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FORWARD
 

Sustainable production of food and forage with a focus on plant adaptation to 
stress environments will be a continued priority for developing countries in the
future. Since many areas of the world which support substantial human populations 
are drought prone, such as the subsaharan African zone and others, the primary
focus has been on drought. However, one of the greatest restraints to sustainability
of agriculture worldwide is the lack of sufficient soil nutrients for crop growth, orother soil constraints such as acidity or salinity which hinder crop production
substantially. 

Optimizing soil fertility or amending acid and saline soils to achieve high
production is difficult in areas of low economic stability since inputs are costly or
quite often technically not feasible. The other obvious alternative to increase
stability in stress areas is by genetic improvement of crops. Dr. Donald L. Plucknett,
in a recent lecture on science and agricultural transformations, stated that "while 
not all yield gains in the Green Revolutions can be attributed to plant breeding, it
is doubtful such gains would have taken place without the new varieties or hybrids".
Development and release of new and improved germplasm is probably the most
economic method of technology transfer currently available. According to Dr. Pluck
nett, most studies indicate about half of yield gains can be attributed to genetic
improvements. This statistic is undoubtedly argued in many circles, but regardless
of the final figure, gains from genetic improvement are substantial. 

In the context of dwindling food and forage supplies, greatly exacerbated by soil 
stress problems, it is critical to find ways to match crops with inherent variability
to the native enigmatic environments through available technology which makes 
use of the natural resource base. An international workshop was convened in 1993
with the intent of providing a broad range of scientific viewpoints with a primary
focus on the genetic adaptation of plants to soil stresses. This workshop was to set
the stage for technology transfer and implementation during the next decade for 
both more developed and developing countries. 

The papers in these proceedings are a compilation of ideas pertinent to under
standing the extent of soil stress constraints, identification ofthe tools to overcome
these constraints, providing examples of success stories where genetic improvement
has been effective, and deliberation of how to implement programs. 

Appreciation is expressed tc. INTSORMIL, USAID and the University of Ne
braska for financial support of the workshop, to the organizing and editorial
committee, and to the authors who prepared and presented these papers. 

J.W. Maranviile 
Department ofAgronomy 
University ofNebraska 
Lincoln, NE 
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Discipline Interactions in the Qvest 
to Adapt Plants to Soil Stresses 
through Genetic Improvement 

Robert E. Schaffert 
EMBRAPA/CNPMS 

Sete Lagoas, Mg, Brazil 

ABSTRACT 

Tropical soils are inferior in fertility compared to temperate soils. The "'ropical
Belt" of the world contains 58 percent of the world's land area suitable for agricul
ture production. The adaptation of plants for tropical agriculture is frequently 
synonymous with adapting plants to soil fertility stress constituents. This phe
nomenon is by no means limited to the tropics, as the acid soils and subsoils of the 
Southeast U.S. are examples where plant improvement programs are often associ
ated with adapting plants to soil stress. Modern plant breeding has traditionally
produced crop cultivars that arevery productive when combined with an intensive 
input management regime. The merits and difficulties of establishing collabora
tive, multidisciplinary, interdisciplinary research and crop cultivar development 
programs to increase nutrientuse efficiency and tolerance to toxic elements are 
reviewed and discussed. The goal for increasing nutrientuse efficiency is not to 
increase the mining potential of soils by plants or develop a temporary fix for soil 
fertility problems, but rather to transform marginal agriculture land suitable for 
agriculture production into productive sustainable agriculture land by developing 
and utilizirg cultivars with soil stress tolerance and improved nutrient use effi
ciency. 

INTRODUCTION 

I wish to thank the organizing committee for the honor and opportunity 
to address this distinguished group of scientists and research administra
tors. The theme ofthis workshop, "Adapting Plants to Soil Stresses" has been 
one of the principle thrusts of my professional agenda for the past two and 
one-half decades. Over the past 22 years I have had the opportunity to work 
collaboratively in research programs that promote increased sustainable 
food production in the tropics. In general, I have learned that tropical soils 
are inferior in fertility, compared to temperate soils. What are classified as 
good soils in the tropics, in many cases would be classified as only marginal 
soils in the "breadbasket" of the Midwest ofthe United States. The "Tropical
Belt" of the world contains 58% of the world's land area suitable for agricul
ture production as well as 73% of the world population (FAO,1991). The 
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adaption of plants for tropical agriculture is frequently synonymous with 
adapting plaus to soil stress. This phenomenon is by no means limited to 
the tropics. The acid soils and subsoils of the Southeast U.S. are examples 
where plant improvement programs are often associated with adapting 
plants to soil stress. 

Much of what I have to express today is built on the experience of nearly 
17 years of conducting research in the acid savannas of Brazil and over four 
years as the project manager of the Sorghum and Millet, and Peanut 
Collaborative Research Support Programs (CRSPs). These CRSPs of the 
Agency for International Development (A.I.D.) maintain collaborative re
search projects in the tropics of Africa, Asia, and Latin America. 

Initially I would like to emphasize the point that the goal for increasing 
nutrient use efficiency is not to increase the mining potential of soils by 
plants or develop a temporary fix for soil fertility problems. Low and 
marginal fertility of the majority of tropical soils requires Research and 
Development (R&D) institutions located in these regions to develop crop 
production systems that utilize crops with enhanced efficiency in the ability 
to utilize nutrients from the soil or applied fertilizer. The overall goal of this 
type of research thrust is to increase the area ofland suitable for agriculture 
production as well as reduce the amount of fertilizer required for sustainable 
crop production. This has implications on food security, nutrient reserves for 
fertilizer production, environmental degradation caused be fertilizer nutri
ent erosion, and sustainable crop production. 

A BRAZILIAN EXAMPLE 

The "Cerrado", L. acid savanna eco-region of Brazil considered unsuitable 
for agriculture crop production as recently as 20 years ago, covers an 
extension of 205 m ha, of which 175 m ha are in Central Brazil. Approxi
mately 112 m ha of the "Cerrado" are considered adequate for developing 
sustainable agriculture production in Central Brazil (FAO, 1992). The soils 
of the "Cerrado" are commonly characterized by low pH, low phosphorus 
availability, low fertility, and toxic aluminum (Sanchez and Salinas, 1981). 
Today, 12 million hectares of the Brazilian "Cerrado" are in crop production, 
producing 25% of the Brazilian rice, maize, and soybean production, 20% of 
the coffee production, and 15% of the bean production. Another 35 million 
hectares of improved pastures have been developed in the "Cerrado", carry
ing 53 million head of cattle and producing 40 %of Brazil's meat production 
and 12% of its milk production. 

2 



The area planted with maize in the "Cerrado" ofBrazil has increased from 
1.6 million hectares in 1970 to over 3.5 million hectares in 1990 while the 
average productivity has increased from less than 1.4 t/ha to over 2.4 t/ha.
The average maize yield, in several municipalities (counties) located in the 
"Cerrado", where EMBRAPA-generated technology for acid soils is utilized, 
is over 4.0 t/ha. 

Total grain production (rice, maize, beans. soybeans, and wheat) in the 
"Cerrado" has increased from 5.6 m T in 1970 to over 20 m Tin 1990. During
this time period average grain productivity of both maize and soybeans 
increased from 1.4 and 1.2 t/ha to over 2.4 and 2.0 t/ha respectively. This 
reflects the results of interdisciplinary and multidisciplinary crop 
improvement programs directly aimed to overcome soil fertility problems by 
utilizing genetic resources more efficient in nutrient uptake and utilization. 

IDENTIFYING THE PROBLEM 

The world's arable land resources are finite. For approximately 15 billion 
hectares ofland surface on the planet earth, only 22%, or 3.3 billion hectares 
are considered agriculturally productive (Buringh, 1989). Eighty-five per
cent of this productive land is classified as low or medium in productivity.
Nutrient stress is one of the leading causes for reduced crop productivity. 

The expanding human population or "population monster" in it's search 
for food and fuel for today's needs puts tomorrow's sustainable agriculture
production and natural resources preservation in jeopardy in many areas of 
the world (Lal, 1991). A logical and effective approach to arrest and invert 
this type of environmental degradation is to increase the production and 
productivity on land suitable for agriculture. This includes increasing sus
tainable agriculture production on productive land as well as transforming 
marginal lands into sustainable productive lands. A study on soil research 
priorities by the National Research Council (National Research Council, 
1992) prioritized developing and selecting appropriate crops and cultivars 
for specific soil conditions as one of four major research thrusts needed for 
future agriculture sustainability. 

The underling principal of plant improvement programs is the presence
of genetic variability (Hallauer, 1991) for the trait or traits in question and 
the ability to manipulate this genetic variability for improvement of the 
characteristics desired. During the past several decades, plant scientists 
from several disciplines have improved food and feed production systems
around the world. Plant breeders, working collaboratively with plant pa
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thologists and entomologists have identified genetic variation for disease 
and insect resistance and utilized this resistance in developing highly 
efficient production systems (Khush, 1991; and Ponti and Mollema,1991). 
Plant breeders working collaboratively with other disciplines have also 
made improvements in food and feed quality (National Research Council, 
1988). Collaborating with agronomists and agriculture engineers, plant 
breeders have contributed to advances in mechanization, harvesting and 
utilization improvements (Hauptli et al., 1990). However, if we observe 
closely, much or nearly all the success of collaborative breeding programs 
have been associated with aspects of the production system above the soil 
surface. 

Modern plant breeding has produced crop cultivars that are very produc
tive when combined with an intensive input management regime (Hauptli 
et al., 1990). The Symposium on Plant Breeding in the 1990z (Stalker and 
Murphy, 1991) had one session on modification of plants to tolerate environ
mental stresses. However, only one paper was presented in the area of soil 
fertility stresses. In this paper (Dvork et al., 1991) emphasized the impor
tance of understanding the genetic and physiological mechanisms by which 
plants cope with adverse conditions in order to develop efficient strategies 
for breeding stress tolerant cultivars. He divided stress caused by soil 
conditions into two categories; deficiencies of nutrient elements, and toxic 
concentrations of elements or salts. He defined toxic stress as being more 
important, as deficiencies may often be remedied by the application of 
appropriate fertilizers. In reality, the scenario is often not this simple; 
nutrient deficiencies and toxicities are often found together. Acid soils of the 
tropics are in general characterized by low pH and low levels of awilable 
phosphorus, potassium, and micro-nutrients (principally zinc), low cation 
exchange capacity, as well as toxic aluminum and manganese. Aluminum 
toxicity in the top soil, due to soil acidity, can be ameliorated with the 
application oflime, but this practice is not realistic for the subsoil. Likewise, 
the addition of adequate fertilizer may not be an economical sustainable 
practice, especially in the tropics. In my judgement, a breeding strategy for 
more efficient use of macro- and micronutrients is at least as important as 
a strategy for breeding for toxic elements, if not more so. 

Analyzing this more closely, two major factors can be identified that 
contribute to the lack of breeding strategies that deal with developing 
cultivars for soil fertility stresses. First, it is much simpler to identify and 
score resistance and susceptibility to a disease like anthracnose or rust than 
to identify a plant with greater efficiency in phosphorus uptake and utiliza
tion or nitrogen utilization. We might indirectly select for rertain soil 
characteristics by selecting for greater yield. Dr. Charles Foy (Foy et al., 
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1974) relates the case where the best wheat cultivars developed in Indiana, 
such as Monon, performed poorly when evaluated in Ohio, however the 
wheats developed in Ohio, such as Seneca, performed well in both Indiana 
and Ohio. Carefully evaluating these data, Foy and co-workers identified 
differences in innate response to soil acidity as the cause of differential yield 
responses. The soils in Ohio are more acid and have higher aluminum 
saturation. Consequently, the wheat cultivars bred and selected in Ohio 
were more tolerant to this soil condition, whereas those selected in Indiana 
were susceptible to the higher levels cf aluminum saturation in the Ohio 
soils and consequently performed poorly when tested in Ohio. The develop
ment and refinement ofscreening and selection methodologies for improving
nutrient use efficiencies is of utmost importance. Interdisciplinary collabo
ration, including biotechnology, is essential in developing these new devel
opment tools. 

Secondly, the basic philosophy of R&D of the U.S. research and extension 
system over several decades, from the 1940's to the mid 1980's and even 
continuing at some institutions until today, is based on the capacity of soil 
scientists to develop technologies for nutrient management (King, 1990) and 
to correct soil deficiencies (Kellogg, 1975) while the plant breeder conducts 
his crop breeding program using all the latest technologies developed by the 
soil scientists. In this system, the presence of any genetic variability for 
improved efficiency in soil nutrient utilization will be completely unrecog
nized. In fact, we may actually be selecting for reduced efficiency in utilizing
soil nutrients in these high input scenarios. 

The great success of the U.S. research and extension system in developing 
technologies for increasing productivity with the use of fertilizers and 
promoting increased fertilizer use to enhance production has resulted in 
increased crop productivity over the past decades. This highly successful 
program has also lead to the promotion of outstanding soil scientists to head 
agronomy and plant and soil science departments throughout the land grant
university system of the U.S. I believe it is safe to say that the research 
philosophy in many land grant universities today promotes plant breeding 
systems where spegregating germplasm is evaluated under "ideal" or "opti
mum" soil fertility. I do not intend to discuss the merits or shortcomings of 
this research philosophy, however, I believe it is obvious that it will not lead 
to the identification and selection of germplasm with improved efficiency in 
plant nutrient utilization. 

I do not want to leave the impression that the lack of collaborative 
interdisciplinary research activity to develop cultivars more efficient in 
nutrient use and more tolerant to toxic elements is caused by the lack of 
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collaboration by the soil scientists. During the past five years in my quest to 
foster this type of collaborative research, I have encountered as much 
resistance from the plant breeders as from the soil scientists. An exception 
to this resiatance has been the interdisciplinary breeding and soil fertility 
management projects involving maize and sorghum development for the 
"Cerrado" at the National Maize and Sorghum Research Center of Brazil 
(CNPMS/EBRAPA). 

The merits of a coP aborative, multidisciplinary, interdisciplinary re
search program to increase nitrogen, potassium, and phosphorous efficiency 
in U.S. agriculture are obvious when the total consumption of N, P, and K 
is considered. U.S. agriculture consumed over 20 million tons of plant 
nutrients in 1992 (USDA/ERS, 1993). During 1992, U.S. maize production 
alone consumed 4.9 million tons of nitrogen, 1.9 million tons of phosphate, 
and 2.3 million tons of potash, nearly half the plant nutrients consumed in 
all agriculture activity. An increase in the efficiency of only five or ten 
percent represents an enormous savings A ten percent increase in the 
efficiency of the plant nutrient use in maize would represent a savings of 
over 900,000 tons. At an average value of$150 per ton this would represent 
an annual savings of $136 million to maize producers. This becomes even 
more important when economic and ecological sustainability, and reserves 
of known world nutrient stocks are concerned. Considering the large quan
tity of nitrogen consumed in the U.S. for maize production, a gain in 
utilization efficiency has strong ecological implications. 

GENETIC VARIABIUTY FOR EFFICIENCY
 
OF SOIL NUTRIENT UTILIZATION
 

Plant breeding is the science and art of effective management of genetic 
variability to attain desired breeding goals (Hallauer, 1991). The presence 
of genetic variation for efficiency in nitrogen, phosphorus. and potassium 
uptake and utilization in crop species is intuitively obvious. The more 
complex the biochemical process, the more enzymes involved in controlling 

Table 1. Total U.S. consumption of plantnutrients (1,000 nutrienttons) and1 plant 
nutrient use by maize and soybeans in 1992. 

Maize Soybean'. Other Total 
Nitrogen 4,886 97 6,417 11,400 
Phosphale 1,854 319 2,037 4.210 
Potash 2.256 583 2,206 5,045 
Total 8,996 999 10,660 20,655 

Source: USDNERS Statdstical Bulletin #842. 
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the system, and the greater the probability for genetic variation; or to put it 
another way, the greater the genetic variation. 

I remember some 25 years ago, when I was a graduate student at Purdue 
University, I became involved in selecting sorghum lines for greater protein
content. In 1970, I planted 270 lines selected for high protein content and 
30 lines selected for low protein content in a newly acquired area of the 
Agronomy Farm. Side-dressing of nitrogen was delayed due to frequent
rains. The block of 30 low protein lines hd symptoms of nitrogen deficiency,
whereas the block of 270 high protein lues did not portray any symptoms
of nitrogen deficiency. This does not necessarily establish a correlation 
between protein content and nitrogen use efficiency, but does exemplify the 
availability ofgenetic variance for nitrogen use efficiency. 

My first experience with genetic variability for tolerance to low soil pH
and toxic aluminum was in 1973. I had recently anived in Brazil and had 
planted several sorghum evaluation trials. One trial of U.S. commercial 
hybrids planted on the state experiment station near Sete Lagoas, Minas 
Gerais began showing variability for moisture stress. After several days of 
mid-season moisture stxess, some hybrids were near the permanent wilting
point. Coincidently, Dr. Charles Foy, a plant physiologist of the USDA at 
Beltsville, Maryland was visiting Brazil and presented a seminar on his 
experiences with plant tolerance to toxic levels of exchangeable aluminum 
in the soil. This seminar alerted my colleagues and me to the possibility of 
a chemical barrier in the soil impeding root development into the subsoil. 
After the seminar, Dr. Foy accompanied us to the field where it was 
established that the top 20 centimeters of the soil had been corrected for soil 
acidity with a previous applicatior of lime. The sorghum hybrids suffering
from moisture stress had roots concentrated in the top 20 cm layer of the 
soil, whereas the root system of the hybrids showing no stress, had developed
well below the top 20 cm layer. Later analysis of the soil confirmed a 
difference of pH and aluminum saturation between the top 20 cm soil layer
and the 20 to 40 cm soil layer. As it turned out, this was a narrow window 
of opportunity; all the hybrids were susceptible to aluminum toxicity at 
slightly higher levels of aluminum saturation. 

These observations lead to the development to an interdisciplinary re
search project to develop screening methodologies, to screen sorghum
germplasm for tolerance to aluminum toxicity, and develop improved culti
vars with tolerance to aluminum toxicity. More recent research results 
indicate that some Ugandan sorghum lines (CMSXS 189, 3DX57/1/1/9D;
CMSXS 208, 5DX61/6/2; and CMSXS 209, IS2744) selected and developed
for tolerance to aluminum toxicity were also more efficient in the use of 
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phosphorus and potassium (Pitta and Santos,1992). Selecting under field 
conditions has also given us an array of changes in nutrient use efficiency. 
I believe our program has in fact been selecting genotypes tolerant or more 
efficient to the "Cerrado soil fertility complex", than to just tolerance to 
aluminum toxicity. 

This interdisciplinary project resulted in the development of an array of 
screening tools involving controlled nutrient solutions, greenhouse pots and 
flats, and field screening. The development and perfection of these method
ologies involve close monitoring and evaluation by the multidisciplinary 
research team. The germplasm (Tables 2 and 3) identified as tolerant to the 
"Cerrado Complex" (Borgon-ovi et al., 1984 and 1986) in the early stages of 
this interdisciplinary program still remain competitive in 1990. However, 
new sources of aluminum to!erance has been identified in the last four years 
with more production potential and apparent superior tolerance to alumi
num toxicity (Santos and Pitta, 1992). High yielding aluminum tolerant 
sorghum hybrids (Table 4) developed at CNPMS/EMBRAPA using suscep
tible female lines and newly developed restorer lines are being evaluated in 
the "Cerrado" of Central Brazil (Santos et al., 1992) with excellent results. 

Table 2. Sorghum lines tolerantto aluminum toxicity underfield andgreenhouse 
conditions at CNPMS/EMBRAPA, Sete Lagoas, MG. Brazil 

Pedigree Origir. Type of screening 

9-DX-91 I Uganda C/Sn/S 
5-DX-61/6/2 Uganda C/Sn/S 
IS-7173-C (SC283) Tanzania C/Sn/S 

156-P-5-Screie-1 Uganda C/Sn/S 

IS-3625-C (SC549) Nigeria Sn 

IS-12666-C (SCI175-14) Ethiopia C/Sn/S 

IS7254-C (SC566-14) Nigeria C/Sn 

V-20-1-1-1 Uganda C/Sn 

CMS-XS-601 Brazil C/Sn 
IS-12564-C (SCO48) Sudan C/Sn/S 

IS-1335-C (SC418) Tanzania C/Sn/S 

3-DX-57/I/1/O Uganda C/Sn/S 
IS-2744 C/Sn 

IS-7 5<-C (SC408) Nigeria C/Sn/S 

IS-1309-C (SC322) Tanzania CSVnS 

IS.12612 C (SC 112-14) Ethiopia C 

IS-8327-C Paquistio C 
IS-7419-C Nigeria C 

MN- 1204 Sn 

'C- Flodi screening 
Sn - Nutrient solution screenlng 
S - Greenhouse screening vAth soil 

Source: (Borgonovi ete., 1986). 
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34.2 

Table 3. 	 Reaction of selected Al-tolerant sorghum lines in nutrient so!ution 
grown at 4.8 ppm aluminum at CNPMS/EMBRAPA, Sete Lagoas, Minas 
Gerais, Brazil. 

Restoration Relative seminal
Identification Origin Group reaction I root growth (%) 
IS7254C(SC566-14) Nigeria Caudaturn B 39.5
 
5DX 61/6/2 Uganda 
 R 38.6
 
MN 1204 
 38.5
 
IS 7173C (SC 2R3) Tanzania Conspicium B 

IS 1335C (SC 418) Tanzania Caudatum-Kafir R 28.6
 
IS 12666C (SC 175-14) Ethiopia Zera-Zera R 26.0
 
IS 3625C (SC 549) Nigeria Conspicium R 23.4
 
V 20-1-1-1 Uganda 
 R 20.4
 
15-&P-5-Serere I Uganda 
 R 17.2
 
IS 12564C (SC 048) Sudan Zera-Zera R 15.5
 
IS 1309C (SC 22) Tanzaniu Nigricans PR 12.8
 
IS 7542C (FC 408) Nigeria Caidatum-Guineense R 12.7
 
3 DX 57 /'/1910 Uganda 
 R 11.9
 
(TX 2 3 6 x SC 112-14)der Brazil 
 R 11.8
 
L J2612C (SC 112-14) Ethiopia Zem-Zera 
 R 8.7
 
TX 2536 USA 
 R 5.7
 
IS 8361 (Wheatland) USA 
 B 3.3
 
TX 623 (Al-sensitive) USA 
 B 4.5 

'B - Nonrestorer, PR - Partially restores (cytcpaamlc malo-stesle produced) hybid to male fertility, R - Fully restores
(cytoplasmic male-steoile produced) hybrid to male ferdlty. 

Source: (Borgonov et at., 1984). 

Table 4. 	 Response of experimental sorghum hybrids tolerant to aluminum toxic
ity (45%aluminum saturation)at CNPMS/EMBRAPA, Sete Lagoas, MG,
Brazil (1991/1992). 

Days Grain 
to Height production HarvestPedigree 	 flower (cm) (0a) index
 

TX 1391AX (SC283 x SC326-6)30-1-1 
 78 147 4.65 0.55
 
IS0187A X (SC283 x SC326-6)30-1-2 
 76 175 4.65 0.49
 
TX 1399AX (SC283 %SC326-6)30-1-2 
 82 150 C.52 0.55
 
IS 0187A x (SC283 x SC326-6) 29-2-1 
 76 163 4.37 0.49
 
3DX57/I/I/9D (toleran, ine) 
 96 177 3.6 0.27 

Source: (Santos, 1992) 

New generation experimental sorghum hybrids developed with aluminum 
tolerant female and restorer lines are in the initial evaluation stage at 
CNPMS/EMBRAPA. The goal of this interdisciplinary project is to have 
these new generation hybrids commercially available in the next one or two 
years. 

9 



INTERDISCIPLINARY RESEARCH APPROACH
 

I am not sure ifAgronomy 101 or Plant Breeding 201 or 520 orients today's 
agronomy students much differently, compared to 20 years ago, with respect 
to the presence of this type of genetic variability. However, 1 feel quite 
comfortable in predicting that the training of today's plant breeders with 
respect to soil fertility and plant nutrition and today's soil scientists with 
respect to genetic variation is not much different today than it was 25 years 
ago. Assuming that today's agronomy graduates are aware of these differ
ences, it is quite arrogant to think that the plant breeder alone, can effec
tively develop plant cultivers more efficient in nutrient uptake and utiliza
tion without the collaboration ofsoil scientists, plant physiologists and other 
disciplines. "Oh, but that's obvious" you say. Then why is it so difficult to get 
plant breeders and soil fertility experts together in the same research 
program? 

I have had some feedback on this question and some proper thoughts that 
I would like to discuss with you today. The first prerequisite for collaborative 
research, is fundinii for collaborative research. This essentially involves 
"interdisciplinary collaboration" between research administrators who de
termine where the research dollars are allocated ,nd the research theme 
teem. Research administrators allocate resources to research projects only 
after they are convinced that a problem exists, are convinced that R&D can 
efficiently resolve the problem, and are convinced that a reasonable prob
ability exists to resolve the problem and have positive economic and social 
impact. I agree, it is not intuitively obvious that the maize and soybean 
producers of the midwest U.S. can and will benefit from cultivars and 
technology developed for tolerance to toxic aluminum in acid soils and 
subsoils. A paper to be presented later at this workshop by Drs. Magnavaca 
and Bahia Filho (Magnavaca, R. and A.F.C. Bahia Filho, 1993) will show the 
positive correlation between aluminum tolerance and phosphorus utiliza
tion efficiency in maize. With this information it is much easier to convince 
the research administrator from the midwest about the potential returns 
from such a research program. The array of benefits in developing cultivars 
more efficient in nitrogen utilization are more obvious, but the probability 
of success is perceived as even less than more efficient phosphorus utiliza
tion. 

I would like to relate another incident r,garding collaboration between 
soil scientists and plant breeders. At the "Second International Symposium 
on Plant-Soil Interactions at Low pH" held at Beckley, West Virginia in June 
of 1990, a comment was made in the plenary session that it was hoped that 
the international symposium would foster a marriage between plant breed
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ers and soil scientists for collaborative R&D, similar to the partnerships
between plant breeders and plant pathologists or plant breeders and ento
mologists formed over the past decades. A prominent international soil 
scientist responded; "Be careful with this proposed man4.'ge.I was involved 
in establishing the criteria that resulted in the selection of the miracle rice,
IR-8, but who got the credit? The plant breeders seized the credit, with not 
a mention ofthe soil scientist who established the selection criteria for high
yielding rice. Beware!!! Now that's a extremely strong statement, but with 
a very important message. I later had the opportunity to discuss this episode
with Dr. John Axtell. He remarked that plant breeders frequently get so
evolved and caught up in their work that they neglect to give due credit and 
recognition to their collaborators. I hope this case is the exception and not 
the rule; none-the-less, it emphasizes the importance of remembering all
collaborators when releasing new germplasm and cultivars, even those 
involved at the very beginning of the process. 

WORKSHOP AGENDA 

The spirit of this workshop is to roview and document the nature of the 
problem in sdapting or developing plants tolerant to soil stresses, review 
and discuss solutions to problems, as well as to document impact from 
ongoing R&D in this area from selected sites around the world. Each session 
of this workshop will exemplify the complexity of the "Adaption of Plants to 
Soil Stress". I am not familiar with all the success stories to be related in 
Session VII, but the ones that I am familiar with, involve both interdiscipli
nary and multidisciplina.y collaboration from research planning and project
preparation through the execution and evaluation phases. In my opinion
discipline interactions are not a question of choice when addressing this 
complex theme of adap ,ng plants to soil eltresses, but one of necessity. 

CONCLUSIONS 

In conclusion, I would like to briefly summarize the principal points and 
recommendations. 

Soil fertility stresses or soil nutxient stresses, both deficiencies and tox
icities, ar phenomenons that reduce crop yields and limit sustainable 
agriculture production in the tropics as well as in many temperate regions. 
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Genetic variability for nutrient stress exists and is available in genetic 
resource banks for use in genetic improvement programs. 

Sustainable production systems with improved nutrient use efficiency are 
achievable and beneficial in temperate soils as well as tropical soils. 

The development of crop cultivars more efficient in nutrient utilization 
and tolerant to nutrient element toxicities is essential for sustained crop 
productivity increases throughout this decade and the next century. 

Collaborative research programs with mutual objectives, involving insti
tutions and scientists from both temperate and tropical geographical regions 
are desirable and recommended for developing cultivars with improved 
tolerance to soil stresses. 

Interdisciplinary research collaboration is essential for developing culti
vars and prcduction technology for tolerance to soil toxicities and improved 
nutrient use efficiency. 

Interdisciplinary collaboration and communication between research ad
ministrators and the interdisciplinary research team is essential for allocat
irg adequate research resources to this important problem. 

Agricultural land suitable for production, but considered marginal due to 
soil fertility stress, both toxici ties and low fertility, can be transformed into 
productive sustainable agriculture land by developing and utilizing culti
vars with soil stress tolerance and improved nutrient use efficiency. 
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ABSTRACT
 

No soil can sustain agricultural production without proper management andrequiredelemental inputs. Management requirements differ depending upon type
of soil and type of production attempted. The changing social and economic 
systems, as well as chemical andphysical changes in the soil, require thatagricul
tural scientists develop several viable munagement alternatives from which indi. 
vidual farmers can select as they seek continued production from their lan'd.
Management options include both soil altering practices and genetic based plant
alterations to assure maximum flexibility. This manuscript offers management
options for major limitations to food production such as soil acidity, salinity,
alkalinity, drought and nutrient deficiency. Brief evaluations of historical suc
cesses and limitations are also presented. 

INTRODUCTION 

In the broadest sense, every soil has problems. Solutions exist for most 
soi] problems. However, many of the solutions are not practical or even 
feasible in some existing economic, social and political environments. When 
viewed at the farm level, individual ability to cope with specific soil problems
differs from neighbor to neighbor and also with time as the composition and 
circumstances of an individual farm family changes. The sustainability of 
the farming operation, and thus the entire agricultural process from field to 
grocery shelf, relies on the existence of management options to cope with 
changing conditions. It, therefore, behooves the research community to seek 
as many solutions as technically possible to each problem. By providing
several management options from which each individual farmer can choose 
to best fit his situation, individual and societal sustainability are enhanced. 
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PLANT VS. SOIL OPTIONS FOR POOR SOILS
 

When the lucal soil condition is not ideally compatible with the growth of 
the desired plant, two basic options exist, alter the soil, or alter the plant. 
Often there exists a spectrum of possibilities between these two basic options 
where a partial alteration of the soil can be coupled with altered plant 
adaption. In this context, our overview of individual categories of 1jil 
problems will also consider potential compatibility of both plant and soil 
alteration practices. 

COLD SOIL PROBLEMS 

Closely related to climatic conditions, soil temperature, especially cold 
temperatures, present severe limitations to the use of many soils. Tech
niques to alter soil temperature are expensive and economically viable only 
when high value crops are produced. It is even more difficult to alter high 
soil temperatures although some practices can reduce maximum tempera
tures for critical periods during seedling growth. There have been substan
tial advances in breeding cultivars that can mature in fewer days. This 
characteristic is especially useful in the colder temperate zones. Further 
genetic development of crops that are able to mature in shorter growing 
seasons has the potential to expand corn and grain production in northern 
Europe, Asia and America. Adapting corn and wheat to 3°C colder mean 
annual soil temperatures could potentially access 80 million ha of corn land 
and 90 million ha of wheat land in these northein temperature areas (Buol 
et al., 1990). 

There is potential to adapt crops o another type of cold soil conditions in 
mountainous areas of the tropics. Unlike the temperature zone, cold soil 
limitations at high elevations in the tropics are not affected by seasons but 
have essentially uniform temperatures throughout the year. Such staple 
food crops as potatoes, cassava and rice, and perhaps pasture grasses and 
legumes, are likely species to consider. Most of the potential benefit from 
this technology is in the Andean Mountain valleys of South America and 
highlands of Africa. 

DROUGHT STRESS 

No soil is entirely free of drought stress when used for agricultural crops. 
Rainless periods of sufficient length to slow physiological activities occur in 
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even the most humid climates. Of course, the severity and frequency of 
drought varies and can only be evaluated as probabilities for any soil or 
location. 

The most obvious soil ameliorative practice is supplemental water via 
irrigation. For irrigation availability ofwater and the economics of obtaining 
it have to be evaluated site by site. 

Without irrigation, plants with a deeper root system are better able to 
withstand drought during the growing season. No single factor limits root 
penetration. In some soils mechanical rupture of a hardpan is effective. In 
other soils where root depth is limited by chemical composition of the soil, 
plant alteration is an effective technology. 

Reducing run-off, and thereby increasing infiltration of ambient rainfall 
is feasible via several technologies. Conversely, encouraging run-off on part
of the landscape to increase run-on in adjacent areas is practiced in some 
areas but has limited applicability. 

Any improvement in the ability of plant species to deepen its root system 
and thus cope with periods when moisture supply is inadequate to optimize
the physiologic functions ofthe plant is applicable to all cropland. Ability to 
cope with short-term drought during critical physiologic periods, such as 
pollination in corn, is an especially desirable characteristic. 

SALT STRESS 

Salinity further aggravates drought in many agricultural systems. The 
affect of increased soluble salt concentration in soil water, i.e. salinity, may 
be as temporal as seedling injury because fertilizer is placed too close to the 
seed or it may completely negate efforts to grow crops if it permeates the 
entire root zone. 

McWilliams (1986) presented three major options available to combat 
salinity: 

" Improved water management, including scheduling of irrigation 
to reduce the rise of the water table and the amount of salt intro
duced. 

" Development of satisfactory systems to drain salts away from the 
root zone and ultimately from the area, where they can be dis
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posed ofby evaporation, desalinization or drainage into a salt 
sink or the ocean. 
Research to develop plants that are more salt-tolerant. This may 
improve short-run problems, but over the long run the efficacy of 
this solution is not clear. It may merely postpone the time when 
capital investment for drainage and salt disposal must be made. 

Regardless of what level of salinity a plant can be adapted to tolerate, if 
soluble salts are allowed to accumulate in the root zone, where water 
evaporates or is transpired, this tolerance level will be exceeded. However, 
plant tolerance to salinity can provide a buffer against some seasonal 
salinity where the farmer is forced to use inferior, often salty, irrigation 
water. There are limited areas where, if drainage is provided, more saline 
sources ofwater could be utilized. Also, sequential use of drainage water for 
irrigating more salt tolerant crops reduces the volume of salty water that 
has to be discharged. Perhaps the most far reaching goal would be to provide 
a plant that can grow in salt concentrations equivalent to seawater, provided 
a drainage system were provided that could return such water to the ocean. 
In effect the soil in such scenarios would be only a hydroponic media. 

ALKALINE SOILS 

Soils with pH values above 7.5 present unique micronutrient availability 
problems. Iron, manganese, boron, zinc and copper deficiencies are fre
quently observed in crop plants. Sulfur additions to acidify the soil or direct 
foliar application of needed micronutrients are the most frequently used 
management techniques. Plant alteration to increase root exudate acidity 
and thereby enhance ability to solubilize these elements in alkaline soils has 
potential benefits. 

ACID SOILS 

Soil acidity has been used as an easily determined parameter to indicate 
more than one soil related constraint to plant growth. Except for naturally 
calcareous soil materials, soil acidity is present in most soils. Even soils with 
calcium carbonate rock present at a shallow depth develop acid reactions in 
the plow layer as the result of additions of acid forming fertilizers and/or the 
natural acidification from organic matter humification. 
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For all practical purposes, soil acidity is the same condition commonly 
referred to as aluminum toxicity. The more acidic the soil, the higher the 
ratio of Al ions to basic Ca, Mg and K ions on the cation exchange complex 
in the soil. The effect of a high ratio of exchangeable Al to bases results in 
reduced root elongation as seen for soybean roots Figure 1 (Arya et al., 19012). 
Application of lime is the proven technology for correcting acid soil condi
tions. Howe,,or, this method has several limitations. The amount of liming 
material required ranges upward from one T/ha, thus extensive infrastruc
ture requirements are essential. To be effective, liming materials must be 
physically mixed with soil, thus cultivation equipment is required and often 
the depth of mixing is limited to a few centimeters, especially with power 
limited farmers. Although a maicrity of the acid soils have low fertility in 
the subsoil, cultivars are needed that will extend their roots into acid, 
aluminum toxic, subsoils for the purpose of obtaining water during rainless 
periods in the growing season. 
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Figure 1. Effect of aluminum saturation on soybean root growth in the topO0 to 12 
cm in an OxisoL, Sitiung IA. (After Arya et aL 199) 
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Aluminum toxicity, when defined as extractable Al/extractable Al plus 
exchangeable Ca, Mg, K greater than 60% within 50 cm of the surface, is 
estimated to be precent in 56% of the soils in the humid tropics with less 
than four consecutive months ofdry season (Sanchz, 1987). Aluminum toxic 
conditions (>60% Al saturation) are not confined to the humid tropics. 
Sanchez et al. (1982) calculated that 26% of ustic tropics, i.e. three or more 
consecutive months of dry season, had such conditions within 50 cm of the 
soil surface. Steep lands, i.e., slopes >30% were excluded in these estimates. 
This same condition is present in most Ultisols in the southeastern states 
in the U.S. and southeastern China in the temperate zo, e. There is mounting 
evid,'nce that subsoil acidity can be neutralized to some degree by prolonged 
lime and fertilizer use. The downward translocation of basic cations can be 
escalated by using sulfate anions (gypsum) and is faster in sandy or low 
activity clay soils than in soils with higher cation exchange capacities. This 
is best considered a long-term result of good management and with few 
exceptions the development ofcultivars that can thrust their roots into acid 
sub-,oils is the most promising technology to reduce risk from shor, -term 
drought in the growing season. 

Extreme forms of aluminum toxicity exist that perhaps are best termed 
as calcium deficiency. A limited number of soils, often nearly level in high
rainfed areas, have essentially no exchangeable calcium in the subsoil. Often 
these soils have extremely low cation exchange capacities and some calcium 
can be trans1 .cated downward by gypsum applications. The possibility of 
physiologically translocating calcium to the growing root tips appears a 
desirable characteristic for plants. This would enable plants to extend roots 
into calcium-devoid soil layers. We have seen no evidence that this is possible 
in crop plants, but a few native plant roots are present in such horizons 
indicating a physiologic potential. 

LOW NUTRIENT RESERVES 

The soil must supply most of the chemical elements necessary in human 
food. Air is the repository for such major elements as carbon, oxygen, and 
nitrogen. Although nitrogen, in an available nitrate or ammonia form, is 
required in the root zone, its presence there represents a temporary pause 
in the nitrogen cycle. The ultimate source ofnitrogen is the air and extensive 
research into biological nitrogen fixation is well established. 

The other essential elements required in food must be derived from 
minerals. Primary among these are phosphorus, potassium, calcium and 
magnesium, because of the greater quantities required, but the trace ele
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ments like zinc, copper, and iron are also supplied by mineral reserves. 
Numerous chemical forms, both organic and inorganic, of each element are 
present in soil. At any one time only a small portion of the total amount 
present is available for root uptake. Techniques for converting the unavail
able forms of each element into plant-available forms abound. Inorganic
methods usually involve manipulation of soil pH values to increase solubil
ity. Organic methods include mycorrhizal incorporation and green manure 
crops that actively convert inorganic forms to organic forms that usually are 
then converted to plant available forms as the organic carbon oxidizes during 
the growing season. 

Plants differ in their ability to utilize many of the chemical forms of these 
elements present in the soil and therefore incorporation ofsuperior extract
ing capabilities seems a logical approach. 

Two approaches must be taken to evaluate the extent of low nutrient 
reserves in soil. One approach is to evaluate the amount of the readily
available form of the element that can be extracted by the crop during the 
growing season. The first consideration in this estimate is an evaluation of 
the yield expected. Although somewhat variable, the chemical composition
ofmost crops is known and some common values, calculated for a given yield, 
are presented in Table 1. Methodology for estimating whether a soil can 
supply enough of each required element, in an available form during the 
growing period, is germane to the practice of soil testing. When calibrated 
for known mineral and organic composition of soils, these techniques have 
proven to be reliable and practical. Obviously, new cultivars with higher
yield potential and/or shorter growing periods, require new calibration of 
soil tests and especially the recommendations made for quantities of soluble 
fertilizer amendments to be supplied the crop. 

Table 2 compares average fertilizer usage on one of the most mineral 
fertile soils, the Mollisolo, and one of the most infertile soils, an Ultisol, at 
two time frames, 1920s and 1980s in the United States. Of particular
interest is that at production levels of 2,630 kg ha' grain corn, no fertilizer 

"was used on the Mollisol. However, to attain 2,030 kg ha 1 grain corn on the 
Ultisol, fertilizer rates closely approximating the quantities removed by the 
grain harvest were used. Obviously, soils with naturally high contents of 
mineral nutrients can sustain low yields for long periods of time. For 
example, the average yield of grain corn on the MoITow plots, a Mollisol on 
the University of Illinois campus, the first ten years of the experiment

"(1888-1897) averaged 2,565 kg ha 1 when no inputs were made and corn was 
grown every year. The same plots, planted and harvested each year (only 
crop stubble and roots returned 1888 to 1955; thereafter, stalks were also 
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Table t. 	 Representative elemental removal invarious food crops. (After Sanche, 
1976). 

Element 

Crop Yield' 
T ha " 

N P 
--------

K 
-- kg ha " --

Ca 
-------

Mg 

Corn (grah.) 7 128 20 37 14 11 
Rice (grain) 8 106 32 20 4 1 
Wheat (grain) 5 80 22 20 2.5 8.0 
Sorghum (grain) 8 135 10 27 16.0 9.6 
Casavs (roots) 16 64 21 100 41 21 
Potatoes (roots) 22 120 20 166 40 26 
Bananas (bunches) i0 19 2 54 23 30 

*Yields of grain on dry weight; roots and bananas at 15-20% moisture. 

Table 2. 	 Historical comparison of average farmer fertilizer application rates on 
an Ulti'ol anda Mollisol in the USA. (After Buol et al., 1990). 

Kzndiudult (N.C.) Argiudoll (Iowa) 
Year 1925 1983 1919 1979 

Yield corn (kg haW) 2040 900 2630 8150 

Fertilizer (kg ha I)" 

rate 	 N 36-53 134-177 0 168-202 
P 3-6 20 0 34-54 

K 6-11 75 0 75-110 

"returned to the plot) averaged 2,990 kg ha 1 grain for the ten years 1972-1981 
(Odell et al., 1982). Based on these yields, 564 kg ha"' phosphorus was 
removed in the 94 continuous corn crops. No total elemental analrsis of the 
Morrow plot soil is available, but other Mollisols formed in recent glacial 
parent materials are known to contain twice this amount of P in only the 
plow layer. Thus, at this low level of production, some soils do have the 
capability of supplying available forms of P for many years. 

Total elemental composition data of soils is not readily available. These 
types of analyzes were largely discontinued in the 1930s when it was found 
that extraction procedures designed to remove only, the more soluble com
pounds ofeach nutrient element were better indicators ofannual or per-crop 
fertilizer requirements than total elementa] content values. 

On less well-endowed soils like those in Table 3, the Morrow plot results 
would be difficult to dulicate. Apparently, with similar concerns for the 
ability of the poor soils (Ultisols) in North Carolina to continuously supply 
nutrients, Williams et al. in 1934 calculated the number of corn crcps, at 
3,140 kg ha-1 yield, to remove all the N, P, or K in the plow layer. He 
determined that nitrogen was most limiting, but made no provisions for 
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Table 3. Example of total and available amounts of mineral supplied nutrient 
elements per 18 cm layer of various kinds of soiL. 

Soil 
Paleustalf t 

Depth 
cm 

0-18 

P 

700 (16.9)' 

K 
---------- (gha 

1700(473) 3 

Ca Mg
" 18 an) ---------

-(3.720) 3 1700(927)3 
42-60 320 (3.6) 1800(237) -(1,400) 1400(195) 

Uztipsasumentl 0-18 200(27.8) 700(321) -(360) 300(98) 
42-60 120 (3.4) 500(78) -(80) 200(24) 

Haplustoll' 0-18 540(10.4) 8100(156) -(31,200) 1600(366) 

tlaplutox2 
42-60 
0-18 

200(2.8) 
246(4) 

2700(78) 
- (78) 

-(11.700) 
-(160) 

700(73) 
-(98) 

42-60 212(2) -(23) -(40) -(24) 
Hapludoll' 0-18 1.936(-) 38,180(-) 4,686(-) 

42-60 1,672(-) 37,018(-) 15,05?2-) 

OAssumed NA'.density ofI gm aim (2M kg ha" 18 cm).
'1badon, Ngerla - In Morman, F.R. etaJ. 1981.28raZII-SCS-SMSS 1MS. Tour Guide 8th Inter. Soil Class. Wort-shop. 1986. 
3Values In( ) are avallaie or exchngablo amounts.4LaCrosse. Wis. -In Mddleton et al. 1934 

annual recharge from rainfall or fixation by m'crobes. Total soil nitrogen 
contents were calculated to be removed in as few as five crops to as long as 
142 crops on some floodplain positions. More germane to this discussion, 
total P supplies were calculated to be exhausted in as few as 15 to 24 crops 
on what we now consider some of our most productive farmland on the 
coastal plain. Soilo in the Piedmont and Mountain areas contain encugh total 
P for between 40-80 3,135 kg ha "' corn harvests. Total potash contents were 
calculated to be able to produce as few as 64 crops to as many as twace that 
number in the coastal plain and considerably more in the Piedmont and 
Mountains where mica and feldspar minerals are more common. 

In attempting to determine the extent of poor soil fertility, the conclusion 
is simply that dl soils have low nutrient status if sustainable harvest is 
anticipated. Attempts to alter soil chemistry or root exudates to increase the 
pool of a particular element available for one cropping season or even a few 
cropping seasons is feasible. However, after a few growing seasons, nutrient 
levels based on total amounts are extremely low or theoretically exhausted. 

This scenario of enhancing nutrient uptake from infertile soil creates a 
significant side effect. In slash and burn agriculture, abandoned fields are 
left to revegetate with weeds and volunteer species that must also have some 
fertility, albeit in lesser concentration than food crops. If the food crop
severely reduces the available fertility pool regrowth, post-abandonment
regrowth will be slow. Without adequate vegetative cover, erosion potential
is increased. We must conclude that enhanced crop plant capability to obtain 
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mineral-derived nutrients from the soil can have only a very short-term 
benefit. Such plants would have the potential to enhance erosion because 
regrowth of cover crops is slowed in the nutrient impoverished soil after 
cropping is abandoned. 

SUMMARY 

All soils have insufficient mineral nutrient contents to sustain food crop 
production more than a limited number of years. Few soils can annually 
provide the plant available quantities of plant-essential e'ements needed to 
satisfy the capacity of modern crop cultivars unless these nutrients are 
applied in a soluble form. Technology that solubilizes increased amounts of 
nutrients in soils only delays the ultimate impoverishment ofthat soil a few 
crop cycles and enhances the risk of soil erosion when the soil is no longer 
planted. 

Acid su-.face soil conditions are naturally present, or can be created in 
almost all rainfed agricltural settings. This condition can be corrected 
temporarily by either liming amendments or cultivar adaptation. Since 
acidification processes associated with plant residue humification will con
tinue, this is a perennial concern in most soils. 

Acid subsoil conditions exist in more than half of the soil areas capable of 
crop production utilizing natural rainfall. This condition is difficult and 
nearly impossible to correct without long-term soil amendments. The en
ablement of crop plants to extend their roots into acid, aluminum toxic 
subsoil reduces short-term drought risks found in every rainfed cropping 
system. Extreme conditions of subsoil acidity, perhaps better identified as 
calcium-devoid subsoils, exist and, if possible, plants capable of calcium 
translocation to growing root tips conceptually would provide a desirable 
management alternative. Encouraging root elongation in acid subsoils for 
the objective of extracting nutrients has little potential because most sub
soils have limited quantities of those nutrients and the potential to aggra
vate further degradation after abandonment is enhanced. 

Although the total area of salinity stress is not great, the fact that most 
of the problems are human-induced indicates a high practical significance. 
Significant amelioration of salinity stress is only possible ifadequate drain
age is available to remove the salt accumulation that is unavoidable by 
transpiration and evaporation losses. Physiological tolerance to saline stress 
can enhance productivity if it can be raised to such a level that more saline 
irrigation water, and ultimately seawater, can be used in conjunction with 
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adequate drainage to prevent salt accumulation from evapotranspirational 
losses. 

Cold tolerance, manifest as a limited growing season, has considerable 
application in the northern hemisphere. Cold tolerance, manifest as im
proved growth under continued low temperatures, has application in limited 
aree of high elevation within the tropical zone. 

Root exudate acidification to enhance micronutrient availability in alka
line soils has potential practical importance in limited areas. 
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ABSTRACT 

After the successes of the Green Revolution in the better agroecological envi
ronments, increasing agricultural production in less favorable environments is the 
next logical objective. Many plant breeders have become involved in searching for 
abiotic stres tolerances. However, most crop systems in these environments will 
require higher chemical inputs, and in semi-arid regions, better water retention 
to attain sustainable yield increases even with the development of tolerance to 
toxic levels of aluminum saturation or to drought. Plant breeding will need to 
complement these agronomic improvements, and research planning needs to an
ticipate moderate increases in input levels by farmers. 

Programs to introduce new crop technologies in two semi-arid zones inthe Sahel 
and in the acidic soils of the Brazilian "cerrados" are reviewed. In two Sahelian 
regions, there was little agronomic improvement and a failure to achieve yield 
increases. In the higher-rainfall, acidic soils of the Brazilian "cerrados," rapid 
progress has been made with the combination of agronomic anC ',reeding innova
tions. Some implications are drawn for the Sahel and for other regions of acidic 
soils, such as the "lanos." 

INTRODUCTION 

During the last two decades, plant breeders have been remarkably suc
cessful in overcoming biotic stresses by incorporating resistances to diseases, 
insects, and plant parasites into new cultivars. More recently, emphasis on 
breeding for tolerance to abiotic stresses, such as drought and nutrient 
deficiencies (or toxicities, such as aluminum), has increased. Agronomists, 
after observing the low use of purchased inputs by most farmers in develop
ing countries and after viewing the riskiness of agriculture plagued by 
abiotic stresses, have been searching for low-cost chemical fertilizer substi
tutes. 

'Cerrados*is a Portuguese term for a vegetation type associated with acidic savannas in Brazil; it refers to much of 
the Central Plateau o(Bra.-iL We are gratefl rthecritical comments and suggestions o(James Ahirichs,
Charles Rhykerd, and David Sammons. 
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New technology research has important economic elements. Technologies 
have to function in the farmers' environment and to be profitable. Moreover, 
agricultural development is a rystems problem. Changing one element of 
the system will often affect and be affected by several other elements. Hence, 
technology introduction and research planning need to be concerned with 
the interactions in the agricultural system. 

WHICH STRESSES? 

The principal and obvious stress problem of semi-arid regions is apparent 
from their description: the lack of water. Total quantities are low and 
irregular. Moreover, in the lower-rainfall regions, variability is higher. 
Approximately 36% of the soils of the tropics have low fertility, but this 
problem is much less important in the semi-arid tropics with only 16% 
having this initial problem (Table 1; Sanchez and Logan, 1992, pp. 37, 38). 
Almost two-thirds of the tropical soils do not have soil-fertility problems, 
with the semi-arid soils having substantially more potential than other 
tropical soils when there is water. Unfortunately, this measurement of 
nutrient deficiencies does not include nitrogen. The primary production
problem in semi-arid soil3 is having sufficient water at the critical periods 
ofplant growth. However, when there are both deficiencies of water and soil 
fertility, then low water availability makes the use of soil-fertility amend
ments risky. 

Clearly, in the sub-humid tropics ofthe Brazilian "cerrados," the dominant 
problems are Al toxicity and P-fixation associated with acidic soils (Table 1). 
But also in the sub-humid tropics, a lack of soil nutrients occurs on 55% of 
the area (Sanchez and Logan, 1992, p. 35). Surprisingly, problems associated 
with acidity affect a larger land area in the semi-arid zone than do soil-fer
tility problems. In Africa, nutrient deficiencies head the list of production 
problems and are found on 20% of the arable land (Sanche9, and Logan, 1992, 
p. 4 1 ). 

Even where soil fertility is not initially constraining, the introduction of 
increased available water and higher plant densities mines the available 
nutrients. Hence, soil fertility quickly becomes constrained and soil nutrient 
amendments are warranted. Moreover, increasing man/land pressure in 
many regions has been breaking down the traditional fallow-system method 
of managing land fertility. When soil fertility declines without replacement, 
soil degradation and crop movement into marginal soil areas occurs (Broek
huyse and Allen, 1988; Ramaswamy and Sanders, 1992). In much of semi
arid Sub-Saharan Africa, both limited available water and deficient soil 
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nutrients are the major constraints; these interrelated problems will be 
considered in the next three sections for the predominant agro-climatic zones 
involving crops for semi-arid West Africa, the Sudanian and Sahelo-
Sudanian zones. 

The Brazilian acidity/excess-aluminum case will also be considered. Table 
2 summarizes the soil stress factors in the three regions and the alternative 
approaches to respond to these problems: (a) higher levels ofinput, and (b) 
selecting for tolerances and developing improved cultivars. 

Table 1. 	 Main chemical soil constraints in two principalagroecological regions of 
the tropics. 

Subhmid tropics
 
Semiarid tropics (acid savannas)
 

Million ha % Million ha %
 

Low-nutrient reserves' 166 16 287 55
 

Aluminum toxicityb 132 13 261 50
 

Acidity with Al toxicityc 298 29 264 30
 
High P fixation by Fe oxidesd 94 9 166 32
 
Low CEC' 63 6 19 4
 

525f
 
Total area 	 1,012 f 

OLess than '10% woatherable minerals In the sand-and-silt fralon. This constraint Identifies highly weathered soils w1th
 
limited capacty to suppy P,K, C, Mg, and S (Sanchez, 1992, p.37).


bMae th-an 60% Al saturation Inthe top 50 cm.
 
CSurface Ph of less than 5.5 but less than 60% AJsaturation.
 
dIro oxlda/clay ratos greeter than 0.2
 
*Loss than 4 omrrAdAg of effective cation exchange capacity.
 
Does not sum as several minor categories of problems were omitted and there are overlaps wth some soils having more
 
than one of the chemical problems.
 

Source: Sanchez and Logan, 1992, p.38.
 

Table 2. 	 Stress factors considered, site , and alternative approaches. 
Alternative strategies 

Region Country Stress factors Breeding Agronomy 
Sudanian Zone Burldna Faso Water availability Drought tolerance Water-retention techniques 

Soil fertility 	 Ferillzers 
Seles of other practices and techniques' 

Sahelo-Sudanlan Zone NIger 	 Water avallability [Same Es above] [Same as above] 
Soil Fertility 

*Cerrados Brazil 	 So Iaidity Tolerance to A Lime 
A saturation Fertilization 
Fixation of P 

'See Nagy ota.. 1968. 
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AGRICULTURAL TECHNOLOGY
 
DEVELOPMENT IN THE SAHEL
 

Since the prolonged Sahelian drought of 1968-1973, substantial resources 
have been invested in developing new agricultural technologies in both 
national and international agricultural research systems. These research
development programs were evolved from the "Green Revolution" successes 
in South Asia during the late 1960s and early 1970. Unfortunately, until 
recently Sahelian agriculture had stagnated or declined (Sanders et al.,
1993). Finally, in the 1990s, technology development has impacted maize 
and cowpeas production, but not sorghum and millet. The introduction of 
new maize and cowpea technologie_ has been nw.t btocCssl L-- tbe transi
tional zone to the semi-humid, Sudano-Guinean region. However, large
scale diffusion of maize and cowpeas new cultivars into the semi-arid zones 
has occurred (Sanders, 1993, pp. 6-14). In contrast with the Sudano-Guinean 
zone where new cultivars of cotton and maize have been associated with 
increasing levels of chemical fertilizer, little increase in fertilizer use has 
been documented in the drier Sudanian and Sahel-Sudanian zones. Never
theless, the primary lesson of these differential success rates so far is that 
for new cultivars to be successfully introduced and to have a large impact 
on subsequent yields, they have to be combined with chemical inputs,
especially fertilizers.2 

In semi-arid developing countries, minimal chemical-input levels are used 
for food crops because farmers are unable to take high levels of risk. Soil 
improvements, especially those that require cash purchases, increase farm
ers' risk everywhere, especially in regions of irregular water availability.
Moreover, governments in developing countries often have foreign-exchange
shortages, and imported chemicals receive low priority. Governments in
stead promote the use of local rick phosphate, manure, cereal/legume
rotations, and other "substitutes" for commercially processed fertilizer. 

Observing these conditions, research organizations often attempt the 
development ofnew cultivars, which would not require farmers to purchase
increased inputs or governments to spend foreign exchange. Breeding solu
tions receive emphasis for addressing all constraints. Drought and alumi
num tolerance have been added to the disease and insect problems that 
breeders address. 

nThese should not be surprising results. U.S. sorghum yields increited from 1.2 m.tiha in 1950 to 3.8 m.tiha Inimpressive growth f
h'eetn . Hence, two-mirds the yield increases resulted From other agronomiical improvements including
 
im 0, a rformance. It was estimated that 34 to 39% ofthe yield increase came from genetico 

er chemical inputs and improved water use (Miller and Kebode, 19 4. p 6. 11). i 
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Similarly, agronomic research has resulted in better manure-handling 
methods, improved use ofcrop residue, local rock phosphates, intercropping, 
and nitrogen fixation. Research and development programs have promoted 
variations of these concepts since the early 1970s in the Sahel. Unfortu
nately, practices based on these concepts have not spread, either because 
they do not work )n farmers' fields or they are not profitable (Nagy et al., 
1988; Sanders, 1989). After nearly two decades of experimentation and 
promotion of low-input alternatives, it is time to recognize that at extremely 
low input levels, there probably are no substitutes for chemical fertilizer. 

The development of successful agricultural systems has always been 
associated with purchased inputs. Other "substitute" activities for fertilizer 
requiring high labor or management inputs, such as residue incorporation, 
different rotations, and more manure, were never cheap solutions. Rather, 
the cost calculations3 failed to put monetary values on farmers' time or on 
farmers' learning costs to manage sophisticated production practices. Low
cost alternatives need to be differentiated from alternatives in which the 
cost accounting is incomplete. These alternatives need to be considered as 
complements rather than substitutes for chemical fertilizers (Sanders, 
1989). 

Moreover, an overreliance on breeding solutions to overcome all these 
constraints does not seem to be appropriate. Tolerance to adverse soil 
conditions and to drought can be usefully incorporated into improved culti
vars. Unfortunately, for breeders, tolerance to stress is often associated with 
low yields. Moreover, present agricultural development programs should not 
wait for the development of these new cultivars when there are known 
agronomic techniques currently available to increase yields. The next two 
sections consider the introduction of new crop technologies into the two 
principal agro-ecological zones of semi-arid West Africa. 

STRESS AND NEW TECHNOLOGIES FOR
 
THE SUDANIAN REGION OF BURKINA FASO
 

At the 90% probability level, rainfall is between the 600 to 800 mm levels 
for this zone (Fig. 1). In the recent extended drought period, 1968 to the 
p,,esent, rainfall has been 100 - 150 mm below these levels. 4 Soils in the 
Sudanian region are low in principal nutrients and frequently subject to 

On the benefit side, the multi-year or residual effects ofchemical P lime and the rock phosphate make the 
eonmic analysi more complicated. However, more comprehensive anafysis over time has furtherdocumented the 
advantages o mchemicalP over rock phoaphate (Jmmii 1990). 

'Thestandard isohyeta are based on rainfall data collected Orem the '30s to 1960. 
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Fig. 1. Climatic zones of Burkina Faso, research sites, and principal cities. 

crusting (Matlon, 1987, 1990). Crusting results in high runoff rates, further
aggravating the water-availability problem. 

Farm-level experiments have demonstrated the impacts on sorghum 
yields from agronomic techniques to overcome the two principal constraints 
of v ater availability and soil fertility. Individually, one water-retention 
device (tied ridging) and moderate chemicai fertilization substantially in
creased yields. Moreover, the combination of the two inputs not only further 
increased yields but also reduced the riskiness of the fertilization (Table 3).Thus, agronomic techniques exist that function at the farm level and can 

substantially increase sorghum yields. Developmental strategies need totake advantage of agronomic practices already available to the Sahel. A 
similar technology has made a Jarge impact on sorghum yields in the Texas 
high plains where tied ridge are known as furrow dikes (Krishna et al., 
1987). 

One basic requirement for new technology introduction is that agriculture 
be profitable. This is illustrated with farm-programming results from the 
impact of changing relative prices on the farm-level use of tied ridges and 
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Table 3. Yie'ds and percentages of farmers taking cash losses from fertilization 
and/or tied ridges in sorghum production in farm-trial villages, 1983 and 
1984. 

YearA'lago No. of 
tormors 

Traclon 
Source Troatmants Control 

Tied 
ridges 

Fortl-
zation 

Tied ridges & 
fertlization 

1984: 
Nedogo 11 Manual Ylelds 157 416 431 652 

% farmers who have lost cash - 0 27 9 
Nedogo 18 Donkey Yldds 173 425 355 733 

% farmers losing cash - 0 50 0 
Bangasse 12 Mnital Yilds 293 458 618 944 

% farnars Iosng cash - 0 8 17 
Dlssankuy 25 Ox Ylelds 447 588 681 855 

% farmers losing cash - 0 28 0 
Diapangou 19 Manual Yields 335 571 729 1006 

% farmers losing cash - 0 26 0 
Dlang 19 Donkey Yelds 498 688 849 1133 

% farmers losing cash - 0 21 0 
Diapangou 19 Ox Yields 466 704 839 1177 

% farmers losng cash - 0 5 0 
1983: 
Nedogo 3 Manuel Yields 430 484 547 851 

% farmers losing cash - 0 58 0 
Nedogo 11 Donkey Yields 444 644 604 962 

% farmers losing cash - 0 58 42 
Bangasse 12 Manual Yields 406 493 705 690 

% farmers losng casl - 0 21 17 
Dlapangou 24 Manual Yields 383 441 719 753 

% farmers losing cash - 0 8 8 
Dlapangou 25 Donkey Yields 481 552 837 871 

% farmers losing cash - 0 12 16 
Dlapangou 25 Ox Yields 526 578 857 991 

% farmers losing cash - 0 20 12 

'Cash expenditures wore only for chemical fertilizor. The only dditlonal Input for tded ridges was a substantial Increase In 
the use of family labor. Note also that exp ,Otureswere paid by the project so that farmers did not actually lose these 
expenditures on chemical ferilizer. 

Source: Sanders at al.. 1900, p. 10. 

fertilization (Fig. 2). These model results are also consistent with the 
farm-level shifts to more intensive technologies presently being observed in 
the Sahel (Vierich and Stoop, 1990). 

These two principal sources of stress, inadequate water and low soil 
fertility, can be resolved with agronomic improvements. The combined 
technologies are profitable and reduce risk. Making agriculture more prof
itable would accelerate the adoption process as would increasing man/land 
pressure (Ramaswamy and Sanders, 1992). Once these higher levels ofwater 
and soil nutrients are introduced into the system, the potential for breeding 

34 



Prie F 

Price S-U 

(FCFA/kQ) 	 o - Area in Tied Ridges (in hectares) 
x - Quantity of Fertilizers Used (kg) 

2.0 o x 

1.6 	 0 x 

1.4 	 0 0 X 

0.85 	 0.95 1.15 1.25 Area i Mad Ridges (ha) 

I 	 I I I I 

100 	 130 160 130 210 240 F(kg) 

Fig. 2. 	 Effects of improved economic environment on use of intensive technolo
giee. 

Note: The weighted price of ferlizer (Price F) i;rorstant, %rithUrea at $0.26/kg and o,)mpound fertilizer at $0.364(g 
1988 pries)"[haaverage price u,:.'iIlet !Pric S-M) was $0.1B/kg and Inreased to $0.20ft1 and 
0.24ag, respectively. The prices of otrrcrt. wtue Increased proporionlely. Tled ridges and ferlltlzers were 

used as complementary Inputs on thehIghor-qu.,lit) sorghum tand. On the compound area (or mnize land) only lied 
ridges were used. Animal traction was used to maa the ridges. The exdange rate In 1990 waE.273 FCFAUS$. 

improvements is substantially increased. Moreover, the search for low-cost 
supplementary techniques to improve soil fertility in addition to chemical 
fertilizer will also become more feasible. It is important to distinguish 
between present development with available technologies and future re
search.
 

STRESS AND NEW TECHNOLOGIES IN THE
 
SAHELO-SUDANIAN ZONE OF NIGER
 

Most of the agricultural production and population in Niger is in the 
lower-rainfall region (350 to 600 mm of rainfall at 90%probability) (Fig. 3). 
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Fig. 3. 	 Locmation of the Niaumey Depm-tmeat in Niger, West Africa showing the 
agroc]limatic zones based onl the 196)%probability ranfl (rm)isohyets. 

Source: Adapted from Gorse, J.E. and Steeds, O.R.. 987. 

Sandy-dune soils have low initial fertility. As in the Sudanian zone, the two 

principal constraints are water availability and soil fertility. Crusting of the 
sandier soils is often not a problem, but rapid infiltration ofthe rainfall below 
the plant roots frequently occurs. Fertilization and higher densities have 
been shown to increase water-use efficiency in these sandy-dune soiL evi
dently by retaining more water, making it available to the plants (ICRISAT, 
1987, 1988).
 

There has been substantial introduction of early maturity millet and 
cowpea cultivars in these agpicultural systems but minimal introduction of 
chemical fertilizer. Withcat soil amendments, the higher-density agronomic 
systems with new cultivars are not sustainable. They will mine the meager 
soil-nutrient supply, which then forces farmers to move into other regions. 
As population increases, this migration becomes increasingly difficult. 
Hence, potential changes in policy and technology development were made 
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to determine what could be done to influence farmers to use chemical 
fertilizer in two different regions of the Sahelo-Sudanian zone (Shapiro, 
1990; Shapiro et aL, 1993). 

In the higher-rainfall zone (mean rainfall of 570 mm), either an input
subsidy, the modificiation of fertilizer recommendations, or the introduction 
of a late maturity cultivar would all lead to fertilizer adoption, according to 
model results (Table 4). The model results above are also consistent with the 
fairly rapid diffusion of P fertilization on millet among farmers in one 
Sahelo-Sudanian village-testing site used by IFDC and ICRISAT (Mok
wunye and Hammond, 1992, pp. 131, 132). Ultimately, these farmers will 
have to apply the other major nutrients. 

Millet and cowpea cultivar technology development over the last decade 
have been oriented to short-cycle cultivars as rainfall has been or e standard 
deviation below the long-term normal since the 1968-1973 drought. How
ever, climatologists point out that Sub-Saharan Afiica has had long-term
weather cycles before, so that this low-rainfall period may only be a tempo
rary phenomenon (Dennet et al., 1985; also see various Nicholson references 
they cite). The breeding emphasis on short-cycie cultivars can impede the 
use of higher-input levels (water retention and fertilizer) as these cultivars 
will not have sufficient time to take advantage of higher-input use in better 
and even normal rainfall years. Moreover, short-scson cultivar yields can 
also be reduced by exposure to insect attacks, such as the headgirdler 
("raghuva")in Niger, Senegal, and the Gambia, or be adversely affected by
disease/insect complexes aggravated by late rainfall. Hence, introducing 
improved late maturity cultivars would encourage fertilizer use and enable 
farmers to continue their portfolio strategy of producing a mixture of culti
vars to reduce climatic risk. 

Table 4. 	 Effects of various policy instruments on adoption of fertilizer in bore, 
Niamey Region, Niger. 

Policy or Program Fertilizer Mlet/Cowpoa TotalSeasonal (:'-1igeInCrop ChangeInTotat C.V.,f 
use (ha) Income (US$) Income (US$) Income (%) Income (%) tota Income 

Current practices N/A 446 812 - - .40 
Improved shor- 578 921 +30 +13 .39 
season oultivars 

Input subsIdy (10%) 1.2 602 922 +35 +14 .41 
Credit program 0 576 942 +29 +16 .39
 
(10,000 FCFA at 0%
 
Interest) 

Phosphorus only 2.1 828 948 +41 +17 .44 
Long-cydemllet 1.5 624 944 +40 +16 .42
 
valety
 

Exchange rate: 298 FCFA/US$. 
Source: Shapiro, 1990, p.98 
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Table 5. 	 Effects of various policy instruments on the adoption of fertilizer in 
Kouka, Niamey Region, Niger. 

Uvestock Total Change In Charyje In C.V. of 
Forlizer Mllet/Cowpea Income Income rop Income total total 

PoIcy or Program use (ha) Income (US$) (US$) (US$) % Income % Incrxe 
Current practies N/A 301 186 503 - - .63 
Improved culivars 0 409 177 601 +38 +20 .50 
Price support
(5 FCFA) 0 430 177 822 +43 +24 .57 

Cred!t program 
(10.000 FCFA at
 
0%Interest) 0 409 197 621 +36 +23 .50
 

Input subsidy (50%) 0 409 230 853 +38 +30 .54
 
Adaptive livestock
 

choices 0 409 230 853 +38 +30 .54
 

Exchange rate: 299 FCFMAJS$. 

