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Foreword 

Intensive and integrated resource management, where field crops, vegetables, trees, 
livestock and fish production are combined through efficient (re)use of wastes, residues, 
by-products and external inputs, offers a potential avenue towards a productive and eco
logically balanced agriculture. Countless smallholder agriculture-aquaculture farms are 
found throughout Asia, Africa and South America. They include traditional systems which 
are centuries old, as well as new emerging systems designed by innovative farmers both 
with and without support from formal research and extension and modern technology. 

Over several years the Integrated Aquaculture-Agriculture Systems Program of 
ICLARM has been conducting research on integrated resource management within farm 
communities in collaboration with National Agricultural Research Systems (NARS) in Asia 
and Africa, thereby fruitfully combining formal and informal knowledge systems. 

An important output of this ongoing work is new research concepts, approaches and 
methodologies. This report details one such output. It is a result of the cross-fertilization that 
occurs when different disciplines-here farming systems research and aquatic ecosystem 
modeling-merge and explore new borders. The ECOPATH model software, developed 
within ICLARM's Fisheries Resources Assessment and Management Program, has pro
vided important insights into the structure and function of global aquatic ecosystems. The 
application ofthe same concept and approach to terrestrial based culture systems exem
plifies a tool which has the potential to improve communication and productivity within 
research by unifying fields as disparate as fisheries science, aquaculture, agroecology and 
farming systems research, while addressing the issue of sustainable natural resources 
management in a quantitative manner. 

The work detailed within the report was funded by the Danish International Develop
ment Assistance (Danida). 

v 

Meryl J Williams 
Director General 

ICLARM 



Abstract 

Understanding sustainable agriculture requires the application of quantitative and qualitative methods 

to determine the performance of agricultural systems This report presents a pragmatic framework for 

monitoring, modeling, analyzing and evaluating the ecological characteristics of farms. Taking a natural 

resources management approach and applying mainstream descriptors from systems ecology, the report 

investigates the aggregate ecological properties of the whole farm agroecosystem including crops, trees, 

livestock, and fish. Productivity, efficiency, nutrient cycling, biomass, nutrient throughput, production/ 

biomass, biomass/throughput, species richness, agricultural diversity, nutrient balance and ecosystem goal 

functions (system overhead, ascendency, and exergy) form a preliminary list of quantifiable and measurable 

performance indicators. 

The analytical framework is organized around the Windows-based ECOPATH software package. 

Developed to model and evaluate the state of aquatic ecosystems, ECOPATH is now also being applied to 

agroecological systems. A case study of a smallholder rice farm illustrates· the monitoring of agricultural 

activities and collection of field data In collaboration with farm households; the computation of the parameter 

sets required to bUild an ECOPATH mass-balance model, with nitrogen as the model currency; and the data 

entry and output routines used in the agroecosystem analysis and evaluation A comparison of two farm 

scenarios further demonstrates the utility of the approach in assessing the performance of different farming 

strategies. The proposed framework can assist in the development and implementation of a healthy and 

sustainable agriculture. This report also serves as an Introductory field gUide and ECOPATH software 
manual for agriculture scientists. 
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CHAPTER 1 

Introduction 
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There is a widespread, ongoing search for a sustainable agriculture1 (Douglass 1984; 
Conway 1985a; Gliessman 1990; Harrington 1991; Munasinghe and Shearer 1995). Both low
external-input farming on marginal lands and high-external-input farming on prime lands can lead 
to widespread natural resource degradation (Reljntjes et al. 1992; Kessler and Moolhuijzen 1994; 
Pretty 1995). Alongside a demand for environmentally sound farming goes the need for analytical 
methods of impact and performance assessment. We have ideas and opinions on what consti
tutes good natural resource management. However, we still lack quantitative methods to help 
verify these perceptions and operationalize sustainable farming. 

It is not feasible to attempt to measure, model and document all components and pro
cesses within an agricultural system. Its complexities - ecological, economic, and social - are 
overwhelming. Yet we need not understand every detail about a complex organic system to 
gauge its state and measure its performance. Aggregate system properties are being used to 
describe the evolution, development, health, and integrity of natural ecosystems (Odum 1969, 
1971; Ulanowicz 1986; Con stanza et al. 1992; J0rgensen 1992; Woodley et al. 1993; Kay and 
Schneider 1994; Nielsen 1994). Applying ecosystem concepts and performance indicators to 
agroecosystems presents an opportunity for assessing their ecological state quantitatively and 
systematically. 

The evaluation of (smallholder) farms on which crops and animals combine to form an 
operational unit can benefit from a systems perspective. Measuring, for instance, the appropri
ateness of aquaculture technology often requires that the entire farm system, both internally and 
within the context of the local market, be evaluated to ensure that the proposed solutions ad
dress the real situation (Brummett and Noble 1995). A farmpond rarely operates as a stand
alone enterprise serving only a single purpose. Fish is just one of several potential outputs and 
services. Other important pond functions may include: a source of water and nutrient enriched 
mud for vegetable cultivation; a production site for edible aquatic weeds; a reservoir for livestock 
watering; a refuge and feeding ground for poultry; and a productive sink and disposal site for 
farm wastes. Just as ponds are integrated into the surrounding agroecological system, so are 
many other enterprises including crops, trees and livestock. 

1Here the term agriculture covers natural resource management systems which are crop- and livestock-based, but 
may contain aquaculture and forestry components, as is the case on many smallholder farms. 
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Analyses of agricultural ecosystems (Lowrance et al. 1984), agroecosystems (Douglass 
1984; Conway 1985a, 1985b, 1987, 1991) and agroecological systems (Altieri et al 1984; 
Gliessman 1990, 1992; Altieri 1995) in the broad sense address biological, economic, and social 
issues. Agroecology, in the narrow sense adopted in this report, focuses on the system's bio
physical and ecological performance. 

The systems perspective gained momentum during the 1970s-1980s with the emergence 
of cropping systems research (Trenbath 1974; Willey 1981; Zandstra et al. 1981; Francis 1986) 
and farming systems research (Spedding 1979; Shaner et al. 1982; Norman and Collinson 1985; 
Biggs 1995). The perception of the farm was gradually broadened from that of a unit of individual, 
independent enterprises to one of farms as sites of multiple, interdependent biophysical, eco
nomic and social components. Research and researchers moved closer to farms and farmers, 
initiating a change in the view of the farming community from a passive receptor of technology 
and formalized knowledge to an indispensable partner in research, extension, and development 
(Rhoades and Booth 1982; Chambers et al. 1989; Scoones and Thompson 1994). As a result, 
traditional and emerging, diverse, integrated crop-animal-tree farms are now receiving more 
attention when issues of productive performance and environmental impact are being addressed 
(Gliessman et al. 1981; Gliessman 1982; Ruddle and Zhong 1983; Nair 1984; Van and Yao 1989; 
Soemarwoto and Conway 1991; Edwards 1993; Guo and Bradshaw 1993; Lightfoot et al 1993a, 
1993b; and Brummett and Noble 1995). 

The recognition that the productive performance of mixed crops may be superior to 
monocrop cultivation helped give concrete evidence and justification for systems-oriented 
research. Complementarity was demonstrated on-station in mixed crops with land equivalent 
ratios greater than one, i.e., two or more crops produce a higher overall yield when grown to
gether rather than separately on the same land area. Overyielding (Cox 1984) and synergy, 
became terms associated with interactions of plants-plants or plants-animals in polycultures on 
which farmers could capitalize. Integrated rice-fish farming (Capistrano-Doren and Luna 1992; 
Dela Cruz et al. 1992) provides a classic example of potential synergistic biological interactions. 
The system produces not only two different outputs, but is generally thought to improve the 
performance of the rice crop through a variety of mechanisms: some fish feed on harmful 
insects or snails and serve as biological pest controllers thus reducing the need for biocides; 
other bottom-feeding fish species stir up the mud, an activity thought to release additional nutri
ents for plant growth; some fish feed on aquatic macrophytes, i.e., on weeds that otherwise 
compete with the rice crop, and; the presence of fish usually leads to a general improvement in 
ricefield water management. 

With polyculture systems, however, hard evidence to verify whether they are superior to 
more simplified systems has generally been lacking. Many integrated farming systems have 
evolved over extensive periods of time and are not (easily) amenable to replication, mapping, 
analysis and testing under controlled conditions. Quantitative research is not that straightforward 
when it comes to complex, polyculture farming. 



One way to gain insights into the state and performance of agricultural systems is to 
model them as systems (Van Dyne and Abramsky 1975; Rykiel 1984; Jf2lrgensen 1994). 
Systems modeling and analysis are not a panacea for fragmented and inadequate under
standing or for inappropriate management of biological systems, but offer an important and 
useful complement to the more traditional scientific approach. 
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The ECOPATH software package (Christensen and Pauly 1992a, 1992b, 1993, 1995; 
Jf2lrgensen 1994; Pauly and Christensen 1995) was developed for aquatic ecosystems 
modeling and quantitative trophic network analysis. It is now also finding use in the modeling 
and performance assessment of agricultural systems. 

Based on a system of coupled linear equations and the principles of mass balance and 
mass conservation, the software calculates a range of summary statistics used to evaluate 
the state and performance of an (agro)ecosystem. Quantified properties include such 
attributes as system productivity (yield), efficiency, biomass, throughput, and cycling. These 
attributes allow us to put numbers on the ecological characteristics of a given system. 
Once we have the numbers we have the starting point for quantitative analyses and com
parative performance evaluations. Examples of the application of ECOPATH to field and 
farm level agroecosystems can be found in Cagauan et al. (1993), Lightfoot et al. (1993c), 
Ruddle and Christensen (1993), Van Dam et al. (1993), Dalsgaard (1995), Dalsgaard et al. 
(1995), Dalsgaard and Oficial (1995), Dalsgaard (1997), Dalsgaard and Christensen (1997), 
and Dalsgaard and Oficial (1997). The approach helps us probe into issues like: is inte
grated nutrient management and a high recycling index synonymous with a low(ered) 
system productivity; can one maintain a high standing biomass to buffer the agroecosystem 
and a high net productivity at the same time; is mimicking the properties of natural ecosys
tems in the pursuit of an ecologically healthy agriculture incompatible with extractive farming 
and high yields; what are the trade-offs between sound ecology and other objectives such 
as productivity; and do there have to be trade-offs? 

The data inputs into an ECOPATH model are simple. What is required is a balanced 
system model of boxes and arrows (Fig. 1.1). Boxes represent stocks, including soil, crops, 
vegetables, trees, livestock and fish. Arrows signify biomaterials flowing into, out of and 
between boxes. A model must be balanced in that all component stocks, stock changes, 
inputs and outputs must be accounted for. Stocks and flows can be quantified and ex
pressed in either energy or nutrient terms. 

Information on the parameters shown in Fig. 1.1 is not sufficient by itself to permit the 
construction of complete nutrient balance models. In the case of nitrogen (N), which is the model 
currency used in the smallholder rice farm example presented in the following chapters, it enters 
and leaves the farm through a range of processes and mechanisms. Feeds and fertilizers, dry 
and wet deposition, sedimentation, irrigation water and various forms of biological nitrogen (N) 
fixation, all represent potential input sources. Rice wetlands constitute a very suitable environ
ment for the growth of all groups of N2 fixing organisms (Roger and Ladha 1992; Ladha and 



kg piglets and kg SWine 
kg livestock kg eggs and poultry feeds sold and kg fmgerllngs kg fish 

sold? eaten and sold? purchased? eaten? stocked? eaten? 

,!:A~M.J3~U!'l~A~Y __ - - - - - - - _____ - - - _ _ _ _ _ _ _ _ _ _ _ _ ___ t- ------1- ----t ---------------
, • ! 

kg Imported feeds? ____ -. 

~.~T-~ha~~~e~8~ ~ 
I 

kg by-products fed 
to animals? 

kg grain? 

RICE 

It!!" ~~tY)' -): ' 
r~' I I 

f]f' ""!!i .... r. "j>!;t: -, _" q' 

~t'1h~~~~fk!lj~m 
Area and producllvlty? 

SpeCies, numbers and 
average lIVe weights? 

kg grass? 

GRASSI WEEDS 

SpeCies, numbers and 
average live weights? 

kg consumed by fish? 

PHYTOPLANKTON 

,...-.l...-P-IG--S--"---' ~~K 

Numbers and 
average live weights? 

Species, numbers and 
average live weights? 

~~--~I 
kg frUits? kg wood? 

Biomass and productiVity? SpeCies, area and productiVity? 

I 

~ 
kg manures? 

ha~ests 

kg poles? 

Numbers, biomass 
and productiVity? 

----------------------------------------------------------------------

Fig 1 1 A conceptual stocks and flows model of the case study farm 

sarl' , 

t 
kg Inorganic fertilizers 

Imported? 

c; ... ' '" ... / , t; ... I' } 'J 



5 

Peoples 1995), which is one of the reasons that rice wetlands are so productive. Har
vests, leaching, drainage, volatilization, denitrification, run-off and erosion all represent 
pathways of possible N loss. Accurate data on feed and fertilizer inputs and harvested 
outputs can be obtained via farm record keeping, whereas most of the natural fluxes 
are difficult to quantify. 

Putting numbers on the boxes and flows within a farm agroecosystem is not always 
straightforward. The smallholder farm environment is not uniform, predictable or controllable. It 
varies in terms of climate, resource endowments and management, i.e., in terms of all major 
forcing functions. Smallholder farms are (surprisingly) diverse, complex and heterogeneous. 

