Millets
Bibliography
1970-76

ICRISAT
Sorghum and Millets Information Center
International Crops Research Institute for the Semi-Arid Tropics
ICRISAT Patancheru P.O.
Andhra Pradesh 502 324, India
June 1983
The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a nonprofit scientific educational institute receiving support from a variety of donors through the Consultative Group on International Agricultural Research. Donors to ICRISAT include governments and agencies of Australia, Belgium, Canada, Federal Republic of Germany, France, India, Italy, Japan, Mexico, the Netherlands, New Zealand, Nigeria, Norway, Sweden, Switzerland, United Kingdom, United States, and the following international and private organizations: Asian Development Bank, European Economic Community, Ford Foundation, International Bank for Reconstruction and Development, International Development Research Centre, International Fertilizer Development Center, International Fund for Agricultural Development, Leverhulme Trust, Organization of Petroleum Exporting Countries, Rockefeller Foundation, and the United Nations Development Programme. All responsibility for the information in this publication rests with ICRISAT; where trade names are used this does not constitute endorsement of or discrimination against any product by the Institute.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iv</td>
</tr>
<tr>
<td>List of Acronyms and Abbreviations</td>
<td>v</td>
</tr>
<tr>
<td>Language Codes Used in Entries</td>
<td>vi</td>
</tr>
<tr>
<td>BIBLIOGRAPHIES</td>
<td>1</td>
</tr>
<tr>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>BOTANY</td>
<td>4</td>
</tr>
<tr>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>Anatomy and Morphology</td>
<td>6</td>
</tr>
<tr>
<td>PHYSIOLOGY AND BIOCHEMISTRY</td>
<td>8</td>
</tr>
<tr>
<td>BREEDING, CYTOLOGY, AND GENETICS</td>
<td>19</td>
</tr>
<tr>
<td>Genetics and Cytology</td>
<td>28</td>
</tr>
<tr>
<td>Breeding</td>
<td>34</td>
</tr>
<tr>
<td>VARIETIES, VARIETAL TRIALS, AND HYBRIDS</td>
<td>39</td>
</tr>
<tr>
<td>AGRONOMY</td>
<td>43</td>
</tr>
<tr>
<td>General</td>
<td>46</td>
</tr>
<tr>
<td>Climatic Influences and Crop-Weather Relations</td>
<td>51</td>
</tr>
<tr>
<td>Soils</td>
<td>53</td>
</tr>
<tr>
<td>Irrigation, Water Requirements, and Soil-Plant-Water Relations</td>
<td>64</td>
</tr>
<tr>
<td>Cropping Systems</td>
<td>65</td>
</tr>
<tr>
<td>Soil Management and Tillage</td>
<td>68</td>
</tr>
<tr>
<td>Planting</td>
<td>69</td>
</tr>
<tr>
<td>Fertilizers and Plant Nutrients</td>
<td>71</td>
</tr>
<tr>
<td>Weeds in Millets (excluding Striga)</td>
<td>72</td>
</tr>
<tr>
<td>Millets as Weeds</td>
<td>74</td>
</tr>
<tr>
<td>Harvesting</td>
<td>74</td>
</tr>
<tr>
<td>SEEDS AND SEED TREATMENT</td>
<td>79</td>
</tr>
<tr>
<td>SOIL MICROBIOLOGY</td>
<td>81</td>
</tr>
<tr>
<td>PATHOLOGY</td>
<td>82</td>
</tr>
<tr>
<td>General</td>
<td>83</td>
</tr>
<tr>
<td>Seed Rot and Seedling Diseases</td>
<td>83</td>
</tr>
<tr>
<td>Root and Stalk Diseases</td>
<td>83</td>
</tr>
<tr>
<td>Foliar Diseases</td>
<td>83</td>
</tr>
<tr>
<td>Fungal Leaf Spots and Blights</td>
<td>84</td>
</tr>
<tr>
<td>Rust, Downy Mildews, and Sooty Molds</td>
<td>85</td>
</tr>
<tr>
<td>INSECTS AND OTHER PESTS</td>
<td>86</td>
</tr>
<tr>
<td>General</td>
<td>87</td>
</tr>
<tr>
<td>White Grubs</td>
<td>87</td>
</tr>
<tr>
<td>Aphids</td>
<td>87</td>
</tr>
<tr>
<td>Shoot Fly</td>
<td>87</td>
</tr>
<tr>
<td>Armyworms</td>
<td>87</td>
</tr>
<tr>
<td>Midge</td>
<td>87</td>
</tr>
<tr>
<td>Head Insects</td>
<td>87</td>
</tr>
<tr>
<td>Stored Grain Pests</td>
<td>87</td>
</tr>
<tr>
<td>Other Pests (including birds and rodents)</td>
<td>87</td>
</tr>
<tr>
<td>POSTHARVEST OPERATIONS</td>
<td>89</td>
</tr>
<tr>
<td>MILLET PRODUCTS</td>
<td>90</td>
</tr>
<tr>
<td>Chemical Composition</td>
<td>94</td>
</tr>
<tr>
<td>Food and Human Nutrition</td>
<td>95</td>
</tr>
<tr>
<td>Nutritive Value</td>
<td>96</td>
</tr>
<tr>
<td>Other Uses</td>
<td>99</td>
</tr>
<tr>
<td>Feed and Animal Nutrition</td>
<td>101</td>
</tr>
<tr>
<td>Nutritive Value</td>
<td>102</td>
</tr>
<tr>
<td>Ruminants</td>
<td>102</td>
</tr>
<tr>
<td>Poultry</td>
<td>102</td>
</tr>
<tr>
<td>Swine</td>
<td>102</td>
</tr>
<tr>
<td>Rats</td>
<td>102</td>
</tr>
<tr>
<td>Digestibility</td>
<td>104</td>
</tr>
<tr>
<td>Toxicity Studies</td>
<td>104</td>
</tr>
<tr>
<td>ECONOMICS</td>
<td>104</td>
</tr>
<tr>
<td>General</td>
<td>105</td>
</tr>
<tr>
<td>Marketing, Trade, and Prices</td>
<td>106</td>
</tr>
<tr>
<td>AUTHOR INDEX</td>
<td></td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>133</td>
</tr>
<tr>
<td>GEOGRAPHIC INDEX</td>
<td>168</td>
</tr>
<tr>
<td>APPENDIX: Colloquial Names and Botanical Terms</td>
<td>173</td>
</tr>
</tbody>
</table>
Preface

The Millets Bibliography 1970-76 is a companion volume to the Sorghum Bibliography 1970-73, recently brought out by the Sorghum and Millets Information Center (SMIC), ICRISAT. This publication is intended as a sequel to the excellent bibliography The Millets and Minor Cereals compiled by Kenneth O. Rachie, covering the world literature on millets 1930-63, and pre-1930 and 1964-69, and of all literature on other minor cereals.

Information for this bibliography has been gathered from reports, monographs, and the primary and secondary periodicals received in the ICRISAT library (nearly 800) as well as from various such data bases as, AGRICOLA, BIOSIS, CAN/SDI, CNRS, and RTI. All references culled from the secondary sources have been checked against entries made from the primary sources received at ICRISAT, and all unique entries have been merged. There are 3119 entries in this bibliography.

As in the Sorghum Bibliography, the entries have been arranged according to the broad subject groups indicated in the Contents. Within each subject group entries are arranged alphabetically by the author. For entries by the same author, chronological order has been followed. Bibliographical entries contain sufficient data to identify the original document. Entries have been rendered according to the ICRISAT style guide (which closely follows the CBE Manual). Since in many cases the original documents were not available for checking, it has not been possible to furnish full details in all the entries.

Titles from the foreign languages have been translated into English and the language of the original indicated in parantheses immediately after the translated title. AGRIS abbreviations have been used for languages. Titles of the periodicals have been given in full. However, names of well-known institutions have been abbreviated to their acronym forms. A list of these acronyms is given on page ii.

There are three indexes—Author, Subject, and Geographic. In the Geographic index entries have been given under the countries concerned. Only in the case of India, where a considerable amount of research work is being carried out, entries have been given under the state name, where available.

The main collection and compilation work for this bibliography was initiated by C.D. Handa and Chandra Vaidyanathan and continued by Jagdish Arora, who has given it the final shape. Acknowledgement is also due to S. Prasannalakshmi, who helped in the standardization of bibliographical citations.

This publication is made possible by the financial assistance received from IDRC, Canada, for the SMIC Project.

Subrata Dutta
Head, Library and Documentation Services
ICRISAT
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAASA</td>
<td>Association for the Advancement of Agricultural Sciences in Africa</td>
</tr>
<tr>
<td>ACCT</td>
<td>Agence de Coopération Culturelle et Technique</td>
</tr>
<tr>
<td>AGRHYMET</td>
<td>Agro et Hydro-Meteorologie</td>
</tr>
<tr>
<td>AIMCIP</td>
<td>All India Coordinated Millet Improvement Project</td>
</tr>
<tr>
<td>APU</td>
<td>Andhra Pradesh Agricultural University</td>
</tr>
<tr>
<td>ARC WRO</td>
<td>Agricultural Research Council, Weed Research Organization</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Agronomy</td>
</tr>
<tr>
<td>ASRCT</td>
<td>Applied Scientific Research Corporation of Thailand</td>
</tr>
<tr>
<td>CIANE</td>
<td>Centro de Investigaciones Agricolas del Noreste</td>
</tr>
<tr>
<td>CIAS</td>
<td>Centro de Investigaciones Agricolas de Sinaloa</td>
</tr>
<tr>
<td>Ciat</td>
<td>Centro Internacional de Agricultura Tropical</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>Centro Internacional de Mejoramiento de Maiz y Trigo</td>
</tr>
<tr>
<td>CNIA</td>
<td>Centro Nacional de Investigaciones Agropecuarias</td>
</tr>
<tr>
<td>CNRA</td>
<td>Centre National de Recherches Agronomiques</td>
</tr>
<tr>
<td>CNRADA</td>
<td>Centre National de Recherche Agronomique et de Développement Agricole</td>
</tr>
<tr>
<td>COLUMA</td>
<td>Comité Français de Lutte Contre les Mauvaises Herbes</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organization</td>
</tr>
<tr>
<td>EAAFRO</td>
<td>East African Agriculture and Forestry Research Organization</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IARI</td>
<td>Indian Agricultural Research Institute</td>
</tr>
<tr>
<td>IBPGR</td>
<td>International Board for Plant Genetic Resources</td>
</tr>
<tr>
<td>ICAR</td>
<td>Indian Council of Agricultural Research</td>
</tr>
<tr>
<td>ICID</td>
<td>International Commission on Irrigation and Drainage</td>
</tr>
<tr>
<td>ICRISAT</td>
<td>International Crops Research Institute for the Semi-Arid Tropics</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre</td>
</tr>
<tr>
<td>IITA</td>
<td>International Institute of Tropical Agriculture</td>
</tr>
<tr>
<td>IRAT</td>
<td>Institut de Recherches Agronomiques et des Cultures Vivrières</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>ISRA</td>
<td>Institut Sénégalais de Recherches Agricoles</td>
</tr>
<tr>
<td>IWGGDM</td>
<td>International Working Group on Graminaceous Downy Mildews</td>
</tr>
<tr>
<td>NAFPP</td>
<td>National Accelerated Food Production Project</td>
</tr>
<tr>
<td>NSPP</td>
<td>Nigerian Society for Plant Protection</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>ORSTOM</td>
<td>Office de la Recherche Scientifique et Technique Outre-Mer</td>
</tr>
<tr>
<td>PBI</td>
<td>Plant Breeding Institute</td>
</tr>
<tr>
<td>PCMCMA</td>
<td>Programa Cooperativo Centroamericano para el Mejoramiento de Cultivo Alimenticios</td>
</tr>
<tr>
<td>SABRAO</td>
<td>Society for the Advancement of Breeding Research in Asia and Oceania</td>
</tr>
<tr>
<td>SODEVA</td>
<td>Société de Développement et de Vulgarisation Agricole</td>
</tr>
<tr>
<td>TNAU</td>
<td>Tamil Nadu Agricultural University</td>
</tr>
<tr>
<td>TPI</td>
<td>Tropical Products Institute</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNIDO</td>
<td>United Nations Industrial Development Organization</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>VIR</td>
<td>Vsesoyuznyi Institut Rastenievodstvo</td>
</tr>
<tr>
<td>Code</td>
<td>Language</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Af</td>
<td>Afrikaans</td>
</tr>
<tr>
<td>Al</td>
<td>Albanian</td>
</tr>
<tr>
<td>Ar</td>
<td>Arabic</td>
</tr>
<tr>
<td>Bg</td>
<td>Bulgarian</td>
</tr>
<tr>
<td>Ch</td>
<td>Chinese</td>
</tr>
<tr>
<td>Cz</td>
<td>Czech</td>
</tr>
<tr>
<td>Da</td>
<td>Danish</td>
</tr>
<tr>
<td>De</td>
<td>German</td>
</tr>
<tr>
<td>En</td>
<td>English</td>
</tr>
<tr>
<td>Es</td>
<td>Spanish</td>
</tr>
<tr>
<td>Fr</td>
<td>French</td>
</tr>
<tr>
<td>Ge</td>
<td>Georgian</td>
</tr>
<tr>
<td>He</td>
<td>Hebrew</td>
</tr>
<tr>
<td>Hu</td>
<td>Hungarian</td>
</tr>
<tr>
<td>In</td>
<td>Indonesian</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHIES

GENERAL

0010 ANONYMOUS. 1971. Brief resume of bajra research work done at Haryana Agricultural University, Hisar, during kharif 1970. Presented at the All India Workshop on Sorghum and Millets, 3-8 May 1971, Jamnagar, India. 16 pp.

0014 ANONYMOUS. 1978. Still not well adapted, millet is destined to become the most important cereal of the tropical steppes. (Fr) Marches Tropicaux et Mediterraneens no. 1598: 1696.

2 Millets 1970-1976

0037 BILQUEZ, A.F. 1975. Improvement of millet in Senegal: analytical summary of the main results obtained during the first four years of work. (Fr). Dakar, Senegal: ISRA. 79 pp.

0098 MURTY, B.R. 1972. All India Coordinated Millet Improvement Project. Fertiliser News 17(9): 41-44.

0124 WAKANKAR, S.M. 1971. Brief review of the work done on millets under the State Millets Improvement Scheme in Madhya Pradesh during kharif 1970. Presented at the All India Workshop on Sorghum and Millets, 3-8 May 1971, Jamnagar, India. 5 pp.

BOTANY

General

0128 BENNETT, M.D. 1976. DNA amount, latitude and cropplant distribution. Environmental and Experimental Botany 16(2-3): 93-108. 54 ref.

Anatomy and Morphology

Taxonomy and Germplasm

0205 Deleted.

0210 KARPENKO, E.G. 1976. Study of a collection of initial material in breeding Sudan grass and Italian millet. (Ru). Pages 133–135 in Pulu povsheyina urozhainosti s.-kh. kultur v Khakassii Abakan, USSR.

0234 VELDKAMP, J.F. 1976. Panicum ciliatum Ell (Gramineae) has to be called Panicum leucoblepharis Trin. Taxonomy 25(1): 185-186. 11 ref.

0248 AGAFONOV, N.P., and PODVEZKO, E.S. 1975. The biology of flowering in proso millet of different ecogeographical groups under conditions of Pottava province. (Ru). Byulleten Vsesoyuznogo Instituta Rastenievodstva imeni N.I. Vavilova no. 51: 43-49. 10 ref.

0259 BHANDARI, G.S., LALLAN SINGH, and GUPTA, U.S. 1971. Effect of different concentrations of some ammonium fertil-

0268 BUCKE, C., and OLIVER, I.R. 1975. Location of enzymes metabolising sucrose and starch in the grasses *Pennisetum purpureum* and *Muhlenbergia montana*. Planta 122: 45-52. 22 ref.

0315 FROMANTIN, J. 1970. Studies on the germination and growth of Pennisetum typhoides (Burm.) Stapf and Hubbard seedlings in the laboratory. III. Variations in Pennisetum typhoides

0371 KU, S.B., and EDWARDS, G.E. 1975. Photosynthesis in...

0394 MANDY, G., and SZABO, L. 1973. Investigations into the germinating capacity of millet (Panicum miliaceum) and Italian millet (Setaria italica). (Hu). Takarmanytermeszteszt Kutato Intezet Kozlemenyei 13(2): 95-104. 5 ref. (Summaries: Ru, En, Fr, Do).

0426 PURUSHOTHAMAN, D. 1971. Presence of microbial inhibitor on the seed coat of Eleusine coracana. Labdev Journal of Science and Technology (B) 9(2): 109-111. 6 ref.

0427 PUTTASWAMY, S. 1974. Studies on the physiology of grain

0513 UPADHYAYA, G.S., and PERUR, N.G. 1974. 32 P Plant injection and leaf smearing techniques for root distribution studies of ragi (Eleusine coracana Gaertn.). Pages 637-643 in Proceedings, Symposium on Use of Radiations and Radioisotopes in Stu-

0539 YASUE, T., and KAWASE, Y. 1975. Studies on the cultivation of Japanese barnyard millet (Echinochloa utilis Ohwi et Yabune) as soil ing crop. I. Seed germination and seedling growth

BREEDING, CYTOLOGY, AND GENETICS

Genetics and Cytology

0603 Deleted.

0606 GILL, B.S., and MINOCHA, J.L. 1971. Cytogenetic studies in pearl millet: progress of work on male sterile lines. Presented at the All India Workshop on Sorghum and Millets, 3-8 May 1971, Jammu, India.

0623 GUPTA, P.K., and YASHVIR. 1975. Induced mutations in foxtail millet (Setaria italica Beatöv.). I. Chlorophyll mutations induced by gamma rays, EMS and DES. Theoretical and Applied Genetics 45(6): 242-249. 18 ref.

0624 GUPTA, P.K., and YASHVIR. 1976. Induced mutations in foxtail millet (Setaria italica Beatöv.). II. Visible mutations in ear characters induced by gamma rays, EMS and DES. Theoretical and Applied Genetics 48(3): 131-136. 3 ref.

0661 JAUHAR, P.P. 1974. Induction of multiple chromosome

0692 MINOCHA, J.L., DHESI, J.S., and SINDHU, J.S. 1975. Inherit-

0770 Deleted.

0772 Deleted.

0785 TROUIN, M. 1972. Chromosome number of some grasses
of the Sudan. (Fr). Adansonia 12(4): 619-624. 28 ref. (Summary: En).

0723 VELSOVSKII, V.P. 1973. Some problems of inheritance of biological and economic characters in *Panicum* millet hybrids in the Pavlodar district (Ru), Pages 113-122 in Selektsiya i semenovodstvo prosa. Moscow, USSR: Kolos. 8 ref.

Breeding

0851 BURTON, G.W., and POWELL, J.B. 1971. Genetic and cytogenetic analysis of the effects of recurrent irradiation and chemical mutagens on general and specific combining ability in pearl millet, Pennisetum typhoides. Three Years Review, 1 May 1968-30 April 1971. Tifton, Georgia, USA: Georgia University, Georgia Coastal Plain Experiment Station. 71 pp.

0885 GUPTA, V.P. 1975. Fodder improvement in Pennisetums. Forage Research 1: 54-60. 22 ref.

0890 Deleted.

Breeding, Cytology, and Genetics

1973, Cairo, Egypt. Rome, Italy: FAO.

0907 KALIKOVA, O.S., and LYUBARETS, V.P. 1976. Results of breeding Panicum millet at the Kamyshein State Breeding Station. (Ru). Pages 91-95 in Selektiya i semenovodstvo prosa. Moscow, USSR: Kolos.

0915 KONSTANTINOV, S.I. 1975. Results of breeding high yielding Panicum millet varieties. (Ru). Selektiya i semenovodstvo, Ukrainian SSR, no. 30: 28-36.

0916 KONSTANTINOV, S.I. 1975. Use of Setaria italica -type millet in breeding for higher protein content. (Ru). Selektiya i semenovodstvo, Ukrainian SSR, no. 29: 29-35.

0967 SINGH, B.B. 1974. Expected and realised response to selection in biparental and selfed populations of pearl millet (Pen-

1000 VEL’SOVSKII, V.P. 1976. Inheritance of grain quality on hybridization of Panicum millet varieties of different ecological and geographical groups (Ru). Pages 132-142 In Selektsiya i semenovodstvo prosa. Moscow, USSR: Kolos.

1012 YAKOLEV, A.G. 1971. The sensitivity of male gametes of millet to treatment with a gametocide. (Ru). Nauchnye Trudy, Vsesoyuzny Nauchno-Issledovatelskii Institut Zernobobovui Kul-

VARIETIES, VARIETAL TRIALS, AND HYBRIDS

millet) varieties for grain production. (Es). Tucumen, Argentina: Universidad Nacional de Tucuman, Facultad de Agronomía y Zooteconomía, (Miscellaneous Publication no.51). 14 pp. 4 ref. (Summary: En).

1101 Mann, H.O. 1975. Yield and quality: sudan, sorghum-sudan and pearl millet hybrids. Fort Collins, Colorado, USA: Colorado State University, Agricultural Experiment Station. 3 pp.

1102 Mann, H.O., and Hinze, G. 1975. Proso millet yield test varieties. Pages 75-79 in Progress Report of the Colorado State University, Fort Collins Experiment Station, Fort Collins, Colorado, USA.

1128 Deleted.

1160 YAKUSHEVSKII, E.S., and TOMILINA, T.B. 1973. Some results of studies on varietal diversity of annual millets crops in the
AGRONOMY

General

1166 AICMIP. 1972. Agriculture: kharif. Pages 91-151 in Progress report of the All India Coordinated Millet Improvement Programme. New Delhi, India: ICAR.

1167 AICMIP. 1972. Highlights of agronomic research kharif. Pages 88-90 in Progress report of the All India Coordinated Millet Improvement Programme. New Delhi, India: ICAR.

1169 ARNAUD, V. 1974. The culture of millet by the Yami, an Austronesian population of Botel Togoo. (Fr) Journée d’Agriculture Tropicale et de Botanique Appliquée 21(10-12): 275-311. 17 ref.

1191 GRABOVSKAYA, E.A. 1975. Concentration and more profound specialization of millet production. (Ru). Vestnik Sel'skokhozyaistvennoi Nauki Kazakhstana no. 8: 12-16. (Summary: Kazakh.)

1221 MAHABAL RAM. 1973. Get high yields from bajra and

1237 MOZHAR, I., and BEKMAMBETOV, R. 1975. Agricultural practice that guarantees high yield millet (RSFSR). (Ru) Zemelodelstvo no.4: 45.

Climatic Influences and Water Relations

1307 BABENKO, V.I., and INKINA, A.G. 1970. Effect of temperature and day length on organogenesis and on the content of carbohydrate-nitrogenous substances in some cereal plants. (Bg). Fiziologiya na Rasteniyata 17(3): 515-517. (Summary: En).

Soils

142 Deleted.

155 McLEAN, E.O. 1976. Exchangeable K levels for maximum crop yields on soils of different cation exchange capacities. Communications in Soil Sciences and Plant Analysis 7(9): 823-838. 6 ref.

46 Millets 1970-1976

Irrigation, Water Requirements, and soil-Plant-Water Relations

1419 MUROMTSEV, N.A. 1976. The ratios of water potentials in soil and plants of different ecological groups (Ru). Doklady Vsesoyuznoi Ordena Lenina Akademii Sel'skokhozyaystvennykh Nauk imeni V.I. Lenina no.10. 20-22. 4 ref. (Summary: Kazakh).

of warm season grasses cultivated on mineral soil. (Ja). Bulletin of the Tokai-Kinki National Agricultural Experiment Station no.29: 1-39. 95 ref. (Summary: En).

1429 Deleted.

Cropping Systems

1455 ANDREWS, D.J. 1972. Intercropping with sorghum in Nigeria. Experimental Agriculture 8(2): 139-150. 7 ref.

1478 Deleted.

1506 SHRAMKO, N., and VOlSKAYA, N. 1975. Place of cereals in rotation. (Ru). Pages 41-44 in Pochvoszchititaniya tekhnologiya vozdevelyvaniya zemovkhy kul'tur. Tselinograd, USSR.

Soil Management and Tillage

Planting

52 Millets 1970-1976

1574 OVERTON, J.R., and FRIBOURG, H.A. 1972. Dates of planting and harvesting of annual grasses for forage. Pages 6-9 in Progress report of the Tennessee Farm and Home Science, Tennessee Agricultural Experiment Station, USA, no. 93.

1588 SARDAR SINGH, and KEDAR PRASAD. 1976. Effect of sowing dates and irrigation levels of cheena (Panicum miliaceum L.). Indian Journal of Agricultural Research 10(1): 63-64. 2 ref.

Fertilizers and Plant Nutrients

1595 ANONYMOUS 1976. Calcium ammonium nitrate applied in splits is better than other fertilizers for ragi. Farm Front 10(7-9): 15-16.

1597 ALKAMPER, J. 1973. The fertilization of teff. Journal of the Association for the Advancement of Agricultural Sciences in
Africa 1(Suppl.): 56-65. 17 ref. (Summary: Fr).

1609 BELOKUR, N.D. 1971. Residual effect of fertilizers on proso-millet in the steppe zone of the Ukraine. (Ru). Agrokhimlya no.4: 143-145. 5 ref.

1612 BLONDEL, D. 1970. New results concerning the increase in the protein content of millet grain (Pennisetum typhoides) and sorghum grain (Sorghum vulgare) by the use of nitrogen fertilizer in Senegal. Presented at the Seminar on Sorghum and Millet Research in West Africa, 13 August-4 September 1970, Bambe, Senegal. Ford Foundation, IRAT, and l'I.R. 8 pp. 15 ref.

1626 CHADHOKAR, P.A., and HUMPHREYS, L.R. 1973. Influen-

1651 FARNWORTH, J., and RUXTON, J.B. 1974. The effect of nitrogen and phosphate on yield and composition of forage millet grown as a reclamation crop under irrigated arid zone conditions. Saudi Arabia Joint Agricultural Research and Development Project, University College of North Wales and Ministry of Agriculture and Water. Publication no.43. 15 pp. 9 ref.

J.E. Salette, and M. Chenost. Versailles, France: INRA.

1683 HONGO, A., OOHARA, H., and APPADURAI, R.R.

1704 KOZIR, M.F. 1975. Application of fertilizers to proso in the Ukraine steppe. (Uk) Visnik Sel'skogospodarskoi Nauki no.7: 49-52. (Summary: Ru).

1713 KUMARASHWAY, K., VENKATARAMANAN, C.R., and

1717 LOYNET, G. 1975. Increasing doses of nitrogen on Brachiaria ruziennsis (Fr). R6union: IRAT. no.34. 6 pp.

1719 LOYNET, G. 1976. Results of the dry-matter analysis for the nitrogen response trial on Brachiaria ruziennsis (Fr). R6union: IRAT no.15. 8 pp.

hybrid pearl millet to soil incorporation of water hyacinths. Journal of Aquatic Plant Management 14: 75-79.

1758 PATEL, B.M. 1970. Increased nutrients per unit area of land under fodder. Indian Farming 20(9): 7-9, 36.

1759 PATEL, G.V., and MEHTA, B.V. 1970. Uptake of nutrients at various stages of growth of hybrid bajra as affected by various levels of fertilizers nitrogen and soil moisture tension. B.A. College of Agriculture Magazine 22: 8-11.

Madras Agricultural Journal 60(8): 776-780. 13 ref.

REHM, G.W., SORESEN, R.C., and MOLINE, W.J. 1976. Time and rate of fertilizer application for seeded warm-season and

Ghent, Belgium (ed. A. Cottenie).

1840 SOLOVEV, G.A. 1975. Effect of superphosphate and phosphite meal on grain yield and quality of prose. (Ru). Pages 49-54 in Agrotechnika i Urozhai. Saransk, USSR.

1848 STEPHEN, R.C., and LIN, Y.C. 1974. Chemical determination of soil phosphorus levels and the relationship of these with plant response. Agriculture Hong Kong 1(3): 182-191. 15 ref.

1851 Deleted.

1857 TAMINI, Y.N. 1972. Response of kikuyu and pangola
grasses to rates of nitrogen, phosphorus and potassium. II. Effect of high rates. Hawaii University, Miscellaneous Publication no.81: 85-92.

1861 Deleted.

1876 VISWANATH, D.P., PERUR, N.G., and RAO, B.V.V. 1978. Calcium ammonium nitrate applied in splits is better than other fertilizers for ragi. Current Research 5(7): 116-118. 6 ref.

1877 VORONIN, N.G., and SEREBRYAKOVA, L.A. 1975. Role of trace elements in increasing grain yield and quality of irrigated proso on chestnut soils in the trans-Volga region. (Ru). Pages 6-11 in Biologicheskie aktivyanye veshchestva (microelementy, vitaminy i drugie) v rasteniavodstve, Zhivotnovodstve i meditsine. Saratov, USSR.

1886 ZENDE, G.K. 1976. Response to the application of potassium fertilizers in different soils and of different crops grown in Maharashtra State. Bulletin, Indian Society of Soil Science no.10:
174-176. 5 ref.

Weeds ir. Millets (excluding Striga)

1893 Deleted.

1902 JAN, P. 1972. Problems posed by the weeding of corn, millet and sorghum crops. (Fr). Agronomie Tropicale 27(2): 236-238. (Summary: En, Es).

1931 TULIKOV, A.M. 1972. Increase in the effectiveness of 2,4-D derivatives against offset weeds in millet plantings. (Ru). Doklady Timiryazevskoi Sel'skokhozyaistvennoi Akademii 180(2): 145-150.

1932 VOROB'EV, N.E. 1970. A method for increasing the effectiveness of 2,4-D Na applied to proso millet and sudan grass. (Ru). Pages 85-87 in Osnovnye Rozultaty Raboty Izmai'loiskoi Opytnoi Stantsii. Dnepropetrovsk, Ukrainian SSR.

Millets as Weeds

1943 ALEX, J.F., and PRIDHAM, E.B. 1975. Fall panicum weeds in Ontario. Factsheet no. 75-082. Ontario, Canada: Ministry of Agriculture and Food.

1947 BANDEL, V.A., BELL, A.W., and PARROTTI, J.R. 1975. Control of fall panicum in conventional and no tillage corn with 2

1976 JOHNSON, B.J. 1974. Effects of pronamide treatments on
the establishment of centipedegrass. Weed Science 22(5): 508-511.

2011 RICHARDSON, F.E. 1971. A comparison of herbicide treat-
ments for the control of grass and Cyperus species. Proceedings of
the South African Sugar Technologists Association Annual
Congress 45: 255-260.

on formation of seed and germination of fall panicum, Panicum
dichotomiflorum and with grass. Proceedings of the Northeastern

control In field corn with triazines. Proceedings of the Northeastern

2014 ROWE, G.R., and O'CONNOR, B.P. 1975. Tetraplon: eval-
uation for the control of rhizomatous grasses. Proceedings of the

2015 RUTHERFORD, E.T. 1976. Post-emergence control of
goosegrass (Eleusine indica) in turf with methazole. Proceedings of the

species of Setaria and their position in the evolutionary scale. (Ru).
Uzbekii Biologicheskii Zhurnal 5: 69-70.

of atrazine and simazine for the control of fall Panicum dichotomi-
florum in corn. Proceedings of the Northeastern Weed Science
Society 26: 4-8.

panicum in no-tillage corn production. Proceedings of the South-

response of barnyard grass and bearded sprangletop seedlings to

Carbohydrate response of bermuda grass, dallis grass, and sward
grass to atrazine, bromacil and MSMA. Weed Science 23(5): 383-
385. 12 ref.

2021 SMITH, R.J., Jr. 1974. Competition of barnyard grass with

2022 SMITH, R.J., Jr. 1974. Propanil and adjuvants for barnyard
grass control in rice. Weed Science 22(5): 419-422. 18 ref.

2023 SMITH, W.F., and ILNICKI, R.D. 1972. The effects of atraz-
ine and simazine on physiological process of fall panicum. Pro-
cedings of the Northeastern Weed Science Society 26:79.

proso millet Panicum miliaceum L: a new problem in Minnesota.
Proceedings of the North Central Weed Control Conference 28:
51-52.

2025 SWAIN, D.J. 1974. Molinate for the control of Echinochloa
16 ref. (Summaries: Fr, De).

2026 SYLWESTER, E.P. 1970. The ten worst weeds of field crops.

2027 SZE, W.-B. 1973. Chemical control of creeping millet grass in
Sugarcane. (Ch). Taiwan Tang Yeh Shih Yen So Yan Chiu Hul

2029 THOMPSON, L., Jr. 1972. Metabolism of chloro-triazine
herbicides by Panicum and Setaria. Weed Science 20(6): 584-
587. 19 ref.

2030 THOMPSON, L., Jr., HOUGHTON, J.M., SLIFE, F.W., and
BUTLER, H.S. 1971. Metabolism of atrazine by fall panicum and

materials on the effectiveness of atrazine, alchlor and simazine for
fall Panicum dichotomiflorum control. Proceedings of the Nor-

2032 VENGRIS, J. 1972. Fall Panicum dichotomiflorum control in
field corn. Proceedings of the Northeastern Weed Science Society
26: 10-13.

2033 VENGRIS, J. 1972. Fall Panicum dichotomiflorum control in
field corn with triazines. Proceedings of the Northeastern Weed

2034 VENGRIS, J. 1973. Growth and development of fall pani-
cum and witch grass in Massachusetts. Proceedings of the Nor-

2035 VENGRIS, J., and DAMON, R.A. Jr. 1976. Field growth of fall
panicum and witchgrass. Weed Science 24(2): 205-206. 5 ref.

