RAPID RURAL APPRAISAL;
THE CRITICAL FIRST STEP IN A
FARMING SYSTEMS APPROACH TO RESEARCH

Farming Systems Support Project
International Programs
Institute of Food and
Agricultural Sciences
University of Florida
Gainesville, Florida 32611

Office of Agriculture and
Office of Multisectoral Development
Bureau for Science and Technology
Agency for International Development
Washington, D.C. 20523

NETWORKING PAPER NO. 5
RAPID RURAL APPRAISAL;
THE CRITICAL FIRST STEP IN
FARMING SYSTEMS APPROACH TO RESEARCH

DR. JAMES BEEBE*
Acting Chief, Agricultural Operations Division
USAID/Philippines
APO San Francisco, CA 96528

NETWORKING PAPER NO. 5

*The opinions and views expressed are those of the author and not necessarily those of the United States Agency for International Development.
Editor's note:

Networking Papers are intended to inform colleagues about farming systems research and extension work in progress, and to facilitate the timely distribution of information of interest to the farming systems network of practitioners throughout the world. The series is also intended to invite response from the farming systems network to help advance the FSR/E knowledge base and state-of-the-art. Comments, suggestions and differing points of view are invited by the author or authors. Names and addresses of the author or authors are given on the title page of each Networking Paper.

Networking Papers do not necessarily present the viewpoints or opinions of the FSSP or affiliated entities, but represent a statement of the author or authors. Readers wishing to submit materials to be considered for inclusion in the Networking Paper series are encouraged to do so. Send typewritten, single-spaced manuscripts, ready for publication. The FSSP does not perform an editing or production function with Networking Papers other than to reproduce the author's work and distribute it to a targeted audience. Distribution is determined by geographic and subject matter considerations to help select a sub-group from the FSSP mailing to receive the Networking Paper on a case-by-case basis.
Table of Contents

1. Introduction
 1
2. Defining the Concept
 2
3. The Role of Rapid Rural Appraisal in a Farming Systems Approach to Research
 4
 3.1 Defining a Farming Systems Approach to Research
 4
 3.2 Survey Research versus Rapid Rural Appraisal
 5
 3.3 Roles for Rapid Rural Appraisal
 6
4. Issues Facing the Practitioner
 7
 4.1 Duration of the Rapid Rural Appraisal
 8
 4.2 Participation on the Rapid Rural Appraisal Team
 8
 4.3 Research Orientations
 9
 4.3.1 Guidelines
 10
 4.3.2 Variability and Averages
 11
 4.3.3 Problems and Opportunities
 12
 4.3.4 Individuals and Communities
 12
 4.3.5 Rational Determinants of Behavior
 13
 4.4 Structuring the Research Time
 13
 4.5 Information to be Collected in Advance
 15
 4.6 Interviews
 16
 4.6.1 Selection of Respondents
 16
 4.6.2 Interviewing Individuals and Groups
 18
 4.6.3 Scheduling Interviews
 19
 4.6.4 Getting Better Information from Interviews
 19
 4.6.5 Use of Interpreters
 20
 4.6.6 Taking Notes
 20
 4.6.7 Locations for Interviews
 21
 4.7 Use of Direct Observation
 21
 4.8 Preparation of the Report
 23
 4.9 Getting Results Factored into Decisions
 23
5. Potential Problems
 24
6. Summary and Conclusions
 26

1. Checklist for Rapid Rural Appraisal Data Collection
 28
2. Supplementary Checklist for RRA for a FSAR
 30
3. Six Models for Rapid Rural Appraisal
 31
4. References
 33
RAPID RURAL APPRAISAL:
THE CRITICAL FIRST STEP IN A FARMING SYSTEMS APPROACH TO RESEARCH

It will perhaps always be a struggle to argue, however valid the case, that it is better to be vaguely right than precisely wrong (Carruthers and Chambers 1981:418).

1 Introduction

A practitioner interested in using Rapid Rural Appraisal (RRA) for gathering information as part of a Farming Systems Approach to Research (FSAR) is faced with different models, confusion in terminology resulting from similar concepts with different labels and different concepts with the same label, and a wide range of claims and counter-claims on the advantages of different approaches.[1] This paper will introduce the basic concepts of Rapid Rural Appraisal as the critical first step in understanding the complex problems of farmers, clear up some of the confusion, identify salient methodological issues, and suggest a checklist to enable the reader to evaluate the quality of the exercise.

Rapid Appraisal can be quite harmful when the results are taken as the "truth." Rapid Rural Appraisal will be counter productive if it gives undue credibility to initial guesses and results in a failure to continue collecting and systematically organizing information. RRA is a way of organizing people and time for collecting and analyzing information where time constraints demand decisions before a local situation can be fully understood. Sometimes these decisions concern additional research such as the content of a formal survey or the focus of long-term ethnographic research. Oftentimes in a Farming Systems Approach to Research, decisions must be made immediately after the RRA on interventions such as cropping

1. Even though the focus of this paper is the use of Rapid Rural Appraisal in research on the complex problems of small farmers in developing countries, RRA can be used for the design and evaluation of the feasibility of proposed general development projects, including health, nutrition, institutional development, systems management, income generation, and natural resource conservation. After design, RRA remains relevant to implementation, monitoring and evaluation of these projects. Most of the issues discussed in this paper are as relevant to the general use of RRA as they are to the specific use of RRA for a Farming Systems Approach to Research.
trials or other new technology. Even when the RRA will be followed directly by an intervention, the assumption is that information on the local situation will continue to be collected and organized. The intervention itself becomes a way of better understanding the local situation. Results of the intervention combined with the continued application of the research methodologies of RRA should serve to correct mistakes in the initial study, deepen understanding of the local situation and modify the initial and future interventions.

One of the strengths of RRA is the flexibility to adjust it to specific objectives. While much greater rigour in the use of the standard social science methodologies is needed, RRA can not and should not have a single standardized methodology. Local conditions, available resources and specific research objectives should always determine how RRA is implemented. Because of the options available, attention is needed to the implication of the choice of specific research methodologies.

While this paper aims to be comprehensive in describing the most widely discussed models of RRA used as part of a Farming Systems Approach to Research, it does not pretend to be encyclopedic. Interested readers are provided with references. Detailed discussion of nine specific issues relevant to the use of RRA follows a brief discussion of the RRA concept and its roles in a Farming Systems Approach to Research.

2 Defining the Concept

Rapid Rural Appraisal is defined as:

- a study used as the starting point for understanding a local situation; carried out by a multi-disciplinary team; lasting at least four days but not more than three weeks; and based on information collected in advance, direct observation and interviews where it is assumed that all relevant questions can not be identified in advance.

The phrase "Rapid Rural Appraisal" is taken from the title of a workshop in October 1978 at the Institute of Development Studies, University of Sussex, UK. In addition to being called Rapid Rural Appraisal or Rapid Appraisal (Chambers 1983), research methods meeting the above definition have been referred to as "Sondeo" (Hildebrand 1982), "Informal Agricultural Survey" (Rhoades 1982), "Rapid Reconnaissance" (Honadle 1979), "Informal Methods" and "Reconnaissance Survey" (Shaner et al 1982) and "Exploratory Survey" (Collinson 1981). The six models of RRA associated with these authors are summarized in Appendix 1.
Rapid Rural Appraisal has been described as: "modified survey" (Hildebrand 1982:289), "survey undertaken without questionnaires" (Shaner et al 1982:73), "informal", "exploratory", "largely unstructured interviews combined with observation" (Honadle 1979:2), "organized common sense, freed from the chains of inappropriate professionalism" (Chambers 1980:15), and "a form of appropriate technology: cheap, practical and fast" (Bradfield 1981 quoted by Rhoades 1982:5).

