FINAL REPORT of the PUERTO RICO BENCHMARK SOILS PROJECT 1975-1981

Funded by the US Agency for International Development under contract AID/ta-C-1158

DEPARTMENT OF AGRONOMY AND SOILS COLLEGE OF AGRICULTURAL SCIENCES UNIVERSITY OF PUERTO RICO MAYAGUEZ, PUERTO RICO

RESEARCH ON THE TRANSFER OF AGROTECHNOLOGY

FINAL REPORT of the PUERTO RICO BENCHMARK SOILS PROJECT 1975-1981

Funded by the US Agency for International Development under contract AID/ta-C-1158

> F.H. BEINROTH Principal Investigator

DEPARTMENT OF AGRONOMY AND SOILS COLLEGE OF AGRICULTURAL SCIENCES UNIVERSITY OF PUERTO RICO MAYAGUEZ, PUERTO RICO

CONTENTS

FOREWORD						
HIGHLIGHTS OF ACCOMPLISHMENTS AND IMPLICATIONS						
EXECUTIVE SUMMARY						
THE PUERTO RICO BENCHMARK SOILS PROJECT.13Project Rationale.13Project Hypothesis, Objectives and Scope.16Project Background.18Research Network.21						
THE TEST OF THE TRANSFER HYPOTHESIS.31Agronomic Data Base.31General.31Experiment Design.32Procedures.34Results of Transfer Experiments.37Statistical Evaluation.41Introduction.41Data Used in Transfer Analysis.41Statistical Procedures for Transfer Evaluation.47Results and Discussion.55Conclusions.66						
APPLIED RESEARCH.69General.69Variety Trials.70Maize.70Soybeans.71Soil and Crop Management.72Irrigation.72Liming and Soil Fertility.75Phosphorus Placement.77Tillage.78Mulching.80Maize Plant Density.80Maize Composite Population Improvement.83Multiple Cropping.84						
DISSEMINATION, LINKAGES AND IMPACT						
RESULTS IN PERSPECTIVE						
LITERATURE CITED						
APPENDIX						

FOREWORD

3

The Benchmark Soils Project was established in 1974 to demonstrate the viability of a soil classification based approach to the transfer of agroproduction technology in the tropics as a means to increase the efficiency of agronomic research through its wide geographical diffusion and thus to accelerate the pace of agricultural development in the developing countries.

This report summarizes the work performed and the accomplishments achieved by the Benchmark Soils Project of the University of Puerto Rico under contract AID/ta-C-1158 with the US Agency for International Development (AID). It should not be construed as being the final report of the entire Benchmark Soils Project, which is the collective title of two parallel research contracts awarded by AID to the Universities of Hawaii and Puerto Rico. The University of Hawaii project is still in progress and its final report will be available in 1983.

The report has been structured to present the project and its results at various levels of generalization and brevity. A one-page narrative statement highlights the project accomplishments and their implications. A comprehensive but condensed sypnopsis is contained in the Executive Summary. A detailed account of the project is given in the body of the report and the results are placed into perspective in a concluding section. Most of the research data are presented in the Appendix.

First and foremost, we want to thank AID for providing the financial resources for the project and at the same time we wish to commend AID for the perceptive apprehension and farsightedness it demonstrated in funding this kind of research. We owe special thanks to Dr. Tejpal S. Gill of AID who served as Project Monitor and whose skillful management of the project assured its smooth functioning at all times. Moreover, Dr. Gill's encouragement and technical and administrative guidance gave the project direction, style and substance.

Project work in Brazil depended heavily on the outstanding collaboration of the Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG). We express our thanks to all EPAMIG staff involved in the project and especially to its first president, Dr. Helvecio Mattana Saturnino, who was an enthusiastic supporter of the Benchmark Soils Project, and to its subsequent president, Dr. Flamarion Ferreira, under whose tenure the project operations in Minas Gerais were completed. EPAMIG provided the field facilities and a multitude of administrative and technical services without which the project could not have operated. The project was fortunate in being able to enlist Dr. Larry A. Nelson of the Statistics Department of North Carolina State University as a statistical consultant. Dr. Nelson, assisted by Ms. Teresa Gastardo and Dr. Jeffrey L. Paschke, handled all statistical aspects of the project and his intellectual and technical contributions were crucial to its success. Dr. Nelson also prepared the statistical section of this report, which was expertly typed by Ms. Margaret A. Rice of NCSU.

The relationship with the companion project of the University of Hawaii was always excellent and characterized by fine camaraderie. The association with the University of Hawaii in this endeavor proved very beneficial to the University of Puerto Rico project.

> F. H. Beinroth Principal Investigator Benchmark Soils Project University of Puerto Rico

HIGHLIGHTS OF

ACCOMPLISHMENTS AND IMPLICATIONS

The basic premise of the Benchmark Soils Project of the Universities of Hawaii and Puerto Rico is that agrotechnology--particularly soil and crop management experience--can be transferred among and within tropical countries on the basis of the soil family as defined in the US system of soil classification, Soil Taxonomy. The successful completion of the University of Puerto Rico project provides the first concrete results of a scientific test of this hypothesis.

The findings of the project quantitatively substantiate the general validity of the stated transfer hypothesis. This conclusion is based on the results of the statistical analysis of a multitude of crop, soil and weather data accumulated over seven years of research at six experiment sites in Brazil and Puerto Rico using three different state-of-the-art techniques developed under the auspices of the Benchmark Soils Project. By implication, the project results also validate the soil family concept as postulated in Soil Taxonomy and the principle of benchmark soils.

Numerous soil and crop management experiments conducted in Brazil and Puerto Rico established the high crop production potential of the soil family studied with only moderate inputs of fertilizers and resulted in valuable agronomic information of immediate applicability to local farm situations. These studies were designed to conform to the economic decision environment of resource-poor farmers in agrarian LDCs.

The demonstrated scientific feasibility to employ the benchmark soils and the soil family concepts in the process of agrotechnology transfer in the tropics has far-reaching implications of consequence to the agricultural development in LDCs. As the project results indicate, the stratification of the agroenvironment into distinct niches of agroproduction as provided by Soil Taxonomy, in conjunction with the transferability of soil-specific experience with fertilization, cropping systems, erosion control measures, water management, etc., can be utilized to effectively reduce the cost and magnitude of agricultural research in LDCs. This constitutes a viable mechanism and framework for expediting the wide diffusion of agroproduction technology which will help to minimize duplicity of effort and result in economy of thought and economy of action.

The rational utilization of the benchmark soils concept in the process of agrotechnology transfer, in combination with a minimum of site-specific research for local adaptation, can make a significant contribution to ameliorating the depressing prospects of food deficits in the EDCs by accelerating the pace of their agricultural development. The principles and findings of the Benchmark Soils Project should therefore be put to use in a pragmatic program designed to demonstrate, in a operational network, the steady flow of agricultural technology from research sites to farmer fields in the tropics and subtropics.

BSP experiments at Isabela, Puerto Rico

I. EXECUTIVE SUMMARY

A. REFERENCE BACKGROUND

The Benchmark Soils Project (BSP) of the University of Puerto Rico (UPR) was established in January 1975 under contract AID/ta-C-1158 with the US Agency for International Development as a companion project to a similar AID contract of the University of Hawaii. While the UPR/BSF had a duration of seven years and terminated in December 1981, the contract of the University of Hawaii became effective in 1974 and will be operational through May 1983. Both projects were closely coordinated and constituted an integrated joint endeavor of both universities.

In the first comprehensive study of its kind, the BSP ventured to scientifically establish the transferability of agrotechnology, particularly soil and crop management experience. Central to this effort was the benchmark soils cencept and the soil family as defined in the US system of soil classification, Soil Taxonomy. The intent of the soil family is to group together soils that are relatively homogeneous in properties important to plant growth. Consequently, comparable phases of all soils of a family should have a common and predictable response to management practices, correlative input-output characteristics, and similar crop production potential. The transfer hypothesis underlying the BSP is derived from these principles and is that empirical agroproduction experience gained with a soil of a particular family can be transferred and extrapolated to all other comparable members of that family, irrespective of their geographic occurrence.

The general aim of the UPR/BSP was to experimentally and statistically validate this hypothesis. The primary research objectives were:

- To demonstrate that soil management and crop production knowledge can be transferred among tropical countries on the basis of soil families as defined in Soil Taxonomy, and
- 2. To establish that the behavior of tropical soils and their potential for food production under various levels of management inputs can be predicted from soil taxonomic units.

A secondary objective was to expand the knowledge base for the management of a family of tropical soils (Tropeptic Eutrustox) in particular consideration of the economic decision environment of small farmers in LDCs.

The basic research strategy of the project was to conduct a series effidentical experiments in a network of soils belonging to the same family, monitor crop performance and weather conditions, and statistically compare response to management and yields.

The soils selected for experimentation by UPR were highly weathered, but moderately fertile red upland soils of savanna ecosystems of the subhumid tropics defined as Eutrustox in Soil Taxonomy. The particular soil family under study was the clayey, kaolinitic, isohyperthermic family of Tropeptic Eutrustox. This family was chosen because it occurs in both Puerto Rico and Hawaii and thus provided the required link between the two projects.

Six experiments sites were established and operated in such soils; three at Isabela in Puerto Rico and three at Jaiba in northern Minas Gerais, Brazil, in cooperation with the Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG). The University of Hawaii project installed two research sites in soils of the same family in Hawaii.

A total of 136 field experiments were conducted at the six research sites in Puerto Rico and Brazil. Eighty-one of these were so-called transfer experiments which were specifically designed to generate the data base for the statistical transfer test. They were highly controlled, drip-irrigated fertility experiments with phosphorus and nitrogen as variables and maize as the testcrop. The other 55 experiments included 22 variety trials with maize and soybeans, and 33 soil and crop management experiments that emphasized efficiency of cultural practices.

B. TEST OF THE TRANSFER HYPOTHESIS

The field data of the transfer experiments were statistically evaluated with three different techniques developed under the auspices of the BSP. They were the P-statistic, the confidence interval procedure, and a graphical method. The results with the confidence interval procedure and the graphical method provided strong positive evidence for transferability. The results with the P-statistic were less conclusive but not negative. Attention is drawn to Fig. 6 in the text which allows an instant visual appraisal of the transferability of management practices. The graphs show that, if certain site variables are considered, fertilizer response at a new site can be predicted on the basis of experiments conducted at other sites with the same soil family essentially as well as by an experiment conducted at the new site.

On balance, the statistical studies yielded a qualified validation of the postulated transfer hypothesis and, by implication, of the concepts of benchmark

soils and the soil family. In view of the complexity of the conjecture under study and considering the difficulties encountered in its experimental and mathematical corroboration, these results are very reassuring.

C, AGRONOMIC ACCOMPLISHMENTS

The results of the agronomic research demonstrate the high productivity of Eutrustox with moderate fertilizer inputs. Highest mean maize yields of over 9,000 kg/ha were obtained in Puerto Rico and Brazil with about 40 kg/ha of phosphorus and 175 kg/ha of nitrogen. Soybean yields were as high as 5,000 kg/ha. These are excellent yields for the tropics and underline the high crop production potential of Eutrustox, particularly if one considers that with irrigation at least two crops can be grown in the same year.

Pioneer brand hybrid X304C was experimentally identified as a maize variety well adapted to the agroenvironment of Eutrustox. A maize composite population improvement study conducted with 88 varieties from all over the world, initiated by the UPR/BSP and now continued by EPAMIG, has produced promising changes in plant height, disease resistance, susceptibility to lodging, and prolificacy. It is expected that after further cycles a new maize variety for the Jaiba region can be released. Several soybean varieties adapted to this area have also been identified.

A maize plant population of 55,000 to 60,000 plants/ha can be recommended for Eutrustox on the basis of studies in Puerto Rico and Brazil. For unirrigated maize production in the Jaiba area, mid-November was determined as the optimal time for planting. With planting dates later in the wet season yields dropped off sharply from 6,300 to 2,000 kg/ha.

Irrigation trials with maize and sorghum employing a continuous variable line-source irrigation technique were conducted in Brazil in collaboration with the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS). The data are now processed by CNPMS for the development of a moisture utilization model for maize and sorghum in Brazil. Other irrigation studies confirmed that the time around flowering is the period when maize is most susceptible to moisture stress.

Tillage experiments indicated that for maize production in Eutrustox complete tillage is not necessary for each planting, and that plowing when the soil was almost dry resulted in the best seedbed preparation. Maize stover as a crop mulch can be effectively used to conserve soil moisture and increase yields under rainfed conditions.

An intensive multicropping experiment using a 20 x 20-m area of Eutrustox yielded produce valued at US\$ 1,160 over a 27-month period. The study showed how small plots of land can be intensively utilized with modest inputs to effectively improve the quantity and quality of the diet of resource-poor farm families.

D. DISSEMINATION AND IMPACT

The Benchmark Soils Project was prominently exposed and discussed at many international conferences and workshops. Project rationales and findings were further disseminated through a sizeable and effective public relations and publication program implemented and sustained by the University of Hawaii BSP. More than 1,200 individuals and institutions in 89 countries are routinely informed about BSP developments.

International soil classification workshops organized by UPR and held in Brazil, Malaysia and Thailand, Syria and Lebanon, and Rwanda made a significant contribution to the utilization of the benchmark soils concept. The success of these workshops was instrumental in the establishment of a new AID-sponsored program, the Soil Management Support Services (SMSS) of the USDA Soil Conservation Service. The goal of this program is to assist LDCs in producing the quality resource inventories that are the prerequisite for soil-based transfers of agrotechnology, to refine Soil Taxonomy, and to promote its application in the Third World. The SMSS is thus closely related to the BSP and facilitates possible follow-up activities.

Planning meetings held at ICRISAT and FAQ developed strategies for the implementation of the benchmark soils concept and BSP principles in a program of more comprehensive scope and wider geographical extent.

The main impact of the BSP to date has been the creating of wide awareness and familiarity with the project and its philosophy, instigating support activities, and generating considerable momentum for the use of the benchmark concept for agrotechnology transfer.

E. CONCLUSIONS

With the overall success of the University of Puerto Rico project, the BSP has begun to scientifically establish the validity of a soil family-based model for agrotechnology transfer. The encouraging results of the present project are expected to be reinforced by the findings of the ongoing project of the University of Hawaii which will be based on larger data sets from three different soil families.

It is proposed that these results be utilized in a follow-up program and a model for the anologue transfer of agrotechnology is presented in the report. A logical culmination of the current BSP effort should be the establishment of a prototype network of national and international agricultural research centers designed to demonstrate the steady flow of agroproduction technology from research centers to farmer fields in the tropics and subtropics.

II. THE PUERTO RICO BENCHMARK SOILS PROJECT

A. PROJECT RATIONALE

1. GENERAL PERSPECTIVE

Projections by FAO (1979) indicate that worldwide agricultural production will have to increase by 60 percent in the next 20 years to meet food requirements of future populations. About 70 percent of this increase will need to come from intensification of agriculture and the other 30 percent from an expansion of arable land--as much as 200 million ha, mostly in the tropics. If the less developed countries (LDCs) are to increase per capita food availability by at least 1 percent per year, they need to expand their food production over the next 25 years by an average rate of about 3 to 4 percent per year and increases in yield need to average about 2.5 percent per year (US National Research Council, 1977).

There are no fundamental reasons for these targets not to be met or for Malthusian scenarios. The world can feed its people and conceivably many more if Revelle's (1976) conjecture of a carrying capacity of the world of 40 billion people is not too optimistic. Distressingly, however, the performance so far has been less than reassuring. Dudal (1978) estimates that during the 20-year period ending in 1977 the area of cultivated land in the world increased by 135 million hectares which corresponds to about 10 percent of the land resources still available for cultivation and to only about 9 percent of the land currently in agricultural use. Yet, in the same period the world's population increased by 40 percent. The expansion of cultivated lands in the LDCs in particular is far lagging behind that required by the increase in population there.

Rapid improvement of agricultural productivity in LDCs, consistent with the required growth rates, implies a transition from a natural resource-based agriculture to a science-based agriculture. To bring about this transition within a short period of time requires massive inputs of capital and research personnel. Many of the LDCs are small in size and population, however, and in view of their limited experiment station capacity, an inelastic supply of scientific and technical manpower, and a general lack of capital, such nations cannot expect to generate by themselves the full range of scientific knowledge and

expertise needed to develop and sustain a viable agriculture. They rely on assistance from external sources.

Transferring food production technology from the temperate climatic zone to the tropics seemed a natural solution but has been largely ineffective and discouraging. Principal among the reasons for the lack of success is the failure to recognize the location specificity of agricultural technology which is controlled mainly by differences in soil and climate. It is becoming increasingly obvious that the technology for tropical agriculture must be developed primarily in the tropics (Beinroth et al., 1980).

The knowledge base for a modern tropical agriculture is now gradually being generated through the work of national and international agricultural research centers. But the results of this research must also be disseminated. The transfer of this knowledge and its adaption to local conditions is of crucial importance to the agricultural and economic development is agrarian LDCs.

In the context of this perspective and on the basis of the rationales elaborated below, the Benchmark Soils Project contends that soil classification is a suitable vehicle for and an essential element of the process of agrotechnology transfer.

2. SIGNIFICANCE OF SOIL SURVEY AND CLASSIFICATION TO AGROTECHNOLOGY TRANSFER

Soil classification provides pragmatic groupings of soils for precise predictions about soil behavior, and its most important application is in soil survey. Historically, soil surveys have been geared to the improvement of agriculture, and most LDC governments presently support soil survey activities because they believe soil surveys supply reliable and accurate information for agricultural development and soil-resource management. Soil surveys, however, are only useful if they follow reasonable scientific standards and if they are interpreted for practical purposes. Such interpretations are predictions of soil behavior under stated conditions, which require the careful synthesis of many data in relation to soil qualities that are the result of the interaction between soil characteristics, crop requirements, and management practices (Kellogg, 1961). Soil survey interpretation makes possible the most intensive use of soil science by integrating knowledge from many other disciplines (Smith, 1965).

Many authoritative statements can be found in the literature that allude to the fact that soil classification, in conjunction with soil surveys, affords an effective basis for knowledge transfers. Smith (1965), for example, wrote:

> "We make the basic assumption that experience with a particular kind of soil in one place can be applied to that particular kind of soil wherever it exists if consideration is taken of any climatic differences. The soil survey acts as a bridge that lets us transfer the knowledge gained by research or by the experience of cultivators from one place to all other places where it is applicable."

Of the various systems of soil classification in use, Soil Taxonomy (Soil Survey Staff, 1975) has the greatest potential for land use appraisals because it "..was created to support soil surveys and the interpretations of surveys that are required by both developing agriculture and advanced farming" (Johnson, 1980). A unique feature of Soil Taxonomy is that it incorporates climate in the definition of soil taxa and thus not only stratifies soils and climate but implicitely also the agroenvironment. The lower categories of Soil Taxonomy therefore conform more nearly to distinct agroproduction niches (Beinroth, 1980).

Soil Taxonomy was published by the USDA Soil Conservation Service in 1975 after 20 years of preparation. It is an attempt at a comprehensive taxonomic classification of soils and constitutes the most elaborate and most quantitative system developed to date. Although basically an American system, Soil Taxonomy is gradually becoming the internationally accepted classification for scientific communication, and more and more pedologists, particularly in the Third World, are talking to each other in terms of this system. It is also used, either in lieu of or parallel to, national systems of soil classification, notably in Southeast Asia and in Latin America.

Like most taxonomic systems, Soil Taxonomy is a multicategoric system. Each category is an aggregate of taxa, defined at about the same level of abstraction, with the smallest number of classes in the highest category and the largest number in the lowest category. In order of decreasing rank, these categories are order, suborder, great group, subgroup, family, and series. As is true with all multicategoric systems, the properties associated with classes accumulate from the higher and more abstract categories down to the lower categories. The soil family constitutes a condensed scientific statement that integrates the knowledge about a narrowly defined group of soils and their environment. Soil families are, within a given subgroup, differentiated primarily on the basis of scil characteristics that provide classes having relative homogeneity in properties important to plant growth and that are indicative of soil-water-root relationships. Soils classified in the same family should, therefore, have nearly the same management requirements, a common response to cultural practices, and a similar potential for crop production.

B. PROJECT HYPOTHESIS, OBJECTIVES AND SCOPE

1. TRANSFER HYPOTHESIS

Soil Taxonomy (p. 80) states that "the responses of comparable phases of all soils in a family are nearly enough the same to meet most of our needs for practical interpretations of such responses." The basic hypothesis underlying the Benchmark Soils Project is derived from this statement and is that comparable phases of all soils of a family have a common and predictable response to management practices, correlative input-output characteristics, and similar crop production potential. As a consequence, empirical agroproduction experience gained with a soil of a particular family can be transferred and extrapolated to all other comparable members of that family, irrespective of their geographic occurrence.

This thesis is clearly based on a model of analogous reasoning. In analogue transfers an attempt is made to stratify the agroenvironment with sufficient precision to ensure successful transfer of technology (Swindale, 1980). Analogous areas are determined and identified by taxa of Soil Taxonomy which stratify both soils and climate. Basic to this model is the benchmark soils concept developed by Kellogg (1961). More recently Miller and Nichols (1980) defined a benchmark soil as a soil occupying a key interpretative position in a soil classification framework and/or covering a large area. It is considered a representative reference site from which research results can be transferred or extrapolated to other sites with similar properties.

OBJECTIVES

The basic objective of the Benchmark Soils Project of the University of Puerto Rico was to experimentally validate the stated project hypothesis and the benchmark soils concept. No such effort has previously been undertaken in the tropics. The primary research objectives of the project therefore were:

- 1. To demonstrate that soil management and crop production knowledge can be transferred among tropical countries on the basis of soil families as defined in Soil Taxonomy, and
- 2. To establish that the behavior of tropical soils and their potential for food production under various levels of management inputs can be predicted from soil taxonomic units.

Implicit in these objectives are the substantiation of the value of soil survey and classification for land use planning and the testing of the validity of established taxonomic criteria. A secondary objective was to expand the knowledge base for the management of a family of tropical soils (Tropeptic Eutrustox) in particular consideration of the economic decision environment of small farmers in LDCs.

3. PROJECT SCOPE

The scope of the project was to test an approach to agrotechnology transfer that can be used in "horizontal transfers," i.e., knowledge transfers among researchers at a scientific level. Such knowledge and experience has been referred to as "upstream" technology which involves prototype solutions generated by commodity or discipline oriented research at national and international agricultural research centers (Gilbert et al., 1980). The process of adapting this knowledge to specific local farm situations and its integration into existing farming systems may be termed "vertical transfers" and involves "downstream" research and diffusion.

It is realized that both elements are of equally critical importance to the ultimate success of agrotechnology transfer. The project, however, was concerned primarily with and focused on a methodology for horizontal transfers. Research in the area of vertical transfer as well as the actual transfer of agrotechnology were by design beyond the terms of reference of the present project.

Dr. F. H. Beinroth, Professor of Soil Science, served as Principal Investigator. Over the years, 18 professionals, 8 nonprofessionals and a varying number of field laborers were engaged in project activities (see Project Personnel in the Appendix). Dr. T. S. Gill monitored the project on behalf of AID with competence and efficacy.

UPR's work in Brazil depended heavily on the superb cooperation of the Empresa de Pesquisa Agropecuária de Minas Gerais, EPAMIG. This agency is a dependency of the Ministry of Agriculture of the State of Minas Gerais and is in charge of all agricultural research in the state. It is also affiliated with EMBRAPA, the national research organization for agriculture. EPAMIG's first president, Dr. Helvecio Mattana Saturnino, was an enthusiastic supporter of the BSP. Since 1980 Dr. Flamarion Ferreira has presided over EPAMIG and continued the excellent collaboration. A memorandum of agreement between UPR and EPAMIG which detailed UPR's involvement and responsibilities in Brazil and specified EPAMIG's technical and administrative contributions became effective in January 1976.

Major milestone events of the UPR/BSP were:

Mar	1973	Project proposal submitted to AID			
May	1974	Workshop on experimental design in Honolulu, Hawaii			
Jan	1975	UPR contract becomes effective			
Jul	1975	Field work started in Puerto Rico			
Aug	1976	First joint BSP coordination meeting in Puerto Rico			
0ct	1976	Field work started in Minas Gerais, Brazil			
Feb	1977	Project review			
Aug	1977	Second joint BSP coordination meeting in the Philippines			
Jan	1978	Three-year extension of UPR contract becomes effective			
Oct	1978	Workshop on implications of agrotechnology transference			
		research at ICRISAT, Hyderabad, India			
Mar	1980	BSP panel consultation on strategy for land evaluation			
		and agrotechnology transfer at FAO, Rome, Italy			
Dec	1980	field work concluded			
Jan	1981	One-year extension of UPR contract becomes effective			
Feb	1981	BSP Symposium at ISSS conterence on soils with variable			
		charge at Palmerston North, New Zealand			
Dec	1981	UPR contract terminates			
Feb	1982	UPR's final report published and disseminated			

2. RELATION TO THE BENCHMARK SOILS PROJECT OF THE UNIVERSITY OF HAWAII

20

The UPR/BSP was a companion project to the BSP of UH which will be active until 1983. The UH/BSP has essentially the same objectives but a broader scope and a wider geographic sphere of operations. Whereas the field work of the UPR/BSP was confined to one soil family in Puerto Rico and Brazil, UH is conducting research on three soil families in Hawaii, Cameroon, Indonesia, and the Philippines.

The Puerto Rico project operated in close technical coordination with the Hawaii project. This was achieved through joint BSP Coordination Meetings, held in Puerto Rico in 1976 and in the Philippines in 1977, and through frequent visits and consultations. The Hawaii BSP handled the public relation aspects of the projects and the printing of joint progress reports. UH/BSP also assumed the responsibility for the overall, network-wide analysis of experiment results which will be presented in UH's final report.

Although the UPR/BSP had its own administrative and some institutional identity, it really was part of one larger and fully integrated endeavor jointly undertaken by the Universities of Hawaii and Puerto Rico.

University of Hawaii (UH), University of Puerto Rico (UPR) and AID participants at the first BSP coordination meeting in Puerto Rico. From left: A.R. Hurdus (UH), J. Badillo (UPR), J.A. Silva (UH), T.S. Gill (AID), C. Sarmiento (UPR), L.D. Swindale (then UH, now ICRISAT), I. P. Gedjer (UH), G.L. Spain (UPR), C.E. Seubert (UPR), F.H. Beinroth (UPR), L. Calduch (UPR), and G.Y. Tsuji (UH).

D. RESEARCH NETWORK

1. GENERAL

Three families of tropical soils were selected by the BSP for the test of the transfer hypothesis. They comprise soils derived from volcanic ash (Hydric Dystrandepts), acid clay soils of humid regions (Typic Paleudults) and strongly weathered but moderately base-saturated soils of savanna ecosystems (Tropeptic Eutrustox). The UPR/BSP worked only with the clayey, kaolinitic, isohyperthermic family of the Tropeptic Eutrustox which are described in more detail below. This soil family was chosen because it occurs both in Puerto Rico and Hawaii and thus provided the required link between the two projects.

Fig. 1. The three soil family networks in the Benchmark Soils Project.

In theory, locations for field experimentation should be randomly selected from all the units of the population of soils comprised in the stated soil family. In the project, however, random sampling was not feasible, primarily because only a limited number of countries could be involved and because of political and logistic considerations. On the basis of preliminary investigations involving literature surveys and consultations, the search was concentrated on Brazil, Colombia, the Dominican Republic, Jamaica and Venezuela.

In spite of extensive field and laboratory studies, the desired family of Eutrustox could only be identified in the northern part of the state of Minas Gerais in Brazil.¹ Other potential locations had to be eliminated because the soils failed to meet the specific family criteria or because of adverse logistic conditions. Experiment sites were, therefore, established in Puerto Rico and in Brazil.

2. RESEARCH SITES

Statistical considerations evinced the need to have a minimum of eight research sites per soil family. For the family of Tropeptic Eutrustox, three sites each were established in Puerto Rico and Brazil; two sites are operated by UH on Oahu and Molokai in Hawaii.

In Puerto Rico, one primary site ("Ramal") of 3 ha and one secondary site² ("Cerro") of 2 ha were installed in 1975 ca the grounds of the Isabela Agricultural Experiment Station of UPR. This 120-hectare research station is located in the northwestern corner of Puerto Rico and was founded in 1928 to serve the Isabela Irrigation District. An additional secondary site ("Calero") of 2 ha was established on a private tarm about 8 km west of the other sites. The Puerto Rico sites were clustered around latitude 18° 28'N and longitude 67° 03'W at an elevation of about 130 m above sea level.

In Brazil, one primary site ("Paraná") and two secondary sites ("Bahia" and "Ceara") were established in 1976 and 1977 in an area djacent to the Sao Francisco River in northern Minas Gerais known as the "Distrito Agro-Industrial de Jaiba." This 300,000-hectare scheme was recently developed and is now being

¹We are grateful to Mr. M. Camargo of SNAC¹⁷/ENBRAPA for his excellent cooperation in identifying this site.

 $^{^2}$ For the distinction between primary and secondary sites, see Section III.

opened for colonization by small farmers. The BSP sites were thus well located from the point of view of local impact and utilization. The primary site near Jaiba comprised 6 ha and was on a new experiment farm of the project's cooperating agency, EPAMIG. The two secondary sites of 3 ha each were set up on private land at distances of 3.5 and 5 km northwest of the primary site. The Brazil sites were located at or near latitude 15° 23' S and longitude 43° 46' W at an levation of approximately 500 m above sea level.

At all three locations the infrastructure for experimentation had to be developed by the project, including the drilling of three 60-m-deep water wells. Upon project termination, the BSP field, laboratory and office facilities were turned over to EPAMIG and are now used and maintained by that agency.

The Puerto Rico project thus operated six sites. Together with the two sites of the Hawaii project, the BSP Eutrustox network includes eight sites in three widely separated regions -- Oceania, South America and the Caribbean.

BSP office, laboratory and irrigation facilities at Jaiba, Brazil

Profile of the Coto soil, a Tropeptic Eutrustox from Isabela, Puerto Rico

3. SOILS

The clayey, kaolinitic, isohyperthermic family of Tropeptic Eutrustox belong to the group of soils that has been called Laterites, Sols Ferrallitiques and Latosols in recent years and is now referred to as Oxisols in Soil Taxonomy. Eutrustox are well-drained and usually red clay soils occurring under savanna or deciduous forest vegetation in subhumid tropical regions, normally on basic parent materials. They are strongly weathered soils that are slightly acid to neutral, have an appreciable supply of bases, and moderate to high base saturation in the subsoil. Among their adverse properties are a limited water holding capacity, a tendency to compact when cultivated with heavy equipment, and moderate ph phorus deficiency. Their main constraint for crop production is insufficient soil moisture in more than three months per year. Although not the most common kind of Oxisols, Eutrustox are extensive in tropical South America and Africa. They represent important soil resources preferred for immediate development over other Oxisols on account of their inherent productivity.

The main diagnostic features of Eutrustox are the oxic horizon and the ustic soil mositure regime as defined in Soil Taxonomy. The oxic horizon is a highly weathered subsoil horizon that consists mostly of a fine-textured mixture of oxides of iron and aluminum and low activity clays resulting in a cation exchange capacity of less than 16 meq per 100 g of clay. There are no or only traces of minerals that could weather to release bases. The ustic soil moisture regime implies that the moisture control section of these soils is dry in some or all parts for 90 or more cumulative days in most years, but it is moist in some part for 180 cumulative days or continuously moist in some part for 90 consecutive days. The concept of the ustic soil moisture regime thus is one of limited moisture that, for the tropics, is typified in a monsoon climate which has at least one rainy season of three months or more.

Further properties which clayey, kaolinitic, isohyperthermic Tropeptic Eutrustox by definition must have include: less than 16 kg of organic carbon in the surface cubic meter; a base saturation of more than 50 percent in the major part of the oxic horizon; a moderate degree of soil structure in the oxic horizon or a depth of less than 125 cm, or both; more than 35 percent clay; more than 50 percent kaolinite and less than 10 percent montmorillonite in the clay fraction; a mean annual soil temperature of 22°C or more with less than 5°C difference between mean summer and mean winter temperature; and a depth of more than 1 m. The covariant and accessory properties associated with the defined characteristics have been discussed by Beinroth (1981).

Profile descriptions and analytical data for one representative pedon each from the BSP experiment sites in Isabela, Puerto Rico, and Jaiba, Brazil, are presented in the Appendix. As the data show, these particular Eutrustox have high clay contents throughout (53-81%), a low cation exchange capacity of 7.5 tc 14.9 meq per 100 g of clay in the subsoil, a base saturation of up to 86 percent, pH values ranging from 4.5 to 6.5, small amounts of extractable bases in the subsoil (1.8-6.9 meq/100 g soil), and rather high amounts of organic carbon (1.1-3.1%) in the surface soil.

Within the limits permitted by the definition of clayey, kaolinitic, isohyperthermic (ropept) Eutrustox, there is obviously some diversity among the soils of the BSP sites in Puerto Rico and Brazil. They vary, for example, in percentage base saturation, clay content, color, degree of soil structure, organic matter content in the surface horizon, and in other non-classificational parameters. These differences and variability notwithstanding, the soils at all of the six UPR/BSP experiment sites belong to the same soil family and all have the same slope class.

Moreover, in a detailed soil survey by the USDA Soil Conservation Service (1975) the three Puerto Rico sites are included in the same mapping unit. Similarly, the soil survey of the Jaiba area in Brazil (EMBRAPA/EPAMIG/RURALMINAS, 1976) does not differentiate the soils at BSP sites. If the Puerto Rico and Brazil sites occurred in juxtaposition, however, the soils would be mapped as two different soil series of the same family on the basis of differences in color, structure and solum depth. In addition to the two references above, further information on the soils of the BSP network has been provided by Ikawa (1979) and Beinroth (1979).

Close-up view of the oxic horizon of a Eutrustox at Jaiba, Brazil

4. CLIMATE

The climate at Isabela, Puerto Rico is of the Thornthwaite type B/CA'r-subhumid transitional to humid, tropical. At Jaiba, Brazil the type is C/B'w-subhumid transitional to humid, tropical, dry winters. According to 42-year records mean annual precipitation at Isabela is 1,657 mm, the mean annual air temperature 24.8°C and the mean annual evaporation 1,735 mm. During the time of BSP work at Isabela the weather was somewhat drier and cooler, however, with annual precipitation averaging 1,530 mm and a mean annual temperature of 24.0°C. Thirty-year records available for Januaria, located about 40 km west of Jaiba, indicate a mean annual rainfall of 875 mm, a mean annual air temperature of 24.4°C and a mean annual evaporation of 1,354 mm. At the BSP sites at Jaiba corresponding values of 1,010 mm and 23.5°C were recorded over a 4-year period.

Mean monthly precipitation and air temperatures for Isabela and Jaiba are shown in the graphs in Fig. 2. (More detailed weather data are presented in the Appendix.) It is obvious that the two locations have different rainfall patterns. Whereas in Jaiba there occurs a pronounced dry season in the winter months of June, July and August, seasonality at Isabela is less distinct and the amount of rainfall in any given year is subject to much greater variability. This reflects a maritime climate in Puerto Rico versus a continental climate in Brazil.

Mean monthly air temperatures are rather uniform throughout the year at both Isabela and Jaiba. The range between mean monthly minimum and maximum temperature, however, is considerable. At Jaiba a mean minimum temperature of 10°C was recorded for the months of June and July and mean maximum temperatures of 33°C for the months of March, September and October. At Isabela, December, January and February had the lowest mean temperature (17°C) and August and September the highest (31°C).

Mean solar radiation at Jaiba was 157,800 langleys/year and ranged from 366 langleys/day in June to 505 langleys/day in March. At Isabela a yearly mean of 151,200 langleys was registered with the lowest radiation in January (329 langleys/day) and the highest (473 langleys/day) in June.

From a soil taxonomic point of view, the BSP sites in Puerto Rico and Brazil have an isohyperthermic soil temperature regime. (Under a proposed revision of the soil temperature regimes, both locations would have an "isomegathermic" regime.) The soil moisture regime is typically ustic at Jaiba and marginally

ustic at Isabela. A computer analysis of the weather data for Isabela revealed the presence of a udic soil moisture in some years but it was ustic in the majority of years. It appears that the present definition of the ustic soil moisture regime is too broad to allow meaningful agricultural interpretations. The introduction of a "udi-ustic" regime has therefore been considered. The evidence accrued by the BSP strongly supports this proposal.

Fig. 2. Mean monthly precipitation and air temperature for Januaria near Jaiba, Brazil (1931-1960) and Isabela, Puerto Rico (1930-1971)

III. THE TEST OF THE TRANSFER HYPOTHESIS

A. AGRONOMIC DATA BASE

1. GENERAL

In the project design distinctions were made between two types of experiment sites, designated primary and secondary sites, and three kinds of experiments referred to as transfer experiments, variety trials and management experiments.

Primary sites were experiment locations where all three kinds of experiments were conducted and which were completely instrumented for the collection of pertinent weather data. Secondary sites were locations where mainly transfer experiments were conducted and which had fewer weather instruments.

Transfer experiments were soil fertility trials specifically designed to generate the data base required for the statistical evaluation of the transfer hypothesis. A total of 81 such experiments, 44 in Puerto Rico and 37 in Brazil, were conducted according to the schedule contained in the Appendix. (Variety trials and management experiments are discussed in Section IV.)

