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'ABSTRACT
AwTheqiy'o?:the‘b;mbined‘Mole-Tilé,Drgin’Systemg
by
-Tariq Naji Kadir
Utah State University, 1973

Major Professor: Dr. Komain Unhanand
Department: Agricultural and Irrigation Engineering

A theory is presented to describe the stages of flow of water in
tﬁe soil in\a combined mole-tile drain system.
' Based on the'theory and along with some assumptions to simplif§
' the'c&églexity of Fhe mathematical calculations involved, two general
equations are derived for the spacing of the tile drains‘a?d the mole
drains, respectively. Six different boundary conditions are considered,
and the solutions for each presented. So;; of the'tﬁe&regical equa; ’
' éions are compared with field daté. A method is presented whersby the
;quations can be corrected for convergence of £low at the drains.

Finally, a procedure is presented whereby the theoretical edu@-

tions“could be used in designing a combined mole-tile drain system.

(96. pages)



INTRODUCTION

; Drainage is .one of many factors that influence crop growth and soil
- conservation. It helps create in the soil the best conditions for crop ‘
root growth and to keep the land surface free’ from excess water,so ‘that
,iarm operations can be conducted effectively.

Drainage can be carried out using one or a combination of the
folloving systems,‘(Donnan and Houston, 1967): (1) open drains, (2)

‘ covcred drains, (3) wells and pumps and (4) sumps. An advantage of the

covered drains system over the other systems is that At does not inter-

[ B

fere with the farm operations.

Qovered drains consist of a series of channels below the ground
; surface which may be connected to‘each‘other/or discharge separately;
.either into an open channelnor‘other point of disposal. Two common , .
tynes of covered drains are tile drains and mole drains. Mole drains»
+ are underground channels, 1ined or unlined formed by pulling a builet’
shaped cylinder through the soil (Soil Conservation Service, 1973 and
Donnan and Fouss, 1962). Tile drains are either perforated continuous
pipes (e.g.,/plastic drains) or short sections of porous}pipes butted
together (e.g., clay or 'tile drains), placed underground usuaily in a
\trench and surrounded by a filter material, (Donnan and Houston; 1963);
' The trench is then backfilled to the ground surface.
. The advantages of tile drains over the mole drairs are that they
, can be used in any soil, have a long working life and low maintenance
”costs.‘ The main disadvantage cf this system of drains is the high

initial cost, especially in heavy textured soils (soils with a high
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percentage of clay) in- which close spacing is necessary due to the low -
hydraulic conductivity of the soils. ,

- Tne mole drains, on the other hand, have the advsntages of being
‘much less expensive and simpler to install. The ‘main disadvantage of
mole drains is the short working life, and its- use is restricted to |
somewhat heavy textured soils in which the unlined mole channels retain
')their shape after noling.

Consequently, drainage of,excess water from heavy soils, particu~-.
' larly in humid areas, using tile drains alone requires close drain spac-
ing and therefore may not be economical if the agricultural return from
the land does not offset the initial and maintenance costs of installing

these drains.’ However, by using a combination of the mole drainage
and the tile drainage systems, it may be possible to obtain the advan-
tages of both systems with few of the disadvantages. The moling opera-—
'tion’csuses numerous cracks in the soil whicn increase the hydraulic
~conductivity, and the mole channels vork more or less as collecting

fdrains, enabling the tile drains to be laid farther apart, thus reduc-

‘ing the initial cost of the drainage system (Theobald, 1963).

Need for the Study

Extensive investigations have been carried ‘out, to-determine the
spacing of tile drains, based on both theoretical and practical analy—\
‘xsis.i
" From'the theoretical point of view, the problem of tile drain
spacing has been approached from both the'steady and the transient
A(time dependent) flow concepts, with the latter receiving a wider accep-

.tance in practice (Luthin, 1957, 1973). There has been no theoretical



analysis made concerning mole drain spacing, and therefore the spacing
is based mainly on practical experience (Soil Conservation Service,
1973). Ac for the combined mole-tile drain system, there have been no
theorctical studies made up to this date to determine the spacing of
the mole drains and the spacing of the tile drains, tbus‘preventing a‘

sound economic feasibility study of the systen as‘compared to the or-

dinary tile drainage system.

Objectives'

The main objectives of this study are:
i; To set up a mathematical model for tbe combined, mole—tile
fdrain system under transient conditions.
-2. To obtain solutions for the above model for particular initial

‘and boundary conditions.

3. To compare part of the solutions obtained in Step 2' with data

obtained from a field experiment.



REVIEW: OF LITERATURE

The combined mole-tile drain system is being used in varioue parts
of the world particularly Europe and the Far East. Succeesful use of
‘the’ combined system has been reported in Austria, Federal Republic of
Gereahy, Hungary, Ireland, United Kingdom and Yugoslavia (FAO, 1971).
Use?ef and studies made on the system have also been reported in Japan
(Tomita, 1971 and Tomita et al., 1968).

( Generally speaking, the combined system is composed of two‘net-
works of underground dtains: tile drains and mole drains. The two
'networks are laid at different elevations and are more or less ortho-’

gonal to each other, with the mole draius lying above the tile drains

(Figure 1).

Figure 1.,'Pieﬁ.¢iew of the combined ?ole-tile’drain~eystem."



The tile drains, usually spaced at 30 m to 150 n and laid at a
.depth of about 100 cm below the ground surfaee, are placed in trenches
and surrounded by a graded filter (Figure 2) and then backfilled t:o the
ground surface with top soil. The mole plow, a bullet shaped cylinder
connected to a sharp blade, is then pulled through the soil across the
tile drains but at a higher elevation, forming the mole'channels. These
channels are usually spaced at 2 m to 5 m at a depth of about.60 cm ‘
below the ground surface. It should be emphasized again/that the soil
textufe must be such that the mole drains will retain ;heir‘shepellong

‘
v

,after the‘moiing process.

graded
filter

- R J

' “mole drain |
. tile drain 3 ’

Figure 2. Illustrative diagram of the combined mole-tile drain system,




6

. Dullng Lhu molIng operation, . cra(ku or f{issures are devcloPcd'ou
thL sides or hoth the mole channel nnd the slit formed by the mole plow
. blade. These cracks form secondany drainage channels, making it easier
fon the/water to flow in the soil. The filter material surrounding the
tile drains allow the water in the mole channels to escape into the
tile drains which in turn remcve_the water from the system,

The spacing and depth, however, of the drains in the combined
system are based mainly on practical experience (FAO, 1971). 1In fact,
the only indicatjon of published theoretical work on the combined sys-
tem I8 a paper published in Japan (Tomita, 1971), which dealt with a
computer solution to the Three-Dimensional Steady State equation (i.e.,
laplace equation) of flow in the combined system for ponded water using
a digital computer. His'results for homogeneous soils were presented
in the form of graphical solutions with the ratio of the discharge per
unit drain length no thg hydraulic conductiv;ty as the ordinate and the
&raln spacing as the absissa.

To the best of the author's knonledge, the analysis to be presen;ed

herein is.the first of its kind to this date.



THEORY

Description of the Theory

) Consider a field with a combined mole-tile drain system 1aid out -
infiuitely in all directions to guarantee -that the fileld boundary con-

ditions will have no effect on the model under study. Because of sym-

metry, it is possible to choose as a model of study two parallel tile
drains overlain orthogonally by two parallel mole arains (Figure 3).

These drains now form the rectangular boundaries of ' the model.

'Figure 3., Flat water 'surface at time.t.=.0, Stage I



© The exact nature of the water movement in the combined'system is

i ¢

not yet fully known. However, based on-what is. known and on the obser;
,vations of a field experiment, a hypothetical description of the water
movemert in the system is presented below. It will»be assumed, hence—
forth, tnat ehe Dnouit-Forchheimer assumptions are valid. ;
) ' To begin with, assume that all the drain outlets were cloeed and
the water table was built up to a uniform height above the moie~drains,
forming a flat water surface (Figure 3). If now all the drain outiets
" were opened simultaneously, the water surface, because of the hydraulic
,gradient components formed by the presence of the drains, quickly drops
along the boundaries (i.e., the drains) to the drain levels and forms
a curved surface within the model (Figure 4). The curves b-a-c and
d-a-e (Figure 3) represent the nater surface profiles at the sections
midway between the mole drains and the tile drains, respectivel&.
Point "a," lying at the intersection of the two curves,-nepresents the
highest point on the water surface in the syetem since it is .least
affected by the draims.

The curves b-a-c and d-a-e divide the water surface into four .
symmetrical regions, I, II, III, and IV, Since the flow is symmetrical
in all four regions, it is possibie to concentrate on‘one region, say
fegion 1 (Figure 5) to describe the water movement. The direction of
flow at any point on the curve a-b (e.g., point "1" in Figure 5) Is

along the curve itself (i.e., towards the tile drain only) since the

velocity vector component toward the mole drain is zero. In fact,

[

'the largest velocicy vector component towards the tile drain in
region I exists along a-b, Similarly, the direction of flow at any

ooint on tnencurne a-e (e.g., point "2" in Figure 5) will be towards



profiles

water surface
| ,

»
f Id t

]

3

ground surface

impermeable
layer

. Figure 4, Symmetric regions of the water’surface



. elevation. 'ths seemg ‘to indicate that while water enters and flqwé

10

Figure 5. TFlow of groundwater - Stage I.

the mole drain only because the largest velocity vector component to-

wards the mole drain in region I exists along the curve itself. Any

~ point 1yipg on the surface within the region and not on the curves a-b

or a-e or the boundaries will be affected by the velocity vector:
components in two directions (e.g., point "3" in Figure 5).

Aiong the tile drain, assuming that the drain is always half full

with water, the water level is constant at the drain center line eleva-
kY

tion. Along the mole drain, the problem is a little more complicated.

From the field experiment, the discharge of the mole drain in the re-

gion of the tile drain was found to be small and quickly diminished

.with time even tﬁough the ﬁager surface was still above the mole drain

d

i

‘in’the mole Qrain, the most part of it seeps out from the channel at"



11,

some point "g'" a distance xo'froﬁ\thelgile drain due to the vclocltx
veclor component townr&é the ttlé‘drain and begins [lowing in a curved
path toward the tile drain (i.e., the curve g-f in Figure 5). A furthe;;
complication of the problem is that the distance X, is not constant but
increases with time (i.e., time dependent). After a certain amount of
time has elapsed, a situation will be reached where the velocity

vector component towards the mole drain will be very small compared’to the,
velocity vector component towards the tile drain and flow towards ‘
the tile drain will dominateﬂ At that point in time, the molé‘drain
almost ceases to function, and the water level along the mole drain
pounaary begins to drop below the mole drain level. :The water surface
then gradually flattens out .until the velocity vector is'completely
towards the tile drain,'cﬁusing the flow to'be one dimensional, the

condition upon which the ordinary tile drain -theories are,bhaéd (Fiéure

6).

