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The project was launched by a coordination meeting in Morocco in April 1995 by 

the three collaborating scientists-Gideon Dagan of Israel, Driss Ouazar of Morocco, and 

Alexander Cheng of US. Basic research plan was drawn in that meeting. From July to 

September, 1995, Ouazar visited Delaware to collect literature worked with Cheng. 

During September, 1995, Ismael Herrera of Mexico visited Delaware to work with both 

Ouazar and Cheng. During March, 1996, Ouazar and Cheng visited Israel to meet with 

Dagan and Zeitoun to update each other the progress of the research. Throughout the 

year, close communication was maintained utilizing the e-mail facility. 

Two technical reports are developed and attached in this Annual Report. The 

first one investigates the problem of a sharp interface between salt and fresh waters in an 

aquifer of spatially variable permeability. Layered structure, with permeability a 

stationary random function of the vertical coordinate, of given mean and two point 

covariance, is considered. Exact analytical solution of two-dimensional steady flow of 

fresh water in a confined aquifer, with salt water in rest, is derived. Also, the uncertainty 

of the discharge of a coastal collector, for a given depth of the upconed interface, is 

examined. By using conditional probability, the impact of measurement of the interface 

depth in a given cross-section, on the reduction of the uncertainty of its position, is 

determined. The second problem investigated is the generalization of Keulegan solution 

of unsteady flow that results from an abrupt removal of a thin vertical partition between 

salt and fresh water bodies. 

In the second report, the location of sharp interface between salt and freshwater in 

coastal aquifer is determined using optimization techniques. The algorithm is based on 

the combination of a nonlinear programming and an h-adaptive boundary element 

method. The objective is to create to an automated solution procedure. The effectiveness 

of the model is demonstrated using several examples in confined and unconfined 

aquifers. The unconfined aquifer cases require the simultaneous determination of an 

interface and a free surface. 
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Section I 

A. Research Objectives 

Replaced by Technical Report (Appendices I and II). 

B. Research Accomplishment 

Replaced by Technical Report (Appendices I and II). 

C. Scientific Impact of Collaboration 

The work was divided into two parts according to the specialties of the teams. The 
Israeli team tackles the analytical part first. The work will be transferred to the 
Moroccan team for software development. The Moroccan team works on the numerical 
method. Later on, the stochastic theory developed by the Israeli team will be 
implemented to the numerical model. 

D. Project Impact 

Since we are still at the intermediate stage of the project, the results are not yet being 
used by the public. 

E. Strengthening of Developing Country Institution 

The Moroccan Investigator, Driss Ouazar spend two months in the US to enrich his 
knowledge in saltwater intrusion. A bibliography search was conducted utilizing the 
University of Delaware Library. A large volume of references were collected and 
brought back to Morocco. A Pentium computer was purchased and shipped back to 
Morocco. 

F. Future Work 

Future work include the continuing development of the theoretical work on the tracking 
of the stochastic location of salt/fresh water interface by the Israeli team, the field data 
collection and software development by the Morocco team. The project is roughly on 
schedule. 
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Section II 

A. Managerial Issues 

The project progresses as planned. There was no special managerial issue that occurred 
during this period. 

B. Budget 

No major change of budget during this period. 

C. Special Concerns 

None during this period. 

D. Collaboration, Travel and Training 

The project was launched in April 1995 following a coordination meeting in Morocco by 
the three collaborating scientists-Gideon Dagan oflsrael, Driss Ouazar of Morocco, and 
Alexander Cheng of US. In that meeting, the basic research plan was drawn. The three 
investigators then returned to their own home base to continue the research. E-mail was 
utilized to frequently exchange information and update progresses. 

From mid-July to mid-September, 1995, Ouazar visited Delaware to work closely with 
Cheng. Communication with Dagan was maintained via e-mail. During September, 
1995, Ismael Herrera of Mexico visited Delaware to work with both Ouazar and Cheng. 
These have been reported in the semi-annual report. 

During March, 1996, Ouazar and Cheng visited Israel to meet with Dagan to update the 
progress of the research. The following are some of the activities: 

• A meeting was held on March 24, 1996, among Ouazar, Cheng, Dagan and Zeitoun at 
Tel Aviv University. Dr. Zeitoun is an expert in numerical modeling of saltwater 
intrusion. He was recruited by Dagan to conduct the computer programming part of 
the stochastic salt/fresh water interface tracking. 

• On March 26, Ouazar and Cheng took a field trip to the Dead Sea Valley to 
understand the climate, hydrology, and water resources oflsrael. 

• On March 27, a meeting was held with Dr. Mulenex, Science Attache, at the US 
Embassy, Tel Aviv. Present in the meeting ware Ouazar, Dagan, Cheng, Konikow 
(USGS) and Sorek (Ben-Gurion University). Dr. Mulenex was briefed about the 
project and the collaboration. He had made a few suggestions saltwater intrusion and 
other water resources related issues in Israel, Gaza Strip and West Bank. 
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• During the same day, the team visited the AID Mission at Tel Aviv. A meeting was 
held with Mr. John Starnes and his colleague. Technical information was exchanged. 

• On March 28, 1996, Ouazar and Cheng took a field trip to the pumping station of the 
National Water Carrier. The trip continued to the Sea of Galilee, which was used as 
a fresh water reservoir for water supply in Israel, to Golan Height that served as the 
watershed of Galilee, and to the Yarmouk River basin. 

During May 1996 Cheng visited Herrera in Mexico to consult some technical detail of 
saltwater intrusion modeling. 

E. Request for USAID or BOSTID Actions 

None during this period. 
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Seawater-freshwater interface in a stratified 
aquifer of random permeability distribution. 

G. Dagan, D.G.Zeitoun 
Faculty of Engineering, Tel Aviv University, Israel 

Abstract 

We consider the problem of a sharp interface between salt and fresh 
waters in an aquifer of spatially variable permeability. We assume a 
layered structure, with permeability a stationary random function of 
the vertical coordinate, of given mean and two point covariance. The 
flow is shallow and it obeys Dupuit assumption. 

We derive an exact analytical solution of two-dimensional steady 
fl.ow of fresh water in a confined aquifer, with salt water in rest. The 
mean interface shape is Dupuit parabola, for a constant effective per­
meability equal to the arithmetic mean of the variable one. The vari­
ance of the interface coordinate, and particularly of the toe, depends 
on the permeability variance and integral scale. The uncertainty of 
the interface location can be quite large. We also investigate the un­
~rtainty of the discharge of a coastal collector, for a given depth of 
the upconed interface. We also determine, by using conditional prob­
abality, the impact of measurement of the interface depth in a given 
cross-section, on the reduction of the uncertainty of its position. 

The second case is the generalization of Keulegan (1954) solution 
of unsteady fl.ow that results from an abrupt removal of a thin vertical 
partition between salt and fresh water bodies. The mean interface is 
similar to that prevailing in a homogeneous medium, i.e. a rotating 
line whose slope is approximately corresponding to the permeability 
arithmetic mean. The uncertainty affecting the interface position is 
of a smaller extent than that in steady flow. 
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1 INTRODUCTION 
Models of salt and fresh waters flow in coastal aquifers serve as important 
tools for assessing the extent of salt water intrusion in coastal aquifers and for 
planning the rational exploitation of water resources. In a few circumstances 
the seawater is separated from the overlaying fresh water body by a relatively 
narrow zone which can be approximated by a sharp interface. Then, the aim 
of modeling is to determine the shape of the interface and the flow field in 
the two water bodies. 

A few mathematical approaches have been developed in the past in order 
to solve the equations of flow and transport. The first, and most general, 
regards the entire fluid as one of variable density which depends on salt 
concentration. The system of equations governing the process are Darcy's 
law, conservation of mass and the equation of transport of salt regarded 
as a solute. Examples of numerical solutions of such a system are those 
of Segol and Pinder (1976) for 2D and Huyakorn et al (1987) for 3D. This 
approach is of great numerical complexity and it faces difficulties in modeling 
the transition zone, of high concentration gradients. Furthermore, it may 
affected by numerical dispersion which leads to excessive mixing. 

