

PROGRESS REPORT NUMBER 6

1968

REGIONAL PULSE IMPROVENENT PROJECT

U. S. Department of Agriculture, Agricultural Research Service U. S. Agency for International Development

Cooperating

Iran,	India
Plan Organization,	Indian Council of Agricultural Research
Karaj Agricultural Coilese,	Indian Agricultural Research Institute
Ministry of Agriculture,	Agricultural Uni versities
Pahlavi University,	State Departments of Agriculture
Ghazvin Development Project	
Khuzestan Pilot Project	

PERSONNET and COOPERATORS

IRAN

Aaministrative

P. H. Van Schaik
G. M. Horner
B. A. Ryan (Mrs.)
J. Afshar

Breeding
American position vacant since May 1968
H. Schaybani
M. C. Amirshahi
M. Moaddab
M. Khosroshahin
J. Jafari
A. Ellini
M. Taghavi Bayat
P. Parvaneh
M. Niknejad
M. Shishegar
M. Chehrenegar

Soils-Agronomy

G. M. Horner
H. Sarazdaghi
A. Solar-e-dind
M. Mojtehed 1
B. Bahrani

Pathology

W. J. Kaiser
F. Eskanderi
M. Okhovat
D. Danesh
K. Ezadpaneh

Regional Project Coordinator Iran Project Leader
Administrative Officer Govermment Relations Advisor

Karaj College
Karaj College
COI/Plan Organization
GOI/Plan Organization
GOI/Plan Organization
GOI/Plan Organization
GOI/Plan Organization
Ministry of Agriculture Pahlavi University Dez Pilot Project, Khuzestan Ghazvin Development Project

RPIP

Karaj College
Karaj College
GOI/Plan Organization Pahlavi University

RPIP

Karaj College
GOI/Plan Organization
GOI/Plan Organization Pahlavi University

IRAN

(Continued)

Entomology
S. W. Wilson

RPIP
M. Esmaeli
H. Sepasguzarian
M. Omidvar
K. Kamali
G. R. Rassoultan
s. Sherifi
A. Ascari

Quality
H. Hedayat
N. Sarkissian (Mrs.)

Karaj College
Karaj College
Pest Control Research Institute $G O I / P l a n$ Organizatión GOI/Plan Organization Pahlavi University
Pahlavi University

Nutrition Research Institute
Nutrition Research Institute

Administrative

P. H. van Schaik
W. E. Lansing
R. K. Sharma
P. C. Bector
R. Gopalan Krishnan
A. R. Ramani

Breeding
K. H. Evans
V. R. Gadwal
R. K. J. Narayan
D. N. Sajnani
K. L. Jagiasi
H. L. Chablani
V. K. Madan
S. R. Dass
L. M. Jeswani
S. P. Singh

Solls-Agronomy
R. J. Davis
C. S. Saraf
S. N. Kapoor
A. Narayanan
A. Parkash
G. Banda (Miss)
S. I. Choudhury
P. C. Bhatia
B. M. Sharma

Pathology
F. J. Williams

B" Baldev
K. S. Amin
J. S. Grewal

Regional Project Coordinator.
Administrative Officer
Administrative Assistant
Senior-clerk
Clerk
Typist

RPIP
RPIP
RPIP
RPIP
RPIP
RPIP
RPIP
RPIP
GOI/AICPP - IARI
GOI/AICPP - IARI

RPIP

RPIP.
RPIP
RPIP
RPIP
RPIP
GOI/AICPP - IARI
GOI/AICPP - IARI
GOI/AICPP - IARI

RPIP

RPIP
RPIP
COI/AICPP - IART

PERSONNEL and COOPERATORS

INDIA

(Continued)

Entomology

K. E. Gibson RPIP
A. K. Raina RPIP
V. Motwani (Miss)RPIPH. P. SaxenanerGOI/AICPP - IARI (Since July 1968)
Blochemistry
0. Krober RPIP

TABLE OF CONIENIS

Summary 1
Introduction 1
IRAN
Varietal Improvement 3
Lentils 3
Chickpeas 3
Beans 4
Broadbeans 4
Cowpeas 4
Mungbeans 5
Soll and Crop Monagement 51
Summary 51
Date of Planting 51
Plant Population Density 52
Herbicides 53
Irrigation - Fertilization 58
Plant Pathology 62
Summary 62
Beans 64
Broadbeans 72
Chickpeas 79
Lentils 87
Entomology 94
Summary 94
Pesticide Recommendations 94
Insect Occurrence 96
Pesticide Trials of Signifioance 98
Crop Production 108
Stored Pulse Pests 108
Varietal Improvement 113
Germplasm 113
All-India Coordinated Yield Trials 114
Other Activities 115
Soil and Crop Management 123
Summary 123
Rabi 1967-68 127
Fertility-Spacing Experiments 127
Fertility-Irioculum Experiments 137
Phosphorous Placement 147
Weed Control Trial. 147
Summer 1968 152
Spacing-Fertility Trials 152
Foliar Application of Phosphates 153
Water Requirement, of Summer Mungbean 154
Pot Experiment on Placement of Phosphorus 154
Summarization of Summer Season 1968 Results 154
Kharif 1968 155
Fertility-Spacing Experiments 155
Fertility-Inoculum Experiments 163
Deep Placement of Farm Yard Manure and Phosphorus 172
Chemical Weed Control (Delhi) 173
Effect of Simazine on Protein Content of Pulses 180
Foliar Application of Phosphate 181
Effect of Ridging on Plant Growth 181
Soil Treatment Trial 182
Plant Environmental Studies 185
Plant Pathology 186
Summary 186
Chickpea 191
Pigeon Pea 191
Mungbean 194
Urd bean 200
Entomology 204
Summary 204
Rab1 1967-68 207
Kharif 1968 214
Quality 227

TABLES

IRAN

Table 1. Lentil Preliminary Yield Test, Ghazvin 7
Table 2. Lentil Preliminary Yield Test, Karaj 8
Table 3. Lentil Advanced Yield Test, Ghazvin 9
Table 4. Lentil Advanced Yield Test, Varamin 10
Table 5. Lentil Advanced Yield Test, Karaj 11
Table 6. Chickpea (Black) Preliminary Yield Test No. 2, Karaj 13
Table 7. Chickpea (White) Preliminary Yield Test No. 2, Karaj 14 \& 15
Table 8. Chickpea (Black) Preliminary Yield Test No. 1, Karaj 16
Table 9. Chickpea (White) Preliminary Yield Test No. 1, Ghazvin 17
Table 10. Chickpea (White) Preliminary Yield Test No. 1, Karaj 18
Table 11. Chickpea (Black) Uniform Advanced Yield Test, Ghazvin 19
Table 12. Chickpea (Black) Uniform Advanced Yield Test, Varamin 20
Table 13. Chickpea (Black) Uniform Advanced Yield Test, Karaj 21
Table 14. Black Chickpea Uniform Advanced Yield Test 22
Table 15. Chickpea (White) Advanced Yield Test II, Ghazvin 23
Table 24
Table 17. Chickpea (White) Advanced Yield Test II, Karaj 25
18. White Chickpea Advanced Yield Test II Table 25
Table 19. Chickpea (White) Unifurm Advanced Yield Test, Ghazvin 26
Table 27Table20. Chickpea (White) Uniform Advanced Yield Test, Varami
21. Chickpea (White) Uniform Advanced Yield Test, Karaj
Table e 2822. White Chickpea Uniform Advanced Yield Test
Table 23. Chickpea (White) International Yield Test, Ghazvin 29.28
Table 24. Chickpea International Yield Test, Karaj 29
Table 25. Beans (Pinto) Preliminary Meld Test, Karaj 31
Table 26. Beans (Red) Preliminary Yield Test, Karaj
Table 27. Beans (White) Preliminary Yield Test, Karaj 34 \& 35$32 \& 33$
Table 28. Beans (Pinto) Advanced Yield Test, Varamin 36
Table 29.
Beans (Pinto) Unir'asm Asivanced Yield Test, Karaj 36
30. Beans (Red) idvanced iald Test, Varamin Table 37
31. Beans (Red) Un' form Advanced Yleld Tèst, Karaj Table 38
32. Beans (White) Uiilform Advanced Yield Test, Varamin Table 39
Table 33. Beans (White) Uniform Advanced Yield Test, Karaj 40
Table 34. Beans International Yield Test, Karaj 40
Table 35. Broadbean Yield Test, Dezful 42
Table 36. Cowpea Preliminary Yield Test, Karaj 45
Table 37. Cowpea Uniform Yield Test, Varamin 46
Table 37A. Cowpea Uniform Yield Test, Varamin 46
TableTable

Varietal Improvement

Table 39. Mungbean Preliminary Yield Test, Karaj 49
Table 40. Mungbean Advancisd Yield Test, Varamin 50
Table 41. Mungbean Advanced Yield Test, Karaj 50
Soil and Crop Management
Table 42. Relation of Date of Planting to Yield of Pulse Crops 52
Table 43. Relation of Plant Population Density to Growth of Chick- peas 54
Table 44. Relation of Plant Population Density to Growth of Dry- beans 55
Table 45. Relation of Plant Population Density to Growth of Cowpeas 56
Table. 46. Effect of Herbicides on Weed Control and Yield of Pulse Crops 57
Table 47. Influence of Irrigation and Fertilization on.Yield of Chickpeas 59
Table 48. Influence of Irrigation and Fertilization on Yield of Dry beans 60
Table 49. Influence of Irrigation and Fertilization on Yield of Cowpeas 61
Plant Pathology
Table..50. Effect of Four Viruses on Yield and Percent Protein in Seed From Three Bean Varieties in Field Inoculation Tests 65
Table 51. Observations on Seed Transmission of Bean Common Mosaic Virus and Effect of Virus Infection on Yield in Sixty-one Collections of Bean Seed From Bazars Located in Various Areas of Iran 67
Table 52. Transmission of Pea Leaf Roll Virus to Healthy Broadbeans (Vicia faba) by Three Species of Aphid Which Infest Pulses in Iran 67
Table 53. The Length of Time Required for Aphids (Aphis craccivora) to Acquire Pea Leaf Roll Virus from Diseased Broadbeans 71
Table 54. Transmission of Pea Leaf Roll Virus by Aphids (Aphis craccivora) in Different Stages of Development to 72Healthy BroadbeansTable 55. Observation of Initial Seed-borne Infection in BroadbeanPlantings (Variety Algerian) by Bean Yellow Mosaic Virus(BYMV) in Tests at Dezful, Iran for Two Consecutive Years75
Table 56. Effect of Bean Yellow Mosaic Vimus and Pea Leaf Roll Virus on Yield of Broadbean (Varlety Algerian) in Field and Greenhouse Inoculation Trials at Karaj 78
Table 57. Effect of Four Viruses on Yield, Mortality and Protein Content (seed) of Chickpea (Variety Ghazvin) in Field Inoculation Testi at Karaj 82
Table 58. Growth and Sporulation of One Isolate of Ascochyta rabiei in Petri Plates Containing Different Culture Media for 13 Days in the Dark at $25^{\circ} \mathrm{C}$ 89
59. Effect of Bean Yellow Mosaic Virus (BYMV) and Cucumber Mosaic Virus (CMV) on Disease Severity and Seed Yields in 30 Lentil Lines Included in an Advanced Yield Test at Varamin in 1968, and Subsequent Reaction of These Lines to Lentil Isolates of Each Virus in Greenhouse Inoculation Tests 91
Entomology
Table 60. Effect of Four Insecticides on Aphids Acyrthosiphon sesbaniae Population on Cowpeas 98
Table. 61. Effect of Five Insecticides Against Aphids Acyrthosiphon sesbaniae on Lentils 99
Table 62. Effect of Five Insecticides Against Thrips on Lentils 100
Table 63. Effect of Four Insecticides on Thrip Populations on Lentils 101
Table 64. Effect of Insecticides on Heliothis armigera (bollworm) on Chickpeas 102
Table 65. Effect of Date of Planting and Soil Temperature on Seed Corn Maggot, Hylemia cilicrura, Damage on Dry beans 103Table. 66. Effect of Seed Treatment Before Planting Using TwoInsecticides on the Seed Corm Maggot Hylemia cilicrura onDry bean Plots103
Table, 67. Effect of Pesticides on Mite Populations, Tetranychus bimaculatus, on Dry beans 105
Table. 68. Effect of Pesticide on Mite Populations, Tetranychus bimaculatus, on Mungbeans 107
Table 69. Differences in Emergence of First and Second Generations of Bruchids (C. maculatus) on Several Varieties of Cowpeas and Mungbeans 109
Table 7. Trials 117Varietal Improvement
Table 71. Yields in Kilos Per Hectare, Lentil Coordinated YieldTrials118
Table Yields in Kilos Per Hectare, Pea Coordinated Yield Trials 119
Table 73
Yields in Kilos Per Hectare, Mungbean Coordinated Yield Trials 120
Table 74. Yields in Kilos Per Hectare, Urdbean Coordinated Yield Trials 121
Table 75: Yields in Kilos Per Hectare, Cowpea Coordinated Yield Trials 122
Soil, and Crop Management
Table, 76 Effect of Between Row Spacings and Fertility Levels (main treatment) and Plant Spacings Within Rows (sub-treatment) on Yield of Chickpea (Cicer arietinum), Delhi, Rabi 128
Effect of Different Between Row Spacings and Fertility Levels (main treatments) on Yield ($\mathrm{kg} / \mathrm{ha}$) Lentils Ludhiana, Rabi 130
Table 78. Effects Due to Plant Spacing Within Row (sub-treatment) on Yield ($\mathrm{kg} / \mathrm{ha}$) of Peas at Hissar and Pant Nagar, Rabi 131
Table 79. Effects Due to Row Spacing and Fertility Levels (main treatments) and Within Row Spacing (sub-treatment) on Yield (kg/ha) of Peas (Pisum sativum) at Hissar and Pant Nagar, Rabi 132
Table 80. Effects of Different Levels of N on Yield ($k g / \mathrm{ha}$) of Chickpea, Delhi, Rabi 137
Table 81. Effects of Different 137
Table 82. Effects Due to Interaction of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on yield ($\mathrm{kg} / \mathrm{ha}$) of Chickpea, Delhi, Rabi 139
Table 83. Effects Due to Different Levels of N on the Yield of Lentils in $\mathrm{kg} / \mathrm{ha}$ at Ludhiana, Rabi 141
Table 84. Effects of Different Levels of P on the Yield ($\mathrm{kg} / \mathrm{ha}$) of Lentils at Ludhiana, Rabi 141
Table 85. Interaction of $N \& P$ on Yield of Lentils, Ludhiana, Rabi 143
Table 86. Interaction of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on Yield of Lentils Ludhiana, Rabi 144
Table 87. Interaction of N, P, and K on Yield of Peas, Hissar and 148
Pant Nagar, Rabi
Weed Population per 2.50 sq. Meters 150
Table
151
151
Table 90. Effects of Different Between Row and Within Row Spacing
Table 90. Effects of Different Between Row and Within Row Spacing
Weight of Fresh Green Weeds in kg / h
Weight of Fresh Green Weeds in kg / h and Fertility Levels on Yield of Mungbean variety PusaBaisakhi, Delhi, Summer153
91. Effect of Different Doses of Phosphates Applied Through Soil and Foliage on Yield of Mungbean variety Pusa Baisakhi, Summer 153
Table. 92. Average Yield of Treatments (kg/ha), T-21 and Germplasm Lines, Pigeon Pea, Hyderabad, Kharif 157
Table 93. Effect of Varying Plant Population Rates, Row Spacings, and Fertility Levels on Yield of Pigeon Peas, Variety T-21, Pant Nagar, Kharif 158
Table 94. Effect Due to Between Row and Within Row Spacings on Yield of Urd bean at Hissar, Kharif 159
Table 95. Effects Due to Different Fertility Levels (main treatments) and Row and Plant Spacings (sub-treatments) on Yield of Urd beans Varlety T-9: Hissar, Kharif 159
Cable 96. Effects Due to Between Row and Within Row Spacings on Seed of Mungbean, Variety $J-781$, Hissar, Kharlf: 161
97. Effects of Between Row and Within Row Spacing on Yield of Mungbean, Variety No. 54, Ludhiana, Kharif 162
98. Effects Due to Fertility Levels on Yield ($\mathrm{kg} / \mathrm{ha}$) of Urd heans Variety No. 64, Ludhlana, Kharif 162
99. Effect of Different Fertility Levels, Row Spacings and Plant Population Rates on Yield of Mungbean (T-6009) at Pant Nagar, Kharif 163
Table 100. Effects of Different Levels of N and K on Yield of Pigeon
Pea (T-21) at Hyderabad, Kharif 164
Interaction Effect of N, P, and K on Yield of Pigeon Pea Table 101. Interaction Effect of N, 165

rable 102 Kharif 167
Table 103. Interaction Effect Due to Different Levels of N and $\mathrm{K}_{2} \mathrm{O}$ on Yield ($\mathrm{kg} / \mathrm{ha}$) of Urd beans, Variety T-9, Hissar, Kharif 168
Table 104. Fertility-Inoculum Trial, Urd bean, late Variety 64, Ludhiana, Kharif 168
Table 105. N P K Interaction Effect on Yield of Mungbean, late Variety No. 54, Ludhiana, Kharif 169
Table 106. Effects of Different Levels of N, P, K, and Inoculum on Yield of Mungbean, Variety T-6009, Pant Nagar, Kharif 172
Table 107. Effect of Different Levels of FYM and P Along With Methods of Application on Yield of Pigeon Pea, Variety T-21, Delhi, Kharif 173
Crop Injury Rating of Various Herbicides to Mungbean, Cowpea, and Pigeon Pea 10 Days After Planting, Delhi, Kharif 175
Weed Control Ratings of Different Herbicidal Treatments 45
Days After Planting, Delhi, Kharif 177
Mean Number of Weeds per Four Square Feet for Various Herbicidal Treatments, Delhi, Kharif 179
Effect of Different Doses and Time of Application of Simazine on Protein Percentage in Mungbean and Cowpea at Delhi and Hyderabad, Kharif 180
Effect of Different Doses of Phosphate Applied Through Soil and Foliar on Yield ($\mathrm{kg} / \mathrm{ha}$) of Urd beans, Delhi, Kharif 181
Effect of Sowing Methods on Yield of Kharif Pulses 182
Yield of Urd bean, Var. 1-1, Soil Treatment Experiment, Ludhiana, Kharif 184
Plant Pathology
Table 115. Disease Ratings of Mungbean, New Delhi 197
Table 116. Comparative Resistance of Mungbean Varieties to Cercospora
Leaf Spot at Hardol and Etawah, U. P. 197
Table 117. Mungbean Lines Selected at New Delh1 in 1968 for Possible Disease Resistance 199
Table 118. Disease Ratings of Urd bean Varieties, New Delhi 200
Table 119. Urd bean Lines Selected at New Delhi 1968 for Possible Disease Resistance 201
Table 120. Effect of Seed Treatment on Germination of Cowpea, Variety Meshed, at Ludhiana and Pant Nagar 202
Table 121. Disease Ratings of Cowpea Varieties at New Delhi 202
Entomology
Table 122. Bruchid Damage to Chickpea Seed and Yield Records for All Insecticide Treatments Applied as Field Sprays, New Delhi, Rabi 207
Table 123. Insect Damage and Yield Records in Chickpea Plots Which Received Insecticide Sprays for Podmborer Control, New Delhi, Rabi 208
Table 124. Insect Damage and Yield Records of Dry Pea Plots Which Received Insecticide Sprays for Bruchid and Pod-borer Control, New Delhi, Rabi 209
Table 125. Insect Damage arid Yield Records of Dry Peas Which Received Insecticide Sprays for Leaf-miner Control, New Delhi,Rabi 210
Table 126. Insect Damage and Yield Records of Lentils Which Received Insecticide Sprays for Bruchid Control, New Delhi, Rabi 211
Table 127. Insect Damage and Yield Records of Lentils Which Received Insecticide Spravs for Bruchid and Aphid Control, New Delhi, Rabi 211
Table 128. Record of Adult Bruchid Movement to, and Incidence in, Five Experimental Fields of Pulse Crops, 19 Jan. - 9 Apr., 1968 212
Table 129. Control of Galerucid Beetle in Pulses by Granular Insecticides, New Delhi, Kharif 215
Table 130. Incidence of Two Species of Bruchids in Mature Mungbean Seed After Harvest and Storage Showing Both Field and Storage Treatments, Dec. 1968 - Jan. 1969, New Delht 217
Table 131. Incidence of Two Species of Bruchids in Mature Cowpea Seed After Harvest and Storage Showing Both Field and Storage Treatments, Dec. 1968 -Feb. 1969, New Delhi 218
Table 132. Germplasm Evaluation for Resistance to Jassid (Empoasca spp.), New Delhi, Kharif 221
Table 133. Germplasm Evaluation for Resistance to Leaf Miner (Aorocercops spp.), New Delhi, Kharif 221
Table 134. Identification of Germplasm Lines Evaluated for Insect Resistance, New Delhi, Kharif 223 \&
Quality
Table 135. Protein Content (\%) of Mungbean Varieties, Coordinated Varietal Trials, India, Kharif 229
Table 136. Protein Content (\%) Urdbean Varieties, Coordinated Varietal
Trials, India, Kharif 230
Table 137. Frotein Content (\%) of Pigeon Pea Varieties, Coordinated 231
Table 138. Protein Content ($\%$) of Cowpea Varieties, Coordinated Varietal Trials, India, Khairif 231
Table. 139. Protein Content (\%) of Chickpea Varieties, Coordinated Varietal Trials, India, Kharif. 232

EIGURES

Plant Pathology
Flgure 1. Bean Plants Infected From Seed With Bean Common Mosaic Virus 66
FHgure 2. Stunted Bean Plant Infected With Pea Leaf Roll Vimus 68
Figure 3. Bean Plant Infected With Pea Leaf Roll Virus 69
Figure 4. Dwarfed Bean Plant Infected With Pea Leaf Roll Vimus 70
FigureFigure 6. Mosaic Symptoms Which Develop in Bean Leaves InfectedWith Bean Yellow Mosaic Virus May Vary With DifferentStrains of the Virus74
Figure 7. Stunted, Chlorotic Broadbean Plant Infected W1th Pea Leaf Roll Virus 76
Figure 8. Broadbean Plant Infected With Pea Leaf Roll Virus 77
Figure 9. Chickpea Plants Infected With Pea Leaf Roll Virus 80
Figure 10 10. Chickpea Plant Infected With Pea Leaf Roll Virus 81 81
11. Sosaic Symptoms in Melilotus Leaf 83 83
Figure. 1 12. . losaic Symptoms in Leaflet of Wild Vetch, Vicia peregrina, Infected With Bean Yellow Mosaic Vimas 84
Flgure 13. Mosaic Symptoms in Leaves of Yellow Trefoil, Medicago Iupulina, Infected With Bean Yellow Mosaic Virus 85
Figure 14. Leaf of Jimson-weed (Datura stramonium) Infected With Cucumber Mosaic Virus 86
Figure, 15. Isolates of Chickpea Blight, Ascochyta rabiei, After 15 Days Growth at Room Temperature on Potato Dextrose Agar 88
Flgure 16. Chickpea Pods Infected Under Natural Field Conditions With Ascochyta rabiei, Blight of Chickpea 88
Flgure. 17. Effect of Culture Medium on Growth and Sporulation of One Isolate of Ascochyta rabiei After 15 Days Growth in the Dark at Room Temperature 90
Figure 18. Effect of Virus Infection in Two Lentil Plots Included in an Advanced Yield Test at Varamin in 1968 92
Figure 19. Effect of Virus Infection With Lentil Isolates of Bean
Yellow Mosaic Virus and Cucumber Mosaic Virus on Lentils 93
Entomology
Figure 20. Seed Corn Maggot (Hylemia cilicmura) pupae and adults 104
Figure 21. Various Stages of Seed Com Maggot (Hylemia cilicmura)
Damage on Beans (Phaseolus vulgaris) 104
Figure 22. Symptoms of Mite (Tetranychus bimaculatus) Damage on
Beans (Phaseolus vulgaris) 106
Figure 23. Adult Bruchid (Callusobruchus maculatus) 110
Figure 24. Damage to Stored Pulses by Bruchids (Callusobruchus
maculatus) 111
India
Soll and Crop Management
Figure 25. Effect of Row Spacings and Fertility Levels (main treat- ments) and Plant Spacing Wi.thin Row (sub-treatment) on Yield of Chickpea, Delhi, Rabi, 1967-68 129
Figure क्व
26. Effect of Different Row Spacings (cm) and Fertility Levels (main treatments) on Yield ($\mathrm{kg} / \mathrm{ha}$) of Lentils, Ludhiana, Rabi 1967-68 133
Figure 27. Effects Due to Plant Spacing Within Row (sub-treatment)
on Yield of Peas ($\mathrm{kg} / \mathrm{ha}$) at Hissar and Pant Nagar, Rabi 1967-68 134
Figure 28A. Effect Due to Row Spacing and Fertility Levels (main treatments) and Within Row Spacing (sub-treatment) on Yield ($\mathrm{kg} / \mathrm{ha}$) of Peas (Pisum sativum) at Pant Nagar, Rabi 1967-68 135
Figure 28B. Effects Due to Row Spacing and Fertility Levels (main treatment) and Within Row Spacing (sub-treatment) on Yields of Peas (Pisum sativum) at Hissar, Rabi 1967-68 136
Figure 29. Fffect of Different Nitrozen Treatments on Yield of Chickpeas (Cicer arietinum) Delhi, Rabi 1967-68 138
Figure 30. Effect of Different Levels of Phosphomis on Yield of Chickpea (Cicer arietinum) Delhi, Rabi 1967-68 138
Flgure 31. Interaction of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on Yield of Chickpea (Cicer arietinum), Delhí, $\mathrm{Rab1}$ 1967-68 140
Figure 32. Effect of Different Levels of Nitrogen on Yield of Lentils (Lens esculenta) Ludhiana, Rabi 1967-68 142
Figure 33. Effect oi Different Levels of Phosphorus on Yield of
Lentils (Lens esculenta) Ludhiana, Rabi 1967-68 142
Figure 34. Interaction of Nitrogen and Fhosphorus on the Yield ($\mathrm{kg} / \mathrm{ha}$) of Lentils (Lens esculenta) at Ludhiana, Rabi 1967-68 145
FHgure 35. Three Factor Interaction of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ With Lentils (Lens esculenta) at Ludhiana, Rab1, 1967- 58 146
Figure 36. Three Factor Interaction of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and K O With Peas (Pisum sativum) at Pant Nagar and Hissar, Rabi 1967-68 149
Fligure 37. Pigeon Pea Varieties 156
Fligure 38. Effect of Between Row and Within Row Spacing on Yield
($\mathrm{kg} / \mathrm{ha}$) of Urd beans (T-9 Variety), Hissar, Kharif 1968 160
Figure 39. Inter'action of KKK \& NPK on Pigeon Pea (T-21) Hyderabad, Kharif 1968 166
Figure 40. Interaction of N and $\mathrm{K}_{2} \mathrm{O}$, Urd bean (T-9) Hissar, Kharif 1968 170
Figure 41. Interaction of N P K, Mungbean (Var. T-54) and Urd bean (Var. No. 64) Ludhiana, Kharif 1968 171
Figure 42. Crop Injury Caused by Herbicides, Delhi, Kharif 1968 176
Figure 43. Weed Control Rating, Delhi, Kharif 1968 178
Figure 44. Effect of Sowing Methods on Yield of Pulses, Delhi, Kharif 1968 183
Plant Pathology
Figure 45. Relative Resistance to Chickpea Wilt Amont Germplasm Lines at Hissar, (Haryana), India 192
Figure 46. Ascochyta B1ight on Varieties PB7, S26 and C104 at Ludhiana, Punjab in 1968 193
Figure 47. Phytophthora Stem Rot of Pigeon pea (Field view) 195
Figure 48. Phytophthora Stem Rot of Pigeon pea (Close-up) 196
Figure 49. Top Necrosis of Mung. 198

SUMMARY

IRAN
A considerable change took place in the operations of the project In Iran during 1968.

The fourth 5-Year Plan went into effect on March 21 and with it the Government of Iran, through the Plan Organization, increased its support to pulse orop research from an average of Rials $2,200,000$ ($\$ 29,000$) per year during the previous four years to Rials $20,000,000(\$ 270,000)$ for 1968/69 and projected Rials 12,000,000 ($\$ 160,000$) per year for the remaining four years of the Plan period. With this Iran assumed the responsibility of the major chare of local costs of the Pulse Project. The funds are administered through Karaj Agricultural College which thereby has assumed control over local personnel, procurement and other project operations. Technical control and execution of the research program still rested with the American team but toward the end of the year a committee of Karaj College staff began to participate more actively in project affairs. A re-organization of Iran's universities and colleges with greater stress on the importance of research may well have contributed to this interest as the Pulse Project was the most active research program going on at Karaj College.

Early in 1968 the decision was made that the Regional Pulse Project in Iran would be phased out. Although considerable uncertainty existed regarding the exact timing and procedure, by the end of the year it appeared that at least part of the American team would remain for some time.

Dr. Kenneth Evans, plant breeder, was transferred to take over the breeder's position with RPIP/New Delhi during the summer of 1968, leaving the RPIP team in Iran without a breeder.

A two-day work planning session was held at Karaj in January 1968 to plan and coordinate research activities for the coming season between Karaj College, Ministry of Agriculture and other interested agencies such as Pahlavi University, Dez Irrigation Project and Ghazvin Development Project.

No workshop was held in Iran in 1968 primarily because only one American was present at the most suitable time for the workshop. However, a combined seminarworkshop was planned for January, 1969.

The Agricultural College of the Pahlavi University in Shiraz has actively engaged in pulse crops research. This work was originally supporteci by funds from the U.S. Regional Project through a Cooperative Agreement. Sinco the 1968 season Plan Organization funds and those from the University itself became available and very little of the money available from the U.S. program was used. Separate reports have been prepared by the Pahlavi University staff.

Active cooperation was also given by the staff of the Dez Pllot Project in Khuzestan and the Israell and Iranian staff of the Ghazvin Development Project. In 1968:

Several varieties of pulse crops were named by the Iran Ministry of Agriculture and seed was grown in seed multiplication blocks on government farms.

Previous data on crop management were confirmed. Maximum yields can be obtained with timely planting, good stands (400-500,000 plants per hectare) and proper irrigation. Nitrogen fertilization has not shown consistent responses indicating adequate nodulation and nitrogen fixation occurs naturally.

Resistance was identified to major diseases in chickpeas, lentils, and cowpeas.

Recommendations for pest control schedules were made.
Preliminary screening showed possible resistance to bruchid in cowpeas

INDIA

Project activities in India in 1968 continued to be hampered by a serious lack of facilities. Facilities of land and laboratories at the Indian Agrioultural Research Institute in New Delhi are totally inadequate for a U. S. team to do active research. The pressure for the land of the research farm is so great that hardly any of it can ever be taken out for uniform cropping. In addition priority for the good land is invariably given to wheat, maize, sorghum and rice. Out of five crop seasons since 1.966, the pulse project has seen four complete or near complete failures. Laboratory space was to be provided by the construction of a Pulses Research Laboratory at IARI as provided in the Memorandum of Understanding between the Government of Inciia and USA. However, this construction is still in the planning stage. In the meantime the laboratories provided are very over-crowded and inadequate.

The All India Coordinated Pulse Project and research on pulse crops in India in general made significant strides forward in 1968. Many positions on the All India Project were filled; in November the Coordinator was appointed. There are now more people working specifically on pulses than ever before. Several of the Agricultural Universities have or are in the process of appointing pulses breeders, pathologists, entomologists and agronomists. Because of the importance of chickpeas in the Punjab, that state has now separate breeders for that crop by itself.

The capability, technical as well as organizational and administrative, to carry on a program is certainly present in India. The presence of the U.S.
team has provided the stimulus to mobilize 1t. Continued presence of American scientists will help to keep it moving and provide material and other assistance for a stiong country program.

During 1968 the question of local rupee funding for the U.S. team was raised and this has brought the matter of its function as a regional research team vs. country support program in fodus. This matter is still in the process of being resolved.

The second annual workshop of the AICPP was held in April 1968 while a breeders' meeting took place in August. During the workshop papers were presented and research plans were made by committees of workers in the various disciplines. During the breeders' meeting the All India Coordinated yield trials were planned for the $1968 / 69$ rabi season.

A bibliography of pulse crops is being compiled. When completed and published it should be of considerable value to pulse crop workers all over the world.

The 1968 crop season continued to show that pulse crop production is limited to a large extent by unexpected and unavoidable factors. Factors such as unusual cool and wet winter months which delay flowering and reduce yields in chickpeas; nematode infestations, severe monsoon flooding, new as well as known diseases for which there is no treatment or resistance limit and untimely windstorms which halve the yleld of arhar limft the crops.

In spite of these hazards trials showed that:
(1) Proper spacing between and within rows increases ylelds.
(2) Fertilization with N, P, and K shows responses.
(3) Planting on ridges or beds is advantageous particularly when waterlogging is a problem.
(4) With proper prant densities pigeon peas oan produce as good yields in 150 days as in 250-300 days thereby releasing the land in time for an additional wheat crop.
(5) Irials with pulses during the dry early summer season between rabi harvest and kharif planting showed that pulses are more sensitive to environment than was previously believed.

Environmental effects appear to be on both vegetative growth and flowering. Chickpea and cowpea varieties, grown in Iran during the hot dry season, failed during the comparable season in India.
(6) Varieties of pigeon peas can be developed which mature in about half the time of presently grown varieties, are smaller in plant size and produce
high yields. Yields between 2,000 and 5,000 kilograms per acre have been produced in 150 days against an average of about $1,000 \mathrm{~kg}$. In $250-300$ days. These early varieties would release the land in time for an extra wheat crop. Three such varieties are presently undergoing yield tests.
(7) Resistance to gram blight (Ascochyta rabeli) may be available in a varieties brought in from Israel. Thus far no permanent resistance to this very serious chickpea disease had been found.
(8) Resistance to Fusarium wilt in pigeon peas is location dependent, indicating pathogen races. This would explain the susceptibility to wilt of varieties developed with wilt resistance.
(9) Selections can be made wilch have resistance to several diseases. In mungbean eleven lines showed resistance to four diseases; in urdbean seven lines had resistance to several diseases; 50 cowpea lines were free from bacterial blight and top necrosis. These will be used in crossing programs.
(10) Bruchids, the most serious pests of pulses in storage, can be. controlled by good pest control in the field prior to harvest to limit populations coming in with the seed. Good control also appears to be possible by treating seed in storage with a hydrocarbon compound (Bromodan, Hoechst Company of Germany). Availability of this material for this purpose however is doubtful.
(11) Preliminary data indicate that resistance to insects may be available. In 1968 one strain of cowpea (Accession No. 62-069-00576) was particularly free from several insects as well as diseases. A variety of lentil from Iran appears to have resistance to one species of bruchid (Callosobruchus maculatus).

INIRODUCITON

This report contains the details of the sesearah program of the Regional Pulse Improvement Project In Iran and India during 1968. veras

A summary of resulis for 1968 was prepared earlier as a separate report.
The Regional Pulse Improvement Project originated in 1963 as the result of a Participating Agency Service Agreement between the U.S. Agency for International Development (USAID) and the U.S. Department of Agriculture, Agricultural Research Service (ARS). The purpose of this PASA was to have ARS personnel do research on the grain legumes (pulse crops) in the Near East, South Asia and Far East regions with the objective to improve production through better varieties and production practices, and to help establish-continuing improvement programs on these important human nutrition orops.

The potential of the host countries to participate in this work was considered and after a survey of eight countries, Iran and India were selected as locations for two research teams. They were selected because of the local government interest, the importance of the crops, and the facilities for researah and training available.

A Memorandum of Understanding with the Government of Iran was signed in May, 1964, providing for participation in project operations of the Plan Organization, the Ministry of Agriculture, and Karaj Agricultural College of Tehran University. A Cooperative Agreement was signed to provide for U.S. reimbursement to Iranian agencies for personnel provided in addition to the counterpart positions to be filled by the Plan Organization. A similar agreement was formed in 1966 with the Pahlari University in Shiraz for cooperative research. Project operations started in Iran in August, 1964.

In India, the Memorandum of Understanding was not signed until April, 1965. To counterpart the Pulse Improvement Project, the Council of Agricultural Researah of the Indian Government initiated the Project for the Intensification of Coordinated Research for the Improvement of Pulses at the Indian Agricultural Research Institute, New Delhi, and six regional centers and sub-stations throughout India. The first American personnel arrived at post late in 1965. The first fulltime counterpart appointments under the Government of India saheme were made in the fall of 1966.

Each U.S. team consists of a plant-breeder, soils scientist-agronomist, plant pathologist, and entomologist. The project's overall activities are coordinated by a research agroncmist coordinator and administrative officer. A biochemist was added to the team in India in early 1968.

IRAN

VARIETAL TMPROVEMENT

Karaj (Karaj College)
Dr. Kenneth H. Evans ${ }^{+}$
Dr. Cyrus Amirshahi
Engineers Jamshid Jaffari,
Mehdi Knosrowshahin, All Ellini, Mohammad Moadab, and Taghavi Bayat

Seed and Plant Improvement Institute Ministry of Agriculture Engineer Parviz Parvaneh

Shiraz (Pahlavi University)
Dr. Mansour Niknejad
Engineer M. Khosh-Khui

Lentils

The lentil germplasm was transferred to Pahlavi University and evaluated there. The more promising lines and selections were grown in Ghazvin in cooperation with the Ghazvin Development Project and at Karaj College.

Yield Trials (Tables 1-5)

Preliminary yield trials were planted at Chazvin and Karaj. Several large seeded types recently obtained from Ciile were included. Some large seeded types produced large yields in Ghazvin, but ranked low in Karaj.

Advanced yield irials were planted at nine locations. Yield results are presented for three locations. Isfahan types continue to produce more than large seeded types at Karaj and Varamin. At Ghazvin, both seed types produced noarlvi anclal vidide

Chiokpeas (Cicer arietinum)

ïrmplasm

Chickpea germplasm and selections were grown at Shiraz and Karaj. Two: strains of chickpea reported to be resistant to blight (Ascoahyta rabeli) were

[^0]
Yield Trials (Tables 6-24)

Preliminary yield trials of promising selections were conducted at Chazvin, Shiraz, and Karaj. The data for Karaj and Ghazvin are reported here. Shiraz data is reported in a separate publication by Pahlavi University. Advanced Yield trials were conducted at ten locations. Varamin, Ghazvin, and Karaj results and, a summary table of Ministry of Agriculture yield results are presented. Accession. Number 12-071-05451 was increased by the Iran Ministry of Agriculture. The yield of Accession Number ? ${ }^{\circ}-071-05451$ was slightly higher than average.

Beans (Phaseolus vulgar..)

Germplasm

The germplasm and selections were grown in Shiraz and Karaj for seed increase and evaluation.

Yield Trials (Tables 25-34)
Preliminary yield trials were planted at Shiraz and Karaj. At Karaj, several strains produced larger yields than Accession Number 65-071-00446, Pinto 1.14 or yrs Pinto ill, but were not outstanding for two years.

अथ!
Advanced yield trials were grown at eight locations. Data are presented for Varamin and Karaj. Data for Shiraz is presented in a separate publication by Pahlavi University. Yields and percentage protein were higher for all tests at Karaj than at Varamin. Accession Number 65-071-00446 is susceptible to disease and yielded poorly in the pinto yield trials at Varamin and Karaj while Accession Number 65-071-00455 produced good yields at both locations as in 1967. Accession Number 65-071-00582 and 65-071-00042 produced about average yields in the advanced yield trials of red and white beans. All of the varieties are susceptible to bean common mosaic virus.

Broadbeans (Vicia faba) (Table 35)
replicated yield trial of fifty-six strains of broadbeans was planted at the zestan Development Trial Farm. Yield, disease and agronomic characters were . sIted. Yields ranged from 4400 kilo per hectare to less than 1000 kilo per hectare. Local strains were highest yielding.

Cowpeas (V1gna sinensis)

Gormplasm

The germplasm collection was evaluated at Shiraz and more promising selections were also grown at Karaj.

Yield Trials (Tables 36-38)

Yield trials were planted at eight locations. Results from the preliminary yleld trial at Karaj and the advanced yield trial at Varamin and Karaj are reported here. The results from Shiraz trials are reported in a separate publication by Pahlavi University. Three cowpea strains were increased by the Iran Ministry of Agriculture. Accession Number 65-071-10003 has some tolerance to cowpea mosaic virus, desirable seed type and good yleld potential. Accession Number 65-153-00057 and Early Ramshorn have good seed type and yield potential, but little tolerance or resistance to cowpea mosaic virus.

Mungbeans (Phaseolus aureus)

Germplasm

The mungbean germplasm and selections were evaluated at Shiraz and Karaj.

Yield Trials (Tables 39-41)

Yield trials were grown at sfx locations. The results from Varamin and Karaj are presented here. A preliminary yield trial of 64 selections was grown in Karaj. Two mungbean strains were increased by the Iran Ministry of Agriculture. The two increased strains ranked second and fourth in yield when Varamin and Karaj results were averaged for 1968. (Accession Numbers 48-157-10307 and 48-069-10075.)

Additional germplasm was received from various sources. Six improved strains of chlckpeas were received from Israel, two of which were reported to have resistance co blight (Ascochyta rabeli). This is being investigated (See Pathology section).

A strain of lentils was obtained with reported bruohid resistance (See Entomology section).

Requests for seed from various other countries were filled. Among them was 215 chickpea lines to the Atomic Energy Research Station in Puerto Rico (Dr. Koo), 70 strains of lentil, beans, and cowpeas to Turkey (Mr. Nibat Canitez) and requests from African countries.

The Plant Breeding and Genetios Department of the Pahlavi University in Shiraz has prepared a detailed report of the work carried on as part of the total pulses program.

Legend For Lentil Agroncmic Data Tables - 1 to 5

(1) Numbers assigned to collection maintained by the Regional Pulse Improvement Project.
(2) Source numbers refer to collection numbers assigned by the Iranian Ministry of Agricul.ture. Six digit numbers are PI numbers from Crops Research Division, ARS, U.S. Department of Agriculture, Beltsville, Maryland, USA.
(3) Source indicates area of origin or area in which the seed was collected.
(4) Plants per meter is an average number of plants per meter of row based on one meter sample per replication.
(5) Rated 1 to 9: 1 = Complete stand $\quad 9=$ poor stand
(6) Rated 1 to 9: $1=$ Vigorous plants 9 weak plants
(7) Days from planting to first opened flower.
(8) Indicates number of days after planting the first pod in plot reached full maturity, ready for harvest.
(9). Indicates number of days after planting the whole plot was ready for harvest.
(10) Disease rated 1 to 9: $1=$ Free from disease symptoms
$9=$ Severe disease symptoms For diseases present see pathology section.
(11) Seeds/five pods indicates the average number of seeds in five pods.
(12) Br = Brown; G = Green; R $=$ Red; GR = Green and Red; $1=$ Light
(13) Average weight (grams) of 100 seeds.
(14) Yield in kilogram per hectare based on 5 or 10 square meter plots.
(15). Protein percentage based on total solids. Determined by Kjeldahl method on two samples per strain, duplicate determinations per sample.
(16) Cooking time (in minutes) determined by boiling 50 -gram sample in 500 ml . of water, 2 grams Na Cl added and checked regularly for hardness.
(17) Palatability, Maximum rating - 30

Appearance, Maximum 9
Color uniformity - 3 to 0
Size uniformity - 3 to 0
Cooking uniformity - 3 to 0
Smell - 6,4 or 0
Taste - 15, 10 or 0

Table i Agronomic Data, Lentil Preliminary Yield Test, Planted April 7, 1968, APIP, Ohazvin, Iran

Table2 Agronomic Data, Lentil Proliminary Yield Teat Planted April 3, 190́9, RPIP, Karaj, Iran

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Acoession Number	Source No.	SOURCE	Plants Meter	Stand	Vigor	$\begin{gathered} 1 . \mathrm{to}_{0} \\ \text { 2st } \\ \text { F1. } \end{gathered}$	$\begin{aligned} & \text { P1.to } \\ & \text { 1st } \\ & \text { Mat. } \end{aligned}$	Pl.to Com. Mat.	Disease Rating	Soeds per 5 Pods	$\begin{aligned} & \text { Seed } \\ & \text { color } \end{aligned}$	$\begin{gathered} 100 \\ \text { seods Wt. } \end{gathered}$	$\begin{gathered} \text { Yield } \\ \mathrm{Kg} / \mathrm{He⿻}, \end{gathered}$
33-071-11076	2.44-8713	Fars	30	2	2	52	83	111	2.3	9	Br	3.0	1176
33-071-11021	2-42-4470	Fars	40	2	2	54	78	112	2.3	9	$0 \times$	2.7	1082
33-071-11080	2-44-8717	Fars	38	3	2	53	76	108	2.3	7	Br	2.5	1080
33-071-11078	2-44-8714	Pars	37	2	2	52	77	112	2.0	8	8 r	3.3	1058
33-071-11090	2-44-8716	Pars	34	3	2	53	83	109	2.6	9	Br	3.1	990
33-071-11070	2-44.8719	Fars	29	3	2	53	89	110	2.3	9	${ }_{8}$	3.3	944
33-071-11109	2-44-8776	Isfahan	30	4	2	54	83	114	2.3	9	Br	3.0	918
33-071-11081	2.44-6819	Fars	32	3	3	54 53	70	108	3.0	88810	0	2.9 2.9	918
33-071-11020	406	Istahan	32	2	2	53	79	112	2.6	10	0	2.9	796
33-071-11019	405	Isfahan	40	2	2	52	73	115	3.6	9	0	2.9 2.8	786 784
33-071-11016	2-42-4464	Fars	41	3	2	53 54	77	107	3.3	10	0	2.8 2.7	784
33-071-11014	2-42-4467	Pars	43	2	2	54	81	108	2.6	8	${ }_{8}$	2.7	774 690
33-071-11111	2-44.877 ${ }^{8}$	Iafahan	29	2	2	53	80	106	3.0	8	8 0	3.7 2.6	690
33-071-11018	403	Isfahan	34	3	2	53	76	105	3.0	9	0	2.6	606
33-071-11022	2-42-4479	Pars	36	2	2	52 54	75	112	2.3 2.6	8	18	2.6 2.8	632
33-071-11024	408	Isfahan	38	3	2	54 54	73 83	115	2.6	8	18	2.8	622
33-071-11028	410	Isfahan	34	0	3	54	73	116	3.3		0	2.9	520
33-071-11027	409	Isfahan	43	2	2	52	73	116	3.3	7	0	2.9	520
33-071-10450	64169	Karaj	37	2	2	55 53	72	110	3.3 3.0	7	8	4.6 2.8	458
33-071-11102	2-44-9416	Fara	36	2	2	53	73	107	3.0	9	8	2.8	408
33-071-10718	20135	Chouchan	31	3	3	57	77	115	3.3	8	A	2.8	408
33-153-10048	178,971	Turkey	35	2	2	53	75	112	3.0	8	a	4.2	406
33-071-10582	19248	Karaj.	24	2	2	50	67	104	4,3	8	8	4.1	368
33-071-10419		Charemaghagh	36	3	2	51	71	213	3.3	7	CFBE	4.3	34
33-032-10245	299,216	Chile	37	2	2	57	75	114	4.3	7	0	4.2	346
33-071-10417		Ardabil	23	3	3	52	71	111	4.3	7	CHBT	3.	326
33-071-10588	19297	Karaj	32	3	3	54	73	113	3.3	9	0	4.	324
33-671-10433		Ardabil	30	3	2	52	68	97	3.0	7	0	3.6	284.
33-071-10587	19262	Karaj	33	3	2	54	71	110	3.6	6	$\underline{0185}$	4.4	28
33-032-10202	299,164	Chile	27.	3	2	55	74	116	4.3	5	0	5.4	270
33-032-10199.	299,160	Cille	33	2	2	55	77	113	4.0		0	4.4	270
33-071-11103	2-44-9511	Fars	33	3	3	54	69	102	3.0	8	Un	3.3	252
33-071-11023	2-42-4623	Isfahan	35	3	3	53	69	103	3.3	7	If	3.6	25
33-071-10581		Iran	33	3	2	50	64	98	3.6	7	RO	3.6	252
33-071-10425		Ahar	39	2	2	52	71	105	3.6	6	arb	4.1	248
33-071-10427		Moghan	32	3	3	53	73	103	4.3 3.3	6	0	4.3	238
33-071-10407		Ghareoaghagh	39	3	3	53	73	106	3.3	8	ORB	3.4 4.0	224
33-071-10416		Ardabil	28	3	2	52	71	109	3.6	9	0	4.	214
33-071-10430		Tabriz	34	3	2	52 58	64	94 106	3.6 3.6	7	0	4.1	202
33-032-10217	299,182	Chile	32 26	3	2	50	70	108	3.6 5.0	6	0	5.3	198
33-071-10436		Tehran	28	2	2	53	68	107	3.6	7	0	3.9	196
$33-071-10420$ $33-071-10418$		Ardabil	20	2	2	53	70	102	3.6	6	0	4.5	194
33-071-10418		Ardabil	32	3	3	54	75	103	3.6	7	H	3.8	190
33-071-10414		Zanjan	30	3	3	55	. 68	99	4.6	6	0	3.6	186
33-071-10713	20136	Chouchan	37	3	3	54	- 69	105	3.6	9	CREP.	3.1	184
33-071-10406		Zanjan	30	3	3	53	69	107	4.3	8	GRE	3.5	180
33-032-10258	299,224	Crile	24	3	3	61	79	110	$3: 6$	7	0	4.7	174
33-032-10254	299,225	Chile	37	2	2	59	82	110	4.3	7	0		164
33-071-10410		Khoy	32	2	2	55	71	99	4.0	6	0	4	160
33-032-10210	299,174	Cinile	35	2	2	53	75	112	3.0	7			250 136
33-032-10211	299,175	chile	32	2	2	53	73	114	4.3	7	8	4.5	136
33-071-10427		Zanjan	34	3	3	. 52	63	98	4.6	6	0	3.	134
33-071-10423		Mughan	30	3	2	'53	69	97	4.3	7		5.5	128
33-032-10244	299,215	chile	29	3	3	. 59	74	115	5.0	5	0	5.5	-120
33-032-10208	299,171.	Crile	35	2	2	57	72	102	4.0	6	0	4.7	120
33-032-10216	299,181	Chile	27	2	2	58	70	101	4.0	8	0	4.2	116
33-071-10412		Mogtian	38	3	2	54	67	98	4.3 4.6	8		3.6	
33-032-1022:	299,187	Chile	34	3	3	57	74	111	4.6	$\because 8$	ER	3.7	100
33-071-10415		Ardabil	23	4	2	52	66	97		5		\% 5.4	
33-032-10220	299,105	Crile	25	3	2	55	74	113	4.0	6	0	5.2	
33-071-10422		Moghan	29	2	2	51	61	97	5.0	6	0	3.3	
33-032-10193	299,145	Chile	34	2	2	60	74	215	4.0	6	OHBr	4.9 8.8	$\begin{aligned} & 70 \\ & 0 \end{aligned}$
33-071-10427		Hhoy	29	3	3	59	65	102				2.	
crs -													
LSD . 050													

Table 4 Agronomic Data, Lentil Advance Yield Test Planted March 12, 1968, RPIP, Varamin, Iran

Table 5 Agronomic Data, Lentil Advance Yield Test Planted April 3, 1968, RPIP, Karaj, Iran
(1)
(2)
(3)
(4)
(5)
(6).
(7) (8)
(9)
(11)
(12)

Pl.to P1.to Pl.to Seeds
Accession
Source No
SOURCE Plants lst ls per 5 Seed Seeds Yield
$\mathrm{Kg} /$
Number
$33-071-10903$
$33-071-10441$
$33-071-11136$
$33-071-10885$
$33-071-11139$
$33-071-10439$
$33-071-10445$
$33-071-10444$
$33-071-11138$
$33-071-10442$
$33-071-10440$
$33-071-10438$
$33-071-10443$
$33-071-10408$
$33-071-11175$
$33-071-10436$
$33-071-11179$
$33-071-10437$
$33-071-10428$
$33-085-11174$
$33-071-10432$
$33-071-10413$
$33-071-10421$
$33-071-10409$
$33-071-10411$
$33-071-10435$
$33-039-11177$
$33-071-11176$
$33-071-10424$
$33-071-11178$
6%

Isfahan	41	2	2	54
Isfahan	31	2	2	54
Isfahan	33	3	2	54
Isfahan	36	2	2	53
Isfahan	37	2	3	53
Jiroft	38	2	2	55
Isfahan	34	3	2	53
Isfahan	41	2	3	52
Isfahan	36	3	3	55
Isfahan	35	2	3	54
Isfahan	33	3	3	54
Isfahan	35	2	3	54
Isfahan	32	3	3	52
Ahar	32	2	1	53
Arasbaran	32	3	3	53
Ghazvin	35	3	2	53
Unknown	28	2	2	52
Ghazvin	35	3	2	53
Moghan	33	2	2	53
Iebanon	36	2	2	52
Ardabil	31	3	2	53
Tabriz	29	3	3	54
Ghazvin	31	3	3	52
Ardabil	30	3	3	53
Moghan	33	3	2	53
Ghazvin	30	3	3	52
Cyprus	34	2	3	53
Azarbaijan	30	3	2	52
Maghan	28	3	3	52
Azarbaijan	30	3	2	52
		3		

Mat. Com. Disease
80

142

Legend For Chickpea Agronomic Data Tables 6-24.

