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StaMAry.  Quality-adjusted survival is a measare that infegrates both tangevity and quality-of-life infor-
mation. The analysis of quality-adjusted survival in a clinieal study with data colleated at periodic intorvals
encounters diflicultics due 1o incomplete information. Based on observed time points, the fime axis is parti-

tioned into a set of disjoint time intervals, and under

a Markovian assuniption on patient’s health siatns, the

expected quality-adjusted survival is estimaled as the sumaned product of the gquality of lile and s mean
soJourn time of each heallh state within partitioned intervals, 1t is shown that the estithator is asymiptoti-
cally normal with a shmple variance caleulation. A simulation study is conducted to nvestigate the helpvior
of the estimator, and a stroke study illusirates the use of the estimator.

Ky WORDS:  Interval censoring; Kaplan Aleier estimator: Markov process: Quatity of le: Right rensoring;
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1. Introduction

In clinical trials. often the change of a paticnt’s healtlr, which
is a composite of related outcomes that reflect physical and
emotional well-being as well as survival, is measured over
time under the influence of one or more treatments. A clinieal
endpoint that can integrate boll longevity and qualily-ol-life
(QOL) information in trials is preferable. Quality-adjusted
survival (QAS) is a measure proposed to incorporate health-
related QOL and survival time. For example, a QAS can he
expressed as a suminary slatistic that presents the area under
the curve of QOL scores (or utility coefficients} plotted against
time or as a function the QOL scores and the times spent
in each health state (Gelber, Gehuan, and Goldhirsch. 1989
Glasziou, Simes, and Gelber, 1990: Cox et al, 1992: Zhao
and Tsiatis, [999). In general. the QAS is a time-dependent
function reflecting an individual's experiences and pereeplions
overt lile history.

Many QAS studies rest on Lhe assumption that the Lran-
sition information of a patient’s health stalus is available or
that the health status follows a consecutive process. However,
due to the nature of disease and practical consfraints, the
health status may not. be a consecutive process and the fran-
sition of a patient’s health status is not always observable. For
example. in a spontancous intracerebral hemorrhage (S1CH)
clinical study (Bernard. 1994). investigators are typically in-
terested in a patient’s morbidity and mortality. In (his st urly,

the elinical observations are made monthly after a patient ix
discharged from a hospital, and the patient’s QOL or health
status is recorded inlo five categories of the Glasgow Onteome
Score. However, due 0 loss to follow-up or urissing visits, pa-
tiewds may expericnce more than one tvpe of fealth stags
between two clinte visits, and information sbont fransiionps
and the duration of health status between these diserele tine
points inay not he available. Sinee the QOL for a patient with
SICIH behaves as a process with reversible beaith status. the
problems of incomplete patient. hiealth information can com-
plicate the estimation of QAS. Zhao and Txintis {20011} porew-
posed a method using a general representation theorem for
missing data processes in adjusting for informative censuring
ta estimate the disiribation and mean of the QAS. severt he-
less. when an individuals QAS may e machservable due 1o
missing health status trausition information. thetr method as
well as other existing methads of estimating mean (QQAS. like
the partitioned survival method {Glaszion et al.. 1090} and
the time-marginal methed {(Huang and Fouis, 1999}, may not
be applicable without a Turther assnmmption about the distri-
bution of health status. Glaszion eof af. { 1998) used an tterpo-
lation method to measuve the QOI, with nrissing obgervations
or nonresponses. However, for subjocts who are st 1o follow-
up.are censored. or die, the interpalations are based on e
previous QOL history rather than the enrrent QO nforma-
tion in-study, amd henee, their estimates ean be bigsed.
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Becanse of the difficulty of specifying the life history
through periodic observation, it is necessary to postulate some
underlying statistical model for the QOL process. Multistate
models {Chiang, 1980} and compartinental models (Faddy,
1976) under Markovian assimptions have been proven to be
useful tools for understanding health transitions and have
heen proposed for comparable sitnations (Olschewski and
Schutieacher, 1990). Tu this study, we derive an estimator of
mean QAS based on the assumption that the QOL process
is Markovian; this in turn allows the estimator to accommo-
date a QOL process with periodic observations, There is no
requiremnent of continuous vbservation of patients” QOL or
exact transition times, which may not be feasible in clinical
trial settings. Using Slutzky’s ‘Theorem, we show that the es-
Limator is asymptotically normal.

