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FORWARD

Sustainable production of food and forage with a focus on plant adaptation to
stress environments will be a continued priority for developing countries in the
future. Since many areas of the world which support substantial human populations
are drought prone, such as the subsaharan African zone and others, the primary
focus has been on drought. However, one of the greatest rastraints to sustainability
of agriculture worldwide is the lack of sufficient soil nutrients for crop growth, or
other soil constraints such as acidity or salinity which hinder crop production
substantially.

Optimizing soil fertility or amending acid and saline soils to achieve high
production is difficult in areas of low economic stability since inputs are costly or
quite often technically not feasible. The other obvious alternative to increase
stability in stress areas is by genetic improvement of crops. Dr. Donald L. Plucknett,
in a recent lecture on science and agricultural transformations, stated that “while
not all yield gains in the Green Revolutions can be attributed to plant breeding, it
is doubtful such gains would have taken place without the new varieties or hybrids”.
Development and release of new and improved germplasm is probably the most
economic method of technology transfer currently available. According to Dr. Pluck-
nett, most studies indicate about half of yield gains can be attributed to genetic
improvements. This statistic is undoubtedly argued in many circles, but regardless
of the final figure, gains from genetic improvement are substantial.

In the context of dwindling food and forage supplies, greatly exacerbated by soil
stress problems, it is critical to find ways to match crops with inherent variability
to the native enigmatic environments through available technelogy which makes
use of the natural resource base. An international workshop was convened in 1993
with the intent of providing a broad range of scientific viewpoints with a primary
focus on the genetic adaptation of plants to soil stresses. This workshop was to set
the stage for technology transfer and implementation during the next decade for
both more developed and developing countries.

The papers in these proceedings are a compilation of ideas pertinent to under-
standing the extent of soil stress constraints, identification of the tools to overcome
these constraints, providing examples of success stories where genetic improvement
has been effective, and deliberation of how to implement programs.

Appreciation is expressed tc INTSORMIL, USAID and the University of Ne-
braska for financial support of the workshop, to the organizing and =aditorial
committee, and to the authors who prepared and presented these papers.

J.W. Maranville
Department of Agronomy
University of Nebraska
Lincoln, NE
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Discipline Interactions in the Quest
to Adapt Plants to Soil Stresses
through Genetic Improvement

Robert E. Schaffert
EMBRAPA/CNPMS
Sete Lagoas, Mg, Brazil

ABSTRACT

Tropical soils are inferior in fertility compared to temperate soils. The “Tropical
Belt” of the world contains 68 percent of the world’s land area suitable for agricul-
ture production. The adaptation of plants for tropical agriculture is frequently
synonymous with adapting plants (o soil fertility stress constituents. This phe-
nomenon is by no means limited to the tropics, as the acid soils and subsoils of the
Southeast U.S. are examples where plant improvement programs are often associ-
ated with adapting plants to soil stress. Modern plant breeding has traditionally
produced crop cultivars that are very productive when combined with an intensive
input management regime. The merits and difficulties of establishing collabora-
tive, multidisciplinary, interdisciplinary research and crop cultivar development
programs to increase nutrient use efficiency and tolerance to toxic elements are
reviewed and discussed. The goal for increasing nutrient use efficiency is not to
increase the mining potential of soils by plants or develop a temporary fix for soil
fertility proklems, but rather to transform marginal agriculture land suitable for
agriculture production into productive sustainable agriculture land by developing
and utilizirg cultivars with soil stress tolerance and improved nutrient use effi-
ciency.

INTRODUCTION

I wish to thank the organizing committee for the honor and opportunity
to address this distinguished group of scientists and research administra-
tors. The theme ofthis workshop, “Adapting Plants to Soil Stresses” has been
one of the principle thrusts of my professional agenda for the past two and
one-half decades. Over the past 22 years I have had the opportunity to work
collaboratively in research programs that promote increased sustainable
food production in the tropics. In general, I have learned that tropical soils
are inferior in fertility, compared tv temperate soils. What are classified as
good soils in the tropics, in many cases would be classified as only marginal
soils in the “breadbasket” of the Midwest of the United States. The “Tropical
Belt” of the world contains 58% of the world’s land area suitable for agricul-
ture production as well as 73% of the world population (FAO,1991). The



adaption of plants for tropical agriculture is frequently synonymous with
adapting plan.s to soil stress. This phenomenon is by no means limited to
the tropics. The acid soils and subsoils of the Southeast U.S. are examples
where plant improvement programs are often associated with adapting
plants to soil stress.

Much of what I have to express today is built on the experience of nearly
17 years of conducting research in the acid savannas of Brazil and over four
years as the project manager of the Sorghum and Millet, and Peanut
Collaborative Research Support Programs (CRSPs). These CRSPs of the
Agency for International Development (A.I.D.) maintain collaborative re-
search projects in the tropics of Africa, Asia, and Latin America.

Initially I would like to emphasize the point that the goal for increasing
nutrient use eificiency is not to increase the mining potential of soils by
plants or develop a temporary fix for soil fertility problems. Low and
marginal fertility of the majority of tropical soils requires Research and
Development (R&D) institutions located in these regions to develop crop
production systems that utilize crops with enhanced efficiency in the ability
to utilize nutrients from the soil or applied fertilizer. The overall goal of this
type of research thrust is to increase the area of land suitable for agriculture
production as well as reduce the amount of fertilizer required for sustainable
crop production. This has implications on food security, nutrient reserves for
fertilizer production, environmental degradation caused be fertilizer nutri-
ent erosion, and sustainable crop production.

A BRAZILIAN EXAMPLE

The “Cerrado”, i. - acid savanna eco-region of Brazil considered unsuitable
for agriculture crop production as recently as 20 years ago, covers an
extension of 205 m ha, of which 175 m ha are in Central Brazil. Approxi-
mately 112 m ha of the “Cerrade” are considered adequate for developing
sustainable agriculture production in Central Brazil (FAO, 1992). The soils
of the “Cerrado” are commonly characterized by low pH, low phosphorus
availability, low fertility, and toxic aluminum (Sanchez and Salinas, 1981).
Today, 12 million hectares of the Brazilian “Cerrado” are in crop production,
producing 25% of the Brazilian rice, maize, and soybean production, 20% of
the coffee production, and 15% of the bean production. Another 35 million
hectares of improved pastures have been developed in the “Cerrado”, carry-
ing 53 million head of cattle and producing 40 % of Brazil’s meat production
and 12% of its milk production.



The area planted with maize in the “Cerrado” of Brazil has increased from
1.6 million hectares in 1970 to over 3.5 million hectares in 1990 while the
average productivity has increased from less than 1.4 t/ha to over 2.4 t/ha.
The average maize yield, in several municipalities (counties) located in the
“Cerrado”, where EMBRAPA-generated technology for acid soils is utilized,
is over 4.0 t/ha.

Total grain production (rice, maize, beans. soybeans, and wheat) in the
“Cerrado” has increased from 5.6 m T in 1970 to over 20 m T'in 1990. During
this time period average grain productivity of both maize and soybeans
increased from 1.4 and 1.2 t/ha to over 2.4 and 2.0 t/ha respectively. This
reflects the results of interdisciplinary and multidisciplinary crop
improvement programs directly aimed to overcome soil fertility problems by
utilizing genetic resources more efficient in nutrient uptake and utilization.

IDENTIFYING THE PROBLEM

The world’s arable land resources are finite. For approximately 15 billion
hectares of land surface on the planet earth, only 22%, or 3.3 billion hectares
are considered agriculturally productive (Buringh, 1989). Eighty-five per-
cent of this productive land is dassified as low or medium in productivity.
Nutrient stress is one of the leading causes for reduced crop productivity.

The expanding human population or “population monster” in it's search
for food and fuel for today’s needs puts tomorrow’s sustainable agriculture
production and natural resources preservation in jeopardy in many areas of
the world (Lal, 1991). A logical and effective approach to arrest and invert
this type of environmental degradation is to increase the production and
productivity on land suitable for agriculture. This includes increasing sus-
tainable agriculture production on productive land as well as transforming
marginal lands into sustainable productive lands. A study on soil research
priorities by the National Research Council (National Research Council,
1992) prioritized developing and selecting appropriate crops and cultivars
for specific soil conditions as one of four major research thrusts needed for
future agriculture sustainability.

The underling principal of plant improvement programs is the presence
of genetic variability (Hallauer, 1991) for the trait or traits in question and
the ability to manipulate this genetic variability for improvement of the
characteristics desired. During the past several decades, plant scientists
from several disciplines have improved food and feed production systems
around the world. Plant breeders, working collaboratively with plant pa-
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thologists and entomologists have identified genetic variation for disease
and insect resistance and utilized this resistance in developing highly
efficient production systems (Khush, 1991; and Ponti and Mollema,1991).
Plant breeders working collaboratively with other disciplines have also
made improvements in food and feed quality (National Research Council,
1988). Collaborating with agronomists and agriculture engineers, plant
breeders have contributed to advances in mechanization, harvesting and
utilization improvements (Hauptli et al., 1990). However, if we observe
closely, much or nearly all the success of collaborative breeding programs
have been associated with aspects of the production system above the soil
surface.

Modern plant breeding has produced crop cultivars that are very produc-
tive when combined with an intensive input management regime (Hauptli
et al., 1990). The Symposium on Plant Breeding in the 1990z (Stalker and
Murphy, 1991) had one session on modification of plants to tolerate environ-
mental stresses. However, only one paper was presented in the area of soil
fertility stresses. In this puper (Dvordk et al., 1991) emphasized the impor-
tance of understanding the genetic and physiological mechanisms by which
plants cope with adverse conditions in order to develop efficient strategies
for breeding stress tolerant cultivars. He divided stress caused by soil
conditions into two categories; deficiencies of nutrient elements, and toxic
concentrations of elements or salts. He defined toxic stress as being more
important, as deficiencies may often be remedied by the application of
appropriate fertilizers. In reality, the scenario is often not this simple;
nutrient deficiencies and toxicities are often found together. Acid soils of the
tropics are in general characterized by low pH and low levels of avuilable
phosphorus, potassium, and micro-nutrients (principally zinc), low cation
exchange capacity, as well as toxic aluminum and manganese. Aluminum
toxicity in the top soil, due to soil acidity, can be ameliorated with the
application of lime, but this practice is not realistic for the subsoil. Likewise,
the addition of adequate fertilizer may not be an economical sustainable
practice, especially in the tropics. In my judgement, a breeding strategy for
more efficient use of macro- and micronutrients is at least as important as
a strategy for breeding for toxic elements, if not more sa.

Analyzing this more closely, two major factors can be identified that
contribute to the lack of breeding strategies that deal with developing
cultivars for soil fertility stresses. First, it is much simpler to identify and
score resistance and susceptibility to a disease like anthracnose or rust than
to identify a plant with greater efficiency in phosphorus uptake and utiliza-
tion or nitrogen utilization. We might indirectly select for certain soil
characteristics by selecting for greater yield. Dr. Charles Foy (Foy et al.,



1974) relates the case where the best wheat cultivars developed in Indiana,
such as Monon, performed poorly when evaluated in Ohio, however the
wheats developed in Ohis, such as Seneca, performed well in both Indiana
and Ohio. Carefully evaluating these data, Foy and co-workers identified
differences in innate response to soil acidity as the cause of differential yield
responses. The soils in Ohio are more acid and have higher aluminum
saturation. Consequently, the wheat cultivars bred and selected in Ohio
were more tolerant to this soil condition, whereas those selected in Indiana
were susceptible to the higher levels cf aluminum saturation in the Ohio
soils and consequently performed poorly when tested in Ohio. The develop-
ment and refinement of screening and selection methodologies forimproving
nutrient use efficiencies is of utmost importance. Interdisciplinary collabo-
ration, including bictechnology, is essential in developing these new devel-
opment tools.

Secondly, the basic philosophy of R&D of the U.S. research and extension
system over several decades, from the 1940’s to the mid 1980’s and even
continuing at some institutions until today, is based on the capacity of soil
scientists to develcp technologies for nutrient management (King, 1990) and
to correct soil deficiencies (Kellogg, 1975) while the plant breeder conducts
his crop breeding program using all the latest technologies developed by the
soil scientists. In this system, the presence of any genetic variability for
improved efficiency in soil nutrient utilization will be completely unrecog-
nized. In fact, we may actually be selecting for reduced efficiency in utilizing
soil nutrients in these high input scenarios.

The great success of the U.S. research and extension system in developing
technologies for increasing productivity with the use of fertilizers and
promoting increased fertilizer use to enhance production has resulted in
increased crop productivity over the past decades. This highly successful
program has also lead to the promotion of outstanding soil scien’ists to head
agronomy and plant and soil science departments throughcut the land grant
university system of the U.S. I believe it is safe to say that the research
philosophy in many land grant, universities today promotes plant breeding
systems where segregating germplasm is evaluated under “ideal” or “opti-
mum” soil fertility. I do net intend to discuss the merits or shortcomings of
this research philosophy, however, I believe it is obvious that it will not lead
to the identification and selection of germplasm with improved efficiency in
plant nutrient utilization.

I do not went to leave the impression that the lack of collaborative
interdisciplinary research activity to develop cultivars more efficient in
nutrient use and more tolerant to toxic elements is caused by the lack of



collaboration by the soil scientists. During the past five years in my quest to
foster this type of collaborative research, I have encountered as much
resistance from the piant breeders as from the soil scientists. An exception
to this resiatance has been the interdisciplinary breeding and soil fertility
management projects involving maize and sorghum development for the
“Cerrado” at the National Maize acrd Sorghum Research Center of Brazl
(CNPMS/EMBRAPA).

The merits of a col’laborative, multidisciplinary, interdisciplinary re-
search program to increase nitrogen, potassium, and phosphorous efficiency
in U.S. agriculture are obvious when the total consumption of N, F, and K
is considered. U.S. agriculture consumed over 20 million tons of plant
nutrients in 1992 (USDA/ERS, 1993). During 1992, U.S. maize production
alone consumed 4.9 million tons of nitrogen, 1.9 million tons of phospha’e,
and 2.3 million tons of potash, nearly half the plent nutrients consumed in
all agriculture activity. An increase in the efficiency of nnly five or ten
percent represents an enormous savings A ten percent increase in the
efficiency of the plant nutrient use in maize would represent a savings of
over 900,000 tons. At an average value of $150 per ton this would represent
an annual savings of $136 million to maize producers. This becomes even
more important when economic and ecological sustainability, and reserves
of known world nutrient stocks are concerned. Considering the large quan-
tity of nitrogen consumed in the U.S. for maize production, a gain in
utilization efficiency has strong ecological implications.

GENETIC VARIABILITY FOR EFFICIENCY
OF SOIL NUTRIENT UTILIZATION

Plant breeding is the science and art of effective management of genetic
variability to attain desired breeding goals (Hallauer, 1991). The presence
of genetic variation for efficiency in nitrogen, phosphorus. and potassium
uptake and utilization in crop species is intuitively sbvious. The more
complex the biochemical process, the more enzymes involved in controlling

Table 1. Total U.S. consumption of plant nutrients (1,000 nutrient tons) and plant
nutrient use by maize and soybeans in 1992.

Maize Soybeanr Other Total
Nitrogen 4,886 97 6,417 11,400
Phosphate 1,854 319 2,037 4210
Potash 2,256 583 2206 5045
Total 8,996 999 10,660 20,655

Source: USDA/ERS Statistical Bulletin #842,



the system, and the greater the probability for geretic variation; or to put it
another way, the greater the genetic variation.

I remember some 25 years ago, when I was a graduate student at Purdue
University, I became involved in selecting sorghum lines for greater protein
content. In 1970, I planted 270 lines selected for high protein content and
30 lines selected for low proiein content in a newly acquired area of the
Agronomy Farm. Side-dressing of nitrogen was delayed due to frequent
rains. The block of 30 low protein lines had syraptoms of nitrogen deficiency,
whereas the block of 270 high protein lives did not portray any symptoms
of nitrogen deficiency. This does not necessarily establish a correlation
between protein content and nitrogen use efficiency, but does exemplify the
availability of genetic variance for nitrogen use efficiency.

My first experience with genetic variability for tolerance to low soil pH
and toxic aluminum was in 1973. I had recently arrived in Brazl ana had
planted several sorghum evaluation trials. One trial of U.S. commercial
hybrids planted on the state experiment station near Sete Lagoas, Minas
Gerais began showing variability for moisture stress. After several days of
mid-season moisture stress, some hybrids were near the permanent wilting
point. Coincidently, Dr. Charles Foy, a plant physiologist of the USDA at
Beltsville, Maryland was visiting Brazil and presented a seminar on his
experiences with plant tolerance to toxic levels of exchangeable aluminum
in the soil. This seminar alerted my colleagues and me to the possibility of
a chemical barrier in the soil impeding root development into the subsoil.
After the seminar, Dr. Foy accompanied us to the field where it was
established that the top 20 centimeters of the soil had been corrected for soil
acidity with a previous applicatior: of lime. The sorghum hybrids suffering
from moisture stress had roots corcentrated in the top 20 cm layer of the
soil, whereas the root system of the hybrids showing no stress, had developed
well below the top 20 cm layer. Later analysis of the soil confirmed a
difference of pH and aluminum saturation between the top 20 cm soil layer
and the 20 to 40 cm soil layer. As it turned out, this was a narrow window
of opportunity; all the hybrids were susceptible to aluminum toxicity at
slightly higher levels of aluminum saturation.

These observations lead to the development to an interdisciplinary re-
search project to develop screening methodologies, to screen sorghum
germplasm for tolerance to aluminum toxicity, and develop improved culti-
vars with tolerance to aluminum toxicity. More recent research resulis
indicate that some Ugandan sorghum lines (CMSXS 189, 3DX57/1/1/9/D;
CMSXS 208, 5DX61/6/2; and CMSXS 209, 1S2744) selected and developed
for tolerance to aluminum toxicity were also more efficient in the use of



phosphorus and potassium (Pitta and Santos,1992). Selecting under field
cunditions has also given us an array of changes in nutrient use efficiency.
I believe our program has in fact been selecting genotypes tolerant or more
efficient to the “Cerrado soil fertility complex”, than to just telerance ic
aluminum toxicity.

This interdisciplinary project resulted in the development of an array of
screening tools involving controlled nutrient solutions, greenhouse pois and
flats, and field screening. The development and perfection of these method-
ologies involve close monitoring and evaluation by the multidisciplinary
research team. The germplasm (Tables 2 arid 3) identified as tolerant to the
“Cerrado Complex” (Borgorovi et al., 1984 and 1986) in the early stages of
this interdisciplinary program still remain competitive in 1990. However,
new sources of aluminum tolerance has been identified in the iast four years
with more production potential and apparent superior tolerance to alumi-
num toxicity (Santos and Pitta, 1992). High yielding aluminum tolerant
sorghum hybrids (Table 4) developed at CNPMS/EMBRAPA using suscep-
tible female lines and newly developcd restorer lines are being evaluated in
the “Cerrado” of Centra! Brazil (Santos et al., 1992) with excellent. results.

Table 2. Sorghumlines tolerant to aluminum toxicity under field and greenhouse
conditionus at CNPMS/EMBRA.PA, Sete Lagoas, MG. Brazil.

Pedigree Origir. Type of scmt:ningl
9-DX-9 1 Uganda C/Sn/S
5-DX-61/6/2 Uganda C/Sn/S
1S-7173-C (§C283) Tanzania C/Sn/S
156-P-5-Serere-1 Uganda C/sn/s
15-3625-C (SC549) Nigeria Sn
1S-12666-C (SC175-14) Ethiopia C/Sn/S
1S7254-C (SC566-14) Nigeria C/sn
V-20-1-1-1 Uganda C/fSn
CMS-XS-6014 Brazil C/Sn
IS-12564-C (SCM8) Sudan C/Sn’S
1S-1335-C (SC418) Tanzania C/sn/S
3-DX-57/1/1810 Uganda C/Sn/S
1S-2744 — C/Sn
IS-73542-C (SC408) Nigeria C/Sn/S
IS-1309-CC (SC322) Tanzania C/Sn/S
IS 12612 C (SC112-14) Ethiopia C
1S-8327-C Paquistio C
1S-7419-C Nigeria c
MN-1204 — Sn

'C u Flold screening
Sn = Nutrient solution screening
S = Greenhousa scraening vAth soll

Source: (Borgonovi et al., 18886).



Table 3. Reaction of selected Al-tolerant sorghum lines in nutrient solution
grown at 4.8 ppm aluminum at CNPMS/EMBRAPA, Sete Lagoas, Minas

Gerais, Brazil.
Restoration Relative seminal

Identification Origin Group reaction root growth (%)
IS 7254C(SC566-14) Nigeria Caudaturn B 39.5
5SDX 61/62 Uganda - R 38.6
MN 1204 - - - 385
IS 7173C (SC 283) Tanzania Conspicium B 342
IS 1335C (SC 418) Tanzania Caundatum-Kafir R 28.6
1S 12666C (SC 175-14) Ethiopia Zera-Zera R 26.0
IS 3625C (SC 549) Nigeria Conspicium R 234
V 20-1-1-1 Uganda - R 204
156-P-5-Serere. 1 Uganda - R 17.2
IS 12564C (SC 048) Sudan Zera-Zena R 15.5
IS 1309C (SC 322) Tanzania Nigricans PR 12.8
IS 7542C (S.C 408) Nigeria Caudatum-Guineense R 12.7
3 DX 57/./1910 Uganda - R 11.9
(TX 2536 x SC 112-14)der Brazil - R 11.8
I7 )2612C (SC 112-14) Ethiopia Zero-Zera R 8.7
TX 2536 USA - R 5.7
IS 8361 (Wheatland) USA - B 33
TX 623 (Al-sensitive) USA - B 4.5

8. Nonrestorer, PR m Partially restores (cytoplasmic male-gterile producsd) hybrid to male fertllity, R = Fully rastores
(cytoplasmic male-sterlle produced) hybrid to male fertity.

Source: (Borgonowvi et al., 1884).

Table 4. Response of experimental sorghum hybrids tolerant to aluminum toxic-
ity (46% aluminum saturation) at CNPMS/EMBRAPA, Sete Lagoas, MG,

Brazil (1991/1992).
Days Grain
to Height production Harvest
Pedigree flower (cm) (tha) index
TX 1391AX (3C283 x SC326-6)30-1-1 78 147 4.65 C.55
ISO187A X (SC283 x S(326-6)30-1-2 76 175 4.65 0.49
TX 1399AX (SC283 x $C326-6)30-1-2 82 150 4.52 0.55
IS 0187A x (SC283 x SC326-6) 29-2-1 76 163 437 0.49
3DXS57/1/18D (toleran: line) 9% 177 3.6 0.27

3olirce: (Santos, 1892)

New generation experimental sorghum hybrids developed with aluminum
tolerant female and restorer lines are in the initial evaluation stage at
CNPMS/EMBRAPA. The goal of this interdisciplinary project is to have
these new generation hybrids commercially available in the next one or two
years.



INTERDISCIPLINARY RESEARCH APPROACH

I am not sure if Agronomy 101 or Flant Breeding 201 or 520 orients today’s
agronomy students much differently, compared to 20 years age, with respect
to the presence of this type of genetic variability. However, I feel quite
comfortable in predicting that the training of today’s plant breeders with
respect to soil fertility and plant nutrition and today’s soil scientists with
respect to genetic variation is not much different today than it was 25 years
ago. Assuming that today’s agronomy graduates sre aware of these differ-
ences, it is quite arrogant to think that the plant breeder alone, can effec-
tively develop plant cultivars more efficient in nutrient uptake and utiliza-
tion without the colleboration of soil scientists, plant physiclogists and other
disciplines. “Oh, but that’s obvious” you say. Then why is it so difficult to get
plant breeders and soil fertility experts together in the same research
program?

I have had some feedback on this question and seme proper thoughts that
I would like to discuss with you toeday. The first prerequisite for collaborative
research, is funding for collaborative research. This essentially involves
“interdisciplinary collgaboration” between research administrators who de-
termine where the research dollars are allocated «nd the research theme
teem. Research administrators allocate resources to research projects only
after they are convinced that a problem exists, are convinced that R&D can
efficiently resolve the problem, and are convinced that a reasonable prob-
ability exists to resolve the problem and have positive economic and social
impact. I agree, it i8 not intuitively obvious that the maize and soybean
producers of the midwest U.S. can and will benefit from cultivars and
technology developed for tolerance to toxic aluminum in acid soils and
subsoils. A paper to be presented later at this workshop by Drs. Magnavaca
and Bahia Filho (Magnavaca, R. and A.F.C. Bahia Filho, 1993) will show the
positive correlation between aluminum tolerance and phosphorus utiliza-
tion efficiency in maize. With this information it is much easier to convince
the research administrator from the midwest about the potential returns
from such a research program. The array of benefits in developing cultivars
more efficient in nitrogen utilization are more obvious, but the probability
of success is perceived as even less than more efficient phosphorus utiliza-
tion.

I would like to relate another incident r.garding collaboration between
soil scientists and plant breeders. At the “Second International Symposium
on Plant-Soil Interactions at Low pH” held at Beckley, West Virginia in June
of 1990, a comment was made in the plenary session that it was hoped that
the international symposium would foster a marriage between plant breed-

10



ers and soil scientists for collaborative R&D, similar to the partnerships
between plant breeders and plant pathologists or plant breeders and ento-
mologists formed over the past decades. A prominent international soil
scientist responded; “Be careful with this proposed marriage. I was involved
in establishing the criteria that resulted in the selection of the miracle rice,
IR-8, but who got the credit? The plant breeders seized the credit, with not
a mention of the soil scientist who established the selection criteria for high
yieldirg rice. Beware!!!” Now that's a extremely strong statement, but with
a very important message. I later had the opportunity to discuss this episode
with Dr. John Axtell. He remarked that plant breeders frequently get so
evolved and caught up in their work that they neglect to give due credit and
recognition io their collaborators. I hope this case is the exception and not
the rule; none-the-iess, it emphasizes the importance of remembering all
collaborators when releasing new germplasm and cultivars, even those
involved at the very beginning of the process.

WORKSHOP AGENDA

The spirit of this workshop is to rcview and document the nature of the
problem in sdapting or developing plants tolerant to soil stresses, review
and discuss solutions to problems, as well as to document impact from
ongoing R&D in this area from selected sites around the world. Fach session
of this workshop will exemplify the complexity of the “Adaption of Plants to
Soil Stress”. I am not familiar with all the success stories to be related in
Session VII, but the ones that I am familiar with, invelve bath interdiscipli-
nary and multidisciplinary collaboration from research plannirg and project
preparation through the execution and evaluation phases. In my opinion
discipline interactions are not a question of choice when addressing this
complex theme of adap’.ng plants to oil siresses, but one of necessity.

CONCLUSIONS

In conclusion, I would like to briefly summarize the principal points and
recommendations.

Soil fertility stresses or soil nutrient stresses, both deficiencies and tox-

icities, are phenomenons that reduce crop yields and limit sustainable
agriculture production in the tropics as well as in many temperate regions.
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Genetic variability for nutrient stress exists and is available in genetic
resource banks for use in genetic improvement programs.

Sustainable production systems with improved nutrient use efficiency are
achievable and beneficial in temperate soils as well as tropical soils.

The development of crop cultivars more efficient in nutrent utilization
and tolerant to nutrient element toxicities is essential for sustained crop
productivity increases throughout this decade and the next century.

Collaborative research programs with mutual objectives, involving insti-
tutions and scientists from both temperate and tropical geographical regions
are desirable and recomrmended for developing cultivars with improved
tolerance to soil stresses.

Interdisciplinary research collaboration is essential for developing culti-
vars and prcduction technology for tolerance to soil toxicities and improved
nutrient use efficiancy.

Interdisciplinary collaboration and comuaunication between research ad-
minisirators and the interdisciplinary research team is essential for allucat-
ing adequate research resources to this important problem.

Agricultural lend suitable for production, but considered marginal due to
soil fertility stress, both toxicities and low fertility, can be transformed into
productive sustainable agriculture land by develuping and utilizing culti-
vars with soil stress tolerance and improved nutrient use eficiency.
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ABSTRACT

No soil can sustain agricultural production without proper management and
required elemental inputs. Management requirements differ depending upon type
of soil and type of production attempted. The changing social and economic
systems, as well as chemical and physical changes in the soil, require that agricul-
tural scientists develop several viable imanagement alternatives from which indi-
vidual farmera can select as they seek continued production from their land.
Management options include both soil altering practices and genetic based plant
alterations to assure maximum flexibility. This manuscript offers management
options for major limitations to food production such as soil acidity, salinity,
alkalinity, drought and nutrient deficiency. Brief evaluations of historical suc-
cesses and limitations are also presented.

INTRODUCTION

In the broadest sense, every soil has problems. Solutions exist for most
soil problems. However, many of the solutions are not practical or even
feasible in some existing economic, social and political environments. When
viewed at the farm level, individual ability to cope with specific soil problems
differs from neighbor to neighbor and also with time as the composition and
crcumstances of an individual farm family changes. The sustainability of
the farming operation, and thus the entire agricultural process from field to
grocery shelf, relies on the existence of management options to cope with
changing conditions. It, therefore, behooves the research community to seek
as many solutions as technically possible to each nroblem. By providing
several management options from which each individual farmer can choose
to best fit his situation, individual and societal sustainability are enhanced.
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PLANT VS. SOIL OPTIONS FOR POOR SOILS

When the local soil condition is not ideally compatible with the growth of
the desired plant, two basic options exist, alter the soil, or alter the plant.
Often there exists a spectrum of possibilities between these two basic options
where a partial alteration of the soil can be coupled with altered plant
adaption. In this context, our overview of individual categories of suil
problems will also consider potential compatibility of both plant and soil
alteration practices.

COLD SOIL PROBLEMS

Closely related to climatic conditions, soil temperature, especially cold
temperatures, present severe limitations to the use of many soils. Tech-
niques to alter soil temperature are expensive and economically viable only
when high value crops are produced. It is even more difficult to alter high
soil temperatures although some practices can reduce maximum tempera-
tures for critical periods during seedling growth. There have been substan-
tial advances in breeding cultivars ‘hat can mature in fewer days. This
characteristic is especially useful in the colder temperate zones. Further
genetic development of crops that are able to mature in shorter growing
seasons has the potential to expand corn and grain production in northern
Europe, Asia and America. Adapting corn and wheat to 3°C colder mean
annual soil temperatures could potentially access 80 million ha of corn land
and 90 million ha of wheat land in these northern temperature areas (Buol
et al., 1990).

There is potential to adapt crops ‘o another type of cold soil conditions in
mountainous areas of the tropics. Unlike the temperature zone, cold soil
limitations at high elevations in the tropics are not affected by seasons but
have essentially uniform temperatures throughout the year. Such staple
food crops as potatoes, cassava and rice, and perhaps pasture grasses and
legumes, are likely species to consider. Most of the potential benefit from
this technology is in the Andean Mountain valleys of South America and
highlands of Africa.

DROUGHT STRESS

No soil is entirely free of drought stress when used for agricultural crops.
Rainless periods of sufficient length to slow physiological activities occur in
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even the most humid climates. Of course, the severity and frequency of
drought varies and can only be evaluated as probabilities for any soil or
location.

The most obvious soil ameliorative practice is supplemental water via
irrigation. Forirrigation availability of water and the economics of obtaining
it have to be evaluated site by site.

Without irrigation, plants with a deeper root system are better able to
withstand drought during the growing season. No single factor limits root
penetration. In some soils mechanical rupture of a hardpan is effective. In
other soils where root depth is limited by chemical composition of the soil,
plant alteration is an effective technology.

Reducing run-off, and thereby increasing infiltration of ambient rainfall
is feasible via several technologies. Conversely, encouraging run-off on part
of the landscape to increase run-on in adjacent areas is practiced in some
areas but has limited applicability.

Any improvement in the ability of plant species to deepen its root system
and thus cope with periods when moisture supply is inadequate to optimize
the physiologic functions of the plant is applicable to all cropland. Ahility to
cope with short-term drought during critical physiologic periods, such as
pollination in corn, is an especially desirable characteristic.

SALT STRESS

Salinity further aggravates drought in many agricultural systems. The
affect of increased soluble salt concentration in soil water, i.e. alinity, may
be as temporal as seedling injury because fertilizer is placed too close to the
geed or it may completely negate efforts to grow crops if it permeates the
entire root zone.

McWilliams (1986) presented three major options available to combat
salinity:

* Improved water management, including scheduling of irrigation
to reduce the rise of the water table and the amount of salt intro-
duced.

¢ Development of satisfactory systems to drain salts away from the
root zone and ultimately from the area, where they can be dis-
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posed of by evaporation, desalinization or drainage into a salt
sink or the ocean.

¢ Research to develop plants that are more salt-tolecant. This may
improve short-run problems, but over the long run the efficacy of
this solution is not clear. It may merely postpone the time when
capital investment for drainage and salt disposal must be made.

Regardless of what level of salinity a plant can be adapted to tolerate, if
soluble salts are allowed to accumulate in the root zone, where water
evaporates or is transpired, this tolerauce level will be exceeded. However,
plant tolerance to salinity can provide a buffer against some seasonal
salinity where the farmer is forced to use inferior, often salty, irrigation
water. There are limited areas where, if drainage is provided, more saline
sources of water could be utilized. Also, sequential use of drainage water for
irrigating more salt tolerant crops reduces the volume of salty water that
has to be discharged. Perhaps the rost far reaching goal would be to provide
aplant that can grow in salt concentrations equivalent to seawater, provided
a drainage system were provided that could return such water to the ocean.
In effect the soil in such scenarios would be only a kydroponic media.

ALKALINE SOILS

Soils with pH values above 7.5 present unique micronutrient availability
problems. Iron, manganese, boron, zinc and copper deficiencies are fre-
quently observed in crop plants. Sulfur additions to acidify the soil or direct
foliar application of needed micronutrients are the most frequently used
management techniques. Plant alteration to increase root exudate acidity
and thereby enhance ability to solubilize these elements in alkaline soils has
potential benefits.

ACID SOILS

Soil acidity has been used as an easily determined parameter to indicate
more than one soil related constraint to plant growth. Except for naturally
calcareous soil materials, soil acidity is present in most soils. Even soils with
calcium carbonate rock present at a shallow depth develop acid reactions in
the plow layer as the result of additions of acid forming fertilizers and/or the
natural acidification from organic matter humification.
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For all practical purposes, soil acidity is the same condition common!y
referred to as aluminum toxicity. The more acidic the soil, the higher the
ratio of Al ions to basic Ca, Mg ard K ions on the cation exchange complex
in the soil. The effect of a high ratio of exchangeable Al to bases results in
reduced root elongation as seen for soybean roots Figure 1 (Aryaet al., 1939).
Application of lime is the proven technology for correcting acid soil condi-
tions. Howeov, this method has several limitations. The amount of liming
material required ranges upward from one T/ha, thus extensive infrastruc-
ture requirements are essential. To be effective, liming materials must be
physically mixed with soil, thus cultivation equipment is required and often
the depth of mixing is limited to a few centimeters, especially with power
limited farmers. Although a majcrity of the acid soils have low fertility in
the subsoil, cultivers are needed that will extend their roots into acid,
aluminum toxic, subsoils for the purpose of obtaining water during rainless
periods in the growing season.
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Figure 1. Effect of aluminum saturation on soybean root growth in the top 0 to 12
cm in an Oxisol, Sitiung 1A, (After Arys et al. 1992)
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Aluminum toxicity, when defined a3 extractable Al/extractable Al plus
exchangeable Ca, Mg, K greater than 60% within 50 cm of the surface, is
estimated to be present in 56% of the soils in the humid tropics with less
than four consecutive months of dry season (Sanchez, 1987). Aluminum toxie
conditions (>60% Al saturation) are not confired to the humid tropics.
Sanchez et al. (1982) calculated that 26% of ustic tropics, i.e. three or more
consecutive months of dry season, had such conditions within 50 cm of the
soil surface. Steep lands, i.e., slopes >30% were excluded in these estimates.
This same condition is present in most Ultisols i the southeastern states
inthe U.S. and southeastern Chinain the temperate zore. There is mounting
evidence that subsoil acidity can be neutralized to some degree by prolonged
lime and fertilizer use. The downward translocation of basic cations can be
escalated by using sulfate anions (gypsum) and is faster in sandy or low
activity clay soils than in soils with higher cation exchange capacities. This
is best considered a long-term result of good management and with few
exceptions the development of cultivars that can thrust their roots into acid
sub:oils is the most promising technology to reduce risk from shor:-term
drought in the growing season.

Extreme forms of aluminum toxicity exist that perhaps are best termed
as calcium deficiency. A limited number of soils, often nearly level in high
rainfed areas, have essentially no exchangeable calcium in the subsoil. Often
these soils have extremely low cation exchange capacities and some calcium
can be trans'acated downward by gypsum applications. The possibility of
physiologically translocating calcium to the growing root tips appears a
desirable characteristic for plants. This would enable plants to extend roots
into calcium-devoid soil layers. We have seen no evidence that this is possible
in crop plants, but a few native plant roots are present in such horizons
indicating a physiologic potential.

LOW NUTRIENT RESERVES

The 80il must supply most of the chemical elements necessary in human
food. Air is the repository for such major elements as carbon, oxygen, and
nitrogen. Although nitrogen, in an available nitrate or ammonia form, is
required in the root zone, its presence there represents a temporary pause
in the nitrogen cycle. The ultimate source of nitrogen is the air and extensive
research into biological nitrogen fixation is well established.

The other essential elements required in fooa must be derived from

minerals. Primary among these are phosphorus, potassium, calcium and
magnesium, because of the greater quantities required, but the trace ele-
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ments like zinc, copper, and iron are also supplied by mineral reserves.
Numerous chemical forms, both organic and inorganic, of each element are
present in soil. At any one time only a small portion of the total amount
present is available for root uptake. Techniques for converting the unavail-
able forms of each element into plant-available forms abound. Inorganic
methods usually involve manipulation of soil pH values to increase solubil-
ity. Organic methods include mycorrhizal incorporation and green manure
crops that actively convert inorganic forms to organic forms that usually are
then converted to plant available forms as the organic carbon oxidizes during
the growing season.

Plants differ in their ability to utilize many of the chemical forms of these
elements present in the soil and therefore incorporation of superior extract-
ing capabilities seems a logical approach.

Two approaches must be taken to evaluate the extent of low nutrient
reserves in soil. One approach is to evaluate the amount of the readily
available form of the element that can be extracted by the crop during the
growing season. The first consideration in this estimate is an evaluation of
the yield expected. Although somewhat variable, the chemical composition
of most crops is known and some common values, calculated for a givenyield,
are presented in Table 1. Methodology for estimating whether a soil can
supply enough of each required element, in an available form during the
growing period, is germane to the practice of soil testing. When calibrated
for known mineral and organic composition of soils, these techniques have
proven to be reliable and practical. Obviously, new cultivars with higher
yield potential and/or shorter growing periods, require new calibration of
soil tests and especially the recommendations made for quantities of soluble
fertilizer amendments to be supglied the crop.

Table 2 compares average fertilizer usage on one of the most mineral
fertile soils, the Mollisols, and one of the most infertile soils, an Ultisol, at
two time frames, 1920s and 1980s in the United States. Of particular
interest is that at production levels of 2,630 kg ha™ grain corn, no fertilizer
was used on the Mollisol. However, to attain 2,030 kg ha™ grain corn on the
Ultisol, fertilizer rates closely approxiraating the quantities removed by the
grain harvest were used. Obviously, soils with naturally high contents of
mineral nutrients can sustain low yields for long periods of time. For
example, the average yield of grain cora on the Morrow plots, a Mollisol on
the University of Illinois campus, the first ten years of the experiment
(1888-1897) averaged 2,565 kg ha* when no inputs were made and corn was
grown every year. The same plots, planted and harvested each year (only
crop stubble and roots returned 1888 to 1955; thereafter, stalks were also



Table .. Representative elemental removal in various food crops. (After Sanchez,

19786).
Element
Crop Yield®* N P K Ca Mg
Tha'! eeeil..... kgha'! ... ...
Com (grainy 7 128 20 a7 14 11
Rice (grain) 8 106 32 20 4 1
Wheat (grain) 5 80 22 20 25 8.0
Sorghum (grain) 8 135 10 27 16.0 9.6
Casava (roots) 16 64 21 100 41 21
Potatoces (roots) 2 120 20 166 40 26
Bananas (bunches) 10 19 2 54 23 30

*Yieids of grain on dry weight; roots and bananas at 15-20% molsture.

Table 2. Historical comparison of average farmer fertilizer application rates on
an Ultiro] and a Mollisol in the USA. (After Buol et al., 1990).

Kzndiudult (N.C.) Argiudol! (Towa)
Year 1925 1983 1919 1979
Yield com (kg ha™) 2030 900 2630 8150
Fentilizer (kg ha™!)
rate N 36-53 134-177 0 168-202
P 3.6 20 0 34.54
K 6-11 5 0 75-110

returned to the plot) averaged 2,990 kg ha™ grain for the ten years 1972-1981
(Odell et al., 1982). Based on these yields, 564 kg ha™ phosphorus was
removed in the 94 continuous corn crops. No total elemental analzsis of the
Morrow plot soil is available, but otber Mollisols formed in recent glacial
parent materials are known to contain twice this amount of P in only the
plow layer. Thus, at this low level of production, some soils do have the
capability of supplyirg available forms of P for many yeurs.

Total elemental composition data of soils is not readily available. These
types of analyzes were largely discontinued in the 19308 when it was found
that extraction procedures designed to remove only the more soluble com-
pounds of eack nutrient element were better indicators of annual or per-crop
fertilizer requirements than total elemental content values.

On less well-endowed s0ils like those in Table 3, the Morrow plot results
would be difficult to duglicate. Apparently, with similar concerns for the
ability of the poor soils (Ultisols) in North Carolina to continuously supply
nutrients, Williams et al. in 1934 calculated the number of corn crcps, at
3,140 kg ha™ yield, to remove all the N, P, or K in the plow layer. He
determined that nitrogen was most limiting, but made no provisions for



Tablo 3. Example of total and available amonunts of mineral supplied nutrient
elements per 18 cm layer of various kinds of scil.®

Depth P K Ca Mg
Sail om__ e Qgha' 18am) - oo
Palcustalf’ o-18 700 (16.8)°  1700(473)° -0.120)° 17000927
4260 320 (3.6) 18300(237) -(1,400) 1400(195)
Ustipsarament' 018 200(27.8) 700(321) -(360) 300(98)
42-60 120 (3.4) S00(78) -(80) 200024)
Haplustoll* 018 540(10.4) 8100(156) -(31,200) 1600(366)
42-60 200(2.8) 2700(78) -(11,700) 700(73)
Haplustox? 018 246(4) - (78) -(160) -(98)
42.60 212(2) -(23) -(40) -(A)
Hagiudoll* 0-18 1,936(-) 38,180(-) 4,686(-) .
42-60 1,672(-) 37,018(-) 15,052(-) -

*Assumed bu.k density of 1 gm em™ (2M kg ha™' 18 cm).

!ibadon, M:gerla - in Moorman, F.R. et al. 1881,

23razll - SCS-SMSS 1866, Tour Guide Bth Inter. Soll Class. Workshop, 1988.
Svalues in ( ) are available or exchangsakia amounts.

“LaCrosse, Wis. - in Middiaton et al. 1934

annual recharge from rainfal! or fixation by m’crobes. Total soil nitrogen
contents were calculated to be removed in as few as five crops to as long as
142 crops on some floodplain positions. More germane to this discussion,
total P supplies were calculated to be exhausted in as few as 15 to 24 crops
on what we now consider some of our most productive farmland on the
coastal plain. Soils in the Piedmont and Mountain areas contain encugh total
P for between 40-80 3,135 kg ha™' corn harvests. Total potash contents were
calculated to be able to produce as few as 64 crops tc as many as twice that
nuraber in the coastal plair and considerably more in the Piedmont and
Mountains where mica and feldspar minerals are more common.

In attempting to determine the extent of poor soil fertility, the conclusion
is simply that gll soils have low nutrient status if sustainable harvest is
anticipated. Attempts to alter soil chemistry or root exudates to increase the
pool of a particular element available for one cropping season or even a few
cropping seascns is feusible. However, after a few growing seasons, nutrient
levels based on total amounts are extremely low or theoretically exhausted.