(1) Numbers assigned to oollection maintained by the Regional puise Improvement Project.
(2) Numbers assigned in 1965 single row nursery
(3) Source numbers are numbers assigned to populations or collections by the Iranian Ministry of Agriculture; 6 digit numbers are PI numbers from Crops Research Division, ARS, U.S. Department of Agriculture, Beltaville, Maryland, U.S.A.
(4) Source indicates crigin of seed either country or section of Iran.
(5) W = White; P in Purple; LP = Light purple.
(6) Average plant height in oentimeters.
(7) Average plant width in centimeters.
(8) Average number of plants per meter based on one meter of row per replication.
(9) Rated 1 to 9: $1=$ complete stand $9=$ poor stand
(10) Rated 1 to 9: 1 - vigorous plants 9 weak plants
(11) Days from planting to first opened flower.
(12) Indicates number of days after planting the first pod in plot reached full maturity, ready for harvest.
(13) Indicates number of days after planting the whole plot was ready for harvest.
(14) Disease rated 1 to 921 = free from disease symptoms; $9-$ severe disease symptoms including yellowing and wilting
(15) Average number of seeds per 10 pods.
(16) $\mathrm{Br}=$ Brown; $\mathrm{W}=$ White; Bl = Blaok; Cr = Cream; Y = Yellow; Gr - Oreen; $L=$ Light $; D=$ Dark.
(17) Average weight (in grams) of 100 seeds:
(18) Yield in kilograms per heotare based on 5 or 10 square meters per plot.
(19) Protein peroentage based on total solids. Datermined by Kjeldahl method on two samples per strain, duplicate determination per sample.
(20) Cooking time (in minutes) determined by boiling 50 -gram sample in 500 ml . of water, 2 grams Na Cl added and checked regularly for hardness.
(21) Palatability, Maximum rating - 30

Appearance, Maximum - 9
Color uniformity - 3 to 0
Size uniformity - 3 to 0
Cooking uniformity - 3 to 0 :
Smell - 6 to 0
Taste - 16 to 0

Table
(1)

6 Agronomio Data, Chickpea (Black)
(Bl ack
Prelim
(5)
(6)
6)
(7)
(7) $\quad(8)$
(8)
(9) (10) (11) (12) (13)
(14)
(15) (17)
7) (18) Accession
Number Strain Source \square Flower Plant. Plant Plants Pl.to Pl.to Pl.to 1.to Pl.to
lst Com. Disease
Mat Mat. Rating Seeds
per 10
pods

Number
$12-071-04287$
$12-071-04466$
$12-071-04282$ 12-071-04439 12-071-04433 12-071-044387 $12-071-05378$
$12-071.05185$
12-071-04413
 12-071-0426 12-071-04440 12-071-04775 12-071-04703 $12-071-05131$
$12-071-04663$ $12-071-04663$
$12-071-04445$ 12-071-04445 12-071-04623 12-071-04799 12-071-05326 12-071-04629 12-071-05108 12-071-05108 12-071-05403 CV $\mathcal{F}=$
CV $\mathscr{O}=$
Yield differences not significant at .05 .

Table P. Agronamio Data, Chiokpea (White) Preliminary Yield Test No. 2 planted April 3, 1968, RPIP, Karaj, Iran

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(28)
Aocession Number	Strain Number	Source Number	30 URCE	Flower Color	Plant Holght	Plant Width	Plants Mater	Stand	Vigor	$\begin{aligned} & \text { Pl, to } \\ & \text { ist } \\ & \text { Fl. } \end{aligned}$	$\begin{gathered} \text { P1.to } \\ \text { list } \\ \text { Mat. } \\ \hline \end{gathered}$	$\begin{gathered} \text { P1, to } \\ \text { Com. } \\ \text { Mat. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Diaease } \\ & \text { Rating } \end{aligned}$	Seeds per 10 pods	Seed Color	100 Seeds Wt.	Yield per Hectare
-12.071-10041	226	170	Ardab1l	LP	40	63	15	1	1	55	101	130	1	13	LCr	27.5	4792
12-071-02842	1005	170	Ardabil	LP	43	63	15	1	1	58	102	132	1	12	LCr	26.1	4750
12-071-02946	1102	169	Ardabil	LP	45	66	12	1	1	59	106	127	1	13	LCr	26.3	4582
12-071-06359	797	230	Mishabour	LP	30	52	13	2	1	55	100	119	2	19	LCr	17.0	4493
12-071-02193	387	241	Ohochan	W	33	62	12	2	2	53	101	134	2	16	Cr	28.5	4475
12-071.03578	1707	153	Karaj	LP	46	64	11	1	1	57	104	129	2	12	LCF	23.0	4385
12-071-02479	646	106	Fars	LP	43	65	13	1	1	54	101	122	2	13	DCF	26.7	4354
12-071-03240	1385	111	Varamin	LP	49	61	14	1	1	55	102	123	1	15	DCr	25.9	4289
12-071-03081	1225	169	Ardabil	LP	38	61	14	1	1	56	103	131	1	12	Ler	23.9	4283
12-071-02841	1004	170	Ardabil	LP	46	65	13	1	1	67	103	130	1	12	LCr	26.6	4283
12-071-02729	898	182	Shiraz	W	43	59	17	1	1	62	103	128	3	23	W	18.9	4215
12-071-03230	1373	41	Varamin	LP	38	63	12	1	1	55	104	137	1	14	LGr	22.6	4204
12-071-02759	924	182	Shiraz	LP	40	57	16	1	1	54	101	131	1	14	LCr	16.1	4187
12-071-10042	134	230	Tehran 251025	LP	38	58	14	1	1	54	103	131	1	14	LCr	16.6	4145
12-071-02290	474	220	Isfaian	W	45	60	10	2	1	75	108	135	1	13	H	23.0	4119
12-071-02613	776	230	Nishabour	W	38	66	12	2	1	53	101	124	2	17	W	20.2	4094
12-071-03230	1381	111	Varamin	LP	40	61	12	1	1	52	100	119	1	15	DCr	29.3	4087
12-071-03413	1550	161	Mamaghan	LP	40	68	15	1	1	64	101	124	1	17	Lar	18.2	3997
12-071-03249	1393	111	Varamin	LP	38	65	13	1	1	53	101	119	1	23	DCr	29.5	3982
12-071-03430	1565	161	Mamaghan	LP	42	70	15	1	1	58	103	129	1	15	0	17.4	3972
12-071-02845	1008	170	Ardabil	LP	44	65	14	1	1	57	101	124	1	13	Cr	30.7	3932
12-071-03421	1557	161	Mamaghan	LP	47	63	16	1	1	63	102	120	1	12	DCr	19.4	3906
12-071-C2302	485	220	Isfahan	W	33	54	11	1	1	54	101	128	2	16	W.	18.3	3893.
12-071-10043	71(1)	170	Ardabil	LP	48	68	12	1	1	62	102	131	1	12	Cr	27.2	3073
12-071-03393	1532	168	Mamaghan	W	36	58	15	1	1	53	100	134	1	13	W	22.0	3872
12-071-C2302	458	220	Isfahan	W	46	65	11	1	1	72	109	136	1	15	H	20.7	3850
12-071-02443	618	106	Fars	W	53	55	14	2	1	54	100	126	2.	13	W	19.4	3820
12-071-06342	2013	217	Torbat-Haidari	LP	38	59	14	1	1.	66	104	130	1	18	Cr	14.0	3786
12-071-02270	935	182	Shiraz	W	39	57	13	1	1	55	101	- 232	2	15	${ }^{\mathbf{H}}$	18.1	3754
12-071-03523	1657	152	Karaj	\underline{L}	37	60	15	2	1	53	100	120	2	16	Ler	19.7	3732
12-071-05471	310	241	Ghochan	W	29	54	14	2	1	51	100	125	2	16	W,	20.9	3730
12-071-02733	902	182	Shiraz	W	36	54	14.	1	1	56	'101	127	1	17	W	17.7	3682
12-071-02765	931	182	Shiraz	W	35	48	14	2	1	54	101	130	1	16	W	18.4	3638
12-071-10044	71(2)	170	Ardabil	LP	43	67	12	1	1	62	102	118	1	12	LCr	27.0	3603
12-071-02631	800	230	Nishabour	W	39	61	15	1	1	54	100	122	1	18	W	16.8	3599
12-071-03226	1370	111	Varamin	LP	42	69	13	1	1	54	100	121	2	13	DCr	27.6	2596
12-071-02095	267	460	Karaj sol.	LP	38	60	12	1	2	54	100	126	2	11	Cr	29.5	3555
12-071-02744	912	182	Shiraz	W	41	56	13	1	1	60	103	135	1	13	W	18.9	3550
12-071-02898	1055	170	Ardabil	W	36	55	16	1	1	54	104	238	1	14	W	17.6	3520
12-071-02639	809	230	Nishabour	H	34	57	12	1	1	54	101	123	2	18	W	19.3	3482
12-071-02214	406	241	Grochan	W	26	46	10	1	1	49.	101	127	2	15	W	21.0	3468
12-071-02270	935	182	Shiraz	W	37	55	14	1	1	55	103	128	2	14	W	27.9	3453
12-071-02565	731	230	Nishabour	W	36	55	14	1	1	54	100	124	i	14	W	18.1	3445
12-071-06364	794	230	Nishabour	I.P	57	58	17	1	1	54	101	123	2	17	DGO	15.8	3431
12-071-02892	1050	170	Ardabil	LP	46	64	13	1	1	54	102	120	2	10	LCT	29.1	3427
12-071-02655	828	230	Nishabour	W	39	60	15	1	1	55	100	124	2	22	W	17.8	3413
12-071-03253	1398	111	Varamin	W	38	57	14	1	1	53	100	128	2	12	W	23.1	3407
12-071-01916	84		P.S.K.P.	W	34	57	11	1	1	52	100	127	2	15	W	24.1	3399
12-071-03240	1385	111	Varamin	LP	41	64	11	1	1	53	101	122	2	14	Cr	28.8	3886
12-071-02791	954	230	Nishabour	W	36	55	12	1	1	57	103	128	1	14	W	16.9	3385
12-071-03259	1406	111	Varamin	1 P	37	60	11	1	1	54	100	117	2	13	DCr	27.7	3347
12-071-03629	1760	153	Karaj	12	43	62	11	1	1	57	101	126	1	11	LCo	25.1	3342
12-071-02478	645	106	Pars	H	42	55	13	1	1	55	100	121	1	15	W	18.0	3328
12-071-03069	1213	169	Ardabil	W	36	53	15	2	1	56	101	123	1	- 15	W	19.1	3326
12-071-02195	389	241	Ghochan	W	31	60	11	2	1	52	101	123	2	17	W	20.0	3316
12-071-02442	613	106	Pars	W	30	47	13	1	1	55	100	120	1	14	W	18.2	3314
12-071-03886	2014	217	Torbat-Haidard	W	36	62	25	1	1	53	100	127	1	20	W	17.4	3308
12-071-02732	201	182	Shiraz	W W	37	54	16	1	1	55	101	133	1	16	W	18.3	3305
$12-071-02023$ $12-071-02853$	201 825	230	Torbat	W H	38 4 4	59	24	1	1	55	100	122	2	13	W	30.2	3301
12-071-02653	825 614	230 106	Nishabour	H	34	56	14.	1	1	54	100	128	2	23	W	16.3	3298
12-071-02443	614	106	Fars	H	32	53	15	1	1	53	100	127	1	16	W	28.6	3293
12-071-02479	646 456	106	Fars	W	32	52	20	1	1.	54	100	134	1	15.	W	17.1	3278
12-071-02270	456 823	220	Isfahan	H \mathbf{H}	41	66	10	2	1.	70	109	132	2	13	H	22.0	3233
12-071-02651	823 433	230	Hishabour	W	37	62	14	1	1	53	100	123	1	16	W	21.0	3219
12-071-022 44	433 2167	241	Ohochan	W	28	60	13	2	1	52	100	126	1	17	W	21.0 17.0	3191
12-071-04044	2167 975	220	Iafahan	\xrightarrow{W}	48	65	11	2	2	72	106	128	3	12	W	35.8	3170
12-071-02814	975 868	230	Nishabour Shiraz	W	33	55 56	13	1	1	53	100	118	2	16	W	20.5	3165
12-01-0269	0	102	Shiraz	W	36	56	24	2	1	56	100	126	1	13	W	16.5	3152

conte. :

Table Agronomic Data, Chickpea (White) Preliminary Yield Test No. 2, Planted April 3, 1968, RPIP, Karaj, Iran

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Accession Number	Strain Number	Source Number		Flower Color	Plant Height	Plant Width	Plants Meter	Stand	Vigor	Pl.to lst Fl.	Pl.to lst Mat.	Pl.to Com Mat.	Disease Rating	Seeds per 10 pods	Seed Color	$\begin{gathered} 100 \\ \text { Seeds } \\ \text { W Wt. } \end{gathered}$	Yield per Hectare
Number	Number	Number	Ghochan			60	Meter	Stana	V1gor	53	100	122	-1	18	W	18.1	3150
12-071-02244	433 1393	241	Ghochan	W LP	30 42	60	12	1	1	53 55	100	115	1	14	DCr	26.9	3142
12-071-03249	4393	241	Garamin	W	34	59	12	1	1	52	100	122	2	16	W	20.9	3116
12-071-01919	86	84	Karaj sel.	W	38	59	11	1	1	54	101	128	2	16	W	31.1	3084
12-071-02738	906	182	Shiraz	H	35	51.	13	1	1	55	104	120	1	16	W	19.1	3038
12-071-03233	1376	111	Varamin	W	34	54	18	2	1	55	100	121	2	16	W	17.7	3036
12-071-02643	813	230	Nishabour	W	28	57	12	1	1	52	100.	125	2	16	W	19.0	3031
12-071-02053	229	424	Karaj sel.	W	34	53	12	1	2	54	100	134	2	12	W	26.8	3005
12-071-02629	795	230	Nishabour	W	27	52	11	2	1	51	100	125	2	16	W	17.9	3002
12-071-02815	976	230	Nishabour	W	32	62	14	1	1	52	100	118	2	13	W	19.0	2997
12-071-03355	1497	168	Mamaghan	W	44	60	13	1	1	53	100	121	2	11.	W	27.3	2975
12-071-03232	1375	41	Varamin	W	39	64	11	2	2	56	101	126	2	16	W	29.3	2972
12-071-03073	1217	169	Ardabil	W	35	58	15	1	1	55	101	135	1	12	W	17.6	2858
12-071-01915	83	71	Karaj sel.	W	38	64	13	2	1	52	100	122	2	13	W	33.6	2813
12-071-10045	5174		Ghazvin local	W	35	55	10	2	1	54	100	127	2	13	W	25.0	2801
12-071-02684	856	230	Nishabour	W	27	52	12	2	1	50	100	114	2	19	W	17.2	2797
32-071-03459	1591	161	Mamaghan	LP	34	63	12	1	1	55	101	121	3	12	Cr	20.4	2751
12-07i-02460	629	106	Fars	W	34	59	20	1	L	53	100	124	2	13	W	15.7	2738
12-071-10046	345	194	Kermanshah	W	39	61	13	2	1	55	102	120	2	11	W	33.7	2728
12-071-02441	612	106	Fars	W	33	52	13	2	1	53	100	126	2	15	W	13.6	2725
12-071-05470	332	217	Torbat Haidari	W	34	56	13	2	1	52	100	128	2	13	H	20.9	2674
12-071-02443	614	106	Fars	W	29	55	13	2	2	54	100	119	2	15	W	18.9 20.4	2656
12-071-02243	432	241	Ghochan	W	33	58	10	2	1	49	100	125	2	14	D	20.4	2631
12-071-10047	36	111	Varamin	LP	41	62	12	2	1	62	100	114	2	15	DCr.	23.8	2607
12-071-02110	1364	194	Kermanshah	W	27	51	10	1	1	53	100	116	3	13	Cr	27.0	2543
12-071-02246	435	241	Ghochan	W	29	59	12	1	1	53	100	115	1	16	W	19.6	2541
12-071-10048	154	207	Mazandaran	W	34	62	10	2	1	54	101	129	4	13	W	26.0	2498
12-071-10049	85	249982	Iran	W	31	58	11	2	1	56	100	121	3	17	W	26.0	2394 2196
12-071-03028	1176	159	Ardabil	W	40	54	13	2	1	53	100	119	2	16	LCr	19.7	2196
12-071-03376	1516	168	Mamaghan	W	31	60	11.	2	1	52	100	126	2	13	W	24.9 37.2	2110
12-071-02516	681	232	Dareh-gaz	W	38	60	10	2	1	60	101	131	2	15	W	37.2 20.4	2018
12-071-03260	1407	111	Varamin	W	37	58	11	2	1	53	100	125	2	14	W	20.4	2018
$\begin{aligned} & \text { CV } \mathbb{O}= \\ & \text { LSD } .05= \end{aligned}$																	519

Table B. Agronomic.Data, Chickpea (Elack) Preliminary Yleld Test No. 1, Planted April 3, 1968, RPIP, Karaj, Iran

\therefore (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Acoession Number	Strain Number	Source Number	SOURCE	Flower Color	Plant Helght	Plant Width	Plants Meter	Stant	Vigor	$\begin{gathered} \text { Pl.to } \\ \text { lst } \\ \mathrm{Fl} . \\ \hline \end{gathered}$	$\begin{aligned} & \text { P1.to } \\ & \text { 1st } \\ & \text { Mat. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Pl.to } \\ & \text { Come } \\ & \text { Mat. } \end{aligned}$	Disembe Rating	Seeds per 10 Pods	Seed color	100 Seeds Wt.	Yield per Heotare
12-071-04509	2285	193	Kemmarshah	P	35	51	19	2	1	53	96	120	2	17	B1	11.3	3050
12-071-04432	2215	221	Isfunan	P	34	53	18	3	1	53	96	124	2	18	31	11.5	2848
12-071-05331	3043	154	Gharyeh-Cole	P	35	49	19	2	1	54	96	121	1	19	B1	12.1	2832
12-071-04279	287		Karas 315-2	P	38	60	17	2	1	54	96	118	1	18	B1	12.0	2804
12-071-05126	2858	174	Ahar	P	29	53	14	3	2	56	100	121	3	18	12	12.3	2754
12-071-04244	305		Ardabil	P	30	50	21	3	1	54	96	120	2	18	B1	11.8	2726
12-071-04481	2260	221	Isfahan	P	31	50	18	2	2	54	96	123	2	17	B1.	11.8	2720
12-071-05300	3015	154	Gharyeh-Gole	p	32	49	14	3	1	53	96	124	3	19	BL	12.0	2684
12-071-05487	2433	172	Ardabil	P	25	47	13	4	2	54	96	116	4	17	B1	9.7	2676
				P	39	53	17	2	1	54	96	125	2	18	B2	-12.0	2660
12-071-04475	2254	221	Isfuhan	P	35	55	15	3	2	55	99	119	2	16	B1	11.9	2646
12-071-04536	2309	193	Kermanshah	P	32	50	19	2	1	53	96	124	2	17	B1	11.3	2642
12-071-04428	2211	221	Isfahan	P	34	55	19	1	1	53	96	122	2	18	B1	11.5	2628
12-071-05080	2817	174	Ahar	P	34	55	15	4	2	54	96	118	2	17	B1	12.0	2602
12-071-04458	2239	221	Isfahan	P	34	56	18	2.	1	54	96	121	2	18	B1	12.7	2588
12-071-04618	2383	172	Ardabil	P	22	40	12	4	2	53	96	122	3	16	E1	10.3	2574
12-071-05093	2829	174	Ahar	P	32	68	14	4	2	54	96	124	2	16	B1	12.2	2558
12-071-04661	2422	172	Ardabil	p	29	47	18	1	1	52	96	117	3	18	B1	10.0	2534
12-071-04491	22.69	921	Iafahan	P	32	51	12	5	2	57	96	126	3	15	E1	12.17	2516
12-071-04705	2482	173	Ardabil	$\stackrel{P}{P}$	25	47	13	3	3	54	100	126	2	18	B1	11.2	2510
12-071-04691	2467	172	Ardabil	p	27	50	19	3	1	52	96	120	2	17	B1	10.8	2496
12-071-04469	2194	221	Isfahan	p	32	48	15	2	2	55	96	120	2	17	B1	11.9	2490
12-071-04467	2247	221	Isfahan	P	35	60	15	3	1	54	96	123	1	17	B1	12.1	2466
12-071-04748	2518	173	Ardabil	P	24	48	12	4	3	51	96	121	3	17.	B1	10.5	2444
12-071-04276	284		Ghazvin 3e7-1	P	34	56	13	3	1	57	96	125	2	18	B1	11.1	2424
12-071-04270	278	49	Ardabil	P	24	51	12	4	3	51	100	123	4	18	B1.	10.6	2420
12-071-04407	2192	221	Is fahan	p	33	53	19	2	2	54	96	120	2	17	B1.	12.0	2412
12-071-04795	2560	173	Ardabil	p	27	48	17	3	2	53	96	117	3	17	B1	10.4	2376
12-071-04462	2243	221	Isfahan	P	31	52	8	4	2	56	100	120	2	18	E1	12.8	2366
12-071-04833	2595	173	Ardabil	P	28	50	15	4	2	53	96	124	3	18	B2	10.0	2318
12-071-05437	438	154	Karaj	P	34	53	21	1	1	54	96	123	2	17	B1	12.7	2312
12-071-04475	2254	221	Isfahun	P	31	51	7	5	2	60	100	124	2	16	B1	12.6	2284
12-071-04479	2258	221	Isfahan	P	31	49	10	5	2	55	96	124	3	17	B1	12.8	2260
12-071-04937	2688	175	Oharyeh-Cole	P	33	57	16	3	1	. 54	96	120	1	17	B1	13.4	2260
12-071-04653	2415	172	Ardabil	P	25	51	16	2	2	53	96	118	3	16	B1	12.0	2240
12-071-05089	2825	174	Ahar	P	31	55	18	2	1	54	98	126	1	19.	B1	21.7	2230
12-071-04689	2465 2231	172	Ardnibil	P	22	48 55	13	4	2	54	96	121	3	18	B1	16.1	2222
12-071-04450	2231	221	Isfahan	P.	32	55	19	2	1	54	96	117	2	16	B1	12.8	2203
$12-071-04261$ $12-071-04789$	269 2555	222	Iran 222772	P	26	51	16	2	2	52	96	115	3	18	B1	11.4	2152
$12-071-04789$ $12-071-04787$	2555 2553	173 173	Ardabil	P	26	48	15	2	2	53	96	114	4	16	E1	11.2	2136
12-071-04787	2553	173 173	Ardabil	P	29 25	49 44	20	2	2	52 55	96	1113 119	4	17	B1	10.3	2134
$12-071-05399$ $12-071-04693$	3117 2469	173 172	Ardabil	P	25 25	44	16	2	3	55	96	119 118	3	18	81	10.4	2110
12-071-04573	2343	193	Kermanshah	P	25	46	18	2	1	52 50	96	118	4	18	B1	9.9	2100
12-071-04461	2242	221	Isfahan	P	35	52	18	3	1	53	96	118	3	17	B1	10.7 12.5	2002
12-071-04619	2384	172	Ardabil	P	23	44	15	1	2	53	96	112	4	17	B1	12.5 10.3	1950
12-071-05,486	2432	172	Ardabil	P	26	49	17	2	1	53	96	118	3	18	H1	10.6	1912
$12-071-04620$	2385	172	Ardabil $\quad \cdots$	P	23	45	23	1	1	51	96	115	3	15	B1	10.1	1866
12-113-05406	3134		Pakistan C-727.	\boldsymbol{P}	36	58	12	2	1	56	96	119	2	16	LB5	19.3	1854

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(16)	(17)	(18)
hecession Number:	Stradn	Souroe	300日CE	$\begin{gathered} \text { Flower } \\ \text { Color } \\ \hline \end{gathered}$	Flant Ealstit	$\begin{aligned} & \text { Plant } \\ & \text { Width } \\ & \hline \end{aligned}$	P2ents Mater	Stand	V1gor	$\begin{gathered} \text { Fl.to } \\ \text { lst } \\ \text { FIt. } \end{gathered}$	$\begin{gathered} \text { Pl.to to } \\ \text { 1st } \\ \text { Mat. } \end{gathered}$	Pl.to Com. Mat.	Disease Rating	$\begin{aligned} & \text { Soed } \\ & \text { color } \end{aligned}$	$\begin{gathered} 100 \\ \text { seode } \\ \text { Wit. } \end{gathered}$	
12-071-02818	979	230	Nishabour	\%	52	54	19	2	1	50	89	102.	1	W	23.4	1892
12-071-03306	1451	111	Varamin	18	43	60	21	1	1	55	93	102	1	cr	30.1	1892
12-071-03423	1596	161	Mamaghon	EP	375	60	21	1	1	54	93	102	1	*	29.5	$1{ }^{182}$
12-071-03696	1829	162	Shehpour	*	45	59	19	.	1	56	94	105	1	W	28.4	1866
12-071-03455	1588	161	Mamaghan	${ }_{\text {LP }}$	41	65	21	2		52	93	100	1	W	29.4	1862
12-071-02469	637	206	Pars		41°	49	20	2	1	58.	94	105	1	W	21.5	1858
12-071-02855	1017	170	Ardabil	W.	42	64	21	1	,	53	92	103	1	Ler	24.6	1846
12-071-02840	1003	170	Ardabil	${ }_{4}$	44	63	20	1	1	59	96	105	1	cr	29.3	1840
12-071-02185	380	241	Ghochan	\underline{W}	30	68	20	1	1	51	90	106	1	. ${ }^{\text {H}}$	22.3	1836
12-071-02345	524	241	Crochan	W	36	62	20	1	2	50	89	104	I	W	23.4	1820
12-071-03645	1779	153	Karaj	${ }_{L}$	43	65.	19	2	1	60	96	106	1	W	26.4	1790
12-071-03378	1517	168	Mamaghan	P	32	54	21	2	1	50	88	106	1	W	30.4	1770
12-071-03062	1207	169	Ardabil	${ }_{L}^{L P}$	42	58	22	1	1	53	94	105	2	Ler	20.3	1764
12-071-03289	1435	111	Varamin	w	30	48	20	2	1	52	91	105	1	H	33.5	1742
12-071-03250	1395	111	Varamin	LP	37	54	20	2	1	59	95	100	1	Ler	26.5	1720
12-071-02968	${ }_{828}^{1122}$	169	${ }_{\text {A }}$ Ardabil	W	28	58	2	1	1	49	89	105		LCr	30.7	1720
12-071-03471	1602	161	Mamaghan	$\underline{L P}$	38	62	21	1	1	50	91	105	1	cr	23.4 23.6	1658
12-071-02333	1376	111	Jaramin	${ }_{\text {LP }}$	41	68	22	1	1	55	91	102	1	\cdots	32.3	2488
12-071-03944	1389	111	Varamin	IP	34	64	2	1	1	57	9	105	1	W	27.4	2434
12-071-02569	734	230	N1shabour	H	29	54	21	1	1	50	90	102	1	w	22.1	2414
12-071-03468	1599	161	Mamzihan	${ }_{\text {LP }}$	39	70	21	1	t	56	93	103	1	cr	26.2	2336
12-071-03455	1588	161	Mamaghan	${ }_{L P}^{\text {LP }}$	77	${ }_{6}^{57}$	19	2	1	54.	93	108	1	+	26.9	2306
12-071-05406	301	111	Isfahan	${ }_{\text {LP }}$	38	62 63	20	1	1	55 54	91	106	,		29.4	230
12-071-02650	822	230	Niehabour	W	34	57	22	-1.	1	51	90	102	1	cr	19.6	2214
12-071-03295	1441	111	Varamin	LP	36	66	21	1	1	54	9	102	1	cr	30.3	2108
12-971-03456	1589	161	Memaghan	LP	39	60	19	2	1	58	94	105.	1	LCr	30.3	2102
12-071-03298	1448	111	Varamin	${ }_{\text {LP }}$	57	56	20	1	1	55	92	102	1.	cr	30.1	2028
12-071-05471	310	241	Ghanpour	$\stackrel{W}{W}$	41 35	${ }_{54}^{54}$	20	1	1	55	94	108	1	W	25.9	2016
12-071-05470	332	217	Torbat-Haidari	W	34	57	21	2	1	53	92	105	1	W	21.5 19.8	1968
12-071-03351	1493	168	Massichan	W	33	57	21	2	1	56	91	102	1	W	22.0	1988
12-071-03300	1445	111	Varamin	5	35	50	20	2	1	57	91	105	1	W	28.0	1894
12-071-02346	525	241	Chochan	W	36	55	19	2	1	50	89	105	1	cr	24.7	1604
12-071-02175	374	241	Chochar	W	35	67	19	1	1	50	88	105	1	w	23.3	1580
12-071-02596	759	230	Nishabour	N	33	55	20	2	1	56	94	105	1	W	22.6	1504
12-071-03251	1396	86	Varamin	N	31	55	16	3	2	54	94	106	1	4	32.2	1442
12-071-01921	88	86	Karaj	W	37	58	18	2	1	51	90	105	1	W	34.0	1440
12-071-01919	${ }_{1054}^{86}$		Karaj sel.		34	58	16	2	1	51	89	102	$\frac{1}{2}$		33.1	1414
22-071-02896	1054 479	170 220	Ardabil Isfatian	W	38	63 65	18	2	2	59	,960	109	1	W	33.9	1364
12-0iocim	903	182	Isferan		33	5	19	2	2	56	100	1118	1	\checkmark	18.1	1372
12-071-03005	1156	169	Ardabil	W	3	40	19	2	1	51	89	106	1	W	31.4	1294
12-071-02188	382	241	Chochan	W	40	58	16	3	2	55	97	111	1	W	18.4	792
12-071-02298	481	220	Infahan	W	4	64	18	2	2	54	100	112	1	W	19.8	710
12-071-02300	483-	220	Isfohan	W	43	65	17	2	2	54	100	112	1	\underline{W}	19.4	624
12-071-02306	489 518	2200	Isfatian	K	42	${ }_{68}^{58}$	17 15	2	1	-62	98	111	1	W	16.1	606
CV80 ${ }_{\text {co }}$	518	220	Isfuhen				15		2	58	100	111	1	W	20.4	424 28
LSD . 05 -																351

(i)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(20)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Aocession Number	Strain Number	Source Ninber	SOURCB	$\begin{aligned} & \text { Mower } \\ & \text { Color } \end{aligned}$	Plant Hoight	$\begin{aligned} & \text { Plant } \\ & \text { Width } \end{aligned}$	Plants Mator	Stand	Vigor	$\begin{gathered} \text { Pl.to } \\ \text { 1.t } \\ \mathrm{Fl} . \\ \hline \end{gathered}$	$\begin{gathered} \text { Pl.to } \\ \text { lst } \\ \text { Mat. } \end{gathered}$	P1.to Com. Mat.	Disease Rating	$\begin{array}{r} \text { Seods } \\ \text { per } 10 \\ \text { poda } \\ \hline \end{array}$	geed Color	$\begin{gathered} 100 \\ \text { seods } \\ \text { Hit. } \\ \hline \end{gathered}$	Yield per Hoctare
12-011-02298	481	220	Isfahan	W	55	66	11	2	2	72	110	130	1	14	W		4780
12-071-02295	479	220	Isfahan	W	54	64	12	2	2	70	109	129	1	14	W	22.2	4614
12-071-02855	1017	170	Ardabil	W	54	69	15	1	1	65	105	130	2	12	LCr	21.7	4516
12-71-03718	1848	162	Shahpour	W	54	64	12	1	1	57	105	133	1	12	Cr	21.1	4484
12-071-02333	1376	111	Varamin	LP	53	71	13			54	100	124	2	14	DCr	28.8	4464
12-071-02339	518	220	Iofahan	W	56	71	10	1	1	64	109	157	2	12	W	18.7	4412
12-071-02469	637	106	Fars	W	47	62	14	1	1	56	105	133	1	13	\checkmark	21.5	4330
12-071-03645	1779	153	Karaj	LP	56	68	13	1	1	62	105	129	1	11	Ler	23.3	4.300
12-071-05470	332	217	Torbat-Haddari	W	53	67	12	1	1	46	100	131	1	15	W	19.7	4152
12-071-03298	1443	111	Varamin	LP	51	66	12.	1	1	53	100	121	1	14	DCr	28.9	4140
12-071-03351	1493	168	Mamaghan	W	45	66	14.	2	1	56	107	132	1	15	W	17.7	4108
12-071-02346	525	241	Ghochan	H	46	70	11	1	1	52	100	129	2	27	W	20.1	4054
12-071-03456	1589	161	Mamaghan	LP	57	67	12	1	1	55	105	128	1	23	Ler	26.8	4042
12-071-01919	86		Karaj sel.	LP	46	59	9	1	1	56	100	128	1	14	W	29.0	4040
12-071-03468	1589	161	Mamaghian	${ }_{\text {LP}}$	47	65	12	1	2	54	100	127	2	13	DCr	22.5	4030
12-071-02569	734	230	Nishabour	W	47	61	14.	1	1	53	95	127	2	16	W	17.2	4026
$12-071-03289$ $12-071-02188$	1435 382	111	Varamin	W	43	66	11	2	2	53	95	132	3	13	Cr	29.1	4004
12-071-02188	382	241	Ohochian	W	53	62	12	2	2	62	105	135	2	14	${ }_{W}$	24.2	3963
12-071-03423	1596	161	Mamaghan	LP	52	64	12	1	1	54	105	128	2	12	LCr	25.5	3860
12-071-02968	1122	169	Ardabil	W	46	63	12	1	1	52	105	134	2	12	LCr	23.4	3852
12-071-03471	1602	161	Managhan	$1 P$	52	71	12	2	1	54	105	121	2	16	DCa	19.9	3848
12-071-05471	310	241	Onochan	W	45	64	13	1	1	46	100	128	$2 \because$	14	${ }_{\mathbf{W}}$	19.9 18.5	3816 3816
12-071-05406	301 1588	111	Isfahan	$\underline{L P}$	50	66	12	1	1	55	105	126	2	13	Cr	25.7	3798
12-071-03455	1588 1395	161	Mamaghan	LP	46	63	11	2	1	55	100	127	1	17	LCr	26.7 26.3	3776
$12-071-03250$ $12-071-03696$	1395 1829	111	Varamin Shahpour	${ }_{L P}$	54	60	12	1	2	57	105	126	2	13	Cr	23.7	3720
12-071-02655	828	162 230	Nhahpour	LP	51	68	13	1	1	56	100	124	2	11	Cr	21.9	3710
12-071-03455	1588	161	Managhan	LP	53	68	13	1	1	. 54	100	130	2	11		18.6	3706 3690
12-071-03062	1207	169	Ardabil	LP	47	67	12	1	1	56	107	123	1	15	LCr	26.4 18.5	3690 3680
12-071-03244	1389	111	Varamin	LP	48	58	13	1	1	54	100	126	2	12	LCr	24.5	3670
12-071-02840	. 1003	170	Ardabil	${ }_{4}{ }_{4}$	54	65	11	2	i	65	105	127	2	13	0	27.1	3602
$12-071-02306$ $12-071-02818$	489 979	220 230	Iafahan	W	54	66	10	2	2	62	109	131	2	15	W	22.1	3600
12-071-02818	979 1451	230 111	Niahabour Varamin	${ }_{\text {LP }}$	43	67	12	2	1	52	95	123	2	16	W	20.2	3554
12-071-071-03295	1441	111	Varamin	LP	52	64	12	1	1	54	100	118	2	15	DCr	27.0	3546
12-071-03300	1445	111	Varamin	LP	52	63	12	1	1.	54		118	0	13	DCr	27.5	3512
12-071-02596	759	230	Nishabour	W	45	69	14	2	2	54 55	95 105	118 129	2 2	13	DCr	28.9 19.1	3416 3396
12-071-02179	374	241	Ghochan	W	45	63	12	1.	2	51	89	127	2	17	W	19.1 20.3	3396 3362
12-071-02185	380	241	Ghechan	W	42	64	13	2	2	50	95	127	2	15	${ }_{\text {W }}$	20.3 29.3	3362 3348
12-071-02650	822	230	Nishabour	W	40	58	12	1	1	54	95	122	2	19	W	18.1	3342
12-071-01921	888	86	Karas	W	49	66	12	2	1	53	95	129	3 :	11	W	28.9	3336
12-071-02300	483 903	220	Isfahan	W	55°	63	10	2	2	73	112	131	2	16	W	23.4	3312
12-071-02734	903 524	182	Shiraz	W	48	64	14	2	2	55	95	125	2	14.	W	21.3	3304
12-071-03005	1156	169	Ardajl1	W	52	72	12	1	1	50	89 105	118	2	16	W	20.5	3252
12-071-03378	1517	168	Mamaghan	W	49	68	12	2	1	52	100	126	2	12		26.7 27.4	3226
12-071-02896	1054	170	Ardabil	W	47	68	13	1	1	55	105	127	2	12		27.4 29.3	3212
12-071-03251	1396	111 V	Varamin	H	45	68	11	2	1	55	100	123	2	17	W	29.3 27.1	3184 2648
12-071-03235	1380	111 V	Varamin	LF	48	64	12	2	15	54	100	117	2	16	Cr	28.1	2632

Table 11 Agronomic Data，Chickpea（Black）Uniform Advanced Yield Test，Planted Apri1 7，1968，RPIP，Ghazvin，Iran

（1）	（2）	（3）	（4）（5）	（5）	（6）	（7）	（8）		（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）	（19）	（20）	（21）
ccession umber		$\begin{aligned} & 0.0 \\ & 0.0 \\ & \text { Og 号 } \\ & 0 \end{aligned}$	SOURCE ${ }^{\text {呞 }}$	$\begin{aligned} & 01 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 淢空 } \\ & \text { 荷 } \end{aligned}$		$\begin{aligned} & \text { 荡 } \\ & \text { 荡 } \end{aligned}$				$\begin{aligned} & \text { +菅 } \\ & \text { - 安 } \end{aligned}$			$\begin{aligned} & \text { s. } \\ & 0 \\ & \hline 0 \\ & \hline 0 \\ & 8 \end{aligned}$			표 ＋ 品		
2－071－05428	417 M	175	Charyeh－Gole	P	34	63	18	2	1	42	86	101	1	12	DCr	16.4	2349	25.32	60	24
2－071－05436	416 N	175	Gharyeh－Gole	P	35	54	19	2	1	41	89	101	1	13	DCr	16.7	2315	25.45	75	26
2－071－05452	419M	175	Charyeh－Gole	P	34	60	18	3	1	41	87	100	1	12	DCr	16.5	2282	26.61	75	22
2－071－05438	401 M	175	Gharyen－Gole	P	34	54	19	2	1	44	86	100	1	12	DCr	15.1	2169	29.45	60	24
2－071－05451	4iOM	175	Gharyeh－Gole	P	34	61	19	2	1	42	87	101	1	13	DCr	16.6	2067	27.58	45	28
2－071－05435	404 M	175	Gharyeh－Gole	P	34	58	20	2	1	42	85	100	1	11	DCr	14.8	1985	26.51	45	26
2－071－04570	2340	139	Kermanshah	P	42	56	19	2	1	40	86	101	1	10	B1	12.6	1979	28.17	45	23
2－071－05433	439M	154	Karaj	P	37	62	19	1	1	40	87	104	1	12	B1	13.7	1970	26.23	45	27
2－071－10054	4111M	171	Ardabil	P	29	46	19	1	1	40	84	103	1	12	B1	14.0	1949	28.55	30	25
2－071－05441	303		Azarshahr	P	34	56	17	2	1	41	88	102	1	11	DCr	13.9	1925	28.92	50	23
2－071－05429	427M	154	Kara，	P	30	54	20	2	1	40	85	103	1	13	B1	12.7	1802	28.93	45	26
2－071－05446	440 M	154	Karaj	P	37	53	18	2	1	41	88	103	1	12	B1	13.1	1771	28.75	60	27
2－071－05130	2862	174	Ahar	P	32	47	20	2	1	40	85	104	1	13	B1	12.6	1744	30：30	45	26
2－071－05132	2864	174	Ahar	P	41	56	17	1	1	43	88	105	1	12	B1	13.4	1736	27.23	75	27
2－071－10052	4197M	174	Ardabil	P	36	49	18	2	1	43	86	102	1	13	B1	12.8	1626	26.60	50	27
2－071－05432	428m	154	Karaj	P	37	57	17	1	1	41	87	105	1	11.	Bl	13.7	1621	29.88	45	27
2－071－10051	387 M	164	Moghan	P	37	52	18	2	1	41	86	102	1	12	BI	13.9	1571	28.20	45	27
2－071－04255	307		Ghazvin	P	36	58	17	2	1	43	89	103	1	13	B1	14.7	1555	28.07	60	25
2－071－05442	231	251514	Iran	P	38	57	17	2	1	42	89	103	1	12.	B1	13.1	1522	27.75	75	26
2－071－04244	305		Ardabil	P	35	48	19	2	1	42	87	103	1	12	B1	15.0	1512	29.41	45	24
2－071－10053	2147	221	Isfahan	P	33	53	18	2	1	41	87	103	1	12	B1	17.3	1508	29.94	45	24
2－071－05093	2829	174	Ahar	P	38	53	17	2	1	43	89	104	1	12	B1	13.3	1479	27.64	75	26
2－071－05301	3016	154	Gharyeh－Gole	P	37	52	17	2	1	44	87.	103	1	13	B1	14.9	1472	30.57	45	27.
12－071－10050	4171M	174	Ardabil	P	36.	51	17	2	1	41	86	102	1	12	B1	13.8	1400	27.82	45	27
12－077－04283	292		Isfahan	P	36	48	18	2	1	41	88	104.	1	12	B1	13.7	1280	28.91	45	2^{4}
$\begin{aligned} & \text { CV } \mathscr{D}= \\ & \text { LSD } .05= \end{aligned}$														12			16 392			

Table 12
Agronomic Data, Chickpea (Black) Uniform Advanced Yield Test, Planted March 12, 1968, RPIP, Varamin, ITan

Table 14 Black chickpea Uniform Advanced Yleld Test, RPIP 1968

Table 16 Agronomic Data, Chickpea (White) Advanced Yield Test II, Planted March 12, 1968, RPIP, Varamin, Iran

(1)	(2)	3)	(4)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(17)	(18)	(19)	(20)	(21)
Accession Number	Strain Number	Source Number	SOURCE	Plant Height	Plant Width	Plants Meter	Stand	Vigor	$\begin{aligned} & \text { Pl.to } \\ & \text { list } \\ & \text { FI. } \end{aligned}$	Pl.to lst -Mat.	Pl.to Com. Mat.	Disease Rating	$\begin{aligned} & 100 \\ & \text { Seeds } \end{aligned}$ Wt.	```Yield per Hectare```	Protein	$\begin{gathered} \text { Cook- } \\ \text { tng } \\ \text { Time } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Palata- } \\ & \text { bility } \end{aligned}$
12-071-03468	1599	161	Mamaghan	51	67	8	1	1	68	110	135	1	21.0	4437	20.66	285	23 ?
12-071-05470	332	217	Torbat-Haidari	54	69	7	2	1	64	110	135	2	22.0	4039	20.79	260	25
12-071-10025	2407	111	Isfahan	50	73	6	1	1	58	110	135	1	28.0	3969	20.25	170	27
12-071-10031	3389	169	Ardabil	56	73	7	1	1	64	109	134	1	27.0	3670	22.61'	275	26
12-071-03116	1265	169	Ardabil	53	73	7	1	1		108	133	1	23.0	3595	21.32	285	22
12-071-10026	3063	162	Shahpour	46	61	7	1	1	62	107	132	1	25.0	3587	21.87	260	24
12-071-10032	2763	152	Karaj	42	65	7	1	1	63	107	131	2	30.0	3530	20.68	240	27
12-071-10019	2604	1006	Fars	42	61	7	1	1.	66	107	133	2	10.0	3486	21.48	255	23
12-071-10018	2647	106	Fars	36	55	6	1	1	65	105	133	2	16.0	3461	21.69	310	25
12-071-10028	2618	106	Fars	43	61	7	11	1	66	108	133	2	17.0	3453	22.50	240	25
12-071-10035	2818	± 53	Karaj	46	53	6	1	1	65	107	133	2	29.0	3413	21.56	260	26
12-071-10027	2606	106	Fars	42	64	8	1.	1	64	107	133	2	18.0	3392	23.32	275	25
12-071-10034	2753	153	Karaj	45	70	6	1	1	63	106	132	2	34.0	3388	20.94	260	25
12-071-02274	460	220	Isfahan	51	73	8	1	1		109	131	1	20.0	3379	22.27	285	25
12-071-10033	2433	111	Isfahan	41.	63	7	1	1	63	106	132	2	35.0	3361	20.24	200	26
12-071-01980	161	302	Ghazvin	49	62	7	1	1		107	130	2	27.0	3255	20.95	270	
12-071-10020	3463	169	Ardabil	48	64	7	1	1	65	108	136	2	26.0	3246	21.74	215	27
12-071-10030	2587	106	Fars	39	64	8	1	2	66	106	130	2	16.0	3122	23.69	225	26
12-071-10021	2610	106	Fars	38	64	8	1	1	64	107	131	2	15.0	3113	22.18	360	24
12-071-10023	2566	106	Fars	40	60	7	1	1	65	102	131	2	19.0	3101	21.84	255	22
12-071-02275	461	220	Isfahan	45	66	7	1	1		111	130	1	24.0	3069	21.21	270	26
12-071-05471	310	241	Ghochan	39	69	6	1	1	60	107	130	1	18.0	3043	21.81	260	27
12-061-10024	2609	106	Fars	41	61	7	1	1	65	106	133	2	16.0	3003	21.77	255	24
12-071-10022	2608	106	Fars	38	55	6	1	1	65	107	133	2	16.0	3001	21.46	255	
12-071-10029	2702	152	Karaj	41	61	7	1	1	61	105	132	2	28.0	2967	20.88	225	21%
$\begin{aligned} & C V \mathscr{D}= \\ & \text { LSD } .05= \end{aligned}$														$\begin{array}{r} 18 \\ 880 \end{array}$			

（i）	（e）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	10）	（11）	（12）	（13）	14）	（15）	（16）	（18）	（19）	（20）	（21）
Acoession				$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 10 \end{aligned}$	$\begin{gathered} \text { 官点 } \\ \text { 云 } \end{gathered}$	揑点	$\begin{aligned} & 4 \\ & 6 \\ & 4 \\ & 4 \end{aligned}$		$\underset{8}{8}$	$\begin{aligned} & 8 \dot{4} \\ & \text { 淢 } \end{aligned}$	$\begin{aligned} & 9^{\frac{4}{4}} \\ & \mathrm{H}^{4} \\ & \hline \end{aligned}$	$\begin{gathered} 9^{8} \\ 48 \\ 4 \\ 4 \end{gathered}$		$\begin{aligned} & 6 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \frac{6}{8} \\ & 0 \\ & \hline \end{aligned}$		E $\$$ $\$$		
Number											104	130	1	13	W	3925	21.84	115	19
12－071－03468	1599	161	Mamaghan	W	46	58 54	12	1	1	57 57	108	136	1	11	W	3664	21.49	85	20
12－071－03116	1265	169	Ardabil	W	46	54 59	12	1	1	57	105	134	2	16	H	3397	21.35	115	24
12－071－10018	2647M	106	Pars	W	40	69	13	1	1	54	105	231	2	17	W	3351	22.98	233	21
12－071－10019	2604 M	106	Ears	W	54	60	12	2	2	75	108	132	2	13	W	3343	23.55	85	23
12－071－02275	461 332	220	Isfahan	W	45	58	21	2	2	55	108	135	2	13	W	3270	23.58	110	23
12－071－05470	332 460	217	Torbat－Haidari Iofahan	W	45 50	63	12	2	1	69	110	133	1	14	W	3250	23.56	85	23
$12-071-02274$ $12-071-10020$	460 3463 N	220	Iofahan	W	50 52	60	12	1	1	53	105	141	2	11	W	3247	26.10	110	23
12－071－10020	3463 N 2610 N	169	Ardabll	W	41	61	14.	1	2	52	104	126	2	15	H	3142	23.42	115	26
12－071－10021	$2610{ }^{161}$	302	Ohazvin	N	46	59	12	1	1	54	97	126	2	13	W	3019	22.31	85	23
$12-071-01980$ $12-071-10022$	161	302 106	Onazs	W	43	59	15	1	1	53	104	125	2	16	W	3016	22.40	178	23
12－071－10022	2608 $2566 \pm$	106	Pars	W	37	54	13	2	1	53	103	124	1	15	N	2975	22：11	140	21
12－071－10023	2560N	106	Fars	W	38	57	14	1	1	52	100	124	2	16	W	2969	22.07	138	22
12－072－10024	2609 m 310	106	Yars Ohochan	W	39	58	12	1	1	50	102	125	2	17	W	2872	23.10	113	26
12－071－05471	310 $2407 M$	241	Iafohan	W	50	64	12	2	2	55	103	129	2	16	H	2725	21.85	115	23
12－071－10025	24063M	162	Iafahan Shahpour	W	49	62	12	2	1	54	103	125	3	12	W	2715	21.25	110	22
12－071－10026	30634 26064	106	Pars	W	40	56	12	1	2	54	100	132	2	14	W	2696	23.12	138	34
12－071－10027	26064 26184	106 106	Fars Pars	W	49	51	16	1	2	54	107	230	1	18	W	2663	22.14	115	26
$12-071-10028$ $12-071-10029$	26102M	152	Karas	W	52	58	13	1	1	53	97	120	2	15	W	2639	22.98	128	26
$12-071-10029$ $12-071-10030$	27034	152	Kars	W	38	56	12	2	2	55	103	124	2	17	W	2629	23.74	138	24
12－071－10030	25889	169	Ardabil	W	51	59	11	2	1	54.	103	125	2	12	W	2405	22.89	110	23
12－071－10031	3789M	159	Karaj	W	47	58	11	2	1.	53	103	120	2	13	W	2234	22.88	103	22
12－071－10032	2763M	152 111	KaraJ Iafahan	W	42	57	21	1	1	54	100	117	2	13	W	2198	23.56	103	23
12－071－10033	24334	153	Itrahan Karaj	W	42	58	12	2	2	56	103	121	3	25	W	2081	22.89	90	22
12－07－10034	2753 28184	253 153	Karaj Karaj	W	46	61	11	2	1	54	103	175	3	13	N	2052	22.82	95	26
$\begin{aligned} & 12-071-10035 \\ & \text { CV \& }= \end{aligned}$	28184	153	Karaj	ω												${ }_{0}^{21}$			
LSD ． 05 ＝																			

Table 18 White Chiokpea Advanoed Yield Test II，＂ 1969.

