FOOD PLANNING AND MONITORING UNIT MINISTRY OF FOOD

GOVERNMENT OF THE PEOPLE'S REPUBLIC OF BANGLADESH

STUDY ON THE ESTIMATION OF SEED, FEED AND POST-HARVEST WASTAGE OF FOODGRAIN CROPS IN BANGLADESH

(STUDY CONDUCTED UNDER US AID TECHNICAL ASSISTANCE GRANT TO FPMU)

UNICONSULT INTERNATIONAL LTD. 1991

·. * ·

PNAR 5-02373211

FOOD PLANNING AND MONITORING UNIT MINISTRY OF FOOD GOVERNMENT OF THE PEOPLE'S REPUBLIC OF BANGLADESH

STUDY ON THE ESTIMATION OF SEED, FEED AND POST-HARVEST WASTAGE OF FOODGRAIN CROPS IN BANGLADESH

(STUDY CONDUCTED UNDER USAID TECHNICAL ASSISTANCE GRANT TO FPMU)

UNICONSULT INTERNATIONAL LTD. Sena Kalyan Bhaban, (7th Floor) 195, Motijheel Commercial Area Dhaka-1000, Bangladesh Phones : 865148, 865149, 865068 Telex 642507 NTI BJ FAX 880-2-863310, 880-2-833439

1991

USAID/Dhaka Staff Reference Library

ACKNOWLEDGMENT

The UNICONSULT International Limited express its heartfelt gratitude to the Chairman and Members of the Functional Committee of the Study on the Estimation of Seed, Feed and Post- harvest Wastage of Foodgrain Crops in Bangladesh, for their kind cooperation, assistance, suggestions and valuable comments during the course of the study and preparation of the report.

The UNICONSULT International Ltd. also expresses its thanks to the farmers, traders, millers and farm managers of the study area and Upazila level officials of the Ministry of Food and other Departments for their cooperation and assistance without which it would not have been possible to carry out the study.

We deeply appreciate the help and support provided to the Study team by the staff members of UNICONSULT International Ltd. particularly by Mr. Md. Alauddin Siddique, Mr. Golam Kabir, Mr. M.A. Habib, Mr. Wahidur Rahman Quabili, Mr. Motaher Ahmed, Mr. Ismail Hossain Patwary and Mr. Md. Jabedur Rahman.

i

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT TABLE OF CONTENTS LIST OF CONSULTANTS EXECUTIVE SUMMARY LIST OF TABLES LIST OF FIGURES AND MAPS LIST OF APPENDICES ACRONYMS CONVERSION TABLE	i ii vi xvii xvvii xxv xxvii xxxi xxxi
CHAPTER - 1 : INTRODUCTION	1 - 6
1.1. Foodgrain Situation in Bangladesh	2
1.1.1 Foodgrain Production 1.1.2 Foodgrain Import 1.1.3 Food Budget	2 3 4
1.2. Background of the Study	4
1.3. Objectives of the Study	5
1.4. Terms of Reference of the Study	6
1.5. Organisation of the Study	6
CHAPTER - 2 : REVIEW OF LITERATURE	7-43
2.1. Seed	8
2.1.1 Seed Rate 2.1.2 Seed Requirement	8 10
2.2. Feed	12
2.2.1 Livestock Population 2.2.2 Source of Feed 2.2.3 Livestock and Poultry Farms 2.2.4 Feed Mills 2.2.5 Rate of Grain use in the Feed 2.2.6 Quantity of Foodgrains used as Feed	12 12 13 14 14 15

2.3. Wastage	16
2.3.1 Post-Harvest Operation 2.3.2 Study on Post-Harvest Wastage	16 17
2.4. Milling Losses	20
2.4.1 Parboiling and Drying of Paddy 2.4.2 Milling of Rice 2.4.3 Milling of Wheat 2.4.4 Process of Wheat Milling 2.4.5 Foodgrain Loss due to Milling 2.4.6 Milling Charge	20 21 22 23 24 26
2.5. Storage Losses	27
2.5.1 Existing Storage Facilities and Practices 2.5.2 Foodgrain Loss During Storing	27 30
2.6. Loss of Foodgrain During Transportation	36
2.6.1 Loss Due to Transportation 2.6.2 Evidence of the loss of Foodgrain due to Transportation	37
2.7. Marketing of Foodgrain in Bangladesh	37
2.7.1 Need for Foodgrain Marketing	40
2.7.2 Organisation of Foodgrain Marketing in Bangladesh	40
2.7.3 Methods of Marketing Foodgrains in Bangladesh	41
2.7.4 Foodgrain Loss in the Marketing Process	41 42
CHAPTER - 3: METHODOLOGY 44	1-55
3.1 Selection of Agro-Ecological Zones	4 5
3.2 Selection of Upazila	46
3.3 Selection of Village	46
3.4 Selection of Household	50
3.5 Selection of Sample Markets	50
3.6 Estimation of PHL	50
3.7 Estimation of Storage Loss	51

.

3.8 Selection of Miller	51
3.9 Selection of Poultry and Livestock Farms and Feed Mills	51
3.10 Case Study	51
3.11 Training of the Field Enumerators	52
3.12 Pre-test of the Questionnaire	52
3.13 Field Survey	52
3.14 Data Collection	52
3.15 Checking of the Data	53
3.16 Tabulation	53
3.17 Data input to the Computer and Checking	53
3.18 Analysis of Data	53
3.19 Weather Condition	55
CHAPTER - 4 : FINDINGS AND DISCUSSIONS	56-149
4.0 The Overall Picture	57
4.1 Seed 4.1.1 Foodgrains used as Seed 4.1.2 Seed Rate of Foodgrain Crops 4.1.3 Area Under Foodgrain Crops 4.1.4 Foodgrain Production 4.1.5 Estimated Seed Requirement	64 64 65 66
4.2 Feed 4.2.1 Livestock and Poultry Population 4.2.2 Paddy Used as Livestock and Poultry Feed 4.2.3 Wheat Used as Livestock and Poultry Feed 4.2.4 Foodgrain Used in the Specialized Farms 4.2.5 Feed Mills 4.2.6 Storage Loss in Feed Mills 4.2.7 Summary	69 69 71 74 74 74 74
4.3 Post-Harvest Loss (PHL) of Foodgrains 4.3.1 Aus Crops	78

4.3.4 Wheat	93
4.3.5 Foodgrain Loss During PH Operations	98
4.4 Milling Loss	102
4.4.1 Parboiling and Drying : Farmers Level	102
4.4.2 Parboiling and Drying : Millers Level	103
4.4.3 Milling Loss : Farmers Level	103
4.4.4 Milling Loss : Millers Level	105
4.4.5 Crushing Loss in Wheat	107
4.5 Storage Loss	108
4.5.1 Farmers Level	108
4.5.2 Primary and Secondary Trader Levels	114
4.5.3 Millers Level	117
4.6 Transportation Loss	119
4.6.1 The Overall Picture	119
4.6.2 Farmers Level	122
4.6.3 Primary Traders Level	130
4.6.4 Secondary and Wholesale Traders Level	132
4.7 Marketing and Handling Loss	135
4.7.1 Farmers' Level	135
4.7.2 Primary Markets	141
4.7.3 Secondary and Wholesale Markets	143
4.8 Regression Analysis	146
4.8.1 Aus Crop	146
4.8.2 Aman Crop	147
4.8.3 Boro Crop	148
CHAPTER - 5 : CONCLUSIONS AND RECOMMENDATIONS	150-158
5.1 Findings and Conclusions	151
5.2 Limitation	156
5.3 Recommendations	156
REFERENCES	159-164
APPENDICES	165-258

LIST OF CONSULTANTS

- 1. Dr. Abdul Jalil Mian, Team Leader, Economist
- 2. Dr. T.M. Tajul Islam, Agriculturist
- 3. Prof. Md. Shafiur Rahman, Livestock Production Specialist
- 4. Prof. Md. Ashraf Ali, Statistician/System Analyst
- 5. Dr. Zahidul Islam, Sociologist
- 6. Dr. Abdus Sobhan, Agronomist
- 7. Dr. Mustaq Ahmed, Economist
- 8. Md. Mustafizur Rahman, Marketing Specialist

OTHER CONSULTANTS ENGAGED BY UNICONSULT INTERNATIONAL LTD. FOR THE STUDY.

- 1. Mr. M.R. Talukder, System Analyst
- 2. Dr. N.M. Sheikh, Milling and Storage Specialist
- 3. Prof. Ashraf Uddin Chowdhury, Transport Specialist
- 4. Dr. Ali Rashid, Economist
- 5. Dr. Mohammad A. Hamid, Post-harvest Technology Specialist
- 6. Mr. S.M. Shamsul Hoque, Economist

EXECUTIVE SUMMARY

BACKGROUND OF THE STUDY

Cereals (Rice and Wheat) are the staple food in Bangladesh. Total foodgrain production in 1989-90 was 18.75 million tons of which 16.87 million tons were available for human consumption after deducting 10% for seed, feed and wastage. This is a traditional method of calculation having no scientific basis. Total foodgrain requirement for the same period was assessed at 18.53 million tons for a population of 112 million. This created a foodgap of about 1.66 million tons. Therefore, to meet the calculated requirement, after assessing the probable availability through domestic procurement the Government had to import the balance quantity and distribute through its public foodgrain distribution system (PFDS). This is the main frame of food budget.

The Ministry of Food every year prepares food budget taking into consideration the foodgrain situation of the country. While estimating availability and annual requirement as mentioned above, 10 per cent of total production is assumed, as a rule of thumb, to be unavailable for human consumption due to use as seed and feed, and as losses due to post-harvest operations. Uptil now no systematic study has been carried out to estimate the reliable quantity of foodgrains not available for human consumption.

In recent years, due to large scale introduction of modern varieties of rice and wheat and improvement in cultural practices, the seed requirement of foodgrain crops is likely to be reduced than what was in earlier days. Seed rates for different varieties in different seasons vary considerably. A precise estimation of seed use by farmers needs to be known. Foodgrains are also used in small quantity as cattle and poultry feeds. Reliable data on these are, however, not available, nor has any study been carried out as yet to investigate into the extent of use of grains as feed. Similarly, post-harvest losses or wastage of foodgrains at different stages, from harvest to consumption, are also not known. It is, however, assumed that a foodgrains is lost at different ope significant quantity of operational stages in the post-harvest period. For the purpose of this study, the production estimate as finalized by BBS for the year 1989-90 is shown in the Table below :

Crop	Production (000 tons)	Remarks
Aus Aman Boro	2487 9202 6167	BBS finalized this estimate in the month
Total Rice	17856	of March, 91
Wheat	890	
Total Food- grain	18746	

Foodgrain Production in 1989-90

The necessity of estimating the extent of foodgrains not available for human consumption due to post-harvest losses and its use as seed and feed cannot be over-emphasized. This would enable planners and policy makers to determine accurately the demand-supply condition of foodgrains in Bangladesh. Therefore, to carry out a detailed study, the Ministry of Food, Government of the People's Republic of Bangladesh undertook the present study with the following objectives.

OBJECTIVES OF THE STUDY

- o To generate data on the use of grains (paddy and wheat) as seed and their variation with modern and traditional varieties and cultural practices.
- To estimate quantum of foodgrains used as Cattle and Poultry feeds.
- To estimate the post-harvest losses of foodgrains at various stages of handling, drying, milling, storage, transportation at farmers and private traders level.
- To generate reliable data base to support preparation of food budget.

METHODOLOGY

Operation and uses of both local and modern varieties of Aus, Aman, Boro and Wheat crops were studied by using specific questionnaires approved by the Functional Committee in selected areas to estimate foodgrain loss (post-harvest) in Bangladesh. Besides the questionnaires for farmers, separate questionnaires were used for respondents to estimate the losses in marketing, milling and storing. Multiple sampling techniques were used to cover the entire aspect of the survey.

viii

The country was divided into eight broad Agro-Ecological Zones (AEZ), based on the area under modern variety as a proportion to the total area under paddy cultivation. 18 Upazilas i.e., about 4% of the Upazilas from each broad AEZ were selected. About 2% of villages from each Upazila were selected, making a total of 76 villages for survey. From each selected village, 7.5% of the households i.e., a total of 1175 households were selected for door to door survey. The same households were included for the survey in each of the foodgrain crops under Study. Sampling was random.

Loss in marketing at farmers level was estimated by using the same three stages (Upazila - Village - Households) sampling plan. Loss in the private traders godown was estimated from 5% randomly selected godowns in 18 Upazilas. Use of foodgrain as Livestock and Poultry feed was estimated from 10% Cattle and Poultry farms of the country. There are about 47 specialized cattle and poultry farms in the country.

Trained Enumerators were engaged to collect data from farmers, private traders, rice mill operators, and cattle and poultry farm managers through direct interview using the approved questionnaires.

FINDINGS AND CONCLUSIONS

- o The study indicates that the percentage of foodgrains (paddy and wheat) used as seed, feed and wastage during the postharvest operations of the sample household was 11.58 percent in 1989-90. The seed, feed and wastage in post-harvest operations was 13.20 percent in Aus, 12.38 percent in Aman, 10.38 percent in Boro and in Wheat it was 11.84 percent. Insignificant variation was observed when five years national foodgrains production was used as a weight.
- O On the basis of above estimate of loss, the total quantity of foodgrains not available for human consumption in Bangladesh in 1989-90 amounted to around 2.17 million tons against the BBS production estimate of 18.75 million tons. This lost quantity was almost equivalent to foodgrains consumption for about 13.13 million people for one year at the rate of 453 grams/person/day.
- The volume of foodgrain not available for consumption, but lost in course of operation alone, may be estimated at 1.75 million tons, the value of which at Government procurement price of that year was Tk. 1570.05 crore. The losses of foodgrain during post-harvest operations are estimated at 9.34%; 1.73% were used as seed and 0.51% were used as feed. The quantity used as seed and feed could be deemed to have

been used for economic purpose. However, the rate of PHL appeared to be high and should be reduced by adopting improved post-harvest technology and operational efficiency.

Variations in the loss were observed in different areas. The 0 overall minimum non-availability of foodgrains for human consumption of the sample households was recorded in the Mymensingh/Kishoreganj/Jamalpur region (10.65%) and maximum was recorded in the Dhaka/Tangail region (13.57%). In Chittagong/Noakhali region it was recorded as 10.91%; in Comilla/Sylhet region as 13.02%, Rajshahi/Bogra/Pabna region as 13.01%, in Rangpur/Dinajapur region as 11.97%, jn Jessore/Kushtia/Khulna region as 10.91% and Barisal/Faridpur/ Patuakhali region as 12.93%. The variation happened due probably to difference in operational method, milling, storage and seed rate etc.

Seed

- Foodgrains used as seed in 1989-90 was 1.73 percent of the total production of the sample households. In rice it was 1.60 percent and for wheat it was 5.73 percent of their respective production.
- O The quantity of seed used for Aus crop was 2.89 percent; for Aman 1.80 percent and for Boro 0.89 percent. Higher proportion of seed used in Aus crop was due to its higher seed rate (mostly broadcast) and lower yield potential than the Aman and IRRI/ Boro crops. Percentage of seed declined in HYV but increased in LVs.
- O The seed rate varied with crops, varieties and methods of planting. Among the foodgrain crops, seed used (relative to total production) for wheat (5.73%) was higher than that for paddy (1.60%). Again, modern varieties of paddy required less seed (1.25%) than the local varieties (2.57%). Study indicates that about 62 percent paddy area was under modern varieties (including pajam) and 38 percent area under local varieties. Expansion of modern varieties would increase the production and reduce the seed requirement relative to total production.
- The percentage of seed used in Aus crop was found to be the highest among all the rice crops (2.89%). The percentage of Aus seed used in Dhaka-Tangail region was found to be the highest and in the Chittagong-Noakhali region it was the lowest.
- Highest quantity of Aman seed was used in Barisal-Patuakhali-Faridpur region (4.84%) indicating lower share of

modern varieties. The lowest quantity was found in Rangpur-Dinajpur region having a higher share of modern varieties.

- o The seed used for Boro crop was 0.89% of total production. It varied, according to survey data, from 0.73% in Jessore -Kushtia -Khulna region to 1.09% in Comilla-Sylhet region. The local varieties of Boro crop was found more in the greater Sylhet district than in other areas. Seed rate in local Boro was higher than that of HYV Boro.
- O Percentage of seed used for wheat was 5.73% of the total production. Wheat crop comprised mostly of modern variety. The Dhaka-Tangail region used highest percentage of wheat seed while the Rajshahi-Bogra-Pabna region used the lowest percentage relative to production.

Feed

- This study revealed that about ninety percent of the households reported rearing of livestock and poultry birds.
 Paddy was seldom used as livestock and poultry feed.
- o The population of cattle, buffaloes, sheep and goats had declined to some extent than what was reported in the Bangladesh Census of Agriculture and Livestock : 1983-84 but that of chickens and ducks had gone up slightly in domestic farms and appreciably in specialized farms in recent years.
- O It was also observed that in most households, the foodgrains were not available as feed beyond two months during every cropping season. In the areas under study, the quantity of foodgrains used as feed was estimated at 0.51 percent (against the total foodgrains production) of which 0.68 percent was Aus, 0.50 percent was Aman, 0.46 percent was Boro and 0.46 percent was Wheat.
- Number of specialized farms compared to the total population of livestock and poultry was insignificant. There are about 47 specialized poultry and livestock farms in the country. In the specialized dairy farms the foodgrains were not directly used as feed. In these farms, nearly 50 percent of the concentrate feed ingredients was wheat but the use of paddy as feed was practically nil.
- o Loss of foodgrain kept as feed in the stores of specialized farms was insignificant, since the feed was not required to store for a long period.

Post-harvest Loss (PHL)

- O Post harvest loss of foodgrain comprises a number of stages in its process. The most significant operating stages are stacking, carrying, threshing, winnowing and drying and storing etc. Total post-harvest loss aggregated to 4.14% of all the crops (compared to total production). Of this, threshing loss was 1.19%; stacking loss was 0.91%; carrying loss was 0.74%; winnowing was 0.68% and drying loss was 0.54%.
- O The post-harvest loss of Aman crop was the highest (4.39%) followed by Aus (4.18%), Boro (3.88%) and wheat (3.04%). Post-harvest loss of 4.14% (against total production) was considered very high for a country like Bangladesh. The causes of such huge loss were due to weather, un-scientific operation, lack of knowledge and poor economic condition of the farmers who could not afford proper materials in these operations.

Milling Loss

- O Loss of paddy during drying and parboiling was 1.86% of which the maximum loss occurred in soaking followed by eating by poultry birds. As for individual crops, the highest loss was 2.14% in Aman, then 1.86% in Boro and 0.95% in Aus. At millers level the average parboiling and drying loss for paddy was 1.03%. In both the cases soaking loss comprised of 57% to 65% of the total loss during this process.
- O The share of paddy milled by Dheki (pounding) and mechanized husking mills would be around 8% and 92% respectively. The recovery percentage of rice in Dheki was 69.68% and in husking mill was 67.61%. If all the paddy produced in 1989-90 (about 27055 thousand m. tons) was husked in Dheki alone than about 560 thousand m. tons of foodgrain would have been saved. The value of which is around Tk. 50.82 million at 1989-90 procurement price. Improvement in milling recovery and adoption of traditional husking may significantly reduce the current milling wastage.
- O Milling loss at farmers' level through Dheki operation was found to be 0.53%, and through rice huller it was 0.70%. Recovery of rice was 69.68% in Dheki operation, 67.61% in rice huller and 68.00% in big rice mills. This compared to Government allowed rate of recovery of 65% to 65.5% (varying from area to area) for resultant rice from paddy supplied to rice mills. It may be assumed that government received less rice than what was actually recovered by the millers. On an average government received 2.0% to 3.0% less than the average found in the country.

Storage Loss

- o Storage loss at farmers' level was 1.03% of which the maximum was due to evaporation of moisture followed by the rodents damage. As regards crop varieties the loss in Aus was 2.44%, in Aman 1.16%; and in Boro it was 0.90%. [Variation of loss in stores in different types of container was also observed].
- O As against average storage loss of grain at farmers and traders level, the loss at public sector stores was higher although storage condition was much better in public sector. Comparative storage loss at different operators level was found to be as follows :

Operator	Rate of loss (%)		
·	Paddy	Rice	
Farmer Trader	1.03 0.30	- 0.35	
Public Sector *	1.00	0.75	

* Ministry of Food.

- o The average loss of foodgrain due to storing at primary traders' level was 0.34% and at secondary traders' level was 0.36%. The average storage loss was found to be 1.70% at millers level. At traders' and millers' level, foodgrains are usually stored in gunny bags for a brief period of 2-3 months where loss due to evaporation was maximum. Evaporation loss was found minimum in Govt. stores where grains at optimum moisture of 12-14% were stored.
- O Loss due to evaporation during storage may not be considered as a loss of foodgrain since the loss occurred due to imperfect drying.

Transportation Loss

- O Foodgrain loss during transportation channel was examined at several levels of transaction : farmers, traders in the primary and the secondary markets including wholesale markets. The survey result revealed that the share of foodgrains transported at the above mentioned levels was 8.0, 28.0 and 64.0 percent respectively. The overall transportation loss of foodgrain was found at 0.27 percent which was the weighted average at the level of farmers and traders in the primary, secondary and wholesale markets.
- Mode-wise transport loss of foodgrain was found to vary from 0.16 percent in case of headload to about 0.42 percent in

the case of railways. Between these two extremes, foodgrain loss while carried by rickshaw van, shoulder sling, boat and truck came in order of 0.22, 0.23, 0.28 and 0.31 percent respectively.

- Three factors like use of hooks, transshipment and pilferage, causing foodgrain loss were examined. These factors came in the order mentioned above in respect of their significance to foodgrain loss.
- O Substantial variation of foodgrain loss was found across the regions. It ranged from 0.10 percent in Dhaka-Tangail to 0.41 percent in Mymensingh-Kishoregonj-Jamalpur. It appeared that the regional variation in foodgrain loss was somewhat related to the level of development of transportation system; the loss tended to be higher in far-flung and relatively poor transportation facility areas of the country.

The above findings of transportation loss at farmers' and traders' level in different transport modes compares to Govt.'s allowable transport losses as evidenced from the following table.

Operator	% of transportation loss			
	Truck	Railway	River	
Farmer	0.54	-	0.37	
Trader	0.31	0.42	0.41	
Public Sector*	0.25	1.00	0.50	

Ministry of Food.

Marketing Loss

0 Handling loss was highest at the farmers' level and lowest at the traders' level. On the average, the rate of handling loss at the farmers level was estimated at 0.42% (weighted) while the average rate of handling loss in the wholesale market at Badamtoli Ghat was found to be 0.14%. This difference in the of rate handling loss was probably attributable to differences in the nature of handling in the two stages of marketing. Farmers often used old and worn-out bags; also, the grain was weighed and packed in the earthen floor. As result, grains falling on the ground could not be fully recovered, and this resulted in a slightly higher rate of foodgrain loss at farmers level. On the other hand, most of the grain spilled in the unloading process in the wholesale market was found falling in the shop premises (mostly pucca) and therefore, could easily be recovered; hence a lower rate of handling loss was observed in the case of traders.

- o Handling loss in the primary markets was, on the average, 0.31%. Handling loss was higher [(0.32%) for paddy] than the same for rice (0.08%). Average handling loss at the secondary market was 0.30%. However, in the secondary market the rate of handling loss was almost similar for both paddy and rice.
- Rate of handling loss also differed by type of crop. At the farmers level, the rates of handling loss obtained in Aman, Aus and Boro were 0.49%, 0.22% and 0.34% respectively. The handling loss in wheat was found about 0.22% and 0.45% at the primary and secondary market respectively. The observed differences in handling loss rates by type of crop were partly attributable to differences in weather at the postharvest time for the three corps. Random errors in measurement might also be partly responsible for the observed differences in handling loss rates by type of crop.

LIMITATION

- O The study was designed to investigate interalia loss of foodgrain in the post- harvest operations of domestic production; hence public sector foodgrain handling which mostly composed of imported grains were not brought into the scope of the study. However, a small quantity of foodgrains was procured domestically in the public sector for which loss estimate could be derived from the data available in other study or from official records.
- Within the scope of the study and resource and time table 0 available to the Consultant, it was not possible to cover wider areas and large number of factors involved and multidimensional socio-economic variables linked up with other important national issues. However, within the resources, the consultant tried to make the study meaningful backed by investigated/surveyed primary data. However, consultant thinks that a few micro-level study covering other important variables such as recent loss information in Government storing houses efficiency of heterogeneous milling technologies, modern milling, drying and soaking systems should be undertaken to have a complete picture.

RECOMMENDATION

O The study revealed that about 11.58% of foodgrains (rice and wheat) annually produced in the country are not available for human consumption because of use as seed, feed and loss during post-harvest operations. This estimated rate obtained through the survey is higher than the rate used by the Government in food budgeting. The extent of loss of foodgrain in postharvest operations may be reduced through application of improved post-harvest technology.

- O Proportion of seed used in 1989-90 was 1.73% of the total production. Proportionate seed requirement (5.7%*) was higher in wheat which could be reduced by use of good seed of high yielding varieties and sowing under favorable environment for higher rate of germination and survival of the seedlings. In rice crops proportionate use of seed (1.6%*) can also be reduced by reducing broadcast method of sowing and bringing more areas under transplantation of modern varieties. This calls for a stronger extension programme, timely availability of seeds, and other inputs with good marketing systems.
- O Use of foodgrains as feed is likely to be increased in the coming years with the increase of organised poultry and duck farming in the country. Increased use of grain as feed may be compensated by saving grain in seed use and by reducing the loss in the loss in post-harvest operations.
- O The estimate Post-harvest processing loss (at 4.14%) can be reduced by adopting modern technology. Present study indicated that loss in threshing was higher among the operations. This loss may be reduced by using paddle and other improved threshing devices. A strong extension programme with availability of threshers in rural areas could popularize the methods and save considerable quantity of foodgrains that are lost during threshing.
- Milling loss which is estimated 0.70% at farmers level and 0.65% at millers level may probably reduce by using improved milling technology. Although it is not within the TOR to examine the milling technology and rate of the recovery under variable milling techniques, it was noticed that milling losses were higher in old and out-dated rice mills. This old rice mills should use the modern devices and reduce milling loss.
- Milling loss can be reduced by using Dheki where rice recovery percentage is relatively higher than husking mills. However, the Dheki process is slower and laborious than the modern rice mills. The Dheki system needs improvement (may be fitted with improved kind of husking devices). Although recovery in Dheki is higher, the use of Dheki is generally reducing in the country.
- o Storage loss can be reduced by improving rural storage conditions through the use of pot type storage structure, earthen jars and metal drums. The small and medium large flat

^{*} Relates to 1989-90 production.

type pucca stores may be used on cooperative and collective basis. The rural farmers, traders and 'arathdars', 'beparis', millers and stockists may be grouped together to use cooperative/ collective storage facilities. Farmers and stockists of foodgrain should be trained on ideal storage, processing operations, maintaining grain hygienic specifications, such as moisture, admixture, dust and broken, shriveled, infested grains and other standard needed for longer shelf life.

- o Loss during transportation may be reduced considerably with improved handling and transportation facilities. Use of hooks and defective and tornout bags cause considerable loss during transportation. Automatic bagging and stitching may be introduced by large stores and traders.
- Marketing loss mainly occurs during handling. This loss may be reduced by improving rural grain markets with pucca floor/premise for weighing and packing. Improved type container/carrier for transportation to and from markets may reduce loss.
- The present study was conducted in one cropping year with selected variables/functions at macro-level. These issues may be studied at micro level with stress on seasonal and regional variations covering large areas of sampling and higher samplepopulation fractions. A similar study covering two to three cropping years may be undertaken to estimate for an average normal year.

LIST OF TABLES

	Particular	Page No.
Table 2.1	Foodgrains (Rice and Wheat) Used as Seed in Bangladesh.	11
Table 2.2	Rate of Bran and Broken Rice/Wheat used in Livestock and Poultry Feed cited by Different Authors	15
Table 2.3	Percentage of Post-harvest losses of Aus, Aman and Boro Crops during 1983-84 in Bangladesh	19
Table 2.4	Physical Properties of Rice Processed in Different Types of Commercial Rice Mills and Dhekis (ARDICOL 1988)	25
Table 2.5	Allowances for Storage Losses	33
Table 2.6	Estimated Storage Loss of Paddy for Difference of Moisture Content	34
Table 2.7	Loss Due to Moisture Content	35
Table 2.8	Transit Losses of Foodgrains by Different Modes of Transport in Private Traders level	38
Table 2.9	Percentage Loss of Foodgrains by Mode of Transport, Type of Commodity and Godown Types	39
Table 2.10	Monthly Transport Loss of Foodgrains by Mode of Transport	39
Table 3.1	Number and the Name of Selected Upazilas in Different Agro-Ecological Zones (AEZ)	48
Table 3.2	Rainfall During 1989-90 Compare to 10 Years Average	55
Table 4.1	Seed, Feed and Post-harvest Loss as % of Total Production of Foodgrains of the Sample House-holds During 1989-90	58

Table No.	Particular	Page No.
Table 4.2		60
Table 4.3	Weighted use of Seed and Feed, Post-harvest, Milling, Transportation Storage and Marketing Losses of Rice as Percentage of Production in Bangladesh	61
Table 4.1.1	Seed Used and Seed Rate of the Sampled Households in 1989-90	65
Table 4.1.2	Total Area and Production of Foodgrains of the Sampled Households in 1989-90	67
Table 4.1.3	Estimated Seed Use (1989-90) in Bangladesh	68
Table 4.2.1	Livestock and Poultry Population by Region	70
able 4.2.2	Summary of Livestock and Poultry Population	70
able 4.2.3	Foodgrains (Paddy and Wheat) used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ	71
able 4.2.4	Aman Paddy Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ	72
able 4.2.5	Boro Paddy Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ	72
able 4.2.6	Aus Paddy Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ	73
able 4.2.7	Wheat Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ	73
able 4.2.8	Food Grains (Paddy and Wheat) Used as Livestock and Poultry Feed per Year	75
able 4.2.9	Aman Paddy Used as Livestock and Poultry Feed	76 [°]

Table	No.	Particular	Page No.
Table	4.2.10	Boro Paddy Used as Livestock and Poultry Feed	76
Table	4.2.11	Aus Paddy Used as Livestock and Poultry Feed	77
Table	4.2.12	Wheat Used as Livestock and Poultry Feed	77
Table	4.2.13	Wheat Used in Specialized Poultry Farms	77
Table	4.3.1	Loss of Aus Crops in the PH Stages (in percentage)	81
Table	4.3.2	Post-harvest Loss of Aus Crop Against Total Production by Regions (in Percentage)	82
Table	4.3.3	PHL of Aman Paddy Against Total Production	84
lable	4.3.4	PHL of Aman Crop Against Total Production	86
Table	4.3.5	Percentage PHL of Aman Crop by Varieties by Type of Loss	87
able ·	4.3.6	Post-harvest Loss for Boro Crops of 1989-90 from HH Sample Survey	90
able 4	4.3.7	Percentage of PH Loss of Boro Crops Regions	93
able 4	4.3.8	Post-harvest Loss of Wheat Crop	94
able 4	4.3.9	PHL of Foodgrain by different factor in percentages by the present study	98
able 4		Target of Foodgrain Production for 1990-1991 and the PHL on the Basis of Present Study	99
able 4		Projected PHL of Foodgrains (Rice & Wheat) during 1990-1991 based on the present study	100

	Darticular	
	Particular	Page No.
	l Loss During Parboiling and Drying of Paddy	
Table 4.4.2	2 Milling Loss in Dheki and Rice Huller (Small Mills)	105
Table 4.4.3	Crushing Loss of Wheat (MV) by Regions	106
Table 4.4.4	Milling Losses of Paddy in Millers Level	107
Table 4.5.1	Post-harvest Loss in Storage of Aus Crop by Region During 1988-89	109
Table 4.5.2	Post-harvest Loss (kg) in Storage of Aman Crop by Region During 1989-90	110
Table 4.5.3	Post-harvest Loss (kg) in Storage of Boro Crop by Region During 1989-90	111
Table 4.5.4	Post-Harvest (kg) Loss in Storage of Aus, Aman and Boro Crops by Region During 1989-90	112
Table 4.5.5	Post-harvest Loss (kg) in Storage of Aus by Container During	113
Table 4.5.6	Post-harvest Loss (kg) in Storage of Aman by Container During 1989-90	113
Table 4.5.7	Post-harvest Loss (kg) in Storage of Boro by Container During 1989-90	114
Table 4.5.8	Storage Loss (kg) at Primary Traders Level by Type of Foodgrains	116
Table 4.5.9	Storage Loss (kg) at Primary Traders Level by Container	116
Table 4.5.10	Storage Loss (kg) at Secondary Traders Level by Region	117
Table 4.6.1	Loss of Foodgrains by Mode of Transport	119
Table 4.6.2	Loss of Foodgrains by different Mode of Transport	120

.

Table No.	Particular	Page No.
Table 4.6.3	Percentage Loss of Foodgrains Due to the Use of Hooks, Pilferage and Transshipment in Different Modes of Transport at the Primary and Secondary Trader Levels	121
Table 4.6.4	Overall Transportation Loss of Foodgrains by Region	122
Table 4.6.5	Crop-wise Loss of Foodgrains During Transportation by Farmers	123
Table 4.6.6	Transportation Loss of All Foodgrains (Aman+Aus+Boro+Wheat) by Farmers According to the Mode of Transport	124
Table 4.6.7	Region-wise Loss of Foodgrain (Aman+Aus+Boro+Wheat) During Transportation by the Farmers	125
able 4.6.8	Transportation Loss of Aman by Farmers According to the Mode of Transport	126
able 4.6.9	Transportation Loss of Aus of the Farmers by Mode of Transport	126
able 4.6.10	Transportation Loss of Boro of the Farmers by Mode of Transport	127
able 4.6.11	Transportation Loss of Wheat of the Farmers by Mode of Transport	127
able 4.6.12	Region-wise Loss of Aman During Transportation by the Farmers	129
able 4.6.13	Region-wise Loss of Aus During Transportation by the Farmers	129
able 4.6.14	Region-wise Loss of Boro & Wheat During Transportation by the Farmers	130
able 4.6.15	Transportation Loss of Foodgrains by Crop at the Primary Traders Level	130

Table No.	Particular	Dage No.
Table 4.6.16	5 Transportation Loss of Foodgrains by Mode of Transport at the Primary Traders Level	131
Table 4.6.17	Transportation Loss of Foodgrains by Region at the Primary Traders Level	132
Table 4.6.18	Transportation Loss of Foodgrains by Crop at the Secondary Traders Level	132
Table 4.6.19	Transportation Loss of Foodgrains by Mode of Transport at the Secondary Traders Level	133
Table 4.6.20	Transportation Loss of Foodgrains by Region at the Secondary Traders Level	134
Table 4.7.1	Handling Loss at Farm by Regions for Aman Crop	135
Table 4.7.2	Handling Loss at Farm by Different Varieties of Aman Paddy	136
Table 4.7.3	Relationship Among Size of Operational Holding, Production and Handling Loss at Farm for Aman	137
Table 4.7.4	Handling Loss at Farm by Region for Aus	137
Table 4.7 5	Relationship Among Size of Operational Holding, Production and Handling Loss at Farm for Aus	138
Table 4.7.6	Handling Loss at Farms by Regions for Boro	139
	Relationship Among Size of Operational Holding, Production and Handling Loss at Farm for Boro	139
able 4.7.8	Handling Loss at Farm by Region for All Rice	140
	Relationship Among Size of Operational Holding, Production and Handling Loss at Farm for All Rice	141

xxiii

Table	e No.	Particular	Page No
		Handling Loss at Primary Market by Region	
Table	4.7.11	Handling Loss at Primary Market by Type of Foodgrain	142
Table	4.7.12	Handling Loss at Secondary Market by Region	143
Table	4.7.13	Handling Loss at Secondary Market by Type of Foodgrain	143
Table	4.7.14	Avearage Handling Loss of Foodgrains for Bangladesh	144
Table	4.7.15	Handling Loss at Traders Level (Wholesale Market) For Aus	144
Table	4.7.16	Handling Loss at Traders Level (Wholesale Market) For Aman	145
Table	4.7.17	Handling Loss at Traders Level (Wholesale Market) For Boro	145
Table	4.7.18	Handling Loss at Trader's Level (Wholesale Market) For All Rice	145
Table	4.8.1	Multipule Regression Analysis for PHL during Aus Crop	146
Table		Regression Analysis for PHL of Aman Crop	147
ſable	4.8.3	Regression Analysis to Estimate PHL of Boro Crop	148

LIST OF FIGURES AND MAPS

Figure/Map 1	No. Particular	Page No.
Figure 3.1	Distribution of Samples in the Study Area	49
Figure 3.2	Crop Calender of Bangladesh (Foodgrains)	54
Figure 4.1	Seed, Feed and Post-harvest Loss as Percentage of Total Production of Foodgrain Crops in 1989-90	59
Figure 4.2	Seed, Feed and Post-harvest Loss as Percentage of Total Production of Different Foodgrain Crops in 1989-90	62
igure 4.3.1	Post-harvest loss as Percentage of Total Production of aus Crops in 1989-90	80
'igure 4.3.2	Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Aus Crop in 1989-90	83
igure 4.3.3	Post-harvest loss as Percentage of Total Production of Aman Crops in 1989-90	85
igure 4.3.4	Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Crop in 1989-90	88
	Post-harvest loss at Percentage of Total Production of Boro Crops in 1989-90	91
	Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Boro Crops in 1989-90	92
	Post-harvest Loss as percentage of Total Production of Wheat Crops in 1989-90	96

Figure/Ma	ap No	D. Particular	Page No.
Figure 4.		Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Wheat in 1989-90	97
Figure 4.		Post-harvest Loss as Percentage of Total Production of Different Foodgrain Crops in 1989-90	101
Map 3.	1	Distribution of Selected Upazila in the Study Area	47

,

LIST OF APPENDICES

.

Appendix No.	Particulars	Page No.
Appendix 1.1.	Area and Production of Foodgrains (Total Rice and Wheat, from 1947- 48 to 1989-90) in Bangladesh.	166
Appendix 1.2	Annual Food Budget (Availability and Requirement) in Bangladesh, (1980-81 to 1989-90).	167
Appendix 3.1	Questionnaires	168
Appendix 3.1a	Questionnaire for Farmers (Household)	169
Appendix 3.1b	Questionnaire for Rice Miller/ Wheat Crusher	175
Appendix 3.1c	Questionnaire for Traders	178
Appendix 3.1d	Questionnaire for Feed Mills	181
Appendix 3.1e	Questionnaire for Cattle and Poultry Farms	183
Appendix 3.2	Selected Villages in Different Agro-Ecological Zones (AEZ)	185
Appendix 3.3	List of the Primary Markets Selected for Study	187
Appendix 3.4	List of the Secondary Markets Selected for the Study	190
Appendix 3.5	List of the Selected Big Markets for Study	191
Appendix 3.6	List of the Selected Godowns for Study	191
Appendix 3.7	List of the Selected Rice Mills/Wheat Crushers for Study	192
oppendix 3.8	List of the Major Poultry and Cattle Farms in Bangladesh with Selected Farms for Study	195

Appendix	No.	Particulars	Page No
Appendix	3.9	List of the Feed Mills in Bangladesh with Selected Mills for Study	196
Appendix	3.10	A Case Study on the Estimation of Grain Losses Due to Field Stacking, Carrying and Threshing of Foodgrains Crop	197
Appendix	3.11	Procedure for Laboratory Analysis of Stored Foodgrains & Seed Samples	198
Appendix	4.1	Seed, Feed and Post-harvest Loss as percentage of Total Production of Foodgrain Crops by AEZ During 1989-90	199
Appendix	4.2	Seed, Feed and Post-harvest of Food- grain Crops by AEZ during 1989-90	201
Appendix	4.3	Weighted Use of Seed and Feed, Post-harvest, Milling, Transpor- tation, Storage and Marketing Losses of Rice Crops as % of Production	203
Appendix	4.1.1	Region-wise Distribution of % Seed Used by the Sample Households	205
Appendix	4.1.2	Germination Percentage of Stored Seed Sample	205
Appendix	4.2.1	Feed Used in Specialized Farms During 1989-90	206
Appendix	4.2.2	Feed in Ingredients Used in Feed Mill During 1989-90	207
Appendix	4.2.3	Storage Loss in Feed Mills (1989-90)	208
Appendix	4.3.1	Aus Crop at Different Stages of Post Harvest Operation Loss by Region	209
Appendix	4.3.2	Loss of Aus Crop at Different Stages of Post Harvest Operation by Upazilas	210
Appendix ·	4.3.3	Loss of Aus Crop at Different Stages of Post Harvest Operation by Variety	212

Appendix No.	Particulars	Page No
Appendix 4.3.4	Loss of Aman Crop at Different Stages of Post Harvest Operation by Region	213
Appendix 4.3.5	Loss of Aman Crop at Different Stages of Post Harvest Operation by Upazila	214
Appendix 4.3.6	Loss of Aman Crop at Different Stages of Post Harvest Operation by Variety	216
Appendix 4.3.7	Loss of Boro Crop at Different Stages of Post Harvest Operation by Region	217
Appendix 4.3.8	Loss of Boro Crop at Different Stages of Post Harvest Operation by Upazila	218
Appendix 4.3.9	Loss of Boro Crop at Different Stages of Post Harvest Operation by Variety	219
Appendix 4.3.10	Loss of Wheat Crop at Different Stages of Post Harvest Operation by Region	220
Appendix 4.3.11	Loss of Wheat Crop at Different Stages of Post Harvest Operation by Upazila	221
Appendix 4.3.12	Loss of Wheat Crop at Different Stages of Post Harvest Operation by Variety	222
ppendix 4.4.1	Loss in kg During Parboiling & Drying by Region for Aus Grains	223
ppendix 4.4.2	Loss in kg During Parboiling & Drying by Region for Aman Grains	224
ppendix 4.4.3	Loss in kg During Parboiling & Drying by Region for Boro Crops	225
ppendix 4.4.4	Parboiling and Drying Loss (kg) by Region and Crop-variety at Millers Level	226

Appendix	No.	Particulars	Page No.
Appendix	4.4.5	Parboiling and Drying Loss (kg) by Upazila and Crop-variety at Millers Level	230
Appendix	4.4.6	Milling Loss in Dheki & Rice Huller by Region (Aus)	235
Appendix	4.4.7	Milling Loss in Dheki & Kice Huller by Region (Aman)	236
Appendix	4.4.8	Milling Loss in Dheki & Rice Huller by Region (Boro)	237
Appendix	4.4.9	Milling Loss at Millers Level by Region & Crop-Variety	238
Appendix	4.4.10	Crushing Loss (in kg) in Wheat Crusher by Region for Wheat	246
Appendix -	4.4.11	Recovery Percentage of Rice by Region in 1989-90	247
Appendix 4	4.5.1	Storage Loss at Primary Traders Level by Region	248
Appendix 4	4.5 .2	Storage Loss at Primary Traders Level by Upazila	249
Appendix 4	4.5.3	Storage Loss at Secondary Traders Level by Upazila	250
Appendix 4	4.5.4	Storage Loss at Secondary Traders Level by Container within Grain	251
Appendix 4	1.5.5	Storage Loss at Secondary Traders Level by Container	252
Appendix 4		Storage Loss at Millers Level (Boiler Mill) by Region & Crop- Variety	253
Appendix 4		Handling Loss at Primary Market by Upazila	257
oppendix 4		Handling Loss at Secondary Market by Upazila	258

ACRONYMS

AEZ	Agro-Ecological Zone	
AIS	Agriculture Information Serv:	ice
Aman	Winter Rice Crop, harvested i	in November-December
Arathdar	Commission Agent	
ARM	Automatic Rice mill	
Aus	Summer Rice Crop, harvested i	n June-July
BADC	Bangladesh Agricultural Devel	opment Corporation
BARC	Bangladesh Agricultural Resea	rch Council
BARD	Bangladesh Academy for Rural	Development
BARI	Bangladesh Agricultural Resea	rch Institute
BRRI	Bangladesh Rice Research Inst	itute
BASWAP	Bangladesh-Swiss Agricultural	Project
BBS	Bangladesh Bureau of Statisti	cs
BCSIR	Bangladesh Council of Scienti Research	fic and Industrial
Bepari	Rural Trader	
BIDS	Bangladesh Institute of Devel	opment Studies
BITAC	Bangladesh Industrial Technic	al Advisory Centre
BKB	Bangladesh Krishi (Agriculture	e) Bank
Boro	Spring Rice Crop, harvested in	n April-May
BSB	Bangladesh Shilpa Bank	
BSCIC	Bangladesh Small and Cottage Corporation	Industries
BSRS	Bangladesh Shilpa Rin Sangstha	1
Chhatak	Local weight equal to 58.3 gra	ams

xxxi

CSD	:	Central Storage Depot
DAE	:	Department of Agricultural Extension
Dalal	:	Broker
DC Food	:	District Controller of Food (under MOF)
Dheki/Dhenki	:	A foot-operated wooden implement used for rice husking in rural areas
Dole	:	Bamboo-made container of paddy
FAO	:	Food and Agricultural Organization
FAQ	:	Fair Average Quality (of grains as prescribed by MOF)
Faria	:	Small rural trader
FFW	:	Food for Works Programme
FPMU	:	Food Planning and Monitoring Unit (Under MOF)
Gola	:	Storehouse for grains
GOB	:	Government of the People's Republic of Bangladesh
Govt.	:	Government
HM/HRM	:	Husking Rice Mill
HYV	:	High Yielding Variety
Kutial	:	A trader who buys paddy, processes the same and sells resultant rice
Kutcha	:	Muddy/made of beaten earth
LSD	:	Local Storage Depot (of MOF)
LGEB	:	Local Government Engineering Bureau (under LGRD)
LGRD	:	Local Government and Rural Development
Maund	:	Local weight equivalent to 37.326 kg
MOF	:	Ministry of Food
Motka	:	Container of rice made of burnt clay

xxxii

MRM	: Major Rice Mill
0/c	: Officer in Charge (of L.S.D.)
OMS	: Open Market Sale
PFDS	: Public Foodgrain Distribution System
Pucca	: Cemented/Paved/Metalled
RC Food	: Regional Controller of Food (under MOF)
SARM	: Semi-automatic Rice Mill
Seer	: Local weight equal to 933 grams
TCL	: Total Cultivable Land
Tk.	: Taka
TL	: Total Land Owned
TPC	: Temporary Procurement Centre
TOL	: Total Operating Land
Tola	: Local weight equal to 11.66 grams
TS	: Total seed used for any particular crop
Upazila	: Sub district

CONVERSION TABLE

AREA EQUIVALENTS

1 hectare	= =	10,000 square meters 2.471 acres
1 square meter	=	10,000 square centimeters
1 square foot	=	0.0929 square centimeters
1 square mile		2.590 square kilometers 640 acres 259 hectare
1 acre	= = = =	0.4047 hectare 4840 square yards 43,560 square feet 4047 square meter 3.025 bighas
1 bigha	= =	20 katthas 14,520 square feet 1,613 square yards
1 kattha	= =	16 chhattaks 80 square yards
1 chattak	= =	5 square yards 45 square feet

WEIGHT EQUIVALENTS

1 ton	=	26.79 maunds
1 quintal	2	2.68 maunds
1 maund	=	40 seer
1 kilogram	=	1.07 seer
1 seer	= = =	16 chattaks 2.057 lb 0.9328 kg
1 chattak	8 H . 8	5 tolas 0.1286 lb 0.0583 kg

XXXiV

.

1 tola	2	180 grains 0.4114 oz 11.66 g
LENGTH EQUIVALENTS		
1 kilometer		1,000 meters 3,281 feet 1,093 yards 0.6214 miles
1 mile (statute)	= = =	5,280 feet 1,760 yards 1,609 kilometers
1 rod		and large
1 fathom	E	6 feet
1 centimeter	=	0.3937 inch
1 inch	=	2.54 centimeter
1 foot	= = =	12 inches 0.3048 meter 30.48 centimeters
1 meter		100 centimeters 3.23 feet 39.37 inches

OTHERS

Paddy to Rice = 0.677

•

Chapter I

INTRODUCTION

1.1 FOODGRAIN SITUATION IN BANGLADESH

Foodgrains in our country primarily mean rice and wheat. They occupy more than two- third of the cropped area and provide staple food for the population. Production of foodgrain is still insufficient to meet the domestic requirement, and thus substantial quantity of foodgrains is imported every year. In the South East Asian region, Bangladesh is one of the largest foodgrain importing country. As such Government's food policy has to lay stress on the major cereals. The assurance of adequate availability of basic food stuff, particularly rice and wheat, to meet the increasing demand of the country's large and growing population (estimated at 112 millions-1990, BBS) is an objective of the highest priority.

To increase country's production of rice and wheat (thereby to reduce import), substantial technical and financial support are provided by the government in the form of guidance, production inputs (seeds of modern varieties, fertilizer and pesticides) and credit to the farmers on concessional terms. Such support is further complemented and strengthened by the government's policy of rice price to guarantee the farmer minimum price for his product in consideration of the limited purchasing power of the people. Since an important objective of the government is to improve the nutritional standard of the population, the Government policies in respect to foodgrains are thus oriented towards higher production, consumption and nutrition supply. But, the diversity of agro- climatic zones and level of adoption of modern varieties led to non-homogenous foodgrain production and consumption pattern.

1.1.1 Foodgrain Production

The average annual foodgrain production of the last five year period (1985/86 - 1989/90) was 16.55 million tons compared to 15.38 million tons of the previous five year period (1980/81- 1984/85), an increase of 7.61 per cent with a growth rate of 1.5 per cent per annum. Area and production of foodgrain (rice and wheat) in Bangladesh during 1947-48 to 1989-90 is presented in Appendix 1.1.

Production of foodgrain has been showing an increasing trend since the 60's but the extent of fluctuation caused by weather has also been too large. A fall in production as large as one million tons has been observed in the past. For instance, foodgrain production during 1971/72 was 10.04 million tons whereas the production in the preceding year was 11.25 million tons. The decline is attributable to the disturbing political situation and the vulnerability of agriculture to the vagaries of nature. Decline in foodgrain production continued upto 1974/75 period. In the subsequent period, there was an increase in foodgrain productior. Growth rate during 1974/75 to 1984/85 was more than 4 percent. This may be attributed to dissemination of technology i.e. expansion of modern varieties and related production inputs. Growth rate between 1.984/85 and 1988/89 was very poor i.e.less than one per cent per annum due to flood and other natural vagaries. Production varied from 16.10 million metric tons to 16.57 million metric tons in 1985/89.

Production suffered due to floods in 1987-88 and 1988/89 but production 1989/90 (especially Aman crop) improved due to a number of factors, of which favorable weather stood out quite predominantly. Besides, there was adequate and timely rainfall and retention of soil fertility due to loss of crops in preceding two years and a larger area was brought under modern varieties and there was no major pest attack during the cropping seasons.

Foodgrains are the main consumable items in Bangladesh accounting for about 60 percent of the household expenditure and 85 percent of the total calorie intake. Thus foodgrain production is also a major determinant of the level of nutrition. Crop failures resulting in food shortages cause acute deprivation to the country's poor. To the small and marginal farmers they mean below normal food stocks on the farm, greater recourse to costly open market purchases, and reduced employment opportunities, lower wages and sub-normal calorie intake. At the national level the crisis in the wake of crop failures divert much of the planning and administrative efforts away from the long-run development priorities into short run crisis management.

1.1.2 Foodgrain Import

The chronic shortage of foodgrains developed since 1950's in Bangladesh had been met by the import (aids and commercial imports). Food imports during the last few decades varied from less than one million tons to about 3 million tons (MOF, 1990) in order to keep the average availability of foodgrains at or near 15.5 ounces/person/day (in recent years the rate is 16 ounces/ person/day). National Nutrition Institute of Bangladesh has recommended 2700 as the daily calorie intake which comprises cereals 434 g, roots and tubers 423 g, sugar/gur 29 g, pulse 112 g, vegetables 213 g, fruits 56 g, oil 6 g, and animal food 98 g.

Foodgap increased from 1.99 million tons in 1984/85 to 3.22 million tons in 1988/89. It is to be mentioned that the foodgrains available for consumption remained between 14 and 15 million metric tons during the period. Within this period population was increased by 11.2 million people. This raised the requirement of foodgrains from 16.48 million metric tons in 1984/85 to 18.13 million metric tons in 1988/89.

To make foodgrains available to the people with a stable price and to maintain a stock for food security, the government had to import 10.62 million metric tons of foodgrains (aid and commercial imports) during 1984-85 to 1988-89 with an average of 2.12 million tons per year : (FPMU 1990).

1.1.3 Food Budget

In order to make foodgrain available to all people at all times, Ministry of Food prepares food budget every year. While preparing food budget of the country; estimated production (excluding 10% for seed, feed and post-harvest wastage from the gross production), requirement, procurement and distribution factors are considered. Foodgrain requirement is calculated by population times 16 ounces/person/day/irrespective of adult or minor. The country is yet to achieve self sufficiency foodgrain in production. According to Ministry of Food, the foodgrain shortage during 1984-85 to 1987-88 was on an average 2.2 million tons per year with an exception of 4.13 million tons in 1987-88. Most of the foodgrains shortage of Bangladesh are met through imports (MOF, 1990).

1.2 BACKGROUND OF THE STUDY

As mentioned earlier Ministry of Food has to prepare food budget ahead of time to process aided foodgrains for the whole year (Appendix 1.2). In making food budget while estimating availability, and assessing annual requirements, 10 per cent of total production is assumed to be not available for human consumption. In other words the net production for consumption was arrived by deducting 10 percent from the gross production as seed, feed and wastages as thumb rule. Uptil now no study work has been carried out to determine the exact quantity of foodgrains available for consumption. Accurate quantity of deduction could make it easier for policy makers to determine the quantity that would be available for consumption, import, distribution, and stock for food security. One percent error in estimation of foodgrain production would cause a fluctuation of 167 thousand metric tons, a quantity equivalent to the consumption of one million people for a year.

With the introduction of modern varieties and improvement in cultural practices, requirement for seeds is likely to be reduced than what was in earlier days. Seed rates for different varieties in different season vary considerably. A precise average estimate of seed rate for rice and wheat crops needs to be known.

Besides, foodgrains produced by farmers are used in small quantity as cattle and poultry feeds. But data on these are not available, nor any such study has yet been carried out to investigate into the extent of use of grains as feed. Similarly, post-harvest losses or wastages of foodgrains at different stages from harvest upto consumption are not known. It is however, assumed that a significant quantity of foodgrains is lost at operational stages. Following are the areas by which grains are lost:

- Loss due to different types/methods of harvesting and threshing.
- 2. Loss in the drying yard:
 - i. At the post-threshing period.
 - ii. Pre-mill drying loss after parboiling at farmers and millers level.
- Milling loss due to different methods of milling/husking/ hauling.
- 4. Storage loss due to different types of storage methods used by the farmers and the private traders.
- 5. Loss due to different modes of transport by the private traders and the farmers.
- 6. Other probable losses like insects, rodents and weather etc.

The necessity of estimating the extent of foodgrains not available for human consumption due to post harvest losses and its use for seed and feed can not be over emphasized. Because this would enable planners and policy makers to determine more accurately the demand-supply condition of foodgrains in Bangladesh.

1.3 OBJECTIVES OF THE STUDY

To carry out a detailed study, FPMU, Ministry of Food designed the present study with following objectives:

- To generate data on the quality of foodgrains (Rice and Wheat) used as seed and its variation with modern and traditional varieties and cultural practices.
- To estimate quantum of foodgrains used as Cattle and Poultry feed.
- To estimate the post-harvest loss of foodgrains at various stages like handling, drying, milling, storage, transportation at farmers and private traders level.

4. To generate reliable data base to support preparation of foodgrains budget.

1.4 TERMS OF REFERENCE OF THE STUDY

To undertake the study UNICONSULT International was selected by the FPMU, Ministry of Food under the following terms of reference:

- 1. To review the existing literature and studies carried out in relevance to the objectives of the study.
- 2. To estimate seed requirement for modern and traditional varieties of each foodgrain crop (Rice and Wheat).
- 3. To estimate how much foodgrains are used as Cattle and Poultry feed.
- 4. To estimate losses at different stages including traders level from harvest upto consumption.
- 5. To study the nature and causes of the losses in the postharvest operations for each foodgrain crop.
- 6. To estimate storage loss for each foodgrain crop for each storage type used by farmers and traders separately.
- 7. To estimate transport loss by modes of transport used by the private traders and the farmers separately.
- 8. To estimate aggregate seed, feed and wastage with share of each component at national as well as farmers level.
- 9. Other issues relevant to study.

The study started on 22 June, 1989 with a total duration of 18 months to complete the study under the guidance of a functional committee constituted by the FPMU.

1.5 ORGANISATION OF THE STUDY

Keeping in view the objectives and terms of reference mentioned above the study was undertaken to assess the extent of foodgrain loss due to use as seed and feed, and post harvest wastage. The study is presented in the following sequences: the introduction is followed by the review of literature, methodology results and finally the conclusion.

Chapter II

REVIEW OF LITERATURE

The available literature on the loss of foodgrains due to different operations has been examined in chronological order in order to be familiar with the theoretical frameworks and empirical results of the studies etc. for helpful guidance. To achieve this paper/documents etc. dealing with individual use of foodgrains as seed and feed (not available for human consumption) as well as loss occuring during post-harvest operations, different levels of marketing, storing and milling processes etc have been depth.

2.1 SEED

Certain portion of the output of foodgrains is used as seed and therefore, not available for human consumption. The quantity of seed used in planting is the function of area under cultivation and seed rate per unit area. To estimate the total quantity of seed used in Bangladesh for rice (Aus, B. Aman, T. Aman and Boro) and wheat, it is necessary to know the total area under cultivation of different foodgrain crops (discussed in Chapter 1) and the seed rate per hectare for these crops (discussed below). Experimental evidence showed that the rate of seed used per hectare was different for local and modern variety depending ion the method of planting used such as broadcasting, line sowing, transplanting or dibbling and also on environmental conditions that prevail in different regions (Islam, 1989).

2.1.1 Seed Rate

1. Rice

Seed rate for different rice crop varies according to type of variety, size, germination percentage of the seed, method of planting and survival rate of seedlings under different environmental condition (Islam, 1989). According to Agricultural Information Service (AIS, 1989) for normal environmental condition the seed rate for Modern Variety (MV) of Aus (transplanted) was 25 kg/ha, MV of T. Aman 25 kg/ha, and Boro 25 kg/ha.

BADC (1980) in a study found that the average seed rate per hectare was 98 kg for paddy, the rate per hectare ranged from 46 kg in case of T.Aman to 100 kg/ha in case of B.Aman. The seed rate for HYV paddy of B.Aus was 90 kg/ha and Boro was 40 kg/ha. It was also observed that the seed rate for local varieties of paddy was almost the same as that of high yielding varieties when same methods of planting are practiced with similar germination capacity seed.

In Aus rice, BRRI (1976) in a direct seeding experiment with Chandina variety found that the maximum grain yield was obtained from the seed rate of 90 kg/ha. Hussain and Elias (1981) found that the average seed rate for Modern Varieties of transplanted Aus rice was 48 kg/ha. BRRI (1987) stated the optimum seed rate for broadcast, line sown and transplanted Aus crop were about 100, 70 and 45 kg seed/ha, respectively, at Joydevpur. Alim (1982) concluded from the results of several experiments on seed rate for broadcast Aus that 66 kg/ha seed was optimum under normal environmental condition.

For broadcast Aman, Alim (1982) observed that there was a progressive increase in yield with the increase in the seed rate starting from 66 kg to 132/ha, but the difference at each stage was not statistically significant. Recommended seed rate was 82 kg/ha. BRRI (1985) observed that the average seed rate in Broadcast Aman was 66 kg/ha, in Jamalpur and 63 kg/ha in Sherpur, the overall average was 65 kg/ha. For Transplanted Aman, the average seed rate was 45 kg/ha, varying from 45 kg/ha in Jamalpur to 47 kg/ha in Sherpur. The average seed rate for transplanted Aus was reported at 46 kg/ha.

BRRI (1984) found that the average seed rate used per hectare in single and mixed deep water Aman varied from 54 kg/ha in Mymensingh Sadar North to 75 kg/ha in Kishoreganj with the district average of 64 kg/ha. For Transplanted Aman, the average seed rate was 47 kg/ha varying from 39 kg/ha in Mymensingh Sadar North to 53 kg/ha in Kishoreganj. The average seed rate for Aus was 52 kg/ha and for Aman 47 kg/ha. In many cases it was observed that the farmers used more seed than the requirement. It might be due to low germination percentage or to offset loss of germination resulting from reduced moisture content of soil, unfavourable tilth and excess water.

2. Seed Rate of Wheat

Seed rate of wheat varied on the methods of sowing and cultural practices in Bangladesh. AIS (1989) recommended 140 kg/ha for wheat under irrigated condition and 110 kg/ha for rainfed condition. However, the seed rate varied according to local environmental condition in different parts of the country. BARI, BARC, BADC and other research organisations made experiments on the seed rate of wheat. The results of some of the important experiment and study are summarized below.

BARC (1975) stated that the recommended rate of Wheat seed was 70 to 100 kg/ha, with the germination percentage of 81 and the plant population of 103 and 156 numbers/square meter for maximizing yield. BARI (1980) stated that the recommended rate of wheat seed was 110 and 120 kg/ha in irrigated condition for line sowing and broadcasting respectively. To compensate the loss of yield due to late seeding, additional 10-20 kg seeds were recommended. Again, for dry land cultivation, 70-90 kg/ha seeds were recommended depending upon the varieties and time of seeding. In case of Sonalika, additional 10-20 kg seeds were needed for both irrigated and dry land conditions (BARI, 1982). For wheat, BARI (1982) recommended a seed rate of 120 kg/ha for irrigated condition and 100 kg/ha for non-irrigated condition. Hossain and Elias (1982) in a study found that the rate of Wheat seed used by the farmers of Akcha, Munshirhat and Durgapur was 139, 141 and 140 kg/ha respectively. Elias and Hussain (1983) reported that the seed rate of Wheat varied not only among the farms but also in different locations as well as in different years. In 1980-81, the average seed rate was 143 kg/ha while in 1982-83 it was reduced to 125 kg/ha. The average seed rate in these years was observed lowest in Shailkupa (120 kg/ha) and highest in Daudkandi (146 kg/ha).

BARC (1983) reported that seed rate of wheat varied with types, time and method of planting, moisture availability etc. Under irrigated condition a seed rate of 115 kg/ha was found optimum. Since Sonalika had bigger grains and required lesser tillers, a higher seed rate (5 kg/ha more) was recommended. In late planting (December 15), 10-20 kg/ha more seed was required. Higher plant density might have minimized the yield loss resulting from less tillering.

High yielding varieties of wheat are mostly grown in Bangladesh. CIMMYT (1982) estimated that of the 600,000 ha planted to Wheat in 1980-81 in Bangladesh, about 96 percent was MV. The variety Sonalika, from India was dominant, covering roughly 68 percent of the MV area. Next in importance was the Mexican variety Inia 66, seeded to 10 percent of the HYV area, followed by the varieties Pavan 76, Jupateco 73 and Tanori 71.

3. Conclusion

In conclusion it may be mentioned from Hashem (1986) that four kinds of Paddy are grown in Bangladesh. These are - Aus, Broadcast Aman, Transplanted Aman, and Boro. Seed rate of broadcast and transplanted Aus was 90 kg and 30 kg/ha, respectively. The seed rate of broadcast Aman paddy was 90 kg/ha. The seed rate of Transplanted Aman paddy was 30 kg/ha. The seed rate of Boro paddy was 30 kg/ma. The seed rate of Wheat for irrigated and nonirrigated lands was 110 kg/ha and 130 kg/ha, respectively.

2.1.2 Seed Requirement

The quantity of seed required to plant an area of land varies with the type of crop and method of planting. The local variety which is usually broadcast requires larger quantity of seed per hectare than the modern varieties which are usually transplanted with seedling raised in the seed beds, earlier. The cultural practices before sowing and planting in different regions of the country also influence the seed rates.

Hashem (1986) estimated that the yearly national requirement of Modern Varieties (MV) of paddy seed is about 54,000 metric tons and the Local Varieties (LV) is about 4,82,000 metric tons. The requirement of buffer stock seeds was 10,950 metric tons in recent years.

Total seed requirement for rice and wheat is about 567,720 tons which is 3.4 per cent of the total foodgrains produced in Bangladesh. The yearly national requirement of Wheat seed is about 54,590 metric tons and Paddy is 513,000 metric tons (BBS, Ministry of Food) as shown in Table 2.1.

		Theat) Used as Sei	(000 top
Crops	MV	Local	Total
Aus	12.86	197.27	210.13
Aman	. 117.60	148.88	266.48
Boro	27.00	9.52	36.52
Sub-total	157.46	355.67	513,13
Wheat	54.09	0.50	54.59
Grand total food grain	211.55	356.17	567,72

Based on last 10 years' average acreage and recommended seed rate)

Most of the farmers who grow Wheat and Rice, preserve seeds from year to year from their own produce. Seed sale between farmer to farmer has also been an important form of seed distribution in Bangladesh. It is estimated that more than 80 percent of the total national wheat seed requirement is being met through farmer seed stock and sales among themselves (BADC, 1980).

BADC (1985) stated that the demand for seed particularly MVs of paddy was erratic since farmers themselves attempt to keep their seeds. Damage of crop seeds by natural hazard causes fluctuation in seed demand. Of total requirement, BADC supplied 22 and 5 percent of Wheat and Paddy (MV) seed, respectively.

No study has yet been carried out to determine the exact quantity of seed used for different crops of the country.

2.2 FEED

The use of foodgrain as feed is limited in Bangladesh. The main feed supply for cattle, goats and sheep comes from the byproduct of food (bran, husk of rice and wheat) and the by-product of crops (straw, weeds from the crop field). Cattle is also fed legumes and grasses grown on irrigation bunds, fallow lands, road sides and river levies etc. (Hossain 1989, Saadullah 1984). Occasionally, for milch cows farmers use low grade rice and broken rice. But there is no estimate or published report on the quantity of foodgrains used as feed by the farmers. For poultry birds, chicken and duck, farmers use broken rice, wheat and other foodgrains. No statistics are available on the feed and feeding rate of these animals.

In the Government farms and organized private farms, poultry are fed concentrate feeds containing grain. However, the quantum of food grains used as ingredients in the poultry feed is not precisely known. Booklets and leaflets published by the Livestock Department and the Department of Agricultural Extension indicate that foodgrains constitute between 45 percent to 50 percent of the processed feed (Anonymous 1989, Salam and Aftabuddin, 1987).

2.2.1. Livestock Population

According to Agriculture Census 1983-84 in Bangladesh, there are 3,62,87,000 livestock heads including 2,14,95,000 cattle, 5,67,000 buffaloes, 1,35,58,000 goats and 6,67,000 sheep. Also there are 7,37,13,000 poultry birds including 6,10,93,000 chicken and 1,26,20,000 ducks (BBS 1986). Besides these, there are some other birds such as pigeon etc. in the country for which no statistics are available.