Source: Shapiro, 1990, p. 127. 

In the lower-rainfall region (mean rainfall of 430 mm), none of the above 
policy and technology changes resulted in fertilizer being adopted, according 
to model results (Table 5). Thus, there are some regions in the Sahelo-
Sudanian zone where it will continue to be very difficult to introduce 
higher-purchased input levels and without fertilization, these improved 
systems will not be sustainable. Hence, for these regions, alternative strate
gies, such as agro-forestry and increased livestock production, appear to be 
more appropriate technology-development strategies. Crop-technology de
velopment is not an efficient instrument for increasing faxmer incomes in 
all regions, especially those regions with very low availability of initial 
resources. There will be some difficult population adjustments, as in Niger 
where substantial settlement in these more adverse regions of the Sahelo-
Sudanian zone has occurred. Nevertheless, difficult derisions about research 
resource allocation will often have to be made since there funds and re
searchers are finite. The Sahelo-Sudanian zone is not all unproductive sands 
but the regions for increasing crop productivity must be carefully selected 
and fertilization practices must be used to overcome low-fertility problems 
and rapid infiltration of rainfall. 

AGIUCULTURAL DEVELOPMENT IN THE "CERRADOS" 

The savanna or sub-humid region of Brazil is an enormous area of 180 
million ha ofwhich about 5.4 of the 50 million with crop-production potential 
were being cultivated by the early 1980s (Goedert, 1983; pp. 405, 406; Fig. 
4). Rainfall is generally sufficient, with mean rainfall of 1,000 to 1,800 mm 
and a dry season of three to five months. Nevertheless, drought periods can 
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Fig. 4. 	 Distribution of Cerrado (shaded area) in Brazil Inset of South America
shows Brazil. 

Source Goede54,196, p. 406. 

be a problem due to irregular rainfall, low soil-water retention, and acidic 
soil conditions leading to poor root growth and fixation of P (Goedert, 1983, 
p. 407), The Al saturation ofthe cation-exchange capacity is generally above 
50%, considered toxic for most plants. On the positive side, the soils are deep
and well-drained with gentle slopes and good micro-aggregate stability;
hence, there are many factors favoring intensive mechanization (Goedert,
1983, pp. 408, 409). 

Little settlement occurred in this region of Brazil before movement of the
capital to Brasilia in the late 1950s. Since then there have boen tivo principal 
waves of settlement. The first is associated with the expand d area in 
pastures. Large farmers contracted sharecroppers to clear the savanna 
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brush and to establish pastures, frequently Brachiaria(Goedert, 1983, p. 
40). For one to two years until pastures were established, the sharecroppers 
could cultivate upland rice. Both the rice and the pastures used minimal 
inputs and had low yields. Both had some tolerance to adverse aluminum 
conditions.5 This system was associated with the opening up of outside 
markets in southern Brazil for rice and cattle resulting from improved 
transportation. This settlement pattern in the "cerrados" substantially 
increased national rice production, enabling Brazilian consumers to include 
more rice in their diets (Mandell, 1971). 

The main success story ofintensive or yield-increasing technology was the 
adaptation of a mechanized production system from Rio Grande do Sul, 
Parana, and Sao Paulo of wheat/soybeans into the "cerrados." For example, 
in the two Mato Grossos, while rice, peanuts, cassava, and cotton production 
all declined, the crop area in wheat and soybeans increased at 22 and 19%, 
respectively, annual growth rates over the period 1977-1984 (Homem de 
Melo, 1985, p. 84). This shift of the southern mechanized production system 
into the "cerrados" enabled the extension ofthe Brazilian soybean explosion. 
During the 1970s, Brazilian soybean production grew at a 22% annual rate, 
slowing down from the 35% annual growth rate of the 1967-1976 period 
(Homem de Melo, 1985, p. 83; Vieira et al., 1988). In Mato Grosso do Sul, the 
area in soybeans increased from 15,288 ha in 1970 to 1.83 million in 1983 
(Bonato and Dall' Agnol, 1985, p. 1251.) A number of new soybean cultivars 
were developed in the 1960s (Homem de Melo, 1985, p. 80; Bonato and Dall' 
Agnol, 1985, p. 1255). In the 1970s, some cultivars were introduced, which 
had been adapted to the "cerrados" region, such as UFV-1 and in the late 
1970s some EMBRAPA cultivars. Soybeans are very sensitive to high Al 
saturation; hence, the transfer of this system was successful only with 
substantial increases in the application of lime and phosphorus and the 
adaptation of soybean cultivars to these conditions (Bonato and Dall' Agnol, 
pp. 1251, 1255). 

From the beginning, wheat was much less successful than soybeans in 
adapting to the region. The growth rates in wheat acreage reflected a very 
low initial base. Wheat production has gradually declined in the region after 
this boom period, especially in the 1990s with the elimination of government 
subsidies. 

Adaptive research on maize has allowed the introduction of maize in 
rotation with soybeans. Initially, maize was introduced mainly in the more 
fertile areas of the Centra West region, outside of the "cerrados." Substan-

Also, the standard burning berore planting the rice would tend to reduce soil acidity, thereby lessening the 
aluminum problem. 
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tial maize breeding activity took place as well as introduction ofhigher levels 
oflime and chemical fertilizers. In Goias, maize yields doubled from the early
1970s (1.5 m.tJha) to 1991 (3.1 m.tJha) (FIBGE, various years). Recently, a 
new maize cultivar (BR-210), more adapted to Al toxicity and more efficient 
in phosphorus use, was released and has had a rapid diffusion. The first 
secIs of BR-201 were sold in 1988. In 1991, 20% of the maize seed sold in
Goias and 18%in Mato Grosso do Sul were of this new cultivar (SPSB/EM-
BRAPA, 1992). In 1992, 13.8% of the maize seed sold in Brazil was of this 
cultivar. This also demonstrates its adaptation to better soils. BR-201 and 
other new cultivars to be released soon show not only a good performance in 
acid soils but also a good development in soils with better characteristics 
(Magnavaca and Bahia, 1993). This allows these improved maize cultivars 
to be sown in the corrected acid soils in a way that makes this cvrrection 
economically possible. One of the difficulties of the correction of acid soils is 
that this correction is more effective in the superficial portion. The toxicity
problems remain in the deeper portions. Cultivars more tolerant to Al 
toxicity make possible the exploration of this deeper portion by the roots 
(mainly to extract water) but the plants need to be more efficient to use the 
fertilizer placed in the arable portion and transform it into production. 

Some private companies attempted unsuccessfully to introduce sorghum
without soil improvements. Sorghum's drought tolerance did not help with 
the Al toxicity problem and this program was a failure. In contrast, sorghum
later was introduced as a catch crop following soybeans, taking advantage
ofthe improved soil fertility and reduced Al saturation. Following these two 
developments in the Goias "cerrados," the sorghum area increased to 15,000
ha in 1977, fell to 135 ha in 1981, and then increased to 12,360 ha in 1988 
(FIBGE, various years). 

The principal research promoting rapid crop expansion in the region has 
been the applied work on neutralizing aluminum and increasing P availabil
ity. Moreover, lime was available in the region. The Brazilians recognized
that their ruck phosphate dissolved very slowly over several years; hence,
they used superphosphate on crops and left the rock phosphate for pasture
improvement. The Brazilian government also provided input subsidies on 
fertilizer, lime, and bank interest on machinery purchases. The conse
quences were very rapid introduction ofsoybeans with higher purchased-in
put use, and later maize. 

Soybeans and maize were impressive success stories in which breeding
played an important role. Soil research and substantial increases of pur
chsed inputs appeared to be critical factors in these successes (Table 6).
The Brazilian case demonstrated that with research applied principally on 
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Table & Research prograr-" " titutions andrelease of technologies for the "Cer
rado." 

Promarns Beginning Institutions' First releaseb 

Research on "oerndo" soils Mid-'50s IAC Beginning of '70s© 

IBEC-1RI 
IPEACO 

Soybean breeding for "cernado" Mid-'60s UFV Early '70€ 

IAC 

Maize breeding for 'cenado" End of '70s CNPMS/EMBRAPA 1987 

mtAC: Instuno Agnonlro do CampInas -Camplnas/SP. 
IBEC-IRI: Intemntlonal Research Insltuteo MataWSP. 
IPEACO: Ins'tuto do Posqulsa Agropecuarla do Contro Oesto-Sate Lagoas/MG, Wth a network of agrcultural 

exporient statu Inthe terrado'. 
UFV: Unlvedrsdade Feder do Vlcosa - VloIscDWMG. 
CNPMS/EMBRAPA: Centro Nadonal do Pesquisa do WIIho eSorgo/Emprosa Nadonal do Posqulisa Agropecuarla. 
Sete Lagoes/MG. 

bApproxImato 

'Thisrelease was folowed by a large-scale government program to subsidize Inputs, ospecaly fertilizer and lime and 
Interest on madinery. 

soils, many interrelated problems ofacid soils could be resolved. Infrastruc
ture investment was important in the initial extensive settlement before the 
research systems were able to adapt and apply various technological alter
natives to the "cerrados"soil problems. 

The strategies for rice/pasture research have been very different from 
those for soybeans and maize. For the former activities, extensive breeding 
of cultivars for tolerance to adverse soil conditions has occurred with some 
success. One problem with this strategy is that crop and cultivar selections 
for adverse soil stress conditions frequently result in cultivars with less 
ability to respond to higher-input levels. If higher-input levels become 
feasible economically, not only will the tolerance to adverse conditions be 
less important but also there will be many other alternative crops and 
cultivars with a much steeper response curve to these higher inputs (Fig. 5). 
New soybean and maize cultivars could be rapidly introduced since lime and 
fertilizer use became profitable activities and the responsiveness of the new 
cultivars to these inputs increased. The government performed an active role 
in promoting new cropping systems and higher purchased-input levels. 

RESEARCH POLICY IMPLICATIONS 

In general, the semi-arid region of the Sahel has not been successful in 
introducing higher input levels. Since the drought of 1968-1973, researchers 
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in national and international institutions have concentrated on breeding
solutions and searched for substitutes for imported fertilizers. 

In the Brazilian "cerrados," i initial period of low input, extensive 
rice/pasture systems occurred. Then with a strong applied research base in 
soils and dispersion of some adapted cultivars, new production systems were
introduced. Lime and fertilizers were needed at moderate levels" for these 
systems to be introduced. Th:,re was substantial public investment in 
research and roads infrastru;ure. Moreover, the government subsidized 
farmers' input costs and soybean exports. 

The Brazilian "cerrados" case may also be instructive for the Colombian 
"llanos." Before the investments in transportation, Central West Brazilian 
agriculture was mainly in cattle production. In these extensive settlements, 
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Fig. 5. 	 Typical crop responses to phosphate fertilizeron virgincerrado clay soils 
(Goedert, 1983, p. 414). 

Two o three tons oflime per ha every three years and 40 to 60 kg per ha orP2Os annually were typical levelsadoe!' by ia.rEarlier exterv n recmmendations were often higher for both. One important advantage of

the erado wa the proximity to harge lime deponiis.
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cattle just graze natural and later improved pastures. The cattle require 
minimal inputs and are a high-value product so long-distance, expensive 
transportation can be paid for or the cattle can be walked out in an even 
earlier stage ofinfrastructure development. With the roads came the expan
sion of the upland-rice industry. Lime deposits were found in the Central 
West and adaptive research had been undertaken on soils and later on 
plants. Both the crop and the lime are lower-value products and inputs as 
compared with cattle and superphosphate; hence, the reduction in transpor
tation costs was a critical component of the Brazilian success story and 
unless these costs are similarly reduced in the "Ilanos," new cultivars alone 
will have little effect. If transportation is poor or lime has to be transported 
from outside the region, then new crop activities may not be profitable even 
with the existence of new acid-tolerant cultivars. 

Semi-arid, Sub-Saharan Africa will not be able to increase crop yields 
without substantial imports and farmer purchases of fertilizers. Chemical 
inputs are a characteristic of developed agricultural systems. Breeding can 
have a complementary role in developing plants that are more efficient in 
using the applied fertilizer. Some drought tolerance or some tolerance to 
aluminum toxicity will undoubtedly facilitate the entry of new technologies. 
However, higher chemical inputs will be needed to raise yields and to make 
the new systems sustainable. Many possible substitutes for chemical fertil
izer are available. Unfortunately, they frequently are not economical when 
all costs are correctly calculated. Moreover, for the crusting soils ofthe Sahel, 
agronomic measures to increase water retention should also be introduced. 
Drought tolerance alone will not sufficiently reduce the risks of higher 
chemical inputs. Water-retention techniques can accomplish this 
(Ramaswamy and Sanders, 1992; Sanders et al., 1993). 

For the Sahel, it is an important research objective to keep searching for 
cultivar tolerances and fertilizer substitutes. Meanwhile for some regions of 
the Sahel, chemical fertilizer and water-retention techniques have been 
demonstrated to be viable technologies on farmers' fields and to be profitable. 
They are more sustainable than present soil-depleting techniques. Further 
adaptation and introduction ofthese technologies is important to resolve the 
present crop-production problems. Farmers will have to purchase inputs and 
governments will have to utilize scarce foreign exchange to import chemical 
fertilizers. 

Research in acid soils has already made lower levels of input use possible. 
Lime can be applied, with its primary purpose to neutralize aluminum and 
to supply calcium and magnesium rather than to increase pH (Sanchez and 
Salinas, 1981, pp. 335, 353). Fertilizer banding, pelleting of seeds with 
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chemicals, and other application methods all seek to reduce input require
ments. The use ofinputs and the choice of crops will be substantially affected 
by economic factors (Helyar, 1991, pp. 370, 371). Nevertheless, policies to 
reduce input expenditures or to make their use more efficient are very
different from attempting to eliminate inputs, especially when the actual 
levels of such inputs are minimal as in much of Sub-Saharan Africa. 

In responding to stress, the first research requirement is to identify the 
relevant stress. This is no easy task because some assumptions have to be 
made about future input use. Breeder selection of new materials has often 
been done at high-input levels. Even for stress selection, other inputs besides 
the particular stress factor were often kept at high levels so that differences 
between cultivars could be more easily identified. In contrast, farming-sys
tems proponents and others have frequently argued that selection should 
occur at the same low input levels used by farmers. The results here appear 
to indicate that in planning for the five to ten year research agenda, breeders 
need to collaborate with soil scientists and to assume that moderate in
creases in purchased-input levels and water availability for semi-arid re
gions will continue to occur. Governments will need to facilitate this process
by insuring that agriculture remains a profitable activity. 
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ABSTRACT
 

Because very few crops grown in the U.S. are native, plant introductions have 
been vital to our agriculture. The development of a comprehensive National Plant 
Germplasm System (NPGS) for ex situ preservation of plant genetic resources 
obtained from centers of diversity around the world has been necessary to provide
plant breeders with source materials for their breeding programs. 

The more than 415,000 accessions maintained by the NPGS include local lan
drace collections, improved cultivars, wild crop relatives and genetic stocks. The 
h-tive collection is maintained and distributed by nineteen national plant
germplasm repositories. The base collection for seed crops lit preserved at sub-zero 
temperatures at the National Seed Storage Laborstory, Fort Collina, Colorado. The 
NPGS's plant genetic resources are matle freely available to &l bona fide users for 
the benefit of humankind. Between 1986 and 1992, an average of 175,400 sampiew 
peryear were distributed worldwide by NPGS. Public and private plant breeders 
have used these and other source materials effectively to develop utress tolerant 
and high yielding varieties that have enabled farmers to increase yields and lower 
costs so that the average U.S. family now spends less than 12% of its income for 
food. 

The NPGS maintains a close working relationship with genetic resource pres
ervation programs in many countries and with the International Agricultural
Research Centers supported through the Consultative Group on International 
Agricultural Research. 

INTRODUCTION 

Many diverse plant species are available from the centuries of natural 
evolutionary processes, but only a relatively few have been domesticated to 
provide food, fiber, animal feed stuffs, and industrial products for human
kind. Very few of these domesticated crops are native to the USA: stuflower, 
pecan, strawberry, blueberry, cranberry, certain grasses, and a few )thers.
Our exceptionally productive farming system was founded on plant genetic 
resources from other countrias. Native North Americans had introduced 
maize, beans, squash and other crops from Central and South America. 
Early immigrants from Europe and Asia brought seed for many crops with 
them. In 1819, American consuls overseas were asked to collect seeds of 
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useful plants. The U.S. Patent Commissioner administered the introduction 
of plants from 1836 to 1862. The continuing need to acquire and introduce 
plant gcrmplasm into the U.S. was one of the reasons for establishing the 
U.S. Department of Agriculture (USDA). The Organic Act, of 1862, estab
lishing the Department of Agriculture, directed the first Commissioner of 
Agriculture, Isaac Newton, "to collect, as he may be able, new and valuable 
seeds and plants; to test, by cultivation the value of such of them as may 
require such tests; to propagate such as may be worthy of propagation, and 
to distribute them among agriculturists." In 1898, the Seed and Plant 
Introduction Section, which later became the Plant Introduction Office, was 
established to manage plant explorations and introductions. 

The local landraces and weedy relatives of crops that have evolved by 
human and natural selection over the millennia have been rich sources for 
genetic diversity to meet plant breeders needs of sources ofgenetic resistance 
to new pathogens, insect pests, soil related stresses, and food quality. Before 
the late 1940's, introductions were sent directly to interested scientists 
without any requirement that chey be maintained. Adequate preservation 
methodologies and facilities were not available then, and many accessions 
were lost. 

THE NATIONAL PLANT GERMPLASM SYSTEM 

The Research and Marketing Act of 1946 (Public Law 733) authorized the 
creation of four Regional Plant Introduction Stations in the USA (Ames, 
Iowa; Geneva, New York; Griffin, Georgia; Pullman, Washington) with the 
mission to acquire, maintain, evaluate and distribute germplasm to scien
tists to be used for crop improvement. The Inter-Regional Potato Introduc
tion Station, Sturgeon Bay, Wisconsin, was established in 1947. The Na
tional Seed Storage Laboratory (NSSL), Fort Collins, Colorado was estab
lished in 1958 for long-term preservation of duplicate samples of this 
valuable germplasm. National Clonal Germplasm Repositories were estab
lished in the mid-1980s to provide more systematic maintenance of clonal 
germplasm. The National Small Grains Collection, now in Aberdeen, Idaho, 
began in 1894 as a breeder's collection in Beltsville, Maryland. 

These units have been integrated into a National Plant Germplasm 
System (NPGS). The NPGS is a network of cooperating institutions, agen
cies, and research units in the Federal, State, and private sectors (Seeds of 
Our Future, 1990). "The National Plant Germplasm System of the United 
States," in Plant Breeding Reviews (Janick, ed., 1989) gives a detailed 
description of NPGS. Thb mission of the NPGS is: "To effectively collect, 
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docum ,At, preserve, evaluate, anhance, and distribute plant genetic re
sources for continued improvement in the quality and production ofeconomic 
crops important to the U.S. and world agriculture. This is achieved through 
a coordinated effort by th U.S. Department of Agriculture in cooperation 
with other public and private U.S. and international organizations. The 
NPGS's plant genetic resources are made freely available to all bona fide 
users for the benefit of humankind." 

The activities of the NPGS help to provide high-yielding cultivars to 
farmers; to improve the quality of agricultural and horticultural products; 
to minimize production costs; to reduce dependence on pesticides (thus 
enhancing the quality of the environment); and to minimize the vulnerabil
ity of agriculturally important germplasm to pests and environmental 
stresses. 

Plant germplasm collections include older and current crop cultivars, elite 
breeding lines, landraces of crops that have emerged over millennia of" 
selection by farmers, wild or weedy plants related to cultivated crops, and 
mutant genetic stocks maintained for research. 

As new stress tolerant and hgher yielding cultivars are developed and 
then grown by farmers 'n the centers of diversity for the various crops, the 
local landraces and weedy relatives with their rich sources of useful genes, 
may be lost forever unless they have been collected and preserved in gene 
banks. This germplasm can be preserved ex situ as: dried seeds stored at 
sub-zero temperatures in moisture-resistant containers; plants growing in 
a greenhouse, screenhouse or field plantings; in vitro cultures of tissues; or 
buds, pollen or other plant parts preserved at ultra-low temperatures. 

In the National Plant Germplasm System the four Regional ?lant Intro
duction Stationis, the National Clonal Germplasm Repositories, the Inter
regional Potit,, introduction Station, the National Small Grain Collection, 
specific crop co! lections, and the Woody Landscape Collection ofthe National 
Arboretum each functions, and is accepted, as a national plant jermpiasm 
repository even though some are partially supported by regional &,idinter
regional funds. The more than 415,000 accessions maintained in the NPGS 
active colections have been divided among these 19 repositories. Numbers 
of accessions for the larger collections are presented in Table 1. 

These repositories cooperate and participate in a coordinated national 
program ofacquiring and exchanging foreign and domestic plant germplasm 
potentially valuable for agricultural, horticultural, medicinal, industrial 
and environmental uses. The new acquisitions must be increased, charac
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Table 1. National Plant Germplasm System Genetic Resource. 
Number of 

Genus Species Crop accessions 
AracW&s hypogaca PEANUT 7,943 
Avena saliva OAT 6.580 
Avena sterilis, etc. OAT RELATIVES 13,419 
Cajanus cajan PIGEON-PEA 4.156 
Capsicum annuum PEPPER 2,313 
Caithamus Uinctorius SAFFLOWER 2,218 

Cicer arietinum CHICKPEA 3.962 
Cucumis melo MELON 3,374 
Glycine max SOYBEAN 14,316 
Gossypium hirsutu COTTON 4,746 
Helianthus annuus SUNFLOWER 2,607 
Hordeum vulgar BARLEY 28,612 

Lens culinaris LENTIL 2,618 
Linum usitatissimum FLAX 2,722 
Lycopersicon esculentum TOMATO 8,601 
Malus domeatica APPLE BUDS 163 
Medicago saliva ALFALFA 3,454 
('.yza sativa RICE 18,213 

Phaseolus vulgaris BEAN 10,448 
Pisum sativum PEAS 3,590 
Secale cemale RYE 2,618 
Solanum tuberosum POTATO 5,486 
Sorghum bicolor SORGHUM 34,480 

Triticun aestivum WHEAT 34,391 
Tridm dunim DURUM WHEAT 6,831 
Vigna unguiculata COWPEA 3,958 
Zea may$ CORN 28,376 
Others 155,710 

TOTAL 415,905 

terized and preserved as part of the active collection. Each repository 
conducts a systematic evaluation program to obtain specific information on 
disease and insect resistance, nutritional quality, agronomic and physiologi
cal attributes and other traits c.fiterest. Information on the collection and 
characterization (passport data) and evauation data are entered in the 
Germplasm Resources Information Network (GRIN). Samples are distrib
uted, on request, at no cost to scientists worldwide for use in crop improve
ment and basic research. Research relating to improved methods of collec
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tion, regeneration, propagation, preservation, evaluation, and distribution 
is conducted, and the results are published. 

The principal mission of NSSL is to preserve the base Collection of the 
NPGS, and to conduct research to develop new and improved technologies
for the preservation of seed and other plant propagules. Long-term preser
vation ofduplicate smples of all accessions maintained in active collections 
at national plant germplasm repositories is the goal ofNSSL. 

As accessions propagated by seeds are regenerated or increased at the 
repositories, seed samDles are divided with one part staying in the local 
active collection and tae other part deposited in the NSSL base collection. 
When seed samples saie received at NSSL, they are dried, counted, tested for 
viability and placed in moisture-rebistant containers in sub-zero cold vaults 
(-18°C) or stored above liquid nitrogen (-160°C) nTcryotanks. Research by
NSSL scientists and others has shown that viability of seeds is greatly
extended, perhaps for several decades or even centuries, when dry seeds are 
stored at sub-zero temperatures. However, samples are monitored peri
odically for viability, and substandard samples are regenerated at the 
appropriate repository. 

Plant germplasm preservation research at NSSL focuses on the develop
ment of new and improved technologies for the long-term preservation of all 
forms of plant germplasm. This research is expected to increase: 1) the 
number ofspecies that can be stored at NSSL, 2) the longevity ofthe various 
accessions, and 3) the efficiency ofviability testing of accessions. The longer 
storage periods and reduced number offield and/or greenhouse regeneration
cycles will result in lower costs and greater genetic integrity of the 
germplasm. In addition, the basic research will add t.nour understanding of 
cryobiology and seed/cell aging through greater jiiuights into the basic 
biological/biochemical processes in cells and their response to desiccation 
and low temperature stresses. Research scientists at NSSL work closely with 
all components of the NPGS. 

The National Germplasm Resources Laboratory (NGRL) located at the 
Beltsville Agricultural Research Center (BARC), Beltsville, MD, is respon
sible for a number of activities that support the entire NPGS. 

The Plant Introduction Office (PIO) coordinates the acquisition and ex
change of plant germplasm; documents passport data and descriptive infor
mation for newly acquired material and assigns unique Plant Introduction 
(PI)numbers; publishes an annual USDA Plant Inventory ofnewly received 
accessions; and serves as a liaison on quarantine matters. Plant germplasm 
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for the NPGS is acquired through exchanges, exploration (domestic and 
foreign), special projects and agreements, gifts, and travelers. In addition to 
introduced germplasm, all released plant materials (cultivars, germplasm 
releases, parental lines, and genetic stocks) that are registered by the Crop 
Science Society of America are assigned PI numbers and the seed is depos
ited in the appropriate active collection and the NSSL by the originator. 

The Plant Exploration Office (PEO) works with germplasm curators, Crop 
Advisory Committees (CAC), state universities and others to assess the 
genetic diversity of germplasm collections currently held by the NPGS and 
others as compared to total genetic diversity that may exist in nature. This 
assessment is used to develop long-range strategies for increasing the 
genetic diversity of U.S. collections. Based on these strategies, gaps in 
current germplasm collections are identified and communicated to the 
appropriate CAC or to other crop specialists for their concurrence. Priorities 
for exploration are influenced by several factors such as the completeness of 
the U.S. collection, the need for specific traits of agricultural significance, 
the threat ofimmediate loss of old landraces and wild relatives in centers of 
diversity because of agricultural changes or urban development, and politi
cal factors affecting future availability ofgermplasm. 

The Germplasm Resources Information Network (GRIN) is the official 
database ofthe NPGS and is currently maintained on a minicomputer in the 
National Agricultural Library at Beltsville, Maryland. The functions of the 
GRIN are to: 1) act as a repository of all information for NPGS plant 
germplasm; 2) umify the NPGS with regard to data standards and movement 
of germplasm; 3) allow fast access to the most current data available to all 
users of the germplasm and its accompanying information; 4) facilitate and 
track the distribution of germplasm; and 5) provide to germplasm mainte
nance sites a system of inventory management that automatically signa!k 
the need for germplasm increases and or replenishment. 

Data in GRIN are available to any plant scientist or researcher worldwide, 
either through direct connection to the database or through contact with the 
curator for the active collection of the crop of intereat. GRIN contains data 
on taxonomy, origin, evaluation and characterization for plant germplasm 
preserved in the NPGS. All movements and distributions of germplasm 
within the NPGS and foreign countries are recorded in GRIN. 

All plant germplasm entering the NPGS from outside the U.S. must 
comply with federal quarantine regulations which are designed to facilitate 
the exchange ofplant germplasm while limiting! preventing the movement 
ofpathogens. Regulations are written, interpreted, and enforced by APHIS. 

56 



Sdentists cooperate to import plant germplasm free of pests. Accessions of
certain crops must be gi own under quarantine at designated sites, including
the ARS St. Croix r,.search station and greenhouses at specified locations 
under APHIS ins action, before they can enter the NPGS active and base 
collections. 

The NGRL facii rates the activities of Crop Advisory Committees. The
public and private scientists on these committees represent the germplasm 
user community for a particular crop or group of crops. These committees 
provide crop-specific expert guidance on germplagm needs, collection gaps,
descriptors, documentation, regeneration, evaluation, and research goals to
various components of the NPGS. Although the ARS components of the
NPGS are administered by the Area Director for the geographic location of
that component, the National Program Leader for Plant Germplasm on the 
National Program Staff provides leadership for the NPGS and coordinates 
activities. The National Program Leader for Plant Germplasm also provides
administrative support to the various advisory boards and committees for 
plant genetic resources. 

The NPGS has been described as a "user-driven system." Between 1986 
and 1992, the NPGS distributed an average of 175,400 samples each year:
U.S. public scientists (67%), U.S. private industry scientists (12%), foreign
public scientists (9%), foreign private industry scientists (10%), and inter
national centers and USAID (2%). 

USE OF PLANT INTRODUCTIONS 

Plant genetic resource conservation and utilization have been the founda
tion for improvement of agronomic, ornamental, and horticultural cro')s.
During the Twentieth Century, U.S. research scientists have been uFing
introduced plant genetic resources to develop new cultivars that are rspon
sive to improved cultural practices, that have more desirable nutritional or 
fiber qualities and that have resistance to disease and inse:' pests and to
environmental stresses. "Use of Plant Introductions in Cultivar Develop
ment, Part 1and Part 2"(Shands and Wiesner, eds., 1991, 1992) documents 
some uses of this plant germplasm for research. Plant introductions from 
the centers of diversity have been very important sources of disease and
insect resistance. For example, 82% of wheat cultivars released in the U.S.
since 1975 were either developed in the U.S. with parents introduced after 
1920 or were grown as direct introductions. Similarly, 75% of the 300
released sorghum inbred lines registered in Crop Science between 1960 and
1986 had some introduced germplasm in their pedigrees. Duncan et al. 
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(1991) list ten sorghum accessions as sources of postflowering drought 
tolerance and twenty-four accessions as sources of acid soil tolerance (Al 
toxicity). 

When breeding populations are developed and improved by recurrent 
selection or when F 2 or backcross populations are used in the pedigree 
system, Eberhart, et al. (1991) emphasize that multistage selection has been 
very effective for the simultaneous improvement of multiple traits. In 
multi-stage selection, a large number of So or F 2 plants are grown and selfed 
with mass selection for one or two highly heritable traits. Several hundred 
SI or F 3 lines can be screened for two or three traits involving stress tolerance 
(drought, Al toxicity, insects, etc.), with replication at two or more locations 
if necessary. One plant in each selected family can be selfed and advanced 
to the next generation. The S 2 or F4 families can be evaluated per se in 
replicated yield trials or crossed to testers for the yield evaluations. 

Increasingly the NPGS collections are being used for biotechnological 
research and development. Biotechnologists must have a reservoir of genes 
available to manipulate if they are to improve economically important corps. 
As biotechnology programs develop, plant genetic resource conservation 
becomes even more critical. 

Not only have public and private plant breeders used introduced 
germplasm from the NPGS and other sources effectively to produce stress 
tolerant and high yielding cultivars and hybrids, but also farmers have used 
these improved products to increase yields and lower costs so that the 
average U.S. family now spends less than 12% of its income for food. 

CORE SUBSETS 

The NPGS is developing a core subset of each major crop which would 
represent "with a minimum ofrepetitiveness, the genetic diversity ofa crop 
species and its relatives" (Frankel, 1984). This core subset will provide 
scientists with a more representative and smaller sample for identifying 
sources of desired traits and will reduce operating costs of NPGS. Brown 
(1989) recommended stratified sampling methods in which germplasm 
accessionz are grouped using data on geographical origins and genetic 
characteristics. CIMMYT is currently developing a core subset within each 
maize race with these procedures. Taba et al. (1992) have reported on the 
Tuxpefio race complex. 
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The core subset will be used for more extensive evaluation and charac
terization for each crop. The development ofthe core subset will be a dynamic 
process whereby new accessions will be added and one of a pair of accessions 
that have been shown to be very similar can be dropped as more detailed 
information becomes available. 

INTERNATIONAL COOPERATION AND COORDINATION 

The need to preserve, exchange, and utilize plant genetic resources is now 
recognized worldwide. Even countries with great genetic diversity in certain 
crops are heavily dependent on many crops introduced from other areas. 
Because the U.S. has had to import nearly all of our crop germplasm, the 
NPGS maintains a very comprehensive germplasm collection from around 
the world. The NPGS has been able to assist several countries in recovery
of their key germplasm, which had been lost fbr various reasons. 

Many countries now have genetic resource preservation programs with an 
associated gene bank. The NSGS maintains a close working relationship via 
free exchange of germplasm with programs in most countries. 

The ten International Agricultural Research Centers (IARC) involved 
with crops (Table 2) are key institutions for the collection, preservation and 
distribution of many agronomically important crops. These centers are 
supported through the Consultative Group on International Agricultural
Research (CGIAR), which includes foundations, development agencies of 
several countries, the World Bank, the United Nations Development Pro
gram, and the United Nations Food and Agriculture Organization (FAO).
The International Plant Genetic Resource Institute (formerly International 
Board for Plant Genetic Resources) assists in the coordination of plant
genetic resource programs of the IARC's and more than 100 countries for 
the benefit ofall humankind. The NPGS cooperates with these IARC's in the 
acquisition and preservation of plant genetic resources including the free 
exchange of information and plant materials. Table 2. IARC's Genetic 
Resources (Source: Various CGIAR and IARC Reports). 
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Table 2. IARCs Genetic Resources (Source: Various CGIAR and IARC Reports). 

Center (Host Coumtry) 
CIAT (Colombia) 

CIMMYT (Mexico) 

CIP (Pau) 

ICARDA (Syria) 

ICRISAT (India) 

ITA (Nigeria) 

ILCA (Ethiopia) 

IRRI (Philippines) 

WARDA (Ivory Coast) 

AVRDC (Taiwan) 

Number of 
Species accesions 
Common bean (Phaseolus vulgaris) 35,950 
Other beans (Phaseolus spp.) 5,111 
Cassava (Manihor esculerta) 4,600 

Cassava wild relatives (Manihot spp.) 48
 
Forage legumes 17,982
 
Forage grasses 2,514
 
Maize (Zea mays, Tripscum) 10,500
 
Cereals (Trificm aestivum, T. durum, Triticale, llordeum) 62,000
 

Potato (Solanum tuberosum) 5,000
 
Potato wild relatives (Solanum spp.) 1,500
 
Sweet potato (Ipomeabk tatu) 5,200
 

Cereals (Hordewn spp., Triicum spp., Triticale) 49,749
 
Food legumes (Vicia, Lent, Cicer) 16,890
 
Forages 19,952
 
Sorghum (Sorghum bicolor) 31,030
 

Pearl millet (Pennisetwn glaucum) 6,610
 
Minor millets (Pennisetumspp.) 19,796
 
GCromdnuL (Arachis spp.) 12,160
 

Pigeonpea (Cajanus cajan) 11,040
 

Chickpea (Cicer arietinum) 15,564
 
Cassava (Manihot esculenta) 2,000
 
Plantain and banana (Musa spp.) 250
 

Cowpea (Vigna unguiculata) 15,100
 
Cowpea relatives (Vigna spp.) 810
 
Rice (Oryza spp.) 12,000
 
Soybean (Glycine max) 1,500
 

Y,.m (Dioscoreaspp.) 1,000
 
Maize (Zea mays) 500
 
Bombara groundnut (Voandezia spp.) 2,000
 

Forage grasses 1,524
 

Forage legumes 6,443
 
Browse species 1,42D
 
Rice (Oryza sativa) 78,420
 

African rice (0. glaberrima) 2,408 
Wild relatives (Oryza spp.) 2,214 

Other ries 21 

Rice (African and Asian) 5,600 
Vegetables (tomato, mungbean, pepper, cabbage, 
amasranth, soybean, etc.) 32,200 

TOTAL 498,615 
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ABSTRACT 

Current average crop yields represent less than 25%of the genetic potential as 
determined by yield records. The major cause of the reductions from potential
yields lis drv-ught. Plant water stress results when the transpirational demand 
exceeds the soil water supply capacity. Growth is reduced due to srees effects on 
cell expansion and division. Reproductive meristemfj are apparently more sensi
tive than vegetative merictems. Photosynthetf cactivty is reduced due to both CO2
supply (stomatal conductance) and biochemical limitations within the chloroplast.
As stomatal conductance declines, leaf temperature ncreases, and high tempera. 
turestress causes additional problems. Mechanisms utilized by plants to minimize 
the impact of insufficient water supply are negatively related to maintenance of 
productivity. Osmotic adjustment, defined as a net increase in tissue solute con
centration, represents a potentially viable mechanism allowing turgor mainte
nance, and those processes dependent on turgor pressure such as cell elongation
and stomata) conductance. The results to date are highly controversial regarding
the real worth of osmotic adj ustment as a drought tolerance mechanism. In dryland
environments, a high percentage of the rainfall ia wasted. Management approaches 
to minimize waster and increase the proportion of the total water supply that the 
crop uses offer good opportunities for increased yield. Controlling the plant
density to reduce the risk of stress durinj critical growth stages Is also important.
Additionally, genetic approaches to increase water use efficiency offer some prom
ise for the future. 

INTRODUCTION 

Yields have increased dramatically over the past 40 years for most crop
species in the United States (Fig. 1). Although corn hybrids were introduced 
in the early 1920's, yields remained relatively static until the mid-1940's 
when rapid increases in yield per acre began to be recorded. Over the past
40 years, the average yield increase for corn has been nearly two bushels per 
acre. Grain sorghum yields remained relatively low and static until the 
mid-1950's when hybrids were introduced. Over the next 20-year period (to
mid-1970's), yields increased mere than threefold. During the last 20 year
period (1970-1990), yields have remained relatively static. The lack of 
continued yield increases during the past 20 years largely reflects the 
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Fig. 1. 	 Historical yield trends for four major U.S. crops representing hybrids 
versus open pollinated cultivars (data from National Agricultural Sta
tistics. 1992. USDA. Washington, D.C.) 

displacement of Sorghum by corn in the irrigated production areas of the 
Great Plains States. In Texas, as an example, over 7.5 million acres were 
grown in the mid-1970's with a large percentage (more than 50%) of the 
acreage receiving supplemental irrigation (USDA, 1992)). Today, less than 
3.5 million acres are grown annually in Texas with less than 20% of the 
acreage receiving irrigation. Sorghum has been displaced by corn in the 
northern irrigated areas of the state and by cotton in the southern areas due 
to economic reasons. Wheat yields have increased steadily over the past 50 
years but at a relatively slow rate (<0.5 bu/yr), again reflecting the fact that 
the meority of the U.S. wheat production occurs in the Great Plains States 
where adverse weather represents the makjor yield constraint. Cotton yields 
have had periods of rapid increases and then periods where productivity has 
remained stable or even declined. Cotton yields are usually directly related 
to lint price, and thus reflect the level of management required to maintain 
profitability. If prices are high, inputs are increased and yield per acre is 
high. 
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Table 1. Record yields, average yields and causes of yield losses of major crop
specie. 

Record Average Biotic Abiotic 
Crop yield yield factors factors 

Mg/ha (%of record yield) 
Corn 
Sorghum 
Wheat 

Cotton 
Soybean 
Sugarbeet 

19.3 
20.1 
14.5 

4.0 
7.4 

121.0 

6.6 (36%) 
3.6(15%) 
1.9(13%) 

0.7 (17%) 
1.6 (22%) 

42.6 (35%) 

2.2(11%) 
1.0 ( 5%) 
0.7 ( 5%) 
0.9 (22%) 
1.3 (17%) 

17.1 (14%) 

10.5 (57%) 
16.3 (81%) 
11.9(82%) 

2.4 (60%) 
5.1 (69%) 

61.3 (51%) 

Ada* d from Boyer (1962) a -d ZJogler (10 ). 

Current average yields of our major crops represent only a small fraction 
of the record yields for each crop (Table 1). Even the record yields do not 
reflect the yield limits dictated by the em ironment, especially the available 
radiant energy and growing season lengi i. Radiation use efficiency (RUE) 
of C4 species such as corn and sorghum are reported to be 2.5 g dry weight 
per megajoule of intercepted radiation (g DW MJ) as reported by Mon
teith (1988). C3 species, such as wheat and cotton, are reported to have RUE's 
ranging from 1.4 to 1.8 g DW MJ " depending on the chemical composition 
of the dry weight. Semiarid climates typically receive 25-30 MJ day during 
the summer growing season and 15-18 MJ day" during the winter period. 
Subhumid climates will typically receive 15-20 MJ day" during the summer 
growing season. The causes of the average yields being well below potential 
yields have been separated into biotic and abiotic factors as summarized in 
Table 1. Biotic factors including insects, diseases, and weeds are responsible 
for losses representing less than 20% of the potential yields of most species 
(Boyer, 1982; Ziegler, 1980). Abiotic factors including unfavorable soils and 
weather account for the vast majority of the potential yield losses. Among 
the abiotic factors, drought is commonly credited with causing the majority 
of the problems. 

There is no clear, objective definition of'drought.' It has a meteorological 
component which relates current precipitation events to historical patterns 
for a given area. It also has a hydrologic component which includes soil water 
storage, evaporative demand and crop type and growth stage. Within any 
given r dnfall pattern, drought is not considered to exist unless the crop is 
sufferirg irreparable dwnage due to lack of sufficient water to maintain 
growth md productivity. 

The water status of the plant tissue is usually considered the critical 
component affecting physiological processes occurring in each tissue and 
organ. About 30 years ago (Slayter and Taylor, 1960), the water Psatu? of 
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the soil-plant-atmosphere was defined using thermodynamic ter is ofwater 
potential (T'Po) and the various components of solute potential (Tn), matrix 
potential (Pm), and pressure potential (Tp). Water loss from leaf tissue is 
unavoidable if the plant is going to carry on photosynthesis during the 
daytime. The stomata ofmost plants open in the light allowing for the influx 
of C0 2 with the concurrent efflux of H20 vapor in response to large concen
tration gradients. The loss of water vapor from leaftissue during the daytime 
lowers the TP. (reduces the concentration of'free' water) of the liquid water 
in the leaf and establishes the gradient (A'Pco) for water to flow from the soil 
to the root to the shoot (Fig. 2). Over the past 30 years, thousands of research 
publications have appeared relating '(o to various physiological processes 
affecting growth and development. However, to date no unique relationship 
has been identified between T'o and the activity of specific processes. The 
relationship observed between T'o and the activity ofa specific physiological 
process is dependent upon species, growth stage, soil water supply, evapo
rative demand, and even among the components of the evaporative demand 
(i.e. radiant energy and vapor pressure). Within a cell, where the contents 
are bound by a semipermeable membine, 'tn is used to express the solute 
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cc 
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Fig. 2. 

0 0 

TRANSPIRATION (mmol M- 2 s-1) 

Relative relationships between transpirationrataand leaf water poten.
tial of various monocot and dicot species. 
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concentration based on the Van't Hoff equation nV=,I.RT where n=osmotic 
pressure, V=volume of solvent, ij.=goles of solute, R=gas constant, and 
T-°"Kelvin. It is commonly assumed that the TcIof the water in the cell wall 
is in equilibrium with the T'co of the symplast, and as a consequence, the 
difference between 'tn and TIco is the 'Pp (pressure potential) ofthe cell (Kra
mer, 1969). Physio' gical activities such as expansive growth (cell extension)
and stomatal condi 'ct nce have been related to t'p rather than t'co (Kramer,
1983). These attei ,pts have also been rather futile, since it is difficult or 
impossible to measure the water status ofguard cells or expanding cells, and 
the total tissue water status, which is usually measured, may not reflect the 
water status of thtse specialized cells. 

In recent times the concept of Tco as an indicater of tissue water status 
has been challenged, and relative water content (RWC) has been proposed 
as the replacement to relate to tissue activity (Sinclair and Ludlow, 1985)
Volume changes of various organelles have been related to their rate of 
function 'in vitro.' However. due to the ability of an organelle such as a 
chloroplast to modify its internal osmotic potential during the course of the 
day and the elasticity of the chloroplast membrane, it is extremely difficult 
to develop a comprehensive understanding of the water relations ofindivid
ual organelles within a cell in response to tissue water deficits. 

PLANT RESPONSE TO WATER DEFICITS 

Essentially every aspect of plant growth and development is affected by 
tissue water deficits caused by either excessive evaporative demand or 
limited soil water supply. Over 20 years ago, I-saio (1973) described the 
relative sensitivity ofvarious physiological processes to tissue water dieficits. 
Table 2 summarizes our current understanding of v rious physiological 
syu'ems sensitivity to water stress. Expansive growth continues to be the 
most sensitive growth and development process to tissue water deficits. At 
the time o f Hsaio's r view, the concept of cell expansion wais based on 
Lockhart's (1965) equation describing the physice of irreversible growth 
where: 

E=0(P-Y) 
E= irreversible increase in cell (tissue) volume 
0=expansion coefficient 
P=turgor pressure 
Y=yield threshold 

69 

http:nV=,I.RT


Table 2. Relative Sensitivity of Various Plant Processes to Water Stress. 
Relative sensitivity 

Plant process Very sensitive Moderately sensitive Insensitive 
Growth 

Cell Division 
Cell Expansion -_-_-_-

C then Metabolism 
Stomrnatal Opening - _-_-_-_-_--

CO2 Assimilation 
Sugar Accumulation __ 

Respiration - _-_-_-_-_-_-

Nitrogen Metabolism 
NO; Reduction - _-_-_-_-_-_-

N2 Fixatlon - _-_-_-_-_-_-

Protein Synthesis - - - ---

Protein Hydrolysis - - - ---
Hormone Relations 

IAA Activity - - -___ -------
Gibberilin Activity - - - --- --
Cytokinin Activity - - - -----
Abcisic Acid 
Ethylene -_-_-

Modflied and adapted from: Healo. 1973; PaJeg and Aspnal, 1961; Close and Bray, 1993. 

Cell expansion rate was linearly related to the difference between the 
existing turgor pressure and the wall yield threshold. The reduction in cell 
size due to water stress was directly attributed to the lack ofadequate turgor 
pressure. We now know that at least thrr- interrelated phenomena must 
coexist for cell expansion to occur (Ray, 1s87). These three are: 1) a water 
potential gradient must exist between the expanding cell and the surround
ing tissue, 2) the primary wall structure must be loosened to allow the wall 
to stretch, and 3) a net increase in solute content must occur to maintain the 
osmotic potential and the driving force for water uptake as cell volume 
increases. Two of the three prerequisites are metabolically controlled phe
nomena and subject to alteration by water or temperature stress. The 
loosening of the cell wall is a hormone-activated enzyme-mediated process. 
The net increese in,solute content is dependent upon the import of current 
assimilate into ihe growing region. The availability of organic material for 
cell expansion is dependent upon photosynthetic activity and upon compe
tition among the various sinks for the limited supply of photosynthate 
(Cosgrove, 1987). 
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In most plants, the rate of leaf expansion is directly related to the 
photosynthetic activity (i.e., increasing from morning to midday). Con
versely, leaf water potential and turgor are declining over this same time 
course suggesting that turgor pressure itself is not the primary driving force 
for expansion. As water stress occi'rs, the rate of expansion decreases but 
follows the same diurnal time course (monocots) or shifts to times during the 
day when the water relations are more favorable (dicots). However, the rates 
of expansion of stressed leaves are never greater than the unstressed 
leaves (Van Volkenburgh, 1988). In both situations, final leaf blade size is 
reduced compared to the well-watered control affecting the ultimate produc
tive capacity ofthe whole plant. Several observations now exist that indicate
cell number reductions are equally responsible for blade size reductions in 
both grasses (Hsaio and Jing, 1987; McCree and Davis, 1974) and broadleaf 
plants (Van Volkenburgh, 1988) indicating cell division is equally sensitive 
to water stress. 

Total leaf area per plant is a function of both total numbers of leaves 
initiated and blade size of each leaf. It is apparent that leaf initiation from 
apical meristems in both determinate and indeterminate species is rela
tively insensitive to water stress. Rarely is node number reduced even when 
internode length and plant height are severely reduced by water stress. 

Reproductive meristems are much more sensitive to water stress than are 
vegetative meristems. In cereals, seed number per panicle is reduced dras
tically by water stress or temperature stress (Eastin et al., 1990). Axillary
meristems which are involved in production of 6i-uit, such as with indeter
minate plants like cotton and soybean, are very sensitive to stress and do 
not initiate the floral sites under stress. 

The harvest index, defined as the ratio of the weight of the harvestable 
product to the total dry weight of the plant, is considered to be linear across 
a wide range of production or yield conditions (Fig. 3). This linearity between 
seed yield and total dry matter has been interpreted to mean that reproduc
tive and vegetative growth are equally sensitive to environmental 
stresses (Howell, 1988). However, the intercept of the regression must be 
considered in addition to the slope. If the intercept is close to 0, then the two 
components are equally sensitive such as observed for wheat. Ifthe intercept
is large and negative, then a relatively large amount of vegetative growth 
must occur before any grain yield is produced. The greater the grain yield,
the higher the harvest index such as observed for corn. 

The photosynthetic process is also quite sensitive to water stress com
pounding the effects ofreduced leaf area on growth rates of plants suffering 
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Fig. 3. Relationships between grainyield and totalabove ground drymatterfor 

three grain crops. (adapted from TA. Howell, 1988). 

mild to severe water stress. The photosynthetic process consists of physical 
components restricting the supply of CO 2 to the chloroplast and the conver
sion of solar energy to chemical energy as well as enzymatically controlled 
components involved in CO 2 reduction and conversion to either transport
able or storage products. 

Since opening of the stomata is very dependent on guard cell water 
relations and the development and maintenance of turgor, it has been 
assumed for years that the supply of C0 2 to the chloroplast was the primary
limiting factor to photosynthetic rate changes as water stress progressed. 
Linear relationships exist between stomatal conductance and the C0 2 as
similation rate of most species. Farquhar and Sharkey (1982) proposed a 
technique to separate stomatal from nonstomatal limitations to CO2 assimi
lation. It is now commonly observed that the relative contribution Uf sto
matal conductance and the biochemical limitations to CO2 reduction and 
disposition vary and are dependent upon rate ofstress imposition, associated 
weather conditions (especially air temperature, radiation, and vapor pres
sure), species and growth stage, It is quite apparent that the primary 
function of the stomata is to balance C0 2 influx with H20 vapor efflux while 
maintaining the tissue temperature at a viable level as long as water is 
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available for transpiration. Energy shedding through leaf wilting (dicots) ,or
folding and becoming more erect (monocots) is an absolute necessity to
maintain a sublethal tissue temperature when transpirational cooling is 
suppressed. 

As tissue temperature increases, the water solubility of CO2 decreases and 
photorespiration increases in C3 species. In both C3 and C4 species, as CO 2reduction declines due to either reduced CO 2 supply (stomatal) or reduced 
biochemical activity (noniLomatal), photoinhibition due to O(2,') production
increases and can cause lI g.term or pernanent membrane damage in the 
chloroplast (Bowler et al., 1992). As the soil water supply becomes limiting
to transpirational demand dictated by leaf area index, radiant energy and 
vapor pressure defidt of the atmosphere, the plant begins to suffer progres
sively lower tissue water status which affects growth and productivity. 

HORMONAL RELATIONS 

As plants begin to experience water stress, the hormonal concentrations 
within the tissue are known to be altered,. Both the absolute concentration 
and the relative concentrations of the various hormones change. For in
stance, the abscisic acid concentration in the transpiration stream increases 
and is thought to be the source of ABA for stomatal control (Tardieu and
Davies, 1992). As the cytokinin concentration decreases, the relative concen
tration ofABA:cytokinin increases and is thought to be the cause of reduced 
or even cessation of meristematic activity and also leaf senescence and fruit 
abscission. The roots are now considered to be the source of the ABA in the
transpiration stream. The root tips are proposed to be the sensory tissue for
soil water stress conditions beginning to occur (Davies and Zhang, 1991). 

DROUGHT RESISTANCE MECHANISMS 

Numerous mechanisms are known to exist which are related to drought
resistance of plants (Jones et al., 1991). The mechanisms are classified into 
three categories of drought escape, desiccation avoidance, and desiccation 
tolerance. 

Drought escape is related to plant maturity. In some agricultural environ
ments, the soil water supply is fixed at the time ofplanting. Using a species, 
or genotype within a species, that can complete its life cycle on that given
volume ofwater is a viable approach to managing drought. In environments 
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Drought Resistance Mechanisms 

Droughit Esape Drought Tolerance at High Drought Tolerance at Low 
Tissue Water Potential Tissue Water Potential 

Phenological Reduction of Mainte unace
 
Development Water Lois of l'rgor
 

Developmental Maintenance of I Protoplasmic
 
Plasticity Water Uptake Resistance
 

where rain occurs during the growing season, drought is random, and the 
duration and intensity unpredictable; maturity differences are irrelevant 
and have no bearing on plant response or yield. Developmental plasticity 
then plays a major role in drought response. 

The major emphasis on droughc tolerance has been directed toward 
desiccation avoidance or desiccation tolerance mechanisms. Desiccation 
avoidance mechanisms are those wbich maintain the tissue water status in 
a favorable condition by either minimizing water loss or by increasing the 
supply. These include 1) stomatal closure, 2) energy shedding due to both 
leaf orientation changes and actual leaf shedding, and 3) deeper, more 
extensive root systems to increase the water supply. There is considerable 
genetic variation observed in most species for each of these mechanisms. 
Essentially every plant exercises one or more of these mechanisms when 
exposed to drought conditions. However, to date there is no evidence that 
any ofthe three mechanisms are related to maintenance ofproductivity and 
growth. Stomatal closure restricts CO 2 assimilation rate and increases 
tissue 'emperature causing increased photo zespiration and photoinhibition 
reducing net C assimilation and subsequert photosynthetic activity. Energy 
shedding through leaf orientation an . ieaf shedding reduces growth rates. 
The leaf shedding- retention phenomenon has been proposed as an impor
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tant drought response mechanism in grain sorghum (Rosenow et al., 1983).
The nonsenescent or 'stay green' trait has been positively associated with 
reduced lodging and increased harvestable yield (not with biological yield)
when severe water stress occurs during the grain filling period. Senescence 
is associated with a large amount of N and C remobilization from the stalk 
and lower leaves to complete grain filling. The nonsenescent genotypes are 
capable of maintaining greater photosyrthetic activity during grain filling
when water stressed (Table 2), largely aue to differences in leaf area dura
tion and maintenance of net N and C assimilation. However, ifwater stress 
occurs prior to flowering, the nonsenescent genotypes tend to respond like 
true perennials and sacrif cc reproductive development at the expense of 
vegetative growth. Seed number per panicle is severely reduced, whereas,
leaf area per plant is only slightly affected by water stress prior to flower
ing (Krieg, 1988). Increased root growth occurs at the expense of shoot 
growth ofwhich reproductive growth is usually more sensitive than vegeta
tive growth reducing yield. 

Table 2. Genotypic differences in crop growth rate (CGR) nitrogen net assirdla.
tion rate (NNAR) and dry matternet asoimilation rate (DMNAR) during
grain filling of two contrasting grain sorghum hybrids. 

Geoype 
Senescent 

Water Supply 
Irrigated 

CGR 
(R m 2 d"1  

20.4 

NNAR 
(R N m'2d' i 
351 

DMNAR 
(gm "2 d7 ) 
6.4 

Dry 4.7 86 2.3 
Nonsenescent Irrigated 20.6 357 5.8 

Dry 10.0 131 3.1 

Desiccation tolerance mechanisms are those which allow tissue function 
to continue as water status declines. Osmotic adjustment, defined as a net 
increase in tissue solute content, is proposed to allow maintenance of turgor 
pressure and turgor dependent processes as tissue water status declines due 
to restricted water supply. 

The existing literature on the cause and effect of osmotic adjustment in 
response to drought is quite variable. In wheat, osmotic adjustment has been 
demonstrated to be genetically variable and positively associated with 
productivity under drought conditions (Morgan and Condon, 1986). In other 
species such as grain sorghum, the reports are quite variable as to the 
benefits of osmotic adjustment. We have determined that osmotic adjust
ment represents less than 50% of the total change in solute potential of 
sorghum leaves as tissue water potential declines, and that net solute 
accumulation is initiated only after dehydration has occurred increasing the 
solute concentration (Girma and Krieg, 1992a). Stomatal conductance and 
C02 assimilation were significantly reduced prior to a measurable increase 
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in osmotic potential due to osmotic adjustment (Girma and Krieg, 1992b). 
It is our opinion that osmotic adjustment represents a symptom of water 
stress rather than an adaptation allowing continued production. Growth, 
and thus assimilate utilization are reduced to a greater extent than CO2 
assimilation and osmotica accumulate. The magnitude of osmotic adjust
ment appears to be limited to approximately 0.5 MiPa in grain sorghum. Our 
current opinion is that osmotic adjustment is probably beneficial to tissue 
survival and probably has real merit for perennials. In annual seed-produc
ing plants, the benefits are highly questionable at best. 

WATER USE EFFICIENCY 

In order to maintain productivity within the limits of a given water supply 
and atmospheric demand, every effort must be directed toward minimizing 
the opportunity for significant plant water stress to occur. Although there 
is evidence for genetic variation in gas exchange efficiency (CO 2 fixed per 
unit H20 transpired) the opportunity to make real gain in productivity is 
probably very small (Peng and Krieg, 1992). Analyses of the relative contri
bution of the various components to grain yield strongly indicate that the 
seed per plant component is the major determinant of yield per unit land 
area within reasonable plant densities common to production agriculture. 
Since potential seed number is established in the middle third of the life of 
most plants, effort must be made to minimize the risk of severe water stress 
existing during this developmental period. In areas of random drought or 
periodic rainfall throughout the growing season one can match the critical 
growth stage occurrence with the periods of greatest probability of rainfall 
if the growing season length permits. Another approach that we are devel
oping involves controlled plant density. Each plant is spaced such that the 
soil volume will prov "de ample water for that plant to get to the flowering 
stage with the least risk of suffbring severe water stress. The volume ofwater 
required for cotton and grain sorghum to produce 50% of their genetic 
potential has been defined and normalized for vapor pressure deficit to 
extend the concept to any production area. The plant density can easily be 
calculated based upon soil water content at planting and the probability for 
rain during the preflower period. 

SFUMMARY AND CONCLUSIONS 

Water stress has mEjor impact on growth and productivity of plants. 
Expansive growth is extremely sensitive resulting in reductions in plant size 
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and production potential. Reproductive meristems are more sensitive than 
vegetative meristems, resulting in significant reductions in seed number per 
plant and yield potential. Growth rates are reduced not only due to reduc
tions in leaf area but also due to reductions in photosynthetic rate. Photo
synthetic rate reductions are due to both physical limitations on CO 2 supply 
due to 8tomatal closure and biochemical limitations on CO 2 reduction. The 
biochemical limitation in CO2 reduction are due to reductions in the physical 
aspects of energy transformation as well as enzymatic rate reductions. 
Yields are reduced primarily due to reduction in the seed number component 
with only minor reductions in the seed weight component. 

Numerous plant responses to water stress are commonly observed which 
are thought to represent drought resistance mechanisms. In short-term 
drought conditions, mechanisms such as stomatal control of water loss and 
concurrent energy shedding through leaf orientation changes are beneficial. 
However, if drought conditions persist, these mechanisms are negatively 
related to productivity. 

Mechanisms such as osmotic adjustment theoretically maintain those 
functions dependent on turgor, such as cell expansion and stomatal function. 
In reality, however, osmotic adjustment may only represent a symptom of 
altered source-sink relations rather than an adaptation allowing mainte
nance of growth and productivity. 

More efficient use of the water resources through genetic manipulation 
and agronomic management offer some opportunity to increase productivity 
within the limits of the water supply and should be emphasized in the future. 
In nearly every production environment, 25-50% of the total water supply is 
lost to wasted processes such as runoff and free soil evaporation. Relatively 
simple management practicep can be implemented which will minimize the 
loss. Controlled plant densities can then be used to minimize the risk of 
severe water stress during critical growth stages to maximize seed number 
and yield potential. 
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ABSTRACT 

Phenotypic plasticity is the hall mark of root system-based tolerance~avoidance 
of soil stresses. Improvement of crops for soil stress situations requires knowledge 
oi three aspects: 1) Detailed knowledge ofthe environmental (edaphic) parameters 
associated with the stress, 2) Detailed knowledge of the characteristics of root 
systems, and 3) Knowledge of how the first two interact to produce the required 
tolerance/avoidance response. Currently these three knowledge areas are insufi
ciently developed to provide accurate prescriptions for a given situation. This 
paper focuses on aspects 2 and 3, with only brief reference to parameters of aspect 
1, some of which are often overlooked when soils are being characterized. None of 
these three aspects can be considered in isolation, but must be comprehended in 
their proper relationship to each other. When edaphic environments are consid
ered, soil temperature at depthp greater than 20 cm, and carbon dioxide concen
trations in the plough layer and at deeper horizons are rarely considered. These 
two parameters are critical affectors of "normal" root growth and root system 
development. Normal root systems are composed of at least four root types each 
having distinctly different response patterns and requirements. Anecdotal evi
dence has indicated that two to four additional types of root may be present. 
Interactions between different types of root and the different soil environmental 
characteristics determine the extent of popitive or negative phenotypic plasticity 
displayed by a giveu genotype. With sufficient knowledge, parental genotypes can 
be selected for appropriate characteristics and then interbred. Later generatio, 
can be selected on the stressful soils of concern using shoot characteristics associ
ated with an yield parameters. 

INTRODUCTION 

This synopsis is an attempt to point out the role of the plant root system 
in soil stress resistance, and some of the mechanisms by which this has been 
accomplished. Some gaps in existing knowledge will be identified, and 
additional potential solutions suggested. The problem of breeding for a plant 
characteristic(s) which is, by its growth Labit, hidden from view and poorly 
accessible, will be briefly addressed. 

80 



THE PROBLEM SITUATION
 

The preponderance of plant stresses occur because of environmental or 
biological factors impinging on the plant through the root system. Among
the six general categories of environmental factors thatimpinge on the plant
(Fig. 1), four are rhizosphere factors, and each of these rhizosphere catego
ries have far more constituent factors than any of the equivalent thal
losphere categories. In addition, because the plant shoot is readily visible, 
and the plant part(s) of greatest interest to man are usually attached to the 
shoot, plaat breeders have focused their attention on shoot characteristics. 
The result is that for most shoot sensed stresses, except perhaps biologicsl
and int'-rittent physical stresses, plant breeders have already developed 
the necessary resistance. On the other hand, relatively new stresses like 
ozone and sulfur dioxide toxicities are currently the focus of extensive 
research. 

Stress results from a negative interaction between a plant and its envi
ronment. In soybean and other major crop species, shoot characteristics 
generally have significantly less genotype-by-environment interaction (GE)
than do root characteristics (Zobel, 1990a, 1992a). This situation has been 
a direct result of conscious efforts to breed for shoot phenotypic stability 
uniform height, uniform seed number and size, uniform leaf angle, stable 
yields across years and locations. One consequence of this reduced GE is a 
narrower shoot based response pattern and germplasm base in terms of 
potential solutions to stress situations. Additional variation can, of course, 
be introduced from wild species. On the other hand, the presence of extensive 
GE in root characteristics suggests a broader genetic base for providing 
stress tolerance via root characteristics. At the same time large GE can cause 
difficulty in identifying the genetic pattern of response to stress situations. 
A further complication is the inherent temporal and spatial variability of 
different rhizosphere factors (Fig. 1). 

O'Toole and Bland (1987) have summarized the literature on genotypic
variation in crop root systems and Zobel (1975, 1986, 1991b, 1992a,b) has 
discussed root genetics and some of the inherent constraints to root improve
ment. Both groups have concluded that a primary constraint to root genetics 
and breeding is the exte.sive morphological plasticity observed. Morpho
plasticity, and its counterpart physio-plasticity, are the direct result of 
GE-based changes in plant root systems. This plasticity can cause a drastic 
change in the root system morphology (or physiology) of a homozygous 
genotype across experimental plots of as little as 3 meters by 3 meters within 
a single soil class (Zobel, 1992a; and Smith and Zobel, 1990). Unless the 
environmental cause and the pattern of interaction are understood, it is 
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Fig. 1. Division of the Biosphere into ita six main characteristics, two thai
loephere and four rhizoephere Mzjor aspects of the rhizoophere can be 
classified by their inherent Ipatial and temporal variability. 

difficult to identify genetically-controlled variability in such root systems.
On the other hand, plants need this plasticity if they are to survive in 

different soil environments. 

Root genetics has been a difficult subject to pursue with any likelihood of 
success. In addition to morphological plasticity, this lack of success can be 
attributed to a lack of consistency in root terminology (Zobel, 1991). When 
two types of root with distinctly different physiological and/or morphological
responses to the same environment are treated as a single type of root, either 
no sensible pattern will be found, or a pattern that is appropriate for only 
one type is ascribed for the other or both types and published as such. It is 
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patently impossible to demonstrate that two types of root are different if 
they are not analyzed separately, nor is it possible to make sense out of the 
literature if resalts with one type of root are incorrectly ascribed to a 
different type of root. An underlying cause of this inconsistency is the 
extreme similarity in anatomy and external morphollogy between all roots. 
Zobel (1975, 1986, 1991b) has documented the exitence of four major types 
of root and has demonstrated their genetic, physiological, and developmental 
uniqueness. Because these differences have not been routinely adopted, 
many experiments have been confounded. A further confounding ofresults 
occurs because root research is most ea.;ily conducted out on secdlings. Many 
stress situations have their greatest impact during anthesia and seedfill /
fruit development. The preponderance of roots present in seedlings are of a 
different type than those that make up the majority ofthe root length density 
or system architecture of a fully grown plant. In addition the possibility of 
a change in root physiological activity with plant and/or root age further 
demands a thorough re-evaluation of cuTent concepts about root function 
in field grown plants (Zobel, 1992b; Zobel et al., 1992). 

The opacity of the soil, and lack of a suitable experimental system to 
non-destructively analyze root system responses to perturbations in their 
environment are at least part of the reason these problems have developed.
Another is a lack of statistical procedures which are capable of dissecting 
the GE responses of root systems so that plasticity can be analyzed and 
characterized morphologically, physiologically and genetically. Zobel (1992)
has identified some new technologies that should improve the ability to study 
the genetic and environmental patterns serving as the basis for root pheno
plasticity. Before discussing some of these technologies, an overview ofsome 
of the important stress situations will be presented. Many potenial root
based methods for developing tolerance to stress situations have been 
hypothesized and the literature has some good examples of successful 
root-based solutions. 

STRESS FACTORS 

The delineation of the soil-based stresses that a plant can encounter 
produces a list that is daunting (Table 1), especially if each must be explored 
separately. Fortunately, many different stresses produce very similar re
sponse patterns. As a result, the solution to a stress problem is frequently 
the alleviation ofthe response rather than removal or avoidance ofthe stress. 
Both duration of the stress situation and the severity of the stress are 
significant attributes that must be taken into account when considering
"solutions". This holds equally for all factors. Many of these stress factors 
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Tale 1. Types of soil stress_ . 

Temperature Physical stncture 
Heat Texture 
Cold organic mnater 

sand 
Moisture clty 

Drought Bulk density 
Flooding pan layers 

whole horizons 

Acid soils Aggregate 
Excess Al or Mn size 
Deficient Ca. Mg, P density 
High H+ Concentration porosity 

Mineral Gaseous phase 
Excess Carbon dioxide 

baron Nitrogen gas 
salt Ethylene 

Dcficiency Oxygen 

Pathological / Parasitic Competition 
Pathogens Plant density 
Parasites Weeds 
Herbivores Interseeding 
Symbiotes 

Combinations 
Ina given situation, the lovel of any one of the above may be fe-. low for s',ess"but Incomblnation with another 

equaly marginal fato, stress symptoms characteristic o. ine or the other may occur. 
Duration ad severity iEro Important quantiflcaton's of each of those .itress parameters, and oondition the level of 

tolerancemc.Jed tnalleviate the symptoMs. 
aTh5 list Isnot 4ntendod to L'e exhaustive, but to convey the diversity of fb-tors and factor levels that can Induce 

stress symptoms In plants. 

ace discussed in great detail elsewhere in this proceedings, so only those 
aspects that affect root-system-:esponse to stress wih be covered here. 

Most stress situations are unique to Lhe specific site where the stress 
problem is found. Uniqueness can be due to confounding factors, agricultural 
technological level, or socio-economic considerations. Confounding factors 
can come from all aspects of the environment that impinge on plant growth 
and development. Although a stress solution for a given location will be 

nique, in that ".twill be tailored to that site, it will also provide insight for 
other sites with similar constraints. 
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Moisture Stress 

Drought 

The sihlaplest moisture stress problem/solution is the presence ofmoisture 
deeper in the soil profile than the plant root system penetrates. Numerous 
authors have demonstrated the presence of variability for increased depth
ofroot penetration in both monocots and dicots (Eghball &Maranville, 1993;
Mishio, 1992; Elizondo, 1991; Hays et al., 1991; Lorens et al., 1987; Hamblin 
and Tennant, 1987). Another, relatively straight forward drought situation 
involves total water reserves in the profile that are inadequate for the 
production of the crop. Passioura (1972) provided what was an elegant
solution to the problem: reduce the amount of water used by the plant by
restricting root growth. A variant of this approach is the reduction in xylem
vessel si, .2,effectively increasing resistance to water flow (Passioura, 1985).
Since -iumerous papers document the existence of sufficient genetic vari
ation (Baker et al., 1992; Kepper, 1992), implementation of these ap
proaches requires only the necessary breeding pressure. The above two 
forms of drought stress are probably the purest, and therefore the easiest to 
deal with. When acid sub-horizons or plough pans that restrict depth of 
rooting are combined with inadequate rainfall for even short duration, two 
different types of soil stress are interacting. This type of complex stress 
situation probably encompasses the preponderance of drought stress prob
lems, i.e., drought stress is frequently the resultant rather than the primary
causal stress factor. In these cases, irrigation is the obvious answer, but 
frequently, economics precludes this method of -leviating symptoms and 
the primary stress must receive the focus. 