Yield Kg．Por Heotare

Acoesalion Number	Soutco and Souroe Number	Varamin	Isfahan	ghiraz	Menhed	Rezaleh	Hamedem	Zobol
12－071－10029	Karaj 152	2966	1175	1980	3262	625	705	483
12－071－10030	Fars 106	3121	1700	1932	3510	1512	507	478
12－071－10023	Fars 106	3101	7600	192	3880	1400	623	876
12－071－10019	Pars 106	3486	1325	1807	3777	1350	486	633
12－071－10024	Fars 106	3002	1575	2172	3652	1325	557	474
12－071－10022．	Fars 106	3001	1612	1962	3793	1612	530	349
12－071－10027	Fars 106	3391	812	2322	3652	1587	481	704
12－071－10028	Fars 106	3453	1512	1971	3947	1662	462	629
12－071－10018	Fars 106	3461	1725	1822	3757	1450	398	556
12－071－10021	Para 106	3112	1375	1812	3325	1512	473	884
12－071－10020	Ardabil 169	3145		1940	3282	1387	326	598
12－071－10031	Ardabil 169	3669		1230	3652	1003	692	592
12－071－10032	Karas 152	3529		2200	3747	1125	632	518
12－071－10025	Iafahan 111	3968		2117	4017	1162	531	602
12－071－10026	Shahpour 162	3587		2135	3555	745	611	363
12－071－1003	Karaj 153	3388		1758	3475	1450	530	862
12－071－10033	Iefahan 111	3360		． 1698	3422	1237	541	634
12－071－10035	Karaj 153	3413		2021	3480	1212	512	723
12－071－05470	Torbat－Haidari 217	4038		2017	2680	1725	461	880
12－071－05471	Onochan 241	3043		． 1545	3127	1712	522	941

Table 19, Agronomic Data, Chickpea (White) Uniform Advanced Yield Test, Planted April 7, 1968, RPIP, Ghazvin, If

Table 20 , Agronome Data, Cickpee (White) Uniform Advanced Yield Test, Planted March 12, 1968, RPIP, Varamin, Iran

（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）		10）	（11）	（12）	（13）	（14）	（15）	（17）	（28）	（19）	（20）	（21）
Aocestion Number			80 URCE	$\begin{aligned} & \text { 告告 } \\ & \text { R } \end{aligned}$	$\begin{aligned} & \text { 蔮苛 } \\ & \text { 品 } \end{aligned}$	荷告	$\begin{aligned} & 48 \\ & \text { 等 } \\ & \text { De } \end{aligned}$	$\begin{aligned} & \text { 曹 } \\ & \text { 荡 } \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 5 \end{aligned}$						$\begin{aligned} & \text { 最 } \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & \hline-1 \\ & \hline \end{aligned}$		5 5	$\begin{aligned} & \text { 吡 } \\ & \text { 名皆 } \end{aligned}$	
$12-071-05475$ $12-071-00453$	3134	161	Moghan	LP	52	59	14	1	1	55	106	136	1						
12－071－05453	3204	170	Andabil	LP	57	59	14	1	1	53	102	139	1	11	22.3	4500	22.32	94	23
12．071－05460	3024	129	Moghar	LP	55	65	23	1	1	52	102	122	1	12	5	4297	22.80	114	19
12－071－05457	3404	170	Ardabil	LP	60	60	18	2	1	60	106	134	1	12	27.5	4243	20.29	143	17
$12-039-05462$ $12-071-03662$	331	32	Cyprus	LP	54	57	13	2	1	55	105	123	1	13	28.9 28.3	4198	21.49	156	22
12－071－03662	1796 1649	162	Shahpour	LF	50	62	19	2	1	57	102	131	2	11	24.1	4345	20.40	113	20
12－071－05469	3224	169	Ardabil	$\mathrm{LP}_{\text {LP }}$	50	${ }_{56}^{65}$	18	2	1	50	102	125	1	15	20.1	3907	23.31 21.67	94 86	23 19
12－071－05476	312M	153	Karaj	W	48	66	13	1	1	58	105	126	1	12	22.6	3901	22.92	116	18
12－071－02446	617	106	Para	1 L	45	56	20	2	1	51	99	129	1	17	18.7	3777	22.49	123	26
12－071－05472	3471		Karaj	LP	50	66	16	1	1	54 54	102	131	2	15	19.5	3769	23.12	95	24
12－071－05471	310	241	Ghoahan	W	45	58	16	1	1	48	105	132	2	12	27.6	3763	22.25	86	21
12－071－0c276	462	220	Istahan	H	57	64	15	1	1	63	102	122	1	17	19.7	3514	23.09	90	22
12－071－05468	3		Karaj solection	W	47	61	16	1	1	63 50	110	143	1	15	21.1	3416	24.60	95	23
12－071－03243	13884	111	Varamin	LP	52	65	16	1	1	52	102	134	2	13	29.1	3276	22.01	105	23
12－071－10013	2517M	129	Moghan	W	48	70	12	2	2	49.	108	118	2	12	26.4	3193	22.13	93	18
12－071－05466	18		Karas peleotion	W	48	68	13	2	1	49°	102	126	2	11	34.3	3119	22． 77	98	23
12－071－10014	31631	162	Shahpour	W	51	60	11	2	1	51	102 99	132	2	11	33.3	3006	22.98	127	25
12－071－10015	2504M	129	Moghar	W	52	56	13	2	1	53	99 102	120	3	12	32.3	2959	23.44	93	23
12－071－05456	34		Karas selection	W	47	59	13.	2	2	49	102	121	3	10	33.4	2820	22.80	100	25
12－071－05473	225	249988	Iran	W	51	68	11	2	2	49 52	97 105	125	3	13	27.5	2813	22.50	83	23
12－071－10016	2524 M	129	Moghan	W	47	59	11	2	2	52	105 100	127	1	14	33.4	2609	22.55	83	23
12－071－02089	261	254	Karaj seleotion	W	56	66	15	2	2	49 52	100 99	124	2	11	33.6	2470	23.94	100	24
12－071－02518	682	232	Darehgaz	W	． 46	55	12	2	1	54	998．	127	3	11	36.3	2142	22.53	90	23
12－071－10017	2407M	111	Isfahan	W	－ 56	59	10	2	1	54	108．	122 126	2	14	32.7	2009	24.02	75	23
$\begin{aligned} & \text { CV } 8 \\ & \text { LSD } .05 \cdot \mathrm{~m} \end{aligned}$			Iarahan		5	59	10	2	1	54	102	126	3	11	45.3	$\begin{array}{r} 1881 \\ 20 \end{array}$	22.94	83	22

Tabla 22．White Chickpen Uniform Advinoed YLeld Test，HPIP； 1968

Yield Kf，Por Heotare

Aocession Number	8ource and Source Number	Varemin	Iatahan	Bhiraz	Meshod	Rozaloh	Hemadem	Zabol
12－071－03662	Shahpour 162	3168	1462	1548				
12－071－03515	Karaj 152	3298	1912	1548 1909	3662	871	801	189
12－071－05472	Karal	3058	2268	1909 1915	2856	1351	1042	159
12－071－05475	Moghan 161	3139	2037	1915	3893 2576	1057	726	226
12－071－05469	Ardabil 169	3123	2062	1981	2576 2773	1187	696	163
12－071－05476	Krasaj 153	－3080	2012	1309	2773 2760	1237	547	203
12－071－05460	Moghan 129	3421	2612	1915	3105	325	965	193
12－071－05457	Ardabll 170	3741	1985	1632	3105	725	958	198
12－039－05462	Cyprus 30	3203	2200	2049	3028	725	715	171
12－071－05471	Ohochan 241	3425	1337	1467	3107	1025	903	208
12－071－05456	Karaj seleotion	2616	1400	1606	2107	687.	586	220
12－071－05468	Karaj selection	3015	2025	1617	2715	172	606	175
12－071－05453	Ardabil 170	3875.	2025	2144	270	407	87	180
12－071－05466	Karas zelection	2935	2350	2144	3220	1262	945	195
12－071－05473	Iran 249982	2611	2000	1284	2427	562	666	196
12－071－10016	Moghan 129	3014	1387	1547	2473 3125	400	877	175
12－071－10013	Moghan 129	3033	1487	1660	3125 2162		790	209
12－071－10015	Moghan 129	2989	1725	1912	2162		776	183
12－07？－10017	Icfahan 112	2520	1450	1943	3187		796	282 180

（1）	（2）	（3）	（4）（5）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）		（15）	（16）	（17）	（18）	（19）	（20）	（21）
Accession Number			SOURCE			$\begin{aligned} & \text { 䔍気 } \\ & \hline \end{aligned}$		$\begin{array}{r} \mathbf{5} \\ \text { 品 } \\ \hline \end{array}$	$\begin{aligned} & \text { 䓓 } \\ & \hline \end{aligned}$				鹖范		$\begin{aligned} & \text { ت } \\ & \text { 告 } \\ & \hline \end{aligned}$			¢ ¢ \％		丳志
12－071－05475	313		Moghari，Iran	LP	43	60	22	1	1	57	94	105	1	12	LCT	22.3	4270	24.34	225	27
12－071－05465	335		Ardabll，Iran	LP	45	68	21	1	1	56	93	107	1	12	＊	27.3	4148	23.64	195	24
12－074－10008		319	Israel	N	39	58	22	1	2	42	90	104	1	12	W	24.9	3910	23.31	215	26
12－071－05472	347		Karaj，Iran	N	43	54	23	1	1	57	93	105	1	13	$\stackrel{H}{*}$	26.5	3754	22.32	225	23
12－074－10011		CP	Israbl	W	47	64	19	3	1	53	94.	110	1	12	W	48.8	3432	23.21	210	24
12－113－10006		c 727	Pakdatin	p	35	55	26	1	1	56	89	102	1	11	Br	28.4	3252	22.64	225	24
12－074－10009		CP 42	Israel	W	49	64	17	3	1	54	93	107	1	12	W	52.7	3170	24.26	215	26
12－079－10004			Jordan	W	40	59	19	3	1	49	90	107	2	13	W	47.1	3132	23.57	225	25
12－074－10012		CP 43	Istael	W	46	61	20	2	1	51	9	107	1	12	H	48.3	3128	23.57	220	24
22－155－10001		F1	U：A．R．	N	38	49°	23	1	1	39	87	107	1	13	W	13.1	3116	21.02	195	25.
12－155－10002		012 za	U．A．Ri－	N	40	52	22	1	1	41	87	：03	1	13	${ }^{*}$	34.7	3034	23.19	190	29
12－113－10007		c 612	Pakdstan	LP	29	42	26	1	1	45	85	102	1	12	${ }^{\text {cr }}$	14.5	3002	24.02	225	25
12－074－10010		I 13	Israel	LP	44	53	21	2	1	66	93	107	1	13	B1	26.2	2804	23.89	215	27
12－113－10005		Punjab	－Pakistan	W	33	48	20	2	1	50	90	103	1	12		22.8	2862	23.38	225	25
$\begin{aligned} & 12-155-10003 \\ & \operatorname{cr} x= \end{aligned}$		P13	D．A．R．	W	37	55	19	1	2	40.	88	105	2	12	W	21.5	$\begin{array}{r} 2660 \\ 22 \\ \hline \end{array}$	23.13	190	29
LSD ． $05-$																	536			

Table 24 Agroporic Data，Chickpea International Yleld Tent，Planted Appil 3，1968，RPIP，Karaj，Iran

(1) Numbers assigned to collection maintained by the Regional Pulse Improvement Project.
(2) Indicates variety name or area of origin. Numbers are numbers assigned to populations or collection by the Iranian Ministry of Agriculture; 6-digit numbers are PI numbers from Crops Research Division, ARS, U.S. Department. of Agriculture, Beltsville, Maryland, U.S.A.
(3) $\quad W=$ thite; $\quad P=$ Purple; LP $=$ Light Purple
(4) $\quad V=$ Viney; $B=$ Bushy
(5). Average number of plants per meter based on one meter of row per replication.
(6). Rated 1 to 9: 1 = complete stand; 9 - poor stand
(7) Rated 1 to 9: 1 a vigorous plants; 9 = weak plants
(8) Days from planting to fizst opened flower.
(9) Indicates number of days after planting the first pod in plot reached full maturity, ready for harvest.
(10) Indicates number of days after planting the whole plot was ready for harvest.
(11) Disease rated 1 to $9: 1=$ free from disease; 9 = severe disease symptoms.
(12) First column: $C=$ Curved; $S=$ Straight

Second column: C - Cylindrical; F E Flat
(13) $S=$ Short; $M=$ Medium; $L=$ Long; VL $=$ Very Long
(14) Average of 10 pods per replication.
(15) $W=$ White; $C r=$ Cream; $E=$ Red; $P=$ Purple; Br = Brown; PL-PLak; $Y=$ Yellow; $B 1=$ Black; $M=$ Mottled; S - Spotted; L Light; D-Dark.:
(16) $\quad C=$ Cylindrical; $F=$ Flat; $P=$ Plump
(17), Average weight (grams) of 100 seeds.
(18) Yield in kilograms per hectare based on 5 or 10 square meter plots.
(19) Protein percentage based on total solids. Determined by Kjeldahl method on two samples per strain, duplicate determinations per sample.
(20) Cooking time (in minutes) determined by boiling 50 gram sample in 500 ml. of water, 2 grams Na Cl added and checked regularly for hardness.
(21) Palatability, Maximum rating - 30. Appearance, maximum 9

Color uniformity, 3, 2, 1, 0 Size uniformity, 3, 2, 1, 0 Cooking uniformity, 3, 2, 1,0
Smell, maximum 6 Taste, maximum 15

Rable 26, Agronomio Data, Beana (Rod) Proliminary X1eld Teot, Manted May 21, 1968, RPIP, Karay, Iran

conted...日

Table 26. Agronomic Data, Beans (Red) Preliminary Yleld Test, Planted May 21, 1968, RPIP, Karaj, Iran

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Accession Number	SOURCEE	Flower Color	$\begin{aligned} & \text { Plant } \\ & \text { Type } \\ & \hline \end{aligned}$	Plants Meter	Stand	Vigor	$\begin{aligned} & \text { Pl.to } \\ & \text { list } \\ & \text { MI. } \end{aligned}$	$\begin{aligned} & \text { Pl.to } \\ & \text { lst } \\ & \text { Mat. } \end{aligned}$	$\begin{aligned} & \text { Pl.to } \\ & \text { com. } \\ & \text { Mat. } \end{aligned}$	Disease Rating	$\begin{gathered} \text { Pod } \\ \text { Shape } \end{gathered}$	$\begin{aligned} & \text { Pod } \\ & \text { Size } \end{aligned}$	Seeds per Po3	$\begin{aligned} & \text { Seed } \\ & \text { Color } \\ & \hline \end{aligned}$	Seed Shape	$\begin{gathered} 100 \\ \text { Seed } \\ \text { Weight } \\ \hline \end{gathered}$	$\begin{gathered} \text { Yeld } \\ \text { per } \\ \text { Hectare } \end{gathered}$
65-071-00475	Kermanshah	W	V	17	1	2	42	78	104	3	CF	M	6.	Y	c	28.2	2634
65-071-01031	Iran 2e2,821	W	\checkmark	16	1	2	55	91	121	2	CF	1	6	R	F	24.7	2618
65-071-00582	Isfahan 50	W	v	19	1	2	44	82	112	2	CF	M	5	P	F	25.3	2600
65-071-00710	Kermanshah	W	v	18	1	1	41	72	104	3	CF	M	5	LR	C	32.5	2590
65-071-00723	Darehgaz	W	v	18	1	1	48	86	117	2	CF	M	6	R	c	16.3	2586
65-071-00753	Darehgaz	W	v	19	1	3	49.	87	117	2	CF	\underline{L}	5	P	c	20.9	2574
65-071-00712	Darehgaz	W	V	16	1	2	49	88	119	2	CF	L	6	${ }^{\mathrm{R}}$	C	20.4	2560
65-085-00100	Lebanon M. 139	W	v	17	1	1	41	74	101	3	CF	M	6	IR	C	29.5	2548
65-071-00399	Fars	W	v	16	1	2	43	76	105	2	CF	M	5	LR	c	30.8	2546
65-071-00483	Ghouchan	W	V	17	1	1	41	78	107	2	CF	M	5	LY	F	29.8	2544
65-062-00928	Guatorala 195,364	$L \mathrm{LP}$	\checkmark	13	2	1	40	83	111	1	CF	L	6	DP	c	32.2	2526
65-071-00394	Nishabour	W	V	19	1	1	48	88	120	2	CF	L	6	R	c	23.6	2520
65-071-00504	Kermanshah	W	V	18	1	1	42	74	102	3	CF	M	5	k	c	34.3	2504
65-071-00472	Dashtsar Amol	P	v	18	1	2	42	81	111	3	CF	S	5	LCr	c	27.0	2472
65-071-00702	Torbat Heidarie	W	V	18	1	2	45	82	107	3	CF	M	5	R	c	30.6	2454
65-153-01371	Turisey	W	v	14	2	1	46	86	115	2	CF	1	5	Br	F	29.4	2428
65-071-00741	Griouchan	W	v	17	1	2	48	83	116	3	Cr-CC	M	5	R	C	22.4	2348
65-153-02122	Turke	W	V	17	1	1	54	88	119	2	CF	\underline{L}	5	R	F	25.2	2332
65-062-01734	Guatemala 194,578	\mathbf{P}	v	17	1	3	48	87	120	2	SC	M	6	B1	c	19.8	2322
65-085-00440	Lebanon	W	V	16	1	2	48	85	117	2	CF	M	5	R	F	26.3	2316
65-153-01390	Turiey	W	V	17	1	2	46	84	117	3	CF	M	5	R	c	29.8	2306
65-071-00700	Darehgaz	W	V	17	1	2	56	92	119	2	CF	I	6	R	F	19.9	2276
65-096-00967	Mexico 196,936	1	B	16	1	2	52	87	119	2	SC	M	6	Y	C	19.5	2272
65-071-00751	Darehgaz	W	V	20	1	2	50	87	117	2	CF	M	6	LR	C	17.7	2272
65-157-00075	California	W	V	17	1	1	48	85	117	2	CF	M	6	DR	C	25.2	2270
65-118-00923	Peru 217,624	P	B	18	1	3	52	89	119	2	CC	\pm	6	LCr	F	14.8	2268
65-071-00750	Nishabour	W	v	18	1	2	44	84	117	2	CF	$\underline{5}$	6	Pi^{1}	C	19.2	2242
65-153-02201	Turkey	W	v	16	1	2	54	93	114	2	CF	\underline{r}	7	Br	F	31.7	2196
65-146-01571	Syria 181,953	W	-	16	1	2	. 46	84	109	1	${ }_{\text {S }} \mathrm{F}$	M	5	LCr		23.4 19.4	2150 2144
65-065-00887	Chalous ${ }^{\text {Hondur }}$ 206,222	$\stackrel{W}{W}$			$\frac{1}{2}$		- 42	89	127	$\frac{1}{3}$	${ }_{\text {cF }}$	L	6	R	${ }_{C}^{C}$	17.8	$1{ }^{1} 181$
65-146-02385	Syria 181,920	W	B	10	2	2	51	92	119	2	CF	I	5	Y	C	27.2	1846
65-157-00589	U.S.A. Red Kidney	W	B	9	2	1	43	79	110	3	CF	1	6	R	P	42.0	1604 20
LSD . $05=$																	387

Table 2
77．Aproncmio Data，Bean（Mate）Preliminary yield Te
（1）
（2）
（3）
（4）
（5）
（6）（7）
（8）
（9）
（10）
（1）
（12）
（13）（14）
（15）
（16）（1）
17）
（18）
Acosenjio
Mumber．
， $\begin{array}{cc}\text { GOURCE } & \text { Flowier Plant Planta } \\ \text { Color Type Moter St }\end{array}$ P1．to P1．to PL．ts

Disease Pod Pod Seeds Sped Seed Beeds
Color Ghape $65-071-00512$
$65-01-0065$
$65-0011-06677$
$65-071$
Iran
Itotahan
Rermanah
Ren

\mathbf{W}	V	27	2	2

$65-911-00314$
$65-7100621$
$65-153-01286$
$65-071-00335$
65071 $65-071-00335$
$65-0120565$ $65-011-00675$
$65-071-00628$ $65-011-00666$
$65-055-00688$
$65-085-00645$ $65-085-00668$
$65-055-00645$
$65-071100640$ $65-071-00640$
$65-153-01368$ $65-071-0.062$,
$65-071-00650$ $65-711000650$
$65-071-00643$
$65-071-0664$ $65-0711-00649$
$65-071-0069$ $65-07110069$ $65-071100663$
$65085-0690$
$65-153-01344$ $65-153-01344$
$65-01$ $65-151-02023$
$65-071-00692$ 65－0711－00699 $65-911-00093$
$65-01-0667$ $65-011-00662$
$65-027-01584$
6 65－027－01584 $65-01-00674$ 65－071－00667 $65-153-02186$
$65-153-02213$ $65-085-00646$ $65-011$－00655 $65-071-00672$
$65-153-01416$ $65-153-10146$
$65-71-00625$
6 $65-0057-00689$
$65-157-00081$ 655－071－00671 65－071－00669？ $65-071-00669$
$65-7100636$
$65-010065$ $65-711000654$
$65-153-02030$ $65-153-02030$
$65-01-00684$ 65－071－00661 $65-071-00104$
$65-071-00638$ $65-071-00038$
$65-085-00686$
$65-011$ 65－011－00042 65－153－00190 65－711－00660 $65-011.00069$
$65-005-00418$ $65-071-00069$
$65-071-00685$ $65-071-00685$
$65-153-02435$ $65-071-00651$ $65-085-0066_{7}$ $65-011-00681$ 65－157－01188 $65-153-02007$ $65-153-01368$

Karamin

Karay
Turkey
Varamin Min． 388

Infaha
Karaj
Karaj
Darehgaz
Lebanon
Shiraz
Shiraz
Turkey
hiaraj
Iran
Shiraz
Shiraz
Iran
Isfahan
Shiraz
Lebanon
Lebanon
Turkey

Shiraz
 Karaj

Kara
Iran
Fara
Fara
Karaj
Karaj
Canada 136，680 Sal．
Turkey
Karaj
Shiraz
Turkey
Lurkey
Lebanon
Infahan
Karaj
Karaj
Turkey
Kuraj
Lebanon
Karaj
Chouchan
Isfahan
Turkey
Shiraz
Shiraz
Ghouchan

Lebanon
Shiraz
Shiraz
Turkoy 16
Ohouchan
Ghouchan
U．S．A．C．
Lebanon
Kermanshe
Shiraz
Turkey
Isfahan
Itrahan
Lebanon
Karas
Shiraz
U．S，A． 278,685
Turkey
Turkey
$\xrightarrow{23}$

 8亿 HEHz

401
378
378
373

4014
3784
3780 3738
3560
3474 3474
3466 3428
3412 3404
3398
3398 3398
3384
3366 3366
3366
3362 3316
3314
3290 3274
3270

 32483242
3242 3226
3222
3214 ．遙晾 3098
3090
3088
3036
3080
3074
3072
3068
3032
3022
3012
3010
2996
2996
2994
2974
2960
2950
2938
2936
2932
2926
2916
2916
2884
2874

Table 27., Agronomic Data, Beans (White) Preliminary Yield Test, Planted May 21, 1968, RPIP, Kara3, Iran
(1)
(2)
(3)
(4)
(5)
(6)
(6) (7)
(8)
(9) Pl. to Pl. to Pl. to
Flower. Plant Plants Accession
Number $\frac{\text { Number }}{65-071-00021}$ 65-071-00657 65-071-00212 65-071-00639 65-071-00495 65-071-00663 65-071-00633 65-046-01906 65-071-00664 65-071-00682 65-071-00682 65-071-00676 65-069-02370 65-071-00653 65-032-00814 65-071-00693 65-071-01014 65-071-00272 65-062-01742 65-153-01471 65-071-00698 65-071-00670 65-071-00371 65-069-02331 65-153-02030 65-157-00010 65-153-02283 85-118-01046 65-153-01330 65-153-01330

65-069-01509 CV $4=$
LSD . 05 :

Table 29. Agronomio Data, Boand (Pinto) Dai ronm Advanood Yield Test, Planted May 21, 1968; RPIP, Karaj, Iran

Table 30. Agronowic Data, Beans (Red) Advanced Yield Test, Flanted April 13, 1968, APIP, Varamin, Iran

)	(2)	(3)	(5)	(6)	(7)	(14)	(17)	(18)	(19)	(20)	(21)
Accession		Flower	Plants								
Number	SOURCE	Color	Mater	Stand	Vigor			per Hectare		Cooking	
65-071-00569	Nishabour	W	8	1	1				Protein	Time.	Palatabillty
65-071-00744	Torbat Helderie	W	8	2	2	6	20	2471	21.20	220	26
65-071-00565	Dashtsar Amol	H	10	1	1	6	23	2256	21.14	220	25
65-071-0207i	Fars 104	W	10	2	1	6	20	2116	22.13	210	27
65-071-00735	N1shabour	W	9	1	1	5	120	2070.	23.77	180	28
65-071-00389	Ghochan	W	9	1	1	6	19	2067	21.76	180	26
65-071-00749	Nishabour	W	11.	2	$\frac{1}{3}$	5	18	1969	22.56	195	24
65-071-00431	Iran	W	9	2	3	5	16	1906	$25=12$	180	28
65-071-00540	Dashtsar	W	10	1	2		22	1843	20.17	195	26
65-071-0707	Darehgaz	W	11	1	1	5	19	1813	22.72	195	25
65-071-00731	Nishabour	W	10	2	2		11	1812	21.74	195	29
65-071-00538	Darehgaz	W	10	3	2	5	23 16	1795	21.74	220	26
65-071-00582	Isfahan	W	10	3	2	5	16	1773	21.99	220	25
65-071-00551	Isfahan	W	10	2	3	6	20	1763	20.41	135	25.
65-071-01997	Torbat Heidarle	$\underset{W}{W}$	10	3	3	5	22 20	1730 1729	19.51 22.34	195	25
$65-071-00535$ $65-085-00440$	Torbat Heidarie	W	9	2	1	5	20	1729 1695	22.34 22.58	220	26.
$65-085-00440$ $65-085-01999$	Lebanon 132	W	20	3	3	5	20	1674	22.38	195	27 26
65-071-02074	Iran 119	W	8		3	5	26	1656	21.62	180	27
65-085-02051	Lebanon 132	W	10	3	3		25	1641	20.07	190	-28
65-071-00534	Torbat Heidarie	W	9	3	3		24	1632	20.47	195	26
65-071-00430	Iran	W	9	3	3	5	24	1623	20.98	185	26
65-071-00566	Isfahan	W	9	4	3			1597	21.60	210	27
65-071-00539	Nishabour	W	10	1	3	5		1589	21.88	210	25
65-071-00580	Darehgaz	W	13	1	1	5	15	1570	24.85	195	26
65-071-00481	Ghochan	W	9	3	$\frac{1}{3}$	5	19	1523	22.18	195	23
65-085-02075	Lebanon	W	9	3	2	6	17 21	1511 1465	21.99	180	26.
65-071-00536	Torbat Heidame	H	8	2	2		18	1465	21.50	180	27.
65-071-00563	Nishabour	W			1		18	1439 1174	21.43 25.29	210	
65-071-02076 CV	Iran	W	8	4	3	5	18 26	1174 1146	25.29 20.35	195	24
LSDD $.05=$								27		195	27
		\bigcirc	\%					654			

Table 31．Agronomle Data，Beans（Red）Uniform Advanced Yield Test，Planted May 21，1968，RPIP，Karaj，Iran

（1）	（2）	（3）	（4）	（5）		（7）	（8）	（9）	(10)	（11）	（12）	（13）		（15）	（16）	（17）	（18）	（19）	（20）	（21）
Accession Number	SOURCE	官	ay	品要	$\begin{aligned} & \mathbf{3} \\ & \hline \end{aligned}$	$\stackrel{9}{5}$	戸̈	-广葆	菏		品洔	BM						$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\circ}{\circ} \end{aligned}$		－${ }_{\text {¢ }}^{\text {¢ }}$
65－071－00538	Dareghaz	＊	v	15	1	1	54	91	120	2	CF	L	6	R	C	26.5	4188	23.32	150	24
65－071－00735	Nishabour	W	v	15	1	1	55	85	117	2	CF	1	6	P	c	29.5	4124	23.10	180	24
65－071－00535	Torbat Heidarle	W	V	17	1	1	5	89	118	2	CF	1	6	R	c	27.7	4056	22.13	135	24
65－071－00707	Darehgaz	W	∇	13		1	54	90	119	2	CF	M	5	R	c	25.1	3970	23.47	180	22
65－071－00569	Nishabour	W	$\stackrel{\rightharpoonup}{v}$	15	2	1	54	91	119		CF	1	5	R	c	27.2	3959	23.30	120	24
65－071－00580	Darehgaz	W	V	15	2	1	50	89	117	3	cr	M	5	R	c	26.8	3876	22.98	150	25
65－071－00539	Nishabour	W	V	17	1	1	55	89	118	2	CF	1	6	R	c	25.5	3781	27.38	135	23
65－071－00551	Isfahan	W	v	18	1	2	44	79.	104	3	cF	M	5	P	c	29.2	3631	23.34	135	23
65－071－00565	Dashtsar Amol	W	v	18	1	1	56	89	118	3	CP	M	5	R	c	27.9	3572	22.57	135	21
65－071－00540	Dashtsar	W	v	15	1	1	56	92	119	3	CF	L	6	R	c	29.1	3562	23.43	135	22
65－071－00536	Torbat Heidarie	W	v	16	1	1	46	80	109	3	CF	M	5	P	\dot{C}	25.5	3558	23.85	120	22
65－071－00731	Nishabour	W	v	16	2	1	52	90	119	2	CF	M	6	R	c	27.6	3507	24.96	150	24
65－071－00431	Iran	W	v	15	1	1	43	76	100	2	CF	\pm	6	DP1	c	31.3	3466	22.22	135	23
65－071－00481	Ghouchan	W	V	18	1	1	50	83	113	3	C	S	5	Br	C	20.3	3427	23.40	150	24
65－071－00563	Nishabour	W	V	15	1	1	54	88	117	2	CF	M	6	P	F	33.5	3426	25.77	135	23
65－071－00389	Ghouchan	W	V	15	1	1	51	87	118	3	GF	M	6	R	c	25.2	3408	26.12	150	24
65－085－00440	Lebanon	W	$\stackrel{\rightharpoonup}{V}$	16	2	1	47	83	115	3	CF	M	5	LR	c	29.4	3267	22.53	150	26
65－085－02051	Lebanon	W	v	16	1	1	45	79	100	3	CF	M	5	DBr	c	27.7	3254	21.80	180	23
65－071－02071	Fars 104	W	V	16	2	1	44	78	102	3	CF	M	6	P	c	27.6	3201	24.65	180	23
65－071－00566	Isfahan	W	V	16	2	1	46	80	106	2	CF	M	5	R	c	28.1	3069	24.40	135	23
65－071－00749	Nishabour	W	V	18	1	1	54	85	111	3	CF	M	6	P1	c	23.6	3016	－ 26.28	180	22
65－071－00582	Isfahan	W	\checkmark	17	1	1	43	79	97	3	CF	M	5	P	c	26.6	2900	22.82	150	23
65－071－00744	Torbat Heidarie	W	\checkmark	17	2	1	46	78	103	2	CF	M	5	FBr	c	35.0	2895	22.25	150	24
65－071－02076	Iran	W	V	14	1	2	46	78	100	3	CF	M	5	P	c	28.9	2810	22.37	180	23
65－071－00430	Iran	W	v	15	2	1	45	78	105	3	CF	M	5	P	c	27.8	2759	22.06	135	21
65－085－02075	Lebanon 132	W	V	16	1	2	42	74	91	2	CF， CC	CM	5	R	c	31.8	2641	－22．68	180	25
65－071－01997	Torbat Heldarie	$\stackrel{W}{W}$	V	16	2	1	41	73	95	3	$\mathrm{CF}_{\mathrm{CF}}$	M	5	${ }^{\mathrm{R}}$	c	23.7	2591	27.82	180	23
65－085－01999	Lebanon 132	W	V	17.	2	1	43 48	76 80	92	3	CF	M	5	LR	C	30.5	2553	23.11	180	23
65－071－02074	Iran	W	v	16	2	2	48	80 74	105 94	3	${ }_{\text {CF }}^{\text {CF }}$	M	5	$\stackrel{\mathrm{P}}{\mathrm{LR}}$	C	29.6 29.0	2552	21.84	150	23
CV $8=$																29.	－12	21.37	130	23
LSD ． 05 －			．																$*$	

Table 32, Agronomic Data, Beans (White) Uniform Advanced Yield Test, Planted April 13, 1968, RPIP, Varamin, Iran

Table：35y Agponaine Date，Beans（White）Unlform Advanoed Yiald Tent，Planted May 21，1968，APIP，Karaj，Irnn

（1） （2）	（3）（4）（5）		（6）（7）		（8）（9）		（10）		（12）	（13）	（14）（15）（26）			（17）（18）		（19）	（20）	（21）
Aocesesion Mumber			$\begin{aligned} & \text { 昌 } \\ & \text { 感 } \end{aligned}$	$\stackrel{6}{8}$			$\begin{array}{r} \text { 品 } \\ \text { S } \\ \text { in } \\ \hline 8 \end{array}$	$\begin{aligned} & \text { 名㗊 } \\ & \text { 易 } \\ & \text { 易 } \end{aligned}$	名管	$\begin{aligned} & 8 \\ & \text { BH } \\ & \hline \end{aligned}$		$\begin{aligned} & Q_{0}^{6} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 毕 } \\ & \text { 號皆 } \end{aligned}$	
65－071，00515 Ohouchan	V V	14	2	1	45	81	107	3	CF	L	6	W	F	23.2	3506	25.21	120	25
65－071－00490 Iran	W V	15	2	1	47	83	110	3	CP	ML	5	W	C	27.0	3346	22.85	125	23
65－071－00505 Shiraz	W V	16	2	1	42	78	102	3	CP	ML	5	W	c	28.4	3205	23.32	105	23
65－071－00517 Ghouchan	W V	15	1	1	45	76	95	1	CC	M	5	W	c	24.7	3195	22.38	140	23
65－071－00506 Istahan	W V	16	1	1	42	77	99	3	c	M	5	H	c	28.1	3182	21.72	115	26
65－085－00494 Lebanon	W V	17	2	1	46	77	102	2	CF	M	5	W	c	20.2	3113	24.74	150	24
65－071－00054 Ierahan	W V	15	1	1	43	76	100	2	∞	KL	6	W	c	25.1	3096	23.05	120	23
65－071－00470 Kermanshal	W V	16	2	1	43	75	99	2	∞	NL	5	LY	F	30.5	3059	22.71	140	25
65－071－00697 Isfahan		14	2	1	45	78	103	3	c	1	5	W	c	25.7	3058	23.36	140	22
65－071－00513 Iran	H V	15	1	1	47	81	105	3	∞	H	5	W	c	22.6	3056	24.26	135	25
65－071－00678 Kermanahah	\mathbf{W}	17	2	1	42	74	98	2	cc	H	5	W	c	26.9	3023	23.45	105	24
65－071－00040 Kermanshah	W V	13	2	1	42	74	98	2	CC－CP	2	5	W	C	2． 4.4	3029	23.37	120	24
65－157－00014 USA Haubers St．Andres	W V	17	1	2	42	74	98	2	cc	M	5	W	c	23.1	3021	23.22	135	24
65－071－00694 Chouchan	$\mathbf{W} \cdot \mathrm{V}$	14	2	1	46	77	104	2	CC	M	5	W	c	23.0	3008	22.86	140	25
65－071－00515 Ghouchan	W V	16	2	1	44	77	103	2	CP	L	5	W	C	22.8	3001	25.21	120	25
65－071－01947 Isfuhan 110	W V	15	3	1	43	75	97	2	CC	M	5	W	C	26.0	2980	22.74	140	24
65－085－00583 Lebanon 3	W V	16	2	1	41	73	99	2	C－CF	L	5	W	c	26.1	2923	22.00	120	24
65－071－01950 Karaj 149	W V	16	2	1.	42	75	93	3	c	M	5	W	C	27.0	2884	22.92	125	23
65－071－00622 Karaj	W V	17	2	1	42	76	95	2	\cdots	M	4	4	C	28.2	2881	22.90	100	24
65－071－00525 Is fahan	W V	14	3	1	43	76	100	3	C－CP	H	5	H	C	26.2	2879	22.36	145	
65－071－01948 Shiraz 178 $65-071-00658$ Dashtear Amol	W V	15	1	1	42	75	92	2	∞	L	5	W	c	26．4	2817	22.67	140	24
$65-071-00658$ Dashtear Amol $65-071-01966$ Sarab 185	$\cdots \quad \mathrm{V}$	11	3	1	40	80	112	2	cour	M	5	W	F	44.7	2808	22.45	135	23
65－071－01966 Sarab 185	\mathbf{W}	13	2	1	43	74	95	2	c	M	5	H	C	28.8	2806	22.86	140	23
65－011－00503 Kara！	$\underset{W}{W} \cdot \underset{V}{V}$	14	1	2	45	75	100 99	3	$\cdots \mathrm{CO}$	M	5	H	C	29.1	2798	22.53	90	24
6－071－00042 Shiraz	W V	16	2	1	42	76	99	2	CO．CP	M	5	W	C	27.1	2723 2609	22.44 23.24	90 120	24
5－071－00051 Iran Min． 1365	W V	14	2	2	43	75	103	2	∞	M	5	W	c	26.4	2607	22.89	125	24 25
5－071－01969 1sfahan 110	W V	16	2	2	42	73	89	2	CC－CP	ML	5	W	c	27.0	2582	22.47	120	25
5－071－00376 Shiraz 1085	W V	14	2	1	45	75	95	2	cc．	ML	5	W	c	28.1	2570	22.36	150	23
5－071－00680 Karaj	\mathbf{W} ，V	13	2	2	43	74	94	2	CC	M	5	W	c	26.4	2518	22．00	135	23
SD． $05=$															13 515			

Table 34．Agronomi a Data，Beans International Ylold Test，Pianted May 21，1968，RPIP，Karaj，Iran

（2）	（3）	（4）	（5）			（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）		（17）	（18）	（19）	（20）	（21）
Aocession Number					$\begin{aligned} & 4 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & \text { si } \\ & \text { si } \\ & \text { í } \end{aligned}$			各				車第芴落		$\begin{aligned} & \text { 品 } \\ & \text { 淢 } \end{aligned}$	$\begin{aligned} & \text { 曷 } \\ & \text { 啚等 } \end{aligned}$	品号
65－085－00440 Labanon	W	Y	21	1	1	44	81	106	2	CF	M	5	H	C	29.8				
65－071－00042 Shiraz	W	V	19	1	1	44	75	93	2	CF	M	4	W	c	29.6	3200	22.25 23.24	120	23
65－071－00582 Isfahan	W	v	20	1	1	42	75	95	2	CF	M	5	R	c	28.0 28.0	3200	23.24 23.90	9120	23
65－153－00757 Qturak，Turiey	W	B	18	1	1	42	79	99	1	c	L	5	W	－	46.6	3101	25．90	70	22
65－153－00756 Bodur，Turkes	W	B	17	1	1	42	80	106	2	CP	M	5	W．	p	32.6	3902	25.29 23.86	70	23 24
65－157－00072 USA Pinto 111	W	V	20	1	1	35	68	90	3	cc	N	4	Crm	c	33.8	2278	23.86 23.82	105	24 23
65－157－00069 Great Northern 123	W	V	21	1	1	39	66	89	2	cc	M	4	W	c	29.3	2254	23.62	85	21
65－157－00589 Red Kidney	LP	B	17	2	2	44	80	107	3	cc	L	5	DP1	P	41.8	2183	25.08	70	21 25
65－157－00004 Wade	LP	V	16	1	2	39	78	109	1	cc	L．	5	DP	c	37.2	2072	24．00	70	25
65－157－00005 Resistant Terder Oreen	LP．	B	19	1	1	36	73	108	1	∞	L	6	BLM	c	32.1	2061	24.92 26.24	70 115	23
CV 8.													B．	－		2061	26.24	115	23
LSD $.05=$														．		84			

Legend For Broadbean Data Table 35

(1) Strain Numbers, Assigned In 1966 fleld trials.
(2) Source, Indicates origin of seed, either oountry or section of Iran.
(3) Plant height: Average plant height in centimeters.
(4) Stand: Rated to $9 \quad 1=$ complete stand $\quad 9=$ poor stand
(5) V1gor: Rated Ito 9,1 - vigorous plants 9 - weak plants
(6) Disease rated 1 to 9 , 1 - free from disease symptoms

9 - all plants in plot diseased with one or combination of diseases caused bj bean yellow mosalc virus, pea leaf roll virus, chocolate spot caused by Botrytis Fabae.
(7) Pod length (in centimeters) average of ten pods.
(8) Average weight (in grams) of 100 seeds.
(9) Yield in kilogram per hectare based on 10 square meters per plot.

Legend for Cowpea Agronomic Data Tables 36-38A

(1) Numbers assigned to colleotion maintained by the Regional Pulse Improvement Project.
(2) Strain numbers refer to entry numbers assigned in 1964 introduction nursery.
(3) Source numbers refer to PI numbers from New Crops Research Branch, CRD, ARS, USDA, Beltsvills, Maryland. "C" numbers are strains obtained from Oklahoma State University. Other three or four digit numbers are numbers assigned by the Iranian Ministry of Agriculture.
(4) Source indicates variety name or area of origin.
(5) Flower color: $P=$ Purple; $W=$ White; $W P$ m mixed White and Purple flowers.
(6) Plant type: $E=$ Erect; $S E=$ Semi-erect; $B=$ Bushy; $P=$ Prostrate; BP = Bushy Prostrate.
(7) Plant height (in centimeters) at near full plant growth.
(8) Plant width (in centimeters) at near full plant growth.
(9) Plants per meter is an average number of plants per meter of row based on one meter sample per replication.
(10) Rated 1 to 9: $1=$ complete stand; $9=$ poor stand
(11) Rated 1 to $9: 1=$ vigorous plants; $9 .=$ weak plants.
(12) Days from planting to first opened flower.
(13) Days from planting to first mature pod ready for harvest.
(14) Rated 1 to 9: $1=$ free from disease symptoms; 9 a severe disease symptoms,
(1; major disease mosaic virus. Seé pathology section for diseases present.
(15) Pod shape: $S=$ Straight; $C=$ Curved.
(16) Pod color: $\mathrm{Br}=$ Brown; Pu = Purple; $\mathrm{P}=\mathrm{a}$ Pink; Cr = Cream; W : White; $Y=$ Yellow; $G=$ Green; $L=$ Light; $D=$ Dark.
(17) Pod size: VL $=$ Very Large; $L=$ Large; $M=$ Medium; $S=$ Small.
(18) Seeds per pod is average based on five random pods per replication.
(19) Seed Color: Cr = Cream; $P=$ Pink; $M=$ Milky; Bk = Black; $\mathrm{Br}=$ Brow, $G=$ Green; Bl = Blue; $W=$ White; $Y=$ Yellow; $R=$ Red; Pu = Purple; Sp = Spotted; D = Dark; L = Light.
(20) Eye color: Cr = Cream; $P=$ Pink; $M=$ Milky; Bk = Black; Br = Brown, On Green; Bl a Blue; $W=$ White; $Y=$ Yellow; $R=$ Red; Pu = Purple;
$\mathrm{D}=$ Dark; L = I.ight.
(21) Seed size: $L=$ Large, approximately 24 grams per 100 seeds; M Medium, approximately 15 grams per 100 seeds; 5 Small, approximately 8 grams per 100 seeds.
(22) Shattering rated 1 to 9: 1 mo loss of seed from shatterings $9=$ considerable loss of seed from shattering.
(23) 100 seeds weight - average weight (in grams) of 100 seeds.
(24) Yield in kilogram per hectare based on $10 \mathrm{M}^{2}$ plots.
(25) Protein percentage based on total solids. Determined by Kjeldahl method on two samples per strain, duplicate determinations per sample.
(26): Cooking time (in minutes) determined by boiling 50 gram simple in 500 ml . of water, 2 grams Na Cl added and checked regularly for hardness.
(27) Palatability, Maximum rating - 30 .