This makes it difficult to operate in a rigid research mode and adhere to systematic monitor
ing and sampling schemes. We (scientists) are trained to think in terms of rigid experimental 
designs and setups, with treatments and replicates, and comparative plant and animal perfor
mance evaluations based on statistical analyses and criteria of significance. Observing and 
interpreting what happens in a complex system, in situ, where the farmer and not the researcher 
is the experimenter, requires a different approach. Where established monitoring, recording, 
interviewing, assessment and sampling techniques exist, these should be applied. Often data 
collection schemes have to be improvized in cooperation with the farm household. Imagine 
arriving at a farm ready to sample and collect, only to find that the main crop has already been 
harvested prematurely due to labor (un)availability or an impending pest attack; that free-ranging 
animals have grazed the plots which had been identified for monitoring plant growth; that the 
trees selected for biomass assessments fell in the last typhoon; or that most of the newly 
stocked fish escaped into an irrigation canal during a heavy overnight downpour and pond 
overflow. Enterprises succeed or fail for one unexpected reason or another and activity sched
ules and farm management plans are sometimes literally changed overnight. 

The Socioeconomic Dimensions of Agroecosystems 

The ecological analysis presented here can only provide a partial assessment of an 
agroecosystem. Economic, social and political aspects are equally important for a comprehen
sive and complete performance and sustainability evaluation, but are not covered in this report. 
Very often the crucial question is not which practices are sustainable, but rather which conditi<Dns 
cause people to conserve their resources and which conditions favor destruction or 
overexploitation (Brookfield and Padoch 1994). It is our experience that, when conditions permit, 
farmers are concerned with both the productive performance and the well-being of the farm's 
resource base and see the two as being closely linked. For all practical purposes, an ecological 
assessment is thus a useful starting point for addressing the concept of agricultural 
sustainability. 
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The Farm Perspective 

The individual household or farm, although generally identified as a preferred unit of analy
sis, has its limitations. Demarcating a farm is not easy where physical boundaries shift, as when 
open access and common property resources are (periodically) utilized. The comfortable idea of 
a fixed assembly of resources being managed by a household unit often does not apply in reality. 

Upstream and downstream impacts mean that analyzing individual farms in isolation 
misses an important part of the story. "One sustainable farm situated in a landscape of high 
input, resource-degrading farms may produce environmental goods which are undermined or 
diminished by the lack of support from neighboring farms. A necessary condition for sustainable 
agriculture is, therefore, the motivation of large numbers of farming households for coordinated 
resource management" (Pretty 1995). The farm remains, nevertheless, the standard operational 
unit and, as such, provides a useful point of departure for a first model and analysis. 

, ' 
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Fig. 1.1 provides an overview of the biomass stocks and biomaterial flows that one may find 
on a smallholder integrated rice farm. Throughout the remainder of the report we refer to this 
specific case study in order to illustrate the proposed analytical framework. Chapter 2 covers 
field methods and techniques employed in farm monitoring and data collection. Chapter 3 de
scribes how to derive the parameter sets required to build a mass-balanced agroecological farm 
model. Chapter 4 introduces data entry into and analytical outputs from ECOPATH. Chapter 5 
compares the case study farm with another rice farm scenario and discusses the use of quanti
tative indicators in comparing the ecological performance of different agroecological manage
ment systems. 



CHAPTER 2 

Monitoring Farm Agroecosystems 
and Collecting Data 

on Bioresource Stocks and Flows 
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In this chapter we suggest simple, practical field methods for collecting data on the boxes 
and flows of Fig. 1.1. Boxes include the following groups of plants and animals: rice, vegetables, 
fruit trees, multipurpose trees, bamboo, grasses/weeds, large ruminants, pigs, poultry, fish, and 
phytoplankton. These are groups of organisms that are distinguished by their function and life 
form, and which form distinct management entities and convenient units of monitoring, modeling, 
and analysis. 

Within ecology, the guild concept refers to functionally similar species (Pianka 1988; Begon 
et al. 1990). The classification of farm components suggested here could be labeled 'agricultural 
guilds' - groups of species which, from a resource management point of view, perform similar 
functions. The number and types of groups identified in any particular model will differ according 
to the environmental context and management scenario. There will be cases where it makes 
sense and benefits the modeling and analysis to disaggregate groups that we have lumped, and 
vice versa. The variation that one encounters in the presence, selection, and management of 
plants and animals makes it impossible to construct a finite, fixed list of groups. What is sug
gested here only serves as a guide. 

The extent to which boxes are further broken down or aggregated depends on the purpose 
and level of modeling. Two or more fish species may be cultured in the same body of water and 
to analyze them separately will require separate quantification of diet and harvested output. 
Whereas the latter can quite comfortably be obtained, e.g., through harvest records, the former 
would entail a level of detail probably not required to evaluate the performance of the 
agroecosystem at the whole farm level. Likewise, poultry is conveniently defined as one group 
although it may consist of several species, including ducks, chicken, geese, turkeys, etc. To 
separate feed inputs on a species basis becomes very cumbersome where the fowl are free
ranging and occasionally fed by-products, such as rice bran and other wastes, as is often the 
case in smallholder rice farming. Estimates of the total amount of feed given to the group of birds 
as a whole can be obtained via farm records and regular sampling and weighing of feed. The 
same applies to groups of large ruminants, in this case water buffaloes and cows herded and 
fed together. Pigs are treated separately, being housed and fattened primarily on imported 
commercial feed. Rice constitutes the main crop in our system. Vegetables are often cultivated 

7 
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in the dry season when the rice area lies fallow, and often managed as one unit in mixtures/ 
intercrops. Trees are separated into fruit and multipurpose trees because of the rather different 
roles they fulfill within the farm. Bamboo, grasses/weeds and phytoplankton constitute the 
remaining distinct, functional groups within this rice-based system. 

We only consider the biomass that exists above ground. Above ground net production is (at 
present) the best basis for analysis and comparisons because it constitutes the usual database 
in ecology and, if not directly measured, can be obtained from secondary yield data with reliable 
cultivar-specific constants (Mitchell 1984), at least for major crops. The role of root biomass in 
nutrient recycling and storage is by no means insignificant. In leguminous trees, root biomass 
may account for up to 50% or more of tree N after pruning (Sanginga et al. 1995). Net primary 
production including roots is nearly always an extrapolation from above ground net production 
based on assumed constant proportions between the two. Data reviews, however, do not show 
a significant correlation between the above and below ground portions and there IS no reliable 
basis for extrapolating total net primary production from above ground measurements alone 
(Mitchell 1984 ). 

An extensive literature exists on rationales, methods and protocols for conducting research 
on farms with farmers (see for instance Mikkelsen 1995). The scheme presented here requires 
the combination of different techniques and methods, including farm mapping, bioresource flow 
modeling, record keeping, semi-structured interviews, field measurements and sampling. To 
help implement the proposed framework, a few practical hints are given below. 

It is recommended that researchers initially familiarize themselves with the nature and 
structure of the farm, for example, by asking the household to help draw a map or transect of the 
whole system (Lightfoot et al. 1991a, 1991 b; 1994). A qualitative bioresource flow diagram (Fig. 
2.1) can be generated based on the household's knowledge of the natural resource characteris

tics, and can provide an excellent overview of and focal point for discussing past, present, and 

planned activities. The diagram can also constitute the basis for a first rough resource inventory 
and serve as an entry point for planning the entire monitoring and data recording scheme. A farm 
map with field locations and natural resource types, or "land management units" (upland, low
land, homestead, forest land, etc.), can further assist in planning and designing monitoring and 
sampling schemes (Figs. 2.2 and 2.3). 

When monitoring the growth of plants and animals in the field, one should adhere to stan
dard measurement techniques and sampling methods. Fig. 2.2 shows an example of a layout for 
the sampling of ricefield bundweeds on the case study farm. A transect design is incorporated, 
with variations in the natural resource base adequately represented. Farms are not always 
square, uniform or even contiguous, and the sampling transect seldom ends up forming a neat, 
'ideal' straight line across the farm. Farmers are usually capable of identifYing different land 
management units as distinguished by soil type, topography and moisture regime, i.e., land units 
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Fig. 2.2 A map showing the land management units (using local and translated terms) of the case study farm, with an 
example of a layout for bundweed sampling across the ricefield area. 
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Fig 2.3 A map of the case study farm showmg an example of a soil sampling layout covering three land management 
units (from Dalsgaard and Oflclal 1997). 
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representing different conditions for plant growth. Such information can guide transect design 
and help ensure systematic and representative sampling. 

We adopted a scheme of three samplings to monitor the growth of annual crops (rice, 
weeds and vegetables) within each of the land management units in which the crop occurred. 
Representative sample sites were identified by visual inspection in the field. Each sample site 
consisted of a 1 x 1 m2 square (confined using a quadratic sampling frame) within which all 
above ground vegetation was cut and weighed. An average value for the samples of a land 
management unit was computed before calculating the overall farm total on the basis of 
weighted averages (weighted according to the areal proportions of the land management units). 
Fresh weights were usually recorded in the field, with subsamples brought back to a laboratory 
for nitrogen (N) analysis. If wet, plant sampling was either postponed or samples were air dried 
before the weighing and recording. 

We found the use of a 20 kg balance, with a resolution of 0.05 kg, to be an Indispensable 
aid in the field. Equipping the household with a scale also permitted regular weighing throughout 
the monitoring period of various minor harvests of fruits and vegetables - products that other
wise tend to elude attention and remain unrecorded. 

A flexible and systematic approach was also adopted when sampling soils (Fig. 2.3). A 
farm represents a heterogeneous "mini-ecosystem" and it is usually not advisable to settle on 
one intensity or transect spacing and apply it rigidly across such an area Some parts may well 
need a different approach, with higher or lower intensity (Landon 1991). On the basis of the 
information provided by the farmer on soil conditions within the various land management units, 
three units were identified to represent the variation in soil conditions found across the farm. 
Within each land management unit, ten composite soil samples were collected along a diagonal 
transect. The soils were sampled to a depth of -12 cm (commonly used sampling depth for 
ricefields) using a soil auger during the dry season and 2.5 cm diameter PVC tubes during the 
wet season. Samples within each land management unit were dried, ground and submitted to a 
laboratory for routine analysis. 

For the general monitoring of farm activities, weekly field visits turned out to be a workable 
schedule. Daily visits were too demanding on both parties, whereas monthly Visits ran the risk of 
missing unrecorded data not easily retrieved through recall. Keeping track of activities and 
bioresource flows soon becomes quite a task where farmers engage in a wide range of crop and 
animal activities, as many smallholders do. There may be particular times during the season 
when the frequency of farm visits can be reduced, e.g., during slack and peak periods. The 
appearance of slackness may sometimes be deceptive. After harvest of the main crop, house
holds often engage in a range of smaller enterprises. These are exactly the activities that often 

elude research but are important to understand and evaluate the dynamics and performance of 
the whole agroecosystem. Households may not initially appreciate keeping records and may not 
have the time or ability to do so. Giving feedback, e.g., by presenting and handing over beautified 
versions of farm maps and transects, and discussing the results of economic and ecological 
assessments helps motivate participants. 

Rarely is one household member solely responsible for all the farm activities and an at
tempt should be made to involve several members in the monitoring and recording schemes. 
Regular farm walkabouts and field inspections with household members are an important 
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means of triangulation and double-checking of records. The word 'field' here also refers to parts 
of the farm that are not cultivated but utilized for other purposes, e.g., for the collection of wild 
fruits, wood or other products. 

Suggestions on how to monitor, record, and collect data on the standing stocks and primary 
and secondary produce of the different plant and animal groups Identified on the case study farm 
are given below. 

Oryza sativa (variety: Masagana 75) 

Grains are usually packed within the field in sacks of 45-50 kg right after harvest. A good 
estimate of the total grain production can be obtained by counting the number of sacks. If this 
information is obtained from the household, it is important to assure that the overall figure in
cludes not only the portion of the harvest sold but also the share retained by the harvester/ 
thresher, grains stored for consumption and seeds, the share paid for land rental, etc. The main 
crop usually serves several such social and economic purposes. To derive an estimate of the 
straw production, one can either refer to harvest indices and calculate backwards from the 
figures obtained for the grain harvest, or sample straw in situ, shortly before harvest, when fields 
are drained. 

2.5 ~egetal:)les 

Ipomea batatas Linn. Lamk. (sweet potato), Phaseolus vulgaris Linn. (snap bean or common 
bean), Solanum melongena Linn. (eggplant), Vigna sesquipeda/is Fruw. (string bean or long 
bean). 

In this case study, vegetables constituted a minor crop cultivated on small parts of the 
fallow rice land during the dry season. Harvests were staggered and the produce consumed on
farm. Asking the person(s) responsible for the harvest or cooking to perform regular weighing 
turned out to be a feasible way to obtain reasonable yield estimates. Recordings were made on 
a species basis, as the content of nitrogen (our model currency) can vary considerably for 
different kinds of vegetables. 

Leaves and stems may be fed to animals, removed, burnt or left in the field to decompose. 
Young and nutritious leaves are sometimes harvested for human consumption. Whatever their 
fate, we need to estimate the biomass contained in the vegetative non-harvested portion. Veg
etable plots are sometimes rather small, however, with little room for sampling without severely 
affecting the crop. There may be no easy way of estimating this particular variable in the field and 
using secondary data, such as (nitrogen-based) harvest Indices, may offer the best solution. 