Oxygen Deprivation 

The inverse of drought stress is flooding stress. Plant response to the 
resdtant reduction in oxygen is normally characterized by a dramatic 
increase in ethylene gas in the stem or roots at the air-water interface. 
Ethylene is a powerful plant growth regulator and has been described as 
being responsible for modifying auxin relationships and stimulating the 
induction of adventitious roots. Ethylene also is known for disrupting mi
crrfibril orientatio,, and causing cell leakage and eventual cell wall degra
dation. Root growth under oxygen deprivation has been reviewed recently
by Drew and Stolzy (1991). In rice and other aquatic species, the roots 
normally develop extensive aerenchyma, then suberize to retard oxygen
efflux. Lenticels develop above the water-air interface to import additional 
oxygen. Since rice normally develops aerenchyma, it, and other species like 
it,is morphostatic in its response to oxygen stress. On the other hand, wheat,
barley, and maize develop aerenchyma and lenticels in response to flooding, 
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dmonstrating that they are plastic for this characteristic (91 other species 

have been described by their level of response, Justin and Armstrong, 1987). 

Temperature Stress 

Temperature stress in some forms is extremely well known - heat stress 
inhibition of fruit set, freezing of non-hardy species. Soil temperature stress 
via the root system has been generally ignored. Bowen, in a recent review 
1,1991), suggests that the majority oftemperature stress occurs in the shoot 
below the soil surface for a large part of the growing cycle. This is true of 
many monocotyledor.ius crop species, but it discounts the effects of soil 
temperature during the portion of the season when the shoot apex is out of 
the ground, and also it also discounts effects on dicotyledenous species. 
Cooper's (1973) very thorough review of the effects of root temperature, i.e., 
soil temperatures, documents effects on all plant growth aspects. The data 
presented by Cooper (1973), Klepper (1987) and Bowen (1991) suggest that 
different species have characteristic temperature minima and maxima with 
a broad optimum. For example, based on an assessment of50% reduction in 
root elongation, Bowen (following Klepper, 1987) suggests species/cultivar
specific lower threshold temperatures for maize (17C), kidney bean (120C), 
and strawberry (5C). 

Much of the work on rhizosphere temperature stress has dealt with 
seedling emergence and growth. Some efforts to deal with excessive or 
insufficient soil temperatures have involved the use of mulches to cover the 
soil and reduce slar heating, or building up of ridges to increase solar 
heating in the roct zone (Allmaras et al., 1973). One aspect receiving 
insufficient consideration is the soil temperature below the plough layer. 
Zobel (1992a), in a brie.'review ofthe effects of root zone temperatures, cited 
work by Rykbost et al. (1975), Kaspar et al. (1984) and others, to suggest 
thai the 'real' temperature stress takes place at soil depths well below the 
plough layer and is most important at anthesis and during seed and fruit 
development. Consider: a corn crop grown in upstate New York, and another 
corn crop grown in the main river valley of the Gambia. In terms of 
temperature regimes, these two crops have little in common, except both will 
suffer from moisture deprivation even though there is adequate moisture 
two and three meters deep in the soil. In New York (Musgrave Research 
Farm, Aurora, NY), the soil temperature below 50 cm is frequently less than 
17'C at anthesis (temperatures decrease with increasing depth into the soil 
profile) and therefcre deeper root growth is suppressed. This limits root 
proliferation to the upper 50 cm of the profile, which has insufficient water 
helding capacity if significant rainfall does not occur at least twice a week. 
In the Gambia (central research farm, Sapu, the Gambia), the corn root 
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systems do not penetrate much below the 50 to 100 cm level because the soil 
temperatures increase with increasing depth, reaching levels above 320C at 
50-100cm depth at anthesis (temperatures increase with increasing depth
since corn is grown during the cool seasonXMBenga, 1989). Thirty-five
degrees C is the normal upper limit for root growth, but Mosher and Miller 
(1972) have shown that corn roots grow increasingly more horizontal with 
temperatures above 270C. Thus both locations suffer fom the same problem:
transient drought stress due to insufficient rooting depth. Of course rela
tively expensive irrigation will alleviate both situations, but so will breeding
for temperature tolerance in the large nodal roots, or, possibly, breeding for 
reduced water use by reducing xylem vessel size or modifying stomatal 
response. 

"Temperature stress" is not limited to restricting root growth into deeper
layers of the soil profile. Zobel (1989) described an experiment where, under 
photoperiod inductive daylength and 27/180C (day/night) air temperatures, 
root zone temperatures of 24°C allowed flowering in both photoperiod sen
sitive and insensitive kidney bean (Phaseolus vulgaris), while root zone 
temperatures of 200C suppressed flowering in the sensitive but not the 
insensitive genotypes. These temperatures were well above 'threshold' val
ues, but still conditioned 'stress'. The literature reviewed by Cooper (1973)
suggested that this was not an isolated example of marginal rootzone 
temperatures limiting or even strongly modifying normal shoot growth and 
development. On the other hand, very little is known about the interaction 
between soil temperatures (below the plough layer) and marginal stresses 
from other causes. Where temperature and other stresses have been studied,
lower (at or below threshold) root temperatures appear to ameliorate some 
of the stress symptoms (Bowen, 1991), while higher temperatures appear to 
stimulate stress symptoms. Outside of selection pressure for cold tempera
ture germination and seedling growth, little breeding for temperature stress 
tolerance has occurred. 

Mineral Stress 

Many locations around the world have been identified as mineral defi
cient. Many other locations are transient mineral deficiency - when soil 
temperatures are low, the plants show mineral deficiency, but this disap
pears as the soils warm up. The opposite problem is associated with those 
sites that have excessive minerals. An increasing number of locations in the 
world suffering from excess salts must use saline water for irrigation. These 
are frequently thought ofas mineral-excess sites. Heavy metals are increas
ingly becoming a problem in the industrial countries and in many of the 
developing countries with mines and mine spoils. 
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Deficiencies 

Plant (root) response to nutrient deficiencies is diverse, the potential for 
improvement is also equally diverse. Recent reviews by Wilcox (1991) and 
Krikun (1991) describe some ofthe roots interactions with mycorrhizae. This 
association is best known for the improved uptake ofphosphorous in infected 
plants vs. non-infected plants. Recently Gabelman and Loughman (1987)
edited a collection of papers on Genetic Aspects of Plant Mineral Nutrition, 
and Gabelman et al., (1986) reviewed the genetic variability for nutrient 
uptake. Much ofthe work cited by these authors is the result ofstudies with 
seedlings and/or single types of root. Zobel et al., (1992) and Waisel and 
Eschel (1992) demonstrate that mineral uptake differs between root types.
This suggests the possibility of designing root systems to present an appro
pnate balance among root types for each specific soil stress. 

Marschner (1991) and Bar-Yosef (1991) have reviewed the effect of root 
exudates, including hydrogen ions, on the availability of nutrients to the 
root. These compounds sometimes have direct effects such as chelating 
relatively insoluble ions, and on other occasions they modify the soil envi
ronment. A modified soil environment will change the activity of soil micro
organisms that can produce siderophores and other chelating compounds to 
make minerals more available. Specific scenarios to alleviate a problem
require detailed knowledge of the basis for the stress situation and any
confounding environmental characteristics such as temperature. 

Excess 

Root responses to soil chemicad factors have been reviewed by Foy (1992), 
to excess salt by Kafkafi (1991) and to excess heavy metals by Breckle (1991).
Plant roots respond to mineral excess and deficiencies both morphologically 
and physiologically. The primary focus in adjustment to mineral excess has 
been on physiological adjustment. Breckle (1991) notes, however, that 
growth and initiation of second- and third-order lateral roots are stimulated 
by heavy metals, while the tap root and first-order laterals (seminal/basal 
roots) are suppressed. Roots generally respond to mineral excess by beccm
ing thicker and growing more slowly (Kafkafi, 1991). Similarly, Freitas and 
Camargo (1988) have claimed that selection for salinity stress tolerance can 
be based simply on comparative seminal root length. Snapp and Shennan 
(1992) showed, however, that when subjected to excess salinity, roots ofboth 
sensitive and insensitive tomato lines exhibited reduced growth. On the 
other hand, they demonstrated that the sensitive line had excessive root 
die-back, while the insensitive line did not. Obviously, comparatively faster 
root growth is only one of the possible morphological indicators of salt 
tolerance. 
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Mozafar and Oertli (1992) found that salt stress in at least some cultivars 
ofbarley wrs root-zone-temperature sensitive. If the root zone is maintained 
at 15-20C, rather than 10 or 25C, the stress effects ofNaCl concentrations 
up to 60 mmol L were significantly reduced. This has implications in testing
for salinity tolerance - screening should be dore under several different 
temperature regimes because: 1) significant numbers of low tolerance es
capes might be inadverter.tly selected due to temperature interactions with 
the salinity effects, or 21 Ines with temperature insensitive salt tolerance 
might be missed. In this type of situation, lines with shifts in temperature
optima and/or lines with changes in salinity tolerance might provide a 
solution. 

In a study with grafted common bean plants, White and Castillo (1989)
demonstrated that the response oftheir materials to aluminum and drought 
was localized to the root system, and genotype-by-environment interactions 
were involved in its expresgion, Alak of documentation of all environmenta 
parameters can lead to au hypothesized solution that may not be a solution 
at all. Such was the casf. of transient drought and high root temperatures in 
the Gambia discussed earlier. The soils involved are acid soils with alumi
num toxicity. At the experimental locations, (MBenga, 1989) adequate water 
reserves were available in the subsoil; however, soil temperature below the 
plough layer had not been previously measured. The soil temperature was 
assumed to dec-ease with increasing depth -just as it does in the U.S. and 
other temperate regions. This lack of knowledge would suggest that an 
aluminun-tolerant strain of maize would be able to utilize the deeper
moisture in these locations, and therefore solve the difficulty with transient 
drought stress. Soil temperature nmeasurements suggest that a high tem
perature-induced-change in root geottopic response will owcur (Mosher & 
Miller, 1972; Ycas, 1980). Even with aluminum tolerance, corn roots still 
will not penetrate to the deeper horizons. 

An additional scenario is the interaction of high aluminum and drought
sensitivity investigated by Goldman et al. (1989). They found that aluminum 
and drought acted synergistically in soybean i.e., when both stresses were 
applied simultaneously, leaf water potential, relative water content and 
transpiration were significantly lower than was predicted by simple additive 
action between the two stress factors. This suggests that the two stresses 
are acting on the same or complimentary biological r:! "-ways. If this is the 
case, germplasm tolerant to one stress factor will have a high likelihood of 
tolerance to the other stress. Identification of the biological pathway in
volved is of greatest importance for future screening programs. 
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Physical Stress 

Mechanical impedance causes shc:,teing and thickening of roots with 
irregularly-shaped roots being a halai-ark of roots growing in physically 
inhibiting soils (Bennie, 1992). Roots will grow down cracks (either artificial 
or natural) and then explore lower, less-compact layers of the soil profile. 
When roots are unable to penetrate soil aggregates that contain moisture 
and minerals, they may change morphology or alternatively initiate a new 
type of root to allow more efficient removal of this moisture (De Freitas, 
1988). Numerous reports suggest that for intermediate compaction levels, 
larger (thicker) roots can penetrate where normal roots can not (Matere
chera et al., 1992). 

This has been the basis for several selection programs. See Voorhees 
(1992) for a review on implement-induced compaction stresses. 

Carbon Dioxide 

As indicated by Zobel (1992a), soil carbon dioxide at anthesis in the plough 
layer, can reach levels in excess of 10% at the interface with the non-tilled 
horizons (Buyanovsky and Wagner, 1983). Levels above 2% are known to be 
toxic to root growth and function (Yeas, 1980; Ycas and Zobel, 1983). On the 
other hand, many experimental systems use pot culture or hydroponics, and 
these systems have C0 2 levels below 0.1%, levels which are sub-optimal for 
normal root growth and function (Zobel, 1992). It has been demonstrated 
that CO2 levels in the root zone can modify photosynthetic response and, by 
association, stomatal action and water relations (Zobel, 1992). How does 
high or low carbon dioxide levels interact with stress inducing soil environ
ments? In mineral deficient soils, especially marginally deficient, high 
carbon diodea will further intensify the deficiency by lowering uptake 
efficiency. High carbon dioxide also affects rot geotropism and growth, 
causing reduced root growth and colonization of the plgh layer immedi
ately under the stem in many "Low Input" situations (Zobel, 1989). Allee et 
al. (1993) have demonstrated in a preliminary experiment that excessive 
carbon dioxide associated with high levels of manure application is corre
lated with tolerance to corn root worm activity and, at the highest levels, 
with reductions in yield. Understanding of stress situations can not be 
complete without knowledge ofthe other factors invoived in the rhizosphere 
environment within which the root system resides. 
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TECHNOLOGY
 

The preceding discussions were not meant to be a review, but to emphasize
that tolerance has been attained, that different stresses interact, and that 
current information is incomplete. Different types of root have different 
stress responses, different environmental factors interact to increase or 
decrease the severity of a given stress response, some environmental factors 
involved in these interactions are not routinely documented, and some 
environmental factors have not even been studied in this context, eg. carbon 
dioxide concentration. 

Documentation 

Current technology provides the tools for thorough documentation of the 
rhizosphere environment. Soil classification Mollowed by chemical and physi
cal characterization of the different soil horizons provides the basic informa
tion about the soils ofeach soil horizon -nutrientc, salinity, pH, bulk density, 
aggregate size and pore size distribution. Soil temperature measurements 
in each soil horizon to two meters depth every two weeks during the growing 
ucason will U.;cument the soil temperature regime. The amplitude of tem
perature changes will change from year to year, but the general seasonal 
temporal pattern will hold. In New York, for instance, the temperature at 1 
meter will be in the 20'C range in some years and 17'C range in others, with 
concomitant increases or decreases in yield, respectively. Carbon dioxide and 
other temporally variable soil characteristics also need documentation at 
weekly or bi-weekly intervals. Actual root growth should be followed, using
bi-weekly standard soil coring techniques (B3hm, 1979), or minirhizotron 
cameras (Upchurch and Ritchie, 1983), plus nuclear root measurements 
(Zobel, 1989). Periodic sampling and characterization of the rhizosphere
microbial and mycorrhizal populations will provide additional important
data. These measurements will document any anomalies in the developmen
tal patterns in the soil. Whenever possible, this documentation needs to be 
conducted over several years so that any yearly temporal interactions can 
be documented. All measurements should be replicated over the arearegion
of concern so that any spatial variance can be documented. Field trials of 
selected tolerant plant materials should be documented in the same way,
with plantings in each of the areas that have distinctly different rhizosphere 
patterns. 

Analysis 

Datasets resulting from the above analyses will be large, and will require 
careful interpretation. Statistical analy-is can identify the underlying spa
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tial patterns, both vertically through the profile, and horizontally across the 
area/region under study. Statistical procedures are also available to assist 
in identifying the underlying genotype-by-environment interactions (GxE) 
between plants and stressful environments. Geostatistics and nearest
neighbor analysis have frequently been used for Fpatial analyses (Cressie, 
1992), and principal components analysis (PCA) has been used in remote 
sensing applications (Singh & Harrison, 1985). The advantage to PCA is its 
speed and lack of requirement for extensive user intervention and decision 
making. By looking at different PCA axes or sets of axes, it may be possible 
to interpret the interaction patterns between different temporal and spatial 
soil properties. This is especially important when more than one environ
mental parameter is involved in a 3tress situation. A variant of PCA and 
analysis of variance (ANOVA) statistics - additive main effects and multi
plicative interiction (AMMI), receatly reintroduced by Zobel, et al. (1988; 
Gauch, 1988, 1990; Gauch and Zobel, 1989, 1989, 1990) is capable of 
separating GE into its component parts. When used in the early diocumen
tation of a stress problem, these statistical techniques will help to identify 
situations where more than one environmental parameter and more than 
one biological process is involved. 

As described earlier, one of the major constraints to root research has been 
the plasticity of roots, i.e., the ability of a single genotype to change the 
morphology of its root system in response to different environments. This is 
exactly the situation for which the AMMI analysis was selected by Zobel's 
group. GE is based on the genetic variation in the underlying physiological 
process of the plants and the modulation of those processes by different 
environments. in this context, a genotype that changes its phenotype in 
response to different environments is plastic, while one that does not change 
over the same set ofenvironments is static. Conversely, an environment that 
causes different genotypes to respond differently can be called a modulating 
environment, while one that does not cause the same set of genotypes to 
behave differently is non-modulating or stable. These characteristics, plastic 
vs. static and modulating vs stable can be quantified and characterized using 
AMIL. Such analyses will eliminate the confusion caused by the perceived 
randomness of plastic responses (Zobel, 1990). Zobel's group is currently 
developing plasticity and modulation indices that can be used to quantify 
and characterize genotypes, locations, and stress characteristics for use in 
research and selection (the appendix presents some of their initial indices). 

Experimentation 

Hubick et al. (1982) and Peterson and Krueger (1988) have used aeroponic 
culture methods to study the physiology of water stress. Using aeroponics, 
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they were able to control the level of water deficiency to achieve different
levels of stress. The technology of aeroponics was recently reviewed by
Weathers and Zobel (1992). With the use of ultrasonically induced nutrient
fogs (ultrasonic aeroponics), nutrient levels mimicing soil concentrations, 
gaseous atmospheres mimicing soil atmospheres, and temperatures
mimicing soil temperatures can be developed and controlled very precisely.
With appropriate modifications, temperature, nutrient, and gaseous gradi
ents can be introduced into the artificial rhizosphere. Hydroponics and other 
aeroponic systems establish thin film boundary layers around the roots,
requiring higher concentrations of nutrients, and modifying the gaseous
relationships, especially carbon dioxide. With this system all soil stresses 
except soi. structure based stresses can be mimicked for physiological study 
or for prAiminary screening ofgenetic material. This is the only system that 
could easily be used to study interacting stress environments. A second 
benefit of aeroponics is the free access to roots for analysis of physiological,
anatomical or morphological modifications induced by the treatments. 

THE FUTURE 

From the above, it is obvious that the tools to deal with soil stresses are 
available. Once a stress is identified and characterized, the question be
comes: does genetic variation suitable for alleviating the symptoms of that 
stress exist? 

Zobel (1992) found numbers of single gene recessive root morphological
mutants in tomato, but few have been found in other crop species. This led
him to speculate (Zobel, 1985) that it would be difficult to identify recessive 
characteristics in most crop plants because of inherent genic duplication.
O'Toole and Bland (1987) reviewed the literature and found that heritability
for rooting characteristics was generally low, but that significant variation 
did exist. On the other hand, Foy and DaSilva (1991) demonstrated a range
of aluminum tolerance among a set of Triticum aesti.'um lines; McMichael 
and Quisenberry (1991) and Quisenberry and McMichael (1991) a6,mon
strated significant variation in root-shoot relationships and water use effi
ciency, respectively, in cotton. These and other similar reports suggest that 
there is ample variation for further improvement. 

Breeding methods 

Zobel(198.) recognized that breeding for a cb-aracteristic that was poorly
characterized by morphological characteristics at maturity or in the shoot,
in general, would be difficult to incorporate into a cultivar development 
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program. Except when a stress is sufficiently severe to reduce yields or to 
modify the shoot morphology, selection pressure requires detailed physi
ological or root morphological screening. These constraints appear to remove 
stress tolerence breeding from any but the largest private or public crop 
improvement grgaizations. The inaccessability of roots has led to 1)greater 
retention of GE, and 2) less modification through plant breeding efforts than 
with plant shoots (Smith and Zobel, 1990; Zobel, 1991). This hypothesis may 
not withstand close scrutiny. Erdmann and Wiedenroth (1986) investigated 
the response of five taxa of primitive and modern wheats to anaerobiotic 
conditions. Their conclusion was that Triticum aestivum expressed far 
greater adaptive response than the more primitive lines. 

Scattered through the plant breeding literature are brief references to 
cryptic selection, unconscious selection, inadvertent breeding, and ev'ilu
tionary breeding. Usually these refer to situations where a cultivar or line 
has been improved in a characteristic that was not under conscious selection. 
Zobel (1976) refers to one such case in tomato where on. culivar had a more 
adaptive root system than others. Falconer (1961) in a discussion ofindirect 
selection and correlated characters suggested that when a characteristic was 
difficult to measure or identify (here we can consider economic considera
tions - labor, time, direct ccsts - as increasing the difficulty for breeding root 
characters), selection of a correlated character would give the greatest 
advance. In a stress environment, yield, plant stature, and other shoot 
characters are positively correlated to a root character that provides toler
ance to that stress environment. It can be postulated that by 1) identifying 
a root characterlilc(s) (physiological or morphological) that conveys toler
ance to a stress, 2) incorporating this characteristic(s) into a breeding 
program, and 3) ielection for yield and other agronomic characteristics 
under a variety of stress environments related to the one of importance, 
successful indirect selection for stress tolerance will be achieved (Zobel, 
1983). In support, of this hypothesis, Foy et al. (1993) have demonstrated 
that sufilcient correlation exists between soybean root and shoot growth on 
high aluminum soils to use shoot growth as an aluminum tolerance selection 
criteria. With adequate documentation of the characteristics of tolerance for 
other stresses and documentation of the GE interactions involved, indirect 
selection for root tolerance to soil stresses should be successful. 

Summary 

Phenotypic plasticity is the hallmark of root-system-based toler
ance/avoidance of soil stresses. Improvement of crops for soil stress situ
ations requires know)edge of three aspects: 1) Detailed knowledge of the 
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environmental (edaphic) parameters associated with the stress, 2) Detailed 
knowledge of the characteristics of root systems, and 3) Knowledge of how 
the first two interact to pruduce the required tolerance/avoidance responae.
Currently, these three knowledge areas are insufficiently developed to 
provide accurate prescriptions for a given situation. None of these three 
aspects can be considered in isolation, but must be comprehended in their 
proper relationship to each other. When edaphic environments are consid
ered, soil temperature at depths greater than 20 cm, and carbon dioxide 
concentrations in the plough layer and at deeper horizons are critical 
affectors of"normal" root growth and root system development. Normal root 
systems are composed of at least four types of root, and each type has
distinctly different response patterns and requirements. Interactions be
tween different types of root and the different soil environmental charac
teristics determine the extent of positive or negative phenotypic plasticity
displayed by a given genotype. With sufficient knowledge, parental geno
types can be selected for appropriate characteristics and then interbred and
later generations selected, on the stressful soils of concern, using shoot 
characteristics. 
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APPENDIX 

Indices for Characterization of Interaction 

If 
N 

1) Yge9t + Xjg5'j i 

or 
N 

2) . + + g8. 

then 
N 

3) P,= IYg and Sg=I-Pg 
1=1 

N
and 
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where eq. I is the PCA model and eq. 2 is the AMMI model and P. is the 
plasticity index, Sg is the stability index, K is the modulation index and 
Yge is the estimated cell mean for the variate ofinterest. Then: 

;isthe grand mean, 

g is the factor g additive variance around p, 

N is the factor e additive variance around t4 

N is the number of significant axes produced by singular value decompo
sition ofthe residual matrix, 

i is the axis index, 

Xiis the eigenvalue (valued as the square root of the sums ofsquares) for 
axis i, 

yg is the eigenvector for genotype g on axis i, 

8 i is the eigenvector for environment e on axis i. 

Both PCA and AMMI rely on the Singular Value Decomposition (SVD) of a 
two way matrix; for FCA the matrix is the variance from the grand mean, 
and for AMMI it is the residua. variance after removal of the additive 
variances. Biplot analysis of individual axes (a biplot is a scatter diagram
with the x axis as the genotype and environment means and the y axis as 
the interaction scores for a given SVD axis - interaction scores are calculated055 

as X.5 or &'i5 , ) can be used to interpret interaction between specific 
genotypes and environments (for details see Bradu and Gabriel, 1978; 
Kempton, 1C'; and Zobel et al. 1988). Each SVD axis is associated with a 
specific biological process or related biologi cW process, therefore a set ofaxes 
can (given enough knowledge and environmental data) identify the impor
tant biological processes and assess their relative importance. (See Zobel et 
al. 1988; Gauch, 1988, 1990; Gaucli and Zobel, 1988, and Zobel 1990 for 
discussions which describe these statistics and support the above com
ments.) 
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ABSTRACT 

In this review we have examined the --o1e of screening in a breeding context and 
have attempted to provide a plant breeder with an approach for selection of a 
screening test best suited to breeding project needs. 

We have described the principles involved in a range of screening tests currently
available for ranking aluminum and rmnganese tolerance. We have attempted to 
highlight their relative advantages and disadvantages, and their relationship to 
tolerance mechanisms, genetic control and field performance. 

SCREENING AND PLANT BREEDING 

For a successful breeding result a plant breeder needs to know the 

following:

1)screening techniques are available for identifying tolerance; 

2) there is a reasonable range ofvariability within the species to be bred; 

3) the character is heritable and some estimate ofheritability is available; 

4) there are no strong, undesirable genetic correlations with tolerance; 

5)an estimate can be made of improvement to stress tolerance in the field. 
(Devine, 1976). 

The components themselves are interrelated. For example, a good screen
ing test may enable the genetics oftolerance to be better understood. A yield
improvement in the field would suggest no strong undesirable genetic
correlations adversely effecting yield. In a similar interrelated way, the 
screening method influences the choice of breeding method and vice versa. 

~~gf~banck 

103 



ACID SOIL CONSTRAINTS
 

Poor plant performance on acid soils may be due to toxicities of aluminum 
(Al), manganese (Mn) or hydrogen ion and/or deficiencies of magnesium, 
calcium or molybdenum. The acidity of a soil may influence soil microflora 
and thus nutrient cycling and plant disease frequency. Phosphorous defi
ciency is also a major problem in acid soils (Sanchez and Salinas, 1981). 

Aluminum and Mn toxicity are considered the main constraints (Ritchie, 
1989). Hydrogen ion toxicity may affect some nodulating legumes and 
grasses susceptible to soil acidity. The effect ofAl toxicity is to arrest or slow 
root growth, so that stunted, or shortened roots are a primary and early 
symptom of toxicity. As a result, many tests rely on differential root growth 
to identify tolerance of Al. Subsequently shoot growth is affected and in 
longer duration experiments has been used as an index of tolerance (Reid, 
et al., 1969; Scott et al., 1992). 

Manganese toxicity primarily affects plant shoots rather than roots and 
produces specific symptoms in the leaves ofsome species. Grasses generally 
show chlorotic leaf tips and margins, which progresses to necrosi-, particu
larly in older leaves. The tissue showing symptoms generally has a higher 
concentration of Mn than the surrounding tissue. Root growth is sub
sequently affected (Scott et al., 1992). 

TOLERANCE AND TOLERANCE MECHANISMS 

Mechanisms of tolerance are separate from mechanisms of toxicity. Tox
icity mechanisms are a sequence of metabolic disruptions that inhibit 
growth, development or survival of plants. Tolerance mechanisms 3ubvert 
the impact or initiation of these disruptions (Munns and Scott, 1987). 
Tolerance then is a specific character that confers advantage to a cultivar 
when grown under that specific stress. 

Tolerance may operate at different levels; at the cellular level, tissue, 
whole plant or soil/plant level. Several mechanisms may operate in one plant 
but these mechanisms are under separate genetic control. A well designed 
screening system may target different mechanisms and permit their concur
rent addition to provide selection of genotypes with the greatest tolerance 
(e.g., in PhalarisaquaticaCulvenor, 1985; Culvenor et al., 1986). 
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These mechanisms may be identified by cell culture techniques (cell level 
mechanisms) and solution culture (whole plant mechanisms). Plants har
vested in the field will measure and integrate mechanisms under relevant,
though site specific, agricultural conditions. 

Examples ofmechanisms that may operate at a molecular or cellular level 
are; exclusion of toxin from the cell, cellular sequestration of Al in harmless 
forms, physical sequestration oftoxin in vacuoles or other insensitive oigan
elles, and adaptation ofenzymes and other controlling biochemicals (Munns
and Scott, 1987). At the whole plant level, further mechanisms may become 
possible. These include exclusion of the toxin from the symplast (Al, Rinc6n 
and Gonzales, 1992) and compartmentation of the toxin in less-sensitive 
tissues or organs (eg. Mn in the roots of subterranean clover; Evans et al.,
1987). The major mechanisms involving both plant and soil are the modifi
cation of the rhizosphere by altering pH (Marschner, 1991) or the release of
complexing agents. The effectiveness of releasing alkali will depend on the 
buffering capacity of the soil and the mode ofnitrogen nutrition (ammonium 
or nitrate). 

CHARACTERISTICS OF A GOOD SCREEN 

An ideal screen will have the following characteristics:

1)a high correlation between the artificial screen results and performance
in the target environment, 

2) an ability to handle a large population, 

3) an ability to differentiate between candidate genotypes, 

4) are highly reproducible 

5) are non-destructive of the plant. 

In some situations there is an advantage ifresults are available before the 
plant flowers to permit crossing. 

A screen that would meet all these criteria is rare. The most important
requirements will vary at different stages of the breeding program. A 
sequence ofscreening tests (multistage screening) could be used to overcome 
the weaknesses of individual tests or to combine different stress tolerances. 
Duncan (1988) used a two stage sequential screening strategy to combine 
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tolerance to Mn and Al in sorghum. In the early stages population sizes are 
large and there is the potential to have high selection intensities. In this case 
a high selection intensity from a quick test suitable for a large numbers of 
lines may be more important than high correlation with field performance 
on an acid soil. In the final stages of the program there are few lines and it 
is essential that the screening test has a high correlation with performance 
in the target environment. Within a selection stage, a number of tests may 
be used to decide which lines will be promoted to the next stage. 

Our selection sequence for acid soils tolerance in wheat is to begin with a 
quick seedling test and end with replicated trials at a number of sites on 
acid soils. The usual practice in applied breeding programs is to conduct the 
last stage of evaluation in the environment in which the cultivar will be 
recommended. 

Another advantage ofmultistage testing is that an initial screen to reduce 
the range of tolerance within the population, by eliminating the most 
susceptible lines, should improve the accuracy of trials by reducing geno
type-by-environment interaction within the trial. 

There is an optimum level of stress that will maximize the difference 
between genotypes. In order that the screen can reliably differentiate be
tween genotypes, the intensity of the stress needs to be well controlled. The 
toxicity of Al and Mn depends on pH and other ions present in the soil or 
nutrient solution. Supplemental Ca 2 or Mg2 can greatly alleviate deleteri
ous Al effects (Rengel, 1992; Hecht-Buchholz and Schuster, 1987). Adequate 
Ca and Mg should be available in media used for screening to allow these 
tolerance mechanisms to function. Adding silicon to nutrient solutions has 
been shown to alleviate Mn toxicity (Williams and Vlamis, 1957; Horst, 
1983). Silicon prevented the accumulation of Mn in localized necrotic spots 
to give a more homogeneous Mn distribution in leaves. 

High temperature increased the tolerance of plants to accumulated tissue 
Mn several fold (Ruity et al., 1979; Heenan and Carter, 1977; Nelson, 1982). 
By contrast increasing temperature increased the damage caused by Al 
toxicity in sorghum (Furlani and Clark, 1981), wheat (Aniol, 1983) and 
ryegrass (Rengel and Robinson, 1990) 

Under severe moisture stress, an Al tolerant barley performed better than 
a susceptible genotype (Krietz and Foy, 1988). No differential effect of Al 
tolerance at low water stress was found. While anaerobic conditions reduce 
plant tolerance to Al in solution culture (Wagatsuma, 1983,) in a soil this 
would lead to an increase in pH and a reduced Al toxicity. Reports in the 
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literature on the effects of light intensity on Mn toxicity are contradictory
(Wissemeier and Horst, 1992; Horiguchi,1988). Part of the mech:.nism ofAl 
tolerance in wheat is based on the metabolism-dependent exclusion of Al 
from the sensitive meristem (Rinc6n and Gonzales, 1992). Any environ
mental stress that reduces metabolic activity would have the potential to 
reduce the range of cultivar tolerance (Wagatsuma, 1983). 

SELECTION METHODS 

Soil in the Field 

Growing plants in the field has been the basis of selection for acid soil 
tolerant wheats in Brazil. Screening in the field can involve the selection of 
individual plants, the identification of promising lines from short rows, or 
the field evaluation of late stage material immediately prior to cultivar 
release. 

The main problem with field testing is the lack of reliability due to: 
problems of soil variability (Cregan et al., 1989), the confusing effects of 
differential resistances of material under pressure from diseases and pests.
Other problems are the vulnerability of the material to environmental 
hazards such as drought, flood and lodging (Howeler and Cadavid, 1976) and 
the time taken (usually one growing season). 

Amendment ofvery acid soils may be necessary to obtain an appropriate
level ofstress relative to the range of tolerance available. For example, rice 
genotypes were better differentiated if a low rate of lime was applied
(Howeler and Cadavid, 1976). Soil treatment with lime or sulphur (to acidify
the soil) has been use to provide a pH gradient in an acid soil likely to produce
Mn toxicity in cowpea (Vigna unguicuata)genotypes (Kang and Fox, 1980). 

Our view is that testing in the target enviromnent for grain yield or final 
product, prior to the release ofa new cultivar is an integral part of a breeding 
program. However, undertaking evaluation late in this program has advan
tages. Firstly the range of material is limited since it has been selected for 
other characteristics such as disease and pest resistance appropriate to the 
environment. In final testing, adequate ieed is usually available to sow 
replicated field plots to overcome the problems of soil variability. 

Iue ability of ntatistical techniques to remove error in replicated experi
ments is reduced if genotypes respond differently to variation in soil acidity
within the trial. The inclusion of acid soil susceptible cultivars in field trials 
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can unnecessarily increase experimental error because ofthese interactions. 
Often these cultivars are not necessary and restricting the range oftolerance 
by the use of a preliminary screen would improve the accuracy of the trial. 
Variation within a trial can be quantified by grid rows ofa check cultivar or 
direct measurement of the relevant stress, eg soil pH. The environmental 
index should be used as a covariate to adjust cultivar performance. 

Soil in the Glasshouse 

The soil chosen should produce a single stress of either Al or Mn toxicity, 
which does not interact with other nutritional deficiencies (eg. calcium, 
phosphorus, molybdenum, magnesium). The aim is to control the nature and 
intensity of the stress imposed and to achieve, in a routine manner, clear 
separation of genotypes for their tolerance. 

The problem with a soil as a screening medium is variability caused by 
the site of collection itself, time of collection and storage conditions for the 
soil (particularly with Mn). The stress chosen can be obtained by acidifying 
a soil, liming or adding Mn. Additions of basal nutrients are aimed at 
preventing nutrients other than the desired stress from affecting growth. 

In practice, experience is required both with the soil and with the plant 
species being tested, and care is needed in the interpretation of results. Foy 
(1976) points to surprising results in some experiments and gives examples 
of molybdenum deficiencies and combined Al and Mn toxicities operating in 
some experiments where Al stress alone was planned. 

Screening with Nutrient Solutions 

The advantage of solution culture experiments is that greater control can 
be exerted ,ver the intensity of the plant stress imposed. However, a 
recurrent concern is that the rankings for tolerance in solution culture will 
not be similar to those obtained in a soil with the same toxicity. It is likely 
that rhizosphere effects that could be important in soil will not be emulated 
in solution culture. However, there is general agreement between soil and 
solution culture rankings of tolerance in the area of soil acidity. 

Examples for Al tolerance are in barley (MacLeod and Jackson, 1967; Reid 
et al., 1971), wheat (Foy et al., 1965), rice (Nelson, 1983), soybean (Sartain 
and Kamprath, 1978; Campbell and Carter, 1990) and sunflower (Foy et al., 
1974). Similar research has been conducted on Mn tolerance, eg. in triticale 
(Mugwira et al., 1981) wheat (Foy et al., 1973) and cotton (Foy et al., 1969). 
The general thrust of these papers is that solution culture results gave 
similar cultivar rankings to those obtained in soil. However, some variability 
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has been reported (Foy, 1976; Marschner 1991) and may be due to the 
rhizosphere effects and the greater availability of nutrients such as phos
phorus in nutrient solutions compared to availability in a soil, particularly 
to a plant with a root system damaged by Al toxicity. 

The nutrient solutions should be of low ionic strength to simulate soil 
solutions (Blarney et al., 1991). Aluminum in solution can be precipitated by
S042-, P0 43- and OH* (Ritchie, 1989). It can be complexed by some organic
ions such as citrate that may be used to add iron to the solution. The result 
is that care is needed in the design of the nutrient solution itself and in the 
maintenance of the nominated conditions. This can be achieved either by
appropriate monitoring, frequent solution change, or expensive flow culture 
systems. It is possible to minimize pH fluctuations by adjusting the NO3
/NH 4+ ratio (Fleming, 1983; Jariel et al., 1990). 

Rapid Seedling Screening Tests 

The most important characteristic of seedling Ltsts is their rapidity (days)
and as a result their potential to screen large numbers of genotypes. To 
handle these large numbers a visual assessment of tolerance is a major
advantage. The aim is not to provide a precise measure ofall aspects ofacid 
soil tolerance, but rather to cull those lines that are unlikely to perform
satisfactorily in commercial production. It is not essential that the impressed
stress mimics the stress in an acid soil; however the results bhould have a 
reasonable correlation with field performance. 

Because of the short duration of rapid seedling tests, it is possible to 
dispense with plant nutrients without a reduction in root growth. Kinraide 
et al., (1985) discussed some of the requirements for these nutrient solutions. 
A minimal solution may only include calcium and boron (Aitken et al., 1990). 

Variation in rates ofgermination can be a source of error in short duration 
tests. One option is to germinate an excessive number of seeds and then 
select seedlings with the same length of root, but this time consuming. The 
variability can also be reduced by imbibing seeds at 4°C for two days to 
overcome seed dormancy. Surface sterilization of seed is also worthwhile. 

The ability to continue root growth after exposure to an Al stress is an 
unambiguous test that can be used to split a population into susceptible and 
tolerant classes (Aniol 1984; Scott and Fisher, 1989). This approach requires 
a method for marking the growing point of roots so that regrowth can be 
determined. Aniol (1984) germinated seedlings and transferred then to a 
nutrient solution at pH 4.0; four-day-old seedlings were exposed to Al for 24 
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hrs, washed, stained with eriochrome cyanine R and allowed to recover for 
48 hrs before scoring. If a series of rates ofAl are used, the genotypes can be 
divided into a range of tolerance classes. 

In the haematoxylin stain test developed by Polle et al., 1978, there is no 
recovery period; seedlings are classified as unstained, incompletely stained 
and stained. The incompletely stained group will recover and continue to 
grow if transferred to an Al free medium. An experienced observer can 
accurately identify the incompletely stained roots, but if there is any doubt, 
allowing the roots to recover for a short duration will enhance the visual 
differenre between the stained and incomplete classes. The haematoxylin 
root stain test has been widely used and has been shown to correlate well 
with performance on acid soils (Scott et al., 1992; Takagi et al., 1981). 

By contrast with death of the growing point, root growth in the presence 
of Al can be used as the measure of tolerance and could divide a population 
into more categories (Reid, 1976; Campbell and Lafever, 1976; Mugwira et 
al., 1978). However, there is the problem of separating variation in growth 
due to differential Al tolerance and normal variation in root growth per se 
(O'Toole and Bland, 1987). With fixed lines or cuitivars, control treatments 
can be used; however, in segregating populations, this is not possible. If a 
long exposure period is used, total root growth is sufficiently accurate. For 
shorter exposures, a method of distinguishing between growth in Al and 
previous root growth is necessary. Root growth can be marked on Lucite 
plates before and after exposure to Al (Aniol et al., 1980), but it is more 
convenient to use a general stain to mark root length before plants are 
exposed to Al. We have used a peroxidase stain and neutral red (Schumacher 
et al., 1983). The eriochrome cyanine R used by Aniol (1984) would also be 
suitable. Another option is to germinate the seed in the presence of Al. 
Delhaize (pers comm) developed a very efficient technique by germinating 
and growing seeds in an aerated solution containing Al. The Al does not 
affect the germination of the seed (de Lima and Copeland, 1990) but if the 
correct rate of Al is chosen, the susceptible seedlings will have virtually no 
roots. This test is suitable for dividing a population into tolerant and 
susceptible categories based on the presence of roots. Delhaize's technique 
could be used to screen large quantities of seed and would be suitable for 
situations, eg mutation experiments, where the frequency of tolerant indi
viduals was very low. 

A4cid soil can be used instead ofsolution culture and it is likely to integrate 
a wider range of tolerance mechanisms. Bona et al., (1991) compared the 
root lengths ofseedlings grown in Al-toxic soil at pH 4.2 with the root growth 
in limed sol at pH 5.1. This technique is similar to the soil bioassay methods 
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developed by Ahlrichs et al., 1990. A rapid test in soil was able to effectively
differentiate between sorghum cultivars of known tolerance (Hill et al.,
1989). The soil system was preferred for routine screening because of its 
simplicity and use of a natural medium. 

Wheeler et al., (1993) compared six methods for determining Al tolerance 
based on short term (3 day) or long term (4 weeks) exposure to Al. Three 
methods: the haematoxylin stain test (Polle et al., 1978), visual classification 
after 4 weeks exposure to Al and the ratio of plant top:root weights dearly
segregated the tolerant and susceptible populations. The two populations
could not be dearly distinguished based on plant top or root yields or on root 
length after either short or long exposure to Al. 

Rapid Tests for Mn tolerance 

Few rapid test for Mn tolerance have been developed. A floating leaf disk 
technique was used by Wissemeief and Horst (1991) to determine the 
tolerance of cowpeas to Mn. Leaf sections are floated on a solution with Mn 
and after three days tolerance is scored as the frequency of characteristic 
dark speckles on the leaf. Manganese tolerance in wheat has been charac
terized by chlorophyll content and leaf elongation rate in Mn stressed 
seedlings (Moroni et al., 1991). They were able to rank genotypes for Mn 
tolerance in six days. 

Cell Culture 

Plant cells can be cultured in suitable media and with appropriate tech
niques, plants can be regenerated. During cell culture, additional variability 
can be created and expressed in the regenerated plants (Larkin et al., 1984).
In this way cell culture provides another source ofvariability. Miller et al.,
1992 identified tissue-culture derived sorghum plants with tolerance to acid 
soils. No stress was imposed during the tissue culture. 

The addition of Al or Mn to the culture medium could be used to screen 
for cells with tolerance. Selection during cell culture has the potential to 
efficiently screen large numbers of genotypes. The use of tissue culture to 
screen for acid soils tolerance depends on a correlation between response of 
the whole plant and the cell (Munns and Scott 1987). Selection during tissue 
culture was used to obtain homozygous stable tobacco lines with Al tolerance 
(Conner and Meredith, 1985). There are few reports ofselection during tissue 
culture for any of the Gramineae.Okawara et al., 1986 selectled callus from 
the rice cultivar 'Taichung' for tolerance to Al; plantlets regenerated from 
this callus produced seedlings with higher Al tolerance than seedlings
derived from unselected callus. 
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When cells are selected in culture, the nature ofthe tolerance they express 
needs to be defined. A carrot cell line originally selected as Al-tolerant was 
in subsequent tests found not to have Al-tolerance, but to have the ability to 
excrete large amounts of citrate into the medium (Koyama et al., 1988). 

Screening for Tolere nce Using Genetic Markers 

Plants possessing tolerance genes may be identified using markers. A 
marker is a character closely linked with a tolerance gene, and can be used 
for a gene that is difficult to select directly. The simplest markers are plant 
physical attributes, but others used may include variation in proteins and 
DNA (Hansom et al., 1986). There are rapid tests already available to 
identify some aspects of acid soils tolerance, eg exclusion of Al from root tips. 
However, some other genes for tolerance (Marschner, 1991) would be diffi
cult to select for directly and markers could make their selection feasible. 

So far, there have been no reports of plant physical attributes, DNA or 
polypeptide markers closely linked with acid soils tolerance. Delahaize et al. 
(1991) identified some pclypeptides that were indluced by Al stress, but none 
of these cosegregated with Al-tolerance. 

CONCLUSION 

Plant physiologists and nutritionists have identified many plant charac
teristics that would be useful in plant breeding. They have frequently been 
disappointed that plant breeders have not used their technology. We believe 
that they have not addressed the requirements ofplant breeders that include 
a simple inexpensive screen and a correlation with field performance in 
which the breeders may be confident. Any breeding objective must be 
assessed relative to other economically important objectives (Fisher and 
Scott, 1993). 

Breeders are not likely to trust results that are based on few cultivars. 
Generally they would be more confident if the technique was demonstrated 
to be usefil in large segregating populations. They are not attracted to 
complex or expensive procedures. 

In acid soils tolerance, the early papers (Ouellette and Dessureaux, 1958; 
Vose and Randall, 1962; Foy et al., 1965) have identified the desirable 
attributes of tolerance and the potential for plant breeding. However, it has 
been left to others (eg Polle et al., 1978) to refine the screening techniques 
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and to establish the usefulness ofthe characters in the field (Reid et al., 1969; 
Lafever et al., 1977). 

Close cooperation of physiologists and nutritionists with plant breeders 
producing commercial cultivars offem the p3ssibility of %ridging the gap'. 
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ABSTRACT
 

Selection for high-yielding, salt-tolerant cltivars has proven to be an elusive 
target for plant breeders, and the identification of reliable genetic markers for salt 
tolerance has been even more elusive for plant physiologists, and cellular and 
molecular biologists. The plant is an integrated syrtem that is adapted to a upecific
environment on which salinity has become an intrudion Acomprehen ive program 
to develop a salt tolerant cultivar should be composed of seven essential elements. 
Preliminary asessments for ualinity, genotypic variability, and economic consid
erations are crucial to the definition of the problem situation. Close coopersition
with growers or farmers is necessary to establish specific requirements and nref
erences for the crop and Its management in the saline environment. An evaluation 
of management options are necessary to nasess the current technology available 
and tn simplify sol'ution pogsibilities. A con.eptual model should he developed that 
will fulfill the essential requirements of the problem situation. This model should 
match needed iiputs with farming objectives for yield, quality, and production
sustainability. Based on the conceptualized model, several desirable Ideotypes 
should be considered and a number of these, depending on resources, can be 
selected for the breeding program. At this point appropriate screening Methods 
can be developed for segregating populations derived from crosses of the tselected 
parental lines. An integral part f the program should consist ofa plan to maintain 
and improve the cultivar during development. Thiu may require specific knowl
edge of and cooperation with the social infrastructure that maintains, improves,
and distributes seed to farmer-s. 

INTRODUCTION 

Salinity is a serious environmental constraint to crop production in many 
parts of the world. It is especially prevalent in irrigated agriculture and in 
marginal lands associated with poor drainage or high water tables. Esti
mates for the extent of salinity damage vary from 25 to 50 percent of the 
wo;rld's irrigated land (Postel, 1989; Adams and Hughes, 1990) ). Recent 
interests in maintenance of the environment, encompassing preservation of 
natural resources and conscience toward human health and nutrition have 
put new impetus on the importance of preserving water quality. These 
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issues, and the occurrence ofcyclic drought conditions throughout the world 
have increased the need to use recycled water, drainage water, or poor-qual
ity water on crops. The development of crops with improved salt tolerance 
is proposed as part of the solution to some of these problems. 

At least five basic strategies exist for the development of salt tolerant 
plants (Table 1). One strategy is to use conventional breeding and selection 
among existing cultivars; another is to introgress genes from wild progeni
tors into crops that have retained many oftheir salt tolerance traits. Another 
strategy is to develop new crops from some ofthe wild species that currently 
inhabit saline environments (halophytes) by breeding and selection for 
agronomic characteristics. The use of tissue cultures to select single salt 
tolerant cells for plant regeneration or to produce salt tolerance through 
somaclonal variation is a strategy that has been developed within the last 
two decades. The boldest strategies have suggested that individual genes for 
salt tolerance can be identified, isolated and manipulated across conven
tional genetic barriers through molecular biological techniques. The greatest 
portion of the efforts to improve salt tolerance using these strategies have 
not been highly successful (Shannon and Noble, 1990). 

Too little progress has been made in improving salt tolerance ofcrops. OnE, 
reason is that, despite significant progress in the development of an under
standing of the effects of salt Atress, there are still many unanswered 
questions concerning the primary stress signals and the morphological and 
physiological changes that ensue. Recently, physiologists have been sub
jected to ccnstructive critiques for their short-comings and encouraged to 
develop better hypotheses for their research efforts (Munns, 193). At 
present, development of a new direction and a cohesive approach in the area 
of salt tolerant crop development is needed. Realistic short and long range 
research goals should be established that will provide the continuity to 

Table 1. 	 Examples of strategies for the selection, breeding and develooment of 
salt tolerant plants. 

_.pproach Crop Examples 
Conventional breeding Barley, lettuce Ramage, 1980 

Shannon, 1980 
Wide crosses Tornato Rush and Epstein, 1981 

Tal and Shannon, 1983 
Domestication of wild salt- S:aliomia Glenn et al., 1991 

tolerant species 
Tissun cultures Tcbacco, chickpea Nabors et al., 1980 

Pandey and Ganapathy, 1984 
Molecular biology Wheat Gulick and Dvorak. 1987 
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deliver salt-tolerant cultivars to the farmer. The purpose of this chapter is 
to outline some of the foremost issues and strategies concerning selection 
and breeding for plant salt tolerance, to identify some of the fundamental 
gaps in our present understanding, and to suggest a more comprehensive
approach to selection and breeding for salt tolerance. 

BREEDING PROGRAM FOR SALT TOLERANCE 

The development of a breeding program for salt tolerance should consist 
of the same basic steps, regardless of which previous approach was used to 
enhance the germplasm base for the desired character. The steps that are 
proposed include: Preliminary assessments, Management requirements,
Crop requirements, Development of a functional model, Development of 
ideotype, Establishment of the screening procedures, and Cultivar develop
ment and maintenance (Fig. 1). 

Preliminary Assessments 

Preliminary assessments must be made for the Salinity Situation, Genetic 
Variability, and Economic Constraints. These are interactive elements that 
describe the problem situation that is being addressed by the breeder.1 

The breeder should initially consider the Salinity Situation that is causing
the problem (it is assumed that a specific crop ofinterest has been targeted).
An estimate ofthe cropping area that is affected should be developed. Is more 
than one location, basin or watershed affected? How are farming practices
and environmental factors in these areas similar or different? The origin and 
composition of the salt should be identified. Is salt indigenous to the soil or 
the result of improper management? Is it arising from a high water table or 
is it a constituent of the irrigation water for whatever reason? What is the 
composition of the salt in the water and ;ts probable composition when it is 
in the soil water solution? Are specific ions a particular problem in this 
species or is the problem the result of a general salinity phenomenon? Are 
interactions between salinity and other nutrients (e.g. calcium, phosphate) 
part of the problem? Such interactions have been described for a number of 
nutrients and crop species (Grattan and Grieve, 1991). What are the high 

The term 'Breeder' will be used throughout the rest ofthe paper an the subject that should perform the functions

and Fulfill the objectives that are descmbed. Thie breeder should, in fact, be a member of an interdisciplinaryteam
at may include enetiusta agronomsts, physioogsts morphologists, patholoe sm, soil scientinas, demists,,economits, and other discapinas. 
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and low limits of soil water salinity concentrations between irrigation (or 
rain) cycles? The distribution of the salt within the root and vadose zones 
should be measured or predicted, based on management criteria. This 
assessment should quantify, for future reference, as many of the potential
interacting variables of the environment as possible to include soil types,
drainage conditions and ranges of various climate factors. Extemporary 
factors, such as air pollution, that are known to interact with salinity, should 
also be considered (Maas et al., 1973). 

An assessment of the Genetic Variability should be conducted through 
literature surveys and, possibly, experimental testing. Information should 
be obtained concerning the parameters of salt tolerance related to crop yield, 
e.g., threshold and slope (Maas, 1986; 1990). Although considerable research 
has been devoted to quantifying the salt tolerance of the various crop species 
(Francois and Maas, 1978, 1985), data are usually based on comparisons 
among only a few cultivars for many species. Some studies that have 
examined a range of cultivars have revealed wide intraspecific variation for 
salt tolerance; whereas other studies have shown limited differences. In 
many cases, only a relatively small portion of the existing germplasm base 
has been adequately tested. Many wild progenitors ofcultivated species have 
not been examined or exploited at all. 

If information is not sufficient, variability among cultivars and other 
feasible germplasm sources should be determined for tolerance to both 

Pr~nnissessments 

MInagoment Roqulremants 

Crop Rlequlrements 

FunctonaJ Model 

Id6otype development 

Saeenng Procedures 

Cultflu Maintenance 

Fig. 1. Steps necessary for the systematic and comprehensive development of 
a breeding program for tolerance to salinity stress. 
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general and specific salt stresses applied at various concentrations, and as 
they relate to the final product yield and quality. Only a complete under
standing of the problem situation will enable the breeder to develop the 
insight needed to decide whether to proceed with the development of the 
program. In some cases, sufficient genetic variability may not exizt to 
warrant initiation of the breeding program. Menagemert options may be 
the only alternative, or perhaps, additional research may be needed concern
ing the effects of specific salts or the effects of salts on growth and develop
ment. 

An integral part of the decision to further develop a breeding program is 
dependent on an Economic Assessment of the situation from the viewpoint
of the eventual user of the technology, i.e., the grower. The breeder should 
have a general knowledge of what the 'average' grower is spending for seed, 
water, ferilizer, chemicals, field operations, fuel, labor, transportation, and 
overhead. Other useful information should be gathered concerning allot
ments and supports that might be available for the grower. Potential costs 
should be considered, especially those that may be uniquely associated with 
the salinity and/or drainage problem (Letey et al., 1990). Market considera
tions are also important. Incentives for early harvest or product quality are 
important to farming objectives and should be recognized by the breeder. 
Some potential or intaugible benefits are impossible to derive without direct 
contact with the grower. Good breeders do not undertake programs without 
direct and frequent contact with farmers and farm advisors. 

Management Requirements 

Management requirements are also developed as a result of grower 
contact. These include the operational goals of the growers in the area that 
is affected by the observed salinity condition. Many growers focus on profit 
as it may be derived from particular combinations of high yield and quality,
but recently sutainability has become a growing concern of both farmers 
and society. With salinity, the aspect of sustainability may have particular
importance. Yields of fruit tree crops may be maintained or even increased 
using significant quantities of saline water for a few years at the risk of 
subsequent loss of the trees (Hoffman et al., 1989). Minimum leaching can 
save water costs but increase salinity risk. The management practices being
used to grow the crop should be known to the breeder; in addition, potential 
management practices that can be implemented either with or without 
additional costs should be explored. Is irrigation being practiced? Are 
amendments used, or can they be? What are the tradeoffs between potential 
costs and potential benefits? 
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Crop Requirements 

Crop requirements are determined in the context of the specific salinity 
problem in the target environment. This is an elaboration of the information 
that was obtained during the assessment for Genetic Vaiability. At this 
point, information should be assembled through literature and research 
concerning the effects of salinity during the most critical growth stage(s), 
the effects of specific salts on growth during the most sensitive stages of 
growth and development, and the exacerbating or ameliorating impact of 
anticipated factors ofthe environment with salinity stress. Ranges ofgenetic 
variability should be inspected in relation to the management requirements 
and the crop growth stage that may be affected. 

The probability of success for the total breeding program will be deter
mined to a great extent by the thoroughness with which these three initial 
steps have been conducted. Reiteration and integration of the first three 
steps is recommended. For example, if stand establishment was determined 
to be a limiting factor in the Salinity Situation, once an assessment of 
Genetic Variability for germination and emergence has been conducted, it 
is necessary to decide whether the limitation can be overcome by breeding, 
management (e.g. better bed preparation to move dissolved salts away from 
the seed; a timely irrigation of high or medium quality water; more dense 
seeding or plant spacing) or a combination of strategies based on economic 
factors. 

Development of a Functional Model 

Development of a functional model can proceed at this stage. The model 
should encompass the crop as it relates to the whole farming system. The 
model should include farming and environmental inputs and yield, quality, 
or any other factor that has been determined to be critical to the farming 
system, as outputs (Fig. 2). Labor, seed, water, chemicals and equipment are 
designated as inputs that might be supplied by the grower. Biotic and abiotic 
stresses, including salinity, are inputs supplied by the environment. Outputs 
may be yield, crop residue, and drainage. This model should include possible 
threats ofspecific diseases, pests and adverse environments, weed coirpeti
tion, yield and harvest quality factors. At this stage, boundaries need to 
become fixed around the system that is to be designed through the breeding 
process. For example, ifgermination and stand establishment are the major 
causes contributing to yield loss due to salinity, then considerations of other 
growth stages can be reduced and the breeder might establish a screening 
system in the greenhouse to select material that has vigorous stand estab
lishment under saline conditions. Applicability of the materials selected by 
screening to the total agricultural system must be maintained, however. 
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Vigorous growth may make the plant more susceptible to the type of 
midseason drought that is typical to the target area (see discussions by Ball 
et al., 1993). Alternately, the screening system could identify segregants of 
a cross that have high salt tolerance, but also have more susceptibility than 
the parental lines to disease or acid soil conditions prevalent in the target 
area. The model allows some reductionism of the problem based on the 
perceived goals ofthe breeding program, but keeps the integrated system in 
context for which the plant cultivar is being developed. 

Development of Plant Ideotype 

Development of plant ideotype is a concept that was established by Donald 
(1968). He contended that most plant breeding was based on attempts to 
eliminate defects or improve yield and suggested an alternative approach 
based on the breeding of plants that would conform to some ideal concept or 
model. He noted that the success of this novel approach was dependent on 
three resources: adequate genetic diversity, suitable techniques, and suffi
dent knowledge. Perhaps the lack ofsufficient knowledge is one of the main 
reasons that his ideas have not caught on to a large extent. Twenty-five years 
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Fig. 2. A general functional model of a farming system that should be validated 
and quantified for specific crop.. 
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ago, many adversaries of Donald's concept contended that sufficient physi
ological knowledge necessary to devise a model with confidence did not exist. 
Other arguments were that the definition of the model would narrow the 
breeding program and that high yields could be achieved with a number of 
radically diverse ideotypes. 

A number of significant advancemeuts have occurred since the proposal 
of crop ideotypes. New insights into the physiological connections between 
growth, yield, and development that contributes to it are being unraveled 
daily. An entirely new discipline, crop modelling, is serving both as an 
integrator of the new findings, and also as the basis for identifying the 
critical lesions in our present understanding of plant physiology. Crop 
models are also useful in conceptually testing unwieldy numbers ofradically 
diverse ideotypes without the requirement that they be physically synthe
sized through laborious plant breeding techniques. Opponents would argue 
that process models are still very crude, but it is obvious that progress is 
being made in this area, and it would be unfortunate if breeders were not 
alert enough to take advantage of the progress that has occurred over the 
last quarter century. Present models do not incorporate algorithms that 
account tbr salinity stress, but the modular nature of some of the current 
plant growth models could be adapted with sufficient effort (Fig. 3). 

Donald (1968) made two points related to the environment. One was that 
the ideotype should be designed for the most simple environmental situation 
(i.e., nonstress), and that the production of the crop ideotype could require 
the concurrent creation, through changes in management practices, of a new 
environment. He may have been half right. The greatest potential of crop 
ideotypes may be in specific stress situations - situations in which the 
concurrent meshing of new management practices can act in concert with 
the beneficial attributes of the crop ideotype to reduce the effect of overall 
yield. For example, salinity stress drastically reduces tiller number in wheat 
(Triticum aestivum L. em Thell), and tillering capacity is a main component 
ofyield; whereas; mainstem yield is very resistant to salinity stresses across 
a wide range of concentrations (Maas et al., 1993). Uniculm wheat was 
proposed by Donald as a possible character for his wheat ideotype, but this 
has not been found to be an ideal character; under nonstress conditions, 
multiple tillers contribute substantially to high yield in many modern 
cultivars. Under salinity conditions, smaller plants with the uniculm char
acter can be planted at higher densities to maintain crop yield and offset the 
losses due to tiller reduction (Francois, et al., 1993). Uniculm cultivars that 
have larger mainstem headsize, thicker and stronger stems, and the ability 
to grow under high population densities might be developed that will further 
improve yields undei saline conditions. 
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Richards (1983) has nted that high yielding wheat cultivars generally 
out-yield more salt-tolera it or more environmentally stble lines in situ
ations in which salinity is spatially variable across the field. Spatial salinity 
variability is a common occurrence, but the concept of crop ideotype allows 
the conceptual development of at least two possible solutions to the problem. 
First, an ideotype can be developed that has expressed salt tolerance char
actrs and/or charact rs inducible by saline stress thatwill enable the plant 
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to survive and produce seed better than the esrictly high yielding line; or, 
second, different cultivars can be planted in specific parts of the field based 
on the predicted salinity stress. Both of these strategies are technologically 
feasible. Prescription farming has become a common erm used to describe 
the technology for site-specific application of fertilizers and herbicides. 
Recent advances in rapid surveys for salinity assessment open the way for 
prescription planting in saline fields (Rhoades, 1993; Rhoades and Carter, 
1993). In support of the first solution, both yield and tolerance can be 
theoretically improved ifenough information is available to define the stress 
situation (Rosielle and Hamblin, 1981; Shannon, 1985). A cuitivar developed 
under a specific salinity condition for both high yield and tolerance should 
be more productive than its counterpart that has been developed for high 
yield alone. The phenomena that Richards (1983) has described may derive 
from the fact that most salt tolerant lines are not developed for the specific 
climatic environment in which they are being tested. Environmentz1y 
stable lines suited to a wide range of climatic and stress environments cannot 
be expected to compete with high-yielding lines developed for the target 
environment. 

Establishment of the Screening Procedures 

Establishment ofthe screening procedures should be initiated at this point 
in the described program. The available information on crop salt tolerance, 
potential variability among cultivars and closely related species, and sensi
tivities to specific ions and environmental interactions has been collected. 
The precise growth stage that is limiting to productivity has been deter
mined and the economical management techniques that can be used to 
overcome the limitation has been explored. A clear idea has been formulated 
of the crop requirements and management needs. It is now time to develop 
a screening procedure for the sensitive growth stage(s). The procedure must 
be based on information concerning average salt concentration and compo
sition of the soil water during sensitive growth periods, and the environ
mental conditions during the period of salt damage in the field. A selection 
criterion needs to be one that is related to mean yield response in the field. 
This might be accomplished simply by breeding for improved stands through 
germination and/or emergence tests (Beatty and Ehlig, 1973, for example). 
Usually it is more complicated. 

Sometimes an indirect selection approach may be necessary to save time 
or effort (Shannon, 1979). Several investigators have demonstrated salt 
tolerance mechanisms that they thought were limiting to growth under 
saline conditions, and based on some of these reports, screeaning methods to 
improve plant salt tolerance have been proposed. These mechanisms include 
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ion selectivity (Shannon, 1978; Sykes, 1985), ion exclui;ion (Noble et al., 
1984), ion accumulation (Tal and Shannon, 1983), compatible solute produc
tion (Grumet and Hanson, 1986; Wyn Jones et al., 1977), osmoregulation
(Morgan, 1977), late maturation (Bernal et al., 1974), pollen sterility (Akbar 
and Yabuno, 1977), and pyramiding characters. Pyramiding characters 
refers to the concept of building salt tolerance in an additive manner based 
on strengthening tolerance within lines that already have a high degree of 
salt tolerance (Yeo and Flowers, 1983; Pasternak, 1987). This technique
could be employed with or without knowledge of the physiological basis of 
salt tolerance (Ramage, 1980). Several investigators have proposed breeding 
programs for salt tolerance based on more direct methods (Dewey, 1962; 
Shannon et al., 1983). Many of the suggestions for both direct and indirect 
selection methods have been reviewed previously (Shannon, 1982, 1985,
1990), but it is worthwhile to summarize the rationale for some of the 
indirect methods. 

Ion selectivity is a character for which screening procedures have been 
deN loped (Abel, 1969; Shannon, 1978, Noble et al., 1984; Sykes 1985). Salt 
sensitivity in some crops has been attributed to the failure ofplants to keep
Na and Cl out of the transpiration stream, and consequently, cytoplasm of 
the aerial parts (Flowers, et al, 1977; Harvey, 1985). Plants that limit uptake
oftoxic ions and maintain nn'mal ranges ofnutrient ions could be more salt 
tolerant than those that do not restrict ion accumulation and lose nutrient 
balance. Tolerant accessions of tall wbeatgrass (Elytrigiapontica) limited 
Na* and CI" uptake into shoots more effectively than sensitive accessions 
(Shannon, 1978). Hybridization between tolerant lines yielded progeny with 
improved tolerance; however, improvement in salt tolerance at this level was 
not correlated with differences in ion uptake or osmotic regulation (Weim
berg and Shannon, 1988). 

Selective ion uptake mechanisms capable of discrimination between 
chemically similar ions, such as Na + and K', could bave adaptive value. The 
mehanisms respoasible for ion discrimination probably are located in the 
membranes of tisp.ues and various organelles throughout the plant (Bliss et 
al., 1984; KuiDer, 1968). Breeding for efficient nutrient uptake or low ion 
accumulation under salt stress may be among the simplest ways to improve
salt tolerance in sensitive cltivars of some species. This also may be 
accomplished by finding tolerance to the toxicity of a specific ion associated 
with salt stress. Genes that control K/Na discrimination in wheat have been 
located on the long arm of chromosome 4D through the use of conventional 
genetic manipulation of chromosomes ad chromosome fragments (Gorham 
et al., 1987). 
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Ion accumudation may be important in some species for osmotic adjust
ment ifphyAological mechanisms have co-evolved to sequester the salt away 
from metabolic sites and synthesize compatible solutes for osmotic balance. 
Halophytes take up high concentrations of ions as an adaptation mechanism 
to saline environments (Flowers et al., 1977). The accumulation of salt iz 
thought to reduce the requirements for increased wall extensibility, leaf 
thickness and water permeability that might otherwise be required to 
maintain positive growth and turgor at low soil water potentials. The wild 
tomato species, Lycopersiconcheesmanii,is thought to be more salt tolerant 
than the cultivated species as a result efit halophytic nature, or its capacity 
to accumulate ions (Rush and Epstein, 1981). More recently, a salt-tolerant 
tomato L. esculentum Mill, cv. TEdkawy', has also been shown to accumulate 
higher concentrations of Na in leaf tissues than does more sensitive culti
vars (Hashim et al., 1986). As with salt restrictiou, salt accumulation within 
tissues is thought to be well-regulated, and generally sequestered away from 
cytosolic compartments containing the salt-sensitive metabolic machinery 
of the cell. Few crop species are true halophytes and it probably would be 
difficult to transfer halophytism into glycophytic crop species. However, 
several investigations have shown interest in developing the agronomic 
potential of wild halophytes into new and useful salt-tolerant crops (Glenn 
and O'Leary, 1985; Glenn et al., 1991). 

Osmotic adjustment is a decrease in plant osmotic potential through an 
increase in solute content (or a decrease in water content) in response to a 
decrease in external water potential to the extent that turgor potential is 
maintained. Morgan (1977) has noted substantial differences among wheat 
genotypes in their capacity for osmotic adjustment. However, whether 
osmoregulation occurs in higher plants is controversial (Munns and Ter
maat, 1986). High humidities improve the tolerance of corn, bean, onion, 
radish and barley, but not of cotton, wheat and red beet (Gale et al., 1967; 
Hoffman et al., 1971; Hoffman and Rawlins, 197 I; Hoffnan and Jobes, 1978; 
Prisco and O'Leary, 1973). This may indicate that certain crops may benefit 
from selection pressures that improve their capacity to adiust osmotically 
or maintain more favorable water relations under salt stres 3(Tal and Gardi, 
1976; Shannon et al., 1987). 

Crganic solutes (sugars, proline, glycinebetaine, and other compounds 
compatible with metabolism) may improve salt tolerance by contributing to 
osmotic balance and preserving enzyme activity in the presence of toxic ions 
(Greenway and Munns, 1980; Grumet et al., 1985; Tal et al., 1979). High 
betaine genotypes of barley (Hordeumvulgare L.) maintained lower solute 
potentials than near-isoline, low-betaine genotypes grown at the same 
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salinities (Grumet and Hanson, 1986). This suggests that betaine and other 
solutes could be used as a selection index for improved salt tolerance. 