Originally maize and soybeans were selected as testcrops with phosphorus and potassium as the two treatment variables. When early transfer experiments showed little or no response to added potassium, nitrogen was substituted for potassium and logically soybeans, being a legume, were eliminated. Since 1977 maize was the only testcrop and phosphorus and nitrogen the standard treatment variables in all transfer experiments.

Maize is particularly well suited as an indicator crop as it is highly responsive to phosphorus and nitrogen. It is, moreover, the most important food crop in Latin America where 25.6 million ha are cultivated to maize. This area represents 47.4 percent of the maize-producing areas in the LDCs and about 17 percent of the world area (Wortman and Cummings, 1978).

2. EXPERIMENT DESIGN

The strategy for testing the project hypothesis consisted basically of conducting a series of well-controlled and identical experiments in soils belonging to the same soil family, monitoring weather and crop performance, and statistically analyzing the yield data.

To guide and assist the BSP in the development of an appropriate research design and methodology, a Workshop on Experimental Designs for Predicting Crop Productivity with Environmental and Economic Inputs was organized by the University of Hawaii and held in Honolulu in May 1974 with financial support from AID. The recommendations of the workshop were summarized by Silva and Beinroth (1975) and the papers presented have been published (Silva, 1981).

In concurrence with the workshop recommendations, the experimental design used for transfer experiments was a randomized complete block with 16 treatments randomized within each block. There were three blocks in all transfer experiments except for B-19, B-20 and B-21 which had four. The first 13 treatments were according to Escobar's modified 5^2 partial factorial described by Laird and Turrent (1981). As shown in Fig. 3, this design has 13 of the 25 possible combinations of the five levels of each of the two factors. It covers the design space well, thus allowing the fitting of a second order response surface from a limited number of treatments. Cady and Laird (1973) reported that this particular design appeared to be superior to some other designs which they studied in terms of bias error and spatial characteristics.

Transfer experiment treatment variables were levels of phosphorus (P) and nitrogen (N). Coded values of the two factors for the 13 treatment combinations are shown in Table 1. These were the vectors used to obtain the linear coefficients when fitting response surfaces by individual experiments. Three other treatments, which were controls, were also randomized in with these 13 treatments. As the example values in Table 1 illustrate, both P and N levels were calculated from a midpoint value to 40% and 85% higher and lower than this value. The actual amounts of P applied for an experiment were based on phosphate sorption curves determined from soil samples taken from each experiment. The amounts of N applied were determined from earlier field trials and were the same for all experiments.

Pho	sphorus	Nitrogen		
Coded _{1/}	Applied P _{2/}	Coded 1 /	Applied No.	
Level	$(kg/ha) = \frac{2}{2}$	Level	$(kg/ha) = \frac{2}{2}$	
85	3.2	85	29	
85	3.2	+.85	1.86	
+.85	38.9	85	29	
+.85	38.9	+.85	186	
40	12.6	40	71	
40	12.6	+.40	144	
+.40	29.4	40	71	
+.40	29.4	+.40	1.44	
0	21.0	0	108	
85	3.2	0	1.08	
+.85	38.9	0	1.08	
0	21.0	85	29	
0	21.0	+.85	186	
partial co	ntrol 0.0		0.0	
N control	28.8		0.0	
P control	0.0	0	1.08	

Table 1. Example of treatments used for transfer experiments

 $\frac{1}{2}$ Coded levels are the midpoint (0) for each nutrient, and \pm .40 and .85 x midpoint values.

2/ Example values for applied P were for a specific experiment, B-56, and based on phosphate sorption isotherms. Treatment levels of N, based on earlier field trials, were uniform for all experiments.

3. PROCEDURES

Early in the project a set of guidelines was developed together with the UH/BSP that detailed all facets of field operations, such as land preparation, planting and harvesting, disease and insect control, cultivation, irrigation, and data collection, as well as field plot design, data processing and laboratory methods. These guidelines, which were revised as necessary, were sufficiently specific to ensure comparability of the data recorded at all network sites.

The transfer experiments were conducted twice on the same plots. Initial transfer experiments were fertilized at the rates discussed above. The follow-up studies on the same plots, called residual transfer experiments, received the same amounts of fertilizer as the initial experiments but no phosphorous.

For initial experiments the land was cleared and plowed to a depth of 25 cm. Before applying treatments blocks were selected for uniformity and 3 x 8 m plots were staked out. Treatment P (triple or simple superphosphate, TSP or SSP) and N (urea) were carefully applied to each plot together with blanket applications of 100 kg K (KC1), 100 kg Mg (MgSO₄), 15 kg Zn (ZnSO₄), and 2 kg B (borax) per hectare. Where SSP was used for P treatments, sulphur was applied at 50 kg/ha. One third of the N-fertilizer was incorporated by rototilling the soil to a depth of 20 cm, two thirds were applied as a side-dressing 30 days after seedling emergence.

Land preparation with a rototiller (left) and planting a transfer experiment at Jaiba, Brazil

A trickle irrigation system was installed for each experiment using Chap 3 mil bi-wall tubing with outlets spaced at 20 cm. Tensiometers were install in plots with intermediate treatment levels at depths of 15, 20 and 30 cm as guides for scheduling irrigations. Soil moisture was maintained at or near optimum levels until the maize reached maturity (black layer formation).

Two seeds were sown about 3 cm deep in holes uniformly spaced at 23 cm within rows 75 cm apart. The maize stand was subsequently thinned to one plant per hill or approximately 58,000 plants/ha. During the growth of the maize, insects and diseases were controlled using appropriate pesticides. Weeds were controlled both manually and with herbicides.

A six meter portion (1 meter in from each end) of the two center rows of maize was harvested from each plot. Yield components measured for each plot included ear weight, ear lengths, percent seed moisture, 100-seed weight, grain weight and dry stover weight. Plant counts, lodging percentage, and ear counts were also made. During the experiment, 30-day and mature plant heights, days to 50 percent tasseling, 50 percent silking, and black layer formation were recorded.

An integral part of all transfer experimentation was the collecting and processing of weather data. These data were of importance to the statistical analyses and for the daily monitoring and management of each experiment. The climatological instrumentation of the BSP field sites was according to the standards and procedures outlined by the US National Weather Service. Primary sites were accorded a full complement of weather

Installation of water times for drip irrigation at Jaiba, Brazil (left) and a functioning drip irrigation system at Isabela, Puerto Rico

instruments. Each of these sites contained a fenced climatological station with a standard instrument shelter and instrumentation for recording continuous ambient air temperature and relative humidity, cumulative daily solar radiation, maximum and minimum soil temperatures at 5 and 50 cm depth, wind run, precipitation, and pan evaporation on a daily basis. The secondary sites contained somewhat less extensive weather instrumentation, generally an instrument shelter with equipment for measuring maximum and minimum air temperatures, cumulative solar radiation, and precipitation.

Pre-plant soil samples for each initial transfer experiment consisted of 1 to 3 composite samples derived from many random subsamples taken from the blocks at 0-15 cm depth. These pre-plant samples were air-dried and sent to the laboratory. After crop harvest, but before preparations for conducting a residual transfer study on the same site, post-harvest soil samples were collected. Four soil subsamples from each plot were composited to form a plot sample, thus 48 post-harvest plot samples were submitted for analysis for each experiment. These post-harvest initial transfer experiment soil samples also served as prc-plant samples for the residual studies immediately following them.

The pre-plant and post-harvest samples were analyzed for P following a modified Truog method and P-isotherms were determined. In addition these and other soil samples were analyzed for nitrogen, bases, cation exchange capacity, and pH.

A complete record of all weather and soil data, crop phenology measurements, plot by plot yield data, and other field observations is on file at UPR. These data are expected to be used and scrutinized in the preparation of relevant technical papers.

Marcos Torres records weather data at Jaiba, Brazil
4. RESULTS OF TRANSFER EXPERIMENTS

Yield data, amounts of phosphorus and nitrogen applied and an analysis of variance for each transfer experiment are reported in the Appendix Tables 2, 3 and 4.

These data show that from an agronomic and soil fertility point of view the soils at the BSP sites at Jaiba, Brazil, and Isabela, Puerto Rico, differed in that the Jaiba soils responded primarily to phosphorus and the Isabela soils to nitrogen. This difference in behavior is attributed to the past history of the experiment sites. Whereas the Isabela sites, located on an experiment station, had been cultivated and fertilized for more than 50 years, the Jaiba sites were cultivated for the first time.

Consequently, applied P was more effective in Brazil than in Puerto Rico and resulted in significant yield increases in 31 out of 34 transfer experiments, with significance at the 0.01 level in 30 trials. By contrast, only 4 out of 32 transfer experiments in Puerto Rico had significant positive yield responses to P. Nine trials in Brazil and one in Puerto Rico showed significant quadratic response to P, but most P response curves were linear. This suggests that the highest P treatment level may not have been sufficient to obtain maximum yield.

For the highest level of P (+.85) applied, the mean actual rate over all P x N transfer experiments was 36.1 kg/ha in Brazil. The mean yields of the P-control and +.85 P plots are reported in Table 2 and show a gain of 3,384 kg/ha of maize grain in initial transfer trials with the higher rates of applied P. The subsequent residual trials, in which no further P was applied, produced another 1,683 kg/ha gain. Combining the initial and residual experiment values results in a total mean yield increase of 5,067 kg/ha for two crops of maize with a mean rate of 36.1 kg P/ha applied to the first planting only. If a linear relation is assumed, this would represent a return of 140 kg of grain per kg of P applied. On the other hand, in Puerto Rico there was essentially no grain yield return for the phosphate investment.

Available soil nitrogen at the Brazil sites was generally sufficient; only 7 out of 34 experiments showed significant yield gains with applied N. Over all P x N transfer trials in Brazil there was no mean yield increase with N applied at the highest coded level (+.85) or a rate of 175 kg/ha.

	Partial	N Optimum		P Opti	num	
	Control	P-control	P+.85	N-control	N+.85	
	· · · · · · · · · · · · · · · · · · ·		kg/ha	a <u></u>		
Brazil						
Initial Residual	3296 3031	3597 3325	6981 5008	6257 4548	6209 4251	
Puerto Rico						
Initial	5084	6197	6388	5031	6436	
Residual	2468	5660	5532	2247	6521	

Table 2.	Mean maize gr	rain yields for	selected ti	ceatments of	66 initia	1 and
	residual tran	nsfer experimen	ts at Jaiba,	, Brazil and	Isabela,	Puerto Rico

Partial control = no applied P and no applied N P-control = no applied P N-control = no applied N

In Puerto Rico, response to applied N was significant in 20 out of 32 transfer trials. At optimum P levels the +.85 coded level of N, equivalent to a rate of 175 kg/ha, produced mean yield gains over all experiments of 1,405 and 4,274 kg/ha for initial and residual experiments, respectively. Nitrogen was applied at the same treatment levels to both plantings of maize; but the plots receiving no N produced even less in the second planting, hence the greater return for N applied to the residual trials. Assuming a linear relation, a mean increase of 8.0 and 24.4 kg/ha of grain was produced per kg of N applied to initial and residual experiments. P x N interaction was significant in only 3 of the 56 transfer experiments conducted in Brazil and Puerto Rico. Only one of these (B-57) showed significance at the 0.01 level of probability.

Residual experiments generally produced lower mean grain yields than did the initial trials; an exception to this occurred with the N +.85 treatment in Puerto kico (Table 2). For residual trials in Puerto Rico partial control and N-control treatment mean yields were only half of those for initial experiments, suggesting a very rapid depletion of nitrogen with cropping at Isabela. This also occurred in Brazil but apparently did not result in the same low soil levels as in Puerto Rico.

Mean yields over all initial transfer experiments, however, were similar fo the Brazil and Puerto Rico sites when optimal or higher levels of both nutrients were applied. In Brazil the mean yields for the optimal or higher P and N treat ments ranged from 6,209 to 6,981 kg/ha with corresponding Puerto Rico mean yield falling within this range.

The highest maize grain yield of all transfer trials in Puerto Rico was 11,515 kg/ha with the Pioneer brand hybrid X306B in experiment PR-3. For that experiment the overall mean was also high, 10,223 kg/ha. Subsequent high yields in Puerto Rico have been 9,391 and 9,020 kg/ha with X304C in experiments PR-21 and 59. These maize yields compare favorably with those previously recorded at Isabela by Cornell University, the USDA Agricultural Research Service and the UPR Experiment Station. Researchers from these institutions obtained maximum yields of 5,100 kg/ha (Fox et al., 1974), 5,975 kg/ha (Sotomayor-Rios, 1979) and 8,237 kg/ha (Badillo Feliciano et al., 1979). The highest mean yield in Brazil was 9,192 kg/ha with X304C in experiment B43.

These are excellent yields for the tropics. They were achieved with relatively low fertilizer inputs which clearly demonstrates the high potential of Eutrustox for maize production, particularly if one considers that with irrigation at least two crops can be grown in the same year.

The difference in maize growth in a plot with a high P application (D) and in a plot with a low P application (A) is striking in this transfer experiment conducted at Jaiba, Brazil

Transfer experiments at Isabela, Puerto Rico

B. STATISTICAL EVALUATION

1. INTRODUCTION

The general aim of the Benchmark Soils Project was to study agrotechnology transfer. For statistical purposes, however, it was necessary to delimit the problem to one important aspect of agrotechnology. Fertilization, particularly with phosphorus, was chosen as the technology and its transferability was studied. Statistical techniques were developed to evaluate the conjecture that experimental fertilizer response results are transferable from one site to another site within the same soil family.

Under a subcontract from the UPR/BSP, the Department of Statistics of the University of Kentucky conducted theoretical studies that were useful in developing statistical techniques for the evaluation of agrotechnology transfer.¹

The quantitative relationships evaluated in the evaluation of transfer are shown in Fig. 4. The soil and long-term climate are assumed to be constant within a soil family. But nutrient levels may vary, in part due to past soil fertilization, and can affect P and N response considerably. Also, weather in a given season can deviate from long-term climatic expectations. These variables cannot be controlled but they have been measured.

2. DATA USED IN TRANSFER ANALYSES

a. Yield Data

Careful study of the yield response data obtained from the initial and residual transfer experiments was made experiment by experiment. These studies were carried out together with the project agronomists who conducted the field operations. In general, experiments which had coefficients of variation greater than 20 percent were eliminated from the set used for the transfer analysis. If there was some question in the mind of the agronomists about the validity of the data from an experiment, it was also eliminated. Experiments in which no response to either P or N was obtained were omitted.

¹Allen, David M. and David C. Jordan, 1980. The use of pricr information for prediction. Unpublished mimeo. University of Kentucky.

Fig. 4. Diagram showing experimental scheme as well as predictive model aspects of the statistical approach.

After the careful study of the field data and elimination of questionable experiments, a set of 31 experiments remained for the transfer analysis. These experiments, listed in Table 3, include 18 from Brazil and 13 from Puerto Rico. They span the period from 1977 to 1980. Once this cransfer set was established, experiments were not deleted from the set even after initial results from transfer analyses were available.

No attempt was made to include transfer and residual transfer experiments in the same analysis because the levels of the yields were so different and the coefficients of variation were also higher for the residual transfer experiments. Consequently, interest centered primarily on the transfer experiments.

Raw yield data arranged by treatment for selected treatments of the maize transfer experiments are reported in Appendix Tables 2a and 2b. Treatment means, P main effect means, and N main effect means, are reported in Appendix Tables 3a, 3b, 3c, and 3d. P main effect means summarize most of the response information for Brazil experiments whereas N main effect means summarize the Puerto Rico information. There was no interaction between country and season.

Summary statistics from the fitting of a second order response surface for each experiment are reported in Appendix Table 4. In general, this surface fits data from transfer experiments for both Brazil and Puerto Rico well.

The Brazil experiment means ranged from 1,721 to 7,115 kg/ha. The coefficients of variation for these experiments ranged from 10.8 to 43.9 percent. For Puerto Rico, the experiment means ranged from 1,952 to 8,330 kg/ha. The coefficients of variation for these experiments ranged from 5.6 to 35.9 percent.

b. Weather Data

Since it was not possible to know definitely which weather variables would account for variation among experiments, a number of variables which theoretically might explain among experiment variation were measured as described in a previous section. Only air temperature and solar radiation, however, proved useful for the transfer analysis, in addition to the number of days to 50 percent tasseling.

Derived weather and related variables and their abbreviated designations are as follows:

Variable	Abbreviation
-Average daily maximum daily temperature	
for 60-day period with 50% tasseling as	
the midpoint	MAXTEMP
-Average daily minimum daily temperature	
for 60-day period with 50% tasseling as	
the midpoint	MINTMP
-Average daily solar radiation during 60-	
day period with 50% tasseling as the	
midpoint	Langleys
-Average number of days to 50% tasseling	TASSM

Based on the maximum temperature variable a linear-plateau variable was developed because N-linear response appeared to level off at about 31° C. This variable was the vector for a model III of the linear-plateau family of Anderson and Nelson (1975). The new variable was entered into the transfer regressions in the form of an interaction with the N-linear variable. Values of the new maximum temperature variable called MXTMP were assigned 31° C if the readings of maximum temperature were $\geq 31^{\circ}$ C. Otherwise the new variable had the value of the original maximum temperature variable. Average values of weather variables by experiment are reported in Appendix Tables 1a and 1b.

c. Soil Data

Soil Truog P values in ppm for samples from Treatment 15 (partial control) were averaged over the replications for that experiment. This variable was used to give an evaluation of the initial P status of each experiment. Truog P means, as well as those for other uncontrolled variables are reported in Table 3.

A derived soil variable was developed from the Truog test data. Fig. 5 shows a plot of the relationship between the P linear response coefficient and the Truog soil P. The shape of the plot led us to believe that a plateau in P response was being reached at about 14 ppm soil P. A model III linear-plateau model (Anderson and Nelson, 1975) was then fitted which accommodated a declining linear P yield response in the lowest range of soil test and then broke into a plateau at 14 ppm soil P. The single vector required for fitting this variable was called X_1 and it took on the values of the actual Truog P reading if soil P was less than 14 and 14 otherwise. The variable X_1 facilitated the transfer of soil P xadded P information from Brazil to Puerto Rico experiments.

	SITE	SEASJN	PLANT ING DATE	CÚNTRUL TROUG (PPM)	DAYS TO 50% TASSELING	SULAR RADIATION (LANGLEYS/DAYS)	TEMPERA MAX.	TURE (C) MIN.	YIELD (KSZHA)
DRAZIL		·····			· · · · · · · · · · · · · · · · · · ·				
	009 819 820 821 8224 8224 8224 8324 8343 8445 8445 854 854 8564 8564 8564	CRTTYYY WEITYYY CQREITYYY CQREITYYY WEITTYYY WEITTYYY CQREITYYY CQREITYYY CQREITYYY	00708777 11/10777 11/20777 11/20777 00720778 00720778 00720778 01/19779 01/19779 01/19779 01/19779 01/19779 01/19779 01/19779 00708779 00708779 11/28779 11/28779 04/25780 04/25780	7.68 7.68 13.21 9.57 5.64 12.93 9.70 6.00 7.45 9.78 9.78 9.78 9.70 12.74 5.31 6.37	33 70 66 73 89 80 81 63 59 85 83 83 88 60 59 76	4 4 5 4 6 5 4 8 0 4 9 8 4 3 5 4 4 0 4 2 3 4 8 8 4 7 2 4 7 4 4 7 4 4 2 8 4 7 2 4 2 8 4 7 4 3 7 4	31.32 30.97 34.94 31.71 32.03 33.60 34.33 31.03 31.90 32.13 32.90 32.90 32.90 32.90 30.56 30.56 30.03	14.87 18.85 22.40 12.91 13.13 13.02 18.29 18.28 12.99 12.97 13.25 19.24 19.24 19.18 10.96	5092 3955 5955 4031 4142 5968 5783 6783 6432 7115 6390 6796 6796 6049 60495
	80E	DRI	04/26/80	6.73	69 74	325 374	J1.78 32.02	11-48	6234
PUERTU I	P19 P20 P21 P27 P30 P33	WET DRY VET WET WET		19.33 14.80 15.06 20.82 44.48 40.00	4.6 56 56 51 50 49	460 334 322 487 484 454	30.04 27.94 27.90 29.55 29.78 30.13	21.20 18.28 17.97 20.75 20.92	4782 6415 8330 4956 7290
	P37 P45 P53 P54 P54 P55 P62 P62 P63	DRY WET DRY DRY DRY WET WET	12/05/78 05/15/75 12/01/75 12/01/79 12/05/79 12/05/79 04/29/80 04/30/80	18.32 31.58 41.43 75.33 48.57 23.27 81.30	62 55 78 62 60 56 58	372 467 533 468 474 527 529	27 • 137 29 • 77 27 • 28 26 • 91 26 • 95 30 • 43 30 • 49	21.496 21.45 17.38 17.55 17.55 21.19 21.29	4575 6319 6452 6340 7373 6262 7195 6629

Table 3. Means of the site variables used in the transfer analysis

Means of the weather variables are computed for a 60-day period starting 30 days before and ending 30 days after mean date of 50% tasseling

Fig. 5. Plot of relationship between the P-linear response coefficient and the Truog soil test P

3. STATISTICAL PROCEDURES FOR TRANSFER EVALUATION

a. General

Two statistical procedures were used to evaluate the adequacy of transfer. The first was a confidence interval procedure. The second was the P-statistic procedure developed by Wood and Cady (1981). Both involved use of a transfer function which included uncontrolled variables as predictors in the model. A third graphical method for transfer evaluation will be described in a subsequent section.

It became evident fairly early in the analysis of the data that it would not be possible to adequately explain the variation in yield levels among experiments with the uncontrolled variables measured. This variability was sizeable, accounting for approximately 40 percent of the variation in all of the numbers of the transfer data set. Workers such as Nelson and McCracken (1962) have reported being able to explain only 60 to 80 percent of the among site variability in a data set for a given soil but we are dealing here more with weather variability at two sites which is expected to be less readily explained. It did become apparent, however, that the uncontrolled variables do contribute to changes in the shape of the response surfaces (i.e., there is an interaction between the controlled and uncontrolled variables). Being realistic about not being able to explain well among-experiment variation per se, we subtracted out the experimental mean from each treatment before performing the confidence limit and Pstatistic calculations for evaluating transfer of fertilizer response information. Using these deviations we were able to account for much of the interaction between the controlled and uncontrolled variables with our transfer models.

b. Confidence Interval Procedure

A method was devised whereby confidence limits were developed from experiment-specific data and then evaluation consisted of counting the number of predictions based upon data from all of the other experiments which occurred within the confidence interval. More specifically, data from an individual experiment, i, from one of k experiments were used to judge if predicted treatment mean yields, $\tilde{\bar{Y}}_{(-i)}$ (expressed as deviations from the experimental mean, $\bar{\bar{Y}}_{(-i)}$ using data from the other k-1 experiments) would be reasonably close to the values predicted by individual site data only, $\tilde{\bar{Y}}_i$. This prediction and confidence interval estimation procedure was repeated for the k sites. For a given model, if most of the $\hat{\vec{Y}}_{(-1)}$ fall within the confidence interval which was centered on $\hat{\vec{Y}}_i$ deviations, we would say that transfer of fertilizer response information is feasible. On the other hand, if a large proportion falls outside of the confidence interval we would say that transfer of fertilizer response. information depends upon additional factors beyond the scope of the present study.

Schematic Description of Confidence Interval Procedure

Probability
$$\{\hat{\vec{Y}}_{i} - t_{.025} \hat{s}_{\vec{Y}_{i}} < \mu_{i} < \hat{\vec{Y}}_{i} + t_{.025} \hat{s}_{\vec{Y}_{i}}\} = .95$$

95 percent confidence interval based upon predictions $(\hat{\vec{Y}}_{\underline{i}})$ from experiment i only. The $\hat{\vec{Y}}_{\underline{i}}$ term is estimated from all experiments

 $\frac{\hat{\vec{y}}}{\hat{\vec{y}}}$ = Predictions based upon information from other k-l sites

Question: Do these predictions based upon other k-l sites fall within the confidence interval?

The confidence limits for individual experiment response surfaces were obtained by adding or subtracting an uncertainty value from $\hat{\bar{Y}}_i$ deviations for each treatment. As suggested above, we pooled lack of fit sum of squares and experimental error sum of squares. In general the uncertainty values consisted of $t_{\alpha}s(\hat{\bar{Y}}_i)$ where t_{α} is Student's tabular t based upon 997 degrees of freedom and a significance level of α and $s(\hat{\bar{Y}}_i)$ is the standard error of the deviation of the predicted mean from the general mean. We used an α level of .05. The reason for using 997 degrees of freedom in looking up tabular t will be explained later. The predictions, $\hat{\bar{Y}}_i$, to which the uncertainty values were added or subtracted were obtained by fitting a quadratic response surface to the deviations of the 13 treatment means from the overall mean for the experiment. The mathematical form for the response surface within a site was

$$\hat{\tilde{Y}}_{i} = b_{1}P + b_{2}N + b_{3}P^{2} + b_{4}N^{2} + b_{5}PN$$

where $\hat{\vec{Y}}_i$ is the predicted deviation of a treatment mean from the experiment mean, P is the controlled level of P and N is the controlled level of N. The P² and N² variables have been centered so that they are orthogonal with the linear terms

c. P-Statistic Procedure of Wood and Cady

Wood and Cady (1981) developed a procedure for evaluating the transferability of fertilizer response statistically via a ratio similar to the F ratio which is familiar to most researchers. This ratio is indicative of how much "noise" is introduced into the predictions of fertilizer response if they are developed from data which are not experiment-specific. They predicted the yields, known as $\hat{Y}_{(-1)}$ for one of k experiments using a transfer function estimated from the other k-1 experiments (including site variables). This process was repeated for each of the k sites. If the transfer residuals $Y_i - \hat{Y}_{(-1)}$ are approximately of the same magnitude as the ordinary residuals $Y_i - \hat{Y}_i$ (obtained from an equation developed from within site data only), we have evidence for agrotechnology transfer. To measure the relative size of these residuals Wood and Cady used the sum of squares of $(Y_i - \hat{Y}_{(-1)})$ divided by the sum of squares of $(Y_i - \hat{Y}_i)$ over all of the experiments, i.e., P = prediction statistic = $\frac{\text{Transfer SS}}{\text{Residual SS}}$. They called this ratio the P-statistic which is a specific criterion for evaluating the conjecture of transferability of fertilizer response information.

Schematic Description of Wood-Cady P--Statistic Procedure

$$P = \frac{k}{\sum_{i=1}^{k} (Y_{i} - \hat{Y}_{(-i)})^{2} / \sum (Y_{i} - \hat{Y}_{i})^{2}}$$

where P is P-statistic, Y_{i} is yield for a particular rep-treatment for experiment i, \hat{Y}_{i} is the predicted rep-treatment yield for experiment i using data from experiment i, and $\hat{Y}_{(-i)}$ is predicted yield using data from other k-l sites.

The P-statistic represents a relative measure of the dilution of predictability of fertilizer response at site A which occurs when we transfer to site A results of fertilizer experiments conducted during another season at site A and/or at other sites having soils of the same family as site A. A P-statistic of 1.4 implies that there is a 40 percent increase in "noise" in the prediction sum of squares by conducting experiments during another season and/or at another location. Depending upon the number of experiments being studied, an increase in "noise" of this magnitude represents a considerable decrease in predictability. Wood and Cady (1981) described the mathematical aspects of P including its distribution (in P-1 form) and methods of assessing its significance level. A brief introduction to these will be given below but other particulars will be given and with PN. The N^2 vector has been orthogonalized so that the P^2 and N^2 terms are mutually orthogonal. The coded and orthogonized vectors which were used in the P-N regression for transfer are shown in Table 4. Thus with all terms orthogonal and deviations from the experiment mean being used, an intercept is not included. The vectors used in fitting individual experiment response surfaces are shown in Table 4.

Tmt. No.	P	<u>N</u>	P ²	<u> </u>	PN
1	85	85	.3398077	.2666304	.7225
2	85	. 85	11	*1	- "
3	.85	85	11	11	_ 11
4	. 85	. 85	11	11	11
5	40	40	2226923	1747357	.16
6	40	.40	_ "	11	16
7	.40	40	- II	н	16
8	.40	.40	_ "	11	.16
9	0	0	3826923	3002799	0
10	85	0	.3398077	4558696	0
11	.85	0	11	¹¹	0
12	0	ч _с 85	3826923	.4222201	0
13	0	. 85	11	11	0

Table 4. Coded and orthogonalized vectors used in fitting the response surfaces by experiment

Rather than estimating variance from only the 39 observations within an experiment in calculating these uncertainty values, a more stable estimate of variance obtained from all experiments was used. This was obtained by pooling all lack of fit and experimental error sums of squares for the 31 experiments and then dividing by the pooled degrees of freedom for these pooled quantities (997).

Following the calculation of the confidence limits for the 961 treatment means over the 31 sites, an evaluation was made to see how many predicted treatment mean deviations $\overline{Y}_{(-i)}$ occurred assuming a given transfer model within the 95 percent confidence interval determined by adding to and subtracting from the $\hat{\overline{Y}}_{i}$ an uncertainty value. The transfer models used to predict the $\hat{\overline{Y}}_{(-i)}$ involved data from the k-1 experiments other than the $i\frac{\text{th}}{\text{th}}$ experiment and included interactions between controlled and uncontrolled variables.

in the RESULTS AND DISCUSSION section as they pertain to a specific P-statistic. Using their methodology we see that $P-1 = \frac{k^2}{(k-1)^2} \cdot \frac{Y^*B_1Y}{Y^*BY}$ where P is the prediction statistic, k is the number of sites, B_1 and B are (kn x kn) symmetric matrices with $B_1B = 0$, BB = B and $Y' = [Y'_1 \vdots Y'_2 \vdots --- \vdots Y'_k]$. The quadratic form of the numerator can be represented as $\sigma^2 \sum_{k=1}^{kn} \theta_k \chi_k^2$ (1 d.f.) where the χ_k^2 (1 d.f.) are independent χ^2 random variables and θ_k , k=1,---, L are the eigenvalues of B_1 . The denominator is distributed as $\sigma^2 \chi^2$ (pooled residual d.f.) since yields were adjusted for block effects.

Thus

$$\frac{(k-1)^2}{k^2} (P-1) \sim \frac{\sigma^2 \sum_{\ell=1}^{L} \theta_{\ell} \chi_{\ell}^2 (1 \text{ d.f.})}{\sigma^2 \chi^2 \text{ (pooled residual d.f.)}} \cdot$$

With large degrees of freedom for the denominator, a simplification can be made

997 {
$$(k-1)^2/k^2$$
 } $(P-1) = \sum_{\ell=1}^{n} \theta_{\ell} \chi_{\ell}^2$ (1 d.f.).

Because no tables exist for the significance level of $\{(k-1)^2/k^2\}$ (P-1) we used Monte Carlo simulation to estimate the significance level by generating 10,000 standard normal deviates N_{ℓ} , $\ell=1,--,152$ using Procedure GCNML subroutine from International Mathematical and Statistical Libraries, Inc. (Houston, Texas, USA). These normal deviates, N_{ℓ} 's, were squared to form χ^2_{ℓ} 's each with 1 d.f. Then each variable was formed as the linear combination of χ^2_{ℓ} (1 d.f.) variables.

The significance level of a calculated P will vary depending upon the uncontrolled variables included In a given transfer regression, the values of these variables and the number of experiments. Consequently, a calculated P for a specific transfer model to be tested requires a separate Monte Carlo run. Constant experimental error variances were assumed across sites based upon results of Hartley's test for comparing the 31 error variances which showed that they were not different. Because mean yields were expressed as deviations from the experimental mean it was not considered necessary to include the main effects of the uncontrolled variables in the models. Models used are shown in Table 5. Plots of the type shown in Fig. 5 were used in establishing which uncontrolled variables were most highly related to linear and quadratic P and N response.

Model No.	Terms	
1	Yield (deviation) (-i)	= $P N P^2 N^2 PN;$
2	Yield (deviation) (-i)	= $P N P^2 N^2 PN$
		P*X1 P*TASSM
		P*Langleys N*X ₁
		P*X ₁ *Langleys
		^P *X ₁ *TASSM;
3	Yield (deviation) (-i)	$= P N P^2 N^2 PN$
		P*X P*TASSM
		P*Langleys N*X 1
		N*MINTMP;
4 5	/ield (deviation) (-i)	$P N P^2 N^2 PN$
		P*X1 P*TASSM
		P*Langleys N*X 1
		N*MXTMP;
5 Y	Nield (deviation) (-i)	$P N P^2 N^2 PN$
		P*X1 P*TASSM
		P*Langleys N*MXTMP
		P*TASSM*MXTMP;
б У	lield (deviation) (-i)	$P N P^2 N^2 PN$
		P*X1 P*TASSM
		P*Langleys
		N*MXTMP;
7 Y	rield (deviation) =	$P N P^2 N^2 PN$
		P*X1 P*TASSM P*Langleys
		N*MXTMP P2*X ₁ ;

Table 5. Models used for the transfer regressions in the P-statistic procedure

Simple correlations of the P and N response coefficients and the uncontrolled variables were also obtained. The transfer models which included certain uncontrolled x controlled variable interactions were then developed. The final model chosen for the transfer in connection with the P-statistic was Model 6.

The P-statistic procedure was also used on a set of 18 residual transfer experiments: B-25, B-27, B-53, B-55, B-57, B-67, B-69 from Brazil, and PR-31, PR-34, PR-35, PR-41 PR-42, PR-43, PR-50, PR-51, PR-58, PR-59, and PR-60 from Puerto Rico. The techniques were much the same as for the transfer experiments except that only two uncontrolled variables interacted with the controlled variables and thus the transfer model was much simpler. Testing of the P-statistic followed procedures used for transfer experiments.

d. Graphical Procedure

The graphical procedure was designed to plot transferred response surfaces and to compare them visually with response surfaces plotted from experimentspecific data only. For each experiment, the 13 predictions \overline{Y}_{1} , obtained by fitting the experiment-specific model (Model I) were plotted to obtain a response surface. Another surface was obtained by plotting the prediction, $\overline{Y}_{(-i)}$, for experiment i from the other 30 experiments assuming a model which included the variables for both of the controlled and uncontrolled factors (i.e., Model 5). Because both of the above types of predictions were obtained in deviation form, the experiment mean was added back to the predictions before plotting.

The two plottings for a given experiment are then compared visually to see if the general shapes are similar and if the ranges in predicted yields are more or less equivalent.

The graphical procedure provides an additional source of information which can be used to reinforce the findings of the confidence interval and P-statistic procedures.

e. Individual Plot Data vs Means for Calculating the Confidence Intervals and the P-statistic

In using the transfer models the question arose whether the transfer analysis should be conducted on a plot per plot basis or on the 13 treatment means per experiment.

For the confidence interval approach it seemed logical to use treatment means in the regressions to obtain confidence limits for predicted means. It is the average response surface which we are trying to transfer rather than the individual plot yields. The error used in calculating the confidence limits was obtained by pooling lack of fit and experimental error sums of squares and then dividing by pooled degrees of freedom (997). The resulting mean square was then divided by the number of replications for each particular location.

For calculating the P-statistic there were other relevant considerations. There are 11 of the 31 experiments occurring in the transfer analysis set in which the block effects are significant at the five percent level or lower. There are several other experiments in which the block mean squares are considerably larger than the experimental error mean squares even though the F-ratio for blocks is not significant at the five percent level. We first considered averaging over the blocks and conducting the transfer regression on treatment means. This would remove the block effects from the numerator of the expression used in calculating the P-statistic. The problem with this approach is that the lack of fit sum of squares pooled over the experiments used in the transfer regression, which would need to be used as the denominator in calculating the P-statistic, underestimates experimental error. This would automatically place an upward bias on the P-statistic. We felt more comfortable with a procedure which involved pooling both the lack of fit sum of squares and the experimental error sum of squares over all sites involved in the transfer regression. The approach used therefore was to subtract block effects in addition to the general mean from each plot observation and then to run the transfer regressions on these per plot data which had been adjusted for blocks.

f. Statistical Computations

All simple statistics, correlations, plots of response surfaces and other data manipulations were made using various procedures of the Statistical Analysis System (SAS).

The confidence limits and predictions were obtained by PROC General Linear Models of SAS, fitting the regressions on treatment means for each experiment. The uncertainty factors obtained by the computer were multiplied by a factor to reflect the fact that both the sum of squares for experimental error and the sum of squares for lack of itt were pooled over the 31 transfer experiments and then divided by 997 degrees of freedom as an estimate of error. This error was then divided by the number of replications (either 3 or 4) to put it on a per mean basis. The number of predictions falling within the confidence limits were then manually counted. An example of the statistical computations for experiment B-22is given in Appendix Table 6.

The transfer regressions and experiment-specific regressions used in connection with the P-statistic procedure were conducted using Procedure General Linear Models (GLM) of SAS. The numerator required several MACRO statements which caused the prediction sum of squares to be calculated for each of the 31 different experiments. Computing was done using individual plot yields, $Y_{(i)}$, which had been adjusted for block effects.

