\%)$
Or, determine the discount factor from the appropriate discounting table (see Gitringer. 1973).*
3. Multiply the discount factor by the payment amount to get the present worth:

$$
\begin{equation*}
\mathrm{PW}=\mathrm{Payment} \times \mathrm{DF}[r / n] \tag{2}
\end{equation*}
$$

The present worth of a $\$ 200$ payment five years hence was computed for discount rates of $10 \%, 15 \%$, and 20%. At a discount rate of 10%, the discount factor is:

$$
\mathrm{DF}[10 \mathrm{~F} / 5]=1 /[1+(10 / 100)]^{5}=0.621
$$

The present worth is:

$$
P W=(\$ 200 \times 0.621)=\$ 124
$$

The other discount factors are:

$$
\begin{aligned}
& \mathrm{DF}[15 \% / 5]=0.497 \\
& \mathrm{DF}[20 \% / 5]=0.402
\end{aligned}
$$

giving present worths of $\$ 99$ and $\$ 80$, respectively.

[^16]FIGURE 1 Computing the Present Worth of a Serics of Nonuniform Payments

Year	Payment (ar reccipt)	Discount Factor at 20\%	Present Worth
1	(100)	0.833	$(83$
2	100	0.694	69
3	200	0.579	116
TOTAL	0	2.106	(36)

"Negative amounts are shown is the table in parentheses.

Discounting a Series of Nonuniform Payments

1. Determine the discount rate, r.
2. Consurvet a table which lists the year and the payment amount in each year (see figure 1).
3. Determine the discount factor for each year at the appropriate discount rate.
4. Determine the present worth of each yearly payment.
5. Compute the sum of the present worths in order no give a single walue. (Payments may be both negative expenditures and positive receipts.)

Two $\$ 100$ expendinures were to be made in consecutive years in order to receive $\$ 300$ at the end of the third year. The present worth of the three payments was compured by determining the piesent wortin of each payment and summing (see figure 1). Two conventions were used: 1) all payments are assurmed to occur ar the end of the year (which means that the first expenditure must also be discounted): 2) expenditutes are negative amounts (shown in parentheses) and receipts are positive. If the three paymenas are summed, the investor gains $\$ 100$. However, using a discount rate of 20%, the sum of the discounted payments is only $\$ 22$. A higher discount rate would further reduce the present walue of the series of payments.

Discountingan Annuity

1. Determine the discountrate, r.
2. Compute the annuity discount factor, $\mathrm{ADF}[\mathrm{r} \boldsymbol{\prime} \mathrm{n}]$:

$$
\begin{equation*}
\left.\mathrm{ADF}[\pi / n]=\sum_{i=1}^{n} \frac{1}{1} \mathbb{1}+(\eta / 100)\right]^{i} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\sum_{i=1}^{n}= & \text { the sum of terms of index } \bar{i} \text {, i ranging from } \\
& 1 \text { to } n . \\
n= & \text { the number of years for which the arnuity } \\
& \text { is to be paid, each payment falling at the } \\
& \text { end of the year } \\
= & \text { discount rate (Fid) }
\end{aligned}
$$

The annuity discount factor may be computed from the single payment discount factor:

$$
\begin{equation*}
\mathrm{ADF}[r / n]=\frac{1-\mathrm{DF} \mid r / n\}}{r / 100} \tag{4}
\end{equation*}
$$

Or, the annuity discount factor* may be determined from discounting tables.
3. Multiply the annuity discount factor by the uniform payment amount to get the present worth of the series of future payments.

$$
\begin{equation*}
\mathrm{PW}(\text { series })=\text { payment } \times \mathrm{ADF}\lceil r / n \rrbracket \tag{151}
\end{equation*}
$$

A series of five-year-end payments of $\$ 40$ each were discounted to determine their present worth at a discount rate of 15%

The annuity discount factor was computed:

$$
\mathrm{ADF}[15 \% / 5]=\frac{1-\mathrm{DF}[15 \% / 5]}{15 / 100}=\frac{1-0.497}{0.15}=3.352
$$

The present worth is:

$$
P W=(\$ 40 \times 3.352)=\$ 134 .
$$

Discounting a Uniform Series of n Payments Which Have Been Delayed d Years

1. Determine the discount rate, r.
2. Determine the annuity factors:
$\mathrm{ADF}[r / d]$
$\mathrm{ADF}[r /(n+d)]$
where
$n=$ number of yearly payments
$d=$ years before first payment is made
$(n+d)=$ year in which final payment will occur
3. Subtract the present worth of the payments made during the delay from the present worth of the payments as computed from the present to the final paymentin year $n+d$

$$
\begin{align*}
\mathrm{PW} & =\text { payment } \times \mathrm{ADF}[r f(n+d)] \\
& - \text { payment } \times \mathrm{ADF}[r / d] \tag{16}
\end{align*}
$$

A project which has a life of 15 years required an initial investment of $\$ 500$ during the first year. The project will yield $\$ 1,000$ in ten equal paymens beginning six years later. If the discount rate is 12%, the present worth of the investmentis:

$$
\begin{aligned}
\mathrm{PW} & =\$ 500 \times \mathrm{DF}[12 \% 1] \\
& +\$ 100 \times \mathrm{ADF}[12 \% /(5 \div 10)] \\
& -\$ 100 \times \mathrm{ADF}[12 \% / 5] \\
& =(\$ 500 \times .893) \div(\$ 100 \times 6.811) \\
& -(\$ 100 \times 3.605) \\
& =\$ 446+\$ 681-\$ 360 \\
& =\$ 767
\end{aligned}
$$

*The factor is often called the series discount factor or the umitorm series discount factor.

Note: Although present worths of future payments can be summed algebraically, the discount factors alone may not.

THEORY

Discounting is the reciprocal process to compounding an amount at a fixed interest rate. The discount rate corresponds to the interest rate mathematically. However discoumting is used for analyzing projects, the discoane rate does not correspond to the interest ras on investmemts savings. Interest on savings may be muth lower than the retum rate from a project. The discoumt rate is selected to correspond to the highest return avalable from alternative investments. This represents the time walue of money (World Bark, 19/5) as an opportunity cosr. The cost of investments not made the loss of a higher rate of return? figures prominemtly in the evaluation of projects using a discoumted measure of project worth.

It is possible to evaluate cost and benefir streams at any point in the life of the project. Discounting can be used to determine the equivalent worth of payments after the analysis dare. and compounding can be used to determine the equivallent worth of payments occurring before that date. The advantage of using discounting is that the greater weight is placed on cost and benefit estimates in the near future. In fact. the discount factors for discount rates greater than 15% and more than 20 years in the future are negligible. Consequently, these distant extimates (which tend to be increasingly uncertain) figure less in the evalut ation of the project.

BIBLIOGRAPHY

DeNeufville, R. and Stafford, J. Systems Analysis for Engineers and Managers. New York: McGraw-Hill, 1971.

Girtinger, I. Price, ed. Componnding and Discounting Tables for Proigec Evaluarion. EDI Teaching Materials Series No. 1. Washington, D.C. Internacional Bank for Reconstruction and Developmemt, 1973. Distributed by The Johns Hopkins University Press, Baltimore. Md.
Gittinger, J. Price. Ecomomiz Analysis of Agricultural Projects. Baltimore, Md.: The Johns Hopkins University $P_{\text {ress, }} 1972$.
Himrichs, Harley H., and Taylor, Braeme M. Program Buedgeting and Benefit-Cost Amalysis. Pacific Palisades, Calif:: Goodyear Publishing Co., 1969.
World Bank. Cost-Benefir Analysis: The Timse Value of Money. Participant's Manual and Organizer's Guide. Washington, D.C.t Intermatiomal Bank for Recenstruction and Development, 1975.

Net Present Worth

PREREQUISITE TOOLS

Cash Flow A nalysis (CFA, page 177) and Discounting (DIS, pagé 184).

USAGE

PURPOSE

Net present worth evaluates project teet benefits by comparing different time streams of benefits and costs.

USES

Net present worth is used as:

1) A criterion for deciding if a single project should be funced.
2) A criterion for choosing among mutually exchusine projects.
3) An intermediate calculation in determining a project's internai rase of return (IRR, page 200).

KEYDEFINITIONS

1) Discounted cash flow is a single value which represents the present worth of the net incremental benefits estimated for each project year. It iscomputed by discountug annual cash flows at a specified discount rate.
2) Muradlyexclusine projects are incompatible alter-naives-implementing one precludes implementing the
orhers. A projecr's alternarive time phasings may also be analyzed in this manner.
3) Ruatke-ordering is the process of weighting one item against others and them ordering the items by weighton a scale such as importance or priority.

SHORT DESCRIPTION

Net present worth measures a projecr's financial and economic viability by taking into account a time preference for money. The difference berween "with project" and "without project" benefits and the similarly derived incremental costs determine annual cash floves (see CFA, page 177). The net present worth is derermined from the discounted cash flow. Alternatively. computing the difference of the project's discounted annual incremental benefits and discounted ammual incremental cosis gives the net present worth.

An appropriate discoumt rate must be selected in order to estimate the opportunity costs corresponding to delayed benefits and alrernative investments. A positive net present worth indicates that the projected return from the project investment is greater than the estimated opportunity to invest elsewihere.

ADVANTAGES

Net present worth reduces benefits and costs occurring at different times to a comparable basis: the equivalent
value today. This permits comparison between alternatives and provides a decision rule for funding a single project.

Net present worth estimates the amount that discounted benefits exceed discounted project costs.

LIMITATIONS

Investment decisions using net presemt worth as a criterion are often sensitive to the choice of a discount rate. Consider, for example, two projects having identical benefit streams and equivalent total costs. A high discoumtrate favors the project having lower initian investment but higher annual costs; anmal costs are weighted less heavily in the computation of net present worth.

Net present worth gives the size of projected bemetits from a project, but it gives no indication of how well the project uses the capital investment-the return con capiral. Consequentiy, net present worth is not a valid measure for rank-ordering projects when funds are limited Gitringer, 1972, qage 92).

REQUIRED RESOURCES

LEVEL OF EFFORT

The major effort is in compiling the necessary cosrand benefit data (see Cash Flow Analysis. CFA. page 177). The subsequent determination of ner present worth is straightforwatd once the appropriate discount rate has been determined.

TIME REQUIRED

The first stages of identifying and estimatims costs and benefits require the most time. The actual computation is easier with a simple hand calculator and appropriate discount tables (for example. Girtinger, 1973). See Discounting, DIS, page 184.

DESCRIPTION OF TOOL

REQUIRED INPUTS

Computation of the net present worth requires two primary inputs:

1) A description of the ammual benefits and costs for the project (Cash Flow Analysis, CFA, page 177).
2) Information on the opportunity cost of capital in order to determine an appropriate discount rate (see Discounting, DIS, page 184).

TOOL OUTPET

The technique gives a quanticative measure of the gain to be expected from a project measured in terms of its equivalent present worth. This criterion cam then be used for funding decisions. Net present worth is also an inter. medjate calculation when determining a project"simetral rate of return 1 RR. page 200.

IMPORTANT ASSUMPTIONS

The met present worth criserion assumes that bermefis and costs can be discounted at discount rate which revthects the opportumity cost of eying up projece resowrecs tor the lite of the project.

METHOD OF USE

GENERAL PROCEDURE

1. Derermine the incremental benefies and costs for each ycar of the project isee Cash Flow Analysis. CFA, page 177.
2. Spccity the discount rate fsee Discounting. DIS, pages 184\%
3. Determine the present worth of the incremental costs by discounzing each annual cost at the discount rate.
4. Determine the present worth of the incremental benefits.
5. Compute the net prescent worth from the difference:
where $P^{2} W^{2}$ is the presergt worth of incremental bernefits and $P W_{4}$ is the present worth of incremental costs.
6. Apply the criterion to the evaluation of the project:
a. If NPW is greater than zero. the project is accepred.
b) If NPW is less tham zero, the project is not financially acceptable.
c) If NPW equals zerp. the project's rate of return is equal to the discoumt tate fisee Internal Rate of Reruin, $\mathbb{R R R}^{2}$. page 200).
7. When comparing the net present worth for two or more mutually exclusive projects, select the project with the greatest positive net present worth.

EXAMPLE

The annual cash flow for a small farmer tractor urilization project was compured in the Cash Flow Analysis technique (see fagure 2, CFA, page 180).

FIGURE 1
Computing the Net Present Worth: Small Farmer Tractor Utilization-Purchase Option

Year	GROSS Investme $-\ldots-\ldots$	RRME Othe V	L. COS Gross	$\begin{aligned} & \text { Discount } \\ & \text { factor } \\ & \text { at } 15 \% \end{aligned}$	$\begin{gathered} \text { PRESENT WORTH } \\ \text { OF GROSS } \\ \text { INCREMENTAL } \\ \text { COSTS } \\ U \end{gathered}$	GROSS INCREMENTAL BENEFITS (v)	PRESENT WORTH OF GROSS INCREMENTAL BENEFITS (V)	$\begin{gathered} \text { CASHFLOW } \\ b \\ \hline \end{gathered}$	PRESINT WOHTHI OF CASHILOW (1)
1	500	80	580	0.870	505	200	174	(380)	(131)
2	0	80	80	0.756	60	200	151	120	91
3	0	80	80	0.658	5.3	200	132	120	79
4	0	80	80	0.572	46	200	114	120	68
5	0	80	80	0.497	40	200	99	120	59
6	0	80	80	0.432	35	200	86	120	51
7	0	80	80	0.376	30	200	75	120	45
8	0	80	80	0.327	36	200	65	120	39
9	0	80	80	0.284	23	200	57	120	34
10	0	80	80	0.247	20	200	49	120	29
Total	500	800	1300	5.019	838	2000	1002	700	16.4

Net Present Worth a Present Worth of Gross Incremental Benefis Minus Present Worth of Gross beremental Costs $N P W=W 1002 \cdot W 838 \equiv W 164$

FIGURE 2
Cash Flow Analysis: Small Farmer Tractor Utilization-Renta Option
YEARS FROM START OF PROJECT

YEARS FROM START OF PROjECT											
	1	2	3	4	5	6	7	8	9	10	TOTAL
WITHOUT PROJECT Gross Costs	- - - - - Unis (V) (Tenasck National Curency)										
Usual Production Expenses	100	100	100	100)	100	100	100	100	100	100	1000
Gross Benefits	160	160	160	160	160	160	160	160	100	160	1000
Net Benefits (Anmual Profit)	60	60	60	60	60			60	160	0	1600
		60	60	60	60	60	60	60	60	60	600
WITH PROJECI' Gross Costs Production Expenses											
Usual Expenses	120	120	120	120	120	120	120	120	120	120	1200
Tractor and operator rental fee	40	40	40	10	40	40	40	40	40	40	400
Gross Benefits	240	240	240	340	240	240	240	240	240	240	2400
Net Benefits (Annual profit)	80	80	80	80	80	80	80	80	80	80	800
CHANGES DUE TO PROJECT											
Incremental Costs (Casta ouffow)	60	60	60	60	60	60	60	60	60	60	600
Incremental Benefits (Cash inthow)	80	80	80	80	80	80	80	80	80	80	800
Net Incremental Benefits (Project annual cash flow)	20	20	20	30	20	20	20	20	20	20	200

FIGURE 3
Net Presem Worth Calculated from Discounted Cash Flow for Tractor Ctilization-Rental Option

Yaat	Discount factor at 15%	GRoss NCREMENTAL COSTS (1)	GROSS INCREMENTAL BENEFITS (1)	NET INCREMENTAL BENEFITS "CASHELCW\% U	PRESENT WORTH OF CASH FLOW 4
1	0.870	60	80	20	17.4
2	0.756	60	80	20	15.1
3	0.658	60	80	20	13.2
4	0.572	60	80	20	11.4
5	0.497	60	80	20	9.3
6	0.432	60	80	20	8.6
7	0.376	60	80	20	7.5
3	0.327	60	80	20	6.5
9	0.284	60	80	20	5.7
10	0.247	60	80	20	4.9
Tutal	5.019	600	800	200	100.2

Net Present Worth: NPW $=$ Sum of discounted annual cash flows for life of project $=0100.2=$ W100

Computing NPW using annuity discount factor isee DIS, page 184):
$\mathrm{NPW}=\mathrm{V} 20 \mathrm{ADF}[5 \% / 101=20)(5.019)=0100$

The net present worth of the project was to be calculated using a discount rate of $15_{i,}^{\sigma r}$, the assumed opportunity cost of capital. The calculations (see figure i) gave a net present worth of प168. Since this measure was positive, the investment was financially sound.

Farmers in this region also had the option of renting a tractor. The tractor and operator rental fee were estimated at 440 for a ter-year period. A cash flow analysis indcated an annual cash flow of 420 see figure 2). The net present worth for this option was also calculated at a 15% discount rate by directly discounting the net incremental benefits (see figure 3). The net present worth was projected to te 4100 for this option.

Both options had a positive get present worth but the farmer would gain more by purchasing the tractor simce the discounted net benefit is greater.

THEORY

The analytical formula* for the net present worth is:

$$
N P W=\sum_{i=1}^{p}\left[M_{i}-\Delta C_{i} / /\left\lfloor 1+(r / 100) H^{i}\right.\right.
$$

where
x = number of years of the project
$\Delta_{i}=$ gross incremental benefirs of the project for yeari
$\Delta C_{i}=$ gross incremental costs of the project for year i
$r=$ discoumt rate $\left(\mathrm{T}_{\mathrm{s}}\right)$
The formula may be modified to include varying discount rates and inflation factors (Pleischer, 1972). But

[^17]each element is an estimate which requires carefol judg ment by the analyst. The project life, n, must be estimated: the incremental benefits must be estimated and projected, often from spanse data of the "without" project situation. Thesc estimates become more questionable as the project life increases. Finally, one must exercise caution in choosing the appropriate discount rate for the analysis

Nevertheless, net present worth is a popular meams for evaluating projects, partly because it corresponds to the commonly accepted notion of a time preference for money. Tradeoffs with other criteria are disectssed further in Cost-Benefit Analysis (CBA, page 212).

BIBLIOGRAPHY

Flencher, G. A. "Engineering Economic Amalysis in Dewed opimg Conntics. Techons Vanwry-Marcfi 1972 : 27-35.
Gittinger. I. Price. ed. Compounding and Disconmazok Tabtes for Project Evalucation. EDI Traching Materiabls Series No. 1. Washingtom. D.C. Imternational thank for Reconstruction and Dewelopmeme. 1973.
 ects. Baltirnore. Nd.: The Johns Hopiams University Press. 1972.

Benefit-Cost Ratio

FREREQUISITE TOOLS

Cash Flow Analysis (CFA, page 177) and Discounting (DIS page 184).

USAGE

PURPOSE

The ratio of project benefits to project costs evaluates the efficiency of project resource willization.

USES

Benefitcost rario is a criterion for project evaluation which is used ro:

1) Determine if a projecr should be funded.
2) Determine the rank-orcering of several projects.

KEY DEFINTTIONS

1) Rantiondering is the process of weighing one irem against others and then ordering the items by weight on a scale such as importance or priority.
2) Project efficiency is the ratio of project ontpurs to inputs, e.g., the productior rate for a given resource unilization rate.

SHORT DESCRIPTION

Benefitcost ratios are computed by comparing the "with project" to the "without projecs" costs and benefits
(see Cash Flow Amalysis CFA. page 177). The time prefer-enci-opportumity sosis of money are weighed in the computation by distounting the benefit and cost streams (see Discoumring. DIS, page 184). The benefir-cose ratio is the presemt worth of the gross incremental bemefits divided by the presern worth of the gross incrememtai costs.

A bemefit-cosir ratio greater than one mears that the project berefits exceed the project costs when discoumted at the opportunity cost of capital. "The size of the benefircost ratio reflects the efficiency of the project. Rankordering propects according to the bemefie-cost ratio gives the 桹解est prionsy to the project which uses resources most efficiently.

ADVANTAGES

The benefit-cost ratio recuces the investment decision to a single number which reflects the proportion of total Wemefirs to tutal costs. When sotal resources are limited, ramk-ordering projects by the bemefit-cost ratio maximizes the returm for cach investument dollar.

IMITATIONS

The distribution of bemefirs and costs is not reflected in the bencfit-cose ravio. One group in society may bemefir at the cost of other groups isee Inpact-Incidemes Matrix, IPX, page 207).

Prccisely because the bersefit-co it ratio reduces the criterion to a single dimensionless nu niber, the individual esrimtates projections, and assumptions may be lost. Not all benefirs can be quantified. nor expressed in moneary units. Hence, the benefit-cost tatio reflects only the aco nomic aspects of efficient resource unilization.

If the projects are mutually exclusive, the benefit-cost ration may give an erroneous ranking. A project may have a high benefit-cost ratio compared to other projects but a far smaller net present worth. Simee the usual objective is to maximize the net benefit, the net present worth criterion is preferred for choosing between mutually-xcilusive projects (see NPW, page 188).

REQUIRED RESOURCES

SKILL LEVEL

Iudicions use of the benefit-cost ratio requires an understanding of the anderlying assumprions used in the assessment Projects can be erroneously justified by subjective selection of benefit and cost components alternative valuations of the factors and selective presentation of the results. The decision maker needs to recognize the relevance and accuracy of the analytic components.

TIME REQUIRED

The major time is spent gathering data This may in clude surveying the project area to determine the "without project" situation and gathering baselhae data to project the expected benefits of the project isee Surveys, SVY, page 36). The benefit-cost ratio compuration for financial analysis is usually a straightforward calculation. An economic analysis requires more time as additionall factors must be estimated (e.g., shadow prices for labor, foreign er change, etc.).

SPECLAL REQUIREMENTS

A calculator and discounting tables simplify the comt putation procedure.

DESCRIPTION OF TOOL

REQUIRED INPUTS

The benefit-cost ratio requires accurate and reilable data on the relevant coste and benefits projected over the life of the project. These cash flows (see CFA, page 177) must be estimated and discounted according to an as sumed discount rate. The larter requires information abons the opportunity costs of capital.

TOOL OLTPLT

The ratio of berefits to coses protides a dirmernsionless criterion for financiall evalsation of a preject and tur comparison of alternative projects. The benefitecose rationma be used to redesigri project componcnts to improve effisiency.

IMPORTANT ASSLMPTIONS

All bencfics derived from the project are identitiable and nteasurable. The opportumity cose of capital is speci. fied: if the benefit-cost ratio is less than one. the project is not retorning as much as the bestaltermative investment assuming one exists!.

METHOD OF USE

GENERAL PROCEDURE

1. Determine the incremental benefits and cosis of the project for each vear of the project life.
The incremental costs benefits reflect projected changes in costs bemefits) due to the project (see Cash Flow Amalysis, CFA page 177).
2. Discount the anmulal incremental benefits and costs to decermine their present worth.
An appropriate discomint rate is selected in the discounting process see DIS, page 184. This is usurally the opportunity cost of capital.
3. Compute che benefir-costratio.

 benefirs and PWe is preseme worth of aross incremental costs.
4. Apply the benefit-cost ratio as a criverion for project evaluation according to the following rules:
a) If the benefit-cost tatio is greater than or equal to 1.0. comsider the project for funding.
b) If the bemefit-cost ratio is less tham 1.0, then the project should nor be furded
5. Apply the benefit-cost ratio as a criterion for selecti. 3 projects by rank-ordering the projectsaccording to decreasing benefit-cost ratios.