Water-use efficiency could be useful selection criteria as a mechanism that 
slows the process ofsalt accumulation in the root zone. Unfortunately, most 
water relation measurements are not accurate or reliable enough to be useful 
as screening techniques for salt tolerance. Future advances in instrumenta
tion and better understanding of water relation mechanisms may some day
improve the breeder's ability to select renotypes based on the maintenance 
of optimum water relations during salt stress. Increased leaf resistance, 
fewer stomata, increased mesophyll resistance, increased cuticle thickness,
and an increased root-shoot ratio might be useful selection criteria in the 
interim. 

Whatever selection criteria are chosen or are devised, me initial step
should be to evaluate a range of cultivars and introductions to determine 
genetic variance for the desired character. Proper controls must be included 
to sepayate genetic from environmental effects under both nonsaline and 
saline zonditions. information from the collected data can be used to deter
mine if intracultivar selection will be effective. If genetic variance is low or 
if a greater degree of tolerance is required, wild-related species and lines 
developed from hybridizations can be evaluated. Field experiments should 
be conducted at an early stage after screening to verify the relationship of 
the criteria selected to the desired field characteristics. 

Cultivar Development And Maintenance 

Cultivar development and maintenance must be a continuing step in the 
breeding program. Salt tolerance is a difficult character to maintain under 
present commercial systems or seed production and breeding. Given that a 
germplasua line with high salt tolerance is produced by the breeder, succes
sive crosses to improve quality, yield or resistance must be followed by
selection in saline environments to assure that the characters associated 
with tolerance are not lost (Rosielle and Hamblin, 1981). The requirement 
to continue breeding and selection under saline conditions is difficult to meet 
for most seed producers. Ifbreeding and selection for salt tolerance remains 
completely dependent on high yield as an index, seed producers will need to 
have access to saline water, methods for uniform salinity application, and 
more intensive and disciplined agronomic management techniques. This 
dependency could be replaced by physiological or morphological markers as 
more information is obtained on the mechanisms of salt tolerance and the 
inheritance of associated characters. 
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CONCLUSIONS
 

Salt tolerance is a character that is determined by a complex array ofgenes 
and genetic mechanisms, many of which are influenced in their expression 
by other environmental interactions. As a consequence, yield under saline 
conditions is influenced by both tolerance and agricultural management. 
The tendency for tolerance to be lost when selection for yield alone is 
conducted under nonsaline conditions makes breeding for salt tolerance a 
multiobjective task. Efforts to improve tolerance, yield and other characters 
for quality and resistances should be considered in a holistic program for 
seed production and improvement. The development and testing of func
tional models and ideotypea will make screening and selectior. more effec
tive. 
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ABSTRACT
 

The empirical approach, using field screening nurseries in West Texas has 
proven successful in screenIng eorghum for drought resistance. Screening tech
niques have ben develop.i to effectively screaon sorghum for two distinctly
different types of drought response in sorghum. One reoponse (pro-flowering) is 
expressed when plants are stressed prior to flowering, during the head develop
ment stage (GS2), while the other (pogt-flowering) Is when moisture stress occurs 
during the grain development stage (GS3). Plant symptoms indicating either a 
desirable or undesirable response to stress at each of these two stages have been 
described and can be visually rated in the field. The term "stay green" has been 
used to describe sorghums which possess poet-flowering drought resistance. The 
distinct visual responses are reliable indicators of a genotypd's response to 
drought and are predictable and repeatable across locations and years under 
similar moisture stress conditions. The understanding of these stresu responses,
their heritability, and the time-of-stres x stage-of-growth interactions Is ex
tremely important when screening for drought resistance. Field screening nurser
ies with different locations and soil types, different planting dates, and controlled 
irrigation are used to vary the timing and intensity of stress. 

INTRODUCTION 

Drought is the major constraint to plant growth and production world
wide. Improving drought resistance in crop plants would be a major contri
bution to increasing and stabilizing grain and food production in the low 
rainfall, harsh environmental regions of the world. It is these nreas where 
many developing countries face critical problems in providing im adequate 
and stable food supply for rapidly growing populations. Improvred drought
resistance must be utilized along with improved agronomic, soil, and water 
management practices to improve and stabilize production crop production 
and achieve sustainable agricultural systems. Sorghum and pearl millet are 
very important crops in those regions. Their drought resistance and adap
tation to low rainfall areas results in their being the staple food for many of 
these areas. 

Drought or drought stress as I will discuss it, refers primarily to inade
quate soil moisture. High air temperatures are often associated with soil 
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moisture stress, and certainly compound the stress on plants, but I will deal 
with drought as a soil moisture deficit or stress. Drought stress response in 
plants is a complex trait affected by several interacting plant and environ
mental factors. Soil moisture deficit can affect plants at any stage ofgrowth, 
it can vary in its severity and duration, and its effect is often compounded 
by other abiotic and biotic stresses. 

Major differences exist between and within species in drought resistance. 
The ability to effectively screen plants cr genotypes for differential response 
to drought stress is essential to improving drought resistance in any crop. 
This requires an understanding and recognition of the various responses of 
plants to drought stress. Responses can vary widely due to many factors; 
determinate vs indeterminate growth habit, fruiting habit eg. single inflo
rescence vs multiple fruiting overtime, or perennial vs annual plants. My 
experience in screening for drought resistance is limited to sorghum. Thus, 
this paper will discuss screening procedures which have been successfully 
used to select sorghums for resistance to drought. Many ofthe same princi
ples, however, should apply to other crops. 

DROUGHT CONCEPTS 

The stage of growth of sorghum plants at which moisture stress occurs 
has been found to be very important in determining the response or reaction 
of sorghum to soil moisture stress. The three important growth stages as 
they relate to drought stress are: 

1) Seedling establishment-early vegetation stage; GS1. 
2) Pre-flowering stage (panicle differentiation to flowering); GS2. 
3) Post-flowering stage (grain development); GS3 

Sorghum research in recent years in Texas and other locations has 
provided information on understanding drought response in sorghum and 
screening techniques. Two distinct types of stress responses have been 
identified in sorghum which are related to stage ofgrowth when stress occurs 
(Rosenow et al., 1983; Rosenow, 1987). The "pre-flowering" response occurs 
when plants are under significant moisture stress prior to flowering in GS2. 
Specifically, this growth period is from panicle differentiation, or very 
slortly thereafter, until flowering. The other distinct response, called "post
flowering" occurs when plants are under severe moisture streiss during the 
grain filling stage (GS3), and especially during the latter portion of grain 
fill. In some cases, genotypes which have a high level of resistance at one 
stage are susceptible at the other stage. Therefore, the type of drought 
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resistance must be specified when considering drought resistance in sor
ghum. 

Plant symptoms indicating either a desirable or undesirable response to 
these two types of stress can by visually rated in the field. Symptoms of 
pre-flowering drought stress susceptibility include: leaf rolling; uncharac
teristic leaf erectness; leaf bleaching; leaf tip and margin burn; delayed
flowering; "saddle effect" - only end plants next to alleyways produce a 
panicle; poor panicle exsertion; panicle blasting and floret abortion; and 
reduced panicle size. Tolerance to pre-flowering drought stress is indicated 
by the alternative condition in each instance. 

Symptems of post-flowering drought stress susceptibility include prema
ture plant (leaf and stem) death or plant senescence, stalk collapse and 
lodging, stalk rot (charcoal rot, Macrophominaphaseolina),and sometimes 
a significant reduction in seed size, particularly at the base of the panicle.
Tolerance is indicated when plants remain green and fill grain normally. 
Such green stalks are resistant to charcoal rot and stalk lodging. The 
cultivars are referred to as having good "stay-green". The post-flowering 
response is most obvious and distinct in plants which have been grown under 
relatively favorable soil moisture and growth conditions until flowering,
with severe water deficit developing during the late stage ofgrain fill. When 
water stress develops gradually and occurs over the entire season, these 
distinct stress responses may not be as obvious. Sometimes there is a 
blending of the two types of stress response. 

Drought resistance at the seedling establishment or early vegetative stage 
(GS1) is also an important trait, especially in the harshest environments. 
Drought and/or heat at this stage can result in plant death and significant
loss ofstand. Although differences among genotypes obviously exist and are 
important, little has been done specifically to breed or evaluate for this trait, 
or relate it to drought tolerance at other growth stages. Significant differ
ences among genotypes for seedling survival has not been noted in the U.S. 

SCREENING PROCEDURES 

Several reviews and papers have been published on various physiological
traits in sorghum and their association with drought tolerance, and potential 
use in breeding programs: (Downes, 1972; Jordan and Monk, 1980; Jordon 
and Sullivan, 1982; Kramer, 1980; Levitt, 1972; Sullivan, 1972; Turner, 
1979; Peacock and Sivakumar, 1987; Sullivan and Ross, 1979; Ludlow, 
1993). These include traits such as heat tolerance, desiccation tolerance, 
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osmotic adjustments, rooting depth, and epicuticular wax. Although tech
nologies exist for evaluation of these traits, little use has been made of them 
in breeding programs. Others have reported on the use of various breeding 
and screening techniques for drought resistance in sorghum (Blum, 1983, 
1987; Cnristiansen and Lewis, 1982; Ejeta, 1987; Garrity et al., 1982; Jordan 
et al., 1983; Seetharame et al., 1982). Some of these combine screening for 
physiological traits along with visual selection for agronomic adaptation, but 
little if any progress using physiological traits has been documented. It 
appears that individual physiological traits identified to date are not suffi
ciently related to overall drought response or field performance to merit 
selection based on that trait. 

Previous papers have described certain aspects of evaluation for drought 
resistance in the Texas program, (Clark et al., 1986; Rosenow, 1977, 1980, 
1987, 1989; Rosenow et al., 1983; Rosenow and Ejeta, 1985). The primary 
approach is to utilize naturally occurring soil moisture stress under the 
low-rainfall conditions ofWest Texas. Germplasm is evaluated in nurseries 
under dryland, low rainfall conditions, and under limited irrigation where 
yield potential is expressed but post-flowering moisture stress is allowed to 
develop. In the dryland nurseries, pre-flowering stress commonly occurs. 
Large field screening nurseries are utilized at several locations having 
different stress environments, different planting dates, and different water 
regimes. This approach helps to insure stress at different stages of growth. 

In the post-flowering screening nurseries, irrigation is applied during the 
early growth stages to produce good growth and yield expression. Irrigation 
is terminated prior to anthesis which allows moisture stress to develop after 
flowering and intensifying during grain fill. In these nurseries, plots or 
entries are subjectively rated for the amount of premature leaf and plant 
death. Ratings are made on a 1 to 5 scale where 1 = completely green to 5 = 
dead. Ratings are normally made at or soon after physiological maturity, but 
can be made anytime that differences appear among genotypes. Visual 
ratings on leaf death have been shown to be an excellent method of evaluat
ing actual percentage of green leaf area (Wanous, 1991). Percentage ofplants 
lodged due to stress is also taken. In West Tcxas, the nursery is often left 
standing for an extended pUiod following maturity to allow stalk lodging to 
occur. This facilitates the identification of entries which have stalks weak
ened by water stress. Knowledge of maturity is critical because sorghum has 
a period just prior to physiological maturity when it is most susceptible to 
post-flowering stress. Plants a few days earlier or later in maturity may show 
little premature senescence. Therefore, flowering notes are taken on all plots 
and comparisons are made only among entries of similar maturities. 
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In nurseries where severe water deficits occur prior to flowering during
the panicle development stage, subjective ratings can be recorded whenever 
distinct differences in drought response appear. Rating is done on a 1-5 scale 
where 1= excellent and 5 = very poor response. Prior to heading, ratings can 
be made on leaf streas symptoms indicating drought susceptibility such as 
rolling, excessive erectness, bleaching, and firing. Ratings can be made on 
each trait separately, or can be combined into a single overall drought
susceptibility rating. L'-af rolling is normally the first visible symptom of 
drought stress. Excessive leaf erectness usually follows. Some cultivars have 
erect leaves in the absence of stress, so care must be used when evaluating
this trait. The leaf angle of the lower leaves generally indicates whether or 
not a cultivar has genetically controlled erect leaves. Leafbleaching refers 
to a loss in green color during the hottest portion of the day, causing a 
bleached effect. Care must also be used when scoring this trait because there 
is a range from dark to light green leaf color among different genotypes even 
in the absence of stress. Leaf margin and tip burn is usually the last 
vegetative drought response to appear. Scoring of the early vegetative 
response is most efficient when done within related germplasm. Widely
diverse material may give rather different appearing responses, with a 
poorer relationship of vegetative symptoms to eventual performance. 

Some cultivars are very susceptible to another kind of leaf necrosis called 
leaf firing, where large sections of the leaf die rapidly and usually at about 
flowering time. This type of leaf firing is different from the leaf margin and 
tip burn described previously and does not appear to correlate well with final 
yield. Drought induced leaf necrosis is characterized by the absence of 
anthocyanin pigment and is thus distinctively different from coloration due 
to other causes, such as disease or insect injury. 

Later appearing symptoms caused by moisture stress prior to flowering
include delay in flowering, panicle and floret abortion, poor panicle exser
tion, reduced panicle size, and the "saddle" effect. These symptoms can be 
rated individually or in combination. Delay in flowerming is evaluated by
comparison with non-stressed plantings. These late-appearing symptoms 
are the best evaluation ofpre-flowering drought tolerance. Such ratings may
be made at or after maturity. Evaluation ofpre-flowering drought tolerance 
in very early maturing genotypes is difficult because they often escape water 
stress. 

In field screening nurseries, standard checks are used every five or ten 
plots. Alternating every fifth plot with a pre-flowering tolerant (post-flower
ing susceptible) line such as Tx7078 or Tx7000 and a post-flowering tolerant 
(pre-flowering susceptible) line like B35-6 or R9188 provides a reference for 
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comparison. By comparing ratings with those ofthe adjacent checks, adjust
ment for variability within the field can be made. Whenever possible, 
furrow-dikes are placed between beds in our dryland nurseries to encourage 
uniform water penetration and soil moisture. We maintain the furrow-dikes 
throughout the entire year to maintain a uniform soil moisture profile. We 
use short (5-6 m), single row plots in most screening nurseries. Multiple row 
plots are used only for special studies. 

In addition to field screening, sprinkler irrigation gradient systems have 
been used in dry environments to manipulate timing and quantity of water 
applied. The advantage is two fold: a) the evaluation of plant response to a 
wide range ofstress under otherwise identical conditions; and b) manipula
tion of onset, cessation, and degree of stress. In these evaluations, it is 
important to recognize the different drought stress responses before inter
preting results from the gradient system. Disadvantages of the system am 
the influence of wind on water distribution and the inability to control 
precipitation. The amount and frequency ofirrigation may be less than ideal. 
However, reaction under the system in West Texas correlates well with our 
field evaluation. The use of gradients may be on only limited value in areas 
where rainfall is high during the regular crop season. Use of gradient 
systems may be oflimited value in the off-season due maturity changes and 
different yield responses especially with photosensitive or partially photop
eiod sensitive sorghums affected by different day lengths. 

Rainout shelters are also used to supplement evaluations made in field 
nurseries. Untimely rains often prevent evaluation or restrict evaluations 
to short periods during the growing season. Rainout shelters can be used to 
improve the efficiency o:selection by controlling both timing and amount of 
water applied, while otherwise mqintaining a near normal field environ
ment. Pre and post-flowering stress ratings under shelters in Texas have 
corresponded well with known field reactions. Single-row plots of400 breed
ing selections can be evaluated for the pre-flowering drought stress in one 
40 ftX 60 ft (about 12 m X 18 m). 

Drought resistance and response in GS1 is less well understood than in 
GS2 and GS3. Some evaluation for seedling emergence and survival has been 
done by ICRISAT and in Mali, using off-season nurseries, and soil bins with 
covers. The relation to drought resistance in GS2 and GS3 has not been 
documented. 

More information is needed on the major gene loci involved in different 
types of drought tolerance to determine if genes conferring these responses 
can be combined to further enhance resistance. Molecular markers such as 
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restr tion fragment length polymorphism (RFLP) provide an important tool 
to tag genes and quantitative trait loci (QTL) (Nguyen and Rosenow, 1993).
After molecular markers for various drought resistance traits are identified, 
these markers can be used to improve selection efficienLy for drought 
resistance. 

SUMMARY AND CONCLUSIONS 

1. The empirical approach, using large multilocational field screening
nurseries, subjective scoring, and the principles described herein, has proven 
to be successful in screening sorghum for resistance to drought. 

2. Utilize whenever possible the local environment in the regular growing 
season. Be familiar with the normal rainfall pattern, soil type, soil problems,
and other major constraints to growth and production, so the effect of 
moisture stress will not be confused with problems caused by other biotic or 
abiotic factors. 

3. Be familiar with and be able to recognize Lhe various drought responses 
at various stages of growth. 

4. Know the stage of growth when stress occurs in each nursery by
recording flowering date, rainfall, etc., and make interpretations accord
ingly. 

5. When screening for drought r istne, other serious constraints such 
P soil problems, soil variability, etc., aho'ud be removed if possible or at 
least minimized. 

6. For drought resistance screening, the following is recommended: use 
multi-locations with differing stress; diverse germplasm; visual ratings;
screening in early as well as advanced generations; germplasm and infor
mation exchange- make drought resistance a specific priority in crop im
provement; understand plant response; and understand the stage-of-growth 
x timing-of-stress interactions. Extensive yield testing may not be the best 
use of time and resources since visual ratings may be sufficient until final 
evaluations. 

7. There is a need for a better understanding of the mechanisms of drought
resistance as well as the nature and inheritance of resistance. Molecular 
marker techniques could be very useful in screening and enhancing drought 
resistance. 
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ABS'iKORACT 

A large part of amble land is affected by nutrient deficiencies or elemental 
toxicities Salinity and drought also limit crop yields in various partsof the world. 
Use of nutrient efficient or elemental tolerant crop species or'cultivars within 
species, in combination with otherappropriate management practices, are impor
tant strategies for improving crop yields on marginal lands. Shortage of rewources 
and concern about environmental pollution form the economic and ecological 
background of searching, for more nutrient efficient or elemental tolerant plant 
species or cultivars within species. 

In this paper, mineral stress problems in general are reviewed, with emphasis 
on N, P,K, Ca, Mg, and S deficiencies, andAl, Mn, and salinity toxicities. Relation. 
ships between drought and mineral stress are also discussed. 

INTRODUCTION 

Mineral stress may be defined as the nutrient/elemental deficiencies or 
toxicities either as inherent properties of a soil or developed by man's 
activities that often represents a serious constraint for crop production. The 
major soil related constraints are given in Table 1 for the major regions of 
the world. Severe limitationfi exist in almost all regions of the world, but 
drought and mineral stress are dominant yield-limiting factors. The major 
mineral stress problem is related to soil acidity and salt-affected soils. Acid 
soils comprise about 18% of total world soil area or over 2.4 billion ha (Vose, 
1987). The main mineral stress problem in acid soils include deficiencies of 
P, Ca, and Mg, and toxicities ofAl and Mn (Clark, 1982; Foy, 1984). However, 
in acid soils of the tropics, deficiencies of N, K, Zn, and Mo also have been 
reported (Sanchez and Salinas, 1981). 
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Table 1. World soil resources and theirmajor limitation, for airiculture. 
Percent of total land area with limitation' 

Region Drought 
Mineral 
stresst 

Shallow 
depth 

Water 
excess 

Perma-
frost 

No serious 
limitation 

North America 20 22 10 10 16 22 
Central America 32 16 17 10 - 25 
South America 17 47 11 10 - 15 
Earope 8 33 12 8 3 36 
Africa 44 18 13 9 16 
South Asia 43 5 23 11 18 
North & Central Asia 17 9 38 13 13 10 
Southeast Asia 2 59 6 19 - 14 
Australia 55 6 8 16 - 15 
World 28 23 22 10 6 11 
tata compiled from FAO/UNESCO Sall Map of the World.
 
Nullional dellclencles or toxidtles related to chernical compostOon or mode of origin.
 

Source: Doet, 1980.
 

The problem ofsalt-affected soils is also a serious one, and about 0.9 billion 
ha is estimated to be affected by salts in various parts of the world (Table
2). About 25% of the world soils are calcareous and liable to Fe-deficiency
problems, either on a regular basis or as a result of mismanagement or 
restricted water supply (Vose, 1982). 

The current world population is about 5.4 billion people and will probably
reach 8.2 billion by the year 2025 and more than 10 billion by 2050. The rate 
ofincrease is projected at 90 million people per year. This means extra food 
should be produced to feed those people. Under these circumstances, it will 
be extremely important in the future to improve crop yields on lands 
inherent with mineral stress and other problems, both through better 
management practices and by using more efficient or tolerant cultivars. 
Exploitation of the influence of genetic variability on nutrient response or 
tolerance to toxic elements in crops and their cultivars would be an impor
tant step in optimizing crop production "rdermarginal lands. 

MACRONUTRIENT DEFICIENCIES 

Essential Macronutrients for plant growth include N, P, K, Ca, Mg, and 
S. The possibility of exploiting genotypic differenc!s in absorption and 
utilization of mineral nutrients to improve efficiency of fertilizer use or to 
obtain higher productivity on nutrient-deficient soils has received consider
able attention in recent years (Baligar et al., 1990). 
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Nitrogen 

Nitrogen is a vital nutrient for crops, and N fertilizer has played a leading
role in increasing food production over the past thirty years. N deficiency
limits crop yields in almost all soils and climates. Nitrogen is required in 
relatively large quantities for crop production as compared to other essential 
nutrients, with the exception of K Some crop species cultivars absorb equal 
or higher amounts ofK than N. Nitrogen increases crop yields in cereals and 
legumes by increasing the number of grains and grain weight. Nitrogen use 
efficiency by crop plants is low (50% of that applied to field crops). Conse
quently, excess N not absorbed by crops may be leached out and cause 
environmental pollution or lost through other mechanisms. 

Improving nutrient use efficiency is a major concern in crop production in 
developed and developing countries. Nitrogen use efficiency can be improved
by adopting appropriate management practices such as use of adequate
levels, methods, and forms of N fertilizers. High use efficiency by crops
should be expected when plant N availability matches the crops needs 
throughout the growing season. However, use of efficient crop species or 
cultivars within-species is a very attractive, complimentary strategy from 
both an economical and ecological point of view. Crop species respond
differently to soil and fertilizer N (Sinclair and Horie, 1989). These differ
ences have been observed in different cultivars of the same crop species
(Messmer et al., 1984). 

Phosphorus 

Phosphorus deficiency is one of the most widespread soil constraints in 
the acid soils of both tropical and temperate regions. Approximately 82% of 
the land area of the American tropics is P-deficient in its natural state 
(Sanchez and Salinas, 1981). These soils also have high capacities for P 
fixation. Amelioration of P deficiency by application of massive doses of 
costly P fertilizer is not a viable option to many of the predominantly
subsistence farmers ofthe tropics. 

Strategies to improve agricultural production on P deficient soils have 
focused on making the most efficient use of available soil P so that crop
production can be sustained with minimum P applications. A principal 
component of these strategies is the selection and development of species
and cultivars that grow well at lower levels of available soil P. Differential 
responses among genotypes of corn, beans, rice, wheat, and white clover to 
P deficiency have been reporte (Fageria, 1992). 
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Potassium 

Potassium deficiency is not as common as N and P deficiency. However,
due to the large quantity extracted by crops under intensive cultivation, K 
deficiency frequently eccurs in crop plants. In addition to appropriate man
agement practices, using K efficient genotypes can be a complementary
solution tor improving crop production of field crops. 

Calcium and Magnesium 

Deficiencies of Ca and Mg are important limitations to plant growth in 
many acid soils. In addition to supplying Ca and Mg through dolomitic lime, 
use of efficient species or cultivars may be another strategy for increasing
Ca' and Mg-use efficiency in deficient soils. It is widely reported that plant
species differ widely in their requirement for Ca (Fageria, 1992) and Mg 
(Clark, 1982). 

Sulfur 

Sulfur deficiencies have been reported for 22 African and 16 European
countries and for large agricultural areas in South and Southeast Asia, the 
US, and Canada (Tisdale et al., 1986). Sulfur deficiency also has been 
reported in Central and South America (Malavolta et al., 1987; Tisdale et al.,
1986). Malavolta et al. (1987) cited the following reasons for S deficiency: 

" Low soil organic matter content
 
" Low mineralization rates of organic matter
 
" 
Depletion of soil reserves because of continuous cultivation and 

the application of S-free fertilizers 
" Increased use of N and P0 4- fertilizers that causes imbalances of
 

the N:S and N:P ratios of the soil-plant system. S deficiency in
 
crop plants under most climatic and soil conditions can be cor

"1rected by application of 20 to 30 kg S ha . Howevcr, use of effi
dent species or cultivar within species may be a economical vi
able solution. 

MICRONUTRIENT DEFICIENCIES 

Micronutrients essential for plant growth are Fe, Zn, Cu, Mn, B, Mo, and 
C1'. The availability ofmost micronutrients is closely related to the reaction 
(pH) of the soil and decreases markedly with an increase of soil pH, except
in the case of mo. The activity of Fe3 in soil solution decrea.es 1000X for 
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each unit increase in pH (Lindsay, 1979). Similarly, the activities of Mn 2 

and Zn2 * are highly pH dependr,' -nd decrease 10OX with each unit increase 
in soil pH (Lindsay, 1972). 

In general, the following factors can contribute to micronutric at deficien
cies in field crops. 

" Soil naturally low in micronutrient content 
" High organic matter content of soil 
" High sand content of soil 
" High soil P with low micronutrients 
" Drought 
• Soil compaction
 
" High pH (above 6.0)
 
" Land leveling
 
" Soil erosion
 
" Extreme temperature
 
" Extreme solar radiation
 
" Excessive Zn, Cu, and Mn cause Fe deficiency
 
" Salinity and sodicity
 
" High N application can cause Cu and Zn deficiencies
 
" In areas with high rainfall, B deficiency can occur in light

textured soils 
* Root damage by insects and diseases 

Micronutrient deficiencies are increasing in intensive agricultural sys
tems due to removal of large quantities of nutrients by crops. In addition to 
this, some of the above mentioned factors also contribute to these deficien
cies. To maintain optimum productivity on arable lands in various parts of 
the world, it is essential to maintain adequate levels of micronutrients in 
the soils. Along with other management practices, improvement of crop
production through genetic manipulation is an attractive strategy, particu
larly where relatively large quantities of micronutrients are present in soils 
and availability is low when measured by cultivar response. 

MECHANISMS OF PLANT ADAPTATION
 
TO M[NERAL STRESS
 

Genotypes resistant to mineral deficiency are oftea defined as mineral 
efficient (Blum, 1988). Efficiency is defined as the amount of product pro
duced per unit of resource used (Fageria, 1992). This means nutritional-ef
ficient plants are defined in terms of the ratio of economic yield or biomass 
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rprunit mineral element. Mineral efficiency may result from either a better 
ability in uptake of minerals or better efficiency in using minerals already
available in the tissue (Blum, 1988). Maximum nutrient use efficiency is 
obtained when the concentration is near the critical level, because near 
maximum yield occurs at this point without excessive nutrient levels in the 
plant. Values of nutrient use efficiency decline in the toxic range because 
yield levels decrease, while nutrient concentrations increase. There are two 
types ofgrowth response to a deficient situation. Efficiency is defined by the 
ability to grow well at a low concentreat on ofthe available nutrient. Respon
siveness is defined by the ability to respond to an increasing concentration 
of the available nutrient. 

NUTRIENT/ELEMENTAL TOXICITIES 

In addition to nutrient deficiencies, nutrient/elemental toxicities for Al 
and Mn are common in acid soils. Fe toxicity is a serious problem in flooded 
rice. Similarly, salinity problems limit crop yields in various parts of the 
world. 

Aluminum toxicity 

Al toxicity can limit yields in acid soils in many parts ofthe world. Highly
weathered soils low in pH and high in phytotoxic Al cover large areas in 
North and South America, Africa, and Asia (Wambeke, 1976). 

Aluminum is known to inhibit root growth and mineral uptake in various 
crop plants (Baligar et al., 1990). Growth of plants is related to the Al 
saturation of the effective cation exchange capacity (ECEC). Farina et al. 

3(1980) examined exchangeable A1 and pH as indicators of lime require
ments for a range of soils that included two Mollisols, six Ultisols, and one 
Oxisol. Relative corn yield was more highly related to Al saturation or acid 
saturation of the cation exchange complex than either water or salt-pH
values. Al saturation levels of ECEC that allow for maximum yields on 
highly weathered Oxisols and Ultisols have been shown to be < 10% for 
wheat and soybeans crops, whereas corn yields were not restricted with Al 
saturations < 35% (Kamprath, 1984). Growth of more sensitive crops such 
as cotton and alfalfa was optimum when Al saturation was close to zero 
(Kamprath, 1984). Maximum growth of six Stylosanthes species was ob
tained at an Al saturation of< 5% (Carvalho et al., 1980). According to Smyth
and Cravo (1991), corn and soybean yields remained within 80% of the 
maximum with Al saturation levels of less than 20%, as opposed to 58%with 
cowpea. 
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Manganese toxicity 

Manganese toxicity generally occurs in soils having a pH of 5.5 or lower,
but can also occur at higher pHs in poorly drained or compacted soils, where 
reducing conditions favor the production of divalent Mn (Foy, 1984). Condi
tions favoring Mn toxicity are soil-parent materiai that are high in total Mn,
low soil pH, low Ca in relation to Mn at a given pH, and poor drainage and 
soil compaction (Foy et al., 1981). 

Manganese toxicity in crop plants can be corrected by increasing soil pH 
to around 6.0 through liming. Another complimentary measure may be the 
use ofMn tolerant crop species or cultivar within species. 

Salinity stress 

Salinity is a problem in many regions of the world (Table 2). Salt-affected 
soils are common in arid and semi-arid regions where evaporation is higher
than precipitation. As a result, salts are not leached from the soil and 
accumulate in amounts or types detrimental to plant growth. Soils are also 
salinized in coastal areas due to tides. Salts generally originate from native 
soil and irrigation water. Use of inappropriate levels of fertilizers Aith 
inadequate management practices can create saline conditions even in 
humid climates. Successful crop production on these soils depends on soil, 
water, and plant management. The cost of soil reclamation is frequently so 
high that it is not possible to reclaim such soils for crop production. Under 
these circumstances, growing salt tolerant crops might help in utilization of 
salt-affected soils. Salt tolerance exists within and among species, and this 
variation may be used to develop cultivars specifically tailored to salt-af
fected soils. 

Table 2. Global distributionof salt affected soils. 
Ama in 1000 hectares 

Region Saline Sodic Total 
North America 6.191 9,564 15.755 
Mexico and Central America 1.965 -- 1,965 
South America 69.410 59,573 128.983 
Afica 53,492 26,946 80.438 
South Asia 83,312 1,798 85.110 
North and Central Asia 91,621 120,065 211.686 
South East Asia 19.983 - 19.983 
Australia and New Zealand 17,359 339.971 357330 

Total 343,333 557,917 901,250 

Source: Lal et al., 1969. 
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SCREENING METHODOLOGIES
 
FOR MINERAL STRESSES
 

Use of appropriate methodology in mineral stress screening experiments
is very important for getting meaningful results. Table 3 summarizes the 
mechanisms involved in plant adaptation to mineral stresses. Figure 1 
shows the mechanisms of plant adaptation to high and low nutrient levels. 
Screening can be done under controlled or field conditions. Basic principles
and considerations should be considered when screening for adverse soil 
conditions. These considerations include: 

" Uniformity of growth medium 
" Uniformity of ecological conditions 
" Well-defined evaluation parameters
" Inheritance experiments require large number of plants. There

fore, a screening technique must be simple, repeatable, and 
should permit evaluation of large numbers of genotypes with rea
sonable precision

" 	Selection of appropriate field sites; soil should be deficient in a de
termined nutrient if the objective of the study is to determine effi
ciency for low levels. Similarly, if the objective is to test the geno
types for Al toxicity, the site selected should have a sufficient 
level of Al to show reduced genotypic yield for comparison. Accord
ing to Hamblin et. al (1980), the most important criteria in select-

Table 3. Mechanisms of plant adaptatiovis to mineral stre. 
1. 	 Morphological 

1.1. 	 Efficient roo system 
1.1.1 High root to shoot ratio. 
1.1.2 Extensive root system which exploit large soil volume. 
1.1.3. Colonization of the root system by mycornbizae and N-fixing bacteria. 

2. 	 Physiological 
2.1 	 Ability of roots to modify rhizosphere to overcome low/toxic levels of nutrients or elements. 
2.2 	 High nutrient utilization efficiency per unit of nutrient absorption. 
2.3. 	 Capacity of storage and reutilization during stress period. 
2.4. 	 Slow growth rate. 
2.5. 	 Capacity of normal metabolism at reduced tissue concentration of a nutrient.. 
2.6. 	 Exclusion of toxic elements in the rhizosphere for exanple higher oxidizing power of some flooded 

rice cultivars precipitate iron at root surf-ice and avoid Fe toxicity. 
2.7. 	 High uptake rate of nutrients. 
2.8. 	 Capacity to accumulate high concentrations of toxic elements such as Al and Mn in roots and tops. 
2.9. 	 High photosynthetic capacity. 
2.10 	 Lerq losses of assimilate through resliration. 
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Figure 1. 	 Mechanisms of high and low nutrientadaptation by crop plants. (Chapin, 
1987). 

ing a site is that the yield of the selected genotypes at the test lo
cation consistently corresponds to their yield when grown over 
the range of environments for which they are intended. 

" 	Maximum and minimum nutrient levels should be known in ad
vance 

* 	In screening for a determined nutrient efficiency, other nutrients 
must be present in adequate amounts. 

" Two genotypes may perform equally well at one concentration 
and quite differently at a second. A response curve for a deter
mined nutrients is desirable before deciding the level or levels of 
the nutrient that should be adopted. 

" 	For a soluble nutrient like nitrogen, especially if the objective is 
efficiency of absorption of soluble fertilizer, the test level may be 
quite high. For immobile or diffusion-limited nutrients such as P, 
screen at the lowest concentration that will distinguish some effi
cient genotypes (Graham, 1984). 
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" 	If the concentration of the limiting nutrient is either too low or 
too high, selection pressure falls to zero; such levels should be 
avoided. 

" Efficient and nonefficient check cultivars should be included in 
the genotype screening as controls. 

" Plant material should be genetically uniform. 
" A field screening methodology was developed at the National Rice 

and Bean Research Center ofEMBRAPA, Goidnia, Goias, Brazil 
for selecting P efficient cultivars and advanced breeding lines us
ing yield as a parameter. The field method is simple and uses 2 
levels of P (stressed and nonstressed levels). Response index is 
calculated as follows (Fageria and Barbosa Filho, 1981): 

Grain yield response index = Yield under nonstress - yield under 
P-stress level 

Difference of P levels applied between 
nonstress and stress level 

The average yield of the stress plots and grain yield response index were 
used to separate cultivars into four groups (Figure 2, 3). 

I. Nonefficient and nonresponsive (NENA). 
II. Nonefficient and responsive (NER).
III. Efficient and responsive (ER).

M. Efficient and nonresponsive (ENR). 

From a practical point ofview, cultivars falling in the ER group are most 
desirable because they produce high yield at low as well as at high levels of 
P. Cultivars under group ENR are also desirable because they produce 
higher yields at low P levels. 

A similar methodology has been developed for screening cultivars for Al 
tolerance by creating two levels ofAl through liming of Oxisols ofBrazil (Fig.
4). Cultivars in this case were also clasdified into four groups such as: I)
susceptible and nonresponsive, II) susceptible and responsive, III) tolerant 
and responsive, and IV) tolerant and nonresponsive. Cultivars belonging to 
group three are most desirable for planting on Al toxic soils. 

DROUGHT AND MINERAL STRESS 

Drought is the most prevalent environmental stress, and it limits crop 

production on about 28% of the world's land (Table 1). It is a meteorological 
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Figure 2. 	Screening methodology of crop genotypes for P-tress (Fageria and Bar. 
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Figure 3. 	 Response of common bean cultivars to P on an Oxisol of cental Brazil
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Figure 4. 	Screening methodology of crop genotypes for Al toxicity (Fageria and 
Barbosa Filho 1983). 

and hydrological event, involving precipitation, evaporation, and soil water 
storage (McWilliam, 1986). Its impact is a function ofduration, crop growth
stage, type of crop species or cultivar-within-species, and type of soil and 
management practices. Flowering is the most sensitive growth stage ofcrops
to drought in relation to grain yield. A drought of about two weeks during
flowering can result in a complete loss of grain yields. Drought is sporadic
in nature, resulting in drastic crop losses even in humid climates (Dunphy,
1985). Mineral elements and water are absorbed by independent processes
in the root, but are closely related. In soils, water relations affect all the 
processes associated with nutrient availability. These processes involve 
element concentration in the soil solutions because ofnutrient diffusion and 
mass flow to the root surface, absorption by the root, translocation from root 
to shoot utilization of the minerals, and the capacity of roots to extend to 
distant points ofsupply (Clark, 1981). 

At present, fertilizer recommendaions are based on adequate water 
availability. Due to water deficiency, response of crop plants to applied
fertilizer 	changes; hence yield and nutrient use efficiency are affected by 
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drought (Figure 5). Eck (1988) reported a N xirrigation interaction in wheat 
grown on a clay loam soil. He concluded the most effident use ofboth N and 
water, was to adjust the level of one to that of the other. Dry soil conditions 
severely reduce the supply ofmobile ions such as nitrate to roots and impede 
transformation of soil nutrients to plant-available forms (Power, 1983). 
Water and N dficits also affect reproductive development, and hence affect 
overall source-sink gradients within the plant. Jordan (1983) suggested that 
accelerated post-anthesis senescence under water stress conditions is the 
result of an insufficient supply of current photosynthate and reduced N in 
the presence of a strong reproductive sink. Wolfe et al. (1988) studied the 
water and N interactive effects on N concentrations in maize and concluded 
that water elxess caused 10 to 20% lower N concentration of leaf 15 before 
reproductive sink demand for N was a major factor. Batagalia (1980) found 
lower N concentrations in recently expanded leaves of water-stressed plants, 
and concluded that water stress-induced N deficiency resulted from reduced 
soil N availability under dry soil conditions. Reduction of nitrate reductase 
activity in response to water stress may also be involved (Shaner and Boyer, 
1976). These results suggest that N status of aging leaves waii iafluenced by 
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Figure 5. 	 Response of upland rice to K fertilization under normal rainfall and 
drought conditions on an Oxisol of Central Brazil. The regression equa
tion was calculated using fertilizer application rate oxpressed as K20 
(Fageria et al., 1990c). 
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water stress effe j on N uptake cr N metabolism, or both, as well as N 
demand during grain filling. 

Rogler and Lorenz (1974) reviewed the effects ofN fertilization on produc
tion ofthe various native and introduced cool season grass species. They and
others documented that cool-season grasses generally respond to N fertili
zation, and this response is often moderated by the availability of water
(Power, 1985; Wight and Black, 1978). Power (1985) also reported that water 
use efficiency of several cool season grasses was increased about 3X by 
fertilization. 

Soil moisture affects both P uptake and root growth. Low moisture reduces 
P diffusion through the soil to the root surface. Olsen et al. (1965) measured 
an 8X decrease in P diffusion, the principal mechanism for P movement
through the soil to the root surface, with a 2X decrease in soil moisture. In
general, as soil P level increases, the effect of soil moisture on P diffusion 
rate decreases (Mahtab et al., 1971). Olsen et al. (1961) found that P uptake
by corn seedling roots declined by 50% as soil moisture decreased from that
held at a water potential of-33kPa to that at -300kPa. Similar results were
also reported by Mackay and Barber (1985a). Soil moisture also affects K
uptake by affecting root growth rate and the rate of K diffusion in soil
(Mackay and Barber, 1985b). Schaff and Skogley (1982) found that K
diffusion rate increased an average of 2.8X as soil moisture was raised from 
10 to 28% (w/w). Dunham and Nye (1976) noted a 3-4X increase in K diffusion 
as soil moisture retained at -350kPa was increased to that at -10kPa.
Grimme et al. (1971), finding a marked relation between soil moisture and
K diffusion rate, suggested this was the primary reason why K uptake was 
reduced with limited soil moisture. 

In conclusion, nutrient accumulation is decreased when water stress is
increased (Clark, 1981). During drought conditions, the restriction of r, ut
growth caused by soil Al may hasten the onset of water deficiency. Goldman 
et al. (1989) studied the; ij:teraction between subsoil Al and drought stress
in soybean. They conclude,1 that hindered root growth in highly-Al-saturate 1 
subsoils may have limited the ability of the plant to withstand drought.
Several investigators have examined the effect of soil Al on plant water 
status in other crops. Decreases in leaf water potential, transpiration rate,
photosynthesis, and chlorophyll concentration were observed with wheat
grain in the presence ofAl (Ohki, 1986). Krizek and Foy (1988) documented 
a large reduction in the vegetative growth ofthe Al-sensitive barley cultivar
when grown in the presence of water stress and mild soil Al stress, while the
Al tolerant cultivars were less affected. Krizek et al. (1988) have noted 
sin-ilar results in sunflower. 
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Bower and Tamimi (1979) reported that shoots ofrice, wheat, barley, and 
oat cultivars grown in saline solutions invariably had a lower water content 
than shoots grown on nonsaline solutions, indicating that salt injury in
volves water stress. As pointed out by Bernstein (1961), growth of herba
ceous plants in saline media is governed primarily by osmotic potential (OP). 
The OP of the sap in the plant tops is always more negative than that in the 
roots, thus providing a substantial water potential gradient for zhe upward 
movement ofwater; however, in a plant grown under saline medium, OP of 
the root media becomes increasingly negative, thereby resulting in osmotic 
dessication and leading to restriction in water uptake. 

CONCLUSIONS 

Mineral stresses related to nutrients deficiencies or elemental toxicities 
are some of the most important yield limiting factors in field crops on large 
areas of arable land around the world. The deficiency or toxicity may occur 
due to natural soil properties and/or by inappropriate management practices 
in crop production. Exploiting the influence of genetic variability on nutrient 
response in crops could be an important step in optimizing crop production 
on mineral stress soils. Use of nutrient efficient or elemental tolerant 
cultivars, in combination with appropriate management practices, can 
reduce cost ofproduction and environmental pollution. Substantial progress 
has been made in identifying nutrient efficient or elemental tolerant crop 
species. Those characteristics have not been widely incorporated in commer
cially released crop cultivars. One reason for this slow progress is that the 
nutrient efficiency and tolerance mechanisms are poorly understood. There
fore, more basic research is needed to understand the mechanisms and to 
facilitate incorporation of mineral stress traits in commercial field crop 
cultivars. In addition, no strong cooperative efforts exist among most soil 
scientists, physiologists, breeders, and other agricultural scientists to de
velop crop cultivars for adverse soil conditions. Increased cooperation is 
essential in attaining meaningful and practical results. Tolerance to soil 
mineral stress is complex. The areas of problem soils are sufficiently large 
to warrant a specialized plant breeding program for these purposes. 
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ABSTRACT 

This report will present a review of biotechnology methods that have been 
explored to assist plant breeders in unconventional methods to improve plant
cultivars for stress tolerance. A general introduction to topics including cell 
culture selection, somaclonal variation, transformation,and genome mapping will 
be given and specific examples on their application to sorghum improvement will 
be examined. The current and potential impact on improvement of sorghum for 
enhanced toleranic to insects, drought, and mineral stresses such as aluminum 
and salts will be discussed. 

INTRODUCTION 

Dramatic changes have taken place in the past 20 years that have altered 
and added to plant breeders' tools for improvement of crop plants. In the 
early to mid 1970's reports in the literature ignited interest in using plant 
cell cultures to make selections at the cellular level in vitro for cells more 
tolerant to various selection pressures and ultimately to produce plants 
expressing altered tolerance to various stresses. Plant cell culture research 
also indicated that plants produced from cell culture even without stress 
selection could be quite different from the original parental germplasm in 
tolerance to various stresses. This phenomenon was termed somaclonal 
variation. As plant biotechnology research progressed, the option of insert
ing foreign genes into plants became a reality and opened up yet other 
opportunities for the improvement of crop plants for stress tolerance. A more 
recent development has been RFLP linkage mapping to locate, identify, and 
select significant genes in crop plants. 

This report will examine cell selection, somaclonal variation, transforma
tion, and molecular mapping technologies and their current and potential
impact specifically on sorghum for stress tolerance improvement. 
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CELL SELECTION
 

Cell selection strategies were based on the observations that plant cells 
in culture were genetically variable. The addition of selective agents (min
eral salts, antibiotics, osmotic agents, herbicides, temperature extremes,
amino acid analogues, and fungal toxins) to the cell culture medium could 
select for cells that had an adaptation and/or mutation to cope with that 
compound; non-tolerant cells were eliminated (McCoy, 1988; Maliga, 1984;
Meredith et al., 1988). The selective agent could be added at sub-lethal 
concentrations, or its concentration could be gradually increased over time 
to high levels (step-wise selection). Generally, the result was cell lines that 
were tolerant and would grow at high concentrations of the selective agent.
In many cases the cell lines could not regenerate plants. However, plants 
were obtained that did appear to be tolerant to amino acid analogues 
(Carlson, 1970), antibiotics (Binding et al., 1970), herbicides (Chaleff and 
Parsons, 1978; Miller and Hughes, 1980; Thomas and Pratt, 1982; Wersuhn, 
G., K et al., 1987), pathogens (Carlson, 1973; Gengenbach et al., 1977;
Behnke, 1980; Sacristan, 1982; Hartman et al., 1984; Ling et al., 1985, Rines 
and Luke, 1985; Fadel and Wenzel, 1993), salt (Nabors et al., 1980; Waskom 
et al., 1990), aluminum (Conner and Meredith, 1985; Miller et al., 1992;
Waskom et al., 1990), and cold stress (Kendall et al., 1990). The notion that 
traits (whose physiological basis was poorly understood) selected at the 
cellular level could be expressed at the plant level was exciting. Moreover, 
such approaches were felt to have tremendous advantage in saving time, 
money, and space compared to selection under field conditions. 

These early, exciting reports were not followed by new cultivars intro
duced in farmers' fields, and this has been a disappointment. Some of the 
reasons for this are discussed later. Some people have examined this 
germplasm in the field over longer lengths oftime to see how the traits hold 
up. In studies over a 2-3 year period on wheat, potato, and barley progeny
derived from in vitro selection on pathogen toxins, Werazel and Foroughi-
Wehr (1990) saw no significant difference in the level of susceptibility to the 
pathogen between the tissue-culture-selected progeny and plants that had 
not gone through cell culture. Their conclusion was that cell culture selection 
for pathogen resistance was not a reliable method to obtain pathogen
resistance in the plant. The National Research Council (1990) also had a 
panel of prominent scientists examine cell selection and somaclonal vari
ation strategies for crop improvement and concluded that few, if any, crop 
cultivars had been developed this way. 

Successful initiation and culture ofsorghum callus and plant regeneration
for many cultivars is feasible. For reviews of sorghum literature on regen
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eration from cell culture, see, Bhaskaran and Smith, 1990, 1989; Smith and 
Bhaskaran, 1986; and Bhaskaran et al., 1992, and cell selection Smith et al., 
1993; Bhaskaran et al., 1986. The first report of selecting salt tolerance in 
sorghum (Bhaskaran et al., 1983) showed that selected cells grew better than 
unselected cells on NaCl-containing medium. Plant regeneration and sub
sequent seed set was poor from such plants. In a subsequent study 
(Bhaskaran et al., 1986), plants obtained from salt-selected callus produced 
progeny that had higher shoot dry matter accumulation as compared to the 
non-selected plant material under salt stress; however, both had similar 
decreases in root development in the presence of NaCl. Field tests were not 
performed. Plants were also obtained from callus screened on aluminum
containing media (Smith et al., 1983); however, seed set was not adequate 
for testing at the plant level. 

Duncan et al. (1991c) have found that in vitro selection of sorghum callus 
on NaCl or aluminum can produce plants with enhanced tolerance to these 
stresses under field conditions. However, such useful variation was also 
found in plants derived from cell culture without subjecting the cells to in 
vitro selection. These workers concluded that selection in vitro is probably 
not necessary, as sufficient variation was obtained from plants from cell 
culture without selection. Their results will be discussed under the topic of 
somaclonal variation. 

Recent studies using microspore selection on Fusariumtoxin-containing 
medium enabled Fadel and Wenzel (1993) to regenerate wheat plants that 
were tolerant to the toxin. Their approach was significant in that they used 
germplasm that had a genetic background for resistance, and there was also 
a high cnrrelation between susceptibility to Fusarium and to the toxin. 
Progeny have not yet been evaluated. 

Perhaps it is too early to disregard cell selection as a viable approach to 
crop improvement. As strategies are improved and programs very carefully 
evaluated with plant breeders, perhaps cell selection can be a small but 
useful tool of plant breeders in special situations. 

SOMACLONAL VARIATION 

Somaclonal variation was a term coined by Larkin and Scowcroft (1981) 
to describe the variation observed in plants and their progeny derived from 
cell culture. ( For a recent discussion of somaclonal variation including 
mechanisms and uses of such variation see Peschke and Phillips, 1992.) 
There were subsequent reports (Evans and Sharp, 1986; Maliga, 1984; 
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McCoy, 1988) of plants from cell culture expressing new sources of variation 
for important agronomic traits that could be useful in plant breeding 
programs. These reports included disease resistance in maize (Brettell et al., 
1980; Umbeck and Gengenbach, 1983), potato (Shepard et al., 1980), sugar
cane (Heinz et al., 1977; Larkin and Scowcroft, 1981), rice (Ling et al., 1985), 
alfalfa (Latunde-Dada and Lucas, 1983), celery (Heath-Paghuso and Rap
paport, 1990), and morphological and biochemical trait variation in wheat 
(Larkin et al., 1984) to mention but a few. Many of these plants had true 
genetic changes that were documented (Maliga, 1984; Evans and Sharp,
1936; Shoemaker et al., 1991; Altman et al., 1991). Unfortunately this 
material never was incorporated into crop improvement programs for many 
different reasons. Recently Qureshi et al. (1992) reexamined somaclonal 
variation in wheat improvement over a 3 year period and concluded it did 
not produce genotypes agronomically superior to the parental cultivar. 

Somaclonal variation has been studied in sorghum. Bhaskaran et al. 
(1987) examined leaf area, height, tiller number, total shoot weight, seed 
number, grain yield, days to flowering, and chlorophyll content in first and 
second generation progeny from cel-culture-dee-ived plants. Some clones had 
significant increases in grain yield accompanied by smaller seed, height 
reduction, higher plant dry matter production, increased tiller number, and 
decreased days to flowering. Some clones were similar to the parental lines. 
However, since this was not a cultivated line of sorghum, no derivatives with 
these traits were used in a breeding program. Useful somaclonal variation 
in sorghum has been obtained for insect resistance (Duncan et al., 1991a) 
and acid soil tolerance (Duncan et al., 1991b). These appear to be the first 
reports of viable somaclonal variants, registered germplasm being released 
for crop improvement. 

One might ask the question as to why earlier research activities in this 
area did not result in usable germplasm. In an attempt to address this 
quesion, extensive discussions with many scientists involved in this early 
work were undertaken. Some of the answers include the observations that 
extensive field testing was not undertaken, and pathogen resistance did not 
hold up under field conditions. Likewise, salt tolerance in some plants did 
not hold up in subsequent generations; aneuploidy was a problem with 
tobacco somaclonal variation causing it not to breed true for the trait of 
interest. A major problem was that somaclonal variation often resulted in 
negative changes in desirable agronomic traits along with the one desirable 
change. Additionally, sometimes desirable traits developed in a cultivar 
were outdated by new cultivars coming out of the traditional breeding 
programs. In the case ofh'rbicide resistance, the use ofthe new cultivar was 
sometimes not economically feasible due to the small acreage involved and 
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the high cost of obtaining registration for use of the herbicide. Most signifi
cantly, it was found that these cell selection and somaclonal strategies were, 
contrary to expectations, very expensive, and required much effot and time. 

Heath-Pagliuso and Rappaport (1990) obtained celery plants with excel
lent resistance to Fusarium oxysporum from cell culture that held up in 
greenhouse and field evaluations over several generations. Since there are 
not other sources of resistance to this fungus in celery germplasm, this 
material looks promising. 

Is there a realistic possibility that somaclonal variation can be useful in 
plant breeding programs? As Peschke and Phillips (1992) point out, this 
question as to whether somaclonal variation is a useful way of generating
variability is still largely unanswered. The answer awaits a better under
standing of the basis for somaclonal variation at the moleclar level Cer
tainly, research activity as reflected by refereed publications and interest by
major plant biotechnology companies indicate that there is definitely a 
reduction in research activities in this area. 

The recent work by Duncan's (199 la-c) group indicates that there may be 
limited uses of somaclonal variation as a part of a plant breeder's program.
They attributed their success (Duncan et al., 1991c) to extensive field testing
under stress conditions at multiple locations (both under stress and non
stress), adequate quantities of seed (sorghum is significant in that it pro
duces a large number ofseed per plant), family selection and bulking in early
generations. and backcrossing. Recent observations by several laboratories 
of fall armyworm tolerance .n sorghum (Isenho ar et al., 1991), and bermuda
grass (Croughan and Quiseaiberry, 1989), and leafhopper resistance in 
potato (Lentini et al., 1990) fi am somaclones, suggest this strategy merits 
further consideration. 

TRANSGENIC PLANTS 

One of the best approaches to improve the stress tolerance ofsorghum or 
any important crop species is to insert a foreign gene conferring the desirable 
trait directly into the desired cultivar. Other desirable agronomic traits 
should be maintained. In dicot crops, gene transfer lki possible using Agro
bacteriumtumefaciens-mediated gene transfer. There are many genes avail
able including those providing for resistance to herbicides (Mazur and Falco, 
1989; Schulz et al., 1990), insects (Hidicr et al., il?87; Vaeck et al., 1987;
Perlak et al., 1990), viruses (Nelson et al., 1988; Lawson et al., 1990), 
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improvement of seed protein quality (De Clercq et al., 1990), and salt stress 
(Tarczynski et al., 1993). 

Transformation of monocot crop plants has been more challenging since 
monocots are not generally considered to be susceptible to Agrobacterium
mediated gene transfer, and this has resulted in focus on protopiast-medi
ated DNA uptake and recvntly microprojectile bombardment (Morrish et al., 
1993 for a review). There are many difficulties in protoplast-mediated 
transformation of monocots since most cultivars will not regenerate from 
protoplasts, and those that do, do so at low regeneration frequencies. Fertil
ity problems and somaclonal variation further complicate the process. In 
spite of this, transgenic maize (Rhodes et al., 1988) and rice (Datta et al., 
1990; Hayashimoto et al., 1990) plants have been obtained from a very 
limited number of cultivars. Using the microprojectile bombardment tech
nique (Klein et al., 1987), transformation of a number of crop cultivars has 
been reported including maize, wheat, barley, and rice (Morrieh et al., 1993). 

There are no reports on the transformation of sorghum using either of 
these approaches. Protoplasts from sorghum can be obtained, but they are 
fragile and difficult to induce to divide and form callus (unpublished results, 
Bhaskaran and Smith). Certainly with more research effort on sorghum 
transformation and the availability of genes for stress tolerance, one can be 
optimistic that these technologies will be successfully applied to sorghum. 
Sorghum has a natural tolerance to drought stress, and several groups are 
trying to identify sorghum stress-tolerance genes to transfer to other species. 
A major concern, moreover, with sorghum is that it is cross-compatible with 
-everal weeds, and there is concern that foreign genes could spread into 
undesirable weed species. 

GENOME MAPPING 

Restriction fragment length polymorphism, RFLP, is one of the newer 
molecular tools for crop improvement. (For reviews see Tanksley et al., 1989; 
Paterson et al., 1991; Paterson and Wing, 1993) This is a very powerful tool 
that uses fragments of DNA differing in length (or size) as markers to 
identify and follow chromosome segments in breeding programs and to more 
rapidly identify desirable genetic combinations in progeny. Using single copy 
DNA as a probe, one can follow the segregation of homologous regions of the 
genome in individuals from segregating populations. DNA fragments can be 
produced by digestion of the DNA with a variety ofrestriction enzymes that 
each cut the DNA at specific base sequence sites. The unique and varying 
sizes of DNA produced are separated on an agrose gel and will create a 
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"fingerprint" specific for that organism. These size differences in DNA 
fragments are referred to as restriction- fragment-length polymorphisms.
DNA-DNA hybridization that occurs between homologous DNA fragments 
can then be used to detect specific DNA fragments in the plant of interest. 
To detect the DNA RFLPs, the gel is probed with small (1-2 kb) pieces of 
chromosomal DNA.A collecti3n of these cloned DNA probes is referred to as 
a library. These probes hybridize with specific DNA fragments, and they are 
referred to as RFLP markers. These RFLP markers can be used to construct 
genetic maps of a segregating population. Thus chromosome segments can 
be fillowed during recombination, and the inheritance patterns follow Men
delian rules. These RFLP maps are useful when they are used in conjunction
with analysis of conventional markers in a plant breeding program. The 
RFLP marker is then closely linked with a gene of interest. The RFLP 
marker is used to identify progeny that should also contain the gene of 
interest; therefore, one can -ore rapidly identify desixable segregants. 

There are many laboratories now constructing R,'LP linkage maps in 
sorghum to identify drought tolerance, osmotic adjustment capabilities,
striga resistance, rhizomatousness, tillering, narrow leaves, and genes as
sociated with resistance/tolerance to other biotic and abiotic stresses. Some 
recent publications on mapping activities in sorghum are Hulbert et al.,
1990; Binelli et al., 1992; Pereira et al., 1992; Wbitkus et al., 1992; and 
Paterson et al., 1993. Laboratories involved in sorghum mapping projects
include Texas A&M University, Purdue University, Kansas State Univer
sity, Iowa State University, CSIRO at the University of Queensland in 
Australia, and University of Milan in Italy. 
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ABSTRACT 

Wheat (Triticurn aestivum L) improvement utilizing Triticeae relatives as sources 
of substantial genetic diversity encompasses an interspecific and intergeneric 
hybridization methodology. For either approach to be practically beneficial, ge
netic recombination between chromosomes of Triticum aestivum and the alien 
species is crucial. Based on genetic proximity, interspecific hybridization is the 
prioritized simplistic approach as a consequence of genomic similarities of wild 
relatives with wheat. Genetic divergence reflected through genomic dissimilari
ties in an asset and has a complex exploitation intergeneric hybridization method
ology where diagnostic techniques form an essential support for tracking alien 
DNA. The focus is on abiotic stresses and a biotic stress of global significance. 

INTRODUCTION 

In the Triticeae, the annual and perennial species provide a unique source 
of genetic variability for wheat improvement. Species with dissimilar 
genomes than wheat fall in a group of 325 members of which approximately 
250 are perennials. Exploitation ofthis group of species has been more with 
the Thinopyrum species, a group that possesses enormous diversity for 
bioticlabiotic stresses that extends from diploids to decaploid polyploidy 
levels. The two groups of stresses are categorized as being associated with 
dynamic/static systems based on presence or absence of a pathogen. Hence, 
for abiotic stresses tolerant germplasm is anticipated to maintain its toler
ance much longer than germplasm resistant to biotic stresses. 
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SALINITY TOLERANCE 

Conventional Germplasm 

Some conventional germplasm is considered v:s salt tolerant and has a 
long history of being classified as such. Prominent are the wheat cultivars 
Chinese Spring, Kharchia 65, Lu 26S and Shorawaki. The cultivar 
Shorawaki has been little publicized. Some other cultivars that still require
rigid evaluation like Sakha 8, ,N-qH?--9, WH-157, Candeal and the new release 
KR1-4, which is a derivative f-om a cross involving Kharchia 65, an elite 
cultivar for saline sodic soils. In hydroculture tests Kharchia 65, Lu 26S and 
Shorawaki exhibited desirable growth and potassium/sodium (K/Na) rela
tionships. The susceptible wheat cultivar Yecora had poor plant growth 
(Table 1). 

A restricted conventional germplasm base exists for wheat improvement
and exploitation of additional genetic diversity seems significant. Several 
reports over the past few years have associated alien germplasm with 
salinity tolerance attributes, and evaluation tests have provided optimism
for incorporating these in wheat improvement. The use of Thinopyrum
elongatum (2n=10x=70) spans a 17-year duration, but practical benefits 
have apparently been surmounted by associated research complexities. The 
prognosis, however, is quite encouraging. Our group feels that among the 
distant alien species with salt tolerance attributes, the diploids (2n=2x=14)
Th. elongatum and Th. bessarabicumare prime candidates. Th. elongatum
has been extensively investigated (Dvorak et al., 1988). They concluded that 
at least three chromosomes additively contributed to salinity tolerance (3E,
4E, and 7E). We have crossed this species as the female parent to a 
commercial wheat (Goshawk "S"). This is not an attempt to repeat the 
previous investigation, but an attempt to capture possible cytoplasmic
effects of Th. elongatum and also to have an elite wheat cultivar in the 

Table 1. Screening in hydroponics of some Triticum aestivum L cultivars at 150 
mol m- of NaCI under50 days of stress with measures of dry weight (g)
and Na, K from cell sap. 

Na 
&) 

K 
Cultivar Dry WL (g) "(mol m
 
Shorawaki 2.7 
 31 198
 
Lu26S 2.0 
 37 227
 
Kharchia 65 2.2 71 
 222
 
Chinese Spring 4.4 
 31 225
 
YecoM 1.1 
 69 261 

" 150 mol m NaCI, 50 days stress Wlth a 20:1 Na:Ca rato (Gotham at a1., 1985). 

175 



background to facilitate field screening apart from being susceptible to salt 
stress. Ti. bessarabicumis well recognized for its salt tolerance potential 
(Gorham et al., 1985) and is being utilized in our research. It forms the 
category ofintergeneric hybridization. 

Intergeneric Hybridization 

The current status ofThinopyrum bessarabicumstands with the disomic 
5J chromosome addition line to T.aestivum cultivar Chinese Spring impart
ing salinity tolerance based on hydroponic evaluations. The amphiploid of 
Th. bessarabicumwith cultivar Chinese Spring (2n=8x=56) was salt tolerant 
and the 2J disomic addition susceptible (Forster et al., 1987, 1988). The 
positive effect of the 5J chromosome addition, however, remains inconclusive 
and results elsewhere have given a varied response, more towards suscep
tibility. As a consequence of this uncertainty, we proceeded to produce the 
complete Th. bessarabicumchromosome addition line series (7 chromosomes 
in total) preferably in a wheat background superior to Chinese Spring, e.g. 
Genaro 81. The addition line set has been tentatively completed (Table 2) 
and some lines have been tested for salinity tolerance under hydroponics 
(Table 3). At least chromosome additions 3J and 7J stand as positive 
contributors like 3E and 7E of Th. elongatum. We find that g.'oup 6 also 
expresses a positive response that warrants a further check. All these 44 
chromosome derivatives have been selected by utilizing several diagnostic 
markers. They are meiotically stable (22 bivalents), possess superior agro
nomic characters and are highly fertile. Subsequent genetic manipulation 
procedures with the desirable single chromosome disomic additions are 
following a routine cytogenetic methodology. However, the use of Chinese 
Spring phlb genetic stock offers a more forceful genetic manipulation 
approach. Its role is considered crucial. for complex characters like salinity 
tolerance. The alternate route used is apparently more promising. Here, the 
phlb stock is hybridized to the perennial Chinese Spring (Ph)x Th. bes
sarabicum F1 hybrid. The resulting BCI derivatives possess 49 chromo-

Table 2. 	 Tentative identification throughvarious diagnostic markersof the seven 
homoeologous disomic additions of Thinopyrum bessarabicum to 
Triticumaestivum. 

Diagnostic markers 
Group Cytologlcal Morphological Biochemical + Isozyrnes 
U3 	 2211 - -- Glu 

2. 2211 Tapering SOD 
3 2211 Solid EST 
43 2211 Blue PGM 
5J 2211 Clavate P-AMY 
6J 2211 -	 GOT 

7J 	 2211 - a -AMY 
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Table 3. Hydroculture screening and measurements of some addition lines of Th. 
bessarabicum in wheat for. Dry weight (g) and KLNa ratios (cell sap), and 
50d NaCI stress at 150 mol m-. 

Oermplazm Dy WL (g) K/Na 
CS 4.5 4.5
 
CS/Th 3.7 9.2
 
3 
 1.0 7.9 
3/M 2.7 4.3
 

61 
 2.1 7.3 
7J 1.4 7.2
 
Yecora 
 1.1 3.7 

tSalt sms Ifm NaCI. Media and oliter salts as InGodin et al., 1985. 

somes, 42 of wheat but heterozygous for Phph. The 7 chromosomes of Th. 
bessarabicumbehave as univalents at meiosis. Since BCI plants are self-fer
tile, their crosses with maize yield polyhaploids and possess the dominant 
or recessive pairing locus (Phorph)with variable additional alien chromo
somes from Th. bessarabicum.The ph + alien haploids will be high pairing 
types and yield alien transfers. Such germplasm shall be generated faster 
and is considered more effective for transferring complex traits like salinity
from alien species into wheat. 

An alternate breeding methodology route is the use of close Triticeae 
relatives based on genomic relationships and a high degree ofrixombination 
with wheat. This area ofbreeding is classified as interspecific hybridization. 

Interspecific Hybridization 

Triticumtauschii(Aegilopssquarrosa;2n=2x= 14, DD) is recognized as the 
D genome donor to hexaploid wheat (T.aestivum, 2n=6x=42, AABBDD). Its 
numerous accessions offer a closely related gene pool with enormous genetic
diversity for biotic and abiotic factors. We have indiscriminately hybridized
the various T. tauschii accessions with T. turgidum producing synthetic
hexaploid wheats. Currently 250 synthetic hexaploids, each involving a 
different T. tauschii accession, have been produced over several cycles of 
hybridization. Some of these synthetics have undergone screening for salin
ity tolerance and shown a positive response to salt stress in hydroculture
(Table 4). The tolerance influences for the synthetics are based on plant dry
weight values and greater than one Na:K ratios as compared to the generally 
poor performance of the respective durum wheat controls. These resistant 
synthetic hexaploids have already entered our wheat breeding program. 

The ideal efficient technique for exploiting T.tauschiivariability in wheat 
improvement requires at least two pre-requisites: (i) Reliable screening for 
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Table 4. 	 Selected five synthetic hexaploids from Triticum turgidum x T. tauschil 
(Ae. squarrosa); 2n=6x=42; tested positive for the Na.K discrimination 
traitassociated with salinity tolerance in hydroculture testing.Levels 50 
days after a 50 mol m 

Synlhetic bexaploid 
pedigree and attribute 
ROK"S"/KMLFS" 
ROKS"/KMLrSI//Ae. squarrosa 

NaCl concentration was reached. 
(T. tauschiiCIMMYT) K:Na 
identifier number ratios 

1.2 
INTERVER-214 7.7 

PBW 34 
PBW 114/Ae. squarroa** 

1.2 
13.3 

CPT/GEDWI3/JOO//JO"S"/CR"S" 
CPT/EDIZ/3/GOO//JO"S"/CR"S"//Ae.squarrosa INTERVER-206 

1.1 
16.4 

MEX//VIC/YAV 
MEX//VICIYAV/Ae. squarrosa INTERVER-434 

1.5 
17.7 

DOY 1 
DOY I/Ae. squarrosa INTERVER-510 

0.7 
3.5 

K:Na disairninatlon ratios; higher values posilve for salinity elorance. Methodology acodlng to Gofh'n et al., 1985. 
Synthetc obtaned from H.Dhallwt. Instead of the durun PBW1 14 we have used PBW34 In the evaluaton, since both 
are susco:sble. 

biotic and abiotic factors, and (ii)hybridization with Triticum ;pecies. Direct 
T. tauschii hybridization with T. aestivum cultivars stands at a priority 
(Alonso and Kimber, 1984; Cox et al., 1990, 1991; Gill and Raupp, 1987), 
since backcrosses onto F, hybrids readily give 1112 (92 %) of the genotype 
ofthe recurrent parent in a single growing season. This inference was drawn 
by Alonso and Kimber (1984) based on stem rust transfers from T. tauschii 
into the cultiver 'Chinese Spding'. 

When screening constraints For T. tauschiiaccessions occurred, we sacri
ficed efficiency for agriculturai practicality in order to obtain a plausible 
solution. Such constraints existed for identifying with reliability tolerant T. 
tauschii accessions to salinity. However, the T. turgidum cultivars x T. 
tauschii accessions leading to synthetic hexaploids did overcome this situ
ation and gave conclusive resistance screening data. 

Screening at the synthetic hexaploid level for salinity is a viable option 
since the T. turgidum cultivars (those in the pedigree) were susceptible. 
Selections of synthetic hexaploids yielded selections with positive value for 
wheat improvement. The intri ,cies of the A, B and D genome associations 
that eaist are circumvented, and even if the tolerance effect observed is 
diluted in the hexaploid screened, the tolerance level is recognizably higher 
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than what our wheat germplasm demonstrates for salinity. We are not 
discounting the fact that D genome interactions with the A and B genomes 
of durum wheat exist through gene suppression or enhancement mecha
nisms. This generalization however, may not be valid for all synthetic 
hexaploids, and now with the wide array of genetic diversity generated,
furtherelucidation of the D genome interactions with the A and B genomes 
shall inevitably emerge; presumably more explicit for simply inherited 
characteristics. 