4. RESULTS AND DISCUSSION

a. General

Analyses of variance for the regressions of the Brazil and Puerto Rico experiments are reported in Appendix Tables 5a and 5b. The results of tests of various model terms and the lack of fit information in this Table correspond to those shown in Appendix Table 4. Blocking appeared to be effective in many of the experiments. In general, P linear was significant at either the 5 percent level or one percent level for all of the Brazil experiments, except for one residual transfer experiment (B-48). In most cases it was significant at the one percent level. The quadratic term was seldom significant. Significant linear nitrogen response was obtained in only seven of the Brazil experiments and these were at the five percent level only except for B-47. Several of these were residual transfer experiments. In only three experiments (B-47, B-65 and B-68) was the quadratic aitrogen term significant. Of these, B-65 was a residual transfer experiment. The P x N interaction term was significant only for three experiments (B-47, B-57 and B-65). Of these, only for B-65 was the significance at the one percent level.

Nitrogen response was the major result in Puerto Rico. Significant N linear response occurred for all but 11 experiments. N-quadratic response was much less frequent. Significance at the five percent level or lower occurred for only five of the Puerto Rico experiments.

Phosphorus response was observed in only three experiments in Puerto Rico. It was strong in two of these (PR-20 and PR-21). All of these experiments were initial transfer experiments.

The R^2 values for the fit of the second order response surface ranged from .13 to .99 for the Brazil experiments. The range is much narrower if only initial transfer experiments are considered. The R^2 values for the fit of the same model for the Puerto Rico experiments ranged from .12 to .99, but again a

much narrower range would be obtained if the residual transfer experiments were excluded. In general, the quadratic model tended to fit slightly better in the case of the Brazil than the Puerto Rico experiments as judged by the R² values.

The lack of fit did not exceed the experimental error as often as the reverse. There was only one site (PR-21) in which the lack of fit term was significant and then it was only at the five percent level.

A combined analysis of variance for data from the 31 transfer experiments is shown in Table 6. This revealed strong location and treatment effects and a significant experiment x treatment interaction. P-linear is the single most important effect. Reps (Expts) mean square is sizeable.

Source of variation	d.f.	Sum of Squares	Mean Square	
Expts	30	1,453,616,642	48,453,888	
Reps (Expts)	65	160,767,755	2,473,350	
Treatments	12	698,990,338	58,249,195	
Р	1	583,776,082	583,776,082	
N	1	70,785,330	70,785,330	
P2	1	38,356,019	38,356,019	
N2	1	3,988,727	3,983,727	
PN	1.	150,599	150,599	
Lack of fit	7	1,933,581	276,226	
Tmts x Expts	360	827,538,091	2,298,717	
Model x Expts	150	708,696,405	4,724,643	
Lack of fit x Expts	210	118,841,686	565,912	
Pooled Error	780	495,509,020	635,268	
TOTAL	1247	3,636,421,846		

Table 6. Combined analysis of variance of yield data for the 31 transfer experiments

b. Results Using the Confidence Interval Procedure

The number of $\hat{\overline{Y}}_{(-i)}$ occurring within the 95 percent confidence intervals obtained from "within experiment" predictions was counted and the tally by experiment is shown in Table 7. The number of $\hat{\overline{Y}}_{(-i)}$ occurring within this confidence interval over all experiments is 296 which is 73.4 percent of the total number of treatment means for the 31 experiments (i.e., 31 x 13 = 403 means).

The percentage occurring within the interval was higher on the average for Puerto Rico experiments (80.5 percent) than for Brazil experiments (68.4 percent). There were three Brazil experiments which had quite low percentages occurring within the interval (B-43, B-66 and B-68). Otherwise those which occurred outside of the interval were not necessarily concentrated in data for specific experiments.

A tabulation of the percentage of $\hat{\vec{Y}}_{(-i)}$ occurring within the confidence interval by individual treatment for Brazil and Puerto Rico is shown in Table 8. For both Brazil and Puerto Rico, the highest proportion of predictions fell outside of the confidence interval for Treatment 7 which is .40 and -.40 for P and N, respectively, and Treatment 10 which is -.85 and 0 for P and N, respectively. For Brazil, the prediction was also poor for Treatment 8.

For situations in which the transfer model is predicting very well, one would still expect about five percent of the predictions, $\hat{\bar{Y}}_{(-i)}$, to occur outside of the 95 percent confidence interval. We have experienced 26.6 percent occurring outside of the interval which is 21.5 percent more than one would expect with very good transfer. Although the transfer is less than perfect, the percentage of the $\hat{\bar{Y}}_{(-i)}$ occurring within the confidence interval is quite respectable and does indicate that transfer is being achieved.

c. Results Using the P-statistic Procedure

The overall P-statistic for a regression among 31 transfer experiments using Model 6 was 1.5075 which was significant at the .0001 level. This implies that unless a one in 10,000 chance error has occurred there has been a real increase in the prediction sum of squares as a result of using experiments conducted in other seasons and sites over the equivalent sum of squares from site-specific data. The calculation was as follows:

$$P = \frac{\text{Transfer SS}}{\text{Residual SS}} = \frac{926,166,242}{614,350,826} = 1.5075$$

The denominator is distributed as $\sigma^2 \chi^2$ with $\{k(n-p-1-(r-1))\} = 997$ d.f. where k, n and p have been defined in the Statistical Procedures for Transfer Evaluation section and r is the number of replications per experiment.

Thus

$$\frac{(k-1)^2}{k^2} (P-1) = .9365(P-1) \sim \frac{\sigma^2 \sum_{\ell=1}^{152} \theta_{\ell} \chi_{\ell}^2 (1 \text{ d.f.})}{\sigma^2 \chi^2 (997 \text{ d.f.})}$$

Experiment	% of predictions in 95% confidence interval	Experiment	% of predictions in 95% confidence interval
	38.5	<u>PD_10</u>	02 3
D-09		I K-19	52.5
B-19	53.8	PR-20	92.3
B-20	100.0	PR-21	84.6
B-21	92.3	PR-27	61.5
B-22	69.2	PR-30	61.5
B-24	46.2	PR-33	76.9
B-26	53.8	PR-37	53.8
B-36	46.2	PR-45	100.0
B-38	100.0	PR-53	46.2
B-43	38.5	PR-54	92.3
B-45	76.9	PR-55	84.6
B-47	69.2	PR-62	100.0
B-52	76.9	PR-63	1.00.0
B-54	100.0		
B-56	100.0	Average for H	Puerto Rico 80.5%
В-64	100.0		
B-66	53.8	Average over	alı
B-68	15.4	experiments:	$\frac{296}{403}$ x 100 = 73.4%

Table 7. Percentage of predictions $(\hat{\bar{Y}}_{(-1)})$ occurring within 95 percent confidence interval (reported by experiment) assuming Model 6

Average for Brazil 68.4%

Treatment	Brazil (18 experiments)	Puerto Rico (13 experiments)	Overall (31 experiments)
	2	%	%
1	50.0	92.3	67.7
2	50.0	76.9	61.3
3	77.8	76.9	77.4
4	94.4	92.3	93.5
5	77.8	92.3	83.9
6	77.8	84.6	80.6
7	38.9	69.6	51.6
8	33.3	61.5	64.5
9	83.3	84.6	83.9
10	33.3	76.9	51.6
11	83.3	84.6	83.9
12	77.8	69.2	74.2
13	77.8	84.6	80.6

Table 8. Percentage of predictions $(\hat{\vec{Y}}_{(-i)})$ occurring within 95 percent confidence interval by treatment for Brazil and Puerto Rico (Model 6)

Since there are 997 d.f. for error, a simplification can be made

997 {
$$(k-1)^2/k^2$$
}(P-1) $\perp \sum_{\substack{\ell=1\\ \ell=1}}^{152} \sum_{\substack{\ell=1\\ \ell=1}}^{20} \chi_{\ell}^2$ (1 d.f.)

This implies that we need to compare 997 (.4753) = 473.9 with the quantiles of $\Sigma \theta_g \chi_g^2$ (1 d.f.).

Because of the large dimensions of B_1 due to k = 31 and n = 39, its eigenvalues had to be obtained by partitioning B_1 into three sub-matrices each of dimension k and obtaining the eigenvalues for them separately. This partitioning was feasible because the X variables were originally orthogonalized and centered at zero.

The eigenvalues of the first matrix were either zero or one depending upon k, the number of sites, and p-2, the number of X-variables not used to form interactions with site variables. In particular, there were (k-1)(p-2) = 30(3) = 90eigenvalues equal to one in this first matrix.

The eigenvalues of the second matrix resulted from including interactions of the linear effects of P with X_1 , TASSM and Langleys. The eigenvalues of the

third matrix resulted from including the interaction of the linear effect of N with MXTMP. For a detailed treatment of the computation of the eigenvalues see. 3 and 4 of Wood and Cady (1981).

A separate transfer regression was run for the transfer set of the 31 Puerto Rico and Brazil experiments plus four Eutrustox experiments from Hawaii. The resulting P value was 1.6574 which was significant at the 0.0001 level.

The results of the P calculation for the residual transfer experiments show a P of 1.547 which was only slightly higher than that for the transfer set (but on the other hand, only 18 experiments were involved in comparison with 31 experiments used for the transfer experiments). Only interactions for $P \propto X_1$ and N x MINTMP were included in this residual transfer regression because other controlled x uncontrolled variable interactions were not significant.

The following relationship exists:

$$\frac{(k-1)^2}{k^2} (P-1) = .8919(P-1) \sim \frac{\sum_{\ell=1}^{\infty} \theta_{\ell} \chi_{\ell}(1 \text{ d.f.})}{\sigma^2 \chi^2 (558 \text{ d.f.})}$$

Since there are 558 d.f. for error, a simplication is made

558
$$\{(k-1)^2/k^2\}$$
 (P-1) $_____ \begin{array}{c} 87\\ \Sigma\\ \ell=1 \end{array} \\ \theta_{\ell}\chi_{\ell}^2$ (1 d.f.)

This implies that we need to compare 558(.4879) = 272.2 with the quantiles of $\sum_{\rho} \chi_{\ell}^{2}$ (1 d.f.).

Using Monte Carlo techniques similar to those used for the transfer experiments the probability calculated to be associated with $P = \frac{792,536,087}{512,331,425} = 1.5469$ was .0001. Thus the inferences to be drawn from the P-statistic evaluation of transfer for the residual transfer experiments are the same as they are for the transfer experiments.

One can see which experiments are apt to be contributing greatly to the numerator of the P-statistic by studying the discrepancies of the phosphorus linear regression coefficients obtained using data from the specific experiment and using data from the other 30 transfer experiments. These P linear coefficients are reported in Table 9. The experiments in which P response was grossly overestimated by the 30 other experiment regressions are b-09 and B-19. For B-36 and B-43 the 30 other experiment regressions grossly underestimated the response.

Expt. No.	Other <u>30 expts.</u>	Specific Expt.	Expt. No.	Other 30 expts.	Specific Expt.
B-09	2590	1482	PR-19	-52	-181
B-19	2554	1779	PR-20	514	882
в-20	560	628	PR-21	696	369
B-21	1566	1510	PR-27	-106	220
B-22	2300	3029	PR-30	-93	-66
B-24	1248	525	PR-33	-81	208
B-26	1719	2261	PR-37	736	-216
B-36	1528	2564	PR-45	110	94
B-38	1775	1659	PR-53	72 2	-149
B-43	1799	3039	PR-54	331	-94
B-45	1074	1653	PR-55	251	-104
B-47	1965	2331	PR-62	-40	-222
B-52	1477	1952	PR-63	-17	7
B-54	760	970			
B-56	1660	1705			
B-64	2845	2710			
B-66	757	1727			
B-68	728	1679			

Table 9. Phosphorus linear regression coefficients estimated by experiment and from fitting a surface to predictions for that experiment from the other 30 transfer experiments (Model 6) Table 10. Index of (Transfer SS/Pooled error and lack of fit SS) to show which experiments are contributing most to the P-statistic (Model 7)

Expt. No.	Index	Expt. No.	Index
B-09	1.79	PR-19	1.10
B-19	2.03	PR-20	1.27
B-20	1.08	PR-21	1.62
B-21	1.13	PR-27	1.72
B-22	1.67	PR-30	1.23
B-24	1.83	PR-33	1.32
B-26	1,.53	PR-37	1.85
B-36	2.12	PR-45	1.17
B-38	1.16	13-53	1.63
B-43	2.23	PR-54	1.23
B-45	1.24	PR-55	1.17
B-47	1.89	PR-62	1.18
B-52	1.41		
B-54	1.09		
B-56	1.14		
B-64	1.15		
B-66	1.97		
B-68	2.35		

A useful index of an experiment's potential contribution to the P-statistic is to divide the transfer sum of squares by the pooled experimental error and lack of fit sum of squares. Those which have large transfer sum of squares and low estimates of error and/or lack of fit will tend to have a net effect of causing the P-statistic to be larger. A listing of these ratios for the 31 experiments in the transfer set is given in Table 10. The Brazil experiments which have large indices are B-19, B-36, B-43 and B-68. The average index value for the Puerto Rico experiments was lower and there did not appear to be as many experiments with large indices.

Some remarks about the interpretation of the P-statistic seem in order. With small values of P (slightly larger than one) we would conclude that experiment-specific information is not necessary in order to draw fertilizer response inferences for a site-season. On the other hand, large values of the P-statistic reflect the introduction of considerable noise into the predictions by using data which are not experiment-specific. The question of what constitutes a large P-statistic then arises. As indicated previously, this is dependent upon the number of experiments. However, some generalizations will be made based upon our limited experience with the P-statistic. P-values of three to 10 such as would be obtained if the uncontrolled variables were not included in the model would be considered large regardless of the number of experiments. P-values in the range of 1 to 1.3 would seem relatively small even though with a large number of experiments significance might be obtained for P-values at the upper end of the range. Values of P between 1.3 and 3.0 would appear to be intermediate, reflecting severe distortion of prediction at the upper end of the range but only a moderate distortion at the lower end. The P-value of 1.5075 obtained with the present data set falls into the latter range.

d. Results Using the Graphical Procedure

Plottings of the experiment-specific response surfaces and those from plotting predictions from the other 30 experiments are shown in Fig. 6. These are paired by individual experiment.

In general the conformation of the surface obtained from non-specific data is similar to that for the specific-experiment plotting. This is especially true for the Brazil experiments. The Puerto Rico plottings have a similarity in conformation between the two types but the non-specific plottings have an uneven surface. This may be due to the use of the linear-plateau variable ($X_1 = Truog$ P vector) which causes a plateau to occur at 14 ppm soil P. This variable apparently caused some discontinuities in the predicted values.

Fig. 6a. Comparison of response surface graphs plotted from experiment-specific data (top) with graphs plotted from data from 30 other experiments conducted in Brazil and Puerto Rico, Brazil sites

Fig. 6b. Comparison of response surface graphs plotted from experiment-specific data (top) with graphs plotted from data from 30 other experiments conducted in Brazil and Puerto Rico, Puerto Rico sites

5. CONCLUSIONS

Our data analysis strategy was to use several different procedures to verify transferability. We wanted confirmatory evidence from several distinctly different sources so that our conclusions would be well-founded. We therefore used three methods: (1) the confidence interval procedure, (2) the P-statistic procedure and (3) the graphical procedure.

As mentioned above, the results obtained with the confidence interval procedure were encouraging and suggest about 73.4 percent transfer of information. Although not perfect, we can conclude that transfer is occurring.

The P-statistic procedure did not give conclusive results. The calculated P-value of 1.5075 falls into the intermediate range of 1.3 to 3.0 and thus does not satisfactorily prove, nor disprove, the transfer conjecture. The P-value of 1.5075 for the Model 6 regression among 31 transfer experiments was significant at the .0001 level. Similar results--P=1.6574, significant at the .0001 level. level--were obtained when four Hawaii Eutrustox experiments were added to the transfer set.

It appears that certain unusual experiments influenced the size of the Pstatistic markedly. An example of such an unusual experiment is B-43. During this experiment, the environmental factors reacted positively with the controlled variables and, consequently, considerably more response to fertilizer was achieved than would have normally been expected (5,634 kg/ha range in the 13 design treatment means). This caused the linear response coefficient for P to be unusually large. One cannot dismiss this as a "bad" experiment and delete it because it is actually a "good" experiment in which results exceeded all expectations. The contribution of this experiment to the numerator of the expression used for calculating the P-statistic was 64,712,479, which was considerably above the contribution of any of the other experiments.

As seen in Fig. 6, the general shape of the surface estimated from a single experiment and that estimated from the other k-1 experiments for that experiment are very similar. The similarity of these two types of plots is particularly striking in the case of the Brazil experiments. We can also conclude that by using appropriate site variables we are able to explain the difference between the overall shape of the Brazil and Puerto Rico response surfaces.

No attempt was made to reconcile the results of the three methods. It is

not uncommon for several statistical procedures applied to the same data to produce results which are not in total agreement. The P-statistic procedure uses an exact mathematical test whereas the other two procedures are more ad hoc. Further studies on the properties of the confidence limit procedure are needed. It would also seem appropriate to focus attention on the effect of unusual siteseason conditions on the results of all three procedures.

The study showed that information on the uncontrolled variables is very essential in transferring fertilizer response results. These variables do not explain among experiment variability to any large degree, but they do account for changes in the shapes of the response surfaces from site to site.

In summary, the P-statistic method produced marginal results which may be attributed to the sensitivity to exceptional experiments of this new and not widely tested technique. Two other procedures, however, gave positive indications that information transfer is occurring. We thus believe that, on balance, the statistical studies provide a qualified validation of the conjecture of transfer postulated in the Benchmark Soils Project.

Water reservoir for irrigation at Jaiba, Brazil

IV. APPLIED RESEARCH

A. GENERAL

Although the thrust of the BSP field work was to generate the data base for the test of the transfer hypothesis through specifically designed transfer experiments, a variety of other experiments were also conducted. These experiments had the general objective of expanding the knowledge base for the agricultural use of Eutrustox, particularly by resource-poor farmers.

Twenty-two variety trials with maize and soybeans were conducted at the primary sites in Puerto Rico and Brazil. Their purpose was to identify varieties that are well adapted to the agroenvironment of Eutrustox and responsive to the fortility variables used in the transfer experiments. These trials also supplied information about regional yield potential and varietal performance.

Soil and crop management experiments were designed to provide in ormation on economic and efficient agricultural practices, and data for subsequent soil interpretation and land evaluation. Whereas the procedures for conducting transfer experiments were identical at all sites, the designs of the management experiments were more flexible and allowed the project to respond to host country priorities and to local farmer needs. A philosophic framework for the management experiments was developed at the first annual coordination meeting of the UH and UPR projects in 1976. Particular attention was paid to experiments on costly inputs and high energy use cultural practices, such as irrigation, fertilization and tillage.

Apart from phosphorus and nitrogen, limited soil moisture is probably the most severe constraint inherent in the soil family under study. A pronounced dry period of several months occurs at the Brazil sites and brief droughts are common during the wet season. At the Puerto Rico sites seasonality is less marked but severe dry spells may occur at any time of the year. These climatic uncertaintie , along with the low water holding capacity of the soil, combine to limit crop production, at times severely. For this reason moisture utilization studies have been emphasized in BSP management experiments in Puerto Rico and Brazil.

Thirty-three management experiments were conducted and focused on irrigation rates, plant population density, time of planting, mulching, minimum tillage, phosphorus rate and placement, liming, maize composite population improvement, and multicropping.

B. VARIETY TRIALS

1. MAIZE

Eight maize variety trials were conducted in Brazil and Puerto Rico to select the best adapted varieties for use in the transfer experiments in each country. Hybrids and open pollinated varieties believed to be well adapted to local conditions were selected for further study. In addition, available cultivars selected from those having performed best in the CIMMYT International Maize Adaptation Nursery (IMAN) at elevations and latitudes similar to UPR BSP sites and cultivars recommended by cooperators were also included. A total of 30 varieties and hybrids were tested in these trials. Appendix Table 7 shows grain yields of the leading five entries in each experiment. Pioneer brand hybrid X304C, when included, was consistently the highest or near highest yielding entry. On the strength of these trials and its performance in Hawaii, X304C was used as the testcrop variety in all subsequent transfer experiments on all Oxisol sites in Puerto Rico, Brazil and Hawaii.

In Brazil, six maize trials with promising varieties selected for testing in the Jaiba region were completed in cooperation with EMBRAPA's Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS). These experiments had 36 to 42 entries and each entry was replicated four times. The mean yields of the 10 top-ranked varieties in four experiments are shown in Appendix Table 8. Highest yields ranged from 6,770 kg/ha with variety DeKalb 7601 in 1978 to 8,500 kg/ha with Cargili 111S in 1980. Grain yields from the two other trials, with precocious maize, are presented in Appendix Table 9. Grain yields were generally high, considering that these were unirrigated experiments. The results of these maize variety trials were published by EMBRAPA for wide disseminacion in Brazil.

Ears from a maize variety trial at Isabela, Fuerto Rico. From left: QK 217 (Australia), QK 217, Pioneer X300B and Pioneer X304C. The soft endosperm of QK 217 makes this varietu susceptible to disease and thu: unsuitable for the tropics.

2. SOYBEANS

Soybean variety trials were conducted in Brazil to ascertain the potential of the Jaiba region for this crop hitherto not cultivated in the area, and to identify the best yielding varieties. International Soybean Program (INTSOY) trials were planted in 1976, 1977, and 1978 and provided information on both management and yield potential for many widely used soybean varieties. Grain yields (from 153 to 4,473 kg/ha) for these trials appear in Appendix Table 10. Two later trials emphasized the potential for irrigated soybean production in this region. The yield range for one experiment was 1,457 kg/ha (Jupiter) to 4,730 kg/ha (IPB 73-77) with a mean for all varieties of 2,698 kg/ha. Grain yield for the second experiment ranged from 2,925 kg/ha (IPB 242-77) to 5,310 (IPB 616-76) and 5,025 (Lancer) with a mean for all varieties of 3,769 kg/ha. The excellent mean yields over all varieties, as well as the outstanding performance of the highest varieties, clearly demonstrate the high potential of this area and soil family for soybean production.

An INTSOY soybean variety trial at Jaiba, Brazil

B. SOIL AND CROP MANAGEMENT

1. IRRIGATION

a. Puerto Rico

Four irrigation rate x nitrogen level experiments were completed, one during the wet season and three during dry seasons. The objectives of these trials were (1) to compare the performance of maize when grown without irrigation during the dry and wet seasons in an area with an ustic soil moisture regime, (2) to determine the effect of supplemental irrigation on crop yield in both seasons, and (3) to observe nitrogen-water interactions.

The experiments were similar to the line-source continuous variable method described by Hanks et al. (1976) but with a trickle irrigation system instead of sprinklers. The first experiment had a nitrogen gradient, produced by 24 levels from 0 to 230 kg/ha of N in 10-kg increments, and 12 levels of water applied from 0 to approximately 20 mm of water per application. Plots were watered when tensiometer readings in the center plots showed 20 centibars or more tension. The irrigation treatments were not assigned randomly but in a stepwise fashion across the nitrogen treatments. There were four replications. Plot size was very small in the first trial, with only two plants/plot. Since treatment gradients were essentially continuous, border effects were inconsequential and large plots were unnecessary. This first experiment, conducted during the wet season from May to August 1977, showed no response to N and only small yield increased with irrigation.

Subsequent experiments were laid out in a similar manner, but only half as many treatment levels of each variable were used and plot size was increased to 3 x 4 m (four 4-m rows); there was no replication of treatments and only the center two rows were harvested for yield measurements. Yield data from these later trials, conducted during the dry seasons of 1978, 1979 and 1980, are shown in Appendix Table 11. Response to N treatments was distinctly positive regardless of irrigation level in 1978, undetectable in 1979, and again apparent in 1980, especially with increasing irrigation rates. Highest grain yields were 9,969, 9,252 and 9,201 kg/ha for 1978, 1979 and 1980, respectively. Grain yield return in kg of grain per kg of N applied varied widely, from 0.4 to 53.8 in 1978, 2.2 to 13.5 in 1979 and 13.9 to 28.1 in 1980. The best return per unit of N was generally at intermediate rates of application.
Irrigation had practically no positive effect in the experiment conducted during the 1978 dry season and resulted in only about 12 percent more grain yield. In the 1979 and 1980 experiments, however, irrigation increased yield by about 36 percent with the higher applications of N.

These results allude to the unpredictability of rainfall in the Isabela area of Puerto Rico and to the nature of the dry season there. In the dry season of one out of three years irrigation had virtually no effect on yields and the effect in the other two years was only moderate. It thus appears that in many years it is possible to produce reasonable maize yields during the dry season without irrigation, especially if rains occur at the critical times. At Jaiba in Brazil, which also has an ustic soil moisture regime, this is predictably impossible as the rainfall pattern on Fig. 2 shows.

These observations, although tentative, lend substance to the revision of the ustic soil moisture regime as advanced by ICOMMORT. The intent of this proposal is to differentiate ustic soil moisture regimes such as at Isabela, Puerto Rico, which are marginal to the udic regime and set them apart from the central concept of the ustic moisture regime as exemplified at the BSP sites at Jaiba in Brazil. This revision will enhance the interpretation of soil taxa for crop production purposes.

BSP agronomist Steve Nightengale examines droughtstressed maize in an irrigation experiment at Isabela, Puerto Rico

b. Brazil

In cooperation with CNPMS and using a continuous variable line-source irrigation technique designed by our project consultant, Dr. Jack Keller of Utah State University, five irrigation rate trials with different maize and so ghum varieties were completed by the BSP at the primary site in Jaiba. Data from these experiments are now being processed by CNPMS for the development of a moisture utilization model for maize and sorghum in Brazil.

A moisture stress x P x plant density experiment was designed to investigate possible interactions of applied phosphorus, moisture stress and plant density and to determine the period of maize growth when moisture deficiencies would be most critical during the dry season at Jaiba. Moisture stress was imposed on main plots by withholding irrigation during the first, second or third 30-day period beginning 1 week after emergence of the plants. Sub-plots were assigned 4 P treatment levels and 3 plant densities, as shown in Appendix Table 12. The data illustrate the severe effect of moisture stress during the second 30-day period. Maize grain yield was reduced from 6,271 kg/ha to 3,003 kg/ha when no water was applied during this crucial growth period which coincides with flower formation.

A continuous variable sprinkler irrigation study at Jaiha, Brazil, showing a sharp growth gradient following moisture availability

2. LIMING AND SOIL FERTILITY

The surface soil pH at the Puerto Rico secondary site 2 (Calero) was low, pH 4.3 to 4.5. due to past fertilization with ammonium sulfate. Although this does not affect the classification of this soil as Tropeptic Eutrustox, it influenced maize growth, and response to P and N was limited and variable. Several pot experiments were therefore conducted with lime, phosphorus and micronutrients as controlled variables. Objectives of these studies were (1) to determine whether surface soil pH at the Calero site was a constraint to maize growth, (2) to further study the effect of micronutrients and (3) to observe the early plant growth response to P and lime applications separately and in combinations.

Results of the first experiment in which maize plants were grown for 34 days in pots of soil treated with lime at 0 to 8 meq Ca/100 g soil, are presented in Appendix Table 13. The strongest response was to the blanket application of complete fertilizer which was applied uniformly to all pots except one set of control pots without lime or fertilizer. Considering the short growth period of 34 days, there was a marked increase in maize dry matter production with lime applications up to 4 meq Ca/100 g soil which raised soil pH from 4.6 to 5.5.

In a second maize trial with various lime and micronutrient levels, 4 meq Ca, plus Zn and B produced the highest dry matter yield, 8.91 g/plant in 34 days (Appendix Table 14). This yield was superior to dry matter production from pots without lime but not significantly higher than other micronutrient combinations at the same lime level of 4 meq Ca. Micronutrients alone appeared to have little, if any, influence on yield while lime plus micronutrients showed considerable increase in maize growth. A comparison of these two pot experiments conducted at the same time and location suggests that both micronutrients and lime were effectively increasing maize growth.

A third maize experiment in pots with various levels of phosphorus added to the soil showed significantly more dry matter production when 43 kg/ha of P was added (Appendix Table 15); but apparent increases in yield with still higher P levels were not significant. Phosphorus and lime combinations were studied in a fourth pot trial. The data from this trial are presented in Appendix Table 16. Again, P alone increased dry matter production of 28-day old maize plants; however, the response to P was still greater when lime was applied at 2 to 4 meq Ca/100 g soil.

As a follow-up to the pot trials a lime x P field experiment was installed

in 1979 at the Calero site. The objective of this study was to determine if the pot trial results were applicable under field conditions. Unfortunately hurricane damage obliterated treatment effects. To test for residual effect of the lime and P this experiment was replanted to maize in November 1979. Residual trial yields were higher and response to lime was significant, with the highest grain yield of 6,260 kg/ha at the highest lime level and 50 kg P/ha. Mean yields were generally low with both experiments and treatment effects not as strong as was expected.

On the basis of these studies lime was applied before planting initial transfer experiments at the Calero, Puerto Rico site. Calcium hydroxide was applied at a rate of 6 meq Ca/100 gram soil. The original surface soil pH at this site (before planting) ranged from pH 4.3 to 4.7. Analyses from post-harvest soil samples showed an increase in soil pH with liming to pH 6.1 (PR-48) and pH 6.4 (PR-55). As soils data from other BSP Eutrustox sites generally had a pH of 5.5 or higher, only the Calero site required liming.

The results of the above pot and field trials affirm the merit of applying blanket applications of certain micronutrients to all transfer experiments for partial control of soil variability. The studies also demonstrate that Eutrustox with acid surface soil benefit from liming. Such situations are rare, however, and are to be expected mainly in Eutrustox with a long history of cultivation and fertilization with acidifying fertilizers.

At the same level of lime, increasing amounts of phosphorus (treatments 10-13) resulted in better maize growth

3. PHOSPHORUS PLACEMENT

Two phosphorus placement trials were completed in Puerto Rico in 1977 and 1980 and another in Brazil in 1980. The objective of these experiments was to determine whether the effectiveness of given amounts of applied phosphate fertilizer can be optimized by placement in bands or rills rather than broadcast.

Four placement treatments were studied--rill (beneath seed row), 15-cm band, 45-cm band and broadcast--each at three or four levels of phosphorus using TSP in Puerto Rico and SSP in Brazil. Rows were spaced 75 cm apart. The amounts of P applied at each level corresponded to the treated portion of the total area; thus, the 15-cm band and 45-cm band treatments received 20% and 60%, respectively, as much P as did the broadcast (75 cm) treatment. Rill and broadcast treatments had the same amount of applied P in the 1977 experiment. Rill treatments were reduced to 20% of the broadcast levels in the 1980 trials. The Pioneer brand hybrid X306B was used as a testcrop in 1977 in Puerto Rico and X304C was used in 1980 at both locations.

Grain yield data for the first of these experiments appear in Appendix Table 17. Yields ranged from 5,311 to 8,338 kg/ha for the 1977 Puerto Rico experiment. In the 1980 trials yields were from 7,378 to 8,523 kg/ha for Puerto Rico and 5,759 to 8,427 kg/ha for Brazil. In Puerto Rico there were significant yield differences among treatments in 1977 but not in 1980. In the first trial broadcast applications generally gave the highest yields, even at lower levels of P, while the 15-cm band application gave the poorest yield response. In Brazil treatment effects were significant but less clearly defined. For all three experiments early growth of maize as evidenced by 30-day plant heights showed the strongest response to both rate and placement of phosphorus.

The yields obtained with the described methods of P placement did generally not vary greatly although they were significantly lower with the 15-cm band application in one experiment. However, the amount of P applied in bands was only 20 and 60 percent of the broadcast amount for the 15-cm and 45-cm band, respectively. The 45-cm band application thus produced about the same grain yield as the broadcast application but with 40 percent less P fertilizer. The advantage of band applications then is the reduced input of fertilizer with generally little or no sacrifice in yield resulting in a markedly improved efficiency.

4. TILLAGE

An experiment designed to determine the soil moisture level most suitable for plowing a Tropeptic Eutrustox in preparation for planting soybeans was conducted at Isabela, Puerto Rico in 1927. After wetting an area of land to field capacity, plots were plowed and disced at lengthening intervals after wetting. Table 11 illustrates the clear relationship between percent soil moisture at plowing and the resulting seedbed quality as reflected by soil aggregate size, number of plants established and soybean grain yield. With increasing soil moisture at the first plowing soil aggregate size was larger, the number of established plants declined and grain yields dropped. Stand counts and yields were best when the first plowing was done with 21 percent soil moisture. With over 23 percent soil moisture at the time of the first plowing, cloddy seedbeds resulted in much poorer stands and lower yields.

Table 11. Soil moisture level at the time of the first plowing operation and its effect on soil aggregate size, soybean stand and grain yield (PR-11). Adapted from BSP sponsored thesis research by H. R. Merino Garcés. Data are means of four replications.

Soil Moisture	<u>Soil Ag</u> 1-25 cm	gregates >25 mm	Plants/Plot-1/	Grain Yield
%	%	%		kg/ha
25.7	43 $b^{2/2}$	57 a	23 b	333 с
24.6	46 b	46 ab	33 ь	414 bc
24.1	48 в	43 abc	41 ab	624 abc
23.6	53 ab	37 bcd	44 ab	668 ar
21.1	62 ab	27 cd	74 a	911 a
20.8	69 a	24 d	66 a	770 a

1/ Number of plants per plot 25 days after planting.

2/ Means within columns followed by a common letter are not significantly different at the 0.05 level of probability or error.

In this particular soil, 21 percent soil moisture is close to the water content at 15-bar tension or near the wilting point and field capacity (1/3 bar tension) is at about 26 percent water content. The best results were thus achieved when the soil was plowed when it was almost dry.

In three tillage experiments at Isabela in 1978, 1979 and 1980, standard complete tillage was compared with a minimum tillage method of seedbed preparation for maize planted at various in-row plant spacings. The objectives of these experiments were (1) to evaluate the suitability of minimum tillage for maize production in Tropeptic Eutrustox in order to minimize energy costs and reduce soil erosion and compaction, (2) to evaluate three different plant population densities -- the standard used in transfer experiments, one lower and one higher -- and (3) to obtain a basis for evaluating possible effects on maize yields of minimum tillage as practiced in the residual transfer experiments.

The experiment was established in a split-plot design with three replications. Tillage treatments, assigned to whole-plots, consisted of (1) complete tillage; plowing and discing twice followed by rotovating just before planting by hand, and (2) minimum tillage; weed control with Paraquat and planting by hand with no tillage. Later in the season weeds were controlled on all plots by shallow hoeing.

The effects of the three plant densities are discussed in a subsequent section. Maize, Pioneer hybrid X304C, was used as the testerop. For the first two experiments yields were moderately low and neither tillage nor plant population treatments showed any significant effect. Maize yields were quite high, 7,770 to 9,446 kg/ha, in the third trial but, although high plant populations significantly increased yields, there was again no tillage treatment effect. The data from this last experiment appear in Appendix Table 18.

A tentative conclusion is that for maize production on Tropeptic Eutrustox sites such as at Isabela, complete tillage preparation for each season is not necessary and that the residual transfer trials were probably not adversely affected by the minimum tillage practices that were essential to avoid lateral mixing of treatments.

5. MULCHING

A multching experiment using Pioneer brand X304C maize as the testcrop was conducted during the 1980 dry season at the Jaiba, Brazil primary site. Eight levels of dry maize stover, ranging from 0 to 12,500 kg/ha, were applied before planting. (The higher levels of maize stover used in this experiment are representative of stover production possible for hybrid maize under good field conditions.) All plots were given a uniform application of 25, 30, and 25 kg/ha of N, P, and K, respectively.

The highest level of applied stover (12,500 kg/ha) produced significantly more grain and heavier ears than all other treatments except the second highest level. There were no significant differences among plant counts per plot, ruling out any population effects on yield. The low grain yields for all treatments, as seen in Appendix Table 19, resulted from moisture stress during growth as irrigations were applied only when plants displayed stress symptoms.

The marked yield increase from 657 to 2,544 kg/ha by using up to 12,500 kg/ha of dry maize stover is attributed largely to soil moisture conservation. The experiment thus showed that maize stover, as a crop mulch, can increase yields appreciably where moisture stress is a problem.

6. MAIZE PLANT DENSITY

Unirrigated studies were conducted at Jaiba, Brazil to determine possible maize grain yield improvement with increased plant populations through various planting patterns. The first of these trials was carried out in the 1976-77 wet season and had 3 varieties planted in rows 50, 75 and 100 cm apart and at 20,000, 40,000 and 60,000 plants/ha.

Regardless of variety and population, between row spacing had no significant effect on maize yields. Varietal differences in yield were not significant at 20,000 plants/ha, but the variety Piranao outyielded both Phoenix 1110 and Cateto de Colombia when all were grown at 40,000 and 60,000 plants/ha. Grain yields of Piranao and Cateto varieties were significantly improved from 4,837 to 6,615 and from 3,910 to 4,748 kg/ha, respectively, when populations were raised from 20,000 to 40,000 plants/ha. The responses for two varieties are shown in Fig. 7. Phoenix 1110 showed no significant response to increased plant populations. A follow-up experiment, conducted in the 1977-78 wet season, was laid out in the plant density "wheel" design rather than a conventional pattern. The objective of the experiment was to evaluate a wide range of maize plant stands from low populations to relatively high plant densities using a well adapted hybrid maize. Fertilizer was applied but the trial received no supplemental irrigation. Twenty-five concentric circles plus borders were planted to 124 maize hills each. Space between concentric circles was adjusted to give plant populations from approximately 6,600 to 70,000 plants/ha from the outside to the inside circles.