2036 WILLIAMS, R.D., Jr., and SCHREIBER, M.M. 1976. Numeri-
cal and chemotaxonomy of the green foxtail complex. Weed
Science 24(3): 331-335. 16 ref.

2037 ZILIOTTO, L. U. 1973. New Weed from corn and lucerne
crops in Veneto. Panicum dichotomiflorum Michx. (II). Rivista di
Agronomia 7(4): 201-204. (Summary: En).

Harvesting

2038 BOONMAN, J.G. 1973. Experimental studies on seed pro-
duction of tropical grasses in Kenya. 6. The effect of harvesting
date on seed yield in varieties of Setaria sphacelata, Chloris
gayana and Panicum coloratum. Netherlands Journal of Agricul-

2039 JONES, R.J. 1373. The effect of cutting management on the
yield, chemical composition and in vivo digestibility of Tridactylum
semipilosem grown with Paspalum dilatatum in a sub-tropical
environment. Tropical Grasslands 7(3): 277-284. 28 ref.

2040 KENCHERKLAN, I.U., and IATSKOVSKAIA, I. 1970. Harv-
esting millet and buckwheat with the SK-4 combine and the PKF

2041 MONNIER, J. 1976. Thinning of early millet and related
techniques. (Fr). Bambey, Senegal: ISRA. 26 pp. 8 ref.

2042 MWAKHA, E. 1972. Effect of cutting frequency on produc-

SEEDS AND SEED TREATMENT

Agricultural Sciences 4(3): 271-277. 7 ref.

2106 SAVCHENKO, M.S. 1975. Swelling of crop seeds. (Ru) Pages 30-33 in Biologiya i agrotekhnikia polevykh kul’tur. Vypusk 137, Omsk, USSR.

SOIL MICROBIOLOGY

2129 BARBER, L.E., and EVANS, H.J. 1976. Characterization of a nitrogen-fixing bacterial strain from the roots of Digitaria sanguina-

PATHOLOGY

General

2159 GOVINDU, H.C., and MURTHY, K.V.K. 1976. Recent...

2170 Deleted.

Seed Rot and Seedling Diseases

SHUKLA, D.N., and BHARGAVA, S.N. 1975. Some studies on Curvularia pallescens Boedijn isolated from seeds of Panicum miliare Lamk. Labdev Journal of Science and Technology (B) 13(3-4): 101-104. 9 ref.

Root and Stalk Diseases

AVDHESH NARAIN, BARAL, S.C. and RAJAN, R.A. 1975. A quick laboratory method for testing the reaction of ragi to Drechslera nodulosum. Indian Phytopathology 28(2): 297-299. 3 ref.

of the Indian Academy of Sciences (B) 84(6): 215-225. 20 ref.

2253 PATIL, P.L. 1972. Relative resistance of bajra varieties and

2284 VIDHYASEKARAN, P. 1974. Role of humidity on the incidence of ragi helminthosporiose. Indian Phytopathology 27(2):
Rust, Downy Mildews, and Sooty Molds

2327 MATHUR, R.L., and DALELA, G.G. 1971. Estimation of losses from green ear disease (Sclerospora graminicola) of bajra (Pennisetum typhoides) and grain smut (Sphacelotheca sorghi) of jowar (Sorghum vulgare) in Rajasthan. Indian Phytopathology 24(1): 101-104.

2343 SINGH, S.D. 1974. Studies on downy mildew disease (Sclerospora graminicola) of bajra (Pennisetum typhoides). Ph.D thesis, Indian Agricultural Research Institute, New Delhi, India. 126

'Inflorescence and Grain Diseases

2362 BOGDANOVICH, M.V. 1974. Susceptibility of Panicum millet varieties to populations of smut differing in origin. (Ru). Pages 39-141 in Selektseya i agrotechnika sakharnol svyky i drugikh kultur, Kiev, Ukrainian SSR.

2409 SABELNIKOVA, V. 1375. Effectiveness of quinone in the sclerotia of *Claviceps* *paradoxa*.

Current Research 3(12): 159-160. 8 ref.

Bacterial Diseases

82 Millets 1970-1976

Virus Diseases

Nematodes

1000-1002. 4 ref.

2519 Deleted.

2520 Deleted.

INSECTS AND OTHER PESTS

General

2525 BHATNAGAR, S.P. 1970. Records of new cetonid pests in
Insects and Other Pests

Rajasthan state. Labdev Journal of Science and Technology (B) 8: 119-120.

White Grubs

2546 BINDRA, O.S., and JOGINDER SINGH. 1971. Biological observations on the white grub, Lachnosterna (Holotrichia) consanguinea Blanchard (Coleoptera: Scarabaeidae) and the relative efficacy of different insecticides against the adults. Indian Journal of Entomology 33: 225-227.

2548 BINDRA, O.S., and JOGINDER SINGH. 1971. Biological observations on the white grub, Lachnosterna (Holotrichia) consanguinea Blanchard (Coleoptera: Scarabaeidae) and the relative efficacy of different insecticides against the adults. Indian Journal of Entomology 33: 225-227.

Aphids

Shoot Fly

2565 Deleted.

2573 SRIVASTAVA, A.S., NIGAM, P.M., and AWASTHI, B.K. 1975. Incidence and extent of damage by Chilo zonelus Swinhoe and Atherigona varia zaccaria Rond on jowar and bajra crops. Labdev Journal of Science and Technology (B) 13(1-2): 76-78.

Armyworms

Midge

2585 SANTHARAM, G., MOHANASUNDARAM, M., and JAYA-

Head Insects

Stored Grain Pests

2609 YADAV, R.P., and SINGH, R. 1975. Some observations on the incidence of ash weevil, Myllocerus spp. (Curculionidae: Coleoptera) on the kharif crops at Dholi (North Bihar). Labdev Journal of Science and Technology (B) 13: 251-253. 6 ref.

Other Pests (including birds and rodents)

2615GADBIN, C., and CAPRILE, J.P. 1971. Remarks concerning the insects that ravage millet and the names of these butterflies and moths among the Mbay (Chad Republic).(Fr.) Journal d'Agriculture Tropicale et de Botanique Appliquée 18(12): 572-574.

2640VISHAKANTAIAH, M., and JAYARAMAIAH, M.

POSTHARVEST OPERATIONS

2669 PLESSARD, F. 1974. Experiment for introducing the
MILLET PRODUCTS

Chemical Composition

2682 BERNAL-E, J. 1975. Comparison of different extraction methods in the determination of reserve carbohydrates in para grass (Brachiaria mutica (Forsk) Stapf.) (Es). Revista del Instituto Colombiano Agropecuario 10(1): 37-40. (Summary: En).

2719 KAPUSTINA, V.V., and DUDKIN, M.S. 1970. The extraction and characterization of the starch of millet (Ru). Izvestiya Vysshikh Uchebnikh Zavedenii, Pishchevaya Tekhnologiya no. 3: 31-33.

2720 KAPUSTINA, V.V., and DUDKIN, M.S. 1971. Fractionation of millet starch and the characteristics of the isolated fractions (Ru). Izvestiya Vysshikh Uchebnikh Zavedenii, Pishchevaya Tekhnologiya no. 2: 29-32.

2724 KOZ'MINA, E.P., NAGAICHENKO, L.I., and ANISIMOV, B.N.
Effect of heat treatment on fatty acids in hulled millet. (Ru). Izvestiya Vysših Učebnyh Zavedeni, Pisčevaya Tekhnolo-
giya no. 3: 38-41.

2725 LORENZ, K., and HINZE, G. 1976. Functional characteris-
tics of starches from proso and foxtail millet. Lebensmittel-
Wissenschaft-Technologie 9(5): 357-359. 10 ref.

2726 LORENZ, K., MACFARLAND, G., and HINZE, G. 1976. The
mineral composition of proso and foxtail millets. Lebensmittel-
Wissenschaft-Technologie 9(5): 911-914. 11 ref.

2727 LYVA, L.S., and KAN, H.V. 1975. Change in chemical
composition of millet nuclei affected by complex of microorga-

2728 MELEDO, M.N., and MINSON, D.J. 1974. Differences in
carbohydrate fractions between Lolium perenne and two tropical
grasses of similar dry-matter digestibility. Journal of Agricultural
Science 82(3): 449-454. 10 ref.

2729 MADAN, V.K., and TEWARI, C.P. 1976. Carbohydrate frac-
5 ref.

2730 MAHESHWARI, K., and AYAMPERUMAL, A. 1970. A
note on the vitamin content of ragi. Madras Agricultural Journal
57(5): 289-290. 1 ref.

2731 MAKARENKO, L.I. 1970. Effect of heat treatment on the
proteinolysis of millet proteins. (Ru). Shomik Nauchnych Trudov

2732 MANERAKI, V.V., and YAKOVENKO, V.A. 1975. Change in
the lipid complex during the storage of unground buckwheat and millet. (Ru). Izvestiya Vysših Učeb-
yh Zavedeni, Pisčevaya Tekhnologiya no. 4: 29-31.

2733 MODI, J.D., and KULKARNI, P.R. 1976. Studies on the
starches of ragi and red gram. Journal of Food Science and
Technology 13(1): 9-10. 15 ref.

2734 MUGERWA, J.S., and OGWANG, B.H. 1976. Dry matter
production and chemical composition of elephant grass hybrids.

2735 NAGACHENKO, L.I. 1973. Technological properties and
chemical composition of pulped millet. (Ru). Kornevaya/Ovosh-
chesushil'naya Promyshlennost no. 1: 41-42.

2736 NAGACHENKO, L.I., KOZ'MINA, E.P., and ALEKAEV, N.S.
1974. Effect of heat treatment on millet lipids. (Ru). Voprosy Tech-
nologii Pishchevyh Pischni i Produktov Ovoshchestvesmogo
Produkta no. 2: 112-121.

2737 NANDA, P.C. 1970. Note on chromatographic studies on
tree amino acids, organic acids, and sugars in the leaves of Ficus
49-51. 5 ref.

acid contents of Aruna ragi malt extract. Current Science 42(21):
757-758. 3 ref.

2739 NECHAEV, A.P., BUSAREVA, N.N., BAIKOV, V.G., and
TRUBNIKOV, V.I. 1975. Determination of low-molecular-weight
lacty acids in cereals crops. (Ru). Izvestiya Vysših Učebnyh Zavedeni,
Pisčevaya Tekhnologiya no. 3: 164-166.

2740 NECHAEV, A.P., BUSAREVA, N.N., DENISENKO, Ya.I., and
KUDETSOV, D.I. 1973. Change in the fatty-acid composition of
millet lipids during storage. Applied Biochemistry and Microbio-
logy 9(5): 617-619.

2741 NECHAEV, A.P., SHWARTSMAN, M.I., SEIT-ABLAEVA, S.K.,
ROGOVER, V.S., and LAPSHINA, A.G.E. 1972. Comparative-evalu-
ation of the oxidation products of millet and oat lipids during long-
term storage. (Ru). Izvestiya Vysših Učebnyh Zavedeni, Pisčevaya
Tekhnologiya no. 5: 54-56.

2742 OBARA, T., and KIHARA, H. 1973. Glycosyglycerides of
Italian millet (Sataiva italica (Breurt)). Journal of the Agricultural
Chemical Society of Japan 47: 231-236.

2743 OYELUGA, V.A., and OLUBAJO, F.O. 1975. Pasteur pro-
ductivity in Nkreri. I. Dry matter production and chemical composi-

2744 PEDREIRA, J.D., and SILVEIRA, J.J.N. 1972. Variation of
the chemical composition of "Colonios" grass Panicum maximum

2745 PATEL, B.M., THAKORE, V.R., PATEL, C.A., and SHUKLA,
P.C. 1971. Molybdenum and zinc content of some common
 fodders and concentrates. Indian Journal of Agricultural/Sciences
41(12): 1084-1087. 14 ref.

2746 POPLI, S., RANDHIR SINGH, 1972. Nutrient composi-
tion and amino acid pattern of some high yielding varieties of bajra
(Pennisium typhoides). Haryana Agricultural University,

2747 POPLI, S., and RANDHIR SINGH. 1974. Electrophoretic
analysis of the various protein fractions of high yielding varieties of
bajra (Pennisium typhoides). Haryana Agricultural University,

Pennisium typhoides. Journal of the Science of Food and Agra-
iculture 25(8): 419-422. 20 ref.

2749 POULISSON, E. 1975. Amino acid analysis of protein frac-
tions in finger millet (Eleusine coracana [L.] Gaertn.) Meddinger

2750 PROSPERO, A.O., and PEIXOTO, A.M. 1972. Mineral com-
position of elephantgrass (Pennisium puerpureum Schum.) vari-
ety napier, in different stages of development (Pt). Solo 64(2):
45-51. (Summary: En).

Pennisium typhoides. Journal of the Science of Food and Agra-
iculture 21(8): 419-422. 20 ref.

2752 RANDHIR SINGH, and POPLI, S. 1973. Amylose content
and amyloptic studies on high yielding varieties of bajra (Pennisium
typhoides). Journal of Food Science and Technology 10(3):
31-33. 10 ref.

2753 RANDHIR SINGH, and POPLI, S. 1974. Studies on the pro-
tein content and electrophoretic analysis of various protein frac-
tions of high yielding varieties of bajra (Pennisium typhoides).

Food and Human Nutrition

Nutritive Value

Trudy, Vsesoyuznyi Nauchno-Issledovatel'skii Institut Zemobobov-yykii Kultur 3: 431-442.
Millet Products

Other Uses

2852 Deleted.

2860 PAL, A., WAGLE, D.S., and SHEORAIN, V.S. 1976. Some enzymatic studies on bajra (Pennisetum typhoides) and barely (Hordeum vulgare) during malting. Journal of Food Science and Technology 13(2): 75-78. 29 ref.

Feed and Animal Nutrition

Nutritive Value

2984 SILVA, V. de P.S.da, GOMES, D.B., GUTERRES, E.P., CALLI-

Poultry

Swine

processing of leonard millet. Colorado Agricultural Experiment Station, Fort Collins, Colorado, USA. General Series no. 931. 3 pp.

3031 OYENUGA, V.A., and FETUGA, B.L. 1975. The apparent digestibility of nutrients and energy values of some oilseed meals and three commonly used cereal grains (i.e. yellow maize, guinea corn and millet) fed to pigs. East African Agricultural and Forestry Journal 40(4): 388-393. 12 ref.

Rats

3021 Deleted.

Digestibility

Toxicity Studies

ECONOMICS

General

3086 Deleted.

Economics 105

Marketing, Trade, and Prices

3115 RAM, G.S. 1973. Total supply response of cereals in different states of India. Agricultural Situation in India 28(7): 467-471. 5 ref.

Author Index

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel Hafez, S.J.</td>
<td>2396</td>
</tr>
<tr>
<td>Abdul Haft, S.</td>
<td>0015</td>
</tr>
<tr>
<td>Abdul Khalak,</td>
<td>1100</td>
</tr>
<tr>
<td>Abe, H.</td>
<td>2867</td>
</tr>
<tr>
<td>Abed, F.M.A.H.</td>
<td>0245</td>
</tr>
<tr>
<td>Abornethy, R.H.</td>
<td>0248</td>
</tr>
<tr>
<td>Abert, P.</td>
<td>2861</td>
</tr>
<tr>
<td>Ablusso, N.G.</td>
<td>2875</td>
</tr>
<tr>
<td>Abraham, A.</td>
<td>0587</td>
</tr>
<tr>
<td>Abraham, M.</td>
<td>1328</td>
</tr>
<tr>
<td>Abreu, S.L.</td>
<td>0142</td>
</tr>
<tr>
<td>Abu-Samah, N.</td>
<td>2439</td>
</tr>
<tr>
<td>Abu-Zeid, M.O.</td>
<td>1451</td>
</tr>
<tr>
<td>Achar, H.P.</td>
<td>0435</td>
</tr>
<tr>
<td>Acland, J.D.</td>
<td>0016</td>
</tr>
<tr>
<td>Adam, J.</td>
<td>-G. 1029</td>
</tr>
<tr>
<td>Adams, C.A.</td>
<td>0247</td>
</tr>
<tr>
<td>Adams, C.S.</td>
<td>0044</td>
</tr>
<tr>
<td>Adesuwan, A.A.</td>
<td>2810</td>
</tr>
<tr>
<td>Adran, J.</td>
<td>2684-6, 3015, 3032</td>
</tr>
<tr>
<td>Agafonov, N.P.</td>
<td>0189-92, 0248, 0549, 1030-2, 1148, 2793</td>
</tr>
<tr>
<td>Agarwal, M.C.</td>
<td>1537</td>
</tr>
<tr>
<td>Agarwal, N.L.</td>
<td>3089</td>
</tr>
<tr>
<td>Agarwal, S.</td>
<td>1537</td>
</tr>
<tr>
<td>Agarwal, S.C.</td>
<td>2257</td>
</tr>
<tr>
<td>Agarwal, Y.K.</td>
<td>2065</td>
</tr>
<tr>
<td>Agboola, S.D.</td>
<td>0249</td>
</tr>
<tr>
<td>Agnihotri, J.P.</td>
<td>2289-7</td>
</tr>
<tr>
<td>Agrawal, P.K.</td>
<td>2068</td>
</tr>
<tr>
<td>Agrawal, R.P.</td>
<td>1329</td>
</tr>
<tr>
<td>Aguiera, G.R.</td>
<td>2937</td>
</tr>
<tr>
<td>Ahluwalia, M.</td>
<td>0250, 0491, 0550, 0591, 0821-2, 0921</td>
</tr>
<tr>
<td>Ahmad, I.</td>
<td>1554</td>
</tr>
<tr>
<td>Ahmad, R.B.</td>
<td>1033</td>
</tr>
<tr>
<td>Ahmad, Z.</td>
<td>0551, 0652-3, 0699, 0823-5</td>
</tr>
<tr>
<td>Ahmadi Bello, University, Institute for Agricultural Research.</td>
<td>2147</td>
</tr>
<tr>
<td>Ahmed, S.N.</td>
<td>1033-5, 2194</td>
</tr>
<tr>
<td>Ahuja, L.D.</td>
<td>1163</td>
</tr>
<tr>
<td>Ajit Singh</td>
<td>0837</td>
</tr>
<tr>
<td>Akenova, M.E.</td>
<td>1037, 1047</td>
</tr>
<tr>
<td>Akhtar, M.A.</td>
<td>1033</td>
</tr>
<tr>
<td>Akin, D.E.</td>
<td>0143</td>
</tr>
<tr>
<td>Akobundu, I.O.</td>
<td>1941</td>
</tr>
<tr>
<td>Akpabie, G.</td>
<td>0361</td>
</tr>
<tr>
<td>Akele, A.M.</td>
<td>2207-8</td>
</tr>
<tr>
<td>Alam, M.M.</td>
<td>2492-9, 2503</td>
</tr>
<tr>
<td>Abruach, J.</td>
<td>1942</td>
</tr>
<tr>
<td>Al-Dewachi, I.D.</td>
<td>0024</td>
</tr>
<tr>
<td>Aleksandrov, N.S.</td>
<td>2736</td>
</tr>
<tr>
<td>Alekseyev, A.M.</td>
<td>0474</td>
</tr>
<tr>
<td>Alex, J.F.</td>
<td>0126, 1943</td>
</tr>
<tr>
<td>Alice, C.J.</td>
<td>0683-4</td>
</tr>
<tr>
<td>Aliyu, A.S.</td>
<td>1982</td>
</tr>
<tr>
<td>Alkamper, J.</td>
<td>1597</td>
</tr>
<tr>
<td>Allée, G.L.</td>
<td>3008</td>
</tr>
<tr>
<td>Allen, C.M.</td>
<td>0120</td>
</tr>
<tr>
<td>Allen, M.</td>
<td>1038</td>
</tr>
<tr>
<td>Allen, R.J., Jr.</td>
<td>1039</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almodiente, R.B.</td>
<td>0023</td>
</tr>
<tr>
<td>Alpatova, K.</td>
<td>1598</td>
</tr>
<tr>
<td>Al-Tahir, M.D.</td>
<td>0024</td>
</tr>
<tr>
<td>Amar Singh</td>
<td>2380</td>
</tr>
<tr>
<td>Amaral, R.</td>
<td>2945</td>
</tr>
<tr>
<td>Amari, M.</td>
<td>1487-8, 1538</td>
</tr>
<tr>
<td>Ameen, O.A.</td>
<td>0024</td>
</tr>
<tr>
<td>Amin, J.B.</td>
<td>2123</td>
</tr>
<tr>
<td>Amir Singh</td>
<td>2067</td>
</tr>
<tr>
<td>Ammon, H.U.</td>
<td>1944-5</td>
</tr>
<tr>
<td>Amosh, F.E.K.</td>
<td>0025</td>
</tr>
<tr>
<td>Amougou, J.</td>
<td>2497</td>
</tr>
<tr>
<td>Anand Kumar, K.</td>
<td>0193</td>
</tr>
<tr>
<td>Ananthanarayana, R.</td>
<td>1599</td>
</tr>
<tr>
<td>Anavardham, L.</td>
<td>1041-2, 1131, 1195, 2418, 2568</td>
</tr>
<tr>
<td>Anayan, G.T.</td>
<td>133</td>
</tr>
<tr>
<td>Anderson, C.A.</td>
<td>0552-3</td>
</tr>
<tr>
<td>Anderson, E.R.</td>
<td>1385-7</td>
</tr>
<tr>
<td>Anderson, J.L.</td>
<td>1923</td>
</tr>
<tr>
<td>Anderson, R.H.</td>
<td>2919</td>
</tr>
<tr>
<td>Andrade, I.F.</td>
<td>2871</td>
</tr>
<tr>
<td>Andrade, S.O.</td>
<td>3067</td>
</tr>
<tr>
<td>Andrade, V.J.</td>
<td>2991</td>
</tr>
<tr>
<td>Andrade, L.</td>
<td>0828</td>
</tr>
<tr>
<td>Andrew, V.B.</td>
<td>2370</td>
</tr>
<tr>
<td>Andryashenko, A.V.</td>
<td>0251-2, 2358</td>
</tr>
<tr>
<td>Angladette, A.</td>
<td>2839</td>
</tr>
<tr>
<td>Anikanova, Z.F.</td>
<td>2797</td>
</tr>
<tr>
<td>Anisimov, B.N.</td>
<td>2724</td>
</tr>
<tr>
<td>Aoop Singh</td>
<td>1427</td>
</tr>
<tr>
<td>Antimonov, K.A.</td>
<td>0194, 0832, 1145</td>
</tr>
<tr>
<td>Appadurai, R.</td>
<td>0554-5, 0833</td>
</tr>
<tr>
<td>Appadurai, R.R.</td>
<td>1633</td>
</tr>
<tr>
<td>Appah, K.</td>
<td>0525</td>
</tr>
<tr>
<td>Appionara, K.</td>
<td>1539</td>
</tr>
<tr>
<td>Apouvert, P.</td>
<td>2209</td>
</tr>
<tr>
<td>Aradhy, R.S.</td>
<td>0743-6, 0959</td>
</tr>
<tr>
<td>Arauja, M.R.</td>
<td>2896</td>
</tr>
<tr>
<td>Arena, I.P.</td>
<td>1601</td>
</tr>
<tr>
<td>Arjunam Bano</td>
<td>2876</td>
</tr>
<tr>
<td>Arjunan, G.</td>
<td>2373</td>
</tr>
<tr>
<td>Arma-Peyrot, F.</td>
<td>2845-6, 3015</td>
</tr>
<tr>
<td>Arnaud, V.</td>
<td>1169</td>
</tr>
<tr>
<td>Arnold, J.P.</td>
<td>3085</td>
</tr>
<tr>
<td>Aronovich, S.</td>
<td>1541, 2959</td>
</tr>
<tr>
<td>Arora, B.S.</td>
<td>1283, 1586</td>
</tr>
<tr>
<td>Arora, R.N.</td>
<td>0993-5, 1276</td>
</tr>
<tr>
<td>Arora, R.K.</td>
<td>1275</td>
</tr>
<tr>
<td>Arora, R.P.</td>
<td>1602</td>
</tr>
<tr>
<td>Arora, S.K.</td>
<td>0258, 2877, 2717, 3023, 3026</td>
</tr>
<tr>
<td>Arracuce, W.W.</td>
<td>2822</td>
</tr>
<tr>
<td>Arrivets, J.</td>
<td>1786</td>
</tr>
<tr>
<td>Arroyo, J.</td>
<td>2965</td>
</tr>
<tr>
<td>Arroyo-Agullu, J.A.</td>
<td>2056, 2678, 3024-5, 3068</td>
</tr>
<tr>
<td>Arunachalam, N.</td>
<td>1361, 1815</td>
</tr>
<tr>
<td>Arunachalam, V.</td>
<td>0634</td>
</tr>
<tr>
<td>Arya, G.K.</td>
<td>0035</td>
</tr>
<tr>
<td>Arya, H.C.</td>
<td>2149, 2302-3</td>
</tr>
</tbody>
</table>
Aswathi, B. 1603, 1843
Assegindou, Asmus
Ashok Kumar
Ashiuy, Ashford, Ashcroft, Agaf All
Axmann, H. 0947 Barrett
Awasthi, B.K.
Awadalla
Austin, Athwal, Aziz
Babenko, V.I.
Bakkbr, W. 2450 Belokur
Baker
Bajpai, Bais, Bains, K.S.
Baikov, Bahadur, P. 2304 Beaty, E.R.
Bagyaraj
Bandeen, Balraj, Balaiah, B.
Bakshi, Bandopadyay, Balzor Singh.
B. 1643 Bhagirath Singh.
B. 0941-2 Bertrand, Y.
B.S.
S.M.
S.S.
A.S.
D.S.
J.
S.S.
D.
J.
S.S.
G.L.
Banniko Narain. 2203, 2211, 1080, 1082, 1130
Banerjee, S.N. 2150 Banilgo, E.O.I. 2648, 2845
Bannikova, V.A. 0255 Bansal, S.P. 1386
Banting, J.D. 0126 Banyal, L. 1170
Bapat, S.R. 1636, 1695, 1725 Bapna, S.L. 0029
Baradas, M.W. 0524 Baral, S.C. 2210
Barannik, V.P. 1608 Barber, L.E. 2129
Barbossa, A.S. 2936 Barcenas, J. 1865
Barevadia, T.N. 1043 Barnard, R.O. 1333
Barnett, F.L. 0256 Barnett, J.B. 0561
Barocah, B.P. 1619 Barreto, I.L. 0103, 0592, 1262
Barrett, J.E., Jr. 1074 Barrett, L.H. 1948
Barrett, M. 1949 Barry, J. 0029
Baruch, M. 3097 Basavaraju, V. 2090
Basash, E.C. 0803, 1138 Bassett, H.C.M. 0483
Bassols, P.A. 2917, 2927, 2950, 2984
Basu Chaudhary, K.C. 2359, 2412
Batalin, A. Kh. 0543
Batra, J.L. 1329 Batra, S.K. 2440
Battra, U.R. 0257, 1740, 3088
Baudin, P. 2309
Bauzhadze, S.M. 2763
Bazzaz, F.A. 1259, 1297
Beatty, E.R. 1381, 1802, 3002
Beckwith, A.C. 2715
Begg, J.E. 1171, 1308, 1310
Behrens, R. 2024 Beketov, Sh. 1764
Bekmambetov, R. 1237
Bell, A.W. 1947 Bell, F.F. 1343
Belogolyutsev, V.P. 1668
Belokur, N.D. 1609
Belova, Z.A. 2681
Belyuchenko, I.S. 2872
Benedict, C.R. 0485
Bannet, H.W. 0568-73
Bennett, M.D. 0128
Berg, C.C. 2873
Berhe, T. 0640
Berfato, M.A. 1766
Bernal-e, J. 1773, 2682
Berrocal, C. 2985
Berry, J.A. 0304
Berlin, J. 0030
Bertrand, J.E. 2939
Bertrand, R. 1334
Besancon, H. 1172
Bevanur, C.B. 2130
Bhadauria, A.S. 2837
Bhagirath Singh. 2571
Bhagwan Das. 0258, 2717, 3023, 3026
Bhaktavatsalam, G. 2069, 2151-2, 2188
Author Index

Chambasavanna, G.P. 2556
Channamma, K.A.L. 2363, 2465
Channaswamaiiah, B. 0854
Chantereau, J. 0855
Chao, C.-Y. 0579, 0722
Chao Yang Agricultural College, China. 2577
Chapman, H.L., Jr. 1198
Char, M.B.S. 0276, 2153, 2213
Charpy, J. 1392, 1528, 1743
Chary, P.N. 1643
Chatterjee, B.N. 0117, 1461, 1739
Chatterjee, I.B. 3020
Chatterji, A.K. 0451, 0580-2, 1337-8, 1373, 2105
Chatterji, U.N. 2093
Chaudhri, L.B. 0856
Chaudhary, H.R. 0857
Chaudhary, M.S. 1873
Chaudhary, R.C. 1087
Chaudhary, R.N. 2529, 26 ...
Chaudhry, A.B. 1034
Chaudhry, M.L. 1627
Chaudhuri, A.P. 1260
Chauhan, K.K.S. 3089
Chauhan, R.K.S. 1543
Chauhan, R.S. 1836
Chauhan, T.R. 2941
Chawla, M.L. 2495
Cheema, S.S. 1628
Cheetham, N.W.H. 2690-1
Chehelkowski, J. 2712
Chen, C.P. 2876
Chen, H.Y. 2876
Chen, M.C. 2876
Chennavaseraiah, M.S. 0583-6, 0654
Chenost, M. 2942, 2977
Chermisina, E.D. 2431-2
Chernyakhova, N.P. 0277
Cherrett, J.M. 2613
Chesney, H.A.D. 1339-40
Chetvergov, E.V. 1629
Chevaugir, J. 2309
Chevrette, J.E. 1053
Chhatra, H.K. 2515
Chouda, H.R. 1037, 1047
Chhipa, B.R. 0278, 2076
Chhibber, R. 0043
Chilco, C.F. 0173, 1624, 2760, ?943
Chinnadurai, G. 2291, 2416
Chinnaman, S. 1677
Chitare, R.G. 3016
Chonan, N. 0279
Chopra, A.K. 2778-9
Choudhary, N.S. 2214-5
Chovatla, P.C. 1048
Chow, P.N.P. 1955e-d
Chowdhury, R.K. 1726, 1810
Chowdhury, S.L. 1482
Christmas, E.P. 0879, 1238
Christopher, J. 0587
Chub, V.A. 1327
Chumavskaya, M.A. 2433
Chun, W.B. 0280
Chundawat, G.S. 1630, 1818-20
Chung, P. 2876
Clalone, J.C. 1953
Cliff, A.S. 0588
Das, V.S.R. 0294-6, 0429-30, 0436-44
Dasen, A.A. 0297, 2554
Dashora, S.L. 2252
Dastane, N.G. 1394-5
Datar, D.S. 1616
Datta, D.D. 2111
Datta, N. 0149, 1545
Daulay, H.S. 1833, 1878
David, A.L. 2560
Davies, J.C. 2526
Daw, S.T. 2911
Day, J.M. 0298, 2131, 2137
Dayel, R. 0127, 1463
Dayanand, 1636
Dazzo, F.B. 2132
De, R. 1180, 1396-7
De Lacy, I.H. 0946
De Moraes Fernandes, M. 0592
De Sinvardene, J.A. 1246
De Weil, J.M.J. 0061, 0134, 0206
De Wit, J.P. 2803
Dab, D.L. 1371
Degraff, L. 0299, 1050
Degtyareva, N.I. 1637
Dehal, K.S. 0256-8
Dehankar, P.K. 2311
Delinum, B. 1312
Delassus, M. 2164
Delcasso, C. 0495
Dali, J. 1957
Demian, J.M. 2649
Demidenko, P.M. 2101, 1638, 1908
Deryabina, A.P. 0859-62
Desai, B.B. 1641-2, 2693
Desai, B.L.M. 0257, 2694
Deshpande, K.B. 2156
Desikachar, H.S.R. 2649-50, 2848
Deuse, J.P.L. 2651
Devadas, R.P. 2806, 2810
Devasahayam, P. 0776
Deviah, M.A. 2575
Deyoe, C.W. 2829, 3003
Dhagat, N.K. 0593-7, 0853-7, 2216
Dhalwai, J.S. 2614
Dhamdhare, S.V. 2599
Dhanaraj, L. 1061
Dharampal Singh 0598, 0653
Dharmalingam, C. 0300
Dhesi, J.S. 0599, 0600, 0611, 0692
Dhillon, B.S. 0601, 0631-3, 0865, 2695, 2708
Dhillon, G.S. 1644
Dhillon, K.S. 3071
Dhiman, K.R. 0633
Diatallo, H. 2849
Diaz, H. 2985
Djop, T.M. 1257
Dirven, J.G.F. 1312, 1645
Author Index

Ellis, W.C. 1800, 2915-6
Ennagh, M.A. 2396
El-Sawy, M. 2857
Elvind, P. 2698
Emrich, E.S. 1106, 1336
Engel, R.E. 1959-61
Enkerlin, S.D. 2625
Ershov, A.F. 1534
Escobar, G. 1869, 2933
Eshita, Y. 2618
Estes, J.R. 0129
Estevans, A.K. 1440
Evans, H.J. 2129
Evers, G.W. 0309
Evans, L.T. 1534
Evdokimov, V.M. 0308
Evers, M.L. 1660
Evers, G.W. 0309