Section 2 presents a decomposition of mean QAS based ou
observed time points, The decomposed mean QAS involves
two nnknown components: weights of health status and ex-
pected survival times for given time intervals. In Section 3,
we propose an estimation procedure for the unknown compo-
nents with right-censored and interval-censored data. Section
4 deseribes treatment comparison with estimated QAS. See-
tions & and 6 contain a simulation study and a stroke study
ilhustrating the proposed estimation, and we conclude with a
discussion in Section 7.

2. Decomposition of QAS

Suppose that there are n ndividuals under stedy and each
individual may experience &+ 1 eveuts {0,1,...,k}, where
state 0 denotes an alsorbing state while states 1,2,...,k
arce trapsient. We further asswe that the hth individual’s
health history can be described by a continuous-time multi-
state process, { X, (1)}, where X, (f) maps to the state spuce
= {0, 1,... A} L., at any time , the health status Xy (£)
can take on any of & + 1 values corresponding to diflerent
states of health, Let 15, = inf{t + X, (£) = 0} be the thne
that it takes the Ath individual to wove into the absorbing
state 0, e, 1), is the survival time for the Ath tadividuwal,
In addition, we define a QOL lunction Q) mapping the state
space to a prespecified set of real numbers, For reference and
convenience, the value of QUL is set Lo zero for the absorhing
state, e, Q(0) = 0. With this notation, the hih individual’s
quality-adjusted survival is

1
Uy, = / (){.\-h(f)}t“..
Jo

To evaluate {7, i a stady with a periodic observational
schietne. we lirst partition the time axis inte a set of dis-
joint intervals based on e observed thnes. Suppose that
to,81,. .., tin correspond to the times of scheduled [ollow-up
of a study and let Xp, ({500, Xo(bn )y -0 Xp(nm, ) be the
observation of the sequence of health states {0,1,...,k} for
a given individual bt tinees Ly o, 01y o s brm,, 0 which
{0 bests o b }is asubset of {to, 0, e} Using the
seb of times 0 = tg < 1] < -+ < 4y < o0, one can partition
the time axis into a set of disjuint hitervals such that the
following two conditions are satistied:

{“') {{Il‘Uith,l>" 'alh,nu,} < {f.(),f.],.. -vt“l} for all h'a
(bY Upcnan{honthis ot b = {fo b, o b

Inder the partition, any intervals of successive observed

time points Op» = {thr—1,tp,s), 1 £ 7 < my, can be ex-
pressed as a finite union of the disjoint intervals, i.e., Op r =
U BT with B = {te_ g, ts)I([te-1,s) € Onr)-

In connection with the partition, we further assume that
individuals with the same health status within the same in-
terval [ts—1, ts) will have the same QOL, ggs, 1= 1,... &, L&,
Q{Xn(t)} = qis if Xp(8) = i,t € [ts—1,ls). By this setting,
the QAS for subject  can be represented as the suim of the
quality of life mnultiplied by its sojourn time

nt iy
Un=Y | QU
s==1 s—1
m ok

Q{ X, (t)}dt

=22

s=1 im) ¥ Tuis

m ok
= Z Z Qislhis, (1)

s=1i=1

where Ty, is the time interval for an individual k with health
state ¢ within [ts1,¢s) and fyie = {1 Tis]] is the norm of T,
Note that f;, = 0 for an individual either in the absorbing
slate or censored by tine ¢,..1. Therefore, the expected QAS
for an individual is found to be