EXAMPLES

The projected cash flows of a project to purchase a small tractor were presemted in figure 2 of Cash Flow Analy is (CFA, page 180). The benefit-cost ratio determined

FIGURE 1
Computing the Bencfit-Cost Ratio tor Small Farmer Tractor Utikzation-Purchase Option

$Y \mathrm{Car}$	GRQSS ANCREMENTAL COSTS fuws:merat orber Gress			Dincoumt factupt dit 15	PRESENT WORTH () FGROSS UNGREMEATA1 costs E	$\begin{gathered} \text { GROSS } \\ \text { WCEEMENTA } \\ \text { BEXEHITS } \\ E \end{gathered}$	PRESENT WORTH OF GROSS INCKEMENTAL BENEFITS $\stackrel{\rightharpoonup}{c}$
1	500	80	580	0.870	505	200	174
2	0	80	80	0.756	(4)	290	151
3	\%	30	80	0.458	53	2009	132
4	0	81	80	0.572	4	200	114
5	0	80	80	0.497	10	2008	99
θ	0	80	80	0.432	35	206	86
7	0	80	80	0.370	30	2 mm	75
8	0	80	80	0.327	26	290	65
9	0	80	80	0.284	23	200	57
10	0	80	80	0.247	30	2007	49
Total	500	800	1300	5×189	838	2 utan	1002

FIGURE 2
Cash Flow Analysis: Small Fatmer 'Tractor Unilization - Tractor Cooperative Option
YEARS FROM START OF PROJECT

FIGURE 3
Computing Benefit-Cost Ratios for Small Farmer Tractor Utilization-Cooperative Option

Y car		CREME Other $-4=$	$\begin{aligned} & \text { Cos } \\ & \text { Gtoss } \\ & \text { G- } \end{aligned}$	Discount factor at 15%		GIROSS INCREMENTAL BENEITTS y	PRESENT WORTII OFgROSS INCREAILNTAL BENETTTS v	$\begin{gathered} \text { CASHFLOW } \\ y \end{gathered}$	PRESINHWORTH OFCASHFLOW y
1	150	45	195	0.870	170	110	96	(85)	(74)
2	0	45	45	0.756	34	110	83	65	49
3	0	45	45	0.658	30	110	72	65	4.3
4	0	45	45	0.572	26	110	63	65	37
5	0	45	45	0.497	22	110	55	65	32
6	0	45	45	0.432	19	110	48	65	28
7	0	45	45	0.376	17	110	41	65	2.4
8	0	45	.15	0.327	15	110	30	65	21
9	0	45	45	0.28 .1	13	110	31	65	19
10	0	45	45	0.247	11	110	27	6.5	16
Total	150	450	600	5.019	357	1100	552	500	195

$B C R=$ Present Worth of Gross !ncremental Benefits/Present Worth of Gross Incremental Costs $=$ - $1552 / 0357=1.54=1.5$
from gross incremental benefits and costs oiscounted at 15% is 1.2 (see figure 1) This simply means that che decision to purchase the tractor is financially sound: the expected benefits will outweigh the expected costs for the life of the tractor.

The small farmer has another option: he may form a tractor cooperative. The cooperative would pool the members* resources (or credit) to purchase a larger tractor. Each famer would pay only the initial charter fee and an annual membership fec. Because the tractor's time is to be shared. the projected gross benefirs for cach farmer would be less than if he had purchased his own (smaller) tractor.

A cash flow analysis for the individual coopcrative member reveals an annual cash flow of 0125 after an ituitial cash outflow of 425 at the end of the first year sce figure 2). The net present worth for the project is 1196 at a discount rate of 15%. The benefit-cost ratio is 1.5 see figure 3). This latter measure treas chater membersitip in the cooperative as an investment A similar financial araltysis could be conducted from the cooperative's point of view.

The benefit-cost ratio may be computed from an economic analysis of the tractor utilization options. This involves a more sophisticated assessment of costs and benefits (see CFA. page 177), inch dina shadow prices for labor and other inputs, and the sales for increased production (see for example. Gitringer, 1973).

These examples are continued in Internal Rate of Return (IRR. page 200). The comparison between projects using the benefit-cost ratio is discussed in Cost-Benefit Analysis (CBA. page 212).

THEORY

The analytical formula for the benctit-cose tatio is:

$\stackrel{y}{3}$	
$\stackrel{\square}{\square}$	

where
$n_{i}=$ the number ont yeur- wt the prentest
Sh = the gras incremertat bemefrix tor fear:
$\mathbb{C}_{j}=$ the senss infermentat conts tom yent i
$r=$ discount rate $\%$
Each parameter of the formula tepresents dan estimate by the project analyst. The estimated coses and benetits grow mone uncertain as the nemberof ycars trome the present increases. However, the discountiting prewerse gives more weighte to the early project benefies and coses. A with net present worth NPW, page 188). care muse bee eveercised in establishing the appropriate discount rate.

The relation of benefit-cost ratio to other project criteria is discussed further in Cost-Bemefir Analysis CPA. page 212.

BIBLIOGRAPHY

Gittinger. I. Price foconomic Analysis of A gricultural heo jects. Bathimore, Md.: The fohns Hoptins University Press. 1973.

US Deparment of Agriculture. Mantal on Agricatherad Projects Ardilysis. Washington, D.C. USDA, n.d.

Internal Rate of Return

PREREQUISITE TOOLS

Cash Flow Analysis CFA, page 177), Discounting DIS, page 184), and NerPresent Worth (NPW, page 188).

USAGF

PLRPOSE

The internal taze of return ($A R R$) is a criterion for analyzing projects based on the percentage return on investmest.

LSES

1) The IRR is used as a criteri ma for evaluating the financial and economic advantages of a single project.
2) The 1RR is used to rank projects according to the most efficient uthization of resources see Cost-Benefit Andysis, CRA, page 212).

KEYDEFINTIONS

1) The intermad finnolicil return of a project is the rate of return derived from a funancial analysis of the project cash tlows. ine.. from the viewpoint of the individual, enterprise or group.
2) The internal economic renom of a project is the rate of renurn derived from an economic analysis of the benefits and costs to the society or economy of the country.

SHORTDESCREPTION

$\mathbb{R} R$ is ome of three widely used criteria for evaluating the finamcial and economic wiability of projects. Like net present worth NPW, page 188;. URR is compured from the present worth of gross incremental benefits and costs. Lulike net present worth. IRR does not indicate the present worth of the met incremental benefit. ie., the equivalent present amount of all futhre project benefies. Rather, the IRR is an efficiency meassire, retlecting the payof of the proiect in terms of the precent retuman outlays. In this regard, it is similar to the benefit-cost ratio (BCR, page 194.

A project"s $\mathbb{H R R}$ is the discoumr rate at which the present worth of the met incrememal buefirs is exactly zero. Since this cannot be sollwed analytically, it must be determined by interpolation.

The $\mathbb{I R R} 15$ zompared to opportumity costs to determine if the amount of retarn on invesment is sufficiendy high to justify the project. The differemce between internal finamiall seturn and unternal economic retwra is mot only in the assessment of costs and benefirs, but in deciding whe ther the returiz is sufficient for the individual or for the sociery, respectively.

ADVANTAGES

The IRR may be compured withour specifying the discount rate which corresponds to the opportumity cost of capital. Net present worth and benefit-iost ratio require this specification.

The $I R R$ is the preferred criturion for ranking projects when total funds are limited (Gittinger. 1972).

LIMITATIONS

The IRR cannor be determined if the annual cash flows for a project are always positive (or zero). There must be at least one negative yearly cash flow so that the discounted benefits are equal to the discounted costs.

The computation of the $\mathbb{R} R$ may yield more than one discount rate which gives a zero net present worth. This usually occurs if there are large negative cash flows late in the project. However, most development projects start with an initially negative cash flow followed by a rising stream of benefits from which a single IRR may be computed.

REQUIRED RESOURCES

LEVEL OF EFEORT

Determining the IRR is more difficult than computing net present worth or benefit-cost ratio. There is no analycical solution for the iRR, except for uniform cash thows: and a trial and error process must be followed. The butk of the effert is in assembling the necessary data for and ysis (see lmpact-Incidence Matrix. IPX. page 207).

SKILL LEVEL

Since compuing the $1 R \mathrm{R}$ is moI a straghtforward prot cess, the analyst must be skilled. particularly in interpreting cash flow parterns (see Cash Flow Analysis. CFA. page 177).

TIME REQUIRED

Computing the IRR may take sigtificantly longer than computing net present worth or benefit-cost ratio, but the overall process is primarily constrained by the availability of the appropriate data on cash flows.

DESCRIPTION OF TOOL

REQUIRED INPUTS

A complete analysis of the costs and benefits over the life of the project is required (see Cash Flow Analysis. CFA. page 177).

A criterion level ior selecting or rejecting the project must be specified, preferably in advance. This level may be the opportunity cost of capital or the minimum rate of teturn which a funding agency will accept on the project.

TOOL OLTPLT

The technique gives a single measure. the perceme of rewurth on investment, which may be used as a criterion for funding or for ranking projects for funding. The $I R R$ is
 mum rate of returm. lif the lak is furger. the propices is recommended ar tundinge when ratheng provect. theme with the largest IRR slowid be bended firse.

MPPORTANT ASSLMPTIONS

DRR assumes that one discount rate will apply duringe the life of the project. This is not necessarily a limitinte as. sumprion. but it does make the theasure less thexible shan net present worth 'sce Fleisher. 1972:-

METHOD OF USE

GENERALPROCEDURE

Compurimg the $1 \mathbb{R}$ for a project is basically a tridland error process which starts with a trial disconnt rate and uses the procedure for compuring the net presemt worth. New discount rates are seleceed antil one gives a zoro met present worth..

1. Determine the incremental benefits and coses for the life of the project.
This is essentiantiy the procedure fourd in Cash Flow Analysis see CFA. page 177. The net benefir foreach year of the project is determined from estimates of "with" and "wirh anar" progecr bemefits and costs.
2. Estimate the discount rate for the first trial computarion.
Select the discount rate by examining the cash flow patterm rather than by using the opporesniry cost of capital. If the project inwolwes large negarive casht tlows followed by a delay in bemefits. then the $\mathbb{R R}$ is relarively low choose a trial disconnt rate in the port to 20 ct range. If the project has immediate positive cash flows benefits are not delayed more chan a year or two. then the IRR may be very high schoose a krial discount rate of 50 or more.. It the cash flows for the project are never megative in any year of the project. then the $\mathbb{R R}$ is infinite and canor be wsed. Net present worth or bemefititost ratice may be substituted.
3. Compute the net present worth of the project for the trialdiscount rate.*
Designate this value as NPW A - It NPW is zero. them the
$r_{\mathrm{z}}=$ the trial discwant rate.

FIGURE 1
Flowchart of Interpolation Procedure to Determine Internal Rate of Rerurn

FIGURE 2
The Annual and Total Cash Flows for the Small Farmer Tractor Litilization Options

	OPTIONS		
	Purchasc	Rental	Cooperative
Year	NetIncremental Benefits (Cash Flow) *	Net Incremental Benefirs Cash Flow)*	Netlncrethental Benefits Cash Flow ${ }^{-}$
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{aligned} & (380) \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	(85) 65
TOTAL CASH FLOW	700	200	500

*In Unis (W). Temasek National Currency
trial discount rate is the IRR. The first selected dis count rate is unlikely to give a zero present worth, and the process must be repeated.
4. Select a new trial discount rate, r_{2} -

If the NPW_{1} is less than zero. select a discount rate smaller than r_{1}. How much smaller depends on how much NPW ${ }_{1}$ is less than zero. Generally, select r_{2} equal to 10% less than r_{1}. If NPW_{1} is positive, then select a larger trial discount rate.
5. Recompute the net present worth using the trial discount rate r_{2}.
Designate this discount rate as NPW_{2}.
6. Select trial discount rates and compute net present worths until reaching both a positive and a negative present worth.
Increase the discount rate if the net present worth is still positive, and decrease the trial discount rate if the discount rate is negative.

7. Estimate the IRP by interpolation:

$$
\begin{equation*}
I R R=r_{L}+\left[\Delta r \times N_{L} /\left(\mathbf{N}_{H} 1+1 N_{L} 1\right)\right] \tag{1}
\end{equation*}
$$

where

$r_{\mathrm{L}}=$ lower discounr rate
$\therefore r=$ difference berween discount rates
$\mathbf{N}_{\mathrm{L}}=$ met present worch for lower discount rate
$\mathbf{N}_{\mathrm{H}}=$ net present worth for higher discount rate
Note: The lower and higher discount rates must prodece ner present wor ths of opposite signs.

For example the lower discount rate t_{L} is 8% with a net present worth (N_{L}) of S 100 . The higher discount rate is 10_{0}° with a ner present worth N_{H}, of -550 . The sum of absolute values of the ner present warths is $\$ 150$. Therefore,

$$
\begin{aligned}
\mathbf{I R R} & =8 \%+\left[10 \%-\mathbf{S}_{\sigma}^{\sigma}(\$ 100 / \$ 150)\right] \\
& =8 \%+[20 \%(.67)] \\
& =8 \%+1.34 \% \\
& =9.34 \%
\end{aligned}
$$

To reach a net present worth of zero, the IRR must be 9.34%

This may be reduced to a simple procedure where the early years have a large negative cash flow and the later years have cash flows that are all positive. The flowchart in figure 1 may be used if the analyst is aware of the possibility that the multiple solutions to the IRR may exist (see Decision Tables, DTB. page 113).

FIGCRE 3
Computation of the Internal Rate of Return for che Small Farmer Tractor Oprions

```
Algorithms for Net Present Worth
Purchase Optiun:
    NPW|r/%/1O| = 120 ADF|r%/10| - 500 DF|mmil
RentalOption:
        NPWIr(m/10] = 20ADFjom/10|
Cooperative Opriom:
    NPW|N/101 = 65 ADr|M,N10
```

Internal Rute of Retars Computations:
Optrioni 1: Tructor Pacrituse

Option 2: Tructor Rened

IRR cannor be compated since the cash flow is always positive see figure 2.
(Figure 3 Continued)
Option 3: Tractor Cooperative

r\%	65	ADFlremiol	- 150	$\mathrm{DF}\left[\mathrm{S}_{\sim}^{\circ} / 1\right]$	$=$	NPW 1
30		3.091		0.769		86.6
40		2.414		0.714		49.8
50		1.965		0.667		27.7
70		1.421		0.588		4.2
80		1.246		0.555		-2.3

INTERPOLATION:

$$
\begin{aligned}
& 4.2+2.3=6.5 \\
& 4.2 / 6.5=0.646 \\
& 80-70=10 \\
& 10 \times 0.6+4=6 \\
& 70+6=76 \text { or } 762 \mathrm{IRR}
\end{aligned}
$$

EXAMPLE

Three options for small farmer tractor utilization have been presented in the prerequisite tools. The options and net annual cash flows are shown in figure 2. The beme-fit-cost ratio and net present worth for each option were calculated using a discount rate of 15% for the opportunity cost of capital.

The IRRs were calculated (figure 3): the procedure is given in the flowchart (figare 1). To simplify the reperitive calculation, an algorithm was developed (see Dis. counting, DIS, page 184).

If the farmer purchases the tractor, the estimated IRR is 28%. This is low for an agricultural project, but is well above the estimated rate of return from alternative investments, e.g., the 15% discountrate.

If the farmer joins a tractor cooperative, the IRR is 76%, which is more than double the IRR for purchasing. This indicates that joining the cooperative is the most effir cient use of the farmers' limited resources.

The option of tractor rental has an infinite IRR. It cannot be calculated because the annual cash flow is always positive. This happens quite often in the financial analysis of agricultural projects where there is litule or no capital investment.

Even though the IRR for the tractor cooperative is most efficient, further analysis is necessary before this al ternarive is recommended.

The computed IRRs represent the internal financial retarn of the project. In order to compute the internal economic remun of the project, a similar procedure must be
followed. However, the valuation of costs and benefies will be for the target group of farmers as a whole. and che prices will be adjusted shadow-priced to reflect more accurately the inmpact on the mation's economy. Because economic analysis is a more comprehensive and time-consurning process, and becausce many more assumptions are trecessary. this task requires skills in macro-economics isee. for example, UNIDO. 1972 .

THEORY

The internal rate of return is the discount rate r^{*} at which the net present worth is zero. It is giwen by solwing the following equation for 5^{*} :

$$
\frac{n_{i}^{2}}{i=1}, B_{i}-\therefore C_{i j}^{n}\left[1+r^{*} / 100\right)^{i}=0
$$

where
$2 \mathrm{n}=$ number of years of the project
$A E_{i}=$ gross incremental benefirs for year i
$\therefore C_{i}=$ gross incremental costs for yeari
$r^{*}=$ internall rate of return 施
The formula cannot be solved amalytically anless the pattern of benefits and costs are umiform. Othervise, a trial and error approach (as described in the procedure) is necessary.

Considerable debate has addressed the practicality of the IRR as a criterion for project evaluation. Certain pat-
terns of benefits and costs (in particusar, a large cost near the end of a project) may result in more than one solution to eguation [2]. Gittinger (1972) answers the critics by claiming that the multiple solution problem is not likely to occur for cash flows typical of development projects.

IRR is a widely used criterion for analyzing the financial and economic soundness of development projects. It has been adopted as the principal measure for project appraisal by the US Agency for International Development (USAID. Handbook 3). The distinction between imternal financial return and internal economic return underlines the importance of both financial and economic analysis for project evaluation (Gittinger. 1972).

BIBLIOGRAPHY

Fleischer, G. A. "Engineering Economic Analysis in Developing Conntries." Technos (Janmary-March, 1972): 27-35.

Gittinger, J. Price. ed. Compounding and Discounting Tables for Project Evaluation. EDI Teaching Materials Series No. 1. Washingron. D.C: Imternational Bank for Recomstruction amd Development, 1972. Distributed by The Johns Hopkins University Press, Baliamore. Md.

Jones. William 1. "Appraisal of an Agricultural Development Project: The Gambia." World Ban? Case Study and Excrcise Series. Report No. PA-142a. Washing. ton. D.C.: Intermational Bank for Reconstruction and Development. International Development Association, August 8, 1972.

UNIDO. United Narions: Guidelines for Project Evaluatiom. Vienna: UNIDO, 1972.

USAID. Implementation of AID Assisted Projects. Handbook 3. Part 2. Washington, D.C. : USADD.

Impact-Incidence Matrix

PREREQUISITE TOOLS

Benefit-Cost Ratio, BCR, page 194.

USAGE

PURPOSE

An impact-incidence matrix tabulates the distributions of project costs and benefits to the affected groups in the society.

USES

An impact-incidence matrix is used to:

1) Provide a decision maker with detailed information on the distribution of costs and benefirs of a profect or alternative projects.
2) Idenaify the relative gain or loss for various groups affected by the project.
3) Break down hie benefit and cost data by type of measurementand accuracy.
4) Present measures of effectiveness and other nonmonetary project impacts in conjunction with costs and income data.
5) Permit decision makers to examine the inequities in project design with regard to the distribution of benefits and costs.

GHORTDESCRIFTION

An impact-imeidence matrix identifins the vafious groups affected a her directly or indirectry by a project. and the cost and bemefit measurements by type (see figure 1). The incudence of men-monetary prolect impacts is also rabulated, including stricely qualitative factors.

With the matrix. the decision madker has an expanded view of the attributes of the decision with regard to possible mequities in distribution. Benefit-cost ratios (BCR, page 194\%, are presented not only for the project as a whole, but for the affected groups (e-g. different income groups).

ADVANTAGES

1) In contrast to a single economic measure of project merit. the impact-incidence matrix requires the decision maker and the annlyst to expand their assessment of a Frofect to its dist-ibutional and qualitative impacts.
2) The disparities in infopect-incidence among various groups are idencified.
3) Tine type of measurement and the accuracy of the information is idenrified eeg., an indirecdy measured cose measurement is tikely to be more subjecrive than a direct project cost estimate;

FIGURE
Hapact-incidence Matrix for Cest Beneffit Aralysis

LIMRATIONS

1) Onnitilag either a gromp or an impact ont group is dessened by a systematic approach, but the danger staill caist. The impact-incidence matrix may give a falle sente af a comprehernswe satch for progect hippacts. when in fact the matrix is simply the tabulturion of the results of that search. The information and analysis task must freceed the martix tabulation.
2) It is one thing to identify a group affected by a project and anorher to ascertain the mature and extent of that effect. The skith of the analyst in searching out this information constrains the validity of the impact-incidence matrix as a decision-making tool.

REQUIRED RESOURCES

LEVELOF EFFORT

Constructing as irnpact-incidence matrix and preparing summanies to pimpoint the fimdings is the tip of an iceberg. Lurking below is the difficult taik of first identifying the
innpacts of the project and then idemtifying the groups that atte offected. Where the groups are mot inmediately apparemt. they may be categonized by disteiburion criteria (e.f.. geographic. cconomic, ethric) The relewamt information can loc garhared with a sample surwey (SVY, page 36 . whint a can be a mation effort.

The intormation is rarely available from existing statisticad data. The danare of forn so getmeral that they are mareliathle, andior they are our-of-date. Newertheless, the impact-incidernce matrix is a usefull formar for designing and organizing informanion-gathering and analysis.

SKILL LEVEL

Cost data suay require acconnting, ecomomics, and markering to gather, assess, and imterpret. Non-monetary tactors zecuire insight and an ability to grasp inpacts of a project which are fart-reaching and disxanc bath spatially and remporallyj. A wariety of sitill is essemuial. This suggests using a team approach, guidedi by systems concepts and forceasting tools see Oval Dhagramming, OVD, page 81.

TMMEREQUIRED

The time required to construct am impactincidence matrix is in direct proportion to the number of differemt groups affected by the project and the ways in which the project will affect them. An analyst completely familiar wish the project environment and with ready acecss to data sources could construct a prelimimary impactinciderace matrix in a week. This would then setve as a guide to estimate the tume required for farther informarion gathering anc analysis fanywere from two so tem weeks).

DESCRIPTION OF TOOL

DEFINITIONS

1) A madtiphier effect oceurs when a project innpact wn one aspect of an economic system generates a stimellating effect on other aspects, $0 . g$-, when a laborgeneration project gives more money to consumers, which expands the economy, which leads to more jobs, etc.
2) Direct market wilues measure project cossts or bemefits which are assessed from equivalent marker prices, ce.gaverage wages. construction costs, and price of inputs which are not subsidized.

REQUIRED INPUTS

Before the impact-intidence matrix can be comstructed, the sechnical aspects of the project mest be specified with enough detail to assess the likely impacts of the project on the social, economic, and environmental systems. For example, if a power plant is to be consmacted and the likely alternates are a conventional fossil tuell burning plant or a muclear powered plama, a separate impact-incidence matrix is required for each

The objectives and purpose of the project must be clear in order to identify interest groups and affected organizations and individuals. Function Expansion (FEX, page 45), and intent strucrures (iNS, page 55) are usefull for this purpose.

TOOLOUTPUT

The technique results in an impact-incidence matrix which breaks down the elements of a cost-benefit analysis by the groups affected, the type of measurement, and the degree of accuracy. This permits the decision maker to examine the distributional effects of a proposed proiect as well as aggregated measures, such as the bemefit-cost ratio (see SCR, page 194).

MMPORTANT ASSUMPTIONS

 made ow sumple ecomomic criteria alome Other mensures
 quences are to be woided eng. one gremp" triture to pras. ziripate because of incurnities.
 merits. Disagsereating according tor distritwutional cuiteris permits adecision maker ace exercie judgrache based una malltiple attribettes af the project ympact.

METHOD OF USE

GENERAL PROCEIXRE

1. Determine the groups affected by the project.
4.1 Eise all groups withicfa ure aftected by on othorwing associated with the prejeet.
1 ? Categorize the groxps by determiming wherther the project impact will be divect or indirect.
1.3 Consider distributionall critcerid in watcgorizing the groups. ege. gecgraphit, ecomomic, social or age stituns, oceupationati. property owmership.
 yaint or losc as a fersult of the project.
2. Specify the tosts and benefits accruing from the project.
2.1 Determine the directly estimable costs amad benctit using criteria such as willimgness to pay for the project product or service as well as direct murkers woultaes for project costs or incomes accruing to cactu idemtitied graup.
2.2 Determine indirectly estimable costs and benefirs. such as cost sawings and higher land projects as a result ©î project.
3. Specify alit orher impacts of the project.
3.1 Determine those impacts-imternal or external or tangible or intangible -which affect cach group.
3.2 As tar as possible, quannity the impacts to give a mumerical rmeasure see Multiple Criteria Unility Assessment, MCU, page 32.
4. Compute tine benefit-cost ratios (see BCR, page 194).
4.1 Add the directly and indirectiy measured costs for each group; repeat for the benefits, and compute the benefit-cost ratio or benefirs divided by the costs.
4.2 Compute che total of all benefits and all costs across aill groups and determine the benefit-cost ratio.