Fairbrothers, D.E. 0204
Fea, J.J. 1650, 2879-80
Fall, M. 1257
FAO. 0048, 2155, 3090-1
Faria, V.P. de 2834, 281
Drapron, R. 3027
Faudar Singh 0874
Drazen, M. 0602
Dufek, W.B. 1941
Fajardo, R. 0049, 0311, 1185-7
Duan, Y. 1181, 1323
Dunavin, L.S. 1547, 2939, 2947
Dunction, L.S. 2366-7
Dudkin, M.S. 2696, 2719-23, 2853
Dutta, K.K. 2234
Dutta, T.R. 1892
Echeverria, E. 0371-3, 0445-8
Eck, C.W. 0306-7, 0330, 0342-4, 0371-3, 0445-8
Eckman, I. 0299
Eckert, A. 0867-9
Eldin, M. 1399
Elgin, E.M. 1509
Ellistratova, V. 1849
Ellis, R.P. 0150
<table>
<thead>
<tr>
<th>Author</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gow, J.M.</td>
<td>0331</td>
</tr>
<tr>
<td>Gowde, B.K.L.</td>
<td>1062, 1189-90, 1928</td>
</tr>
<tr>
<td>Gowde, B.L.V.</td>
<td>2586, 2601-2</td>
</tr>
<tr>
<td>Gowde, M.V.C.</td>
<td>0819</td>
</tr>
<tr>
<td>Gowde, S.T.</td>
<td>1348, 1482, 1505, 1823</td>
</tr>
<tr>
<td>Goyal, J.P.</td>
<td>2255-6</td>
</tr>
<tr>
<td>Grabaski, P.H.</td>
<td>1894</td>
</tr>
<tr>
<td>Grabovskaya, E.A.</td>
<td>1191</td>
</tr>
<tr>
<td>Graden, V.E., Jr.</td>
<td>0327</td>
</tr>
<tr>
<td>Graham, J.H.</td>
<td>2244</td>
</tr>
<tr>
<td>Granier, P.</td>
<td>1192, 2883</td>
</tr>
<tr>
<td>Green, R.E.</td>
<td>1933</td>
</tr>
<tr>
<td>Green, V.E., Jr.</td>
<td>0055, 1194, 1505, 1823</td>
</tr>
<tr>
<td>Greco, V.E., Jr.</td>
<td>0055, 1194, 1505, 1823</td>
</tr>
<tr>
<td>Greenfield, S.B.</td>
<td>0328</td>
</tr>
<tr>
<td>Groen, V.E., Jr.</td>
<td>0055, 1194, 1505, 1823</td>
</tr>
<tr>
<td>Guerra, J.</td>
<td>1482</td>
</tr>
<tr>
<td>Guerrero, J.</td>
<td>0306-7, 0330, 0373</td>
</tr>
<tr>
<td>Guerrero, R.R.</td>
<td>1672-4</td>
</tr>
<tr>
<td>Guerrero, R.R.</td>
<td>1672-4</td>
</tr>
<tr>
<td>Gutiurrez, M.</td>
<td>0306-7, 0330, 0373</td>
</tr>
<tr>
<td>Gutierrez, E.P.</td>
<td>1274, 2922, 2950, 2964</td>
</tr>
<tr>
<td>Guthrie, E.J.</td>
<td>2443</td>
</tr>
<tr>
<td>Guthrie, A.</td>
<td>2937</td>
</tr>
<tr>
<td>Gwynn, R.</td>
<td>3073</td>
</tr>
<tr>
<td>Ha, C.J.</td>
<td>3017</td>
</tr>
<tr>
<td>Habibur Rehman</td>
<td>2764</td>
</tr>
<tr>
<td>Hacker, J.B.</td>
<td>0331, 1194, 1678, 3036-9</td>
</tr>
<tr>
<td>Hackerott, H.L.</td>
<td>2857</td>
</tr>
<tr>
<td>Hadimani, A.S.</td>
<td>0435</td>
</tr>
<tr>
<td>Hegn, J.</td>
<td>1665</td>
</tr>
<tr>
<td>Hallaunx, G.</td>
<td>0332, 1512</td>
</tr>
<tr>
<td>Hall, D.W.</td>
<td>2604, 2656</td>
</tr>
<tr>
<td>Hall, J.R.</td>
<td>1963</td>
</tr>
<tr>
<td>Hall, T.C.</td>
<td>0343</td>
</tr>
<tr>
<td>Halligan, G.</td>
<td>0505</td>
</tr>
<tr>
<td>Halperin, D.R.</td>
<td>de. 2075</td>
</tr>
<tr>
<td>Halperin, L.</td>
<td>2075</td>
</tr>
<tr>
<td>Hamilton, J.</td>
<td>1068</td>
</tr>
<tr>
<td>Hammes, P.S.</td>
<td>1197</td>
</tr>
<tr>
<td>Hampp, R.</td>
<td>0333</td>
</tr>
<tr>
<td>Han, J.K.</td>
<td>3017</td>
</tr>
<tr>
<td>Hanida, D.K.</td>
<td>2500</td>
</tr>
<tr>
<td>Hanka, P.P.</td>
<td>2809</td>
</tr>
<tr>
<td>Hanslas, V.K.</td>
<td>2840</td>
</tr>
<tr>
<td>Hassan, F.M.H.</td>
<td>0245</td>
</tr>
<tr>
<td>Harbana Lat.</td>
<td>0694</td>
</tr>
<tr>
<td>Harder, D.E.</td>
<td>2449-50</td>
</tr>
<tr>
<td>Harding, W.A.T.</td>
<td>1313, 2028</td>
</tr>
<tr>
<td>Hari Har Ram</td>
<td>0648</td>
</tr>
<tr>
<td>Harinarayana, G.</td>
<td>0649-50, 0824-5</td>
</tr>
<tr>
<td>Harishank Singh</td>
<td>1466, 2953</td>
</tr>
<tr>
<td>Harjal, S.C.</td>
<td>2543</td>
</tr>
<tr>
<td>Harjinder Singh</td>
<td>0605</td>
</tr>
<tr>
<td>Harlan, J.R.</td>
<td>0060-1, 0651</td>
</tr>
<tr>
<td>Harper, L.W.</td>
<td>2081</td>
</tr>
<tr>
<td>Harris, H.B.</td>
<td>2230</td>
</tr>
<tr>
<td>Harris, K.M.</td>
<td>2584</td>
</tr>
<tr>
<td>Harris, W.</td>
<td>1214</td>
</tr>
<tr>
<td>Hart, W.E.</td>
<td>0460</td>
</tr>
<tr>
<td>Hartwig, N.L.</td>
<td>0694-7</td>
</tr>
<tr>
<td>Harry, R.L.</td>
<td>0310</td>
</tr>
<tr>
<td>Harvey, P.H.</td>
<td>0894</td>
</tr>
<tr>
<td>Harvey, R.G.</td>
<td>1968-71</td>
</tr>
<tr>
<td>Harvey, T.L.</td>
<td>2557, 2561</td>
</tr>
<tr>
<td>Hashimoto, K.</td>
<td>2294</td>
</tr>
<tr>
<td>Hashizume, K.</td>
<td>1487</td>
</tr>
<tr>
<td>Hassan, N.A.K.</td>
<td>1349</td>
</tr>
<tr>
<td>Hatfield, H.H.</td>
<td>2679</td>
</tr>
<tr>
<td>Haus, T.E.</td>
<td>0064, 1070-2</td>
</tr>
<tr>
<td>Hauser, E.W.</td>
<td>1958</td>
</tr>
<tr>
<td>Havenaghi, G.V.</td>
<td>1430, 1605, 1678, 1808-9</td>
</tr>
<tr>
<td>Hawton, D.</td>
<td>1895</td>
</tr>
<tr>
<td>Haydock, K.P.</td>
<td>3052</td>
</tr>
<tr>
<td>Haydon, G.F.</td>
<td>2787</td>
</tr>
<tr>
<td>Hayes, J.</td>
<td>2077</td>
</tr>
<tr>
<td>Haynsward, H.J.</td>
<td>3002</td>
</tr>
<tr>
<td>Hayes, H.M., Jr.</td>
<td>2657, 3108</td>
</tr>
<tr>
<td>Hayes, K.L.</td>
<td>2817</td>
</tr>
<tr>
<td>Hedges, D.A.</td>
<td>2992</td>
</tr>
<tr>
<td>Heeney, M.W.</td>
<td>0064, 3010-2</td>
</tr>
<tr>
<td>Hegarty, M.P.</td>
<td>0290</td>
</tr>
<tr>
<td>Hegde, B.R.</td>
<td>1879</td>
</tr>
<tr>
<td>Hegde, R.K.</td>
<td>2220, 2222, 2430</td>
</tr>
<tr>
<td>Heliechel, G.H.</td>
<td>0335</td>
</tr>
</tbody>
</table>
114 Millets 1970-1976

Helde, O.M. 1847
Hellman, J.L. 0336
Helikaj, J. 1822
Helmers, H. 0337
Hena, A.G. 2264
Hernandiquier, J.J. 0030
Hemken, R.W. 2979
Hendricks, S.B. 0338
Hennen, J.F. 2354
Hennessy, D.W. 2954
Henzesf, E.F. 0416
Herkv, A. 0339
Hesselbach, D. 1680
Hibberd, M.J. 1229, 2964
Hibberd, N.V. 1066
Hibbs, J.W. 2952
Hidaka, M. 2045
Hilda, A. 2221
Hilliard, J.H. 0327, 0340
Hilu, KW. 0134, 0206
Hinds, F.C. 1650
Hinze, G. 0062-4, 0207, 1067-72, 1102, 1557, 2725-6
Hire, Chand 0652-3
Hirakawa, T. 1681
Hiremath, P.C. 2222
Hiremath, P.S. 1882
Hiremath, S.C. 0583-6, 0654-5, 3109
Hirose, Y. 1748
Hirota, H. 2082
Hirschmann, H. 2514
Hoduchl, A. 2709
Hoduchl, S. 0406-7, 1421
Hoduchl, T. 1314, 1519
Horn, F.P. 1855
Hortonstine, C.C. 1684, 1753-4
Horeen, R.C. 0144, 0895, 1046, 2680, 2843-4
Hoorens, M.M. 1490, 1685
Hoosakawa, S. 1268
Houghton, J.M. 2030
Hoveland, C.S. 1074, 1972-3
Howe, E.E. 3018
Howes, C.E. 3001
Hrithi, K. 1075
Hrithi, V.K.K. 0925
Hubbell, D.H. 2132
Huber, H.C. 0342-4
Huber, W. 0333, 0345-51, 0482-5
Hudson, D.K.M. 2817
Hugiar, P.V. 1885
Hughes, R.M. 1174
Hukkeri, S.B. 1395
Hull, J.L. 2854
Hulse, J.H. 2846
Humphreys, L.R. 1820, 1825-6, 1733, 2893
Hunt, B.J. 1443
Hurtal, P.C. 2621
Hussaini, S.H. 0208
Hutcheson, R. 2860
Hyun, K.S. 3017
Iakovlev, A.G. 2114
IARI 0209, 0896, 2710
Iatalkovskalā, I. 2040
ICAR 2162
Ichnopanini, J.S. 2941
ICRISAT 0066-9, 0352, 1076, 2163
ICVT 1688
Ikemoto, T. 2618
Il'in, V.A. 0655, 0897-900, 1201
Il'mendosev, V. 2897
Inlirick, R.D. 1959-60, 2023
Imai, K. 0353
Imasato, S. 1896
India, Ministry of Agriculture, Department of Agricultural Research and Education. 0070
India, Ministry of Agriculture, Directorate of Economics and Statistics. 3093
India, Ministry of Agriculture, Directorate of Marketing and Inspection. 3094
Indira, R. 2711
Ingle, G.E. 2715
Inkina, A.G. 1307
Inman, L.L. 1077
Inoue, K. 2083
Instituto de Pesquisas Agronomicas. 0071
Inzhechik, O.G. 1687
Iqbal, M. 2619
IRAT, Comores. 2484-5, 2888
IRAT, France. 0072-3, 1974, 2486, 2887
IRAT, Madagascar. 2486
IRAT, Mal. 0074-6
IRAT, Niger. 0077, 1468, 1523, 2889
IRAT, Senegal. 0078, 0901-2, 1897-8
IRAT, Upper Volta. 0903, 1202, 1558
Irene, B. 0592
Iria, E. 1944-5
Iseeva, L.G. 1687-8
Ishac, Y.Z. 2857
Ishihikawa, K. 0400
Ishizaki, S.M. 3041
Ishwar Prakash. 2820
Isam, M.S. 1511
ISRA. 0078, 0900-2, 2532
Issilas, S. 0357
Ivanov, A.I. 1402
Ivanov, P.K. 1524
Ivanov, V.K. 1403
Ivanova-Zubkova, N.Z. 1315
Ivantsof, N.K. 1899
Ivashchenko, M.I. 2835
Ivory, D.A. 3042
Iyemperumal, S. 2271-2, 2629
Iyengar, E.R.R. 0375, 1328
Jackson, J. 0946
Jacques, G. 2209, 2254
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masalova, V.I.</td>
<td>2795</td>
</tr>
<tr>
<td>Mason, K.</td>
<td>1038</td>
</tr>
<tr>
<td>Masood Ali</td>
<td>1415, 1568, 1731-2</td>
</tr>
<tr>
<td>Masyuk</td>
<td>1908</td>
</tr>
<tr>
<td>Mathur, B.L.</td>
<td>2231, 2393</td>
</tr>
<tr>
<td>Mathur, B.N.</td>
<td>1735, 2500</td>
</tr>
<tr>
<td>Mathur, C.M.</td>
<td>1763</td>
</tr>
<tr>
<td>Mathur, C.P.</td>
<td>1448</td>
</tr>
<tr>
<td>Mathur, C.S.</td>
<td>2910</td>
</tr>
<tr>
<td>Mathur, G.S.</td>
<td>1358</td>
</tr>
<tr>
<td>Mathur, J.R.</td>
<td>2081</td>
</tr>
<tr>
<td>Mathur, J.K.</td>
<td>1765, 1906</td>
</tr>
<tr>
<td>Mathur, R.L.</td>
<td>2231, 2327, 2487-9</td>
</tr>
<tr>
<td>Mathur, S.B.</td>
<td>2197</td>
</tr>
<tr>
<td>Mathur, S.K.</td>
<td>2197</td>
</tr>
<tr>
<td>Mathurin, P.</td>
<td>0299, 1050</td>
</tr>
<tr>
<td>Matienzo, A.A.</td>
<td>1280</td>
</tr>
<tr>
<td>Matsumoto, E.</td>
<td>0468</td>
</tr>
<tr>
<td>Matsumoto, M.</td>
<td>1748</td>
</tr>
<tr>
<td>Matyushevskaya, L.N.</td>
<td>1867</td>
</tr>
<tr>
<td>McEwan, L.A.</td>
<td>1233</td>
</tr>
<tr>
<td>McEwan, J.</td>
<td>1240</td>
</tr>
<tr>
<td>McEwan, J.L.</td>
<td>2081</td>
</tr>
<tr>
<td>McEwan, K.</td>
<td>1906</td>
</tr>
<tr>
<td>McEwan, L.</td>
<td>2231</td>
</tr>
<tr>
<td>McEwan, M.</td>
<td>1038</td>
</tr>
<tr>
<td>McEwan, P.</td>
<td>0299</td>
</tr>
<tr>
<td>McEwan, R.</td>
<td>1233</td>
</tr>
<tr>
<td>McCaffrey, J.</td>
<td>2910</td>
</tr>
<tr>
<td>McCarty, D.</td>
<td>1358</td>
</tr>
<tr>
<td>McCarty, D.R.</td>
<td>2197</td>
</tr>
<tr>
<td>McCarty, J.</td>
<td>2197</td>
</tr>
<tr>
<td>McCarty, J.R.</td>
<td>1765</td>
</tr>
<tr>
<td>McCarty, S.</td>
<td>1906</td>
</tr>
<tr>
<td>McCarty, W.</td>
<td>2231</td>
</tr>
<tr>
<td>McCauley, J.</td>
<td>1233</td>
</tr>
<tr>
<td>McCauley, K.</td>
<td>1240</td>
</tr>
<tr>
<td>McCauley, M.</td>
<td>1358</td>
</tr>
<tr>
<td>McCauley, P.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, R.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, S.</td>
<td>1765</td>
</tr>
<tr>
<td>McCauley, W.</td>
<td>2231</td>
</tr>
<tr>
<td>McCauley, X.</td>
<td>1233</td>
</tr>
<tr>
<td>McCauley, Y.</td>
<td>1240</td>
</tr>
<tr>
<td>McCauley, Z.</td>
<td>1358</td>
</tr>
<tr>
<td>McCauley, A.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, B.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, C.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, D.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, E.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, F.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, G.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, H.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, I.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, J.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, K.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, L.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, M.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, N.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, O.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, P.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Q.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, R.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, S.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, T.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, U.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, V.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, W.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, X.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Y.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Z.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, A.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, B.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, C.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, D.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, E.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, F.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, G.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, H.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, I.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, J.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, K.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, L.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, M.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, N.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, O.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, P.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Q.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, R.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, S.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, T.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, U.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, V.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, W.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, X.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Y.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Z.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, A.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, B.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, C.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, D.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, E.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, F.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, G.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, H.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, I.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, J.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, K.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, L.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, M.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, N.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, O.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, P.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Q.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, R.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, S.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, T.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, U.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, V.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, W.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, X.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Y.</td>
<td>2197</td>
</tr>
<tr>
<td>McCauley, Z.</td>
<td>2197</td>
</tr>
</tbody>
</table>
Author Index

121

O'Connor, B.P. 2014
Oedra, R.K. 2664
Odhiambo, J.F. 2904
Ogborn, J.E.A. 2490
O'Grady, P. 2994
Ogren, W.L. 0362, 0390
Ogurtsova, L. 0194
Ogwang, B.H. 2734, 3056
Ohashi, K. 1504
Ohatu, K. 2245
Okada, T. 1244, 1554
Okada, Y. 2094
Okamoto, K. 0406-7, 1421
O'Kelly, J.C. 2743
Oksenenko, N.I. 1868
Oliveira, D. 2821
Oliveira, S.C. 2999-3000
Oliver, I.R. 0268-2769-71
Oliver, J. 0487
Oliver, L.R. 1994
Olivera, A.A. 2822
Onesirosan, P.T. 2402
Near East Co-Operative Sorghum and Millets Crop Improvement Programme. 0100
Near East Regional Sorghum and Millets Crop Improvement Programme. 0101.
Osmor, A.G. 0222
Olah, F.O. 2744, 3057-8
Ole, Y. 0403
Ole, T. 0405, 2742
Okeyi, E. 0879
Oblado, S.R. 1993
Obisami, G. 2142, 2400, 2420
O'Brien, T.P. 0186

Nath, J. 0702
Nayork, J. 1718
Nayar, K.M.D. 0703, 0743-6, 0959, 1918
Negi, S.S. 1243, 2906, 3031
Neeve, A. 0879
Nelson, L.H. 1790
Ner, Y. 0879
Nikulin, N.D. 0673-4, 0918-20, 0934
Niles, E.V. 2390
Nirmaliyu, J. 1748
Nirvel, B.G. 1592
Nishide, T. 1405
Nishihara, M. 2298
Nishihara, N. 2298
Nishihara, T. 0404, 1748
Nishimura, H. 1421
Nishimura, S. 0404, 1487
Nishiyama, K. 2294
Nixon, G. 1912
Noble, M. 2420
Noguchi, K. 1912-3
Nori, M. 2426
Novakowski, K. 2712
Oakes, A.J. 0221, 2244
Oakes, A.J. 1253
Oak, W.R. 1045
Oba, T. 0405, 2742
Obete, Y. 0879
Obigbo, E. 1993
Obisami, G. 2142, 2400, 2420
O'Brian, T.P. 0186

Pachauri, V.C. 1243, 2906
Pacheco, W.J. 2905
Pacione, I.J. 2968
Padhi, S.C. 1245
Padilla, C. 1652, 2047
Padh, S.C. 0431
Pachaksharappa, M.G. 0160-1, 0169,
122 Millets 1970-1976

0409-10, 0704-6
Panchenko, N.F. 0707, 1019
Pande, A. 2331
Pande, Y.D. 2628
Pandey, B.P. 0598, 0755
Pandey, H.N. 0411
Pandey, K.N. 1575, 1805-6
Pandey, N.D. 2590
Pandey, R.K. 1915
Pandey, S.L. 1412
Pandey, S.N. 1360, 2642
Pandotra, V.R. 2248
Pandya, B.P. 2907
Pandya, S.M. 0412
Panjab Singh 0095
Pant, K.C. 1640, 2692, 2804
Pantulu, J.V. 0683-4, 0708-14, 0794
Panwar, B.S. 1644
Parambaramani, C. 0554, 2249, 2332, 2351-2, 2397, 2403
Pararneswarappa, N. 1785
Park, J.M. 1752
Park, K.Y. 1576
Parmar, M.T. 0413-4
Paroda, R.S. 0995
Parpia, H.A.B. 2802, 2805, 2813, 2817, 2819-20, 2823
Parra, J.V. 1753-4
Parrish, D.B. 2624, 2629
Parsons, E. 0145
Parthasarathy, A.V. 0737, 0935, 0736
Parthasarathy, S. 1361
Patel, A.I. 2664
Patel, A.R. 1424, 1755
Patel, A.S. 0413, 1043, 1577, 2664, 3098
Patel, A.T. 1043, 1757
Patel, A.U. 1270
Patel, B.M. 1120, 1424, 1491, 1758, 2745, 2907, 2969, 2983
Patel, B.N. 2250
Patel, C.A. 1043, 2745
Patel, C.J. 1404, 1734, 1755, 1757
Patel, D.P. 1734, 1907
Patel, G.A. 1120
Patel, G.V. 1759
Patel, H.L. 1121
Patel, H.M. 1757
Patel, K.S. 2251
Patel, L.J. 0414
Patel, M.M. 2625
Patel, R.B. 1824
Patel, R.J. 3113
Patel, R.M. 0945
Pattak, G.N. 0154
Pattak, V.N. 2252, 2404-6
Pathirana, K.K. 1246
Pathre, S.V. 2426
Patidar, G.L. 0596-7, 0863
Patil, B.D. 1247
Patil, L.L. 2253
Patil, R.R. 0725, 0941-2, 0949
Patnaik, H.B. 0715
Patnaik, R.N. 1570
Patra, G.J. 0415
Patra, S.S. 1570
Patro, G.K. 1760, 1916
Pattnaik, H. 2138
Patwa, F.C. 1413
Paul, B.S. 3071
Paulose, C.L. 2806
Paulsen, A.Q. 2463
Paulsen, G. 3008
Paulsen, G.M. 0995, 1046
Pauvert, P. 2254
Pavgi, M.S. 2265-7, 2334
Pavia, R.R. 2951
Pawar, V.M. 2598
Pawloowski, F. 1761
Payak, M.M. 2383-5
Pe, E. 1621
Peack, T.R. 1650
Peacock, F.M. 1198
Peake, D.C.I. 0416
Pearson, C.J. 0418
Persley, G.J. 2559
Peters, D.C. 2599
Peters, E.J. 1917, 2007
Peters, L.V. 0102
Peters, M.A. 1949, 2012, 2031
Petit, R.D. 0419
Pezo, D. 3044
Pfeiffer, A. 3112
Pfeiffer, P. 2477
Pittscher, E.M. 0103
Pharande, K.S. 1492
Phillip, V.K. 0376
Phillip, S.M. 0104
Phul, P.S. 0162, 0421-0, 0610, 0616-7, 0703, 0719-22, 0877, 0881, 0936-9, 1054, 2307, 2314
Pi, P.-H. 0723
Picard, D. 1322, 1512
Pichot, J. 1528, 1743
Piefra, F. 2581
Pieri, C. 1362
Pillai, G.K. 0581
Pillarayarasan, K. 2208, 2270-2, 2345-7, 2418-9
Pil'nikova, E.M. 0724
Pingle, S.V. 2667
Pinheiro Dantas, A. de 0828
Pintilie, C. 1425
Pl, J. 0105
Pipko, A.S. 1887
Pisanko, S.J. 2668
Piskunova, L.G. 2671
Pizzi, A.C. 3009
Pissard, F. 1235, 2669
Plucknett, D.L. 1572, 1993
Pocating Regional Institute of Agricultural Science, Hopei, China. 0138
Podvezko, E.S. 0246, 1426
Podvezko, V.V. 1426, 1762
Pohl, R.W. 1122
Pokharna, U.S. 1763
Pokhrisiyal, S.C. 0725, 0738, 0940-2, 0949, 1078, 2096
Pollard, G.V. 2613
Poleit, U. 1265
Polutsky, E.S. 0248, 1426
Pupipat, U. 2308
Puri, K.P. 1515, 1628
Purnima, S. 0731
Purohit, A.N. 0425
Purohit, G.R. 2910
Purohit, I.D. 1316
Purseglove, J.W. 0106-7
Purushothaman, D. 0426, 1361, 2097, 2139
Purushothaman, S. 1056
Pushpamma, S. 2829
Quaglia, G.B. 2689
Quinn, L.R. 1736, 2971
Raafat, M.A. 3078
Rabas, D.L. 2849
Rabie, J.W. 0423, 1250
Rabinovich, V.M. 1494
Raich, K.O. 0004, 0094, 2687
Rachie, K.O. 0004, 0094, 2687
Radchenko, S.L. 0428
Rahman, A. 1147, 2008-10
Rahman, M. 0212
Rahman, A. 1774
Rahman, A. 1147, 2008-10
Rahman, M. 0212
Rai, J.N. 2257
Rai, P.S. 2591-2
Raj, D. 1341
Rajagopal, A. 1357, 1921
Rajagopalan, C.K.S. 2217, 2347
Rajalakshmi, D. 2813, 2817
Rajamannar, A. 0325
Rajan, A.V. 0461
Rajan, R.A. 2210
Rajan, S.S.S. 1363
Rajan Asari, P.A. 2408
Rajani, H.J. 2825
Rajappa, M.G. 0164, 1123, 1189-90, 1254-5, 1351, 1580
Rajaram, S. 1086, 1351
Rajashekara, B.G. 0164, 0946, 1129, 1254-5, 1414, 1531, 1775, 2098-2100
Rajendran, G. 2494
Rajendrudu, G. 0294
Rajagopal, D. 2602
Rajkot, F.P.O. 1048
Raju, G.S.N. 1742
Raju, K. 0461
Raju, T.R. 1080, 1082, 1130
Raju, V.T. 3114
Rakhimov, G.T. 0431
Ram, A. 2840
Ram, G.S. 3115
Ram Krishna 1580
Ram Nath 2197
Organization. 1251
Punjab Singh 1126
Punyatkar, S.S. 1771
Pupipat, U. 2308
Puri, K.P. 1515, 1628
Purnima, S. 0731
Purohit, A.N. 0425
Purohit, G.R. 2910
Purohit, I.D. 1316
Purseglove, J.W. 0106-7
Purushothaman, D. 0426, 1361, 2097, 2139
Purushothaman, S. 1056
Pushpamma, S. 2829
Puttaswamy, S. 0427, 1127, 1252, 1348, 1530, 1578-9, 1772
Quaglia, G.B. 2689
Quinn, L.R. 1736, 2971
Quintero, J.L. 1773
Post, A.J. 2913
Postiglioni, S.R. 1766
Prahallad, S. 0429, 0430
Pradhan, A. 1309
Pradhan, K. 2706-7, 3014, 3035, 3060-1
Pradhan, S. 2536
Prajapati, M.C. 2048
Prakash, V. 0730
Prakash, V. 0730
Prakash, K. 2706-7, 3014, 3035, 3060-1
Prasad, M.N. 2495
Prasad, M.V.R. 1249
Prasad, R. 1415, 1566, 1725, 1732
Prasad, S.K. 2495
Prasad, R. 1415, 1566, 1725, 1732
Prasad, S.K. 2495
Prasada, R. 2255-6, 2297, 2328-9
Prasanna, S. 1770
Prasanna, S. 1770
Prescott, J.M. 2184
Prescott, J.M. 2184
Premanathan, S. 2567
Premchand. 1147
Prema, S. 1388
Pridham, E.B. 1943
Prihar, S.S. 1388
Prihar, G.M. 1261, 1585
Pritchar, A.F. 1320
Pritchard, A.F. 1320
Pritchard, A.J. 0946, 1125
Prud'homme, E.T. 2685
Pronko, V.V. 1688
Prospero, A.C. 2750
Protasov, S.A. 2407
Prutenskaya, N.I. 0424
Pruthi, T.D. 2751
Puar, M. 3019
Puar, M. 0944
Pun, M.L. 0384
Punjab Economics and Statistical
Ram Prasad 0496
Ram Das 0941-2, 0949
Ramachandra, G. 2786
Ramachandran, K. 2101-3
Ramachandran, M. 1256
Ramakrishnaiah, K.C. 0962-1148
Ramakrishn, M.S. 1894, 1776, 1844
Ramakrishnan, P.S. 1207, 1352, 1863, 2104
Ramakrishnan, U. 2622
Ramakrishn, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramanathan, G. 2830
Ramanna, R. 3116
Ramana, S. 0979, 0950
Ramaswami, C. 1815
Ramaswamy, K.R. 0225, 0732
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakrishnan, M.S. 1256
Ramakrishnan, U. 2622
Ramakrishnan, V. 2064, 2658
Ramamurthi, T.G. 1042, 2417, 2593
Raman, V.S. 0732, 0776
Ramakris..
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reddy, R.N.</td>
<td>1871</td>
</tr>
<tr>
<td>Reddy, T.B.</td>
<td>1434, 2141</td>
</tr>
<tr>
<td>Reddy, V.S.</td>
<td>0452</td>
</tr>
<tr>
<td>Reddy, Y.V.</td>
<td>1500</td>
</tr>
<tr>
<td>Rees, M.C.</td>
<td>2972</td>
</tr>
<tr>
<td>Regupathy, A.</td>
<td>2569-70, 2593</td>
</tr>
<tr>
<td>Rehm, G.W.</td>
<td>1797-8</td>
</tr>
<tr>
<td>Rehm, S.</td>
<td>2931</td>
</tr>
<tr>
<td>Reich, H.P.</td>
<td>2743</td>
</tr>
<tr>
<td>Reichert, R.D.</td>
<td>2870</td>
</tr>
<tr>
<td>Reid, R.L.</td>
<td>2913</td>
</tr>
<tr>
<td>Reis, P.R.</td>
<td>2830</td>
</tr>
<tr>
<td>Relwani, L.L.</td>
<td>0109, 1080-2, 1130, 1501, 1656, 1828</td>
</tr>
<tr>
<td>Renard, C.</td>
<td>0453, 2758</td>
</tr>
<tr>
<td>Rene, J.</td>
<td>0717, 2050, 2095, 2906</td>
</tr>
<tr>
<td>Rene-Chaume, R.</td>
<td>0136-7, 0227, 0716-8, 2095, 2908</td>
</tr>
<tr>
<td>Renuk, E.C.O.</td>
<td>2935</td>
</tr>
<tr>
<td>Ricard-Molard, D.</td>
<td>2672</td>
</tr>
<tr>
<td>Ricardo, C.P.P.</td>
<td>0454</td>
</tr>
<tr>
<td>Ricardo, J.</td>
<td>0717, 2050, 2095, 2908</td>
</tr>
<tr>
<td>Riccelli, M.</td>
<td>0955</td>
</tr>
<tr>
<td>Richard-Molard, D.</td>
<td>2672</td>
</tr>
<tr>
<td>Richardson, F.E.</td>
<td>2011</td>
</tr>
<tr>
<td>Rinaldo, G.</td>
<td>2146</td>
</tr>
<tr>
<td>Rishi, N.</td>
<td>2441</td>
</tr>
<tr>
<td>Rivera, C.M.</td>
<td>2012</td>
</tr>
<tr>
<td>Riveros, F.</td>
<td>2051</td>
</tr>
<tr>
<td>Rizvi, S.K.A.</td>
<td>2631</td>
</tr>
<tr>
<td>Rizvi, V.M.A.</td>
<td>2442</td>
</tr>
<tr>
<td>Robbins, G.L.</td>
<td>3117</td>
</tr>
<tr>
<td>Robbins, R.T.</td>
<td>2514</td>
</tr>
<tr>
<td>Robe, G.</td>
<td>1218</td>
</tr>
<tr>
<td>Robins, M.F.</td>
<td>1800</td>
</tr>
<tr>
<td>Robinson, D.E.</td>
<td>2013</td>
</tr>
<tr>
<td>Robinson, D.L.</td>
<td>1364</td>
</tr>
<tr>
<td>Robinson, R.G.</td>
<td>1139-40</td>
</tr>
<tr>
<td>Robledo, C.</td>
<td>0110</td>
</tr>
<tr>
<td>Rocha, G.L.da</td>
<td>2962</td>
</tr>
<tr>
<td>Rodel, M.G.W.</td>
<td>1920</td>
</tr>
<tr>
<td>Rodriguez, M.</td>
<td>2914</td>
</tr>
<tr>
<td>Rodriguez, T.</td>
<td>1632</td>
</tr>
<tr>
<td>Rodriguez-Carrasquel, S.</td>
<td>1141, 1824, 2052, 2759-80</td>
</tr>
<tr>
<td>Rodriguez-Garcia, J.</td>
<td>2057</td>
</tr>
<tr>
<td>Rodriguez-Rey, J.C.</td>
<td>1093</td>
</tr>
<tr>
<td>Rodolfo, S.</td>
<td>1365</td>
</tr>
<tr>
<td>Roe, R.</td>
<td>2053</td>
</tr>
<tr>
<td>Roffler, R.E.</td>
<td>2049, 2958</td>
</tr>
<tr>
<td>Rogover, V.S.</td>
<td>2741</td>
</tr>
<tr>
<td>Romanov, V.A.</td>
<td>1532</td>
</tr>
<tr>
<td>Romanowski, R.R., Jr.</td>
<td>1993</td>
</tr>
<tr>
<td>Rooney, L.W.</td>
<td>0180-1, 0956, 2832</td>
</tr>
<tr>
<td>Roose, E.J.</td>
<td>1442, 1799</td>
</tr>
<tr>
<td>Rossari, E.</td>
<td>2937</td>
</tr>
<tr>
<td>Rosario, R.</td>
<td>2985</td>
</tr>
<tr>
<td>Rose, C.W.</td>
<td>1310</td>
</tr>
<tr>
<td>Rosenberg, N.J.</td>
<td>0336, 0524</td>
</tr>
<tr>
<td>Rosero, O.</td>
<td>1621</td>
</tr>
<tr>
<td>Roslan Lal.</td>
<td>2551, 2612</td>
</tr>
<tr>
<td>Rossiter, P.D.</td>
<td>2537</td>
</tr>
<tr>
<td>Rossochacki, S.</td>
<td>1522</td>
</tr>
<tr>
<td>Rost, T.L.</td>
<td>0187-8, 0455-6</td>
</tr>
<tr>
<td>Rosu, G.</td>
<td>1396</td>
</tr>
<tr>
<td>Rothwell, D.F.</td>
<td>1684</td>
</tr>
<tr>
<td>Rothwell, N.V.</td>
<td>0142</td>
</tr>
<tr>
<td>Roughan, P.G.</td>
<td>0457, 0483, 1400, 2761</td>
</tr>
<tr>
<td>Rouquette, F.M., Jr.</td>
<td>1800, 2915-6</td>
</tr>
<tr>
<td>Roverso, E.A.</td>
<td>2976</td>
</tr>
<tr>
<td>Rowe, G.R.</td>
<td>2014</td>
</tr>
<tr>
<td>Rowley, J.A.</td>
<td>0312, 0458, 0505-6, 1443</td>
</tr>
<tr>
<td>Roy, B.</td>
<td>1461</td>
</tr>
<tr>
<td>Roy, D.N.</td>
<td>2938, 3068-70</td>
</tr>
<tr>
<td>Roy, J.</td>
<td>2901</td>
</tr>
<tr>
<td>Roy, L.N.</td>
<td>2901-2</td>
</tr>
<tr>
<td>Roy, R.D.</td>
<td>0292</td>
</tr>
<tr>
<td>Roy, S.B.</td>
<td>1484</td>
</tr>
<tr>
<td>Roy, S.R.</td>
<td>1260</td>
</tr>
<tr>
<td>Rudramuniyappa, C.K.</td>
<td>0160-1, 0169, 0409-10, 0704-6, 2762</td>
</tr>
<tr>
<td>Ruel, E.C.O.</td>
<td>2935</td>
</tr>
<tr>
<td>Ruelke, O.C.</td>
<td>1261, 1585</td>
</tr>
<tr>
<td>Rugolo De Agrasar, Z.E.</td>
<td>0111</td>
</tr>
<tr>
<td>Rumble, C.J.</td>
<td>1882</td>
</tr>
<tr>
<td>Rush, S.G.</td>
<td>0313</td>
</tr>
<tr>
<td>Rustogi, V.S.</td>
<td>1406</td>
</tr>
<tr>
<td>Rutherford, E.T.</td>
<td>2015</td>
</tr>
<tr>
<td>Rutherford, M.C.</td>
<td>0139</td>
</tr>
<tr>
<td>Ruxton, I.B.</td>
<td>1550, 1651</td>
</tr>
<tr>
<td>Ryan, J.</td>
<td>0459, 1801</td>
</tr>
<tr>
<td>Ryan, J.G.</td>
<td>0083, 3100</td>
</tr>
<tr>
<td>Rybalke, K.E.</td>
<td>2763</td>
</tr>
<tr>
<td>Sabel'nikova, V.</td>
<td>2409</td>
</tr>
<tr>
<td>Sabey, B.R.</td>
<td>0460</td>
</tr>
<tr>
<td>Sadasivatla, T.</td>
<td>1682</td>
</tr>
<tr>
<td>Sadig Ali</td>
<td>1034</td>
</tr>
<tr>
<td>Sadowski, A.B.</td>
<td>2835</td>
</tr>
<tr>
<td>Sadykyova, R.I.</td>
<td>0861-2</td>
</tr>
<tr>
<td>Saffiulina, K.M.</td>
<td>2306, 2333, 2337-8</td>
</tr>
<tr>
<td>Safonova, T.S.</td>
<td>2368</td>
</tr>
<tr>
<td>Safonova, V.I.</td>
<td>0184</td>
</tr>
<tr>
<td>Sagdieva, L.G.</td>
<td>0965</td>
</tr>
<tr>
<td>Sagdieva, L.V.</td>
<td>0957</td>
</tr>
<tr>
<td>Said, A.N.</td>
<td>3062</td>
</tr>
<tr>
<td>Saif, D.</td>
<td>2762</td>
</tr>
<tr>
<td>Seif, A.</td>
<td>0957</td>
</tr>
<tr>
<td>Seif, A.</td>
<td>3050</td>
</tr>
<tr>
<td>Saini, S.L.</td>
<td>1590-1</td>
</tr>
<tr>
<td>Saitov, M.</td>
<td>1502</td>
</tr>
<tr>
<td>Seijan, S.S.</td>
<td>2632</td>
</tr>
<tr>
<td>Sakakura, D.</td>
<td>0377</td>
</tr>
<tr>
<td>Sakamura, S.</td>
<td>2767</td>
</tr>
<tr>
<td>Seksen, H.K.</td>
<td>0377</td>
</tr>
<tr>
<td>Sakuoaka, R.T.</td>
<td>1993</td>
</tr>
<tr>
<td>Salette, J.</td>
<td>1323, 1813, 2977</td>
</tr>
<tr>
<td>Salun, I.P.</td>
<td>2765, 3063</td>
</tr>
<tr>
<td>Saltuzzano, F.M.</td>
<td>0592</td>
</tr>
<tr>
<td>Samah, N.B.A.</td>
<td>2468-7</td>
</tr>
<tr>
<td>Samarth Kumar, S.</td>
<td>0833</td>
</tr>
<tr>
<td>Samokhvalov, V.A.</td>
<td>0471</td>
</tr>
<tr>
<td>Sampaio, E.V.S.B.</td>
<td>1602</td>
</tr>
<tr>
<td>Sampath, S.R.</td>
<td>2934</td>
</tr>
<tr>
<td>Samson, M.F.</td>
<td>2645-6, 2766, 3032</td>
</tr>
<tr>
<td>Sansei, Z.</td>
<td>0500</td>
</tr>
<tr>
<td>Sanchez, M.A.</td>
<td>0140</td>
</tr>
<tr>
<td>Sandhu, G.S.</td>
<td>2594-6, 2632-3</td>
</tr>
<tr>
<td>Sandhu, T.S.</td>
<td>1263, 1586</td>
</tr>
<tr>
<td>Sandison, R.L.</td>
<td>0536</td>
</tr>
<tr>
<td>Sandoord, P.E.</td>
<td>3006</td>
</tr>
<tr>
<td>Sangam Lal</td>
<td>2179</td>
</tr>
<tr>
<td>Sangameswaran, S.V.</td>
<td>0005-6</td>
</tr>
</tbody>
</table>
Singh, N.T. 1781
Singh, P. 0760
Singh, R. 2609
Singh, R.A. 2234, 2235-7
Singh, R.B. 0761-4, 0798-9, 0988-0992, 1004, 3119
Singh, R.C. 1152, 1533, 1590-91, 1835, 1861, 1939
Singh, R.D. 0117, 1147
Singh, R.J. 0971
Singh, R.K. 0674, 0994
Singh, R.M. 0763-4, 0798-9, 1697, 1831, 1900
Singh, R.N. 2635
Singh, R.P. 1227, 1249, 1832-3
Singh, R.R. 1497, 2269
Singh, R.S. 0754, 1003
Singh, S. 1409, 1481, 1714
Singh, S.D. 1533, 1834-5, 1878, 2175, 2190-1, 2330, 2343
Singh, S.J. 2401
Singh, S.N. 1581
Singh, S.P. 0141, 0816, 1836, 2078, 2252
Singh, S.S. 1059-60
Singh, T.B. 2238-41
Singh, T.H. 0626, 0720-2
Singh, T.N. 0480, 1375
Singh, T.P. 0891
Singh, U.P. 1837
Singh, V. 0175, 0481
Singh, V.P. 0874
Singh, V.S. 2566, 2572, 2597
Singh, Y.P. 1837
Singh Teotia, S.P. 1360
Sinha, A.K. 2344
Sinha, P.K. 0749
Sinha, R.N. 2608
Sinha, V.C. 2304
Sincyna, I.P. 0243
Sinska, J. 1277, 1324
Siradhan, B.S. 2310
Singar, M.E. 1730
Siroh, A. 0482
Sirothina, I. 0482
Sirothiny, A.A. 1148
Sirothiny, L.V. 1148
Sisodia, K.P.S. 0765-6
Siva Prasad, V.V.S. 1838
Sivanapan, R.K. 1437-8
Sivaprakasan, K. 2226, 2270-2, 2317, 2345-7, 2415-9
Sivasankaran, D. 1056, 1258
Sivasubramanian, P. 1459-60
Sivonen, V.A. 2835
Skinner, S.W. 3102
Skorodumov, A.S. 1278
Slack, C.R. 0483, 1400, 2761
Slayer, R.O. 0389, 0484
Sleper, D.A. 2055
Slife, F.W. 2030
Slinger, S.J. 2648
Slump, P. 2842
Skyhula, J.T. 2474
Smalleridge, T. 1992
Smith, A.D.M. 2518
Smith, B. 3078-9, 3082
Smith, B.N. 0485-7
Smith, C.J. 2113
Smith, D. 0275, 0328, 1607, 2777
Smith, F.W. 0488, 1839, 2923
Smith, J.E. 2020
Smith, L.A. 1074
Smith, L.B. 0230
Smith, P.H. 2132
Smith, R.J., Jr. 2021-2
Smith, R.L. 0489, 0767, 0972
Smith, T.P. 1423
Smith, W.B. 2924
Smith, W.F. 2023
Sneh Lata. 2515
Soares, E. 1659
Sobkowska, A. 2712
Soblev, N.A. 2114
Sokolov, V.N. 1534
Sokolova, S.M. 0490
Solanki, J.S. 2259
Soldatenko, N.A. 1926
Soldevila, M. 2985
Solomon, S. 0520, 0491, 0550, 0622
Solov'tev, G.A. 1840
Somani, L.L. 1510
Sommartaya, T. 2308
Sonej, S.V. 3064-5
Sonl, P.N. 1406
Sonoda, R.M. 2182
Sood, D.R. 2778-9
Sorensen, R.C. 1798
Soroka, S.D. 1841
Sotomayor-Rios, A. 1279-80, 2056-7
Societ, J.L. 2095
Soumare, L. 0041, 0873
Soundara Rajan, R. 0326
Soundrapandian, G. 0768
Souto, S.M. 1391, 2896, 2959
Sow, C.S. 1544
Spain, G.L. 2058
Sparrow, A.H. 0769
Spellenberg, R. 0231, 0973
Spiers, J.M. 0492, 1842
Sprague, G.F. 1184
Sree Ramulu, C. 1794-5
Sree Ramulu, K. 0176-7, 0771, 0773
Sreekantaradhya, R. 0774
Sreenath, P.R. 1302
Sreerangaswamy, S.R. 0177, 0773, 0775-6
Srinivasa, H.P. 2142, 2400, 2420
Srinivasacharya, D. 0777, 0779
Srinivasa Murthy, J. 1783, 1843
Srinivasan, A. 1844
Srinivasan, R. 3103
Srinivasan, T.R. 1624, 1776
Srinivasan, V. 1149, 1516
Srinivasulu, G. 0226
Srinivasulu, N. 1460
Sirranga Sayi, I. 0778
Sriskantharajah, N. 3043
Srivastava, A.K. 0621
Srivastava, A.N. 0974, 1846, 2517
Srivastava, A.S. 2552, 2573, 2636-7
Srivastava, D.P. 0808-9, 0975, 1010
Srivastava, J.L. 2636
Srivastava, K.M. 2352, 2637
Srivastava, K.N. 0574
Author Index 129