In the second category of solutions, a sharp interface approximation is 
adopted and the basic equations are Darcy's Law, mass conservation in the 
two fluids and continuity of pressure across the interface. The ensuing prob­
lem of a free boundary is still a nonlinear, difficult, one. A few analytical 
solutions were obtained in the past for steady flow, e.g. Henry (1959) and 
Bear and Dagan (1964a), or by linearization, Dagan and Bear (1968). A 
few examples of more general, numerical, solutions are those of Mercer et al 
(1980),.Liu et al {1981) and Taigbenu et al (1984). 

The third and simplest approach is the one adopting the additional Dupuit 
assumption, of hydrostatic pressure distribution along the vertical in each 
fluid, applying to the case of a shallow interface. Its well lmown consequence 
is the Ghyben-Herzberg relationship (see, e.g. Bear, 1979) between the fresh 
water head and the depth of the interface in steady fl.ow. The unsteady flow 
problem is still nonlinear and besides a simple analytical solution obtained 
by Keulegan (1954), numerical procedures, e.g. Shamir and Dagan (1971) 
and Wilson and Da Costa (1982), have to be adopted. 

All the above solutions were applied to homogeneous formations or to 
heterogeneous ones made up from a few distinct units of well defined prop­
erties. Thus Rumer and Shiau (1968) and Mualem and Bear (1974) have 
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considered stratified aquifers of a few horizontal layers of, given, contrasting 
permeabilities. 

Actual formations are known to display spatial variability of their prop­
erties. Thus, the permeability is generally found to change by orders of 
magnitude and in an irregular manner in space over scales much larger than 
the pore-scale. Heterogeneity has been shown to play an important role in 
transport of solutes, leading to "macrodispersion". To account for this seem­
ingly erratic variation and the uncertainty affecting its values, the common 
approach is to regard permeability as random and to characterize it statisti­
cally. This randomness propagates to the fl.ow variables and concentrations 
through the equations of flow and transport, which are of a stochastic nature 
(see, e.g. Dagan, 1989). Astonishingly enough, no attempt has been made 
so far, to our best knowledge, in order to investigate the effect of random 
heterogeneity upon seawater intrusion. The present study constitutes such 
an attempt and it treats two relatively simple problems which have been 
solved analytically in the past for homogeneous formations. 

Our basic assumption is that heterogeneity manifests in perfect layering, 
with permeability a random function of depth. This picture agrees with most 
field findings for sedimentary aquifers, which are made from thin lenses of 
different depositional characteristics. Generally, layering is not perfect in the 
horizontal direction, but as far as the interface shape is concerned, the effect 
of the assumption is presumably small if the anisotropy ratio is sufficiently 
small. We also adopt the Dupuit assumption, which may be valid for shallow 
fl.ow and interface of mild slope. 

Under these conditions we solve first the problem of steady fresh water 
flow above a body of immobile salt water (in a homogeneous aquifer the 
interface shape is the Dupuit parabola) for which we get an exact analytical 
solution. Subsequently we address the unsteady problem of Keulegan (1954) 
of a rotating interface in an otherwise quiescent fluid. 

Our twofold aim is to acquire some basic understanding of the effect of 
heterogeneity on one hand and to obtain a few simple results of immediate 
application to field problems on the other hand. 
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2 MATHEMATICAL FORMULATION OF 
THE PROBLEM 

We consider an aquifer of thickness D (Fig. 1), bounded by an impervious 
horizontal bottom at z = 0 and an impervious top layer at z = D, while 
xis an inland horizontal coordinates. With z = e(x, t) the equation of the 
interface, Darcy's law for the horizontal components of the specific discharges 
reads 

(e < z ~ D) 

co~ z < e) 

(1) 

(2) 

where il.>1 = pJ/ P!9 + z and iI>s = Ps/Psg + z are the pressure heads, pis the 
pressure, p is density and K is the hydraulic conductivity. Here and in the 
sequel the indices f and s stand for fresh and salt water, respectively. 

The hydraulic conductivities may be written in terms of the permeability 
k, the dynamic viscosityµ and the fluid density pas follows 

K1(z) = k(z) P! i 
µf 

Ks(z) = k(z) Ps 
µ8 

(3) 

with k modeled as a stationary random function of z. We express it as k(z) = 
kA[l + K(z)J where kA = (k) represents the constant arithmetic mean and 
K(z) = [k(z) - kA]/kA is the normalized fluctuation. Thus, at second order 
K is characterized by 

00 

I= f r(z)dz (4) 
0 

where the brackets { ) denotes ensemble averaging, u2 = uVkl is the vari­
ance and r(z) is the autocorrelation of K, while I is its integral scale. The 
total discharges in the freshwater zone Q1 and in the saltwater zone Q8 are 
obtained by integrating (1) and (2) over each domain as follows 

~ ~ M, 
Q1 - J{ q1(z)dz = -KA1[D - e + J{ K(z)dz] Bx (5) 

[f [{ Bil.>. 
Q8 - Jo q8 (z)dz = -KAs[e +Jo X:(z)dz] Bx (6) 

4 



where KAI = kA g Pt/ µI and KAs = kA g Ps/ µa. The mass conservation of 
the incompressible fluid in each zone of the confined aquifer yields 

ae 8Q1 8Qs 
n-=--=--

8t ax ax (7) 

where n is the constant porosity. Finally, the pressure continuity at the 
interface P1(x, e, t) = Pa(x, e, t) yields by the definition of the pressure heads 

f. = Ps qi
8 

_ Pt <Pi 
Pa - Pt Ps - Pt 

(8) 

Dupuit assumptions implies that the heads are independent of z, i.e. <PI = 
<P1(x, t) and <Pa = <Pa(x, t). Generally, substitution of (5), (6) and (8) in (7) 
yields two nonlinear partial differential equations for <P 1 and <P 8 that have to 
be solved with appropriate initial and boundary conditions while f. is given by 
(8). Instead, we consider here simpler cases in which the interface expression 
can be determined directly from an unique partial differential equation (see, 
e.g. Bear and Dagan, 1964b for a homogeneous aquifer). Denoting by Q(t) = 
Q1(x, t) + Q8 (x, t) the total given discharge of the fluid, which according to 
(7) is a function oft solely, leads with the aid of (5) and (6) to 

a<P, 8<Pa 
KAI J(f., D) Bx + KAa J(O, f.) Bx - -Q(t) where for brevity (9) 

J(a,b) - b-a+ [ JC(z)dz 

Differentiation of (8) with respect to x and insertion of 8<P 8 /8x (9) leads 
to expressions of 8<Ptf 8x and <»a/Bx in terms of 8f./8x. Subsequently, sub­
stitution in Q1 and Q8 (5,6) and of the latter in (7) yields the following 
equation for f.(x, t) 

where 

For a homogeneous aquifer, i.e. JC =O, J(o,e) = f., J(f., D) = D - f., we 
recover the previous formulation of Bear and Dagan (1964b). 
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We shall show in the sequel that in the case of a heterogeneous aquifer it is 
advantageous to express the interface equation in the explicit form x = x(z, t) 
rather than z = e(x, t). By using the relationships between derivatives 

we get in (10) 

ax n-
&t 

ax ae = 1 ; ax ae = _ax 
az ax az &t &t 

(11) 

(0 ~ z <(Il)) 

The dynamical viscosity of the fresh water is slightly different from that 
of the salt water, i.e. µ 8 ~ µ1, and Eq. (12) can be further simplified 
by using the single parameter for the mean hydraulic conductivity K" = 
(p8 - P1)KA1/P1 ,...., (Ps - P1)KA8/Ps· Substitution in A, B (10) Yields the 
final form of the equation satisfied by x(x, t) 

n J(O, D) ax = -~[J(O, z) J(z, D)]-Q(t) aJ(O, z) 
K'' &t az ax/oz K'' az 

where it is reminded that J(a,b) = b- a+ J! X:(z) dz. 

