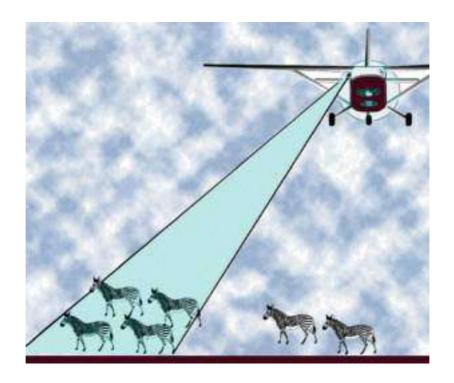
# AERIAL CENSUS IN TARANGIRE-MANYARA ECOSYSTEM, TANZANIA




**Dry Season 2016** 



# Systematic Reconnaissance Flight (SRF) Census Report

# Aerial Census in Tarangire-Manyara Ecosystem, Dry Season 2016



Conducted by

# TANZANIA WILDLIFE RESEARCH INSTITUTE

CONSERVATION INFORMATION AND MONITORING UNIT

The Tarangire-Manyara Ecosystem Aerial Census 2016 was made possible with generous funding from the Wildlife Conservation Society (WCS)/USAID and,



The Government of the United Republic of Tanzania Ministry of Natural Resources and Tourism P.O.BOX 15472, Dar es Salaam

To obtain a copy of this report please contact:

Tanzania Wildlife Research Institute

Conservation Information and Monitoring Unit (CIMU)

P.O. Box 661

Arusha, Tanzania Tel: + 255 27 2544448

Email: cimu@tawiri.or.tz info@tawiri.or.tz

Copyright © TAWIRI 2016

Citation: Tanzania Wildlife Research Institute, 2016 Aerial census in the Tarangire-Manyara Ecosystem, Dry Season, 2016. TAWIRI Aerial Survey Report

#### **COLLABORATION**

The successful implementation of the Tarangire-Manyara Ecosystem Aerial Survey was a product of thorough planning, hard work, and good collaboration between government and non-governmental partners. The following partner institutions collaborated with TAWIRI for the successful implementation of this census:



WILDLIFE DIVISION
P.O. Box 15472
Dar es Salaam, Tanzania
Contact: dw@mnrt.go.tz

and develop wildlife and wetlands resources, and fosters sustainable utilization that will contribute towards poverty reduction.



TANZANIA NATIONAL PARKS
P.O. Box 3134
Arusha, Tanzania
Contact: dg@tanzaniaparks.com

Tanzania National Parks (TANAPA) was created in 1959 to manage and regulate the use of areas designated as National Parks.

Wildlife Division works to conserve, manage



NGORONGORO CONSERVATION
AREA AUTHORITY
P.O. Box 1
Ngorongoro Crater, Tanzania
Contact:
conservator@ngorongorocrater.go.tz

Ngorongoro Conservation Area Authority (NCAA) cooperates with NCA indigenous residents to conserve the natural and historical resources of this World Heritage Site while providing optimal social services to residents, staff and visitors.







This report is made possible by the generous support of the American people through the United States Agency for International Development (USAID). The contents are the responsibility of TAWIRI in partnership with The Nature Conservancy, the Wildlife Conservation Society, and NTRI partners and do not necessarily reflect the views of USAID or the United States Government.

#### **EXECUTIVE SUMMARY**

A Systematic Reconnaissance Flight (SRF) survey was conducted in the Tarangire-Manyara ecosystem during the dry season from 27<sup>th</sup> October to 7<sup>th</sup> November 2016. The main objective of the census was to establish the population status and geographical distribution of large animals within the ecosystem. TAWIRI in collaboration with the Wildlife Division (WD), Tanzania National Parks (TANAPA), Ngorongoro Conservation Area Authority (NCAA) and the Wildlife Conservation Society (WCS) conducted this survey. The census zone covered an area of 16,521 km with 190 transects, with three aircraft flying at an average height of 339 feet above ground and an average speed of 171 km/h. An average transect strip width of 291 meters was maintained for the entire census zone. A total of twenty-nine wildlife species were counted in this census. The most abundant species were zebra (21,709  $\pm$ 2,844) followed by wildebeest (13,603  $\pm$ 3,381) and impala (5,721 $\pm$ 687). Seven species showed a stable population trend compared to 2011 using a d-test (values < 1.96 not significantly different from previous survey): wildebeest (d=0.20), zebra (d=1.03), impala (d=0.99), kongoni (d=1.2), Grant's gazelle (d=-0.02) and ostrich (d=0.24). Several species showed an increasing population trend: eland (d=2.28), giraffe (d=4.68), Thomson's gazelle (d=4.00), Bohor reedbuck (d=3.16), warthog (d=2.18), and greater kudu (d=3.98). Other species that were counted during this census were buffalo and elephant, but the 2014 total count estimates for those two species are considered more accurate estimates.

Major human activities include cattle with an estimate of 331,013  $\pm$ 25,504, shoats (sheep and goats) with an estimate of 228,360  $\pm$ 18,728 and donkeys with an estimate of 4,393  $\pm$ 703. All livestock show a strongly increasing population trend, doubling from the previous estimate in 2011.

#### RECOMMENDATIONS

Based on our findings we recommend the following:

- To conduct a study that addresses the influence of land use changes, especially settlements, livestock keeping and agriculture on wildlife numbers and distribution.
- Ground counts are encouraged in Manyara National Park due to difficulties in conducting SRF counts over the forest and escarpment.
- Carnivores, small mammals and primates require specially-designed ground censuses in order to establish their relative abundance.

- The ecosystem used to be a stronghold of species such as gerenuk and oryx. The current population is reduced and restricted to small area within the ecosystem. Consequently, the SRF technique is no longer an appropriate method to enumerate these species, and ground methods should be employed instead.
- In order to protect wildlife outside designated protected areas (dispersal and corridor areas) there is a need to encourage local communities in participatory conservation though strengthening existing Wildlife Management Areas (WMAs).

# TABLE OF CONTENTS

| COLLABORATION                                                   |     |
|-----------------------------------------------------------------|-----|
| EXECUTIVE SUMMARY                                               | IV  |
| RECOMMENDATIONS                                                 | IV  |
| TABLE OF CONTENTS                                               | V   |
| LIST OF FIGURES                                                 | VII |
| LIST OF TABLES                                                  | IX  |
| 1 INTRODUCTION                                                  | 1   |
| 1.1 BACKGROUND                                                  | 1   |
| 1.2 SURVEY OBJECTIVES                                           | 1   |
| 1.3 SURVEY AREA                                                 | 3   |
| 1.3.1 LOCATION                                                  | 3   |
| 1.3.2 ADMINISTRATIVE AREAS OF THE TARANGIRE-MANYARA ECOSYSTEM   | 4   |
| 1.3.3 CLIMATE                                                   | 5   |
| 1.3.4 VEGETATION                                                | 6   |
| 1.3.5 SOCIO-ECONOMIC STATUS                                     | 6   |
| <u>2</u> <u>METHODS</u>                                         | 6   |
| 2.1 TRANSECT DESIGN AND FLIGHT PLAN                             | 7   |
| 2.2 DATA COLLECTION                                             | 8   |
| 2.3 TRACK LOG AND PARAMETERS                                    | 8   |
| 2.4 DATA ANALYSIS                                               | 10  |
| 3 RESULTS                                                       | 11  |
| 3.1 WILDLIFE ESTIMATES FOR THE TARANGIRE-MANYARA ECOSYSTEM      | 11  |
| 3.2 WILDLIFE ESTIMATES PER ADMINISTRATIVE AREA                  | 12  |
| 3.3 WILDLIFE POPULATION TRENDS                                  | 14  |
| 3.4 DISTRIBUTION AND DENSITY OF WILDLIFE                        | 15  |
| 3.4.1 ZEBRA DISTRIBUTION AND DENSITY                            | 15  |
| 3.4.2 BUFFALO DISTRIBUTION AND DENSITY                          | 17  |
| 3.4.3 WILDEBEEST DISTRIBUTION AND DENSITY                       | 18  |
| 3.4.4 ELEPHANT AND CARCASS DISTRIBUTION AND DENSITY             | 20  |
| 3.4.5 IMPALA DISTRIBUTION AND DENSITY                           | 22  |
| 3.4.6 GRANT'S GAZELLE DISTRIBUTION AND DENSITY                  | 24  |
| 3.4.7 GIRAFFE DISTRIBUTION AND DENSITY                          | 26  |
| 3.4.8 KONGONI DISTRIBUTION AND DENSITY                          | 28  |
| 3.4.9 ELAND DISTRIBUTION AND DENSITY                            | 30  |
| 3.4.10 WARTHOG DISTRIBUTION AND DENSITY                         | 32  |
| 3.4.11 Greater and Lesser kudu density and distribution         | 34  |
| 3.4.12 ORYX AND GERENUK                                         | 36  |
| 3.4.13 COMMON WATERBUCK DISTRIBUTION AND DENSITY                | 37  |
| 3.4.14 BOHOR REEDBUCK DISTRIBUTION AND DENSITY                  | 38  |
| 3.4.15 OSTRICH DISTRIBUTION AND DENSITY                         | 39  |
| 3.4.16 MARABOU STORK, PELICANS AND GROUND HORNBILL DISTRIBUTION | 41  |
| 3.5 HUMAN ACTIVITIES IN TARANGIRE-MANYARA ECOSYSTEM             | 41  |
| 3.5.1 HUMAN ACTIVITY ESTIMATES BY ADMINISTRATIVE AREAS          | 41  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2 HUMAN ACTIVITY TRENDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .3 CATTLE DISTRIBUTION AND DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                            |
| 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .4 SHOAT DISTRIBUTION AND DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                            |
| 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .5 AGRICULTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47                                            |
| 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .6 HUMAN SETTLEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49                                            |
| 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7 TREE FELLING AND CHARCOAL KILN DENSITY AND DISTRIBUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53                                            |
| <u>4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACKNOWLEDGEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>54</u>                                     |
| <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>54</u>                                     |
| <u>6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APPENDICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>57</u>                                     |
| 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TARANGIRE-MANYARA ECOSYSTEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57                                            |
| 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APPENDIX II. LIST OF GROUND CREW PARTICIPATION FOR THE 2016 DRY SEASON AERIAL CENS OF THE TARANGIRE-MANYARA ECOSYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5US<br>57                                     |
| 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58                                            |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AFFENDIA III. SFECIES LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                                            |
| <u>7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GLOSSARY OF IMPORTANT CENSUS TERMINOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>59</u>                                     |
| 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SURVEY AREA (Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59                                            |
| 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59                                            |
| 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POPULATION ESTIMATE (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59                                            |
| 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STANDARD ERROR (SE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                            |
| 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                            |
| <b>7.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SIGNIFICANT DIFFERENCE (D-TEST BETWEEN POPULATION ESTIMATES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                            |
| LIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 1: Location of Tarangire-Manyara ecosystem in relation to other protected areas in Tanzan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 2: Administrative areas in the Tarangire-Manyara ecosystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 3: Map of Tarangire-Manyara Ecosystem showing planned transects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ure 4: Map showing flight logs in the Tarangire - Manyara ecosystem, dry season 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gure 5: Zebra population trend in Tarangire-Manyara ecosystem, comparing SRF aerial counts from 1990 to 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| Figi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ure 6: Zebra distribution and density in the Tarangire - Manyara ecosystem, dry season 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 7: Buffalo distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| FIDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | unts                                          |
| Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial conform 1990 to 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unts<br>18                                    |
| Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial conform 1990 to 2016ure 9: Wildebeest distribution and density in the Tarangire - Manyara ecosystem, dry season 2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unts<br>18<br>016                             |
| Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial conform 1990 to 2016ure 9: Wildebeest distribution and density in the Tarangire - Manyara ecosystem, dry season 2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | unts<br>18<br>016<br>19                       |
| Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016ure 9: Wildebeest distribution and density in the Tarangire - Manyara ecosystem, dry season 2 ure 10: Elephant and carcass distribution and density in the Tarangire-Manyara Ecosystem, dry                                                                                                                                                                                                                                                                                                                                                    | unts<br>18<br>016<br>19                       |
| Fig<br>Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unts<br>18<br>016<br>19<br>/<br>21            |
| Fig<br>Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unts<br>18<br>016<br>19<br>/<br>21            |
| Fig<br>Figu<br>Figu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unts<br>18<br>016<br>19<br>/<br>21<br>s<br>22 |
| Fig<br>Fig<br>Fig<br>Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unts<br>18<br>016<br>19<br>/<br>21<br>s<br>22 |
| Fig<br>Fig<br>Fig<br>Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016  ure 9: Wildebeest distribution and density in the Tarangire - Manyara ecosystem, dry season 2  ure 10: Elephant and carcass distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016  gure 11: Impala population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial count from 1990 to 2016  ure 12: Impala distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016 gure 13: Grant's gazelle population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial count from 1990 to 2016. | unts 18 016 19 / 21 s 22 23 al                |
| Figure Fi | gure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial confrom 1990 to 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unts 18 016 19 / 21 s 22 23 ial 24            |

| Figure 15: Giraffe population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts       |
|-------------------------------------------------------------------------------------------------------|
| from 1990 to 2016                                                                                     |
| Figure 16: Giraffe distribution and density in the Tarangire - Manyara ecosystem, dry season 2016 27  |
| Figure 17: Kongoni population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts       |
| from 1990 to 2016 28                                                                                  |
| Figure 18: Kongoni distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016. 29   |
| Figure 19: Eland population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from    |
| 1990 to 2016 30                                                                                       |
| Figure 20: Eland distribution and density in the Tarangire - Manyara ecosystem, dry season 2016 33    |
| Figure 21: Warthog population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts       |
| from 1990 to 2016                                                                                     |
| Figure 22: Warthog distribution and density in the Tarangire - Manyara ecosystem, dry season 2016 33  |
| Figure 23: Kudu spp. (aggregate) population trends in Tarangire-Manyara Ecosystem, comparing SRF      |
| aerial counts from 1990 to 2016.                                                                      |
| Figure 24: Greater and lesser kudu distribution and density in the Tarangire - Manyara ecosystem, dry |
| season 2016                                                                                           |
| Figure 25: Oryx and Gerenuk distribution and density in the Tarangire-Manyara Ecosystem, dry          |
| season 2016                                                                                           |
| Figure 26: Common Waterbuck distribution and density in the Tarangire-Manyara Ecosystem, dry          |
| season 2016                                                                                           |
| Figure 27: Reedbuck distribution and density in the Tarangire-Manyara Ecosystem, dry season 201638    |
| Figure 28: Ostrich population trend in Tarangire-Manyara Ecosystem, 1990 to 2016                      |
| Figure 29: Ostrich distribution and density in the Tarangire - Manyara ecosystem, dry season 2016 40  |
| Figure 30: Cattle population trend in Tarangire-Manyara ecosystem, dry season 2016                    |
| Figure 31: Cattle distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016 44     |
| Figure 32: Shoats population trend in Tarangire-Manyara ecosystem, dry season 2016 45                 |
| Figure 33: Shoat distribution and density in the Tarangire - Manyara ecosystem, dry season 2016 46    |
| Figure 34: Farm plots trend in Tarangire-Manyara ecosystem, dry season 2016 47                        |
| Figure 35: Cultivation distribution in the Tarangire-Manyara Ecosystem, dry season 2016 48            |
| Figure 36: Occupied bomas trend in Tarangire-Manyara ecosystem, dry season 2016 49                    |
| Figure 37: Thatched roof trend in Tarangire-Manyara ecosystem, dry season 2016 50                     |
| Figure 38: Bati roof trend in Tarangire-Manyara ecosystem, dry season 2016 50                         |
| Figure 39: Boma distribution in the Tarangire-Manyara Ecosystem, dry season 2016 52                   |
| Figure 40: Bati and thatched roof distribution and density in the Tarangire-Manyara Ecosystem, dry    |
| season 2016                                                                                           |
| Figure 41: Tree felling and Charcoal kiln locations in the Tarangire-Manyara Ecosystem, dry season    |
| 2016                                                                                                  |

# LIST OF TABLES

| Table 1: Wildlife Surveys in the Tarangire-Manyara Ecosystem 1987-date                         | 2    |
|------------------------------------------------------------------------------------------------|------|
| Table 2: Surveyed areas of Tarangire-Manyara ecosystem                                         |      |
| Table 3: Parameters                                                                            |      |
| Table 4: Wildlife estimates in the Tarangire-Manyara ecosystem                                 | . 11 |
| Table 5: Wildlife estimates per administrative area                                            | . 13 |
| Table 6: Wildlife population trends, comparing SRF counts, in the Tarangire-Manyara Ecosystem, |      |
| 1990 to 2016                                                                                   | . 14 |
| Table 7: Human activity estimates in the Tarangire -Manyara ecosystem                          | . 41 |
| Table 8: Human activities by administrative area                                               | . 42 |
| Table 9: Human activity trend in Tarangire-Manyara ecosystem, dry season 2016                  | . 43 |

#### 1 INTRODUCTION

# 1.1 Background

The Tarangire-Manyara ecosystem located in northern Tanzania (Figure 1) is among the key areas for conservation of Cape buffalo (*Syncerus cafer*), African elephant (*Loxodonta africana*) and other wildlife species in Tanzania. The ecosystem covers 16,521 km of which more than 60% is outside the core-protected areas (National Parks and Game Reserves). The Tarangire-Manyara ecosystem includes Tarangire and Lake Manyara National Parks, Mkungunero Game Reserve, Simanjiro, Mto wa Mbu and Lolkisale Game Controlled Areas, Burunge, Randilen and Makame Wildlife Management Areas and wildlife corridors of Kwakuchinja, Kibaoni and Manyara Ranch.

Aerial wildlife censuses have been carried out in the ecosystem since 1987 using two methods, Systematic Reconnaissance Flight (SRF) and Total Counts (TC). Total counts in this ecosystem are done only for elephant and buffalo, the last being conducted in 2014 (TAWIRI 2015). For other large mammals the SRF is applied, and the last census was conducted in the dry season of 2011.

# 1.2 Survey Objectives

The objectives of the aerial wildlife census in the Tarangire-Manyara ecosystem were: (i) to determine the population status of large mammals, (ii) to map their distribution patterns and densities, (iii) to derive their population trends, (iv) to assess abundance and distribution of major human activities, and (v) to document the census data and results in the centralized wildlife database (SISTA) at TAWIRI which allows comparison between current and previous censuses.