Figure 2
Impact-Ancidence Matrix Example: Factor Training Progtam

(IROUPIMPACIED)	MPACTS			
	Directly Estimated	Indirectly Estimated	EstimatedNumerically:	EstimatadQualitatacly
Dirccily:				
Small farmers (Number)	Reduced tractor mantenatice and operiating costs (+)	Ifscreased production (+)	Reduced tactor down time +	Exposate to bettes firming pratices at
University	Educational overhead costs per studem.		Hoars away from university chasses (.)	Fited exposure for stafl \& studemts (+)
Tractor manufacturers	Increased tractor sales (+)	Increased implement sites (t)	Hours devoted toservica	Cinodwill ol stacesstal
	Reduced service revenues per tractor (-) Reduced training costs (+)		andrepair (-)	tact or operators (t)
Indirectly:				
Large farmers (Number)		Pool of traned personned (4)		Inctersed leved of mathatration ${ }^{-(1)}$
Fuel suppliers	hocreased freb sales (+)			
Farm input suppliers		Increased demand for prodection hopats (+)		lucreased hevel of mechanization "
Landless laborers (Number)	Decrased farm labor demand (unshilled) (-)	Increased demand liur produce hantlers (t)	Reduced habor days per hectare (=)	Migration toctios (-)
Special interest groups:				
Ministry ol' Agriculture extension service	Education overhead costs (\cdot) Difect costs per student (-) Extension service overhead (\cdot)		Increaswd comtact hours with firmers (t)	herter acceptance of improved taming technigues (t)
Credit institutions		Lomen service for increased purchases (+)		

NOTR: (+) positive benefit; ($)$ negative benefit or costs, These may berplaced by benefieost ratio whereappropatiate.

* Zeronet cost for traningead student becanse Ministry of Agriculture remburses direct eosts.
* Ineluding more technicians, manuficturers, parts and maintenance serviees, implement choices, ote.

5. Prepare a summary of the data m the matrix.
5.1 Identify thuse groups that would gain significuady or lose disproportionately as a resuit of the project.
5.2 Disctuss the significance of the individaut and aggregated benefit-cost ratios.
5.3 Clarify the assumptions about multipher cffection other indirect consequences of the poject.
5.4 Relate non-monetary measures and gualitative irpacts to the affected groups and the proiect.

EXAMPLE

A project to assist farmers with the purchase of smaill tractors was started withour giving fall consideration to the farmers' difficulties in lcarning io use operate. and maintain tractors. It was initidly assumed that the tractor manufacturers would provide a brief training course: but when this was found so be inadequate, the mamutacturers balked at providing a more extensive effort. Tiwe Ministry of Agriculture proposed to give this tash to the Temasmen University to be supe rised by the Ministry's farm cxient sion. All University costs were to be rex with a donor agency loan, making the cost to the fammers nominal.

An impact-incidence matrix was prepared for the project to specify the costs ws. the benefies for the various groups which would be affected see figure 2 ; Each entry in the matrix implied a set of assumprions abour the training program and the impact of increased tractor urilization on the agricultural system.

A causal sequence of interaction was assumed:
Better urilization of cactors leads to greater acceptance of mechanization and increased production, which leads to more demand for production inputs and drcreased demand for unskilled labor leadiag to higher wraemployment for the landless except as bulanced by higher volurne of production, etc. This was the most likely scenario for the causal interactions in the system see Oral Diamamming, OVD, page 81 ;

The analyst assigned values to the gluantified impacts. A benefit-cost ratio was computed for the directly and indirectly estimated costs and benefies for each group. The quantifiable benefits outweighed the costs for all groups except the landless.

Consequently, the Ministry of Agriculture modifed the training program to permit landless laborers to take part in the course, supporsed in part by a special tax on all tractor owners holding land in excess of 20 hectares.

THEORY

Cost-benctit analysis fas protideced an extecinive liter,

 1972:.

Maximiziruet the public weltare is nocesy tesh: atce idmy what is in the public weltare is the first stumblimg blece h. The impact-incidence matrix adidresses the problem ot the distribution of the benetirs. costs. and enther umpucts of projects Lichoicld. 1966: Elifot whd Picard. 1970. The impact-incidence breatidown is usequy because of the jinntuposition of mon-shonetary meastures of atientivemes with distriburional pajections of costs and bemefite. The decision maker is preserted with adiaggerestiont ari bernefits and costs according to the groups im meithy whon wind
 1971 . Whale this coumters a major cribicm of cewe. benctit analysis de V. Citant. 1975 , the probilerm still re-
 amd impact with the prowect.

BIBLIOGRAPHY

 Graw-Hill. $1971 . \mathrm{PP} .24851$.
de V. Gratit. I. "Cost- Bemetar Amaty sis: A Cricicai View ."

Ediot, D., and Picard. D. Lse of Impant-fncidence Momix:Airporr Locutionss 山s un fecumplea. Researcha Report R $20-34$. Cambridge. Miaso: M.IT, Deparmemt of Civill Engineering fune 1970 .
iayard, Richard, ed. Cost-benefir Amblysis: Selected Readings. Micdlesex. England: Pemguin Pooks. 1972.
Lichfield, N. Cose-Benefir Anelysis in Cirban Redesclop-
 fuppers 16,1966: 129-54.

Sewart. Framces. "A Note on Suciall Cost-Benetit Analysis and Class Conflict in LDC's." Horld Develupment 3 Jamary 1975; 31-39.

Cost-Benefit Analysis

PREREQUISITETOOLS

Cash Flow Analysis. (CFA, page 177); Discounting. (DIS + page 184): Net Present Worth (NPW, page 188;: Ben efit-Cost Ratio (BCR, page 194): Internal Rate of Returtu (IRR, page 200); Impact-Incidence Matrix (IPX page 207).

USAGE

PURPOSE

Cost-benefit analysis identifies, assesses, and weighs coses vs. benefits to evaluate the financial and economic merits of development projects.

USES

Cost-benefit analysis is used to:

1) Provide a comprehensive analysis of costs and bemefits including secondary, indirect, intangble, and societal benefits and coss of a proposed project or program.
2) Provide measures for deciding whether a project is financially viable and in the process of analysis, to raise questions for consideration in redesign or implementation.
3) Rank projects for funding prioris.
4) Decide among alrernative policies. strategies. or components of a single program, eng. for Planning. Programming. and Budgeting (PPB, page 235).

SHORT DESCRIPTION

Cost-benefit analysis is a gemeric remm covering a range of theoretical issurs and practical techniques. Because cost-benefit analysis has practitioners in many disciplines. a miversal approach has not evolved. This description presents the systems engineering approach which views cosr-benefit amalysis as a multi-stage process leading to a comprehensive picture of project benefits vs. costs "Bordman. 1973: DeNeufville and Suafford, 1971).

A systems approach using cost-benefit analysis begins by specifyingobjectives, generating technically feasible al ternatiwes. and then evaluaring their economic and social consequences. Techniques for derermining evaluation criteria are listed as prerequisites. Cost-benefit analysis is a synthesis of these techniques as well as techmiques for identifying objectives, generating alternatives and gathering cost-benefit data.

Project costs are both direct e-g. equapmemt. labor, management. physical resources' and indirect feg. displaced workers, pollution, adfed infrastruczure requirements;. Similarly, the benefits may be both direct eegincreased producion, reduced transport costs, increased
earning power, betuer health) and indirect (e.g. emplowment generation. support of local service enterprises. up graded manpower). Some costs and benefirs may be intangible (c.g., goodwill. improved morale, aesthetics), but are included in the presentation to decision makers (see Im-pact-Incidence Marrix. IPX page 207).

Costs and benefirs are identified and valued from three viewpoints:

1) The individual project entity private or financial analysis).
2) The economic system (public or economic analysis, see Gittinger, 1972).
3) The socio-political-economic systern (social costbenefir analysis).

The second differs from the first in that marker prices are adjusted to true equilibrium values using shadow prices or "accounting prices" (Little and Mirlees, 1974) ssee Cash Flow Analysis, CFA, page 177). Social cost-bemefit analysis is the more controversial approach of using "conversion factors" to weight cost-benefit estimates (Squire and van der Tak, 1975). Subjectively estimated factors incorporate social-political goals into the analysis. c.g., equitable distribution of project benefits favoring employment generation, or promoting independence from foreign gocds.

ADVANTAGES

1) Cost-benefit analysis rationalizes the decisionmaking process to make the best allocation of scarce development resources. Attention is focused on the direct and indirect project impacts. Factors other than cost may enter into the computation and evaluation. Uninterded side effecs (indirect costs) and unequal distribution of benefits can often be pinpointed.
2) Socially desirable objectives may be explicitly treated as part of the evaluation criteria.
3) A common measurement dimension monetary units) permits comparing altermatives.

Limitations

1) Many social costs anc benefits cannot be quantifled or accurately measured, e.g. the value of educational programs or the benefits of increased health security, or aesthetics. Quantitative factors receive disproportiunate emphasis simply because they are measurable. Cost-effectiveness analysis partly addresses this problem isee CEA. page 000).
2) Selecting projects using the benefit-cost ratio $B C R$. page 194) or internal rate of return (IRR, page 200) presupposes that project efficiency is the owerriding goal. Yet an efficient project may be ineffective; that is, it may com-
tribute little so achiewng detelopment objectives see Cost-Effectiveness Analysis, CEA, pate 219,
3) If a project is of sutficiently large-scale. the increased production or orther project outpuss will have an impact on prices. Consequently, "mo "partial" meastue on project worth is appropriate and much more elaborate amalytical procedures must be called into play" Gitcinger. 1972 . page 915 .

4 Conversion factors for social-cost-benefit analysis are subjectively estimated value judgments. Conflict in values clouds the subsequent cost-benefit amalysis Siewart. 1975).

REQUIRED RESOURCES

LEVELOF EFFORT

An owerall analysis of the project is necessary in order to be aware of its social and economiceffects, as well as its direct and indirect costs and benefits. An appropriate unit meastre must be developed to evaluate each variable. However. value dara are of ten nor readily available. So phisticated models mary be necessary in order to calculate walues for social variables (see Squire and van der Tak. 1975). The level of effor will vary with the number of project alternatives and variables being considered. In short. cost-benefit analysis is a difficule and demanding task.

SKILL LEVEL

Considerable skill and judgment arc required to ideditify cost and benefit components, to estimate the changes over the life of the proiect. and so adjust the values using shadow prices or conversion factors. The latter is a particalarly thormy tash because of the difficulty. if not the impossibility, of gerting the "right" shadow prices. Trairing in cconomic analysis and financial accoumring is essential.

TMAE REQUIRED

Costbenefir analysis is a time-consuming exercise, particularly when cost and benefit data muse be gathered by interview or survey (see SVY. page 36). Careful analysis and weighing of altermatives may take from several days to several weeks.

DESCRIPTION OF TOOL

REQUIRED INPUTS

A formal cost-benefit analusis begins after project goals have been defined and the alternative programs to meet those goals are specified (see Objectives Trees, OBT, page

49 ata Morploriogrical Amalysis. MPA paye 10; . In order widentify the social and economic components of both costs whe benefits. a carcful amalysis of the project and its《nviromment is essemtial isec Ovall biagramming. OVD. fate 81. A systems viewpoins is recommended see Systembefintion Matrix. SDM. page 67 .

TOOLOUTPUT

A proper cost-benefit analysis presents recommendarions to fanding sources and decision makers, incladinga

1) The financial and economic merits of each project relative to minimum acceptable returns on the resources invested.
2) A rank-ordering of altematiwes accordinit to decreasing benefitcost ratios or decreasing internal rates of return.
3) A concise statement of the assumptions intherent in the analysis and, where possible, the sensitivity of eco nomic criteria to changes in assumptions and analytical parameters
4) A discuscion of intangible factors related to boch economis and non-economic criteria.

IMPORTANT ASSUMPTIONS

All relevant project benefits and costs are idemtifiable before the project is implemented. Benefits and costs occurfing at different times during the project may be val ued at their presen- worths by assuming a discount rate The ciscounting process reflects the sime-preference for moner. i.e.. the opportunity costs associated with committing resources to the project and foregoing other investment altematives (see Discountings. DIS, page 184).

It is usually ausumed thas inflation will affecr all project alternatives equally and thus is ignored in projecting future cash flows. However, if imflation rates can be accurately estimated for each year of the project. the differensial impact on both cosss and benefirs may be incorporated in the cash flow estimates. *

Weighing costs against projected benefits assumes that a nerbenefit accrues to society, ie., that the projectrecipients may realize a net benefit which does not cause a negative bencfit to some other segment of society (Sirken, n.d.). A compre bensive analysis of indirect costs and benefits theoretically reveals such anomalies but this degree of thoroughness is rot always feasible.

[^18]
METHOD OF USE

GENERALPROCEDURE

As there are numerous texes devored excinsively to the subtieties of cost-benefir aralysis. the following steps sketch the process in the broadest sease.

1. Identify the cost and benefit componerits expected to result from project implementation.
1.1 Identify those groups directly and indirectly affected by the proyect see Impact-Incidence Matrix. IPX. Page 207:
1.2 Idemeify and estimate all benefits and costs progected for the life of the project (see Cash Flow Analysis CFA, page 177 .
1.3 Surrmarize all assumptions of incremental costs and benefits in a clear format for examination by deciston makers.
2. Werermine the present worth of all furure cosis and benefits.
2.1 Discount the cash tlows to the present using the appropriate discommt rare isee Discounting, DIS, page 184).
22 Compure the net present worth of the project cash flow (see Net Present Worth. NPW. page 188).
3. Determine the efficiency measures of project performance.
3.1 Compute the benefit-cost ratio see BCR, page 194.
3.2 Compute the inmernal rate of remm $(\mathbb{R R}$, page $300:$
4. Consider a project for funding if:
-. 1 The mer present worth is zero or positive where ner present worth is computed at a discount rate equal to the opportunity cost of capital.
4.2 The benefit-cost ratio is 1.0 or greater using benefits and costs which have been discounted ar a rate equal to the opportunity cost of capital).
4.3 The internal rate of reurn is not less than a minimum acceptable rate of rearm, i.e., the opportunity cost of capital usually specified ar 15% or higher.
5. Rank alternative projects or components of a project. 5.1 Rank the alternatives in order of descending internai rate of return or benefft-cost ratio measures, unless the alternatives are mutually exclusive.
5.2 If the alternatives are mutually exclusive, select the one with the largest net present worth.
6. Repeat steps 2 through 4 for each group directly affected by the project (see Impact-Incidence Matrix. 1PX, page 207).
7. Contrast the financial analysis of the project with the economic analysis by separately computing costs and benefits from the viewpoint of the national economy.*
7.1 Determine the costs and benefits for all directly and indirectly affected groups.
7.2 Estimate the shadow prices for the factors of production.
7.3 Estimate shadow prices for foreign exchange.
7.4 Estimate shadow prices for govermment price supportedcommodities.
7.5 Determine conversion factors for socictal goals (optional), e.g. weighting benefits by income groups, favoring employment generating projects. promoting independence from foreign goods isee UNIDO. 1972, and Squire and van der Tak. 1975).
7.6 Compate the criteria net present worth, beneficcost ration. and internal rate of retum using the adjusted cash flows.
8. Complete the analysis with a consideration of nonmonetary impacts of the projuct.
8.1 Impacts which may be quantified but $1.0 r$ in monetary units) should be listed (see Impact-Incidence Matrix. IPX, page 207).
8.2 Impacts which may be qualitatively estimated should be presented alongside the quantitative data. The relevant impact importance, or significance of the factors may be assessed to aid decision makers see Rating Scales, RTS, päse 29, and Interaction Matria Diagtamming, IMD, page 92\%.

EXAMPLE

The Ministry of Agriculture in the country of Temasel commissioned a cost-benefit analysis of the utilization of small tractors by farmers having limited land-holdings (less than 15 hectares).** The project analysts idemtified the

[^19]target group and comsidered threc alternutive meant by which each farmer could acequite a tractor. These attertwas. tives were:

Option 1: Purchase a frie hotepower walkingetatur.
Option 2: Rene a tractor and serwifes of ate operatent.
Option 3: Form a cooperative top ulitare ity the purchase and mainteriance of a 15 horsepower tractor.

Financtal analwsis of the options begam br esermating the projected cash flows: option was analyed in Cash Flow Analysis (CFA, page 177): option (2) was amalyzed in Net Present Worth NPW, page 188 : and opriom 3 was anallyzed in Bencfit-Cost Ratuo (BCR. prage 194:. The cash flows for the three options were summarized in internal
 tions which were necessary ro contrast the "with" and "wichout" situations was prepared see figure 1 !.

Four measures of fimancial soumdiness were compated see figure 2. Opaion (1) gives the largest rotal cash flow over the ten-year life of the project. Option (3) gives the mext lafgest cash flow. A"ernarive profects compared using the total cash flow criverion musi thate the satne prebi. ect Hife, ten years in this case. Howrwer, the wime walue of moncy is mot considered in cash flow comparisons tse Discoumsing, DIS, page 184;

Discounted measures, met present worth. benefitcost ratio. and internali rate of return take into account the line streams of bemefits and costs. A discount rate of 15° was selected to reflect the best rewrm of mone $\begin{gathered}\text { invested in all }\end{gathered}$ termative projects.

The net present warth criterion applied to the three options indicares that all are financially feasible. Since the oprions are murually exclusive e-g., the farmer is nor likely to rent and purchase a tractor simultaneonsly). The net present worth may be used to select the best project. Cption (3) has the highese met present worth followed by uption (1) (see figure 2). This simply means that if the farmer joins a tractor cooperative. the value of his future earnings translated to the present is more thar for the orher options.

Benefitcost ratio and internal rate of return measure propect efficiency. Ranking the options on the basis of benefit-cost ratio indicates that option (3) gives more bent efirs per unit of cost tham option (2). and option (1) has the lowest ratio (see figure 2). The benefir-costratio rankings may differ from rhe net present worth rankings when there are differences in the relationships between gross benefits and operating costs for the two projects see Girtinger, 1972. page 65).

[^20]FIGURE
Sumamary of Assumptions for Small Farmer Tractor Cidization

Projected lncreases in Cost and Benefir Data and Percent Change wint							
	WITHOCT PROJECT	WITH PROIECT ${ }^{\text {I }}$					
		Option 1 Purchause		Option 2 Rent		Option 3 Cowplemative	
Productiun Expuracos	4	1	为䢒	4	Sty	v	A
Ustail expenses ${ }^{3}$ Operation A mamtenames Thwesmaent	100	130 50 500	30	120 40 0	20\%	120 25 150	20\%
Grusa licuctiss ${ }^{5}$	1604	360	123	240	30%	270	7 w

*The charter fec for joznang the cooperative is an investmenc in shamed ownersmip of the teactor.

FIGURE?
Comparing the Small Farmer Tractor Eitilazation Oprions

	Totai Cash Flusw	$\begin{gathered} \mathrm{NPV} \\ \mathrm{G} \end{gathered}$	$\mathrm{KCKP}^{\text {ald }}$	$\mathrm{BCR}_{\text {inw }}$!RR \%
Gutival Purdiase Option 2 Rent Option 3 Cooperative	$\begin{aligned} & 700 \\ & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & 168 \\ & 100 \\ & 195 \end{aligned}$	1.2 1.3 1.5	$\begin{gathered} 1.4 \\ - \\ 2.5 \end{gathered}$	$\begin{aligned} & 28 \\ & \infty \\ & 76 \end{aligned}$
Kank Order 1st of Options* 2nd 3rd	I	3	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	2 - 1	$\begin{aligned} & 2 \\ & 3 \\ & 1 \end{aligned}$

"According tu criterion.

Computing internal tate of return was not possible for all options* sec Internal Rate of Return. IRR. page 200 . The internal rate of return for tractor rental was indererminate. The third option has a singificantly higher internal rate of return than option ; 1. and on this basis the farmer should join the cooperative rather than purchase his own tractor. However, since the projects were mutually exclusive. the internal rate of return would not normally be used for ranking, since it may give an erroneous ordating (see Gitinger, 1972).

An internal rate of return of 28% for option 1 simply means that this investment would generate a rerum on capital which would be equivalent to a compound interest rate of 28% per annum. While this was nearly double the estimated opportunity cost of cepital. 15\% it was not particularly high for an agricultural project. The internal rate of return for option (3) is more tepresentative of the returns to be expected.

Computing the criteria illustrates the mechanics of cost-benefit analysis. In order to develop a single merric for judging the financial worthiness of projects. many as sumptions tend to get further submerged in the manipulat tions of the data.

The impact-incidence matrix presents not a single measure such as net present worth. but tather a tabulation of individual metrics computed for various groups directy or indirectly affected by the project (see Inpact-Incidence Matrix. IPX, page 207). Who benefits and who loses if the small farmer mechanizes those task which require human or animal labor? Are all the benefits and costs quantifiable, ler alone measurable. in monetary units: Answering these questions adds essential dimensions to cost-benefir analysis as a decision-making tool.

Many examples of cost-benefit analysis may be found in the literature. although only in the past decade has its application in service fields such as family planning, educa tion, and healith heen documented.

The Gambia ca.: study (Jones, 1972) presents an excellent trearment of the technical side of cost-benefit analysis applied to rice production. Frianeza (1974) has a fairly complete example of cost-benefit analysis applied to the local grape industry in the Phillipines. Bruce (1976) presents a case study of the application of conversion factors to social cost-benefir analysis along with a cririque of the approach.

[^21]
THEORY

Cost-benefir amalysis arose in the 1930 s as a tool tor evaluating water resource projects in the United States, les application to other fields grew. producurge at steam of critical comment sec, tor example. Gruaft. 1975 . De New wille and Stafford 1971 and Hines. 1962 and altwrnative approaches Litrle athd Mirlees. 1974. and UNinO. 1972 . The wexthess of the cost-benefit approach and ats contribution to decision rraking have beern explored see, turn example, Hiurichs. 1969: Ekendull. 1971: and Layard. 1972 \%.

The work of Girtiger 1972 and the Eronomic De. velopment Institute of the World Bank in alewelepping a comprehensive approach to the amallysis of agriculterat projects provided the Easis for the techuriques in this ser of rools. The problems of applying cose-benefit analysis to wther sectors have beem reported (see Sirkeri, mid., and Divine. 1966, though mucln remains to be learned about: valluing the bencfirs and the costs of sociall service programis.

Social cost-benefit analysis. which attempes to weight cost-bentheft factors to incorporate sucietal govils, is a cempplex process :Squire and warn der Tak. 1975;. There are many problems with the added complexity and the poussibility that value judgmenrs are hidden from decision makers. Many argue that the best analysis presemts a broad array of evaluation criteria to the decision maker, rather than attempting to prodence a hiyhily aggregated single figure of project merit Brevee. 1976, and Stewart. 1975.

BIBLIOGRAPHY

Bordman, Sanford. "Improwing the Accuracy of BencfitCost Amalysis." HEEE Spectrum (Sepiember 1973 .
Bruce, Colin. "Social Cost-Benefit Analysis: A Guide for Country and Project Economists to the Derivation and Application of Economic and Social Accounting Prices." World Bank Staff Working Paper No. 239. Washington. D.C.: Intermational Bank for Reconstruction and Developmene, Auguse 1976.
Burns, Leland S. "Cost-Benefir Analysis of a Housing Projecc." Development Digest USADD 4 April 1966;: 53-57.

[^22]de V. Graaff. J. "Cost-Benesit Amalysis: A Critical View." The South African Journal of Ecomomics 43 (1975).

Divine. E.J. "The Treatment of Incommensurables in Cost-Benefit Analysis." Land Economics August 1966).

Friancza. Leonardo I. *Prospects of the Local Grape Industry: A Benefit-Cost Approach Analysis." NEDA Journal of Devclopment I (First Semester 1974): 142-57.

Gittinger, J.P. Economic Analysis of Agricultural Projects. Baltimore, Md.: The Johns Hopkins University Press, 1972.

Haveman. Robert The Economics of the Public Sector. New York: John Wiley and Sons. 1973.

Hines, Lawrence. "The Hazards of Benefit-Cost Analysis as a Guide to Public Investment Policy." Prablic Finance (1962).