2.6 ~r;assesZweel!ls 
, " 

Cyanodon dactylon (L.) (bermudagrass), Cyperus rotundus (L.) (purple nutsedge), Echinocloa 
colona (L.) Uunglerice or awnless barn yardgrass), Echinoc/oa glabrescens (no common name 
found), Elusine indica (L.) (goosegrass or crowsfootgrass), Fimbristy/is millacea (L.) (globe 
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fingerush), /mperata cy/inidrica (L.) (cogongrass), /pomocea aquatica Forssk. (swamp morning 
glory or water spinach), Leersia hexandra Sw. (swamp ricegrass or southern cutgrass), 
Monochoria vaginalis (Burm. f.) (monochoria), Paspa/um distichum L. (knotgrass or water 
couch). 

Ignoring weed production can lead to a severe underestimation of the productive capacity of 
the rice agroecosystem. The weed box usually contains a wide range of species (Ampong
Nyarko and De Datta 1991) and the case study farmer was capable of naming more than 15 
different kinds of weeds using vernacular. For practical purposes weeds were classified into 
bundweeds, plotweeds and aquatic weeds: 

Bundweeds refer to the weeds that grow on the (small) embankments which surround and 
separate individual ricefields. Farmers often adhere to a schedule of bund weeding thrice per 
rice crop: before transplanting, 45 days after transplanting (or halfway through the crop) and 
shortly before harvest. Such a weeding scheme provides a convenient sampling scheme: 
sampling and subsampling weeds at the same intervals just before the actual weeding permits 
accurate monitoring of weed growth and biomass production. By sampling one meter sections 
of bunds across the farm and measuring total bund length as well as bund widths, total bund 
area and thus total bundweed production can be extrapolated. Bunds typically occupy from 5% 
to 20% of the total ricefield area according to microtopography and slope. 

Plotweeds refer to the weeds growing on the drained and dry ricefields between rice crops. 
Where fields are left fallow for longer periods of time, such as 5-6 months over the dry season, 
estimation and sampling may be problematic. Weeds may wither and die off as fields dry out 
and field water availability drops below wilting point, so frequent field inspections may be neces
sary to decide on appropriate sampling time(s). The assessment of plotweed production is 
further complicated where free-ranging or tethered animals graze the fallow land. Sampling from 
adjacent ungrazed areas may then provide the best approximation. 

Aquatic weeds grow within submerged ricefields during the rice crop. Sampling IS conve
niently carried out shortly before the harvest of the rice crop, after the fields have been drained 
and the weeds are still intact. Farmers may perform ad hoc weeding during the rice crop. This 
complicates the sampling procedure, but fields may only be partly weeded, in which case it 
might still be possible to identify representative sampling sites. In such cases one may have to 
contend with a suboptimal sampling scheme or refer to secondary data. 

Water levels fluctuate and differ from one ricefield to the next, as well as within individual 
fields. A few inches of difference in elevation can mean the difference between permanent 
flooding, intermittent flooding and regular drying out of fields. One can therefore expect large 
variations in the conditions for phytoplankton growth across a smallholder rice farm area. Mea
surements of dissolved oxygen and phytoplankton counts require access to proper (expensive) 
equipment and laboratory facilities, something not all field researchers have. This makes the 
monitoring of the phytoplankton component unrealistic in many cases. We implemented a 
minimalist scheme conducting measurements only thrice during the rice crop in order to obtain a 



rough indication of the overall level of phytoplankton biomass and production. Consulting the 
literature on this particular variable is probably a better option in many cases (see for instance 
Roger 1996). As most research on the growth of algae in ricefields has been undertaken on
station, results should be transferred to on-farm conditions with caution. 
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Annona muricata Linn. (soursop), Artocarpus altilis (breadfruit), Artocarpus heterophyllus 
Oackfruit), Carica papaya Linn. (papaya), Citrus microcarpa Bunge (Philippine lemon fruit or 
'kalamansi'), Cocos nucifera Linn. (coconut) Mangifera indica Linn. and Mangifera philippinensis 
Mukh. (mango), Musa spp. (various banana), Psidium guajava Linn. (guava), Sizygium cumini 
(Linn.) Skeels (black plum or java plum), and Tamarindus indica Linn. (tamarind). 

Fruit trees include both fruit-producing trees and palms. Several species of fruit trees, 
often represented by a single or few specimens, are frequently found on smallholder farms, 
particularly in and around the homestead area. Fruit is regularly consumed on the farm in an 
ad hoc fashion which makes recording and quantification difficult. When fruits are harvested 
for marketing and sale, the estimation of output is easier. In many cases, only rough esti
mates can be obtained. Fruits are often of minor importance when viewed within the overall 
farm production picture. Wood is harvested for fuel, construction, fencing, etc. Wood con
sumption can be estimated by regular weighings and recordings by the household assisted 
by the research team. 

The most difficult parameters to estimate are tree biomass and growth. Well established 
methods for assessing tree volume exist, but these are usually developed for and applied to 
large stretches of forest or uniform, even-aged stands in plantation forestry. Assessing volume 
and biomass of individual trees is very difficult. The standard mensuration technique involves 
measuring girth at breast height, assessing height using a hypsometer or simple geometric 
triangulation methods (for smaller trees using a bamboo pole of known length), and estimating a 
form factor - a coefficient employed to reduce the volume of a cylinder to that of a tree or log 
(Philip 1994). Each of these estimates is associated with a range of potential errors so that 
measuring and computing volumes of individual trees is characterized by lack of precision. 
When a farm contains only a few small trees this potential error may not matter much within the 
overall farm model. However, a few large trees soon make up a significant portion of the standing 
biomass stock, and estimating their biomass and turnover is important for balancing the model. 

Another limitation to the conventional mensuration procedures is that they are developed to 
derive biomass figures for the main product, timber, in the bole (trunk) only. Large amounts of 
biomass, however, are also stored and produced in secondary products, namely, in branches, 
twigs and leaves. For smallholder households, these outputs may be more important than the 
bolewood. 

Acacia spp. (acacia), Gliricidia sepium (gliricidia), Leucaena leucocepha/a (Ieucaena), Sesbania 
rostrata (sesbania). 
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The term 'multipurpose' is applied to trees that serve several functions, such as pro
duction of wood for fuel, fencing and construction material, prunings for livestock fodder, 
leaves for green manuring, shade for field crops, etc., and are capable of fixing nitrogen. On 
the case study farm, multipurpose trees were used for firewood, vegetable trellises and in 
compost-making. 

The problems with mensuration techniques also apply to multipurpose trees, although their 
lower height (6-8 m) makes it possible to derive fairly accurate height estimates by using a 
bamboo stick. The correlation between height and biomass, however, is usually poor for 
multistemmed trees. As Stewart and Salazar (1992) comment, u •• height is included in almost 
every trial assessment, probably because until recently foresters were dealing almost exclu
sively with straight, single-stemmed trees. For such trees, height and diameter are both closely 
correlated with volume ... ". For bushy plants, diameter at breast height is inappropriate because 
there may be several stems at that height. Most assessments of multipurpose trees have 
instead measured the 'basal diameter' at some convenient point between the ground and 10 cm 
up the stem (Stewart and Salazar 1992). 

We were limited to non-destructive measurements. On more than one occasion though, 
whole trees were felled by the farmer allowing total biomass, including bole, branches and 
leaves/twigs, to be weighed and apportioned. 

2.10 l3amlaoo 

Bambusa blumaena Schultes f. 

There are 54 known species of bamboo in the Philippines (Lessard and Chouinard 1980). 
Despite its widespread occurrence and use throughout southeast Asia, little has been published 
on the ecology of bamboo. As bioresources are becoming increasingly scarce and valuable, 
however, many plants and animals hitherto regarded as marginal within research and extension 
are now also receiving more attention. Dransfield and Widjaja (1995) provide an excellent over
view of the botany, ecology, agronomy, breeding, use and prospects of bamboo. 

Throughout the Philippines, bamboo either grows wild or is cultivated in backyards, along 
real estate boundaries, rivers and creeks. The culms (shoots) have many uses, e.g., in the 
construction of houses and furniture, as boat masts and outriggers, for making fish traps, etc. A 
Bambusa blumaena clump typically consists of 10-20 culms growing to a height of around 20 m. 
We were able to weigh cut and fallen culms of varying lengths and thus derive a rough length
weight correlation, from which the total standing biomass was estimated. 

The number of bamboo culms in each clump were counted at the beginning and at the end 
of the monitoring period. At the end of the year we revisited each clump with the farmer to 
double-check on the number of harvested culms and the number of new culms (Le., less than a 
year old). Shoots appear during the wet season and grow rapidly to reach full height within 60-
120 days after emergence (Dransfield and Widjaja 1995). 
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Bubalus bubalis (water buffalo or 'carabao'), Bus indicus Linn. (zebu cow). 

It is customary for smallholder rice farmers to keep one to two water buffaloes (carabaos) 
for land preparation. Cattle are less common in the Philippine rice smallholder landscape. 
Smaller ruminants, primarily goats, are kept for 6 months to 1 year before being sold for slaugh
ter. Microlivestock (National Research Council 1991 ) are rare, except for poultry. 

Live weights can be estimated through girth measurements (IIRR 1994). We recommend 
that all individual livestock be measured at the beginning and the end of the monitoring period, 
and when disposed of or acquired, in order to estimate standing stock and stock changes. We 
found farmers' assessments of live weights to be gross underestimates, often by more than 50%. 

Livestock is usually housed during the growth of the rice crop and grazed during fallow 
periods. When housed, weeds and grasses are cut and carried and daily feeding rates can be 
monitored. Assuming similar consumption rates when grazing, one can compute rough esti
mates of quantities of grasses/weeds grazed. 

Sus scrota Linn. (a commercial breed). 

One or two pigs are often kept and housed for fattening and slaughtering on special occa
sions, such as weddings and town fiestas. A common routine is for a household to purchase 6-8 
week old piglets, weighing 10-15 kg, for fattening over a period of 3-4 months, to reach a final 
weight at slaughtering of 50-60 kg. As with ruminants, live weights can be estimated through 
girth measurements. Where available, commercial feeds often form the basis of the diet, supple
mented by available on-farm by-products such as rice bran and kitchen leftovers. As commercial 
feeds are usually paid for in cash, the farmers tend to have good recollection of the amounts 
purchased. Other feeding rates are best accounted for via records and regular measurements. 

Anas platyrhynchos (mallard duck), Anser cygniodes (white geese), Cairina moschata 
(muscovy duck), Gallus gallus or Gallus domesticus (native chicken), Meleagris gallopavo 
(turkey). 

Most Philippine smallholder rice farmers keep some poultry for egg and meat production. 
The poultry are either free-ranging, housed or both. They are typically fed by-products and 
wastes such as rice bran and kitchen leftovers. Occasionally, farmers purchase broilers for 
fattening on commercial feeds. By monitoring approximate daily feeding rates, total feed 
amounts can be computed. Alternatively, one can ask the household to estimate total feeds 
given, e.g., the number of sacks of broken rice and bran used over a given period. 

Counting and weighing individual poultry at the beginning and end of the monitoring period 
gives a reasonable estimate of average standing stock and stock changes. Egg production rates 
vary throughout the year. During feathering, egg laying ceases altogether. On the case study 
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farm, duck eggs were the preferred food item and, at times, 12-14 eggs were collected daily and 
consumed on the farm. Duck eggs were weighed in at around 60-65 g apiece, or 16 eggs per kg. 
Household members recorded the number of eggs consumed and counted and weighed poultry 
consumed, given away, or sold on a daily basis. 

fll'''" 
Oreochromis niloticus (Nile tilapia). 

Warm water aquaculture (Little and Muir 1987) and the combination of agriculture with 
aquaculture is widely practiced throughout south, east, and southeast Asia. Fish are cultivated in 
ponds, often several species together in a polyculture system or in integrated rice-fish systems, 
e.g., Cyprinus carpio (common carp), C/arias batrachus (Thai catfish), C/arias gariepinus 
(African catfish), Melanogaster pectoralis (gourami), Indian and Chinese major carps (Dela Cruz 
et al. 1992). In the Philippines, however, aquaculture is mostly equated with commercial produc
tion in high-input, large-scale undertakings. Fish culture on smallholder rice farms is not com
mon. Often a few kilograms of wild fish are caught in the rice floodwater around the time of land 
preparation. The case study farmer did venture into pond aquaculture with the intention of prac
ticing integrated rice-fish culture on a small portion of the farm. The integration never material
ized due to unpredictable and insufficient irrigation water supply and the fish enterprise was 
largely considered a failure in this particular year. 

Knowing the quantities of fish stocked and harvested and assuming that harvest is com
plete, one can compute the approximate average standing biomass. Fishponds are prone to 
contamination with wild species, including predators entering with the irrigation floodwater. 
Accurate production figures may be hard to derive where fish escape or are lost through preda
tion, theft and other mortality (Christensen and Pauly 1993). 

Different species of fish derive their food from different sources including benthic organisms 
(living in the pond mud), phytoplankton and zooplankton, aquatic weeds, insects, snails, other 
fish and supplied feeds. Quantifying the various food flows and the exact food composition is 

difficult. Where the aquaculture enterprise plays a dominant role within the farm and quantifica
tion of these flows becomes important to balance the model, accurate species-specific esti
mates of the diet composition should be sought (see for instance Palomares and Pauly 1996). 