A summary of the results of this experiment are presented in Appendix Table 20. Yield components such as number of ears per plant, grain weight

Results of a maize variety trial conducted at Jaiba, Brazil, to determine optimum planting density per plant and mean ear weight were increased nearly three fold by reducing from 70,000 to 6,600 plants/ha. On the other hand, grain yield per unit of area was drastically reduced by lowered population density.

Although with a mechanized system of farming it would be difficult to duplicate the high density pattern found near the center of the density "wheel" experiment, much of the maize in tropical countries is planted and cultivated by hand and traditionally maize populations are low. These hand-sown and cultivated fields could be planted at higher densities similar to the best yielding part of the density "wheel" thereby increasing yields considerably, assuming that suitable maize varieties and other necessary inputs are available.

In the moisture stress x P level density trial described in a previous section the Cargill brand hybrid 111 produced significantly higher grain yields at 55,000 and 85,000 plants/ha than at 33,000 plants. Plant lodging at the highest density was serious (20%) but yield difference between 55,000 and 85,000 plants/ ha was not significant, as shown in Appendix Table 12.

In a maize density experiment at Isabela, Puerto Rico, yields were higher and significantly increased by closer spacing; grain yields were 9,360 and 8,883 kg/ha with 20 and 23 cm between plants, respectively and 7,972 kg/ha with 27 cm plant spacing. The in-row spacings of 20, 23 and 27 cm corresponded to populations of about 66,700, 58,000, and 49,400 plants/ha. Experiment results are shown in Appendix Table 18.

The effect of maize plant density on yield varies with varieties, management and seasons but generally a population of 55,000 to 60,000 plants per hectare is recommended for Eutrustox sites on the basis of experiments in Puerto Rico and Brazil.

A maize density experiment, in wheel design, at Jaiba, Brazil, shows the concentrically increasing plant population

7. MAIZE PLANTING DATE

At the Brazil primary site, one variety each of maize (Cargill 111C) and sorghum (BR-300) was planted in the wet season at 20 day intervals from 15 October 1978 to 3 January 1979. All plots were fertilized uniformly with 20 kg/ha N, 60 kg/ha P_2O_5 and 30 kg/ha K_2O in this unirrigated experiment. Due to poor germination and bird damage at the maturity of sorghum, only maize will be discussed here.

The results of this experiment are presented in Appendix Table 21. The data show that grain yield and mean car weight decreased as planting date was delayed. The final planting, 3 January 1979, was significantly lower in grain yield and mean car weight and higher in lodging percentage at harvest than the other four plantings. The 15 October planting produced 6,286 kg/ha of grain vs 2,098 kg/ha for the January planting. The data strongly support early planting for the Jaiba area, preferably no later than mid-November. For unirrigated maize production in the Jaiba area lack of rainfall is often a severely limiting factor with later plantings as the dry season generally begins in March (see Fig. 2).

8. MATZE COMPOSITE POPULATION IMPROVEMENT

This study was designed to develop a maize germplasm pool especially suited for the Cerrado region of northern Mines Gerais in Brazil. Four cycles of mass selection and recombination were completed from 1979 to 1980 in this continuing maize improvement scheme. The initial planting, or cycle, was composed of 88 varieties of maize from a world germplasm collection maintained by EMBRAPA. Mass selection was accomplished for three additional cycles before the BSP concluded work in Brazil but EPAMIG assumed responsibility for continuing this promising composite improvement.

Selection pressures were kept at a minimum in these early cycles of selection to prevent too much loss of genetic variability (inbreeding coefficient less than 5% per cycle). The effects of selecting for a desirable plant type and natural environment selection pressures have produced some pronounced changes in this composite in the first four generations. Observed population changes include lower and more uniform plant height, discase resistance, less susceptibility to lodging, and greater prolificacy (multiple ears per plant). This selection program is expected to produce the first maize composite germplasm pool for this area of Brazil. All maize currently grown in the Jaiba region was developed elsewhere and it is anticipated that from this adapted composite maize pool, after further cycles of selection, a new variety can be developed and released. Inbred maize lines and synthetic varieties could also be derived from this germplasm pool.

9. MULTIPLE CROPPING

A series of four multicropping experiments were conducted from August 1978 to December 1980 at the Jaiba, Brazil primary site. This study was designed to explore methods of optimizing food production on a small land area through irrigated, int usive forming techniques. The small area used for these experiments, 20 x 20m, required planning of row crop plantings to achieve the best utilization of the 400 square meter space.

The four control of this experiment involved interplanting and spacings of different combinations of row crops in an attempt to maximize utilization of inputs and obtain the highest economic return. Results of the four cycles, along with estimated economic returns, are presented in Appendix Table 22. Approximate values are used as commodity prices vary throughout the year in Brazil. From these data it can be seen that vegetable crops such as carrots and onions were steady income-carners. Dry beans are valuable as a fast maturing crop and can make an important contribution to the diet of the farm family. Maize showed potential for acceptable yields in this type of farming, but should perhaps be omitted as too strong a competitor, depressing yields of more valuable companion crops such as onions and beans. Cassava also appeared to be imppropriate to this type of management system. The two problems associated with cassava were strong competitiveness and the long growth period to harvest (9 months). Squash, if prevented from becoming too competitive through delayed planting or trellising, was very productive.

For the 27-months period during which the four cycles were completed the total estimated economic return from the produce was \$1,160 (see Appendix Table 22) whereas total expenses for fertilizers and sprinkler irrigation equipment amounted to about \$375. Use of furrow irrigation instead of a sprinkler system would reduce these costs to about \$100.

The study demonstrated how small plots of land can be intensively utilized

with modest inputs to effectively improve the quantity and quality of the diet of resource-poor farm families.

BSF agronomist Merv Olson in a multicrop experiment at Jaiba, Brazil, with maize, carrots and dry beans

BSP Field Day in Jaiba, Brazil

V. DISSEMINATION, LINKAGES AND IMPACT

A. CONFERENCES, SEMINARS AND WORKSHOPS

1. PROFESSIONAL CONFERENCES

The Benchmark Soils Project was exposed and discussed at many international meetings. Mentioned here, in chronological order, are those at which the UPR/BSP had direct inputs.

a. Medellin, Colombia

In an effort to familiarize agricultural scientists and institutions in Latin America with the BSP and to stimulate interest and cooperation, a paper describing the rationale, research strategy and experimental methodology of the project was presented, in Spanish, at the Fifth Latin American Congress of Soil Science held in Medellin, Colombia, in August 1975. The paper met with a very favorable response and was subsequently published in the transactions of the congress (see BIBLIOGRAPHY in the Appendix).

b. ICRISAT, India

The BSP concept of agrotechnology transfer on the basis of soil classification figured prominently at an international Seminar on the Use of Soil Survey and Classification in Planning and Implementing Agricultural Development in the Tropics held at ICRISAT in Hyderabad, India, in January 1976. The meeting was jointly sponsored by the University of Hawaii, ICRISAT and the US University Consortium on Soils of the Tropics. It was attended by senior natural resource planners and soil scientists from about thirty countries mainly in Africa and Asia. This very successful conference generated much enthusiasm for the BSP, reflecting a general acceptance of the concepts and procedures of the BSP. The papers presented at the conference were edited by Dr. L.D. Swindale and published by the University of Hawaii in a book, Soil Resource Data for Agricultural Development, that was distributed worldwide.

c. Kuala Lumpur, Malaysia

A paper co-authored by Drs. L.D. Swindale, J.A. Silva and F.H. Beinroth and titled "The Benchmark Soils Project--An innovative approach to agrotechnology transfer" was presented in a plenary session of the Conference on Classification and Management of Tropical Soils (CLAMATROPS) held in Kuala Lumpur, Malaysia, in August 1977. The meeting was organized by the Malaysian Soil Science Society as an activity of Commissions IV and V of the International Society of Soil Science. It was attended by over 300 scientists from 25 countries. The paper, forcefully presented by Dr. Swindale, was very well received and has been published in the conference proceedings.

d. Mayaguez, Puerto Rico

The First Conference on Fertilizer Technology Transfer in Puerto Rico, jointly sponsored by the University of Puerto Rico and the Tennessee Valley Authority and held in Mayaguez, Puerto Rico, in December 1980, provided the UPR/BSP with the opportunity to present a paper on the "Use of soil classification for agrotechnology transfer in the tropics" and to discuss project results. The audience, which comprised representatives from TVA and all agricultural agencies of Puerto Rico, included many extension workers. The proceedings of this conference are now in press and will be published in English and Spanish.

e. Palmerston North, New Zealand

The project's dissemination efforts to date climaxed at the international Conference on Soils with Variable Charge held at Massey University in Palmerston North, New Zealand, in February 1981. The BSP had been invited to present a symposium at this conference which was organized by the New Zealand Society of Soil Science as a meeting of several commissions of the International Society of Soil Science. About 300 pedologists, agronomists, meteorologists, and other scientists from all over the world were in attendance. The conference was acclaimed by many participants as one of the best such conferences they have attended. It is noteworthy that one complete day--one sixth of the conference-was dedicated to the BSP.

The program of the BSP symposium was designed to proceed from generalities to specifics. The first two papers thus had the purpose of providing the philosophical framework for soil-based agrotechnology transfer. It was advantageous

that two speakers of unquestioned authority and international stature, Dr. L.D. Swindale, Director-General of ICRISAT and Dr. R. W. Arnold, Director of Soils, USDA-SCS, agreed to present the first papers. Their incisive speeches provided the proper perspective of agrotechnology transfer in a comprehensive context and added weight and substance to the concepts under study in the BSP. This was followed by a series of more specific papers by BSP staff on the project rationale, activities and progress to date. Special reports were presented by the BSP in-country Project Leaders and by heads of cooperating host country institutions.

Displays of project background and research findings together with a continuous narrated slide show were installed in a room adjacent to the main conference hall. The "Beachmark Room" attracted a constant stream of visitors and many commendations were received.

The lively and perceptive discussions that followed all BSP presentations reflected a more than polite interest in the project and the overall reaction to the BSP was distinctly positive.

2. SEMINARS

In May 1978 UPR's Principal Investigator gave a one-hour seminar on the BSP in Rio de Janeiro, Brazil. The audience were staff of EMBRAPA's Servico de Levantament e Conservacao de Solos (SNLCS) and faculty and students of the Universidad Federal Rural de Rio de Janeiro. The illustrated lecture met with an excellent response. Enhanced by a vivid discussion, it created a keener awareness and perception of the BSP in the general context of agricultural development. More specifically, it also triggered SNLCS interest in establishing a national benchmark soils network.

Two BSP seminars were presented in 1980 and 1981 at the University of Puerto Rico, one to students of the College of Agricultural Sciences and one to a campus-wide audience.

Following an invitation by and with complete financial support from the Centro Nacional de Investigaciones Agropecuárias (CENIAP) in Maracay, Venezuela, three one-hour seminars were delivered in Maracay in December 1981 to CENIAP staff and faculty and students of the Postgraduate School of the University of Maracay. The lectures dealt with principles of soil-based agrotechnology transfer, the Benchmark Soils Project per 3e, and the utilization of BSP concepts and results on a broader scale. The response to these seminars and the interest they generated were very encouraging.

3. PLANNING MEETINGS

a. ICRISAT, India

In October 1978 a Workshop on Operational Implications of Agrotechnology Transference Research was held at ICRISAT in Hyderabad, India. The workshop was initiated by Dr. T.S. Gill of AID, co-sponsored by AID and ICRISAT, and organized and hosted by ICRISAT.

The purpose of the workshop was to explore the implications of the use of the benchmark soils concept for agrotechnology transfer beyond the limits of the current BSP and to make recommendations for follow-up activities. The workshop brought together twenty-two leaders in soil science and agricultural development planning, representatives of AID, the World Bank, FAO of the United Nations, the US University Consortium on Soils of the Tropics, several of the International Agricultural Research Centers, and the leadership of the BSP. Three participants were financially supported with funds from the UPR/BSP.

The workshop was an unqualified success and marked the first significant step toward the development of a strategy for the utilization of BSP concepts in a worldwide network.

Participants at the ICRISAT Workshop

b. FAO, Italy

In a further effort to pave the way for an effective utilization of the principles underlying the BSP and concepts related to it, a Panel Consultation on the Strategy for Land Evaluation and Agrotechnology Transfer in the Tropies and Subtropies was held at the headquarters of the Food and Agriculture Organization (FAO) of the United Nations in Rome, Italy, from 10 to 12 March 1980. The meeting was initiated by the Puerto Rico project, organized jointly by UPR/BSP and FAO, and hosted by FAO.

In attendance were twenty-two distinguished soil scientists and adrinistrators of national and international programs. They represented ACSAD, Syria (1); AID (1) Cornell University (1); EMBRAPA, Brazil (1); EPAM/G, Brazil (1); FAG ^+; FIGNR, Federal Republic of Germany, (1); ISM, The Netherlands (1); ORSTOM, France (1); University of Ghent, Belgium (2); USDA-SCS (1); and the Hawaii and Puerto Rico BSP (3).

The intent of the meeting was to develop a strategy for land evaluation research and soil-based transfers of agroproduction technology at an international level in the tropics and subtropics. The specific objectives were:

- 1. To devise a framework for the effective utilization transference research that combines national and international efforts and promotes the application of its results in development work,
- 2. To determine what needs to be done by whom, when, where and how to establish the relationships between soil characteristics and crop requirements in order to obtain a sound basis for soil survey interpretation and land evaluation, and
- 3. To assist the Benchmark Soils Project in developing a modus operandi for the utilization phase of the project within the context of mc 2 comprehensive international efforts.

The format of the program emphasized discussion and dialogue rather that the formal presentation of papers. There were six technical sessions; one devoted to the presentation of background information and five to the various aspects of the general theme of the meeting.

The conclusions of the Panel Consultation were summarized in a set of ten specific recommendations which have been published as BSP Leaflet 03-E in October 1980. These recommendations will be valuable in conceiving and implementing a scientifically and operationally sound utilization phase of the current BSP. The Panel Consultation thus achieved its stated objectives. The success of the meeting can be attributed to the high professional caliber of the participants, the congenial atmosphere of the discussions, and to a well-conceived program that provided a specific framework for the deliberations.

4. INTERNATIONAL SOLL CLASSIFICATION WORKSHOPS

With the objective to refine Soil Taxonomy relative to the soils of the tropics and subtropics, a series of four international soil classification workshops were conducted as a companion activity to the BSP. The workshops were initiated and orchestrated by UPR's Principal Investigator, Dr. F. H. Beinroth, in cooperation with host country institutions, the USDA Soil Conservation Service, the University of Ghent, Belgium, and the BSP. Three of the workshops were funded under grants from AID to UPR and one by an AID-sponsored program of the USDA Soil Conservation Service. The workshops were held in:

Brazil, 20 June to I July 1977, in cooperation with the Servico Nacional de Levantamento e Conservação de Solos of EMBRAPA,

Malaysia and Thailand, 28 August to 9 September 1978, in cooperation with the Department of Agriculture of Malaysia, the Land Development Department of Thailand, and the Southeast Asian Center for Graduate Study and Research in Agriculture (SEARCA),

Syria and Lebanon, 14 to 24 April 1980, in cooperation with the Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD) with a follow-up meeting in Athens, Greece, 1 to 3 May 1980, in collaboration with the Soil Science Institute, Ministry of Agriculture of Greece, and

Rwanda, 2 to 12 June 1981, in cooperation with the Institute des Sciences Agronomiques du Rwanda (ISAR), the Algemeen Bestuur voor Ontwikkelings Samenwerking (ABOS) of Belgium, and the Soil Management Support Services of the USDA-SCS.

The workshops focused on the redefinition of certain Soil Taxonomy differentiae and classes of soils of the lower latitudes in an attempt to better identify these soils and thus improve the quality of soil surveys and soil interpretations. The particular kinds of soils under study at the workshops were Alfisols and Ultisols with low activity clays, Oxisols, Aridisols, and soils dervided from volcanic ash. With the exception of Aridisols, members of all of the mentioned classes of soils are studied by the BSP.

¹ Future activities are planned for the Sudan in 1982 and Latin America in 1983. They will concern Vertisols and Andisols.

Dr. M. L. Leamy from New Zealand (on ladder) examines soil profile during the Fourth International Soil Classification Workshop in Rwanda

The workshops had a balanced number of conference sessions and field trips. The more theoretical considerations advanced during the indoor sessions could thus be examined in the field in the light of critical examples of the soils under scrutiny. The proceedings of the first two workshops have been published and distributed worldwide; the two others are in preparation.

The workshops were attended by exceptional groups of internationally renowned pedologists representing multinational institutions, universities, national and bilateral soil survey programs, and various government agencies from all over the world. They also enjoyed the active participation of large numbers of soil scientists from the host countries. At the first two workshops the presence of the late Dr. duy D. Smith, the principal author of Soil Taxonomy, was of particular impact.

There can be no doubt that the four workshopswere highly successful and that real progress was made in the refinement of Soil Taxonomy. These activities also generated a wealth of comprehensive and reliable analytical and soil and site characterization data on key soils of the tropics and subtropics. These data constitute valuable additions to the BSP Soil Data Bank. It was also obvious at the meetings that Soil Faxonomy is emerging as the defacto language for international communication among pedologists and is becoming a unifying element of pedology, thus providing a solid base for the international transfer of agrotechnology.

The soil classification workshops clearly made a contribution of central importance to the utilization of BSP concepts by refining the soil taxonomic units that are the basis for knowledge transfers and by promoting the use of Soil Taxo-nomy in the Third World.

Field trip during the Fourth International Soil Classificution Workshop in Rwanda

B. FIELD DAY

A field day was held at Jaiba and Janauba in Brazil in October 1980 to familiarize a larger in-country audience with the philosophy, research and implication of the Benchmark Soils Project.

The meeting was convened by EPAMIG, UPR's collaborating agency in Minas Gerais, and its president extended personal invitations to all relevant organizations and individuals in Minas Gerais and to EMBRAPA, the national research agency.

Forty-seven professionals representing universities, national and state agencies, private companies, and various research, development and extension agencies mainly from Minas Gerais participated in the field day. They included 6 agronomists, 7 soil scientists, 1 horticulturist, 1 climatologist, 10 irrigation specialists, 3 veterinarians, 10 extension specialists, 2 professors of soil science, 1 forage specialist, 1 forester, and 5 other professionals. The diverse professional concerns of the participants illustrate the wide interest in the BSP concept of agrotechnology transfer.

The 3-day event included a first-evening orientation session, followed by a full day of on-site inspection. Huge soil pits had been excavated to allow the participants to study soil profiles. The final morning was spent summing-up the previous days' experiences, which was followed by a lively discussion period. At the conclusion of the field day, each participant was given a specially prepared set of brochures and general information about the BSP along with an official certificate of participation.

The field day fully achieved its objective of creating a wider and keener awareness of the Benchmark Soils Project in Minas Gerais and demonstrating its sizeable research efforts in the field. EPAMIC considered the BSP field day an outstandingly successful activity.

Dr. Jorge Olmos of EMPRAPA explains soil profile during BSP Field Day in Jaiba, Brazil

C, INFORMATION DISSEMINATION AND PUBLICATIONS

Under the leadership of Ms. Cynthia L. Garver, Editor and Communication Coordinator with the UH/BSP, the project has developed a sizeable and effective information dissemination and publication program. Only some of the publications produced with inputs from the UPR/BSP are mentioned here.

Two illustrated leaflets describing the BSP and its concepts were published in English, French and Spanish in 1978 and widely distributed. A series of "BSP Technical Reports" covered research aspects such as the soils of the BSP network and statistical procedures. The informal "BSP Communique" keeps the BSP personnel dispersed in six countries up-to-date and cumunicado. The quarterly "Benchmark Soils News" provides the main vehicle for the rapid dissemination of project results and other relevant developments. It is routinely mailed to 1,275 individuals and organizations in 89 countries.

Specifically addressed to an audience in Brazil were four technical articles on the BSP and its work in Minas Gerais which, together with an interview with UPR's Principal Investigator, were published in Portuguese in the "Informe Agropecuário," a Brazilian journal of agriculture (no. 61, 1980, pp. 69-79 and 83-84).

In October 1978, Dr. Nyle C. Brady, editor of Advances in Agronomy, invited Drs. F. H. Beinroth and G. Uehara to prepare an article on the benchmark soils concept for the 1980 issue of this prestigious journal. To ensure a complete and authoritative coverage of the subject and a paper of high professional standards, Drs. R. W. Arnold, F. B. Cady and J. A. Silva were included as co-authors. After editing by Ms. Garver, the manuscript was submitted to Dr. Brady in November 1979 and published in Volume 33 of Advances in Agronomy.

This and other publications prepared by UH/BSP staff are listed in the BIBLIOGRAPHY contained in the Appendix.

D. LINKAGES

The establishment and maintenance of linkages was an essential element of the BSP and has been actively pursued since project inception. These efforts resulted in a worldwide network of viable connections.

In the course of project activities, the UPR/BSP was contractually affiliated with the Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) in Brazil, North Carolina State University, the University of Kentucky, and Utah State University. Formal linkages which ensued collaborative activities were established with the Food and Agriculture Organization (FAO) of the United Nations, the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), ICRISAT in India, the International Soybean Program (INTSOY), the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) in Brazil, and the USDA Soil Conservation Service.

Also involved in UPR/BSP activities were the Federal Institute for Geosciences and Natural Resources of West Germany; the Office de la Recherche Scientifique et Technique d'Outre-Mer (ORSTOM) of France; the Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD) in Syria; the University of Ghent, Belgium; Cornell University; the International Soil Museum (ISM) in The Netherlands; and soil survey organizations in Colombia, the Dominican Republic and Venezuela.

In addition a large number of close contacts with individuals and institutions from all over the world were developed at the four international soil classification workshops, and at other international conferences, meetings and workshops. They are too numerous to be listed here.

The UPR/BSP thus has excellent personal and institutional contacts in many countries of Africa, the Near East, Southeast Asia and Latin America. These operational linkages constitute an extremely important asset of the BSP. They will prove invaluable in implementing follow-up activities at a worldwide scale.

E. PROJECT IMPACT

The central concern of the BSP is the testing of a soil classification based methodology for agrotechnology transfer. The first results obtained with a large set of experiment data are published in the present report. It is consequently premature to assess the reaction to the findings of the project at this time. Similarly, as the BSP was not involved in the actual transfer of agrotechnology, it could not have had direct impact on the agricultural development in LDCs at this point.

The project was, however, very successful in creating wide awareness of and familiarity with the BSP and in promoting the use of the benchmark soils concept for the transfer of agrotechnology. Project impact in this area is evidenced by the invitation extended to the BSP by the organizers of the New Zealand conference who considered the BSP important enough to dedicate one complete day to it. Further evidence of interest in the BSP was the invitation by Dr. N.C. Brady to prepare a position paper for Advances in Agronomy. Another indication of project impact was the willingness of FAO and ICRISAT to organize and host BSP-related strategy planning meetings. And the extensive circulation of the Benchmark Soils News in 89 countries, constant requests for BSP publications and frequent inquiries about the project clearly show that many individuals and institutions in all parts of the world are familiar with and interested in the BSP.

Impact in Brazil has been more direct and at an operational level. Reflecting the acceptance of project concepts, the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), the national agricultural research agency, is now initiating the establishment of a national benchmark soils network in Brazil. EMBRAPA's Servico Nacional de Levantamento e Conservação de Solos will be executing this program and has begun to identify Brazilian benchmark soils. The development of an appropriate research strategy and design has been deliberately postponed to ensure compatibility of the Brazilian efforts with similar research conducted elsewhere under a possible follow-up program to the BSP.

The existence and performance of the BSP provided the justification and raison d'etre and thus was instrumental in the implementation of a new AlD-sponsored program, the Soil Management Support Services (SMS\$) of the USDA Soil Conservation Service. This program was established in 1980 and may be considered an outgrowth of the international soil classification workshops initiated by UPR. The overall purpose of the SMSS is to assist LDCs in producing the quality resource inventories that are the prerequisite for soil-based transfers of agrotechnology. The specific objectives of SMSS are to facilitate the utilization of BSP concepts by providing short-term technical assistance to LDCs in all aspects of soil survey, further refining Soil Taxonomy with respect to soils of the lower latitudes, training LDC soil scientists in soil survey, soil classification and soil interpretation, and promoting the use of Soil Taxonomy in the tropics and subtropics. The close relationships between the SMSS and the BSP, and the critical importance of SMS3 activities to the utilization of BSP concepts are obvious.

The main impact of the BSP to date, then, has been the creating of wide awareness and familiarity with the project and its philosophy, instigating support activities, and generating considerable momentum for the use of the benchmark soils concept for agrotechnology transfer. The BSP thus fostered a very favorable environment for a more comprehensive follow-up program of wider geographical scope.

VI, RESULTS IN PERSPECTIVE

The results of the UPR/BSP constitute a first quantitative substantiation of the general validity of a Soil Taxonomy-based hypothesis of agrotechnology transfer as postulated by the BSP and implicitely of the benchmark soils concept. These encouraging results are expected to be reinforced by the ongoing research of the University of Hawaii project which involves a larger set of experiment data obtained with a wider variety of soils.

In view of the complexity of the conjecture under study and considering the difficulties inherent in its mathematical corroboration, the results of the UPR/ BSP are very reassuring. It should therefore be useful to evaluate the significance of the findings in the context of a broader perspective.

In the project crops yields were used as the ultimate measure for the transferability of soil management practices. It is well to remember here that yields are the overall integrator of the agroenvironment and the husbandry practices imposed at a specific site. Maximum yields result from optimum conditions at all times with respect to a balanced supply of plant nutrients, an adequate rooting zone with sufficient water and oxygen, suitable temperature and day length, plant varieties with the genetic potential to make effective use of environmental and management inputs, and protection from diseases, predators and weeds. The intricacy of this biologic system is characterized by multiple interactions which are exceedingly difficult to quantify and to express mathematically

This perplexity alludes to some of the problems encountered by the BSP in scientifically testing the transferability of agrotechnology by statistically comparing crop responses across a network of soils belonging to the same soil family. First, for the reasons explained in a previous section, it was necessary to disaggregate the total system response and to confine the statistical evaluation of transferability to the response to phosphorus. It was also necessary to refine the soil and climatic parameters specified by the definition of the soil family by including additional site factors bearing on crop performance in the statistical prediction models. These were soil and weather variables that were not constant over all experiment sites because they are not quantified by soil family differentiae. They are, however, closely related to soil family criteria. Second, since no adequate statistical procedures for the verification of

agrotechnology transfer existed prior to the project, new techniques had to be developed under the auspices of the BSP. In spite of the experimental and statistical difficulties the project succeeded in providing strong quantitative evidence in support of the stated transfer hypothesis.

Moreover, the agronomic results of the project demonstrate that soil families as defined in Soil Taxonomy indeed provide groupings of soils that have relative homogeneity in properties important to plant growth, common and predictable responses to management practices, and similar erop production potential and thus stratify the agroenvironment into distinct niches of agroproduction. This is evidenced, for example, by the very similar maximum yields obtained in Puerto Rico and Brazil with comparable inputs, the absence of response to potassium at both locations, and the fact that one specific variety of maize performed best in the two countries.

The combined analysis of larger sets of experiment data still being accumulated by the University of Hawaii project for three distinctly different families of Eutrustox, Hydrandepts and Paleudults will be particularly useful in further validating the soil family concept. Even a casual interfamily comparison of data obtained so far shows that the three soil families are characterized by distinctly different patterns of soil behavior. The P-isotherms, for example, which are in large measure conditioned by soil family characteristics, are markedly different for the three soil families but very similar for all soils of the same family.

The highest mean maize yields were about 9,000 kg/ha for the Eutrustex in Puerto Rico and Brazil, 7,000 kg/ha for the Hydrandepts and 6,700 kg/ha for the Paleudults. Although these yields are not vastly different, the fertilizer inputs necessary to achieve them dufinitely are. Whereas the Eutrustex required only about 40 kg P/ha to obtain these yields, the Dystrandepts needed 150 kg/ha and the Paleudults 100 kg/ha. Furthermore, the Dystrandepts and Paleudults required substantial applications of potassium and lime which were not needed for the Eutrustex. The soil management technology developed for Eutrustex is therefore clearly not applicable to either Dystrandepts or Paleudults, reflecting the soil-specificity of agrotechnology transfer as implied in the BSP transfer hypothesis. A very important, yet frequently ignored, attribute of the soil family is that it incorporates an element of time. Temporal variation, or lack thereof, is introduced into the taxa of Soil Taxonomy through the soil moisture and temperature regimes which are cyclic in nature. Appreciation of this fact is of considerable consequence. For example, one crop of corn can be grown in many non-isohyperthermic soils of the temperate region but two or more crops are only possible in the isohyperthermic soils that are unique to the tropics. In view of the time dependence of many management practices, the soil family, consequently, also provides a basis for the transfer of experience with perennial crops, farming and cropping systems, and agroforestry. These land use patterns are of particular importance in the tropics as they allow the most effective utilization of land resources and the year-round growing seasons.

It should be mentioned in this context that long-season crops such as bananas, cassava or rubber would have been better testcrops for the BSP experiments than maize as they integrate soil family-specific annual variations in heat flux and precipitation in their yield performance and also are less susceptible to surface soil variability. This was not feasible in the project, however, as it would have prevented to conduct a large number of consecutive experiments in a relatively short time. Conversely, as the transfer test with maize was quite successful, it is reasonable to assume that it would have been even more convincing with a long-season indicator crop.

In the course of the project it became also evident that Soil Taxonomy-based transfers of agroproduction technology transcend the boundaries of specific soil families. If the cause-and-effect relationships of cultural practices are known and related to soil taxonomic differentiae, these practices can be extrapolated to all other classes of soils that have the combination of characteristics critical to a given land use. Soil classification therefore defines the sphere of applicability of agrotechnology developed at a research site. It is thus a key element in the transfer process and, in conjunction with resource inventories, provides the vehicle for the wide geographic diffusion of agricultural experience.

On the basis of this and other concepts developed by the BSP, a conceptual model for the effective utilization of the benchmark soils concept in the analogue transfer of agrotechnology has been designed and is shown in Fig. 8. This model represents a holistic approach and involves both horizontal and vertical transfers. Central to this model is the realization that horizontally transferred

Fig. 8. General Model of Analogue Transfer of Agrotechnology

technology requires a varying amount of site-specific adaptation before it can be of impact at the local farm level.

With the overall success of the University of Puerto Rico project, the BSP has begun to scientifically establish the validity of the soil family and benchmark soils concepts for the transfer of agrotechnology. The UH and the UPR projects have also generated worldwide awareness of and momentum for the BSP and at the same high expectations for putting its underlying concepts into action.

In our judgement the Benchmark Soils Project is thus succeeding in creating the scientific and other background conditions that provide a sound basis for the implementation of a follow-up program of wider scope and geographical extent. The logical culmination of the present efforts should be the establishment of a prototype network of national and international agricultural research centers designed to demonstrate the steady flow of agroproduction technology from research sites to farmer fields in the tropics and subtropics.

LITERATURE CITED

- Anderson, R. L. and Nelson, L. A. 1975. A family of models involving intersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients. Biometrics 31: 303-318.
- Badillo Feliciano, J., Lugo-López, M. A. and Scott, T. W. 1979. Influence of cultivars, N levels and time of N application on yields, plant characteristics and leaf composition of corn grown on an Oxisol. Univ. Puerto Rico. J. Agric. 63: 273-280.
- Beinroth, F. H. and Spain, G. L. 1977. Clasificación de suelos y la transferencia de experiencia en el manejo de suelos. Memorias del V Congreso Latino-Americano de la Ciencia del Suelo. <u>Suelos Ecuatoriales</u> Vol. VIII, no. 1: 401-405.
- Beinroth, F. H. 1978. Some fundamentals of soil classification. Pages 12-19. In: L. D. Swindale (ed.), Soil-Resource Data for Agricultural Development. Havaii Agr. Exp. Sta., Univ. Hawaii, Honolulu, H1.
- Beinroth, F. H. 1979. Laboratory data and descriptions of the soils of the Penchmark Soils Project: Volume II -- Puerto Rico Project. Tech. Rep. 5 Benchmark Soils Project, College of Tropical Agriculture and Human Resources, Univ. Hawaii, Honolulu, HI.
- Beinroth, F. H., Uehara, G. G., Silva, J. A., Arnold, R. W., and Cady, F. B. 1980. Agrotechnology transfer in the tropics based on Soil Taxonomy. <u>Adv.</u> <u>Agron.</u>, Vol. 33: 303-339.
- Beinroth, F. H. 1981. Use of soil classification for agrotechnology transfer in the tropics. Proc. First Conference on Fertilizer Technology Transfer in Puerto Rico, Univ. Puerto Rico, Mayaguez, Puerto Rico (in press).
- Beinroth, F. H. 1982. The stratification of the agroenvironment by Soil Taxonomy. Proceedings, HITAHR Workshop on Agrotechnology Transfer. College of Tropical Agriculture and Human Resources, Univ. Hawaii (in press).
- Cady, F. B. and Laird, R. J. 1973. Treatment design for fertilizer use experimentation. CYMMIT Research Bull. No. 26, International Maize and Wheat Improvement Center, Mexico 6, D. F., Mexico.
- Dudal, R. 1978. Land resources for agricultural development. Pages 314-340. In: Proc. XIth Int. Soil Sci. Congr. Vol. 2, Alberta, Canada.
- EMBRAPA/EPAMIG/RURALMINAS. 1976. Levantamento de reconhecimento com detalhes dos solos do Distrito Agroindustrial de Jaiba, Minas Gerais. Boletin Tecnico No. 54, Empresa de Pesquisa Agropecuaria de Minas Gerais, Belo Horizonte, MG, Brazil.
- FAO. 1979. Agriculture: Toward 2000. FAO Twentieth Sess on Conference Document C 79/24, FAO, Rome, Italy.

- Fox, R. H., Talleyrand, H. and Bouldin, D. R. 1974. Nitrogen fertilization of corn and sorghum grown in Oxisols and Ultisols in Puerto Rico. Univ. Puerto Rico, J. Agric. 66: 534-540
- Gilbert, E. H., Norman, W. D. and Winch, F. E. 1980. Farming Systems Research: a critical appraisal. MSU Rural Dev. Paper No. 6, Dep. Agr. Econ., Michigan State University, East Lansing, Michigan, USA.
- Hanks, R. J., Keller, J., Rasmussen, V. P. and Wilson, G. D. 1976. Line source sprinkler for continuous variable irri_Eation-crop production studies. <u>Soil</u> Sci. Amer. J. 40: 426-429.
- Ikawa, H. 1979. Laboratory data and descriptions of soils of the Benchmark Soils Project: Volume I- Hawaii Project. Hawaii Agr. Exp. Sta., Univ. Hawaii, Misc. Publ. 165 (BSP Tech. Rep. 1)
- Jonhson, W. M. 1980. Soil related constraints, soil qualities and soil taxonomy. Pages 41-53. In: Soil related Constraints to Food Production in the Tropics. IRR1, Los Baños, Philippines.
- Kellogg, C. E. 1961. Soil interpretation in the Soil Survey. U. S. Dep. Agr., Soil Cons. Serv., Washington, D. C., USA.
- Laird, R. J. and Turrent, A. 1981. Key elements in field experimentation for generating crop production technology. Pages 77-106. In: J. A. Silva (ed.): Experimental designs for predicting crop productivity with environmental and economic inputs for agrotechnology transfer. Departmental paper 49, Hawaii Institute of Tropical Agriculture and Human Resources, Univ. Hawaii.
- Miller, F. T. and Nichols, J. D. 1980 Soils data. Pages 67-89. In: M. T. Beatty, C. W. Petersen and L. D. Swindale (eds) Planning the Use and Management of Land Agronomy. Monograph 21, Amer. Soc. Agron., Madison, Wise., USA
- Nelson, L. A. and McCracken, R. J. 1962. Properties of Norfolk and Portsmouth soils: Statistical summarization and influence on corn yields. Soil Sci. Amer. Proc. 26: 497-502.
- Revelle, R. 1976. The resources available for agriculture. Sci. Amer. 235(3): 164-178
- Silva, J. A. and Beinroth, F. H. 1975. Report of the workshop on experimental designs for predicting crop productivity with environmental and economic inputs. Departamental paper 26, Hawaii Agr. Exp. Sta., Univ. Hawaii, 50 pp.
- Silva, J. A. (ed.) 1981 Experimental designs for predicting crop productivity with environmental end economic inputs for agrotechnology transfer. Departmental Paper 49, Hawaii Institute of Tropical Agriculture and Human Resources, Univ. Hawaii, 184 pp.

Smith, G. D. 1965. Lectures on soil classification. Pédologie, spec. no. 4.