Critics often dismiss RRA as "quick and dirty," and the approach of "development tourists." Its proponents, on the other hand, usually justify RRA in terms of budgetary, time and personnel constraints and given the very real constraints in most Third World countries, this defense is valid. Even critics admit that RRA is preferable to the prejudice and preconceptions which are too often the basis for actions (Wood 1978). Even if financial and human resources are available for the intensive and expensive studies assumed as necessary to understand the complex problems involved with rural development, time constraints often force decisions on interventions before these approaches can produce results. Chambers compares RRA with the longer and more expensive solutions usually preferred by well-trained professionals. He notes that there are already too many instances of rural studies where mounds of indigestible data have been collected and:

"... never coded, or if coded never punched, or if punched never processed, or if processed and printed out, never examined, or if examined, never analyzed or written up, or if analyzed and written up, never read, or if read, never understood or remembered, or if understood or remembered, never actually used to change action. Rural studies must be one of the most inefficient industries in the world. Benchmark surveys are often criticized and yet these huge operations persist, often in the name of science of evaluation, preempting scarce national research resources, and generating mounds of data and papers which are likely to be an embarrassment to all until white ants or paper-shredders clean things up (1980:5)."

RRA cannot take the place of in-depth, long-term and scholarly studies that will continue to be needed for some purposes. It can, however, usually complement existing methods of inquiry and almost always can serve as the beginning point for either interventions or additional studies. In a paper published in 1949, G.C. Homans said:

"People who write about methodology often forget that it is a matter of strategy, not of morals. There are neither good nor bad methods, but only methods that are more or less effective under particular circumstances."
3 The Role of Rapid Rural Appraisal in a Farming Systems Approach to Research

Rapid Rural Appraisal has been particularly useful as part of a Farming Systems Approach to Research (FSAR). Because the discussion of RRA as part of a FSAR is complicated by confusion over definitions, several of the key concepts of FSAR are summarized below.

3.1 Defining a Farming Systems Approach to Research

All farmers, everywhere, are involved in farming systems. A farming systems is defined as:

"...the complex arrangement of soils, water sources, crops, livestock, labor, and other resources and characteristics within an environmental setting that the farm family manages in accordance with its preferences, capabilities, and available technologies. Farmers manage the household's resources involved in the production of crops, livestock, and nonagricultural commodities (e.g. handicrafts), and may also earn income off the farm (Shaner et al 1982:3)."

Research that focuses on the interdependencies among the components under the farmers' control and between these components and the physical, biological, and socio-economic environments is relatively new, and is called a "Farming Systems Approach to Research". Shaner et al (1982:4) summarizes a farming systems approach as:

"...farmer based, problem solving, comprehensive, interdisciplinary, complementary, iterative, dynamic, and responsible to society."

A major source of confusion is the reference of some authors to any research that involves trials in farmers' fields as "farming systems research" and descriptions of "farming systems" in terms of the major crops produced by the farmer. While FSAR requires trials in farmers' fields, not all trials in farmers' fields represent a Farming Systems Approach. When research centers only on the biological production potential of one or more crops it should be called "cropping systems research". Inclusion of livestock as part of cropping systems research does not make it a Farming Systems Approach to Research unless economic, social and cultural issues and the world beyond the farm gate are considered. Likewise, a description of a cropping pattern (for example, corn followed by upland rice) that does
not refer to the complex interrelationships of the crops with the economic and cultural environments should not be referred to as a "farming system".

3.2 Survey Research versus Rapid Rural Appraisal

As part of a Farming Systems Approach to Research, RRA is critical for identifying the farm level problems that become the focus for research. It is expected to provide the information needed for the design of on-farm trials. Survey research can not substitute for RRA at this critical point because survey research assumes that the problem is already sufficiently known to articulate questions. RRA assumes that it is impossible to identify all relevant questions in advance. A Questionnaire can not identify unanticipated site-specific problems, and is limited to validating problems articulated by outsiders. While RRA is not guaranteed to succeed in identifying such problems, survey research based on a questionnaire can certainly not.

Survey research is also rejected as a RRA substitute because it does not consider data context and relies only on the prepared questions for data gathering. "Units are sampled and weighed. contexts are not" (Stone and Campbell 1984:36). Especially when survey research is not based on prior qualitative research, it is subject to such serious non-sampling errors that the analytical and policy conclusions based on such studies must be questioned (Stone and Campbell 1984:36). The RRA based on intensive and qualitative field work is a better starting point for research because of its attention to context.

It is sometimes incorrectly argued that survey research is quicker and can be done with less experienced and qualified researchers than RRA. While data collection by survey sometimes requires less time, data analysis almost always takes more time. Data usually must be coded, keypunched or entered into a computer and then analyzed in separate steps and at places removed from the research site. While survey enumerators may not have to make many independent decisions, good survey research can not be carried out without training and close field supervision. In addition, special training in instrument design and data management ensures that surveys will not be designed and analyzed by the FSAR site team.

Survey research as a starting point for a Farming Systems Approach to Research deprives the participants of the opportunity for training and team building across disciplines and perpetuates the practice of having decisions made about the future of rural people by outsiders. Survey research has a definite role in investigating agricultural development problems. The argument here is that survey research should not be the first step.
3.3 Roles for Rapid Rural Appraisal

Rapid Rural Appraisal can provide the information needed for the design of initial interventions as part of a FSAR, whether on-farm trials, improvement of existing irrigation systems (Chambers 1983, de los Reyes 1984), agroforestry projects for upland farmers (Fujisaka and Capistrano nd), or soil conservation and community organization projects (Lamug 1985).

RRA however has important roles beyond identification of initial interventions. The objectives of any given RRA needs to be identified in advance and the RRA structured to achieve them.

Building Foundations for Multi-disciplinary Teamwork. By educating and developing teamwork among the multi-disciplinary individuals usually responsible for carrying out FSAR, RRA serves as a necessary step in team building. The social scientist or economist has an opportunity to understand the farmer's perspective on production decisions and the biological researcher or agronomist has an opportunity to identify major shortcomings and compromises in management that do not fully use the biological potential of the area (Collinson 1982:19). The chances of success for a RRA may depend upon the exercise being treated as a learning experience by all concerned, including learning from colleagues in other professions (Chambers 1983:31).

Reorientation of Team Members. Scientists from research stations and universities responsible for technology generation should, when possible, be included as members of the RRA team. This will orient them better to the entire range of constraints faced by farmers and help avoid the development of inappropriate technology.

Improving the Quality of Subsequent Surveys. Experts on FSAR disagree on whether the RRA should be followed by a formal survey (Rhoades 1982:6). Proponents of the formal survey disagree among themselves as to whether it is to be done before field trials begin (Collinson 1982:7) or can proceed simultaneously with field trials (Shaner et al 1982:74). Everybody, however, completely agrees that the RRA can be used to improve the design and execution of any formal survey or more in-depth investigation that follows the RRA. Formal follow-up studies are suggested to verify the results obtained during the RRA and to collect baseline data that can be used for evaluations. The RRA helps insure that the questionnaire is understandable and relevant to farmers' circumstances and sensitive to local issues (Rhoades 1982:6). Results from the RRA can be used to better phrase questions by using the terms used by the farmers in a given area. Results of the RRA can also be used to decide on the type and size of the sample for formal surveys (Shaner et al 1982:74).