This scenario of enhancing nutrient uptake from infertile soil creates a
significant side effect. In slash and burn agriculture, abandoned fields are
left to revegetate with weeds and volunteer species that must also have some
fertility, albeit in lesser concentration than food crops. If the food crop
severely reduces the available fertility pool regrowth, post-abandonment
regrowth will be slow. Without adequate vegetative cover, erosion potential
isincreased. We must conclude that enhanced crop plant capability to obtain



mineral-derived nutrients from the soil can have only a very short-term
benefit. Such plants would have the potential to enhance erosion because
regrowth of cover crops is slowed in the nutrient impoverished soil after
cropping is abandoned.

SUMMARY

All soils have insufficient mineral nutrient contents to sustain food crop
production more than a limited number of years. Few soils can annually
provide the plant available quantities of plant-essential e:ements needed to
satisfy the capacity of modern crop cultivars unless these nutrients are
applied in a soluble form. Technology that solubilizes increased amounts of
nutrients in soils only delays the ultimate impoverishment of that soil a few
crop cycles and enhances the risk of soil erosion when the soil is no longer
planted.

Acid surface soil conditions are naturally present, or can be created in
almost all rainfed agricultural settings. This condition can be corrected
temporarily by either liming amendments or cultivar adaptation. Since
acidification processes associated with plant residue humification will con-
tinue, this 18 a perennial concern in most soils.

Acid subsoil conditions exist in more than half of the soil areas capable of
crop production utilizing natural rainfall. This condition is difficult and
nearly impossible to correct without long-term soil amendments. The en-
ablement of crop plants to extend their roots into acid, aluminum toxic
subsoil reduces short-term drought risks found in every rainfed cropping
system. Extreme conditions of subsoil acidity, perhaps better identified as
calcium-devoid subsoils, exist and, if possible, plants capable of calcium
translocation to growing root tips conceptually would provide a desirable
management alternative. Encouraging root elongation in acid subsoils for
the objective of extracting nutrients has little potential because most sub-
soils have limited quantitics of those nutrients and the potential to aggra-
vate furthe.: degradation after abandonment is enhanced.

Although the total area of salinity stress is not great, the fact that most
of the problems are human-induced indicates a high practical significance.
Significant amelioration of salinity stress is only possible if adequate drain-
age is available to remove the salt accumulation that is unavoidable by
transpiration and evaporation losses. Physiological tolerance to saline stress
can enhance productivity if it can be raised to such a level that more saline
irrigation. water, and ultimately seawater, can be used in conjunction with
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adequate drainage to prevent salt accumulation from evapotranspirational
losses.

Cold tolerance, manifest as a limited growing season, has considerable
application in the northern hemisphere. Cold tolerance, manifest as im-
proved growth under continued low temperatures, has application in limited
arees of high elevation within the tropical zone.

Root exudate acidification to enhance micronutrient availability in alka-
line soils has potential practical importance in limited areas.
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ABSTRACT

After the successes of the Green Revolution in the better agroecological envi-
ronments, increasing agricultural production in less favorable environments is the
next logical objective. Many plant breeders have become involved in searching for
abiotic gtress tolerances. However, most crop systems in these environments will
require higher chemical inputs, and in semi-arid regions, better water retention
to attain sustainable yield increases even with the development of tolerance to
toxic levels of aluminum saturation or to drought. Plant breeding will need to
complement these agronomic improvements, and research planning needs to an-
ticipate moderate increases in input levels by farmers.

Programs to introduce new crop technologies in two semi-arid zopes in the Sahel
and in the acidic soils of the Brazilian “cerrados” are reviewed. In two Sahelian
regions, there was little agronomic improvement and a failure to achieve yield
increases. In the higher-rainfall, acidic soils of the Brazilian “cerrados,” rapid
progress has been made with the combination of agronomic anc reeding innova-
tions. Some implications are drawn for the Sahel and for other regions of acidic
soilg, such as the “llanos.”

INTRODUCTION

During the last two decades, plant breeders have been remarkably suc-
cessful in overcoming biotic stresses by incorporating resistances to diseases,
insects, and plant parasites into new cultivars. More recently, emphasis on
breeding for tolerance to abiotic stresses, such as drought and nutrient
deficiencies (or toxicities, such as aluminum), has increased. Agronomists,
after observing the low use of purchased inputs by most farmers in develop-
ing countries and after viewing the riskiness of agriculture plagued by
abiotic stresses, have been searching for low-cost chemical fertilizer substi-
tutes.

'‘Cerrados” is a Portuguesc u:rm for a vegetation associated with acidicsavannas in Braril; it refers to much of
the Central Platenu of Brazil. We are grateful for the critical comments and suggestions of James Ahlrichs,
Charles Rhykerd, and David Sammons.
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New technology research has important economic elements. Technologies
have to function in the farmers’ environment and to be profitable. Moreover,
agricultural development is a systems problem. Changing one element of
the system will often affect and be affected by several other elements. Hence,
technology introduction and research planning need to be concerned with
the interactions in the agricultural system.

WHICH STRESSES?

The principal and obvious stress problem of semi-arid regions is apparent
from their description: the lack of water. Total quantities are low and
irregular. Moreover, in the lower-rainfall regions, variability is higher.
Approximately 36% of the soils of the tropics have low fertility, but this
problem is much less important in the semi-arid tropics with only 16%
having this initial problem (Table 1; Sanchez and Logan, 1992, pp. 37, 38).
Almost two-thirds of the tropical soils do not have soil-fertility problems,
with the semi-arid soils having substantially more potential than sther
tropical soils when there is water. Unfortunately, this measurement of
nutrient deficiencies does not include nitrogen. The primary production
problem in semi-arid soils is having sufficient water at the critical periods
of plant growth. However, when there are both deficiencies of water and soil
fertility, then low water availability mukes the use of soil-fertility amend-
ments risky.

Clearly, in the sub-humid tropics of the Brazilian “cerrados,” the dominant
problems are Al toxicity and P-fixation associated with acidic soils (Table 1).
But also in the sub-humid tropics, a lack of soil nutrients occurs on 55% of
the area (Sanchez and Logan, 1992, p. 35). Surprisingly, problems associated
with acidity affect a larger land area in the semi-arid zone than do soil-fer-
tility problems. In Africa, nutrient deficiencies head the list of production
problems and are found on 20% of the arable land (Sanche?, and Logan, 1992,
p.-41).

Even where soil fertility is not initially constraining, the introduction of
increased available water and higher plant densities mines the available
nutrients. Hence, soil fertility quickly becomes constrained and soil nutrient
amendments are warranted. Moreover, increasing man/land pressure in
many regions has been breaking down the traditional fallow-system method
of managing land fertility. When soil fertility declines without replacement,
soil degradation and crop movement into marginal soil areas occurs (Broek-
huyse and Allen, 1988; Ramaswamy and Sanders, 1992). In much of semi-
arid Sub-Saharan Africa, both limited available water and deficient soil
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nutrients are the major constraints; these interrelated problems will be
considered in the next three sections for the predominant agro-climatic zones
involving crops for semi-arid West Africa, the Sudanian and Sahelo-
Sudanian zones.

The Brazilian acidity/excess-aluminum case will also be considered. Table
2 summarizes the soil stress factors in the three regions and the alternative
approaches to respond to these problems: (a) higher levels of input, and (b)
selecting for tolerances and developing improved cultivars.

Table 1. Main chemical soil constraints in two principal agroecological regions of

the tropics.
Subhumid tropics
Semiarid tropics (acid savannas)

Million ha % Million ha %
Low-nutrient reserves® 166 16 287 55
Aluminum loxicityb 132 13 261 50
Acidity with Al u:.bxicityc 298 29 264 50
High P fixatien by Fe oxides? 94 9 166 12
Low CEC° 63 6 19 4
Total area 1,012 s2s

*Less than "10% weatherabie minerais In the sand-and-siit fraction. This constraint Identifies highly weathered solls with
limited capacity o suppy P, K, C, Mg, and S* (Sanchez, 1892, p.37).

®More than 80% Al saturation In the top 50 cm.

Surface Ph of less than 5.5 but less than 60% Al saturation.

Yiron axide/clay ratios greater than 0.2

*Loss than 4 emcd /kg of effective caton axchange capacity.

! Does not sum as ssveral minor categories of problems were omitted and there are overlaps with soma solls having more
than one of the chemical problems.

Source: Sanchez and Logan, 1892, p. 38.

Table 2. Stress facters considered, sites, and alternative approaches.

Altemative strategies
Region Country Stress factors Breeding Agronomy
Sudanian Zone Burkina Faso Water avallabillty |Drought tolerance Water-retention techniquus
Sall fertillty Ferlllzers
Serles of other practices and techniques®
Sahelo-Sudanian Zone  Niger Waler avallability {[Same es above] [Samoe as above)
Sall Fertlity
*Cerados” Brazil Sall acidity Tolerance to Al Ume
Al saturation Fertlllzation
Flxaton of P

*Soe Nagy ot al., 1968,
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AGRICULTURAL TECHNOLOGY
DEVELOPMENT IN THE SAHEL

Since the prolonged Sahelian drought of 1968-1973, substantial resources
have been invested in developing new agricultural technologies in both
national and international agricultural research systems. These research-
development programs were evolved from the “Green Revolution” successes
in South Asia during the late 1960s and early 1970s. Unfortunately, until
recently Sahelian agriculture had stagnated or declined (Sanders et al.,
1993). Finally, in the 1990s, technology development has impacted maize
and cowpeas production, but not sorghum and millet. The introduction of
new maize and cowpea technologies has beer nigst sucecgs®il Ui the transi-
tional zone to the semi-humid, Sudano-Guinean region. However, large-
scale diffusion of maize and cowpeas new cultivars into the semi-arid zones
has occurred (Sanders, 1993, pp. 6-14). In contrast with the Sudano-Guinean
zone where new cultivars of cotton and maize have been associated with
increasing levels of chemical fertilizer, little increase in fertilizer use has
been documented in the drier Sudanian and Sahel-Sudanian zones. Never-
theless, the primary lesson of these differential success rates so far is that
for new cultivars tec be successfully introduced and to have a large impact
on subsequent yields, they have to be combined with chemical inputs,
especially fertilizers.?

In semi-arid developing countries, minimal chemical-input levels are used
for food crops because farmers are unable to take high levels of risk. Soil
improvements, especially those that require cash purchases, increase farm-
ers’ risk everywhere, especially in regions of irregular water availability.
Moreover, governments in developing countries often have foreign-exchange
shortages, and imported chemicals receive low priority. Governments in-
stead promote the use of local rick phosphate, manure, cereal/legume
rotations, and other “substitutes” for commercially processed fertilizer.

Observing these conditions, research organizations often attempt the
development of new cultivars, which would not require farmers to purchase
increased inputs or governments to spend foreign exchange. Breeding solu-
tions receive emphasis for addressing all constraints. Drought and alumi-
num tolerance have been added to the disease and insect problems that
breeders address.

These should not be surprising results. U.S. sorghum yields incressed from 1.2 m.t/ha in 1950 to 3.8 m.t/ha in

880, an impressive growth performance. It was estimated that 34 to 39% of the yield increase came ﬁm:c?unetic
improvements, Hence, two-thirds of the yield increases resulted fom other agronomical improvements including
higher chemical inputs and improved water use (Miller and Kebede, 1984, pp. 6, 11).
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Similarly, agronomic research has resulted in better manure-handling
methods, improved use of crop residue, local rock phosphates, intercropping,
and nitrogen fixation. Research and development programs have promoted
variations of these concepts since the early 1970s in the Sahel. Unfortu-
nately, practices based on these concepts have not spread, either because
they do not work on farmers’ fields or they are not profitable (Nagy et al.,
1988; Sanders, 1989). After nearly two decades of experimentation and
promotion of low-input alternatives, it is time to recognize that at extremely
low input levels, there probably are no substitutes for chemical fertilizer.

The development of successful agricultural systems has always been
associated with purchased inputs. Other “substitute” activities for fertilizer
requiring high labor or management inputs, such as residue incorporution,
different rotations, and more manure, were never cheap solutions. Rather,
the cost calculations® failed to put monetary values on farmers’ time or on
farmers’ learning costs to manage sophisticated production practices. Low-
cost alternatives need to be differentiated from alternatives in which the
cost accounting is incomplete. These alternatives need to be considered as
complements rather than substitutes for chemical fertilizers (Sanders,
1989).

Moreover, an overreliance on breeding solutions to overcome all these
constraints does not seem to be appropriate. Tolerance to adverse soil
conditions and to drought can be usefully incorporated into improved culti-
vars. Unfortunately, for breeders, tolerance to stress is often associated with
low yields. Moreover, present agricultural development programs should not
wait for the development of these new cultivars when there are known
agronomic techniques currently available to increase yields. The next two
sections consider the introduction of new crop technologies inio the iwo
principal agro-ecological zones of semi-arid West Africa.

STRESS AND NEW TECHNOLOGIES FOR
THE SUDANIAN REGION OF BURKINA FASO

At the 90% probability level, rainfall is between the 600 to 800 mm levels
for this zone (Fig. 1). In the recent extended drought period, 1968 to the
p.esent, rainfall has been 100 — 150 mm below these levels.* Soils in the
Sudanian region are low in principal autrients and frequently subject to

3
On the benefit side, the mulli-year or residual effects of chemical P, lime, and the rock phosphate make the

econamic nn:l]ylm more complicated. However, more comg(e)henaive nnniysiu over time has further documented the
advantages of chemical P over rock phoaphate (Jomini, 1890).

4
The standard {sohyeta are based on rainfall data collected frcm the ‘308 to 1860.
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Fig. 1. Climatic zones of Burkina Faso, research sites, and principal cities.

crusting (Matlon, 1987, 1990). Crusting results in high runoff rates, further
aggravating the water-availability problem.

Farm-level experiments have demonstrated the impacts on sorghum
yields from agronomic techniques to overcome the two principal constraints
of v-ater availability and soil fertility. Individually, one water-retention
device (tied ridging) and moderate chemicai fertilization substantially in-
creased yields. Moreover, the combination of the two inputs not only further
increased yields but also reduced the riskiness of the fertilization (Table 3).
Thus, agronomic techniques exist that function at the farm level and can
substantially increese sorghum yields. Developmental strategies need to
take advantage of agronomic practices already available to the Sahel. A
similar technology has made a Jarge impact on sorghum yields in the Texas
high plains where tied ridges are known as furrow dikes (Krishna et al.,
1987).

One basic requirement for new technology introduction is that agriculture

be profitable. This is illustrated with farm-programming results from the
impact of changing relative prices on the farm-level use of tied ridges and
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Table 3. Yields and percentages of farmers taking cash losses’ from fertilization
and/or tied ridges in sorghum production in furm-trial villages, 1883 and

1984,
Yoar/'llage  No. of Traction Tied Fertl- Tied ridges &
farmors Sourco Troamants Control ridgas zaton terdlizaton
1584:
Nedogo 1 Manual  Yieids ' 157 118 431 852
% farmers who have lost cash — 0 27 9
Nedogo 18 Donkey Ylelds 173 425 355 733
% farmers losing cash —_ 0 50 0
Bangasse 12 Manual Yields 293 458 818 044
% farrnars losing cash — 0 8 17
Dissankuy 25 Ox Yields 447 588 681 855
% farmers loaing cash — 0 28 0
Diapangou 19 Manual Yielda 335 s71 729 1008
% farmers losing cash —_ 0 28 0
Diapangou 19  Donkey  Vields 498 688 849 1133
% farmers losing cash —_ 0 21 0
Diapangou 19 Ox Ylelds 488 704 838 177
% farmers |osing cash — 0 5 0
1983:
Nedogo 3 Manual Yields 430 484 547 851
% farmers loging cash —_— 0 58 0
Nedogo 1 Donkay Yields 444 6844 6804 9682
% farmers losing cash —_ 0 58 42
Bangasse 12 Manual Yields 406 483 705 690
% farmers losing cash —_— 0 21 17
Diapangou 24 Manual Yields 363 441 719 753
% farmers losing cash — 0 8 8
Dlapangou 25 Donkey Yields 481 552 837 an
% farmers losing cash —_— 0 12 18
Diapangou 25 Ox Yields 526 578 857 091
% farmers losing cash — 0 20 12

“Cash expenitures were only for chemical fertllizer. The only additional Input for ted ridgas was o substantial Increass in
the use of famlly labor. Note also that expenx'ltures were pald by the project so that farmers did not actually loss these
axpenditures on chemical fertdlizer.

Source: Sanders et al., 1890, p. 10.

fertilization (Fig. 2). These model results are also consistent with the
farm-level shifts to more intensive technologies presently being observed in
the Sahel (Vierich and Stoop, 1990).

These two principal sources of stress, inadequate water and low soil
fertility, can be resolved with agronomic improvements. The combined
technologies are profitable anc reduce risk. Making agriculture more prof-
itable would accelerate the adoption process as would increasing man/land
pressure (Ramaswamy and Sanders, 1992). Once these higher levels of water
and soil nutrients are introduced into the system, the potential for breeding
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Fig. 2. Effects of improved economic environment on use of intensive technolo-
gles,

Note: The weighted price of ferilizer (Prico F) i monatant, vvth Urea at $0.26/kg and compound fertlzer at $0.368/kg
1988 prices) Tha average prce of sor5twiv'miiet {Prce S-M) was $0.16/kg and Increased to $0.20/kg and
.24/kg, respectively. The prices of othr.r creos were Increased proportonally, Tied ridges and forifzers were
used as complementary Inputs on the higher-quaiity sorghum land. On the compound area (or malze land) only ted
ridges were used. Animal traction was usad to mara the ridges. The exchange rate in 1890 wa:; 273 FCFA/USS.

improvements is substantially increased. Moreover, the search for low-cost
supplementary techniques to improve soil fertility in addition to chemical
fertilizer will also become more feasible. It is important to distinguish
between present development with available technologies and future re-
search.

STRESS AND NEW TECHNOLOGIES IN THE
SAHELO-SUDANIAN ZONE OF NIGER

Most of the agricultural production and population in Niger is in the
lower-rainfall region (350 to 600 mm of rainfall at 90% probability) (Fig. 3).
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Fig. 3. Location of the Niamey Department in Niger, West Africa showing the
agroclimatic zones based on the 9% probability rainfall (mm) isohyets.

Sourcy: Adapted from Gorse, J.E. and Steods, D.R. 19887.

Sandy-dune soils have low initial fertility. As in the Sudanian zone, the two
principal constraints are water availability and soil fertility. Crusting of the
sandier soils is often not a problem, but rapid infiltration of the rainfall below
the plant roots frequently occurs. Fertilization and higher densities have
been shown to increase water-use efficiency in these sandy-dune so:i: evi-
dently by retaining more water, making it available to the plants (ICRISAT,
1987, 1988).

There has been substantial introduction of early maturity millet and
cowpea cultivars in these agricultural systems but minimal introduction of
chemical fertilizer. Withr .t soil amendments, the higher-density agronomic
systems with new cultivars are not sustainable. They will mine the meager
soil-nutrient supply, which then forces farmers to move into other regions.
As population increases, this migration becomes increasingly difficult.
Hence, potential changes in policy and technology development were made

36



to determine what could be done to influence farmers to use chemical
fertilizer in two different regions of the Sahelo-Sudanian zone (Shapiro,
1990; Shapiro et al., 1393).

In the higher-rainfall zone (mean rainfall of 570 mm), either an input
subsidy, the modificiation of fertilizer recommendations, or the introduction
of a late maturity cultivar would all lead to fertilizer adoption, according to
model results (Table 4). The model results above are also consistent with the
fairly rapid diffusion of P fertilization on millet among farmers in one
Sahelo-Sudanian village-testing site used by IFDC and ICRISAT (Mok-
wunye and Hammond, 1992, pp. 131, 132). Ultimately, these farmers will
have to apply the other major nutrients.

Millet and cowpea cultivar technology development over the last decade
have been oriented to short-cycle cultivars as rainfall has been ore standard
deviation below the long-term normal since the 1968-1973 drought. How-
ever, climatologists point out that Sub-Saharan Africa has had long-term
weather cycles before, so that this low-rainfall period may only be a tempo-
rary phenomenon (Dennet et al., 1985; also see various Nicholson references
they cite). The breeding emphasis on short-cycie cultivars can impede the
use of higher-input levels (water retention and fertilizer) as these cultivars
will not have sufficient time to take advantage of higher-input use in better
and even normal rainfall years. Moreover, shori-scason cultivar yields can
also be reduced by exposure to insect atiacks, such as the headgirdler
(“raghuva”) in Niger, Senegal, and the Gambia, or b adversely affected by
disease/insect complexes aggravated by late rainfall. Hence, introducing
improved late maturity cultivars would encourage fertilizer use and enable
farmers to continue their portfolio strategy of producing a mixture of culti-
vars to reduce climatic risk.

Table 4. Effects of various policy instruments on adoption of fertilizer in Libore,

Niamey Region, Niger. o
Pallcy or Program Ferdlizer ~ MileVCowpea Total Seasonal (ungeinCrop Changein Total C.v.uof
use (ha) Income {US$) Incoma (US$) income (%) Incoma (%) total Income
Current practices N/A 448 812 - —_ 40
Improved short- 578 821 +30 +13 a9
ssason cultivars
Input subsldy (10%) 1.2 602 822 +35 +14 41
Credit program 0 576 842 +20 +18 39
(10,000 FCFA at 0%
Interest)
Phosphorus only 2.1 828 948 +41 +17 44
Long-cyde milet 1.5 824 844 +40 +16 42
variety

Exchange rate; 298 FCFA/USS.
Source: Shapiro, 1990, p. 88
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Table 5. Effects of various policy instruments on the adoption of fertilizer in

Kouka, Niamey Region, Niger.
Livestock Towl Changein ChangeIn CVv.of
Fertlzer MllevCowpea Income Income  crop inccme total total
Pollcy or Program usg (ha) Inccme (US$) {USS$) (USS$) % Income % Incone
Current practces N/A 301 186 503 - — .83
Improved culivars 0 409 177 601 +38 +20 .50
Price support
(5v FCFA) 0 430 177 822 +43 +24 57
Crod!t program
(10,000 FCFA at
0% Interost) 0 409 187 621 +36 +23 .50
Input subsidy (50%) 0 409 230 853 +36 +30 54
Adaptive livestock
cholces 0 400 230 853 +36 +30 .54

Exchange rate; 209 FCFA/USS.
Source: Shapiro, 1090, p. 127.

In the lower-rainfall region (mean rainfall of 430 mm), none of the above
policy and technology changes resulted in fertilizer being adopted, according
to model results (Table 5). Thus, there are some regions in the Sahelo-
Sudanian zone where it will continue to be very difficult to introduce
higher-purchased input levels and without fertilization, these improved
systems will not be sustainable. Hence, for these regions, alternative strate-
gies, such as agro-forestry and increased livestock production, appear to be
more appropriate technology-development strategies. Crop-technology de-
velopment is not an efficient instrument for increasing farmer incomes in
all regions, especially those regions with very low availability of initial
resources. There will be some difficult population adjustments, as in Niger
where substantial settlement in these more adverse regions of the Sahelo-
Sudanian zone has occurred. Nevertheless, difficult decisions about research
resource allocation will often have to be made since there funds and re-
searchers are finite. The Sahelo-Sudanian zone is not all unproductive sands
but the regions for increasing crop productivity must be carefully selccted
and fertilization practices must be used to overcome low-fertility problems
and rapid infiltration of rainfall.

AGRICULTURAL DEVELOPMENT IN THF. “CERRADOQS”

The savanna or sub-humid region of Brazil is an enormous area of 180
million ha of which about 5.4 of the 50 million with crop-production potential
were being cultivated by the early 1980s (Goedert, 1983; pp. 405, 406; Fig.
4). Rainfall is generally sufficient, with mean rainfall of 1,000 to 1,800 mm
and a dry season of three to five months. Nevertheless, drought periods can
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be a problem due to irregular rainfall, low soil-water retention, and acidic
soil conditions leading to poor ro.t growth and fixation of P (Goedert, 1983,
p. 407). The Al saturation of the cation-exchange capacity is generally above
50%, considered toxic for most plants. On the positive side, the soils are deep
and well-drained with gentle slopes and good micro-aggregate stability;
hence, there are many factors favoring intensive mechanization (Goedert,
1983, pp. 408, 409).

Little settlement occurred in this region of Brazil before movement of the
capital to Brasiliain the late 1950s. Since then there have been t-#o principal
waves of settlement. The first is associated with the expand2d area in
pastures. Large farmers contracted sharecroppers to clear the savanna
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brush and to establish pastures, frequently Brachiaria (Goedert, 1983, p.
40). For one to two years until pastures were established, the sharecroppers
could cultivate upland rice. Both the rice and the pastures used minimal
inputs and had low yields. Both had some tolerance to adverse aluminum
conditions.” This system was associated with the opening up of outside
markets in southern Brazil for rice and cattle resulting from improved
transportation. This settlement pattern in the “cerrados” substantially
increased national rice production, enabling Brazilian consumers to include
more rice in their diets (Mandell, 1971).

The main success story of intensive or yield-increasing technology was the
adaptation of a mechanized production system from Rio Grande do Sul,
Parana, and Sdo Paulo of wheat/soybeans into the “cerrados.” For example,
in the two Mato Grossos, while rice, peanuts, cassava, and cotton production
all declined, the crop area in wheat and soybeans increased at 22 and 19%,
respectively, annual growth rates over the period 1977-1984 (Homem de
Melo, 1985, p. 84). This shift of the southern mechanized production system
into the “cerrados” enabled the extension of the Brazilian soybean explosion.
During the 19708, Brazilian soybean production grew at a 22% annual rate,
slowing down from the 35% annual growth rate of the 1967-1976 period
(Homem de Melo, 1985, p. 83; Vieira et al., 1988). In Mato Grosso do Sul, the
area in soybeans increased from 15,288 ha in 1970 to 1.83 million in 1983
(Bonato and Dall’ Agnol, 1985, p. 1251.) A number of new soybean cultivars
were developed in the 1960s (Homem de Melo, 1985, p. 80; Bonato and Dall’
Agnol, 1985, p. 1255). In the 1970s, some cultivars were introduced, which
had been adapted to the “cerrados” region, such as UFV-1 and in the late
1970s some EMBRAPA cultivars. Soybeans are very sensitive to high Al
saturation; hence, the transfer of this system was successful only with
substantial increases in the application of lime and phosphorus and the
adaptation of soybean cultivars to these conditions (Bonato and Dall’ Agnol,
pp. 1251, 1255).

From the beginning, wheat was much less successful than soybeans in
adapting to the region. The growth rates in wheat acreage reflected a very
low initial base. Wheat production has gradually declined in the region after
tkis boom period, especially in the 1990s with the elimination of government
subsidies.

Adaptive research on maize has allowed the introduction of maize in
rotation with soybeans. Initially, maize was introduced mainly in the more
fertile areas of the Centrsl West region, outside of the “cerrados.” Substan-

1]
Also, the standard buming before planting the rice would tend to reduce soil acidity, thereby lessening the
aluminum problem.
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tial maize breeding activity took place as well as introduction of higher levels
oflime and chemical fertilizers. In Goias, maize yields doubled from the early
19708 (1.5 m.t/ha) to 1991 (3.1 m.t./ha) (FIBGE, various years). Recently, a
new maize cultivar (BR-210), more adapted to Al toxicity and more efficient
in phosphorus use, was released and has had a rapid diffusion. The first
secds of BR-201 were sold in 1988. In 1991, 20% of the maize seed sold in
Goias and 18% in Mato Grosso do Sul were of this new cultivar (SPSB/EM-
BRAPA, 1992). In 1992, 13.8% of the maize seed sold in Brazil was of this
cultivar. This also demonstrates its adaptation to better soils. BR-201 and
other new cultivars to be released soon show not only a good performance in
acid soils but also a good development in soils with better characteristics
(Magnavaca and Bahia, 1993). This allows these improved maize cultivars
to be sown in the corrected acid soils in a way that makes this csirection
economically possible. One of the difficulties of the correction of acid soils is
that this correction is more effective in the superficial portion. The toxicity
problems remsin in the deeper portions. Culiivars more tolerant to Al
toxicity make poesible the exploration of this deeper portion by the roots
(mainly to extract water) but the plants need to be more efficient to use the
fertilizer placed in the arable portion and transform it into production.

Some private companies attempted unsuccessfully to introduce sorghum
without soil improvements. Sorghum’s drought tolerance did not help with
the Al toxicity problem and this program was a failure. In contrast, sorghum
later was introduced as a catch crop following soybeans, taking advantage
of the improved soil fertility and reduced Al saturation. Following these two
developments in the Goias “cerrados,” the sorghum area increased to 15,000
ha in 1977, fell to 135 ha in 1981, and then increased to 12,360 ha in 1988
(FIBGE, various years).

The principal research promoting rapid crop expansion in the region has
been the applied work on neutralizing aluminum and increasing P availabil-
ity. Moreover, lime was availabhle in the region. The Brazilians recognized
that their ruck phosphate dissolved very slowly over several years; hence,
they used superphosphate on crops and left the rock phosphate for pasture
improvement. The Brazilian government also provided input subsidies on
fertilizer, lime, and bank interest on machinery purchases. The conse-
quences were very rapid introduction of soybeans with higher purchased-in-
put use, and later maize.

Soybeans and maize were impressive success stories in which breeding
played an important role. Soil research and substantial increases of pur-
chased inputs appeared to be critical factors in these successes (Table 6).
The Brazilian case demonstrated that with research apglied principally on
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Table 6. Research prograr 1stitutions and release of technologies for the “Cer-

rado.” _

Programs Beginning Institutions® First release”

Rescarch on “cerrado™ soils Mid-*50s IAC Beginning of '70s°
IBEC-IRI
[PEACO

Soybean breeding for “cerrado”™ Mid-*60s UFV Barly *70s°
IAC

Maize breeding for “cenado”™ End of ‘70s CNPMS/EMBRAPA 1987

“IAC: Insthuto Agronomico de Campinas - Campinas/SP,

IBEC-IRI: Intemational Research Institute - Matao/SP.

IPEACO: Instituio do Pesquisa Agropecuaria de Centro Oasto-Sete Lagoas/MG, with a network of agricul tural
axperiment stations in the “cerrado”.

UFV: Universidade Federal de Vicosa - Vicosa/MG.

CNPMS/EMBRAPA: Contro Naclonal de Pasqulsa de Mitho e Sorgo/Empresa Nadional de Pesquisa Agropecuaria -

Sete LagoawMG.
bApproximate

°This reieane was followed by a large-scale govemment program to subsidize inputs, espedally fertilizer and lime and
Interest on machinery.

soils, many interrelated problems of acid soils could be resolved. Infrastruc-
ture investment was important in the initial extensive settlement before the
research systems were able to adapt and apply various technological alter-
natives to the “cerrados” soil problems.

The strategies for rice/pasture research have been very different from
those for soybeans and maize. For the former activities, extensive breeding
of cultivars for tolerance to adverse soil conditions has occurred with some
success. One problem with this strategy is that crop and cultivar selections
for adverse soil stress conditions frequently result in cultivars with less
ability to respond to higher-input levels. If higher-input levels become
feasible economically, not only will the tolerance to adverse conditions be
less important but also there will be many other alternative crops and
cultivars with a much steeper response curve to these higher inputs (Fig. 5).
New soybean and maize cultivars could be rapidly introduced since lime and
fertilizer use became profitable activities and the responsiveness of the new
cultivars to these inputs increased. The government performed an active role
in promoting new cropping systems and higher purchased-input levels.

RESEARCH POLICY IMPLICATIONS

In general, the semi-arid region of the Sahel has not been successful in
introducicg higherinput levels. Since the drought of 1968-1973, researchers
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in national and international institutions have concentrated on breeding
solutions and searched for substitutes for imported fertilizers.

In the Brazilian “cerrados,” an initial period of low input, extensive
rice/pasture systems occurred. Then with a strong applied research base in
soils and dispersion of some adapted cultivars, new production systems were
introduced. Lime and fertilizers were needed at moderate levels® for these
systems to be introduced. Thire was substantial public investment in
research and roads infrastraciure. Moreover, the government subsidized
farmers’ input costs and soybean exports.

The Brazilian “cerrados” case may also be instructive for the Colombian
“llanos.” Before the investments in transportation, Central West Brazilian
agriculture was mainly in cattle production. In these extensive settlements,

Grain yield {1/ha)
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—0
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2 -
Upland rice
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(o} 200 400 600
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Fig. 6. Typical crop responses to phosphate fertilizer on virgin cerrado clay soils
(Goedert, 1983, p. 414).

L]
Two to three tons of lime per ha every three years and 40 to 60 kg per ha of P7Og annually were typical levels
adoglnd by farmers. Earlier extension recommendations were often higher for both. One |mportar¥? advantage of
the “cerrados™ was the proximity to jarye iume depasits.



cattle just graze natural and later improved pastures. The cattle require
minimal inputs and are a high-value product so long-distance, expensive
transportation can be paid for or the cattle can be walked out in an even
earlier stage of infrastructure development. With the roads came the expan-
sion of the upland-rice industry. Lime deposits were found ir the Central
West and adaptive research had been undertaken on 30ils and later on
plants. Both the crop and the lime are lower-value products and inputs as
compared with cattle and superphosphate; hence, the reduction in transpor-
tation costs was a critical component of the Brazilian success story and
unless these costs are similarly reduced in the “llanos,” new cultivars alone
will have little effect. If transportation is poor or lime has to be transported
from outside the region, then new crop activities may not be profitable even
with the existence of new acid-tolerant cultivars.

Semi-arid, Sub-Saharan Africa will not be able to increase crop yields
without substantial imports and farmer purchases of fertilizers. Chemical
inputs are a characteristic of developed agricultural systems. Breeding can
have a complementary role in developing plants that are more efficient in
using the applied fertilizer. Some drought tolerance or some tolerance to
aluminum toxicity will undoubtedly facilitate the entry of new technologies.
However, higher chemical inputs will be needed to raise yields and to make
the new systems sustainable. Many possible substitutes for chemical fertil-
izer are available. Unfortunately, they frequently are not economical when
all costs are correctly calculated. Moreover, for the crusting soils of the Sahel,
agronomic measures to increase water retention should also be introduced.
Drought tolerance alone will not sufficiently reduce the risks of higher
chemical inputs. Water-retention techniques can accomplish this
(Ramaswamy and Sanders, 1992; Sanders et al., 1993).

For the Sahel, it is an important research objective to keep searching for
cultivar tolerances and fertilizer substitutes. Meanwhile for some regions of
the Sahel, chemical fertilizer and water-retention techniques have been
demonstrated to be viable technologies on farmers’ fields and to be profitable.
They are more sustainable than present soil-depleting techniques. Further
adaptation and introduction of these technologies is important to resolve the
present crop-production problems. Farmers will have to purchase inputs and
governments will have to utilize scarce foreign exchange to import chemical
fertilizers.

Research in acid soils has already made lower levels of input use possible.
Lime can be applied, with its primary purpose to neutralize aluminum and
to supply calcium and magnesium rather than to increase pH (Sanchez and
Salinas, 1981, pp. 335, 353). Fertilizer banding, pelleting of seeds with



chemicals, and other application methods all seek to reduce input require-
ments. The use of inputs and the choice of crops will be substantially affected
by economic factors (Helyar, 1991, pp. 370, 371). Nevertheless, policies to
reduce input expenditures or to make their use more efficient are very
different from attempting to eliminate inputs, especially when the actual
levels of such inputs are minimal as in much of Sub-Saharan Africa.

In responding to stress, the first research requirement is to identify the
relevant stress. This is no easy task because some agsumptions have to be
made about future input use. Breeder selection of new materials has often
been done at high-input levels. Even for stress selection, other inputs besides
the particular stress factor were often kept at high levels so that differences
between cultivars could be more easily identified. In contrast, farming-sys-
tems proponents and others have frequently argued that selection should
occur at the same low input levels used by farmers. The results here appear
toindicate that in planning for the five to ten year research agenda, breeders
need to collaborate with soil scientists and to assume that moderate in-
creases in purchased-input levels and water availability for semi-arid re-
gions will continue to occur. Governments will need to facilitate this process
by insuring that agriculture remains a profitable activity.
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Plant Genetic Resources

Steve A. Eberhart
USDA/ARS National Seed Storage Laboratory
Fort Colllins, CO

ABSTRACT

Because very few crops grown in the U.S. are native, plant introductions have
been vital to our agriculture. The development of a comprehensive National Plant
Germplasm System (NPGS) for ex situ preservation of plant genetic resources
obtained from centers of diversity around the world has been necessary to provide
plant breeders with source materials for their breeding programs.

The more than 415,000 accessions maintained by the NPGS include local lan-
drace collections, improved cultivars, wild crop relatives and genetic stocks. The
tntive collection is maintained and distributed by nineteen national plant
germplasm repositories. The base collection for seed crops in preserved at sub-zero
temperatures at the National Seed Storage Laboratory, Fort Colling, Colerado. The
NPGS's plant genetic resources are made freely available to all bona fide users for
the benefit of humankind. Between 1986 and 1992, an average of 176,400 samplen
per year were distributed worldwide by NPGS. Public and private plant breeders
have used these and other source materials effectively to develop stress tolerant
and high yielding varieties that have enabled farmers to increase yields and lower
costs so that the average U.S. family now spends less than 12% of its income for
food.

The NPGS maintains a close working relationship with genetic resource pres-
ervation programs in many countries and with the International Agricultural
Research Centers supported through the Consultative Group on International
Agricultural Research.

INTRODUCTION

Many diverse plant species are available from the centuries of natural
evolutionary processes, but only a relatively few have been domesticated to
provide food, fiber, animal feed stuffs, and industrial products for human-
kind. Very few of these domesticated crops are native to the USA: sunflower,
pecan, strawberry, blueberry, cranberry, certain grasses, and a few athers.
Our exceptionally productive farming system was founded on plant grenetic
resources from other countries. Native North Americans had introduced
maize, beans, squash and other crops from Central and South America.
Early immigrants from Europe and Asia brought seed for many crops with
them. In 1819, American crasuls overseas were asked to collect seeds of
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useful plants. The U.S. Patent Commissioner administered the introduction
of plants from 1836 to 1862. The continuing need to acquire and introduce
plant germplasm into the U.S. was one of the reasons for establishing the
U.S. Department of Agriculture (USDA). The Organic Act, of 1862, estab-
lishing the Department of Agriculture, directed the first Commissioner of
Agriculture, Isaac Newton, “to collect, as he may be able, new and valuable
seeds and plants; to test, by cultivation the value of such of them as may
require stch tests; to propagate such as may be worthy of propagation, and
to distribute them among agriculturists.” In 1898, the Seed and Plant
Introduction Section, which later became the Plant Introduction Office, v as
established to manage plant explorations and introductions.

The local landraces and weedy relatives of crops that have evolved by
human and natural selection over the millennia have been rich sources for
genetic diversity to meet plant breeders needs of sources of genetic resistance
to new pathogens, insect pests, soil related stresses, and foed quality. Before
the late 1940’s, introductions were sent directly to inierested scientists
without any requirement that chey be maintained. Adequate preservation
methodolegies and facilities were not available then, and many accessions
were lost.

THE NATIONAL PLANT GERMPLASM SYSTEM

The Research and Marketing Act of 1946 (Public Law 733) authorized the
creation of four Regional Plant Iniroduction Stations in the USA (Ames,
Iowa; Geneva, New York; Griffin, Georgia; Pullman, Washington) with the
mission to acquire, maintain, evaluate and distribute germplasm to scien-
tists to be used for crop improvemeut. The Inter-Regional Potato Introduc-
tion Station, Sturgeon Bay, Wisconsin, was established in 1947. The Na-
tional Seed Storage Laboratory (NSSL), Fort Collins, Colorado was estab-
lished in 1958 for long-term preservation of duplicate samples of this
valuable germplasm. National Clonal Germplasm Repositories were estab-
lished in the mid-1980s to provide more systematic maintenance of clonal
germplasm, The National Small Grains Collection, now in Aberdeen, Idaho,
began in 1894 as a breeder’s collection in Beltsville, Maryland.

These units have been integrated into a National Plant Germplasm
System (NPGS). The NPGS is a network of cooperating institutions, agen-
cies, and research units in the Federal, State, and private sectors (Seeds of
Our Future, 1990). “The National Plant Germplasm System of the United
States,” in Plant Breeding Reviews (Janick, ed., 1989) gives a detailed
description of NPGS. Tha mission of the NPGS is: “To effectively collect,
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docume.it, preserve, evaluate, anhance, and distribute plant genetic re-
sources for continued improvement in the quality and production of economic
crops important to the U.S. and world agriculture. This is achieved through
a coordinated effort by the U.S. Department of Agriculture in cooperation
with other public and private U.S. and international organizations. The
NPGS'’s plant genetic resources are made freely available to all bona fide
users for the benefit of humankind.”

The activities of the NPGS help to provide high-yielding cultivars to
farmers; to improve the quality of agricultural and horticultural products;
to minimize production costs; to reduce dependence on pesticides (thus
enhancing the quality of the environment); and to minimize the vulnerabil-
ity of agriculturally important germplasm to pests and environmental
stresses.

Plant germplasm collections include older and current crop cultivars, elite
breeding lines, landraces of crops that have emerged over millennia of
selection by farmers, wild or weedy plants related to cultivated crops, and
mutant genetic stocks maintained for research.

As new stress tolerant and higher yielding cultivars are developed and
then grown by farmers ‘n the centers of diversity for the various crops, the
local landraces and weedy relatives with their rich sources of useful genes,
may be lost forever unless they have been collected and preserved in gene
banks. This germplasm can be preserved ex situ as: dried seeds stored at
sub-zero temperatures in moisture-resistant containers; plants growing in
a greenhouse, screenhouse or field plantings; in vitro cultures of tissues; or
buds, pollen or nther plant parts preserved at ultra-low temperatures.

In the National Plant Germplasm System the four Regiona' ®lant Intro-
duction Staticns, the National Clonal Germplasm Repositories, the Inter-
regional Pot«t introduction Station, the National Small Grain Collection,
specific crop co! lections, and the Woody Landscape Collection of the National
Arboretum each functions, and is accepted, as a national plant Cermpiasm
repository even though some are partially supported by regional «nd inter-
regional funds. The more than 415,000 accessions maintained in the NPGS
active collections have been divided among these 19 repositories. Numbers
of accessions for the larger collections are presented in Table 1.

These repositories cooperate and participate in a coordinated national
program of acquiring and exchanging foreign and domestic plant germplasm
potentially valuable for agriculiural, horticultural, medicinal, industrial
and environmental uses. The new acquisitions must be increased, charac-
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Table 1. National Plant Germplasm System Genetic Resources.

Number of

Genus Species Crop accessions
Archis hypogaca PEANUT 7943
Avena sativa OAT 6,580
Avena sterilis, etc. OAT RELATIVES 13,419
Cajanus cajan PIGEON-PEA 4,156
Capsicum annuum PEPPER 2,313
Carthamus tinctorius SAFFLOWER 2218
Cicer arietinum CHICKPEA 3,962
Cucumis melo MELON 3374
Glycine mex SOYBEAN 14316
Gossypium hirsutum COTTON 4,746
Helianthus annuus SUNFLOWER 2,607
Hordeum vulgare BARLEY 28,612
Lens culinaris LENTIL 2,618
Linum usitatissimum FLAX 2722
Lycopersicon esculentum TOMATO 8,601
Malus domestica APPLE BUDS 163
Medicago sativa ALFALFA 3,454
Cuyza sativa RICB 18,213
Phascolus vulgaris BEAN 10,448
Pisum sativum PEAS 3,590
Secale cereale RYE 2,618
Solanum tuberosum POTATO 5,486
Sorghum bicolor SORGHUM 34,480
Triticum aestivum WHEAT 34391
Triilcum durum DURUM WHEAT 6,831
Vigna unguiculata COWPEA 3,958
Zea mays CORN 28,376
Others 155,710

TOTAL 415 905

terized and preserved as part of the active coilection. Each repository
conducts a systematic evaluation program to obtain specific information on
disease and insect resistance, nutritional quality, agronomic and physiologi-
cal attributes and other traits cf iL.terest. Infermation on the collection and
characterization (passport data) and evaization data are entered in the
Germplasm Resources Information Network {GRIN). Samples are distrib-
uted, on request, at no cost to scientists worldwide for use in crop improve-
ment and basic research. Fesearch relating to improved methods of collec-
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tion, regeneration, propagation, preservation, evaluation, and distribution
is conducted, and the results are published.

The principal mission of NSSL is to preserve the base Collection of the
NPGS, and to conduct research to develop new and improved technologies
for the preservation of seed and other plant propagules. Long-term preser-
vation of duplicate enmples of all accessions maintained in active collections
at national plant germplasm repositories is the goal of NSSL.