Srivastava, O.P. 1715
Srivastava, U.S.L. 1845-8, 1883
Saal, H. 1376
Staburavik, A. 1847
Staniforth, D.W. 1987
Stanneck, J.R. 0270
Starks, K.J. 2559
Stasinska, B. 2712
Stavitckaya, G.A. 2789, 2794
Steigmier, W.D. 2561
Stelt, M. 1511
Stephen, R.C. 1849-50
Stephenson, G.R. 1955
Stewart, G.A. 1281
Stichler, W. 0547
Stickley, R.E. 2799
Stiff, M.L. 0178
Stirk, G.D. 0416
Stobbs, T.H. 2059-61, 2986, 3042
Stockinger, K.R. 1476
Storer, J.R. 1439
Stoyanov, D. 2518
Strand, O.E. 2024
Strickland, R.W. 1282, 2780
Stroehlein, J.L. 0459, 1801
Stroh, J.R. 0493
Sirona, I.G. 2671
Subbendick, J. 1377
Subbaiah, K.K. 1378
Subbaraja, K.T. 2272
Subbaya, J. 2475
Subbiah, B.V. 0477-9
Subbiah, E. 1921, 1927
Subbiah, K.S. 1149
Subbiah, S. 2830
Subramaniam, R.T. 2603
Subramanian, C.L. 2249
Subramanian, N. 3020
Subramanian, R. 0555, 2403
Subramanian, S. 1380, 1535, 1852-3
Subramanian, T.M. 2293
Sugano, K. 2925
Sugier, T. 0156
Sukhna, T.R. 2549
Sukhdev Singh, O.B. 0669-70
Sukhova, G.V. 0179
Sulladmath, U.V. 1156
Sulladmath, V.V. 2222
Sulia, S.B. 2194
Sulins, R.D. 0180-1
Sullivan, C.Y. 0494
Sundaram, N. 1460
Sundaram, N.V. 2183-4, 2200-1, 2348, 2361, 2421-3, 2455
Sundaram, P. 1893
Sundaramurthy, V. 1379-80
Sundararaj, D.D. 2064, 2658
Sundaresh, H.N. 1189-80, 1926
Sundberg, V.P. 0493
Sundstrom, B. 2954
Sung, N.E. 2781
Suraj Bhau 0495-6
Surendran, C. 1042
Surinder Kaur. 2056
Surkov, Yu. S. 2424-5
Suryanarayana, D. 2371
Suryanarayana, B.C. 1062

Suryanarayanan, Suryapraka, 2221, 2258-9
Srisail, A. 0497-8
Suseela Devi, L. 0434, 2757
Sushko, E.A. 0724
Sutarla, M.H. 1577, 1756
Suworov, N. 1283
Suzuki, Y. 2762
Swain, D.J. 2025
Swaminathan, M. 2801-2, 2805, 2813-14, 2817-20, 2823
Swaminathan, M.S. 0702, 0976
Swarup, G. 2517
Sweeney, F.C. 0499
Sweet, R.D. 1941, 2679
Sykes, J. 2926
Sylwestor, E.P. 2026
Syversten, J.P. 0291
Szabo, M. 0394
Szalay, S. 0500
Szathmary, Cs.I. 2426
Sze, W.-B. 2005, 2027
Szilagyi, M. 0500
Szudowskii, J. 0118
Taborsky, Z. 1864
Tadmor, N.H. 1440
Taerum, R. 0501, 2783
Tahir, S.M. 2857
Taiss, W.M. 0119, 0977
Tairra, H. 2784-5
Tajammal Hussain, 2764
Taj, K. 2927
Takai, R. 2618
Takaki, K. 1681
Takeda, K. 1070-2
Takeda, T. 0502
Takei, K. 0365
Tekkar, P.N. 1854
Taliaferro, C.M. 1855
Talineau, J.C. 1441-2, 1512, 1799
Teioka, P.M. 1491, 2983
Tamini, Y.H. 1856-7
Tan, K.H. 1381
Tan Jiak, Chuan 1716
Tanaka, K. 0466
Tanaka, S. 0404
Tandon, H.L.S. 1858
Tandon, R.N. 2229, 2427
Tapa, C.R. 0503
Tara Mohan, S. 0779
Tarasenko, A.O. 3080
Tarasenko, N.D. 0724
Tarasov, S.F. 0978
Tarasova, L.E. 1150
Tashiro, H. 2588
Tasibekova, R.G. 2067
Tattersfield, J.G. 0358
Tayade, D.S. 2598
Tayal, M.S. 0401, 1284
Taylorson, R.B. 0504-5, 1443
Taylorson, R.B. 0338
Teake, D.S. 2476
Teitel, J.K. 1219, 2028, 2562
Tej, O.P. 1755
Tenorio, E.C. 2775
Teoia, T.P.S. 2590
Veerasekharan, P. 2674
Veeraju, V. 2243
Veiga, J.B. 2689
Veldkamp, J.F. 0233-4
Velez, C.A. 1869, 2933
Velez, J. 1363
Veloso, J.A.F. 2945, 2991
Veisovskii, V.P. 0184, 0793, 1000
Vengro, J. 2013, 2032-5
Venkateshalam, S. 1351, 1770
Venkateschar, M.C. 2934
Venkateschari, A. 1676, 1870-1
Venkataraman, R. 1540
Venkataramanan, C.R. 1711-3
Venkataramum, M.N. 1255
Venkateswara Raidu, D. 0523
Venkateswaru, J. 0794-6, 1001
Venkateswaru, M.S. 1493
Ventura, M. 2935
Venugopal, S. 2560
Venugopalan, S. 1459
Vercambre, B. 2599
Verma, A.N. 2553
Verma, B. 1516
Verma, B.S. 1817
Verma, C.M. 1542
Verma, G. 1002
Verma, J.P. 2634
Verma, K. 2115
Verma, K.S. 1872
Verma, M.M. 2067, 2115
Verma, N.C. 2776
Verma, O.P.S. 1892
Verma, O.S. 1543
Verma, R.C. 3104
Verma, S.B. 0524
Verma, S.C. 1292
Verma, V.S. 0797, 0950, 1003, 1517
Verel, E.J. 2544-6
Viana, J.A.C. 2945, 2990
Viathlatingam, R. 0360
Vicaire, R. 1334
Vicente-Chandler, J. 1622
Vickery, J.W. 0218, 0235-6
Vidhyasekaran, P. 2246, 2274-93, 2351-2, 2374-80, 3075
Vidya Sagar 3014, 3061
Vil_lyantseva, L.I. 0546
Vijay Kumar 1526, 1685, 1873, 1919
Vijay Laxmi, 0783-4, 0798-9, 1004
Vijayakumar, S. 0960, 1268
Vijayamma, R. 0665
Vijayaraghavan, B. 2428
Vilela, H. 2936, 2991
Villasmil, M.J. 1821, 1865
Vindhyanchal Singh. 1874
Vinod Kumar. 1356, 1584
Vinogradov, Z.S. 1288
Vinokurova, E.N. 2116-7
Virmani, S.M. 1481
Virmani, S.S. 0612-8, 0600-1
Viro, R. 1722
Viruspekshe, T.K. 2786
Vishakantala, M. 2600-2, 2640
Vishnu-Mitre. 0123
Viswanath, D.P. 0525, 1875-8, 2118
Viswanath, H.R. 0802
Viswanatha, S.R. 0399, 0778, 0961-2, 1146
Vitlivskii, V.A. 2429
Volgt, P.W. 0803, 1157-8, 1593, 2119
Volk, B.G. 1368
Volkova, L.D. 1293
Volkod, V.I. 2795
Volkosky, M. 1506
Vomel, A. 1425
Von Oppen, M. 3114
Vora, A.B. 0526-8
Vorob'ev, E.N. 1932
Voronin, N.G. 1877
Vorontsov, V.T. 0378
Vul'ev, V.K. 2909
Vyas, A.V. 0526-8
Vyas, D.K. 0529
Vyas, D.L. 1533, 1635, 1878
Vyas, S.R. 2136
Wade, R.H. 1074
Wadnerker, D.W. 2568
Wagle, D.S. 0408, 0472-3, 2779, 2860, 2862
Warankar, S.M. 0124, 1879
Walker, B.H. 1212
Walker, D.A. 0339
Walker, M.E. 1384
Walker, P.T. 2547
Wallace, A.T. 2867
Wallace, H.R. 2516
Wallace, M.H. 1650
Wallar, F.R. 1005
Wall, L.A. 1447
Wangikar, P.D. 2189
Warchalewski, J. 2712
Ward, C.Y. 2063
Warren, F.S. 3005
Warren, G.F. 1957
Warrington, I.J. 0457
Warsi, U. 1448
Wasylkowa, K. 0118
Watanabe, M. 1006, 2294
Waterhouse, D.F. 2941
Watson, V.H. 2020, 2063
Weber, J.E. 2863
Webster, O.J. 0841, 1046
Weinhard, P. 2146
Wells, H.D. 2230, 2353-4
Wendt, W.B. 1880
Werner, J.C. 1881
Wesley-Smith, R.N. 0125
West, S.H. 0272-3, 0322, 0327, 0518
Whalley, R.D.B. 1829
Wheeler, J.L. 2992
Wheelan, B.R. 0530
Whitehead, H.C.M. 0312, 1400
Whitman, P.C. 0310, 3042
Whitney, A.S. 0531, 1294-6, 1933
Widholm, J.M. 0390
Wieland, N.K. 1297
Wilkinson, F. 3083
Williams, A.E. 1298
Williams, H.R. 2787
Williams, J.T. 0237
Williams, R.D., Jr. 0238, 2036
Williams, R.F. 0157
Williams, R.J. 2190-1, 2301, 2355
Williams, W.T. 0290, 3029
Subject Index

1. **Amount of Text**

 - *Aceria folsichella*, 2478
 - *Aceria ignefulalis*, 2528, 2532
 - *Acronymmax londoffii*, 2813, 2823
 - *Aeneolamia*, 2825
 - *Aethus indicus*, 2818
 - *Aethus laticollis*, 2816
 - *African cereal streak*, 2449, 2450
 - *Amaranthus*, as weed, 1890
 - *Amsacta moorei*, 2590
 - *Atherigona*, 2566
 - *Atherigona approximata*, 2574
 - *Atherigona destructor*, 2563, 2570
 - *Atherigona nudiseta*, 2567
 - *Atta laevigate*, 2613
 - *Bacillus pumilis*, 2727
 - *Bagrada cruciferarum*, 2587
 - *Bathyodon fusiformis*, 2504
 - *Belonolaimus longicoudalus*, 2514
 - *Brachiaria plantaginea*, 2675
 - *Brachiaria purpurascens*, amino acid content, 2775
 - *Brachiaria ruziziensis*, genealogy, 0587
 - *Brachiaria brizantha*, digestibility, 3024, 3060, 3061
 - *Cicadulina mbila*, 2468
 - *Claviceps fusiformis*, 2164
 - *Claviceps microcephala*, 2169, 2184, 2299, 2301, 2330, 2348, 2355, 2356, 2363, 2364, 2372-2380, 2391, 2392, 2397, 2398, 2404, 2413-2419, 2422, 2423
 - *Cicadulina mbi*, 2468
 - *Claviceps fusiformis* See *Claviceps microphala*
 - *Claviceps microphala*, 0932, 2164, 2168, 2169, 2184, 2199, 2299, 2301, 2330, 2348, 2355, 2356, 2363, 2364, 2372-2380, 2391, 2392, 2397, 2398, 2404, 2413-2419, 2422, 2423
 - fungicidal control, 2357
 - toxicity, 3068, 3069, 3072, 3075, 3078

2. **Additional Text**

 - grazing and rumination time, 2961
 - growth, temperature effect, 0499
 - harvesting interval, 2057
 - nematodes, 2507
 - nitrogen fertilizers, 1749
 - NPK fertilizers, 1611
 - nutritive value, feed, 2884, 2885, 2961, 2962
 - protein content, nitrogen fertilizers effect, 1749
 - run off irrigation, yield 1440
 - temperature effect, growth, 0499
 - nitrogen fertilizers, 1749
 - NPK fertilizers, 1611
 - run off irrigation, 1440
 - yield potentiality, 1280
 - *Brachiaria piligera*, *African cereal streak*, 2449, 2450
 - *African cereal streak*, 24, 2 protein effect, 1749
 - *Africcerealstr*, 24, 2462
 - *Acigona ignefusalis*, 2528, 2532
 - *nitrogen fertilizers*, 1749
 - *African cereal streak*, 2449, 2450
Cnaphalocrocis medinalis, 2624, 2640

Cola, chromosome elimination, trisomic, 0738

Cola ischiyma-jobi

autotetraploid, 0795, 0796
digestibility, chemical composition, 2707
inheritance, plastid, 0735

Contarinla sorghi, 2584

Cryptolestes ferrugineus, 2608

Curvularia, 2214, 2215, 2233

Curvularia lunata, 2211, 2212

Curvularia pallescens, 2198

Curvularia pennisetl, 2219, 2257, 2269

Cyaneolytta aceleon, 2641

Cynodon mosaic virus, 2441

Digera arvensis, as weed, 1922

Digitaria, 0111

as weed, 1959, 1971, 2026
in turf grass, 1959
Australia, 1282
chemical composition, harvesting frequencies, 2056
Costa Rica, 1122
cytology, 0820
digestibility, 2055, 2913
diseases, Pyricularia grisea, 2244
frosting, 0331
germplasm collection, Africa, southern, 0221
harvesting frequencies, digestibility, 2055, 2056
India, 1275
multiplication, 0299
nitrogen fixation, by Spirillum, 2131
nutritive value, feed, 2913
oxalate content, toxicity, 2778
sowing method, 1572
stem, anatomy, 0178

Digitaria abyssinica, chromosome number, 0602

Digitaria adscendens, as weed, 1912, 1913, 2104

Digitaria annamphila, nitrogen and phosphorus fertilizers, 1629

Digitaria bicornis, Sclerospora rayssiae, 2308

Digitaria ciliaris
chemical composition, 1325, 1326
chromosome number, 0785
crop establishment, 1350
drought resistance, 1325
germination, dry season effect, 1326

Digitaria decumbens, 1198, 1234
calcium fertilizers, digestibility, sheep, 2972
carbohydrate accumulation, temperature effect, 0322
carbohydrate composition, digestibility, 0329
carbohydrate metabolism, plant growth regulators and temperature effect, 2073
chemical composition, 2875
phosphorus fertilizers, 1600
urea, 2760
cutting height, forage yield, 2057
digestibility, 2768, 2935, 2972, 3024, 3025, 3029, 3041, 3046, 3050, 3051, 3053
diseases
Puccinia oahuensis, 2562
West Indies, 2316
Puccinia penniseti, Pyricularia grisea and Pyricularia setariae, West India, 2223
drymatter yield, 2780
irradiation effect, 1389
entisols, liming effect, 1383, 1722
environment effect, 1323
feed supplements, palatability, 2935
forage yield
foliage height, 1296
harvesting, 2057
phosphorus fertilizers, 1722
germplasm, 1143
grazing, 1198, 1234, 2059, 2060
growth, 0273, 0531, 1383, 1600
irradiation effect, photosynthesis, 0518
irradiation effect, 1389, 1400, 1443
leaves/stems ratio, nitrogen content, 1323
liming effect, 1383, 1634, 1722
mineral content, 2780
nitrogen content, 1323
nitrogen fertilizers, 1631, 1632
digestibility, 3051
drymatter yield, 1389
palatability, 3051
protein content, 1389
NPK fertilizers, 1856, 1857
nutritive value, feed, 2876, 2896, 2900, 2942
palatability, 2935, 2972, 3046, 3050, 3051
pelleting effect, digestibility, 3046
pests, aphids, 2562
Schizaphis, Australia, 2555
phosphorus fertilizers effect
chemical composition, 1600
forage yield, 1722
growth, 1600
photosynthesis, 0271, 0321, 0518
plant growth regulators effect, 0273, 0531
potassium content, 2787
protein content, 1389
protein supplements, digestibility, 2935
regrowth, plant growth regulators, 0531
soil conservation, 1360
soil phosphorus, liming effect, 1380
temperature effect, 0322
urea fertilizers effect, 2760
varieties, 1147
yield, Irrigation effect, 1400, 1443
liming effect, 1634
yield potentiality, tropics, 1280

Digitaria didactyla
as weed, 1989
diseases, sugarcane mosaic virus, Australia, 2476
drymatter yield, 2780
germination, 0310
mineral content, 2780
seed production, 0310

Digitaria eriantha, digestibility, 3061

Digitaria halter, taxonomy, 0233

Digitaria pentzil
chemical composition and
diseases, Puccinia oahuensis, 2562
growth, 1248
pests, aphids, 2562
urea effect, chemical composition,
digestibility and yield, 2760
varieties, 1073

Digitaria polensans, oxalate content, 2761

Digitaria sanguinalis
2007, 2010
CO2 fixation, 0342, 0344
chloroplasts, 0422
protein content, 0343
diseases
Helminthosporium giganteum, 2165
Pyricularia oryzae, 2298
nitrigenous fixation 2129
pests, Aethus indicus, 2618
photophosphorylation, 0422
photosynthesis, 0339, 0342, 0344
photosynthetic assimilates, translocation, 0383
respiration, CO2 release, 0538

Digitaria selvatica
fertilizer effect, 1339, 1340

Digitaria smithii
fertilizer effect, stomatal density, 1813
leaves, light intensity effect, 0505
nitrigenous fixation, 2145
oxalate, toxicity, 2761
rhizosphere microflora, 2145

Digitaria swaziandensis
digestibility, chemical composition, 3024
mineral composition, 2678

Digitaria valida
digestibility, chemical composition, 3024
mineral composition, 2678
nitrogen fertilizers, 1718
potassium fertilizers, 1720, 1721

Digitaria valutina, as weed, 1974

Drechslera, 2222

Drechslera nodulosa, 2194, 2210

Echinochloa
as weed, 2025
Brazil, 0103
chromosomes, 0587
cytology, 0909
drought resistance, varieties, 1134
epidermis, 0147
grafting, variation, 1006
nutritive value, feed, 2917
pests, black fly, 2817
taxonomy, 0218
USA, 0204
variation, by grafting, 1006
varieties, drought resistance, 1134

Echinochloa colona
diseases, Ephelis oryzae, 2394
intercropping with maize, 1983
introduction, 1207
salinity resistance, 1418
seed dormancy, 2104
selecton, 0852
varieties, 1149

weed effect, 1983

Echinochloa colonus
diseases, Helminthosporium rostratum,
India, 2236
distribution, soil properties effect, 1352
nematodes, Heterodera graminiphila, 2498

Echinochloa crus-galli, 0652
absorption, 0316
herbicides, 0400, 0403
adaptability, 1551
agronomic characters, selection, 1002
amino acid content, 2711
in rice, 2021, 2022
in sorghum, 1952
callus cells, anatomy, 0156
CO2 fixation, 0342, 0344
cyanamide effect, 2083
photosynthesis, 0339, 0342, 0344
photosynthetic assimilates, translocation, 1330
diseases
seed-borne fungi, 2296
Ustilago paraodoxa, 2411
wheat streak mosaic virus, 2478
Xanthomon translucens, 2436

Digitaria setivalva
wheat streak mosaic virus, 2478
fertilizer effect, 1339, 1340
dries, 0303
weeds, 1909
metabolism, herbicides, 0403
irrigation, 1405
nitrogen fertilizers, 1718
potassium fertilizers, 1720, 1721
metabolism, nutrients, 0280, 0466
nematodes, Hoplolaimus Columbus, 2496
nitrogen fertilizers effect, 0290, 1575, 1752
pests, Australia, 2641
phosphorus fertilizers effect, yield, 1575
protein, 2711
salinity effect, chemical composition, 1330
seed dormancy, 2081
seed-borne fungi, 2296
selection, agronomic characters, 1002
sowing method, 1551
sowing time effect, growth and yield, 1594
spacing, yield, 1575
taxonomy, 0202, 0203
translocation, herbicides, 0400, 0403
water requirement, 1405
weed control, herbicides, 1909
yield	nitrogen and phosphorus fertilizers effect, 1575
sowing time effect 1594
spacing effect, 1575
yield components, path analysis, 0974
Echinochloa oryzicola, tetraploid, 0807
Echinochloa pyramidalis
diploid, 0807

Subject Index 135
self-incompatibility, 0806

Echinochloa utilis
distribution, temperature effect, 1314
germination, environment effect, 0540
mesocotyl elongation of seedlings, 1303
regrowth, temperature effect, 0468

Eleusine, 0106
acid detergent fibre, 2779
Africa, 0104
breeding for protein content, 0976
cellulose content, 2779
character association, 0585
chromosome number, 0654
cytology, 0909
grazing, 2048
hybrids, interspecific, 0584
protein content, breeding for, 0976
Stem elongation of seedlings, 1303
regrowth, temperature effect, 0468

generation, 0540
Eleusine, 0583
acid detergent fibre, 2779
Africa, 0104
breeding for protein content, 0976
cellulose content, 2779
character association, 0585
cytology, 0909
protein content, breeding for, 0976