Define the Area to be Covered. In most cases the RRA will help identify the geographic area for FSAR (Hildebrand 1982:290, Shaner et al 1982:74). If the geographic area to be covered by FSAR has already been fairly well established (Collinson 1982:7), RRA can help refine the boundaries.
Alert Farmers and Local Officials. The RRA can be used to alert farmers and local officials in the area of proposed activities and can be used to locate cooperating farmers for on-farm trials (Shaner et al 1982:74).

Monitor Project Implementation. After initial design, RRA remains relevant to implementation, monitoring and evaluation of Farming Systems Research. Chambers (1980:2) notes that rural development projects are not like construction works, with engineering blueprints which precisely predetermine what will be done, but rather like voyages into uncharted seas where direction and steering will change with new soundings and sightings. RRA techniques will not prevent all shipwrecks; but may at least reduce some of the dangers by showing more clearly and more quickly what is happening.

Influence Key Decision Makers. The RRA can be used to influence and gain the cooperation of key decision makers. Dr. Utai Pisone of Thailand reports that national government officials, if invited to participate on the RRA team, can be made aware of proposed activities and real problems facing the local population (Farming Systems and Soil Resources Institute and the Agency for International Development 1984). RRA can also be used to provide experiential knowledge of local conditions to officials from donor organizations (Beebe 1982:1). Any possible negative impact on group discussion arising from the participation of high ranking government officials and representatives of donor agencies should be carefully considered before they are invited to participate.

4 Issues Facing the Practitioner

At least nine issues face practitioners of Rapid Rural Appraisal. Resolution of these issues determine what will be discovered and how results will be used. These issues are: (1) duration of the study, (2) participation on the RRA team, (3) research orientations, (4) structuring the research time, (5) information to be collected in advance, (6) use of interviews, (7) use of direct observation, (8) preparation of the report, and (9) getting results factored into decisions.
4.1 Duration of the Rapid Rural Appraisal

While rapid appraisal has been defined as lasting between a few days and three months (Honadle 1979:2), most authors suggest one to three weeks. In determining the duration of RRA, the critical question is usually the minimum time to be devoted to the activity. The most common problem is too much rushing and haste. The key to good rapid appraisal is allowing enough time to be observant, sensitive and eclectic and to follow up on leads (Carruthers and Chambers 1981:418). Anything less than four days is inadequate for carrying out discussions, and for identifying, discussing, modifying and rejecting ideas that emerge from these discussions, and for putting these ideas together in a usable form (Chambers 1983:28). An appraisal that is too long may waste project time and cause participants to view the RRA as an end in itself instead of as a tool for starting the FSAR process. Anything less than four days is probably "Development Tourism", and anything more than three weeks probably puts too much emphasis on RRA.

4.2 Participation on the Rapid Rural Appraisal Team

Team Size. Because of the important role of discussion between individuals involved in implementing RRA and the need for several perspectives, RRA is defined as a study carried out by a multi-disciplinary team. The argument that it is necessary to have an integrated and coordinated approach to research can not be used as an argument for having only one well-informed and intelligent person do it all (Chambers 1983:23). RRA can not be done by one person.

Smaller teams are preferred to larger teams and the ten-member Sondeo team is probably too large. Members of large teams are more likely to talk to one another and less likely to listen and learn from others than members of small teams (Rhoades 1982:16). Large teams often intimidate farmers. Large teams are also more likely to be conservative and cautious, and to take longer to produce a report and recommendations (Chambers 1983:23).

Team Composition. The Sondeo (Hildebrand 1982:290) calls for a multi-disciplinary team composed of five members from the "technology testing team" including plant breeders, plant pathologists, economists, and general agronomists and five members from a "socioeconomics team" including anthropologists, sociologists, economists, agricultural economists and engineers. The Exploratory Survey consists of a professionally trained agronomist and economist (Collinson 1982:49). The disciplinary specialty of team member is not critical as long as several disciplines are represented. Both men and women should be included on the team (Shaner et al 1982:74), and all team members should have some familiarity with all aspects of the system being investigated (Chambers 1983:23).
Teams should be composed of a mix of insiders and outsiders. It is not always possible in FSAR to differentiate the insiders from the outsiders. It is assumed that some team members are already familiar with the area, (may even be from the area and are likely to remain there) and will provide an insider's perspective to the problem. Other team members will be able to share experience and knowledge from the outside. The outsiders' participation can be extremely valuable to the insiders in identifying possible options and in noting constraints that might otherwise be overlooked. At the same time outsiders gain insights and knowledge that can guide their research activities away from the farm.

Prior Training and Experience. The effectiveness of RRA is improved by including as participants individuals who have already participated in another RRA (Hildebrand 1982:292). Given the different approach to research required by RRA, the presence of even one person on the team who feels comfortable with the approach can mean the difference between successful research and frustration. It may be that at least some members of the team should participate in a trial-run RRA before doing one where the results will be used. Opinions differ on the need for team training before going to the field. Rhoades (1983:7) argues that because RRA is more art than science there is no substitute for experience as the teacher. On the other hand Collinson (1982:48) argues the need for pre-RRA training. Specific pre-RRA training based on simulating RRA through the use of slides and role playing has been suggested by the Farming Systems Support Project at the University of Florida. Training in RRA has even been suggested as part of a program of administrative development and management training (Honadle 1979:54). Rhoades (1982:5) seems to provide the best answer as to who can do RRA. He asserts that anyone can do it--agronomists, extension workers, biologists, and social scientists as long as they have a little time, pencil, paper, common sense, and a down-to-earth approach to farm people.

In summary: (1) it is impossible for an individual to carry out RRA and smaller teams are preferred to larger teams: (2) team composition is not critical as long as there is a mix of technical backgrounds and insiders and outsiders; and (3) special training and prior experience with RRA are desirable but not necessary, and professional training is not as important as common sense and good observational skills.

4.3 Research Orientations
Implicit assumptions often determine to a large extent what happens during RRA and how the results are interpreted. The next five sections of this paper will cover important research orientations with implications for RRA when used as part of a Farming Systems Approach to Research. These sections consider: (1) whether guidelines should be used and if they are to be used, how long they should be; (2) whether the team should seek averages or emphasize variability; (3) whether to focus on problems or opportunities; (4) whether to focus only on individuals or also look at groups and the
community; and (5) implications of viewing behavior as rational.

4.3.1 Guidelines

Even if there is agreement that RRA can not be based on a questionnaire, there is considerable disagreement on the extent to which the team should develop hypotheses and general guidelines before starting the RRA (Shaner et al 1982:74). The Exploratory Survey (Collinson 1982:49) at one extreme uses more than 11 pages of questions as guidelines. This detailed guideline is to be followed closely, with all questions being asked of at least some farmers. Interviews using such detailed guidelines are incorrectly referred to as "unstructured." At the other extreme, the Sondeo does not even offer a list of topics beyond what is proposed as an outline for the written report. Failure to offer specific questions appears to be premised on the belief that interviews with farmers or other people in the area should be very general and wide-ranging, "because the team is exploring and searching for an unknown number of elements" (Hildebrand 1982:291). It is claimed that a framework prepared before meeting farmers will predispose team members toward their own ideas, thereby blocking out opportunities to gain new insights.

This paper advocates the use of short guidelines prepared in advance, but cautions against too much reliance on them. "In this early phase the researcher is like an explorer, making a rapid survey of the horizon before plunging into the thickets from which the wider view is no longer possible" (Rhoades 1982:3). While one may begin with guidelines, important questions and direction of the study emerge as information is collected. "One must be able to accommodate new information and adjust research plans accordingly" (Rhoades 1982:7). Rhoades (1982:9) proposes the following short list of topics:

- What are the agro-climatic zones?
- What are the principle crops?
- What is the cropping (or post-harvest) system?
- What are the types of farmers?
- What are the farmers' practices?
- Why do farmers follow these practices?
- What do they feel are their main problems?