As accessions propagated by seeds are regenerated or iacreased at the
repositories, seed samoles are divided with one part staying in the local
active collection and the other part deposited in the NSSL base collection.
When seed samples sze received at NSSL, they are dried, counted, tested for
viability and placed in moisture-resistant containers in sub-zero cold vaults
(-18°C) or stored above liquid nitrogen (-160°C) *n cryotanks. Research by
NSSL scientists and others has shown that viability of seeds is grestly
extended, perhaps for several decades or even centuries, when dry seeds are
stored at sub-zero temperatures. However, samples are monitored peri-
odically for viability, and substandard samples are regenerated at the
appropriate repository.

Plant germplasm preservation research at NSSL focuses on the develop-
ment of new and improved technologies for the long-term preservation of all
forms of plant germplasm. This research is expected to increase: 1) the
number of species that can be stored at NSSL, 2) the longevity of the various
accessions, and 3) the efficiency of viability testing of accessions. The longer
storage periods and reduced number of field and/or greenhouse regeneration
cycles will result in lower costs and greater genetic integrity of the
germplasm. In addition, the basic research will add to our understanding of
cryobiology and seed/cell aging through greater ;nsights into the basic
biological/biochemical processes in cells and their response to desiccation
and low temperature stresses. Research scientists at NSSL work closely with
all components of the NPGS.

The National Germplasm Rescurces Laboratory (NGRL) located at the
Beltsville Agricultural Research Center (BARC), Beltsville, MD, is respon-
sible for a number of activities that support the entire NPGS.

The Plant Introduction Office (PIO) coordinates the acquisition and ex-
change of plant germplasm; documents passport data and descriptive infor-
mation for newly acquired material and assigns unique Plant Introduction
(PI) numbers; publishes an annual USDA Plant Inventory of newly received
accessions; and serves as a liaison on quarantine matters. Plant germplasm



for the NPGS is acquired through exchanges, exploration (domestic and
foreign), special projects and agreements, gifts, and travelers. In addition to
introduced germplasm, all released plant materials (cultivars, germplasm
releases, parental lines, and genetic stocks) that are registered by the Crop
Science Society of America are assigned PI numbers and the seed is depos-
ited in the appropriate active ccllection and the NSSL by the originator.

The Plaat Exploration Office (PEO) works with germplasm curators, Crop
Advisory Committees (CAC), state universities and others to assess the
genetic diversity of germplasm collections currently held by the NPGS and
others as compared to total genetic diversity that may exist in nature. This
assessment is used to develop long-range strategies for increasing the
genetic diversity of U.S. collections. Based on these strategies, gaps in
current germplasm collections are identified and communicated to the
appropriate CAC or to other crop specialists for their concurrence. Priorities
for exploration are influenced by several factors such as the completeness of
the U.S. collection, the need for specific traits of agricultural significance,
the threat of immediate loss of old landraces and wild relatives in centers of
diversity because of agricultural changes or urban development, and politi-
cal factors affecting future availability of germplasm.

The Germplasm Resources Information Network (GRIN) is the official
database of the NPGS and is currently maintained on a minicomputer in the
National Agricultural Library at Beltsville, Maryland. The functions of the
GRIN are vo: 1) ect as a repository of all information for NPGS plant
germplasm; 2) unify the NPGS with regard to data standards and movement
of germplasm; 3) allow fast access to the most current data available to all
users of the germplasm and its accompanying information; 4) facilitate and
track the distribution of germplasm; and 5) provide to germplasm mainte-
nance sites a system of inventory management that autematically signsls
the need for germplasm increases and or replenishment.

Data in GRIN are available to any plant scientist or researcher worldwide,
either through direct connection to the database or through contact with the
curator for the active collection of the crop of intereat. GRIN contains data
on taxonomy, origin, evaluation and characterization for plant germplasm
preserved in the NPGS. All movements and distributions of germplasm
within the NPGS and foreign countries are recorded in GRIN.

All plant germplasm entering the NPGS from outside the U.S. must
comply with federal quarantine regulations which are designed to facilitate
the exchange of plant germplasm while limiting/ preventing the movement
of pathogens. Regulations are written, interpreted, and enforced by APHIS.
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Suentists cooperate to ir:port plant germplasm free of pests. Accessions of
certain crops must be r;-own under quarantine at designated sites, including
the ARS St. Croix risearch station and greenhouses at specified locations
under APHIS insy sction, before they can enter the NPGS active and base
collections.

The NGRL facili :ates the activities of Crop Advisory Committees. The
public and private scientists on these committees represent the germplasm
user community for a particular crop or group of crops. These committees
provide crop-specific expert guidance on germplasm needs, collection gaps,
descriptors, documentation, regeneration, evaluation, and research goals to
various components of the NPGS. Although the ARS components of the
NPGS are administered by the Area Director for the geographic location of
that component, the National Program Leader for Plant Germplasm on the
National Program Staff provides leadership for the NPGS and coordinates
activities. The National Program Leader for Plant Germplasm also provides
administrative support to the various advisory boards and committees for
plant genetic resources.

The NPGS has been described as a “user-driven system.” Between 1986
and 1992, the NPGS distributed an average of 175,400 samples each year:
U.S. public scientists (67%), U.S. private industry scientists ( 12%), foreign
public scientists (9%), foreign private industry scientists (10%), and inter-
national centers and USAID (2%).

USE OF PLANT INTRODUCTIONS

Plant genetic resource conservation and utilization have been the founcla-
tion for improvement of agronomic, ornamental, and horticultural Cro)s.
During the Twentieth Century, U.S. research scientists have been uring
introduced plant genetic resources to develop new cultivars that sre r<spon-
sive to improved cultural practices, that have more desirable putritional or
fiber qualities and that have resistance to disease and inse~; pests and to
environmental stresses. “Use of Plant Introductions in Cultivar Develop-
ment, Part 1 and Part 2" (Shands and Wiesner, eds., 1991, 1992) documents
some uses of this plant germplasm for research. Plant introductions from
the centers of diversity have been very important sources of disease and
insect resistance. For example, 82% of wheat cultivars released in the U.S.
since 1975 were either developed in the U.S. with parents introduced after
1920 or were grown as direct introductions. Similarly, 75% of the 300
released sorghum inbred lines registered in Crop Science between 1960 and
1986 had some introduced germplasm in their pedigrees. Duncan et al.
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(1991) list ten sorghum accessions as sources of postflowering drought
tolerance and twenty-four accessions as sources of acid soil tolerance (Al
toxicity).

When breeding populations are developed and improved by recurrent
selection or when F; or backcross populations are used in the pedigree
system, Eberhart, et al. (1991) emphasize that multistage selection has been
very effective for the simultaneous improvement of multiple traits. In
multi-stage selection, a large number of S, or F; plants are grown and selfed
with mass selection for one or two highly heritable traits. Several hundred
S; or F;lines can be screened for two or three traits involving stress tolerance
(drought, Al toxicity, insects, etc.), with replication at two or more locations
if necessary. One plant in each selected family can be selfed and advanced
to the next generation. The S; or F, families can be evaluated per se in
replicated yield trials or crossed to testers for the yield evaluations.

Increasingly the NPGS collections are being used for biotechnological
research and development. Biotechnologists must have a reservoir of genes
available to manipuiate if they are to improve economically important corps.
As biotechnology progrums develop, plant genetic resource conservation
becomes even more critical.

Not only have public and private plant breeders used introduced
germplasm from the NPGS and other sources effectively to produce stress
tolerant and high yielding cultivars and hybrids, but also farmers have used
these improved products to increase yields and lower costs so that the
average U.S. family now spends less than 12% of its income for food.

CORE SUBSETS

The NPGS is developing a core subset of each major crop which would
represent “with a minimum of repetitiveness, the genetic diversity of a crop
species and its relatives” (Frankel, 1984). This core subset will provide
scientists with a more representative and smaller sample for identifying
sources of desired traits and will reduce operating costs of NPGS. Brown
(1989) recommended stratified sampling methods in which germplasm
accessions are grouped using deta on geograpnical origins and genetic
characteristics. CIMMYT is currently developing a core subset within each
maize race with these procedures. Taba et al. (1992) have reported on the
Tuxpefio race complex.



The core subset will be used for rore extensive evaluation and charac-
terization for each crop. The development of the core subset will be a dynamic
process whereby new accessions will be added and one of a pair of accessions
that have been shown to be very similar can be dropped as more detailed
information becomes available.

INTERNATIONAL COOPERATION AND COCRDINATION

The need to preserve, exchange, and utilize plant genetic resources is now
recognized worldwide. Even countries with great genetic diversity in certain
crops are heavily dependent on many crops introduced from other areas.
Because the U.S. has had to import nearly all of our crop germplasm, the
NPGS maintains a very comprehensive germplasm collection from around
the world. The NPGS has been able to assist several countries in recovery
of their key germplasm, which had been lost for various reasons.

Many countries now have genetic resource preservation programs with an
associated gene bank. The NSGS maintains a close working relationship via
free exchange of germplasm with programs in most countries.

The ten International Agricultural Research Centers (IARC) involved
with crops (Table 2) are key institutions for the collection, preservation and
distribution of many agronomically important crops. These centers are
supported through the Consultative Group on International Agricultural
Research (CGIAR), which includes foundations, development agencies of
several countries, the World Bank, the United Nations Development Pro-
gram, and the United Nations Food and Agriculture Organization (FAQ).
The International Plant Genetic Resource Institute (formerly International
Board for Plant Genetic Resources) assists in the coordination of plant
genetic resource programs of the JARC’s and more than 100 countries for
the benefit of all humankind. The NPGS cooperates with these IARC’s in the
acquisition and preservation of plant genetic resources including the free
exchange of information and plant materials. Table 2. JARC’s Genetic
Resources (Source: Various CGIAR and IARC Reports).
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‘Table 2. IARC's Genetic Resources (Source: Various CGIAR and JARC Reports).

Number of
Center (Host Country) Species accessions
CIAT (Colombia) Common bean (Phaseolus vulgaris) 35,950
Other beans (Phaseolus spp.) 5111
Cassava (Manihot esculenta) 4,600
Cassava wild relatives (Manihot spp.) 48
Forage legumes 17,982
Forage grasscs 2514
CIMMYT (Mexico) Maize (Zea mays, Tripscum) 10,500
Cereals (Triticum acstivum, T. durum, Triticale, Hordeum) 62,000
CIP (Peru) Potato (Solanum tuberosum) 5,000
Potato wild relatives (Solarum spp.) 1,500
Swext potato (lpomea b itatus) 5,200
ICARDA (Syria) Cereals (Hordeum spp., Triticum spp., Triticale) 49,749
Food legumes (Vicia, Lens, Cicer) 16,890
Forages 19,952
ICRISAT (India) Sorghum (Sorghum bicolor) 31,030
Pearl millet (Pennisetum glaucum) 6,610
Minor millets (Pennisetum spp.) 19,796
Groundnui (Arachis spp.) 12,160
Pigeonpea (Cajanus cajan) 11,040
Chickpea (Cicer arietinum) 15,564
IITA (Nigeria) Cassava (Manihot esculenta) 2,000
Plantain and banana (Musa spp.) 250
Cowpea (Vigna unguiculata) 15,100
Cowpea relatives (Vigna spp.) 810
Rice (Oryza spp.) 12,000
Soykean (Glycine max) 1,500
Yim (Dioscorea spp.) 1,000
Maize (Zea mays) 500
Bombara groundnut (Voandezia spp.) 2,000
ILCA (Ethiopia) Forage grasses i 1,524
Forage legumes 6,443
Browse specics 1,429
IRRI (Philippines) Rice (Oryza sativa) 78,420
African rice (O. glaberrima) 2,408
Wild relatives (Oryza spp.) 2,214
Other rices 21
WARDA (Ivory Coast) Rice (African and Asian) 5,600
AVRDC (Taiwan) Vegetables (tomato, mungbean, pepper, cabbage,
amaranth, soybean, etc.) 32,200
TOTAL 498,615
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Stress Tolerance Mechanisms
in Above Ground Organs
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ABSTRACT

Current average crop yields represent less than 26% of the genetic potential as
determined by yield records. The major cause of the reductions from potentisl
yields is dreught. Plani water strees results when the transpirational demand
exceeds the soil water supply capacity. Growth ie reduced due to s.ress effects on
cell expansion and division. Reproductive meristems are apparently more sensi-
tive than vegetative meristems. Photosynthetf activity is reduced due to both CO;
supply (stomatal conductance) and biochemical limi‘ations within the chloroplast.
As stomatal conductance declines, leaf temperature increases, and high tempera-
ture etress causes additional problems. Mechanisms utilized by plants to minimize
the impact of insufficient water supply are negatively related to maintenance of
productivity. Osmotic adjustment, defined as a net increase in tissue solute con-
centration, represents a potentially viable mechanivm allowing turgor mainte-
nance, and those processes dependent on turgor pressure such as cell elongation
and stomatal conductance. The results to date are highly controversial regarding
the real worth of osmotic adjustment as a drought tolerance mechanism. In dryland
environments, a high percentage of the rainfall is wasted. Management approaches
to minimize waster and increase the proportion of the total water supply that the
crop uses offer gocd opportunities for increased yield. Controlling the plant
density to reduce the risk of stress durin 7 critical growth stages is also important.
Additionally, genetic s pproaches to increase water use efficiency oifer some prom-
ise for the future.

INTRODUCTION

Yields have increased dramatically over the past 40 years for most crop
species in the United States (Fig. 1). Although corn hybrids were introduced
in the early 1920s, yields remained relatively static until the mid-1940’s
when rapid increases in yield per acre began to be recorded. Over the past
40 years, the average yield increase for corn has been nearly two bushels per
acre. Grain sorghum yields remained relatively low and static until the
mid-1950’s when hybrids were introduced. Qver the next 20-year period (to
mid-1970’s), yields increased more than threefold. During the last 20 year
period (1970-1990), yields have remained relatively static. The lack of
continued yield increases during the past 20 years largely reflects the
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Fig.1. Historical yield trends for four major U.S. crops representing hybrids
versus open pollinated cultivars (data from National Agricultural Sta-
tistics. 1992. USDA. Washington, D.C.)

displacement of sorghum by corn in the irrigated production areas of the
Great Plains States. In Texas, as an example, over 7.5 million acres were
grown in the mid-1970’s with a large percentage (more than 50%) of the
acreage receiving supplemental irrigation (USDA, 1992)). Today, less than

. million acres are grown annually in Texas with less than 20% of the
acreage receiving irrigation. Sorghum has been displaced by corn in the
northern irrigated areas of the state and by cotton in the southern areas due
to economic reasons. Wheat yields have increased steadily over the past 50
years but at a relatively slow rate (<0.5 bu/yr), again reflecting the fact that
the majority of the U.S. wheat production occurs in the Great Plains States
where adverse weather represents the major yield constraint. Cotton yields
have had periods of rapid increases and then periods where productivity has
remained stable or even declined. Cotton yields are usually directly related
to lint price, and thus reflect the level of management required to maintain
profitability. If prices are high, inputs are increased and yield per acre is
high.
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Table 1. Record yields, average yields and causes of yield losses of msjor crop

species.

Record Average Biotic Abiotic

Crop yield yield factors factors
Mg/ha (% of record yield)

Com 19.3 6.6 (36%) 22(11%) 10.5 (57%)
Sorghum 20.1 3.6 (15%) 1.0 ( 5%) 16.3 (81%)
Wheat 14.5 1.9 (13%) 0.7 ( 5%) 11.9 (82%)
Cotton 40 0.7 (17%) 0.9 (2%) 2.4 (60%)
Soybean 74 1.6 (22%) 1.3 (17%) 5.1 (69%)
Sugarbeet 121.0 42.6 (35%) 17.1 (14%) 61.3 (51%)

Adapted from Boyer (1662) a~d Zegler (1890).

Current average yields of our major crops represent only a small fraction
of the record yields for each crop (Table 1). Even the record yields do not
reflect the yield limits dictated by the environment, especially the available
radiant energy and growing season lengt h. Radiation use efficiency (RUE)
of C, species such as corn and sorghum are reported to be 2.5 g dry weight
per megajoule of intercepted radiation (g DW MJ') as reported by Mon-
teith (1988). C; species, such as wheat and cotton, are reported to have RUE’s
ranging from 1.4 to 1.8 g DW MJ"' depending on the chemical composition
of the dry weight. Semiarid climates typically receive 25-30 MJ ™! day during
the summer growing season and 15-18 MJ day™ durinig the winter period.
Subhumid climates will typically receive 15-20 MJ day™” during the summer
growing season. The causes of the average yields being well below potential
yields have been separated into biotic and abiotic factors as summarized in
Table 1. Biotic factors including insects, diseases, and weeds are responsible
for losses representing less than 20% of the potential yields of most species
(Boyer, 1982; Ziegler, 1980). Abiotic factors including unfavorable soils and
weather account for the vast majority of the potertial yield losses. Among
the abiotic factors, drought is commonly credited with causing the majority
of the problems.

There is no clear, objective definition of ‘drought.’ It has a meteorological
component which relates current precipitation events to historical patterns
for a given area. It also has a hydrologic component which includes soil water
storage, evaporative demand, and crop type and growih stage. Within any
given r iinfall pattern, drought is not considered to exist unless the crop is
sufferii: g irreparable damage due to lack of sufficient water to maintain
growth and productivity.

The water status of the plant tissue is usually considered the critical
component affecting physiological processes occurring in each tissue and
organ. About 30 years ago (Slayter and Taylor, 1960), the water statu’ of



the soil-plant-atmosphere was defined using thermodynamic terris of water
potentiai (Ww) and the various components of solute potential (\¥r), matrix
potential (Wm), and pressure potential (‘\¥p). Water loss from leaf tissue is
unavoidable if the plant is going to carry on photosynthesis during the
daytime. The stomata of most plants open in the light allowing for the influx
of CO; with the concurrent efflux of H,O vapor in response to large concen-
tration gradients. The loss of water vapor from leaf tissue during the daytime
lowers the W (reduces the concentration of 'free’ water) of the liquid water
in the leaf and establishes the gradient (A ) for water to flow from the soil
to the root to the shoot (Fig. 2). Over the past 30 years, thousands of research
publications have appeared relating Yo to various physiological processes
affecting growth and development. However, to date no unique relationship
has been identified between Ww and the activity of specific processes. The
relationship observed between W and the activity of a specific physiological
process is dependent upon species, growth stage, soil water supply, evapo-
rative demand, and even among the components of the evaporative demand
(i.e. radiant energy and vapor pressure). Within a cell, where the contents
are bound by a semipermeable membzr&ne, \¥'r is used to express the solute
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Fig. 2. Relative relationships between transpiration ratz and leaf water poten-
tial of various monocot and dicot species.



concentration based on the Van't Hoff equation nV=1,RT where n=osmotic
pressure, V=volume of solvent, n,=poles of solute, R=gas constant, and
T:="Kelvin. It is commonly assumed that the Wo of the water in the cell wall
is in equilibrium with the Yo of the symplast, and as a consequence, the
difference between ¥r and Yo is the Wp (pressure potential) of the cell (Kra-
mer, 1969). Physio’ »gical activities such as expansive growth (cell extension)
and stomatal cond :ctance have been related to ‘Wp rather than Yo (Kramer,
1983). These atten .pts have also been rather futile, since it is difficult or
impossible to measure the water status of guard cells or expanding cells, and
the total tissue water status, which is usually measured, max not reflect the
water status of these specialized cells.

In recent times the concept of Yo as an indicater of tissue water status
has been challenged, and relative water content (RWC) has been proposed
as the replacement to relate to tissue activity (Sinclair and Ludlow, 1985).
Volume changes of various organelles have been related to their rate of
function 'in vitro.” However, due to the ability of an organelle such as a
chloroplast to modify its internal osmotic potential during the course of the
day and the elasticity of the chloroplast membrane, it is extremely diffcult
to develop a comprehensive understanding of the water relations of individ-
ual organelles within a cell in response to tissue water deficits.

PLANT RESPONSE TO WATER DEFICITS

Essentially every aspect of plant growth and development is affected by
tissue water deficits caused by either excessive evaporative demand or
limited soil water supply. Over 20 years ago, Hsaio (1973) described the
relative sensitivity of various physiological processes to tissue water deficits.
Table 2 summarizes our current understanding of verious physiological
sy..ems sensitivity to water stress. Expansive growth continues to be the
most sensitive growth and development process to tiss.e water deficits. At
the time of Hsaio’s r view, the concept of cell expansion was based on
Lockhart’s (1965) equation describing the physice of irreversible growth
where:

E=@(P-Y)

E= irreversible increase in cell (tissue) volume
@=expansion coefficient

P=turgor pressure

Y=yield threshold
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Table 2. Relative Sensitivity of Various Plant Processes to Water Stress.
Relative sensitivity

Plant process Very sensitive Moderately sensitive Insensitive

Growth
Cell Division ——— ————
Cell Expansion ————

C tbon Metabolism
Stornatal Opening _——— ————
CO; Assimilation _— ————
Sugar Accumulation
Respiration ——_——e ——

Nitrogen Metabolism

NO3 Reduction
N, Fixation ——— _————
Protein Synthesis
Protein Hydrolysis ——— _———

Hormone Relations
IAA Activity ————
Gibberilin Activity —— e
Cytokinin Activity e
Abascisic Acid
Ethylenc

Modified and adapted from: Hsalo, 1973; Paleg and Aspinall, 1881; Close and Bray, 1933.

Cell expansion rate was linearly related to the difference between the
existing turgor pressure and the wall yield threshold. The reduction in cell
size due o water stress was directly attributed to the lack of adequate turgor
pressure. We now know that at least threx interrelated phenomena must
coexist for cell expansion to occur (Ray, 1487). These three are: 1) a water
potential gradient must exist between the expanding cell and the surround-
ing tissue, 2) the primary wall structure must be loosened to allow the wall
to stretch, and 3) a net increase in solute content must occur to maintain the
osmotic potential and the driving force for water uptake as cell volume
increases. Two of the three prerequisites are metabolically controlled phe-
nomena and subject to alteration by water or temperature stress. The
loosening of the cell wall is a hormone-activated enzyme-mediated process.
The net increese iw solute content is dependent upon the import of current
assimilate into ihe growing region. The availability of organic material for
cell expansion is dependent upon photosynthetic activity and upon compe-
tition among the various sinks for the limited supply of photosynthate
(Cosgrove, 1987).
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In most plants, the rate of leaf expansion is directly related to the
photosynthetic activity (i.e., increasing from morning to midday). Con-
versely, leaf water potential and turgor are declining over this same time
course suggesting that turgor pressure itselfis not the primary driving force
for expansion. As water stress occvrs, the rate of expansion decreases but
follows the same diurnal time course (monocots) or shifts to times during the
day when the water relations are more favorable (dicots). However, the rates
of expansion of stressed leaves are never greater than the unstressed
leaves (Van Volkenburgh, 1988). In both situations, final leaf blade size ig
reduced compared to the well-watered control affecting the ultimate produc-
tive capacity of the whole plant. Several observations now exist that indicate
cell number reductions are equally responsible for blade size reductions in
both grasses (Hsaio and Jing, 1987; McCree and Davis, 1974) and broadleaf
plants (Van Volkenburgh, 1868) indicating cell division is equally sensitive
to water stress.

Total leaf area per plant is a function of both total numbers of leaves
initiated and blade size of each leaf. It is apparent that leafinitiation from
apical meristems in both determinaie and indeterminate species is rela-
tively insensitive to water stress. Rarely is node number reduced even when
internode length and plant height are severely reduced by water stress.

Reproductive meristems are much more sensitive to water stress than are
vegetative meristems. In cereals, seed number per panicle is reduced dras-
tically by water stress or temperature stress (Eastin et al., 1990). Axillary
meristems which are involved in production of firuit, such as with indeter-
minate plants like cotton and soybean, are very sensitive to stress and do
not initiate the floral sites under stress.

The harvest index, defined as the ratio of the weight of the harvestable
product to the total dry weight of the plant, is considered to be linear across
awide range of production or yield conditions (Fig. 3). This linearity between
seed yield and total dry matter has been interpreted to mean that reproduc-
tive and vegetative growth are equally sensitive to environmental
stresses (Howell, 1988). However, the intercept of the regression must be
considered in addition to the slope. If the intercept is close to 0, then the two
components are equally sensitive such as observed for wheat. If the intercept
is large and negative, then a relatively large amount of vegetative growth
must occur before any grain yield is produced. The greater the grain yield,
the higher the harvest index such as observed for corn.

The photosynthetic process is also quite sensitive to water stress com-
pounding the effects of reduced leaf area on growth rates of plants suffering
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Fig. 3. Relationships between grain yield and total above ground dry matter for
three grain crops. (adapted from T.A. Howell, 1988).

mild to severe water stress. The photosynthetic process consists of physical

components restricting the supply of CO, to the chloroplast and the conver-

sion of solar energy to chemical energy as well as enzymatically controlled

components involved in CO; reduction and conversion to either transport-

able or storage products.

Since opening of the stomata is very dependent on guard cell water
relations and the development and maintenance of turgor, it has been
assumed for years that the supply of CO; to the chloroplast was the primary
limiting factor to photosynthetic rate changes as water stress progressed.
Linear relationships exist between stomatal conductance and the CO, as-
similation rate of most species. Farquhar and Sharkey (1982) proposed a
technique to separate stomatal from nonstomatal limitations to CO, assimi-
lation. It is now commonly observed that the relative contribution of sto-
matal conductance and the biochemical limitations to CO, reduction and
disposition vary and are dependent upon rate of stress imposition, associated
weather conditions (especially air temperature, radiation, and vapor pres-
sure), species and growth stage. It is quite apparent that the primary
function of the stomata is to balance CO; influx with H,O vapor efflux while
maintaining the tissue temperature at a viable level as long as water is
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available for transpiration. Energy shedding through leaf wilting (dicots) nr
folding and becoming more erect (monocots) is an absolute necessity to
maintain a sublethal tissue temperature when transpirational cooling is
suppressed,

As tissue temperature increases, the water solubility of CO, decreases and
photorespiration increases in Cj species. In both C; and C, species, as CO,
reduction declines due to either reduced CO, supply (stomatal) or reduced
biochemical activity (non:tomatal), photoinhibition due to O of2,”) production
increases and can cause cng-term or perxanent membrane damage in the
chloroplast (Bowler et al., 1992). As the soil water supply becomes limiting
to transpirational demand dictated by leaf area index, radiant energy and
vapor pressure deficit of the atmosphere, the plant begins to suffer progres-
sively lower tissue water status which affects growth and productivity.

HORMONAL RELATIONS

As plants begin to experience water stress, the hormonal concentrations
within the tissue are known to be altered,. Both ihe absolute concentration
and the relative concentrations of the various hormones change. For in-
stance, the abscisic acid concentration in the transpiration stream increases
and is thought to be the source of ABA for stomatal control (Tardieu and
Davies, 1992). As the cytokinin concentration decreases, the relative concen-
tration of ABA:cytokinin increases and is thought to be the cause of reduced
or even cessation of meristematic activity and also leaf senescence and fruit
abscission. The roots are now considered to be the source of the ABA in the
transpiration stream. The root tips are proposed to be the sensory tissue for
soil water stress conditions beginning to occur (Davies and Zhang, 1991).

DROUGHT RESISTANCE MECHANISMS

Numerous mechanisms are known to exist which are related to drought
resistance of plants (Jones et al., 1991). The mechanisms are classified into
three categories of drought escape, desiccation avoidance, and desiccation
tolerance.

Drought escape is related to plant maturity. In some agricultural environ-
ments, the soil water supply is fixed at the time of planting. Using a species,
or genotype within a species, that can complete its life cycle on that given
volume of water is a viable approach to managing drought. In environments
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Drought Resistance Mechanisms
|

Drought Escpe Drought Tolerance at High Drought Tolerance at Low
Tissue Water Potential Tissue Water Potential
Phenological Reduction of Maintenance
Devclopment Water Loss of Turgor
Developmental Maintenance of Protoplasmic
Plasticity Water Uptake Resistance

where rain occurs during the growing season, drought is random, and the
duration and intensity unpredictable; maturity differences are irrelevant
ard have no bearing on plant response or yield. Developmental plasticity
then plays a major role in drought response.

The mgjor emphasis on drought tolerance has been directed toward
desiccation avoidance or desiccation tolerance mechanisms. Desiccation
avoidance mechanisms are those which maintain the tissue water status in
a favorable condition by either minimizing water loss or by increasing the
supply. These include 1) stomatal closure, 2) energy shedding due to both
leaf orientation changes and actual leaf shedding, and 3) deeper, more
extensive root systems to increase the water supply. There is considerable
genetic variation observed in most species for each of these mechunisms.
Essentially every plant exercises one or more of these mechanisms when
expnsed to drought conditions. However, to date there is no evidence that
any of the three mechanisms are related to majiatenance of productivity and
growth. Stomatal closure restricts CO; assimilation rate and increases
tissue temperature causing increased photesespiration and photoinhibition
reducing net C assimilation and subsequernt photosynthetic activity. Energy
shedding through leaf orientation anr ieaf shedding reduces growth rates.
The leaf shedding- retention pherumenon has been proposed as an impor-
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tant drought response mechanism in grain sorghum (Rosenow et al., 1983).
The nonsenescent or 'stay green’ trait has been positively associated with
reduced lodging and increased harvestable yield (not with biological yield)
when severe water stress occurs during the grain filling period. Senescence
18 associated with a large amount of N and C remobilization from the stalk
and lower leaves to complete grain filling. The nonsenescent genotypes are
capable of maintaining greater photosyrthetic activity during grain filling
when water stressed (Table 2), largely due to differences in leaf area dura-
tion and maintenance of net N and C assimilation. However, if water stress
occurs prior to flowering, the nonsenescent genotypes tend to respond like
true perennials and sacrif ce reproductive development at the expense of
vegetative growth. Seed number per panicle is severely reduced, whereas,
leaf area per plant is only slightly affected by water stress prior to flower-
ing (Krieg, 1988). Increased root growth occurs at the expense of shoot
growth of which reproductive growth is usually more sensitive than vegeta-
tive growth reducing yield.

Table 2. Genotypic differences in crop growth rate (CGR) nitrogen net assimila-
tion rate (NNAR) and dry matter net assimilation rate (DMNAR) during

grain filling of two contrasting grain sorghum hybrids.

CGR NNAR DMNAR
Ger.otype Water Supply (g mid! (mg N m> d") (4 m d‘l)
Senescent Irrigated 20.4 351 6.4
Dry 47 86 23
Nonsenescent Imigated 20.6 357 58
Dty 10.0 131 3.1

Desiccation tolerance mechanisms are those which allow tissue function
to continue as water status declines. Osmotic adjustment, defined as a net
increase in tissue solute content, is proposed to allow maintenance of turgor
preasure and turgor dependent processes as tissue water status declines due
to restricted water supply.

The existing literature on the cause and effect of osmotic adjustment in
response to drought is quite variable. In wheat, osmotic adjustment has been
demonsirated to be genetically variable and positively associated with
productivity under drought conditions (Morgan and Condon, 1986). In other
species such as grain sorghum, the reports are quite variable as to the
benefits of osmotic adjustment. We have determined that osmotic adjust-
ment represents less than 50% of the total change in solute potential of
sorghum leaves as tissue water potential declines, and that net solute
accumulation is initiated only after dehydration has occurred increasing the
solute concentration (Girma and Krieg, 1992a). Stomatal conductance and
CO. assimilation were significantly reduced prior to a measurable increase

75



in osmotic potential due to osmotic adjustment (Girma and Krieg, 1952b).
It i8 our opinion that osmotic ad;ustment represents a symptom of water
stress rather than an adaptation allowing continued production. Growth,
and thus assimilate utilization are reduced to a greater extent than CO,
assimilation and osmotica accumulate. The magnitude of osmotic adjust-
ment appears to be limited to approximately 0.5 MPa in grain sorghum. Our
current opinion is that osmotic adjustment is probakly beneficial to tissue
survival and probably has real merit for perennials. In annual seed-produc-
ing plants, the benefits are highly questionable at best.

WATER USE EFFICIENCY

In order to maintain productivity within the limits of a given water supply
and atmospheric demand, every effort must be directed toward minimizing
the opportunity for significant plant water stress to occur. Although there
is evidence for genetic variation in gas exchange efficiency (CO, fixed per
unit H,O transpired) the opportunity to make real gain in productivity is
probably very small (Peng and Krieg, 1992). Analyses of the relative contri-
bution of the various components to grain yield strongly indicate that the
seed per plant component is the major determinant of yield per unit land
area within reasonabie plant densities common to production agriculture.
Since potential seed number is established in the muiddle third of the life of
most plants, effort must be made to minimize the risk of severe water stress
existing during this developmental period. In areas of random drought or
periodic rainfall throughout the growing seasun one can match the critical
growth stage occurrence with the periods of greatest probability of rainfall
if the growing season length permits. Another approach that we are devel-
oping involves controlled plant density. Each plant is spaced such that the
soil volume will prov.de ample water for that plant to get to the flowering
stage with the least rislt of suffering severe water stress. The volume of water
required for cotton and grain sorghum to produce 50% of their genetic
potential has been defined and normalized for vapor pressure deficit to
extend the concept to any production area. The plant density can easily be
calculated based upon soil water content at planting and the probability for
rain during the preflower period.

STTMMARY AND CONCLUSIONS

Water stress has major impact on growth and productivity of plants.
Expansive growth is extremely sensitive resulting in reductions in plant size
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and production potential. Reproductive meristems are more sensitive than
vegetative meristems, resulting in significant reductions in seed number per
plant and yield potential. Growth rates are reduced not only due to reduc-
tions in leaf area but also due to reductions in photosynthetic rate. Photo-
synthetic rate reductions are due to both physical limitations on CO, supply
due to stomatal closure and biochemical limitations on CO; reduction. The
biochemical limitation in CO; reduction are due to reductions in the physical
aspects of energy transformation as well as enzymatic rate reductions.
Yields are reduced primarily due to reduction in the seed number component
with only minor reductions in the seed weight component.

Numerous plant responses to water stress are commonly observed which
are thought to represent drought resistance mechanisms. In short-term
drought conditions, mechanisms such as stomatal control of water loss and
concurrent energy shedding through leaf orientation changes are beneficial.
However, if drought conditions persist, these mechanisms are negatively
related to productivity.

Mechanisms such as osmotic adjustment theoretically maintain those
functions dependent on turgor, such as cell expansion and stomatal function.
In reality, however, osmotic adjustment may only represent a symptom of
altered source-sinx relations rather than an adaptation allowing mainte-
nance of growth and productivity.

More efficient use of the water resources through genetic manipulation
and agronomic management offer some opportunity to increase productivity
within the limits of the water supply and should be emphasized in the future.
In nearly every production environment, 25-50% of the total water supply is
lost to wasted processes such as runoff and free soil evaporation. Relatively
simple management practicer can be implemented which will minimize the
loss. Controlled plant densities can then be used to minimize the risk of
severe water stress during critical growth stages to maximize seed number
and yield potential.
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Stress Resistance and Root Systems

R. W. Zobel
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Ithaca, NY

ABSTRACT

Pbenotypic plasticity is the hall mark of root system-based tolerance/avoidance
of soil stresses. Improvement of crops for soil stress situations requires knowledge
oY three aspects: 1) Detailed knowledge of the environmental (edaphic) parameters
associated with the stress, 2) Detailed knowledge of the characteristics of root
systems, and 3) Knowledge of how the first two interact to produce the required
tolerance/avoidance response. Currently these three knowledge areas are insuff-
ciently developed to provide accurate prescriptions for a given situation. This
paper focuses on aspects 2 and 3, with only brief reference to parameters of aspect
1, some of which are often overlooked when s0ils are being characterized. None of
these three aspects can be considered in isolation, but must be comprehended in
their proper relationship to each other. When edaphic environments are consid-
ered, soil temperature at depthr greater thun 20 cm, and carbon dioxide concen-
trations in the plough layer and at deeper horizons are rarely considered. These
two parameters are critical affectors of “normsl” root growth and root svstem
development. Normal root sysiems are composed of nt least four root types each
having distinctly different response patterns and requirements. Anecdotal evi-
dence has indicated that two to four additional types of root may be present.
Interactions between different types of root and the different soil environmental
characteristics determine the extent of poritive or negative phenotypic plasticity
displayed by a given genotype. With sufficient knowledge, parental genotypes can
be selected for appropriate characteristice and then interbred. Later generatio- -
can be selected on the stressful soils of concern using shoot characteristics aseoci-
ated with as yield parameters.

INTRODUCTION

This synopsis is an attempt to point out the role of the plant root system
in soil stress resistance, and some of the mechanisms by which this has been
accomplished. Some gaps in existing knowledge will be identified, and
additional potential solutions suggested. The problem of breeding for a plant
characteristic(s) which is, by its growth liabit, hidden from view and poorly
accessible, will be briefly addressed.
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THE PROBLEM SITUATION

The preponderance of plant stresses occur because of environmental or
biological factors impinging on the plant through the root system. Among
the six general categories of environmental factors that impinge on the plant
(Fig. 1), four are rhizosphere factors, and each of these rhizosphere catego-
ries have far more constituent factors than any of the equivalent thal-
losphere categories. In addition, because the plant shoot is readily visible,
and tke plant part(s) of greatest interest to man are usually attached to the
shoot, pleat breeders have focused their attention on shoot characteristics.
The result is that for most shoot sensed stresses, except perhaps biologics!
and inte-riittent physical stresses, plant breeders have already developed
the necessary resistance. On the other hand, relatively new stresses like
ozone and sulfur dioxide toxicities are currently the focus of extensive
research.

Stress results from a negative interaction between a plant and its envi-
ronment. In soybean and other major crop species, shoot characteristics
generally have significantly less genotype-by-environment interaction (GE)
than do root characteristics (Zobel, 1990a, 199%a). This situation has been
a direct result of conscious efforts to breed for shoot phenotypic stability -
uniform height, uniform seed number and size, uniform leaf angle, stable
yields across years and locations. One consequence of this reduced GE is a
narrower shoot based respense pattern and germplasm base in terms of
potential solutions to stress situations. Additionsl variation can, of course,
be introduced from wild species. On the other hand, the presence of extensive
GE in root characteristics suggests a broader genetic base for providing
stress tolerance via root characteristics. At the same time large GE can cause
difficulty in identifying the genetic pattern of response to stress situations.
A further complication is the inherent temporal and spatial variability of
different rhizosphere factors (Fig. 1).

O’Toole and Bland (1987) have summarized the literature on genotypic
variation in crop root systems and Zobel (1975, 1986, 1991b, 1992a,b) has
discussed root genetics and some of the inherent constraints to root improve-
ment. Both groups have concluded that a primary constraint to root genetics
and breeding is the exte:sive morphological plasticity observed. Morpho-
plasticity, and its counterpart physio-plasticity, are the direct result of
GE-based changes in plant root systems. This plasticity can cause a drastic
change in the root system morphology (or physiology) of a homozygous
genotype across experimental plots of as little as 3 meters by 3 meters within
a single scil class (Zobel, 1992a; and Smith and Zobel, 1990). Unless the
environmental cause and the pattern of interaction are understood, it is
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Fig. 1. Division of the Biosphere into its six main characteristics, two thel-
losphere and four rhizosphere. Major aspects of the rhizosphere can be
classified by their inherent spatial and temporal variability.

difficult to identify genetically-controlled variability in such root systems.
On the other hand, plants need this plasticity if they are to survive in
different soil environments.

Root genetics has been a difficult subject to pursue with any likelihood of
success. In addition to morphological plasticity, this lack of success can be
attributed to a lack of consistency in root terminology (Zobel, 1991). When
two types of root with distinctly different physiological and/or morphological
responses to the same environment are treated as a single type of root, either
no sensible pattern will be found, or a pattern that is appropriate for only
one type is ascribed for the other or both types and published as such. It is
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patently impossible to demonstrate that two types of root are different if
they are not analyzed separately, nor is it possible to make sense out of the
literature if results with one type of root are incorrectly ascribed to a
different type of root. An underlying cause of this inconsistency is the
extreme similarity in anatomy and external morphslogy between all roots.
Zobel (1975, 1986, 1991b) has documented the existence of four major types
of root and has demonstrated their genetic, physiologicsl, and developmental
uniqueness. Becanse these differences have not been routinely adopted,
many experiments have been confounded. A further confounding of results
occurs because root research is most ea.ily conducted out on secdlings. Many
stress situations have their greatest impact during anthesia and seedfill /
fruit development. The preponderance of roots present in seedlings are of a
different type than those that make up the majority of the root length density
or system architecture of a fully grown plant. In addition the possibility of
a change in root physiological activity with plant and/or rvot age furiher
demands a thorougi: re-evaluation of current concepts about root function
in field grown plants (Zobel, 1992b; Zobel et al., 1992).

The opacity of the soil, and lack of a suitable experimental system to
non-destructively analyze rcot system responses to perturbations in their
environment are at least part of the reason these problems have developed.
Another is a lack of statistical procedures which are capable of dissecting
the GE responses of root systems so that plasticity can be analyzed and
characterized morphologically, physiologically and genetically. Zobel (1992)
hasidentified some new technologies that should improve the ability to study
the genetic and environmental patterns serving as the basis for root phenc-
plasticity. Before discussing some of these technologics, an overview of som:
of the important stress situations will be presented. Many poteniial root-
based methods for developing tolerance to stress situations have been
hypothesized and the literature has some good examples of successful
root-based solutions.

STRESS FACTORS

The delineation of the soil-based stresses that a plant can encounter
produces a list that is daunting (Table 1), especially if each must be explored
separately. Fortunately, inany different stresses produce very similar re-
sponse patterns. As a resull, the solution to a stress problem is frequently
the alleviation of the response rather than removal or avoidance of the stress.
Both durution of the stress situation and the severity of the stress are
significant aitributes that must be taken into account when considering
“solutions”. This holds equally for all factors. Many of these stress factors
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Taxle 1. Types of soil stresses”.

Temperature Physical structure
Heat Texture
Cold organic maiter
sand
Moisture cley
Drought Bulk density
Flooding pan layers
whole horizons
Acid soils Aggregale
Excess Al or Mn size
Deficieat Ca, Mg, P density
High H* Concentration porosity

Minenal Gascous phase
Excess Carbon dioxide
baron Nitrogen gas
sait Ethylene
Dxficiency Oxygen
Pathological / Parasitic Competition
Pathogens Plant density
Parasites Weeds
Herbivores Interseeding
Symbiotes
Combinations

in a glven situation, the lovel of any one of the above may be ™ low for “sizess® but In combination with ancther
equally marginal fastor, stress symptoms characteristic c. une or the other may occur.
Duration and aeverity e important quantification’s of each of these stress parametors, and condition the level of
tolerance nerJed tu alleviate the symptomns.
"This listis not intended to Le exhaustve, but to convey the diversity of fa~tors and factor levels that can induce
stress symptoms |n plants.

are discussed in great detail elsewhere in this proceedings, so only those
aspects that affect root-system-.esponse to stress wili be covered here.

Most stress situations are unique to the specific site where the stress
problem is found. Uniqueness can be due to confounding factors, agricultural
technological level, or socic-economic considerations. Confounding factors
can come from &ll aspects of the environment that impinge on plant growth
and development. Although a stress solutinn for a given location will be
nique, in that it will be tailored to that site, it will also provide insight for
other sites with similar constraints.
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Moisture Stress
Drought

The siraplest moisture stress problem/solution is the presence of moisture
deeper in the soil profile than the plant root system penetrates. Numerous
authors have demonstrated the presence of variability for increased depth
of root penetration in both monocots and dicots (Eghball & Maranville, 1993;
Mishio, 1992; Elizondo, 1991; Hays et al., 1921; Lorens et al., 1987; Hamblin
and Tennant, 1987). Another, relatively straight forward drought situation
involves total water reserves in the profile that are inadequate for the
production of the crop. Passioura (1972) provided what was an elegant
solution to the problem: reduce the amount of water used by the plant by
restricting root growth. A variant of this approach is the reduction in xylem
vessel si-2, effectively increasing resistance to water flow (Passioura, 1985).
Since :iumerous papers document the existencs of sufficient genetic vari-
atior. (Baker et al., 1992; Klepper, 1992), implementation of these ap-
proaches requires only the necessary breeding pressure. The above two
forms of drought stress ave probably the purest, and therefore the easiest to
deal with. When acid sub-horizons or plough pans that restrict depth of
rooting are combined with inadequate rainfall for even short duration, two
different types of soil stress are interacting. This type of complex stress
situation probably encompasses the preponderance of drought stress prob-
lems, i.e., drought stress is frequently the resultant rather than the primary
causal stress factor. In these cases, irrigation is the obvious answer, but
frequently, economics precludes this method of alleviating symptoms and
the primary stress must receive the focus.