With the tolerant synthetic hexaploids identified (Table 4), the following 
options are available for exploiting the germplasm for wheat improvement: 

(i) Exploit the synthetic hexaploids by crosses onto susceptible T.aestivum 
cultivars and select the resistant/tolerant segregants exercising initial cau
tion associated with the necrosis genes present in the synthetics as a 
consequence of the T. turgidum cultivars; and (i) From the resistant/toler
ant synthetic hexaploids exploit the T.tauschii accessions (inference analy
sis from Table 4) by direct crosses onto the elite but susceptible T. aestivum 
cultivars using recurrent backcrossing with T. aestivum parents as the 
procedure, coupled with cytology to extract stable 2n=6x=42 euploids. 

Using this information we have now targeted T. tauschii accessions for 
direct hybridization with susceptible and elite T. aestivum cultivars. These 
are cultivars 'Oasis', 'Yecora' and 'Ciano 79'. Several F, hybrids were ob
tained and predominantly all had the expected 2n=4x=28, ABDD constitu
tion. Only three hybrids had 27 chromosomes. Two backcrosses and selfings 
should forge the way to euploid 42 chromosome plant status and their 
screening for resistance. 

New synthetics covering more T.1",uschii accessions than our present 250 
are also being produced, with emphasis subsequently placed on achieving
direct transfers from T. tauschii targeted accessions to T. aestivum. These 
approaches are anticipated to contribute to the availability of additional 
genetic variability for wheat breeding utilization, germplasm conservation 
and global distribution. "International distribution" of "synthetic 
hexaploids" has merit for screening in national agricultural programs hav
ing different objectives and varied adapted germplasm. 

General Considerations 

Rainfed agriculture: 1B/1R translocation wheats. Wheat cultivars with 
the 1BIJ1RS translocation are cultivated on about 5 million ha. These 
cultivars have been reputed to possess genes for wide adaptability, stability 
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and a high yield potential. In son,- countries wheat cultivar releases and 
advanced testing lines possessing the 1BIJ1RS translocation are phenome
nally high, of which the National Uniform Wheat Yield Trials (NUWYT) of 
Pakistan provides data to validate the above contention. The candidate 
cultivar lines for future releases in NUWYT trials are spread over three 
categories: normal, short and rainfed. Analyses of the 1BIJ1RS translocation 
in the germplasm over 2 years reflects upon the preponderance of these lines 
(Table 5). Moreover, in the rainfed category, the percentage of 1B/1R translo
cation lines are exorbitantly high (approaching 90%), indicating that the rye 
segment may be a contributing factor under such growing conditions. This 
contention has to be tested further and must be strictly evaluated using near 
isogenic material that currently is being developed in CIMMYT. Other rye 
translocations can be induced or those existent should be further exploited. 
Notable is the 5AS/5RL translocation for copper efficiency and chromosome 
2R for copper toxicity (Manyowe and Miller 1991). A sirailar potential also 
exists for additional tolerant gpnes for aluminum tolerance for which some 
rye sources are extremely tolerant even at 100 ppm (wheat cultivars with 
aluminum tolerance are screened at 46 ppm). 

A Look tc the Future 

Wheat cultivars (resistant/tolerant to biotic/abiotic stresses) will continue 
to rely on genetic variability. Variation sources from alien relatives are ideal 
for contributing novel gene pools of genetic diversity. The transfer mecha
nisms of these alien genes are equraly diverse, but we envision that some 
priorities could be set in order to achieve practical goals from such alien 
transfer programs. These priorities include: 

1.Enhanced genetic recombination at the F, or BCI stage mediated by the 
ph locus. 

Table .	 The percent of 1B/1R translocated wheat entries in the PakistanNational 
Uniform Wheat Yield Trials (NUWYT) during the years 1989-90 and 1990
91. 

Categories 

Normal 
Short 

15 
12 

1989- 1990 

4 7 t 
67 

Testing years 

16 
14 

1990- 1991 

44 t 

57 
Rainfed 11 91 15 73 

t Percent 1B/IR entries 
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2. Infusion of polyhaploidy through sexual crosses of wheat/alien deriva
tives with maize, Teosinte, Tripsacumand Sorghum. 

3. Use of diagnostic markers for detecting cryptic exchanges as exempli
fied by fluorescent in situ hybridization, and 

4. A greater emphasis on interspecific hybridization and concentration in 
intergeneric hybridization methodology for use in diploid species. 

We have had success through intergeneric hybridization in the form of 
cultivar releases and register ,d genetic stocks suited for saline/sodic soils 
(Pasban-90), rainfed agriculture (Rohtas-90) and Helminthosporium sati
vum resistance (Chirya, Mayoor, Tia). These are all soil-related abiotic/biotic 
stresses. Innumerable challenges still exist for stress improvement ofwheat. 
Alien transfers in durum wheat improvement is now receiving attention. 

Basic research in stress resistance offers both high theoretical potential 
and possibilities for exciting discoveries. The ultimate test of all research 
projects shall be measured through practical gains - the productivity of 
the crop. 

REFERENCES 

Alonso, L.C., and G. Kimber. 1984. Use of restitution nuclei to introduce alien genetic
variation into hexaploid wheat Zeit. Pflanzenzucht. 92:185-189. 

Cox, T.S., L.G. Harrell, P. Chen and B.S. '3i11. 1991. Reproductive behaviour ofhexaploid/dip
loid wheat hybrids. Plant Breding €1;7:105-118. 

Cox, T.S., J.H. Hatchett, B.S. Gill, W.J. Raupp and R.G. Sears. 1990. Agronomic performance
of hexaploid wheat lines derived from direct crosses between wheat and Aegilops squar
rosa. Plant Breeding 105:271-277. 

Dvorak, J., M. Edge and K. Ross. 1988. On the evolution of the adaptation of Lophopyrum
elongatum to growth in saline environments. Proc Natl Acad Sci, 85:3805-3809. 

Forster, B.P., J. Gorham and T.E. Miller. 1987. Salt tolerance of an amphiploid between 
Triticurnaestivum and Agropyronjunceum. Plant Breeding 98:1-8 

Forstor, B.P., T.E. Miller and C. Law. 1988. Salt tolerance of two wheat -Agropyronjunceum
disomic addition lines. Genome 30:559-564 

Gill, B.S. and W.J. Raupp. 1987. Direct gene transfers fromAegilops squarrosaL. to hexaploid
wheat. Crop Sci. 27:445-450. 

Gorham, J., E. McDonnell, E. Budrewicz and R.G. Wyn Jones. 1985. Salt tolerance in the 
Triticeae: Growth and solute accumulation in leaves of Thinopyrum bessarabicum.J Exp 
Botany 74:584-588 

Manyowa, N.M. and T.E. Miller. 1991. The genetics of tolerance to high mineral concentra
tions in the Tribe Triticeae -a review and update. Euphytica 57:175-185 

181 



Soil Management for
 
Genetic Improvement
 

- Role of the Soil Scientist in Genetic 
Improvement ofPlants for Problem Soils 

Session Moderator: R.R. Duncan 

Speaker: Charles D. Foy 

T1 4 r- , 

183 



Role of the Soil Scientist in Genetic
 
Improvement of Plants for Problem Soils
 

Charles D. Foy 
USDA, ARS, Natural Resources Institute 

Beltsville, MD 

ABSTRACT
 

This pap-r revcewfj soil fertility problems that may lend themselves to a plant 
breeding appreac, a-ad discusses the benefits and constraints of such an effort. 
Specific topics include acid soil infertility, with emphasis on Al and Mn toxicities 
and nutrient eleraeiit unavailabilities, differential plant tolerances to stress, cur
rent knowledge concerning the genetic control of released stress-tolerant culti
vars, the )hysiological and biochemical mechanisms of stress tolerance, and fi
nal y, thr- obnolute- necessity for closer collaboration among &oiland plant scien
tists in t],imeffort. Due to worldwide activity, tailoring the pa.-t to fit the soil has 
now ',!come respectable. We anticipate that current awareness of the need for 
conservation of soil, water and energy resources and recent political popularity ef 
low input,sustainable agriculture will accelerate progress in the field and lead to 
increased financial support. 

INTRODUCTION 

Crop production is the result of complex interactions among plant species, 
soil, and climate. This relationship suggests that problem solving relative to 
plant growth would, ofnecessity, involve collaboration among plant and soil 
scientists. However, until about 15 years ago, such collaboration was rare. 
Scientists evidently felt that they did not need each other, or thought that 
collaboration was more trouble than it was worth. 

In the past, our approach to soil fertility problems has emphasized
"changing the soil to fit the plant". Plant breeders developed plant cultivars 
having climatic adaptation, insect and disease resistance, high yield poten
tial and high quality, while soil srientists adjusted fertility factors to fit the 
plant. This approach was the "Corn Belt Philosophy". As a result, many crop 
cultivars were developed under nearly ideal conditions of fertility and pH, 
and were consequently "incubator babies". They thrive in the protected 
environment where they were developed, but often cannot tolerate the 
stresses of the outside world. Such cultivars may develop mineral deficiency 
or toxicity problems when grown on soils that are only slightly different from 

Po A) .'.Q 
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those on which they were developed. For example, BH-1146 wheat, devel
oped in Brazil, produced 40 bu/a on a pH 4.7 oxisol at Campinas, Brazil (C.
D. Foy, personal observation, 1974). Under the same conditions, the Green 
Revolution cultivar, Sonora 63, barely produced seeds. 

Even in breeding programs that emphasized adjusting the soil for "opti
mal" production, one factor was sometimes overlooked or not adjusted.
Surface soils (plow layers) ofbreeding plots are generally limed according to 
soil test recommendations, but surface-applied lime does not generally
penetrate zones below the plow layer, and mixing lime with subsoils is 
generally not economically feasible. Hence, subsoils of breeding nur-ories 
could be sufficiently acidic (pH 5.0, or below) to produce Al toxicity that limits 
rooting depth and branching. The presence of such an unknown, acidic 
subsoil could, therefore, result in the inadvertent selection oi' Al-tolerant 
plants, particularly in years of drought, when plants had to use water in the 
acidic subsoils. This may account for the fact that older Ohio wheat cultivars 
are more tolerant to acid soils and Al toxicity than those from Indiana (Foy, 
et al., 1974). Soils of eastern Ohio (Wooster) are now known to equilibrate at 
lower pH levels than those of western Indiana (Purdue Univ., West La
fayette) (Campbell and Lafever, 1976). Hence, the Al-tolerant cultivars 
selected at Wooster result from the influence of the acidic subsoil, or to a 
failure to lime surface soils to a pH of 5.5, or higher, to precipitate and 
detoxify Al. Newer cultivars developed at Wooster have less acid soil toler
ance than the older cultivars, indicating that something about current 
practices is reducing Al stress in breeding nurserie,. This could result from 
more effective liming practices or perhaps heavier use of P fertilizers that 
could also precipitate and detoxify Al. 

The idea of tailoring plants to fit problem soils has been slow to receive 
acceptance. In the past, research administrators have been difficult to 
convince that plant genetic variability is worth exploiting in attacks on soil 
fertility problems. A chance meeting between Dr. Dora Kemper (USDA) and 
Dr. Tej Gill (USAJD) in Pakistan led (two years later) to collaborative efforts 

fUSAID, Cornell University and ARS at Beltsville to hold the first inter
national meeting "Plant Adaptation To Mineral Stress in Problem Soils" 
(Wright and Ferarri, 1976). 

International interest, stirred by the 1976 conference led to a second 
meeting "Crop Tolerance To Suboptimal Land Conditions", sponsored by the 
American Society of Agronomy (Jung, 1978). Then, in 1982, M. N. Christian
sen and C. S. Lewis edited a book "Breeding Plants For Less Favorable 
Environments" (Christiansen and Lewis, 1982). Worldwide interest in the 
plant genetic approach to soil acidity problems led to a series ofconferences, 
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each entitled "Plant-Soil Interactions At Low piH". The first ofthese was held 
at Grande Prairie, Alberta, Canada (Taylor, 1988). The second conference 
was at Beckley, WV (Wright et al., 1991), and a third is scheduled for 
September 12-16,1993 at Brisbane, Queensland, Australia. Since 1976,many
other international conferences have devoted parts of their programs to the 
idea of fitting plants to problem soils. 

The marked change in thinking (from modifying the soil to modifying the 
plant) has been fueled by current awareness of the need for conservation of 
soils, water and energy and the control of groundwater pollution. The plant
genetic approach is highly compatible with tae newly popular, low input,
sustainable agriculture. Selecting a stress tolerant plant may be more 
economical than making the soil more suitable for a more demanding plant. 

Liming and fertilizing soils to "optimal" levels was profitable on the 
moderately acidic soils of the USA when lime, fertilizers and fuel were 
relatively inexpensive. However, in many parts of the world, this approach
has never been practical, and even in developed countries, energy costs, 
conservation concerns and fear of environmental pollution have caused a 
re-examination of these agricultural practices. In both developing and de
veloped countries, some soil conditions are not economically correctable with 
current technology. There is a need to seek greater accommodation with 
nature rather than always attempting to change it. 

In some parts of the Tropics, scientists have developed technology based 
on crop production with mimimal inputs (Sanchez and Salinas, 1981) for 
marginal soils. In such cases, tailoring the plant to fit the soil is the most 
reasonable approach in trying to cope with production constraints imposed
by acid, infertile soils. Native farmers on marginal land must live with a 
minimum input system, and in fact, a high input technology in such situ
ations can be unprofitable or even harmful One example of this is the 
increase in "take all" disease of wheat on Brazilian oxisols that were limed 
to "Corn Belt" standards (pH 6.5, or above). Liming of such soils to even pH 
6.0 can induce Zn deficiency in corn. 

An outstanding example of tailoring the plant to fit problem soils is the 
program of INTSORMIL designed to develop genotypes of sorghum and 
millet that are better adapted to acid, infertile or dry soils ofAfrica and South 
America, where these crops gre the main food sources for subsistence 
farmers (Axtell, 1992; Duncan, 1991, Gourley and Munoz, 1992; Maranville, 
1992; Stegmeier, 1992 and Sullivan, 1992. 

187 



SOiL STRESS PROBLEMS AMJ3NABLE
 
TO A PLANT B2EEDING OR SELECTION SOLUTION
 

Soil situations and problems that may lend themselves to a plant genetic 
approach include the following: (a) Acid soils in developing countr.es where 
even liming the surface soil may be economically prohibitive; (b) acid, 
Al-toxic subsoils that are difficult to lime (Al-induced shallow rooting is 
probably a major cause ofplant sensitivity to drought injury in the eastern 
USA: (-) acidic mine spoils where rapid plant cover is needed at minimal 
cost.; (4) steep pasture or forest lands that are strongly acidic, infertile and 
difficult to lime, even on the surface; (e)strongly acidic, P-fixing surface soils 
and subsoils of the Tropics (Campo Cerrado of Brazil and Llanos of Colom
bia); (f) soils polluted with heavy metals; (g) saline soils; (h) calcareous soils 
with Fe unavailabiliy or other micronutrient problems; (i) dry soils and even 
compacted soils (Foy, 1983; Stegmeier, 1992). Aluminum tolerant cultivars 
would also be useful in acid soil rotations (small grains with potatoes or 
tobacco) in which soil pH must be kept below about 5.2 for control of potato 
scab and tobacco root rot. 

Plant breeding may also be used to improve nutrient element efficiencies, 
particularly those of N and P on "good soils", Fol example, N-efficient 
genotypes would make more efficient use of energy and fertilizers and reduce 
the liklihood of groundwater pollution. Plant breeding might be used to 
regulate the mineral composition of plant products and thereby, improve the 
quality of food and feci for animals. For example, forage plants that accu
mulate Mg effectively in the presence of K , or other ca'ons that compete 
for absorption, might reduce the risk of grass tetany in grazing animals 
(Allem and Robinson, 1980), and plants that exclude or reduce the accumu
lation of Cd might reduce the accumi,',.tion of this element in humans. 

If plant breeding or selection is to be successful in solving pa'rblems of soil 
mineral stress, there must be genetic variability between and within crop 
species for tolerance to the stress factors involved (Devine, 1982). Such 
variation has been shown in many species. 

BENEFITS OF A PLANT GENETIC
 
APPROACH TO SOIL STRESS PROBLEMS
 

The plant genetic approach is ecologically clean, energy conserving, and 
usually cheaper than amending the soil. Hence, it is compatible with na
tional and international goals of economical food production, consertation 
of soils, water and energy, and control of pollution. Specific benefits are: 
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1. Introduction of stress-tolerant cultivars can increase crop yields on 
stressed production areas. Examples are Fe-efficient strains of weeping
lovegrass (Eragrostiscurvula) and soybeans for calcareous soil (Voigt et al.,
1982; Bahrenfus and Fehr, 1980), and Al-tolerant wheats for acid soils of 
Brazil (Wright and Ferrari, 1976), and Al tolerant, drought resistant sor
ghum and millet cultivars for use in low input, subsistence agriculture on 
impoverished soils ofAfrica and South America (Axtell, 1992;Duncan, 1991; 
Gourley, 1992; Marar.ville, 1992; Stegmeier, 1992 and Sullivan, 1992). 

2. Crop acreage can be expanded to marginal soils not previously suited 
to the crop species. For example, wheat production has been expanded into 
the Campo Cerrado of Brazil only because Al- tolerant cultivars have been 
developed and distributed to growers (Silva, 1976). Because of INTSORMIL, 
sorghum and millet, previously grown unprofitably on good soils, can now 
be grown prof6 ably on marginal land not suited for more stress sensitive 
crops (Gourl]y, 1992 and other papers in the same publication). 

3. Plant breeding or selection can be used to develop cultivars of new and 
more profitable crop species for areas with very specific problems. One 
example is the introduction of an Al and cold tolerant strain of limpograss
(Hemarthriaaltissima)for possible use on strongly acidic, high altitude mine 
spoils or on acid sites in more northern latitudes (Foy and Oakes, 1984). 

4. Use of an Al-tolerant cultivar on an acid mine spoil may convert 
insoluble and unavailable P to organic forms that are available to more 
demanding plants, and also improve the physical and microbiological prop
erties of the soil. Hence,such plants can pave the way for metal-sensitive, 
but potentially more profitable, crops. The same approach would also be 
successful in improving acid, P fixing ultisols and oxisols of the Tropics. 

OBJECTIONS TO THE PLANT BREEDING
 
APPROACH TO SOIL FERTILITY PROBLEMS
 

1. Stress tolerant genotypes may be low yielding in the absence of stress. 
This is nu, necessarily true. For example, Al-tolerant cultivars of snapbean, 
cotton, tomato, wheat and barley produce high yields in the absence ofAl. 
Cardinal wheat, which has a moderate degree of Al tolerance, and is used in 
acid soil rotations with potatoes in Ohio, outyields standard cultivars on 
non-toxic soils at pH 6.5 (Lafever, 1988). 

2. Al-tolerant wheat cultivars (from Brazil) are tall and hence, may lodge
under high N fertilization. However, Camargo et al.(1980) reported a source 
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of Al tolerance in the short wheat cultivars Tordo and Ciete Cerros; hence, 
Al-tolerant wheats need not be tall. 

3. Mineral content and thus crop quality of stress tolerant cultivars may 
be too low for optimal animal health. Again, this is noLaecessarily true. 
Al-tolerant BH 1146 wheat is more Mg efficient than Al-sensitive Sonora 63. 
Evidence also indicates that Al. tolerant plants are frequently more efficient 
in absorbing Ca and P when these elements are deficient or less available 
in growth media (Foy, 1988). Even if Al-tolerant plants were lower in P or 
Mg, increased growth might compensate and justify the use of feed supple
ments containing these ele~i~ents. 

4. Releasing stress tolerant or nutrient efficient cultivars may discourage 
the use of lime and fertilizer. In fact, the opposite may occur because such 
cultivars will promote the use of marginal land that received no treatment 
previously. With stress tolerant cultivars, such soils could become economi
cally productive with low to moderate inputs of lime and fertilizers. The use 
ofAl-tolerant cultivars and "spoon feeding" of fertilizers (prescription agri
culture) may be more profitable than conventional agriculture on acid, P 
fixing soils of the Tropics. The plant breeding approach to soil fertility does 
not mean the abolition of lime and fertilizer use; instead, it proposes to 
exploit plant genetic variability in solving difficult problems of soil fertility. 
Lime and fertilizer inputs would still be needed but at lower levels than 
currently used on crop land and more marginal lands could be brought into 
production. 

5. The use of stress tclerant, nutrient efficient cultivars will bleed soil 
fertility levels to the point that not even tolerant cultivars can be grown. 
This conclusion is also unjustified. Actually, the use of such plants would 
only promote the effective use offertilizer nutrients already fixed in the soil 
(P, Fe) or those used as soil amendments. The goal is profitable and 
sustainable (not necessarily maximal) yields ofacceptable quality with lower 
inputs. 

6. Breeding for tolerance to one stress factor may increase vulnerability 
to other stresses. This is a valid concern but not necessarily true. For 
example, some acid soil tolerant, tissue culture-derived, regenerant sor
ghum lines are also tolerant to a combination of salinity and drought (R. R. 
Duncan, personal communication; Foy, et al., 1993). As another example, 
seashore paspalum, Paspalumvaginatum,Swartz, is reportedly tolerant to 
salinity, drought, acid soils and excess heavy metals (Ni and Cd). It grows 
over the pH range of 4.0 to 9.8; hence, it can be used on acid soils or calcareous 
areas (R. R. Duncan, personal communication). Still another example is 
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Cardinal wheat, developed for tolerance to acid, Al-toxic soils in Ohio
(Lafever, 1988). This cultivar not only grows well on acid soils but also
outyields standard cultivars on "good" soils at pH 6.5. 

7. An endless number of plant genotypes could be developed to fit specific
soil stress problems. Obviously, there is a practical limit to the number that
should be produced. For example, a low input wheat farmer of the Campo
Cerrado region in Brazil might grow an Al-tolerant cultivar, such as BH 1146,
and in so doing, use less lime and fertilizers than would be needed with an 
Al-sensitive cultivar to produce a profitable yield. But, perhaps only a few
cultivars could meet the needs of the region. Then, if the application of lime, 
gypsum and superphosphate could be afforded to reduce Al saturation and
increase the pH of subsoils (Ritchey et al., 1990; Messick et ai, 1982; Foy,
1992), switching to Sonora 63 or another Al-sensitive, but potentially higher
yielding cultivar,might be profitable. 

OBJECTIVES OF SOIL-PLANT
 
COLLABORATIVE RESEARCH
 

1.Identify both present and potential mineral stress factors in problem
soils. I emphasize "potential" because what is wrong with a soil depends on 
which plant species or genotype are involved. 

2. Screen germplasm bank- for stress tolerance. This requires the devel
opment of rapid, simple screening procedures for soils and/or nutrient 
solutions. 

3. Collaborate in selecting and/or breeding superior genotypes for specific
problem soils. 

4. Determine the genetic, physiological and biochemical mechanisms 
controlling plant tolerances to specific stress factors. Improved under
standing of such processes will contribute to basic scientific knowledge and 
may also aid in refining plant screening techniques and soil management
practices. 

5. Determine interactions among mineral stress and other environmental 
factors, such as water, light, temperature, air pollution, pathogens, rhizobia 
and mycorrhizae. (We have preliminary evidence that Al tolerance and ozone 
tolerance can occur in the same genotype, (C. D. Foy and E. H. Lee,
unpublished). Acid soil olerance and drought-salinity tolerance occur in the 
same genotype of sorghum (Foy et al., 1993). 
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EXAMPLES OF WHY SOIL AND PLANT
 
SCIENTISTS SHOULD COLLABORATE
 

A colleague once asked me to look at his "sick" pea plants. He was 
conducting a herbicide experiment but recognized that the plant symptoms 
observed were not characteristic of the injury known to be produced by this 
particular herbicide. Because the symptoms resembled those of Mn toxicity, 
we analyzed the leaves and found 4,000 ug/g Mn, many times the concentra
tion required for toxicity in this specie. As a soil scientist confronted by a 
sick plant, the first question I asked was "What is tlhe soil pH'? My colleague 
had not measured it, but we found that it was 4.6-4.7. After further ques
tioning, I learned that he had also autoclaved the soil before applying the 
herbicide. In addition, the soil was high in total Mn. Hence, this combination 
of low pH, high Mn soil, autoclaving and a Mn-sensitive plant created ideal 
conditions for the development of Mn toxicity. Autoclaving probably in
creases Mn availability by killing the soil bacteria that ordinarily oxidize 
divalent and toxic Mn to Mn dioxide that is less soluble and toxic. From the 
standpoint of the original objective, the herbicide experiment was a total 
loss. Ifa soil scientist had been involved, the soil pH would have been checked 
and the hazards of autoclaving emphasized. 

On one occasion, I inherited a forage field experiment designed to measure 
the lime responses of several species. When maling the first harvest, I found 
that the lime response was very erratic. A soil pH grid of the plot area showed 
that plots giving no lime response already had pH values of 5.8 to 6.0 where 
little or no response would be expe,:ted, even with acid sensitive plants. 
Later, I found that this end of the plot area had been a dumping site for 
hatchery refuse. The other end of th, plot area had pH values ranging from 
4.5 to 5.0 where a lime response would be expected with acid soil-sensitive 
plants. If a soil scientist had been involved in laying out these plots, he or 
she would (or should) have made a pH map of the area and ruled out the 
high pH end of the site, or at least arranged replications so as to minimize 
the effects of variation in soil pH. 

In another episode, we had shown that two barley cultivars differed 
significantly in tolerance to Al in acid soil and nutrient solutions. Dr. D. A. 
Reid,the collaborating breeder, made crosses of the Al-tolerant and sensitive 
cultivars and wqs screening the progeny for Al tolerance in fish tanks of 
nutrient solution. The Al-tolerant and sensitive parent cultivars were grown 
in the same9 tanks for comparison. I had asked my colleague to adjust the pH 
of the solutions to 4.8 at which we had obtained clean cultivar separation 
according to Al tolerance. Subsequently, Dr Reid complained that all of his 
plants were growing too well, even in the presence of Al at the level 
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prescribed. But, then I learned that the solution pH had been allowed to 
increase to 5.0, or slightly above, and this was sufficient to precipitate Al as 
the hydroxide and to detoxify the element for all plants concerned. Thereaf
ter, I recommended that he adjust the pH initially to 4.5 and not allow it to 
exceed 4.8. When this was done, the Al-tolerant and sensitive parents
separated properly, and Dr.Reid was able to show a 3:1 ratio of tolerant to 
sensitive plants in the progeny. He concluded that Al tolerance in these 
barly populations was controlled by one major dominant gene (Reid, 1971). 

On still another occasion, Dr.Reid observed that both the no Al and the 
plus Al nutriernt solutions were producing good barley growth with no 
genotypic separation. After some detective work, we found that my techni
ciaa had forgotten to tell him to dilute the P stock solution used to make the 
test solutions in the fish tanks. Instead of adding 3 mg PAL, he was adding 
31 mg/L, which precipitated and detoxified Al, even at pH 4.5. 

These examples are given -iot to criticize plant breeders or other plant 
specialists, but rather, to emphasize that in this complex game of tailoring
plants to fit problem soils, plant and soil scientists need to collaborate even 
more closely than we did when the emphasis was more on modifying the soil 
rather than thc plant. 

The other side of the coin is that soil scientists (and even some pure plant 
physiologists) have been slow to recognize the range of genetic variability 
available in plants and how this can be used to solve problems ofplant stress 
in soils. I have known plant physiologists who bought carrots at the grocery 
store to study "the mechanism of ion uptake", without kaowing anything 
about the genetic or nutritional background ofthe tissues. As soil scientists, 
we have often assumed that a plant is a plant, or at least, corn plants are 
alike. Ion uptake models in current use do not generally consider the fact 
that plant genotypes modify their root zones differently, Although all plant
species and genotypes have some things in common, we now know that even 
genotypes within species differ vastly in their responses to various stresses 
of the soil and atmospheric environments. For example, Atlas 66 wheat is 
Al tolerant and Mn sensitive, but Monon wheat is the opposite (Foy, 1984; 
Foy, et al., 1988). Hence, it is likely that no one mechanism can explain iou 
uptake or any other plant behavior in all plant genotypes. A "medical 
prescription" approach, rather than universal modeling, i- naeeded in agri
culture. 

One of my former supervisors once expressed concern about soil scientist
plant breed,'r collaboration, Since the end product is a new cultivar, usually 
releasedjoi itly by breeders, pathologists, nematologists and entomologists, 
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he wondered whetber or not the soil scientist would receive appropriate 
credit. I replied that plant breeders need the input of the soil scientist in 
identifying potential soils problems and in devising valid, rapid screening 
procedures. This collaboration causes both 3o;l and plant scientists to con
duct experiments and make contributions that neither would make if work
ing separately. I have never had to worry about receiving appropriate credit. 
My collaborators have always given me all the credit I deserved, and 
sometimes more, One colleague insisted that I share authorship on his paper 
to "share the blame". When our collaborative work centered on identifying 
soil stress problems or devising conditions for screening plants raider stress, 
I took the lead and served as senior author. When the work progressed to 
the point of making crosses and screening progeny, the breeder took the lead 
and I served as co-author. When the work turned to pure genetics, the 
breeder published alone. When the work involves primarily soil fertility or 
chemistry, the soil scientist may also need to publish alone. However, 
between these two extremes, there is a broad arca ii which the disciplines 
cverlap to the extent that co.i'2boration is absolutely essential for best 
results. 

IDENTIFYING AND PRODUCING
 
STRESS TOLERANT PLANTS
 

Wide differences in stress tolerance have been documented among and 
within many plant species. These genetically controlled differences provide 
almost unlimited opportunities for producing superior cultivars for particu
lar stressful environments. Because my experi3nce has been mainly in the 
mineral nutrition of plants, particularly those grown in acid soils, the 
discussion to follow will be largely confined to that general area. 

The first step in the proposed plant genetic approach to s .lstress is to 
identify present and potential stress factors in soils. The soil scientist can 
use soii chemical extraction procedures and indicator plants to determine 
factors that are likely to present problems. However, (and this cannot be 
overemphasized), the specific growth-limiting factor depe.nds, ultimately, on 
the plant species or genotype grown. The second step is to devise soil and 
nutrient solution media in which germplasm pools can be screened for stress 
tolerance (Foy, 1976). Genotypes separated by these methods can then be 
tested in the field and grown to maturity. If we are fortunate, the stress 
tolerance rankings obtained in the two situations are well correlated. If we 
are really fortunate, more than one desirable stress tolerance factor occurs 
in the same genotype. Crossing studies are then conducted to determine the 
genetic nature of tolerance and to estimate the probabilities of adding a 
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stress tolerance trait to existing cultivars possessing other desired traits. 
The biochemical nature of this genetically controlled stress tolerance should 
be investigated. Such informaion may be useful in refining screening 
procedures and in modifring soil management practices to fit new and old 
cultivars. 

TAILORING PLANTS TO FIT
 
PROBLEM SOILS-CURRENT STATUS
 

Much of the recent research has focused on acid soils. Growth-limiting 
factors in these soils include toxicities of Al, Mn and other metallic cations 
and deficiencies or unavailabilities of Ca, Mg, P and Mo. The acid soil 
complex has been exhaustively reviewed within r,,cent years (Adams, 1984; 
Foy, 1984; Robson, 1989; Wright, Baligar and Murrmann, 1991; Foy, 1992). 
The controversy regarding toxic ionic species of Al was covered by Kinraide 
(1991) and Kinraide et al.,(1992), Foy (1992) and Shan n and Bertsch (1993). 
For detailed discussion of acid subsoils, see Matthews and Joost, (1990), 
Coventry, (1991) and Foy, (1992). Comprehensive coverage of Mn in soils and 
plants is presenteu in Graham et al., (1988). Details concerning the philoso
phy of tailoring plants to fit problem soils are covered in Foy (1983). 

Table 1 contains a list of recent references by whicb the reader may 
determine the current state of knowledge regarding various aspects of the 
approach. These include the genetics of stress tolerance, stress tolerance 
screening techniques for various crops, the release of stress tolerant 
germplasm and the physiological or biochemical mechanisms by which 
plants avoid, tolerate or adapt to stress. Emphasis is on Al and Mn tolerance, 
salinity tolerance and nutrient element efficiency. Overall screening prob
lems are discussed in Foy (1976) and Devine (1982). 

CONCLUSIONS 

Since our 1976 conference "PlantAdaptation To Mineral Stress In Problem 
Soils", at Beltsville, great progress has been made in exploiting plant genetic 
diversity in solving difficult problems of soil toxicity and nutrient element 
unavailability. Tailoring the plant to fit the soil has finally become respect
able. Acid soils have received the greatest attention in tbis approach. B.azil 
was first in this activity, but active breeding programs are now in operation
in the USA, Canada, Australia, New Zealand, Colombia, Mexico, Poland. 
USSR, several countries in Africa and in man: other parts of the worla. Thus 
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far, wheat, sorghum and millet have received the most attention, (Table 1), 
bat work is also in progress for soybeans, alfalfa, white clover and various 
other forage crops. Legumes are more difficult to screen than wheat, and 
there is still considerable controversy concerning the best plant traits to use 
as a measure of tolerance (absolute or relative shoot we'ght, absolute or 
relative root weight, root elongation rate). Many rapid screening methods 
are in use (Table 1), but tolerance rankings obtained by these tests do not 
always agree with results offield tests where plants are grown to maturity. 
Forage legumes have been generally neglected, but are starting to receive 
attention (Wright et al., 1991). 

Aluminum tolerant and Mn-tolerant genotypes have been released for 
several species (Table 1), and the genetics of stress tolerance are beginning 
to be understood. The physiological and biochemical mechanisms of stress 
tolerance are still not vell defined, but are being actively pursued in many 
places (Table 1). Improved understanding of such processes will not on'_y 
contribute to academic knowledge but may also lead to improved stress 
screening procedures and help in devising better soil and plant management 
practices for all cultivars. Current awareness of the need for low input, 
sustainable agriculture and the need for control of pollution will stimulate 
support for the plant genetic approach in solving soils problems. 

Table 1. 	 References to papers dealing with mineral stress-plant genotype rela
tionships. 

Stress factor Plant species References 
Al-tolerance-genetics Wheat Bona. et al., 1991; Aniol. 1991; Lagos, ct al.. 1991; Briggs, et al., 

1988; Briggs and Taylor, 1991, Camargo. et al., 1980; Rajaran, 
ctal., 1991;Maslowski, e al., 1989; Briggs and Nyachiro, 1988; 
Flores, et al., 1991. 

Triticale Manzowa and Nuuer, 1991; M.slowski. et al., 1989 
Barley Reid, 197 1; Minella and Sorrells, 1992. 

Corn Magnavaca, et al., 1987. 
Sorghum Gourley, et al., 1990; Waskom, et al.. 1990; Duncan, 1991; 

Flores, et al., 1991; Smith, et al., 1993 (In press). 
General Devine, 1982. 

Al-tolerance-screening Wneai Aldrich, et al., 1990; Bona, et al.. 1992; Briggs, et al., 1989; 
Briggs. ct al.. 1991; Briggs and Ta);or, 1991; Carver, et al.. 
1988; Lafever, 1978, 1988; Rengel and Jurkie, 19924 Ruiz-
Tores, et al.. 1992; Ruchey, et al., 1989; Foy and Peteron, 1993 
(Ms. inpreparation); Foy and da Silva, 1991. 

Alfalfa Baligar, et al., 1993; Parrot and Bouton, 1990 
Barley Slabonski, 1989; Wright and Ferrari, 1976. 
Corn Guevara, et al., 1992. 

Sorghum Ritchey, et Al.,1991; Tn, etal., 1992; Foy, et al., 1993; Baligar, 
et al., 1989. 

Millet Alrich, et al., 1991; Baligar, . al.. 1989. 
Forage grasses Baligar and Smedley, 1989. 
Forage legumes Baligar, eta;., 1988 
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Stress factor 

Al-tolerance physiology 
& biochemistry 

Mn-tolerarce genetics 

Mn-tolerance screening 

Mn-tolerance physiology 
& biochemistry 

Salinity tolerance 

Plant species 
Sweet potato 
Soybean 
Paper birch & 
pitch pine 

Red clover 
Rice 

Many species 
General 

Corn 

Snapbean 


Wheat 

Inumans 
Thinotrum sp. 

Soybean 
General 

Wheat 
Lettuce 

Soybean 
Wheat 

Cowpca 

General 
Lettuce 

Wheat 

Cowpea 
General 

Humans 
Radish 

Com 


Snapbean 


General 

Nutrient element efficiency 
Iron Lovcgrass 

Soybean 
Phosphorus Wheat 

Corn 
White clover 

Rice, bean 
Rice 

Alfalfa 
Calcium Sugarcane 
Calcium, potassium & Wheat 

sodium 

Micronutrients General 
Boron Wheat 
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Stress factor Plant species References 
General nutrient Baligar And Duncan, 1990. Clark and Duncan, 1991: Clark and 

efficiency Duncan, 1993; Fageria, et al., 1991; Feil, et al., 1992: Marsdiner, 
1991. 

Alfrlfa Baligar, et al., 1990 Baligar, et al., 1989. 
Myconhizac & rhizobia AlfaLra liartel and Bouton, 1991; llowieson, et al., 1991. 

Soybem- Behlenfalvay and Franson, 1989. (Mn toxicity alleviated by 
mycorthizac). Glenn and Dilworth, 1991; Jones, e ci.. 1986; 
Koslowsky and Boermer. 1989; Linderman. 1992: McArthur and 
Knowles, 1993. 

Many species Flis, et al.. 1993. 
Sorgl.am Medcims, ct al., (In press). (Al toxicity alleviated by 

myconhizae). 
General Smith, et al., 1992. 
Red clover Wright and Zero, 1991. (Rhizobia, Al, p11). 

Acid soil complex General Adams. 1984; Graham. et al., 1988; Marnchner, 1991; Robson, 
1989; Taylor, 1988; Wright, et al., 1991; Bonnan, et al., 1992; 
Coventry, 1991. 
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ABSTRACT 

The succes3 of the EMBRAPA maize improvement program in developing alu. 
minum tolerant maize cultivars and hybrids adapted to Brazilian acid savannas or 
"Cerrado", made possible the incorporation of727'500 ha for maize production. The 
association ofbetter soil management with tolerant genotypes, through a multidis
ciplinary research approach, made it possible to increase yield in such environ
ments. The development of niethodology for selection in field conditions and 
nutrient solution with varying levelo of Al is reported. Aspects ol balance between 
P and Al levels in soils and nutrient solution for dscrimixtation ofmaize genotype. 
Is the principle aspect of the methodology developed. The breeding procedure used 
in the program, describes the search for variability in tropical germplasm, the 
recurrent selection scheme for cultivar improvement, and inbred line and hybrid 
development and evaluation. Two cultivars, CMS 36 and CMS 30, were released and 
are being used in tropical areas of the world as a gene source for Al tolerance. One 
of the commercially produced hybrids BR 201, confirms the possibility of associat
ing high yield potential and stability with Al tolerance. This hybrid currently 
occupies 14% of the market share of hybrid maize seed saleu in Central and 
Southern Brazil. 

INTRODUCTION 

The acid savannas or "Cerrado" is an ecosystem that covers an extension 
of 205 million ha, of which 175 million ha are in Central Brazil. To&dy, 12 
million ha of the Brazilian "Cerrado" are in crop production. The area 
planted with maize covers 3.5 million ha. Approximately 112 million ha of 
the "Cerrado" area are considered adequate for sustainable crop production. 

Oxisols are the most frequent soil type in the "Cerrado" ecosystem. These 
are strongly weathered soils with low cation exchange capacity (CEC) and 
exhibit major mineral element deficiencies. (P, Ca, Mg, and Zn) toxic ex
changeable Al, and extensive P fixation by soil particles. 

A high percentage of Al saturation in soils is toxic to plant growth. 
Aluminum affects many physiological, biochemical and metabolical proc
esses in plants (Foy et al., 1978). Roots injured by high Al are usually stubby, 
thick, and become dark-colored, brittle, poorly branched, and suberized. As 
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a consequence, root length and volume is decreased. However, root dry
weight may not be altered. 

The development of maize production to Brazilian acid soils stressed he 
need for better adapted cultivars with Al tolerance for sustainable economic 
cropping. Lime application to acid soils have been used to decrease toxic 
effects of Al to the roots, but practical mechanical methods for deep lime 
incorporation have not been developed. Therefore, the combination of liming
practices for neutralization of soil acidity at the surface together with 
selection for more tolerant plants to Al toxicity is a more economical ap
proach.
 

The research program to adapt maize to "Cerrado" acid soils began in 1975 
at the National Maize and Sorghum Research Center. The results reflects 
the efforts ofa multidisciplinary maize improvement team, involving breed
ers, soil and plant nutrition specialists, and phytopathologists. The program 
was directly aimed at overcoming soil constraints by using genetic resources 
more efficiently in soil nutrient uptake, transfer, and utilization. 

METHODOLOGY DEVELOPMENT 

Selection in Field Conditions 

Yield evaluations in our program have been made in a Red Dark Latosol,
alic, clay texture "cerrado" phase soil at the National Maize and Sorghum
Research Center, in Sete Lagoas, Minas Gerais State, Brazil. The latitude 
is 19028'8"S, longitude 44- 15'W Gr, altitude of 732m, with a climate classi
fied as Aw (KWpen), with the temperature of the coldest month above 18'C. 

The level of Al saturation, in relation to the effective CEC was the 
indicator for Al toxicity level. Initial evaluations were made at 55% Al 
saturation. Later, based on response curves to limestone applications, the 
level of 45% Al saturation was selected as the most adequate to discriminate 
tolerant genotypes with good yield potential (Table 1 and 2). Higher levels 
ofAl saturation permit the selection of genotypes with greater tolerance, but 
are associated with low yield potential. 

In the soils used for testing genotypes, P availability is characterized by
low P in soil solution, high P adsorption, and low reversibility of the added 
P (Bahia Filho et al., 1983a). Under such conditions 100 kg ha " P205 (as
single super phosphate) was broadcasted and 60 kg ha"' P205 applied at 
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Table 1. Al saturation andpH values at two soil depths and three liming levels in 
a Red Dark Latosol at Sete Lagoas, Brazil 

Limestone Depth Al saturtion 
tha cm pH %
 

0 00-20 4.7 64
 
20-40 4.6 72
 

2 00-20 4.9 46
 
20-40 4.8 63
 

7 00-20 5.3 5
 

20-40 5.0 33
 

Table 2. Grain yield (kg ha"1)and relative grain yield (%) of inbred lines grown at 
three levels of limestone (0, 2 and? t ha 1) (Naspolini Filho et al., 1981). 

Yield (kg ha-I) Relative yield (%) 
Inbred line 0 2 7 0 2 7 

L 69 1,500 1,540 1,410 97 100 92
 
L 153 1,450 2,400 2,350 60 100 98
 
L 297 1,900 2.500 3,575 53 70 100
 

planting to assure a reasonable level of P availability, without interference 
with the Al toxicity level. 

More recently in our program, the concept of critical level has been used 
to establish the amount of P to be added. If the extractant is representative 
to variationf, in P buffering capacity and clay content (Bahia Filho et al., 
1983b), the utilization of a critical level concept makes it easier to compares 
among P le,,els in different soils. 

The relationship between P recovered by the extractant and the amount 
ofP added to the bcil is linear, but the ratio of P recovered to P added to the 
soil varies inversely with clay content (Freire et al., 1979; Novais and 
Kamprath, 1979; Bahia Filho et al., 1983b). As an example, in the soil used 
in our program, the ratio of P recovered to P added is 0.02 using Mehlich 1 
extractant; the initial P content in the soil is 2,0 jig g-'p, and the critical level 
is 10g g". Therefore to obtain a 60% critical level (60% critical level = 0.6 

"x 10 = 6jg g-'), the amount of P205 to be applied to the soil is: (6 - 2)0,02 1 = 
200 kg P205 ha". In order to obtain an increase of ljig g"' P in the soil, it is 
necessary to add 50 kg P205 ha'. 

Selection in Nutrient Solution 

The nutr,.'nt solution technique is useful to evaluate the isolated effects 
ofAl in the plant in contrast with field evaluations where a complex of factors 
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related to nutrient and water availability as well as climate effects may 
interfere with plant response to Al stress. 

The nutrient solution technique that has been used in our program was 
developed by Furlani and Clark (1981) and Magnavaca (1982). The most 
critical point is the ratio of Al:P in the solution (Magnavaca, 1932). The P 
level in the solution can not interfere with the Al stress level. Otherwise, 
genetic discrimination of tolerant genotypes (a desirable P:AI ration is 1:5) 
would not be possible. The appropriate nutrient solution to which 222 pmol 
Al L" is added as KAI (S04)2is described in Table 3. The initial pH is adjusted 
to 4.0 and monitored daily. Seeds treated with captan [N-(trichloromethy
ithio)-4-cyciohexene-1,2-dicarboximide] are germinated for seven days in 
rolled paper towels kept moist with aerated distilled water. Seven-day-old 
uniform sized seedlings without visual root injury are transferred to plastic 
support plates (49 plants per plate) and grown in 8.0 L of aerated nutrient 
solution for about seven days. Water is added daily to maintain solution 
volumes. Plants are grown in greenhouse without artificial lights at a 
temperature varying from 25' C to 35' C. 

Table 3. 	 Composition of basic nutrient solutions used for determining Al toler
ance in maize 1agnavaca 1982). 

Stock soution Full-streNth nutlent solution 
Name Chemlcx Conc. Cation Anion Total compos/tfon 

" 	 " "gL rri stock L' mg elmnent L deement mg L pM 
Ca Ca(NOj2.4H20 

NH4NO 2 

270.0 
33.8 

3.08 Ca.141.1 
NH4-N-18.2 

NO3 -N-96.6 
N03-N-10.2 

Ca 
K 

141.1 
90.1 

3527 
2310 

K KCI 18.6 2.31 K-22.5 CI20.4 
Mg 
NOs-N 

20.9 
152.0 

855 
10857 

KS004 
KNO3 

44.0 
24.6 

K-45.6 
K-22.0 

S04-S-18.7 
NO3-N-7.9 

NH4-N 
P 

18.2 
1.4 

1300 
45 

Mg Mg(NO)2.6H20 142.4 1.54 Mg-20.8 N0-N-24.0 
S 
B 

18.8 
0.27 

597 
25 

P KH2 0 4 17.6 0.35 K-1.7 H,,PO4 ,1.4 
Cl 
Fe 

21.05 
4.3 

595 
77 

Fe Fe(NO3) 3.9 20 20.3 1.54 Fe-4.3 N03-N-3.3 
Mm 
Cu 

0.50 
0.04 

9.1 
0.63 

HEDTA 13.4 HEDTA.20.6 Mo 0.08 0.83 

Micro MnCI2.4H20 2.24 0.77 Mn-0,50 CI.-0.65 
Zn 
Na 

0.15 
0.01 

2.29 
1.74 

H3BO3 2.04 BOa-B=0.27 HEDTA 20.6 75 
ZnSO4.7H 20 0.88 Zn=0.15 50,-S=0.07 
CuSO 4.5H 20 0.20 Cu-0.40 SO4-S-0.02 
NaMoO 4.2HzO 0.26 Na-0.04 MoO 4 -MoO.08 

FeHEDTA (Fe hydroxyothytenadirminetriacotate) was propared by dissolving the HEDTA Inwater plus addition of 
1N NaOH. After It was dssolved, Fe(NO3)3 was added to the solution and dlsotved by 3tlrrlng. The pH was adjusted 
to 4.0 ± 0.2 by smll additions of 1N NaOH and made to volume. 
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The initial length of the seminal roots are measured when seedlings are 
transferred to treatment solutions. After completion of the experiment, the 
final seminal root lengths are measured Relative seminal root length (RSRL)
is used to evaluate plants for Al tolerance. RSRL values are determined by
dividing the final seminal root length by the initial length. This trait was 
chosen to assess Al tolerance because it has been found to be the best one to 
assess Al toxicity due to: a) It is desirable when inbred lines are evaluated 
because it gives low correlation with initial length of the seminal root; b) It 
gives a lower coefficient of variation (Magnavaca, 1982). The greater the 
RSRL value, the greater the Al tolerance. 

GENETIC VARIABILITY AND BREEDING PROCEDURE 

The search for Al tolerance in maize began in 1975 through the evaluation 
of 363 inbred lines from the CNPMS germplasm collection. These lines were 
not originally selected for acid soils, but random fixation of genes for 
tolerance may have occurred during development. Phenotypic evaluation 
based on a 1 to 5 scale was used to access survival of inbred lines in an acid 
soil with 55% aluminum saturation (Bahia Filho et al., 1978). Although
about 70 % of the tested lines died within 60 days, it was possible to select 
30 lines that yielded at least of 2 t halof grain (Table 4 ).This selected group
of lines was tested in an acid soil at three leveis of Al saturation (Naspolini
Filho et al., 1981) and in nutrient solution with different levels of Al 
(Magnavaca et al., 1987a) (Tables 2 and 5). The results for three repre
sentative lines demonstrate the correlation between plant response in field 
and nutrient s3lutions (Table 5 upper part). Lines such as L69 are low 
yielding and are not affected by the level of aluminum in nutrient solution 
or soil. Lines like L153 produce high yield per se at an intermediate level of 
Al saturation and are not affected by low levels of Al saturation. L297 is 
linear to Al neutralization in soil and nutrient solution. These three type of 

Table 4. 	 Phenotypic evaluation (1 to 5 scale) of 363 maize inbred lines at 15 anti 
60 days after germination, tested in an acid soil with 55% Al saturation. 
Sete Lagoas. (Bahia Filho et al, 1978). 

Distriluion (%) 
Clases 15 days 60 days 
Ded 19.3 68.7 
1 (Poor dvelopnent) 35.5 7.0 
2 30.0 12.2 
3 10.7 8.4 
4 3.6 3.6 
5(Best development) 0.7 0.0 
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Table 5. 	 Relative seminal root length (cm) of American and Brazilian maize 
inbredlines grown in nutrient solution atdifferentAl levels (Magnavaca, 
1982). 

" Al levels (A tool L:) 

Origin 	 Inbred line 0 74 148 222 
Brazil 	 L69 2.45 2.33 1.99 2-25 

L153 2.98 3.04 2.36 2.11 
L297 3.82 3.75 2.23 1.87 

Average 	 3.08 3.04 2.19 2.07 

U.S. 	 B73 1.97 1.65 1.35 1.32
 
Mo17 2.99 2.59 1.99 1.64
 
N28 3.48 3.CO 1.94 1.42
 

Average 	 2.81 2.41 1.76 1.46 

responses were quite common and gave the opportunity to select genotypes 
useful for different breeding objectives. The correlation between results from 
nutrient solution and field experime ats in acid soil is not expected to be high. 
The nutrient solution technique is specific for Al toxicity effects on root 
development. Field test measures the effects of a nutritional complex that 
includes Al as one of the factors involved in the crop yield. However the ield 
and nutrient solution tests usually agree in terms of results when the 
genotype tested is highly tolerant to toxic aluminum. 

This same group ofBrazilian lines was compared with lines from the U.S. 
in nutrient solution at four levels ofAl. (Table 5). The average performance 
of Brazilian lines was superior to U.S. lines for Al tolerance. Considering 
that the Brazilian lines were not specifically selected (apriori),for acid soils, 
the random fixation of genes for tolerance is a demonstration ofthe variabil
ity for Al tolerance. Since such cultivars were not exposed to Al toxicity stress 
during the breeding process, what other soil factors may be linked to Al 
tolerance genes that allowed for the random fixation of genes for Al tolerance 
is not known. One possible explanation is linkage (or pleiotropic effect) 
between Al tolerance and P use efficiency. 

Simultaneously to the search for variability to Al tolerance several studies 
related to the inheritance of the trait have been conducted and reported 
(Naspolini et al., 1981; Magnavaca et al., 1987 b; Lopes et al., 1987; Eleutdrio 
et al., 1988). Generation mean analysis in nutrient solution detected that 
additive gene effects oxplained most of the genetic variation, but dominance 
contributed with a significant amount of variance. The frequency distribu
tions of the F2 generation of crosses were continuous, unimodal, and typical 
for a quantitatively inherited trait, with a preponderance of genes dominant 
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for susceptibility to Al tolerance. In studies based on diallel crosses of inbred 
lines and cultivars evaluated in nutrient solution and acid soil, the variance 
for general combining ability explained most of the variation, but specific
combining ability was always important. Specific combining ability for 
maize is better exploited in hybrid combinations. Al tolerance in maize is 
quantitatively inherited and evidence does not support the concept that a 
single major gene controls Al tolerance in maize. 

Considering that Al tolerance is quantitatively inherited, cultivar im
provement by recurrent selection is a desirable method. However, hybrid 
combinations are important to exploit specific combinations. Progress has 
been made by recurrent selection. Two populations, CMS 36 and CMS 30, 
selected at Sete Lagoas in acid soil, have a high frequency of genes for Al 
tolerance when tested in nutrient solution (Table 6) (Lopes et al., 1987). The 
tolerance is much higher for CMS 36 and CMS 30 than for non-selected 
populations. Both are being used in tropical areas of the world as a source 
of genes for tolerance to toxic levels of Al saturation. 

One concern at the beginning of our program related to the selection of Al 
tolerant genotypes was the possibility of associating Al tolerance with high
grain yield potential. We were concerned about the possibility ofAl tolerance 
being associated with low yield potential. Trials were performed at Sete 
Lagoas for two years comparing the yield potential of cultivars and hybrids 
of Al tolerant and non-tolerant genotypes (Table 7) (Gama et al., 1986).
Among the cultivars tested, CMS 36 and CMS 30 produced the highest yield
in acid soil, but CMS 36 demonstrated yield limitations in fertile soil. Among
the hybrids tested, CMS 200X and Cargill 511A were the best in acid soil;
however CMS 200X, had a low yield potential in fertile soil compared to 
Cargill 511A_ These results stressed the need for evaluating Al tolerant 
hybrids, not only in acid soil trials, but also in fertile soils. In our program,
selection has been based on results from trials performed in acid Paud fertile 

Table 6. 	 ]Relative seminal root length (%)of maize cultivara grown in nutrient 
solution with 0 and222 p.mol Al L1',and relative rootlength as percentage
of ccxntrl with 0Al (d), (Lopes et al, 1987). 

"1
Al levels (Jimol 

Variety 0 222 d 
CMS 36 88.9 cdet 64.4 b 27.5 b 
CMS 30 113.9 ab 71.4 ab 37.2 b 
CMS 14c 107.2 abc 23.7c 77.8 a 
CMS 04c 81.7 d 17.2 c 78.9 a 
BR 105 81.9 de 25.2 c 69.3 a 
BR 126 100.1 bc 24.3 c 75.7 a 

t Duncan muliple rango test at 5% pmbablity. 
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soils, and results from nutrient solution with varying levels of Al. A large 
number of field test locations are used to detect improved yield stability. 

This principle ofselecting under these three conditions was applied to 429 
S2 inbred lines originating from 6200 S, plants. The 429 S2 lines were crossed 
with a single-cross tester having with Al tolerance. These top-crosses were 
evaluated at three fertile soil sites, two acid soil sites,and in nutrient solution 
with 222 	mol Al !i. Responses among the 429 top-crosses tested, in com
parison with two commercial heck hybrids that were extensively planted 
at that time are reported (Table 8). Top-crosses 1 and 45 performed well 
across conditions and are desirable for selection. Top-cross 77 performed well 
in both acid and fertile soils, buL it did not show Al tolerance when tested in 
nutrient 	solution. This response may be due to a better efficiency for P 
uptake or better internal efficiency in P utilization, but this is a point yet to 
be confirmed. The relationship of Al and P mechanisms may offer the 

Table 7. 	 Mean ear weight of 10 maize cultivars tested in fertile and acid soil 
environmentq at Sete Lagoas. (Gama et al, 1986). 

Ear wcight (kg ha1 ) 

Acid soil Fertile soil
 
Genotype (I mcq Al) (0 meg A])
 
Cultivar
 
CMS 14 2,580 fgh t 7,870 abcd
 
CMS 36 	 4,520 a 6,550 d 
CMS 30 	 3,120 cdef 7,050 bcd 
CMS04 	 2,190 gh 7,660 abcd 
CMS13 	 1,800 h 6,745 cd 
Hybrid 
Cargil 1511 	 2,650 efg 7,515 bcd 
Cargill 511 A 	 3,980 abc 8.335 ab 
Agroceres 301 	 3,450 bcde 7,940 abcd 
Dina 3030 	 3,240 bcdef 8,520a 
CMS 200X 	 4,020 ab 6,875 bcd 

tDunwan niultIple range test at 5%probability. 

Table 8. 	 Relative grain yield of top-crosses and check hybrids compared to high
est yielding entry, in fertile and acid soil. Relative serminal root length 
(RSRL) measured in nutrient solution with 222 .tmol A L "1, for these 
materials are also shown. 

Fertile soll Add soil 
Hybrid Sore Lagoas Itulutaba Goltnla SoetLagoas M. Camelo Average RSRL % 
Top-cross 1 82 90 64 97 B3 83 75 
Top-cross 45 79 85 91 85 73 83 69 
Top-cross 77 76 100 74 94 88 86 46 
Cargill 111S 83 79 100 79 40 77 47 
Agroceres 301 78 85 60 67 40 87 43 
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possibility of improvement for both nutritional aspects. The performance of 
top-crosses 1 and 45, for example, in comparison with non-tolerant tester 
hybrids, demonstrates the possibility of selecting lines for producing hybrids
with both tolerance to Al and high yield potential. 

The best lines selected in these top-crosses have been used for double-cross 
hybrid production. Double-cross hybrids are commonly used in Brazil due to 
low seed cost. A total of 20 double-cross hybrids were evaluated at five sites 
with soil fertility varying from medium to high. The yield and stability ofAl 
tolerant hybrids were then compared to commercial hybrids without Al 
tolerance. The Al tolerance response j? these hybrids was measured in 
nutrient Polution using relative seminal root length (RSRL). The results for 
six of these experimental hybrids is presented in Table 9. (Magnavaca et ai., 
1988). 

Double-cross hybrids 7,8, and 9 were obtained by crossing Al tolerant 
single-crosses with the same tester, a single-cross with high Al tolerance but 
limited in yield potential. The single-cross tester for producing the double
crosses 14,15 and 20 had lower Al tolerance in nuaient solution, but a high
grain yield potential. The yield potential of the first group (DC 7,8,9) was 
lower than the second group (DC 14,15,20), but with better Al tolerance as 
measured by RSRL, and a linear regression coefficient (b) that measured 
yield stability of less than 1. b values less than 1 are an indication of 
adaptation to poor environments, and b values greater than 1 indicate better 
response to improved environments. The second group presented higher
yield and b values above 1. DC 14 and 15 had a relatively high level of Al 
tolerance in nutrient solution. The commercial hybrids used for comparisons 

Table 9. Relative seminal root length (RSRL), grainyield (kg ha'), linear regres
sion coefficient (b) and deviation from linear regression (s 2d) of experi
mental and commercial hybrids evaluated at five fertile soil sites in 
.razil. (Magnavac. et al., 1988). 

RSRL Yield 
Hybrids (%) kg ha b 2ds 
DC 7 130a 6,620 k 0.± 0.08 -14607
 
DC 8 73bcd 
 7,260 j 0. ± 0.04" -129047
 
DC 9 107 ab 7,080 j 0.± 0.09 -2049
 
DC 14 
 92 abc 8,710 ab 1.± 0.04" -132525
 
DC 15 76 Wc 8,870 a 
 1.±0.10 62595
 
DC 20 59 cd 
 8,410 .d 0.± 0.09 4274
 
Cargill IIIS 48 de 
 7,810 hi 1. ±0.03' -139363 
Dina 3030 61 cd 7,970 gh 1.±O.11 77103 
Agroceres 401 46 de 7,245 j 0.± 0.06 -86952 
Pioneer 6875 16 e 8,050 efgh 1.± 0.14 250015 

*Slgracantat a - 0.05. 
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had lower Al tolerance than the experimental hybrids, and produced lower 
y,.'Ids in relation to the second group. Performance of DC 14, confirms the 
possibility of associating high yield potential and stability to Al tolerance. 
DC 14 was recently released as the commercial hybrid BR 201. Hybrids like 
BR 201 make it possible to improve cropping systems in "Cerrado" soils of 
Brazil with less risk to the farmers. 

The CNPMSIEMBRAPA breeding program for acid "Cerrado" soils is 
dynamic and a new group of double-cross hybrids have been tested in recent 
trials. Evaluation trials for 120 new experimental hybrids were conducted 
on 7 fertile soil sites (without Al toxicity problems), a site with 70% Al 
saturation, and in nutrient solution. The 18 new hybrids were superior to 
BR 201 in grain yield, while some were superior in acid soil tolerance based 
on RSRL in nutrient solution with Al (Table 10). Progress in grain yield can 
be made in relation to BR 201 without loosing Al tolerance. Other agronomic 
traits such as lodging resistance and shorter plant height have also been 
improved. The selection of three-way and single-cross hybrids is uaderway 
and is expected to further improve agronomic traits and yield levels. 

Table 10. 	Average yield (kg ha"') of 18 selected experimental double-crosses evalu
ated in fertile and acid soils (70%Al saturation), and nutrient solution 
with 222 1A!L'. 

Ear weight (kg/ha) RSRL 

Hybrid Fertile soil (7 sites) Acid soil (1 site) % 

DC 9174 8.790 1,880 47 

DC 9150 8,650 890 47 

DC 9180 8,360 950 56 

DC 9101 9,160 700 36 

DC 9148 8,510 1,090 32 

DC 9111 8,210 1,250 46 

DC 9107 8,990 1,510 35 

DC 9176 8,800 2,040 58 

DC 9157 8,310 720 48 

DC 9198 9,035 1,460 44 

DC 9131 8,720 1,040 42 

DC q I1 8,600 1,215 45 

DC 9103 8,680 1,185 57 

DC110 8,910 1,690 63 

DC 9103 8,790 1,220 47 

DC 9153 8,840 1,130 71 

DC 91102 8,845 1,110 74 

DC 9144 8,650 1,110 50 

ER 201 8,310 1,350 62 

LSD (0.05) 670 810 16 
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FARMER UTIUZATION
 

The high yielding double-cross maize hybrid tolerant to toxic aluminum,
BR 201, was released in 1987. Approximately 10T of foundation seed was 
simultaneously distributed to 17 small and medium seed companies and fbur 
hundred observation and demonstration plots were installed collaboratively 
with producers and co-operativ es. 

In 1989, a system of rural franchising was introduced with the collabo
rating producers of commercial seed of BR 201. In this franchising scheme,
EMBRAPA authorizes the use of its trademark, provides the foundation 
seed, transfers BR 201 seed production technology, provides training and 
technical assistance, and oversees a rigorous system of quality control. 
Financial resources have returned to EMBRAPA by two ways: through the 
sale offoundation seed and also as a five %royalty of gross seed sales of BR 
201, paid by the collaborating seed companies. Since 1987, EMBRAPA has 
recei ved approximately $ four million through this franchising and royalty 
arrangement. 

Commercial seed ofBR 201 is currently produced by 25 small and medium 
size seed companies. Approximately half of these seed companies have 
technical assistance programs for their clients. BR 201 currently occupies
14% of the market share of hybrid maize seed in Central and Southern 
Brazil. During 1992-1993, 727,500 ha of BR 201 was planted in this region
(Table 11) (F.Almeida, personal communication). The interaction of the 
private sector initiative and the high yield genetic potential combined with 
yield stability has contributed to the rapid diffusion of BR 201. The charac
teristic ofaluminum tolerance has not been proposed to substitute or reduce 
liming or reduce fertilizer use, but is promoted as an important factor 
contributing to both yield stability and risk reduction. The yield potential of 
BR 201 permits it to compete with the best hybrids on the Brazilian market. 
During 1991-1992, BR 201 won .arstplace in the State of Minas Gerais maize 
productive contest, producing 15.75T of grain per ha. Tw(e new hybrids of 
the same series, BR 205 and BR 206, are currently being released. The 

T-'bile 11. Market share of BR 201 in the Brazilian hybrid maize seed industry. 
Year Total seed sale BR 201 sales Market sham No. of franchises 

40 kg bags % 
1988/89 2,820,000 23,050 0.8 17 
1989/90 2,000,000 143,625 7.2 21 
1990,91 2,875,000 168,614 5.9 22 
1991/92 2,805,000 332,074 11.8 26 
199293 2,628,000 363,750 13.8 25 
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private sector has contacted CNPMS/EMBRAPA regarding possible fran
chising and royalties for seed sales in selected African Countries. 
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ABSTRACT
 

Success in a crop improvement program depends on modification ofproduction
constraints through impxoved cultural practices und/or exploitation of the genetic 
diversity by enhancement of the crop in this particular environment. Sorghum
[Sorghum bicolor (L.) Moench] has a large reservoir of genetic diversity oa d is well 
adapted to semi-arid and other marginal agricultural production areas of the 
world; however, it is not known for its acid soil tolerance. A field screening
procedure was developed in Colombia to evaluate sorghum for tolerance to the 
acid soil complex and the world collection was systematically evaluated for acces
siovs origially from acid soil areas in Africa. The range of genetic variability for 
tolerance to acid soils was investigated, the degree and nature of the inhertance 
ofthe tolerance has been evaluated, high yielding tolerant grain sorghum cultivars 
have been released, and a breeding program is ongoing. Tolerant germplasm and 
segregating popalations have been fuLtished to acid soil breeding programs
around the world. This program is still in its infancy and many queations of 
sorghum-acid &oilinteractions remain unanswered. 

INTRODUCTION 

Efforts to adapt grain sorghum to the acid, Al and/or Mn-toxic soils of the 
humid tropics arc in their "nfancy. Sorghum, like many cereal crops, is not 
tolerant to low-pH soils. However, most breeding programs have been 
conducted in neutral or calcareous soils. Plant breeders have receLJy
recognized that different genes are needed for achieving maximum yield in 
low-input environments than those fbr high-input conditions (Atlin and 
Frey, 1989). Two factors have been primarily responsible for redirecting 
some breeding efforts, especially in the acid soil regions of the humid tropics.
They are the economics of modern high-input agriculture as they apply to 
resource-poor farmers, and the requirement to bring marginal agricultural 
land into production. 

Enough low-input soil management research has been performed
(Sanchez and Salinas, 1981) to demonstrate the feasibility of conducting a 
sorghum breeding program using this philosophy for acid soils. The primary 
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principle in low-input technology is to adapt plants to the soil constraints 
rather than to neutralize soil constraints to meet the requirements of the 
plant. This does not mean that sorghum production can succeed on these 
soils without any amendments. The best results would be obtained using 
acid soil tolerant and nutrient efficient cultivars and some of the time- tested 
cultural practices used by African acid soil farmers (Gourley, 1991b). 

Early successful evaluations ofsorghum tolerance to the toxic effects of Al 
were conducted in field tests on acid soils of the Cerrados in Brazil (Bor
gonovi et al., 1987; Pitta et al., 1976, 1979; Santos et. al., 1980" Schaffert et 
al., 1975). Researchers of the Brazilian National Program, Empresa 
Brasileira de Pesquisa Agropecuaria (FMBRAPA), have screened sorghum 
germplasm sent to them from Uganda and converted exotic lines from the 
Texas A&M University/LTSDA Conversion Program. Several studies using 
nutrient culture (Bastos, 1982; Bastos and Gourley, 1982; Furlani and Clark, 
1981; Malavolta et al., 1981) and greenhouse soil (Gourley, 1983; Santos et 
al., 1980) techniq aes to screen sorghum for tolerance to Al toxicity have been 
reported. Colombian field validation studies at 63% Al saturation for sor
ghum (Gourley, 1987b) and 85% Al saturation for rice (Howeler, 1987) 
showed that many genotypes rated as Al tolerant by nutrient culture 
techniques would be rated as susceptible under field conditions. 

In 1982, a program was initiated for breeding and screening sorghum 
germplasm for tolerance to the acid soil complex of the humid tropics at the 
International Center for Tropical Agriculture (CIAT), Cali, Colombia. The 
project was funded by USAID through the International Sorghum and Millet 
(INTSORMIL) Collaborative Research Support Program (CRSP) and the 
Mississippi Agricultural and Forestry Experimenc Station. Research is 
being conducted in collaboration with the National Program of Colombia, 
the Instituto Colombiano Agropecuario (ICA), and other National Programs 
in Latin America. 

The purpose of this paper is to report on the success of this research and 
to examine the breeding progress being made to provide improved sorghum 
germplasm for acid soils areas throughout the world. 

SCRE ENING AND EVALUArION
 
OF SORGHUM GERMPLASM
 

The initial step in evaluating sorghum for tolerance to acid soils was to 
identify genetic variability in the genus Sorghum for tolerance to il toxicity 
associated with iow pH. When grown on acid soils, most sorghum lin s 
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develop numerous nutritional disorders (Clark, 1988) from soil chemical and 
mineral imbalances in the plant. The world sorghum collection (33,766
sorghum lines maintained by the International Center for Research in the 
Semi-Arid Tropics (ICRISAT) at Hyderabad, India) was systematically
evaluated, starting with accessions originally from acid soil areas in Africa 
(Gourley, 1983). Soil classification maps of Africa were used to determine 
the soil type where a particular line was originally collected. 