- Soil Survey Staff. 1975. Soil Taxonomy, a basic system of soil classification for making and interpreting soil surveys. U. S. Dep. Agr., Handb. 436, U.S. Govt Printing Office, Washington, D. C. USA.
- Sotomayor-Ríos, A. 1979. Performance of twelve corn hybrids and selections on three consecutive crops on the same site in the same year. Univ. Puerto Rico, J. Agric. 63: 170-179.
- Swindale, L. D., Silva, J. A and Beinroth, F. H. 1977. The Benchmark Soils Project -- An innovative approach to agrotechnology transfer. Pages 620-627. In: Proc. Conference on Classification and Management of Tropical Soils. Malaysian Society of Soil Science, Kuala Lumpur, Malaysia.
- Swindale, L. D. 1980 Problems and concepts of agrotechnology transfer within the tropics. Pages 73-82. In: Proceedings, International Symposium on Development and Transfer of Technology for Rainfed Agriculture and the SAT Farmer. ICR1SAT, 28 Aug - 1 Sep 1979, Patancheru, A. P., India.
- USDA Soil Conservation Service 1975. Soil Survey of Mayaguez Area of Western Puerto Rico. U. S. Dep. Agr., Soil Cons. Serv., Washington, D. C., USA.
- US National Research Council. 1977. World food and nutrition study. National Academy of Sciences, Washington, D. C. USA.
- Wood, C. L. and Cady, F. B. 1981. Intersite transfer of estimated response surfaces. Biometrics 37: 1-10.
- Wortman, S. and Cummings, R. W., Jr. 1978. To Feed This World. John Hopkins University Press, Baltimore and London.

APPENDIX

APPENDIX INDEX

Project Personnel	109
Soil Profile Descriptions and Laboratory Data	110
List of Experiments Conducted	114
Weather Data	119
Yield and Treatment Data of Transfer Experiments	120
Statistical Data	128
Data of Variety Trials	139
Data of Soil and Crop Management Experiments	143
Bibliography	154
PROJECT PERSONNEL

Puerto Rico

Principal Investigator:	Friedrich H. Beinroth	Jan	75	-	Dec	81
Senior Agronomist:	Gene L. Spain	Jan	75		Aug	81
Agronomists:	José Badillo Feliciano* Luis Calduch Stevan P. Nightengale	Jul Jun Jan	75 75 77	- - -	Dec Oct Dec	80 77 80
Soil Chemists:	Lillian Costa Mayoral Milagros Miró* Carlos Sarmiento	Sep Feb Jul	76 77 75		Jun Jun Dec	81 81 78
Soil Scientist:	Juan A. Vega López	Jul	75	-	Aug	78
Administrative Aide:	Elsie G. Sánchez	Jan	78	-	Dec	81
Secretaries:	Lucy Vélez Ingrid A. Vélez Ramos	J a n Sep	75 75	-	Dec Aug	81 81
Research Aides:	Rubén García* José A. Robles	Jul Feb	78 77	-	Jun May	81 80
Consultants:	Jack Keller Larry A. Nelson	Oct Aug	76 76	-	Nov Dec	76 81

Brazil

EPAMIG Liaison	Derli Prudente Santana** Fernando Zinho Antunes**	Jun Nov	76 79	-	Nov ∩ct	7 <u>9</u> 80
Project Leaders:	Christopher C. Seubert Donald C. L. Kass Mervyn L. Olson	Apr Oct Apr	76 77 78	- - -	Nov Dec Dec	77 77 81
Agronomists:	Narbal de Sá Umbemar Silveira Dias* Marcos A. C. Torres	Jul Aug Jul	76 77 76		Dec Aug Dec	80 78 80
EPAMIG Counterpart:	Antonio M. Coelho**	Apr	78	-	Jun	79
Secretary:	Carole Seubert*	Jul	76	-	Nov	77
Typist:	Ademar Fernandes dos Anjos	Jul	76	-	Dec	80
Field Foreman:	Delcino C. Jorge	Jul	76	-	Dec	80
Driver/Mechanic:	Ivandir Pereira Miranda	Jul	78	-	Dec	80

* Part-time employment with UPR/BSP
** On EPAMIG payroll

SOIL PROFILE DESCRIPTIONS AND LABORATORY DATA

COTO SERIES -- ISABELA, PUERTO RICO

Classification

Soil Taxonomy: Tropeptic Eutrustox, clayey, kaolinitic, isohyperthermic FAO-UNESCO Legend: Orthic Ferralsol

French classification system: Sol ferrallitique faiblement désaturé en (B) typique; humique (X/115)

Brazilian classification system: Latosol Vermelho Amarelo Eutrófico; A moderado, textura argilosa

U.S. system of 1938: Yellowish-brown Lateritic soil

Location of sample site

Latitude: 18° 28' 2" N

Longitude: 67° 3' 25" W

Elevation above sea level: 131 m

General description: NW Puerto Rico; Municipality Isabela, Barrio Guerrero, USGS Quadrangle Moca; Agr. Exp. Substation Isabela; 400 m N of km 115.2 on highway PR 2. Sampled in a pit located 500 m NW of SCS pit S63PR-6-1, see Soil Survey Staff (1967, pp. 174–175). The Coto series is of moderate extent in the NW coastal areas of Puerto Rico.

Sampling date: March 1975

Described and collected by: F.H. Beinroth

Vegetation and land use

Natural vegetation: Tropical moist forest

Land use and crop: Experiment site with citrus, normally used for sugarcane Climate

Mean annual rainfall: 1700 mm

Mean annual air temperature: 25°C

Thornthwaite type: B/CA'r-subhumid to humid tropical

Parent material and geology

Parent material: Highly weathered clay sediments

Geologic formation: Blanket deposits of Pliocene and Pleistocene age derived mainly from andesitic volcaniclastics: unconformably overlying Miocene limestone

Geomorphology

Slope: 0-3%

Landform: Slightly undulating plain

Geomorphic surface: Depositional surface of mainly Pleistocene age; sediments deposited on a marine degradation terrace of Late Tertiary/Early Pleistocene age; occasional dolines

Drainage: Well drained; moderate permeability; slow runoff

Principal associated soils: Tropeptic Eutrorthox, Typic Palehumults, Lithic Tropudalfs

Horizon

B23

Description

- Ap 0 to 13 cm; dark brown (7.5YR 4/4, moist) and brown (7.5YR 5/4, dry) clay; moderate fine granular and very fine subangular blocky structure; slightly sticky, slightly plastic, finable consistence; clear smooth boundary.
- A12 13 to 25 cm; strong brown (7.5YR 5/6, moist) and strong brown to reddish yellow (7.5YR 5.5/6, dry) clay; weak to moderate fine and very fine subangular blocky structure; slightly sticky, slighty plastic, friable consistence; few fine hard black nodules; gradual smooth boundary.
- B21 25 to 45 cm; strong brown to yellowish red (7.5YR 5/6 to 5YR 5/8, moist) and reddish yellow (7.5YR 6/6, dry) clay; very weak fine and very fine subangular blocky structure; slightly sticky, slightly plastic, friable consistence; very few pressure faces; few reddish brown coatings in root channels; few fine black nodules; abrupt failure; gradual smooth boundary.
- B22 45 to 65 cm; yellowish red (5YR 5/6, moist) and reddish yellow (5YR 6/6 to 7.5YR 6/6, dry) clay; structure and consistence as in B21; few pressure faces; few coatings in root channels; few fine black nodules; abrupt failure; gradual smooth boundary.
 - 65 to 90 cm; yellowish red (5YR 5/6, moist) and reddish yellow (7.5YR 6/6, dry) clay, weak to moderate fine and very fine subangular blocky structure; slightly sticky, slightly plastic, friable consistence; few clay films, few coatings in root channels; few fine black nodules; abrupt failure; gradual smooth boundary.
- B24 90 to 125+ cm; yellowish red to reddish yellow (5YR 5/6 to 5YR 6 6, moist) and reddish yellow (7.5YR 6/6, dry) clay; moderate fine sub-angular blocky structure parting to very fine angular blocky and granular aggregates; slightly sticky, slightly plastic, friable consistence; few thin discontinuous clay films; common fine black nodules and streaks; abrupt failure.

Soil name: Coto taxadjunct Soil no.: S63PR-6-2 Classification: Tropeptic Eutrustox, clayey, kaolinitic, isohyperthermic Location: Isabela, Puerto Rico

		Sand	Silt	Clay	Bulk	I	Vater conter	nt	Organic	Total		Extracts	able iror
Depth	Horizon	205	.05002	<.002	density	.1-bar	.3-bar	15-bar	C	N	C/N	Fe	Fe ₂ O ₃
cm			- pct < 2 mm -		g cc		nct		DC	•	÷ • •		
0-13	Ap	22.3	7.0	70.7	1.39		25.0	22.5	2.1.1	0.252	10	pi	LI
13 - 25	A12	21.8	7.1	71.1	1 44		28.0	22.0	1.60	0.202	10	9.0	
25-45	B21	18.8	5.3	75.9	1.11		20.0	22.0	1.09	0.197	9	9.8	
45-65	B22	14.5	5.9	79.6	1.95		31.3	23.7	0.99	0.143	7	10.1	
65 <u>-</u> 90	1222	11.0	0.5	75.0	1.00		30.6	26.4	0.62	0.127	5	10.6	
00-30	120	111	0.7	81.9	1.32		33.3	26.8	0.46	0.113	4	11.5	
90-125+	B24	13.3	10.5	76.2	1.48		27.3	25.0	0.25			11.2	

	· •	Ext	ractable l	Dases		Extractable	Cation-exe capaci	change itv	Extractable	Base satur	ation		nН	
Depth	Ca	Mg	Na	К	Sum	acid	NH₄OAc	Sum	Al	NH₄OAc	Sum	H ₂ O	KCl	Difference
cm					meg 1	100 g soil			· · · · · · · · · · · · · · · · · · ·	nct -	· · · · ·			
0-13	3.6	0.9	0.1	0.4	5.0	20.4	13.3	25.4	0.6	pti - 38	20	1.0	.1 .1	07
13-25	2.1	0.5	0.1	0.1	2.8	20.0	10.6	22.8	14	26	10	4.0	4.1	-0.7
25-45	1.2	0.4	0.1	0.1	1.8	16.4	7 1	18.2	1.5	20	12	4.0	3.9	-0.6
45-65	3.7	0.6	0.1	0.1	4.5	15.6	5.8	20.1	1.0	20 70	10	4.5	3.9	-0.6
65-90	3.6	0.7	0.1	0.1	4.5	97	5.8	14.2	0.9	70	22	4.6	4.1	-0.5
90-125+	4.1	0.6	0.1	0.1	10	85	5.0	19.4		/8	32	5.9	5.5	-0.4
•••• • • • · · · · · · · · · · · · · ·					1.0		J./	15.4		86	37	6.3	5.9	-0.4

Source: Soil Survey Investigation Report No. 12 (Soil Survey Staff, 1967, p. 174)

SOIL PROFILE DESCRIPTIONS AND LABORATORY DATA

JAIBA SERIES -- JAIBA, BRAZIL

Classification

Soil Taxonomy: Tropeptic Eutrustox, clayey, kaolinitic, isohyperthermic FAO-UNESCO Legend: Rhodic Ferralsol

French classification system: Sol ferrallitique faiblement désaturé en (B) typique; modal (X/111)

Brazilian classification system: Latosol Vermelho Escuro Eutrófico; A moderado, textura argilosa

U.S. system of 1938: Reddish-brown Lateritic soil

Location of sample site

Latitude: 15° 23' S

Longitude: 43° 46' W

Elevation above sea level: 510 m

General description: SE corner of Distrito Agroindustrial de Jaiba, approximately 10 km W of Jaiba. Minas Gerais, Brazil: on EPAMIG experiment farm **Sampling date:** dry season 1976

Described and collected by: D. Prudente Santana and F.H. Beinroth Vegetation and land use

Natural vegetation: Deciduous dry forest

Land use and crop: Experiment site planted to maize and soybeans; where cleared usually used for cotton, castorbeans, maize, beans, or sugarcane **Climate**

Mean annual rainfall: 895 mm

Mean annual air temperature: 24.5°C

Thornthwaite type: C B'w-subhumid to humid tropical; dry winters

Parent material and geology

Parent material: Highly weathered clayey sediments derived from rocks of Bambuí Group

Geologic formation: Bambuí Group: limestones, shales and some quartzite of Silurian age

Geomorphology

Slope: 0-3%

Landform: Slightly undulating plain

Geomorphic surface: Depositional surface of probably Quarternary age in large graben-like structure

Drainage: Well drained: moderately rapid permeability: slow runoff **Principal associated soils:** Typic Eutrustox, Typic and Tropeptic Haplustox, Vertic Ustropepts. Ustoxic Quartzipamments, and Udic Pellusterts **Remarks:** Taxonomically, this soil is on the borderline to Typic Eutrustox because of the degree of structure in the oxic horizon.

Horizon

Ap

A3

B21

B23

Description

0 to 10 cm: dark reddish brown [2.5YR 3 4, moist] and reddish brown [2.5YR 5 4, dry] clay; moderate fine and medium granular structure; slightly sticky, slightly plastic, slightly hard consistence; many fine pores, many roots; clear smooth boundary.

10 to 20 cm; dark reddish brown (2.5YR 3.4, moist) and reddish brown (2.5YR 4/4, dry) clay; weak to moderate fine and medium granular and subangular blocky structure: slightly sticky, slightly plastic, slightly hard consistence; many fine pores, many roots, gradual smooth boundary.

20 to 50 cm; dusky red (10R 3/4, moist) and dark red (10R 3/6, dry) clay; weak to moderate medium subangular blocky structure parting to fine and very fine granules; slightly sticky, slightly plastic, soft to slightly hard consistence; abrupt failure; many fine pores, common roots; gradual smooth boundary.

B22 50 to 120 cm; dark red (10R 3/6, moist) clay; weak medium and fine subangular blocky structure parting to fine and very fine granules; slightly sticky, slightly plastic, friable consistence; abrupt failures; many fine pores, few roots; diffuse smooth boundary.

120 to 200+ cm; dark red (10R 3 6, moist) clay; weak medium and fine subangular blocky structure parting to fine and very fine granules: slightly sticks, slightly plastic, friable consistence; abrupt failure; many fine and medium hard nodules; many fine pores, few roots.

Soil name: Jaiba Soil no.: 76BR-1-1

Classification: Tropeptic Eutrustox, clayey, kaolinitic, isohyperthermic Location: Distrito Agroindustrial de Jaiba, MG, Brazil: EPAMIG experiment farm, BSP Paraná site

		Part	ticle size analy	sis									
D 1		Sand	Slit	Clay	Bulk	I	Nater conten	nt	Organic	Total		Extract	able iron
Depth	Horizon	205	.05002	<.002	density	.1-bar	.3-bar	15-bar	C	N	C/N	Fe	Fe ₂ O ₃
cm			- pct < 2 mm -		g cc		pct	••••••••••••••••••••••••••••••••••••••	DC	t			nct
0-10	Ap	20.5	23.1	56.4	• /		31.6	22.2	3 10	. 035	Q		501
10-20	A3	19.5	17.4	63.1			0.110		1 10	0.33	3 2		
20-50	B21	16.5	25.2	58.3			28.1	20.4	0.55	0.04	0 0		
50 - 120	B22	19.6	28.2	52.2			20.1	20.4	0.35	0.07	0		
120-200+	B23	20.4	26.4	53.2					0.33	0.06	5		
					· · · · · · · · · · · · · · · · · · ·		• · · · · · · · · · · · · · · · · · · ·						
						Cation-exc	hange						

		Extractable bases				Extractable	Cation-exc capaci	capacity Extractable		Base saturation		рН		
Depth	Ca	Mg	Na	K	Sum	acid	NH₄OAc	Sum	Al	NH ₄ OAc	Sum	H ₂ O	KCl	Difference
cm					meg.	100 g soil		· ··· · · · · · ·		pct /			*	
0-10	10.3	2.1	0.1	0.34	12.8	(,	18.9		_	68		6 1	5 5	-0.6
10-20	5.9	0.8	0.1	0.07	6.9		10.9			63		6.5	5.0	-0.0
20-50	4.5	0.6	0.1	0.05	5.3		9.4			56		0.0	5.0	-0.9
50-120	3.5	1.0	0.1	0.05	4.7		77			50 61		0.5	5.5	-0.8
120-200+	3.4	0.7	0.1	0.06	4.3		2.7			51		5.1	5.5	-0.6
					1.0		0.0			54		5.7	5 .4	-0.3

Source: Puerto Rico Benchmark Soils Project

LIST OF FIELD EXPERIMENTS CONDUCTED BY UPR/BSP

I. Experiments conducted at Isabela, Puerto Rico

Exp.	Crop	Type of Experiment	Site	Season	Planted	Harvested
				6		
PR-01	Soybean	Uniformity	Primary	Wet	07-24-75	10-20-75
PR-02	Soybean	Transfer (PxK)	Primary	Int.	03-05-76	08-03-76
PR-03	Maize	Transfer (PxK)	Primary	Wet	04-02-76	08-06-76
PR-04	Maize	Variety x P	Primary	Wet	05-14-76	08-30-76
PR-05	Maize	Variety x P	Primary	Wet	07-12-76	11-05-76
PR-06	Soybean	Transfer (PxK)	Secondary 1	Wet	07-30-76	11-29-76
PR-07	Maize	Transfer (PxK)	Secondary 1	Wet	08-02-76	11-16-76
PR-08	Soybean	P x Density x Var.	Primary	Wet	09-05-76	01-03-77
PR-09	Soybean	Transfer (PxK)	Secondary 1	Ery	12-09-76	03-28-77
PR-10	Maize	Transfer (PxK)	Secondary 1	Dry	12-12-76	04-18-77
PR-11	Soybean	Seedbed Preparation	Substation	Dry	12-13-76	05-31-77
PR-12	Soybean	Transfer (PxK)	Primary	Dry	12-21-76	04-14-77
PR-13	Maize -	Transfer (PxK)	Primary	Dry	12-22-76	04-26-77
PR-14	Maize	P-placement x levels	Primary	Wet	04-04-77	08-02-77
PR-15	Maize	Water (irrig) x N	Primary	Wet	05-05-77	08-25-77
PR-16	Maize	Transfer (PxK)	Primary	Wet	05-20-77	09-20-77
PR-17	Maize	Transfer (PxK)	Secondary 1	Wet	06-02-77	09-27-77
PR-18	Maize	Variety x P 2/	Primary	Wet	06-17-77	10-04-77
PR-19	Maize	Transfer (PxN)	Primary	Wet	06-23-77	10-17-77
PR-20	Maize	Transfer	Secondary 1	Dry	11-15-77 -	03-27-78
PR-21	Maize	Transfer	Primary	Dry	12-12-77	04-20-78
PR-22	Maize	Variety	Primary	Dry	12-13-77	04-18-78
PR-23	Maize	Residual transfer	Primary	Dry	01-12-78	05-22-78
PR-24	Maize	Water (irrig) x N	Primary	Dry	01-18-78	05-31-78
PR-25	Soybean	Residual transfer (PxK)	Secondary 1	Drv	02-17-78	07-24-78
PR-26	Maize	Residual transfer	Secondary 1	Wet	04-10-78	08-02-78
PR-27	Maize	Transfer	Primary	Wet	04-25-78	08-08-78
PR-28	Maize	Variety x P x N	Primary	Wet	04-25-78	08-10-78

1/ Unless designated as residual, all transfer experiments listed were initial transfer experiments.

2/ Experiment PR-19 and all maize transfer experiments thereafter were with P and N as variables.

Experiments conducted at Isabela, Puerto Rico (cont'd)

PR-29	Maize	Water (irrig) x N	Primary	Wet	04-26-78	rain damage, abandoned
PR-30	Maize	Transfer	Secondary 1	Wet	05-08-78	08-30-78
PR-31	Maize	Residual transfer	Primary	Wet	05-10-78	08-28-78
PR-32	Maize	Tillage (Min. vs. Plow) x Density	Primary	Wet	05-18-78	09-11-78
PR-33	Maize	Transfer	Secondary 2	Wet	06-08-78	09-26-78
PR-34	Maize	Residual transfer	Primarv	Drv	11-17-78	03-21-79
PR - 35	Maize	Residual transfer	Secondary 1	Drv	11-17-78	03-19-78
PP-36	Maize	Residual transfer	Secondary 2	Drv	11-21-78	03-27-79
PR-37	Maize	Transfer	Primarv	Drv	12-06-78	04-19-79
PR-33	Maize	Transfer	Secondary 1	Dry	12-06-78	04-17-79
PR-39	Maize	Transfer	Secondary 2	Dry	12-12-78	04-24-79
PR-40	Maize	Water (irrig) x N	Secondary l	Drv	12-14-78	04 - 30 - 79
PR-41	Maize	Residual transfer	Secondary 1	Wet	05-02-79	08-27-79
PR-42	Maize	Residual transfer (2nd residual)	Secondary 1	Wet	05-02-79	08-27-79
PR-43	Maize	Residual transfer	Primary	Wet	05-03-79	08-29-79
PR-44	Maize	Transfer	Secondary 1	Wet	05-17-79	09-06-79
PE-45	Maize	Transfer	Primary	Wet	05-18-79	09-07-79
PR-46	Maize	Residual transfer	Secondary 2	Wet	05-25-79	09-11-79
PR-47	Maize	Lime x P	Secondary 2	Wet	05-25-79	09-12-79
PR-46	Maize	Transfer	Secondary 2	Wet	05-30-79	09-10-79
PR-49	Maize	Tillage x population	Primarv	Wet	06-04-79	09-13-79
FR-50	Maize	Residual transfer	Primary	Drv	11-14-79	03-19-80
PR-51	Maize	Residual transfer	Secondary 1	Drv	11-14-79	03-24-80
PR-52	Maize	Rosidual Lime x P	Secondary 2	Drv	11-16-79	03-17-80
PR-53	Maize	Transfer	Primary	Dry	12-01-79	04-07-80
PR-54	Maize	Transfer	Secondary 1	Drv	12-01-79	04-08-80
PR - 55	Maize	Transfer	Secondary 2	Dry	12-05-79	03-31-80
PR-56	Maize	Tillage x population	Primary	Dry	12-07-79	04-17-80
PR-57	Maize	Water (irrig) x N	Secondary 1	Drv	12-18-79	05-01-80
PR-58	Maize	Residual Transfer	Primary	Wet	04-22-80	08-11-80
PR - 59	Maize	Residual Transfer	Secondary 1	Wet	04-22-80	08-12-80
PR-60	Maize	Residual Transfer	Secondary 2	Wet	04-24-80	08-15-80
PR-61	Maize	Transfer	Secondary 2	Wet	04-25-80	08-19-80
PR-62	Maize	Transfer	Primary	Wet	04-29-80	08-22-80
PR-63	Maize	Transfer	Secondary 1	Wet	04-30-80	08-25-80
PR-64	Maize	P-placement x levels	Primary	Wet	05-08-80	08-28-80

II. Experiments conducted at Jaiba, MG, Brazil

Exp.	Crop	Type of Experiment	Site	Season	Planted	Harvested
	-	1/		1		narvesteu
B-01	Maize	Transfer (PxK)	Primary	Wet	10-21-76	03-11-77
B-02	Maize	Variety x P	Primary	Wet	10-26-76	03-15-77
B-03	Maize	Variety x Density	Primary	Wet	10-28-76	03-16-77
B-04	Maize	Variety, Nat'l.	Primary	Wet	10-30-76	03-22-77
B-05	Maize	Variety Annex	Primary	Wet	10-30-76	03-22-77
B-06	Soybean	Transfer (PxK)	Primary	Wet	11-24-76	04-20-77
B-07	Soybean	Variety, INTSOY	Primary	Wet	11-25-76	02 03 77
B-08	Maize	Transfer (PxK)	Primary	Drv	06-07-77	12-15-77
B-09	Maize	Transfer (PxN) ^{2/}	Primary	Dry	06-08-77	12-15-77
B-10	Maize	Irrigation, EMBRAPA	Primary	Dry	06-11-77	11-22-77
B-11	Sorghum	Irrigation, EMBRAPA	Primary	Dry	06-12-77	10 05 77
B-12	Soybean	Variety, INTSOY	Primary	Dry	06-23-77	10-03-77
B-13	Soybean	Variety x P	Primary	Dry	07-11-77	10-07-77
B-14	Maize	Variety x P	Primary	Dry	07-25-77	01 26 70
B-15	Maize	Density	Primary	Not	11-06-77	01-26-78
B-16	Soybean	Density	Primary	Wet	11-00-77	04-17-78
B-17	Maize	Variety, Nat'1.	Primary	Wet	11-08-77	03-15-78
B-18	Maize	Variety	Primary	Wet	11-09-77	04-10-78
B-19	Maize	Transfer	Drimary	Wet	11-10-77	03 31-78
B-20	Maize	Transfer	Secondary 1	Wet	11-10-77	03-30-78
B-21	Maize	Transfer	Secondary 1	Wet	11-20-77	04-26-78
B-22	Maize	Transfer	Erimary 2	wet	11-21-77	05-05-78
B-23	Maize	Residual Transfer	Drimary	Dry	06-20-78	12-15-78
B-24	Maize	Transfer	Secondary 1	Dry	06-16-78	12-14-78
B-25	Maize	Residual Transfer	Secondary 1	Dry	06-20-78	11-29-78
B-26	Maize	Transfer	Secondary 1	Dry	06-17-78	11-22-78
B-27	Maize	Residual Transfer	Secondary 2	Dry	06-19-78	12-05-78
B-28	Maize	Irrigation, EMBRARA	Drimory 2	Dry	06-19-78	12-02-78
B-29	Sorghum	Irrigation, EMBRADA	Primary	Dry	07-20-78	11-28-78
B-30	Sovbean	Variety INTEON	Primary	Dry	07-20-78	11-28-78
		variety, inisoi	Primary	Dry	07-27-78	11-30-78

1/ Unless designated as residual, all transfer experiments listed were initial transfer experiments.

2/ Experiment B-09 and all transfer experiments thereafter were with P and N as variables.

Experiments conducted at Jaiba, MG, Brazil (cont'd)

B-31	Multicrop	Intensive Mamt.	Primary	Draw /Mot	09 10 70	00 10 70
B-32	Maize/Sorghum	Planting Schedule EPAMIG	Primary	Wet	10-15-78	09-18-79 05-21-79
B-33	Maize	Varieties, normal EMBRAPA	Secondary 2	Wet	11-13-78	05-10-79
B-34	Maize	Varieties, precocious EMBRAPA	Secondary 2	Wet	11-13-78	05-14-79
B-35	Soybean	Varieties, IPB	Primary	Mot	01 15 70	
B - 36	Maize	Transfer	Primary	Wet	01-15-79	05-30-79
B-37	Maize	Residual Transfer	Primary	Wet Wot	01-09-79	06-16-79
в-38	Maize	Transfer	Secondary 1	Wet	01-16-79	07-10-79
B - 39	Maize	Residual	Secondary 1	wet Wat	01-12-79	06-12-79
B-40	Maize	Transfer	Secondary 1	Wet	01-15-79	07-06-79
B-41	Maize	Residual Transfer	Secondary 2	Wet	01-10-79	06-12-79
B-42	Maize	Composite	Primary 2	net Dxr:	01-12-79	07-06-79
B-43	Maize	Transfer	Drimary	Dry	04-11-79	09-20-79
B-44	Maize	Residual Transfer	Drimary	Dry	06-06-79	11-22-79
B - 45	Maize	Transfer	Secondary 1	Dry	06-28-79	01-03-80
B - 46	Maize	Residual Transfer	Secondary 1	Dry	06-09-79	11-21-79
B-47	Maize	Transfer	Secondary 1	Dry	06-28-79	01-03-80
B-48	Maize	Residual Transfor	Secondary 2	Dry	06-08-79	11-20-79
B-49	Maize/Sorghum	Irrig line-source	Drimowa	Dry	07-04-79	01-03-80
	,	(EMBRAPA)	rimary	Dry	06-05-79	10-26-79
B-50	Maize	Density x P x Irrig,	Primary	Drv	07-25-79	01-05-80
B-51	Multicrop	Intensive Mgmt.	Primary	Drv/Wet	09-20-79	07-03-80
B-52	Maize	Transfer	Primary	Wet	11-26-79	05-08-80
B-53	Maize	Residual Transfer	Primarv	Wet	12-19-79	05-30-80
B-54	Maize	Transfer	Secondary 1	Wet	11-28-79	05-07-80
B-55	Maize	Residual Transfer	Secondary 1	Wet	12-19-79	05-29-80
B-56	Maize	Transfer	Secondary 2	Wet	11-28-79	05-07-80
B-57	Maize	Residual Transfer	Secondary 2	Wet	12-19-79	05-29-80
B-58	Maize	Composite Cycle 1	Primary	Wet	10-30-79	03-12-80
B-59	Maize	Variety, Normal EMBRAPA	Secondary 2	Wet	11-09-79	05-22-80
B-60	Maize	Variety, Precocious EMBRAPA	Secondary 2	Wet	11-09-79	05-23-80
B-61	Soybean	Variety, IPB	Primary	Wo t	01 09 90	
B-62	Maize	P-placement x levels	Primary	Wet/Dry	02-08-80	05-06-80

Experiments conducted at Jaiba, MG, Brazil (cont'd)

B-63	Maize	Composite, Cycle 2	Primary	Dry	04-02-80	09-04-80
B-64	Maize	Transfer	Primary	Dry	04-26-80	10-14-80
B-65	Maize	Residual Transfer	Primary	Drv	05-17-80	11-05-80
B-66	Maize	Transfer	Secondary 1	Drv	04-26-80	10-14-80
B-67	Maize	Residual Transfer	Secondary 1	Drv	05-23-80	10-27-80
B-68	Maize	Transfer	Secondary 2	Drv	04-26-80	10-15-80
B-6 9	Maize	Residual Transfer	Secondary 2	Drv	05-23-80	11-05-80
B-70	Maize	Mulching	Primary	Dry	06-29-80	12-17-80
B-71	Multicrop	Intensive Mgmt.	Primary	Drv/Wet	07-11-80	12-24-80
B-72	Maize	Composite, Cycle 3	Primary	Wet	09-19-80	03-02-81

TABLE I. WEATHER VARIABLES COLLECTED FOR EXPERIMENTS CONDUCTED AT JAIBA, BRAZIL AND ISABELA, PUERTO RICO

SI TEZSEASON	VARIETY	PLANTINS DATES	HARVEST	SULAR RAJIATION (_ANGLEYS/DAY)	CUMULATIVE RATHFALL (NM)	TEADERATURE (°C) MAX. MIN.	RELATIVE HJMIDITY MAX. MIN.	WIND RUN (KM/HP)	VIELD(KO PARTIAL CONTROL MEA	/HA) N HIGH
BRAZIL										
20 22 <td< td=""><td>LAARGILL 111 LAARGILL 111 LAARGILL 111 PILL 1111 PILL 1111 PILL</td><td>Jof 05/77 11/10/77 11/20/77 11/20/77 Jof 20/75 Jof 16/78 Jof 19/78 Jof 19/78 Jof 19/78 Jof 19/78 Jof 19/78 Jof 19/79 D1/12/79 D1/12/79 D1/12/79 J01/12/79 J01/12/79 J01/26/79 J07/34/79 11/28/79 11/</td><td>12/17/77 03/30/76 04/26/76 12/13/76 12/13/76 12/13/76 12/05/78 12/05/78 12/05/78 12/05/78 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 01/03/80 05/08/80 05/07/80 05/29/80 05/29/80 05/29/80 11/4/80 10/14/80 10/15/80 11/05/80</td><td>$\begin{array}{c} +45\\ +451\\ +450\\ +422\\ +421\\ +414\\ +440\\ +425\\ +425\\ +411\\ +422\\ +454\\ +412\\ +429\\ +412\\ +429\\ +412\\ +429\\ +412\\ +429\\ +412\\ +420\\ +420\\ +420\\ +420\\ +420\\ +402\\ +402\\ +402\\ +402\\ +405\\$</td><td>5755 - 32 - 3255 - 111 - 213 - 275 - 4474 - 551 - 551 - 551 - 551 - 551 - 552 - 552 -</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>95 350 93 350 98 40 98 40 98 40 98 50 98 40 98 50 98 48 99 39 98 43 99 39 98 43 99 43 99 53 99 53 99 50 99 50 99 40 99 50 99 40 99 50 99 40 99 50 99 40 99 50 99 40 99 40 99 40 99 40 99 40 99 40 99 40 99 40 99 50 99 40 99 50 99 50 </td><td>2.41 1.12 1.22 1.22 2.13 2.12 3.13 1.44 1.28 1.39 1.44 1.558 2.03 2.58 2.03 2.58 2.03 2.58 2.03 2.55 1.10 1.14 1.35 2.12 2.12 1.35 2.12 1.35 2.12 1.35 1.44 1.558 2.03 2.12 2.13 2.13 2.14 1.558 2.03 2.150</td><td>3414 569 5955 403 555 414 1533 231 7097 599 7659 555 1396 578 2819 415 633 483 583 172 4062 660 4233 425 1510 404 13669 376 2354 693 949 316 4243 711 2570 358 3899 559 2255 419 3897 536 4062 660 1606 489 3075 319 5994 623 5095 614 2775 440</td><td>8383 2 8383 5 6515 3 7677 1 7298 2 788 3 7751 7 7960 3 9774 2 7150 5 7984 7 7960 3 9774 2 7150 5 7984 7 6672 6 6342 10780 9492 5 5984 5 5949 5 5942 10780 9492 5 58616 5 9378 5 9440 5 5938 5 88450 5 7744 5 5938 5 5199 5 5938 5 5199</td></td<>	LAARGILL 111 LAARGILL 111 LAARGILL 111 PILL 1111 PILL	Jof 05/77 11/10/77 11/20/77 11/20/77 Jof 20/75 Jof 16/78 Jof 19/78 Jof 19/78 Jof 19/78 Jof 19/78 Jof 19/78 Jof 19/79 D1/12/79 D1/12/79 D1/12/79 J01/12/79 J01/12/79 J01/26/79 J07/34/79 11/28/79 11/	12/17/77 03/30/76 04/26/76 12/13/76 12/13/76 12/13/76 12/05/78 12/05/78 12/05/78 12/05/78 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 06/16/79 01/03/80 05/08/80 05/07/80 05/29/80 05/29/80 05/29/80 11/4/80 10/14/80 10/15/80 11/05/80	$\begin{array}{c} +45\\ +451\\ +450\\ +422\\ +421\\ +414\\ +440\\ +425\\ +425\\ +411\\ +422\\ +454\\ +412\\ +429\\ +412\\ +429\\ +412\\ +429\\ +412\\ +429\\ +412\\ +420\\ +420\\ +420\\ +420\\ +420\\ +402\\ +402\\ +402\\ +402\\ +405\\ $	5755 - 32 - 3255 - 111 - 213 - 275 - 4474 - 551 - 551 - 551 - 551 - 551 - 552 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95 350 93 350 98 40 98 40 98 40 98 50 98 40 98 50 98 48 99 39 98 43 99 39 98 43 99 43 99 53 99 53 99 50 99 50 99 40 99 50 99 40 99 50 99 40 99 50 99 40 99 50 99 40 99 40 99 40 99 40 99 40 99 40 99 40 99 40 99 50 99 40 99 50 99 50 	2.41 1.12 1.22 1.22 2.13 2.12 3.13 1.44 1.28 1.39 1.44 1.558 2.03 2.58 2.03 2.58 2.03 2.58 2.03 2.55 1.10 1.14 1.35 2.12 2.12 1.35 2.12 1.35 2.12 1.35 1.44 1.558 2.03 2.12 2.13 2.13 2.14 1.558 2.03 2.150	3414 569 5955 403 555 414 1533 231 7097 599 7659 555 1396 578 2819 415 633 483 583 172 4062 660 4233 425 1510 404 13669 376 2354 693 949 316 4243 711 2570 358 3899 559 2255 419 3897 536 4062 660 1606 489 3075 319 5994 623 5095 614 2775 440	8383 2 8383 5 6515 3 7677 1 7298 2 788 3 7751 7 7960 3 9774 2 7150 5 7984 7 7960 3 9774 2 7150 5 7984 7 6672 6 6342 10780 9492 5 5984 5 5949 5 5942 10780 9492 5 58616 5 9378 5 9440 5 5938 5 88450 5 7744 5 5938 5 5199 5 5938 5 5199
PJERTS RICE								1		
DR120 DRYY DRYY DRYY DRYY DRYY DRYY DRYY DRYY	PIDNEER 304C PIDNEER 304C	06/23/77 11/10/77 12/12/75 01/12/75 04/20/76 05/08/78 05/10/76 05/08/78 11/17/78 11/17/78 11/17/78 11/21/78 11/21/78 12/06/78 12/06/78 12/10/78 12/12/78 05/02/79 00/02/00 00/02/00 00/02/00 00/000000	10/17/77 03/27/73 04/23/73 05/22/78 05/22/78 05/22/78 05/23/73 09/26/78 03/21/79 03/21/79 03/21/79 03/21/79 04/19/75 04/19/75 04/19/75 04/17/79 04/24/79 08/29/79 08/29/79 08/29/79 08/29/79 09/10/79 09/10/79 09/10/79 03/24/80 03/24/80 03/24/80 03/21/80 03/31/80 03/31/80 03/31/80 03/19/80 03/19/80 03/19/80	462 153 360 409 483 453 453 453 379 379 350 400 393 393 393 393 393 393 393 3	513 439 409 572 534 718 580 221 220 276 246 431 545 502 501 4355 200 250 4355 200 250 4355 200 250 4355 200 250 4355 200 251 455 500 210 251 455 500 201 500 501 500 500 501 500 500 501 500 500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5285 5.549 5.55549 5.549 5.575 5.449 5.575 5.575 5.449 5.577 5.577 5.575 5.575 5.575 5.577 5.575 5.577 5.575 5.577 5.5755 5.5755 5.5755 5.5755 5.5755 5.5755 5.57555 5.57555 5.57555 5.575555 5.5755555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6452 8681 9533 7444 6896 8888 77446 7738 7738 7738 7738 7738 4269 8608 8044 5702 9038 9930 9038 9930 9038 9930 9038 8057 7055 8045 8035 8035 8035 8035 8035 8035 8035 803