Bangladesh has a high density of domestic animals (2.23 unit cattle and 4.79 unit chicken/ha of land). Dhaka district has the highest density (3.30 unit/ha of cultivable land) of cattle and Noakhali has the lowest density (1.33 unit/ha of cultivable land) of cattle. For chicken Jamalpur has the highest density (9.6 heads/ha of land) whereas Khulma has the lowest density (1.2 heads/ha of land area) (BBS 1989).

2.2.2 Source of Feed

Rice straw is the principal component of the diet of cattle and buffaloes. Total production of rice straw in respect of all varieties was 16.9 million tons in 1983-84. Nearly 80% of the total dry feed available for livestock each year in cultivated land comes from rice straw. This feed source has declined both in quantity and quality due to introduction of MV paddy. The increased use of straw as fuel and compost making has further reduced the quantity of this feed source. It is estimated that about 2.0 kg of straw is available per head per day for the cattle population and supplements amount to about one kg. of green fodder, plus about 20g/day of cereal and oilseed by- products. Tareque (1985) estimated that 48 percent of foodstuff supply wasnot utilised as animal feeds, while Madamba (1985) estimated a loss of 40 percent. The quantity of roughage to be fed depends on the size or weight of the animal, and the requirement of concentrate is dependent on performances in terms of milk production, work and growth of the animal. The roughage consists of straw, hay, grass or legumes, and the ingredients of concentrate mixture are usually rice bran or wheat bran, pulses (crushed), oil cakes, urea-molasses and salts. Concentrates contribute only 5.8% of the total dry matter (Hossain 1989).

Poultry feed sources are quite different. Feed ingredients may be broadly classified as energy supplements (cereals, wheat bran, rice bran), protein supplements (oil cakes, maize, wheat, fish meal, skim milk powder, meat meal), minerals, vitamins, nonprotein feed additives (antibiotics, antioxidants). Very little grains are available for feeding of animals in the country. Conventionally, poultry are fed on grains in the Government and commercial farms. The bulk of poultry population are reared by backyard poultry farms on scavenging grains from the field and yards as and when available. Out of the 73 million heads of poultry in the country, only about 0.2 million are reared by specialized farms consuming 45-50 percent grains in the ration. The remaining 72.8 million heads are reared by backyard poultry farms (Dicky & Huque 1986). It is estimated that 190 thousand tons of grains are available to the livestock feeding contributing to 15.7 percent of the total amount of concentrates (Tareque and Saadullah 1988).

2.2.3 Livestock and Poultry Farms

Under the Directorate of Livestock Services there are at present five Dairy Farms, one Buffalo Farm, one Sheep Farm, one Goat Farm and one Pig Farm (Appendix 3.8). It is learnt that there is no provision of any grain (paddy, rice or wheat) in the ration of the animals (Dy. D.L.S, personal communication).

Under the same Directorate there are 33 Chicken Farms and two duck farms (Appendix 3.8) consuming nearly 35 metric tons of wheat per day. Chickens consume 120-125 g and ducks consume 140- 150 g of concentrate feed per head per day. Wheat contributes nearly 50 per cent of the total feed (Dy. D.L.S, personal communication).

2.2.4 Feed Mills

During the last few years as many as eight Livestock Feed Mills (Appendix 3.9) have been established. The total capacity of these Feed Mills are approximately 250 M.T/day for catering the partial needs of livestock and poultry of the country both in Public and Private sectors (Sheikh, et.al. 1989).

Their cattle feed ingredients are mostly rice bran, rice polish, wheat bran, oilcake, pulses, molasses, salt and bone meal.

The poultry feed ingredients are wheat bran, fish meal, oil cake, pulses, wheat, oyster shell and vitamins. Wheat contributes about 45-50 percent of the prepared poultry feed.

The rice meal comprises rice, rice bran, rice husks and broken rice. The average breakdown of rice milling in the country is rice 67 percent, husk 26 percent, bran 6 percent and broken rice 1 percent. Mainly rice bran, rice husks and broken rice are used as livestock feed.

Five percent of the total available Wheat of 3.1 million tons (1.2 million tons domestically grown + 1.9 million tons imported) is milled for flour. The production of bran at an extraction rate of 20 percent is 27,000 tons, contributing 2.2 percent to total concentrate production. Keeping 10 percent of the total production of pulse for seed and other purposes, about 54,000 tons of bran are produced for use by livestock (Tareque and Saadullah, 1988).

2.2.5 Raie of Grain use in the Feed

There is no fixed rate of food grain use in the animal feed in rural Bangladesh. However several authors proposed different rates of rice and wheat bran/broken grain for use in the animal feed (Table 2.2). Fisheries and Livestock Department of the Agricultural Information Services (Anonymous, 1989) indicated 1500 gm of wheat/rice bran per head/day for bullocks, 2000 gm for milch cows, and 1000 gm for buffaloes. Conventionally food grains are not used in the feed of cattle, buffalo, sheep or goat. For chicken and duck different rates are proposed by Anonymous, 1989 and Salam and Aftabuddin, 1987 for different age groups. However, on the average, the rate of food grains in the feed is about 60 gm per head per day for chickens and 75 gm per head per day for ducks.

Table 2.2: Rate of Bra in Livestoc		/wheat Used cited by different Authors.
Livestock & Poultry	Rate gm/day/head	Source
Bullocks	1500	DAE. 1989a
Milch Cow	2000	Ahmed 1984.
Dry cow	1000	DAE 1989a
Buffalo	1000	·
Chicken	120	DAE 1989b, 1989c
Duck	150	DAE 1989d
Goat	250	
Sheep	250	

2.2.6 Quantity of Foodgrains Used as Feed

There is no statistics available in the country on the total quantity of foodgrain used as Cattle and Poultry feed. The total quantity of foodgrain used as feed in the country may be estimated from the number of livestock and poultry and the rate of foodgrain use as feed. Sheikh et.al 1989 cited that annual requirement of feed for livestock including green grass and roughages are 9,00,00,000 MT/year. Rice bran/Wheat bran requirement is 1,08,00,000 MT/year (@ 1.5 kg/head/day) and requirement of other grains such as Kheshari/Masur (pulses) are 36,00,000 MT/year (@ 0.5 kg/head/day) in Bangladesh. The present study was designed to estimate the total quantity of foodgrain use as feed in the country.

2.3 WASTAGE: POST-HARVEST OPERATIONS

2.3.1 Post-Harvest Operation

The post harvest operations for rice and wheat include field stacking, carrying of harvested crop to threshing yard, threshing, cleaning, drying, parboiling and milling of grains. Other processes such as marketing, transportation and storage of foodgrains will be discussed in respective sections.

Rice is harvested by sickle. The harvested paddy is left in the field before carrying to the threshing yard generally at home. Sometimes threshing yard is prepared in the field. This is done in Aman season. If rice is harvested in flooded field, the bundles are kept on levee. Considerable yield is lost during the process. In Aman season, sometimes grains are left in the field after harvest for few days for drying. This is not a very good practice as grain shattering increases during transportation to threshing yard. This practice is not seen much now as farmers are afraid of grain theft from the field.

The harvested crop is transported from the field to the threshing yard by head-load, shoulder load or sling, carts and others like rickshaw van. During the carrying process considerable grains are also lost.

Occasionally, farmers need to stack their harvested crop near their threshing yard for few days when they are very busy with harvest, and/or bullock and pedal thresher is not available immediately. Sometimes, in Aman season they do it willingly to soften the stalks of grains so that they can be threshed easily. If harvesting is done by contract labour on grain share basis, the threshing is done on the same day whenever possible. Continuous rain sometimes compel farmers to stack their wet grain at threshing yard. Quality deterioration and loss of grain due to eating by livestock and poultry birds may occur during the process.

Hand beating against drum or wooden pieces, bullock- treading, the use of pedal thresher and the combination of hand beating followed by bullock-treading are the common methods for paddy threshing. Both quantitative and qualitative loss may be due to threshing. During threshing husk of the grains may also get damaged which will be susceptible to easy insect infestation. Threshing by pedal thresher makes the grain most susceptible to husk damage and hand beating against drums or smooth wooden pieces the least susceptible. Wet grains are more susceptible to husk injury which is most common in Boro and Aus crop.

Winnowing and cleaning to separate plant materials and grains are done commonly by the use of 'Kula', wind breeze or fanning. This operation helps to improve quality of grains. If grains are not cleaned properly, the presence of chaff, other plant materials and foreign matters lower the quality of grains. In the wet season however, it is difficult to clean the grains properly. Boro and Aus crops mostly face this problem. A considerable grain is lost during the process.

Rice is dried under the sun before storage. The home yard is used as drying floor. In the dry months farmers do not face any problem in drying paddy but in the wet months they face difficulty because of rain and wet floor. Sometimes in the summer farmers overdry their crop causing damage to the grain. A considerable quantity of grains is lost during the process.

Parboiling is a traditional process in the country except Chittagong and Sylhet. It is mostly done by the farmer at farm level. Rice is soaked generally for 24 hours and then steamed till the opening of husk. Parboiled paddy is then dried in the sun. Underparboiled rice gives more breakage during milling. More breakage also occurs if rice is overdried after parboiling.

Rice is milled at farm level generally by husking machine with steel huller and sometimes with Dheki. The Dheki which was a very common traditional device for milling rice a few decades ago, is now rarely used for milling purpose. Dheki gives undermilled rice which is more nutritious but has poor storing quality.

2.3.2 Study on Post-Harvest Wastage

Wastage refers to the quantity of foodgrains which is not available either for food or feed. It is usually lost during post harvest processing involving foodgrains which drop during transportation from field to threshing yard; which scatter during threshing operations and winnowing but not collected and which are eaten by scavenger, poultry and ducks as well as birds while drying the grains. Small quantities are lost during transportation from farm to market, from one market to another and in course of storing at farm and traders level. These wastages or losses can not be totally eliminated but can be reduced if right kinds of economically feasible measures are adopted. However, such losses create problems for countries like Bangladesh having shortage of foodgrains every year.

Studies have been conducted in Bangladesh and elsewhere to identify the agents of loss and its extent. Some of the literatures deal with wastages occurring between harvest and winnowing, some deal with other aspects of post harvest operations.

Estimates of wastage or loss of foodgrains during post harvest operations would differ depending upon the varieties of crops, climate and weather conditions during harvesting. In case of local varieties post harvest loss is higher than the high yielding varieties. When treading by bullock method is used in threshing on wet-floor, the loss is higher than that of dry floor.

Besides physical and biological factors, food losses are related to social phenomena. Cultural attitudes and practices associated with post harvest operations also determine the extent of food grain loss.

Rice harvesting in Nepal is similar to that in Bangladesh. Harvesting is done manually with a sickle, harvested grain-bundles are carried to threshing yard on shoulder-slings and then threshed with oxen or beaten against drums or wooden logs to separate the grains from the stalk. But Mallick (1981), in his book on Rice in Nepal referred to a study in that country which found about 22% loss occurred during threshing and harvesting, field drying, carrying to threshing floor and threshing with oxen. This estimate appears to be rather higher than the estimates made in Bangladesh (ARDICOL 1988, Quasem, 1985, FAO, 1985).

Greely (1980), conducted a study in 4 villages from Chandina upazila of Comilla district and in 4 villages from Madhupur of Tangail district on tarm level post harvest loss of rice. He reported of total physical losses in operations from harvesting to drying not exceeding 7 percent.

Karim and Hurley 1982, conducted a study in 1981 on Aus paddy in Mymensingh found a loss of 3 percent during cutting and threshing operations.

Haque, et.al 1984, while talking of post harvest technology stated that improper harvesting and threshing usually result in losses of upto 5% of the crop. This seems to be a closer estimate found by a number of authors (ARDICOL 1988, BRRI 1985. FAO 1986) carrying out a detailed study on post harvest losses covering 35 villages in Dhaka, Sylhet, Comilla, Bogra and Rajshahi districts. Crops studied were Aman of 1983, Boro and Aus of 1984. Loss assessment in harvesting was done on a measured area of 50 sq. meter (10m x 5m). The crop was harvested using sickles, bundled, transported and threshed to get the grain weight as obtained yield. The grains that fell on the ground were manually collected indicating that the study was meticulously performed. Estimates of post harvest losses covering relevant operations were 5.31 percent for 1983 Aman, 3.72 percent for 1984 Boro and 4.28 percent for 1984 Aus. Loss occurring in various stages is shown in the Table 2.3.

The loss on account of drying was also reported to be 2.11 percent in case of Aman and 1.63 percent in case of Boro. The drying loss of Aus 1984 was 2.84 percent while it was 1.86 percent for Aus 1983. The Aus season of 1984 had less sunny days than in 1983 Aus. The above losses are in addition to quantities indicated in the above table (after Haque, et. al 1984a, 1984b).

Post-harvest operations				-
Pre harvest *			0.26	
At harvest**	2.01	0.82	1.75	1.53
Field stacking/				
bundling/drying	0.80	0.72	0.58	0.70
Field transport	0.57	0.52	0.52	0.54
Threshing	0.98	0.77	0.81	0.86
Cleaning/Winnowing	0.46	0.57	0.36	0.46
Sub-total	5.31	3.72	4.28	4.75
Drying			2.84	
brythg	2.11	1.05	2.04	2.19
Parboiling	2.04	1,93	2.75	2.36
Hilling	3.28	4.54	3.55	3.79
Storage	0.30	1.20	0.30	0.60
	13.04	13.02	13.72	13.26

Table 2.3 : Percentage of Post harvest losses of Aus, Aman and Boro crops during 1983-84 in Bangladesh.

* excluded from total. ** Loss due to shatering at harvesting time. Source: FAO, 1986

FAO conducted a post-harvest rice loss assessment survey in the country during 1982 and 1984 cropping seasons (FAO, 1986). The study showed that from harvesting through drying and cleaning of unparboiled paddy there was 5.4-7.4% grain loss, the highest loss was in Aman 7.4 percent followed by Boro 5.3 percent. The lowest loss occurred in Aus (5.1 percent) season. The grain shattering was the major cause of high loss in Aman season. Deep water rice suffered very high loss because of their uneven lodging of the plant in the field. Delay in harvesting in Aman season was also responsible for preharvest as well as post- harvest shattering. Modern varieties suffered less shattering loss than local varieties.

The threshing methods observed in the FAO project were bullock treading, hand beating and pedal thresher. The hand beating caused highest loss. The pedal thresher had similar loss as hand beating. The bullock treading had the lowest loss. The study also showed that large farmers suffered slightly higher losses than the small farmers.

The FAO study also reported that about 80 percent farmers were aware of the loss in the different post harvest operations. More than 60 percent farmers opined that the losses were normal and occurred naturally.

2.4 MILLING LOSSES

Milling of rice in Bangladesh is a process which involves parboiling, drying and then milling. Wheat milling involves cleaning, conditioning and flour milling. In greater districts of Sylhet, Chittagong and Chittagong Hill Tracts the local people consume unparboiled or 'Atap' rice. In Bangladesh rice is milled either manually or mechanically. Before the sixties most of the rice of Bangladesh was used to be manually milled with the help of 'Dheki' a hand/foot operated mortar and pestle. BCSIR, World Bank's report (1981) revealed that there had been a steady growth of mechanical milling of rice increasing from 17% in 1967 to 30% in 1981. The growth is much higher in 1990. About 60% rice husking is made using Dheki, 30% by rural husking mills and 10% by commercial mills (BCSIR, 1982) in the country.

The method of milling varies with the nature of milling and types of mills. Rice mills may be divided into following 5 classes:

- Rice husking by 'Dheki' at home-stead level.
- Rural husking mills without drying yard.
- Husking mills with drying yard.
- Major rice mills (MRM).
- Automatic/modern rice mills (ARM).

Information on the total number and capacity of currently operating/existing rice mills and dhekies in the country is not precisely known. Rice mills are required to take license from the Food Department. The task force report by the BCSIR/BSB in 1981 showed the number of husking mills was 10,495, major mills was 300 and modern mills was 20. The growth of husking mills during 1977-81 was estimated by the Task Force at 700 per annum. BBS (1989) reported that there were 251 major rice mills with a daily milling capacity of 4066 tons of rice in 1985.

2.4.1 Parboiling and Drying of Paddy

In rural areas farmer level parboiling process consists of placing the paddy in earthen wares and soaking in water for 24 to 48 hours (ARDICOL 1988). The soaked paddy is then poured into metal or earthen pans and steamed for about 30 minutes to one hour. Usually rice straw or paddy husk is used as fuel. The paddy is then sun dried in kutcha courtyard. Wherever available, farmers also use metalled road surface for drying paddy. Such drying usually takes 1 to 3 days depending on availability of sunshine, temperature, day length and type of surface of the drying yard. In winter it takes about 2 days for drying Aman crop; drying of Aus crop is usually completed in one day with full sunshine of summer, and in wet summer it takes longer period. Same is true for drying Boro paddy. During sun drying poultry and bird scaring is necessary and the paddy is raked with a 'harpata' or turned around with feet. Generally the services of the female members of the family are used for parboiling and drying and the drying capacity per family is about 4-5 maunds a day. High yielding varieties require longer time than the local varieties in parboiling.

2.4.2 Milling of Rice

1. <u>Dheki:</u> Dheki is a foot operated mortar and pestle, processing about one maund of paddy per day usually requiring attention of 2 to 3 women. The out-put is roughly 2 to 4 kg per woman- hour. Milling by dheki is time consuming and highly labour intensive. Rice, broken rice, husks and bran are separated by winnowing using basket or 'kula'. Rice out turn is highest in this process, about 69-72% with higher proportion of broken grains. Storing quality of dheki rice is low but this creates no problem as the rice is consumed immediately. Nutritionally dheki rice is superior to milled rice and rural people have preference for dheki rice. Husks and brans are by-products and these are used as fuel and animal feed respectively.

2. <u>Rural Husking Mills without Drying Yard</u>: In the husking mills which do not provide parboiling and drying facilities the customers themselves parboil and dry paddy in the homestead and bring the dried paddy for milling only. These are mostly single engine Engelberg-type hullers. Capacity of such huller generally varies from 0.4 to 1.3 tons of paddy per hour. Milled rice which is a mixture of whole grain and broken rice of medium to low quality and ground-up rice husk mixed with bran and small broken are the products of these mills. These products are separated by the customers either with the help of family labour or by hired labour. Total rice out turn of these mills varies from 66 to 69%.

3. <u>Husking mills with Drying Yard</u>: Such mills have parboiling and drying facilities. These mills may take up parboiling and drying of their own paddy or the customers' paddy on contract basis. Metallic containers are used for parboiling where grains in the botcom are boiled in water and those in the upper layers are steamed during parboiling causing non-uniform parboiling affecting quality of rice. Parboiled paddy is dried on the concrete drying yards. The paddy is turned by attendants for uniform drying. Where major roads and national highways are used as the drying floor, vehicular traffic running over the paddy crack the kernels resulting in higher percentage of broken rice. In such cases paddy is also mixed up with dust, dirt, oils, lubricants and other foreign matters affecting the quality of the grains.

4. <u>Major Rice Mills</u>: Like the husking mills they also do not preclean paddy before parboiling. They generally steam paddy for 5 to 10 minutes before soaking. This steaming time is not long enough to kill the paddy germs. Steamed paddy is soaked in concrete tanks. Soaking time varies from 24 to 36 hours. They generally change the water after each batch to avoid bad odour. Soaked paddy is parboiled for 10 to 20 minutes in steel/iron pans. The parboiled paddy is sun dried in large concrete/cement drying yards. There are some losses in course of sun drying due to feasting by birds with an estimated average of 0.74% ranging from 0.01% to 2.25%. These are non-modernized mills using 4 to 5 steel hullers with capacity varying from 1 to 2 tons per hour. The mills usually have improved multi-stage equipment to remove the husks and more carefully polish the grains to produce a higher quality milled rice than is possible by the husking mills. Total grain outturn is lower than husking mills but the proportion of broken rice is lower. Keeping quality of the rice turned out by these mills is much better that of usking mills.

5. Automatic/Semi-automatic Rice Mills: The automatic rice mills have full range of equipment for pre-cleaning, soaking, parboiling and drying whereas the semi-automatic rice mills generally do not have the mechanical dryers because of high operating cost. Some of the automatic rice mills which have the dryers use the same during rainy season only and go for sun drying during the rest of the year. Some of the automatic rice mills have also some adjustment for manual parboiling facility using husk-fired boiler for steaming of paddy before and after soaking. The mills generally have paddy separator and rice grading and produce better milled rice with higher outturn, less broken and less moisture with better keeping quality. Capacity of these mills veries from 1.5 to 6 tones of paddy per hour. These mills operate on their own account and also under contract with the food department for milling locally procured paddy. They also mill paddy of traders.

6. <u>ARMs and SARMs</u>: Upto seventies only one Automatic Rice Mill (ARM) was in operation. Government encouraged establishment of ARM on the ground of higher recovery and improved quality of rice with better keeping quality because of lower broken and moisture content, and better quality of by-products than husking mills. Bangladesh Shilpa Bank (BSB), Bangladesh Shilpa Rin Sangstha (BSRS) and Bangladesh Krishi Bank (BKB) provided necessary fund for setting up of ARMs and SARMs. By March, 1988 (ARDICOL 1988) these financial institutions have funded 66 ARMs and SARMs in the country.

2.4.3 Milling of Wheat

Modern wheat processing and milling include wheat cleaning, conditioning and flour milling. According to information available no comprehensive study has yet been made in Bangladesh regarding loss of wheat due to milling. From the information available in the Food Department, it reveals that there exist three types of wheat milling facilities in Bangladesh where losses of wheat may occur. The process of wheat milling are briefly described below: 1. <u>Small Scale Wheat Crushers</u>: These are diesel/electricity operated low capital intensive small crushers owned by individual entrepreneurs. The farmers/owners bring their wheat to the mill for crushing in exchange of some charges. After crushing the owners take back the crushed wheat and separate the flour from bran. The separated flour is locally called 'Atta' and used as human food. The bran is used as cattle or poultry feed. This type of wheat crushers are available in each nook and corner of the country and their actual numbers have not yet been surveyed. These crushers do not get any allotment of wheat from the Food Department.

2. <u>Roller Mills</u>: This type of mills are of medium size. These are electrically operated. As per information with the Food Department, in June 1990, there were 789 roller mills in Bangladesh with a total monthly crushing capacity of 13,661 metric tons of wheat in one shift basis: Food Department allocated 1,566.50 metric tons of wheat for the month of June, 1990 to get 1,019 metric tons of flour.

3. <u>Major/Compact Flour Mills</u>: As per Food Department the total number of Major/Compact Flour Mills in June, 1990 was 171 with a monthly crushing capacity of 43,977.88 metric tons in one shift basis. In June, 1990 Food Department made allocation of 23,432 metric tons of wheat to these mills to get 14,350 metric tons of flour at the rate of 65% yield.

2.4.4 Process of Wheat Milling

1. Wheat Cleaning : Wheat arriving at the flour mill is either grown locally or brought from another country through import. The locally grown wheat comes straight from the threshing floor, or from storage in rick or silo, and it may have already been dried on the farm. The imported wheat is generally passed from the field to a silo where it may receive preliminary cleaning, and from there is brought by ocean vessel to a port and thence to different distributing points including will by barge, rail or road transport. The wheat, as the miller receives, may contain impurities that enter from the field, during storage and transport, or accidentally. The impurities frequently encountered include mud and dust, weed seeds, other cereal grains, straw and sticks, husk, stones, fungal impurities, insects, mites, rodent excreta and hairs, string and binder twine, fragments of metal, etc (Kent 1966, Lockwood 1960, Jones 1964, Scott 1951, Smith 1944 and UNIDO 1979).

2. <u>Wheat Conditioning</u>: The objectives of wheat conditioning are primarily to improve the physical state of the grain for milling, and sometime to improve the baking quality of the milled flour. The process of conditioning involve the addition of moisture to wheat which is too dry or the removal of moisture from those grains which are too wet. The particular objectives of conditioning as regards milling are to toughen the bran and make it less brittle, to improve the separability of endosperm from bran, to increase the friability of the endosperm, and to improve the sifting of the flour.

3. <u>Flour - Milling</u>: The objectives of the milling of wheat flour are:

- To make a separation of the endosperm from the bran and germ so that the flour shall be free from brown speck and good colour, and the palatability and digestibility of the product shall be improved and its storage life lengthened.
- To reduce the maximum amount of endosperm to flour fineness, thereby obtaining the maximum extraction of wheat flour from the wheat, and at the same time to ensure that the amount of damage to the starch granules does not exceed the optimum. The reduced endosperm is the flour, the germ, bran and residual endosperm is a by-product used primarily for animal feeding.

4. <u>Whole Meal and Brown Flour</u>: Whole meal and brown flours have extraction rates more than 85% (95-100% extraction). They are frequently made by adding all for whole meal or some for brown flour of the offals to the straight run flour, milled as white flour. The course bran would generally be ground before blending with the flour and fine offals.

5. <u>Hygiene of Flour Mills</u>: Insects do not flourish if frequently disturbed and exposed to light. Hence regular sweeping and cleaning help to control them.

2.4.5 Foodgrain Loss Due to Milling

Loss of foodgrains (rice and wheat) also occur during milling process, but no quantitative information is available. Study (IDST 1984) undertaken by the different organizations have a component of milling but the information provided is not enough to make conclusion.

ARDICOL (1988) observed that in the milling process maximum outturn of rice was 68.4 percent by Dheki, followed by husking mills 67.1 percent, modern mills 66.8% and minimum outturn by major mills 66.2%. They observed system loss of 1.3% due to milling in the modern mills only (they do not show any loss due to other milling process). They also observed a loss due to dust and dirt of 1.5% in Dheki, 2.1% in husking mill, 3.6% in major mills and 2.45% in modern mills. The quantity of husk realized was 17.2% in Dheki, 30.8% in husking mills, 21.9% in major mills and 25.3% in modern mills. The realization of bran was 12.9% in Dheki, 8.3% in major mills and 4.43% in modern mills (Table 2.4).

51 No.	Types of Mill	Degree of Milling	Moisture content	Breakage (%)	Foreign matter(%)	Immature (%)	Damaged (%)
1.	HRM	WM	13.20	15.20	0.20	0.80	1.60
2.	HRM	WH	12.00	24.00	0.20	1.60	0.90
з.	MRM	MM	11.60	16.50	0.50	2.70	1.80
4.	HRM	WH	11.20	19.60	0.20	1.10	0.60
5.	HRM	мм	13.20	23.20	0.30	1.00	0.80
6.	Dheki(A)	UM	14.10	13,70	0.20	1.70	1.70
7.	HRM	W M	12.20	18.40	2.20	0.80	0.80
8.	Dheki	UM	14.7D	6.45	0.20	1.00	2.00
9.	MRM	мм	12.40	14.30	0.40	2.30	1.40
10,	ARM	UM	12.60	13.60	0.10	1.10	0.90
11.	SARM(A)	HUM	14.60	45.00	0.40	1.40	0,90
12.	SARM(A)	UM	14.00	40.40	0.50	0.90	0.90
13.	SARM	UM	14.10	14.20	0.50	1.10	1.10
14.	SARM	мм	13.60	18.10	0.50	0.50	0.50
15.	SARM	UM	14.20	23.50	0.40	0.40	0.40
16.	MRH(A)	UM	13.10	31.50	0.50	2.70	3.20
17.	MRM	мм	12.90	27.70	0.40	1.20	0.80
18.	MRM	ММ	11.80	19.60	0.20	0.80	0.40
19.	MRH(A)	ним	13.00	11.60	1.60	2.80	0.80
20.	MRM(A)	UM	12.40	34.90	0.20	0.80	4.60
21.	MRM(A)	UM	13.50	24.40	1.10	2,80	6.00
22.	MRH(A)	WM	13.20	26.10	0.10	0.90	0.50
23.	MRM	UM	13.50	9.20	0.20	4.40	3.30

Table - 2.4 : Physical Properties of Rice Processed in Different Types of Commercial Rice Mills and Dhekies (ARDICOL1988)

HRM = Husking Rice Hills, ARM = Automatic Rice Hills, SARM = Semi-automatic Rice Hills, MRM = Major Rice Hills, A = Atap Rice, HUH = Heavily under milled, UM = Under Milled, MM = Medium milled, WM = Well milled.

Apart from milling methods milling out-turn varied due to the following factors:

- Variety :High Yielding Varieties(HYVs) had a higher rice outturn than local varieties.
- Quality of Paddy : Paddy containing excessive foreign matters, chaff and admixtured with different varieties yielded lower rice outturn. There had been a general complain that Food Department paddy had higher foreign matter content and was highly admixtured resulting in lower rice outturn.
- Moisture Content : Excess moisture content in paddy also affects the rice outturn.
- Management and Condition of the Mill : Poor level of management and old/unsatisfactory condition of the mill also results in lower rice outturn.

NB:Samples collected by ARDICOL from the Mills/Market in different parts of the country. Source : ARDICOL, 1588

2.4.6 Milling Charge

ARDICOL's report revealed that the charge realized by the electricity/diesel operated rural husking mills for milling only varied from Tk. 0.11 to Tk. 0.19 per kg of paddy. The charge realized for parboiling, drying, milling, cleaning and handling by the husking mills or major mills found to be between Tk.0.38 and Tk.0.46 per kg including the imputed value of husk and bran which are retained by the mills; cash charge varied from Tk.0.18 to Tk.0.27 per kg of paddy. Total charge realized by the ARMs/SARMs for the above operation ranged between Tk.0.48 and Tk.0.67; cash charge varied from Tk.0.27 to Tk.0.40. Total charge realized for milling by dheki including parboiling, drying, cleaning and transportation varied from Tk.0.54 to Tk.0.80 per kg of paddy; cash charge varied from Tk.0.40 to Tk.0.67. The Food Department pays milling charge to the contracted millers at the rate of Tk.0.23 per kg to the husking mills and major mills and Tk.0.27 per kg to automatic rice mills. The millers are responsible for parboiling, drying, cleaning, bagging, stitching, weighing and delivery exmill. The millers deliver rice at the prescribed rate varying from 63.5% to 66.67%. The millers retain the husk, bran and the excess rice recovered, if any.

* * * * * * * * *

2.5 STORAGE LOSSES

Storage loss can be classified into quantitative and qualitative loss. Quantitative loss occurs due to unsatisfactory packing and packing materials, insufficient precaution against theft, pilferage, insects, birds, rats, rains, moisture content, etc. Foodgrain quality deterioration is due to excessive moisture content, heat, fungi, lack of timely checking and segregation, lack of drying facilities, spraying, insecticides, etc.

2.5.1 Existing Storage Facilities and Practices

1. Farm Level Storage

The storage structure and practices at farm level vary from place to place. Farmers store their surplus rice as raw paddy, parboiled paddy or parboiled milled rice. ARDICOL (1988) stated that surplus rice has been considered as rice which was not consumed by the farmers but sold immediately after harvest. It was observed that the paddy for sale was stored in the farm as raw or unparboiled paddy. ARDICOL (1988) also observed that farm level storage structure could be broadly classified as bamboo type and pot type. Among bamboo type structure "Dole" and "Gola" are predominant. "Dabor", "Motka" and "Cola" (Mait) are major pot type structures. Gunny bags, earthen jar and metal drums are also used.

Gola and Doles are made from bamboo with or without plaster of cowdung mixed with mud. These stores are built or kept on elevated platform to avoid damp and rodent attack. Such structures also allow ventilation. Some Golas are also made of corrugated tin. Dabor, Motka and Gola are made of earth. The size and shape of these pots are round with narrow mouths which are closed with lids. These pot type of structures are constructed hard and compact, and save grain from insect, rodent attack and weather hazards. Among the other types, bags and drums are used for temporary storage of raw and parboiled paddy and rice. Bags are usually kept on pallet to avoid moisture migration from kutcha floor and to provide ventilation. Sometimes grains are stored temporarily on the floor.

The Gola and Dole are used for storing raw paddy (unparboiled). Dole is plastered with mud to store parboiled paddy. Earthen pots are used for storing parboiled milled rice. Metallic pots are generally used for storing seed and wheat. Used woven polypropylene fertilizer bags are also used for storing wheat seed. The pot structure has more protection against rats and insects than bamboo made structures.

2. Storage at Traders Level

In private trade the storage function is basically concerned with making the product available at desired time. Storage of agricultural products for longer period is the usual practice as the crops are required to be carried over from one production season to another to ensure continuity of supply without interruption. Foodgrain crops namely, rice and wheat are harvested during relatively short period of time and these are highly seasonal. The demand for foodgrains on the other hand is quite constant throughout the year. The storage function ensures matching of market supply with consumption pattern. In Bangladesh different rice crops are harvested almost year round. Because of the harvesting of three crops in the country in different months of the year, the need for storage of the crop for a long period is reduced which would have been necessary in case only one crop was harvested.

ARDICOL (1988) reported that 78.9% of the traders stored their Aman paddy for less than one week; over 15.6% for less than two weeks while only 5.5% of all traders reported that they stored the Aman paddy for the period upto one month and none beyond a month.

Storage of Aus paddy showed that nearly 86% of all traders reported to have stored Aus paddy for less than one week while only 14.3% of the traders stored for the period upto two weeks. This implies that about 100% of the traders stored their Aus paddy for one and two weeks. In case of Boro paddy the survey revealed that 80.4% of the traders stored their Boro paddy for less than one week while 11.2% of the traders stored for two weeks. Over 8% of the traders stored Boro paddy upto one month. In case of wheat 100% of all traders stored their wheat for less than a week. About 84% of Aman rice, 86% of Boro rice and 89% of the Aus rice were stored upto one week by different types of traders.

3. Warehousing Facilities for Farmers

To make provision of Public Warehousing Facilities with a view to (i) enabling the farmers to obtain high price for their crops, (ii) increasing supply of credit in the agriculture sector and (iii) reducing food losses through improved storage facilities many committees, commissions and consultation were appointed in the sub-continent since the thirties. Quasem's study (1937) shows that the small and marginal farmers sell larger proportion of their marketed quantity of paddy/rice after harvest at a lower price and buy back at a much higher prices during off- season. The small/deficit farmers who are forced to sell their crop at a very low price immediately after harvest to meet their urgent need for cash can be assisted in getting higher price for their crops if they have access to public warehouses. They can store their crops in these warehouses immediately after harvest where storage loss would be minimum and borrow from banks against the crops stored in the warehouses to meet their urgent need for cash and thus stave off post-harvest sale at a low price, and sell the crops at the most opportune time.

4. Foodgrain Seed Storage

In this sub-chapter attempt has been made to provide a world-wide review of the principles and objectives, organization and methods of cereal (Rice and Wheat) seeds storage in different stages from harvest to next plantation. Production and distribution of quality seed is recognised as one of the main inputs required to achieve increased crop productivity, yields and cropping intensities. The expanded use of quality seed in conjunction with other inputs such as water and fercilizer, is essential to the progressive intensification of agriculture. The production and utilization of quality seed are still limited in many developing countries due to inadequate technical knowhow. In developing countries, increased foodgrain crop production is the main issue, as the food supply will have to be increased annually to keep pace with population growth and to meet the demand for food. However, in most developing countries the increases have been well below this level in recent years.

Provisional seed status review made in (Barton, 1967) covering ninety seven countries indicated that more than 90 percent of the seventy three developing countries studied would need to develop or strengthen their seed production and supply system. In 1975 FAO published a Monograph on cereal seed technologies. Seed is a living thing. It is subject to genetic and other transformation and death. Therefore, the maintenance of genetic characters and physical quality demands well-defined procedures and control breeding to farm delivery. Quality seed is a product of specialised farming. The subject matter covered may be divided into ten broad divisions such as variety evaluation, variety release, seed production, seed processing, seed storage, seed marketing, seed testing, seed certification, seed legislation and extension. Barton (1961) has listed as many as 708 references on storage investigations, plus hundreds of others on such topics as humidity, storage temperature, drying requirements and factors affecting germination, viability and vigour. Investigations on the maintenance of seed viability during storage have ranged from the time the seed reaches physiological maturity until it is planted including the following stages:

- in the field before harvest,
- between harvesting and processing,
- after processing until despatch
- in transit,
- in retail distribution points, and
- on the users premises.

2.5.2 Foodgrains Loss During Storing

A few studies carried out earlier on foodgrain storage loss at farmers level, traders level and Government warehouses are reviewed briefly in the following paragraphs.

1. Loss at Farmers Level

Farmers identified proper drying as the most important measure for maintaining grain quality both for long and short term storage. For long-term storage two stages of drying have been mentioned. First, grain must be well-dried before storage and second, if grains absorb moisture from ambient atmosphere, they are dried again. Use of pesticides by the farmers to prevent infestation in stored grains is not common. Savin and Phostoxin are generally used as pesticides by the farmers to prevent infestation.

FAO conducted a post-harvest crops loss on rice in Bangladesh during the year 1982-84 (FAO, 1984). The findings reveal that storage loss of Aus and Aman crops during 1983 stood at 2.3% and 0.30% respectively. In the following year 1984, storage loss of Boro and Aus crops was 1.2% and 0.3% respectively indicating that storage loss of foodgrain varies from year to year and by crops. ARDICOL (1988) reported that for a satisfactory storage, grains should be properly dried and cleaned and kept free from infestation, bad odour and foreign materials to maintain their quality. According to them, the combination of these four measures are required to maintain quality of grain.

At farmers level, rat damage and insect infestation were identified as the major problems for maintaining grain quality in the store. The FAO (1984) study indicated that the farmers were more concerned with rat infestation in the store. The stored paddy in bamboo made Dole or Gola could not give protection against rat damage. Milled rice had less exposure to rat attack as they were generally stored in Motka. However, loss estimate in the storage due to rats (rodents) was not available as reliable loss estimation procedure was not known.

In the bamboo made Dole and Gola, insect infestation was common, but the farmers did not consider it as an acute problem. The FAO (1984) stated that not more than 1% grains were lost due to insect infestation in the stores. The milled rice stored in Motka sometimes also got insect infestation. The Motka is protected against the insect, if the lid is closed and plastered with mud. Still the grains may have infestation in it if they were already contaminated during drying and milling of parboiled paddy.

2. Loss at Traders Level

At traders level, rat damage appears to be the major cause of foodgrain loss which accounts for 36% of the total storage loss. Damage by rain (18.19%) as well as for damp (16.53%) due to poor physical condition of the storage appears to be equally significant causes which together accounts for 34.72% of total foodgrain storage loss (ARDICOL, 1968).

ARDICOL (1988) reported that the storage structures with the private trade are of three types such as KUTCHA, SEMI-PUCCA and PUCCA. Kutcha structures have beaten earth floor, bamboo/CI sheet walls and CI sheet roofs; semi-pucca structures have cemented floor, CI sheet/cemented walls and CI sheet roofs, while pucca structures have cemented floor, cemented walls and concrete roofs. In the primary markets the structures are mostly kutcha while in assembly and terminal markets they are semi-pucca or pucca. Even in the wholesale market of Dhaka city some of the structures have Kutcha floor. They are subjected to rat infestation and leakage of rain water. In the wholesale market of Dhaka city about 50% of the assemblage are kept on the road/open space on bamboo dunnage.

ARDICOL (1988) made a study on shelf-life of food grains with respect to harvest time. They observed that the shelf-life of foodgrains depends on post-harvest quality control measures, the type of storage used and storage practices adopted by farmers. In Bangladesh different rice crops are harvested at different time of the year and so the shelf-life of foodgrain also depends on the weather condition at harvest time as well as post-harvest period when the grains are stored. This implies that the storage period and the shelf-life also depend on the cropping pattern and harvest season. BRRI (1985) stated that in simulated village level storage system, the moisture content in paddy had a tendency to decrease in the storage period from January to March. It also depicted that the moisture content of stored paddy increased from April to September. During December to March the temperature and humidity remain low. During this period the stored paddy has no chance to absorb moisture from atmosphere if they are stored at safe moisture content (less than 14%). The wet season starts in the country from May and continues upto September. During this wet season both the temperature and humidity in the atmosphere are high. In such condition stored paddy alsorbs moisture even if they are stored at safe moisture content. The high moisture content in the stored paddy makes them susceptible to insect and mould infestation. The FAO (1985) observed that the most common insects in the store were rice weevil (Sitophiles Oryzea L.), grain borer (Rhizophus dominica F.), grain beetle (Tribolium castemium H.) and grain moth (Sitotrogra cerealella 0.).

3. Loss at Government Warehouses

EUREKA Report (1986) explained the causes of storage loss i Public Sector Warehouses. According to them there are three mai causes of storage losses, namely grain quality, godown conditio and management standard. All these three factors are interactiv in character. Storage loss varies with type of construction o godowns. Construction has been divided into two types: Pucca an Semi-pucca. A pucca has the floor, wall and roof of cemen construction while semi-pucca means pucca floors and walls with th roof made of other materials than cement construction. Storage los for semi-pucca godown (0.59%) is more than the pucca (0.54%) one

During their field survey ARDICOL carried out physical inspections in 16 LSDs, 2 CSDs and one Silo as per set questionnaire to identify packing, stacking and handling procedures that were followed. As per set rule at the time of receiving foodgrains the godown in-charge is to observe the following procedures:

- The quality needs to be checked by piping to identify whether a particular bag contains wet pockets or grains mixed with abnormal foreign matters. Bags containing wet grains or abnormal foreign matters are to be kept separately for reconditioning.
- 100 percent of the bags are to be weighed.
- Torned or damaged bags are to be stitched or patched up.
- Water soaked or water damaged bags or bags contaminated with chemicals are to be separated for reconditioning/ inspection by the Technical Inspector.
- During stacking in the godown standard stacking pattern is to be followed and enough spaces between the walls and the grain stacks are to be ensured.
- Dunnages should be cleaned and treated with insecticides before and after use.

According to ARDICOL in many instances the procedures as enumerated above were not strictly followed. In case of silo standard bagging and meaningful weighment were carried out to ascertain the actual quantity of foodgrain received/despatched. In case of LSDs although tally sheet was maintained for 100% weighment, but in practice such weighment did not reflect the actual quantity received/despatched. In case of LSD, 60% of the godown in-charge recorded the weighment figures declared by the scaleman appointed by the handling contractor without physically verifying the weight as indicated in the dial of the scale. As a result, the transit loss as recorded by the godown in-charge did not reflect the actual loss. In almost all cases godown in-charge recorded transit shortage as a matter of course within allowable limit.

Directorate General of Food has given the following allowances for storage loss in CSDs and LSDs and no allowance for silo as presented in Table 2.5.

Commodity	Period	Permissible Limit
Rice	: Upto 6 months	0.5%
	: Upto 12 months	0.75%
	: + For additional 3 months	5 + 0.25%
Wheat	: Upto 6 months	0.5%
	: Upto 12 months	0.75%
	: + For additional 3 months	+ 0.25%
Paddy	: Upto 6 months	·
	: Upto 12 months	0.50%
	: + For additional 3 months	1.00%

Bangladesh Second Foodgrain Storage Project (1978): World Bank document embarked upon the reorganisation of procurement and storage system of foodgrain in Bangladesh. In the document it was observed that in addition to sub-standard nature of storage facilities in some localities of Bangladesh were favourable to rapid growth of insect and fungus. For control of storage loss, recommendations were focused on equipment, inspection, testing laboratory and pest control. Estimated storage loss of paddy for difference of moisture content, as found in the study is presented in 'Table 2.6.

Bangladesh Project Management Institute (BPMI) conducted a study during 1982-83 on Foodgrain Stock Management and Inventory Control System with special reference to spoiled stock and inventory control. The study highlighted the quantum of transit and storage loss in details. Storage Loss at LSD's was highest followed by CSD. In 3 years average from 1978-79 to 1980-81, storage loss for LSD was 2.84%, for CSD it was 0.51%, for TPC it was 0.41% and for silo it was 0.0018%.

Table 2.6	: Estimated of Moistur	Storage Lo e Content	oss of Paddy f	or difference
Facility	Storage p	eriod	Weighted average	Monthly
	DecMay	June-Oct.	(6 months)	percentage
a. <u>For 13% M</u>	oisture Cont	ent in Ama	n Paddy:	
1. Private Sector Storage.	4.5%	9.0%	6.0%	1.0%
2. Hired/dil	apidated			
tin Sheds	4.0%	6.5%	4.8%	0.8%
3. Dhaka godi	own 2.5%	4.0%	3.0%	0.5%
4. Dhaka with effective	n 1.0% management.	1.5%	1.15%	0.2%
b. For 17% Mc	oisture cont	ent in Bor	o Paddy:	
Facility	Storage p	eric] 	Weighted average (6 months)	Monthly percentage
1. Dhaka godo	wn NA	B.0%		1.33%
effective	management.		-	
Source : Worl	d Bank 1978			

Qualitative Loss: From various studies basic causes for qualitative losses have been identified by Eureka Bangladesh Ltd. in 1986 as follows:

- i. Excessive moisture content.
- ii. Admixture of inferior varieties.
- iii. Foreign matter, and
- iv. Damaged grains.

Quality Loss due to Moisture: Eureka (1986) observed that both the qualitative as well as partly quantitative loss of foodgrains occured mainly due to difference of moisture contents. Results of their observation have been reproduced in Table 2.7.

Eureka (1986) further stated that the higher moisture content in the foodgrain had direct bearing on the rate of insect infestation and fungal growth in the stored foodgrains. According to their godown survey, in 11% cases, qualitative loss had been reported to be due to fungus and in 48% cases due to difference in moisture content. Due to longer stay in the storage and excess moisture content the quality of foodgrain deteriorates and in many cases grains become unfit for human consumption. Some percentage of such stock is sold in the open market through auction, some destroyed and the rest retained.

34

Foodgrain		percentage differe content	
	14%	¦ 15%	¦ Total
Paddy	1.30	0.44	0.53
Rice	0.72	0.46	0.72
Wheat	0.37	0.47	0.46
Overall	0.73	0.47	0.57

Shortage in godown storage is defined as the difference in weight of foodgrain despatched for different off-takes from the weight recorded in the godown at the time of receipt. In the study report of Eureka (1986), storage loss has been computed as shortage in storage as percentage of quantity received during the reference year May, 1984 to April, 1985. Primary data on storage loss was collected in two stages: first, under the main survey and second, under a review survey. The main survey was conducted over 34 godowns consisting of 2 silos, 4 CSDs, 26 LSDs and 2 TPCs. The above study revealed the overall storage loss as 0.50%. Storage loss was highest in LSD (0.63%) followed by CSD (0.58%) and TPC (0.28%). No storage loss was observed in Silo. In respect of type of foodgrains it was highest for rice (0.55%), followed by wheat (0.53%) and paddy (0.42%).

2.6 LOSS OF FOODGRAINS DURING TRANSPORTATION

Transportation of post-harvest foodgrains is an important function of the marketing process to make foodgrains available finally to the consumers. Thus the process involves different stages called markets and various operators in the markets. Depending on the type of markets and operators and also the communication system in existence, different modes of transport are used. The extent of foodgrain loss in the course of transportation and handling is influenced by a variety of factors which are discussed briefly below.

Domestic foodgrains market originates from the 10 million farmers in Bangladesh. The marketing system of Bangladesh is fragmented and dispersed throughout the country. However, some sale of the foodgrains takes places at the farm yard. The Agricultural Marketing Department, Government of Bangladesh identifies six types of such markets. These are rural primary market, rural assembly market, secondary market, urban wholesale market, urban retail market and urban wholesale-cum-retail market. The most numerous of these are rural primary and rural secondary markets being 4950 and 2635 in numbers respectively. The urban retail and urban wholesale markets come next in numerical strength with 182 and 55 markets respectively. The secondary and urban wholesale-cum-retail markets are almost equal numerically being 41 and 40 respectively.

Rural primary markets are operated by the growers, local traders and small retailers. In the rural assembly markets sellers and buyers are generally commercial/large farmers and outside traders respectively. The Secondary markets which are entirely traders' markets are operated by commission agents, stockists/wholesalers, exporters etc. Urban wholesale markets are usually operated by commission agents. They arrange procurement of food grains from distributing traders and sale to the retailers.

Different modes of transport are in use to carry foodgrains to and from different markets. In the rural markets, the predominant modes of transport are boat, cart and head/shoulder load respectively. Together, they account for about 80 to 90 percent of traffic handled (Bangladesh Umnayan Parishad, 1984). Other modes of transport of these markets are animal back, bicycle, rickshaw van etc. The secondary and other distant markets are connected by pucca roads, highways and railways. As such other means of transport like trucks, railways etc. besides boat/launch appear more significant in these markets.

When carriage of foodgrains to and from all markets by different modes of transport are considered together, boat tops the list accounting for about 20.0 percent of all transported foodgrains (BRRI, 1987; ARDICOL, 1988); truck occupies the second position transporting about 17.0 percent; modes of transport like bullock cart, push cart and rickshaw/rickshaw vans come very close accounting for about 12.0, 10.4 and 9.0 percent respectively of the transported foodgrains. Other means like railway, motor launch, horse/pony are insignificant, the combined carriage of these being not more than 3.0 percent. Headload also accounts for about 3.0 percent. Different modes of transport are used in combination also and this accounts for as much as about 24.0 percent of all transported foodgrains.

Many other factors such as distance travelled and environmental conditions like rain, sun and humidity to which foodgrains are subjected to during the course of transportation; type and condition of bags in use, whether hooks are used in handling etc. also influence the extent of transportation of foodgrain to some extent.

2.6.1 Loss Due to Transportation

Loss of foodgrains during transportation to and from the rural primary and assembly markets is likely to be less than what it is in the case of secondary and urban wholesale markets. This is because marketing in the rural areas involves carrying of foodgrains in smaller quantities, which do not require use of hooks for handling purpose, travel of shorter distances which generally avoid long distance hazards like pilferage, exposure to rain, sun, humidity and long waiting at some point(s) of travel due to natural and social reasons.

The North-Western districts are important surplus areas of foodgrains. Surplus grains are transported to the rest of the country mostly by road and to some extent by railways. The North-Western districts are separated from Eastern part by the mighty river, Jamuna. Due to inadequate and inefficient road and ferry systems, transportation of surplus grains to the Eastern part of the country often involves delay in general and long waiting in the ferry ghats. These leave the foodgrains vulnerable to pilferage, exposure to bad weather conditions etc. In addition, transportation by railways is often slow due to the paucity of landing and warehouse facilities. The Eastern and particularly the Southern regions are criss-crossed by innumerable rivers and rivulets which become hazardous during the monsoon season and less navigable in the dry season.

2.6.2 Evidence of the Loss of Foodgrains due to Transportation

Empirical evidences regarding foodgrain loss on account of different modes of transport come in line with the indications given above. The extent of transportation loss by different modes of transport (ARDICOL) is shown in the Table 2.8.

Table 2.8	: Transit Loss of of Transport in	Foodgrains by Different Modes Private Traders Level.
Mode	Transit loss in % of total quantity carried	
Truck	0.70	Use of hooks, careless handling, poor conditions of bags resulting in splitting of bags and consequently splitting loss and evaporation of moisture.
Railway	0.51	Use of hooks, careless handling, pilferage and evaporation of moisture.
Boat	0.49	Poor condition of bags, hook damage and pilferage.
Horse	0.95	Poor condition of bags and spillage.
Launch	0.51	Pilferage, hook damage, bad conditions of the bags and careless handling.
Bullock car	t 0.18	Handling.
Rickshaw/ri Head/Should Bicycle	ckshaw van er	Negligible
Source : AR	DICOL (1988)	

It will appear from the above table that at the traders' level the loss varies from about 0.50 percent of total quantity carried by each of the means like boat, launch and railway to about 0.70 percent in the case of trucks (ARDICOL 1988). The reasons of such losses are found to be the use of hooks, careless handling, pilferage and poor condition of bags etc. in all the cases. Foodgrain loss on account of bullock cart transport comes down to 0.18 percent of the quantity carried. The loss is far more less and negligible in the cases of push cart, rickshaw, rickshaw van, head/shoulder and bicycle (Table 2.8).

EUREKA's (1986) findings provide support to the view expressed earlier that foodgrain loss would vary directly with volume of transported grains and particularly distance covered in the course of transportation. The study estimated transit loss in the course of carrying foodgrains to LSDs and CSDs, the former being more in numbers and involving shorter hauls then the latter. In the case of transportation to LSDs, the average loss of paddy, rice and wheat was 0.51 percent due to the overall mode of transport by road, truck, barge and boat. The corresponding figure of loss was 1.84 percent for the CSDs. Table 2.9 shows the percentage loss of foodgrains by mode of transport, type of commodity and godown types. EUREKA's study also highlights monthly loss to foodgrain due to transportation. The loss stands at its peak, ranging from 0.71 to 0.89 percent, during the busy months of November to February, the period of procurement of Aman and also distribution including food for works. These high rates of loss in the busy months can be compared to as low a rate of 0.40 percent or 0.51 percent in the months of June and May respectively as shown in the Table 2.10.

ype of Godown/¦ ommodity !·	Transit Loss				(in Percentage)			
	Rail	Truck	Barge	Boat ;	Cart ¦	Head	¦ Overall	
LSD	1.67	0.36	0.36	0.44			0.51	
a.Paddy	0.23	0.34	-	0.60	-	-	0.56	
b.Rice	1.72	0.46	0.49	0.44	-	-	0.41	
c.Wheat	2.33	0.42	0.36	0.41	-	-	0.41	
CSD	3.05	0.23	0.76	-	-	-	1.84	
a.Paddy	0.47	0.12		-	-	-	0.30	
b.Rice	2.66	2.30	0.76	-	-	-	2.01	
c.Wheat	3.20	2.30	0.75	-	-	-	2,36	
SILO	0.58	-	-	-	-	-	0.58	
a.Paddy	-	-	-	-	-	-		
b.Rice	-	-	-	-	-	_	-	
c.Wheat	0.58	-	-	-	-	-	-	
TPC	0.60	_	-	-	0.40	0.10	0.56	
a.Paddy		-	-	-	0.15	0.01	0.08	
b.Rice	0.56	-	-	-	-		0.56	
c.Wheat	0.63	-	-	-	0.25	-	0.60	
DVERALL	1.30	0.52	0.41	0.44	0.40	0.01	0.87	
a.Paddy	0.47	0.22		0.60	0.15	0.01	0.31	
o.Rice	0.17	0.56	0.45	0.44	-		1.00	
c.Wheat	1.50	0.59	0.36	0.31	0.25	-	0.99	

Table 2.9 : Percentage Loss of Foodgrains by Mode of Transport, Type of Commodity and Godown Types

Source : Eureka 1986

Table 2.10 : Monthly Transport Loss of Foodgrains by Mode of Transport.

Months		Transpo	ort Loss (x) by M	ode of Tra	ansport	
	Train	Truck ;	Barge ¦	Boat	Cart	Head	{ Overall
May, 1984	0.64	0.50	0.41	0.16			0.51
June, 1984	0.61	0.36	0.58	0.36	-	-	0.31
July, 1984	0.78	0.90	0.57	0.49	-	-	0.73
August, 1984	1.39	0.78	0.63	0.45	-	-	0.84
September, 1984	0.70	0.65	0.70	0.37	-	-	0.59
October, 1984	0.63	0.48	0.23	0.27	1.60	-	0.53
November, 1984	1.12	0.73	0.14	0.20	_	0.01	0.71
December, 1984	1.65	0.55	0.47	0.25	-	-	0.76
January, 1985	1.84	0.59	0.29	0.37	-	-	0.89
February, 1985	1.72	0.42	0.33	0.29	1.10	-	0,73
March, 1985	1.25	0.37	0.35	0.42	-	-	0.59
April, 1985	0.88	0.50	0.75	0.28	-	-	0.54
Yearly Average	1.30	0.52	0.41	0.45	0.17	0.01	0.87

Source : Eureka 1986

2.7 MARKETING OF FOODGRAIN IN BANGLADESH

Marketing is the process through which the produced good is brought from the producer to the consumer. This process is considerably important for both agricultural producers as well as for overall economic development. On the one hand, market sale of produce is a major, if not the only, source of income of the farmers. On the other hand, the pace of industrial development is at least partly dependent on the market supply of foodgrains via the latter's effect on wages. Most agricultural commodities are easily perishable and this leads to varying degrees of wastage for different products in the marketing process. This underlies the need for quick and smooth marketing of agricultural products.

2.7.1. Need for Foodgrain Marketing

Marketing involves distribution of foodgrain to the consumers. It is, in the words of Richard L.Kohls, "the performance of all business activities involved in the flow of goods and services from the point of initial agricultural production until they are in the hands of the ultimate consumer". The importance of foodgrain marketing derives from the fact that it increases consumers utility and also leads to an increase in the consumption of agricultural products. Marketing can be viewed as a mechanism for fixing prices. While there is a stable demand for foodgrains since these are edibles, the supplies are irregular due to the seasonal nature of production. Supply is adjusted to demand through marketing, with price being the adjustment factor. The middleman plays a crucial role in this adjustment process. It is he who collects a multitude of products from many producers and disperses these to many consumers. He also decides what prices are necessary in order to adjust demand to supply for obtaining maximum benefit.

Several important services must be performed before the producers and the consumers of foodgrains can be brought together. <u>First</u>, the foodgrains must be collected from the farms and assembled in bulk. <u>Second</u>, the heterogeneous output has to be sorted into grades. This stage involves sorting the produce into different lots, each with substantially the same characteristics with respect to market quality, and each having its own label or name. Different consumers have different tastes and the objective of grading is to satisfy different consumer preferences. <u>Third</u>, the foodgrain is often processed before being passed on to the consumer. Processing adds to utility of the product. <u>Fourth</u>, there is the important stage of storage. Foodgrain production is irregular, and hence there is the need for storage to even stop supplies and thereby stabilize prices at certain arbitrory level. <u>Fifth</u>, the foodgrain must be transported from the place of assembly to that of final sale. Transportation is a major cost of marketing and hence there is the need for cost effective transportation. Finally, the foodgrain must be sold to the consumers. This stage also involves storage since consumers generally do not buy in large quantity in advance but only just before consumption.

2.7.2 Organisation of Foodgrain Marketing in Bangladesh

There are two distinct channels of grain marketing in Bangladesh, viz., (i) Private Sector, and (ii) Public Sector operated by the Government. Private Sector marketing is operated under a free enterprise system with some government controls. The private sector handles about 80-85% of the country's trade in foodgrains. The public sector mainly markets imported foodgrains, and to some extent grains purchased from growers under government procurement programmes. Imported supplies are stored in central storage units, later distributed to government godowns, and finally sold to consumers through ration shops operated by commission agents. The government also makes open market sales from time to time in order to stabilize prices.

The private sector grain marketing system in Bangladesh is more complex. The markets can be classified into 3 groups: (i) Primary or Village Market; (ii) Secondary or City Market; (iii) Terminal or Post Market. The village market or 'hat' serves as market for buyers and sellers residing within 5-25 sq. miles. Each 'hat' generally meets once or twice a week and serves as a major marketing outlet in the rural area. These markets are characterised by the operation of functionaries who buy here and supply the nearest city market. There are approximately 6,500 primary markets in Bangladesh.

The secondary market is basicelly a wholesale market. Agricultural produce of the surrounding 20-25 sq. miles is collected and distributed from these markets. A secondary market generally operates 6 days a week. The lion's share of foodgrain trade takes place in these markets. There are about 450 secondary markets in Bangladesh.

A terminal market serves as the assembly and redistribution point for both primary and secondary markets. There are 4 major terminal markets serving the major urban centres.

2.7.3 Methods of Marketing Foodgrains in Bangladesh

All farmers produce but only about a quarter of farmers sell paddy. A study by BRRI (1987) shows that sale varies from 119.40 Kg per farm per sale in June to a low of 44.77 Kg in October. Sales are mostly in the form of paddy with a very limited sale of rice (i.e. processed paddy). The farmers either (i) sell directly from the field, or (ii) sell in the nearest `hat', and sometimes (iii) sell at the nearest government procurement centre. In the 1970s about a quarter of total sales were made directly from the field. Improvement in transportation facilities has brought down the proportion of direct field sales by farmers in recent times to about 15% of total sales. Prices are generally 10% lower for sales at the farm, but the farmer saves on transportation and storage costs. Sale at the local market is the dominant method of marketing.

A number of functionaries operate in the grain marketing system in Bangladesh. 'Farias' are generally full-time local traders who handle only small volumes of trade. 'Kutials' purchase paddy directly from farmers or from local 'hats'. They either process the paddy by 'Dheki' at home or at local husking mills and sell the milled rice in primary markets or at retail. 'Beparis' are full-time traders who handle large volumes of trade. 'Dalals' perform the useful role of bringing the buyers and sellers together. They normally charge a fixed brokerage fee. 'Arathdars' buy and sell in large volumes; they also provide storage facilities. They charge fixed fees and commissions. Wholesalers purchase in large volumes from 'Arathdars', hold it temporarily in storage and then sell to local retailers at a profit. They operate in major markets. 'Paikars' purchase their supplies from 'Arathdars' and wholesalens and sell at retail.

Paddy is assembled for sale in local `hats' by farmers, `farias' and `beparis' who have purchased the paddy from the farms. This paddy is then transported to the secondary market or sold for local consumption by `kutials'. The paddy assembled in the secondary market is generally sold to rice millers and some portion to `kutials. The processed rice is then sold to `beparis' or `Arathdars. The latter store the rice and sell to `paikars' who retail the rice. In Bangladesh farmer actually received from 71 to 80 percent of the amount the consumer paid for foodgrains. The rest goes to the process mentioned. The proportion is considered as highest in the world. The equivalent rate for Thailand is 60-65% and for USA 50% (Islam, et.al. 1981).

2.7.4 Foodgrain Loss in the Marketing Process

Two major weaknesses of foodgrain marketing in Bangladesh are unsatisfactory and inadequate storage and transportation facilities which are also the major causes of grain loss in the marketing process. Inadequacy of storage facilities compels the farmers to use gunny bags, 'dole' or large bamboo baskets, and big earthen pots for storing grain. Better storage facilities are available in secondary markets. Modes of transportation used are generally slow. Boat is the major mode of transport used in this riverine country. Bullock carts, push carts and rickshaws are also widely used. Attack by pests and humidity are two major causes of foodgrain loss during storage. In a study by ARDICOL (1988) it was found that damage by rats was the major cause of foodgrain loss during storage and accounted for 36% of total storage loss of foodgrain at traders level. Unsatisfactory condition of storage often allows rain water to seep in and this is also an important cause of foodgrain loss, particularly for the Boro and Aus crops. The dampness resulting from rains and high humidity also causes damage to stored foodgrains. In the ARDICOL (1988) study, it was found that damage by rain and dampness accounted for 18% and 16% respectively of total storage loss.

Since three rice crops (Aus, Aman & Boro) are harvested in Bangladesh in different months of the year, the need for storage for a long period is reduced. Furthermore, government restriction on the period of foodgrain storage upto a maximum of 20 days in between purchase and sale and 7 days in a particular place has also helped to reduce storage loss.

The study by ARDICOL <u>op.cit.</u> shows that average storage, handling and transit loss ranges between 0.32% to 0.87% in case of LSD and between 0.66 to 1.23% for CSD. The Food Ministry's estimate of loss for these operations is 2.78%.

Chapter III METHODOLOGY

3. METHODOLOGY

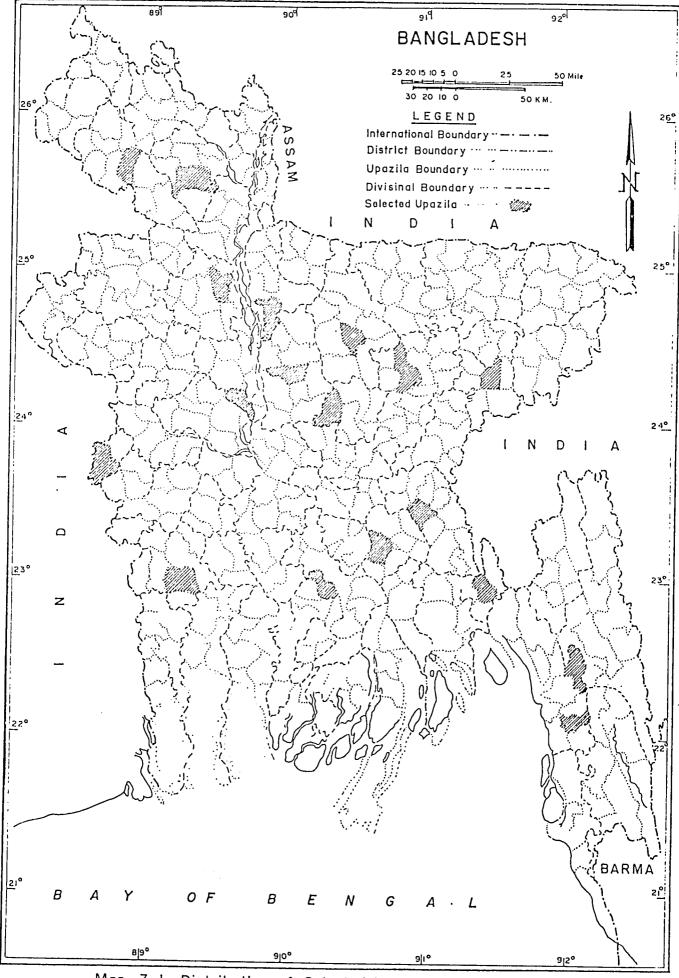
For estimating the post - harvest losses of foodgrains in Bangladesh, both local and modern varieties of Aus, Aman, Boro and Wheat crops were studied. In the light of the objectives as outlined in the TOR and approved by the Functional Committee questionnaires were prepared (Appendix 3.1). Sampling at three stages was done to cover the total aspects of the survey. The country was divided into 8 broad-based Agro-Ecological Zones (AEZ). About 4 percent of the Upazila from the 8 AEZ and about 2 percent of villages from each Upazila were selected. From each of the selected villages, 7.5 percent of the households i.e. a total of 1175 households were selected for survey of all the foodgrain crops under study. The sampling was random. Sample distribution is shown in Figure 3.1. For the estimation of loss of foodgrains in marketing process at farmers level, the above mentioned procedures (Upazila - Village- Households) were followed. Regarding loss of foodgrains in the private traders godown, about 5 per cent randomly selected godowns from the list of all godowns in 18 Upazilas were selected for survey. For Livestock and Poultry Feed estimate, 10 per cent of Cattle and Poultry farms were selected for survey. Data were collected by the trained Enumerators.

3.1 SELECTION OF AGRO-ECOLOGICAL ZONES

It is recognized that there are regional variations in cultural practices associated with farming system affecting the use of seed and feed as well as in the post-harvest operations in different geographical regions of Bangladesh. To select the food grain production areas, identical features with respect to yield and cropping pattern, the country was originally divided into nine broad Agro-Ecological Zones (AEZ). to represent the Agro-Socio-Economic characteristics of foodgrain production and regional differences in the cultural practices associated with post-harvest operations. The Agro-Ecological Zone of Chittagong Hill Tracts could not be considered due to problems of transportation and communication in the interior where farm families were to be surveyed. Therefore, the Hill Tract Zone was dropped from the survey and only 8 AEZ were surveyed.

Recognizing the importance of modern varieties of Paddy on the growth of foodgrains production particularly in the coming years, more emphasis was accorded to this variety in selecting sample upazilas. Accordingly, Agro-Ecological Zones (AEZ) were ranked based on the area of modern variety as a proportion to total area under Paddy cultivation during 1982-83 to 1987-88 cropping years. Average ratio of the area under modern varieties and total area under Paddy in respect of each AEZ was then divided by the national average ratio (of area under modern varieties and the total area under paddy cultivation) to obtain the weight. The weight was then multiplied by the number (equivalent to 4% of the total upazila under each AEZ) to get the selected number of upazila under each AEZ. It was intended that the AEZ with higher concentration of modern variety would have its due share in the selection of Upazilas.