¥ k
HQAs = Z Zﬁh‘aiis,

s=1i=1

where [ is the mean sojourn time of an individual with health
state ¢ in [f,-1,4s). Since the mean sojourn time, I, i3 still
a weasure ivolving survival time and health status, for esti-
tation, we further decompose I such that the survival time
and the duration of health status can be separated. Let Ls be
a rawdom variable representing the length of survival within
the time interval [Ls-1,1s) and let w;, be the weight as a
chance that a subject would stay at state ¢ in the time in-
terval {ts-1,s). If S(1) is the survival distribution, the mean
sojourn time for an individual staying at state 4 in the time
interval [tg..1,ts) is
ty
Lis = wiy X B(Ly) = wyy ¥ -/ S()dt = w5 x gs{S).
ty—1t
Under this represeutation of sojourn time, the poas can be
cisplayed as

m ok
Hoas = Y Y diswisgs(S) =g x W x Hx G(S), (2)

s=l f=1

where ¢ = (Gisbmix1, W = diag{wir, w12, .-, Wim, - -+ We,
"t ——

 Whan )ik X mk G(SY = (91(5),-.. ,gm(S)), and H =
s 8 Jixq i the Kronecker product of an identity ma-
trix Jxm and a vector Jy . with all elements equal Lo one.

3. Estimation of the Mean QAS

Based on the decomposition, the pgag can be estimnated by
the estimation of weight W and the expected survival time
G(S). We next estimate W and G(5) under the assumption
that the observed health history {X(£)} follows a (k+1)-state
Markov process. Let Py j{ts1,1s) be the transition probability
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lor a subject from health state i at time ts—1 to health state
7 at time ¢5. Under the first-order Markov assumption,

Pr{X{t:}) =7} X(ts—1) = LX(tr)h0Sr<s -1}
=Pr{X(ts} = j | X{ts-1) =i} = Pij(te1ts)

and the transition probability matrix for the interval [te—t,ts)
can be expressed as

10 .. 0
Oios Buis -+ Byps

POy =1 0205 s - Ops |
gkOS les Tt gkks

with 855 = pij(te—1.ts} and 5, = 1 E 8- Wenote Lt
a greater value of 8, indicates a smaller ch'-.n('e of transition
from state 7 to other states, i.c.. Lhe longer is the Lime period
individuals will stay at the same state. Moreover, a greater
value of 85 (I # i) indicates a greater chance of transition
[rom other siates to state 7. Therelore, the weight of the mean
sojourn time at state ¢ for individuals in [ts_;.t5) can be
considered as an increasing [unction of {(Bris)i=1.... x and it can
be viewed as the chance of the health status that individuals
mighl experience during interval fts—1.ts). Tn this study, an
intuitive weight is chosen as

k
Z Glis
wis (@) = LI 1L
Z Z Puss

j=11=1

1=1,2,... .k

By the choosing of this weight, we can estimate W by estimat.-
ing 6. Suppose that {P(8s)];; = 8;;; is the (i, 7) clement of
P(8s). By the Chapman-Kolmogarov equation, the observed
transition probability lor subject h. Pij{thr—1.th ), can be
represented by

m

pii{th,r—l,f—h‘,-) = H P(O_;)A"-"(-‘)

s=1 ij

where Ay (s) = 1l [t_1.8s) C [fhroiifay) and is zero

otherwise and P{8;)° is defined as an identity matrix. Since -

my, < m for all k, we further define & 1 x mk(k + 1} van-
dom vector ¥, = (i3, ;;) of binary random variables such
that yg,;; = 1 il subject & is in state § at time {y. and
in stale i at time £, ,_;; otherwise, it is zero. By definition,
Y1, Yo, ..., Yn are distributed independently and identically,
Then the likelihood l[unction based on n individuals ran be
displayed as

n o om Yhyry

o= [T [T

h=1r=1ij Ls=t ij

where 8 = {8y,... , G}, The maximnm likelihood estimate,
n, of 8 can be obtamed using the Fisher scoring procedure.
Note that, under some regularity conditions, &, is st rongly
consistent with 8 (Sen and Singer, 1993). It can also be shown
that w;,{6n) and W (..} are strongly consistent eslimates of
w;s(8) and W(8), respectively.