The most recent previous SRF census was conducted in the dry season of 2011 (Table 1).

Table 1: Wildlife Surveys in the Tarangire-Manyara Ecosystem 1987-date

| Year | Season | Tech<br>nique | Survey coverage                       | Area<br>(km²) | Source          |
|------|--------|---------------|---------------------------------------|---------------|-----------------|
| 1987 | Dry    | SRF           | Tarangire-Manyara Ecosystem           | 12,150        | Campbell (1987) |
| 1988 | Wet    | SRF           | Tarangire-Manyara Ecosystem           | 11,495        | Campbell (1988) |
| 1990 | Dry    | SRF           | Tarangire Ecosystem (Excluding LMNP*) | 8,359         | TWCM (1991)     |
| 1994 | Wet    | SRF           | Tarangire Ecosystem (Excluding LMNP)  | 12,826        | TWCM (1994)     |
| 1994 | Wet    | SRF           | Tarangire Ecosystem (Excluding LMNP)  | 12,389        | TWCM (1994)     |
| 1995 | Dry    | TC            | Tarangire-Manyara Ecosystem           | 12,000        | TWCM (1995)     |
| 1996 | Wet    | TC            | Tarangire Ecosystem (Excluding LMNP)  | 8,000         | TCP (1997)      |
| 1997 | Wet    | SRF           | Tarangire-Manyara Ecosystem           | 12,987        | TWCM (1999)     |
| 1998 | Wet    | TC            | Tarangire-Manyara Ecosystem           | 12,000        | TWCM (1998)     |
| 1999 | Dry    | SRF           | Tarangire Ecosystem (Excluding LMNP)  | 8,385         | TWCM (2000)     |
| 2000 | Dry    | TC            | Tarangire-Manyara Ecosystem           | 9,500         | TWCM (2000)     |
| 2001 | Wet    | SRF           | Tarangire-Manyara Ecosystem           | 12,000        | TAWIRI (2004)   |
| 2001 | Wet    | TC            | Tarangire-Manyara Ecosystem           | 12,612        | TAWIRI (2004)   |
| 2004 | Dry    | TC            | Tarangire-Manyara Ecosystem           | 12,000        | TAWIRI (2004)   |
| 2004 | Dry    | SRF           | Tarangire-Manyara Ecosystem           | 12,972        | TAWIRI (2004)   |
| 2006 | Dry    | TC            | Tarangire-Manyara Ecosystem           | 12,766        | TAWIRI (2006)   |
| 2007 | Dry    | SRF           | Tarangire-Manyara Ecosystem           | 12,971        | TAWIRI (2007)   |
| 2009 | Dry    | TC            | Tarangire-Manyara Ecosystem           | 12,958        | TAWIRI (2009)   |
| 2011 | Dry    | SRF           | Tarangire-Manyara Ecosystem           | 12,958        | TAWIRI (2011)   |
| 2014 | Dry    | TC            | Tarangire-Manyara Ecosystem           | 16,135        | TAWIRI (2015)   |
| 2016 | Dry    | SRF           | Tarangire-Manyara Ecosystem           | 16,521        | TAWIRI (2016)   |

<sup>\*</sup>LMNP = Lake Manyara National Park

# 1.3 Survey area

# 1.3.1 Location

The Tarangire-Manyara census conducted in 2016 covered a total area of 16,521km . The ecosystem lies in northern Tanzania between  $3^{\circ}$  22' 00" to  $5^{\circ}$  12' 20" South and  $35^{\circ}$  40' 53" to  $37^{\circ}$  5' 22" East ( Figure 1).

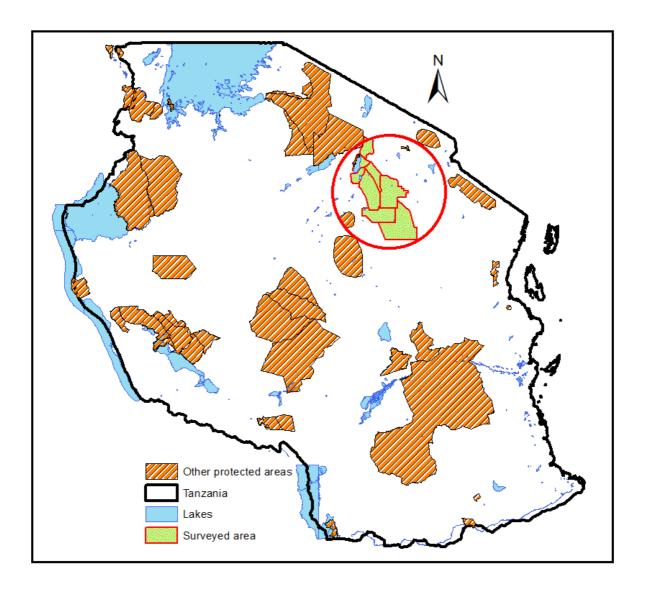



Figure 1: Location of Tarangire-Manyara ecosystem in relation to other protected areas in Tanzania

# 1.3.2 Administrative Areas of the Tarangire-Manyara Ecosystem

Administrative areas covered by this survey include Tarangire and Lake Manyara National Parks, Mkungunero Game Reserve, Lolkisale Game Controlled Area (and Randilen WMA), Simanjiro plains, Mto wa Mbu, Kwakuchinja Open Area, Kibaoni Open Area, Burunge WMA and Manyara Ranch, and Outside south (Makame WMA). The relative area covered by these administrative areas is shown in Table 2 and Figure 2.

Table 2: Surveyed areas of Tarangire-Manyara ecosystem

| Admin block     | Area (km²) |
|-----------------|------------|
| Burunge WMA     | 618        |
| Kibaoni         | 156        |
| Kwa Kuchinja    | 488        |
| Lake Manyara NP | 58         |
| Lolkisale       | 1,068      |
| Makame WMA      | 4,348      |
| Mkungunero      | 1,507      |
| Mto wa Mbu      | 982        |
| Out west        | 103        |
| Outside South   | 866        |
| Simanjiro       | 3,545      |
| Tarangire NP    | 2,783      |

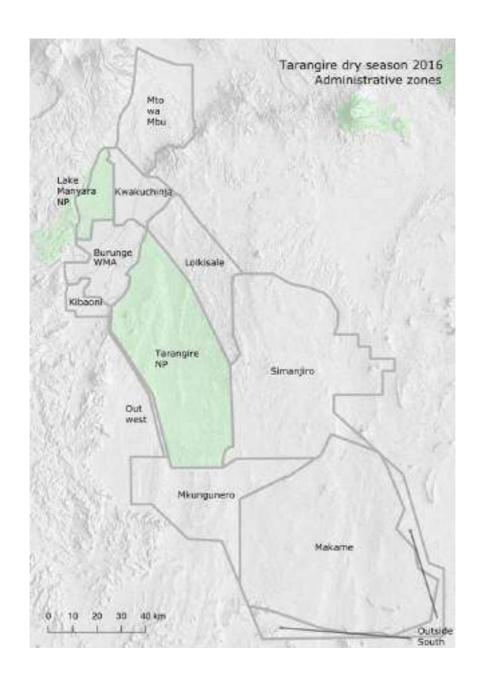



Figure 2: Administrative areas in the Tarangire-Manyara ecosystem.

# **1.3.3** Climate

The average rainfall in Tarangire-Manyara ecosystem is approximately 600-650 mm per year (Galanti *et al*, 2000), and the area is lying just within the arid climatic zone (Pratt & Gwynne, 1997). Monthly figures show that March and April are the wettest months, and June to October is very dry, often with no rain. The rainy season can be divided into two periods, with the short rains falling from November to February, and the long rains from March to May.

# 1.3.4 Vegetation

The ecosystem has a relatively rich floristic diversity, consisting mainly of *Combretum-Dalbergia* and *Acacia-Commiphora* woodlands, grasslands, and flood-plains (Lamprey, 1963), and *Acacia-Themeda* woodled grassland (Peterson, 1978). In the arid lowlands (1000 m above sea level) there are small moist enclaves in a generally dry environment (ground water forest near Lake Manyara and some areas bordering Tarangire River), that are covered by extended grasslands where drainage is poor owing to volcanic ash, and by bush thickets and *Acacia* woodlands. Dominant grass species include *Sporobolus spicatus*, *robustus*, *marginatus*, *Cyperus laevigatus*, *Themeda triandra*, *Panicum* sp., *Hyparrhenia* sp., *Digitaria* sp., and *Pennisetum* sp. (Pratt & Gwynne, 1977).

#### 1.3.5 Socio-economic status

The traditional pastoral Maasai and Waarusha people traditionally co-existed relatively peacefully with wildlife. However, over the last 25 years there has been a major immigration of other groups, mainly non-pastoralists, into the area (TCP, 1997). Traditionally, agriculture was subsistence-based, but now also includes market-driven production. Large-scale farms, mainly for seed-bean export, were started in 1971 in Lolkisale (Borner, 1985). The highest rate of agriculture expansion occurred in the 1980's (Davison, 1991). The boom in agriculture would suggest that the area is well-suited to farming, but the area's low and erratic rainfall, high temperatures, and infertile soil indicate that it is only marginally suited for agriculture (Davison, 1991).

#### 2 METHODS

The aerial census was conducted following the systematic reconnaissance flight (SRF) technique as described by Norton-Griffiths (Norton-Griffiths 1978), and a smaller area of total count (TC) in Lake Manyara National Park where transect flying is inappropriate due to the narrowness of the block and terrain (Norton-Griffiths 1978). Three aircrafts (5H-TPK, 5H-TPM and 5H-MPK) were flying at a target height of 350 ft. (~109m) above ground and a target ground speed of 180 km/h.

SRF is a sample method, based on sampling narrow strips along <u>transects</u> (long flight lines), where the average density of each species in the samples is then multiplied by the total area to produce an <u>estimate</u> for the total survey area. The method depends on the samples being <u>representative</u> of the whole population – not that the animals themselves are evenly distributed, but that the samples are allocated without reference to the distribution of animals; in the case of SRF, the samples are allocated systematically according to a predefined map. More information on method is provided in Appendix 7. Total counts rely on searching and enumerating all target species in a survey area. It is appropriate for a limited set of highly-visible species and small areas that can be counted in a single flight session.

Normally only buffalo and elephant are counted in total counts (highly visible and aggregated species), but other species (impala size and larger) were also counted due to the small sample block size; however, it is likely that these smaller species were undercounted in the Manyara block.

# 2.1 Transect design and flight plan

Transects were spaced at 2.5km and 5km intervals with variable orientations due to the nature of terrain, ecological gradient and aiming at maximizing number of samples (Figure 3). Transects were *a priori* evenly subdivided into subunits between 2.1 and 2.5 km in length (typically around 40 seconds of flying time) and uploaded onto GPS units. Geo-referencing of aircraft on transect was determined by GPS (Garmin 60Csx or 296).

An aerial total count method was used over the escarpment in the Lake Manyara National Park.

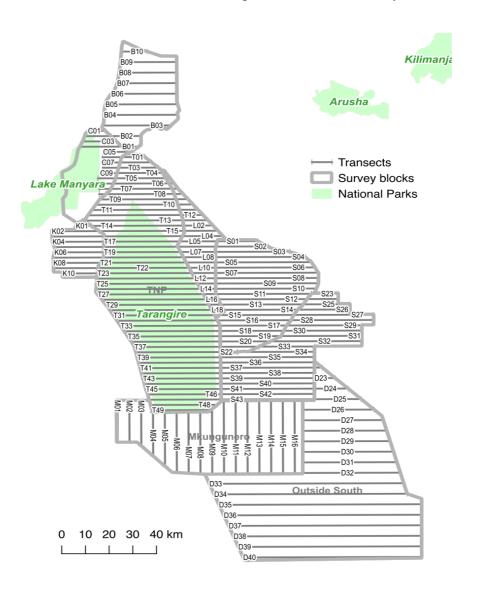



Figure 3: Map of Tarangire-Manyara Ecosystem showing planned transects

#### 2.2 Data Collection

The survey crew consisted of four individuals in each aircraft (Appendix 1). The pilot navigated the aircraft following a survey plan that was loaded into the GPS prior to the flight. **Front Seat Observer** (**FSO**) was responsible for the inflight recording of transect metadata including the beginning and end points of each transect, the beginning and end time of each transect, flight height above ground using a radar or laser altimeter in each subunit, predominant vegetation, presence or absence of water and extent of burnt areas. The FSO also announced the subunit identification numbers to the rear seat observers.

Left and right **Rear Seat Observers** (**RSOs**) counted and recorded on digital recorders all observations of animals and human activities sighted in each sub-unit. Photos were taken of large groups with more than ten individuals. The RSOs transcribed recorded data on to data-sheets after each flight session. Counting was confined within a sample area defined by streamers attached on the wing strut on each side of the aircraft with a target width of 150m on the ground. Geographical position of every subunit as called-out by the FSO was recorded together with its observations and subsequently transcribed on data sheets.

For the total count area, a single session with two RSOs, FSO (recorder) and pilot was flown, counting all species above impala size, with the FSO marking all observations on a GPS and datasheet.

#### 2.3 Track Log and Parameters

A total area of 16,521km<sup>2</sup> was covered by 190 transects as shown in Table 3. On average, all aircrafts flew at 339 ft. above ground at average speed of 171 km/h. The transect strip width was maintained at 291m on average for the entire census zone. A track log was maintained for each session flown by each aircraft (

Figure 4). The majority of transects were flown in an east-west direction, but Mkungunero Block was flown north-south. The Lake Manyara National Park escarpment was flown as a total count due to the terrain being too difficult for SRF (

Figure 4). One transect was omitted on the last day in the southern block as the aircraft exceeded its endurance; this has little effect on estimates.

Table 3: Parameters

| Parameters                | 5H-<br>TPM | 5H-<br>MPK | 5H-<br>TPK | COMBINED |
|---------------------------|------------|------------|------------|----------|
| Survey area (km²)         | 9,812      | 982        | 5,727      | 16,521   |
| Sample Areas (km²)        | 1,002      | 52         | 442        | 1,495    |
| Transect distance         | 3,227      | 192        | 1,828      | 5,247    |
| Total number of transects | 102        | 9          | 79         | 190      |
| Total number of subunits  | 1,342      | 84         | 768        | 2,194    |
| Sample Fraction %         | 10.20%     | 5.30%      | 7.70%      | 9.10%    |
| Flying height:            |            |            |            |          |
| Mean                      | 343        | 321        | 333        | 339      |
| Standard Deviation        | 55         | 79         | 34         | 51       |
| Minimum                   | 130        | 190        | 184        | 130      |
| Maximum                   | 848        | 510        | 423        | 848      |
| Strip width               |            |            |            |          |
| Left                      | 153        | 129        | 134        |          |
| Right                     | 153        | 129        | 134        |          |
| Total                     | 306        | 257        | 267        | 291      |
| Ground speed (km/h)       | 163        | 201        | 179        | 171      |

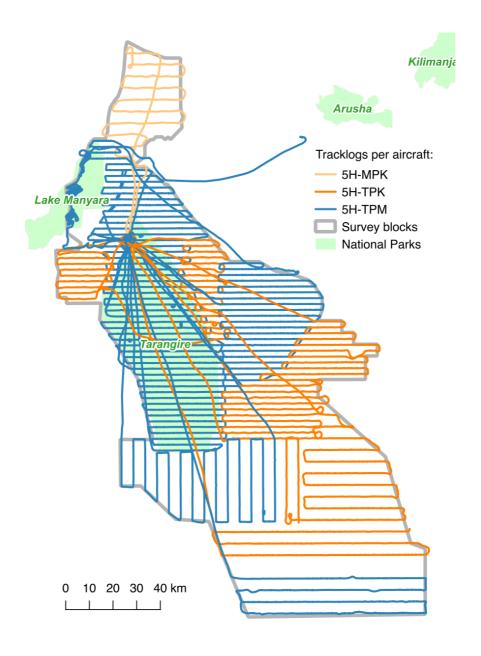



Figure 4: Map showing flight logs in the Tarangire - Manyara ecosystem, dry season 2016

# 2.4 Data analysis

Collected data were analysed using Jolly's unequal sample size method 2 (Jolly, 1969; Norton-Griffith, 1978) to calculate the population estimates with a script in R. Population trends were generated and *d*-test was used to determine whether the change was significant (Cochran, 1954). Species densities and distribution as well as human activities were mapped using the QGIS 2.14 software.

#### 3 RESULTS

# 3.1 Wildlife estimates for the Tarangire-Manyara ecosystem

Twenty-nine wildlife species were recorded in the surveyed area of which the estimates are presented in Table 4. The most abundant species include zebra  $(21,709 \pm 2,844)$ , followed by wildebeest  $(13,603 \pm 3,381)$  and impala  $(5,721 \pm 687)$ . Population estimates of buffalo and elephant are presented in Table 4 in *grey italics* but the 2014 total count data are more reliable for these species; estimates for species with fewer than 10 observations (and correspondingly low accuracy) are also in *grey italics* in the following Table 4. Statistics in Table 4 include number of individuals observed per species (N. obs), the extrapolated estimate (Est), and a measure of variability (standard error, SE). The total count (TC) method only reports the <u>estimate</u> (absolute number counted), and the total estimate (ecosystem-wide) figure is a combination of the SRF and TC figures.