2.15 Other GrQups arna Pests 

Insects, snails, zooplankton, birds, reptiles, rodents and a whole range of soil organisms 
are also likely to be present on the farm. These organisms are usually not directly utilized or 
utilized only to a small extent, e.g. certain species of snails are sometimes collected and fed to 
ducks. Most of them, however, play an essential role in the general functioning of the 
agroecological system. At the level of analysis presented here we need not consider them, 
unless they have an impact on system performance that is not otherwise accounted for. In the 
case of pests, for example, their negative impact on crop performance is captured in crop 
production and harvest figures. 
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The soil forms the base of the agroecological system and serves as a repository for dead 
and decaying plant material and animal wastes. It is the source of nutrients for all primary pro
ducers (plants) and its state determines the overall health and performance of the agroecological 
system. An ECOPATH model can, in principle, be developed without knowing much about the 
processes within the soil- or 'detritus' in ECOPATH terminology. However, this should not 
prevent the modeler from seeking additional information about the soil. On the contrary, knowl
edge about the condition of the system's resource base will always enhance the explanatory 
power of the model and the ability to interpret agroecosystem behavior. One detritus box only is 
usually defined for the whole farm, although it is possible to define several boxes, e.g., for sepa
rate fields or areas of the farm. 

Soils were sampled and analyzed thrice during the monitoring period in order to get a good 
picture of soil conditions and possible changes. Core samples were made to a depth of around 
0.12 m for routine analysis, including pH, N (using the modified Kjeldahl method), P (using the 
Bray No.2 method), K, organic matter content, and texture (PCARR 1980). 



CHAPTER 3 

Building the Model: 
ECOPA TH Parameter Estimations 
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The next step is the conversion of field data into parameter sets for the ECOPATH 
model. When developing a model of a complex organic system, a common currency in 
which all state and rate variables can be expressed must be selected (J0rgensen 1994). 
Model currencies are usually either energy or nutrient based. With respect to ECOPATH 
models of aquatic ecosystems have largely been energy based, whereas both energy and a 
nutrient (nitrogen) have formed the basis for models of culture systems (Christensen and 
Pauly 1993). In the model developed here we identified nitrogen (N), measured in kilograms 
(kg) per hectare (ha) per year as a useful currency unit N is probably the macro nutrient 
whose fate has received the most attention in research on agricultural production systems 
and its pathways have been carefully studied and quantified. Nand P (phosphorous) are 
frequently identified as the limiting nutrients in both tropical and temperate soils. The N 
content of feeds, fertilizers and harvested produce (grains, vegetables, fruits, meat, etc.) 
are commonly available in food and feed composition tables 2 (Gohl1981; FNRI 1990). This 
still leaves a range of items uncovered, including wood, leaves, crop residues and animal 
wastes. Unless secondary data can be found, there is no alternative to sampling these 
variables in the field for N analysis. 

Fig. 3.1 provides a summary overview of the characteristics of the case study farm, 
with all the field data collected over the entire 12-month monitoring period. Each of the 
groups of plants and animals identified on the case study farm in Chapter 2 are revisited 
below, and model values are derived for their biomasses (8), production rates (P), con
sumption rates (Q), harvests (H), exportsllosses, and diet composition. 

F'j;"" 
The household recorded a total wet season harvest of 118 cavans (sacks) of rice. No rice 

was cultivated during the dry season. One cavan weighs around 50 kg yielding a total harvest 
figure of around 5 900 kg. Straw was sampled across the rice area and a straw production of 

2Food composition tables usually list food protein contents. From this N contents can be computed by multiplying 
with a conversion factor of 1/6.25. 
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Land management Homestead Upland 1 Upland 2 Lowland Sloping land/river bank 
unit (0.26 hal (1.09 hal (0.82 hal (0.08 hal (0.50 hal 

5011 type -'loam' - 'red clay' -'white clay' - 'black clay' - 'white clay' 
farmer -clay -clay -clay loam 
researcher 

water supply - ralnfed 
- ralnfed/lntermlttent irrigation 

- ralnfed 
wet season - (ralnfed) ~ • - ralnfed 
dry season - ralnfedfallow 

Plant and poultry (chicken. ducks 
ammal geese, turkeys) - nee (1 crop) 
components pigs ~ -weeds • fruit trees (banana, 

large ruminants (cows. - phytoplankton Java plum. mango, 

water buffaloes) papaya) 

fish (tllapla) multipurpose trees 

fruit trees (banana, guava, (Glrncldla, Leucaena) 

Jackfrult, kalamansl,mango, papaya, bamboo 

tamannd) weeds 

multipurpose trees (AcaCia, 
vegetables (common Glrncldla, Leucaena) 

bamboo bean, eggplant, long 
bean, sweet potato) 

Nutnent Imports 20 kg commercial poultry feed nee 
(feeds and 800 kg commercial pig feed of -115 kg urea • 
fertilizer) 6,000 kg grass for ruminants 

170 kg poultry & 75 kg eggs 3,750 kg riee 
195 kg pigs 50 kg sweet potato tops 200 kg mango 

Net yield 600 kg buffalo sold Irve 6 kg sweet potato tubers 1,600 kg bamboo 
16 kg trlapia 30 kg eggplant -1,300 kg rice -600 kg rice 1,400 kg multrpurpose 
36 kg papaya. 15 kg guava 12 kg long beans tree wood (fuel wood and 
30 kg mango, 2 kg jackfrult 11 kg common beans vegetable !rei Ires) 
20 kg tamannd, 1 kg kalamansl 15kg benana 

Fig. 3 1. A transect summary overview of the natural resource characteristics and flows on the case study farm (From Oalsgaard and Oficlal 1997). J\) 
-" 
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19000 kg computed. Given that rice was the dominant crop and that N contents of grain and 
straw vary according to cultivar and soil conditions, both plant components were subsampled for 
N analysis, yielding the following dry matter (OM) and N values (as a percentage of OM): 

Grain: 96% OM and 1.13% N 
Straw: 48% OM and 0.67% N 

Subtracting the 200 kg seed input, the following net production was computed: 

Grain 
Straw 

(5900-200) kg*0.96*0.0113 kg N kg-1 year1 
19 000 kg*0.48*0.0067 kg N kg-1 year1 

= 61.8 kg N year1 
= 61.1 kg N year1 

giving a per ha production figure or: 

P = (61.8 + 61.1) kg N year1 12.75 ha = 44.7 kg N ha-1 year1 

Plants consume the same amount of N as they produce, i.e., 

consumption (Q) = production (P) = 44.7 kg N ha-1 year1 

Assuming that seasonal and annual crops follow a sigmoidal growth curve, one can as
sume a value for the average standing biomass (B) equal to half of the total plant growth, or plant 
biomass production, i.e., PIB = 2 year1: 

B = 44.7 kg N ha-1 year1 12 year1 = 22.35 kg N ha·1 

The amount of harvested material extracted from the system is equivalent to total grain 
production minus the fraction of grain used (recycled) within the system. In this case rice and 
bran were used to feed fish (11 kg bran), poultry (825 kg grain + 200 kg cooked rice leftovers), 
ruminants (80 kg grain), and pigs (180 kg bran). N contents of bran and cooked rice are approxi
mately 1.25% and 1.00% (FNRI 1990), giving the following internal recycling flows: 

905 kg*0.96*0.0113 kg N kg-1 

191 kg*0.0125 kg N kg-1 

200 kg*O.01 kg N kg-1 

Total internal recycling 

thus leaving a harvest (H) of: 

= 9.8 kg N (recycled grain) 
= 2.4 kg N (recycled bran) 
= 2.0 kg N (recycled cooked rice) 
= 14.2 kg N year1 

H = (61.8 - 14.2) kg N year1/2.75 ha = 17.3 kg N ha-1 year1 

In summary, we derived the following set of ECOPATH parameters for rice· 

3Total farm area was measured at 2.75 ha. All parameters are computed on a per hectare basis throughout thiS 
chapter. 



B = 
P/B = 
Q/B = 
Harvest = 

3.3 Vegetables 

22.35 kg N ha-1 

2 year1 
2 year1 
17.3 kg N ha-1 year1 
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Household records showed the following vegetable harvests: 12 kg of string beans, 11 kg of 
common beans, 30 kg of eggplant, 6 kg of sweet potatoes and 50 kg of sweet potato leaves_ 
Based on their respective protein contents (FNRI 1990), the following harvest values were 
computed: 

12 kg*0_0050 kg N kg-1 

11 kg*0_0053 kg N kg-1 

30 kg*0_0016 kg N kg-1 

6 kg*0.0018 kg N kg-1 

50 kg*0.0053 kg N kg-1 

Total harvest 

= 0.06 kg N (string bean) 
= 0.06 kg N (common bean) 
= 0.05 kg N (eggplant) 
= 0.01 kg N (sweet potato tubers) 
= 0.27 kg N (sweet potato tops) 
= 0.45 kg N year1 

Le., H = 0.45 kg N 12.75 ha = 0.16 kg N ha-1 year1 

Assuming an average N harvest index of 0.5 (Norman et al. 1984), and that the harvests 
represent total vegetable production (the farmer did not report any losses or discards), we 
computed a vegetable biomass production of: 

P = H I 0.5 = 0.32 kg N ha-1 year1 

Assuming a sigmoidal growth curve (Le., average standing biomass is equal to half the total 
biomass produced) the following parameter set was derived: 

B = 0.16 kg N ha-1 

P/B = 2 year1 
Q/B = 2 year1 
H = 0.16 kg N ha-1 year1 

Bundweeds 

Average weed production, per weed (re)growth (recall that bundweeds were cut thrice per 
rice crop), was measured to be 0.51 kg per meter of bund. Total bund length was measured at 
3000 m. Laboratory analysis yielded an average OM content of 27% and an average N content 

of 1.79%. Production was thus computed as: 

P = 3*3000 m*0.51 kg m-1*0.27*0.018 kg N kg-1 year1 12.75 ha 
= 8.1 kg N ha-1 year1 
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Given that bundweeds grew thrice, and assuming a sigmoidal growth curve during each 
growth period, we get: 

P/B = Q/B = 3*2 year1 = 6 year1 

and, B = 8.1 kg N ha-1 year1 16 year1 = 1.35 kg N ha-1 

Plotweeds 

The sampling and analysis of plotweeds within the fallow dry season nce plots gave the 
following average values: 0.75 kg m-2 (fresh weight), 25% DM, and 1.06% N. Total rice area was 
measured at 1.81 ha: 

P = 18100 m2*0.75 kg m-2*0.25*0.0106 kg N kg-1 year1 12.75 ha 
= 13.1 kg N ha-1 year1 

With only one growth period, no exported harvest (weeds were cut and fed to ruminants 
and thus recycled within and not harvested from the system) and assuming a sigmoidal growth 
curve, for plotweeds we get: 

B = P/2 = 6.5 kg N ha-1 

P/B = 2 year1 
Q/B = 2 year1 

Aquatic Weeds 

This group of weeds was sampled shortly before rice harvest, with the following results: 
0.25 kg m-2 (fresh weight), 20% DM, 1.80% N. Total ricefield area, minus bund area, was mea
sured at 1.69 ha. There was only one 'crop' of aquatic weeds: 

P = 16900 m2 * 0.25 kg m-2 * 0.20 * 0.018 kg N kg-1 year1 12.75 ha 
= 5.5 kg N ha-1 year1 

B = P/2 year1 
= 2.75 kg N ha-1 

P/B = 2 year1 
Q/B = 2 year1 

Combining all weed data, we computed the following final parameter set for grass/weeds: 

B = (1.35+6.5+2.8) kg N ha-1 = 10.6 kg N ha-1 

P = (8.1 +13.1 +5.5) kg N ha-1 year1 = 26.7 kg N ha-1 year1 
P/B = 26.7/106 year1 = 2.5 year1 
Q/B = P/B = 2.5year1 
H = 0.0 kg N ha-1 year1 
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The overall average standing biomass of grasses/weeds on the farm was thus 10.6 kg N ha-1, 

an amount that was produced 2.5 times per year, corresponding to a primary productivity over 

half of that of the rice crop. Ignoring weeds may thus seriously underestimate the productive 

capacity of the rice agroecosystem and the cycling of organic materials and nutrients via weed 
growth, decay and regrowth. 

"a:S'lffl~IQi~l~m~:0~" 
, , • <~ " 

Our measurements indicated a low production of phytoplankton including diatoms, N-fixing 

and non-fixing blue-green algae (BGA). For simplicity, we assumed no import or export of phy

toplankton with incoming and outflowing irrigation water. From the laboratory analysis we derived 

the following (crude) parameter set for phytoplankton: 

B = 0.13 kg N ha-1 

P/B = 24 year1 
Q/B = 24 year1 
H = 0.0 kg N ha-1 year1 

For more information and secondary data on phytoplankton see Roger (1996) and 
Christensen and Pauly (1993). 

A tree count produced the following inventory: 20 banana hills, 1 breadfruit, 4 coconut 

palms, 2java plum, 5 guava, 3 jackfruit, 1 kalamansi (Philippine citrus), 22 mango, 7 papaya, 1 

soursop, and 8 tamarind. 