An area on the CIAT-Quilichao substation, having an Ultisol classified as 
a clayey, oxidic, isohyperthermic, Typic Palehumult, was selected as the 
primary screening site. The virgin soil at this substation had a topsoil
Al-saturation of 80%, an organic matter content of about 7%, and a low-to
medium MN content. Applications of 500, 1500, and 4000 kg ha"1 CaCO3 
reduced the 80%Al-saturation level of the virgin soil to 63, 45, and 32%,
respectively, in the fields list as Locations 3, 4, and 5 (Table 1). The 
Al-saturation level at Location 3 (63%) was sufficiently severe to allow visual 
discrimination between tolerant and susceptible genotypes. Locations 4 and 
5 were not used for screening. 

A field screening technique was developed (Gourley, 1987a and b) to 
measure Al tolerance, as distinct from low P, or the Al-P interaction. The 
objective was to establish an Al-toxicity level high enough to kill the most 
sensitive genotypes, but not too severe to allow tolerant genotypes to produce
reasonable grain yields. Severe Al-toxicity stress was applied to reduce the 
number of genotypes quickly and to retain only those genotypes with the 

Table 1. Meen topsoil (0 to 20 cm) chemical characteristics of the CIAT-Quilichao
fields used for sorghum evaluations before andafter the addition of soil 
amendments. 

Locntion 
Soil charaeristics t Virgin t 3 4 5 
pit (H20) 4.5 4.4 4.6 5.0 
P (ug g-I) 2.3 17.9 16.2 17.8 
Ca (anol kg") 0.68 1.24 2.44 3.33 
Mg (anol kg"1) 0.18 0.52 0.53 0.51 
K (cmol kg-') 
Al (mol kg"1) 

0.15 
3.90 

0.24 
3.40 

0.26 
2.65 

0.23 
1.90 

ECEC (anol kg") 4.91 5.40 5.88 5.97 
Al saturation (%) 80.4 63.0 45.1 31.8 

t Methods for extraction and/or determlnalon of soll characteristics were: pH - 1:1 sol.water; P- Bray II;exchangeable 
cati s - 1N KCI from 100 g of soll; effective cation ,xchange capacity (ECEC) -&,,m of exchangeable cations; and Al 
saturation, exchangeable Al divided by ECEC times 100. 
The virgin soil was amended with 500.1500, and 4000 kg ha" CaCO 3 to produce the soil charaWgsrlatcs found In 
Locations 3. 4,and 5, respoctivey. The first 500 kg ha" CaCO 3 was doklmitc limestone and the remainder was calcitic 
limestone. (Adapted from Gourley, 1967a and 1991a). 
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highest degree of Al tolerance that would not be completely inhibited from 
penetrating the higher level ofAl saturation encountered in the subsoil. 

Lines were evaluated visually (1 = near-normal development, 4 = dead 
plants) at physiological maturity (Table 2). At 65% Al saturation, susceptible 
genotypes germinate and grow well for about three weeks, after which every 
plant dies. Uniformity of soils was monitored by planting tolerant and 
susceptible genotypes in adjacent rows at regular intervals. 

Sorghum collections from acid soil regions of Kenya, Nigeria, and Uganda 
(Table 3) had a higher percentage of tolerant entries than those evaluated 
from other countries (Gourley, 1988). At 63% Al saturation, fewer than 8% 
of the entries originating from acid soil regions were rated as tolerant. One 
would expect a lower percentage in the general sorghum collection. 

Table 2. 	 Visual rating scale used ,o evaluate sorghum genotypes for Al tolerance 
in the field. 

Visual
 
rating scale Plant symptoms at physiological maturity
 

I Good plant color, well-filled panicles, little stress or Al-toxicity symptoms.
 

2 Some yellowing of leaves, reduced panicle .ize, some stress and Al-toxicity symptoms.
 
3 Stunted plants, yellowing and dead leaves, snmll panicles with little grain, many stress symptoms.
 
4 Severely stunted or dead plants two to three weeks after emergence.
 

(Adapted trm Gourley. 1987a). 

Table 3. 	 Al-tolerance ratings of 1737 sorghum world collection lines by country
of orizin. 

Al-tolerant 
Al-susceptible 

Country Lines tested It 2 3 4 

Burkina Faso 82 5 35 32 28 

Cameroon 74 8 22 32 38 
Central Afr. Rep. 205 2 21 38 39 
Ethiopia 213 8 18 35 39 

Kenya 110 15 37 30 18 
Mali 39 0 20 62 18 
Nigeria 287 17 32 23 28 

South Africa 74 3 16 49 32 
Sudan 385 3 11 34 52 

Uganda 120 15 45 24 16 
United States 33 3 24 24 49 

Zimbabwe 40 2 10 40 48 
Miscellaneous 75 9 25 36 30 

Total 1737 7.8 23.5 32.8 35.9 

ti - Al-tolerant, 4 A-susoeptble. (Gouriey, 1987c). 
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Using the taxonomic classification of Harlan and de Wet (1972), the 
Guinea race and the hybrid Guinea-bicolor lines had a higher percentage of 
acid soil tolerant sorghum entries than those of other races and hybrids
(Table 4). Tolerant entries of the Caudatum race from Kenya and Uganda 
were the most agronomically desirable and produced the highebt grain 
yields. 

After screening more than 6,000 entries from the ICRISAT and USDA 
sorghum collections, less than 50 were found to produce high grain yield on
tropical acid soils and to possess agronomic characteristics required for 
mechanized production. Two sorghum cultivars have recently been released 
in Colombia, the result of collaborative acid soil research between ICA and 
INTSORMIL. Sorghica Real 60 and Sorghica Real 40 have consistently
produced high grain yields on acid soils in both cropping seasons during the 
year (Table 5). Both cultivars have good yield stability in acid and fertile 
soils, were collected in Uganda, and are classified as Caudatums. 

BREEDING AND GENETICS 

Prior to 1975, most breeding improvement programs were conducted at 
locations with soils of pH 7 or higher, high levels of fertility, and generally
optimum environmental conditions. After acid soil tolerant lines were found 

Table 4. Al-tolerance ratingsof 1674 vorghum world collection lines by taxonomic 
classification. 

Clausificationt Lines tested it 
Al-tolerant 

2 3 
Al-susceptible 

4 

Bicolor 42 7 14 31 48 
Caudatum 708 8 22 29 41 
Durra 97 2 6 40 52 
Guinea 223 13 38 34 15 
Kafir 183 1 20 41 38 
Caudatum-bicolor 71 9 32 24 35 
Durra-bicolor 96 5 28 45 22 
Guinea-bicolor 40 22 35 28 15 
Durra-caudatum 108 11 18 32 39 
Guinea-caudatum 74 7 23 35 35 
Miscellaneous 32 3 6 50 41 

Total 1674 7.7 23.5 33.4 35.4 

tTaxonornic clasalticatlon of Harlan and do Wet (1972).
i1 , AI-toleranL 4 - A-usceptible. (Gourley, 1987c). 
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Table5. Plantheight andyield of 10 sorghum genotypes planted inacid soils with 
aluminum saturation levels between 40 and 60%. Average data for 12 
sites in the Department of Meta, Colombia. 

1 )Yield (kg ha 

Al saturation 
Genotype Plant height (a) 40% 60% Mean 
Sorghica Real 60 182 3220 2990 3110 
Sorghica Real 40 162 3280 2790 3040 
1S3071 190 2840 2420 2630 
PPQ-2 167 2980 2315 2650 
IS3522 183 2540 2140 2340
 

IS8577 187 3310 2795 3050
 

IS 6944 189 2610 2280 2450
 
5DX61/lj910 178 2430 2120 2275
 
ICA Natairna 96 530 890 710
 
Icaima 151 710 2170 1440
 

Source: ICA, Annual Repxrt, Natoral Cereals Secton, June 1991. (Gourley and Wunoz, 1991). 

that produced economical grain yields, a breeding program was initiated 
using the low-input philosophy. An excellent review of the literature of 
breeding sorghum for tolerance to acid soil has been compiled by Duncan 
(1991). 

A nutrient culture technique was developed to evaluate Al tolerance in 
12-day-old sorghum seedlings (Furlani and Clark, 1981). Bastos and Gour
ley (1982) increased the severity of the challenge by increasing the concen
tration of Al to 222 umol L"' and decreasing the concentration of P to 16 umol 
L"' in nutrient solution. Using this technique, no genetic gain. was obtained 
in a selection study using five F2 populations from genetically diverse inbred 
parents including several with Al tolerance identified by this technique 
(Bastos, 1982). 

Several genetic studies of field verified acid soil tolerant sorghum geno
types used the modified nutrient culture procedure, but increased the growth 
period of the seedlings to about 30 days (Adamou et al., 1992; Gourley et al., 
1990; Gutierrez et al., 1990; Montgomery et al., 1992; Saadan, 1991). 
Inconsistencies between the acid soil and solution culture experiments, 
using hybrids in common, indicated that different genetic responses to the 
treatments were being measured (Gourley et al., 1990). In these studies, 
adventitious root mass was the best predictor of field performance. 

A greenhouse screening technique was evaluated using virgin Oxisol soil 
from the Colombian Llanos with different levels of Al saturation (Gourley, 
1983; Gourley et al., 1990). Dry matter yield of roots, tops, and total plant 
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for 3-week-old sorghum seedlings were insufficiently correlated with field 
performance to allow this technique to be used in a breeding program. The 
results of seedling nutrient solution and greenhouse tests suggest that the 
type of gene action identified to be controlling Al tolerance was dependent 
on the degree of Al stress, the evaluation technique employed, and the 
germplasm being evaluated. 

The fact that Al-sensitive lines would produce perfectly good stands in 
65% Al-saturation plots, only to die later, suggests that seedling traits may 
not be the best screening parameters. Many of the quick tests for Al 
tolerance, such as reaction to hematoxylin, Al-pulse treatments, and Al in 
nutrient solutions, appear to be better suited for evaluating crops other than 
sorghum. The results of many of these tests are reported in the sorghum 
literature with no substantiating field trials. The primary root in sorghum 
apparently is only slightly affected during early seedling growth in acid soils. 
After the primary root dies, usually 2-to-4 weeks after germination, only acid 
soil tolerant genotypes will produce an adventitious root system needed to 
sustain the plant. Understanding the phenological and/or morphological 
differences between the primary and adventitious root systems could offer 
insight into the nature of tolerance to acid, high Al soils. 

Several different selection methods were used to identify Al-tolerant 
plants in segregating populations. Planting the F2 population in the screen
ing plot at about 65% Al saturation permits identification of Al tolerance; 
however, photoperiod sensitivity, genetic plant height, or maturity cannot 
be determined. Since Al tolerance in 'orghum appears to be simply inherited 
as a dominant factor(s), segregating populations can be grown on normal 
soils in the temperate or tropic zones and selection effort concentrated on a 
agronomic characters. In each F2 population of about 5,000 plants, a selec
tion intensity of 2% or less produced large numbers ofAl-tolerant F3 families. 
Tolerant lines were later evaluated for agronomic type in both temperate 
and tropical environments. As more constraints are found in the acid soil 
complex and yield and other agronomic factors are added to the breeding 
goals, a more holistic approach to breeding is used in the environment in 
which the cultivars will be commercially used. 

The performance of experimental acid soil tolerant sorghum cultivars and 
hybrids has been well documented. In newly prepared screening plots in 
Colombia (pH 4.4,63% Al saturation), 18 Al-tolerant cultivars produced from 
2.0 - 5.0 t ha" or 400 - 1000% more grain than a susceptible check (Gourley, 
1987b). Flores et al. (1988) found that 6 acid soil tolerant cultivars averaged

"3070 kg ha or 943% more grain and 4700 kg ha" or 983% more stover yield 
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than a local commercial cultivar, ICA Nataima, when grown on a Colombian 
Ultisol at pH 4.1 and 60%Al saturation. 

Combining ability studies in Colombia (Flores et al., 1988, 199 1a), Niger 
(Adamo, et al., 1992) and Kenya (Zake et al., 1992) have compared growth 
and yield traits of Colombian bred inbreds at varied Al-saturation levels in 
field trials. These studies showed that Al tolerance was conditioned by both 
additive and non-additive gene action. Gourley and Munoz (1991) reported 
experimental hybrids (both inbreds being acid soil tolerant) of producing 
more than 2,000 kg ha"1 in soils with 75% Al saturation. Hybrids have many 
advantages over inbreds in the infertile-soil environment: hybrid seedlings 
exhibit more vigor during emergence and early plant growth; hybrids are 
almost always more stress tolerant and usually yield more grain than the 
most tolerant parent; hybrids generally produce more extensive root systems 
and exploit available soil nutrient and water better. 

Genotypic differences in leaf concentrations of mineral elements have 
been reported in sorghum grown on acid soils (Clark et al., 1988; Clark and 
Gourley, 1987a, b, 1988; Flores et al., 1991b; Gourley et al., 1991). Clark 
(1988) determined critical leaf tissue values of plants grown in nutrient 
culture to be < 2 mg g' for P and Ca, and >280 for young or 600-900 ug g.' 
Mn for older plants, and >200 ug g- Al. 

Field studies were conducted to determine mineral element concentra
tions in leaves of 26 sorghum genitypes that were tolerant to acid soil 
conditions in Colombia, South America (Gourley et al., 1991). Al saturation 
levels in soils at five sites were 60 and 68% on an Oxisol and 63, 45 and 32% 
on an Ultisol (soil characteristics of the three Ultisol locations are shown in 
Table 2). After physiological maturity, three leaves per plot (first leaf below 
the flag leaf) were randomly selected, combined and analyzed for Mg, Si, P, 
S, Cl, K, Ca, Mn, Fe, Cu, Zn, and Al by energy-dispersive X-ray fluorescence 
(Knudsen et al., 1981). 

Several of the 26 sorghum genotypes showed differences for higher or 
lower leaf mineral element accumulation relative to the other genotypes. 
Genotypes IS7173C and Sorghica Real 40 accumulated a high concentration 
ofAl in the leaf tissue, while Sorghica Real 60 and IS8931 accumulated about 
one-half as much Al (Table 6). Sorghica Real 40 and Sorghica Real 60 were 
the first acid soil cultivars to be released in Colombia. These genotypes are 
tolerant to high levels of Al saturation, suggesting that there is more than 
one Al-tolerance mechanism in sorghum. Genotypes IS6902 and IS7173C 
were high accumulators of Mn and genotypes IS3553 and IS9277 were low 
accumulators. 
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The ability of a genotype to accumulate P and K under conditions of high 
Al saturation or o'herwise low nutrient availability is an important trait. 
Genotypes IS7173C and IS9138 accumulated ailuut 80%more P than IS8577 
and 3DX57/1/1/910. Genotypes IS9101 and IS9138 accumulated about 25% 
more K than genotypes IS7173C and IS9277. Note that IS9138 accumulates 
more P and K while IS7173C accumulates more P but less K than many
other genoty!.qs (Table 6). Silicon has been shown to alleviate Al and Mn 
toxicity (Galvez et al., 1987, 1989). Genotypes IS7173C and IS9138 accumu
lated about 35% more Si than IS6944 and IS8933. A strong negative 
correlation between Si accumulation and level of A.saturation was evident 
for the 26 genotypes grown at the Ultisol locations (Figure 1). 

If differences in mineral concentrations observed among genotypes are 
under genetic control, the efficiency of some genotypes to extract P and 
accumulate K under conditions of low availability should be amenable to 

Table 6. Leaf mineral element concentrations of Al, Mn, Si, K, and P of the two 
upper and lower of 26 sorghum genotypes grown on acid soils at five 
locations in Colombia. 

Element/Genotype Leaf concentration
 
Aluminum 
 (ugg-')
 
IS 7173C 
 1,936 
Sorghica Real 40 1,829 
IS 8931 1,140
 
Sorghica Real 60 
 1,110 
Malanese 
IS 6902 342
 
IS 7173C 
 302
 
IS 3553 
 246 
IS 9277 228
 
Silicon (mg-)
 
IS 7173C 40.3 
IS 9138 39.2 
IS 6944 29.7
 
IS 8933 
 28.6 
Pota"slum
 
IS 9101 
 15.76 
IS 9138 1..17 
IS 7173C 12.66
 
IS 9277 
 12.16 
Phosphorus 
IS7173C 2.86
 
S9138 
 2.80 

IS 8577 1.60 
3DX57/1/1/910 1.54 

(Adapted from Gourley,Ig1a). 
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Figure 1. 	Mean silicon concentration in the leaves of 26 Al-tolerant sorghum 
ge.-otypes growing at three Al-saturation levels at Quilichao, Colombia. 
(Adapted from Gourley, 1991a). 

genetic improvement. Many of the Al-tolerant genotypes produced large root 
systems in nutrient culture that assisted them in obtaining adequate nutri
tion in low-input environments. They were also more drought tolerant in the 
field than susceptible genotypes. 

SUMMARY 

Much progress has been made in the 15 years of conducting acid soil 
research in Colombia, but many aspects ofthe plant-soil interactions remain 
unclear. Genetic variability for tolerance to the tropical acid soil complex 
exists in the genus Sorghum. Tolerant cultivars have been released and are 
producing economic grain yields for resource-poor farmers in marginal 
production areas using low-input technology. The primary root will pene
trate deep into acid soils where adventitious roots will not grow, killing the 
susceptible sorghum plant. Genetic variability has been found for differen
tial mineral uptake, suggesting the possibility of different tolerance mecha
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nisms and plant utilization efficiencies. Inbred lines that produce high 
yielding hybrids, tolerant to the Al-toxic, infertile soiis of the tropics, will be 
the next generation of releases from the collaborative research of INTSOR-
MIL and the National sorghum breeding programs. Since tolerance to the 
acid soil complex appears to be dominate in sorghum, either tolerant polli
nator or seed parent lines can be used to produce cytoplasmic-genic hybrids
commercially in the tropics or the temperate zones. 
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Testing Crops for Salinity Tolerance 

E. V. Maas
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Riverside, CA
 

ABSTRACT 

The capability of crops to grow on saline soils varies among species anddepends 
on the concentration of salts present in the rootzone and on vakious environmental 
andcultural conditions. Informationon the relative tolerance of different crops is 
essential to the successful management of salt-affected agricultural lands and 
waters. Results from over 50 years of research have produced salt tolerance data 
thatrolate yield reductions of ovee 90 different crops to soil ealinity. These data 
are presented in tabularform and give threshold salinity valuea and percent yield 
reductions expected at salinities exceeding the threshold. The recommended pro
cedure to acquire reliable data, the yield response fuLction used to quantify salt 
tolerance data, and factors to consider when evaluating or using these data are 
also described. 

INTRODUCTION 

Sustained and profitable production of crops on salt-affected soils requires 
appropriate on-farm management decisions. Growers must know how plants 
respond to salinity, the relative tolerances of different crops and their 
sensitivity at different stages ofgrowth, and how different soil and environ
mental conditions affect salt-stressed plants. For more than 50 years, 
scientists at the U. S. Salinity Laboratory in Riverside have determined the 
responses of many important agricultural crops to soil and water salinity. 
The results of those studies as well as those obtained at various other 
locations are crucial for estimating potential yields of crops grown under 
different levels of salinity. 

The mLSt common effect of salinity on plants is a general stunting of 
growth. The plants usually appear normal, although if compared with 
nonstressed plants, they may have darker green leaves that, in some cases, 
are thicker and more succulent. Visual symptoms, such as leaf burn, ne
crosis, and defoliation occur in some species, particularly woody crops, but 
these symptoms are rare in herbaceous crops unless plants are severely 
stressed. Consequently, it is difficult to diagnose a moderately salt-affected 
crop in the field without having a nonstressed crop nearby for comparison. 
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The most certain method to identify a salinity problem is to determine the 
salt concentration of the soil. If soil salinity in the rootzone exceeds the 
tolerance of the crop, yield losses can be estimated. from the salt tolerance 
data. 

Crop response to salinity can be quantified by plotting relative growth or 
yield as a continuous function of increasingly higher levels of soil salinity.
This response function generally follows a sigmoidal relationship, i.e., yields
tend to be independent of soil salinity, or decrease slowly, at low salt 
concentrations, then decrease at a greater, but relatively constant, rate at 
intermediate concentrations; and finally at high concentrations, they begin 
to decrease more slowly, approaching zero yield asymptotically. With s 'me 
crops, plants may die before seed or fruit yields have rea.,ted zero, thus 
eliminating the lower part of the sigmoidal cmve. In either case, yields at 
extreme salinity stress are too low to be ofcommercial value so that accuracy
in this part of the response curve is not critical. 

PLANT RESPONSE 

Plant sensitivity to soil salinity continually changes during the growing 
season. Most crops are tolerant during germination, but the young develop
ing seedlings are susceptible to injury during emergence from the soil and 
during early juvenile development. Once established, plants generally be
come increasingly tolerant during later sages ofgrowth. One of the primary
effects of salt stress is that it delays germination and seedling emergence.
Delays can be fatal if the emerging seedlings, already weakened by salt 
stress, encounter additional stresses, such as water stress, extreme tempera
ture fluctuations and/or soil crusting. Because of evaporation at the soil 
surface, the salt concentra'ion in the seed bed is often greater than at deeper
depths. Consequently, the juvenile roots of emerging seedlings are exposed 
to a greater degree of stress than indicated by the usual measurements of 
salinity made on composite soil samples taken from throughout the soil 
profile. The l.ss of plants during this crucial phase can reduce the plant
population density to suboptimal levels and significantly reduce yields. 

Experiments designed to test the relative effects of salt stress at different 
stages of growth indicate that sorghum (Sorghum bicolor (L.) Moench),
wheat (Triticum aestivum L.), and cowpea (Vigna unguiculata(L.) Walp.) 
are most sebi Live during the vegetative and early reproductive stages, less 
sensitive during flowering, and least sensitive during the grain-filling stage
(Maas et al., 1986; Maas and Poss, 1989a; 1989b). Suppression of tiller 
formation is the most serious effect of salt stress during the vegetative and 

235 



early reproductive stage of cereals. Apparently, most crops become more 
tolerant at later stages of growth, but there are some exceptions. For 
example, salt stress affects pollination of some rice (Oryza sativa L.) culti
vars, thereby decreasing seed set and grain yield. (see Maas and Grattan, 
1994, for further discussion and references). 

ESTABLISHMENT OF EXPERIMENTS 

Traditionally, salt tolerance data have been obtained in small experimen
tal plots. To the extent possible, crops are grown according to commercial 
practices with adequate moisture and nutrients. Several salinity treatments 
(preferably six or more, replicated three times) are imposed by irrigating the 
test crop with artificially-salinized water. A mixture of NaCl and CaC12 (1:1 
by wt.) is added to nonsaline irrigation water to obtain a range of salt 
concentrations that cause yield reductions of 0 to 50% or more. The soil 
profiles are leached with the respective treatment waters to presalinize the 
expected rootzone. However, to ensure an acceptable plant stand, all plots 
are irrigated with approx. 5 cm of nonsaline water just prior to sowing to 
provide a nonsaline seedbed. Saline irrigations are imposed after the seed
lings have emerged and are continued throughout the growing season. 

The soil should be sufficiently permeable to allow adequate leaching. 
Without leaching, salt concentration increases with dept" in the rootzone 
and can vary from that of the irrigation water near the soil surface to 
concentrations many times higher at the bottom of the rootzone. With such 
variable salinity, it is difficult to estimate the degree of salt stress to which 
the plant is responding. Even with the recommended leaching fraction of 
50%, salt concentrations roughly double from the top to the bottom of the 
rootzone. 

Having accurate measurements of soil salinity in the rootzone during the 
growing season is essential to obtain reliable salt tolerance data. This 
requires monitoring salinity at several depths at various times during the 
season. These salinity values are averaged to estimate the mean soil salinity 
encountered by the crop. Soil salinity is conveniently estimated from the 
electrical conductivity (EC) ofwater extracted from the soil at some reference 
water content, e.g. that present in a saturated soil paste. Although the EC 
ofthe saturated-soil extract (EC,) is approximately half that ofthe soil water 
at field capacity, it has commonly been used to express the salinity of the 
soil. It is a reproducible value that is directly proportional to the salt 
concentration in the soil water. For further details and a description of other 
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methods that measure EC of the soil water directly or indirectly, the reader 
is referred to Rhoades and Miyarnoto (1990). 

Many soil and environmental factors interact with salinity to influence 
crop salt tolerance. Therefore, these factors must be considered before 
planning any salt tolerance experiments. The soil sho-uld be adequately 
fertilized because the lack of nutrients, rather than salinity, can be the 
primary factor limiting growth. Plants tested on infertile soils, therefore, 
may appear more salt tolerant than those grown on fertile soils. Maintaining 
adequate soil water throughout the growing season is also essential to obtain 
reliable data. If wat r is limiting, plants not only must endure water stress, 
but they are exposed to higher salt concentrations as they extract and 
concentrate the soil water. It should be noted that salt-stunted plants grown 
in saline treatments will probably require less water than normal-sized 
control plants. 

The sorghum experiment described by Francois et al. (1984) is typical of 
the salt tolerance experiments conducted by the U. S. Salinity Laboratory. 
Usually, two cultivars are tested simultaneously in 6-m-square plots. Includ
ing additional cultivars in the small plots, while desirable, compromises the 
reliability of the plant growth and yield data. Our experience also indicates 
that six levels of salinity replicated three times are required to obtain 
reliable data. Furthermore, experiments are normally repeated a second 
year and the data are combined, although only one year's data were reported 
for sorghum. The two cultivars, Asgrow Double TX and Northrup King
NK-265, responded alike to increasing soil salinity. A similar experiment 
was conducted at Brawley, CA on two cultivars of pearl millet (Pennisetum 
glaucum (L.) R. Br, cvs. 18DB and 23DB). The reduction in shoot dry matter 
production with increasing salinity indicated that pearl millet is moderately 
tolerant (L. E. Francois, personal communication). Unfortunately, seed 
production was well below normal, possibly because pollination was affected 
by the extreme summer temperatures. The only known data on seed yield 
also indicate that pearl millet is moderately tolerant (SirLgh and Chandra, 
1979). 

YIELD RESPONSE CURVE 

Maas and Hoffman (1977) proposed that the yield response curve for 
agricultural crops could be represented by two linear lines, one, a horizontal 
line depicting no response to increasing salinity at low concentrations, and 
the second, a concentration-dependent line whose slope indicates the yield 
reduction per unit increase in salinity at higher concentrations. The point 
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at which the two lines intersect designates the "threshold", i.e. the maximum 
soil salinity that does not reduce yield below that obtained under nonsaline 
conditions. Figure 1 shows the two-piece model fitted to actual grain yields 
obtained in a salt tolerance experiment on corn (Zea mays L.). This two-piece 
linear response function provides a reasonably good fit for commercially 
acceptable yields whcn plotted against time- and depth-averaged salinity in 
the rootzone. For soil salinities exceeding the threshold of any given crop,
relative yield (Y")can be estimated with the following equation: 

Yr = 100 - b(ECe - a) 

where a = the salinity threshold expressed in dS/m (1 dS/m = 1 mmho/cm); 
b = the yield reduction, or slope, expressed in % per dS/m; and ECe = the 
mean electrical conductivity of saturated-soil extracts taken from the root
zone. 
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Fig. 1. 	 The piece-wise linear response function fitted to actual yield data ob
tained from corn. Data from Hoffman et al. (1983). 
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SALT-RESPONSE THRESHOLDS
 

Tables 1 and 2 list threshold and slope values for over 90 crops in terms 
of EC,. Most of the data were obtained where crops were grown under 
conditions simulating recommended cultural and management practices for 
commercial production. Consequently, they indicate relative tolerances of 
different crops grown under different conditions and not under some stand
ardized set of conditions. Furthermore, the data apply only where crops are 
exposed to fairly uniform salinities from the late seedling stage to maturity.
Where crops have particularly sensitive stages, the tolerance limits are 
given in the footnotes. These data are also intended to apply where chloride 
is the predominant anion. Plants grown on_ -r -is soiIs il to.erate 
EC,'s approximately 2 dS m"1 higher than those listed in Table 1. The last 
column provides a qualitative salt tolerance rating that is useful in catego
rizing crops in general terms. The limits of these categories are illustrated 
in Figure 2. Some crops are listed with only a qualitative rating because 
experimental data are inadequate to calculate the threshold and slope. 

Table 1. Salt tolerance of herbaceoui crops.' 
' mr Toloae tc Throsto e Slope (%

=Como name Botanical nm based on: (EC.) dS/m per dS/m) Ratingd 
Fller, grain, and special crops 
Arichoke. Jerusalem He/lanthustubeosus L. Tuber yield 0.4 .8 MS 
Barley Hondum vudgare L Grain yield 8.0 5.0 T 
Canola or rapeseed Brassca campesetis L [syn. B. rape L.J Seed yield - - T 
Canola or rapeseed B. napus L Seed yield - -T 
Chick pea C/cer ariet/num L. Seed yield - - MS 
Corn Zea maysL Ear W 1.7 12 MS 
Cotton Gossypfum hIr,,tum L. Seed cotton 7.7 5.2 T 

yield
Crambe Crambeabyssn/ca Hochat. ex R.E. Fries Seed yield 2.0 6.5 MS 
Flax Unum usltallsslmum L. Seed yield 1.7 12 MS 
Guar Cyamopsls tetragonoloba (L). Taub. Seed yield 8.8 17 T 
Kenaf 1biscuscannab/nus L. Stem DW 8.1 11.6 T 
Millet channel Ech/xochloa tumerana(Domln) J.M. Black Grain yield - - T 
Milet, pear1 Pennlserumgouicum (L)R.Br Seed yield - - MT 
Oats Avenasafva L. Grain yield - - T 
Peanut Aracis htpo~gaea L. Seed yield 3.2 29 MS 
Rce Oryza sattva L Grain yield 3.09 12' S 
Roselle H/b/scus sabdar/ffa L Stem DW  - MT 
Rye Socale cea/e L Grin yield 11.4 10.8 T 
Safflower Carthamus Unroi~ubL Seed yield - - UT 
SesaMeh Sesamum Ind/cum L Pod DW - - S 
Sorghum Sorghum b/co/or(L.) Moench Grain yield 8.8 18 MT 
Soybean Gtycine max(L) Merill Seed yield 5.0 20 MT 
Sugaeedt Beta vugars L. Storage root 7.0 5.9 T 
Sugarcane Saccharum officlnarumI- Shoot DW 1.7 5.9 MS 
Sunflower He/lanthusannuus L. Seed yield - - Mr 
TrtItcale X Trttcosecale Wittmack Grain yield 6.1 2.5 T 
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Tolerarcs Threshold Slope (% 
Common name Botanlca nameb based on: (EC.) dS/m per dS/m) Rating 

d 

Wheat Ttfcum aestivum L Grain yield 6.0 7.1 MT 
Wheat (samidwatf)l T. aesHyum L Grain yleld 8.6 3.0 T 
Wheat. Durum T. tfukdurm L vat. durum Desf. Grain yield 5.9 3.8 T 

Gas" and forage crops 
Affalfa 

Alwlgrasls, Nutlall 
Alkali sacton 
Baley (foreae) 
Bentgrass, creeping 
Bermudagrassk 
Blueost m, Angleton 

Broadbean 
Brome, mountain 
Brome. smooth 
Buffelgrass 

Bumet 
Canarygrass, reed 
Clover. alsike 
Clover. Beamoem 
Clove(, Hubam 
Clover,.;adlno 
Clover, Perslan 
Clover. red 
Clover, stawberry 
Clover, sweet 
Clover, white Dutch 
Corn (forage)t 
Cowpea (forage) 
Doallsgrass 


Dhaincha 


Fescue, tall 

Fescue, meadow 

Foxtail, meadow 

Glydne 


Gram, black 
or Urd bean 
Grama. blue 
Guineagrass 
Hardlnggrass 

Kalargrass 

Lablab bean 

Lovegrass' 

Mlkvetch, Clcer 

Milet. Foxtall 

Miet, pearl 

Medlcago saliva L 
Puc,'rn/a a/trodes (Nutt.) Wats. & Coult 

Sporobokusak'okeas Torr. 
Horeum vtigare L 
Agrostis sto/on/era L 

Cynodondacdybon (L) Pers. 

Dldianth/umawlstatum (Polr.) C.E. Hubb. 

[syn. Andropogon nodosus (WIlem) Nash]
 
Oda faba L 

Bromus ma~inatus Nes ex Steud. 

B. Irewm/s Leyss 
Pennlselum diam (L). Unk. 
(syn. Conchrus ciaflas 
Poterlum sangulsorba L 
Ptsfar/s anund/nacoa L 
Tr/lrun; hybrldum L 
T. axanddnumL 
Mllotus alba Dest. vat. annua H.S. Coe 

Trifololmrepens L. 
T. resupnatum L. 
T.pretense L. 
T. frag/ferum L. 
Melotus sp. MIl. 
Trfolum repens L 

Zoa mays L 

Vgna ungulculafa (L)Walp. 

Paspalum dhatatumPodr. 


Sesban/a b/sp/nosa (Unn.) W.F. Wight 

[syn. Sesbanla aculeata (Wild.) Poir]
 
Festuca ect/or L. 

[syn. F. awmrvnacoa]
 
Fastuca pratens/s Huds. 
AlopecuruspratenssL 
Neonotonla wtghflI 
(syn. Glydne w/ghli or avanka]
 
Wgna mungo (L.) Hepper 

[syn. Phaseolus mungo L.]
 
Bouteloua gradl/is (HBK) Lag. ex Steud. 

Parcummax'mum Jaq. 

Phudails tuberosaL var. stenoptem 

(Had) A.S. Hltchc.
 
Leptochoa fusca (L.) Kunth 

[syn. D/pLachne fusca Beauv.]
 
Lablab putpureus (L) Sweet 

[syn. Do//chos lab/ab L]
 
Eragrost/s sp. N.M. Wolf 

Astraalusc/cerL. 

Selaa /tlca(L) Beauvols 
Penisofum gloucum (L)R. Br 

Shoot DW 

Shoot DW 


Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 

Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 

Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 

Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 
Shoot DW 

Shoot DW 

Shoot DW 

Shoot DW 
Shoot DW 
Shoot OW 

Shoot OW 

Shoot DW 
Shoot DW 
Shoot DW 

Shoot DW 

Shoot DW 

Shoot DW 
Shoot OW 

Dry matter 
Dry matter 

2.0 
-

-
6.0 

-

6.9 

-


1.8 

-

-

-

-

-

1.5 
1.5 
.-

1.5 
-
1.5 
1.5 
-
-
1.8 
2.5 
-

-

3.9 

-
1.5 
-

-

-
-
4.6 

-

-

2.0 
-

-
-

7.3 
-

-
7.1 
-

6.4 
-

9.6 
-
-
-

-
-
12 
5.7 
-

12 
-
12 
12 
-
-

7.4 
11 
-

-

5.3 

-
9.6 

-

-

-

7.6 

-

-

8.4 
-

-
-

MS 
T 

T'
 
MT
 
MS 
T 

MS 

MS 
M'T 
MT
 
MS
 

MS
 
MT 
MS 
MS 
MT 

MS
 
MS"
 
MS 
MS 
MT 
MS 
MS 
MS 
MS" 

MT 

MT 

MT, 
MS
 
MS
 

S 

MS 
MT
 
MT
 

T 

MS 

MS 
MS" 

MS 
MT 
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Tolerance Thrs"d 0 Slope (% 
Common name Botanlci nameb based on: (EC.)dS/m per dS/m) Raingd 

Oatgras, tal Arrhenatheum elatus (L.) Beauvolsaox Shoot DW - - MS" 
J. Pres & K. Presl
 

Oats ( age) Avena sadva L. Straw OW - - T
 
Orcthardgrass Dactyl/s glornerata L. Shoot DW 1.5 6.2 MVS 
Pank.grass, blue Pan/cur anJdota/e Retz. Shoot DW - - MS" 
Pigeon pea Ca/anus caan (L) Huth Shoot DW S 

(syn. C. Indlcus (K.) Spreng.] 
Rape (forage) Brass/ca napus L. - - MT
 
Rescuegrass Lhonwus un//ao/des HBK Shoot DW 
 - - MT 
Rhodesgrass Clods Gayana Kunth. Shoot DW  - MT 
Rye (orage) Socale coreals L Shoot DW 7.6 4.9 T 
Ryegrass, Italian Lolurm mu/florumLam. Shoot DW  - MT
 
Ryograss, porernal Loftm porenno L Shoot DW 5.6 7.6 MT
 
Ryograss, Wimmera L rIgIdum Gaud. 
 - - MT
 
Saljtgrass. desert D/s~cdVi/ spIcta Shoot DW -
L.vat. stricta (Torr.) Bede - T
 
Sesbanla Sesbanla oxaltata(Raf.) V.L. Cory Shoot DW 2.3 7.0 MS
 
Sirsto Macrptllumatroputpureum (DC.) Urb. Shoot DW - - MS
 
Sphaorophysa Sphaorophysa salsuda (Pall.) DC Shoot DW 2.2 7.0 MS
 
Sudangrass Sorghum b/color Woench 2.8 4.3 MT(L) Shoot DW 

[syn. S. rudanense(Piper) Stapfj
 
Timothy Pteum pratonse L. Shoot DW - - MS
 
Trefoil, big Lotus poduncutatus C Shoot DW 2.3 19 MS 
Trefoil. nan'owleaf L comtcUtatus vat tenuJlfol/um L. Shoot DW 5.0 10 MT 

blrdsfoot 
Trefoil, broadleaf L.co'cudaftus L. vat arverns (Schkuhr) Ser.ex Shoot DW - - MS
 

birdsfoot DC
 
Vetch,common Wda angustfbila L Shoot DW 3.0 11 MS
 
Wheat (forage)l Ttlicuin aestIvum L. Shoot DW 4.5 2.6 MT
 
Wheat Durum (forage) T. turpidum L var durum Desf. Shoot DW 2.1 2.5 MT
 
Wheatgrass, standard Agropyron slb/rcum(WIId.) Beauvols Shoot DW 3.5 4.0 MT
 
crested
 

Wheatgrass, fairway A crstatum (L.) Gaortn. Shoot DW 7.5 6.9 T 
crested
 

WhatgMss, A.Intermed/um (Host) Beauvols Shoot DW  - MT 
Intermediate 

Wheatgrass, slander A trachycaulum(Unk) Malta Shoot DW - - MT 
Wheagrass, tall A olongatum (Hon) Bauvds Shoot DW 7.5 4.2 T 
Whatgrass, western A sml/ Rydb. Shoot DW - - MT
 
Wldrye, AItal Elyrnus anguslus Tin. Shoot DW - - T
 
Widrye,beardless E. Mttco/des Bucid. Shoot DW 2.7 6.0 MT 
Wldrye, Canadian E. canadensIs L Shoot DW - - MT 
Wldrye, Russian E. /uncous Fsch. Shoot DW - T 

Vegetables and fruit crops 
Artichoke Cynara scdoymus L Head yield - - MT* 
Asparagus Asparagus offidnal/s L Spear yleld 4.1 2.0 T 
Bean, oommon Phasolus wigarlsL Seed yitld 1.0 19 S 
Beaut, lima P. lunatus L. Seed yield - MT"-
Bean, mung Wgna radata (L) R. W lcz Seed yield 1.8 20.7 S 
Cassava Man/hot esculntaCrantz Tuber yield - - MS 
Beet, red' Beta vulgar/s L Storage root 4.0 9.0 MT 
Broccoli Brassca o/ercea L (Botryls Group) Shoot FW 2.8 9.2 MS 
Brusael Sprouts B. o/eracea L (Gemmlfera Group) - - MS' 
Cabbage B. oloraceaL. (Capitata Group) Head FW 1.8 9.7 MS 
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Tolerance Threshold' Slope (% d 
Common name Botanical nameb based on: (EC.) dS/m per dS/m) Ratdr
 

Carrot Daucus carets L Storage root 1.0 14 S
 
Cauliflower rassica o/eracea L (Bo~ryts Group) - - MS
 
Celery Aplum gravedoens L. var dlce (Mil.) Pers. Petole FW 1.8 6.2 MS
 
Corn, Pwoet Zea mays L Ear FIW 1.7 12 MS
 
Cowpe Vgna unguk-ulata (L.) Wap. Seed yield 4.9 12 MT
 
CucJmber Cucunis safvus L Fnrdt yield 2.5 13 MS 

Eggplant Solanum me/ongena L var esculkntum Noes. Fruit yield 1.1 6.9 MS 
Garlic Allum sathvm L. Bulb yield 1.7 10 MS 
Gram, blac Wgna mungo (L.) Hopper Shoot DW - - S 
or Urd bean [syn. Phasoolus mungo L.) 
Kale Brasscs o/oraceaL. (Acephala Group) - - MS 

Kohlrabl Brasslca oloracea L. (Gongylodes Group) - - MS 
Lettuce Lactuca sadva L Top FW 1.3 13 MS 
Muskmelon Cucumls me/o L. (Ratlculatus Group) Fruit yield 1.0 8.4 MS 
Olka Abe'moschus esculentus (L) Moench Pod yield - - MS 
Onion (bulb) Allum cepa L Bulb yield 1.2 16 S 
Onkon (seed) Seed yield 1.0 8.0 MS 
Parsnip Pa3bhlnca sadva L - - S* 
Pea Pisum stfvum L Seed FW 3.4 10.6 MS 
Pepper Capskum annuum L Fruityield 1.5 14 MS 

Pigeon pea Cafanis calan (L) Huth Shoot DW - - S 
[syn C.Ind/cus (K.) Spreng.] 

Potato Solanumruberosum L Tuber yield 1.7 12 MS 
Pumpldn Cucudita popeL. var Pope - - MS. 

Purslane Poitulaca o/eracea L. Shoot FW 6.3 9.6 MT 
Radish Raphanum sarivus L. Storage root 1.2 13 MS 
Spinach Sp/nada o/eracoa L. Top FW 2.0 7.6 MS 
Squash, scallop Cucurta opepaL. var mekoepo (L) Alef. Frut yield 3.2 16 MS 
Squash, zucdhnl C. pope L va meloppo (L.) AJef. Frityield 4.7 9.4 MT 
Strawberry Fragada x Ananassa Duch. Fruit yield 1.0 33 S 
Sweet potato Ipomoeabatlaws (L.) Lam. Fleshy root 1.5 11 MS 
Tepary been Phase, , s acufto3/us Gray - - MS. 

Tomato Lycopersloonlycoperslcum (L) Karst ex Farw. Fruit yield 2.5 9.9 MS 
[syn. Lycoperslcon oscutentum MY.)
 

Tomato, cherry L lycopersIcumvar. Ceraz.formo(Dunal) Aef. Fruit yield 1.7 9.1 MS
 

Turnip Brass/ca rapaL. (Rapitora Group) Storage root 0.9 9.0 MS
 
Turnip (greens) Top FW 3.3 4.3 MT 
Watermelon CtruIus lanatus (Thunb.) Malsum. & Nakai Fruit yield - - M 

Winged bean Psophocarpus totragonolobus L. D.C. Shoot DW - - MT 

'These data serve only as a guideline to relative tolerances among crops. Absolute tolerances vary, depending on climate, 

sofl condltlons, and cuitural practices. Source: Maas and Grattan (1994).bBotanlcal and common names lollow convention of Hortus Third (Uberty Hyde Baley Hortoodum Staff,1976) If possible. 
cIn gypsiferous soils, plants will tolerate EC.'s about 2 dS/m higher than Indicated. 
dRatings are deftned by the boundarlos In Figure 2. Ratings with an * are estimates. 
Les tolerant during seedling stage, EC. at this stage should not exceed 4 of 5 dS/m.tGrain and forage yields of DoKab XL-75 grown on an organic muck soil decreased about 26% per dS/m above a 
threshold of 1.9 dS/m (Hoffman et a)., 1983). 

OBecauso paddy rice Is grown under flooded conditions, values rafer to the electrical conductivity of the soil water while the 
plants are submerged. Loss toigrant during seedling stage.

hSesame culevars, Sesaco 7 and 8, may be more iolera, than Indicated by the S rating. 
Sensitive during germination and emergence, EC. should not exceed 3 dS/m. 

; Data from one cultivar, "Probred'. 
'Averago of sevoral CativaS. Suwannee and Coastal are about 20% more tolerant, and common and Greenfield are about 

20% less tolerant than the average. 
Average for Boer, Wlman, Sand, and Weong cultivars. Lehmann seems about 50- more tolerant. 
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Table 2. Salt tolerance of woody crope. 

Common anie Boti nameb 

Akond Prunus duLxs (MI.) DA. Webb 
Apple Malus sytvestrs Mil. 
Arxlcot Prunus anrenlaca L 
Avocado Persoa amer/cana Ml. 
Banana Musa acumlnataColla 
Blackberry Rubus mopetaus Doug. ex Hook 
Boys6nberq Rtbus ,wiJnusChain. and Schlechtend 
Castorbean Ric/nus cornmunls L 
Chedmoya Annona chodmoaMll. 
Cherry, sweet Prunus avium L 
Chor, sand Prunus besseyfL, H. Belay 

Coconut Cocos nucifera L 
Currant PR/bes sp. L 

Date palm Phoen/x dacOfofe-. L. 
Fig Fkluscaflca L. 
Gooseberry RIbas sp. L 

Grape OIts v/n/fera L. 
Grapefruit Citrus xpam'ads Macf ,y 
Guava PtkIdum guaLava L 

Guayule Panhon/um argontatum A.Gray 

Jambolan plum Syzyglum cumin/ L. 
Joloba S/mmonds/a chlnensis(Unk) C.K. Schneld 
Jujube, Indian Zz/phus maur/t/ana Lam. 
Lemon C/tus Mmon (L.) Burm. I. 
Ume Citrusaumnt/ffoa (Christm.) Swingle 
Loquat ErlobotyaJaponica(Thunu. IJndl. 
Macadamla Macadam/a Integrifo/la Nian ARpt6ie 
Mandarin orange: Citrus redcu/ata Blanco 
tangerine 
Mango Manglfera ndca L 
Natal plum Car/ssa grand/flora (E.H. Mey) A. D.C. 
Olive O/ea europaea L 

Orange Citrus s/nensis (L.) Osbeck 
Papaya Carka papayaL. 

Passion fruit Pass/flora odulls Sims. 
Peach Ptunus pers/ca (L.) Batsch 

Per Pyrus communis L. 
Pecan Carya //nolnensis (Wangenh.) C. Koch 

Persimmon Dospyros vr'n/ana L. 
Finneapple Ananas comosus (L.) Menill 
Pistacho PRstacavera L. 
Plum; Prune Prunus domesdca L. 
Poenagranate Pun/ca rjranatum L 

Tderance
based on: 

Shoot growth 

Shoot growth 
Shoot growth 
Fruit yield 
Fruit yield 
Fruit yield 

Follar Injury 
Follar Injury 
Follar Injury, 
stem growth 

Follar Injury, 
stem growth 
Fruit yield 
Plant DW 

Shoot growth 
Fruit yield 
Shoot & 
root growth 
Shoot DW 
Rubber yield 
Shoot growth 
Shoot growth 
Fruit yield 
Fruit yield 

Follar Injury 
Seedling growth 
Shoot growth 

Fllar Injury 
Shoot growth 
Seedling growth 
Fruit yield 
Fruit yield 
Seedling growth 
Follar injury 

Shoot growth, 
Fruit yield 

Nut yield, 
trunk growth 

Shoot DW 
Shoot growth 
Fruit yield 
Shoot growth 

Threshold'
(EC.) 

Slope % 
per dS/m Ratingd 

dS/m 
1.5 19 S 
- - S 
1.6 24 S 
- - S 
- - S 
1.5 22 S 
1.5 22 S 
- - MS 
- - S 
- - S 
- - S 

- - MT 
- -- S 

4.0 3.8 T 
- - M'I 
- - S" 

1.5 9.6 MS 
1.2 13.5 S 
4.7 3.8 MT 

8.7 11.6 T 
7.8 10.8 T 
- - MT 
- - T 
- - MT 
1.5 12.8 S 
- - S7 
- - S 
- - - MS* 

- -S* 

- - S 
- - T 
- - MT 

1.3 13.1 S 
- - MS 

- - S* 
1.7 21 S 

- - S" 

- - MS 

- - S, 
- - MT 
- - M 
2.6 31 MS 
- - MS 
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Tolerance Threshold Slope % 
Common name Botanical nameb based on: (EC.) per dS/m Ra ngd 

dS/m 
Popinac, white Leucaena ucocepaWa (Lan.) do Wt Shoot DW - - MS 

[syn. Leoucaen glauca Benth.] 
Pummelo C/Mis naxrma (Burn.) Follar Injury - - S 
Raspberry Rubus Jdaeus L. Fruit yield - - S 
Rosa apple SyzyglumJanbos (L) A)ston Follar Injury - - S 
Sapote, white Casknoroa odulsUave Fllar Injury - - S 
S-..let wistoria Sesbanla grandflora Shoot DW - - MT 
Tamarugo PrI'sofis tamWugo Pil. Observation - - T 
Walnut Juglans spp. Foliar Injury - - S" 

'These data so've only as a guidollne to relative tlerances among crops. Absolute tolerances vary, depending on dlimate, 
soll condltIons, and cultral practices. The data are applIcable when rootstocks are used that do not accumulate Na or 
Cl rapidly or when these Ions do not predominate In the soil. Source: Maas and Grattan (1994).
Botanical nd common names oliow the convention of Hortus Third (Uberty Hyde Bailey Hortodum Staff, 1976) where
 
possible.


cIn gypsiferous soils, plants will boerate EC.'s about 2dS/m higher than Indicated. 
dRatings are del ned by the boundaries in Figure 2. Ratings with an are estimates. 

1 	0
 

00
 

YIELDS UNACCEPTABLELU 60 FOR MOST CROPS 

0 

40-
LU 

w, 20 
rMODRATELY MODERAT ELY
 

SENSITIVE SENITIVE TOLERANT TOLERANT
 

5 10 	 15 20 25 30 35 

ECe, dS/m 

Fig. 2. Divisions for classifying crop tolerance to salinity. 
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The salt tolerance of trees, vines, and other woody crops is c( _nplicated 
because of additional detrimental effects caused by specific ion toxicities. 
Many perennial woody species are susceptible to foliar injury caused by the 
toxic accumula ion of Cl"and/or Na*in the leaves. Because different cultivars 
and rootstocks absorb Cl"and Na* at different rates, considerable variation 
in tolerance occ-urs within an individual species. In the absence ofspecific-ion 
effects, the salt tolerance data for woody crops are reasonably accurate. 
Because of the cost and time required to obtain fruit yields, tolerances of 
several crops are based on vegetative growth. In contrast to other crop 
groups, most woody species are salt sensitive, even in the absence ofspecific
ion effects. Guayule (Parthenium argentatum A. Gray) and date palm 
(PhoenixdactyliferaL.) are relatively salt tolerant and olive (Olea europaea 
L.) and a few others are believed to be moderately tolerant. 

SPRINKLER-INDUCED FOLIAR INJURY 

The salt tolerance data in Table 1 apply to crops irrigated with surface 
methods, such as furrow or basin-type flooding. Sprinkler-irrigated crops 
are subject to add'tional damage from salt spray on the foliage (Maas, 1985). 
Salts may be directly absorbed by the leaves, resulting in injury and loss of 
leaves. In crops that normally restrict salt movement from the roots to the 
leaves, foliar salt absorption can cause serious problems not normally 
encountered with surface irrigation systems. For example, compared to 
nonsaline water (EC = 0.6 dS/m), water with an EC = 4.5 dS/m reduced 
pepper (Capsicumannuum L.) yields by over 50% when applied by sprinkler, 
but ,nly 16% when applied to the soil surface (Bernstein and Francois, 1973). 

Unfortunately, no information is available to predict yield losses as a 
function of salinity levels in sprinkler irrigation water. Table 3 lists some 
susceptible crops and gives approximate salt concentrations in sprinkler 
water that can cause foliar injury. The degree ,; injury depends on weatber 
conditions and water stress. Fcr instance, leaves may contain excessive 
levels of salt for several weeks without any visible injury symptoms and then 
become severely burned when the weather becomes hot and dry. 

Saline irrigation water will assumably reduce yields of sprinkled crops at 
least as much as those of surface-irrigated crops. Additional reductions in 
yield could be expected for crops susceptible to sprinkler-induced foliar 
injury. Sorghum accumulates salt very slowly through the leaves and is 
relatively tolerant cf saline sprinkling waters (Maas, 1985). No data are 
available to judge the sensitivity of pearl mllet. 
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Table 3. Relative susceptibility of crops to foliar injury from saline sprnkluhg 
waters.' 

" 
Na orCl concentration (mol m ) causing foliar injuryb 

<5 5-10 10-20 >20 
Almond Grape Alfalfa Cauliflower 
Aprcot Pepper Barley CoUon 
Citrus Potato Corn Sugarbeet 
Plum Tomato Cucumber Sunflower 

Safflower 
Sesame 
Sorghum 

aSuscepbillty based on direct accumulation of salts through the leaves. Sow ce: Maas aoid Grattan (1994).Follar Injury Is Influenced by cultural and environmental conditions. These data are presented only as general 
guldellnos for daytime spriniding. 

ENVIRONENTAL INTERACTION 

Generally, salt tolerance data are only valid for the climatic conditions in 
which the data were obtained. Temperature, relative humidity, and air 
pollution all significantly affect plant responses to salinity. Most crops 
tolerate more salinity stress if the weather is cool and humid than if it is hot 
and dry. The combined effects of salinity and conditions of high evaporative 
demand, whether caused by high temperature, low humidity, wind, or 
drought, are more stressful than salinity alone. Because climate has a 
pronounced effect on plant response to salinity, the time of year salt toler
ance experiments are conducted can affect the outcome. For example, if the 
salt tolerance of cool-season vegetabie crops was assessed in hot, dry cli
mates, results may underestimate the level of salinity they can tolerate 
when grown in their normal environment, which is cooler with a lower 
evaporative demand. Conversely, crops tested in cooler and damper (high 
humidity) environment than they normally grow in would appear more 
tolerant than normal. 

Air pollution, which is a serious problem around industrial and urban 
areas, increases the apparent salt tolerance of oxidant-sensitive crops. 
Ozone, a major air pollutant, decreases the yield of some crops more under 
nonsaline than saline conditions. Consequently, air-polluted areas should 
be avoided when evaluating the response of crops to soil salinity stress. 
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SUMMARY
 

Salt tolerance ratings cannot provide accurate estimates of actual crop
yields that depend on many other growing conditions, including weather, 
soil type and fertility, water stress, insects, and disease. The ratings are 
useful, however, in predicting how one crop might fare relative to another 
on saline soils. As such, they are valuable aids in managing salinity problems 
in irrigated agriculture. 
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ABSTRACT 

In South and Southeast Asia, 23 m ha of land suited to rice lie idle because of soil 
problems. Among them are saline, alkali, acid sulfate and peat soils. Aulde from 
these soils that have an array of stresses for crop growth, various soils with only 
one major stress, either a nutrient deficiency or toxicity, are found. 

Rice, being a semi-aquatic plant has been able to benefit from hydrological 
conditions alleviating certain soil atresses to develop some degree of tolerance 
during its evolutionary process. Cultivars with high level of tolerance to soil 
stresses are mostly traditional type with poor plant structure and susceptibility to 
pests and diseases. Their yielding ability must be improved while retaining their 
adaptability to different soil and nutritional stresses. Using laboratory, green
house and field screening techniques at the International Rice Research Institute 
(IRRI), about 200,000 rice cultivars and breeding lines for tolerance to soil toxici
ties tmd nutrient deficiencies. Materials identified as tolerant have been success
fully used as parents in hybridization programs at IRRI and national programs. 
Availability of donors and rapid exchange of materials through the International 
Network for Genetic Evaluaticn of Rice (INGER) coordinated by IRR , have en
couraged scientists to intensify breeding through hybridization and selection. 

INTRODUCTION 

The need for more food for a rapidly expanding population, scarcity of 
arable lands and high cost of energy necessitate expansion of total world 
cultivation area to include lands lying idle due to soil problems. Saline, sodic, 
acid sulfate, and organic soils occupying about 58 m ha in South and 
Southeast Asia, 23 m ha of which are potential areas for adverse soils-toler
ant rice cultivars (Boje-Klein, 1988). The largest potential areas for saline 
and sodic soil-tolerant vpxieties occur in India and Pakistan, those for acid 
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sulfate soil-tolerant cultivars in Vietnam, and those for organic soil-tolerant 
cultivars in Indonesia (Table 1). 

Saline, alkaline, acid sulfate and peat soils (Histosols) are characterized 
by an array of adverse properties for the cultivation of crops. The major
streises associated with problem rice soils are listed in Table 2. Some ofthese 
problems can be alleviated by breeding, some are more conveniently cor
rected by soil amendments. 

Salinity is the main obstacle to high rice yields in coastal areas in the
humid tropics and in arid and semiarid areas where evaporation exceeds
precipitation. Saline soils are those that have an electrical conductivity in 
the saturation extract (ECe) exceeding 4 dS/m at 298K (U.S. Salinity Labo
ratory Staff, 1954). 

Saline soils vary widely in their chemical and physical properties. The pH 
ranges from extremely acid in saline acid sulfate soils to alkali in saline sodic 
soils, organic matter content from very low to peaty; and nutrient status is
varied (van Breemen, 1976; CSSRI, 1979; Ponnamperuma and Bandyopad
hyay, 1980). 

Alkali soils contain sufficient exchangeable sodium to depress plant
growth. The sodium adsorption ratio (SAR) of the saturation extract exceeds 
15 and the pH is usually above 8.5. FAO/UNESCO (1973) grouped rice as 

Table 1. Estimates of areas of adverse soils in South and Southeast Asia suited to 
rice cultivation. 

Area (million ha)

Saline Sodic Acid Peat


Country soils 
 soils sulfate soils soils Total
 
Bangladesh .
 0.1 s 0.1 
Brunei s s 0.2 0.2 
Myanamar 1.0 s s s 1.0 
Kampuchea 0.1 - 0.3 s 0.4
 
India 2.8 
 2.5 p - 5.3 
Indonesia p - p 10.0 10.0
 
Malaysia s 
 p 0.2 0.2
 
Pakistan 2.1 
 0.5 - 2.6
 
Philippines p a 
 a
 
Sri Lanka 0.1 a 
 0.1 0.2
 
Thailand s 
 0.3 s a 0.3 
Vietnam 0.1  26 0.1 2.8
 
Total 
 6.2 3.3 3.0 10.6 23.1 

a areas are less than 0.1 millon hectares; p - overlapping with other adverse oils; - not exising. 
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Table 2. Some soil types and amcmlated stresses. 
SOIL TYPE 

Saline Sodic Acid Acid sulfate Peat Aerobic(upland) 
arid acid coastal 

Stress sal sal &soft- p<7 pH>7
Salinity.... 

: coast peat Inland acid Inland coast acid cav 

P deficiency ...... 
Acidity..... 
H2S toxicity 
Fe toxicity 
A] toxicity ... 
Mn toxicity 
Fe deficiency * -
Zn deficiency * * 

,igh pH 
ESP>15 * 

B toxicity . 
Org. toxicity . 
N deficiency 
K deficiency . . . 
Si deficiency 
Low base * 

*= associated stress 



moderately tolerant to alkalinity. Most of the growth limiting factors are 
alleviated by flooding, but Zn deficiency remains severe and P deficiency
increases with progressing reclamation and cultivation. 

Acid sulfate soils are characterized by a pH <4.0 due to sulfidic/sulfuric
materials. Though flooding alleviates some growth limiting factors, Fe 
toxicity and P deficiency remain as serious problems. 

Peat soils are characterized b the presence of a surface layer at least 30 
cm thick containing 30% or more, if the mineral fraction is clay, or 20 % if 
clay is absent. Rice on peat soils suffers from N, P, K, Cu, Zn, and Mo 
deficiencies. 

Phosphorus deficiency limits rice yields on Ultisols, Oxisols, acid sulfate 
soils, Andosols, and some Vertisols (De Datta, 1981). A large proportion of 
P depleted by wetland rice comes from the native P content of the soil, and 
this should be replenished primarily through inorganic P fertilizers (Sanyal
and De Datta, 1991). P deficiency has been identified as the major nutrient 
deficiency on the 20 m ha cultivated to upland rice (Arraudeau, 1985).
Phosphorus deficiency occurs even if the P availability appears to be ade
quate because of the various interactions (pH, Eh, clay humus, Al, Ca, Fe,
Mn, Zn content, temperature, and soil moisture content).Because P is 
deficient in almost all problem soils, some tolerance to P deficiency is 
essential for cultivars to be grown in these soils. The yield advantage of 
tolerant modern cultivars is often dramatic in P deficient soils (Table 3). 

Zinc deficiency is the most common nutritional deficiency of wetland rice 
secondary to N and P deficiency. It is a limiting factor on calcareous soils,
sodic soils, sandy soils, peat soils and regardless of pH on continuously wet 

Table 3. Yield advantage 6f tolerant modern rices on problem soils in farmer's 
field in the Philippines, 1977-1988. 

Total number Moan yield 
Farmer TolerantStress Tests Sites Rices rices rices (fla) DIff. 

salInity 50 20 120 1.4 3.4 2.0 
A kaility 8 2 103 0.8 3.4 2.6 
Iron toxicity 22 4 104 2.2 4.1 1.9 
Poatlness 33 6 103 1.3 3.2 1.9 
P deflcency 24 336 4.92 2.2 2.7 
Zn defldency 46 11 411 1.8 4.4 26 
B toxicty 5 34 3.01 1.1 1.9 
Fe deficiency 13 1 89 0.9 2.8 1.9 
AJ/W toxiclty 10 44 3.03 1.2 1.8 
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soils (IRRI, 1971; 1972). Intensive screening and breeding has resulted in 
the high tolerance of all IRRI's late elite lines. The yield advantage of 
Zn-efficient cultivars on Zn-deficient soils is as dramatic as for P efficient 
cultivars on P-deficient soils (Table 3). 

VARIETAL IMPROVEMENT FOR
 
TOLERANCE TO SOIL STRESSES
 

At present, cultivars with high level of tolerance to soil stresses are mostly 
traditional types (Table 4) They are low yielding due to poor plant architec
ture and susceptibility to pests and diseases. Their yielding ability must be 
improved while retaining the adaptability. Breeding programs designed 
specifically for adverse environments are essential. Basic needs of cultivar 
improvement research on soil stresses are: 

" understanding the constraints
 
" availability of cultivars with high stress tolerance
 
" adapted screening methodology
 
" knowledge of genetics and the mechanism of tolerance traits
 
" suitable breeding methodology and
 
" mechanisms for evaluating improved germplasm
 

IDENTIFICATION OF SOIL STRESSES IN RICE 

Visible scoring of chemical stresses is still an indispensable method of 
stress identification. Visual diagnosis is fast and does not require special 
equipment. The diagnostic criteria and related scoring for tolerance of rice 
to soil stresses that have been implemented at IRRI during the last decade 
have been published elsewhere (IRTP, 1988; Ponnamperuma, 1976). 

Table 4. Traditional cultivars with high level of tolerance to soils stresses 
Stress Cultivar 
Salinity Cheriviuppu, Damodar, Getu, Kalaraa 1-24, Nona Bokra. Nona Sail, Pokkali, SR26B 

P deficency Doc Phng Lun, Engkatek. Jhona 349. KDML 105. Palnai 23, SR26B 

Zn deficiency Getu, Madhukar, Nam Sa Gui 19, Pokkali, Ta-Pow-Gaew 161, Tica Phat 
Fe deficiency Azmil 26, Azucena, Dinalaga. Palawan, Pinulot 330 
Al/Mn toxicity Azucena. Dinalaga, Khao Daeng. Monolaya Palawan, Salumpikit 
Fe toxicity Banih Kuning, Banut. Cadung Go Gung. Dlvenddcri. Dunia, Engkatak, Ileratih Banda. Kuatik 

Putih, Obies, Mat Candu 
Alkalinity Beak Ganzas, Cheriviruppu, Damodar, Getu, Pokkaii 
Peatiness Bengawan, Beobson, Cepat, Kuatik Putih, LaYing, Lemo, Potal 
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To cope with large numbers of lines of the hybridizations at IRRI, the 
various and related stresses have to be amalgamated into broader groups,
representing the most crucial soil stresses and traits for tolerance. Since 
1969, more than 200,000 rices have been screened for soil toxicities and 
nutrient deficiencies. On average, about 15% of the entries have shown 
tolerance (Table 5). The proportion of tolerant entries is large because only
breeding lines that are expected to have tolerance are screened. 

Materials identified as tolerant have been successfully used as parents in 
hybridization programs at IRRI and in national programs. IRRI breeding
lines tolerant to acid sulfate soils have been released especially in Vietnam 
(Table 6) while the most tolerant modern cultivars have been developed in 
Sri Lanka and Colombia (Table 7). 

VARIABILITY OF AND RELATIONSHIP BETWEEN
 
TOLERANCE TO DIFFERENT STRESSES
 

Because rice has adapted to a wider range of environments than any other 
crop, potential variability with regard to soil stresses should be high.
Marked differences between cultivars in tolerance to various soil stresses 
have een reported (Akbar et al., 1972; Ikehashi and Ponnamperuma, 1978;
Fageria, 1985; Neue et al., 1990a). The frequency of scores, based on IRRrs 
standard evaluation system (IRTP, 1988), reveal a normal distribution for 
each of the stresses. The variability of tolerance within a cultivar may be 
very high too, as shown for salinity (Flowers and Yeo, 1981; Akita and 
Cabuslay, 1989). 

Table 5. Summary of screening for chemical stress tolerance, IMIM 1969-1992. 
No. entries Entries found tolerant 

Stress tested (No.) % 
Salinity 136,569 23,127 17
 
Alkalinity 33.158 
 4,712 1.
 
Peat soil 2.855 
 282 10 
Fe toxicity 7,161 605 8.4 
P deficiency 10,989 1,870 17 
Zn deficiency 23,442 2,026 8.6 
Fe deficiency 891 85 9.5 
Al or Mn toxicity 2,055 222 11 
B toxicity 664 140 21
 

Total 217,784 33,069 15
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Table . IRIU lines released as varieties due specifically to their tolerance to 
specific soil stress. 

Variety Country 
Yeer IRRI lines name given whore named Sdil stress 

1980 IR2823-399-5-6 NN2B Vietnam Adverse conditi In 
add sulfate soil 

1981 IR1416-131-5 Suakoko 12 Ubeda Fe txidty 

IR2071-825-1-252 IR36 PhllppInes pipe sesa 
Inda 

1982 IR2071-566-5--3 Pilippines stressIR42 MuA11ple 
Indonesia 
Malaysia 
Kampuchea 
Nigeria 

IR4570-83-3-3 NN5B Vietnam Add sifate
 
1985 IR5657-33-2-2.3 Citanduy Indonesia SalIri y
 
1987 IR8192-200-3-3-1 Lomaya Malaysia Fe bJdty
 

IR2151-196-3-1-3 IR2151 Vitnm Saline acd sulfate 
IR2153-26-3-5-6 IR2153 VI etam
 

1988 1R64 IR64 Indonesia Add peat
 

1991 1R11288-1-B-69-1 SungalIn Indonesia Add peat
 

Evaluation of the relationship between tolerance scores of different 
stresses revealed that salinity scores are positively correlated with scores 
for alkalinity (0.15), Zn deficiency (0.07), and peatiness (0.19). Other signifi
cant positive correlations were found between scores for Fe toxicity and Zn 
deficiency (0.08), between alkalinity and P deficiency scores (0.08), and 
between tolerance to P deficiency and Zn deficiency (0.12). The only signifi
cant negative correlations were found between Fe toxicity and salinity 
(-0.07) and between Fe toxicity and peatiness ( 0.16). 

Climatic factors affect soil stress tolerance in various ways. Most correla
tions between tolerance scores of different soil stresses are only significant 
for ratings that have been done in the dry season, when solar radiation is 
high and relative humidity is low. The positive correlation between salinity 
and Zn deficiency (0.10) and the negative correlation between salinity and 
Fe toxicity (-0.09) are only significant in the wet season. 

Vigor and lodging resistance are significantly correlated to scores ofstress 
tolerance. Vigor is positively correlated with tolerance to salinity (0.12), 
alkalinity (0.18), and P deficiency (0.06) but negatively correlated to Zn 
deficiency (-0.16) and Fe toxicity (-0.32). Lodging resistance, which is linked 
to plant height and strength of the culm and rooting is negatively correlated 
with tolerance to salinity (-0.10), alkalinity, (-0.12) Zn deficiency (-0.19) and 
Fe toxicity (-0.08). 