Eleusine africana, genome analysis, 0583

Eleusine compressa
chemical composition, 2737
density and quantitative data, 1269

Eleusine coracana, 0008, 0012, 0060, 0107, 0134, 1540
actinomycete flora of rhizosphere, 2127
adaptation, 1209, 1239
additive effect, fertilizers, 1823
agronomy, India, 1256
affloris
phosphorus availability, 1712
phosphorus fertilizers, 1713
algae culture, 2138
amino acid analysis, 2711, 2749
amino acid composition, 2712, 2781
amino acid content, 2698, 2786
leaves, 2737
malt extracts, 2738
amino acid spectrum, 1847
aneuploid, 0743, 0959
anion cation ratio and cation exchange
capacity effect, absorption, 0497, 0498
assimilation rate, 0415
auxin-phenol effect, diseases, Helminthosporium nodulosum, 2299
β chromosomes, 0745
biochemistry and ultrastructure of protein bodies, 0247
biscuits, 2856
blooming, 0368
blooming time, inheritance, 0737
breeding, high yielding varieties, 0925, 0970
calcium ammonium nitrate, 1597, 1875, 1876
calcium content, 1809, 2676
calcium fertilizers, 1809
carbohydrate metabolism, diseases, Helminthosporium nodulosum
effect, 2276
CO₂ assimilation, 0438
chloroplasts
biophysical characteristics, 0439, 0440, 0443, 0444
photochemical activities, 0444
temperature effect, 2848
continuous cropping, Sudan, 1451
correlation, 0569, 0576

grain yield and tillers, 1230
crop residue, as green manure, 1815
crop-weed composition, 0461, 1912, 1928
cultivation, 1258
cutting effect, yield, 1681
defoliation effect, grain size, 0366
density effect, growth and yield, 1433, 1434
disease resistance
Helminthosporium, 2160, 2218, 2275, 2280
Sclerotium, 2218
diseases
drechslera nodulosa, 2194, 2210
Eleusine mosaic virus, 2440, 2459, 2472, 2483
India, 2447, 2448, 2454, 2455, 2457, 2458, 2475
nitrogen fertilizers effect, 2465
foot rot, India, 2203
Helminthosporium, 2195, 2247, 2263, 2278, 2290
humidity effect, 2284, 2292
phenolic content, 2277, 2285
spore germination, 2288
Helminthosporium leucostyllum, 2240
Helminthosporium nodulosum, 2220, 2240, 2274, 2285, 2289
oxidative enzymes, 2287
Helminthosporium tetrarhema, 2274, 2279, 2282
auxins effect, 2283
phenolic effect, 2281
Marasmius candidus, 2249
Melanopsichium eleusinis, 2383
Pseudomonas eleusineae, India, 2430
Pyricularia, 2258
Pyricularia oryzae, sporulation, 2217
Pyricularia setariae, 2184, 2245, 2260, 2298
fungicides, 2224, 2271, 2272
India, 2216, 2227, 2228, 2270
phytotoxicity, 2259
Sclerophthora macropora, 2315, 2333
India, 2300
stored grain, 2420
sugarcane mosaic virus, 2442
virus, 2474
India, 2464
distribution, 0208
temperature effect, 1314
drought, India, 1429
drought resistance, 0802, 1129
dryland, fertilizers effect, India, 1205
varieties, 1057
dry matter, 0521, 1578, 1579
earliness, 0948, 0961, 0962,
environment effect, germination and growth, 1912
evolution, 0206
feed supplements, 2829, 2934
fertilizers
additive effect, 1823
dryland, 1205
rainfed cultivation, 1603, 1707, 1783, 1792, 1843
spacing effect, 1701
yield, 1681, 1879
folic acid content, germination effect, 0253
food
 effect on cholesterol level, 2828
lipid level, 2827, 2832
 nutritive value, 2810, 2816, 2819, 2826
 processing, 2658
starch content, 2815
food supplements, 2817, 2819
proteins, 2801, 2802, 2817, 2819
rice, 2801
sorghum, 2818
Vigna sinensis, 2818
intercropping with forage, 1206, 2925
 legumes, 2130
forage quality, 2899
 yield, seeding rates effect, 1571
fungicidal for Pyricularia oryzae, 2224, 2271, 2272
 genome analysis, 0583, 0586
 genotype-environment interaction, 0666, 1211
 genotype, drought resistance, 1129
 germinability, 0391
 germination
 environment effect, 1912
 osmotic pressure effect, 0435
 plant growth regulators effect, 0300, 0383
 salinity effect, 0376
 sodium effect, 0434, 2118
 temperature effect, 1314
 germplasm collection, 0208, 0210
 grain for broilers, 3007
 grain development, plant growth regulator effect, 0300
 grain quality
 NPK fertilizers effect, 1786
 soil deficiency effect, 1378
 sulphur effect, 1865
 grain size, 0366
 grain yield
 dry matter contribution, 1252
 nitrogen fertilizers, 1255, 1708
 NPK fertilizers, 1260, 1786
 physiology, 0427
 spacing, 1255
 sulphur effect, Uganda, 1885
 tillers, 1230
 variation, 0910
 varieties, 1127
 green manure, crop residue, 1815
 growth
 density and moisture effect, 1433, 1434
 nitrogen fertilizers, 1433, 1434, 1858
 NPK fertilizers, 1760, 1786
 phosphorus and potassium fertilizers, 1760, 1786
 plant growth regulators effect, 0297, 0325, 0521
 salinity effect, 0376
 seed treatment, sodium effect, 2118
 soil moisture effect, 1348
 soil properties effect, 1361
 tissue culture, 0432
 water stress effect, 1414
head characters, 0149
head clipping effect, grain size, 0366
herbicide effect, microbial activity, 2139
high yielding varieties, 1085, 1131
 breeding for, 0925, 0970
 protein content, 1075
 humidity effect, Helminthosporium, 2284, 2292
inheritance of blooming time, 0737
quantitative characters, 0594
improvement, 0100
interchange, induced by irradiation, 0744
intercropping with legumes, 2130
red gram, 1518
irradiation, 0756
 mutation, 0679, 0703, 0771, 0744
irrigation, 1429, 1446, 1921
 karyology, 0211, 0665
leaf area, 0164
 genotype-environment interaction, 0666
 leaves, amino acid content, 2737
lignin effect, 1211
 potassium fertilizers, 1808
 lipid level in human, 2827, 2832
 germinability, 0391
 major nutrient, yield, 1852
 malt extracts, amino acid content, 2738
 manganese, absorption, 1852
 as micronutrient, soils, India, 1782
manure, 1483, 1778, 1780
 NPK fertilizers, 1760, 1786
 mutants, 1146
 sulphur effect, 1885
manipulation, 0618
 asynaptic, 0746
 irradiation, 0679, 0703, 0771, 0774
mutations, chemical, 0679, 0771
 NPK fertilizers, 1786
 mutants, 1146
 earliness, 0961, 0962
 variability, 0971
 growth, 1433, 1434, 1838
water stress effect, 1414
irrigation effect, 1705
nitrogen fertilizers, 1570, 1663, 1706, 1778, 1780, 1805, 1838, 1858, 1863
 absorption, 1691, 1859
agronomic characters, 1581
 amino acid spectrum, 1847
 effect on diseases, Elaeis oleracea, 2130
 depth, 1433, 1434, 1838
 foliar spray, 1844
 grain quality, 1786
 grain yield, 1255, 1708
 growth, 1433, 1434, 1838
 irrigation effect, 1705
phosphorus availability, 1691
protein content, 1847
rainfed cultivation, 1599, 1775
spacing, 1806
tillering, 1530
yield, 1433, 1434, 1581, 1838, 1853
nitrogen fixation, 2146
nitrogen metabolism, photosynthesis, 0436
NPK fertilizers, 1637
grain quality, 1786
grain yield, 1760, 1786, 1853
nutritive value
feed, 2829, 2837, 2927, 2934
food, 2816, 2819, 2826
food supplements, yeast, 2820
nursery practices, 1531
nutrient composition, 2711, 2757, 2804
cosmic pressure effect, germination, 0435
path analysis, 0683, 0926
performance trials, 0100
varieties, India, 0935, 1041
pest control, 2545
pests, 2829
Atherigona nudiseta, India, 2567
Bsgarda crucifera, India, 2602
Cnaphalocrocis medinalis, India, 2624, 2640
Heliothis armigera, India, 2592
Heteroneura setariae, 2560
nitrogen fertilizers effect, 2554
Lepidopterus, India, 2591
Lyganeus pandurus, India, 2601
Marasmia trapozalis, India, 2534
Ntrogen fertilizers, 2554
Oxycarenus laetus, India, 2602
Pakistan
Plistia signata, 2529
Pseudeola separata, India, 2575
Sesamnia inferens, India, 2567
Tetrancrea nigriabdominalis, bionomics, 2556
pesticides, 2554
phenolic content effect
diseases, Helminthosporium, 2277, 2281, 2289
photosynthesis, 2295
photosynthesis, 2295
photosynthesis, 0296, 0371, 0436-0438, 0442, 0443
photosynthetic assimilates, translocation, 0441
plant growth regulator effect, 0525
photosynthetic pigments, 0341, 0439
phytosphere microflora, 0247
phytoxid of Pyricularia setariae, 2259
plant growth regulators effect, 0297, 0300, 0383, 0396, 0426, 0521, 0522, 0525
pollen, germination and morphology, 0399
potassium availability, nitrogen fertilizers effect, 1691
potassium fertilizers, 1605, 1837, 1886
absorption, 1648
fertilizer spray, 1844
grain quality, 1786
grain yield and growth, 1760, 1786, 1886
liming effect, 1858
yield, 1648, 1853
processing, food, 2658
production, Africa, 1184
protein, amino acid analysis, 2711, 2749
protein bodies, biochemistry and ultrastructure, 0247
protein content, 2786, 2805
high yielding varieties, 1075
nitrogen fertilizers effect, 1847
nutritive value, food, 2816, 2819
sulphur fertilizer effect, 1847
varieties, 1105
quantitative characters, inheritance and variation, 0594
rainfed cultivation, 1189, 1464, 1482, 1928
fertilizers effect, 1599, 1603, 1707, 1775, 1783, 1792, 1843
soil moisture depletion, 1430
regeneration, 0432
regrowth, USSR, 1213
respiration, Helminthosporium nodulosum, 2289
rhizosphere microflora, 0254, 2124-2128, 2133, 2138
rhizosphere mycoflora, 2141
rooting, 0513, 1369
rossetle habit, mutation, 0774
rotational cropping, 1482, 1483, 1505
salinity effect, 0376, 1357
sea water as soil nutrient, 1350
seed
fungicides effect, 2400
germinalbility, 0391
hardness, 2090, 2098, 2100
microflora, 2142
moisture content, 0391
production, 0461
storage, 2400
tetrazolium test, 2066
treatment, 0434, 2099, 2118
viability, 2400
seeding rates effect, yield, 1571, 1681
selection, 0683, 0930
sodium effect, 0434, 2118
soil deficiency effect, grain quality and yield, 1378
soil fertility, 2100
soil microbiology, 2139
soil moisture effect, 1348, 1351
soil moisture depletion pattern, 1430
soil nutrient absorption, 0461, 1341, 1350
soil phosphorus, 1692
soil properties, 1361
soil tests, 1322
salt tests, 1354
sowing time, 1556, 1583
spacing, 1570, 1581, 1582
dry matter, 1578, 1579
fertilizers, 1701, 1806
Subject Index

139

grain yield, 1255

tilling, 1530
 yield, 1581
 stability, 0597
 starch content, 2732, 2733, 2815
 storage, 2400
 amino acid spectrum and protein content, 1847
 grain quality and grain yield, Uganda, 1885
 summer, forage, 1206
 temperature effect
 cooking quality, 2846
 distribution and germination, 1314
 thinning effect, grain size, 0366
 tillering
 grain yield, 1230
 nitrogen fertilizers, 1530
 plant growth regulator effect, 0521
 spacing, 1530
 trace studies, phosphorus fertilizers, 1710, 1770
 transplantation, 1556
 urea, mineralization, 1742
 urea-formaldehyde fertilizers, 1669
 variation, 0550, 0596, 0715
 genotype environment interaction, 0666, 1211
 grain yield, 0910
 quantitative characters, 0594
 yield, 0960
 varieties, 1021, 1022, 1026, 1028, 1086, 1100
 dryland, 1057
 grain yield, 1127
 performance trials, India, 1935, 1041
 protein content, 1101
 vertisols, soil tests, 1323
 vitamin content, 2730
 water conservation, India, 1448
 water management, India, 1416
 water requirement, 1437
 India, 1395
 water stress effect, growth and yield, 1414
 weed
 Digitaria adscendens, 1912, 1913
 Solanum elaeagnifolium, 1929
 weed control, 1912, 1913, 1916, 1927
 yield, 2100
 cutting height, 1681
 density effect, 1433, 1434
 fertilizers, 1851, 1879
 major nutrients, 1852
 moisture effect, 1433, 1434
 nitrogen fertilizers effect, 1433, 1434, 1581, 1838
 NPK, 1853
 potassium fertilizers, 1648, 1814
 salinity effect, 1357
 seed treatment, 2099
 seeding rate, 1681
 soil deficiency, 1378
 soil moisture, 1348, 1351
 soil nutrients, 1341
 spacing, 1581
 water stress, 1414
 yield components
 plant growth regulator effect, 0522
 variation, 0960
 yield increase, 1190
 Yield potentiality, 0948, 1223, 1254
 Eleusine flocculata, morphology, cytology and fertility, 0584
 Eleusine indica, 0127
 photosynthesis, enzyme, 030
 Eleusine mosaic virus, 2440, 2447, 2448, 2454, 2455, 2457-2459, 2465, 2472, 2475, 2483
 Eleusine saegi, as weed, 1995, 1996
 Eleusine tristachya, cytology, fertility and nitrogen fertilizers, 1530
 Ephelus oryzae, 2394, 2401
 Eragrostis, chromosome analysis, 0563
 Eragrostis, breeding, 0840
 germination, salinity effect, 0459
 Eragrostis abyssinica, 0128
 fertilizer effect, 1597, 1680
 Eragrostis chalcantha, diseases, African variation, 0550, 0596, 0715
 cereal streak, Africa, East, 2449, 2450
 genotype environment interaction, 0666
 Eragrostis chloromelas, digestibility, 3061
 1,211
 Eragrostis cilianensis, Sclerophthora macrospora, 2339, 2340
 Eragrostis ciliaris, yield, 0960
 Ephelis oryzae, 2394
 varieties, 1021, 1022, 1086, 1100
 Libya, 0228
 Eragrostis curvula, 1593
 apomixis (facultative), 0603
 botanical characters, selection, 1007
 carbohydrate metabolism, temperature effect, 0340
 chemical composition, digestibility, 2707
 chloroplasts, peripheral reticulum, 4327
 cold resistance, leaves, 0458
 drought resistance, 0537
 selection for, 1007, 1008
 drymatter yield, nitrogen fertilizers effect, 1855
 germination
 plant growth regulators effect, 0324
 soil pH effect, 1377
 water absorption effect, 0407
 germplasm, 1157-1159
 growth
 sulphuric acid effect, 1801
 temperature effect, 0340
 leaves, cold resistance, 0458
 mowing effect, 1593
 nitrogen fertilizer effect, drymatter yield, 1855
 run off irrigation effect, yield, 1440
 seed dormancy, 2119
 selection, 1007, 1008
 soil nutrient, sulphuric acid effect, 1801
 soil pH effect, germination, 1377
 starch accumulation, temperature effect, 0340
 temperature effect, 0340
 varieties, 1157-1159
 water requirements, 0537
 yield, run off irrigation effect, 1440
Eragrostis lehmanniana, 1970-1976

- 140 MOets 1970-1976
- Eragrostis pectinacea, Sclerospora macrospora, 2339, 2340
- Eragrostis superba
 - chemical composition, 2783
 - digestibility, 2707
 - nutritive value, feed, 2894
- Eragrostis tenuifolia, diseases, African cereal streak, Africa, East, 2449, 2450
- Eragrostis tremula, Ephelis oryzae, 2394, 2401
- Euprotis virguncula, 2632, 2639
- Fusarium, 2426
- Helminthosporium carbonum, 2250
- Helminthosporium hawaiire, 2182
- Helminthosporium leucostylum, 2240
- Helminthosporium maydis, 2250, 2273
- Helminthosporium nodulosum, 2220, 2240, 2274, 2276, 2286, 2287, 2289
- Helminthosporium oryzae, 2234
- Helminthosporium panici-miliacei, 2225, 2234
- Helminthosporium rostratum, 2219, 2229, 2236-2328, 2241
- Helminthosporium sacchari, 2235
- Helminthosporium setariae, 2230, 2232, 2234, 2291, 2293
- Helminthosporium tetramera, 2274, 2279, 2281-2283, 2297
- Helminthosporium victoriae, 2233, 2234
- Helminthosporium yamadae, 2234
- Herpelogramma licarsisalis, 2588
- Heterodera gambiensis, 2509
- Heterodera traminiphila, 2498
- Heterodera zea, 2517
- Hieroglyphus nigeroreplefus, 2612, 2621, 2631
- Holotrichia See Lachnosterna
- Hoploalismus columbus, 2498
- Hoploalismus indicus, 2512
- Keraussaria anguillata, 2626
- Lachnosterna, 2249, 2548, 2550, 2552, 2553
- Lygaeus parda, 2601
- Maize dwarf mosaic virus, 2445, 2446, 2479
- Maize rough dwarf mosaic virus, 2451
- Maize streak virus, 2443
- Maresmia trapezalis, 2534, 2636
- Merasmius candidus, 2249
- Melanopschiom elusinis, 2383
- Melolodyne, 2492, 2500
- Melolodyne incognita, 2499
- Millets (unspecified), 0014, 0050, 0053, 0059, 0072, 0073, 0086, 0089, 0093, 0096, 0099, 0102, 0108, 0121
- abrasive and attrition type mills, 2670
- absorption ir. cadmium distribution, 0313
- absorption (nutrients), 0317-0319, 0334
- Africa. West, 0075, 0086, 0112
- agrometeorology, cropping systems, 1499, 1544
- agronomic characters, variation, 0896
- agronomy, 1245
- Upper Volta, 1202
- Akron, 0062
- amino acid composition, 2712, 2781
- ammonium (fixed), use of, 1702
- antipodal cells, histechemistry, 0161
- as weed, 1897, 1898, 1904, 1939, 1945, 1948, 2011, 2027
- in maize, 1940, 1942, 1944, 1947, 1951, 1990
- assimilatory surface, yield, 0329
- Australia, 1232, 1299
- bakery products, Chad, 2838
- baking products, marketing, 2849
- baking quality, flours, 2847
- bibliographie, 0003, 0005
- for bird, 3005
- blooming, use in hybridization, 1018
- brackish water, irrigation, 1413
- brans effect on digestibility, 3032
- breeding, 0977
- disease resistance, 0894
- germplasm collection, 0924
- grain yield, 0869
- high quality varieties, 0898
- mechanization of, 1017
- brewing, 2864
- calcium content, trace fertilizers effect, 1655
- carbohydrate-nitrogenous content, day length, and temperature effect, 1307
- cca assimilations, 0261, 0305
- cell wall lignin and carbohydrate growth effect, 2885
- Chad, 0026
- chemical composition, 2088, 2767
- liming effect, 1346
- manures, 2774
- micronutrient, 1346
- microorganism effect, 2727
- milling products, 2889
- phosphorus fertilizers effect, 1651
- chlorophyll accumulation, temperature effect, 0320
- cholesterol level on rats, 3019
- cooking value, flours (Mixed), 2846
- copper deficiency, 1774
- crop deterioration, pests, Chad, 2815
crop insurance, 3103
crop protection, 2193
cropping systems, 1499
cultivation, 1522
cytology, 0887
day length effect, 1307
dehulling, 2648, 2670
digestibility, 3013, 3030
disease resistance, breeding, 0894, 0899
diseases, 2148, 2167, 2171, 2183, 2193
doubling, 2156, 2157

dryland, 1267
fertilizers, 1403
dry matter yield, nitrogen fertilizers effect, 1613
dwarfness, 1215
earliness, 1148, 1183, 1536, 1558
ecomics, 3065, 3091, 3094
environment effect, 1265
enzymes
phosphorus metabolism, 0544
photosynthesis, 0509
feed, grain, 2655
for rats, 3015
for swines, 3014
feed supplements
for rats, 3017, 3018
for swines, 3009
for turkeys, 3001
fermented products, 2845, 2857-2859
fertilizers, 1649, 1653, 1744, 1887
dryland conditions, 1403
India, 1643
irrigated condition, 1403
rotation cropping, 1598
soil (sandy), 1799
yield, 1278, 1645, 1768
fertilizers (compound), 1887
flours, 2839
baking quality, 2847
milling, 2643, 3090
polysaccharides, 2809
storage, 2651
flours (Mixed), cooking value, 2848
tolar spray, urea fertilizers, 1715
food
nutritive value, 2796, 2798, 2799, 2806, 2811, 2824, 2836
protein content, 2812, 2822
food supplements, 2879
nutritive value, 2821, 2823
forage, 2807, 2808, 2869, 2870, 2886, 2888, 2903, 2924
Brazil, 2917
France, 1188
India, 0117
intercropping, 1504
Madagascar, 1192
Niger, 2889
nitrogen fertilizers, 1751
potassium fertilizers, 1880
Puerto-Rico, 1279
Reunion, 0051
seed production, Upper Volta, 2077
Senegal, 1228
Fusarium, Hungary and USSR, 2426
soil productivity, ploughing effect, 1524
sowing time, 1541, 1557, 1574
USA, 2919
forage yield, Thailand, 1:99
germination, vertisols, 1447
germplasm collection, 0191, 0193, 0243, 0924
Senegal, 2157, 2158
Sphacelotheca reitana, 2384
genepool, 0190
Stachybotrys, Hungary and USSR, 2426
genetic resources, 0200
sugar cane mosaic virus, 2445, 2446
India, 0207
Ustilago nuda, 2385
glycolipids, 2790
genotypes, 1091
for birds, 3005
dry matter, 2655
dry matter yield, nitrogen fertilizers effect, 1613
milling, 2649
nutritive value, rats, 3019
processing, 2654
shattering resistance, 0817
for swines, 3009
sowing time effect, 1546
for turkeys, 3001
growth
liming and micronutrient effect, 1346
nitrates fertilizers effect, 1689
plant growth regulator effect, 0541
soil pH effect, 1689
harvesting equipments, 2040, 2044
harvesting qualities, 2054
heading, 0262
herbicides, weed control, 1903
high yielding varieties, 1052
Hungtow Island, 1169
hybridization, 0828
blooming, use of, 1018
with sorghum, 0985
Improvement, 0047, 0119
Ghana, 0097
India, 0017-0022, 0056, 0096
varieties, 0958
India, 0035
Inflorescence, Aleurone transfer cells, 0188
inheritance, 0548
intercropping, 1471, 1477, 1504
irradiation disinfestation, grain, 2652
irradiation, 1435
brackish water, 1431
fertilizers, 1403
yield, 1445
Kharif, India, 0124, 1164-1167
production, India, 1251
land reclamation crop, 1651
leaf temperature, 0519
leaves, area and productivity, 0172
variation, 0151, 0165
liming effect, growth, 1346
Malawi, 0090
Mali, 0074-0076
melting, 2851, 2855
manganese, soils (saline), 1788
manures effect, 1657, 2774
marketing, 3105, 3107, 3111, 3112
Africa, Central, 3095
baking products, 2849
Mali, 3117
Nigeria, 3108
mechanization of breeding process, 1017
mercury and methylmercury content, 2679
micronutrient effect, 0265, 1346
microorganism effect, 2727
milling, 2668
flours, 2643
India, 2649
milling equipments, 2648, 2669, 2670
milling products, 2669
mills, abrasive and attrition type, 2670
minerals, absorption, 1334
mixed cropping, Nigeria, 1456
moisture content, cropping systems, 1499
seed storage, 2673
molybdenum effect, 1601
multiple cropping, 1452, 1511
Nigeria, 1459
mutagens (chemical) effect, 0674, 0707, 0724
mycotoxins, 2426
Near East, 0040, 0100, 0101
nematodes, Tylenchorhynchus gladiolatus, Gambia and Senegal, 2497
Niger, 0029, 0077
nitrate fertilizers effect, growth, 1689
nitrogen content, 1613
nitrogen dynamics, 1614, 1615
nitrogen fertilizers, 1431
ammonium (fixed), use of, 1702
cropping systems, 1769
drymatter yield, 1613
forage, 1751
nutritive value, 1657
rainted cultivation, 1613
Senegal, 1658
soil transformation, 1637, 1703
soils (sandy), 1614, 1615
yield, 1651, 1657, 1689
nitrogen metabolism, photoperiod effect, 0511
nutritive value
feed, broilers, 3004
feed, rats, 3019
feed, swines, 3008, 3010, 3012, 3013
feed supplements, rats, 3017
fertilizers effect, 1799, 1887
food, 2798, 2799, 2806, 2811, 2824, 2836
food supplements, 2821, 2823
manures and nitrogen fertilizers effect, 1857
paleobotanical studies, 0065, 0081, 0114, 0123
palynology, 0141
performance trials
Sierra Leone, 1077
USA, 1115
yield, 1116, 1118
pest control, grain storage, 2604
pest resistance, 2625
pests, 2521-2523, 2527, 2539
Amsacta moorei, 2590
Australia, 2537
Bangladesh, 2533
Blissus leucopterus, 2630
Hieroglyphus nigropleatus, 2621, 2631
Holotrichia See Lachnosterna
India, 2524, 2525, 2535, 2536
Kraussaera anguifera, India, 2626
Lachnosterna, India, 2550
Lachnosterna consanguinea, 2552
Mylocoeus, India, 2605
Mythimna separata, 2577
Nepal, 2541
Rhizopertha dominica, 2606
Schizaphis graminum, pesticides resistance, 2559
Sitophilus oryzae, 2606
phenotype, variability, 0549
Philippines, 0023
phospholipids, 2790
phosphorus content, trace fertilizers effect, 1655
phosphorus fertilizers, 1431, 1668, 1686, 1702, 1743, 1787, 1880
chemical composition, 1651
phosphorus metabolism, enzymes, 0544
plant growth regulators effect, 0542
photoperiod effect, nitrogen metabolism, 0511
photosynthesis, 0374, 0377
enzymes, 0509
metabolic regulation, 0283, 0287, 0288, 0291, 0302-0304
photosynthetic assimilates, 0329
photosynthetic productivity, 0431
minerals effect, 0378
soil moisture effect, 0431
photosynthetic tissues, 0279
plant growth regulators, 0541, 0542
ploughing effect, 1524
polyploid, biochemistry, 0490
potassium fertilizers, 1698, 1702, 1880
yield, 1355
processing, feed, 2647, 2654, 2682, 3011
production, 0040, 0057, 0083, 0119
Africa, 3084
Africa, Central, 3095
France, 0011
India, 1251, 3088, 3098
Iraq, 0074
Nigeria, 3102
Upper Volta, 0110
USSR, 1191
protein content, 2709
food, 2812, 2822
food supplements, 2814
protein quality, 2710
proteins, plant growth regulator effect, 0542
rainfed cultivation, 1183, 1613, 2541
rainy season, 0054, 1393, 1544
research network, 0122
respiration, 0428
salinity effect, 0545
temperature effect, 0450
riboflavin glycosides biosynthesis, 2782
roots, cation capacity, 0245
rotational cropping, 1465
fertilizers effect, 1596
salinity effect, respiration, 0545
seed
chemical composition, 2088
enzymes, 2085
herbicides effect, 1938
seed certification, 2064
seed characters, 2067
seed mycflora, Egypt, 2396
seed production, 0040, 2114
Kenya, 0262
seed quality
temperature effect, 2108
yield, 2092
seed storage, 2673
seed viability, storage effect, 2673
seed weight, 2088
selection, 0548, 0869
disease resistance, 0899
Senegal, 0037, 0038, 0078-0080
shattering resistance, grain, 0817
sodium as a micronutrient, 0265
soil crushing effect, yield, 1347
soil fertility, Kenya, 1345
Soil fumigation effect, yield, 1920
soil grinding effect, soil property and yield, 1347
soil pH effect, growth and yield, 1689
soil phosphorus, 1365
deficiency, 1743
soil productivity, ploughing effect, 1524
soil property, soil grinding effect, 1347
soil transformation, nitrogen fertilizers effect, 1637, 1703
soil water content, 1441
soils
acidification effect, 1362
bibliographies, 0001, 0002
nitrification, 0249
water content, dry season, 1441
Soils (chemozems) 12780
soils (ferruginous), 1334, 1392, 1614, 1786
soils (sandy)
fertilizer effect, 1799
nitrogen fertilizers, 1614, 1615
potassium fertilizers, 1743
sowing time, 1576
forage, 1541, 1557, 1574
grain yield, 1548
storage
flours, 2651

grain, 2604, 2651, 2658, 2661
straw as green manure, 1528
Striga, 2485
Striga asiatica, 2484, 2485
sulphur effect, 1880
summer, 0143, 1545, 1546
taxonomy, 0235
temperature effect, 0320, 0450, 1307, 2108
tetraploid, 0675
threshers, 2669
tilling, 1523
Togo, 0045
trace fertilizers effect, 1655
urea fertilizers, 1715
USA, 0063, 0064
USSR, 0374
variation, 1160
geographical pattern, 0651
phenotype, 0549
varieties, 1160
varieties, 1033, 1066
agronomic characters, 0896
drought resistance, 1091
earliness, 1148
improvement, 0958
performance trial
Sierra Leone, 1077
USA, 1067, 1115
vertisols, 1447
water availability, 1392
water management
rainy seasons, 1393
water potentiality, germination, 1447
water requirements, 0476
weeding, chemical, 1914, 1935
yami, 1169
yield, 1201, 1237
fertilizers, 1645, 1768
France, 1257
herbicides, 1903
irrigation, 1445
manures, 1657
nitrogen fertilizers, 1651, 1657, 1689
plant growth regulator effect, 0541
potassium fertilizers, 1355
seed quality, 2092
Senegal, 1235
soil crushing and grinding, 1347
soil pH 1689
Sri Lanka, 1246
yield potentiality, 1215
fertilizers, 1278
zinc in soils (saline), 1788
Miroseum indicus, 2504
mung bean yellow mosaic virus, 2462
Myilocerus, 2609
Myilocerus cardoni, 2607
Myilocerus maculosus, 2628
Myilocerus undecimnotatus, maculosus, 2634
Mythminna separate, 2576, 2577
Nostoc muscorum as plant growth regulator, 2075
Oligotoma humbertiana, 2603

Panicold grasses, chromosomes, 0500
Panicum, 0084, 0091
acid detergent fibre, 2779
agronomic characters, correlation, 1230
Argentina, 1306
as weed, 1965, 2029
in maize, 1958
blooming, 0539
botanical characters, inheritance, 0733
breeding, 0292, 1016
 disease resistance, 0900, 0914, 0937, 1015
earliness, 0957, 0963
grain quality, 0832, 0868, 0897, 0900, 0913, 0917, 0919, 0957, 0963
grain yield, 0868, 0913, 0919
high yielding varieties, 0915, 0964, 0965
hybrids, 0922
mutation, 0673, 1014
protein content, 0934
tryptophan, 0934
USSR, 0859, 0860, 0867, 0875, 0907, 0911, 0943, 0966
 cellulose content, 2779
chemical composition, 0468
chromosome, 0507
chromosome aberrations by seed
irradiation, 0586
cold resistance, germination, 0469
combination, 1005
cross pollination, 0920
cytology, 0509
digestibility, 3047, 3048, 3052
 growth effect, 2913
 lignin and silicon effect, 3049
disease resistance
 breeding for, 0900, 0914, 0937, 1015
 biochemistry, 0251, 0252
 inheritance through hybridization, 0671
diseases
 Panicoiu mosaic virus, 2444, 2452, 2461, 2463
 Rhynchosporium secalis, India, 2186
 seed mycoflora, 2399
 Stenotaphrum secundatum, 2439, 2466
 drought resistance varieties, 0978, 1134
dry matter yield, nitrogen fertilizers
effect, 1855
earliness, breeding for, 0957, 0963
environment effect, 1317
epidemics, 0147
evolution, 0224
fertilizers, 1762
flooding resistance, 1972
forage, 2868
germination, 0121
genetic improvement, 0717
 genetics, 0718
 germination
 cold resistance, 0469
 soil water absorption, 0406, 0407
 germplasm collection, 0189, 0215
 ecological and geographical
 studies, 0241, 0242
grain quality, 0182
irrigated varieties, 0194
grain colour, 7656
grain quality, breeding for, 0832, 0868, 0897, 0900, 0913, 0917, 0919, 0957, 0963
 inheritance, 0819, 1000
grain yield
 breeding for, 0868, 0913, 0919
 rotational cropping, 1503
growth, environment effect, 1317
high yielding varieties, 1107
 breeding for, 0915, 0964
hybridization, 1020
hybrids, 0922, 1145
India, 0092
inheritance
 botanical characters, 0733
 disease resistance, 0671
grain quality, 0819, 1000
 qualitative and quantitative
 characters, 0672
 yield characters, 0793
irradiation, 0915
irrigation reaction, 1426
Kranz syndrome, 0486
lignin effect, digestibility, 3049
morphological characters, 0184
mutations by irradiation, 0918
mutation use in breeding, 0673, 1014
Nicaragua, 0115
nitrogen fertilizers effect, 1738
dry matter yield, 1855
nutritive value, feed, 2913
oxalate content, 2778
palatability, 3046, 3052
pests, Thysanoptera, Mexico, 2605
photosynthesis, 0323
photosynthetic assimilate, translocation, 0388
population, Africa, 0718
protein content, breeding for, 0934
respiration, 0538
root, 0183
rotational cropping, grain yield, 1503
seed dormancy, 2113
seed irradiation, 0566
seed mycoflora, 2399
seed production, 1016
USSR, 0860, 0867, 0875
selection, drought resistant varieties, 0978
silicon effect, digestibility, 3049
taxonomy, 0231
tryptophan, breeding for, 0934
USSR, 0135
variation, qualitative and quantitative
characters, 0672
drought resistant
 varieties, 1050, 1051, 1151
yield, 0183, 1290
 yield characters, inheritance, 0793
 yield components, 0184
Panicum adventitaeus, Libya, 0228
Panicum amarum, soil salinity effect, 1370
Panicum amarum - Panicum amarum
 complex, taxonomy, 0223
Panicum antidotale
 bud activity and dormancy, 0492
defoliation effect, 0292
Panicum dicanthelium, hybridization and self-pollination, 0973