The responses to these wide ranging questions are used to decide the specific topics to be emphasized during the remainder of the interview (Shaner et al 1982:76). Even a comprehensive guideline need not be viewed as an agenda to be diligently worked through, but as an aid to memory and a reminder of what might be missed (Bottrall 1981:248 as quoted by Chambers 1983:25). "Not everything needs to be known. The key to rapid appraisal is to move quickly and surely to the main problems, opportunities and actions" (Chambers 1983:25).
The definition of Rapid Rural Appraisal is premised on the impossibility of identifying all relevant questions in advance. Research based primarily on the use of a prepared questionnaire is thus not consistent with the RRA definition. Despite arguments against the use of very long and very detailed guidelines, the use of short guidelines is advocated but only if there is not too much reliance on them.

4.3.2 Variability and Averages

Even though variability, especially in resources, may be the most important characteristic of a population, researchers who seek homogeneous "Recommendation Domains" are likely not to perceive it. Some approaches to Farming Systems Research assume that well-defined, homogeneous systems can be identified to simplify procedures for generating and promoting technology (Hildebrand 1982:290). It is assumed that homogeneous cropping systems reflect similar adjustments to restrictions faced by farmers, and that since they all have made the same adjustments, they must all be facing the same agro-economic conditions. It is even suggested that the cropping pattern, referred to by Collinson as the "farming system" represents the interaction between natural, economic and cultural circumstances and the farmers priorities and resource capabilities.

Experience, however, has shown that these assumptions are often incorrect and that within any given geographic area are several "cropping patterns" and within any given cropping pattern numerous "farming systems." Instead of trying to define the average, the RRA team is urged to seek variations in the general practices of the area (Shaner et al. 1982:76). Typologies of farmers can be based on factors such as the size of holding and the purpose of production as well as the cropping system (Rhoades 1982:20). Trying to understand why variations occur helps the team understand why farmers use certain practices. Towards the end of the RRA, the team should estimate the approximate frequencies of farmers who use different practices. "However, remember that typologies are merely ways of organizing thinking and that farmers cannot be so easily stereotyped. Do not automatically assume that all farmers in a type will behave the same" (Rhoades 1982:20). Where variability is as great as it is under rainfed conditions, failure to consider variability can lead to very incorrect analysis of problems faced by farmers. Recognition of the tremendous variability of these areas should lead to new research approaches that recognize the limited applicability of any given technology (Beebe 1978). Attention to variability should also lead to new extension approaches that present farmers with options that they can adapt to their existing systems as opposed to packages of technology that they are expected to adopt instead of their existing system.
4.3.3 Problems and Opportunities

Most RRA teams concentrate on identifying problems. While this can be a useful beginning point, it is not necessarily the most cost-effective approach since not all problems are worth solving (Chambers 1983:12). The determination of whether problems are worth solving depends on costs, benefits and alternatives. The alternative is the exploitation of opportunities. A problem orientation seeks to diagnose the deficiency, evaluate present status against some original design specification and look for ways of easing constraints. An opportunity orientation seeks to identify the potential, evaluate the present situation against what might now be achieved, and look for ways of exploiting resources.

"There is a sense in which some problems are opportunities. But not all are. And not all opportunities begin as problems. It is not a question of either a problem-orientation or an opportunity-orientation, but of a balanced mix. The recurrent danger is that preoccupation with problems will prevent the recognition and exploitation of opportunities (Chambers 1983:13)."

Since most research naturally tends to be problem oriented, the RRA team should give at least some attention to opportunities.

4.3.4 Individuals and Communities

Since most information is collected from and about individuals, the RRA team may fail to consider the importance of community organizations and groups. While an individual may appear to have control over a resource and to have freedom to make decisions without reference to others, community opinions may in fact govern decisions. Only a group can make certain decisions. Timing of agricultural practices may depend on labor availability and this may be determined by when others in the community time their practices. Timing of agricultural practices may have to be coordinated to prevent having the only crop ready for harvest and thus inviting damage by pests and predators (Beebe 1982:10). The RRA team should carefully consider the influence of groups and the local community on the actions of individuals. Failure to do so can result in suggestions for change that will never be implemented.
4.3.5 Rational Determinants of Behavior

The success of FSAR depends on viewing rural people as rational. The first step in understanding the problems of most target groups is to realize that rural people are rational. Empirical research throughout the Third World has shown that the behavior of rural people is purposive to satisfy the following priorities (Collinson 1982:19):

1. social and cultural obligations of their community,
2. reliable supply of preferred foods day in and day out,
3. supply of cash to provide additional basic needs, and
4. extra cash.

The RRA team needs to pay attention to the relative importance that individuals attach to the above priorities. Programs promising extra cash are not likely to be of interest to individuals who are trying to ensure a reliable supply of preferred foods. RRA as a methodology implicitly views farmer behavior as rational. The task for the RRA team is to determine the relative importance that individuals attach to priorities ranging from satisfying social obligations to gaining extra cash.

4.4 Structuring the Research Time

Opinions differ considerably on how to structure the time of a RRA, but there is almost universal agreement on the importance of dividing time between collecting data and team interaction to make sense out of the collected data. Interaction between researchers at the end of each day and at the end of the field work is essential in determining the success of the RRA. Collinson (1982:7) suggests that one of the three weeks devoted to the RRA be spent in team interaction and reaching conclusions.

Scheduling RRA time can ensure that time for group interaction will be adequate and that a variety of different activities can be covered in a short period of time. While two models are presented below, the success of a RRA does not depend upon following any given model.

The most time-structured RRA model is the six-day Sondeo. The first day is for general reconnaissance of the area by the whole team as a unit, with group discussions following each interview. For the next two days, the larger team is divided into pairs consisting of one biological scientist and one social scientist. After each half or full day, the entire team meets to discuss what was learned and to formulate tentative hypotheses to explain the local situation. Following the discussions, the team pairs are changed to maximize interdisciplinary interaction and to minimize interviewer bias. Hildebrand (1982:291) insists that the importance of the
discussions following a series of interviews cannot be over-stressed. On the fourth day before the team returns to the field for more interviews, team members are assigned a written section of the report. After half a day in the field, the team begins to write the report. All members should work at the same location so that they can circulate freely and discuss points with each other. On the morning of the fifth day, team members return to the field to collect missing data. In the afternoon of the fifth day, each team member reads his or her written report to the group for discussions, editing and approval. As a group, the team approves and modifies the presentation. On the sixth day, after the report is read again section by section, conclusions are reached and recorded. When this is finished, the conclusions are read once again for approval and specific recommendations are then made and recorded.

Instead of dividing the RRA by days, Chambers (1983:29) divides it by weeks and the weeks by activities. He notes that the activities could follow many patterns and suggests the following as one possibility:

1. Briefings and discussions with local officials and project staff, and the drawing up of an information matrix identifying (a) what information is needed, (b) who will obtain it, (c) where it will be obtained, and (d) how should it be obtained.
2. General field familiarization in pairs or small groups.
3. Comparison of impressions, assessment of priorities, etc.
4. Flight over the area.
5. Main field visits using techniques taken from Hildebrand's Sondzo, Collinson's Exploratory Survey and Rhoades's Informal Agricultural Survey.
6. Evening discussions alternating between team discussions and group discussions with farmers. "A good deal of open-ended brainstorming is indicated, avoiding premature closure on solutions."
7. The completion of a tentative plan with main alternatives and listing of further information to be obtained.