119

- - -

VALUES ARE MEANS FOR THE PERIOD FROM PLANTING TO HARVEST

able 2a.	Maize yields and fertilizer	treatments (kg/ha)	for P x N transfer experiments
	conducted at Jaiba, Brazil,	from 1977 to 1980	

	LINL NU.	SITE EXPland	SEASC	J/ N VARIETY	THE			· TIELD.	REP			AIMEN		tieta.	REP	
_		the second second	1.54 May Service						-		F	N		- e	3	4
									2527		1-	1200		2.	- 6	Contraction of the
		H-06	0.77	CARCINE MIL	50					1 H						
	2	8-19	* 77	CARGILL 111	50	20	0910	4459	5470		50	26	6497	6400	6239	
	- 3	8-20	\$ 77	CARGILL 111	10	1.4	5400	4332	4083	2604	19	160	4806	5416	4392	3623
	4	8-21	W 77	CARGILL 111	ii	17	5300	5067	2666	5262	10	100	7012	4518	6102	5719
	5	E-22	L 70	PIUNEER JOAC	14	14	41 83	4515	3000	3449	31	166	4502	4910	3282	5857
	6	U-23	L 78	PICNLEH 304C		14	2648	3000	3301		1.4	100	4135	4686	3643	
	7	b-24	D 78	PLUNLEH JC4C	4	14	6246	6263	5531		:	ICC	2850	2664	3266	
	8	6-25	L 78	PILNLER 304C		72	5254	SE5A	44 17			100	4962	6139	6874	
	5	8-26	D 78	PIONLER JUAC	29	14	7999	6.640	7014		20	100	5003	5321	6712	
	10	E-27	U 78	PIUNLER 304C		14	5684	2682	32.04		2.4	166	6650	10/2	1201	
	11	U-36	W 79	PICNEER 304C	29	14	2183	6034	5743		24	166	6205	5045	4655	
	12	u-37	w 79	PIUNEER 304C		14	1424	1190	25 02			166	1715	1806	0.05	
	13	6-39	w 79	PIONLER 304C	14	14	6140	7113	6923		14	166	6360	6727	1.0.05	
	14	4-35	W 79	PIUNLER 304C		14	3912	5506	4786		1	146	1912	2611	4574	
	15	E-40	# 79	PICNLER 304C	29	14	2606	2032	3068		29	166	4360	4943	5962	
	10	8-41	¥ 79	PICNEER 304C		14	5037	3430	3954			166	2182	2668	3739	
	17	0-43	D 79	PIONLER 3C4C	29	14	8046	8242	8392		29	166	6931	6893	9122	
	10	2-44	279	PIUNLER 304C		14	4276	1106	3302			166	2559	3933	2416	
	19	0-45	0 79	PIUNLER 3C4C	14	14	6165	7586	9217		14	166	6468	7319	9403	
	20	E-40	6 79	PIUNLER JOAC		14	4675	4246	35 01			166	3623	3948	3616	
	21	0-47	D 79	PICNEER 3CAC	29	14	7246	7450	8552		29	166	7564	7488	7014	
	24	0-40	0 30	PIUNEER 304C		14	3005	2264	2610			166	2243	4649	5667	
	23	0-52		PILNEER 304C	14	29	6611	5761	7725		14	186	7193	4726	6384	
	25	6-54		PICNEEK 304C		29	7229	5232	7810			186	5827	5397	8224	
	26	11-55		PIUNEER JUAL		29	6591	EE4E	7050		11	186	7925	7687	9140	
	27	H-br		DIONLER 304C		29	5987	6696	6417			186	5385	5836	6846	
	28	6-57	. 80	PIUNEER SCAL	21	29	6105	6233	5663		21	166	7456	6740	6282	
	24	11-64	0 80	HUNEER JOAC		29	5070	5236	5535			186	6411	6526	7018	
	30	F-45	0 80	PIUNEER 304C	1.5	29	4902	4220	4970		13	186	5058	5639	5206	
	31	8-66	0 80	PLUNEER 304C		29	121	20/3	5087			186	3790	2896	3650	
	3.2	8-67	1. 40	PLONEER JCAC		20	7574	2348	8559		-11	186	5102	7618	6357	
	LE	8-68	0 00	PICNLER JOAC	12	20	6820	4802	3546		. :	180	4665	4620	5184	
	34	4-49	N 80	PLUNEER 304C		24	4386	4202	3713		15	186	6277	5864	5908	
-		and all the					4300	4030	3112		•	180	5312	4926	4112	

YILLDS ADJUSTED TO 15.5% ACISTURE AND EXPRESSED IN KG/FA 2 SITE ABBREVIATIONS REFER TO EXPERIMENT NUMBER IN BRAZIL 3 C = CRY SEASON; W = WET SEASON

SYMELL: . = NU ADDITIONAL P APPLIED SINCE THIS WAS A RESIDUAL TRANSFER

Table 2a (continued)

LINL	511121	SEASC	N.37	The	ATHEN	LINUM P	- LPILM	KEP .			ATHER	THUN N	-71.23	REP	-	TRE		IMUM N	+ 9:85	P RLP	s - 10
NU.	E AP Lond	. TLAR	VARIETY	P.	N			3	•	p	h	- 1	2	3	4	4	N	1	2	3	
		-					7. 1							6			- 51				
	0-05	U 77	CARGILL 111	50	445	4761	5259	7244		12	130	4725	5145	A101		75	110	7017			
2	8-15	¥ 77	LARGILL 111	19	50	4732	4348	4777	4755	3	90	1904	2351	2099	2140	36	90	6211	6258	4744	
3	8-20	* 77	CARGILL 111	10	90	5694	5566	5385	5428	2	90	6237	6478	4817	4337	19	90	6718	6153	5070	64 38
	0-21	# 77	CANGILL 111	31	90	4007	0680	4255	4165	5	90	2562	2156	1356	2253	57	90	4361	4970	3697	7298
5	1-22	0 70	PIUNELR JOAC	1.4	90	4105	4105	4243		2	90	1214	1069	960		27	90	6068	7236	5862	
2	0-23	0 75	PILNLEN JOAC	- 2	90	3176	2416	3035			90	1371	1120	2052		•	90	4351	3768	3652	
6	0-24	0 70	PICHLEN JUAC	4	50	5532	1218	0559		1	90	5500	4769	6205		8	-90	6573	5781	7045	
ů.	11-25	0 78	HIGNEEN JUAC	20	90	4537	2430	246.0			90	6269	5910	4462			90	6047	5598	5280	
10	1-27	0 74	PIUNIER JOAC		50	5928	-808	4376			90	30.36	3283	4083		- 53	90	7488	9393	8428	
11	8-30	\$ 74	PILNEFS 304C	29	90	5722	6627	5274		2	40	21.80	1643	1764		-1	90	4973	4595	6392	
12	4-37	. 79	PIONEER 304C		50	820	1116	1443	.		90	956	872	171			90	2316	0819	5235	
13	6-34	. 79	PIUNLER 304C	14	20	7210	7750	7821		2	90	4244	3560	6210		27	90	7753	7621	2893	
14	46-4	. 79	PIUNLER 304C		90	3587	5272	5480			90	4853	2877	5573			30	4 308	2122	5080	
15	E-40	# 79	PICNLER 304C	29	50	5977	ACE7	£095			90	4095	1231	1289		53	90	4796	4776	4275	
10	8-41	N 79	PICNLER 304C		50	5663	3440	4150		•	90	1457	2106	3070			90	5196	6342	4956	
17	6-43	D 75	PIUNLER 3CAC	29	50	6084	Ec46	6778			90	3400	2249	5467		53	20	7563	10886	8310	
12	1-44	619	PIUNLER 304C		90	5332	2220	2337			90	1257	858	1222			90	5651	5575	3752	
19	0-43	0 79	PIUNLER JCAC	14	50	6120	2046	9153		2	90	4539	5341	7166		27	90	7737	8221	9702	
20	1-40	0 79	PIUNEER JUAC		90	3184	2192	9.148			90	2928	2278	4701			90	4270	5059	4023	
22	H-AH	0 40	PICHEEN JUAC	29	90	2666	3757	1982			90	3351	4958	4134		53	90	7539	6680	8734	
21	NH=52		PILNEEL JOAC	- 44	108	0.14	6823	1226			100	3208	1/18	2836			108	4299	5408	1538	
24	u-53	. 20	PLLINEL 304C		104	5682	2089	4032			108	10 70	2516	5300		21	108	6716	5688	8616	
25	F-54	. 80	PIUNEER JUAC	11	105	5884	7124	7619		2	104	7259	5016	6560		20	108	7009	9378	0488	
20	£-55	N 20-	FILNEER 304C		108	5442	5025	7254			108	54.85	4/72	6446		20	1.04	6127	65.37	0215	
27	1-50	* 00	PIONLER 3CAC	21	108	6328	6952	5529		j	108	4156	3593	4148		32	118	Bras	6317	6734	
22	6-57	. 80	PICNLER 304C	•	108	7585	4391	7211			100	3666	5841	41 72			108	4663	7276	7130	
29	U-64	D 80	PIUNLEH 304C	13	108	5390	5208	5042		2	108	2674	2459	1855		25	108	6(94	1506	6442	
30	P-65	0 80	PIUNLER 304C		108	1650	2607	3030			108	2340	2323	1728			108	4309	2758	507	
	0-00	0 80	PIUNEER 304C	11	100	5740	7658	6837		2	108	6004	4864	3484		20	108	6958	7591	6817	
34	0-07	0 80	PIUNELH JC4C		108	4398	2059	5117			108	5414	Juj2	3840			108	4712	4840	4715	
30	1-00	11 110	HUNLER JOAC	12	100	180	23/4	6876		2	108	7734	5742	3208		22	108	3026	8166	7069	
	0-09	0 30	FIGHEER JUAC		108	40.98	4520	5340		•	108	4068	2708	2243	2 - 2 - 2	•	108	6199	6026	5305	

1 VIELDS ADJUSTED TO 15.5% ACTSTURE AND EXPRESSED IN KG/FA 2 Site Abureviations Reflk to experiment number in erazil 3 c = chy season; w = wut season

SYPELL: . = NU ADDITIONAL P APPLIED SINCE THIS WAS A RESIDUAL TRANSFER

Table 2b. Maize yields and fertilizer treatments (kg/hz) for P x N transfer experiments conducted at Isabela, Puerto Rico, from 1977 to 1980

LINE	SITE	SEASC	1.1	THE	ATMEN	HUM P.	TELU7	N EP	Lia	ATHIN	INUM P.	+P-85	Na
140.	EXPT-NO	J. YLAH	VARIETY	P	N	1	5	3	- 19	14	- 1	2	3
									1				
1	PR-19	W 77	PIUNCER SUGB	92	20	4115	4854	37.00	6.2	140	-		1.1.226
2	PR-20	D 77	PIULLER 304C		14	5355	6260	7711	92	240	3368	6051	5116
3	PR-21	D 77	PICNELH 304C	17	14	6817	7274	HSAU	17	100	6888	7814	5005
4	PR-23	D 78	PIONEEH 304C			2694	2 10 3	21 35		100	9097	8558	9360
5	Pk-27	W 78	PIUNCER JOAC	31	14	5177	2463	1415	17		4941	6298	3572
U	PR-30	W 78	PIUNEEN 304C	12	14	7515	6240	5372	31	1 60	5738	5036	5685
7	PR-31	k 78	PIONEER 304C		14	2040	2527	25 30	12	100	8434	8790	8285
8	PH-33	. 78	PILNEER 304C	23	14	15.14	2424	2330		100	6753	71:55	0781
5	PR-34	U 19	PIONELH JOAL		14	1342	Bud	600	23	100	3943	4412	3585
10	PH-35	U 79	PIUNEER 304C		14	1114	2506	2717	110 20	100	6454	7100	5662
11	PR-36	U 79	PIUNCLH 304C		14	9 17	1.25	2313	•	100	0841	6194	6482
12	PR-37	D 79	PIUNLER JOAC	2.1	14	5454	A250	1995	-1	166	1867	2857	471
13	PH-38	U 79	PILNEER 304C	1.8	1.0	H 3UL	7565	5564	23	100	7849	7292	7894
14	PR-39	U 79	PIUNEER JOAC	ia	14	5370	1660	0320	18	166	7894	7828	721 9
15	PR-41	W 79	PIUNEER 304C		14	3460	4661	37 03	18	100	2206	3179	1753
10	PK-42	* 79	PLUNEER BOAL		- 14	3400	4001	3419	•	166	8,205	8719	7997
17	PR-43	. 79	PIUNEER 30AC		10	2402	1307	1081	•	100	9341	10002	8621
18	PR-44	h 79	PICNECH 304C	21	17	5200	1151	1324		160	8549	7731	6495
19	PR-45	W 79	PICINI FR 304C	25	14	6904	5049	4639	23	160	4437	7989	7229
20	PR-40	# 79	PIDNIER JOAC	43	14	CUSE	4114	6747	45	166	7500	6321	6084
21	PH-48	¥ 70	PLOUEER JOAC		14	4812	4335	2706		100	5854	4647	3071
22	PR-50	0 80	PIUNI EN 304C	21	14	4314	5114	5655	21	160	4789	5485	4041
23	PH-51	11 40	PICHEED JOAC	E (Doil)	29	4970	4147	4942		1 60	6305	5703	5068
24	PR-53	10 80	PICHLER 304C		29	5580	4960	4674	•	186	8008	8626	795
25	054	1 80	PIONLER 304C	52	29	4729	4769	3743	52	180	7459	1212	7110
26	00-56	0 00	PIUNLER 304C	31	29	5481	6525	6737	31	180	9055	8411	7246
27	DRaby	6 80	PIUNELIN 304C	26	29	4249	4154	5342	20	180	0707	7522	6405
211	DU-60		PIUNEER 304C	•	29	2501	2936	1307		186	7200	6433	6994
20	PR-59	. 80	PILNEER 304C	•	29	2557	5072	5488		160	9988	FOOR	8183
29	PR-60	a 80	PIUNEER 304C		29	2603	2645	37 92		180	5522	5161	0000
30	PR-61	N 80	PICNEER 304C	28	24	5928	4713	4919	28	1.86	5905	A663	0.851
31	PR-02	N 90	PIONEER JUAC	42	29	0348	6898	0551	42	1.80	2035	8403	7007
32	PH-63	N 80	PIUNLER 304C	32	29	6112	6812	6464	12		7030	0.003	1007

TIELUS ADJUSTED TU 15.5% MUISTURE AND LAPRESSED IN KG/FA

SITE ABBREVIATIONS PEFER TO EXPERIMENT NUMBER IN PUERTO RICU

U = DRY SEASCN: & = LET JEASCN

1

SYMBULS: _ = NEITHER P NUR N WAS ADDED SINCL THIS WAS A RESIDUAL TRANSFER . = NU ADDITIONAL P APPLIED SINCE THIS WAS A RESIDUAL TRANSFER

Table 2b (continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LINE	SITE SEASEN		EATMEN	THUN P.	TELOTR	M.N.		ATMEN	HUM N.	TELETR	Р <u></u>	TRE	ATMEN	HUM N.	+10-85	Pp	
1 pk=10 k/7 plumetri sadeti 92 130 s44a0 4245 13 130 4127 5929 127 130 4992 4031 4517 1 ph=20 D D 77 plumetri sadeti 12 90 5501 6545 5061 41 130 4197 52929 127 130 4992 4031 4517 1 ph=20 D 78 Plumetri sadeti 12 5324 5601 21 127 130 4192 52 90 9513 9234 5307 5326 5234 5601 511 12 130 141 50 90 5164 213 370 5366 5243 5307 5366 5243 5307 5366 5243 5307 5366 5243 5307 5366 5243 5307 5366 5243 5307 5366 5243 5307 5366 5243 5307 5366 5243 5407 5404 4117 6403 6403 5408 6403 5408		and the second state of th				-	3	P	N	1	2	3	p	N	1	2	3	
$ \begin{array}{c} 1 \\ c \\ c \\ c \\ r \\ r \\ r \\ r \\ r \\ r \\ r$																		-
c ph-20 0 77 plotteth 304C 22 90 0021 6463 8051 13 150 1164 3257 121 130 4922 4031 4517 4 Ph-21 0 77 Plotteth 304C 1737 5814 290 6023 7701 327 90 9733 9234 5434 543 5 Ph-27 v 78 Plotteth 304C 13 900 6696 5793 590 5187 4183 6619 57 5544 237 5546 133 700 5546 90 5106 7005 5546 90 5106 7005 5484 90 5106 7005 5484 90 5106 7005 5483 5463 90 4100 402 90 5106 4402 90 5106 4402 90 5106 4402 90 5106 4402 90 5106 4402 90 5106 4402 90 5106 4402 90 5106 4402	1	PR-19 # 77 PIGNEER 30	68 92	130	5413	2440	4245	1.1	130	4194	41.27	5020						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	PR-20 D 77 PIUNLER 30	4C 22	90	0021	6403	8061			5501	65 45	2454	121	130	4992	4031	4517	
4 PR-27 P78 PILUNER 304C 3475 2805 2236 FU 5471 F171 1701 52 90 9333 9224 9407 5 PR-27 * 78 PILUNER 304C 12 50 7030 5586 5793 50 5381 3795 5586 5587 7055 7488 8 PR-30 * 78 PILUNER 304C -2 50 5481 5471 -90 6188 5793 5065 50016 4723 4794 -90 5106 4823 5453 8 PR-34 77 PILUNER 304C -30 5814 4701 4226 90 5763 5303 5841 -90 5774 5303 5841 -90 5774 5303 5841 -90 5774 5303 5841 -90 5774 5303 5841 -90 5774 5303 5841 -90 5774 5303 5841 -90 5774 5303 5841 -90 7748 500 7701 -90 5774 5303	3	PR-21 U 77 PICNELH 30	4C 17	90	3040	7737	5414	2	90	6623	74.72	2701	41	90	6176	7899	6799	
b PR-27 V 78 PIONEER 304C 31 90 00000 0000	4	PR-23 D 78 PIUNLER 30	4L -	-	3415	2805	2236	-		3614	2510	7701	32	26	9533	9234	9407	
c PR-30 k 78 P10NEER 304C 12 90 7024 C550 2 1 7507 7507 7507 7507 7507 7507 300 5366 5208 5637 8 PR-31 k 78 P10NEER 304C 23 540 4115 6371 500 6188 5711 8404 12 90 5106 4983 5453 9 PR-34 0 7 P10NEER 304C 20 5301 4701 4226 90 5305 5309 5309 5715 4316 5373 10 PK-35 0 79 P10NEER 304C 20 5801 4020 210 90 5703 4316 5973 7356 4316 5973 4366 5977 7356 4316 59777 7356 4316 59777 7366 55774 4420 20 730 7466 6505 5777 4367 33 90 7306 6505 5777 7364 313 90 7306 6505 5777 7364 313	5	PR-27 W 78 PIUNCER JO	46 31	90	0090	6896	5798	5	90	5387	A1 H3	5199		. 7	4706	7173	2327	
7 PN-J3 k 7k PN-J3 k 7k PN-J3 k 7k PN-J3 k PN-J3<	0	PR-30 W 78 PIONLER 30	4C 12	90	7024	6924	6560	2	1	7567	4105	0019	57	90	5586	5208	5637	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	PR-31 & 78 PIUNEER 30	4C •	50	5480	4115	6371	1.	90	6188	57.01	5049	23	90	6957	7055	7488	
y PR-34 D T/9 PIONLER 304C . 90 5578 4728 3560 10 PR-35 D 79 PIONLER 304C . 90 5709 422 3927 11 PR-36 D 79 PIONLER 304C . 90 5703 4316 3993 12 PR-37 D TOU 79 PIONLER 304C . 90 7735 4316 3993 13 PR-37 D TOU TAU TAU 90 7748 EUE0 ES40 490 7501 . 6588 43 90 7766 6505 5079 14 PR-41 # 79 PIUNER 304C .90 5018 139 5212 2208 33 90 5314 727 7838 15 PR-44 # 79 PIUNER 304C .90 511 3427 208 4004 .90	8	PR-33 . 18 PILNEER 30	4C 23	50	5419	4723	6105	- 0	90	43.00	0720	0701		90	5106	4983	5453	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	PR-34 U 79 PIONEER JO	46 .	90	5831	4701	4226		40	3856	41 LU	4/91	42	90	6578	4728	3960	
11 PR-36 D 79 PICHLER 304C • 50 1405 240 90 5735 4316 3993 12 PR-37 0 79 PICHLER 304C 18 90 7163 963 1740 13 PR-36 0 79 PICHLER 304C 18 90 7163 963 1740 14 PR-37 0 79 PICHLER 304C 18 90 7746 6050 5077 7788 15 PR-41 * 79 PICHLER 304C 90 6098 1577 H220 90 8417 5340 7004 90 5349 7551 8488 16 PR-42 * 79 PICHLER 304C 90 6505 6751 6762 90 7400 5111 9327 16 PR-44 * 79 PICHLER 304C 450 90 7331 7463 7400 5511 9327 16 PR-45 * 79 PICHLER 304C 450 90 7301 7464 4107 90 6450 6450 </td <td>10</td> <td>PK-35 D 79 PIUNEER 30</td> <td>4C •</td> <td>90</td> <td>5861</td> <td>0626</td> <td>4012</td> <td></td> <td>90</td> <td>5763</td> <td>53.00</td> <td>69.11</td> <td>•</td> <td>90</td> <td>5090</td> <td>4272</td> <td>3927</td> <td></td>	10	PK-35 D 79 PIUNEER 30	4C •	90	5861	0626	4012		90	5763	53.00	69.11	•	90	5090	4272	3927	
13 PR-36 0 74 Plunler 304 23 90 763 963 1740 13 PR-36 0 79 Plunler 304 18 90 7744 6050 592 4 90 8417 5612 7311 33 90 7766 6565 5079 14 PR-36 0 79 Plunler 304 16 90 8417 5612 7311 33 90 7756 6565 5079 15 PR-41 79 Plunler 304 90 5162 313 90 7356 7727 7838 15 PR-41 79 Plunler 3040 90 5010 5655 4135 90 6145 5340 7004 90 5349 7551 8488 16 PR-44 79 Plunler 304 23 90 5341 1502 5080 3 90 7510 7469 7738 5778 738 5778 7469 738 5778 738 5778<	11	PR-JO U 79 PIENCER 30	4C •	50	1808	2210	3594		90	1444	0260	2510	•	90	5735	4310	5993	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	PR-37 U 79 PIUNLER JO	4C 23	90	7000	7187	5982	4	40	7501	4209	2510		90	763	963	1740	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	PR-38 U 79 PILNEER 30	4C 18	90	7748	6050	8540	ă.	vo	8017	56.12	7101	43	90	7706	6505	5079	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	PR-39 D 79 PIUNELR 30	40 18	90	1958	3508	1078	ä	90	5275	22.04	730 4	23	90	7356	7727	7838	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	PR-41 w 79 PIONEER 30	4C •	90	0098	1577	8220		90	8142	4216	7624	33	90	4140	2479	2080	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	PR-42 # 79 FIUNLER 30	46 .	90	5010	:685	4135		90	61 15	5340	7000	•	90	5349	7551	8488	
16 pR-44 * 79 pICNLER 304C 23 90 5341 1502 5080 3 90 5359 6993 0217 42 90 406 5580 6240 19 PR-45 * 79 PIUNLER 304C 45 90 7301 7426 4414 7 90 6681 6403 6615 83 90 7469 7738 5738 20 PR-46 * 79 PIUNLER 304C 21 90 4652 2027 90 6661 3200 4412 90 5975 3239 2831 21 PR-46 * 79 PIUNLER 304C 21 50 4651 6464 3805 3 90 5170 2408 5351 40 90 5911 6879 4481 PIUNLER 304C 108 6387 4491 108 670 5321 5066 108 6586 5062 6506 NU 22 PR-53 0 80 PIUNLER 304C 5408 5417 7503<	17	PR-43 # 79 PIUNLER 30	۹C •	90	8257	0005	4331		90	6565	6751	0705	•	90	4700	5111	9327	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	PR-44 # 79 PICNLER 30	4C 23	90	5341	1502	5080	ă-	90	5354	6004	0195		90	1214	5580	6240	
20 PR-40 # 79 PIONLER 304C 90 4430 4652 2027 90 6861 3200 4412 35 90 7469 7738 5778 21 PR-48 # 79 PIONLER 304C 21 50 4651 6466 3805 3 90 5170 24.08 5351 40 90 5975 3239 2831 22 PR-50 D 80 PIONLER 304C 108 7862 5563 4081 108 4670 5321 5066 108 6879 4483 N 24 PR-51 D 80 PIONLER 304C 51.08 6387 7358 108 7469 7738 507 7381 N 25 PR-53 D 80 PIONLER 304C 51.108 6387 74957 7461 8 108 6591 7563 95 108 6592 4963 7911 25 PR-55 D 80 PIUNLER 304C 26 108 6397 5764 6333 4 108 6654 8451 0385 <td< td=""><td>19</td><td>PR-45 # 79 PIUNLER 30</td><td>46 45</td><td>90</td><td>7301</td><td>7436</td><td>4414</td><td>7</td><td>90</td><td>6481</td><td>64.03</td><td>0217</td><td>42</td><td>90</td><td>4006</td><td>5581</td><td>7303</td><td></td></td<>	19	PR-45 # 79 PIUNLER 30	46 45	90	7301	7436	4414	7	90	6481	64.03	0217	42	90	4006	5581	7303	
21 pR-48 k 79 p1GHLER 304C 21 50 4651 6466 3805 3 90 5170 2408 5351 40 90 5975 3239 2831 22 PR-51 D 80 P10NLER 304C 108 7862 5563 4031 108 4670 5321 5066 108 6586 5062 6506 N 24 PR-53 D 30 P10NLER 304C 52 108 6387 7358 108 4670 5321 5066 108 6586 5062 6500 N 24 PR-53 D 30 P10NLER 304C 52 108 6387 4957 7461 8 108 6590 6591 7563 9510 6586 5062 6506 7911 25 PR-55 D 80 P10NLER 304C 26 108 6137 7577 5108 6654 8451 0385 58 108 6809 8505 6812 26 PR-55 D 80 P10NLER 304	20	PR-40 # 79 PIONLER 30	4C •	90	4430	4652	2027	-	90	6861	3200	0015	83	90	7469	7738	5778	
22 PR-50 D B0 PIONLER 304C • 108 7862 5563 4081 • 108 5334 • 108 5334 • 108 5334 • 108 5334 • 108 5516 5679 4483 N 22 PR-51 D D D PICNLER 304C • 108 0325 £4c7 7358 • 103 7869 7540 6706 • 108 6516 5672 6506 W 25 PR-54 L 80 PICNLER 304C 31 108 3122 7116 6237 5 108 6590 6591 7563 95 108 6592 4963 7911 25 PR-55 U 0 PICNLER 304C 20 108 6333 4 108 6110 6882 7298 48 108 6809 8505 6812 26 PR-59 N N 010 7223 6562 0076 108 6334 <td>c1</td> <td>PR-48 & 79 PICHEER 30</td> <td>40 21</td> <td>50</td> <td>4051</td> <td>6486</td> <td>3805</td> <td>Ĵ.</td> <td>90</td> <td>5170</td> <td>24.04</td> <td>6351</td> <td></td> <td>90</td> <td>5975</td> <td>3239</td> <td>2831</td> <td>2.0</td>	c 1	PR-48 & 79 PICHEER 30	40 21	50	4051	6486	3805	Ĵ.	90	5170	24.04	6351		90	5975	3239	2831	2.0
22 PR-51 D B00 PICHLER 304C . 108 09d5 E4c7 7j58 . 103 78by 7540 5706 . 108 09d5 5027 7381 24 PR-53 D 80 PICHLER 304C 51 108 6387 .4957 7461 8 108 6591 7563 95 108 6592 4963 7911 25 PR-54 D 80 PICHLER 304C 31 108 3122 7166 6257 5 108 6591 7563 95 108 6592 4963 7911 25 PR-55 D 80 PIUHLER 304C 26 108 6397 5764 6333 4 108 6110 6887 7298 48 108 6809 8505 6812 27 PR-58 N 80 PIUHLER 304C 108 6424 108 6334 5236 5549 108 6528 4953 6875 28 PR-59 N 80 PIUHER 304C 108 5905 4543 6108 5334 5236 5549 <td>22</td> <td>PR-50 D 80 PIUNLER 30</td> <td>46 .</td> <td>108</td> <td>7862</td> <td>5563</td> <td>4081</td> <td></td> <td>108</td> <td>4670</td> <td>5321</td> <td>5066</td> <td>40</td> <td>90</td> <td>5911</td> <td>6879</td> <td>4483</td> <td>5</td>	22	PR-50 D 80 PIUNLER 30	46 .	108	7862	5563	4081		108	4670	5321	5066	40	90	5911	6879	4483	5
24 PR-53 D 30 PICHLER 3C4C 52 108 6387 .4957 7461 8 108 6590 6591 7563 95 108 9053 7577 7481 25 PR-54 L D PICNLER 304C 31 108 3122 7116 6237 5 108 6654 8451 0385 58 108 6592 4963 7911 24 PR-55 D 80 PIUNLER 304C 20 108 0397 57C4 6333 4 108 6654 8451 0385 58 108 6809 8505 6812 27 PR-58 N 80 PIUNLER 304C 108 6439 4584 6189 108 5334 5230 5549 108 6528 4703 6875 20 PR-58 N 80 PIUNLER 304C 108 6422 0070 108 5334 5230 5549 108 6528 4703 6875 20 PR-60 80 PIUNLER 304C 108 5905 4453 <td>22</td> <td>PR-51 D 60 PICNLER 30</td> <td>4C •</td> <td>108</td> <td>0985</td> <td>E467</td> <td>7358</td> <td></td> <td>103</td> <td>7804</td> <td>7540</td> <td>0706</td> <td>•</td> <td>108</td> <td>0586</td> <td>5062</td> <td>6506</td> <td>ü</td>	22	PR-51 D 60 PICNLER 30	4C •	108	0985	E467	7358		103	7804	7540	0706	•	108	0586	5062	6506	ü
25 ph-54 0.80 p1CNEER 304C 31 108 3122 7116 6257 5 108 6654 8451 0385 58 108 6892 4963 7911 2c PR-55 0.80 P10NLER 304C 26 108 6397 5704 6313 4 108 6110 6882 7298 48 108 569 6703 6812 27 PR-58 w.80 P10NLER 304C 108 6439 4584 61d9 108 5334 5230 5549 48 108 6528 4954 5569 28 PR-59 w.80 P10NLER 304C 108 723 6562 6076 108 6549 108 6528 4954 5569 29 PR-60 w.80 P10NEER 304C 108 5905 4453 6194 108 6706 4963 6111 108 8027 7349 6570 30 PR-61 #.80 P10NEER 304C 28 108 7701 5744 7155 4 108 <t< td=""><td>24</td><td>PR-53 D 80 PICNLER 30</td><td>4C 52</td><td>108</td><td>6337</td><td>.4957</td><td>7401</td><td>в</td><td>108</td><td>6590</td><td>6591</td><td>7563</td><td>445</td><td>100</td><td>9055</td><td>1557</td><td>7381</td><td></td></t<>	24	PR-53 D 80 PICNLER 30	4C 52	108	6337	.4957	7401	в	108	6590	6591	7563	445	100	9055	1557	7381	
2c pR-55 D 80 pPIUNLER 304C 26 108 6397 5704 6833 4 108 6110 6882 7298 48 108 682 27 PR-58 w 80 PIUNLER 304C 108 6439 4584 6139 108 6110 6882 7298 48 108 5669 6703 6875 28 PR-59 w 80 PIUNLER 304C 108 7223 6522 6076 108 5334 5236 5549 108 6528 4954 5569 29 PR-60 # 80 PIUNLER 304C 108 3903 4453 6144 108 6903 7685 5266 108 8027 7349 6570 30 PR-61 # 80 PIUNER 304C 28 108 7701 5744 7155 4 108 6903 7685 5266 108 6107 5493 31 PR-61 # 80 PIUNER 304C 28 108 7701 5744 7155 4 108 6095 6698	25	PR-54 L BO PICNEER 30	4C 31	108	3122	7115	0257	5	108	6654	84 51	1.345	45.4	108	0392	4903	7911	
27 PR-58 w 80 P1UNLER 304C • 108 6439 4584 61d9 • 108 5334 5236 5549 • 108 5628 4954 5675 28 PR-58 w 80 P1UNLER 304C • 108 7223 6512 6076 • 108 5334 5236 5549 • 108 5628 4954 5693 29 PR-60 # 80 P1UNLER 304C • 108 5905 4453 6194 • 108 6706 4963 6111 • 108 8027 7349 6570 30 PR-61 # 80 P1UNLER 304C 28 108 7701 5744 7155 4 108 698 5321 5206 • 108 6160 5941 4931 31 PR-61 # 80 P1UNLER 304C 28 108 7719 7147 7155 4 108 6095 6698 5321 52 108 6002 5162 6650 31 PR-63 # 80 P1UNLER 304C J2 108 7215 6710 6710 6710	20	PR-55 D 80 PIUNLER 30	40 20	108	0397 -	5704	6933	4	108	6110	68.82	7248	50	100	0809	8505	6812	
28 PR-59 W B0 PILNELR 304C • 108 7223 65L2 0076 • 108 6903 7685 5266 • 108 6528 4954 5569 29 PR-60 # 80 PIUNELR 304C • 108 5905 4453 6194 • 108 6706 4963 6111 • 108 8027 7349 6570 30 PR-62 # 80 PICNEER 304C 28 108 7701 5744 7155 4 108 6095 6698 5321 52 108 9002 5162 6650 31 PR-62 # 80 PIUNEER 304C 42 108 7029 7195 7020 6 108 6509 6698 5321 52 108 9002 5162 6650 32 PR-63 # 80 PIUNEER 304C 32 108 7215 6710 6791 5 108 6503 7115 78 108 7475 6997 32 </td <td>21</td> <td>PR-58 W 80 PIUNLER 30</td> <td>4C •</td> <td>108</td> <td>0439</td> <td>4584</td> <td>6139</td> <td></td> <td>108</td> <td>5334</td> <td>52.30</td> <td>5549</td> <td>+0</td> <td>100</td> <td>2009</td> <td>6703</td> <td>6875</td> <td></td>	21	PR-58 W 80 PIUNLER 30	4C •	108	0439	4584	6139		108	5334	52.30	5549	+0	100	2009	6703	6875	
29 PR-60 # 80 PIUNEER 304C . 108 5905 4453 6194 . 108 6706 4963 6111 . 108 8027 7349 6570 30 PR-61 # 80 PIUNEER 304C . 28 108 7701 5744 7155 4 108 6706 4963 6111 . 108 6160 5941 4931 31 PR-62 # 80 PIUNEER 304C 42 108 7029 7195 7020 6 108 6509 698 5321 52 108 9002 5162 6650 32 PR-63 # 80 PIUNEER 304C J2 108 7215 6710 6791 5 108 6503 7115 78 108 7108 6475 6997 32 PR-63 # 80 PIUNEER 304C J2 108 7215 6710 6791 5 108 6603 7115 78 108 7108 6475 6997	28	PR-59 W 80 PICNEER 30	4C •	108	1223	ESLZ	0070		108	6403	76.85	1200		100	0528	4954	5569	
30 PR-61 & 80 PICNEER 304C 28 108 7701 5744 7155 4 108 0095 6698 5321 52 108 7002 4031 31 PR-63 & 80 PICNEER 304C 42 108 7029 7195 7020 6 108 6569 6962 7115 78 108 7108 6475 6997 32 PR-63 & 80 PICNEER 304C 42 108 7215 6710 6791 5 108 6603 7114 7448 55 108 7108 6475 6997	29	PR-60 # 80 PIUNEER 30	40	108	5905	4453	6194		108	6706	4963	6111	•	108	8021	7349	6570	
31 PR-62 W 80 PICNEER 304C 42 108 7329 7195 7020 0 108 6569 6962 7115 78 108 9002 5162 6650 32 PR-63 W 80 PICNEER 304C J2 108 7215 6710 6791 5 108 6603 7114 7448 58 108 7108 6475 6997	30	PH-61 # 80 PICNEEH 30	40 28	108	7701	5744	7155	4	108	6695	06.98	5321		105	6160	5941	4931	
32 PR-63 W 80 PIUNEER 304C 32 108 7215 6710 6791 5 108 6603 7114 7448 50 108 7108 6475 6997	31	PR-02 W 80 PIUNEER JU	4C 42	108	7029	1195	7020	U	108	6569	6962	7115	7.4	100	7102	5162	0050	
	25	PR-03 W 80 PIUNEER 30	4C 32	108	7215	6710	0791	5	108	6603	7114	7448	59	100	7612	647.5	6997	