Table 4: Wildlife estimates in the Tarangire-Manyara ecosystem

|                   |         | SRF   |        |             | TC   | Total  |
|-------------------|---------|-------|--------|-------------|------|--------|
| Species           | No. obs | Count | Est.   | <u>+</u> SE | Obs. | Est.   |
| Baboon            | 5       | 80    | 635    | 384         |      |        |
| Buffalo           | 35      | 2,377 | 19,225 | 7,065       |      |        |
| Bush pig          | 7       | 16    | 275    | 106         |      |        |
| Bushbuck          | 5       | 8     | 98     | 40          |      |        |
| Duiker spp        | 26      | 37    | 493    | 197         |      |        |
| Elephant          | 40      | 919   | 7,882  | 1,237       | 66   | 7,948  |
| El. carcass 2*    | 20      | 25    | 220    | 46          |      |        |
| El. carcass 3*    | 8       | 8     | 87     | 31          | 3    | 90     |
| El. carcass 4*    | 15      | 18    | 165    | 40          |      |        |
| Eland             | 45      | 279   | 2,543  | 438         |      |        |
| Gerenuk           | 4       | 5     | 50     | 25          |      |        |
| Giraffe           | 99      | 371   | 3,904  | 507         | 31   | 3,935  |
| Grants Gazelle    | 40      | 452   | 4,307  | 712         |      |        |
| Hippopotamus      |         |       |        |             | 8    | 8      |
| Impala            | 79      | 630   | 5,721  | 687         |      |        |
| Kongoni           | 35      | 212   | 1,731  | 381         |      |        |
| Kudu, greater     | 22      | 47    | 645    | 157         |      |        |
| Kudu, lesser      | 2       | 3     | 24     | 17          |      |        |
| Kudu spp          | 0.4     |       |        | 1.00        |      |        |
| (aggregate)       | 24      | 50    | 669    | 158         |      |        |
| Oryx              | 1       | 2     | 17     | 16          |      |        |
| Ostrich           | 58      | 155   | 1,413  | 194         | 8    | 1,421  |
| Reedbuck          | 16      | 47    | 382    | 115         |      |        |
| Steenbok          | 8       | 81    | 914    | 594         |      |        |
| Thomson's gazelle | 33      | 209   | 1,974  | 394         |      |        |
| Vervet monkey     | 3       | 17    | 179    | 99          |      |        |
| Warthogs          | 35      | 106   | 1,039  | 203         |      |        |
| Waterbuck         | 15      | 82    | 710    | 391         | 3    | 713    |
| Wildebeest        | 33      | 1,629 | 13,603 | 3,381       | 368  | 13,971 |
| Zebra             | 74      | 2,625 | 21,709 | 2,844       | 245  | 21,954 |

Columns indicate number of individual observations (N. obs), individuals counted (count), estimated numbers (Est.), and standard error (+SE). Data include Lake Manyara block total count.

#### 3.2 Wildlife Estimates Per Administrative Area

Population estimates for each individual species per administrative area has been generated and presented in Table 5. The zebra was the most abundant species in the surveyed area, with the largest number observed in Tarangire National Park ( $14,206 \pm 2,477$ ), followed by Lolkisale ( $2,093 \pm 868$ ) and the Simanjiro ( $2,041 \pm 756$ ). Wildebeest was the second most numerous species in Tarangire-Manyara ecosystem; the highest estimate was recorded in Tarangire National Park ( $9,140 \pm 2,919$ ) followed by Simanjiro with an estimate of ( $1,557 \pm 1,488$ ), Kwakuchinja ( $926\pm616$ ) and Burunge WMA ( $630 \pm 357$ ). Impala was the third highest observed species recorded in the surveyed area, with again, the largest estimate recorded in Tarangire National Park ( $1,844 \pm 452$ ), followed by the Simanjiro with an estimate of ( $1,808\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of ( $1,908\pm339$ ) and Mto wa Mbu with an estimate of (1

<sup>\*</sup> Elephant carcasses are categorised according to four stages, as per Douglas-Hamilton & Hillman (1991): 1 – fresh, body intact with rounded appearance or still with rot patch; 2 – recent, body decayed but skeleton not scattered, rot patch dried; 3 – rot patch regrown, white bones and skull visible; 4 – bones widely scattered and decayed, often only the skull visible.

Table 5: Wildlife estimates per administrative area

|                   |        | Burun | ge WM  | A     | 6     | K    | bao   | ni |    | K      | wa k  | Cuchin | ja    | 1  | Lolkisale |       |       |     |        | Makame WMA |         |     |        |        | Mkungunero |     |     |  |
|-------------------|--------|-------|--------|-------|-------|------|-------|----|----|--------|-------|--------|-------|----|-----------|-------|-------|-----|--------|------------|---------|-----|--------|--------|------------|-----|-----|--|
| Species           | N. obs | Count | Est    | SE    | N. ob | s Co | unt E | st | SE | N. obs | Count | Est    | SE    |    | i. obs (  | Count | Est   | SE  | N. obs | Cou        | unt Est | SE  | 88 - 8 | N. obs | Count      | Est | SE  |  |
| Baboon            |        |       |        |       |       |      |       |    |    | 1      | 5     | 5 40   | ) :   | 39 |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Buffalo           | - 13   | Ø 1   | 9      | 8     | 8     |      |       |    |    |        |       |        |       |    |           |       |       |     |        | 1          | 8       | 144 | 143    | 8      |            |     |     |  |
| Bush pig          |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        | 5          | 13      | 234 | 100    | 1      | 2          | 33  | 34  |  |
| Bushbuck          |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Duiker spp        | 03     | § 1   | 9      | 9     | 8     |      |       |    |    | 2      | 3     | 3 24   | 1 1   | 15 | 2         | 2     | 18    | 11  |        | 5          | 6       | 108 | 43     | 2      | 2          | 33  | 22  |  |
| Elephant          | 2      | 25    | 216    | 197   | 6     |      |       |    |    | 2      | 31    | 250    | 119   | 97 | 7         | 104   | 922   | 436 |        | 1          | 41      | 739 | 731    | 8      |            |     |     |  |
| El. carcass 2     |        |       |        |       |       |      |       |    |    | 1      |       | 1 8    | 3     | 7  |           |       |       |     |        | 2          | 2       | 36  | 24     | 8      |            |     |     |  |
| El. carcass 3     |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        | 2          | 2       | 36  | 25     | 8      |            |     |     |  |
| El. carcass 4     | - 13   | Ø 1   | 9      | 8     | 8     |      |       |    |    |        |       |        |       |    |           |       |       |     |        | 1          | 1       | 18  | 18     | 8      |            |     |     |  |
| Eland             | - 13   | 17    | 147    | 145   |       |      |       |    |    | 1      |       | 1 8    | 3     | 7  | 1         | 2     | 18    | 16  |        | 9          | 26      | 469 | 180    | ž.     |            |     |     |  |
| Gerenuk           |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        | 1      | 1          | 16  | 17  |  |
| Giraffe           | - 4    | 10    | 86     | 51    | 1     |      |       |    |    | 6      | 34    | 274    | 1     | 13 | 17        | 38    | 337   | 84  | 881    | 12         | 48      | 857 | 307    | 1      | 2          | 33  | 31  |  |
| Grants Gazelle    |        |       |        |       |       |      |       |    |    | 2      | 33    | 266    | 5 2   | 22 | 1         | 1     | 9     | 8   |        | 2          | 9       | 162 | 143    | 2      | 5          | 82  | 63  |  |
| Hippopotamus      |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Impala            | 2      | 16    | 138    | 87    | 6     |      |       |    |    | 6      | 6     | 49     | 1 2   | 71 | 12        | 61    | 541   | 160 |        | 4          | 5       | 90  | 45     | 8      |            |     |     |  |
| Kongoni           |        |       |        |       |       |      |       |    |    |        |       |        |       |    | 6         | 15    | 133   | 59  |        | 1          | 2       | 36  | 36     | N.     |            |     |     |  |
| Kudu, greater     |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        | 7          | 16      | 288 | 94     | 3      | 8          | 131 | 92  |  |
| Kudu, lesser      |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Oryx              |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Ostrich           | 2      | 6     | 52     | 35    |       |      |       |    |    | 3      | - 5   | 7 56   | 5 3   | 31 | 5         | 7     | 62    | 28  |        |            |         |     |        | 3      | 4          | 66  | 38  |  |
| Reedbuck          |        |       |        |       |       |      |       |    |    |        |       |        |       |    |           |       |       |     |        | 1          | 1       | 18  | 18     | 8      |            |     |     |  |
| Steenbok          | - 13   | 3     | 26     | 24    |       | 2    | 8     | 70 | 47 | 6      |       |        |       |    |           |       |       |     |        | 4          | 68      | 801 | 591    | 8      |            |     |     |  |
| Thomson's gazelle | - 13   | 20    | 172    | 161   | 8     |      |       |    |    | 4      | 13    | 109    | 5 (   | 63 | 1         | 3     | 27    | 25  |        | 1          | 1       | 18  | 18     | 1      | 11         | 180 | 171 |  |
| Vervet monkey     |        |       |        |       |       |      |       |    |    |        |       |        |       |    | 1         | 1     | 9     | 8   |        |            |         |     |        |        |            |     |     |  |
| Warthogs          | - 13   | 1     | 9      | 8     | 8     |      |       |    |    | 1      | - 2   | 32     | 2 :   | 29 | 4         | 6     | 53    | 26  |        | 5          | 11      | 198 | 97     | 2      | 3          | 49  | 36  |  |
| Waterbuck         | 2      | 47    | 405    | 377   | 6     |      |       |    |    |        |       |        |       |    | 1         | 7     | 62    | 59  |        |            |         |     |        | 1      | 1          | 16  | 16  |  |
| Wildebeest        | - 4    | 73    | 630    | 357   | 6     |      |       |    |    | 2      | 115   | 926    | 6     | 16 | 5         | 36    | 319   | 183 |        |            |         |     |        | 1      | 5          | 82  | 78  |  |
| Zebra             | 87     | 84    | 724    | 263   |       |      |       |    |    | 6      | 213   | 1,71   | 5 70  | 07 | 14        | 236   | 2,093 | 868 |        |            |         |     |        | 1      | 7          | 115 | 109 |  |
| Flamingo          | - 8    | 1,333 | 11,495 | 5,200 | 3     |      |       |    |    | 3      | 485   | 3,90   | 5 2,6 | 64 |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Ground hornbill   | 0.3    | 32    | 276    | 251   | i i   |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Marabou stork     |        |       |        |       |       |      |       |    |    | 1      | - 2   | 2 10   | 5     | 16 |           |       |       |     |        |            |         |     |        |        |            |     |     |  |
| Pelican spp.      | . 4    | 568   | 4,898  | 3,036 | £     |      |       |    |    |        |       |        |       |    |           |       |       |     |        |            |         |     |        |        |            |     |     |  |

|                   | 90     | Mto   | wa I | Mbu |     |        | Out  | wes         | st  |     | 0           | utsid | le S | outh     | 9  |        | Sim   | anjiro | )   |            | 3      | Taran | gire NP |        |          | Lal  | ke Mai | nyara l | NP  |       |
|-------------------|--------|-------|------|-----|-----|--------|------|-------------|-----|-----|-------------|-------|------|----------|----|--------|-------|--------|-----|------------|--------|-------|---------|--------|----------|------|--------|---------|-----|-------|
| Species           | N. obs | Count | Est  |     | SE  | N. obs | Cour | nt Es       | t   | SE  | N. obs      | Count | Est  | SE       |    | N. obs | Count | Est    | SE  |            | N. obs | Count | Est     | SE     | N. obs ( | ount | Est    | SE      | TC  | Total |
| Baboon            |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    | 2      | 6     | 5      | 2   | 42         | 1      | 17    | 134     | 127    | 1        | 52   | 409    | 358     |     |       |
| Buffalo           |        |       |      |     |     | :      | 1    | 1           | 9   | 8   |             |       |      |          |    | 12     | 165   | 1,42   | 7   | 581        | 19     | 2,188 | 17,239  | 7,039  | 1        | 14   | 110    | 96      | 287 | 397   |
| Bush pig          |        |       |      |     |     |        |      |             |     |     | ĺ.          |       |      |          |    |        |       |        |     |            | 1      | 1     | 8       | 7      |          |      |        |         |     |       |
| Bushbuck          |        |       |      |     |     |        |      |             |     |     | 2           | 4     | 1    | 66       | 35 |        |       |        |     |            | 3      | 4     | 32      | 18     | g        |      |        |         |     |       |
| Duiker spp        | 3      | 1 1   | 0    | 189 | 188 | 8      |      |             |     |     | 1           | 1     | Ü    | 17       | 15 | 2      | 2     | 1      | 7   | 11         | 10     | 10    | 79      | 20     | 0        |      |        |         |     |       |
| Elephant          | 3      | 1     | 3    | 57  | 56  |        |      |             |     |     |             |       |      |          |    |        |       |        |     |            | 25     | 699   | 5,507   | 847    | 2        | 16   | 126    | 82      | 66  | 192   |
| El. carcass 2     |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    |        |       |        |     |            | 14     | 19    | 150     | 37     |          |      |        |         |     |       |
| El. carcass 3     |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    |        |       |        |     |            | 5      | 5     | 39      | 16     | ĝ        |      |        |         | 3   | 3     |
| El. carcass 4     | 3      | 1     | 1    | 19  | 19  | ŝ      |      |             |     |     |             |       |      |          |    |        |       |        |     |            | 11     | 14    | 110     | 27     | 8        |      |        |         |     |       |
| Eland             |        |       |      |     |     |        | 1    | 7           | 61  | 58  |             |       |      |          |    | 14     | 78    | 67     | 5   | 218        | 18     | 148   | 1,166   | 295    |          |      |        |         |     |       |
| Gerenuk           |        |       |      |     |     | '      |      |             |     |     | i           |       |      |          |    | 2      | 3     | 2      | 6   | 18         | 1      | 1     | 8       | 7      |          |      |        |         |     |       |
| Giraffe           | 13     | 4 2   | 6    | 492 | 269 |        | 2    | 5           | 44  | 29  | 2           | 2     | 2    | 33       | 23 | 27     | 123   | 1,06   | 4   | 175        | 24     | 83    | 654     | 186    | Š        |      |        |         | 31  | 31    |
| Grants Gazelle    |        | 4 3   | 2    | 605 | 375 |        |      |             |     |     | 1 1 2 3 5 5 |       |      |          |    | 24     | 328   | 2,83   | 7   | 517        | 4      | 30    | 236     | 125    | 1        | 14   | 110    | 96      |     |       |
| Hippopotamus      |        |       |      |     |     | -      |      |             |     |     |             |       |      |          |    | 100000 |       |        |     | 1100000    |        |       |         | 100000 | 5000     |      |        | ARTIC   | 8   | 8     |
| Impala            | 19     | 7 4   | 2    | 794 | 211 |        |      |             |     |     |             |       |      |          |    | 25     | 209   | 1,80   | 8   | 339        | 22     | 234   | 1,844   | 452    | 1        | 2    | 16     | 14      |     |       |
| Kongoni           |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    | 10     | 33    | 28     | 5   | 98         | 18     | 162   | 1,276   | 361    | 5000     |      |        | 960     |     |       |
| Kudu, greater     |        |       |      |     |     |        |      |             |     |     | 3           | - 4   | 1    | 66       | 48 | 4      | 12    | 10     | 4   | 67         | 5      | 7     | 55      | 23     | Ü.       |      |        |         |     |       |
| Kudu, lesser      |        |       |      |     |     |        |      |             |     |     | Control     |       |      |          |    | 1      | 1     |        | 9   | 8          | 1      | 2     | 16      | 15     | 0        |      |        |         |     |       |
| Oryx              |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    | 1      | 2     | 1      | 7   | 16         |        |       |         |        |          |      |        |         |     |       |
| Ostrich           | - 83   | 2     | 7    | 132 | 85  | 3      |      |             |     |     | 1           | - 3   | Ê    | 17       | 18 | 19     | 67    | 57     | 9   | 134        | 23     | 56    | 441     | 87     | 8        |      |        |         | 8   | 8     |
| Reedbuck          | 100    |       |      |     |     |        | 1    | 1           | 9   | 8   |             |       |      |          |    | 1      | 1     |        | 9   | 8          | 13     | 44    | 347     | 112    |          |      |        |         |     |       |
| Steenbok          |        |       |      |     |     | '      |      |             |     |     | ì           |       |      |          |    | 1      | 2     | 1      | 7   | 16         |        |       |         |        | ľ        |      |        |         |     |       |
| Thomson's gazelle | 9      | 3     | 9    | 170 | 90  |        |      |             |     |     |             |       |      |          |    | 19     | 135   | 1,16   | 8   | 282        | 3      | 17    | 134     | 88     | ġ.       |      |        |         |     |       |
| Vervet monkey     |        |       |      |     |     |        |      |             |     |     | 1           | 5     | 5    | 83       | 56 |        |       |        |     |            | 1      | 11    | 87      | 81     |          |      |        |         |     |       |
| Warthogs          |        |       |      |     |     |        | 1    | 1           | 9   | 8   | 1           | -     | 1    | 83<br>66 | 70 | 10     | 31    | 26     | 8   | 88         | 10     | 45    | 355     | 127    | į.       |      |        |         |     |       |
| Waterbuck         | 3      | 1     | 1    | 19  | 18  |        |      |             |     |     | 200         |       |      |          |    | 3      | 3     | 2      | 6   | 14         | 7      | 23    | 181     | 84     | l)       |      |        |         |     |       |
| Wildebeest        | 1 3    | 1 1   | 0    | 189 | 177 | Ž.     |      |             |     |     |             |       |      |          |    | 1      | 180   | 1,55   | 7 1 | ,488       | 18     | 1,160 | 9,140   | 2,919  | 1        | 50   | 393    | 345     | 368 | 761   |
| Zebra             | 1 8    | 4 1   | 7    | 321 | 158 |        | 3    | 23 <b>2</b> | 201 | 153 | 2           |       |      |          |    | 11     | 236   | 2,04   | 1   | 756        | 27     | 1,803 | 14,206  | 2,477  | 1        | 6    | 47     | 41      | 245 | 292   |
| Flamingo          |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    | 98000  |       |        |     | 300,000,00 |        |       |         |        | 2        | 720  | 5,658  | 2,048   |     |       |
| Ground hornbill   |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    | 1      | 3     | 2      | 6   | 24         |        |       |         |        | 0.000    |      |        | 0.000   |     |       |
| Marabou stork     |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    | 7.0    |       |        |     | 152.000    |        |       |         |        |          |      |        |         |     |       |
| Pelican spp.      |        |       |      |     |     |        |      |             |     |     |             |       |      |          |    |        |       |        |     |            | 1      | 74    | 583     | 540    | 0        |      |        | J.      |     |       |

## 3.3 Wildlife population trends

Population trends of wildlife species were generated by comparing the estimates of the previous aerial survey conducted during the dry season of 2011 with the current census estimates by using a d-test. The d-test compares estimates, with a critical value greater than 1.96 or less than -1.96 indicating that the estimates are significantly different statistically. Seven species showed a stable population trend compared to 2011: these are wildebeest (d=0.15), zebra (d=0.99), impala (d=0.99), kongoni (d=1.2), eland (d=1.4), Grant's gazelle (d=-0.02) and ostrich (d=0.02). Four species showed an increasing population trend, these are giraffe (d=4.62), Thomson's gazelle (d=4.0), reedbuck (d=3.16) and warthog (d=2.18). Greater kudu (d=3.98) showed an increase, but there is concern over ID issues between Greater and Lesser kudu and the historical trends may be reworked in the future to look at these species in aggregate; estimates are also a result of better observer training and vary year by year. Population trends are indicated for most species in section 3.4, with illustrative trend lines showing either linear or moving averages (not representative of a statistical model). Population estimates are shown as circles with the standard error bars extending above and below. A linear trend line is shown to illustrate the longer-term trends.