Stages of Water Movement in the System

‘The study model, ;hown in three diﬁensions in Figure 7, consists
of two tile drains spaced at St, overlain orthogonally by two mole\
dfains spaced at Sy The vertical distance between the molé drains
and the tile drains is dz. The impermeahle layer lies at a distance |
d3 below the tile drains. The three cartesian axes u, x, and y are
tgken as shown in Figure 7.

The two stages of water movement in the combined ayétem are:

Stage I - Water surface above the mole drains

During this stage, both the mole drains and the tile drains act

together in a combined fashion resulting in a two-dimensional flow



> //

* 7
A .
’ ' "/’ ;:>\\ Mole drain
' "a/ ~ AN
e ” t. between

tile drains

.Figure‘6: Flow of grbundwater - Stage 1I.
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N -F;gu_ré 7". Sﬁudy-mo’dei»of the combined mole-tile drain system.

€T



"

{ﬁatternfdue to'ﬁhe veiocigy vector which can be broken up into two "~
:cgmponents,‘OAe towards»the mole drains and the othér toﬁardq‘theyiile
drains. » |
At the time t = 0 with all drain outlets closéd{{the;gqtenxtgble*:
is horizontn} at:a‘disfance d; above the mole drains. - Then it will be -
'naguﬁed thég Juring an infinitesimal amount of time aftef all drain,out—
) lgté’ére oéened simultaneously, the water surface re-ofients 1tself into
a curved surface with;n the boundaries (i.e., the drains) and along the
bouridaries the water le;el drops to the drain level. Furthérmore, the
sﬁépe‘of the water surface profile along any boundary will be assumed
to be,indepéndent of. time. Along the tile drains the water level is at
a constant elevation (i.e.,iu = 0), Along the mole drains, the water
surface profile takes on.a constant shape which will be assumed later.
Once all the points on the water surface are at an elevation equal

" to or below that of the mole drains (i.e.,lx'idz), the mole drains will

' cease to [ﬁnction and Stage II begins.

)

Stage 11 - Water surface between the mole drains and the tile drains

During this stage only the tile drains are operating. The compon-

ent df the veloéity vector towards the mole drains is assumed to be
égror, The;efore, the velocity vector will be only towards the tile
iérainé; resplti;g in a one-dimensional flow pattern toward tﬁe qile
drains (Figure 6).

The shape of the water surface at any section between the mole
drains at the outset of this stage is assumed to be identical to the

constant water surface profile along the mole drains assumed in Stage

I. The shape, however, during this stage will be time dependent.
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i Assumptions

following are the assumptions that will be used throughout the .

AS

'theoreticalﬂanai§sis.

1,

'
FLE

. 2.,

9.

10, -

Al.

12,

"Dupuit-Forchheimer assumptions are valid,

Soil is homogeneous and isotropie:t

Specific yield and hydraulic conductiviti‘of'thequil are

« constant.

v
\

Darcy's law is applicable.

" Flow is under a Transient State condition.

Flow s completely gravitational (no upward flow)

Land slope is small’ such that it has.no effect. on water

movement.

}Heignt of tpeiwater surface at any point at any time above
1 ¢ ' [IEEN .

© the tile drains is very small as compared to the~distance

between the tile drains and the impermeable layer.

Tile araina‘ere parallel. Mole drains are parailel.‘ Tile

‘drains are orthogonal to the .zmole drains.

Flat water surface as an initial condition.

'Shape of the water surface profile along the. boundaries is .

independent of time.

first term of the infinite Fourier series is sufficient for ‘

_convergence,

713, |

14,

Spacing of the mole drains 5 is small as compared to'the,
spacing of the tile drains St such that (llstz) can be
neglected as compared to (1/Sm2)'

The duration of Stage I is the time necessarv for the highest

point on the water surface to drop from its initial position to
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an’ vlovallon Just nhove the mole drains where it can "be assumed

n

thaL Lhcse dralna no. longer hnve a signlflcant effect on thc

¢

system flow (1 e., Qtage Ir begina)

Setting ﬂp the Mathematical Model

‘ Stage I - Water surface above the mole drains
The basic two-dimensional continuity equation governing the flow
of water through the soil is ekpressed as follows (see the derivation’

in Appendix A and Figure'7 for the study model):

5% 9% _ du" |
St 2" %5%e w
9 ay E

whe*e‘(,
u is)pﬂe'heiéht of the wnter‘surface‘abbye the tile drains at
| any}ﬁime t -
t is tﬁe éime_
. dy
f is the averagn specific yield of the soil (by volume)

k is the average hydraulic conductivity of the soil

ﬂ,ﬂd3 is the vertical distance between the tile drains and the

¥

impermeable layer, d3 >>u
| '“The bddﬁdary'éonditions (B.C.) and the initial‘cdnditibn'(l.c.)ﬁ

are as follows: -
T TR
-

C
B.C. . 4”
.
A
(

o7 u(x, O,ft) = f(x) ‘ u(0, y, t) = 0
- u(x, e t) - f(x) o u(S,y; t), =0

I C.
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Cudx, y,yﬂl‘ﬂﬁdl'f“dék (Flat Water Table)
‘,,1,\" . }v. . N
" ‘where «
"f(i)‘rgpreqehﬁs the constant’ shape of the water surface proflle
‘along 'the mole drain boundary.
As shoqn‘in“Aﬁpehaix B, tﬁé(soiqtion'd(x, y, L) of[Eqﬁqtion‘(l)lis:

. the 'sum of " two aqlutiéns;v(x, y) and w(x, y, t).
Lo s . s\‘ N ' A

2

- (2)

u@, y, ) = vi,y) ¥ wlx, g, b))
" where - -
vkg, y) is Fhe‘Steady State[;olufion of Laﬁlace'q,eqﬁation in
’ rectangular reéions,
§—2-1'-+?-2—‘2’ =0 “(3)
2x~ 9dy ‘ ‘
SB.C.
‘ v(x, 0)'='f(x)’.‘ o .viO,yy) = 0
T s mE@ v, ) =0
<..and w(x, ;, t), is the Transient State};blutidp of
3x“ dy : '
B.C. ,. o
Cwix, 0, t) = 6{ Lo w(0, y, t) = 0 '
¥ S D20 T G, 3, 000
‘ne.
Wy, O (4 Fa) v )
whére | T -

v(x, y) is the solution obtained from Equation (3).

Furthermore, v(x, y) is the sum of two solutions (Powers, 1972):



vix, ), = vy (%, y) +vylx, ¥)
where

' v, (x, y) is the ‘solution of:

2

. 32v 9°v
R TR |
—3 t5 =0
ox" + dy
B.C..
Trl(x.“o) = £ (x) v,;(0, y) =0
vy, S) =0 » v (8 =0

and ,vz(x, y) 'is the solution of: '

2 .2

0 vy 9 vy

7tz =0

ox 9y

B.CI'
Vz(xs 0) = 0 Yz(oa Y) =0
v, 8p) = £(x) Vy(Ses ¥) =0

‘18’

(5)

Q

7

. Solving Equation (6) for v; (x, y) results in the following infinite

. Fourier series (Kreider et al., 1966):

[+] N
v (x, y) =Z A Sin X ginp I (5 - y)’
1 n S S m
TR t t .
' n=l
where
} , ' S
o 2 t nmx ,
A = , f(x) Sin =—— dx °
o 1

n nns St ,
Stzsinh e

t

IR Simffldr];y, splving Equatibn (7) for vztlx, 'y): ,

8)

(9?,."
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T oo
vy, y) = > D_ Sin g Sinh £L (10)-
2 S S oo
' t t
n=1 J
wbe{:e k
o 5, CL Co
D= ——z -, f(x) sin “"x dx ai)-
n. o n'lTSm ! ‘ t C '
. " 8. Sinh 40 I '
, t s \
. t. : ' LW,

Summing up vy (x, y) and vy (x,"j'j -and.noting that ~An - Dn;"rqsuli:s

3 i ’ ’m‘ B ;
Covix, y) = Z A_ Sin 1;1’5 [Si h (s —y) + Sinh —11 - (12)
’ o t S¢ o t. .
" where.
. 4” . 2 st ‘ -
An' = — f(x) S:I.n --—- dx (13)
s, -Sinh —= J0 o .. ,'
>t 5, - ,

¢
v

Using the trigonometric identity:

Sinh a + Sinh b = 2'Sinh 222 « cosh 22

Equation (12) can be re-written as:,

v ) =2 S A sin BT gpop mom o W ) v aw
' ¥ n nSt nZStx 25, "'m LA :
n=1 ‘ '

Soiving Equatioh (4) for wix, y, t), (Kreider et Kal.’,‘ 1966):

[T 1

| _ 2 a2 + nz'f)t : v
,E: mry o 2 27
w(x, y, t? mn g Sin 5. © sm. ; s‘t . .95)

m=] m

n=1
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where

/n :
mn R

1

A j j g(x, y) Sin g‘lrx Sin _l!}i dx dy - (16),
m t 1 m .

Blx, ) = [dl +dy] - vx, y) ooan

‘1At thie'poinp, a closer study of the results obeained 80 far‘is
Vneeessary. Once vkx,hy) ie'oetained from Equation (14) it is substituted
into Equation (17) to oﬁtainig(x, y) which in turn is substituted into
rEquationf(lﬁ) te obtain the constant values Amn' Equation (16) involves
. the iﬁtegration of en infinite series of terms. Therefore, an assump-
tion to simplify'the proBlem is necessary., If it is assumed that the
first term of the infinite Fourier series for v(x, y) of Equation (14)
is sufficient for eonvergence (Appendix C), Equations (14) and (13)

,reduce to:

* s

, = A -
| vix, y) (st? W) (A) Sin TX St Cosh —— 28 (Sm 2y) (18)
where
. s ' t
‘ -t X y
A= f(x) Sin 5 dx 19) .
0 t v
Sinh %—
Y= -
Sinh §
Ts
= B
\‘ st

Once Equation (15), is solved for w(x, Ys t:), it is possible to
find the general eolution u(x, y,; t) from Equation (2) However, since
Equation (15) involves an infinite series of terms, 80 will Equation ‘

(2). In other words u(x. ¥y, t) will contain the sum of an infinite

series.



o

Generally speaking, the number of terms,neéebbary for sufficient.

convergence beyond which the infinite series is’ truncated depends on

the behavior of the series 1itself.