Nutrient stresses are caused by a wide range of synergistic and antago
nistic effects that hinder or stimulate uptake and/or metabolic processes. 
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Table 7. Adverse soil-tolerant rice cultivars" developed in national progr mu 
Cultivan Cotnizy of origin 

Salinity 
A69-1 Sri Lanka 
RP975-109-2 India 
BR 51-282-5 Bangladesh 
B2433-b-Kn-101-1-1 Indonesia 
CI00 India 
C2 India 
ROK 5 Sierra Leone 
PNL 5-1-1-1 India 
PNL36-184-3-2 India 
PNL 5-30 India 

Alkalinity 
RP 975-109-2 India 
BR 51-282-8 Bangladesh 
ROK 5 Sierra Leone 

Add Upland 
IRAT 144 Ivory Coast 
IRAT 104 Ivory Coast 
UPL Ri-5 Philippines 
UPR 103-80-1-2 India 
M55 Liberia 
GA 305 Indonesia 
ITA 142 Nigeria 
ITA 235 Nigeria 
ITA 116 Nigeria 
BG 35-2 Sri Lanka 
BPI Ri-6 Philippines 
B733C-167-3-2 Indonesia 

Acid Lowland 
BR51-120-2 Bangladesh 
BW 267-3 Sri Lanka 
BG 374-1 Sri Lanka 
BW271-1 SriLanka 
P1369-4-16M Colombia 
MRC 172-9 Philippines 
BW267-3 Sri Lanka 
B2149b-Pn-26-1 Indonesia 
MRC 172-9 Philippines 
P1274-6-8M-1-3M Colombia 
P1369-4-16M-1-2M Colombia 
P1391-6-I IM Colombia 

From Nursery Trials of the Internatdona Rice Testing Program (IRTP) 1962-1967, IRRI. Maila, Philippines. 
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The deficiency of one element may be induced by surplus of other elements 
and the toxicity ofan element may be caused by the deficiency of the others. 

The following nutrient interactions and their optimum ratios have been 
identified for rice: K/Na, Ca/Mg (1.0-1.5), Fe/Zn (5-7), Fe/Mn (1.5-2.5), P/Fe 
(10-20) and P/Zn (20-60). The interaction of nutrients is puzzling and 
detailed studies on these mechanisms in rice are needed. The importance of 
nutrient imbalances that prevent cultivars from expressing their maximum 
productivity potential are highly underestimated. 

Tolerance to salinity, P deficiency and Zn deficiency are the most crucial 
traits. Rices that reveal some tolerance to salinity, P deficiency and Zn 
deficiency are often found to be tolerant to multiple soil stresses. Cultivars 
1R36 and IR42 (Table 6) show outstanding performance on various adverse 
soils. The multiple stress tolerance of IR36 has likely contributed to its 
cultivation on almost 11 million ha worldwide (IRRI, 1982). 

For long term sustainabiity of rice cultivation, traits of higher nutri
ent/water efficiency might become more important than traits of higher 
nutrient exploration, especially in soils of low fertility. The multiple stress 
tolerant cultivar IR36, for example, is only moderately tolerant to P defi
ciency in terms of exploration, but its high P efficiency is crucial for its 
excelleut performance on adverse soils (Davalos, 1985). 

MECHANISMS OF CRUCIAL TRAITS
 
FOR TOLERANCE TO SOIL STRESSES
 

Salinity. Various studies have been conducted in recent years on the 
mechanisms ofsalinity tolerance in rice (Yeo and Flowers, 1982, 1983, 1984; 
Yeo et al., 1988; Flowers and Yeo, 1981; Fageria, 1985; Pandey and Saxena, 
1987; Akita and Cabuslay, 1989; Tsuchiya et al., 1987; Bal and Dutt, 1986; 
Neue, et al., 1990b). Except for the wild rice species Oryzacoarctata,all rices 
are glycophytes. Cultivar differences at the seedling stage are manifested 
only at rather moderate (50 mol m"3 NaCl) salt concentration and the time 
for 50% ofindividuals to die ranged from 9-60 days (Yeo and Flowers, 1984). 
Salinity tolerance increases with age but becomes low at flowering. 

Salinity damage is predominantly due to excessive Na ion uptake and Na 
accumulation in the leaves. Na ions are absorbed and translocated in the 
transpiration stream. Reduction of transpiration or increased water use 
efficiency increases salt tolerance of rices. The visual symptoms vary with 
salinity levels. At moderate salinity, leaf tips become white and older leaves 
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wither. At high salinity levels, growth is severely retarded, plants wither 
and die. Since rice is a glycophyte mechanisms of tolerance are directed to 
avoidance rather than tolerance of high salt concentrations in the tissue. 

Morphophysiological variables that affect salt tolerance of rice are re
stricted uptake, retention in roots, compartmentation in tb- shoot (accumu
lation in the stem, leaf sheath, older leaves), dilution by growth, cellular 
compartmentation, and metabolic tolerance (Yeo and Flowers, 1984; Akita 
and Cabuslay, 1989; Neue et al., 1990a). Excretion of salt by unicellular salt 
hairs is only found in the halophytic species Oryza coarctata (Bal and Dutt 
1986). Compartmentation (stem to lea leaf to leaf, leaf sheath to leaf blade) 
is a major mechanism of regulating Na concentrations in those tissues that 
perform essential metabolic reactions. Compartmentation may be linked in 
younger roots and leaves (Akita and Cabuslay, 1989). Younger roots do not 
differ in Na selectivity but show better K selectivity than older roots (Neue 
et al., 1990a). Older roots absorb more water and nutrients (Okajima, 1962) 
and supply more salt to older leaves. As a result, the net input of Na to the 
young top leaf is quite low. In many traditional salt tolerant cultivars, like 
Pokkali, salt concentrations in the tissue are also kept low by growth. Vigor 
growth and salinity tolerance are associa'ted with higher embryo and 
endosperm weight, providing a reliable tool for screening. Exceptions like 
IR42 derive salinity tolerance by its ability to keep the Na/K ratio lcw in the 
shoot and root. 

The relationship between the net transport of Na from the root and the 
resulting Na concentration in the shoot is determined by retention in the 
root, water accumulation in the shoot tissue, transpiration and growth rate. 
The low shoot Na contents of Pokkali is not due to better control of Na 
transport, but is directly attributable to the dilution effect of its rapid 
vegetative growth (Yeo and Flowers, 1984) and higher K-uptake resulting 
in low Na/K ratios in shoot and root. The correlation of salinity tolerance 
scores with vigor growth (positive correlation) and lodging resistance (nega
tive correlation) indicates that the combination ofthese tolerance traits were 
favored by natural selection pressure and domestication. The most salinity 
tolerant traditional cultivars like Pokkali, Nona Bokra, Patnai 23 emerged 
in the coastal belts of Southwest India and West Bengal which are prone to 
inundating seawater and flood periods. Traditional rices from inland salin
ity/alkalinity areas like Getu, Damodar, and Dasal are shorter, but have a 
higher Zn uptake ability. 

Most modern rice cultivarF are less salt tolerant although they may have 
a higher tissue tolerance than Pokkali cultivars. Tissue tolerance to salt is 
an important trait. Plants rjuvenated from cell culture with high tissue 
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tolerance were not aiways tolerant (Zapata and Abrigo, 1986). Akita and 
Cabuslay (1989) emphasized the importance of Na selectivity in roots and 
the leaf area per total dry weight (LAR). Most tolerant cultivars lowered 
transpiration by reducing the JAR with increasing salinity levels. Na uptake
and salt injury increased with increasing temperature or reduced humidity
due to increased transpiration (Neue et al., 1990b). 

Phosphorus Deficiency 

Because P plays a key role in the energetics of metabolism and biosyn
thetic reaction, P deficiency can affect plant growth in numerous wEys.
Defici 'mcy symptoms are often not easily recognized because plants may not 
show any leaf symptoms. Effects of P deficiency may resemble those of 
nitrogen deficiency. Stunted growth, suppression of tillering, shorter and 
erect leaves, and delayed flowering are common in rice. Older leaves may be 
darker or may turn purple. The partial productive efficiency of P for grain
is higher at early growth stages than at later stages, because P is needed for 
tillering (Yoshida, 1981). Furthxermore, if sufficient P is absorbed at early 
growth stages, it will be redistributed to growing organs. 

Since the bulk flow of solution to roots cannot account for P uptake,
interception of P by roots and P diffusion to the root are decisive fk't.rs for 
P uptake. Diffusion is dependent on the soil moisture content and the 
concentration gradient. Both the net movement of P, which is inversely
related to the path length of the concentration gradient, and the interception
is influenced by rhizosphere characteristics, root bulk and rooting pattern. 
For a given mass ofroot tissue, long and thin roots have larger surface area 
than short and thick roots that explore the same soil volume more efficiently
by reducing the mean diffusion path. Root exudates and gas release can 
change P uptake by modifying the pH, Eh, chelating reactions and energy
supply of bacteria. Associated rhizosphere characteristics have not been 
sufficiently established to serve as screening criteria. 

Average deficiency symptoms occur at concentrations below 0.5 mg P/L.
The reduction of tillers at low P concentrations in culture solution has been 
a good indicator for assessing tolerance to P deficiency in rice. Cultivar 
tolerance to P deficiency and tolerance to Al or Mn toxicity seem to be closely
related, since .1 toxicity causes P deficiency. Rices respond aiso differently 
to increased P supply. Some cultivars, tolerant to low P availability do not 
respond to addition of P fertilizer, while even some less tolerant cultivars 
outyielded the nonresponding ones after application of 25 kg P/ha. Both 
types of P responses are found in cultivars of different rice subspecies. The 
mechanisms Pxe unknown. 
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Very L. le information is availNble on traits and mechanisms associated 
with an increased physiological efficiency of P that would be more desirable 
for sustainable agriculture. The cultivar IR36 is a striking example of 
increased P efficiency (Davelos, 1985). 

Zinc Deficiency 

Zn deficiency is the most widespread micronutrient disorder in wetland 
rice soils with high organic matter content, high pH or with prolonged 
flooding. It can be induced through high P and Fe supply (Mengel and 
Kirkby, 1982), which reduces the translocation of Zn from the root to the 
shoot and within the tissue. Blasl and Mayr (1978) showed the increased 
uptake of Fe on acid upland soils induced Zn deficiency in maize. Addition 
of K can reduce Fe uptake on acid wetland soils (Tanaka et al., 1973) and 
alleviate induced Zn deficiency (Tanaka and Tadano, 1972). 

Zn deficiency leaf symptoms may start with chlorosis at the base of the 
youngest leaf.Brown spots appear on the older leaves and enlarge (De Datta, 
1981). Tillering and growth is retarded and flowering is delayed. Cultivars 
may not show any leaf symptoms at moderate stresses. Deficiency symptoms 
are more pronounced at high light intensity. Zn is an essential catalyst in 
the synthesis of auxin whose breakdown is escalated at high light intensity. 

Zn concentration of plant tissue is not always a reliable indicator for Zn 
deficiency. P/Zn and Fe/Zn ratios are better discriminators. Symptoms 
attributed to Zn deficiency in leaves with adequate Zn contents may there
fore be the result of P toxicity, as reported by Webb and Loneragan (1988) 
for wheat. Zinc deficient rice plants absorb divalent cations at the expense 
of monovalent cations, probably because of an increased production of a 
charge-sDecific carrier (Moore and Patrick, 1988). Tolerant c, 'tivars in
crease Zn translo-ation to the shoot and regulate Ca, Cu, Fe, Mg, and P 
transport in ord n to maintain balanced nutrient ratios with respect to Zn 
(Cayton et al., 1935). Zinc appliciLtion on moderately Zn-deficient soils leads 
to Zn toxicity and yield reduction in highly tolerant modern cultL-ars. 

Moore and Patrick (1988) reported that Zn deficiency reduces alcohol 
dehydrogenase (ADH) activities in rice and thereby decreases root alcoholic 
fermentation followed by a subsequent drop in ATP production. This effect 
would explain why Zn deficiency occurs in wetland rice during the early 
growth stage of wetland rice and is alleviated after draining. High ADH-ac
tivity is essential for anaerobic root metabolism until the aerenchyma 
formation provides adequate 02 transport to the submerged roots. Drainage 
increases both Zn availability and 02 supply for root respiraticn. 
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SCREENING TECHNIQUES
 

Laboratory, greenhouse, artificial field, and natural field techniques are 
used to detect genotypic differences for tolerance to soil stresses. Laboratory 
tests for salinity tolerance are confined to the germination stage (Pearson et 
al., 1966; Shafi et al., 1970; Barkat et al., 1971; Younis and Hatata, 1971; 
Bari et al., 1973; and Carlson et al., 1983). Greenhouse techniques for 
salinity tolerance allow the screening genotypes up to the maturity stage. 
Saline soil pots (De Datta, 1972), salinized culture solutions (Akbar and 
Yabuno, 1974; Yeo et al., 1990) and sometimes microplots (Janardhan and 
Murty, 1972) are used. 

Relative tillering ability under low and high available P conditions in both 
greenhouse (culture solution) and field conditions are used at IRRI to isolate 
P-efficient genotypes. P-deficient fields have also been used by other re
searchers (Ikehashi and Ponnamperuma, 1978; Majumdar et al., 1989). 

Among the several techniques available for screening for Al toxicity
tolerance (Howeler and Cadavid 1976; Martinez 1976; Polle et al., 1978), 
relative root length technique was found to be the best (Coronel et al., 1990). 

Reliable and repeatable screening methods are not available yet for 
isolating genotypes with tolerance to toxicities of Fe, hydrogen sulfide, and 
organic acids, and Zn deficiency. Even in culture solution, toxic levels of Fe 
vary from 10 to more than 500 mg Fe/L (Ishizuka, 1961; Tanaka et al., 1966)
and some cultivars do not produce leaf symptoms, even if growth is retarded 
by excess Fe (Jayawardena et al., 1977). At IRRI, a soil containing over 400 
ppm water-soluble Fe is used to evaluate tolerance during the seedling stage.
Field screening is most commonly used by breeding programs, but stress 
variability over both time and space is high and other nutritional stresses 
(P and K deficiency) usually found in Fe toxic soils complicate the screening 
process. 

A Zn-deficient soil near the IRRI Experimental Farm is used to screen 
breeding materials for Zn-efficiency. New solution culture techniques devel
oped at the University of Minnesota is presently being tested (P. Bloom -
personal communication). 

For multiple stresses such as rlkalinity, acid sulfate conditions, and 
organic acids and H2S toxicity in acid peat so'is, screening is conducted under 
naturally occurring field conditions. 
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TOLERANCE DONORS
 

Up to December 1992, IRRI has screened about 200,000 rice cultivars and 
breeding lines for tolerance to salinity, alkalinity, peatiness, Fe toxicity, P 
deficiency, Zn deficiency, Fe deficiency, Al/Mn toxicity, and boron toiricity. 
On the average, about 15 %are tolerant. Traditional cultivars with high
level of tolerance to soil stresses (Table 4) possess many undesirable traits, 
such as susceptibility to lodging, pests, and diseases, and low yield potential, 
The main objective of IBRI's problem soils breeding program therefore is to 
improve these donors so that national programs can utilize them directly as 
cultivars or in their hybridization work for incorporating any additional 
traits needed f,)r target environments. Some improved donors IRRI has 
developed so far are shown in Table 8. These possess high yielding charac
teristics and the same level of tolerance as in traditional cultivars. 

GENETICS OF STRESS TOLERANCE 

Fe toxicity tolerance is controlled by a dominant gene in one cultivar, but 
by a recessive gene in another (Abifarin, 1986). Another study indicated 
complex inheritance of this trait involving three genes, two acting in com
plementary fashion and the third in an inhibitoiy gene (Virmani, 1979). 

Additive as well as dominance effects were found for almost all plant traits 
that are directly related to salt tolerance (Akbar et al., 1986). Three grotups 
ofgenes were involved. Two groups ofgenes governing salinity tolerance was 
found in rice (Gregorio and Senadhira, 1992). 

The simple additive-dominance model could not fuiiy explain tolerance for 
P deficiency in rice (Davalos, 1985). Two major non-linked gent3 each 
controlling separately P absorption efficiency and P-utilization efficiency 

Table & Some impoved rice linea/culfivrm with tolerance to soil stresse. 
Stress Line/Cultivar designation 
Salinity IR4630-22-2-5-1-3, IR9884-54-3, 1R10198-66-2, IR10206-29-2, 

IR45427-2B-2-2-2B- 1- 1, IR46712-3B- 1-21- 1-2, TCCP266-2-49-B-B-3 
P deficiency 1R54, IR42, IR60, [R62, IR64, IR9764-45-2-2, IR51337-2B-9-2B-2-2 
Zn deficiency IR42, IR9764-45-2-2. IR8192-31-2-I-2 
Fe deficiency IR43, IR4432-52-6 
Al/Mn toxicity IR43, IR45. IR4432-52-6, IR5853-196-1-PI, IR7812-16-1-4 
Fe toxicity IR8192-200-3-3-1-1, IR9764-45-2-2, HR24637-
Alkalinity IR4595-4-1-13, IR8192-200-3-3-1-1, IR9764-45-2-2 

Source: Soil ana Water Scieoce DMsion, IRRI. 
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have also been detected (Gunawardena and Wijeratne, 1978). Multiple genes
showing epistatic interactions was found in another study (Majumder et al., 
1989). 

Zn-efficiency in rice is governed by three multiple genes (Afzal et al., 1980). 

The inheritance of Al toxicity tolerance is quantitative (Anjos et al., 1981). 

CULTIVAR REQUIREMENTS 

Soil stresses rarely occur alone. As a result, cultivars must possess
tolerance to more than one stress. Tolerance needed for different types of 
problem soils are summarized in Table 7. In addition to these, there are 
many other traits that determine adaptability and acceptability of rice 
cultivars. Salinity' and/or alkalinity-affected ricelands in temperate regions
require cold tolerant, high-yielding and japonica-type cultivars. Similar 
lands of arid and semi-arid regions of the tropics require short duration 
indica types. Cultivar requirements of other tropic areas are the most 
complex. Most ricelands with poor or problem soils are rainfed; growth
duration requirements range from 90 to 150 days, and photoperiod sensitiv
ity ranges from insensitive to highly sensitive. The majority of these lands 
are flood prone, thus requiring submergence tolerance and in some cases 
adaptation to stagnant flood depths as high as 3 m. Grain quality is the most 
important factor that determines acceptability. Intermediate or high amy
lose grain types are preferred. Some problern soil areas accept only red-peri
carp rices. The number ofdifferent types ofcultivars needed therefore is very 
!arge. 

BREEDING STRATEGIES 

Based primarily on resources and maturity of breeding programs, differ
ent strategies are deployed to improve rice cultivars for adverse soils. 
Introductions of stress-tolerant rices will play a major role. The oldest 
recorded introduction of a salt-tolerant land race was Pokkali, from India to 
Sri Lanka in 1939, and it was recommended for cultivation in 1945 on saline 
ricelands of the west coast (Fernando, 1949). The International Network for 
Genetic Evaluation ofRice (INGER), coordinated by IRRI, plays a major role 
in the exchange of germplasm among rice growing countries. It has three 
nurseries designed specifically for adverse soils; namely, for P.cidity, salin
ity/alkalinity, and acid upland soils. 
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Pure line selection of lad races is still practiced in Cambodia, Thailand 
and Vietnam for acid .alfate soils tolerance. In the past, this strategy has 
contributed significratly to the development of salt tolerant cultivars par
ticularly in Banglr~desh, India, and Pakistan. 

Mutation breed. ng has been attempted for Al toxicity tolerance (IRRI,
1984), and salinit3 tolerance (Sajjad, 1990; Sinha and Bandyopadhyay, 
1984; Yadav, 1979). Heterosis breeding has great potential for developing
high yielding rices for adverse soils, since hybrids show enhanced tolerance 
(Akbar and Yabuno, 1975; Maoeljapawiro and Ikehashi, 1981; Senadhira 
and Virmani, 1987). 

Most adverse soil ricelands are cultivated only once a year. As a conse
quence, breeding progress is slow as only one generation of breeding mate
rials can be evaluated within a year, compared with 2-3 in other normal 
situations. Shuttle breeding is widely practiced to overcome the difficulty.
During the off-season, breeding materials are grown in another suitable 
location with or without selection for generation advancement. Breeding
materials are shuttled between loca?'ons and generation advancement is 
expedited. India deploys this technique within the country for salinity 
tolerance breeding. IRRI has shuttle breeding programs with Egypt, Korea,
and Thailand for adverse soils. The single-seed-descent method in green
houses with darkroom facilities is used to advance generations of photope
riod-sensitive breeding materials (Ikehashi, 1977; Jones, 1989). Somaclonal 
variants and F1 anther culture are techniques that also could accelerate 
breeding progress. Presently, there are some difficulties in using these oy,
indica cultivars. IRRI has developed an improved salt tolerant don'r 
through somaclonal variants of Pokkali, and several salt tolerant high
yielding lines developed by F1 anther culture are now in INGER nurseries. 

PROGRESS 

In spite of inadequate understanding of the genetics and mechanism of 
tolerance traits, substantial progress has been made in identifying and 
developing better rice cultivars for adverse soils. India has released 17 pure
line selections for cultivation on saline soils (Sinha and Bandyopadhyay, 
1984; IRRI, 1984). In Bangladesh, pure line selections Patnai 23, DA29, 
Rajasai (early) and Rajasail (late) are widespread in coastal saline areas 
(IRRI, 1984). Pure line selection Khao Dawk Mali 105 is still extremely
popular on acid sulfate and moderately saline soils of Northeast Thailand. 
This selection is now advancing rapidly into similar soils of Mekong Delta 
in Vietnam. 
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Breeding programs designed specially for adverse soils were rare about 
20 years ago. IR6-156-2 was found suitable for saline soils of Sind Province 
in Pakistan (Soomro and McLean, 1972). It is still being widely cultivated. 
A derivative of indica/japonica hybridization, Mahsuri, developed in Malay
sia, is a popular cultivar in some large areas of Bangladesh, India, Myanmar 
and Nepal having infertile and P and Zn deficient soils. The rice cultivar 
(IR42) has the largest adoption in stressed-soil environments. Moderate 
tolerance to salinity and Zn deficiency, good plant type, high yield potential 
and good grain quality have made IR42 the most acceptable cultivar for 
problem soils where stresses are moderate. It is widely grown in Indonesia, 
Philippines and Vietnam. 

Cultivars have also been bred specifically for problem soils. Ten cultivars 
tolerant to Fe-toxic soils and two for saline soils have been developed and 
released in Sri Lanka (P.E. Peiris - personal communication). Acidity toler
ant cultivar "Deepak", released in the Fiji Islands, was developed by hybrid
izing IR661 with a local cultivar Lalka Motka (Reddy et al., 1987). Kapuas, 
grown in tidal swunps of Indonesia, was developed for peaty, acid sulfate 
soils (Suhartini et ai., 1989). In 1992, Sungai Lilin (IR11288-B-B-69-1) was 
released for cultivation on acid sulfate soils of South Sumatra, Indonesia 
(C.P. Mamaril - personal communication). CSR10, a high yielding cultivar 
has been released in India for cultivation on inland saline-alkaline lands 
(Mishra et al., 1992). 

These and other cultivars being developed will help increase rice produc
tion in problem soils. Furthermore, these cultivars and associated technolo
gies will help to bring marginal lands under cultivation that are physiog
raphically and hydrologically suitable for rice production. 
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ABSTRACT
 

Western Canada has some 5.5 m ha of significantly acid arable soils, but very
little research on this topic was conducted during the 1966-1980 p, -iod, when the 
emphasis was on development of liming protocols suitable for all crop species. 
LUming costs are now very high and lime use is diminishing. The genetic tolerance 
approach to solving Canada's acid soil probleum was targeted in wheat by Keith 
Briggs in conjunction with physiological studies by GAreg Taylor, atarting in 1983. 
Existing Canadian Western Spring wheats are very senitive to aluminum toxicity,
but excellent tolerances were readily transferred into them by the backcross 
procedure, using tolerance sources from CIMMYT and Fast Africa, (mostly of 
Brazilian origin). Successes in this program include release of an aluminum toler
ant cultivar (Cutler) for Alberta, development of aluminum tolerant/sensitive 
near-isogenic sets (for genetic, physiological and agronomic studies), and the 
development of veveral new approaches to selection and evaluation ofaluminum 
tolerant materials. Physiological ctudies continue, targeted to understanding the 
physiological mechanisms of acidity tolerance, and the future isolation of toler
ante genei. Successes in the University of Alberta program are attributed to the 
use of a mc.Ridiscipllunry approach involving plant breeders, physiologists, soil 
scientists and geneticists. A special focu. an aluminum dose response curves of 
variable shapes in tole. ant genotypes has been initiated. Such differences are 
important in understanjing the suite of genetic mechanisms that govern plant 
tolerance, for devising the most efficient selection methodologies, and for consid
eration of adaptability to soil acidity variation within l fields.-ividual 

DEFINING THE PROBLEM IN NW CANADA 

Prior to 1965, soil acidity was not considered to be an important agronomic
problem in Alberta or NE British Columbia (McKenzie, 1973). McKenzie's 
PhD studies at the University of Alberta, and xitLdies of Penney (1973) drew 
attention to the extent ofsubsoil acidity in the region, and provided the first 
regional quantification of potential crop losses directly due to acidity. Yield 
reductions in field and greenho1se s'tIdie with barley and alfalfa were 
closely correlated with the amount of aluminum (Al) (soluble in 0.02 mol 
CaC12) in unlimed soil, suggesting that yield loss was largely attributable to 
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Al toxicity. When an array of Alberta barley cultivars were assayed for Al 
tolerance in hydroponics by McKenzie (1973) significant differences in 
tolerance were demonstrated. These differences were in general agreement 
with cultivar differences identified in acid soil testing systems, with and 
without lime remediation (Penney, 1973). For example, Olli. Betzes and 
Volla were consistently shown to have better tolerance to soils high in soluble 
Al than Gat and Conquest, and Betzes was often the best performing. 
Unfortunately, the interest in the region for exploiting potential cultivar 
differences did not extend beyond these studies, and McKenzie's recommen
dation to select for acid soil adapted barley cultivars for Alberta was never 
pursued. It is of historic note that Dr. Charlee Foy served as one of the 
examiners of McKenzie's thesis, as did the first author of this paper. 

Twenty years later it is interesting to compare McKenzie's recommenda
tions with the tolerance levels of current Alberta barley cultivars, and with 
the Ai tolerance array described in world barleys by Minella and Sorrells 
(1973). In 1993, our own laboratory tested current Alberta cultivars and. 
three moderately tolerant barleys (Antawtica 1, FM404, and PFC7802, 
assessed by Sorrells (1992), in the same Spirit River soil used by McKenzie 
and others. Comparisons were made to the local barley cultivars Harrington 
and Bonanza, to intolerant Katepwa wheat (the most widely grown Cana
dian cultivar), and to PT741, a very tolerant wheat cultivar developed at the 
University of Alberta. These results confirmed the findings of Sorrells 
(1992), but the barley tolerance levels did not approach those available in 
Al tolerant wheat cultivars (Figure 1). All current Alberta barley cultivars 
are quite intolerant of this particular Alberta acid soil, which was charac
t_,ri'zed in 1972 as Urey wooded, pH (Ca) 4.8, Al 53.8 ug g', Mn 2.4 ug g.', 

1CEC 23.5 meq 100 g", exchangeable Ca 4.0 meq 100g " , and base saturation 
25%. Neither of W. Canada's major barley breeding programs conduct 
testing on acid soil sites. Thus, Al tolerant W. Canadian barleys cannot be 
expected in the foreseeable future. Nonetheless, consideralble barley acreage 
is grown on acid soils, perhaps 1.5 m ha or more (author's estimate). 

The relative tolerance levels of different cereal crops wa already deter
mined in the literature (Foy et al., 1965) and was reconfirmed with Alberta 
acid soils. There is general agreement with the tolerance rankings in the 
literature for unselected crops, which is, in order from best to worst, rye 
(Secalecereale), oat (Avena sativa),common wheat (Triticumaestivum), and 
barley (Hordeum vulgare), and as reconfirmed by Bona et al. (1991) and 
Wheeler et al. (1993). No attention was paid in the 1960's to the prospect of 
improving Al tolerance in Canadian wheats for acid soils of NW Canada. 
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Figure 1. Seminal root length of barley cultivars after seven days growth in soils 
of pH4.7 and 6.7 (Mean of 5 plants x 4 replicates; ANT . Antarctica 1, FM 
- FM404, PFC - PFC7802, HAR . Harrington, BON = Bonanza, W-PT = 
PTM41 wheat, W-KT = Katepwa wheat. Standard error5.9). 

Throughout the 1965-1975 period, considerable agronomic field research 
was conducted in NW Canada to determine the best protocols for remediat
ing topsoil and subsoil acidity. The University of Alberta group, including
McKenzie, Penney, Hoyt, Nyborg, Robertson and others, was considered to 
be in the forefront of Canadian soil acidity work at the time, but development
of other interests led to the fragmentation of this group by the mid 1970's. 
Nevertheless, their research resulted in publication of a series ofAlberta soil 
acidity extension pamphlets for use by farmers, which describe the nature 
and extent of the problem, and recommended liming procedures (Robertson,
1992; Penney and Goettel, 1985; Anon, 1986). A generalized topsoil acidity 
nap for Alberta was also developed (Figure 2; Anon, 1986) that showed the 

severity or the acidity problem in northern regions, a patern generally 
associated -ith higher moisture regimes, and particular soil classifications. 
Current es imates conservat'vely place the acre age affected by soil acidity 
at 5.0 m hE in all of Canada, with 2.2 m ha of this located in W. Canada. 
Most of the ±":t'r acreage is located in Alberta and the Peace River block 
(Hoyt, 1979). Natural and management factors (particularly N fertilization) 
are contributing to further acidification over time (Penney, 1973; Robertson, 
1982; Malhi et al., 1991). The liming recommendations of the earlier ara, 
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Figure 2. 	Percentage of cultivatd acid soils with pH below 8.1 in various areas of 
Alberta. From Anon 1988. 

and management advice for maintaining high pH and favorable economic 
returns over time (Figure 3) have not changed, nor has there been much new 
field research in Alberta on the topic since then. Interestingly, the extent of 
liming in the Province has also declined markedly in recent years, especially 
since the Government removed the transportation subsidy for lime applica
tion (Figure 4, derived from Alberta Government Statistics, Agricultural 
Lime Freight Assistance Program). Under these conditions, improved ge
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Figure 3. 	Schematic of a typical liming program, indicating reliming require
ments over time as a result of acidification from cropping. From Robert
son 1982. 
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Figure 4. Agricultural lime use in Alberta, 1981-1990. A government subsidy for 
transportation of lime was removed in 1986. 
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netic tolerance to acid soils was an attractive alternative, but by 1980 
breeding programs had not yet adopted this challenge for NW Canada. 

CONVERGENCE OF INTERESTS AT
 
THE UNIVERSITY OF ALBERTA
 

Renewed research interest at the University of Alb.rta on aspects of Al 
tolerance developed during the early 1980's, with the start of Canada 
specific genetics studies by Keith Briggs, and the simultaneous estab
lishment ofGreg Taylor's stress physiology laborato-y. The complementarity 
ofthese two interests led 'to restearch funding from NSERCC through a series 
ofpersonal and joint operating, equipment and strategic grants. The history 
of the development of this joint collaboration, and the involvement of other 
researchers, is reviewed here. 

The Genetics and Breeding Componefi 

From 1981-1983 Keith Briggs was seconded as Senior Cereal Breeder to 
the Kenya Government cereal research program at Njoro. During this time, 
familiarity was obtained with the extent of soil acidity problems in many 
parts ofEast and Central Africa, including Western Kenya and Zambia. The 
potential to select adapted cultivars of wheat and triticale for these areas 
was noted. In. wheat, the adaptability to acid soils of W. Kenya for many 
entries fror. the CIMMYT shuttle program with Brazil was identified in 
collaboration with the E. Africa CIMMYT program. Several tolerant Kenyan 
and introduced cultivars were identified by greenhoupe screening in +/
limed conditions with Kenyan acid soils. ""his variability was later recon
firmed with other methods (Nyachiro, 1986, Nyacbiro and Briggs, 1993). 
Genotypes for potential use as parents in a Canadian breeding program were 
isolated, including Maringa, PF7748 (= Why dah in Zambia), Kenya Kongoni, 
and Romany. Following Dr. Briggs' return to Canada, the Al tolerance in all 
released Canacian cultivars was assessed by Zale (Zale and Briggs, 1988), 
the genetics of Al transference into Canadian cultivars was investigated, 
and comparison of selection methodologies was undertaken. The primary 
purpose for this work was to determine the extent of variability ibr Al 
tolerance avahoble in existing Canadian wheat germplasm, and to deter
mine whether these ncw Al tolerance sources would provide additional 
variability. The most significant finding from this work was that most of the 
impoe.tant current Canadian cultivars were sensitive to AJ in hydroponic or 
hemnatoxylin testing. Several of the older Canadian germplasm (eg. Kitch
ener, Chinook, Renown, Prelude, Garnet and Marquis) exhibited tolerance, 
but this had not been maintained in the newer cultivars derived from 
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Marquis, or in any Thatcher derivatives. It was hypothesized th2t Al 
tolerance in earlier cultivars may have originated through introductions 
from N. Europe, where acid soils prevail, but pedigree lineages on tolerance 
levels were inconclusive fbr this concept. Absence of specific selection for acid 
soil tolerance nevertheless led to los&of tolerance in Canadian Western Red 
Spring (CWRS) wheats. 

Exceptions to the above generalization were found, but only in the case of 
the newest cultivars of non-CWRS wheat quality type, which also possessed 
a substantial complement ofCIMMYT germplasm in their pedigree (eg. Pitic 
62, Fielder, HY320 and Norquay). Parents with Brazilian origin were 
normally identified in their pedigree. Zale's work reconfirmed the Al toler
ances of Romany, Kenya Kongoni, Maringa and PF7748, some ofwhich were 
then used as donor parents in crosses with significant Canadian cultivars 
(eg. Katepwa, Columbus, Oslo). In addition, Zale (1988) conducted a six 
parent, half diallel genetic study, using Thatcher and Park (sensitive),
Garnet, PF7748 and K. Kongoni (tolerant), and Alondra 'S' (reported by
Rajaram et al., 1981, to be intermediate). Evaluation ofseedling root lengths
of F2 and backcross lines revealed monogenic inheritance with dominant 
tolerance in some crosses. Varying degrees of dominance in the F, suggested
the possibility of multiple alleles for tolerance. Root regrowth analysis ofF 2
lines detected monogenic and digenic inheritance with ambi-directional 
tolerance classes within some families. Such cross-specific results are not 
uncommon in the literature, and suggest that the control of tolerance may
involve more than just one or two genetic mechanisms. Similar cross-specific 
responses were found by Nyachiro (1986) in his genetic studies involving
African germplasm. In the majority ofcases, and particularly in the breeding 
program, little difficulty was found in selecting Al tolerant lines from 
segregating populations, although there have been tolerant x tolerant 
crosses that gave rise to populations from which no tolerant plants were 
recovered (Nyachiro, 1986). 

During this work, we have used most of the reported techniques in the 
literature for assessing Al tolerance and have published a review describing
the merits of many ofthese methods (Briggs et al., 1992). We have observed 
that the results of genetic analysis are often dependent on the technique
used and the specific level of aluminum stress applied, as well as on the 
specific cross. Wheeler et al. (1993) discussed aspects of this issue. In field 
situationa in NW Canada, the extent of soil acidity and Al level may be 
variable within a field. Therefore, tolerance at various stress levels ir of 
agronomic importance. During the application of known methodologies for 
selection the following questions have come to the fore frontin the University 
of Alberta program. 
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1. In artificial selection systems using hydroponics or soil systems, is 
there a 'best' Al concentration at which to select, or are adaptability traits 
being by-passed because dose response curves are not being determined? 

2. Because acid soil adaptability traits other than Al tolerance may be 
involved (as speculated by many authors), is it appropriate to return to the 
'integrating' soil bioassay selection test as described by Bona et al. (1991), 
as now adopted for selection in a modified form at the University ofAlberta? 

3. In many cases only one or two genes are involved in tolerance. Why not 
develop near-isogenics for different tolerance sources in different, locally 
adapted, genetic backgrounds, for evaluating the dollar value ofAl tolerance 
in Alberta soils of different pH and Al content, for comparison to the cost of 
liming? Progress on development of theoe isogenics was described by our 
group in Canberra (1991, unpublished abstract) and in Kenya (Briggs et al., 
1991). 

Further progress on these three questions has required expansion of the 
collaborative approach with researchers in the disciplines of plant physiol
ogy, soil science and molecular biology. 

Selection Methods 

As reviewed in Briggs et al. (1992), we have used most of the reported 
screening methodologies. Our screening started by using hematoxylin stain
ing, and then moved to use of single tube and then tank testing, hydroponic 
selection methods. Later, full scale root growth analysis was performed 
using solution culture techniques. These methods were recognized only as 
prediction tests for performance in soi! systems. Our program now uses a 
soil bioassay selection system, modified from Bona et al. (1991). The follow
ing summarizes our experiences in the area of methodologies, which are in 
agreement with results from other laboratories. 

1. Aluminum stress in hydroponic systems affects root characteristics 
much more than shoot characteristics. Thus, measurement of root parame
ters offers the best approach to selection. Indexing of measurements com
pared to non-stressed controls can remove vaiability due to plant a'ze, such 
as arises in crosses of semidwarf x tall cultivars. When screening large 
numbers ofindividual plants, visual assessment of root length can be used 
instead ofindividual measurements. 

2. Shoot responses to Al stress are not well correlated with root responses, 
as indicated by data from Zale, (1987) (Table 1). Although significant 
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Table 1. 	 Correlat!,t. between hematoxylin scores, and shoot and root parmme
ters in hydroponic conditions, for 74 Canadian and other cultivars 
grown under conditions of aluminium strese. From Zele and Briggs(1988). 

Shoot length 
Shoot len. index 

Root length (RL) 0.46** 0.26*" 
Root length index (RLI) 0.32*5 0.44* 
Longett seminal root (LSR) 0.41"* 0.25** 
LSR index (LSRI) 0.31* 0.43** 
Hematoxylin score 0.03NS .O.OINS 

LSR vs RL O.e6"" LSR vs Hemataox/'n 0.58" 
LSR vs RL 0.54, RL vs Hematoxylln 0.64* 

-Slgnklant at the 99% confidence level; NS Not slgniflctant at the 95% confidence level. 

Table 2. 	 Ten day seodling root bioassay, nonfertilized grey wooded soil, pH 4.8. 
(Mean of 5 plants x 3 replicates, grown in root-trainews). FromBriggs et 
eL (1992) 

Root weight irdx; Mcan maximum root length (mm); 
Root dry matter (mg plant') 

Isogenic Lines 
Recipient Parent Donor (A) (B) (C) 
Colunbus 0.38;16;2 PF7748 0.88;157;12 0.93;213;13 0.82;223.16 
(BC*4) Maringa 1,29;211;14 1.13;185;5 0.72;191;14 

R455 0.90;174;9 
Katepwa 0.34;14;3 PF7748 1.07;193;13 1.08;187;14 0.O;212;14 
(BC*3) Maringa 0.90:236o 18 0.85;244; 17 
Controls 
Scout 0.27;8;3 Atlas 66 1.21;218;17 PF7748 0.87;180;17 
Maringa 107:246;15 R455 0.82;204:15 Cutler 0.81:225:19 

correlations were found between scores from hematoxylin staining and root 
growth in hydroponics under Al stress, the best correlations only accounted 
for 41% of the covariability (i.e., hematoxylin score vs. root length). We lack 
specific data describing the correlation of these methods with the soil 
bioassay system now in use, but we believe the latter method gives a more 
direct measure of adaptation to soil stress. Tolerant or sensitive materials 
selected by other methods have maintained their tolerance in the soil 
bioassay, as indicated in Table 2 (Briggs et al., 1992). 

3. Resulting from Taylor's physiology research, an assay for callose pro
duction by roots under Al stress is being considered for use in selection. 
Measurable callose production is induced as little as 30 min after exposure 
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Table 3. Parformance of aluminum tolerant and intolerant cultivars at Ellersile in 1992, on a Chernozemic soilwith variable pH levels artficially induced with aluminum SU3 hate. 

Acidity 
response 
Al sensitive 

Cultlvar 
Katepwa 

Mean pH 
5.9 

4030 

Grain yield, kg ha 1 

5.1 4.9 
3870 3600 

4.5 
2950 

Mean pH 
5.9 

64.0 

Flour yield, % 

5.1 4.9 
64.0 632 

4.5 
62.2 

Oslo 4220 3940 3740 2585 70.2 69.4 69.4 68.8 

Al tolerant Cutler 4260 4260 4040 2910 69.9 70.4 69.7 68.9 

PT741 4200 3925 3743 3170 67.2 67.2 66.8 66.3 

Maal cultivars 4180 4000 3780 2905 67.8 67.8 67.2 66.6 

Al sensitive Katepwa 59 
# of plants m "1 of raw 

59 5e 59 35.5 
1000 kernel weight, g 

35.4 35.1 33.1 

Oslo 68 57 61 63 43.6 44.0 44.0 41.4 

Al tolerant Cutler 58 54 53 53 41.7 40.0 40.5 40.0 

PT741 58 56 57 58 45.9 46.4 45.8 45.8 

Mean, all cultivars 61 57 57 58 41.7 41.5 41.4 40.1 
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Figure 5. 	Differential pH changes induced by an Al-tol ant (Atlas 66) and an 
Al-sonsitive (Monon) cultivar of wheat grown in nutrient solutions con
taining both NO3. and NH 4+. Tolerance to Al was associated with an 
ability to raise the pH of nutrientsolutions. Adapted from Foy et al., 196. 

In a 1965 paper, Dr. Foy had suggested that differences in tolerance to Al 
among cultivars of wheat might be related to the ability of plants to increase 
pH at the root soil interface (Figure 5). Dr. Taylor was not convinced by these 
data, because substantive differences in plant-induced pH were not observed 
until 10-12 days after t ,eatment with Al. In contrast, growth effects were 
clearly observed over a much shorter time interval (less than 3 days). In 
attempting to discredit Foys (1968) hypothesis, Dr. Taylor discovered that 
differences in plant-induced pH between Al-tolerant and Al-sensitive culti
vars could be observed over a much shorter time frame than previously 
believed (Taylor and Foy, 1985a,b). Furthermore, these differences in plant
induced pH were correlated with the cultivar tolerance to Al (Figure 6). 
Subsequent experiments demonstrated that the ability of tolerant cultivars 
to resist acidification of the rhizosphere waf. related to a higher preference 
(relative to sensitive cultivars) for NO 3 over NH4 in mixed N sy&tems 
(Taylor and Foy, 1985c). It was not until experiments in which the supply of 
NO versus NH 4 was varied (providing experimental control over plant-in
duced pH), that convincing evidence discounting the role of plant-induced 
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Figure 6. 	RelationnJ .. between relative root growth expressed as a fraction of

aluminu.: 'ee control and the negative log of the mean H+ concentra
tion inductxi by 20 cuitivars of Triticurtaestivum during the period of pH
decline (days 1-9) in nutdent solutions. Plants which resisted acidifica
tion of the rhizosphere were more tolerant to AL Adapted from Taylor
and Foy, 1985a. 

pH in Al tolerance was forthcoming. Experimental manipulation of plant
induced pH had virtually no effect on the relative Al tolerance ofcvs. Atlas-66 
and Scout-66, the well e3tablished benchmarks for Al tolerance and Al 
sensitivity, respectively (Taylor, 1988). 

For several years, this experience with Al-tolerant and Al-sensitive culti
vars of wheat had s'ftened Dr. Taylor's reservations about Foy's (1965)
plant-induced pH hypothesis to the point where the N source experiments 
reported by Tayior (1988) were being conducted to provide support for the 
hypothesis. Ironically, these experiments eventually played a decisive role 
in rejecting plant-induced pH as a mqjor factor in tolerance. Nonetheless, 
they created a lasting impression about the importance of using tolerant and 
sensitiup gOrmplasm in physiological studies. Afte- arri-ring at the Univer
.ity of Alberta in 1985, collaborative work with Dr. Briggs followed natu
rally. Dr. Briggs provided a persistent reminder of the importance ofmoving
towards 	near-isogenic material and the breeding perspective required to 
de%elop this improved genetic resource. In return, Dr. Taylor provided a 
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physiological perspective ,mdan experimental system with which to evalu
ate the products of plant breeding efforts. 

This collaboration initially took the form of a large screening exercise to 
identify sources ofAl tolerance among cultivars ofwheat adapted for growth 
in NW Canada. This work was already underway in Dr. Briggs' lab as part 
of Janice Zale's M.Sc. thesis ( 987). In this new study, however, evaluation 
of root growth in solution culture was used instead of hematoxylin staining 
to provide a more direct measure of Al tolerance. These studies confirmed 
Zale and Briggs' (19P8) observation that Canadian CWRS wheats were 
uniformly sensitive to Al (Briggs et al., 1989). It also efstablished experimen
tal line PT741 and cv. Katepwa as locally adapted, spring wheat standards 
for Al tolerance and Al sensitivity. Perhaps more importantly, however, we 
attempted a more rigorous evaluation of the extent of Al tolerance in our 
most tolerant germplatm. These results emphasized the importance of 
screening genotypes u,;er a broad range of stress levels in order to identify 
potentially superior germplasm (Briggs et al., 1991). This concept is illus
trated in Figure 7. In Panel A of this figure, hypothetical dose responses of 
four cultivams are presented. If these cultivas were screened using conven
ticnal root growth techniques where tolerance is expressed as root growth 
in the presence ofAl divided by root growth in the absence of Al, differences 
between cultivars would not be observed at concentrations higher than 700 
jIM Al, or at concentr.4tions less than 50 j.M Al. Under these conditions, all 
cultivars would be ranked as sensitive or tolerant respectively. At interme
diate concentrations, the apparent magnitude ofthe genetic differences will 
reflect the stress level salected for the +Al treatment. In the example 
provided in Panel A, a concentration of 300 pM would lead to the conclusion 
that two cultivars were tolerant, one was intermediate, and another sensi
tive. A concentration of 400 jiM Al might be considered optimal for screening, 
but this conclusion is based on the assumption that the most tolerant 
standard represents the most tolerant selection to be screened. We believe 
this issue may be important under real world conditions. In Figure 7, Panel 
B and C describe the dose response of two tolerant and sensitive pairs to 
increasing levels of Al in solution. In both cases, 75 p.M Al was sufficient to 
distinguish between tolerant and sensitive germplasm. This concentration, 
however, would be inadequate to identify the superior tolerance of Atlas 66 
over PT741. At 200 jiM Al, root growth of PT741 was reduced to 47±3% of 
control, while growth of Atlas 66 was unaffected (95±11% ot 'ontrol). Given 
the variability of soil solution Al levels under field conditions, differences 
between genotypes under high stress levels may be important for cultivar 
adaptability to soil acidity (Briggs et al., 1992). 
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This lesson proved to be an important one in our subsequent efforts to 
develop near-isogenic, Al-tol erant lines. Our breeding effort included crosses 
between several Al-tolerant and Al-sensitive parents, followed by backcross
ing Al-tolerant offspring to the Al-sensitive recipient parent for 3-4 genera
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Figure 8. 	 The effect of Al on two Al-tolerant backcross lines, their Al-tolerant 
donor parents, and their Al-sensitve recipient parents. All backcross 
lines showed a tolerance ccnsiatent with their donor parent up to 200 M 
Al, the concentration at which they were &elected.At higher concentra. 
tions, not all backcross lines performed as well as their donor parents. 
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tions. The acidity tolerance of all our isolines was expressed consistently.
However, not all iiolines showed tolerance equal to the donor parent across 
the entire range of Al doses tested. In solution culture, most showed the same 
level of Al tolerance as their tolerant parent up to 200 PM Al, the concentra
tion at which they were initially selected. Above 200 gM Al, one isoline 
performed as well as its tolerant parents (Figure 8A), while others showed 
a lower level of tolerance (Figure 8B). Coincident with our observations of 
incomplete inheritance of tolerance was an incomplete reconstitution of 
other traits present in the Al-sensitive parental cultivate, despite completion 
of up to foir backcrosses (Table 4). Our most promising line was produced
by crossing the Al-tolerant cultivar, Maringa, with the Al-sensitive cultivar,
Katepwa, and backcrossing the Al-tolerant offspring to Katepwa three 
generadons. This backcross line showed elevated Al-tolerance consistent 
with its donor parent Maringa up to 600 pM Al (Isoline -199, Figure 8B), and 
F-ronumic characteristics consistent with the locally-adapted parent 
Ktepwa. It has been nrzned Alikat. 

The results of this collaborative effort to develop near- isogenic Al-tolerant 
lines has become an integral part of research in Dr. Taylor's physiological 
research. After completing research on the plant-iduced pH hypothesis, Dr. 
Taylor has focused his attention on the role of exclusion in tolerance to Al. 
Short-term kinetic studies have provided evidence that Al-tolerant cultivars 
of wheat may utilize metabolic energy to limit movement of Al across the 
plasma membrane (Zhang and Taylor, 1989, 1991). Initially, these short
term experiments were complicated by short-term accumulation ofAl in the 
cell wall (7hang and Taylor, 1990). However, recent refinements to experi-

Table 4. Agroncmic perfornmnce of some aluminum tolerant, near-isogenic lines 
compared with their recipient parents, in the absence of aluminum 
stress (Edmonton 1991 data, 2 replicate trial). 

Days to Days to Height Grain yield
Culivar head mature cm kg ha "
 

Katepwa 60.3 102.0 114.0 3805
 
Kat*31PF7748 A 61.0 104.3 128.0* 3100
 

B 60.0 105.0 127.3" 3680 
C 58.00 104.0 124.70 3490 

Kat*3/Maringa A 58.0' 100.0 108.0 3590 

Columh 65.0 108.9 116.7 3530 
Co'4/PF-748 A 61.00 105.7" 119.0 3530 

B 60.7* 106.00 i(6.0" 2910 
Col*4/Maringa A 59.30 107.0 115.7 3720 

B 65.0 109.0 131.70 3600 
lad (P.0.05) 1.1 2.4 7.6 891.2 

*Slglficanly different to recipient pa ent at 95% confldence level. 
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m..ntal techniques appear to provide a direct means cfmeastuing uptake of 
Al across the plasma membrane (Archambault and Taylor, in preparation). 
Using these techniques, we have also demonstrated that patterns of Al 
uptake observed in excised roots reflect transport events occurring at the 
cellular level (McDonald and Taylor, unpublished data). While the physi
ological basis of the putative exclusion mechanism remains speculative, we 
have identified proteins in microsomal membranes (Basu and Taylor unpub
lished data) and root exudates (Basu and Taylor, unpublished data) that are 
induced by Al in a time-dependent and dose-dependent fashion. 'The near
isogenic material we have developed provides an exciting expe :imental tool 
that can be used to evaluate the role ofmetabolism-dependent e ziusion in 
tolerance to Al. 

The Soil Science Componeint 

Until very recently, the absence of a soil scientist in our research group 
could be viewed as a deficiency in out collaborative program. In any studies 
involving use ofsoil, including screening techniques, we relied on advice from 
three different sources: University of Alberta soil scientists, thn Alberta 
Agriculture soils advisory group, or private soils consulting services. Well 
intentioned advice from these sources has often been in conflict, forcing us 
to set our own experimental protocols. A typical question we have posed was 
to ask about the recommended fertilization protocol to use in an acid soil 
(compared to a non-acidic soil) in a greenhouse or field test where a number 
of cultivars were to be grown to maturity to study their grovh and devel
opmental patterns. Such a simple question brought forth a plethora of 
supplemental questions and/or needs for assumptions. In our experience, 
this tended to stop the decision-making process for a soils-based experiment. 
Our program is at a stage where much more testing and evaluation in soil 
is required. We are therefore pleased to be reinvolving Doug Penney in this 
work. 

At this time the predominant establishment interest in Alberta soils 
research is in soil conservation, particularly against wind n,-d water erouion, 
and againi-t satiity. The Federal and Provincial governments have con
cluded a joint review under the national Green Plan, in which these soil 
issues were placed as highest priority. Problems with soil acidity and 
acidification were mentioned in the earliest drafts, but did not make the final 
agenda. Liming protocols were conside:-ed well enough researched to deal 
with any such problems. Other factors that led to this unfortunate exclusion 
probably include the fact that Federal and Provincial laboratories are not 
conducting significant acid soil research programs at this time (i.e.,. lack of 
an establishment interest group). Linked to this shortfall is the fact that the 
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economic value in Canada of crop losses due to soil acidity has never been 
systematically estxaated, compared to salinity or soil erosion losses, for 
example. There ar . no estimates about the marginal yield losses on land of 
intermediate acidity, where the crop canopy may look quite healthy, where 
liming is not being done, and where the root pruning effects, and ccuse
quences to root penetration of subsoils, and for witrient and moisture 
uptake, cannot be visualized. Research funds for such field work have been 
very limited. We do know that the most widely grown Canadian cultivars 
(e.g., Katepwa) are seriously affected by acidity, and they are extensively 
grown in areas of acid soi!. Another problem in Alberta has been that most 
acid soils are far distant from the University ofAlberta, and field trials have 
been lost due to site inaccessibility, inclement weather, and from wildlife 
activity (e.g., deer grazing). 

Because of these cumulative problems, our research has adopted two new 
approaches (a) the Bona et al. (1991) soil bioassay approach where the 
problem soil is brought to the lab, and (b) a novel approach whcre previously
non-acid soil is acidified with aluminum sulphate to controlled acidity levels 
at the home site, for use in cultivar evaluation and for other agronomic 
assessments, as previously described. These two techniques will be used tc 
determine the economic value of Al tolerance genes, prior to future on-farm 
validation. 

The Molecular Biology Component 

In most crops, a molecular approach is not needed in order to breed for 
improved Al tolerance. Nevertheless, molecular approaches could possiLly
lead to improved selection methodologies, or to expanding the genetic va.i
ability for tolerance in intolerant species through interspecific genetic ergi
neering. In addition, if Al tolerance genes could be isolated and cloned, this 
would be very helpful for use in the s-"ilysis of the physiological mechanisms 
involved. In the area of speculation, such an isolated gene might also be 
readily used in a genetic construct as a linked selectable marker (tag) for 
other genes of interest, in transformable species. 

At this point an aluminum tolerance gene has not been isolated or 
identified in terms of functional proteins, althoug-h Picton et al. (1993) and 
Delhaize et al. (1993) both reported some progress in this direction. Delhaize 
et al. (1991) reported a lack of consistent co-segregation of tolerance with 
the putative Al-tolerance plypeptides. We have chcsen to approach this type
of work using our near-isogenic pairs for Al tolerance in the Katepwa
background, with a hope that this will minimize background segregation for 
uninvolved proteins. Research in Dr. Taylor's laboratory has identified 
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severai 'roteins that are involved in Al-tolerant plants in a dose-dependent 
and time-dependeit fashion. One of these proteins is a membrane-bound 
protein (microsomal membrane), which appears less than 24 hours after the 
onset ofAl stress, and is subsequently lost after return to control conditions 
(Basuand Taylor, 1993a). Several other Al-induced proteins are exuded from 
plant roots under conditions ofAl stress, and show considerable capacity to 
bind Al (Basu and Taylor, 1993b). Dr. Allen Good (Department of Genetics) 
will be working with us on this phase of our collaborative work. Dr. Good 
Plans to develop RAPD markers for Al tolerance, that will facilitate our 
orngoing studies. As part of this work, fully homozygous, doubled haploid, 
near-isogenics in the Katepwa background are also being established using 
the corn pollination system, with Cie kind cooperation of Dr. Taing Aung, 
Agriculture Canada, Winnipeg. These near-isogenic materials will be avail
able for general distribution, and will probably be registered through Crop 
Science. 

WHERE DO WE SUCCEED? 

We have achieved some successes in improv.ng wheat for growth on the 
poorer soils JNW Canada, although. the field validation aspect ofour work 
and its extension to farmers remains somewhat unsatisfying. Some specific 
examples of these achievements are illustra? -d here in notated form. 

1. Canadian wheat -Wtivars have been characterized, and a lack of Al 
tolerance was shown to be the norm. Al tolerance present in historic 
germplasm has been lost in modern Canwdian cultivars. 

2. 0everal different sources of A. tolerance in wheat suitable for Alberta's 
most acid arable soils have been identified. These were readily transferred 
by backcrossing into current Canaaian cultivars. The best sources included 
Maringa and PF7748, originating from Brazil, although both are very late 
maturing. The genetics of tolerance was very similar to prior reports in the 
literature, with few major genes involved, mostly dominant. 

3. High levels ol' Al tolerance were developed in. the early maturing, 
semidv!arf cultivars PT741 (experimental standard, pedigree 
Tp//' no/No66/3/Bb/Cno/4/Grajo'S') and the newly released University of 
Alberta, Canada Prairie Spring semidwarf wheat Cutler (pedigree 
Ciano'S'/4!Sonora 64/Yaqui 50E5/Gaboto /3/Inia'S'). (Table 5; Briggs et al., 
1992). 
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Table 5. Aluminum tolerance ratings of Cutler and check cultivars, assessed by
the method of Bri"set aL (1989). From Brilms et aL (1992). 

Root length index % 
Aluminum concentration (MM) 

Root dry weight index % 
Aluminum concentration (gM) 

150 225 150 225 
Cutler 98.8a 97.9s 69.Oa 91.5a 
PT741 94.3a 94.7a 68.4a 90.7a 
Oslo 77.8b 60.Ob 63.3a 62.3b 
Katepwa 40.8c 45.2c 10.3b 45.4c 
SE 4.02 2-98 5.30 2.99 

Indices are calculated as apercent of mean perfomance Wth aluminum, compared to oontrols without aluninum (mean ofthree replicates). a-c Means followed by te same letter withln a column are not significantly different (P.05),
acoording to Duncan's multiple range test 

4. A r Par-isogenic, Al tolerant Katepwo (Katepwa*3/Maringa), now called 
AliKat, has been developed. This line has been iso-phenotypic with Katepwa
for ali field, agronomic, seed and flour quality traits so far tested. AliKat is 
being further developed for use in agronomic, physiological and molecular 
research. 

5. Unexpected convergence of three different University of AlLerta cereal 
research programs occutred in the late 1980's when it waz dL-covered that 
the best yielding, early maturing, genotypes from the breeding program were
also the best performers in intensive management cropping systems. They
also all possessed excellent Al tolerance, although this trait had never been 
consciously selected for in this material, nor had the parents ever been 
selected for Al tolerance (Briggs et al., 1989). Since our breeding nursery
fields are not very acidic (pH 5.8-6.4 range), it is still unclear how we could 
have selected so much Al tolerant material . At this time, our only explana
tion is that of serendipity, that our high pressure of selection for early
maturity just happened to lock onto a linkage block of adapted materials 
that possessed Al tolerance. We doubt that we could reproduce this effect! 

6. We have established a new set of phy3iological standards for research 
on Al olerance in epring wheats, with the cultivar pair PT741 and Katepwa,
adapted tc 14W Canadian field conditions. This pair complements the long
st.ndting winter wheat cultivar pair Scout-66 and Atlas-66, which cannot be 
grown in The fiel, in NW Canada due to insufficient hardiness, but about 
which the Al tolerance literature is extensive. 

7. Aluminum dose response curves have been determined in hydroponic 
systems for tolerant and sensitive cultivars (Figure 7; Briggs et al., 1992;
Figure 8) that indicated non-homogeneity of response of different tolerance 
sources, and that also implies more complexity of tolerance mechanisms 
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than is explainable by simple genetic models. The variable shape of these 
response curves draws attention to the potential drawback of selecting at 
any particular Al concentration. 

8. For the series of near-isogenic sets (isolines) c'veloped, dose response 
curves indicated that Al tolerance v,'as maintained eqvial to the tolerant 
pare-t up to the Al dose level at which selection was practiced (200 pM). 
Above this selection stress level, performance of the isogenic compared to 
Lhe donor varied according to which donor source was used. For example, 
performance of the Maringa-derived isoline Iso-199 (= AliKat) closely 
tracked that ofMaringa, whereas the tolerance of the PF7748-derived isoline 
Iso-65 fall significantly below PF7748 when selected above 200 gM Al 
(Figure 8). An additional problem with the series of isogenics developed was 
that, despite three, four or five backcrosses, iso-phenotypic performance 
compared to the recipient parent was not achieved for all other traits 
measmu-.d in agronomic field trials, in the greenhouse, or in the wheat quality 
laboratory. This suggests incomplete reconstitution of the target parent. 
Examples of this wcre presented in Table 4. This effect in backcross pro
grams is often attributed to "linkage drag". Although the line AliKat has 
only three backrosses to Katepwa, this line has been chosen for more 
detailed studies because it is the only one of over twenty Al tolerant isoline 
derivatives that so far has exhibited Do linkage drag. 

CUIRENT ISSUES FOR CONSIDERATION
 
BY THE WORKSHOP
 

Alu.ninum Dose Response Issues,
 
and Critical Tolerance Levels Required
 

The level ofAl stress limits the level of tolerance achievable, and not all 
tolerant lines have similar response curves. Perhaps a suite of genes is 
involved acting at different stress levels, and simple inheritance is usually 
seen because the selection assay protocol only switches on one or two of these 
at a time. In a specific cros3, if parents were genetically homogeneous for 
other genes involved, then segregation would not be seen fbr those. 

Aniol (1991) has described the location on chromosomes 5A, 2D and 4D of 
several specific genes from different wheat cultivars. A useful diallel cross
ing experiment could be conducted out involving all known cultivar sources 
of Al tolerance believed to be of different origin. The parents and progenies 
should be evaluated in a systematic manner over a range of Al stress, by 
hydroponic as well as soil assessment methodologies. Internationally impor
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tant tolerant spring wheats would include BH1146, Maringa, Carazhino, 
Cutler,PT741, Romany, Kenya Kongoni, Waalt, Dollarbird, and others. This 
is a large project that would have to involve cooperation between many
laboratories, but it could result in an international rationalization of the 
genetics, it could be coordinated with previous and current gene mapping
efforts in wheat, and it would provide some estimate of the importance of 
the differential dose response effects in tolerant germplasm. For example,
with respect to the best Al tolerances in use in NW Canada, nothing is known 
about the characterization of the tolerance genes involved, compared to 
previously mapped tolerance genes reported in the literature. This problem
is probably not unique to this program, or to Canadian germplasm. 

In addition, more research is needed to characterize the extent ofvariabil
ity for acidity and Al levels within a field, to determine guidelines for 
minimum acceptable Al tolerance levels required. Such work will have to be 
region-specific in view of the variable speciation of Al, and other unique 
stress effects in different soil types. Results from such work may help in the 
further refinement ofsoil bioassay methods for use by breeders. 

Continuation of Basic Physiological Research 

Continued physiological research is required so that individual mecha
nisms of tolerance can be elucidated, which will lead to the development of 
less empirical selection techniques and breeding strategies. This is funda
mental to further improvement of tolerance levels in many crops, particu
larly those now described as very susceptible. This understanding will be 
needed before the next step can be achieved, and will have to be developed
in synergy with the development by breeders of appropriate genetic stocks. 
Inter-laboratory networking opportunities are abundant here, both for 
methodology and genetics. 

Identification, Isolation and Cloning 
of Aluminum Tolerance Genes 

Genes for Al tolerance offer many opportunities for development of model 
gene transfer systems that can be tested in wheat, in ways described earlier. 
Success in this area would be improved if international laboratories with 
these interests would work with common genetic cultivars. Duplication of 
research efforts in this area is not affordable, but the impact of an isolated, 
cloned gene would be of major significance to international agriculture. 
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P82 ticipants at this 1993 meeting should address this prospect, and set goals 
ard1 a target date to achieve this success. These genes are present in a wide 
range ofimportant crops. Is there a will to fish them out? In the NW Canada 
acid soil research program at the University ofAlberta, 1993 is the year we 
start fishing! 
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Achievements in Improving the Adaptation 
of Forages to Acid, Low Phosphorus Soils 

J.R. Caradus
 
AgResearch Grasslands
 

Palmerston North, New Zealand
 

AESTRACT 

Forage species are often grown on acid, low phosphorus (P) soils to which they 
are not naturally adapted. During the past two decades, a number ofprograms have 
been undertaken to select genrlypes and culti',ars within these species with betier 
adaptation to ouch edaphic streiau. Genetic vr iation has been identified wWdo 
white clover for d-y matter response to added P and a number of adaptive plant
characters, inluding aspects of root morphology, P uptake rate, delivery to the 
shoot under P-deficiency stress, partitioning of P within leaves and shoot total P 
concentration. Within come species, including k-ed clover, oubterranean clover,
annual ryegrars and lespeoieza, differences in cluminum (Al) tolerance have been 
identified among existing cultivars. Specific w-fection a - breeding programs for 
Al tolerance 1"ve been successful in white clover and phalaris. In all forage sp-'cies
tes"d, significant differences in manganese tolerance have been demona',xated 
among existing cultivaro. 

Taking into consideration the limited investment worldwide in forage plant
improvement for ncld, low-P soils, cousiderable advances both in the idenification 
of genetic differences and in gaining an understanding of possible mechanisms 
Involved have occurred. Successes will continue in proportion to the investment 
made, combined with the use of appropriate screening and selection strategies. 

INTRODUCTION 

Some forage species occur naturally and appear well adapted to infertile 
or acid soils. However, such species are most often either of low quality (e.g.
Danthonia(Black, 1990),Agerostistenuis(Ulyatt, 1978), Stylosanthes (Ritson 
et al., 1971; Winks et al., 1977)), low productivity (Trifolium da:biuim)(Scott 
et al., 1989) or, if legumes, are poor competitors when grown in association 
with grasses under frequent grazing pressure (e.g. Lotus pedunculatus 
(Sheath, 1980), (T.ambiguum(Townsen-d, 1985)). As a result, attempts have 
been made to select for tolerance to edophic stresses within species normally 
found in more fertile soils and known to be adapted to grazing pressures (e.g.
Trifolium repens (Caradus and Wiliianis, 1989)) or conservation practices
(e.g. Medicago sativa (Buxton, 1989)). Sclection has been predominantly
conducted within logumes since it is generaiiy accepted that they are poor 
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competitors for phosphorus (P) in P-deficient soils (Ozanne et al., 1969; 
Jackman and Mouat, 1972; Barrow, 1975a and b) and are less tolerant of 
acid soils than many grasses (Pearson and Hoveland, 1974; Cregan, 1980; 
McLean and Brown, 1984). A recent study, however, showed that under 
controlled conditions, grasses as a group were not necessarily mor i tolerant 
to aluminum than temperate pasture legu 'es (Edmeades et al., 1991). 

The majority of forage species mentioned above are suitable for pastures 
in temperate regions of the world. Perhaps the more perplexing breeding 
attempts have been to find suitable forage legumes for acid infertile soils of 
the subtropics and tropics, where Al and Mn toxicities problems can be 
severe (MacLeod, 1991). Spain (1973) observed that the most acid soil-toler
ant tropical forage species were less productive than other tropical forage 
species. For t :opica] acid soils, improvement in species such as Macro
philium atropurpureum(Hutton and Beale, 1977), Ccntrosema, Stylosan
thes, Desmodium, Aeschynomene (Schultze-Kraft and Giacome,ti, 1978; 
Kretschmer, 1989) has been pursued. For a number of species, which are 
naturally adapted to acidic, low-P soil, the aim has been to improve agro
nomic characteristics (e.g. in Lotus pedunculatus)or nutritive value (e.g. in 
Stylosanthes). 

The aim of this paper is to examine successes in selection of forages for 
better adaptation to acid, low-P soils. Adaptation will be principally for 
tolerance to Al and Mn toxicity and P deficiency. Emphasis will be on white 
dover and alfalfa since it is with these species that most of this work has 
addressed. Succecs will be identified at three levels: (a) identification of 
genetic variation for potentially adaptive plant characters, (b) identification, 
selection and progeny testing for genetic variants adapted to soil nutrient 
imbalances, and (c) release of germplasm and cultivars specifically for 
infertile, acid soils. Since many forages ofeconomic ;mportance are legumes, 
successes in identifying edaphic stress tolerance ofRhizobium and the host 
- Rhizobium symbiosis will also be reviewed. 

In relation to the successful adoption of released germplasm and cultivars 
in low-P, acid soils, the additional requirements of such cultivars to tolerate 
competition and defoliation and their adaptation to other environmental 
stresses that may limit their input will, when possible, be examined. Con
versely, germplasm that shows promise may require a change in current 
management practices. For perennial species, the persistence of new culti
vars must also warrant consideration. 
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GENETIC VARIATION FOR ADAPTIVE PLANT CHARACTERS 

Genetic variation has been identified for a large number of plant charac
ters implicated with mechanisms enabling plants to tolerate acid, low-P soils 
(Duncan and Baligar, 1990). 

ADAPTATION TO LOW PHOSPHORUS SOILS 

Root Morphology 

Genetic vaxiation has been identified in white clover for root/shoot ratio 
(Godwin and Blair, 1991), root system structure (Caradus, 1977; Caradus 
and Snaydon, 1986c,, 1988; Godwin and Blair, 1991; Gourley et al., 1993), 
root depth distribution (Caradus, 1981a), and root hair length (Caradus,
1979). In alfalfa, genetic variation for degree of root branching has been 
reported (Smith, 1951; Avendano and Davis, 1966; McIntosh and Miller,
1980; Pederson et al., 1984). The advantage of a denser, more branched root 
system composed of finer roots ,ith larger root hairs is increased P absorp
tion due to extended effective root surface area. Similar advantages are 
achieved by more prolific root mycorrhizal attachments. Variation among
cultivars of both white clover (Hall et al., 1977; Powell, 1982) and alfalfa 
(Lambert et al., 1980; Satterlce et al., 1983) have been observed for incidence 
of mycorrhizal infection. Increasing root hair length, by selection, within 
white clover had a significant effect on planL dry weight because ofincreased 
P absorption, but only if roots were not rmycorrhizal (Caradus, 1981k,). 