Panicum dichotomiflorum
flooding resistance, 1972
in France, 1216
in Lucerne, 2037
in sorghum, 1968
in soybeans, 1999
USA, 1943, 2034
taxonomy, 0213

Panicum elegans, India, 0027
Panicum ensiforme, Mexico, 1179
Panicum fasciculatum, Helminthosporium setarvae, 2230
Panicum hians, photosynthesis, 0372
Panicum implicatum, France, 2037
sulphuric acid effect.
In sorghum,
1966
Irrigation effect, growth and yield, 1421
In soybeans,
1999
nitrogen fertilizers, USA, 1943, 2034
root anatomy,
0186
taxonomy,
0213
run off irrigation effect, 1440
defoliation effects,
0309, 1386
nitrogen fertilizers effect, 2788
don drylands.
1242
phosphorus fertilizers effect, 1600
flooding effect,
1385-1387
chloroplasts,
0327
germination,
0385
light effect, 2093
harvesting, seed losses, 2053
harvesting time and seed yield,
Kenya, 2038
NPK fertilizers effect, chemical composition, 1800, 1803, 2675
drought resistance,
3122
Spacing, 1548
yield, run off irrigation, 1440
yield component, 1273
yield stability, 0886

Panicum dicanthelium, hybridization and self-pollination, 0973

Panicum dichotomiflorum
flooding resistance, 1972
in France, 1216
in Lucerne, 2037
in sorghum, 1968
in soybeans, 1999
USA, 1943, 2034
taxonomy, 0213

Panicum elegans, India, 0027
Panicum ensiforme, Mexico, 1179
Panicum fasciculatum, Helminthosporium setarvae, 2230
Panicum hians, photosynthesis, 0372
Panicum implicatum, France, 2037
sulphuric acid effect.
In sorghum,
1966
Irrigation effect, growth and yield, 1421
In soybeans,
1999
nitrogen fertilizers, USA, 1943, 2034
root anatomy,
0186
taxonomy,
0213
run off irrigation effect, 1440
defoliation effects,
0309, 1386
nitrogen fertilizers effect, 2788
don drylands.
1242
phosphorus fertilizers effect, 1600
flooding effect,
1385-1387
chloroplasts,
0327
germination,
0385
light effect, 2093
harvesting, seed losses, 2053
harvesting time and seed yield,
Kenya, 2038
NPK fertilizers effect, chemical composition, 1800, 1803, 2675
drought resistance,
3122
Spacing, 1548
yield, run off irrigation, 1440
yield component, 1273
yield stability, 0886
exsorption, 0332
fatty acid composition, 2743
feed mixture, 2964, 2994
fertilizers effect, 1865
mineral content, 1621
flooding effect, germination, 1386, 1387
forage, 1218, 2903, 3058
forage quality, 2930
water stress effect, 1449
forage yield, 2045, 2877
germination, 0338
flooding effect, 1386, 1387
temperature effect, 2094
grain storage, 2665
grazing, 1788, 1865
growth, 1248
nitrogen deficiency, 0532
nitrogen fertilizers effect, 0536
phosphorous fertilizer effect, 0536, 1600
temperature effect, 0499, 0534
water stress effect, 0402
harvesting, 2050
harvesting time, 2047
heading, 0404
herbicides, 1895
improvement, 0100
inheritance, 0648
apomixis, 0741
irrigation, 1417
intercropping, 1491
leaf anatomy, 0397
leaves
light intensity effect, 0506
water requirements, 0416
milk production, 2993
mineral content, fertilizers effect, 1621
molybdenum content, 2745
morphology, 0140, 0163
defoliation effect, 0423
variation, 0732
multiplication, 0299
nematodes, 2507
nitrogen content, 1736
nitrogen deficiency, 0532
nitrogen fertilizers, 1631, 1632, 1881, 2971
chemical composition and digestibility,
2788
growth, 0538
protein content, 1693
seed production, 1652
yield, 1683, 1811
nitrogen fixation, 0489
nitrogen retention, 1736
nutrient composition, 1491
nutrient content, 1250
nutrient disorder, 1839
nutritive value, feed, 1758, 2877, 2884, 2885, 2918, 2950, 2959, 2993
feed mixture, 2964
feed supplements, molasses, 2945
palatability, 2918, 3050, 3058
performance trial, 0866
pests
Acromyrmex landolii, Venezuela, 2623
aphids, 2582
phosphorous fertilizers effect
chemical composition, 1600
protein content, 1693
photosynthesis, 0384, 0387, 0532
enzymes, 0445, 0446, 0449
population, Ivory Coast, 0136, 0137
potassium fertilizers
growth, 0536
production, 0250
progeny testing, apomixis and sexuality, 0893
protein content, 1693
recombination, 0650
regeneration, defoliation and flooding effect, 1386
reproduction, sexual, 0767
rooting, 0419, 0501
rotational cropping, 1512
run off irrigation, yield, 1440
seed production, 2095
NPK fertilizers, 1652
seeding rates, yield, 1573
soil moisture effect, 1344
soil water, 1442
stem elongation, 0501
storage, grain, 2K.P.5
taxonomy, 0216
taxonomy, numeric, 0227
temperature effects, 0499, 0534, 0535
transverse chlorotic lesions, leaves, 0505
urea fertilizers, soil moisture effect, 1344
variation, 0732
breeding, 0849
chromosomes and morphology, 0732
varieties, 1027, 1049, 1153
yield stability, 1153
water deficiency effect, 0386
water requirement, 1399
leaves, semi-arid, 0416
water stress effect, 0402
chromosomes and morphology, 0732
forage quality, 1449
growth, 0402
leaf ageing, 0385
leaf elongation, 0386
photosynthesis, 0384
weed control, herbicides, 1895
yield, 3087
Australia, 1229
defoliation effect, 0423
grazing, 1788
nitrogen fertilizers, 1683, 1811
run off irrigation, 1440
seeding rates, 1573
weed, 1177
yield potentiality, 1280
yield stability, 0866
varieties, 1153
xylans, 0266
zinc content, 2745
Panicum miliaceum, 0052, 2929
absorption, 0277, 0474
micro element, 0500, 0543
NPK fertilizers, 1667
agronomic characters, 1277
seed treatment, 2122
amino acid composition, 2697, 2711, 2773
Subject Index

cooking, 2854
digestibility, 3045
diseases, Sphacelotheca
cul-miliacei, effect, 2368
root excretions, 2703
root exudates, 2385
amino acid contents, food, 2835
anther, cytochemistry, 0705
as weed, 2024
ascorbic acid content, growth effect, 0401
baking products, marketing, Senegal, 2861
birds, 3002
breeding
 - grain quality and yield, 0861, 0862
 - mutation, 1019
 - protein content, 0976
 - carbohydrate content, 2684
 - carbohydrate metabolism, 0380
 - disease effect, 2369
 - magnetic field effect, 0482
 - CO2 assimilation, 0515
 - CO2 compensation, photoperiod effect, 0425
 - chemical composition, 2711, 2795
growth, 0395
 - sewage sludge effect, 0460
 - storage effect, 2735
 - chloroplasts, 0305
 - cooking effect, 2854
 - cooking quality, flours, 2850
copper, absorption and transpiration, 0543
cover crops, leguminous plants, 1494
cultivation, 1366, 1520, 1532
cytoembryology, 0698
day length effect, 1327
digestibility, 2134, 3045
disease resistance, Sphacelotheca
cul-miliacei, 2429
diseases, 2147
Helminthosporium panici-miliacei,
 USSR 2225, 2234
Helminthosporium oryzae, and Helminthosporium yamadai, India 2234
Panicum mosaic virus, 2480
Pseudomonas holcii, USSR, 2432-2435
 seed mycorrhiza, 2366, 2367
Sphacelotheca panici-miliacei, 2325, 2382, 2365, 2368-2370, 2382, 2366, 2387, 2389
Sphacelotheca panici-miliacei, 2388, 2390, 2409, 2410, 2424, 2425
Stenotaphrum secundatum, 2456, 2466, 2467
 USA, 2453
Tolyposporium penicillatae, 2086
Ustilago panici-miliacei, 2358
 virus, 2474
 wheat streak mosaic virus, 2478
Xanthomonas panicli, 2431
distribution, temperature effect, 1314
drift application, fertilizers, 1688
drought effect, growth, 1425
drought resistance, 1318, 1420
 varieties, 1031
dry matter accumulation, 0433, 1284, 1766
drought effect, 1315, 2387
enzymes, nitrogen metabolism, 0447
 photosynthesis, 0508
enzymatic hydrolysis
 starch, 2721, 2723
 starch phosphate, 2723
 evapotranspiration, 0395, 0524
fatty acids, 2739
fatty acids composition, 2688
 storage effect, 2740
 temperature effect, 2724
feed effect on broilers, 2998
fertilizers, 1538, 1638, 1644, 1704, 1867
 drill application, 1688
 grain quality, 1764, 1866, 1968
 grain yield, 1639, 1866, 1868, 1866, 1868
 physiological processes, 1639
 protein contents, 1709
 carbohydrate content, 2684
 physiological processes, 1639
 carbohydrate metabolism, 0380
 protein contents, 1709
disease effect, 2369
 yield, 1429, 1514
magnetic field effect, 0482
fertilizers, residual effect, 1609
 flours, cooking quality, 2850
 milling equipment, 2865
food, amino acid content, 2835
 processing, 2658
 food supplements, 2841, 2842
 forage quality, 1240
 milk production, 2886
 forage yield, sowing time, 1283
fungicides for Sphacelotheca panici-miliacei, 2388, 2390, 2409, 2410, 2424
 germinability, 0394
 germinating seeds, as growth stimulator, 0424
 generations
 - magnetic field effect, 0482
 - temperature effect, 1314
grain for birds, 3002
grain colour, inheritance, 0818
grain quality, 1240
 breeding, 0861, 0862
 fertilizers effect, 1764, 1866, 1868
 micronutrients, 1877
 nutritive value, 2797
 phosphate fertilizers, 1840
 seed treatment, 2074
grain ripening, 0409
grain yield
 breeding, 0861, 0862
 fertilizers effect, 1639, 1646, 1709, 1764, 1866, 1868
 micronutrients, 1877
 nitrogen fertilizers, 1761
 phosphate fertilizers, 1840
 plant growth regulator effect, 1761
growth
 ascorbic acid content, 0401
 carbohydrate content, 2684
 chemical composition, 0395
 drought effect, 1425
 light intensity, 0369
 rain fall, 1324
 riboflavin content, 2791
 sewage sludge, 0460
 temperature effect, 1324
 thiamine content, 2791
 zinc sulphate, 1671
harvesting, 1561
herbicides, weed control, 1890, 1891, 1894, 1908, 1926, 1931, 1932, 1937
yield, 1934
histochemistry, shoot-root apices, 0169
husking, 2659
inheritance, grain colour, 0818
irradiation effect,
photosynthesis, 0518
protein content, 2117
irrigation, 1032, 1410, 1418, 1568
effect on diseases, 2425
karyology, 0698
leaf area, 0152
leaves
absorption, water, 0474
assimilation surface, zinc sulphate
effect, 1670
light intensity effect, growth, 0369
lipid content, 2681
magnesium—potassium fertilizers, 1864
manganese, absorption and translocation, 0543
marketing, baking products, Senegal 2861
microelements, absorption, 0500, 0543
microfertilizers from seawater, 1608
micronutrients effect, 1877
milk production, 2986
milking equipment, flours, 2865
mineral composition, 2726
mixed cropping, 1502
morphoanatomy, 0165
mutation, breeding value, 1019
nematodes, Haploaimus columbus, 2496
nitrogen accumulation, 0433
nitrogen content, seed irradiation, 2116
nitrogen fertilizers, 1761
nitrogen metabolism, enzymes, 0447
NPK fertilizers, absorption, 1667
yield, 1768
nutritive value, feed, 2797
performance trials, 0100, 0935, 1102, 1113, 1114
pest resistance, Schizaphis graminum, 2557
pests
Atherigona destructor, 2570
yield loss, 2569
Cryptolestes ferrugineus, 2638
stored grain, 2608
phospholipids, storage effect, 2770
phosphate fertilizers, grain quality and yield, 1840
photoperiod effect
CO2 compensation, 0425
drymatter production, 1284
photosynthesis
enzymes, 0307, 0330, 0371, 0508
irradiation effect, 0517
irrigation, 0471
metabolism, 0306
photosynthesis pigments, zinc sulphate
effect, 1870
photosystem, 0515
physiological processes, fertilizers effect, 1839
protein content, 2833
protein digestibility, 2834, 3045
protein composition, 2715
protein content, 2833
breading, 0976
fertilizers, 1709
nitrogen fertilizers, 1766
varieties, 2793
protein quality, varieties, 2793
proteolysis, temperature effect, 2371
rain fall effect, growth, 1324
respiration, diseases effect, 2369
respiratory metabolism, enzymes, 0371
root, cation-anion exchange capacity, 0301
root excretions, amino acid composition, 2763
root exudates, amino acid composition, 0510
rotation cropping
buckwheat, 1506
Oryza sativa, 1487, 1488
productivity, 1493
soils (loam), 1493
wheat, 1487, 1488, 1506
salinity effect
chloride accumulation, 0546
yield, 0516
salinity resistance, 0308, 1418
seed, plant growth regulator effect, 2075
seed irradiation effect, nitrogen content, 2116
seed mycoflora, 2366, 2367
seed production, 2089
seed treatment
agronomic characters, 2122
cation and anions solution, 2073
diseases, Tolyphoma penicilliariae, 2086
grain quality, 2074
water, 2106
seedling rates, 1561
selection, 0952
soil fertility and yield, 1543
soil moisture, 1419, 1766
sowing method, 1561
sowing time, 1538, 1543, 1560, 1568, 1588
forage yield, 1283
starch, enzymatic hydrolysis, 2721, 2723
starch content, 2696, 2719, 2720, 2725
starch phosphate, 2722, 2723
starch production from wastes, 2853
temperature effect, day length effect, 1327
stigma, cytochemistry, 0706
storage effect
chemical composition, 2735
fatty acid content, 2740
lipid content, 2741, 2769
style, cytochemistry, 0706
Syrian Arab Republic, 1217
temperature effects, 1314, 1324, 2724, 2731, 2738
thiamine content, 2791
tilling effect on weed, 1534
translocation, micronutrients, 0543
transpiration, 0357
varieties, 1030, 1089, 1070, 1072, 1097, 1117, 1119, 1139, 1140
drought resistance, 1031
forage, 1142
protein content and quality, 2793
USSR, 0925
wastes, starch production, 2853
water availability, 1420, 1425
water requirement, 1419
weed, Amaranthus, 1890
tilling effect, 1534
weed control, herbicides, 1890, 1891, 1894, 1908, 1926, 1931, 1932, 1933
yield
environment effect, 1315
fertilizers, 1629, 1841
herbicides effect, 1934
residual, 1899
nitrogen fertilizers, 1766, 1767
NPK fertilizers, 1867
plant growth regulator effect, 1761
salinity effect, 0316
soil moisture effect, 1766
zinc sulphate, 1670, 1671
yield components, herbicides effect, 1934
yield loss
diseases, 2429
pests, 2569
zinc, absorption and translocation, 0543
Panicum miliare
amino acid content, 2711
diseases
Curvularia pallescens, 2198
seed-borne fungi, 2198
emasculations, flowers, 0975
fertilizers, yield, India, 1879
food
nutritive value, 2830
processing, 2658
performance trials, India, 0935
pests
Atherigona destructor, 2570
Atherigona nudiseta and Sesamia inferens, India, 2567
phenotypic and genotypic correlation, 1010
pigments, anthocyanin, 0491
pollen viability, 0809
protein, 2711
seed-borne fungi, 2198
selection, 0952
variation, 0808
varieties, 1065
yield, fertilizers effect, India, 1879
yield components, correlation, 1070
Panicum milioides
CO2 compensation, 0362, 0363
chloroplasts, 0327
Kranz leaf anatomy, 0359
photorespiration and photosynthesis, 0263, 0264
photosynthesis, enzymes, 0372
Panicum montanum, carbohydrate composition, 2729
Panicum moomomiense, Molokai, 1084
Panicum mosaic virus, 2444, 2452, 2461, 2463, 2477, 2480—2482
Panicum obtusum, cytology and cytogogenetics, 0552, 0553
Panicum perenne, nitrogen deficiency, 0532
Panicum purpurascens, nematodes, 2507
Panicum ramosum, soil fertility, fertilizers effects, 1349
Panicum ravenelii, USA, 0229
Panicum repens as weed, 2005, 2006
diseases
Pyricularia, 2258
Pyricularia oryzae, 2221
phytotoxicity, 2259
sporulation, 2217
evironment effect, 1315
roots (tuberous), enzymes, 0454
Panicum stipitatum, bioc systematics, 0605
polypliods, 0805
taxonomy, 0240
Panicum texanum, photosynthesis, enzymes, 0307, 0371, 0373
plant growth regulator effect, 1761
pests
Atherigona destructor, 2570
Atherigona nudiseta and Sesamia inferens, India, 2567
phenotypic and genotypic correlation, 1010
pigments, anthocyanin, 0491
pollen viability, 0809
protein, 2711
seed-borne fungi, 2198
selection, 0952
variation, 0808
varieties, 1065
yield, fertilizers effect, India, 1879
yield components, correlation, 1070
Panicum xanthium
light intensity effect, 0487
Paspalum
apomixis, cytology, 0567
breeding for protein content, 0976
chemical composition, 2675
chloroplasts, temperature and light intensity effect, 0504
chromosome, 0587
chromosome number, 0570
cytology, 0568, 0909
digestibility, 3047
drought resistant varieties, 1134
frosting, 0568
genome analysis, 0572, 0573
hybridization, interspecific, 0571
hybridization, intraspecific, 0572, 0573
Irrigation, 2911
microsporogenesis, 0570
nitrogen fertilizers, 1660
nutritive value, feed, 2914
protein content, breeding for, 0976
reproduction, 0568, 0570
Paspalum commersoni
microsporogenesis, 0723
megagametogenesis and sporogenesis, 0579
Paspalum conjugatum, Xanthomonas albilineans, 2437
Paspalum convexum, chromosome number, 0747
Paspalum dilatatum
as weed, 2020
chemical composition, harvesting time effect, 2039
phosphorus fertilizers effect, 1600
chloroplast development, temperature effect, 0483
cold resistance, leaves, 0458
cutting height effect, regrowth, 2063
day length effect, 1320
digestibility, 2039, 3050
harvesting time, 2039
irrigation effect on yield, 1400, 1443
light intensity effect, 0312
leaves, 0505
palatability, 3050
phosphorus fertilizers, 1600
photosynthetic assimilate, translocation, 0388
regrowth, cutting heights and tillering effect, 2063
soil fertility, 1364
temperature effects, 0312, 0483, 1364
yield, irrigation effect, 1400, 1443
Paspalum distichum
diseases, Ephelis oryzae, 2394
Helminthosporium victoriae, Indic, 2233, 2234
fertilizers effect, yield, 1879
genotype-environment interaction, 0856
growth, 0432
inheritance, correlation, 0595
liming effect, yield, 1807
micronutrients, seed production, 2084
molybdenum content, 2745
NPK fertilizers effect, yield, 1807
nutritive value, food, 2830
performance trials, India, 0935
pests, 2531
regeneration, 0432
seed production, drought and micro-nutrients effect, 2084
selection, 0952
stability, phenotype, 0593
variation, 0550, 1040
varieties, 1042
yield, fertilizers effect, 1807
yield stability, 0593, 0864
zinc content, 2745
Paspalum scabrum
leaf anatomy, 0150
taxonomy, 0214
Pennisetum, 0039, 0041
acid detergent fibre, 2779
adaptation, hybrids, 1111
allopolyplold, 0770
Australia, 1236
blooming, 0270
cloning, 2496
creeping, 1660
disease resistance, 0931
feeding value, 2914
flooding, 0331
frosting, 0331
growth, nitrogen fertilizers effect, 1802
heterosis, polyploid, 0846
magnesium, 0723
morphology, nitrogen fertilizers effect, 1802
nitrogen fertilizers, 1660
nutritive value, feed, 2914
pests, Acromyrmex lundoti and Attla laevigata, Guyana, 2613
polyplold, fertility and heterosis, 0846
regrowth, 0270
selection (recurrent), forage yield, 0845
seed conservation, 1360
soil, chemical effect, 1381
taxonomy, 0214
Paspalum scabra
Australia, 1301
harvesting time, 1620, 2052
nitrogen fertilizers, 1620
seed production, 1625
yield, 1683
oxalate, toxicity, 2761
plant growth regulator effect, 1620
seed dormancy, 2052
seed production, 1625, 1626
seed viability, 2052
uric fertilizers, 1626
yield, nitrogen fertilizers, 1683
Paspalum scabridum
Africa, 0130
anthers, polysaccharide content, 0410
cytology, 0555
detoxification, 2071
diseases
Ephelis oryzae, 2394
Helminthosporium victoriae, Indic, 2233, 2234
fertilizers effect, yield, 1879
genotype-environment interaction, 0856
growth, 0432
inheritance, correlation, 0595
liming effect, yield, 1807
micronutrients, seed production, 2084
molybdenum content, 2745
NPK fertilizers effect, yield, 1807
nutritive value, food, 2830
performance trials, India, 0935
pests, 2531
regeneration, 0432
seed production, drought and micro-nutrients effect, 2084
selection, 0952
stability, phenotype, 0593
variation, 0550, 1040
varieties, 1042
yield, fertilizers effect, 1807
yield stability, 0593, 0864
zinc content, 2745
Paspalum vaginatum
leaf anatomy, 0150
taxonomy, 0214
Pennisetum, 0039, 0041
acid detergent fibre, 2779
adaptation, hybrids, 1111
allopolyplold, 0770
Australia, 1236
blooming, 0270
cloning, 2496
creeping, 1660
disease resistance, 0931
feeding value, 2914
flooding, 0331
frosting, 0331
growth, nitrogen fertilizers effect, 1802
heterosis, polyploid, 0846
magnesium, 0723
morphology, nitrogen fertilizers effect, 1802
nitrogen fertilizers, 1660
nutritive value, feed, 2914
pests, Acromyrmex lundoti and Attla laevigata, Guyana, 2613
polyplold, fertility and heterosis, 0846
regrowth, 0270
selection (recurrent), forage yield, 0845
seed conservation, 1360
soil, chemical effect, 1381
taxonomy, 0214
Paspalum scabra
Australia, 1301
harvesting time, 1620, 2052
nitrogen fertilizers, 1620
seed production, 1625
yield, 1683
oxalate, toxicity, 2761
plant growth regulator effect, 1620
seed dormancy, 2052
seed production, 1625, 1626
seed viability, 2052
uric fertilizers, 1626
yield, nitrogen fertilizers, 1683
Paspalum scabridum
Africa, 0130
anthers, polysaccharide content, 0410
cytology, 0555
detoxification, 2071
diseases
Ephelis oryzae, 2394
Helminthosporium victoriae, Indic, 2233, 2234
fertilizers effect, yield, 1879
genotype-environment interaction, 0856
growth, 0432
inheritance, correlation, 0595
liming effect, yield, 1807
micronutrients, seed production, 2084
molybdenum content, 2745
NPK fertilizers effect, yield, 1807
nutritive value, food, 2830
performance trials, India, 0935
pests, 2531
regeneration, 0432
seed production, drought and micro-nutrients effect, 2084
selection, 0952
stability, phenotype, 0593
variation, 0550, 1040
varieties, 1042
yield, fertilizers effect, 1807
yield stability, 0593, 0864
zinc content, 2745
Paspalum vaginatum
leaf anatomy, 0150
taxonomy, 0214
combining ability, agronomic characters, 0925
Costa Rica, 1122
cytogenetic improvement, 0630
cytology, 0564, 0702, 0785
cytomorphology, polyploid, 0176
diadial analysis, variation, 0699
digestibility, growth effect, 2913
diploid, 0775
disease resistance, breeding for, 0931, 0932
F1 hybrids, photoperiod, 0941
germination, enzymes, plant growth
regulator effect, 0465
germination collection, 0219, 0220
India, 0209
hybrid
adaptation, 0111
tri-specific, 0776
hybridization, inter & intra-specific, 0854
hybridization, interspecific, 0628, 0630
improvement, 0370, 0385
karyomorphology, 0177
morpho-systematics, 0196, 0197
mutation, irradiation induced, 0771
nematodes, 2518
nutritive value, feed, 2913
oxalate content, toxicity, 2776
plant growth regulators effect, 0465
performance trials, India, 0935
pests, Helicotylenchus elegans, 2515
photoperiod, F1 hybrids, 0841
polyploid, 0775
cytomorphology, 0176
progeny testing, 0776
variation, 0699
protein metabolism, 0462
progeny, 0633
recombination, 0650
sowing method, 1572
taxonomy, 0198, 0220, 0225
temperature resistance, seedlings, 0417
variation, diadal analysis and progeny
testing, 0693
vivipary, 2105
yield, 1300
yield stability, 1111

Pennisetum alpecueros
diseases, Ephelis oryzae, 2394
Pennisetum clandestinum
as weed, 1962, 2014
chemical composition, 2675
phosphate fertilizers and soil
pH effect, 1331
phosphorus fertilizers effect, 1600
control, 1304
Costa Rica, 2874
cutting frequency effect, growth, 1699
cutting interval, forage quality and
yield, 1294
digestibility, 3041, 3042, 3050, 3051, 3053
diseases, phycomycete, 2192
environment effect, regrowth, 1295
erosion control, varieties, 1045
fertilizers effect, germination, 1147
forage quality, 1294, 2874
tillage height, 1276

Pennisetum hohenackeri, cytoembryology, 0467
Pennisetum macrostachyum, 0007
as weed, 1992
Pennisetum orientale, 0043
5 chromosomes, 0662
cytomorphology, 0766
digestibility, 3061
diseases, Sphacelia sorghi, 2200
hybrids, interspecific, 2683
nutritive value, feed, 2894

Pennisetum pedicellatum, 1276
apomixis, 0581
chemical composition, digestibility, 2706, 3026
chromosome, meiosis, 0582
digestibility, 0258, 2706, 3023, 3026, 3035
diseases, Cynodon mosaic virus, 2441
fertilizers effect, yield and growth, 1787
forage yield, 1294
growth, 0258
temnode pattern, 0174
mutagen, chemical, 0451
nitrogen fertilizers, 1628, 1739
nutritive value, feed, 2938
production, 1260
rotational cropping, 1461
soil conservation, 1337, 1338, 1373
variation, yield components, 0810
yield components, forage yield, 1302
Pennisetum polystachyon
seed, nutritive value, 2894
Pennisetum polystachyum, 1109
soil conservation, 1360
Pennisetum purpureum, 0087, 2897, 2928
Africa, 2905
carbohydrate metabolism, enzymes, 0268
CO₂ assimilation, 0267
chemical composition, 2734, 2744, 2759, 2855, 2933
digestibility, 2707
soil nutrient effect, 2699
cropping systems, forage yield, 1458
cutting frequency effect, 1458
digestibility, 3043
forage yield, 2043
cutting height, digestibility, 3055
cutting interval effect, yield, 1390
cytogenetics, 0680
digestibility, 2902, 2965, 2968, 3025, 3027, 3031, 3043, 3044, 3055, 3057, 3058, 3061, 3062
diseases
Pyricularia oryzae, 2226
sporulation, 2217
ratoon stunting, 2172
sugarcane mosaic virus, 2460
dryland, 1220
dry matter yield, 2734, 2744
feed for cattle, 1522
feed mixtures, 2536, 2983
feed supplements, nutritive value, 2881, 2948, 2988
fertilizers, 1622, 1674, 1716
forage yield, 1285, 1458, 1773, 2043, 2906
glyphosate effect, 1359
grazing, 1822, 2961, 2978
growth, mineral composition, 2750
Hong Kong, 1271
harvesting time, 2058
hybrids, 1069, 1156, 1247
performance trials, 1043
intercropping, 1466
irrigation effect, 1390, 1391
management, 1238
manures, 1730, 2989
milk production, 2944, 2987
mineral composition, growth effect, 2750
mycotoxicoses, cattle, 3077
Nigeria, 3058
nitrogen fertilizers effect, 1672, 1869, 1973
forage yield, 1773
nutrient composition and yield, 1390
NPK fertilizers, 1730
nutrient composition, 1390
nutritive value
feed, 2834, 2871, 2976, 2883-2885, 2981, 2984, 2896, 2901, 2902, 2904, 2906, 2948, 3031
Anser cygnoides (goose), 3006, beef cattle, 2948, 2978, 2954
bulla, 2990
calves, 2937, 2952, 2957
cows, 2960 - 2962, 2978, 2983
heifers, 2991
sheep, 2965, 2966
Zebu Steers, 2951
feed supplements, 2881, 2948
overlapping cropping, cowpeas, 1507
palatability, 2968, 3055
performance trials, hybrids, 043
pests,
Spodoptera frugiperda, 2581
Spodoptera litura, 2582
phosphorus fertilizers, 1673
photochemical activities, chloroplasts, 0286
photosynthesis, 0282, 0284-0286, 0373
enzymes, 0371
protein content, 2951
ratoon stunting, 2171
regrowth, 1285
relay cropping, 1501
respiratory metabolism, enzymes, 0371
rotational cropping, 1519
rumination time, 2961
sodium metabisulphite fertilizers, 2989
sodium, potassium ratio, 2954
soil fertilization, 1391
soil moisture effect, chemical composition, 2699
soils, hydromorphic, 1336
South Africa, 1291, 2932
Taiwan, 2920
Tanzania, 1200
toxicity, cattle, 3071, 3073, 3077-3079, 3082, 3083
urea fertilizers, 2989
varieties, 1025, 1055, 1063, 1108, 1141
crop weed competition, 0879
irrigation effect, 1391
yield, 1175, 1390
yield components, 1089
yield potentiality, 1281
Pennisetum purpureum X P. typhoides
hybrids, interspecific, 1036, 1147, 2882
Africa, West, 1037, 1047
Australia, 1125
carbohydrate content, growth effect, 2755, 2756
chemical composition, 1079, 1130, 2683
2776
fertilizers effect, 1824, 2716
cutting frequency effect, 1824
cytogenetics, 0784
digestibility, 1079, 1130, 3056
diseases, Drechslera and Helminthosporium, 2222
fertilizers effect, 1824, 2716
yield, 1824
forage quality, 1286, 1618
forage yield, 1286, 1618, 1824, 3056
growth, height effect, 1206
nutritive value, 2882
intercropping, 1514, 1515, 1517
melosis, 0689
mineral content, 0751
molybdenum content, 2745
nitrogen fertilizers effect
forage yield, 1619, 3058
spacing, 1860
nutrient content, 1272
nutritive value, feed, 2683, 2776, 2912
oxalic acid content, 0750
B carotene content, 2718
B chromosomes, 0794
melosis, 0711
nitrogen fertilizers effect
B chromosomes, 0794
gene, desynaptic effect, 0714
mineral content, 0751
nitrogen fertilizers effect
B chromosomes, 0794
melosis, 0711
154 Millets 1970-1976