In the problem under consideration,

including more than one term of the infinite series involves extensive

mathematical calculations, the results of which are not suitable for

practical design purposes.

Therefore, the earlier assumption applied

to Equation (14) that the first term is sufficient for convergence will

be used again.

and (165 reduce to:

) = (—-—-) (B) Sin o

w(x’: ‘Yv
lll t

’

where

1

] j g(x, y) Sin & —— ‘;in —1 dx dy

Therefore, taking the first term only, Equations (15)

oS N N
V] 2 2
‘ ‘ s, .8,
TX gin W e (20) -
S, S
t . “m .

(21)

Carrying out the integration on the right-hand side of Equation

(21) reduces it to the following

)
s

S S +
m
B = —-—- (kl)
vhere | )
K. = ]T.G(dl‘t-d2)x_ 4d2‘ ()
1 oz w W
' ZA {)
X=
‘ Std2

(Appendix D):
@2)

(23)

1

+'(24)

v <

In summary, the general equaiiohg controlling the ﬁater,auqfacé

height at any point above the tile drains during Stage I are:’
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- cu(x, y, t) ""('(xa y) +w:(xa yngt) 0 <t <ti : - (@2)

where

ot

"tl is the time necessary for the highest pdinf~qn the water sur-

t

face to Qrob'tolthe mole drains elevation during the drainout

period.

vix, 3) = € (§) (&) sin 2 Cosh 51 (5 - 2y) (8)
t Pt t L
2 .
- (._.1_. + _1...).;
. e g 2 S 2
wit, y, t) =K Sing=sin e mt (25)
' : t “m

A and K1 are defined in Equations (19) and (23), respectively.

Stage II - Water surface between the mole drains and the tile drains

During this stage, the flow is basically one-dimensional. Figure
8 shows the shape of the water surface profile at the initialization

time (t = 0) of this stage.

St I

. xo p— St-:axo .......xo .-.|

mole drain

.......... N

2(

tile drain

Figure 8. Water surface profile along the mole ¢raina;&tg§iﬁe ti=0, -
: Stage II. . o ' o o
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2
By taking é—li'- = 0 in Equation (1), the basic continuity equation for-
ay ' S

the one-dimensional flow is similar to Equation (1) and may be eiritten\
as:

2u u o
el - ] a mom— N ' (26)
X ' v

Q
[~

Qo
Q
B

B.C. . .
16(0, £)'= 0 | o u(s, t) =0
1;;:.» | *
| u(x, 0) = £(x)

Two points should be noted here. First, the t':erm t being initial-
ized at the outset of Stage II is independent of t of Stage I. Second,‘
,t:he‘ gshape of the water surface profile f(x) is no longer constant but
-varies with time. Theoretically speaking, f(x) represents the shape of
) t:he water surface profile of the intersection of a vertical plane in
the x - directiem with the water surface at any point o <y XS, at
t = 0.

The method of solving Equation (26) is s:lmilar to those solved by
‘R, E. Glover (bumn, 1954, 1964). '

Solving Equation (26) (Kreider et al., 1966)

aZn?
| - ) t
-~ ‘ , as . .
nmx - £
ux, t) = Z E Sing—e. : (27)
t , '

! : n=1

.
.
.S

. . ‘ t

'K -(—-?'j " E(x) Sin-BTE gy (28)

n S S W t
I 4 0 t

B j’) - + 1
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Aesuming that the first term of the infinite Fourier series of .

Equation (27) ia sufficient for convergence:

»’ ! ‘* ,¢ I_t‘ )
u(x,;t:)uESin*-g-’s‘e(b o 0<ct<t

‘ (29)
¢ 2 ,

where .

E=%A (30)

t, is the time necessary for the highest poiﬁp'on the -water surface

¥

to drop from the mole drains elevation to ‘the tile drains elevation

Shape 6f the Water Surface Profile Along the Mole Drains, £ (x)

‘'So far, nothing has been mentioned about the term £(x) which re-
’presents the shape of the water surface profile along the mole draina
during Stage I and the shape of the water surface at time t = 0 during
Stage II. Since there are mo published studies or field data from which
the shape équid\be approximated, it will have to be assumed for theore-
tical purposes:

Conaidering Figure 7, it was pointed out: earliet that the water may
flow in the mole drain for a considerable distance to either side of the
cénter line lying midway between the tile drains. Once the water reaches
thé point g (or g') it drops from the mole drain level and begins‘f}owv .
ingatbwards the tile drain along a curved path g - o (or g" - o')éh
| Since' f (x) was also assumed to be independent of time during Stage

3

,Iy:1t can Be‘expreased'mathématically as follows:



( by (x) T0gx <x
N <
= | ‘ J¥<x < (s, -
fo) qd, ‘ . Ko LK '“SSF " X,)
! ' -x) <x <5, .
LBy (), B mxg) sx <5

\ ﬁhére plkx) and hz(x):are algebraic expressions for Ehe‘cu;véé o-g
~aﬁd\oﬂ‘? g", respectively.
-, 8ix cases will be studied. In the first five}cases,'a:poiynémiéi

. wiiL\be assigned to the curves o - g and o' - g'. In the sikth case, a

' sine wave equation will be assigned.

?olyno;ial equations (Case 1 - Case 5)\
&he general form of the nth degree polynomial equation can be ex- r
‘ pressed as{ | (
u-= Coﬂ+ dlx + C2x2 + .o +C x" (31)
‘ n col
. where 60; Cl’hCZ’ :"‘én are cénétants evaluated when congideréng‘thé
. bouqdar&,co;ditions.ﬁrﬁivg';ases will be consiﬂefea:
' CAse 1. Zefo degree polynomial
Casé 2. First degree polynomial
' Case 3. Second degree polynomial
Case 4. Third degree polynomial
base 5. Fourth degree polynomial
Each case listed above rensresents the polynomial that will ge
assigned to the curves o - g and, symmetrically, o' - g'. Figure 9
shows the shapes of the polynomiéls relative to one another.
The boundary conditions necessary to evaluate the constants Co, CI,’

Cz, seey Cn of Equation (31) are:

B.C. (curve o - g)



First dééreg‘ polynomial — C:aise 2

-

Sine wave curve - Case 6

Second degree polynomial - Caget 3

| yawyen
B ‘ / P ' - . .
/ - - < - - Third degree polynomial = Case & .

. ! Y /’ / - ;/ ; ) - .
: t Lﬁ/ ,/ i ' X Fourth degree polynomial - Case 5
. _dz ) //' / ,,/’_ ) ‘ B e R
- e 2 < — - Zero degree polynomial - Case 1

tile drain

Fi.ure 9. Relative shapes.of the, water -surface profile-along the mole drain for .the ‘s@ggf cégés coh‘::'i{iqged.;

:92
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R

u(0) = 0
ux ) = d, o
u' ) = u(x) = .. ;.u(“)(;co) =0
1.C. (curve o' = g')

u(St) = 0

3

' - , " ~ An) . ’_ ) m .
u (St xo) =u (St xo) = .. = u“ (‘St‘, xo),-VO, |

Equating high order derivatives lt;o zero ,‘ai: a‘poiﬁt,génefates a.
smoother curve at that point. -

Solving Equation (31) for the constants CO? Cl; 102,‘:‘.':., C;l ;sing‘
< the above listed boundary couditions‘ihd p_‘,roupi;;g‘the terms togetbér':ln

a more compact form as follows::

¥

(n 2 n oy , '

g (=1)" - -x <x <
d2’ (]f),'k‘n x xo) Lo 0 :—?‘ _‘_xo ;,(132)

“‘:(_" 0‘ A . : , ‘(1
L (x) =<0 d, S %, <x Sc . (33)
L 7 ‘ .‘,412 “ i n " “ ‘ ! + ," :
dy == (x rc)] ., .'c'£x <5, (34)
PR P ’ “ﬂ - ’)’k’z(s‘tj- e) - ' : R

‘ where : . .
ce= 8- x,

n = degree of polynomial considered

Equations (32), (33) and (34) represent f(x) for the five cases of

polynomial forms of o - g or o' - g'.
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Sine wave equation (Case 6) -

'
s Yy b
‘ y

u
'
" P Sine wave curve
/ < .
// AN \
X / N\ ox
o, / \ ,©
A/ mole dratn "\ b

Figure 10. Water surface profile along the mole drain as a sine curve.

'
3
t

1

- Figure 10 shows a sine curve intersecting the mole drain center -

' 1ine at "g" and "g'"." The period of this curve is See In order to
" find fhe‘eqdption'of this curve and consequently that of the curves

o -~ gand o' - g', consider the general sine wave equation: .

-

(35) -

u(x) = & Sin X
, ]
. %t , .
‘and the boundary con&ﬁtions
u(0) =0 . . 4
u(St)‘=20 e
u(xo? f d2
Solving’ equation (35) using the‘giysp boundary conditions: .
- ‘d oy
2 ™ ' !
ux) = — Sin 5 (?6) ..
v o t ll
Sin 5

t



Therefore
‘ COTR NP
, § Sin 5 - p“Omf_x ,f_!‘%, ; ,‘(3.7),
' t' s ,“‘ ' i
U= ¢, L Xy, Sx < 7(38),
A 3 . ‘ r',' Lo sl
o Us Sin‘-sn}- e <xLS. - (39)
\ ¢ RS P R ',» "‘ . o
where,(‘“ . *
1 " ;“ Ay ¢
L’*‘dz‘ ,
~ 8in @
X
\B = '-é——g
Pt
c.=-§ .~ x

;' ‘it sﬁoﬁid{bg n&fed thaé in the,éases of'the First Degrée.Pslynomial
’andvéhé éine WQ;e ﬁ&uﬁtion there is a discontinuity at b&th points g.
)énd‘g'. This ié impossible under practical conditions. However, if
v‘éiiljnot éffect the analysis since the particular points g agd g' will -

‘mot be considered. |

It shogld be pointed out here before proceeding with findiﬁg the '

" solutions that assigning different algebraic and trigonometric expres-
lsions to the curves o -~ g and o' - g' without knowing the actual shape
of these curves may not have that great an effect on the problem. Under
,actuéi field conditions, the distance d, between the mole drains and

' the tile drains is very small compared to the tile drain spacing St'
é}nce it is also believed that the water travels in the mole drain a
“bbnsiderable distance before dropping from the mole drain level (i.e.,

X, is small), the particular shape of the water surface profile along

o - g and o' - g' will probably have little effect on the whole problem,
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especlally 1f concentration is restricted to point "a"’ which represents'w

the highest point on the water surface (Figure 7).