Phosphorus Uptake Physiology 

Genetic variation for P uptake per unit root length has been observed 
among populations of white clover (Caradus, 1983; Godwin and Blair, 1991).
Populations supposedly adapted to P-deficient soils had lower rates of P 
uptake per unit root length than those adap- d to high-P soils (Caradus,
1983). The physiological significance of this character has been que, ioned 
(Caradus and Snaydon, 1986a and b) and its ecological significance may also 
be doubtful since even a low root absorption capacity is adequate to absorb 
a nutrient, such as P, the availability of which is limited by diffusion at low 
levels of supply (Nye, 1977). 
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Modification of the Rhizosphere 

Genetic variation for root exocelular acid phosphatase activity has been 
shown in white clover, but did not seem to have any adaptive significance 
(Caradus and Snaydon, 1987b). 

Delivery to Shoot under P Deficiency 

At low P, shoot %P can vary nearly 2X among genotypes of white dover 
with similar shoot yields (Caradus, 1986). However, these genotypes weie 
low yielding. The highest-yielding genotypes at low P were associated with 
low shoot P concentrations. 

Shot Total P Concentration 

In the de-re to identify or breed cultivars of plants that are more P 
efficient, in terms ofbeing able to grow at low levels of P supply or being able 
to utilize applied P more efficiently, P efficiency ratio ur P utilization 
quotient (PUQ) has often been used. This is the amount of dry matter 
produced per unit of P absorbed (Gerloff, 1976; Mehell et al., 1983) or the 
inverse of %P. The advantages of this measure of P efficiency are ease of 
measurement and its relatively high heritability, and therefore selection is 
generally effective. 

Genetic variation fcr shoo,. %Phas been obscrved in several forage species. 
Within white ciovin', significant variation has been demonstrated among 
cultivars (Mackay et al., 1990b), ecotypes (Caradus, 1983), and among 
genotypes (Robirson, 1942; Caradus, 1992) for shoot %P. Critical values of 
shoot %P for 90% maximum shoot dry weight of white clover ranged from 
0.46 to 0.66 among five lines of white clover (Godwin and Blair, 1991). Bi oad 
sense heritabilities for shoot %P have ranged from 0.47, when grown under 
P stress. to 0.65 when grown with adequate P (Caradus, 1992). 

Forage species selection programs have successfully manipulated shoot 
%P. Bidirectional selection programs for %Pin herbage of alfalfa have been 
established (Kendall and Hill, 1980; Hill, 1981; Hill and Lanyon, 1983 and 
Miller et al., 1987). Low %Pselections, considered to be more P-efficient, had 
higher germination, high Ca: P ratio, low concentrations of other nutrients 
and lower protein and fibre content. In some studies, low %P selections were 
higher yielding than selections for high %P (Kendall and Hill, 1980; Hill, 
1981; Miller et al., 1987), but Hill and Lanyon (1983) found no yield 
differences at two sites. 
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Despite the apparent successes in selections for lowered shoot %P and 
hence supposedly increased P efficiency, caution is needed when interpreting
these results. PUQ may be mislading, since low P concentration m shoot 
tissue may be due to poor P uptake rates, poor translocation from root to 
shoot, and dilution effects related to growth rate (Caradus, 1991a). 

Partitioning of Phosphorus 

Phosphorus in plants can be broadly classified as organic P(Po) and 
inorganic P(Pi). Variation in P supply results in greater fluctuations in Pi 
concentrations than Po concentrations (Bieleski, 1973). White clover popu
lations adapted to low P soils accumulated more Pi in their leaf issu2, when 
grown at high levels of P supply, and were a'so able to reduce these Pi levels 
to lower concentrations when P supply was deficient (Caradus and Snaydon,
1987a). On the basis of ecological studies comparing species (Rorison, 1968;
Nassery, 1971), this characteristic may be an important adaptive feature of 
white clover plants that are able to survive in low-P soils. 

ADAPTATION TO ACID SOILS 

Exclusive Mechanisms 

The existence of an exclusion mechanism associated with Al tolerance 
(Foy, 1984) has not been demonstrated in forage species. To my knowledge, 
no incidence ofsimilar Al shoot concentration ofAl-tolerant and Al-ser'sitive 
populations combined with lower root Al concentrations in the Al-tolerant 
population has been documented. However, Al-tolerant ciltivars ofLolium 
multiflorum have the ability to increase solution pH more rapidly than 
Al-susceptible cultivars (Rengel and Robinson, 1989a). 

Mn tolerance has been associated with oxidizing ability of roots in some 
crop species (Foy, 1984), but again this has not been dearly demonstrated 
for forage species. However, some lines of Macroptilium appear to have the 
capacity to resist the uptake of Mn (Hutton et al., 1978). 

Internal Mechanisms 

Roots of an Al-tolerant genotype of white clover had higher Al concentra
tions than roots of an Al-susceptible genotype, although shoot Al concentra
tions were similar (Crush and Caradus, 1993). The ability of Al-tolerant 
genotypes to grow, despite similar or higher absorption ofAl, suggested that 
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tolerance was related to an internal mechanism rather than Al exclusion or 
efflux 

The ability to absorb and retain Mg in the presence of Al stress has been 
highlighted in white dover (Crush and Caradus, 1993) and ryegrass (Rengal 
and Robinson, 1989a, b, 1990) as an important component of Al tolerance. 
Mg may be effective in blocking the penetration of cell wall crystalline 
materials by Al or, alternatively, may influence the molecular construction 
of cell membranes and change their permeability to Al. In comparison with 
alfalfa, the Al-tolerance of sericea lespedeza was associated with accumula
tion of Al in the root cortex and epidermal cell walls, restricting movement 
to the shoot (Joost and Hoveland, 3I 85). 

The most important mechanism for Mn tolerance in Phalarisis related to 
an ability to tolerate high internal levels rather than an exclusion mecha
nism or retention of Mn i roots (Culvenor, 1985). However, Mn tolerance 
in subterranean clover was associated with restricted movement ofMn from 
roots, Le shoots (Osborne et al., 1981; Evans et al., 1987). 

GENETIC VARIATION FOR WHOLE PLANT ADAPTATION 

Phosphorus 

White clover (Trifolium repens L.) 

Intraspecific variation for response to added P has been observed in white 
cloverin several studies (Snaydon and Bradshaw, 1962; Caradus et al., 1980; 
Caradus and Snaydon, 1986c; Godwin et al., 1991; Gourley et al., 1993). A 
breeding program is underway tn develop a cultivar of white clover that 
requires less P to sustain the same production as that of present cultivars 
or is capable of producing more dry matter with the same amount of applied 
P (Dunlop et al., 1990). The initial aim was to identify germplasm differing 
in response to P. P response refers to a change in dry matter yield with 
increasing levels of P. High P-responses are associated with a rap;.d increase 
in dry weight or plant size with small increases in P supply, and maximum 
yields are reached at lower P levels than for plants with a low P-response.
"-Variation for P response has been identified among a world collection of 
white clover cultirare (Mackay et al., 1990a), and among genotypes from 
within a range ofcultivars (Caradus et al., 1992b). Genotypes were identified 
that combined hbth tolerance to low-P (i.L. had high yields at low-P) and an 
ability to respond to added P (Caradus et al., 1992a). Inheritance studies 
showed that high P-response was dGminant over low P-response; general 
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combining abilities of high P-response genotypes were generally greater 
than tihat of low P-resporee genotypes; and that narrow sense heritabilities 
fur P-response were moderate (0.33 to 0.46) (Caradus et al., '1992b). Selec
tioi"i and breeding lines from this study are currently being field tested. This 
work has so far shown that it is possible to select for high and low P-response 
irz a relat.vely controlled environnent and that it should be feasible to 
incrporatf; the appropriate P response rharacteristics into agronomically 
suitabl germplasm. 

Alfalfa (Medicagosativa L.) 

In alfalfa effort has been centered on selecting for P concentration in shoot 
tissue (Kendall and Hill, 1480; Hill, 1981; Hill and Lanyon, 1983; Miller et 
al., 1984, 1987); low concentrations may lead to improved P efficiency and 
high concentrations of imoroved nutritional quality of herbage. This work 
has been reviewed previously (Caradus, 1r Oa). Relatively little effort has 
been directed to identifying whole-plant adaptation to low P inputs in alfalfa. 

In one study comparing six clones from each of six cultivars of alfalfa, no 
significant cultivar x P level interaction for shoot dry weights was found, 
irrespective of whether plants were mycorrhizal or non-mycorrhizal; how
ever, a significant clone-within-cultivar x P level interaction occurred (Lam
bert et al., 1980). In another study comparing two alfalfa populations, the 
cultivar Mesilla and a popalation derived by three cycles of phenotypic 
recurrent selection from within Mesilla for higl-. rates of acetylene i'eduction, 
demonstrated differences hi response to P between populations (Satterlee et 
al., 1983). The cultivar Msilla did not respond to P added to the soil culture 
system, whereas the deriveu population responded to addea P (Table 1). For 
example, selection within M. rigidula,an annual medic, fbr high and low 
growth rate at low P levelR, did not result in lines difTring in response to P 
(Lorenzetti et al., 1992). 

Table 1. Differential shoot dry weight (g/plant) reeponbe to added P of two alfalf 
populations. 

P level aMjied (kg/P/t) 
Popuation 0 600 
Mcsilla 6.36 6.47 
Derived popUJation 5.33 7.33 

P 
LSDom 0.86 

Data adapted ftw. Table I of Sattorlee ft aJ. 19M3. Agron.J. 75:715-716. 
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Orchardgrass (DactyliU8glomerata) 

Differences in response to added P among four cultivars of orchardgrass 
have been identified (Finn and Mack, 1964). However, differences in re
sponse varied with the level of 3oil temperature and maoisture. Comparison 
of six ecotypes with two cultivars showed more than !X the difference in P 
response, with the cultivars having the greatest response (Cis-ley and 
Bradshaw, 1968). 

Stylosmnthes 

Comparison of a wide range of lines from seven species of Stylosanthes 
showed relatively small differences in growth under severe P deficiency, but 
considerable differences ia dry matter response to added P (Jones, 1974). 
Differences among accesions for shoot %Pconcentration at similar relative 
yields differed little below 0.3%P. Differences increased with increased P 
supply. 

Aluminum 

White clover (Trilbliumrepens L.) 

A selection program with white clover, cultivar Grasslands Huia, has 
successfully identified genotypes tolerant and susceptible to Al based on 
shoot yield (Caradus et al., 1987, 1991) (Table 2). A breeding program based 
on three tolerant and three susceptible genotypes showed that Al tolerance 
was heritable, with narrow sense heritabilities of 0.43 to 0.53; and that Al 
tolerance may be inherited as a recessive character in some genotypes of 
white clover (Caradus et al., 1991). Continuing studies with this material 
have shown that Al-tolerant genotypes have a lower shoot P concentration 
and are more responsive to applied P than Al susceptil, genotypes (Crush 
and Caradus, 1993), suggesting that screening white clover for Al tolerance 
may produce plants well-adapted to acid soils to which P fertilizer is applied 
intermittently. 

Phalaris (Phalarisaquatica) 

Phalaris has been selected in Australia for improved Al-tolerance. In early 
studies, significant variation for Al tolerance was observed between and 
within accessions and cultivars ofP. aquatica(Culvenor et al., 1986a). In 
many lines, a discrete highly Al-sensitive class of plante was found that 
exhibited extremely poor root growth. Elimination of this class would lead 
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Table 2. Aluminum tolerance ratios (400mgAl perkg soil/0 mgAl perkg soil) and 
shoot and root dry weight at 400 mg Al/kg soil of Huia, Maku lotus and 
selections for aduminum tolerance and susceptibility. 

400mg A] per kg soil
 
Oeaotype/ Al-tolerance Shoot dry Root dry
 
line/cultivar ratio weight (mg) weight (mg)
 
Huia 0.09 237 104 
Maku lotus 0.27 944 322 
T.77t 0.21 588 202 
T.97 0.21 439 195 
T.28 0.31 673 190 
T.81 0.22 555 206 
S.110 0.12 482 206 
S.129 0.10 262 74 
S.8 0.16 387 157 
T.77 X T.97 0.35 909 329
 
S.129XS.8 0.07 176 M5
 
p ** *5* **
 

LSR 0.05' x1.77 x 1.80
 
LSD 0.05 0.07 .
 

tTdenctes Al-toleant genotypes and S drnotes A-susceptlble genotypes. 
*leat significant into from untransformed log-data. 

Data from Table 5 of Carradus. 1W1b. Proeedings Agron. Soc. (NZ) 21:55-00. 

to a cultivar with improved Al tolerance. The difference between the highly
sensitive and moderately tolerant classes was largely explained by a two
gene hypothesis in which tolerance required at least one dominant allele at 
each locus (Culvenor et al., 1986b). Variation within the mod-irately tolerant 
class was polygenic. Heritability for Al tolerance based on root growth in 
solution culture ranged from 0.48 to 0.75, but based on shoot growth in the 
field, it was much lower, from 0.07 to 0.26 (Culvenor et al., 1986b). This was 
attributed to variability in soil Al concentrations. 

,n alternative approach to selection within P. aquatica has involved 
hybridization with the more Al-tolerant P. arundincea, followed by a 
backcrossing program (Oram et al., 1990). However, transfer of undesirable 
characters from P.arundinaceamay also occux, resulting in poor palatability
in summer, poor survival during long dry summers and shedding ofmature 
seed from panicles (George and Ci-oft, 1968). However, 2% of genotypes after 
two backcrossings cycles have exhibited acid soil tolerance, palatability and 
the ability to retain seeds in their panicles (Oram et al., 1990). Development 
of a range of P. aquatica cultivars adapted to acid soils with appropriate 
agronomic characteristics should be possible. 
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Tab], 3. Visual scores ofyield (1-5 increnuing) ofphalM4 cultivars andbackcross 
populations of phalaris derivod form P.aruidinaeea x P. aquatica 
crosses in an acid soil (Al-toxic) and acid-soil tolerance ratio (un
Rned/limed)._ 

Visual score of growth Acid-soil -
_
 

l.ine (acid soil) tolerance ratio
 
Australiac 1.25 0.38
 
Sim" 0.97 0.33
 
Sirolan 0.56 0.32
 
Iloldfast 0.42 0.36
 
AT 88 1.67 0.77
 
BC2-5-26-1-9.1 1.81 0.88
 
BC2-6-4 2.22 1.06
 
BC2-10-20 1.11 0.69
 
BC2-11-36 2.50 1.32
 

Data adaP4ad from Table 1 of Oram et al.. 1993. In P.J. Randall at al. (ads) Genadc aspects of plant mineral nuvition 
p. 17-22. 

In an acidic, Al-tW.,ic soil, the spcond backcross (between P. arundinacea 
and P. aquatica) F2 generaion was considerably more tolerant than existing 
cultivars (Table 3) (Oram ,t al., 1993). Further selection within this back.. 
cross population is expected to lead to a productive, acid-tolerant cultivar of 
phalaris. 

Alfalfa (Medicagosativa) 

The earliest study identiiying intraspecific variation of Al tolerance in 
forages was in alfalfa (Ouellette and Dessureaux, 1958). They found that the 
more tolerant genotypes retained more Al in their roots and had lower Al 
concentrations in their shoots. However, it was not until more than a decade 
later that breeding programs for increased tolerance to high Al were docu
mented (Buss et al., 1975, Devine et al., 1976). Buss et al. (1975) selected 
genotypes on the basis of root penetration into an acid soil. When retested, 
genotypes designated Al-susceptible tended to be more Al-susceptibie than 
most genotypes designated Al-tolerant. However, they concluded that devel
opment of an Al-tolerant cultivar might be slow and that the level of Al 
tolerance attained may be less than that observed in other crops. Devine 
et al. (1976) not only selected genotypes for Al tolerance and Al susceptibil
ity, but selections were interpollinated separately and a further cycle of 
recurrent selection made within selections. Plants from the population 
selected for Al tolerance had significantly higher root and shoot growth in 
an Al-toxic soil than genotypes from the population selected for Al suscepti
bility (Table 4). Al tolerance in these alfalfa populations was a heritable 
character controlled by a polygenic system rather than a single major gene. 
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Tahbl 4. 	 Response of two alfalfa populations to recurrentselection for tolerance 
and susceptibility to Al toxicity as determined by frequency distribution 
of plants In root score classes and mean root score after two weeks 
growth on Al-toxic Tatum soil at pH 4.6. 

Plants in roo score cluses t 
Mean 

Entry 1 2 3 4 5 9cOM 
AR3 (Tolerat strain) 1.75 6.36 31.33 41.41 19.16 3.70 
AS3 (Susceptile strain) 0.19 1.11 11.32 49.09 38.29 4.24 
LSDO01 0.06 

ti - Vigorous growth, secondary and tertiary branhding; 
5 - severly stunte growth. 

Data from Table 1 of Devine et. al. 1976. Plant and Soil 44:73-79. 

Recurrent selection was an effective method ofdeveloping bieeding lines in 
alfalfa with differential tolerance for Al-toxic soils. 

In the 1980's a program was undertaken at Georgia, USA to select an 
Al-tolerant alfalfa (Bouton et al., 1981a, b; 1982; Brooks et al., 1982). 
Genotypes were selected for two generations (cycles) from within the cultivar 
Florida 66 for high shoot yields in either an addic, high Al-soil or the same 
soil limed to pH 6.5. When progeny from these selections were tested in an 
acid soil with added P, the Al-tolerant selection had significantly higher
shoot yields than the selection from limed soils or the original seed. When 
grown in the limed soil without added --, the Al-tolerant selection yielded
significantly less (Brooks et al., 1982). Aditionally, Al-tolerant selections 
had roots penetrating deeper into an acid sunsoil than selections from limed 
soil (Bouton et al. 1982). However, in field tests, the advantage ofAl tolerance 
was not apparent in a low pH environment (pH 4.8) (Bouton and Sumner, 
1983). Reasons for this apparent disparity were not explained. However, 
such an inconsistency is not unique. In some studies, superior yielding 
germplasm has come from selections made in stress environments, while in. 
other studies, the opposite has been the case (Devine, 1982). 

Red Clover (Trifolium pratenseL.) 

Only recently have red clover cultivars been examined for their tolerance 
to Al. A solution culture study showed large differences among 23 red dover 
cultivars for tolerance to Al, with Al-tolerance ratios at 50 mol I;'Al ranging 
from 22 to 61 for shoot growth and 10 to 84 for root growth (Table 5) (Baligar 
et 0l., 1957). On the basis of this solution culture study, two red clover 
cultivars, Kuhn and Prosper, I are recommended for moderately acid soils 
(Baligar et al., 1987). Relative to Kenstar, they had 47% and 5%, respec
tively, higher shoot yields at 50 mol L'Al. At zero Al, Kuhn and Kenstar 
yields were similar, but Prosper I was only 73% that of Kenstar (Baligar et 
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Table 5. Red clover cultivars shoot and root rowth as influenced by Al. 
ShootWt Root wt 
mol L"! Al iimnol L Al 

Cultivar 0 50 100 0 50 100 
-g 10plants 

Altaswede 4.6 1.5 0.31 1.6 0.87 0.09 
Arlington 9.4 1.2 0.47 2.1 0.48 0.16 
Chesapeake 5.9 1.3 0.26 1.4 0.58 0.10 
Dollard 4.3 1.1 0.34 1.3 0.39 0.07 
Flare 8.2 1.8 0.68 2.4 0.84 0.07 
Florex 8.2 1.6 0.47 1.8 0.66 0.17 
Flode 5.5 1.5 0.42 1.3 0.51 0.09 
Kenland 7.4 1.3 0.41 1.8 0.54 0.12
 
Kenstar 5.1 1.9 0.41 1.6 0.77 0.08
 
Kuhn 4.6 2.8 0.64 1.6 1.17 0.14
 
K4-183 3.2 1.0 0.38 0.9 0.47 0.07
 
K4-184 2.6 0.5 0.20 0.6 0.27 0.06
 
Lakeland 8.8 2.5 0.60 2.0 0.87 0.11
 
Nolin 7.3 1.0 0.32 1.6 0.36 0.07
 
Noriac 7.0 1.3 0.35 2.6 0.58 0.06
 
Pennscou 7.8 1.7 0.69 1.4 0.65 0.11
 
Prosper! 3.7 2.0 0.23 1.0 0.86 0.06
 
Redland 6.4 0.4 0.29 1.4 0.14 0.10
 
Redland II 3.9 1.2 0.24 1.3 0.45 0.05
 
Redman 7.9 2.4 0.54 1.7 0.84 0.09
 
Redmor 4.4 1.6 0.43 1.1 0.63 0.10
 
Sapporo 5.8 1.2 0.43 1.2 0.40 0.11
 
Tristan 6.0 2.2 0.54 1.1 0.81 0.14
 

Mean 6.0 1.5 0.42 1.5 0.61 0.10
 
LSD oM 0.97 0.25
 

Data from Table 2 of Balgar al. 1167. Agron. J.79:1038-1044. 

al., 1987). Root growth of Prosper I was least affected by 50 mol LIA1. In a 
separate study, in which Kuhn was not included, Prosper I also performed 
well for Al tolerance response in nutrient solution (Campbell et al., 1990). 
However, in soil culture, it was not exceptional (Nuernberg et al., 1990). The 
cultivar Tristan, however, had an Al tolerance ratio nearly twice that of 
Kenstar when grown in soil, but the differences were due almost entirely to 
growth differences in unstressed conditions (Table 6) (Campbell et al., 1990). 
Nuernberg et al. (1990) showed that in both soil and solution culture, the 
cultivars Arlington, Lakeland, Tristan and YKYC were consistently Al-tol
erant and the cultivars Kenstar, 151-84-KM and Kenlend were consistently 
Al-susceptible. 
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Table 6. Shoot yield and Al tolerance of red clover cultivars grown in an acidic 
Al-toxic soil. 

Shoot DW (mg/plast) 
pH 5.7 pH 4.8 Al-toleramc 

2.8% A tu ation 26.2% Al saturation ratio 
Kenstar 93 42 0.45 
Proper 1 73 49 0.67 
Tristan 58 48 	 0.83 

Data adapted from Table 1 of Campbell at al., 1990. J. Plant Nutrition 13:143-1474. 

Table 7. 	 Effect of solution aluminum (JiM) on the top yield (mg pot"1 ) ofperennial 
ryegraa. (Lolium perenne) grown from tiller Isolates from 23 selected 
aluminum tolerant plants and the standard cultivar Grasslands Nui. 

Aluminum concentration (jM) 
Line 0 20 40 60 
1 260 129 M07 49 
2 328 249 92 69 
3 508 199 112 59 
5 717 323 183 119 
6 404 236 130 76 
7 452 412 211 120 
8 416 285 117 106 
9 626 223 174 94 
10 417 125 89 76 
11 .71 107 76 73 
12 548 255 158 97 
13 563 195 109 79 
14 385 254 256 189 
15 330 123 95 51 
16 643 269 165 109 
17 403 195 92 78 
18 274 105 81 44 
19 507 171 72 58 
20 308 242 127 82 
21 496 292 216 138 
22 518 308 142 93 
23 351 201 246 36 
24 541 174 94 53 
Grasslands Nui 709 176 118 86 
SED 209t 60 47 28 

181, 52 41 24 
t for compeang half-slb Wles. 
* for comparng halt-slb famillas Wlh Grasslands Nut.
 

Data from Table 1Wheeler at al. 1992. Plant and Sll 148:9-19.
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Perennial ryegrass (Loliumperenne L.) 

Al tolerance in perennial ryegrass has been described as polygenic (Ran
dall, 1963). In this study, the tolerant lines were higher yielding than 
susceptible lines when grown with Al, but lower yielding when grown in the 
absence of Al. The Al absorbed by the Al-tolerant plants was confined to the 
roots, and the reduction in shoot growth was considered to be a secondary 
effect of Al on the uptake and translocation of mineral nutrients. 

A selection program using low ionic strength culture solutions has iden
tified genotypes of perennial ryegrass that were more Al-tolerant than 
current standard cultivars (Table 7) (Wheeler et al., 1992). Results indicated 
that genotypes selected for Al-tolerance had good agronomic potential in 
both acid and fertile soils. Al-tolerant genotypes were more drought tolerant 
in re-constructed acid soil profiles. However, additional improvements in an 
Al-tolerant cultivar may be slow because of the relatively low heritability 
for Al tolerance (h2 = 0.24). 

Annual ryegrass (Lolium multiflorum Lain.) 

A screening program has shown a 3X range in Al-tolerance ratios based 
on root length in solution culture for annual ryegrass (Nelson and Keisling,
1980). Four cultivars, MOM96, Anbade, Tetragulf and Urbana showed no 
detrimental effects of 4mM Al on root growth. However, retesting of these 
with control cultivars showed little consistency, and it was concluded that a 
more reliable screening technique was required for this species. 

A more recent study (Rengel and Robinson, 1989a, b) has identified annual 
ryegrass cultivars, Gulf and Marshall as being more Al-tolerant than culti
vars Urbana and Wilo (Table 8). The more Al-tolerant cultivars were 
distinguished not only by growth differences, but also by (a) root-mediated 
changes on solution pH (pH increased more rapidly for tolerant cultivars 
after response to Al), (b) shoot Al concentration (lower in Al-tolerant culti
vars), (c) cation uptake (greater n. influx of Ca and Mg and lower net influx 
ofK for tolerant cultivars after exposure to Al (Rengel and Robinson, 1989a, 
b; 1990). 

Turfgrasses 

Screening of 35 Kentucky bluegrass (PoapratensisL.) cultivars showed a 
1oX difference in Al tolerance based on shoot yields and a 20X difference 
based on root yields (Table 9) (Murray and Foy, 1978). 
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Table 8. Al tolerance of four annual ryegrasu cultivars grown in solution culture 
based on root weights (mg/plant).
 

Alex osure
 
8d 18d
 

Al concentration Al-tolerance Al-tolerance
 
Cultivar tunoIL" DW ratio DW ratio
 
Gulf 0 7.0 1.00 at 93.3 1.00 a 

37 7.1 1.02 a 76.7 0.82 b 
74 7.1 1.01 a 70.0 0.75 c 

296 6.4 0.91 b 33.3 0.36 d 

Marshall 0 7.1 1.00 ab 83.3 1.00a 
37 7.9 1.10A 76.7 0.92 ab 
74 7.9 1.10 a 68.3 0.82 b 

296 7.1 1.00 ab 43.3 0.52 c 

Urbana 0 12.1 1.00 a 106.7 1.00 a 
37 9.3 0.77 b 86.7 0.81 b 
74 8.6 0.71 b 68.3 0.64 b 

296 5.9 0.49 c 12.3 0.12 c 

WUo 0 8.6 1.00 a 100.0 1.00 a 
37 5.6 0.66 b 60.0 0.60 b 
74 5.4 0.63 b 41.7 0.42 c 

296 3.3 0.38 c 9.8 0.10d 
t For each cultivar. means followed by the same letter withIn a coumn are not slgrlcantly dlffewent at the 95% confidence 
level.
 

Data adapted from Table 1 Rentlel and Robison. 198Na. Agron. J. 81:208-215. 

Table 9. Al tolerance of Kentucky bluegrass cultivars grown in Al-toxie soil and 
relative to that in limed soil (Al-tolera e ratio). 

DW (Wpt) A] tolerance ratio 
Cultivar Shoot Root Shoot Root 
Victa 1.97 0.55 0.84 1.02 
Bonnieblue 1.71 0.760.51 0.86 
Pennstur 1.71 0.51 0.82 0.77 
Fylking 1.91 0.54 0.91 0.77 
Beltuf 0.48 0.17 0.23 0.21 
Arboretum 0.21 0.06 0.16 0.09 
Windsor 0.15 0.05 0.08 0.08 
Kenblue 0.15 0.04 0.10 0.05 

Data adapted from Tables 1 arvJ 2, Murray &Foy. 1978. Agron. J. 70:78-774. 
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Red fescue (FestucarubraL.) is more tolerant of acid soils (Palazzo and 
Duel, 1974). However, a 5X variation in tolerance to acid soils, based on shoot 
yield, was found among 15 cultivars grown in an acidic soil (Murray and Foy, 
1978); Al-tolerance ratios ranged from 0.17 to 0.91. 

Tall fescue (FestucaarundinaceaSchreb.) is more sensitive to acid soils 
than red fescue, with Al-tolerance ratios ranging from 0.02 to 0.35 for six 
cultivars (Murray and Foy, 1978). However, some genotypes-within-culti
vars of tall fescue showed a high level of tolerance to Al. 

Old World bluetems (Bothriochloaintermedia,B ischaemurm, B. cau
casica)
 

From a screening of 29 lines from these three species, only five survived 
in an acid Al-toxic soil (pH 4.1); four from B. intermediaand one from B. 
caucasica(Foy et al., 1987). Even among these five, there was a 2X range in 
Al tolerance (Table 10). These five lines may enable Old World Bluestems 
to be grown in acid soils. 

Sericea lespedeza (Lespedeza cuneata) 

Sericea lespedeza is considerably more tolerant ofsubsoil Al than is alfalfa 
(Joost and Hoveland, 1986). Screening of 15 serica lespedeza lines, using 
radicle length in solutions containing Al, showed a 2X range in Al tolerance 
(Joost et al., 1986). Al-tolerance ratio based on radicle length was signifi
cantly correlated with Al-tolerance ratio in the field based on shoot and root 
ields (r = 0.82 and 0.89, respectively, p<0.05). The most Al-tolerant culti

vars were Interstate and All Lotan. 

Table 10. Shoot and and root growth of five Old World bluesiem in acid, Al-tozic 
soil (r 4.1) and growth relative to that in limed soil (pil 5.3). 

DW (gtMo) Al-tolerance raio 
Line Shoot Root Shoot Root 
B.intermedia 

860 1.87 1.59 0.46 n.g.
 
857 1.82 1.58 0.44 0.49
 
858 1.66 1.32 0.38 0.46
 
886 0.87 t.03 0.23 0.39
 

B. caucasica 
442 0.85 0.51 0.19 0.26 

n.g. data not given Inwotce reference. 

Data adapted from Table 2Foy at al. 1987. InH.W. Gabeimmn and B.C. Laughman (ode) Genetc Aspects of Plant 
Mnsral Nudton, p. 181-188. 
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Leucaena leucocephala 

Various reports have shown significant variation among lines of leucaena 
for Al tolerance (Del Rosario and Salaparc, 1980; Hutton, 1981a). The 
screening ofmore than 100 lines of leucaena in an acid soil (pH 4.1) and the 
same soil limed to pH 5.3 showed a 3X range and 7X range for Al-tolerance 
based on shoot and root weight, respectively (Oakes and Foy, 1984). The 
most Al-tolerant lines had twice the yield at pH 4.1 as that at pH 5.3. The 
distribution of leucaena may be expanded into oxisoils and ultisoils of the 
tropics and subtropics by the using acid-soil-tolerant lines. An alternative 
source of Al tolerance has been obtained through interspecific hybridization
with L. diversifolia (Hutton, 1990). Selection of vigorous, deep-rooting,
acid-soil-tolerant lines has been achieved, with Al tolerance transmitted to 
all generations up to F4. 

Subterraneanclover (Trifoliumsubterraneum) 

Variation for Al tolerance among seven cultivars of subterranean clover 
varied ZX based on both shoot and root growth, with cultivars Trikkala, 
Woogenellup, Mt. Barker and Seaton Park appearing the most tolerant 
(Osborne et al., 1981). 

Lotus 

Interspecific hybridization with Lotus pedunculatus has been used to 
transfer Al tolerance to L. corniculatus(Blamey et al., 1990). The extent of 
variation for Al tolerance in the F1 and F2 generations suggested that it 
should be possible to select for a combination of desirable agronomic char
acteristics and Al tolerance. 

Centrosema pubescens 

Adaptation ofCentrosema to acid soils has been improved using interspe
cific hybridization (Hutton, 1981b). Centrosemapubescens commonly used 
in South Africa is poorly adapted to acidic soils. However, hybridization was 
possible with the acid-tolerant species C. macrocarpum, and 20-25% of 
progeny inherited the high acid tolerance of C. macrocarpum. 

Manganese 

Alfalfa (Medicagosativa) 

Variation for Mn tolerance in alfalfa was demonstrated more than 30 
years ago (Dessureaux and Ouellette, 1958). The most Mn-tolerant cultivar 
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was Saureluzeme from Germany, which had been selected for tolerance to 
soil acidity. Selection, crossing and progeny testing indicated that tolerance 
to Mn in alfalfa was an inherited trait with high heritability (Dessureaux, 
:L959). 

More recently, variation in Mn tolerance among a range of Australian 
alfalfa cultivars was identified based on differences in severity ofMn toxicity 
symptoms (Salisbury and Downes, 1982), although this means ofidentifying 
Mn tolerance has been criticized (Sale et al., 1993). Another study identified 
Mn tolerance among modern commercial cultivars of alfalfa (Sale et al., 
1993) Variation in Mn tolerance was observed among 11 cultivars, with 
VLSS the most tolerant and Trifecta the least tolerant cultivars (Table 11). 

Genotypes with greater growth at high Mn levels were observed within 
cultivars, suggesting that further improvements can be expected. 

Perennial ryegrass (Loliumperenne) 

Mn tolerance in perennial ryegrmss was associated with an absence in 
necrotic spotting due to a higher proportion of readily soluble Mn in the 
leaves (Randall, 1963). 

Phalaris (Phalarisaquatica) 

Screening trials in Australia have shown that while phalaris is very 
tolerant to excess Mn a 2X range in tolerance to Mn existed among 16 lines 
and cultivars (Table 12) (Culvenor, 1985). The more tolerant cultivars 
actually showed a positive response to 40 ppm Mn. The primary mechanism 
determining tolerance of phalaris lines was differential tolerance to high 

Table 11. Shoot yield at 25 mg Mn L and Mn-tolerance ratio (Mn2 /maximumyield) 
for 11 alfalfa cultivars. 

Shoot DW Wnolerance 
Culttvar (mg ant) raio 
Valldor 28.7 0.45 
WL SS 26.3 0.64 
'NL318 25.6 0.58 
PB 581 24.6 0.38 
Sheffleld 24.1 0.44 
Cimmaron 23.8 0.50 
Tdfecta 22.5 0.37 
Aurora 22.4 0.56 
PB 545 20.7 0.43 
PB 577 19.7 0.38 
vaddor II 14.9 0.39 

Data adapted from Table 1,Sale at al. 1993. InPJ. Randall at al. (eds). Genetic Aspects of Pl-wt Mineral Nutitlon, p.45
52. 
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Table 12. Shoot yield at210 ppm Mn and Mn-tolerance ratio (yield Mn 2l 0/max yield
"has correlation of r - 0.92, p<0.001 with tolerance index used by Cul
venor 1985) of phalaris cultivars and lines. 

Shoot DW (mg) Mn-tolerance 
Line (210 ppm Mn) ratio
 
0'! 15V22 
 166 0.76
 
CPI 19299 
 108 0.66
 
Sirou 
 206 0.62 
Australian 146 0.64 
Noy 103 0.66 
CPl 19357 164 0.72
 
CPI 19315 
 146 0.61
 
Sirola 
 258 0.56 
(I 15220 132 0.51
 
(Cl19305 212 
 0.55 
CPI 19306 169 0.50
 
CPI 15021 
 152 0.56
 
( l 19280 
 121 0.48 
( l 19289 139 0.47
 
(Fl 19275 83 
 0.41
 
CPI 14496 
 117 0.43 

Data adapted tmn Table 2, Culvero. 1985. Aust. J.Agric. Roes.36:695-708 

internal Mn levels in shoots, rather than Mn exclusion or retention in roots. 
The most Mn-tolerant lines included Sirosa and Australian (Table 12);
selection involving Mn tolerance ofphalais cultivars should be low priority,
but the major effort should be directed for Al tolerance. 

Subterranean clover (Trifolium subterranean) 

Variations for Mn tolera. ce has been demonstrated among seven cultivars 
of subterranean clover; the cultivars Trikkala, Yarloop, Seaton Park and 
Dinninup showed a high degree of Mn tolerance (Table 13) (Osborne et al., 
1981). In a more recent study of 76 lines, lines more tolerant than Trikkala 
and Seaton Park were identified (Table 13) (Evans et al., 1987). Retention 
of Mn in roots was a possible mechanism for tolerance to high Mn ia 
subterranean dover. 

Macroptilium atropurpureum 

Variation in Mn tolerance has been shown among 15 lines ofM.atropur
pureum, with several more tolerant than the most commonly used cultivar 
Siratro (Table 14) (Hutton et al., 1978). 
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Table 13. Dry weight Mn-tolerance ratio (MnhVMn.) of subterraneancultivars 
grown in solution culture in two trial. 

Trial - Shoot DW Trial 2 - Total DW 
Cultivar Mz.Nb = 60 ppm Mn Mn.. = 90 ppm Mn 

T.S. sut*rranwan 
47299 C t 0.42 

Mulwala 0.60 

Seaton Puk 0.57 0.43 

69985 A 0.62 

47309 C 0.40 

Woogenellup 0.22 0.25 

Nungarin 0.37 

65320 0.22 

Mt Barker 0.18 0.18 
68043 C 0.19 
Northam 0.15 

48915 A 0.15 

Dalik 0.35 
Dinninup 0.43 

TS. ynninicum 
Yan~op 0.61 0.26 

Laista 0.17 
Trikkala 0.62 0.34 

T.S. brachycalycinm 

69984 B 0.18 
Clare 0.36 

68045 B 0.09 

Data source, Trial 1 adapted from Table 4, Osborne at al. 1981. Field Crops Ressetch 3:347-353; Trial 2 adapted from Ta
ble 1,Evas et a). 1987. Plant and Soil 97:207-21S. 

tOnotes riot measured. 

SCREENING HOST-RHIZOBIUM SYMBIOSIS 

FOR TOLERANCE TO ACIDITY, AL AND MN 

Rhizobium Growth and Survival 

Aluminum inhibits Rhizobium trifoliimultiplication in the rhizosphere of 
white clover (Wood et al., 1984) and subterranean clover (Whelan and 
Alexander, 1986). However, rhizobial strains differ in ability to nodulate at 
low pH and high Al (Munns, 1978). Screening trials ha re shown variation 
among strains ofR. nwliloti(Lowendorf and Alexander, 1983) and R. trifolii 
(Wood and Cooper, 1985; Lindstrom and Myllyniemi, 1987), for ability to 
grow in acidified culture media; and among strains of R. trifolii(Wood and 
Cooper, 1985), for ability to grow in media containing Al. 
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Table 14. 	Dry matteryield at 40 ppm and45 ppm Mn and Mn-tolerance ratio (Mne, 
., ,/Mno.) of Macrophilium atrapurpurcumline grown in solution cul
ture. 

DM yield Mn-tolemnce

Line (g/000ratio
 
Trial 1 (40 pptm Mn)
 
Siratro 
 3.7 0.54
 
2 
 2.8 0.37
 
3 
 3.8 	 0.54 
4 4.1 0.56
 
5 
 6.9 0.83
 
6 
 5.7 0.76
 
7 
 3.0 0.28
 
8 
 2.5 0.33
 
9 
 2.1 0.37
 
10 
 4.5 0.56
 
11 
 8.1 0.85
 
Trial 2 (45 ppm Mn)
 
Simtro 
 2.2 0.13
 
IA 
 9.8 0.36
 
13 
 4.3 0.20
 
15 
 9.8 0.43
 
18 
 6.4 	 0.33 

Data adapted from Table I Hutton at al. 1978. Aust J. Agric. Res. 29:87-79. 

Among rhizobia capable of nodulating Lotus peduncu!atus,fast-growing
rhizobia (R. loti) were more tolerant ofacidity and Al in liquid culture than 
slow-growing rhizobia (Bradyrhizobium sp. (Lotus)) (Wood et al., 1988).
However, nodulation of L. pedunculatus grown in an acid soil was more 
effective when inoculated with slow-growing rather than fast-growing
strains. Simi!arly, correlation between the symbiotic properties of strains of 
R. trifoliiwith red clover (Lindstrom and Myllyniemi, 1987) and subterra
nean dover (Richardson and Simpson, 1989) in acidic soil and their growth 
on acid media have not been demonstrated. Predictions ofsymbiotic perform
ance in acid soils was best when related to the pH of isolation sites of the 
strains (Lindstrom and Myllyniemi, 1987). 

Cellular regulation of cytoplasmic pH has been associated with growth of 
R. meliloti in acid environments (OTHara et al., 1989). Acid-tolerant strains 
generated a pH gradient under acid conditions and always maintained an 
alkaline interior, whereas strains sensitive to acidity were unable to control 
internal pH and maintained only a small pH gradient in acid solutions. They
concluded that the ability to generate a large pH gradient under acid 
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conditions would give a good indication of acid tolerance of R. meliloti 
strains. 

Acid tolerance of rhizobia is linked not with growth and survival in acid 
soils but with an ability to be stimulated to infect the host legume in acid 
soils (Lowendorf and Alexander, 1983). However, both host cultivar and 
Rhizobiur strain influence competition for nodule sites (Vexgas and Gra
ham, 1989). For example, cultivars of subterranean clover affect the com
petitive success of inoculant strains of R. trifolii in soils with resident 
populations (Roughley et al., 1977). These effects seem to be more pro
nounced in acid soils (Dughri and Bottomley, 1984). 

Nodulation and N-fixation in Acid Soils 

Nodulation of legumes can often be more sensitive to low pH and the 
concomitant effects of low pH (Al and Mn toxicity) than the growth of the 
host plant (Kim et al., 1985; Blamey et al., 1987). Al interferes with root 
infection and/or nodule initiation, and as a result of a reduction in lateral 
root density, the potential number of sites for root infection and nodule 
formation is also reduced (de Carvalho et al., 1982). Nitrogenase activity 
may be more sensitive to Al than nodulation in white clover (Jarvis and 
Hatch, 1985). 

Variation for both rate and extent of nodu]ation in the presence of Al has 
been observed among 11 subterranean cultivars (Kim et al., 1985). The 
cultivars Howard and Tallarook formed nodules more rapidly and to a 
greater extent than Seaton Park, Woogenellup, Daliak and Dwalganup, 
which produced no nodules after 14 days at 11.9 M Al. In another study 
comparing nine cultivars of subterranean clover (which did not include 
Howard and Tallarook), no major differences were Lpparent in the activity 
of exudates from seedling roots in inducing nodlation over a range of pH 
levels (Richardson et al., 1988). 

NCREASING OUR CHANCES FOR SUCCESS 

When selecting for adaptation to a nutrient deficiency or edaphic stress, 
care must be taken to use the appropriate type ofenvironment (Gerloff, 1987) 
for the screening procedure. While good correlationjo between controlled 
environment and field results are found in the selection of edaphic stress 
tolerant germplasm mainly for crop species (e.g. Campbell and Lafever, 
1976; Howeler and Cadavid, 1976; Joost et al., 1986), there are cases of poor 
correlations (e.g. Caradus and Snaydon, 1986d), or of selections that fail for 
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reasons of poor agronomic performance while still being adapted to the 
edaphic stress (Devine et al., 1990). Inappropriate screening strategies may
result in selection for grow th rate or vigor rather than an adaptive tolerance 
to an edaphic stress (Campbell et al., 1988; Bouton and Sumner, 1985). To 
ensure that such an outcome is less likely to occur and confound attempts 
to select for adaptation to edaphic stress, two criteria can be used. Firstly,
log-transformation of data before analysis provides confidence that signifi
cant genotype x nutrient stress interactions are due more to differences in 
mineral nutrition than growth rate alone (Antonovics et al., 1967). Secondly,
testing differences in unstressed growth are not significant when large
differences occur under stress. Apparent differences in Al tolerance can be 
due to differences in growth in unstressed conditions rather than when 
subjected to an edaphic stress (Table 6). Another result that must be 
considered with caution occurs where stress tolerance is high because of 
rei rlively poor growth when unstressed. This type of plant, while presum
ably stress tolerant, is unresponsive to favorable conditions. 

Th. areening technique must have the ability to critically select for the 
dsired character. Caution is required in extrapolating specific character 
selection for improved whole plant adaptation to edaphic stresses. Reasons 
for this include: 1) edaphic stress tolerance may be a complex of characters 
rather than a single character, 2) selection for one character may cause a 
detaimental effect on other characters due to genetic correlation among
characters, 3) selection for one character may result in a plant type that has 
an unsuitable agronomic type not able to persist under grazing or competi
tion, and 4) most often it is a combination ofstresses that affect a plant rather 
than a single stress such as low P or high Al. 

Additionally, demonstrating that the character is heritable and repeat
able under different conditions should be emphasized. Selection for the 
desired character within germplasm that has agronomic merit is recom
mended. 

FUTURE RELEASES OF GERMPLASM AND CULTIVARS 

Phosphorus 

Intraspecific variation exists within forage species for a number of facets 
of P nutrition, which may contribute to increased tolerance of low P and 
increased P-efficiency at higher levels of added P. However, few breeding 
programs have achieved these aims and resulted in a commercially available 
cultivar (Table 15). Alfalfa germplasm P3 (P1 525455) was released in 1988 
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Table lM Status of identification and selection for cultlvars with edaphic stress 
tolirance in the main forage apeciem 

Edaphic stess Speclei Cultttvr differences Selecdon program 
P-delldency T,,olumrepens Not ccnsistently apparent Progressing 

AMwago saliva Not apparent None 
,.tyl/sanwhes aiJa Culttvar dffnmncsA, documented None 

Al-toclty T. repmo None Sujcossfui selecton 
Phaarisaquaica Nano Sucessfui selecton enhanced by 

use of Intorspeclfkc hybIdlzagon 
M. aIa None Some acss 
T. pjat"Wo Consistent cudlivar diferencis None 
Lountperenne None Some kXass 
L mul/ourn Consistent culivar differences None 

Lespdeza cuneata Cultvar differences doumented None 

T. subterranean Consistent clIvr dfferencea None 

Mn-toxicity M.saiva Culw differences documented Some succemss 
P. aqualica Cult var differenceas documented None 
T.subtoranewn Cnsistent cultvar differences None 

Maocwypum afrpuxumum Cultivar differences documented None 

as a source of genes for increasing P concentration in leaf tissue (Melton et 
al., 1989). It was developed through 3 cycles ofrecurrent phenotypic selection 
to give a 39% higher shoot P concentration than in unselect -d populations. 
The Stylosanthesguianewiis cultivar Schofield has been released with some 
evidence that it is highly efficient in P uptake and will grow on a wide range 
of soils of inherently low fertility. However, Schofield is now susceptible to 
anthracnose and has been replaced by Graham (Oram., 1990). 

This general lack of progress towards forage cultivars adapted to P-defi
cient soils is perhaps not surprising if one considers the extent to which P is 
involved in plant metabolism. P is intrinsic to the formation of both pyro
phosphate bonds that allow energy transfer, and nucleotide triphosphates 
that are involved in the synthesis ofRNA and DNA. However, differences in 
P metabolism exist, e.g.. the extent to which Pi levels can be increased and 
reduced with fluctuating P supply. Vose (1982) suggests that a possible 
reason why this variation has not been 'captured' in a commercial cultivar 
is that our knowledge of the genetics of P nutrition is still very poor and is 
limiting progress. I would tend to agree and would go further in stating that 
it is likely that the control of critical facets of P nutrition that might be 
exploited to improve low P tolerance or P efficiency ;re polygenic and may 
prove difficult to transfer, particularly in outcrossing species, to successive 
generations. 
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However, with the relatively small effort involved in forage species,
considerable advances have been made and give the promise of improved
adaptation to low P soils. For example, genetic variation has been identified 
in white clover for P response (Caradus et al., 1992b), various aspects ofroot 
morphology (Caradus, 1990b), P uptake rates, delivery to the shoot under 
P-deficiency atrss, partitioning of P in leaves (Caradus, 1990a), and shoot 
total P concentration (Caradus, 1992). 

Acid Soils 

In both white clover (Mackay et al., 1990c) and alfalfa (Simpson, 1974), 
attempts to characterize cultivars for Al tolerance have been inconclusive 
(Table 15). This can be partly attributed to the large degree of variation for 
Al tolerance within cultivars. In forage species, selection for Al tolerance has 
produced no commercial product, due mainly to the small effort invested in 
this work. Programs that give the greatest optimism for success are in 
Trifolium repens andPhalarisaquatica(Table 15). However, within some 
species including T. pratense, T. subterraneum, Lolium multiflorum and 
Lespedeza cuneata,differences in Al-tolerance have been described among
existing cultivars. Additionally, a crown vetch germplasm, Virginia Syn.
thedc A, was released in 1979 as a selection tolerant to acid soils (Miller,
1980). In white clover and phalaris, variation has been found, providing
gennplasm for ongoing breeding programs. 

Programs aimed at selecting for improved Mn tolerance have had limited 
success due to a small investment. Yet in all species tested, significant
differences in Mn tolerance have been demonstrated among existing culti
vars (Table 15). 

RESPONSITILITIES ASSOCIATED
 
WITH GERMPLASM RELEASE
 

Ifit is accepted that the current state of our land resource is a product of 
current management approaches, simply switching to better adapted
germplasm, while providing some possibly temporary increase in produc
tion, does not necessarily address the underlying problerls. Sustainable land 
management embodies the idea of preserving the productive capability of 
our land resources. The two approaches of fertilizer and lime application,
and breeding betVer adapted cultivars should be seen as complementary.
Release ofcultivarE with improved edaphic adaptation cannot be considered 
the complete panacea and for some, there has been criticism that better 
adapted plants may simply accelerate land degradation. A balance must be 
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reached by combining sensible fertilizer use, adapted germplasm, and ap
propriate management to ensure sustained production. 

CONCLUSION 

Even with the limited investment worldwide in forage plant improvement 
for acid, low-P soils, there have been considerable advances both in identi
fication of genetic differences and in gaining an understanding of possible 
mechanisms involved. The use ofscreening strategies that combine selection 
for the desired character in an appropriate environment will continue to 
ensure the success of this effort. 
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ABSTRACT
 

The image of agriculture has changed tremendously in recent years. The green
revolution of approximately three decades ago placed agricultural research on a 
pedestal with money available for almost any interesting program through the
1970's. Today the image of agriculture is low with enrollment falling off in univer
sities and major reductions in funding for research nationally and internationally. 

Many changes are taking place today in the international agricultural develop.
ment community. The aggressive leadership of the early international research 
centers has been replaced by a new generation of director generals. Leadership
has changed in the donor organizationL and reformu are taking place as assess. 
ments are made about past investments in countries where doubtful leadership
and corruption have given UitLe chance for success. As the funding parkage of
donors shrinks reforms become necessary in the institutions they have been 
financing. 

Donors are faced with very different pressures today than when agriculture wan 
on a pedestal. Support groups have sensitized the general public to environmental 
issues. The Bruntland report has been followed by Agenda 21, which is a reaction
of political leaders to the pressures from support groups and the general public to
do something about environmental enhancement. A new area for donor support is 
in countries where democracy is emerging and privatization of ir.iustry and
agriculture Is taking place. The use of the word sustainability in almost any
proposal appears necessary for project consideration today. 

The problem of balancing population with food production in an enhanced
environment will hve to become a top priority soon for everyone. Many of the
recommendations made at Rio will have to be solved by research in agriculture.
Agricultural research should shortly be entering a golden era if the decision 
makers wee genuine in the recommenzations they nade at Rio and the level of 
funding they suggested for solutions is forthcoming. 

INTRODI JCTION 
Any overview of coming actions to take place amongst governments, 

foundations and institutions both public and private across planet earth to 
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solve the problrm ofadaptation ofplants to soil stresses is highly speculative.
The decision makers on whom the funding for agricultural research depends 
react to very different pressures than do scientists in their classrooms, 
laboratories, greenhouses and research plots. With the ending of the cold 
war the funds which mightbe shifted to other prioritieo may well be required 
for the ethnic wars which are probably only at their beginning. In agricul. 
tvral research we talk about the value ofgenetic variability but in the human 
race we have not yet recognized the tremendous value of differences in color, 
race, and even religion on this planet and until we do racial disturbances 
can interfere with the best ofplanning to address the problems of a sustain
able environment where food production is balanced with population. 

My comments will be aimed at a sustainable and adequate agricultural 
production in an enhanced environment that includes adaptation ofplants 
to soil stresses. I shall approach this subject from several directions. The 
first will be to look at the present low image of agriculture and the present 
trend for funding research in -agriculturenationally and internationally. The 
second direction will be to recognize the problems of food and environment 
and the shifts in the interest of the donor community that has been funding 
agricultural research up until now. The third direction will be to look briefly 
at the declarations made by our political leaders, the decision makers from 
around the world in the 40 chapters of Agenda 21 at the Rio convention and 
the need it demonstrates for a dialogue between the political and scientific 
community which has not been taking place. Finally, I will try to pull this 
all together, recognizing that science is the only super power today that can 
lead to a flture for planet earth; that you have in your portfolio already the 
tools to do almost anything imaginable in agriculture iffunding is available. 
My conclusions will indicate that we should shortly be entering what could 
be called the golden days for agricultural research. 

THE PRESENT IMAGE OF AGRICULTUIAUL RESEARCH 

The green revolution of three decades ago placed agricultaral research on 
a pedestal. Funding became available for all kinds of interesting programs 
in agriculture nationally and internationally for approximately two decades. 
The two foundation sponsored centers that provided the building blocks for 
the green revolution in the 1960's stimulated donors in the 1970's to pool 
their resources and form the Consultative Group for International Agricul
tural Research, the CGIAR system of centers which concentrated their 
efforts on crop improvement through breeding with the major world food 
crops. In a relatively short time, this system grew to 18 Centers funded at 
approximately one quarter of a billion dollars annually and several associ
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ated centers outside the system funded by the same group of approximately
forty donors. During this period of growth for the centers, a number of
national agricultural research programs in developing countries emerged
with strength. Loan money from international development agencies was 
utilized by some countries to build a major national research capacity in
agriculture. With the networking ofthe International Agricultural Research 
Centers amongst developing countries and their research linkages into
capabilities wherever they existed, the scientific community appeared to be
moving rapidly towards the global village, except for the continent ofAfrica. 

Today agriculture is no longer on a pedestal. Enrollment in agricultural
universities is down and budgets for agricultural research nationally and 
internationally are being reduced. The CGIAR centers b-ve been going
through annual finding reductions at the same time as the) being asked 
to include programs which will provide a higher ecological visibility. The 
growth that took place in the 1970's and early 1980's in the CGIAR system
has changed recently to consolidations and reductions. At the 1993 mid-year
meeting cf the CGIAR centers, the decisions made by donors for consolida
tions ovar the next few years will bring the system down from 18 to 16 centers 
and this is probably just the beginning of reforms to take place. Many of the 
donor organizations for agricultural development have been or are going
through reorganizations. Bureaucracy leading to overmanagement of the 
centers has crept into the CGIAR system at a time when the aggressive
leadership that built the centers has been replaced with a new generation
of center directors general. Also changing during this same period is the 
leadership in those ni!jor donor agencies that have been primarily respon
sible for the birth and funding ofthe centers through their first two decades. 
These donor organizations under new leadership are responding to different 
pressures today than they were when agriculture was on its pedestal. 

All major donor agencies are giving similar responses to funding requests 
at present. All are working with a shrinking funding package. Cutting at 
the margins and eliminating poor projects will no longer meet budget
reduction needs; good, and what are called essential programs are having to 
be reduced and even terminated. The long term funling commitments by
donors that produced the green revolution appears to have changed to 
mainly the availability of catalytic funds that must produce early results. 
In my opinion, scientists and the scientific community have a responsibility
for the present attitude towards agricultural research and there are steps 
we should be taking that may eventually lead to increased financing for our 
research. 
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One can already see changes in the attitudes of the don,-r community. In 
the past, many of the most influential donors have had a tendency to go their 
separate ways and start things and pressure others to join and help finance 
their ventures. In today's financial climate, donors are becoming joiners and 
discussing ways to compliment each others abilities to address the priority 
problems of food and environment. If the world is fortunate, the donor 
collaboration may reach the point where within their own individual pro
grams we may see bilateral funds complimenting multilateral funds in the 
days ahead. This would be welcome progress. 

Approximately a decade ago as annual inflation became greater than 
increases in funding for the international research centers, the CGIAR 
system stimulated the development of national support organizations for 
agricultural research. This was at a time when the CGIAR wished to 
consider adding new priorities not directly associated with the mqjor world 
food crops. The national support organizations were supposed to be able to 
identify new sources of funding for the basic programs of the system and 
start tapping the private sector as a new resource. During this same period 
the international centers formed a Public Awareness Association in an 
attempt to stimulate support ly reaching out to the many audiences on 
whom funding depends and explaining the importance of investments in 
research. The history ofboth ofthese efforts has been poor. The new donors 
that were suppoqed to be ready for tapping have not materialized and the 
support organizations are having difficulty obtaining sufficient operational 
funding to stay alive. If they are to ever be successful, they will have to 
change from services and. nd a way to become economically sustainable 
through products being developed that will help the financing ofagricultural 
research. The Public Awareness Association had a successful initial period 
and then floundered as the competition for available funding caused centers 
to turn communications capabilities inward towards individual center needs 
at the expense of the system. Leadership for the public awareness associa
tion has recently moved to the donor community and the program is being 
reactivated with an array of articles about research at the centers reaching 
the general public. 

The New Pressms and Challenges Facing Donors 

Let me now change direction and indicate some ofthe new pressures that 
donors face in the global arena ofprograms required to balance sustainable 
food production with population in an enhanced environment. The environ
mentalists with their aggresaive support organizations have focused the 
attention of the world to the problems of environment and sustainability of 
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life on planet earth. The Bruntland report of the last de.de has been 
followed by the Rio convention and Agenda 21. Donor organizations have 
had to react to this public and political pressure for environmental programs.
The international agricultural research centers are being forced to incorpo
rate environmental approaches at the possible expense of what they have 
been developed to do best, and probably what they need to continue doing,
which is keeping production of priority food crops in balance with population
increases. Many parts oftheir programs have been very much environmen
tally oriented without waving an ecological flag and joining actively the 
environmental revolution. Those of us involved in agricultural research 
should have learned quickly from the environmentalists and established 
similar support groups for agriculture. If we had reacted with wisdom, we 
would see agriculture today carried along and united with the environmental 
campaigns. 

There is little doubt that some donors are withdrawing funds from agri
cultural research. in order to be able to support environmental programs.
They have no choice but to take funds from other programs in order to add 
environmental concerns at a time when the total budget package is decreas
ing. This was made very clear in a recent discussion with the new adminis
trator ofthe Agency for International Development. With a shrinking budget
and the many pressures for funds, those programs that appear to have the 
greatest justification will be financed. We in agriculture are competing with 
all the other requests for funding and we must position ourselves better in 
the future than we have in the past. We must make sure we get repeated
audiences with these new leaders and that we present our case well. 

Agricultural development must be a part of any concern for the environ
ment. This appears to be forgotten by the environmentalists. The environ
ment has neither geographical nor political boumdaries and must be ad
dressed on a global basis. Until here is economic improvement for the whole 
global village, attempts for environmental enhancement will be confined to 
those pockets where poverty and hunger have been eliminated. Immediate 
survival will continue to be at the expense of the environment in many
countries on this planet until there is adequate economic development. For 
most countries, economic developraent has depended on agricultural im
provement. Thus, the key to environmental enhancement is agricultural
development that becomes the stimulant for an improved economy. 

The breaking up of the Soviet Union and the democratization of major
portions of the world that have previously been under ridged centralized 
governmental control is providing a new challenge to many donors. The new 
administrator of the Agency for International Development at his swearing 
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in ceremony listed the fostering ofdemocracy as one ofthe present four goals 
of USAID, and by the way, agriculture is not mentioned directly in any of 
the four goals. As these newly democratized countries go through the process 
of privatization of their industries and their agriculture, they are calling for 
help from the same donors who have been supporting our activities in 
agricultural development. It is to our interest to help these countries go 
through the process of privatization and become part of the global village 
towards which we need to move politically as well as scientifically. But this 
new pressure for support comes from the same shrinking total budget of 
USAID and is competing for the fuids that have been helping finance our 
activities in agricultural development up umtil now. 

The word sustainable has become the "buzz" word of today and is now very 
much a part of development language and weighs heavy in some donor 
considerations for project financing. There is sustainable development, a 
sustainable environment, a sustainable agriculture, a sustainable economy. 
What do we really mean by the word sustainable, which is so loosely used 
these days? What is a donor financing when a project is funded on sustaia
able agriculture? How is sustainability measured to know whether the 
project has accomplished its goals? In what time frames are we speaking 
when we use the word? Whatever the definition, the present funding situ
ation for agriculture across both the developed and developing world leaves 
little room for new shifts to sustainability issues without affecting what has 
been considered priority research for the principle food crops up until now. 

Donor organizations for programs in agricultural development have many 
new pressures for funds from a shrinking budget. A lesser amount of money 
has to cover a wider number of priority issues and pressures. In such a 
climate, many donors are going through reforms and reorganizations, cut
ting down on the number of goals, trying to eliminate bureaucracy and 
duplications, in order to be able to continue the essential anu h1ave flexibility 
to address the new. Donors are recognizing that much money was wasted in 
the past thirty years in countries where corruption and incompetent leader
ship made development doubtful, no matter how essential the humanitarian 
need or how good the project looked on paper. I believe we will see far less 
funding to countries where leadership is doubtful and corruption is in 
evidence in the future. Some donors are already showing their disappoint
ment with programs in many African countries and are apparently changing 
to other locations where the possibilities fcr early progress is greater. Latin 
America is going through a period of needed witch hunting in order to 
recognize the corruption ofpast leaders and send a clear signal to the world 
that their houses are being put in order. Hopefully, Africa will learn from 
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Latin America and go through the same cleansing process so that the 
possibilities for development progress will increase. 

A CHALLENGE TO SCIENCE FROM
 
POLITICAL LEADERS AROUND THE WORLD
 

The political leaders from countries around the world at their meeting in 
Rio a year ago gave relatively clear indications of their expectations for 
accomplishments from the scientific community in the 40 chapters ofAgenda
21. Agenda 21 is a political reaction to the pressure that has been built up 
to address environmental concerns. Solutions to many of the recommenda
tions in Agenda 21 must come from research in our agricultural research 
facilities. A look at recommendations and the funding that is suggested for 
implementation clearly indicates the lack of dialogue between the scientific 
and the political community. What has been recommended in Agenda 21 as 
the cost for solutions has little reality with the pittance being given by the 
decision makers in recent years to agricultural research. The difference in 
thinking between the scientific and the political communities can best be 
indicated in the concerns for controlling the use of dangerous chemicals. The 
political community in Agenda 21 would set up an expensive bureaucratic 
structure to guard against the use of dangerous chemicals in agricultural
production. The bureaucratic controls would be impossible to implement in 
many countries where the use of dangerous chemicals is essential by gov
ernments and their farmers in the production ofsufficient food for survival 
until safe alternatives are available. The scientific community would invest 
in research that would provide safe and economically feasible alternatives 
whose acceptance by farmers would be automatic. 

It is imperative that a much needed dialogue be initiated now between 
the scientific and political community as the funding is sought for the 
implementation of the recommendations of the political decision makers. 
How fortunate that they have declared what they want done. W. must help 
them look at alternative solutions. We must let them know that inany ofour 
present research programs are already addressing the problems for which 
they want solutions, programs that are presently under severe financial 
limitations because ofbudgetary restrictions. 

We in the scientific community have done a very poor job communicating 
outside of our portals. We have done a good job communicating with each 
other. We have recognized research accomplishments with an overemphasis 
of results and the prizes given have made front page news in the major 
papers. As we have accepted praise for accomplishments, we have forgotten 
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to identify how far we still have to go and thus the general public and the 
decision maker could well believe that we have already in our science 
portfolio the answers to the problems with which mankind is faced in 
balancing food production with population in a sustainable environment. 
How do we provide an adequate balance between a necessary recognition of 
research accomplishments and an indication of the priority research still 
needed? 

Agenda 21 accentuates the need for a dialogue between the scientific 
community and the political decision maker that has been missing. Agenda 
21 dearly indicates the solutions that are expected from the scientific 
community and what the solutions will cost. We in research have not been 
receiving the kinds of financing suggested for solutions. Reforms, reorgani
zations, and adjusting priorities in our institutions will not identify the kinds 
of financing mentioned in Agenda 21. Thus, I can only surmise that new 
funds must be forthcoming if our policy makers are genuine about the 
recommendations they made at Rio. We must make sure that they were 
genuine in their recommendations. 

THE EMERGING GOLDEN AGE
 
OF AGRICULTURAL RESEARCH
 

I strongly believe that we should look and act with enthusiasm to what is 
just ahead for agricultural research. The policy makers have declared 
themselves in Agenda 21. Many of the answers they want must come from 
our agricultural research institutions. There are steps we should be taking 
now to see that our house is in order and our institutions are positioned 
correctly to give priority attention to solutions as funds start flowing. Let 
me identify a few of the steps that I believe are most important. 

1. Just as donor agencies are going through reforms and trying to elimi
nate the unessential so should the institutions they are funding. With today's 
funding limitations, there is no room for the interesting unless there is a 
high potential for a practical application to solving the problems offood and 
environment. 

2. Start the needed dialogue now between yourselves and those on whom 
your funding depends. An article in the local newspaper about your research 
may be more important than another article in "Soil Science" or other 
scientific journals. Attendance at a congressional luncheon may be more 
important than attending a scientific meeting such as this. 
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3. Some of the research you are already doing may be aimed at finding 
answers to the problems the decision makers want solved. You may want to 
repackage this research so it looks like new and is described in the language 
of the environmentalists. We need to do everything possible to honestly 
associate our agricultural research with environmental concerns. 

4. Be more concerned with doing the right things in your institutions than 
you are with doing things the right way. We need today in our institutions, 
nationally and internationally, the aggressive leadership and wisdom that 
shaped the green revolution. I have little respect for the participatory 
management that has crept into the leadership of many of our institutions 
today through overmanagement as bureaucracy increases. The aggressive 
use of responsibility and authority with wisdom and vision is needed to 
address the recommendations of Agenda 21 and the problems of food and 
environment. 

5. All of our research activities must help move science towards the global 
village approach. Become a joiner and recognize comparative advantages in 
other institutions. Team -pproaches are Needed for problems coming to us 
for solutions. Donors are going to insist on joint efforts at the scientist level 
across institutions and not compartmentalization amongst institutions. You 
will certainly see this as the CRSP projects ofUSAID go through a period of 
evaluation and reform. 

Returns from investments in agricultural research are excellent and in 
cur profit motivated society, this information must be used We must 
perceive research as a product that can be promoted and exploited. The 
annual returns from investments in agricultural research are fiom 25 to 100 
%. Although some of the international research centers have considered 
utilizing professional fund-raisers for financing their activities, none have 
so far taken the step. In my opinion, this would be a move in the right 
direction. 

In summary, the portfolio of tools that science has available today to solve 
the problems of food and environment are tremendous when compared with 
what was available as the green revolution took shape. Although the ethnic 
disturbances will continue to disrupt the political world, in the scientific 
world, we have the ability to rapidly approach the global village. Let me list 
briefly why I believe agriculture is approaching the golden age for research. 

First. I have to believe that policy makers were genuine in their declara
tions at Rio and that fimding will be made available for the problems they 
identified that must come to us for solutions. Much of the present insecurity 
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of funding for research may be necessary as shifts are made in order to 
finance the solutions needed. 

Second. Support groups have already sensitized the general public to 
environmental needs. We in agriculture must reach out andjoin them, since 
an enhanced and sustainable environment depends to a great extent on 
agricultural research. 

Third. Communications capabilities today make joint research programs 
possible anywhere and the sharing of results quickly with all countries. In 
science, we can have the global village today. 

Fourth. The International Research Centers are already working on the 
major problems of food production and are providing linkages between 
developed and developing country research programs. Their partnership 
relations will undoubtedly increase as reforms take place. 

Fifth. Since the green revolution, excellent research capabilities have 
emerged in many developing countries and they continue to grow. 

Sixth. Active collaboration in research between the public and private 
sectors is increasing rapidly today as the need for each other is demonstrated 
with new tools such as biotechnology. 

Seventh. Non-governmental agencies in agriculture have become organ
ized in many countries and are becoming a valuable force in forwarding 
essential research. Their help is available for our utilization. 

The time has come to view budget reductions as a needed exercise to put 
our house in order and prepare for the challenge we have been given. No 
longer can the scientific world afford to be isolated from political reality and 
the general public. The kind ofaggressive leadership with wisdom and vision 
that shaped the green revolution is needed again today. Let us look with 
enthusiasm at what is ahead for research in agriculture and position our 
institutions accordingly so that we are alread moving with force as new 
funds become available to b lance food production with population in an 
enhanced environment. 
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