When T is determined exactly or 7" is right censored, the
Kaplan -Meier estimator (Kaplan and Meier, 1958), S, (8), can
be used to estimate the survival function S(#). Under certain
conditions; it has been shown that

Vi{Sn(t) -
on t € [0.{m], where Ui(t) is a Gaussian martingale with
U(0) = 0 and cov{U(E), U} = a?(t" A ") (Andersen
et al, 1993). It has been shown that, given foly..... For.
rz'/Z{C(Sn) ~G{S)} is asyvinptotically mudtivariate normal
with mean 0 and asymptotic covariance matrix ¥ = {¥"51.s2)
where

¥s1s2 = (Lergr — ) X (fa2n) — L2} ¥ S{1e1) % S(Fea).

2
X o ({ter Algg).

S} 2 -S(1)- () asn —co

atud az(fsl Alse) can he estimates] cansistently by

] SN
511 Algp) = / J(sHY (s)} " 2dN(s),
Jo

where ¥ (s) is the number at risk just before time s, N(s) is
the number of the observed failures, and J(s) is an indicator
function that cquals one il ¥{s) > 0 and that is zero other-
wise. Hence, the mean sojourn time for subjects with state
within [ts_1, %) is estiinated as

fis,u = "'is(éri) X gs('(-;-?!}
and the estimated jigag is

1 k
floas(On.Sn) = Z Z Gebisn =@ x W(bn) x H x G{&.).

s=F =1
{3)
By the Slutsky Theorem, it can be shown that

V{iiQas(On- $n) — 51qas(8.5)) == N(0.47) as n - .

(1

where

Y=g xwexH} v {¢' xw@y<H} .

which can be estimated consistently by substituting the con-
sistent estimators @, and ¥ for the unknown paramecters. As
oue referee points ont, Lhis mothod allows far strupler variance
calculations using Sluizky’s Theorem than those within the
similar context of Huang and Louis (1999} and AMuarray and
Cole (2000).

\We next consider the interval-censoring case for QAS anal-
ysis. Even though the survival endpoint death is rarely in-
terval censored it many trials, the idea of QAS analysis can
be extended to stwdies with QOL and nonfatal endpoints like
HIV studies with AIDS ocenrrence as the endpoint. Interval-
censored endpoints [or such stadies are not unconnon. Tn the
case of T being interval censored. there are many methods in
the literature proposed for survival lunction estimation with

" interval-censored data (e.g.. Whittemore and Keller, 1956:

Lindsey and Ryan. 1998). One can obtain the estimated HQAS
nsing those methods if the survival function and its variance
can be well estimated, For example, if a piecewise exponen-
tial model is imposed on a set of interval-censored data with
Jintervals I, = [ry_j. 7)) for v = 1,2, ..., J and assuming

1
]
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) Table 1
The bias, sample standard ervor (SSE), sample average of the estimated standard error
{£SE), and the sample average of the coverage probubility (CP) of pgas = 5.421 by the 95%
confidence interval based on different sample sizes, censoring rates, and nonresponse rates

Nonresponse rate

. . 20% 410%
Censoring Sampie
rate (%) stz Bias SSE ESE cp Bias SSE ESE CP
2(} 20 (0.242 1.372 1.235 0.840 0.305 1.402 1.415 0.828
40 0.194 1.034 042 0.938 0.248 1.092 1.100 0.920
80 —0.058 0.719 0.723 0.943 0.159 0.736 0.730 0.947
200 0.034 0.466 0.460 0.955 0.120 0.474 0.476 0.549
400 0.019 0.302 0.308 0.951 0.087 0.380 0.369 0.953
800 0.017 0.225 0.223 (.954 0.054 0.279 0.283 0.952
40 20 -0.309 1.462 1.379 0.810 —0.343 1.620 1.61t% 0.763
40, —(.147 1.171 1.192 0.903 0.231 1.193 1.184 0.893
80 —0.004 0.782 0.768 0.924 0.161 0.787 0.791 0.919
200 ~0.067 (.600 0.609 0.951 0.130 0.656 0.648 0.949
400) 0.046 0.408 0.417 0.950 0.006 0421 0.426 0.947
800 0.041 0.301 0.295 0.953 0.091 0.316 0.310 0.951