YIELDS ADJUSTED TO 15.5% MUISTURE AND LAPRESSED IN KETA

2 SITE ADDREVIATIONS REFER TO EXPERIMENT NUMBER IN PUERTO RICO

U = DRY SEASEN; W = WET JEASEN

1

SYMULS: _ = NEITHER P NUR N WAS ADDED SINCE THIS WAS A RESIDUAL TRANSFER . = NU ADDITIONAL P APPLIED SINCE THIS WAS A RESIDUAL TRANSFER

CODED P LEVEL N SITE	85 85 I-1	85 +.85 T-2	+•85 -•85 T-3	+•85 +•85 T-4	40 40 T-5	40 +.40 T-0	+•40 -•40 T-7	+ •40 + •40 T-8	0 0 1-9	-•85 0 1-10	+-85 0 T-11	0 85 T-12	0 +•85 T-13	PART. CONT. T-15	0 T-16	0 T-17	GEN. MEAN T 1-13
SITE B- 9 B- 19 B- 201 B- 205 B- 378 B- 300 B- 443 B- 445 B- 445 B- 553 B- 555 B- 557 B- 550 F- 550 B-	T-1 3745 2439 5105 2938 1435 1639 5053 4337 3158 5955 5318 4737 23595 23549 23549 23549 1107 4492 30357 21488 3188 3188 3188 3188 3188 3187 2357 21488 3188 3188 3188 3187 2357 21488 3188 3188 3188 3187 2357 21488 3188 3188 3188 3187 2357 21458 3188 3187 2357 2148 3187 2357 2148 3187 2357 2148 3187 2357 2148 3187 2357 2148 3187 2357 21488 3188 3188 3188 3188 3187 2357 21488 3188 3188 3187 3187 31777 31777 31777 31777 31777 31777 31777 317777 317777777777	T-2 425324 25324 25324 25324 25225 222525 222525 222525 2252527 252525 2252527 2525257 2525527 2525527 2525527 2525527 2525527 2525527 2525527 2525527 2525527 2525527 2525527 2525557 252577 252527 252557 2525772 25255772 2525772772 2525772 2557772 2557772 25577777777	T-3 6345 5473 5773 5773 55473 55473 55492 55525 75525 5557 4276 55257 4278 5257 4278 5257 4278 32078 5257 4278 32078 5218 5218 5218 5218 5218 5218 5218 521	T-4 7323 53225 53225 544517 665368 564530 5645205 66545205 66545205 66545205 66545205 66545205 66545205 665924 822327 485592 485592 485592 564592 700895 579755 72910 3700	T-5 5274 3131 6142 32750 207453 5289514 43453 564671 349514 13413 563822 29377 563763 319113 514117 57259 452530 4526370 3541117 57259 452639 354117 57259 452259 237633 541117 57259 452259 237633 541117 57259 452259 245370 3541117 57259 452259 2527633 552444 57259 552447 57259 552447 552447 55259 55247 55257 552307 552307 55247 55247 55257 552307 552307 55247 55257	$\begin{array}{c} \mathbf{T-6} \\ 558437\\ 3286437\\ 32864337\\ 32864335\\ 55845336\\ 32864216\\ 42856216\\ 42356207\\ 42356207\\ 4213590820\\ 4213590820\\ 559120\\ 59120$ 59120\\ 59120 59120\\ 59120 59120\\ 59120 59120\\ 59120 59120 59100 59100 59100 591000 59100000 59100000000 591000000000000000	T-7 58177 451777 451777 451777 45002 7502 5517 45177 4502 5520 571576 455955 455955 455955 455955 45595555555555	$\begin{array}{c} \mathbf{T-8} \\ 574 \\ 4352 \\ 5517 \\ 4402 \\ 5029 \\ 3134 \\ 5402 \\ 5029 \\ 3134 \\ 5402 \\ 524 \\ 517$	T-9 5755 4653 5518 4777 2976 5773 2976 5773 4705 5026 7594 4705 5106 7596 4418 7503 7106 37758 3142 56320 56396 5970 6396 5213 3429	T-10 4741 2140 5467 2082 1082 10714 5514 5514 5514 5514 5533 1962 733 1962 733 5334 4434 4205 2211 3705 2211 3705 2211 3705 2211 3705 23302 4161 3271 25682 3302 4161 3271 25682 3302 4161 3271 25682 3302 4161 3271 25682 3302 4161 3271 25682 3302 4161 3271 32794 3205 2130 2140 2130 2112 25682 2211 25582 2211 25582 2211 25582 2211 25582 2211 25582 2211 25582 2306 2300 2320 2300 2320 2320 2320 2320 2320 2320 2320 2320 2320 2320 2320 2320 2320 23200 23200 23200 2320 23200 2320 2320 2320 23300 2320 2320 2320 23300 2320 23200 23200 23200 23200 23300 23300 23300 23300 23300 23200 23200 23200 233000 23300 23300 23300 23300 23300 23300 23300 233000 23300 23300 23300 23300 23300 233000 233000 23300 23300 233000 233000 233000 233000 233000 233000 233000 233000 233000 2330000 2330000000 2330000000000	T-11 6808 5510 6095 5082 6389 5055 5089 7090 5085 5089 7090 5089 7090 5089 7090 5089 7090 5089 7090 5089 7090 5089 7090 5089 7090 5089 7099 5089 70990 60883 5089 70990 60883 50890 70990 60883 50890 70990 608835 50890 70990 608835 50890 70990 608835 50890 70990 608835 50890 70990 608835 50890 70990 608835 50890 70990 608835 50890 70990 608935 50890 70990 608935 50890 70990 608935 50890 70990 608935 50890 70990 608935 70990 608935 70990 608935 70990 608935 70990 608935 70990 608935 70990 608935 70990 608935 70990 60895 70990 60895 70990 60895 70990 60895 70990 60895 70990 60895 70990 60895 70990 60895 70900 60895 70900 60805 70900 60805 70900 60805 70900 60800 709000 70900 709000 7000000 70000000000	T-12 5613 5677 401552 40552 4055757 4055257 4055525 4055525 4055552 4055552 4055555 4055555 4055555 4055555 4055555 4055555 4055555 4055555 4055555 4055555 40555555 40555555 40555555 40555555 4055555555 40555555 405555555555	T-13 635598 455598 459598 459595532 5955532 5955532 5955532 5955532 595532 595532 595532 595532 595532 7295532 5255403 5255403 525532 52552 525532 525532 525553 525553 525553 525553 5255555 5255555 5255555555	T -15 3514 • • • • • • • • • • • • • • • • • • •	$\begin{array}{c} \textbf{T-16} \\ \textbf{5577} \\ \textbf{5574} \\ \textbf{5371} \\ \textbf{5190} \\ \textbf{5061} \\ \textbf{5190} \\ \textbf{5061} \\ \textbf{512051} \\ \textbf{506151} \\ 5$	4345 2059 4981 2191 853 1923 5871 3041 8102 4547 3141 8102 45545 1250 21352 3141 8102 45545 1255 3557 1355 2155 2155 2155 2155 2155 2155 2155	5692 3955 5958 4031 4142 2819 5964 5964 5966 6783 4152 4836 1721 6604 4255 4047 3760 6932 3163 7115 3688 6590 3519 5766 5912 5766 5912 5766 5912 5766 5912 5796 6047 6047 6059 4895
9- 66 8- 67 8- 68 8- 69	4937 3398 4120 3214	3856 3661 4485 3975	7837 4883 7367 5831	7469 4265 7647 5111	4836 3141 5949 3150	6065 3792 5200 3844	7272 4674 6485 4683	6296 4683 6991 4852	6745 4858 6812 4050	4784 4295 5583 3006	7122 4756 7914 5843	7465 3289 5248 4312	6016 4783	5994 2525 3897 2775	5915 3745 6135 3899	2173 4136 4396 4391 3935	5192 6234 4194 6140 6405

Table 3a. Treatment means of maize yields by experiment for the Jaiba, Brazil, sites

•No partial control (Treatment 15)

124

CODED P LEVEL N SITE	85 85 T-1	85 +.€5 T-2	+.85 85 T-3	+•85 +•85 T-4	40 40 T-5	40 +.40 T-6	+•40 -•40 T=7	+.40 +.40 T-8	1-3 0 0	85 0 T-10	+•85 0 T-11	0 85 T-12	0 +.85 T-13	PART. CUNT. T-15	0 T-16	0 T-17	GEN. MEAN T 1-13
PR-19	5120	5235	4395	4810	4656	4616	5607		6.0.7.7								
PR-20	4033	6043	6252	7536	6360	6304	5007	4357	2033	4750	4513	4237	4846	37.5	3883	4478	4783
PR-21	7976	8409	7499	6122	8200	PA 71	7.000	7140	7055	5902	6958	6465	6790	564 ú	5694	6153	6415
PR-23	2753	4572	4129	5158	3570	2061	1902	2011	8597	7392	9391	7547	9005	7369	7285	7677	8330
PR-27	4055	4327	36.37	5550	4352	5003	3000	2344	2839	3311	4735	2377	4934	1571	1860	5673	3742
PR-30	6793	7674	6925	79.05	7025	7746	4445	0141	0201	5395	5497	3852	5488	3559	3731	4813	4956
PR-31	2215	6198	2303	6827	023	57.0	6492	7590	6976	7394	7167	6379	8503	6240	5810	7707	7290
PR-33	3701	4685	0567	0027	4401	5768	4800	5544	5322	5791	5181	2366	6910	1599	1850	48.37	4807
PR-34	972	6045	24.41	4307	4405	4993	5177	4405	5437	4626	5089	3523	3981	3515	3148	4546	4575
PR-35	4424	7974	6067	0398	4238	67.7	3933	5439	4919	4790	4430	1133	6408	813	1401	5152	4 7 7 3
28-36	1244	2607	1796	0002	2003	6134	4302	6538	5766	5034	5348	2632	6506	304.0	1659	6351	4473
PR-37	4900	6080	1733	2214	2113	2016	2139	1959	255 7	2754	1155	1152	1732	2074	1264	2008	5471
PR-38	2617	7677	77267	7402	0094	1222	4977	6629	5923	7045	6450	5062	7678	4931	1916	5876	1932
PR-39	3250	3260	7307	7555	7499	7946	6329	7383	8115	7110	7640	7429	7647	6986	6265	8342	7470
PR=41	4550	2.209	5599	- 3077	3035	3687	2724	40 년 4	2181	3577	2900	4248	2379	42.86	3217	3816	7479
PR-42	3173	8071	3004	2519	0598	7763	4434	6392	7493	6662	7129	3849	8426	2805	26.02	6054	3232
PR+43	2011	7.07	2090	7115	5085	7233	4036	7718	4479	6100	6379	1823	9321	1678	2002	6127	0341
PR-44	6.1.24	1000	2204	1020	5057	7486	4540	6733	6218	6838	6365	1894	7626	2099	2280	6776	2000
PR-45	5252	7101	5020	6444	6601	6948	7233	7878	5974	6190	5763	5551	6552	4218	5200	6683	5518
PR-46	3300	1401	0023	0407	6121	7123	7032	6454	6384	6633	6995	5719	6637	5540	52.50	6203	6455
PR-48	30.20	5243	3072	4948	4674	4300	4372	4955	3703	4824	4015	3952	4524	7469	2709	5070	6452
PR-50	4001	6745	4002	6021	4350	4942	5089	4428	4981	4310	5758	5028	4472	4252	2006	1010	4312
28-51	60.00	3644	4035	5502	5222	6394	5032	6402	5835	5019	6051	4686	56.92	3760	4900	4995	4895
P8-53	5304	7505	6175	7387	7142	7652	7160	7299	7603	7372	7980	5073	8220	4690	4102	6164	5439
28-54	5390	2001	5081	1378	5758	7007	5921	6953	6268	6915	6489	4414	7280	0136	7720	6704	7207
22-55	0409 6030	5513	0249	7891	7278	7873	7235	8127	7165	7163	7375	6248	8237	6330	5329	0300	6340
PR-58	00.32	0932	5238	6942	6745	6917	5708	6938	6311	6763	6416	4582	6878	6105	6340	1010	7373
22-50	2700	7577	2433	7132	4488	0211	3906	6796	5737	5373	5684	2268	6976	2142	4553	5843	6262
PD-60	4974	9582	3461	9020	6228	8004	5763	8008	0754	6618	7315	4372	0070	1049	1108	5761	5173
	3174	0985	3157	6219	4948	5670	5272	6400	5517	5927	5677	3017	5034	2302	2019	7021	6758
50-61	4705	5882	5853	7745	6614	6033	5819	6416	6867	62.38	6438	5187	5160	2105	2272	4807	5155
PR=63	7401	6990	5900	6052	7884	7832	7877	7039	7083	6882	6860	6500	7497	4477	3494	5989	6112
FR-03	0038	6258	5475	7304	6151	6870	6924	7011	6905	7055	6783	6464	6333	4903	6284 6284	7473 6865	7196 6629

Table 3b. Treatment means of maize yields by experiment for the Isabela, Puerto Rico, sites

		C01		L				and the set	21	4
FXPT	85	(1)	JED D L	EVH			_ <u></u> CO	DED N L	EVEL	
		6 ~ 4.º		+ e # 0	+= 85	85			5 4 U	+a 85
8-00	4174	=1.7.0		-			1	1		
8-19	2300	7097	5515	6195	6825	5234	5546	5768	6080	5912
8-21	F328	SORC	6 2 4 D	44 20	51 19	7864	3824	e 1 11	RCAF	4160
B-21	24 27	3470	1677	6292	5259	2000	6105	5693	6177	5677
8-22	1374	2067	4204	4475	5060	4173	3015	3990	4043	41111
A-23	1567	1076	2510	7100	0150	4080	4472	38.80	£416	4054
B-24	5734	5215	6346	5162	4159	204C	2660	2838	2498	2887
B- 25	E365	5560	55.14	0202	6430	6073	5435	5916	6043	6221
B-26	61.64	6617	7107	5/60	6137	5308	5355	5574	5970	£125
8- 27	2561	35.36	4770	TOPE	8246	6473	7005	6820	7270	£584
R-76	21/17	0200	4 2 3 3	4864	5501	4192	4422	3963	3568	4245
8-77	8.00	1200	0024	6310	6468	4217	5403	2586	5186	5103
8-39	40.20	6170	144 1	2/17	2546	1518	1807	1539	2197	1632
B- 30	4603	7565	5442	7023	7894	6550	6247	£023	6956	6343
R-10	2035	7505	4132	4 150	4287	4568	360 2	4772	4314	4222
9-01	2527	3548	4417	4803	4719	3129	3813	4176	4538	4707
8-43	2701	57035	3913	ABCE	5362	4236	3654	4042	3252	7410
8-44	1204	5/8/	7793	9190	8563	6719	7431	6709	7546	6628
Bade	5107	7700	2642	44 E0	5000	20.64	3711	3045	2004	3108
P- 16	20.00	7398	7503	7358	9364	6837	7255	7114	7501	7043
8-47	2540	31/7	3841	0.127	4742	3878	3495	3843	3300	FEFE
Batt	20.26	2004	7499	7655	8273	6461	6464	6390	6855	7250
8-52	3020	1559	3274	4203	7775	2620	3697	3387	4065	4070
8-57	11002	2011	6398	6472	7041	5656	5560	5387	6523	5889
BuEA	6070	4801	6296	7253	7058	5690	5411	5731	6703	£122
P-FF	6039	5941	7208	7213	7501	6502	6675	6929	6380	7316
D-56	0013	5227	6000	6472	6626	5762	6144	6146	4555	5931
P-57	42.34	5913	6365	6340	7433	5306	5845	5891	6420	FTTS
B-CA	40.80	5370	6120	6902	7318	5383	6129	6015	6243	6720
D 65	2290	4062	5077	6526	5794	43.42	5283	4808	5306	5002
0-00	2501	3006	3612	3351	3481	3475	2817	2698	3540	34.22
0 67	4526	5451	6856	6794	7476	·6747	6054	6217	61.81	5805
0-07	1785	3467	4323	4679	4 6 3 5	3857	3909	4636	4238	1250
82-68	\$731	5575	6026	6738	7543	5579	6217	6771	6006	6050
2-24	3498	3407	4594	4767	5595	4452	3917	4502	4348	4623
A							THE PARTY OF			

Table 3c. P and N main effect means for Jaiba, Brazil, experiments

1/ P main effect means are averaged over replications and N levels and are unadjusted for differences in the N levels used

2/ N main effect means are averaged over replications and P levels and are unadjusted for differences in the P levels used

					and the second					
	1	cur		1/			-		21	1
EXPT	25		d d	+- 00	+ 95		- cn	DED N L	EVEL	
		9.53				-000	-040	6	o 4 0	+• 85
					-				1-1-1	/
DD-20	50.35	4616	4705	4982	4573	4584	5131	4765	4486	4963
DR-21	70.26	5479	6770	6798	6916	5584	6408	6638	6769	6790
25-27	7970	8381	8783	8297	867i	7674	8136	8450	8541	88 5
00-27	3545	3301	3383	3616	4674	2087	3713	3629	3204	4888
00-70	4543	4890	5200	5293	4895	3848	4300	5718	5734	F122
00 71	1154	7385	7286	7041	7332	6599	6750	7179	7668	2008
20 22	47.15	5100	4866	5175	4770	2295	4519	5431	5656	6645
00 73	4404	4690	4314	4791	4781	2964	4751	5050	4699	44.84
70-34	3936	5502	4154	4686	4503	1520	4110	4713	-6078	6350
00-15	5778	5860	A \$58	5445	5419	3768	4053	5583	6761	6914
PP-35	5505	2065	1814	2049	1701	1377	212E	2156	1087	21.04
06-37	F071	6958	6555	5803	6251	4760	533F	F722	6026	7775
PR-38	74 35	7718	7730	6856	7528	7178	6900	7622	7665	7507
DR-39	3365	3361	2636	7404	3192	3699	2980	29.86	3996	20.00
PP-41	6331	7:91	6591	5667	7104	4720	5516	7007	7700	2503
DB-15	5855	616	5208	5877	5464	26 31	4561	5673	7175	
PR-43	5511	6272	5246	563F	5215	2057	4700	6471	7110	8223
DD-04	6316	6775	6026	7556	5075	5909	6017	5076	7 1 10	7445
PR-45	6329	6522	5267	FTET	6475	5664	6577	6671	413	6543
DE-16	4261	4517	4060	AFFA	4245	3700	4507	1071	6784	6715
9F-18	0391	4666	4903	4759	5543	1500	4023	6191	4558	4676
-DF-50	5285	5808	5405	5717	5107	4270	5107	5015	1685	5412
PR-51	7708	7797	6960	7220	7161	FCEA	7151	2015	6103	5079
PR-53	66.24	6393	5587	6137	6716	10.64	7151	(552	7475	7862
DF-54	73.99	7575	7217	7661	7170	40.74	5840	6557	6980	7:06
PR-55	F202	6931	5021	6303	6100	6329	1257	7235	8000	8214
DD-50	5278	5350	1061	5751	5199	4950	6226	5497	6928	6517
20-59	F526	7116	6727	6056	5025	24.89	419	5598	6504	7105
DR-50	5362	5700	4530	FOR	0000	4265	5907	€ 895	8005	8797
PP-61	FEOC	6324	5770	6117	5018	3115	5110	5707	6035	6089
05-50	7111	7859	7055	7455	0345	5240	6217	6681	5224	6252
PE-67	6650	6510	6567	1455	5304	6967	7981	6942	7436	7011
and the second	conn	0510	0201	rard	6521	6192	65 38	6014	5541	6632

Table 3d. P and N main effect means for Isabela, Puerto Rico, experiments

P main effect means are averaged ocer replications and N levels and are unadjusted for differences in the N levels used

1/

2/ N main effect means are averaged over replications and P levels and are unadjusted for differences in the P levels used Table 4a

SUMMARY OF REGRESSION STATISTICS FOR INDIVIDUAL SITES -- BRAZIL, CROP - MAIZE

Site	Season	Error DF	Standard Deviation	Over-all Mean	Coefficient of Variation	Estimat Polyr	es of the comial Mod	Six Para el (Std.	meters of Error in 1	the Qua Parenthe	adratic esis)	_R 2 [↑]	Lack of Fit MS	Error MS	(F for
		(k)	g/ha, 15.5%	moisture)		ь	^b 1	^b 2	^b 3	^ь 4	^{. b} 5		(7 DF)	••••	fit)
B-9	Dry	24	979	56 9 2	17.20	5692 (157)	1482** (253)	433 (253)	-522 (502)	-216 (502)	260 (382)	0.94	314,111	959,003	. 328
B-19	Wet	36	566	3955	14.31	3997 (144)	1779** (126)	131 (126)	-258 (251)	147 (251)	-105 (191)	0.94	590,648	320,123	1.845
B-20	Wet	36	714	5958	11.98	5958 (99)	628** (160)	-20 (160)	-155 (316)	155 (316)	-85 (241)	0.73	436,749	509,502	.857
B-21	Wet	36	779	4031	19.32	4031 (108)	1510** (175)	-62 (175)	, 1047** (346)	399 (346)	238 (263)	0.94	437,782	606,203	.722
B-22	Dry	24	678	4142	16.37	4407 (199)	3029** (176)	-17 (176)	-775* (348)	83 (3 ¹ 48)	70 (265)	0.98	332,783	459,732	0.72
^е в−23	Dry	24	433	2818	15.37	2640 (127)	1471** (112)	-109 (112)	118 (222)	347 (222)	-118 (169)	0.98	105,090	187,718	0.56
B-24	Dry	24	645	5968	10.80	5737 (189)	525** (167)	173 (167)	1 66 (331)	437 (331)	-25 (252)	0.61	511,541	415,812	1.23
• B-25	Dry	24	770	5667	13.58	5531 (226)	427* (199)	517* (199)	250 (394)	106 (394)	240 (300)	0.83	213,706	592,341	0.36
B-26	Dry	24	762	6783	11.23	6783 (122)	2260** (197)	100 (197)	-1681** (391)	-297 (391)	249 (298)	0.95	601,260	580,669	1.035
● B-27	Dry	24	861	4152	20.74	4196 (253)	1722** (223)	-46 (223)	-447 (441)	333 (441)	252 (336)	0.91	617,238	741,493	0.83
B-36	Wet	24	828	4836	17.12	5447 (243)	2564** (214)	424 (214)	-1565*.1 (424)	-31 (424)	-148 (323)	0.98	281,393	685,244	0.41
● B-37	Wet	24	756	1721	43.90	1785 (222)	1125** (196)	70 (196)	16 (387)	-182 (387)	-159 (295)	0.81	662,540	570,982	1.16

128

Table 4a (continued)

Site	Season	Error DF	Standard Deviation	Over-all Mean	Coefficient of Variation	Estima Poly	tes of the	e Six Pa del (Std	rameters o . Error in	of the Q n Parent	uadratic hesis)	R2	† Lacko Fit M	f Error S MS	(F for
		(k	g/ha, 15.5%	moisture)		bo	^b 1	^ъ 2	^b 3	^b 4	^b 5		(7 DF)		fit)
B-38	Wet	24	828	6604	12.53	6964 (243)	1659 ** (214)	8 (214)	-542 (424)	-398 (424)	606 (323)	0.90	685,320	684,831	1.00
● B-39	Wet	24	1052	4255	24.73	3961 (309)	-82 (272)	-62 (272)	582 (539)	187 (539)	23 (410)	0.13	1,813,082	1,107,153	1.64
B-40	Wet	24	1327	4047	32.80	4419 (389)	1167 ** (344)	926 * (344)	-777 (680)	-194 (680)	-405 (518)	0.77	1,620,540	1,761,991	0.92
• B-41	Wet	24	843	3766	22.39	3613 (247)	1594 ^{**} (218)	-479 * (218)	438 (432)	-38 (432)	-244 (329)	0.90	706,701	711,138	0.99
B-43	Dry	24	1000	6932	14.43	7851 (303)	3038 ^{**} (268)	-28 (268)	-2325 ** (531)	-76 (531)	242 (404)	0.97	703,409	1,004,771	0.70
● B-44	Dry	24	803	3163	25.40	3191 (241)	2262 ** (212)	-103 (212)	70 (420)	-143 (420)	-431 (319)	0.96	471,833	571,651	0.83
B-45	Dry	24	1435	7115	20.17	7594 (409)	1653 ^{**} (361)	145 (361)	-1030 (716)	-222 (716)	-265 (545)	0.84	1,260,385	009,075	1.25
● B-46	Dry	24	583	3686	15.84	3830 (173)	902 ** (153)	-203 (153)	-228 (303)	-148 (303)	185 (231)	0.86	320,597	366,668	0.87
B-47	Dry	24	709	6690	10.60	6913 (192)	2331 ^{**} (170)	472 (170)	-1430** (336)	849 [*] (336)	-532 * (256)	0.95	657,707	374,295	1.76
● B-48	Dry	24	1103	3519	31.33	3711 (353)	488 (311)	802 [*] (311)	-132 (617)	-367 (617)	-174 (470)	0.83	420,368	1,495,826	0.28
B-52	Wet	24	927	5766	16.08	6183 (264)	1952*^ (233)	274 (233)	-1584 <u>*</u> * (461)	494 (461)	-457 (351)	0.91	944,871	737,637	1.28
● B-53	Wet	24	1379	5912	23.33	6165 (418)	1950 ^{*#} (308)	\$30 (368)	-906 (729)	245 (729)	-177 (555)	0.84	1,569,733	2,133,989	0.74

Table 4a (continued)

Site	Season	Error DF (k	Standard Deviation g/ha, 15.5%	Over-all Hean moisture)	Coefficient of.Variation	Estima Poly b o	ites of th nomial Mo ^b l	e Six Par del (Std. ^b 2	ameters Error i ^h 3	of the Q In Parent ^b 4	uadratic hesis) b	R2	t Lack of Fit MS (7 DF)	Error MS	(F for lack of fit)
B-54	Wet	24	910	6796	13.39	6789 (247)	970** (218)	370 (218)	-280 (431)	29 9 (431)	23 (328)	0.74	1,122,368	639,967	1.75
● B-55	Wet	24	1048	6047	17.33	6446 (314)	866 ** (277)	101 (277)	-473 (550)	-571 (550)	-721 (419)	0.79	651,251	816,683	0.80
B-56	Wet	24	758	6049	12.53	6223 (222)	1705 ^{**} (196)	365 (196)	-719 (388)	265 (388)	470 (296)	0.93	555,582	559,273	0.99
● B-57	Wet	24	898	60 69	13.21	6139 (256)	1599 ^{**} (226)	719 ^{**} (226)	-200 (447)	18 (447)	-1170** (339)	0.97	251,182	805,699	0.31
B-64	Dry	24	489	4895	9.99	5369 (144)	2710 ^{##} (126)	341 [*] (126)	~899 ** (250)	-3 [°] 0 (250)	-288 (191)	0.99	152,966	239,043	0.64
● B~65	Dry	24	753	3 192	23.58	3140 (226)	558** (199)	89 (199)	-880 [*] (395)	1018 ^{**} (395)	-446 (301)	0.77	504,210	566,382	0 .89
B-66	Dry	24	769	6234	12.33	6420 (227)	1726 ** (201)	-416 [*] (201)	-907 [*] . (396)	421 (396)	74 (302)	0.88	1,012,178	591,562	1.71
● B-67	Dry	24	772	4194	18.40	4358 (228)	630 ** (201)	255 (201)	110 (399)	-540 (399)	-337 (304)	0.57	943,917	595,732	1.58
B-6 8	Dry	24	831	6140	13.53	6422 (316)	1679 ** (279)	222 (279)	406 (552)	-1142* (552)	63 (420)	G.94	459,420	690,672	9.68
• B-69	Dry	24	772	4405	17.52	4256 (219)	1330** (194)	157 (194)	109 (385)	279 (385)	-527 (293)	0.92	373,379	595,777	0.63

[†]Tmt SS(12 d.f.) used as denominator for calculating R²

*Significant at .05 level

** Significant at .01 level

•Residual transfer experiment

b is the "intercept", the estimated yield when P and N are both zero (in the coded values, this is the center of the design).

b, is the change in yield for each coded unit of P (since this variable is orthogonal to the other variables in the equation, b, is the same value as estimating the straight line relationship between y and P alone.

 \mathbf{b}_2 is the change in yield for each coded unit of N.

b₃, b₄ and b₅ are estimates of the P and N quadratic (degree of curvature) and interaction terms respectively.

Tal	Ь1,	e 4	4Ь
		-	

on	Error DF	Standard Deviation	Over-all Mean	Coefficient of Variation	Estimat Polyr	es of the omial Mod	Six Para el (Std.	meters o Error in	f the Qua Parenthe	dratic sis)	R2 [†]	Lack of Fit MS	E
	(K	g/na, 15.54 f	moisture)		ь	^ь 1	^b 2	^b 3	^ь 4	^ь 5		(7 DF)	
	24	879	4783	18.38	4762 (257)	-181 (227)	91 (227)	89 (450)	-36 (450)	10 (343)	0.12	683,919	77
	24	828	6415	12.91	6415 (133)	882** (215)	676** (215)	-767 (424)	-494 (424)	-192 (323)	0.86	508,123	68

SUMMARY OF RECRESSION STATISTICS FOR INDIVIDUAL SITES -- PUERTO RICO, CROP = MAIZE

Site	Season	DF (Deviation	Mean	of Variation Polynomial Model (Std. Error in Parenthesis) b_0 b_1 b_2 b_3 b_4 b_5					sis)	R2 [†]	Lack of Fit MS	Error MS	(F for lack of	
		<u> </u>		moisturej		бо	ь1	^Б 2	ь3	^b 4	^ь 5		(7 DF)		fit)
PR-19	Wet	24	879	4783	18.38	4762 (257)	-181 (227)	91 (227)	89 (450)	-36 (450)	10 (343)	0.12	683,919	772,691	.885
PR-20	Dry	24	828	6415	12.91	6415 (133)	882** (215)	676** (215)	-767 (424)	-494 (424)	-192 (323)	0.86	508,123	685,423	.741
PR-21	Dry	24	469	8330	5.63	8330 (75)	368** (122)	666** (122)	-54 (240)	-214 (240)	425* (183)	0.68	630,275	220,044	2.864*
•PR-23	Dry	24	1,553	3742	41.51	3198 (455)	629 (402)	841* (402)	965	456	-266	0.76	1,011,934	2,411,857	0.420
I'R-26		Data no	t reliable -	~-		(455)	(402)	(402)	(790)	(790)	(000)				
PR-27	Wet	24	747	4956	15.07	4956 (119)	220 (193)	876** (193)	-325 (383)	-1400** (383)	587** (291)	0.84	610,991	557,959	1.095
PR-30	Wet	24	866	7290	11.88	7290 (139)	-66 (224)	861** (224)	73 (444)	295 (444)	-6 (338)	0.85	292,411	749,976	. 3 9 0
• PR-31	Wet	24	632	4897	12.91	5411 (175)	30 (154)	23 97** (154)	-84 (305)	-1258** (305)	135 (233)	0,95	627,339	3 99,4 92	1.570
PR-33	Wet	24	937	4575	20.49	4866 (275)	208 (242)	252 (242)	385 (481)	-1144** (481)	-517 (365)	0.71	483,714	878,542	.551
•PR-34	Dry	24	979	4473	21.89	5093 (260)	159 (230)	2788** (230)	-229 (456)	-1391* (456)	-383 (347)	0.86	1,185,904	958,990	1.24
• PR-35	Dry	24	818	5471	14.96	5468 (220)	-252 (195)	1788** (195)	641 (385)	-635 (385)	-15 (294)	0.79	1,082,288	669,758	1.62
•PR-36	Dry	24	823	1952	42.18	2097 (237)	-259 (209)	3 92 (209)	166 (416)	-544 (416)	-298 (316)	0.42	760,808	678,042	1.12

131

Table 4b (continued)

Site	Season	Error DF (k	Standard Deviation g/ha, 15.5%	Over-all Hean moisture)	Coefficient of Variation	Estima Poly b	stes of t nomial M b,	he Six Par odel (Std. ba	ameters Error b.	of the Qu In Parenti b.	uadratic hesis) b	R ²	t Lack o Fit M	of Error IS NS	(F for lack of
						0		2	3	-4	5		(7.01)		rit)
PR-37	Dry	24	789	6319	12.49	6712 (210)	-94 (185)	1505** (185)	-338 (366)	-686 (366)	106 (279)	0.76	589,754	622,845	0.95
PR-38	Dry	24	811	7479	10.84	7476 (326)	-91 (199)	181 (199)	-109 (395)	116 (395)	113 (300)	0.36	828,108	657,716	1.26
PR-39	Dry	24	1160	3232	35.89	3064 (297)	-82 (262)	-243 (262)	167 (520)	271 (520)	127 (396)	0.46	1,696,966	1,345,070	1.26
• PR-41	Wet	24	1458	6597	22.10	6663 (428)	152 (377)	2076** (377)	439 (747)	-611 (747)	43 (569)	0.80	2,332,507	2,125,653	1.10
• PR-42	Wet	24	1033	5666	18.23	5810 (303)	-246 (267)	3334** (267)	294 (529)	-671 (529)	-166 (403)	0.90	2,670,626	1,066,781	2.50
• PR-43	Wet	24	884	5518	16.02	6333 (259)	-254 (229)	3135** (229)	209 (453)	-2340** (453)	-314 (345)	0.99	194,814	781,868	0.25
PR-44	Wet	24	1428	6455	22.13	6745 (419)	3 (370)	410 (370)	-431 (732)	-328 (732)	-6 (557)	0.27	1,510,481	2,039,959	0.74
PR-45	Wet	24	1015	6452	15.74	6704 (298)	94 (253)	572 * (253)	111 (520)	-769 (520)	-599 (396)	0.84	272,020	1,031,058	0.26
• PR-46	Wet	24	1005	4312	23.32	4411 (295)	15 (260)	517 (260)	-4 (515)	-255 (515)	-59 (392)	0.47	701,850	1,010,834	0.69
PR-48	Wet	24	1091	4895	22.29	4813 (320)	606 * (282)	459 (282)	130 (559)	83 (559)	-238 (426)	0.65	690,994	1,190,301	0.58
• PR-50	Dry	24	1014	5439	18.64	5866 (309)	-59 (273)	1080 ** (273)	-319 (542)	-798 (542)	-378 (412)	0.82	695,143	1,018,260	0.68
• pr-51	Dry	24	9 26	7207	12.85	7426 (272)	-103 (240)	1025** (240)	422 (475)	-997 * (475)	-64 (361)	0.77	850,332	957,734	0.99

Table 4b (continued)

Site	Season	Error DF (k	Standard Devlation g/ha, 15.5%	Over-all Mean moisture)	Coefficient of Varlation	Estima Poly b o	tes of th nomial Mo b 1	e Six Par del (Std. ^b 2	ameters Error : b ₃	of the Qu in Parenth ^b 4	adratic lesis) b ₅	R ²	t Lack o Fit M (7 DF)	f Error S MS	(F for lack of fit)
PR-53	Dry	24	1056	6340	16.65	6345 (359)	-149 (316)	1435 ** (316)	585 (626)	-598 (626)	28 (477)	0.98	101,598	1,044,982	0.10
PR-54	Dry	24	790	7373	10.71	7494 (235)	~94 (206)	1086** (206)	-140 (410)	-177 (410)	-104 (311)	0.92	233,162	554,239	0.42
PR-55	Dry	24	767	6262	12.25	6545 (233)	-104 (205)	1121 ** (205)	225 (408)	-965 * (408)	13 (310)	0.89	382,968	555,179	0.69
• PR-58	Wet	24	813	5173	15.72	5471 (255)	-79 (224)	2783 ** (224)	272 (445)	-1051 [*] (445)	48 (339)	0.98	294,987	652,401	0.45
●PR-59	Wet	24	894	6758	13.22	7071 (284)	-51 (250)	2639 ** (250)	-233 (496)	-584 (496)	776 * (378)	0.98	260,103	761,776	0.34
● PR-60	Wet	24	1001	5155	19.42	5562 (306)	-92 (269)	1673 ** (269)	691 (533)	-1752** (533)	-217 (406)	0.91	758,094	1,130,704	0.67
PR-61	Wet	24	1318	6112	21.57	6327 (380)	601 (335)	521 (335)	698 (664)	-1260 (664)	323 (505)	0.68	1,115,009	956,452	1.17
PR-62	Wet	24	648	7196	9.00	7486 (169)	-222 (149)	-44 (149)	-496 (295)	-292 (295)	16 (225)	0.30	761,457	351,308	2.17
PR-63	Wet	24	850	6629	12.82	6861 (267)	7 (236)	290 (236)	56 (466)	-665 (466)	682 (355)	0.71	356,518	836,640	0.43

 † Tmt SS (12 d.f.) used as denominator for calculating R²

*Significant at .05 level

**Significant at .01 level

Residual transfer experiment

b is the "intercept", the estimated yield when P and N are both zero (in the coded values, this is the center of the design).

b is the change in yield for each coded unit of P (since this variable is orthogonal to the other variables in the equation, b is the same value as estimating the straight line relationship between y and P alone.

 b_2 is the change in yield for each coded unit of N+

 b_3 , b_4 and b_5 are estimates of the P and N quadratic (degree of curvature) and interaction terms respectively.