3.2 SELECTION OF UPAZILA

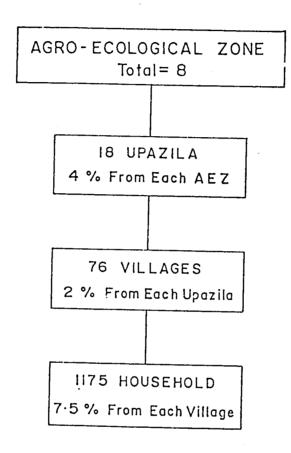

About 4 per cent of the total number of Upazilas from each AEZ was taken for the survey i.e. a total of 18 Upazilas. After ranking, Upazilas were selected by applying the statistical method of probability proportional to sample size (PPS). The total area of Paddy and Wheat for 1982/83 has been used as weight. Upazila-wise crop acreage for subsequent years were not available. This double weightage enables better representation of AEZ in the sample. A list of selected upazilas is shown in Table 3.1 and distribution of the selected Upazilas in the study area is presented in Map 3.1.

3.3 SELECTION OF VILLAGE

Villages from the selected upazilas were randomly selected. The list of villages within each Upazila was collected from the Bureau of Statistics (vide Bangladesh Population Census, 1981). From the list, a total of 76 villages were selected, representing 2 per cent of all villages in the respective selected upazilas. In case, a selected village was not traceable, a neighboring village was taken as a replacement.

Villages selected from each Upazila remained unclanged except for Chandpur and Gournadi Upazilas. In Chandpur, the selected village Mirzapur under the Union Hanarchar Paschim could not be located since it had already been engulfed by the river Meghna. The Enumerator, in collaboration with the Upazila Chairman andUpazila Agriculture Officer, selected the Village Makinpur under Baghadi Union. The reason for changing the village was different in Gournadi. The two selected villages of Kathvia under Gaila Union and Chhayagram under Ratnapur Union were politically separated from Gournadi Upazila and made them as parts of the newly formed (1985) Agailjhara Upazila. The Enumerator selected two other villages, namely Basudevpur of Batazor Union and Ashukati of Mahilara Union of Gournadi Upazila. This was done in consultation with the local Upazila officials.

List and name of the selected villages are presented in Appendix 3.2.



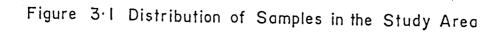

5		、 -	, ·	
Total			cted No**	Names of Selected
opazitas	Iactor	1	Weighted	Upazilas
40	2.07	1.60	3.31	Rangunia Satkania Feni
45	1.41	1.80	2.54	Trishal Kishoregonj Sarishabari
49	1.11	1.96	2.18	Kaliakoir Kalihati
63	1.07	2.52	2.70	Chandina Chandpur Habiganj
66	0.96	2.64	2.53	Gabtali Shahzadpur
58	0.78	2.32	1.81	Mithapukur Chirirbandar
59	0.70	2.36	1.65	Monirampur Meherpur
66	0.41	2.64	1.08	Gournadi
446	1	.8.40	17.80 say, 18	
	Total Upazilas 40 45 49 63 66 58 59 66	Total Upizilas Weight* factor 40 2.07 45 1.41 49 1.11 63 1.07 66 0.96 58 0.78 59 0.70 66 0.41	Total Upizilas Weight* factor Sele (e 40 2.07 1.60 45 1.41 1.80 49 1.11 1.96 63 1.07 2.52 66 0.96 2.64 58 0.78 2.32 59 0.70 2.36 66 0.41 2.64	Upazilas factor Gate of the second field of t

Table 3.1: Number and the name of selected Upazilas in different Agro-Ecological Zones (AEZ).

* Weight is the ratio of the area under modern variety to the total area under paddy in each AEZ as proportion to the ratio of the national average (area under modern variety divided by area under paddy of five years average).

** Selected number of upazila in each AEZ (weighted) is the product of weight by number (equivalent to 4 percent of the upazila of each AEZ).

3.4 SELECTION OF HOUSEHOLD

A census of the households of each selected village was done on the spot to identify the total number of households and head of the family. From the census, about 7.5 percent of the total households were randomly selected for interview. The selection procedure was as follows:

Suppose, a list contains names of n household heads. When n was a 2-digit number then a 3-digit random number from the random table was used. When n was a 3-digit number, then a 4-digit random number was used and so on. The selected number from the random table was divided by the n when the random number was greater than n. The remainder of the division was used as the selected number. When the random number was divisible by n then n was selected as the sample number. When a random number was less than n, the household was selected using the serial number equal to the random number i.e. nth household. No household was selected for more than once.

3.5 SELECTION OF SAMPLE MARKETS

For estimation of the foodgrain loss in marketing at farmers level, the same three steps (upazila -village - households) sampling plan was used as follows :

Fifty four primary markets in and around the sampled villages were selected for interview of 5 percent of the traders to estimate loss of foodgrain at the primary market level. A list of the primary market surveyed is presented in Appendix 3.3.

One important secondary market was chosen at random from each selected upazila. There were 18 such secondary markets which formed approximately 3 per cent of all secondary markets in Bangladesh. From each secondary market, 5 per cent of traders were randomly selected. The list of Secondary Markets surveyed is presented in Appendix - 3.4.

Besides primary and secondary markets, big consumer (Terminal) markets, such as, Badamtali, Dhaka and Krishi market in Mohammadpur, Dhaka were taken up for assessing market losses at wholesale and retail outlets. Five percent Arathdar/Wholesalers and 2 per cent retail dealers were interviewed. Data were collected from selected traders using specified questionnaire. List of selected big markets is presented in Appendix - 3.5.

3.6 Estimation of PHL

PHL of foodgrain is a function of the following variables :

PHL = f(S+C+T+B+BT+PT+OT+W+D+WR)

Where

PHL = Post-Hervest Loss

• •

S C T	= Ca = Th	ock Loss (Stacking in the field and farm yards) rrying loss (from fields to farm yards) reshing by hitting on a hard surface
В	= Th	reshing with bullock after hitting
BT	= Th	reshing by bullock
\mathbf{PT}	= Pac	ddle threshing
ОТ	= Ot	her threshing loss i.e. beating or flailing on the op with a stick
W		nowing and cleaning loss
D	= Dry	ying loss
WR		l weather loss

3.7 ESTIMATION OF STORAGE LOSS

Storage loss in the private traders godowns was estimated from 5 per cent randomly selected godowns from the list of all godowns in 18 selected Upazilas. List of godowns was available with the Upazila Food Officers. List of selected godowns is presented in Appendix 3.6.

3.8 SELECTION OF MILLER

For estimating loss at miller's level on storing, soaking, parboiling and husking, 5 per cent of rice mills/husking mills in each upazila were selected at random. The list of the Rice Mills/Wheat Crushers at upazila level was available from the Food Offices. A List of selected Godowns, Rice Mills/Wheat crushers is presented in Appendix 3.7.

3.9 SELECTION OF POULTRY AND LIVESTOCK FARMS AND FEED MILLS

To estimate livestock and poultry feed, 10 per cent cattle and poultry farms in Bangladesh, including the Government Cattle farm at Savar, were interviewed. The Department of Livestock Services provided the list of Poultry and Cattle Farm in the country. A List of Poultry and Cattle Farms surveyed is presented in Appendix – 3.8. For estimation of foodgrain use in the Government and private feed mills, 20 percent of the important feed mills of the country were selected for the survey. A list of the important feed mills is presented in Appendix – 3.9. The trained Enumerators collected data from Managers and feed mill operators through direct interview using the questionnaire (Appendix 3.1d).

3.10 CASE STUDY

A Case Study on the estimation of foodgrains loss due to field stacking, carrying and threshing was conducted in all the Upazila surveyed. For details of the methodology please see Appendix 3.10.

A case study on the loss of foodgrains due to storing was also done. The enumerators collected small samples (one kg each) of the stored grains to assess qualitative loss through laboratory test. The test was done to determine the storage quality of grains for consumption and germination of seeds under different methods of storage. For details of the methodology please see Appendix 3.11.

3.11 TRAINING OF THE FIELD ENUMERATORS

Seven days training in November, 1989 was imparted to enumerators covering the following aspects:

- a) Technique of random sampling.
- b) Procedures of approaching the respondents (farmers) and the technique of obtaining required information from them.
- c) Various problems and solutions for recording data in different formats of the questionnaires.

3.12 PRE-TEST OF THE QUESTIONNAIRE

To verify whether the questionnaires need modification and to provide scope for practical training to the Enumerators for correct data collection, a pre-test was carried out. All the members of the Study (Consultants, Supervisors, Enumerators) including a representative from FPMU, Ministry of Food, participated in the pre-testing of questionnaire in Kalampur of Dhamrai Upazila in December, 1989. On the experiences gained from pre-test, the questionnaires were duly modified.

3.13 FIELD SURVEY

The cropping seasons were divided into 3 phases for data collection according to the cropping pattern in the country (Figure 3.2). Field survey was conducted during harvesting of respective crops as follows:

- 1st phase December, 1989 January, 1990 for collection of data on Aman Crop. At this stage, data on post-harvest operations were collected. 2nd phase - April-June, 1990 for collection of post-harvest data on Boro and Wheat and storage, marketing
- and milling losses of Aman crop. 3rd phase - July-September, 1990 for collection of data on Aus and collection of storage, milling and marketing loss of Boro, Wheat and Aus crop.

3.14 DATA COLLECTION

After random selection of households from the census list, the enumerators visited the selected households from door to door for direct interview. The respondents were the head of the households but in case the household head was not available, immediate alternate respondent was his wife or his eldest son. When alternate respondent was not available, a substitute household was taken. Enumerators were instructed to select at random, some extra households in advance. From the extra households, the substitute household was taken in serial order.

The enumerators collected data on direct interview from farmers, private traders, rice mill operators and cattle and poultry farm managers based on the questionnaires. Surveys were conducted during harvest of each of the four crops. The load of work was almost equally heavy each time, since the enumerators had to collect (i) information on the harvesting operations of the current crop and (ii) the information on storage and marketing of the immediately preceding crop of the study. This procedure of survey ensured quality of data since those were collected as the events had just occurred or memories of the respondents were still fresh.

3.15 CHECKING OF THE DATA

After data collection in the field, the filled-in questionnaires were checked by another group of enumerators and Consultant at the Head Office. This group checked for correction of entries recorded by the primary investigators rechecked when necessary before the questionnaires were passed on to the tabulation group.

3.16 TABULATION

Household was the ultimate sample unit for the Study and individual questionnaire was used for such unit. For identification of respective household, code numbers were used for different administrative units, such as region, upazila, village and household(s). Data were computed using numeric symbol.

3.17 DATA INPUT TO THE COMPUTER AND CHECKING

UNICONSULT adopted a procedure of simultaneous data collection, tabulation and computation. Collected data from the field were sent to Computer Section for checking, tabulation and computation. Tabulated data were then rechecked by a group comprised of the System Analyst, the Statistician and the Field Supervisors.

3.18 ANALYSIS OF DATA

Estimates of region and upazila totals, averages and ratios of important parameters have been calculated using appropriate formula for three stage stratified sampling design.

SEED BED ...

••••

MAIN FIELD ...

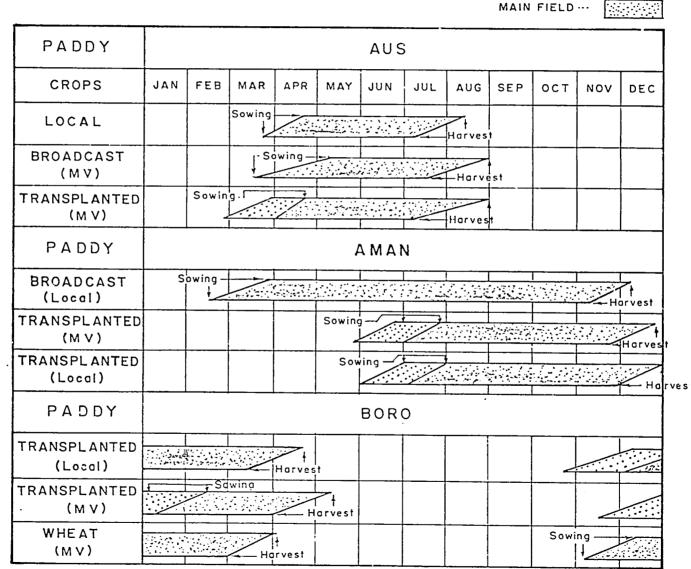


Fig. 3.2 Crop Calender of Bangladesh(Foodgrains)

3.19 WEATHER CONDITION

Weather condition, in general during 1989-90 was favorable for foodgrain production in Bangladesh. Total rainfall during the year was 2072 mm compare to 2047 mm of 1988-89 and 2442 mm of the average rainfall of last ten years. Rainfall during 1989-90 is presented in Table 3.2.

During Aus crop production drought at seedling stage affected the crop to some extent. Rainfall was adequate during vegetative phase. In July excessive rainfall and flash flood in parts of Sylhet and Chittagong caused damage to the crop. In general the weather condition was favorable for the crop.

Weather during Aman crop production was favorable. However, B. Aman suffered due to drought at seedling stage. During T. Aman production a few norwesters in different parts of the country at flowering hamper pollination and cause damage to the crop to some extent.

During Boro production weather condition was also favorable. However, in Jessore and Rangpur drought affected adversely the sowing of modern variety. In Kishoregonj local Boro suffered some damage due to high temperature during pollination and heavy rain at harvest.

During wheat growing season, crop sowing was affected adversely due to untimely rain in Comilla. In vegetative and flowering stages the temperature was high and at maturity stage there was heavy rainfall and hailstorms in the major wheat growing districts. As a result wheat production affected to some extent.

	infall During 1989-90		(in mm.)
Month	10 years Average	1988-89	1989-90
July	537	474	526
August	429	429	134
September	304	236	289
October	186	164	237
November	35	98	0
December	09	1.5	. 03
January	03	2.0	0.1
February	15	13	50
March	42	07	121
April	111	76	133
May	265	203	245
June	506	344	334
Total	2442	2047	2072
Average	203.92		

Source : FPMU 1990.

Chapter IV

FINDINGS AND DISCUSSIONS

.

4.6 THE OVERALL PICTURE

The percentage of foodgrains used as seed, feed and loss during post-harvest operations of the sample households was 11.58. This being the weighted average of 13.20 percent loss in case of Aus, 12.38 percent loss in case of Aman, 10.38 percent loss in case of Boro and 11.81 percent loss in case of wheat. Use of foodgrains as seed relative to total production were 1.73 percent whereas use of foodgrains as feed relative to total production was 0.51 percent (Table 4.1). Post-harvest loss from field stacking to winnewing and drying was 4.14 percent. Similar result was also reported by FAO, 1986 for post-harvest loss of Aus, Aman and Boro crops. Figure 1 depicts the use of foodgrain as seed, feed and loss at different stages of its operation before consumption.

Among the post-harvest lesses, the everall loss due to field stacking was 0.01 percent, carrying from field to encoding yard was 0.74 percent, threshing loss by beating was 0.65 percent, threshing with bullock was 0.16 percent, threshing by beating followed by threshing with bullock was 0.23 percent, threshing by paddle thresher 0.15 percent and threshing by other methods such as beating by stick was 0.02 percent. Loss due to winnowing was 0.68 percent and drying was 0.54 percent. The loss due to parboiling was 1.82 percent whereas milling loss was 1.24 percent. Handling loss at farm level in coarse of weighing and putting in gummy bags/baskets for sole was 0.42 percent. Transportation loss in marketing at farmers level was 0.32 percent. Storage loss at famous level was 1.03 percent. Therefore, the total loss at famous level was 11.21 percent. Loss at traders level was 0.37 present. Regionwise distribution of percent foodgrains loss in 1980-90 is presented in Appendix 4.1. Distribution of total foodgrain loss in 1989-90 is presented in Table 4.2 and regionwise distribution of loss is presented in Appendix 4.2.

It is estimated that the total quantity of foodgrain loss in Bangladesh in 1989-90 would be around 2.12 million tons (calculated from the provisional estimate of foodgrain production of 18.33 million tons in 1989-90 of FFMU). This is equivalent to food for about 13.0 million people for one year at the rate of 453 grams/person/day (Table 4.2).

The weighted foodgrain (rice) loss due to use as seed and food, and post-barvest operations relative to the total national average production of Bangladesh during 1983-84 to 1987-88 is presented in Table 4.3. This Table indicates that the total average loss of foodgrains (rice) in Bangladesh was 17.03 percent. Among them 13.20 per cent was in case of Aus, 12.38 percent in case of Aman and 10.36 percent was in case of Boro. Regionwise distribution of weighted loss of rice is presented in Appendix 4.3. Figure 2 presents the use of foodgrain as seed, feed and different loss at different stages of the rice and wheat production. Among the regions, the minimum overall loss of the sample households was recorded in the Mymensingh/Kishoreganj/Jamalpur region (10.65%) and maximum was recorded in the Dhaka/Tangail region (13.57%). The overall loss recorded in Chittagong/Noakhali region was 10.91%, in Comilla/Sylhet region 13.02%, in Rajshahi/ Bogra/Pabna 13.01%, in Rangpur/Dinajapur 11.97%, in Jessore/Kushtia /Khulna 10.91% and in Barisal/Faridpur/Patuakhali 12.93% (Appendix 4.3).

CROPS	Total (Survey area)						
	Aus	Aman	Boro	Wheat	Total		
Area (in decimal)	84224	236163	123492	28719	472598		
Production (in kg.)			2051315	174637	5630884		
Rice equivalent (in kg.)					3697976		
Seed used % of production		1.80	0.89	5,73	1.73		
Feed as % of production	0.68	0.50	0.46	0.46	0.51		
Field Stacking Loss	0.41	1.09	0.87	0.54	0.91		
Carrying loss	1.00	0.62	0.82	0.57	0.74		
Beating loss	0.63	0.68	0.61	0.66	0.65		
Bull threshing	0.27	0.25	0.02	0.05	0.16		
Beating after threshing	0.23	0.31	0.13	0.02	0.23		
Paddle threshing	0.13	0.16	0.16	0.00	0.15		
Other threshing	0.00	0.03	0.00	0.05	0.02		
Winnowing	0.69	0.82	0.50	0.63	0,68		
Drying (birds, goats etc.)	0.68	0.43	0.65	0.48	0.54		
Bad weather	0.13	0.00	0.11	0.03	0.06		
Total post harvest loss	4.18	4.39	3.88	3.04	4.14		
Parboiling loss	0,95	2.14	1.86	0.00	1.82		
Milling loss	1.05	1.22	1.32	1.48	1.24		
Handling loss	0.45	0.49	0.32	0.46	0.42		
Transportation loss	0.23	0.38	0.26	0.34	0.32		
Storage loss	2.44	1.16	0.90	0.00	1.03		
Total loss at farm level	12.87	12.08	9.89	11.51	11.21		
Weighted traders loss	0.33	0.30	0.49	0.33	0.37		
Grand Total	13.20	12.38	10.38	11.84	11.58		

Table 4.1 : Seed, Feed and Post-harvest Loss as % of Total Production of Foodgrains of the Sample Households during 1989-90.

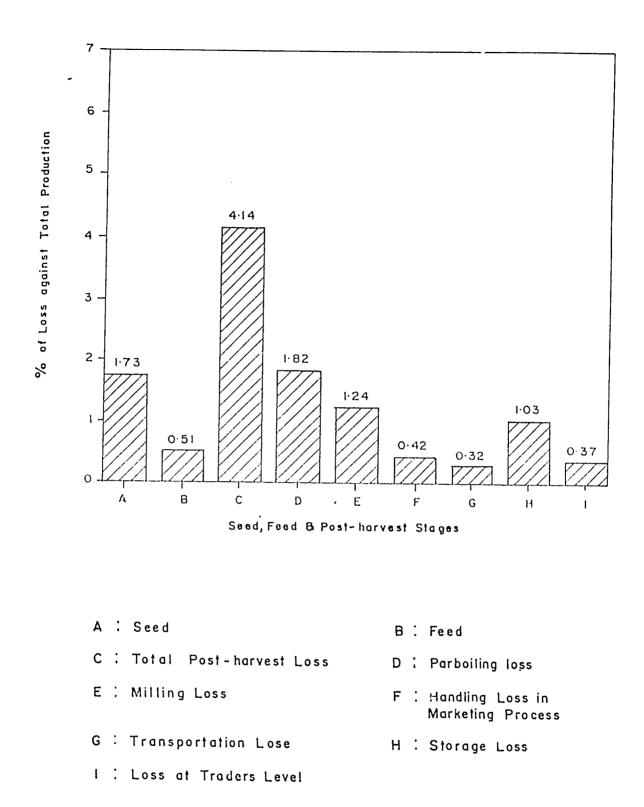


Fig 4.1 Seed, Feed and Post-harvest Loss as Percentage of Total Production of Foodgrain Crops in 1989-90

.

CROPS				Metric	Ton
	Aus	Aman			Total
Production		9202040	6166750	890000	18746320
Seed	71890	165637	54884	50997	324311
Feed	16915	46010		4094	
Field Stacking Loss	10199	100302	53651	4806	170592
Carrying loss	24875	57053	50567	5073	138723
Beating loss	15671	62574	37617	5874	121851
Bull threshing	6716	23005	1233	445	29994
Beating after threshing	5721	28526	8017	178	43117
Paddle threshing	3234	14723	9867	0	28119
Other threshing	0	2761	0	445	3749
Winnowing	17164	75457	30834	5607	127475
Drying (birds, goats etc.)	16915	39569	40084	4272	101230
Bad weather	3234	0	6783	267	11248
Total post harvest loss	103979	403970	239270	27056	776098
Parboiling loss	23632	196924	114702	 0	341183
Milling loss	26119	112265			
Handling loss		45090			
Transportation loss	5721	34968	16034	3026	59988
Storage loss	60696	106744	55501	0	192087
Total loss at farm level	320145	1111606	609892	102439	2101462
Weighted traders loss	8191	27845	30186		
Grand Total	328354	1139213	640109	105376	2170824

Table 4.2 : Estimated Seed, Feed and Post-harvest Loss of Foodgrain Crops during 1989-90 in Bangladesh.

Item Descriptions :	Aus	Aman	Boro	Total
Production (in metric tons)		8664802	3934187	14989788
Seed used % of production	2.89	1.80	0.89	1.78
Feed as % of production	0.68	0.50	0.46	0.53
Field Stacking Loss	0.41	1.09	0.87	0.90
Carrying loss	1.00			0.75
Beating loss	0.63	0.68	0.61	0.65
Bull threshing	0.27	0.25	0.02	0.19
Beating after threshing	0.23	0.31	0.13	0.25
Paddle threshing	0.13	0.16	0.16	0.15
ther threshing	0.00	0.03	0.00	0.02
linnowing	0.69	0.82	0.50	0.71
Trying (birds, goats etc.)	0.68	0.43	0.65	0.54
lad weather	0.13	0.00	0.11	0.05
otal post harvest loss		4.39	3.88	4.21
arboiling loss			1.86	
illing loss		1.22		
andling loss	0.45	0.49	0.32	0.44
ransportation loss	0.23	0.38	0.26	0.32
torage loss	2.44	1.16	0.90	1 35
otal loss at farm level	12.87	12.08	9.89	11.67
eighted traders loss	0.33	0.30	0.49	0.36
	13.20	12 38	10 38	12 03

Table 4.3: Weighted Use of Seed and Feed, Post-harvest Milling, Transportation, Storage and Marketing Losses of Rice as Percentage of production in Bangladesb (Weighted)*

* Total average rice production (1983-84 to 1987-88) was 14989788 metric tons of which 2900799 was Aus, 8664802 was Aman and 3934187 was Boro. The corresponding weight was 0.20 for Aus, 0.54 for Aman and 0.26 for Boro.

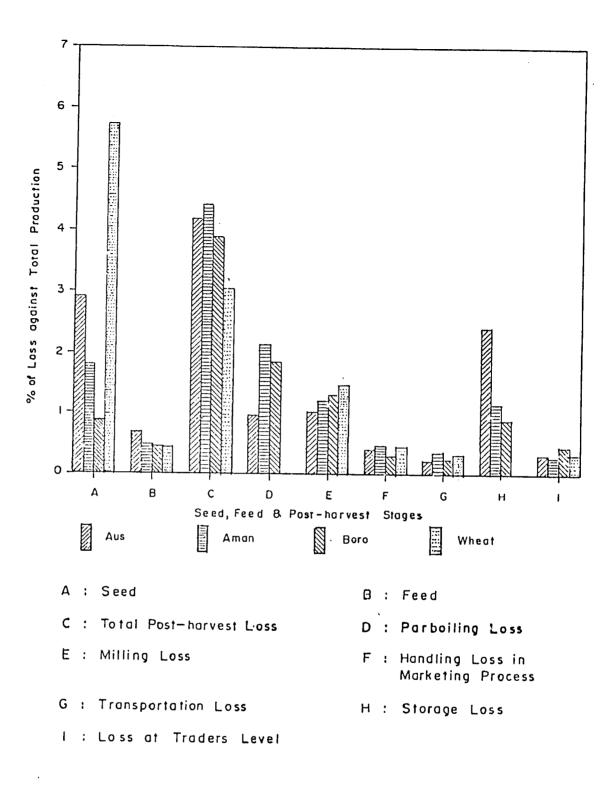


Fig · 4 · 2 Seed, Feed and Post-harvest Loss as Percentage of Total Production of Different Foodgrain Crops in 1989-90

Estimated foodgrains used as seed, feed and Post-harvest Loss the present study appears to be 1.5% higher than the thumb rule in of (10%) used by the Ministry of Food. There is no literature available to justify the basis of such 10 % foodgrain loss as seed, feed and post-harvest wastage. This is only a thumb rule. The other study carried out earlier in South-East Asia by Mallick in Nepal and Pandua 1978 and PICARRD 1984 (1981)in the Philippines and FAO in Bangladesh estimated 22%, 18%, 23% and 13% loss respectively as post-harvest loss. Our estimate is 11.58% for seed, feed and post-harvest loss which is most reasonable according to Bangladesh condition.

FAO (1986) reported that about 13% of foodgrain production are lost during post-harvest operations (from field staking to storing) in Bangladesh. However, our estimate is 1.5% less than that of FAO's (1986) study. The difference in the rate of loss estimation in two studies is probably due to several agro-socioeconomic and statistical factors. One of the factors might be the sample size. In our study a larger sample spreading all over the country was used. In FAO study, only 35 villages of Dhaka, Sylhet, Comilla, Bogra and Rajshashi Greater Districts were considered. Moreover the FAO study was conducted during 1983-84 cropping seasons when the share of MV to the total foodgrains production was less than the present study period. Modern variety requires lower seed rate for cultivation than the local variety. Again, our sampling was stratified on the basis of agro-ecological zones and sampling units were distributed on the basis of total rice area intensity of modern variety which was more scientific to be representative sample to give a better estimate.

Post-harvest processing loss in the present study was 4.14% against the total foodgrain production. This is a closer estimate to Haque et.al (1984) who stated that above 5% of foodgrains were lost during the Post-harvest processing (from field stacking up to storing at the farmers level). ARDICOL (1988) and BRRI (1985) also revealed a closer estimate to our study but FAO (1986) indicated a 6% loss during these operations.

In the present study use of seed was 1.73% against total production. There was no country wide previous studies in Bangladesh regarding total seed requirement for foodgrain production. IRRI (1988) indicated that the proportion of seed relative to total production of rice ranged between 1.5% to 4% depending on the variety and methods of sowing. Hasem (1986) estimated that about 3% of foodgrains are required as seed to plant total rice area of Bangladesh.

Estimation of foodgrains as feed in the present study (0.51%) were similar to Dicky and Haque (1986) made in Bangladesh.

4.1 SEED

4.1.1 Foodgrains Used as Seed

Total paddy and wheat used as seed by the sample households were 1.6 and 5.73 percent respectively of the total production (Paddy production 5456247 kg. and wheat production 174637 kg) in 1989-90. The weighted mean (rice equivalent to paddy seed and wheat) was 1.73 percent of the total foodgrain production (Table 4.1.1).

The quantity of seed used during Aus production was 2.80 percent of the total Aus production. Out of the total quantity of Aus seed used, Broadcast (B) Aus represented 4.12 percent and Transplant (T) Aus 1.70 percent of the total production .

The quantity of Aman seed used was 1.80 percent of the total Aman production. Out of the total Aman seed used, Broadcast (B) Aman represented 3.91 percent and Transplant (T) Aman 1.53 percent of the total production.

The quantity of the seed used during Boro season was 0.89 percent of the total Boro production of the sample households. Boro crops were all transplanted whereas wheat was line sown or broadcast (Table 4.1.1).

In paddy production, seed used for modern varieties constituted 1.25 percent of the total production of the modern varieties (almost all modern varieties were transplanted and had high yield potential). On the other hand, seed used for local varieties constituted 2.57 percent of the total production of the local varieties (a considerable proportion of local varieties having low yield potential were broadcast). Region wise distribution of seed used by the sample household, in different crops is presented in Appendix 4.1.1

4.1.2 Seed Rate of Foodgrain Crops

Average Seed rate of T. Aus was 44 kg./ha compared to 71 kg./ha for B. Aus. Average seed rate of T. Aman was 46 kg./ha and B. Aman (all local varieties) was 73 kg./ha.

Average seed rate of Boro was 37 kg./ha. (all transplanted). Average seed rate of Wheat was 86 kg./ha. for modern varieties grown under broadcast or line sown methods (Table 4.1.1). Similar seed rate was also reported by BRRI and BARI. Average germination percentage of seed (from laboratory test) was found to be 82 percent (Appendix 4.1.2).

Crops	Seed Used	% of	Seed Rate
	(kg)	Production	kg/ha
TOTAL AUS :		2.89	59.98
Transplanted	6111	1.70	44.38
MV	5619	1.67	44.07
LV	492	2.25	48.24
Broadçast	14341	4.12	70.54
HV	2686	3.85	81.64
LV	11655	4.19	68.40
TOTAL AMAN :	48425	1.80	50.67
Transplanted	36826	1.53	46.25
HV	24720	1.45	48.94
LV	12106	1.74	41.59
Broadcast			
MV	-	-	-
LV	11599	3,91	72.72
TOTAL BORO :	18259	0.89	36.53
Transplanted	18259	0.89	36.53
MV	16980	0.89	37.34
LV	1279	0.86	28.36
TOTAL PADDY :	87136	1.60	48.52
MV	50005	1.25	44.65
LV .	37131	2.57	54.93 /
Weighted (Paddy)	-	1.78	-
WHEAT :			
Broadcast/			
Line Sown			
MV	10006	5.73	86.11
LV	-	-	-
		1.73	

Table 4.1.1 Seed Used and Seed Rate of the Sampled Households in 1989-90

4.1.3 Area Under Foodgrain Crops

Total area under Paddy production of the sample households was 1796 ha. i.e. 1.53 ha./household in three cropping seasons (Table 4.1.2). Total area under Aus crop of the sample households was 341 hectares. Among them 137.7 ha. was under T. Aus and 203.3 ha under B. Aus or mixed Aus-Aman. Among the Aus, about 47% area was under modern varieties and 53 % was under local varieties. Total area under Aman crop of the sample households was 956 hectares of which about 53% was under modern varieties and the rest under local varieties. Area under Boro crop was about 500 hectares of which 91 percent area were under modern varieties. About 62 percent of paddy area of the sample households comprise of modern varieties. (including pajam) and 38 percent area under local varieties. Of the area under Paddy cultivation of the sample households, 19 percent was under Aus, 53 percent under Aman and 28 percent was under Boro Crops. These results are in agreement with BBS figures of the area under different rice varieties. Total area under wheat production was 116 hectares, all of which were under modern varieties.

4.1.4 Foodgrains Production

Total foodgrain production of the sample households were 5630884 kg. of which 5456247 kg. was paddy (3710248 kg. rice equivalent) and 174637 kg. was wheat. Of the paddy production 707405 kg. was Aus (58% modern and 42% local varieties), 2697527 kg. was Aman (63% modern and 37% local varieties). Total production of Boro was 2051315 kg. of which 93% was modern and 7% was local varieties. Total production of Wheat was 174637 kg. (all modern varieties) (Table 4.1.2). Average yield of paddy of the sample households was 3038 kg./ha. Average yield of modern T.Aman was 3374 kg./ha., local T. Aman was 2393 kg./ha. and B. Aman (all local) was 1859 kg./ha. Average yield of Boro was 4104 kg/ha which was the highest among the three crops. The yield of modern Boro was 4183 kg/ha and local Boro was 3310 kg/ha. (Table 4.1.2). Average yield of wheat was 1503 kg/ha (Table 4.1.2). These results are in accordance with the results of BRRI and BARI.

4.1.5 Estimated Seed Requirement

Applying the ratio of foodgrain production and seed (sample households) to the foodgrain production of 1989-90, the estimated seed requirement of the country came to be about half a million tons (Table 4.1.3). Out of the total quantity of seed, about 431 thousand tons were paddy and 51 thousand tons were wheat. The paddy seed estimate is 21 percent less than Hasem (1986) and 18 percent less than our own hypothetical estimate (based on the 10- year, 1979-1988, average area under foodgrain production in Bangladesh and recommended seed rate of different foodgrain crops, presented in Chapter II). The estimate of wheat seed is also 8 percent less than the hypothetical estimate, presented in Chapter II.

Crops	Area (ha)			Productio (kg)			Yield kg/ha
AUS :	341.0		(19.0)	707405		(13.0)	2075
Transplanted	137.7	40.4		359301	50.8		2609
MV	127.5	37.4		337405	47.7		2646
LV	10.2	3.0			3.1		2147
Broadcast [*]	203.3	59.6		348014	49.2		1712
HV	32.9	9.6		69800	9.9		2122
LV	170.4	50.0		278214			1633
AMAN :	955.7	100.0	(53.2)	2697527	100.0	(49.4)	2823
Transplanted	796.2	83.3		2400965	89.0		3016
MV	505.1	52.8		2400965 1704233	63.2		3374
LV	291.1	30.5		696732			2393
Broadcast ^{**}							
HV	••	-			-		-
1.V	159.5	16.7		296562	11.0		1859
BORO :	499.8	100.0	(27.8)	2051315	100.0	(37.6)	4104
Transplanted	499.8	100.0		2051315	100.0		4104
MV***	454.7	91.0		1902024			418
LV	45.1	9.0		149291	7.3		3310
.TOTAL PADDY:	1796.0	100.0	(100.0)	5456247	100.0	(100.0)	3038
MV	1120.0	62.4		4013462	73.6		3584
LV	676.0	37.6		1442785			2134
WHEAT :	116.2	100.0	(100.D)	174637	100.0	(100.0)	1503
Broadcast/							
Line Sown							
MV	116.2			174637			1503
LV	-			-			-

Table 4.1.2 Total Area and Production of Foodgrains of the Sampled Households in 1989-90

** Included Aman part of the Mixed Aus - Aman Cros

*** MV (Modern Variety) includes Pajam

Note : (1) Figure in parentheses are the percentage of total. (2) Conversion ratio, Paddy to Rice 0.676

Variation between the two estimates and also with Hashem (1986) was probably due to use of recommended seed rate in the hypothetical estimate in Chapter II. Most farmers in the country generally do not use recommended seed rate due to lack of knowledge on improved production practices which is reflected in the present study. Moreover, in recent years, more area was brought under cultivation of modern variety having higher average yield and lower seed requirement than the local varieties. This would have contributed lowering total seed requirement in paddy production of the sample households under study and thereby to the

national estimate. A lower estimate of wheat seed requirement in the present study than the hypothetical estimate is probably due to decline in area under wheat cultivation and average yield in the country in recent years.

Crops	Production* (000) tons	% Seed Requirement (Present study)	Estimated Seed Requirement tons
A. Rice			
Aus	2487	2.89	71890
Aman	9202	1.80	165637
Boro	6167	0.89	54884
Sub Tota	1 17856	-	292411
Paddy Eq	uivalent		431285
B. Wheat	890	5.73	50997
Total	18746	-	482282
BBS fi	nalized this es	timate in the month of	March, 1991.

Table 4.1.3. Estimated Seed Used (1989-90)in Bangladesh

4.2 FEED

4.2.1 Livestock and Poultry Population

In order to estimate the total quantity of foodgrains used as feed it is imperative to know the total number of livestock and poultry in the country. Out of 1175 households 1059 (about 90%) reported having livestock and poultry birds. Table 4.2.1 shows that the average heads of cattle, goats, sheep, chicken, ducks and other birds per household were 3.0, 1.03,0.10, 9.10,2.02 and 0.20 respectively. The density of cattle and poultry population as per present study corroborated almost closely with those reported in earlier studies (FAO/World Bank 1983), except density of poultry population in Jessore-Kushtia- Khulna region which showed a sharp rise. FAO/World Bank (1983) reported that there were approximately 6.85 million holdings owning livestock and poultry in Bangladesh. It was thus calculated (Table 4.2.2) that there were 20.55 million cattle and buffaloes, 7.06 million goats, 0.69 million sheep, 62.34 million chicken and 13.84 million ducks, and 1.37 million other birds (pigeon, etc.). In addition there were about 0.4 million heads of poultry in the specialized farms. The findings of the present study in respect of livestock and poultry population were in conformity with those of earlier studies. (Agriculture Census, 1983-4 as well as Livestock Survey, 1983-84). The present study indicated also that the population of cattle, buffaloes, sheep and goats declined to some extent whereas that of chicken and ducks went up slightly in domestic farms but appreciably in specialized farms.

4.2.2 Paddy Used as Livestock and Poultry Feed

Paddy as such is rarely used as livestock and poultry feed in Bangladesh. Paddy is occasionally used in the form of boiled rice for feeding milch cows and buffaloes, and broken rice in the ration of chicks and ducklings. Sometimes, the food grains which become unfit for human consumption, are used as feed for livestock and poultry. The study revealed that in Bangladesh grains were not available beyond two months during every crop season(Aman, Boro, and Aus). It is evident from the Table 4.2.3 that the consumption of Aman Paddy was highest and that of Aus Paddy was lowest. Household survey indicated that 13488 kg. of Aman paddy, 9436 kg Boro paddy, 4810 kg. Aus paddy (Tables 4.2.4, 4.2.5 and 4.2.6) were used as feed representing 0.50, 0.46 and 0.68 percent of Aman, Boro and Aus production respectively. In other words, approximately, 87351 tons of Aman, 61109 tons of Boro and 31136 tons of Aus Paddy were used in Bangladesh as livestock and poultry feed (Tables 4.2.8, 4.2.9, 4.2.10, and 4.2.11).

AEZ	Av. No. of	Cattle and	Goats	Sheep	Chicken	Ducks	Other
	holdings	buffaloes					birds
Chittagong and	145	443.00	67.00	11.00	1058.00	217.00	0.00
Noakhali	Av/holding	3.06	0.46	0.07	7.03	1.50	0.00
Mymensingh,	215	607.00	194.00	1.00	1838.00	189.00	1.11
Kishoregonj and Jamalpur	Av/holding	2.82	0.90	0.005	8.52	0.88	0.52
Dhaka and	85	315.00	63.00	43.00	678.00	221.00	4.00
「angail	Av/holding	3.70	0.74	0.51	7.98	2.60	0.05
Comilla and	126	246.00	51.00	3.00	995.00	280.00	0.00
Sylhet	Av/holding	1.95	0.40	0.02	7.89	2.22	0.00
Rajshahi, Bogra	113	379.00	87.00	7.00	1158.00	224.00	50.00
and Pabna	Av/holding	3.35	0.77	0.06	10.25	1.48	0.44
angpur and	182	709.00	333.00	22.00	1972.00	378.00	41.00
)inajpur	Av/holding	3.90	1.83	0.12	10.84	2.08	0.23
Jessore, Kushtia	93	300.00	204.00	22.00	1249.00	444.00	5.00
and Khulna	Av/holding	3,23	2.19	0.24	13.43	4.77	0.05
Barisal,	100	175.00	93.00	0.00	692.00	188.00	0.00
aridpur and Patuakhali	Av/holding	1.75	0.93	0.00	6.92	1.88	0.00
otal	1059	3174.00	1092.00	109.00	9640.00	2141.00	211.00
v/holding		3.00	1.03	0.10	9.10	2.02	0.20

Table 4.2.1.: Livestock and Poultry Population by Region

Table 4.2.2 : Summary of Livestock and Poultry Population

otal Hou vning li n Bangla fillion)	vestock	Heads/ Holding ^{**}	Total (Hillion)
6.85	Cattle and buffaloes	3.00	20.55
	Goats	1.03	7.06
**	Sheep	0.10	0.69
н	Chicken	9.10	62.34
	Ducks	2.02	13.84
н	Other Birds	0.20	1.37
	(Pigeon etc.)		

 FAO/World Bank 1983. Bangladesh Livestock Development Pilot Project No. 60/83 BGD. 37 Rome

** Present Study.

4.2.3 Wheat Used as Livestock and Poultry Feed

It is apparent from the present study (Table 4.2.7) that in Bangladesh wheat was not used as feed for goats or sheep. The use of wheat as cattle and poultry feed was also very limited, and it was used as feed only during the crop season of the year. It was found from the household survey that the total quantity of wheat used as feed for 3174 heads of cattle, 9640 chickens, 2141 ducks and 211 other birds (pigeon etc.) were 80 kg., 272 kg., 48 kg. and 2 kg. per month, respectively, which means feeding of 0.05 kg., 0.056 kg., 0.045 kg. and 0.019 kg. of wheat per head per year for cattle, chicken, ducks and other birds, respectively. Calculation was done on the basis of feeding for two months in a year (Table 4.2.7). It was found that 804 kg of wheat was used as feed representing 0.46 percent of the total production (174637 kg). The use of wheat in the specialized poultry farms was not included in the above calculation. The total quantity of wheat used as feed annually in the rural areas of Bangladesh comes to approximately 5173 tons (Table 4.2.12).

of Animal	•	PADDY				¦ Total ¦ Grains	•	Feed as
	Poultry in holdings surveyed	Aman (kg.)	Boro (kg.)	¦ Aus ¦ (kg.)	(kg.) [,]	used as	(kg.)	
Cattle	3174	5128	3716	1686	160			
Goats & Sheep	1201	63	166	-	-			
Chicken	9640	6092	4052	2576	544			
Ducks	2141	2147	1414	524	96			
Other Birds (Pigeon	211 etc.)	58	88	24	4			
Total		13488	9436	4810	804	28538	56308	34 0.51

Table 4.2.3: Foodgrains (Paddy and Wheat) Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ.

Note : Conversion ratio, Paddy to Rice 0.676

of	Total No.of Livestock & Poultry in holdings surveyed		h¦kg/Year on the basis of 2 months /year	year	¦ Aman	Prod. (kg.)	% of
Cattle	3174	2564.0	5128	1.616	5129		
Goats & Sheep	1201	31.5	63	0.052	63		
Chicken	9640	3046.0	6092	0.632	6092		
Ducks	2141	1073.5	2147	1.003	2147		
Other Birds (Pigeon	211 etc.)	29.0	58	0.275	58		
Total		6744.0	13488		13488	2697527	0.50

Table 4.2.4: Aman Paddy Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ.

Note : Conversion ratio, Paddy to Rice 0.679

Table 4.2.5: Boro Paddy Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ.

of	Total No.of Livestock & Poultry in holdings surveyed		h¦kg/Year on the basis of 2 months /year	year 	Boro used as	Prod. (kg.)	% of total
Cattle	3174	1858	3716	1.171	3716		
Goats & Sheep	1201	83	166	0.138	166		
Chicken	9640	2026	4052	0.420	4052		
Ducks	2141	707	1414	0.660	1414		
Other Birds (Pigeon	211 etc.)	44	88	0.417	88		
Total		4718	9436		9436	2051315	0.46

Note : Conversion ratio, Paddy to Rice 0.678

of ¦	Total No.of Livestock & Poultry in holdings surveyed	kg/Mont	h kg/Year on the basis of 2 months /year	year	Total Aus used as Feed	Prod. (kg.)	% of
Cattle	3174	843	1686	0.531	1686		
Goats &							
Sheep	1201	-	-	-	-		
Chicken	9640	1288	2576	0.267	2576		
Ducks	2141	262	524	0.245	524		
Other Birds (Pigeon e	211 tc.)	12	24	0.114	24		
Total		2405	4810		4810	707405	0.68

Table 4.2.6: Aus Paddy Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ.

Note : Conversion ratio, Paddy to Rice 0.674

Table 4.2.7: Wheat Used as Livestock and Poultry Feed in Holdings Surveyed in 8 AEZ.

of	Total No.of Livestock & Poultry in holdings surveyed	kg/Mont	h kg/Year on the basis of 2 months /year	year	Total Wheat used as Feed	Prod. (kg.)	% of
Cattle	3174	80	160	0.050	160		
Goats &							
Sheep	1201	-	-	-	-		
Chicken	9640	272	544	0.056	544		
Ducks	2141	48	96	0.045	96		
Other Birds (Pigeon	211 etc.)	2	4	0.019	4		
Total		402	804		804	174637	0.46

As reported by Dicky and Haque (1986) 0.2 Million heads of poultry are reared by specialized farms consuming 45-50 percent grains (wheat) in the ration. As stated by the Deputy Director L.S., and other relevant personnel that this number has increased at least by two times, which means that there are approximately 0.4 million heads of poultry in the existing specialized poultry farms in the country. It is evident from the survey of 15 poultry farms in the 8 AEZ (Table 4.2.13) that 52.67 gms. of wheat per head per day or 19.226 kg. of wheat per head per year was used in the poultry feed, which means that a quantity of 7690.40 tons of wheat was used as feed in the specialized poultry farms of the country/year. The daily per head consumption of wheat in the specialized poultry farms agrees with the previous statement referred in the review chapter.

4.2.4 Foodgrain Used in the Specialized Farms

From the survey of specialized Dairy Farms it was found that foodgrains were not used as feed for cattle (Appendix 4.2.1). It was also noticed that in the specialized poultry farms the use of wheat as feed was common and the use of paddy as feed was practically nil.

4.2.5 Feed Mills

From the survey of Feed Mills (Appendix 4.2.2) it was observed that food grains were not included as ingredients of feed mixture prepared by the cattle feed mills, whereas the poultry feed mills used invariably wheat (approximately 50%) as a component of the feed formulation.

4.2.6 Storage Loss in Feed Mills

From the study of storage loss of foodgrains used as feed it was learnt that in livestock and poultry farms the prepared feeds were not usually stored for long time, and as such storage loss was insignificant. In poultry feed mills only wheat had to be stored occasionally and that also for not more than two months at a time resulting in storage loss of approximately one percent of wheat stored (Appendix 4.2.3)

4.2.7 Summary

Paddy and wheat used as the feed were calculated on the basis of two months in each of the three seasons. During rest of the year (6 months) grains were not available as feed. The summary is given below :

Paddy and Wheat used as Feed in the holdings surveyed in 8 AEZ:

Aman Paddy Boro Paddy Aus Paddy	:	9436 "
Total Total Production	:	27734 kg (18859 kg Rice equivalent) 5456247 kg. (3710248 kg Rice equivalent)
Wheat Total wheat production		804 kg. 174637 kg

Total Production (Paddy and Wheat): 5630884 kg. Total feed used : 28538 kg. Feed as percent of production : 0.51

It may be mentioned here that use of grains in the specialised poultry farms was not included in the above calculation.

Thus it was estimated that about 192.5 thousand tons of foodgrains were available to the livestock and poultry feeding during 1989-90. This observation is in conformity with the statement of Dicky and Haque (1986) indicating the availability of 190 thousands tons of grains as feed, but the trend is slightly upward.

Table 4.2.	per Year.	Paddy and Wheat)			
Name					
animal	Bangladesh	Aman	Boro	Aus	
	20562000	33228192	24078102	10918422	1028100
Goats & Sheep	7745020	402741	1068813	-	-
Chickens	62371400	39418724	26195988	16653164	3492798
Ducks	13845080	13886615	9137753	3392045	623029
Other / birds	1507880	414667			
Sub-total Poultry in specialize			61109442		
farms	400000	-	-		7590400
Total (kg)		87350939	61109442		
Total (ton		87350.94	61109.44		
Grand Tota	l (Paddy and Whea	at) : 192.5 thou			

of animal	Lives in ho in 8		5.	on the basis of 2 month/yr	Year	Livestock & Poultry in Bangladesh	Paddy used as feed
Cattle a Buffalo	8.	3174	2564	5128	1.616		33228192
Goat & S	Sheep	1201	31.5	63	0.052	7745020	402741
Chicken	5	9640	3046.0	6092	0.632	62371400	39418724
Ducks		2141	1073.5	2147	1.003	13845080	13886615
Other birds (Pigeon	•		29.0	58	0.275	1507880	414657
Total			6744	13488		106031380	

Table 4.2.9 : Aman Paddy used as Livestock and Poultry Feed.

of L animal P h	otal No. of ivestock & Poultry in Holdings sur- reyed in 8 AEZ		kg/year on the basis of 2 month/y		Total No. of Livestock & Poultry in Bangladesh	Paddy used as feed in
Cattle		1858	3716	1.171	20562000	24078102
Goat & Sheep	1201	83	166	0.138	7745020	1068813
Chickens	9640	2026	4052	0.420	62371400	26195988
Ducks	2141	707	1414	0.660	13845080	9137753
Other birds (Pigeon e	-	44	88	0.417	1507880	628786
Total		4718	9436	-	106031380	61109442

of animal	Total No. of Livestock & Poultry in hol- dings surveyed in B AEZ	kg/month	kg/year on the basis of 2 month/ year	kg/Head/Year	Total No. of Livestock & Poultry in Bangladesh	
Cattle and Buffaloe	3174 3	843	1686	0.531	20562000	10918422
Goat & Si	neep 1201	-	-	-	7745020	-
Chicken	9640	1288	2576	0.267	62371400	16653164
Ducks	2141	262	524	0.245	13845080	3392045
Other birds (Pigeon e	211 etc.)	12	24	0.114	1507880	171898
Total		2405	4810		106031380	31135529

Table 4.2.11 : Aus Paddy Used as Livestock and Poultry Feed

Note : Conversion ratio, Paddy to Rice 0.674

Table 4.2.12 : Wheat Used as Livestock and Poultry Feed

Name of animal	Total No. of Livestock & Poultry in hol- dings surveyed in 8 AEZ	kg/month	kg/year on the basis of 2 month/ year	kg/Head/ Year	Total No. of Livestock & Poultry in Bangladesh	used as feed in
Cattle and Buffalo	3174	80	160	0.050	20562000	1028100
Goat & Sheep	1201 109	-	-	-	7745020	-
Chickens	9540	272	544	0.056	62371400	3492798
Ducks	2141	48	96	0.045	13845080	623029
Other birds (Pigeon	211 etc.)	2	4	0.019	1507880	28650
Total		402	804		106031380	5172577

Table 4.2.13 : Wheat Used in Specialized Poultry Farms

Poultry in farms surveyed in 8 AEZ	kg/Yr	Gms/ head/ day	kg/ head/ Yr	Total poultry in specialized farms in Bangladesh	Total wheat used in feed (kg.)
105993 in 15 farms	2037857	52.67	19.226	400000*	7690400
				i.e. :	7690.40 tons

* Dicky and Haque estimated in 1986 a number of 0.2 million heads of poultry in specialized poultry farms in Bangladesh. As stated by the Deputy Director, L.S., Poultry and relevant personnel (personal communication) that this number has increased at least by two times at present.

4.3. POST HARVEST LOSS (PHL) OF FOODGRAINS

Loss of foodgrains in the post harvest operation begins from cutting of the crop in the field upto marketing. Losses of foodgrains varied widely from one stage to another stage and from one crop to another crop.

The PHL of foodgrain was estimated by a simple equation as enumerated in the methodology. The following equations reveal the loss of grains in the PH operations by different methods of threshing. It may be mentioned that except threshing, all the remaining factors were held constant. As mentioned earlier there exists no standardized method for threshing of the foodgrains and the method applied has been defined in chapter 2 (Review of Literature). The following equations show the loss estimate of a particular crop during the PH operation :

(1) $L_1 = S+C+(T+B)+W+D+WR$ (2) $L_2 = S+C+BT+W+D+WR$ (3) $L_3 = S+C+PT+W+D+WR$ (4) $L_4 = S+C+OT+W+D+WR$

Where

- L₁ represents PHL estimation, where threshing was done by hitting the paddy on hard surface followed by threshing with bullocks;
- L₂ represents PHL estimation where threshing was done by bullock;
- L₃ represents PHL estimation where threshing was done by paddle thresher;
- L₄ represents PHL estimation where threshing was done by other method e.g., flailing or beating of the crop with a stick;
- S for stack loss;
- C for carrying loss;
- T for threshing by hitting on a hard surface;
- B for threshing with bullock after hitting;
- BT for threshing by bullock;
- PT for paddle threshing;
- OT for other threshing loss i.e. beating or flailing on the crop with a stick;
- W for winnowing and cleaning loss;

D for drying loss and

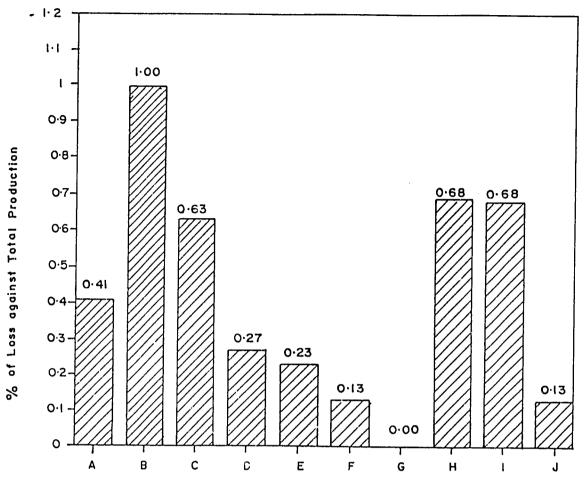
WR for bad weather loss.

In the following paragraphs the findings of PHL have been discussed by crops i.e., Aus, Aman, Boro and Wheat. While discussing the individual crop details of PHL are also enumerated.

4.3.1 Aus Crops

Inserting the values of the variables mentioned in section 4.3 the estimated PHL of Aus crop by different process of threshing from the sample HH are shown below:

(1) $LA_1 = 2918+7089+(4458+1662)+4895+4841+919 = 26782$


(2) $LA_2 = 2918+7089+1917+4895+4841+919 = 22579$

(3) $LA_3 = 2918+7089+900+4895+4841+919 = 21562$

(4) $LA_4 = 2918+7089+2+4895+4841+919 = 20664$

Where L_{A} represents post-harvest loss for Aus crop by different threshing methods.

The above equations revealed that loss of foodgrain occurred maximum while threshing the crops by hitting the paddy on hard surface followed by threshing with bullocks (LA_1) . Conversely there occurs less loss when the crop was threshed by paddle threshing (LA_3) . Threshing loss by other method was insignificant compared to others so it was not taken into account. PICARRD (1984) stated that mechanical threshing was more economical and significantly less time consuming than manual harvesting. The findings of this study indicate that with a mechanical thresher PHL could be reduced, taking less time and labor and the cost could be invariably minimized. For estimating PHL one has to select the equation for a region depending on the method of threshing. Post harvest loss as percent of total production of Aus crops is diagramatically shown in Figure 4.3.1.

Post-harvest Stages

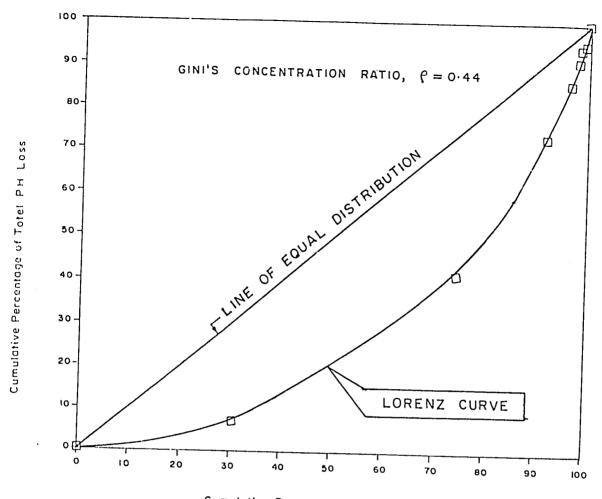
- A : Field Staking Loss
- C : Loss during Beating (hitting on hard surface)
- E : Loss due to Beating followed by Threshing with Bullock
- G. : Other Threshing Losses
- I : Loss due to Drying

- B : Loss during Carrying
 - D: Loss during Threshing with Bullock
 - F: Loss due to Paddle Threshing
 - H : Winnowing and Cleaning Losses
 - J : Loss due to Bad Weather.

Fig. 4-3-1 Post-harvest Loss as Percentage of Total production of

Aus Crops in 1989-90

Table 4.3.1 revealed that the highest loss of grains occurred while carrying the paddy from field to farm yard. It was to the tune of 1.00% against total production. PHL of Aus crop was 4.18% against total production. Detailed PHL by regions and upazilas at different stages can be seen at Appendix 4.3.1 and 4.3.2 respectively. The loss of foodgrains estimated by Pandua (1978) during harvesting, handling and threshing ranged from 5 to 18 percent. Our finding on Aus crop revealed a loss estimation of less than 5% on the similar activities.


Table 4.3.1 : Loss of Aus Crops Stages (in percen	
Loss due to Loss	against production
 Stack loss Loss during carrying Loss during beating (hitting on hard surface) Loss during threshing with bullock Loss due to beating followed by threshing with bullock Loss due to paddle threshing Other threshing losses Winnowing & cleaning losses Drying loss Loss due to bad weather Total Loss 	

Drying loss was the third highest loss of Aus crop during its PH operation. In Bangladesh the most popular and traditional method of drying foodgrain was sun drying. Farmers dry their paddy on the open "Katcha" or unmetalled farm yards, roads, mats, etc. The quantitative losses in sun drying of the paddy in the open space result from spillage and foraging by animals such as cattle, chicken, ducks, goats and others. Grains are also lost in the cracks of the farm yard and weather hazards.

Table 4.3.2 indicated that the maximum loss of Aus paddy during the PH operations occurred at Jessore-Kushtia-Khulna region. The loss was 4.63% against total production. Percentage of loss against total production after Jessore-Kushtia-Khulna region was Barisal-Faridpur-Patuakhali region (4.42%), which was higher than the average (4.18%) of all regions. Lowest loss of PH operation occurred at Dhaka -Tangail region which was 2.93% against total production.

Region	Loss against total production
Chittagong-Noakhali	4.00
Hymensingh- Kishoregonj-Jamalpur	4.42
Dhaka-Tangail	2.93
Comilla-Sylhet	3.83
Rajshahi-Bogra-Pabna	3.92
Rangpur-Dinajpur	3.71
Jessore-Kushtia- Khulna	4.63
Barisal-Faridpur- Patuakhali	4.42
All Regions G.E. Mean	4.18 0.19

The Aus production by varieties as conceived from the household Survey, indicated the share of local varieties at 42.42% and modern varieties at 57.58% of the total production. PHL by LV was 43.79% and by MV 56.21%. Amongst all the factors, loss of paddy while carrying was the highest. Figure 4.3.2 reveals the Lorenz curve showing concentration of total PHL of sampling HH from Aus Crop in 1989-90. The Gini's coefficient ratio of 0.44 indicates that the post-harvest loss is more or less spread over all types of households without concentrating to a particular group of households.

Cumulative Percentage of Sample HH

Fig. 4.3.2 Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Aus Crop in 1989-90

4.3.2 Aman Crops

Post-harvest loss of Aman crop was found maximum than Aus, Boro or Wheat crops, both in terms of quantity and percentages. PH loss of Aman crop was 4.39% of the total production. In Aman, stack loss was highest (1.09%) followed by winnowing (0.82%); threshing by hitting on hard surface (0.68%), carrying loss (0.62%) and drying loss (0.43%) which comprises more than 80% against total loss.

Table 4.3.3 shows PHL of Aman crop against total production during PH stages in percentages. About 25% of the loss has occurred due to stacking which is on the high side where the loss could be minimized. Details of PHL by regions and upazilas at different stages of PH operations can be seen at Appendices 4.3.4 and 4.3.5 respectively. Figure 4.3.3 shows PHL of foodgrain as percentage of production of Aman crop in 1989-90.

Table 4.3.3 : PHL of Aman	Paddy Against Total Production. (in percentage)
Loss due to	Loss against total production
 Stack loss Loss during carrying 	1.09 0.62
 Loss during beating(hitting on hard surface). 	0.68
 Loss during threshing with bullock 	0.25
 Loss due to beating followed by threshing with bullock 	0.31
 Loss due to paddle threshing 	0.16
7. Other threshing loss	0.03
B. Winnowing and cleaning loss	0.82
9. Drying loss 9. Loss due to bad weather	0.43
Total Loss	4.39

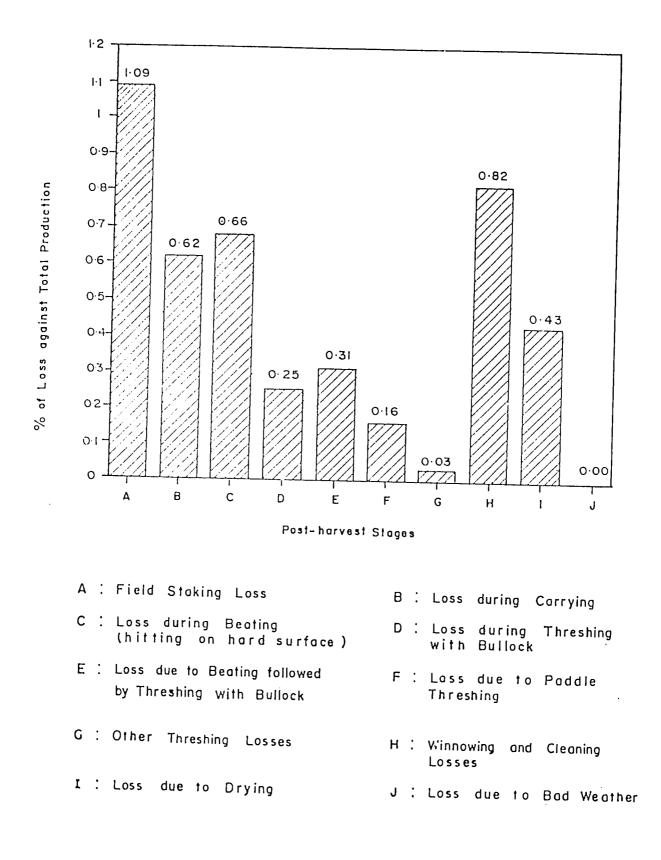


Fig. 4·3·3 Post-harvest Loss as Percentage of Total Production of Aman Crops in 1989-90+ Table 4.3.4 shows percentage of PH loss of Aman crops by region against total production.

Table 4.3.4 : PHL of Aman Crop A	(in nercentage)
Region	lose against production
Chittagong-Noakhali	5.12
Mymensingh- Kishore-Jamalpur	4.14
Dhaka-Tanga11	3.77
Comilla-Sylhet	4.76
Rajshahi-Bogra-Pabna	3.95
Rangpur-Dinajpur	4.39
Jessore-Kushtia-Khulna	4.10
Barisal-Faridpur- Patuakhali	3.69
Average S.E. Mean	4.39

Table 4.3.4 indicated PHL against total production. Chittagong-Noakhali region showed the maximum loss of 5.12% followed by Comilla-Sylhet with 4.76%, Rangpur-Dinajpur with 4.39%, Mymensingh-Kishoregonj-Jamalpur with 4.14%, Jessore-Kushtia-Khulna with 4.10% and so on. The lowest loss occurred in Dhaka-Tangail region (3.77%).

Table 4.3.5 indicated that among all the varieties highest loss occurred with modern varieties of T. Aman. Percentage against a total loss of T. Aman (MV) was 65.58 compared to 23.30 and 9.83 of T. Aman (LV) and B. Aman respectively. Among the item of loss in T.Aman (MV); highest loss items occurred while threshing the crop by bullocks but in terms of quantity highest loss occurred while stacking in the farm yard.

The stack loss may be attributable to (1) the fact that during the Aman harvesting season almost all the farm yards, open spaces were either occupied or were busy for threshing. So, immediately after the harvesting the crop could not be threshed due to lack of threshing space. As a result the crops were stacked in fields and farm yards without any protection. Surrounding the stack there were losses due to (a) rat infestation (b) consumption by poultry (c) pulling out by bullocks and cows and such others. (2) possibility of damage to occuring if the stack remains for a long period and if precipitation occurs. (3) Fungus infection, etc.

Proper measures and appropriate technology if applied loss could be minimized. It may be mentioned that with the use of mechanical thresher, carrying and threshing losses could be reduced to a greater extent.

PH Loss of Aman Crops by varieties :

Aman crop comprises B. Aman, mixed Aus-Aman, T.Aman (LV) and T.Aman (MV). Table 4.3.5 shows the PH loss of Aman crops by varieties. Details of PH loss operation by different stages can be seen at Appendix 4.3.6.

type	of loss.				
Type of Loss	B.Aman	Mixed	T.Aman	T.Aman	Total
Stack loss	7.23	1.69	29.43	61.65	100
Loss during carrying	16.32	1.58	27.56	54.54	100
loss during beating (hitting on hard surface)	1.65	0.31	26.25	71.79	100
Loss during thre- shing with bullock	27.85	4.11	19.63	48.40	100
Loss due to beating followed by threshin with bullock	3.68 9	0.12	20.05	76.15	100
Loss during paddle thresher	10.04	0.35	2.22	87.39	100
Other threshing loss	47.54	-	-	52.46	100
Winnowing loss	8.20	0.88	19.45	71.47	100
Drying loss	14.23	1.89	18.32	65.56	100
weather		-	-,	50.00	
Total loss	0 0 7	1 20	0.2 . 2.0		

Table 4.3.5 : Fercentage PHL of Aman Crop by Varieties by type of loss.

* Aman part of the mixed Aus-Aman crop.

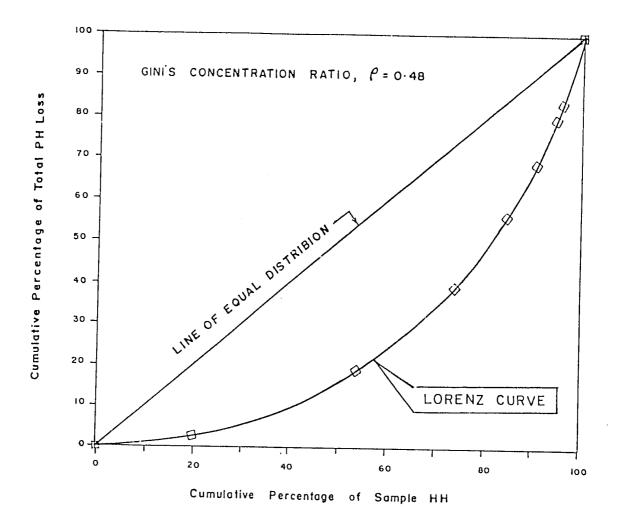


Fig. 4·3·4 Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Aman Crop in 1989-90

Of the total loss 65.58% was by T. Aman (MV), 23.30% by T. Aman (LV) and 9.83% by B. Aman. T. Aman (MV) comprises about 63% of the total Aman production.