Measurements of tree circumference at breast height varied from 0.7 to 4 m and height 

estimates from 5 to 13.5 m. The majority of the trees fell within a range of 1.0 to 1.5 m (circum

ference) and 10 to 11 m (height). Below is an example of how to derive the standing biomass for 
individual trees: 

Example: Mango tree: circumference (c) 1.4 m; height (h) 12.5 m; form factor4 (f) 0.75. The 

cross sectional area or girth (g) of the bole is equal to c2 / 4p. Bole height was estimated to be 

half of tree height (6.25 m). The first step is the computation of bole volume (v): 

Assuming a fresh wood density of 1 000 kg m-3 and a dry matter content of 50% we have: 

Fresh weight (bole) = 1 000 kg m-3* 0.73 m3 * 0.50 = 365 kg 

The relative distribution of biomass in bole, branches, and leaves/twigs is site and species 

specific. Crude estimates for savanna and woodland trees are given in Table 3.1. Excluding 

roots and using average values, we assumed a dry matter distribution of: bolewood 50%; 

branches 35%; leaves/twigs 15%, thus: 

4The form factor typically lies in the range 0.5-1.0 (Philip 1994). We assumed an average value of 0.75 for all trees. 
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Dry weight (branch) = 255 kg 
Dry weight (leaf/twig) = 110 kg 

Table 3 1. Dry matter composItion In trees. (Source' Philip 1994) 

TWigs and leaves 
Branches 
Bole 
Roots> 5 cm diam. 

Forest trees 

10 
15 
30 
45 

Savanna/ 
Woodland trees 

10 
30 
30 
30 

Finally, we assumed the following N contents: bole 0.5%; branches5
,6 0.75%; and leaves/ 

twigs7 1.5%, and computed tree N as: 

N (bole) = 365 kg * 0.005 kg N kg-1 

N (branch) = 255 kg * 0.0075 kg N kg-1 

N {leaves/twigs) = 110 kg* 0.015 kg N kg-1 

N (tree) = 5.4 kg N 

= 1.83 kg N 
= 1.91 kg N 
= 1.65 kg N 

By adopting this procedure for all trees we arrived at an overall approximate tree biomass 
of: 

B = 76.0 kg N ha-1, 

of which around 17.2 kg N ha-1 were located in the leaf/twig portion. 

Wood Production 

The production of wood can be computed by inserting values for the relative increases in 
girths and heights in the above formula for bole volume computation. Numerical examples are 
given in Philip (1994). The difficulty and uncertainty involved in measuring and estimating these 
parameters, however, made us resort instead to an overall rough relative growth estimate for the 
entire group of fruit trees. In general, relative tree growth depends on management, site condi
tions, tree species, age and health. As trees age and mature, their growth rate approaches zero. 
On the case study farm, with tree ages varying from less than 3 years to around 100 years, we 
would clearly expect large differences in individual growth rates. Our field measurements 
showed increases in height and circumference varying between 0 and 10%. From this we 

5Branches contain a higher relative proportion of bark and live tissue than the bole portion, thus the higher N 
content for branches than for bole. 
6Szott et al. (1991) find an average wood N concentration In four leguminous tree species of around 1.0% N. We 
assumed a somewhat lower value here for broad leaved non-leguminous species. 
7The list of 37 broad leaved species provided in Drechsel and Zech (1991) shows an average N level In leaves of 
around 2%. We assumed a somehow lower value of 1.5% due to an expected lower N content in the twig portion. 



assumed an overall average increase in standing stock of -5%. Growth, or accumulated 
biomass (llB), was thus computed as: 

llB = B * 0.05 = 76.0 kg N ha-1 year1 * 0.05 = 3.8 kg N ha-1 year1 

Leaf Production 
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In mixed broad-leaved stands one may assume that leaves are produced continuously. Leaf 
turnover rates, however, vary with soil conditions and water availability. A drought can induce 
heavy leaf fall and reduce lifespan substantially. For more information on sampling and data on 
tropical fruit-bearing trees see Martin-Prevel et al. (1987). Mango, a dominant evergreen on 
Philippine smallholder farms, typically has individualleafspans of up to around 5 years under 
average conditions. Assuming an average leafspan of 2-3 years, i.e., a renewal of the crown 
approximately every 2.5 years, we derived an approximate annual leaf production of: 

17.2 kg N ha-1 year1 12.5 = 6.9 kg N ha-1 year1 

Fruit Harvest 

A range of fruits were consumed on-farm, whereas only mangoes were sold at the local 
market8 : 

Banana 15 kg *0.0018 kg N kg-1 = 0.027 kg N 
Java plum 20 kg *0.0013 kg N kg-1 = 0.026 kg N 
Guava 15 kg * 0.0014 kg N kg-1 = 0.021 kg N 
Jackfruit 2 kg *0.0022 kg N kg-1 = 0.004 kg N 
Kalamansi 1 kg * 0.0006 kg N kg-1 = 0.001 kg N 
Mango 227 kg *0.0010 kg N kg-1 = 0.227 kg N 
Papaya 36 kg *0.0008 kg N kg-1 = 0.029 kg N 
Tamarind 20 kg *0.0014 kg N kg-1 = 0.028 kg N 

i.e., Total fruit harvest = 0.37 kg N 12.75 ha year1 = 0.13 kg N ha-1 year1 

Total production of fruit, wood and leaves amounts to 0.13 + 3.8 + 6.9 kg N ha-1 year1 = 
10.8 kg N ha-1 year1, and we ended up with a fruit tree parameter set of: 

B = 76 kg N ha-1 

llB = 3.8 kg N ha-1 year1 
PIB = 0.14 year1 
Q/B = 0.14 year1 
H = 0.13 kg N ha-1 year1 

As seen from the above example, deriving values for wood densities, OM contents and N 
contents for the various parts of a tree is difficult and can only be an approximation. Basic wood 

density, i.e., the density of dried wood as opposed to that of 'green' or fresh wood, varies with 
species, age, and site conditions (Philip 1994). Species specific OM values are not commonly 
found in the literature and foliar nutrient levels differ by a factor of 2 to 3 (Drechsel and Zech 

aN-values from FNRI (1990). 
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1991) within the same species, depending on site conditions, tree and leaf age, season, shade 

and sampling procedure. Philip (1994) concludes a chapter on forest mensuration by stating 
that, "The forest produces not only wood, it also produces bark, foliage, resins and gums, fibers, 
medicinal plants, etc. Whenever the production of these has to be measured or predicted, then 

mensurational techniques have to be developed and adapted to suit the particular cIrcum
stances. In most circumstances the principles already in use in forest mensuration will serve to 

guide a forester to improvise suitable techniques to meet his requirements". Clearly, accounting 
for the role of trees on individual farms in quantitative terms is anything but straightforward Trees 

are often overlooked as a component of farm system, and, apart from activities specifically 
concerned with tree management on smallholder farms, scant or no attention is paid to them. 

Thus, while their presence is sometimes acknowledged, trees are usually not systematically 
accounted for and analyzed, even though they often play an integral part In the functioning and 
well-being of the agroecosystem. 

Leguminous, Le., N-fixing trees have lately received much attention due to their multiple 

functions and utility, e.g., in the mitigation of soil nutrient depletion (Giller and Wilson 1991; 

Shepherd et al. 1996). Information on the composition of the various tree segments (bole, 
branches and leaves/twigs) was found to be more readily available than for frUit trees 

The cutting down of whole trees allowed us to establish initial average fresh weight at 
around 80 kg per tree, with 50% contained in the bole, 35% in branches, and 15% in the leaf/twig 
portion. We assumed OM contents of bole 50%, branches 40%, leaves/twigs 30%; and N con
tents of bole9 0.75%, branches 1.0%, and leaves/twigs1O 3.5%. A total of 85 trees was counted at 
the beginning and 65 trees at the end of the monitoring period; 20 trees had been cut and used 

for firewood, fenCing and vegetable trellises. Average tree height increased by around 15%, from 

6-7 m to 7-8 m, and circumference by around 10%. These relative increases are additive (Philip 
1994) suggesting an overall increase in tree biomass of around 25%, from the initial 80 kg to a 

final weight of around 100 kg. From this we computed an average total standing biomass of: 

B (fresh weight) = (85 * 80 kg + 65 * 1 00 kg) /2 = 6650 kg, 
with an approximate N distribution of : 

B (bole) : 6650 kg * 0.50 * 0.50 * 0.0075 kg N kg-1 

B (branches) : 6650 kg* 0.35* 0.40 *0.010 kg N kg-1 

B (leaves/twigs) : 6650 kg * 0.15* 0.30 * 0.035 kg N kg-1 

and an overall average standing biomass of: 

B = (12.5 + 9.3 + 10.5) kg N /2.75 ha = 11.7 kg N ha-1 

= 12.5 kg N 
= 9.3 kg N 
= 10.5 kg N 

9Examining the tissue content of four leguminous species, Szott et al. (1991) found an average N content In 

branches of around 1 0%. Given the lower relative portions of bark and live tissue In the bole we assumed a lower 
N content of 0.75% in this portion. 
10Estimates of N in leaves and prunlngs vary from around 3.5-45% (8udelman 1989; Young 1989; Drechsel and 
Zech 1991; Szott et al. 1991). 
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20 trees, with an average weight of 90 kg per tree, were harvested during the year: 

H = (90 kg * 20/6 650 kg) * 11.7 kg N ha-1 year1 = 3.2 kg N ha-1 year1 

The change in standing stock from 85 to 65 trees corresponded to a decrease of 

~B = (65 * 100 kg) - (85 * 80 kg) year1 = -300 kg year1 

thus, ~B = (-300 kg 16 650 kg) * 11 7 kg N ha-1 year1 = -0.5 kg N ha-1 year1 

Assuming that leaves were renewed once a year, we computed an annual leaf production 
of: 

P (leaves/twigs) = 10.5 kg N year1/2.75 ha = 3.9 kg N ha-1 year1 

giving a total annual biomass production of: 

P = H + ~B + P(leaves/twigs) = 6.6 kg N ha-1 year1 

With consumption (0) equal to production, we ended up with a parameter set of: 

B = 11 .7 kg N ha-1 

~B = -0.5 kg N ha-1 year1 
P/B = 0.56 year1 
O/B = 0.56 year1 
H = 3.2 kg N ha-1 year1 

Eight clumps with a total of 144 culms were counted at the outset, increasing to 168 culms 
a year later, giving an average of 156 culms. Recorded harvest was 40 culms. The fresh weight 
of mature individual culms was estimated to be around 40 kg. Dried bamboo leaves (can be 
used as forage) contain around 10% protein, or 1.6% N on a dry weight basis (Dransfield and 
Widjaja 1995) and 30% OM. For the culm portion the following data were assumed: 50% OM and 
0.75% N. Lessard and Chouinard (1980) suggest a biomass distnbution (fresh weight) of 95% in 
culms and branches, and 5% in leaves. From this we calculated the following: 

B (culms+branches): 156*40 kg*0.95*0.50*0.0075 kg N kg-1 

B (leaves) : 156*40 kg*0.05*0.30*0.016 kg N kg-1 

thus, B = (22.2+1.5) kg N / 2.75 ha = 8.6 kg N ha-1 

= 22.2 kg N 
= 1.5 kg N 

Assuming a complete annual leaf turnover gives a leaf production of: 

P (leaves) = 1.5 kg N year1 /2.75 ha = 0.5 kg N ha-1 year1 
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The change in the number of culms from 144 to 168 corresponds to a stock increase of: 

~B = 24/156 * 8.6 kg N ha·1 year1 = 1.3 kg N ha-1 year1 

A harvest of 40 culms gives: 

H = 40/156 * 8.6 kg N ha-1 year1 = 2.2 kg N ha-1 year1 

yielding a total annual bamboo production of: 

P = (0.5 + 1.3 + 2.2) kg N ha-1 year1 = 4.0 kg N ha-1 year1 

From this we derived the following parameter set for bamboo: 

B = 8.6 kg N ha-1 

~B = 1.3 kg N ha-1 year1 
P/B = 0.47 year1 
Q/B = 0.47 year1 
H = 2.2 kg N ha-1 year1 

3.9 I...arge Ruminants 

Stock assessments at the beginning (2500 kg) and end (2000 kg) of the year gave an 
average live biomass of around 2 250 kg. Two buffaloes (500 kg and 100 kg) were sold during 
the course of the year. Data on the protein contents of the edible parts were found in food com
position tables, and similar levels were assumed for the non-edible portions (bones, rumen, 
hides, etc.): 

B = 2250 kg * 0.032 kg N kg-1/2.75 ha = 26.1 kg N ha-1 

~B = -500/2250 * 26.1 kg N ha-1 year1 = -5.8 kg N ha-1 year1 
H = 600/2250 * 26.1 kg N ha-1 year1 = 7.0 kg N ha-1 year1 
P = (600-500)/2 250 * 26.1 kg N ha-1 year1 = 1.2 kg N ha-1 year1 

A total of around 5.3 t of weeds (-50 kg per day) were cut and carried to the animals while 
housed for 3.5 months. Approximately 50% were gathered on-farm and 50% collected off-farm. 
The remainder of the time the animals grazed, around 6.5 months on-farm and 2 months off
farm. Assuming similar daily consumption rates during grazing as when housed and fed, we 
derived the following approximate total consumption figures: 

Q (on-farm grasses/weeds) = 12 500 kg year1 
Q (off-farm grasses/weeds) = 5 700 kg year1 

The laboratory analyses of weeds gave average figures of -26% DM and -1.4% N: 

Q (on-farm grass/weeds) = 12500 kg* 0.26 * 0.014 kg N kg -1 year1 /2.75 ha 
= 16.5 kg N ha-1 year1 

Q (imported grass/weeds) = 5700 kg 0.26 0.014 kg N kg-1 year1 /2.75 ha 
= 7.5 kg N ha-1 year1 
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i.e., Q (total) = 24.0 kg N ha-1 yearl 

We ended up with a parameter set for large ruminants of: 