(0 ~ z ~ D ; t ~ 0) 

(13) 

The stochastic partial differential equation {13), supplemented by ap­
propriate initial boundary and initial conditions, and for given statistical 
moments of X:, constitutes the starting point for obtaining solutions of the 
interface motion in the sequel. 

3 STEADY STATE SOLUTION 

3.1 General 

We consider first the simplest case of salt water under rest, i.e. 4>8 = const, 
and a steady interface, i.e. ax/&t = 0. In this case Q = const and from {13) 
we get 

d J(z,D) Q 
d)J(O, z)( dx/dz + K'' )] = O (0 < z < D) (14) 
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: ' 

Since at z = 0, J(O, z) = z + f~ X:(z') dz' = 0, integration in (14) yields 
the general solution 

dx !('' 1D - = --[D - z + X:(z') dz'] 
dz Q z 

(15) 

Consistent with Dupuit assumption we neglect the seepage face and as­
sume that the interface originates at x = 0, z = D, i.e. the sea serves as a 
sink (Fig. 1), and the boundary condition is x(D) = 0. This approximation 
becomes accurate for a shallow interface, i.e. for x(O) > D (see, Bear and 
Dagan, 1964a). 

With the change of variable ( = D-z (see figure 1) and after integration 
of the last equation with x(O) = 0, the exact solution for the random x( () 
may be written as follows 

K'' (2 ' [<' 
x(() = Q[2 + fo d(' lo X:((")d("] where K'' = Ps - Pt KAI (16) 

Pt · 

Eq. (16) permits one to compute the various moments of the nonstation­
ary random function x((). Thus, ensemble averaging of (16) yields for the 
average position of the interface 

K'' (2 
(x(()) = Q2 (17) 

which is precisely the Dupuit parabola obtained previously for a homogeneous 
medium, provided the constant hydraulic conductivity is taken equal with 
KAI· This is consistent with the well known result that for flow parallel to 
the bedding the effective permeability is the arithmetic mean. 

The autocovariance Cx((1 1 (2) = ([x((1) - {x((1)}][x((2) - {x((2))]) is ob­
tained by subtracting first (17) from (16) and ensemble averaging the product 
of x fluctuations, leading to 

Cx((i,(2) = o-2 (~' )2 {
1 fo'2 

[' { r(u-v)dudvd(' d(" (18) 

It is reminded that by (4) o-2 and rare the variance and autocorrelation 
of X:((), respectively. The variance of xis given by u~(() = Cx((,() and 
the mean position of the toe of the interface and its variance are (x(D)} = 
(K'' D2 /2Q) andu~(D) = Cx(D, D), respectively. 

These general results are applied next to a few typical problems encoun­
tered in practice. 

7 



3.2 Applications 

The interpretation of the results of the previous subsection is that in a strat­
ified aquifer of random permeability distribution the interface deviates from 
its mean value and its shape cannot be predicted in a deterministic manner 
in the given realization, but only in terms of probability. It is, therefore, im­
portant to establish an interval of confidence for the interface location (Fig. 
2). Toward this aim we select a particular permeability covariance function 

r( () = exp( -1(1/ I) (19) 

To simplify notations we introduce the dimensionless variables X = x/ D, 
(' = (/D,Q" = Q/K''D = (Qp1)/[KA1(Ps-P1)] and I'= I/D. It is 
seen that ()() = ('2 /2Q" (17) and Cx' (18) depend on the dimensionless 
parameters a= ak/kA, I'= I/D and Q". 

Substitution of (19) in (18) leads to the following close form expression 
ofCx. 

2 J'4 1 /"I /"I rt /"I /"I /"I /"I 
C (1"' r') a ( (°"1)3 ("'1)2':>2 ':>1 ':>2 ':>2 0,,1 1 

x.' .,.1, "'2 = Q"2 -3 l' + I' I' - l' I' + l' - I' + (20) 

(~ -C'/I' (~ -C'/I' (C'-C')/I' -C'/I' -"''/I'] --e 1 - -e 2 + e 1 2 _ e 2 _ e .. 1 

I' l' 

In particular the variance of the interface horizontal coordinate is given 
by 

(j2 j14 2 /"I j'I ;-1 

a~1((1) = Cx•((, () = Q"
2 

[a(})3
-(}

1
)
2-2(},) e-C'l1'-2e-C'/I' +2} (0 =5 (1 =5 1) 

(21) 
To illustrate this results we further assume that k is lognormal and with 

Y = ln k we have a2 =exp( a~ )-1. Then, the coefficient of variation is given 
by 

CVx.((') =ax' /(x') = 2J12{[exp(a} )-l][~(f )3-(}:)2-2(}:) e-C'/I' -2 e-C'/1
' +2]}112 

/('
2 

(22) 
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As a first application, we consider the problem of predicting the shape of 
the interface for given D, Q, p8 , P1i KA1, u} and I. The best we can do is 
to determine the mean profile (17) and the interval of confidence (22). To 
illustrate the results we have depicted in Fig. 2 (X ( (')) and (x' ( (')) ±2u x' 
for the following parameters values: the mean toe (x'(l)) = 3, u} = 1 and 
I' = 0.01. The small value of I' =I/Dis consistent with the assumption 
that the statistical moments of Y = Ink can be identified from the available 
aquifer data, say by analyzing measurements of conductivity values from a 
well. In particular, the coefficient of variation of the toe location (22) for such 
a small I' is approximately equal to CVx(l) ~ [8( eu} - 1 )I /3D]112 = 0.21 
(Fig. 2) and the uncertainty is quite large. 

Another application of interest is related to pumping of fresh water above 
the interface (Fig. 3) by a "coastal collector" located at x = xd. We assume 
that out of a total fresh-water discharge Q a portion Qd is drained, leaving 
Q 8 = Q-Qd to fl.ow to the sea and as a result the interface raises at a depth (d 
(Fig. 3). The relevant question in this case is what is the maximum· available 
Qd provided that the interface does not raise above ( = (d. An appropriate 
model has to take into account the fact that pumping is carried out by a 
drain or by wells, which create a local upconning (see the recent discussion in 
Journal of Contaminant Hydrology, 18, 319-339, 1995). Nevertheless, within 
the limitations of Dupuit assumption, we wish to answer this question in a 
stochastic framework, for a random stratified aquifer. Thus, we recast Eq. 
(16) in the following form 

K" xd 
(23) 

relating the random discharge Q8 to the given interface depth (d at x = xd, 
for a random permeability field. From (23), for an exponential r (19) and by 
analogy with (16) we obtain for the dimensionless~= Q8 / K'' D 

(Q~) = 2(~ ; (;;:) = CVx(~) (24) 

where C\'x is given by (22). To illustrate the results we have depicted in 
Fig. 4 the dependance of (Q~) ± 2<T'Q~ on Ct for the same parameters values 
as in Fig. 2. It is seen that the fresh-water discharge to the sea is affected 
by relatively large uncertainty, depending on the location of the collector. 