Appearaince, maximum 9
Color uniformity, $3,2,1,0$
Size uniformity, $3,2,1,0$ Cooking uniformity, $3,2,1,0$
Smell, maximum 6
Taste, maximum 15

（1）（2）	（3）	＇（4）	（5）（6）	（7）	（8）	（9）		（11）	（12）	（13）	（14）		17）	（18）	（19）	（20）	（21）	（22）	（23）	（24）
		SOURCE					$\begin{aligned} & \text { 荷 } \\ & \text { H } \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 9 \dot{4} \\ & \text { 站蔦 } \end{aligned}$			$\begin{array}{r} \text { 台 } \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \text { N } \\ & \text { ल̈ } \\ & \text { 8 } \end{aligned}$	$\begin{array}{r} 8 \\ \text { 名 } \\ \text { 最 } \\ 0 \end{array}$	$\begin{array}{r} 8 \\ 0 \\ \hline 0 \\ \hline \end{array}$	总	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{gathered} 4 \\ \$ \\ \text { 宸 } \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ \text { Seeds } \\ \text { Ht. } \end{gathered}$	$\begin{gathered} \text { Yield } \\ \text { per } \\ \text { Heotare } \end{gathered}$
62－155－0006857	182350	Egypt	W B	37	67	10	4	4	60	82	3	YCr	${ }_{5}$	2	LCr	Bk	\underline{L}		25	3426
62－071－0．4444720	177	R．A．Nishabour	W 38	66	69	8	2	4	62	89	5	VBr	M	12	LCr	OY	S	5	13	3411
62－155－00223 146	250587	Egjpt	W．E	61	63	10	5	4	61	87	5	YCr	M	10	$\underline{L C}$	Bk	VL	4	27	3578
62－000－01437 333		Unknowi	W＇SE	58	61	14	2	4	69	87	5	YPu	M	11	LCT	a	8	4	11	3326
62－071－01439 692	177	A．A．Ni chabour	P SE	63	61	12	2	4	68	97	5	YPu	M	12	${ }_{\mathrm{p}}^{\mathrm{Cr}}$	CBr_{8}	M	5	13	3291
62－157－01431		Miss．Silver	P SE	59	59	10	3	4	61	88	3	YGr	L	10	P	YBr	ML	2	20	3243
62－157－00441 304	293574	Texas Cream	W SE	63	53	11	4	4	62	85	5	YN	ML	11	M	CBr	M	4	17	3242
62－110－00113 79	189313	Nigeria	B	55	66	15	3	4	71	99	4	YCr	灶	11	LCr	Bk	MS	4	11	3238
62－157－00466．	C－620	Top Set	SE	62	60	11	3	4	62	86	5	YN	\cdots	11	LCr	c8r	M	4	14	3219
62－157－00316 213	293477	Calif．Black Eye	W SE	61	52	11	3	4	59	78	4	YCr	ML	9	LCr	Bk	\underline{L}	4	22	3190
62－071－00197128	223420	Iran	P E	66	62	17	2	4	62	90	4	YBr	M	12	Cr	G	ML	4	11	3177
62－071－00296 214	293479	Black Fiye No． 7	W E	62	52	9	4	4	57	81	5	${ }_{\mathrm{YBr}}$	M	11	LCr	Bk	\underline{L}	4	20	3005
62－071－01443718	177	R．A．Nishabour	SE	60	61	14	3	4	68	90	5	YPu	M	12	LCr	Bk	M	4	14	3005
62－071－01441 696	177	R．A．Ni ahabour	W SE	56	62	14	2	4	62	89	5	$\stackrel{\mathrm{YBr}}{ }$	M	11	LCr	YO	M	4	14	2948
62－157－00383	293535	Mise．Crowder	P E	64	62	10	3	3	67	97	3	YBr	L	14	P	ybr	M	3	16	2888
62－．57－00355 246	293516	Hib－Canel	P SE	54	63	13	3	4	62	85	3	FN	L	13	PO	cisr	M	3	19	2736
62－069－00070 58	183363	India	W SE	56	57	9	3	4	59	72	4	YW	M	8	LCr	${ }_{\text {DK }} \mathrm{Br}$	M	4	20	2607
62－157－00288187	293450	Ala．Crowder	W SE	73	62	10	4	4	65	93	5	YPu	M	11	LCr	Bk	N	4	16	2664
（22－153－0006） 55	182317	Turkey	W \mathbf{L}	64	55	22	3	4	58	87	5	YBr	M	11	LCr	Bk	M	4	17	2642
62－071－1000？		Karaj	W－SE	61	61	10	4	4	63	80	5	YW	M	5	LCr	Bk	L	3	23	
6 6－110－00242 157	255781	Niberia	P E	76	69	14	3	3	76	99	4	YPu	ML	15	PGr	$\underline{C B r}$	8		21	2608
62－157－00293193	293456	Black cronder	P Sb	65	56	11	3	4	71	91	3	PPu	ML	14	Bk	CBr	\underline{L}	4	26	2608
62－136－00201 171	225921	Africa	W W	32	71	16	3	3	62	85	4	VBr	ML	12	BkCr	D8r	ML	4	15	2590
62－071－01442715	177	R．A．Nishabour	W SE	73	62	12	3	4	63	88	5	YCr	\pm	10	LCr	YO	M	3	14	2521
62－157－00342 223	293500	Dixilee	$\begin{array}{cc}\text { P } & \text { SB } \\ \text { H }\end{array}$	66	63 58	15	2	3	68	97	3	PY	L	12	Cr	YO $\mathbf{B k}$	M	4	17 15	2499 2497
62－071－01435 387	185	Darahgaz	W SE	62	58	14	2	4	67 65	98 86	6	YW	M	10	LCr	Yk	M	4	15 10	2497
62－071－01447604	180	Shahi	E	31	48	17	1	4	65	86	6	${ }_{\text {WBr }}$	M	11	PCr	YK	NS	4	19	2418
620071－01448 19675		M．Aneh，Iran	W SE	59	67	12	5	4	66	100 100	7	YPr	M	10	LCr	EX	${ }_{M}$	4	18	2396
62－071－10008814	179	Isfahan	W E	60	63 58	11	3	5	69	100 99	7	YPu	ML	10	LCr	${ }_{\text {BEr }}$	${ }_{\text {ML }}$	4	18	2396 2366
62－157－00287 186	293449	Dunch	SE	64	58	10	3	4	65	99	5	YPu	ML	12	LCr	$\mathrm{DBr}_{\mathrm{BK}}$	ML	4	18	2366
62－157－00295 10195	293458	Black Eye No． 5	W 8E	60	46	11	4	4	56	79	5	YPu	ML	11	LCr	Bk	M		16	2319
62－002－00160 110	211754	Afghanistan	W SE	51	60	12	3		52	85	4	YP4	M	11	LCr	Ek	M	4	16	2319
62－110－00249 160	255784	Nigeria	P 8	79	68	18	2	3	75	99	3	PY	NL	13	P	Yo	8	4	12	2307
62－071－01440 696	177	R．A．llishabour	3 SE	60	65	15	3	4	63	98	6	YW	M	11	LCr	LO	M		13	2304
62－071－01432 810	178	Isfahan	W E	66	60	12	3	4	67	80	5	VBr ．	M	8	LCr	Bk	ML		20	2285
62－071－01445781	173	Mamaghan	P SE	66	60	16	3	4	65	90	5	DY	M	11	Cr	0	KS	5	11	2284
62－038－00155 105	208771	Cuba	P SE	62	72	14	3	5	74	100	4	YW	ML	13	B1	DBr	MLI	3	14	2272
62－071－01446811	179	Isfahan	W SE	63	58	9	3	6	69	100	6	YPu	M	10	ICr	Bk	M	4	18	2249
62－008－00078 63	186360	Australia	P SE	60	67	12	2	4	67	78	4	PBE	M	13	P	Yo	5	4	9	2247
62－157－0046810325	c－621	Clinax	W SK	63	56	12	2	4	61	89	5	YPu	ML	10	M	Crir	M		14	2237
62－157－00345 236	293503	Early Elack Eye	P E	58	72	13	2	4	74	100	3	YPu	L	10	R	8k	MS	4	14	2174
62－071－01434 376	185	Darahgaz	P SE	65	60	16	2	4	76	91	5	YBr	8	11	Cr	0	MS	4	13	2110
62－071－01438 415	170	Shoushtar	W E	67	56	10	2	4	69	100	5	YBr	PL．	11	Cr	Bk	KL	4	9	2058
62－071－01436850		Darahgaz	W E	69	58	16	3	4	73	43＇	6	YPu	ML	10	Cr	Bk	M	4	20	2039
62－110－0006762	185647	Africa	P E	64	66	13	3	3	59	99	4	YP	L	15	Cr	Y	M	3	18	1981
62－110－00102 72	186467	Higeria	P E	67	59	16	2	3	79	100	4	P	ML	13	CrO	0	8	3	11	1949
62－15（－00286 185	293448	Ala．Brown Eye	P B	68	60	17	3	4	73	99	4	YP	ML	15	DPu	YBr	M	3	11	1496
62－157－00423 283	293553	Purple Pod	W SB	58	6	12	3	4	74	92	4	DP4	L	13	LCr	$\mathrm{CBr}^{\text {Br }}$	M	4	13	1323
62－157－00447310	293582	Victor K－798	W B	60	36	14	3	4	81	101	4	W	M	12	LCr	BK	M	4	16	1262
																				1179

Table 37 Agranoalo Data Conpea Uniform Yiold Test, Plantod Apm1 12, 1968, RPIP, Varmin, Iran

Table $37 A$, Agronomio Data, Conpea Uniform Yield Test, Planteri April 12,1968 RPIP, Varanin, Iran
(1)

Aocession Number	$\begin{aligned} & \text { Strain } \\ & \text { Number } \end{aligned}$	$\begin{aligned} & \text { yourno. } \\ & \text { N } \end{aligned}$	Source	Protein	cooking Timo	Polatabizity
$\begin{aligned} & 60-023-0,141 \\ & 6 e-071-10003 \end{aligned}$	97 4002	200867	Murma	22.78 26.22	45	27 28
	244	20,13	Ofant Remahorn	24.02	45	26
6e.043-00012	12	251562	Dominioan republic	23.20	45	28
6e-071-10004	713	177	R. A. Nishabour	${ }^{26.38}$	45	24
-6e-069-00276	175 232	27257	${ }_{\text {L }}^{\text {India }}$ Davis Pea	25.09	45	29
62-110-00234	151	255765	Nigerta	25.31	50	27
$62-157-00436$	300	293570	Speokled Purple Hull	24.22	55	29
62-157-00347	238	293505	Early Ranshori	23.82	55	27
62-157-00470	325	c-642	Prinnees Ann	${ }^{26.63}$	50	27
62-157-00996	195	293459	Black Eye No. 7	24.27	45	27
$62153-00057$ 6097100141	50.	179555 2-42-i203	Turksy 109	26.27 25.62	50 55	25 84
$682000-10001$	327		Uaknom	24.27	45	26
6e-071-01453		${ }^{2042012375}$	Karaj 150	${ }^{23.12}$	45	${ }^{26}$
62-157-00356	247	${ }_{\text {2-42-1139 }}$	- inlsteln	${ }_{23.36}^{24.51}$	45	${ }^{26}$
${ }^{62-071-01450}$		2-42-1444	Moghar, 257	26.07	45	28.
- 62 6-071-10006 6	${ }^{795}$	${ }_{181833}^{284}$	Chamichal	25.59	45 50	28
$62-071-01452$		2-42-1369	Karaj 150	25.29	45	25
(6e-157-00042	215	293480 29360	${ }_{\text {Calara }}^{\text {Red }}$	-25.62	50 45	${ }^{26}$
62-157-00290	249	0154	Instituto	26.46	50	21

Table 38A, Agronoalo Data, Conpea Uni form Yleld Toat, planted June 8 ; 1968; RPIP, Xara, Iran

(1) \because	(2)	(3)	(4)	(25)	(26)	(27)
Accossion Number	Strain Number	Source Number	SOURCE	Protein	Cooking TIm	Palatabllity
62-110-00234	151	255765	Nigeria	25.70	35	22
62-069-00274	175	271257	India	24.88	50	24
62-071-C.453		2-42-1375	Yarad 150 ,	22.07	50	25
62-157-00296	195	293459		23.57	60	28
62-085-00065	53	181833	Lebanon fer	24.95 23.82	35 60	27 26
62-07 -10003	4002		Meshed \quad O	23.82 $\therefore 24.15$	60 50	26
62-023-00141	97 238	200867 293505	Burma Ramshorn	424.15 24.43	50 60	27 28
$62-157-00347$ $62-157-00358$	238 249	293505 0154	Early Ramshorn Institute	24.43 24.82	60 35	28 21
62-157-00442	215	293480	Calara	24.48	35	20.
62-157-00341	232	293499	Davis Pea	23.58	45	27
62-153-00057	50	179555	Turkey	25.50	35	24
62-071-01449		2-42-11-39	Farn 102	25.45	55	23
62-157-00470	325	C-642	Princoso Ann	21.95	35	24
62-157-00356	247	293517	Holatein	22.36	50	27
68-157-00436	300	293570	Speakled Purple Hull	24.54	35	27
62-071-10006	795	184	Cramchal	25.09	50	25
62-043-00012	12	151562	Domirican Republic	21.64	50	26
62-071-10004	713	177	Nishabour	22.67	50	23
62-157-0035	244	293513	Oiant Ramahom	24.55 21.45	50 55	23
62-000-10001	327		Unknown	21.45 23.40	55 50	25
$62-157-00290$ $62-071-01452$	290	$\begin{aligned} & 293560 \\ & 2=42-1369 \end{aligned}$	Red Speokled Crowder Karaj 150	$\begin{array}{r} 23.40 \\ 25.66 \end{array}$	50 50	26
$62-071-01452$ $62-071-01451$		$\begin{array}{r} 2-42-1369 \\ 2-42-1203 \end{array}$	Karaj 150 Isfahan 109	$\begin{array}{r} 25.66 \\ 24.58 \\ \hline \end{array}$	50	+627
62-071-01450		2-42-1444	Moghan 157	25.34		224

Legend for Mungbeans Agronomic Data Tables 39 - 41

(1) Numbers assigned to collection maintained by the Regional Pulse Improvement. Project.
(2) Three digit numbers are Iranian Ministry of Agriculture numbers, six digit numbers refer to PI numbers from New Crops Research Branch, CRD, ARS, USDA, Beltsville, Maryland, IT. S. A.
(3) Indicates variety name or area of origin.
(4) $E=$ Erect; $B=$ Bushy; $P=$ Prostrate; SP = Sem1-prostrate; SE - Semi-erect
(5) Plant height measured in centimeters at full plant growth.
(6) Number of plants per meter of row, based on one meter sample per replication.
(7) Rated 1 to 9: $1=$ complete stand; $9=$ poor stand
(8) Rated 1 to 9: 1 e vigorous plants; $9=$ weak plants
(9) Days from planting to first open flower.
(10) Days from planting to first mature pod, ready to harvest.
(11) Rated 1 to 9: 1 - free from disease symptoms; 9 - severe disease symptoms
(12) $S=$ Straight; $M=$ Moderately ourved; $C=$ Curved
(13) $I=$ Light; $M=$ Medium; $D=$ Dark
(14) Average number of seeds per pod based on ten pods/replication.
(15) $L=$ Light; $M=$ Medium; $D=$ Dark
(16) Average welght of 100 seeds.
(17) Yield in kilogram based on $4 m^{2}$ plots, In Karaj, Varamin $5 m^{2}$ plots.

Table 39 Agronomió Data Mungbean Preliminary YLeld Tent, Plantód May:23, 1968, RPIP; Karal, Iran

Table 11 Agronomi a Date Mungbeans Advanoed Yield Teat, Planted May 23, 1968, RPIP, Karay, Iran

Aoceasion Mumbar	Source Number	80 URCB	Plant Type	Plant Hoight	Plante Motor	8tand	Vigor	$\begin{aligned} & \text { P2. to } \\ & \text { lat } \\ & \text { M. } \end{aligned}$	R2. to 1st Mat.	Disease Rating	$\begin{gathered} \text { Pod } \\ \text { ghape } \end{gathered}$	$\begin{aligned} & \text { Fod } \\ & \text { Color } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 8oods } \\ & \text { por } \\ & \text { Pod } \end{aligned}$	Leal Color	100 Seeds Wt.	Yield per Heatare
48-157-10307	31287	Beltaville, USA	E	31	15	2	1	56	80	2.3	M		12	L	4.0	
48-071-10087	201869	Iran	E	33	12	2	1	54	75	2.3	C	M	12	M	4.0	1703
48-033-100 ${ }^{\text {t }}$?	171435	China	88	29	15	3	1	54 54	73	2.3 2.3	C S	D	11	M L	4.2 4.0	1669
48-157-10023	31728	Beltaville, USA	58	30	11	2	1	55	76	2.6	8	M	12	L	4.0	1638
48-069-10066	180311	India	SE	34	11	2	1	55	76	2.0	M	D	12	M	4.5	2621
48-076-10290	286298	Ivory Coast	SE	28	15	1	1	59	84	2.3	M	M	11	L	3.5	1619
48-071-10284	217	Ilosratabad, Iran	AB	32	12	2	1	56	81	2.0	8	M	11	2	2.7	1571
48-069-10105	27492 227754	India ${ }_{\text {Guatemala }}$	SR	- 31	14	1	1	58	78	2.0	C	D	13	M	4.8	2563
48-069-10323	271490	India	${ }_{\text {SE }}$	32	17	- 2	1	63 59	84	1.6	N	M	12	L	3.0	1563
48-151-10019	31569	Boltaville, USA	SE	33	15	- 3	1	59 53	79	2.0 1.6	S	D	12	M	4.5	1531
48-071-10963	167(1)	Moghan, Iran	SE	32	14	2	1	56	74	2.0	S	${ }_{\text {D }}$	11	D	3.2	1528
48-069-10104	212908	India	SE	30	$16:$	2	1	57	82	1.3	M	D	11	${ }_{L}$	4.2	1509
48-157-10022	31710	Boltaville, USA	E	36	17 :	1	1	56	79	2.3	S	D	11	${ }_{5}$	4.0	1506
48-157-11157	909 N	U.S.A.	SR	29	12	2	1	61	79	2.6	M	M	12	L	3.8	1420
48-069-10075	183136 31080	India	SE	28	14	2	1	58	83	2.0	M	D	13	M	4.7	1409
48-157-11156	921V	Beltavile, USA U.S.A.	P	29 27	17 10	2	1	54	73	2.0	8	D	12	D	3.7	1379
48-071-10293	218	Zahldan, Iran	S8	28	14	2	1	54 59	69	2.0 1.6	8	D	13	D	6.2	1378
48-157-11153	9051	U.S.A.	B	30	11	2	2	59	75	1.6	8	D	11	\underline{L}	5.1	1359
48-157-11154	9051	U.S.A.	88	30	16	2	2	56	78	2.0	8	D	12	D	4.3	1353
48-071-10282	215	Karaj, Iran	B	31	13	1	1	57	80	2.0 1.3	8	D	112	2	4.1	1325
48-071-10107	$167(2)$	Moghan, Iran	-85	29	15	1	2	58	77	2.3	M	D	13	D	4.5	1281
48-157-11152	901 V	U.S.A.	B	27	11	2	1	58	79	1.6	8	L	11.	L	4.5	1090
CV \$		U,B.A.	B	19	12	2	2	58	75	2.3	B	D	11	D	4.7	1056
ISD $.05=$																23

Glenn M. Horner
Massoud Mojtehedi
Mohammad Moadab

Summary

Based on results for 1966 to 1968, the optimum planting dates for pulse orops in the Karaj area are as follows: before mid-March (or as soon as possible thereafter) for lentils, the first two weeks of April for chickpeas, first two weeks of May for dry beans and cowpeas, and the first three weeks of May for mungbeans. Planting dry beans, cowpeas, or mungbeans as early as mid-April usually resulted in poor stands.

Maximum yields were obtained with a plant population of 500,000 plants per hectare (50 cm row spacing) for chickpeas and dry beans and with 400,000 plants for cowpeas.

Highest ylelds of chickpeas, dry beans, and cowpeas were obtained by maintaining soil moisture at a level not less than two-thirds of field capacity. To maintain this levels, it was necessary to irrigate every 6 or 7 days, except early in the crop season.

Considering total crop production, however, the high moisture treatment will not utilize irrigation water efficiently where the quantity of water is insufficiert to irrigate all the land available for cropping. With dry beans, for example, lrrigating every 14 days (half as often) reduced the yield only 25% below that for the high moisture level. Using the same amount of water on a larger area (with fewer irrigations) would result in greater total production. Therefore, the relationship between the amount of water and the amount of land available should be considered in determining irrigation practices.

Considerable research on irrigation and fertilization of pulses has been conducted by the Irrigation and Soils Departments of Pahlavi University in Shiraz. The University has prepared a separate report of the results of this work.

Date of Planting

Tests were continued with fall, winter and spring plantings of lentils and chickpeas and spring plantings of dry beans, cowpeas and mungbeans. However, the lentil and chickpea tests are not reported here beaause damage from rabbits and crows made the results unreliable.

Yields of dry beans, cowpeas and mungbeans for 1968 followed the same general patterns set in 1966 and 1967 (Table 42). As in previous years, plantings made the middle of April were damaged by seed corn maggot (Hylemya ciliorura).

This resulted in thin stands and greatly reduced ylelds. Approximately maximum ylelds occurred when planting was delayed so as to avoid the seed corn maggot infestation. Planting after May 1 is generally satisfactory in this respect. planting dry beans and cowpeas after the middle of May and mungbeans after early June résulted in lower yields.

The length of time from planting to maturity decreased as the planting date was delayed. This effect was most pronounced with mungbeans.

Plant Population Density

Treatments in 1968 comprised plant densities ranging from 200,000 to 600,000 plants per hectare for chickpeas and from 200,000 to 500,000 for dry beans and cowpeas. Row spacing was 50 cm . This represented a change from 1966 ard 1967, when treatments included three and four row spacings and plant densities ranging from 100,000 to 400,000 plants/ha.

Table 42. Relation of date of planting to yleld of pulse orops, RPIP, Karaj, Iran.

	Days to: (1968)		Grain jield, tons/hec.	
Planting date 1/	First Bloom	Full Maturity	1968	$\begin{gathered} \text { Mean: } \\ 1966-68 \end{gathered}$
Dry beans				

April 16
May 2
May 17
June 1
June 17

57	93
52	89
45	87
$39,-r$	85
37	82

泉
$0.85 c^{2 /} 1.07 b$

1/Dates given are means of 3 years.
2/. Flgures within a column for each crop followed by the same letter are not significantly different at the 5% level. -

Grain ylelds, pods per plant and seed weight of chickpeas, dry beans, and cowpeas are summarized in Tables 43, 44, and 45 for 1966, 1967, and 1968.

Chickpea yields in 1968 increased until the 500,000 plants/ha density was reached, although yields tended to level off at the 300,000 level in 1966 and 1967. Similarly for dry beans, small but statistically insigniffcant yield increases were obtained with increases in density to 500,000 . For cowpeas, there was no indication of higher yields for plant densitites greater than 400,000 .

The number of pods per plant decreased with increasing plant density, while seed weight increased (except for cowpeas).

Herbicides

Seven herbicides were used in this test. Each herbicide was applied at three rates: none, the recommended rate, and twice the recommended rate. Four of the herbicides were used on chickpeas and lentils and six on dry beans, cowpeas, and mungbeans. Planting and application dates were April 10, 1968, for the first group and June 9, 1968 for the second group. Four replications were used.

Data concerning weed control and crop yields are given in Table 46. The number of broad-leaf weeds in the untreated areas was much greater in the first test (lentils and chickpeas) than in the second (dry beans, cowpeas, and mungbeans). This was probably the result of cultivating later in the season for seedbed preparation for the second test. Grassy weeds, however, were more numerous in the second test than in the first.

Lorox, Dacthal, and Vegadex at the low rate reduced the number of broad-leaf weeds by approximately 30% and grassy weeds by 75% in the first test. The effectiveness of Lorox and Dacthal Increased at the high rate. Dowpon had no appreciable effect on broad-leaf weeds.

Control of broad-leaf weeds was ineffective in the second-test, although Lorox, Dacthal, Eptam, and Treflan reduced the number of grassy weeds.

Crop yields were largely unaffected by the herbicides, except for lentils. The four herbicides used on lentils were toxic and reduced yields. Dowpon also damarged chickpeas. Where toxicity did not occur, the reduction in weed growth due to a herbicide treatment probably had no appreciable effect on yields, as all plots were kept free of weeds following the weed count. Weeds had not attained sufficient size by that date to have had much influence on the crops.

Table 43. Relation of plant population density to growth of chickpeas, RPIP, Karaj, Iran

Plants per hectare $1 /$	1966	1967	1968	Mean
Grain yleld, tons per hectare				
100,000				
200,000	2.69 b	0.99 b	$1.05{ }^{\circ}$	1.75 a
300,000	2.94 a	1.27 a	1.21 b	1.85 a
400,000	3.07 a	1.28 a	1.44	
500,000			1.47 a	
	Pods per plant			
100,000 10, 105 ala				
200,000	84 b	32 b	10 a 42 a	
300,000	560	28 bc	9 a	31 b
400,000	54 c	240	8 a	29 b
500,000	---	---	8 a	----
600,000				
	Seed weight, gm. per seed			
100,000	0.312	0.168	----	-------
200,000	0.332	0.178	0.167 a	0.226
300,000	0.346	0.182	0.172 a	0.233 a
400,000	0.348	0.192	0.167	0.236 a
500,000	---m		0.182 a	------
600,000			0.186 a	

1 / Row spacings: 50,60 , and 75 cm . in 1966; $40,50,60$, and 70 cm . in 1967; and 50 cm . only in 1968. Data are averages of all row spaoings for each year.
2) Figures within a column followed by the same letter are not significantly different ai the 5% level.

Tablo 44. Relation of plant population density to growth of dry-beans, RPIP, Karaj, Iran

Plants per hectare $1 /$	1966	1967	1968	Mean
Grain yield, tons per hectare				
100,000	1.08 c	1.67 c	- 7.00	
200,000	1.31 b	2.26 b	1.64 b	1.74 b
300,000	1.47 a	2.44 ab	1.84 a	1.92 a
400,000	1.58 a	2.58 a	1.97 a	2.04 a
500,000	------	------	2.06 a	------
	Pods per plant			
100,000	10.7 a 13.1 a $-1-\mathrm{c}$ 7.3 b 10.5 b 15.2 a 5.2 c 11.5 b 12.3 b 4.9 c 9.8 c 11.5 bc - - 10.2 c Seed weight, gm. per seed			
200,000				
300,000				
400,000				
500,000				
100,000	0.331 b	0.310 c	------	-3-336-
200,000	0.339 a	0.324 b	0.345 b	0.336 b
300,000	0.341 a	0.322 b	0.377 a	0.347 a
400,000	0.339 a	0.331 a	0.382 a	0.351 a
500,000		-	0.385 a	---m--

11 Row spacings: $50,60,75 \mathrm{~cm}$. in 1966; $40,50,60$, and 70 cm . In 1967; and 50 cm . only in 1968, Data are averages of all row spacings for each year.

2/ Figures within a column followed by the same letter are not significantly different at the 5\% level.

Table 45. Relation of plant population density to growth of cowpeas, RPIP, Karaj, Iran

plants per hectare $1 /$	+ 1966	1967	1968	Mean
	Grain yleld, tons per hectare			
100,000				
200,000 300,000	3.62 b 3.73 ab	2.19 b 2.28 ab	1.20 c 1.40 b	2.34 o 2.47 b
400,000	3.73 ab	2.36 a	1.76	2.64 a
500,000			1.74 a	--m-
	Pods per plant			
100,000				
200,000				
300,000				
400,000				
500,000				
100,00r	$0.244 \mathrm{a} \mid 0.238 \mathrm{~b}$ -			
200,000	0.239 ab	0.248 ab	0.232 a	0.240 a
300,000	0.237 b	0.251 a	0.223 b	0.237 a
400,000	0.230 b	0.255 a	0.226 b	0.237 a
500,000			0.222 b	

1 . Row spacings: 50,60 , and 75 cm . in $1966 ; 40,50,60$, and 70 cm . in 1967; and 50 cm . only in 1968. Data are averases of al. 1 row spacings for each year.

2/ Figures within a colum followed by the same letter are not significantly different at the 5\% level.

Table 46. Effect of herbicides on weed control and yleld of pulse crops, RPIP, Karaj, Iran, 1968.

1 Number of weeds per 10 square meters 32 days after treatment. Test No. 1 treated April 10, 1958, (lentils and chiokpeas) and Test No. 2 treated June 9, 1968 (dry beans, Cowpeas and mungbeans).

Irrigation - Fercilization

Combination irrigation and fertilizer treatments started in 1967 were continued in 1968. The experimental design was a split plot with four replications of irrigation treatments as main plots and fertilizer treatments as subplots. Details of the treatments and a summary of crop yields are given in Tables 47, 48, and 49 for chickpeas, dry beans, and cowpeas.

The influence of soil moisture on ylelds was more pronounced at low than at high soil moisture levels. Subjecting plants to moisture stress (dry treatment) caused a marked reduction in ylelds below those for the medium and wet treatments. There was no appreciable advantage, however, in maintaining soil moisture above the medium level. The differential in yields between the wet or medium and the dry treatments in 1968 was greater for chickreas than for dry beans or cowpeas.

Yleld depression due to soil molsture stress was influenced by the stage of plant growth. Generally, this effect was greater during bloom and early maturity than during earlier stages of growth.

Nitrogen fertilizer had no appreciable effect on yields, indicating that the nitrogen requirements of the crops were supplied by symbiotic fixation.

Significant responses to phosphorus were obtained in 1968 for chickpeas and dry beans but not for cowpeas. This difference in response among crops is probably caused by variations in the amount of available phosphorus in the soil on the different field sites, and is not associated with the kind of crop.

An interaction between irrigation and phosphorus fertilization was evident with chickpeas but not with dry beans and cowpeas.

Table 47. Influence of irrigation and fertilization on yleld of chickpeas. RPIP, Karaj, Iran 1968.

Soll moisture $1 /$ when irrigated		$\left\{\begin{array}{c} \text { Number } \\ \text { of } \\ \text { irri- } \\ \text { gations } \\ \hline \end{array}\right.$	Grain yield, tons per hectare						
		Fertilization ${ }^{\text {/ }}$	Mean						
To Full Bloom	After Full Bloom		None	N	P	NP	1968	1967-68	
High	High		12	3.63	3.30	3.98	3.75	$3.67 \mathrm{ab} \mathrm{3}^{\text {/ }}$	3.16 ab
High	Medium	10	3.03	3.01	4.11	3.73	3.47 ab	2.89 b	
Medium	High	10	3.73	3.36	3.69	4.06	3.71 ab	3.25 a	
Medium	Medium	8.	3.56	3.43	4.11	4.15	3.81	3.02 ab	
Low	Medium	6	3.06	3.14	3.64	3.57	3.35 ab	2.54 c	
Medium	Low	6	3.27	3.00	3.18	3.54	3.25 b	2.53 c	
Low	Low	4	2.65	2.52	2.93	2.97	2.77 c	2.23 d	
Mean: 1968			3.276	3.11 b	3.65a	3.68a			
Mean: 1967			2.47 b	2,47b	3,10a	3.17a			

1/Soil moisture levels: high, when two-thirds of available soil moisture at field capacity remained; medium, when one-third of available soil moisture remained; and low, when plants began to wilt.

2/ Fertilizer rates: $100 \mathrm{~kg} . \mathrm{N}$ (amnonium nitrate) and 150 kg. P (concentrated phosphate) per hectare.

3/Flgures within a column or line followed by the same letter are not signifioantly different at the 5% level.

Table 48. Influence of Irrigation and fertilization on yleld of dry beans RPIP, Kara.j, Iran, 1968.

1. Soil moisture levels: high, when two-thirds of available soil moisture at field capacity remained; medium, when one-third of available soil moisture remained; and low, when plants began to wilt.

2/ Fertilizer rates: 100 kg . N (ammonium nitrate) and 150 kg . P (concentrated phosphate) per hectare.

3/. Figures within a colum or line followed by the same letter are not slgnificantly different at the 5% level.

Tabie 49. Influence of irrigation and fertilization on yleld of cowpeas, RPIP, Karaj, Iran, 1968.

$1 /$ Soll motsture levels: high, when two-thirds of available soil moisturs at field capacity remained; medium, when one-third of available soil moisture remained; and low, when plants begen to wilt.

2/ Fertilizer rates: 100 kg . N (ammonium nitrate) andi $150 \mathrm{~kg} . P$ (concentrated phosrhate) per hectare.

3/ Figures within a colum or line followed by the same letter are not gignificantly different at the 5% level.

Walter J. Kalser - Pathologist Counterparts: Dariush Danesh Mahmoud Okhovat

[^1]of these viruses. Ninety-four per cent of the plants of a biennial weed (Melilotus sp.) which were indexed for virus in early spring as plants were resuming growth were infected with BYMV. All viruses infecting chickpeas are aphid-transmitted, but apparently not seed-borne. In field inoculation studies, the four chickpea viruses reduced seed yields from 79-99\% and mortal f.ty of inoculated plants ranged from $0-79,6$ depending on the virus iso ate and stage of growth at the time of infection. Chickpea bilght which infects all above ground portions of the plant is caused by the fungus Ascochyta rable1. The disease occurs sporadically in Iran, but can cause substantial losses, as it did in 1968, when envtronmental conditions were favorable for spread and disease development (late spring rains). Preliminary studies in the field blology of A. rabiei have shown that the fungus can survive in diseased plant tissue for an extended period of time under adverse environmental conditions. In greenhouse inoculation tests, a few chickpea selections, especially black-seeded types, have shown resistance to several 1solates of the fungus. A culture medium utilizing extracts of chickpea seed has been developed which results in abundant sporulation of the fungus, and spores produced on this medium have been used successfully in the inoculation tests. Studies are also being conducted on the effect of environmental conditions on growth, sporulation and survival of Ascochyta.

Lentils (Lens esculenta) were severely damaged at several locations by virus diseases. The viruses isolated from diseased lentils include AMV, BYMV, CMV, and PLRV. Bean yellow mosalc virus was found in severai lentfl-growing areas of Iran. Although CMV is more restricted in its distribution, it is capable of reducing lentil yields as much or more than BYMV. At Varamin BYMV and CMV were transmitted by aphids throughout a lentil variety trial and drastically reduced yields in most large-seeded lentil types, but several small-seeded lines (characteristic of types from Isfahan) showed a high level of fleld resistance to virus infection. Many of these small-seeded lentil types are also resistant to root rot under field conditions.

Determinations were made of the protein content of seed from virusinfected and healthy pulses. The protein content was invariably higher in seed from virus-infected plants, although seed yields were almost always much greater from healthy plants.

Papers and Publications

W.J. Kaiser, Dariush Danesh, Marimoud Okhovat, and Hossein Mossahebl. 1968., Diseases of Pulses (edible legumes) in Iran. Plant Disease Reporter 52(9) $\%$ 687-691.

Walter J. Kaiser and Louise V. Kaiser. 1968. The challenge of overseas work. Phytopethology News. Vol. 2, No. 7 and 8.
W.J. Kaiser, Dar Regional Pulse Im, oocurring in Iran.

Danesh, Mahmoud Okhovat, and Hossein Mossaheb1. 1968. ment Project. Diseases of pulse crops (edible legumes) Lranian Journal of Plant Pathology 4(3):2-6.

Beans (Phaseolus vulgaris)

Beans are one of the most important pulses grown in Iran. In the major pulse growing regions of the country, beans are infected by one or more viruses, including bean common musaic (BCMV), bean yellow mosaic (BYMV), cuoumber mosaio (CMV), and pea leaf roll. (PLRV). Under natural field conditions these viruses are transmitted by aphids, and all, except PLRV, are mechanically transmissible. Bean common mosaic virus is the only bean virus so far identified in Iran which is seed-borme.

The effect of virus infection on yield of three bean varieties was studied under field conditions at Karaj (Table 50). Bean plants were inoculated at the pre-bloom and full bloom stages of growth with one of the following four viruses: BCMV, BYMV, CMV, and PLRV.

Depending on the bean variety, size of the plant at the time of virus infection, and the virus isolate, plant growth was adversely affected resulting in yield losses up to 99.9%. Yields were generally reduced more when plants were infected while small, although yield of Wade bean infected with certain isolates of BYMV was less in plants infected at the time of flowering (Table 50). The percentage of protein in bean seed from Bountiful and Red Kidney bean plants infected at pre-bloom and full bloom with BCMV and BYMV was higher by $0.9-14.5 \%$ than in seed from healthy plants (Table 50).

Bean common mosaic virus appears to be the most widely distributed and economically important vimus disease of beans in Iran. The vimus, which is restricted in its host range to beans and closely related plants, is introduced into a bean field at planting time in seed which was harvested one or more years previously from virus-infected plants. Insects (aphids) are responsible for subsequent spread of the virus within and between bean plantings. Depending on various factors, including environmental conditions, BCNV may be spread rapidly by differenc aphid species from a few vimus-infected plants (originating from seed-borme infection) (Figure 1) to most or all plants in a planting.

Bean common mosaic virus may be introduced into a new bean planting in virus-infected seed which the Iranian farmers obtain from their previous year's harvest or from the local bazar, A study was initiated to determine the incidence of BCMV in bean seed from bazars in varlous bean growing areas of Iran. Sixty-one collections of white, red and pinto bean types were made from bazars throughout the country. The seed was planted a'i Karaj and observations were made on seed transmission and yield differences hetween healthy and virus-infected plants (Table 51). Seed collections fyom some areas were found to be heavily infected with BCMV (up to 19%), and seed yields reduced by 81% in virus-infected plants (Table 51). The results of this study indicate the importance of virus-free seed in preventing the initial introduction and subsequent spread of virus into a new bean planting and reducing yield losses resulting from virus infection.

Table 50. Bffect of four viruses on yield and per cent protein in seed from three bean varfeties in field inoculation tests at frIP.

Virus Isolate		Bountiful Bean						Red Kidney Bean						Wade Bean			
		Pre-Blocan ${ }^{\text {a }}$			Fall bloon			Pre-Blioom			Full bloom			Pre-Bloom		rull Blocm	
		Seed Yield (B) b	$\left\lvert\, \begin{gathered} 8 \\ \text { Decrease } \\ \hline \end{gathered}\right.$	Protein	Seed Yield $\left(\sigma_{2}\right)$ \qquad	pecrease	$\underset{\text { Protein }}{8}$	$\begin{gathered} \text { Seed } \\ \text { Yield } \\ (\mathrm{B}) \end{gathered}$	$\begin{array}{c\|} \Phi \\ \text { Decrease } \\ \hline \end{array}$	$\begin{gathered} \$ \\ \text { Protein } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Seed } \\ \text { Yeld } \\ (\mathrm{g}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ \text { Decrease } \\ \hline \end{array}$	$\begin{array}{\|} \infty \\ \text { Protein } \\ \hline \end{array}$	$\begin{gathered} \text { Seed } \\ \text { yeld } \\ (\mathrm{g}) \end{gathered}$	$\begin{array}{c\|} \nmid \\ \text { Decrease } \\ \hline \end{array}$	$\underset{y s i=2}{ }$ (B)	becrease
Heaithy	check	959	---	23.82	---	----	----	1952	---	22.58	\cdots	----	---	1902	---		
Ban 5	1	300	68.7	24.80	410	57.2	24.65	687	64.8	26.92	727	$\epsilon 2.7$	25.79	----	----	---	-
BAN	2	б	99.3	-----	4.22	55.9	-----	67	96.6	----	593	69.6	--	---	--		
BOW	3	9	99.0	--.--	736	23.2	-----	--	--.	-	-	----	--			---	-
Bury	1	840	12.4	-----	1057	+10.2 ${ }^{\text {d/ }}$	--..--	---	--	----	--.	\cdots	---	1408	22.2	1300	31.6
BXY	2	568	40.7	-----	843	11.8	-----	--	----	-----	--	--	---	783	53.8		55.
ON	1	17	98.2	-----	202	78.9	----	--									
PLiv	1	34	96.4	-----	---	---	----	1	99.9		--				--		\cdots
Unknown	1	124	87.0	25.78	434	54.7	24.15	119	93.9	27.26	739	62.1	24.04	13	99.5	---	-

3) Plants inoculated in pre-bloon and full blocx stages of growth.
b/ Seed yield (in grams) froa 100 plants.
c/ BOM - bean combon cosaic virus; BYM = bean yellow mosaic virus; ONV = cucumber mosaic virus; fLifl = pea leaf roll virus; Unkrown = unknom virus from Wade Bean.
If seed yfield from plants inoculated at full blom with ByN. Isolate 1, was greater by 10.20 than the healthy chack.

Figure 1. Bean plants infected from seed (left) with bean common mosaic virus are stunted and lighter green in color than healthy plants (right).

Observations in seed transmission of bean common mosaic virus and effect of virus infection on yield in sixty-one collections of bean seed fron bazars located in various areas of Iran.

Range in:

Bean Type a/	Number of Collections	Seed Transmission	Decrease in Yield
White	32	0-9.8	0-81.2
Red	20	0-19.8	0-65.9
Pinto	9	0-0.6	0-61.4

a/ Bean types were differentiated on color of seed.

From preliminary observations and studies there appears to be one or more strains of BCMV in Iran. It is extremely important to identify new strains of BCMV and their distribution because a bean variety which is resistant in one area may subsequently become susceptible in another due to the presence of a different strain of the virus. Studies are underway to screen isolates of BCMV from various regions of Iran on a series of bean varieties in order to differentiate strains of the virus.

The host range of PLRV which appears to be restricted to legumes includes several. pulses. Beans infected with this virus have been observed in the provinces of Western Azarbaijan, Fars, Khorasar, Khuzestan and Tehran. Infected plants which are severely stunted with shortened internodes have a bushy appearance. There is a pronounced twisting, thickening and downward curling of newly formed leaves and often a proliferation of the axillary buds (Figures 2 , 3, and 4). Pods generally fail to form on plants infected before flowering. Beans infected by PLRV (aphid vector) could easily be confused with those infected by curly top virus (leafhopper vector) (Figures 2, 3, and 4). Curly top virus (CIV) was recently found infecting sugar beets in Fars Province and is now spreading to other sugar beet growing areas of Iran. Althougn it is not known whether beans are susceptible to CIV in Iran, studies have been initiated to determine the reaction of beans and other pulses to CIV in the greenhouse and field.

Table 52. Transmission of pea leaf ioll virus to healthy broadbeans (Vicia faba) by three species of aphid wilch infest pulses in Iran.

Aphid Species	$\begin{gathered} \text { Aphids } \\ \text { per } \\ \text { Plant } a / \\ \hline \end{gathered}$	Number of Test Plants	Number of Diseased Plants	Transmission
Aphis craccivora	5	10	10	100
Aoyrthosiphon sesbaniae	2	$\therefore \quad 5$	2	40
Myzus persicae	5	29	0	0

a/ Aphids which had fed for at least five days on vimus-infected broadbeans were transferred with a crmel's hair brush to healthy croadbeans in leaf cages for a 72-hour inoculation feeding period.

Figure 2. Stunted bean plant (variety Wade) (center of photo) is infected with pea leaf roll virus -- a circulative (persistent), aphid-borne virus.

Flgure 3. Bean plant (local Iranian line) infected with pea leaf roll virus is severely stunted with twisted, thickened leaves which ourl doinnward.

Figure 4. The dwarfed bean plant (variety Wade) with proliferation of the axillary buds is infected with pea leaf roll virus.

Pea leaf roll vimis is transmitted in a circulative (persistent) manner by several aphids which feed on pulses. Two aphid species, Aphis craccivora and Aoyrthosiphon sesbaniae, were found to be vectors of the virus, but another, Myzus persicae, failed to transmit PLRV after repeated tests (Table 52).

The vector-virus relationships of PLRV with its aphid vector was studied in more detail with A. craccivora. Aphids require between $3-6$ hours to acquire PLRV from virus-infected broadbeans. The possibility of acquiring virus increases the longer a vector feeds on a diseased plant (Table 53). The length of the latent period (the period of time which passes between acquisition and first transmission of the virus by the vector) in A. craccivora has yet to be determined. Once aphids have acquired PLRV, they can tranismit the virus to healthy plants within minutes. The percentage of transmission increases with the time viruliferous aphids are allowed to feed on a healthy plant. Aphids at different stages of growth transmit PLifV, although it appears that the youngest immature aphids (nymphs) are less efficient vectors. The most efficient vectors were the apterae (wingless) adults (Table 54). Viruliferous aphids continue to transmit PLRV after shedding their skin (molting). It does not appear that PLRV is transmitted to the parthenogenetically produced progeny of viruliferous apterae or alatae (winged) adults of A. craccivora. Viruliferous adult aphids were placed on moist filter paper and the nymphs were transferred soon after being borm to healthy broadbeans, but no virus transmission resulted in 259 transfers.

Table 53. The length of time required for aphids (Aphis craccivora) to acquire pea leaf. r^{n}

$\begin{aligned} & \text { Acquisition } \\ & \quad \text { Period } \end{aligned}$	Number of Test Plants	Number of Diseased Plants	$\begin{gathered} \text { \% } \\ \text { Transimission } \end{gathered}$
10 minutes	33	0	0
1 hour	99	0	0
3 hours	73	0	0
6 hours	104	3	2.9
18 hours	30	8	26.7
48 hours	32	15	46.9

a) At the end of each acquisition fseding period, aphids were transferred to healthy broadbeans (1 aphid/plant) in leaf cages for 72 hours.

In order to determine the host range of PLRV, vimuliferous aphids (\dot{A}. oraccivora) were fed on test plants for periods up to 5 days. Plants found to br susceptible in the greenhouse inoculation trials were: Beans (Phaseolus vulgaris, varleties Bountiful, Blue Lake, Contender, Great Northern U.I. 123, Michelite, Pearl Green, Saginaw, Sanilac, Stringless Groen Refugee, Tendercrop, Tenderpod and Wade); peas (Pisum sativum, varieties Alaska, Asgrow No. 40, Big Ben, Dark Skin Perfection, Freezer 69, Gregory Surprise, Honey, Kelvedon Wonder, Laxiton Progress No. 9, Littile Marvel, Progress, Rondo); chickpea (Cicer arietinum); soybean (Glycine max); Galacta sp.; sweet pea (Lathyrus woratus); lentil (Lens

Table 54. Transmission of pea leaf roll virus by aphids (Aphis cracoivora) In different stages of development to healthy broadberats.

Stage of
Development
Alatae (winged) Adults
Apterae (wingless) Adults

Number of Test Plants 9	Number of Diseased Plants	Transinission
91	48	52.8
91	65	71.4
102	61	59.8
111	33	39.7

a/ After an acquisition leeding period of at'least three aays on virus-infected broadbeans, aphids were transferred to healthy test plants (1 aphid/slant) and allowed to fsed for 72 hours.
b/ Com. . ed results of Lour experiments.
esculenta) ; crimson clover (Trifolium incarnatum); red clover (乌 pratense); Persian clover (I'. resupinatum); subterranean clover (I. cubterraneum); and/ broadbean (Vicia faba).

In a variety trial located in Khuzestan (Southwestern Tran). two bean lines, one a white-seeded type (Accession Number 65-071-00517) and the other a Pinto type (Accession Number 65-157-00005), were highly resistant to BCMV and CMV under field conditions of high disease incidence. Plants in the Khuzestan bean trial were also infected with BYMv (Figures 5 and 6) and PLRV. Bean yellow mosaic virus infects many legumes in Iran, incluaing several pulses. Weeds are an important reservoir of different strains of the virus in various parts of Iran. Breeding activities designed to incorporate resistance to BIMV in pulses should not be neglected because this virus could become a limiting factor in the oultivation of beans and other pulses grown in Iran. At Karaj PLRV infected plants in 21% of 1292 bean lines included in yield and ribservation trials. In the Khuzestan bean trial PLRV infected plants in 98% of 78 bean lines.

Broadbeans (Vicia faba)
In Khuzestan broadbean yields may be adversely affected by foliar diseases caused by rust (Uromyces fabae) and chocolate spot (Botrytis fabae) and virus diseases, the most linpontant being BYMV and PLRV. The occurrence and spread of follar diseases is dependent upon frequent rainfall in the spring. Foliar diseases were widespreal on broadbeans in Khuzestan in the spring of ig66 when rains were abundant; foliar diseoses were nonexistent in 1968 when rainfall : was sparse. Virus diseases which are less dependent upon the weather for develupment and spread were widespread in broadbean p...antings in Khuzestan in 1967 arid 1968.

[^2]

Flgure 6. Mosaic symptoms which develop in bean leaves (variety Bountiful) infected with bean yellow mosaic virus may vary with different strains of the virus (left, isolate from broadbean; right, isolate from chickpea).

Bean yellow mosaic virus is the most important and widely distributed vimus infecting broadbeans in Khuzestan, but PLRV (Figures 7 and 8) is at times widespread and damaging to broadbeans in Khuzestan and Fars (Shiraz area). In broadbeans BYMV is seed-borne in a small percentage of the seed. Aphids subsequently transmit the virus within and between broadbean plantings. Observation were made in consecutive years on the percentage of plants which arose from virus-infected seed in a large broadbean planting in Khuzestan and the rate that subsequent spread of BYMV occurred in the planting (Table 55). Seed infection was less than 0.25% each year, but increased to more than 98% within four months of planting (Table 55).

Table 55. O'oservation of initial seed-borne infection in broadbean plantings (variety Algerian) by bean yellow mosaic virus (BYMV) in tests at Dezful, Iran for two consecutive years. Fields were planted in midOctober of each year and harvested the following May.

Year	Number of Plants	\% Plants Infected with BYMV			
		Date			
		November	January	February	March
1967	20,000	0.20	15.5	51.0	99.4
1968	15,000	0.16	_.-.- b/	---	98.0

a) The initial survey was made when plants had two to four leaves. Plants had to have mosaic symptoms on the first formed leaves to be tallied as seed-borne infection.
b/ Surveys were not made due to adverse weather conditions and floods.

The effect of virus infection with BYMV and PLRV on yield of broadbean was studied in greenhouse and field trials at Karaj (Table 56). Yields were always reduced more in plants inoculated before pods had formed. Bean yellow mosaic virus was seed-bome in 1.5, 0.25 , and 0% of the seed from plants inoculated at pre-bloom, full bloom, and post bloom, respectively. In these trials PLRV was not seed-borne. In field and greenhouse inoculation tests no resistance was found in 106 broadbean lines to BYMV or PLRV.

In the absence of abundant rainfall, yields of a few local broadbean varieties in Khuzestan, like Algerian, can be high even though 100% of the plants may be infected with BYMV, if virus infection occurs late in the growing season (after pod set). When rainfall is high and foliar diseases are widespread, yields of all broadbean lines are low. No field resistance to the most devastating foliar disease, chocolate spet, has been found in over 56 lines innludar in fiald thiale in Khlimocton

Figure 7. She stunted, chlorotic broadbean plant is infected with pea leaf roll virus., The dwarfed leaves of infected plants curl inward.

Flgure 8., Broadbean plant (variety Algerian) with dwarfed, chlorotic leaves, which curl Inward (center of photo) is infected with pea leaf roll virus. Flowering and pod formation are sparse or lacking in virus-infected plants.

Table 56. Effect of bean yelilow mosaic virus and pea leaf roll virus on yield of broadbean (variety Algerian) in ffeld and greenhouse inoculation trials at Kara3.

Stage of Plant Development When Infected	Bean Yellow Mosaic Virus.				ST, Pea Leaf Roll virus			
	Field		Greenhouse		Field		Greenhouse	
	$\begin{gathered} \text { Seed } \\ \text { Yield } \\ (\mathrm{g}) \end{gathered}$	$\%$ Decrease	$\begin{gathered} \text { Seed } \\ \text { Yield } \\ (\mathrm{g}) \end{gathered}$	\% Decrease	Seed Yield (g) $\mathrm{c} /$	Decrease	$\begin{aligned} & \text { Seed } \\ & \text { Yield. } \\ & (\mathrm{g}) \text { / } / \end{aligned}$	Decrease
Healthy Check	6776	--	283	---	2259	---	283	----
Pre-Bloom	4084	40.2	181	36.1	31	94.2	0	100
Full Bloom	5171	23.7	24	491.5	793	64.9	0-	100
Post Bloom $/$	6546	3.4	283	+ $+1.0 \mathrm{e} /$	610	72.9	83%	70.7

a) Seed yield (in grams) from 75 plants.
b/ Seed yield (in grams) from 15 plants.
c/ Seed yield (in grams) from 25 plants.
d/ Plants had started forming pods.
e/ Seed yleld was greater by 1.0% than the healthy check

Several leguminous weeds growing in and around broadbean plantings in Khuzestan are hosts and potential reservoirs of broadbean viruses. Both BYMV and PLRV have been isolated from the following weeds: yellow-flowered alfalfa (Medicago falcata), sweet clover (Melilotus sp.) and wild vetch (Vicia narbonensis).

Chickpeas (Cicer arietinum)

In addition to AMV, BYMV and CNV, chickpeas were also found to be a host of PLRV under natural field conditions (Figures 9 and 10). To determine the effect of virus infection on yield, mortality and protein content of chickpeas, the four viruses were included in a field inoculation trial at Karaj using a local chickpea variety. Yields were reduced from $79-100 \%$ by all viruses when infection occurred at both the pre-bloom and full bloom stages of plant development (Table 57). Mortality was highest when plants were infected before flowering. Protein content of seed from diseased plants varied with regard to that of healthy seed, and appeared to depend on the virus isolate and the stage of plant development at the time of infection (Table 57).

Weeds, vegetables and forage crops are hosts and important reservoirs of chickpea viruses. In the Karaj area sweet clover (Melilotus sp.), a biennial legume, is a major reservoir and overwintering host of BYMV (Figure 11). Sweet clover plants growing in irrigation ditches surrounding pulse plantings in Karaj were indexed for virus in early spring as plants were resuming growth. Over 94\% of these plants were infected with BYMV. Other legumes which are hosts of BYMV, In addition to sweet clover, include red clover (Trifolium pratense), wild vetch (Vicia peregrina) (Figure 12), and yellow tiefoil (Medicago lupulina) (Figure 13).