Oxygen Deprivation

The inverse of drought stress is flooding stress. Plant response to the
resoltant reduction in oxygen is normally characterized by a dramatic
increase in ethylene gas in the stem or roots at the air-water interface.

thylene is a powerful plant growth regulator and has been described as
beiny responsible for modifying auxin relationships and stimulating the
induction of adventitious roots. Ethylene also is known for disrupting mi-
crrfibril orientatic and causing cell leakage and eventual cell wall degra-
dation. Root growth under oxygen deprivation has been reviewed recently
by Drew and Stolzy (1991). In rice and other aquatic species, the roots
normally develop extensive aerenchyma, then suberize to retard oxygen
efflux. Lenticels develop above the water-air interface to import additional
oxygen. Since rice normally develops aerenchyma, it, and other species like
it, is morphostatic in its response to oxygen stress. On the other hand, wheat,
barley, and maize develop aerecchyma and lenticels in response to flooding,
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demonstrating that they are plastic for this characteristic (91 other species
have been described by their level of response, Justin and Armstrong, 1987).

Temperature Strees

Temperature stress in some forms is extremely well known - heat stress
inhibition of fruit set, freezing of non-hardy species. Soil temperature stress
via the root system has been generally ignored. Bowen, in a recent review
11951), suggests that the majority of temperature stress occurs in the shoot
below the soil surface for a large part of the growing cycle. This is true of
many monocotyledonous crop species, but it discounts the effects of soil
temperature during the portion of the season when the shoot apex is out of
the ground, and also it also discounts effects on dicotyledenous species.
Cooper’s (1973) very thorough review of the effects of root temperature, i.e.,
soil temperatures, documents effects on all plant growth aspects. The data
presented by Cooper (1973), Klepper (1987) and Bowen (1991) suggest that
different species have ckaracteristic temperature mirima and maxima with
a broad optimum. For example, based on an assessment of 50% reduction in
root elongation, Bowen (following Klepper, 1987) suggests species/cultivar-
specific lower threshold temperatures for maize (17°C), kidney bean (12°C),
and strawberry (5°C).

Much of the work on rhizosphere temperature stress has dealt with
seedling emergence and growth. Some efforts to deal with excessive or
insufficient soil temperatures have involved the use of mulches to cover the
soil and reduce solar heating, or building up of ridges to increase solar
heating in the rect zone (Allmaras et al., 1973). One aspect receiving
insufficient consideration is the soil temperature below the plough layer.
Zobel (1992a), in a brie. review of the effects of root zone temperatures, cited
work by Rykbost et al. (1975), Kaspar et al. (1984) and others, to suggest
thai the ‘real’ temperature stress takes place at soil depths well below the
plough layer and is most important at anthesis and during seed and fruit
development. Consider: a corn crop grown in upstate New York, and another
corn crop grown in the main river valley of the Gambia. In terms of
temperature regimes, these two crops have little in common, except both will
suffer from moisture deprivation even though there is adequate moisture
two and three meters deep in the soil. In New York (Musgrave Research
Farm, Aurora, NY), the soil temperature below 50 cm is frequently less than
17°C at anthesis (temperatures decrease with increasing depth into the soil
profile) and therefcre deeper root growth is suppressed. This limits root
proliferation to the upper 50 cm of the prefile, which has insufficient water
helding capacity if significant rainfall does not occur at. least twice a week.
In the Gambia (central research farm, Sapu, the Gambia), the corn root
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systems do not penetrate much below the 50 to 100 cm level because the soil
temperatures increase with increasing depth, reaching levels above 32°C at
50-100cm depth at anthesis (temperatures increase with increasing depth
since corn is grown during the cool seasonMBenga, 1989). Thirty-five
degrees C is the normal upper limit for root growth, but Mosher and Miller
(1972) have shown that corn roots grow increasingly more horizontal with
temperatures above 27°C. Thus both locations suffer fom the same problem:
transient drought stress due to insufficient rooting depth. Of course rela-
tively expensive irrigation will alleviate both situations, but so will breeding
for temperature tolerance in the large nodal roots, or, possibly, breeding for
reduced water use by reducing xylem vessel size or modifying stomatal
response.

“Temperature stress” is not limited to restricting root growth into deeper
layers of the soil profile. Zobel (1989) described an experiment where, under
photoperiod inductive daylength and 27/18°C (day/night) air temperatures,
root zone temperatures of 24°C allowed flowering in both photoperiod sen-
sitive and insensitive kidney bean (Phaseolus vulgaris), while root zone
temperatures of 20°C suppressed flowering in the sensitive but not the
insensitive genotypes. These temperatures were well above 'threshold’ val-
ues, but still conditioned 'stress’. The literature reviewed by Cooper (1973)
suggested that this was not an isolated example of marginal rootzone
temperatures limiting or even strongly modifying normal shoot growth and
development. On the other hand, very little is known about the interaction
between soil temperatures (below the plough layer) and marginal stresses
from other causes. Where temperature and other stresses have been studied,
lower (at or below threshold) root temperatures appear to ameliorate some
of the stress symptoms (Bowen, 1991), while higher temperatures appear to
stimulate stress symptoms. Outside of selection pressure for cold tempera-
ture germination and seedling growth, Jittle breeding for temperature stress
tolerance has occurred.

Mineral Stress

Many locations around the world have been identified as mineral defi-
cient. Many other locations are transient mineral deficiency - when soil
temperatures are low, the plants show mineral deficiency, but this disap-
pears as the soils warm up. The opposite problem is associated with those
sites that have excessive minerals. An increasing number of locations in the
world suffering from excess salts must use saline water for irrigation. These
are frequently thought of as mineral-excess sites. Heavy metals are increas-
ingly becoming a problem in the industrial countries and in many of the
developing countries with mines and mine spoils.
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Deficiencies

Plant (root) response to nutrient deficiencies is diverse, the potential for
improvement is also equally diverse. Recent reviews by Wilcox (1991) and
Krikun (1991) describe some of the roots interactions with mycorrhizae. This
association is best known for the improved uptake of phosphorous in infected
plants vs. non-infected plants. Recently Gabelman and Loughman (1987)
edited a collection of papers on Genetic Aspects of Plant Mineral Nutrition,
and Gabelman et al., (1986) reviewed the genetic variability for nutrient
uptake. Much of the work cited by these authers is the result of studies with
seedlings and/or single types of root. Zobel et al., (1992) and Waisel and
Eschel (1992) demonstrate that mineral uptake differs between root types.
This suggests the possibility of designing root systems to present an appro-
priate balance among root types for each specific soil stress.

Marschner (1991) and Bar-Yosef (1591) have reviewed the effect of root
exudates, including hydrogen ions, on the availability of nutrients to the
root. These compounds sometimes have direct effects such as chelating
relatively insoluble ions, and on other occasions they modify the soil envi-
ronment. A modified soil environment will change the activity of soil micro-
organisms that can produce siderophores and other chelating compounds to
make minerals more available. Specific scenarios to alleviate a problem
require detailed knowledge of the basis for the stress situation and any
confounding environmental characteristics such as temperature.

Excess

Root responses to soil chemics factors have been reviewed by Foy (1992),
to excess salt by Kafkafi (1991) and to excess heavy metals by Breckle (1991).
Plant roots respond to mineral excess and deficiencies both morphologically
and physiologically. The primary focus in adjustment to mineral excess has
been on physiological adjustment. Breckle (1991) notes, however, that
growth and initiatica of second- and third-order lateral roots are stimulated
by heavy metals, while the tap root and first-order laterals (seminal/basal
roots) are suppressed. Roots generally respond to mineral excess by beccm-
ing thicker and growing more slowly (Kafkafi, 1991). Similarly, Freitas and
Camargo (1988) have claimed that selection for salinity stress tolerance can
be based simply on comparative seminal root length. Snapp and Shennan
(1992) showed, however, that when subjected to excess salinity, roots of both
sensiiive and insensitive tomato lines exhibited reduced growth. On the
other huand, they demonstrated that the sensitive line had excessive root
die-back, while the insensitive line did not. Obviously, comparatively faster
root growth is only one of the possible morphological indicators of salt
tolerance.
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Mozafar and Oertli (1992) found that salt stress in at least some cultivars
of barley vras root-zone-temperature sensitive. If the root zone is maintained
at 15-20°C, rather than 10 or 25°C, the stress effects of NaCl concentrations
up to 60 mmol L were significantly reducad. This has implicationsin testing
for salinity tolerance - screening should be done under several different
temperature regimes because: 1) significant numbers of low tolerance es-
capes might be inadverter.tly selected due to temperature interactions with
the salinity effects, or 2 iines with temperature insensitive salt tolerance
might be missed. In this type of situetion, lines witkh: shifts in temperature
optima and/or lines with changes in salinity tolerance might provide a
solution.

In a study with grafted common bean plants, White and Castillo (1989)
demonstrated that the response of their materials to aluminum and drought
was localized to the root system, and genotype-by-environment interactions
were invelved in its expresrion. A lack of documentation of all environmental
parameters can lead to au hypothesized solution that may not be a solution
at all. Such was the case: of transient drought and high root temperatures in
the Gambia discussed earlier. The soils involved are acid soils with alumi-
num toxicity. At the experimental locations, (MBenga, 1989) adequate water
reserves were available in the subsoil; however, soil temperature below the
plough layer had not been previously measured. The soil temperature was
assumed to decrease with increasing depth - just as it does in the U.S. and
other temperate regions. This lack of knowledge would suggest that an
aluminum-tolerant strain of maize would be able to utilize the deeper
moisture in these loccations, and therefore solve the difficulty with transient
drought stress. Soil temperature zieasurements suggest that a high tem-
perature-induced-change in root geotropic response will ozcur (Mosher &
Miller, 1972; Ycas, 1980). Even with aluminum tolerance, corn roots still
will not penetrate to the deeper horizons.

An additional scenario is the interaction of high sluminum and drought
sensitivity investigated by Goldman et al. (1989). They found that aluminum
and drought acted synergistically in soybean i.e., when both stresses were
applied simultaneously, leaf water potential, relative water content and
transpiration were significantly lower than was predicted by simple additive
action between the two stress factors. This suggests that the two stresses
are acting on the same or complimentary biological f.: ~ways. If this is the
case, germplasm tolerant to one stress factor will have a high likelihood of
tolerance to the other stress. Identification of the biological pathway in-
volved is of greatest importance for future screening programs.
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Physical Stress

Mechanical impedance causes skcrtewing and thickening of roots with
irregularly-shaped roots being a haliinsrk of roots growing in physically
inhibiting soils (Bennie, 1992). Roois will grow down cracks (either artificial
or natural) and then explore lower, less-compact layers of the soil profile.
When roots are unable to penetrate soil aggregates that contain moisture
and minerals, they may change morphology or alternatively initiate a new
type of root to allow more efficient removal of this moisture (De Freitas,
1988). Numerous reports suggest that for intermediate compaction levels,
larger (thicker) roots can penetrate where normal roots can not (Matere-
chera et al., 1992).

This has been the basis for several selection programs. See Voorhees
(1992) for a review on implement-induced compaction stresses.

Carbon Dioxide

Asindicated by Zobel (19924), soil carbon dioxide at anthesis in the plough
layer, can reach levels in excess of 10% at the interface with the non-tilled
horizons (Buyanovsky and Wagner, 1983). Levels above 2% are known to be
toxic to root growth and function (Ycas, 1980; Ycas and Zobel, 1983). On the
other hand, many experimental systems use pot culture or hydroponics, and
these systems have CO; levels below 0.1%, levels which are sub-optimal for
normal root growth and function (Zobel, 1992). It has been demonstrated
that CO; levels in the root zone can modify photosynthetic response and, by
association, stomatal action and water relations (Zobel, 1992). How does
high or low carbon dioxide levels interact with stress inducing soil environ-
ments? In ineral deficient soils, especially marginally deficient, high
carbon dicxide will further intensify the deficiency by lowering uptake
efficiency. High carbon dioxide also affects raot geotropism and growth,
causing reduced root growth and colonization of the pl.agh layer immedi-
ately under the stem in many “Low Input” situations (Zobel, 1989). Allee et
al. (1593) have demonstrated in a preliminary experiment that excessive
carbon dioxide associated with high levels of manure application is corre-
lated with tolerance to corn root worm activity and, at the highest levels,
with reductions in yield. Understanding of stress situations can not be
complete without knowledge of the other factors invoived in the rhizosphere
environment within which the root system resides.
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TECHNOI.OGY

The preceding discussions were not meant to be a review, but to emphasize
that tolerance has beea attained, that different stresses interact, and that
current information is incomplete. Different types of root have different
stress responses, different environmental factors interact to increase or
decrease the severity of a given stress response, some environmental factors
involved in these interactions are not routinely documented, and some
environmental factors have not even been studied in this context, eg. carbon
dioxide concentrgtion.

Documentation

Current technology provides the tools for thorough documentation of the
rhizosphere environment. Soil classification rollowed by chemical and physi-
cal characterization of the different soil horizons provides the basic informa-
tion about the soils of each soil horizon - nutrients, salinity, pH, bulk density,
aggregate size and pore size distribution. Seil temperature measurements
in each soil horizon to two meters depth every two weeks during the growing
scason will Cicument the soil temperature regime. The amplitude of tem-
perature changes will change from year to year, but the general seasonal
temporal pattern will hold. In New York, for instance, the temperature at 1
meter will be in the 20°C range in some years and 17°C range in others, with
concomitant increases or decreases in yield, respectively. Carbon dioxide and
other temporally variable soil characteristics also need documentation at
weekly or bi-weekly intervals. Actual root growth should be followed, using
bi-weekly standard soil coring techniques (Bohm, 1979), or minirhizotron
cameras (Upchurch and Ritchie, 1983), plus nuclear root measurements
(Zobel, 1989). Periodic sampling and characterization of the rhizosphere
microbial and mycorrhizal populations will provide additional important
data, These measurements will document any anomalies in the developmen-
tal patterns in the soil. Whenever possible, this documentation needs to be
conducted over several years so that any yearly temporal interactions can
be documented. All measurements should be replicated over the area'region
of concern so that any spatial variance can be documented. Field trials of
selected tolerant plant materials should be documented in the same way,
with plantings in each of the areas that have distinctly different rhizosphere
patterns.

Analysis
Datasets resulting from the above analyses will be large, and will require
careful interpretation. Statistical analy-is ran identify the underlying spa-
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tial patterns, both vertically through the profile, and horizontally acroes the
area/region under study. Statistical procedures are also available to assist
in identifying the underlying genotype-by-environment interactions (GxE)
between plants and stressful environments. Geostatistics and nearest-
neighbor analysis have frequently been used for r patial analyses (Cressie,
1992), and principal components analysis (PCA) has been used in remote
sepsing applications (Singh & Harrison, 1985). The advantage to PCAis its
speed and lack of requirement for extensive user intervention and decision
making. By looking at different PCA axes or sets of axes, it may be possible
to interpret the interaction patterns between different temporal and spatial
soil properties. This is especially important when more than one environ-
mental parameter is involved in a stress situation. A variant of PCA and
analysis of variance (ANOVA) statistics - additive main effects and multi-
plicative inter action (AMMI), receatly reintroduced by Zobel, et al. (1988;
Gauch, 1988, 1990; Gauch and Zobel, 1989, 1989, 1990) is capable of
separating GE into its component parts. When used in the early 1ocumen-
tation of a stress problem, these statistical techniques will help to identify
gituations where more than one environmental parameter and more than
one biological process is involved.

As described earlier, one of the major constraints to root research has been
the plasticity of roots, i.e., the ability of a single genotype to change the
morphology of its root system in response to different environments. This is
exactly the situation for which the AMMI analysis was selected by Zobel’s
group. GE is based on the genetic variation in the underlying physiological
process of the plants and the modulation of those processes by different
environments. in this context, a genotype that changes its phenotype in
response to different environments is plastic, while one that does not change
over the same set of environments is static. Conversely, an environment that
causes different genctypes to respond differently can be called a modulating
environment, while cne that does not cause the same set of genotypes to
behave differently is non-modulating or stable. These characteristics, plastic
vs. static and modulating vs stable can be quantified and characterized using
AMMI. Such analyses will eliminate the confusion caused by the perceived
randomness of plastic responses (Zobel, 1990). Zobel’s group is currently
developing plasticity and modulation indices that can be used to quantify
and characterize genotypes, locations, and stress characteristics for use in
research and selection (the appendix presents some of their initial indices).

Experimentation
Hubick et al. (1982) and Peterson and Krueger (1988) have uced aeroponic
culture methods to study the physiology of water stress. Using aeroponics,
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they were able to control the level of water defidency to achieve different
levels of stress. The technology of aeroponics was recently reviewed by
Weathers and Zobel (1992). With the use of ultrasonically induced nutrient
fogs (ultrasonic aeroponics), nutrient levels mimicing soil concentrations,
gaseous atmospheres mimicing soil atmospheres, and temperatures
mimicing soil temperatures can be developed and controlled very precisely.
With appropriate modifications, temperature, nutrient, and gaseous gradi-
ents can be introduced into the artificial rhizosphere. Hydroponics and other
aeroponic systems establish thin film boundary layers around the roots,
requiring higher concentrations of nutrients, and modifying the gaseous
relationships, especially carbou dioxide. With this system all soil stresses
except soil structure based stresses can be mimicked for physiological study
or for przliminary screening of genetic material. This is the only system that
could easily he used to study interacting stress environments. A second
benefit of aeroponics is the free access to roots for analysis of phyaiological,
anatomical or morphological modifications induced by the treatments.

THE FUTURE

From the above, it is obvious that the tools to deal with soil stresses are
available. Once a stress is identified and characterized, the question be-
comes: does genetic variation suitable for alleviating the symptoms of that
stress exist?

Zobel (1992) found numbers of single gene recessive root morphological
mutants in tomato, but few have been found in other crop species. This led
him to speculate (Zobel, 1985) that it would be difficult to identify recessive
characieristics in most crop plants because of inherent genic duplication.
O'Toole and Bland (1987) reviewed the literature and found that heritability
for rooting characteristics was generally low, but that significant variation
did exist. On the other hand, Foy and DaSilva (1991) demonstrated a range
of aluminum tolerance among a set of Triticum aestium lines; McMichael
and Quisenberry (1991) and Quisenberry end McMichael (1991) acmon-
strated significant variation in root-shoot relationships and water use effi-
ciency, respectively, in cotton. These and other similar reports suggest that
there is ample varistion for further improvement.

Breeding methods
Zobel(198) recognized that breeding for a characteristic that was poorly

characterized by morphological characteristics at maturity or in the shoot,
in general, would be difficult to incorporate into a cultivar development

93



program. Except when a stress is sufficiently severe to reduce yields or to
modify the shoot morphology, selection pressure requires detailed physi-
ological or root morphological screening. These constraints appear to remove
stress tolersnce breeding from any but the largest private or public crop
improvement orgsuizations. The inaccessability of roots has led io 1) greater
retention of GE, and 2) less modification through plant breeding efforts than
with plant shoots (Smith and Zobel, 1990; Zobel, 1991). This hypothesis may
not withstand close scrutiny. Erdmann and Wiedenroth (1986) investigated
the response of five taxa of primitive and modern wheats to anaernbiotic
conditions. Their conclusion was that Triticum aestivum expressed far
greater adaptive response than the more primitive lines.

Scattered through the plant breeding literature are brief references to
cryptic selection, unconscious selection, inadvertent breeding, and ev.lu-
tionary breeding. Usually these refer to situations where a cultivar or line
has been improved in a characteristic that was not under conscious selection.
Zobel (1976) refers to one such case in tomato where one cultivar had a more
adaptive root system than others. Falconer (1961) in & discussion of indirect
selection and correlated characters suggested that when a characteristic was
difficult to measure or identify (here we can consider economic considera-
tions - labor, time, direct ccsts - as increasing the difficulty for breeding root
characters), selection of a correlated character would give the greatest
advance. In a stress environment, yield, plant stature, and other shoot
characters are positively correlated to a root character that provides toler-
ance to that stress er.vironment. It can be postulated that by 1) identifying
a root characterisiic(s) (physiological or morphological) that conveys toler-
ance to a stress, 2) incorporating this characteristic(s) into a breeding
program, and 3) aelection for yield and other agronomic characteristics
under a variety of stress environments related to the one of importauce,
successful indirect selection for stress tolerance will be achieved (Zobel,
1983). In support, of this hypothesis, Foy et al. (1993) have demonstrated
that sufiicient correlation exists between soybean root and shoot growth on
high aluminum soils to use shoot growth as an aluminum tolerance selection
criteria. With adequate documentation of the characteristics of tolerance for
other stresses and documentation of the GE interactions involved, indirect
selection for root tolerance to soil stresses should be successful.

Summary

Phenotypic plasticity is the hallmark of root-system-based toler-
ance/avoidance of soil stresses. Improvement of crops for soil stress situ-
ations requires knowledge of three aspects: 1) Detailed knowledge of the
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environmental (edaphic) parameters associated with the stress, 2) Detailed
knowledge of the characteristics of root systems, and 3) Knowledge of how
the first two interact to pruduce the required tolerance/avoidance responase.
Currently, these three knowledge areas are insufficiently developed to
provide accurate prescriptions for a given situation. None of these three
aspects can be considered in isolation, but must be comprehended in their
proper relationship to each other. When edaphic environments are consid-
ered, soil temperature at depths greater than 20 cm, and carbon dioxide
concentrations in the plough layer and at deeper horizons are critical
affectors of “normal” root growth and root system development. Normal root
systems are composed of at least four types of root, and each type has
distinctly different response patterns and requirements. Interactions be-
tween different types of root and the different soil environmental charac-
teristics determine the extent of positive or negative phenotypic plasticity
displayed by a given genotype. With sufficient knowledge, parental geno-
types can be selected for appropriate characteristics and then interbred and
later generations selected, on the stressful soils of concern, using shoot
characteristics.
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APPENDIX

Indices for Characterization of Interaction

If N
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then y
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N
4) Mo=2891
i1

N
where eq. 1is the PCA model and eq. 2 is the AMMI model and P; is the
plasticity index, S; is the stability index, M, is the modulation index and
Yo i8 the estimated cell mean for the variate of interest. Then:

pis the grand mean,
oy is the factor g additive variance around y,
Be is the factor e additive variance around y,

N is the number of significant axes produced by singular value decompo-
sition of the residual matrix,

i18 the axis index,

A iis the eigenvalue (valued as the square root of the sums of squares) for
axis i,

Yei is the eigenvector for genotype g on axis i,

d . is the eigenvector for environment e on axis i.

Both PCA and AMMI rely on the Singular Value Decomposition (SVD) of a
two way matrix; for FCA the matrix is the variance from the grand mean,
and for AMMI it is the residua! variance after removal of the additive
variances. Biplot analysis of individual axes (a biplot is a scatter diagram
with the x axis as the genotype and eavironment means and the y axis ss
the interaction scores for a given SVD axis - interaction scores are calculated
a8 A%z or 1 2% ; ) can be used to interpret interaction between specific
genotypes and environments (for details see Bradu and Gabriel, 1978;
Kempton, 19€¢; and Zobel et al. 1988). Each SVD axis is associated with a
specific biological process or related biological process, therefore a set of axes
can (given enough knowledge and environmental data) identify the impor-
tant biological processes and assess their relative importance. (See Zobel et
al. 1988; Gauch, 1988, 1990; Gauch and Zobel, 1988; and Zobel 1990 for
discussions which describe these statistics and support the above com-
ments.)
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Comparing Selection Strategies
for Tolerance of Acid Soils

B.J. Scott and J.A. Fisher
NSW Agricultural Research Institute
Wagga Wagga, New South Wales, Australia

ABSTRACT

In this review we have examined the -ole of screening in a breeding context and
have ativmpted to provide a plant breeder with au approach for selection of a
screening test best suited to breeding project needs.

We have described the principlesinvolved in a range of screening tests currently
available for ranking aluminum and menganese tolerance. We have attempted to

highlight their relative advantages and disadvantages, and their relationship to
tolerance mechanisms, genetic control and ficld performance.

SCREENING AND PLANT BREEDING

For a successful breeding result s plant breeder needs to know the
following:-

1) screening techniques are available for identifying tolerance;

2) there is a reasonable range of variability within the species to be brud;
3) the character is heritable and some estimate of heritability is available;
4) there are no strong, undesirable genetic correlations with tolerance;

b) an estimate can be made of improvement to stress tolerance in the field.
(Devine, 1976).

The components themselves are interrelated. For example, a good screen-
ing test may enable the genetics of tolerance to be better understood. A yield
improvement in the field would suggest no strong undesirable genetic
correlations adversely effecting yield. In a similar interrelated way, the
screening method influences the choice of breeding method and vice versa.
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ACID SOIL CONSTRAINTS

Poor plant performance on acid soils may be due to toxicities of aluminum
(Al), manganese (Mn) or hydrogen ion and/or deficiencies of magnesium,
calcium or molybdenum. The acidity of a soil may influence soil microflora
and thus nutrient cycling and plant disease frequency. Phosphorous defi-
ciency is also a major problem in acid soils (Sanchez and Salinas, 1981).

Aluminum and Mn toxicity are considered the main constraints (Ritchie,
1989). Hydrogen ion toxicity may affect some nodulating legumes and
grasses susceptible to soil acidity. The effect of Al toxicity is to arrest or slow
root growth, so that stunted, or shortened roots are a primary and early
symptom of toxicity. As a result, many tests rely on differential root growth
to identify tolerance of Al. Subsequently shoot growth is affected and in
longer duration experiments has been used as an index of tolerance (Reid,
et al., 1969; Scott et al., 1992).

Manganese toxicity primarily affects plant shoots rather than roots and
produces specific symptoms in the leaves of some species. Grasses generally
show chlorotic leaf tips and margins, which progresses to necrosi~ particu-
larly in older leaves. The tissue showing symptoms generally has a higher
concentration of Mn than the surrounding tissue. Root growth is sub-
sequently affected (Scott et al., 1992).

TOLERANCE AND TOLERANCE MECHANISMS

Mechanisms of tolerance are separate from mechanisms of toxicity. Tox-
icity mechanisms are a sequence of metabolic disruptions that inhibit
growth, development or survival of plants. Tolerance mechanisms subvert
the impact or initiation of these disruptions (Munns and Scott, 1987).
Tolerance then is a specific character that confers advantage to a cultivar
when grown under that specific stress.

Tolerance may operate at different levels; at the cellular level, tissue,
whole plant or soil/plant level. Several mechanisms may operate in one plant
but these mechanisms are ur.der separate genetic control. A well designed
screening system may target different mechanisms and permit their concur-
rent addition to provide selection of genotypes with the greatest tolerance
(e.g., in Phalaris aquatica Culvenor, 1935; Culvenor et al., 1986).
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These mechanisms may be identified by cell culture techniques (cell level
mechanisms) and solution culture (whole plant mechanisms). Plants har-
vested in the field will measure and integrate mechanisms under relevant,
though site specific, agricultural conditions.

Examples of mechanisms that may operate at a molecular or cellular level
are; exclusion of toxin from the cell, cellular sequestration of Al in harmless
forms, physical sequestration of toxin in vacuoles or other insensitive ox gan-
elles, and adaptation of enzymes and other controlling biochemicals (Munns
and Scott, 1987). At the whole plant level, further mechanisms may become
possible. These include exclusion of the toxin from the symplast (Al, Rincén
and Gonzales, 1992) and compartmentation of the toxin in less-sensitive
tissues or organs (eg. Mn in the roots of subterranean clover; Evans et al.,
1987). The major mechanisms involving both plant and soil are the modifi-
cation of the rhizosphere by altering pH (Marschner, 1991) or the release of
complexing agents. The effectiveness of releasing alkali will depend on the
buffering capacity of the soil and the mode of nitrogen nutrition (ammonium
or nitrate).

CHARACTERISTICS OF A GOOD SCREEN

An ideal screen will have the following characteristics:-

1) a high correlation between the artificial screen results and performance
in the target environment,

2) an gbility to handle a large population,

3) an ability to differentiate between candidate genotypes,
4) are highly reproducible

5) are non-destructive of the plant.

In some situations there is an advantage if results are available before the
plant flowers to permit crossing.

A screen that would meet all these criteria is rare. The most important
requirements will vary at different stages of the breeding program. A
sequence of screening tests (multistage screening) could be used to overcome
the weaknesses of individual tests or to combine different stress tolerances.
Duncan (1988) used a two stage sequential screening strategy to combine
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tolerance to Mn and Al in sorghum. In the early stages population sizes are
large and there is the potential to have high selection intensities. In this case
a high selection intensity from a quick test suitable for a large numbers of
lines may be more important than high correlation with field performance
on an acid soil. In the final stages of the program there are few lines and it
is essential that the screening test has a high correlation with performance
in the target environment. Within a selection stage, a number of tests may
be used to decide which lines will be promoted to the next stage.

Our selection sequence for acid soils tolerance in wheat is to begin with a
quick seedling test and end with replicated trials at a number of sites on
acid soils. The usual practice in applied breeding programs is to conduct the
last stage of evaluation in the environment in which the cultivar will be
recommended.

Another advantage of multistage testing is that an initial screen to reduce
the range of tolerance within the population, by eliminating the most
susceptible lines, should improve the accuracy of trials by reducing geno-
type-by-environment icteraction within the trial.

There is an optimum level of stress that will marimize the difference
between genotypes. In order that the screen can reliably differentiate be-
tween genotypes, the intensity of the stress needs to be well controlled. The
toxicity of Al and Mn depends on pH and other ions present in the soil or
nutrient solution. Supplemental Ca®* or Mg** can greatly alleviate deleteri-
ous Al effects (Rergel, 1992; Hecht-Buchholz and Schuster, 1987). Adequate
Ca and Mg should be available in media used for screening to allow these
tolerance mechanisms to function. Adding silicon to nutrient solutions has
been shown to alleviate Mn toxicity (Williams and Vlamis, 1957; Horst,
1983). Silicon prevented the accumulation of Mn ir localized necrotic spots
to give a more homogeneous Mn distribution in leaves.

High temperature increased the tolerance of plants to accumulated tissue
Mn several fold (Rufty et al., 1979; Heenan and Carter, 1977; Nelson, 1982).
By contrast increasing temperature increased the damage caused by Al
toxicity in sorghum (Furlani and Clark, 1961), wheat (Aniol, 1983) and
ryegrass (Rengel and Robinson, 1990)

Under severe moisture stress, an Al tolerant barley performed better than
a susceptible genotype (Krietz and Foy, 1988). No differential effect of Al
tolerance at low water stress was found. While anaerobic conditions reduce
plant tolerance to Al in solution culture (Wagatsuma, 1983,) in a soil this
would lead to an increase in pH and a reduced Al toxicity. Reports in the
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literature on the effects of light intensity on Mn toxicity are contradictory
(Wissemeier and Horst, 1992; Horiguchi,1988). Part of the mech:.nism of Al
tolerance in wheat is based on the metabolism-dependent exclusion of Al
from the sensitive meristem (Rincén and Gonzales, 1992). Any environ-
mental stress that reduces metabolic activity would have the potential to
reduce the range of cultivar tolerance (Wagatsuma, 1983).

SELECTION METHODS
Soil in the Field

Growing plants in the field has been the basis of selection for acid soil
tolerant wheats in Brazil. Screening in the field can involve the selection of
individual plants, the identification of promising lines from short rows, or
the field evaluation of late siage material immediately prior to cultivar
release.

The main problem with field testing is the lack of reliability due to:
problems of soil variability (Cregan et al., 1989), the confusing effects of
differential resistances of material under pressure from diseases and pests.
Other problems are the vulnerability of the material to environmental
hazards such as drought, flood and lodging (Howeler and Cadavid, 1976) and
the time taken (usually one growing season).

Amendment of very acid soils may be necessary to obtain an appropriate
level of stress relative to the range of tolerance available. For example, rice
genotypes were hetter differentiated if a low rate of lime was applied
(Howeler and Cadavid, 197€). Soil treatment withi lime or sulphur (to acidify
the soil) has been use to provide a pH gradiert in an acid soil likely to produce
Mn toxicity in cowpea (Vigna unguiculata) genotypes (Kang and Fox, 1980).

Our view is that testing in the target environzaent for grain yield or final
product, prior to the release of a new cultivar is an integral part of a breeding
program. However, undertaking evaluation late in this program has advan-
tages. Firstly the range of material is limited since it has been selected for
other characteristics such as disease and pest resistance appropriate to the
environment. In final testing, adequate seed is usually available to sow
replicated field plots to overcome the problems of soil variability.

Tae ability of atatistical techniques to remove error in replicated experi-

ments is reduced if genotypes respond differently to variation in soil acidity
within the trial. The inclusion of acid soil susceptible cultivars in field trials
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can unnecessarily increase experimental error because of these interactions.
Often these cultivars are not necessary and restricting the range of tolerance
by the use of a preliminary screen would improve the accuracy of the trial.
Variation within a trial can be quantified by grid rows of a check cultivar or
direct measurement of the relevant stress, eg soil pH. The environmental
index should be used as a covariate to adjust cultivar performance.

Soil in the Glasshouse

The soil chosen should produce a single stress of either Al or Mn toxicity,
which does not interact with other nutritional deficiencies (eg. calcium,
phosphorus, molybdenum, magnesium). The aim is to control the nature and
intensity of the stress imposed and to achieve, in a routine manner, clear
separation of genotypes for their tolerance.

The problem with a soil as a screening medium is variability caused by
the site of collection itself, time of collection and storage conditions for the
soil (particularly with Mn). The stress chosen can be obtained by acidifying
a soil, liming or adding Mn. Additions of basal nutrients are aimed at
preventing nutrients other than the desired stress from affecting growth.

In practice, experience is required both with the soil and with the plant
species being tested, and care is needed in the interpretation of results. Foy
(1976) points to surprising results in some experiments and gives examples
of molybdenum deficiencies and combined Al and Mn toxicities operating in
some experiments where Al stress alone was planned.

Screening with Nutrient Solutions

The advantage of solution culture experiments is that greater control can
be exerted over the intensity of the piant stress imposed. However, a
recurrent concern is that the rankings for tolerance in solution culture will
not be similar to those obtained in a soil with the same toxicity. It is likely
that rhizosphere effects that could be important in soil will not be emulated
in solution culture. However, there is general agreement between soil and
solution culture rankings of tolerance in the area of soil acidity.

Examples for Al tolerance are in barley (MacLeod and Jackson, 1967; Reid
et al., 1971), whesat (Foy et al., 1965), rice (Nelson, 1983), suybean (Sartain
snd Kamprath, 1378; Campbell and Carter, 1990) and sunflower {Foy et al.,
1974). Similar research has been conducted on Mn tolerance, eg. in triticale
(Mugwira et al., 1981) wheat (Foy et al., 1973) and cotton (Foy et al., 1969).
The general thrust of these papers is that solution culture results gave
similar cultivar rankings to those obtained in soil. However, some variability
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has been reported (Foy, 1976; Marschner 1991) and may be due to the
rhizosphere effects and the greater availability of nutrients such as phos-
phorus in nutrient solutions compared to availability in a soil, particularly
to a plant with a root system damaged by Al toxicity.

The nutrient solutions should be of low ionic strength to simulate soil
solutions (Blamey et al., 1991). Aluminum in solution can be precipitated by
S042-, PO,3- and OH" (Ritchie, 1989). It can be complexed by some organic
ions such as citrate that may be used to add iron to the solution. The result
is that care is needed in the design of the nutrient solution itself and in the
maintenance of the nominated conditions. This can be achieved either by
appropriate monitoring, frequent solution change, or expensive flow culture
systems. It is possible to minimize pH fluctuations by adjusting the NO;-
/NH,+ ratio (Fleming, 1983; Jariel et al., 1990).

Rapid Seedling Screening Tests

The most important characteristic of seedling tosts is their rapidity (days)
and o5 a result their potential to screen large numbers of genotypes. To
handle these large numbers a visual assessment of tolerance is a major
advantage. The aim is not to provide a precise measure of all aspects of acid
soil tolerance, but rather to cull those lines that are unlikely to perform
satisfactorily in commercial production. Itis not essential that the impressed
stress mimics the stress in an acid soil; however the results should have a
reasonable correlation with field performance.

Because of the short duration of rapid seedling tests, it is possible to
dispense with plant nutrients without a reduction in root growth. Kinraide
etal., (1985) discussed some of the requirements for these nutrient solutions.
A minimal solution may oaly include calcium and boron (Aitken et al., 1990).

Variation in rates of germination can be a source of error in short duration
tests. One option is to germinate an excessive nunber of seeds and then
select seedlings with the same length of root, but this time consuming, The
variability can also be reduced by imbibing seeds at 4°C for two days to
overcorae seed dormancy. Surface sterilization of seed is also worthwhile.

The ability to continue root growth after exposure to an Al stress is an
unambiguous test that cen be uned to split a population into susceptible and
tolerant classes (Aniol 1984; Scott and Fisher, 1989). This approach requires
a method for marking the growing point of roots so that regrowth can be
determined. Aniol (1984) germinated seedlings and transferred then to a
nutrient solution at pH 4.0; four-dsy-old seedlings were exposed to Al for 24
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hrs, washed, stained with eriochrome cyanine R and allowed to recover for
48 hrs before scoring. If a series of rates of Al are used, the genotypes can be
divided into a range of tolerance classes.

In the haematoxylin stain test developed by Polle et al., 1978, there is no
recovery period; seedlings are classified as unstained, incompletely stained
and stained. The incompletely stained group will recover and continue to
grow if transferred to an Al free medium. An experienced observer can
accurately identify the incompl 2tely stained roots, but if there is any doubt,
allowing the roots to recover for a short duration will enhance the visual
differerice between the stained and incomplete classes. The haematoxylin
root stain test has been widely used and has been shown to correlate well
with performance on acid soils (Scott et al., 1992; Takagi et al., 1981).

By contrast with death of the growing point, root growth in the presence
of Al can be used as the measure of tolerance and could divide a population
into more categories (Reid, 1976; Campbell and Lafever, 1976; Mugwira et
al., 1978). However, there is the prcblem of separating variation in growth
due to differential Al tolerance and normal variation iu root growth per se
(O’Toole and Bland, 1987). With fixed lines or cuitivars, control treatments
can be used; however, in segregating populaticns, this is not possible. If a
long exposure period is used, total root growth is sufficiently accurate. For
shorter exposures, a method of distinguiehing between growth in Al and
previous root growth is necessary. Root growth can be marked on Lucite
plates before and after exposure to Al (Aniol et al., 1980), but it is more
convenient to use a general stain to mark root length before plants are
exposed to Al. We have used a peroxidase stain and neutral red (Schumsacher
et al., 1983). The eriochrome cyanine R used by Aniol (1984) would also be
suitable. Another option is to germinate the seed in the presence of Al.
Delhaize (pers comm) developed a very efficient technique by germinating
and growing seeds in an aerated solution containing Al. The Al does not
affect the germination of the seed (de Lima and Copeland, 1990) but if the
correct rate of Al is chosen, the susceptible seedlings will have virtually no
roots. This test is suitable for dividing a population into tolerant and
susceptible categories based on the presence of roots. Delhaize’s technique
could be used to screen large quantities of seed and would be suitable for
situations, eg mutation experiments, where the frequency of tolerant indi-
viduals was very low.

Acid soil can be used instead of solution culture and it is likely to integrate
a wider range of tolerance mechanisms. Bona et al., (1991) compared the
roct lengths of seedlings grown in Al-toxic soil at pH 4.2 with the root growth
in limed soil at pH 5.1. This technique is similar to the scil bicassay methods
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developed by Ablrichs et al., 1990. A rapid test in soil was able to effectively
differentiate between sorghum cultivars of known tolerance (Hill et al.,
1989). The soil system was preferred for routine screening because of its
simplicity and use of a natural medium.

Wheeler et al., (1993) compared six methods for determining Al tolerance
based on short term (3 day) or long term (4 weeks) exposure to Al, Three
methods: the haematoxylin stain test (Polle et al., 1978), visual classification
after 4 weeks exposure to Al and the ratio of plant top:root weights clearly
segregated the tolerant and susceptible populations. The two populations
could not be clearly distinguished based on plant top or root yields or on root
length after either short or long exposure to Al

Rapid Tests for Mn tolerance

Few rapid test for Mn tolerance have been developed. A floating leaf disk
technique was used by Wissemeier and Horst (1991) to determine the
tolerance of cowpeas to Mn. Leaf sections are floated on a solution with Mn
and after three days tolerance is scored as the frequency of characteristic
dark speckles on the leaf. Manganese tolerance in wheat has been charac-
terized by chlorophyll content and leaf elongation raie in Mn stressed
seedlings (Moroni et al., 1991). They were able to rark genotypes for Mn
tolerance in six days.

Cell Culture

Plant cells can be cultured in suitable media and with appropriate tech-
niques, plants can be regenerated. During cell culture, additional variability
can be created and expressed in the regeneratcd plants (Larkin et al., 1984).
In this way cell culture provides another source of variability. Miller et al.,
1992 identified tissue-culture derived sorghum plants with tolerance to acid
soils. No stress was imposed during the tissue culture.

The addition of Al or Mn to the culture medium could be used to screen
for cells with tolerance. Selection during cell culture has the potential to
efficiently screen large numbers of genotypes. The use of tissue culture to
screen for acid soils tolerance depends on a correlation between response of
the whole plant and the cell (Munns and Scott 1987). Selection during tissue
culture was used to obtain homozygous stable tobacco lines with Al tolerance
(Conner and Meredith, 1985). There are few reports of selection during tissue
culture for any of the Gramineae. Okawara et al., 1986 selected callus from
the rice cultivar ‘Taickung’ for tolerance to Al; plantlets regenerated from
this callus produced seedlings with higher Al tolerance than seedlings
derived from unselected callus.
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When cells are selected in culture, the nature of the tolerance they express
needs to be defined. A carrot cell line originally selected as Al-tolerant was
in subsequent tests found not to have Al-tolerance, but to have the ability to
excrete large amounts of citrate into the medium (Koyama et al., 1988).

Screening for Tolerznce Using Genetic Markers

Plants possessing tolerance genes may be identified using markers. A
marker is a character closely linked with a tolerance gene, and can be used
for a gene that is difficult to select directly. The simplest markers are plant
physical attributes, but others used may include variation in proteins and
DNA (Hansom et al., 1986). There are rapid tests already available to
identify some aspects of acid soils tolerance, eg exclusion of Al from root tips.
However, some other genes for tolerance (Marschner, 1991) would be diffi-
cult to select for directly and markers could make their selection feasible.

So far, there have been no reports of plant physical attributes, DNA or
polypeptide markers closely linked with acid soils tolerance. Delahaize et al.
(1991) identified some pclypeptides that were induced by Al stress, but none
of these cosegregated with Al-tolerance.

CONCLUSION

Plant physiologists and nutritionists have identified many plant charac-
teristics that would be useful in plant breeding. They have frequently been
disappointed that plant breeders have not used their technology. We believe
that they have not addressed the requirements of plant breeders thatinclude
a simple inexpensive screen and a correlation with field performance in
which the breeders may be confident. Any breeding objective must be
assessed relative to other economically important objectives (Fisher and
Scott, 1993).

Breeders are not likely to trust results that are based on few cultivars.
Generally they would be more confident if the technique was demonstrated
to be useful in large segregating populations. They are not attracted to
complex or expensive procedures.

In acid soils tolerance, the early papers (Ouellette and Dessureaux, 1958;
Vose and Randall, 1962; Foy et al., 1965) have identified the desirabile
attributes of tolerance and the potential for plant breeding. However, it has
been left to others (eg Polle et al., 1978) to refine the screening techniques
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and to establish the usefulness of the characters in the field (Reid et al., 1969;
Lafever et al., 1977).