irradiation effect, 0607
interchange, 0661, 0987-0989, 0991
melosis, 0686
pseudo-bivalents, 0599
telecentric, 0685
translocation, 0565, 0762, 0788, 0798, 0986, 0990, 0992
chromosome (meiotic), 0777
chromosome number, 0709
chromosome (somatic), 0801
karyomorphology, 0786
Claviceps microcephala, separation in
grain processing, 2398
toxicity, 3068, 3069, 3072, 3075, 3076
combining ability, 0874, 0877, 0888, 0904, 0939, 0944, 0995, 1003
gromatic characters, 0857, 0983
diallel analysis, 0836, 0857
variation, 0968
yield components, 0981
cooking quality, 0629, 2840, 2843, 2844
 copper content, rotational cropping
effect, 1371
correlation, 0601, 0979
chemical composition, 0865
forage yield, 1264
grain characters, 2078
grain yield, 0865, 1264
morphological characters, 0740, 1264
crop-environment interaction, 1310
crop-weed competition, 1911
cropping systems, 1480
dry farming, 1508
India, 1457
irrigation effect, 1413
pests, 2526
productivity, India, 1474
semi-arids, India, 1462
yield potentiality, India, 1510
crossing, mutants (irradiated), 0847
crossing (biparental), selection, 0967
variation, 0968
yield stability, 0969
crossing, natural, 0844
cutting frequency, 1729
forage yield, Brazil, 2049
cytological analysis, pollen, 0704
cytogenetic effect of irradiation, 0576
dairy cattle manures effect, 1647, 1737
forage quality and yield, 1723
rhizosphere microflora, 2132
decomposition, microbiological changes, 2136
defoliation effects, 0261, 0311, 0396, 0420, 1185
degradation
carboxin, 2152, 2188
oxycarboxin, 2152
density effect, 1432
growth, 0314
diallel analysis, 0823
gromatic characters, 0857, 0983
combining ability, 0836, 0857
earliness, 0721
dwarfness, 0983
grain size, 0936
forage yield, 0797
leaf area and number, 0938
protein content, 0824, 0936
stem thickness, 0938
tilling, 0980
digestibility, 3033, 3034, 3040, 3050, 3055
feed supplements, buffaloes, 2982
growth effect, 2706, 2717
leaf surface effect, 0334, 3055
nitrogen fertilizers effect, 2717
silicon effect, 3035
diploid, 0609
diploid revertants, 0664
disease resistance,
brewing for, 0826, 0930, 0932, 0940, 0942, 2301
Claviceps microcephala, 2301, 2374, 2375, 2381
Curvularia, 2253
by irradiation and mutagen, 0763
Sclerospora graminicola, 0758, 0942, 2301
by mutation, 0738
Tolyposporium penicillariae, 2406
inheritance, 0812
varieties, 1087
diseases, 2161-2163, 2166, 2175, 2176, 2179, 2185, 2187, 2190, 2191
Cercospora, 2243, 2251
India, 2208
Cercospora fusimaculans, 2207
Claviceps microcephala, 2199, 2299, 2310, 2330, 2348, 2355, 2356, 2372, 2377, 2380, 2391, 2392, 2414-2416, 2422, 2423
environment effect, 2413, 2418
fertilizer effect, 2376
fungicides, 2357, 2363, 2364, 2373, 2381
India, 2184, 2405
Nigeria, 2164, 2168, 2169
nitrogen fertilizers effect, 2417, 2419
yield loss, 2397
Curvularia, 2214, 2215
Curvularia lunata, 2211, 2212
Curvularia pennisieli, 2257, 2269
fungicides, 2219
fungal, 2204
Fusarium moniliforme, Nigeria, 2402
Gloeocercospora sorghi, India, 2261, 2294
Helminthosporium, 2239
Helminthosporium bicolor, India, 2241
Helminthosporium carbonum and
Helminthosporium maydis, 2250
Helminthosporium rostamum
fungicides, 2219
India, 2229, 2235, 2238, 2241
Helminthosporium tetramera, 2297
India, 2149, 2150
mosaic, 2469
India, 2470, 2471, 2473
Pennisetum streak virus, India, 2468
Plasmodiara pennisetii, Ethiopia, 2324
Pseudomonas, Africa, West, 2438
Puccinia penicillariae, 2304
Puccinia pennisetii, 2319, 2321, 2322, 2328, 2329, 2341, 2346
fungicides, 2320
India, 2184, 2189
inheritance, 0730
Niger, 2184, 2168
nitrogen fertilizers effect, 2345
Puccinia substrata var. indica, 2353, 2354
diseases, 2311, 2376
mycoparasite, 2334
fertilizers effect, 1677
drought resistance, 1874
drylands, 1677
economics, 1726, 3097
high yielding varieties, India, 3089
India, 3096, 3104
ecophysiological studies, 0346, 0351.
nitrogen balance, 2981
protein, 2829
flour, 2843, 2844
protein content, 2645, 2646
varieties, 1112, 1134
storage, 2672
protein content, 2813
flavonoids, 0642
Irrigation, 1394
protein content, 2843, 2844
protein content, 2645, 2646
storage, 2672
flower, histogenetics, 0148
drought resistance, 1874
hybrids 1225
zinc sulphate effect, 1794
dry matter accumulation, 1592
dry matter yield
defoliation and light effect, 0396
heterosis, 0791
nitrogen fertilizers, 1740, 1750
soil phosphorus, 1368
dwarf
diallel analysis, 0963
Mutants, 1001
population, Niger, 0655
dwarfing genes effect, combining ability, 0982
earliness, 1521
diallel analysis, 0721
harvesting, 2031
economics
fertilizers, 1726, 3097
fertility, 1731, 1833
nitrogen fertilizers effect, 2317, 2360
fertilizers effect, 1874
seed treatment, 2103
varieties, 1112, 1134
drought susceptibility, 1421
dry farming, 1508
dryland cultivation, 1061, 1526, 1527
fertilizers effect, 1677
hybrids 1225
zinc sulphate effect, 1794
dry matter accumulation, 1592
dry matter yield
defoliation and light effect, 0396
heterosis, 0791
nitrogen fertilizers, 1740, 1750
soil phosphorus, 1368
dwarf
diallel analysis, 0963
varieties, 1033, 1038, 1081, 1082

weeds control, 1915

forage yield
defoliation effect, 0396
genetic evaluation, 0637
height effect, 1261
light effect, 0396
manure effect, 1723
maturity effect, 1261
milk production, 2986
selection, 0683

forage yield, 3033

Brazil, 1262
combining ability, 0853, 0882, 0950, 0993
correlation, 1264
cutting frequency, 2049
diallel analysis, 0797
genotype-environment interaction, 0641
heterosis, 0780, 0782
height effect, 1261
hybrids, 1152
intercropping, 1498
irradiation effect, 0370
irrigation, 1784
manure, 1723
maturity effect, 1261
milk production, 2986
mixed cropping, 1498

nitrogen fertilizers, 1554, 1784

presoaking treatment, 0278
protein metabolism, 0808
salinity resistance, 0375
seedling, 0413, 0480, 1427
seed size, 2070
seed treatment, 2107
temperature effects, 0408, 1311
temperature response, 0640
temperature stability, 0969
temperature yield, 1221, 1222

temperature, 0636

water stress, 2660

forage yield, 1221, 1222

agronomic characters, 0725
botanical characters, 0637
breeding for, 0921
chlorophyll concentration, 0421
combining ability, 0891
correlation, 0865, 1264
fertilizers, 1533
grain character, and head character, 0636
heterosis, 0781
iron application, 1690
irrigation, 1537
magnesium application, 1690
magnesium, 1690
nitrogen fertilizers, 1630, 1661, 1696, 1763, 1804, 1832, 1870, 1971
path analysis, 2708

fungicides
diseases
Claviceps microcephala, 2356, 2398
Curvularia pennisetii, 2219
Helminthosporium rostratum, 2219
Puccinia pennisetii, 2320
Pyricularia, 2219
Pyricularia pensetii, 2296
seed microflora, 2371
Tolyposporium penselariae, 2256, 2274, 2398

iron, magnesium and sulphur application, 1690

iron, 0636

iron, magnesium and sulphur
application, 1690

variation, 0631

water stress, 2660

forage yield, 1221, 1222

agronomic characters, 0725
botanical characters, 0637
breeding for, 0921
chlorophyll concentration, 0421
combining ability, 0891
correlation, 0865, 1264
fertilizers, 1533
grain character, and head character, 0636
heterosis, 0781
iron application, 1690
irrigation, 1537
magnesium application, 1690
magnesium, 1690
nitrogen fertilizers, 1630, 1661, 1696, 1763, 1804, 1832, 1870, 1971
path analysis, 2708
regression analysis, 0591, 0865
selection, 1011
soil moisture, 1870
soil properties, 1367
soils (sandy), 1871
sowing time, 1563
spacing, 1661, 1793
sulphur application, 1690
tilling effect, 1533
urea fertilizers, 1697
variation, 0753
varieties, 1131, 1103, 1104
waste (polystyrene) effect, soils (loam), 1380
yield component, 0591, 0626, 0638, 0687
zinc application, 1690
grazing, 1274, 2985
yield, 1758
green manures, 1616, 1753, 1754
growth, 0432
carbohydrate content, 2686
chemical composition, 2706, 2717, 2754
Citrus colocynthis, 0260
density, 0314
digestibility, 2706, 2717
fertilizers, 1728
herbicides, 0452, 1906
heterosis, 0791, 0816
iron application, 1690
irradiation, 0370
irrigation, 1421, 1862
magnesium application, 1690
manure, 1728
mixed cropping, 1476
mulches effect, 1388
nitrogen carrier, 1642
nitrogen fertilizers, 1554, 1642, 1696, 1714, 1759, 1793, 1862
NPK fertilizers, 1763
panicles, 0392
phosphorus fertilizers, 1363
plant growth regulators effect, 0315, 0318, 0412, 0452, 0470, 0496, 0514, 0526
seed size, 2070
shoot apex, 0157
soil compaction, 1379
soil phosphorus, 1368
soil properties, 1367
sowing method, 1590
sowing time, 1554
spacing, 1793
sulphur application, 1690
tilling, 1528
transplantation, 1590
water stress, 1759
urea fertilizers, 1697
weed control, 1919
zinc application, 1690
haploid
cytology, 0728
cytomorphology, 0611
meiosis, 0658, 0683
reproduction, 0728
harvesting, earliness, 2041
head character, 0556, 0604
grain yield, 0836
inheritance, 0616
heading, genetics, 0648
herbicides effect, 1910, 1918
forage, 1892
germination, 1906
growth, 0452, 1906
stigma control, 2487-2491
transpiration and water requirements, 0452
weed control, 1900, 1905, 1907, 1917
yield, 1606, 1900
heterosis, 0653, 0676, 0647, 0971, 0995
blooming, 0720
dry matter yield, 0791
forage yield, 0780, 0782
grain yield, 0781
growth, 0791, 0816
height and head length, 0720
leaf area, 0791
physiology, 0792
yield components, 0981
heterozygosity, 0659
yield components, 0722
high yielding varieties, 1087, 1105, 1121, 1133, 1135
amino acid composition, 2747
breeding 0906, 0944
carbohydrate content, 2752
India, 1090, 1110, 3089
iron application, 1690
nutrient composition, 2747
performance trials, India, 1144
production, 3099
protein content, 2753
selection, 0882
water management, 1438
homozygotes, chiasma frequency, 0684
hybrids, 0928, 1054, 1078, 1083, 1137, 1155
agronomy, 1173
chemical composition, 1154
forage yield, 1152
India, dryland, 1225
irrigation, 1444
nitrogen fertilizers, 0768, 0905
nutrient composition, 1154
performance trials, India, 1058, 1059, 1060, 1098, 1099, 1120
USA, 1233
rainfed cultivation, 1023
water requirements, 1412, 1424
yield, 1089
hybrids, Intergeneric, 1138
improvement, 0100, 0101, 0871, 0872, 0901, 0902
grain quality, 0895
physiology, 0908
inbreds, cytology, 0710
drought resistant, 1874
male sterility, 0937
inbreeding, 0945
India, 1270
inheritance, 0557, 0676, 0755
bristling, 0814
chlorophyll content, 0730
desynapsis, 0692
disease resistance, 0617, 0812
diseases, 0554, 0730
forage characters, 0634
hairiness, 0610
head characters, 0616
internode number, 0730
lysine, 0561
male sterility, 0605
pigmentation, 0611, 0615
pollen fertility, 0613
protein, 0561, 0649, 0823
qualitative characters, 0687, 0688, 0677, 0912
quantitative characters, 0754
spike (curling), 0598
suppressive characters, 0726

interchange, chromosomes, 0907-0989, 0991
intercropping, 1488, 1490
cotton, 1463, 1495
forage yield, 1498
groundnut, 1492
semi-arids, 1481
sorghum, 1453-1455
spacing, 1500
internode number, inheritance, 0730
iron absorption, 1825
iron application effect, 1690

irradiation effect, 0769
chromosomes interchange, 0989
chromosomes (meiotic), 0777
chromosomes translocation, 0798
cytogenetic effect, 0576
disease resistance, 0763
female sterility, 0644
forage production, 0577
meiotic anamalies, 0799
mutation, 0771
photosynthesis, 0518
pollen, 0647
quantitative characters, 0764
seeds, 0850, 0852, 2091
trisomics, 0798

irradiation (recurrent), combining ability, 0578, 0851

irrigation effect, 1398, 1402, 1406, 1422, 1423, 1432, 1434
cropping system, 1413
fertilizers, 1394
forage yield, 1784, 1862
grain yield, 1537
growth, 1421, 1862
hybrids, 1444
nitrogen fertilizers, 1696, 1727
water quality, 1428
water requirements, 1537
weed control, 1911
yield, 1421, 1862

irrigation (Saline) effect, 1407, 1436
forage yield, 1550
irrigation (sprinkle), 2132
karyomorphology, 0148, 0756
leaching levels, 1427, 1428
leaf, enzymes activities, plant growth regulator effect, 0348
leaf, epidermal pattern, 0187
leaf age effect, 1587
leaf area, 0166, 0175
diallel analysis, 0938
heterosis, 0791
leaf characters, 0162

leaf number, diallel analysis, 0938
leaf protein, 1567, 2694
leaf surface, digestibility, 0334, 3055
transpiration, 0334
light effect, 0396, 0506
linkage studies, 0876
lipid composition, 2680, 2863
lipid content, seed, 2751, 2762
lipid quality, storage effect, 2772
lysine, inheritance, 0561
magnesium fertilizers, 1633, 1690
male sterility, 0574, 0822, 0833, 0835, 0848, 0937, 0954, 0993
breeding, 0929
combining ability, 0837, 0838, 0941, 0949
cytobiology, 0739
cytogenetics, 0606
fertility and sterility maintainer mutant, 0843
inbreds evaluation, 0937
inheritance, 0605
mutation (plasmon), 0858

malting, 2860, 2862
manganese absorption, 1825
manures
composed municipal refuse, 1684, 1826
farmyard, 1428, 1734
sheep, 1650
marketing, India, 3106, 3113, 3114, 3118, 3119
maturity effect, 1261
meiosis, 0606

autotetraploid, 0713
B-chromosomes, 0711
haploid, 0686, 0688
hybridization, interspecific, 0689
meiotic anamalies, 0799
metroglyph analysis, 0881
microbiological changes in decomposition, 2136
micronutrients, 1825
India, arids, 1690, 1819
zinc, 1656, 1827, 1828, 1854
milk production, 2986
milling, 2645, 2646, 2653, 2660
mineral content
nitrogen fertilizers effect, 1803
path analysis, 2708
potassium fertilizers, 1812
soils (ferruginous), 1335
varieties, 2764
mixed cropping effect, 1471
forage yield, 1498
growth, 1476
legumes, 1498
nitrogen fertilizers, 1476
sesamum, India, 1469
moisture conservation, run-off irrigation effect, 1415
monotelodisomics, 0712
morphological characters, correlation, 0740, 1264
progeny, 0731
variation, 0740
mulches effect
soil moisture and yield, 1586, 1919
soil temperature and water conservation, 1368
multiple cropping, 1473
India, 1475, 1484
soil nitrogen, 1816
summer, 1484
muliploid sporocytes, 0708
mutagens, 0562, 0708, 0773, 0779
combining ability, 0576, 0851
mutagens (recessive), 0853
mutants, 0692
iron absorption, 1825
valerieon, 0740
irrigation, 1696, 1727
mulches effect
leaf protein, 1567
soil moisture and yield, 1566, 1919
manganese absorption, 1825
soil temperature and water mineral content, 1803
conservation, 1388
nitrogen content, 1714, 1873
protein content, 1612, 1640, 1740
rainfed cultivation, 1781, 1834, 1835, 1878
soil nitrogen, 1850
soils (sandy, India, 1820
combining ability, 0578, 0851
sowing method, 1590
mutagens (recessive), 0853
spacing, 1610
mutants, 0692
split application, 1836
nitrogen and drought, 1714
soil nitrogen, 1816
rainfed cultivation, 1781, 1834, 1835,
summer, 1484
1878
dwarf, 1001
yield, 1587, 1590, 1606, 1640, 1676,
1829, 1846, 1850, 1862
mutation, 0589
yield components, 1587, 1832
disease resistance, 0738
male sterility, 0858
nematode resistance, 2506
nitrogen fertilizers effect, 2495
Gambia, 2508, 2509
Heteroder a gambiaensis, 2509
Hoplolaimus indicus, 2512
India, 2511
Meloidogyne, 2500
nematocides, 2501, 1502
Pratylenchus, 2512, 2513
rotation cropping, 2495, 2503
Nigeria, 0032
nitrogen fertilizers, 1431, 1586, 1604,
1627, 1640, 1650, 1653, 1656, 1665,
1726, 1755, 1757, 1765, 1816, 1817,
1821, 1827, 1828, 1831, 1834, 1845,
1853, 1872
nitrogen fertilizers, 1431, 1586, 1604,
1627, 1640, 1650, 1653, 1656, 1665,
1726, 1755, 1757, 1765, 1816, 1817,
1821, 1827, 1828, 1831, 1834, 1845,
1863, 1872
nitrogen fertilizers, 1431, 1586, 1604,
1627, 1640, 1650, 1653, 1656, 1665,
1726, 1755, 1757, 1765, 1816, 1817,
1821, 1827, 1828, 1831, 1834, 1845,
1863, 1872
abortion, 1476, 1759, 1763
chemical composition, 2717
digestibility, 2717
diseases
Claviceps microcephala, 2417
Sclerospora graminicola, 2347
Tolyposporum penicilliatum, 2317, 2360
drymatter accumulation, 1592
drymatter yield, 1740, 1750
foliar spray, 1700
forage yield, 1554, 1784
grain yield, 1661, 1696, 1793, 1804,
1832, 1870
India, 1630, 1870
growth, 1554, 1590, 1642, 1656,
1714, 1759, 1793, 1882
hybrids, 0768, 0905
India, 1630, 1756
iron absorption, 1825
irrigation, 1696, 1727
leaf protein, 1567
manganese absorption, 1825
mineral content, 1803
nitrogen content, 1714, 1873
protein value, 1663, 1884
protein content, 1612, 1640, 1740
rainfed cultivation, 1781, 1834, 1835,
1878
soil nitrogen, 1850
soils (sandy, India, 1820
sowing method, 1590
spacing, 1610
split application, 1836
tiling, 1529
yield, 1587, 1590, 1606, 1640, 1676,
1829, 1846, 1850, 1862
yield components, 1587, 1832
NPK fertilizers, 1756, 1776
chemical composition and growth, 1763
nutrient deficiency, 1642
nutrient quality, breeding for, 0921,
0956
nutritional requirements, soils (Calcicereous and non-Calcareous), 1641
nutritive value, feed, 2087, 2089, 2947,
2955, 2979, 2981, 3014
nutritive value, food, 2087, 2089, 2925
nutrient fertilizers effect, 1663, 1884
overlapping cultivation, cotton, 1479
oxalic acid content, straw, 2768
oxycarboxin, absorption and translocation, 2151, 2152
seed germination, 2069
palatability, feed supplements, 2982
panicles, growth, 0392
pest control, 2543, 2544, 2546, 2547,
2557, 2561
pest resistance
Chilo partellus, 2633
Schizaspis graminum, 2557, 2561
Spodoptera frugiperda, 2579, 2580
pesticides, 2563, 2565, 2572, 2595,
2596
residual effect, 2536
soil treatment, 2584
pest, 2522, 2523, 2540, 2542
Acigona ignatiasis, 2528, 2532
Aethus laticollos, India, 2616
Atherigona, 2566
Atherigona approximata, 2568
India, 2571, 1574
pesticides, 2572
Atherigona destructor, pesticides, 2563
yield loss, 2573
Bagrada crucifera, India, 2587, 2594, 2598
pesticides, 2596
Balclutha, 2622
Cecidomyia penseti, Senegal, 2528
Chilo parfellus, 2528, 2532
India, 2530
yield loss, 2573
Chilo ocellata, India, 2574, 2587
pesticides, 2596
Chilo ocellata destructor, pesticides, 2593
yield loss, 2573
Chirumbia crucifera, India, 2587, 2594, 2598
pesticides, 2596
Chonongus ramosus, India, 2616
Chonongus approximata, 2568
India, 2571, 1574
pesticides, 2572
Chonongus destructor, pesticides, 2563
yield loss, 2573
Cnaphalocrocis medinalis, India, 2624
coloeoptera, 2543
Contarinia sorghi, Senegal, 2528
cropping system, 2526
Cyaneolytta acteon, 2614
Euproctis virguncula, India, 2632
coloeoptera, 2543
Geromyia penseti, 2503, 2585, 2586
Heliothis armigera, India, 2636
Hieroglyplus nirorepletus, 2612
Hokotichia See Lachnosterna
Lachnosterna, India, 2550, 2551, 2553
Lachnosterna consanguinea, 2548, 2549
Lygus palvillus, pesticides, India, 2595
Marsamia trapezalis, bionomics, 2636
India, 2534
yield loss, 2536
Masalia, Senegal, 2532
Mylabs pusilla, yield loss, 2593
Myiloce r us cordoni, 2607
Myiloce r us maculatus, India, 2628
Myiloce r us undecimputulatus maculatus, India, 2634
Mythima separata, India, 2578
Oligotoma humberlaine, 2603
Phila perpusilla, India, 2635
Rhynyptia leucopoca, 2642
Rhynyptia meridionalis var. puncticollis, India, 2589, 2627
Spathoptera ruficollis, India, 2589
Spathoptera prasiniferum, 2619
Pholc, 0170
Phosphorus fertilizers, 1757, 1796, 1816
absorption and growth, 1363
India, 1836, 1756
split application, 1796
yield, 1771
photochemical activities, chloroplasts, 0295
photoperiod effect, anthesis, 0337
genotypes, 1306
photosynthesis, 0351, 0389
diseases effect, 2312, 2313
enzymes, plant growth regulators
effect, 0349, 0463, 0464
salinity effect, 0463
growth effect, 0463
irradiation, 0518
temperature and light effect, 0506
water stress, 0484
photosynthetic assimilate
plant growth regulators effect, 0349, 0463, 0464
salinity effect, 0463
translocation, 0354, 1559
photosynthetic potential, 0356
physiology, improvement, 0908
pigmentation, inheritance, 0811
genetics, 0604
plant growth regulators
abscissic acid, 0464
Cedos argentea, extract, 0412
chlorflurenol, 0470
cycocel and kaolin, 0452
gibberellic acid, 0496, 0526-0528
gibberelini, 0463
Solanum surattense extract, 0514
pollen
antifungal activity, 2153
cytotoxic, 0704
irradiation, 0647
pollen fertility
inheritance, 0813
restoration, 0559, 0539, 0997
pollen movement, 0844
polyploid
inbreds, 0695
induced, 0694
population, dwarf, Nigeria, 0655
potassium fertilizers effect, mineral
content, 1812
chemical composition, 1763
gemination, 0278
rotational cropping, 1468, 1509
soil type, 1664
yield, 1771
presoaking treatment, gemination, 0278
prices, 3110
processing, food, 2829
processing, grains, 2398
processing, losses, 2656
production, 0028, 0044, 1224, 3110
Africa, 1184
high yielding varieties, 3099
India, 1227, 1241, 3092, 3093, 3115
productivity, cropping systems, India, 1474
progeny testing, tetraploid and diploid
revertants, 0664
progeny, morphological characters, 0731
protein
extractability, 0257
feed supplements, 2829
inheritance, 0561, 0623
leaf, 2694
protein bodies, 0247
protein content
breeding for, 0976
breeding (mutational), 0947
diallel analysis, 0824, 0936
flours, 2645, 2646
food supplement, 2813
genetic analysis, 0700
grain, 3003
high yielding varieties, 2748, 2753
inheritance, 0649
manures, 1589
nitrogen fertilizers, 1612, 1640, 1740
seedling rates, and
sowing methods, 1589
varieties, 2692, 2640
protein metabolism
enzymes, 0347
plant growth regulator effect, 0345
salinity effect, 0346
sodium chloride, 0345
temperature effect, 0408
protein quality, 2764, 2837
proteolysis, 0359
qualitative characters, inheritance, 0667,
0688, 0677, 0912
quantitative characters
gene effects, 0759
genetic studies, 0757, 0784
inheritance, 0754
variation, 0764
radio protective effect of coconut
milk, 2091
rainfed cultivation, 1396, 1397
diseases, 2178
Asia, 2155
fertilizers, 1725, 1732, 1735, 1810
hybrids, 1023
India, 1485
nitrogen fertilizers, 1781, 1834-1836, 4678
spacing, 1781
regeneration, 0432
regression analysis, chemical composition
and grain yield, 0865
regrowth, defoliation and light effect, 0396
relay cropping, forage, 1501
respiration, diseases effect, 2312, 2313,
2326
revamping, 2086
rhizosphere microflora,
dairy cattle manure effect, 2132
irrigation (sprinkle) effect, 2132
rhizosphere mycorrhiza, 2135, 2173,
2174
root, protophloem sieve-elements, 0171
root colloid, cations, potassium and
calcium ratio, 0293
root decomposition, 2204
rooting, 0414, 0477, 0479, 0523
fertilizers effect, 1602
soil compaction, 1329
rotational cropping, 1468
India, 1486, 1497, 1516
nematodes, 2495, 2503
soil nitrogen, 1509, 1816
Sesamum, 1460
soil phosphorus and potassium, 1509
soils, copper content, India 1371
wheat, 1470
run-off irrigation effect, moisture
conservation, 1415
saline reclamation, 1550
saline water, irrigation, 1436
salinity effects, 0480, 1328
chemical composition, 1407
germiation, 0375, 0393, 0413, 0480,
1427
growth, 0375, 0480, 1407, 1427
photosynthesis, enzymes, 0463
photosynthetic assimilates, 0463
salt content, 1427
seed treatment, 2076
yield, 1771
salt content, salinity effect, 1427
sea water irrigation effect, chemical
salinity effect, 0346
sodium chloride, 0345
composition and growth, 1407
seed, 2111
carbendim effect, 2069
caryopsis, 0181
cosperm, 0180
fatty acid composition, 2713
germination (see germination
irradiation, 0850, 0852, 2091
lipid content, 2751, 2762
mutagen (recurrent), 0853
pericarp, 0190
water stress, 0360
seed-borne fungi, 2197, 2296
seed hardening, 0362
seed certification, 2065
seed trill, 1560, 1584
seed microflora, 2371
seed mycorrhiza, 2359, 2393, 2412, 2427
seed production, 2065, 2112
India, 3113
seed quality, agronomic characters, 0551
seed size effect, germination, growth and
yield components, 2070
seed storage moisture content effect, 2663
temperature effect, 2674
seed testing, germination, 2067
seed treatment, 2082, 2102
chemical composition, 2101
drought resistance, 2103
germination, 2107
salinity effect, 2076
transpiration, 0507
seedbed effect, nutrient absorption,
soil moisture and yield, India, 1566
seedling rates, 1547, 1577
forage yield, 1555
grain weight, 1589
leaf protein, 1567
protein contents, 1589
selection, 0967
forage quality, 0883
forage yield, 0889, 1011
grain yield, 1011
high yielding varieties, 0982
self-food population, 0967
varieties, 0903
self pollination, variation, 0968
yield stability, 0969
selfed population, selection, 0967
semi-arid

cropping systems, India, 1462
intercropping, 1481
mixed cropping, India, 1469
nutrient absorption, soil moisture and yield, 1566
shoot thichones, suppression, 0727
silicon effect, digestibility, 3035
socio-economic, semi-arids, 3100
soil-climate relations, 1457
soil compaction
growth, 1379
rooting, 1329
yield, 1379
soil fertility, 1364, 1372, 1863
soil moisture, 1328
forage, 1343
grain yield, 1870
mulches effect, 1566, 1919
nitrogen content, 1409
seedbed effect, 1566
tilling, 1526
weed control, 1919
yield, 1409, 1676
soil nitrogen
multiple cropping, 1816
nitrogen fertilizers effect, 1850
rotational cropping, 1509, 1816
yield, 1850
soil pH effect
ammonium and nitrate absorption, 0355
chemical composition, 1358
forage yield, 1384
soil properties and yield, 1358
soil phosphorus effect
dry matter yield and growth, 1368
rotational cropping, 1509
soil properties
absorption, 1 : 7
alfisols, 1372
grain yield and growth, 1367
soil pH eff : t, 1358
tilling effect, 1535
waste (Polystyrene) effect, 1380
soil salinity, 1375
forage yield, 0278
soil temperature, mulches effect, 1386
soil test, 1356
soil treatment for pest control, 2564
soil type
nickel content, India, 1371
forage, 1343
high yield varieties, 1382
potassium fertilizers, 1664
sols (calcaeous), 1363
sols (calcareous and non-calcareous), 1641
sols (ferruginous), 1335
sols (-hum), waste (Polystyrene) effect, 1380
sols (sandy), 1529, 1820, 1871
sowing depth, 1577
sowing method
forage yield, 1555
grain weight, 1589
growth and yield, 1590
protein contents, 1589
sowing time, 1500, 1525, 1564, 1591
forage, 1343
forage yield, 1554
grain yield, 1563
growth, 1554
tropics, 1552
spacing, 1553, 1565, 1566, 1727
dry matter accumulation, 1592
grain yield, 1661, 1792
growth, 1793
intercropping, 1500
nitrogen fertilizers, 1610
rainfed cultivation, 1781
yield, 1587, 1818, 1846
yield components, 1587
spike (curling), inheritance 0598
stress content, 2844
stem characters, 0162
stem thickness
diallel analysis, 0938
forage yield, 0639
storage
β-carotene content, 2718
flour, deterioration, 2672
grain, 2644, 2657
lipid quality, 2772
seed viability, 2663
straw, oxalic acid content, 2768
Striga, 2310
Striga hermontheca, herbicides, 2490
Striga lutea, herbicides, 2487-2489, 2491
styles, teratological phenomenon, 0154
sulphur effect, 1690
summer, 1484, 1539, 1550, 1555
taxonomy, 0232
temperature effect
anthesis, 0337
carbohydrate metabolism, 0408
chlorophyll deficiency, 0729
genotypes, 1308
germination, 0408, 1311
photosynthesis, 0506
protein metabolism, 0408
teratological phenomenon, 0154
tetrazymes, chiasma frequency, 0684
tetraploid
desynaptic, 0734
fertility, 0657
progeny testing, 0664
threshing, 2664
tilling, diallel analysis, 0980
tilling effect
grain yield, India, 1533
growth, 1526
nitrogen fertilizers, 1529
soil moisture, 1526
soil properties, 1535
water requirement, 1527
weed control, 1930
yield, 1526, 1529, 1535
toxicity, Claviceps microcephala, 3068, 3069, 3072, 3075, 3076
translocation
Subject Index