The second week is used for testing, rejecting and modifying proposals. The second week is considered very important because it is when the less obvious snags and opportunities are likely to be seen.

Even before deciding on how to structure the RRA time, it is necessary to decide on whether to invest in a preliminary visit by one or two members of the team (Chambers 1983:28). This advance team could be expected to explain the forthcoming RRA, find a place to work, arrange vehicles, identify a few local participants for the first interviews and request maps, reports etc.

In summary: (1) considerable time must be allocated to team interaction; (2) adherence to any given schedule is not critical, but tentative schedules can help optimize the use of time and can ensure time for group interaction; and (3) a preliminary visit by a team member may be useful.
4.5 Information to be Collected in Advance

Chambers (1980:8) notes that despite the wealth of information in archives, annual reports, reports of surveys, academic papers, government statistics, etc., RRA participants tend to ignore them and to start de novo. This failure to collect basic data in advance of the RRA means that field research time is wasted in collecting already available data. It also means that important research leads and topics suggested by this material may be missed.

Secondary data often provides good information on physical environmental factors such as rainfall patterns, soil types, etc., but usually contain little information about actual behavior and inadequate information on the socioeconomic and biological aspects of the local system (Shaner et al 1982:73 and Honadle 1979:39). The amount of data to be collected in advance should be a factor of the specific RRA objectives, the available resources for data collection, and an assessment of data validity. Very few RRA teams will want to invest the up to three months required to collect all of the advanced detailed information recommended by Collinson. Instead teams will usually want to select items most relevant to their RRA from the list he proposes (Collinson 1982:17):

1. Natural circumstances
 a. Rainfall, amount, and reliability
 b. Seasonal temperatures
 c. Soil characteristics and topography
 d. Pest and disease incidence as a source of uncertainty of crop output

2. Institutional circumstances
 a. Types of marketing and supply channels
 b. Types and reliability of food distribution channels
 c. Extension and credit programs: the types of programs, the number and types of participants
 d. Land tenure arrangements
 e. Farmer groups, whether voluntary, organized, official or unofficial, and the planned and actual functions

3. Economic circumstances
 a. Population numbers and density, and settlement pattern
 b. Available area and production figures
 c. Marketed products, volume and trends for outputs sold and inputs purchased, food purchased, relative volume and trends over years and between seasons, prices, trends over the years and over the calendar, and marketing margins.
Sources of secondary data include the national census, reports of village administrators, local marketing or credit offices, local extension service, agricultural publications, consultant studies (Shaner et al. 1982:72), feasibility studies, design documents, evaluations, administrative reports, and organizational by-laws (Honadle 1979:39).

Since one of the most difficult early decisions in an RRA is defining the geographical region to be studied, Rhoades (1982:8) suggests the use of aerial photos, and land-use, relief, or ecological maps. "In fact, do not even think of going to an area without at least one map, preferably a topographic map."

A RRA uses interviews and direct observation to build upon information collected in advance. Information collected in advance will (1) save time and suggest additional areas of inquiry for the RRA; (2) be more valid on physical and environmental factors than on socioeconomic and biological aspects of the local system; (3) be determined by the objectives of the study and often a sub-set of that proposed by Collinson; and (4) include maps or aerial photos.

4.6 Interviews

An important way of learning about local conditions is to ask local participants what they know. Individual knowledge, however, varies greatly. People also differ greatly in their willingness and verbal capabilities for expressing information (Pelto and Pelto 1978:73). Some are widely knowledgeable, whereas others depend on their friends for routine information.

Seven related issues concern interviews as part of RRA: (1) selection of respondents, (2) individual versus group interviews, (3) timing of interviews, (4) strategies for getting the most out of interviews, (5) use of interpreters, (6) note taking, and (7) appropriate locations for interviews. It is assumed that RRA interviews do not use a formal questionnaire but at most a checklist of questions as a flexible guide. The interview is usually the most important research methodology used by the RRA and is the only methodology discussed as part of the Sondeo.

4.6.1 Selection of Respondents

Two types of individuals are usually interviewed. The "individual respondents" can tell about what they actually do with special attention to their role in the system being investigated, while the "key informants" with their more extensive knowledge can talk about the system beyond their
introduction.

Interviews are conducted with an opportunity sample of purposely selected "individual respondents" who are likely to be beneficiaries of any program being planned or implemented. They should be chosen because they represent a cross section of the expected target population. An opportunity sample of farmers would include farmer leaders, farmers who have tried recommended technologies, innovative farmers who have successfully developed improved technologies, women farmers who are both members and heads of households, farmers who represent major cropping systems in the area, very poor farmers with very limited resources, and traditional farmers who have resisted new technology. The bias of interviewing only men must be avoided. "Normally all family members are involved in agricultural decision-making and especially in regions of high male labor outmigration, women, old people, and children are the backbone of farming (Rhoades 1982:13)."

The already difficult task of trying to identify appropriate technology for an ecological zone is complicated through a widespread tendency to select larger, "better" (more successful) farmers as respondents for surveys and as cooperating farmers for field trials. Following Homel's (1979:45) strategy for avoiding biases when investigating organizations, the RRA team could ask for the names of one or more farmers who disagree with all decisions, generally promote trouble, and never cooperate with development programs. Responses from these persons should provide valuable cross-checks and reveal useful insights that may not result from the other interviews. Better information is collected from "individual respondents" when it is clear to both respondent and RRA team members that questions concern only the individual's knowledge and behavior, and not what he or she thinks about the knowledge and behavior of others.

Key informants, however, are expected to be able to answer questions about the knowledge and behavior of others and especially about the operations of the broader systems. Key informants are accessible, willing to talk, and have great depth of knowledge about an area, certain crops, credit, marketing and other problems. Key informants relevant to a RRA as part of a Farming Systems Approach to Research would include bankers, landlords, ministry officials, merchants, middlemen, extension agents, buyers of agricultural products and suppliers of inputs. While both Chambers (1980:13) and Rhoades (1982:14) appear to limit the term "key informants" to non-farmers, some farmers can be sources of information about the broader system beyond their own experiences, and some non-farmers such as landlords will only be able to tell about their own experience, and are thus "individual respondents." It is worthwhile spending time asking who, or which group of people, are most knowledgeable, and then working with them (Chambers 1980:14). "Do not believe everything key informants say but do not pass up the old-timers who enjoy talking" (Rhoades 1982:14).

In summary, the important issues for the RRA team are (1) being able to differentiate between "individual respondents" and "key informants"; (2) ensuring that "individual respondents" are purposely selected to represent the variability that exists within the community; and (3) ensuring that
"key informants" are selected to include individuals able to describe the broader system beyond their own direct participation.

4.6.2 Interviewing Individuals and Groups

Group interviews can be extremely useful in collecting information such as (1) natural resource information (traditional names for soil types and their location), (2) local histories (age of the community), and (3) depending on the culture, certain sensitive information (land quality and size of landholding). Group interviews can be used in some cultures to collect information on topics where an individual may be penalized if he or she replies truthfully, but where a group talking about the community may not feel threatened (Chambers 1980:14). Often similar topics can be taken up in interviews with group and "key informants." Group interviews where individuals are free to correct each other and discuss issues can identify variability within the community and prevent an atypical situation from being confused with the average.

Honadle (1979:39) refers to group interviews as an informal "delphi" technique. Informed persons are engaged in a dialogue designed to expose varied interpretation of events, policies or objectives. The investigator makes extensive use of "What if?" questions to develop a logical sequence and to focus participant attention on different contingencies. Group interviews must be skillfully orchestrated to be effective (Van Der Veen 1983:173).