Inserting the value of the variables mentioned in section 4.3 the estimated PHL of Aman crop by different processes of threshing from the sample HH are shown below :

(5) $L_{AM1} = 29364 + 16744 + (18447 + 8289) + 22231 + 11579 + 45 = 106699$

(6) $L_{AM2} = 29364 + 16744 + 6618 + 22231 + 11579 + 45 = 86581$

(7) $L_{AM3} = 29364 + 16744 + 4283 + 22231 + 11579 + 45 = 84246$

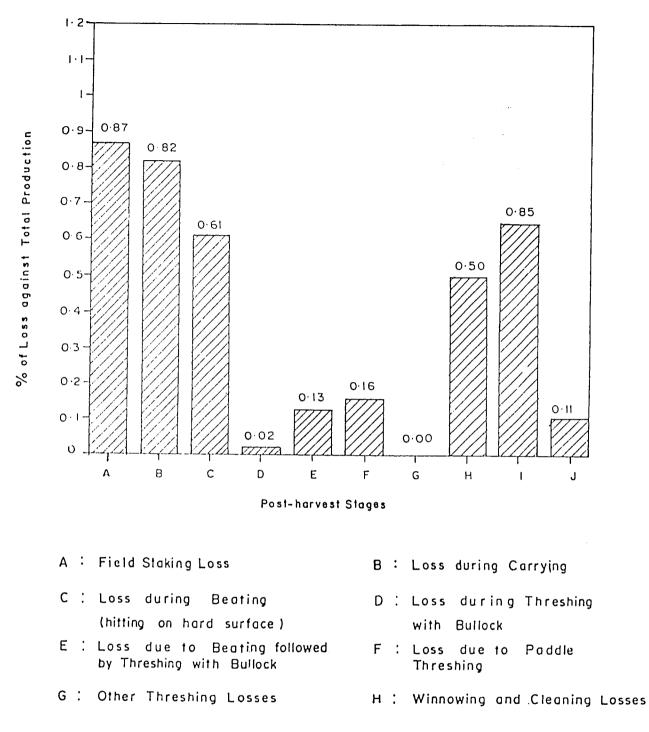
(8) $L_{AM4} = 29364 + 16744 + 873 + 22231 + 11579 + 45 = 80836$

Where L_{AM} represents post-harvest loss for Aman crop by different threshing methods.

In the above equations PHL of Aman crop was found highest when it was threshed by hitting on the hard surface followed by threshing with bullocks. Threshing loss in terms of quantity was one of the highest, found in Aman crop. PH operation with proper attention and improved methods if applied this loss could be invariably reduced. This may lead to more availability of foodgrains in the country.

4.3.3 Boro Crops

More than 90% of the Boro crop comprises of modern varieties. It is transplanted during January-February and harvested during May -June. During April nor wester hits the country and from June onwards the south-west monsoon rainfall begins.


Inserting the values of the variables mentioned in section 4.3 estimated PHL of Boro crop by different processes of thresshing from the sample HH are shown below:

Where L_B represents post-harvest loss of Boro crop by different threshing methods.

The above equations revealed that loss of Boro paddy during the PH operation was highest when it was threshed by hitting the crop on a hard surface before threshing by bullocks, the next in order was threshing by paddle thresher and threshing by bullock. It needs to be mentioned that stack loss, loss while carrying, winnowing and drying were also higher. Table 4.3.6 represents loss estimation by stacking, carrying, threshing, winnowing, drying and loss due to bad weather. Diagramatically the PHL of Boro crops are shown in Figure 4.3.5.

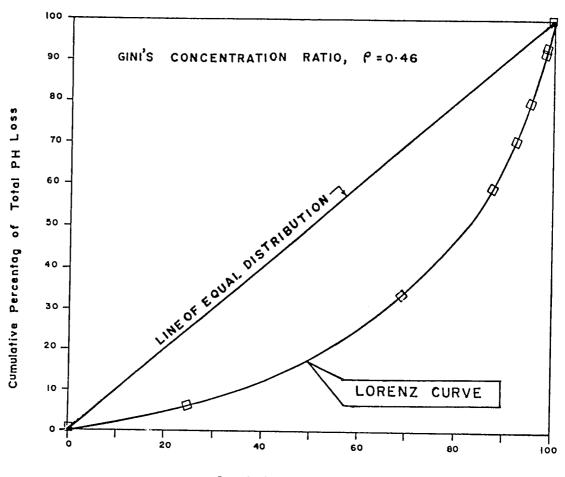

Table 4.3.6 : Post-harvest from HH sample	oss of Boro Crops of 1989-90 survey (in percentage).
Loss due to	loss against total production
Stack loss Loss during carrying Loss during beating (hitting on hard surfice) Loss during threshing with bullock Loss due to beating followed by threshing with bullock Loss due to paddle threshing Other threshing losses Winnowing and cleaning losse Drying loss Loss due to bad weather	0.87 0.82 0.61 0.02 0.13 0.16
Total	3.88

Table 4.3.6 indicated that stacking, carrying, drying, hitting the crop on a hard surface and winnowing losses were the major component of PH loss of Boro crop against total loss. The PHL by the above mentioned factors were 0.87%, 0.82%, 0.65%, 0.61% and 0.50% respectively, totaling about 90% of the PH losses. In all the above mentioned activities, appropriate mechanism may be developed to reduce the losses. Figure 4.3.6 represents Lorenz curve showing concentration of total PHL from sample HH of Boro crop during 1989-90. The Gini's coefficient ratio of 0.46 indicates that the post-harvest loss is more or less spread over all types of households without concentrating to a particular group of

I : Loss due to Drying

- J: Loss due to Bad Weather
- Fig. 4·3·5 Post-harvest Loss as Percentage of Total Production of Boro Crops in 1989-90

Cumulative Percentage of Sample HH

Fig. 4.3.6 Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Boro Crops in 1989-90

Table 4.3.7 showed that loss in terms of percentage against total production by region was found highest in Rangpur-Dinajpur region (5.03%) followed by Jessore-Kushtia-Khulna (4.25%), Dhaka-Tangail (4.24%), Chittagong-Noakhali (3.83%), Comilla-Sylhet (3.76%), Mymensingh-Kishoregonj-Jamalpur (3.55%), Barisal-Faridpur-Patuakhali (3.39%) and Rajshahi-Bogra-Pabna region (2.75%).

The PHL of Boro crop by regions, factors and upazilas can be seen at Appendix 4.3.7 and 4.3.8. Loss of foodgrain of Boro during PH operation by varieties can be seen at Appendix 4.3.9.

Total production of Boro crop in 1988-89 was 5.83 million metric tons and 3.88% of the total Boro production was about 226 thousand tons. It could be inferred that with appropriate measures and technology this huge quantity of foodgrain loss could be minimized. However, Pandua (1978) stated a PH loss (Harvesting, handling and threshing) of rice crops from 5% to 18% depending on environmental conditions and methods of operation. The PH loss in Boro crop in the present study was found less than the minimum loss stated by Pandua.

Region	Loss against production
Chittagong-Noakhali	3.83
Mymensingh-Kishoregonj-Jamalpur	3.55
Dhaka-Tangail	4.24
Comilla-Sylhet	3.76
Rajshahi-Bogra-Pabna	2.75
Rangpur-Dinajpur	5.03
Jessore-Kushtia-Khulna	4.25
Barisal-Faridpur-Patuakhali	3.39
Total S.E. Mean	3.88

4.3.4 Wheat

Like rice crops, the estimation of PH operation losses of wheat under different methods of threshing were made keeping cther variables constant.

Inserting the values of the variables mentioned in section 4.3 estimated PHL of Wheat by diiferent processes of threshing from the sample HH are shown below : (13) LW1 = 943+994+(1145+41)+1103+833+57 = 5116

(14) L_{W2} = 943+994+90+1103+833+57 = 4020

(15) $L_{w3} = 943+994+8+1103+833+57 = 3938$

(16) $L_{W4} = 943+994+95+1103+833+57 = 4025$

Where L_w represents post-harvest loss of Wheat crop by different threshing methods.

The above equations revealed that maximum loss of wheat occurred when it was threshed by hitting on a hard surface followed by threshing with bullocks (Equation-13). In terms of quantity threshing loss by paddle thresher was at minimum (Equation -15).

Table 4.3.8 depicts the major factors of PHL of wheat from the household surveys which are :

- 1. Drying ;
- 2. Carrying;
- 3. Stacking;
- 4. Winnowing and
- 5. Threshing (hitting on a hard surface)

The total of above mentioned factors reveals PHL by more than 95% of the total wheat production. Loss by threshing was maximum (0.66%) followed by winnowing (0.63%); carrying (0.57%); stacking (0.54%); drying (0.48%) and others, against total production. Figure 4.3.7 shows PHL as percentage of wheat production in 1989-90.

Table 4.3.8 : ^p ost-harves	t Loss of Wheat Crop (in percentage)
Type of Loss	ioss against total production
Stack loss	0.54
Loss during carrying	0.57
Loss during threshing (hitting on hard surface)	0.66
Loss during threshing with bullock	0.05
Loss due to beating follo by threshing with bullock	
Loss due to paddle threshing	-
Other threshing losses	0.05
Kinnowing and cleaning losses	0.63
Drying loss	0.48
Loss due to bad weather	0.03
Total	3.04

Detailed PHL of wheat by regions and upazilas at different stages are shown in Appendix 4.3.10 and 4.3.11 respectively. Appendix 4.3.12 showed PHL of wheat by varieties. Figure 4.3.8 reveals a Lorenz curve showing concentration of total PHL from sample HH of wheat during 1989-90. The Gini's coefficient ratio of 0.42 indicates that the post-harvest loss is more or less spread over all types of households without concentrating to a particular group of households.

It may be noted that the factors responsible for loss may markedly be improved if appropriate measures are applied. Use of mechanical thresher may help in reducing the loss in PH operation.

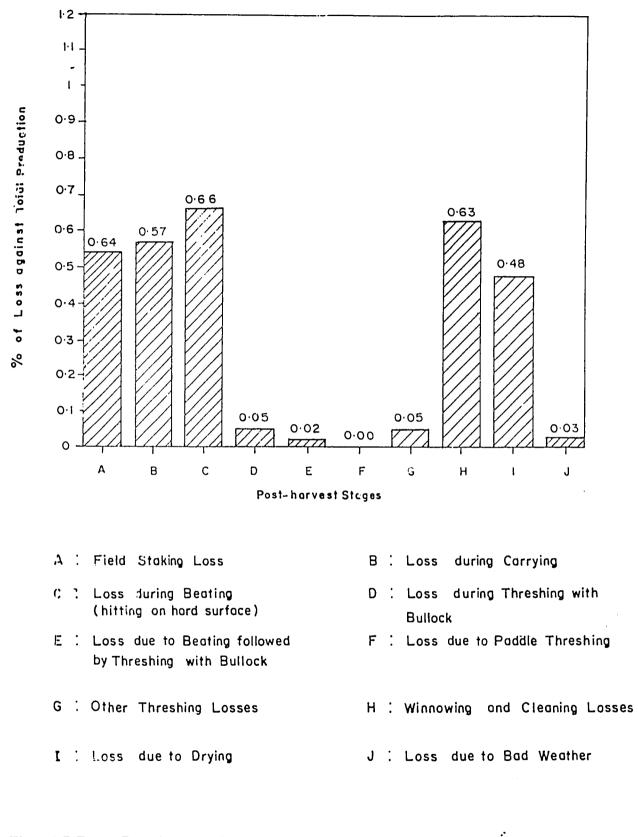
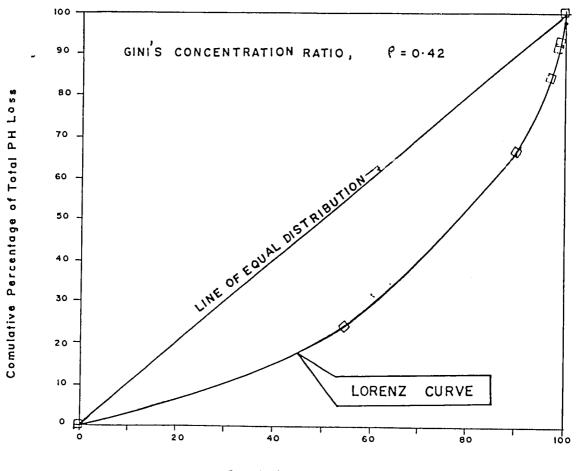



Fig. 4·3·7 Post-harvest Loss as Percentage of Total Production of Wheat Crops in 1989-90

Cumulative Percentage of Sample HH

Fig. 4·3·8 Lorenz Curve Showing Concentration of Total PH Loss for Sample HH of Wheat in 1989-90

4.3.5 Foodgrain Loss During PH operations

Table 4.3.9 depicts the PHL of all foodgrain crops (Aus, Aman, Boro and Wheat) at different stages of its operation.

Factors					Weighted Average
Stack loss					
Loss during carrying	1.00	0.62	0.82	0.57	0.74
Loss during beating(hitting on hard surface).	0.63	0.68	0.61	0.66	0.65
Loss during threshing with bullock	0.27	0.25	0.02	0.05	0.16
Loss due to Deating followed by Chreshing with Dullock	0.23	0.31	0.13	0.02	0.23
oss due to addle threshing	0.13	0.16	0.16	-	0.15
lther threshing osses	-	0,03	-	0.05	0.02
linnowing and leaning losses	0.69	0.82	0.50	0.63	0.68
rying loss	0.68	0.43	0,65	0.48	0.54
ad weather				0.03	
otal loss	4.18	4.39	3.88	3.04	

The average highest PHL of foodgrains (Aus, Aman, Boro and Wheat) estimated during the study period was by threshing (all methods) to the tune of 29.09% followed by stack loss (21.95%), carrying (17.92%), winnowing and cleaning (16.55%), drying (13.10%). The above mentioned five factors contributed 99% of the total PH loss. Motorized thresher was not seen at any of the household at the survey time. If a motorized thresher is used in the field then the losses in the process of stacking, carrying threshing and winnowing could be reduced to a greater extent. Only threshing loss was about 30% of the total post-harvest operations loss. The highest loss was found in Aman crop 4.39%, followed by Aus 4.18%, Boro 3.88% and Wheat 3.04% against total production. The weighted average loss of the foodgrain was 4.14%. Figure 4.3.9 shows the bar diagram indicating the PHL by all the foodgrain crops.

Table 4.3.10 reveals the target of foodgrain production for Aus, Aman, Boro and wheat as set by FPMU for the FY 1990-91. Estimation of PHL from the targeted production for 1990-91 are also shown.

-			
Crops (000	•	X of loss (present study)	Expected loss (000 metric tons)
Aus	2400	4.18	100.32
Anan	9200	4.39	403.88
Boro	6800	3.88	263.84
Wheat	1100	-3.04	33.44
Total crops	19500	4.14	801.48

On the targeted foodgrain production of 19.5 million metric tons for 1990-91 the PHL would be about 801 thousand tons, equivalent to food for 4.84 million people for one year at the rate of 16 oz (or 453 gm) per person per day. This is about 4% of the people of Bangladesh. Loss by Aman crop both in terms of percentage and in actual was the highest. On the basis of the above findings and from a production target of 19.5 Million tons, detail loss by factors during 1990-91 are shown in Table 4.3.11 (by quantity).

Table 4.3.11 indicated that losses of food grains were maximum in the process of threshing by different methods (1.21%). In terms of quantity it would be 236 thousand tons with a production target of 19.5 million tons. The next most important factor in foodgrain loss was stacking. Average loss was 0.91% in carrying. The winnowing losses were also higher. Total loss in carrying was 0.74%, winnowing 0.68% and drying 0.54% of total production.

			,	(in 000 /	metric tons
Factors					Average
1. Stack loss	9.84	100.28	59.16	5.94	177.45
2. Loss during carrying	24.00	57.04	55.76	6.27	144.30
 Loss during beating(hitting or hard surface). 	15.12 1	62.56	41.48	7.26	126.75
4. Loss during threshing with bullock	6.48	23.00	1.36	0.55	31.20
5. Loss due to heating followed b threshing with bullock		28.52	8.84	0.22	44.85
5. Loss due to paddle threshing	3.12	14.72	10.88	-	29.25
7. Other threshing losses	-	2.76	-	0.55	3.90
. Winnowing and cleaning losses	16.56	75.44	34.00	6.93	132.60
. Drying loss	16.32	39,56	44.20	5.28	105.30
. Loss due to bad weather					11.70
Total loss	100.32	403.88	263.84		807.30
Total Production* (Target)	2400	9200	6800		

Table 4.3.11 : Projected PHL of Foodgrains (Rice & Wheat) during 1990-91 based on the present study.

Foodgrain loss of 4.14% against total foodgrain production in the PH operation was certainly in the high side for a country like Bangladesh. Losses in the PH operation may be invariably reduced if improved methodologies and technologies are followed or technologies and methodologies for minimization of losses be immediately pursued. This calls for a stronger extension program : improved post-harvest technology of foodgrain crops.

.

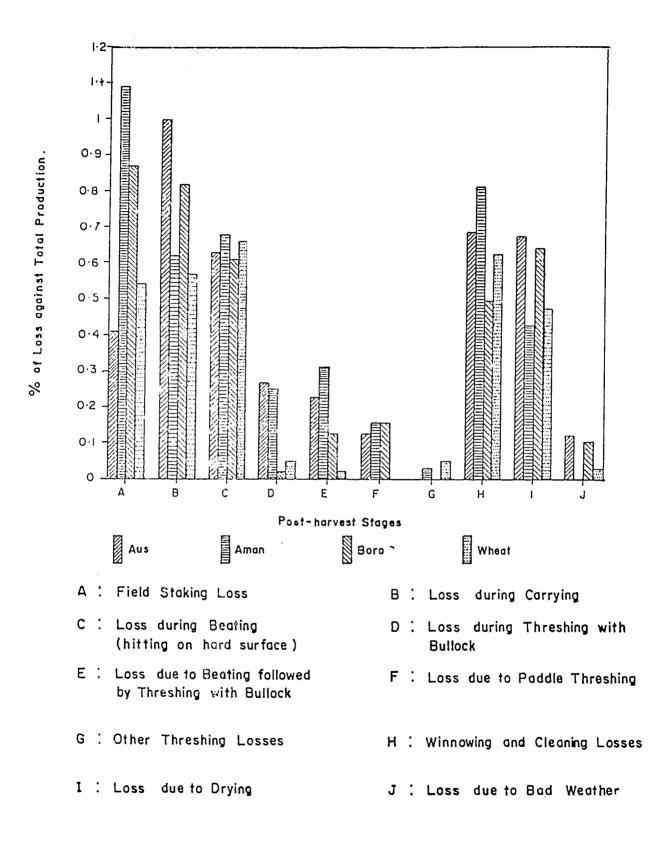


Fig. 4.3.9 Post-harvest Loss as Percentage of Total Production of Different Foodgrain Crops in 1989-90.

4.4 MILLING LOSS

4.4.1 Parboiling and Drying : Farmers Level

Parboiling of rice before milling is practiced in all areas of Bangladesh except in the greater Sylhet, Chittagong and Chittagong Hill Tract districts. Detailed foodgrain loss due to parboiling has been presented in Appendices 4.4.1 to 4.4.3 for Aus, Aman and Boro paddy respectively. The summary of these findings is given in Table 4.4.1.

From Table 4.4.1 it is evident that maximum paddy loss occurred in case of Aman, the average of which was 2.14%, followed by Boro which was 1.86%, the next was Aus, which was 0.95%. From Table 4.4.1., in all cases it can be seen that during parboiling and drying, maximum loss occurred during soaking, followed by eating by poultry birds. Loss due to stray cattle and goat came next. Loss due to other reasons like handling during parboiling and drying, was insignificant.

It was observed that drying of parboiled paddy usually takes 1 to 3 days depending on availability of sunshine, temperature, day length and type of surface of the drying yards (ARDICOL, 1988). In winter it took about 2 days for drying of Aman crop. Drying of Aus crop is usually completed in one day with full sunshine of summer. In wet summer it takes longer period for drying Boro paddy. As Aman paddy required maximum handling period (1 to 3 days), the loss in parboiling and drying systems was also highest. For Aus crop the post-harvest operation was faster, since the volume of the crop was smaller than Aman.

For Aus crop region-wise parboiling and drying loss was maximum (1.37%) in Chittagong/Noakhali region and minimum (0.65%) in Jessore/ Kushtia/Khulna region. Soaking loss was highest in all AEZ's except Rajshahi/Bogra/Pabna region, Mymensingh/Kishoreganj/Jamalpur region and Dhaka/Tangail region. In Rajshahi/Bogra/ Pabna the soaking loss was only 0.18% against the maximum loss of 0.82% in Chitcagong/Noakhali region. In Rajshahi/Bogra/Pabna region loss due to poultry eating was maximum (0.66%) whereas in Rangpur/Dinajpur it was minimum (0.17%). Loss due to cattle eating was comparatively very small, the maximum being 0.13% in Dhaka/Tangail region. In all AEZs, loss due to other reasons such as handling during parboiling and drying was negligible. Losses in cases of Aman and Boro crops also followed more or less the same pattern. Combined parboiling and drying losses of all paddy was 1.86% out of which 1.06% in soaking, 0.71% eaten by poultry birds, 0.06% eaten by stray cattle and goat and 0.03% was lost by other

Craps		Total quantity			is due to		
	¦ before Par ¦ oiling and	b-¦ after Parc iling and Drying 	o−¦ Soaking ¦	Eate Poultr		Other 	
Aus (kg)	356345	352955		1462		115	3390
Percentage	100	99.05	0.45	0.41	0.05		0.95
Aman (kg)	1168067	1143021	14161	9547	824	414	25046
Percentage	100	\$8.65	1.21	0.83	0.07	0.03	2.14
Boro (kg)	802966	789070	8813	5517	360	206	14896
Percentage	100	S8.14	1.10	0,69	0.04	0.03	1.86
Total (kg) Percentage	2327378 100	2284046 \$8.14	24518 1.06	18628 0.71		735 0.03	43332 1.85

Table 4.4.1 : Loss During Parboiling and Drying of Pacety.

Note : Conversion ratio, Paddy to Rice 0.676

4.4.2 Parboiling and Drying : Millers Level

Parboiling and drying losses of Paddy at millers level were surveyed both by region and by upazila basis for Aus, B.Aman, T.Aman and Boro for both local and modern varieties. The results of the survey are shown in Appendices 4.4.4 and 4.4.5. From the result it is revealed that the total average loss of paddy due to parboiling and drying was 1.03%, the maximum being 0.67%, for soaking, 0.25% due to poultry eating, 0.09% due to cattle eating, and 0.02% due to other reasons such as handling during parboiling and drying. Among the reasons, maximum loss 1.49% was found in Chittagong/Noakhali region and the minimum loss 0.32% in Mymensingh/Kishoregonj/Jamalpur region. In upazila basis the maximum loss of 1.49% was occurred in Feni upazila and the minimum 0.32% loss in Sarisabari upazila.

On crop basis the maximum loss 1.77% was observed for modern T.Aman in Feni upazila of Chittagong/Noakhali region and the minimum loss 0.32% for Boro (Modern variety) in Sharisabari upazila in Mymensingh/Kishoregonj/Jamalpur region.

4.4.3 Milling Loss : Farmers Level

The findings on the recovery of grains processed in Dheki and Small mills have been shown in Appendices 4.4.6 to 4.4.8 for Aus, Aman and Boro Paddy respectively. Regionwise recovery percentage of rice in 1989-90 is presented in Appendix 4.4.11. Summary of these compilations has been tabulated in Table 4.4.2. On an average, the recovery of Aus rice in Dheki was 67.53% Varying from 61.35% to 69.00%. The average recovery of husk, broken rice and bran was 31.93% varying from 30.72 to 37.42%. The lowest recovery of rice was obtained in the Dhaka - Tangail region, which was only 61.35%. The average loss in Dheki process was 0.54%, the maximum being 1.23% in Dhaka - Tangail region, and the minimum being 0.27% in Jessore - Kushtia - Khulna region (Appendix 4.4.6).

Regarding Aman paddy processing by Dheki the average recovery (Appendix - 4.4.7) was 70.10% with a process loss of 0.53%. The maximum recovery was 71.25% in Mymensingh - Kishoregonj - Jamalpur region and minimum recovery was 64.75% in Jessore - Kushtia -Khulna region. The maximum process loss was 1.47% in Dhaka -Tangail region and the minimum process loss was 0.25% in Barisal - Faridpur - Patuakhali region (Appendix 4.4.7).

The result of the Boro crop processing by Dheki has been compiled in Appendix - 4.4.8. The average recovery was 69.37% with a process loss of 0.52%. The maximum recovery was 73.97% in Jessore - Kushtia - Khulna region, and the minimum recovery was 64.39% in Rajshahi - Bogra - Pabna region. The maximum process loss was 1.37% in Jessore - Kushtia - Khulna region and the minimum process loss was 0.42% both in Chittagong - Noakhali.

Table - 4.4.2 indicated that the overall average recovery of Aus, Aman and Boro rice by Dheki processing in all the regions surveyed was 69.50% with a process loss of 0.53%. The maximum recovery was 70.10% in case of Aman, and the minimum recovery of 67.53% was for Aus. The maximum process loss was 0.54% for Aus and the minimum 0.52% for Boro paddy.

Similarly the results of farmers level small rice mills have been compiled in Appendices 4.4.6 to 4.4.8 and final results summarised in Table - 4.4.2.

The results of Aus milling have been compiled in Appendix -4.4.6. The average recovery in surveyed area was 67.72% with a process loss of 0.51%. The maximum recovery was 69.82% in Biracial - Faridpur - Patuakhali region and minimum recovery was 63.63% in Dhaka - Tangail region. The maximum process loss was 1.33% in Dhaka - Tangail region and the minimum process loss was 0.18% in Mymensingh - Kishoregonj - Jamalpur region.

The results of the Aman milling have been compiled in Appendix - 4.4.7. The average recovery of rice was 68.13% with a process loss of 0.69%. The maximum was 69.40% in Barisal - Faridpur - Patuakhali region and the minimum recovery of 66.48% in Comilla - Sylhet region. The maximum process loss was 1.31% in Dhaka - Tangail region, and the lowest process loss was 0.28% in Barisal - Faridpur - Faridpur - Patuakhali region.

The results of Boro milling have been compiled in Appendix -4.4.8. The average recovery of rice was 68.28% with a process loss of 0.79%. The maximum recovery was 72.31% in Jessore - Kushtia -Khulna region, and the minimum recovery was 66.03% in Dhaka -Tangail region. The maximum process loss was 1.48% in Dhaka - Tangail region, and the minimum process loss was 0.43% in Chittagong - Noakhali region.

Table - 4.4.2 presents the summarised results. The overall average recovery of rice in all surveyed areas was 68.11% with a process loss of 0.70%. The maximum recovery of rice was 68.28% in case of Boro paddy, and the minimum recovery of rice was 67.72% in case of Aus paddy. The maximum process loss was 0.79% in case of Boro paddy and the minimum process loss was 0.51% in case of Aus paddy. Maximum recovery of rice also gave maximum process loss and the minimum recovery of paddy also gave minimum process loss. This was due to variation in recovery of husk, broken rice and bran (Table - 4.4.2). Aus gave maximum quantity (31.77%) of husk, broken rice and bran and the Boro gave lowest quantity (30.93%) of husk, broken rice and bran.

Table 4.4.2 :	Milling Loss	in Dheki and	Rice Huller	(Small Mills)

Crops	Total quantity before Dheki	Tota] quantity after Dheki 	Total husk,bran & broken grains in Dheki	loss in Dheki	Total quantity before milling	Total quantity after milling	Total husk of broken grains in mill	Total loss in milling
Aus(kg)	18630	12581	5948	101	379213	256806	120478	1929
Percentage	100	67.53	31.93	0.54	100	67.72	31.77	0.51
Aman(kg)	77026	53993	22622	411	844176	575134	263218	5824
Percentage	100	70.10	29.37	0.53	100	68,13	31.18	0.69
Boro(kg)	71711	49745	21591	375	789046	538738	244013	6293
Percentage	100	69.37	30.11	0.52	100	68.28	30.93	0.79
Total(kg)	167367	116319	50161	887	2012435	1370678	627711	14046
Percentage	100	69.50	29.97	0.53	100	68.11	31.19	0.70

4.4.4 Milling Loss : Millers Level

Milling losses of local and modern varieties of all crops i.e. Aus, Aman, and Boro paddy and Wheat by regions are shown in Appendix 4.4.9. The average total milling loss of all types of paddy and wheat was 0.67%, maximum loss was 1.39% in Jessore/Kushtia/Khulna region and minimum loss was 0.42% in Mymensigh/Kishoregonj/Jamalpur region. Regarding individual crops, maximum 1.51% milling loss was in case of local Aus in Jessore/Kushtia/Khulna region and minimum 0.20% milling loss was in case of Boro (MV) in Mymensingh /Kishoregonj /Jamalpur region. A summarized crushing loss of wheat (MV) has been given in Table 4.4.3.

Table 4.4.3	:	Crushing	Loss	of	Wheat	(MV)	ьу	region.
-------------	---	----------	------	----	-------	------	----	---------

AEZ		Total quantity	Total quantity of Ata recovered	Total loss crushing	in ¦ Total X of ¦ crushing Loss
Chittagong/	(kg)	3000	2959	 41	1.37
Noakhali	x	100	98.63		1.07
Mymensingh/Kishor	e-(kg)	215695	214164	1531	0.71
gonj/Jamalpur	x	100	99.29	1551	0.71
Dhaka/	(kg)	29856	29491	365	1.22
Tangail	x	100	98.78	505	1.22
Comilla/	(kg)	106512	105212	1300	1.22
Sylhet	x	100	98.78	1300	1.24
Rajshahi/Bogra	(kg)	22022	21800	222	1.00
Pabna	x	100	98.99	~~~	1.00
angpur/	(kg)	115952	115312	640	0.55
)inajpur	x	100	99.45	040	0.55
essore/Khustia	(kg)	345639	340949	4690	1.36
(hulna	x	100	98.14	4030	1.50
arisal/Faridpur	(kg)	25000	24866	134	0.54
atuakhali	x	100	99.46	207	0.54
otal ercentage	(kg)	863676 100	854753 98.97	8923	1.03

Result of Table 4.4.3 indicates that the total quantity of wheat in all regions were crushed in wheat crushers and not in any modern mills. The products was 'Ata' or unrefined flour and the brans were separated by the owners of the wheat by themselves. Maximum crushing loss was recorded as 1.37% in Chittagong/Noakhali region, and minimum milling loss was recorded as 0.54% in Barisal/Faridpur/Patuakhali region. The average recovery of 'Ata' was 98.97%.

Milling losses for paddy has been summarized in Table 4.4.4.

AEZ			of Rice			¦ Total % of milling loss
Chittagong/	(kg)	1935298	1320354	605552	9392	0.49
Noakhali	x	100	68.22	31.29		
Mymensingh/Kishor	e-(kg)	2797102	1920131		11033	0.39
gonj/Jamalpur	x	100	68.65	30.95		
Dhaka/	(kg)	3015647	2038874	954504	22269	0.74
Tangail	x	100	67.61	31.61		
Comilla/	(kg)	7178797	4915902	2221939	40955	0.57
Sylhet	x	100	68.48	30.95		
Rajshahi/Bogra	(kg)	245314	161883	82319	1112	0.45
Pabna	x	100	65.99	33.56		
Rangpu <i>r/</i>	(kg)	5899154	3981727	1870984	46443	0.79
Dinajpur	x	100	67.49	31.72		
Jessore/Kushtia	(kg)	868952	635252	221543	12157	1.40
(hulna	x	100	73.11	25.49		
Barisal/Faridpur	(kg)	169000	114887	53271	843	0.50
Patuakhali	x	100	67.98	31,52		
[ota]	(kg)	22109264	15089111	6875949	144204	0.65
Percentage	-	100	68.25	31.10	0.65	

Table 4.4.4 : Milling losses of Paddy at Millers level.

In the study area the total average milling loss of paddy was 0.65%, maximum being 1.40% in Jessore/Kushtia/Khulna region, and the minimum 0.39% in Mymensingh/Kishoregonj/Jamalpur region. The average recovery of rice was 68.25% and the average proportion yield of husk, bran and broken rice was 31.10%. The maximum recovery of rice was 73.11% in Jessore/Kushtia/Khulna region, and the minimum recovery was 65.99% in Rajshahi/Bogra/Pabna region. The process loss was also 0.45% which was comparatively low but the yield of husk, bran and broken rice was 33.56%, which was higher.

4.4.5 Crushing Loss in Wheat

At farm level, the farmers bring their wheat to small crushers nearer to their abodes and take back their produce crushed after paying fixed charges to the miller. The process loss of such milling was studied at 429 points of the 8 AEZ's has been represented in Appendix - 4.4.10. It was observed that the average milling loss in 429 cases in surveyed areas was 1.48%. The maximum, 2.30% milling loss was observed in Dhaka/Tangail region. In Chittagong /Noakhali region 2.00%, in Barisal/Faridpur/Patuakhali 1.87%, in Rangpur/Dinajpur region 1.54%, in Jessore/Kushtia/Khulna 1.53%, in Comilla/Sylhet 1.37%, in Rajshahi/Bogra/Pabna 1.26% and in Mymensingh/Kishoreganj/Jamalpur region 1.04%.

4.5 STORAGE LOSS

4.5.1 Farmers Level

Post-harvest loss in storage of foodgrains due to high moisture content, rat infestation, insects, fungus, and other reasons have been shown in Tables 4.5.1, to 4.5.3.

Table 4.5.1 shows the results cf storage loss of Aus crop by region for an average period of 3.87 months. It was observed that the total storage loss on an average over all the regions was 2.44%, the maximum was due to higher moisture content (1.28%) followed by rat infestation (0.78%) and the minimum loss was due fungus (0.06%). Moisture loss was attack maximum Mymensingh/Kishoregonj/Jamalpur region (2.12%) and the minimum in in Barisal/Faridpur/Patuakhali region (0.15%). Loss due to rat infestation was maximum in Barisal/Faridpur/Patuakhali region (1.54%), and the minimum in Jessore/Kushtia/Khulna region (0.52%). Loss due to fungus was maximum in Mymensingh/ Kishoregonj/Jamalpur region (0.13%) followed by Rangpur/Dinajpur region (0.09%). In other regions it was quite negligible or nil.

Table 4.5.2 shows the survey results of Aman crop for an average period of 4.73 months. The average storage loss over all the regions was 1.16% having the maximum for moisture loss (0.65%) followed by rat infestation (0.32%). Loss due to insect was 0.14%. Moisture loss of Aman paddy was maximum in Rajshahi/Bogra/Pabna region (1.73%) and minimum in Barisal/ Faridpur/Patuakhali region (0.23%).

Table 4.5.3 indicates the storage loss of Boro crop. The average total loss for all the regions was 0.90% for an average storage period of 3.24 months. The maximum loss was due to moisture content (0.48%) and minimum was due to fungus. Loss due to moisture content was maximum in Chittagong/Noakhali region (0.62%), and minimum in Mymensingh/Kishoreganj/Jamalpur region (0.25%).

From the Tables 4.5.1, 4.5.2 and 4.5.3, it is observed that in all cases losses due to moisture content was maximum and losses due to fungus was minimum. Storage loss was maximum (2.44%) in Aus crop and minimum (0.90%) in Boro crop. The results of all the 3 crops are summarized in Table 4.5.4.

Region	Quantity		Moist			Loss			ty Tota
	Stored	Stored	ure Loss	by Rat		due to Fungus	to Jther Reasons	Releas	ed Loss
Chittagong-Noakhali	95607	434	1427	682	202	53	147	93096	2511
Mean	965.73	4.38	14.41	6.89	2.04	.54	1.48	940.36	25.3635
X	100		1.49	0.71	0.21	0.06	0.15	97.37	2.63
Mymensingh-Kishore- gonj-Jamalpur	140453	344	2973	1043	415	182	147	135693	4760
Mean	1337.65	3.28	28.31	9.93	3.95	1.73	1.40	1292.31	45.3333
x	100		2.12	0.74	0.30	0.13	0.10	96.61	3.39
Comilla-Sylhet	42976	295	416	360	32	11	100	42059	919
Mean	417.26	2.86	4.04	3.50	.31	.11	.97	408.34	8.9223
x	100		0.97	0.84	0.07	0.03	0.23	97.86	2.14
Rajshahi-Bogra- Pabna	56051	202	436	591	141	1	4	54878	1173
Mean	800.73	2.89	6.22	8.44	2.02	.01	.06	783.97	16.7500
x	100		0.78	1.05	0.25	0.00	0.01	97.91	2.09
Rangpur-Dinajpur	57197	95	955	509	335	52	30	55316	1881
Mean	1845.06	3.06	30.81	16.42	10.81	1.68	0.97	1784.39	60.6800
x	100		1.67	0.89	0.59	0.09	0.05	96.71	3.29
Jessore-Kushtia- Khulna	96293	725	181	507	96	0	10	95499	794
Mean	718.60	5.41	1.35	3.78	.72	0.00	.07	712.68	5,9254
x	100		0.19	0.52	0.10	0.00	0.01	99.18	0.82
Barisal-Faridpur- Patuakhali	12897	283	18	199	1	0.00	0	12679	218
Mean	179.13	3.93	0.25	2.76	.01	0.00	0.00	176.10	3.0278
x	100		0.15	1.54	0.01	0.00	0.00	98.31	1.69
Total	501476	2378	6406	3890	1223	299	438	489220	12256
Mean	816.74	3.87	10.43	6.34	1.99	0.49	0.71	796.78	19.9600
x	100		1.28	0.78	0.24	0.06	0.09	97.56	2.44

Table 4.5.1 : Post-harvest Loss (Kg) in Storage of Aus Crop by Region during 1989-90

Note : For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Region	Quantity Stored	Stored	Quantity released	Moist- ure loss	Eaten by rat	due to	Loss due to fungus		
Chittagong-Noakhali	191966	908	189114	1652	617	451	31	102	285:
Hean	1184.98	5.60	1167.37	10.20	3.81	2.78	.19	.63	17.6
x	100		98.51	0.86	0.32	0.23	0.03	0.05	1.49
Mymensingh-Kishore- gonj-Jamalpur	98257	1009	97395	423	196	126	28	90	862
Mean	534.01	5.48	529.32	2.30	1.07	.68	.15	. 49	4.68
x	100		99.12	0.43	0.20	0.13	0.03	0.09	0.88
Dhaka-Tangail	112843	348	112085	275	369	64	27	22	758
Mean	1085.03	3.34	1077.74	2.64	3.55	. 62	.26	. 21	7.29
X	100		99.33	0.24	0.33	0.06	0.02	0.02	0.67
Comilla-Sylher	42807	690	42311	212	176	50	25	33	496
Mean	339.74	5.48	335.80	1.68	1.40	.40	.20	.26	3.94
X	100		98.84	0.49	0.41	0.12	0.05	0.08	1.18
Rajshahi-Bogra- Pabna	21305	120	20630	369	182	124	1	0	675
Mean	507.25	2.86	491.18	8.78	4.33	2.94	.02	0.00	16.07
x	100		96.83	1.73	.85	.58	0.01	0.00	3.17
Rangpur-Dinajpur	62952	94	62260	284	209	143	45	12	692
Yean	2331.56	3.48	2305.93	10.52	7.74	5.28	1.65	.44	25.63
X	100		98.90	0.45	0.33	0.23	0.07	0.02	1.10
Jessore-Kushtia- Khulna	284299	598	281073	2175	847	204	0	0	3226
	2429.91	5.11	2402.33	18.59	7.24	1.74	0.00	0.00	27.57
6	100		98.87	0.77	0.29	0.07	0.00	0.00	1.12
Barisal-Faridpur∽ Patuakhali	32394	255	32157	76	95	44	19	4	237
lean	368.11	2.89	365.41	.86	1.08	.50	. 22	.05	2.70
	100		99.27	0.23	0.29	0.14	0.06		0.73
otal	846823	4022	837024	5464	2692	1205	175	262	9799
ean	996.26	4.73	984.73	6.43	3.17	1.42	.21		11.53
	100		98.84	0.65	0.32	6.14	0.02	0.03	1.16

Table 4.5.2. : Post-harvest Loss (kg) in Storage of Aman Crop by Region during 1989-90

Note : For AEZ wise conversion ratio, paddy to rice, please see appendix 4.4.11

Region	Quantity Stored		Quantity Released	Moist- ure loss	Eaten by rat	due to	Loss due to fungus	Loss due to other reason:	Tota loss in ko s
Chittagong-Noakhal	1 95648	270	94789	• 595	118	112	15	19	859
Mean	1062.75	3.00	1053,21	6.61	1.31	1.24	.17	.21	9.54
x	100		99.10	0.62	0.12	0.12	0.02	0.02	0.90
Mymensingh-Kishore gonj-Jamalpur	- 139983	616	139139	353	265	132	80	14	844
Mean	804.50	3.54	799.65	2.03	1.52	.76	.46	.08	4.85
x	100		99.40	0.25	0.19	0.09	0.06	0.01	0.60
Dhaka-Tangail	136513	208	135085	667	285	142	103	232	1428
Mean	1870.04	2.86	1850.48	9.14	3.90	1.94	1.41	3.17	19.56
x	100		98.95	0.49	0.21	0.10	0.08	0.17	1.05
Comilla-Sylhet	47576	397	47101	289	104	32	14	36	475
Hean	406.63	3.39	402.57	2.47	.89	.27	.12	.30	4.06
x	100		99.00	0.61	0.22	0.07	0.03	0.07	1.00
Rajshahi-Bogra- Pabna	226240	433	224294	931	545	331	69	71	1947
Mean	1549.59	2.97	1536.26	6.38	3.73	2.27	.47	.49	13.33
x	100		99.14	0.41	0.24	0.15	0.03	0.03	0.86
Rangpur-Dinajpur	182950	407	181162	895	397	256	80	160	1788
Hean	1355.19	3.01	1341.94	6.63	2.94	1.89	.59	1.19	13.24
κ	100		99.02	0.49	0.22	0.14	0.04	0.09	0.98
Jessore-Kushtia- Khulna	262029	510	259528	1520	692	270	14	5	2501
Mean	2201.92	4.29	2180.91	12.77	5.82	2.27	.12	.04	21.02
x	100		99.05	0.58	0.26	0.10	0.01	0.00	0.95
Barisal-Faridpur- Patuakhali	72676	194	72013	311	140	73	66	75	663
Mean	865.19	2.32	857.30	3.70	1.66	.86	.78	.89	7.89
x	100		99.09	0.43	0.19	0.10	0.09	0.10	0.91
Total	1163614	3036	1153110	5561	2545	1347	441	611	10504
Mean	1240.53	3.24	1229.33	5.93	2.71	1.44	. 47	.65	11.20
x	100		99.10	0.48	0.22	0.11	0.04	0.05	0.90

Table 4.5.3 : Post-harvest Loss (kg) in Storage of Boro Crop by Region during 1989-90

Note : For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Crops		Quantity Stored (kg.)	Storage Period (in months)	Quantity Released 		Loss	Eater by Rat	ł	due to		Loss due to other reasons	
Aus Paddy		501476	3.87	489220		6406	389	 90	1223	299	438	12250
Percentage		100		97.56		1.28	0.7	78	0.24	0.06	0.09	2.44
Aman Paddy		846823	4.73	837024		5464	269	22	1205	175	262	9799
Percentage		100		98.84		0.65	0.3			0.02		1.16
Boro Paddy		1163614	3.24	1153110		5561	254	5	1347	441	511	10504
Percentage		100		99.10		0.48	0.2	22	0.11	0.04		0.90
Total		2511913	3.95	2479354	. – –	17431	912	7	3775	915	1311	32559
Total Loss	 (P	ercentage)			0.69	0.3	36	0.15	0.04	0.05	1.30

Table 4.5.4 : Post-Harvest Loss (kg) in Storage of Aus, Aman and Boro Crops by Region During 1989-90.

Note : Conversion ratio, Paddy to Rice 0.676

Table 4.5.4 indicates that on storing 501.48 tons of Aus paddy for an average period of 3.87 months, the total storage loss at farm level was found to be 2.44%. Storage loss of Aman crop for an average period of 4.73 months was found 1.16%, and the storage loss of Boro crop for an average period of 3.24 months was 0.90%. In other words on storing 2.51 thousand tons of Aus, Aman and Boro paddy on an average period of 3.95 months the total storage loss was found to be 1.30%.

Table 4.5.5 shows the post harvest loss in storage of Aus at farm level by container during 1989-90. The Gunny bags, motka, dole, gola and other types were used as containers. The average period of storage was 3.87 months and the average quantity of storage loss was 2.44%. Highest storage loss was 4.19% when the crops were stored in other type of containers like Tin pot, Drum. The second highest (3.05%) storage loss was observed when the crop was stored in dole. This was followed by gunny bags (2.69%), gola (2.23%) and then motka (1.91%). Among the containers minimum storage loss was observed by motka. In these containers, storage losses due to moisture, rat infestation, insect and fungus attack and other reasons were nominal.

Regarding Aman crop (Table 4.5.6) the average storage loss in all types of containers were 1.16%, for an average period of 4.73 months the highest being 1.45% in case of gunny bags and the lowest (1.12%) in case of 'gola', 1.19% loss was observed in both the cases of motka and dole. Loss due to storing in other types of container like tin pot, drum etc. was 1.18%. Causes of loss also followed the same pattern as indicated in Table 4.5.2 with reasons explained therein.

Regarding Boro crop (Table 4.5.7), the average loss in all types of containers was 0.90% for an average storage period of 3.24 months, the maximum being 1.59% in case of other type of containers like tin pot, drum etc. 1.05% in 'dole' and 'motka', 0.92% in 'gola' and 0.54% in gunny bags. The loss in gunny bags was the lowest. Here the causes of loss followed the same pattern as shown in Table 4.5.3 with reasons explained therein.

Container	Quantity stored	Months stored	•			due to		Loss du to othe reasons	r loss
Gunny bag	17255	176	16791	 198		25	3	 51	464.00
Mean	253.75	2.60	246.93	2,91	2.75	. 37	.04	.75	6.82
x	100.00		97.31	1.15	1.08	.14	.02	.30	2.69
Hotka	50726	861	49757	522	286	131	10	20	969.00
Mean	291.53	4.95	285.96	3.00	1.65	.75	.06	.12	5.58
x	100.00		98.09	1.03	.56	.26	.02	.04	1.91
Dole	126228	585	122387	1904	1283	405	97	153	3841.00
Hean	738.17	3.42	715.71	11.13	7.50	2.37	.57	.89	22.46
x	100.00		96.95	1.51	1.02	.32	.08	.12	3.05
Gola	300912	676	294196	3588	2124	608	187	209	6716.00
Mean	1709.73	3.84	1671.57	20.39	12.07	3.45	1.06	1.19	38,1591
x	100.00		97.77	1.19	.71	.20	.06	.07	2.23
Others	6355	80	6089	194	10	55	2	5	266.00
Mean	254.20	3.20	243.56	7.76	.40	2.20	.08	. 20	10.6400
x	100.00		95.81	3.05	.16	.87	.03	.08	4.19
Total	501476	2378	489220	6405	3890	1223	299	438	12256.00
Hean	816.74	3.87	796.78	10.43	6.34	1.99	.49	.71	19.96
x i i i i i i i i i i i i i i i i i i i	100.00		97.56	1.28	.78	.24	.06	.09	2.44

Note : Conversion ratio, Paddy to Rice 0.674

Container	Quantity stored		Quantity released			due to	due to fungus	Loss to other reasons	Total loss in kg
Gunny bag	29731	423	29300		137		13		431
lean	291.48	4.15	287.25	2.28	1.35	.44	.12	.04	4.22
5	100	-	98.55	0.79	0.46	0.15	0.04	0.01	1.45
lotka	94578	1322	93455	578	301	214	25	5	1123
lean	355.56	4.97	351.34	2.17	1.13	.80	.09	.02	4.22
K C	100	-	98.81	0.60	0.32	0.23	0.03	0.01	1.19
0001	233026	1069	230259	1243	1089	314	54	56	2766
lean	935.85	4.29	924.74	4.99	4.37	1.26	.26	.23	11.11
6	100	-	98.81	0.54	0.47	0.13	0.03	0.02	1.19
iola	482411	946	478005	3366	1150	623	71	197	5407
lean	2627.23	5.14	2597.85	18.29	6.25	3.39	.39	1.07	29.38
6	100	-	98.88	0.70	0.24	0.13	0.01	0.04	1.12
)thers	6077	262	6005	46	15	9	2	0 -	72
lean	124.02	5.35	122.55	.94	.31	.18	.05	0.00	1.47
4	100	-	98.82	0.75	0.25	0.15	0.03	0.00	1.18
otal		4022		5464	2692	1205	175	262	9799
lean						1.42	0.21	0.31	11.53
	100	-	98.84	0.65	0.32	0.14	0.02	0.03	1.16

Note : Conversion ratio, Paddy to Rice 0.679

Table 4.5.7 : Post-harvest Loss (kg) in Storage of Boro by Container during 1989-90.

Container	Quantity stored	Months stored	Quantity released	Moist- ure loss	Eaten by rat	aue co	due to	Loss due to other reasons	Total loss in kg
bac	177892	571	176922	445	318	110	41	56	970
Gunny bag	1052.14	3.38	1046.88	2.63	1.88	.65	.24	.33	5.74
Hean %	1052.14	5.50	99.46	0.25	0.18	0.06	0.02	0.03	0.54
11- b 1- b	100515	577	99454	499	279	169	53	51	1051
Motka		3.24	558.79	2.80	1.57	.95	.30	. 29	5.91
Hean %	564.69 100	3.24	98.95	0.50	0.28	0.17	0.05	0.05	1.05
_			222040	1150	597	279	159	185	2370
Dole	225310	799	222940	4.44	2.31	1.08	.61	.71	9.15
Mean	869.92	3.08	860.77		0.27	0.12	0.07	0.08	1.05
x	100		98.95	0.51	0.27	0.12	0.07	••••	
Gola	654113	968	648091	3430	1328	767	161	317	6022
Mean	2144.63	3.17	2124.89	11.24	4.35	2.51	.59	1.04	19.74
X S	100	5.17	99.08	0,52	0.20	0.12	0.03	0.05	0.92
0.51.5.5	5784	120	5693	38	23	22	7	2	92
Others		4.63	218.96	1.46	.87	.83	.27	.09	3.52
Mean X	222.46 100	4.03	98.41	0.66	0.40	0.38	0.12	0.03	1.59
			1153110	 5561	2545	1347	441	611	10504
Total	1163614	3036	1230.64	5.93	2.72	1.44	0.47	0.65	11.21
Mean X	1241.85 100	3.24	99.10	0.48	0.22	0.11	0.04	0.05	0.90

Conversion ratio, Paddy to Rice 0.678

4.5.2 Primary and Secondary Trader Levels

Data regarding storage loss at traders level have been collected from primary and secondary traders.

Table 4.5.8 shows the storage loss at primary traders level. The average total loss of foodgrains at primary traders level was found to be 0.35%, which were due to evaporation, eating by rodent, damage by insects, fungus loss and losses due to handling during loading and unloading. In Chittagong/Noakhali region, the average total loss was found 0.35% (Appendix 4.5.1). The highest 0.14% loss occurred due to evaporation, 0.08% was due to eating by rodent, insect loss was 0.05%, fungus loss was 0.04% and handling loss was 0.03%. In all regions, the losses followed the same pattern as was the case of Chittagong/Noakhali region. In all these regions, the average storage period was 3.10 months varying from 1 month in Jessore/Kushtia/Khulna region to 3.78 months in Chittagong/Noakhali region. It was observed that the storage loss did not correlate with the storage period. It is likely that it varied with the quality of grain stored and with the condition of storing. If the grain contains more moisture, the evaporation would be more leading to higher loss. Loss due to eating by rodent, depends on population of rodent in that particular region and the facility of their access to stored foodgrains.

Out of 18 selected Upazilas, the average storage loss at primary traders level was 0.35%. In Comilla/Sylhet region, the average loss due to evaporation was 0.27%. On Upazila basis, the

highest loss of 0.82% due to evaporation occurred in Chandpur Upazilla and the total storage loss in the same Upazila was 0.96% (Appendix 4.5.2). The results followed the same pattern as indicated by region in Appendix 4.5.1.

At primary traders level foodgrains were stored mainly in gunny bags and gola. Tables 4.5.8 and 4.5.9 show the type of grains and containers used for storing foodgrains at primary traders level. It was observed from the survey regions that rice was stored in gunny bags and gola, and paddy was stored only in gunny bags. Survey included 20 cases, out of which 18 were for paddy and 2 for rice. Again gunny bag was studied in one place and gola in one place. Here also the total average process loss was 0.35% and the losses followed the same pattern as mentioned in Appendices 4.5.1 and 4.5.2.

Storage losses at secondary traders level are shown by regions in Table 4.5.10; for rice, paddy and wheat by upazila in Appendix 4.5.3, by type of foodgrains in Appendix 4.5.4 and by container only in Appendix 4.5.5.

Table 4.5.10 indicates that storage loss at secondary traders level by region was conducted in 34 places indicating average storage loss at 0.36% for an average storage period of 2.65 months. Here also the highest storage loss was due to higher moisture content. Causes of storage loss almost followed the same pattern as was indicated at primary traders level (Appendices 4.5.1 & 4.5.2). By Upazila basis the results followed the same pattern as in Appendix 4.5.3. Gunny bag was only used for storing foodgrains at secondary traders level (Appendix 4.5.5), for storing rice, paddy and wheat (Appendix 4.5.4). These results were also the same and followed the same pattern as indicated in Appendix 4.5.3.

Table 4.5.8 : Storage	Loss (Kg) at Primary	Traders Level by	/ Type of Foodgrain

Type of foodgrain	Type Conta		Quantity stored in kg.	Period of sto- rage in months	- release		• Eaten by rodent in kg.	y Insect loss in kg.	loss	loss	loss due
Rice	Gunny	bag	480	1	478	2	1	 0		0	2
	Mean	-	480.00	1.00	478.00	1.50	.50	0.00	0.00	0.00	2.00
	x					.31	.10	0.00	0.00	0.00	.41
	Gola		6705	1	6685	16	3	0	0	1	20
	Mean		6705,00	1.00	6685.00	16.00	3.00	0.00	0.00	1.00	20.00
	x					.24	.04	0.00	0.00	.01	.29
ium			7185	2	7163	18	4	0	0	1	22
lean			3592.50	1.00	3581.50	8.75	1.75	0.00	0.00	.50	11.00
K						.24	.05	0.00	0.00	.01	.30
addy	Gunny	bag 4	4785158	60	4768348	6912	3787	2577	2069	1465	16810
	Mean	2	55842.1	3.33	264908.2	384.03	210.36	143.17	114.92	81.39	933.86
	x					.14	.08	.05	.04	.03	.34
ium		4	785158	60	4768348	6912	3787	2577	2069	1465	16810
lean		26	55842.1	3.33	264908.2	384.03	210.36	143.17	114.92	81.39	933.86
						.14	.08	.05	.04	.03	.34
otal			792343	62	4775511	6930	3790	2577	2069	1466	16832
lean		23	9617.1	3.10	238775.6	346.50	189.50	128.85	103.43	73.30	841.58
6						. 14	.08	.05	.04	.03	.35

Note : Conversion ratio, paddy to rice 0.676

Table 4.5.9 : S	Storage Loss	(Kg) at Primary	Traders Level by Container	r.

Type of container	Quantity stored in kg.	Period of storage in months	released	Evapora- tion loss	Eaten by rodent	lnsect loss	Fungus loss	Other loss	Total loss
Gunny bag	4785638	61	4768826	6914	3787	2577	2069	1465	16812
Mean	251875.7	3.21	250990.9	363.89	199.32	135.63	108.87	77.11	884.82
x				.14	.08	.05	.04	.03	•.34
Gola	6705	1	6685	16	3	0	0	1	20
Hean	6705.00	1.00	6685.00	16.00	3.00	0.00	0.00	1.00	20.00
X 				.24	.04	0.00	0.00	.01	.29
Total	4792343	62	4775511	6930	3790	2577	2069	1466	16832
Mean	239617.1	3.10	238775.6	346.50	189.50	128.85	103.43	73.30	841.58
x				.14	.08	.05	.04	.03	.35

Conversion ratio, paddy to rice 0.676

Region	Quantity stored in kg.	Period of storage in months	released	Evapora- tion loss	Eaten by rodent	Insect loss	Fungus loss	Other loss	Total loss
Chittagong-Noakhal	1 2963403	38	2952701	5154	3617	946	 588	397	10702
Mean	296340.3	3.80		515.40	361.70	94.60		39.70	
Validn	10	10		10	10	10	10	10	1070.20
x				.17	. 12	.03	.02		.36
Dhaka-Tangail	141816	7	141514	130					
Mean	47272.00	2.33		43.33	121	30	5	16	302
Validn	3	2.55	4/1/1.55	43.33	40.33	10.00	1.67	5.33	100.67
x	-	5	5	.09	3 .09	3 .02	3 .00	3 .01	3 .21
Comilla-Sylhet	266925	9	266143	413	306	55	3	5	782
Mean	29658.33	1.00	29571.44	45.89	33.94	6.11	. 39	.50	86.89
Validn	9	9	9	9	9	9.11	9		9 .00
X Contraction of the second seco			-	. 15	. 11	.02	.00	.00	. 29
Rajshahi-Bogra-Pab	na 10425	3	10392	10	20	2	1	0	33
lean	10425.00	3.00	10392.00	10.00	20.00	2.00	1.00	0.00	33.00
/alidn	1	1	1	10.00	20.00	2.00	1.00	0.00	
6			-	. 10	. 19	.02	.01	0.00	1 .32
lessore-Kushtia-Khu	ulna74165	33	73635	419	79	32			
lean	6742.27	3.00	6694.09	38.09	7.18	2.91	0 0.00	0 0.00	530
alidn	11	11	11	11	11	2.91	11	11	48.18
				.56	.11	.04	0.00	0.00	11 .71
otal	3456734	 90	3444384	6126	4143	1065	 503		
ean	101668.6		101305.9	180.18	4143	1065 31.32	597	418	12349
alidn	34	34	34	34	34	31.32	17.56 34	12.28 34	363.21
	-	•	54	.18	.12	.03	.02	.01	33 .36

Table 4.5.10 : Storage loss (Kg) at secondary traders level by region

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

4.5.3 Millers Level

Storage losses of foodgrain at millers level in case of boiler mills were surveyed in all the regions on local and modern varieties of Aus, Aman and Boro. The results have been shown in Appendix 4.5.6.

From the results it was evident that at millers level (in case of boiler mills) all types of foodgrain were stored in gunny bags and no other container was used by such millers. Total average milling loss of paddy in these boiler mills was 1.70% with the maximum loss of 1.44% due to evaporation followed by 0.15% due to eating by rodents, 0.04% due to insect infestation, 0.03% fungus attack and 0.04% due to handling during loading and unloading. This pattern was observed in all the regions in all cases of paddy. The maximum loss was observed in Comilla/Sylhet region. In the same region, modern Boro crop was investigated in 4 cases where the total average loss was 3.66% with the maximum 3.45% loss due to evaporation. In conclusion, the loss due to evaporation presented in the this section is not a loss of foodgrain during storing. It is only due to evaporation of excess moisture which was retained in the stored foodgrains because of imperfect drying. Therefore, inclusion of evaporation loss (about 1%) may be ignored in the estimation of storage loss.

4.6 TRANSPORTATION LOSS

4.6.1 The Overall Picture

In the study area, about 25723 tons of foodgrains were transported for marketing by farmers and the traders in the primary and secondary markets including wholesale markets. This figure is higher than the total production of our sample farmers because traders have procured foodgrains not only from the sample farmers but also from other farmers outside our sample. The shares of transactions by farmers, traders in the primary and secondary markets were 8.0, 28.0 and 64.0 percent respectively of the total production. There was no wide variation of foodgrain loss in these transactions. Transportation loss at the farmer's level was about 0.30 percent while it was 0.23 percent for traders in the primary market and 0.29 percent for traders in the secondary market. The overall loss of foodgrains was 0.27 percent (this is the weighted average of percentage loss due to transportation by farmers and traders of the primary and secondary markets, the weights being the shares of the volume of transportation of these groups in the total volume of transportation of foodgrains).

Mode-wise truck accounted for the major share (52.0 percent) of transportation of all foodgrains (Table 4.6.2). Bullock cart came next with about 22.0 percent. The third important mode of transport of foodgrains was rickshaw van which accounted for about 12.0 percent. All other modes of transport together was accountable for about 14.0 percent of the total foodgrains transportation and the share of the these modes of transport ranges from 0.23 percent for shoulder sling to 0.42 percent for railway. Loss of foodgrains on account of the different means of transport is depicted in Table 4.6.1.

Node of Transport	1	Percent Loss
lead load		0.16
houldersling		0.23
Rickshaw Van		0.22
Bullock Cart		0.18
Boat		0.28
Truck		0.31
Railway		0.42
All Modes		0.27

Note : Overall loss of 0.27 percent is the weighted average of the figures representing percent loss by different modes of transport. The respective weights are the percentage share of foodgrains transported by various modes in total foodgrains transported.

It can be seen from the Table 4.6.1 that foodgrain loss varies considerably among the various modes of transport. It ranges from 0.16 percent in the case of headload to about 0.42 percent in the case of railway. Between these two extremes, foodgrain loss due to bullock cart, rickshaw van, shoulder sling, boat and truck comes in order with 0.18, 0.22, 0.23, 0.28 and 0.31 percents respectively.

Mode of transport	Quantity transported	received	travelled (km)	Lost	Qty. lost as percent of Qty. transported (%)
Headload	948554 (3.7)		520		
Shoulderslin	g 89067 (V.4)	88859	500	208	0.23
Rickshawvan	2953526 (11.5)	2946884	2606	5642	0.22
Bullock cart	5763835 (22.4) .	5753223	1294	10612	0.18
Boat	1079426 (4.2)	1076410	261	3016	0.28
Truck	13351498 (51.9)	13309979	3008	41519	0.31
Railway	1536721 (5.9)	1530216	1094	6505	0.42
lotal	25722627	25652573	8932	70054	0.27

Table 4.6.2 : Loss of Foodgrains by different Mode of Transport.

Figure in parentheses indicates percentage of total Conversion ratio, Paddy to Rice 0.677

As to the reasons of foodgrain loss, three factors e.g. use of hooks, pilferage and transhipment were examined. Foodgrain loss due to transhipment was found to be the highest in all modes of transport except trucks where use of hooks was the main factor of foodgrain loss (Table 4.6.3). Since truck accounted for about 60.0 percent of all foodgrain transportation, use of hooks came out to be the main factor of foodgrain loss. It explained 40.0 percent of total loss of foodgrains. After hook came transhipment and pilferage explaining respectively 35.0 and 22.0 percents of total loss. Other factors accounted for 3.0 percent of the loss.

Table 4.6.3:	Percentage Loss of Foodgrains due to the use of Hooks, Pilferage and Transhipment in different Modes of Transpo- at the Primary and secondary trader levels.								
Hodes of { transport }		Percentage	Loss due to						
		Pilferage	Transhipmer	nt ¦ Others					
Headload	28	31	41						
Rickshaw Van	22	25	47	6.0					
Bullock Cart	26	22	52	-					
Boat	23	30	47	-					
Truck	51	20	28	1.0					
Railway	22	27	40	11.0					
All Modes	40``	22	35	3.0 "					

Broadly, the order of foodgrain loss on account of the various modes of transport conform to the notion made out in the literature review. As conceived, Boat, truck, railway etc. register higher order loss than headload, shouldersling, rickshaw van etc. because the formers involve transportation of greater volumes of foodgrains and require more use of hooks and also entail less personal care. However, the figures representing percentage losses due to boat, railway and particularly truck which is most important mode of transport and account for 64.0 percent of the total volume of foodgrains transportation, are recorded to be lower than the corresponding figures obtained by ARDICOL (1988). One plausible explanation of the phenomenon may be that some improvements of the transportation system and greater awareness among the people as to the value of each grain have helped to reduce foodgrain loss in recent years.

Substantial variations of foodgrains loss can be noted across the regions (Table 4.6.4): It varies from 0.10 percent in Dhaka -Tangail to 0.41 percent in Mymensingh - Kishoregonj - Jamalpur. Areas incurring losses similar to Mymensingh - Kishoregonj -Jamalpur are Comilla - Sylhet and Rangpur - Dinajpur. On the other hand, areas experiencing foodgrain loss of lower orders than the overall 0.27 percent, besides Dhaka - Tangail, are Chittagong -Noakhali and Jessore - Kushtia - Khulna. Information regarding region-wise variation of foodgrains loss is not precisely known. Still, it is rather instructive to note that foodgrains loss appears to be higher in far-flung and relatively backward areas in respect of transportation facilities.

Region	:	transported	Quantity received (kg)	1	Distance travelled (km)	Lost (kg)	Qty. lost as percent of Qty. transported (%)
Chittagorig Noakhali	-	9741915 (37.9)	9720584		444	21331	0.22
Mymensingh Kishoregon Jamalpur			5639657		1607	23389	0.41
Dhaka- Tangail		3572408 (13.9)	3568787		676.4	3621	0.10
Comilla- Sylhet		2325078 (9.0)	2316398		3021.4	8680	0.37
Rajshahi- Bogra- Pabna		1241699 (4.8)	1238491		855.2	3207	0.29
Rangpur- Dinajpur		1442774 (5.6)	1437082		970	5692	0.36
lessore- Sushtia- Shulna		1670442 (6.5)	1666493		1696	3950	0.24
arisal- aridpur- atuakhali	_	65267 (0.30)	65083		274	184	0.28
11 Regions		257,22627 (100)	25652573		8938	70054	0.27

Table 4.6.4 : Overall Transportation Loss of Foodgrains by Region

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

4.6.2 Farmers Level

For assessing foodgrain loss in the course of transportation for sale at the farmers level, Aman, Aus, Boro and Wheat were considered separately and also together. The transportation involved 2067 tons of these crops. Considering the fact that Aman is the main crop, the highest weight was accorded to this crop by providing 43.0 percent of the sample size. Although Aus comes next to Aman in terms of acreage, Boro was given the second highest weight with 35.0 percent of the sample size. This is because of the greater significance of Boro in enhancing agricultural growth and also because Boro has a large share of modern varieties' in its acreage. However, in the case of marketing and hence transportation of foodgrains, Boro entails the highest transaction of a little

^{*} The rational for attaching the highest weight to modern variety is given in the methodology.

over 50.0 percent of the total volume. This is because Boro is a more market oriented crop than Aman. Aman comes next with about 36.0 percent; Aus and Wheat record respectively 10.2 and 4.3 percents of total volume transported (Table 4.6.5). Between paddy and rice, paddy involved about 99 percent of the total volume of transportation.

Crop	transported	sold	travelled	lost	Qty. lost as percent of qty. transported (%)
Aman	727636 (35.2)	724870	1830	2766	0.38
Aus	217830 (10.5)	217328	756	502	0.23
Boro	1032694 (50.0)	1030013	1761	2681	0.26
Wheat	88816 (4.3)	88514	343	302	0.34
All Crops	2066976 (100.0)	2060725	4690	6251	0.30

Percentage loss of total volume of transportation of 2067 tons of foodgrains was recorded to be 0.30. The loss on account of Aman was the highest being 0.38 percent. Wheat came next with 0.34 percent of loss. Boro and Aus recorded less than the overall loss. Percentage loss of these crops were respectively 0.26 and 0.23.