Hinrichs. Harley H. "Government Decision Making and the Theory of Benefit-Cost Analysis: A Primer." In Program Budgeting and Benefit-Cost Analysic, cdited by Harley H. Hinrichs and Graeme M. Taylor. Pacific Palisades. Calif.: Goodyear Publishing Co., 1969.
fones. wilham 1. "Appraisal of an Agnicultural Development Frejeci. The Gambia." World Bank Case Study and Exercise Series. Report No. PA-142a. Washington, D.C.: International Bank for Reconstruction and Development, International Development Association. August 8. 1972

Kendall, M.G., ed. Cost-Benefit Analysis. New York: American Elsevier, 1971.

Layard, Richard ed. Cost-Benefit Amalysis: Selected Readings. Middlesex. England: Penguin Eooks. 1972

Litele, I.M.D.. and Mirlees. J.A. Proiect Appras.al and Planning for Developing Coanrries. London: Heine mann Educational Books. 1974.

Sirken. Irwing A. "Cost-Benefir Analys:s: The Techniquc. Its Uses and Limitations." Paper prepared tor th" nontic Development Inscituse. Wond \$ank, \mathbf{n} ton. D.C., n.d.

Squire. Lyn. and van der Tak. HermanG. fecomen ysis of Proiects. A World Bank Rescarch Pubth Balmore, Md.: The Johns Hopkins Cheventy Pes.. 1975.

Stewart, Frances "A Note on Social Cost-Eetefit Aralysis and Class Conflict in LDC's.- Horld Development 3 Ianuary 1975: 31-39.

UNIDO. Guidelines for Project Evaluation. Project Formulation and Evaluation Series. No. 2 United Nations Industrial Development Organization Vienna. New York: Umited Nations. 1972.

Weckstein. R.S. "Shadow Prices and Project Evaluation in Less-Developed Courarries.* Economic Development and Cultural Chatge 20 (1971-72): 474-94.

Cost-Effectiveness Analysis

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

Cost-effectiveness analysis evaluates the effectiveness relative to the costs of alternative systems.

USES

Cost-effectiveness analysis is used to:

1) Evaluate alternative means for achieving specified ends, e.g., alkernative components of a system or project design.
2) Evaluate and compare alternative projects or systems for the purpose of selecting the most cost-effective alternative.
3) Analyze the trade-offs in varying the size, complexity, or scope of a design, e.g., estimating the cosr of increasedeffectiveness.

KEYDEFINITIONS

1) The effectiveness of a project or system is the degree to which the project or systen design objectives are achieved.
2) Project efficiency is the ravio of project outputs to inputs. e.g., the production rate for a given resource utilization rate.
3) A system is a collection of components which interact to achieve a common function.

SHORTDESCRIPTION

Cost-effectiveness analysis is a crucial step in a systems analysis strategy. After decidingon objectives, identifying alternative means to achieve the desired ends, and establishing criteria for evaluation, components are selected which maxinize cosi-effectiveness. Costs and effectiveness are central to the evaluation and design of systems or projects

The crireria are used in one of two ways to rank alternatives:

1) By least-cost, considering only those alternatives which achieve the specified minimum level of effectiveness.
2) By maximumeffectiveness, in which all alternatives have been desigtted so as not to exceed a specified maximura resource requirement.

Cost-effectiveness analysis is similar to cost-benefit analysis (CBA. page 212) except that the non-monetary performance of the project is estimated.

ADVANTAGES

1) Costeffectiveness analysis ranks alternatives by a process which is accessible to critical examination, in contrast to intuitive or committee decision-making processes. The technique prowides a framework for systematic decision makingand "efficient employment of the knowledge. judgment and intuituon of available experts" Quade. 1968, page 32).
2) While the benefits accruing from a project are often not measurable (particularly in monetary terms), indexes of effectiveness can always be developed from project goal statements.
3) In contrast to project efficiency measures, eg., the benefit-cost ratio (BCR , page 194) and the internal rate of retam iRR. page 200), cost-effectiveness analysis compares the relative achievement of goals.
4) Because cost-effectiveness analysis is a carefully structured approach. the process leading to a decision may be retraced; and new knowledse or different subjective judgments can be used to update recommendations.

LIMITATIONS

The analyst must necessandy himit the scope of a costeffectiveness study, which may lead ro sub-optimization The most cost-effective alternative may not be the best choice when the larger problem situation is considered.

The complexity of the analysis increases significantly if more than one furute situation (conringency) is examimed (see Contingency Analysis, CGA, page 147). Consequently, analysts and decision makers tend to restrict the analysis to the most likely contingency.

Projects with different objectives cannot be compared using cost-effectiveness analysis because the scales of effectiveness will differ significanciy, Cost-benefit analysis (see CBA. page 212), although limiting the choice to financial or economic criteria, permits a comparison of these projects if benefits can be valued monetarily,

Ranking projects can be inconclusive when more than one measure of effectiveness appiles. Often, determining a suitable measure of effectiveness is difficult, if notimpossible (e.g., evaluating goal achievement of social service programs).

Cost-effectiveness focuses only on the system and its performance, in contrast to cost-benefit analysis which includes benefits and costs accruing to other elements in the environment. This may not promote better decisions, but cost-benefit analysis alerts the decision maker to these issues.

Cost-effectiveness analysis may be used to choose among projects only if they are alternative means to the same ends. Otherwise, a common measure of effectiveness cannot be identified for evaluating each altemative.

REQUIRED RESOURCES

LEVEL OF EFFORT

The major task in cost-effectiveness anaiysis is gathering information to measure effectiveness and cost. Once these data are obtained and transformed into ganantitative measures, the analysis is essentially complete.

SKILL LEVEL

Considerable fudguent must be applied to determine measures of effectiveness and to apply them in the analysis. This is mever strictly a mechanical process of translating goals into measures. although construction of a system model is desirable for analyzing performances of large complex systems ar projects).

TIME REQUIRED

A cost-effectivemess analysis may take seweral days if many projects are to the compared on more than one measure of effectiveness. The actual time required depends primarily on tic availability of appropriate information.

DESCRIPTION OF TOOL

SUPPLEMENTAL DEFINITONS

1) Resource analysis is the "process of systematically determining the ecomomic resontce impact of alternative proposalls for furture courses of action" (Fisher, 1968, page 124; It includes not only estimating the direct coses, but measuring the drain on economic resources which could resslt if various aiternatives were selected and implemented, e.g, diverting essemtial raw materials and skilled mampower to a project.
2) Sensitivity analysis is a process of varying the estimated values of selected parameters in the design in order to determine the sensitivity of ressits to the uncertainty of the estimate. For example, the variation in total system cost is determined for selected values of key system specifications such as size, responsivemess, or reliability.

REQUIREDINPUTS

The objectives must be established (see Objective Trees. OBT. page 49). Alternative means will have to be specified, e.g., various project approaches have beem identified.

Cost data must be avaitable to dezermine the cost for eachalrernative.

TOOLOUTPUT

Costeffectiveness analysis presents a rank-ordering of alternatives to aid decision makers. It does not select the best alternative unless non-quantifiable variables such as the political, social, and cultural iruplications are to be ig-nored-an unlikely situation for development planning. Consequertly, the results of the cost-effectiveness analysis represent one part of the totall information desired for project selection.

If project effectiveness is not identifiable as a single measure, the analysis may result in several rankings of effectiveness vs. cost, all of which are presented to the deci sion maker.

IMPORTANT ASSUMPTIONS

The results of a program or projectican be evaluated wsing a criterion which measures the achievement of objectives. The objectives are determinate, stationary, and stable over the life of the project and consensual among the decision makers (see Objective Trees, OBT. page 49). Although these assumptions are not limiting. they should caution the decision maker and analyst against maively applying a cost-ffective criteria without considering their implications.

METHOD OF USE

GENERALPROCEDURE

1. Given the project or system goals, identify the measure of effectiveness.
1.1 Translate each goal into measurable sub-objectives (see Objective Trees, OBT, page 49).
1.2 Repeat 1.1 until quantifiable sub-objectives are identified.
1.3 Select quantifiable objectives which characterize the effectiveness of the project/system.
2. Construct an effectiveness scale.
2.1 Determine the units of measuremenre e.g. passen-ger-miles per hour. extension contact hours per famer.
2.2 If necessary, use a dimensionless index to compare subjective estimates of effectiveness.
2.3 Identify the range of the effectiveness scale, typically 0 to 1 for an index (see Rating Scales. RTS, page 29).
3. Give alternative means and evaluate their effectiveness-
3.1 When feasible, construct an analytical model to compute effectiveness estinates for each alternative (see Computer Simulation Models, SSM, page 120).
3.2 When mathematical modeling is not feasiblc, estimate the effectiveness subjectively. Pooled expert Indgments may be used (see Delphi. DLP. page 168:. or empiricail data may be obrained (cither by experiment or pilot stady.
4. Determine costs by making a resource analysis of the alternatives.
4.1 Determine a basis for costing which is comparable across all altermatives.
4.2 Identify direct costs, both initial and recurrems. and costs associated with making resources (c.g. raw materials and manpowerf available to the proj. ect (see Casty Flow Atralysis, CFA. page 177).
4.3 If the costs are distrituted differently in time for each altermative. discount all costs to determine the present worth (see Discounting. DIS. page 18\%

5. Rank-order the alternatives.

5. 1 Compute the ratio of effectiveness tocost for each alternative.
5.2 Plot effectiveness vs cost (oprional).
5.3 Determine the cut-off levels for considering alternatives:
a) If a minimum level of efferiveness is required. ignore all objectives which fall below this level. If none excaed the level either change the specification or identify new altermatires.
b) If a maximum level of cost is permitted, ignore all alternatives which exceed this limit. If none has acceptable costs. consider scaling down the scope of the alternatives or idencify less costly means
5.4 Ramk-order the remaining alternatives using the ratio of effectiveness to cost. If two or more alteria? tives have identical ratios, select the most efiective or least costly depending on whether al or b) holds."

6. Test the sensitivity of the rankings

6.1 Select a veriable (cost or effectiveness) for which the estimate is most certain.
6.2 Using either the analytical model or an experimental design, estimate how asmall change in this variable will affect the subsequent computation.
6.3 Repea: 6.2 for several values included in the likely range of the variable.
-Specifying both a unirimumm level ofeffectiveness and a maximume acceptable cost may hada to am under-specificarion of -1 - systemb The designer may fail to identify the mose costeffective aftermatives.

FiGURE 1
Relialininy and Acceptance Rates for Alrernative Means of Birth Controll

Alturative Meatas	Probubility of Preveraing Prymancy	Awerage Acceptance Rave for Specific Population	Effectivemess
Male cortraceptrwes	94	70	63
Fermils comatraceprives: Hortarate pills Joteraturace device	$\begin{array}{r} .95 \\ .90 \end{array}$	$\begin{aligned} & 80 \% \\ & 50, \end{aligned}$	$\begin{aligned} & 76 \\ & 45 \end{aligned}$
Matesteribization	. 99	5**	Ξ
Femate sterilizationa	U,	30	29

FIGURE 2
Cost Analysis of Altermative Means of © Birtha Contrnol

Altwratiom Meams	Couple Year(s) 	Estimatred Methood Costr ${ }^{1}$	Protection Cost per Year
Malle contraceptive	0.0083/condom ${ }^{2}$	4. 4.2 conndom	4506
Femate contracuptive Orai Intrauterine	$\begin{aligned} & 0.0667 / \mathrm{cycl}^{3} \\ & 3 / \mathrm{HD}^{4} \end{aligned}$	(a) 30fercle (60/4UD	$\begin{aligned} & 1449 \\ & 20 \end{aligned}$
Male sterilization	10^{5}	1450	045
Female steriluzation	10^{6}	0900	190

1. ${ }^{1}-$ Unis $=$ the mational currency oft Temasch.
2. Assuming an averape usw of 120 comeonms fer yearn
3. Assuming 15 cycles are fequirece each year (including wastage).
4. Assumingeach IUD inserted is retained for an average 3 years.

d. Ascuming same average age of wife of the man steriized.

FIGCRE 3
Cost-Effectiveness of Alermative Birgh Control Mewans
a) Effectiweness-Cost Rurio

Alternative	$\underset{y}{\text { Yearly Cost }}$	Efferivenuss	Katilu: Eftectivumaseacoms
1. Male contrackptives	506	6.3	0.12
Female contraceptives 2. Oral 3. 14D	$\begin{array}{r} 449 \\ 20 \end{array}$	$\begin{aligned} & 76 \\ & 45 \end{aligned}$	$\begin{aligned} & 9+17 \\ & 2.25 \end{aligned}$
4. Mate sterdization	45	5	0.11
5. Female ster lizationa	90	20	0.22

b) Plot of Effectiwemess ws. Cost

6.4 Prescet the sentiritity analysis results to the decision maker as a range of variation in the effectiveness to cost ratio or as a box which indicates the waccrtainty on the plot of effectiveness vs. costs.

EXAMPLE

The Temasek Family Plaming Council proposed toexamine the cost-effectivetess of various means of birincontrol in ase in Temastk. The objective of the project was to determine the best means of birth control for funding. Two criteria were identificd: the reliability of the particular method and the percenrage of the popularion accepting that method. The effectiverness was defined as the product of reliability and rate of acceptance (see figure 1 .

The next step was to analyze the costs of the alternatives. The measure adopted was the equivalent Couple Year of Protection for cach technique Edmonds. 1975 \% For example. data indicated that each couple used an average of 120 condoms per year. Then each condonn afforded 0.0083 CYP. Similatly, a sterilization operation would protect a couple for the remaining child-bearing vears. The contesponding CYP wascomputed by suburacting the average age at steritization from the average age for onser of menopause (see figure 2).

The protection cost per year of each birth control fechnique was computed by dividing the estimated method cost" by the CYP. On a cost basis alone, there were vast differences in the resources required to provide a year of protection by various alternatives.

The costs were compared to the estimated effectiveness (see figure 3). Computing the ratio of effectiveness to cost revealed that an intrauterine device was by far the most cost-effective technique. However. the level of effectiveness was estimated at less than 50% (due to the low rate of acceptance). If 50% were taken as the minimum level of effectiveness, then only oral contraceptives and condoms would beconsidered.

This analysis considered only the means of birth control. A costeffectiveness analysis of a birth control program would ultimately have to examine the effects of using various techniques on the birth rate vs, the intrastrucfure necessary to deliver the techniques. Unfortunately. such an analysis is complicated by 1) the delay in observable changes in birsh rate and 2) the multitude of alternative explanations for changes in birth rate. The problem in evaluating costeffectiveness of these programs is described in Schultz (1972). In an earher paper. Schultz (1967) formulated an economic model of family planning in order to measure benefits vs. costs.

[^23]
THEORY

Cost-effectiveness derives from cost-benefit analysis (Rowen 1969). Defense Department analysts realized that waluing the benefits of weapon systems was not feasible and looked for other measures of swstem performance. The theoretical amalysis of system models and tactical and strategic phans followed Quade and Boucher. 1968.". The technique has been applied to policy plannimg and project design in ficldslike social services. The formid. able task of valuing benefits is circumvented by using nommonetary effectiveness scales to compare alternatives.

The cole of resource analysis and sensitivity analysis in cost-effectiveness studies is presented by Quade and Boucher 1968. DeNeufvile and Satford (1971) address addiuonal heoretical issues, such as determining the optimum system offectiveness as a function of the cost.

Lrweckeberg, and Silvers (1974) give an excellent description of cost-effectiveness analysis applied to wrban planning and the theoretical basis for selecting among attermative projects using the effectiveness-cost ratio.

BIBLIOGRAPHY

DeNeufvile. R.. and Stafford. Ifi. Systerns Analysis for Engencers ance Mundigers. New York: McGraw-Hill. 1971.

Edmonds. Scott. "Estimated Cost of Contraceprives by Merhod." USAID Imtemal Memorandum HPF/PFP. Thailand fantary 23, 1975.
Fisher. G.H. "Resource Analysis." In Systems Analysis wrid Policy IManaing, edited by E.S. (juade and W.I. Boucher. New Yark: American Elsevier. 1968. Pp. 124-37.

Kreckeberg. Donald A., and Silvers. Arthur L.. Urban Planning Analysis: Methods and Models New York: John Whey and Sons, 1974.
Quade, E.S., and Boucher, W.I., eds. Systems A malysis and Policy Planning: Applicarioms in Defense. New York: American Elsevier. 1968.

Rowen, Fienry. "Objectives, Alternatives, Custs and Effectiveness." In Prcgrant Rudgreting and Benefit-Cost Analvis. edited by Harley H. Hinrichs and Graeme M. Taylor Pacific Palisades. Callif.: Goodyear Publishing, 1969.pp. 83-93.

Schultz. T. Pawh An Economic Model of Family Planming and Fertilty. RAND Corporation Paper P-3862. November 1967.
Schultz. T. Paul. Effectiveness Evaluation of Family Planning. RAND Corporation Paper P-4890. September 1972.

IX

Planning, Controlling, and Evaluating Projects

Program Planning Method IDEALS Strareg:
Planning. Programming, and Budgering Critical Path Method
Gante Charts
Logical Framework

Abstract

Several techniques have been selected which do not fall exclusively within any of the major purpose categories. Two Program Planning Merhod and IDEALS Strategy' are comprehersive approaches to project design and implementation. A formal system for platming anà zanagement Plansing, Programming, and Budgeting' is also described.

Successful implementation and management of complex projects depend on careful attention to details in the platming stage. Diagramming the sequence of necessary activities (Critical Path Method) and scheduling according to available resources (Carntr Charts) assist this process.

Evaluation of a development project must begin with design. The final technique ' Logical Framework) is a test app:sath to planning documenting, atd evaluating projects. Attention is directed to the logical assemptions and verifiable indicators of project achievement.

All these techniques are unified in their attention to planning for implementation. stressing systernatic analysis and emphasizing results.

Program Planning Method

PREREQUISITE TOOLS

Nominal Group Technique (NGT, page 14).

USAGE

PURPOSE

Progran Planning Method provides a comprehensive approach to:

1) Identify and define problems.
2) Specify program alternatives to solve the problem.
3) Select and detall programs.

USES

The Program Planning Mcthod is used to:

1) Coordinate the best use of expert, decision makers. and client/citizens in the planning process.
2) Plan programs in differont fields. such as haralth, urban, and educarional planning.
3) Develop constasas in group decision mathing when people from widely different backgroundsare involved.
4) Legitimize decisions in the minds of the public in order to increase public acceptance of programs.

SHORT DESCRIPTION

Program Planning Method is a systematic and structured plaming strategy involving dients or consumers, experts, and decision makers in group processes. The

Nomimal Group Twanigue NGT. page it is used in three stages. First, a rumber on dientateroblems art identified and rank-ordered. Sucond. this hist is uned to swemerate possibic solutions. Respurces meeded to implement the solution are also listed. Thitd. the grotep arritee at the final program.

ADVANTAGES

 pation,

 tion of the program.
 concerne parmics partioipate in the designa
 duces the chances of solving rice wrama problem.
6. Facilicutes the use os qumide xperts in the phamese process.

7 Imcorporates the advantages of the Nommail ©itomp Technique see NGT, page 14:-

LIMITATIONS

1. The participation ot consumex and dient gruspos

 14ay drim.

 inal Gitomp Twhamigue. NCT. page 15. for relared finaitations.

REQUIRED RESOURCES

LIVEAOREFAORT

 of hequstice and require phlamang.

SRHIL LEVEL.

Canaderabla shall is requated ta direst the prowerm

 prate the tatget tederence wrotips in each phanc: and 3 direct the grouph so flat they perfarm eftectively.

TIME RFQUIRED

 duy hotwren the semions. Lead time is mended for orgrabiny groups and mertings.

SPECAAL REQUHEMENTS

The Progran Planning Amethod strutagy requites:

1) A meening roon where groups can cluster aroumda table.
2) Andex cards torecord the group members" ideas and preferaces.
3) Flif charts with large shects of paper, marhing or feht pens, and tape.

DESCRIPTION OF TOOL

DEFINTTIONS

1) A solution component is the part of a program that is proposed as the solution eg. . a molile medical onit in a health care progran.
 acomast others ated then ardering then itums by weight an a wate sith as impertance ar priterity.

REQUREEDINPUTS

Prage ura Pumming Methud requires a hrowledge of:
 welfuety.
 cibnic gwayp.

"OOM.OLTPET

 Whasesprisuritios
2. Spewtituationta the probtem tobe wolved.

3: Spuccitationa ont the prexgram desigraed to wollve the prosellem.

IMPORTANT ASSEMPTIONS

 gumithed ferople den identify the problemare the goups aticted by puncmialt programs ose current inadecutate prom grams. These pernfic ate brewhe zugither with planners
 thecmi.

Programe Plamitug Method is atiso based on assumptions regarding whamge processes in organizationts. and the best nhe of experts in me process see Delbeceland Van de Ven. 1971 .

METHOD OF USE

GENERAL PROCEDLGE*

1. Organize the client group.

1.1 Identify a cross section of chicnts or consumers in the program area. Include members of different ages locations. techmical abilities. erc.. depending on the nature of the problem or service. For example. in the development of an employment service. the chemr group would include potential employers, the currently unemployed, the currently employed, and retired people.
1.2 Select a group (usually between 30 and 50 people) that will represent the client poputation.

The procedure recoramended by Delbecc (1971) sinould he followed closely by the program planmer and group leader.
1.3 Organize a proup mecting to discuse commona problems in the program area.
2. Identify problems.
2.1 Divide the group inio subgroups of six to nime members according to a common characteristic. c.s.age.
2.2 Indicate that the decision makers want :o anderstand cticnts" views.
2.3 Instruct the group in Nombat Gromp Technigue (NGT. page 14). Stress that the meeting should produce alist of problems not solutions.
2.4 Request members to list "personal" problems in the program area on one side of the inden cordand "organizational" problems on the orther side, For example, a client in the improvement program for an employment service may list "i do badty in or ul interyiews" as a personal problem and "the job opportunity list comes too late" asan organiational problem.
2.5 Let the members list ideas silently for abour 30 minutes.
2.6 Record the gencrated imems on a flep chari war for tach subgroup.
2.7 Using the Nominal Group Tecthnique rank-ordering voting procedure, select the rop five priority items on the flip chart.
2.8 Explain that some mernbers will participata further in development of the program. Have them select three or four representatives.
3. Gencrate program ideas.
3.1 Identify external technian and organizational oxperts whose skills relate to the listed prionity items. Identify internal experts from the principal orgmization connected with implemeritation af the program.
3.2 Arrange a group meeting to include these experts and the group's representatives. Explain Nomintal Goup Technique to them.
3.3 Prepare and display the list of prionity problems generated by the client group and explain each item.
3.4 Instruct the group to prepare a list of solutiont components and the resources required to implemert them. The list should be in two parts: 1 those items currently available and easily procured (written on one side of an index card), and 2) those items to be developed (written on the other side of the card).
3.5 Allow the members to write silently for abour 40 minutes.
 chatt:

 remetiai.

 forther mowions.

4. Gemerate spectic program alternatives-

 ideallins.
5. Desigu the prowram.

 constrallers.

5.3 Conduct muminall group wotiog to arrite ut ohe final ducisma.
 reached. repuar sieps 4 and 5 aterer of fiew derw de tur:
 curned.

ENAMPLE

Though Programi Planging Method has only recerntiy been developed. its ase has been waried. For example it was used try the Govermor's Tusk Force for Plamang Healrh Senvices in the State of Wisconsin in 1972. fe was
 design health service programs.

THEORY

Delbecy and Van de Ven 1971 developed the Pro gram Planning Merhod at the Lniversity of Wisconsin's Graduate School of Business. The method extends experimental and teld research on the use of the Nominal Group Technigec so planning processes.

The techniype is rooted in empirically derived theories of organizarional change processes which specifically ad
thews the wheduling diflicht participation and she artilica tira wh malti dicinhlimary expertise sce Delbecq. Van de

BBLIOGRAPHY

Welhecg. Andre' L... and Vande Very, Andrew H. "A Group Pracess Mewle: fors Problem Identification and Program Plataning. Sournal of Apphed Behaworat Scicnce 7 Nowembet 1971): 466-92.