While elephant and buffalo are included for reference in Table 6, their estimates are best analysed in the 2014 total count.

Table 6: Wildlife population trends, comparing SRF counts, in the Tarangire-Manyara Ecosystem, 1990 to 2016

|               | 199      | 0      | 1994     | 4     | 200      | 4      | 2007     | 7     | 2011     | ı     | 2010     | 3     | 2007/04 | 2011/07 | 2016/11 |
|---------------|----------|--------|----------|-------|----------|--------|----------|-------|----------|-------|----------|-------|---------|---------|---------|
| Species Name  | Estimate | SE     | Estimate | SE    | Estimate | SE     | Estimate | SE    | Estimate | SE    | Estimate | SE    | d-test  | d-test  | d-test  |
| Buffalo       | 7,219    | 3,961  | 9,455    | 4,665 | 6,250    | 5,615  | 3,828    | 1,735 | 15,678   | 7,693 | 19,225   | 7,065 | -0.41   | 1.50    | 0.34    |
| Dik dik       | -        | -      | 173      | 60    | 128      | 82     | 79       | 56    | -        | -     |          |       |         |         |         |
| Eland         | 2,825    | 925    | 726      | 240   | 1,138    | 410    | 2,673    | 772   | 841      | 647   | 2,543    | 372   | 1.76    | -1.82   | 2.28    |
| Elephant      | 2,641    | 917    | 12,138   | 3812  | 14,357   | 8440   | 11,901   | 2638  | 10,895   | 2679  | 7,882    | 1,237 | -0.28   | -0.27   | -1.02   |
| L/Kudu        | 84       | 56     | 110      | 57    | 272      | 124    | -        | -     | 122      | 64    | 24       | 17    | -2.19   | 1.91    | -1.48   |
| G/Kudu        | 50       | 35     | 205      | 73    | 32       | 31     | -        | -     | 16       | 15    | 645      | 157   | -1.02   | 1.07    | 3.98    |
| (Kudu total)  | 134      | 66     | 315      | 93    | 304      | 128    | 0        | 0     | 138      | 66    | 669      | 158   | -1.02   | 1.07    | 3.10    |
| Giraffe       | 1,387    | 334    | 4,230    | 479   | 3,365    | 582    | 2,228    | 506   | 1,253    | 253   | 3,904    | 507   | -1.47   | -1.72   | 4.68    |
| Grant gazelle | 1,922    | 584    | 8,744    | 891   | 368      | 205    | 3,461    | 1121  | 4,340    | 1131  | 4,307    | 721   | 2.71    | 0.55    | -0.02   |
| Hartebeest    | 3,726    | 968    | 2,620    | 291   | 1,138    | 475    | 3,120    | 1156  | 1,100    | 360   | 1,731    | 381   | 1.59    | -1.67   | 1.20    |
| Impala        | 6,217    | 1,924  | 6,487    | 241   | 7,227    | 2,912  | 6,056    | 1,732 | 3,728    | 1,897 | 5,721    | 687   | -0.35   | -0.91   | 0.99    |
| Oryx          | 100      | 67     | 2636     | 601   | 656      | 553    | -        | -     | 321      | 162   | 17       | 16    | -1.19   | 1.98    | -1.87   |
| Ostrich       | 635      | 172    | 4230     | 640   | 2308     | 496    | 3068     | 747   | 1314     | 363   | 1,413    | 194   | 0.85    | -2.11   | 0.24    |
| Reedbuck      | 134      | 51     | 78       | 39    | 80       | 64     | 79       | 55    | 16       | 15    | 382      | 115   | -0.01   | -1.11   | 3.16    |
| T/gazelle     | 786      | 503    | 489      | 225   | 1314     | 363    | 1363     | 696   | 290      | 148   | 1,974    | 394   | 0.06    | -1.51   | 4.00    |
| Topi          | -        | -      | 31       | 31    | 240      | 235    | 26       | 25    | -        | -     | 0        | 0     | -0.91   | -1.04   |         |
| Warthog       | 535      | 157    | 299      | 122   | 272      | 146    | 210      | 160   | 367      | 232   | 1,039    | 203   | -0.29   | 0.56    | 2.18    |
| Waterbuck     | 67       | 66     | 410      | 197   | 384      | 248    | 79       | 77    | 321      | 186   | 710      | 391   | -1.17   | 1.20    | 0.90    |
| Wild dog      | -        | -      | -        | -     | -        | -      | -        | -     | 31       | 29    |          |       |         |         | -1.07   |
| Wildebeest    | 44,534   | 27,037 | 43,140   | 9,591 | 9,567    | 4,389  | 10,696   | 7,017 | 11,934   | 7,702 | 13,603   | 3,381 | 0.14    | 0.12    | 0.20    |
| Zebra         | 31,617   | 8,513  | 41,278   | 7,839 | 33,330   | 11,254 | 16,594   | 5,434 | 15,662   | 5,118 | 21,709   | 2,844 | -1.34   | -0.12   | 1.03    |

<sup>\*</sup>d-tests (right three columns) compare succeeding surveys: 2004 and 2007, 2007 and 2011, 2011 and 2016. Significant values are shown in dark bold.

#### 3.4 Distribution and density of wildlife

Distribution maps and trends are shown in this section.

Population estimates are shown as circles with the standard error bars extending above and below. A linear trend line is shown to illustrate the longer-term trends.

## 3.4.1 Zebra distribution and density

Zebra were the most abundant species recorded in the Tarangire-Manyara ecosystem during the 2016 dry season census. The species was distributed throughout the census zone with high pockets of concentration in the northern and central parts of Tarangire National Park. Relatively low concentrations were found in Kibaoni, Mto wa Mbu and Simanjiro areas (Table 5).

Zebra are stable or increasing in recent surveys (the past decade), but show a decline (~50%) from 1990 (Figure 5).

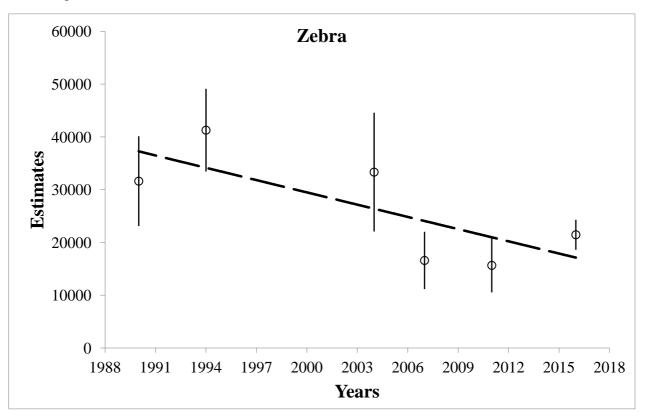



Figure 5: Zebra population trend in Tarangire-Manyara ecosystem, comparing SRF aerial counts from 1990 to 2016.

Population estimates are shown as circles with the standard error bars extending above and below. A linear trend line is shown to illustrate the longer-term trends.

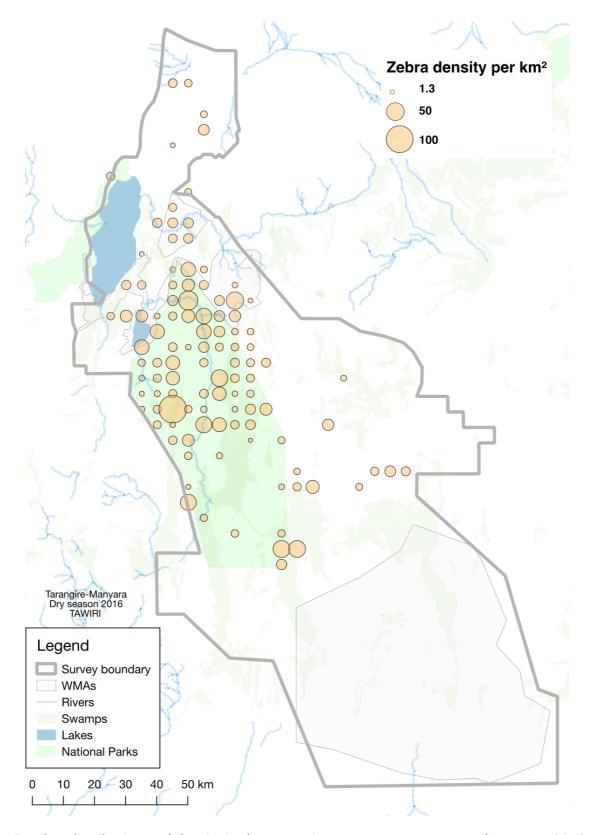



Figure 6: Zebra distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

# 3.4.2 Buffalo distribution and density

Buffalo were widely distributed in Tarangire NP, Simanjiro, Mkungunero and Lake Manyara National Park. The highest concentration of this species was observed in Tarangire National Park. Relatively low concentrations were observed in Simanjiro, Makame and Lake Manyara National Park (Figure 7).

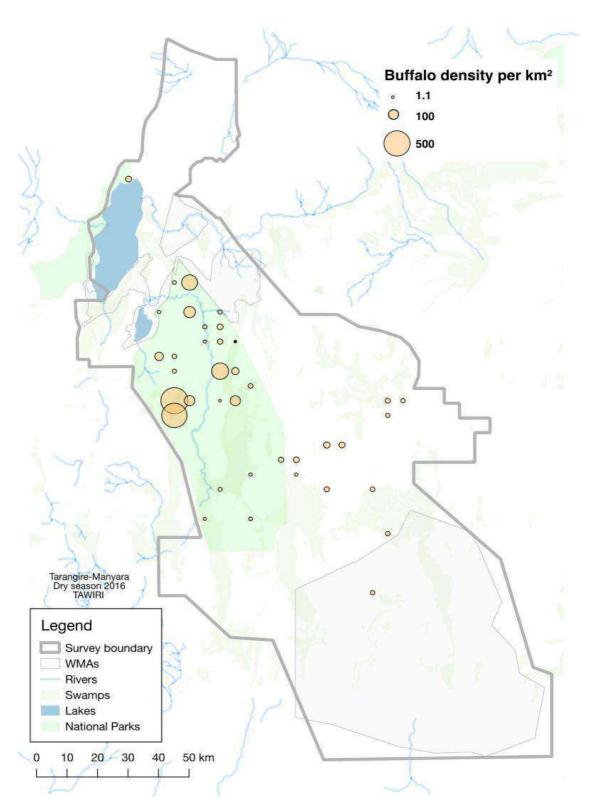



Figure 7: Buffalo distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

#### 3.4.3 Wildebeest distribution and density

Wildebeest was the second most abundant species recorded in the Tarangire-Manyara Ecosystem. The distribution pattern of the species shows that the highest concentrations are found in the northern and central parts of Tarangire National Park. Other areas where this species was recorded includes Mto wa Mbu, Kwakuchinja, Kibaoni, Lake Manyara NP and Mkungunero (Figure 9).

Wildebeest are stable in the short term (d < 0.2 from 2007 onwards), but declined dramatically from populations greater than 40,000 individuals in the early 1990s (Figure 8).

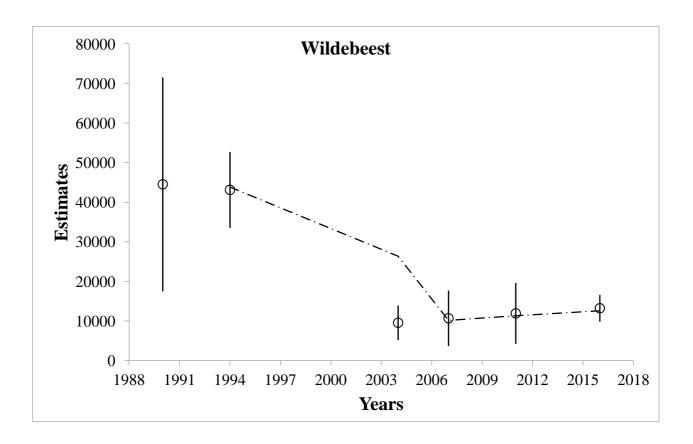



Figure 8: Wildebeest population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

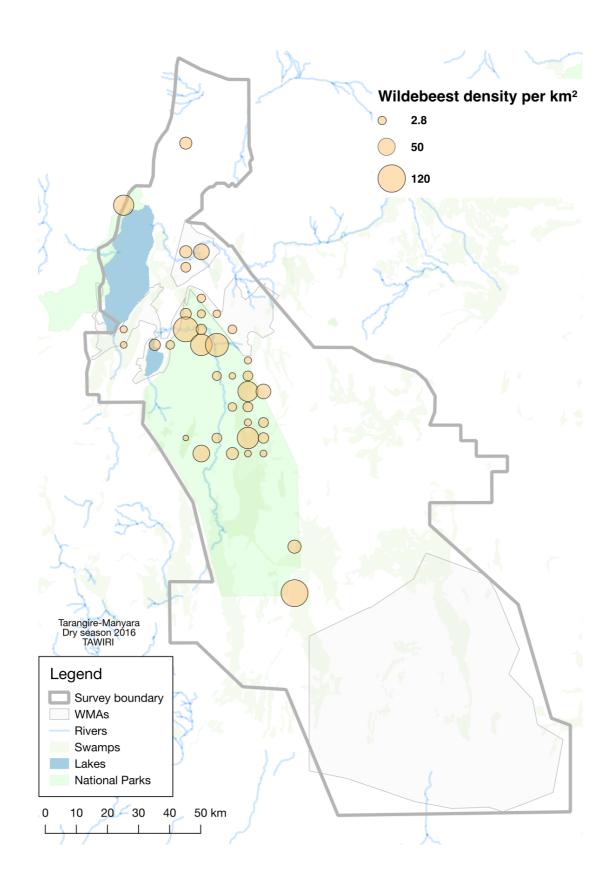



Figure 9: Wildebeest distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

#### 3.4.4 Elephant and carcass distribution and density

The distribution pattern of elephants shows high concentration in Tarangire NP, followed by Kwakuchinja, Lolkisale and Makame. Relatively low concentration was recorded in all other surveyed areas (
Figure 10).

Elephant populations in Tarangire are often highly aggregated with occasional large herds, which leads to misrepresentations (typically over-estimating) when using a SRF aerial count to assess numbers. The 2014 aerial total count results are considered more reliable, with the long-term population increasing from the early 1990s (2,300) to an estimated 4,202 individuals in 2014. This survey estimated 7,948 (SRF 7,882  $\pm$  1,237SE, TC 66) elephants, a likely overestimate due to encounters with large herds.

Elephant carcasses were widely distributed throughout the ecosystem, mostly older carcasses of stage 3 and 4 but with some relatively fresh (stage 2). The carcass ratio (live + dead / live) for this SRF survey is 5.2%, which would represent a value in the range of normal mortality – however, given that the likely true population (from the 2014 aerial total count) is much lower (estimate 4,202), the carcass ratio is probably closer to 9%, which is a potential cause for concern.

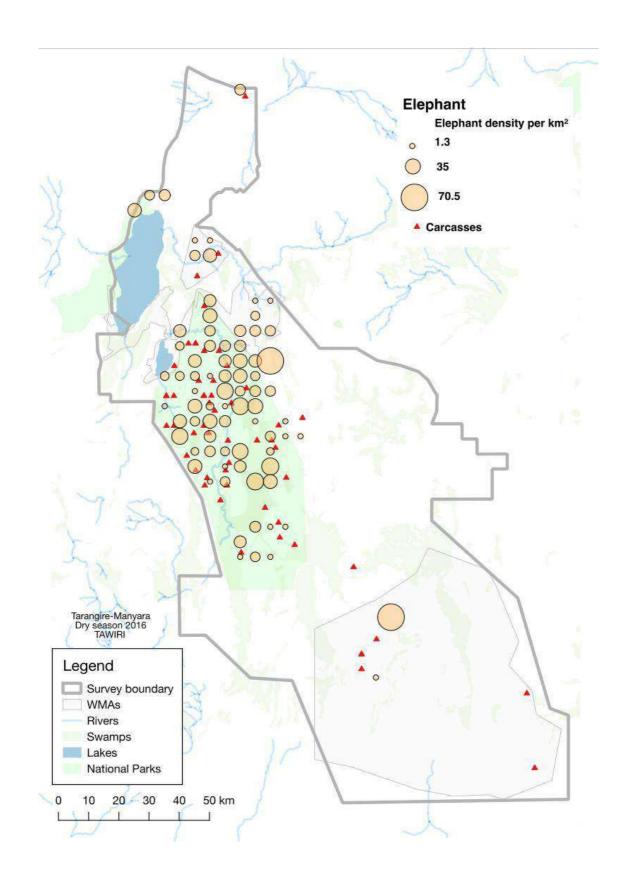



Figure 10: Elephant and carcass distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.4.5 Impala distribution and density

This species was widely distributed throughout the census zone; highest concentrations were found in northern Tarangire Nation Park, Simanjiro, Lolkisale, Mto wa Mbu and Kibaoni. Relatively low concentrations were observed in the Outside South/Makame WMA area (Figure 12).

Impala have been generally stable in the long term (Figure 11).