By mode of transport, variation in foodgrain loss was not of great significance. It ranged between 0.18 percent with headload to 0.54 percent in the case of truck (Table 4.6.6).

	Quantity transported (kg.)	sold		lost	
Headload	66779	66657	4] 6	122	0.18
	(3.2)		(1.9)		
Shoulder-		88859	500	208	0.23
Sling	(4.3)		(2.4)		
Rickshaw	786054	783863	2138	2191	0,28
Van	(38.0)		(2.6)		
Bullock	954349	951453	1108	2896	0.30
Cart	(46.2)		(2.6)		
Boat	50105	49920	214	185	0.37
	(2.4)		(3.2)		
Truck	120622	119973	292	649	0.54
	(5.9)		(16.2)		
All Modes	2066976	2060725	4747	6251	0.30
	(100.0)		(2.6)		

Table 4.6.6: Transportation Loss of All Foodgrains (Aman+Aus+Boro+Wheat) by Farmers According to the Mode of Transport

Figure in parentheses indicates percentage of total Conversion ratio, Paddy to Rice 0.676

Losses on account of boat and bullock cart were 0.37 and 0.30 percents respectively. Rickshaw van and shoulder sling were next in order with 0.28 and 0.23 percent of loss respectively. The relative stability of foodgrain loss on account of different modes of transport was noteworthy. The bulk of the transport of foodgrains was done by bullock cart and rickshaw van. Together they accounted for about 84.0 percent of all transactions. Since the transportations of foodgrains are for primary markets, the conditions under which they are done could have been more or less similar viz. short distance travel, personal care in handling, similar handling equipments, similar weather conditions etc. These may in part account for the relative stability of foodgrain loss by mode of transport.

Region-wise, substantial variability of foodgrain loss can be noted. The loss varies between 0.17 percent of the transported goods in Dhaka-Tangail region to 0.39 percent in Rajshahi-Bogra-Pabna region (Table 4.6.7).

Regions	Quantity transported (kg.)	Quantity sold (kg.)	Distance travelled (Km.)	Quantity lost (kg.)	Qty.lost as percent of qty. transported (%)
Chittagong- Noakhali	108860 (5.3)	108575	176 (0.41)	285	0,26
Mymensing-Kishore -Jamalpur	223648 (10.8)	223119	924 (1.4)	529	0.24
Dhaka-Tangail	232552 (11.2)	232150	411 (1.3)	402	0.17
Comilla-Sylhet	113666 (5.5)	113293	520 (1.1)	373	0.33
Rajshahi-Bogra- Pabna	307317 (14.9)	306129	712 (1.9)	1187	0.39
langpur-Dinajpur	680361 (32.9)	677749	779 (1.3)	2612	0.38
lessore-Kushtia- Khulna	346283 (16.8)	345581	1008 (3.5)	702	0.20
Barisal-Farid- Patuakhali	54290 (2.6)	54129	223 (0.65)	161	0.30
-	2066976 (100.0)	2060725	4753 (1.4)	6251	0.30

Table 4.6.7: Region-wise Loss of Foodgrain (Aman+Aus+Boro+Wheat) During Transportation by the Farmers _ _ _

igure in parentheses indicates percentage of total

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Comilla-Sylhet, and Barisal-Faridpur-Patuakhali regions came up with foodgrain loss of the same order or more than the overall loss; the percentage loss of foodgrains transported in these regions were 0.33, and 0.30 respectively. On the other hand, Chittagong-Noakhali, Mymensing-Kishoreganj-Jamalpur and Jessore-Khulna-Kushtia regions recorded lower values of foodgrain loss than that of the overall value of foodgrain loss; the respective percentage of foodgrain of these regions was 0.26, 0.24 and 0.20. It seems that the variability of foodgrain loss across the regions is somewhat accountable to the condition of transport systems in the regions: far-flung areas with relatively poorer communication system exposed higher values of foodgrain loss.

From Table 4.6.8 substantial variability of foodgrain loss with respect to different modes of transport can be seen for Aman crop. The loss ranges from 0.16 percent of the volume transported with headload to 0.64 percent of the volume carried with boat. Foodgrain loss due to shoulder sling transport of Aman is one of the lowest being 0.25 percent. Other modes of transport record similar order of foodgrain loss viz. 0.28 percent for rickshaw van, 0.42 percent for truck and 0.45 percent for bullock cart.

Table $4.6.8$:	Transportation	Loss	of	Aman	ьу	Farmers	According	to	the H	lode
	of Transport.									

	Of framspor				
Mode of transport	Quantity transported (kg.)	Quantity sold (kg.)		Quantity lost (kg.)	Qty. lost as percent of qty. transported (%)
Headload	39512 (5.4)	39450	318	62	0.16
Shoulder- Sling	57505 (7.9)	57360	332	145	0.25
Rickshaw Van	277896 (38.2)	277131	875	765	0.28
Bullock Cart	345128 (47.3)	343565	283	1563	0.45
Boat	2512 (0.4)	2496	20	16	0.64
Truck	5083 (0.7)	4868	10	15	0.42
All Modes	727636 (100.0)	724870	1830	2766	0.38
				-	

Figure in parentheses indicate percentage of total. Conversion ratio, Paddy to Rice 0.676

Hode of transport	h an a coorted	sold	Distance travelled (Km.)	1030	Qty. lost as percen of qty. transported (%)
Headload	4758 (2.2)	4748	20	10	0.21
Shoulder- Sling	9925 (4.6)	9905	32	20	0.20
Rickshaw Van	92591 (42.5)	92379	317	212	0.23
Bullock Cart	73991 (33.9)	73846	162	145	0.20
Boat	27118 (12.5)	27036	151	82	0.30
Truck	9447 (4.3)	9414	74	33	0.35
All Modes	217830 (100.0)	217328	756	502	0.23

Figure in parentheses indicate percentage of total. Conversion ratio, Paddy to Rice 0.676

Mode of transport	transported	sold	Distance travelled (Km.)	lost	Qty. lost as percent of qty. transported (%)
Headload	17351 (1.7)	17321	98	30	0.17
Shoulder- Sling	17487 (1.7)	17457	S 4	30	0.17
Rickshaw Van	395761 (38.4)	394629	841	1132	0.29
Bullock Cart	475568 (45.9)	474567	463	980	0.21
Boat	20435 (2.0)	20348	41	87	0.43
Truck ,	106092 (10.3)	105691	216	401	0.38
11 Modes	1032694 (100.0)	1030013	1751	2681	0.26

Figure in parentheses indicates percentage of total

Conversion ratio, Paddy to Rice 0.676

Hode of transport	transported	sold	Distance travelled (Km.)	lost	Qty. lost as percent of qty. transported (%)
Headload	5158 (5.81)	5138	62	20	0.38
Shoulder- Sling	4151 (4.67)	4137	42	13	0.32
Rickshaw Van	19806	19724	106	82	0.41
Bullock Cart	59662 (86.3)	59475	199	187	0.31
Boat	40 (0.05)	40	2	-	-
Truck	-	-	-	-	-
11 Modes	88815 (100.0)	88514		302	0.34

Conversion ratio, Paddy to Rice 0.676

For the remaining crops e.g, Aus, Boro and Wheat, the variability of foodgrain loss with respect to different modes of transport was not of much significance. For Aus, the percentage varied from 0.20 with bullock cart to 0.35 with truck; for wheat, it moved from 0.31 with bullock cart to 0.38 with headload; for Boro, however, there was a little more variability with 0.21 percent in the case of bullock cart to 0.43 percent in the case of boat.

In the transportation of a total volume of 2067 tons of all foodgrains, the weight of the combined transaction of Aus, Boro and Wheat is much higher, being about 65.0 percent of the total, than that of Aman. As a result, when all foodgrains are considered, the variability of Aman by mode of transport is somewhat smoothed out by the relative stability of the other crops giving rise to an overall picture which is free from substantial variability of foodgrain loss with respect to different modes of transport.

Regional variations of different crops are displayed in Table 4.6.12 through Table 4.6.14. The broad pattern of variations of foodgrain loss that emerges from these Tables are as follows: Comilla-Sylhet, Rajshahi-Bogra-Pabna, Rangpur- Dinajpur and Barisal-Faridpur-Patuakhali come out to be of higher order loss regions. In more than one crop, these regions showed relatively higher loss of foodgrains relative to other areas. For example, Comilla-Sylhet region in Aus and Boro-wheat crops, Rajshahi-Bogra-Pabna in all the crops, Rangpur-Dinajpur and Barisal-Faridpur-Patuakhali in Aman and Boro-wheat crops. Dhaka-Tangail region which registered the lowest percentage loss of Aman and Boro-wheat recorded the highest loss of 0.67 percent due to transportation of Aus crop. This last result can be considered as spurious because the sample for this region with Aus was too small and accounts for only 0.1 percent of the total volume of transaction of all regions.

Regions	Quantity transported (kg.)	Quantity sold (kg.)		Quantity lost (kg.)	Qty.lost as percent of qty. transported (%)
Chittagong- Noakhali	73401 (10.1)	73191	114	210	0.29
Hymensing-Kishore -Jamalpur	53901 (7.4)	53798	351	103	0.19
Dhaka-Tangail	6510 (0.9)	6500	75	10	0.15
Comilla-Sylhet	59856 (8.2)	59665	241	191	0.32
Rajshahi-Bogra- Pabna	21805 (3.0)	21722	154	83	0 38
Rangper-Dinajpur	397792 (54.7)	395877	315	,1916	0.48
Jessore-Xushtia- Khulna	107845 (14.8)	107624	520	222	0.21
Barisal-Farid- Patuakhali	6524 (0.9)	6494	67	30	0.45
All Regions	727636 (100.0)	724870	1836	2765	0.38

Table 4.6.12: Region-wise Loss of Aman During Transportation by the Farmers

(100.0) Figure in parentheses indicates percentage of total

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Regions	Quantity transported (kg.)	sold (kg.)	travelled (Km.)	lost (kg.)	Qty.lost as percent of qty. transported (%)
Chittageng- Noakhali	10621 (4.9)	10599	16	22	0.21
Mymensing-Kishore -Jamalpur	83998 (38.6)	83808	265	190	0.23
Dhaka-Tangail	150 (0.1)	149	2	ı	0.67
Comilla-Sylhet	26315 (12.1)	26242	102	73	0.28
Rajshahi-Bogra- Pabna	10738 (4.9)	10689	103	48	0.46
Rangpur-Dinajpur	32383 (14.8)	32319	68	64	0.20
Jessore-Kushtia- Khulna	44031 (20.2)	43944	180	87	0.20
Barisal-Farid- Patuakhali	9595 (4.4)	9578	20	17	0.18
All Regions	217830 (100.0)	217328	756	502	0.23

Table 4.6.13: Region-wise Loss of Aus During Transportation by the Farmers

Figure in parentheses indicates percentage of total

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

.

.

Regions	Quantity transported (kg.)	Quantity sold (kg.)	Dístance travelled (Km.)		Qty.lost as percent of qty. transported (%)
Chittagong- Noakhali	24838 (2.2)	24784	46	53	0.21
Mymensingh-Kishore -Jamalpur	85749 (7.7)	85514	308	236	0.28
Dhaka-Tangail	225892 (20.1)	225501	334	391	0.17
Comilla-Sylhet	27495 (2.5)	27336	177	109	0.40
Rajshahi-Bogra- Pabna	274774 (24.5)	273718	455	1056	0.38
Rangpur-Dinajpur	250186 (22.3)	249554	396	632	0.25
Jessore-Kushtia- Khulna	194406 (17.3)	194014	308	392	0.20
Barisal-Farid- Patuakhali	38171 (3.4)	38057	136	114	0.30
11 Regions	1121510 (100.0)	1118527	2161	2983	0.27

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

4.6.3 Primary Traders Level

At the primary traders level, the respondent traders transported a total of 7106.6 tons of foodgrains during 1989-90. Of this quantity, transportation of paddy was 95.4 percent while the respective figures for rice and wheat were 4.0 and 0.6 percent (Table 4.6.15).

Table 4.6.15 : Transportation Loss of Foodgrains by Crop at the Primary Traders Level. · Type of Quantity Quantity Quantity Quantity Qty. lost as (kg.) (kg.) (Km.) (kg.) transported (%) Rice 284200 2839984 75 Rice 284200 (4.0) 0.23 6776982 6761304 688.5 15678 Paddv (95.4) Wheat 45429 45245 308 184 0.41 (0.6) ------A11 7106612 7090533 1072 16079 0.23 Crops (100.0) Figure in parentheses indicates percentage of total

Conversion ratio, Paddy to Rice 0.676

Foodgrain loss due to transportation by traders at the primary market was 0.23 percent. With regard to the type of grains, loss varied between 0.08 percent of the quantity transported in the case of rice, 0.23 percent in the case of paddy, and 0.41 percent in case of wheat.

By mode of transport, the lowest loss of 0.11 percent was recorded for headload while loss on account of truck being 0.30 percent was the highest of transportation loss (Table 4.6.16). Other modes like bullock cart, rickshaw van and boat registered respectively 0.12, 0.21 and 0.26 percent loss of the transported grains. It may be noted that truck transportation accounted for the largest share of transport loss. The second largest mode of transport was bullock cart. These two modes accounted for 42.0 and 28.0 percents respectively of the total volume transported. The next in order was boat, rickshaw van and headload, accounting for 13.0, 13.0 and 5.0 percent of total transported grains respectively.

Hode of Transport	Quantity Transported (kg)	Quantity Received (kg)	Distance travelled (km)	Quantity lost (kg)	Qty. lost as Percent of Qty transported
Headload	356700	356298	8.0	402	0.11
Rickshaw Van	888348 (12.5)	886446	314	1902	0.21
Bullock Cart	1974067 (27.8)	1971684	149	2383	0.12
Boat	928661 (13.1)	926246	24	2415	0.26
Truck	2958836 (41.6)	2949859	930	8977	0.30
All Modes	7106612 (100.0)	7090533	1072	16079	0.23

Table 4.6.16 : Transportation Loss of Foodgrains by Mode of Transport at the

igure in parentheses indicates percentage of total Conversion ratio, Paddy to Rice 0.676

The regions involving more than the average loss of foodgrains 0.23 percent were Mymensingh-Kishoreganj-Jamalpur (0.50 of percent), Comilla-Sylhet (0.27 percent), Rajshahi-Bogra- Pabna percent), Rangpur-Dinajpur (0.41 percent) and (0.34)Jessore-Kushtia-Khulna (0.36 percent). Chittagong-Noakhali, Dhaka-Tangail and Barisal-Faridpur-Patuakhali represent areas of lower foodgrain loss. Percentage loss of foodgrains of these areas stood at around 0.20 percent of the transported grains (Table 4.6.17).

Region	Quantity transported (kg.)	Quantity received (kg.)	Distance travelled (Km.)	Quantity lost (kg.)	percent of qty transported
Chittagong- Noakhali	4720402 (66.4)	4710515	99.4	9887	0.21
Mymen-Kish- Jamal	263063 (3.7)	261751	85.0	1312	0.50
Dhaka- Tangail	1425957 (20.1)	1423399	86.4	2558	0.18
Comilla- Sylhet	325940 (4.6)	325073	278.4	867	0.27
Rajshahi- Bogra- Pabna	66792 (0.9)	66568	93.2	224	0.34
Rangpur- Dinajpur	260704 (3.7)	259625	112.0	[.] 1079	0.4?
Jess-Kusht- Khulna	40778 (0.6)	40632	308.0	147	0.36
Barisal- Farid-Patua	2977 (0.04)	2971	11.0	6	0.20
All Region	7106612 (100.0)	7090533	1072	16079	0.23

Table 4.6.17: Transportation Loss of Foodgrains by Region at the Primary Traders Level

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

4.6.4 Secondary and Wholesale Traders Level

A sample of 86 traders at the secondary market level showed transportation of 16549 tons of foodgrains. As with the farmer and primary market traders, the share of paddy in total foodgrain transportation was the highest being 93.0 percent. The shares of rice and wheat were 6.2 and 0.8 percents respectively (Table 4.6.18).

Type of Crop	Quantity transported (kg.)	Quantity received (kg.) (Km.)		Quantity lost (Kg)	Qty. lost as percent of qty transported
Rice	1032792 (6.2)	1030138	314	2654	0.26
Paddy	15385742 (93.0)	15341022	2662	44720	0.29
Wheat	130505 (0.8)	130156	137	349	0.27
All Crops	16549039	16501316	3113	47723	0.29
Figure in	n parentheses f	ndicates percen	tage of tota	 a]	

Table 4.6.18 : Transportation Loss of Foodgrains by Crop at

Conversion ratio, Paddy to Rice 0.676

Percentage losses of rice, paddy and wheat in the course of transportation were remarkably close to one another. The respective figures were 0.26, 0.29 and 0.27. The overall loss of foodgrain was 0.29 percent.

By mode of transport, loss of foodgrains showed substantial variation. Boat transportation recorded the highest loss (0.41%), truck, the next highest (0.31%). Headload, rickshaw van and bullock cart showed remarkably closer foodgrain loss of 0.20, 0.20 and 0.19 percent respectively (Table 4.6.19).

Among regions, areas of higher foodgrain loss were experienced by Mymensingh-Kishoregonj-Jamalpur, Comilla-Sylhet and Rangpur-Dinajpur regions showing remarkably similarity of losses.

Mode of Transport	Quantity Transported (kg)	Quantity Received (kg)	Distance travelled (km)	lost	Qty lost as Percent of Qty transported
Headload	525075 (3.2)	524047	16	1028	0.20
Rickshaw Van	1279124 (7.7)	1276575	156	2549	0.20
Bullock Cart	2835419 (17.1)	2830086	37	5333	0.19
Boat	100660 (6.6)	100244	23	416	0.41
Truck	10272040 (62.1)	10240147	1786	31893	0.31
Others*	1536721 (9.3)	1530216	1094	6505	0.42
All Modes	16549039 (100.0)		3113		

Table 4.6.19: Transportation Loss of Foodgrains by Mode of Transport at the Secondary Traders Level.

The respective figures were 0.42%, 0.40% and 0.40%. On the other hand areas representing lower levels of loss also showed remarkable similarity in terms of percentage loss of foodgrains. Excepting Dhaka-Tangail region which showed negligible loss, Chittagong-Noakhali, Rajshahi-Bogra-Pabna, Jessore-Kushtia-Khulna and Barisal-Faridpur-Patuakhali came up with 0.23, 0.21, 0.24 and 0.21 percent respectively of loss of foodgrains transported in each region (Table 4.6.20).

Region	Quantity transported (kg.)	Quantity received (kg.)	Distance travelled (Km.)	Quantity lost (kg.)	Qty. lost as percent of qty. transported (%)
Chittagong- Noakhali	4912653 (29.7)	4901494	169	11159	0.23
Mymen-Kish- Jamal	5176335 (31.3)	5154787	993	21548	0.42
Dhaka- Tangail	1913899 (11.6)	1913237	179	662	0.04
Comilla- Sylhet	1885472 (11.4)	1878032	2223	7440	0.40
Rajshahi- Bogra- Pabna	867590 (5.2)	865794	50	1796	0.21
Rangpur- Dinajpur	501709 (3.0)	499708	79	2001	0.40
Jess-Kusht- (hulna	1283381 (7.7)	1280280	380	3101	0.24
Barisal- Farid-Patua	8000 (0.1)	7983	40	17	6.21
all aegion	16549039 (100.0)	16501316	3113	47723	0.29

.

Table 4.6.20: Transportation Loss of Foodgrains by Region at the Secondary Traders Level. ----

4.7 MARKETING AND HANDLING LOSS

4.7.1 Farmers' Level

Marketing loss occurs when the foodgrains are graded, weighed and packed. Such handling loss takes place at the farm and trader's level in the primary, secondary and wholesale markets. Handling losses at various levels have been estimated and are tabulated below. Handling loss was estimated separately for Aman, Aus and Boro rice. Table 4.7.1 depicts region-wise handling loss at the farm level for Aman rice. Quantity lost during handling has been estimated as the difference between total quantity before and after handling after transaction. Total handling loss was found highest in the Rangpur/Dinajpur region (0.55%); Dhaka/Tangail region experienced the lowest handling loss (0.19%). Handling losses for other regions lay between these two extremes. The weighted average handling loss was estimated to be 0.49%.

Table 4.7.2 reveals the farm level handling loss for Aman paddy desegregated according to varieties. Handling loss was found to be 0.44% for Broadcast Aman; 0.50% for Transplant Aman (LV) and 0.48% for Transplant Aman (MV).

102135.00 (704.38) 160422.00 (700.53) 9891.00 (94.20)	444.00 (3.06) 540.00 (2.36) 19.00	0.43 0.34 0.19
160422.00 (700.53) 9891.00	540.00 (2.36) 19.00	
		0.19
	(0.18)	
49480.00 (315.16)	232.00 . (1.48)	0.47
26136.00 (207.43)	125.00 (0.99)	0.48
430237.00 (2119.39)	2367.00 (11.66)	0.55
135113.00 (1417.85)	731.00 (7.62)	0.54
9989.00 (87.62)	30.00 (0.26)	0.30
		0.49
-	(315.16) 26136.00 (207.43) 430237.00 (2119.39) 136113.00 (1417.85) 9989.00 (87.62)	(315.16) . (1.48) 26136.00 125.00 (207.43) (0.99) 430237.00 2367.00 (2119.39) (11.66) 136113.00 731.00 (1417.85) (7.62) 9989.00 30.00

Table 4.7.1 : Handling Loss at Farm by Regions for Aman Crop

Notes: (1) Figures in parentheses are mean values.

(2) Percentage share of a region in grand total quantity handled has been used as that region's weight in calculating weighted average percentage loss.

(3) For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Table 4.7.2 :	Handling Loss at Farm Aman Paddy	by Different Vari	eties of
Variety	Total Quantity of	Quantity Lost in	Percentage
of crop	Aman Handled (Kg)	Handling (kg.)	Loss (%)
Broadcast -	58403.00	257.00	0.44
Aman	(179.15)	(0.79)	
Transplant	283135.00	1420.00	0.50
Aman Local	(633.41)	(3.18)	
Transplant	582867.00	2811.00	0.48
Aman Modern	(903.67)	(4.36)	

Diminishing marginal rate of substitution between leisure and income leads us to expect higher rate of handling loss for larger farms with higher production levels compared to smaller farms with lower production levels. In other words, larger farmers with higher production will be less careful in weighing and packing, resulting in higher handling loss compared to smaller farmers. Table 4.7.3 shows this to be more or less true for Aman rice. Thus, the highest rate of handling loss (0.55%) was found in Rangpur/Dinajpur region which also has the largest mean operational holding (about 307 decimals) and highest mean production (about 3819 kg.). The Rangpur/Dinajpur region was followed by Jessore/Kushtia/Khulna region with handling loss of 0.54%, mean operational holding of about 269 decimals and mean production of about 3471 kg. The hypothesis was confirmed in the other regions as well, except Comilla/Sylhet and Rajshahi/Bogra/Pabna region.

Table 4.7.4 shows the estimated handling loss for Aus by region. Handling loss was highest for the Dhaka/Tangail region (0.67%), followed by the Chittagong/Noakhali region (0.43%) and the Rajshahi/Bogra/Pabna region (0.34%). The lowest handling loss of 0.16% was found in the Barisal/Faridpur/Patuakhali region. The weighted average handling loss for Aus was estimated to be 0.22%. The hypothesis of a positive relationship among size of operational holding, production and rate of handling loss was negated for Aus. No systematic relationship existed among these variables in the case of Aus. This is shown in Table 4.7.5.

136

Region	Size of Hean Operati- onal Holding (Decimal)		
Chittagong/Noakhali	265.52	3321.20	0.43
Mymensingh/Kishore- ganj/Jamalpur	222.50	2321.90	0.34
Dhaka/Tangail	131.97	1412.00	0.19
Comilla/Sylhet	126.10	1412.20	0.47
Rajshahi/Bogra /Pabna	125.54	1194.50	0.48
Rangpur/Dinajpur	307.44	3819.20	0.55
Jessore/Kushtia /Khulna	269.19	3471.00	0.54
Barisal/Faridpur /Patuakhali	78.82	484.46	0.30

Table 4.7.3 : Relationship Among size of Operational Holding, Production and Handling Loss at Farm for Aman

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Table 4.7.4 : Handling Loss at Farm by Region for Aus

Region	Total Quantity Handled (kg.)	Quantity Lost in Handling (kg.)	Percentage Loss (%)
Chittagong/Noakhali	16480.00 (113.66)	71.00 (0.49)	0.43
Mymensingh/Kishore- ganj/Jamalpur	101267.00 (442.21)	176.00 (0.77)	0.17
Dhaka/Tangail	150.00 (1.43)	1.00 (0.00)	0.67
Comilla/Sylhet	32114.00 (204.55)	95.00 (0.60)	0.30
Rajshahi/Bogra /Pabna	11559.00 (91.74)	39.00 (0.31)	0.34
Rangpur/Dinajpur	33743.00 (166.22)	62.00 (0.30)	0.18
Jessore/Kushtia /Khulna	57111.00 (594.91)	118.00 (1.23)	0.21
Barisal/Faridpur /Patuakhali	(92.12)	17.00 (0.215)	0.16
leighted average			0.22

Notes: (1) Figures in parentheses are mean values.

- (2) Percentage share of a region in grand total quantity handled has been used as that region's weight in calculating weighted average percentage loss.
- calculating weighted average percentage loss.
 (3) For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

.

Region	Size of Mean Operati- onal Holding (Decimal)	Mean Prod- uction (kg.)	Percentage Handling Loss at farm (%)
Chittagong/Noakhali	62.41	679.45	0.43
Hymensingh/Kishore- ganj/Jamalpur	100.68	991.04	0.17
Comilla/Sylhet	77.25	675.00	0.30
Dhaka/Tangail	59.81	293.96	0.67
Rajshahi/Bogra /Pabna	61.29	408.74	0.34
Rangpur/Dinajpur	21.73	129.71	0.18
Jessore/Kushtia /Khulna	166.11	1362.10	0.21
Barisal/Faridpur Patuakhali	49.39	320.23	0.16

Table 4.7 5: Relationship Among size of Operational Holding, Production and Handling Loss at Farm for Aus

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Region-wise farm-level handling loss for Boro was estimated and shown in Table 4.7.6. The highest rate of handling loss (0.52%) was found in the Comilla/Sylhet region while the lowest rate (0.19%) was found in the Chittagong/Noakhali and Dhaka/Tangail regions. The rates of handling loss for other regions were found between these two rates. The weighted average rate of handling loss for Boro was 0.34%.

Regior	n	Total Quantity Handled (kg.)	Quantity Lost in Handling (kg.)	Percentage Loss (%)
Chitta	agong/Noakhali		158.00 (1.09)	0.19
	singh/Kishore- Jamalpur	122529.00 (535.06)	274.00 (1.20)	0.22
Dhaka/	Tangail	193373.00 (1841.65)	370.00 (3.52)	0.19
Comill	a/Sylhet	28177.00 (179.47)	146.00 (0.93)	0.52
Rajsha /Pabna	hi/Bogra	277956.00 (2206.00)	1303.00 (10.34)	0.47
Rangpu	r/Dinajpur	252852.00 (1245.58)	1159.00 (5.71)	0.46
Jessor /Khuln	e/Kushtia a	237934.00 (2478.48)	641.00 (6.67)	0.30
/Patual	khali	43402.00 (380.72)	92.00 (0.81)	0.21
	ed average			0.34

Table 4.7.6: Handling Loss at Farms by Regions for Boro

Table 4.7.7 shows no systematic relationship among size of operational holding, production and rate of handling loss for Boro.

Table 4.7.7 :	Relationship Among size Production and Handling	of Operational Holding, Loss at Farm for Boro
	and handring	LUSS at Farm 101 DUTU

	ction and Handling Loss a	at Farm for Boro	
Region	Size of Mean Operati- onal Holding (Decimal)		Percentage Handling Loss at farm (%)
Chittagong/Noakhali	77.37	1210.90	0.19
Mymensingh/Kishore- ganj/Jamalpur	88.83	1381.50	0.22
Dhaka/Tangail	160.01	2736.50	0.19
Comilla/Sylhet	37.59	526.48	0.52
Rajshahi/Bogra /Pabna	161.52	3133.90	0.47
Rangpur/Dinajpur	107.32	1785.90	0.46
Jessore/Kushtia /Khulna	195.08	3184.10	0.30
Barisal/Faridpur /Patuakhali	73.34	1107.90	0.21

Source: Field Survey & Table 6

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

In the Table 4.7.8, the estimated region-wise farm-level handling loss for all rice is shown. Total quantity handled was the sum of the quantities of Aman, Aus, and Boro handled together. Total handling loss was similarly derived. From the total it was seen that the Rangpur/Dinajpur region had the highest rate of handling loss (0.50%), Next in order was the Rajshahi/Bogra/Pabna region with a handling loss of 0.46%, followed by the Comilla/Sylhet region with handling loss of 0.43%. The lowest rate of handling loss (0.19%) was found in the Dhaka/Tangail region. The estimation of handling loss for all rice for the country as a whole was 0.38%.

Region	Total Quantity Handled (kg.)	Total Handling Loss (kg.)	•
Chittagong/Noakhali	202546	673	0.33
Mymensingh/Kishore- ganj/Jamalpur	384218	990	0.26
Dhaka/Tangail	203414	390	0.19
Comilla/Sylhet	109771	473	0.43
Rajshahi/Bogra /Pabna	315651	1467	0.46
Rangpur/Dinajpur	716832	3588	0.50
Jessore/Kushtia /Khulna	431158	1490	0.35
Barisal/Faridpur /Patuakhali	63893	139	0.22
Country Average	2427483	9210	0.38

Source: Tables 1,4 & 6

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Table 4.7.9, by and large, confirms the hypothesis of a positive relationship between (i) the size of operational holding and the rate of handling loss as well as (ii) the level of production and the rate of handling loss.

Region				
	Size of Mean Operati- onal* Holding (Decimal)	Mean Prod- Pe uction [*] (Kg.)	rcentage Handling Loss at farm (%)	
Chittagong/Noakhali	134.10	1737.18	0.33	
Mymensingh/Kishore- ganj/Jamalpur	137.34	1564.81	0.26	
Dhaka/Tangail	117.26	1480.82	0.19	
Comilla/Sylhet	80.31	871.23	0.43	
Rajshahi/Bogra /Pabna	116.12	1579.05	0.46	
Rangpur/Dinajpur	145.50	1911.60	0.50	
Jessore/Kushtia /Khulna	210.13	2672.40	0.35	
Barisal/Faridpur /Patuakhali	67.18	637.53	0.22	

Table 4.7.9 : Relationship Among size of Operational Holding, Production and Handling Loss at Farm for All Rice

Notes: *Unweighted mean of the mean operational holdings for Aus, Aman & Boro rice **Unweighted mean of the mean productions of Aus, Aman & Boro rice.

Source: Field Survey & Table 6

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

4.7.2 Primary Markets

In addition to analyzing handling loss at the farm level, handling losses at the primary and secondary markets were also estimated . In Table 4.7.10 the estimated rates of handling loss at the primary market by region are reported. It is seen that the highest rate of handling loss (0.38%) took place in the Chittagong/Noakhali region, followed by the Mymensingh/Kishoreganj/Jamalpur region (0.32%) and the Rangpur/Dinajour region (0.29%). Minimum handling loss occurred in the Dhaka/Tangail region (0.13%). The weighted average rate of handling loss at the primary market was estimated to be 0.28%.

Appendix 4.7.1 showed the estimated handling loss at the primary market level by Upazilas. There was a wide divergence in the handling loss rates among the Upazilas. Thus the highest rate of handling loss was 0.73% and this has taken place in Satkania Upazila. Kaliakair experienced the least handling loss (0.08%). The average handling loss at the primary market level for all surveyed Upazilas taken together was estimated to be 0.31%.

	Total Quantity Handled (kg.)	Total Handling Loss (kg.)	Percentage Loss (%)
Chittagong/Noakhali		17924.00	0.38
	(280039.10)	(995.79)	
Mymensingh/Kishore-	405011.00	1281.00	0.32
ganj/Jamalpur	(28929.36)	(91.50)	0.32
Dhaka/Tangail	1427492.00	1833.00	0.13
	(64886.00)	(83.30)	0.15
Comilla/Sylhet	1093272.00	600.00	0.14
	(28770.32)	(15.79)	0.14
Rajshahi/Bogra	1421274.00	176.00	0.22
/Pabna	(49009.45)	(6.07)	0.22
Rangpur/Dinajpur	443492.00	848.00	0.00
	(21118.68)	(40.39)	0.29
essore/Kushtia	279998.00	96.00	0.24
'Khulna	(8749.94)	(3.01)	0.24
arisal/Faridpur	128044.00	5.00	0.20
	(12804.40)	(0.50)	0.20

Table 4.7.10 : Handling Loss at Primary Market by Region

Notes: (1) Figures in parentheses are mean values. (2) Percentage share of a region in grand total quantity handled has been used as that region's weight in calculating weighted average percentage loss.

In Table 4.7.11, estimation of handling loss at the primary market level by type of foodgrains is shown. The rate of handling loss was lowest for rice (0.08%) and highest for paddy (0.32%). One possible explanation of this finding could be that traders were more careful in handling rice which is more expensive compared to paddy. The average handling loss for paddy, rice and wheat taken together at the primary market level was found to be 0.31%.

Foodgrain	Total Quantity Handled (kg.)	Quantity Lost in Handling (kg.)	Percentage Loss (%)
Paddy	9449402.00 (65620.85)	22461.00 (155.98)	0.32
Rice	729441.00 (25153.14)	226.00 (7.80)	0.08
Wheat	60444.00 (5494.93)	76.00 (6.93)	0.22
[ota]	10239287.00 (55648.30)	22763.00 (123.71)	0.31

Conversion ratio, Paddy to Rice 0.676

4.7.3 Secondary and Wholesale Markets

Handling losses at secondary markets by region are presented in Table 4.7.12. Upazila-wise handling losses at the secondary market level are shown in Appendix 4.7.2. As observed for primary markets, there existed a wide fluctuation in handling loss rates among the Upazilas. Thus, while the rate of handling loss was 0.48% in Kishoreganj, it was only 0.03% in Sarishabari. The average handling loss for all surveyed upazilas taken together was estimated to be 0.30%.

Region	Total Quantity Handled (kg.)	Total Handling Loss (kg.)	Percentage Loss (%)
Chittagong/Noakhali	5925975.00	21767.00	0.37
	(257651.10)	(946.40)	
Mymensingh/Kishore-	5028304.00	19683.00	0.33
ganj/Jamalpur	(140193.10)	(457.70)	
Dhaka/Tangail	1914612.00	1233.00	0.06
	(174055.60)	(112.10)	
Comilla/Sylhet	1939741.00	3208.00	0.17
	(69276.50)	(114.60)	
lajshahi/Bogra	1179435.00	3230.00	0.27
Pabna	(78629.00)	(215.30)	
angpur/Dinajpur	773601.00	2162.00	0.28
	(45505.90)	(127.20)	

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11

Handling loss of the surveyed upazilas taken together was estimated at 0.30%. Table 4.7.13 shows estimated handling loss at the secondary market level by type of foodgrains. It can be seen that paddy and rice have the same rate of handling loss, viz.0.30%. The handling loss for wheat was higher, 0.45%. Average handling loss was estimated to be 0.30%.

Foodgrain	Total Quantity Handled (kg.)	Quantity Lost in Handling (kg.)	Percentage Loss (%)
Paddy	17093453.00	51167.00	0.30
	(156820.70)	(469.42)	
Rice	2005342.00	6047.00	0.30
	(46635.86)	(140.63)	
dheat .	519521.00	2346.00	0.45
	(74217.29)	(335.09)	
Total	19618316.00	59560.00	0.30
	(123385.60)	(374.59)	

Source: Field Survey

Conversion ratio, Paddy to Rice 0.676

Finally, an attempt was made to estimate the country-average rate of handling loss for all foodgrains in all markets of the country. This is shown in Table 4.7.14. It has been seen that the rates of handling losses at the levels of the farmers, primary markets and secondary markets are 0.38%, 0.31% and 0.30% respectively. The unweighted average handling loss for all markets was found to be 0.28%. The weighted average handling loss for all markets was estimated at 0.31%.

ype of market	Handled (kg.)	Total Handling Loss (kg)	•
At Farm	24274883	9210	0.38
Primary Harket	10239287	22763	0.31
Secondary Harket	19518316	59560	0.30
NII Harkets	32285086	91533	0.28 (0.31)

Estimation of handling loss at the wholesale market level was carried out in the major rice markets of Dhaka city. Results are shown in Tables 4.7.15, 4.7.16 and 4.7.17 for Aus, Aman and Boro rice respectively. Estimated rates of handling loss have been very similar in all the samples. The percentage of handling loss of Aus, Aman and Boro has been estimated to be 0.15, 0.14 and 0.13 respectively.

Sample Number		Quantity Lost in Handling (kg)	Percentage Loss
1	420000	873	0.21
2	130000	175	0.13
3	30240	36	0.12
4	400000	444	0.11
5	270008	359	0.13
6	250500	333	0.13
Total	1500740	2220	0.15

Sample Number	Total Quantity Handled (kg)	Quantity Lost in Handling (kg)	Percentage Loss
1	1008000	1950	0.19
2	210000	225	0.11
3	90928	86	0.09
4	721000	961	0.13
5	520000	578	0.11
6 	650000	754	0.12
Total	3199928	4554	0.14

Sámple Number	Total Quantity Handled (kg)	Quantity Lost in Handling (kg)	Percentage Loss
1	1722000	2893	
2	411600	551	0.17
3	60480	86	0.13
4	932000	1035	0.14
5	820000	820	0.11
6	870200	1009	0.10 0.12
Total	4816280	6394	

In Table 4.7.18 we have estimated the handling loss for all rice taken together. For this purpose we have considered the weighted average of the rates of handling loss for Aus, Aman and Boro, the weight being the percentage share of each variety of rice in the total quantity of rice handled in the 6 samples. The estimated rate of handling loss for all rice was thus found to be 0.137%.

Type of Rice	Percentage Handling Loss (%)	
Aus	0.15	
Aman	0.14	
Boro	0.13	
Weighted Average (#	11 Rice) 0.137	

4.8. REGRESSION ANALYSIS

Multiple regression was used to estimate the PHL of foodgrains for different crops. Number of cases was 1175 and six parameters were used i.e., family size, level of education, total seed used for the crop, total cultivable land used in decimal, total operating land for the crop and total land owned in decimal. T test and F - test were used to test the significance of the models. Co-efficient of determination (R^2) of each model revealed the percent of variance of the predictor variables.

4.8.1 Aus Crop

The variables which appeared to be most significant to estimate the PHL of Aus crop were total seed used, total operating land for Aus crop and total land owned. The most significant independent variables are shown in Table - 4.8.1.

Co-efficient of Regression	Standard Error	t Statistic
0.21241	0.05513	3.853*
- 0.06542	0.01315	- 4.974**
0.29796	0.01536	19.400**
0.05466	0.01208	4.526**
	Regression 0.21241 - 0.06542 0.29796 0.05466 2) = - 2.05478	Regression 0.21241 0.05513 - 0.06542 0.01315 0.29796 0.01536 0.05466 0.01208

Table 4.8.1 : Multiple Regression Analysis for PHL during Aus Crop.

** = Significant at 0.01 level
* = Significant at 0.05 level

TS = Total Seed Used TOL = Total Operating Land TCL = Total Cultivable Land TL = Total Land Owned

Predictor variables such as Total Cultivable Land, Total Operating Land and Total Land Owned were significant at 0.01 level of significance while Total Seed used for Aus Crop was significant at 0.05 level of significance. The co-efficient of regression can be seen in Table 4.8.1. Total Cultivable Land showed a negative relation with PHL estimation. This indicates that with an increase of 0.06545% of the Cultivable Land, there would be one percent decrease in the estimation of PHL of Aus crop. With the increase in Total Seed used for Aus Crop, Total Operating Land and Total Land Owned there would also be an increase in PHL estimation. This depicts that with the increased use of seed, the value of PHL estimation also increases. Similarly with the increase of TOL and TL their would also be an increase in the PHL estimation. With more land under operation there would be more production. Higher production leads to higher loss estimation due to reduction in care and attention.

The co-efficient of determination measures the predictability of the variables which was equal to 0.80652. This means that about 81% percent of the variation of PHL was contributed by the predictor variables (TS, TCL, TOL and TL). Equation of PHL of Aus crop was as follows:

 $PHL_{A} = -2.05478 + (0.21241 \times TS) - (0.06542 \times TCL) + (0.29796 \times TOL) + (0.05465 \times TL).$

Where PHL_A = Post-harvest Loss in Aus Crop TS = Total Seed used for Aus Crop TCL = Total Cultivable Land TOL = Total Operating Land TL = Total Land Owned

4.8.2 Aman Crop

The most significant predictor variables to estimate the PHL loss of Aman crop were Total Operating Land (TOL), Total Land owned (TL) and Total Cultivable Land (TCL). The highly significant variable was Total Operating Land (TOL) which was significant at 0.01 level of significance. The co-efficient of regression (0.046971) was highly significant (t-Statistic = 21.157, P<0.01). This reveals that with one unit increase in Total Operating Land there would be an increase of post-harvest loss estimate by 0.47%. The co-efficient of regression, standard error at t- statistic of the significant predictor variables are shown in Table 4.8.2.

Variables	Co-efficient of Regression	Standard Error	t-Statistic
TOL	0.46971	0.02220	21.157**
TL	0.09915	0.04701	2.109*
TCL	- 0.09655	0.05071	-1.904*
Constant (C) R ²	= 1.53689 t-statis = 0.70463	stic = 464.39694	

Table 4.8.2 : Regression Analysis for PHL of Aman Crop.

* Significant at 0.01 level
* Significant at 0.05 level

Total Cultivable Land showed a negative response in PHL estimation. This means that with the decrease in total cultivated land there would be a decrease in the PHL estimation. With one unit increase of Total Cultivable Land there would be a decrease of PHL by 0.10%.

The co-efficient of determination (R^2) was 0.70463 which indicates that 70% of the variations of the PHL was estimated to be contributed by the above mentioned 3 factors. The regression equation for PHL in Aman production is as follows :

 $PHL_{AM} = 1.53789 + (0.46971 \times TOL) + (0.09915 \times TL) - (0.09655 \times TCL)$

Where PHL_{AM} = Post Harvest Loss Aman Crop TOL = Total Operating Land TL = Total Land Owned TCL = Total Cultivable Land

4.8.3 Boro Crop

Multiple regression was used to determine the most significant predictor variables for post-harvest loss estimation in Boro production. The results of the analysis are given in Table 4.8.3.

Variables	Co-efficient Regression	of Standard Error	t - statistics
TL	0.36663	0.08156	4.495**
TOL	0.28431	0.09705	2.930**
TS	2.60563	0.62722	4.154**
TCL	- 0.40109	0.08979	- 4.467**
Constant (C) = - 4.47669 R ² = 0.38138	t-statistics = 1	20.6118**

Table 4.8.3 : Regression Analysis to Estimate PHL of Boro Crop.

** Significant at 0.01 level

Except Total Cultivable Land all the remaining 3 predictor variables showed a positive co-efficient of regression. All the variables were significant at 0.01 level of significance. In the Boro regression TCL showed a negative response. Co-efficient of determination was 0.38138, which determines that 38% of variation has been reflected by the four predictor variables. It may be inferred that Boro is mainly MV crop so the contribution by the exogenous variables were more than the predictor variables (Socio-economical variables) mentioned above. The regression equation of Boro PHL estimate is given below: $PHL_{BO} = -4.47669 + (0.36663 \times TL) + (0.28431 \times TOL) + (2.60503 \times TS) - (0.40109 \times TCL)$ Where $PHL_{BO} = Post-harvest$ Loss in Boro TOL = Total Operating Land TL = Total Land Owned TS = Total Seed used for Boro Crop TCL = Total Cultivable Land

The results of these equations were found satisfactory and found very near to actual estimate.

 \sim

Chapter v

CONCLUSIONS AND RECOMMENDATIONS

5.1 FINDINGS AND CONCLUSIONS

The study indicates that the percentage of foodgrains (paddy and wheat) used as seed, feed and wastage during the post- harvest operations of the sample household was 11.58 percent in 1989-90. The seed, feed and wastage in post-harvest operations was 13.20 percent in Aus, 12.38 percent in Aman, 10.38 percent in Boro and in Wheat it was 11.84 percent. Insignificant variation was observed when five years national foodgrains production was used as a weight.

On the basis of above estimate of loss, the total quantity of foodgrains not available for human consumption in Bangladesh in 1989-90 amounted to around 2.17 million tors against the BBS production estimate of 18.75 million tons. This lost quantity was almost equivalent to foodgrains consumption for about 13.13 million people for one year at the rate of 453 grams/person/day.

The volume of foodgrain not available for consumption, but lost in course of operation alone, may be estimated at 1.75 million tons, the value of which at Government procurement price of that year was Tk. 1570.05 crore. The losses of foodgrain during post-harvest operations are estimated at 9.34%; 1.73% were used as seed and 0.51% were used as feed. The quantity used as seed and feed could be deemed to have been used for economic purpose. However, the rate of PHL appeared to be high and should be reduced by adopting improved post-harvest technology and operational efficiency.

Variations in the loss were observed in different areas. The overall minimum non-availability of foodgrains for human consumption of the households was recorded sample in the Mymensingh/Kishoreganj/Jamalpur region (10.65%) and maximum was recorded in the Dhaka/Tangail region (13.57%). In Chittagong/Noakhali region Chittagong/Noakhali region it was recorded as 10.91%; in Comilla/Sylhet region as 13.02%, Pajshahi/Bogra/Pabna region as 13.01%, in Rangpur/Dinajapur region as 11.97%, in Jessore/Kushtia/Khulna region as 10.91% and Barisal/Faridpur/ Patuakhali region as 12.93%. The variation happened due probably to difference in operational method, milling, storage and seed rate etc.

Seed

Foodgrains used as seed in 1989-90 was 1.73 percent of the total production of the sample households. In rice it was 1.60 percent and for wheat it was 5.73 percent of their respective production.

The quantity of seed used for Aus crop was 2.89 percent; for Aman 1.80 percent and for Boro 0.89 percent. Higher proportion of seed used in Aus crop was due to its higher seed rate (mostly broadcast) and lower yield potential than the Aman and IRRI/ Boro crops. Percentage of seed declined in HYV but increased in LVs.

The seed rate varied with crops, varieties and methods of planting. Among the foodgrain crops, seed used (relative to total production) for wheat (5.73%) was higher than that for paddy (1.60%). Again, modern varieties of paddy required less seed (1.25%) than the local varieties (2.57%). Study indicates that about 62 percent paddy area was under modern varieties (including pajam) and 38 percent area under local varieties. Expansion of modern varieties would increase the production and reduce the seed requirement relative to total production.

The percentage of seed used in Aus crop was found to be the highest among all the rice crops (2.89%). The percentage of Aus seed used in Dhaka-Tangail region was found to be the highest and in the Chittagong-Noakhali region it was the lowest.

Highest quantity of Aman seed was used in Barisal-Patuakhali-Faridpur region (4.84%) indicating lower share of modern varieties. The lowest quantity was found in Rangpur-Dinajpur region having a higher share of modern varieties.

The seed used for Boro crop was 0.89% of total production. It varied, according to survey data, from 0.73% in Jessore -Kushtia -Khulna region to 1.09% in Comilla-Sylhet region. The local varieties of Boro crop was found more in the greater Sylhet district than in other areas. Seed rate in local Boro was higher than that of HYV Boro.

Percentage of seed used for wheat was 5.73% of the total production. Wheat crop comprised mostly of modern variety. The Dhaka-Tangail region used highest percentage of wheat seed while the Rajshahi-Bogra-Pabna region used the lowest percentage relative to production.

Feed

This study revealed that about ninety percent of the households reported rearing of livestock and poultry birds. Paddy was seldom used as livestock and poultry feed.

The population of cattle, buffaloes, sheep and goats had declined to some extent than what was reported in the Bangladesh Census of Agriculture and Livestock : 1983-84 but that of chickens and ducks had gone up slightly in domestic farms and appreciably in specialized farms in recent years.

It was also observed that in most households, the foodgrains were not available as feed beyond two months during every cropping season. In the areas under study, the quantity of foodgrains used as feed was estimated at 0.51 percent (against the total foodgrains production) of which 0.68 percent was Aus, 0.50 percent was Aman, 0.46 percent was Boro and 0.46 percent was Wheat. Number of specialized farms compared to the total population of livestock and poultry was insignificant. There are about 47 specialized poultry and livestock farms in the country. In the specialized dairy farms the foodgrains were not directly used as feed. In these farms, nearly 50 percent of the concentrate feed ingredients was wheat but the use of paddy as feed was practically nil.

Loss of foodgrain kept as feed in the stores of specialized farms was insignificant, since the feed was not required to store for a long period.

Post-harvest Loss (PHL)

Post harvest loss of foodgrain comprises a number of stages in its process. The most significant operating stages are stacking, carrying, threshing, winnowing and drying and storing etc. Total post-harvest loss aggregated to 4.14% of all the crops (compared to total production). Of this, threshing loss was 1.19%; stacking loss was 0.91%; carrying loss was 0.74%; winnowing was 0.68% and drying loss was 0.54%.

The post-harvest loss of Aman crop was the highest (4.39%) followed by Aus (4.18%), Boro (3.88%) and wheat (3.04%). Post-harvest loss of 4.14% (against total production) was considered very high for a country like Bangladesh. The causes of such huge loss were due to weather, un-scientific operation, lack of knowledge and poor economic condition of the farmers who could not afford proper materials in these operations.

Milling Loss

Loss of paddy during drying and parboiling was 1.86% of which the maximum loss occurred in soaking followed by eating by poultry birds. As for individual crops, the highest loss was 2.14% in Aman, then 1.86% in Boro and 0.95% in Aus. At millers level the average parboiling and drying loss for paddy was 1.03%. In both the cases soaking loss comprised of 57% to 65% of the total loss during this process.

The share of paddy milled by dheki (pounding) and mechanized husking mills would be around 8% and 92% respectively. The recovery percentage of rice in dheki was 69.66% and in husking mill was 67.61%. If all the paddy produced in 1989-90 (about 27055 thousand m. tons) was husked in dheki alone than about 560 thousand m. tons of foodgrain would have been saved. The value of 560 thousand tons of foodgrains is around Tk. 50.82 rillion at 1989-90 procurement price. Improvement in milling recovery and adoption of traditional husking may significantly reduce the current milling wastage.

Milling loss at farmers' level through Dheki operation was found to be 0.53%, and through rice huller it was 0.70%. Recovery

of rice was 69.68% in Dheki operation, 67.61% in rice huller and 68.00% in big rice mills. This compared to Government allowed rate of recovery of 65% to 65.5% (varying from area to area) for resultant rice from paddy supplied to rice mills. It may be assumed that government received less rice than what was actually recovered by the millers. On an average government received 2.0% to 3.0% less than the average found in the country.

Storage Loss

Storage loss at farmers' level was 1.03% of which the maximum was due to evaporation of moisture followed by the rodents damage. As regards crop varieties the loss in Aus was 2.44%, in Aman 1.16%; and in Boro it was 0.90%. [Variation of loss in stores in different types of container was also observed].

As against average storage loss of grain at farmers and traders level, the loss at public sector stores was higher although storage condition was much better in public sector. Comparative storage loss at different operators level was found to be as follows :

Operator	Rate of loss (%)			
	Paddy	Rice		
Farmer	1.03	-		
Trader	0.30	0.35		
Public Sector *	1.00	0.75		

* Ministry of Food.

The average loss of foodgrain due to storing at primary traders' level was 0.34% and at secondary traders' level was 0.36%. The average storage loss was found to be 1.70% at millers level. At traders' and millers' level, foodgrains are usually stored in gunny bags for a brief period of 2-3 months where loss due to evaporation was maximum. Evaporation loss was found minimum in Govt. stores where grains at optimum moisture of 12-14% were stored.

Loss due to evaporation during storage may not be considered as a loss of foodgrain since the loss occurred due to imperfect drying.

'uransportation Loss

Foodgrain loss during transportation channel was examined at several levels of transaction : farmers, traders in the primary and the secondary markets including wholesale markets. The survey result revealed that the share of foodgrains transported at the above mentioned levels was 8.0, 28.0 and 64.0 percent respectively. The overall transportation loss of foodgrain was found at 0.27 percent which was the weighted average at the level of farmers and traders in the primary, secondary and wholesale markets.

Mode-wise transport loss of foodgrain was found to vary from 0.16 percent in case of headload to about 0.42 percent in the case of railways. Between these two extremes, foodgrain loss while carried by rickshaw van, shoulder sling, boat and truck came in order of 0.22, 0.23, 0.28 and 0.31 percent respectively.

Three factors like use of hooks, transshipment and pilferage, causing foodgrain loss were examined. These factors came in the order mentioned above in respect of their significance to foodgrain loss.

Substantial variation of foodgrain loss was found across the regions. It ranged from 0.10 percent in Dhaka-Tangail to 0.41 percent in Mymensingh-Kishoregonj-Jamalpur. It appeared that the regional variation in foodgrain loss was somewhat related to the level of development of transportation system; the loss tended to be higher in far-flung and relatively poor transportation facility areas of the country.

The above findings of transportation loss at farmers' and traders' level in different transport modes compares to Govt.'s allowable transport losses as evidenced from the following table.

Operator	X of transportation loss				
	Truck	Railway	River		
Farmer	0.54	-	0.37		
Trader	0.31	0.42	0.41		
Public Sector*	0.25	1.00	0.50		

* Ministry of Food.

Marketing Loss

Handling loss was highest at the farmers' level and lowest at the traders' level. On the average, the rate of handling loss at the farmers level was estimated at 0.42% (weighted) while the average rate of handling loss in the wholesale market at Badamtoli Ghat was found to be 0.14%. This difference in the rate of handling loss was probably attributable to differences in the nature of handling in the two stages of marketing. Farmers often used old and worn-out bags; also, the grain was weighed and packed in the earthen floor. As a result, grains falling on the ground could not be fully recovered, and this resulted in a slightly higher rate of foodgrain loss at farmers level. On the other hand, most of the grain spilled in the unloading process in the wholesale market was found falling in the shop premises (mostly pucca) and therefore, could easily be recovered; hence a lower rate of handling loss was observed in the case of traders. Handling loss in the primary markets was, on the average, 0.31%. Handling loss was higher [(0.32%) for paddy] than the same for rice (0.08%). Average handling loss at the secondary market was 0.30%. However, in the secondary market the rate of handling loss was almost similar for both paddy and rice.

Rate of handling loss also differed by type of crop. At the farmers level, the rates of handling loss obtained in Aman, Aus and Boro were 0.49%, 0.22% and 0.34% respectively. The handling loss in wheat was found about 0.22% and 0.45% at the primary and secondary market respectively. The observed differences in handling loss rates by type of crop were partly attributable to differences in weather at the post- harvest time for the three corps. Random errors in measurement might also be partly responsible for the observed differences in handling loss rates by type of crop.

5.2 LIMITATION

The study was designed to investigate interalia loss of foodgrain in the post- harvest operations of domestic production; hence public sector foodgrain handling which mostly composed of imported grains were not brought into the scope of the study. However, a small quantity of foodgrains was procured domestically in the public sector for which loss estimate could be derived from the data available in other study or from official records.

Within the scope of the study and resource and time table available to the Consultant, it was not possible to cover wider areas and large number of factors involved and multi-dimensional socio-economic variables linked up with other important national issues. However, within the resources, the consultant tried to make the study meaningful backed by investigated/surveyed primary data. However, consultant thinks that a few micro-level study covering other important variables such as recent loss information in Government storing houses efficiency of heterogeneous milling technologies, modern milling, drying and soaking systems should be undertaken to have a complete picture.

5.3 RECOMMENDATIONS

1. The study revealed that about 11.58% of foodgrains (rice and wheat) annually produced in the country are not available for consumption because of use as seed, feed and loss during post-harvest operations. This estimated rate obtained through the survey is higher than the rate used by the Government in food budgeting. The extent of loss of foodgrain in post-harvest operations may be reduced through application of improved post-harvest technology.

- 2. Proportion of seed used in 1989-90 was 1.73% of the total production. Proportionate seed requirement (5.73% *) was higher in wheat which could be reduced by use of good seed of high yielding varieties and sowing under favorable environment for higher rate of germination and survival of the seedlings. In rice crops proportionate use of seed (1.6% *) can also be reduced by reducing broadcast method of sowing and bringing more areas under transplantation of modern varieties. This calls for a stronger extension programme, timely availability of seeds, and other inputs with good marketing systems.
- 3. Use of foodgrains as feed is likely to be increased in the coming years with the increase of organized poultry and duck farming in the country. Increased use of grain as feed may be compensated by saving grain in seed use and by reducing the loss in post-harvest operations.
- 4. The estimate post-harvest processing loss (at 4.14%) can be reduced by adopting modern technology. Present study indicated that loss in threshing was higher among the operations. This loss may be reduced by using paddle and other improved threshing devices. A strong extension programme with availability of threshers in rural areas could popularize the methods and save considerable quantity of foodgrains that are lost during threshing.
- 5. Milling loss which is estimated 0.70% at farmers level and 0.65% at millers level may probably be reduced by using improved milling technology. Although it is not within the TOR to examine the milling technology and rate of the recovery under variable milling techniques, it was noticed that milling losses were higher in old and out-dated rice mills. This old rice mills should use the modern devices and reduce milling loss.
- 6. Milling loss can be reduced by using Dheki where rice recovery percentage is relatively higher than husking mills. However, the Dheki process is slower and laborious than the modern rice mills. The Dheki system needs improvement (may be fitted with improved kind of husking devices). Although recovery in Dheki is higher, the use of Dheki is generally reducing in the country.
- 7. Storage loss can be reduced by improving rural storage conditions through the use of pot type storage structure, earthen jars and metal drums. The small and medium large flat type pucca stores may be used on cooperative and collective basis. The rural farmers, traders and 'arathdars', 'beparis', millers and stockists may be grouped together to use cooperative/ collective storage facilities. Farmers and stockists of foodgrain should be trained on ideal storage and processing operations and maintaining grain hygienic

^{*} Relates to 1989-90 production.

specifications, such as moisture, admixture, dust and broken, shriveled, infested grains and other standard needed for longer shelf life.

- 8. Loss during transportation may be reduced considerably with improved handling and transportation facilities. Use of hooks and defective and tornout bags cause considerable loss during transportation. Automatic bagging and stitching may be introduced by large stores and traders.
- 9. Marketing loss mainly occurs during handling. This loss may be reduced by improving rural grain markets with pucca floor/premise for weighing and packing. Improved type container/carrier for transportation to and from markets may reduce loss.
- 10. The present study was conducted in one cropping year with selected variables/function at macro-level. These issues may be studied at micro level with stress on seasonal and regional practices covering large areas of sampling and higher sample-population fractions. A similar study covering two to three cropping years may be undertaken to estimate for an average normal year.

REFERENCES

- Agriculture Marketing Department, GOB; Various Crop Marketing Reports.
- AIS 1989. Krishi Diary 1989. Agriculture Information Service, Ministry of Agriculture, Khamarbari, Dhaka-1215.
- Alim, A 1982. Bangladesh Rice, Alim Publication, 18 Green Road, Dhaka-15.
- Annonymous 1989a. Amar Santan Jeno Thakey Dudhe Bhate. Agriculture Information Service (AIS), Khamarbari, Dhaka.
- _____, 1989b. Eak Moroger Sangsar, AIS, Khamarbari, Dhaka.
- _____, 1989c. Murgir Baccha Palan, AIS, Khamarbari, Dhaka.
- _____, 1989d. Eaker Vitor Duye, AIS, Khamarbari, Dhaka.
- ARDICOL, 1988. Agriculture, Rural Development and Irrigation Consultant LTD.(ARDICOL), 5/1 Sir Syed Road, Mohammadpur, Dhaka-1207, Study on Postharvest Quality Control, Grain Handling and Management in Bangladesh (IDA project TA credit 1440 Sub- Project 003).
- BADC 1980a, Agro-Socio-Economic Survey in Nagarkanda Thana, Faridpur District. Unnayan Upodeshta Ltd. 3/9, Asad, Avenue, Mohammadpur, Dhaka-7. March 1980.
- BADC 1980b, Final Report on Survey of Farmers Attitude towards HYV-Cereal Seed (Paddy and Wheat) in Chittagong Division. Bangladesh Agri. Consultants. October 10, 1980.
- BADC 1985, Procurement, Processing and Distribution of Improved Seeds Project Digest, BADC. 1985. p.p.6.
- BARC 1975, Proceeding of the National Wheat Workshop. 2-3 September, 1975.
- BARC 1983, Agricultural Research in Bangladesh, BARC, New Airport Road, Farmgate, Dhaka.
- BARI 1982. Wheat Production Manual, BARI, Joydevpur, April 1982.
- BARI 1980. A Note on Accomplishments of Wheat Research Project (July 1975 to June, 1980), Monograph No. 4. November, 1980.
- Barton L.V. 1961. Seed Preseervation and Longivity, New York: Interscience Publishers Inc.
- Barton L.V. 1967. Bibliography of Seeds. New York: Columbia University Press.
- BBS 1989. Yearbook. BBS, Bangladesh.

- BBS 1988. Bangladesh Census of Agriculture and Livestock: 1983-84.
- BBS 1986. Bangladesh Bureau of Statistics, Ministry of Planning, 1986.
- BBS 1984. Bangladesh Bureau of Statistics, Ministry of Planning, 1984. The Livestock Survey of Bangladesh.
- BCSIR 1982. Task Force Report: BCSIR BSB, Dhaka, Bangldesh.
- BCSIR 1981. Task Force Report: BCSIR-BSB, quoted from the World Bank Report No. 4292-BD, Department of Food, Government of the People's Republic of Bangladesh.
- BPMI 1983. Study of Foodgrain Stook Management and Inventory Control System, 1982-83. Bangladesh Project Management Institute (BPMI).
- BRRI 1987a. A Benchmark Study of Rice Marketing in Bangladesh, Bangladesh Rice Research Institute, Joydebpur.
- BRRI 1987b. Annual Report for 1985, Joydevpur, Published 1987. The Optimum Seed rate for Upland Rice.
- BRRI 1976. Annual Report for 1973-74, Joydevpur.
- BRRI 1982. Annual Report for 1979, Joydevpur.
- BRRI 1984. Survey of Deep Water and Mixed Aus-Aman Crop Areas of Greater Mymensingh District. M.R.Talukder.
- BRRI 1985. Annual Report, Bangladesh Rice Research Institute, Joydebpur, Bangladesh.
- Chowdhury, Naimuddin (1988), "Where the Poor Come Last: The Case of Modified Rationing in Bangladesh, BDS vol. xvi No. 1, BIDS Dhaka.
- CIMMYT 1982. CIMMYT Today No. 15 : Wheat in Bangladesh, 1982.
- Dickey, J. R. and Q. M. E. Haque, 1986. Status of the Bangladesh Livestock Industry in relation to fodder supply and to consumption of animal products. BARC Dhaka.
- Elias, S.M. and M.S. Hussain 1983. Wheat Production in Bangladesh, Socio-Economic assessment of Improved Technology and Identification of Constraints to Higher Production. BARI,Joydevpur, December 1983.
- EUREKA, M/S (Bangladesh) Ltd 1986. Study on Subsidies on Public . Foodgrain Distribution System in Bangladesh, Ministry of Food, GOB.

- FAO, 1986. Report on Farm and Village Level Post-harvest Rice Loss Assessment in Bangladesh. FAJ, Rome, Italy.
- FAO/World Bank, 1985. Livestock Development Pilot Project No. 60/83 BGD.
- FAO 1984. A Diges': of Recent, Current and Proposed Technical Support Development for the Public Food Storage Sector in Bangladesh.
- FAO 1979. Feasibility Study for Setting up of a Food Corporation in Bangladesh, FAO, Rome, Italy.
- FAO 1975. Feistrilzer W.P. Cereal Technology. A Mannual of Cereal Seed Production, Quality Control and Distribution. Published by Plant Production and Protection Division, FAO, Rome, Italy.
- FPMU 1990. Food Situation Report : Review of 1989-90. Ministry of Food, GOB, Dhaka, Bangladesh.
- Ghatak, S. & K. Ingersent, 1984, Agriculture and Economic Development, Wheatsheaf Books Ltd.
- Greely,1981. Farm Level Rice processing in Bangladesh, Food Losses, technical charge & implications of future research, Proceeding of the 4th Annual Workshop, on grains post-harvest technology, Manila, Philippines, 1981.
- Greely, 1980. Farm Level Postharvest Food losses : the Myth of the third option, December.
- Haque, A.K.M. Anwarul, M.A.Quasem, N.H. Choudhury and Joe R. Arboleda. 1984a. Farm and Village level postharvest rice loss assessment in Eangladesh: A preliminary study in 1983 Aus season, FAO, Dhaka, Field document No.3.
- Haque, A.K.M. Anwarul, M.A.Quasem, N.H. Choudhury and Joe R. Arboleda, 1984b. Farm and Village level Rice loss assessment in Bangladesh : Harvesting to cleaning.
- Hashem, Abul 1986. Status of Cereal Seed Industry in Bangladesh, Survey Report, Aug. 1986, BADC Dhaka.
- Hossain M.S. and S.M. Elias 1981. Transplanted Aman Paddy Cultivation Practices, Costs and Returns in Thakurgaon Tubewell Project Area. 1980-81. The Bangladesh Water Development Board and USAID, September 1981.
- Hossian M.S. and S.M. Elias 1982. Cost and Return for Wheat cultivation in Thakurgaon Tubewell Project Area, 1980-81, BWDB and USAID, Feb 1982.
- Hossain, A. 1989. A review of livestock sub-sector in Bangladesh. Bangladesh Agriculture Sector Review Compendium Vol.II.

- IDST, 1984. Directorate of Inspection, Development and Technical Services, Department of Food, Government of the People's Republic of Bangladesh, Digest, 1984.
- Islam, M. A. et.al 1985. Benchmark Study of Rice Marketing in Bangladesh; BRRI, Joydevpur, Dhaka.
- Islam, T.M.T. 1989. Farm Production System in Bangladesh. UNDP, Dhaka, Bangladesh.
- Jones C. R. 1964, Recent European Development in Flour Milling Technology, Milling.
- Karim, A.M.A, Huriey E.G., 1982. "Assessment of quantitative loss of Aus Paddy during post harvest operations in wet season in Mymensingh, 1981 Aus season.
- Kent N. L. 1966, Technology of Cereals with Special Reference to Wheat, 1st edition, Pergaman Press, Oxford, U.K.
- Lele, U. and J. Mellor, 1971, Foodgrain Marketing in India : Private Performance and Public Policy, Cornell University Press.
- Lockwood J. F. 1960, Flour Milling, 4th edition, Northern Publ. Co. Ltd. Liverpool.
- Madamba, J.C. 1985. Employment in the Livestock Sector, Chapter III (draft). ADB/GOB Framework Studies for the Third Five Year Plan.
- Mallick, R.N. 1981. Rice in Nepal Kala Prakashan, Kathmandu, Napal, 1981.
- Maziruddin, K. 1989. Markets and Marketing Polices in Accelerating Agricultural Growth," in Bangladesh Agriculture Performance and Polices - UNDP, Dhaka.
- MOF 1990. Food Situation Report: Review of 1989-90. FPMU, Ministry of Food. Bangladesh.
- NAS 1978. Post Harvest Food Losses in Developing countries. National Academy of Sciences, Washington DC, 1978.
- Pandua 1978. Post-Harvest Foodgrain Loss. PCARRD Crop Series No.7, Manila, Philippines.
- PCARRD 1984. PCARRD Crop Series No.7, Manila, Philippines.
- Quasem, M.A. 1987. Farmers Participation in Paddy Marketing. The Bangladesh Development Studies, March, 1987.