Solutions

.The equations derived earlier describing the height of the water
'surface above<tﬁe3tile drains were general. They all had 1ntegralaf
,eqntaining £ (x) which could be any one of the six cases assumed. ﬁxl
'carriing‘out‘the integration for each.case, a particular solution is
obtained which is then evaluated ut‘the particular point

xg-s-élg-slq

S AR A
" which represents the.highest point on.the water surface (see point. "a",

“'Figure 7).at any time t.

 Stage 1
General steps for obtaining the solution
The genéral steps for obtaining the solution for each case aié)

v
—

as fa;lowa: .
1. Obtain the algebraic or trigonometric expression of £(x) for
:fthe particular case considered from Equations (32) through (34) or
Equations (37) through (39).
o 2. Substitute f (x) into Equation (19) and evaluate the' integral

‘to.£ind A, | | |
) 3.. Sutatitute A inta Equation (18) te frud vix, y).

4. Substitute A into Equation (24) to fiaatxr , \
* 5. Substitute X into Equation (23) to find Kl.

6. Substitute K1 into Equation (25). to find wix, vy, t).

7. Add w(x, y, t) to v(x, y) from Step 3 to obtain u(x. y, t),

'
€t .

Equation (2).
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S
8. Evaluate u(x, y, t) at the particular point x = is-and

If the term —li-is neglected in the sum 64l§-+ —lio while comput-
S S S
t m t

ing for B and w(x, y, t) the calculation work could be reduced and the
form of the solution is simplified. The error introduced by doing so
is not significant, considering the fact that in practice Sm =2mto 5m

s

and St = 30 m to 150 m.

Given below are the general solution u(x, y, t) and the solution

' : S, §
cvaluated at the nid-point u(zt, zm’ t) for " each of the six cases con-

lsidered. ’
Particular solutions

The following are the solutiohs of the six ﬁgttic&lar cases of .
Stage I. All the terms represented by Greek letter; are-listed in g

Table 1 (page 34).

:Cése'l ~'Zero degree polynomial.

¢
1

: 16d gt 8d,
u(x, y, t) = 5 1 Sin %ﬁ Sin %1 e + [———] '] Cosh 5e— 28
. v t m
(S, - 2y) Sin E; o - . (40)
S, S 16d 8d
t - , :
i 2 ) - "21 e Tt 4 =2 W) @y

Cage 2 - First degree polynomial.

4d

16(d, +d,) )
ule, ¥, € = [t o (D @R g X gy Ty 2,

n t Sm
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14

[2d2] to i & S8 cosn 55— G, -2 sin B g
. ot ‘ t oo
. s's ey ) ady 4 e
T 1+, 2, 4 Sin B, -

uGh 2 0 = - D G Syt 1) 1 -
SRR T
4', Sin B "

@, S e

2

Case 3 - Second degree polynomial,

16(d1 + d2) 4d2

. 8 1 - Cos B' ™
ulx, y, t) = [ - (—) (= + =—=<=3)] Sin =~
. L 1TZ. M B2 st

stn T &5 4+ [20,] [v] (2 - 1€08 By Gogh 51— (s 2y) -
; B

S
tm
sin 2= - B 44)
) ) t ' t
s, S, . 16(d +d)  4d, _ -zt
uGh o2, 0 = [—2 -(n?)(%'l—-ﬁ%ﬂ)]e + [245] -,
v 1' v ' i
w1 - 1—%—%;_&6-1 ~ '(45)

' Case 4 - Third degree polynomial,

16, +4d,) 4d
1 2 2, ,2 ) Sin B X
u(x Y, t) = [ ~ - ( )' — 0 o (1 - .-‘—_—-—))] sin —
] "‘. ™ .3’2 ‘ B St
o ) 0 2 - ) o
(s - 2) st | “6)..

Se



$ S 16(d, + d,) 4d -
2 . - 1 2" _ 2 2.1 , . _.Sin B, . -Gt
0(2 y 90 t) [ "2 ('ﬂ ) ('ﬂ' Bz (1‘ ‘B; ))] ’e h
Sin 8 "

[2d,] 1 (22 -3+ @ -

2225y @
8 S

Case 5 - Fourth degree polynomial.

" 16(d, +d,) 4d o
: 1 2 2, 48 ' 1 . -2(1 - .C
86, v, 0 = - (D) @ L 2 Gee By
vl \ ﬂ . S
singEosin et hqa) e 2L L
- st ’ S N 2 " 2F . Nt
ot m » B
' (i,"-’z L - go‘s B))] Cosh —— (S - 2y) Sin 25 ’ ’ (48)°
' . # ‘B \ t .
(f.E' E‘.‘L t) ;»tle(dl + 9y) - (4d2)ﬂ @81,
Bz DT ) me o T

H

-2=Conf 1o a1 w1 R L

2

™

@ - 2= Cos B)y | . (49)

T

Case 6 - Sine v;rave equation.

16(d +d2) 4d

ule, v, ) = - h) & g+ cosp)] s1n B
‘sin2¥ . " I :
stn sm“ +:[2d2] [m [ (Ggap, * oo 3)1 Cosh 25:;‘

N
P

M b
y 1 ‘! B A . B Lo . '
~ - -~ ) -, ]
. . ‘nx . b N . ‘ ) l
S -2 'Sin _— . . . : . (50
m b [} ’ R L .
) ) it LI . * ©o . K
Aoy = ‘ S . + N ' - ’ ‘



o §s . 16(d, . +d,)  4d. .- ‘
gt omooey e 1 27 2,2, . B o -zt
ulz 7 £) = [ ) | = & | ‘(sm g+ Cos B))] e-”" +
o - s - ‘ o
[2d,] W] [F * (gg + Cos B)] - (51)

. Table 1. List of the terms represented by Greek letters in the solu-
" tions, for both Stages I and II. «

Greek Letter Term

o (alpha) —

B (beta)

6§ (d.elta)‘

¢ (zeta) ’ | —
t cf oS
. ., m

E (x1) .

=,¢ (phi? ’ ) 2

1 ¥ (psi). SnE

Stage II

General steps for obtaining the solution
The ‘general steps fé;.‘ obtaining the solution for ‘each case are as ’

' follpws': ‘ o | | ‘

L Y
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1.‘ Obtain the nlgebraic or trigonometrlc expression of f(x) for
the particuldr case consideted from Equations‘(32) through (34) or
‘ Equations (37) through (39).
2. Substitute f (x) into Equation (19) to obtain A.‘
illq.' Substitute A into Equation (30) to obtain E,
4. Substitute E into Equation (29) to obtain u(x, t);
5. Evaluate u(x, t) at the particular point x =‘;£fyhich lies

mid-way between the tile drainms.

.. -8
Similar to Stage I, u(x, t) at the phrticular ﬁoint X' = is-obtained

from Step 5 is of most importance since it repreaenta the highest point
on the water surface during Stage II. )

Given below are the values of u(x, t) and “(: . t),for each of the
étx cases considergd. '
~Pattigular solutions

The solutions for the six particular cases of Stage II are as

‘follows. The terms represented by Greek letters are listed in Table 1.

Case 1 - Zero degree polynomial,

utx, t) = [dy] [%] Sin -é“ie“"t " (52)
t
S, ~dt ' '
uGh D= gl e (53).

Case'Z'- First degﬁgglpélynomial;

' > [
' s t
i

. . e , -¢t '
'u(;c, t) -‘,[dzl [% . _S_:%__B_] Sin _'rsLx_ e (54)
o l : . t
g "t ot
S PR 4 Si | . ,
IS RORNCANC R Sin By o™ 1 (55)
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Case 3 - Second deiréé polynomial.

, . _‘ : ' '¢t ‘
ux, 't) = [dy] [ - l—-c—‘;g—ﬁ] sin e (56)
i ; - - t
s, - -t :
Cugh o = (a0 2 2250 By, (57)
Case 4 - Third degree polynomial.
! . -¢t
u(x, t) = [d,] [1—279- . ;13-2- - Q- §i{;—-§)] Sin g"’i e (58)
t ,
.S | -t
uGh O = 1] G G- Habe (59)
Case 5 - Fourth degree polynomial.
« ) ot
ux, t) = [d,] 2. 1. - 2LoCosBly) g 2K, (60)
‘ g ‘ B t
S8 ' _ -t
WGt 6 = (4,0 (8. L - 2L =Cos By (61)
B B
 Case 6 - Sine wave equation.
’ ] .
u(x, t = [d2] [% . (———Sis g + Cos 8)] Sin -g}-‘e . (62)
\ £
Sg 2 . B -6t '
lf(’é"‘. t) = [dy] [+ GGgog* Cos Bl e ' (63()

Relationship Between the Solutions

‘It is interesting to note that the particular solutions derived |

‘'in the previous section for each stage, either the general equations or .

1

. « the equations evaluated at the mid-point o\ff the system are vefy
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much related to each other.' In fact, these solutions differ from one

' N
? 1 L

another by a constant only, as will be shown below. . ‘

t
+

Stage I - General form of the solution evaluated at the midfpoint ‘of
the system

The general form mayfbe'expressed7as:;.

1

S, S, B 4 ‘ L
u(T’ 7 t) = K e + K, - (64)
uhere o |
16(d, +d,)  4d,
e A R 23),
ey ®w (65

The value of X, a constant, in Equations (23). and (65) depends
- on the particular case under consideration. Table 2 lists the values

of X for the six particular cases considered.

Table 2. Values of X for the six particular cases fot‘both<8tage I
"and Stage II.

Case A X

Case 1 - Zero Degree Polynomial . %- .
Case 2 - First Degree Polynomial -f—r-w. %—Q .

.Case 3 ~ Second Degree Polynomial | %-1 ;_;;g%g_g

¢ N s ‘ vt ' B .
‘Case 4 ;'Third Degree Polynomial %&u- lf . @ - ;ig-ﬁ)‘

‘ : ‘ CBT
Case'5 - Fourth Degree Polynomial 48, !=-';=(1 2(; = Coe}@))
R . ) 2 T 2

' Case 6 - Sine Wave Equation %du - B;'\f;éoEAB)»

¢t
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By re-arranging the terms, Equation (64) may be trénsférmeq into

the: following form: =’

P

(66)".