Delbecy. Andre L...and Vande Ven. Andrew H. Nominal Group Techniques for lnolving Clients in Progran Planming." Academy of Management Procecdings August 1979 .
Delinecg. Andre: Var de Ven. Andrew H.: and Gastafson. David. Growip Technigut for Program Plowing: A Cuade to Nomanal Grotef and DetphiProcesses. Glenview. VII.: Scott Fibesmans. 1975.
Van de Ver. Andrew, and Dedbect, André L. "A Planning Process fror Development of Complex Regional Progroms." Graduate School of Busimess. University of Wiscomsin. 1972.

IDEALS Strategy

PREREQUISITE TOOLS

Furction Expansion (FEX. page 45) and Sustern Deftnition Matrix (SDM, page 67).

USAGE

PURPOSE

The IDEALS Ideal Design of Effective and Logical Systerns) Strategy provides a comprehensive approach for solving problems by specifying sustems to achieve a desired function.

USES

The IDEALS Strategy can be used to:

1) Design systems and plan for their implementation.
2) Provide a conceptral framework for studying problems.
3) Generate alternative solations to a problem.
4) Develop products or services.

KEY DEFINITIONS

1) An ideal system target achieves the function in the best passible manner as judged by the criteria for evaluating the system. Such systems typically require the least possible cost. the least amount of human resources, and the least time while providing maximum benefits.
2. Regrathrity is the unose freyuent or domimamt and accaniunally the most important: sendition of eoncern to. the proveret desiger.

SHORT DESCRIPTION

The emphasis in the methodology is tirst on "why" and then on "how" the system operates. The function wit the system is determined by asing Function Expansion FEX.
 barity which will meer the tunction is developed. With this ideal systern target as a guide, alternative systems. which incorporate necessary irregularities. are developed which are at close to the ideal as possible. One of these is recommended for implementation, and the decails are then specified using the System Definition Matrin SDM, page 67). The process of implementation is suggested. ind measures of evaluarion are establisthed.

ADVANTAGES

1: A key concept is to develop an ideal system betore specifying the feasible solution. Thus, innovative and atfective systems are likely to be developed. rather than patched up versions of existing systems or solutions.
2) Thirking is not inhibited by the recorded characteristics of the current systern. The emphasis in IDEALS Strategy is on the function of the desired system rather than on improvement of the curreat system.

i.NHTATIGNS

 thent: tom wome people wampreherad and apply.

RERQURED RESOURCES

HVELOFEFEORT

 purtional to the baymitude adad wnplexity at the prob-

 travible sobatian

SEHLI.EVEL

Shme kuowledg atont wa problem are is necessory
 Whll ate necessaty te understumd or we the approach. Re-
 fatheritactivetweness.

TMEPRQUIRED

The man sequired in pe powtientat to the magnitude and
 that i weeh in requited for prolimitary desigh at products. mone dhan werh for arrice spstems involing perple.

INESCRIPTION OF TOOL

REQLIRED INPUTS

The Jecision maker mast have knowiedge of the problem area and a satement of the problem at hand.

Who: woving a problem by the IDEALS Stratest, it may be mecensary to use tools shach as Braimstorming bSG, page 3i or Cos-Benefit Analys CBA page 212. Knowladge of such took or access to dn analyst may be needed.

TOOLOUTPUT

The recommendation of a solution is the primary output. The recommended system can be specified in the torm of a System Detinition Matrix (SDM. page 67). Use of HEALS Strategy also provides insight into the probhem.

Figure 1 gives an example of a possible output for a job information system.

FIGURE 1
Function Hicrarchy for iDEALS Strategy

Function Hierarchy

1. Provide list of job opportumities
2. Communicate job opportumities to themployed people
3. Natch job specifications with applicant specification
4. Gez feople and jobs together"
5. Find emplurmene for prople
6. Fill vacancies in industry and government
7. Have jobs and services carried out
8. Gea iobs done
9. Provide services
10. Keep ecomomy functioning
11. Promote general welfare
"Functions lewel sclected for design of the system.
NOTE: The Heterarthy lises the fenctions from the most unique fanction at the top to the most general at the Boncma.

HRORTANTASSUMPTIONS

The IDEALS Stratugy assumes that when developing wternutives creativity is improved by focusing on fanction and an ideat situationt rather itan on the problems and limitations of the existing system. The strategy also assumes that functions can be clearly identified for all sromens, and that idual sysems are concerable. However "ided" implies optimization, and optimizing il sysem for all possible conditions is not feasible, hence the regalarity soncept.

METHODCF USE

GENERAL PROCEDURE

1. Determine the function.
1.1 The function of the systern to be developed is identified by using funcrion expansion $F E X$, page 45. A hierarchy of functions is developed, and a level in the hierarchy is chosen as the appropriate function for the systema.
1.2 Determine the meannees or criteria of the statem"s effectiveness. Select those measures comsidered necessary and important to ensure the eliminathon of unnecessary constrainte and conditums in the design.

2. Develop ideal systems targets.

2.1 First, try chmimating the fame bion chamen in setp I to revicw the necessity of the fanction and to make certain that only reguired systoms art duveloped. Prewiew the function lutarehy and check to see if a differem asually higher Fanctina level may be more appropriate.
2.2 Identify regularities. whid are the primary cencerts or the most frequent fatacterintics on the system. The focus on zegaiaritizs addresses the consistincy of the ideal situation. For example tho an irrigation project most of the dry lend is on the north side of the river. The regulurity contoct argues for ignoring the opposite side in initial phum ning. When an educational system bo being desighed for at region where a smath purt ot the popslation is bilingual, the regrenty concept recome mends that planning begin with antruetiman wiven only in the language spoken by atme mantu.
2.3 Develop guidelines for the ideat systm sarget based on the identitied funcrion and agred upone measures of effectiveness. For exantple semmer shidelines developed for the design of a fertilizer distribution system may be "leastrust of tranoposertation." "most equitable distribution." and "least consumption of fertilizer per umit of fond produced " Differentiate between the ideal coneepts that are feasible and those that are nor curfenty feasible due ro technical or theoretical considerat tions. Select only those ideal values that are feasible.
2.4 From the guidelines above. develop appropriate ided systems. Select one as the ideal system it be the carget for subsequent design.

3. Develop the system to be recommended.*

3.1 Obtain information concerning the questions raised during the development of the ideal systemn target. Experiments or analytical calculations may be necessary. The purpose is to determine those facets of the ideal system which need to be altered and those which can remain as they are.
*The ideal systern taiget developed relates onix to the resularity conditions. This step takes care of the irressular conditions while staying as close to the itieal system target as possible.

FIGCRE 2

Idernity ing Measures of Effectivernes. Resularitics. and IdealConecprs

d) Meavares of Effectiventess Criteriat

Amosent of delay jen getring cunptrex amal applicant togethere
 tom upplicant, for the agernes

Ratio of number job applicanoty matebed .on number of applicants

Trat manber of witeres sorew

b) Kegutanities

Apybicatrase unemphoy ed

 Ros apphicames
Execprioti agenticy to cancur prapective emplayers
The watput of the agoncy to whe arranyermeme of ${ }^{\circ}$ netarsicws
Exception: physicuaty bring edgether two prises or be present duthe interview

c) IDEALS Concepts

No dutay in sinding jobs for applicants on upplicants finding jobs
Obtain complate specification of applicant sillls"
Obtain complete specification of job requirementrs*
A管 jobs will have broad specifications
All applicants tuave markeable skills
Allincerwiews resels in jubs
All vacancies are reported
Minimum effort by service in soincieting fobs
Mimimum effort by service in finding applicatats

Atnocosr

FIGURE 3
Preliminary System Defintion Aatrix fur a Job information System

SYSTEM DIMENSIONS'				
	Fundamental	Rate	Control	Intertace
Function	To find job vacancies and to maintain records	Find more vacancies than applicans		
Juputs	Information about job openings	Dily reports	Cost per joo to be low. daily update	Ohter employment agenetes
Outputs	Reports of job openings presentable to applicants	Daily tepurts	Weckly update and check of reports	Interview systems. applicant intormation system
$\frac{z_{1}}{y_{i}^{3}} \text { Scquence }$	Gather information, order and arrange, retrieve, math	Number of jobs per diay		Applicant information system
$\sum_{i}^{e} \text { Environment }$	Economic: service sector, industrial sector. Politieal: gin stipport for agency, public cooperation		Maximum publio cooperation	Uncmployment illstraties
Ploysical Catalysts	Datag ghering system recods, files. sterage/wetrieval systemscomputer			
Fuman Agents	Liaison officers, employer representation, job counselors	Dialy and evening job counseling	Rotate evening shifts per schedule	
Information Catalysts	Government contracts, list of firms, newspapers, trade and professional jourmals, stock-exchange hists			Applicant information system, other employment agencies

NOTLE: See System Defmition Matrix (SDM, page 67) for clatification of terminology.
*The fature state is omitted in this example but is part of the final design process.
3.2 Identify alternative systems. Group processes. such as Nominal Group Tcchnique (NGT. page 14), may be used. Selecting a feasible system close to the ideal target involves predicting how the system will perform as well as evalluating and comparing different suggestions.

4. Recommend implementation procedures.

This step may involve testing the effectiveness of the system. Training personncl may berequired. Establish performance measures for the system and guidelines for future changes in order to effect ongoing improvements in the system.

EXAMPLE

Developing an employment service in a region where unemployment is high is discussed in Function Expansion (FEX, page 45). The function hierarchy developed is given in figure 1. The function level selected in step 1 is "toger people and jobs together." This selection allows maximurn flexibility in generating sternative ideal systems which achieve the function, Criteria for evaluating the system are given in figure 2 a.

In step 2, regularities and exceprions in the system are identified (see figure 2 b). A group process is used to generate the criteric and regularities. Guidelines for ideal systems are developed and listed (figure 2c). Ideal systems as targets are then developed. From the list of criteria and regularities, the following target systems are identified:

1) System to find the maximum number of vacancies.
2) System to assess marketable shills of applicants.
3) System that eliminates interviews.

The first two target systems reflect the need to satisfy criteria, e.g., having a high ratio of vacancies to applicants.

The chird system bypasses the turection lewel "getring jobs and people tagether" to arrive at the funtation lecell "fill wacancies" in the fumetum bieracthy. That is, the ideal systern for the function tevel selected. "get prophe and jobs together." may be a sysem which weomplishes the higher function of "ifll wacancies" $x s$ shown in tigure" 1 .

System 1 is sulected as carget system. Part of this system is another system where interrmation abowt awailable jobs is obtained. A preliminary system she imitionn matrix SDM. page 67, partially speciffes the feasible ssstern ifigure 3:.

An cxample of applying the strategy tow information system design is documerred in Nadier et at. 1975. Other examples may be fownd in thealth educeation and industrial applications hiterature.

THEORY

The IDEALS Strategy was developed by Nadler (1967) and has been used extensively in indiustry. commerce public service agencies, and governmem. A detailed discers. sion of the strategy is given in Nadert (1970.

BIBLIOGRAPHY

Nadler. Geralld. Hiork Desigut Homewood, Ill. Richard i). Irwin. 1970.
Nadler, Gevald. Hork Systems Desigse: The Dest LS ConGept. Homewood, llli: Richard D. Irwin. 1967.
Nadler, Gerald: Johnston, J: and Bailey, 1. Design Concepps for Informations Systems. Monograph serics. Compurer und Information Systerms Division. Alle. 1975.

Planning, Programming, and Budgeting

PREREQUISITETOOLS

Cont-benciat Andysis (CBA, puge 212:.

USAC:E

PURPOSE

 wapurs prior to selecting a specinic prograna.

USES

PPBmay be used to:

1) Plan a progrant with enapladsis on its suals and orn how well each atturnanive meets those gath.
 wad ewatuates outpats according to gatals.
2) Chowse irom anang several projects which mater pangrangods whern resoutces ate limited.

SHORTDESCRIPTION

 dowhopment ut prograns to mect thase gouls, and eraluarinn wi dilernative frogran cosss and wnepats or benehist
 then programe an dewelloped to mpert the gouls. Them. tochminumen Jine Cest-Bumefit Analysis (CBA. Paye 212) and Cont-Etfocrivencss Amallssis CEA, puge 219) may be

 resomece costs and outpar wre specified. This intormation
 arranged by: pollicy goilo. Decisions Betwerm ablernativu progranas mas bu made Based on the plasanizeg. programminge mod budgering a walls und a cos-benefir anatusis.

ADVANTAGES

1) Pre represemes atramitionnation of budgur plamming baven on resondmes and input requirements to fumetiononupus oniertited badget flanming and decision makingThais approach itas adwamtageo for goverrament budget analysis. Kesourcic needs are mor meruly listed unther at departacmatheadimge they ure graupped by programs where reguired. This allows a daceision mather tur wellum te the costs wiench program cutugary rularite tw owcrull goaks.
2. PPE Hlows the decision maker to rexevaluate ant going prog aths ceath budget year. Auromatic continuation of funding is dess lifiely, duce to the improwed feedback of performance.

haittations

is The initian step of serting goals can be difficurte.

difficulty in reaching agreencme, the final goals are oftera too genctal to be used for feveloping or ewaluating pro. grams.
2) The necessary data collection is zimu-consuming. In addition, maty decision makers feed that too muchatintor. mation is presented for effective evaluation.
3) Mary variables. farticulariy the outputs, cammot be adequately quantriced in a wniform unit meusure, la seacia! progrems, this is especially diffacult.
4) It is difficult to show the relationships of program components to more than orie goal in the budyer statement.
5) The PPB approach gives the tabks of program deveiopment and evaluation to the same decisitum maker(s). Hence, output measures most favoridhe to the program evaluarion can be selected.

REQUIREDRESOURCES

LEVELOF EFFORT

PPB is a comprehensive phaning rechnaqued, and more dffort is required as the complexity of the system increases. Decision makers will of turn be engaged in a contimuous effort to define goals, develop programa, and evaluate costs and ourputs. When this happers it is tocessary to collect data on costs and outpurs for the reme budget statement.

Somewhar more effort may be required than simple budgeting and bookkeeping: towever, PPB may be considered an aiternative so mormal budgetary control.

SKILL LEVEL.

The user needs a knowledge of sysrems amalysis techniques like Objective Trees (OBT, page 49 , and CostBenefit Analysis (CEA, page 212). Shills in accounting methods and cost data collecrion may also be necessary,

TIME REQUIRED

Time required depends on the comple vity of the system to be planned, programmed, and budgeted. In many agencies, this is a continuous process.

SPECIAL REQUIREMENTS

A PPB system may be done on a computer, as in orther cost-accounting systems. In large organizations, computerized datahanding may be essential for effective plaming, programming, and budgeting.

DESCRIPTIONOF TOOL

DEFINITIONS

 develloped: -.gon development of ayricatetric or health survicus.
 projects considered ander a program dategery : cex.. . sub-category of ariculterall dewelopturat is inybict seed rescarch.
 thecded io carry una projuct.

REQUIRED INPUTS

Whory deweloping goals and measurabile ubjectives. tive agency or wmit responsible for plammeng mist wnderstarod the orgamzation s purpose and how other agencies cosopte? ate within the orgamization.

Know ing the resource requirements and the rewources waillable und hawirg access to cost duta are nercersary.

TOOL OUTPET

Tincrev are four areas of intormation for dechsion making:

1 The defined goals of the agency.
2) Altermative programs to meet those gratb.
3) Asi suatuation of ahe costs und benctits of each alt ternative.
4. A means for meas sring the resultus of the progrim welected for futare ewarnationi.

IMPORTANT ASSLMPTIONS

PPB assumes that well-defimed goals can be agreed upon. Using ambigumus goul statements weakens the plamaing process and the attempts to measure program results wersus progranngoals.

The results of a program must be measurable. However. in social programs such as health care, measuring the imcreased health lewel as a result of the program may be difficult, if not impossible. Yet, the planning process assumes that the furare output of a program can be adequateify estimated.

A project leader, or agency head, must contribute to the presentation of well-defimed goals for agemey programs and the evaluation of all program results each budget year.

METHODOF USE

GINERAI PROCEDURE:

The procedure is divided into three stages 1 j plannisg. 2) decision making/implementation, and 3. review.

Planning Stage

1. Define the goals of the organization or institution.
1.1 Detemine the type of programs to be developed. and help evaluate the results of the programs. Use technigues such as Function Expansion (FEX. page 45; Objuctive Trees OBT. page 49, and Intent Structures (NS. page 53 to identify goals.
1.2 Initially, state goals in broad terms. Then deffine cach phrase in the goal statement in more therail.
2. Develop programs to achieve goals.
2.1 Gather relevant information. Program development requires extensive knowledge of the relevant social and economic systern and of the particular problem to be solved. A wide range of information gathering may first be reguired. Explore theories on the subject and interview experrs. Ortier tools. such as Delphi (DLP, page 168) or Morphological Analysis MPA, page 10, may be useina.
2.2 Use this indomation to develop programs that promise to achicve the defined goals. List programs by types into different program categories. When a program involves more than one project. program sub-categories will be necessary (see figure 1).
2.3 Break the program categories or sub-categories into program clements, the specific re.ources needed to carry on the program.
3. Estimate needed resources (inputs)-
3.1 Estimate the cost of each program element and determine the average cost per project.
3.2 Discount all future costs to the present for analysis and comparison on the same basis (see Discounting, DIS, page 184).
4. Esrimate outputs and benefits for each program category.
Determine a unit measure of the outputs. For example, an education program category requires a unit measure to estimate the value of a college education. c.g. dollars, number of persons receiving a degree, or nimber of graduates imployed. Information on measuring outputs (benefits) can be found in CostBenefit Analysis (CBA, page 212) and the Logical Framework LGF, page 2ธ0),

FigURE 1
Gcalls and Programs for the Federal
Economic Development Administration

5. Evaluate program categonies (or sub-categories).
5.1 Derermine which program prowides the mast out puts for the letast cost using cost benefit analysis.
5.2 Determine which program best meets the goals of the agency. This goal-related criterion for evaluation distinguishes PPB from a purely economic analysis (as in cost-benefit analysis). Although a number of programs may have a tavorable bene-fit-cost ratio (see BCR, page 194), some programs achieve the stated goals better than others.

Decision Naking/Implementation Stage

In the decision-riaking/implementation stage, the information from the planning stage is presented to the decision maker. The information will incluce the general and specific goals of the agency, possible program categories, sub-categories and program elements, an analysis of program costs and benefirs, and an evaluation of how the program outputs achieve the goais of the agency.
6. Select program caregories and dements.
6.1 Evaluate the above information and determine which projects and programs are to be implemented.
6.2 Ser prioricies and, if necessary, defer implementation of some programs so the next year (e.g.. if there are budget constraints).

Review Stage

7. Monitor outpas.
7.1 Once the program is funded. set up a mechanism to measure program outputs. The unit measures have bece established in step 4, so a system of contindous data collection is needed.
7.2 Determine multiple indicators which may be useful in reviewing program outputs in order to verify che results. Are indicator will seldom cover all ourputs. These data will be used to evaluate the actual results of the program and will be used in future budget analysis.
8. Develop a computer model of costs and ourputs (optional).
With the information gathered in steps $3-7$, a computer model can be developed to estimate changes in the cost or ourput data and zo help evaluate inture proyram changes. For a more detailed discussion. see Tenzer (1969).

EXAMPLE

The goals and programs for a PPB sysecm for the Federal Economic Dewelopment Administration are giveri in figure 1 . The program is broken dewn inco tour program categories. the pablic works proiece is diwided into three sub-categories: and program elemenes for the waterfsewer subecategory are showm.

Figure 2 presents an analysis of the second and third progrum categories. The specific goal of creating jobs has been cvaluated. Program altermative B. Public Works Prex. ject, creates more jobs than alternazive C. Business Lowans, but at a grcater cost off $\$ 2.000$ per job. Nost of the jobs in ziternative E will last onlly as long as the projece iscelf. In alternative C. more of the jobs showld be for the life of the business.

Another important evaluation critarion concens whas will reccive the basic benefits. Alternative B distinguishes benefits to many residenes in the depressed arear particuharly because of the water/sewer projects In altermative C. the basic business loan is a direct benefit to only a small group of business people in the community. The indirece benefies (increased tax base and long-tern emplowmem; were not estimated fo this example.

FIGURE
Analysis of Program Alternmieres

A			
	Average Cost Per Project	Average No. of Jobs	Average Investment per Job
1. Water/Sewer	31,028,000	172	\$ 5,976
2. Industrial/Commercial	1,367,000	228	5,995
3. Other facilities	618,000	41	15.073
TOTAL	3,013,000	441	6.832
Alternative Programi C: Business Loams			
Average Cost Per Project		Average No. A of Jobs	Average Investment per job
	.000	5	\$4.880

SOURCE: Raymond H. Milkman, et al., Alleriating Economic Distress: Evaluating a Federal Effort (Lexington, Mass.: D.C. Heath and Co.. 1972), chapter 7.

THEORY

PPB was originally developed by the executive branch of the U.S. Federal (iovernment for agency budget preparation. It stmms from the application of a systems approach to planning and managemenx. The first task in the conventional systems malysis strategy is to identify cbjectives. then to find alternative means for achieving the desired ends. The systems analyst then determines measires to evaluate the alternatives and ranks the alternatives according to their effectiveness in reaching desired goats.

A systems approach merges planning. implementation. and evaluation plases in a comprehensive system desigth PPS tepresents one manifestation of the application of this strategy to public inastitutions -primarily the Department of Defense. fithas a particular appeal to centralized decision makers because of the appearance of increased accountability, the implied reorganization along funcrional lines, and the inage of scientific "systems" sop inistication. This latter point is illustrated by the trend toward automating PPis accounting and reporting grocedures with comprebensive samagement information computer systems.
it is not chear, however, wherher PPB really works as infended. There is considerable evidence for the reasons cited in Limitations! that it does not (see Caldwell, 1973. and Hoos. 1972). Nevertheless. it is an important tool to understand because is has becn widely acclaimed isee Hinrichs. 1969) and because it illustrates many aspects of the systems approach. The caution for analysts and decision makers is to be skeprical of any such system (including management information systems) antid it is tested and evaluated on its own merits, rather than on the basis of unsubstamiated claims and promises.

BIBLIOGRAPHY

Caldwell, Kenncth S. "Pracrical Considerations in Evaluating the Efficiency and Effectiveraess of State/Local

Government Programs." First Amnual Systems Engineering Conference. New York City, November 1973.

Chu, Kong. Qucnitutive Merhods for Business and Economic tinalysus. Scrameon Pas: International Textbook Co.. 1969.

DeNeufville. R., and Stafford. J. Systems Analysis for Engineers and Manugers. New York: McGraw-Hill. 1971.
Hinrichs, Henley H. "Case 3: Peace Corps: Program Structure, Objectives and Evaluation Criteria." In Program Budgeting und Benefir-Cost Analysis, edited by H.H. Hinrichs and G.M. Taytor. Pacific Palisades, Calif.: Goodvear Publishing Co., 1969.
Hintichs, H.H., and Taylor, G.M., eds. Program Budgeting and Bewefit-Cost Andysis. Pacific Palisades, Calif.: Goodycar Publishing Co.. 1969.

Hoos, Ida R. Systemas Analysis and Pubinic Policy: A Critigute Berkeley: University of Califormia Press, 1972.

Kureckeberg. Donald. et al. Crthan Mhanang 4 malysis. New York: John Wiley and Sons, 1974.

La Patra. Jach W. Applying the Systems Approcech to Urbun Depelopment. Stroudsburg. Pa.: Dowden. Hutchinson and Ross. 1973.

Milkman. Raymond. ci al. Aldeviaring Economic Distress. Lexingrom, Mass.: D.C. Heath and Co.. 1972.
Tenzer, A.J., et al. Applying the Concepts of Programs Budgering to the New York City Police Departmenz. New York: Rank. 1969, pr. 35-53.
U.S., Congress, Joint Economic Committee. Subcommittec on Economy in Govermment."The Planning-Programming-Budgeting Svsterm: Progress and Potentials." In Prograpm Budgeting aned Benefit-Cost Analysiis, edited by H.H. Hinrichs and G.M. Taytor. Pacific Pahisades, Califit: Goodyear Publishing Co., 1969.