- Quasem, M., 1979. "Marketing Aman Paddy With Special Reference to the Government Procurement Programme in Two Selected Areas of Bangladesh", Bangladesh Journal of Agricultural Economics, June.
- Salam, M.A. and M. Aftabuddin, 1987. Bangladesh Hasher Chash (Duck Rearing), Bangladesh Livestock Services, Dhaka, Bangladesh.
- Scott J. H. 1951. Flour Milling Processes, 2nd edition, Chapman & Hall, London.
- Sheikh, N.M., S.A.M. Kabir, A.A. Siddique and A.M.S. Kamal, 1989. A study report on feed meal plants for cattle and poultry birds in Bangladesh. Bangladesh Sugar and Food Industries Corporation.
- Smith L. 1944. Flour Milling Technology, 3rd edition, Northern Publ. Co. Ltd.
- Tareque, A.M.M. 1985. Status of Animal Nutrition in Bangladesh. Proceedings of the First National Loss on Livestock Research, BARC, Dhaka.
- Tareque, A.M.M. and M. Saadullah, 1988. Feed availability, requirements for animals and current patterns of utilization in Bangladesh. Proceedings of a Consultation held in Hissar, India.
- UNIDO, 1979. UNIDO Monographs on Appropriate/Technology No.7,(1979), Appropriate Industrial Technology for Food Storage and Processing.
- World Bank 1978. Bangladesh Second Foodgrain Project. Washington D.C., USA.

APPENDIX

Appendix 1.1. Area and Production of Foodgrains (Total Rice and Wheat, from 1947-48 to 1989-90) in Bangladesh.

Area in '000 acres Production in '000 tons

Year	 	Rice	1	Wheat	1	Total
	Area	Production	¦ Area	Production	¦ Area	Production
1947-48	18606	6736	85	20	 18691	6756
1948-49	19424	7673	95	19	19519	7692
1949-50	19528	7377	96	23	19624	7400
1950-51	20007	7343	94	20	20101	7363
1951-52	20301	7033	96	23	20101	7056
1952-53	20778	7335	98	23	20397	7359
1953-54	22010	8245	98	24	20878	
1954-55	21336	7588	103	24 26		8269
1955-56	19495	6385			21439	7614
1956-57	20055	8185	94 122	22	19589	6407
1957-58	20235		133	23	20188	8208
1958-59	19643	7598	107	22	20342	7620
1959-60	21151	6921	99	25	19742	6946
1960-61		8482	138	29	21289	8511
1961-62	21885	9519	144	32	22029	9551
1962-63	20963	9465	145	39	21108	9504
1963-64	21484	8730	182	44	21666	8774
1964-65	22259	10456	142	34	22401	10490
1965-66	22804	10337	132	31	22937	10368
	23130	10380	136	35	23266	11315
1966-67	22205	9397	168	50	22373	9447
1967-68	24439	10986	192	58	24629	11044
L968-69	24073	11165	290	92	24363	11257
1969-70	25486	11816	269	103	25782	11919
1970-71	24494	10967	311	110	24805	11077
971-72	22975	9774	314	113	23289	9887
.972-73	23769	9931	297	90	24093	10021
.973-74	24409	11721	305	109	24715	11830
.974–75	24197	11109	311	117	24508	11226
.975-76	25525	12561	371	219	25896	12780
.976–77	24419	11567	395	260	24814	11827
977-78	24778	12765	467	348	25245	13113
978–79	24991	12646	654	493	25645	13139
979-80	25104	12539	1071	823	26175	13362
980-81	25474	13662	1461	1092	26935	14754
981-82	25847	13415	1320	967	27167	14382
982-83	26159	13991	1283	1095	27442	15086
983-84	26064	14279	1300	1211	27364	15490
984-85	25263	14391	1671	1464	26934	15855
985-86	25696	14803	1335	1042	20934 27031	
986-87	26216	15212	1335 1 4 45	1042	27661	15845
98788	25507	15414	1445			16303
988-89	19239	15544	1384	1048	26983	16462
989-90	25893	17856		1022	20623	16566
	23095	T1000	1463	890	27356	18746

								('000'	m. tons))	
Year	i		; Total	; Net Produc ; tion(after ; 10% Seed, ; Feed and ; wastage)	Popula- tion	ment @ 15.5Uz/	Gap	Procure- ment	Off- Take	Availa-!	Availahil-
1980-81	18882	1092	14794	13476	90.0	14435	959	1032	1546	13990	15.02
1981-82	13530	967	14597	18137	92.1	14771	1634	303	2069	14903	15.64
1982-83	14125	1095 .	15310	13779	94.1	15092	1313	194	1934	15519	15.68
1983-84	14506	1211	15718	14146	96.1	15413	1267	266	2050	15930	15.01
1984-85	14620	1464	16034	14476	98.0	16478	2002	349	2562	16690	16.46
985-86	15037	1042	16079	14471	100.0	16865	2394	349	1541	15663	15.09
986-87	15496	1051	16587	14928	102.5	16970*	2042	188	2121	16361	15.90
987-88	15346	1050 ⁻	16396	14756	104.1	17228*	2472	375	2503	16884	15.67
988-89	15544	1022	16566	14909	109.5	18130*	3221	416	2941	17434	15.38
989-90	18187	800	10987	17088	111.9	18530*	1442	959	2163	18292	15.80

Appendix 1.2 : Annual Food Budget (Availability and Requirement) in Bangladesh, (1980-81 to 1989-90).

Note : Calculated @ 16 oz/oay

Source: BBS, Ministry of Food & Planning Commission.

Appendix 3.1 : Questionnaires

.

Appendix 3.1a: Questionnaire for Farmers (Household) Region.... District.... Upazila.... Village.... 1. General Information of farm households: 1.0 Identification of farmer 1.1 Name of Farmer..... 1.2 Education Level:* No. of Family member 1.3 1.4 No. available for farming 1.5 Total operated area decimal. Owned area • • • • • • • • • • • Leased in area H Shared in area..... ...

2.0 Method of sowing and seed rate:

Crops ,	Variety		Broadcast method					Transplanted method				
	Area			Qty. of seed used (kg)		1	Produc-	Qty. of seed used (kg)				
		1 1		Total	Own	Purchased		tion (kg)	Total	0wn	Purchased	
Aus	LV											
	мv									·		
B. Aman	LV									,		
Aus-Aman (mixed)	LV									•		
T. Aman	LV				···							
	MV											
Boro	LV											
ľ	MV											
Theat	мv											

* Use code numbers: 1 Below Primary 2 Above Primary Note: Enumerators will record if there is any double seeding.....

······································			-					
Items of Loss	Au	s 1	B. Aman	т.	Aman	Boro		Wheat
	LV	ну	LV	LV	нv	LV	MV	мv
3.1 Loss (Kg) due to field stacking								
3.2 Loss (Kg) during carrying from field to threshing yard								
3.3 Threshing Loss (Kg) by methods (due to non-collection of scattered grains)								
3.3.1 Beating								
3.3.2 Threshing with bullock								
3.3.3 Beating followed by Threshing with bullock								
3.3.4 Paddle Thresher								
3.3.5 Others (Specify)								
4.0 Wastage (kg) at stages of:								
4.1 Winnowing & Cleaning (Due to non-collection of scattered grains)								
4.2 Drying (Eaten by poultry, duck & birds, goat - sheep)								
4.3 Wastage due to bad weather								
5.0 Total Loss (items 3.1 to 4.3)								
6.0 Total production (Kg) after drying								
			Ll		l			

3.0 Post Harvest Loss: (Data relating to one lot or one time operation)

7.0 Milling Loss and Recovery of Grains: (Data relating one time operation)7.1 Loss During Parboiling & Drying (kg):

Crops	Variety	Quantity (kg) before parboil	Quantity (kg) after parboil	Tot	Total Loss (kg) due to						
		and drying	and drying	Soaking	Eat	Others					
					Poultry & Birds	Stray Cattle & Goat					
Aus	LV										
	нv										
B.Aman	LV					·					
T.Aman	LV										
	ну										
Boro	LV		· · · · · · · · · · · · · · · · · · ·								
	нч										

.

Crops	Variety	Dheki Quantity (kg)			e huller tity (kg)	Wheat crusher Quantity (Kg.)		
		Before	*After husking	Before	*After husking	Before	*After husking	
Aus	LV							
	MV			······				
B.Aman	LV							
T.Aman	LV							
	мv							
Boro	LV							
	нν				· · · · · · · · · · · · · · · · · · ·			
Wheat	ил				A+=		,,,,,,,,,	

7.2 Recovery of Grains Husked in Dheki and Small Mills

* After husking means recovery of rice/atta.

., E

- 8.0 Loss in Marketing Process : (Data relating one time operation)
- 8.1 Handling Loss at Farm (kg) in course of Weighing & putting in Gunny Bag/Basket for Sale:

Crops	Variety	Quantity Handled (kg)	Quantity Lost (kg)**
Aus	LV		
	MV		
B.Aman	LV		
T.Aman	LV		
	MV		
Boro	LV		
	MV		
Wheat	MV		

** Due to non-collection of scattered grains.

8.2 Transportation loss:

Mode of Transport Used	Type of Foodgrain	Qty.Transported (kg)	Distance Travelled (km)	Qty. Sold (kg)	Qty. Lost (kg)
	Rice				
Headload	Paddy				
	Wheat				
	Rice				· · · · · · · · · · · · · · · · · · ·
Shoulder sling	Paddy				· · · · · · · · · · · · · · · · · · ·
	Wheat				
	Rice				
Rickshaw van	Paddy				
	Wheat				
	Rice				
Bullock cart	Paddy				
	Wheat				
	Rice				
Boat	Paddy				
	Wheat				
	Rice				·
Iruck	Paddy				
	Wheat				
	Rice				
Railways	Paddy				
	Wheat				

.

9.0 Storage loss at farm :

Type of container		Quantity	Period of	Quantity Released	9	uantitv	loss (kg) due	to
used for storing	foodgrain stored stored (kg)		storage (months)	(kg)	Evapora- tion of Moisture	Rodent	Insect	Fungus	Other
	Rice								
Gunny Bag	Paddy								
	Wheat								
	Rice								
Motka	Paddy								
	Wheat								
	Rice								
Dool	Paddy			<u> </u>					
	Wheat								
	Rice								
Gola	Paddy								
	Wheat								
	Rice								
Others(Specify)	Paddy								
	Wheat								

<u>Animal feed</u>:

10.0	Cattle, Goat and Poult	ry/Duc	k possessed	(Number):
10.1	Total Cattle	10.2	Milch Cows	••••••
10.3	Other Cattle	10.4	Goats	
10.5	Sheep	10.6	Poultry	••••••••••
10.7	Ducks			

		Aus	Aman	Boro	Wheat	Processed feed
11.1	Cattle					
11.2	Goat/Sheep				······	
11.3	Poultry					
11.4	Duck					
11.5	Others (Specify)					

11.0 Foodgrain used as feed: (kg per month)

Date:-----

Signature of Enumerator

•

Appendix 3.1b: Questionnaire for Rice Miller/Wheat Crusher

1.0 Name of Miller....

1.1 Type of Mill^{1**}

1.2 Crushing capacity (kg) : PaddyWheat

1.3 Quantity Milled (kg) 1989/90 in the season of crops:

Aus	
Aman	
Boro	
Wheat	

- 1** Use Code Number:
 - 1 Huller
 - 2 Wheat Crusher
 - 3 Both
 - 4 Boiler
 - 5 Others

2.0 Milling Loss at Millers Level:

2.1 Soaking, Parboiling and Drying loss (kg)

Crops	Variety		Quantity (kg) after parboil	Tot	Total Loss (kg) due to					
			and drying	Soaking	Eat	Others				
					Poultry & Birds	Stray Cattle & Cont				
Aus	LV									
	MV									
B.Aman	LV			+						
T.Amun	LV			++						
	му			++						
Boro	LV		·····		———					
ſ	MV			┼───┼			,			

2.2 Recovery during milling (Kg)

Crops	Variety	Type of mill ^{2**}	Quantity (kg) milled	Recovery of Rice/Atta (kg)	Remainder (kg) (husk, bran & broken grains)	Loss (kg) in milling
Aus	LV					
	MV					••••••••••••••••••••••••••••••••••••••
B.Aman	LV					<u> </u>
T.Aman	LV			······································		
	MV					
Boro	LV		·			
	MV					
Wheat	HV					

- 2** Use Code Number:
 - 1 Huller
 - 2 Wheat Crusher
 - 3 Both
 - 4
 - Boiler 5 Others

Type of container used	Type of foodgrain		Period	Quantity	Quantity Loss (kg) due to					
		ored	of storage (month)	(kg)	Evapora- tion of Moisture	Rodent	Insects	Fungus	Other	
Cunny Bag	Aus	Rice								
		Paddy								
	Лта	n Rice						*****		
		Paddy								
	Bor	Rice							<u> </u>	
		Paddy								
	Whe	nt								
Gola	Aus	Rice								
		Paddy							····	
	Amar	Rice				· · · · · · · · · · · · · · · · · · ·		-		
		Paddy								
	Boro	Rice								
		Paddy								
	Whea	t.								
fotka		Rice							<u>-</u>	
		Paddy	 							
		Rice								
		Paddy	 							
	Boro	Rice	 							
		Paddy	 							
	Wheat		 							
thers	1 }	Rice								
Specify)		Paddy	 							
	Aman	Rice								
		Paddy	 						·	
	Boro	Rice	 							
		Paddy	 							
ľ	Wheat		 							

2.3 Storage Loss in case of Boiler Mills only.

Appendix 3.1c: Questionnaire for Traders

	Region		District
	Upazila		Market
1.1	Name of	Trader	
1.2	Type of 1989/90	fcodgrain handled & in the seasons of c	quantity (Kg) during rops.
	Paddy:	Aus Aman	•••••• Boro
	Rice:	-	Boro
	Wheat:		

- 2.0 Loss in Marketing process:
- 2.1 Handling loss at shop during weighing and bagging: (due to non-collection of scattered grains)

Crops	Original quantity (kg)	After	transaction (kg)	Loss (kg)
Aus				
Aman				
Boro				
Wheat		<u></u>		

2.2	Transportation	loss:
-----	----------------	-------

Mode of Transport Used	Type of Foodgrain	Quantity Transported (kg)	Distance Travelled (km)	Quantity Received (kg)	Qty, Lost (kg) due to			
					Use of nook	Pilferage	Trans shipment	Others
	Rice							
llendload	Paddy							
	Wheat							
	Rice							
Shoulder	Paddy							
sling	Wheat							
	Rice				• • •			
	Paddy							
van	Wheat							
	Rice							
Bullock cart	Paddy							
	Wheat							. <u>.</u>
	Rice							
Boat	Paddy							
	Wheat							
	Rice							
Truck	Paddy							·
	Wheat							
i	Rice							
lailways	Paddy							
1	iheat							

3.0 Storage loss:

Type of	Type of foodgrain		Qty.stored	Period	Quantity	Quantity Lost (kg) due to					
container used	Stor	ed .ed		released (kg)	Evapora- tion of Moisture	Rodent	Insects	Fungus	Others		
Gunny Bag	Aus	Rice			_						
		Paddy									
	Aman	Rice									
		Paddy									
	Doro	Rice									
		Paddy									
	Whea	t									
Cola	Aus	Rice									
		Paddy									
	Aman	Rice									
	1	Paddy									
	Boro	Rice									
		Paddy	· · · · · · · · · · · · · · · · · · ·								
	Wheat	t l								<u> </u>	
Motka	Aus	Rice	•								
		Paddy									
	Aman	Rice									
		Faddy	· · · · · ·								
	Doro	Rice									
		Paddy									
	Wheat										
Others	Aus	Rice									
(Specify)		Paddy									
	Aman	Rice									
		Paddy									
	Boro	Rice									
		Paddy									
	Wheat										

Appendix 3.1d: Questionnaire for Feed Mills

Region..... District Upazila Upazila Location 1.0 Type of feed mill^{3**}..... 2.0 Name of proprietor..... 3.0 Quantity of feed prepared during 1989/90 (kg) Cattle feed..... Poultry feed.....

4.0 Major ingredients (kg)

Ingredients	Cattle feed(kg)	Poultry feed(kg)
Rice		
Wheat		
Maize		
Oilcake		
Others		

5.0 Source of feed ingredients:

Rice: Localkg	Imported/Food Deptt.	kg
Wheat : Localkg	Imported/Food Deptt.	kg

3 Both

^{**} Use Code Number:

¹ Cattle Feed

² Poultry Feed

6.0 Storage Loss of feed ingredients (local grains only) during 1989/90.

Type of	Qty.stored	Period	Quantity	Quantity Loss (kg) due to						
foodgrain Stored	(kg)	(month)	e released (kg)	Evapora- tion of Moisture	Rodent	Insects	Fungus	Others		
Rice										
Whent								i		

Date:-----

Signature of Enumerator

Appendix 3.1e: Questionnaire for Catcle & Poultry Farms
Region
Upazila District
Location
1.0 Type of Farm :^{4**}
1.1 Proprietor of Farm
2.0 Number of cattle No. of Goat......
No. of Poultry...... No. of Duck......

Type of Animal/ Direct grains (Paddy/rice) Prepared feed Poultry Aus Amon Boro Wheat Paddy Rice Pnddy Rice Paddy Rice Cattle Gont Poultry Duck

3.0 Feed used per day (kg)

4.0 Source of prepared feed, 1989/90

Purchased kg. Own..... kg.

^{**} Use Code Number:

¹ Cattle Firm

² Poultry Firm

³ Both

5.0 If own, quantities of ingredints used by type (kg)

Rice	
Wheat	
Maize	
Oilcake	
Others	

6.0 Source of feed ingredients:

Rice: Localkg Imported/Food Deptt.kg

Wheat : Local.....kg Imported/Food Deptt.kg

7.0 Storage Loss of feed ingredients (local grains only) during 1989/90.

Type of foodgrain Stored	Qty.stored (kg)	Period of storage (month)	Quantity released (kg)	Quantity Loss (kg) due to						
				Evapora- tion of Moisture	Rodent	Insects	Fungus	Others		
Rice					<u></u>					
Wheat										

Date:-----

......

Signature of Enumerator

Agro-Ecological Zones (AEZ)	NO. and Name of selected Upazilas	No. of Vill- ages in the Upazilas	No. of Selected Villages	. 2
1. Chittagong- Noakhali	1. Rangunia	113	2	Jungleghat Chek Muradnagar
	2. Satkania	125	3	Nayapara Afjalnagar Gariberjhil
	3. Feni	135	3	Uttar Kashimpur Ratanpur Aswadia
2. Mymensingh- Kishoregonj- Jamalpur	1. Trishal	162	3	Sammuk Bailor Singrail Darirampur
	2. Kishorganj	205	4	Kutakeli Babundia Char Maria Purba Latibabad
	3. Sarishabari	202	4	Char Sarishabari Pingna Bonogram Kamrabad
3. Dhaka- Tangail	1. Kaliakair	282	6	Dakurai Doanipara Sahebabad Nayanagar Ultapara Basura
	2. Kalihati	289	6	Dattagram Utraiol Alam Naga Fultala Kursabenu Machhuahata
. Comilla- Sylhet	1. Chandina	233	5	Gazaria Bamanda Parchanga Pihar Gopindapur Teerchor
2 	2. Chandpur	139	i t	Makimpur Kamrua Char Measa

Appendix 3.2:	Selected	Villages	in	different	Agro-Ecological	Zones	(AEZ).
		5					(/-

Agro-Ecologica Zones (AEZ)	l No. and Name of selected 'Upazilas	No. of Vill- ages in the Upazilas	,	Name of Selected Villages
4. Canilla- Sylhet	3. Habiganj	325	6	Hasanabad Shailjura Shujatpur Uttar Paikpara Sudiakhola Uluhra
5. Rajshahi- Bogra-	1. Gabtali	218	4	Beltala Sonarpukur Bamania Karnipara
	2. Shahzadpur	317	6	Bherakhola Chithulia Haldighar Sherkhali Choira Garadaha
6. Rangpur- Dinajpur	1. Mithapukur	310	7	Malipara Ramnathpur Jadabpur Khorda Kashinathpu Shyampur Taiyabpur Sitalgari
	2. Chirirbandar	145	3	Uttar Bholanathpur Rasulpur Gonoalgram
7. Jessore- Kushtia- Khulna	1. Monirampur	257	5	Taruapara Asannagar Goalbari Noapara Panchakari
	2. Meherpur	118	2	Basantapur Raja Nagar
2. Barisal- Faridpur- Patuakhali	1. Gournadi	208	4	Basudabpara Asukhati Uttar Bijoypur Khanjapur
Total		3775	76	

Appendix 3.2: Selected Villages in different Agro-Ecological Zones (AEZ) (Contd.).

Appendix 3.3 : List of the Primary Markets Selected for Study. S1. Name of the Market Location No. _____ ------1. Charanihat Upazila-Satkania, Dist.-Chittagong. 2. Chowmuhoni Bazar Upazila-Ranguia, Dist.-Chittagong. 3. Beroli Bazar Upazila-Feni, Dist.-Feni. 4. New Ranirhat - do -5. Majid Miar Bazar - do -6. Kalir Bazar Upazila-Trishal, Dist.-Mymensingh. 7. Jashadal Upazila-Kishoreganj, Dist.-Kishoreganj. 8. Gopalganj Upazila-Sharishabari, Disi.-Jamalpur. 9. Banagram - do -10. Baushi Bazar - do -11. Ballaha Upazila-Kalihati, Dist.-Tangail. Patalhat, Durgapur 12. - do -13. Shahahat - do -14. Kakdahara - do -15. Latifpur Upazila-Kailakair, Dist.-Gazipur. 16. Shafipur - do -17. Baraibarhat - do -18. Banipur - do -19. Nimshar Upazila-Chandina, Dist.-Comilla. 20. Mahichail - do -21. Kaduty Bazar - do -22. Chandina Bazar - do -23. Chadra Bazar Upazila-Chandpur, Dist.-Chandpur. 24. Bagra Bazar - do -

187

Appendix 3.3: List of the Primary Markets Selected for Study (contd.) ------S1. Name of the Market Location No. -------25. Daud Nagar Bazar - do -26. Bramon Dora Bazar - do -27. Pirgachha Upazila-Gabtoli, Dist.-Bogra. 28. Peri - do -29. Kagail - do -30. Harirampur Upazila-Shahjadpur, Dist.-Shahjadpur. 31. Kashinalpur - do -32. Narina Bazar - do -33. Talgachhi - do -34. Bherakhola - do -35. Sonatani Bazar - do -36. Faridpur Upazila-Mithapukur, Dist.-Rangpur. 37. Fakirhat (Malipara) - do -38. Kumargonj - do -39. Miaharhat - do -40. Jagir hat - do -41. Ranirbandar Upazila-Chirirbandar, Dist.-Dinajpur. 42. Bhushirbandar - do -43. Currenterhat - do -44. Shukhipirhat - do -45. Bakra Upazila-Monirampur, Dist.-Jessore. 46. Khadapara - do -47. Pachakari - do -48. Dakuria - do -49. Amjhupi Upazila-Meherpur, Dist.-Meherpur.

Appendix 3.3: List of the Primary Markets Selected for Study (Contd.) _____ ____ Sl. Name of the Market Location No. 50. Baradi Bazar - do -51. Chandshi Upazila-Gournadi, Dist.-Barishal. 52. Gopalpur - do -53. Gournadi Bandar - do -54. Mahilara - do -

Appendix 3.4 : List of the Secondary Markets Selected for the Study. S1. Name of the Market Location No. 1. Dewanhat Upazila-Satkania, Dist.-Chittagong. 2. Rowzahat Upazila-Rangunia, Dist.-Chittagong. 3. Panchgachhia Bazar Upazila-Feni, Dist.-Feni. 4. Trishal Bazar Upazila-Trishal, Dist.-Mymensingh. 5. Bara Bazar Upazila-Kishoregonj, Dist.-Kishoregonj. 6. Aram Nagar Upazila-Sharishabari, Dist.-Jamalpur. 7. Elenga Upazila-Kalihat., Dist.-Tangail. 8. Kaliakair Bazar Upazila-Kaliakair, Dist.-Gazipur. 9. Eliatganj Upazila-Chandina, Dist.-Comilla. 10. Puran Bazar Upazila-Chandpur, Dist.-Chandpur. 11. Shaestaganj Furan Bazer Upazila-Habiganj, Dist.-Habiganj. 12. Naruamela Upazila-Gabtali, Dist.-Bogra. 13. Dariapur Upazila-Shahjadpur, Dist.-Pabna. 14. Shotibari Upazila-Mithapukur, Dist.-Rangpur. 15. Okrabari Upazila-Chirirbandar, Dist.-Dinajpur. 16. Monirampur Bazar Upazila-Moirampur, Dist.-Jessore. 17. Meherpur Upazila-Meherpur, Dist.-Meherpur. 18. Torki Upazila-Gournadi, Dist.-Barishal.

Appendix 3.5 : List of the Selected Big Markets for Study.

Sl. No.	Name of the Market	Location
1. 2.	Badam Tali Mohammadpur Krishi	Sadar Ghat, Dhaka.
з.	Super Market Puran Bazar	Mohammadpur, Dhaka.
	Shotibari	Chandpur Sadar, Chandpur. Mithapukur, Rangpur.
App	endix 3.6 : List of the	Selected Godowns for Study.
Sl. No.		Location
1.	Mubarak Traders	Panchgachhia Road, Uapazila-Feni, DistFeni.
2.	Mosharaf Traders	- do -
3.	Razzak Traders	Elenga hat, Upazila-Kalihati, DistTangail.
4.	Nasir Traders	Kaliakair, Upazila-Kaliakair, DistGazipur.
5	Jalil Traders	Latifpur, Upazila-Kaliakair, DistGazipur.
6.	Taj Traders	Puran Bazar, Upazila-Chandpur Sadar, Dist Chandpur.
7.	Dhali & Sons	- do -
Β.	Mubarak Traders	Shaestagonj, Upazila - Habigonj Dist Habigonj.
€.	Shamiran Traders	- do -
LO.	Younus Traders	Dariapur, Upazila- Shahjadpur, Dist Sirajgonj.
11.	Bishnu Traders	Monirampur Bazar, Upazila-Monirampur, Dist Jesssore.
.2.	Sreebas Traders	- do -
.3.	Shamsuddin Traders	Meherpur, Upazila- Meherpur Sadar, Dist Meherpur.
4.	Shahidul Traders	- do -

.

.

	IOT S	—			
S1. No	Name of Miller	¦ Type of Mill		Upazila	
1.	Md. Saifuddin	Huller		Rangunia	
2.	Md. Shirajul Islam	Huller	- do -	- do -	- do -
з.	Mr. Moinuddin	Auto Rice Mill	Chownohoni	- do -	- do -
4.	Mr. Rahmatullah	- do -	- do -	- do -	- do -
5.	Md. Mozaher Miah	Huller/W.Crusher	Charpara, Damsha	Satkania	- do -
6.	Md. Shafi	Huller	Shamadia Bazar	- do -	- do -
7.	Md. Salimullah	Huller	Dolubridge	- do -	- do -
۹.	Md. Enait Ali	Huller	Karanihat	- do -	- do -
).	Md. Mamunur Rashid	Auto Rice Mill	Dewanhat	- do -	- do -
lo.	Md. Sadek Bhuiyan	Huller	Aswadia	Feni	Noakhal i
1.	Md. Wahidur Rahman	Boiler	Kazirbag Road	- do -	• do -
2.	Md. Abul Mansur	Huller/W.Crusher	Trishal Bazar	Trishal	Mymens i ngh
3.	Md. Abdur Rahman	Wheat Crusher	- do -	- do -	- do -
4.	Md. Abdur Rashid	- do -	- do -	- do -	- do -
5.	Md. Mofazzal Hossain	Huller/W.Crusher	Shamuk Boilar	- do -	- do -
6.	Dewan Md. Khaleque	Boiler	Haibal Nagar	Kishoregonj	Kishoregon
7.	Mrs. Sabiha Akter	Huller/W.Crusher	Monipuri Ghat	- do -	- do -
8.	Md. Shahab Uddin	Huller/W.Crusher	Char Haria	- do -	- do -
э.	Md. Dulal	- do -	Babundia	- do -	- do -
).	Md. Mamtaj Ali	Boiler	Danata	Sarishabari	Jamalpur
•	Mrs. Samsun Nahar	Huller/W.Crusher	Aram Nagar	- do -	- do -
2.	Md. Shorah Ali	- do -	Banshi	- do -	- do -
•	Md. Siraj Sikdar	Huller	Boraibari	Kaliakair	Gazipur
•	Mr. Mofizur Rahman	Boiler	Hezaltoli	- do -	- do -
•	M∴. Shamsul Haque	Huller	Kaliakair Bazar	- do -	- do -

Appendix 3.7 : List of the Selected Rice Mills/Wheat Crushers for Study.

Appendix 3.7	:	List of the Selected	Ri	ce	Mills/Wheat Cr	rusher
		for Study (Contd.).			•	

S1. N	lo.¦ Name of Miller				
26.	Md. A. Rashid		Shatutia	Kalihati	Tangail
27.	Mr. Lablu Miah	Huller/W.Crusher	Durgapur	- do -	- do -
28.	Mr. Naba Talukder	- do -	- do -	- do -	- do -
29.	Mr. Abdul Gani	Huller	Narinda	- do -	- do -
30.	Mr. Muslauddin	Huller/W.Crusher	Chandirı Bazar	Chandina	Comilla
31.	Mr. Moniruddin	- do -	- do -	- do -	- do -
32.	Mr. Shama Chandra	- do -	Kaduti Bazar	- do -	- do -
33.	Mr. Abdul Mobin	- do -	Parchanga	- do -	- do -
34.	Mr. Abdur Rashid	Boiler	Puran Bazar	Chandpur	Chandpur
15.	Alhaj Md. Mostafa Mi	ah - do -	Roiez Road	- do -	- do -
6.	Mr. Tofazzal Hossain	- do -	Bagadi Road	- do -	- do -
7.	Mr. Fazal Tafadar	Huller	Chandpur Bazar	Chandpur	- do -
8.	Mr. Mofazzal Hossain	Huller/W.Crusher	Uttar Balia	- do -	- do -
9.	Mr. Seer Ali	Boiler	Langapara, Shaeztagonj	Hobigonj	Habigonj
D .	Mr. Shiraj Miah	Huller/w.Crusher		- do -	- do -
1.	Mr. Abdul Haque	Huller	Station Road	Hobigonj	- do -
2.	Mr. Nirmal Chandra	- do -	Ramunia	Gabtoli	Bogra
	Mr. Azizar Rahman	Huller/W.Crusher	Peri	- do -	- do -
•	Mr. Yousuf Ali	- do -	Narua Mela	- do -	- do -
•	Mr. Mazibor Rahman	Boiler	Kago i 1	- do -	- do -
•	Mr. Shirajul Islam	Huller/W.Crusher	Darlapur	Shahjadpur	Serajgonj
•	Mrs. Fatama Karim	Huller	Thanaghatpara	- do -	- do -
•	Mr. Sharab Ali	Huller/W.Crusher	Ramkharua	- do -	- do -
•	Mr. Musha Molla	Huller	Chaira	- do -	- do -
•	Alhaj Amir Hossain	Huller/W.Crusher	Garadah Bazar	- do -	- do -

•

S1. No.	Name of Miller	Type of Mill		Upazila	Distric
51.	Mr. Hossain Ali	- do -	Baghabari Bazar		- do -
52.	Mr. Halim Master	Huller	Talgachhi Bazar	Shahzadpur	Serajgonj
53.	Mr. Safiur Sardar	Boiler	Shotibari	Mithapukur	Rangpur
54.	Rafiqul Islam	Huller	- do -	- do -	- do -
55.	Abdur Rahim	Huller	Miar Hat	- do -	- do -
56.	Shah Md. Sarwarul Is	lam Boiler	Zakirhat	- do -	- do -
57.	Abdur Rouf	Huller/W.Crusher	- do -	- do -	- do -
68.	Mr. Nurul Haque	Huller	Ramnathpur	- do -	- do -
9.	Mr. Mostafa	Huller/W.Crusher	Omarpur	Chirirbanda	r Dinajpur
0.	Mr. Mostaque	- do -	- do -	- do -	- do -
1.	Mr. Mozammel Hossain	• Boiler	Chirirbandar	- do -	- do -
2.	Mr. Sarkar	Huller/W.Crusher	Bhosirbandar	- do -	- do -
3.	Mr. Safiur Rahman	Huller/W.Crusher	Monirampur Bazar	Monirampur	Jessore
4.	Manoranjan Ghos	- do -	- do -	- do -	- do -
5.	Mr. Motiar Rahman	- do -	Meherpur	Meherpur	Meherpur
5.	Mr. Amzad Hossain	- do -	Meherpur	Meherpur	- do -
7.	Mr. Ismail Hossain	- do -	- do -	- do -	- do -
9.	Mr. Robiul Islam	- do -	Basantapur	- do -	- do -
ı.	Mr. Araj Ali Sardar	- do -	Gournadi	Gournadi	Barisal
•	Mr. A. Rashid	- do -	Ashukati	- do -	- do -
•	Md. Abul Hossain	- do -	Tarki Bandar	- do -	- do -

Appendix 3.7 : List of the Selected Rice Mills/Wheat Crushe for Study (Contd.).

Appendix 3.8 : List of the Major Poultry and Cattle Farms in Bangladesh with Selected Farms for Study. _____ S1. Name of the Farms Location No. 1. Central Poultry Farm, Mirpur* Mirpur, Dhaka 2. Zonal Poultry Farm, Rajshahi Rajabarihat, Rajahahi З. Zonal Poultry Farm, Pahartali Pahartali, Chittagong Govt. Poultry Farm, Tajgaon Govt. Poultry Farm, Comilla Govt. Poultry Farm, Sitakunda 4. Mirpur, Dhaka 5. Chartha, Comilla 6. Sitakunda, Chittagong Govt. Poultry Farm, Sylhet 7. Tilaghar, Sylhet Jamalganj, Jypurhat Govt. Poultry Farm, Jamalganj
 Govt. Poultry Farm, Rangpur
 Govt. Poultry Farm, Jessore* 8. Alamnagar, Rangpur Sankarpur, Jossere Govt. Fourtry Farm, Dessore
 Govt. Poultry Farm, Barisal
 Govt. Poultry Farm, Tangail
 Govt. Poultry Farm, Kishoreganj*
 Govt. Poultry Farm, Faridpur
 Govt. Poultry Farm, Rajbari
 Govt. Poultry Farm, Madaripur
 Govt. Poultry Farm, Bangamati Amanatganj, Barisal Tangail Bagadia, Kishoreganj Badarpur, Faridpur Rajbari Madaripur 17. Govt. Poultry Farm, Rangamati Assibasti, Rangamati Industrial Area, Pabna Govt. Poultry Farm, Pabna Govt. Poultry Farm, Serajganj^{*} Govt. Poultry Farm, Bogra^{*} 18. 19. Sialcol, Sirajganj 20. Bogra Govt. Poultry Farm, Dinajpur* 21. Baskerhat, Dinajpur Govt. Poultry Farm, Thakurgaon Govt. Poultry Farm, Kushtia Govt. Poultry Farm, Chuadanga 22. Thakurgaon 23. Kushtia 24. Chuadanga Govt. Poultry Farm, Noakhali 25. Sonapur, Noakhali 261 Govt. Poultry Farm, Patuakhli Patuakhli Poultry Rearing Unit, Manikganj 27. Manikganj Poultry Rearing Unit, Nababganj Poultry Rearing Unit, Satkhari Poultry Rearing Unit, Gopalganj 28. Nababganj 29. Satkhari 30. Gopalganj Poultry Rearing Unit, Bagerhat 31. Bagerhat 32. Poultry Rearing Unit, Kurigram Kurigram Poultry Rearing Unit, Jamalpur Central Duck Breeding Farm^{*} 33. Jamalpur 34. Haziganj, Narayangonj 35. Regional Duck Farm, Khulna Daulatpur, Khulna 36. Poultry Farm, Satkania' Rampur, Satkania Chittagong 37. Barabagh Poultry Farm* Barabagh, Kishoregonj 38. Phenix Poultry Farm* Demra, Dhaka Echilee Poultry & Cattle Farm* Tulip Dairy Farm* 39. Bagadi Road, Chandpur 40. Chandra, Kaliakair Gazipur 41. Savar Dairy Farm* Savar, Dhaka 42. National Development Karatia Road, Poultry Farm* Chandpur 43. Damty Poultry Farm* Balashar, Debidder, Comilla 44. Potazia Cattle Farm* Roypara, Shajadpur, Sherajgonj

Appendix 3.8 : List of the Major Poultry and Cattle Farms in Bangladesh with Selected Farms for Study (Contd.). Sl. Name of the Farms Location No. 45. Satkania Poultry Farm^{*}
46. Manaranjan Poultry Farm^{*}
47. Basudevpara Poultry Farm^{*}
Gournadi, Barisal * Surveyed Poultry and Cattle Farm. Appendix 3.9 : List of the Feed Mills in Bangladesh with Selected Mills for Study. .. S1. Name of the Mill Location and Address No. 1. Bangladesh Solvent Oil Ltd. Bagabari, Pabna. 2. Dossa Extraction Ltd. Shagorika Road, Chittagong. Nurpur Feed Meal Plant 3. Tarabo, Narshingdi. 4. Rupan Oil and Feed Ltd. Pulhat, Dinajpur. 5. Monno Grimexpel Ltd. Narayangonj. б. Government Feed Meal Plant* Mirpur, Dhaka. 7. Government Flower Mill Postogolla, Dhaka. 8. Government Feed Meal Plant^{*} Savar, Dhaka. * Surveyed Feed Mill

Appendix 3.10: A Case Study on the Estimation of Grain Losses due to Field Stacking, Carrying and threshing of Foodgrains Crop.

A crop cutting experiment was conducted in each selected Upazila (18) for estimating grain losses due to field stacking, carrying and threshing in Boro and Aus crops. From each selected Upazila one village was selected at random. From each selected village one household was selected at random, as the ultimate sampling unit. Crop cutting experiments were conducted in the plot of the sampled household. In selection of household, emphasis was given to the household who had harvestable Boro or Aus crops at the time of survey.

An area of 9 sq. m (3 m x 3 m) was taken from a plot (ready for harvest) of the selected household. After harvesting, the harvest were kept in small bundles on the gunny bags. The scattered grains which dropped on the gunny bags were collected and weighed to estimate the loss due to field stacking. The bundles were then weighed on a balance. The harvest was tied by a rope and taken to the threshing floor by headload.

At threshing floor, the harvest was weighed again to estimate the loss during carrying using following formula:

FCL = (WCF - WCT)/9gm⁻²
Where,
FCL stands for Field Carrying Loss,
WCF stands for Weight of crop in the field,
WCT stands for Weight of crop after carrying to the
threshing floor.

After threshing the crop, the paddy (including some sterile grains and debris) and the straw were weighed separately. Again, paddy was weighed after winnowing. Losses due to threshing were calculated using following formula :

TL = (WCBT - WCAT)/9gm⁻²
WCAT = (WP + WSGD + WS)g
Where,
TL stands for threshing Losses,
WCBT stands for weight of crop before threshing,
WCAT stands for weight of crop after threshing,
WP stands for weight of paddy,
WSGD stands for weight of sterile grains and debris,
and
WS stands for weight of straw.

The harvest was carried from the field to the threshing floor under umbrella shading and threshing was done under shade as quickly as possible to minimize loss of moisture of the harvest.

- Appendix 3.11 : Procedure for Laboratory Analysis of Stored Foodgrains and Seed Samples.
- Moisture content : Moisture content was determined by 'Dicky John' moisture meter.
- Chaff : Chaff was separated from 500g sample and per cent chaff was calculated by weight basis.
- Foreign materials : Foreign matter (other than rice materials) was separated form 500g sample and per cent foreign materials was calculated on weight basis.
- Admixture : Contrasting grain was separated from 500g sample and per cent admixture was calculated on weight basis.
- Damaged/discolored : Physically damaged and discolored grains grain were separated from 500g sample and percent was calculated on weight basis.
- Insect infection : Insect bored grains were separated from the 500g sample and percent insect infection was calculated by weight.
- Aspergellus flavus : One hundred randomly selected wet grains were placed on PDA media and incubated. The number of grains around which mould grew was termed as per cent of infested grain.
- Aflatoxin : The <u>A. flavus</u> contaminated grain was extracted with chloroform. The extract was concentrated and sported on TLC plate, run in chloroform, thethanol light to detect Aflatoxin.
- Germination(%) : One hundred grain (seed) were placed in a germination plate containing moist blotting paper. After 7th day first count was made then every day till 10th day. The average grain germinated was the percent germination.

		нц (з 		та: 	R E A 1		CHII	TAGONG A	NO NOR	AXHALI	AYAEHSI	LNGH, KIS	HOREGONJ	ARAĘ 1	LFUR	:	OHAKA	ANO TAI	NGATL		:	CONTLES	A AND S	YLHET	
	HVJ.	Print 1	GUNU	POC NI	IUIAL	. HUD	8088	BURD	MAP CI	10121	1 115	2808	2020	1115 - 5	10144										
AREA IN DECIMAL	64224	236163	123492	23719	472598	9050	39500	11219		\$8769	23055	50557	20141	*****					•••••			••••••		•••••	
Production in Kg.	707405	2697527	2051315	174637	5630834	98520	481578	175575		755673	274949	531714	\$14377	14721	1021114	1 13211	12031	10001	3312	40450	12128	14143	5902	5055	423
Rice equivalent in Kg	475660	1835991	1386325		3697976	67693	333830	121533	0		225949														
Seed used % of Production	1 2.89	1.80	0.87	5.73	1.75	1.77	1.60	0.78	0.00	1 78	2.21	2.04		 6.33		4.43			•••••	•••••					
Feed as & of Production	0.63	0.50	0.46			1.34	0.54		0.00	0.78		0.32	0.32	1.26		1.76	0.60	0.90 0.36	00.E 0.19	1.95	2.62			7.12 0.34	-
Field Stackig Loss	0.41	1.09	0.87	0.54	0 91	0.72	0.91	0 77	0.00	0.79		A 33											•	0.24	v
Carrying Loss	1.00	0.62	0.32	0.57		0.76	0.35	0.72		0.30	,	0.37	0.76	0.00		0.72	1.20	1.53		1.24	• • • • •	1.12	0.51		0
Beating Loss	0.63	0.68	0.61	0.66		0.22	0.83	0.07		0.45		0.40 0.65	03.0	0.24		0.27	56.0	0.48	0.23	0.54	• • • • •	0.50	0.53	9.53	0
Bull Threshing	0.27	0.25	0.02			0.68	0.02	0.01		0.10	• • • • •	0.57	0.43	0.76		0.00	0.13	0.43	0.45	0.26		0.54	0.09	e.53	0
Beating after threshing	0.71	0.31	0.13	0.02		0.91	0.45	0.00		0.22	• • • • •	0.30	0.33	0.13		: 0.60 : 0.00	0.52	0.00	0.01	0.33		0.26	0.09	0.08	-
Paddle Threshing	0.13	0.16	0.16	0.00	0.15		0.68	1.27		0.95		0.00	0.00	0.00	0.00	•	0.15 0.04	0.11 0.00	0.00	0.11		0.35	0.00	0.00	-
Other Threshing Winnewing	9.00	0.03	0.00	0.95	0.02		0.05	0.00	0.00	0.02		0.00	0.01	0.02	0.00		0.00	0.00	0.00	0.02 0.00		0.25	0.62		0.
Drying (Birds, Goats etc.	0.67	0.43	9.30 0.65	0.63	6.58		1.35	9.63		0.98	0.64	0.75	0.45			0.31	0.43	0.37	0.24	0.00		0.00	0.01	0.34	0.
Bad weather	0.13	0.00	0.03	0.48	0.54		0.49	0.80		0.62		0.77	0.65	0.95	0.71	0.74	0.58	0.89	63.0	0.72		0.72	1.06	0.84 0.90	0. 0.
Tot. Post harvest loss	4.18	4.39		3.04	0.06	0.15	0.00	0.02		0.03		0.00	0.03	0.00	0.02	0.28	0.00	0.44	0116	0.20		0.00	0.13	0.01	0.
					، ۱۰، :	4.00	5.12	J.83	0.00	4.36	4.42	4.14	3.55	3.76	3.94	2.93	3.77	4.24	2.57		3.85	4.76	3.76	3.51	4.
Partoiling Loss	0.95	2.14		0.00	1.82							•							••••••	•••••••	• •••••••		••••••		
Milling Loss	1.05	1.22	1.32	1.48	1.24		1.76	1.22		1.46		2.08		9.00	1.30	9.77	3.20	3.48	0.00	2.89	1.12	2.53	2.11	0.00	2.
Handling Loss	0.45	0.49	0.32		0.42		0.53 0.43	0.85		0.69		0.77	1.12	1.04	0.87	2.56	2.17	3.32	2.30	2.93	1.56	1.57	1.41	1.37	1.
Transportation Loss	0.23	0.33	0.26		0.32		0.29	0.19 0.21		0.33	0.23	0.34	0.21	0.37	0.23	0.67	0.19	0.19	0.37	0.26	0.49	9.47	0.51	0.55	2
Storage Loss	2.44	1.16	0.9ú		1.03		1.49	G.90		0.24		- 9.19	0.23	0.25	0.23		0.15	0.17	0.34	0.23	0.28	0.32	0.38	0.49	0.
Total Loss at Fara Level	12.87	12.05	9.89		11.21		11.76	8.94		1.39	3.39 12.40	0.33		0.00		0.00	û.67	1.05	0.00	0.70	2.14	1.16	1.00	0.00	1
Heighted Traders Loss	0.33	0.30	0 49	0 11	0 37 4	0.74	A T1					10.76 - 0.24	8.53 0.39		19.35		13.11	13.31	13.76	13.44	12.36	14.03	10.71	11 22	12
GRAND TOTAL	13.20	12.28	10.38	11.84	11.59	13.11	12.07	9.45	0.00	10.91	17.66	L1 00			10.46						0.33	9.21 	0.50	0.12	. e.
		•••••		•••••						••••••							13.22	13.48	13.79	13.57 ;	12.69	14.39	11.21	14.00	13

Accendix 4.1: Seed, Feed and Post-harvest Loss as % of Total Production of Foodgrain Crocs by AEI Juring 1939-50.

CROPS	RAJSHA	HI. BOGRA A	ND 74584			Rangp 	UR AND (DINAJPUR			JESSORE	. SUSHTIA #	ANJUNA ON		••••••	·				••••••
CRUPS	AUS	Алан	8090	инеат	IATOT	405	Adan	50RD	WHEAT	TOTAL	 AUS				••••••	: BARISAL.		O PHIOAXE	4L! •••••	
AREA IN DECIMAL Production in Kg. Rice equivalent in Kg	7722 51501	15818 150512	20352 394871	1016	•••••;	4412 25331	52410 775304		 5052		15947	25342	19729	ant at	TOTAL 70708	; AUS	AARA	6080 	#HEAT	
Seed used t of Production	34454 1.70	101325 2.54	256864 0.35		392643		520539	244745		782755	130757 88735	333212 220553	305671 214398		337511 523296		55228 37837	125304 37731		
Feed as % of Production	1.00	1.19	0.33	2.51 0.10	2.08 0.69	3.71	1.21 0.42	1.02 0.76	5.52 0.34		3.99 0.20	1.73	0.73	5.34 0.32	1.77	••••	4.84	0.90	4.39	J.30
Field Stackig Loss Carrying Loss Beating Loss Beating Loss Bull Threshing Paddle Threshing Dither Threshing Dither Threshing Dinnowing Drying (Birds, Goats etc.) ad weather OL. Post harvest loss	0.58 0.62 0.04 0.62 0.01 0.05 0.00 0.78 0.87 0.36 3.92	0.93 0.92 0.34 0.27 0.32 0.00 0.00 0.57 0.55 0.00 3.95	0.35 0.60 0.50 0.00 0.13 0.00 0.42 0.58 0.17 2.75	0.41 0.48 0.41 0.01 0.13 0.00 0.00 0.40 0.52 0.20 2.55	0.68 0.75 0.36 0.21 0.21 0.01 0.00 0.54 0.60 0.11 3.47	0.39 0.97 1.03 0.00 0.26 0.00 0.01 0.46 0.54 0.01 3.71	1.04 0.74 0.09 0.00 0.32 0.00 0.00 0.71 0.01 0.01 0.01 0.03 7	1.00 1.37 1.50 0.00 0.13 0.01 0.00 0.56 0.41 0.00 5.03	0.39 0.34 1.10 0.00 0.00 0.00 0.73 0.09 0.30 2.67	1.21 0.38 1.18 0.00 0.25 0.00 0.00 0.62 0.23 0.00 4.49	0.00 1.94 1.23 0.00 0.00 0.00 0.00 0.70 0.71 0.59 4.66	0.35 0.41 0.83 0.17 0.00 0.19 0.71 0.47 0.01 4.13	1.12 1.32 0.74 0.00 0.00 0.00 0.00 0.55 0.55 0.56 0.01 4.25	0.29 0.85 0.54 0.00 0.00 0.00 0.01 0.48 0.31	0.23 0.60 1.21 0.61 0.40 0.08 0.00 0.09 0.68 0.51 9.01 4.19	0.30	0.65 1.07 0.62 0.05 0.13 0.02 0.74 0.00 0.63 0.63 0.43 0.30 3.69	0.38 0.77 0.59 0.03 0.14 0.00 0.47 0.05 0.51 0.35 6.02 3.39	1.12 0.34 0.73 0.11 0.23 0.00 0.56 0.00 0.96 9.55 9.20 3.49	0.50 0.34 0.66 0.11 0.29 0.04 0.56 0.00 0.59 0.64 9.03 3.67
arboiling Loss illing Loss andling Loss ransportation Loss lorage Loss tal Loss at Farm Level :ghatd Traders Loss GRAMD TOTAL	0.71 0.49 1.09 0.46 2.59 13.10 0.35	2.35 1.41 0.48 0.33 3.17 15.46 0.35	1.61 1.63 0.46 0.35 0.26 3.93 0.56 9.54	0.00 1.25 0.69 0.45 0.00 7.65 0.58 	1.83 1.45 0.56 0.39 2.10 12.58 0.43		1.30 1.55 0.43 1.10 11.57 0.22		0.00 1.54 0.42 0.32 0.00 10.37 0.46	1.59 1.19 0.52 0.35 1.30 11.69 0.23	0.55 1.05 0.17 0.20 0.62 11.54 0.31	1.23 1.21 0.54 0.21 1.13 10.36 0.29	0.87 2.28 0.21 0.13 0.95 9.75 0.46	0.00 1.53 0.46 0.32 0.00 11.06 0.45	1.21 1.58 0.37 0.20 0.97 10.55 0.36	1.29 0.28 1.07 0.19 1.69 15.93 0.16	2.55 0.53 0.30 0.46 0.73 14.16 0.15	2.73 1.73 0.21 0.33 0.91 10.55 0.24	0.30 1.37 0.54 6.54 0.00 11.95 0.14	2.57 0.97 0.33 0.37 0.90 12.75 0.18
			•••••			14.60	11.29	11.17	11.33	11.97	11.95	11.15	10.21	11.51	10.91	13.99			••••••	

Appendix 4.1: Seed, Feed and Post-harvest Loss is % of Total Production of Foodgrain Croos by AEE Suring 1983-90 (Continued).

Appendix 4.2: Estimated Seed, Feed and Post-harvest Loss (in metric tons) of Foodgrain Crops During 1959-90 in Bangladesh.

			NGLA			¦ 	CHI	TAGONG	AND NO.	TTALL								AND T			;	CONIL	LA AND S	STLAET	
CROPS	AUS	AKAN		VBEAT	TOTAL	AUS	ANAN	8020	WHEAT	TOTAL	10S	ANAR	BORO	YBEAT	TOTAL.	2 115	1838	BOSO	VUSIT	TOTAL	·	1919	DOCO		
Production in m. tons	2487530	9202040	6166750	300000	10/40320	240920	302140	605200	1920	1753730	314790	315630	1061430	69410	2162180	154025	411976	767710	80050	1413235	425195	1243850	987400	95330	
Seed used	71890	165637	54884	50997	324311	4353	14492	4721	0.00			18700	 9756	4394		7045				••••••				••••••	• • • • • • • • • •
Foodgrain used as feed	16915	46010	28357	4094	95606	3295	4891	5810	0.00	13718		2933	3397	875	8741	2799	7003 2719	8905 2762	6404 144	27798 9644	11140	31967 8707	10763 5332	6787 801	59939 16511
Field Stackig Loss	10199	100302	5365;	4805	170592	1771	8242	1159	• ••		0	0	0	0	0	0	0		0	0	0	0	0	0	10-11
arrying Loss	24875	57053	50567	5073	133723	639	3170	4357 1574	0.00	13834 5276		8159	8057	0	18190			11739	480	17587	\$30	13931	5036	181	20633
leating Loss	15571	52574	37617	5874	121851		7513	424	0.00	7915		3657 6050	8432 4564	167	14893		2801	3683	184	7659		7463	5233	553	16511
Bull Threshing	6716	23005	1233	445	29994	•	181	61	0.00	1759	,	3392	1304	528	13938		142	3299	368	3688	,	6717	889	505	10732
eating after threshing	5721	28525	8017	178	43117	• • • •	4075	0	0.00	3859		2750	4034	278	4961		2142	0	8	4680	850	3234	889	76	5228
Paddle Threshing	3234	14723	9867	0	29119	1303	6159	7636	0.00	14950	1 100	2130	1014	90 0	8258		618	844	0	1560		4353	0	0	5504
)ther Threshing	0	2761	0	445	3749	. 0	453		0.00	352	1 0	0	105	14	0 99		165	0	0	284	,	3110	6122	10	10457
linnoving	17164	15457	30834	5607	127475	1672	12227	4115	0.00	17236	2015	6875	4777	847	99 15119		0	0	0	0	•	0	99	324	275
Orging (Birds, Goats etc.)	16915	39569	40084	4272	101230	1844	4438	4242	0.00	10904	1952	7059	6900	680	16773		1771	2839	192	5531	2721	11319	7011	801	22014
Bad weather	3234	0	6783	257	11248	369	0	121	0.00	523		0	318	050	472	1177 445	2389	6828	688	10212	,	8955	10465	858	22540
Tot. Post harvest loss	103979	403970	239270	27055	776098	9837	46374	23173	0.00		[39]4	37951	37523	2610	93078	4659	15531	3376 32531	128 2057	2837 53895	; 1148 ; 16285	0 59207	1284 37126	10 3345	2201 115400
						, -			•••••						•••••		•••••				¦	•••••	•••••		
Parboiling Loss	23632		114702	0	341183	•	15941	7383	0.00	25573	2923	19067	19955	0	42523	1224	13183	25700	0	40988	4762	31469	20834	٥	58338
lilling Loss	26119	112265	81401	13172	232454	,	4300	5144	0.00	12135	1430	7053	11889	722	20553	•			1841	41558	6633	19528	13922	1305	41552
landling Loss	11194	45030	19734	4094	78735	• • •	1895	1150	0.00	5804	724	3117	2223	257	6615	1065	783	1458	296	3638	,	5846	5036	524	13484
ransportation Loss	5721	34963	16034	3025	59988		2527	1271	0.00	4221	850	1742	2972	174	5433	1065	618	1304	272		1191	3980	3752	467	9356
itorage Loss otal Loss at Farm Level	60696	106744	55501	0	193097		13496	5447	0.00	24447		8067	6359	0	25514	0	2760	8056	0		9099	14429	9874	101	32746
leighted Traders Loss	320145 8191	27845	609892 30185		2101462 69361		106515 2303	54105 3087	0.00	185200 6633			94250		244506	• • • • • • •	54009		11015			175134		13232	
									0.00	0053	818	2290	4140	133	7087	175	453	1304	24	1844	1403	3556	4937	114	10132
GRAND TOTAL	328354	1139213	640109	105376	2170824	32240	109323	57131	0.00	191383	: 39252	100836	98400	9169	251531	• • • • • • • • • • • • • • • • • • •	51122		11630	192451					

Appendix 4.2: Estimated Seed, Feed and Post-harvest Loss (in metric tons) of Foodgrain Crops During 1989-90 in Bangladesh (Continued).

	R.A.	JSHAHI,	BOGRA A	ND PABNI	۱	,	ANGPUR		INAJPUR		•	SORE, L U	-			•	AL, FARI			IBASI !	CHI	TTAGONO	CHILL T	RACTS	
CROPS	AU S	YXYX	BORO	VIEAT	TOTAL	AUS	ANAN	BORO	WHEAT	TOTAL	, AUS	****	BORO	VESAT	TOTAL	XUS	VRYN	BOKO	VHEAT	TOTAL	AUS	YNYN	BORO ¥	HEAT	TOTA
Production in m. tons	232275	1308130	1129990	185880	2856275	t i				2952005	1					1	1163370			2212655	25540	48550	21170	0 9	95250
Seed used Deadgeals weak as food	8594 8382 0	33227 1#436 Ú	9605 3848 0	4851 186 0	59411 1970a	,	22190	6405 4772	14027 855 0	47232 19188 0	14688	23699 3562	3353 1198	7489	41399 5379 0	19066	55301 7578 0	4551 1921	2888	73018 13276	738 174	874 243	188 97	0 0	1696
Field Stackig Loss	1317	12820	3955	162	19423	,	30076	6279	980	35719	•	4795	5160	1248	14033	1434	12448	3893	224	18586	105	529	184	Ð	0 857
Carrying Loss Beating Loss	1440 93	12035 4448	6780 5650	892 762	21422 10283	• • • • • •	13571 17972	8503 9419	855 2765	28930 34834	7142	13014 5616	6081 3409	1192 757	28301	4683	7213 582	2983 152	480 72	14604 2434	255 161	301 330	174 129	0	714 619
Bull Threshing	1440	3532	0	19	5998	0	0	0	0	0	0	11370	0	0	9318		1512	708	151	4425	69	121	4	0	181
Beating after threshing	23	4186	1469	242	5998	621	5868	1130	0	- 7330		2329	0	Û	1871		233	0	C	885	59	151	23	Û	21
Paddle Threshing Other Threshing		0	C	0	286	0	0	63	0	0	•	0	. 0	0	0		8609	2311	363	12391	33	78	34	Û	14
Vionaving	1812	7456	4746	144	0 15424	24	0 13021	0 3516	0 1835	0 18302		2603 9726	0 2534	14 673	2105		0	0	0	0	0	15	0	0	1
Drying (Birds, Goats etc.)		7195	6554	987	17138		13021	2575	226	6790		5720	2303	435	15905 11928	• • • • • •	7323 5002	2579 4298	632 368	13055	176 174	398 203	106 138	0	67
Bad weather	836	0	1921	372		24	0	0	0	0	! 0	137	45	1,1,1	234		1002	101	700	664	114	203	136	0	51 4
Tot. Post harvest loss	9105	51671	31075	4740	99113	8880	80507	31585	6712	132545	17155	56164		(333	98000	,	42928		2296	81204	1058	2131	821	Ū	(01)
				_		1					;					1									
Parboiling Loss	2114	30741	18193	0		2293	35944	9168	0		,	23014	4100	0	28301		34319		0	56865	243	1039		0	174
Willing Loss Handling Loss	2512	18445 6279	21244 5193	2324	41415 16281	,	28609 10086	5400 2839	3871 1055	35125		16575		2146	36955		6166	8748	1230	21463	26	592	279	0	115
Transportation Loss	1068	4971	4294	836		478	10086	1507	1020 804		; 626 ; 736	1337 2877	967 829	645 449	8654 4678	,	3490 5352	1062 1517	355 355	8408 8187	115 59	238		0	- {1
Storage Loss	1 4355	41453	9718	• • •	59982		20173	5154	0	38376		15479	4176	113 A	23155	• • •	8493	46)1	V 525	8187 ; 19914 :	523	184 563	55 191	0	19 128
Total Loss at Para Level	30567	202237	101473	-		34292	214014		27325			148767	44916	15511	246754		164733		7852	282114	3287	5865			125
Weighted Traders Loss	877	4578	6328	1078			4053	2261	1156		1141	3973	2128	631	8654		1745		92	3983	84	146	104	0	343
GRAND TOTAL	: 31450	206815	107801	15298	371601	; 34866	21.048	70141	23451	353355	: 43991	152739	47035	16142	255175	! 66352	166478	54559	7954	286096 :	3371	6010	2197		11450

Appendix 4.3 : Weighted use of seed, and feed, Post harvest, milling, transportation, storage and marketting losses of rice crops as % of production.

R B G I O N>		TOTA!			CHI	TTAGONG	AND NO	AKHALI	HTHENSING	H, K ISHO	REGONJ &	JAKALPUR;	DI	ARA A	ND TAN	GYLP	:	CONTLLÀ	AND ST	LHET
ITEM DESCRIPTIONS: ; CROPS>	AUS	АНАН	BORO	TOTAL	AUS	YRYN	BORO	TOTAL	AUS	AHAN	BORO	JATOT	AUS	ANAN	BORO	TOTAL	AUS	4XAN	BURO	TOTAL
Seed Used	2.89	1.80	0.89	1.78	1.11	1.60	0.78	1.42	2.21	2.04	0.92	1.78	4.43	1.70	0.90	2.04	2.62	2.57	1.09	
Feed loss (used as feed)	0.68	0.50	0.46	0.53	1.34	0.54	0.95	0.81	•	0.32	0.32	0.35	1.76	0.66	0.36	0.80	0.32		0.54	
Post-harvest loss									1			1					1 2 1			
Stacking loss	0.41	1.09	0.87	0.90	0.72	0.91	0.72	0.82	0.57	0.89	0.76	0.79	0.72	1.20	1.53	1.19	0.16	1.12	0.51	
Carrying loss	1.00	0.62	0.82	0.75	0.26	0.35	0.26	0.31	•	0.40	0.80	0.64	0.27	0.68	0.48	0.55	0.78	0.50	0.51	0.77
Threshing by beating	0.63	0.68	0.61	0.65	0.22	0.83	0.07	0.51		0.66	0.43	0.62	0.00	0.18	0.43	0.21	0.61	0.80		0.62
Bull threshing	0.27	0.25	0.02	0.19	0.68	0.02	0.01	0.15	• • • • • •	0.37	0.02	0.23	0.60	0.52	0.00	0.40	0.81		0.09	0.44
Beating after threshing	0.23	0.31	0.13	0.25	0.01	0.45	0.00	0.25		0.30	0.38	0.37 :	0.00	0.12	0.11	0.10		0.26	0.09	0.20
Paddle threshing loss	0.13	0.16	0.16	0.15	0.53	0.68	1.27	0.80		0.00	0.00	0.00 !	0.00	0.04	0.00	0.02		0.35	0.00	0.24
Other threshing loss	0.00	0.03	0.00	0.02	0.00	0.05	0.00	- 13		0.00	0.00	0.00 !	0.00	0.00	0.00	0.02		0.25	0.62	0.36
Winnowing loss	0.69	0.82	0.50	0.71	0.68	1.35	0.68	.04	,	0.00	0.45	0.65 !	0.00	0.43	0.00	0.00		0.00	0.01	0.00
Drying loss:birds, goat etc.	0.68	0.43	0.65	0.54	0.75	0.49	08.0	0.32		0.77	0.65	0.71	0.74	0.13	0.89	0.59		0.91	0.71	0.80
Bød weather	0.13	0.00	0.11	0.05	0.15	0.00	0.02	0.04		0.00	0.03	0.02 !	0.28	0.00	0.44	0.03		0.00	1.06	0.79
Total post-harvest loss	4.18	4.39	3.88	4.21	4.00	5.12	3.83	4.57	• • • • •	4.14	3.55	4.04	2.93	3.77	4.24	3.73	3.83	4.76	3.76	0.09 4.31
Parboiling loss	0.95	2.14	1.86	1.83	1.37	1.75	1.22	1.54	0.93	2.08	1.88	1.80	0.77	3.20	3.48	2.79	1.12	2.53	• • •	• • •
Willing Loss	1.05	1.22	1.32	1.21	1.02	0.53	0.85	0.71		0.77	1.12	0.80	2.56	2.27	3.32	2.87	1.12	1.57	2.11	2.14
Total milling loss	2.00	3.36	3.18	3.04	2.39	2.29	2.07	2.25		2.85	3.00	2.60	3.33	5.97	5.80	5.66	2.68	4.10	3.52	1.53 3.67
Handling loss	0.45	0.49	0.32	0.44	0.43	0.43	0.19	0.37	0.23	0.34	0.21	0.28	0.67	0.19	0.19	0.29	0.49	o 19		
Transportation loss	0.23	0.38	0.25	0.32	0.21	0.23	0.21	0.25	-	0.19	0.28	0.23	0.67	0.15	0.13	0.26	0.19	0.47	0.51	0.48
Storage loss	2.44	1.16	0.90	1.35		1.49	0.90	1.56		C.88	0.60	1.31	. 0.00	0.15	1.05	0.63	2.14	0.32 1.16	0.38 1.00	0.33 1.31
Total loss at farmers level	12.87	12.08	9.89	11.67	12.77	11.76	8.94	11.24	12.40	10.76	8.88	10.60	13.79	 13.11	13.71		12.36	14.08	10.90	12.87
Veighted loss at traders level	0.33	0.30	0.49	0.36	0.34	0.31	0.51	0.37	0.26	0.24	0.39	0.28	0.11	0.11	0.17	0.12		0.31		
GRAND TOTAL LOSS	13.20	12.38	10.38	. 12.03	13.11	12.07	9.45	11.60	12.56	11.00	9.27	10.88	13 90	12 99			12.69			

Appendix 4.3 : Weighted use of seed, and feed, Post harvest, milling, transportation, storage and marketting losses of rice crops as X of production (Continued).