Experience suggests that group interviews may reveal what people believe are preferred patterns as opposed to what actually exists. A very detailed description of the local crop rotation system by a group of farmers was later found not to be practised by any of them exactly as described (Beebe 1982). Even when some topics have been covered by a group interview, the same topics should still be covered with individuals. The question changes from "What do farmers generally do?" to "What do you do?". Because the presence of others often influences answers, those who are present during an interview should be noted. The presence of the local extension worker may influence farmers' comments about the extension service. Visits to farmers' fields provide the opportunity to be alone with the farmers without the influence of others.

The number and length of interviews are assumed to be determined by common sense and local conditions. Relatively homogeneous populations require fewer interviews than highly heterogenous populations. Depending on the approach, between 15 (Collinson's Exploratory Survey) to 80 individuals (Hildebrand's Sondeo) are interviewed. The guidelines by Collinson (1982:49) require up to eight hours to administer, and he thus suggests that not all points be raised with all farmers. Use of Collinson's guidelines results in a composite picture based on information from different farmers. This approach assumes a highly homogenous population.
and is not appropriate for identifying variability within the group. His suggestion of spending between one to two hours per farmer, however, is probably a good guideline for all individual respondent interviews.

In summary, skillfully orchestrated group interviews have a very important role in RRA. Group interviews are useful in collecting certain information and in providing important leads for further investigation. Many topics taken up in group interviews will also need to be covered in individual interviews. The RRA team should (1) note the possible influence on responses of the presence of others; (2) where possible conduct some interviews without the presence of others; and (3) limit interviews to between one and two hours.

4.6.3 Scheduling Interviews

The timing of the interview can be extremely important and the interviewer has to be aware of the daily work schedule, seasonal activity, work habits, climate, and their effect on farmers' willingness to talk (Rhoades 1982:15). Collinson (1982:21) suggests conducting interviews during the growing season and preferably one to two months before the harvest period. While it is desirable to observe operations, the sensitive interviewer will ensure that the interview does not hamper important work. The RRA team should be aware of the impact of timing on the responses and where possible, choose the optimal season and the time for interviews. Both the season and time, and their possible impact on the interview should be recorded.

4.6.4 Getting Better Information from Interviews

The RRA team should get people to talk on a subject and not just answer direct questions. The interview should be a dialogue or process where important information develops out of casual conversation. The key to successful informal interviewing is to be natural and relaxed while guiding the conversation to a fruitful end. "Talk with people and listen to their concerns and views" (Rhoades 1982:17). Rhoades (1982) recommends the following to improve the interview:

"Don't pull out an official-looking questionnaire."
"Oversized vehicles bearing official looking numbers driven by chauffeurs should if possible, be avoided."
"Walk as much as possible."
"Do not go in large numbers."
"Be sensitive to the fact that people may be suspicious of you."
To get respondents to talk instead of just responding to questions, they can be asked to tell their life histories. Other techniques for increasing dialogue include the use of ratings and ranking where the respondents are asked to group or rank a series of fellow farmers, occupations, problems or other lists of items. Respondents can also be asked to complete in any way they want statements where the first few words are provided (Pelto and Pelto 1978:78-94). One suggestion for collecting some quantitative data as a first step towards a formal survey is the use of ranking scales developed from responses to the open-ended question: "What is the most important problem you have in producing...? The second most important, the third, and so on?..." It should be noted however that concerns elicited through this approach will depend upon the season (Rhoades 1982:24). Traditional board games such as "count and capture" to get farmers' perceptions of weeds, pests and farm methods can also be used (Barker 1978).

Better ways of getting answers other than asking straight questions are numerous. Even as the RRA team works to improve the quality of dialogue with respondents based on questions, team members should experiment with other ways of getting respondents to talk about the subject under investigation.

4.6.5 Use of Interpreters

Ideally all members of a RRA team should speak the local language. In the real world, one or more members of a RRA team may not speak the local language and an interpreter will have to be used. Interpreters should be chosen carefully to ensure that they understand the questions. Before the interview, the team should go over the interview strategy with the interpreter, emphasizing that the team is interested in more than just "answers" to "questions".

The interpreter should not be physically between the speaker and the person being interviewed, but rather beside or slightly behind so that his or her function is clearly indicated. The team member should speak in brief sentences using a minimum number of words to express complete thoughts. The interpreter should be given time to translate before proceeding to the next thought. The team member should talk directly to the respondent, as if the respondent could understand everything said (Bostain 1970:1).

4.6.6 Taking Notes

Opinions differ over the desirability of recording information in front of respondents. Some believe that writing down the information during the interview restricts the spontaneity of respondents' reactions (Shaner et al
1982:74). Others recommend writing down everything and keeping complete field notes. Rhoades (1982:19) points out the obvious, "Whether one should take notes ... depends on the situation."

4.6.7 Locations for Interviews

As a general rule interviews should be conducted under conditions most relevant to and revealing about the local system being investigated.

"The successful survey may require sloshing through muddy fields, scrambling along rocky paths and dangerous slopes, or whiling away hours in fly-ridden tea shops casually talking with farmers. The surveyors must be country-oriented, grubbing out information in fields, market places, bars, or wherever farmers' daily routines carry them (Rhoades 1982:7)."

Wherever possible, interviews should be carried out in farmers' fields with visible evidence of farmers' management before the RRA team (Collinson 1982:20, Shaner et al 1982:73, and Rhoades 1982:7). Interviews in the field permit more confidential discussions. Actual observation permits the identification of new topics for discussion. Conducting as many interviews as possible in the farmer's fields is an important part of direct observation. The RRA team should always note where interviews were conducted.

4.7 Use of Direct Observation

Direct observation is an important RRA tool that can be used to validate data collected in advance, provide multiple checks on data collected from interviews, and suggest additional topics for interviews. Direct observation prevents RRA from being misled by myth (Chambers 1980:12). Since rural people, like others, sometimes have unrealistic beliefs about their values and activities, direct observation and multiple checks on information are desirable. The RRA team should keep their eyes open for patterns in crop production, land use, and farmer behavior (Rhoades 1982:14). RRA depends on walking, seeing and asking questions.

Two special techniques have been identified for systematic direct observation as part of RRA for a FSAR: agroecological transect and field plotting. An agroecological transect may be as simple as walking away from the road at a right angle (Chambers 1980:15) or may involve the use of altimeter, aerial photos, and topographical maps. Observations are made along a cut or cross-section of a territorial expanse wherein fields are mapped, and cropping patterns and practices observed through space. The transect is especially appropriate where changes in topography and natural
conditions are relatively rapid such as in mountainous regions (Rhoades 1982:21). Field plotting consists of systematic mapping of fields in terms of their crops and observed farming practices. In a day, data on several hundred fields in an area of open terrain with good roads can be recorded. Since such field observations are "time frozen," histories should be collected from farmers on some of the fields (Rhoades 1982:24).

Direct observation of "key indicators" often provides more valid and less costly information than other research methods. The use of "key indicators" for RRA is discussed in detail by Ponadle (1979). Examples of key indicators include: (a) soil color to indicate particle size distribution, fertility, and drainage properties (Stocking and Abel 1979 as quoted by Chambers 1980:9); (b) birth weight of children to indicate health and nutrition in an area; (c) housing to indicate poverty or prosperity (Honadle 1979:14); (d) soap inventories in village shops to indicate changes in purchasing power (Honadle 1979:19); (e) the appearance of new bicycles and sewing machines in areas adjacent to a project activity to indicate degree of trickle down of benefits (Honadle 1979:10); and (f) transfers and turnover in organizations to indicate organizational capability.