B = 26.1 kg N ha·1 Diet composition: 
~B = -5.8 kg N ha·1 yearl Grasses/weeds = 0.690 (69%) 
P/B = 0.046 yearl Import = 0310 (31%) 
Q/B = 0.92 year1 
H = 7.0 kg N ha·1 yearl 

Five piglets were purchased, fattened, and slaughtered over the course of the year. The live 

weight of imported piglets came to around 75 kg, and the live weight of slaughtered animals to 

around 270 kg. Total weight gain was thus approximately 195 kg. Pork has an average protein 

content of around 15%, or 2.4% N (FNRI 1990). Assuming, as for ruminants, that the non-edible 

portion contains a similar level of protein as the edible portion, we computed the following param
eters: 

B = (75 kg + 270 kg) / 2* 0.024 kg N kg·1 /2.75 ha = 1.5 kg N ha·1 

P = 195 kg * 0.024 kg N kg-1 yearl /2.75 ha = 1.7 kg N ha·1 yearl 
H = P = 1.7 kg N ha-1 yearl 

The pigs were fed 780 kg of commercial feeds containing 21-22% protein, or -3.5% N, 
supplemented with rice bran using 180 kg of own bran and 370 kg of purchased bran. Bran has 
a protein content of 7.8% or 1.25% N (FNRI 1990). Based on this we computed the following diet 
composition: 

Internal (on-farm) feed flows: 
Rice bran: 180 kg *0.012 kg N kg·1 yearl/ 2.75 ha = 0.82 kg N ha-1 yearl 

Feed imports: 
Commercial feeds = 780 kg * 3.5 kg N kg-1 yearl /2.75 ha 

= 10.2 kg N ha-1 yearl 
Rice bran = 370 kg * 1.25 kg N kg-1 yearl /2.75 ha 

= 1.68 kg N ha-1 yearl 

thus, Q = (0.82+ 10.2+ 1.68)kgNha-1 year1 = 12.7kgNha-1 year1 

This gave a final parameter set for pigs of: 

B = 1.5 kg N ha-1 Diet composition: 
PIB = 1.13 yearl Rice = 0.065 
Q/B = 8.5 year1 Imports = 0.935 
H = 1 .7 kg N ha·1 yearl 

(6.5%) 
(93.5%) 
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3.11l?oultry 

Stock assessments at the beginning (130 kg) and end (100 kg) of the monitoring period 
show a reduction of 30 kg and an average standing stock of 115 kg. Household consumption and 
sale amounted to 170 kg poultry (live weight) and 75 kg eggs. Poultry contains around 18% 
crude protein, or 2.9% N, whereas eggs contain around 12% crude protein or 1.9% N (FNRI 
1990): 

i.e., 
and, 

B 
L1B 
H (meat) 
H (eggs) 
H (total) 
P 

= 115 kg* 0.029 kg N kg-1 I 2.75 ha = 1.21 kg N ha-1 

= -30 kg * 0.029 kg N kg-1 year1 12.75 ha = -0.32 kg N ha-1 year1 
= 170 kg* 0.029 kg N kg-1 year1 12.75 ha = 1.79 kg N ha-1 year1 
= 75 kg * 0.019 kg N kg-1 year1 12.75 ha = 0.52 kg N ha-1 year1 
= 2.31 kg N ha-1 year1 
= (0.32+2.31) kg N ha-1 year1 = 2.63 kg N ha-1 year1 

The poultry was fed own rice (825 kg), purchased rice (825 kg), cooked rice leftovers (200 
kg) and commercial feeds (20 kg). Our analysis showed a rice N content of -1.13%. FNRI 

(1990) suggests a rice crude protein content of 7.4% (1.18% N), and a protein content of cooked 

rice leftovers of 6.2% (0.99% N). No information was provided on the commercial feed packag
ing, so a protein content of 22% (-3.5% N), as for pigs, was assumed: 

Internal (on-farm) feed flows: 
Rice = 825 kg * 1.13 kg N kg-1 year1 12.75 ha 

= 3.4 kg N ha-1 year1 
Cooked rice = 200 kg* 0.99 kg N kg-1 year1 12.75 ha 

= 0.72 kg N ha-1 year1 

Feed imports: 
Rice = 825 kg * 1.18 kg N kg-1 year1 12.75 ha 

= 3.5 kg N ha-1 year1 
Commercial feed = 20 kg * 3.5 kg N kg-1 year1 12.75 ha 

= 0.25 kg N ha-1 year1 

thus, Q = (3.4 + 0.72 + 3.5 + 0.25) kg N ha-1 year1 = 7.9 kg N ha-1 year1 

This yielded the following parameter set for poultry: 

B = 1.21 kg N ha-1 

L1B = -0.32 kg N ha-1 year1 
P/B = 2.2 year1 
Q/B = 6.5 year1 
H = 2.5 kg N ha-1 year1 

EHtllN 

Diet composition: 
Rice (own) 
Imports 

= 0.520 (52%) 
= 0.480 (48%) 

Seven hundred tilapia fingerlings of 3 to 5 g per piece, or a total of -3 kg, were 
stocked early in the wet season in a 35 m2 holding pond. Due to irregular irrigation and 
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insufficient water supply the farmer was unable to transfer the fingerlings into a prepared 
rice field. Instead the fish were released into a 90 m2 pond, but only after nearly half es
caped into an irrigation canal when the combination of heavy rains and incoming irrigation 
water caused the pond to overflow. At the end of the wet season 19 kg of tilapia were har
vested and eaten. Tilapia contains 17.5% crude protein or 2.8% N (FNRI 1990) Ignoring fish 
loss and other mortalities (disease, stress, predation) and assuming a constant absolute 
growth rate, gives the following parameters: 

B = (3 kg + 19 kg) 12 * 0.028 kg N kg-1 12.75 ha = 0.11 kg N ha-1 

P = (19 kg - 3 kg) * 0.028 kg N kg-1 year1 12.75 ha 
= 0.16 kg N ha-1 year1 

H = P = 0.16 kg N ha-1 year1 

From Christensen and Pauly (1993), we identified a Q/B ratio of 15, Le.: 

Q = 15*0.11 kg N ha-1 year1 = 1.65 kg N ha-1 year1 

The fish were fed a total of 11 kg of rice bran containing around 1.25% N (FNRI 1990). 
Assuming that all the bran provided was eaten by the fish, this would yield a feed flow of: 

11 kg* 0.0125 kg N kg-1 year1 12.75 ha = 0.05 kg N ha-1 year1 

The remaining consumption of 1.60 kg N ha-1 was derived from natural food sources. 
We assumed for simplicity that the remaining food was all phytoplankton. We thus ended up 
with the following parameter set for the fish component: 

B = 0.11 kg N ha-1 

PIB = 1.45 year1 
Q/B = 15 year1 
H = 0.16 kg N ha-1 year1 

Diet composition 
Rice bran 
Phytoplankton 

= 0.03 (3%) 
= 0.97 (97%) 

Tropical soils vary in their reserves of nitrogen, from a few tonnes (t) to more than 
50 t·ha-1 in the surface 1.0 m (Stephenson and Raison 1988). Different measurements of 
soil nitrogen give divergent results because varying proportions of different types of nitrogen 
(organic compounds, nitrate and nitrite anions, and ammonium ions) are extracted (Landon 
1991). Levels of nitrogen within a given soil will also vary according to the time (season) and 
cultivation history. Our routine soil analysis yielded the following average data for the three 
sampled land management units (see the sampling layout in Fig. 2.2): 

1) Upland rice area (0.92 ha): pH 5.8; 2.38% organic matter; 0.12% N; available P (ppm) 
2.34; exchangeable K (me/1 00 g soil) 0.87; sand 13.9%; silt 43 5%; clay 52.6%; bulk density 0.80 
g/cc. Texture: clay. 

2) Lowland rice area (0.08 ha): pH 5.6; 2.69% organic matter; 0.15% N; available P (ppm) 
1.87; exchangeable K (me/100 g soil) 0.76; sand 12.8%; silt 30.4%; clay 56.8%; bulk density 0.78 
g/cc. Texture: clay. 
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3) Sloping forest land/river bank (0.48 ha): pH 5.6; 3.20% organic matter; 0.17% N; available 
P (ppm) 7.14; exchangeable K (me/100 g soil) 0.84; sand 29.8%; silt 40.5%; clay 29.7%; bulk 
density 1.13 g/cc. Texture: clay loam. 

The analysis indicated no serious soil limitations. N levels were generally low, correspond
ing to around 1 150 kg N ha·1 (upland), 1 400 kg N ha-1 (lowland), and 2 300 kg N ha·1 (sloping 

forest land), within the top 0.12 m of the soil. We assumed an average value for the whole farm 
of 1 500 kg N ha-1 for the soil (detritus) box. 

N Imports (Gains) and Exports (Losses) 

There are several natural pathways and processes through which N enters and leaves the 
soil, many of which are accelerated through the human interference with the ecosystem. N is 

lost through volatilization, denitrification, leaching, drainage, erosion, and run-off. It is added 
through dry and wet deposition, sedimentation, run-on (with incoming irrigation water), and 
various forms of biological N2 fixation (BNF). Where quantifiable, these fluxes can be aggregated 
and incorporated into the model as imports into and losses from the soil box. These fluxes have 
been examined by several authors but complete nutrient balance models, accounting for all 
potential in and out fluxes, have not been derived at the farm level. 

In a general review of the various forms of biological N2 fixation (BNF) in wetland rice fields 
(Roger and Ladha 1992), the following estimates of N2 fixed by various agents were given: BNF 
associated with the rice rhizosphere, 1-7 kg N ha-1 crop-1; BNF associated with straw, 2-4 kg 
N t-1 straw; heterotrophic BNF associated with organic debris, 1-31 kg N ha-1 rice crop-1; blue

green algae (BGA), 0-80 kg N ha-1 rice crop-\ azolla, 10-50 kg N ha-1 rice crop-l, and; green 
manure legumes, 20-260 kg N ha-1 rice crop-1. These estimates were largely derived in separate 
measurements. Total BNF in a ricefield has not been estimated by simultaneously measuring the 
activities of all the various components in situ (Roger and Ladha 1992). 

A long-term study of the nitrogen balance at two Philippine sites (App et al. 1984) found N 
inputs by rainfall (Le., wet deposition) between 0.6 and 2.4 kg N ha-1 yearl, and inputs with 
irrigation water at 10 kg N ha-1 year1. The study found positive balances, removed in grain and 

straw, of 79 and 103 kg N ha-1 year1 at the two sites, respectively. The authors concluded that a 
methodology that will permit the accurate measurement of all inputs and losses of N from a 
plant-soil system under field conditions was not available. It was also found that total soil N did 
not appear to decrease during the cropping period. 

In our case, a total of 115 kg of urea was applied on the rice crop. Urea contains 46% N by 
weight (Landon 1991). Inorganic 'fertilizer efficiency' in rice farming, i.e., the fraction of applied N that 
is captured and utilized by the rice crop typically varies from 30 to 40% (Lightfoot et al. 1993c). Most 
of the remaining N is lost through volatilization (Roger 1996). Adopting average values from the 
above reviews, we estimated the following flows into and out of the case study farm: 

Imports: 
Urea fertilizer 

Dry and wet deposition 
Irrigation water 

= 115 kg*0.46 kg N kg-1 year1/2.75 ha 
= 19.2 kg N ha-1 year1 
= 1.5 kg N ha-1 year1 
= 10 kg N ha-1 year1*1.99 ha / 2.75 ha 
= 7.2 kg N ha-1 year1 
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BNF in the wet season rice crop (1.99 ha): 
BNF (rice rhizosphere) = 4 kg N ha·1 year1*1.99 ha 12.75 ha 

= 3 kg N ha·1 year1 
BNF11 (rice straw) = 0.5 kg N t·1 straw * 19 t straw year1 12.75 ha 

= 3 kg N ha·1 year1 
BNF (heterotrophic in rice) = 16 kg N ha·1 year1 * 1.99 ha 12.75 ha 

= 12 kg N ha·1 year1 
BNF (BGA12) = 12 kg N ha-1 * 1.99 ha 12.75 ha 

= 9 kg N ha-1 year1 
BNF (leguminous trees13) = 200 kg N ha-1 crop-1 * 0.1 ha 12.75 ha 

= 7 kg N ha-1 crop-1 
Exports (losses): 

Urea inefficiency 

Manure14 

= 0.65 * 19.2 kg N ha-1 year1 
= 12.5 kg N ha-1 year1 
= 0.75 * (25.1 +11.6+6.2) kg N ha-1 year1 
= 32.2 kg N ha-1 year1 

Other losses from leaching (deep percolation), erosion (wind and water) and run-off were 

assumed to be negligible. No crop by-products were burnt or otherwise removed from the farm: 

Total import (apart from BNF) 
TotalBNF 
Total export (loss) 

= -28 kg N ha-1 year1 
= -34 kg N ha-1 year1 
= -45 kg N ha-1 year1 

and we ended up with a parameter set for detritus of: 

B = 1 500 kg N ha-1 

Import = -28 kg N ha-1 year1 
Export = -45 kg N ha-1 year1 

BNF is treated as a separate group (with its own box) in the ECOPATH model as we shall 

see in Chapter 4. 

11We assumed a low value of 1 kg N fixed per tonne of rice straw, as all straw was heaped within one field during 
the threshing process and not spread and Incorporated into the sOil until land preparation the following year. 
12From Lightfoot et al. (1993c), who estimated BNF within the nce floodwater to be in the order of 12 kg N ha-1 crop-1 
13Assuming that Gliricidia and Leucaena trees, occupying an area of approximately 0.1 ha, were capable of fixing 
around 200 kg N ha-1year1. 
14Large portions of ruminant, pig, and poultry manure were left unutillzed within the homestead area during 
housing and thus essentially lost from the production system. We assumed the associated N loss to amount to 
three-quarters of total manure N. 