•

R E G I O N	-!	SHAHI, B	OGRA AN	D PABNA	 	RANGPU	R AND DI	NAJPUR	JES	SORE, K	USHTIA	Ł KHULNA	; BARISA	L, FARII	 TPUR & P/	TUAEHALT
ITEM DESCRIPTIONS: CROPS); AU	S ANAN	BORO	TOTAL	AUS	S ANAI	N BORO	TOTAL	 AU:	 S АНА	N BOR	 D TOTAL	•¦			
Seed Used	3.7	0 2.54	0.85	2.33	3.71	• • • • • • •			· [•••••					BORC	1XTOT
Peed loss (used as feed)	1.0		0.34	0.73	1.26			1.66 0.68	; 3.99 ; 0.20							
Post-harvest loss	1								1				1 0.30	0.00	0.38	0.64
Stacking loss	0.58	3 0.98	0.35	0.74	1 0 10											
Carrying loss	0.62		0.55	0.78	0.39			1.22	,	0.35	1.12	0.48	0.30	1.07	0.77	0.84
Threshing by beating	0.04		0.30	0.32	,			0.95		0.95	1.32	1.24	0.98	0.62		0.68
Bull threshing	0.62	••••	0.00					1.14	1.03	0.41	0.74	0.62		0.05	0.03	0.15
Beating after threshing	0.01		0.13	0.27	0.00			0.00	0.00	0.83	0.00		•	0.13	0.14	0.23
Paddle threshing loss	0.05		0.00	0.21		0.32		0.27	0.00	0.17	0.00	0.09		0.02	0.00	0.05
Other threshing loss	0.00		0.00	0.01		0.00		0.00		0.00	0.00		•	0.74	0.47	0.03
Winnowing loss	0.78		0.42	0.00	0.01	0.00		0.00		0.19	C.00	0.10	•	0.00	0.00	0.00
Drying loss:birds, goat etc.	0.87		0.12	0.57	0.46	0.71		0.62		0.71	0.55	0.72		0.03	0.51	0.59
Bad weather	0.36		0.17	0.62	0.54	0.01	0.41	0.22	0.71	0.47	0.50	0.53	0.83	0.43	0.85	0.62
Total post-harvest loss	3.92		2.75	3.63	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.01	•	0.00	0.02	0.02
		3.35	6.15	3.03	3.71	1.39	5.03	4.43	4.66	4.10	4.25	4.24		3.69	3.39	3.76
arboiling loss	0.91	2.35	1.61	1 0 7 1				1 							5.55	3.10
illing Loss	0.49	1.41	1.88	1.87	0.95	1.95	1.46	1.63 ¦	0.65	1.68	0.89	1.27	1.28	2.95	2.73	2.56
Total milling loss	1.40	3.76		1.35	0.63	1.56	0.86	1.19 ;	1.05	1.21	2.28	1.46		0.53	1.73	0.79
	1.10	3.10	3.49	3.22	1.59	3.52	2.32	2.82 ;	1.70	2.89	3.17	2.72	1.55	3.48	4.46	3.35
andling loss	1.09	0.48	0.10					1						3.10	1,10	3.33
ransportation loss	0.46	0.38	0.46	0.60 ;	0.60	0.55	0.46	0.54	0.17	0.54	0.21	0.38	1.09	0.30	0.21	0.10
torage loss	2.09	3.17	0.38	0.40	0.20	0.48	0.24	0.36 ;	0.20	0.21	0.18	0.20	0.18	0.46	0.21	0.43
	6.03 	J.11	0.85	2.35	3.29	1.10	0.98	1.51 ¦	0.82	1.13	0.95	1.02	1.69	0.73	0.30	0.36 0.97
otal loss at farmers level	13.66	15.46	9.13	13.25	14.36	11.67	10.81	12.00	 11.74	10.86						
eighted loss at traders level;	C.38	0.95						1 1 1	11.14	10.00	9.75	10.70	13.83	14.16	10.55	13.16
	U.JÖ	0.35	0.56	0.41 ;	0.24	0.22	0.36	0.26	0.31	0.29	0.46	0.34	0.15	0.15	0.24	0.17
RAND TOTAL LOSS	14.04	15.81	9.69	13.66	14.60	11.89	11.17	12.26	12.05	11 15	10 21	11.03	13.99	14.31	10.79	13.33

.

Region	Aus	Aman	Boro	Wheat	Total
Chittagong- Noakhali	1.77	1.60	0.78	0.00	1.28
Mymensingh- Kishore-Jamalpur	2.21	2.04	0.92	6.33	1.79
Dhaka-Tangail	4.43	1.70	0.90	8.00	1.96
Comilla-Sylhet	2.62	2.57	1.09	7.12	2.18
Rajshahi-Bogra- Pabna	3.70	2.54	0.85	2.61	2.08
Rangpur-Dinajpur	3.71	1.21	1.02	5.58	1.60
Jessore-Kushtia- Khulna	3.99	1.73	0.73	5.34	1.77
Barisal-Faridpur- Patuakhali	3.99	4.84	0.90	4.39	3.30
Total (weighted)	2.89	1.80	0.89	5.73	1.73

Appendix 4.1.1 : Region-wise Distribution of % Seed used by the Sample Households.

Appendix 4.1.2 : Germination Percentage of Stored Seed Sample

Type of Container	 	Germina	tion Perc	entage		
	Aus	Aman ¦	Boro	Wheat	Mean	
Gunny Bag	75.60	79.33	83.75	85.50	80.85	
Motka	81.50	85.44	81.63	84.50	83.25	
Dool	82.20	84.04	81.95	85.00	83.00	
Gola	80.00	82.07	82.68	-	81.60	
Others (Tin Container)	-	-	83.00	-	83.00	
Average (%)	79.82	82.72	82.60	85.00	83.06	

.

.

Region	Name of the Farm		No. of			Q	ty. of F	eed Ing	redient	s (1g)			•	Total	¦ Sour	ce of Rice	Source	of ¥heat
						Rice bran/ polish	Yheat		Fish	; Salt					Local.	Imported/ Food Dept.		Imported Food Dep
:hittagong	Poultry Para,Satkania	•	400	-	7300	4380		1460	365		365	1460		15330			7300	
Chitlagong	Poultry Para,Satkania		690	-	9417	-	-	1726	1570	78	471	2355	78	15695			1 1 1 1	
lyaensingh- lishoregonj- amalpur	Poultry Farz, Bagadia (Govt.)		3544	-	63598	39748	- -	15900	10600	662	1324	-	653	132495				
ymensingh- ishoregonj- amalpur	Poultry Farm, Barabugh		5000	t t t t t t t	38325	31937	- -	10950	7300	457	1825	-	456	91250			1 1 1 1 1 1	• • • • •
)haka-Tangail	Phoenix Poultry Ltd.		45000	-	1067625	748143	-	296700	189800	11862	23725	22325	12320	2372500			1058000	r † 1
)haka-Tangail	Govt. Duck Farm	 	6000	-	175200	111000	-	42300	29200	1825	3650	-	1825	365000				1 1 1 1
)haka-Tangail	Tulip Dairy Farm	150	-	-	- -	27880	75440	; ; 22960	-	1640	-	36080	-	164000				1 5 f 1
haka-Tangail	Dairy Para,savar	2441	-	-	-	410625	1231875	383250	-	27375	-	584375	-	2737500				r r t 1
haka-Tangail	Poultry Para,Mirpur		16420	-	350400	219000	-	87600	58400	3650	7300	-	3650	730000				r 1 1
omilla-Sylhe	t Echilee Poultry Parm		1250	-	23817	16935	-	6351	4498	265	794	-	264	52925			L 	1 1 1
omilla-Sylhe	t Echilee cattle Farm	45	 t	-	-	7391	22174	7391	-	493	-	11826	-	49275				1 1 1 1
o a illa-sylhe	National dev.poultry		450	-	6935	4672	-	1460	1022	-	292	-	219	14600			7000	
osilla-sylhe	Dhazty Poultry Fara		1500	17320	18050	4543	-	4928	2956	-	985	-	493	49275			18100	t t t
aj-Bog-Pabna	Raypara cattle farm	145	-	-	-	22229	71449	23021	-	2382	-	39694	-	158775				1 1 1
aj-Bog-Pabna	Govt. Poultry Farm		9465	-	62200	33719	-	8723	14972	839	4102	1365	-	125925			17825	44375
ang-Dinajpur	Govt. Poultry Para		5091	-	58546	36792	-	14717	9811	613	1225		935	122640			22650	; ; 3 5 8 9 6
ang-Dinajpur	Monranjan Poultry Par		2105	-	25112	17425	-	7307	5059	281	562		464	56210			40077	1 1 1
ess-Eush-Khu	Govt. Poultry farm		8927	-	128704	49187	•	300 00	49000	1017	1500	-	-	259408			97709	; 31995
ari-Far-Petu	Basudevpara Poultry		156	730	2628	1861	-	745	132	32	77	-	-	6205				e 1 1 1
	Total	2781	105993	18050	2037857	1787468	1400935	967494	384685	53471	48198	27505	21367	7519008	· 	••••••		

Appendix 4.2.1 : Feed Used in Specialized Farms During 1988-89.

Name of Feed Wills	¦			Ingred	ients Us	ed i	n Pou	ltry ap	d Cattle	Feed	(kg)							:	Total Feed	Sour	ce of Rice	Source	of Wheat
	;	Poli	sh;	¥heat	Whea bran	t 	Maize	¦ Pulse	Oilcate	: Fi Ke	ish al	(:	Oyster shell	Salt	¦ P	remin	Others		prepared during 1989-90 (Ig.)	Local	Imported/ Food Dept.		
Poultry Feed Will, Wirpur.	-	;10800 ;	00;	1728000	- 		-	- 	432000	28	8000		36000	1800	18	000		;	3600000	-	-	948000	
Cattle ?eed Kill, Saver	-	900	00	•	2700	00	-	;1500C0	84000	1	-	;	-	6000				 	600000	-	-	-	

Appendix 4.2.2 : Feed in Ingredients Used in Feed Mill During 1988-89.

lame of eed mill	• • • • •	 		5tora 	ge loss	of Rice	ikg;			Total	1		Sto	irage loss	 ⊃f #heat	 (kg)		•••••••	l Total
	ty ored		Qty Release	d ¦	Evapo- ration	Rodenz	insect	i fungus	, ûtners	- Storagi loss (Rice)	Qty Storied	Kontas	¦ Qty ¦ Released	: Evapo-	, Rojent	; Insect	Fungus	üthers.	storaç icss
attle Feed ill, Savar.	 •	•	•	 	-	-	 - }				-		1 1 1				-	; -	(wneat
													; 19800						; ; 200

Appendix 4.2.3 : Storage Loss in Feed Mills (1989-90).

REGION	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	тоти
	LOSS	DURING	DURING	DURING	BOLLOCK	DURING	LOSSES	OWING		DUE W-	LOSS I	PROD
	IN KG	CARRY-	PEATING	THRES-	THRESHING	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTI
		ING		HING	ABEATING	THRESH						IN KO
CHTNOAKHALI	712	252	218	672	 9	 521	0	667	736	149	3936	9852
MEAN	4.91	1.74	1.50	4.64	.06	3.59	0.00	4.60	5.08	1.03	27.15	679.4
x	.72	.26	.22	. 68	.01	.53	0.00	.68	.75	.15	4.00	
MYM+KISHORE+JAMA	1301	2465	1736	288	1229	0	0	1456	1415	146	10035	22694
MEAN	5.68	10.76	7.58	1.26	5.37	0.00	0.00	6.36	6.18	.64	43.92	991.0
x	.57	1.09	.76	. 13	.54	0.00	0.00	.64	.62	.06	4.42	
DHAKA+TANGAIL	223	85	0	187	0	0	0	95	230	85	905	3086
MEAN	2.12	.81	.00	1.78	0.00	0.00	0.00	.91	2.19	.81	8.62	293.9
x	.72	.27	.00	. 60	0.00	0.00	0.00	.31	.74	.28	2.93	
COMILLA+SYLHET	172	823	647	216	276	315	0	680	647	289	4064	10597
MEAN	1.09	5.24	4.12	1.38	1.76	2.01	0.00	4.33	4.12	1.84	25.88	675.0
x	.16	.78	.61	. 20	.26	.30	0.00	.64	.61	.27	3.83	
RAJ+BOGRA+PABNA	300	319	19	320	З	25	0	402	448	183	2019	5150
YEAN	2.38	2.53	.15	2.54	.02	.20	0.00	3.19	3,55	1.45	16.02	408.7
x	.58	.62	.04	. 62	.01	.05	0.00	. 78	.87	.36	3.92	
RANGPUR+DINAJPUR	104	255	284	1	69	0	2	120	141	2	977	2633
1EAN	.51	1.26	1.40	.00	.34	0.00	.01	. 59	.69	.01	4.81	129.7
X	.39	.97	1.08	.00	.26	0.00	.01	.46	.54	.01	3.71	
ESS+KUSH+KHULNA	0	2532	1348	0	0	0	0	1251	922	O	6053	13075
, AN	0.00	26.38	14.04	0.00	0.00	0.00	0.00	13.03	9.60	0.00	63.05	1362.
X	0.00	1.94	1.03	0.00	0.00	0.00	0.00	.96	.71	0.00	4.63	
AR+FAR+PATUAKHA	108	358	206	234	77	39	0	222	304	64	1612	3650
IEAN	.95	3.14	1.81	2.05	.67	.34	0.00	1.95	2.66	.56	14.14	320.2
X 	.30	.98	.56	.64	.21	.11	0.00	.61	.83	.18	4.42	
OTAL	2918	7089	4458	1917	1662	900	2	4895	4841	919	29601	707405
EAN	2.48	6.03	3.79	1.63	1.41	.77	.00	4.17	4.12	.78	25.19	602.0
x	.41	1.00	.63	. 27	.23	.13	.00	.69	.68	.13	4.18	
.E. MEAN	0.153	0.329	0.215	0.147	0.115	0.126	0.000	0 106	0.172	0.081	0.943	

Appendix 4.3.1 : Aus Crop at Different Stage of Post Harvest Operation Loss by Region

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11.

Appendix 4.3.2	:	Loss	of	Aus	Crop	at	Different	Stage	of	Post
		Harve	est	Opera	ation	by t	Jpazilas.	-		

UPAZILA NAME	STACK	LOSS	LOSS	LOSS	1000	1000		LI TAINI	hov.	1000	TOTAL	1014
	LOSS	DURING	DURING	DURING	LOSS DURING	LOSS DURING	OTHER LOSSES		DRY-	LOSS DUE W-	TOTAL	TOTAL
	IN KG			THRES-	SECOND	PADDLE	IN KGS	OWING LOSS	ING LOSS	EATHER	LOSS I KGS	PROD~ UCTION
		ING	0011110	HING	BEATING	THRESH	IN KUU	2033	2000	LATILA	Ad3	IN KGS
RANGUNIA	71	35		0	 0	136	 0	 52		 0	386	12485
MEAN	1.51	.75	.23	0.00	0.00	2.90	0.00	1.11	1.72	0.00	8.22	265.64
x	.57	.28	.09	0.00	0.00	1.09	0.00	.42	.65	0.00	3.09	205.04
SATKANIA	222	90	135	654	0	0	0	273	426	0	1802	49237
MEAN	4.54	1.85	2.75	13.35	0.00	0.00	0.00	5.58	8.70	0.00	36.77	1004.8
x	.45	.18	.27	1.33	0.00	0.00	0.00	.55	.87	0.00	3.66	
FENI	419	126	72	18	9	385	0	342	229	149	1748	36798
MEAN	8.55	2.57	1.47	.36	.18	7.85	0.00	6.98	4.66	3.05	35.68	750.98
x	1.14	.34	.20	.05	.02	1.05	0.00	.93	.62	.41	4.75	
TRISHAL	1255	1148	969	246	648	0	0	630	935	146	5976	127701
MEAN	11.84	10.83	9.14	2.32	6.12	0.00	0.00	5.94	8.82	1.38	56,38	1204.7
x	.98	.90	.76	. 19	.51	0.00	0.00	.49	. 73	.11	4.68	
KISHOREGONJ	0	1293	764	2	576	0	0	807	463	0	3905	94546
MEAN	0.00	18.22	10.76	.03	8.12	0.00	0.00	11.36	6.52	0.00	55.00	1331.6
x	0.00	1.37	.81	.00	.61	0.00	0.00	.85	. 49	0.00	4.13	
SARISHABARI	46	24	4	39	4	0	0	20	17	0	154	4702
HEAN	.88	.45	.07	.76	.08	0.00	0.00	.38	.33	0.00	2.96	90.42
X	.98	.50	.07	.84	.09	0,00	0.00	. 42	, 37	0.00	3.27	
KALIAKAIR	71	31	0	66	0	0	0	35	75	49	327	10636
MEAN	1.62	.70	0.00	1.50	0.00	0.00	0.00	.80	1.70	1.11	7.44	241.73
x	.67	.29	0.00	.62	0.00	0.00	0.00	. 33	. 70	.46	3.08	
ALIHATI	151	54	0	121	0	0	0	60	155	36	578	20230
IEAN ~	2.48	.88	.01	1.98	0.00	0.00	0.00	.98	2.54	.59	9.47	331.64
x	.75	.27	.00	.60	0.00	0.00	0.00	.30	.77	. 18	2.86	
HANDINA	0	353	53	49	0	315	0	357	217	279	1623	48952
IEAN ¥	0.00	5.19	.77	.72	0.00	4.63	0.00	5.24	3.20	4.10	23.86	719.88
x	0.00	.72	.11	. 10	0.00	.64	0.00	.73	. 44	.57	3.31	
HANDPUR	3	З	3	9	0	0	0	3	15	0	36	783
EAN	.07	.07	.06	. 19	0.00	0.00	0.00	.06	. 33	.01	.78	17.02
x	.38	.42	. 34	1.13	0.00	0.00	0.00	. 35	1.91	.06	4.60	
ABIGONJ	169	467	591	158	276	0	0	321	414	9	2405	56240
EAN	3.92	10.85	13.75	3.68	6.41	0.00	0.00	7.46	9.63	.22	55.93	1307,9
x	.30	.83	1.05	.28	.49	0.00	0.00	.57	.74	.02	4.28	

Appendix 4.3.2 : Contd.

UPAZILA NAME	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	TOTA
	LOSS	DURING	DURING	DURING	DURING	DURING	LOSSES	OWING	ING	DUE W-	LOSS I	PROD
	IN KG	CARRY-	BEATING	THRES-	SECOND	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTIO
		ING		HING	BEATING	THRESH						IN KG
GABTALI	0	13	13	 0	 0	0	0	8	13	 0	47	896
MEAN	0.00	.24	.24	0.00	0.00	0.00	0.00	. 15	.24	0.00	.87	16.59
x	0.00	1.45	1.45	0.00	0.00	0.00	0.00	.89	1.45	0.00	5.25	
SHAHJADPUR	300	306	6	320	3	25	٥	394	435	183	1972	50603
MEAN	4.16	4.25	.08	4.44	.04	.34	0.00	5.48	6.04	2.54	27.39	702.85
x	.59	.61	.01	.63	.01	.05	0.00	.78	.86	.36	3.90	
MITHAPUKUR	103	131	188	0	69	0	2	48	28	0	566	16660
MEAN	.78	.99	1.42	0.00	. 52	0.00	.02	.36	.21	0.00	4.29	126.21
x	.62	.78	1.13	0.00	.41	0.00	.01	.29	.17	0.00	3.40	
CHIRIRBANDAR	1	125	96	1	0	0	0	73	114	2	411	9671
MEAN	.01	1.76	1.35	.01	0.00	0.00	0.00	1.02	1.60	.03	5.79	136.21
x	.01	1.29	. 99	.01	0.00	0.00	0.00	.75	1.17	.02	4.25	
MANIRAMPUR	0	1512	827	0	0	0	0	706	505	0	3551	78218
HEAN	0.00	23.26	12.73	0.00	0.00	0.00	0.00	10.87	7.78	0.00	54.63	1203.4
x	0.00	1.93	1.06	0.00	0.00	0.00	0.00	.90	.65	0.00	4.54	
1EHERPUR	0	1020	520	0	0	0	0	545	416	0	2502	52539
1EAN	0.00	32.92	16.78	0.00	0.00	0.00	0.00	17.58	13.43	0.00	80.71	1694.8
x	0.00	1.94	.99	0.00	0.00	0.00	0.00	1.04	.79	0.00	4.76	
AURNAD	108	358	206	234	77	39	0	222	304	64	1612	36506
EAN	.95	3.14	1.81	2.05	.67	.34	0.00	1.95	2.66	.56	14.14	320.23
X	.30	.98	.56	.64	.21	.11	0.00	.61	.83	.18	4.42	
OTAL	2918	7089	4458	 1917	1662	900	2	4895	4841	919	29601	707405
IEAN	2.48	6.03	3.79	1.63	1.41	.77	.00	4.17	4.12	.78	25.19	602.05
x	.41	1.00	.63	.27	.23	.13	.00	.69	.68	.13	4.18	

CROP AND	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	TOTA
VARIETY	LOSS	DURING	DURING	DURING	BULLOCK	DURING	LOSSES	OWING	ING	DUE W-	LOSS I	PROD
	IN KG	CARRY-	BEATING	THRES-	THRESHING	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTIO
		ING		HING	ABEATING	THRESH						IN KG
AUS LOCAL	1047	3204	1922	811	656	115	2	1997	2017	360	12131	27609
HEAN	2.43	7,43	4.46	1.88	1.52	.27	.00	4.63	4.68	.83	28.15	640.5
x	.38	1.16	.73	.29	.24	.04	.00	. 72	.73	.13	4.39	
AUS MODERN	1785	3715	2491	965	1000	775	0	2760	2645	502	16639	40720
HEAN	5.83	12.14	8.14	3.15	3.27	2.53	0.00	9.02	8.64	1.64	54.38	1330.
x	.44	.91	.61	.24	.25	.19	0.00	.68	.65	.12	4.09	
MIXED AUS	86	171	45	-1 141	. 5	9	0	138	179	57	830	2410
HEAN	1.83	3.63	.95	3.0D	.11	.19	0.00	2.93	3.81	1.21	17.66	512.9
x	.36	.71	. 18	.59	.02	.04	0.00	.57	.74	.24	3.44	
TOTAL	2918	7089	4458	1917	1662	900	2	4895	4841	919	29601	70740
MEAN	3.72	9.04	5.69	2.45	2.12	1.15	.00	6.24	6.18	1.17	37.76	902.3
x	.41	1.00	. 63	.27	.23	.13	.00	,69	.68	.13	4.18	

Appendix 4.3.3 : Loss of Aus Crop at Different Stage of Post Harvest Operation by Variety.

REGION	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHEF	R WINN-	- DRY-	LOSS	S TOTAL	TOTA
	LOSS	DURING	DURING	DURING	BOLLOCK	DURING	LOSSES	S OWING	S ING	DUE W	- LOSS I	PROD
	IN KG	CARRY-	BEATING	THRES-	THRESHING	PADDLE	IN KGS	LOSS	6 LOSS	EATHER	R KGS	UCTIO
*****		ING		HING	ABEATING	THRESH						IN KG
CHTNOAKHALI	4382	1662	3995	74	2176	3252	229	6486	2381		24636	48157
MEAN	30.22	11.46	27.55	. 51	15.00	22.42	1.58	44.73	16.42	0.00	169.90	3321.2
x	.91	.35	.83	.02	.45	.68	.05	1.35	.49	0.00	5.12	
MYM+KISHORE+JAMA	4743	2151	3493	1977	1610	0	o	3979	4068	11	22033	53171
MEAN	20.71	9.39	15.25	8.63	7.03	0.00	0.00		17.76		96.21	2321.9
x	.89	.40	.66	. 37	.30	0.00	0.00	.75	.77	.00	4.14	
DHAKA+TANGAIL	1782	1006	265	766	225	61	0	632	857	0	5592	14825
MEAN	16.97	9.58	2.52	7.30	2.14	.58	0.00	6.02	8.16	0.00		1411.90
X	1.20	.68	.18	.52	. 15	.04	0.00	. 43	.58	0.00		
COHILLA+SYLHET	2494	1327	1208	570	767	554	11	2025	1598	0	10553	22172:
MEAN	15.88	8.45	7.69	3.63	4.89	3.53	.07	12.90	10.18	0.00	67.21	1412.2
x	1.12	.60	.54	.26	.35	.25	.00	.91	.72	0.00	4.76	
RAJ+BOGRA+PABNA	1478	1385	518	404	481	0	o	857	823	5	5951	150512
IEAN	11.73	10.99	4.11	3.21	3.82	0.00	0.00	6.80	6.53	.04	47.23	1194.54
x	.98	.92	.34	.27	. 32	0.00	0.00	.57	.55	.00	2.95	
CANGPUR+DINAJPUR	12716	5707	7569	0	2443	0	0	5532	43	o	34010	775304
IEAN	62.64	28.11	37.28	0.00	12.03	0.00	0.00	27.25	.21	0.00	167.53	3819.23
X	1.64	.74	.98	0.00	. 32	0.00	0.00	.71	.01	0.00	4.39	
ESS+KUSH+KHULNA	1179	3166	1372	2754	577	11	633	2372	1570	28	13664	333212
IEAN	12.28	32.98	14.30	28.69	6.01	.12	6.60	24.71	16.35	.29	142.33	3470.96
X	.35	.95	.41	.83	.17	.00	.19	.71	.47	.01	4.10	
AR+FAR+PATUAKHA	592	340	26	73	10	406	0	349	239	0	2035	55228
EAN	5.19	2.99	.23	.64	.09	3.56	0.00	3.06	2.10	0.00-	17.85	484.46
x 	1.07	.62	.05	. 13	.02	.74	0.00	.63	.43	0.00	3.69	
	29364		18447	6618	8289	4283	873	 22231	115 <i>1</i> 9	45	118473	2697527
	24.99	14.25	15.70	5.63	7.05	3.65	.74	18.92	9.85	.04	100.83	2295.77
			.68	.25	.31	.16	.03	.82	.43	.00	4.39	
.E. MEAN	0.976	0.502	0.805	0.401	0,398	0.476	0.127 (0.772	0.445	0.017	3.336	

Appendix 4.3.4 : Loss of Aman Crop at Different Stages of Post Harvest Operation by Region.

For AEZ wise conversion ratio, Paddy to Rice, please see Appendix 4.4.11.

Appendix 4.3.5 : Loss of Aman Crop at Different Stages of Post Harvest Operation by Upazila.

UPAZILA NAME	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	τοται
	LOSS	DURING	DURING	DURING	DURING	DURING	LOSSES	OWING	ING	DUE W-	LOSS I	PROD
	IN KG	CARRY-	BEATING	THRES-	SECOND	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTIO
		ING		HING	BEATING	THRESH						IN KG
RANGUNIA	1339	493	1773	0	11 10	1286	20	3730	831	0	106 12	19915
MEAN	28.50	10.50	37.72	0.00	24.25	27.36	.43	79.36	17.69	0.00	225.80	4237.2
x	.67	.25	.89	0.00	.57	.65	.01	1.87	.42	r.00	5.33	
SATKANIA	1489	544	2052	0	929	220	209	1327	569	0	7340	12745
MEAN	30.39	11.10	41.89	0.00	18.97	4.49	4.26	27.08	11.62	0.00	149.80	2601.1
x	1.17	.43	1.61	0.00	.73	.17	. 16	1.04	. 45	0.00	5.76	
FENI	1553	625	170	74	106	1746	0	1429	980	0	6683	15497
MEAN	31.70	12.75	3.48	1.51	2.17	, 35.62	0.00	29.17	20.00	0.00	136.39	3162.69
x	1.00	.40	.11	.05	.07	1.13	0.00	.92	.63	0.00	4.31	
TRISHAL	2332	625	660	1974	377	0	0	2222	2339	11	10541	27808
MEAN	22.00	5.90	6.23	18.62	3.56	0.00	0.00	20.96	22.07	.11	99.44	2623.4
x	.84	.22	.24	.71	.14	0.00	0.00	.80	.84	.00	3.79	
KISHOREGONJ	1513	985	2611	0	841	0	0	1489	1178	0	8617	17591
MEAN	21.32	13.87	36.78	0.00	11.85	0.00	0.00	20.97	16.59	0.00		2477.6
x	.86	.56	1.48	0.00	.48	0.00	0.00	.85	.67	0.00	4.90	
SARISHABARI	898	541	222	3	392	0	0	269	551	0	2875	7771
MEAN	17.27	10.41	4.26	.06	7.53	0.00	0.00	5.17	10.59	0.00		1494.5
x	1.16	.70	.29	.00	.50	0.00	0.00	.35	.71	0.00	3.70	
KALIAKAIR	587	353	205	43	219	61	0	320	376	0	2163	6062
MEAN	13.33	8.02	4.67	.98	4.97	1.38	0.00	7.28	8.55	0.00		1377.8
x	.97	.58	.34	.07	.36	.10	0.00	.53	.62	0.00	3.57	
KALIHATI	1 195	653	60	723	6	0	0	311	481	0	3429	8763
MEAN	19.59	10.70	.98	11.85	. 10	0.00	0.00	5.11	7.88	0.00		1436.5
x	1.36	.75	.07	.83	.01	0.00	0.00	.36	. 55	0.00	3,91	
CHANDINA	1115	594	100	244	72	388	0	604	497	0	3614	8035
MEAN	16.40	8.73	1.47	3.59	1.06	5.71	0.00	8.88	7.31	0.00	53.15	1181.6
x	1.39	.74	. 12	.30	.09	.48	0.00	.75	.62	0.00	4.50	
CHANDPUR	425	169	9	51	13	165	11	176	201	0	1221	2482
MEAN	9.24	3.68	. 19	1.12	.28	3.59	.24	3.83	4.37	0.00	26.54	539.6
x	1.71	.68	.03	.21	.05	.67	.04	.71	.81	0.00	4.92	
HABIGONJ	953	564	1099	274	682	0	o	1245	900	0	5718	11654
MEAN	22.17	13.11	25.56	6.37	15.87	0,00	0.00	28.95	20.93	0.00		2710.4
x	.82	.48	.94	.24	.59	0.00	0.00	1.07	.77	0.00	4.91	

Append	ix.	4.3.	5	:	Contd.
--------	-----	------	---	---	--------

UPAZILA NAME	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	TOTAL
	LOSS	DURING	DURING	DURING	DURING	DURING	LOSSES	OWING	ING	DUE W-	LOSS I	PROD-
	IN KG	CARRY-	BEATING	THRES-	SECOND	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTION
		ING		HING	BEATING	THRESH						IN KGS
GABTALI	856	630	441	6	383	0	0	434	116	0	2866	78681
MEAN	15.86	11.67	8.16	. 12	7.10	0.00	0.00	8.03	2.14	0.00	53.08	1457.06
x	1.09	.80	.56	.01	.49	0.00	0.00	.55	.15	0.00	3.64	
SHAHJADPUR	621	755	78	398	98	0	0	423	708	5	3085	71831
MEAN	8.63	10.48	1.08	5,52	1.36	0.00	0.00	5.88	9.83	.07	42.84	997.65
x	.86	1.05	. 11	. 55	.14	0.00	0.00	.59	.99	.01	4.29	
MITHAPUKUR	8377	3507	5037	0	2443	0	0	3794	0	0	23158	492995
MEAN	63.46	26.57	38.16	0.00	18.51	0.00	0.00	28.74	0.00	0.00	175.44	3734.81
x	1.70	.71	1.02	0.00	.50	0.00	0.00	.77	0,00	0.00	4.70	
CHIRIRBANDAR	4339	2200	2532	0	0	0	0	1738	43	0	10852	282309
MEAN	61.12	30.98	35.66	0.00	0.00	0.00	0.00	24.48	.61	0.00	152.84	3976.18
x	1.54	.78	.90	0.00	0.00	0.00	0.00	.62	.02	0.00	3.84	
MANIRAMPUR	0	2519	819	2175	366	0	63 3	1512	889	· 28	8940	217020
MEAN	0.00	38.75	12.60	33.45	5.63	0.00	9.74	23.26	13.67	.44	137.54	3338.77
x	0.00	1.16	. 38	1.00	.17	0.00	.29	.70	.41	.01	4.12	
HEHERPUR	1179	648	553	580	211	11	0	860	681	0	4723	116192
EAN	38.04	20.89	17.85	18.70	6.81	.36	0.00	27.75	21.98	0.00	152.36	3748.13
x	1.01	.56	.48	. 50	.18	.01	0.00	.74	.59	0.00	4.07	
GAURNADI	592	340	26	73	10	406	0	349	239	0	2035	55228
1EAN	5.19	2.99	.23	.64	.09	3.56	0.00	3.06	2.10	0.00	17.85	484.46
x	1.07	.62	.05	.13	.02	.74	0.00	.63	.43	0.00	3.69	
IOTAL	29364	16744	18447	6618	8289	4283	873	22231	11579	45	118473	2697527
HEAN	24.99	14.25	15.70	5.63	7.05	3.65	.74	18.92	9.85	.04	100.83	2295.77
x	1.09	.62	. 68	.25	.31	. 16	.03	.82	.43	.00	4.39	

CROP AND	STACK	LOSS	LOSS	LOSS	1000							
VARIETY	LOSS	DURING	DURING	DURING	LOSS	LOSS		WINN-		LOSS	_	τοτα
	IN KG	CARRY-	BEATING	THRES-	BULLOCK		LOSSES			DUE W-		PROD
	10 10	ING	DEATING	HING	THRESHING		IN KGS	LOSS	LOSS	EATHER	KGS	UCTIO
					ABEATING	THRESH						IN KG
B.AMAN LOC	2123	2732	305	1843	304	430	415	1823	1648	17	11640	26005
MEAN	6.74	8.67	.97	5.85	.97	1.37	1.32	5.79	5.23	.06	36,95	825.5
x	.82	1.05	. 12	.71	.12	.17	.16	.70	.63	.01	4.48	025.5
MIXED AUS-	495	265	57	272	10	15	٥	195	219	0	1528	3651
MEAN	18.34	9.81	2.12	10.08	.38	.54	0.00	7,22	8.12	0.00	56.61	1352.2
x	1.36	.73	. 15	.75	.03	.04	0.00	.53	.60	0.00	4.19	1552.2
T. GHAM LOC	8643	4615	4841	1299	1662	95	0	4325	2122	5	27609	696732
MEAN	21.39	11.42	11.98	3.22	4.11	.24	.00	10.71	5.25	.01	68.34	1724.58
x	1.24	.66	.69	.19	.24	.01	.00	.62	.30	.00	3.96	1,54,50
L'AMAN MOD	18103	ទារខ	13243	3203	6312	3743	458	15888	7591	22	77696	1704233
1EAN	26.24	13.24	19.19	4.64	9.15	5.42	.66	23.03	11.00		112.60	2462.76
x	1.06	.54	. 78	. 19	.37	.22	.03	.93	.45	.00	4.56	2402.70
OTAL	29364	16744	18447	6618	8289	4283	873	 22231	 11579	45	 118473	2697527
IEAN	20.45	11.66	12.85	4.61	5,77	2.98	.61	15.48	8.06	.03	82.50	1875.89
x	1.09	.62	. 68	.25	.31	.16	.03	.82	.43	.00	4.39	10.0.00

Appendix 4.3.6 : Loss of Aman Crop at Different Stage of Post Harvest Operation by Variety.

Conversion ratio, Paddy to Rice 0.679.

E MEAN				0.076						0.028		
د د	.87			.02		2.88	.04		.65			1745.80
EAN			12524		2671 2.27	3379	44	10327	13281 11.30	2232	79640	2051315
 DTAL	 17922	16916	12524					10207	12001			
L	.77	.59	.03	.14	0.00	.47	0.00	.51	.85	02	3.39	
EAN	8.55	6.59	.29	1.55	0.00	5.24	0.00	5.70	9.46	.21	37.60	1107.93
AR+FAR+PATUAKHA	974	752	33	177	0	597	0	650	1079	24	4286	126304
		1.02	. / 4	.00	0.00	0.00	.00	.55	.50	.01	4.25	
X	1.12	1.32	23.64	.04 .00	0.00 0.00	0.00		17.53	16.00	.26	135.40	3184.07
EAN	3434	4047 42.15	2269 23.64	4	0	0	1	1683	1536	25	12999	305671
ESS+KUSH+KHULNA	3434	4047	2250		-							
x	1.00	1.37	1.50	0.00	.18	.01	0.00	.56	.41	.00	5.03	
IEAN	17.82	24.43	26.84	0.00	3.16	.16	0.00	10.01	7.37	.01	89.81	1785.86
ANGPUR+DINAJPUR	3618	4959	5448	0	642	33	n	2031	1497	2	18230	362529
X	.35	.60	.50	0.00	.13	0.00	0.00	. 42	.58	.17	2.75	
1EAN	11.04	12.66	15.63	0.00	4.05	0.00	0.00	13.31	18.12	5.40	86.21	3133.90
kaj+bogra+pabna	1391	2351	1969	0	510	0	0	1678	2283	681	10863	394871
X	.51	.53	.09	.09	.00	.62	.01	.71	1.06	.13	3.76	
MEAN	2.69	2.81	. 49	.47	.02	3.27	.06	3.75	5,59	.66	19.81	526.48
COMILLA+SYLHET	423	441	77	74	2	514	9	588	878	104	3110	82658
x	1.53	.48	. 43	0.00	.11	0.00	0.00	. 37	.89	.44	4.24	
MEAN	41.84	13.08	11.89	0.00	2.89	0.00	0.00	10.21	24.24	11.99	116.12	2736.5
DHAKA+TANGAIL	4393	1373	1248	O	303	0	0	1072	2545	1259	12193	28733
x	.76	.80	. 43	.0≿	.38	0.00	.01	.45	.65	.03	3.55	1501.5
MEAN	10.55	11.11	5.96	.31	5.27	0.00	.15	6.26	9.01	.44	49.06	1381.5
MYM+KISHORE+JAM	2416	2543	1365	71	1208	0	35	1433	2063	101	11235	31637;
x	.72	.26	.07	.01	.00	1.27	0.00	.68	.80	.02	3.83	
MEAN	8.78	3.11	. 79	. 12	.03	15.41	0.00	1191 8.22		37 .25	6724 46.38	17557 1210.8
CHTNOAKHALI	1273	451			5	2234	 0			 		
		ING		HING	ABEATING	THRESH						IN KG
	IN KG	CARRY-	BEATING	THRES-	THRESHING	PADDLE	IN KGS			EATHER	KGS	UCTIO
	LOSS	DURING	DURING	DURING	BOLLOCK	DURING	LOSSES			DUE W-	LOSS I	PROD
REGION	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	TOT

Appendix 4.3.7 : Loss of Boro Crop at Different Stage of Postharvest Operation by Region.

UPAZILA NAM				LOSS	LOSS	LOSS	OTHER	U WINN	- DRY-	LOSS	5 ΤΟΤΑ	L TOTA
	LOSS		DURING	OURING	DURING	DURING	LOSSES	OWING	G ING	DUE W-	- LOSS	I PROD
	IN K		BEATING	THRES-	SECOND	PADDLE	IN KGS	LOSS	5 LOSS	EATHER	к KG	S UCTIO
		ING		HING	BEATING	THRESH	I					IN KG
RANGUNIA	693	2 303		9	 0	1000						
MEAN	14.7		.25	. 19	0.00	1698				19		
x	.5		.01	.01	0.00	36.12 1.41		15.00 .59		.40		-
SATKANIA			_							101.	5.7	
MEAN	، ٥٤.	_	5	9	0	0	0	4	8	0	3:	2 1055
x	.38		. 10	. 18	0.00	0.00	0.00	.08	.16	0.00	.6	5 21.53
		.15	. 47	.85	0.00	0.00	0.00	. 38	.76	0.00	3.04	l I
FEI.1	577	146	98	0	5	537	0	483	275	18	2120	5 (170
MEAN	11.77	2.97	1.99	0.00	.10	10.95	· 0.00	9.85	5.62		2138	-
x	1.07	.27	.18	0.00	.01	.99	0.00	.89	.51	.36 .03	43.63	1105.51
TRISHAL	826	1045	501	0		-						
MEAN	7.79		4.73	0.00	301	0	0	408	1237	80	4398	109134
x	.76		.46	0.00	2.84 .28	0.00 0.00	0.00 0.00	3.85	11.67	.75	41.49	1029.57
					.20	0.00	0.00	.37	1.13	.07	4.03	
ISHOREGONJ	4	· 328	495	71	296	0	35	639	209	0	2077	52110
IEAN	.06	4.62	6.97	1.00	4.17	0.00	. 49	8.99		0.00	29.25	733.94
x	.01	.63	.95	.14	.57	0.00	.07	1.23		0.00	3.99	/55.94
ARISHABARI	1586	1170	368	0	610	0	•					
EAN	30.51	22.50	7,08	0.00	11.73	0 0.00	0 0.00	387	618	22	4761	155128
x	1.02	.75	.24	0.00	. 39	0.00	0.00	.25	11.88 .40	.42 .01	91.56 3.07	2983.23
ALIAKAIR	1794	648	401									
EAN	40.77	J4.73	491 11,16	0	115	0	0	446	937	566	4997	117219
x	1.53	.55	.42	0.00	2.62	0.00	D.00	10.13	21.29	12.87	113.58	2664.07
			. 72	0.00	.10	0.00	0.00	.38	.80	.48	4.26	
LIHATI	2599	725	757	0	188	o	0	626	1608	692	7100	
EAN	42.60	11.88	12.41	0.00	3.09	0.00			26.36		7196	170116
6	1.53	.43	.45	0.00	.11	0.00	0.00	.37	.95	.41	4.23	2788.79
ANDINA	94	203	10	-								
AN	1.38	203	18 .26	5	0	234	9	177	132	46	917	31241
	.30	.65	.26	.07 .02	0.00 0.00	3.44 .75	.13 .03	2.60	1.95	.67	13.49	459.43
					0.00	. , ,	.03	.57	.42	. 15	2.94	
	322	171	3	2	1	280	0	185	486	58	1508	36205
AN	7.00	3.72	.06	.04	.01	6.09	0.00		10.55	1.27	32.78	787.07
	.89	.47	.01	.01	.00	.77	0.00	.51	1.34	.16	4.16	
BIGONJ	7	67	56	67	2	0	^	000	0.5-5	_		
N	.17	1.55	1.31	1.56	.05	0 0.00	0 0.00	226 5.25	260	0	686	15212
	.05	.44	.37	.44	.01	0.00	0.00	5.25 1.49	6.05 1.71	0.00	15.94 4.51	353.77
TALI	0	1055	or-									
		1055	957	0	40	0	0	534	748	64	3398	115618
	0.00		17.72	0.00	.74	0.00	0.00	9.89	13.86	1.19	62.93 2	141.07
	0.00	.91	.83	0.00	.03	0.00	0.00	.46	.65	.06	2.94	

Appendix 4.3.8 : Loss of Boro Crop at Different Stage of Postharvest Operation by Upazila.

UPAZILA NAME	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	ORY-	LOSS	TOTAL	TOTAL
	LOSS	OURING	OURING	DURING	DURING	DURING	LOSSES	OWING	ING	DUE W-	LOSS I	PR00-
	IN KG	CARRY-	BEATING	THRES-	SECOND	PAODLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTION
		ING		HING	BEATING	THRESH						IN KGS
SHAHJAOPUR	1391	1296	1012	 0	 470	 0	 0	 1144	1534	617	7463	
MEAN	19.31	17.99	14.06	0.00	6.53	0.00	0.00	15.88	21.31	8.57	103.66	279253 3878.51
x	.50	.46	. 36	0.00	.17	0.00	0.00	.41	.55	.22	2.67	30/0.31
MITHAPUKUR	1220	2292	1903	0	591	33	D	1174	1197	2	8411	230687
MEAN	. 9.24	17.36	14.42	0.00	4.48	.25	0.00	8.90	9.07	.02	63.72	1747.63
x	.53	.99	.83	0.00	.26	.01	0.00	.51	.52	.00	3.65	1147.05
CHIRIRBANDAR	2399	2668	3545	0	51	O	0	857	300	O	9819	131842
MEAN	33.79	37.57	49.93	0.00	.72	0.00	0.00	12.07	4.22	0.00	138.30	1856.93
x	1.82	2.02	2.69	0.00	.04	0.00	0.00	.65	.23	0.00	7.45	1050.55
ANIRAMPUR	3254	3858	2072	4	O	0	D	1513	1385	23	12107	284356
1EAN	50.06	59.36	31.87	.06	0.00	0.00	0.00	23.27	21.30	.35	186.26	4374.71
x	1.14	1.36	. 73	.00	0.00	0.00	0.00	.53	. 49	.01	4.26	4574771
IEHERPUR	181	188	198	0	0	0	1	171	151	2	892	21315
IEAN	5.83	6.08	6.38	0.00	0.00	0.00	.02	5.51	4.88	.06	28.76	687.58
X	.85	.88	.93	0.00	0.00	0.00	.00	.80	.71	.01	4.18	
AURNADI	974	752	33	177	0	597	0	650	1079	24	4286	126304
EAN	8.55	6.59	.29	1.55	0.00	5.24	0.00	5.70	9.46	.21	37.60	1107.93
x 	.77	.59	.03	.14	0.00	.47	0.00	.51	.85	.02	3.39	1107.55
OTAL	17922	16916	12524	343	2671	3379			13281	2232	79640	2051315
EAN	15.25	14.40	10.66	.29	2.27	2.88	.04	8.79	11.30	1.90		1745.80
x	.87	.82	.61	.02	.13	. 16	.00	.50	.65	.11	3.88	

Appendix 4.3.9 : Loss of Boro Crop at Different Stage of Postharvest Operation by Variety.

CROP AND	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	τοται
VARIETY	LOSS	OURING	DURING	DURING	BULLOCK	OURING	LOSSES	OWING	ING	DUE W-	LOSS I	PROD
	IN KG	CARRY-	BEATING	THRES-	THRESHING	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTIO
		ING		HING	ABEATING	THRESH						IN KG
ORO LOCAL	1200	1872	1150	 0	24	21	1	10 19	884	 21	 6 192	14929
EAN	16.67	26.01	15.97	0.00	.34	.29	.01	14.15	12.28	.29	85.99	2073.4
x	.80	1.25	.77	D.00	.02	.01	.00	.68	.59	.01	4.15	2010.4
ORO MODERN	16722	15044	11374	343	2647	3358	44	9309	12397	2211	73449	1902024
IEAN	15.16	13.64	10.31	. 31	2.40	3.04	.04	8.44	11.24	2.00	66.59	1724.4
x 	.88	.79	.60	.02	.14	.18	.00	.49	.65	.12	3.86	
OTAL	17922	16916	12524	343	2671	 3379		10327	13281		79640	2051315
EAN	15.25	14.40	10.66	. 29	2.27	2.88	.04	8.79	11.30	1.90	67.78	1745.80
x	.87	.82	.61	.02	.13	.16	.00	.50	.65	.11	3.88	1,40,00

•

				-	*	2						
REGION	STACK	LOSS	LOSS	LOSS	LUSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	τοτα
	LOSS	DURING	DURING	DURING	BOLLOCK	DURING	LOSSES	DWING	ING	DUE W-	LOSS I	PROD
	IN KG	CARRY-	BEATING	THRES-	THRESHING	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTIO
		ING		HING	ABEAT ING	THRESH						IN KG
MYM+KISHORE+JAMA	0	40	125	65	21	0	3	200	161	0	616	1638
MEAN	0.00	.61	1.89	.99	.32	0.00	.05	3.04	2.44	0.00	9.34	248.2
x	0.00	.24	.76	.40	.13	0.00	.02	1.22	.98	0.00	3.76	
DHAKA+TANGAIL	85	33	65	1	0	0	0	33	121	23	361	1406
MEAN	1.49	.57	1.13	.02	0.00	0.00	0.00	.59	2.13	.40	6.33	246.6
x	.60	.23	.46	.01	0.00	0.00	0.00	.24	.86	.16	2.57	
COMILLA+SYLHET	49	146	134	20	1	3	86	212	226	`4	881	2510
MEAN	.46	1.38	1.27	. 19	.01	.03	.81	2.00	2.13	.03		236.8
x	.19	.58	.53	.08	.00	.01	.34	.84	.90	.01	3.51	
RAJ+BOGRA+PABNA	57	68	58	1	18	o	0	57	73	28	360	14124
MEAN	3.38	4.00	3.39	.06	1.08	0.00	0.00	3.34	4.30	1.66	21.20	830.82
x	.41	.48	.41	.01	.13	0.00	0.00	.40	.52	,20	2,55	
RANGPUR+DINAJPUR	141	122	399	0	1	0	0	265	34	0	962	36104
MEAN .	1.72	1.49	4.86	0.00	.01	0.00	0.00	3.23	.42	0.00	11.74	440.29
x	.39	.34	1.10	0.00	.00	0.00	0.00	.73	.09	0.00	2.67	
JESS+KUSH+KHULNA	607	579	364	o	0	0	6	327	212	2	2097	67971
MEAN	9.63	9.19	5.78	0.00	0.00	0.00	.10	5.20	3.36	.03	33.29	1078.9
x	.89	.85	.54	0.00	0.00	0.00	.01	.48	.31	.00	3.09	
BAR+FAR+PATUAKHA	3	7	1	2	0	5	0	9	5	0	31	888
1EAN	.75	1.63	.25	. 50	0.00	1.25	0.00	2.13	1.25	0.00	7.75	222.00
x	.34	.73	.11	.23	0.00	.56	0.00	.96	.56	0.00	3.49	
IOTAL	943	994	1145	90	41		95	1103	833	57	5309	174637
1EAN	2.39	2.52	2.90	.23	.10	.02	.24	2.79	2.11	.14	13.44	442.12
x	.54	.57	.66	.05	.02	.00	.05	.63	.48	.03	3.04	
.E. MEAN	0.268	0.287	0.209	0.057	0.036	0.010	0.053	0.189	0.149	0.045	0.884	

Appendix 4.3.10 : Loss of Wheat Crop at Different Stage of Post Harvest Operation by Region.

Appendix 4.3.11 : Loss of Wheat Crop at Different Stage of Post Harvest Operation by Upazila.

UPAZILA NAME	STACK LOSS IN KG	LOSS DURING CARRY- ING	LOSS CURING BEATING	LOSS DURING THRES- HING	LOSS DURING SECOND BEATING	LOSS DURING PADDLE THRESH	OTHER LOSSES IN KGS	WINN- OWING LOSS	DRY- ING LOSS	LOSS DUE W- EATHER	TOTAL LOSS I KGS	TOTAL PROD- UCTION IN KGS
TRISHAL	 0	34	48			 0	 0	 32	 82	 0	213	4948
MEAN	0.00	1.56	48 2.19	0.00	.75	0.00	0.00	1.46	3.74	0.00		224.91
X	0.00	.69	.97	0.00	.33	0.00	0.00	.65	1.66	0.00	4.31	
KISHOREGONJ	0	6	77	65	5	0	3	168	79	0	403	11433
MEAN	0.00	.13	1.74	1.49	.11	0.00	.07	3.83	1.80	0.00	9.16	259.84
X	0.00	.05	.67	.57	.04	0.00	.05	1.47	.69	0.00	3.52	
KALIAKAIR	27	10	18	0	0	0	o	10	42	1	109	3930
		10				0.00	0.00	.52	2.12	.07		196.80
MEAN X	1.35 .69	.50 .25	.92 .47	0.00 0.00	0.00 0.00	0.00	0.00	.26	1.08	.04	2.78	150100
	50		46			0	0	23	79	21	251	10125
KALIHATI	58	23	46	1	0	0	0	.62	2.13	. 58	6.79	273.6
MEAN X	1.57 .57	.61 .22	1.25 .46	.03 .01	0.00 0.00	0.00 0.00	0.00 0.00	.02	.78	.21	2.48	270.0
CHANDINA	45	92	115	19	1	2	1	58	68	4	405	1138
MEAN	.71	1.46	1.83	.30	.02	.03	.02	.91	1.09	.06		180.7
x	.39	.81	1.01	.17	.01	.02	.01	.51	.60	.03	3.55	
CHANDPUR	3	2	16	2	0	1	0	10	13	0	47	117
MEAN	.23	.18	1.22	.12	0.00	.11	0.00	.75	.98	0.00	3.58	90.00
x	.26	.20	1.35	.13	0.00	. 12	0.00	.83	1.09	0.00	3.98	
HABIGONJ	1	52	3	0	0	0	85	144	145	0	430	1255
MEAN	.03	1.73	. 10	0.00	0.00	0.00	2.82	4.81	4.83	0.00	14.33	418.3
x	.01	.41	.02	0.00	0.00	0.00	.67	1.15	1.16	0.00	3.43	
GABTALI	0	6	7	0	0	0	0	7	8	· 0	27	64
MEAN	0.00	1.20	1.40	0.00	0.00	0.00	0.00	1.30	1.50	0.00	5.40	128.20
x	0.00	.94	1.09	0.00	0.00	0.00	0.00	1.01	1.17	0.00	4.21	
SHAHJADPUR	57	62	51	1	18	0	0	50	66	28	333	1348
MEAN	4.79	5.16	4.22	.08	1.53	0.00	0.00	4.19	5.46	2.35	27.78	1123.
x	.43	.46	. 38	.01	.14	0.00	0.00	.37	.49	.21	2.47	
HITHAPUKUR	50	44	143	0	0	0	0	88	20	0	346	1782
MEAN	1.03	.91	2.93	0.00	0.00	0.00	0.00	1.79	.41	0.00	7.06	363.6
x	.28	.25	. 80	0.30	0.00	0.00	0.00	.49	.11	0.00	1.94	
CHIRIRBANDAR	91	78	255	0	1	0	0	177	14	0	617	1828:
MEAN	2.76	2.36	7.74	0.00	.02	0.00	0.00	5.38	.43	0.00	18.68	554.0
x	.50	.43	1.40	0.00	.00	0.00	0.00	.97	.08	0.00	3.37	

Appendix	4.3.11	: Con	td.
----------	--------	-------	-----

UPAZILA NAME	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	TOTAL
	LOSS	DURING	DURING	DURING	DURING	DURING	LOSSES	OWING	ING	DUE W-	LOSS I	PROD~
	IN KG	CARRY-	BEATING	THRES-	SECOND	PADDLE	IN KGS	LOSS	LOSS	EATHER	KGS	UCTION
		ING		HING	85.AT ING	THRESH						IN KGS
MANIRAMPUR	265	358	158	0	0	 0	0	161	120	0	1062	30086
MEAN	8.27	11.19	4.95	0.00	0.00	0.00	0.00	5.02	3.76	0.00	33.19	940.19
x	.88	1.19	.53	0.00	0.00	0.00	0.00	. 53	.40	0.00	3.53	
MEHERPUR	342	221	206	0	o	0	6	167	91	2	1036	37885
MEAN	11.04	7.13	6.64	0.00	0.00	0.00	. 19	5.38	2.95	.06	33.40	1222.1
x	.90	.58	.54	0.00	0.00	0.00	.02	.44	. 24	.01	2.73	
GAURNADI	3	7	1	2	O	5	0	9	5	0	31	888
MEAN	.75	1.63	.25	.50	0.00	1.25	0.00	2,13	1.25	0.00	7.75	222.00
x	.34	.73	.11	.23	0.00	.56	0.00	.96	.56	0.00	3.49	
TOTAL	943	994	1145	90	41	8	95	1103	833	57	5309	174637
MEAN	2.39	2.52	2.90	.23	.10	.02	. 24	2.79	2.11	.14	13.44	442.12
x	.54	.57	.66	.05	.02	.00	.05	.63	.48	.03	3.04	

Appendix 4.3.12 : Loss of Wheat Crop at Different Stage of Post Harvest Operation by Variety.

						-	-					
CROP AND	STACK	LOSS	LOSS	LOSS	LOSS	LOSS	OTHER	WINN-	DRY-	LOSS	TOTAL	TOTAL
VARIETY	LOSS	DURING	DURING	DURING	BULLOCK	DURING	LOSSES	OWING	ING	DUE W-	LOSS	PROD-
	IN KG	CARRY-	BEATING	THRES-	THRESHING	PADDLE	IN KGS	LOSS	LOSS	EATHER	IN KGS	UCTIO
		ING		HING	ABEATING	THRESH						IN KG
WHEAT MOD	ERN 943	994	1145	90	41	8	95	1103	833	57	5309	17463
MEAN	2.39	2.52	2.90	.23	.10	.02	.24	2.79	2.11	. 14	13.44	442.1
x	.54	.57	.66	.05	.02	.00	.05	.63	.48	.03	3.04	
TOTAL	943	994	1145	90	41	8	 95	1103	833	57	5309	17463
MEAN	2.39	2.52	2.90	.23	.10	.02	.24	2.79	2.11	.14	13.44	442.12
x	.54	.57	.66	.05	.02	.00	.05	.63	.48	.03	3.04	

Appendix 4.4.1 : Loss in kg During Parboiling & Drying by Region for Aus Grains

NAME OF REGION:-	QUANTITY	QUANTITY	TOTAL	LOSS	LOSS	LOSS	TOTAL	NO. 0
	BEFORE	AFTER	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS	CASES I
	PARBOIL	PARBOIL	SOAKING	POULTRY	CATTLE	OTHER	DUE TO	SAMPLI
	& DRYING	& DRYING		EATING	EATING	REASONS	ALL CASES	
CHITTAGONG/NOAKHA	25310	24963	209	138	0	 0	346	14
DIVIDE	174.55	172.16	1.44	.95	.00	0.00	2.39	
x	100	98.63	0.82	0.55	0.00	0.00	1.37	
MYMEN/KISHORE/JAM	121108	119984	452	575	20	78	1125	229
DIVIDE	528.86	523.95	1.97	2.51	.09	.34	4.91	
x	100	99.07	0.37	0.47	0.02	0.07	0.93	
DHAKA/TANGAIL	5315	5274	13	18	7	3	41	105
DIVIDE	50.62	50.23	. 12	. 18	.07	.03	. 39	100
x	100	99.23	0.24	0.34	0.13	0.06	0.77	
COMILLA/SYLHET	70952	70155	421	305	54	17	797	157
DIVIDE	451.92	446.85	2.68	1.94	.35	.11	5,08	
x	100	98.88	0.59	0.43	80.0	0.02	1.12	
AJSHAHI/BOGRA/PA	20886	20695	38	138	16	0	191	126
DIVIDE	165.76	164.25	.30	1.10	. 12	0.00	1.52	•
x	100	99.09	0.18	0.66	0.07	0.00	0.91	
ANGPUR/DINAJPUR	16722	16562	111	29	10	11	160	203
IVIDE	82.37	81.59	.54	.14	.05	.05	.79	
x	100	99.04	0.66	0.17	0.06	0.07	0.96	
ES/KUSHTIA/KHULN	79183	78669	278	169	61	7	514	96
IVIDE	824.82	819.47	2.89	1.76	.64	.07	5.35	
x	100	99.35	0.35	0.21	0.08	0.01	0.65	
AR/FAR/PATUAKHAL	16869	16653	124	91	1	0	216	114
IVIDE	147.97	145.08	1.09	.79	.01	0.00	1.89	
¥ 	100	98.72	0.73	0.54	0.01	0.00	1.28	
DTAL	356345	352955	1644	1462	169	115	3390	 1175
IVIDE	303.27	300.39	1.40	1.24	.14	.10	2.89	
6	100	99.05	0.46	0.41	0.05	0.03	0,95	

Appendix 4.4.2 : Loss in kg During Parboiling & Drying by Region for Aman Grains

NAME OF REGION:-	QUANTITY	QUANTITY	TOTAL	LOSS	LOSS	LOSS	TOTAL	NO, 0
	BEFORE	AFTER	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS	CASES I
	PARBOIL	PARBOIL	SOAKING	POULTRY	CATTLE	OTHER	DUE TO	SAMPL
	& DRYING	& DRYING		EATING	EATING	REASONS	ALL CASES	
CHITTAGONG/NOAKHA	76894	75543	746	606	0	0	1351	14
DIVIDE	530.30	520.98	5.14	4.18	0.00	0.00	9.32	
x	100	98.24	0.97	0.79	0.00	0.00	1.76	
MYMEN/KISHORE/JAM	322368	315654	4563	1951	120	81	6714	229
DIVIDE	1407.72	1378.40	19.93	8.52	.52	.35	29.32	
x	100	97.92	1.41	0.60	0.04	0.03	2.08	
DHAKA/TANGAIL	82399	79754	1152	1444	23	26	2645	105
DIVIDE	784.75	759.56	10.97	13.75	.21	.25	25.19	
x	100	96.79	1.40	1.75	0.03	0.03	3.21	
COMILLA/SYLHET	135777	132347	1765	1345	129	191	3430	157
DIVIDE	864.82	842.98	11.24	8.57	.82	1.22	21.85	
x	100	97.47	1.30	0.99	0.10	0.14	2.53	
RAJSHAHI/BOGRA/PA	55938	54621	536	766	15	0	1316	126
DIVIDE	443.95	433.50	4.25	6,08	.12	0.00	10.45	
x	100	97.65	0.96	1.37	0.02	0.00	2.35	
ANGPUR/DINAJPUR	266084	260861	3326	1533	339	25	5223	203
DIVIDE	1310.76	1285.03	16.39	7.55	1.67	.12	25,73	
x	100	98.04	1.25	0.57	0.13	0.01	1.96	
ES/KUSHTIA/KHULN	186918	183783	1119	1787	174	06	3135	96
DIVIDE	1947.06	1914.40	11.65	18.30	1.81	.89	32,66	
x	100	98.32	0.60	0.94	0.09	0.05	1.68	
AR/FAR/PATUAKHAL	41690	40459	954	246	26	5	1231	114
IVIDE	365.70	354.90	8.37	2.15	.23	.05	10.80	
x 	100	97.05	2.29	0.59	0.06	0.01	2.95	
OTAL	1168067	1143021	14161	9647	824	414	25046	1175
IVIDE	994.10	972.78	12.05	8.21	.70	.35	21.32	
x	100	98.86	1.21	0.83	0.07	0.03	2.14	

	for 2	Boro Ĉro	ops					
NAME OF REGION:-	QUANTITY	QUANTITY	TOTAL	LOSS	LOSS	LOSS	TOTAL	NO. 01
	BEFORE	AFTER	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS	CASES IN
	PARBOIL	PARBOIL	SOAKING	POULTRY	CATTLE	OTHER	DUE TO	SAMPLE
	& DRYING	& DRYING		EATING	EATING	REASONS	ALL CASES	
CHITTAGONG/NOAKHA	30366	29996	231	140	0	0	371	145
DIVIDE	209.42	206.87	1.59	.97	0.00	0.00	2.56	
x		98.78	.76	.46	0.00	0.00	1.22	
MYMEN/KISHORE/JAM	178012	174663	2202	1029	64	55	3350	229
DIVIDE	777.35	762.72	9.62	4.49	.28	.24	14.63	
x		98.12	1.24	.58	.03	.03	1.88	
DHAKA/TANGAIL	87986	84926	2192	780	84	4	3060	105
DIVIDE	837.96	808.82	20.88	7.43	.80	.04	29.14	
x		96.52	2.49	.89	.10	.00	3.48	
COMILLA/SYLHET	55142	53981	754	325	37	46	1162	157
DIVIDE	351.22	343.83	4.80	2.07	.23	.30	7.40	
x		97.89	1.37	.59	.07	.08	2.11	
RAJSHAHI/BOGRA/PABNA	123665	121679	394	1536	55	0	1986	126
DIVIDE	981.47	965.71	3.13	12.19	.44	0.00	15.76	
x		98.40	.32	1.24	.04	0.00	1.60	
RANGPUR/DINAJPUR	145969	143835	1313	713	7	100	2134	203
DIVIDE	719.06	708.55	6.47	3.51	.04	.49	10.51	
x		98.54	.90	.49	.01	.07	1.46	
JES/KUSTIA/KHULNA	115483	114457	636	311	78	O	1026	96
DIVIDE	1202.95	1192.26	6.63	3.24	.82	0.00	10.68	
x		99.11	.55	.27	.07	0.00	.89	
BAR/FAR/PATUAKHAL	66342	64533	1090	684	34	0	1809	114
DIVIDE	581.95	566.08	9.56	6.00	.30	0.00	15.86	
x		97.27	1.65	1.03	.05	0.00	2.73	
TOTAL	802966	788070	8813	5517	360	206	14896	1175
DIVIDE	683.38	670 .70	7.50	4.70	.31	.18	12.68	
x		98.14	1.10	.69	.04	.03	1.86	

Appendix 4.4.3 : Loss in kg During Parboiling & Drying by Region for Boro Crops

REGION	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	τοτα
					DUE TO	DUE TO	DUE TO	LOSS DU
		BEFORE			POULTRY		OTHER	TO AL
		PARBOIL		IN KG	EATING	EATING	REASONS	
		& DRYING	& DRYING			IN KG	IN KG	IN K
		IN KG	IN KG					
CHITTAGONG-	AUS LOCAL	78564	77491	745	308	20	0	107
NOAKHALI	MEAN	78564.00	77491.00	745.00	308.00	20.00	0.00	1073.0
	VALIDN	1	1	1	1	1	1	
	x			.95	.39	.03	0.00	1.3
	AUS MODERN	220044	217097	1846	1070	31	0	294
	MEAN	220044.0	217097.0	1846.00	1070.00	31.00	0.00	2947.00
	VALIDN	1	1	1	1	1	1	:
	x			.84	.49	.01	0.00	1.34
	B.AMAN LOCAL	113366	111392	1240	707	27	٥	1974
	MEAN	113366.0			707.00	27.00	0.00	1974.00
	VALIDN	1	1	1	1	1	1	1
	x			1.09	.62	.02	0.00	1.74
	T.AMAN LOCAL			1157		23	0	1850
	MEAN	107946.D			670.00	23.00	0.00	1850.00
	VALION	1	1	1	1	1	1	1
	x			1.07	.62	.02	0.00	1.71
		226600		2776	1174	56	0	4006
	MEAN	226600.0	222594.0	2776.00	1174.00	56.00	0.00	4006.00
	VALIDN	1	1	1	1	1	1	1
	X			1.23	.52	.02	0.00	1.77
	BORO LOCAL		45665		186	21	0	619
	MEAN	46284.00	45665.00	412.00	186.00	21.00	0.00	619.00
	VALIDN X	1	1	1 .89	1 .40	1 .05	1 0.00	1 1.34
				100	• ••			
	BORO MODERN MEAN	326976 326976.0	322772 322772.0	2248 2248.00	1896 1896.00	60 60.00	0 0.00	4204 4204.00
	VALIDN	1	1	1	1050.00	1	1	1204.00
	x	•	•	.69	.58	.02	0.00	1.29
UH		1119780	1103107	10424	6011	238	0	16673
EAN		159968.6	157586.7	1489.14	858.71	34.00	0.00	2381.86
ALIDN		7	7	7	7	7	7	7
			-	.93	.54	.02	0.00	1.49
YMENSINGH-	BORO MODERN	679335	677138	1728	181	288	0	2197
I SHOREGON J -	MEAN	339667.5	338568.8	864.14	90.51	144.03	0.00	1098.68
AMALPUR	VALIDN	2	2	2	2	2	2	2
	x			.25	.03	.04	0.00	. 32

Appendix 4.4.4 : Parboiling and Drying Loss (kg) by Region and Crop-variety at Millers Level

REGION	CROP-VARIETY	TOTAL	TOTA	L TOTAL	1.00			
		QUANTITY					LOSS	
		BEFORE					DUE TO	
		PARBOIL					OTHER	_
		& DRYING					REASONS	
		IN KG			IN KG	G IN KG	IN KG	IN K
SUM		679335	677138	 1728	181	288	 0	
MEAN				864.14			0.00	219
VALIDN		2			2		2	1098.6
x				.25	.03	_	0.00	. 3:
DHAKA-TANGAIL	AUS LOCAL	7464	7364	50	40	c		
	MEAN	7464.00	7364.00		40 40.00		4	100
	VALIDN	1	1		40.00		4.00	100.00
	x	-	•	.67	.54	-	1 .05	1 1.34
	T.AMAN LOCAL	597120	592144	2900	1076	600	400	40.70
	MEAN	597120.0			1076.00	-	400.00	4976 4976.00
	VALIDN	1	1		1		400.00	4970.00
	x			.49	.18	. 10	.07	.83
	T.AMAN MODERN	373200	368999	2100	1200	700	201	4201
	MEAN	186600.0	184499.5	1050.00	600.00	350.00	100.50	2100.50
	VALIDN	2	2	2	2	2	2	2
	x			.56	.32	. 19	.05	1.13
	BORO MODERN	1 903320	1885980	9000	4340	2750	1250	17340
	MEAN	634440.0	628660.0	3000.00	1446.67	916.67	416.67	5780.00
	VALIDN	3	3	3	3	3	3	3
	x			.47	.23	. 14	.07	.91
м		2881104	2854487	14050	6656	4056	1855	26617
AN		411586.3	407783.9	2007.14	950.86	579.43	265.00	3802.43
LIDN		7	7	7	7	7	. 7	7
				.49	.23	.14	.06	.92
MILLA-SYLHET	AUS MODERN	277500	276500	200	200	600	0	1000
	HEAN	277500.0	276500.0	200.00	200.00	600.00	0.00	1000.00
	VALIDN	1	1	1	1	1	1	1
	x			.07	.07	.22	0.00	.36
	B.AMAN LOCAL	820000	813559	4955	1486	0	0	6441
	MEAN	820000.0	813558.9	4954.68	1486.40	0.00	0.00	6441.08
	VALIDN	1	1	1	1	1	1	1
	X			. 60	. 18	0.00	0.00	.79
	T.AMAN MODERN	1473358	1462103	5835	2247	3173	0	11255
	MEAN	491119.3	487367.8	1944.91	748.84	1057.79	0.00	3751.54
	VALIDN	3	3	3	3	3	3	3
	x			40				

.40

.15

.22

0.00

.