Close cooperation of physiologists and nutritionists with plant breeders
producing commercial cultivars offers the possibility of ‘bridging the gap’.
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ABSTRACT

Belection for high-ylelding, salt-tolerant cultivars has proven to be an elusive
target for plant breeders, and the identification of relinble genetic markers for salt
tolerance has been even more elusive for plant physiclogists, and cellular and
molecular biclogists. The plant is an integrated syetem that is adapted to a vpecific
environment on which salinity has become ar: intrusion. A comprehensive program
to develop a salt tolerant cultivar should be composed of seven essential elements.
Preliminary asseesments for aalinity, genotypic variability, and economic consid-
eratinns ar2 crucial to the definition of the problem situation. Close cooperntion
with growers or farmers is necessary to establich specific requirements and nref-
erences for the crop and its management in the saline environment. An evaluation
of management options are neccssary to assess the current technology available
and to simplify soiution possibilities. A cor.ceptual model should be developed that
will fulfill the essential requirements of the problem situaiion. This model should
match nceded inputs with farming objectives for yield, quality, and production
sustainability. Based on the conceptualized model, several desirable ideotypes
should be considered and a number of these, depending on resources, can be
selected for the breeding program. At this point appropriate screening methods
can be develcped for segregating populations derived from crosses of the velected
parental lines. An integral part of the program should consist of a plan to maintain
and improve the cultivar during development. This may requive specific knowl-
edge of and cooperation with the social infrastiucture that maintains, improves,
and distributes seed to farmers.

INTRODUCTION

Salinity is a serious environmental constraint to crop production in many
parts of the world. It is especially prevalent in irrigated agriculture and in
marginal lands associated with poor drainage or high water tables. Esti-
mates for the extent of salinity damage vary from 25 to 50 percent of the
world’s irrigated land (Postel, 1989; Adams and Hughes, 1990) ). Recent
interests in maintenance of the environment, encompassing preservation of
natural resources and conscience toward human health and nutrition have
put new impetus on the importance of preserving water quality. These
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issues, and the occurrence of cyclic drought conditions throughout the world
have increased the need to use recycled water, drainage water, or poor-qual-
ity water on crops. The development of crops with improved salt tolerance
is proposed as part of the solution to some of these problems.

At least five basic strategies exist for the development of salt tolerant
plants (Takle 1). One strategy is to use conventional breeding and selection
among existing cultivars; another is to introgress genes from wild progeni-
tors into crops that have retained many of their salt tolerance traits. Another
strategy is to develop new crops from some of the wild species that currently
inhabit saline environments (halophytes) by breeding and selection for
agronomic characteristics. The use of tissue cultures to select single salt
tolerant cells for plant regeneration or to produce salt tolerance through
somaclonal variation is a strategy that has been developed within the last
two decades. The boldest strategies have suggested that individual genes for
salt tolerance can be identified, isolated ard manipulated across conven-
tional genetic barriers through molecular biological techniques. The greatest
portion of the efiorts to improve salt tolerance using these strategies have
not been highly successful (Shannon and Noble, 1990).

Too little progress has been made in improving salt tolerance of crops. One
reason is that, despite significant progress in the development of an under-
standing of the effects of salt 3tress, there are still many unanswered
questions concerning the primary stress signals and the morphological and
physiological changes that ensue. Recently, physiologists have been sub-
jected to ccnstructive critiques for their short-comings and encouraged to
develop better hypotheses for their research efforts (Munns, 1853). At
present, development of a new direction and a cohesive approach in the area
of salt tolerant crop development is needed. Realistic short and long range
research goals should be established that will provide the continuity to

Table 1. Examples of strategies for the selection, breeding and develooment of

salt tolerant plants.

*.pproach Crope Examples

Conventional breeding Barley, lettuce Ramage, 1980
Shannon, 1980

Wide crosses Tomato Rush and Epstein, 1981
Tal and Shannon, 1983

Domestication of wild salt- Salicomia Glenncial,, 1991

tolerant species

Tissue cultures Tebacco, chickpea Nabors ct al., 1980
Pandcy and Ganapathy, 1984

Molecular biology Wheat Gulick and Dvorak, 1987

118



deliver salt-tolerant cultivars to the farmer. The purpose of this chapter is
to outline some of the foremost issues and strategies concerning selection
and breeding for plant salt tolerance, to identify some of the fundamental
gaps in our present understanding, and to suggest a more comprehensive
approach to selection and breeding for salt tolerance.

BREEDING PROGRAM FOR SALT TOLERANCE

The development of a breeding program for salt tolerance should consist
of the same basic steps, regardless of which previous approach was used to
enhance the germplasm base for the desired character. The steps that are
proposed include: Preliminary assessments, Management requirements,
Crop requirements, Development of a functional model, Development of
ideotype, Establishment of the screening procedures, and Cultivar develop-
ment and maintenance (Fig. 1).

Preliminary Assessments
Preliminary assessments must be made for the Salinity Situation, Genetic

Variability, and Economic Constraints. These are interactive elements that
describe the problem situation that i= being addressed by the breeder.’

The breeder should initially consider the Salinity Situation that is causing
the problem (it is assumed that a specific crop of interest has been targeted).
An estimate of the cropping area that is affected should be developed. Is more
than one location, basin or watershed affected? How are farming practices
and environmental factors in these areas similar or different? The origin and
composition of the salt should be identified. Is salt indigenous to the soil or
the result of improper management? Is it arising from a high water table or
is it a constituent of the irrigation water for whatever reason? What is the
composition of the salt in the water and its probable composition when it is
in the soil water solution? Are specific ions a particular problem in this
species or is the problem the result of a general salinity phenomenon? Are
interactions between salinity and other nutrients (e.g. calcium, phosphate)
part of the problem? Such interactions have been described for a number of
nutrients and crop species (Grattan and Grieve, 1991). What are the high

The term 'Breeder’ will be used throughout the rest of the paper as the subject that should perform the functions
and fulfill the objectives that are described. The breeder should, in fact, be & member of an interdisciplinary team
that may include Eneﬁu‘sw agronomists, physiologiata, morphologists, pathologists, scil acientia’a, chemiats,
economists, and other di.dpiinal.
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and low limits of soil water salinity concentrations between irrigation (or
rain) cycles? The distribution of the salt within the root and vadose zones
should be measured or predicted, based on management criteria. This
assessment should quantify, for future reference, as many of the potential
interacting variables of the environment as possible to include soil types,
drainage conditions and ranges of various climate factors. Extemporary
factors, such as air pollution, that are known to interact with salinity, should
also be considered (Maas et al., 1973).

An assessment of the Genetic Variability should be conducted through
literature surveys and, possibly, experimental testing. Information should
be obtained concerning the parameters of salt tolerance related to crop yield,
e.g., threshold and slope (Maas, 1986; 1990). Although considerable research
has been devoted to quantifying the salt tolerance of the various crop species
(Francois and Maas, 1978, 1985), data are usually based on comparisons
among only a few cultivars for many species. Some studies that have
examined a range of cultivars have revealed wide intraspecific variation for
salt tolerance; whereas other studies have shown limited differences. In
many cases, only a relatively small portion of the existing germplasm base
hasbeen adequately tested. Many wild progenitors of cultivated species have
not been examined or exploited at all.

If information is not sufficient, variability among cultivars and other
feasible germplasm sources should be determined for tolerance to both

Proliminary Asssssments

Management Roquirements

Crop Requiraments

Functonal Model

Ideotype development

Sareening Procedures

Cuttdvar Malntenance

Fig. 1. Bteps necessary for the systematic and comprehensive development of
a breeding program for tolerance to salinity stress.
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general and specific salt stresses applied at various concentrations, and as
they relate to the final product yield and quality. Only a complete under-
standing of the problem situation will enable the breeder to develop the
insight needed to decide whether to proceed with the development of the
program. In some cases, sufficient genetic variability may not exiz* to
warrant initiation of the breeding program. Menagemert, options may be
the culy alternative, or perhaps, additional research may be needed concern-
ing the effects of specific salts or the effects of salts on growth and develop-
ment,

An integral part of the decision to further develop a breeding program is
dependent on an Economic Assessment of the situation from the viewpoint
of the eventual user of the technology, i.e., the grower. The breeder should
have a general knowledge of what the 'average’ grower is spending for seed,
water, feriilizer, chemicals, field operations, fuel, labor, transportation, and
overhead. Other useful information should be gathered concerning allot-
ments and supports that might be available for the grower. Potential costs
should be considered, especially those that may be uniquely associated with
the salinity and/or drainage problem (Letey et al., 1950). Market considera-
tions are also important. Incentives for early harvest or product quality are
important to farming objectives and should be recognized by the breeder.
Some potential or intangible benefits are impossible to derive without direct
contact with the grower. Good breeders do not undertake programs without
direct and frequent contact with farmers and farm advisors.

Management Requirements

Management requirements are also developed as a result of grower
contact. These include the operational goals of the growers in the area that
is affected by the observed salinity condition. Many growers focus on profit
as it may be derived from particular combinations of high yield and quality,
but recently sustainability has become a growing concern of both farmers
and society. With salinity, the aspect of sustainability may have particuiar
importance. Yields of fruit tree crops may be maintained or even increased
using significant quaatities of saline water for a few years at the risk of
subsequent loss of the trees (Hoffman et al., 1989). Minimum leaching can
save water costs but increase salinity risk. The management practices being
used to grow the crop should be known to the breeder; in addition, petential
management practices that can be implemented either with or without
additional costs should be explored. Is irrigation being practiced? Are
amendments used, or can they be? What are the tradeoffs between potential
costs and potential benefits?
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Crop Requirements

Crop requirements are determined in the context of the specific salinity
problem in the target environment. This is an elaboration of the information
that was obtained during the assessment for Genetic Variability. At this
point, information should be assembled through literature and research
concerning the effects of salinity during the most critical growth stage(s),
the effects of specific salts on growth during the most sensitive stages of
growth and development, and the exacerbating or ameliorating impact of
anticipated factors of the environment with salinity stress. Ranges of genetic
variability should be inspected in relation to the management requirements
and the crop growth stage that may be affected.

The probability of success for the totai breeding program will be deter-
mined to a great extent by the thoroughness with which these three initial
steps have been conducted. Reiteration and integration of the first three
steps i8s recommended. For example, if stand establishment was determined
to be a limiting factor in the Salinity Situation, once an assessment of
Genetic Variability for germination and emergence has been conducted, it
is necessary to decide whether the limitation can be overcome by breeding,
management (e.g. better bed preparation to move dissolved salts away from
the seed; a timely irrigation of high or medium quality water; more dense
seeding or plant spacing) or a combination of strategies based on economic
factors.

Development of a Functional Model

Development of a functional model can proceed at this stage. The model
should encompass the crop as it relates to the whole farming systera. The
model should include farming and environmental inputs and yield, quality,
or any other factor that has been determined to be critical to the farming
system, as outputs (Fig. 2). Labor, seed, water, chemicals and equipinent are
designated as inputs that might be supplied by the grower. Biotic and abiotic
stresses, including salinity, are inputs supplied by the environment. Outputs
may be yield, crop residue, and drainage. This model should include possible
threats of specific diseases, pests and adverse environments, weed corr peti-
tion, yield and harvest quality factors. At this stage, boundaries need to
become fixed around the system that is to be designed through the breeding
process. For example, if germination and stand establishment are the major
causes contributing to yield loss due to salinity, then considerations of other
growth stages can be reduced ana the breeder might establish a screening
system in the greenhouse to select material that has vigorous stand estab-
lishment under saline conditions. Applicability of the materials selected by
screening to the total agricultural system must be maintained, however.
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Vigorous growth may make the plant more susceptible to the type of
midseason drought that is typical to the target area (see discussious by Ball
et al., 1993). Alternately, the screening system could identify segregants of
a cross that have high salt tolerance, but also have more susceptibility than
the parental lines to disease or acid goil conditions prevalent in the target
area. The model allows some reductionism of the problem based on the
perceived goals of the breeding program, but keeps the integrated system in
context for which the plant cultivar is being developed.

Development of Plant Ideotype

Development of plant ideotype is a concept that was established by Donald
(1968). He contended that most plant breeding was based on attempts to
eliminate defects or improve yield and suggested au alternative approach
based on the breeding of plants that would conform to some ideal concept or
model. He noted that the success of this novel approach was dependent on
three resources: adequate genetic diversity, suitable techniques, and suffi-
cient knowledge. Perhaps the lack of sutficient knowledge is one of the main
reasons that his ideas have not caught on to a large extent. Twenty-five years

FARMING SYSTEMS
EXPENDABLES = —eesee———ig
pme—p YIELD
EQUIPMENT ey
LABOR == ————— BYPRODUCTS
STRESSES e

Fig.2. A general functional model of a farming system that should be validated
and quantified for specific crops.
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ago, many adversaries of Donald’s concept contended that sufficient physi-
ological knowledge necessary to devise a model with confidence did not exist.
Other arguments were that the definition of the model would narrow the
breeding program and that high yields could be achieved with a number of
radically diverse ideotypes.

A number of significant advancements have occurred since the proposal
of crop ideotypes. New insights into the physiological connections between
growth, yield, and development that contributes to it are being unraveled
daily. An entirely new discipline, crop modelling, is serving both as an
integrator of the new findings, and also as the basis for identifying the
critical lesions in our present understanding of plant physiology. Crop
models are also useful in corceptually testing unwieldy numbers of radically
diverse ideotypes without the requirement that they be physically synthe-
sized through laborious plant breeding techniques. Opponents would argue
that process models are still very crude, but it is obvious that progress is
being made in this area, and it would be unfortunate if breeders were not
alert enough to take advantage of the progress that has occurred over the
last quarter century. Present models do not incorporate algorithms that
account tor salinity stress, but the modular nature of some of the current
plant growth models could be adapted with sufficient effort (Fig. 3).

Donald (1968) made two points related to the environment. One was that
the ideotype should be designed for the most simple environmental situation
(i.e., nonstreas), and that the production of the crop ideotype could require
the concurrent creation, through changes in mauagement practices, of a new
environment. He may have been half right. The greatest potential of crop
ideotypes may be in specific stress situations - situations in which the
concurrent meshing of new management practices can act in concert with
the beneficial attributes of the crop ideotype to reduce the effect of overall
yield. For example, salinity stress drastically reduces tiller number in wheat
(Triticum aestivum L. em Thell), and tillering capacity is a main component
of yield; whereas; mainstem yield is very resistant to salinity stresses across
a wide range of concentrations (Maas et al., 1993). Uniculm wheat was
proposed by Donald as a possible character for his wheat ideotype, but this
has not been found to be an ideal character; under nonstress conditions,
multiple tillers contribute substantially to high yield in many modern
cultivars. Under salinity conditions, smaller plants with the uniculm char-
acter can be planted at higher densities to maintain crop yield and offset the
losses due to tiller reduction (Francois, et al., 1993). Uniculm cultivars that
have larger mainstem headsize, thicker and stronger stems, and the ability
to grow under high population densities might be developed that will further
improve yields unde: saline conditions.
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Richards (1983) has ncted that high yielding wheat cultivars generally
out-yield more salt-tolera it or more environmentally stable lines in situ-
ations in which salinity is spatially variable across the field. Spatial salinity
variability is a common occurrence, but the concept of crop ideotype allows
the conceptual development of at least two possible solutions to the problem.
First, an ideotype can be developed that has expressed salt tolerance char-
acters and/or charactors inducible by saline stress that will enable the plant
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to survive and produce seed better than the g*rictly high yielding line; or,
second, different cultivars can be planted in specific parts of the field based
on the predicted salinity stress. Both of these strategies are technologically
feasible. Prescription farming has become a common terra used to describe
the technology for site-specific application of fertilizers and herbicides.
Recent advances in rapid surveys for salinity assessment open the way for
prescription planting in saline fields (Rhoades, 1993; Rhoades and Carter,
1993). In support of the first solution, both yield and tolerance can be
theoretically improved if enough information is available to define the stress
situation (Rosielle and Hainblin, 1981; Shannon, 1985). A culiivar developed
under a specific salinity condition for both high yield and tolerance should
be more productive than its counterpart that has been developed for high
yield alone. The phenomena that Richards (1983) has described may derive
from the fact that most salt tolerant lines are not developed for the specific
climatic environment in which they are being tested. Environment:ily
stable lines suited to a wide range of dlimatic and stress environments cannot
be expected to compete with high-yielding lines developed for tbe target
environment,

Establishment of the Screening Procedures

Establishment of the screening procedures should be initiated at this point
in the described program. The available information on crop salt tolerance,
potential variability among cultivars and closely related species, and sensi-
tivities to specific ions and environmental interactions has been collected.
The precise growth stage that is limiting to productivity has been deter-
mined and the economical management techniques that can be used to
overcome the limitation has been explored. A clear idea has been formulated
of the crop requirements and management needs. It is now time to develop
a screening procedure for the sensitive growth stage(s). The procedure must
be based on information concerning average salt concentration and compo-
sition of the soil water during sensitive growth periods, and the environ-
mental conditions during the period of salt damage in the field. A selection
criterion needs to be one that is related to mean yield response in the field.
This might be accomplished simply by breeding for improved stands through
germination and/or emergence tests (Beatty and Ehlig, 1973, for example).
Usually it is more complicated.

Sometimes an indirect selection approach may be necessary to save time
or effort (Shannon, 1979). Several investigators have demonstrated salt
tolerance mechanisms that they thought were limiting to growth under
saline conditions, and based on some of these reports, screening methods to
improve plant salt tolerance have been proposed. These mechanisms include
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ion selectivity (Shannon, 1978; Sykes, 1985), ion exclusion (Noble et al.,
1984), ion accumulation (Tal and Shannon, 1983), compatible solute produc-
tion (Grumet and Hanson, 1986; Wyn Jones et al., 1977), osmoregulation
(Morgan, 1977}, late maturation (Bernal et al., 1974) , pollen sterility (Akbar
and Yabuno, 1977), and pyramiding characters. Pyramiding characters
refers to the concept of building salt tolerance in an additive manner based
on strengthening tolerance withiu lines that already have a high degree of
salt tolerance (Yeo and Flowers, 1983; Pesternak, 1987). This technique
could be employed with or without knowledge of the physiological basis of
salt tolerance (Ramage, 1980). Several investigators have proposed breeding
programs for salt tolerance based on more direct methods (Dewey, 1962;
Shannon et al., 1983). Many of the suggestions for both direct and indirect
selection methods have been reviewed previously (Shannon, 1982, 1985,
1990), but it is worthwhile to summarize the rationale for some of the
indirect methods.

Ion selectivity is a character for which screening procedures have been
dev loped (Abel, 1969; Shannon, 1978, Noble et al., 1984; Sykes 1985). Salt
sensitivity in some crops has been attributed to the failure of plants to keep
Na® and CI" out of the transpiration stream, and consequently, cytoplasm of
the aerial parts (Flowers, et al, 1977; Harvey, 1985). Plauts that limit uptake
of toxic ions and maintain narmal ranges of rutrient ions could be more salt
tolerant than those that do not restrict ion accumulation and lose nutrient
balance. Tolerant accessions of tall wheatgrass (Elytrigia pontica) limited
Na® and CI" uptake into shoots more effectively than sensitive accessions
(Shannon, 1978). Hybridization between tolerant lines yielded progeny with
improved tolerance; however, improvement in salt tolerance at this level was
not correlated with differences in ion uptake or osmotic regulation (Weim-
berg and Shannon, 1988).

Selective ion uptake mechanisms capable of discrimination between
chemically similar ions, such as Na* and K*, could have adaptive value. The
mechanisms respensible for ion discrimination probably are located in the
membranes of tiszues and various organelles throughout the plant (Bliss et
al., 1984; Kuiner, 1968). Breeding for efficient nutrient uptake or low ioa
accumulation under salt stress may be among the simplest ways to improve
salt tolerance in sensitive cultivars of some species. This also may be
accomplished by finding tolerance to the toxicity of a specific ion associated
with salt stress. Genes that control K/Na discrimination in wheat have been
located on the long arm of chromosome 4D through the use of conventional
genetic manipulation of chromosomes and chromosome fragments (Gorham
et al., 1987).
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Ion accumulation may be important in some species for osmotic adjust-
ment if physiological mechanisms have co-evolved to sequester the salt away
from metsbolic sites and synthesize cormpatible solutes for osmotic balance.
Halophytes take up high concentrations of ions as an adaptation mechanism
to saline environments (Flowers et al., 1977). The accumulation of salt is
thought t¢ reduce the requiremenis for increased wall extensibility, leaf
thickness and water permeability that might otherwise be required to
maintain positive growth and turgor at low soil water potentials. The wild
tomato species, Lycopersicor. cheesmanii, is thought to be more salt tolerant
than the cultivated species as a result of it halophytic nature, orits capacity
to accumulate ions (Rush and Epstein, 1981). More recently, a salt-tolerant
tomato L. esculentum Mill, cv. 'Edkawy’, has also been shown to accumulate
higher concentrations of Na' in leaf tissues than does more sensitive culti-
vars (Hashim et al., 1986). As with salt restrictiow, salt accumulation within
tissues is thought to be well-regulated, and generally sequestered away from
cytosolic compartments containing the salt-sensitive metabolic machinery
of the cell. Few crop species are true halophytes and it probably would be
difficult to transfer halophytism into glycophytic crop species. However,
several investigations have shown interest in developing the agronomic
potential of wild halophytes into new and useful salt-tolerant crops (Glenn
and O’Leary, 1985; Glenn et al., 1991).

Osmotic adjustment is a decrease in plant osmotic potential through an
increase in solute content (or a decrease in water content) in response to a
decraase in external water potential to the extent that turgor potential is
maintained. Morgan (1977) has noted substantial differences among wheat
genotypes in their capacity for osmotic adjustment. However, whether
osmoregulation occurs in higher plants is controversial (Munns and Ter-
maat, 1986). High humidities improve the tolerance of corn, bean, onion,
radish and barley, but not of cotton, wheat and red beet (Gale et al., 1967;
Hoffman et al., 1971; Hoffman and Rawlins, 1971; Hofiman and Jobes, 1978;
Prisco and O’'Leary, 1573). This may indicate that certain crops may benefit
from selection pressures that improve their capacity to adjust osmotically
or maintain more favorable water relations under salt stres ; (Tal and Gardi,
1976; Shannon et al., 1987).

Crganic solutes (sugars, proline, glycinebetaine, and other compounds
compatible with metabolism) may improve salt tolerance by contributing to
osmotic balance and preserving enzyme activity in the presence of toxicions
(Greenway and Munns, 1980; Grumet et al., 1985; Tal et al., 1979). High
betaine genotypes of barley (Hordeum vulgare L.) maintained lower solute
potentials than near-isoline, low-betaine genotypes grown at the same
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salinities (Grumet and Hanson, 1986). This suggests that betaine and other
solutes could be used as a selection index for improved salt tolerance.

Water-use efficiency could be useful selection criteria as a mechanism that
slows the process of salt accumulation in the root zone. Unfortunately, most
water relation measurements are not accurate or reliable enough to be useful
as screening techniques for salt tolerance. Future advances in instrumenta-
tion and better understanding of water relation mechanisms may some day
improve the breeder’s ability to select renotypes based on the maintenance
of optimum water relations during salt stress. Increased leaf resistance,
fewer stomata, increased mesophyll resistance, increased cuticle thickness,
and an increased root-shoot ratio might be useful selection criteria in the
interim.

Whatever selection criteria are chosen or are devised, the initial step
should be to evaluate a range of cultivars and introductions to determine
genetic variance for the desired character. Proper controls must be included
to separate genetic from environmental effects under both nonsaline and
saline vonditions. information from the collected data can be used to deter-
mine if intracultivar selection will be effective. If genetic variance is low or
if a greater degree of tolerance is required, wild-related species and lines
developed from hybridizations can be evaluated. Field experiments should
be conducted at an early stage after screening to verify the relationship of
the criteria selected to the desired field characteristics.

Cuitivar Development And Maintenance

Cultivar development and maintenance must be a continuing step in the
breeding program. Salt tolerance is & difficult character to maintain under
present commercial systems of seed production and breeding. Given that a
germplasmn line with high salt tolerance is produced by the breeder, succes-
sive crosses to improve quality, yield or resistance must be followed by
selection in saline environments to assure that the characters associated
with tolerance are not lost (Rosielle and Hamblin, 1981). The requirement
to continue breeding and selection under saline conditions is difficult to meet
for most seed producers. If breeding and selection for salt tolerance remains
completely dependent on high yield as an index, seed producers will need to
have access to saline water, methods for uniform salinity application, and
more intensive and disciplined agronomic management techniques. This
dependency could be replaced by physiological or morphological markers as
more information is obtained on the mechanisms of salt tolerance and the
inheritance of associated characters.
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CONCLUSIONS

Salt tolerance is a character thatis determined by a complex array of genes
and genetic mechanisms, many of which are influenced in their expression
by other environmental interactions. As a consequence, yield under saline
conditions is influenced by both tolerance and agricultural management.
The tendency for tolerance to be lost when selection for yield alone is
conducted under nonsaline conditions makes breeding for salt tolerance a
multiobjective task. Efforts to improve tolerance, yield and other characters
for quality and resistances should be considered in a holistic program for
seed production and improvement. The development and testing of func-
tional models and ideotypes will make screening and selectior. more effec-
tive.
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SCREENING PLANTS FOR DROUGHT

Darrell T. Rosenow
Texas A&M Agricultural Experiment Station
Lubbock, TX

ABSTRACT

The empirical approach, ueing field screening nurseries in West Texas has
proven successful in screen'ng sorghum for drought resistance. Screening tech-
niques have been developed to effectively screcn serghum for two distinctly
different types of drought response in sorghum. One response (pre-flowering) is
expressed when plants are stressed prior to flowering, during the head develop-
ment stage (GS2), while the other (post-flowering) is when moisture stress oocurs
during the grain development stage (G83). Plant symptoms indicating either a
desirable or undesirable response to stress at each of these two stages have been
described and can be visually rated in the field. The term “stay green” has been
used to desoribe sorghums which possess post-flowering drought resistance. The
distinct visual responses are reliable indicators of a genotype’s response to
drought and are predictable and repeatable across locations and years under
similar moisture stress conditions. The understanding of these stresy responses,
their heritability, and the time-of-stress x stage-of-growth interactions is ex-
tremely important when screening for drought resistance. Field screening nurser-
ies with different locations and soil types, different planting dates, and controlled
irrigation are used to vary the timing and intensity of stress.

INTRODUCTION

Drought is the major constraint to plant growth and production world-
wide. Improving drought resistance in cro plants would be a major contri-
bution to increaring and stabilizing grain and food production in the low
rainfall, harsh environmental regions of the world. It is these nreas where
many developing countries face critical problems in providing 1n adequate
and stable food supply for rapidly growing populations. Improved drought
resistance must be utilized along with improved agronomic, soii, and water
management practices to improve and stabilize production crop production
and achieve sustainable agricultural systems. Sorghum and pearl millet are
very important crops in those regions. Their drought resistance and adap-
tation to low rainfall areas results in their being the staple food for many of
these areas.

Drought or drought stress as I will discuss it, refers primarily to inade-
quate soil moisture. High air temperatures are often associated with soil
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moisture stress, and certainly compound the stress on plants, but I will deal
with drought as a soil moisture deficit or stress. Drought stress response in
plants is a complex trait affected by several interacting plant and environ-
mental factors. Soil moisture deficit can affect plants at any stage of growth,
it can vary in its severity and duration, and its effect is often compounded
by other abiotic and biotic stresses.

Major differences exist between and within species in drought resistance.
The ability to effectively screen plants cr genotypes for differentisl response
to drought stress is essential to improving drought resistance in any crop.
This requires an understanding and recognition of the various responses of
plants to drought stress. Responses can vary widely due to many factors;
determinate vs indeterminate growth habit, fruiting habit eg. single inflo-
rescence vs multiple fruiting overtime, or perennial vs annual plants. My
experience in screening for drought resistance is limited to sorghum. Thus,
this paper will discuss screening procedures which have been successfully
used to select sorghums for resistance to drought. Many of the same princi-
ples, however, should apply to other crops.

DROUGHT CONCEPTS

The stage of growth of sorghum plants at which moisture stress occurs
has been found to be very important in determining the response or reaction
of sorghum to soil moisture stress. The three important growth stages as
they relate to drought stress are:

1) Seedling establishment-early vegetation stage; GS1.
2) Pre-flowering stage (panicle differentiation to flowering); GS2.
3) Post-flowering stage (grain development); GS3

Sorghum research in receni years in Texas and other locations has
provided information on understanding drought response in sorghum and
screening techniques. Two distinct types of stress responses have been
identified in sorghum which are related to stage of growth when stress occurs
(Rosenow et al., 1983; Rosenow, 1987). The “pre-flowering” response occurs
when plants are under significant moisture stress prior to flowering in GS2.
Specifically, this growth period is from panicle differentiation, or very
shortly thereafter, until flowering. The other distinct response, called “post-
flowering” occurs when plants are under severe moisture stress during the
grain filling stage (GS3), and especially during the latter portion of grain
fill. In some cases, genotypes which have a high level of resistance at one
stage are susceptible at the other stage. Therefore, the type of drought
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resistance must be specified when considering drought resistance in sor-
ghum.

Plant symptoms indicating either a desirable or undesirable response to
these two types of stress can by visually rated in the field. Symptoms of
pre-flowering drought stress susceptibility include: leaf rolling; uncharac-
teristic leaf erectness; leaf bleaching; leaf tip and margin burn; delayed
flowering; “saddle effect” - only end plants next to alleyways produce a
panicle; poor panicle exsertion; panicle blasting and floret abortion; and
reduced panicle size. Tolerance to pre-flowering drought stress is indicated
by the alternative condition in each instance.

Symptcms of post-flowering drought stress susceptibility include prema-
ture plant (leaf and stem) death or plant senescence, stalk collapse and
lodging, stalk rot (charcosl rot, Macrophomina phaseolina), and sometimes
a significant reduction in seed size, particularly at the base of the panicle.
Tolerance is indicated when plants remain green and fill grain normally.
Such green stalks are resistant to charcoal rot and stalk lodging. The
cultivars are referred to as having good “stay-green”. The post-flowering
response i8 most obvious and distinct in plants which have been grown under
relatively favorable soil moisture and growth conditions until flowering,
with severe water deficit developing during the late stage of grain fill. When
water stress develops gradually and occurs over the entire season, these
distinct stress responses may not be as obvious. Sometimes there is a
blending of the two types of stress response.

Drought reeistance at the seedling establishment or early vegetative stage
(GS1) is also an important trait, especially in the harshest environments.
Drought and/or heat at this stage can result in plant death and significant
loss of stand. Although differences among genotypes obviously exist and are
important, little has been done specifically to breed or evaluate for this trait,
or relate it to drought tolerance at other growth stages. Significant differ-
ences among genotypes for seedling survival has not been noted in the U.S.

SCREENING PROCEDURES

Several reviews and papers have been published on various physiological
traits in sorghum and their association with drought tolerance, and potential
use in breeding programs: (Downes, 1972; Jordan and Monk, 1980; Jordon
and Sullivan, 1982; Kramer, 1980; Levitt, 1972; Sullivan, 1972; Turner,
1979; Peacock and Sivakumar, 1987; Sullivan and Ross, 1979; Ludlow,
1993). These include traits such as heat tolerance, desiccation tolerance,
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osmotic adjustments, rooting depth, and epicuticular wax. Although tech-
nologies exist for evaluation of these traits, little use has been made of them
in breeding programs. Others have reported on the use of various breeding
and screening techniques for drought resistance in sorghum (Blum, 1983,
1987; Caristiansen and Lewis, 1982; Ejeta, 1987; Garrity et al., 1982; Jordan
et al., 1983; Seetharama et al., 1982). Some of these combine screening for
physiological traits along with visual selection for agronomic adaptation, but
little if any progress using physiological traits has been documented. It
appears that individual physiological traits identified to date are not suffi-
ciently related to overall drought response or field performance to merit
selection based on that trait.

Previous papers have described certain aspects of evaluation for drought
resistance in the Texas program, (Clark et al., 1986; Rosenow, 1977, 1980,
1987, 1989; Rosenow et al., 1983; Rosenow and Ejeta, 1985). The primary
approach is to utilize naturally occurring soil moisture stress under the
low-rainfall conditions of West Texas. Germplasm is evaluated in nurseries
under dryland, low rainfall cunditions, and under limited irrigation where
yield potential is expressed but post-flowering moisture stress is allowed to
develop. In the dryland nurseries, pre-flowering stress commonly occurs.
Large field screening nurseries are utilized at several locations having
different stress environments, different planting dates, and different water
regimes. This approach helps to insure stress at different stages of growth.

In the post-flowering screening nurseries, irrigation is applied during the
early growth stages to produce good growth and yield expression. Irrigation
is terminated prior to anthesis which allows moisture stress to develop after
flowering and intensifying during grain fill. In these nurseries, plots or
entries are subjectively rated for the amount of premature leaf and plant
death. Ratings are made on a 1 to 5 scale where 1 = completely greento 5 =
dead. Ratings are normally made at or soon after physiological maturity, but
can be made anytime that differences appear among genotypes. Visual
ratings on leaf death have been shown to be an excellent method of evaluat-
ing actual percentage of green leaf area (Wanous, 1991). Percentage of plants
lodged due to stress is also taken. In West Te «as, the nursery is often left
standing for an extended pc:iod following maturity to allow stalk lodging to
occur. This facilitates the identification of entries which have stalks weak-
ened by water stress. Knowledge of maturity is critical because sorghum has
a period just prior to physiological maturity when it is most susceptible to
post-flowering stress. Plants a few days earlier or later in maturity may show
little premature senescence. Therefore, flowering notes are taken on all plots
and comparisons are made only among entries of similar maturities.
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In nurseries where severe water deficits occur prior to flowering during
the panicle development steage, subjective ratings can be recorded whenever
distinct differences in drought response appear. Rating is done on a 1-5 scale
where 1 = excellent and 5 = very poor response. Prior to heading, ratings can
be made on leaf stress symptoms indicating drought susceptibility such as
rolling, excessive erectness, bleaching, and firing. Ratings can be made on
each trait separately, or can be combined into a single overall drought
susceptibility rating. Leaf rolling is normally the first visible symptom of
drought stress. Excessive leaf erectness usually follows. Some cultivars have
erect leaves in the absence of stress, so care must be used when evaluating
this trait. The leaf angle of the lower leaves generally indicates whether or
not a cultivar has genetically controlled erect leaves. Leaf bleaching refers
to a loss in green color during the hottest portion of the day, causing a
bleached effect. Care must also be used when scoring this trait because there
is a range from dark to light green leaf color among different genotypes even
in the absence of stress. Leaf margin and tip burn is usually the last
vegetative drought response to appear. Scoring of the early vegetative
response i8 most efficient when done within related germplasm. Widely
diverse material may give rather different appearing responses, with a
poorer relationship of vegetative symptoms to eventual performance.

Some cultivars are very susceptible to another kind of leaf necrosis called
leaf firing, where large sections of the leaf die rapidly and usually at about
flowering time. This type of leaf firing is different from the leaf margin and
tip burn described previously and does not appear to correlate well with final
yield. Drought induced leaf necrosis is characterized by the absence of
anthocyanin pigment and is thus distinctively different from coloration due
to other causes, such as disease or insect injury.

Later appearing symptoms caused by moisture stress prior to flowering
include delay in flowering, panicle and floret abortion, poor panicle exser-
tion, reduced panicle size, and the “saddle” effect. These symptoms can be
rated individually or in combination. Delay in flowering is evaluated by
comparison with non-stressed plantings. These late-appearing symptoms
are the best evaluation of pre-flowering drought tolerance. Such ratings may
be made at or after maturity. Evaluation of pre-flowering drought tolerance
in very early maturing genotypes is difficult because they often escape water
stress.

In field screening nurseries, standard checks are used every five or ten
plots. Alternating every fifth plot with a pre-flowering tolerant (post-flower-
ing susceptible) line such as Tx7078 or Tx7000 and a post-flowering tolerant
(pre-flowering susceptible) line like B35-6 or R9188 provides a reference for
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comparison. By comparing ratings with those of the adjacent checks, adjust-
men’ for variability within the field can be made. Whenever possible,
furrow-dikes are placed between beds in our dryland nurseries to encourage
uniform water penetration and soil moisture. We maintain the furrow-dikes
throughout the entire year to maintain a uniform soil moisture profile. We
use short (5-6 m), single row plots in most screening nurseries. Multiple row
plots are used only for special studies.

In addition to field screening, sprinkler irrigation gradient systems have
been used in dry environments to manipulate timing and quantity of water
applied. The advantage is two fold: a) the evaluation of plant response to a
wide range of stress under otherwise identical conditions; and b) manipula-
tion of onset, cessation, and degree of stress. In these evaluations, it is
important to recognize the different drought stress responses before inter-
preting results from the gradient system. Disadvantages of the system ar2
the influence of wind on water distribution and the inability to control
precipitation. The amount and frequency of irrigation may be less than ideal.
However, reaction under the system in West Texas correlates well with our
field evaluation. The use of gradients may be on only limited value in areas
where rainfall is high during the regular crop season. Use of gradient
systems may be of limited value in the off-season due maturity changes and
different yield responses especially with photosensitive or partially photop-
eriod sengitive sorghums affected by different day lengths.

Rainout shelters are also used to supplement evaluations made in field
nurseries. Untimely rains often prevent evaluation or restrict evaluations
to short periods during the growing season. Rainout shelters can be used to
improve the efficiency o. selection by controlling both timing and amount of
water applied, while otherwise maintaining a near normal field environ-
ment. Pre and post-flowering stress ratings under shelters in Texas have
corresponded well with known field reactions. Single-row plots of 400 breed-
ing selections can be evaluated for the pre-flowering drought stress in one
40 ft X 60 ft (about 12 m X 18 m).

Drought resistance and response in GS1 is less well understood than in
GS2 and GS3. Some evaluation for seedling emergence and survival has been
done by ICRISAT und in Mali, using off-season nurseries, and soil bins with
covers. The relation to drought resistance in GS2 and GS3 has not been
documented.

More information is needed on the major gene loci involved in different

types of drought tolerance to determine if genes conferring these responses
can be combined to further enhance resistance. Molecular markers such as
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restri ttion fragment length polymorphism (RFLP) provide an important tool
to tag genes and quanrtitative trait loci (QTL) (Nguyen and Rosenow, 1993).
After molecular markers for various drought resistance traits are identified,
these markers can be used to improve selection efficiency for drought
resistance.

SUMMARY AND CONCLUSIONS

1. The empirical approach, using large multilocational field screening
nurseries, subjective scoring, and the principles described herein, has proven
to be successful in screening sorghum for resistance to drought.

2. Utilize whenever possible the local environment in the regular growing
season, Be familiar with the normal rainfall pattern, soil type, soil problems,
and other major constraints to growth and production, so the effect of
moisture stress will not be confused with problems caused by other biotic or
abiotic factors.

3. Be familiar with and be able to recognize the various drought responses
at various stages of growth.

4. Know the stage of growth when stress occurs in each nursery by
recording flowering date, rainfall, etc., and make interpretations accord-

ingly.

5. When screening for drought resistance, otner serious constraints such
A3 soil problems , soil variability, etc., should be removed if possible or at
least minimized.

6. For drought resistance screening, the following is recommended: use
multi-locations with differing stress; diverse germplasm; visual ratings;
screening in early as well as advanced generations; germplasm and infor-
mation exchange: make drought resistance a specific priority in crop im-
provement; understand plant response; and understand the stage-of- growth
x timing-of-stress interactions. Extensive yield testing may not be the best
use of time and resources since visual ratings may be sufficient until final
evaluations,

7. There is a need for a better understanding of the mechanisms of drought
resistance as well as the nature and inheritance of resistance. Molecular
marker techniques could be very useful in screening and enhancing drought
resistance.
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ABSTRACT

A large part of arable land is affected by nutrient deficiencies or elemental
toxicities. Salinity and drought also limit crop yields in various parts of the world.
Ure of nutrient efficient or elemental tolerant crop species or cultivars within
species, in combination with other appropriate management practices, are impor-
tant strategies for improving crop yields on marginal lands. Shortage of resources
and concern about environmental pellution form the economic and ecological
background of searching for more nutrient efficient or elemental tolerant plant
species or cultivars within species.

In this paper, mineral strees problems in general are reviewed, with emphasis
on N, P, K, Ca, Mg, and 8 deficiencies, and Al, Mn, and salinity toxicities. Relation-
ships between drought and mineral stress are also discussed.

INTRODUCTION

Mineral stress may be defined as the nutrient/elemental deficiencies or
toxicities either as inherent properties of a soil or developed by man’s
activities that often represents a serious constraint for crop production. The
major soil related constraints are given in Table 1 for the major regions of
the world. Severe limitations exist in almost ail regions of the world, but
drought and mineral stress are dominant yield-limiting factors. The major
mineral stress problem is related to soil acidity and salt-affected soils. Acid
goils comprise about 18% of total world soil area or over 2.4 bi'lion ha (Vose,
1987). The main mineral stress problem in acid soils include deficiencies of
P,Ca, and Mg, and toxicities of Al and Mn (Clark, 1982; Foy, 1984). However,
in acid soils of the tropics, deficiencies of N, K, Zn, and Mo also have been
reported (Sanchez and Salinas, 1981).
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Table 1. World soil resouarces and their mgjor limitations for culture.

Percent of total land area with limitation

Mineral Shallow Water Perma- No serious
Region Drought streas! depth excess frost limitation
North America 20 22 10 10 16 22
Centra] America 32 15 17 10 - 25
South America 17 47 11 10 - 15
BEurope 8 3 12 8 3 36
Africa 44 18 13 9 - 16
South Asia 43 5 23 11 - 18
North & Central Asia 17 9 38 13 13 10
Southeast Asia 2 59 6 19 . 14
Australia 55 1 8 16 - 15
Word 28 23 22 10 6 11

'Data compiled from FAQWUNESCO Soit Map of the World.
*Nutrtional deficiencies or taxicities related to chemical composition or mode of origin,

Source: Dent, 1980.

The problem of salt-affected soils is also a serious one, and about 0.9 billion
ha is estimated to be affected by salts in various parts of the world (Table
2). About 25% of the world soils are calcareous and liable to Fe-deficiency
problems, either on a regular basis or as a result of mismanagement or
restricted water supply (Vose, 1982).

The cusrent world population is about 5.4 billion people and will probably
reach 8.2 billion by the year 2025 and more than 10 billion by 2050. The rate
of increase is projected at 90 million people per year. This means extra food
should be produced to feed those people. Under these circumstances, it will
be extremely important in the future to improve crop yields on lands
inkerent with mineral stress and other problems, both through better
management practices and by using more efficient or tolerant cultivars.
Exploitation of the influence of genetic variability on nutrient response or
tolerance to toxic elements in crops and their cultivars would be an impor-
tant step in optimizing crop preduction -\nder marginal lands.

MACRONUTRIENT DEFICIENCIES

Essential Macronutrients for plant growth include N, P, K, Ca, Mg, and
S. The possibility of exploiting genotypic differences in absorption and
utilization of mineral nutrients to improve efficiency of fertilizer use or to
obtain higher productivity on nutrient-deficient soils has received consider-
able attention in recent years (Baligar et al., 1990).
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Nitrogen

Nitrogen is a vital nutrient for crops, and N fertilizer has played a leading
role in increasing food production over the past thirty years. N deficiency
limits crop yields in almost all soils and climates. Nitrogen is required in
relatively large quantities for crop production as compared to other essential
nutrients, with the exception of K. Some crop species cultivars absorb equal
or higher amounts of K than N. Nitrogen increases crop yields in cereals and
legumes by increasing the number of grains and grain weight. Nitrogen use
efficiency by crop plants is low (50% of that applied to field crops). Conse-
quently, excess N not absorbed by crops may be leached out and cause
environmental pollution or lost through other mechanisms.

Improving nutrient use efficiency is a major concern in crop production in
developed and developing countries. Nitrogen use efficiency can be improved
by adopting appropriate management practices such as use of adequate
levels, methods, and forms of N fertilizers. High use efficiency by crops
should be expected when plant N availability matches the crops needs
throughout the growing season. However, use of efficient crop species or
cultivars within-species is a very attractive, complimentary strategy from
both an economical and ecological point of view. Crop species respond
differently to soil and fertilizer N (Sinclair and Horie, 1989). These differ-
ences have been observed in different cultivars of the same crop species
(Messmer et al., 1984).

Phesphorus

Phosphorus deficiency is one of the most widespread soil constraints in
the acid soils of both tropical and temperate regions. Approximately 82% of
the land area of the American tropics is P-deficient in its natural state
(Sanchez and Salinas, 1981). These soils also have high capacities for P
fixation. Amelioration of P deficiency by application of massive doses of
costly P fertilizer is not a viable option to many of the predominantly
subsistence farmers of the tropics.