							, -			
<u></u>			MEAN SQUARES		DF				MEAN SQUARES	
SOURCE	DF	<u>d</u>	Ŵ	W	DF	D	D	D	D	D
		E~19	B-20	B-21		B-9	B-22	B-23 ⁺	B-24	B-25 ⁺
Blocks Treatments P N ² p ² NP Lack of Fit Error	3 12 1 1 1 1 1 1 7 36	1,70J,179 5,6f2,934 341,792 62,998,305** 44,513 339,338 96,715 590,648 320,123	2,094,111 932,065 7,855,905** 78,798 121,682 63,164 436,749 509,502	6,567,164 4,502,167 76,211 45,373,822** 160,060 5,507,828** 498,613 437,782 606,203	2 12 1 1 1 1 1 1 7 24	664,4?6 3,308,131 2,801,024 32,784,730** 430,891 1,038,808 443,343 314,111 959,003	1,281.749 11,801,512 4,377 136,936,774** 26,230 2,288,881 32,399 332,783 459,732	99,029 2,827,461 177,809 32,315,703** 459,543 149,014 91,833 105,090 187,718	1,565,748 762,749 449,176 4,120,925*** 727,776 270,119 4,207 511,541 415,812	29,352 371,984 3,994,175 [*] 2,719,659 [*] 42,552 296,781 378,512 213,706
TOTAL	51				38			107,710	415,512	

SOURCE	DF	D	Ď	Ŵ	Ŵ	W			w	 0
		B-26	B-27 ⁺	B-36	B-37 ⁺	B-38	B-39	B-40	B-41	B-43
Elocks Treatments N P N ² P ² NP Lack of Fi Error	$2 \\ 12 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ t \\ 7 \\ 24 \\ 24 \\ 1 \\ 24 \\ 1 \\ 24 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	553,001 7,793,403 146,122 76 264,834** 1,734,734 10,757.234** 407,651 601,260 580,669	6,087,861** 2,083,+28 31,549 44,154,453** 422,615 561,242 416,550 617,238 41,493	1,581,116 9,397,376 2,688,884 98,107,358** 3,765 9,855,562** 143,193 281,393 685,244	837,046 1,990,468 72,951 18,879,161** 126,644 2,081 167,009 662,540 570,982	3,050,476* 4,204,070 849 41,058,635** 603,399 1,572,209 2,416,512 685,320 684,831	4,707,169 1,211,000 58,380 99,701 133,194 1,545,622 3,532 1,813,082 1,107,153	174,456 4,031,009 12,787,923 20,342,710 143,042 2,677,346 1,077,308 1,620,540 1,761,991	552,373 3,950,475 3,420,552* 37,902,692** 5,638 738,203 391,704 706,701 711,138	1,983,622 13,754,794 11,452 137,834,225** 21,809 21,881,976** 383,701 703,409 1,004,771

ANALYSIS OF VARIANCE FOR TRANSFER EXPERIMENTS, P x N, BRAZIL

Table 5a

Table 5a (continued)

SOURCE	DF	D	D	D	D	1)	U			
· · · · ·	-	B-44	B-45	B-46	B-47	B-48	B-52	w В~53	<u>W</u>	W B-55
Blocks Treatments P N ² P ² SP Lack of Fi <u>Error</u> TOTAL	2 12 <u>12</u> <u>24</u> <u>38</u>	2,138,992 6,763,090 1 158,314 1 76,392,832** 1 77,725 1 6,150 1 1,219,224 7 471,833 571,651	17,462,021 4,598,676 313,066 40,766,577** 187,772 4,634,190* 460,208 1,260,385 1,009,075	102,237 1,298,759 615,704 12,145,114** 83,298 270,922 225,888 320,597 366,668	1,510,745 8,319,742 3,327,553** 81,092,051** 2,741,241* 6,210,020** 1,862,095* 657,707 374,295	639,066 1,416,630 9,607,761* 3,558,204 513,029 178,293 199,698 420,368 1,495,826	2,020,759 6,304,061 1,119,550 56,892,799** 928,081 8,720,739** 1,373,471 944,871 737,637	288,251 5,680,834 2,753,959 51,035,993** 228,488 2,966,620 206,809 1,569,733 2,133,989	2,059,788 2,038,168 2,039,682 14,032,749 ^{7,*} 340,754 184,770 3,479 1,122,365 639,967	6,032,864 1,832,162 153,469 11,201,668 1,239,784 1,415,508 3,416,459 651,251 816,083

SOURCE	DF	WW	W	D	D	D	D	D	T)
		B-51	B-57	B-64	B-65	B-66	B-67	B-68	B-69
Slocks Freatments N P N ² p ² NP Lack of Fi <u>Error</u> TOTAL	2 12 1 1 1 1 1 1 1 1 1 2	832,546 4,394,037 1,986,796 43,384,023** 267,376 1,749,188 1,451,981 555,582 559,273	62,848 4,731,459 7,724,669** 38,146,745** 1,261 154,214 8,992,343** 251,182 805,699	224,461 97,661,107 1,743,226* 109,614,216** 440,214 3,776,690** 548,173 152,966 239,042	990,800 1,273,624 117,355 4,640,414** 3,943,120* 1,744,425 1,308,708 504,210 566,382	833,877 4,794,600 2,587,356* 44,493,955** 673,137 2,659,518* 35,989 1,012,178 591,562	841,700 1,280,179 967,148 5,931,295** 1,109,351 157 746,779 942,488 595,752	7,831,962 4,267,902 734,964 42,098,284** 4,967,319* 101,867 26,457 469,420 650,672	29,992 2,635,157 367,910 26,404,557** 295,888 113,780 1,826,102 373,379 595,777

+Residual Transfer Experiment

*Significant at .05 level **Significant at .01 level

D = dry season, W = wet season

135

lable 50	lab.	le	5b
----------	------	----	----

ANALYSIS OF VARIANCE FOR TRANSFER EXPERIMENTS, P x N, PUERTO RICO, CROP = MAIZE

MEAN SQUARES

SOURCE	DF	¥	D	D	D	W	W	W	W	Đ
		PR-19	PR-20	PR-21	PR-23 ⁺	PR-27	PR-30	PR-31 ⁺	PR-33	PR-34 ⁺
Blocks	2	847,520	622,120	962,390	6,571,247	1.272.704	820.962	434.312	683 097	3 532 020
Treatments	12	452,725	2,104,548	1,104,423	2,443,376	2,311,282	1,132,835	8.065.220	983.015	11 177 411
N		123,044	o,825,641**	6,610,220**	10,565,380*	11,444,854 ^{2,3}	11,076,489**	85.726.490**	948.377	116 002 825**
P_		190,017	11,615,191	2,020,048 ^{%%}	5,906,483	720,260	65,622	13.737	645,549	379 142
NŹ		4,833	927,855	174,592	791,670	7,464,445**	330,987	6,027,042***	4,956,023	8.281 682**
P-		26,658	3,045,480*	39,830	4,509,610	1,566,594	73,832	504,049	70.262	200.165
NP		722	242,550	1,189,503"	463,834	2,262,299	209	119,952	1.754.009	963 743
Lack of Fi	t	683,919	505,123	630,275*	1,011,934	610,991	292,411	627,334	483.714	1,185,904
Error	24	772,691	685,423	220,045	2,411,857	557,959	749,976	399,492	878,542	958,991
TOTAL	38									

SOURCE	DF	D	D	D	D	D	W	Ľ	W	w	
		PR-35 ⁺	PR-36 ⁺	PR-37	PR-38	PR-39	PR-41 ⁺	PR-42	PR-43 ⁺	PR-44	
Blecks Treatments	2	1,277,574	746,904 861 332	2,967,854	1,243,198	6,958,333	6,871,086	4,176,783	10,348,586***	973,366	
N	1	47,702,947 ^{**}	2,288,381	33,824,991 ^{**}	487,123	884,919	64,304,516 [%] *	15,628,236	14,240,427 $146,724,975^{8\%}$	1,208,313 2,511,968	
Р 8 ²	1	946,714 985,761	1,002,285	130,864 2,302,013	122,763	99,905 377 343	346,212 1 420 548	901,382	961,149 20 9 50 149 ²⁵	103	
p2 NP	1	1,565,508	104,801	435,994	45,601	106,403	376,576	89,063	347,256	1,004,966	
Lack of F	it 7	1,082,288	582,512 760,808	589,754	83,561 828,108	105,538	12,056 2,332,507	180,537 2,670,626	647,655 194,81+	272 1,510,461	
TOTAL	38	669,758	678,042	622,845	657,716	1,345,070	2,125,653	1,066,781	741,868	2,039,959	

Table	55	(continued)
-------	----	-------------

SUCRCE	DF	W'	W	W	D	D	D	D	D	
		PR-45	PR-46 ⁺	PR-48	PR-50	PR-51	PR-53	PR-54	PR-55	PR-58
Blocks Treatments D P N ² p2 NP Lack of Fit Error 2	2 12 1 1 1 1 1 1 7 24	2,342,050 962,192 4,891,003 133,017 2,250,283 11,714 2,356,146 272,020 1,031,058	12,471,683** 766,466 3,996,193 3,442 247,945 13,652 23,180 701,850 1,010,843	332,229 1,161,392 3,140,170 5,473,364 [%] 26,417 87,794 371,992 690,994 1,190,300	2,299,768 2,219,175 17,393,079** 2,421,228 959,954 937,126 695,143 1,018,260	879,244 2,145,956 15,675,197** 157,265 3,780,019* 171,605 27,064 850,332 857,734	5,500,862 2,832,587 30,750,653** 332,446 1,359,959 831,786 5,011 711,186 1,044,982	2,828,918 1,640,010 17,598,685** 131,896 119,298 126,494 71,611 233,162 554,239	1,699,763 2,095,241 18,754,975** 161,647 3,543,220* 1,193 1,077 382,968 555 179	2,050,618 10,167,817 115,622,868** 94,236 4,208,558* 8,262 14,969 294,987 652,401

SOURCE	DF	¥	W	W	W	W	
		PR-59	PR-60	PR-61	PR-62	PR-63	
Blocks	2	3,126,129	314,924	13,278,083	44,719	621.217	
Treatments	12	9,295,276	4,965,719	2,057,840	631,196	710.234	
N	1	103,919,929~~	41,766,404**	4,046,856	28.400	1 255 106	
Р	1	38,588	125,398	5,386,869*	733 611	784	
N ²	1	1,296,981	11,687,767**	6,044,705*	261 136	1 681 019	
P ²	1	513,833	391,765	726.837	1 210 226	30 216	
NP	1	3,953,256*	310,638	683,751	1,219,000	3 060 054	
Lack of F	it 7	260,103	758,094	1,115,009	761 /57	356 519	
Error	24	761,776	1,130,704	956,452	351,308	836,640	
IOTAL	38						

+ Residual Transfer Experiment

Treatment Number	Observed Yields	Observed Deviations	Predicted Yields (Ŷ) Experiment-specific Model 1	Uncertainty Factor $t_{.05} s \sqrt{x^* Cx}$	Lower 95% Confidence Limit	Upper 95% Confidence Limit	Predicted Yields from data from other 30 sites $(\hat{\bar{Y}}_{(-i)})$	Does $\hat{\overline{Y}}$ (-i) Occur without Confidence Interval
1	1455	-2687	-2745	1.96 (453.2106)(0.8195)	-3473	-2017	-2275	Yes
2	1585	-2557	-2875	.,	-3603	-2147	-2113	No
3	6229	2087	2303	"	1575	3031	1590	Yes
4	6451	2309	2376	"	1648	3104	1840	Yes
5	3130	-1012	-1039	1.96 (453.2106)(0.3706)	-1368	-710	-806	Yes
6	2803	-1339	-1076		-1405	-747	-719	No
7	5813	1671	1361	11	1032	1690	1023	No
8	6029	1887	1370		1041	1699	1130	Yes
9	4171	29	265	1.96 (453.2106)(0.4256)	-113	643	270	Yes
10	1081	-3061	-2870		-3429	-2311	-2041	No
11	6389	2247	2280		1721	2839	1868	Yes
12	4555	413	339	"	-220	898		Yee
13	4155	13	310	**	-249	869	220	Yes

Table 6. Example showing calculations for confidence interval procedure for experiment B-22

Note: Model 6 was assumed for the $\hat{\vec{Y}}_{(-i)}$ predictions.

No. within confidence interval = 9 = $\left(\frac{9}{13}\right) \times 100 = 69.2\%$

			Experiment,	/Season (Dry	, Wet), Ye	ar Planted		
Variety/Source	PR-4/W76	PR-5/W76	PR-18/\77	PR-22/D77	B-2/W76	B-5/W76	B-14/D77	B-18/W77
				——— kg/ha	a∠/			
X304C, Pioneer	9782	3962	8998	5856		7458		7738
X304B, Pionner	8957	3647	8184			7740		
X304A, Pioneer	8349		8138	5300		7680		
H638, Hawaii	8315							
X105A, Pioneer	8186					7032		
X306J, Pioneer		3388	7796	5654	8273	7442	4473	7523
QK 231, Australia		3264						
S 1973, Mexico		3234						
1110, Cargi ll			7520		9349		5182	496.
X5800, Pioneer				65 59			0102	190
X4817, Pioneer				5209				
Maya X					8820		4122	
259, Agroceres					8800			
Phoenix 1110					8292		4417	7193
H 610, Hawaii							4518	5351

Table 7. Mean grain yields of the leading five $\frac{1}{}$ maize varieties of eight trials conducted at Isabela, Puerto Rico and Jaiba, MG, Brazil.

1/ In total, 30 selected varieties and hybrids were tested during 1976-78; only the top-ranked 5 in each trial are shown above.

2/ Mean grain yields of 3 or 4 replicates, adjusted to 15.5% moisture.

	1977		1978		1979		1980	
Rank	Variety	Yield	Variety	Yield	Variety	Yield	Variety	Yield
		kg/ha [/]		kg/ha		kg/ha		kg/ha
1	Cargill 111	7336	Dekalb 7601	6770	Dekalb B670	8135	Cargill 111S	8500
2	Contibrasil 3	7158	Ag 170	6620	Cargill 125	7856	Cargill 111X	7888
3	Cargill 111X	7139	Dekalb B670	6574	Cargill 111X	7829	Cargill 317	7355
4	Cargill 318	7128	Ag 162-5	6452	Cargill 1115	7019	Cargill 5005-M	6823
5	Cargill 319	7127	Maya XIV	5643	Dekalb 7601	6897	Cargill 121	6809
6	Cargill 111S	7059	Phoenix 1413	5535	Phoenix B	6959	Cargill 115	6789
7	Cargill 317	6948	Contimayz	5491	Dina O5	6874	Phoenix B	6423
8	HV-Gen 200	6824	Dioneer X4816	5490	Ag 401	6836	Ag 259	6218
9	Composto A	6772	Cargill 5005-M	5435	Conti-Exp-l	6793	Dekalb R670	5885
10	Cargill 5005-M	6725	GO 05	5329	Ag 162-5	6703	Pioneer 6874	4829

Table 8. Mean grain yields of the top 10 varieties included in unirrigated "Brazil National Maize Trials" conducted at Jaiba, MG, Brazil from 1977 to 1980.

 $\underline{1}$ Adjusted to 15.5% moisture grain, means of 4 replicates.

Table 9. Mean grain yields of the top 10 varieties included in unirrigated "Brazil National Precocious Maize Trials" conducted at Jaiba, MG, Brazil in 1979 and 1980.

	1979		1980	
Rank	Variety	Yield	Variety	Yield
		kg/ha ¹ /		kg/ha
1	Agroceres 66A	7259	Agroceres 64A	4983
2	Pioneer 4816A	6378	Pioneer 6874	4399
3	Cargill 511	6365	Save 342	4301
4	Pioneer 4817	6040	Pioneer 6872	4267
5	Agroceres 773	5950	Dekalb E5601	4193
6	Pioneer 4816	5796	Pioneer 6875	4131
7	CMS 05	5893	Cargill 511	4059
8	Cargill 503	5675	Cargill 503	4041
9	Agroceres 64	5518	Cargill 513	4003
10	Cargil! 508	5450	Agroceres 301	3965

1/ Adjusted to 15.5% moisture grain, means of 4 replicates.

1976		1977	
Variety	Yield	Variety	Yield
	kg/ha		kg/ha
Davis	4473	Davis	3367
Bragg	4003	Essex	2884
Ransom	3815	Columbus	2845
Bossier	3513	B-1	2654
Forrest	3476	Forrest	2579
Columbus	3397	Calland	2527
Clark 63	3262	Improved Pelican	2384
Сорр	2941	Jupiter	2196
Cutler 71	2879	Ransom	2172
Calland	2766	Cobb	1933
Pickett 71	2698	Mitchell	1923
Woodworth	2655	Williams	1923
Hi]]	2641	Bossier	1898
Williams	2598	Bragy	1823
Improved Pelican	1178	Kahala	1787
Jupiter	153	Rillito	1734
Grand Mean	2903		2289
Coefficient of Variation (%)	19.2		47.6
5% LSD Variety Means	793.5		547.5

Table 10.	Mean grain vields of two INTSOY soubean variety trials
	and the first of the state of t
	conducted in 1976 and 1977 at Jaiba, MG, Brazil.

			Irriga	tion, mm wa	ter/applicat	tion ^{1/}	· · · · · · · · · · · · · · · · · · ·		
N	Date	0	4	S	12	16	20	Mean Yield	Grain/ kg N
kg/ha				Grain yiel	d, kg/ha ² /_				<u>kg k</u>
0	01-18-78 ^{-3/} 12-14-78 12-18-79	2285 4499 3106	2119 6205 3499	3281 6048 3636	2002 7689 4092	1027 7471 2985	1224 6548 3330	1990 6410 3441	
20	01-18-78 12-14-78 12-18-79	3208 5131 3607	2071 7019 4406	538 6048 3737	1727 7446 4213	2415 6260 3548	2023 8173 3638	1997 6680 3858	0.4 13.5 20,9
40	01-18-78 12-14-78 12-18-79	4776 4525 3981	3532 5169 5136	3307 6996 4623	4124 6997 4940	3192 7101 4315	4617 8284 4338	3925 6512 4556	53.8 2.6 27.9
80	01-18-78 12-14-78 12-18-79	5403 5643 4244	4931 6309 5916	5109 7034 6097	5522 7290 5742	5945 7453 5983	6095 6085 6173	5501 6636 5692	48.8 2.8 28.1
160	01-18-78 12-14-78 12-18 -79	7815 6915 4894	9969 6473 6553	7980 7194 7569	6974 6962 7843	7997 7557 9160	8954 9252 7541	8282 7392 7260	43.7 6.1 23.9
320	 12-14-78 12-18-79	4694 5236	7194 6961	6439 8394	8109 8750	7973 9201	8287 8794	7116 7889	2.2 13.9

Table 11. Maize, Pioneer hybrid X304C, grain yields from three irrigation x nitrogen experiments (PR-24, 40 and 57) conducted at Isabela, Puerto Rico.

1/ Water applications, 0-20 mm based on the entire plot surface area, were concentrated on the crop rows.

 $\frac{1}{2}$ / $\frac{1}{3}$ / Adjusted to 15.5° moisture grain.

Experiment PR-24, through error, received 8% less N than indicated above, kg grain/kg N calculations account for this error.

Treatmen (Periods	ts of Stress]/ Yield	Count	Ear Wt.	Shelling rate	Time to 50% Tassel	Lodged Plants	Mature Plant Ht.	100-seed Wt.
		kg/ha	No.	g	57 20	days	¢/ ;e	ст	g
lst 30 D	ays	6058a ² /	32 7a	134a	83.3a	79.6b	9.8a	239b	34.3a
2nd 30 D	ays	3003b	27.lc	79b	79 9b	83.8a	2.8a	185c	30.4c
3rd 30 d	ays	6287a	30 4ab	145a	83.5a	78.1b	9.la	273a	33,6b
No Stres	S	6271a	31 . 6ab	147a	83.la	78.7b	10.3a	269a	33.7ab
Subtreat ky p/ha	ments Plants/ha								
60	55000	6139ab	33.8a	135ab	82 . 9a	79 . 6b	9.0b	243a	33.8a
40	55000	5343bc	33 8a	12 1 bc	82 7a	90 . 1b	4.8b	236c	33.3ab
20	55000	5189bcd	31.Oab	125bc	83.0a	80.1b	7.4b	242ab	32.4b
0	55000	4285d	28.8bc	112c	80 . 9b	82.2a	2 5b	225c	31.8b
60	33000	4622cd	27.4c	147a	82 . 2a	79.1b	4.7b	250a	34.la
60	85000	6850a	27.9bc	117c	82.8a	79.2b	19.8a	253a	32.7ab

Table 12. Maize grain yield-related parameters for a moisture stress x P level x plant density experiment (B-50) conducted at Jaiba, MG, Brazil.

 $\underline{1}$ / Values are means of 3 replicates; yields are adjusted to 15.5% moisture grain.

2/ Means within columns within treatments or subtreatments with the same letter are not significantly different at the 0.05 level by Duncan's Multiple Range Test.
	Treatment	· · · · · · · · · · · · · · · · · · ·
No.	meq Ca/100 g soil	DM g/plant
1	0 ² /	0.48 d $\frac{3}{}$
2	0	4.37 c
3	.26	4.32 c
4	. 39	4.51 c
5	.50	4.86 bc
6	1.00	5.47 abc
7	2.00	5.52 bc
8	2.60	5.42 abc
9	2.86	5.20 bc
10	3.0	5.52 abc
11	4.0	6.91 a
12	4.29	5.57 abc
13	5.0	6.16 ab
14	6.0	6.28 ab
15	7.00	5.84 abc
16	8.00	5.95 abc

Table 13. Dry matter (DM) production of 34-day old maize (X304C) grown in pots of Coto clay!/ treated with and without complete fertilizer and with levels of lime.

1/ Soil from the Isabela secondary site 2 (Calero), ph 4 2 in H₂O.

2/ All treatments except no. 1 had a uniform application of complete fertilizer; treatment no. 1 received no fertilizer.

3/ DM values followed by the same letters are not significantly different at the .05 level of probability; means of four replications.

	Treatment		
No	Lime	Micronutrients	DM
m	eq Ca/100 g soil		g/plant
1 2 3 4 5 6 7 8	0 0 0 4 4 4 4 4	Mg + Zn + B Mg + Zn Mg + B Zn + B Mg + Zn + B Mg + Zn Mg + B Zn + B	5.03 bcd 4.58 bcd 3.85 cd 3.65 d 7.61 ab 7.17 abc 7.11 abc 8.91 a
/ Soil / DM va	from the Isabela s lues followed by f	secondary site 2 (Calero), pH 4 the same letters are not signif	.2 in H ₂ 0. icantly different at
/ Soil / DM va the .(able 15.	from the Isabela s lues followed by f D5 level of probat Dry matter (DM) of Coto clay!/ t (TSP)	secondary site 2 (Calero), pH 4 the same letters are not signif pility. Means of four replicat production of 28-day old maize created with various levels of	.2 in H ₂ O. icantly different at ions. (X3O4C) grown in pot phosphorus fertilizer
/ Soil 2/ DM va the .0 able 15. Treatmer	from the Isabela s lues followed by f D5 level of probat Dry matter (DM) of Coto clay!/ t (TSP)	secondary site 2 (Calero), pH 4 the same letters are not signif bility. Means of four replicat production of 28-day old maize created with various levels of	.2 in H ₂ O. icantly different at ions. (X3O4C) grown in pot phosphorus fertilizer DM
/ Soil / DM va the .0 able 15. Treatmer kg/ha	from the Isabela s lues followed by f D5 level of probat Dry matter (DM) of Coto clay!/ t (TSP)	Secondary site 2 (Calero), pH 4 the same letters are not signif oility. Means of four replicat production of 28-day old maize created with various levels of	.2 in H ₂ O. icantly different at ions. (X3O4C) grown in pot phosphorus fertilizer DM g/plant

Table 14. Dry matter (DM) production above ground of 34-day old maize (X304C) plants grown in pots of Coto clay / treated with various lime and micronutrient combinations.

Table 16. Dry matter (DM) production above ground of 28-day old maize (X304C) plants grown in pots of Coto clay treated with various combinations of lime and triple super phosphate (TSP).

	• Treatment		
10.	Lime	TSP	DM
	meq Ca/100g soil	g/pot ^{l/}	g/plant
1 ^{2/}	0	0	$1.05 \text{ ab}^{3/2}$
2	Ō	õ	0.58 h
3	0	0.82	1.85 efah
4	U	1.63	2.17 efg
5	0	4.08	3.30 de
5	2	0	1.16 fgh
7	2	0.82	2.56 ef
3	2	1.63	4.81 bc
)	2	4.08	5.99 ab
)	4	0	1.82 efgh
	4	0.82	3.10 de
) -	4	1.63	4.4 4 cd
3	4	4.08	7.47 a
	6	0	2.32 efg
)	6	0.82	5.03 bc
)	6	1.63	5.37 bc
1	6	4.08	6.87 a

1/ Pots utilized were 15 cm in diameter filled to approximately 15 cm with soil from the Isabela secondary site 2 (Calero), pH 4.2 in H₂O.

2/ All treatments except no. 1 received a uniform application of N, K and micronutrients.

3/ DM values followed by the same letters are not significantly different at the .05 level of probability Means of four replications.

Table 17. Maize, Pioneer hybrid 306B, wet season grain yields and 30-day plant heights from a phosphorus placement and rate of application experiment (PR-14) conducted at Isabela, Puerto Rico, during April to August 1977.

Applied	Р			a	
Placement	% of bdcst.	02	P, ppm in soil s .03	olution ^{1/} .05	.09
			Yield, k	g/ha ^{2/}	
15 cm band	20	5539 c	5311	6276	Г638 с
45 cm band	60	6096 bc	6745 abc	6897 abc	7516 ab
Broadcast	100	7183 abc	7525 ab	7241 abc	8338 a
Rill	100	6681 abc	6986 abc	7557 ab	6945 abc
					ander an an aggerrand to a spin of the state

- 1/ Amounts of P applied were 62, 98, 139 and 193 kg/ha to achieve .02, .03, .05 and .09 ppm of P in soil solution, respectively, for broadcast treatments. Actual kg/ha rates were proportionately less for band treatments.
- 2/ Values not followed by common letters are significantly different at the 5% level of probability. Values shown are means of three replications.

In-row		Tillage Tre	atment	
Spacing	Plants/ha	Conventional	No tillage	Mean
ст		Gra	in Yield, kg/ha ^{l/} -	······
20	66666	9273	9446	9360 a ² /
23	57971	8623	9142	8883 a
27	49383	7770	8174	7972 b
Mean		8555 a	8921 a	8738

Table 18. Maize, X304C, grain yields from a tillage x plant spacing experiment (PR-56) conducted at Isabela, Puerto Rico, from December 1979 to April 1980.

1/ Adjusted to 15.5% moisture; means of 3 replicates.

- 2/ Means in the same column or line followed by the same letters are not significantly different at the .05 level of probability.
- Table 19. Yield data from a mulching experiment (B-70) with maize (X304C) conducted at Jaiba, MG, Brazil, from June to December 1980.

Levels of maize stover	Grain Yield	Mean Ear Wt.	Plant Count
kg/ha <mark>l/</mark>	kg/ha	g	(No./Plot)
0	657 c ^{2/}	33 .3 c	49.0 a
1042	1100 bc	40.7 bc	51.0 a
2083	1280 bc	44.7 bc	51.7 a
4167	1076 bc	43.3 bc	49.0 a
6250	1046 bc	39.0 bc	50.3 a
8333	1108 bc	44.0 bc	49.7 a
10417	2017 ab	56.0 ab	53.0 a
12500	2544 a	72.7 a	52.0 a

1/ Adjusted to 15.5% moisture; means of 3 replications.

2/ Means with the same letter are not significantly different at the 0.05 level by Duncan's Multiple Range Test.

Table 20.	Maize, Cargill hybrid 111, yield data from a wet season	population
	density "wheel" experiment (B-15) planted November 1977	and harvested
	April 1978 at Jaiba, MG, Brazil. Each value represents	the mean of
	four replications of 8-plant samples.	

<u>Circle</u>	Density	Ears/	Ear Wt.	Grain Wt.	100-Seed Wt.	Grain Yield
, J	plants/ha	8 plants	g/ear	g/8 plants	g	kg/ha ^{2/}
3	70,126	7.8	148	942	254	8349
4	63,467	9.5	123	951	253	7612
5	57,544	10.0	124	1030	262	7446
6	52,174	9.5	132	998	260	6596
7	47,304	9,3	136	1031	274	6163
8	42,889	11.0	140	1276	273	6869
9	38,886	11.8	130	1261	262	6186
10	35,257	12.0	140	1353	263	6017
11	31,967	12.8	146	1526	262	6146
12	28 ,9 83	13.0	142	1516	288	5529
13	26,279	14.8	143	1746	274	5794
14	23,826	15.0	131	1582	2 9 5	4765
15	21,603	14.8	146	1779	295	4843
16	19,586	14.8	157	1912	291	4702
17	17,758	15.5	173	2140	288	5241
18	16,101	14.8	168	2034	300	4130
19	14,598	16.0	169	2211	294	4063
20	13,236	18,5	158	238 6	306	3986
21	12,001	17.3	151	2088	302	3162
2 2	10,881	17.0	160	2182	308	2986
23	9,865	16.3	167	2218	307	2763
24	8,945	17.5	166	2393	322	2704
25	8,109	18.0	168	2451	32 9	2511
26	7,353	19.5	164	2626	310	2428
27	6,667	17.0	172	2128	328	1784

1/ The innermost and outermost circles were discarded as borders.

 $\underline{2}/$ Adjusted to 15.5% moisture.

Planting date	Grain	Ears/plot	Ear Wt.	Shelling	Grain H2O	Lodging
	kg/ha	no	g	c/ 10	c/ io	6
15 Oct 1978	6386 a ^{_]/}	66 a	179 a	78.7 a	23.0 a	15.3 a
04 Nov 1978	5935 a	71 a	146 b	77.7 a	22.7 a	38.3 a
24 Nov 1978	5005 ab	72 a	129 c	75.8 a	22.6 a	30.7 a
14 Dec 1978	3982 Ь	72 a	102 d	75.6 a	22.3 a	13.3 a
03 Jan 1979	2098 c	60 a	58 e	76.1 a	14.2 b	71.0 b

Table 21. Maize, Cargill 111, data means from a date of planting experiment (B-32) conducted at Jaiba, Brazil.

<u>1</u>/ Means with the same letter are not significantly different at the 0.5 level by Duncan's Multiple Range Test.

	No. 20	-M			Yield		Unit Value	Total Value
Crop/Variety	Row	<u>s P1</u>	lanting/Harvest Dates	plot	yield	kg/ha	<u>\$ US</u>	<u>\$ US</u>
First Planting Cycle, Aug 78 -	- Feb 7	9						
Raddish, Redondo Verm. Precoce	e 2	Aug	g 18/78 - Sep-Oct/78	237 d	Z		0.125/dz	29.62
Onion, Red Creole	12	Aug	g 18/78 - Jan 4/79	29.2	kg	1622	0.83/kg	24.24
Carrots, Nantes Superior	7	Aug] 18/78 - Jan 10/79	124.0	kg	11,857	0. 42/ kg	51.67
Garlic, local cultivar	6	Aug	g 21/78 - None harvested	d (poor	germi	nation)		
Dry Bean, Campesino	26	Sep	0 11/78 - Dec 28/78	20.6	kg	515	0.63 kg	12.88
Maize, 111C (Cargill)	27	Sep	0 18/78 - Feb 24 /79	230.6	kg	5765	6₀25/60 kg	23.95
Total Value, lst cycle								142.36
Second Planting Cycle, Apr-Sep	79							
Dry Bean, Carioca	26	Apr	10/79 - Jul 25/79	60.0	<g< td=""><td>1500</td><td>0.82/kg</td><td>49.20</td></g<>	1500	0.82/kg	49.20
Maize, 111C (Cargill,	14	Apr	25/79 - Sep 18/79	24.7	<g< td=""><td>617</td><td>0₌19/kg</td><td>4.70</td></g<>	617	0₌19/kg	4.70
Squash, Abobora Menina	5	Apr	[•] 25/79 - Aug-Sep/79	186.6	<g< td=""><td>12440</td><td>0.42/kg</td><td>78.37</td></g<>	12440	0.42/kg	78.37
Cucumber	5	Apr	· 25/79 - none harvested	i				
Squash, Zuchini	3	Apr	· 25/79 – none harvested	1				
Total Value, 2nd cycle								132.27

Table 22.	Crop yield and economic data for four planting cycles of an irrigated, multicrop experiment (400 m ²) conducted at Jaiba, MG, Brazil.	intensive management
-----------	---	----------------------

Table 22 d	cont'd
------------	--------

Crop/Variety	No. 20-n Rows	n Planting/Harvest Dates	Yield plot yield	kg/ha	Unit Value \$US	Total Value \$ US
Third Planting Cycle, Sep 79	- Jul 80	<u>)</u>				
Cassava	13	Sep 20/79 - Jul 3/80	954.3 kg	23,857.5	0.16/kg	152.69
Dry Beans, Carioca	26	Sep 22/79 - Dec 28/79	37.4 kg	935.0	0.95/kg	35.53
Peanut, Tatu	12	Jan 4/80 - None harvested				
Total Value, 3rd Cycle						188.22
Fourth Planting Cycle, Jul 80) - Dec 8	30				
Onion, Early Yellow Globe	26	Jul 11/80 - Nov 19/80	466.3 kg _	11,657.5	0.65/kg	303.10
Dry Bean, Black Rico 23	26	Jul 15/80 - Oct 25/80	49.3 kg	1,232.5	1.20/kg	59.16
Carrot, Nantes Superior	13	Aug 25/80 - Dec 29/80	458.6 kg	11,465.0	0.73/kg	334.78
Total Value, 4th Cycle						697.04
Total Value of all 4 cycles	;					1,159.88
Mean Value per planting cyc	cle					289.97

BIBLIOGRAPHY

BSP-related Publications and Manuscripts prepared by UPR Staff

- Beinroth, F. H. and Spain, G. L. 1977. Clasificación de suelos y la transferencia de experiencia en el manejo de suelos. Memorias del V Congreso Latino-Americano de la Ciencia del Suelo. <u>Suelos Ecuatoriales</u> Vol. VIII, no. 1: 401-405.
- Beinroth, F. H. 1978. Some fundamentals of soil classification. Pages 12-19 In: L. D. Swindale (ed.), Soil Resource Data for Agricultural Development. Hawaii Agr. Exp. Sta., Univ. Hawaii, Honolulu, HI.
- Beinroth, F. H. 1979. Laboratory data and descriptions of the soils of the Benchmark Soils Project: Volume II -- Puerto Rico Project. Tech. Rep. 5 Benchmark Soils Project, College of Tropical Agriculture and Human Resources, Univ. Hawaii, Honolulu, HI.
- Beinroth, F. H., Uehara, G. G., Silva, J. A., Arnold, R. W., and Cady, F. B. 1980. Agrotechnology transfer in the tropics based on Soil Taxonomy. <u>Adv. Agron.</u> Vol. 33: 303-339.
- Beinroth, F. H. 1981. Some considerations on soil classification in general, and Soil Taxonomy in particular. Pages 18-25. In: J. A. Silva (ed.): Experimental designs for predicting crop productivity with environmental and economic inputs for agrotechnology transfer. Departmental paper 49, Hawaii Institute of Tropical Agriculture and Human Resources, Univ. Hawaii, Honolulu, HI.
- Beinroth, F. H. 1981. Use of soil classification for agrotechnology transfer in the tropics. Proc. First Conference on Fertilizer Technology Transfer in Puerto Rico, Univ. Puerto Rico, Mayaguez, Puerto Rico (in press).
- Beinroth, F. H. 1982. The stratification of the agroenvironment by Soil Taxonomy Proceedings, NITAHR Workshop on Agrotechnology Transfer. College of Tropical Agriculture and Human Resources, Univ. Hawaii, Honolulu, HI (in press).
- Capó, B. G. 1981. Considerations on experiment design and production functions. Pages 159-166. In: J. A. Silva (ed.): Experimental designs for predicting crop productivity with environmental and economic inputs for agrotechnology transfer. Departmental paper 49, Hawaii Institute of Tropical Agriculture and Human Resources, Univ. Hawaii, Honolulu, HI.
- Pringle, G. E. 1981. Economic aspects of production functions for soils. Pages 167-175. In: J. A. Silva (ed.): Experimental designs for predicting crop productivity with environmental and economic inputs for agrotechnology transfer. Departmental paper 49, Hawaii Institute of Tropical Agriculture and Human Resources, Univ. Hawaii, Honolulu, HI.
- Silva, J. A. and Beinroth, F. H. 1975. Report of the workshop on experimental designs for predicting crop productivity with environmental and economic inputs. Departmental paper 26, Hawaii Agr. Exp. Sta., Univ. Hawaii, Honolulu, HI, 50 pp.

Spain, G. L., Nightengale, S. P. and Badillo Feliciano, J. 1982. Corn variety trials on Eutrustox in Puerto Rico. Univ. Puerto Rico, <u>J. Agric</u>. (in press).

Swindale, L. D., Silva, J. A. and Bein oth, F. H. 1977. The Benchmark Soils Project -- An innovative approach agrotechnology transfer. Pages 620-627. In: Proc. Conference on Class ication and Management of Tropical Soils. Malaysian Society of Soil Science, Kuala Lumpur, Malaysia.