The spacing of the mole drains, Sm’ may be computed by substitﬁting‘

‘Kl‘and K, into Equation (66). Values of K1 and K, are computed from

Equations (23) and (65), respectively, using the appropriate Y.

Stage II - General form of the solution evaluated at the mid-point
of the system .

Proceeding in a manner similar to Stage I, the general “form of the

solution is:

S, S, ‘ -ft .
uGGH 3o t) = xd, e (67)

The terms in Equation (67) may be re-arranged ‘in the fdllbﬁing

form:

(68)

Where the value of X for the particular case considered is given

in Table 2. Therefore, by substitu;ing the particular value of X into

&

.Eduation‘(ﬁB), ié»is possitle to obtain the spacing of 'the tile drains,

.Sto
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'FIELD EXPERIMENT

The experiment was carried out during the summer of 1972 on. the

Utah State University Drainage Farm located northwest of Logan, Utah.*

General Field Layout

The general'field layout is shown in Figure 11. Four 2io'fc. long
}‘ perforated plastic drains, 4 in, in diameter, were laid out parallel to
each other in an east-west direction at a 120 ft. spacing. Each drain
was laid in a trench about 3 ft. deep at aboui 6 in. above the Bottop
of the trench. The width of each trench was 1.5 ft. The trench was
then filled with very permeable graded gravel to a level about 1 ft.
below the'ground surface. Finally, the trench was filled to the. ground
| surface with top soil (Figure 12). All the drains discharge into an
. open ditch drain located on the east side of the field,
‘ Next, ten single mole drains and ten double mole drains. (Unhanand,
1972) were drawn across the field above and orthogonal to the tile
draina in a north-south direction (Figure 11). The moling process wao
- done using special mole plows mounted on a tiactor. " The mole drains
aro 3 in. in diameter, drawn at a 6 ft, spacing, and at a depph of about
« 22 in. below the ground surface (Figure 12). ‘
Then, five waterproof manholes, each 4 ft. in diameter and 6 ft.
.deep, were constructed in the locations shown in Figure 11. The walis
of the manhole were made with corrugated metal sheets and the bottom

sealed with a concrete slab to prevent any seepage of water.,
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' ?ig@feMIZ. ‘I'ile drain trench design.

In order to be able to measure the water surface elevation, 18
observation wells were installed; nine in the double mole drains area
and nine in the single mole drains area (Figure 11), Each well was i
made by drilling a 4 in. auger hole 4 ft. deep and then placing a 1 ih.y
perforated plastic pipe about 5 ft. long in the center of the auégred:(:

.'hole and ‘filling the gap with graded gravel.

i

Procedure

1. A sprinkler irrigation system was installed on the fiéld ;6 : :J
"be used in building up the ground water table.

2. All drain outlets leading into the manholes and those located
along the open ditch drain were closed.

3. The sprinkler system was turned on and allowed to run until

the ground water table in the field reached the ground surface. Then


http:Figure.12
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“the sprinkler system was turned off. A short perig#xwaé'a;idwéd foy,
the water to redistribute itself into a-flat shéped:wgter auifacé,b;-
fore the experiment was started.

4, Depth of the water surface in each obhervqtion well vas mé&-L :
sured at the outset of the experiment.

o 5. All drain outlets were opened simultanéously.‘ A short pefiod,

:has'allowed for the water accumulated in the drains to fiush out.

6. Successive measurements were taken of the water surface eleva-
Fioh in each observation well along with the corresponding time each
measurement was taken. The period between two successive readings was

§

increased with time because of the decrease of the rate of recession
Qf,the water surface.
7. Data were collected from’Sepfember 21 to September 27, 1972,

uénd then stopped because of rain,

Data Collected

. The physical parameters measured in the field which will be used
in the study of the comparison between the theoretical solutions and
the f;eld“datg are as follows (see Figqre 7 for the notation):
S = 6.0 ft.
m ' ‘ s
?t = }20.9 ft. ) o
§di = 1.75 ft. (= height of ground surface hbove'mole‘drain‘atgt = ()
N :
4, = 1702 ft.
‘“dsﬂ‘,. 3023 fn‘tlo
k -'0.74 ft./day (hydrhul;c conductivityfy"
£ = 0,045 ¢  (apecific yleld)

,Q ;C3,1p.{ (diameter of mole drains)
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The specific yield f shown above was not measured in the field

but was obtained from a relationship between specific yjeld and hydraulic

conductivity (Dumm, 1968).

Tables 7, 8, 9 and 10 (Appendix E) contain the values of height of
the water surface above the tile drains in each observaticn well along

with the time each measurement was taken.



COMPARISON OF THE THEORY TO :THE FIELD EXPERIMENT

Probably the best way to compare the theory.deQeloéed with the
data collected from the field experiment is to investigate the validity
of Equation (66) which expresses the spacing of the mole drains, S n? in
an implicit form, and Equation (68) which expresses the spacing of the
‘tile drains, ¢» also in an implicit form. However, since the data
‘given in Tables 8-11, Appendix E, do not include values when the water
surface dropped below the mole drains, only Equation (66) can be inves-
tigated.

' The original form of Equation (66) is Equation (64) which is given

below;
- : x - ’ i .
8 Sy . et :
ulzm '3 t) =K e +K, . (64)
where ;
+16(dy) .+ d,)  4d
: .2
K= "(1,2) x) (23)
m . ‘ ‘
Ky = (dp) () (). ‘ o (65)

.lEﬁuatidn‘(64) represents the height of the water surface u evalu-
ated at the hid;pbiﬁt of the system (point "a" in‘Figure 7) as a func~

tion of time. Transferring K, in Equation (64) to the left-hand side

1
[ '

’and taking the natural logarithma of both sides, » ,‘-

-
- . 4 ! N
ln‘Y'=b +by X (69)
. 0, 1 .,
+ \ ) 'l
* ' '
where |
\\"s K .
[ vt '
[ERENENS | S h
AR Y- u‘“Kzs .
I ’ P

§ -
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X=t

b0 and b1 are constants

Equations (69) represents the statistical model of Equation (64).
By substituting values for X and Y into Equation (69) and then running
a regression analysis, it is possible to obtain a regression coefficient
r which represents to what degree the data fit the model.
The observation well "Wl4" (Figure 11) is located at the mid-point'
~of the single mole drains area, and therefore identical to point et
in Figure 7. For the simplicity of computations, the firaé case, Zero
(Degree Polynomial, will'be investigated. 'fhe terms for X and ¥, and

the field values of S_, S_, and dziéte substituted into Equation (65)

m’ “t?
.to get KZ: .
Ky = (2d5) ) X). " (65)
' Lo T+ 6
CLL ~ Sinh o5
= (2. 1.02) (= 2 120) (50
S . Sinh T.0 T
c ] 120

= 1,30 ft.

Table 3 gives the values of u, u - K, (1;e,, Y), andft(;.é;, X)
. for observation well Wi4.

Using the statistical model, Equation (69), and ;ﬁﬁninb ﬁ'éompdtér-

i

N 3

ized regression analysis (Snedecor and Cochran, 1972) usiﬁg the dapé
‘of Table 3, the following results were obtained:

b, = 1.108

0

b, = -0.813

1
r? = 0.890
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" Table 3.. Values of u,.Y, X for.obgervation well WL4.

w . Sy :, ' X
"(fto ) , , ‘ ., (fto ) . - (da}'S)
2.920 1,620 . 0,094
2,910 1.610 0.226.
2,890 1.590 0.388
2.860 1.560 0.640
2,840 1.540 1.059
2,750 . 1,450 1.194
2,610 1.310 1.381
2,460 1.160 1.963
1.900 0.600 2,407
1,680 0.380 3.211
1.550° 0.250 3.374
1.470 0.170 4,067
1.350 0.050 4,391
1.320 0.020 5.076
. 1.290: (-)* 5.366
*neglect ‘

The‘above rz gives a regression coefficient r = 0,940, 'ehich indi-

'cntes that the field data agree very well with the general form of the
solution of Equation (64) for the particular case of the Zero Degree
Polynomial.

| Recalling that the derivation of the solutions involved terminat;eg

“ en infinite series, it 1s only logical to assume that Kl and Kz which

. appear on the right-hand side of Equation (64) will affect the solution{

"If time was allowed to approach infinity 1n Equation (64), the
first term on the right-hand side of the equation approaches zero.
+ The second term, Ké,‘in Equation (64) ehoﬁld, theoretically speaking,

. S ‘
equal the value of u at t = = which is dy (i.e., u (zt, 2m, w) = d2) A
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regression analysis was made similar to the one above except that KZ‘{

was now taken as d2. Table 4 shows thé'vélues of u, ¥ ({.e., u -'dz),

and X (1.e., t).

.'Table 4, Values of u, adjusted Y, X for observation well Wl4.

u Y X
(ft.) (ft.) (days)
2.920 1.900 0.094
2,910 1.890 . 0,226
2.890 1.870 0.388
2,860 ' 1.840 0.640

" 2.840 1.820 1.059
'2.750 1.730 1,19
2,610 1.590 1.381
2,460 1.440 1.963
1.900 0.880 2,407
1.680 0,660 . 3,211,
1,550 . 0.530' 3.374
1.470 0.450 4,067
1.350 © 0,330 4.391
1.320 . 0.300 . 5.076

1,290 | 0.270 5,366

. Running thg,fégréss§on analysis again using the Qaté in Table 4,
"the following results were obtained:

iy = 0.887

A bl’ = ""00414
. r? = 0,967
The above rz gives a regression coefficient r = 0.98. This value

is larger than the corresponding one for the previous case (i.e., iargér‘
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' than 0.89), thus indicating a stronger correlation between th§5fie1d,
Idéta and the ;;atiégical model. |

éiﬁce ;,st;dng borreiati&n was found between the figld data and
‘ the sﬁatistical model as ex?reesed in Eduation (69), the next logical
) étép is to invesfigate‘Equation (66) itself. The. spacing of the mole

.drains, Sy iq expfessed implicitly in Equation (66):

2
§' = [ommt E (66)

>
u ~ K2)

in which the right-hand side of Equation (66) also contains S, as a

oln

" variable in the term K2

Ky = (2d,) () (X) (65)
where, in this case "sm
Sinh 75
S
4 t
X=g and Y= ~
| Sigh ==
. t

However, Equation (66) can be solved nqmerically}fpr G

Fifef,’tﬁe field values of dy s dz;Jd3, S.» k and £ were subst;tutedj
i@to.Equation §56)- Then three values of u and t were seiepted to cover '
thé whole range éf the field data. Equation (66) was ghén solved numeri-
| cgily for Sm corresponding to the values of u and t using the Fixed
‘ Po;ét Iteration Technique (Stark, 1970). The results are shown in Table
b
| ' The basic differential equation, Equation (1); does not account for

the convergence of flow at the drains. .In order to compensate for this, -

. Hooghoudt's equivalent depth is usually used to replace the actual depth;
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to the impermeable layer (Moody, 1966). In the qombined aystem,‘howh
ever, there are two sets of orthogonal drains, and since the exact na-
ture of the convergence of flow at the\dgains is not known yet, 1t'ié‘

not possible to apply Hooghoudt's equivalent depth concept directly.