Strategies to improve agricultural production on P deficient soils have
focused on making the most efficient use of available soil P so that crop
production can be sustained with minimum P applications. A principal
component of these strategies is the selection and development of species
and cultivars that grow well at lower levels of available soil P. Differential
responses among genotypes of corn, beans, rice, wheat, and white clover to
P deficiency have been reporter; (Fageria, 1992).
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Potassium

Potassium deficiency is not as common as N and P deficiency. However,
due to the large quantity extracted by crops under intensive cultivation, K
deficiency frequently cccurs in crop plants. In addition to appropriate man-
agement practices, using K efficient genotypes can be a complementary
solution 1or improving crop production of field crops.

Calcium and Magnesium

Deficiencies of Ca and Mg are important limitations to plant growth in
many acid soils. In addition to supplying Ca and Mg through dolomitic lime,
use of efficient species or cultivars may be another strategy for increasing
Ca’ and Mg-use efficiency in deficient soils. It is widely reported that plant
species differ widely in their requirement for Ca (Fageria, 1992) and Mg
(Clark, 1982).

Sulfur

Sulfur deficiencies have been reported for 22 African and 16 European
countries and for large agricultural areas in South and Southeast Asia, the
US, and Canada (Tisdale et al., 1986). Sulfur deficiency also has been
reported in Central and South America (Malavolta et al., 1987; Tisdale et al.,
1986). Malavolta et al. (1987) cited the following reasons for S deficiency:

e Low soil organic matter content

e Low mineralization rates of organic matter

* Depletion of soil reserves because of continuous cultivation and
the application of S-free fertilizers

* Increased use of N and POs- fertilizers that causes imbalances of
the N:S and N:P ratios of the scil-plant system. S deficiency in
crop plants vnder most climatic and soil conditions can be cor-
rected by application of 20 to 30 kg S hal, Howevecr, use of effi-
cient species or cultivar within species may be a economical vi-
able solution.

MICRONUTRIENT DEFICIENCIES

Micronutrients essential for plant growth are Fe, Zn, Cu, Mn, B, Mo, and
C1'. The availability of most micronutrients is closely related to the reaction
(pH) of the soil and decreases markedly with an increase of soil pH, except
in the case of mo. The activity of Fe** in soil solution decreases 1000X for
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each unit increase in pH (Lindsay, 1979). Similarly, the activities of Mn®*
and Zn*" are highly pH depender’ ~nd decrease 100X with each unit increase
in soil pH (Lindsay, 1972).

In general, the following factors can contribute to micronutric nt deficien-
cies in field crops.

Soil naturally low in micronutrient content

High organic matter content of soil

High sand content of soil

High soil P with low micronutrients

Drought

Soil compaction

High pH (above 6.0)

Land leveling

Soil erosion

Extreme temperature

Extreme solar radiation

Excessive Zn, Cu, and Mn cause Fe deficiency
Salinity and sodicity

High N application can cause Cu and Zn deficiencies
In areas with high rainfall, B deficiency can occur in light-
textured soils

o Root damage by insects and diseases

Micronutrient deficiencies are increasing in intensive agricultural sys-
tems due to removal of large quantities of nutrients by crops. In addition to
this, some of the above mentioned factors also contribute to these deficien-
cies. To maintain optimum productivity on arable lands in various parts of
the world, it is essential to maintain adequate levels of micronutrients in
the soils. Along with other management practices, improvement of crop
production through genetic manipuiation is an attractive strategy, particu-
larly where relatively large quantities of micronutrients are present in soils
and availability is low when measured by cultivar response.

MECHANISMS OF PLANT ADAPTATION
TO MINERAL STRESS

Genotypes resistant to mineral deficiency are often defined as mineral
efficient (Blum, 1988). Efficiency is defined as the amount of product pro-
duced per unit of resource used (Fageria, 1992). This means nutritional-ef-
ficient plants are defined in terms of the ratio of economic yield or biomass
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Jrex unit mineral element. Mineral efficiency may result from either a better
ability in uptake of minerals or better efficiency in using minerals already
available in the tissue (Blum, 1988). Maximum nutrient use efficency is
obtained when the concentration is near the critical level, because near
maximum yield occurs at this point without excessive nutrient levels in the
plant. Values of nutrient use efficiency decline in the toxic range because
yield levels decrease, while nutrient concentrations increase. There are two
types of growth response to a deficient situation. Efficiency is defined by the
ability to grow well at a low concentrat on of the available nutrient. Respon-
siveness is defined by the ability to respond to an increasing concentration
of the available nutrient.

NUTRIENT/ELEMENTAL TOXICITIES

In addition to nutrient deficiencies, nutrient/elemental toxicities for Al
and Mn are common in acid soils. Fe toxicity is a serious problem in flooded
rice. Similarly, salinity problems limit crop yields in various parts of the
world.

Aluminum toxicity

Al toxicity can limit yields in acid soils in many parts of the world. Highly
weathered soils low in pH and high in phytotoxic Al cover large areas in
North and South America, Africa, and Asia (Wambeke, 1976).

Aluminum is known to inhibit root growth and mineral uptake in various
crop plants (Baligar et al., 1990). Growth of plants is related to the Al
saturation of the effective cation exchange capacity (ECEC). Farina et al.
(1980) examined exchangeable Al** and pH as indicators of lime require-
ments for a range of soils that included two Mollisols, six Ultisols, and one
Oxisol. Relative corn yield was more highly related to Al saturation or acid
saturation of the cation exchange complex than either water or salt-pH
values. Al saturation levels of ECEC that allow for maximum yields on
highly weathered Oxisols and Ultisols have been shown to be < 10% for
wheat and soybeans crops, whereas corn yields were not restricted with Al
saturations < 35% (Kamprath, 1984). Growth of more sensitive crops such
as cotton and alfalfa was optimum when Al saturation was close to zero
(Kamprath, 1984). Maximura growth of six Stylosanthes species was ob-
tained at an Al saturation of < 5% (Carvalho et al., 1980). According to Smyth
and Cravo (1991), corn and soybean yields remained within 80% of the
maximum with Al saturation levels of less than 20%, as opposed to 58% with
cowpea.

147



Manganese toxicity

Manganese toxicity generally occurs in soils having a pH of 5.5 or lower,
but can also occur at higher pHs in poorly drained or compacted soils, where
reducing conditions favor the production of divalent Mn (Foy, 1984). Condi-
tions favoring Mn toxicity are soil-parent materiai that are high in total Mn,
low soil pH, low Ca in relation to Mn at a given pH, and poor drainage and
soil compaction (Foy et al., 1981).

Manganese toxicity in crop plants can be corrected by increasing soil pH
to around 6.0 through liming. Another complimentary measure may be the
use of Mn tolerant crop species or cultivar within species.

Salinity stress

Salinity is a problem in many regions of the world (Table 2). Salt-affected
soils are common in arid and semi-arid regions where evaporation is higher
than precipitation. As a result, salts are not leached from the soil and
accumulate in amounts or types detrimental to plant growth. Soils are also
salinized in coastal areas due to tides. Salts generally originate from native
soil and irrigation water. Use of inappropriate levels of fertilizers with
inadequate management practices can create saline conditions even in
humid climates. Successful crop production on these soils depends on soil,
water, and plant management. The cost of soil reclamation is frequently so
high that it is not possible to reclaim such soils for crop production. Under
these circumstances, growing salt tolerant crops might help in utilization of
salt-affected soils. Salt tolerance exists within and among species, and this
variation may be used to develop cultivars specifically tailored to salt-af-
fected soils.

Table 2. Global distribution of salt affected soils.
Area in 1000 hectares

Region Saline Sodic Total
North America 6,191 9,564 15,755
Mexico and Central America 1,965 -- 1,965
South America 69,410 59,573 128,983
Africa 53,492 26,946 80,438
South Asia 83312 1,798 85,110
North and Central Asia 91,621 120,065 211,686
South East Asia 19,983 - 19,983
Australia and New Zealand 17359 339,971 357330

Total 343,333 557,917 901,250

Source: Lal et al., 1989,
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SCREENING METHODOLOGIES
FOR MINERAL STRESSES

Use of appropriate methodology in mineral stress screening experiments
is very important for getting meaningful results. Table 3 summarizes the
mechanisms involved in plant adaptation to mineral stresses. Figure 1
shows the mechanisms of plant adaptation to high and low nutrient levels.
Screening can be done under controlled or field conditions. Basic principles
and considerations should be considered when screening for adverse soil
conditions. These considerations include;

Uniformity of growth medium

Uniformity of ecological conditions

Well-defined evaluation parameters

Inheritance experiments require large number of plants. There-
fore, a screening technique must be simple, repeatable, and
should permit evaluation of large numbers of genotypes with rea-
sonable precision

 Selection of appropriate field sites; soil should be deficient in a de-
termined nutrient if the objective of the study is to determine effi-
ciency for low levels. Similarly, if the objective is to test the geno-
types for Al toxicity, the site selected should have a sufficient
level of Al to show reduced genotypic yield for comparison. Accord-
ing to Hamblin et. al (1980), the most important criteria in select-

Table 3. Mechaniaoms of plant adaptations to mineral strees.
1. Morphological
1.1,  Efficient root system
1.1.1  High root to shoot ratio.
1.1.2 Extensive root system which exploit large s0il volume.
1.L3.  Colonization of the root syxtem by mycorthizae and N-fixing bacteria.

2, Physiological
2.1  Ability of roots to modify rhizosphere to overcome low/oxic levels of nutrieats or elements.
22 High nutrient wtilization efficiency per unit of nutrient absorption.
23. Capacity of storage and reutilization during stress period.
24, Slow growth rate.
2.5. Capacity of normal metabolism at reduced tissue concentration of a nutrient..

2.6. Exclusion of toxic clements in the rhizosphere for exemple higher oxidizing power of some flooded
rice cultivars precipitate iron at root surf=ce and avoid Fe toxicity.

2.7. High uptake rate of nutrients.

2.8.  Capacity to accumulate high concentrations of toxic elements such as Al and Mn in roots and lops.
29. High photosynthetic capacity.

2.10  Lez« losscs of assimilate through respiration.
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Figure 1. Mechanisms of high and low nutrient adaptatior by crop plants. (Chapin,
1987).

ing a site is that tbe yield of the selected genotypes at the test lo-
cation consistently corresponds to their yield when grown over
the range of environments for which they are intended.

¢ Maximum and minimum nutrient levels should be kriown in ad-
vance

¢ Inscreening for a determined nutrient efficiency, other nutrients
must be present in adequate amounts.

¢ Two genotypes may perform equally well at one concentration
and quite differently at a second. A response curve for a deter-
mined nutrients is desirable before deciding the level or levels of
the nutrient that should be adopted.

¢ For a soluble nutrient like nitrogen, especially if the objective is
efficiency of absorption of soluble fertilizer, the test level may be
quite high. For immobile or diffusion-limited nutrients such as P,
screen at the lowest concentration that will distinguish some effi-
cent genotypes (Graham, 1984).
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o Ifthe concentration of the limiting nutrient is either too low or
too high, selection pressure falls to zero; such levels should be
avoided.

e Efficient and nonefficient check cultivars should be included in
the genotype screening as controls.

¢ Plant material should be genetically uniform.

¢ A field screening methodology was developed at the National Rice
and Bean Research Center of EMBRAPA, Goifnia, Goias, Brazil
for selecting P efficient cultivars and advanced breeding lines us-
ing yield as a parameter. The field method is simple and uses 2
levels of F (stressed acd nonstressed levels). Response index is
calculated as follows (Fageria and Barbosa Filho, 1981):

Grain yield response index =  Yield under nonstress - yield under
P-stress level
Difference of P levels applied between
nonstress and stress level

The average yield of the stress plots and grain yield response index were
used to separate cultivars into four groups (Figure 2, 3).

I. Nonefficient and nonresponsive (NENR).
II. Nonefficient and responsive (NER).
III. Efficient and responsive (ER).

IV. Efficient and nonresponsive (ENR).

From a practical point of view, cultivars falling in the ER group are most
desirable because they produce high yield at low as well as at high levels of
P. Cultivars under group ENR are also desirable because they produce
higher yields at low P levels.

A similar methodology has been developed for screening cultivars for Al
tolerance by creating two levels of Al through liming of Oxisols of Brazil (Fig.
4). Cultivars in this case were also classified into four groups such as: I)
susceptible and nonresponsive, II) susceptible and responsive, III) tolerant
and responsive, and IV) tolerant and nonresponsive. Cultivars belonging to
group three are most desirable for planting on Al toxic soils.

DROUGHT AND MINERAL STRESS

Drought is the most prevalent environmental stress, and it limits crop
production on about 28% of the world’s land (Table 1). It is a meteorological
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Figure 4. Screening methodology of crop genotypes for Al toxicity (Fageria and
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and hydrological event, involving precipitation, evaperation, and soil water
storage (McWilliam, 1986). Its impact is a function of duration, crop growth
stage, type of crop species or cultivar-within-species, and type of soil and
management practices. Flowering is the most sensitive growth stage of crops
to drought in relation to grain yield. A drought of about two weeks during
flowering can result in a complete loss of grain yields. Drought is sporadic
in nature, resulting in drastic crop losses even in humid climates (Dunphy,
1985). Mineral elements and water are absorbed by independent processes
in the root, but are closely related. In soils, water relations affect all the
processes associated with nutrient availability. These processes involve
element concentration in the soil solutions because of nutrient diffusion and
mass flow to the root surface, absorption by the root, translocation from root
to shoot utilization of the minerals, and the capacity of roots to extend to
distant points of supply (Clark, 1981).

At present, fertilizer recommenda‘ions are based on adequate water

availability. Due to water deficiency, response of crop plants to applied
fertilizer changes; hence yield and nutrient use efficiency are affected by
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drought (Figure 5). Eck (1983) reported a N x irrigation interaction in wheat
grown on a clay loam soil. He concluded the most efficient use of both N and
water, was to adjust the level of one to that of the other. Dry soil conditions
severely reduce the supply of mobile ions such as nitrate to roots and impede
transformation of soil nutrients to plant-available forms (Power, 1983).
Water and N de£¢its also affect reproductive development, and hence affect
overall source-sink gradients within tbe plant. Jordan (1983) suggested that
accelerated post-anthesis senescence under water stress conditions is the
result of an insufficient supply of current photosynthate and reduced N in
the presence of a etrong reproductive sink. Wolfe et al. (1988) studied the
water and N interactive effects on N concentrations in maize and concluded
that water e'ress caused 10 to 20% lower N concentration of leaf 15 before
reproductive sink demand for N was a major factor. Batagalia (1980) found
lower N concentrations in recently expanded leaves of water-stressed plants,
and concluded that water stress-induced N deficiency resulted from reduced
soil N availability under dry scil conditions. Reduction of nitrate reductase
activity in response to water stress may also be involved (Shaner and Boyer,
1976). These results suggest that N stutus of aging leaves wus influenced by
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Figure 6. Response of upland rice to K fertilization under normal rainfall and
drought conditions on an Oxisol of Central Brazil. The regression equa-
tion was calculated using fertilizer application rate cxpressed as K;0
(Fageria et al., 1990c).
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water stress effe 3 on N uptake cr N metabolism, or both, as well as N
demand during grain filling.

Rogler and Lorenz (1974) reviewed the effects of N fertilization on produc-
tion of the various native and introduced cool season grass species. They and
others documented that cool-season grasses generally respond to N fertili-
zation, and this response is oflen moderated by the availability of water
(Power, 1985; Wight and Black, 1978). Power (1985) also reported that water
use efficiency of several cool season grasses was increased about 3X by
fertilization.

Soil moisture affects both P uptake and root growth. Low moisture reduces
P diffusion through the soil to the root surface. Olsen et al. (1965) measured
an 8X decrease in P diffusion, the principal mechanism for P movement
through the soil to the root surface, with a 2X decrease in soil moisture. In
general, as soil P level increases, the effect of soil moisture on P diffusion
rate decreases (Mahtab et al., 1971). Olsen et al. (1961) found that P uptake
by corn seedling roots declined by 50% as soil moisture decreased from that
held at a water potential of -33kPa to that at -300kPa. Similar results were
also reported by Mackay and Barber (1985a). Soil moisture also affects K
uptake by affecting root growth ratc and the rate of K diffusion in soil
(Mackay and Barber, 1985b). Schaff and Skogley (1982) found that K
diffusion rate increased an average of 2.8X as soil moisture was raised from
10to28% (w/w). Dunham and Nye (1976) noted a 3-4X increase in K diffusion
as soil moisture retained at -350kPa was increased to that at -10kPa.
Grimme et al. (1971), finding u marked relation between soil moisture and
K diffusion rate, suggested this was the primary reason why K uptake was
reduced with limited soil moisture.

In conclusion, nutrient accumulation is decreased when water stress is
increased (Clark, 1981). During drought conditions, the restriction of reut
growth caused by soil Al may hasten the onset of water deficiency. Goldman
et al. (1989) studied the: i::teraction between subsoil Al and drought stress
insoybean. They conclude that hindered root growth in highly-Al-saturate
subsoils may have limited the ability of the plant to withstand drought.
Several investigators have examined the effect of svil Al on plant water
status in other crops. Decreases in leaf water potential, transpiration rate,
photosynthesis, and chlorophyll concentration were observed with wheat
grain in the presence of Al (Ohki, 1986). Krizek and Foy (1988) documented
alarge reduction in the vegetative growth of the Al-sensitive barley cultivar
wher grown in the presence of water stress and mild soil Al stress, while the
Al tolerant cultivars were less affected. Krizek et al. (1988) have noted
sircilar results in sunflower.
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Bower and Tamimi (1979) reported that shoots of rice, wheat, barley, and
oat cultivars grown in saline solutions invariably had a lower water content
than shoots grown op. nonsaline solutions, indicating that salt injury in-
volves water stress. As pointed out by Bernstein (1961), growth of herba-
ceous plantsin saline media is governed primarily by osmotic potential (OP).
The OP of the sap in the plant tops is always more negative than that in the
roots, thus providing a substantial water potential gradient for che upward
movement of water; however, in a plant grown under saline medium, OP of
the root media becomes increasingly negative, thereby resulting in osmotic
dessication and leading to restriction in water uptake.

CONCLUSIONS

Mineral stresses related to nutrients deficiencies or elemental toxicities
are some of the most important yield limiting factors in field crops on large
areas of arable land around the world. The deficiency or toxicity may occur
due to natural soil properties and/or by inappropriate management practices
in crop production. Exploiting the influence of genetic variability on nutrient
response in crops could be an important step in optimizing crop production
on mineral siress soils. Use of nutrient efficient or elemental tolerant
cultivars, in combination with appropriate management practices, can
reduce cost of production and environmental pollution. Substantial progress
has been made in identifying nutrient efficient or elemental tolerant crop
species. Those characteristics have not been widely incorporated in commer-
cially released crop cultivars. One reason for this slow progress is that the
nutrient efficiency and tolerance mechanisms are poorly understood. There-
fore, more basic research is needed to understand the mechanisms and to
facilitate incorporation of mineral stress traits in commercial field crop
cultivars. In addition, no strong cooperative efforts exist among most soil
scientists, physiologists, breeders, and other agricultural scientists to de-
velop crop cultivars for adverse soil conditions. Increased cooperation is
esgsential in attaining meaningful and practical resulis. Tolerance to soil
mineral stress is complex. The areas of problem soils sre sufficiently large
to warrant a specialized plant breeding program for these purposes.
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Stress Tolerance
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ABSTRACT

This report will present a review of biotechnology methods that have been
explored to assist plant breeders in unconventionsl methods to improve plant
cultivars for stress tolerance. A general introduction to topics including cell
culture selection, somaclonal variation, transformation, and genome mapping will
be given and specific examples on their application to sorghum improvement will
be exemined. The current and potential impact on improvement of sorghum for
enhariced toleranse to insects, drought, and mineral stresses such as aluminum
and sults will be discussed.

INTRODUCTION

Dramatic changes have taken place in the past 20 years that have altered
and added to plant breeders’ tools for improvement of crop plants. In the
early to mid 1970’s reports in the literature ignited interest in using plant
cell cultures to make selections at the cellular level in vitro for cells more
tolerant to various selection pressures and ultimately to produce plants
expressing altered tolerance to various stresses. Plant cell culture research
also indicated that plants produced from cell culture even without stress
selection could be quite different from the original parental germplasm in
tolerance to various stresses. This phenomenon was termed somaclonal
variation. As plant biotechnology resecarch progressed, the option of insert-
ing foreign genes into plants became a reality and opened up yet other
opportunities for the improvement of crop plants for stress tolerance. A more
recent development has been RFLP linkage mapping to locate, identify, and
select significant genes in crop plants.

This report will examine cell selection, somaclonal variation, transforma-

tion, and molecular mapping technologies and their current and potential
impact specifically on sorghum for stress tolerance improvement.
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CELL SELECTION

Cell selection strategies were based on the observations that plant cells
in culture were genetically variable. The addition of selective agents (min-
eral salts, antibiotics, osmotic agents, herbicides, temperature extremes,
amino acid analogues, and fungal toxins) to the cell culture medium could
select for cells that had an adaptation and/or mutation to cope with that
compound; non-tolerant cells were eliminated (McCoy, 1988; Maliga, 1984;
Meredith et al., 1988). The selective agent could be added at sub-lethal
concentrations, or its concentration could be gradually increased over time
to high levels (step-wise selection). Generally, the result was cell lines that
were tolerant and would grow at high concentrations of the selective agent.
In many cases the cell lines could not regenerate plants. However, plants
were obtained that did appear to be tolerant to amino acid analogues
(Carlson, 1970), antibiotics (Binding et al., 1970), herbicides (Chaleff and
Parsons, 1978; Miller and Hughes, 1980; Thomas and Pratt, 1982; Wersuhn,
G., K. et al., 1987), pathogens (Carlson, 1973; Gengenbach et al., 1977;
Behnke, 1980; Sacristan, 1982; Hartman et al., 1984; Ling et al., 1985, Rines
and Luke, 1985; Fadel and Wenzel, 1993), salt (Nabors et al., 1980; Waskom
et al.,, 1990), aluminum (Conner and Meredith, 1985; Miller et al., 1992;
Waskom et al., 1990), and cold stress (Kendall et al., 1990). The notion that
traits (whose physiological basis was poorly understood) selected at the
cellular level could be expressed at the plant level was exciting. Moreover,
such approaches were felt to have tremendous advantage in saving time,
money, and space compared to seiection under field conditions.

These early, exciting reports were not followed by new cultivars intro-
duced in farmers’ fields, and this has been a disappointment. Some of the
reasons for this are discussed later. Some people have examined this
germplasm in the field over longer iengths of time to see how the traits hold
up. In studies over a 2-3 year period on wheat, potato, and barley progeny
derived from in vitro selection on pathogen toxins, Wenzel and Foroughi-
Wehr (1990) saw no significant difference in the level of susceptibility to the
pathogen between the tissue-culture-selected progeny and plants that had
not gone through cell culture. Their conclusion was that cell culture selection
for pathogen resistance was not a reliable method to obtain pathogen
resistance in the plant. The National Research Council (1990) also had a
panel of prominent scientists examine cell selection and somaclonal vari-
ation strategies for crop improvement and concluded that few, if any, crop
cultivars had been developed this way.

Successful initiation and culture of sorghum callus and plant regeneration
for many cultivars is feasible. For reviews of sorghum literature on regen-
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eration from cell culture, see, Bhaskaran and Smith, 1990, 1989; Smith and
Bhaskaran, 1986; and Bhaskaran et al., 1992, and cell selection Smith et al.,
1993; Bhaskaran et al., 1986. The first report of selecting salt tolerance in
sorghum (Bhaskaran et al., 1983) showed that selected cells grew better than
unselected cells on NaCl-containing medium. Plant regeneration and sub-
sequent seed set was poor from such plants. In a subsequent study
(Bhaskaran et al., 1986), plants obtained from salt-selected callus produced
progeny that had higher shoot dry matter accumulation as compared to the
non-selected plant material under salt stress; however, both had similar
decreases in root development in the presence of NaCl. Field tests were not
performed. Plants were also obtained from callus screened on aluminum-
containing media (Smith et al., 1983); however, seed set was not adequate
for testing at the plant level.

Duncan et al. (1991c) have found that in vitro selection of sorghum callus
on NaCl or aluminum can produce plants with enhanced tolerance to these
stresses under field conditions. However, such useful variation was also
found in plants derived from cell culture without subjecting the cells to in
vitro selection. These workers concluded that selection in vitro is probably
not necessary, as sufficient variation was obtained from plants from cell
culture without selection. Their results will be discussed under the topic of
somaclonal variation.

Recent studies using microspore selection on Fusarium toxin-containing
medium enabled Fadel and Wenzel (1993) to regenerate wheat plants that
were tolerant to the toxin. Their approach was significant in that they used
germplasm that had a genetic background for resistance, and there was also
a high cnrrelation between susceptibility to Fusarium and to the toxin.
Progeny have not yet been evaluated.

Perhaps it is too early to disregard cell selection as a viable approach to
crop improvement. As strategies are improved and programs very carefully
evaluated with plant breeders, perhaps cell selection can be a small but
useful tool of plant breeders in special situations.

SOMACLONAL VARIATION

Somaclonal variation was a term coined by Larkin and Scowcroft (1981)
to describe the variation observed in plants and their progeny derived from
cell culture. ( For a recent discussion of somaclonal variation including
mechanisms and uses of such variation see Peschke and Phillips, 1992.)
There were subsequent reports (Evans and Sharp, 1986; Maliga, 1984;
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McCoy, 1988) of plants from cell culture expressing new sources of variation
for important agronomic traits that could be useful in plant breeding
programs. These reports included disease resistance in maize (Brettell et al.,
1980; Umbeck and Gengenbach, 1983), potato (Shepard et al., 1980), sugar-
cane (Heinz et al., 1977; Larkin and Scowcroft, 1981), rice (Ling et al., 1985),
alfalfa (Latunde-Dada and Lucas, 1983), celery (Heath-Pagliuso and Rap-
paport, 1990), and morphological and biochemical trait variation in wheat
(Larkin et al., 1584) to mention but a few. Many of these plants had true
genetic changes that were documented (Maliga, 1984; Evans and Sharp,
1936; Shoemaker et al., 1991; Altman et al., 1991). Unfortunately this
material never was incorporated into crop improvement programs for many
different reasons. Recently Qureshi et al. (1992) reexamined somaclonal
variation in wheat improvement over a 3 year period and concluded it did
not produce genotypes agronomically superior to the parental cultivar.

Somaclonal variation has been studied in sorghum. Bhaskaran et al.
(1987) examined leaf area, height, tiller number, total shoot weight, seed
number, grain yield, days to flowering, and chlorophyll content in first and
second generation progeny from cell-culture-derived plants. Some clones had
significant increases in grain yield accompanied by smaller seed, height
reduction, higher plant dry matter production, increased tiller number, and
decreased days to flowering. Some clones were similar to the parental lines.
However, since this was not a cultivated line of sorghum, no derivatives with
these traits were used in a breeding program. Useful somaclonal variation
in sorghum has been obtained for insect resistance (Duncan et al., 1991a)
and acid soil tolerance (Duncan et al., 1991b). These appear to be the first
reports of viable somaclonal variants, registered germplasm being released
for crop improvement.

One might ask the question as to why earlier research activities in this
area did not result in usable germplasm. In an attempt to address this
ques'ion, extensive discussions with many scientists involved in this early
work were undertaken. Some of the answers include the observations that
extensive field testing was not undertaken, and pathogen resistance did not
hold up under field conditions. Likewise, salt tolerance in some plants did
not hold up in subsequent generations; aneuploidy was a problem with
tobacco somaclonal variation causing it not to breed true for the trait of
interest. A major problem was that somaclonal variation often resulted in
negative changes in desirable agronomic traits along with the one desirable
change. Additionally, sometimes desirable traits developed in a cultivar
were outdated by new cultivars coming out of the traditional breeding
programs. In the case of herbicide resistance, the use of the new cultivar was
sometimes not economically feasible due to the small acreage involved and
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the high cost of obtaining registration for use of the herbicide. Most signifi-
cantly, it was found that these cell selection and somaclonal strategies were,
contrary to expectations, very expensive, and required much effert and time.

Heath-Pagliuso and Rappaport (1990) obtained celery plants with excel-
lent resistance to Fusarium oxysporum from cell culture that held up in
greenhouse and field evaluations over several generations. Since there are
not other sources of resistance to this fungus in celery germplasm, this
material looks promising.

Is there a realistic possibility that somaclonal variation can be useful in
plant breeding programs? As Peschke and Phillips (1992) point out, this
question as to whether somaclonal variation is a useful way of generating
variability is stiil largely unanswered. The answer awaits a better under-
standing of the basis for somaclonal variation at the molecular leve.. Cer-
tainly, research activity as reflected by refereed publications and interest by
major plant biotechnology companies indicate that there is definitely a
reduction in research activities in this area.

The recent work by Duncan’s (1991a-c) group indicates that there may be
limited uses of somaclonal variation as a part of a plant breeder’s program.
They attributed their success (Duncan et al., 1951c) to extensive field testing
under stress conditions at multiple locations (both under stress and non-
stres), adequate quantities of seed (sorghum is significant in that it pro-
duces a large number of seed per plant), family selection and bulking in early
generations. and backcrossing, Recent observations by several laboratories
of fall armyworm tolerance :n sorghum (Isenhour et al., 1991), and bermuda-
grass (Croughan and Quiseiberry, 1989), and leafhopper resistance in
potato (Lentini et al., 1990) fi >m somaclones, suggest this strategy merits
further consideration.

TRANSGENIC PLANTS

One of the best approaches to improve the stress tolerance of sorghum or
any important crop species s to insert a foreign gene conferring the desirable
trait directly into the desired cultivar. Other desirable agronomic traits
should be maintained. In dicot crops, gene transfer is possible using Agro-
bacterium tumefaciens-mediated gene transfer. There are many genes avail-
able including those providing for resistance to herhicides (Mazur and Falco,
1989; Schulz et al., 1990), insects (Hidlcr et al., i287; Vaeck et al., 1987;
Perlek et al., 1990), viruses (Nelson et al., 1988; Lawson et al., 1990),
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improvement of seed protein quality (De Clercq et al., 1990), and salt stress
(Tarczynski et al., 1993).

Transformation of monocot crop plants has been more challenging since
monocots are not generally considered to be susceptible to Agrobacterium-
mediated gene transfer, and this has resulted in focus on protopiast-medi-
ated DNA uptake and recently microprojectile bombardment (Morrish et al.,
1993 for a review). There are many difficulties in protoplast-mediated
transformation of mor.ocots since most cultivars will not regenerate from
protoplasts, and those that do, do so at low regeneration frequencies. Fertil-
ity problems and somaclonal variation further complicate the process. In
spite of this, transgenic maize (Rhodes et al., 1988) and rice (Datta et al.,
1990; Hayashimoto et al., 1990) plants have been obtained from a very
limited number of cultivars. Using the microprojectile bombardment tech-
nique (Klein et al., 1987), transformation of a number of crop cultivars has
been reported including maize, wheat, barley, and rice (Morrizh et al., 1993).

There are no reports on the transformation of sorghum using either of
these approaches. Protoplasts from sorghum can be obtained, but they are
fragile and difficult to induce to divide and form callus (unpublished results,
Bhaskaran and Smith). Certainly with more research effort on sorghum
transformation and the availability of genes for stress tolerance, one can be
optimistic that these technologies will be successfully applied to sorghum.
Sorghum has a natural tolerance to drought stress, and several groups are
trying to identify sorghum stress-tolerance genes to transfer to other species.
A major concern, moreover, with sorghum is that it is cross-compatible with
ceveral weeds, and there is concern that foreign genes could spread into
undesirable weed species.

GENOME MAPPING

Restriction fragment length polymorphism, RFLP, is one of the newer
molecular tools for crop improvement. (For reviews see Tanksley et al., 1989;
Paterson et al., 1991; Paterson and Wing, 1993) This is a very powerful tool
that uses fragments of DNA differing in length (or size) as markers to
identify and follow chromosome segments in breeding programs and to more
rapidly identify desirable genetic combinations in progeny. Using single copy
DNA as a probe, one can follow the segregation of homologous regions of the
genome in individuals from segregating populations. DNA fragments can be
produced by digestion of the DNA with a variety of restriction enzymes that
each cut the DNA at specific base sequence sites. The unique and varying
sizes of DNA produced are separated on an agrose gel and will create a
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“fingerprint” specific for that organism. These size differences in DNA
fragments are referred to as restriction- fragment-length polymorphisms.
DNA-DNA hybridization that occurs between homologous DNA fragments
can then be used to detect specific DNA fragments in the plant of interest.
To detect the DNA RFLPs, the gel is probed with small (1-2 kb) pieces of
chromosomal DNA. A collection of these cloned DNA probes is referred to as
alibrary. These probes hybridize with specific DNA fragments, and they are
referred to as RFLP markers. These RFLP markers can be used to construct
genetic maps of a segregating population. Thus chromosome segments can
be follow:d during recombination, and the inheritance patterns follow Men-
delian rules. These RFLP maps are useful when they are used in conjunction
with analysis of conventional markers in a plant breeding program. The
RFLP marker is then closely linked with a gene of interest. The RFLP
marker is used to identify progeny that should also contain the gene of
interest; therefore, one cen more rapidly identify desirable segregants.

There are many laboratories now constructing R "LP linkage maps in
sorghum to identify drought tolerance, osmotic adjustment capabilities,
striga resistance, rhizomatousness, tillering, narrow leaves, and genes as-
sociated with resistance/tolerance to other biotic and abiotic stresses. Some
recent publications on mapping activities in sorghum are Hulbert et al.,
1990; Binelli et al., 1992; Pereira et al., 1992; Wkhitkus et al., 1992; and
Paterson et al., 1993. Laboratories involved in sorghum mapping projects
include Texas A&M University, Purdue University, Kansas State Univer-
sity, lowa State University, CSIRO at the University of Queensland in
Australia, and University of Milan in Italy.
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Breeding Methods in Wheat for
Improved Stress Tolerance: Emphasis
on use of Triticeae Relatives

Abdul Mujeeb-Kazi
CIMMYT
México, D. F., Mexico

ABSTRACT

Wheat (Triticum aestivum L.) improvement utilizing Triticeae relatives as sources
of substantial genetic diversity encompasses an interspecific and intergeneric
hybridization methodology. For either approach to be practically beneficial, ge-
netic recombination between chromosomes of Triticum aestivum and the alien
species is crucial. Baged on genetic proximity, interspecific hybridization is the
prioritized simplistic approach as a consequence of genomic similarities of wild
relatives with wheat. Genetic divergence reflected through genomic dissimilari-
tieg in an asset and has a complex exploitation intergeneric hybridization method-
ology where diagnostic techniques form an essential support for tracking alien
DNA. The focus is on abiotic stresses and a biotic stress of global significance.

INTRODUCTION

In the Triticeae, the annual and perennial species provide a unique source
of genetic variability for wheat improvement. Species with dissimilar
genomes than wheat fall in a group of 325 members of which approximately
250 are perennials. Exploitation of this group of species has been more with
the Thinopyrum species, a group that possesses enormous diversity for
biotic/abiotic stresses that extends from diploids to decaploid polyploidy
levels. The two groups of stresses are categorized as being associated with
dynamic/static systems based on presence or absence of a pathogen. Hence,
for abiotic stresses tolerant germplasm is anticipated to maintain its toler-
ance much longer than germplasm resistant to biotic stresses.
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SALINITY TOLERANCE

Conventional Germplasm

Some conventional germplasm is considered s salt tolerant and has a
long history of being classified as such. Prominent are the wheat cultivars
Chinese Spring, Kharchia 65, Lu 26S and Shorawaki. The cultivar
Shorawaki has been little publicized. Some other cultivars that still require
rigid evaluation like Sakha 8, Z:NH-9, WH-157, Candeal and the new release
KR1-4, which is a derivative fron: a cross involving Kharchia 65, an elite
cultivar for saline sodic soils. In hydroculture tests Kharchia 65, Lu 268 and
Shorawaki exhibited desirable growth and potassium/sodium (K/Na) rela-
tionships. The susceptible wheat cultivar Yecora had poor plant growth
(Table 1).

A restricted conventional germplasm base exists for wheat improvement
and exploitation of additional genetic diversity seems significant. Several
reports over the past few years have associated alien germplasm with
salinity tolerance attributes, and evaluation tests have provided optimism
for incorporating these in wheat improvement. The use of Thinopyrum
elongatum (2n=10x=70) spans a 17-year duration, but practical benefits
have apparently been surmounted by associated research complexities. The
prognosis, however, is quite encouraging. Our group feels that among the
distant alien species with salt tolerance attributes, the diploids (2n=2x=14)
Th. elongatum and Th. bessarabicum are prime candidates. Th. elongatum
has been exteunsively investigated (Dvorak et al., 1988). They concluded that
at least three chromosomes additively contributed to salinity tolerance (3E,
4E, and 7E). We have crossed this species as the female parent to a
commercial wheat (Goshawk “S”). This is not an attempt to repeat the
previous investigation, but an attempt to capture possible cytoplasmic
effects of Th. elongatum and also to have an elite wheat cultivar in the

Table 1. Screening in hydroponics of some Triticum aestivum L. cultivars at 150
mol m™® of NaCl under 50 days of stress with measures of dry weight (g)

and Na, K from cell sap.

Na K
Cultivar Dry WL (p) (mol m*)
Shorawaki 2.7 31 198
Lu26S 2.0 37 227
Kharchia 65 2.2 n 22
Chinese Spring 44 31 225
Yecona 1.1 69 261

150 mol mNaC1, 50 days stress with a 20:1 Na:Ca ratio (Gorham et al., 1965).
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background to facilitate field screening apart from being susceptible to salt
stress. Th. bessarabicum is well recognized for its salt tolerance potential
(Gorham et al., 1985) and is being utilized in our research. It forms the
category of intergeneric hybridization.

Intergeneric Hybridization

The current status of Thinopyrum bessarabicum stands with the disomic
5J chromosome addition line to T' aestivum cultivar Chinese Spring impart-
ing salinity tolerance based on hydroponic evaluations. The amphiploid of
Th. bessarabicum with cultivar Chinese Spring (2n=8x=56) was salt tolerant
and the 2J disomic addition susceptible (Forster et al., 1987, 1988). The
positive effect of the 5J chromosome addition, however, remains inconclusive
and results elsewhere have given a varied response, more towards suscep-
tibility. As a consequence of this uncertainty, we proceeded to produce the
complete Th. bessarabicum chromosome addition line series (7 chromosomes
in total) preferably in a wheat background superior to Chinese Spring, e.g.
Genaro 81. The addition line set has been tentatively completed (Table 2)
and some lines have been tested for salinity tolerance under hydroponics
(Table 3). At least chromosome additions 3J and 7J stand as positive
contributors like 3E and 7E of Th. elongatum. We find that g:oup 6 also
expresses a positive response that warrants a further check. All these 44
chromosome derivatives have been selected by utilizing several diagnostic
markers. They are meiotically stable (22 bivalents), possess superior agro-
nomic characters and are highly fertile. Subsequent genetic manipulation
procedures with the desirable single chromosome disomic additions are
following a routine cytogenetic methodology. However, the use of Chinese
Spring phlb genetic stock offers a more forceful genetic manipulation
approach. Its role is considered crucial for complex characters like salinity
tolerance. The alternate route used is apparently more promising. Here, the
ph1b stock is hybridized to the perennial Chinese Spring (Ph) x Th. bes-
sarabicum ¥, hybrid. The resulting BCI derivatives possess 49 chromo-

Table 2. Tentative identification through various diagnostic markers of the seven
homoeologous disomic additions of Thinopyrum bessarabicum to

Triticum aestivum.
Diagnostic markers

Group Cytological Morphological Biochemical + Isozymes
1J 22I1 -- Glu

p)] 221 Tapering SOD

ki 221 Solid EST

4] 221l Blue PGM

b 221l Clavate B-AMY

6J 221 .- GOoT

y 2211 .- a-AMY
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Table 3. Hydroculture screening and measurements of some addition lines of Th.
bessarabicum in wheat for: Dry weight (g) and K:Na ratios (cell sap), and

50d NaCl stress at 150 mol m™',
Germplasm Dry Wt. (g) K/Na
Cs 4.5 45
CS/Th 3.7 9.2
k) § 1.0 19
k) 1)} 2.7 43
6J 2.1 13
¥i) 1.4 12
Yecora 1.1 3.7

1Salt strass from NaCl. Media and other saits as In Gorham et al., 1985,

somes, 42 of wheat but heterozygous for Phph. The 7 chromosomes of Th.
bessarabicum behave as univalents at meiosis. Since BCI plants are self-fer-
tile, their crosses with maize yield polyhaploids and possess the dominant
or recessive pairing locus (Ph or ph) with variable additional alien chromo-
somes from Th. bessarabicum. The ph + alien haploids will be high pairing
types and yield alien transfers. Such germplasm shall be generated faster
and is considered more effective for transferring complex traits like salinity
from alien species into wheat.

An alternate breeding methodology route is the use of close Triticeae
relatives based on genomic relationships and a high degree of recombination
with wheat. This area of breeding is classified as interspecific hybridization.

Interspecific Hybridization

Triticum tauschii (Aegilops squarrosa; 2n=2x=14, DD)is recognized as the
D genome donor to hexaploid wheat (T. aestivum, 2n=6x=42, AABBDD). Its
numerous accessions offer a closely related gene pool with enormous genetic
diversity for biotic and abiotic factors. We have indiscriminately hybridized
the various T. tauschii accessions with T\ turgidum producing synthetic
hexaploid wheats. Currently 250 synthetic hexaploids, each involving a
different T. tauschii accession, have been produced over several cycles of
hybridization. Some of these synthetics have undergone screening for salin-
ity tolerance and shown a positive response to salt stress in hydroculture
(Table 4). The tolerance influences for the synthetics are based on plant dry
weight values and greater than one Na:K ratios as compared to the generally
poor performance of the respective durum wheat controls. These resistant
synthetic hexaploids have already entered our wheat breeding program.

The ideal efficient technique for exploiting T' tauschii variability in wheat
improvement requires at least two pre-requisites: (i) Reliable screening for
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Table 4. Selocted five synthetic hexaploids from Triticum turgidum x T. tauschii
(Ae. squarrosa); 2n=6x=42; tested positive for the Na:K discrimination
trait associated with salinity tolerance in hydroculture testing. Levels 50
days after a 50 mol m* NaCl concentration was reached.

Synthetic hexaploid (7. tauschii CIMMYT) K:Na
_pedigree and attribute identificr number ratios
ROK"S"/KMLI'S™ 12
ROK"S"/KMLI'S"//Ae. squarrosa INTERVER-214 1.1
PBW 34 12
PBW 114/Ae. squarrosa®* 133
CPT/GEDIZ/3/GO0O//JO"S"/ICR"S" L1
CPT/GEDIZ/3/GOCO//JO"S" ICR"S"//Ae. squarrosa INTERVER-206 164
MEX//VIC/YAV 1.5
MEX//VIC/YAV/Ae. squarrosa INTERVER-434 177
DOY 1 0.7
DOY 1/Ae. squarrosa INTERVER-510 35

:_K:Nn discrimination ratios; higher valuos posttive for salinity bl eranca. Methodology according to Gorham et al., 1985,
Synthetic obtalned from H. Dhaliwal. instead of tha durum PBW114 we have used PBW34 in the evaluation, since both

are suscoptible.

biotic and abiotic factors, and (ii) hybridization with Triticum species. Direct
T. tauschii hybridization with T. aestivum cultivars stands at a priority
(Alonso and Kimber, 1984; Cox et al., 1990, 1991; Gill and Raupp, 1987),
since backcrosses onto F, hybrids readily give 11/12 (92 %) of the genotype
of the recurrent parent in a single growing season. This inference was drawn
by Alonso and Kimber (1984) based on stem rust transfers from T. tauschii
into the cultivar 'Chinese Spring’.

When screening constraints for T. tauschii accessions occurred, we sacri-
ficed efficiency for agriculturai practicality in order to obtain a plausible
solution. Such constraints existed for identifying with reliability tolerant T
tauschii accessions to salinity. However, the T. turgidum cultivars x T'
tauschii accessions leading to synthetic hexaploids did overcome this situ-
ation and gave conclusive resistance screening data.