Alfalfa (Medicago sativus) is the most importa-t forage crop grown in Iran and is the main reservoir and overwintering host of AMV. Fulses, including chickpeas, which are grown near alfalfa plantings are often heavily infected by AMV which is transmitted by aphids from virus-infected alfalfa plants to adjacent pulse plantings. Another host of AMV is Trifolium rytidosemium.

Cucumber mosaic virus is probably one of the most important and widely distributed viruses infecting vegetable and field crops in Iran. Cucumbers (Cucumis sativus), squash and pumpkins (Cucurbita spp.), tomatoes (Lycopersicon esculentum), Persian clover (Trifolium resupinatum), and weeds, like Jimsonweed (Datura stranonium) (Figure 14) are hosts of CMV. Several strains of the virus occur in Iran, but not all strains infect pulses.

Chickpea blight, caused by the fungus Ascochyta rabiei, is a disease which attacks the foliar portions of the plant. Blight occurs sporadically in Iran and is restricted to areas which have late spring rains. Moisture is required for infection, disease development, and spread of the pathogen in a chickpea planting.

Figure 9. Chickpea plants (left) infected with pea leaf roll virus are severely stunted and chlorotic when compared to heal thy plants (richt) of the same ace.

Figure 10. Chickpea plant infected with pea leaf roll virus (right) is stunted and chlorotic. The apical portion of infected plants stops growing and there is a proliferation of the axillary buds; healthy plant, left.

Table 57. Effect of four viruses on yleld, mortality and protein content (seed) of chickpea (variety Ghazvin)

	Pre-Bloom ${ }^{2 /}$				Full Bloom			
Virus b/ Isolate	Seed Yield (g) c	Decrease	Mortality	$\begin{gathered} \notin \\ \text { Protein } \end{gathered}$	$\begin{gathered} \text { Seed } \\ \text { Yield } \\ (\mathrm{g}) \end{gathered}$	Decrease	$\begin{gathered} \% \\ \text { Mortality } \\ \hline \end{gathered}$	$\begin{gathered} \mathscr{8}, \\ \text { Protein } \\ \hline \end{gathered}$
Healthy check	2015	---	---	20.20	---	----	---	-----
ANV $\quad 1$	13	99.4	65.3	19.14	272	86.5	0	20.78
AMV 2	18	99.1	64.0	19.59	344	82.9	1.3	22.32
BYMV 1	90	95.5	40.0	25.50	268	86.7	0	19.56
BYMV $\quad 2$	211	89.5	4.2	23.19	419	79.3	8.7	20.09
BIMY , ${ }^{\text {a }}$,	8	99.6	45.0	----	302	85.0	19.7	21.73
BYMV $\square 4$	0	100.0	78.7	----	298	85.2	9.2	21.23
CMV $\mathrm{Cl}^{1} \mathrm{~L}$	+ 7	99.7	59.8		257	87.2	2.9.	20.51
avv $\quad \square \square \leqslant \square$	\% 45	97.8	36.8	19.47	273	86.5	16.5	25.00
PLRV , , 1 ,		99.9	99.0	----	117	94.2	--	24.76

9. Plants inoculated at the pre-bloom and full bloom stages of growth.
b/ AMV = alfalfa mosaic virus; BYMV = bean yellow mosaic virus; CMV = cucumber mosaic virus; PLRV $=$ pea leaf roll virus.
c/ Seed yield (in grams) from 100 plonts.

Figure 11., Mosaic symptoms in Melilotus leaf (right) are characteristic of those produced by bean yellow mosaic virus; healthy leaf left. Melilotus is an important reservoir and overwintering host of this virus.

Figure 12. Mosaic symptoms in leaflet of wild vetch, Vicle peregrina, infected with bean yellow mosaic virus.

FIgure 13. Mosalc symptoms in leaves of yellow trefoll, Medicago lupulina, Infected with bean yellow mosale virus.

Figure 14. Leaf of Jimson-weed (Datura stramonium) Infected with. oucumber mosale virus (right) is mottled and deformed; healthy. 1eaf (left).

Isolates of A. rabiel have been collected from diseased chickpeas from various areas of Iran. Among isolates there is a great deal of variation in growth rate, sporulation, sectoring and pyenidial formation (Figure 15). 'In nature Ascochyta seems to survive for extended periods of time under adverse environmental conditions on plant debris or in seed (Figure 16). In preliminary field experiments the fungus has survived a severe winter with temperatures below $-10^{\circ} \mathrm{C}$ in naturally infected chickpea tissue maintained outdoors in a weather station shelter or on the soil surface.

Large quantities of spores were needed before inoculation studies could be carried out in the greenhouse and field. The fungus was grown on different culture media and sporilated most abundantly on a medium made from the extracts of white chickpea seed (Table 58; Figure 17).

Several chickpea lines were screened in greenhouse inoculation trials to find sources of resistance to Ascochyta. Many of the large-seeded, white chickpea types were very susceptible, although a few black-seeded types showed some resistance to A. rabiei. Additional testing in the field and greenhouse with more isolates of Ascochyta will be required before resistant lines can be turned over to the plant breeder.

Lentils (Lens esculenta)

Lentils are infected by several viruses under natural field conditions in various regions of Iran. Viruses isolated from diseased lentils are AMV, BYMV, CMV, and PLRV. Although BYMV appears to be the most widely distributed and potentially damaging lentil virus, CNV could become a limiting factor in lentil production in some areas, like Varamin, where large reservoirs of the virus exist in weed and vegetable plants. A lentil yield trial at Varamin (located 40 km south of Tehran) was heavily infected and severely damaged by BYMV and CMV (Figures 18 and 19). Most plants in many of the large-seeded lentil lines were diseased, and yields from these virus-infected plots were drastically reduced, whereas many of the small-seeded lentil lines (characteristic of Isfahen lentil types) produced good yields and exhibited high levels of field resistance to virus infection (Table 59). All lentil lines included in the Varamin field trial were inoculated in the greenhouse with lentil isolates of BYMV and CNV in two separate tests. Several of the small-seeded lentil lines showed a high degree of resistance to one or both oi the viruses, even when reinoculated on several occasions in each inoculation test (Table 59). Al though the small-seeded types are not as desirable as the large-seeded Ines in the market place, they should be included in the lentil breeding program in Iran to incorporate virus and root rot resistance into the highly susceptible, but desirable, large-seeded lentil types.

F1gure 15. Isolates of chickpea blight; Ascochyta rabiel, after 15 days growth at room temperature on potato dextrose agar.

Figure 16. Chickpea pods infected under natural field conditions with Ascochyta rabie1, blight of chickpea.

Table 58. Growth and spomulation of one isolate of Ascochyta rabie1 in petri plates containing different culture media for 13 days in the dark

Figure 17. Effect of culture medium (potato dextrose agar, left; chlckpea seed extract agar, right) on growth and sporulation of one isolate of Ascochyta rabiel after 15 days growth in the dark at room temperature.

Table 59. Effect of bean yellow mosaic virus (BYMV) and cucumber mosaic viru (CNV) on disease severity and seed yields in 30 lentil lines inclu in an advanced yleld test at Varamin in 1968, and subsequent react of these lines to lentil isolates of each virus in greenhouse inoc tion tests.

Lentil Plot No. Varamin 1968	Accession No.	Scurce	Disease Rating		
			Field ${ }^{\text {a/ }}$	Gree.thouse b/	
			Virus Symptoms	BYMV CMV	Yleld $\mathrm{kg} / \mathrm{ha}$
7019	33-071-10445	Isfahan	1	1/14 c/ $2 / 12$	1166
7022	33-071-10885	Isfahan	2	3/14 $0 / 14$	994
7013	33-071-10439	Jiroft	2	$6 / 15 \quad 1 / 14$	979
7014	33-071-10040	Isfahan	2	$5 / 13 \quad 5 / 14$	957
7018	33-071-10444	Isfahan	2	7/14 2/16	952
7023	33-071-11136	Isfahan	2	3/14 5/15	931
7017	33-071-10443	Isfahan	2	11/16 4/15	912
7016	33-071-10442	Isfahan	2	$4 / 13 \quad 2 / 13$	903
7021	33-071-11139	Isfahan	2	4/15 4/15	880
7012	33-071-10438	Isfahan	2	$1 / 15 \quad 3 / 15$	824
7020	33-071-10903	Isfahan	2	$4 / 15 \quad 3 / 15$	809
7015	33-071-10441	Isfahan	2	2/14 $6 / 15$	770
7024	33-071-11138	Isfahan	3	9/15 6/16	617
7025	33-085-11174	Lebanon	6	12/15 9/14	284
7001	33-071-10408	Ahar	4	4/16 5/15	278
7030	33-071-11179	Iran	8	12/15 13/15	276
7026	33-071-11175	Arasbaran	7	12/15 12/15	231
7007	33-071-10428	Moghan	5	11/15 14/16	206
7005	33-071-10421	Ghazvin	5	10/15 10/14	201
7003	33-071-10411	Moghan	6	12/13 12/15	180
7004	33-071-10413	Tabriz	5	$2 / 15 \quad 10 / 14$	178
7027	33-071-11176	Azarbaijan	6	12/15 13/15	162
7028	33-039-11177	Cyprus	8	10/14 11/15	152
7011	33-071-10437	Ghazvin	8	13/14 12/14	139
7010	33-071-10436	Ghazvin	6	9/14 13/14	125
7006	33-071-10424	Moghan	7	10/14 9/15	124
7002	33-071-10409	Ardabil	5	12/15 10/15	120
7009	33-071-10435	Ghazvin	7	$11 / 15 \quad 11 / 14$	111
7029	33-071-11178	Azarbailjan	7	$12 / 14 \quad 11 / 14$	106
7008	33-071-10432	Ardabil :	7	14/15 14/15	96

Lentil plots in the field were graded for disease (virus symptoms) on a scale of 1-9: $1=$ no disease; $9=100 \%$ disease.
b/ Seeds of each lentil line were planted in clay pots containing pasteurized soil in the greenhouse and were inoculated with lentil isolates of BYMV and CMV. In each inoculation test, plants not showing symptoms were reinoculated 2-3 times and at the termination of the test, plants not exhibiting virus symptoms were back inoculated to susceptible indicator test plants.
0/ Combined results of two inoculation experiments, Numerator $=$ number of plants infected, and denominator = total number of plants inoculated (No. infected/No. inoculated).

Figure 18. Effect of virus infection in two lentil plots included In an advanced yield test at Varamin in 1968. Plot 7012 (left) was almost free of disease and yielded $824 \mathrm{~kg} / \mathrm{ha}$, whereas in plot 7011 (right), over 80% of ti.e plants were infected with virus and the yield was $139 \mathrm{~kg} / \mathrm{ha}$.

Figure 19. Lentils grown in Iran are infected by several viruses, some of wh!ch severely reduce plant growth and seed yields. The effect of virus infection with lentil isolates of bean yellow mosaic virus (center) and cucumber mosaic virus (right) can be observed when compared to a healthy lentil plant (left) of the same age.

ENTOMOLOGY

Karaj College
S. W. Wilson

Dr. Esmaeli
Karim Kamali
G. Rassoullian

Plant Pest Control Research
Institute (Tehran)
Dr. Omidvar - Nematologist

Summary

During 1968 the RPIP/USDA Jr. Scientists were transferred to Plan Organiza. tion funding and Karaj College control. While they are still assigned to the RPIP/USDA they are under the supervision of Dr. Esmaeli of the Plant Protection Department. The College has taken additional steps to support the Entomology activities by providing the part time services of Dr. Morad-Saghi who is head of the toxicology branch of the Pest Control Department and the advisory services of Dr. Sepasguzarian, Vice Dean of Agriculture. Mr. Morad-Saghi will make arrangements for pesticide residue studies on the pulse crops and is now setting up laboratory facilities for this work at Karaj. Dr. Sepasguzarian has been very active in pulse work on storage insect control and mite trials.

Initial recommendations have been made for the pulse crops on mites, seed corn maggot, old world bollworm, aphids, thrips, and leafhoppers.

Varietal resistance trials have been conducted on cowpeas for bruchid resistance. This preliminary soreening has shown promise. The reported resistance to bruchids of a lentil variety from Hamadan (Western Iran) is being investigated.

Nematology trials in the greenhouse and field have indicated partial resistance in a few varieties of all the pulse crops. They have also determined that all pulse crops are susceptible to nematode attack; and conducted nematooid trials on all the pulse crops grown in Iran. Nematocide trials indicate that several nematocides will give acceptable control of pulse nematodes.

Pesticide Recommendations

Recommendations are based on results of field trials from 1965 through 1968 The pesticides listed have been selected on the basis of effectiveness, availability and safety. While the pesticides listed are considered to be the most effective to date, they are interim and not final recommendations.

The problem of pesticide residues has caused a great deal of concerm to both the Iranian research entomologists and the RPIP entomologist. Since in many parts of Iran the custom is to feed all crop thrashings to sheep and goats, it has been stressed that these animals, when used for dairy or meat purposes must not be fed the pulse trash when treated with certain insecticides.

Crop	Pest	Pesticide	Rate	Remarks
Lentils	aphids	Dimethoate or Cygon or Rogor	$250 \mathrm{~g} / \mathrm{ha}$	Do not feed treated plants to livestock.
		Malithion	$1 \mathrm{~kg} / \mathrm{ha}$	
Lentils	thrips	Dimethoate or Cygon or Rogor	$250 \mathrm{~g} / \mathrm{ha}$	Do not feed treated plants to ilvestook.
		D.D.T.	$500 \mathrm{~g} / \mathrm{ha}$	Do not feed treated plants to livestock.
		Malithion	$1 \mathrm{~kg} / \mathrm{ha}$	4-4.
		Diazinon	$600 \mathrm{~g} / \mathrm{ha}$	
Chickpeas	old world bollworm	D.D.T. + Lindane	$\begin{aligned} & 1500 \mathrm{gr}+ \\ & 450 \mathrm{~g} / \mathrm{ha} \end{aligned}$	Do not feed treated plants to livestock.
		Toxaphene	$2.5 \mathrm{~kg} / \mathrm{ha}$	Do not feed treated plants to livestock.
	23	Carbaryl or Sevin	$1 \frac{1}{2} \mathrm{~kg} / \mathrm{ha}$	
		Supracide	600 gha	Control may not be adequate under heavy infestations.
Cowpeas	aphids	Dimethoate or Cygon or Rogor Diazinon Malithion	$\frac{1}{2} \mathrm{~kg} / \mathrm{ha}$	Do not feed treated plants to livestock.
			$600 \mathrm{~g} / \mathrm{ha}$	
			$1 \mathrm{~kg} / \mathrm{ha}$	L\%

Insect Occurrence, 1968
During 1968 a number of pulse pests infestations were recorded. In most locations the infestations were not of economic importance but in scattered areas moderate damage was reported. In order of their appearance the following pests occurred in 1968.

Seed corn maggot Hylemya cillcrura adults were observed on the Entomology dry bean plots and chickpea plots on April 28. By April 29 damage ranged from 33 to 44% in the dry bean plantings. By May 15 warm weather had reduced the damage to 2% or less.

Thrips Caliothrips impurus were observed on lentils as early as May 2 in Karaj and Gazvin, but populations did not become significant until June 3. Even at the peak of the infestation no apparent damage occurred.

Leaf miner Liriomyza congesta appeared on all chickpea plots in Karaj on Ma 5. Defoliation ranged from 9 to 20% by May 9th. In the Azarbaijan area scatter field suffered over 90% defoliation. Light danage was also reported in the Isfahan area.

Bollworm Heliothis armigera was observed for the first time on Karaj chickpeas on June 10 and in Varamin on the l2th of June. In the entomology chickpeas in Meshed they were reported as early as May 18. Damage was the most severe in the Meshed area with losses up to 19% recorded.

Beet army worm Spodoptera exigua was reported by July 1 in Karaj, but numbe were extremely low. No serious infestation developed in the areas of pulse production.

Bruchids Bruchus lentis were observed in Karaj and Gazvin on lentils on July 7 th and 8 th. Numbers were low and large populations did not develop.

Leafhoppers Empoasca fabae were recorded in trace numbers in Karaj in early May, however, only light pepulations occurred at the peak of infestation on July 17.

Aphids Acyrthosyphon sesbaniae were observed during every month of the year in the Karaj area. On winter seeded lentils they were actually present on lentils standing in snow. Populations never reached economic numbers at any tim during the growing season.

Two spotted mites Tetranychus bimaculatus were recorded in the Karaj dry bean plots, and mungbean plots on July 31. By August 6 populations were heavy, but the infestation occurred too late to cause any apparent loss to either the . dry beans or mungbeans.

Bruchids Callosobruchus maculatus appeared August 2 in the pulse project cowpeas in Kara.j. Four bruchids $/ 100$ sweeps were counted at the peak of the infestation. Bruchids damage by harvest time was less than 1%.

Bean butterfly Lycana baeticae was recorded in late August, but never was present in more than trace numbers.

Pestioide Trials of Significance

Table 60. Effect of four insecticides on aphids Acyrthosiphon sesbaniae population on cowpeas, RPIP, Karaj, Iran, 1968.

i) Aphids were counted on 100 cowpea leaves per treatment.

- Significant at 5% level.
+ Signifioant at 1\% level.
Although the reduction in aphid populations was highly significant, the ovel all populition level was too low to cause significant reduction in the seed welght.

Aphids have not been a serious problem in project plots since the project work began. However, the exception to this has been disease transmission on dry beans, broadbeans, and cowpeas. In addition, scattered reports of high populations have been recorded in areas of pulse production in Khuzestan and Azarbaijan.

Adequate plant protection has been provided RPIP plots using dimethoate, diazinon, or malathion.

Table 61. Effect of five insecticides against aphids Acyrthosiphon sesbaniae on lentils, RPIP, Karaj, Iran, 1968.

(1) Number of aphids were counted on 10 single plants per plot x four replications.

+ Significant at 5\% level.

Although populations were not high enough to cause a reduction in yield on the untreated plots the reduction in treated populations was significant. Heavy rains occurred within 24 hours after spray application, which may be responsible for the lower aphid mortality. Aphid control has been quite adequate using any. of the first three insecticides listed in the table above.

Table. 62, Effect of Ifve Insecticides against thrips on lentils, RPIP, Karaj, 1968.

(1) No. of thrips were counted on 10 single plants per plot x four replications.

+ Slgnificant at 18 level.

Heavy rain occurred the day following spray application, which may have resulted in the low thrip mortality.

Table 63. Effect of four insecticides on thrip populations on lentils, RPIP, Ghazvin, 1968.

(1) No. of thrips were counted on 10 single plants per plot \mathbf{x} four replications.

+ Signifioant at 5% level.
+ Slgnificant at 1% level.

It has not been determined whether thrips in general are a serious pest of lentils. In addition the rather erratic population levels recorded are quite characteristic of thrips, and while the data obtained has some value it should be supported by further work.

Table 64. Effect of Insectlcides on Hellothls armigera (bollworm) on chickpeas, RPIP, Meshed; Iran, 1968

(1) 400 chickpea pods were examined for Heliothis damage from each treatment. Spray applications were $\overline{15}$ days apart.
+t Significant at 1% level.

Heliothis armigera has been observed causing severe damage in Iran to chick. peas in some areas of production every year. Durirg years of high infestation it is not unusual to record damage at over 90% of the chickpea crop in scattered areas. Control results in the entomology plots and crop protection sprays have indicated damage can be kept to a minimum using D.D.T., Iindane, Toxaphene, and Carbaryl at recommended rates. Time of application is quite important, however, as larvae already inside seed pods are not controlled by sprays. In addition, new piant growth and the length of insect attack very often may necessitate more than one spray application.

Table 65. Effect of date of planting and soil temperature on seed corn maggot, Hylemia cilicrura, damage in dry beans, RPIP, Karaj, Iran, 1968.

Date of Planting

March 31, 1968
April 14, 1968
May 1, 1968
May 15, 1968

Soil temperature 7 cm . depth (1)
$10^{\circ} \mathrm{C}$ Damage (2)
44^{++}
$18^{\circ} \mathrm{C}$
29^{++}
$18^{\circ} \mathrm{C}$
$22^{\circ} \mathrm{C}$
27^{++}
2^{++}
(1) Soil temperature: Averages 7 days before and 7 days after planting.
(2) Sample: 100 newly emerged plants pulled from each treatment and number of damaged plants were counted.
++ Significant at 1% level.
Information from date of planting trials indicate acceptable control can be obtained on dry beans by utilizing the most advantageous date of planting. Soil temperature of $22^{\circ} \mathrm{C}$ result in a lower population of seed corn maggot H. cilicrura, and also in a rapid growth of the bean plant minimizing the effect of the maggot attacks. This date of planting also occurs within the period of time which results in maximum bean production as reported by Dr. Horner and M. Mostahidi in trials conducted by the RPIP soils agronomists.

Table 66. Effect of seed treatment before planting using two insecticides on the seed corm maggot Hylemia cilicrura on dry bean plots, RPIP, Karaj, 1968

Pestiolde
Dieldrin $0.33 \mathrm{gr} / \mathrm{kg}$ seed
Indane $1.25 \mathrm{gr} / \mathrm{kg}$ seed
Check

No. of Larvae per Treatment (1) Reduction
52^{+}
46.5

85
12.3
(1) Data was taken from 100 newly emerged plant roots.

+ Significant at 10% level.
Investigations will be continued to acertain control possibilities using seed treatments. Preliminary results, while not giving acceptable control have Indicated further investigations should be conducted.

Figure 20. Seed corn maggot (Hylemia cilicrura) pupae and adults.

Figure 21. Various stages of seed corm maggot (Hylemia cilicrura) damage on beans (Phaseolus vulgaris). Healthy plant on right.

Table 67. Effect of pestioldes on mite populations, Tetranychus bimaculatus, on dry beans, RPIP, Karaj, Iran, 1968.

No. of mites per treatment (1)

Pesticide	5 days After Spray	8 days After Spray	$\begin{aligned} & 12 \text { days } \\ & \text { After Spray } \end{aligned}$
Kelthane $1 \mathrm{~kg} / \mathrm{ha}$	160^{+}	53^{++}	139^{++}
Schering $11431 \mathrm{~kg} / \mathrm{ha}$	126^{+}	100^{++}	$209{ }^{++}$
Tedion V. $18 \mathrm{l} / 2 \mathrm{~kg} / \mathrm{ha}$	$221+$	252^{++}	$150{ }^{+4}$
Ethion $600 \mathrm{gr} / \mathrm{ha}$	200^{+}	269^{++}	663^{++}
Check	870	879	1289

Pesticide	Total	\% Reduction	$\begin{aligned} & \text { Seed } \\ & \text { Wt. Gr. } \end{aligned}$
Kelthane $1 \mathrm{~kg} / \mathrm{ha}$	351^{++}	88.4	31780
Schering $11431 \mathrm{~kg} / \mathrm{ha}$	435^{++}	85.6	28900
Tedion V. $18 \mathrm{l} / 2 \mathrm{~kg} / \mathrm{ha}$	623^{++}	79.4	29360
Ethion $600 \mathrm{gr} / \mathrm{ha}$	1112^{++}	63.3	25860
	3038 ,	-	27030

```
(i) Sampling: 25 leaves per plot \(x\) four replicatings using \(1.5 \mathrm{~cm}^{2}\) leaf sections.
+ Significant at \(5 \%\) level.
+ + Significant at \(1 \%\) level.:
```


Figure 22. Symptoms of mite (Tetranychus bimaculatus) damage on leaves of beans,
(Fhaseolus vulgaris).

Table 68. Effect of pesticide on mite populations, Tetranychus bimaculatus, on mungbeans, RPIP, Karaj, Iran, 1968.

No. of Mites per treatment (I)

5 days after Spray 13 days after Spray

Pesticide $\quad \begin{aligned} & \text { No. of } \\ & \text { Mites }\end{aligned}$	$\begin{gathered} \mathscr{6} \\ \text { Reduction } \end{gathered}$	No. of Mites	$\begin{gathered} \% \\ \text { Reduction } \end{gathered}$	\% Total Reduction
Schering $11431 \mathrm{~kg} / \mathrm{ha} 5^{++}$	94.1	23^{++}	80.0	87.0
Kelthane $1 \mathrm{~kg} / \mathrm{ha} \quad 8^{+}$	90.5	35^{++}	69.5	80.0
Ethion $600 \mathrm{~kg} / \mathrm{ha}$. 17^{+}	80.0	21^{++}	81.7	80.8
Tedion V. $181 / 2 \mathrm{~kg} / \mathrm{ha}$, 24^{++}		19^{+}	83.4	77.1
Dimethoate $600 \mathrm{gr} / \mathrm{ha}^{\text {a }}$, 23^{++}	2.9	84^{+}	26.9	48.9
Check 85		115		

(1) Sampling: 25 leaves per plot x four replications with 1.5 cm ? leaf sections sampled per leaf.

+ Significant at 1% level.

Mite attacks have caused severe defoliation on mungbeans and dry beans in the Karaj and Varamin areas. However, populations have generally reached a peak after the crops have matured to a point where damage does not take place or is minimal. In the event of earlier infestatiors results indicate mites can be controlled with Kelthane, Tedion, or Ethion.

Additional trials were conducted on bruchids (ㄷ. macalatus, \underline{B}. lentis), aphids (A. sesbaniae), bollworm (H. armigera), and leaf miner (L. congesta) at locations in Karaj, Varamin, and $\bar{G} a z \overline{v i n}$, but no significant results were recorded.

Crop Production

Protection was provided the other disiplines at Karaj for control of leaf miner (L. congesta), thrips (C. impurus), aphids (A. sesbaniae), mites (T. bimaculatus), beet army worm (S. exigua), leafhoppers (E. fabae), and bollworm (H. armigera). However, with the exceptions of aphids (A. sesbaniae) where control was needed to help reduce the disease incidence for the plant pathologist on cowpeas, on chickpeas and the thrips (C. impurus) on lentils it is doubtful that protective sprays were needed. Control results were good with the exception of leaf miner (L. congesta) where results were poor.

Stored Pulse Pests

The stored cowpeas in the puise project storage were attacked by bruchids (C. maculatus) and C. (chinensis). Fumigation was conducted using methyl bromide at $1 \mathrm{lb} / 1000$ cubic feet of storage. Results were good.

Storage areas checked in western, northwestern, and central Iran showed losses ranging from 1 to 45% of the stored cowpeas and lentils. Overall average of the damage was estimated at approximately 9%.

Initial screening for varietal resistance to C. maculatus was conducted using 10 varieties of mungbeans and 10 varieties of cowpeas.

One hundred bruchids C. maculatus were placed in 50 grams of seed, which was put in small baby food jars. The jars were kept at a constant $80^{\circ} \mathrm{F}$ and 80% humidity. Each treatment was replicated twice.

A second and third screening were conducted with the same technique except for bruchid populations used.

There were four replications for both the second and third screening. In the 2nd screening, 20 males $\times 20$ females were placed in each replication. For the 3 rd screening, 25 males x 25 females were placed in each replication.

Observations indicate that the number of eggs laid on each variety was approximately the same. However, the larvae failed to develop to the pupal stage to a much greater degree in the Alabama, Dasht Sar Amol, and FAO varieties.

It appears that there is a certain degree of resistance to C. maculatus in some varieties although inconsistencies in the results require fürther Investigation. Whether this resistance will hold up in the field and storage remains to also to be clarified in further testing.

Additional screening will be conducted on other varieties as well as the varieties already tested.

The following table tabulates the initial screening
Table 69. Differences in emergence of first and second generations of brualide (C. maculatus) on several varieties of cowpeas and mungbeans, RPIP, Karaj, Iran, 1968.

First Screening

Cowpea Varieties	Total lst Generation	Total 2nd Generation	Mungbean Varieties	Total lst Generation	Total 2nd Generation
Mississippi Silve	5	1	AYF 8002	85	209
Alabama Brown	14	1	AYI 8005	83	112
Black Eye No. 5	15	12	AYI 8007	6	0
South African	52	2	AYT 8010	30	16
Early Red	56	1	AYT 8012	41	162
Dasht Sar Amol	65	1	AYP 8015	97	222
FAO	82	6	AYT 8018	80	157
Cowpea Meshed	89	65	AYT 8019	1	0
Soils 195	132	61	AYT 8021	54	122
Early Ramshorn	309	434	AYT 8023	20	95

Second Screening

Cowpea Varieties	Total adults first generation	Total adults second generation
Meshed	164	949
AYT 81	167	703
Early Ramshorn	13	76
AYT 75	179	1079
Alabama Brown	2	1
PYT 18	39	369
Var. 195 Soils	225	1211
PYT 47	95	1600
Early Red	$\bigcirc 27$	323
Dasht Sar Amol	0	0
FAO	$\bigcirc 0$	0

Third Screening

Cowpea Varieties
Meshed (check) Alabama FAO
Dasht Sar Amol

Total adults first generation

Total adults second generation
\% Reduction from oheck variety

Figure 23. Adult bruchid (Callusobruchus maculatus).

Figure 24. Damage to stored pulses by bruchids, (Callusobruchus maculatus).
Top, cowpeas; bottom, mungbeans.

VARTETAL IMPROVEMENT

RPIP
K. H. Evans, P. H. van Schaik
V. R. Gadwal, R. K. J. Narayal
D. N. Sa,inani, K. I. Jagiasi,
H. L. Craablani, V. K. Madan, and S. R: Dass

AICPP/IARI
I. M. Jeswani
S. P. Singh

Germpla'sm

The germplasm collection has been increased by introduction and collections The total collection is indicated in the table below.

Crop	Exotic	Indigenous	Total	Countries Hepresented
Cicer arietinum (Chickpea)	2374	1303	4177	24
Cajanus cajan (Pigeon Pea)	108	5130	5244	17
Fhaseolus aureus (Mungbeans)	1074	526	1647	15
Phaseolus mungo (Urdbean)	---	310	310	1
Vigna sinensis (Cowpea)	707	723	1434	49
Lens esculenta (Lentils)	743	415	1184	
Plsum sativum (Peas)	-	407	407	1
Lathyrus sativus (Khesari)	87	752	839	1

The chickpea (Cicer ardetinum) collection has been reduced by removing duplicates and bulking similar accessions from identical sources. Good crops of this collection have been grown at Delhi, Hissar, Ludhiana, Gurdazpur, Abohar, Pant Nagar, Varanasi, and Jabalpur. The Hissar and Gurdazpur locations have provided excellent opportunities for screening for chickpea wilt resistance.

Chickpea germplasm (43 accessions) was sent to Lima, Perm at the request of Dr. Eddie Echandi.

Two strains of chickpea were obtained from Israel via RPIP/Iran, with reported resistance to chickpea blight (Ascochyta rabeif) (see Patriology section)

Germplasm of pigeon peas (Cajanus cajan) was grown at Hyderabad in 1967-68 season and a good supply was obtained in addition to agronomic data. Bruchid infestation reduced the seed supply in storage, but seed was furnished for four locations in 1968-69; Hyderabad (A.P.), Varanasi (U.P.), Jabalpur (M.P.) and Kampala, Uganda.

In addition partial sets of seed were sent to Pant Nagar (U.P.), Orissa, (Weut Bengal), and Senegal, West Africa.

The Phaseolus mungo (Urd bean) and Phaseol us aureus (mungbean) germplasm and selections were planted at Delhi, but due to nematodes, disease and other problems, very little seed was obtained. The remaining seed will be divided between two locations in 1969 fir seed increase to fill seed requests.

Germplasm of Vigna sinensis (Cowneas) was planted at IARI, Delhi and suffered from problems similar to Urd and Mungbeans, but produced somewhat more seed. Partial sets of cowpea germplasm were also grown at Pant Nagar, Jabalpur, Lurhiana and Hissar. Seed was obtained from Pant Nagar to replenish seed stocks in storage. Cowpea germplasm was also distributed to Thailaiio, Vietnam, and Senegal, West Africa.

Lens esculenta (Lentil) germplasm was planted at Ludhiana (Funjab), Berhampore (West Bengal) and Delhi, A Lentil strain reported to be bruchid resistant was obtained from a Hamadan merchant through RPIP/Iran and is being tested for resistance (see Entomolcgy section).

Lathyrus sativus (Khesari) was planted in Delhi and Jabalpur. Selections were made in the low neurotoxin lines and crosses were made to study the inheritance of neurotoxin soduction.

Seed of five species of beans (Phaseolus vulgaris) were obtained for Dr. Bhaduri at Burdvan (West Bengal). Small samples of other seeds were also sent to other locations.

All-India Coordinated Yield Trials

These trials, which include varieties, released or considered for release, by various state agencies, were continued essentially unchanged.

The Plant Breeding Working Committee decided the varieties and locations during the annual workshop conference. The following varieties and locations were planned:

Rabi 1967-68
Ch1ckpeas
Lentils
Peas

22 varleties
11 varieties
6 varieties

18 locations
10 locations
7 locations

Kharif 1968

Pigeon peas		
\quad early maturing	6 varieties	21 locations
\quad medium maturing	10 varieties	23 locations
\quad late maturing	8 varieties	23 locations
Mungbeans	14 varieties	35 locations
Urd beans	16 varieties	34 locations
Cowpeas	10 varieties	23 locations

The results for 1968 followed the same trend as in previois years. Yields were generally low and often extremely variable (Tables 70 to 75). The statistical analysis was performed by Mr. Daljit Singh, AICPP statistician.

It would in many respects be better to limit these trials to only those varieties and strains which are promising for superior performance rather than continue testing present varieties year after year. It would also be better to limit the number of locations to only those which are able to look after them and provide meaningful data. At present only very few stations return reliable data. By March 1968, out of 75 trial locations only 28 had returned data. At a large number of stations the trials are planted but because of lack of irrigation, poor seedling emergence, low soil fertility, severe insect or disease occurrence the data are either not submitted or are sent in without sufficient information to allow proper interpretation.

A set of uniform data sheets and background information forms were developed and included with seed shipments to facilitate the taking of data and having them returned to the AICPP coordinating office.

Other Activities

Germplasm of mungbeans, urd ljeans, cowpeas, and chickpeas were planted in March at Delhi for evaluation for the short 60-70-day season between rabi harvest and kharif plantings. The cowpea material did not even begin to bloom in the time available and the chickpea lines died (probably due to salinity and wilt). A considerable number of line and plant selections were made in the mungbean germ. plasm. These were planted again in the regular kharif season and will be evaluated at one or more locations in 1969.

Several very early maturing strains of pigeon peas were selected from the germplasm. These were increased and are to be included in 1969 yield trials. Most outstanding among these were P4758, P4785 and P4839. In the 1968-69 season a study was started to determine the amount of natural crossing, an important consideration in maintaining purity in breeding material. Crossing work was also started in this crop to combine various desirable characteristics with earliness.

Crosses were made in chickpeas to study inheritance yield components and other factors, and to combine disease resistance, particularly Ascochyta rabeli (blight) with desirabie agronomic characters.
F_{1} seed has been sent to RPIP/Iran for summer crop planting to obtain F_{2} seed for rabi planting in India.

Mungbean and urd bean crosses have been made primarily to incorporate yellow mosaic virus resistance into early maturing varieties.

Papers end Publications

Report on the results of the All-India Coordinated Varietal Trials. L. M. Jeswani, Proceedings 2nd Annual Workshop Conference on Pulses, Delhi, April, 1968.

Some considerations on recrientation of research on genetic improvement of Pulse crops. L. M. Jeswani. Proceedings 2nd Annual Workshop Conference on Pulst crops. Delhi, April, 1968.

Handling of the introductions and their distribution to the breeding centers. P. H. van Schaik, Proceedings 2nd Annual Workshop Conference on Pulse Crops, Delhi, April, 1968.

Jeswani, L. M., van Schajk, P. H. Coordinated Pulse Project - Its Prospects. Indian Farming. February, 1968.

Pulse Crops. P. H. van Schaik, Proceedings Summer Institute on Plant Diseases, IARI, New Delhi, May, 1968.

Table 70. Yields in kilograms per hectare, chickpea coonainated yleld trial, India, rabl $1967 / 60$
Location within States

			Punjab	Uttar Pradesh				Bthar	W. Bengal	M. P.	Maharas			Gujarat		Andhra Pradesh
S3, No	Varieties		H1ssar	Kanpur	Rardos	Meerut	Jagarnathpurt	Phol1	$\begin{gathered} \text { Nacia } \\ \text { (Kalyani) } \end{gathered}$	Gwalior	Kopargaor:	Jalagen	Dhandhuka	Jamagar	Dohad	Eyderabad
	Name	Origin														
1	в.G. 482	A. P.	1115	1719	2333	1345	1058	---	1475	1166	----	1389	945	1020	1507	430
2	co. 1	Madras	894	1794	1808	947	1097	1592	1052	821	2129	1494	928	863	1498	332
3	Chaffa	CuJarat	1167	1644	2731	1096	1095	1615	1897	812	2284	1331.	945	843	1844	446
4	Dahad yellow	Gujarat	1504	1495	2013	1769	1678	1390	1500	1121	2786	1270	692	1018	2027	338
5	Gwallor 2	M.P.	1702	1121	2872	2143	1605	2041	1486	1794	2558	1696	683	1002	1216	--
6	S.T. 4	Ethar	1684	1644	2577	1669	1981	1570	1151	1942	2412	1543.	776	927	1428	488
7	B.R. 77	Ethar	1735	1465	2641	1295	1393	1413	1535	1211	2003	1359	413	1151	1473	574
8	B.R. 17	Bihar	167	1570	2910	1694	1675	1458	2009	1736	1679	1457	543	1050	1659	--
9	R.S. 10	Rajasther	2001	1914	2205	1370	1741		1719	1749		1303		943	1803	254
10	F.S. ${ }^{11}$	Rajesthen	1980	1495	2205	1545	1654	$1547{ }^{\circ}$	1663	1502	2461	1417	489	1117	1418	297
11	Pb 7	Panjab	1865	1794	2795	2043	2054	1547	1118	942	2027	1416	354	906	1350	272
12	c 235	Punjab	2530	2168	2026	2591	1793	- 196	1321	1561	1856	1648	548	1031	1489	463
13	C 24	Punjat	1749	1719	2820	1844	1553	1121	1603	1332	2226	1350	320	995	1628	--
14	526	runjab	1856	1869	2654	---	2367	1906	1587	--	2474	1752	363	960	1249	233
15	G-62-404	M.P.	1062	1749	2974	1644	$1{ }^{1514}$	1794	1348	987	1764	1317	987	1256	868	385
. 16	17.P. 100	IfRI	1520	1121	1897	1644	1741	1256	1456	1480	1310	---	236	604	751	283
.17	E.c. ${ }^{42-7}$	U.P.	1090	1869	2641	1500	1668	2310	1228	2148	2363	--	--	787	----	519
18	Gram B-75	W. Bengal	1916	1809	2449	2043	1974	----	1346	1032	---	---	---	1006	----	---
19 20	$\begin{aligned} & \mathrm{B}-98 \\ & \mathrm{~T} \end{aligned}$	W. Bengal		1570 2094	2923 2282	1520 1968		1771 1682	1317 1545	1861	2127	$\begin{array}{r}1556 \\ 1435 \\ \hline\end{array}$	--	985	---	246
20	${ }_{\text {Gram }}$	U.P.	11339	2094 2242	2282 2654	1968 2342	1693 1897	1682	1545 1856	1772 1624	2579	1435 1303	---	991	---	246
22	T1	U.P.	1564	2003	2949	1370	2054	1704	1220	1166	2196	1423	---	1187	----	308

Table 71. Yields in kilograms per hectare, lentil coordinated yeld trials, RPIP, India, rabi 1967/68.
Locations within States

Sl. No.	Varieties		Pun.jab		Uttar Pradesh		Bihar	West Benga
			Gurdaspur	Hissar	Mathura	Meerut	Pusa	Kal yani
	Name	Origin						
1	T 36	U. P.	722	377				
2	N.P. 47	IAFI	198	335				517
3	в 77	W. Bengal	267	362	1377	98	---	758
4	T 3	Punjab	329		1332	947	269	947
5	B 62	w. Bengal	276	354	1777	1345	---	2089
6	- B 25	Bihar		429	1242	1246	239	997
7.	L-9-12		794	374	2195	2193	314	615
8	C 31	Punjab	1464	677	2616	2691	299	387
9		W. Bengal	232	362	1360	698	209	816
10	N.P. 11	U. P.	323	238	1560	1196	179	445
11	Hyb. 1	IARI	411	336	2139	2093	---	819
	Hyb. 1	IARI	,	--	--	----	299	--

Table 72. Yields in kilograms per hectare, pea coordinated yleld trial, RPIP, India, rabi 1967/68.

Variety		Panjab				aryana				Rajasthan		.P.		P.		har		r1sa		Medras		Maherashtre				YENS	usax
		Curtaspur		Luchrara.		Htssar		Gureacr:		Durgapura		Etaxat.		Gratior		Dropis		Naragath		Colmbatore							
$\underline{\text { Name }}$	Origin	Y1619	Rmand	leld	Rar.k	Yteld	Fank		H2		Rank	cld	Ra)				Kank			Yleid	Rapa	Yteld $\frac{\text { trada }}{\text { Rash }}$					
D-2-25	Gujarat	--	-	5		,		8		12		26	3	0		186		233	15					762	8	498	12
$\mathrm{B}_{\mathrm{B}-1}^{\text {- } 45-6}$		---	-	$\stackrel{507}{18}$	${ }^{3} 4$		13	$\stackrel{89}{7}$	12	${ }_{172}^{172}$	7	2465	12	385	${ }^{6}$	489	14 5	332		${ }_{143}^{173}$	1	725 583 88	5			4598	17
${ }_{\text {T }-2}$	0.P.	27	¢	44.4	5	1302	${ }^{6}$	17	11	${ }^{84}$	9	6	${ }^{-}$	525	$\stackrel{2}{2}$	1005	4	933	4	61	13	569	9	648	11	534	9.
$\mathrm{T}_{\text {T-4, }}$	U.P.	21	7	${ }_{2}^{24} \times 1$	$\stackrel{11}{4}$	9	12	${ }_{7}^{21}$	10	${ }_{1}^{21}$	$\begin{array}{r}12 \\ 7 \\ \hline\end{array}$	967 459	$\frac{1}{6}$	365 257	7	1212	3	${ }_{1053}^{1178}$	$\frac{1}{2}$	${ }^{117}$	${ }_{12}^{7}$	661 762	6	903	1	540 564	8
Trinta 11	O.P.	\cdots	-	---	-	\cdots		\cdots	-	\cdots	-	---	-	--		---	$-$	597	8	---		…	-	781	${ }_{6}$	689	3
kzargoan 1	M.p.	\cdots	-		-	\cdots	-	\cdots	1	-		4	5	\cdots		\cdots	1	${ }_{6}^{67}$	7	\cdots		\cdots		765	7	706	2
	$\xrightarrow{\text { M.P. }}$ Fumad	47 429	1	872	$\frac{1}{7}$	(181	$\stackrel{1}{9}$	${ }_{16} 16$	$\frac{1}{5}$	2	12	473 324 20	11	545	4	857		975	-	$\begin{array}{r}156 \\ 78 \\ \hline\end{array}$	${ }^{3}$	${ }_{248} 2$	${ }_{1 i}^{2}$	901	$\stackrel{2}{2}$	${ }_{7}^{761}$	${ }_{18}^{18}$
${ }^{2403}{ }^{4}$	Punjas	160	2	$\underset{7}{67}$	8	1209	7	52	7	---		353	9	411	5	973	5	\cdots	-	57	14	244	11	311	${ }_{17}$	4	16
${ }_{\text {lio. }}^{\text {lio. }}$	${ }_{\text {U.P. }}^{\text {U.P.jab }}$	\square	5	$7{ }^{7}$	2	2365	2	9	2	60	10	337	7	\cdots	9	9	-	$\underline{191}$	17	93	10	530	10	$\stackrel{78}{6}$	11	191	5
8R-2	Elhar	78	3	93	13	980	11	29	9		-	\cdots	-	225	10	926	10			141	5	56	13	77	19	309	19
s^{-781}	Mahar	---	-	185	6	1021	$\underline{9}$	5	8	145 242	6	574 652	3	167 213	12	593	13	${ }_{4}^{423}$	11	154	$\stackrel{2}{2}$	${ }^{1061}$		(800	5	863	14.
	Manasthen	---	-	182	10	1923	$\overline{4}$	60	6	152	6	344	10	450	3	556	12	173	18	9	9	577	7	82u	4	486	13
${ }_{\text {HFP }}^{\text {STP }} 18$	${ }_{\text {a }}^{\text {Phar }}$	57	4	107	12	1784	5.	---	-	\cdots	-	---	=	-399-9	8	--	-	${ }_{663}^{238}$	14	112	8	33	${ }^{14}$	608	13	${ }_{6} 77$	17
WP 23	IARI	-	-	---	-	---	- .	---	-	--8	;	\cdots	;	---	-	25	-	521	9	-	-	\cdots	-	506	15	514	21
Sub.var. (1)		\cdots	-	\cdots	-	---	-	---	-	178 60	${ }_{10}^{3}$	383	8	---	-	$\underline{15}$	$\stackrel{2}{2}$	221	15 10	125	6	---	-	${ }^{503}$	${ }^{16}$		
SubVar (3)			-		-	--	-	---	-	208	2	---	-	--	-	--	-	\cdots		---	-	---	-	-	\because		
Sub.var. (4)																											
		$\begin{aligned} & 80.0 \\ & 4.70 \\ & 14.0318 . \\ & 11.7 \end{aligned}$		325.0 195.0 S18		$\begin{aligned} & 1541.0 \\ & 165.70 \\ & 676.0518 \\ & 21.5 \end{aligned}$		$\begin{aligned} & 57.0 \\ & 19.90 \\ & 57.0018 \\ & 69.8 \end{aligned}$		127.0 199.80 108.2		$\begin{aligned} & 477.0 \\ & 72.0 \\ & 27.0 \\ & 33.618 \end{aligned}$		$\begin{aligned} & 36.0 .0 \\ & 48.70 \\ & 39.0 \text { S18 } \\ & 26.9 \end{aligned}$		$\begin{aligned} & 911.0 \\ & 45.60 \\ & 231.0 \mathrm{S1g} \\ & 10.0 \end{aligned}$		$\begin{aligned} & 562.0 \\ & 99.00 \\ & 29.0515 \\ & 30.7 \end{aligned}$		$\begin{aligned} & 111.0 \\ & 21.70 \\ & 62.015 \\ & 38.9 \end{aligned}$		$\begin{aligned} & 559.0 \\ & .40 .80 \\ & \substack{117.0 \mathrm{B1g} \\ 14.5} \end{aligned}$		$\begin{aligned} & 677.0 \\ & 65.0 \\ & 179.0 \\ & 19.818 \\ & 19.8 \end{aligned}$.
S.8. (M)																											
c.D.																											

table 74. Yields in kilograms per hectare. Urdbean, Coordinated yield trials, India, Kharif, 1968.

Table 75. Yields in kilograms per hectare, Cowpeas coordinated yield trials, India, Kharif 1968.

SOIL AND CROP MANAGENENT

RPIP

R. J. Davis
C. S. Saraf, S. N. Kapoor, A. Narayanan, A. Parkash, and Miss G. Banda

AICPP/IARI
P. C. Bhatia,
S. L. Choudry, and B. M. Sharma

SUMMARY

Rabi 1967/6E
Experiments were conducted at four locations during the $1967-68$ rabi season. Spacing experiments in which spacing between rows and between plants within the row were varied at three levels of fertilizer application and fertility experiments in which three levels of N, P, and K and rhizobia inocculation combined factorily were conducted at all locations. The experiments were conducted with chickpea (Cicer arietinum) at each location. Vegetative growth of chickpeas was very vigorous. The entire crop succumbed to disease at H1ssar, Ludhiana, and Pant Nagar, however. At Delhi the crop remained in a vegetative condition long past normal flowering. Seed set was light and yields low.

Lentils (Lens escuienta) were planted at two locations. At Pant Nagar the crop was lost due to 2,4-D spray. At Ludhiana growth was very poor and yields low.

Field peas (Pisum sativum) were planted at Hissar and Pant Nagar. Good yields were obtained at both locations. Highest yields were obtained with a spacing pattern of 45 cm . between rows and 10 cm . between plants in the row with an application of $50 \mathrm{~kg} / \mathrm{ha}$ of N, P, and K . With application of 0 and $100 \mathrm{~kg} / \mathrm{ha}$ $\mathrm{N}, \mathrm{P}, \mathrm{K}$ yields decreased. There was no effect due to either $\mathrm{N}, \mathrm{P}, \mathrm{K}$ or rhizobial inoculation in the fertility experiments. There was interaction between N, P, and K .

At Delhi an experiment was conducted to check broadcast versus deep placement of super phosphate fertilizer at various levels. A response to fertilization was obtained but there was no difference between the two methods of application.

A chemical weed control trial was conducted at Delhi with chickpea, lentils, peas, and khesari (Lathyrus sativus). Five herbicides were used including the one being used routinely on all of the experiments based on past studies (Treflan). None of the herbicides treated were superior to this material.

In the 1968 Summer season three varieties of mungbean (Phaseolus aureus) were used in an experiment with varying between row and within row spacings at three levels of fertilizer application. Sowing was accomplished in mid-March at three locations. Stand and growth was poor so two locations were replanted in mid-April but again growth was poor. The planting was repeated in Delhi. in mid-May and good vegetative growth resulted but only one variety set seed. An irrigation experiment was planted in Delhi in March. Here also growth was very poor. The crop flowered but the small plants produced only $2-4$ pods per plant.

From this season's data it is obvious that Kharif pulses cannot arbitrarily be planted in the summer season. There appear to be environmental effects on both plant growth and flowering. More than jusi iphotoperiod seems to be involved. The effects are more pronounced the earlier the crops are planted, and there are varietal differences in the effects.

Planting of Iranian chickpea and cowpea varieties in the summer season falled completely despite the similarity of the climate during the India summer season to that of the normal growing season for chickpeas and cowpeas in Iran.

More detailed studies of the environment-crop interaction under controlled conditions are being planned.

Kharif 1968

In the 1968 kharif season spacing-fertility trials and fertilityinoculation trials as described under rabi season were conducted on mungbean (Phaseolus aureus), urd bean (Fhaseolus mungo), pigeon pea (Cajanus cajan) and oowpea (Vigna sinensis).

Trials with mungbean and urdbean were conducted at Delhi, Hissar, Kanpur, Ludhiana, and Pant Nagar. At Delhi trials were conducted on four varieties of mungbean and three varieties of urdbean. The entire crop was lost due to nematode damage. At Hissar where very good growth of these crops was obtained in the 1967 season growth was poor and ylelds low in 1968. At Kanpur a flash flood due to a heavy rain washed out the crop. At Ludhiana the problem of establishing a stand, encountered last season, was eliminated by use of a soil fumigant. About flowering time the plants became unthrifty apparently due to nematode infestation and yields were negligible. At Pant Nagar vegetative growth was very vigorous, but yields were low. There was no effect due to fertilization.