”

a constavt hazard Ay within each interval Dy, and some regu-
larity conditions, it ean be shown that Ay, is consistent for A
and n!'7* (X, - A)is asymiptotically multivariate normal with
mean vector 0 and asymptotic covariance matrix EI(/\)}”,
which can be estimated consistently by {/(A,}}™ 1, By the
Stutsky Theoremn and the delta method, it can e shown that

Vi{igas(Bn, Aa) — poas(6, 2)} -2 N(0,1(0,A)
as 1 — oo,
where
V(6,X) = {q' x W(8) x H}
x [ 6w x 1 < La]
x{q' xW(O)x 1},

and this can Le estimated consistently by V(é”, ,\,L).

4. Treatment Comparison

The main purpose of the clinical trial is often to iwvesti-
gate therapeutic efficacy. For example, in cancer trials, can-
cer treatments often offer a cure that would interfere with
the patient’s bodily integrity. The purposes of the treatments
are not only Lo prolong the total or disease-free lifetime but
also 1o prevent the adverse eveats due to the introduction
of the treatments. The quality-adjusted survival would be an
appropriale measure for treatinent comparison. Suppose the
treatrnent-equivalent efficacies of two treatments are exam-
ined by their quality-adjusted survivals. Based on the estima-
tion of mean sojourn time {5, an individual’s QAS, Uy, can
be obtained from (1). With two independent QAS samples,
one can use nonparametric inethods, like the Mavn-Whitney-
Wilcoxon Lest, to compare treatment-cquivalent efficacy. 1his
is possible by uoting that the ranks are invariant under mono-
Lone transformations, and this ts preserved by using pooled
estimates of Lhe 8's. For large sample sizes, one can also use
an approximation test to examine the treatment-equivalent

efficacy. Under the equivalent efficacy assumption, the test
statistic (figa5,m, = O Ag,n, ) has an asymptotically normal
distribution with mean zero and with an appropriate asymp-
totic variance where ny and ng are the sample sizes for the
two treatment groups. The main problem in analyzing QOL
is the lack of a gold standard to evaluate the QOL score, q,
for diseases. The assessment of a QOL is difficult and is often
criticized because QOLs are obtained with biased measure-
ment (Smith, 1987). However, as Olschewski and Schumacher
{1990) pointed out, in a randomized clinical trial, nonpara-
metric test statistics or the test based on asymptotic results
may sLill be valid for the treatment comparison even if one
assumes that o QOL assessment is systematically biased.

5. Simulation Study

T this section, we conduct a simulation study to evaluate the
perforimance of the proposed estimator. We first consider a
study that is designed to follow patienis’ QOLs monthly for
12 months and where patients’ survival times, T, are exponen-

tially distributed with hazard A = 1/15. Suppose Lhat a pa-

tient’s QOL follows a three-state time-homogeneous Markov
process with death as state 0, poor QOL as state 1, and good
QOL as state 2, and the QOL scores, gs, for these states
are 0, 0.5, and 1, respectively. The transition probabilities
between 2 months arc assumed to be (819,812,820,82;) =
(0.4,0.2,0.1,0.3), i.c., the probability that a patient with a
poor QOL in the previous month could die during the cur-
rent month iz 0.4, etc. In this simulation, we consider data
with average 20 and 40% censoring rates and with the same
percentages of nonresponse rates at each monthly visit. We
assume that each subject would have a 50% chance of having
a poor QOL or a good QOL health status at the initial visit.
Table 1 shows the estimation results based on 2000 simula-
tions for each scenario.