Screening at the synthetic hexaploid level for salinity is a viable option
since the 7. turgidum cultivars (those in the pedigree) were susceptible.
Selections of synthetic hexaploids yielded selections with positive value for
wheat improvement. The intri ‘.cies of the A, B and D genome associations
that exist are circumvented, and even if the tolerance effect observed is
diluted in the hexaploid screened, the tolerance level is recognizably higher
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than what our wheat germplasm demonstrates for salinity. We are not
discounting the fact that D genome interactions with the A and B genomes
of durum wheat exist through gene suppression or enhancement mecha-
nisms. This generalization however, may not be valid for all synthetic
hexaploids, and now with the wide array of genetic diversity generated,
further elucidation of the D genome interactions with the A and B genomes
shall inevitably emerge; presumably more explicit for simply inherited
characteristics.

With the tolerant synthetic hexaploids identified (Table 4), the following
options are available for exploiting the germplasm for wheat improvement:

(i) Exploit the synthetic hexaploids by crosses onto susceptible T. aestivum
cultivars and select the resistant/tolerant segregants exercising initial cau-
tion associated with the necrosis genes present in the synthetics as a
consequence of the T' turgidum cultivars; and (ii) From the resistant/toler-
ant synthetic hexaploids exploit the T. tauschii accessions (inference analy-
sis from Table 4) by direct crosses onto the elite but susceptible T aestivum
cultivars using recurrent backcrossing with T. aestivum parents as the
procedure, coupled with cytology to extract stable 2n=6x=42 euploids.

Using this information we have now targeted T. tauschii accessions for
direct hybridization with susceptible and elite T" aestivum cultivars. These
are cultivars 'Oasis’, "Yecora’ and 'Ciano 79’. Several F, hybrids were ob-
tained and predominantly all had the expected 2n=4x=28, ABDD constitu-
tion. Only three hybrids had 27 chromosomes. Two backcrosses and selfings
should forge the way to euploid 42 chromosome plant status and their
screening for resistance.

New synthetics covering more T “:uschii accessions than our present 250
are also being produced, with emphasis subsequently placed on achieving
direct transfers from T. tauschii targeted accessions to 7' aestivum. These
approaches are anticipated to contribute to the availability of additional
genetic variability for wheat breeding utilization, germplasm conservation
and global distribution. “International distribution” of “synthetic
hexaploids” has merit for screening in national agricultura) programs hav-
ing different objectives and varied adapted germplasm.

General Considerations
Rainfed agriculture: 1B/1R translocation wheats. Wheat cultivars with

the 1BL/1RS translocation are cultivated on about 5 million ha. These
cultivars have been reputed to possess genes for wide adaptability, stability
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and a high yield potential. In som« countries wheat cultivar releases and
advanced testing lines possessing the 1BL/1RS translocation are phenome-
nally high, of which the National Uniform Wheat Yield Trials (NUWYT) of
Pakistan provides data to validate the above contention. The candidate
cultivar lines for future releases in NUWYT trials are spread over three
categories: normal, short and rainfed. Analyses of the 1BL/1RS translocation
in the germplasm over 2 years reflects upon the preponderance of these lines
(Table 5). Moreover, in the rainfed catcgory, the percentage of 1B/1R translo-
cation lines are exorbitantly high (approaching 90%), indicating that the rye
segment may be a contributing factor under such growing conditions. This
contention has to be tested further and must be strictly evaluated using near
isogenic material that currently is being developed in CIMMYT. Other rye
translocations can be induced or those existent should be further exploited.
Notable is the 5AS/5RL translocation for copper efficiency and chromosome
2R for copper toxicity (Manyows and Miller 1991). A airailar potential also
exists for additional tolerant genes for aluminum tolerance for which some
rye sources are extremely tolerant even at 100 ppm (wheat cultivars with
aluminum tolerance are screened at 46 ppm).

A Look tc the Future

Wheat cultivars (resistant/tolerant to biotic/abiotic stresses) will continue
torely on genetic variability. Variation sources from alien relatives are ideal
for contributing novel gene pools of genetic diversity. The transfer mecha-
nisms of these alien genes are equully diverse, but we envision that some
priorities could be set in order to achieve practical goals from such alien
transfer programs. These prioritizs include:

1. Enhanced genetic recombiration at the F, or BCI stage mediated by the
ph locus.

Table 6. The percent of 1B/1R translocated wheat entries in the Pakistan National
Uniform Whe=st Yield Trials (NUWYT) during the years 1989-90 and 1990-

91.
Testing years
Categories 1989 - 1990 1990 - 1991
Normal 15 47 16 44!
Short 12 67 14 57
Rainfed 11 91 15 73

' Percent 1B/1R entrles
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2. Infusion of polyhaploidy through sexual crosses of wheat/alien deriva-
tives with maize, Teosinte, Tripsacum and Sorghum.

3. Use of diagnostic markers for detecting cryptic exchanges as exempli-
fied by fluorescent in situ hybridization, and

4. A greater emphasis on interspecific hybridization and concentration in
intergeneric hybridization methodology for use in diploid species.

We have had success through intergeneric hybridization in the form of
cultivar releases and register :d ger.etic stocks suited for saline/sodic snils
(Pasban-90), rainfed agriculture (Rohtas-90) and Helminthosporium sati-
vum resistance (Chirya, Mayoor, Tia). These are all soil-related abiotic/biotic
stresses. Innumerable challenges still exist for stress improvement of wheat.
Alien transfers in durum wheat improvement is now receiving attention.

Basic research in stress resistance offers both high theoretical potential
and possibilities for exciting discoveries. The ultimate test of all research
projects shall be measured through practical gains — the preductivity of
the crop.
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Role of the Soil Scientist in Genetic
Improvement of Plants for Problem Soils

Charles D. Foy
USDA, ARS, Natural Resources Institute
Beltsville, MD

ABSTRACT

This pap:r reviews soil fertility problems that may lend themselves to a plant
breeding appreaci: and discusses the benefits and constraints of such an effort.
Specific topica include acid soil infertility, with emphasis on Al and Mn toxicities
and nutrient elerneat unavailabilities, differential plant tolerances to stress, cur-
rent knowledge concerning the genetic control of released stress-tolerant culti-
vars, the nhysiological and biochemical mechanisms of stress tolerance, and fi-
naliy, the nhuolute necessity for closer collaboration among soil and plant scien-
tists in thie effort. Due to worldwide activity, tailoring the plint to fit the soil has
nov; hecome respectable. We anticipate that current awareness of the need for
conservation of soil, water and energy rerources and recent political popularity cf
low input, sustainable agriculture will accelerate progress in the field and lead to
increased financial support.

INTRODUCTION

Crop production is the result of complex interactions among plant species,
soil, and climate. This relationship suggests that problem solving relative to
plant growth would, of necessity, involve collaboration among plant and soil
scientists. However, until about 15 years ago, such collaboration was rare.
Scientists evidently telt that they did not need each other, or thought that
collaboration was more trouble than it was worth.

In the past, our approach to soil fertility problems has emphasized
“changing the soil to fit the plant”. Plant breeders developed plant cultivars
having climatic adaptation, insect and disease resistance, high yield poten-
tial and high quality, while soil srientists adjusted fertility factors to fit the
plant. This approach was the “Corn Belt Philosophy”. As a result, many crop
cultivars were developed under nearly ideal conditions of fertility and pH,
and were consequently “incubator babies”. They thrive in the protected
environment where they were developed, but often cannot tolerate the
stresses of the outside world. Such cultivars may develop mineral deficiency
or toxicity problems when grown on soils that are only slightly different from
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those on which they were developed. For example, BH-1146 wheat, devel-
oped in Brazil, produced 40 bu/a on a pH 4.7 oxisol at Campinas, Brazil (C.
D. Foy, personal observation, 1974). Under the same conditions, the Green
Revolution cultivar, Sonora 63, barely produced seeds.

Even in breeding programs that emphasized adjusting the soil for “opti-
mal” production, one factor was sometimes overlooked or not adjusted.
Surface soils (plow layers) of breeding plots are generally limed according to
soil test recommendations, but surface-applied lime does not generally
penetrate zones below the plow layer, and mixing lime with subsoils is
generally not economically feasible. Hence, subsoils of breeding nur-eries
could be sufficiently acidic (pH 5.0, or below) to produce Al toxicity that limits
rooting depth and branching. The presence of such an unknown, acidic
subsoil could, therefore, result in the inadvertent selection of Al-tolerant
plants, particularly in years of drought, when plants had to use water in the
acidic subsoils. This may account for the fact that older Ohio wheat cultivars
are more tolerant to acid soils and Al toxicity than those from Indiana (Foy,
et al., 1974). Soils of eastern Ohio (Wooster) are now known to equilibrate at
lower pH levels than those of western Indiana (Purdue Univ., West La-
fayette) (Campbell and Lafever, 1976). Hence, the Al-tolerant cultivars
selected at Wooster result from the influence of the acidic subsolil, or to a
failure to lime surface soils to a pH of 5.5, or higher, to precipitate and
detoxify Al. Newer cultivars developed at Wooster have less acid soil toler-
ance than the older cultivars, indicating that something about current
practices is reducing Al stress in breeding nurseries. This could result from
more effective liming practices or perhaps heavier use of P fertilizers that
could also precipitate and detoxify Al.

The idea of tailoring plants to fit problem soils has been slow to receive
acceptance. In the past, research administrators have been difficult to
convince that plant genetic variability is worth exploiting in attacks on goil
fertility problems. A charce meeting between Dr. Dora Kemper (USDA) and
Dr. Tej Gill (USAID) in Pakistan led (two years later) to collaborative eforts
»f USAID, Cornell University and ARS at Beltsville to hold the first inter-
national meeting “Plant Adaptation To Mineral Stress in Problem Soils”
(Wright and Ferarri, 1976).

International interest, stirred by the 1976 conference led to a second
meeting “Crop Tolerance To Suboptimal Land Conditions”, sponsored by the
American Society of Agronomy (Jung, 1978). Then, in 1982, M. N. Christian-
sen and C. S. Lewis edited a book “Breeding Plants For Less Favorable
Environments” (Christiansen and Lewis, 1982). Worldwide interest in the
plant genetic approach to soil acidity problems led to a series of conferences,
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each entitled “Plant-Soil Interactions At Low pH”. The first of these was held
at Grande Prairie, Alberta, Canada (Taylor, 1988). The second conference
was at Beckley, WV (Wright et al.,, 1991), and a third is scheduled for
September 12-16,1593 at Brisbane, Queensland, Australia. Since 1976, many
other international conferences have devoted parts of their programs to the
idea of fitting plants to problem soils.

The marked change in thinking (from modifying the soil to modifying the
plant) has been fueled by current awareness of the need for conservation of
soils, water and energy and the cortrol of groundwater pollution. The plant
genetic approach is highly compatible with tae newly popular, low mput,
sustainable agriculture. Selecting a stress tolerant plant may be more
economical than making the soil more suitable for a more demanding plant.

Liming and fertilizing soils to “optimal” levels was profitable on the
moderately acidic soils of the USA when lime, fertilizers and fuel were
relatively inexpensive. However, in many parts of the world, this approach
has never been practical, and even in developed countries, energy costs,
conservation concerns and fear of environmental pollution have caused a
re-examination of these agricultural practices. In both developing and de-
veloped countries, some soil conditions are not economically correctable with
current technology. There is a need to seek greater accommodation with
nature rather than always attempting to change it.

In some paris of the Tropics, scientists have developed technology based
on crop production with mimimal inputs (Sanchez ard Salinas, 1981) for
marginal soils. In such cases, tailoring the plant to fit the soil is the most
reasonable approach in trying to cope with production constraints imposcd
by acid, infertile soils. Native farmers on marginal land must live with a
minimum input system, and in fact, a high input technology in such situ-
ations can be unprofitable or even harmful One example of this is the
increase in “take all” disease of wheat on Brazilian oxisols that were limed
to “Corn Belt” standards (pH 6.5, or above). Liming of such soils to even pH
6.0 can induce Zn deficiency in corn.

An outstanding example of tailoring the plant to fit problem soils is the
program of INTSORMIL designed to develop genotypes of sorghum and
millet that are better adapted to acid, infertile or dry soils of Africa and South
America, where these crops sre the main food sources for subsistence
farmers (Axtell, 1992; Duncan , 1991; Gourley and Munoz, 1992; Maranville,
1992; Stegmeier, 1992 and Sullivan, 1992.
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SOIL STRESS PROBLEMS AMENABLE
TO APLANT B."EEDING OR SELECTION SOLUTION

Soil situations and problems that may lend themselves to a plant genetic
approach include the following: (a) Acid soils in developing countries where
even liming the surface svil may be economically prohibitive; (b) acid,
Al-toxic subsoils that are difficult to lime (Al-induced shallow rooting is
probably a major cause of plant sensitivity to drought injury in the eastern
USA: () acidic mine spoils where rapid plant cover is needed at minimal
cost; {d) steep pasture or forest lands that are strongly acidic, infertile and
difficult to lime, even on the surface; (e) strongly acidic, P-fixing surface soils
and subsoils of the Tropics (Campo Cerrado of Brazl and Llanos of Colom-
bia); (f) soils polluted with heavy metals; (g) saline soils; (h) calcareous soils
with Fe unavailabitiiy or other micronutrient problems; (i) dry soils and even
compacted soils (Foy, 1983; Stegmeier, 1592). Aluminum tolerant cultivars
would also be useful in acid soil rotations (smell grains with potatoes or
tobacco) in which soil pH must be kept below about 5.2 for control of potato
scab and tobacco root rot.

Plant breeding may also be used te improve nutrient element efficiencies,
narticularly those of N and P on “good soils”. Fo1 example, N-efficient
genotypes would make more efficient use of energy and fertilizers and reduce
the liklihood of groundwater pollution. Plant breeding might be used to
regulate the mineral composition of plant products and thereby, improve the
quality of food and fec] for animals. For example, forage plants that accu-
mulate Mg effectively in the presence of K, or other cations that compete
for absorption, might reduce the risk of grass tetany in grazing animals
(Allzn and Robinson, 1980), and plants that exclude or reduce the accumu-
lation of Cd might reduce the accumJ:.tion of this element in humans.

If plant breeding or selection is to be successful in solving preblems of snil
mineral stress, there must he genetic variability between and within crop
gpecies for tolerance to the stress factors involved (Devine, 1982). Such
variation has been shown in many species.

BENEFITS OF A PLANT GENETIC
APPROACH TO SOIL STRESS PROBLEMS

The plant genetic approach is ecologically clean, energy conserving, and
usually cheaper than amending the soil. Hence, it is compatible with na-
tional and international goals of economical food production, consertation
or soils, water and energy, and control of pollution. Specific benefits are:

188



1. Introduction of stress-tolerant cultivars can increase crop yields on
stressed production areas. Examples are Fe-efficient strains of weeping
lovegrass (Eragrostis curvula) and soybeans for calcareous soil (Voigt et al.,
1982; Bahrenfus and Fehr, 1980), and Al-tolerant wheats for acid soils of
Brazil (Wright and Ferrari, 1976), and Al tolerant, drought resistant sor-
ghum and millet cultivars for use in low input, subsistence agriculture on
impoverished soils of Africa and South America (Axtell, 1992;Duncan, 199];
Gourley, 1992; Maranville, 1992; Stegmeier, 1992 and Sullivan, 1992).

2. Crop acreage can be expanded to marginal soils not previously suited
to the crop species. For example, wheat production has been expanded into
the Campo Cerrado of Brazil only because Al- tolerant cultivars have been
developed and distributed to growers (Silva, 1976). Because of INTSORMIL,
sorghum and millet, previously grown unprofitably on good soils, can now
be grown profi:ably on marginal land not suited for more stress sensitive
crops (Gour] >y, 1992 and other papers in the same publication).

3. Plant breeding or selection can be used to develop cultivars of new and
more profitable crop species for areas with very specific problems. One
example is the introduction of an Al and cold tolerant strain of limpograss
(Hemarthria altissima) for possible use on strongly acidic, high altitucle mine
spoils or on acid sites in more northern latitudes (Foy and Oakes, 1984).

4. Use of an Al-tolerant cultivar on an acid mine spoil may convert
insoluble and unavailable P to organic forms that are available to more
demanding plants, and also improve the physical and microbiological prop-
erties of the soil. Hence,such plants can pave the way for metal-sensitive,
but potentially meve profitable, crops. The same approach would also be
successful in improving acid, P fixing ultisols and oxisols of the Tropics.

OBJECTIONS TO THE PLANT BREEDING
APPROACH TO SOIL FERTILITY PROBLEMS

1. Stress tolerant genotypes may be low yielding in the absence of stress.
This is nui necessarily true. For example, Al-tolerant cultivers of snapbean,
cotton, tomato, wheat anu barley produce high yields in the absence of Al.
Cardinal wheat, which has a moderate degree of Al tolerance, and is used in
acid soil rotations with potatoes in Ohio, outyields standard cultivars on
non-toxic soils at pH 6.5 (Lafever, 1988).

2. Al-tolerant wheat cultivars (from Brazl) are tall and hence, may lodge
under high N fertilization. However, Camargo et al.(1980) reported a source
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of Al tolerance in the short wheat cultivars Tordc and Ciete Cerros; hence,
Al-tolerant wheats need not be iall.

3. Mineral content and thus crop quality of stress tolerant cultivars may
be too low for optimal animal health. Again, this is nou aecessarily true.
Al-tolerant BH 1146 wheat is more Mg efficient than Al-sensitive Sonora 63.
Evidence aiso indicates that Al-tolerant plants are frequently mcre efficient
in absorbing Ca and P when these elements are deficient or less available
in growth media (Foy, 1988). Kven if Al-tolerant plants were lower in P or
Mg, increased growth might compensate and justify the use of feed supple-
ments containing these elewents.

4. Releasing stress tolerant or nutriert efficient cultivars may discourage
the use of lime and fertilizer. In fact, the opposite may occur because such
cultivars will promote the use of marginal land that received no treatment
previously. With stress tolerant cultivars, such soils could become economi-
cally productive with low to moderate inputs of lime and fertilizers. The use
of Al-tolerant cultivars and “spoon feeding” of fertilizers (prescription agri-
culture) may be more profitable than conventional agriculture on acid, P
fixing soils of the Tropics. The plant breeding approach to soil fertility does
not mean the abolition of lime and fertilizer use; instead, it proposes to
exploit plant genetic variability in solving difficult problems of soil fertility.
Lime and fertilizer inputs would still be needed but at lower levels than
currently used on crop land and more marginal lands could be brought into
oroduction.

5. The use of stress tolerant, nutrient efficient cultivars will bleed soil
fertility levels to the point that not even tolerant cultivars can be grown.
This conclusion is also unjustified. Actually, the use of such plants would
only promote the effective use of fertilizer nutrients already fixed in the soil
(P, Fe) or those used as soil amendments. The goal is profitable and
sustainable (not necessarily maximal) yields of acceptable quality with lower
inputs.

6. Breeding for tolerance to one stress factor may increase vulnerability
to other stresses. This is a valid concern but not necessarily true. For
example, some acid soil tolerant, tissue culture-derived, regenerant sor-
ghum lines are also tolerant to a combination of salinity and drought (R. R.
Duncan, personal communication; Foy, et al., 1993). As another example,
seashore paspalum, Paspulum vaginatum, Swertiz, is reportedly tolerant to
salinity, drought, acid soils and excess heavy metals (Ni and Cd). It grows
over the pHrange of 4.0 to 9.8; hence, it can be used on acid soils or calcareous
areas (R. R. Duncan, personal communication). Still another example is
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Cardinal wheat, developed for tolerance to acid, Al-toxic soils in Ohio
(Lafever, 1988). This cultivar not only grows well on acid soils but also
outyields standard cultivars on “good” soils at pH 6.5.

7. An endless number of plant genotypes could be developed to fit specific
soil stress problems. Obviously, there is a practical limit to the number that
should be produced. For example, a low input wheat farmer of the Campo
Cerrado region in Brazil might grow an Al-tolerant cultivar, such as BH 1146,
and in so doing, use less lime and fertilizers than would be needed with an
Al-sensitive cultivar to produce a profitable yield. But, perhaps only a few
cultivars could meet the needs of the region. Then, if the application of lime,
gypsum and superphosphate could be afforded to reduce Al saturation and
increase the pH of subsoils (Ritchey et al., 1990; Messick et ai, 1982; Foy,
1992), switching to Sonora 63 or another Al-sensitive, but potentially nhigher
yielding cultivar,might be profitable.

OBJECTIVES OF SOIL-PLANT
COLLABORATIVE RESEARCH

1. Identify both present and potential mineral stress factors in problem
soils. I emphasize “potential” because what is wrong with a soil depends on
which plant species or genotype are involved.

2. Screen germplasm banks for stress tolerance. This requires the devel-
opment of rapid, simple screening procedures for soils and/or nutrient
solutions.

3. Collaborate in selecting and/or breeding superior genotypes for specific
problem soils.

4. Determine the genetic, physiological and biochemical mechanisms
controlling plant tolerances to specific stress factors. Improved under-
standing of such processes will contribute to basic scientific knowledge and
may also aid in refining plant screening techniques and soil management
practices.

5. Determine interactions among mineral stress and other environmental
factors, such as water, light, temperature, air pollution, pathogens, rhizobia
and mycorrhizae. (We have preliminary evidence that Al tolerance and ozone
tolerance can occur in the same genotype, (C. D. Foy and E. H. Lee,
unpublished). Acid soil olerance and drought-salinity tolerance occur in the
same genotype of sorghum (Foy et al., 1993).
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EXAMPLES OF WHY SOIL AND PLANT
SCIENTISTS SHOULD COLLABORATE

A colleague once asked me to look at his “sick” pea plants. He was
conducting a herbicide experiment but recognized that the plant symptoms
observed were not characteristic of the injury known to be produced by this
particular herbicide. Because the symptoms resembled those of Mn toxicity,
we analyzed the leaves and found 4,000 ug/g Mn, many times the concentra-
tion required for toxicity in this specie. As a soil scientist confronted by a
sick plant, the first question I asked was “What is tt.e soil pH™? My colleague
had not measured it, but we found that it was 4.6-4.7. After further ques-
tioning, I learned that he had also autoclaved the soil before applying the
herbicide. In addition, the soil was high in total Mn. Hence, this combination
of low pH, high Mn soil, autoclaving and a Mn-sensitive plant created ideal
conditions for the development of Mn toxicity. Autoclaving probably in-
creases Mn availability by killing the soil bacteria that ordinarily oxidize
divalent and toxic Mn to Mn dioxide that is less soluble and toxic. From the
standpoint of the original objective, the herbicide experiment was a total
loss. If a soil scientist had been involved, the soil pH would have been checked
and the hazards of autoclaving emphasized.

On one occasion, [ inherited a forage field experiment designed to measure
the lime responses of several species. When making the first harvest, I found
that the lime response was very erratic. A soil pH grid of the plot area showed
that plots giving no lime response already had pH values of 5.8 to 6.0 where
little or no response would be expe:ted, even with acid sensitive plants.
Later, I found that this end of the jlot area had been a dumping site for
hatchery refuse. The other end of th': plot area had pH values ranging from
4.5 to 5.0 where a lime response would be expected with acid soil-sensitive
plants. If a soil scientist had been involved in laying out these plots, he or
she would (or should) have made a pH map of the area and ruled out the
high pH end of the site, or at least arranged replications so as to minimize
the effects of variation in soil pH.

In another episode, we had shown that two barley cultivars differed
sigunificantly in tolerance to Al in acid soil and nutrient solutions. Dr. D. A.
Reid,the collabcrating breeder, made crosses of the Al-tolerant and sensitive
cultivars and was screening the progeny for Al tolerance in fish tanks of
nutrient solutivn. The Al-tolerant and sensitive parent cultivars were grown
in the sam 2 tanks for comparison. 1 had asked my colleague to adjust the pH
of the solutions to 4.8 at which we had obtained clean cultivar separation
according to Al tolerance. Subsequently, Dr Reid complained that all of his
plants were growing too well, even in the presence of Al at the level
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prescribed. But, then I learned that the solution pH had been allowed to
increase to 5.0, or slightly above, and this was sufficient to precipitate Al as
the hydroxide and to detoxify the element for all plants concerned. Thereaf-
ter, I recommended that he adjust the pH initially to 4.5 and not allow it to
exceed 4.8. When this was doae, the Al-tolerant and sensitive parents
separated properly, and Dr.Reid was able to show a 3:l ratio of tolerant to
sensitive plants in the progery. He concluded that Al tolerance in these
barlay populations was controiled by one major dominant gene (Reid, 1971).

On still another occasion, Dr.Reid observed that both the no Al and the
plus Al nutrient solutions wers producing good barley growth with no
genotypic seraration. After some detective work, we found that my techni-
ciai: had forgotten to tell him to dilute the P stock solution used to make the
test solutions in the fish tanks. Instead of adding 3 mg P/L, he was adding
3l mg/L, which precipitated and detoxified Al, even at pH 4.5.

These examples are given ot to criticize plant breeders or other plant
specialists, but rather, to emphasize that in this complex game of tailoring
plants to fit problem soils, plant and soil scientists need to collaborate even
more closely than we did when the emphasis was more on modifying the soil
rather than the plant.

The other side of the coin is that soil scientists (and even some pure plant
physiologists) have been slow to recognize the range of genetic variability
available in plants and how this can be used to solve problems of plant stress
in soils. I have known plant physiologists who bought carrots at the grocery
store to study “the mechanism of ion uptake”, without kaowing anything
about the genetic or nutritional background of the tissues. As soil scientists,
we have often assumed that a plant is a plant, or at least, corn plants are
alike. Ion uptake models in current use do not generally consider the fact
that plant genotypes modify their root zones differently. Although all plant
species and genotypes have some things in common, we now know that even
genotypes within species differ vastly in their responses to verious stresses
of the s0il and atmospheric environments. For example, Atlas 66 wheat is
Al tolerant and Mn sensitive, but Monon wheat is the opposite (Foy, 1984;
Foy, et al., 1988). Hence, it is likely that no one mechanism can explain ion
uptake or any other plant behavior in all plant genotypes. A “mediral
prescription” approach, rather than universal modeling, i+ needed in agri-
culture.

One of my former supervisors once expressed concern about soil scientist-

plant breeuor collaboration, Since the end product is a new cultivar, usually
released joinitly by breeders, pathologists, nematologists and entomologists,
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he wondered whetber or not the soil scientist <vould receive appropriate
crediv. I replied that plant breeders need the input of the soil scientist in
identifying potential soils problems and in devising valid, rapid screening
procedures. This collaboration causes both so:1 and plant scientists to con-
duct experiments and make contributions that neither would make if work-
ing separately. I have never had to worry about receiving appropriate credit.
My collaborators have always given me all the credit I deserved, and
sometimes more, One colleague insisted that I share authorship on his paper
to “share the blame”. When our collaborative work centered on identifying
soil stress problems or devising conditions for screening plants under stress,
I took the lead and served as senior author. When the work progressed to
the point of making crosses and screening progeny, the breeder took the lead
and I served as co-author. When the work turned to pure genetics, the
breeder published alone. When the work involves primarily soil fertility or
chemistry, the soil scientist may alsoc need to publish alone. However,
between these two extremes, there is a broad acca in which the disciplines
cverlap to the extent that col'aboration is absolutely essential for best
results.

IDENTIFYING AN PRODUCING
STRESS TOLERANT PLANTS

Wide differences in stress tolerance have been documented among and
within many plant species. These genetically controlled differences provide
almost unlimited opportunities for producing superior cultivars for particu-
lar stressful environments. Because my experi2nce has been mainly in the
minersal nutrition of plants, particularly those grown in acid soils, the
discussion to follow will be largely confined to that general area.

The first step in the proposed plant genetic approach to sl stress is to
identify present and potential stress factors in soils. The soil scientist can
use soii chemical extraction procedures and indicator plants te determine
factors that are likely to present problems. However, (and this cannot be
overemphasized), the specific growth-limiting factor depends, ultimately, on
the plant species or genotype grown. The second step is to devise soil and
nutrient solution media in which germplasm pools can be screer.ed for stress
tolerance (Foy, 1976). Genotypes separated by these methods can then be
tested in the field and grown to maturity. If we are fortunate, the stress
tolerance rankings obtained in the two situations are well correlated. If we
ars really fortunate, more than one desirable stress tolerance factor occurs
in the same genotype. Crossing studies are then conducted to determine the
genetic nature of tolerance and to estimate the probabilities of adding a
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stress tolerance trait to existing cultivars possessing other desired traits.
The biochemical nature of this genetically controlled stress tolerance should
be investigated. Such informaiion may be useful in refining screening
procedures and in modifying soil management practices to fit new and old
cultivars.

TAILORING PLANTS TO FIT
PROBLEM SOILS—CURRENT STATUS

Much of the recent research has focused on acid soils. Growth-limiting
factors in these soils include toxicities of Al, Mn and other metallic cations
and deficiencies or unavailabilities of Ca, Mg, P and Mo. The acid soil
complex has been exhaustively reviewed within rcent years (Adams, 1984;
Foy, 1984; Robson, 1989; Wright, Baligar and Murrmann, 1991; Foy, 1992).
The controversy regarding toxic ionic species of Al was covered by Kinraide
(199]) and Kinraide et al.,(1992), Foy (1992) and Shana and Bertsch (1993).
For detailed discussion of acid subsoils, see Matthews and Joost, (1996),
Coventry, (199]) and Foy, (1992). Comprehensive coverage of Mn in soils and
plants is presenteu in Graham et al., (1988). Details concerning the philoso-
phy of tailoring plants to fit problem soils are covered in Foy (1983).

Table 1 contains a list of recent references by which the reader may
determine the current state of knowledge regarding various aspects of the
approach. These include the genetics of stress tolerance, stress tolerance
screening techniques for various crops, the release of stress tolerant
germplasm and the physiological or biochemical mechanisms by which
plants avoid, tolerate or adapt to stress. Emphasis is on Al and Mn tolerance,
salinity tolerance and nutrient element efficiency. Overall screening prob-
lems are discussed in Foy (1976) and Devine (1982).

CONCLUSIONS

Since our 1976 conference “Plant Adaptation To Mineral Stress In Problem
Soils”, at Beltsville, great progress has been made in exploiting plant genetic
diversity in solving difficult problems of soil toxicity and nutrient element
unavailability. Tailoring the plant to fit the soil has finally become respect-
able. Acid soils have received the greatest attention in this approach. Iz azil
was first in this activity, but active breeding programs are now in operation
in the USA, Canada, Australia, New Zealand, Colombia, Mexico, Poland.
USSR, several countries in Africa anc in man;- other parts of the world. Thus
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far, wheat, sorghum and millet have received the most attention, (Table 1),
bat work is also in progress for soybeans, alfalfa, white clover and various
other forage crops. Legumes are more difficult to screen than wheat, and
there is still considerable controversy concerning the best plant traits to use
as a measure of tolerance (absolute or relative shoot weight, absolute or
relative root weight, root elongation rate). Many rapid screening methods
are in use (Table 1), but tolerance rankings obtained by these tests do not
always agree with results of field tests where plants are grown to maiurity.
Forage legumes have been generally neglected, but are starting to receive
attention (Wright et al., 1991).

Aluminum tolerant and Mn-tolerant genotypes have been released for
several species (Table 1), and the genetics of stress tolerance are beginning
to be understood. The physiological and birchemical mechanisms of stress
tolerance are still not 'vell defined, but are being actively purrued in many
places (Table 1). Improved understanding of such processes will not only
contribute to academic knowledge but may also lead to improved stress
screening procedures and help in devising better soil and plant management
practices for all cultivars. Current awareness of the need for low input,
sustainable agriculture and the need for control of pollution will stimulate
support for the plant genatic approach in solving soils problems.

Table1l. References to papers dealing with inineral stress-plant genotype rela-
tionships.
Stress factor Plant species References
Al-tolerance-genetics Wheat Bona, ct al,, 1991; Aniol, 1991; Lagos, et al., 1991; Briggs, ct al.,
1988; Briggs and Taylor, 1991; Camargo, et al., 1980; Rajaram,
ct al,, 1991; Maslowski, ct al., 1989; Briggs and Nyachiro, 1988;
Flores, ct al., 1991,
Triticale Manzowa and Nutter, 1991; Mzslowski, ct al., 1989
Bardcy Reid, 1971; Minella and Sorrells, 1992,
Com Magnavaca, ct al., 1987.
Sorghum Gourley, et al., 1990, Waskom, et al., 1990; Duncan, 1991;
Flores, et al., 1991; Smith, et al., 1993 (In press).
General Devine, 1982.
Al-tolerance-screening Wheat Aldrich, et al., 1990; Bona, ct al., 1992; Briggs, ct al., 1989;
Briggs, et al., 1991; Briggs and Tay.or, 1991; Carver, ct al.,
1988; Lafever, 1978, 1988; Rengel and Jurkie, 1992; Ruiz-
Torres, ct al., 1992; Richey, et al., 1989; Foy and Peterson, 1993
(Ms. in preparation); Foy and da Silva, 1991.
Alfalfa Bhaligar, et al., 1993; Parrot and Bouton, 1990
Badey Slabonski, 1989; Wright and Ferrari, 1976.
Com Guevara, ct al., 1992,
Sorghum Ritchey, et al., 1991; Tun, et al., 1992; Foy, ct al., 1993; Baligar,
et al., 1989,
Millet Alrich, et al., 1991; Baligar, ¢i al., 1989,

Forage grasses
Fomge legumes

Baligar and Smedley, 1989.
Baligar, ct ai., 1988
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Stress factor Plant species References
Sweel potato Ritchey, 1991.
Soybean Foy, et al., 1993.a; Wissemeir, et al. 1992,
Paper birch & Jones, ct al., 1986.
pitch pine
Red clover Baligar, et al., 1987.
Rice Bouharmont, et al., 1991; Fageria, et al., 1986.
Many species lioweler, 1991; Foy, 1976.

Al-tolerance physiology  General
& biochemistry

Alscher and Cumming, 1990; Bennet and Breen, 1991; Exley and
Birchail, 1992; Foy, 1984, 1988; Haug and Shi, 1991; Rengel,
1992; Shann and Bertsch, 1993; Taylor, 1991; Kinraid, et al.,
1992; Marschner, 1991; Wright, Baligar, and Murmmann, 1991.

Com Ryan, et al., 1993.

Snapbean Miyasaka, et al., 1990; Cumming, t al., 1992.

‘Aheat Zang and Taylor, 1991.

Humans Delamarache, 1993. (Selenium comrected Mn toxicity)
Thinooy rum sp. Lleftherion, et al., 1993.

Mn-tolerar.ce genetics Soybean

Brown and Devine, 1980; Devine 1982.

General Foy, et al., 1988; Graham, et al., 1988: Mukhopadhyay and
Sharma, 1591,
Wheat Moroni, ct al., 1991.
Mn-tolemance screening  Lettuce Blatt and van Diest, 1981.
Soybean Mascarcnhas, et al., 19%0.
Wheat Moroni, ct al., 1991; Scott and Fisher, 1989; Macfic, et al., 1989,
Cowpca Wissemeir and Horst, 1991,
Generzl Foy, 1976.

Mn-tolemnce physiology Lettuce
& biochemistry

Blatt and van Diest, 1981.

Wheat Macfie and Taylor, 1989; Moroni, et al., 1991,
Cowpea Wissermeir and Horst, 1992,
General Graham, et al., 1988; Mukhopadhyay and Sharma, 1991;
Horiguchi, 1987, 1990,
Humans Clifton, 1992.
Salinity tolerance Radish Shaddard, 1990.
Com Alwan, et al., 1989,
Snapbean Pessarakli, et al., i981.
General ¥/right, et al., 1982; Stassart, 1987,
Nutrient element efficiency
Iron Lovegrass Voigt, et al., 1982,
Soybean Bahrenfuss and Fehr, 1980.
Phosphorus Wheat Graham, et al., 1992; Battem, 1992,
Com Silva and Gabelman, 1992
White clover Caradus, 1992; Caradus, et al., 1992
Rice, bean Fageria, et al., 1991
Rice IFageria, et al., 1988.
Alfalfa Gourley, et al., 1993.
Calcium Sugarcane Ulloa and Anderson, 1991,

Calcium, potassium & Wheal
sodium

Txachuk, et al., 1992,

Micronutrients General

Shorrocks, 1992

Boron Wheat

Mandal, 1991; Paull, et al., 1992 (B tox).
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Stress factor Plant specics References

Geaneral nutrient Baligar and Duncan, 1990; Clark and Duncan, 1991; Clark and
efficiency Duncan, 1993; Fageria, et al., 1991; Feil, et al., 1992; Marschner,
1991.
. Alfalfa Baligar, et al., 1590: Baligar, et al., 198Y.
Mycorhizac & rhizobia Alfalfa Hartel and Bouton, 1991; Howieson, et al., 1991.
Soybeai Bethlenfalvay and Franson, 1989. (Mn toxicity alleviated by

mycorthizae). Glenn and Dilworth, 1991; Jones, et 21., 1986;
Koslowsky and Boermer, 1989; Linderman, 1992; McArthur and

Knowles, 1993,

Many specics Flis, et al., 1993.

Sorgl.am Medciros, et al., (In press). (Al toxicity alleviated by
mycorrhizac).

General Smith, et al,, 1992,

Red clover Wright and Zeto, 1991. (Rhizobia, Al, pH).

Acid s0il complex General Adams, 1984; Graharn, et al., 1988; Manschner, 1991; Robson,
1989; Taylor, 1988; Wright, et al., 1991; Borman, et al., 1992;
Coventry, 1991.
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Success in Maize Acid Soil Tolerance

R. Magnavaca and A.F.C. Bahia Filho
EMBRAPA\CNPMS
Sete Lagoas, MG, Brazil

ABSTRACT

The success of the EMBRAPA maize improvement program in developing alu-
minum tolerant maize cultivars and hybrids adapted to Brazilian acid savannas or
“Cerrado”, made possible the incorporation of 727,600 ha for maize production. The
association of better soil management with tolerant genotypes, through a multidis-
ciplinary research approach, made it possible to increase yield in such environ-
ments. The development of methodology for seleclion in field conditions and
nutrient solution with varying levels of Al is reported. Aspects of balance between
P and Al levels in soils and nutrient solution for discrimination of maize genotypes
is the principle aspect of the methodology developed. The breeding procedure used
in the program, describes the search for variability in tropical germplasm, the
recurrent sclection scheme for cultivar improvement, and inbred line and hybrid
development and evaluation. Two cultivars, CMS 36 and CMS 30, were released and
are being used in tropical areas of the world as a gene source for Al tolerance. One
of the commercially produced hybrids BR 201, confirms the possibility of associat-
ing high yield potential and stability with Al tolerance. This hybrid currently
occupies 14% of the market share of hybrid maize seed sales in Central and
Southern Brazil.

INTRODUCTION

The acid savannas or “Cerrado” is an ecosystem that covers an extension
of 205 million ha, of which 175 million ha are in Central Brazil. Today, 12
million ha of the Brazilian “Cerrado” are in crop production. The area
planted with maize covers 3.5 million ha. Approximately 112 million ha of
the “Cerrado” area are considered adequate for sustainable crop production.

Oxisols are the most frequent soil type in the “Cerrado” ecosystem. These
are strongly weathered soils with low cation exchange capacity (CEC) and
exhibit major mineral element deficiencies. (P, Ca, Mg, and Zn) toxic ex-
changeable Al, and extensive P fixation by soil particles.

A high percentage of Al saturation in soils is toxic to plant growth.
Aluminum affects many physiological, biochemical and metabolical proc-
esses in plants (Foy et al., 1978). Roots injured by high Al are usually stubby,
thick, and become dark-colored, brittle, poorly branched, and suberized. As
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a consequence, root length and volume is decreased. However, root dry
weight may not be altered.

The development of maize production to Brazilian acid soils stressed ;he
need for better adapted cultivars with Al tolerance for sustainable economic
cropping. Lime application to acid soils have been used to decrease toxic
effects of Al to the roots, but practical mechanical methods for deep lime
incorporation have not been developed. Therefore, the combination of liming
practices for neutralization of soil acidity at the surface together with
selection for more tolerant plants to Al toxicity is a more economical ap-
proach.

The research program to adapt maize to “Cerrado” acid soils began in 1975
at the National Maize and Sorghum Research Center. The results reflects
the efforts of a multidisciplinary maize improvement team, involving breed-
ers, soil and plant nutrition specialists, and phytopathologists. The program
was directly aimed at overcoming soil constraints by using genetic resources
more efficiently in soil nutrient uptake, transfer, and utilization.

METHODOLOGY DEVELOPMENT

Selection in Field Conditions

Yield evaluations in our program have been made in a Red Dark Latosol,
alic, clay texture “cerrado” phase soil at the National Maize and Sorghum
Research Center, in Sete Lagoas, Minas Gerais State, Brazil. The latitude
is 19°28'8"S, longitude 44° 15’'W Gr, altitude of 732m, with a climate classi-
fied as Aw (Kopen), with the temperature of the coldest month above 18°C.

The level of Al saturation, in relation to the effective CEC was the
indicator for Al toxicity level. Initial evaluations were made at 55% Al
saturation. Later, based on response curves to limestone applications, the
level of 45% Al saturation was selected as the most adequate to discriminate
tolerant genotypes with good yield potential (Table 1 and 2). Higher levels
of Al saturation permit the selection of genotypes with greater tolerance, but
are associated with low yield potential.

In the soils used for testing genotypes, P availability is characterized by
low P in soil solution, high P adsorption, and low reversibility of the added
P (Bahia Filho et al., 1983a). Under such conditions 100 kg ha™ P,0; (as
single super phosphate) was broadcasted and 60 kg ha™ P,05 applied at
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Table 1. Al saturation and pH values at two soil depths and three liming levels in
a Red Dark Latosol at Sete Lagoas, Brazil.
Limestone Depth Al saturation
th! cm pH %
0 00-20 4.7 64
20-40 4.6 72
2 00-20 4.9 46
20-40 4.8 63
7 00-20 53 5
20-40 5.0 33

Table 2. Grain yield (kg ha'!) and relative grain yield (%) of inbred lines grown at
three levels of limestone (0, 2 and 7 t ha'!) (Naspolini Filho et al., 1881).

Yicld (kg ha-1) Relative yield (%)
Inbred line 0 2 7 0 2 7
L 69 1,500 1,540 1410 97 100 92
L 153 1,450 2,400 2,350 60 100 98
L 297 1,900 2,500 3,575 53 70 100

planting to assure a reasonable level of P availability, without interference
with the Al toxicity level.

More recently in our program, the concept of critical level has been used
to establish the amount of P to be added. If the extractant is representative
to variations, in P buffering capacity and clay content (Bahia Filho et al.,
1983b), the utilization of a critical level concept makes it easier to compares
among P levels in different soils.

The relationship between P recovered by the extractant and the amount
of P added to the scil is linear, but the ratio of P recovered to P added to the
soil varies inversely with clay content (Freire et al., 1979; Novais and
Kamprath, 1979; Bahia Filho et al., 1983b). As an example, in the soil used
in our program, the ratio of P recovered to P added is 0.02 using Mehlich 1
extractant; the initial P content in the soil is 2,0 ug g'P, and the critical level
is 10ug g"'. Therefore to obtain a 60% critical level (60% critical level = 0.6
x 10 = 6pg g''), the amount of P,05 to be applied to the soil is: (6 - 2)0,02" =
200 kg P,0s ha™. In order to obtain an increase of 1ug g P in the soil, it is
necessary to add 50 kg P,0s; ha™’.

Selection in Nutrient Solution

The nutri:nt solution technique is useful to evaluate the isolated effects
of Alin the plant in contrast with field evaluations where a complex of factors
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related to nutrient and water availability as well as climate effects may
interfere with plant response to Al stress.

The nutrient solution technique that has been used in our program was
developed by Furlani and Clark (1981) and Magnavaca (1982). The most
critical point is the ratio of Al:P in the solution (Magnavaca, 19:32). The P
level in the solution can not interfere with the Al stress level. Jtherwise,
genetic discrimination of tolerant genotypes (a desirable P:Al ration is 1:5)
would not be possible. The appropriate nutrient solution to which 222 pmol
Al L"is added as KAl (SO4),is described in Table 3. The initial pHisadjusted
to 4.0 and monitore. daily. Seeds treated with captan [N<trichloromethy-
ithio)-4-cyclohexene-1,2-dicarboximide] are germinated for seven days in
rolled paper towels kept moist with aerated distilled water. Seven-day-old
uniform sized seedlings without visual root injury are transferred to plastic
support plates (49 plants per plate) and grown in 8.0 L of aerated nutrient
solution for about seven days. Water is added daily to maintain solution
volumes. Plants are grown in greenhouse without artificial lights at a
temperature varying from 25° C to 35° C.

Table 3. Composition of basic nutrient solutions used for determining Al toler-
ance in maize (Magnavaca, 1982).