Where locally accepted a camera can be an important research tool for direct observation. Photos can be used to document conditions before an intervention. Sometimes the RRA team can do the farmer a favor by sending or returning with photos of the farm or family (Rhoades 1982:19).

One strategy for improving observational skills is to record only actual observations in the field notes. Field notes should contain what is actually seen and heard as opposed to the observer's interpretation of the event. Far too often the field notes will say something like:

The farmer was angry because the price of rice had dropped.

The more useful field notes would report:

The farmer ran towards the marketing board office with a large field knife in his hand. Before entering the office he was restrained by his companions. He could be heard screaming "The buying price this year is not even as high as the price they paid last year." (adapted from Pelto and Pelto 1978:70).

Field notes limited to careful observations can often prevent the observer from imposing false meaning to people's actions (Honadle 1979:42).

Direct observation can be as important as interviews for RRA. Thus the RRA team is encouraged to use special techniques that can improve direct observation such as: (1) agroecological transect and field plotting, (2) "key indicators" as proxy measures and (3) cameras. Finally, to improve observational skills, the RRA team is encouraged to maintain carefully written field notes.
4.8 Preparation of the Report

The RRA is not complete until the report is finished, despite claims by some that the RRA report is of secondary value because it is written by the same team that will be working in the area (Hil ebrand 1982:292). Descriptions of the Sondeo and the Exploratory Survey include specific suggestions for preparing the report. The Sondeo guidelines for report preparation appear particularly relevant to the preparation of a single RRA report during a short time. Team members are assigned a portion of the report to be written on the fourth day. With all members working at the same location, individual sections of the report are drafted and additional trips are made to the field if data is missing. Each team member reads his part to the group for discussion, editing and approval. The team approves or modifies the individual sections of the report. On the final day, following a repeat reading of each section, conclusions are drawn and recorded. Upon approval of conclusions on second reading, specific recommendations are made and recorded.

The Exploratory Survey results in separate reports by the economist and the agronomist (Collinson 1982:15). The economist's report is based on responses to the "Detailed Guidelines" while the agronomist's report focuses on production and compromises between present and ideal technical practices. Since this approach appears to minimize team interaction, it should probably be avoided.

The organization of the report is not as crucial as the need to finish it quickly. Initially the team should not worry too much about grammar and style since re-writing can come later. "It is important to get the information down while still fresh on everyone’s minds" (Rhoades 1982:26). The goal is to write a report that reflects the interdisciplinary nature of RRA.

4.9 Getting Results Factored into Decisions

"Good rapid appraisal will be bad rapid appraisal unless it leads to better performance" (Chambers 1983:30). Most RRA models assume that since the RRA team will be involved in the decisions, results of the RRA will be factored into the decisions on subsequent interventions. Experience in the Philippines, however, suggests that even when subsequent activities are implemented by the same RRA team members, the RRA results are not always used in making decisions (Farming Systems Development Project-Eastern Visayas 1983:13).

The failure to base subsequent activities on the RRA findings can be explained in several ways. It is easy to overlook the overriding role in
final decisions of non-team members such as senior government officials, researchers and experts from universities and experiment stations, and representatives from funding agencies. Their role in decision making argues for their inclusion in RRA. Since this is not always possible, decisions influenced by non-team members should be documented. Perception of team members of the likely type of intervention to follow the RRA may prevent the team from considering other problems that are even more important. Even problems for which there are no recommended actions or proposed solutions should be documented in the report.

Chambers (1983:15) makes three recommendations to increase the chances of RRA influencing decisions:

a. full involvement of project staff,

b. meshing with current programs including budget allocations,

c. priority to what can be done soon.

The most critical element in ensuring the use of the RRA results is not to let the report be shelved away "only to gather dust" (Rhoades 1982:26). The RRA should be the guide for the future and should constantly be upgraded as the activity progresses. The RRA report should include "updates" at given intervals such as every six months. "Updates should be based on new data and better understanding of the situation. Updates should identify and justify present activities inconsistent with the original report. It is not enough to assume that RRA results will be factored into decisions, instead specific strategies are needed to increase the chances that results will be used.

5 Potential Problems

If RRA is to be a useful research tool, several pitfalls must be avoided. These include over reliance on the initial finding, too much focus on RRA as an end in itself, insufficient time and effort resulting in "Development Tourism," failure to recognize the difference between RRA and a baseline study, and lack of agreement on what constitutes RRA resulting in serious questions about the confidence that can be placed in the data.

Diagnosticism. The belief that a quickly done RRA at the outset of a project can provide a sufficiently valid understanding of the situation to serve as bases for all future interventions is dangerous. The RRA is best used as a heuristic device to initiate additional formal studies and interventions. Results of participant observations and additional formal studies that document the response to interventions can eventually lead to
sound conclusions. Price (1982:4) suggests that the final conclusion will usually be at odds with the initial appraisal since first guesses are often wrong. Initial guesses given undue credibility because they are results of RRA can lead to irrelevant research.

Inappropriate Focus. Investing too much time and effort in RRA can delay a project. It can also confuse the uses of RRA as a tool and as an end product. Recognizing the limits of RRA can prevent inappropriate focus. The objective should not be to produce good RRA reports, but rather to do good Rapid Rural Appraisals that will produce information for better decisions.

Development Tourism. RRA when carried out with insufficient time and inadequate planning is nothing more than "development tourism—the brief rural visit by the urban-based professional" (Chambers 1980:2). The same biases that cause development tourism to underestimate rural poverty apply to RRA done incorrectly. These include (1) roadside bias although it is known that poorer people are often out of sight of the roadside; (2) project bias since only places with projects are visited; (3) bias of personal contact since those met by rural tourists tend to be less poor, more powerful, men, service users, adopters, active, non-migrants, and "inevitably, those who have not died"; (4) dry season bias since most travel occur during the post-harvest dry season while the worst time of the year for poorer people is the season before harvest; (5) bias of politeness and protocol since courtesy and convention may deter rural tourist from enquiring about and meeting the poorer people (Chambers 1980:3).

Other potential problems RRA shares with Development Tourism include: (1) too much attention to the observed things and activities, but not enough to the relationships (seeing the indebtedness but failing to see the relationship of interest rates, wages, patron client relations, etc.); (2) failure to recognize that what is seen is a "snapshot," a moment in time and not trends that may be more significant; (3) failure to recognize gaps left by disciplines which are not represented among the team and the less obvious gaps which lie between the disciplines themselves and their traditional territories and concerns.

Trying to do RRA for FSAR in less than four days will usually result in development tourism. General adherence to the use of a multi-disciplinary team and combination of semi-structured interviews, information collected in advance, and direct observations will minimize problems of development tourism.

Baseline Studies. Since the RRA collects only limited quantifiable data, and since the sample is an opportunity sample, purposely chosen and not a random sample, its future use for project evaluations is limited (Hildebrand 1982:292). Even though it is a mistake to think that a RRA can replace a baseline survey, the RRA provides an important first step for considering difficult questions of evaluation on impacts, trends and causality (Chambers 1980:16).
Checklists and Confidence in the Data Produced. Flexibility in adapting RRA to specific study needs and available resources is the most important strength and of the methodology. The same flexibility that is so critical to making the study relevant to the local situation, when abused permits individuals to do anything, on almost nothing, and call it "Rapid Rural Appraisal". The lack of agreement on what constitutes RRA and the lack of discussion on methodology in most RRA reports make it difficult to estimate the degree of confidence that can be placed in the data (Hodgde 1979:3). Standard methodology could solve this problem but only at the expense of the needed flexibility. The alternative to standardization is to document the methodology as part of the RRA report.