Finally, we consider the prediction of the interface location for given 
Q,D,KA!>PsiP! and I, supplemented by a measurement of (1 at a given 
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x = x1• This is the case in which, besides the information on the fresh-water 
discharge to the sea and on the statistics of k, we also measure the interface 
depth in a given cross-section by a piezometer. We treat this problem in 
the context of conditional probability, our aim being to determine (xc((l(1)) 
and ui2 ((1(1), the conditional mean and variance of the interface coordinate 
x as function of(, given the measurement of (1. This is not a simple task 
since x (16) is neither a stationary random function nor one of stationary 
increments. We shall use the conditioning relationships, similar to kriging, 
that apply to normal residuals (see, e.g. Dagan, 1989) and are not restricted 
by stationarity. This approximation is justified at least for ( >> I, since by 
the central limit theorem x (16) tends to normality. Hence, we may write in 
the more general case of conditioning by (i, ( 2 , ... , (N measurements 

N 

(xc((l(1, (2, ... , (N )) = (x(() +I: AJ [xJ - (x((J))] 
j=l 

N N 
ui2((1(1, (2, ... , (N) = u!(() - 2: L AjAmCx((J, (m) (25) 

j=lm=l 

N 

2:>..iCx((j,(m) = Cx(Ci(m) 
j=l 

where the unconditional (x) and Cx are given by (17) and (21), respectively. 
For the sake of illustration we consider N = 1, leading in (25) to 

>.. 
Cx((,(1) 

-
ui((1) 

(xc((l(1)) - (x(() + 0;i~(;)) [x1 - (x((1))] (26) 

ui2((!(1) - 2(() - q((,(1) 
<TX ui((1) 

To illustrate the results we consider the impact of a measurement upon 
the mean interface profile in Fig. 5, the parameters being the same as before, 
i.e. {x'(l)) = 3, I' = 0.01, er = 1, with conditioning at x'd = 1, (} = 0.4. 
& expected from (26) the mean interface passes through the conidtioning 
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point while o-~2 ((1 1(1 ) = 0. However, the more interesting application is the 
reduction of uncertainty of the toe location, i.e. the ratio ~2(Dl(1)/o-~(D) 
which is represented in Fig. 6 as function of (~ for the same parameters 
values as in the previous figures. The impact of a measurement upon variance 
reduction of toe location becomes more siginificant as the toe cross-section 
is approached. For the largest I' = I/ D = 0.1 considered, the conditional 
variance is practically zero when (~ ~ 0.5. This effect is related in principle 
to the fact that for such large correlation scales, measurements affect a large 
interval of(. Furthermore, the uncoditional variance (18) "builds up" as one 
moves upstream from the sea boundary in a nonlinear manner. 

4 UNSTEADY FLOW (GENERALIZATION 
OF KEULEGAN SOLUTION). 

Keulegan (1954) has derived one of the few analytical existing solutions of 
unsteady interface fl.ow. The case is that of an initial vertical interface sep­
arating quiescent salt and fresh water bodies. This can be visualized as the 
result of the abrupt removal of a thin partition separating the two fluids. The 
well known solution, to be recovered below, is of a rotating planar interface 
(Fig. 7). While Dupuit assumption is bound to be violated at small time, it 
is becoming increasingly valid as the interface slope becomes milder. 

Our aim is to generalize this solution for the case of a nonhomogeneous, 
layered, aquifer of random permeability. The starting point is the general 
Equation (13) for Q(t) = 0, pertinent to fluids in rest far from the origin, i.e . 

.!!_ 8x = -~[J(O, z) J(z, D)] 
K'' 8t 8z J(O, D) 8x/8z 

(27) 

To simplify notations and computations we introduce the following dimen­
sionless variables: X = x/D, t' = tK"/nD = tKAt(Ps - P1)/p1nD and1J = 
(2z/ D) - 1. Then, Eq. (27) becomes 

48-X = -~[ C(TJ) ] 
au 8TJ 8x' I 8TJ 

(t! > 0, -1:51J :5 1) (28) 

C( ) = [1+1J + I'-1 X:(u) du][l -11 + J; X:(u) du] 
11 1 + (1/2) J21 X:(u) du 

11 



Hence, the generalized Keulegan problem can be stated now mathemat­
ically as seeking the solution for the random function )((17, t') that satisfies 
{28) with initial condition x'(1J, 0) = 0 and for given statistical moments of 
K,(17). 

A significant simplification of the problem is achieved by the separation 
)((17, t') = ../F f('f'J), suggested by the Keulegan solution for a homogeneous 
medium. Substitution in {28) yields the ordinary differential equation 2f = 
-d/drl[G/(df /d'f'J)]. An additional integration, with C(-1) = 0 taken into 
account, leads to the nonlinear integro-differential equation 

2 ddf r1 !(111
) dr,' = -C(11) 

11 1-1 (29) 

which has to be solved for the random C(rJ) (28). While {29) may serve as 
the starting point for numerical integration, we seek here simple, analytical, 
solutions. Toward this aim we expand C(17) (28) in an asymptotic expansion 
in o-,the standard deviation of K., as follows · 

G - Co + C1 + C2 + ... ; Co = 1 - rJ2 (30) 

C1 - (1+17) i 1 
K.(u) du + (1 -17) £

1 
K(u) du - ~(1 - 'f/2) f-1

1 
K.(u) du 

C2 - £. h1 

K(u) K(v) dudv - ~(1+17) h1 f-1

1 
K(u) K(v) dudv -

~(1 -17) h1 

[~ K.(u) K(v) dudv + 1(1-172
) [

1

1 
[

1

1 
K.(u) K.(v) dudv 

In a similar manner, we expand the solution f = fo +Ji + h + ... , 
where /o =0(1), fi =O(o), h =O(o-2), .•• Substitution of these expansions 
in (29) leads to linear differential equations for fi (i = 1, 2, ... ). Thus, we get 
at zero-order 

2dfo r !0(11') d17' = 'f/2 -1 
d'f/ 1-1 

(31) 

which has the exact solution /o = -17. This is precisely Keulegan {1954) 
solution for a homogeneous aquifer of conductivity KA. Thus, x'o =../ti fo("l) 
that can be rewritten in terms of the original variables as follows 

12 



K'' = KAI (Ps - Pt) 
Pt 

(32) 

and the interface is a straight line, rotating around z = D /2, the salt water 
being to the left (Fig. 5). In particular the toe advances as xo(O, t) = 
(tK" D /n)112• 

With / 0 = -TJ we get from (29, 30) the following sequence of linear 
integro-differential equations for fi 

(33) 

and we shall solve for these two terms only. Furthermore, we seek the 
first two statistical moments of f solely, given at O(u2) by (!). = Jo + 
(h), C1(TJi, T/2) = (/1 (TJ1) Ji ( T/2)). 

We have contemplated two methods to solve (33): a general one by using 
the Green function and its expansion in Legendre polynomials and a simpler, 
but more limited, one based on equations for the moments. While the first 
method is described in Appendix 1 for the sake of future applications, we 
shall follow here the second one. But first we rewrite (33) with the aid of the 
new variable F(TJ) = I'-1 f(TJ') dTJ' as follows 

( 2 d2F1 2 d2F2 
1 - T/ ) - - 2F1 = -Ci · (1 - T/ ) - - 2F2 = E2 dTJ2 ' dTJ2 

(34) 

and seek the moments (F) = Fo + (F2), CF(T/1, T/2) = (F1(TJ1) Fi(T/2)). Subse­
quently, we get {!} = (dF/dTJ}, C1(TJ1, 112) = a2CF/8TJ1 &r,2. 

The pde satisfied by CF(771, 112) is obtained by multiplying the e·quation 
(34) for F1(TJ1) by the same equation for F2(112) and averaging. The result is 

13 



The complete expression of Cu, based on (30), is given in Appendix 2. 
It can be evaluated in a closed form for particular forms of the conductivity 
auto-correlation r, e.g. (19). We shall further limit the derivation to forma­
tions for which l' = l / D << 1, where l is the integral scale of r, and derive 
the leading order term of (F} and (CF} in I'. This approximation allows 
us to derive general solutions, not necessarily related to a particular r. The 
simple result is obtained by replacing r, whenever it appears as an integrand, 
by r(z1 - z2) = 218(z1 - z2) i.e. r(171 - T/2) = 418(111 - T/2), where 8 is the 
Dirac operator (Dagan, 1989). The final result (Appendix 2) is 

Cu = 2a2 l'[l - TJi - TJ~ + 4TJ1112 - 4111TJ2ITJ1 - TJ2I - 311iTJ~] (36) 

Next, we have to solve the pde (35) in order to derive Gp. Since the general 
solution (Appendix 1) can be expressed as an expansion of polynomials, and 
Cu (36) is a polynomial, it is natural to try for CF a power series solution 
and to identify coefficients from (35). This results in the following exact 
solution of (35,36) . 