[t is clear that, when the censoring and the nonresponse
rates are light (20%), the estimators of #qas have smaller
biases with smaller sample standard errors compared with

e
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Table 2
Transition probabilities, hazards, eapected survival, and mcan
sojourn lime estimates (SE) within intervals for the SICH study

Time interval s

R Ll 7 -

2

Transition probability

fh0s 0.154 (0.071)

O12s 0.115 (0.063)

B20s 0.056 ((1.054)

f21. ot
Hazard

A 0121 {(0.051)
Weight

Ws 0,408

wag 0.592

Expected survival

9s 0.2 (0).2.18)
Mean sojourn

hs 0.384 (0.092)

lag 0.558 (0.124)

(.056 (0.012)
0.167 (0.085)
0"
0.050 (0.049)

(LOAG {0.061)

0.410
0.590)

(0.8G4 {0361

0.354 (0118}
0.510 (0.169)

0.042 (0.055)
0.176 (0.096)
0.008 (0.018)
0.008 (0.018)

0.001 {(L0GG)

-
o

e
=~

-~

0.811 {0.486)

0.373 (0.149)
0468 (0.171)

2 Since there is no observation with this onteone, the transilion probability amaong

these data is restricted to zero.

those estimators that have the heavy consoring rate and for
the nonresponse rate (40%). The sample averages of the esti-
mated standard errors are very close to the sample standard
errors for all scenarios. The correct sample coverage proba-
bilities are lower when sample sizes are less than 80 hul. are
increasing in sample size and are close to 0.95 when sample
sizes are greater than 80. In general. the proposed estimator
provides an accurate estimate with a sample of moderate size.

6. SICH Study

A clinical observation study is used to illustrate Lhe proposed
estimators lor assessing the prgag. There were G5 consceutive
patients with deep (epicenter in basal ganglia or thalamus)
supratentorial SICH admitied to the Neurosurgical Service of
the University of North Carolina Hospitals between March
1985 and June 1994. After discharge, the clinical courses for
only 44 patients were available through four monthly follow-
up visits; the rest were cither lost to follow-up or missing
at least one monthly follow-up. The Glasgow Ontcome Seore
(GOS) is used to describe patient. morbidity and mortality
as an outcome measure for patients who survived boyond 30
days at 1, 2, 3. and 4 months, respectively. The components
of the GOS include the rating one for dead, two for persistent.
vegetative state (no corticai function). three for moderate dis.
ability (conscions but disabled). fonr for moderate disability
{disabled but independent), and five for good recovery (re-
suring normal activities).

A multistate Markov process can be used 1o deseribe the
change of the clinical conrse of SICH. For illustration pur-
poses, we redefine a patient’s health status as being state 0,
representing death; as state 1, representing (GOS8 = 2 and 3
as unfavorable outcomes; or as state 2, representing GOS =
4 and 5 as [avorable outcomes. Since the data are collected

monthly, we consider the survieal ontemne 1o be interval cen-
sored. Suppose that Oije =12, j =002 and s = 1.2,
is the transition probability from state i to state j at the
time inferval betwew u month s and month <+ 1. Based on the
estimation procedure described in the provious sections. one
can estimate the transition probabilities, the weights, ane the
mean sojourn time for each monthly interval. Table 2 con-
tains the eslimates. From Table 2. we note that the fransi-
tion probabilities from state 2 10 other stades are sumatler than
the transition probabilities [rom siate 1 1o ofher states across
time, This implies that patients with favorable outeomes at
any time interval are stable and shall bave a longer sean <o-
Journ time at the favorable health statns than the pationts
with unfaverable mcomes. The estimated weights, a . and
mean sojourn times, Lo, are consisient with this conchsion.
For exaunple. patients in this study will survive an expected
0.942 months (g1} at the first montldy interval, while there
will be a 008 chance {ur)). or 0388 months {1}, with the
unlavorable health state and a 0,582 chanee {uy) ). or L5358
mouths (1), with the favoralde health state. The consisteney
of the resulls indicates the praposed weighit Bietion s a1 rea-
sonable choice.

For illuxtration purposes. we chonse a set of hvpothieti-
cal QOL scores g1 = 0.5 and ¢2 = | to calculate the ex-
pecied QAS and ils variance. The chnsen QOI, scores indi-
cate it the QAS for a patient with | mouth of Favorable
health outeome is eguivalent o the QQAS for a paticnt with 2
morkhs of unfavorable ealth onfeome. Given the estimslors
in the above, The estimated mean guality-adjnsted srvival
thue for the J-month interval of this study is 208 with vari-
ance 0L.G84. In case that ane clionses allernative QOL, seores
{(71-q2) = (0.25.0.75), the estimated wean quality-asjusted
survival time for this study is L-£}) with a variance of 0.257.
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The ditference between these two estimated quality-adjusted
survival times indicates the iinpact of choosing QOL scores.