Two checklists to be attached to the RRA are proposed below. The first is a general checklist while the second is a supplement for Farming Systems Approach to Research. In addition to allowing readers to judge the quality of the work, these checklists will remind the RRA team of important issues during the appraisal.

6 Summary and Conclusions

The importance of RRA for FSAR can not be overemphasized. The RRA is the key first step in identifying farm level problems. RRA is a way of organizing people and time for collecting and analyzing information where time constraints demand immediate decisions before the local situation can be fully understood. RRA provides the starting point for gaining better understanding, over time, usually through a combination of additional formal studies, documenting the responses to interventions, and participant observation. Consistent with FSAR, RRA assumes that in the beginning not enough is known of the problem to articulate specific questions. Since questions needed to investigate the problem can not be articulated, survey research based on questionnaires can not substitute for RRA.

An important advantage of RRA is its flexibility. To standardize the methodology would limit this flexibility. Yet, to make RRA more useful to a Farming Systems Approach to Research and to prevent it from falling into the traps of "development tourism" there is a need to establish minimal requirements, to use more efficiently standard tools of social science, and to pay closer attention to the implications of the choice of research tools and research assumptions.

To achieve these objectives, a definition of RRA is proposed and the following suggestions are made concerning nine important methodological issues:
(1) use at least four days but not more than three weeks;

(2) use a small team with a good mix of technical backgrounds;

(3) use short guidelines as memory aids and increase attention to variability, opportunities, and communities and groups;

(4) structure research time to allow for team interaction;

(5) use information collected in advance;

(6) improve the quality of interview information through careful selection of individual respondents and key informants, use of group interviews, use of strategies other than asking straight questions, correct use of interpreters, and combined interview and direct observation;

(7) improve the quality of direct observation by using special techniques, key indicators, and cameras;

(8) complete a single team report quickly; and

(9) ensure that results of the report get factored into decisions.

Data checklists are suggested to remind RRA team of important issues during the appraisal. Completed data checklists attached to the RRA report enable an outside reader to determine the level of confidence that can be placed in the study.
1 Checklist for Rapid Rural Appraisal Data Collection

Title: [1]

Objectives:

Field work dates:_______________________

Report completion date:_______________________

RRA Team composition
1
2
3
4

Number of hours spent in field collecting data_______________________

Number of hours spent by team in discussions of data_______________________

1. Title: should include the name of the geographic or administrative unit and the unit of analysis.

2. Language use categories
 1. Exclusive use of respondents' first language
 2. Use of respondents' second language
 3. Mixture of respondents' first and second languages
 4. Mixture of respondents' languages and use of interpreter
 5. Exclusive use of interpreters

3. Categories for whether local or outsider:
 1. From site, living and working there
 2. From general area, but not living and working in the site
 3. From outside the area

4. Categories for prior experience
 0. No prior experience doing RRA
 T. Participation in a training course on RRA
 1. to n. Number of prior RRAs
Information collected in advance and reviewed by the team

Types of information collected by direct observation

Number of individual respondents interviewed

Method of selection

Place of interviews

Among individual respondents approximately what percent were:
- women __%,
- old people __%,
- youth __%,
- from among the poorest 25 percent __%,
- from among the 25 percent who live farthest from the road __% (note average distance in km. __ from road),
- from significant ethnic or cultural minorities __%,
- from those identified as "trouble makers" __%.

Number of key informants interviewed

Method of selecting key informants

Positions/occupation of key informants: Topics they reported on

Topics for group interviews: Composition of groups

Date set for reviewing and updating this report:
2 Supplementary Checklist for RRA for a FSAR

Percentage of interviews done in farmers' fields %
Number of fields where histories were collected
Number of seasons of the average cropping history
Growth stage of major crops during the interviews

Major categories of farmers and approximate percentage in each group

Major categories of cropping patterns and percentage in each group

Social organization or community groups important to the farming system
Six Models for Rapid Rural Appraisal

1. **Sondeo.** This model was developed by the Agricultural Science and Technology Institute-Guatemala (ICTA) and has been summarized by Peter Hildebrand in several papers (1981, 1982). The Sondeo orients the team responsible for identifying new technology for trials in farmers' fields. Descriptions of the Sondeo provide minimal guidance on the questions to be asked, and detailed, day by day procedures and guidance on who should be on the team and how team members should relate to each other.

2. **Reconnaissance Survey.** Farming Systems Research and Development: Guidelines for Developing Countries by Shaner, Philipp and Schmehl (1982) identifies the Reconnaissance Survey as the critical steps in a Farming Systems Approach to Research. Reconnaissance Survey is an informal method for collecting primary data needed for decisions on research to be undertaken on farmers' fields and as a means of developing team work and establishing rapport between the Farming Systems Research team and the farmers. The Reconnaissance Survey is less structured than the Sondeo but gives more attention to different methods of data collection. It is presented as a general approach capable of using specific methodological guidance found in the Sondeo and the Exploratory Survey.

3. **Exploratory Survey.** The International Maize and Wheat Improvement Center (CIMMYT) East African Farming Systems Research Program developed the Exploratory Survey in response to the need for a cost-effective research program consistent with a small pool of trained scientists and a limited budget for recurrent expenses. Michael Collinson, an agricultural economist, describes the Exploratory Survey as the "pivotal" step in the adaptive research cycle. The survey uses a very detailed checklist of questions as a guide for the interview. Since the guidelines are very extensive, not all points are raised with all farmers, but a composite picture is built up based on interviews with different farmers. The results are used for diagnosing farming problems and opportunities.

4. **Informal Agricultural Survey.** The Informal Agricultural Survey was developed at the International Potato Center, Lima, Peru by Robert Rhoades, an agricultural anthropologist. The Informal Survey pays more attention to the study process than to its contents. This method emphasizes the need for creativity and the importance of experience as a teacher. Direct observation is emphasized.

5. **Rapid Reconnaissance.** George Honadle, of Development Alternatives Inc., presents Rapid Reconnaissance as a methodology for organizational analysis and development administration. Honadle examines quick, impressionistic data collection procedures and suggests ways of improving them. Emphasis is on the use of indicators or proxy measures, the organization and
management of rural development and on the need for participatory approaches in carrying out the studies.

6. Rapid Appraisal. The best overall defense of Rapid Rural Appraisal and the most comprehensive discussions of its weaknesses are to be found in Robert Chambers's (1980) paper "Shortcut Methods in Information Gathering for Rural Development Projects", and Carruthers and Chambers's (1981) "Rapid Appraisal for Rural Development." Specifics on the methodology of carrying out Rapid Appraisal not found in these general articles can be found in Chambers's (1983) description of the use of Rapid Appraisal for the design of an activity to improve existing canal irrigation systems.
4 References

Barker, D.

Beebe, James

Belshaw, Deryke

Bostain, J.C.

Box, Louk

Carruthers, Ian and Robert Chambers
Chambers, Robert

Collinson, Michael P.

Davis, James A.

de los Reyes, Romana

Farming Systems and Soil Resources Institute and USAID

Farming Systems Development Project--Eastern Visayas
Fujisaka, Sam and Doris Capistrano

Homans, George C.
1940 The Strategy of Industrial Sociology. American Journal of Sociology. 54(4).

Hildebrand, Peter

Honadle, George

Lamug, Corazon

Pelto, Pertti, and Gretel Pelto

Price, Edwin
Rhoades, Robert E.

Shaner, W.W., P.F. Philipp and W.R. Schmehl

Stocking, Michael and Nick Abel

Stone, Linda and Gabriel Campbell

Van Dr Veen, M.

Wood, Geof