C a
2 
I' [ 3 I I 5 2 5 2 I I 3 2 2] ( ) F = - 2- - 4 + 2 1]1 -172 - 41J1 - 4772 + 41]11]2 - 21]11]2 1]1 -1]2 - 41J11J2 37 

which can be checked by inspection. 
The covariance C1(111 , 172) is obtained by differentiation of Gp. This poses 

a delicate problem along the line 'T/l = 'T}2 in the 'T}i, 'T}2 plane, since the second 
derivative is discontinuous there, as a result of our replacement of the con­
tinuous r by a Dirac distribution. To obtain the correct value along the line 
of discontinuity, one has to average the two values of any function of interest 
across the line. 

Hence, the solution for C1(TJ1, TJ2) and aj(17) = C1(11, 17) are found as 

C a2CF 2 I [ I I 3 1 2 'l I ( 3 2 I= ar,
1
a.,.,

2 
= 2u I 1 - 771 - 'T/2 - 4111112 ; a1 = 2<r l 1 - 411 ) (38) 

Next, we ·seek the solution of (F2}, after ensemble averaging (34), i.e. 
(1 - 172) d2(F2} /d712 - 2{F2} = (E2}. It is shown in Appendix 2 that under 
the same approximation O(I') we have from (30) and (33) 

df £ d2F u2J' {C2) = -2a2I' (l -112
) ; (-

1 Ji dTJ') = (-1 F1) = --(5 +a:~) 
d71 -1 d772 4 

14 
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Once again, it is seen by inspection that the solution (F2) and the asso­
ciated (/2) = d(F2) /d1J are given exactly by 

(40) 

Subsequently, we get at O(o-21') by collecting results in (32, 38) and (40) 

Finally, we have for the interface equation x = x(z, t) =.Jii J(z) in terms 
of the original variables 

(x(z, t)) - [4tK" ]1/2(1 - o-2 I )(D - z) 
nD 4D 2 

~2 20-2 I K"t [D2 3( D )2] h 
v x - nD - z - 2 w ere 

(42) 

K'' =KAI (Ps - P1) 
P1 

The relationships (42) encapsulate the results of our analysis, generalizing 
Keulegan (1954) solution for a layered aquifer. In particular, we get for the 
toe location 

The generalized Keulegan solution (42, 43) does not lend itself to di­
rect applications because of the particular boundary condition of zero net 
discharge. It may serve, however, as a benchmark for numerical codes. If 
we assume, nevertheless, that it is representative for more general cases of 
unsteady interface flows superimposed on the steady ones of the previous 
Section, we can draw the following conclusions for aquifers of small I/ D 
and small to moderate o- = o-K/{K): (i) the additional deviation of the 
mean interface profile is very slightly influenced by heterogeneity. For in­
stance, for data similar to the ones adopted in the previous Section, i.e. 
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a 2 = 1, 21 / D = 1/100, the toe location is modified by 0.8%; (ii) the effec­
tive conductivity is practically the arithmetic mean and (iii) the additional 
uncertainty of the toe position is also small. Comparing it with that affect­
ing it in the steady state (22) and for an equivalent thickness half of that 
of Keulegan's solution (Fig. 7), we find that coefficient of variation (43) is 
roughly three times smaller than the corresponding steady state value. These 
results suggest that the ones obtained for steady flow, under more general 
conditions, may be applicable approximately to unsteady flows as well. This 
conjectural conclusion has to be supported by future work of a numerical 
nature. 

5 SUMMARY AND CONCLUSIONS 
The present study is a first attempt to assess the influence of heterogeneity, 
related to the random spatial variability of permeability, on the shape of the 
interface between salt and fresh waters in coastal aquifers. To achieve simple 
results of an analytical nature, a few assumptions have been adopted: the 
existence of a sharp interface, shallow flow model (Dupuit assumption) and 
a layered structure with permeability a random and stationary function of 
depth only. 

We have been able to arrive at an exact closed form solution for the 
statistical moments of the interface coordinate in two-dimensional steady 
flow of fresh-water to the sea. It generalizes the well-lmown Dupuit parabola 
for a homogeneous aquifer. We have found that the mean profile is the same 
parabola, provided the constant effective conductivity is taken equal to the 
arithmetic mean of the spatially variable one. The main finding, however, is 
the coefficient of variation of the interface coordinate and particularly that 
of the toe. This can be quite large, depending on the permeability variance 
and integral scale. Thus, prediction of interface shape and of salt water 
intrusion in heterogeneous aquifers is affected by uncertainty and our results 
permit one to determine the intervals of confidence. We have been able also 
to assess, by using conditional probability, the impact of measurements of 
interface position on reducing this uncertainty. 

We have arrived at a generalization of Keulegan (1954) solution for un­
steady flow caused by the sudden removal of a fictitious, vertical, partition 
between the two water bodies. An analytical solution has been obtained for 
the leading order term in the permeability variance and in the ratio between 
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the integral scale and the aquifer thickness. The mean interface is a rotating 
line, whose slope is influenced slightly by heterogeneity and whose coefficient 
of variation is smaller than for steady flow. 

From a theoretical standpoint, many extensions of the present study that 
account for factors we neglected are pGssible, e.g. incorporating the effect 
of field scale pore-scale dispersion, of heterogeneity of a three-dimensional 
structure and solving for two- or three-dimensional flows for which Dupuit 
assumption does not apply. Such extensions may require, however, using 
more involved numerical methods. 

From a field applications perspective it seems to us that assessing the 
impact of heterogeneity upon the interface shape by analyzing data on both 
permeability variability and interface location is of definite interest. The 
present results may, nevertheless, serve for rough estimates of the uncertainty 
of prediction of salt-water intrusion. 
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5.3 Appendix 1: General solution of {33) 

The two equations appearing in (33) may be written as follows 

(Al.1) 

where /(71) represents the functions fi(71) or h(Tf), E(Tf) represents the forc­
ing terms for both equations and 1/ = (2/D)(z - D/2). After differentiation 
of (Al.l), the following equation is obtained 

d 2 df 8E(11) 
d11 [(l -17 ) d17} - 2/ = - Ori (-1 :$ 7J:::; 1 ) (Al.2) 

The functions E( 7J) are different for the equations in Ji and '2. For the 
first equation E(71) = C1(11) and for the second equation E(Tf) = -E2 (71) 
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(33). 
In order to derive the solution of equation (Al.2), we introduce the Green 

function G(77, r), solution of the following equation. 

(Al.3) 

where the function o denotes the Dirac function. The solution of equation 
(Al.3) may be written in terms of the Green function as follows: 

f+l 8E(r) 
f(TJ) = - }_

1 
G(TJ, r) Br dr (-1 < 1] ::; 1) (Al.4) 

The eigenfunctions of the differential operator appearing in the basic 
equation (Al.3 ) are the Legendre polynomials Pn(TJ). Thess polynomials 
form an orthogonal basis of the space of integrable functions defined in the 
interval [-1, 1]. Three important properties used in the following are summa-

rized here: (a) IPn(TJ)I :5 1; {b) J:!"l Pm(TJ)Pn(TJ)dTJ = g1<
2
m+l) !} :;: } j (c) 

if R(77) is a polynomial of degree k < n then f:!°1
1 Pn(TJ)R(rJ)dTJ = 0. 

The eigenvalues associated with the differential operator of equation ( Al.3) 
are given by An= -(n2 + n + 2).] 