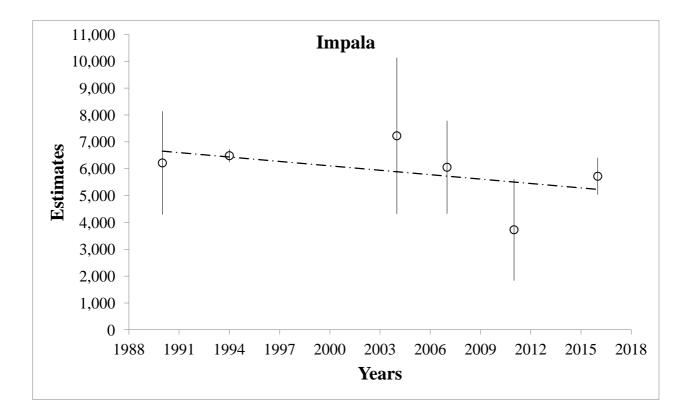



Figure 11: Impala population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

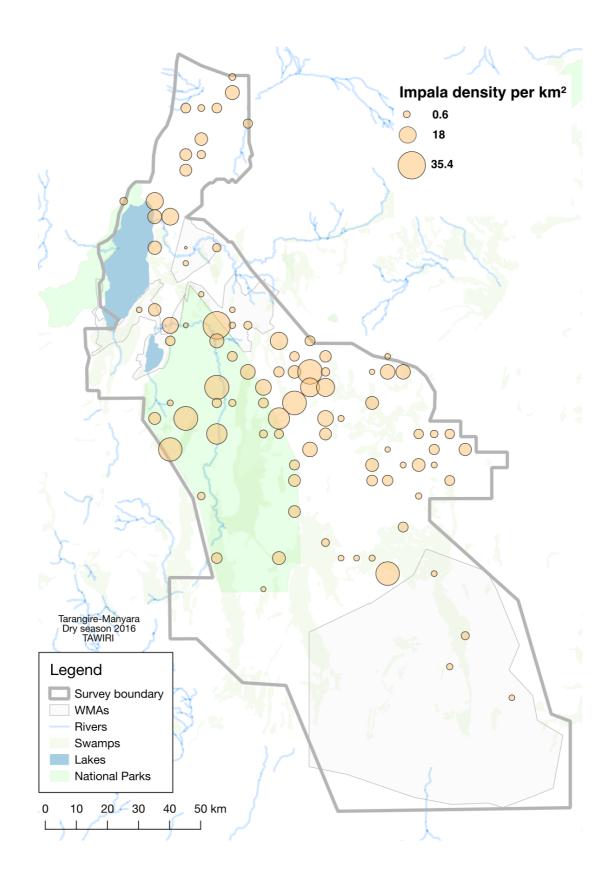



Figure 12: Impala distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.4.6 Grant's gazelle distribution and density

The distribution pattern of Grant's gazelle shows high concentrations in the Simanjiro area and Mto wa Mbu. Relatively low concentrations were recorded in all other surveyed area except Kibaoni, which had no observations (Figure 14).

Over the long term, Grant's gazelles show high variability which may reflect identity confusion during the aerial counts with Thomson's gazelles; in recent surveys the population has been stable around 4,000 (
Figure 13).

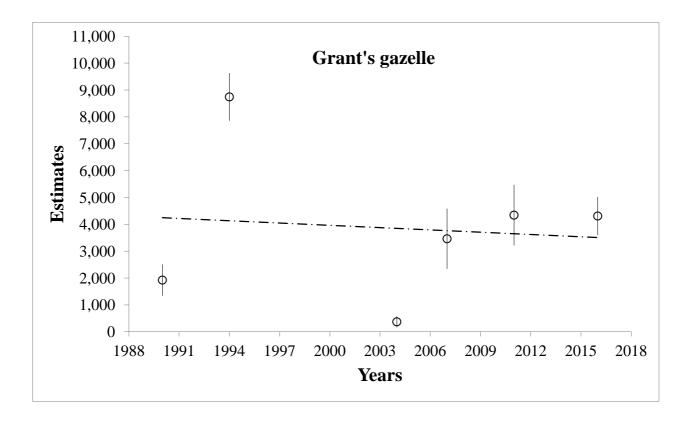



Figure 13: Grant's gazelle population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

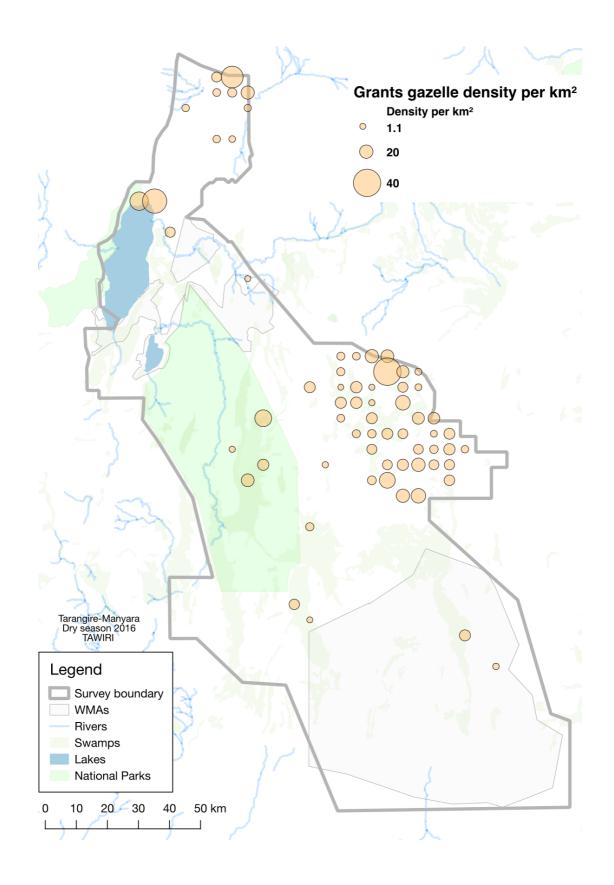



Figure 14: Grant's gazelle distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

#### 3.4.7 Giraffe distribution and density

The 2016 aerial census in the Tarangire-Manyara ecosystem shows that Giraffe were widely distributed over the census zone. The highest concentrations were found in Tarangire National Park, Simanjiro, Lolkisale, and Kwakuchinja areas. Relatively low concentrations were recorded in Mto wa Mbu, Mkungunero, Kibaoni and Outside South (Figure 16).

Giraffe show an apparent strong increase (~4x) from 2011 which is extremely unlikely ecologically (Figure 15). Lee and Bond (2016) note that aerial surveys in dry seasons have had strong negative biases based on data from Tarangire – the current estimate from 2016 matches closely the estimate from Lee and Bond's ground surveys in 2015, which may reflect better observer training and attention to flight performance.

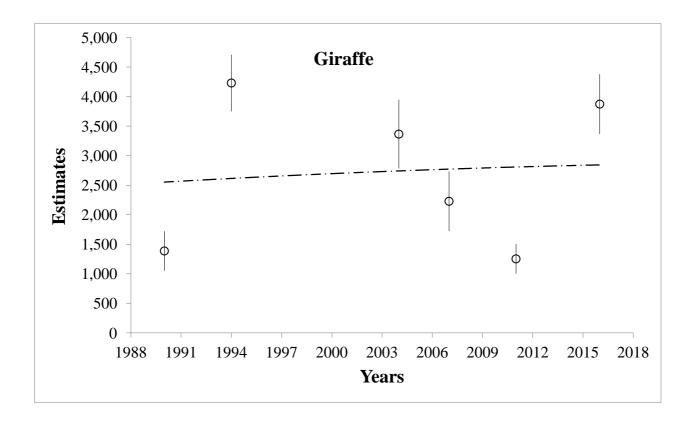



Figure 15: Giraffe population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

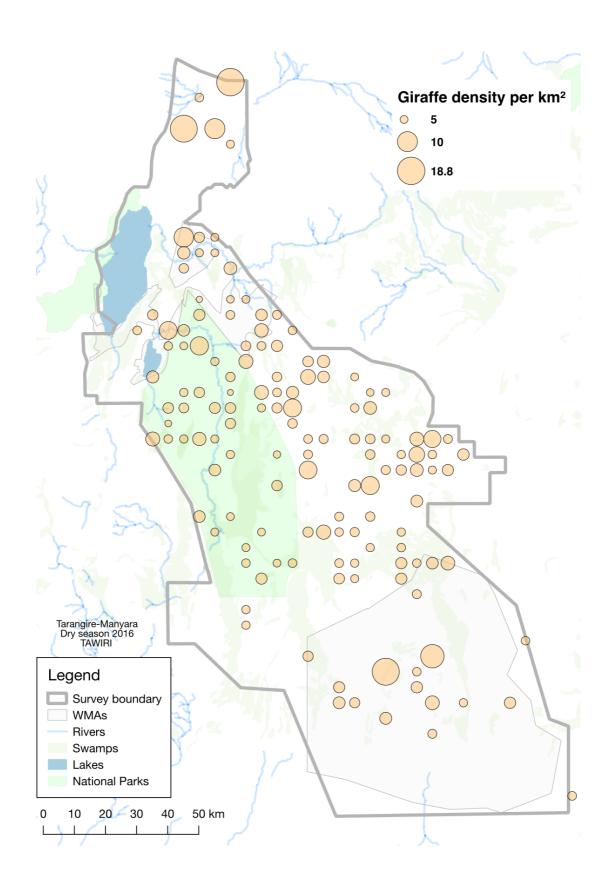



Figure 16: Giraffe distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

# 3.4.8 Kongoni distribution and density

The 2016 aerial census of Tarangire-Manyara ecosystem shows that Kongoni was found in Tarangire National Park and Simanjiro and one group observation in the Outside South area. The highest concentration of this species was observed in the central part of the Tarangire National Park (Figure 18).

Kongoni trends from 1990 onwards are variable but tending toward declining (Figure 17).

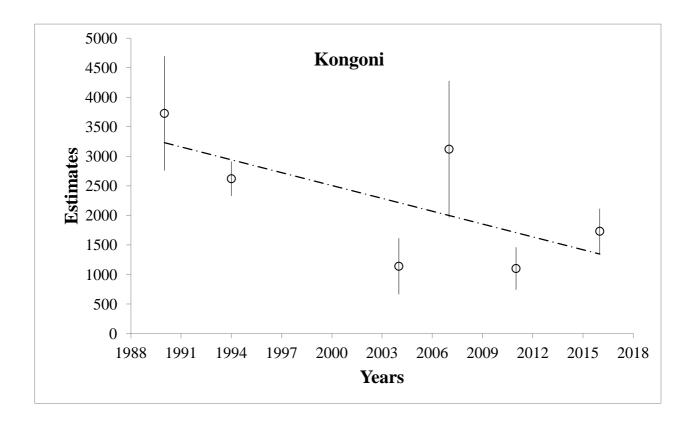



Figure 17: Kongoni population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

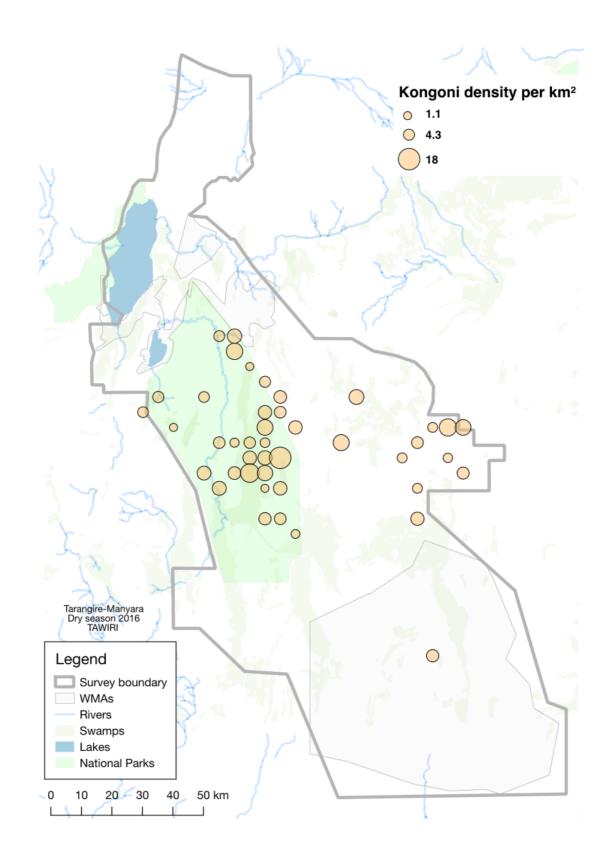



Figure 18: Kongoni distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.4.9 Eland distribution and density

Eland were observed in Tarangire National Park, Simanjiro and Outside South areas. The highest concentration of this species was observed in Tarangire National Park, and relatively low concentrations were observed in Simanjiro and Outside South areas (Figure 20).

Eland show a significant change from 2011, but have shown strong variability between surveys from 1990 onwards (Figure 19).

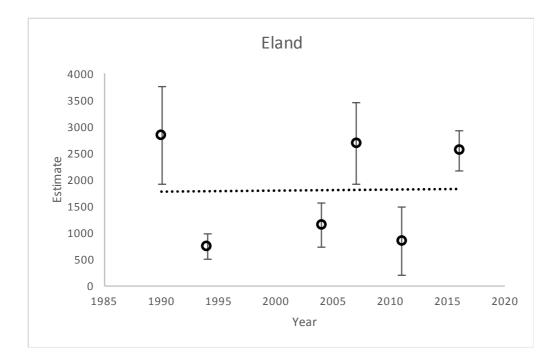



Figure 19: Eland population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

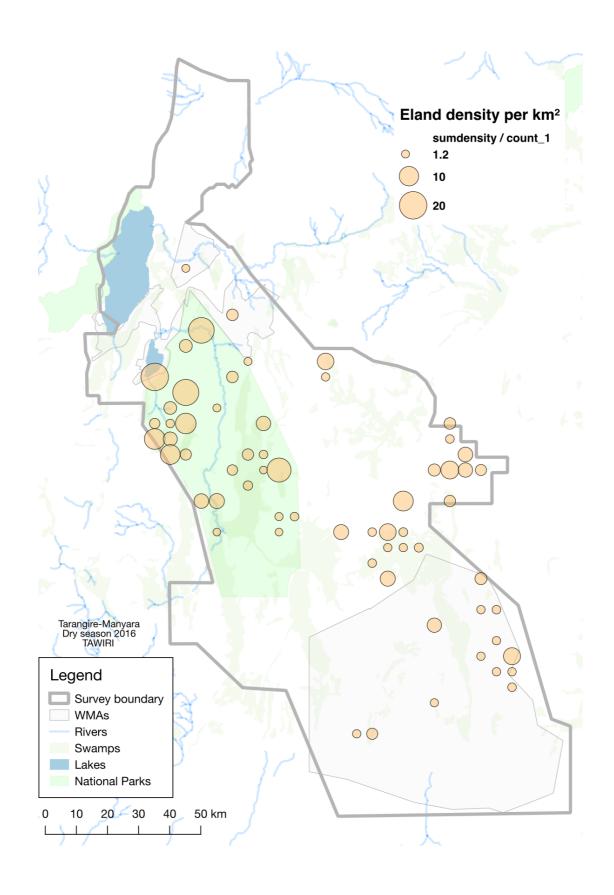



Figure 20: Eland distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

# 3.4.10 Warthog distribution and density

This species was widely distributed all over the surveyed ecosystem with the exception of Mto wa Mbu and Kibaoni. The species highest concentration was observed in Tarangire National Park, Simanjiro and Lolkisale. Relatively low concentrations of the species were observed in Mkungunero and Outside South areas (

Figure 22).

Warthog show strong increases from previous censuses (

Figure 21). This may reflect better training of observers.

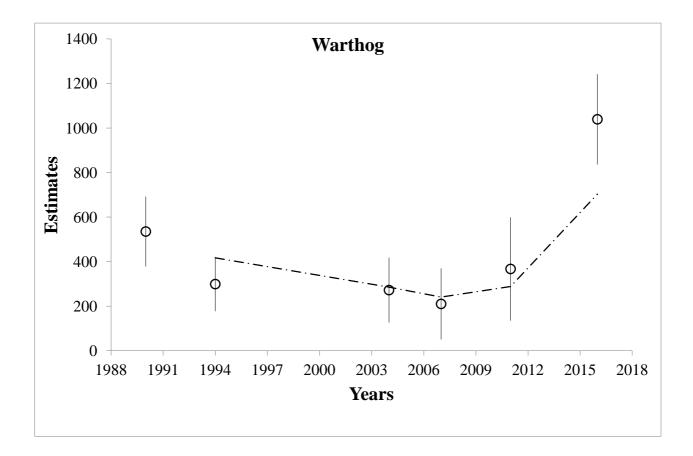



Figure 21: Warthog population trend in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.



Figure 22: Warthog distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

#### 3.4.11 Greater and Lesser kudu density and distribution

In the 2016 dry season aerial census Greater kudu were observed in Tarangire National Park, Simanjiro, Mkungunero and Outside South areas. The highest concentration of Greater kudu was observed in Mkungunero, Simanjiro and Outside South areas (

Figure 24). The distribution pattern of Lesser kudu was restricted to Tarangire National Park and Simanjiro areas (

Figure 24).

Note that greater and lesser kudu species are often difficult to distinguish from the air, and aggregate estimates, maps and trends are shown for the ecosystem. These species are also difficult to spot from the air, and estimates often reflect better observer training and ground speed control.

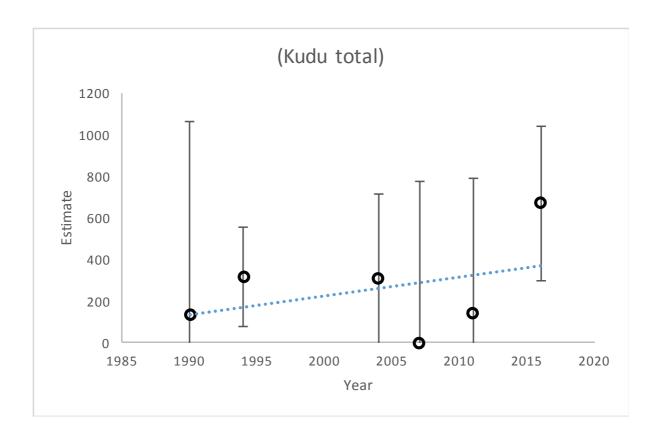



Figure 23: Kudu spp. (aggregate) population trends in Tarangire-Manyara Ecosystem, comparing SRF aerial counts from 1990 to 2016.