.76

Appendix 4.4.4 : Contd.

x

REGION	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	τοται
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DUE
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO ALI
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASONS
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN KO
		IN KG	IN KG					
	BORO MODERN	3568578	3513585	42958	10821	1000	214	54593
	MEAN	892144.5	878396.2		2705.16		53.60	13748.28
	VALIDN	4	4	4	4	4	4	4
	x			1.20	.30	.03	.01	1.54
SUM		6139436	6065747	53947	14754	4773	214	73 689
MEAN		682159.6			1639.28	530,37	23.82	8187.64
VALIDN		9	9	9	9	9	9	0.01.0 4
x			-	.88	.24	.08	.00	1.20
RAJSHAHI-BOGRA-	AUS MODERN	8212	8172	20	20	0	0	40
PABNA	MEAN	4106.00	4086.00	10.00	10.00	0.00	0.00	20 .00
	VALIDN	2	2	2	2	2	2	2
	x			.24	.24	0.00	0.00	.49
	T.AMAN MODERN	74660	74366	150	144	0	0	294
	MEAN	37330.00	37183.00	75.00	72.00	0.00	0.00	147.00
	VALIDN	2	2	2	2	2	2	2
	x			.20	.19	0.00	0.00	. 39
	BORO MODERN	48539	48189	175	175	0	0	350
	MEAN	24269.50	24094.50	87.50	87.50	0.00	0.00	175.00
	VALIDN	2	2	2	2	2	2	2
	x			.36	.35	0.00	0.00	.72
SUM .		131411	130727	345	339	0	0	684
IEAN		21901.83	21787.83	57.50	56.50	0.00	0.00	114.00
ALIDN		6	6	6	6	6	6	b
				.26	.26	0.00	0.00	.52
ANGPUR-	AUS LOCAL	676770	672393	1095	1665	1117	500	4377
INAJPUR	MEAN	169192.5	168098.3	273.78	416.20	279.24	125.00	1094.22
	VALIDN	4	4	4	4	4	4	4
	X			.16	.25	. 17	.07	.65
	AUS MODERN	2000000	1980000	12000	5000	3000	0	200 00
	MEAN	2000000	1980000	12000.00	5000.00	3000.00	0.00	20000.00
	VALIDN	1	1	1	1	1	1	1
	X			.60	.25	.15	0.00	1.00
	T.AMAN LOCAL	249600	248497	250	250	503	100	1103
	MEAN	124800.0	124248.5	125.00	125.00	251.50	50.00	551.50
	VALIDN	2	2	2	2	2	2	2
	x			.10	.10	.20	.04	. 44

228

Append	1x	4.4.4	:	Contd.
--------	----	-------	---	--------

REGION	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	TOTAL
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DUE
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO ALL
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASONS
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN KG
		IN KG	IN KG					
	T.AMAN MODERN	1492720	1479677	8976	380 1	267	0	13043
	MEAN	746360.0	739838.4	4487.85	1900.46	133,34	0.00	6521.65
	VALIDN	2	2	2	2	2	2	2
	x			.60	.25	.02	0.00	.87
	BORO MODERN	97058	96105	650	303	0	0	953
	MEAN	97058.00	96104.75	649.94	303.31	0.00	0.00	953.25
	VALIDN	1	1	1	1	1	1	1
	x			.67	.31	0.00	0.00	.98
SUM		45 16 148	4476672	22971	11019	4887	600	39476
MEAN		451614.8	447667.2	2297.08	1101.90	488.66	60.00	3947.64
VALIDN		10	10	10	10	10	10	10
X				.51	.24	.11	.01	.87
TOTAL		15467214	15307877	103465	38960	14242		159337
MEAN		377249.1	373362.9	2523.55	950.23		65.11	3886.26
/ALIDN		41	41	41		41	41	41
6				.67	.25	.09	.02	1.03

NAME OF UPAZILA	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	TOTA
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DU
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO AL
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASON
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN I
		IN KG	IN KG					
FENI	AUS LOCAL	78564	77491	 745	308	20	0	107
	MEAN	78564.00	77491.00	745.00	308.00	20.00	0.00	1073.0
	VALIDN	1	1	1	1	1	1	
	x			.95	. 39	.03	0.00	1.3
	AUS MODERN	220744	217097	1846	1070	• 31	0	294
	MEAN	220044.0	217097.0	1846.00	1070.00	31.00	0.00	2947.0
	VALIDN	1	1	1	1	1	1	
	x			.84	. 49	.01	0.00	1.3
	B.AMAN LOCAL	113366	111392	1240	707	27	0	197
	MEAN	113366.0	111392.0	1240.00	707.00	27.00	0.00	1974.0
	VALIDN	1	1	1	1	1	1	
	x			1.09	.62	.02	0.00	1.7
	T.AMAN LOCAL	107946	106096	1157	670	23	٥	185
	MEAN	107946.0	106096.0	1157.00	670.00	23.00	0.00	1850.0
	VALIDN	1	1	1	1	1	1	
	x			1.07	.62	.02	0.00	1.7
	T.AMAN MODERN	226600	222594	2776	1174	56	0	400
	MEAN	226600.0	222594.0	2776.00	1174.00	56.00	0.00	4006.00
	VALIDN	1	1	1	1	1	1	:
	X			1.23	.52	.02	0.00	1.77
	BORO LOCAL	46284	45665	412	186	21	0	619
	MEAN	46284.00	45665.00	412.00	186.00	21.00	0.00	619.00
	VALIDN	1	1	1	1	1	1	1
	x			.89	.40	.05	0.00	1.34
	BORO MODERN	326976	322772	2248	1896	60	0	4204
	MEAN	326976.0	322772.0	2248.00	1896.00	60.00	0.00	4204.00
	VALIDN	1	1	1	1	1	1	1
	x			. 69	.58	.02	0.00	1.29
SUM		1119780	1103107	10424	6011	238	0	16673
YEAN		159968.6	157586.7	1489.14	858.71	34.00	0.00	2381.86
ALIDN		7	7	7	7	7	7	7
6				.93	. 54	.02	0.00	1.49

Appendix - 4.4.5 : Parboiling and Drying Loss (kg) by Upazila and Crop-variety at Millers Level.

NAME OF UPAZILA	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	TOTAL
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DUE
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO ALL
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASONS
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN KG
		IN KG	IN KG					
KIHSOREGUNJ	BORO MODERN	7466	7429	 D	37	 0		
	MEAN	7466.00	7429.00	0.00	37.00	0.00	0.00	37.00
	VALION	1	1	1	1	1	. 1	1
	x			0.00	. 50	0.00	0.00	.50
SUM		7466	7429	0	37	0	0	37
MEAN		7466.00	7429.00	0.00	37.00	0.00	0.00	37.00
VALIDN		1	1	1	1	1	1	1
x				0.00	.50	0.00	0.00	.50
SARISHABARI	BORO MODERN	671869	669709	1728	144	288	0	2160
	MEAN	671869.0	669708.7	1728.28	144.02	288.05	0.00	2160.35
	VALIDN	1	1	1	1	1	1	1
	x			.26	.02	.04	0.00	.32
SUM		67 1869	669709	1728	144	288	O	2160
(EAN		671869.0	669708.7	1728.28	144.02	288.05	0.00	2160.35
ALION		1	1	1	1	1	1	1
6				.26	.02	.04	0.00	. 32
ALIAKAIR	AUS LOCAL	7464	7364	50	40	6	4	100
	MEAN	7464.00	7364.00	50.00	40.00	6.00	4.00	100.00
	VALIDN	1	1	1	1	1	1	1
	x			.67	.54	.08	.05	1.34
	T.AMAN MODERN	373200	368999	2100	1200	700	201	4201
	MEAN	186600.0	184499.5	1050.00	600.00	350.00	100.50	2100.50
	VALIDN	2	2	2	2	2	2	2
	x			.56	, 32	.19 .	.05	1.13
	BORO MODERN	410520	405620	2600	1300	750	250	4900
	MEAN	205260.0	202810.0	1300.00	650.00	375.00	125.00	2450.00
	VALION	2	2	2	2	2	2	2
	X			.63	. 32	.18	.06	1.19
HL		791184	781983	4750	2540	1456	455	9201
		158236.8	156396.6	950.00	508.00	291.20	91.00	1840.20
LIDN		5	5	5	5	5	5	5
				. 60	. 32	.18	.06	1.16
LIHATI	T.AMAN LOCAL	597120	592144	2900	1076	600	400	4976
	MEAN	597120.0	592144.0	2900.00	1076.00	600.00	400.00	4976.00
	VALIDN	1	1	1	1	1	1	1
	x			.49	. 18	.10	.07	.83

NAME OF UPAZILA	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	τοται
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DUE
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO ALL
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASONS
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN KO
		IN KG	IN KG					
	BORO MODERN	1492800	1480360	6400	3040	2000	1000	12440
	MEAN	1492800	1480360	6400.00	3040.00	2000.00	1000.00	12440.00
	VALIDN	1	1	1	1	1	1000.00	12440.00
	x		-	.43	.20	.13	.07	.83
SUM		2089920	2072504	9300	4116	2500	1400	17/10
MEAN		1044960	1036252	9300 4650.00	4116	2600	1400	17416
VALIDN		2	2	4850.00	2058.00 2	1300.00	700.00	8708.00
x		E.	2	. 44	.20	2 .12	2 .07	2 .83
CHANDPUR	R AMAN LOCAL							
	B.AMAN LOCAL MEAN		813559	4955	1486	0	0	6441
	MEAN VALIDN		813558.9	4954.68	1486.40	0.00	0.00	6441.08
	x	1	1	1	1	1	1	1
	~			. 60	. 18	0.00	0.00	.79
	T.AMAN MODERN		1185603	5535	2047	2673	0	10255
	MEAN	97929.0	592801.7	2767.37	1023.26	1336.69	0.00	5127.31
	VALIDN	2	2	2	2	2	2	2
	x			.46	. 17	.22	0.00	.86
	BORO MODERN	3013578	2960585	42358	10421	0	214	52993
	MEAN	1004526	986861.6	14119.33	3473.55	0.00	71.46	17664.37
	VALIDN	3	3	3	3	3	3	3
	x			1.41	. 35	0.00	.01	1.76
5UM		5029436	4959747	52847	13954	2673	214	69689
IEAN		38239.3	826624.5	8807.90	2325.59	445.56	35.73	11614.80
ALIDN		6	6	6	6	6	6	6
				1.05	.28	.05	.00	1.39
ABIGUNJ	AUS MODERN	277500	276500	200	200	600	0	1000
	MEAN	277500.0	276500.0	200.00	200.00	600.00	0.00	1000.00
	VALIDN	1	1	1	1	1	1	1
	x			.07	.07	.22	0.00	.36
	T.AMAN MODERN	277500	276500	300	200	500	0	1000
	MEAN	277500.0	276500.0	300.00	200.00	500.00	0.00	1000.00
	VALIDN	1	1	1	1	1	1	1
	x			.11	.07	.18	0.00	.36
	BORO MODERN	555000	553000	600	400	1000	0	2000
	MEAN	555000.0	553000.0	600.00	400.00	1000.00	0.00	2000.00
	VALIDN	1	1	1	. 1	1	1	1
	x			. 11	.07	.18	0.00	.36

NAME OF UPAZILA	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	TOTA
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DU
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO AL
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASON
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN K
		IN KG	IN KG					
SUM		1110000	1106000	1100	800	2100	·÷ 0	400
MEAN		370000.0	368666.7	366.67	266.67	700.00	0.00	1333.3
VALIDN		3	3	3	3	3	3	
x				.10	.07	. 19	0.00	.3
GABTALI	AUS MODERN	8212	8172	20	20	0	0	4
	MEAN	4106.00	4086.00	10.00	10.00	0.00	0.00	20.0
	VALIDN	2	2	2	2	2	2	
	x			.24	.24	0.00	0.00	.4
	T.AMAN MODERN	74660	74366	150	144	0	0	29
	MEAN	37330.00	37183.00	75.00	72.00	0.00	0.00	147.0
	VALIDN	2	2	2	2	2	2	
	X			.20	.19	0.00	0.00	.3
	BORO MODERN	48539	48189	175	175	0	0	35
	HEAN	24269.50	24094.50	87.50	87.50	0.00	0.00	175.0
	VALIDN X	2	2	2	2	2	2	-
	*			.36	.36	0.00	0.00	.7
MM		131411	130727	345	339	0	0	68
EAN		21901.83	21787.83	57.50	56.50	0.00	0.00	114.00
ALIDN		6	6	6	6	6	6	(
				.26	.26	0.00	0.00	. 52
ITHAPUKUR	AUS LOCAL	53150	52666	342	85	57	0	484
	MEAN	53150.00	52665.78	341.80	85.45	56.97	0.00	484.22
	VALIDN	1	1	1	1	1	1	1
	X			.64	.16	.11	0.00	.91
	AUS MODERN	2000000	1980000	12000	5000	3000	0	20000
	HEAN	2000000	1980000	12000.00	5000.00	3000.00	0.00	20000.00
	VALIDN	1	1	1	1	1	1	1
	x			.60	.25	. 15	0.00	1.00
	T.AMAN MODERN	1269220	1256977	8842	3401	0	0	12243
		1269220	1256977	8842.37	3400.91	0.00	0.00	12243.30
	VALIDN X	1	1	1	1	1	1	1
	~			.70	.27	0.00	0.00	.96
	BORD MODERN	97058	96105	650	303	0	0	953
	MEAN	97058.00	96104.75	649.94	303.31	0.00	0.00	953.25
	VALIDN	1	1	1	1	1	1	· 1
	X			.67	.31	0.00	0.00	.98

ł

NAME OF UPAZILA	CROP-VARIETY	TOTAL	TOTAL	TOTAL	LOSS	LOSS	LOSS	τοτα
		QUANTITY	QUANTITY	LOSS IN	DUE TO	DUE TO	DUE TO	LOSS DU
		BEFORE	AFTER	SOAKING	POULTRY	CATTLE	OTHER	TO AL
		PARBOIL	PARBOIL	IN KG	EATING	EATING	REASONS	REASON
		& DRYING	& DRYING		IN KG	IN KG	IN KG	IN KO
		IN KG	IN KG					
SUM		3419428	3385747	21834	 8790	3057	 0	3368
MEAN		854857.0	846436.8	5458.53	2197.42	764.24	0.00	8420.19
VALIDN		4	4	4	4	4	4	4
x				.64	.26	.09	0.00	. 98
CHIRIR BANDAR	AUS LOCAL	623620	619727	753	1579	1060	500	3893
	MEAN	207873.3	206575.8	251.11	526.44	353.33	166.67	1297.55
	VALIDN	3	· ⁻ З	3	3	3	3	3
	x			.12	.25	.17	.08	.62
	T.AMAN LOCAL	249600	248497	250	250	503	100	1103
	MEAN	124800.0	124248.5	125.00	125.00	251.50	50.00	551.50
	VALIDN	2	2	2	2	2	2	2
	x			.10	.10	.20	.04	. 44
	T.AMAN MODERN	223500	222700	133	400	267	0	800
	MEAN	223500.0	222700.0	133.33	400.00	266.67	0.00	800.00
	VALIDN	1	1.	1	1	1	1	1
	x			.06	.18	. 12	0.00	.36
им		1096720	1090924	1137	2229	1830	600	5796
EAN		182786.7	181820.7	189.44	371.56	304.95	100.00	965.94
ALIDN		6	6	6	6	6	6	6
				.10	.20	. 17	.05	.53
DTAL		15467214	15307877	103465	38960		2669	159337
AN		377249.1	373362.9	2523.55		347.37	65.11	
LIDN		41	41	41	41	41	41	41
				.67	.25	.09	.02	1.03

		5					-	5 .	
NAME OF REGION :-	TOTAL	TOTAL	TOT.HUSK	TOT.LOSS	TOTAL	TOTAL	TOT.HUSK	TOTAL	NO. 0
	QUANTITY	QUANTIY	BROKEN	IN DHEKI	QUANTITY	QUANTITY	BROKEN	LOSS IN	CASES IN
	BEFORE	AFTER	GRAINS	PROCESS	BEFORE	AFTER	GRA INS	MILLING	SAMPLI
	DHEKI	DHEK I	IN DHEKI		MILLING	MILLING	IN MILL		
CHITTAGONG-NOAKHALI(K		3230	1441	21	62799	43143	19297	359	145
DIVIDE	32.36	22.28	9.94	0.14	433.10	297.54	133.09	2.47	
x	100	68.84	30.72	0.44	100	68.70	30.73	0.57	
MYMEN/KISHORE/JAM(KG)	5964	4115	1832	17	114728	77251	37271	206	229
DIVIDE	26.04	17.97	8.00	.07	501.00	337.34	162.76	.90	
x	100	69.00	30.72	0.28	100	67.33	32.49	0.18	
DHAKA-TANGAIL(KG)	163	100	61	2	5111	3252	1791	68	105
DIVIDE	1.55	.95	.58	.02	48.68	30.98	17.05	.65	
x	100	61.35	37.42	1.23	100	63.63	35.04	1.33	
COMILLA-SYLHET (KG)	6692	4386	2247	59	64467	43225	20804	438	157
DIVIDE	42.63	27.94	14.31	.38	410.62	275.32	132.51	2.79	
x	100	65.54	33.58	0.88	100	67.05	32.27	0.68	
RAJSHAHI-BOGRA/PABNA(KG) 0	0	o	0	21482	14372	7005	105	126
OIVIDE	0.00	0.00	0.00	0.00	170.49	114.06	55.60	.83	
x	0.00	0.00	0.00	0.00	100	66.90	32.61	0.49	
RANGPUR-DINAJPUR(KG)	0	0	0	0	16563	10991	5467	105	203
DIVIDE	0.00	0.00	0.00	0.00	81.59	54.14	26.93	.52	
X	0.00	0.00	0.00	0.00	100	66.36	33.01	0.63	
JES/KUSHTIA/KHULN(KG)	1119	750	366	3	77392	52933	23857	602	96
DIVIDE	11.66	7.81	3.81	.03	806.17	551.39	248.51	6.27	
X	100	67.02	32.71	0.27	100	68.40	30.82	0.78	
BAR/FAR/PATUAKHAL(KG)	0	o	o	o	16671	11639	4986	46	114
DIVIDE	0.00	0.00	0.00	0.00	146.24	102.10	43.73	.41	
¥	0.00	0.00	0.00	0.00	100	69.82	29.91	0.27	
TOTAL (KG)	18630	12581	5948	101	379213	256806	120478	1929	1175
DIVIDE	15.86	10.71	5.06	.09	322.73	218.56	102.53	1.64	
6	100	67.53	31.93	0.54	100	67.72	31.77	0.51	

Appendix 4.4.6 : Milling Loss in Dheki & Rice Huller by Region (Aus)

NAME OF REGION:-	TOTAL	TOTAL	TOT.HUSK	707 1055	TOTAL	TOTAL		TOTAL	NO. OF
	QUANTIT	QUANTIY	BROKEN	TOT.LOSS IN DHEKI	TOTAL QUANTITY	TOTAL QUANTITY	TOT.HUSK BROKEN	TOTAL	CASES IN
	BEFORE	AFTER	GRAINS	PROCESS	BEFORE	AFTER		MILLING	SAMPLE
	DHEKI	DHEKI	IN DHEKI	,	MILLING	MILLING	IN MILL		0/11/20
CHITTAGONG/NOAKHA(KG)	 0	0	0	 0	193445	134098	58336	1017	145
DIVIDE	0.00	0.00	0.00	0.00	1334.10	924.81	402.32	7.01	
x	0.00	0.00	0.00	0.00	100	69.32	30.16	0.52	
MYMEN/KISHORE/JAM(KG)	55213	39337	15629	246	68936	47680	21037	218	229
DIVIDE	241.10	171.78	68.25	1.08	301.03	208.21	91.87	.95	223
x	100	71.25	28.30	0.45	100	69.17	30.52	0.31	
DHAKA/TANGAIL(KG)	6621	4544	1980	97	74157	50924	*1757	071	105
DIVIDE	63.06	43.28	18.85	.92	74157 700.26	50824 484.03	22362 212.97	971 9.25	105
x	100	68.63	29.90	1.47	100	68.54	30.15	1.31	
COMILLA/STLHET(KG)	1301	885	405	11	124550	02016	40851	803	167
DIVIDE	8.29	5.64	2.58	.07	124568 793.43	82815 527.48	40861 260.26	893 5.69	157
x	100	68.02	31.13	0.85	100	66.48	32.80	0.72	
RAJSHAHI/BOGRA/PA(KG)	259	176	82	2	39725	26744	12726	254	126
DIVIDE	2.06	1.40	.65	.01	315.27	212.26	101.00	2.02	120
x	100	67.57	31.66	0.77	100	67.32	32.04	0.64	
RANGPUR/DINAJPUR(KG)	2013	1348	649	17	139479	94041	44433	1004	203
DIVIDE	9.92	6.64	3.20	.08	687.09	463.26	218.88	4.95	
x	100	66.92	32.24	0.84	100	67.42	31.86	0.72	
JES/KUSHTIA/KHULN(KG)	6354	4114	2214	26	171049	116155	53518	1376	96
DIVIDE	66.19	42.86	23.06	.27	1781.76	1209.95	557.48	14.34	
ĸ	100	64.75	34.84	0.41	100	67.91	31.29	0.80	
BAR/FAR/PATUAKHAL(KG)	5265	3588	1664	13	32818	22777	9950	91	114
DIVIDE	45.18	31.47	14.60	.11	287.88	199.80	87.28	.79	
د	100	68.15	31.60	0.25	100	69.40	30.32	0.28	
TOTAL(KG)	77026	 53993	22622	411	844176		263224	 5824	
IVIDE	65.55	45.95	19.25	. 35	718.45	489.48	224.02	4.96	
	100	70.10	29.37	0.53	100	68.13	31.18	0.69	

NAME OF REGION:-	TOTAL	TOTAL	HUSK	LOSS IN	TOTAL	TOTAL	HUSK,	TOTAL	NO. OI
	QUANTITY	QUANTIY	BROKEN	DHEKI	QUANTITY	QUANTITY	BROKEN	LOSS IN	CASES IN
	BEFORE	AFTER	GRAINS	PROCESS	BEFORE	AFTER	GRAINS	MILLING	SAMPLE
	DHEKI	DHEKI	IN DHEKI	×	MILLING	MILLING	IN HILL		
CHITTAGONG/NOAKHA	6817	4735	2053	29	81620	56480	24791	350	145
DIVIDE	47.01	32.65	14.16	. 20	562.90	389.52	170.97	2.41	14.
X		69.46	30.12	. 42		69.20	30.37	.43	
MYMEN/KISHORE/JAM	54387	36047	16108	233	122790	83713	38234	843	229
DIVIDE	237.50	166.14	70.34	1.02	536.20	365.56	166.96	3.68	223
x		69.96	29.62	.43		68.18	31.14	.69	
DHAKA/TANGAIL	722	468	241	13	87215	57584	28333	1297	105
DIVIDE	6.88	4,46	2.29	. 13	830.62	548.42	. 269.84	12.35	105
x		64.85	33.32	1.83		66.03	32.49	1.48	
COMILLA/SYLHET	4542	3027	1482	33	50234	34019	15876	340	157
DIVIDE	28.93	19.28	9.44	.21	319,96	216.68	101.12	2.16	137
x		66.65	32.62	.73		67,72	31.60	.68	
RAJSHAHI/BOGRA/PA	4215	2714	1445	56	120416	79528	40221	668	126
DIVIDE	33.45	21.54	11.47	.45	955.68	631.17	319.21	5.30	
x		64.39	34.27	1.33		66.04	33.40	. 55	
RANGPUR/DINAJPUR	0	0	0	0	145901	98500	46149	1252	203
DIVIDE	0.00	0.00	0.00	0.00	718.72	485.22	227.33	6.17	
6	.00	.00	.00	.00	67.51	31.63	.86		
ES/KUSTIA/KHULNA	289	214	71	4	115320	83390	30886	1044	96
IVIDE	3.01	2.23	.74	.04	1201.25	868.65	321.73	10.88	
		73.97	24.66	1.37		72.31	26.78	.91	
AR/FAR/PATUAKHAL	739	540	191	7	65550	45525	19525	500	114
IVIDE	6.48	4.74	1.68	.06	575.00	399.34	171.28	4.38	
		73.12	25.90	.97		69.45	29.79	.76	
OTAL	71711	49745	21590	375	789046	538738	244014	 6293	1175
IVIDE	61.03	42.34	18.37	. 32	671.53	458.50	207.67	5.36	
		69.37	30.11	. 52		68.28	30.93	.80	

Appendix 4.4.8 : Milling Loss in Dheki & Rice Huller by Region (Boro)

REGION	CROP-VARIETY	TOTAL QT MILLED IN KG.	RECOVERY OF RICE/ATTA IN KG.		LOSS IN MILLING (KG)
CHITTAGONG-	AUS LOCAL	124943	 84582	39830	531
NOAKHALI	MEAN	13882.56	9397.96	4425.59	59.01
	VALIDN	9	9	9	9
	x				.43
	AUS MODERN	267999	182169	85019	811
	MEAN	66999.75	45542.36	21254.67	202.72
	VALIDN	4	4	4	4
	x				. 30
	B.AMAN LOCAL	178422	119314	58167	941
	MEAN	44605.50	29828.49	14541.80	235.21
	VALIDN	4	4	4	4
	x				. 53
	T.AMAN LOCAL	124577	83735	40337	505
	MEAN	62288.50	41867.50	20168.50	252.50
	VALIDN	2	2	2	2
	x				.41
	T.AMAN HODERN	627495	425620	198249	3626
	MEAN	57045.00	38692.74	18022.61	329.65
•	VALIDN	11	11	11	11
	x				.58
	BORO LOCAL	46277	30994	15109	174
	MEAN	23138.50	15497.00	7554,50	87.00
	VALIDN	2	2	2	·2
	x				. 38
	BORD MODERN	565585	393939	168841	2805
	MEAN	52053.18	35812.68	15349.17	254.97
	VALIDN	11	11	11	11
	X				. 49
	WHEAT MODERN	3000	2959	0	41
	MEAN	3000.00	2959.46	0.00	40.54
	VALIDN X	1	1	1	1 1.35
					1.33
н		1935298	1323312	605552	9433
AN .		44211.32	30075.30	13762.54	214.39
LIDN		44	44	44	44
					.48

Appendix 4.4.9 : Milling Loss at Millers Level by Region & Crop-variety

.

REGION	CROP-VARIETY		RICE/ATTA	(HUSK, BRAN	
MYMENS INGH~	AUS LOCAL	278680	188448	89230	1002
KISHOREGONJ-	MEAN	46446.67	31407.98	14871.63	167.06
JAMALPUR	VALIDN	6	6	6	6
	x				.36
	AUS MODERN	235088	157897	75881	1310
	MEAN	47017.60	31579.46	15176.23	261.92
	VALIDN	5	5	5	5
	x		·		.56
	B.AMAN LOCAL	244793	170541	73368	884
	MEAN		34108.23		176.93
	VALIDN	5	5	5	5
	x				. 36
	T.AMAN LOCAL	89420	63299	25795	325
	MEAN	29806.67	21099.76	8598.46	108.45
	VALIDN	3	3	3	3
	x				. 35
	T.AMAN MODERN	767078	519674	242229	5175
	MEAN	127846.3	86612.35	40371.43	862.55
	VALIDN	6	6	6	6
	x				.67
	BORO MODERN	1182043	820372	359335	2336
	MEAN	131338.1	91152.45	39926.10	259.57
	VALION	9	9	9	9
	x				.20
	WHEAT MODERN	215695	214164	0	1531
	MEAN	23966.11	23795.95	0.00	170.16
	VALIDN	9	9	9	9
	x				.71
UM		3012797	2134395	865837	12564
EAN		70065.05	49637.10	20135.75	292.19
ALIDN		43	43	43	43
					.42
AKA-TANGAIL	AUS LOCAL	14928	9674	5111	143
	MEAN	4976.00	3224.59	1703,75	47.66
	VALIDN	3	3	3	3
	x				.96

.

	CROP-VARIETY	MILLED In KG.	RICE/ATTA	(HUSK, BRAN BROKEN GRAIN) IN KG	MILLING (KG)
	B.AMAN LOCAL			4254	
	MEAN	5971.00	3803.85	2127.16	39.99
	VALIDN	2	2	2	2
	x				.67
	T.AMAN LOCAL	607072	414617	188439	4016
	MEAN	303536.0	207308.50	94219.50	2008.00
	VALIDN	2	2	2	2
	x				.66
	T.AMAN MODERN	376301	262997	110862	2442
	MEAN	125433.7	87665.67	36954.00	814.00
	VALIDN	3	3	3	3
	x				.65
	BORO MODERN	2005404	1343979	645838	15587
		286486.3	191997.00	92262.53	2226.76
	VALIDN	7	7	7	7
	x				.78
	WHEAT MODERN		29491	0	365
	MEAN	7464.00	7372.63	0.00	91.37
	VALIDN	4	4	4	4
	x				1.22
М		3045503	2068365	954504	22634
EAN .		145024.0	98493.57	45452.59	1077.80
LIDN		21	21	21	21
					.74
MILLA-SYLHET					•
	AUS LOCAL MEAN	59110	38089	20450	572
	VALIDN	19703.33	12696.17	6816.54	190.63
	*	3	3	3	3
	-				.97
	AUS MODERN MEAN	618986	415071	198951	4964
	VALIDN	103164.3	69178.51	33158.56	827.26
	X	6	6	6	6
	~				. 80
	B.AMAN LOCAL	936500	635896	297471	3133
	MEAN	187300.0	127179.20	59494.19	626.60
	VALIDN	5	5	. 5	5

REGION	CROP-VARIETY				
		MTLLED	RICE/ATTA	(HUSK, BRAN	MILLING
		IN KG.	IN KG.	BROKEN	(KG)
				GRAIN)	
				IN KG	
	T.AMAN LOCAL	 69340	44554	24253	533
	MEAN		14851.33		
	VALIDN	3	3		3
	x		·		.77
	T.AMAN MODERN	1792178	1227241	555247	9690
			153405.10		
	VALIDN	8	8		8
	x				.54
	BORO MODERN	3702683	2555052	1125567	22063
	MEAN		255505.25		
	VALIDN	10	10	10	10
	x				. 60
	WHEAT MODERN	106512	105212	0	1300
	MEAN	15216.00	15030.24	0.00	185.76
	VALIDN	7	7	7	7
	x				1.22
м		7285309	5021114	2221939	42255
AN		173459.7	119550.34	52903.31	1006.08
LIDN		42	42	42	42
					.58
JSHAHI-BOGRA-			2500		
BNA	MEAN		2500.00	1218.00	15.00
	VALIDN	1	1	1	1
	x				.40
	AUS MODERN	15638	10473	5095	- 70
	MEAN	\$5212.67	3491.00	1698.33	
	VALIDN	3	3	3	3
	x				.45
	T.AMAN LOCAL	11199	7500	3649	50
	MEAN	11199.00	7500.00	3649.00	50.00
	VALIDN	1	1	1	1
	X				.45
	T.AMAN MODERN	93025	62299	30351	375
	MEAN	31008.33	20766.33	10117.00	125.00
	VALIDN	3	3	3	3
	*				.40

REGION	CROP-VARIETY	MILLED	RECOVERY OF RICE/ATTA IN KG.	(HUSK, BRAN	LOSS IN MILLING (KG)
	BORO MODERN		79111	42006	 602
	MEAN	11065.36	7191.89	3818.75	54,72
	VALIDN	11	11	11	11
	x				.49
	WHEAT MODERN	22022	21800	1	221
	MEAN	3670.33	3633.29	.17	36.88
	VALIDN	6	6	6	6
	x	, :			1.00
SUM		267336	183683	82320	1333
		10693.44	7347.30	3292.81	53.33
ALIDN		25	25	25	25
					.50
ANGPUR-DINAJPUR	AUS LOCAL	876106	578216	287147	10743
	MEAN	125158.0	82602.34		
	VALIDN	7	7	7	7
	x		•		1.23
	AUS MODERN	2305595	1552386	743364	9346
	MEAN	768531.7	51/628.59	247787.89	
	VALIDN	З	3	3	з
	x				.41
	B.AMAN LOCAL	8393	5618	2707	68
	MEAN	8393.00	5617.90	2707.42	67,69
	VALIDN	1	1	1	1
	x				.81
	T.AMAN LOCAL	409696	274576	129405	5714
	MEAN	136565.3	91525.46	43135.12	1904.76
	VALIDN	3	3	3	3
	X				1.39
	T.AMAN MODERN	2159021	1475585	663460	19977
	MEAN	308431.6	210797.82	94779.95	2853.80
	VALIDN	7	7	7	7
	X				.93
	BORO MODERN	140343	94846	44901	596
	MEAN	46781.00	31615.24	14967.02	198.74
	VALION	3	3	3	3
	x				. 42

REGION	CROP-VARIETY	TOTAL QT	RECOVERY OF	REMAINDER	LOSS IN
			RICE/ATTA		
		IN KG.	IN KG.	BROKEN	(KG)
				GRAIN)	
				IN KG	
	WHEAT MODERN	115952	115312	0	640
	MEAN	28988.00	28828.07	0.00	159.92
	VALIDN	4	4	4	4
	x				.55
SUM		6015106	4097039	1870984	47083
fean		214825.2	146322.83		1681.53
/ALIDN		28	28	28	28
x					. 78
JESSORE-KUSHTIA-	AUS LOCAL	197082	139706	54397	2979
CHULNA	MEAN		27941.26		595.82
	VALIDN	5	5	5	5
	x		-	-	1.51
	AUS MODERN	47031	32922	13521	588
	MEAN		32921.70		587.89
	VALIDN	1	1	1	1
	x				1.25
	B.AMAN LOCAL	288904	212842	71910	4152
	MEAN	72226.00	53210.50	17977.46	1038.04
	VALIDN	4	4	4	4
	x				1.44
	T.AMAN LOCAL	29861	22598	6860	404
	MEAN	29861.00	22597.51	6859.96	403.53
	VALIDN	1	1	1	1
	x				1.35
	T.AMAN HODERN	8958	6495	2351	112
	MEAN	8958.00	6494.55	2351.47	111.97
	VALIDN	1	1	1	1
	x				1.25
	BORO LOCAL	120937	89023	30594	1320
	MEAN	60468.50	44511.54	15297.09	659.88
	VALIDN	2	2	2	2
	x				1.09
	BORO MODERN	176179	131367	41910	2602
	MEAN	44044.75	32916.80	10477.40	650.56
	VALIDN	4	4	4	4
	x				1.48

EGION	CROP-VARIETY	MILLED	RECOVERY OF RICE/ATTA	(HUSK, BRAN	MILLING
		IN KG.	IN KG.	BROKEN	(KG)
				GRAIN)	
				IN KG	
	WHEAT MODERN	345639	340949	0	4690
	MEAN		56824.81		781.69
	VALIDN	6	6	6	6
	x				1.36
JM EAN		1214591	976201	221543	16847
LIDN		50607.96		9230.96	701.95
-104		24	24	24	24
					1.39
RISAL-FARIDPUR-	AUS LOCAL	12000	8125	3808	66
TUAKHALI	MEAN	6000.00	4062.73		
	VALIDN	2	2	2	2
	x				.55
	AUS MODERN	8000	5350		
	MEAN	8000 4000.00	5359	2602	39
	VALIDN		2679.47	1301.23	19.30
	X	2	2	2	2 .48
	B.AMAN LOCAL	21000	14082	6809	109
	MEAN	7000.00	4693.87	2269.79	36.34
	VALIDN	3	3	3	3
	x				.52
	T.AMAN LOCAL	5000	3447	1526	27
	MEAN	5000.00		1526.10	26.77
	VALIDN	1	1	1	1
	x				.54
		24000			
	T.AMAN MODERN MEAN	34000	23200	10537	263
	VALIDN	11333.33 3	7733.34	3512.48	87.51
	x	3	3	3	3 .77
	BORO MODERN	89000	60674	27987	339
	MEAN	29666.67	20224.58	9329.03	113.06
	VALIDN	3	3	3	3
	X				.38
	WHEAT MODERN	25000	24866	0	134
	MEAN	25000.00	24865.95	0.00	134.05
	VALION	1	1	1	1
	x				.54

Appendix	4.4.9	:	Contd.
----------	-------	---	--------

REGION	CROP-VARIETY	TOTAL QT	RECOVERY OF	REMA INDER	LOSS IN
		MILLED	RICE/ATTA	(HUSK, BRAN	MILLING
		IN KG.	IN KG.	BROKEN	(KG)
				GRAIN)	
				IN KG	
SUM		194000	139753	53271	977
IEAN		12933.33	9316.86	3551.37	65.11
ALIDN		15	15	15	15
5					. 50
 OTAL		22972940	15943864	 CD 75050	
EAN		94958.43	65883.73	6875950	153126
ALION		242	242	28413.02	632.75
		242	242	242	242
					.67

NAME OF REGION	QUANTITY BEFORE CRUSH	QUANTITY AFTER CRUSH	QUANTITY WHEAT LOST
CHITTAGONG-NOAKHALI		24	1
MEAN	25.00	24.50	.50
VALIDN	1	1	1
8		98.00	2.00
MYMEN/KISHORE/JAM	15704	15540	164
MEAN	172.57	170.76	1.80
VALIDN	91	91	91
8		98.96	1.04
DHAKA/TANGAIL	10540	10298	242
MEAN	178.65	174.54	4.11
VALIDN	59	59	59
*		97.70	2.30
COMILLA/SYLHET	17114	16879	235
MEAN	159.94	157.75	2.20
VALIDN	107	107	107
5		98.63	1.37
RAJSHAHI/BOGRA/PA	3573	3528	45
MEAN	178.65	176.43	
VALIDN	20	20	20
8		98.74	1.26
RANGPUR/DINAJPUR	863	850	13
MEAN	10.40	10.24	.16
ALIDN	83	83	83
5		98.46	1.54
JES/KUSTIA/KHULNA	12093	11907	185
IEAN	188.95	186.05	2.90
ALIDN	64	64	64
i		98.47	1.53
BAR/FAR/PATUAKHAL	481	472	9
IEAN	120.25	118.00	2.25
ALIDN	4	4	4
		98.13	1.87
'OTAL	60392	 59498	894
IEAN	140.77	138.69	2.08
ALIDN	429	429	429
i		98.52	1.48

Appendix 4.4.10 : Crushing Loss (in kg) in Wheat Crusher by Region for Wheat

		Aus 			Ana	IN		Boro			All R	 ice
Region	Recovery of rice in dheki process	of rice	methods	Recovery of rice in dheki process	Recovery of rice in rice mill	Both ∎ethods	Recovery of rice in dheki process	of rice	Both methods	Recovery of rice in dheki process	Recovery of rice in rice mill	Both method
Chittagog– Noakhali	68.84	68.70	68.71	n.a	69.32	69.32	69.46	69.20	69.22	69.21	69.18	69.18
Kyaensingh- Kishoregonj Jamalpur		67.33	67.41	71.25	69.17	70.10	69.96	68.18	68.73	70.53	68.08	68.84
Dhaka- Tangail	62.80	62.18	62.33	68.63	68.54	68.55	65.60	65.28	65.28	68.10	66.76	66.83
Comilla- Sylhet	66.50	66.10	66.14	68.02	66.48	86.50	67.56	67.82	67.80	67.04	66.66	66.74
Rajshahi- Bogra- Pabna	n.a	66.90	66.90	67.57	67.32	67.32	65.39	65.04	65.05	65.52	65.76	65.98
Rangpur- Dinajpur	n.a	66.36	66.36	67.20	67.14	67.14	N . A	67.51	67.51	67.20	67.28	67.28
lessore- Lushtia- Lhulna	67.95	67.47	57.48	66.45	66.21	66.27	70.97	69.31	70.14	66.83	67.48	6?.45
arisal- aridpur- at uak hali	n.a	69.82	69.82	69.15	68.41	68.51	70.12	69.45	69.46	69.27	69.21	69.21
verage	67.94	67.42	67.44	70.31	67.70	67.92	69.45	67.61	 67.76	69.68	67.61	 67.61

Appendix 4.4.11 : Recovery Percentage of Rice by Region in 1989-90*

DECTON			_						
REGION		PERIOD OF			EATEN BY	INSECT	FUNGUS	OTHER	TOTA
	STURED	STORAGE	RELEASED	TION LOSS	RODENT	LOSS	LOSS	LOSS	LOSS DU
	IN KG.	IN MONTHS	JN KG.	IN KG.	IN KG.	IN KG.	IN KG.	IN KG	TO AL
									REASON
CHITTAGONG-NOAKHA	4746990	34	4730331	6856	3712	2563	2063	1465	16659
MEAN	527443.3	3.78	525592.3	761.78	412.44	284.78	229.22	162.8	1851.00
x				.14	.08	.05	.04	.03	.34
COMILLA+SYLHET	10678	21	10641	29	6	0	1	1	37
MEAN	1525.39	3.00	1520.18	4.14	.86	0.00	.07	.14	5.21
VALIDN	7	7	7	7	7	7	7	7	-
x				.27	.06	0.00	.00	.01	.34
RAJSHAHI+BOGRA+PA	29125	6	28999	40	•70	11	5	0	128
MEAN	9708.33	2.00	9666.33	13.33	23.33	3.67	1.67	C.00	42.00
VALIDN	З	3	3	3	3	3	3	3	3
x				.14	.24	.04	.02	0.00	.44
JESS+KUSHTIA+KHUL	5550	1	5540	5	2	3	0	0	10
1EAN	5550.00	1.00	5540.00	5.00	2.00	3.00	0.00	0.00	10.00
VALION	1	1	1	1	1	1	1	1	1
K				.09	•.04	.05	0.00	0.00	.18
TOTAL	4792343	52	4775511	6930	3790	2577	2069	1456	16832
IEAN a	239617.1	3.10 2	238775.6	346.50	189,50	128.85	103.43	73.30	841.58
ALIDN	20	20	20	20	20	20	20	20	20
κ.				.14	.08	.05	.04	.03	.34

Appendix - 4.5.1 : Storage Loss at Primary Traders Level by Region

UPAZILA	QUANTITY	PERIOD OF	QUANTITY	EVAPORA-	EATEN BY	INSECT	FUNGUS	OTHER	 TOTA
	STORED	STORAGE	RELEASED	TION LOSS	RODENT	LOSS	LOSS	LOSS	LOSS DU
	IN KG.	IN MONTHS	IN KG.	IN KG.	IN KG.	IN KG.	IN KG.	IN KG	TO AL
					REAS	ONS			
FENI	4746990	34	4730331	6856	3712	2563	2063	1465	1665
MEAN	527443.3	3.78	525592.3	761.78	412.44	284.78	229.22	162.8	1851.00
VALION	9	9	9	9	9	9	9	9	9
x				. 14	.08	.05	.04	.03	. 34
CHANDINA	7368	2	7344	18	5	0	0	1	24
MEAN	3683.88	1.00	3671.88	9.00	2.50	0.00	0.00	.50	12.00
VALIDN	2	2	2	2	2	2	2	2	2
x				.24	.07	0.00	0.00	.01	. 32
CHANDPUR	670	16	664	6	1	0	1	0	7
MEAN	335.00	8.00	331.75	2.75	.25	0.00	. 25	0.00	3.25
VALIDN	2	2	2	2	2	2	2	2	2
x				.82	.07	0.00	.07	0.00	.96
HABIGUNJ	2640	3	2634	6	1	0	0	0	. 6
MEAN	880.00	1.00	878.00	1.83	.17	0.00	0.00	0.00	2.00
VALIDN	3	3	3	3	3	3	3	3	3
x				.21	.02	0.00	0.00	0.00	.23
SHAZADPUR	29125	6	28999	40	70	11	5	0	126
MEAN	9708.33	2.00	9666.33	13.33	23.33	3.67	1.67	0.00	42.00
VALION	3	3	3	3	3	3	3	З	3
x				.14	.24	.04	. 02	0.00	.44
MANIRAMPUR	5550	1	5540	5	2	3	0	0	10
MEAN	5550.00	1.00	5540.00	5.00	2.00	3.00	ΰ.00	0.00	10.00
VALIDN	1	1	1	1	1	1	1	1	1
¥				.09	.04	.05	0.00	0.00	.18
TOTAL	4792343	62	4775511	 6930	3790	2577	2069	1466	16832
IEAN	239617.1	3.10	238775.6	346.50	189.50	128.85	103.43	73.30	841.58
ALIDN	20	20	20	20	20	20	20	20	20
Ľ				. 14	.08	.05	.04	.03	.34

Appendix 4.5.2 : Storage Loss at Primary Traders Level by Upazila

UPAZILA	QUANTITY	PERIOD OF	QUANTITY	EVAPORA-	EATEN RY	INSECT	FUNGUS	OTHER	TOTA
	STORED		RELEASED		RODENT		LOSS		LOSS DUE
	IN KG.	IN MONTHS		IN KG.				IN KG	TO ALL
						IN NG,	IN KG.	IN NO	REASONS
FENI	2963403	38	2952705	5154	3617	946	586	397	9763
MEAN	296340.3	3.80	295270.5	515.40	361.70	94.60	58.80		976.30
VALIDN	10	10	10	10	10	10	10		10
x				.17	. 12	.03	.02		. 33
KALIAKAIR	85836	5	65675	60	71	20	5	16	161
MEAN	42918.00	2.50	42837.50	30.00	35.50	10.00	2.50		80.50
VALIDN	2	2	2	2	2	2	2.30		20.30
x				.07	.08	.02	.01	.02	. 19
KALIHATI	55980	2	55850	70	50	10	O	0	170
MEAN	55980.00		55850.00	70.00	50.00	10.00	0.00	0 0.00	130
VALIDN	1	1		1	1	10.00	0.00	0.00	130.00 1
K				. 13	.09	.02	0.00	0.00	.23
HANDPUR	256455	5	255701	401	297	53	0	3	754
IEAN	51291.00	1.00	51140.20	80.20	59.40	10.60	0.00	.60	150.80
ALICH	5	5	5	5	5	5	5	5	100.00
				.16	. 12	.02	0.00	.00	. 29
ABIGUNJ	10470	4	10444	12	9	2	4	2	26
EAN	2617.50	1.00	2611.00	3.00	2.13	.50	.88	.38	6.50
ALIDN	4	4	4	4	4	4	4	4	4
				.11	.08	.02	.03	.01	.25
IAZADPUR	10425	3	10392	10	20	2	1	0	33
AN	10425.00	3.00	10392.00	10.00	20.00	2.00	1.07	0 00	33.00
LIDN	1	1	1	1	1	1	2003		1
				. 10	. 19	.02	.0'		. 32
NIRAMPUR	14445	9	14305	105	23	12	0.	O	140
AN	4815.00	3.08	4768.33	35.00	7.67	4.00	0.00	-	46,67
LIDN	3	3	з	3	3	3	3	3	3
				. 73	.16	.08	0.00	0.00	.97
HERPUR	59720	24	59330	314	56	20	0	0	390
AN	7465.00	3.00	7416.25	39.25	7.00	2.50	0.00	0.00	48.75
LIDN	8	8	8	8	8	8	8.	8	8
				. 53	.09	.03	0.00	0.00	.65
TAL	3456734	90	3444402	6126	4142	1065	 598	418	12350
AN .	101668.6	2.65	101305.9	180.18	121.84	31.32	17.57		335.21
LIDN	34	34	34	34	34	34	34	34	34
				. 18	. 12	.03	. 02	.01	.36

.

Appendix 4.5.3 : Storage Loss at Secondary Traders Level by Upazila

TYPE OF	TYPE OF	QUANTITY	PERIOD OF	QUANTITY	EVAPORA-	EATEN BY	INSECT	FUNGUS	OTHER	TOTAL
FOODGRAIN		STORED			TION LOSS	RODENT		LOSS		LOSS DUE
			IN MONTHS			IN KG.		-		TO ALL
										REASONS
RICE	GUNNYBAG	12572	7	12425	107	26	12	2	 0	147
	MEAN	4190.67	2.33	4141.67	35.67	8.67	4.00	.67	0.00	49.00
	VALION	3	3	3	3	З	3	3	3	3
	x				.85	.21	.10	.02	0.00	1.18
SUM		12572	7	12425	107	26	12	2	0	147
MEAN		4190.67	2.33	4141.67	35.67	8.67	4.00	.67	0.00	49.00
VALION		3	3	3	3	3	3	3	3	3
X					. 85	. 21	. 10	.02	0.00	1.18
PADDY	GUNNYBAG	3423124	73	3410984	6015	4097	1031	596	417	12156
	MEAN	126782.4	2.70	126332.7	222.78	151.76	38.19	22.06	15.46	415.00
	VALIDN	27	27	27	27	27	27	27	27	27
	x				. 18	. 12	.03	,02	.01	.36
SUM		3423124		3410984	6015	4097	1031	596	417	12156
MEAN		126782.4		126332.7	222.78	151.76	38.19	22.06	15.46	415.00
VALIDN		27	27	27	27	27	27	27	27	27
X					.18	. 12	.03	.02	.01	.36
WHEAT	GUNNYBAG	21038	10	20993	4	19	22	0	0	45
	MEAN	5259.50	2.50	5248.25	1.00	4.75	5.50	0.00	0.00	11.25
	VALIDN	4	4	4	4	4	4	4	4	4
	x				.02	.09	.10	0.00	0.00	.21
SUM		21038	10	20993	4	19	22	0	0	45
IEAN		5259.50	2.50	5248.25	1.00	4.75	5.50	0.00	0.00	11.25
ALIDN		4	4	4	4	4	4	4	4	4
					.02	.09	.10	0.00	0.00	.21
OTAL		3456734	90	3444402	6126	4142	1065	598	418	12350
IEAN		101668.6	2.65	101305.0	180.18	121.84	31.32	17.57	12.28	335.21
ALIDN		34	34	34	34	34	34	34	34	34
6					. 18	. 12	.03	.02	.01	.36

Appendix - 4.5.4 : Storage Loss at Secondary Traders Level by Container within Grain

Conversion ratio, Paddy to Rice 0.677.

ł'

Appendix - 4.5.5 :	Storage Loss at by Container	Secondary Traders Level

TYPE OF CONTAINER	QUANTITY STORED IN KG.	PERIOD OF STORAGE IN MONTHS	QUANTITY RELEASED IN KG.	EVAPORA- TION LOSS IN KG.	EATEN BY RODENT IN KG.	INSECT LOSS IN KG.	FUNGUS LOSS IN KG.	OTHER LOSS IN KG	TOTA LOSS DU TO AL REASON
GUNNYBAG	3456734	90	3444402	 6126	 4143	1065	 598	410	
MEAN	101668.6	2.65	101305.9	180.18	121.84	31.32	17.57	418	1235
VALIDN	34	34	34	34	34	31.32		12.28	335.2
x 				. 18	. 12	.03	34 .02	34 .01	34 .36
OTAL	3456734	9(:	344 4402	6126	4143		 598	418	12350
1EAN	101668.6	2.65	101335.9	180.18	121.84	31.32	17.57	12.28	
ALIDN	34	34	34	34	34	34	34	34	335.21
.				. 18	. 12	.03	.02	.01	34 .36

REGION C	CONTAINER	CROP-VARIETY	QUANTITY	PERIOD OF	QUANTITY	EVAPORA-	EATEN BY	INSECT	FUNGUS	OTHER	τοτ/
			STORED	STORAGE	RELEASED	TION LOSS	RODENT	LOSS	LOSS	LOSS	LOSS D
			IN KG.	IN MONTHS				IN KG.	IN KG.	IN KG	to a Reaso
CHITTAGONG- G	UNNYBAG	AUS LOCAL	44791	1	44611		.45	30		20	
NOAKHALI		MEAN	44791.00		44611.00		45.00	30.00		20.00	180.
		VALIDN	1					1	1		
		*				. 16	.10	.07	.03		
		T.AMAN LOCAL	74652	2	74292	92	93	75	75	25	3
		MEAN	74652.00	1.50	74292.00	92.00	93.00	75.00	75.00	25.00	360.
		VALION	1	1	1	1	1	1	1	1	
		x				. 12	.12	.10	. 10	.03	•
		T.AMAN MODERN			44380	202	135	27	22	30	4
		MEAN	14932.00		14793.33	67.33	45.00	9.00		10.00	138.
		VALIDN X	3	3	3	3 . 45	3 .30	3 .05	3 .05	3 .07	
		~				. 40	.30	.00	.05	.07	•
		BORO MODERN	102651	3	101961	293	210	62	45	89	6
		MEAN	25662.75	.81	25490.25	73.25	\$2.50	15.50	11.25	20.00	172.
		VALIDN	4	4	4	4	4	4	4	4	
		x				. 29	.20	.06	.04	.08	•
SUM			266890	8	265244	657	483	194	157	155	16-
1EAN			29654.44	.92	29471.56	73.00	53.67	21.56	17.44	17.22	182.
ALIDN			9	9	9	9	9	9	9	9	
:						.25	.18	.07	.06	.06	•
IYMENSINGH- GU	JNNYBAG	AUS LOCAL	11199	1	11099	50	30	10	5	5	10
ISHOREGONJ-		MEAN	11199.00	.50	11099.00	50.00	30.00	10.00	5.00	5.00	100.0
AMALPUR		VALIDN	1	1	1	1	1	1	1	1	
		X				.45	.27	.09	.04	.04	.8
		AUS MODERN	22239	1	22218	80	80	10	10	0	18
		MEAN	22239.00	.50	22218.00	80.00	80.00	10.00	10.00	0.00	180.0
		VALIDN	1	1	1	1	1	1	1	1	
		x				.36	.36	.04	.04	0.00	.1
		B.AMAN LOCAL	18665	1	18505	80	40	10	10	20	10
		MEAN	18665.00	-	18505.00	80.00	40.00	10.00	10.00		160.0
		VALIDN	1	1	1	1	1	1	1	1	
	2	x				. 43	.21	.05	.05	.11	.8
		T.AMAN MODERN	11199	1	11100	50	25	5	15	4	ç
	4	MEAN	11199.00	1.00	11100.00	50.00	25.00	5.00	15.00	4,00	99.0
	,	VALIDN	1	1	1	1	1	1	1	1	
		x				. 45	.22	.04	.13	.04	.8

Appendix - 4.5.6 : Storage Loss at Millers Level (Boiler Mill) by Region & Crop-variety

Appendix - 4.5.6 : Continued.

REGION	CONTAINER	CROP-VARIETY	QUANTITY	PERIOD OF	QUANTITY	EVAPORA-	EATEN BY	INSECT	FUNGUS	5 OTHER	TOT
			STORED	STORAGE	RELEASED	TION LOSS	RODENT	LOSS	LOSS	LOSS	LOSS DL
			IN KG.	IN MONTHS	S IN KG.	IN KG.	IN KG.	IN KG.	IN KG.	IN KG	TO AL
											REASON
	-	BORO MODERN	37330	1	37002	170	95	15	30	18	32
		MEAN	18665.00	. 50	18501.00	85.00	47.50	7.50	15.00	9.00	164.0
		VALIDN	2	2	2	2	2	2	2	2	
		x				.46	.25	.04	.08	.05	.8
SUM			100632	3	99924	430	270	50	70	47	86
MEAN			16772.00	. 58	16654.00	71.67	45.00	8.33	11.67	7.83	144.5
VALIDN			6	6	. 6	6	6	6	6	6	
x						.43	.27	.05	.07	.05	.8
DHAKA-	GUNNYBAG	BORO MODERN	253776		252896	400	210	165	0	105	88
TANGAIL		MEAN	126888.0		126448.0	200.00	105.00	82.50	0.00	52.50	440.0
		VALIDN	2	2	2	2	2	2	2	2	
		x				.16	.08	.07	0.00	.04	.3
SUM			253776	4	252896	400	210	165	0	105	88
MEAN			126888.0	2.00	126448.0	200.00	105.00	82.50	0.00	52.50	440.0
VALIDN			2	2	2	2	2	2	2	2	
X						.16	.08	.07	0.00	.04	.3
COMILLA-	GUNNYBAG	T.AMAN MODERN		2		8500	150	0	O	70	872
SYLHET		MEAN	74650.00		65930.00	8500.00	150.00	0.00		70.00	8720.0
		VALIDN X	1	1	1	1	1	1	1	1	
		~				11.39	.20	0.00	0.00	.09	11.6
		BORO MODERN	243800	3	234872	8418	· 340	0	0	170	892
		MEAN	60950.00	.75	58718.00	2104.50	85.00	0.00	0.00	42.50	2232.0
		VALIDN	4	4	4	4	4	4	4	4	
		X				3.45	. 14	0.00	0.00	.07	3.6
SUM			318450	5	300802	16918	490	0	0	240	17648
MEAN			63690.00	.90	601 60.4 0	3383.60	98.00	0.00	0.00	48.00	3529.60
ALIDN			5	5	5	5	5	5	5	5	:
K						5.31	. 15	0.00	0.00	.08	5.54
RAJSHAHI- XOGRA-		T.AMAN MODERN MEAN	18665 18665.00	1	18614 1861 4 .00	25 25.00	15 15.00	5	0 0.00	1	51
PABNA		VALIDN	10005.00	.50	10014.00	25.00 1	15.00	5.00 1	0.00	1.00	51.00
		x	•	•	1	.13	.08	.03	0.00	.01	1 .27
		BORO MODERN	18665	1	18534	40	20	10	5	5	80
		MEAN	18665.00	.50	185 34.0 0	40.00	20.00	10.00	5.00	5.00	80.00
		VALIDN	1	1	1	1	1	1	1	1	· 1
		8				.21	.11	.05	.03	.03	.43

254

REGION	CONTAINER	CROP-VAR IE TY	STORED	STORAGE		TION LOSS		LOSS			LOSS DUE
SUM			37330	1	37148	65	35	15	5	6	131
MEAN			18665.00	.50	18574.00	32,50	17.50	7.50		3.00	65.50
VALIDN X			2	2	2	2 .17	2 .09	2 .04	2 .01		2 . 35
RANGPUR-	GUNNYBAG	AUS LOCAL	37330	1	37180	80	50	10	10	0	150
DINAJPUR		MEAN	37330.00	. 50	37180.00	80.00	50.00	10.00	10.0 0	0.00	150.00
		VALIDN	1	1	1	1	1	1	1	1	1
		x				.21	.13	.03	.03	0.00	.40
		AUS MODERN	37330	1	37130	100	70	20	10	0	200
		MEAN	37330.00	. 50	37130.00	100.00	70.00	20.00	10.00	0.00	20 0.00
		VALIDN X	1	1	1	1 .27	1 .19	1 .05	1 .03	1 0.00	1 .54
		T.AMAN LOCAL	114130	3	113663	280	152	2 0	15	0	467
		MEAN	57065.00		56831.50	140.00	76.00	10.00	7.50	0.00	233.50
		VALION	2	2	2	2	2	2	2	2	2
		x				.25	.13	.02	.01	0.00	.41
		T.AMAN MODERN	26131	1	26011	60	30	10	10	10	120
		MEAN	26131.00	1.00	26011.00	60.00	30.00	10.00	10.00	10.00	120.00
		VALIDN X	1	1	1	1	1	1	1 .04		1
		^				.23	. 11	.04	.04	.04	.46
		BORO MODERN	52262	1	51962	150	100	20	. 20	10	300
		MEAN	52262.00	.50	51962.00	150.00	100.00	20.00	20.00	10.00	300.00
		VALIDN	1	1	1	1	1	1	1	1	1
		x				.29	.19	.04	04	.02	.57
NUM			267183	5	265946	670	402	80	65	20	1237
IEAN			44530.50	.83	44324.33	111.67	67.00	13.33	10.83	3.33	206.17
ALIDN			6	6	6	6	6	6	6	6	6
						.25	. 15	.03	.02	.01	.46
ESSORE-			11199	2	11139	30	20	5	5	0	60
USHTIA-			11193.00		11139.00	30.00	20.00	5.00		0.00	60.00
HULNA		VALIDN X	1	1	1	1 .27	1 .18	1 .04	1 .04	1 0.00	1 .54
		B.AMAN LOCAL	29864	1	29744	60	40	5	15	0	120
		HEAN	29864.00	. 50	29744.00	60.00	40.00	5.00	15.00	0.00	120.00
		VALIDN	1	1	1	1	. 1	1	1	1	1
		x				.20	.13	.02	.05	0.00	.40

Appendix - 4.5.6 : Continued.

255

REGION	CONTAINER	CROP-VARIETY	QUANTITY	PERIOD OF	QUANTITY	EVAPORA-	EATEN BY	INSECT	FUNGU	S OTHER	τοται
						TION LOSS	RODENT	LOSS	LOSS	S LOSS	LOSS DUE
			IN KG.	IN MONTHS	IN KG.	IN KG.	IN KG.	IN KG.	IN KG.	. IN KG	
											REASONS
		BORO MODERN	37300	1	37100	120	60	10	10) o	200
		MEAN	37300.00	.50	37100.00	120.00	60.00	10.00	10.00	0.00	200.00
		VALIDN	1	1	1	1	1	1	1	. 1	1
		x				.32	. 16	.03	.03	0.00	.54
SUM			78363	3	77983	210	100				
MEAN			26121.00		25994.33	210	120	20	30	_	380
VALIDN			3		20994.33	70.00	40.00	6.67		5.00	126.67
x			5	3	3	.27	3 . 15	3	3	-	3
								.03	.04	0.00	.48
BARISAL- (GUNNYBAG	BORO MODERN	26131	1	26030	50	20	10	21	0	101
ARIDPUR-		MEAN	26131.00	.50	26030.00	50.00	20.00	10.00		0.00	101.00
PATUAKHALI		VALION	1	1	1	1	1	1	1	1	101.00
		x				.19	.08	.04		0.00	.39
SUM .			26131	1	26030	50	20	· 10	21	0	101
IEAN			26131.00	.50 2	26030.00	50.00	20.00	10.00	21.00		101.00
ALIDN			1	1	1	1	1	1	1	1	1
						.19	.08	.04	-	0.00	.39
OTAL			1348755	30	1325973	19400	2030	534	 348	 573	22890
EAN			39669.26	.87 3	8999.21	570.59	59.71	15.71	10.24		673.24
ALIDN			34	34			34	34	34	34	34
						1.44	. 15	.04	.03	.04	1.70

	Total Quantity Handled (Kg.)	Total Handling Loss (Kg.)	Percentage Loss (%)
Rangunia	253408.00 (42234.67)	1.00 (0.13)	0.22
Satkania	40306.00 (13435.33)	2.00 (0.82)	0.73
Feni	4746990.00 (527443.30)	(0.82) 17921.00 (1991.22)	0.38
Kishoreganj	261310.00	1151.00	0.44
Sarishabari	(43551.67) 143701.00	130.00	0.09
Kaliakair	(17962.63) 729606.00	(16.25) 606.00	0.08
Kalihati	(81067.33) 697886.00	(67.33) 1227.00	0.18
Chandina	(53683.54) 921967.00	(94.35) 476.00	0.13
Chandpur	(43903.20) 122485.00	(22.65) 19.00	0.54
Habiganj	(15310.63) 48820.00	(2.41) 105.00	0.22
Gabtali	(5424.44) 1073234.00	(11.67) 131.00	0.23
Shahzadpur	(71548.93) 348040.00	(8.73) 45.00	0.21
Mithapukur	(24860.00) 241041.00	(3.21) 759.00	0.31
Chirir Bandar	(20086.75) 202451.00	(63.25) 89.00	0.18
Manirampur	(22494.59) 160678.00	(9.92) 56.00	0.28
Meherpur	(10042.37) 119320.00	56.00 (3.50) 40.00	0.20
Gournadi	(7457.50) 128044.00 (12804.40)	(2.52) 5.00 (0.50)	0.20
Fotal	10239287.00 (55648.30)	22763.00	0.31

Appendix 4.7.1 : Handling Loss at Primary Market by Upazila

Source: Field Survey

Notes: Figures in parentheses are mean values.

Upazila	Total Quantity Handled (Kg.)	Total Handling Loss (Kg.)	Percentac Loss (೪)
Rangunia	20899.00	64.00	0.31
Satkania	(4179.80) 99115.00	(12.77) 344.00	0.35
Feni	(11012.78) 5805961.00	(38.18) 21360.00	0.37
Trishal	(645106.80) 791148.00	(2373.33) 2806.00	0.35
Kishoreganj	(56510.57) 3415645.00	(200.41) 16405.00	0.48
Sarishabari	(148506.30) 1821511.00	(713.26) 472.00	0.03
Kaliakair	(303585.20) 989076.00	(78.67) 548.00	0.06
Kalihati	(164846.00) 925536.00	(91.33) 685.00	0.07
Chandina	(185107.20) 172790.00	(137.00) 425.00	0.25
Chandpur	(21598.75) 1664421.00	(53.17) 2540.00	0.15
Habiganj	(166442.10) 102530.00	(253.99) 243.00	0.24
Gabtali	(10253.00) 1027842.00	(24.30) 2822.00	0.27
Shahzadpur	(93440.18) 151593.00	(256.52) 408.00	0.27
Mithapukur	(37898.25) 568340.00	(102.03) 1508.00	0.27
Chirir Bandar	(51667.27) 205261.00	(137.09) 654.00	0.32
Manirampur	(34210.17) 222306.00	(109.00) 734.00	0.33
Gournadi	(27788.25) 201020.00 (33503.33)	(91.69) 775.00 (129.09)	0.39
Total	19618316.00 (123385.60)	5956C.00 (374.59)	0.30

Appendix 4.7.2: Handling Loss at Secondary Market by Upazila

Source: Field Survey

Notes: Figures in parentheses are mean values.