We consider a series expansion of the Green function G(17, r) = Ek°=0 an(r)Pn('fJ). 
Using the orthogonality property (b) and after integration of equation (Al.2) 
over the interval [-1, l),one can show that an(r) = -bnPn(r), where bk = 

(2n + 1)/(n2 + n + 2). 
The solution of equation (Al.2) may be written in terms of the Green 

function as follows 

00 2n + 1 1+1 8E(r) f ( T/) = L 2 2 
Pn ( T/) Pn ( r) f)r dr ( -1 :5 11 < 1) 

n=on +n+ -1 
(Al.5) 

We expand the solution f(z) in a perturbation series f(z) = f0 (z) + 
fi(z) + h(z) + O(a3). The formula for the average field< f(z) > and the 
variance o}(z) are given by 

aj(z) 

< f(z) >= fo(z)+ < h(z) >= fo(z) - {,
1 G(11,r) 8(~r)) dr 

(Al.6) 

- < (fi(z))2>=1+11+1 G(TJ, r1)G(11, r2) 
82<;.<r;;. r2)) dr1dr2 

-1 -1 1 2 
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It can be shown that at first-order in J', integration in (Al.6) leads to 
polynomials of degree two (See Appendix 2). Using properties (c) of the 
Legendre polynomials, the Green function reduces to a polynom of second 
degre and the same results as in Appendix 2 may be deduced. 

5.4 Appendix 2: Derivation of C 11 (71i, 772) and (E2). 

The random function C1(17), of zero mean, is defined by Eq. (30). The 
covariance Cn (171, 112) = (C1 (111) C1(r72)) has the following exact expression 

where A(a, b, c, d) = (1/4a2J) J: fed CK.(u, v) dudv. Under the approxima­
tion CK-(u, v) = 4a2 I 6(u - v) 

Cn = 4a2 J[(l + 771)(1+772) A(171, l, 172, 1) + (1+771){1 - 772) A(771, 1, -1, 772) + 
(1 -111)(1+172) A(-1, 1]i, 1]2, 1) + (1 -111)(1 - 112) A(-1, 1]i, -1, 112) -

i(l + 7J1)(l -11i) A(17Ii 1, -1, 1) - i{l -111)(1 -11i) A(-lJ 111, -1, 1) -

~(1-11n(1+172 ) A(712 1 l, -1, 1) - ~(1 -112)(1-17~) A{-l, 172, 1, -1, 1) + 

~(1 -17i}(l -11~) A(-1, 1, -1, 1)] (A2.1) 

we have for 111 2:: 712 

A(77i, l,172, l) - l -111; A(171, l,-l,172) = 0; A(-l,17i,172, 1) = 111 - 112; 
A(-1, 7]1 1 -1, 772) - 1+112 ; A(771, 1, -1, 1) = 1 -111 ; (A2.2) 
A( -1, 17i, -1, 1) - 1 + 111 ; A( 112, 1, -1, 1) = 1 - 112 ; A( -1, 772, 1, -1, 1) = 1 + 112 ; 
A(-1, 1,-1, 1) - 2 

Substitution of (A2.2) into (A2.1) leads to the result C11 (36). Next, we 
evaluate (C2(17)) (30). The exact expression is 

(C2) = 4a2J[A(-1,17, 17, 1) - ~(1+11)A(17, 1, -1, 1) - ~(1- 17)A(17, 1, -1, 1) + 

1(1-172)A(-1,1,-1, 1)] (A2.3) 

By the same approximation as in (A2.2) we get for (C2} the result of (39). 
The expression {39) of (F2(11) d2F2(11)/d772) = lim111 __,.11, 112 __,.'182CF(1J1, 112)/&,,~ 
is obtained by differentiation in (37), leading to the final result (39) for {E2). 
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5 .5 Figure captions 

Fig. 1 Definition sketch of an interface in steady flow. 
Fig. 2 The mean interface profile (x') (Eq. 17) and the intervals of 

confidence ±2ax (Eq. 21) for O'y = 1, I'= I/D = 0.01, Q/K''D = 1/6. 
Fig. 3 Definition sketch for a coastal collector withdrawaling fresh water 

above the interface. 
Fig. 4 The dependence of the fresh water discharge to the sea ~ 

and its interval of confidence ±2 aQ. (Eq. 24) on the elevation of the up­
conned interface (~ beneath the coastal collector at x1d ( O'y = 1, I' = I/ D = 
0.01, Q/ K'' D = 1/6). 

Fig. 5 The mean interface profile {x'c(('i(D} and its interval of confidence 
(Eq. 26), conditioned on a measurement (~ = 0.4 at x11 = 1 (ay = 1, I' = 
I/D = 0.01, Q/K''D = 1/6). 

Fig. 6 The reduction of the variance of the toe coordinate ai2(Dl(1) / a~(D) 
(Eq. 26) as function of the measured interface depth(~ (ay = 1, I'~ I/ D = 
0.01, Q/K''D = 1/6). 

Fig. 7 Definition sketch for the Keulegan solution (dashed line, Eq. 32) 
and its generalization for a layered aquifer (full line). 
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Locating Salt/Fresh Water Interface Using 

Nonlinear Programming and H-Adaptive BEM* 

A. Najit D. Ouazarl A. H-D. Cheng§ 

Abstract 

The location of sharp interface between salt and freshwater in coastal aquifer is 
determined using optimization techniques. The algorithm is based on the combina­
tion of a nonlinear programming and an h-adaptive boundary element method. The 
objective is to create to an automated solution procedure. The effectiveness of the 
model is demonstrated using several examples in confined and unconfined aquifers. 
The unconfined aquifer cases require the simultaneous determination of an interface 
and a free surface. 

1 Introduction 

Coastal aquifers are prone to the encroachment of saltwater from the sea. Saltwater with a 
higher density tends to flow underneath a static freshwater and invades inland. Normally 

there exists a freshwater outflow that counters the saltwater intrusion such that steady­

state interface can be maintained. However, anthropogenic activities in coastal zones have 

led to aquifer over-exploitation. The historical balance of salt-fresh water interface may 
be upset, causing a lost of freshwater resources. 

To combat saltwater intrusion, water resources managers need to determine the loca­

tion of salt/fresh water interface under various hydrological and human water consumption 
conditions. The simulation is normally carried out by numerical modeling using methods 
such as finite element, finite difference and boundary element. In the present work, the 

boundary element method (BEM) is adopted. The BEM is well known for its ability to 
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tuniversite Abdelmalek Essaaadi, Faculte des Sciences et Techniques, B.P. 416, Tanger, Morocco. 
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§Department of Civil and Environmental Engineering, Unh·-ersity of Delaware, Newark, Delaware 19716. 
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reduce the dimensionality of solution mesh. This trait is particularly useful in handling 

moving boundaries that are encountered in saltwater intrusion problems. 

Applying BEM to locate steady-state seepage free surface was pioneered by Liggett 

[1 J. The technique involves simulating transient flow until it reaches steady state. For 

locating free surface in open channel flow, the first application of BEM was presented 

by Cheng, et al.[2J using a rudimentary gradient search method. For saltwater intrusion 

applications, the transient approach was taken by Liu, et al.[3J and Taigbenu, et al. [4] to 

track down the steady interface. In the present paper, the steady-state sharp interface is 

located utilizing optimization techniques. The process used is based on the combination 

of nonlinear programming and an h-adaptive BEM. 

The h-adaptive boundary element method has been successfully applied to flow prob­

lems, such as cavity, sluice gate, spillway and earth dam flows [5, 6, 7], as well as many 

other problems [8, 9, 10, 11]. The basic idea is to generate an optimal discretization of 

a considered saltwater intrusion problem automatically. In such an optimal mesh both 

the problem geometry and the function variation are properly represented. The solution 

obtained, which depends on the mesh used, is more accurate. The h-adaptive algorithm 

used in this paper is based on the calculation of the residual function deduced from the 

boundary integral equation, to define the predicted errors. Starting from an initial coarse 

mesh, the process is applied to refine the mesh locally, if necessary, by subdividing existing 

elements. The global predicted error computed throughout iterations provides information 

about the global accuracy of the solution and guides the process until convergence. 

The mathematical problem of locating unknown surfaces is formulated as an optimiza­

tion problem. The objective functions, which are nonlinear, are constructed based on the 

redundant boundary condition given on the unknown surfaces. The interface of phreatic 

surface nodes are considered as design variables. Constraints are applied to limit the re­

gion of search to avoid possible inconsistent trial geometries. The nonlinear programming 

is used to guide the trial and error process to determine the interface and phreatic surface 

locations. The h-adaptive BEM is used to solve the direct boundary value problem at 

each trial stage. 