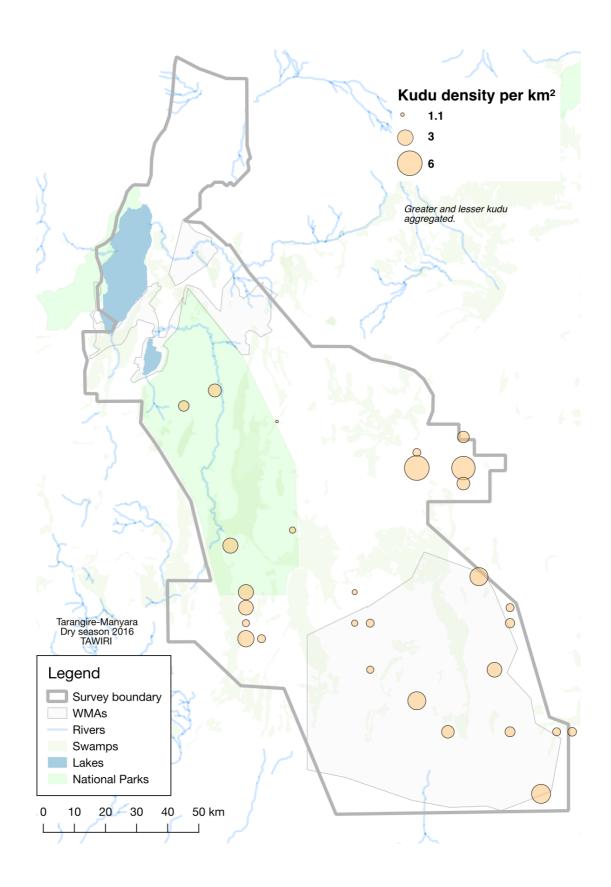



Figure 24: Greater and lesser kudu distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

# 3.4.12 Oryx and Gerenuk

Oryx had a very restricted distribution in the survey and were only spotted in the Simanjiro. Gerenuk were observed in Tarangire National Park, Mkungunero and Simanjiro areas. Previous censuses confirmed that the distribution of both Oryx and Gerenuk are restricted to specific areas in the Tarangire-Manyara ecosystem (Tarangire-Manyara Aerial Survey, 2011) (Figure 25).

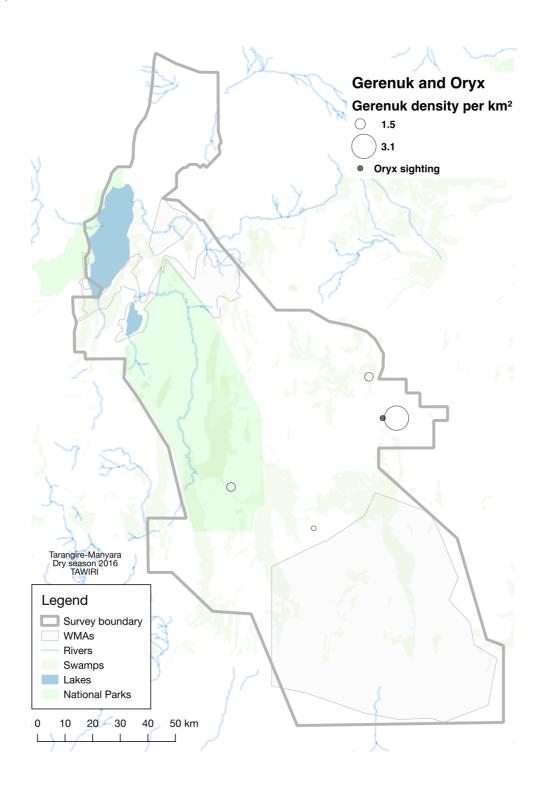



Figure 25: Oryx and Gerenuk distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.4.13 Common Waterbuck distribution and density

Waterbuck were found in limited numbers through the ecosystem. Highest concentrations were observed in northern Tarangire National Park and relatively low concentrations were observed in Mto wa Mbu, Kibaoni, Simanjiro and Mkungunero (Figure 26).

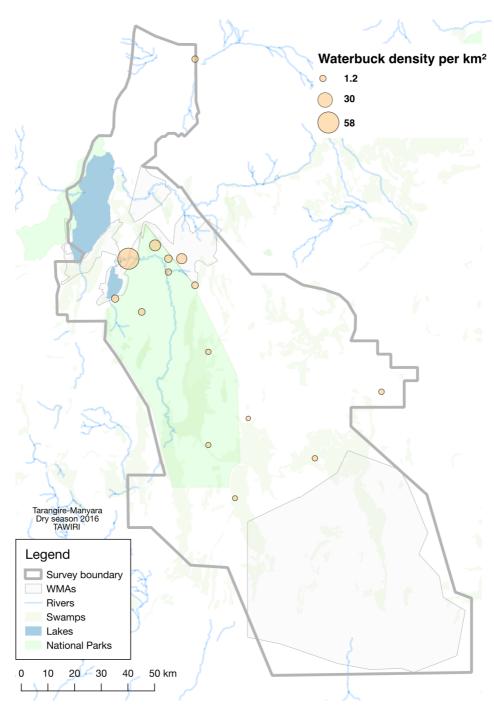



Figure 26: Common Waterbuck distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.4.14 Bohor reedbuck distribution and density

Bohor reedbuck were almost exclusively observed in Tarangire National Park, with one observation each in Simanjiro and Makame WMA (

Figure 27). Reedbuck are relatively difficult to spot from aircraft and the estimate here probably represents a strong undercount.

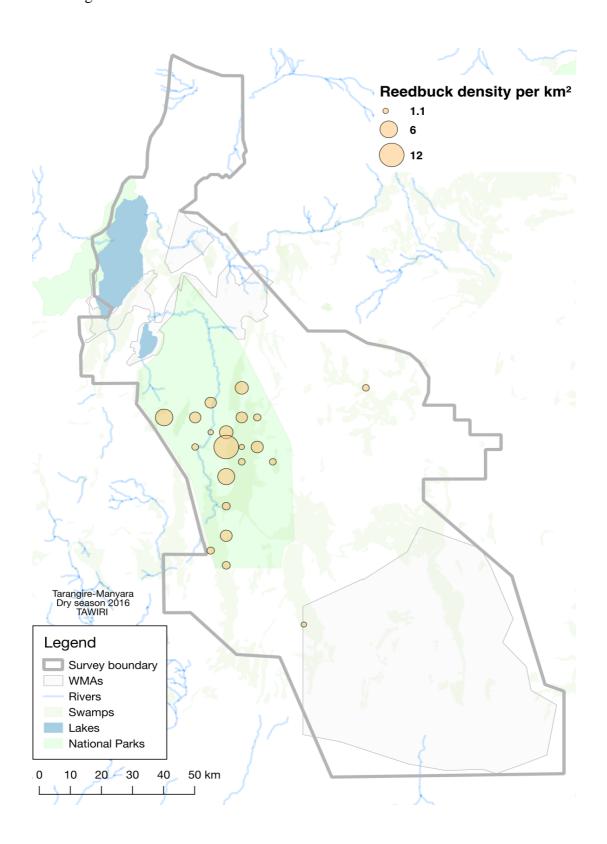



Figure 27: Reedbuck distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.4.15 Ostrich distribution and density

Ostrich were distributed over most of the surveyed areas with the exception of Outside South. The highest concentration of ostrich was observed in Tarangire National Park, Simanjiro and Kibaoni. Relatively low concentrations were observed at Kwakuchinja, Lolkisale and Mkungunero (Figure 29).

Trends from 1995 are generally decreasing but stable from 2011 (Figure 28).

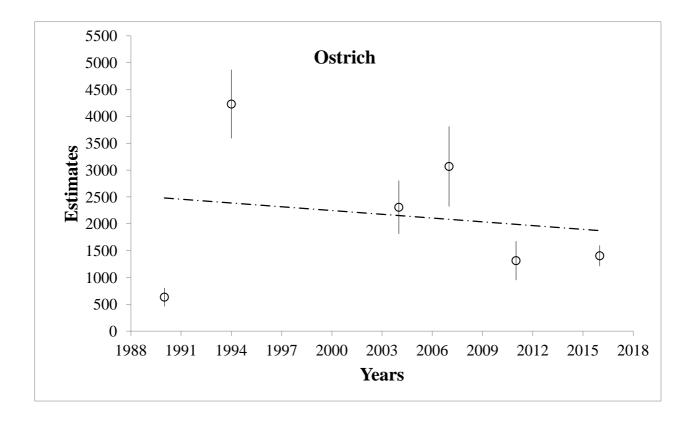



Figure 28: Ostrich population trend in Tarangire-Manyara Ecosystem, 1990 to 2016

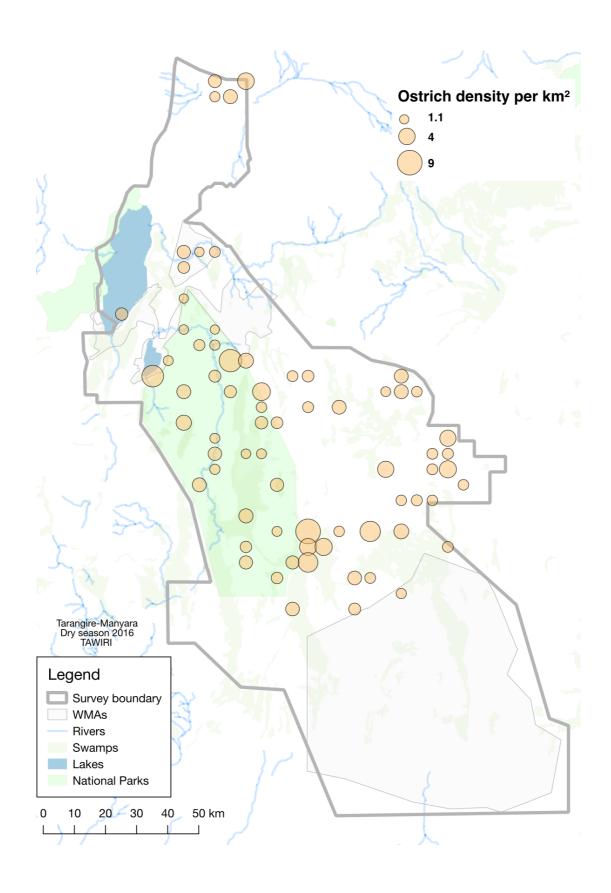



Figure 29: Ostrich distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

# 3.4.16 Marabou stork, Pelicans and Ground Hornbill distribution

Large birds are occasionally seen in aerial surveys, but useful estimates are not normally produced. Marabou storks and Pelicans were seen in Kwakuchinja, Kibaoni and Tarangire National Park, with the highest concentration observed in Kibaoni. Ground hornbills were only spotted in the Simanjiro and Kibaoni.

### 3.5 Human Activities in Tarangire-Manyara Ecosystem

A total of thirteen human activities were recorded in the surveyed area, of which the estimates are presented in Table 7. The most abundant human activity recorded in Tarangire–Manyara ecosystem was cattle (331,336  $\pm$ 25,503) followed by shoats (sheep and goats) (228,360  $\pm$ 18,728). Other major human activities were settlements and cultivation (Table 7).

Table 7: Human activity estimates in the Tarangire -Manyara ecosystem

| Human activities         | No Obs | Counts | Estimate | SE     |
|--------------------------|--------|--------|----------|--------|
| Cattle                   | 153    | 32,677 | 331,336  | 25,503 |
| Shoat (sheep and goats)  | 125    | 21,473 | 228,360  | 18,728 |
| Boma: Occupied           | 105    | 918    | 9,633    | 3,144  |
| Cultivation              | 126    | 811    | 8,242    | 2,072  |
| Thatched House           | 82     | 585    | 6,643    | 1,046  |
| House with mabati roof   | 71     | 398    | 4,613    | 742    |
| Donkey                   | 55     | 381    | 4,393    | 702    |
| Boma: Abandoned          | 77     | 225    | 2,979    | 539    |
| Boma: Unoccupied         | 88     | 221    | 2,274    | 219    |
| Charcoal Kiln            | 18     | 63     | 874      | 249    |
| Canoe                    | 4      | 4      |          |        |
| Fish Camp                | 2      | 3      |          |        |
| Hut inside Boma-occupied | 1      | 1      |          |        |

### 3.5.1 Human activity estimates by administrative areas

Livestock husbandry was the most abundant human activity in the surveyed area. The highest number of cattle was observed in the Simanjiro (119,505  $\pm$ 13,900), Makame WMA (54,955  $\pm$ 13,664) and Lolkisale (32,653  $\pm$ 8,521). The second most abundant human activity was sheep and goat husbandry in the Simanjiro (75,813  $\pm$ 10,590), Makame WMA (35,489  $\pm$ 8494) and Mto wa Mbu (34,656  $\pm$ 7,892) (Table 8).

Table 8: Human activities by administrative area

|                         | Burunge WMA |       |        | Ribeani |            |       |        | Kwa Kuchinja |          |        |        | Lake Manyara NP |         |       | Lolkitale |           |         |        | Makame WMA |              |        |       |        |        |
|-------------------------|-------------|-------|--------|---------|------------|-------|--------|--------------|----------|--------|--------|-----------------|---------|-------|-----------|-----------|---------|--------|------------|--------------|--------|-------|--------|--------|
| Type                    | K. phs      | Court | Di-    | H.      | 14, 1000   | Court | file:  | N .          | N. idea  | tions: | Dr.    | ×               | W. 1610 | Court | Bit .     | N         | N tobal | Court  | Sec.       | 16           | R obs  | Own   | tier.  | 16     |
| Lection                 | 0           |       | . 0    |         | 0          | - 0   |        | - 0          |          | 0      |        | . 0             | - 0     | - 0   | . 0       | - 4       | .0      | . 0    | 0          | - 0          | - 0    | 0     |        | - 1    |
| Borns - occupied        | - 11        | 521   | 4,510  | 2,866   | - 4        | 1.0   | 87     | 41           | 33       | 21     | 169    |                 | - 1     | 1     | . 8       | 4         | 32      | 100    | 931        | 463          | 13     | 50    | 541    | 144    |
| Bares - unoccupied      | - 5         | 1     | 69     | 18      | - 1        | 4     | 35     | - 21         |          | 13     | 105    | 17              | 1       | - 1   |           | -         | 30      | 27     | 2.89       | 63           | . 1    | 1.1   | 216    | - 64   |
| Boms - shandered        | 0           | . 0   | . 0    | .0      | - 1        | 1.1   | 9      | . 0          |          | 0      |        | 0               | 0       |       | . 0       |           | 13      | 20     | 177        | 30           | 34     | 76    | 1,370  | 3510   |
| Carrier                 | )           |       | 26     | 13      | - 0        | - 0   | . 0    | - 0          | 0 0      | .0     |        | - 0             | - 0     | . 4   | . 0       | 1         | - 0     | . D    | . 0        | - 0          | - 0    | - 0   |        | - 1    |
| Circle                  | - 14        | 3,300 | 28,526 | 6.727   | - 6        | 981   | 8,575  | 3,366        | 20       | 3,337  | 28,461 | 3,500           | 1       | 1,048 | 8,236     | 6,550     | 38      | 1,662  | 12,653     | 3,523        | 25     | 3,049 | 54,955 | 11,664 |
| Cittle 60               | 0           |       | . 0    | . 0     | 0          | . 0   |        | . 0          |          | - 11   |        | 0               | 0       |       | . 0       |           |         | . 0    | . 0        | . 0          | - 0    | - 0   | . 0    |        |
| Charcagal kiln          | 1           | -     |        |         | . 0        | - 0   |        |              |          | - 0    |        | 0               | . 0     | -     | - 0       | - 4       | - 2     | - 1    | 71         | - 48         |        | 1.2   | 236    | 111    |
| Cultivation             | - 15        | 40    | 345    | 42      | .0         | 13    | 152    | 62           | 10       | 15     | 123    | 40              | 0       | - 0   | . 0       |           | 31      | 75     | 701        | 434          | - 15   | 43    | 775    | -179   |
| Donkey                  | - 1         | 41    | 814    | 337     | - 1        | 1.2   | 17     | 15           | - 6      | 43     | 346    | 361             | - 0     |       | 0         | 0.1       | 3       | 26     | 231        | 100          | - 6    | 46    | 829    | 415    |
| Rish camp               | . 0         |       | 0      |         | 0          | , p   | . 0    | 0            | 0 1      | - 2    | 16     | 36              | 1       | - 1   | - 1       | 1         | - 0     |        | - 0        | 0            | . 0    | . 0   |        |        |
| Hut metal roof          | 11          | - 10  | . 595  | . 135   | - 4        | 1.3   | 105    | - 59         |          | 43     | 346    | 231             | . 0     | 1.0   | . 0       | 4         |         | 40     | 355        | 115          | - 3    | 32    | 577    | 483    |
| Shoats (sheep and goats | 14          | 1,571 | 13,565 | 2,175   | - 6        | 269   | 2,526  | 754          | 14       | 2,406  | 19,390 | 5,686           | - 1     | 334   | 2,483     | 2,583     | 34      | 2,439  | 31,610     | 5,872        | 33     | 1,969 | 35,409 | 3,494  |
| Hut - thatched          | - 6         | 21    | 233    | 60      | - 3        | 12    | 195    | 46           |          | 31     | 256    | 75              | 1       | 3     | 33        | 41        | 7       | 41     | 364        | 128          | 11     | 123   | 2,257  | 8294   |
| Troofe Bing             | . 2         |       | 17     | 22      | - 0        | - 0   | - 6    | - 0          | 0        | . 0    |        | . 0             | 0       | - 6   | - 0       |           | - 0     | - 0    | 0          | - 6          | - 0    | . 0   | d      | - 6    |
|                         | Mkungunero  |       |        |         | Mto wa Mbu |       |        |              | Out west |        |        | Outside South   |         |       | h         | Simanjiro |         |        |            | Tarangire NP |        |       |        |        |
| Type                    | N ste       | Count | De     | w.      | N. cars    | Over  | tim :  | 58           | Winds.   | Count  | fer    | W.              | N. 100  | Count | be .      | St.       | N obv   | Count  | the .      | 12           | N. bdn | Cnint | Em     | 38     |
| Beshlee                 | - 0         | -     | 0      |         | U          | 0     | . 0    |              |          | - 0    |        | . 0             | - 0     | . 0   | 0         |           | - 0     | D      | . 0        |              | - 0    | . 0   |        | 9 1    |
| Barna - occupied        | . 8         | . 4   | 775    | 570     | - 9        | 100   | 1,651  | 1,037        | - 5      | .7     | .63    | 24              | - 3     | - 3   | 50        | 21        |         | 310    | 995        | 113          | 0      |       |        |        |
| Bersz - wrocoupled      | . 11        | - 4   | 35A    | - 69    | - 4        |       | 151    | 71           | - 5      | - 3    | 44     | - 36            | 2       | -1    | - 50      |           | 29      | 106    | 917        | 346          | - 8    | 1.1   | 87     | 63     |
| Name - abandoned        | 1.2         |       | 108    | 134     | - 00       | - 0   | . 0    | - 0          | - 4      | - 4    |        | - 34            |         | 3 1   | 100       | - 56      | 28      | 71     | 654        | 90           | 3 1    | 4     | 32     | 36     |
| Canon                   | 1           | dij   | 16     | . 16    | 0          | . 0   |        | - 0          | 0.0      | 0      |        |                 | . 0     |       | - 0       | 6         | 0.0     | - 0    |            |              | 0      | 0     |        |        |
| Cattle                  | 13          | 1,322 | 20,835 | 4,108   | - 0        | 955   | 16,165 | 4,151        | - 1      | 101    | 1,409  | 738             |         | 550   | 9,136     | 2,494     | - 44    | 13,010 | 119,505    | 13,900       | 3      | 334   | 2,553  | 2,210  |
| Cattle dip              | - 0         |       | 0      | . 0     | 1          | - 1   | 39     | 20           | 6 8      | - 0    |        | 0               | . 0     | -     | 0         | - 0       | - 0     | - 0    | 0          |              | . 0    | . 0   | - 0    | - 1    |
| Charcoal lobs           |             |       | 166    | - 45    | 0          | 0     | . 0    | 0            | 1.2      | - 8    | 36     | - 25            |         | 31    | 111       | 105       |         | 1.2    | 104        | . 54         | - 0    | .0    |        | - 6    |
| Cultivation             | 13          | - 0   | 1,281  | 305     | - 1        | - 5   | 93     | 46           | 12       | 21     | 184    | 12              | 9 5     | . 15  | 413       | - 80      | 29      | 458    | 3,961      | 2.002        | . 1    | - 21  | 165    | n      |
| Donkey                  |             | - 67  | 1,099  | 143     | - 3        | 34    | 265    | 136          |          | .0     |        | 0               | 1       | - 4   | 64        | 45        | 18      | 122    | 1,055      | 246          | - 1    |       | - 21   | . 67   |
| Rahcarep                | 0           |       | - 0    | . 0     | 0          | .0    | 0      | - 0          | 0        | - 0    |        | . 0             | - 0     |       | - 0       | - 0       | - 0     | p      | 0          | - 0          | 0      | . 0   |        | - 0    |
| Hut -metal roof         | ,           | - 80  | 576    | 356     | - 8        | 41    | 754    | 252          | - 2      | - 3    | 35     | 25              | 0       | - 0   | . 0       | 8 1       | 17      | 96     | 830        | 208          | 0      | 0     |        |        |
| Shoots (sheep and goats | : 11        | 34    | 13,413 | 2,157   | - 6        | 1,000 | 34,656 | 7,890        | 2        | 42     | 366    | 340             | - 3     | 320   | 5,315     | 1,799     | 36      | 8,766  | 75,813     | 10,590       |        | 725   | 5,713  | 2,910  |
| Hut-thatched            | 10          | 40    | 981    | 194     | - 1        | 1     | 38     | 35           |          | - 9    | 79     | 36              | 1       | - 14  | 231       | -137      | 23      | 274    | 2,370      | 471          | - 1    | . 0   | 71     | 30     |
| Transferling            | - 0         |       | 0      |         | 0          | - 6   |        |              |          |        | 7-1-0  |                 | - 0     |       |           |           |         |        |            |              |        |       |        |        |