Table 5. Results of solving Equation (66) numerically for the case of
the Zero Degree Polynomial,

u
(ft.) (days) (ft.)
' 2,860 0.640 , © 24,557
1.90- | 2.407 ‘ 29,963

1.39 : © ' 5.366 ' 27.696

Given below is a procedure; although‘ndt exact, whereby Hooghoudt's
equivalent depth concept is applied to correct the spacing of the mole
drains in the combined system.

The first step is to neglect the presence of the tile drains and
assume that the system is composed of mole drains only, with all the
physical parameters of the field remaining the same. The next step is
to transform this system of mole drains which is under transient state °
.conditions, for any time t, to a system of mole drains under sée&dy
state conditions (subjected to a constant rainfall rate) using.ﬁodg-

houdt's steady state equation (Luthin, 1973).

2 4kH ' ' «
Sm -—\-;-(H'I'Zd) '(70) ‘

where

Sm = theoretical spacing of mole drains obtained from Equation (66),
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k 5~hydréulie conductivity
‘v = constant rate of rainfall

Heu- d2‘
d = d2'+‘d3
d2 and d3 are as defined previously (Figqre 7)

Replacing S, by the corrected spacing S

e and d by the equivalent

‘depth d,, Equation’ (70) may be written as:

2 4kH -
Spe = (H+2d) ‘ - (71)

where the equivalent depth d_, may be expressed as (Moody, 1966):

d, = - 8‘1 - 0 <zt <0.3 (72)
4 8.4 < <
1+ S (n In 5 - O ) me
mc
=355-16 +2(—-—-) (73) -
mc mc ’

a = diameter of mole drain

Equerions (70), (71), (72) and (73) are then used as follows:
1. Oﬂtaie the theoretical spacing Sh from Equation (66).
2. Substitute in the values of S;, d and H into Eauation (70) to.
obtain rhe velqe of the constant ratio %u‘ ‘
3. Assume é and find o' from Equation (73)
4. %ubstitute o' into Equation (72) to obtain d,.
" 5. Substitute d, into Equation (71) to obtain a corrected spacing
S“!c
' wg. Sdrsﬁiture (Step 5) into Equation (73) and repeat Steps 3

- through 6 unti1 both values of Syc 8re equal.
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It is clear that Steps 3 through 6 is a trial—and-error procedure.

*

These steps c¢an be combined in a form such that S can be. obtained

3

\numerically. Equations (71). (72) and (73) can be combined into

L ko, - 2d . e
s = [em) © @+ , ) (74)
cme = PEE VT e B n d o ass 4 28 2ty
. : : m a S
me ) me . me

Equation (74) can be solved quite easily numerically using the

Fixed Point Iteration Technique (Stark 1970)

The above procedure war used to correct the theoretical values of

Sm (Table 5). The results are shown in Table 6.

. Table 6. Spacing of the mole drains corrected for convergence of flow.

5 s 5_/s
m me ' mc m
(£t.) (Et)) \ @
26,557 . 17.818 72.56
20,963  © . - ' 21,670 . . 72.33
27.696 . 18.633 . 67.28

t <
N
' )

The above procedure may also be used to correct .the - spscing of . the

tile drains in the combined system.
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RESULTS AND DISCUSSION

The equations derived for the spacing of the mole Qrains S; and the

'spacing of the tile drains\st are:

(66 ¢

(68)

16(d, +4d,) 4d , ,

=—iE D w (23)
’ - T

K, = (2d,)) () () : (65)

The terms represented by the Greek letters in the above equatibns‘
are listed in Table 1. The value of ¥, depending on the particular
case considered, is given in Table 2. It should be emphasized once
again that t in Equation (68) is initialized (i.e., t = 6) at tﬁe'out—,J
set of "Stage: II.

Thg equation for the spacing of the mole drains S,» Equation (66),
wqéléompaged with the field data collected. The case of theyiero
| ﬁeg;ee fqunémial or Case 1, being the simplest of all cases, was
investigated. A very good co;relation between the field'dat; and thé‘¢
‘»statisticéi model df‘the equation (69) was obtained. ﬁgéeyer,xwhen{l

_the field .data were éubstitutgd into’ Equation (66) &ireétiy,‘gﬁd,Sﬁ\,
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was obtained numerically (Table 5), it over estimated”the actual field .
spacing of the mole drains by about four to five times.

By applying the concept of Hooghoudt's equivalent depth in an:
approximate way, it was possible to reduce the spacings of the mole
‘drains obtained from Equation (66) by about 30%. | ‘

The above mentioned overestimation can- be attribqte&~to one or
“more of the following:

1. Sensitivity eﬁ the terms of Equation (66) such that any
’inaccuraey‘onkthe part of the field data could result in an oyer—eét;ma-
tion or,uﬁder-eet%mation of,Sm.

: 2, Tﬁe error introduced by terqineting'the infinite series dqring
ehe derivetion of the equation and restricting it,ge'the'f;rst term
only. °

.3. The effect of the convergence ‘'of flow at the drains.

It should be noted here that the value of the spacing of the tile

drains, s in Equa;ion‘(66) was pqt taken from Equation (68) but was

£
taken as being: equal to the, actual field value.

, Yor the remaining cases of Equation (66), correlation with the
'field data was not possible because the new term contains X, which de-
‘pends on Equation (68). In order to obtain'the spacing of the tile
:\draihs §, from Equation (68) io'would have to be assumed beforehgng.
Tﬁe two (i.e., S¢ and xo) would ehen be substituted into Equation (66)
;; ebtain the spacing of the mole drains Sm. Since the field data for
ZlSteée II is not available, and since Equation (68) depends on Stage II

' (i.e., water surface below the mole drains but above the tile drains),'

the correlation of Equation (68) to field data was not possible.
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FIELD DESIGN' PROCEDURE

s

The following is a suggested procedure whereby the theoretical

( equetions may be used in finding the spacings nf the mole drains and
the tile drains in a combined system once the depths of these drains
below the ground surface have been established.

1. Aseuue the,profile or the water surface along the mole draius
(i.e., Case 1 throuéh Case'6).

‘ 2. ‘Aecume &b (xof_EEQ. For the case of the Zero Degree Poly-
nouiel X, = Q.‘

3. Find the value of X in terms of Sé (eee Table 2). For the
case of the Zero Deéree folynouial X is a constant.

4, Solve Equation (68) nuuerically for the spacing of the tile
drains S Note that the time t in the equation starts when the water
surface begina to drop from the mole drain elevation and not the time ,
when the intitial water surface starts to recede. If xo >.;_ , repearl
Steps 2 through 4. This does not apply to the case of the Zero Degree ;
Polynomial because for this case' x, = 0. |

5. Correct S~ for rhe convergence of flow’neglectiné the preEence<
of[the mole drains. |

\: 6; Find the value of x (Step 3) after substituting in the value
, of S. obtained in Step 5.‘ For the case of the Zero Degree Polynomial
,X remains the same. ,

'7. Solve Equation (66) numerically for the spacing of the mole '

drains Sp° The term t in the equation represents the time of drop of

the water surface from its initial position.
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8. Correct Sm for convergence of flow neglecting the presence of

the tile dralins.
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SUMMARY AND CONCLUSIONS

A_theoty was presented to predict the drop of the'watertsutface in
a conbinedumole-tile'drain system,
| Based on several assumptions, general equations for the spacing of
the mole drains and the spacing of the tile drains in the combined sys-
tem were derived
Six water surface profiles along the mole drains were assumed, and d

\the particular solutions for the spacing of the mole drains and the

spacing of the tile drains in the combined system were derived.

1 )
L

" The equation‘expressing the spacing of the mole drains for a patti-
 cular watet surface orofile along the mole drains wasé compared with
data from a field experinent.

A procedure whereby the equations derived could be used in finding
the field spacings of the mole drains ard ‘the tile drains was also pre-
sented.,

In conclusion,'the theory which has been presented is only a first
step in the design of combined systems. Extensive investigations are |
necessary,,both on the equations derived and on the nature of water flow
in a combined system, before it may be possibTe to apply the .theory to

actual field design problems.
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SUGGESTIONS FOR FURTHER STUDY

‘1. . Extensive field studies are ne~essary to determine the hppli— A
'cabilit§ of the theoretical equations derived.

:2.' Field investigations are necessary to deFe;@ipé thg‘sbape of,
1the water .surface profile along the mole drain; and‘its yariabilit&
with time.

3. 'The effect of x  in the theoretical equations shopLd be’
gtdéiéd mpreﬁgét;néivglf.\

- 4, éﬁ géonomic feasibility study is necessarv to determine the -
, cost:of iﬁbféiliné ; coybiﬁed ;ystem'gé éompared\toléthgr Eoveredldraiﬁ

sys;eﬁs in héavy solls,



58

BIBLIOGRAPHY

Carslaw, H. S., and J. C. Jaeger. 1959, Conduction of heat in solids.
.., Second edition. Oxford University Press. Cambridge, England.

bdnnan,‘William W., and James E. Fouss, 1962. Plastic-lined mole
drains. Agricultural Engineering 43:512-515.

Donnan, William W., and Clyde E. Houston. 1967. Drainage related to
irrigation management. In R. M. Hagan, H. R. Haise, and T. W.
Edminster, eds., Irrigation of agricultural lands, Agronomy II.
American Society of Agronomy. Madison, Wisconsin., p. 974-987,

»Dumm, Lee D. 1954. Drain spacing formula. Agricultural Engineering
35:726-730.

Dumm, Lee D. 1964. Transient flow concept of subsurface drainage.
Transactions of the American Society of Agricultural Engineers
7:142-146, 151.