Critical Path Method

PREREQUISITE TOOLS

None.

USAGE

PURPOSE

The Critical Path Method (CPM) is a networking rechnigue for planning and managing projects-

USES

CPM aids in planning and managing the execution of activities in a project where the activities must be petformed in a specified sequence. CPM:
i) Identifies critical acrivities which require spectal attention from managemenr.
2) Assists in estimating the rainimum total time needed to complete the projecr.
3) Gives the times when activities must be scheduled to complete the project in the minimum time.
4) Serves as a planning and management device to communicate complex procedures to staff and funding sources.
5) Facilitates the construction of Gante Charts (GNT. page 252).

KEY DEFINITIONS

If An wetienty is an opectaion wisth a well detined be ginumag and ernil. and a specific purpuse. Some exampics ars PREPARE QUESTIUNNAIRE and MALL QUES TRONNAIRE. activities which may be necessary to complete a Survey SVY page 36:.
2. A criaicul actirity is an activity which, 就 mos com pleted on rime, will deldy the entire project.

3 The crivicul puth is the sequence of criticall activitics irom project start to project timish that determine she shortest project duration.

SHORT DESCRIPTION

The Critical Path Method begins by describing the activities necessary to complete the project. The time sequired to complete each activity is estimated. taking into consideration the resources available and the desired performance specifications. Arranging the activities in a network shows the logical seguence trom start to finish see thgure 1; The critical path through the network is computed by determining the acrivities which are critical to the timely completion of the praject. From these calculations, the total time needed to complete the project may be estimated.

The Critical Path Method can be used during the management of the project to directattention and resources to critical performance areas.

FIGURE 1
Project Network for the Activities Necessary to Arrange a Seminar

ADVANTAGES

1) Using CPM for a project promotes advance planning.
2) CPM provides a concise framework for an ongoing review of project progress.
3) The visual representation of the total project communicates effectively to ime personrel, funding agencies. and other interest groups.
4) CPM identifies those activities that must be completed on time in order to end the project as early as possible. Extra attention can be devoted to these critical activities, or resources can be scheduled accordingly.
5) Using CPM frequently results in a significant reduction in project duration by avoiding unnecessary delays (Moder and Phillips, 1964).

LIMITATIONS

1) It is necessary to estimate in advance the exact nature and timing of each activity in the project.
2) The fact that most activities may take less time if resources are shifted from other activities is not ueated in the critical path calculations.
3) CPM does not consider additional information that the project manager may have, e.g., the relative skill of different workers or the expected delay in procuring some resources.
4) It is tedious to mantally analyze a CPM network containing more than 50 activities.
5) CPM does not consider planning projects when there is limited availability of a particular resource. Gantt Charts (GNT, page 252) may be used in such cases.

REQUIREDRESOURCES

LEVEL OF EFFORT

Drafting a CPM network for a large project can be a significant undertaking. However, when activities are identified during the planning or budgeting stage of the project, the CPM network may actually provide a framework which will reduce the total planning effort.

It may be necessary to update the network during the course of a project. This may be done on a weekly or monthly basis depending on the nature of the project.

SKILL LEVEL

The calculations on a simple network involve no more than simple arithmetic. For larger networks, the calculations are no more complex, but careful bookkeeping is important.

TIME REQUIRED

The time required depends on the number of activities. the decision maker's familiarity with the project. and the difficulty in getting accurate data cstimates. Consmaction of the CPM metwork. analysis of critical activities, and computation of minimum total project eime reçuire one day for projects with less than 50 activirics.

SPECIAL REQUIREMENTS

One index card or something similar) for cach detivity is needed. Large sheets of paper may be needed to construct the CPM newwork for a large project. A calculator will be useful for chart computations. A comptater is de. sir ble for landling large project networks. Many CPM compucer programs are available (sec Moder and Phillips. 1964).

DESCRAPTION OF TOOL

SUPPLEMENTALDEFINITIONS

1) The duration of an activity is the estimated time needed to perform the activity.
2) The predecessor activity for an activity must be completed before the latter can start.
3. An imnediate predecessor of an activity is any other activity that immediately precedes it and which musi be compleded before the activity can start.
4) The earliest start (ES) of an activity is the earliest time measured from the start of the project when an activity may begin, assuming that all immediate predecessors are completed.
5) The earliest finish (EF) of an activity is the sum of its earliest start time anci duration.
6) An immediate successor of an activiry is any activity that immediately follows it and which may not start until completion of the activity.
7) The latest fimish (LF) of an activity is the latest time (measured from the start of the project; when an activity may be completed without delaying any immediate successor (s), thereby delaying complecion of the project.
8) The latest start (LS) of an activity is its latest finish time minus its duration.
9) Slack is the amount of ieeway allowed in either starting or completing an activity. Slack can be computed in two ways:

$$
\begin{align*}
& \text { Slack }=\mathbf{L S}-\mathbf{E S} \\
& \text { Slack }=\mathrm{LF}-E F \tag{2}
\end{align*}
$$

which is simply the differences between the latest and eariest starts [1] or finishes [2].
10. A milestone is a point in time spec: date) which marks the completion of a sequence of activities or the beginning date for subsequent activities.

REQUIRED INPUTS

The Critical Path Method requires knowledge of the project objectives, and the activitjes necessary to achieve them, in order to estimate the duration of the different activities and construct the sequence.

TOOL OUTPUT

The CPM gives the minimum total project duration based on the identification of the critical path. The critical path calculations determine the leeway in schedulingeach activity: the time intervai designated by the earliest and Lutest start times and the carliest and latest finish times. This information etables the project manager to determine scheduling priorities and concentrate efforts on the critical activities, those activities which have no scheduling leeway or slack.

The CPM is the first step in preparing a Gantt Chart (GNT. page 252) for examination of any potential problens in allocating resources to the project.

INPORTANT ASSUMPTIONS

All activities racessary to complete the project are known during the planning phase. All activizies identified as necessary must be completed. i.e., there is no provision for alternative choices of action contingent upon later information or actions beyond the control of project planners. One may prepare alternative networks for each consingency (see Contingency Analysis, CGA, page 147).

The time estimates for each activity are determinate, i.e.. CPM does not permir variation in estimating duration. The durations estimated for each activity are assumed to be independent of the other activity durations. Resources required to complete any activity are not constrained (see Davis. 1966).

METHOD OF USE

GENERAL PROCEDURE

Describing network techniques may be complicated, depending on the level of abstraction. This procedure is an easy approach for relatively simple networks: the analysis proceeds directly on the network. Other procedures which use a complex notation to represent the activities are not necessary uniess the procedure is to be carried out on a computer.

1. Identify and hist all activities necessary to complete the project.
1.1 Briefly describe each acsivity in the center of an index card (see figure 2).
1.2 Examine the activities and discard or modify any which are too detailed when compared with the other activities.
1.3 Give each activity an identifying number, e.g., 10. 20.30. etc., leaving intervening numbers for activities which may be included later.
2. Estimate the duration of each activity.
2.1 Consider the normal level of resources available to complete the activity.
2.2 Consider the desired specifications for the activity's performance.
2.3 Write the duration at the bottom of each acuniry card (see figure 2).
2.4 List the activizues and their durations (figure 3).
3. Draw the project network.
3.1 Place the activity cards on a large sheet of paper.
3.2 Arrange the activities in their logical sequence from lefr to right, and fasten the cards to the paper.
3.3 Use arrows to connect each activity to its immediate predecessors and immediate successors (see figure 4).

FIGURE 2
Activity Card with Location of Notations

FIGURE 3
Table Format for Computation of Critical Path

PROJJCT:
NE'TWORK PLANNIER:
START DATE:
'FIME UNITS:

activiry		duration	immediate predecessoms	immediate successors	Stakt		Hinish		Slack	Status
No.	Descripion				IARIIIST	1.ATEST	laplust	latest		

FIGURE 4
Immediate Predecessor and Successor Relationships
and the Computation of Earliest Start and Latest Finsh Times for an Activity

3.4 Check the network for the logical consistency of activity sequences.
3.5 Enter each activisy's immediate predecessors and successors in the table figure 3 ; using their identifying numbers.

4. Identify the PROJECT START and the PROJECT STOP.

4.1 If the project begins with several simuttameous activities (cach having no immediate predeces. sors), then place a PROJECT START card on the nerwork and connect it with arrows to these activities (see figute 1). This activity has zero duration.
4.2 If the project ends with several simultancous ac tivities (each having no immediate successors: then place a PROJECT STOP card on the mexwork and connect it with arrows to these activi. ties. This activity has zero duration.
4.3 Assign a reference time of zero to the desired starting date of the project.
5. Determine each activity's earliest start (ES) and earliest finish (EF).
5.1 Begin with PROJECT START and work forward through the network.
5.2 Set the ES for the PROIECT START equai to zero.
5.3 Compute the EF for cach activity by adding the duration to its ES.
5.7 For each sequential activiry with only one immediate predecessor. set the ES equal to the predecessor'sEF.
5.5 For each sequential activity with more than one immediate predecessor, set the ES equal to the latest $E F$ of the predecessor activities. The ES of an activity is the earliest time measured from the start of the project) that an activity may begin assuming that all immediate predecessors are first completed. Therefore. the ES can be no earier than the EF among the preceding activities (see figure 4). For example, if activity D is preceded by activities A, B, and C, and if the carliest that these activities may be fitished is 4,2 , and 3 weeks from project start. respectively, then the earliest that actiwity D may start is the fourth week of the project, i.e., $\mathrm{ES}=4$.
5.6 Write the ES and EF on the top corners of the activity card (see figure 2) and enter in the table (figure 3).
5.7 Repeat steps 5.3 through 5.6 until the PROIECT STOP is reached. Note, the ES for anactiv-
ity may be calculnted waly atter the tila whill inmedtate predeceswors luae beendererntired.
6. Determine each acturity's latest start (1.S) and latma finish (LF).
6.1 Begin at the PROJECTE STOP and work bats ward througly the stetwork.
6.2 Set the L5 for the PROJECT STOP equal to it EF.
6.3 Compute the LS tor cuch activity by sub. tracting the duration fromits L. Le.
 cessor. set LF equall zo Lhe LS of the whe waso acrivity.
6.5. Fior cach actiwiey with more than ene inuwhediate successur. sut the LF wheal tor the adrines LS of the whccessor detivitics. The l.F opt an acriviry is the latese time , qreasured trewn the start of the projects when an activity nthey be completed without deluying the propect. Com

 anediandy followed by activirice E and F and it the latese that these detivicies may begin is lo and 9 weeks. respectively. then the latect that
 propiect. ícu.. LF =
6.ti Hrite the LS and LF on the bottom cornerm of the activity card isee figure 2) and enter in che table figure 3 .
6.7 Repeat steps 6.3 through 6. 7 untull the froul ECT START is reached, Note the LF for ant inetivity may be callenlated onlyafter the LSs oif ali immedtate successors fade Bren fleternimed: Hence the nuecssity to pass backward through the metwork.
7. Compute the slack times for each activity.
7.1 Slack is zero for an activity with iamencal ES and LS or idennical EF and LF.
7.2 Otherwise, slach is simply the difference in time berween the ES and LS or berween che EF and LF of each acrivity.
7.3 Write the slack at the botrom of eaclin activity card see figure 2 yand enter it in the table.
7.4 Check the calculations for each activity by adding the curation and slack to the eariest start time. The sum should give the latese finish time for the activity.
8. Identify the critical path for the project.
8.1 Any activity with zero slack is critical, Mark the scatus in the table figure 3 .
8.2 The seguence of critical activitics from start to finish is the critical path for the project. There may be more than one critical path.) Mark the critical path on the network diagram with heawy lines on the connecting arrows and/or by shading the critical activity cards in the seyavace.
9. Determine the duration of the project.
9.1 Examine the segucrice of activitiey to sec if all Netivities are recessary. or if the project method might be changed (Mulvancy, 1969).
9,2 Examine the activities on the critical pathen to see if they might be shortened in duration.
9.3 Consider the application of additiomall resources to sternten criticalactivatios.
9.4 Consider a change in spucified performance of the activity to shorters the estirnated duration.
4.5 Finally. tute the duration of the profect as the EF uf the finalactivity or PROJECTSTOP.
10. Use the project network to manage the project.
14. 1 Assuming the project is to be compirted as canty As possible, set the calender date of the PROJECT START at the carlinst feasible timme. This becones the time refermee for scheduling all subsequent activities.
10.2 Schedule every activity to start in its ES to LS lime interval. Note that chere will be nolecway in sefreduling critical activities.
10.3 II days are the basic time unit, schedule accomat ing to calendar working days tunless owertime is suthorized).
10.4 If a deadine for completion of the project has been set and if resources and staff are mor available unmill the last minute, set the PRODECT START date by suburacting the total project time from the deadiline.
10.5 Write in significant milestones on the network using the clapsed time from tine date of the PRojnceT START. Milestones usually mark the latest finish date for several simultaneons activity sequences.

EXAMPLE

Though the Critical Path Method is most useful for projects involving 50 or more activities. a simpler example illustrates the technique: a planning seminar which brings experts together with donor agency representatives.

Identify and List All Activities Necessary to Complete the Project

The seminar plan calls for selection of donors and experts and the arrangement of fimancing facilities. and travel. These activities are listed in table form isee figure 5 . All activities involve about the same level of detail. i.e.. minute specification of tasks is omitted at this stage. Many other activities may be necessary to plam a particular seminar, bur only six tasks are shown in order to simplify the example.

Estimate the Duration of Each Activity

The durarions shown in figure 5 are in time umits of wecks. These are estimates bused on the number of experts and donor represematives inwolved in the seminar and the statf awailatble to complete the activities.

Draw the Projece Network

The activities are written on index cards and arranged in a logical sequence see figure 1 in fitially. the network maty look rather confusing with many arrows crisscrossting. Sometimes rearranging the actiwity cards and redrawing connecting arrows will clarity the diagram. If crossing two arrows cannot be avoided, use a "bridge" for clarity.

Check the merwork for consistency- Is the activity sequence lowical: Can activities sequenced one after the orther be performed simultaneously? Activizies 10 and 30 afe inllustrative.

The immediate predecessors and successors of all activities are noted in the table seefigure 5 .-

Idennify the PROJECTSTART and the PROJECT STOP

In this example, it is necessary to add both a PROIECT STAKT and a PROJECT STOP acriwity s. The project begins and ends with simultaneous activities. The fintall attivity is mot HORD THE SEMMNAR since the project is completed when arrangements for the seminar are finished. This includes setinge a date iwhich may be in severai monaths).

Determine Each Activity's Earliest Start and Earliest Finish

Compuration of the earliest start and finist is s. who directly on the top cormers of eachactarity card isee figure 6). For example. accivity 50. ARRANGE FOR DONOR REPRESENTATIVES TRAVEL, is preceded by activities 10 and 60 which have earhest finish rimes of one and five wels, respectively. Since er rivity 50 may start only after all preceding activities are finished, its ES is five weeks from the starting date of the project.

FIGURE 5
Completed Activity Table for Activities to Arratge a Scmibar
Pleojectr: Artange Donof Sponsored Smanat
NITWOHK PI,ANNER: D. SHoskind

$\mathrm{N}: 3$,	Ac.ITVITY	DURATION	lmMLDAATE PREDEISSNORS	AMMIHMAD'L sucetastios	(Antins	IATI	$\begin{array}{r} \text { HNI } \\ \text { IAHLHSI } \end{array}$	il \|ATISI	S1ACK	Sidecs
$11)$	heudity fomm Apencies	1	71	20,50	t)	0	1	1	11	chatisal.
20	Arampe linnocina	4	10	111. 141	1	;	1	1	0	(IGTICAS
30	Ifkeltify liputar	1	710	10	11	4	1	$\dot{5}$	4	
:10	Armage for i'ippers' Ahaves	?	26, 30, 010	40	4	\ddagger	7	7	0	CRLTICAI
50	Aratipe lan Demut Ropersontativer Thend	1	14. 614	W11	5	4	1	7	1	
69	Afange Aretime Phas and Thome	1	41		1	1	\%	5	1	(14tM
70	14tulaiashara	1		111.30	11	U)	1	0	19	
80		0	H1, 54, 41		7	7	7	?	(\%	

FGOURE 6

Detcrmine Each Activity's
 Latest Start and Latest Finish

These times are compured directly by workious back through the network see figure for For exaple activity 60. ARRANGE MEETING TIME AND PAACE, has thre immediate successors. activitics 40.50 , and 80 , the PKOIECT STOP). These activittes bavo latest starts of five, six. and seven weeks. respectively, from the starting date of the project. Since activity 60 must finish before the foll lowing activitie; car begin. the latest finish is five werts from the PROJECTSTART.

The latest stare time of the PROJETSRART is conputed as zero. This provides an ensy check of the computationts for all activities.

Compare the Slack Times for Each Acrivity

The slack for each activity is shown on the activity vard and in the rable (figure 5). Activity 30 has the hargect slack - four weeks. Since its ES is weck zero and its LF is whek five. expers may be identified during ary woek in this tirne period. This task has been estimated to the ondy a week, bu+ it would be wise to schedule it as early as pows sible (even though there are four week of slack).

Identify the Critical Dath for the Project

The activities with zero slack are noted in the tathle (figure 5) by writing "critical" under the status columa. The critical path is shown on the network by shading the criciea! activity cards and darkening the connectingarrows (sce figure 6).

Determine the Duration of the Project

The eariest finish of the last activity is sevem weeks from the EROIECT START date, Upor examining the critical path, one may conclude that the most likely place to shorten the time is to expedite the artangements for francing. However, since this is largely beyond the plamrec's control, the total estimated completion time is seven weeks, the EF for the PROIECTSTOP.

Use the Network to Manage the Project

The starting sime for the profect is to be December 2 . When the activities with slack are scheduled. the planing is finished (note thar the table, figure 5 , is not a schedule? The beginning of activity 40 is selected as a key event in the project and the milestone date of January 6 is shown directly on the network diagram (see figute 6). The project manager assigns staff roles to each task and monirors progress against the planned performance. Construction of a Gantt Chart (GNT, page 252) facilitates these tasks.

This example $七 u l d$ be expanded to reflect the many detalls that go into setting up a seminat and activities prior

 practice tue state with a metwork that idemetifew ofe grume
 down.

THEORY

The Eriticul fath wethed, CPM araf Provice Exaleas

 the fen merwork acthmique cormsiaured the coses of

 suastic. opeimustic. and most !ikely fore the duration of cuch actiwity. PERT dilowed the phumbers to extimate a

 panded and modifiod. and wamy wether netwerk rochnagaes have been deweloped pawis : 1966) gave at excel-
 wiuks. Hritsker and Happ (i96b) deveioped atwertond which comidereat the probability of costuin activites not cocurring a limiting assumption of CPN:

From the beginning, network techmiques frave bewn proganmmed for digital compurers. Moder and Phillipo 1964; histed some of the many versions. Effors to simplify the technique fon manual computation draw from the desirable features of book PERT and CPMas well as Gantt or Bar Charts. Mulwaney (1965) gwe an excellent treatment which serves as the model for this rool description.

BIBLIOGRAPHY

Bedworth, David R. Industrial Systems. Planning, Analysis, Control. New York: The Ronald Press Co., 1973.

Davis. Edward W. "Resource Allocation in Project Network Models: A Survery." The Jourmal of Induastrial Engineering 17 (March-April, 1960): 177-88.

Moder. I.J., and Phillips, C.R. Project Ahangememt with CPM and PERT. New Yook: Rheimhold Publishing. 1964.

Muvaney John. Analysis Bur Chartinge A Simplified Critical Puth Atwalysis Technique. Washimgton, D.C. World Bank. Economic Developnent Institute, 1969.

[^24]
Gantt Charts

PREREQUISITETOOLS

Critical Parh Method (CMM, page 241).

USAGE

PURTOSE

The Gant Chart fachitares planning and managing project activities and resoures.

USES

The Gantt Chart is used to:

1) Plana project to schedule uctivities.
2) Communicate the project plan to others and to mark milestones in the project sequence.
3) Determine the minimum project duration. given that some resources may be limited.

Project managers may use Gantr Charts to schedule resources and staff assignments and to record actual progress against the planned performance of activities.

SHORT DESCRIPTION

A Ganct Chart displays the schedule of project activities (see higure 1). Each activity is represenied by a bar that exiends along the time scale. The bar's length is propor-
tional to me durations of the activity. The position of the bar along the rime scale indicates the starting and ending cimes for the actiwity.

The required amoune of a limited resource ieg., manpowery traty be tabulded for each unit of time to allow for a direct exammation of scheduling problems. Activities may be shifted to keep the sotal amount of the resource whin the limat.

ADVANTAGES

The primary advantage of the Gante Chart is its simplicity and incuitive appeal. It is a popular scheduling device because the timing of each task is clearly indicated.

The critical path or secunence of critical activities is revealed on a Gantt Chart by direct inspection; there will be no leeway in scheduling these activities if the project is to be completed in a minimum time.

Allocation of a limited resource can be expliciely treated on the chart, and activicies can be rescheduled or resources chifted from one activity to another.

Milestones may be marked to clearly show important intermediate stages of the project. The project's progress may be marked directly on the Gantr Chart; if preceding activities are not completed at the corresponding milestone, then corrective action is indicated. For example, the 20 th working day after project start is a milestone for a survey project seefigus e 1\%.

A Gant Chart Example: Planning and Conducting a Survey

AMITAMONS

REQUIREDRESOURCES

skili ilevel.

As in any project phamming techamuc. developing a Gamr Chata requires breaking dowa a project into its logitcal and distinct acrivitits. If alsor requires estimating the duration of activities and resource requirmacmis. Since there is a fradeof between resources atlonened and the datation of an activity, these tasks are compaced by repeated practice in comstucting charts and comparing estinates with actual progres.

T1ME REQUARED

The time reguired is directly related to the asouplexity of the project to be scheduled. Experience in estimating resoarce requirenaents and task duration shortems chart construction thac. Gante Clarts oftern requite apdating during projectimplementation.

DESCRIPTION OF TOOL

REQUIREDINPUTS

Knowledge of the activities necessary to zomplete a project is the precondition for developing a Gant Chart. The dates for starting and ending the project fix the time scale of the Gantr Chart. Resource needs and availability mast be specified.

TOOL OUTPUT

The primary output is a project schedule depicted by a Gantr Chart. The Chart can then be used to mark the progress of the project and to adjust it accoriting to management decisions.

IMPORTANT ASSUMPTIONS

The Game Chart comstraction assumes that a project may be broken dowa into clearly distinguishable acriviries
with a detinite begtrangand end that is, the time tocomplete each activity can be accuratuly decermined during the planning phase.

The Gater Chart sechaigue doce not enable opeimum a ducation of resurces- more sophisticated techmiques are requred havis, 1966 . However, the technique is usefull for graph ically sequencing activities co avoid exceeding the amount of a limited hey resource. This assumes chat the interaceion between required resources and the duration of an activity can be specified ecg. if additional manpower is assigtred to the activity, is the duration shortculed. Determination of the minimum project duration usinget a Guatutr Chart is depending on these relationships see Bedworth. 1973.

METHOD OF USE

GENERALPROCEDURE

A Ganst or par Chart is constructed by identifying all the activitits involved in the project and determining their sequences. Each activity is drawn as a bar located on a time scale" so that the length of the bar corresponds to the duratrom of the activity and the position of the bar denotesits wheduled sart and end see figure 1).

The following procedure concentrates on constructing a Guret Chart as a heuristic techmique for taking into account the" requirements for a limited resource. As such, it extemals the Critical Path Method CPM. Page 241).