n.b. Allocation of estimates to administrative areas is limited by the inherent inaccuracy of subunits ( $\pm$  1.25km accuracy) and available GIS data. While some incursions of livestock and habitation or cultivation were estimated inside protected areas during flights, estimates inside protected areas are generally from areas close to boundaries (see maps) and should be checked on the ground.

#### 3.5.2 Human Activity Trends

Human activity trends were generated by comparing the estimates of the previous aerial survey (dry season 2011) with the current census estimates. Thirteen human activities were observed in the Tarangire-Manyara ecosystem in 2016 aerial census, among these only seven human activities qualified for d-test. Four human activities showed an increasing trend (the d-value is greater than 1.96), these are cattle (d=5.15), shoats (d=4.27), thatched roof houses (d=2.73) and donkeys (d=2.58). Three human activity showed a stable trend (the d-value is less than 1.96), these are bati roof houses (d=1.24), occupied bomas (d=1.66) and farm plots (d=1.7), Table 9.

Table 9: Human activity trend in Tarangire-Manyara ecosystem, dry season 2016

|               | 199      | 0      | 199      | 4      | 200      | 4      | 200      | 7      | 201      | 1      | 201      | 6      | 2007/04 | 2011/07 | 2016/11 |
|---------------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|---------|---------|---------|
| Species Name  | Estimate | SE     | d-test  | d-test  | d-test  |
| Cattle        | 52,290   | 13,389 | 134,268  | 19,699 | 137,249  | 19,018 | 196,950  | 26,463 | 164,878  | 19,857 | 331,013  | 25,503 | -0.41   | 1.50    | 5.14    |
| Shoats        | 38602    | 1991   | 82477    | 6794   | 107748   | 18926  | 121740   | 22693  | 113671   | 19213  | 228,360  | 18,728 | -0.41   | 1.50    | 4.27    |
| Boma occupied | 903      | 213    | 2936     | 466    | 4150     | 563    | 16411    | 1606   | 3455     | 514    | 9,633    | 3,144  | -1.51   | 0.54    | 1.94    |
| Farm plots    | 8,456    | 2754   | 40,299   | 6905   | 4,086    | 855    | 49,152   | 7345   | 4,477    | 772    | 8,242    | 2,072  | 1.76    | -1.82   | 1.70    |
| Thatched roof | 2,925    | 638    | 17,426   | 2945   | 689      | 297    | 9,228    | 1447   | 3,316    | 623    | 6,643    | 1,046  | -0.28   | -0.27   | 2.73    |
| Mabati roof   | 50       | 36     | 1641     | 67     | 769      | 370    | 12268    | 3180   | 3392     | 644    | 4,613    | 742    | -2.19   | 1.91    | 1.24    |
| Donkey        | 150      | 93     | 4,909    | 196    | 2,340    | 868    | 1,284    | 450    | 2,124    | 527    | 4,393    | 702    | -1.02   | 1.07    | 2.58    |

\*d-tests (right three columns) compare succeeding surveys: 2004 and 2007, 2007 and 2011, 2011 and 2016. Significant values are shown in dark bold.

# 3.5.3 Cattle distribution and density

Cattle were widely distributed over the entire surveyed area (

Figure 31). Highest concentrations were observed in the Simanjiro, Kibaoni, Kwakuchinja, Mto wa Mbu, Mkungunero, and the swamps of Makame WMA. Relatively low cattle density was observed in the Outside South area.

Cattle show a strong increase from 1990 onwards, with the population almost doubling from 2007 and 2011 (

Figure 30). It is unknown how much of this represents a local increase or how much could represent an influx of animals from other parts of the country or even internationally, but reflects patterns seen in other survey areas.

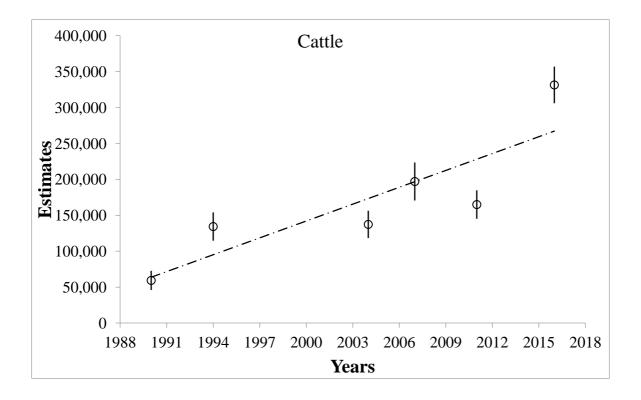



Figure 30: Cattle population trend in Tarangire-Manyara ecosystem, dry season 2016

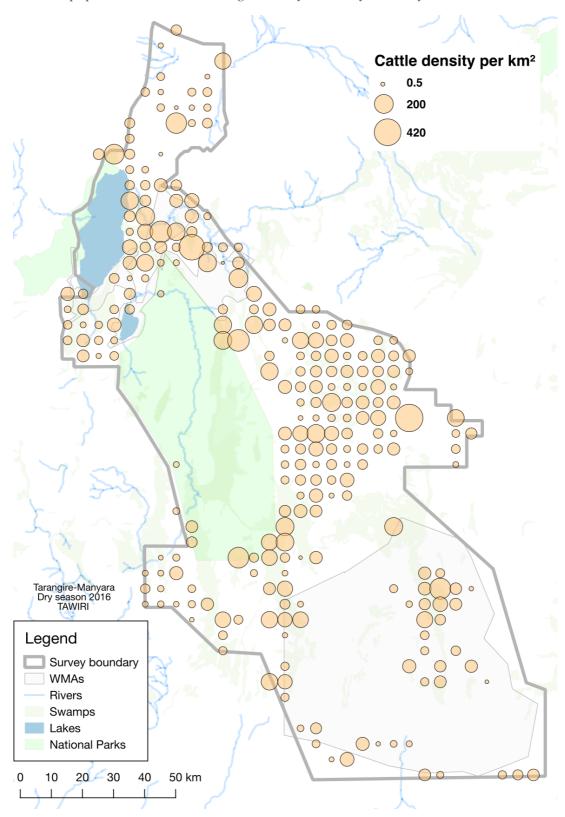



Figure 31: Cattle distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.5.4 Shoat distribution and density

Similar to cattle, shoats (sheep and goats) were widely distributed over entire surveyed area with few individuals along the Southern boundary of Tarangire National Park. The highest concentrations of shoats were observed in Simanjiro, Kibaoni, Kwakuchinja, Lolkisale, Mto wa Mbu and Mkungunero. Relatively low density was observed in the Outside South area (Figure 33).

As with cattle, shoats show increases from 1990 up to 2016, more than doubling from 2007 and 2011 to 2016 (
Figure 32).

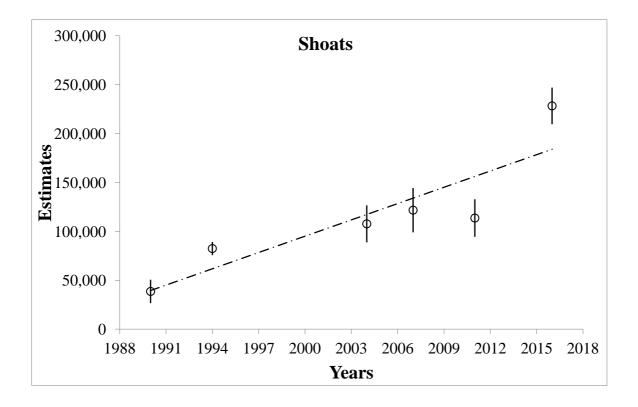



Figure 32: Shoats population trend in Tarangire-Manyara ecosystem, dry season 2016

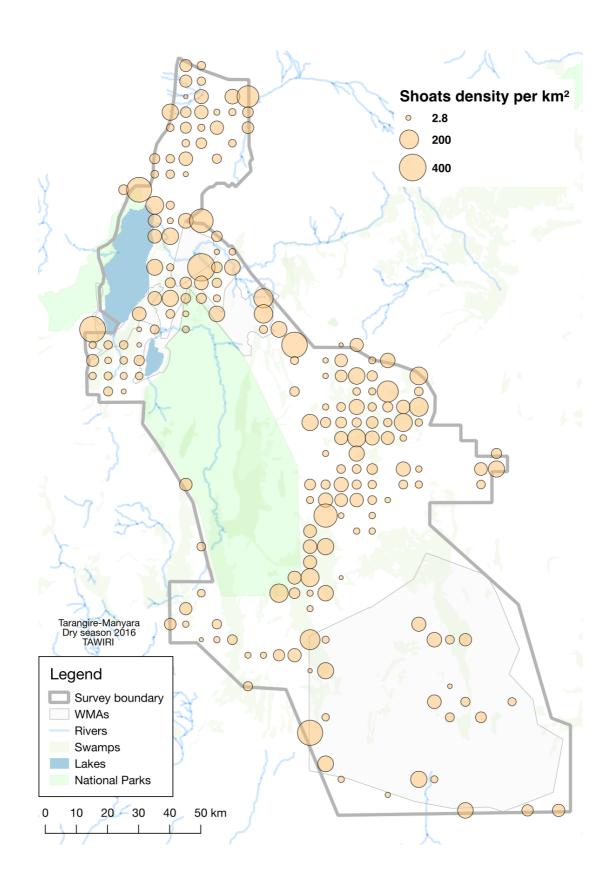



Figure 33: Shoat distribution and density in the Tarangire - Manyara ecosystem, dry season 2016

# 3.5.5 Agriculture

The 2016 aerial census over the Tarangire-Manyara ecosystem shows that agriculture is practiced in all administrative areas. The highest intensity of cultivation was observed in Simanjiro, Kibaoni, Mkungunero and Kwakuchinja. Relatively low intensity cultivation was observed in Outside South and Mto wa Mbu (Figure 35).

Note: SRF is not suited to detecting land use and its trends, as demonstrated in

Figure 34 below. It is difficult to determine what counts as a 'farm plot' from the air, and small changes in seasonality can dramatically change how the land is planted. Similar problems are experienced with houses and clusters of houses.

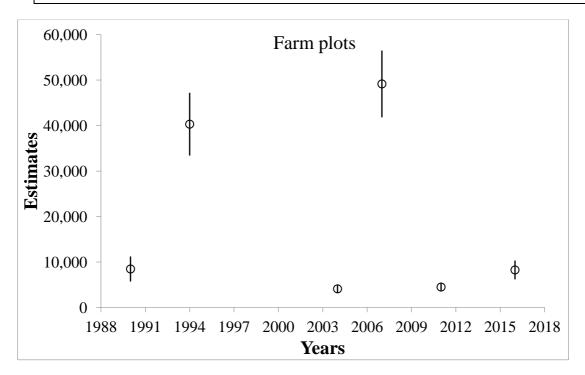



Figure 34: Farm plots trend in Tarangire-Manyara ecosystem, dry season 2016.

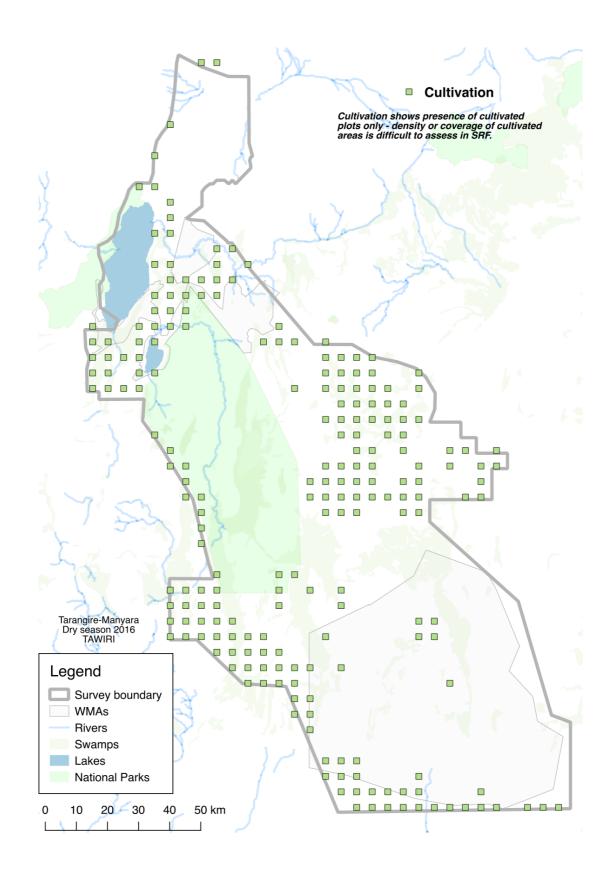



Figure 35: Cultivation distribution in the Tarangire-Manyara Ecosystem, dry season 2016

#### 3.5.6 Human Settlements

Recorded types of human settlements are *bati* roofs (corrugated iron sheet), thatched roofs, occupied bomas, unoccupied bomas and abandoned bomas. Human settlements were widely distributed over the survey area, with fewer settlements close to the southwestern part of the Tarangire National Park. The distribution pattern of human settlements is very similar to that of agriculture and livestock (see Figure 39 and

Figure 40).

Note: the geographic accuracy from aircraft observations and the generalisations from mapping methods lead to uncertainty about locations; while results presented here may suggest "illegal" settlements inside protected areas, these must be verified on the ground as they may only represent structures found close to the boundaries.