Dupuit, Jules. 1863. Etudes theoriques et pratiques sur le mouvement
des eaux. Second edition. Dunod, Paris.

Food and Agricultural Organization of the United Nations. 1971,
. Drainage of heavy soils. 'Rome, Italy.

Forchheimer, Philipp. 1930. Hydraulik. Third edition. Teubner,
Leipzig and Berlin.

Kreider, Donald L., Robert G. Kuller, Donald R. Ostberg, and Fred W.
Perkins. 1966. An introduction to linear analysis. Addison-
Wesley Publication Company, Inc. Reading, Massachusetts. 773 p.

Longwell, Paul A. 1966. Mechanics of fluid flow. McGraw-Hill Book'
Company, Inc. New York, New York. 433 p.

Luthin, James N. (Ed.) 1957. Drainage of agricultural lands,
Agronomy 7. American Society of Agronomy. Madison, Wisconsin.
620 p. .

. Luthin, James N. 1973. Drainage engineering. Robert E. Krieger Pub-
lishing Co., Inc. Huntington, New York. 250 p.

Moody, William T. 1966. Nonlinear differential equation of drain
‘ spacing. Journal of the Irrigation and Drainage Division, ASCE,
Vol. 92, No. IR2, June, 1966.

\Powers, David L. 1972, Boundary value problems. Academic Press.
New York, New York. 238 p. ‘



59

Snedecor, George W., and William G. Cochran. 1972, Statistical
methods. Sixth Edition. The Iowa State University Press. Ames,
Iowa. 593 p.

Soil Conservation Service. 1973. Drainage of agricultural land.
Water Information Center, Inc. Port Washington, New York. 430 p. .

Stark, Peter A. 1970. Introduction to numerical methods. The Mac-
Millan Company. New York, New York. 334 p.

Theobald, G. H. 1963. Methods and machines for tile and other tube
drainage. Food and Agricultural Organization of the United
Nations. Rome, Italy. 104 p.

Tomita, Masahiko. 1971. On enlargement of the object of analysis with
digital computer in ground-water movement. Scientific Reports
of Shiga Frefectural Junion College, No. 12, Japan.

Tomita, Masahiko, Kengo Nagahama, Sanji Tejima, and Hiroshi Taniguchi.
1968. On the underdrainage of reclaimed land from the sea -
The substantial study on the mechanism of underdrainage (III).
Transactions of JJIDRE. Japan.

Unhanand, Komain. 1972, Irrigation and drainage by mole systems.
Progress report. Agricultural and Irrigation Engineering Depart-
ment, Utah State University, Logan, Utah, 52 p.

Van Schilfgaarde, J., D. Kirkham, and R. K. Frevert. 1956, Physical
and mathematical theories of tile and ditch drainage and their
usefulness in design. Research Bulletin 436, Agricultural
Experiment Station, Iowa State College, Ames, Iowa. February.



APPENDIXES

60



Appendix A

. Derivation of the Continuity Equation‘

61



62

Appendix A
'Derivation of the Continuity Equation

(Transient State Condition)

?bé dérivatiﬁn of the continuity equation which gove;ﬂalthe heigﬁt
of the waéer surface in the soil based on the Dupuit-Forchheimer tﬁeoryi
- (Dupuit, 1863 and Forchheimer, 1930) is well known and can be found i&
different literature (Luthin, 1957 and Van Schilfgaarde, Ki?kham and
Frevert, 1956). However, a more elaborate derivation based on (Longwell,

1966) is given below.

-
:

jf,,——imperﬁeablg layer
— X

' Figure 13. Groundwater flow system in dynamic equilibrium.

Figure 13 shows a two dimensional sketch of the ‘water table over-
lying an imperﬁeable soil layer. Consider a saturated soil column
aé'ﬁd;'lying between the water table and the impermeabie layer. Figure
'lé\sﬁéws the soil column in three dimensions with the base cc'dd' lying

‘oé the impermeable layer and a surface top aa'bb'.
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] h '
Iy
' a
face 1
ﬁmbermeabl a
layer

d
ly | (x,y,0) "_ Ax—'l/

Figﬁre 14, Flow of water through the soil columnm,

. The basic assumptions of the Dupuit-Forchheimer theory state that:’
1. All streamlines of gravity flow to&ards a shallow sink are
Jhofizontal.

‘é. The velocity along these streamlines is proportional to the.
Qloﬁelof the'frée‘WQFep surface, but independent of depth.

Thetefng. béaed én the first assumption,xthe wgter‘wiil flqé in’
the‘ifdirectiéq(and the y-direction only (i.e., no flow in .the ﬁkdireé-‘
tion).

The law of conservation of mass states that "material is neither

created nor destroyed" and.can be expreaéed simply as:

In - qﬁt + Source - Sink = accumdlatipﬁ - (75)
Let \

[

U¥‘- velocity in the x-direction
Uy = velocity in the y-direction

' The water flux in the x-direction ia:

'Mx - OU*
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where
\o is ’;hé,specific weighti unit weight per unit volume

The amount: of water crossing 'face 1 (Figure 14) per unit time in -

the x-direction 19'
‘(Mx AA)1 = Mx U:; Ay = o‘llx hAy
Also, the amount of water crossing face 2 per unit time is:

s ‘ ., 9
(Mx AA)Z = OUxAh y + 5% (dU*h) Ayhx
¢ + o ! . t a
(In - Out:)x = (Mx M)l - (Mx A{\)z = -5 (onh) AyAx
Sﬁniiarly in the y-direction:
' o)
(In - o‘ft)y = - a-—y (o‘Uyh) AxAy

. Amount ‘of water in the soil column = fohAylx
where

f is the specific yield of the soil

1

. Rate of accumulation = .-— (fohAyAx)

s (0fh) Aylx

Since there is no source or sink, and since the flow.is incompreas-

ible (i.e., o= constant), substitut:ing into Equation (75)

dh

.3 : % -— = —
- % (Uxh? oybx' - 5 (U h) olxAy chxA y 5
3 () - (hU ) f'g-::l . (76)

lfrom the second Dupuit-Forchheimer assumption:.
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\ K. = hydraulic conductivity in the x-direction -

'
i ' s

! 'Ky = hydraulic conductivity in the y-direction .

Substituting in;o Equation (76)E

‘7 ,-r< r’ r(-“r>= £5r
é : | dh, * .9h = g
53 (Kx 3x) +’ (Kh y) =fir (77}

For .a homogeneous and isotropic sbil; K, ='Ky =\, a constant.

Therefore, Equation (77) reduces to:

) +55 (g )={-§—‘1 - )

ah (hax 5

Equation (78) is a non-linear, second order partial differential
equation which'can be linearized as shown below.

Figure (15) shows two cartesian reference frames x~y-h and x-y-u.
Translation from the first to the second is quite siwple. The x ;nh y
directions réﬁain the same. Now lettiﬁg

h;d3+u |

‘where d is the distance between the, x-y planes in both frames, and
assuming that d3 is much 1atger numerically than values of u measured
from‘the x-y-u frame of referenqe, then |

Ah‘f Q?

and

>4
-
-+
=
@
=
L]
|2

h u

waves I ' ee.

u

%
o
)
o
Q3
@
~<
|
<

Therefore, Equation (78) reduces to:
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Y

2 2
u ,90 Ju .
—— + — (), _—‘ (79)
axz 9.x at
| where

o= %5 (constant)
3 K

Equation (79) is identical in form to the two-dimensional heat
. flow equation (Carslaw and Jaeger, 1959), and therefore, the tecﬁniquqa

used in solving that type of eﬁuation will be used.

u
i
3
X

|
|
|
L h
} d

y . z

] ' 3
|
|
|
g '
—m e am dee o o - - —— .- —p= X
’/
”
’/
’/
”’
”
'
‘. ',’
y‘

Figuie 15. Translation of cartesian axes.
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Appendix B
Solution'of the Two-Dimensional Heat Flow

Equation with Non-Homogeneous Boundary Conditions

2
u

C .2 N
é__tzz.+§__,ag.% -, (80)
ax oy
B.C.

u(x, o, t) = f£(x) . u(o, y, t) = 0
ulx, S, t) =£() u(Ss'y, t) = 0
1.C. |
, u(x, y, 0) = F(x, y) - ‘(general case}

The‘solution'of Equation (80) can be expressed as the sum of two

solutions::

ux, y, g) = v(x, y) + w(x, y, t5 ' (81)

where v(x, y) is the solution to Laplace's equation

ﬁ%-..."l.i‘zi =0 (82)
9x~ Ody
B.b. .
v(x,:oj = f(x) v(o, y) = 0
v(#. §,). = £(&x) | V(St. y).=0
, qnd,ﬁ(x,ly; é) is the solution of:
?-2-§-+3_2-;l o s (83)
oX~ 3y .
- B.C. '
lw(x,,c;, £) =0 o, e,y B) -0

t

Cwlx, '8, ) =0 (S, ¥, £)'= 0
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v I.C.
‘ \‘1,‘,’\((}{, ys 0) = F(’,‘:‘Y) - v(x, ‘y,)‘f k»u

Proof

.1, To check'if. the ‘initial équation, Equation (80), is' satigfiéd; -

Cul, Y, €)= v, y) +ul, y, ) e,
2% ok Lo '
2 = ’2.+ p) r(84)
9x° 9x" 3y
L) 2 » 2 ¢ 2 - i
a»usu)v.'_dw“ (85)
2 7" 2
yo. 9y" - 3y ‘
U dw o |
} at B‘ a'_t. , P . . ' , (86)‘
‘_St‘uinning up Equations (84)"apd’ (85) and notq.tig that . .
2 n2- . .
Ariirao - (82)
ox 3y: o ‘

results in:

"a"umazu 22 2,
i Tl
dx. dy~ 9dx~ 9y
ow
= a3y (From Equation 83)
du ‘ ‘
= 05T (From Equation 86)

¢

2.’ To check ifthe original bépn@ary" and 1pitial conditions are’’

sdtisfied:
ux, v, t) = v(x, y) +wix, y, t) - (81)
u(x, o, t) = v(x, o) + w(x, o, t) = £(x) (87) .

u(x, Sm, t) = v(x, Sm) + w(x, Sm, t) = £(x , 3(88)"
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u(0,y, t) =v(o, y) +wlo, y, £) = 00 @9)
8y B = VG V) S, y, €)= 0 (90) -

s y o .
P TR - h

v

Equations (8?)fth;ough (90)" guarantee tbé.sa;isfadtion of. the

boundary conditions.