The objective of the work is to generate an automated solution procedure to solve sharp 

interface saltwater intrusion problems. The effectiveness of the algorithm is evaluated by 

a number of confined and unconfined aquifer problems. 
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2 Problem Formulation 

Two approaches can be used to model saltwater intrusion problems. One is based on 

hydrodynamics dispersion and the other on sharp interface. The first approach is consid­

ered when the mixing zone between salt and fresh water cannot be neglected. The second 

technique is adopted when the thickness of the transition zone is much smaller than the 

aquifer dimension. In this case, the flow region is divided into two zones separated by a 

sharp interface whose location is to be determined. Only the sharp interface approach will 

be considered in this paper. 

The problems solved here involve vertical, two-dimensional aquifer sections. In a ho­

mogeneous, isotropic aquifer, the governing equation is 

(1) 

where h is the piezometric head of freshwater. It is assumed that the saltwater region 

is static, hence the saltwater head ks is a constant. There are several types of boundary 

conditions. In particular, we note the following: on free surface, 

h=y {2) 

and on the salt-freshwater interface 

h 
Pr-Ps = y 

Pc 
(3) 

where y is the elevation from datum, and pr, Ps are respectively the freshwater and saltwater 

density. On these locations, a second boundary condition also exists: 

ah =O 
on (4) 

On a fixed boundary, the second boundary condition is redundant and generally cannot be 

tolerated. On free surface and interface, however, their locations are not known a priori. 

The second condition is essential in the determination of their unique locations. 

3 Optimization 

Free surface and interface are characterized by the existence of two boundary conditions as 

previously indicated. One of these conditions can be used to transform the problem into 

an optimization one, with the free surface position nodes as the unknown design variables. 
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Consider a free boundary value problem Pl: 

\72h = 0 in 0 

Pl: 
81h=91 on rl 

(5) 
B2h = 92 on r2 

83h = 93 on r2 

where 0 is a bounded domain under investigation, with the boundary r = rl u r2, 

ri represents all fixed boundaries, and r2 denotes the free boundaries (free surface and 

interface), Bi are various kinds of boundary operators, and 9i are smooth functions giving 

the boundary values. We note in particular that two boundary conditions are available on 

r2. 
A second problem is defined with a trial r2 such that 

{ 

\12h = 0 in 0 

P2 : 81 h = 91 on r 1 

82 h = 92 on r2 

(6) 

An objective function f is constructed by minimizing the difference between the prescribed 

function 93 in Pl and the oomputed Bah in P2 

(7) 

where 1111 is a certain norm evaluated on r2. f is computed each time the free boundary 

r2 is moved. 

The shape design problem is given by: 

P3 : minimize f (r2) for r2 E A (8) 

where A is a family of domains 0 within which one wishes to minimize f. The constraint 

is that each element 0 of the set A must have a physical meaning. 

The solution of the problem P3 is based on the following four main steps: 

1. The location of the free boundary r2 is either given (for the first iteration) or deter­

mined (for subsequent iterations). 

2. The problem P2 is solved by the BEM to compute hand its normal derivative. 

3. The value of the objective function f is computed using (7). 

4. The direction vector of minimization is determined. 
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Discretizing the boundary into Ne elements with Nr nodes on the free boundary; the 

continuum problem P3 is transformed into a discrete one. It is given by the following: 

(9) 

where (z1, z2, ... , ZNr) is a vector containing the position of the free boundary nodes, 1/Ji are 

constraint functions generating the set A and prescribing bounds on the amplitude of the 

free boundary displacements, and J is the objective function to be minimized based on 

discrete values. 

Although no analytical information about the behavior of the objective function (i.e. 

convexity, continuity, etc.) is available, it is assumed that the function is differentiable 

up to the second order. To avoid the use of penalty nonlinear programming techniques, 

the constrained minimization problem P4 can be transformed into an unconstrained one 

by introducing all constraint functions 1/Ji in a uni-dimensional search [7]. The problem 

becomes easier to solve. 

The sensitivity of either potential or flux contained in the unknown vector x of the 

algebraic system A:z: = B is given by the application of a finite difference formula. The 

technique is formulated by solving two systems, one 

(10) 

associated with design variables Zi and the other 

(11) 

related to perturbed design variables Zi + 6Zi, in which 6zi are a small perturbations. The 

sensitivity of x with respect to Z?,, denoted by 8x/8zi, is determined using the following 

equation: 

(12) 

We note that the matrix A(Zi + 6zi) has to be computed for each design variable Zi and 

a large number of systems of equations have to be solved. 

The objective functions for both confined and unconfined examples are based on min­

imizing the calculated flux at free boundaries. The boundary condition q = 8h/8n = 0 is 

used to define the objective function, 

1 Nr 

f(zi, ... ,zN1) = 2 l:if 
i=l 

5 
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The parameters Zi are considered to be Yi coordinates for a phreatic surface (unconfined 

aquifer problem) and Xi coordinates for an interface (confined and unconfined aquifers). 

The nodes are adjusted vertically and horizontally, respectively. 

The only constraint associated to the minimization problem is imposed on the param­

eters Zi, in order to limit the region to a physically acceptable geometry. The constraint 

can be expressed through inequalities in the form: 

Zmin ::; Zi ::; Zmax Vi E {l, .. ., Nr} {14) 

The values of Zmin and Zmax depend on the problem on hand. 

To search for the direction of minimization, the Gauss Marquardt algorithm is used. 

If zk is the free surface location at iteration k, the new position is given by the linear 

equation 

(15) 

in which 6k is the vector of the search direction at iteration k, and a is a step length for 

the movement along the search direction, determined by the one dimensional minimization 

problem. Vector ok is given by 

(16) 

where H is the Hessian matrix approximated by 

(17) 

J is the Jacobian matrix obtained by a finite difference procedure, I is the identity matrix, 

and ..\ is a given constant which decreases with increasing iterations. 

The constrained optimization problem can be transformed into an unconstrained one 

by introducing constraints in a uni-dimensional search. To achieve this, an Ctmax should 

be found such that all new nodal positions satisfy the constraints (i.e. still in the feasible 

domain). The optimal a must be determined using an uni-dimensional search in the 

domain [O, Ctmax]. The Fiboccanoi's method is used to find such an optimum. 

4 H-Adaptive BEM 

Discretization is one of the most important factors in numerical modeling of a boundary 

value problem since the approximate solution largely depends on the number and the 

order of elements used. A rigorous definition of an optimal mesh is the one for which the 

error of the numerical solution is reduced to a minimum, and is uniformly distributed over 

the elements of the mesh. To obtain such an optimal mesh, a mesh redesign procedure 
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is necessary for controlling the refinement process and calculating an accurate solution. 

In recent years, attention has been drawn to use error estimates in the BEM to guide a 

refinement strategy. 

Error estimators can be divided into two categories: a-priori error estimators requiring 

the knowledge of either the exact solution or the behavior of the approximate one; and a­

posteriori error estimators, which extract guidelines from a prediction of the exact solution, 

based on the approximate one. 

The computation of error estimators is based on an appropriate norm providing a 

measure of the difference between the numerical solution li associated to a given mesh, 

and the exact or predicted solution h of the problem. As has been demonstrated based 

on some regularity of the boundary conditions, the solution of the BVP belongs to the 

Sobolev space Hk (k = 1 or 2) and its associated norm can be used to measure the error. 

The norms £ 2 and H 1 have been extensively used to estimate the value of error in 

boundary element analyses. They are defined as follows: 

l (h - li) 2 
d[' for £ 2 norm (18) 

l [ (h - li) 2 + (h' - li')2
] d[' for H 1 norm {19) 

in which h and h are the exact (or predicted) and approximate solutions, respectively, 

h' and h' are their tangential derivatives. Error estimates in the BEM are measured by 

integration over the boundary only. The popularity of these two norms may be explained 

by their simplicity as compared to other norms like Hk fork ~ 2, for which higher-order 

derivatives are needed. 