B-chromosomes, 0789
carboxin, 2151, 2152
chromosomes, 0565, 0762, 0788, 0798, 0986, 0990, 0992
photosynthetic assimilates, 0354, 1559
transpiration
herbicides effect, 0452
plant growth regulator effect, 0452
seed treatment, and
water stress, 0507
transplantation, 1525
growth and yield, 1590
trichome suppression, 0726, 0727
trisomic, 0688, 0693, 0697, 0761, 0798
wastes, 0986, 0990, 0992
water hyacinth as green manure, 1753
photosynthetic assimilates, 0354, 1559
transpiration water conservation, 1401
herbicides effect, 0452
mulches effect, 1388
plant growth regulator effect, 0452
water management, high yielding varieties, seed treatment, and India, 1438
water stress, 0507
water quality, irrigation, 1428
transplantation, 1625
water requirements growth and yield, 1590
herbicides effect, 0452
water stress, 0512
water quality, irradiation, 0798
plant growth regulator effect, 0452
trisomic (double), 0612
tilling effect, 1527
trisomic (primary), 0615, 0800
water stress, 0494
irrigation effect, 1537
irradiation, 0798
plant growth regulator effect, 0452
trisomic (tertiary), 0691, 0787
weed tritomic (triple), 0613
urea fertilizers
B-carotene contents, 2718
grain yield and growth, 1697
USA, 0055
variation, 0634, 0783
agronomic characters, 0753
botanical characters, 0631
breeding, 1004
chromosomes, 0632, 0637
chemical composition, 0632, 0637
combining ability, 0834
cooking quality, 0629
crossing (Biparental), 0968
dominant characters, 0678
geographical distribution, 0790
morphological characters, 0740
grain characters, 0631
grain yield, 0753
India, 0226
quantitative characters, 0764
self pollination, 0968
yield components, 0632, 0758
varieties, 0928, 1044, 1046, 1048, 1123, 1124, 1126, 1128, 1155
amino acid content, 2692
chemical composition, 1080
cooking quality, 2840
crop-weed competition, 0879
disease resistance, 1087
drought resistance, 1112, 1134
dry land, 1061
forage, 1033, 1038, 1081, 1082
forage yield, 1080
grain quality and yield, USA, 1101, 1103, 1104
high yielding. See high yielding varieties
mineral content, 2764
Pakistan, 1096
performance trials, 1034
India, 1059, 1060
USA, 1039, 1074, 1094, 1095
protein content, 2692, 2840
protein quality, 2764, 2837
selection, 0903
vertisols
nutrient composition, 2693
wastes, 1367
water hyacinth as green manure, 1753, 1754
water conservation, 1401
mulches effect, 1388
water management, high yielding varieties, India, 1438
water quality, irrigation, 1428
water requirements
herbicides effect, 0452
hybrids, 1412, 1424
India, 1408
irrigation effect, 1537
plant growth regulator effect, 0452
tilling effect, 1527
water stress, 0494, 0512
grain characters, 2660
growth and nutrient absorption, 1759
photosynthesis, 0484
transpiration, 0507
weed
Borreria articuloris, 1888, 1889
Digera arvensis, 1922
weeding, 1919
yield, 1919
weed control, 1950
irrigation effect, 1911
nitrogen content, 1873
soil moisture, 1919
tilling, 1930
yield, 1919
weeding, 1901, 1902, 1924
yield, 0033, 0034, 1162, 1171
fertilizers effect, 1731, 1833
genetics, 0758
grazing, 1274, 1758
herbicides, 1606, 1900
hybrids, 1088
India, 0529
irrigation effect, 1421, 1862
irrigation (Saline) effect, 1550
mulches effect, 1586, 1919
nitrogen fertilizers effect, 1587, 1606, 1640, 1676, 1846, 1862
NPK fertilizers, India, 1818
phosphorus fertilizer effect, 1771
potassium fertilizer effect, 1771
run-off irrigation, 1415
seedbed effect, 1566
salinity effect, 1771
soil compaction, 1379
soil moisture, 1409, 1676
soil nitrogen, 1850
soil pH, 1358
sowing method, 1590
spacing, 1587, 1818, 1846
tilling, 1526, 1529, 1535
transplantation, 1590
weed control, 1919
yield components
combining ability, 0891, 0981
forage, 0635
genotype analysis, 0700
genotype-environment interaction, 0641
grain yield, 0591, 0626, 0638, 0887
heterosis, 0981
heterozygosity, 0722
nitrogen fertilizers, 1587, 1832
seed size, 2070
spacing, 1587
variation, 0632
yield loss
diseases, 2327, 2397
pests, 2573, 2593, 2636
yield potentiality, 1203
cropping system, 1510
Senegal, 1204
tropics, 1280
yield stability, 0827, 0830, 1071
crossing (Biparental), 0969
environment effect, 1316
genotype-environment interaction, 0969
self pollination, 0969
zinc as micronutrient, 2256, 2258, 2341, 2260, 2227, 2228, 2242, 2303, 2305-2307, 2309, 2310, 2312-2315, 2316, 2323, 2326, 2327, 2330-2332, 2334-2336, 2342-2344, 2347-2349, 2355
Sesamum indicum, 2567
Sesamia inferens, 2567
Setaria, 0094
acid detergent fibre, 2779
in Sesamum indicum, 1988
Brazil, 1176
breeding for protein content, 0976
cation-anion ratio, 3038
cellulose content, 2779
chemical composition, seeding rate effect, 1569
chromosomes, 0587
cytology, 0564, 0669, 0939
digestibility, 2913, 3536-3039
drought resistant varieties, 1134
dryland, varieties, 1058
environment effect, intercropping, 1467
fertilizers, irrigation effect, 1830
forage yield, seeding rates effect, 1569
frost resistance, 2988
frosting, 0331
intercropping, 1830
environment effect, 1467
irrigation effect, fertilizers, 1830
microhairs variation, 0742
mutants, protein content, 1013
NPK fertilizers, yield, India, 1785
nutritive value, feed, 2913
oxalate toxicity, 2761, 2778, 3038
performance trials, India, 0935
phosphorus content, 2923
photosynthesis, day length effect, 0266
polycyclic variation, 0951
protein content breeding for, 0976
mutants, 1013
seeding rate effect, chemical composition and forage yield; 1569
variation, microhairs, 0742
variation, polycyclic, 0951
varieties, 1136
drought resistant, 1134
dryland, 1058
India, 1062
yield, NPK fertilizers, India, 1785
Setaria adhaerens, Libya, 0228
Setaria anceps
absorption, potassium, 0530
defoliation effect, 1350
digestibility, 3029
grazing, 2060, 2061
intercropping, legumes, 1350
nutritive value, growth effect, 2061
phosphorus fertilizers, 1600
potassium, absorption, 0530
seeding rates effect, yield, 1573
soil fertility, and
weed competition, 1350
yield, seeding rate effect, 1573
Setaria faberi
amino acid leakage, temperature effect, 0338
in soyabean, 1999, 2000
ecology (physiological), 1297
germination, temperature effect, 0338
USA, 1182, 1259
Setaria geniculata, anatomy and taxonomy, USA, 0159
Setaria glauca
as weed, 1957
chromosomal races, distribution pattern, 0670
cytotaxonomy, 0669
diseases
Cercospora, 2262
fungal, 2180, 2181
Helminthosporium maydis, 2273
seed-borne fungi, 2296
shoot, composition, 2205
shoot mycorrhiza, 2206
flowers, anatomy, 0179
growth, 0520
cytotaxonomy, 0669
Carbohydrate content, 2686
diseases
Cercospora, 2262
fungal, 2180, 2181
Helminthosporium maydis, 2273
seed-borne fungi, 2296
shoot, composition, 2205
shoot mycorrhiza, 2206
flowers, anatomy, 0179
growth, 0520
cytotaxonomy, 0669
Carbohydrate content, 2686
Setariaglauca, glucosyglycoides, 0405, 2742 as weed, 1957
carbonic acid composition, 2711, 2785
anthocyanin pigmentation, 0250
apomixis, 0560
biological characters, 0138
blooming, 0255
breeding for protein content, 0916, 1288
calcium fertilizers effect, 1376, 1724
carbohydrate content, growth, 2686
chemical composition, calcium and phosphate fertilizers effect, 1376
growth, 0395
nitrogen and phosphorus fertilizers, 1789
soil pH, 1376
soil salinity, 1789
varieties, 2784
chlorophyll content, mutation, 0623
correlation, yield and yield components, 1263
day length effect, growth, 1562
diseases
Ephelis oryzae, 2394
Helminthosporium setariae, 2232, 2293
light and temperature effect, 2291
Panicum mosaic virus, 2481, 2482
Puccinia setariae, 2184
Pyricularia, 2258
Pyricularia setariae, 2246
India, 2264
phytotoxicity, 2259
Sclerospora graminicola, India, 2184, 2315
Stenotaphrum secundatum, 2456, 2466, 2467
Uromyces setariae-italicae, 2350-2352
virus, 2474
distribution, temperature effect, 1314
dry matter yield, 1848, 1849
earliness, 0133
varieties, 1064
environment effect, protein content, 1319
fertilizers, 1859
flowers, histocchemistry, 0160
food processing, 2558
germinability, 0394
Setaria italica, 0042, 0132
adaptation, 1239
agrobotany, varieties, 1170
agronomic characters, 1288
aminic acid composition, 2711, 2785
anthocyanin pigmentation, 0250
apomixis, 0560
biological characters, 0138
blooming, 0255
breeding for protein content, 0916, 1288
calcium fertilizers effect, 1376, 1724
carbohydrate content, growth, 2686
chemical composition, calcium and phosphate fertilizers effect, 1376
growth, 0395
nitrogen and phosphorus fertilizers, 1789
soil pH, 1376
soil salinity, 1789
varieties, 2784
chlorophyll content, mutation, 0623
correlation, yield and yield components, 1263
day length effect, growth, 1562
diseases
Ephelis oryzae, 2394
Helminthosporium setariae, 2232, 2293
light and temperature effect, 2291
Panicum mosaic virus, 2481, 2482
Puccinia setariae, 2184
Pyricularia, 2258
Pyricularia setariae, 2246
India, 2264
phytotoxicity, 2259
Sclerospora graminicola, India, 2184, 2315
Stenotaphrum secundatum, 2456, 2466, 2467
Uromyces setariae-italicae, 2350-2352
virus, 2474
distribution, temperature effect, 1314
dry matter yield, 1848, 1849
earliness, 0133
varieties, 1064
environment effect, protein content, 1319
fertilizers, 1859
flowers, histocchemistry, 0160
food processing, 2558
germinability, 0394
content and yield, 1724
processing, food, 2658
protein, 2711
rats, 3016
protein content, 2785
breeding for, 0916
environment effect, 1319
rainfed cultivation, nitrogen fertilizers, 1662
rotational cropping, nematodes, 2499
seed dormancy, 0520
selection, yield, 0854
soil pH effect, chemical composition and yield, 1376
soil phosphorus effect, dry matter yield, 1848
phosphate fertilizers, 1666
soil salinity effect, chemical composition and growth, 1789
sowing depth effect, germination and yield, 1549
sowing time, 1549, 1562
starch content, 2725
stored grain, pests, 2608
taxonomy, 0201.
0232
ecology, USA, 1193
embryo, protein bodies and lipids, 0455
florets dormancy, plant growth regulators effect, 0456
grain, endosperm, 0167
photosynthesis, 0373
protein bodies, embryo, 0455
transfer aleurone cells, 0168
Setaria macrostachya, germination, water stress effect, 0503
Setaria megna, anatomy and taxonomy, USA, 0159
Setaria palliadelusca, 0120
chromosome number, 0785
nutritive value, 2894
Setaria peltifolia, as weed, 1896
Setaria sphacelata
amino acids, mineral nutrient deficiency, 0290
breeding, seed production, Kenya, 0842
carbohydrate composition, temperature effect, 0534
carbohydrate content, 2690, 2691
cation-anion balance, 0488
chemical composition, 3065
temperature effect, 1312
cutting, 1214
cutting frequencies and height, 2051
cutting management, 2046
digestibility, 3064, 3065
temperature effect, 0534
dry matter yield, 2875
drought susceptibility, 1421
forage quality and yield, 1290
varieties, 2931
frost resistance, 1214
grain yield, Kenya, 2038
grazing time, 2059
growth, 1214
irrigation effect, 1421
temperature effect, 0534
heading, 0404
harvesting time, grain yield, Kenya, 2038
irrigation effect, growth and yield, 1421
intercropping, Desmodium, 1513
nitrogen fertilizers, 1617, 1618
seed production, 1678
yield, 1683
nitrogen sources, oxalate accumulation, 0457
nutritive value, sheep, 2980
oxalate toxicity, 1421
for cattle, 3074, 3081
oxalate accumulation, 0457
potassium effect, 0488
palatability, 3064
polysaccharides, 2690, 2691
potassium effect, cation-anion balance and oxalic accumulation, 0488
seed production, Kenya, 0842, 1617, 1618, 2038, 2072, 2110
nitrogen fertilizers effect, protein content and yield, 1749
seed viability, temperature effect, 2109
spacing, 1617
seed production, 1678
temperature effects, 0534, 1312, 2109
varieties, forage quality, 2931
yield, 1196, 1243
irrigation effect, 1421
nitrogen fertilizers effect, 1683
Setaria splend'Ja
carbohydrate composition, digestibility, 2728
digestibility, 3028, 3050, 3053
pelleting, 3046
diseases, Puccinia oahuensis, 2562
irrigation effect, yield, New Zealand, 1400
nitrogen fertilizers effect, protein content and yield, 1749
palatability, 3046, 3050
pests, aphids, 2562
protein content, nitrogen fertilizers effect, 1749
yield, irrigation effect, 1400
Setaria splendida, digestibility, cell-wall constituents, 3061
Setaria verticillata
- carbohydrate content, 2729
- diseases, wheat streak mosaic virus, 2478
- Hexaploid, meiosis (aberrant), 0622
- nematodes
 - Meloidogyne, 2492
 - Trichodorus mizai, 2493

Setaria viridis
- amino acid leakage, temperature effect, 0338
- in maize, 2003, 2004
- in oats, 1955a
- in rapeseed, 1955c
- USA, 2002
- in wheat 1955a, 1955d, 2008-2010
diseases, maize dwarf mosaic virus, 2479
distribution, 0126
- temperature effect, 0338
- panicles, 0158
- peats, Aethus indicus, 2618
- sowing depth effect, germination and yield, 1549
- sowing time, 1549
taxonomy, 0238
- temperature effect, 0338

Setaria woodii, nutritive value, feed, 2894

Sisymbrium elaeagnioliun, as weed, 1929

Spathostemnum pruniferum, 2619

Sphaellia sorghi, 2200, 2421

Sphaelotheca panici-miliacea, 1015, 2325, 2362, 2365, 2368-2370, 2382, 2386-2390, 2409, 2410, 2424, 2425, 2429

Sphaelotheca reiliana, 2384

Spirillum lipoferum, nitrogen fixation, 0489

Spodoptera frugiperda, 2579-2581

Spodoptera litura, 2582

St. Augustine Decline disease. See Stenotaphrum secundatum

Stachybotrys, 2426

Stenotaphrum secundatum, 2439, 2453, 2455, 2466, 2467

Striga, 2310, 2486

Striga asiatica, 2484, 2485

Striga hermonthica, 2490

Striga lutea, 2487-2489, 2491

Sugarcane mosaic virus, 2442, 2445, 2446, 2460, 2476

Telaneura hirsuta, 2494

Thysanoptera, 2605

Tolyposporium penicilliariae, 0251, 0252, 0900, 0914, 2164, 2168, 2184, 2317, 2341, 2357, 2360, 2361, 2393, 2404, 2406

Trichodorus chirstici, 2499

Trichodorus mirzai, 2493

tropical forages, cell-wall constituents, 0173

Tylenchorhynchus gladiolatus, 2497

Uromyces setarae-italicelae, 2350-2352

Usilleag nudae, 2385

Usilleag panici-frumentacei, 0222

Usilleag panici-miliacei, 0937, 2358

Usilleag peradoxa, 2411

Wheat streak mosaic virus, 2478

Xanthomonas, 2727

Xanthomonas albilineans, 2437

Xanthomonas panici, 2431

Xanthomonas translucens, 2436

Xiphinema utahnemacea, 2505
Geographic Index

<table>
<thead>
<tr>
<th>Africa</th>
</tr>
</thead>
</table>
| *Eleusine coracana*, production, 1184
millet, 0199
milling, 2643, 3090
production, 3084
Panicum, population, 0718
Paspalum scrobiculatum, 0130
Pennisetum purpureum, 2905
Pennisetum typhoides
diseases, 2169
production, 1184
Africa, Central
millet, marketing and production, 3095
Africa, East
Eleusine jaegeri, as weed, 1995, 1996
Fragrostis cholcantha, diseases, 2449, 2450
Fragpistis tenuicla, diseases, 2449, 2450
Africa, West
millet, 0025, 0036, 0112
earliness, 1183, 1536
Panicum laxum, 1029
Pennisetum purpureum, 1037, 1047
Pennisetum typhoides, 0031
Pennisetum typhoides, performance trials, varieties, 1305
Brazil, 0103
millet, forage, 2917
Panicum maximum, nitrogen fertilizers, 2971
Paspalum notatum, cytogenetics, ecology and morphology, 0592
Pennisetum purpureum, soils, 1336
Pennisetum typhoides
forage, 1274, 2222, 2985
forage yield, 1262, 2049
grazing, 1274, 2985
nitrogen fertilizers, 1750
nutritive value, feed, 2049
Sclaria, 1176
Canada, Western
Sclaria viridis, distribution, 0126
Chad
millet, 0026
baking products, 2838
pests, 2615
Costa Rica
Digitaria, 1122
Digitaria decumbens, Soil phosphorus, 1722
Pennisetum, 1122
Pennisetum clandestinum, 2874
Pennisetum purgressive, fertilizers, 1673, 1674, 1692
Cuba
millet, photosynthetic productivity, 0431
Egypt
millet, 0011, 1189
yield, 1257
Panicum dichotomillorum, 1216
Panicum implicatum, 1172
Ethiopia
Eragrostis abyssina, fertilizers, 1597, 1680
Pennisetum typhoides, diseases, 2324
France
millet, 0011, 1188
yield, 1257
Panicum dichotomillorum, 1216
Panicum implicatum, 1172
Gambia
millet, nematodes, 2497
Pennisetum typhoides, nematodes, 2508, 2509
Ghana
millet, grain storage, 2661
Guyana
Paspalum notatum, posts, 2613
Hong Kong
Pennisetum purpureum, 1271
Sclaria italica, phosphorus fertilizers, 1849
soil phosphorus, 1848
Hungary
millet, diseases, 2426
Panicum millaceum, absorption, 0500
Sclaria italica, 1226 |
India

Brachiaria ramosa, diseases, 2237, 2462
Brachiaria reptans, diseases, 2234
Echinochloa colonum, diseases, 2236
Eleusine coracana
diseases, 2300, 2464
mixed cropping, 1497
pests, 2534, 2575, 2624
water requirement, 1395
Eragrostis tenella, diseases, 2234, 2237
India, East
millets, bibliographies, 0003, 0005
NPK fertilizers, 1636
diseases, 2300, 2464
pests, 2551, 2635
mixed cropping, 1497
rotational cropping, 1371
seedbed effect, 1566
soils, copper content, 1371
Pennisetum pedicellatum, diseases, 2177
diseases, 2186
Pennisetum typhoides, diseases, 2150
mulches effect, 1566
multiple cropping, 1475
NPK fertilizers, 1636
pests, 2551, 2635
rotational cropping, 1371
seedbed effect, 1566
soils, copper content, 1371
India, East
Pennisetum pedicellatum, rotational cropping, 1481
India, Gujarat
millets, production, 3098
Pennisetum typhoides, 1270
high yielding varieties, 1144
marketing, 3113
nitrogen fertilizers, 1756
performance trials, 1098, 1099, 1120
phosphorus and potassium fertilizers, 1756
rotational cropping, 1516
seed production, 3113
India, Haryana
Panicum miliare, pests, 2567
Pennisetum typhoides
cropping systems, 1457, 1474
kharif, 0010
pests, 2530, 2553
India, Jammu & Kashmir
Pennisetum typhoides, diseases, 2248
Pennisetum typhoides, selection, 0952
Eleusine coracana
fertilizers, 1643
high yielding varieties, 1090
hybrids, 1225
irrigation, 1406
micronutrients, 1690
multiple cropping, 1497
pests, 2534, 2550, 2574, 2616, 2624
production, 1241, 3092, 3115
rainfed cultivation, 1485
Setaria italica
diseases, 2184
mixed cropping, 1497
nematodes, 2517
India, Andhra Pradesh
Eleusine coracana
nematodes, 2504, 2505
performance trials, 0935
sowing time, 1583
spacing, 1582
millets, fertilizers, 1643
Panicum miliaceum, performance trials, 0935
Panicum miliare, performance trials, 0935
Paspalum scrobiculatum, performance trials, 0935
Pennisetum, performance trials, 0935
Pennisetum typhoides
breeding, 0953
marketing, 3114
nitrogen fertilizers, 1871
zinc sulphate, 1794
Setaria, performance trials, 0935
India, Bihar
millets, pests, 2609
India, Delhi
Eleusine coracana, diseases, 2455

Pennisetum typhoides
diseases, 2150
mulches effect, 1566
multiple cropping, 1475
NPK fertilizers, 1636
pests, 2551, 2635
rotational cropping, 1371
seedbed effect, 1566
soils, copper content, 1371

Pennisetum pedicellatum, rotational cropping, 1481
India, Gujarat
millets, production, 3098
Pennisetum typhoides, 1270
high yielding varieties, 1144
marketing, 3113
nitrogen fertilizers, 1756
performance trials, 1098, 1099, 1120
phosphorus and potassium fertilizers, 1756
rotational cropping, 1516
seed production, 3113
India, Haryana
Panicum miliare, pests, 2567
Pennisetum typhoides
cropping systems, 1457, 1474
kharif, 0010
pests, 2530, 2553
India, Jammu & Kashmir
Pennisetum typhoides, diseases, 2248
Pennisetum typhoides, selection, 0952
Eleusine coracana
fertilizers, 1643
high yielding varieties, 1090
hybrids, 1225
irrigation, 1406
micronutrients, 1690
multiple cropping, 1497
pests, 2534, 2550, 2574, 2616, 2624
production, 1241, 3092, 3115
rainfed cultivation, 1485
Setaria italica
diseases, 2184
mixed cropping, 1497
nematodes, 2517
India, Andhra Pradesh
Eleusine coracana
nematodes, 2504, 2505
performance trials, 0935
sowing time, 1583
spacing, 1582
millets, fertilizers, 1643
Panicum miliaceum, performance trials, 0935
Panicum miliare, performance trials, 0935
Paspalum scrobiculatum, performance trials, 0935
Pennisetum, performance trials, 0935
Pennisetum typhoides
breeding, 0953
marketing, 3114
nitrogen fertilizers, 1871
zinc sulphate, 1794
Setaria, performance trials, 0935
India, Bihar
millets, pests, 2609
India, Delhi
Eleusine coracana, diseases, 2455
high yielding varieties, 1110
India, Meghalaya
Digitaria, 01275
India, North-West
Pennisetum typhoides, rotational cropping, 1498
India, Orissa
Eleusine coracana, diseases, 2203
India, Punjab
millets, production, 1251
Pennisetum typhoides, pests, 2576, 2594, 2595, 2632
India, Rajasthan
Eleusine, grazing, 2048
Eleusine compressa, water conservation, 1448
Eleusine coracana, pests, 2567
millets, 0035, 1545
pests, 2525, 2535, 2536
Panicum turgidum, ecological succession, 1194
Pennisetum typhoides
cropping systems, 1510
diseases, 2149, 2252, 2405
fertilizers, 1833
forage, 1183
high yielding varieties, 3089
marketing, 3106, 3118, 3119
micronutrients, 1819
mixed cropping, 1469
nematodes, 2512
nitrogen fertilizers, 1630, 1820
NPK fertilizers, 1818
pests, 2571, 2589, 2598, 2627, 2628, 2634
production, 1227, 3093
soil fertility and tillage, 1533
water requirement, 1408
yield stability, 1316
yield, 0529, 1818
India, South
Eleusine coracana, salinity effect, 1359
India, Tamil Nadu
Echinochloa colona, varieties, 1149
Eleusine coracana
growth, 1256
diseases, 2270, 2454, 2457
performance trials, 1041
potassium fertilizers, 1645, 1646
superphosphate, 1745
water management, 1416
Pennisetum typhoides
growth, 1256
high yielding varieties, 1144, 1438
performance trials, hybrids, 1050
water management, 1438
India, Uttar Pradesh
Pennisetum typhoides
diseases, 2473
performance trials, hybrids and varieties, 1059, 1060
pests, 2637
Panicum, 1179
Rotational cropping, 1497
India, West Bengal
Pennisetum typhoides, nitrogen fertilizers, 1567
Iraq
millets, production, 0024, 3088
Panicum ramosum, soil fertility, 1349
Israel
Pennisetum typhoides, diseases, 2323
Panicum dichotomiflorum, as weed, 2037
Ivory Coast
millets, fertilizers, 1799
Rotational cropping, 1465
Panicum maximum, forage, 1218, 2906
Rotational cropping, 1512
Japan
Echinochloa utilis, distribution and germination, 1314
Eleusine coracana, distribution and germination, 1314
Panicum miliaceum, distribution and germination, 1314
Setaria italica
distribution and germination, 1314
sowing time, 1562
Setaria palmifolia, 1896
Kenya
millets, soil fertility, 1345
Panicum coloratum, harvesting time, 2038
Panicum maximum, growth, 0501
Pennisetum typhoides, irrigation, 1439
Setaria sphacelata, breeding, 0842
seed production, 0842, 1617, 1618, 2038, 2072, 2110
Libya
Panicum adhaerens, 0228
Madagascar
millets, forage, 1192
Pennisetum purpureum, nutritive value, 2883
Malawi
Panicum, varieties, 1151
Malaysia
Eleusine coracana, soil phosphorus, 1692
Mali
millets, 0074-0076
marketing, 3117
Pennisetum typhoides, soil fertility, 1692
Mexico
Panicum, pests, 2605
Panicum ensiforme, 1179
Nepal
millets, pests, 2541
New Zealand
Digitaria decumbens, irrigation, 1400
Paspalum dilatatum, irrigation, 1400
Pennisetum clandestinum, irrigation, 1400
Setaria splendida, irrigation, 1400
Nicaragua
Panicum, 0115
Niger
millets, 0029, 0077
forage, 2889
grain, irradiation disinfestation, 2652
processing, 2647
soils, ferruginous, 1334, 1392
Sierra Leone
millets, performance trials, 1077

South Africa
millets, matting, 2855
Pennisetum purpureum, 1291
Pennisetum typholdes, nutritive value, 2803
water conservation, 1401

Spain
Setaria italica, pests, 2558

Sri Lanka
millets, yield, 1246
Pennisetum clandestinum, 1168, 1208
nutritive value, 2893

Sudan, Southern
Eleusine coracana, continuous cropping, 1451

Syrian Arab Republic
Panicum miliaceum, 1217

Taiwan
Digitaria decumbens, nutritive value, 2876
Pennisetum purpureum, 2920
nutritive value, 2876

Tanzania
millets, intercropping, 1471
Panicum maximum, cutting height and frequency, 2062
forage quality, 2930
Panicum trichocladum, 1200
Pennisetum purpureum, 1200

Thailand
Brachiaria distachya, nutritive value, 2884, 2885
millets, forage yield, 1199
Pennisetum purpureum, nutritive value, 2884, 2885

Togo
millets, 0045

Trinidad
Digitaria decumbens, nutritive value, 2900

Uganda
Brachiaria mutica, nitrogen fertilizers, 1749
Eleusine coracana
manurial trial, 1483
protein content, 2856
sulphur, 1885
millets, phosphorus, potassium and sulphur fertilizers, 1880
Setaria splendida, nitrogen fertilizers, 1749

Upper Volta
millets
agronomy, 1202
fertilizers (except nitrogen), 1768
phosphorus fertilizers, 1767
seed production, 2077
Pennisetum typhoides, agronomy, 1202

USA
Brachiaria mutica, as weed, 1993
millets, 0063, 0064
forage, 2919
performance trials, 1115
varieties, 1067
Panicum amarulum, soil salinity, 1370
Panicum capillare, as weed, 2034
Panicum dichotomiflorum, as weed, 2034
Panicum miliaceum
as weed, 2024
diseases, 2453
performance trials, 1102
Panicum ravenelli, 0229
Panicum virgatum, forage yield, 2873
Pennisetum typhoides, 0055
forage, 1253
grain yield, 1101, 1103, 1104
irrigation, 1423
performance trials, 1233
varieties, 1039, 1074, 1094, 1095
phosphorus fertilizers, 1363
soils (calcareous), 1383
varieties, 1101, 1103, 1104
Setaria faberi, 1182, 1259
Setaria lutescens, ecology, 1193
Setaria viridis, as weed, 2002
USSR
Eleusine coracana, regrowth, 1213
millet, 0374
diseases, 2426
fertilizers, 1403
irrigation, 1403
production, 1191
tetraploid, 0875
varieties, 1160
Panicum, 0135
brooding, 0860, 0875, 0907, 0911, 0943,
0968
high yielding varieties, 0965
hybridization, 1020
inheritance, 0793
seed production, 0860, 0875
varieties, 1050, 1051
Panicum miliaceum
brooding, 0861, 0862
cultivation, 1532
diseases, 2225, 2388, 2390, 2432-2435
drought resistance, 1031, 1420
fertilizers, 1609, 1638, 1667, 1704,
1629, 1724
micronutrients, 1877
production, 2909
rotational cropping, 1506
varieties, 0925
yield, 1315
Pennisetum typhoides, irrigation, 1402
Setaria italica, 1293
agronomic characters, 1288
breeding, 1268
Venezuela
Panicum maximum,
pests, 2623
soil moisture, 1344
West Indies
Digitaria decumbens, diseases,
2223, 2316
Panicum coloratum, varieties, 1050
Yami
millet, 1169
Zimbabwe
Panicum maximum,
APPENDIX: Colloquial Names and Botanical Terms

<table>
<thead>
<tr>
<th>Colloquial name</th>
<th>Botanical term</th>
<th>Colloquial name</th>
<th>Botanical term</th>
</tr>
</thead>
<tbody>
<tr>
<td>African feather grass</td>
<td>Pennisetum macrourum</td>
<td>Petit mil</td>
<td>Pennisetum spp.</td>
</tr>
<tr>
<td>African millet</td>
<td>Eleusine coracana</td>
<td>Prairie grass</td>
<td>Panicum virgatum</td>
</tr>
<tr>
<td>Babale</td>
<td>Pennisetum typhoides</td>
<td>Proso</td>
<td>Panicum miliaceum</td>
</tr>
<tr>
<td>Bahia grass</td>
<td>Paspalum notatum</td>
<td>Ragi</td>
<td>Eleusine coracana</td>
</tr>
<tr>
<td>Bajra</td>
<td>Pennisetum typhoides</td>
<td>Rhaplan</td>
<td>Digitaria spp.</td>
</tr>
<tr>
<td>Barnyard millet</td>
<td>Echinochloa crus-galli</td>
<td>Robust - purple foxtail</td>
<td>Setaria viridis</td>
</tr>
<tr>
<td>Blue panic grass</td>
<td>Panicum antidotale</td>
<td>Ruzizi grass</td>
<td>Brachiaria ruziensi</td>
</tr>
<tr>
<td>Boer lovegrass</td>
<td>Eragrostis curvula</td>
<td>Samai</td>
<td>Panicum miliare</td>
</tr>
<tr>
<td>Brown top millet</td>
<td>Brachiaria remosa</td>
<td>Sawan</td>
<td>Echinochloa crus-galli</td>
</tr>
<tr>
<td>Butrush millet</td>
<td>Pennisetum typhoides</td>
<td>Seratran-nandi</td>
<td>Echinochloa crus-galli</td>
</tr>
<tr>
<td>Cambu</td>
<td>Pennisetum typhoides</td>
<td>Silky umbrella grass</td>
<td>Setaria</td>
</tr>
<tr>
<td>Chenna or Chena</td>
<td>Panicum coloratum</td>
<td>Slenderstem digitgrass</td>
<td>Digitaria ammaphila</td>
</tr>
<tr>
<td>Coloured grass</td>
<td>Panicum miliaceum</td>
<td>Smooth crabgrass</td>
<td>Digitaria pentzil</td>
</tr>
<tr>
<td>Common millet</td>
<td>Digitaria spp.</td>
<td>Stink grass</td>
<td>Digitaria ischaemum</td>
</tr>
<tr>
<td>Crabgrass</td>
<td>Pennisetum pedicellatum</td>
<td>Switch grass</td>
<td>Eragrostis ciliensis</td>
</tr>
<tr>
<td>Cumbu</td>
<td>Pennisetum purpureum</td>
<td>Teff</td>
<td>Panicum virgatum</td>
</tr>
<tr>
<td>Dallis grass</td>
<td>Eleusine coracana</td>
<td>Tenai</td>
<td>Eragrostis abyssinica</td>
</tr>
<tr>
<td>Diga grass</td>
<td>Digitaria spp.</td>
<td>Varagu</td>
<td>Setaria italica</td>
</tr>
<tr>
<td>Dinanaith grass</td>
<td>Setaria italica</td>
<td>Vine mesquitegrass</td>
<td>Paspalum scrobiculatum</td>
</tr>
<tr>
<td>Egyptian millet</td>
<td>Pennisetum typhoides</td>
<td>Weeping lovegrass</td>
<td>Panicum obtusum</td>
</tr>
<tr>
<td>Elephant grass</td>
<td>Paspalum dilatatum</td>
<td>White birdfoot grass</td>
<td>Eragrostis curvula</td>
</tr>
<tr>
<td>Finger millet</td>
<td>Panicum miliare</td>
<td>Witch grass</td>
<td>Digitaria bicornis</td>
</tr>
<tr>
<td>Fonla</td>
<td>Eleusine indica</td>
<td></td>
<td>Panicum capillare</td>
</tr>
<tr>
<td>Foxjil millet</td>
<td>Setaria viridis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gahi-1 millet</td>
<td>Pennisetum typhoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gametotillo grass</td>
<td>Paspalum plicatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German millet</td>
<td>Pennisetum miliaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gero</td>
<td>Setaria italica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant foxtail</td>
<td>Pennisetum miliaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goose grass</td>
<td>Echinochloa crus-galli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green foxtail</td>
<td>Setaria febreri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green panic grass</td>
<td>Pennisetum indicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuinea grass</td>
<td>Eleusine indicaple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamil grass</td>
<td>Setaria viridis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansa ragi</td>
<td>Panicum maximum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hog millet</td>
<td>Panicum miliare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian millet</td>
<td>Eleusine coracana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese barnyard millet</td>
<td>Panicum miliaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job's tears</td>
<td>Setaria italica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jungle rice</td>
<td>Echinochloa crus-galli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kangi</td>
<td>Coix lachryma-jobi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kangni</td>
<td>Echinochloa colonra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kikuyu grass</td>
<td>Setaria italica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klein grass</td>
<td>Pennisetum clandestinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kodo millet</td>
<td>Panicum coloratum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean native millet</td>
<td>Paspalum scrobiculatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kudiravali</td>
<td>Echinochloa crus-galli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kutki</td>
<td>Echinochloa colonra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large crabgrass</td>
<td>Panicum miliare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little millet</td>
<td>Digitaria sanguinalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Love grass</td>
<td>Panicum miliare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mijo comun</td>
<td>Eragrostis spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mijo perla</td>
<td>Panicum miliaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munge</td>
<td>Pennisetum miliaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murat</td>
<td>Pennisetum typhoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Napier</td>
<td>Panicum turgidum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novane</td>
<td>Pennisetum purpureum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pangola digitgrass</td>
<td>Setaria italica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pani varagu</td>
<td>Digitaria dicumbens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para grass</td>
<td>Panicum miliaceum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl millet</td>
<td>Brachiaria multica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pennisetum typhoides</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>