1. Construct the CPM network for the project.
1.1 Diagram the network in order to observe the logical sequence of project acrivities.
1.2 Compute the carliest (ES; and latest starts (LS) for eachacrivity and the carliest (EF) and the latest finishes LLF for each acrivity.
1.3 Compute the slack for each activity and determine che critica! path.
1.4 Estimate the minimum project duration.
1.5 Estimate how mench of the limited resource is necessary for each activity.
2. Construct the Gantt Chart for an unlimited resource.
2.1 Mark off a horizontail cime scale approximately one-third greater than the estimated minimum project duration. (If the time unit is in days, then include only working days tuless overtime is considered.
2.2 Draw a horizontal bar for the first activity lying on the critical path by starring at the zero reference on the time scale and extending to the estimated curation of the acrivity.
2.3 Draw a bat on the chart which corresponds to the duration of the next activity on the critical path. The beginning of the bar must fall on the same vertical time line as the finish of the preceding detivity. The bars may be drawn in the same row of the chart or in different rows to tacilitate identification of the activity (sce figure I).
2.4 Continue adding bars consecutively wnill all the critical activitics in the path are represented on the chart.
2.5 Make certain that the end of the bar for the last activity falls on a vertical line on the time scale which equals the estimated minimum project duration.
2.6 Add the activities not on a critical path to the chart. The position of the bar is determined by the carliest start and earhest finish times of the project activity.
2.7 Append a bar to the rightend of cach non-critical activity. The length should equal the slack for the activity (see CPM, page 241).
2.8 Draw vertical arrows betweer the ends of the bars to show the predecessor acrivities for each activity (see figure 1).
3. Determine resource req̧uirements.
3.1 Write the amount of the limited resource required for each activity directly on the bar,
3.2 Starting with the first time unit on the scale e.g.. day 1 or week 1), add the amount of the limited resource used in all activities scheduled at that time and enter it in the column below the chart (see figure 1).
3.3 Continue calculating the total resources required for the rest of the time unirs.
3.4 Sum these unit totals to give the total resource requircment for the project.
3.5 Divide this total by the number of time units to give the average resource requirement per unir of time (e.g., man per day, secretaries per week, computer hours per month). This givesan indication of how uniformly the limited resource is used by the scheduled activities.
4. Adjust the schedule for the limited resource.
4.1 Record the amount of the limited resource which is available for each time unit of the project (see figure 1).
4.2 Compare this to the total resounce requirement estimated for each time unit.
4.3 If the amount of resource required exceeds the amount available, then the schedule for that time unit must be shifted.
4.4 Wiehin the comstraimes powed by the logtiol wo ywerlee of activitices shite wetivities torward or back ward alteme the cime seate sot that the mentat resources reguired do tror eaceed these dualhtwat
 activities to reduce their resource tequitememet.
4.6 If necessary sehedule two simulabeots activities to follow each other sequentially:
4.7 Extend the total projece dituationi it necesomy. to awoid exceeding resource himitations.
4.8 Make certainatiot any maditication of the urgibnat schedule that no acrivity has beery biftead suctu that it starts betore all predeceessor activitios atw finished.
5. Use the Gantt Chart to manage the project.
5.1 Indicate the signitiana millestones by drawing a vertical line through the appropriate dute.-
5.2 Consider the scheduling of activities with shack: if the activity is scheduled for the earlicst start tume. the sllack will all uccur at the end: if the activiry is schedulled to start at che latest possible sume", the activisy will become critical to awod deheys in subsequemractivities and the project.
5.3 Assign staff and orher resources to cach activisy and discuss the schedule and expected pertormance.
5.4 Develop a reporting ssstem which can be used to mark the progerss and completion of cachactiwisy on the chart.
5.5 Provide for a period: staff review of project activities to emphasize the interdependency of the work.
3.6 If the project fails to meet the schedutle, update the chart and, if necessary, recalculate the critical path for the remainingy activities. This process is facilitated by providing space on charts to addactivities and ro expand or shift the time scale.

EXAMPLE

A simple Gantt Chart illustrates the activities required to design and execurive a starvey SVY, page 36). The example is adopted from Moder and Phillips (1964).

Construct he CPM Network

for the Project

The survey task was broken down into eight activities. and the CPM network was constructed (see figure 2). The earliest and latest starts and finisthes and the slack for each activity were calculated on the network and tabulated (see figgre 3). The minimum duration for the project was estimated to be 36 days.

FIGURE 2
Critical Path Network for Survey Project

FIGURE 3
Activity Table for Survey Project

[^25]Gantt Chart for Survey Example after Adjustments for Limited Manpower

The imited resource for this example was the staff avallable for planning and conducting the survey. The manpower necessary for each activity was determined see figure 3. column 4).

Construct the Gantt Chart for an Unlimited Resource

The Gantt Chart is shown in figure 1. The scale is in working days. Note that the slack for nou-critical activities is shown directly on the time scale. This chart represents an early start schedule since the slack period always follows each activity.

Determine Resource Requirements

The total resources for cach day were tabulated. The total requirement for the project was 81 man-days; the average daily requircment was $? .44$ men.

Adjust the Schedule

for the Limited Resource
No more than three staft members are available during the project. Though this exceeded the average requirement. a comparison with the Gantt Chart figure 1) revealed that four men are meeded on days three through cight of the schedule. Hiring personnel so conduct the survey and designing and drafting the questionnaire conld not be scheduled concurrently, All three staff members were meeded to draft the questionnaire and the duration of that activity remained as estimated Five days of slack followed the hiring of Fersonmel; this task's manpower requirement could be halved and the duration doubled without delaying the project. Yet, the resources required would still have exceeded those available by half a staff person per day. Assuming that the job of hiring personmel could not be delegated to another part of the organization, the only remaining choice was to reschedule $\mathrm{ci}^{\boldsymbol{i}} \mathrm{E}$ two activities so that they no longer overlapped.

The revised schedule required a minimum of 41 days. bur the manpower requirement remained within the limits for the entire project period (see figure 4). The average daily staff requirement was just under two men. Activity B, HIRE PERSONNEL, became a critical activity in this schedule.

Use the Gantt Chart to Manage the Project

Milestones were added to the Gantt Chart at 25 working days, or May 11, assuming the project began on April 6. The non-critical activities were scheduled to start at their earliest feasible time in order to provide a cushion if time estimates were wrong or delays occurred. The prog-
ress as of May +20 working darsateer the project began was shown on the chart by cross-hathing the states ot each activity. Note that frousetrold selection had not started. and atecntion was given to getting that task under way. However, it was not necessary to redraw the Gant Chart since there was sufficiene stack to complete this tush without delaying the project.

THEORY

The construction of a bar Chart to illentrate the schedule of project activities origitates trom thanderant practice rather than fromacomplex theory. However, the Gunte Chart technigue as described here deaks from two theoretical areas: metwork scheduling tuchençues sece. toss example. Moder and Phillips, $196-\frac{t}{4}$ and resource aitois tion theory : see Dawis. 1900 . for a review of reletant theory:

The Gantt Chart technique described in the general procedure section constructs a aime-scaled CPM neework: that is, a network in which the lengeh of the connecting arrows shows the duration of the activities.

The Gantt Chart provides a graphic record-keeping format for scheduling a limited resource. It does not provide a means for optimumallocation of scarce resources as this in beyond a trial and error approach. The technique has been described as heuristic and, as such. is more an art than a science (see Mulwamey, 1969. and Bedworth, 1973).

BIBLIOGRAPIY

Bedworth, David B. Industrial Systems, Phening, Analysis, Conitrol. New York: The Ronald Press Co.. 1973.

Davis. Edward W. -Resource Allocation in Project Network Models: A Survey. - The Joumbil of Inditistrial Engineering 17 (March-April, 1966): 17788.

Moder, J.I.. and Phillips. C.R. Project Mancgement with CPM and PERT. New York: Rhienhold Publishing. 1964.

Mulvaney, Iohn. Analysis-Bar Churting: A Simplified Critical Path Analysis Technique. Washington. D.C.: World Bank, Economic Development Institute. 1969.

Pritsker, A.A., and Happ, W.W. "GERT: Graphical Evaluation and Review Technique, Part 1, Fundamentals-" Journal of Industrial Engineering 17 (May. 1965).

Logical Framework

PREREQUISITETOOLS

None.

USAGE

PURPOSE

Logical Framework enables the decision maker to idencify project purposes and goals and plan for project outputs and inputs.

USES

The Logical Framework has been used widely by USAID Missions to:

1) Aid in planning a project.
2) Provide measures to evaluate a project.
3) State assumptions about causal lin kages.

KEY DEFINTTIONS

1) The purpose of a project is its primary intention or aim; it is the reason why a project is designed.
2) The goal of a projecr is a value judgment which satisfies one or more human needs. A program or sector goal is the broader objective to which a project conaributes.
3) The outputs of a project are the desired and undesired results of the transformation process of a system,
e.g., patients leaving a hospital, cured or not, are the results of a health delivery system.
4) The mputs of a project are the people, information, and/or physical items which enter the system to be transformed by a sequence into the outputs of the system, e.g., for an agricultural development project, inputs may be seeds, money, etc.
5) The sector is the larger system of which a project is part. e.g., building a dam is a project in the agricultural sector.
6) Objectively verifiable indicators demonstrate that certain desired results are being accomplished.
7) Means of verification ate the specific mechanisms by which quantitative indications of the accomplishment of a project may be observed.

SHORT DESCRIPTION

The decision maker uses two types of logic to arrive at explicit statements which serve to help in planning or in evaluating a project in progress.

A vertical logic clarifies why a project is being undertaken. It specifies the program or sector goal, and project purposes, outputs, and inputs.

A horizontallogic identifies what is to be produced and the evidence tiat rill sigmal success. It lists objectively verifiabie indicators, meams of verification, and importane assumptions. Figure 1 presents the basic format for the Logical Framework.

FIGURE 1
The "Logical Framework"

Project'Title:	PROJECTDE LOGICAL	N SUMMARY AMEWORK	Project: \qquad to FY U.S. Funding \qquad cpared:
NARRATIVE SUMMARY	OBJECTIVELY VERIFIABLE	MEANS OF VERIFICATION	IMPORTANT ASSUMPTIONS
Program or Sector Goal: The broader objective to which this project contributes	Measures of Goal Achievement:		Assumptions for achieving goal targets:
Project Purpose:	Conditions that will indicate purpose has been achicved: End of project status.		Assumptions for aclieving purpose:
Ontputs:	Magnitude of Outputs:		Assumptions for providing outputs:
Inputs:	Implementation Target (Typeand Quatity)		Assumptions for providing inputs:

SOURCE: Reprinted from Leon J. Rosenberg and Molly Hageboeck. "Mangement Technology and the Develaping World," in System Ap= proudes to Devoloping Conntries, Procedings of the symposium sponsored by IFAC and IFORS, Mis 28-31. 1973. Algiers, Algeria, page 5, Used with permission.

ADVANTAGES

1) The Logical Ftamework is simple to understand. it provides a structure for concepts, ensuring that the decisom maker thayks through the fumdamental aspects of a project destan.
2) The framework aids in evaluating a project since botli initial goals and final tesults are clearly delincated simplar to the System Definition Matrix, SDM, page 67, Ay ex phictly fidetatify ing how the project is to be eval. wated, the decision maker can make reabiste estimates of progect outconacs and can identify problems which might be encountered.

IMMTATIGNS

1) During the plaming process. the Lagical Framework dows not take uncertainey into accomnt. Neither does it allow for the comsideration of poremal aitermative actions.
2) A linear calsal sequence is assumed which is an urlikely simplification of the relationships among various project components and elements in the envitonment (see Oval Diagramming, (OVD, page 81 .

REQUIRED RESOURCES

LEVELOF EFFORT

The decision maker must define the project goals, purposes. inputs, and outputs in measurable or objectively verifiable terms. Thus, while the Logical Frannework may guide the planning process, it is not a substiture for the considerable effort required to plam effectively.

Skill Level.

The dccision maker must be able to think logicaily and to consider the important attributes. buth quantitative and qualitative, of the project.

TIME REQUIRED

Completing the Logical Framework takes from several days to several weeks, depending on the size of the project.

DESCRIPTION OF TOOL

REQUIRED INPUTS

The decision maker needs to identify the project which is part of a program or sector. The success of a program depends on the success of the various projects carried out within that program or sector.

Osher toolls may be ased to complete the Logital Framework. The objective trec OBT. page 49: can help to structure goals, purposes. and criteria for evaluation. To explore the links berween inputs and outputs. interacrion tratrix diagrams (IMD. page 92, would Be cseful. Todewelop a more thorough structure of a system. the System Definition Matrix (SDM, page 67) can be used.

TOOL OUTPUT

The completed Logical Framework matrix is one output of the technique. The other is the contribution that the process makes to the project design or cvaluation. By thimking through the horizontal logic. crucial hypotheses about causall inkages may be determined. Developing the horizontal logic forces the planmer to think in terms of realizable recults. The Logical Framework then serves as a statement which. zo some degrec. indicates the complecepess and soumdmess of these analytical processes.

IAPORTANT ASSUMPTIONS

Underlying amy planning techanque of this sort is an assumption of the inherent rationality of project interwentions. One need only identify the causail linkages from inputs to outputs to purpose, and the project has been designed systematically. Yet it is not a systems design necessarily, since systems seldom exhibit exclesively hinear causality. There are interacrions with envirommental components, feedback relationships, and complex relationships among the elements of the system. Thus the Logical Framework assumes a simplicity qualified only by entries in the "assumptions" column.

METHOD OF USE

GENERAL PROCEDURE

The recommended procedure is based on the work of Rosenberg and Hageboeck (1973) and the Office of Program Evaluation. USADD (1974). The vertical logic (column 1 in figure 1) clarifies why a project is being undertaken. It characterizes a project as a set of linked hypotheses:

If we provide the following inputs, then we can produce the tequisite outputs.
If we produce those outputs,
then the purpose will be achineved.
If the purpose is achieved, then the goal will be realized.*
"Leorn I. Roseribers and Moly Hageboeck, "Mansgement Techinology amd the Developing worid," in Systemes Appraaches to Developing Cowntries, Proceedings of the Symposiusa sponsored by IFAC and IFORS, May 28-31, 1973, A isiers, Algeria.

Figuke 2
An Example of a Lontical Framework

NARRATIVESUMMARY	ORHECTIVELY VERIFIABCE NDICATORS	MEANSCF VE郎FICATHON	$\begin{aligned} & \text { MWPORTANT } \\ & \text { ASSUAPTICNS } \end{aligned}$
Program or sector goal: Provide universal cducation geated to needs of Temase"	Aleasures of goai achievernent: (a) Degree of shortage/surplus in various professions	i) Questionnaites to major industries iii : Comparimases of aumber of situdenas graduated wrili obbjectrive ind 10-wat pian	Assumptienstor Aubleving gral faygets: Abillity wit economice sector so prowide jubs proediceed
Project purposes: 1. Meet the educationat needs of a rural agricultural community	Mcasurcs of purpose acluncuemaca:- (a) Number of standents from rurat and urbam areas proportionate to the popalation on potential stadents (b) Rescarch and conrse directions in School of Agriculture	i) Demograplic datia (ii) Opinioms of leaders of rural interest groups	Assumaptiems for athicwise purpose: Ability af primary and secomdary wheols in rumall artuas to prowide stcidents withan ade fuate fonndation for tertiary educaticoil
Outputs: 1. Students with degreesin: Agriculture. Science. Engineering	Magnitude of ousputs: $500 /$ year loolyear 2007y year	Datacoilection by untwersity	Assumprions forr providing cotpents:
Inpus: 1. Faculty 2. Students 3. Scholarship program	Implementation target :	Data collection by university	Assumptions for providing inpurs: Braindrain is cut by half in five years

3. Complewe the vertical logic.

Deternaige at techat lewer lewer the conditions whicture酐estary and sufficient to echirwe the trext upper leved

 necchary and sufficiant to achicwe the purposess rete.

2. Complete the horizonat togic.
2.1 At each Jewe of the wertich hogic, complete the three pars horizumad logic. Dercmime:
4) objectiwely veriffuble indicators which demonstrate that the desited end has been accomplishece.
b) Mishs of weridication, on specific muchanismos through which accomphathanat is objecriwely werifod.
c) important assumptions which affect the success of the project. Here, the project desigmer caplicinly idenafies the umconercllable facrors that may affect project success.
3.2 Commider objectively verifabice indicators which may wo may not be agmantifitle. The two steq "Clationcation of evidence" involwes identifying first the indicator and thew the means of weriffication. The project designer is enconraged to mewsure what is anmportant, tather tham what is easy to macasure.
2.3 Follow each of the wertical bogic levels through the Horizontal login. For instance, aftor the purpose of the project has been extablished. foll in the con firriwns which indicate that the prispose has beem acherved according to the medms of verification. There may be many indicators which point to suc-

2.4 Sate the assumptoms which underine the achitevememt of the propect purpose.

EXAMPEE

Consider the educational sector in the country of Temanck. Cumenty, thecre is a Natiomal University in Bandat Beser. the copical., woflich is attended mainly by
 strong wgriculturall meeds. do not receive emough agriculd rutal education frome this dmiversity. A project is undertaker to stablisha al uniwersity at Bandar Kechin to serwe that aten"s mectis. Figure 2 shows a partialliy completed Logicull Framuework for this project.

THEORY

The Logical Framework technigue is based on a systems plaming model. The werticalloghe closely relates to the Sysum Deffinition Marim (SDM page 6.). Sonte theo-
 and obpectiwety werifiable indicators see, for example. DeGrecmen 1973.

BIBLIOGRAPHY

DeGrecme, Ki. A. Sociotechnacall Systems Factors in Anal-
 Prentice-Ha渞, 1973.

USAHD. Office of Program Ewalhacion. Evaltumion Flamat book. 2d. ed. Woshingtom, D.C.t United States Agency for Imternational Dewelopment, 1974.

Rosenberg, Leon I.. and Hageboreck, Molly. "Mamagentent Technology and the Deweloping World." Ln Systernes
 the Syanesirum sponsored by IFAC and EFORS. May 28-31, 1973, Aggers, Algeria.

List of Cross-References

Benefit-Cost Ratio

CBA,CFA.DIS, IFX.IRR.NPW.SVY
Brainstorming
CBA. DTR. NGT
Cash Flow Analysis
BCR, CBA, CEA, DIS, IPX, IRR, NPW, SVY
Compurer Simulation Models DTB, FLW.GAM. AMD,OVD,GTN,SVY
Contingency Analysis CBA, CEA, DTR, IDL, MCU, PPM, SCN, SPA
Cost-Benefit Analysis
BCR, CEA, CFA, DIS, IMD, IPX, IRR, MPA, NPW. OBT, OVD, PPB, RTS,SDM, SVY
Cost-Effectiveness Analysis
BCR, CBA, CFA, CGA, CSM, DIS, DRP, IRR, OBT. RTS
Critical Path Method CGA, GNT, SVY
Decisinn Tables CSM, FLW,IRR
Decision Trees CGA, MCU, SPA,SVY, TRD
Delphi HIS, NGT,QTN
Discounting BCR,CFA, IRR, NPW
Exponential Smoothing Forecasts RGF
Flowcharts DTB, MMD, SCN, SDM
Function Expansion BSG, IDL, NGT, SDM
Gaming CGA, CSM, MD, OVD, SCN, TRD
Gantt Charts CPM, SVY
Hisrograms
DLP, RTS, SPA,SVY
IDEALS Strategy
B5G, CBA, FEX, NGT, SDM
Impact-Incidence Mintrix BCR, FEX, INS, NCU, OWD, SVY
Imefai Stmugures BSG, DIP, FEX, [MD, NGT, OBT, TRD
lmeraction Watrix Diagrammeng BSG:DLP.NGT,OVID, RTS, THRE
Intermal Ratc of Recurm

Intercwiews
ESG. HIS.NGT. QTN.SVY
Logeicall Framework HMD.OBTT,OBD, SDM
Morphombegual Analysis CGA. DLP, HMD,NGT.SCN, SHM, TRH
Multuple Criteria Utility Assessment CEA.CGA.DTR.OBT. RGF. RTS
Net Present Worth CBA.CFA. DIS, HEP
Nominal Group Techmique PSG: DUPP. RTS
Objectwe Trees MMD, INS. IWW, LGF, NGTHPPB, KTS, SVY, TRD
Ongenizational Climate Analysis IVW,GBT, QTN,RGF,RTS
Oval Diagramming CSM, FEX, MMD. LGF,SCN, SDM, TRD
Planming. Programming, and Budgering BCR, CBA. CEA. DIS, DLP* FEX, NNS, LGF. MPA. ORT
Program Plamtuing Atethod NGT
Questriommaires CBA, DLP. HIS, IVW, SVY
Racing Scales CRA, CGA, DLP, DTR MCE, NETT, SPA
Regression Forecasting OVD,SVY
Scemarios DLP,GAM,OVD
Subjective Probabiliay Assessment DLP, DTR, IVW.RTS
Surveys
CBA, CEA.DLP, GNT, HIS, IVW, QTN, RGF,RTS
Synectics
NGT, RTS
System Definition Marrix BSG, CRA, CSM, FEX, GAM, WDL, LGF,NGT,SCN
Tree Diagrams DTR, MD, ORT, OVD

Glossary

ACTION STUB. That portion of a decision table which Bists the actions or decisions to be taken it a particular combination of circumstances occurs (DTB).
ACTION-EVENT PATH. The seguence of alternative actions and relevant events represented by the branches in a decision tee (DTR).
ACTIVITY. An operation wist a well-defined beginning and end and a specific purpose (CPMI.
AND LOGIC ELEMENT. Links sab-objectives to objectives where all sub-objecrives must be achieved in order to at tain the higher level objective(s) INS j. $^{\text {j }}$
ANNUAL CASH FLOW. The net incremental benefits for each year of a project and the difference between the incremental benefirs and costs (CFA).
ASSESSOR. A person who estimates the probability distribution of a set of events (SPA).
ATTRIBUTE. The elements or components of the system and the interrelationships arnong them (MPA, SCN).
AXIOLOGICAL MEASUREMENT. Involves value judgments, where the data necessary to derermine accomplishment of an objective are gathered via subjective methods (OBT).
BASE SYSTEM STATE. The set of current conditions which describes the essential characteristics of the scenario (SCN).
BINARY-EVENT OBJECTIVE. An objective that either clearly occurs or does not occur (OBT).
BRANCHING RULE. A rule that governs the construction of relationships in a tree diagram (TRD).
CAUSAL CHAIN. A sequeace of cause and effect relationships between variables (OVD).
CAUSAL LOOP. A causal chain which is connected so that a change in any variable eventually feeds back through the chain to affect this variable (OVD).
CENSUS. A survey of all members of a subject population (SVY).
CENTRAL TENDENCY. The most likely, or average value of the variable (HIS).
CHECKLIST. Used in design or analysis where items are marke \therefore or otherwise noted item by item (SDM).
CLASS INTERVAL. A uniform division of the variable range (HIS).
CLOSED QUESTIONS, Questions which require the respondent to limit responses to prespecified categories (QTN).
CLUSTER SAMPLE. The process of randomly selecting several clusters of stbgroups from the total population and surveying all members of the selected subgroups (SVY)-
CLUSTERED DATA. Used to aggregate the data into fewer points for analy is and plotting (HISj.
COMPONENTS. An entity in a system which may be elemental or it may be a subsystem having distinct components (SDM, TRD).
CONDITION ENTRIES. The conditions of each factor (or question) histed in the condition stub (DTB).
CONDITION STUB. That portion of a decision table which lists the factors to be considered when making decisions in a given situation. Each factor is written in the form of a question (DTE).
CONTINGENCY. A particular combination of factors that describes a futare environment (CGA).
CONTINUOUS MODEL. A model which treats variables that change contimuously over time (CSM).
CONTINUOUS VARIABLE. Takes on an infinite number of values ower sorne range of possible values (HIS).
CONTROE DIMENSION. Evaluates and regulates any element's specification. This dimension measures each element as the system operates, compares the measure to what is designed or desired, and takes action if the difference is greater than desired (SDM).
CORRELATION. An observed relationship between two or more variables in which the changes in one variable may be associated with predictable changes in another, the relationship, however, is not necessarily cause-effect (OVD).

