Investing in the Epidemic: the Costs of AIDS and the Benefits of Interventions

Sydney Rosen, Jonathon Simon, Jeffrey Vincent, Matthew Fox, William MacLeod, and Donald Thea

Center for International Health and Development
Boston University School of Public Health

With technical contributions from Eleanor Gouws and Brian Williams and financial support from the South Africa Mission and the Applied Research on Child Health Project of the U.S. Agency for International Development

March 2003
Overview of Presentation

• Introduction and methods
• Results 1: Costs of HIV/AIDS to employers
• Results 2: Benefits and costs of interventions
• Conclusions
Introduction

- Research questions
- Analytical framework
- Companies in the study
Research Questions

1. What is the cost to an employer of an HIV-positive employee at each level of the workforce?
2. Is there is a financial incentive for employers to invest in prevention and treatment?
Timing of Cases and Costs

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Progression of HIV/AIDS in the Workforce</th>
<th>Cost to Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 0</td>
<td>Employee becomes infected.</td>
<td>No cost to company at this stage.</td>
</tr>
<tr>
<td>Year 0-8</td>
<td>Employee remains asymptomatic and fully productive.</td>
<td>No cost to company at this stage.</td>
</tr>
<tr>
<td>Year 2-8</td>
<td>Morbidity begins (some early mortality, some long-term non-progressors).</td>
<td>Morbidity-related costs are incurred (absenteeism, productivity loss, supervisor’s time, medical care)</td>
</tr>
<tr>
<td>Year 6-12</td>
<td>Employee leaves workforce through death or disability retirement (some long-term survivors).</td>
<td>End of service costs are incurred (death and disability benefits, management time, loss of morale, institutional memory, and experience)</td>
</tr>
<tr>
<td>Year 6-12</td>
<td>Company hires replacement employee.</td>
<td>Turnover costs are incurred (vacancy, recruiting, training)</td>
</tr>
</tbody>
</table>
Analytical Framework

Direct Costs
- Benefits payments
- Medical care
- Recruitment and training of replacement worker
- Insurance premiums
- Accidents due to ill and inexperienced workers
- Litigation over benefits, dismissals, etc.

Indirect Costs
- Reduced on-the-job productivity
- Increased absenteeism
- Supervisor’s time
- Vacancy
- Lower productivity during replacement’s startup period
- Senior management time
- Production disruptions
- Loss of workforce morale
- Loss of experience and institutional memory
- Reduced returns to training investments
- Deteriorating labor relations

From one employee with HIV/AIDS (individual)
- Benefits payments
- Medical care
- Recruitment and training of replacement worker

From many employees with HIV/AIDS (organizational)
- Insurance premiums
- Accidents due to ill and inexperienced workers
- Litigation over benefits, dismissals, etc.

Total Cost to Firm of HIV/AIDS in the Workforce
Basic Methodology

- Collected detailed data from companies on workforce, costs, HIV prevalence.
- Estimated present value of costs associated with individual case of HIV/AIDS at each level of workforce.
- Multiplied present value per infection by projected number of infections (aggregate analysis not presented here but included in paper).
- Modeled effectiveness and costs of interventions using parameters from the literature.
Companies in the Study

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector</td>
<td>Heavy industry</td>
<td>Agric. Mining</td>
<td>Mining</td>
<td>Mining</td>
<td>Retail</td>
<td>Media</td>
</tr>
<tr>
<td>Location</td>
<td>South Africa</td>
<td>KwaZulu Natal</td>
<td>Botswana</td>
<td>KwaZulu Natal</td>
<td>KwaZulu Natal</td>
<td>South Africa</td>
</tr>
<tr>
<td>Size of workforce</td>
<td>>25,000</td>
<td>5,000-10,000</td>
<td>500-1,000</td>
<td>500-1,000</td>
<td><500</td>
<td>1,000-5,000</td>
</tr>
</tbody>
</table>

Assumptions:
- Discount rate: 7% (real)
- Median survival time: 9 years
Results 1: Cost Per Infection

- Cost estimates
- Productivity results
- Why do the costs vary so much?
Cost Per Incident HIV Infection

Males, aged 35-49

Present value per infection (2001 $US)

Co A: 3.6x
Co B: 0.8x
Co C: 3.2x
Co D: 0.8x
Co E: 0.5x
Co F: 2.9x

(multiple of median annual salary)

Non-permanent Unskilled Skilled Supervisor Manager
Productivity Results

<table>
<thead>
<tr>
<th>Type of cost</th>
<th>Source of data; method</th>
<th>Mean</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sick leave (days)</td>
<td>Human resource database; estimated difference in leave used by current employees and by employees who died or went on disability in last year of service.</td>
<td>35</td>
<td>68</td>
<td>11</td>
</tr>
<tr>
<td>Loss in productivity when at work</td>
<td>Questionnaires to supervisors of employees who died or went on disability; estimated magnitude and duration of reduction in employee’s performance.</td>
<td>38%</td>
<td>63%</td>
<td>22%</td>
</tr>
<tr>
<td>Supervisor’s time required (days)</td>
<td>Questionnaires to supervisors of employees who died or went on disability; estimated own use of time in employee’s last year of service.</td>
<td>14</td>
<td>25</td>
<td>7</td>
</tr>
</tbody>
</table>
What Accounts for Differences in the Cost Per Infection?