Trials were conducted at Delhi on two varieties of cowpea. This crop was lost due to nematode infestation.

Experiments with pigeon pea were conducted at four locations. Two of thes were in the frost free zone so that long term and short term varieties could be compared. The other two locations were in the area of frost danger so only a short term variety was used.

Long term varieties are still in the field and will be reported with the 1968-69 rabi crop. Short term variety T-2l of pigeon pea last season yielded as high as the long term varieties usually do when grown in the frost free zone. This gave the possibility of getting the same yield without tying up the land for two seasons.

At Hyderabad irrigation water became unavailable after the sixth week. The growth was slight and yield low.

At Kanpur and Delhi a wilt-like disease not previously known wiped out the experiments. (See Pathology Section.)

Growth at Pant Nagar was vigorous but, a storm knocked off many blossoms reducing yields to less than half those obtained last year. Yields were in the range of $2000 \mathrm{~kg} /$ ha which is still twice the average farmers' ylelds. There was no effect due to fertilization but a decrease in yleld was noted with decreasing: plant density.

In a fertilizer placement experiment with T-2l pigeon pea at Delhi in which farm yard manure and super phosphate were broadcast and deep placed ($25-30 \mathrm{~cm}$.), an increase in yield was obtained with deep placement.

A chemical weed control trial was conducted at Delhi with twenty treatments on pigeon peas, cowpea and mungbean. The crop was lost to disease but data was obtained on weed control and herbicidal toxicity to seedlings. No treatment was superior to Treflan, the herkicide we are now using.

An experiment was conducted at two locations on the effect of Simazine on the protein content of mungbean and cowpeas. Low levels of Simazine have been reported to increase protein content of crops. This was part of an all-India program on many crops in which the Pulse Project agreed to participate. No meaningful data was obtained from the first season's trials.

An experiment was conducted on the follar application of phosphate fertilization with mungbeans in the summer season and urdbeens in the kharif. No enhancement of phosphatic fertilization was noted due to foliar application.

An experiment was conducted to evaluate the effect of flat sowing, ridge sowing, and flat sowing and subsequent ridging on yleld of pigeon pea, mungbean and urdbean. Under the conditions of this experiment with the soil waterlogged through much of the growing season but no standing water present, ridging gave higher vields.

A project on environmental studies on plant growth was inftiated with the 1968 kharif season with the following objectives.
(a) Collecting and recording as much environmental information as possible in the pulse experimental plots and obtaining other data from available sources and filing permanently for use by members of the Project.
(b) Constant surveillance of the crops for any abnormalities and attempting to correlate these with the environmental data collected.
(c) Judicious modification of the environment where possible in the field.
(d) Growth chamber studies with varying plant environments. A plant growth chamber has been designed and is being constructed using entirely indigenous materials available in India without foreign exchange or import license.

The following papers were either presented or published by members of the Soil and Crop Management discipline during 1968:

Chowdhury, S.L., and Mukhtar Singh (1968). The problems of water management in rice crop. Indian Chemical Manuf. Vol. 6 (2) : 32-36, Feb., 1968.

Bains, S.S., Chowdhury, S.L., and Dayanand (1968). Relay cropping Possibilities and Profits. Ind. Fmg. XVIII (4) : 31-34, July, 1968.

Chowdhury, S.L., (1969). Problems of Pulse Production in India. Crops in India, Vol. $1(3 \& 4): 20-22$, July-Dec., 1968.,

Chowdhury, S.L., (1968). Cultural practices under rainfed farming. Paper presented at the Annual Conference of the Indian Society of Agronomy, U.P. Agricultural University, Pant Nagar, October, 1968.

Chowdhury, S.L., (1968). Pulse Crops are a neglected Lot. Ind. Fmg. 18 (8) : 25-28 November, 1968.

Davis, R.J. Report on the results of the Coordinated Agronomic Tables. Proceedings, 2nd Annual Workshop Conference on Pulses, New Delhi, 1968.

Chowdhury, S.L. The State of Knowledge concerning nutrition, plant population and other agronomic aspects of pulse crops in India. Proceedings, 2nd Annual Workshop Conference on Pulses, New Delhi, 1968.

Saraf, C.S., and Dascane, N.C. (1968). Water Use patterns in MaizeCowpea. mixtures under varying fertility conditions. Paper presented by Mr. J.K. Jain, Irrigation Advisor to G.O.I. and the leader of the Delegation at the 7 th NESA Regional Irrigation Practices Seminar, held at Lahore (Pakistan), September, 22-30, 1968.

During the rabi season of 1967-68, the soil and crop management program included studies concerning fertilization, plant spacing, rhizoblal inoculation, phosphorus placement and weed control. The work was done at Delhi, Hissar, Ludhiana and Pant Nagar.

A. Fertility - Spacing experiments:

1. Chickpea (Cicer arietinum) - Variety G-2 4

A fertilization-spacing experiment on chickpea was planted at Delhi, Hissar, Ludhiana and Pant Nagar. The experiment consisted of three between row spacings ($30 \mathrm{~cm} ., 45 \mathrm{~cm}$. , and 60 cm) , three plant spacings within rows ($5 \mathrm{~cm} . ; 10 \mathrm{~cm}$. , and 15 cm .) and three levels of fertility, $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ at the rate of 0,50 , and 100 kilogram per hectare. A split plot design was used with fertility levels and row spacings as main plot treatments and plant spacing within rows as subplot treatment. Ail the treatments were replicated four times. Fertilizer was broadcast and worked in before planting. Plot size used was $4.0 \mathrm{M} \times 3.6 \mathrm{M}$. At Pant Nagar the experiment was duplicated with another variety No. 730 a large seeded "kabuli" type.

Plantings were completed in early October. However, the crop at Ludhiana was lost to blight, Hissar to wilt and Pant Nagar to sclerctia. At Delhi vegetative growth was very vigorous, timely rains precluded the need for irrigation except immediately after planting, and maturity was delayed. Yields, however, were lower than expected with a tendency towards iower yields at the higher fertility levels because of prolonged vegetative growth.

Table 'A' - Soil Analysis, Rabi - 1967-68
Property

Location	Property				
	Texture	pH	Conductivity mmhos/cm.	$\begin{gathered} \text { Organic } \\ \text { Carbon } \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Availlable } P \\ \text { lb/acre } \end{gathered}$
Pant Nagar	Silty loam	6.9	0.25	0.90	32
Delhi	Clay loam	7.8	0.25	0.82	38
Hissar	Loamy Sand	8.7	0.12	0.15	4
Ludhiana (Lentil)	Sandy	8.5	0.16	0.09	
Ludhiana (Gram)	Sandy	8.4	0.17	0.08	$641 /$

1/ Normally would have very little available P but in both cases followed a heavily fertilized Kharif crop.

The crop at Delhi was harvested in the second half of April. There was interaction between row spacing and fertility levels (main treatments) and plant spacing within row (sub-treatment) as shown in Table 76.

Table 76. Effect of between row spacings and fertility levels (main treatment) and plant spacing with row (sub-treatment) on yield of chickpea (Cicer arietinum), Delhi, Rabi 1967-68.

Note: Same letter denotes that the treatments do not differ significantly amongst themselves.

Data in Table 76 show that a row spacing of 60 cm . and plant spacing within row of 15 cm . With no fertilizer application gave a yield of 927 kg . per hectare of chickpea at Deini. There was, however, no significant difference between the ylelds of chickpea with a row and plant spacings of 60×15, the widest spacing used and $30 \times 5 \mathrm{~cm}$. the closest at the same fertility level. These data are presented graphically in fig. 25. No recommendations therefore can be made on this crop with the data obtained to date.

2. Lentils (Lens esculenta) - Variety L 9-12

A fertility-spacing experiment was conducted on lentils at Ludhiana and Pant Nagar. The experiment consisted of three row spacings ($20 \mathrm{~cm}, 30 \mathrm{~cm} .$, and 40 cm . three plant spacings within row ($5 \mathrm{~cm} ., 10 \mathrm{~cm} .$, and 15 cm.) and three levels of fertility each of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ at the rate of 0,50 , and 100 kilogram per hectare. A split plot design was used with fertility levels and row spacings as main plot treatments and plant spacing within raws as sub-plot treatment. All the treatments were replicated four times. Fertilizer was broadcast and worked in before plarting. Plot size used was 4.0M×3.6M. Planting at Pant Nagar was in early October and at Ludhiana in early November.

Fig. 25 - Effect of row spacings and fertility levels (Main treatments) and Plant spacings within row (sub-treatment) on yield of Chick pea, Delhi, Rabi, 1967-68.

The crop at Pant Nagar was lost because of an accidental 2,4-D spray. The crop at Ludhiana was harvested at the end of March. The yields were poor, but effects due to different row spacings and fertility levels (main treatnents) are significant and the data are tabulated in Table 77. Low yialds can probably be attributed in part to late planting, in part to nematode damage in the spring. The plants made little growth before cold weather set in and as soon as the weather warmed in the spring they flowered and set seed.

Table 77. Effect of different between row spacings and fertility levels (main treatments) on yield ($\mathrm{kg} / \mathrm{ha}$) lentíls, Ludhiana, Rabi, 1967-68.

Treatments

Data in Tabie 77 indicate that a row spacing of 30 cm . and a fertilizer dose of 100 kilograms each of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ gave the highest yitld of 383 kilograms per hectare under Ludhiana conditions. With increasing levels of fertility in 30 cm . row spacing, the yleld of lentils increased significantly. In 40 cm . row spacing, howev - , the yield decreased at 100 kilograms each of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ pex hectare, even though the yields did not differ sjgnificantly at 50 and 100 kg . fertility levels. In 20 cm . row spacing, though the yields increased with increasing fertility levels, the yields at 50 kg . and 100 kg . fertility levels were equal. The data are also depicted in Figure 26.

3. Peas (Pisum sativum) - Variety T-163

A fertility-spacing experiment was conducted on peas (Pisum sativum) during rabl 1967-68 at Hissar and Pant Nagar. The experiment consisted of three row spaaings ($30 \mathrm{~cm} ., 45 \mathrm{~cm} .$, and 60 cm .), three plant spacings within rows (10 cm. , 20 cm, , and 30 cm) and three levels of fertility each of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ at the
rate of 0,50 , and 100 kg . per hectare. A split plot design was used with fertility levels and row spacings as main plot treatments and plant spacing within row as sub-plot treatment. All the treatments were replicated four times. Fertilizer was broadcast and worked in wefore planting. Plot size used was 4.0 Mx 3.6 M .

Yield data from both these locations were collec'ued and anaijzed. At both the locations, the effects due to plant spacing within row (sub-treatment) are significant and the data are presented in Table 78. There was interaction between row spacing and fertility levels (main treatments) and plant spacing within row (sub-treatments) at Hissar and Pant Nagar. The data are presented in Table 79.
Table 78. Effects due to plant spacing within row (sub-treatment) on yield ($\mathrm{kg} / \mathrm{ha}$) of peas at Hissar and Pant Nagar, Rabi 1967-68.

Data in Table 78 show tilat the effects due to within row spacing at both the locations. Within row sparing of 10 cm . at both the locations gave the highest yield of peas ($2957 \mathrm{~kg} / \mathrm{ha}$ and $1443 \mathrm{~kg} / \mathrm{ha}$), but there was no difference between 20 cm . and 30 cm . within row spacings. The data are also depicted in Figure 27.

Data in Table 79 shows that a row spacing of 45 cm . with a fertility level of $50 \mathrm{~kg} / \mathrm{ha}$ each of N, P and K gave a yleld of 3323 and 1840 kg of peas per hectare with a plant to plant spacing of 1.0 cm . The yield decreased significantly at a dose of $100 \mathrm{~kg} /$ ha of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ irrespective of spacing, when the plant to plant spacing was maintained at 10 cm . These data are graphically shown in FHgures 28 (a) and 28 (b).

Table 79. Effects due to row spacing and fertility levels (main treatments) and within row spacing (sub-treatment) on yield ($\mathrm{kg} / \mathrm{ha}$) of peas (Pisum sativum) at Hissar and Pant Nagar, Rabi, 1967-68.

Between row Spacing (cm.)	Fertility level ($\mathrm{kg} / \mathrm{ha}$ each of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}$)	Location					
		Hissar			Pant Nagar		
		Within row spacing (cm.)					
		10	20	30	10	20	30
30	0	2624	2598	2207	1548	1479	1131
30	50	2832	2515	2374	1583	861	1298
30	100	2790	2714	2390	1180	1395	1402
45	0	2973	2857	3023	1250	1430	1277
45	50	3323	2424	2582	1840	1263	1284
45	100	2840	2515	2840	1493	1347	937
60	0	3248	3432	2807	1458	1263	1388
60	50	3123	2707	2673	1354	1381	1076
60	100	2915	2949	3015	1319	1590	1208
$\text { S.Em. } \pm$$\text { C.D. } 5 \%$		$160 \mathrm{~kg} / \mathrm{ha}$				$150 \mathrm{~kg} / \mathrm{ha}$	
		444			417		

Fig. 26 - Effect of different row spacings (cm) and Fertility levels (kg./ha.) Ludhiana, Rabi - 1967-68.

PAîT NAGAR, Rabi - 1967-68
Fig.27: Effects due to plant spacing within row (sub-treatment) on yield of Peas (kg./ha.) at HISSAR and PANT NAGAR, Rabi, 1967-68.
C.D. $5 \% 417$

Fig.28A - Effects due to row spacing and fertility levels (Main treatments) and within row spacing (sub-treatment) on yield (kg./ha.) of Peas (Pisum sativum) at Pant Nagar, Rabi - 1967-68.

Fig.28B - Effects due to raw spacing and fertility levels (main treatment) and within row spacing (sub-treatment) on yield of peas (Pisum sativum) at HISSAR, Rabi - 1967-68.

B. Fertility - Inoculum Experiments

1. Chickpea (Cicer arietinum) - Variety G-24

An experiment was conducted at Delhi, Hissar, Ludhiana and Pant Nagar. The experiment was a factiorial with four nitrogen treatments ($0,50,100 \mathrm{kllogram}$ per hectare of actual element) and rhizobial inoculum; and three levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $K_{2} O(0,50$, and 100 kilogram per hectare). A randomized block design was 5 ussd With four replicates. Fertilizer was broadcast and then worked into the soil. Plot size used was $4.0 \mathrm{M} . \mathrm{x} 3.6 \mathrm{M}$. At Pant Nagar the experiment was duplicated with a "kabuli" varlety, 730. Planting at all the locations was completed in October. However, as with the spacing experiments, disease completely wiped out all locations except Delhi.

The crop at Delhi was harvested in the second half of April. Effects were obtained with N, P and the interaction of P and K. The results are presented in Table 80.

Table 80. Effects of different levels of N on yleld ($\mathrm{kg} / \mathrm{ha}$) of Chickpea, Delhi, Rabi, 1967-68.

N Treatment \quad Yield of Chiokpea ($\mathrm{kg} / \mathrm{ha}$)

$0 \mathrm{~kg} / \mathrm{ha}$	1437 a
$50 \mathrm{~kg} / \mathrm{ha}$	1447 a
$100 \mathrm{~kg} / \mathrm{ha}$	1240 a
Inoculum	1364 ab
S. Fm. \pm	$56(\mathrm{~kg} / \mathrm{ha})$
C.D. 5%	

Data in Table 80 show that the yield of chickpea increased when nitrogen was applied at $50 \mathrm{~kg} / \mathrm{ha}$. When the level of nitrogen application is further increased to $100 \mathrm{~kg} / \mathrm{ha}$, there was a decrease in the yield ($1240 \mathrm{~kg} / \mathrm{ha}$) of chlckpea. Data are graphically presented in Flgure 29.

The effects due to different levels of P are presented in Table 81.
Table 81. Eff'ects of different levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ on yield (in $\mathrm{kg} / \mathrm{ha}$) of Chickpea. Delhi, Rabi, 1967-68

Levels of $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~kg} / \mathrm{ha}) \quad$ Yield of Chickpea ($\mathrm{kg} / \mathrm{ha}$)

0		1510 a
50	1240 b	
100		1385 a

| S. $\mathrm{Em} . \pm$ |
| :--- | ---: |
| C.D. 5% |$\quad 49 \mathrm{~kg} / \mathrm{ha}$

C. D. $5 \% 158$

Fig. 29 - Effect of different Nitrogen treatments on yield of chickpea (Cicer arietinum) DELHI, Rabi, - 1967-68.

Fig. 30 - Effect of different levels of Phosphorus on yield of chickpea (Cicer arietinum) DELHI, Rabi-1967-68.

Data in Table 81 show that the yield of chickpea in the P_{0} and P_{100} treatments did not differ, but the yields in these treatments, were superior to the P_{50} treatment. Data are graphically depicted in Figure 30.

The interaction effects due to P and K are statistically significant and the data are presented in Table 82.

Table 82. Effects due to interaction of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on yield ($\mathrm{kg} / \mathrm{ha}$) of chickpea, Delhi, Rabi, 1967-68.

Levels of $\mathrm{K}_{2} \mathrm{O}$ ($\mathrm{kg} / \mathrm{ha}$)	Levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ (kg/ha)		
	0	50	100
0	1677 ab	1250 bc	1375
50	1458 ab	1385 b	1292
100	1396 b	1083 c	1479
S. Em. \pm	$85 \mathrm{~kg} /$		
\therefore C.D. 5\%	238		

Data in Table 82 reveal that in the absence of any $\mathrm{P}_{2} \mathrm{O}_{5}$, the increasing levels of $K_{\rho} 0$ had a depressing effect on yield of chickpea.? There appears to have been some effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on yield of chickpea at higher levels of these two nutrients (P_{100} and K_{100}). However, the chickpea yields were the thighest ($1677 \mathrm{~kg} / \mathrm{ha}$) at $\mathrm{P}_{0} \mathrm{~K}_{0}$ level. Data are graphically shown in Figure 31.

2. Lentils (Lens esculenta) - Variety L-9-12

An experiment on lentils was conducted at Ludhiana and Pant Nagar durirg ral 1967-68. The experiment was a factorial of four levels of nitrocen ($0,50,100$ kilogram per hectare of actual element) and inoculum, three levels of $P_{2} 0_{5}(0,51$ and 100 kilogram per hectare of actual element) and three levels of $K_{2} O^{2}(0,50$, and 100 kg . per hectare of actual element). A randonized block design was used with four replicates. Fertilizer was broadcast and then worked into the soil. Plot size used was $4.0 \mathrm{M} \times 3.6 \mathrm{M}$. At Pant Nagar the crop was lost due to 2,4-D spray.

The crop at Ludhiana was harvested at the end or March. Though the ylelds. were poor, there were effects due to N, P, interactions between N and 'ft and N; P. and K. These are presented in the following pages.

C. D. $\mathbf{5} \% 238$

Fig. 31: Interaction of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on yield of chick pea (Cicer arietinum), Delhi, Rabi, 1967-68

Table 83. Effects due to different levels of N on the yield of lentils in $\mathrm{kg} / \mathrm{ha}$ at Ludhiana, Rabi, 1967-68.

Levels of N in g. per hectare.

Data in Table 83 show that a dose of 100 kg . N per hectare gave a yield of 427 kg . of lentils per hectare. There was no significant difference between no nitrogen treatment and 100 kg . N per hectare. These two treatments were significantly superior to the inoculum treatment and nitrogen dose at 50 kg . per hectare. The extremely low ylelds obtained essentially erase the value of the statistical significance and preclude drawing of any conclusions on fertilizer effects.

Table 84. Effects of different levels of P on the yleld ($\mathrm{kg} / \mathrm{ha}$) of lentils at Iudhiana, Rabi, 1967-68.

a In Table 84 indicate that there is a response to phosphate application, under Ludhiana conditions. The yleld of lentils increased with increasing levels of $\mathrm{P}_{2} \mathrm{O}_{5}$. However, there was no significant difference in yield of lentils between 50 kg . and $100 \mathrm{~kg} . \mathrm{P}_{2} \mathrm{O}_{5}$ per hectare. These data are graphically presented in Figure 33.

The interaction effects due to N and $\mathrm{P}_{2} \mathrm{O}_{5}$ are also significant and the data are tabulated in Table 85.

LSD 5 \% 82

Fig. 32 - Effect of different levels of Nitrogen on yisid of Lenti (Lens esculento), LUDHIANA, Rabi - 1967-6E.

C.D. $5 \% 71$

Fig. 33 - Eiffoct of different levels of P'nosphorus on yield of Lentils (Lens exculenta) LUDHIANA, Rabi-1967-68.

Tuble 85. Interaction of N and P on the yield of lentils at Iudhiana, Rabi, 1967-68.

Levels of $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{in}$
$\mathrm{kg} / \mathrm{ha}^{2}$
0
50
100
Levels of N in $\mathrm{Kg} / \mathrm{ha}$
$\xrightarrow{\mathrm{kg} / \mathrm{ha}^{2}{ }^{2}}$

	Levels of N in $\mathrm{Kg} / \mathrm{ha}$		
0	50	100	Inoculation
356 bcd	227 g	303 def	265 fg
560 a	409 bc	409 bc	303 def
333 def	334 def	418 b	342 cde

$$
\begin{array}{ll}
\text { S. En. } \pm & 51 \mathrm{~kg} / \mathrm{ha} \\
\text { C. D. } 5 \% & 72
\end{array}
$$

Data in Table 85 show that the yield of lentils was the highest ($560 \mathrm{~kg} / \mathrm{ha}$) at 50 kg . per hectare of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the absence of any nitrogen application. With further increase in the level of $\mathrm{P}_{2} \mathrm{O}_{5}$ application, in the absence of any nitrogen application, the leritil yields are decreased. Even with a nitrogen application of 50 kg , and 100 kg . per hectare, the yield of lentils is incieased with an increase in the level of P application up to 50 kg . per hectare dose, after whioh at 7.00 kg . per hectare of N and P, there is a decline in yield. These data are graphically depicted in Figure 34. The effects due to interaction of N, P, and K are also significant and data are presented in Table 86.

Data in Table 86 show that lentil yields responded differently to varylng fertility levels. The highest yield obtained was 742 kg. per lectare from N_{100} $P_{100} K_{0}$ treatment. When $N_{50} K_{50}$ was combined with increasing levels of P, the 100 yIeld 0 if lentils increased. ${ }^{50}$ these interactions are shown graphically in Figure 35. Whether this situation would still hold if the crop had been planted earlier so that the plants could have made full growth must await further experimentation.

Table 86. Interaction of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ on yield of lentils, Ludhiana, Rabi
1967-68.

Fertility Levels (kg/ha of actual element)			Yield of lentils in $\mathrm{rg} / \mathrm{ha}$
N	P	K	\%
0	0	0	280
0	0	50	363
0	0	100	416
0	50	0	439
0	50	50	560
0	50	100	674
0	100	0	280
0	100	50	477
0	100	100	242
50	0	0	249
50	0	50	189
50	0	100	227
50	50	0	340
50	50	50	356
50	50	100	530
50	100	0	234
50	100	50	477
50	100	100	666
100	0	0	242
100	0	50	484
100	0	100	196
100	50	0	409
100	50	50	409
100	50	100	409
100	100	0	742
100	100	50	454
100	100	100	499
1	0	0	174
1	0	50	310
1	0	100	303
1	50	0	265
1	50	50	348
1	50	100	287
1	100	0	257
1	100	50	348
1	100	100	454

Fig. 34 - Interaction of Nitrogen and Phosphorus on the yield (kg./haj of lentils
(Lens esculenta) at Ludhiana, rabi - 1967-68.

C. D. 5 \% 247

Fig. 35 - Three factor interaction of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ with Lentils (Lens esculenta) at LUDHIANA, Rabi - 1967-68.

3. Peas (Pisum sativum) - Variety T-163

An experiment was conducted at Hissar and Pant Nagar. The experiment was a factorial of four nitrogen treatments 10,50 , and 100 kllogram per hectare of actual element and inoculum) three levels of Phosphorus (0,50 , and 100 kilogram per hectare) and three levels of Potassium (0,50 , and 100 kilogram per hectare), A randomized block design was used with four replicates. Fertilizer was broadcase and then worked into soil. Plot size used was 4.0 M . x 3.6 M . No effect was obtained due to efther $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ nor their two-factor interactions. At both locations, the interaction effect, due to $N, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ was significant. The data are presented in Table 87.

Data in Table 87 reveal that the yield of peas due to different fertility treatments varied from 3052 kg . per hectare to 4366 kg . per hectare at Hissar and from 1428 kg per hectare to 2496 kg . per hectare at Pant Nagar location. This is shown graphically in Figure 36.
C. Phosphorus Placement, Chickpea, Variety G-24.

An experiment was conducted at Delhi to evaluate the effect of phosphomus fertilization at five levels in varying combinations with two levels of nitrogen and potassium: In all cases N and K was broadcast and rototilled befcre planting. With P in one case the same procedure was followed. In the other P was placed in a furrow and covered before planting.

There was no difference between treatments. Yields are reported below:

$\frac{\text { Broadcast }}{}$	$\frac{\text { Placement }}{1637 \mathrm{~kg} / \mathrm{ha}}$
S. $\mathrm{Em} / \mathrm{ha}$	42
C. D. 5%	120

D. Weed Control Trial

A preliminary weed control trial was conducted at Deini to (a) assess the losses due to unrestricted weed competition in four important rabi pulses, viz., cnickpea (Cicer arietinum); lentil (Lens esculenta), lathyrus (Lathyrus sativis), and peas (Plsum sativum), and (b) to study the tolerance of these pulse crops to Treflan (trifluore, 2, 6-dinitre, N.N. dipropyl -p-toluidine) at $1 \mathrm{~kg} / \mathrm{ha}$; Balan (2, 6- dinitre -p- toluidine) at $1 \mathrm{~kg} / \mathrm{ha}$; Eptam (S-Ethyl dipropyl - thiocarbamate) at $3 \mathrm{~kg} / \mathrm{ha}$; knoxweed (S-Ethyl dipropyl - thiocarbamate 46.9% + iso Octyl ester of $2,4-\mathrm{D} 35-4 \%$) at $3 \mathrm{~kg} / \mathrm{ha}$; and Amiben (3 amino, 2,5-dichlorobenzoic acid) at $3 \mathrm{~kg} / \mathrm{ha}$.

Table 87. Interaction of N, P, and K on yleld of peas, Hissar and Pant Nagar, Rab1, 1967-68.

Fig.36: Three factor interaction of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ with Peas (Pisium sativium) at
PANT NAGAR and HISSAR, Rabi, 1967-68

Requisite amounts of herbicides, except Amiben, were sprayed before the final cultivation and incorporated into the soil with a rototiller immediately after ". application. The crop was sown the next day (October 21, 1967).

Observations at regular intervals showed that the germination of these pulses was rot affected by the herbicides except in the case of knoxweed treated plots, small patches were seen here and there. Eptam and knoxweed caused slight crinkling of the leaves but the symptoms later on disappeared.

The major veeds in the experiment plot were wild oats (Avena fatua), Senji (Melilotus parviflora), and Medicago denticulata. Other weeds like Chenopodium album, Spergula arvensis, Fumaria parviflora and Anagallis arvensis were also seen.

Data in Table 88 gives an idea of weed population count taken from five spots at random in each plot.

Table 88. Weed population per 2.50 sq. meters.

Tan Data in Table 88 indicate that Treflan and Eptam were most effective in reducing weed infestation. The weed population under these treatments ranged from 59 to 180 and 190.2 to 227.3 respectively of that under plots not sprayed with herbicides. Out of these five herbicides tried, Amiben gave the poorest control of weeds in these four crops.
: To get an idea of weed growth in different treatments green weight of weeds was noted after about five month's of sowing of crops (in the second week of March, 1968) and the data are presented in Table 89.

Table 89. Weight of fresh green weeds in $\mathrm{kg} / \mathrm{ha}$.

Treatments	Crop			
	Chickpea	Lentils	X Lathyrus	Peas
Control (no weeding)	57140	57330	59620	13330
Handweeding once	14.190	10470	37330	2950
Handweeding twice	570	450	11240	Nil
Treflan	31800	31050	29900	1900
Balan	49330	38280	56570	4190
Eptam	35600	49900	40950	6000
Knoxweed	43620	41140	42670	8000
Amiben	60000	62860	53480	10280

Data in Table 89 shows that only the pea crop had the ability to compete successfully with the weeds. Tall growing weeds like wild oats and senji were responsible for the death or very poor stand of chickpea, lentil, and lathyrus plants.

One hand weeding was not found to be sufficient control of weeds in lathyrus, Almost complete weed control was possible with two hand weedings.

Of all the herbicides screened in this trial, Treflan alone appears to be of value.

A. Spacing-fertility trials:

During the 1968 summer season (March-June) work was initiated on mungbean and chickpea. An experiment for testing the performance of mungbean and chickpe، varieties at different between row spacing, within row spacing and fertilizer levels was planted at Delhi, Kanpur, Hissar, and Pant Nagar.

Mungbean varieties were T-1, Jalgaon 781, and Pusa Baisakhi. Chickpea varieties were three Iranian varieties. As growing conditions in Iran during this season are similar to those of Northem India it was thought that the Iranian varieties might be betier adjusted than the Indian varieties which are grown as a cool season winter crop.

At all locations the chickpeas planted in March came up, made good growth for a few weeks but then died. The cause was not determined. Salinity and gram wilt are probable causes. The mungbean crop at Pant Nagar was destroyed by caterpillars. At Hissar lack of timely irrigation due to the canal being dry destroyed most of the stand. At Kanpur the mid-March sowing had a very poor stal It was replinted in mid-April and a good stand was obtained. However, the plant: were never very thrifty and there was moderate virus infection, both yellow mosa: and crinkle virus.

Land for fertilizer trials was not available at Delhi until mid-May. The e: periment was planted there on 16 May, 1968. Variety Jalgaon J-781 was heavily infected by crinkle virus symptoms and did noi set seed. Whether this was due t climatic conditions or virus infection could not be ascertained. Variety T-1 made good growth but in late June when it should have been harvested it had not yet flowerfd. It then started growing again and this late growth was heavily infected with yellow mosaic virus, so no yield was obtained. Pusa Baisakhi made good growth. Details of the experiment and data on this variety follow.

A split plot design was utilized with varieties and between row spacing in the main plots and within row spacing and fertilizer levels in the sub-plots. Plot size was $1.8 \times 3 \mathrm{~m}$. There wore three replications. Between row spacings were 20 and 30 cm. , within row spacings were $2.5,5$, and 7.5 cm ., fertility levels were no fertilizer, $50 \mathrm{~kg} / \mathrm{ha}$ of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ and $100 \mathrm{~kg} / \mathrm{ha}$ of N and $\mathrm{P}_{2} \mathrm{O}_{5}$.

The crop was harvested in four pickings. When the rains came, there was a problem of slightly immature seed germinating in the pods. Despite this when mature pods were picked and utilized immediately for the Kharif plariting, the seed was dormant. There was no difference in yield due to treatment. Lack of fertilizer response could have been due to the fact that the crop followed a heavily fertilized wheat crop. Yields are reported in Table 90.

Table 90. Effects of different between row and within row spacing and fertility levels on yield of mungbean variety Pusa Baisakhi, Delhi, Summer, 1968,

Fertility Level $\mathrm{kg} / \mathrm{ha} \mathrm{N}$ \& $\mathrm{P}_{2} \mathrm{O}_{5}$	Within row spacing in cm .	Yield in $\mathrm{kg} / \mathrm{ha}$ Row spacing (cm.)	
		20	30
0	2.5	950	664
	5.0	955	646
	7.5	874	524
50	2.5	855	409
	5.0	806	376
	7.5	645	679
100	2.5	874	551
	5.0	751	553
	7.5	598	377

The most interesting observation about all of the summer trials is that all varieties made poor growth when planted in March, better but not good growth when planted in April and good growth when planted in May. Climatic factors appear to be involved and these are being tested in growth chambers.

B. Foliar application of Phosphate:

An experiment was laid out at Delhi and Pant Nagar to study the response of mungbean variety Pusa Baisakhi to soil and foliar applications of phosphate. The experimental design ir the same as that reported under Kharif 1968. Yield data is shown in Table 91 for Delhi. As with the spacing fertility trial the high level of residual phosphorus from the preceeding wheat crop may have precluded getting any response. The Pant Nagar planting was lost to a caterpillar attack.

Table 91. Effect of different doses of phosphates applied through soil and foliage on yield of mungbean Variety Pusa Baisakhi, Summer 1968, Delhi

$\mathrm{P}_{2} \mathrm{O}_{5}$ Treatments	Yicld kg/ha
Control	624
$25 \mathrm{~kg} / \mathrm{ha} \mathrm{-} \mathrm{all} \mathrm{foliage}$	608
$50 \mathrm{~kg} / \mathrm{ha} \mathrm{-} \mathrm{all} \mathrm{soil}$	762
$50 \mathrm{~kg} / \mathrm{ha}-1 / 2$ soll and $1 / 2$ follage	674
$50 \mathrm{~kg} / \mathrm{ha}-1 / 2$ foliage	724
$75 \mathrm{~kg} / \mathrm{ha} \mathrm{-} \mathrm{all} \mathrm{soll}$	663
$75 \mathrm{~kg} / \mathrm{ha}-1 / 2$ soil and $1 / 2 \mathrm{fc}$ liage	803
$100 \mathrm{~kg} / \mathrm{ha} \mathrm{-} \mathrm{all} \mathrm{so:1}$	718
$100 \mathrm{~kg} / \mathrm{ha}-1 / 2$ soil and $1 / 2$ foliage	721
S. Emt	285

C. Water requirement of summer Mungbean:

An experiment was designed to determine the water requirement of two varieties of summer muriybean varieties $T-2$ and Jalgaon 781 . The experiment was planted in early March. Both varleties flowered and set seed. However, vegetative growth was slight, the plants grew only $3-4^{\prime \prime}$ tall and produced but $3-4$ pods per plant. Even with this low yield per plant a fair yield could have been harvested with high enough plant populations. No conclusions were drawn on water consumption and efficiency.

D. Pot experiment on placement of phosphorus:

A pot experiment was conducted to study the effect of three levels of phosphorus (25,50 and $75 \mathrm{~kg} /$ ha of $\mathrm{P}_{2} \mathrm{O}_{5}$) and give methods of application (mixing in top $10 \mathrm{~cm} .$, placement at $5 \mathrm{~cm}, 10 \mathrm{~cm}$, and 15 cm . deep) and half soil + half foliar on moong (variety Pusa Baisakhi) at Delhi. Four plants pen pot were maintained. Randomized block design with three replicates was used. Sowing was done on April 24, 1968 and the crop was harvested in eight pickings starting from June 10 to September 15, 1968.

Different levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ did not have any significant effect on yield of moong. Various methods of ${ }^{2}$ application, however, had significant eifects. Placement of 10 to 15 cm . gave the best yield ($23.61 \mathrm{gm} / \mathrm{pot}$ and $24.64 \mathrm{gm} / \mathrm{pot}$). There was a sigrificant interaction between different levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ and methods of application. Placement a.t 15 cm . below seed and $50 \mathrm{~kg} / \mathrm{ha}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ treatment yielded maximum ($25.63 \mathrm{gm} / \mathrm{pot}$) as compared to $1 / 2$ soil $+1 / 2$ thru foliage at 75 $\mathrm{kg} / \mathrm{ha}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.

E. Summarization of Summer Season 1968 results:

The results with the Pusa Baisakhi mungbean at Delhi as well as results obtained by university scientists at Hissar and Pant Nagar on selected mungbean varieties show that this crop has potential as a summer crop. However, our results as well as observations made on several cultivators fields indicate tre need for extreme caution in recommending pulses for the summer season. The failupes with chickpea, and with several varieties of mungbean at various planting dates point out the fact that there are environmental effects which influence performance and that these vary from variety to varlety. Also water use is much higher and an assured irrigation supply is essential if the crop is not to be lost.

Kharif 1968

During Kharif 1968, soil and crov management experiments were conducted on fertilization, plant density, foliar nutrition, chemical weed control and influence of simazin on protein conteni. These trials were conducted at Delhi, Hissar, Hyderabad, Kanpur, Ludhiana and Pant Nagar. The crops studied were mungbeans (Phaseolus aureus), urd beans (Phaseolus mungo), and pigeon pea (Cajanus cajan) and cowpea (Vigna sinensis):

A. Fertility - Spacing Experiments:

1. Pigeon Pea (Cajanus cajan)

A fertility spacing experiment was conducted at Delhi, Hyderabad, Kanpur, and Pant Nagar. At Hydeirabad and Kanpur the experiment was identical to the spacing Pertility experiments described for rabi crops, At Delhi and Pant Nagar a slightly different design was used as described below.

At Kanpur and Hyderabad both long term and short term varieties were tested. The commonly grown pigeon pea is the long term one, but last year s results indicated that the short term varieties, if properly managed would compete favorably with the long term varieties. Testing of long term varieties at Delhi and Pant Nagar is precluded because of danger of frost.

The results of the trials with short term varieties is reported here, the results of the long term varieties will be reported with the $68-69$ rabi crops. Variety $-T-21$ was planted at Delhi and Iyderabad. At Kanpur three varieties were used, T-2l, T-7, a long term vailety with erect habit of growth, and T-17, a long term varlaty with a spreading hajit of growth (Figure 37). At Hyderabad variety Tw-17 and T-2? were planted. In addition a trlal was conducted with three short term lines from the germ plasm, No. P-4758, P-4785, and P-4839. The experimental layout was the same as the $T-21$ spacing trial at the high fertility level so that results would be directly comparable with the T-2l trial. Spacings with the long term vaileties were 90,120 , and 150 cm . between rows and 40,60 , and 80 cm . between plants within the row. With the short term varieties between row spacings were 60,90 , and 120 cms ., and distance between plants within the rows was 20,40 , and 60 cm .

At Kanpur flood destroyed most of the crop. Replanting was accomplished but the replants dic not catch up with the original planting. In addition a wiltlike disease not previously reported (which is described more fully in the pathology section) destroyed most of the plants remaining from the original planting. Therefore no meaningful data was obtained from the Kanpur location.

Planting dates were last week of July at Delhi, first week of July at Hyderabad, week of June 17 and July 1 at Kanpur, June 14 at Pant Nagar, July 10-13 at Hissay and July 20-21 at Ludhiana. In Delhi the same disease mentioned

Figure 37. Pigeon pea varieties.
Left: T-7, tall, erect, late maturing (250-300 days).
Middle: T-17, tall, spreading, late maturing.
Right: T-21, short, semi-spreading, early (130-150 days).
above wiped out the entire experiment. There was no monsoon in Hyderabad this season and irrigation water became unavailable after mid-August. As a result all yields were extremely low. There vere no yield differences due to fertility levels in the T-2l trial. There were yield differences due to between row and within row spacings. However, because of the poor growth the plants had not filled in the rows in any of these spacings. Results of spacing effects for botr the germplasm trial anc the T-2l trial are consolidated in Table 92.

Table 92. Average yield of treatments ($\mathrm{kg} / \mathrm{ha}$), $\mathrm{T}-21$ and germplasm lines, pigeon pea, Hyderabad, 1968.

Between Row Spacing (cin)	Varieties					Within Row Spacing (cm)		
	P-4758	P-4785	P-4839	T-21	Mean	20	. 40	60
50	938	747	369	682	684	1033	579	441
90	524	513	266	482	434	650	372	280
120	453	450	186	386	363	558	322	211
Mean \quad,	638	570	274	496	Mean	747	424	311
Within Row Spacing	996	840	405	697	747			
	502	536	235	452	424			
	417	334	181	341	31.			
Q,		eties B	ween Row	Spacin		Within	Row S	aoing
¢	S.E./M		106		62		45	
	C.D. 56		---		191		129	

At Pant Nagar response of pigeon pea (T-2l) to three fertility levels and three plant population rates was tested for the second year. The treatments consisted of three within row spacings 20,33 , and 66 cms . calculated to gave plant population rates of $30,000,40,000$, and 50,000 plants per hectare, three between row spacings. 50,75 , and 100 cm . and three fertility levels $30 \mathrm{~N}+40 \mathrm{P}+20 \mathrm{~K}$, $60 \mathrm{~N}+80 \mathrm{P}+40 \mathrm{~K}$, and $90 \mathrm{~N}+120 \mathrm{P} \mathrm{kg} / \mathrm{ha}$ each of actual element. Data are shown in Table 93.

Data in Table 93 show that there was no significant difference in yield between 40,000 and 50,000 plants/hectare (2038 and $2050 \mathrm{~kg} / \mathrm{ha}$). These treatments. however, were significantly better than 30,000 plants $/ \mathrm{ha}$ ($1904 \mathrm{~kg} / \mathrm{ha}$). As regards the effect of between row spacing, the yields were the same in the 50 and 75 cm . row spacing (2108 and $2036 \mathrm{~kg} / \mathrm{ha}$) which were higher than the yield ($1850 \mathrm{~kg} / \mathrm{ha}$) in 100 cm . spacing treatment.

Table 93.
Efflect of varying plant population rates, row spacings, and fertility levels on the yield of pigeon peas, Variety T-21, Pant Nagar, Kharif, 1918.

Note: Same letter denotes that the treatments do not

There was no effect cue to the various fertility levels. This is in agreement with last year's results. However, yields this year were lower than last year's. This is attributable to heavy hail storms on October 1 and 2 which knocked off many blossoms.
2. Mungbean (Phaseolus aureus) and Urd bean (Fhaseolus Mungo)

Because of the similarity of growth and cultural practices these two crops will be treated in one section. Fertility spacing experiments on mungbeans and urd beans were planted at Delhi, Hissar, Ludhiana, Kanpur, and Pant Nagar. Short term varieties were planted at Hissar, long term varieties at Ludhiana, Kanpur anc Pant Nagar, and both long and short term varieties at Delhi. Experimental design was the same as described for pigeon pea at the first location except that plot size was reduced to 1.8×4 meters. At Pant Nagar the experiment was modified somewhat to fit local conditions. Between row spacings from short term varieties were 15,25 , and 35 cm . and within row spacing $2.5,5$, and 7.5 cm . In long term . varieties the between row spacing 30, 45, and 60 cm ., and within row spacing 5 , 10, and 15 cm . at Ludhiana and Pant Nagar. At Delhi the same spacing as with the short term varieties was maintained. At Ludhiana because of the sandy nature of the soil, nitrogen was applied in split doses. Varieties used were: at Delhi short term mungbean T-1, Jalgaon, 781, and Fusa Baisakh1, long term mungbean 6009, short term urd bean T-9, and long term urd bean T-65 and 1-1; at Hissar short tern nungbean variety Jaigaon, 781, and short term urd T-9; at Kanpur long term mungbean 6009; at Ludhiana long term mungbean 54 and long term urd 64; at Pant Nagar long term mungbean 6009.

Au Delhi none of the varieties gave good growth. Several trials were completely lost due to nematode damage. In the varieties that survived growth was poor and stand too spotty to get any information.

At Kanpur the crop was oompletely washed out by a flood resulting from heavy rains.

Data from the trial at Hissar in Table 94 show that close within-row plant spacings generally depress yields while row width has little or no effect. Thes data are also shown in Figure 38.

Table 94. Effect due to between row and within row spacings on the yleld of urd bean at Hissar, Kharif, 1968.

Spacings (cm.)

Between row	Within row
15	2.5
15	5.0
15	7.5
25	2.5
25	5.0
25	7.5
$\square \quad 35$	2.5
. 35	5.0
-35	7.5

Yield of Urd beans ($\mathrm{kg} / \mathrm{ha}$)
834 b
1009 ab
1179 ab
623
1053 ab
972 ab
935 ab
845 b
1099 ab
C.D. 5%

318

Data in Table 95 (Interaction Table) reveal that with high fertility ($2-2-0$ the yield is $1200 \mathrm{~kg} /$ ha compared to low fertility and high population (000) 857 $\mathrm{kg} / \mathrm{ha}$. The reason is self-explanatory. Secondly, with high fertility and high population ($0-2-0$) urd beans yielded $1026 \mathrm{~kg} / \mathrm{ha}$ and with low fertility and low population, the yield was $1633 \mathrm{~kg} / \mathrm{ha}$. The high yield with low fertility treatment is explaired by the initial fertility status of the experimental field.

Table 95. Effects due to different fertility levels (Main Treatments) and row a plant spacings (sub-treatments) on the yleld of urd beans Variety T-9 at Hissar, Kharif - 1968.

Yield in $\mathrm{kg} / \mathrm{ha}$

Spacing

$\begin{gathered} \text { Between row } \\ (\mathrm{cm} .) \end{gathered}$	Within row (cm.)
15	2.5
15	5.0
15	7.5
25	1, 2.5
25	5.0
25	7.5
35	2.5
35	5.0
35	7.5
C.D. 5 \%	

Fertility Levels ($\mathrm{kg} / \mathrm{ha}$) each of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ of actual element

0	50	100
857	620	1026

Fig. 38 - Efiect of between row and within row spacing on yield Kg./ha of Urad Beans (T-9 Variety), HISSAR, Kharif - 1968

At Hissar in 1968 the growth of urd beans was better than that of mungbeans. Last year at this location the reverse was true. With the closer within row spacings with urd beans the yield decreased with the 2.5 cm . spacing this year. With mungbeans where the growth and yield was poorer this effect was not noticed. Although more years' data are needed, $15 \times 7.5 \mathrm{~cm}$. appears to be a good spaoing pattern for getting maximum yield in a poor season without deoreasing yield due to crowding in a good season. Wider than 7.5 cm . within row spacings need to be investigated. The poor growth of mungbean J-781 at this location precludes any conclusions. Data are given in Table 96.

Table 96. Effects due to between row and within row spacings on seed of munghean, Variety J-781, Hissar, Kharif, 1968.

No statistical significance.

At Ludhiana the results with mungbean (No. 54) were too low to make any valld conclusion. Results are given in Table 97.

With urd variety No. 64 ylelds were also low although somewhat higher than

Table: 97. Effects of between row and within row spacing on yeld of mungbean Variety No. 54, Ludhiana, Kharif, 1968.

Spacing (cm.)

Between row	Within row
30	5
30	10
30	15
$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned} \quad 10,1+15$	
60 , 5 \% ${ }^{4}$,	
+60, + $6+410$	
¢ 60 , 15 ,	
$\mathrm{S.Em}+$	
C.D. 5%	

Yield (kg/ha)

190 ab
169 abcd
176 abc
$45 \quad 25$
45
10
155 abed
124 d
201 a
137 cd
125 d
144 bed
$17 \mathrm{~kg} / \mathrm{ha}$
$47 \mathrm{~kg} / \mathrm{ha}$
Note: Same letter denotes that the treatments do not differ significantly amongst themselves.

Table 98. Effects due to fertility levels on yleld ($\mathrm{kg} / \mathrm{ha}$) of urd beans Variety No. 64, Ludhiana, Kharif, 1968.

Fertility levels (ks/ha)	Yleld (kg/ha)
0	
50	314 a
100	353 ab
	S. Em. \pm

One reason for not getting any response to $\mathrm{N}_{,} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} 0$ could be the high fertility status of the soil.

At Pant Nagar the experiment consisted of 0,25 , and $50 \mathrm{~kg} / \mathrm{ha}$ each of N an $\mathrm{K}_{2} \mathrm{O}$ of actual element and 0,50 , and $100 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5}$ of actual element three between row spacing (30,45 , and 60 cm .). The three within row spacings were
$18.5 \mathrm{~cm} ., 9.25 \mathrm{~cm}$. , and 4.6 cm . to get $180,000,240,000$, and 360,000 plant populations per hectare. There were, thus, thirty-six treatment combinations laid out in a single split plot design with three levels of each factor.

Data are analyzed and interpreted in Table 99.
Table 99. Effect of different fertility levels, row spacings and plant population rates on yield of mungbean (T-6009) at Pant Nagar, Kharif, 1968.

Fertility levels \qquad	$\begin{aligned} & \text { Yield } \\ & \text { (kg/ha) } \end{aligned}$	Between row Bpaoing (cm)	$\begin{aligned} & \text { Yeeld, } \\ & (\mathrm{kg} / \mathrm{ha}) \end{aligned}$	Plant population per hectare	$\begin{gathered} \text { Yield } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$
$\mathrm{N}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}_{2} \mathrm{O}$					
0.0	547	30	485	180,000	526
25, 50, 25	517	45	506	240,000	497
$50 \quad 100 \quad 50$	475	60.	549	360,000	516
"Fi"Test	Slenifloant		Signifioant		Signifioant
S. Em \pm	14		2		2
C.D. 5%	24		9		9

Data in Table 99 show that maximum yield ($547 \mathrm{~kg} / \mathrm{ha}$) was obtained from control treatment and the increasing fertility levels showed significant reduction in yield. As regards row spacing, increasing spacing resulted in significant increase in yleld of mungbeans. Lowest plant population (180,000 plants/ha) gave the highest yield of $526 \mathrm{~kg} / \mathrm{ha}$. With increasing plant population, there was a significant saduction in yield.

4. Cowpea (Vigna stinensis)

The same experimental design as used with mungbeans and urd beans was initiated in Delhi with cowpea variety Blackeye-7 and Meshed. This orop had the same poor stand and unthrifty plants as reported for mungbean and urd bean because of nematode infestations.

B. Fertility - Inoculum experiment:

1. Pigeon Pea (Cajanus cajan)

Fertility - Inoculum experiments were conducted at Delh1, Hyderabad, and Kanpur. Details of the experiments were the same as that desoribed for the rabi crops - Factorial Randomized block design with $0,50,100 \mathrm{~kg} / \mathrm{ha}, \mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K} \mathrm{~K}_{2}$?
and rhizobial inoculation having plot size $3.6 \times 4 \mathrm{~m}$. was used. Fertilizer was broadcast before planting and worked in with disc or rototiller. Inoculum was standard commercial peat base product applied immediately before planting with a sticking agent (supplied by Nitrogen Co., Milwaukee, Wisconsin, USA). Between row s. acing was 60 cm . for short term and 90 cm . for long term varieties, within row spacing 20 cm . for short term and 40 cm . for long term. Varieties were same as reported for fertility spacing trials at each location. A modified design was employed at Delhi.

At Delhi the experiment was wiped out as described under fertility spacing experiments. At Kanpur the same problem of flooding and disease was present as in the spacing experiment. Results of long term variety will be reported with the 68-69 rabi.

Therefore no data was obtained with short term variety T-21 for either of these two locations.

At Hyderabad one replication was eliminated due to a sterility disease. This has not been identified but is not the common sterility mosaic virus. Yield was obtained from three replications, but the growth and yield was poor due to lack of irrigation as was the case with the spacing experiment at this location. There Was significant interaction between N, K, and NPK as shown in Tables 100 and 101 and Figure 39.