CORRELATIVE BEHAVIOR. An assumed relationship between two or more variables in which the changes in one variable may be associated with predictable changes in the others (RGF).
CRITICAL ACTIVITY. An activisy which. if not completed on time, will delay the entire project (CPM).
CRITICAL PATH. The sequence of critical activities from project start to project finish that determine the shortest project duration (CPM).
CROSS-INTERACTION MATRIX. A representation of relaticnships between dissimilar sets of wariables (IMD).
DECISION RULES. The action entries of a decision table which link a particular combination of condition entries to specified actions (DTB).
DECISION SYMBOL. Represents a step in a process where there is a choice among two or more altersative actions (FLW).
DEPENDENT VARIABLE. The variable being forecast (RGF).
DESCRIPTIVE MODEL. A representation or imaginary entity containing information in a predefined form, intended to be interpreted by its user rules (SDM).
DETERMINISTIC MEASUREMENT. Where the realization of the objective is unequivocally determined from numerical dzea (OBT).
DIMENSION. Collections of atributes of the systern, where each collection represents a major aspect of the system (SCN).
DIRECT ANALOGY. Compares the problem being faced to a parallel situation in another field. technology, or discipline (SCN).
DIRECT ANALOGY METHOD. Used in Synectics sessions when members compare the problem being faced to a parallel siwation in another field. technology, or discipline ($\mathbf{S Y N}$).
DIRECT EFFECT. An interaction between two variables so that a change in one results in a similar change in the orher (OVD).
DIRECT MARKET VALUES. Measures of project costs or benefits which are assessed from equivalent market prices (IPX).
DIRECTED LINE. Links two symbols regether with an arrowhead indicating the sequence (FLW).
DIRECTED RELATIONSHIP. Specifies that the existence of the relationship is dependent on the order in which the two elements are considered (IMD).
DISCOUNT FACTOR. A fraction between 0 and 1 which gives the present worth of one monetary unit spent or received (DIS).
DISCOUNT RATE. A percentage rate (usually annual) which equates the present and the future worth of a payment (DIS).
DISCOUNTED CASH FLOW. A single value which represents the present worth of the net incremental benefits estimated for each project year (NPW).
DISCRETE STOCHASTIC MODEL. A model which describes the changes in variables at definite points in time (CSM).
DISCRETE VARIABLE. A variable with only a finite number of values which are multiples of a basic unit (HIS).
DRIVING FORCE. An attribute of a system which causes changes in the system state over time (SCN).
DUNNING. The process for recontacting participants who have failed to return their questionnaires (DLP).
DURA TION. The estimated time needed to perform the activity (CPM).
DYNAMIC BEHAVIOR. A consequence of delayed interactions among system variables. The dynamic state of a system depends on the prior values of state variables (OBT, RTS).
EARLIEST FINISH (EF). The sum of an acrivity's earliest start time and its duration (CPM).
EARLIEST START (ES). The earliest time (measured from the start of the project) when an activity may begin, assuming all immediate predecessors are completed (CPM).
ECONOMIC ANALYSIS. Analysis from the viewpoint of the national government and the economy (CFA).

EFFETTIVENESS. The degree to which the project or system design objectives are achieved (CEA).
ELEMENT. Part of a problem situation which can be described by allits elements (MPA).
ELSE RULE. A column in a decision table which applies when no other decision rules may be added to cover the case or where nocombination of conditions applies (DTB).
ENVIRONMENT. The set of all factors which are salient to the understanding of systems relationships, but which are outside the influence of the system variables (OBT. SDM).
EVENT. A fusure outcome, the occurrence of which is uncertain (SPA).
EXTERNAL CONTEXT. Represents the constraints on the base system \{SCN:-
FANTASY ANALOGY. The partic:pant's wishful thinking that the problem may solve itself or cease to exist (SYN).
FEEDBACK STRUCTURE. The set of relationships describing a system that involves one or more interlocking causal loops (OVD).
FINANCIAL ANALYSIS. Analysis from the viewpoint of the individual, group. or business which will directly gain or lose because of the project \{CFA\}.
FREQUENCY DISTRIBUTION. Plots the frequency of different categories of response (QTN),
FUNCTION. The primary concern of the system. It is the fundamental dimension of purpose (FEX, IDL, SDM)
FUNCTION HIERARCHY. An ordering of system functions from the most specific to the broadest (FEX).
FUNDAMENTAL DIMENSION. The basic characteristic of the eight system elements \{SDM).
GOAL. A value judgment which satisfies one or more needs (FEX, LGF, SCN).
GOVERNING RULES. Describe the relationships between decisions made by the participants in a game and the resulting changes in the simulated environment (GAM).
HIERARCHY. An ordered structure illustrating which factors are subordinate to others (TRD).
HUMAN AGENTS. The personnel who may be necessary for the system to achieve its function, yet are not themselves inputs or outputs of the system (SDM).
IDEAL SYSTEM. A system that achieves the function in the best possible manner as judged by the criteria for evaluating the system. Such systems typically require the least possible cost, the least amount of human rescurces, and the least cime while providing maxinum benefits (IDL).
IMMEDIATE PREDECESSOR. Any activity which immediately precedes an activity and which must be completed before the activity can start (CPM).
MMEDIATE SUCCESSOR. Any activity which immediately follows an activity and which may not start until completion of the activity (CPM).
IMPORTANT ASSUMPTIONS. The factors which affect the success of a project and which are beyond the intluence of the decision maker (LGF).
INCREMENTAL COSTS AND BENEFITS. Compated by subtracting the "without project" values from the "with project" values (CFA).
INDEPENDENT VARIABLE The non-random variable which is used for forecasting other variables usingregression (RGF).
INFLUENCE RELATIONSHIP. When one variable's change in value influences change in another variable (TRD).
INFLUENCE TREE. A tree that diagrams the variables which influence other viriables which are higher in the tree (TRD).
INFORMATION CATALYSTS. The communication (written or verbal) and the knowledge which enable the system process to occur, yet which are not inpucs or outpurs of the system (SDM).
INPUTS. The people, information, and/or physical items which enter the system to be transformed by a sequence into outputs of the system (LGF, SDM).
INTERACTING GROUP. A process that permits discussion among participants (NGT).
INTERFACE DIMENSION. The relation to other systems or elements-a linking entry to related system definition matrices (SDM).

INTERMEDIATE IMAGE. An intermediate image describes the state of the system after a time intervaln n SCN;
INTERNAL ECONOMIC RETURN. The rate of return derived from an economic analysis of the benefits and costs to the society ${ }^{*}$. economy of the country (IRR).
INTERNAL FINANCIAL RETURN. The rate of return derived from a financial analysis of the project cash flow IRR ;
INTERVAL SCALES. Scales that reflect not only the rank of one factor over another, but the degree to which one exceeds the other. The difference between them corresponds to alength of scalc interval (KTS.
INTER VIEW SCHEDULE. The plan for conducting an interview. It includes the questions to be asked /IVW).
INVERTED EFFECT. An interaction between two variables so that a change in one results in an opposite change in the other OVD .
IRREVERSIBLE VARIABLE INTERACTION. When the variable only increases or only de: creases (OVD).
LATEST FINISH (LF). The latest time (measured from the start of the project) when an activity may be complered without delaying any immediate successor(s), thereby delaying completion of the project (CPM).
LATEST START (LS). An activity s latest finish time minus its duration (CPM).
LIMITED ENTRY. A type of decision table which permits only a limited set of condition and action entries in the decision rule columns (DTB).
LINEAR LY LINKED MATRICES. Matrices with a common set of rows or columns (IMD).
LOGIC ELEMENT. A symbol indicating the nature of the relationship berween two or more objectives at adjacent levels in a hierarchy (INS).
LOGICAL INCONSISTENCIES. When hypothesized relationships among variables are inconsistent (OVD).
LOGICAL MEASUREMENT. Determines whether a binaryevent objective has or has not occurred (OBT).
MATRIX. A mathematical and graphical representation in two dimensions (IMD).
MATRIX ENTRY. The symbol used to indicate the existence or absence of a relationship between the element in the row and the element in the column (which together define the entry) (IMD).
MEAN. The average value or centrat tendency of the data (HIS).
MEANS OF VERIFICATION. The specific mechanisms by which quantitative indications of the accomplishment of a project may be observed (LGF).
MEANS-ENDS ANALYSIS. The identification of alternative actions to achieve specified ends (OBT, TRD).
MEASURING INSTRUMENT. A techaique for eliciting and measuring responses from a subject (OCA. SVY.
MEDIAN. The value corresponding to the midpoint of the data points (HIS).
MLESTONE. A point in time (specific date) which marks the completion of a sequence of activities or the beginning date for subsequent activities (CPM).
MiXED ENTRY. A type of decision table which permits extended entries such as a range of values for a question in the condition stub (DTB).
MODE. The value or class interval which occurs most frequently (HIS).
MODEL. A representation of an imaginary entity that contains information in a certain predefined form and has specified rules for interpretation (TRD).
MULTIPLIER EFFECT. Occurs when a project impact on one aspect of an economic system generates a stimulating effect on orher aspects (IPX).
MULTI-STAGE SAMPI.ING. Draws random samples in stages (SVY).
MUTUALIY-CAUSAL. VARIABLES. Variables that occur when a change in one variable causes a change in artother which is fed back to affect the first (OVD).

MUTUALLY-EXCLUSIVE PROJECTS. Incompatible alternatives where implementing one precludes implementing the others (NPW).
NOMINAL GROUP. A group process in which the members work independentiy but in cact other's presence (NGT).
NOMINAL SCALES. Scales that categorize different factors (RTS).
OBJECTIVE. A specific statement of purpose expressing a desired end (INS, OBT:
OBJECTIVELY VERIFIABLE INDICATORS. Indicators that demonstrate that certain desired results are being accomplished (LGF).
OPEN QUESTIONS. Questions which permit the respondent to answer as he or she chooses (QTN).
OPPORTUNITY COST. The cost of committing resources to a particular use as measured by the highest reaurn that could have been obtained by committing the same resources to an alternative use (DIS).
OR LOGIC ELEMENT. Links objectives where the artainment of any one or a combination of sub-objectives will achicve the higher level objective (NS).
ORDINAL SCALES. Scales used to rank-order a set of similar objects along a criterion dimension which reflects a basis for comparison, but not the degree of difference (RTS).
ORGANIZATIONAL ATTRIBUTES. The elements or components of an organizational sustem and the interrelationships among them (OCA).
ORGANIZATIONAL CLIMATE. The relatively enduring quality of the internal environment of an organization that (a) is experienced by its members (b) influences their behavior and (c) can be described in terms of she values of a particular set of characteristics (OCA).
ORTHOGONALLY LINKED MATRICES. Matrices with the same set of elements in the rows of one matrix and the columns of the other matrix (IMD).
OUTPUT. The desired and the undesired resules of the transformation process of a system (FEX. LGF, SDM).
OWNER. An organization or person who possesses intent for, or has a vested interest in, a project (INS).
PARAMETER. A quantity with only one value over the entire range of the system behavior being simulated (CSM).
PARTICIPANT OBSERVATION. The gathering of information about and impressions of a selected group by direct interaction over an extended period of time (SVY).
PAYOFF VALUES. Represent the gain resulting from the occurrence of a particular action-event path (DTR).
PERIOD. The time interval between successive s bservations of the underlyisg process (EXF).
PERSONAL ANALOGY METHOD. Used in Synectics sessions where a group menber identifies with an element of the problem and looks at it as though he were that element (SYN).
PHYSICAL CATALYSTS. The equipment, facilities, etc. which are necessary for the inputs to be transformed into outputs, but which are not themselves inputs or outputs of the system (SDM).
POLICY. Long-range decisions which influence a large number of diversified groups with different values. Policy made at one level of an institution forms the guiding criteria for shorter-range decisions at a lower level (INS).
PREDECESSOR ACTIVITY. An activity that must be completed before another acrivity can start (CPM).
PRESENT WORTH. The value today of a future payment (DIS).
PROBABILISTIC MEASUREMENT. Occurs when the attainmert of the objective may not be determined with certainty (OBT).
PROBABILITY DENSITY FUNCTION. Represents the probability distribution of a sec of continnous events (SPA).
PROBABILITY DISTRIBUTION. Associates each event in the set with its probability of occurreace (SPA).

PROBLEM ENVIRONMENT. The set of variables and relationships which are germaine to the decision process under study (GAM).
PROCESS SYMBOL. Represents an action which takes place over time (FLW).
PRODUCER.PRODUCT RELATIONSHIP. When one variable is a product of the other (TRD).
PROGRAM CATEGORY. A system category under which specific projects, or program subcategories, are developed (PPB).
PROGRAM ELEMENTS. The resources or inpurs needed to carry on a project (PPB).
PROGRAM SUB-CATEGORY. Refers to the specific projects considered umder a progrann category (PPB).
PROJECT EFFICIENCY. The ratio of project outputs to inputs (BCR, CEA).
PURPOSE. A project's primary intention or aim (LGF).
QUALITATIVE OBJECTIVE. Objectives that are judged subjectively to determine if they have been accomplished (OBT).
QUANTITATIVE OBJECTIVE. An objective that represents a quantifiably verifiable end or result (OBT).
RANK-ORDERING. The process of weighing one item against others and then ordering the items by weight on a scale such as importance or priority (BCR, NGT, NPW, FPM).
RATE DIMENSION. The performance measure for a system element (SDM).
RATIO METHOD. Estimates probabilities for a set of events by first obtaining the relative chance of pairs of events for all possible pairs (SPA).
RATIO SCALE. An interval scale for which the dimension of comparisom Has natural zero point (RTS).
REDUCED MATRIX. A matrix formed by omitring one or more rows on columns from the ariginalmatix (IMD).
REFLEXIVE RELATIONSHIP. Occurs when the variable interacts with itself (IMD).
REGRESSED VARIABLE. A variable is regressed on another when the former is dependent on the latter (RGF)
REGRESSION COEFFICIENT. The coefficient of the independent variable in a regression equa tion (RGF).
REGULARITY. The most frequent or dominant (and occasionally the most important) condition of concern to the project design (IDL, FEX).
RELATIVE CHANCE. Reflects whether one event witit occur rather than another (SPA).
RELEVANCE TREE. A tree that diagrams the relationships among different sets of factors at each level of a hierarchy (TRD).
ROUND-ROBIN. A process for serially recording ideas where each participant provides an idea in tum. No discussion occurs, although the leader may ask for a show of hands on how many participants had a similar idea. Those responding then eliminate tharidea from their respective lists. The process may concinue in a circular fashion until all participants' lists are exhausted (NGT).
SAMPLE. A subset selected from a subject population, the atributes of which are assumed to hold true for the total population (SWY)-
SAMPLE STATISTIC. A quantitative parameter which characterizes some aspect of the popula tion from which a set of data are drawn (HiS).
SCORING. Used in games as feedback to the participants to reflect the effectivemess of their dec:sions (GAM).
SECTOR. The larger system of which a project is part (LGF).
SELF-INTERACTION MATRIX. A representation of relationships within a simgle set of variables (IMD).
SEQUENCE. The process by which the inputs are worked on, transformed, or processed into outputs, usually with the aid of catalysts (SDM).
SET. A collection of elements having some common property (MD).
SET OF CONTINUOUS EVENTS. Consists of an infinite mumber of events \{SPA).

SET OF DISCRETE EVENTS. Consists of a finite number of mutually-exclusive events (SPA).
SHADOW PRICES. Adjusted market prices which reflect the true benefir or cosu to the economy (CFA).
SIMPLE RANDOM SAMPLE. A sample made so that every member of the targer population has an equal probability of selection (SVY).
SLACK. The amount of leeway allowed in either starting or completing an activity (CPM).
SMOOTHED VALUE. An estimate of the average value of the variable being forecase (EXF).
SMOOTHING CONSTANT. A fraction between 0 and 1 that indicates the degree of confidence placed on the most recent datum (EXF).
SOLUTION COMPONENT. The part of a program that is proposed as the solution (PPM),
STANDARD DEVIATION. The measure of the dispersion of the data values about the mean (HIS).
STATE DIMENSION. A speciffcation of anticipated changes and plans in specific time horizons for each of the four dimensions (SDM).
STATE SCENARIC. Describes conditions and events the state of the system and the external context) at a single future point in time (SCN).
STATE SYMBOL. Represents a tangible product, requirement, or specific condition associated with a process sequence (FLW).
STOPPING RULE. A rule that determines when any branch of the tree diagram should end (TED).
STRATEFIED SAMPLE. A sample that selects a proportional sample at random from each of the groups in a stratification of the total population (SVY).
SUBIECT POPULATION. The set of all events or entities which possesses certain specified characteristics (SVY).
SUBIECTIVE PROBABILITY. A quanrified judgment of the chance of an event occurring (SPA)-
SYMBOLIC ANALOGY METHOD. Describes the problem by objective and impersonal tides. These titles are used to identify other problems which may be described by the same tille. They are generally expressed in two words, usually describing two conflieting ateributes of the problem (SYN).
SYMMETRICAL RELATIONSHIP. Occurs when the relationship between two elements is nondirected (LMD).
SYSTEM. A collection of components which interact to achieve a common function (CEA, CSM, FEX, IDL, SCN, SDM, TRD).
TARGET GROUP. A set of persons with certain common characteristics (DLP, OCA).
THRESHOLD EFFECT. When one variable does not change until the other variable changes significantly (OVD).
TIME PREFERENCE. The general preference of individuals for present over future receipe and for future over present expenditures (DIS).
TOTAI. CASH FLOW. The sum of all annual cash flows for the life of the project; an undiscounted measure of the aggregate change expected from implementing a project (CFA).
TRANSIENT SCENARIO. Forecasts changes in and the alternative actions on a system at various stages in the evolution of the system (SCN).
TRANSITIVE RELATICNSHIP. Requires that a directed relationship among three or more elements be consistent (MD).
TREE GRAPH. A set of linked elements where only one exists between any two factors (OBT, TRD).
TUNING. The process of making changes in the parameters and initial values for variables in order to minimize the errors between expecred and actual simulation output or between observed or simulated data (CSM).
UTILITY. A quantitative expression of the worth or satisfaction associated with an outcome (DTR, MCU).
UTILITY FUNCTION. Associates the possible levels a criterion may take with the urilities for those levels (MCU).

UTILITY MATRIX. Presents the clements of a decision under certainty (MCU).
VALIDATION. Testing whether a computer simulation program sinulates the observed system behavior. It is a process of simulating the past and checking the simulated data against actual data (CSM).
VARIABLE A factor used to describe a system which may change value as a function of time (CSM, OVD).
VERIFICATION. Testing a computer simulation program to see that the program functions as intended. It is a process of eliminating logical errors in the program (CSM).
XOK LOGIC ELEMENT. Links mutually exclusive sub-objectives to the higher level objective(s). The achievement of one sub-objective alone achieves the higher level objective (INS).

PETER DELP is an adviser to the Rural Planning Unit. Ministry of Finance and Economic Planning. Government of Kenya, and is employed by the Harvard Institute for International Development. Before taking the assignment in Kenya, he spent a year with the Manpower Develop ment Division. USAID, under the sponsorship of the International Development Institute, Inciana University. He was on leave from the University of Wisconsin where the was an Assistant Professor of industrial Engineering. Delp received a Ph.D. in Industrial Engincering and Operarioms Research from the University of Califormia. Berkeley.

ARNE THESEN is an Associate Professor of Induserial Engincering at the University of Wisconsin-Madison, where he teaches courses in decision-support systerns. systems analysis, and operations rescarch. Hey is the author of Compater Methods und Operations Researd Academic Press, 1977). and has published over 20 techmical papers and articles. Thesen has been a consultamt in a wariety of areas ranging from mational deferse to landuse planning. He is presently a comssltanton educational programs for the Institute of Techmology in Surabaya. Indonesia. Thesen received the Pin.D. from the University of Ilinois, Champaign-Urbana.

JUZAR MOTIWALLA carrently holds a faculty position at the University of Singapore. He has published several papers on information systems and the evaluation of model-huilding techniques. He receivad his Ph. I). From the University of Wisconsin-Madison where his dissertation addressed the design of decision-support systems.

NEELAKANTAN SESHADRI was a graduate student at the Universiry of Wisconsin, where he received a Masters of Science in Industrial Engineering. His research was in educavion enrollment planning. He has consulted in the design of a nationwide health scarcity information system. He is currently employed as a consultant in the data processing field.

[^0]: - Five to mine items are all whar can be uffectivety ramked on one dincuision of distrimimation (see Rating Scales RTSn pase 29).

[^1]: - This exanaple is adapted from an exercise conducted by wne of
 for the teeatment of alcohnulics.

[^2]: *Statistical reliability is proportionall to the absolute sampie size. not the fraction of the targer population.
 **This is related to the samplong werthod selected and the consideration in 4.1. Statistical relinbitity of quamtitative atcributes can be determined analyticaly (see Warwick andi Lininger, 1975).

[^3]: *Oval diagrams may be constructed from Imteraction Matrices (see पMD, page 92 , but shis emphasizes identifying all variables frirst, then deterninuing the relationship:

[^4]: -NOMAD POPULATGON wouk have ben an equally acceprable starting variable for the tree diagramh

[^5]: *The relationships berween outside interventions and system varables are described further in the continuation of this example in Interaction Matrix Diagrams (IMD. paste 92_{i}.

[^6]: - Note that AXB and BXA are orthogonally linked matrices while BXA and BXC are linearly linked matrices.

[^7]: ${ }^{3}$ This example is from a moniai project by Tec Foley, "Systeras Approaches to Integrated Rural Development Program," Development "tudies Program, USAID, Washingtom, D.C., 1976.

[^8]: *This equarion is adapted from In Price Gittinger, Ecomonkic Anatysis of Agriculteral Projects (thaltimore: The Iokn Hopkins University Press, 1972, prage 30 . Note that the denominator on the right is the sump of the absoltate values of the positiwe and negative APM/s, Gitringer suggests that the difference berween F_{1} and r_{2} be 5\% or less.

[^9]: *Formore detait, see Winkler (1972).

[^10]: *This example was inspired by Ken Smith's teport, Fertilizer Distriburion Project, August-December 1972 \{Phillipites Mission: United States Agency for International Developmemt, Jamuary 1973).

[^11]: *In tifis eventuality, the analyst nay draw on the theory of coms. peritive gares (see Madansky, 1968).

[^12]: *In contrast to net present worth or other discounted meesures (see DIS, page 184).

[^13]: *Tancs ate not a met benefit to the ecomomy as a whote, onily 3 fransfer of resourees within the society.

[^14]: F Ho this example, the analysis is financial rather than ecomomic. Le.. the eost estmates axe all bast on markst yatues

[^15]: - - It was assumed that the inctease in sexd, foctilizer, and othen costs would be countered by a teduction in labor costs.

[^16]: *Discount factors for a single payment are always less than one. Usually, three significant figures are sufficient accuracy.

[^17]: *Se also fugure 3. Cash Flow A malysis, CFA, page 182

[^18]: Conncies." Tectinor (fanuary-March 1972): 27-35.

[^19]: *These steps represent theoretically complex rasks which cannor be covered in a short description. The reader is referred to the project evaluation literature. See, for example, Gittinger, 1972: Litzle and Mirlees, 1974; Squize and van der Tak, 19754 Hiarichs, 1969: or 1 NIDO, 1972.
 **This example was stimulated by the report by lohn Balis, "The Utalization of Small Tractors in Integrated Agricuitural Development: The Tractor Evaluation Project Applied." Cornell Agricultural Economics Staff Paper No. 74 - 15 illhaca, N.Y. Department of Agricultural Economics, Cormell Universiry, fume 1974j.

[^20]: * fourth alrernative is tocontinate current practices unich urilize animat power. Howeter, this alturnative was treated in fre casth flow analysis by determining the incremental cosis and berefiesthe difference betweun the "with project" and the "withuant prongect" costs and bemefres.

[^21]: The IRR may only be calculated if the incremental costs exceed the incremental benefits at least once in the life of the project. Since by convention all costs are computed at yeareme, option (2) never has a megative cash flow.

[^22]: DeNeufville, R.. and Stafford. J.H. Systems -inalysis for Engineers and Managers. New York: McGraw-Hill. 1971.

[^23]: Thest costs ignore the infrastucture required for dxlivering the warbus wehniques. Although this could be incorporated into each method cost as an overthead component. a separrate analusis of the means of delinery is more approprinte.

[^24]: Pritsker, A.A., and Happ, W.W. "GERT: Graphical Evaluacion and Review Technique, Part I, Fundamemtals." Journal of indastrial Eingineering 17 May, 1966).

[^25]: LIMITED RBSOURCE: Manpower
 *Only one supervisory staff repuired
 ** Sunt to printers