4

u(xo y °) = v(x, y) + w(x, Yt 0) K
= v(x, '>") +F(x, y) - v(x, y)
- F(x, y). , (91)

‘Equation (91) géa:antees the satisfaétion of the initial condiéioh.
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‘Analysis of Truncating the Infinite

Fourier Series of v(x, y), Case 1
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Appendix C

Analysis of Truncating the 1nfinite

Fourier Series of v(x, y), Case 1

oo

' nms .
: 'y = ﬂ m om .;
Y(x, y) =2 Z An Sin g X 'Sinh 7 Cosh 55 (Sm 2y) (14)
' t t t
n=1
where '
S
2 t o 1 ‘
An = n'lISm f(x) Sin -s—t-:- xdx (13)
© 8§, Sinh - 0
T S
t
For the case of the zero degree polynomial (Case 1):
f(x) = d2
S S
t d,s t
f (x) sin-OT xdx = - 2t Cos BT X
St nn St
0 . 0
2d,S
2"t
~ [1 - Cos nm]
2: n=1.3,5,000
But (1 - Cos nm) =
0 n=2,4,6, ...
4d2
Ah = N ; nﬂsm n = 1’ 3’ 5’ L ] . L ]
o Sinh 5
t
: 8d > Sinh 2%
* v(x, y) = —— 1'Sin£1x'———g-—'Cosh9-L
» ¥ w n S, Sinh nt 25
n"l, 3, 5. see
(8, -~ 29) (92),

where

72
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s,
£=

St.

: P S, s .
Evaluating v(x, y) in Equation (83) at x = Eﬁ-and y = 55:

.
R
\

S 8T N i am. S EE '
V(T" 0) = d’z ";r:' z !-l". Sin 3 Sinh 3 (93)
n=1. 3, 5”.- - ' k
Let" . ! , ) . o
. ™ }_15_
T f n 2 Sinh nf
: n=l, 3, 5,... ' ,
5t m

v(-é-'-, -i—') =P d2 (95)

The right~hand side of Equation (93) should converge to d2 as'n > o,
In other words, P of Equation (94) should converge to 100% as n + =,
Equation (94) is a function of £ which in turn is a function of
the ratio g%. In order to cove£ all practical field spacings of the
mole drains and tile drains in the combined system, six values of ;E

were investigated. In other words, Equation (94) was investigated )
five times, each time using a different value of £,

Table 7 1ists the results. Columns 2, 3, 4 and 5 indicate the
number of terms summed up in the infinite series of Equation (94).

As indicated by the results of Table 7, Equation (93) has an
oscillgting t ehavior slowly converging as the number of terms of the
infinite reries is increased. Thus, if only the first term of tbe in-
finite series of Equation (94) were taken and the rest of‘the terms of

the series were neglected, on the average v(x, y) would be over estim-

ated by over 27%. |

'



. . Table 7. Convergence 6( the infinite Fouriler series of'Equatién (94).

‘_SE P(%)
Sp 'l term 2 terms 3 terms 4 terms
0.0167 127 85 110 92
..0,0250 127 85 109 91
' 0.0500 130 88 ' 113 97
0.0750 126 86 108 95
0.1500 126 92 106 99
Average 127 87 109 95

However, the mathematical calculations involved in finding u(x, y,
g) in Equation (1) would be so complex if more than one term of Equation
(93) is considered, particularly if it is noted that the case considered
is the simplest of all cases (i.e., zero degree polynomial), that a loss

of accuracy of about 30% should be accepted for the sake of simplicity.
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 Appendix D
Reducing B to a Function of A .

j J g(x, y) Sin _1Sr_x_ Sin §z dx dy (21)

t . m oo
glx, y) = (d1 +d,) - vz, y) . Q7)
v(x. ) = (—-—) (¥) (4) Sin g& Cosh 5= (s - 2y) (18)

t

Substituting v(x, y) into Equation (17):

g, y).= [d) +d,] - <——) ® @ sin I cosh 7= (5, = 29) ()
t

SuBstituting g(x, y) into Equation (21):

¢ Sm' St m ."
B = ((d, +4d,) - v(x, y)) Sin == Sin =X dx dy
1 2 S¢ Sh

Sm St Sm St:
=J j (4, +d,) sin 18'3‘- Sin -21 dx dy -j J (%—) W) (a)
t m t
o 2o o Z0

Sin? 2% $1n 2 Cosh op 23 (s, - 2y) dx dy
t m
4StSm Sm S
= (d + dz) - 2yA Sin _Z Cosh ( - —X) dy
4sts n Zs 'ns ’
= 2 (d; +dy) = (2yA) (——) (Cosh = 28 97)
‘lTS‘n s
; ‘".sm Sinh -i-s-t- » Cosh 75
But 1y Cosh = t. 1/2
ZSt 'II’Sm
Sinh 5



."Therefore Equation (97) reduces .to:

4Stsm 2A Sm
B = — (dl + dZ) -

L)

T

Equation (98) shows that B is a function of A where:

b

S

t , “‘x
A-fj f(x)‘Sin-g—dx
o . t
2A
Letting ¥ = o5
1 + Stdz !

16(d1 + d2) , 4d2

and K1 = 3 e X

L

Equation (98) reduces to:

77

. (98)

19)

(22)
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Appendix E

FFleld Fxperiment Data

Height of the water surface above the tile drains in the

observation wells - September 21, 1972,

Table 8.

September 21

Obser-

u
(ft.) Time (ft.)

Time

u
(ft.)

vation
Well

(ft.) Time

Time

P.M‘

P.M.

A.M,

AIM.

e NN O OO~
LUl ol S To R To JEN S0~ P J
.o LX) e s® 9 se se
o e ] e e e
B I e ]
M NN NN N
DA NN N
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Table 9. Height of the water surface above the tile drains in the
observation wells - September 22, 1972, ’

September 22

Obser-
vation
Well u u u u
Time (ft.) Time (ft.) Time (ft.) Time (ft.)
AM. AM. P.M, P.M.
Wl 12:41 2.77 10:43 2.87 2:04 2.74 6:29 2.62
W2 12:41 2.79 10:45 2.83 2:04 2.82 6:30 2.80
W3 12:41 2,78 10:45 2.84 2:05 2.82 6:30 2,80
W4 12:45 2,48 10:49 2,31 2:05 2,20 6:32 2.05
W5 12:45 2.47 10:49 2.31 2:06 2.19 6:32 2.04
W6 12:45 2.49 10:50 2.32 2:07 2.19 6:33 2.04
T W7 12:48 2.24 10:51 2,12 2:08 2.01 6:35 1.86
w8 12:48 2.21 10:52 2,08 2:09 1.98 6:35 1.84
w9 12:48 2.19 10:53 2.06 2:09 1.96 6:35 1.84
W10 1:00 2.87 11:02 2.85 2:17 2.83 6:45 2.82
Wil 1:00 2.87 11:03 2.84 2:18 2.83 6:46 2.81
WL2 1:00 2.85 11:03 2.84 2:19 2.79 6:46 2.34
w13 12:57 2.88 11:00 2.84 2:15 2.76 6:43 2.62
W4 12:57 2.86 11:00 2.84 2:15 2.75 6:43 2.61
W15 12:57 2.84 11:01 2.84 2:16 2.74 6:44 2.58
W16 12:59 2.88 10:57 2.85 2:13 2.83 6:40 2.70
WL7 12:59 2,87 10:57 2.84 2:13 2.83 6:41 2.67
W18 12:59 2.87 10:58 2.84 2:14 2,81 6:41 2.51
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(ft.)

Time

P.M.

September 24
(ft.)

Time

P.M.

(ft.)

Time

P.M.

September 23

Height of the water surface above the tile drains in the
(ft.)

observation wells - September 23-24, 1972.

Time

AM.

‘Table 10.
Obser-
vation
Well

NPOOTNORNR Nl NOWN M N =
MV NN TN M T T LA NN T T T
- * ] - [ 2 L 3 [ ] * L ] - - - - L 3 - * - -
e I U [ [ i S [ M G A A
O NNITNWN MNOONNTO N
NN ANNNNON NN MMM MMMMM™M
ee e o .o L1} e (1] L ] (1] o L] -8 (1] (13 e e o8 (1]
OCOOWOOOOWY VOWOWOWOOOOO
RN SNMNO GO O rd T ANAD WO NND I
CINONINNIAIT 1NN TOWOOINNN
. ® . * L] * * [ ] L] » - A ] L ] [ ] - L ] - L]
e e T e e e e [ G G R i S S S (i
NINWVNNNODH NOONDNO mf N
NN MANAMM N MM O T T T
.. (1] .e L1] o [ X] e a6 L 1) e e . - .0 * L 1]
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Table 11. Height of water surface above the tile drains in the
observation wells - September 25-26, 1972.

Obser— September 25 September 26
vation
Well u u u u
. Time (ft.) Time (ft.) Time (ft.) Time (ft.)
AM. P.M. AM. P.M.
wl 10:59 1.37 6:45 1.33 11:10 1.24 6:07 1.22
w2 11:00 1.34 6:46 1.31 11:11 1.23 6:07 1.20
w3 11:00 1.39 6:46 1.33 11:11 1.26 6:08 1.22
Wa 11:01 1.44 6:47 1.35 11:13 1.33 6:08 1.28
W5 11:02 1.45 6:48 1.36 11:14 1.33 6:09 1.29
W6 11:02 1.45 6:48 1.35 11:14 1.33 6:10 1.28
w7 11:04 1.35 6:50 1.32 11:16 1.28 6:13 1.26
w8 11:05 1.28 6:50 1.23 11:17 1.20 6:13 1.19
Wo 11:05 1.23 6:51 1.18 11:18 1.15 6:14 1.13
w10 11:12 1.27 7:00 1.21 11:26 1.14 6:24 1.10
Wil 11:12 1.24 7:00 1.18 11:27 1.11 6:24 1.08
wi2 11:13 1.23 7:01 1.11 11:28 1.09 6:25 1.04
W13 11:10 1.49 6:57 1.36 11:24 1.32 6:21 1.29
WLé 11:11 1.47 6:58 1.35 11:24 1,32 6:22 1.29
W15 11:11 1.46 6:58 1.33 11:25 1.31 6:23 1.27
Wwlé 11:08 1.37 6:55 1.20 11:21 1.19 6:19 1.13
wl7 11:08 1.36 6:55 1.20 11:21 1.19 6:20 1.13
1.21 11:22 1.20 6:20 1.13

w18 11:09 1.36 6:56
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