CHAPTER 4 

ECOPATH: 
Data Entry and Analysis 

4.1 Hardware and Sof\tware15 

The hardware requirements for running Version 3.0 of the software are: 80386+ CPU 
(Windows requirement), coprocessor (preferred), 4 Mb RAM, 2 Mb hard disk space, VGA display 
and a Windows 3.x operating environment for the Windows-based version 3.0. For the preceding 
DOS-based ECOPATH Version 2.2 (also referred to as ECOPATH II) the minimum requirements 
are: 8086 CPU, coprocessor (preferred), 640 Kb RAM, 1 Mb harddisk, CGA monitor, and an MS
DOS 6.2 environment. The manual16 which used to accompany the earlier versions 
(Christensen and Pauly 1992b) has been replaced by an extensive help function in v3.0. 

The software was developed for the quantitative analysis of trophic flows in aquatic ecosys
tems, but is now also being applied to model and research the performance of agroecological 
systems (Christensen and Pauly 1993; Dalsgaard 1995; Dalsgaard et al. 1995; Dalsgaard and 
Christensen 1997). Because of its origin within aquatic ecosystem and fisheries science, some 
of the software terminology will be new to agricultural scientists. In this chapter we introduce the 
reader to the basic data entry screens and output screens and apply the basic concepts and 
terminology within the agroecological context. 

4.2 mala hj~mt" 
" <" 

Units/Remarks screen (Fig. 4.1.): on this opening screen we select the model currency 

unit. In our case we identified a nutrient-related currency, and enter kgN/ha under 'Other unit'. 
Our selected 'Time' unit is year. Under 'Total primary production' we enter the sum of the biom
ass produced by all plants, which in this case comes to 109 (kg N ha-1). The 'Remarks' field is a 
free text field, i.e., any kind of information useful for describing the particular model may be 

entered here. 

15The ECOPATH software (2 HD 3 1/2" DOS-formatted disks) is available free of charge from ICLARM, and can also 
be downloaded from ICLARM's homepage http://www.cgiar.orgliclarm/ 
16The DOS-version manual is now out of print. Photocopies or a disk version in English, French, or Spanish, may 
be requested from ICLARM (iclarm@cgnet.com). 
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Fig. 4.1. UniVRemarks screen. 
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Fig. 4.2a. Basic Input screen (first part). 
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Basic Input screens (Figs. 4.2a, 4.2b, 4.2c, 4.2d): here we enter all the parameter values 
computed in Chapter 3. Fig. 4.2a shows the first six columns: 'Group names', Type', 'Biomass' 

(B), 'P/B', 'O/B' and 'EE'. EE is the ecotrophic efficiency (Christensen and Pauly 1992b). It 
expresses the part of production that is either passed up the trophic foodweb or exported. EE 
varies between 0 and 1, has no unit and its entry is optional. Where it is possible to determine 
beforehand and enter all B, P/B and O/B values, as in our model, all EE values are automatically 
computed by the software. 

By clicking on the group name fields in the first column, the 'Group Info' box (Fig 4.2b) 
appears for the user to enter group name and PP-value. The purpose of the PP (primary pro
ducer) column is to classify groups according to their status as producers or consumers. Plants 
are conventionally classified as primary producers because of their ability to fix carbon in photo
synthesis. The net primary production by plants is available for consumption by heterotrophic 
organisms (bacteria, fungi, and animals), i.e., by consumers. Producers are allocated a PP of 
1.00 and consumers a value of 0.00, whereas mixed producers-consumers are given values 
between 0.00 and 1.00 according to the degree of self-sufficiency. This classification applies 
when operating with energy-based models. Where the model currency is a nutrient the 'rules' 
are different. Detritus is given a value of 2.00 in order to distinguish it from all other groups, 
whereas BNF gets a 1.00 value in order to signify its ability to produce (fix) all N by itself. Upon 
entering a value of 1.00 for BNF, the user will notice that group consumption (O/B) value for BNF 
automatically is set at 0.000. All other groups, plants as well as animals, are given PP-values of 
0.00 as they all consume N. The leguminous plants are connected to both the BNF and the 
detritus boxes, indicating that they derive N from both places, whereas non-leguminous plants 
are connected to the detritus box only as we shall see later. 

Eile !;.drt £aremetnzalion liel\'lork .utilities ~ndow !::ielp 

OMSIOrt ... 

1Z, Detl'ltus 

.ilK ,Cancel 

Fig. 4.2b. Group Info screen. 
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As we move further to the right on the Basic Input screen (Fig. 4.2c) we find another six 
columns. GE (the gross food conversion efficiency) is the ratio between production and con
sumption. Like EE it has no unit and its entry is optional. Where values for P/B and Q/B are 
provided, GE is automatically calculated. Knowing beforehand and entering EE and GE-values 
can, on the other hand, be used to derive P/B- or Q/B-values where these are unknown. The 
'Harvest' and 'Biom.Acc.' (biomass accumulation) values were computed in Chapter 3 and their 
entry is straightforward. Under 'Export' we enter non-harvested exports/losses from the system, 
including those from the soil (detritus). 'UnAssim' (unassimilated food) refers to the part of the 
food consumed by an organism which is excreted as urine and feces. The default values of 
0.200 intended for energy-based systems values should be replaced by straight zero values. In 
the last column, 'Import to det.', we enter the total N import into the detritus box, including both 
fertilizers and natural inflows as discussed in section 3.13. 

LiJU",;.iill"Ilittl'PMXI;li 
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Fig. 4.2c. Basic Input screen (second part). 

Diet Composition screen (Fig. 4.3): next, we need to apportion the dietary inputs for all groups. 
The relative diet compositions for animal groups were calculated in Chapter 3, and these values are 
entered into the matrix, assuring that they sum up to 1.000, or 100%, - see the bottom row in Fig. 
4.3 - for each individual group. Non-leguminous plants derive all their nutrients from detritus and are 
given 1.000 values in the detritus row. N-fixing plants derive a proportion of their N from the BNF box. 

We assumed that legumes are capable of meeting SO% of their N requirements through fixation, 
thus the O.SOO values in the BNF and detritus rows under multipurpose trees (Fig. 4.3). In the case of 
vegetables (column 2), legumes only made up half of the total vegetable biomass, thus the value of 
0.2S0 in the BNF row and 0.7S0 in the detritus row. Lastly, we estimated blue-green algae, capable of 
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Fig. 4.2d. Basic Input screen. (third part) 
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Fig 4.3. Diet Composition screen. 
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meeting half of their N requirements through fixation, to make up 10% of the phytoplankton biomass 

giving the values of 0.050 and 0.950 in the BNF and detritus rows, respectively. 

Detritus Fate screen (Fig. 4.4): it is possible to define more than one detritus (soil) box for an 
agroecosystem. This is useful where detritus is moved around within the system, as in pond mud 

being applied as a growth medium on vegetable beds, and might also assist in identifying and 
quantifying nutrient sinks and sources within the farm We defined only one detritus box to which all 

residues and wastes were returned. Thus values of 1.000 (100%) should be entered for each group 

in the one detritus column. 

1000 
1000 

1000 1000 
1000 1000 
1000 1000 
1000 1000 
1000 1000 
1000 1000 
1000 1000 
1000 1000 
1000 1000 
1000 1000 

Fig. 4.4. Detritus Fate screen. 

The ECOPATH analytical outputs are presented through a series of screens. Those of 
immediate interest include 'Basic estimates', 'Summary statistics', 'Cycles and path lengths', and 

the 'Flow diagram'. The software offers several more analytical routines which will be briefly 
touched upon here1? 

Basic Estimates screen (Fig 4.5): the dataset developed for the case study farm was 
complete in terms of PP, B, P/B, O/B, harvests, exports, imports and diet composition param-

17For more details see Christensen and Pauly (1995) and Pauly and Christensen (1995). 
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eters. Where all computations (Chapter 3) and data entries are correct, the software only needs 
to compute the missing EE and GE values in order to generate a complete dataset. Warning 
messages may be displayed at this stage. This indicates either unlikely parameter calculations 
or wrong data entries, and there may be a need to recheck input parameters. A common warn
ing message, which can usually be ignored, is the followinglB: "P/B is greater than Q/B for 
weeds; GE for the group is very high [>0.5]". 

EE values should lie between 0 and 1. Values slightly above 1.000 (see 'pigs' and 'fish' in 
Fig. 4.5) indicate small inaccuracies in the parameter computations (Chapter 3), e.g., in the 
rounding off of decimal figures, and are usually acceptable although it is advisable to recheck the 
computations. Higher EE values are indicative of erroneous parameter computations andlor data 
entry and must be rechecked. 

The ecotrophic efficiency of detritus expresses the ratio of what flows out of and what flows 
into the soil box. Under steady-state this should be equal to 1, i.e., inflows balance outflows. An 
EE of less than 1 means that more N is entering than leaving, whereas an EE larger than 1 
means the opposite. In other words, an EE < 1 suggests accumulation of detritus N (the lower 
the value the higher the relative accumulation), whereas an EE > 1 indicates a net loss of N from 
the soil. Detritus EE is a potentially very important diagnostic, indicating the direction in which the 
resource base of the agroecosystem is moving, whether improving or deteriorating. 

GE values also vary between 0 and 1. Plants have a GE (gross efficiency) of 1.000 as all 
consumed N is incorporated into plant tissue. Animals excrete a large portion of the consumed 

Li'U·'pfj';"11'$1#fi¥ti ij"a'i 
!51e f.clil Earametnzation !i~orl< !J.tiltties ~hdow !::!elp 

Pred; Mortality 

2880 2880 n 
45000 45000 n ~ !_' 

000 76580 0150 0150 241 

a 00 11730 0550 OIiSO 0411 

000 8350 0470 0470 n hC'': 

000 1 200 1 580 6 730 
000 26100 0044 1 005 ' rei 
000 1 490 1120 8900 1 (,(JI 

000 0110 1450 15000 '002 
100 1000 34000 0000 -') AFi7 

200 1500000 

Fig. 4.5. Basic Estimates screen. 

1Bln energy-based ECOPATH models, most consumer groups, i.e., groups with PP-values of 1 00 (animals) usually 
have GE-values between 0.1 and 03. In a nutrient based model, however, plants as well as animals are defined 
as consumers, with PP-values of 1.0. Plants have GE-values of 1.0, i.e., well above the 'expected' 0.1-0 3 range, 
thus the warning message. 



N, and typically have GE values between 0.1 and 0.3. Low GE values indicate low growth rates 
and high maintenance costs. 

Summary Statistics screen (Fig. 4.6): this is the main output screen and some of the 
statistics and indices presented here provide important indicators for the performance of the 
agroecological system: 

Parameter I Value 
Sum of all consumption 158,215 
Sum of all exp-orts 32,940 
Sum of all respiratory flows 0,000 
Sum of all flows mto detntus 148,153 
Total system throughput 339,308 
Sum of all production 144,870 
The fishery has a emean trophiC leveil 2,564 
Gross effiCiency (catch/net p p ) 0,7150 
Input total net pnmary production 109,000 
Calculated total net primary production 31,00 
Unaccounted primary production 78,000 
Total primary production/total respiration -
Net system production -
Total primary production/total biomass 0,571 
Total biomass/total throughput 0,563 

-Total biomass (excluding detritus) 190,910 
Total catches I 77,940 
Connectance Index 0,111 
SYlltem Ommvory_lndex 0,116 

Fig. 4.6. Summary Statistics screen. 

• Total system throughput' is defined as the sum of all imports, consumption, returns 
to detritus, harvests and exports, and represents the size of the system in terms of 
its flow network (Ulanowicz 1986). Throughput is furthermore used in the computa
tion of the B/E ratio (see below); 
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'Net system production' includes both primary (plant) and secondary (animal) produc
tion, i.e., all the (above ground) biomass produced within the system, and is a mea
sure of the system's overall productive capacity; 

• 'Total primary production/total biomass', the P/S ratio, is expected to decrease as an 
ecosystem matures, biomass rates slow down and maintenance costs increase 
(Odum 1969). If a potential avenue towards an ecologically sustainable agriculture is 
through the mimicking of natural ecosystems, then we should design systems that 
develop comparatively low P/S ratios; 

• Total biomass/total throughput', or the S/E ratio, is expected to increase as an eco
system matures (Odum 1969). If maturity and sustainability are somehow positively 
related, we will be looking towards agricultural systems which develop comparatively 
high B/E ratios; 
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Total biomass (excl. detritus)' expresses the total average standing biomass (above 
ground, i.e., the size of the system) in terms of plant and animal stocks. One feature 
of agroecological systems that might warrant further investigation is the design of 
farms which maintain high average standing biomasses to buffer the systems, yet 
are high yielding at the same time; 
Total catches' is equal to productivity, or net yield. 