Table 100. Effects of different levels of N and K on the yield of pigeon pea (T-21) at Hyderabad, Kharif, 1968.

Table 101. Interaciion effect of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O} 5$ and $\mathrm{K}_{2} \mathrm{O}$ on yield of Pigeon pea (Cajanus cajan) (T-21) at Hyderabad - Kharif, 1968.

Yield with different N and $\mathrm{K}_{2} \mathrm{O}$ treatments ranged from $221 \mathrm{~kg} / \mathrm{ha}$ ($\mathrm{N}_{0} \mathrm{P}_{50} \mathrm{~K}_{0}$) to $826 \mathrm{~kg} / \mathrm{ha}\left(\mathrm{N}_{1} 00 \mathrm{P}_{0} \mathrm{~K}_{0}\right)$. There was an increase over control due to $50 \mathrm{~kg} / \mathrm{ha} \mathrm{N}$ treatment. There was no increase over control with rhizobial innoculation nor over $50 \mathrm{~kg} / \mathrm{ha} \mathrm{N}$ with $100 \mathrm{~kg} / \mathrm{ha} \mathrm{N}$. There was an increase in yield due to K application in the absence of N and a decrease with $100 \mathrm{~kg} / \mathrm{ha}$.

Several interesting observations were made on Variety T-21 this season. Plantings made by project personnel and others were observed with planting dates from mid-May to early August and latitudes from Hyderabad (170) to Pant Nagar (290). T-2I this season always flowered in the second half of August, late plantings being no more than two weeks later than early plantings. Maturity also

Fig. 39 - Interaction of NK and NPK on Pigeon pea (Variety T-21), HYDERABAD, kharif 1968.
appeared to be faster at the lower latitude. However, the drought at Hyderabad undoubtedly hastened maturity so this cannot be ascertained without further observations. At Hyderabad this variety segregated into two separate plant types - one shorter and slightly earlier in flowering. At Delhf this difference in plant type was less noticeable. At Pant Nagar only the difference in flowering was discernable.
2. Mungbeans (Phaseolus aureus) and Urd beans (Phaseolus mungo)

Fertility inocuium trials were conducted with mungbean and urd bean at the same location using the same varieties reported under fertility-spacing trials. Experimental design was the same a: ihat described for previous orops except that the plot size was reduced to 1.8×4 meters. A modified design was used at Pant Nagar. At Ludhiana because of sandy soil N was applied in a spilt dose.

At Delhi and Kanpur the entire crop was ruined as described previously. At Hissar there was no effect due to treatment with mungbeans. Yields, which were very low, are reported in Table 102. (See discussion under spacing trials.)

Table 102. Fertility-Inoculum Trial, mungbean, Variety No. J-781, Hissar, Kharif. 1968.

Yleld (kg/ha)					
Levels of N (kg/ha)	Yield	$\begin{gathered} \text { Levels of } \mathrm{P}_{2} \mathrm{O}_{5} \\ (\mathrm{~kg} / \mathrm{ha}) \end{gathered}$	Yield	Levels of $K_{2} \mathrm{O}$ \qquad	Yield
0	41	0	51	0	38
50	48	50	41	50	51
100	47	100	40	100	43
Inoculum	40		-	--	
S.Em. \pm	20 k		20 kg		20 k
Differences	not st	caily signific			

With urd bean T-9 there was no effect of treatments but there was negative NK interaction. The $100 \mathrm{~kg} / \mathrm{ha} \mathrm{K}$ treatment without nitrogen gave the highest yield. (Table 103, Flgure 40.)

At Ludhiana yleld was low with mungbean due to nematodes and urdbeans due to virus. Hut again the interesting effect of NPK interaction with low yields. (Tables 104 and 105 and Figure 41).

Table 103. Interaction effect due to different levels of N and $K 0$ on the yleld ($\mathrm{kg} / \mathrm{ha}$) of urd beans, Variety T-9, Hissar, Kharif, 1968.

Levels of $K_{2} 0$
$(\mathrm{~kg} / \mathrm{ha})$
($\mathrm{kg} / \mathrm{ha})^{2} \quad$ Levels of $\mathrm{N}(\mathrm{kg} / \mathrm{ha})$

	0	50	100	Inoculation
0	902	898	979	773
50	748	929	660	875
100	1193	937	936	752

S. Em. \pm

C.D. $5 \%$$\quad$| $54 \mathrm{~kg} / \mathrm{ha}$ |
| :--- |
| $148 \mathrm{~kg} / \mathrm{ha}$ |

Table 104. Fertility Inoculum Trial urd bean, late variety No. 64, Luidhiana, Kharif, 1968.

Ytéld (kg/hal)
$\mathrm{N}, \mathrm{P}, \mathrm{K}$ Interaction

S. $\mathrm{Em} \pm$
$91 \mathrm{~kg} / \mathrm{ha}$
C.D. 5%
$251 \mathrm{~kg} / \mathrm{ha}$

W, Mable 1C5. N P K Interaótion effeat on yield of mingboan, late varlety No. 54, Ludhiana, Kharif, 1968.
()
$\xrightarrow[(\mathrm{kg} / \mathrm{ha})]{\left.\text { Levels of } \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}^{\prime} \quad \begin{array}{r}\text { Yield } \\ (\mathrm{Kg} / \mathrm{ha})\end{array}\right)}$
$\mathrm{N} \quad \mathrm{P} \quad \mathrm{K}$
10

$$
\text { S. } \mathrm{Bm} \pm
$$

Levels of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}$
$(\mathrm{kg} / \mathrm{ha})^{2} \mathrm{~K}_{2} \quad(\mathrm{~kg} / \mathrm{ha})$

197 251 227

179 158 224 198° 156 193.

189
1223
277
174
248 226

229
271.
198

Fig. 41 - Interaction of N.P.K. Mung beans variety T-54 and Urd beans Voriety No. 64 LUDHIANA, Kharif-1968.

Pant Nagar

Mungbeans (Phaseolus aureus)

At Pant Nagar, an experiment was conducted to find out the effect of different levels of N, P, K, and inoculum on grain yield of muig (Variety No. T-6009). Nitrogen treatments were $0,25,50 \mathrm{~kg} / \mathrm{ha}$ of actual element and rhizobial inoculum, phosphorus treatments were 0,50 , and $100 \mathrm{~kg} / \mathrm{ha}$ as oxide, and potassium at 0 and $50 \mathrm{~kg} / \mathrm{ha}$ as oxide. There were, thus, 24 treatment combinations laid out in a factorial randomized block design. The crop was planted on 9th July and harvested on 3lst October. Data are presented in Table 106.

Table 106. Effects of different levels of N, P, K, and inoculum on yield of mungbeans, Variety No. T-6009, Pant Nagar, Kharif, 1968.

$\begin{aligned} & \text { N levels } \\ & (\mathrm{kg} / \mathrm{ha}) \end{aligned}$	$\begin{gathered} \text { Yield } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{2}{ }^{(} \mathrm{Fg} \text { levels } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Yield } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	$\begin{gathered} \mathrm{K}_{2}^{0} \text { levels } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	$\begin{gathered} \text { Yield } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$
0	620	0	631	0	647
25	586	50	638	50	620
50	629	100	608	50	
Inoculum	698	--	--	--	---
IF_{t} Test	Not si	fioant,	Nis.		N.S.
S.Em. \pm	25		31		25

Levels of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$ did not have any effect on the grain yleld of
mungbeans.

C. Deep placement of Farm Yard Manure and Phosphomus:

Effect of deep placement of farm yard manure (FYM) and phosphorus on the yiels of dryland pigeon pea was studied at Delhi during Kharif, 1968. The treatments consisted of FYM at 15, 30, and 45 tons/ha and 14,28 , and $43 \mathrm{~kg} / \mathrm{ha} \mathrm{P}$ actual element and a control. Two methods of application - broadcast (mixed in top 8 10 cm . depth) and $25-30 \mathrm{~cm}$. deep placement - were tested. A split plot design Was used with combination of different levels of FYM and P as main plot treatments and method 墨 application as sub-plot treatments. Gross plot size used was $5.0 \mathrm{M} \times 4.0 \mathrm{M}$. Data are presented in Table 107.

The reason for deep placement of FYM was to increase the water holding capacity of the soll in hopes that enough moisture could be held from the monsoon to Increase yield of the crop. However, due to the scanty monsoon the crop had to be irrigated throughout.

Table 107. Effect of different levels of FYM and P along with methods of application on yield of pigeon pea, variety T-21, Delhi, Kharif, 1968.

Treatments FYM tons/ha	Grain Yield ($\mathrm{kg} / \mathrm{ha}$)
15	1668
30	2185
4, 45	2752
, P(kg/ha) actual element	
T- ${ }^{14.5}$	1884
$\square 29.0$	2210
43.5	2535
, Control	1210
S. Em \pm	$56 \mathrm{~kg} / \mathrm{ha}$
C.D. 5%	$167 \mathrm{~kg} / \mathrm{ha}$
Method of Application:	
Broadoast and surface mixed	2116
Deep placement $25-30 \mathrm{~cm}$.	2026
S. Em \pm	$23 \mathrm{~kg} / \mathrm{ha}$
C.D. 58	$68 \mathrm{~kg} / \mathrm{ha}$

Data in Table 107 show that the application of 15 tons of FYM per hectare, the usual quantity used by farmers, increased the grain yield above the control plot by about $400 \mathrm{~kg} / \mathrm{ha}$. Increasing levels of FYM significantly increased the yield of pigeon pea. Similarly, yield increased significantly with increasing levels of P. Broadcast application and surface mixed treatment gave significantl: higher yield ($2116 \mathrm{~kg} / \mathrm{ha}$) than deep placement at $25 / 39 \mathrm{~cm}$. ($2026 \mathrm{~kg} / \mathrm{ha}$). From an economic point of view, the use of both FYM and Phosphorus are shown to be highly profitable, each bringing in about Rs. 1200 and 1000 mpees net profit/ha respectively as compared to unmanured treatment.

D. Chemical Weed Control (Delhi)

An exploratory weed control trial was conducted at Delhi during Kharif 1968, to (a) assess the losses due to unrestricted weed competition mungbean (Phaseolus aureus) Variety No. Jalgaon-781, cowpea (Vigna sinensis) Variety No. Black eye 7, and pigeon pea (Cajanus cajan) Varlety No. T-21 and (b) to study the degree of weed control achileved by and tolerance of these three orops to Treflan (trifluore, 2, 6 dinitre, N.N. dipropyl - p - toluidine) at 0.5 and $1 \mathrm{lb} / \mathrm{ac}$ Eptam (S-Ethyl
dipropyl - thio carbamate) at 2 and $6 \mathrm{lb} / a \mathrm{c}$ and combination or these two cnemicals, Amiben (3 amino, 2, 5 - dichlorobensoic acid) at 2 and $6 \mathrm{lb} / \mathrm{ac}, \mathrm{Knoxweed}$ (S-Ethyl dipropyl thio carbamate. 46.9% + iso-octyl ester of $2,4-\mathrm{D} 35.4 \%$) at 2 and $6 \mathrm{lb} / \mathrm{ac}$, Randox at 15 and $20 \mathrm{lb} / \mathrm{ac}$. Tok-EC-25 at 2 and $6 \mathrm{lb} / \mathrm{ac}$, Vernam at, 2 and $4 \mathrm{lb} / \mathrm{ac}$, and Tillam at 2 and $6 \mathrm{lb} / a c$. Hand weeding and no weeding were also included as check treatments. The twenty treatments consisting of 8 herbicides at different doses and combinations were duplicated for each crop. This gave two replications for assaying crop injury and six replications for checking weed control.

Requisite amount of herbicides, except Amiben, Randox, and Tok, were sprayed before the final cultivation and incorporated into the soil with a rototiller immediately after application. Amiben, Randox, and Tok were applied immediately after the crop was planted. The three crops, mungbean (J-781), cowpea (Black-eye 7), and pigeon pea (T-21), were planted on August 1, 1968.

Observation on crop injury due to herbicides was taken ten days after planting. The results are presented as percentage over control in Table 108 and Figure 42.

Data in Table 108 show that in mungbeans Eptam, Tok, and Treflan + Eptam caused severe injury. Although Knoxweed did not show any specific injury, it delayed emergence of seedlings which were small in stature as compared to control. No injury to crops was observed with other herbicides. In cowpea, severe injury was caused by Tok, Knoxweed, and Treflan + Eptam. Slight to moderate injury was noticed in case of other herbicide treatments. In case of pigeon pea, higher concentrations of Amiben, Eptam, Tok, and Treflan + Eptam caused severe injury. Knoxweed, even at low concentration, was very toxic to pigeon pea seedlings.

In general, Knoxweed, Eptam, Tok, and a combination of Treflan + Eptam were very toxic to all the three crops under study. The injury caused by Eptam and Treflan + Eptam, however, recovered as the seedlings advanced in growth, whereas the injury caused by Knoxweed and Tok was persistent throughout the growth of crops.

Weed control rating was taken 45 days after planting and herbicide spray. The results are presented as percentage over control in Table 109 and Figure 43.

Data in Table 109 show that Amiben ($6 \mathrm{lb} / \mathrm{ac}$), Eptam (2 and $6 \mathrm{lb} / \mathrm{ac}$), Treflan ($1 \mathrm{lb} / \mathrm{ac}$), Tok (2 and $6 \mathrm{lb} / \mathrm{ac}$), Knoxweed (2 and $6 \mathrm{lb} / \mathrm{ac}$), and Treflan + Eptam at both high and low concentrations were more effective in controlling the weeds than other herbicides tested.

The four major weeds which were seen in the experimental field were, Cyperu rotundus (Monocot), Eleocharis atropurpurea (Monocot), Trianthena portulacastrum (Dicot) and Digera arvensis (Dicot). Since the major problem during Kharif

Aable 108. . Crop infury rating of various herbicides to mungbean, oowpea, and pigeon pea 10 days after planting, Delhi, Kharif, 1968.

Treatment	$\begin{aligned} & \text { Rate } \\ & \text { lb/acre } \end{aligned}$	Mungbean	Cowpea	Pigeon pea
Amiben	2.0	0	2.0	1.5
Amiben	4.0	2.5	3.5	5.0
Eptam	2.0	4.0	2.0	1.5
Eptam	6.0	6.5	4.0	8.0
Treflan	0.5	0	0	0
Treflan	1.0	0	2.0	1.0
Randox	15.0	\bigcirc	2.5	0
Randox	20.0	0	0	0
Tok EC-25	2.0	4.0	3.5	2.5
Tok EC-25	6.0	9.0	9.0	9.0
Treflan + Eptam	$0.5+2$	1.5	2.5	2.5
Treflan + Eptam	$1.0+6$	4.0	7.5	6.5
Vernam	2.0	0	2.5	0
Vernam	4.0	0	0	1.0
Knoxweed	2.0	$0 \frac{1}{1}$	8.5	8.5
Knoxweed	6.0	01	10.0	10.0
Tillam	2.0	0	2.0	1.0
millam	6.0	0	3.0	1.0
Hand weeding	4×6	0	0	0
No weeding	\%	0	0	0

$1 /$ No injury, delayed germination, small plants. $0=$ No Injury; $1-3=$ Slight; $4-6=$ Moderate; $7-9=$ Severe; $10=$ Death.

Fig. 42

CROP INJURY CAUSED BY HERBICIDES

 Delhi, Kharif - 1968

Table 109. Weed control ratings of different herbiclal treatments 45 days after planting, Delhi, Wharif, 1968.

Treatment	Rate Cacre	1	2	3	4	5	6	Total	Average	\% Weeds remaining over control
Amiben	2	6	3	3	4	1	3	20	3.3	67
Amiben	6	6	5	3	8	4	5	31	5.1	49
Eptam	2	6	7	7	1	1	5	27.	4.5	55
Eptam	6	8	3	7	8	1	3	30	5.0	50
Treflan	5	6	4	1	0	0	5	16	2.7	73
Treflan	1	8	9	8	7	6	1	39	6.5	35
Randox	15.	2	3	7	6	0	0	18	3.0	70
Randox	20	1	5	6	0	0	0	12	2.0	80
Tok EC-25	2	9	7	9	3	3	5	36	6.0	40
Tok EC-25	6	10	9	7	8	9	9	52	8.7	12
Treflan + Eptam	$0: 5+2$	2	9	8	9	1	2	31	5.1	49
Treflan + Eptam	$1.0+6$	9	8	9	9	8	1.	44	7.3	27
Vernam	2	0	1	0	7	0	0	8	1.3	87
Vernam	4	2	4	0	1.	1	0	8	1.3	87
Knoxweed	2 ,	5	6	6	3	0	3	23	3.8	- 62
Knoxweed	6	4	6	6	8	5	2	31	5.1	49
Tillam	2	4	5	1	2	0	3	15	2.5	75
Tillam	4%	5	2	4	4	0	0	15	2.5	-75
Hand Weeding		10	10	10	10	10	10	60	10	0
No Weeding		0	0	0	0	0	0	0	0	100
Total:		103	106	102	98	50	57	516		
$\begin{aligned} & 0=\text { No Weed Control } \\ & 10=\text { Complete Weed Control } \end{aligned}$										

Fig. 43
WEED CONTROL RATING
Delhi, Kharif - 1968

season was nut grass (Cyperus rotundus) effect due to different herbicides on control of nut grass and other weeds was studied and the data are presented in Table 110 as percentage over control and graphically represented in Figure 43.

Data in Table 110 show that an effective control of nut grass was obtained with the application of Eptam ($6 \mathrm{lb} / \mathrm{ac}$) alone and in combination with Treflan ($1 \mathrm{lb} / \mathrm{ac}$). These two treatments, however, falled to control the monocot weeds other than nut grass. However, Tok brought down the monocot weeds to a consider.. able extent. Tok (2 and $6 \mathrm{lb} / \mathrm{ac}$), Treflan ($1 \mathrm{lb} / \mathrm{ac}$) and its combination with Eptam ($6 \mathrm{lb} / \mathrm{ac}$) controlled dicot weeds most effectively. The response of various herbicides to Trianthema and Digera were not clear from the data.

Yleld data of these crops were not collected because of disease incidence in the fleld occurring later in the season.

From this trial, it appears that the herbicides, Ireflan, Eptam, combination of Treflan + Eptam and low doses of Tok and Knoxweed show promise in future weed control studies in Kharif pulse crops.

Table 110. Mean Number of Weeds Per Four Square Feet for Various Herbicidal Treatments, Delhi, Kharif, 1968.

Percentage Over Control

Treatment	Rate	Nutgrass (Cyperus rotundus)	Other monocot	Broad leaves
Amiben	2	104.0	94.0	63.0
Amiben	6	87.5	104.0	56.0
Eptam	2	75.0	78.0	68.0
Eptam	6	45.8	89.0	68.0
Treflan	0.5	I29.2	115.0	75.0
Treflan	1.0	104.0	96.0	25.0
Randox	15.0	112.5	96.0	88.0
Randox	20.0	54.2	102.0	81.0
Tok EC-25	2.0	104.0	44.0	50.0
Tok EC-25	6.0	100.0	87.0	19.0
Treflan + Eptam	$0.5+$	62.5	119.5	50.0
Treflan + Eptam	1.0 +	. 50.0	126.0	44.0
Vernam	2.0	75.0	91.0	100.0
Vernam	4.0	75.0	85.0	94.0
Knoxweed	20	79.0	102.0	81.0
Knoxweed	6.0	71.0	104.0	68.0
Tillam	2.0	75.0	72.0	100.0
Tillam	6.0	87.5	104.0	106.0
Handweeding		0 ,	0	0
No Weeding		100 .	. 00	100

E. Effect of simazine on protein content of pulses:

Recent literature indicates that simazine at low doses increases the protein content of certain crops. With this object in view, an experiment was planned to find out the effect of simazine on protein content of pulse crops (mungbean, Var. T-1 and cowpea Var. Black Eye 7) at Delhi and Hyderabad, during Kharif, 1968. Treatments consisted of control, $1 / 16 \mathrm{lb} / \mathrm{ac}, 1 / 8 \mathrm{lb} / \mathrm{ac}$, and $1 / 4 \mathrm{lb} / \mathrm{ac}$ of simazine. There were three application methods: all applied at planting, all applied at pre-bloom stage and split planting + pre-bloom stages. A uniform dose of N, P, and K was applied in the experimental area. A split plot design was used with time of application as main plots and simazine doses as sub-plot treatments. There were four replications. Gross plot size used was 24 ft . x 15 ft . The crop was planted on July 25 at Delhi and July 5 at Hyderabad. Pre-bloom spray was Given on September 4, 1968, at Delhi and August 8 at Hyderabad. DDT + Thiodan spray was given on August 7 to control flea beetles. This experiment was part of an all India Scheme conducted on many crops at various locations.

Percentage protein is given in Table 111. Results on enhancement of protein quantity are crratic. Yield data was not obtained because of the erratic stand obtained at Hyderabad because of treatment effects and at Delhi because of both treatment effects and other factors. These levels border on the toxic level so a refinement in the method of applying treatments must be worked out. Protein percentage even if clear-cut is only on indication without yield data since any impairment of metabolic function could give a higher protein percentage but reduce yleld so that total protein produced would be less.

Table 111. Effect of different doses and time of application of simazine on protein percentage in mungbean and cowpea at Delhi and Hyderabad, Kharif, 1968.

Treatment		Mungbean		Cowpea	
Rate	Time	Delhi	Hyderabad	Delh	Hyderabad
1b/ac					
0	D_{0}	25.9	26.6	26.4	24.7
1/16	D_{0}^{0}	25.2	27.0	27.1	23.3
1/16	D_{1}	25.0	26.6	28.4	24.4
1/16	D_{2}	24.8	26.0	28.6	24.4
1/16.	D_{3}	24.5	27.5	27.7	25.2
1/8	Do	25.0	25.2	28.1	26.4
1/8	D_{1}	26.1	26.0	27.0	24.6
$1 / 8$	D_{2}^{1}	24.2	26.0	27.3	24.4
1/8	D_{3}^{2}	24.8	26.9	27.3	24.6
1/4	D_{0}	24.2	26.0	26.8	22.9
1/4	D_{1}	23.6	26.8	28.3	24.0
1/4	D_{2}^{1}	25.3	25.2	28.0	22.8
1/4	D_{3}^{2}	24.5	26.1	26.5	23.1

F. Follar Application of Phosphate:

An experiment was planned and conducted at Delhi with the object of studying the response of Urd late, variety T-65 to soil and foliar application of phosphate The treatments were no phosphate, $25 \mathrm{~kg} / \mathrm{ha}$ all through foliage, $50 \mathrm{~kg} / \mathrm{ha}$, half through soll and half through follage, $50 \mathrm{~kg} / \mathrm{ha}$ all through foliage, $75 \mathrm{~kg} / \mathrm{ha}$ all through soil, $75 \mathrm{~kg} / \mathrm{ha}$, half through soil and half through follage, $100 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O} / \mathrm{ha}$ all though soil and $100 \mathrm{~kg} / \mathrm{ha}$, half through soil and half through foliage. All plots received a basal application of $25 \mathrm{~kg} / \mathrm{ha}$ of N at planting and phosphorus was applied in the form of single superphosphate. Simple randomized block design was used with four replicates. Gross plot size used was $3.0 \mathrm{M} \times 1.8 \mathrm{M}$. The orop was sown on August 1, 1968. Data are presented in Table 112.

Table 112. Effect of different doses of phosphate applied through soil and foliar on yleld (kg/ha) of urd beans, Delhi, Kharif, 1968.

Treatinent	Yield of Urd beans (
Control	836 ab
25 kg . P - all foliage	
$50 \mathrm{~kg} . \mathrm{P}$ - all follage	642 abc
50 kg . $\mathrm{P}-1 / 2$ soil $+1 / 2$ follage	806 abo
$50 \mathrm{~kg} . \mathrm{P}$ - all soil	698 abc
$75 \mathrm{~kg} . \mathrm{P}$ - all soil	869 a
$75 \mathrm{~kg} . \mathrm{P}-1 / 2$ soil $+1 / 2$ follage	831 abc
$100 \mathrm{~kg} . \mathrm{P}-\mathrm{all}$ soil	
$100 \mathrm{kg} .\mathrm{P} \mathrm{-} 1 / 2$ soil $+1 / 2$ follage	740 abc
C.D. ${ }_{\text {d }}^{0}$	$280 \mathrm{~kg} / \mathrm{ha}$

Data in Table 112 do not indicate a response to phosphate fertilization. The yield of aheck plots was the same or higher than where fertilizer was applied. Although the low yield of the foliar applications would tempt a conclusion in favor of soil application the high yield level of the control eliminates that, at least under the conditions of this experiment.

G. Effect of ridging on plant growth:

In North India, water logging is a common problem during monsoon season. Crops generally fall due to excess water around the active root zone, because of lack of aeration and unavailability of nutrients. Pulses are no exception to this. An experiment was therefore conducted at Delhi to study the performance of mung. beans (Phaseolus aureus) urd beans (Phaseolus mungo), and pigeon pea (Cajanus cajan) under different cultural practices and plant spacings. The three cultural practices were sowing flat, sowing flat but subsequent ridging, and sowing on ridges. Three plant spacings tried were $5 \mathrm{~cm}, 10 \mathrm{~cm} .$, and 15 cm . There were, therefore, nine treatment combinations laid out in randomized block design. Gross plot size used was $4.0 \times 3.0 \mathrm{M}$. Mung and urd were planted at 30 cm . row distance and pigeon pea at 75 cm . apart.

Data are shown in Table 113 and Figure 44.
Table 113. Effect of sowing methods on yield of Kharif pulses (Yield - $\mathrm{kg} / \mathrm{ha}$).

Treatments	Pigeon Pea	Urd bean	Mungbean
Ridge Sowing	2712 a	1182 a	529 a
Flat Sowing	2111 b	749 b	333
Flat sowing and subsequent ridging	1822 b	762 b	323 b
S. Em. \pm	153	52	60
L.S.D. 5\%	457	157	181

These data indicate a considerable advantage for ridging under the conditions of this experiment during the Kharif season. The soil was completely waterlogged for most of the monsoon season but without standing water on the surface. The ridges apparently gave the plant roots enough aeration to produce the enhanced growth and yield. However, observations were made on other ridged blocks where standing water was a problem. Here plants suffered considerably and in light soil the ridges soon fade away. Therefore, ridging cannot be considered a substitute for surface drainage. It is possible that soil drainage which would give the roots a larger aerated zone would cause even larger increases in yield than would ridging.

H. Soil treatment trial:

An experiment was conducted at Ludhiana to determine the cause of orop failure in the Pulse Block in 1967. In that season the plants in large areas were very unthrifty. Several things were suspected without good evidence to make even a tentative diagnosis. Therefore all possible factors were included in a small experiment. A split-plot design was utilized with main treatments being various soll treatments:

1. Fungicide - PCNB (Brassical) $20 \mathrm{~kg} / \mathrm{ha}$
-. Nematicide - Nemagon 3 gal/acre
2. Fungicide + Nematicide
3. Soil Sterilant - Methyl bromide $1 \mathrm{lb} / 100 \mathrm{sq}$. feet
4. Control

The sub-plot treatments consisted of no fertilization and $100 \mathrm{~kg} / \mathrm{ha}$ of N , p, and K. N was applied in these doses to prevent leaching in irrigation treatment.

The sub-sub-plot treatments are listed below:

1. Excessive irrigation - Irrigation at least weekly when no rain and often if necessary to keep root zone always at or near field capacity.

Fig. 44 - Effect of sowing methods on yield of pulses; DELHI, kharif 1968.
2. Minor elements - Commercial minor element mixture (Nutramin 6)
containing $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{B}$, and Mo.
3. Farm Yard Manure
4. Control

The irrigation treatment was invalidated because the plants reached the wilting point at about the fifth week. In pot studies with soil from the Pulse Block at Ludhiana the effect noted in 1967 had been obtained where the plants had accidently been allowed to wilt only once. Although subsequently watered they never recovered completely. This indicated root damage which might be overcome with better irrigation.

The farm yard manure plots showed severe toxicity symptoms at two weeks. By four weeks these had completely disappeared and the plants in this treatment looked much better than the others. This treatment also had many more weeds.

The methyl bromide plots showed some toxicity at four weeks which they outgrew. The methyl bromide had been applied two weeks before planting.

The growth of all plants in this experiment was very spotty with some plants much more thrifty than others. There was no pattern to this within individual plots and it was not correlated with treatment.

Unfortunately the cause of the crop fallure in 1967 although severe that year was not present in the area where this experiment was conducted. There was no effect of any treatment on grain yield. Yield data is given in Table 114.

Table 114. Yield of urd bean, var. l-1, soll treatment experiment, Ludhiana, Kharif, 1968. (Urd Late, Variety 1-1)

Treatment
PCNB
NEMAGON
PCNB + NEMAGON
Methyl Bromide
Control $\quad, \quad 673$
No Fertilizer
$100 \mathrm{~kg} / \mathrm{ha}$ (each of N, P, K), $\quad 58 \mathrm{C}$
Control
Irrigation $\quad 632$
Minor Elements 617
Farm Yard Manure 602 .

651 621
Yield (kg/ha)
486
587
576
763
None or the effects were statistically significant.

I. Plant Environmen'tal Studies:

The effects noted with the growth of Pulse Crop in the summer season strongly indicated that growth and flowering were at least partially controlled by environmental conditions and that this was not wholly a matter of day length. Also, during the rabi season, some observations on abnormal plant growth had been made which was assumed to be tied up with weather conditions.

The above situation led to the initiation of plant environmental studies with the 1968 Kharif season. These studies involve the following: collecting and recording as much environmental information as possible in the pulse fields and obtaining other data from available sources; constant observation of the crops for any abnormalities and attempting to correlate these with the environmental data collected; judiciously modifying the environment where possible in the field; and growth chamber studies with varying plant environment. A growth chamber has been designed and is being constructed for this work using entirely indigenous materials available in India without foreign exchange or import license.

PLANT PATHOLOGY

RPIP
F. J. Williams
B. Baldev
K. S. Amin
AICPP/IART
J. S. Grewal

SUMMARY

Rabl - 1967-68

Clicer arietinum (Chickpea)

Treating Clice: NP-58 seed with fungicides increased percent germination, but did not result in increased yleids at Delhi. Captan treatment resulted in highest percent: jermination.

Fusarium wilt was insufficiently severe at Delhi to effectively screen 18 varieties of Cicer for resistance. At Hissar, the Cicer germplasm was screened for wilt resistance. Of about 5,000 lines, 220 were selected as possible sources of resistance and are being tested again for further selection.

The time of planting of Cicer NP-58 did not significantly atrect incidence of Fusarium wilt or Sclerotinia wilt at Delhi. Disease incidence was low. Plantings were made fortnightly from September 23 to December 1. Yield was highest from the October 6 planting.

Irrigation of Cicer NP-58 at time of podfiling resulted in premature death of plants at Delhi. There was abundant soil moisture at time of irrigation. The soil was a heavy clay and the plant roots apparently suffocated. Yields from non-irrigated ridged plots were 30% higher than from non-irrigated, non-ridged plots.

Chickpea blight (Ascochyta rabiei), was serious in Punjab, occurring in epiphytotic form on heretofore resistant varieties. There is evidence of two or more races of the pathogen. Isolations were made from 60 varieties, the cultures mixed and 160 lines of germplasm inoculated. Two exotic lines were resistant and are being crossed with previously existing varieties to combine sources of resistance. Some 1,500 lines of germplasm at Gurdaspur, Punjab have been inoculated with the mixture of isolates. Current research includes race and differential variety identification.

Several Cicer plants have been seen with virus-like symptoms. One was successfully transmitted mechanically. None are of sufficient incidence to be important at this time.

Pathogencity of Fusarium isolated from wilting Cicer plants has been erratic Many isolations made in 1966 could not be proven pathogenic. In 1967 more isolates were made and three were pathogenic when tested under field conditions. These isolates have retained their pathogenic character when tested in pot culture and are being tested in the field in 1968-69. If they are pathogenically stable, the germclasm can be screened for resistance.

Cajanus cajan (Pigeon pea)

With evidence that resistance of Cajanus to Fusarium wilt is location dependent (indicating pathogen races), the two major Cajanus growing areas of India were surveyed in 1967-68 rabi season. Some 600 isolates of. Fusarium were obtained. Current research includes proof of race existence by testing pathogenicity of several isolates on several varieties. Future research will involve finding geographic distribution of races and development of resistance to speaific races of the wilt pathogen.

Many reciprocal grafts between healthy and yellow mosaic affected Cajanus plants were made at Hyderabad. Because of a high incidence of yellow mosaic in healthy to healthy grafted controls, the viral nature of yellow mosaic was not proved conclusively. The grafting work will be continued.

A new disease of Cajanus, suspected to be virus induced, was seen at Hyderabad. Symptoms include leaf mugosity and malformation. Reciprocal grafts between healthy and diseased plants were unsuccessful. The diseased plants are belng maintained for additional grafts when a new flush of growth occurs.

A new disease of Cajanus was seen at Delhi, and at Deeg and Kanpur in Uttar Pradesh. Gross symptoms resembled those of Fusarium wilt, and the two diseases can be discerned only by careful examination. The new disease is a collar and stem rot, caused by Phytophthora sp. It occurred only in plantings that had been subjected to flooding for a period of 2 or 3 days (This is not unusual in bunded fields during the monsoon). The pathogenicity of the fungus was proven repeatedly by inoculating healthy Cajanus stems and by infesting soil. A paper on the occurrence of the disease, symptomatology, pathogen identification, etiology and resistance is being prepared.

Kharif - 1968
Phaseolus aureus (Mungbean)
The mung germplasm was screened for resistance to several diseases under field conditions at Delhi. In each disease, further testing under controlled screen-house conditions will be essential before resistance can be identified with certainty.

Six lines were free from yellow mosaic, 48 were free from leaf orinkle (suspected virus), 7 were free from top necrosis (cause unknown), and 7 were free from bacterial blight. Eleven lines were identified that had some resistance to all the diseases.

Some 30 single plant selections were made in 1967 on the basis of multiple disease resistance. In 1968, 4 selections were free from yellow mosaic, 7 were free from leaf crinkle, 25 were free from top necrosis (cause unknown), and 27 were free from bacterial blight. These selections will be used for crossing in 1969.

The varieties of mung in the coordinated trials were scored for disease resistance at several locations. No important departures from previous years' performance was noted. Cercospora leaf spot wąs serious at two locations in Uttar Pradesh for the first time. There was considerable variation in susceptibility among varieties.

Seed of mung variety T-5l was treated with several fungicides and planted at 7 locations. Results were received from 4 locations. None of the treatments resulted in increased germination.

Mung variety T-2 was sprayed at 10-day intervals with 5 different follar fungicides at 6 locations. No treatment effectively controlled foliar diseases at any of the 4 reporting locations. The 10-day interval was apparently too long for monsoon conditions. The trial will be repeated with a shorter interval and the addition of stickers.

Phaseolus mungo (Urd)

Some 400 lines of urd germplasm were screened for resistance to several diseases under field conditions at Delhi in 1968. The soreened material included some single plant selections (based on disease resistance), made in 1967. Thirty lines were free from yellow mosaic, the most serious disease of urd in India. Seven lines were identified as having resistance to several diseases. They must be tested under controlled conditions.

The urd varieties in the coordinated trials were screened for disease resistance at several locations. No. departures from previous years' performance was noted. Leaf spot diseases (primarily Cercospora), were serious at two locations in Uttar Pradesh. Variation in varietal susceptibility was noted.

Treating urd variety T-27 with any of several fungicides did not significantly Increase germination at any of 4 locations.

Vigna sinensis (Cowpea)

The germplasm of cowpea (about 1,200 lines), was screened for disease resistance at Delhi under field conditions. Bacterlal blight was serious and 137 lines were free from the disease. Top necrosis (cause unknown), was serious. Some 50 lines were free of both diseases and will be tested for resistance to bacterial blight under controlled conditions.

Seed of cowpea (variety Meshed), were treated with several fungicides and planted at 7 locations. Of 4 locations reporting results, several fungicides significantly increased germination at two locations. Captan was as effective as any treatment and has been recommended since it is readily available.

Pisum sativum (Pea)

Several tests were conducted with peas, including variety tests and time of planting experiments. No serious diseases occurred and no significant results for pathology were obtained. A trace of pea streak was present and the virus was mechanically transmitted to healthy plants. Varieties Bonneville, Bridger and 326 ylelded best. Varieties Early Badger, Early December and Early Frosty yielded poorly (They flowered after very little vegetative srowth when planted at Delhi on October 6).

Important diseases of unknown etiology.
In the past 2 years several diseases (causing serious damage to urd, mung, cowpea and Cajanus), have occurred, with which we have been unable to prove the association of a specific pathogen. In each case, many isolations from diseased plants, or grafts between diseased and healthy plants, as appropriate, have been made in attempts to identify the pathogens involved. Lacking effective facilities, all attempts to prove pathogenicity must be done under field conditions with the accompanying uncertain results. A screen-house has been constructed and should be useful during the kharif season for virus work, but the lack of glasshouse faollities precludes important off-season work with kharif crops. Growth chambers have been ordered to extend the pathology work on Cicer into the off-season and to study the important effects of environment on Cicer wilt. Generally, the lack of minimal facilities has greatly retarded important work in pathology.

Papers and Publications

F. J. Williams; J. S. Grewal and K. S. Amin, 1968. Serious and New Diseases of Pulse Crops in India in 1966. Plant Disease Reporter 52:300-304.
F. J. Williams and J. S. Grewal. Screening the world genetic stook of pulse crops for disease incidence and identification of sources of resistance for the utilization in breeding programs. Proceedings Second Annual Workshop Conference on Pulse Crops, New Delhi, April, 1968.
F.J. Williams. Present status of pathological studies in respect of virus diseases with special reference to mung, urd, cowpea, and sterility mosaic of arhar. Proceedings Second Annual Workshop Conference on Pulse Crops New Delhi, April 1968.
F. J. Williams. Plant Diseases, Annual Conference, Office of Agricultural novalopment, USAID/India. 1968.

Cicer arletinum (Chickpea)

Wilt - Fusarium wilt of chickpea was not severe in our plantings at New Delh1 $\frac{1 n}{\ln }$ 1967-68, and no differential response was evident in a replicated trial of 18 varieties.

The chickpea germplasm was screened for resistance to wilt under fleld conditions at Hissar, Haryana. From 5,000 lines, 220 were selected as possibly resistant to wilt (Figure 45). They were planted in the saine field in 1968-69 and are being rated for resistance again.

Of over 100 isolates of Fusarium sp. from wilted chickpea plants made during 1967-68, only three were pathogenic. Of these, the most pathogenic isolate has maintained pathogenicity in pot culture experiments, but was not pathogenio in one field test at New Delhi. Work is continuing to find the conditions necessary for pathogenicity.

Blight - Ascochyta blight was epiphytotic on chickpea in Punjab in 1967-68. Varieties that had been developed as blight resistant were susceptible and widespread damage occurred (Figure 46). The pathogen was isolated from each of 60 varieties of chickpea growing at Gurdaspur, Punjab. The isolates formed several morphological groups on PDA. Spores from all isolates were mixed and 160 varieties and lines of gram germplasm inoculated at New Delhi, and 1,500 lines inoculated at Gurdaspur in 1969. Inoculation at Gurdaspur was ineffective. At New Delhi, all but two exotic lines were susceptible. Crosses between the two exotic lines and susceptible varieties have been made and the F_{2} material will be evaluated at New Delhi in 1969-70. There is evidence of 2 or more races of the pathogen. Current research includes studies of race flora, selection of differential varieties for identification of races and genetics of disease resistance.

Time of planting - Disease incidence was uneffected by time of planting of chickpea variety NP-58 at New Delhi when plantings were made fortnightly from September 23 to December 1. Disease incidence was low. Yield was highest from the October 6 planting.

Effect of irrigation - Irrigation of NP-58 chickpea growing on ridges or plane surface caused premature death of plants at New Delhi. The plants were in pod-filling stage and the heavy clay soil contained sufficient water when irrigated. Ridged, non-irrigated plots yielded 30% more than plane surface, non-irrigated plots. Yields from irrigated plots, either ridged or plane surface, were less than half that of the ridged, non-irrigated plots. The premature death of the plants was probably due to asphyxiation of roots.

Cajanus cajan (Pigeon pea)

Wilt - With evidence that resistance to pigeon pea wilt is looation dependent (Indioating pathogen races), over 600 isolates of Fusarium udum were made from

Figure 45. Relative resistance to chickpea wilt among germplasm lines at Hissar, (Haryana), India.

F1gure 46. Ascochyta blight on varieties PB7, S26 and C104 at Ludhiana, Punjab
specimens collected throughout the majus pobcun pea giuwing areas. current research includes attempts to prove race existence, identification of differential varieties, and race distribution.

Yellow mosaic - Many reciprocal grafts between healthy and yellow mosaic affected plants were made at Hyderabad. Because of a high incidence of yellow mosaic in the controls, the viral nature of yellow mosaic was not proven.

Phyllosticta leaf spot - A leaf spot disease of pigeon pea, caused by Phyllosticta cajani, was seen at several stations in Uttar Pradesh in 1968. The disease was not serious, but could become damaging during the monsoon.

New diseases - A new disease of pigeon pea, suspected to be virus induced, was seen at Hyderabad. Symptoms include leaf rugosity and malformation. Reciprocal grafts between healthy and diseased plants were unsuccessful.

A new collar and stem rot disease of pigeon pea was found at New Delhi, at Deeg and Kanpur, Uttar Pradesh. Gross symptoms of wilting and death resemble those of Fusarium wilt and the two diseases could be confused (Figures 47 and 48). The disease is caused by an undescribed species of Phytophthora. It was found only in plantings of variety $\mathrm{T}-21$ that had been subjected to flooding for a period of 2-3 days. Such flooding is sommon in bunded fields during the monsoon. The pathogenicity of the fungus was proven repeatedly by inoculating healthy plants. A paper describing the disease and the pathogen is being prepared.

Phaseolus aureus (mungbean)

Resistance of varieties - The varieties in the coordinated trial at New Delhi were evaluated for disease resistance (Table 115). Yellow mosaic was more severe in 1968 than in 1967, and varieties $T-44, T-51$, and Koparagaon were more severely affected in 1968. No other significant departures from previous performance were noted. Varieties 24-2, 24-3, and BR 2 were most resistant to all diseases present at New Delhi in 1968.

Leaf crinkle and top necrosis (Figure 49) are suspected to be virus diseases. Yellow mosaic is caused by a whitefly vectored virus. Bacterial blight is caused by Xarthamonas sp.

The mungbean varieties in the coordinated trial at Hardoi and Etawah, U.P. were evaluated for resistance to leaf spot diseases (primarily Cercospora), during the last week of August, 1968 (45 days after sowing). The data are presented in Table 116.

Resistance of germplasm - The mung germplasm (681 lines), was evaluated for resistance to several diseases under field conditions at New Delhi in 1968. Lines selected for disease resistance are listed in Table 117.

Figure 47. Phytophthora stem rot of Pigeon pea (Field view).

Figure 48. Phytophthora stem rot of Pigeon pea (Close-up)

Table 115. Disease ratings of mungbean, New Delh1, 1968.
Disease Index $1 /$,

Varlety	Yellow Mosaic.	Leaf Crinkle	Top Necrosis	Bacterial Blight
D 45-6	6.8	2.0	7.0	3.5
T-1	2.0	1.5	5.5	3.1
T-2	5.8	3.0	5.8	4.0
T-44	3.5	1.1	6.6	3.1
T-51	4.3	1.8	5.8	3.5
No. 305	6.1	2.5	2.6	3.0
24-2	2.0	1.0	1.0	1.3
24-3	2.0	1.3	1.1	1.5
BR-2	2.8	2.1	2.6	3.3
RS-4	6.5	2.3	7.0	3.6
Hybrid 45	4.8	2.0	6.5	2.8
Kopargaon	3.3	1.1	8.0	3.3
Jalagon 781	7.0	1.3	6.6	3.5
ST-7	3.0	2.8	4.0	2.8

1/ Mean of 6 replicates, based on $1-9$ rating; $1=$ healthy, $9=$ all dead.

Table 116. Comparative resistance of mungbean varieties to Cercospora leaf spot at Hardol and Etawah, U.P.

1/ Leaf area destroyed was $15-25 \%$ on mature leaves in varieties T-2; No. 305, and B-1 at Etawah.

Figure 49. Top necrosis of mung. The same symptoms were seen on urd and cowpea.

Table 117. Mungbean 1 ines selected at New Delhi in 1968 for possible disease restistance.

Disease Rating 1/

Accession No. Yellow Mosaic Leaf Crinkle Top Necrosis Bacterial Blight.

$48-113-98$	1.5	2.0	2.0	2.0
$48-069-271$	2.0	2.0	2.0	2.0
$48-069-326$	2.0	2.0	4.0	2.0
$48-069-328$	1.0	2.0	1.0	2.0
$48-069-329$	2.0	2.0	2.0	3.0
$48-069-336$	2.0	2.0	1.0	1.0
$48-069-351$	1.0	1.0	1.0	2.0
$48-069-353$	1.0	1.0	1.0	3.0
$48-069-364$	1.0	3.0	3.0	4.0
$48-069-365$	2.0	2.0	2.0	2.0

1/ Disease rating on 1-9 scale; $1=$ free of disease, $9=$ dead.

Seed treatment - Seed of T-51 mung was treated with several fungicides at recommended rates (see Vigna sinensis - seed treatment) and planted in replicated trials at New Delhi, Hyderabad, Jabalpur, Pant Nagar, Coimbatore, Ludhiana, and Hissar. Data were not reported from Coimbatore or Hissar. Of the trials reported, no treatment significantly increased germination in comparison to untreated controls.

Foliar spray - Variety T-2 mung was sprayed five times at 10-day intervals with Captan, Zineb, Manzate D, Fytolan or Aureofungin at recommended rates. The first spray was applied 30 days after planting. Data were reported from New Delhi, Ludhiana, Pant Nagar, Hyderabad. and Jabalpur. None of the treatments effectively controlled foliar diseases at any location. The trial will be repeated in 1969 with a 5-day interval.

Phaseolus mungo (urd)

Resistance of varieties - ine varieties in the coordinated trial at New Delhi were evaluated for disease resistance and the results are in Table 118.

Table 118. Disease ratings of urd bean varieties, New Delhi, 1968.
Le . Disease Index 1/

Variety	Yellow Mosaic	Leaf Crinkle	Top Necrosis	Bacterial Blight
T-9	4.8	1.6	6.0	2.0
T-27	1.6	2.0	4.0	1.6
T-65	1.6	3.1	4.0	2.0
1766	7.6	1.6	7.5	2.0
No. 1-1	1.0	3.1	2.0	1.3
D 6-7	7.0	1.5	7.5	2.0
SInd Kheda 1-1	7.0	1.6	7.6	2.0
BR-6]	3.3	2.0	4.3	2.0
BR-68	2.65	2.1	5.0	2.0
No. 55	6.5 ¢	1.6	6.0 -	1.5
N 212	8.0	1.5	7.0	2.0
Khargon 3	7.5	1.5	7.5	2.0
Mash - 48	1.6	3.3	2.6	1.6
No. 35-5	1.0	4.0	2.0	2.0
Mash 41-13	1.3	2.3	2.5	1.3
NP-14	2.0	3.3	4.3	2.3

Yellow mosaic, leaf orinkle and bacterial blight ratings at New Delhi were generally less in 1968 than in 1967, and 1967 data should be considered in evaluating resistance and susceptibility (see page 176 of Progress Report Number 5, 1967).

Combining 1967 and 1968 data, varieties T-27, T-65, and No. 1-1 are among the most resistant and varieties No. 55, N212, and NP14 among the most susceptible to yellow mosaic under field cenditions. Varieties Mash 48, 41-13, and 35-5 may be resistant, but have not been evaluated under severe conditions.

Leaf crinkle was less evere at New Delhi in 1968 than in 1967, but no variety was free of the disease either year.

Top necrosis (cause unknown) was severe at New Delhi in 1968. Varieties No. 1-1, 35-5, Mash 48, and Mash 41-13 had lowest ratings for this disease. Resistance to top necrosis and yellow mosaic are in the same varieties. No variety has resistance to top necrosis, leaf crinkle and yellow mosaic.

Resistance of germplasm - The urd germplasm (398 lines), was evaluated for resistance to yellow mosaic and top neorosis under field conditions at New Delhi in 1968. Lines selected for resistance are listed in Table 119.

Table 119. Urd bean lines selected at New Delhi in 1968 for possible disease resistance.

Disease Index $1 /$

Accession No. Yellow mosaic Leaf crinkle Top necrosis Bacterial blight

$49-069-2-1$	2	1	1	1
$49-069-13-1$	1	3	1	1
$49-069-15-1$	1	2	1	1
$49-069-144-1$	2	3	1	1
$49-069-151$	2	1	1	1
$49-069-162$	1	1	3	3
$49-069-205$	1	1	3	1

1 Disease index based on $1-9$ scale; $1=$ no disease, $9=$ plants dead.

Seed treatment - Seed of urd variety T-27 was treated with any of several fungicides and planted at several locations (see Vigna sinensis, seed treatment). As in mung, no treatment significantly increased germination in comparison to the control at any reporting location.

Vigna sinesis (cowpea)

Seed treatment - Seed of cowpea variety Meshed was treated with any of several fungicides and planted in four replications at several locations. Plants emerged were counted 10 days after sowing. Several treatments increased germination in comparison to the untreated control at Ludhiana and Pant Nagar. The iata is presented in Table 120.

Resistance of varieties - The varieties in the coordinated trial at New Delhi were evaluated for resistance to bacterial blight and top necrosis. The results are in Table 121.

Resistance of germplasm - The cowpea germplasm (1,100 lines), was evaluated for resistance to bacterial blight and top necrosis (cause unknown), at New Delhi in 1968. Under field conditions 45 lines were resistant to both bacterial blight and top necrosis. Their accession numbers are: 9, 14, 31, 80, 82, 92, $136,146,149,150,154,187,189,271,431,467,498,576,588,591,592,593$, 597, 673, 702, 706, 739, 878, 882, 908, 909, 915, 922, 953, 962, 963, 1174, 1199, 1251, 1265, 1282, 1325, 1345, 1366, 1400.
'I'able 120. Effect of seed treatment on germination of cowpea, variety Meshed, at Ludhiana and Pant Nagar in 1968.