Problems considered in this paper are governed by Laplace or Poisson equations subject 

to appropriate boundary conditions. The boundary integral equation is given by: 

c(x)h(x) +fr h(x')q*(x',x) ch'= fr h*(x',x)q(x') dz'+ k b(x')u*(:i,x) ch' (20) 

where h * is the fundamental solution of Laplace equation, q stands for normal derivative, 

x and x' are the source and field points, and c is a Cauchy principal value coefficient. 

Equation 20 is satisfied at all nodal (collocation) points, but its application to other 

boundary points produces an error or a residual. 

Theoretical studies have shown that the residual function can be taken as an approx­

imation or estimation of the exact error. Integrating the square of the residual over the 

boundary defines the error estimator, and over each element defines the error indicators. 

These two errors provide an accurate and reliable mechanism for automatic redesign of a 

mesh, and have been developed by various authors (8, 9, 10, 11] in the context of boundary 
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element method. They are given by the following two equations: 

(21) 

(22) 

where vis the error estimator and Ae is the error indicator in element e. 

The error estimator is computed at each iteration to provide information on overall 

accuracy, and to stop mesh refinement if a specified tolerance is achieved. If the solution 

is considered not acceptable, refinement on each element will be controlled by error indi­

cators which will decide where additional local refinement is required. The computation 

of the posterior error (local or global) requires evaluation of the residual along the bound­

ary. Attention must be paid to this process since inaccuracy may lead to unnecessary 

refinement. 

The philosophy behind adaptive refinement is to determine an optimal mesh, based 

on the minimization of the error up to an acceptable number of degrees of freedom, yet 

less than a specific number of nodes. The objective is to decide where the mesh should 

be refined and when this refinement should be stopped based on some error criteria. The 

prediction of more accurate solutions, starting from any initial mesh, can thus be achieved 

without any effort from the design engineer. 

In the h-adaptive strategy, refinement is performed by increasing the number of ele­

ments through subdivision of those displaying large local errors at each iteration. Although 

some specified tolerance is used to verify convergence, other restrictions should be used 

to control the maximum number of nodes and the ratio between the size of neighboring 

elements. The basic algorithm of h-adaptive schemes consists of the following steps [11]: 

• Step 1 : Choose a basic mesh, sufficient to describe the geometry and boundary 

conditions of the problem. 

• Step 2 : Solve (20) subject to boundary conditions. 

• Step 3 : Compute the error estimator and indicators. If the accuracy obtained by 

the error estimator is sufficient, stop. 

• Step 4 : For each element, decide whether the accuracy measured by error indicators 

has to be improved. If yes, subdivide the element into two subelements. Return to 

step 2. 
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Consider the saltwater intrusion problem. Starting with an initial mesh, the h-adaptive 

algorithm is applied with a lower accuracy requirement until an optimal mesh for the 

current iteration is obtained. The free-surface location is then adjusted following the 

nonlinear programming search direction. The adaptivity scheme is introduced at every 

iteration of the free surface adjustment with increasing accuracy requirements, until the 

program is terminated by a nonlinear programming tolerance criterion. 

5 Numerical Results 

Several problems involving confined and unconfined aquifer geometries are investigated. 

In the first two problems, only the nonlinear programming part for adjusting free surface 

and interface geometries is examined. The combination of nonlinear programming with 

h-adaptive BEM is implemented for the remaining problems. 

The first example tested is a confined aquifer problem, shown in Figure 1. The bound-

ary conditions are: 

h = 0 on AB 
{)h 

0 on BC, DE and EA = On 
8h Q 

on CD = 8n Kb 

h Pr- Ps on EA (23) = y 
Pf 

The following values are used: aquifer thickness b = 27 m, hydraulic conductivity K = 69 

m/day, density of freshwater Pf= 1 g/cm3 , that of saltwater Ps = 1.025 g/cm3 , and the 

freshwater outflow rate (per unit width normal to the plane of flow) Q = 18.8 m2 /day. 

The boundary of the domain is discretized into 45 linear elements with 10 on the interface 

AE. With an initial trial interface as a straight line, the objective function value decreases 

from the initial value of 3.57 x 10-3 to the final value 5.7 x 10-1 . The average value of 

flux along the interface is around 10-4 m/day when the solution is accepted. The final 

interface location is presented in Figure 2. In the same figure, an analytical solution by 

Glover [12} is presented for comparison. The Glover solution represents the case of an 

infinite aquifer thickness, b-+ oo. The comparison is nevertheless quite good. 

The next example involves an phreatic aquifer as shown in Figure 3. The conditions 

on various parts of boundary are 

h - y 
8h 

- 0 
8n 

9 

on AB and BC 

on AB and DE 



f)h 

8n 
= 

h -

Q 
Kb 

on EA 

Pr-Ps ---y on CD and DE 
Pr 

(24) 

The parameters used are: p8 /pr = 1.08, Q/Kb = 0.0545, and the angles a= 90°, /3 = 90°. 

It is noted that these combination of parameters are sufficient to define the problem as 

shown in (24). The initial free surface and interface are plotted as dashed lines in Figure 4. 

The final converged surfaces are presented in solid lines in the same figure. The objective 

function associated with the phreatic surface decreases from 1.03 x 10-2 to 3.44 x 10-5 

and the one of the interface changes from 3.98 x 10-2 to 1.11 x 10-5 . The average flux on 

the free boundaries is around 10-4 • 

Two more saltwater intrusion problems are solved with the h-adaptive scheme com­

bined with the optimization technique. The third problem is adopted from Detournay and 

Strack [13]. It is an unconfined aquifer problem with geometry given by Figure 3, with 

the two angles a = 30° and /3 = 15°. The other parameters are: K = 40 m/day, Q = 
40 m2/day, and p8 /pr = 1.4 {representing the density ratio in the Dead Sea.) It is noted 
that the boundary condition Q /Kb can not be directly applied because the thickness b is 

not initially known. The thickness b is updated at each iteration as the free surface and 
interface are adjusted. 

The problem is solved by the adaptive BEM using an initial coarse mesh. The geometry 

and boundary conditions are described with a minimum number of nodes. Nine nodes are 

used for the current case {including four double nodes at the corners), which are shown as 

Figure 5. Such a mesh is then automatically graded through the iterations by the adaptive 

process. The final mesh and location of free surface and interface are depicted in Figure 
6. Analyzing these two meshes, we observe that the number of nodes has increased from 

9 to 40. The error tolerance used to stop the refinement process is 5 x 10-3 • 

The last example is adopted from Bear and Dagan (14] following a Hele-Shaw model 

setup. The geometry is that of Figure 1. The parameters are: b = 27 cm, K = 69 crn/s, 

Psi Pr = 1.025, and Q = 3.9 cm2 /s. The initial free interface is shown in dashed line in 
Figure 7. There are 11 initial nodes (including 5 double nodes) represented by square 

symbols. The final mesh, which contains 27 nodes shown in circle symbols, is plotted in 
solid line in Figure 7. The error tolerance used is 5 x 10-2 • 

6 Summary and Conclusion 

A numerical procedure for locating the interface and free surface in coastal aquifer saltwa­

ter intrusion has been developed. The technique involves the use of an h-adaptive BEM 
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which automatically refines the solution mesh to achieve optimal accuracy. The search for 

the unknown locations of free boundaries is guided by a nonlinear programming procedure. 

The combination of the two techniques enables an effective, automated solution procedure 

for saltwater intrusion problems. Several confined and unconfined aquifer problems are 

solved as a demonstration. Future extensions will consider the fl.ow in the saltwater zone 

and aquifer heterogeneity. 
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Figure 1: A confined aquifer problem. 
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Figure 4: Free surface and interface locations of an unconfined aquifer. 
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Figure 5: Initial mesh for the second unconfined aquifer problem. 
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Figure 6: Final mesh and converged free surface and interface for the second unconfined 

aquifer problem. 
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Figure 7: Initial and final mesh for the second confined aquifer problem. 
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