Cycles and Path lengths screen (Fig. 4.7): the attribute of interest is Finn's cycling 
index (Finn 1980). The index expresses the fraction of total throughput that is recycled. 
Within agroecological research, there is speculation that increased nutrient recycling is an 
important means to achieve a more efficient and ecologically sound agriculture. It might, 
therefore, be of interest to compare cycling indices across different farm scenarios and to 
observe how cycling relates to other key properties such as throughput, productivity (yield) 
and efficiency. Using ECOPATH to simulate hypothetical scenarios and investigate maturity 
in aquatic ecosystems, Christensen and Pauly (1996b) find that a key characteristic of a 
mature ecosystem is its ability to effectively utilize, retain, and recycle nutrients through 
detritus. Better use and recycling of detritus facilitate very large increases in consumer 
biomasses and are seen as necessary ingredients in sustainable aquatic ecosystem man
agement. We believe that the same applies to terrestrial ecosystems. 
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Fig. 4.7. Cycles and Path lengths screen. 

341 dimenSIonless 

1 51 (WIthout ctetfltus ) 

2 09 (with detritus) 

Flow diagram (Fig. 4.8): Fig. 4.7 shows the ECOPATH flow diagram of the case study 
farm - a trophic network model, with all states (boxes) and rates (flows) quantified. Boxes 
are plotted so that the horizontal axis of symmetry is aligned with the trophic level of the 
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box, and are sized in proportion to the logarithm of their respective biomasses to help 
visualize the relative role of the organisms in each box (Christensen and Pauly 1992b). The 
model displays the values of all basic input parameters except for biomass accumulation within 
boxes. 
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Fig. 4.8. ECOPATH flow diagram of the case study farm with all parameters expressed in kg N ha-1 year1. 



CHAPTER 5 

Quantitative Performance Indicators 

Quantitative measures, as the ones presented in Chapter 4, are useful for assessing 
and comparing the state and performance of agroecological systems. Table 5.1 provides an 
overview of attributes computed by ECOPATH, together with additional properties computed 
outside ECOPATH - species richness, diversity, efficiency (output/input ratio) and system 
harvest index. The table compares the case study farm with a smallholder monoculture rice 
farm. The comparative ecological as well as economic performance of these two systems 
is discussed in depth in Dalsgaard and Oficial (1997) and Dalsgaard (1997). The modeling 
and analysis suggest that integration and diversification can generate farm agroecosystems 
which are productive, profitable and manageable, and surpass their monoculture counter
parts on several counts as measured through ecological and economic indicators. 

A key characteristic associated with the health and performance of both natural eco
systems and agricultural systems is diversity (Magurran 1988; Roger et al. 1991; Paoletti et 
al. 1992; Brookfield and Padoch 1994; Altieri 1995; Pullin 1995). Diversity is usually quanti
fied within taxa (taxonomic groups) on a species basis. We talk about the diversity of trees, 
birds, insects, invertebrates, etc. Species diversity is sometimes used interchangeably with 
species richness, though the latter represents a simple count of the number of species 
while the former also considers their relative abundance by taking account of numbers of 
individuals within the species. Computing system diversity within a community of mixed life 
forms, i.e., including several taxa within the same index, is unconventional. We, neverthe
less, propose two agroecosystem diversity expressions (Table 5.1): a common species 
richness measure, counting the number of farmed and utilized species within the farm, and; 
what we term 'agricultural diversity' (Dalsgaard and Oficial 1997) computed by weighting 
each group of organisms in the farm model by its abundance as expressed in terms of its 
average standing biomass (B), measured in kg N ha-1• Shannon's index (Magurran 1988) 
was used to compute this agricultural diversity. 
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Table 5 1. Agroecological performance indicators for two different types of 
farm systems (Source. Dalsgaard and Oficial 1997) 

Quantitative attributes 

- Computed outsIde ECOPATH 

Agricultural species richness 
(no. of farmed and utilized species) 

Agricultural diversity 
(computed uSing Shannon's index) 

Efficiency 
(output/input ratio) 

System harvest index 
(net system yield/sum of all production) 

- Computed by ECOPATH: 

ProductiVity 
- net system yield (kg N ha·1 yearl ) 
- sum of all production (kg N ha-1 year1 ) 

Total system biomass (excl. detritus) 
(kg N ha-1 yearl ) 

Nutrient cycling (Finn's index) 
Nutnent throughput (kg N ha-1 year1 ) 

P/S ratio (yearl ) 
S/E ratio (yearl ) 

Detntus EE (ecotrophlc efficiency) 

Farm A FarmS 
(monocu Itu re (case study 

rice farm) farm) 

4 32 

070 156 

0.19 0.38 

014 0.22 

43 33 
323 144 

88 191 

025 040 
716 340 
28 057 

0.12 0.56 

0850 0711 
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The application of ecosystem concepts and theory to agricultural systems presents a 
potential avenue towards the identification of quantifiable agroecological performance 
indicators. Recent developments within systems ecology have introduced new complex 
expressions of the state of natural ecosystems: 

Stability (Holling 1987; Begon et al. 1990) is a property often associated with the perfor
mance and sustainability of (agro )ecosystems (Conway 1985a). ECOPA TH computes a 
potential proxy for stability, called 'system overhead', and seen as an expression of resis
tance to external perturbations (Christensen and Pauly 1992b; Christensen 1994, 1995). 
Relative system overhead was found to be positively correlated with the intuitive perception 
of maturity in aquatic ecosystems (Christensen 1994, 1995), and appears to be similarly 
related to our intuitive perception of ecological sustainability in agroecosystems (Dalsgaard 
et al. 1995; Dalsgaard, unpublished data). 

System overhead is related to ascendency. Ascendency expresses ecosystem growth 
and development and quantifies the diversity and articulation of the system's flow network 
(Ulanowicz 1986). Christensen (1995) found relative ascendency to be inversely related to 
ecosystem maturity, sensu Odum, and Dalsgaard (unpublished data) likewise found indica
tions that relative ascendency, as computed within ECOPATH, is inversely related to an 
intuitive sustainability perception. This suggests that ecosystem maturity and 
agroecological sustainability could be related. Definitions and derivations of the ascendency 
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and overhead concepts are provided in Ulanowicz (1986, 1993). 
Exergy (Mejer and Jeorgensen 1979; J12Jrgensen 1992) has, like ascendency, been 

introduced as a goal function in ecosystem theory: through natural evolution an ecosystem 
is hypothesized to develop so as to optimize its exergy. Exergy expresses the system's 
'free energy' relative to a reference system, the thermodynamic equilibrium. This free 
energy is contained within the system's live biomass (structure) and within the genetic 
information of its living organisms (organization). Exergy cannot be measured but is com
puted by multiplying plant and animal biomasses with crude genetic conversion factors 
(Jeorgensen et al. 1995). If mimicking the structure and organization of natural ecosystems 
can point a way towards an ecologically sustainable agriculture, then we should aim to 
design agroecosystems which optimize their exergy and structural exergy. The exergy and 
ascendency goal functions express two sides of the same coin: the former deals with the 
characteristics of an ecosystem in terms of its state variables (stocks), whereas the latter 
considers the associated flow network. The two measures are thus complementary 
(Jeorgensen 1992). When addressing the sustainability issue, being armed with a range of 
descriptors should be seen as an advantage. We cannot expect to capture the concept 
within a single measure. 

~i~a· N ~~Jji~~m'~ 'B~I~~e~~~ 
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The balance of material flows through an agroecosystem is another important perfor
mance indicator (Smaling and Fresco 1993; Shepherd et al. 1996). Production cannot be 
sustained in the long run, when outputs exceed inputs, without some form of replenishment. 
Soil conservation measures, reuse of crop residues and animal wastes, combining crops 
with trees capable of tapping into subsoil resources, cultivation of plants capable of fixing 
atmospheric N, integrating agriculture with aquaculture, etc., are examples of farm manage
ment techniques and strategies, which are useful in designing agroecosystems for en
hanced ecological and agronomic performance. Such practices can help improve the 
nutrient balance sheet. 

In section 3.13 we defined and quantified the possible pathways of N gains and losses 
for the case study agroecosystem. These fluxes can be used to compute rough N balances 
for the agroecosystem as a whole and for its soil base: 

a) Agroecosystem balance = 
(feed and fertilizer inputs) + (BNF) + (dry and wet deposition) + (run-on with 
incoming irrigation water) - (net yield removed from the production system) -
(detritus losses 19

) - (other exports/losses) 
b) Detritus (soil) balance = 

(agroecosystem balance) - (changes in plant and animal stocks) 

19Detritus losses via volatilization and denitrification. Detritus losses from run-off and leaching were assumed to 
be negligible. 
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Table 5.2 shows the balances for the monoculture farm and the case study farm pre
sented in Table 5.1. In both cases, the computed balances are positive, i.e., more N enters 
than leaves each system 20 • This suggests more efficient resource use on the case study 
farm, the integrated system given that it only imports 19 kg N ha-1 year-1 in the shape of 
inorganic fertilizers, as opposed to 132 kg N ha-1 year-1 on the monoculture farm. It also 
indicates a potential negative impact from the monoculture farm, with excessive N polluting the 
sourrounding environment. Dalsgaard (1997) has a more thorough discussion on the derivation 
of complete farm N budgets with the ECOPATH framework. 

Table 5 2 Nutrient balances for two different types of farm systems. 

Agroecosystem balance. 
(kg N ha·1 year ·1 ) 

Detritus (soil) balance: 
(kg N ha-1 year -1 ) 

Farm A 
(monoculture 

nce farm) 

15-20 

15-20 

FarmB 
(case study 

farm) 

-5 

- 1 

We have presented an analytical framework for monitoring and modeling farms and for 
deriving potential agroecological performance indicators. These span from simple, common 
measures such as system productivity and efficiency, to conceptually more complex properties, 
including diversity, production/biomass, biomass/throughput and measures of ecosystem 
maturity. 

Sustainability indicators are required at several levels. Different users need different indica
tors. The resource managers, or farmers, are more concerned with specific technologies that 
improve the productive capacity of the farm and help them manage their resource base. Simple, 
operational indicators are required to communicate research findings to farmers and to generate 
healthy and productive agroecosystems21 • 

Our preliminary investigations suggest that composite measures such as the P/B and B/E 
ratios, Le., measures of ecosystem evolution and maturity, sensu Odum, and more recent 
maturity measures (ascendency and exergy) emerging within the academic field of systems 
ecology and ecosystem health could provide guidelines in the research and development of 
healthy agroecosystems. Our initial findings also indicate that systems can be generated which 
perform well on most counts, i.e., are ecologically sound (diverse and integrated, with efficient 
nutrient cycling), manageable in terms of labor requirements and productive in both the biological 
and economic sense (Dalsgaard et al. 1995; Dalsgaard and Oficial 1997). Further application 

20Positlve soil N balances are also supported by the Detritus EE-values of less than 1.0 in Table 5.1 
21The RESTORE framework (Research Tools for Natural Resources Management, Monitoring and Evaluation) 
developed at ICLARM uses simple economic and ecological indicators (productive capacity, economic efficiency, 
diversity [species richness], and recycling) to assess the performance of integrated agroecosystems developed 
through farmer-led experimentation. 
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and refinement of the proposed framework at different spatial scales throughout the agricultural 
landscape (at farm, village, and watershed levels) is required to explore the behavior and robust
ness of the different descriptors, their critical limits and their possible trade-offs. 

Lightfoot et al. (1993c) demonstrates some of the potential advantages of analyzing sys
tems at different agroecological levels. Their investigation of ricefields and rice-fish fields consti
tutes an analysis of what we in the context of the case study of this report would label subsystems. 
Our modeling and analysis at the farm level did not yield insights into the interactions, performances 
and roles of various groups of organisms within the soil and water resource base. Moving one step 
down in the hierarchy from farm to field level, however, is all it takes to research these aspects. 

5.5 Futther E*~I(lrati0ns witt'l E~~FJ,~l1nf:l, 
, ; r, '", ",,' '. • I. ,., 

ECOPATH offers more than the basic analytical outputs covered in this report. To describe 
the remaining routines adequately would require many more pages. We felt that the need was to 
introduce the software to an agriculture oriented audience, rather than to give an exhaustive 
stand-alone account of its full analytical potential. However, a couple of routines do deserve a 
brief mention, partly to preempt criticism and partly to describe better the full capacity of the software. 

EcoRanger: the EcoRanger module allows the entry of a range and mean/mode values for 
all the basic parameters (biomasses, consumption rates, production rates, and ecotrophic 
efficiencies). The user specifies frequency distributions for each parameter type as well as 
certain model criteria. Random variables are drawn from this and the resulting model evaluated. 
The process is repeated in Monte-Carlo fashion and, of the runs that pass the selection criteria, 
the best fitting one is chosen using a least squares criterion. EcoRanger thus introduces a 
statistical approach to model fitting (Christensen and Pauly 1995, 1996b). 

EcoSim: 'A major new development concerning ECOPATH, but too recent to be included in 
version 3.0, is the suggestion that the system of coupled linear equations underlying ECOPATH 
can be reexpressed as a system of coupled differential equations, which can be integrated in 
time. This has led to a program called EcoSim which can run ECOPATH files in simulation 
mode (Walters et al. 1997). Work is underway to make this program function as an integrated 
routine of ECOPATH, and it is anticipated that the future software releases will support simula
tion modeling (Christensen and Pauly 1996a). 

Mixed trophic impact: another potentially powerful analytical and graphic output is the 
'Mixed trophic impact routine', which describes the direct and indirect impacts all groups have 
on each other. Using this routine in the investigation of ricefield ecosystems, with and without 
fish, led researchers to speculate that the intensification of rice might lead to a decrease in soil 
microbial biomass and thus in soil-available N and long-term fertility (Lightfoot et al. 1993c). The 
comparative modeling and analysis also indicated a positive impact of fish (tilapia) on the 
performance of rice, suggesting that stocking fish in ricefields may lead to greater efficiency in 
rice production. 
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