	Ludhiana		Pant Nagar	
Treatment	\% Germination	Sig. ${ }^{1 /}$	\% Germination	S1g. $1 / \mathrm{C}$
Captan	85	a	93	a
Thiram	85	a	90	a
Vitavax	84	a	92	a
Ceresan M	83	a	87	a
Chloroneb	82	a	86	a
Copper Carbonate	81	a	93	a
Panogen 15	78	ab	83	a
Control	74.	bc	66	bc
PCNB	71	bc	70	b
Busan 72	65	c	59	c

$1 /$ Means followed by a common letter are not different at the 1% confidence interval according to Duncan's multiple range test.

Table 121. Disease ratings of cowpea varieties at New Delhi in 1968.
Disease Rating $1 /$

When 56 ines that were free of bacterial blight in the field were inoculated while growing in pots, 25 were resistant, 8 were tolerant, 16 were heterogeneous and only 7 were susceptible. A paper on testing procedure and results is being prepared by Dr. P. N. Patel and J. K. Jindal, Plant Pathology Division, IARI, New Delhi. Susceptibility ratings of all lines are available from the project coordinator.

ENTOMOLOGY

RPIP
K. E. Gibson
A. K. Raina

Miss V. Motwani
AICPP/IARI
H.P. Saxena 1/
S. Kumar

Prasad Sircar
Miss Amrit Phokela

SUMMARY:
Rabi 1967/68
During the first four months of 1968; the three rabi or winter crops that had been planted in October and November, 1967, were given normal cultural care, experimental insecticide sprays were applied for insect control, and harvest of the mature seed was completed during the latter part of April and early May, 1968. The three crops were gram (chickpeas), dry peas, and lentils. Foliar sprays of 9 different insecticides were applied to chickpeas for control of bruchids in the field, and for pod-borers; to dry peas for bruchids and a dipterous leafminer and to lentils for bruchids and aphids.

Bruchid damage and pod-borer damage in all the experimental chickpea plots was very low, including the untreated checks, and there were no significant differences in the amount of seed damage due to bruchids or pod-borers, between the various insecticide treatments. Low damage in check plots may have been due to spray drift into them, when applications were made on windy days to other plots.

The dry pea plots also showed relatively little bruchid damage in either sprayed or check plots. The damage ranged from approximately one, to slightly over two percent in the seed samples. Yield records from dry pea plots sprayed for leaf-miner control, showed all treatments except one (Metasystox), to have produced appreciably higher yields than the untreated checks.

The incidence of bruchid damage was also very low in the seed from the experimental lentil plots, including untreated cheoks.

The lentil plots sprayed for aphid control showed from about $2 \frac{1}{2}$ to $3 \frac{1}{2}$ times greater ylelds than the check plots. Since the aphid populations never built up to appreciable numbers, the beneficial effect must have been due to the control of some insidious and unknown pest.

1/Joined the All India Coordinated Pulse Project in July, 1968.

During the latter part of January, February, March, and early April, a program of sweeping the above crops, as well as a planting of Lathyrus sativus, was carried on, to quantitatively determine the incidence of adult bruchids on these crops in the field. From 19 January to 9 April, 1968, bi-weekly sweepings were made in all four crops, totaling 50,500 sweeps for the entire period. It was definitely established that bruehid adults were present in all four of these crops during the sweeping period. While not present in large numbers, nevertheless these field infesting bruchids were a proven, potential source of infestation of mature seed when it was harvested and brought into storage.

Kharif 1968

During the kharif season of 1968, four granular systemic insecticides were tested at four rates as soil treatments for the control of flea beetles (Madurasia obscurella Jacoby), which are a perennial, serious pest of pulse crops in the kharif season, from the time the plants first emerge from the soil, until about two months later. The insecticides used were Disyston. Solvirex, Temik, and Thimet. The application rates were $1 / 2,1,11 / 2$, and 2 pounds of actual toxicant per acre. These materials caused some phytotoxic symptoms in the plants grown on treated plots. The symptoms did not appear to be serious, consisting of tip and edge-burning of the follage, and the plants soon apparently outgrew them. Flea beetle control was quite satisfactory; there was some early leaf injury, but it was insignificant. Somewhat later there was an amazing growth response to these granular, systemic insecticide soil treatments, and the plants on treated plots outgrew the untreated check plots. This cannot all be attributed directly to insect control, and is a matter of considerable interest. A heavy infestation of soll nematodes was discovered before the plants began to mature, and resulted in the early death of many plants which greatly reduced yield in certain areas. The startling results of this experimental work justify its being repeated again next year.

A follar spray of DDP (0.75 pound actual toxicant per acre) plus Thiodan (endosulfan) (/.50 pound per acre) also proved very effective against these flea beetles.

Experiments in field bruchid control on both cowpeas and mungbeans, indicated that of five insecticide treatments used, the most promise was shown by Thiodan or a combination of Thiodan and DDT.

Laboratory experiments testing Bromodan, a ahlorinated hydrocarbon, formulated as both a five percent dust and a 50 percent wettable powder, as a protectant for mature pulse seeds in storage, against bruchid attack, have shown the material to have much promise. When used at the rate of $1 / 2$ to 1 gram of actual toxicant per kilogram of mature seed, and intimately mixed with the seed, it kills 95 to 100 percent of bruchids infesting the seed in 24 hours. It has no ovicidal properties, but does have a relatively long life, and is very effective against both adults and larvae. It shows much promise in keeping infestations from building up to
large numbers, or even surviving, in lots of mature seed. It is relatively safe material, having an acute oral LD-50 of approximately 5000 milligram per kilogram of body weight, according to the producers, Hoechst Pharmaceutical Co. of West Germany. Research work on this promising material will be a major entomological effort in the immediate future. Availability of this material appears to pose a problem.

Screening germplasm for insect resistance resulted in one line of cowpea (Accession 62-069-00576) with considerable field resistance to several insects (flea beetle, leafminers, lepidopterons larvae, jassids) as well as being free of virus symptoms.

A variety of lentil from Iran with reported resistance to bruchid attack was found to be resistant to Callusobruchus maculatus larval penetration but not to C. ohinensis.

A black light (20% ultra-violet light) insect trap has been operated nightly throughout the year in varlous pulse crop plantings. The insect catches are sorted; series of the various species, genera, families and orders of insects, pinned and labelled for the Project insect collection, the excess stored for future reference, and 112 different lots of economic insects have been sent to the National Museum in Washington, D. C., and identifications made and returned for the Project files.

Papers and Publications

K. E. Gibson. Identification of pest problems of pulse crops. Proceedings Second Annual Workshop Conference on Pulse Crops, New Delhi, April, 1968.
K. E. Gibson. Researoh on pulse inseots. Annual Conference 1968. affice of Agricultural Development, USAID/India.

1. Objective - To determine wheter or not any of 918 lines of chickpea germplasm had any tolerance or resistance to inseat attack, particularly the gram pod-borer (Heliothis armigera).

The original planting of these lines was accomplished on 3 and 4 October, 1967. Some replanting was necessary, and was done between 25 and 27 October, 1967.

After these lines were harvested in April, 1968, 50 were selected showing promise of having resistance or tolerance to pod-borer attack which merit further soreening.
2. Objective - To determine the effectiveness of insecticide applications in the field for bruchid control.

Nine insecticide applications, plus an untreated check, were made. There were three applications; the first on 20-21 December, 1967, the second on 10 January, and the third on 24 January, 1968.

After harvest, 2000 seed from each treatment were examined for bruchid damage, and the seed yield of each treatment determined. The results are shown in Table 122.

Table 122. Bruchid damage to chickpea seed and yield records for all insecticide treatments applied as fleld sprays, New Delhi, India, Rabi 1967-68.

Treatment
DDI - 1 Ib/acre
Seed
2000
DDT - 2 lb /acre 2000
Diazinon - $1 / 4 \mathrm{ib} /$ acre 2000
Diazinon - $1 / 2$ lb/acre 2000
2000
2000
2000
2000
2000
2000

Damaged
0.1
0.05
0.05
0.05
0.05
$0.0 \quad 2969$
0.054571
$0.1 \quad 3277$
$0.0 \quad 2101$
$0.1 \quad 2388$

1 Acreage per treatment -0.018 acre.

The percent of damage to the seed from bruchids was very low. Indications are that chickpeas represent one of the least favored hosts of this insect. The real concern is how many bruchids are brought into storage from the field, and how fast they multiply.

There are some rather wide diff'erences in yield, but probably not due to treatments. One of the two lowest yields was in the check, but the other was in the Thiodan treatment, which has proved quite effective against other ingects. A somewhat spotted, high saline content of the soil was probably at least partially responsible for confounding the issue.
3. Another set of chickpea plots in this same planting was given two applications of sprays for experimental pod-borer (primarily Heliothis armigera) control. The first application was made on 27 February and the second on 25 March, 1968. There were nine insecticide treatments plus the check.

Harvest was started on 22 April and completed the first week in May, 1968. After harvest, 2000 seeds per treatment were examined for insect damage, and the yield records per treatment determined. The results are shown in Table 123.

Table 123. Insect damage and yield records in chickpea plots which received insecticide sprays for pod-borer control, New Delhi, India, rabi, 1967/68.

1/Aoreage per treatment - 0.018 acre
There are no significant differences between the pod-borer damage figures for the various treatments. The damage figures are quite low, even in the checks. There may have been some spray drift, which affected the check plots, since they were randomized among the treated plots. Certainly the damage figures in all the treatments are low enough to indicate they were effective against the pod-borer, which is ordinarily quite a devastating pest in this crop.
4. These seed samples, taken at harvest time, showed no evidence of bruchid damage.

The yield for the untreated check plots was about half-way between the two extremes of yield. Differences are probably due to factors other than insecticide applications for insect control.
4. Dry pea plots were planted on 21 November, 1967, for experimental bruchid control in the field, and for leaf-miner control experiments.

For bruchid control, the same insecticides were used as on the chickpeas. Three spray applications were made; the first on 2.5 January, the second on 9 February, and the third on 29 February, 1968.

Harvest was completed on 20 April, 1968, and 2000 seed from each treatment were examined for both bruchid and lepidopterous larvae (primarily Heliothis armigera) feeding damage. Seed yield records were also obtained, and both the damage and yield records are shown in Table 124.

Table 124. Insect damage and yield records of dry pea plots which received
insecticide sprays for bruchid and pod-borer control, New Delhi, India, rabi, 1967/68.

Treatments		\% Lepidopterous larvae damage	Yield-Grams of seed per Treatment
DDI - 1 1b/ac.	0.9	6.1	6528
DDF - 2 lb/ac.	1.4	7.2	6076
Diazinon - $1 / 4 \mathrm{lb} . / \mathrm{ac}$.	2.4	7.8	9162
Diazinon - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	2.2	6.2	7625
Dimecron - $1 / 4 \mathrm{lb} / \mathrm{ac}$.	2.0	5.6	6709
Dieldrin - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	1.7	6.7	7479
BHC - $1 \mathrm{lb} / \mathrm{ac}$.	2.3	8.3	6272
$\mathrm{DDF}+\mathrm{BHC}-11 \mathrm{~b}+1 / 21 \mathrm{~b} / \mathrm{ac}$.	1.8	7.7	4288
Thiodan - $1 / 2 \mathrm{l}$ / $/ \mathrm{ac}$.	2.1	7.5	5863
Check	2.1	5.6	7429

Bruchid damage in the field was at a low level, but the treatments were not significantly below the checks. The same was true or the lepidopterous larvae injury. The yields are not consistent with treatments or application rates. Plant stands were irregular, and this is doubtless reflected in yield differences.

A portion of these pea plots was also used for experimental control of a dipterous leaf-miner of peas, Phytomyza horticola Gourean. Two applications of
six insecticides were made. After harvest, seed samples were examined for insect injury, and yleld records were taken. Results are shown in Table 125.

Table 125. Insect damage and yleld records of dry peas which received insecticide sprays for leafminer control, New Delhi, India, rabi, 1967/68.

Treatment	\% Bruchid Damage	Lepidopterous larvae damage	Yield-Grams of seed per Treatment
Diazinon - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	1.3	3.9	7861
Dimecron - 1/4 ib/ac.	2.8	7.1	6737
Thiodan - 1/2 lb/ac.	1.7	9.1	7605
Malathion - 1 1b/ac.	2.0	5.5	6923
Metasystex - 1/2 1b/ac.	2.9	9.0	5969
Dipterex - $11 / 2 \mathrm{lb} / \mathrm{ac}$.	2.2	7.3	7557
Check	2.5	7.7	5970

There was more damage attributable to feeding by lepidopterous larvae than to bruchids, although the figures for both were relatively low. There was insufficient consistency, when the treatments were compared with the checks to definitely establish the value of any of the treatments for either kind of insect attack. It may be necessary to use higher dosage rates to determine the effectiveness of the materials.

The yields from all treatments except Metasystox are appreciably higher than the untreated check. This reflects a corresponding difference in foliage damage occasioned by leaf-miner larvae, observed prior to maturity of the plants.
5. Lentil plots were planted on 16 November, 1967, and two insecticide applications were made for experimental bruchid and aphid control. No significant aphid infestations materialized, but the planned insecticide applications were made, and after harvest on 22 April, 1968; seed samples from both sets of plots were examined for bruchid damage, and yleld records were taken. The results are shown in Tables 126 and 127.

The incidence of bruchid damage to the seed was very low in both sets of experiments. The highest incidence was in the untreated check plots, but the differences were not statistically significant. Damage from other insects was greater, but with one exception was under one percent in all cases, and there were no significant differences.

In the bruchid control experiment, ylelds in both DDI treatments, the high rate of Diazinon, and the Thiodan were all significantly higher than the urtreated

Table 126. Insect damage and yleld records of lentils which received insecticide sprays for bruchid control, New Delhi, India, rabi, 1967/68.

Treatment	\% Bruchid Damage	```%```	Yield-Grams'1/ of seed per Treatment
DDT - 1 1b/ac.	0.1	0.2	3685
DDI - 2 Lb/ac.	0.1	0.45	3501
Diazinon - 1/4.1b/ac.	0.0	0.25	2117
Diazinon - $\mathrm{I} / 2 \mathrm{lb} / \mathrm{ac}$.	0.05	0.35	4061
Dimecron - 1/4 lb/ac.	0.1	0.45	2218
Dieldrin - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	0.1	0.35	2426
BHC - 1 lb/ac.	0.1	- 0.95	2807
DDF + BHC $1 \mathrm{lb}+1 / 21 \mathrm{~b} / \mathrm{ac}$	0.15	0.45	2602
Thiodan - $1 / 21 \mathrm{~b} / \mathrm{ac}$.	0.05	0.55	3400
Check	0.25	0.6	2287

1/ Acreage of each treatment - 0.009 acre.

Table 127. Insect damage and yield records of lentils which recelved insecticide sprays for bruchid and aphid control, New Delhi, India, rabi, 1967/68.

Treatment	$\%$ Bruchid Damage		```Yleld-Grams 1/ of seed per Treatment```
Diazinon - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	0.10	0.65	4662
Malathon - $1 \mathrm{lb} / \mathrm{ac}$.	0.05	0.95	3310
Metasystox - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	0.00	0.30	4732
Thiodan - $1 \mathrm{lb} / \mathrm{ac}$.	0.05	\% 0.85	: 3287
Dimethoate - $1 / 2 \mathrm{lb} / \mathrm{ac}$.	0.15	$\bigcirc 1.05$	-3164
Cheak	0.20	0.70	1467

cheok. In the aphid control plots the increase in yields in the treated plots over the check plots was outstanding. The highest yield in both sets of plots was in the $1 / 2$ pound per acre Diazinon treatment. This material and application rate merit further attention.

In view of the low incidence of bruchid damage to check plots, and nonappearance of an appreciable aphid population, it is apparent the increased yields from the insecticide treatments reflect the control of insects or other noxious factors. besides bruchids and aphids.

BL6, 6. All the entonology plantings of pulse crops were swept routinely twice a week(500 net sweeps per crop in five crops each day - 2,500 sweeps each day, or 5,000 per week) to see if incipient bruchid infestations could be detected and followed.

The sweepings were continued to as nearly harvest as possible in all five plantings in order that the record of bruchid movement and incidence might be as complete as possible. After the insecticide tests were started in some of the flelds, only the untreated check plots were swept. The complete record of the sweepings in the various crops is tabulated below in Table 128.

Table 128. Record of adult bruchid movement to, and incidence in, five experimental fields of pulse crops, 19 January - 9 April, 1968, New Delh1.

1 Lentil plants too small to sweep.
2) Lathyrus plants were very small and growing olose to the ground, without any evidence of buds or blooms, so sweeping of this orop was discontinued until 20 February 1968.
3/ The chickpea ger.nplasm plots were not swept on this date.
4/ Sweepings were not made on this date.
Only 250 sweeps were made in the chickpea insectiolde plots.

During the entire sweeping period from 19 Janual'y to 9 April, 1968, inclusive, a total of 50,500 sweeps were made in the five plantings placed under observation. A total of 27.2 adult bruchids of various species was swept from these crops during the stated period. This probably does not seem very impressive for the number of sweeps made. However, it is felt some very interesting trends and facts were discovared, and that the sweeping program was definitely worth while.
7. Examinations of the blooms of pigeon peas at various locations throughout India where this pulse crop is grown, have shown that a black chrip, Taeniothrips migricornis Schmutz, heavily infests these blooms. Some exploratory work with Insecticides was done at Hyderabad, India in December, 1967, by spraying the plants, and particularly the blossoms, to see if any control or population reduction in the blossoms could be effected, and if any control would be reflected in yleld differences. The materials used were Diazinon, Dieldrin, Dimecron, Dipterex (Trichlorfon) and Metasystox. Results were inconclusive, and it is planned to do additional work on this insect next season, to resolve its status as a pest and possible control.
8. Some exploratory work with Bromodan, a relatively new chlorinated hydrocarbon Insecticide, produced by Hoechst Chemical Company of West Germany, used as a protectant for mature, stored pulse seeds against bruchid attack, has been initiated. This material has shown considerable promise when used as a 5% dust at the rate of 2 grams of the dust per kilogram of seed, and shaken into, and thoroughly mixed with the seed. The material is relatively inexpensive; comparatively safe, so far as hazard to human health is concerned, and has a long residual life. If it continues to prove as effective as preliminary experiments indicate, it is possible the combination of a judicious spray program in the field, and the use of Bromodan as a protectant for mature, stored seed could go a long way toward solving the very important bruchid problem in this pert of the world.

Incident and corollary to this work with Bromodan against brichids, some iffe history and a biological work with the important economic speaies of bruchids is being undertaken, to determine, if possible, the most effective methods of using the Bromodan against them.

'Kharif 1968

1. Objective - 'o determine the comparative effectiveness of four different systemic insecticides, applied as soil treatments at planting time, in granular formulations at four different rates each, for control of flea beetles, and possibly other noxious insects,attacking cowpeas, mungbeans and urd beans.

The common Galerucid beetle of pulse crops was earlier named as Monolepta nigrobilineata Motsch but some confusion has arisen in the identification because of its resemblance to Madurasia obscurella Jacoby determined by the U. S. Department of Agriculture. It is an important pest of kharif pulses such as cowpea (Vigna sinensis), mungbean (Phaseolus aureus), urd (Phaseolus mungo), pigeon pea (Cajanus cajan) and soya bean (Glycine max). The adults feed on the leaf lamina and make holes. The infestation continues throughout the entire crop season. During 1967, granular systemic insecticides were tried to control this pest. The same experiment was repeated on a larger scale during Kharif 1968.

Granular formulations of Tenik, Thimet, Solverex and Disyston insecticides were applied each in four doses, $1 . e ., 2 \mathrm{~kg}, 1.5 \mathrm{~kg}, 1.0 \mathrm{~kg}$, and 0.5 kg . per hectare. The application was done just before sowing. The insecticide was applied in the soil just before planting. The plan of the experiment was a complete randomized design. Each treatment had four replications and each plot had four 6.5 meter long rows. The sowing was done during the first week of July. The crops used were cowpea, mung and urd. In cowpea the dose of ' $2 \mathrm{~kg} /$ hectare of Solverex was not applied because of the shortage of insecticide. The varisty of cowpea was Rashmi, of mung improved T-2 and of Urd, T-65. Observations were recorded six weeks after sowing. Two randomly selected plants were observed from each row (8 plants per plot). From the top, holes in third, fourth and fifth leaves of each plant were counted in case of mung and urd. In case of cowpea, holes in third, fourth and fifth leaves were counted from the lower side of the plants, as there was profuse branching in the upper portion of the plants at the time of observation.

When the plants were about half grown a remarkable growth response became evident in all three crops, and they soon literally "grew away from" the untreated oheck plots of the same crops. The plants in the treated plots generally grew taller, more lush, and had a heavier pod set than the untreated checks. There was a growth differential correlated with increased application rates, shown rather clearly by mungbeans and cowpeas, but rather completely masked in the urd beans. What would probably have been rather clear-cut differences in yield, between treatment rates, and between all treatments and the untreated checks, was also masked by a heavy nematode infestation in the field, which caused a wide-spread but spotty death of plants of all three crops before maturity. The results are shown in Table 129.

Table 129. Control of Galemuaid beetle in pulses by granular insecticides, Neipe Delhi, Kharif, 1968.

In each group of insecticidal treatments, the highest dose of $2 \mathrm{~kg} /$ hectare proved most effective. In mungbeans, the average number of holes (52.7) in the treatment of Thimet at $2 \mathrm{~kg} /$ hectare was considerably lower than that of the control (204.2). All four doses of Solverex resulted in reduction in the number of holes over the control. In urd, Disyston gave the best results and next to follow in order were Thimet, Solverex and Temik. In cowpeas, the treatment of Thimet at 2 . $\mathrm{kg} /$ hectare was responsible for the lowest number of holes.

All other cowpea plantings received a single foliar protective spray of DDT and Endosulfan (0.75 pound of $D D T+0.50$ pound of actual Endosulfan per acre), about 20 July 1968, for flea beetle control. This combination proved very effective, and gave necessary protection to the plants for a surprisingly long time, considering the frequent monsoon rains that followed its application.
2. Objective - To test the comparative value of single applications of several different insecticides, applied as foliar sprays to cowpeas and mungbeans for control of bruchids in the field, and to determine any possible residual effect on the harvested, mature, stored seed.

Replicated plots of both mungbeans and cowpeas each recelved single follar applications of five different insecticides for bruchid control; the mungeans in

September and the cowpeas in October. The sprays used on the mungbeans inoluded DDI, Diazinon, Lindane, Malathion, and Endosulfan. The seed was examined immediately after harvest for bruchid incidence. The insecticides applied to the cowpea plots were DDT, Diazinon, Lindane, Endosulfan, and DDT + Endosulfan.

When the cowpea seed and mungbean seed from these trials was harvested, the seed from each treatment of each crop was weighed into three equal lots; one lot from each treatment was kept bagged as an untreated storage check; one fumigated with methyl bromide and one treated with Bromodan at 2 grams of 50% material per kilogram of seed.

The mungbean seed has been examined twice since storage and the results are shown in Table 130.

The cowpea seed has also been examined twice since storage and the results are shown in Table 131.

An examination of Tables 130 and 131 shows that a definite host preference is exhibited in these two pulse crops by the two infesting species of bruchids. While not a complete host specificity, it is obvious that cowpea seed is a better host for Callosobruchus maculatus than mungbeans, and that C. chinensis builds up to higher population levels in mungbeans than in cowpeas, wherever the species have been separated and identified, when counted. Generally speaking, C. chinensis appears to be the more abundant species in India. The magnitude of the bruchid populations in the treated lots of seed, where Bromodan was used, were disappointing, particularly in the mungbeans on 18 December, 1968. The comparatively high incidence was due primarily to C. chinensis. The fumigation with methyl bromide proved surprisingly effective in suppressing the succeeding generations and holding them to low minimums.

It appears from these results that, contrary to the belief of some, the methyl bromide may have an ovicidal effect.
3. Objective. (a) to conduct some life history with bruchids to determine its biotic potential, and (b) to determine dosage rates of the chlorinated hydrocarbon insecticide, Bromodan, necessary for effective bruchid control, and to determine the residual effectiveness of this material over a period of six months.
(a) Rearing work with bruchids of the species Callosobruchus chinensis, under an optimum constant temperature of 30 degrees Centigrade, has established that an initial infestation of 50 pairs of adults in mature mungbean seed can be responsible, in the course of approximately two months (two generations), for from 30,000 to 50,000 adults and virtual destruction of the seed.
(b) An experiment was carried out to determine the residual effectiveness of Bromodan for bruchid control against the species Callosobruchus chinensis infesting

Table 130. Incidence of two species of bruchids in mature mungbean seed after harvest and storage showine both field and storage treatments, December 1968 - January 1969, New Delhi, India.

Table 131. Incidence of two species of bruchids in mature cowpea seed after harvest and storage showing both field and storage treatments, December 1968 - February 1969, New Delhi, India.

1/ Bruchids were numerous in these seed lots and many were dead inside the seed. These are calculated estimates and since many bruchids were dead. species doterminations could not be made with accuracy.
mature mungbean seed. One hundred and twenty small cloth bags of 500 grams of mature mungbean seed each, were treated with Bromodan 50\% wettable powder (dry treatment) on 6 June, 1968. Thirty bags were treated at $1 / 2 \mathrm{gram}, 30$ at 1 gram , 30 at $11 / 2$ grams, and 30 at 2 grams of the 50% Bromodan per kilogram of seed. No further treatments were made to the seed during the six month course of the experiment. At monthly intervals, starting on 6 June, 1968 and through November, 100 adult bruchids were released into four replicate bags of each treatment rate and four replicates of untreated checks. Results show that as the dosage rate of Bromodan was increased from 0.5 gram to 2 grams per kilogram of seed, the time required to obtain 100% mortality was correspondingly reduced. There seemed to be no appreciable reduction in the effectiveness of the Bromodan in killing the bruchids during the period of the experiment. Increased effectiveness of increased dosage rates was shown in suppressing populations of succeeding generations of bruchids following the initial release.
4. Objective - To screen germplasm of cowpeas, mungbeans and urd beans for resistance or tolerance to insect attack.

The reaction of the germplasm of cowpea (Vigna sinensis), mungbean (Phaseolus aureus) and urd (Phaseolus mungo) to insect pests were studied. Screening was done in 132 lines of cowpea including 31 lines of previous year's selection, 104 of mung and 100 lines of urd.

During the year, the attack of Galerucid beetles (flea beetles) was very severe, whereas the infestation of jassid (Empoasca kerri Prutti), leaf miner (Acrocercops sp.) and aphid (Aphis craccivora Kalt) was mild. In each line of 6.5 meter length, leaving border of 0.75 meter on both sides, five plants falling at lst., 2nd, $3 \mathrm{rd}, 4 \mathrm{th}$, and 5 th meter were observed for these pests. Screening was carried out twice at four weekly intervals. For the Galerucid beetle total number of damaged or healthy leaves per plant were counted. On the basis of the damage to the third leaf in all the plants under observation, the attack was graded as slight, moderate, and heavy. For jassid (Empoasca) and leaf miner (Acrocercops), total pest population on the five plants in each line was recorded. Aphids were confined to only a few lines. Results are as follows:

Galerucid beetle: Cowpea - Out of the 31 lines of cowpeas of previous year's selection, four lines, namely P417-67, Pl077-67, P647-67, and P1128-67 were graded in the slight category during both screenings. From the 101 varieties taken up this year, the lines included in the slight grade were Pll29, Pl22, Pl18, P576, P523, P520, P209-68 in the first screening. During the second soreen ing, the varieties coming under this grade were P245, P249, P220, P211, P150, P118, P108, P91, P579, P549, P548, P546, P237, P547, P543, P519, P517, P467, P363, P364, P374, P361, P267, P261, P246, P250, P204, P783, P1126. Out of these, P783 and Pll26 were the most promising since these had also the least percentage of damaged leaves. Two lines, i.e., Pll 8 and P576 came in the slight grade during both the screenings. P576 (Accession No. 62-069-00576 was also found to be remarkably free of insects and diseases in other plantings.

Mungbean - Out of the 104 mung variecies, 24 ines in the first soreening Tand 26 during the second screening were graded as slight. Out of these, 14 namely P22, P25, P27, P55, P344, P271, P326, P332, P331, P333, P336, P335, and P338 were common during both the observations.

Urd bean - In urd during the first screening, only two lines, 1.e., P130 and Pi45 could be graded as slight. In the and screening, 22 lines namely, P1-68, P23, P13, P20, P274, P205, P190, P198, P161, P195, P192, P160, P154, P153, P141, P147, P148, P238, P241, P234, P240, and P239 were put in slight grade. None of the lines were common in these screenings.

Jassid (Empoasca kerri Pruthi)

Since the attack was mild counts were taken on plant basis. Populations of adults and numphs were added in final grading. (Table 132)

The categories for each crop were:

1. Lines with nil population.
2. Lines with population below 5.
3. Lines with population between 5-10.
4. Lines with population between 11-15.
5. Lines with population above 15.

Out of the previous year's selection of 32 lines of cowpeas none could be graded under lst and 2nd categories. In this year's introduction of 101 varieties, no line could come under the list category, i.e., nil population, but seven lines, namely P237, P245, P242, P204, P107, P576, and P359 could be graded under second oategory. These lines are considered promising for further studies.

Both mung and urd appear to be less susceptible to the attack of jassids. This is clear from the fact that in mung, 27 lines and in urd, 45 lines came in the first grade, i.e., had no jassid attack. In the second grade mung and 26 and urd had 42 lines. In the 4 th and 5th grade mung had 13 and 8 lines respectively, whereas, in the case of urd only one line could be graded in the 4th category arda none in the 5 th category. Moreover, the population range in mung was from $0-25$ and in urd it was from 0-13.

Leaf Miner (Acrocercops sp.)

As shown in Table 133, except in two lines of cowpea, no severe attack occurred.

Aphid (Aphis oracoivora K.)

The attack was confined to only few lines in all the crops.

Table 132. Germplasm evaluation for resistance to Jassid (Empoasca spp.), New Delhi, Kharif, 1968.

Crop	Jassid population per plant					No. Iines Screened	$\begin{aligned} & \text { Popula- } \\ & \text { tion } \\ & \text { Range } \end{aligned}$	Promising Lines
	N11	$\begin{gathered} \text { Below } \\ 5 \end{gathered}$	Between 5-10	Between $11-15$	Above 15			
Cowpea (second soreening)	0	0	3	5	23	31	5-68	None
(first soreening)	0	7	24	14	56	101	1-85	P237. P245, P204, P107, P576, P359
Mungbean	27	30	26	13.	8	104	0-25	None
Urd	45	42.	12	1	0	100	0-13	None

Table 133. Germplasm evzluation for resistance to leaf miner (Aorocercops spp.), New Delhi, Kharif, 1968.

Crop	Jassid population per plant					No.IInesScreened	$\begin{array}{\|c\|} \hline \text { Popula } \\ \text { tion } \\ \text { Range } \\ \hline \end{array}$	Promising Lines
	N11	$\begin{gathered} \text { Below } \\ 5 \\ \hline \end{gathered}$	Between $5-10$	$\begin{gathered} \text { Between } \\ 11-15 \end{gathered}$	$\begin{gathered} \text { Above } \\ 15 \end{gathered}$			
Cowpea (second screening)	1	12	15	3	0	31	0-13	None
$\begin{aligned} & \text { Cowpea } \\ & \text { (first soreening) } \end{aligned}$	15	50	26	8	2	101	0-16	None
Mungbean	76	27	0	0	0	104	0-4	None
Urd	74	26	0	0	0	100	0-3	None

From the previous year's selection of cowpeas, only six lines, namely P117.-67, P701-67, P273-67, P321-67, P22-67, and P647-67 were found to be infested. Nine lines out of the varieties taken during this year were found to be infested and these include P121, P355, P502, P498, P454, P427, P267, P256, and P250. All other lines were not severely attacked.

In mungbean the four infested 11nes were P103, P164, P42, and P353.
In urd bean only two lines, namely P32 and P279, were attacked.
The identifications of the P numbers referred to above under each pest are given in Table 134.
B. To evaluate the reported resistance to bruchids of a lentil variety from Iran.

A lentil, grown in the ileighborhood of Hamadan, Iran, and which, reportedly, never has the seed infested or damaged by bruchids, has become of interest. Some of the mature lentil seed was obtained and used in laboratory tests to determine itis possible resistance to bruchid attack in storage. The Accession number of this strain is 33-071-01184.

Four separate lots of the mature seed (5 grams in each lot) were put in plastic containers, and five male and five female adult Callosobruchus chinensis bruchids were released in each lot of seed on 25 November, 1968. On 10 March, 1969, 529 adults were recovered from these four replicate lots of seed. These represented the second succeeding generation following the initial infestation on 25 November, 1968.

Four more lots of the same weights of the same seed were similarly infested on 25 November, 1968, with five mele and five female adult Callosobruchus maculatus bruchids, in each lot of seed. Some eggs were laid and some of the larvae which hatched were able to partially penetrate the seed. However, all larvae died before making successful penetration and no succeeding generations of adults of this species ever appeared. This is the heavily preponderant species in Iran. Apparently the bruchid C. chinensis (most predominant in iorthern India) can successfully complete its life history in this mature lentil seed, but C. maculatus cannot.
5. Objective - To apply anc evaluate three foliar applications of nine different insecticides for (1) control of thrips, Taeniothrips nigricornis Schmutz, In the blooms of pigeon peas; and (2) control of the insect complex known as podborers, which bore through the pods and damage or destroy the developing seed.

Three applications of nine different insecticides were made to a planting of pigeon pea plots at Hyderabad, India on 10 and 24 October, and 9 November, 1968, for controi of thrips infesting the blooms and also the pod-borer complex. The latter includes dipterous, lepidopterous and coleopterous insects. Samples of blooms were picked on 24 October, immediately following the second spray application, preserved in alcohol and the thrips later dissected from them. The lowest populations were found where Diazinon, Metasystox and DDI + Diazinon had been applied. The thrips populations were higher in the six other treatments and not significantly different from the check.

Table 134. Identification of germplasm Ines evaluated for Insect resistances Iost New Delhi, Kharif, 1968.

Cowpea (Vigna sinensis)

Line No.	Variety	Origin	Line No.	Variety	Origin
Pl129	P772-66	------	$P 517$	10364-4	Senegal
P122	10088	U.S.A.	P467	10324-2	U.S.A.
P118	10086	U.S.A.	P363	10252-2	U.S.A.
P576	PL59	India	P374	10257	U.S.A.
P523	PLU6	India	P361	10251-3	U.S.A.
P520	PLL2	India	P267	10169	Nigeria
P2̇09-68	10137-1	Guatemala	P261	10167-2	Nigeria
P417-67	10286	U.S.A.	P246	10160-3	Nigerla
P1077-67	EL826411	Mexico	P1177-67	Bulk sample	Andhra (Ind:)
P1101-67	IC3338	India	P701-67	IC2913	India ref
P667-67	IC2661	India	P273-67	10175-1	India
Pl128-67	15251	Iran	P321-67	10119	U.S.A.
P237	10155-1	Nigeria	P22-67	10022	Paraguay
P245	10160-2	Nigeria	P647-67	IC2441	India
P249	10161	Nigeria	P107	10075-1	Nigeria
P220	10166	Madagascar	P359	10251-1	U.S.A.
P211	10138-1	Guatemala	P262	10158	Nigeria
P150	10142-3	Turkey	P121	PLA34	India
P118	10086	U.S.A.	P355	10267	U.S.A.
P206	10134-2	Iran	P502	10354	Senegal
Pl08	10075-2	Nigeria	P498	10350-2	Iran
P91	10067-1	Nigeria	P456	10316	U.S.A.
P579	PLL62	India	2427	10298-1	U.S.A.
P549	PLU31	India	P267	10169	Nigeria
P548	PLL30	India	P256	10168-2	Nigeria
P546	PLLL29	India	P250	10162-1	Nigeria
P547	PLU29	India	P783	IC7461	India
P543	PLL25	India	P1126	Fleld Collection	India
P519	PLLI	India	?364	10252-2	U.S.A.

Mungbean (Phaseolus aureus)

P22	NP16-2	India	P332	Perambaliar	India
P25	NP17-2	India	P333	MS9720/2	India
P55	Mung-9	Pakistan	P336	$1535 / 1$	India
P27	NP16	India	P335	MS9381	India
P344	MS9719	India	P338	$1788 / 9$	India
P271	152016	India	P103	15005	U.S.A.
P217	15148	Afghanistan	P164	15068	India
P326	MS9385	India	P42.	NP33	India
P331	NA	India	P353	$1788-3$	India

Table-134 (Continued)
Urd bean (Phaseolus mungo)

Line No.	Variety	Origin	Infe No.	Variety	Origin
P145	T26	(Punjab) India	P160	38	(U.P.) India
P1-68	NP22	India	P154	41	(U.P.) India
P23	NP22	India	P153	39	(U.P.) India
P13	NP12	India	P141	19	(U.P.) India
P20	NP19	India	P147	29	(U.P.) India
P30	EC 16571	India	P148	30	(U.P.) India
P274	T70	(U.P.) India	P238	6301	(Bihar)India
P205	Bhadela 109	(U.P.) India	P241	6304	(Bihar)India
P190	T95	(U.P.) India	P234	6213-1	(U.P.) India
(pi61.	51	(U.P.) India	P240	6303	(Bihar)India
P198	67-1	(U.P.) India	P239	6302	(Bihar)India
P192	97	(Bihar)India	P32	Kasarkoda	India
P195	100	(Bihar)India	P279	6408	(U.P.) India

On 4 December, 1968, pod samples were collected from all plots and examined for pod borer damage. 1,200 pods were examined from each of the 10 treatments. The percent of damaged pods ranged from a low of 0.4% in the DDT+Endosulfan treatment, to a high of 11.0% in the untreated check. Carbaryl+Endosulfan, DDI + Diazinon, Endosulfan alone, and DDT alone all showed less than 2% pod damage. Seed yields were the highest in the plots sprayed with DDT and with Metasystox, and the lowest where Carbaryl alone and Carbaryl+Endosulfan had been used. Carbaryl has shown obvious phytotoxicity in previous experiments on other pulse crops. This may or may not be evidence of an invisible, insidious phytotoxic effect on pigeon peas.

Miscellaneous entomological activities included operation of the insect black-light trap (nightly), sorting and care of the insect catches from the trap, and the mainterance of the project insect collection. They also include all the routine work incident to preparing and shipping insect specimens to specialists for identification, and cataloging this information as it became available. A list of the identification of insect material shipped to the U. S. National Museum in Washington, D. C. is given below. Identifications were made by texonomist specialists of the Insect Identification and Parasite Introduction Research Branch of the Entomology Research Division, ARS, USDA. These specialists work at the U. S. National Museum. The following identifications have been made:

Family	Genus and Species	Host	Locality
Aphids	Aphis neril Fonsc	Milkweed	New Delhy
	Aphis solanella Theob	solanaceae	Pant Nagar
	Aphis craccivora Koch	many	Widespread
	Hyadaphis pseudobrassicae Davis, alsc		
	called, İpaphis crysimi Ketb.	mustard	Luadi ana
	Myzus persicae Sulz.	mustard	Ludhiana
	Macrosiphum sp.	mustard	Ludhiana
	Acyrthosiphon pisum Harris	lentils	Pant Nagar
	Acyrthosiphon sesbaniae David	trom light trap	New Delhi
	Rhopalosiphum maidis Fitch	from light trap	New Delhi
	Macrosiphum avenae F. .	from light trap	New Delhi
	Schiraphis graminus Rond	from light trap	New Delhi
	Aphis sp.	from light trap	New Del.hi
	Circulifer opacipennis Lethierry	sugarbeets	Shiraz, Iran'
	Circulifer dubiosus Maisumura	sugarbeets	Shiraz, Iran
	Circulifer tenellus Baker	sugarbeets	Shiraz, Iran
	Circulifer sp.	sugarbeets	Shiraz, Iran
	Macrosteles laevis Ribant	sugarbeets	Shiraz, Iran
	Deltocephalinae sp.	sugarbeets	Shiraz, Iran
	Peragallia sinuata Mulsant \& Ray	sugarbeets	Shiraz, Iran
	Empoasca parathes Pruthi	cowpeas	Jew Delhi
	Empoasca barathea Pruthi	pligeori peas	Hardoi, India
	Empoasca Kerri Pruthi	pigeon peas	Hardoi, India
	Empoasca Kerri, Variety motti Pruthi	pigeon peas	Hardoi, India
	Exitianus sp.		New Delhi
	Typhlocybinae		New Delhi
Delphacidae	Delphacodes sp.		New Delhi
Cixildae	Cixilus sp.		New Delhi
Payllidae	Psylla sp.		New Delhi
Thrins	Taeniothrips nigricornis Schmutz		Hyderabad
			Coimbatore
	Taeniothrips flavidulus Baghall		Pant Nagar
	Frankliniella sp. near or Formosae		
	Monlton		Pant Nagar
	Order Coleoptera		\cdots
Bruahidae	Callosobruchus maculatus (f)	foodgrains	Widespread
	Callosobmachus chinensis (L)	foodgrains	Widespread
	Callosobruchus analis (f)	foodgrains	Widespread

Order Coleoptera (Continued)

Order Coleoptera (Continued)			
Family	Genus and Species	Host	Locality
Chrysomelidae	Madurasia obscurella Jacr Longitarsus sp. Chaetocnema sp.	pulses pulses pulses	No. India No. India No. Indla
Anthicidae	Unknown	pigeon peas	Jabalpur
Tenebrionidae	Tribolium castaneum Herbs	nsect speoimens	New Delhi
Dermestidae	Trogoderma granarium	wheat seed	New Delhi
Bostrichidae	Thyzopertha dominica (f)		New Delhi
Cucujidae (S.livanidae)	Oryzaephilus surinamensis (L)	Insect specimens	New Delht

	Order Hymenoptera	
Pteromalidae	Euryscotolinx oolmbatorensis Rohwer	leaf miner larva New Delhi
	Anisopteromalus calandrae How Diarnus vagabundus Timb Diannus Iaticeps Ashmead	bruahids New Delhi bruchids New Delhi bruahids New Delhi
Eulophidae	Cerantalio manil ation watanman	thrips Hyderabad
	Order Lepidoptera	
Graollarildae		cowpeas \& beans New Delhi Coimbatore
Gelechildae	Sitrotroga cerealella Olivier	millet seed New Delhi
Noctuldae	Hellothis armigera Hon.	reared - Bangalore, India
	Order Diptera	
Agromyzidae	Phytomyza horticola Gourean (atricornis Meigen)	peas New Delht
	Class Arachnidae (Mites)	
	Tarsonemus sp.	Jute plants New Delhi

QUALITY

KHIF

0. A. Krober

The main emphasis of this phase of the work is (1) on soreening germplasm collections to identify high-protein breeding material and (2) on analyzing for protein the variations tested in the multi-location varietal trials to determine protein content as affected by variety and location.

The physical facilities, equipment, and staff available are too limited to permit much research on protein and component amino acids.

The protein content was determined of all samples of pulse orops from the All India Coordinated Variety Trials which were suitable for chemical analysis. Some samples were obviously seed mixtures, others were so badly damaged by insects that they would not give satisfactory evaluation of the genetic material. Most seed lots coming in from trial locations were incomplete with samples from varieties entered in the trials missing.

Results of these analyses should enable the plant breeder to identify high protein lines. However, due to the condition of the seed and the many missing samples, statistical analysis of the data was not possible and no reliable, final conclusions could be drawn from them. However, the data did indicate that a range of protein content exists in the present Indian varieties but that none are outstanding in this respect. (Tables 135, 136, 137, 138, and 139)

Four sets of samples from simazin trials (see Soils and Crop Management Section), were analyzed for protein content. One set each of green gram and cowpeas grown at Hyderabad and Delhi were analyzed. In general there was little evidence of any marked increase in protein content due to simazin treatment. However, a few cowpea samnles were somewhat higher in protein than the oheck sample.

Several sets of samples were analyzed by the official Kjeldhal method using Cereal Laboratory equipment. Duplicate samples were analyzed with the Udy Analyzer for calibration of the Udy equipment. The analytical work has been greatly handicapped by the long delay in the delivery of essential equipment. Equipment which was requested in the summer of 1967 was not delivered until late in 1968. Nuch of the work has been done vith equipment and facilities borrowed from the Cereal Laboratory at I.A.R.I.

We have developed and used methods for the determination of protein in pulse materials using (1) Macro Kjeldahl, (2) Micro-kjeldahl digestion and distillation
(3) Microkjeldahl digestion and calorimetric determination with Teahnicon Auto. Analyzer, and (4) Udy dye-binding method.

Since the Udy eauipment was received without the necessary conversion tables it was necessary to calibrate the instrument by analyzing samples of each of the pulse crops by standard methods and then with the Udy equipment. 3 .

Germplasm collections are presently being soreened for protein content. s

Papers and Publications

Nutritional Quality in Pulses - paper presented at a Symposium on "The Nutritive Value of High Yielding Strains of Cereals and Pulses" sponsored by the Nutrition Society of India, October 1968.

Nutritional Quality of Pulses - Proceedings 2nd Annual Workshop Conference in Pulses, New Delhi, 1968.

Table 135．Protein content（\％）of mungbean varieties，Coordinated Varietal Trials，India，Kharif， 1968.

Varlety		Punjab	Madhya	Pradesh	W．Bengal
Name	Origin	Ludhiana	Gwalior	Powerkheda	Maldo
D45－6	Gujarat	26.6			
B－1	W．Bengal	26.1	27.5 27.7	30.	26.6
T 44	U．P．	26.0	27.1	29.4	－－－
T 51	U．P．	28.8	26.6		－－－
No． 305	Punjab	25.2	24.9	33.1	－－－
$24-2$	Punjab	25.2	25.7	25.7	－ーロー
24－3	Punjab	24.8	26.0	25.7	23.4
BR－2	Bihar	28.2	29.3	28.1	23.4
9RS－4	Rajasthan	28.1	27.5	27.9	－－－
Hyb． 45	M．P．	27.7	28.6	27.9 29.0	
Kopargaon	Mahar	28.9	30.3	－29．0－	27.3 27.3
Jalgaon 781	Mohar	31.4	28.5	－	27.3
D2－15	Gujarat	28.5	27.8	28.3	28．1
Khargaon－1	M．${ }^{\text {P }}$ ．	31.4	28.4	30.4	26.1 26.4
N．P． 23	IARI	26.8	24.9	27.4	26.4
No． 54	U．P．	26，4	26.7	－27．4	26.7
T－2	U．P．		26.6	29.3	－－－－
K－111	A．P．		－－－－	26.4	30.8

Table 136. Protein content ($\%$) of urd bean varieties, coordinated varietal trials, India, Kharif 1967 \& 1968.

Table 137. Proteln content ($\%$) of plgeon pea varieties; coordinated varletal trials, India, kharif, 1968.

Variety		\$Protein
Name	Origin	
B 7	Bengal	21.7
PT 301	Maharashtra	23.2
N-290-21	Maharashtra	26.3
N 148	Maharashtra	24.3
T-7	U. P.	24.7
T-17	U. P.	25.5
2-E	Bihar	24.5
GWL-3	M. P.	25.7
NFWR 15	IARI	24.8
7-s	Bihar	25.9
NP 69	IARI	24.0
S 103	IARI	23.0
C 11	Mahar	24.6
N 84	Mahar	26.1
S 101	IARI (?)	23.7

Table 138.
Protein content (\%) of cowpea varleties, coordinated varietal trials, India, kharif, 1968.

Variety		M. P.	Bihar	Punjab
Name	Origin	Gwalior	Kanke	Ludhiana
Ramshorm	U.S.A.	28.2	21.9	26.4
Meshed	Iran	29.1	23.2	27.5
No. 1		28.7	----	---
No. 3		29.5	----	----
No. 7		26.6	21.2	27.6
K 14	M. P.	29.5	23.3	28.0
No. 4		27.6	-	--- -
K 11	M. P.	28.8	24.6	30.5
K3B		29.3	24.8	---
NP 2	IARI	30.6	---	
$T 2$	U. P.	---	22.0	24.9
RS 9	Rajasthan	---	24.1	28.0
5286-3	U. P.	----	27.1	28.0

Table 139. Protein content (\%) of chickpea varieties, coordinated varietial trials, India, Rabi, 1968.

[^0]: + Left Iran, May, 1968 for transfer to RPIP/New Delhi.

[^1]: Summary
 Virus diseases were widely distributed and of primary importance in the oultivation of several pulse crops grown in Iran during 1968. Foliar diseases caused by fungi were of minor importance, except for blight of chickpea.

 Beans (Phaseolus vulgaris) are cultivated in several regions of the country, and under natural fleld conditions are infected by four viruses - bean common mosaic (BCMV), bean yellow mosaic (BYMV), cucumber mosaic (CMV), and pea leaf roll (PLRV). All bean viruses are aphid transmitted, but only BCMV is transmitted through the seed. Inoculation studies were conducted in the field with several isolates of BCMV, BYMV, CMV, and PLRV, and three bean varieties at different stages of plant growth. Seed yields were reduced 23-99\% with BCMV, $11-87 \%$ with BYMV, 79-98\% with CMV, and 96-99\% with PLRV. Yields were generally less in plants infected before flowering. Bean common mosaic virus, the most important and widespread virus disease of beans in Iran, is introduced into a field at the time of planting in seed previously harvested from virus-infected plants. The virus was seed-borne in up to 20% of bean seed present in bazars from various bean growing areas of the country, and caused subsequent yield reiuctions of $0-81 \%$ in virus-infected plants. Two bean lines in a replicated variety trial in Khuzestan were highly resistant to BCMV under field conditions of high disease incidence. Pea leaf roll vims infected 21% of 1292 bean lines grown in yield and observation trials at Karaj and 98% of 78 bean lines in Kruzestan.

 Broadbean (Vicia faba) ylelds may be drastically reduced by foliar diseases caused by fungi (rust and chocolate spot) or by virus diseases, the most important being caused by BYMV and PLRV. Virus diseases occur yearly regardless of tine weather, but rust and chocolate spot are of little consequence in the absence of frequent rainfall. In field and greenhouse tests no resistance to BYMV and PLRV was found in 106 broadbean lines. The effect of BYMV and PLRV on growth and yield of broadbeans was studied in greenhouse and field inoculation tests. Depending on the stage of growth at the time of virus infection, seed yields were reduced $3-40 \%$ with BYMV and $65-94 \%$ with PLRV. Bean yellow mosaic virus was seed-borme in $1.5,0.25$, and 0% of the seed from broadbean plants infected at the pre-bloom, full bloom, and post bloom stages of growth, respectively. Pea leaf roll virus was not found to be seed-borme in broadbeans.

 Chickpeas (Cicer arietinum) are naturally infected by four viruses - AMV, BYMV, CMV, and PLRV. Weeds and other leguminous plants are important reservoirs

[^2]: Figure 5. Bean plant (variety Wade) with conspicuous mosaic symptoms on the follage (center) is infected with bean yellow mosaic virus.