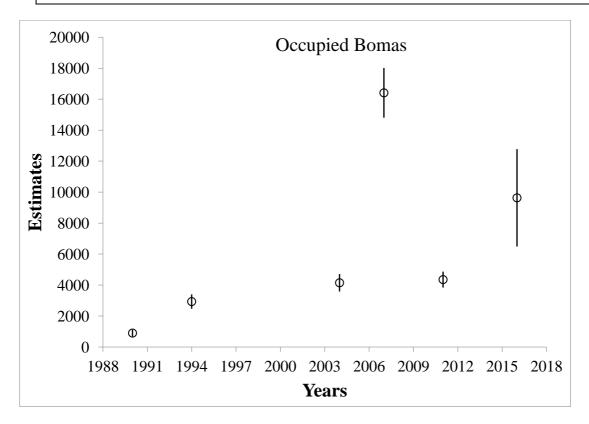



Figure 36: Occupied bomas trend in Tarangire-Manyara ecosystem, dry season 2016

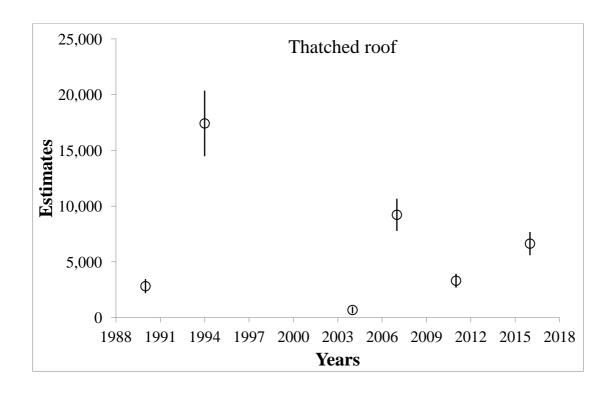



Figure 37: Thatched roof trend in Tarangire-Manyara ecosystem, dry season 2016

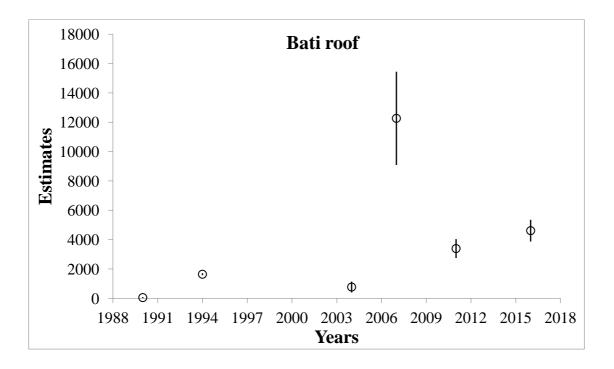



Figure 38: Bati roof trend in Tarangire-Manyara ecosystem, dry season 2016

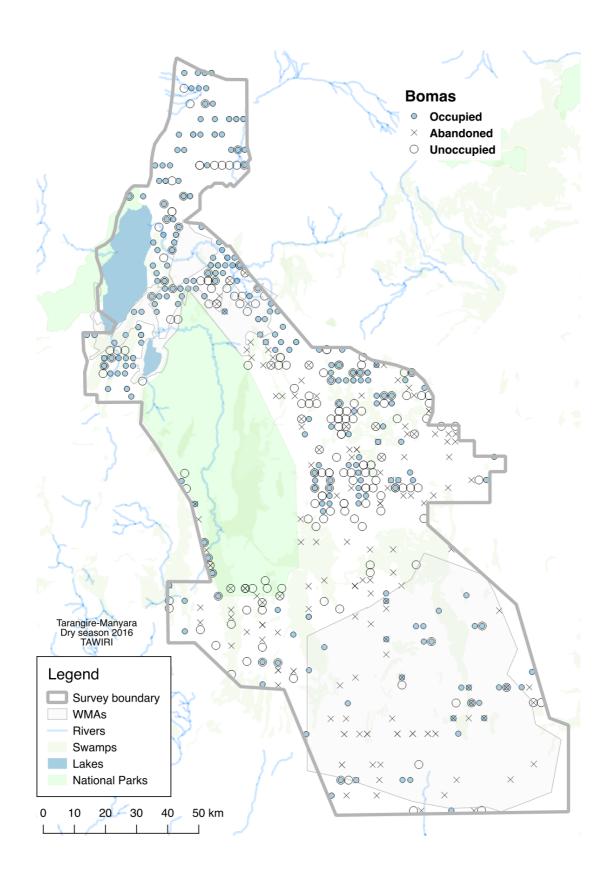



Figure 39: Boma distribution in the Tarangire-Manyara Ecosystem, dry season 2016

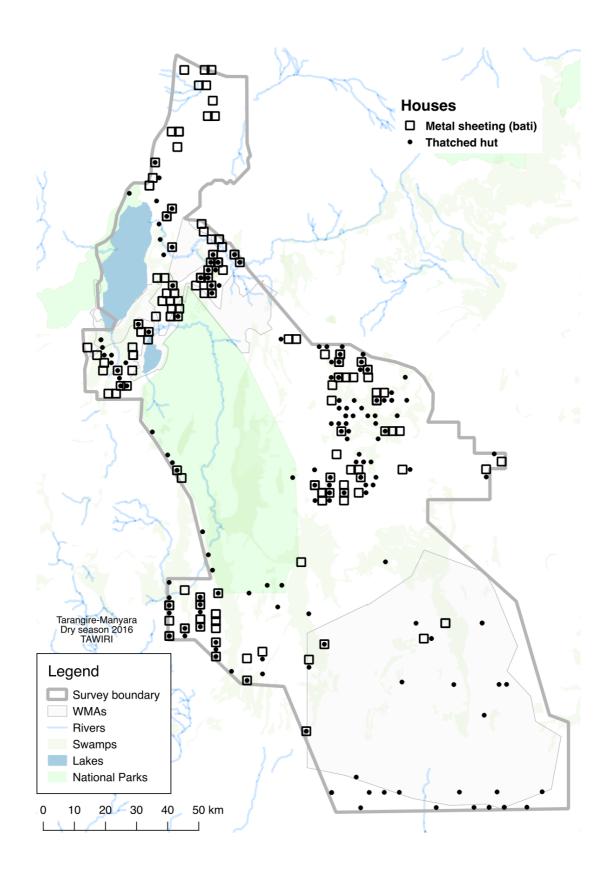



Figure 40: Bati and thatched roof distribution and density in the Tarangire-Manyara Ecosystem, dry season 2016

# 3.5.7 Tree felling and charcoal kiln density and distribution

Charcoal kilns were found in a few areas, namely Simanjiro, Outside South, and a few on the boundary of Tarangire National Park. Two sites of tree felling were spotted in Kibaoni and widely distributed in the southern part of Makame WMA (Figure 41).

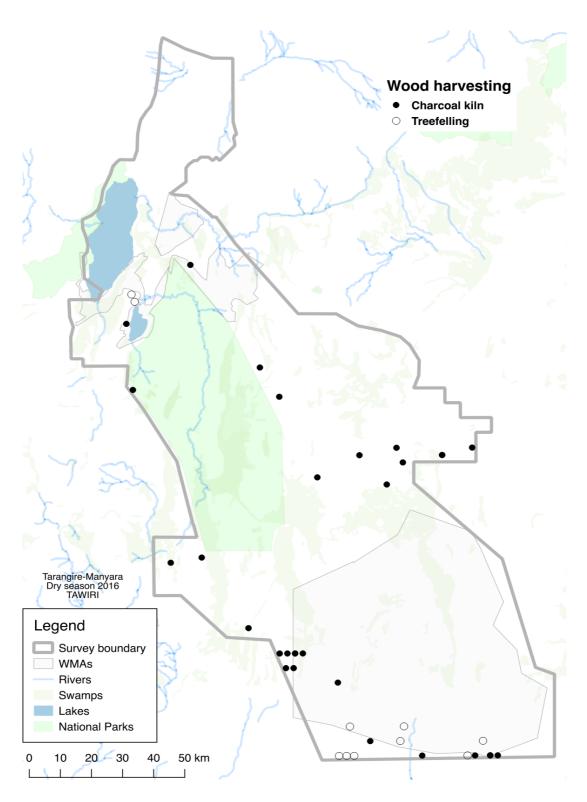



Figure 41: Tree felling and Charcoal kiln locations in the Tarangire-Manyara Ecosystem, dry season 2016

# 4 Acknowledgements

We are grateful to the Director General of Tanzania National Parks (TANAPA) and the Wildlife Division (WD) for permission to conduct the survey and for providing aircrafts, personnel and logistical support. Financial support from the USAID-Endangered Ecosystems of Northern Tanzania (EENT) grant, through the Wildlife Conservation Society (WCS) is highly acknowledged. Special thanks should go to the survey crew and to all who provided assistance in the field.

#### 5 References

- Borner, M. 1985. The increasing isolation of Tarangire National Park. Oryx,19: 91–96. 10.1017/S0030605300019797
- Campbell, K.L.I. (1987). Serengeti Ecological Monitoring Programme, Quarterly Report, October 1987. Serengeti Wildlife Research Centre, Arusha, Tanzania
- Campbell, K.L.I. (1988). Serengeti Ecological Monitoring Programme, Programme Report, September 1988. Serengeti Wildlife Research Centre, Arusha, Tanzania
- Cochran, W. G. 1954. The combination of estimates from different experiments. Biometrics 10:101-129
- Davison, R. (1991). Maintaining the integrity of protected areas-productive land management in the Tarangire region, Tanzania. Volume II: Land Use Options-Technical Data. AWF & TANAPA, Arusha.
- Foley, C., Foley L., Lobora, A., De Luca, D., Msuha, M., Davenport, T.R.B., Durant, S. 2014. A field guide to the larger mammals of Tanzania. Princeton University Press.
- Galanti, V., Tosi, G., Rossi, R., and Foley, C. 2000. The use of GPS radio-collars to track elephants (Loxodonta africana) in the Tarangire national park (Tanzania). Hystrix 11(2): 27-37
- Jolly, G. 1969. Sampling methods for aerial census of wildlife populations. East African Agriculture and Forestry: 34:46-49
- Lamprey, H. F. 1963. Ecological separation of the large mammal species in the Tarangire game reserve, Tanganyika. African Journal of Ecology.
- Lee, Derek E., and Monica L. Bond. "Precision, accuracy, and costs of survey methods for giraffe Giraffa camelopardalis." Journal of Mammalogy 97.3 (2016): 940-948.
- Norton-Griffiths. 1978. Counting Animals. African Wildlife Foundation, Nairobi.
- Pratt, D. J. & Gwynne, M. D. 1977. Rangeland management and ecology in East Africa, Huntington, New York, Robert E. Krieger Publishing Co., Inc.
- Peterson, D. 1978. Seasonal distribution and interactions of cattle and wild ungulates in Maasailand, Tanzania. Virginia Polytechnic Institute, MSc thesis.
- Tanzania Wildlife Conservation Monitoring (1991). Wildlife Census, Tarangire, 1990. Frankfurt Zoological Society, Arusha, Tanzania

- Tanzania Wildlife Conservation Monitoring. (1991). Wildlife Census: Tarangire 1991.
- Tanzania Wildlife Conservation Monitoring and Tarangire Conservation Project. (1995). Total Count of Elephant and Buffalo in the Tarangire Area, September, 1995. Frankfurt Zoological Society/European Union, Arusha, Tanzania
- Tanzania Wildlife Conservation Monitoring. (1995). Aerial Wildlife Census of Tarangire National Park, Wet and Dry Seasons, 1994. Frankfurt Zoological Society, Arusha, Tanzania
- Tanzania Wildlife Conservation Monitoring. (1998a). Total Count of Buffalo and Elephant in the Tarangire Ecosystem, March 1998. TWCM / FZS / EU Wildlife Survey Report, Arusha, Tanzania
- Tanzania Wildlife Conservation Monitoring. (1998b). Total Count of Buffalo and Elephant in the Tarangire Ecosystem, September 1998. TWCM / FZS / EU Wildlife Survey Report, Arusha, Tanzania
- Tanzania Wildlife Conservation Monitoring. (1999). Aerial Census for the Tarangire Ecosystem, April 1997. TWCM / FZS / EU Wildlife Survey Report, Arusha, Tanzania
- Tanzania Wildlife Conservation Monitoring. (2000). Aerial Census in the Tarangire Ecosystem, Dry Season 1999. TWCM / FZS / EU Wildlife Survey Report, Arusha, Tanzania
- Tarangire Conservation Project (1997). Analysis of Migratory Movements of Large Mammals and their Interaction with Human Activities in the Tarangire Area in Tanzania as a Contribution to a Conservation and Sustainable Development Strategy, Final Report, April 1997, University of Milano, Varese Branch.
- TAWIRI (2004a) Aerial survey in the Tarangire-Manyara ecosystem, wet season 2001. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2004b) Aerial total count of buffalo and elephant in the Tarangire-Manyara ecosystem, wet season 2001. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2004c) Aerial total count of buffalo and elephant in the Tarangire-Manyara ecosystem, dry season 2004. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2004d) Aerial survey in the Tarangire-Manyara ecosystem, dry season 2004. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2006) Aerial total count of buffalo and elephant in the Tarangire-Manyara ecosystem, dry season 2006. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2007) Aerial survey in the Tarangire-Manyara ecosystem, dry season 2007. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2009) Aerial total count of buffalo and elephant in the Tarangire-Manyara ecosystem, dry season 2009. Tanzania Wildlife Research Institute, Arusha.

- TAWIRI (2011) Aerial survey in the Tarangire-Manyara ecosystem, dry season 2011. Tanzania Wildlife Research Institute, Arusha.
- TAWIRI (2015) Total count of buffalo and elephant in the Tarangire ecosystem, dry season 2014. Tanzania Wildlife Research Institute, Arusha.

# 6 Appendices

# 6.1 Appendix i: List of Census Crew for the 2016 Dry Season Aerial Census Over the Tarangire-Manyara Ecosystem.

| Aircraft  | 5H-TPM (TANAPA)        | 5H-TPK (TANAPA)      |
|-----------|------------------------|----------------------|
| Pilot     | B. Kessy (TANAPA)      | D. Mwano (TANAPA)    |
| FSO       | M. Mwita (TAWIRI)      | W. Marealle (TAWIRI) |
| Left RSO  | Azori Mosi Migezo (WD) | S. Mwambola (TAWIRI) |
| Right RSO | Gabriel Nyaki (TANAPA) | Peter Chacha (NCAA)  |
| Aircraft  | 5H-TPM (TANAPA)        |                      |
| Pilot     | W. Minja (WD)          |                      |
| FSO       | W. Marealle (TAWIRI)   |                      |
| Left RSO  | S. Mwambola (TAWIRI)   |                      |
| Right RSO | Peter Chacha (NCAA)    |                      |

# 6.2 Appendix ii. List of Ground Crew Participation for The 2016 Dry Season Aerial Census of the Tarangire-Manyara Ecosystem

| Scientific Supervision        | Dr. Simon Mduma (TAWIRI)                                                                                                                                   |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Supervision             | Dr. Edward Kohi (TAWIRI)                                                                                                                                   |
| Logistics and Coordination    | H. Maliti (TAWIRI); Enyasi Lejora (TANAPA) and Alex Choya (WD)                                                                                             |
| Survey Technical<br>Advisor   | H. Frederick (Consultant)                                                                                                                                  |
| Data entry                    | H. Mkwizu, S. Bakari, E. Lyimo C. Leweri, W. Marealle, J. Sanare and M. Machoke (TAWIRI)                                                                   |
| Validation and Verification   | Dr. S. Mduma, Dr. E. Kohi, H. Maliti, M. Machoke (TAWIRI) and H. Frederick (Consultant)                                                                    |
| Data analysis                 | M. Machoke and H. Frederick (Consultant)                                                                                                                   |
| Mapping & geo-<br>referencing | J. Sanare, and M. Machoke (TAWIRI)                                                                                                                         |
| Report writing:               | Dr. S. Mduma, Dr. E. Kohi, H. Maliti, M. Machoke, S. Bakari, C. Leweri, E. Lyimo and J. Sanare (TAWIRI), H. Frederick (Consultant) and G. Ng'umbi (TANAPA) |

# 6.3 Appendix iii: Species List

The following is a list of all species recorded in the 2016 aerial census in the Tarangire-Manyara Ecosystem. Nomenclature follows Foley *et al* 2014.

Marabou stork

Leptoptilos crumenifer

| Mammals            |                    | Birds           |                       |
|--------------------|--------------------|-----------------|-----------------------|
| Olive baboon       | Papio cynocephalus | Ground hornbill | Bucorvus leadbeateri  |
| Fringed-eared oryx | Oryx gazella       | Ostrich         | Struthio camelus      |
| Buffalo            | Syncerus caffer    | Pelican         | Pelecanus onocrotalus |

Bohor reedbuck Redunca redunca

Bush pig Potamochoerus porcus

Tragelaphus scriptus

Bushbuck

Duiker, common Sylvicapra grimmia

Eland Taurotragus oryx

Elephant Loxodonta africana

Giraffe Giraffa camelopardalis

Grant's gazelle Gazella granti

Greater kudu Tragelaphus strepsiceros
Kongoni Alcelaphus buselaphus
Impala Aepyceros melampus
Bohor reedbuck Redunca redunca

Vervet monkey Cercopithecus aethiops

Warthog Phacochoerus aethiopicus

Waterbuck Kobus ellipsiprymnus
Wildebeest Connochaetes taurinus

Zebra Equus burchelli
Dik-dik Madoqua kirkii

Steenbok Raphicerus campestris
Thomson's gazelle Eudorcas thomsonii

# 7 Glossary of Important Census Terminology

# 7.1 Survey Area (Z)

The survey area (also referred to as census zone) is defined as the whole area in which the number of animals is to be estimated. In some censuses the survey area is divided into sub-zones (strata) for various reasons. For example, divisions could be based on political and/or management boundaries, or ecological zones.

#### 7.2 Sample

The sample zone is that portion of the survey area that is actually searched and counted. To count every single animal in a protected area would be prohibitively expensive and time-consuming (sizes of protected area range from about 200 to 80,000 km<sup>2</sup>). For this reason, only parts of the survey area are searched, and the method assumes that what is seen in those parts (samples) are about the same as what we would see if we searched over the other parts. In an SRF survey the sample zone is made up of transects and each transect is a sample unit.

# **7.3** Population Estimate (Y)

All animals and human activities within the counting strips are recorded during an SRF. The assumption is made that animals are evenly distributed over the survey area so that if 10% of the area is searched, it will contain about 10% of the animals. This allows us to estimate the number of animals in the survey area. The *standard error* is used to gauge the reliability of our population estimate.

### 7.4 Standard Error (Se)

Because animals are never distributed evenly over the census zone, each transect (sample) will vary in the density of animals that it contains. Any single population estimate may therefore be higher or lower than the true population total. The potential magnitude of this sampling error can be determined by examining the variation between the numbers of animals counted in each of the sample units. The *standard error* is a measure of this variation.

If the standard error is small, then we can estimate the population to within a narrow range of numbers (we say the estimate is precise). If the standard error is high, the true population estimate lies within a wide range of possible numbers. **Caution must be taken when interpreting estimates with wide standard errors** (above 20% of the estimate) as a wider SE, indicates a less reliable estimate. Critical management decisions should not be based on a single SRF estimate and, more specifically, one with wide standard errors.

#### 7.5 Confidence Limits (Cl)

The population sizes presented in our reports are estimates (see "Population estimate", above), and therefore, it is helpful to know the lowest and highest probable population size. Confidence limits are a way of describing these upper and lower bounds on our estimate. By default, the confidence limits presented in our reports are "95% confidence limits", that is, there is a 95% probability that the true population size falls within these limits. The formula for calculating the 95% confidence limits is:

95% CL =  $Y \pm$  (SE x t value).

Where: Y = Population estimate

SE = the standard error of the estimate Y.

"t critical value" depends on sample size (number of transects).

# **7.6 SIGNIFICANT DIFFERENCE (***d***-Test Between Population Estimates)**

It is often useful to compare two or more population estimates for a given species, to see whether the species is increasing or decreasing in numbers. If estimates from two different surveys are different, it might be due to:

- 1. Chance. Estimates always vary from one survey to another because of how the animals are distributed, and due to which transects (of all the possible transects) we flew.
  - 2. The number of animals in the protected area have increased or decreased.

d-value is used to test the difference between two independent estimates. The statistical test takes into account the *standard error* of a population estimate to determine whether the variation between estimates is more likely to be due to sample variation or a true change in population size. A *significant difference* between population estimates strongly suggests that the population has increased or decreased between surveys. If the difference is *not significant*, then we do not have any statistical evidence for population change; in effect, we must assume the population has stayed the same. Two estimates are significantly different from each other at the 5% level if the d-value is greater than 1.96.