<table>
<thead>
<tr>
<th>Variable</th>
<th>High-cost firms</th>
<th>Low-cost firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most important:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type and level of death and disability</td>
<td>Defined benefit pension; risk benefit levels stable</td>
<td>Premiums capped; risk benefit levels falling</td>
</tr>
<tr>
<td>benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other differences:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical care</td>
<td>Medical aid coverage for all employees</td>
<td>Most use company clinics and public hospitals</td>
</tr>
<tr>
<td>Status of unskilled workers</td>
<td>Permanent employees with full benefits</td>
<td>Many are contractors with few benefits</td>
</tr>
<tr>
<td>Salaries (labor productivity)</td>
<td>Higher, so absences and turnover cost more</td>
<td>Lower, so absences and turnover cost less</td>
</tr>
</tbody>
</table>
Distribution of the Present Value of an Incident Infection

Company A

- Leave and absenteeism: 8%
- Productivity loss: 15%
- Retirement, death, and disability: 45%
- Medical care: 8%
- Recruitment and training: 4%

Company B

- Leave and absenteeism: 4%
- Productivity loss: 36%
- Recruitment and training: 56%
Results 2: Returns to Investment

- Prevention
- Treatment
There is a financial case for an employer to invest in HIV prevention activities if:

<table>
<thead>
<tr>
<th>The savings from postponing the impacts of an infection for one year</th>
<th>The cost of averting that infection for one year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[= \text{cost per infection} - \frac{\text{cost per infection}}{(1+r)}]</td>
<td>[= \frac{\text{cost of prevention program}}{\text{per year/number of infections prevented per year}}]</td>
</tr>
</tbody>
</table>

NB:

1. **The cost of the prevention program is incurred this year and every year; the benefit is accrued far in the future and may not be captured by the current employer.**

2. **Prevention programs are usually delivered to populations, not individuals.**
For an HIV prevention program that:
- Reduces HIV incidence by 50%
- Is provided to the entire workforce
- Costs the amount shown/employee/year

The net present value (return) to the employer for the whole workforce would be:

- Company D: $0
- Company F: $25,000

Net Benefits of Prevention
Companies D and F
Investing in Treatment

There is a financial case for an employer to invest in HIV/AIDS treatment if:

\[
\begin{align*}
\text{The savings from postponing the impacts of HIV/AIDS morbidity and mortality for } X \text{ years} &= \text{cost per infection} - \frac{\text{cost per infection}}{1+r}^X \\
\text{The cost of care and treatment for } X \text{ years} &= \text{PV of } [(\text{cost of VCT + pre-ARV care} + \text{ARVs}) - \text{costs of ARV-related morbidity}]
\end{align*}
\]
For a treatment program that:

- Starts in year 8 for all patients
- Extends working life by 5 years average
- Has no associated morbidity
- Costs the amount shown per patient per year

The net present value (return) to the employer per employee treated would be:

- **Company D**
 - Unskilled worker
 - Skilled worker
 - Manager

- **Company F**
 - Unskilled worker
 - Skilled worker
 - Manager

Cost = $500/patient/year
Cost = $1000/patient/year
Equity Implications of the Financial Case for Treatment

If treatment cost $717/patient/year, the NPV to Company D would be ≈ $0 (i.e. break even). But:

- Treatment is likely to be a profitable investment for Company D, but financial considerations alone would not produce an equitable outcome.

![Bar chart showing NPV for different groups.](image)
Conclusions (1)

• The cost to an employer of HIV/AIDS is $0.5\text{-}4.0 \times$ the affected employee’s annual salary.

• The variation stems mainly from differences in employee benefits.

• These results are based on conservative assumptions, and they exclude all of the “organizational” costs of HIV/AIDS.
Conclusions (2)

• There is probably a financial case for employer investments in prevention, but:
 - Data on effectiveness are lacking
 - Benefits may not be captured by the employer
 - Results are sensitive to the cost of the prevention program.

• There is clearly a financial case for investing in care and treatment for many organizations, even though:
 - Data on effectiveness are lacking, especially for long term
 - Too early to know true costs of workplace programs.
Conclusions (3)

• HIV/AIDS programs have many other benefits, such as:
 - Retaining experience and institutional memory
 - Strengthening employee morale and discipline and improving labor relations
 - Maintaining social stability in the surrounding community
 - Maintaining shareholder confidence.
• Employers are systematically under-investing in HIV/AIDS programs. They will have positive financial, social, and ethical returns for many (perhaps most) organizations.
Research Agenda

- Effectiveness and costs of workplace interventions.
- Measurement and valuation of productivity (threshold effects, critical paths, coping strategies).
- Application of methodology to public sector agencies.
- Implications of findings for public policy.
- Public debate on optimal allocation of economic burden of HIV/AIDS among public sector, private sector, and households.