7. Discussion

An estimator of the mean quality-adjusted survival time is
investigated under the Markov assumption that tries to avoid
the estimation probieins due to periodic observation. The pro-
posed estimator allows the QOL score to be dependent on
both health status and survival time and can be applied to
right-censored and interval-censored observations. It is also
possible Lo Incorporate covariate eflects into the estimation
of the weipght or the expected survival time, For example, the
transition probability or the hazard rate can be a function of
covarialtes. The estipation of covariate effects can he imple-
nented using the same estimation procedures for the weight
awd survival thne,

Note that the proposed estimator has its own limitations.
First, the assumption that the discase process is Markovian is
difficelt Lo verily with periodic nonpanel observations. When
the Markov assmption is violated, the proposed estimmator
can be siguificantly biased. For example, suppose that a dis-
ease provess [ollows a three-state semi-Markoev process with
constant latent risks (hazards) (v, y12, 20, 721) = (0.25,
0.25,0.13,0.201). By a similar simulation study as in Section
5, the proposced es inator of mean QAS is biased about 20
TOY in various cens ring aud nonresponse rales. Therefore,
using the propused estunator for asewi-Markov model should
be appraised property. Second, in this contexi, the maxinmm
number of observation limes, 1y s prespecified by the study.
T'his Hroitation can he relieved as long as the sampling schiciue
is noninformative (Griger, Kay, and Sclhiumacher, 1991) and
m < nt. € < /2 such that the convergence propertics that
have been disenssed in the context stidl hold, However, larpe
e in a study will jntroeduce a large number of paraweters
and thercefore will nerease the complexity of the estimation.
For a stali sumple size study. (he estimates are problematic,
For example, there are 48 Lransitton probabilities that need to
be estintmted in each of our sinwlation scenarios. With ondy
20 subjects, the bias estitnates would have a large esthimated
standard crror and the coverage probabilities are less than
85% for any scenario. To resolve the problent, certain intervals
can be grouped based on biological judginent or on practical
reasons stech that the namber of parameters s reduced Lo a
manageable fevel,

We note that it may be possible 1o apply a full likeliliood
approach to estimate the trapsition probabilities and the sur-
vival distribution shuellancously. For example, Huang and
Louis (1993) use o novparameteic maxinm likelihood ap-
proach to estimate the joint distribution of survivat time and
mark variables, A similar approach can be used if oue can re-
place mark variables as functions of QOL appropriatety. How-
ever, to thoroughly address these issues with the nonresponses
and luss to {ollow-up due to a periodic observation scheme,
additional investigation is necded.

I conclusion, the estimator developed here did provide
a flexible framework for the guality-ol-life adjusted survival
study with periodic observations. Important study insiglts,
which iy have heen vverlooked by merely considering com-
plete observations, might be gaiued from the use of such a
nethod. :
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RESUME

La survie ajustée sur la qualité est une mesure qui intdgre a
la fois des informations concernant la longévité et la qualité
de vie. L’analyse de la survie ajustée sor la qualité pose des
probigmes dans les études cliniques avec données recueillies &
irtlervalles réguliers & cause des deonnédes manquantes. En se
basant sur les dates de recueil observées, on peut décounper
Paxe des temnps en intervalles de temps digjoints. Sous une
hypothése markovienne sur Iétat de santé d’un patient, la
survie ajustée sur la qualité attendue est estimée comme étant
le produit cumuié de la qualité de vie et de la durée moyenne
de séjour dans chague état de santé au sein de chaque in-
tervalle de temps. On montre que Pestimaleur est asymp-
totiquemient normal avec un calcul de variance simple. Une
étude de simulation est réalisée pour examiner le comporte-
ment de Pestimateur ¢t une étude sur les accidents vasculaires
cérébraux illustre I'utilisation de cet estimateur.
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