Stock solution Full-strength nubient sclution
Name Chemical Conc. Cation Anlon Total composition
gL' | miswockL’ mg elsinent L' element mg L UM
Ca Ca(NOs)2.4H20 270.0 3.09 Ca=141.1 NO3-N=98.6 Ca 1411 3527
NH4NOy 338 NH4-N=18.2 NO»-N=18.2 K 00.1 2310
Mg 208 855
K KCi 18.6 2.31 K=22,5 Cle20.4 NOs-N 152.0 10857
KaSO4 44.0 K=45.8 S504-5=18.7 NH4-N 18.2 1300
KNOs 246 K=22.0 NO3-N=7.9 P 14 45
S 18.8 597
Mg Mg(NOs)2.6H20 1424 1.54 Mp=20.8 NO>-N=24.0 B 0.27 25
¢} 2105 595
P KH2104 17.6 0.35 K=1.7 HzPOy~1.4 Fe 43 77
Mm 0.50 9.1
Fo'  Fe{NOs).9Hz0 203 1.54  Fom4.d NO3x-N=3.3 Cu 004 083
HEDTA 13.4 HEDTA=20.6 Mo 0.08 0.83
Zn 0.15 2.29
Micro  MnCl2.4H0 224 0.77 #n=0,50 Ci=0.65 Na 0.04 1,74
HaBOy 2.04 BO»B=0.27 HEDTA 206 75
InS0.7H0 0.88 Zn=0.15 504-5=0.07
CuS04.5H0 0.20 Cu=0.40 504-5=0.02
NaaMo04.2H20 0.26 Na=0.04 MoO+-Mo=0.08

‘FeHEDTA (Fe hydroxyethylenadieminetriacotats) was propared by dlssolving the HEDTA In water plus addlton of
1N NaOH. After It was dissolved, Fe(NO,), was added 1o the solution and dissolved by stirring. The pH was adjusted
10 4.0 + 0.2 by small additons of 1N NaOH and made to volume.
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The initial length of the seminal roots are measured when seedlings are
transferred to treatment solutions. After completion of the experiment, the
final seminal root lengths are measured Relative seminal root length (RSRL)
is used to evaluate plants for Al tolerance. RSRL values are determined by
dividing the final seminal root length by the initial length. This trait was
chosen to assess Al tolerance because it has been found to be the best one to
assess Al toxicity due to: a) It is desirable when inbred lines are evaluated
because it gives low correlation with initial length of the seminal root; b) It
gives a lower coefficient of variation (Magnavaca, 1982). The greater the
RSRL value, the greater the Al tolerance.

GENETIC VARIABILITY AND BREEDING PROCEDURE

The search for Al tolerance in maize began in 1975 through the evaluation
of 363 inbred lines from the CNPMS germplasm collection. These lines were
not originally selected for acid soils, but random fixation of genes for
tolerance may have occurred during development. Phenotypic evaluation
based on a 1 to 5 scale was used to access survival of inbred lines in an acid
soil with 55% aluminum saturation (Bahia Filho et al., 1978). Although
about 70 % of the tested lines died within 60 days, it was possible to select
30lines that yielded at least of 2t ha™” of grain (Table 4 ). This selected group
of lines was tested in an acid soil at three leveis of Al saturation (Naspolini
Filho et al.,, 1981) and in nutrient solution with different levels of Al
(Magnavaca et al., 1987a) (Tables 2 and 5). The results for three repre-
sentative lines demonstrate the correlation between plant response in field
and nutrient solutions (Table 5 upper part). Lines such as L69 are low
yielding and are not affected by the level of aluminum in nutrient solution
or soil. Lines like L153 produce high yield per se at an intermediate level of
Al saturation and are not affected by low levels of Al saturation. L297 is
linear to Al neutralization in soil and nutrient solution, These three type of

Table 4. Phenotypic evaluation (1 to 5 scale) of 363 maize inbred lines at 15 and
60 days after germination, tested in an acid soil with 55% Al saturation.
Sete Lagoas. (Bahia Filho et al, 1978).

Distribution (%)

Classes 15 days 60 days
Deud 19.3 68.7

1 (Poor development) 35.5 7.0
2 30.0 12.2
3 10.7 8.4
4 3.6 3.6
S (Best development) 0.7 0.0
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Table 5. Relative seminal root length (cm) of American and Brazilian maize
inbred lines grown in nutrient solution at different Allevels (Magnavaca,

1982).
Allevels (u mol L'
Origin Inbred line 0 74 148 222
Brazil L69 245 2.33 1.99 2.25
L153 2.98 304 2.6 211
L297 382 378 22 187
Avenge 3.08 304 2.19 2.07
u.s. B73 1.97 1.65 1.3§ 1.32
Mol7 2.99 2.59 1.99 1.64
N28 348 300 194 142
Average 2.81 241 1.76 1.46

responses were quite common and gave the opportunity to select genotypes
useful for different breeding objectives. The correlation between results from
nutrient solution and field experiments in acid soil is not expected to be high.
The nutrient solution technique is specific for Al toxicity effects on root
development. Field test measures the effects of a nutritional complex that
includes Al as one of the factors involved in the crop yield. However the deld
and nutrient solution tests usually agree in terms of results when the
genotype tested is highly tolerant to toxic aluminum.

This same group of Brazilian lines was compared with lines from the U.S.
in nutrient solution at four levels of Al. {Table 5). The average performance
of Brazilian lines was superior to U.S. lines for Al tolerance. Considering
that the Brazilian lines were not specifically selected (apriori), for acid soils,
the random fixation of genes for tulerance is a demonstration of the variabil-
ity for Al tolerance. Since such cultivars were not exposed to Al toxicity stress
during the breeding process, what other soil factors may be linked to Al
tolerance genes that allowed for the random fixation of genes for Al tolerance
i8 not known. One possible explanation is linkage (or pleiotropic effect)
between Al tolerance and P use efficiency.

Simultaneously to the search for variability to Al tolerance several studies
related to the inheritance of the trait have been conducted and reported
(Naspolini et al., 1981; Magnavaca et al., 1987 b; Lopes et al., 1987; Eleutério
et al., 1988). Generation mean analysis in nutrient solution detected that
additive gene effects explained most of the genetic variation, but dominance
contributed with a significant amount of variance. The frequency distribu-
tions of the F2 generation of crosses were continuous, unimodal, and typical
for a quantitatively inherited trait, with a preponderance of genes dominant
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for susceptibility to Al tolerance. In studies based on diallel crosses of inbred
lines and cultivars evalusted in nutrient solution and acid soil, the variance
for general combining ability explained most of the variation, but specific
combining ability was always important. Specific combining ability for
maize is better exploited in hybrid combinations. Al tolerance in maize is
quantitatively inherited and evidence does not support the concept that a
single major gene controls Al tolerance in maize.

Considering that Al tolerance is quantitatively inherited, cultivar im-
provement by recurrent selection is a desirable method. However, hybrid
combinations are important to exploit specific combinations. Progress has
been made by recurrent selection. Two populations, CMS 36 and CMS 30,
selected a¢ Sete Lagoas in acid soil, have a high frequency of genes for Al
tolerance when tested in nutrient solution (Table 6) (1opes et al., 1987). The
tolerance is much higher for CMS 36 and CMS 30 than for non-selected
populations. Both are heing used in tropical areas of the world as a source
of genes for tolerance to toxic levels of Al saturation.

One concern at the beginning of our program related to the selection of Al
tolerant genotypes was the pessibility of associating Al tolerance with high
grain yield potential. We were concerned about the possibility of Al tolerance
being associated with low yield potential. Trials were performed at Sete
Lagoas for two years comparing the yield potential of cultivars and hybrids
of Al tolerant and non-tolerant genotypes (Table 7) (Gama et al., 1986).
Among the cultivars tested, CMS 36 and CMS 30 produced the highest yield
in acid soil, but CMS 36 demonstrated yield limitations in fertile soil. Among
the hybrids tested, CMS 200X and Cargill 511A were the best in acid soil;
however CMS 200X, had a low yield potential in fertile soil compared to
Cargill 511A. These results stressed the need for evaluating Al tolerant
hybrids, not only in acid soil trials, but also in fertile soils. In our program,
selection has been based on results from trials performed in acid aud fertile

Table €. Relative seminal root length (%) of maize cultivars grown in nutrient
solution with 0 and 2221 mol AIL"}, and relative root length as vercentage
of control with 0 Al (d), (Lopes et al., 1987).
Al levels (4 mol L'

Varicty 0 222 d

CMS 36 88.9 cde! 84.4b 21.5b
CMS 30 113.9 ab 714ab 3726
CMS 14c¢ 107.2 abc 23.7¢c Ti.8a
CMS 04c¢ 81.7 de 17.2¢ 789 a
BR 105 81.9 de 252¢ 69.3a
BR 126 100.1 be 243 ¢ 75.7a

*Duncan multiple rangae teat at 5% probablity.
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soils, and results from nutrient solution with varying levels of Al. A large
number of field test locations are used to detect improved yield stability.

This principle of selecting under these three conditions was applied to 429
Szinbred lines originating from 6200 S plants. The 429 S, lines were crossed
with a single-cross tester having with Al tolerance. Thesc top-crcsses were
evaluated at three fertile soil sites, two acid soil sites,and in nutrient solution
with 222 mol Al L. Responses among the 429 top-crosses tested, in com-
parison with two commercial ~heck hybrids that were extensively planted
at that time are reported (Table 8). Top-crosses 1 and 45 perforred well
across conditions and are desirable for selection. Top-cross 77 performed well
in hoth acid and fertile scils, bui it did not show Al tolerance when tested in
nutrient solution. This response¢ may be due to a better efficiency for P
uptake or better internal efficiency in P utilization, but this is a point yet to
be confirmed. The relationship of Al and P mechanisms may offer the

Table7. Mean ear weight of 10 maize cultivars tested in fertile and acid soil
environments at Sete Lagoas. (Gama et al., 1986).
Ear weight (kg ha')

Acid soil Fertile soil
Genotype (1 meq Al) (0 meq Al)
Cultivar
CMS 14 2,580 fgh! 7,870 abod
CMS 36 4,520a 6,550d
CMS 30 3,120 cdef 7,050 bed
CMS 04 2,190 gh 7,660 abod
CMS13 1,800 h 6,745 cd
Hybrid
Cargill 511 2,650 efg 7,515 bed
Cargill 511 A 3,980 abc 8,335 ab
Agroceres 301 3,450 bede 7,940 abod
Dina 303C 3,240 bedef 8520a
CMS 200X 4,020 ab 6,875 bed

tDuncan nuitiple range tast at 5% probabllty.

Table 8. Relative grain yield of top-crosses and check hybrids compared to high-
est yielding entry, in fertile and acid soil. Relative srminal root length
(RSRL) measured in nutrient solution with 222 ;1 mol Al L}, for these
materials are also shown.

Fertlle sall Add sall
Hybrld Sate Lagoas Jwiutaba Golania Seta Lagoas M. Carmelo Average RSAL %
Top-cross 1 82 20 64 a7 83 83 75
Top-cross 45 79 85 o1 85 73 83 69
Top-cross 77 76 100 74 94 68 88 48
Cargill 111S 683 79 100 79 48 77 47
Agroceres 301 78 85 680 87 48 87 43
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possibility of improvement for both nutritional aspects. The performance of
top-crosses 1 and 45, for example, in comparison with noa-tolerant tester
hybrids, demonstrates the possibility of selecting lines for producing hybrids
with both tolerance to Al and high yield potential.

The best lines selected in these top-crosses have been used for double-cross
hybrid production. Double-cross hybrids are commonly used in Brazil due to
low seed cost. A total of 20 double-cross hybrids were evaluated at five sites
with soil fertility varying from medium to high. The yield and stability of Al
tolerant hybrids were then ccmpared to commercial hybrids without Al
tolerance. The Al tolerance response of these hybrids was measured in
nutrient rolution using relative seminal root length (RSRL). The results for
six of these experimental hybrids is presented in Table 9. (Meagnavaca et al.,
1988).

Double-cross hybrids 7,8, and 9 were obtained by crossing Al tolerant
single-crosses with the same tester, a single-cross with high Al tolerance but
limited in yield potential. The single-cross tester for producing the double-
crosses 14,15 and 20 had lower Al tolerance in nutrient solution, but a high
grain yield potential. The yield potential of the first group (DC 7,8,9) was
lower than the second group (DC 14,15,20), but with better Al tolerance as
measurec. by RSRL, and a linear regression coefficient (b) that measured
yield stability of less than 1. b values less than 1 are an indication of
adaptation to poor environments, and b values greater than 1 indicate better
response to irproved environments. The second group presented higher
yield and b values above 1. DC 14 and 15 had a relatively high level of Al
tolerance in nutrient solution. The commercial hybrids used for comparisons

Table 9. Relative seminal root length (RSRL), grain yield (kg ha’!), linear regreg-
sion coefficient (b) and deviation from linear regressioz (s2d) of experi-
mental and commercial hybride evaluated at five fertile soil sites in
Srazil. (Magnavacn et al., 1988).

RSRL Yield
Hybrids (%) kg ha”! b sd
DC7 130a 6,620k 0.+0.08 -14607
DC38 73 bed 7260 j 0.4+ 0.04° -120047
DCY 107 ab 7,080 j 0.1 0.09 -2049
DC 14 92 abc 8,710 ab L.+0.04° -132525
DC 15 76 bee 8870 a 1.£0.10 62585
DC20 59 cd 8,410 ~d 0.1£0.09 4274
Cargill 111§ 48 de 7,810 hi 1.£0.03° -139363
Dina 3030 61 cd 7,970 gh 1.£0.11 77103
Agroceres 401 46 de 7,245 0.1 0.06 -86952
Pioncer 6875 16¢ 8,050 efgh 1.1£0.14 250015

*Significant at = 0.05.
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had lower Al tolerance than the experimental hybrids, and produced lower
yiclds in relation to the second group. Performance of DC 14, confirms the
possibility of associating high yield potential and stability to Al tolerance.
DC 14 was recently released as the commercial hybrid BR 201. Hybrids like
BR 201 make it possible to improve cropping systems in “Cerrado” soils of
Brazil with less risk to the farmers.

The CNPMS/EMBRAPA breeding program for acid “Cerrado” soils is
dynamic and a new group of double-cross hybrids have been tested in recent
trials. Evaluation trials for 120 new experimental hybrids were conducted
on 7 fertile soil sites (without Al toxicity problems), a site with 70% Al
saturation, and in nutrient solution. The 18 new hybrids were superior to
BR 201 in grain yield, while some were superior in acid goil tolerance based
on RSRL in nutrient sclution with Al (Table 10). Progress in grain yield can
be made in relation to BR 201 without loosing Al tolerance. Other agronomic
traits such as lodging resistance and shorter plant height have also been
improved. The selection of three-way and single-cross hybrids is underway
and is expected to further improve agronomic traits and yield levels.

Table 10. Average yield (kg ha') of 18 selected experimental double-crosses evalu-
ated in fextile and acid soils (70% Al saturatien), and nutrient solution
with 242 1 A L%

Bar weight (kg/ha) RSRL
Hybrid Fertile soil (7 sites) Acid soil (1 site) %
DC9174 8,790 1,880 47
DC 9150 8,650 890 47
DC 9180 8360 950 56
DCI101 9,160 700 36
DC 9148 8,510 1,090 32
DCI1ll 8,210 1,250 46
DC 9107 8,990 1,510 35
DC 9176 8,800 2,040 58
DC9157 8310 720 48
DC 9198 9,035 1,460 44
DC9131 8,720 1,040 42
DC%i%l] 8,600 1215 45
DC$103 8,680 1,185 57
bPCyI1Ie 8910 1,690 63
DC 9108 8,790 1220 47
DC 3153 8,840 1,130 !
DC 91102 8,845 1,110 74
DCI144 8,650 1,110 50
ER 201 8310 1350 62
LSD (0.05) 670 810 16
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FARMER UTILIZATION

The high yielding couble-cross maize hybrid tolerant to toxic aluminum,
BR 201, was released in 1987. Approximately 10T of foundation seed was
simultaneously distributed to 17 small and medium seed companies and four
hundred observation and demonstration plots were installed collaboratively
with producers and co-operatives.

In 1989, a system of rural franchising was introduced with the collabo-
rating producers of commercial seed of BR 201. In this franchising scheme,
EMBRAPA authorizes the use of its trademark, provides the foundation
seed, transfers BR 201 seed production technology, provides training and
technical assistance, and oversees a rigorous system of quality control,
Financial resources have returned to EMBRAPA by two ways: through the
sale of frundation seed and also as a five % royalty of gross seed sales of BR
201, pid by the collaborating seed companies. Since 1987, EMBRAPA has
received approximately § four million through this franchising ard royalty
arrangement.

Commercial seed of BR 201 is currently produced by 25 small and medium
size seed companies. Approximately half of these seed companies have
technical assistance programs for their clients. BR 201 currently occupies
14% of the market share of hybrid maize seed in Central and Southern
Brazil. During 1992-1993, 727,500 ha of BR 201 was planted in this region
(Table 11) (F.Almeida, personal communication). The interaction of the
private sector initiative and the high yield genetic potential combined with
yield stability has contributed to the rapid diffusion of BR 201. The charac-
teristic of aluminum tolerance has not been proposed to substitute or reduce
liming or reduce fertilizer use, but is promoted as an important factor
contributing to both yield stability and risk reduction. The yield potential of
BR 201 permits it to compete with the best hybrids on the Brazilian market.
During 1991-1992, BR 201 won Arst place in the State of Minas Gerais maize
productive contest, producing 15.75T of grain per ha. Two new hybrids of
the same series, BR 205 and BR 206, are currently being released. The

Tnble 11. Market share of BR 201 in the Brazilian hybrid maize seed industry.

Year Total seed sale BR 201 sales Market share No. of franchises
40 kg bags %

1988789 2,820,000 23,050 0.8 17

1989/90 2,000,000 143,625 72 21

195091 2,875,000 168,614 5.9 22

199192 2,805,000 332,074 11.8 26

1992/93 2,628,000 363,750 13.8 25
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private sector has contacted CNPMS/EMBRAPA regarding possible frau-
chising and royalties for seed sales in selected African Countries.
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Success in Acid/Low Fertility
Soils in Colombia

Lynn M. Gourley
Mississippi State University
Mississippi State, MS

ABSTRACT

Success in a crop impiovement program depends on modification of production
constraints through improved cultural practices und/or exploitation of the gen~tic
diversity by enhancement of the crop in this particular environment. Sorghum
iSorghum bicolor (L.) Moench] has a large reservoir of genetic diversity xed is well
adapted to semi-arid and other marginal agricultural production areus of the
world; however, it is not known for its acid soil tolerance. A field acreening
procedure was developed in Coloinbia to evaluate sorghum for tolerance to the
acid soil complex and the world collection was systematically evaluated for acces-
siors originally from acid soil areas in Africa. The range of genetic variability for
tolerance to acid soils was investigated, the degree and nature of the inher’tance
of the tolerance has been evaluated, high yielding tolerant grain sorghum cultivars
have been released, and a breeding program is cngoing. Tolerant germplasm and
segregating populations have been furnished to acid soil breeding programs
around the world. This program is still in its infancy and many questions of
sorghum-acid il interactions remain unanswered.

INTRODUCTION

Efforts to adapt grain sorghum to the acid, Al and/or Mn-toxic soils of the
humid tropics arc in their ‘nfancy. Sorghuni, like many cereal crops, is not
tolerant to low-pH soils. However, most breeding programs have been
conducted in neutral or calcareous soils. Flant breeders have recerily
recognized that diffcrent genes are needed for achieving maximum vield in
low-input environments than those for high-input conditions (Atlin ard
Frey, 1989). Two factors have been primarily responsible for redirecting
some breeding efforts, especially in the acid soil regions of the humid tropics.
They are the economics of modern high-input agriculture as they apply to
resource-poor farmers, and the requirement to bring marginal agricultural
land into production.

Enough low-input soil management research has been performed

(Sanchez and Salinas, 1981) to demonstrate the feasibility of conducting a
sorghum breeding program using this philosophy for acid soils. The primary
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principle in low-input technology is to adapt plants to the soil constraiats
rather than to neutralize soil constraints to meet the requirements of the
plant. This does not mean thai sorghum production can succeed on these
soils without any amendments. The best results would be obtained using
acid soil tolerant and nutrient efficient cultivars and some of the time- tested
cultural practices used by African acid soil farmers (Gourley, 1991b).

Early successful evaluations of sorghum tolerance to the toxic effects of Al
were conducted in field tests on acid soils of the Cerrados in Brazil (Bor-
gonovi et al., 1987; Pitta et al., 1976, 1979; Santos el al., 1980; Schaffert et
al., 1975). Researchers of the Brazilian National Program, Empresa
Brasileira de Pesquisa Agropecuaria (I.MBRAPA), huve screened sorghum
germplasm sent to them from Uganda and converted exotic lines from the
Texas A&M University/USDA Conversion Program. Several studies using
nutrient culture (Bastos, 1982; Bastos and Gourley, 1982; Furlani and Clark,
1981; Malavolta et al., 1981) and greechouse soil (Govrley, 1983; Santos et
al., 1980) techniguaes to screen sorghum for tolerance to Al toxicity have been
reported. Colombian field validation studies at 63% Al saturation for sor-
ghum (Gourley, 1987b) and 85% Al saturation for rice (Howeler, 1987)
showed that many genotypes rated as Al tolerant by nutrient culture
techniques would be rated as susceptible under field conditions.

In 1982, a program was initiated for breeding and screening sorghum
germplasm for tolerance to the acid soil complex of the humid tropics at the
International Center for Tropical Agriculture (CIAT), Cali, Colombia. The
project was funded by USAID through the International Sorghum and Millet
(INTSORMIL) Collaborative Research Support Program (CRSP) and the
Mississippi Agricultural and Forestry Experiment Station. Research is
being conducted in collaboration with the National Program of Colombia,
the Instituto Colombiano Agropecuario (ICA), and other National Programs
in Latin America.

The purpose of this paper is to report on the success of this research and
to examine the breeding progress heing made to provide improved sorghum
germplasm for acid soils areas throughout the world.

SCREENING AND EVALUATiON
OF SORGHUM GERMPLASM

The initial step in evaluating sorghum for tolerance to acid soils was to
identify genetic variability in the genus Sorghum for tolerance to /i toxicity
associated with iow pH. When grown on acid soils, most sorghum linea
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develop numerous nutritional disorders (Clark, 1988) from soil chemical and
mineral imbalances in the plant. The world sorghum collection (33,766
sorghum lines maintained by the International Center for Research in the
Semi-Arid Tropics (ICRISAT) at Hyderabad, India) was systematically
evaluated, starting with accessions originally from acid soil areas in Africa
(Gourley, 1983). Soil classification maps of Africa were used to determine
the soil type where a particular line was originally collected.

An area on the CIAT-Quilichao substation, having an Ultisol classified as
a clayey, oxidic, isohyperthermic, Typic Palehumult, was selected as the
primary screening site. The virgin soil at this substation had a topsoil
Al-saturation of 80%, an organic matter content of about 7%, and a low-to-
medium MN content. Applications of 500, 1500, and 4000 kg ha™ CaCO,
reduced the 80% Al-saturation level of the virgin soil to 63, 45, and 32%,
respectively, in the fields list as Locations 3, 4, and 5 (Table 1). The
Al-saturation level at Location 3 (63%) was sufficiently severe to allow visual
discrimination between tolerant and susceptible genotypes. Locations 4 and
5 were not used for screening.

A field screening technique was developed (Gourley, 1987a and b) to
measure Al tolerance, as distinct from low P, or the Al-P interaction. The
objective was to establish an Al-toxicity level high enough to kill the most
sensitive genotypes, but not too severe to allow tolerant genotypes to produce
reasonable grain yields. Severe Al-toxicity stress was applied to reduce the
number of genotypes quickly and to retain only those genotypes with the

Table 1. Meen topsoil (0 to 20 cm) chemical characteristics of the CIAT-Quilichao
fields used for sorghum evaluations before and after the addition of soil

amendments.
Locaiion

Soil characteristics Virgin! 3 4 s —
pH (H,0) 45 44 4.6 5.0
Puggh) 23 179 162 17.8
Ca (cmol kg™") 0.68 1.24 2.44 333
Mg (cmol kg™') 0.18 0.52 0.53 0.51
K (cmol kg™t 0.15 0.4 0.26 0.23
Al (amol kg™") 3.90 340 2.65 1.0
ECEC (cmol kg™ 491 5.40 5.88 597
Al saturation (%) 80.4 63.0 45.1 31.8

¥ Mathods for extraction and/or dstermination of sail characteristics were: pH - 1:1 soll:water; P - Bray II; exchangeable
cations - 1N KC! from 100 g of sdll; etfectiva caton axchange capaclty (ECEC) -suum of exchangeable cations; and Al
s&turaton - exchangeabie Al divided by ECEC times 100.

* The virgin soll was amended with 500, 1500, and 4000 kg ha™ CaCO, to produce the soll characteristics found In

Lecations 3, 4, and 5, respoactively. The first 500 kg ha™! CaCO, was dolomitic limestone and the remainder was caldtic
limestone. (Adapted from Gourlay, 1987a and 1991a).
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highest degree of Al tolerance that would not be completely inhibited from
penetrating the higher level of Al saturation encountered in the subsoil.

Lines were evaluated visually (1 = near-normal development, 4 = dead
plants) at physiological maturity (Table 2). At 65% Al saturation, susceptible
genotypes germinate and grow well for about three weeks, after which every
plant dies. Uniformity of soils was monitored by planting tolerant and
susceptible genotypes in adjacent rows at regular intervals.

Sorghum collections from acid soil regions of Kenya, Nigeria, and Uganda
(Table 3) had a higher percentage of tolerant entries than those evaluated
from other countries (Gourley, 1988). At 63% Al saturation, fewer than 8%
of the entries originating from acid soil regions were rated as tolerant. One
would expect a lower percentage in the general sorghum collection.

Table 2. Visual rating scale used o evaluate sorghum genotypes for Al tolerance

in the field.
Visual
rating scale  Plant symptoms at physiological maturity
1 Good plant color, well-filled panicles, little stress or Al-toxicity symptoms.
2 Some yellowing of leaves, reduced panicle tize, some stress and Al-toxicity symptoms.
3 Stunted plants, yellowing and dead leaves, smel} panicles with litle grain, many stress symptoms.
4 Severely stunted or dead planis two Lo three weeks after emergence.

{Adapted from Gouriey, 1967a).

Table 8. Al-tolerance ratings of 1737 sorghum world collection lines by country

of origin.
Al-tolerant Al-susceptible

Country Lines tested 1! 2 3 4

.................... B e e ececacnaaaaaa

Burkina Faso 82 5 35 32 28
Cameroon 74 8 22 32 38
Central Afr. Rep. 205 2 21 38 39
Ethiopia 213 8 18 35 39
Kenya 110 15 37 30 18
Mali 39 0 20 62 18
Nigeria 287 17 32 23 28
South Africa 74 3 16 49 32
Sudan 385 3 11 34 52
Ugands 120 15 45 24 16
United States 33 3 24 24 49
Zimbabwe 40 2 10 40 48
Miscellaneous 75 9 25 36 30
Total 1737 7.8 23.5 328 35.9

11 = Ak-tolerant, 4 = Al-susceptible. (Gourley, 1987c).
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Using the taxonomic classification of Harlan and de Wet (1972), the
Guinea race and the hybrid Guinea-bicolor lines had a higher percentage of
acid soil tolerant sorghum entries than those of other races and hybrids
(Table 4). Tolerant entries of the Caudatum race from Kenya and Uganda
were the most agronomically desirable and produced the highes: grain
yields.

After screening more than 6,000 entries from tke ICRISAT and USDA
sorghum collections, less than 50 were found to produce high grain yield on
tropical acid soils and to possess agronomic characteristics required for
mechanized production. Two sorghum cultivars have recently been released
in Colombia, the result of collaborative acid soil research between ICA and
INTSORMIL. Sorghica Real 60 and Sorghica Real 40 have consistently
produced high grain yields on acid soils in both cropping seasons during the
year (Table 5). Both cultivars have good yield stability in acid and fertile
soils, were collected in Uganda, and are classified as Caudatums.

BREEDING AND GENETICS

Prior to 1975, most breeding improvement programs were conducted at
locations with soils of pH 7 or higher, high levels of fertility, and generally
optimum environmental conditions. After acid soil tolerant lines were found

Table 4. Al-tolerance ratings of 1674 sorghum world collection lines by taxonomic

clagsification.
Al-tolerant Al-susceptible
Classification' Lines tested 1t 2 3 4
............... L 3,

Bicolor 42 7 14 31 48
Caudatum 708 8 22 29 41
Durra 97 2 6 40 52
Guinea 223 13 38 34 15
Kafir 183 1 20 41 k1]
Caudatum-bicolor ) 9 32 4 as
Durra-bicolor 96 5 28 45 22
Guinea-bicolor 40 2 35 28 15
Durra-caudatum 108 11 18 32 39
Guinea-caudatum 74 7 23 35 35
Miscellaneous 32 3 6 50 41

Total 1674 1.7 23.5 334 35.4

'Taxonomic classification of Harlan and de Wet (1972).
*1 n At-tolorant, 4 « Al-susceptible, {Gourley, 1967c).
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Table 5. Plant heightand yield of 10 sorghum genotypes planted in acid soils with
aluminum saturation levels between 40 and 60%. Average data for 12
sites in the Department of Meta, Colombia.

Yield (kg ha™')
Al saturation
Genotype Plant height (cm) 40% 60% Mean
Sorghica Real 60 182 3220 2990 3110
Sorghica Real 40 162 3280 2790 3040
1S 3071 190 2840 2420 2630
PPQ-2 167 2980 2315 2650
IS 3522 183 2540 2140 2340
IS 8577 187 3310 2795 3050
IS 6944 189 2610 2280 2450
5DX61/1910 178 2430 2120 2275
ICA Nataima 96 530 890 710
lcaima 151 710 2170 1440

Source: ICA, Annual Repert, National Cereals Section, June 1991, (Gourley and Munoz, 1991).

that produced economical grain yields, a breeding program was initiated
using the low-input philosophy. An excellent review of the literature of
breeding sorghum for tolerance to acid soil has been compiled by Duncan
(1991).

A nutrient culture technique was developed to evaluate Al tolerance in
12-day-old sorghum seedlings (Furlani and Clark, 1981). Bastos and Gour-
ley (1982) increased the seventy of the challenge by increasing the concen-
tratlon of Al to 222 umol L' and decreasing the concentration of P to 16 umol
L in nutrient solution. Using this technique, no genetic gein was obtained
in a selection study using five F; populations from genetically diverse inbred
parents including several with Al tolerance identified by this technique
(Bastos, 1982).

Several genetic studies of field verified acid soil tolerant sorghum geno-
types used the modified nutrient culture procedure, butincreased the growth
period of the seedlings to about 30 days (Adamou et al., 1992; Gourley et al.,
1990; Gutierrez et al., 1990; Montgomery et al., 1992; Saadan, 1991).
Inconsistencies between the acid soil and solution culture experiments,
using hybrids in common, indicated that different genctic responses to the
treatments were being measured (Gourley et al., 1990). In these studies,
adventitious root mass was the best predictor of field performance.

A greenhouse screening technique was evaluated using virgin Oxisol soil

from the Colombian Llanos with different levels of Al saturation (Gourley,
1983; Gourley et al., 1990). Dry matter yield of roots, tops, and total plant
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for 3-week-old sorghum seedlings were insufficiently correlated with field
performance to allow this technique to be used in a breeding program. The
results of seedling nutrient solution and greenhouse tests suggest that the
type of gene action identified to be controlling Al tolerance was dependent
on the degree of Al stress, the evaluation technique employed, and the
germplasm being evaluated.

The fact that Al-sensitive lines would produce perfectly good stands in
65% Al-saturation plots, only to die later, suggests that seedling traits may
not be the best screening parameters. Many of the quick tests for Al
tolerance, such as reaction to hematoxylin, Al-pulse treatments, and Al in
nutrient solutions, appear to be better suited for evaluating crops other than
sorghum. The results of many of these tests are reported in the sorghum
literature with no substantiating field trials. The primary root in sorghum
apparently is only slightly affected during early seedling growth in acid soils.
After the primary root dies, usually 2-to-4 weeks after germination, only acid
soil tolerant genotypes will produce an adventitious root system needed to
sustain the plant. Understanding the phenological and/or morphological
differences between the primary and adventitious root systems could offer
ingight into the nature of tolerance to acid, high Al =oils.

Several different selection methods were used to identify Al-tolerant
plants in segregating populations. Planting the F; population in the screen-
ing plot at about 65% Al saturation permits identification of Al tolerance;
however, photoperiod sensitivity, genetic plant height, or maturity canno*
be determined. Since Al tolerance in sorghum appears to be simply inherited
as a dominant factor(s), segregating populations can be grown on normal
soils in the temperate or tropic zones and selection effort concentrated on a
agronomic characters. In each F; population of about 5,000 plants, a selec-
tion intensity of 2% or less produced large numbers of Al-tolerant F, families.
Tolerant lines were later evaluated for agronomic type in both temperate
and tropical environments. As more constraints are found in the acid soil
complex and yield and other agronomic factors are added to the hreedmg
goals, a more holistic approach to breeding is used in the environment in
which the cultivars will be commercially used.

The performance of experimental acid soil tolerant sorghum cultivars and
hybrids has been well documented. In newly prepared screening plots in
Colombia (pH 4.4,63% Al saturation), 18 Al-tolerant cultivars produced from
2.0-50tha"or 400 1000% more grain than a susceptible check (Gourley,
1987b). Flores et al. (1988) found that 6 acid soil tolerant cultivars averaged
3070 kg ha™ or 943% more grain and 4700 kg ha' or 983% more stover yield
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than a local commercial cultivar, ICA Nataima, when grown on a Colombian
Ultisol at pH 4.1 and 60% Al saturation.

Combining ability studies in Colombia (Flores et al., 1988, 1991a), Niger
(Adamou et al., 1992) and Kenya (Zake et al., 1992) have compared growth
and yield traits of Colombian bred inbreds at varied Al-saturation levels in
field trials. These studies showed that Al tolerance was couditioned by both
additive and non-additive gene action. Gourley and Munoz (1991) reported
experimental hybrids (both inbreds being acid soil tolerant) of producing
more than 2,000 kg ha™ in soils with 75% Al saturation. Hybrids have many
advantages over inbreds in the infertile-soil environment: hybrid seedlings
exhibit more vigor during emergence and early plant growth; hybrids are
almost always more stress tolerant and usually yield more grain than the
most tolerant parent; hybrids generally produce more extensive root systems
and exploit available soil nutrient and water better.

Genotypic differences in leaf concentrations of mineral elements have
been reported in sorghum grown on acid soils (Clark et al., 1988; Clark and
Gourley, 19874, b, 1988; Flores et al., 1921b; Gourley et al., 1991). Clark
(1986) determined cntlcal leaf tlssue values of plants grown in nutnent
culture to be < 2 mg g for P and Ca and >280 for young or 600-900 ug g
Mn for older plants, and >200 ug g™ Al

Field studies were conducted to determine mineral element concentra-
tions in leaves of 26 sorchum genutypes that were tolerant to acid soil
conditions in Colombia, South America (Gourley et al., 1991). Al saturation
levels in soils at five sites were 60 and 68% on an Oxisol and 63, 45 and 32%
on an Ultisol (soil characteristics of the three Ultisol locations are shown in
Table 2). After physiological maturity, three leaves per plot (first leaf below
the flag leaf) were randomly selected, combined and analyzed for Mg, Si, P,
S,CL K, Ca, Mn, Fe, Cu, Zn, and Al by energy-dispersive X-ray fluorescence
(Knudsen et al., 1981;.

Several of the 26 sorghum genoiypes showed differences for higher or
lower leaf mineral element accumulation relative to the other genotypes.
Genotypes IS7173C and Sorghica Real 40 accumulated a high concentration
of Alin the leaftissue, while Sorghica Real 60 and IS8931 accumulated about
one-half as much Al (Table 6). Sorghica Real 40 and Sorghica Real 60 were
the first acid soil cultivars to be released in Colombia. These genotypes are
tolerant to high levels of Al saturation, suggesting that there is more than
one Al-tolerance mechanism in sorghum. Genotypes 1S6902 and IS7173C
were high accumulators of Mn and genotypes 1S3553 and IS9277 were low
accumulators.
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The ability of a genotype to accumulate P and K under conditions of high
Al saturation or o'herwise low nutrient availability is an important trait.
Genotypes IS7173C and IS9138 accumulated abuut 80% more P than IS8577
and 3DX57/1/1/910. Genotypes IS9101 and 1S9138 accumulated about 25%
more K than genotypes IS7173C and 1S9277. Note that IS9138 accumulates
more P and K while IS7173C accumulates more P but less K than many
other genotyres (Table 6). Silicon has been shown to alleviate Al and Mn
toxicity (Galvez et al., 1987, 1989). Genotypes IS7173C and IS9138 accumu-
lated about 35% more Si than 1S6944 and 1S8933. A strong negative
correlation between Si accumulation and level of Al saturation was evident
for the 26 genotypes grown at the Ultisol locations (Figure 1).

If differences in mineral concentrations observed among genotypes are
under genetic control, the efficiency of some genotypes to extract P and
accumulate K under conditions of low availability should be amenable to

Table 8. Leaf mineral element concentrations of Al, Mn, Si, X, and P of the two
upper and lower of 26 sorghum genotypes grown on acid soils at five
locations in Colombia.

Blement/Genotype Leaf concentration
Aluminum (ug g")
IS 7173C 1,936
Sorghica Real 40 1,829
IS 8931 1,140
Sorghica Real 60 1,110
Ma1zanese

IS 6902 342
IS 7173C 302
IS 3553 246
IS 9277 228
Silicon (mg g'l)
IS 7173C 40.3
IS 9138 39.2
IS 6944 29.7
IS 8933 28.6
Potarsium

IS 9101 15.76
1S 9138 15.17
IS 7173C 12.66
1S 9277 1216
Phosphorus

IS 7173C 2.86
159138 2.80
IS 8577 1.60
3DX57/1/1510 1.54

(Adapted from Gourlay, 1991a).
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Figure 1. Mean silicon concentration in the leaves of 28 Al-tolerant sorghum
ge ~.otypes growing at three Al-saturation levels at Quilichao, Colombia.
(Adapted from Gourley, 1991a).

geneticimprovement. Many of the Al-tolerant genotypes produced large root
systems in nutrient culture that assisted them in obtaining adequate nutri-
tionin low-input environments. They were also more drought tolerant in the
field than susceptible genotypes.

SUMMARY

Much progress has been made in the 15 years of conducting acid soil
research in Colombia, but many aspects of the plant-soil interactions remain
unclear. Genetic variability for tolerance to the tropical acid soil complex
exists in the genus Sorghum. Tolerant cultivars have been released and are
producing economic grain yields for resource-poor farmers in marginal
production areas using low-input technology. The primary root will pene-
trate deep into acid soils where adventitious roots will not grow, killing the
susceptible sorghum plant. Genetic variability has been found for differen-
tial mineral uptake, suggesting the possibility of different tolerance mecha-
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nisms and plant utilization efficiencies. Inbred lines that produce high
yielding hybrids, tolerant to the Al-toxic, infertile soiis of the tropics, will be
the next generation of releases from the rollaborative research of INTSOR-
MIL and the National sorghum breeding programs. Since tolerance to the
acid soil complex appears to be dominate in sorghum, either tolerant polli-
nator or seed parent lines can be used to produce cytoplasmic-genic hybrids
commercially in the tropics or the temperate zones.
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Testing Crops for Salinity Tolerance

E. V. Maas
U.S. Salinity Laboratory, USDA-ARS
Riverside, CA

ABSTRACT

The capabllity of crops to grow on saline soils varies among species and depends
on the concentration of salts present in the rootzone and on vaxious environmental
and cultural conditions. Information on the relative tolerance of different cropes is
essentinl to the successful management of salt-affected agricvltursl lands and
waters. Results from over 50 years of research have produced salt tolerance data
that rolate yield reductions of ove« 90 different crops to soil ealinity. These data
are presented in tabular form and give threshold salinity values and percent yield
reductions expected at salinities exceeding the threshold. The recommended pro-
cedure to acquire reliable data, the yield response function used to quantify salt
tolerance data, and factors to consider when evaluating or using these data are
also described.

INTRODUCTION

Sustained and profitable production of crops on salt-affected soils requires
appropriate on-farm management decisions. Growers must know how plants
respond to salinity, the relative tolerances of different crops and their
sensitivity at different stages of growth, and how different soil and environ-
mental conditions affect salt-stressed plants. For more than 50 years,
scientists at the U. S. Salinity Laboratory in Riverside have determined the
responses of many important agricultural crops to soil and water salinity.
The results of those studies as well as those obtained at various other
locations are crucial for estimating potentiual yields of crops grown under
different levels of salinity.

The mcst common effect of salirity on plents is a general stunting of
growth. The plants usually appear normal, although if compared with
nonstressed plants, they may have darker green leaves that, in some cases,
are thicker and more succulent. Visual symptoms, such as leaf burn, ne-
crosis, and defoliation occur in some species, particularly woody crops, but
these symptoms are rare in herbaceous crops unless plants are severely
stressed. Consequently, it is difficult to diagnose a moderately salt-affected
crop in the field without having a nonstressed crop nearby for comparison.
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The most certain method to identify a salinity problem is to determine the
salt concentration of the soil. If soil salinity in the rootzone exceeds the
tolerance of the crop, yield losses can be estimated from the salt tolerance
data.

Crop response to salinity can be quantified by plotting relative growth o
yield as a continuous function of increasingly higher levels of soil salinity.
This response function generally follows a sigmoidal relationship, i.e., yields
tend to be independent of soil salinity, or decrease slowly, at low salt
concentrations, then decrease at a greater, but relatively constant, rate at
intermediate concentrations; and finally at high concentrations, they begin
to decrease more slowly, approaching zero yield asymptotically. With s ‘me
crops, plants may die before seed or fruit yields have reacted zero, thus
eliminating the lower part of the sigmoidal curve. In either case, yields at
extreme salinity stress are too low to be of commercial value so that accuracy
in this part of the response curve is not critical.

PLANT RESPONSE

Plant sensitivity to soil salinity continually changes during the growing
season. Most crops are tolerant during germination, but the young develop-
ing seedlings are susceptible to injury during emergence from the soil and
during early juvenile development. Once established, plants generally be-
come increasingly tolerant during later scages of growth. One of the primary
effects of salt stress is that it delays germination and seedling emergence.
Delays can be fatal if the emerging seedlings, already weakened by salt
stress, encounter additional stresses, such as water stress, extreme tempera-
ture fluctuations and/or soil crusting. Because of evaporation at the soil
surface, the salt concentracion in the seed bed is often greater than at deeper
depths. Consequently, the juvenile roots of emerging seedlings are exposed
to a greater degree of stress than indicated by the usual measurements of
salinity made on composite s0il samples tuken from throughout the soil
profile. The l0ss of plants during this crucial phase can reduce the plant
population density to suboptimai levels and significantly reduce yields.

Experiments designed to test the relative effects of salt stress at different
stages of growth indicate that sorghum (Sorghum bicolor (L.) Moench),
wheat (Triticum aestivum L.), and cowpea (Vigna unguiculata (L.) Walp.)
are most sensiiive during the vegetative and early reproductive stages, less
sensitive during flowering, and least sensitive during the grain-filling stage
(Maas et al., 1986; Maas and Poss, 1989a; 1989b). Suppression of tiller
formation is the most serious effect of salt stress during the vegetative and
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early reproductive stage of cereals. Apparently, most crops become more
tolerant at later stages of growth, but there are some exceptions. For
example, salt stress affects pollination of some rice (Oryza sativa L.) culti-
vars, thereby decreasing seed set and grain yield. (see Maas and Grattan,
1994, for further discussion and references).

ESTABLISEMENT OF EXPERIMENTS

Traditionally, salt tolerance data have been obtained in small experimen-
tal plots. To the extent possible, crops are grown according to commercial
practices with adequate moisture and nutrients. Several salinity treatments
(preferably six or more, replicated three times) are imposed by irrigating the
test crop with artificially-salinized water. A mixture of NaCl and CaCl; (1:1
by wt.) is added to nonsaline irrigation water to obtain a range of salt
concentrations that cause yield reductions of 0 to 50% or more. The soil
profiles are leached with the respective treatment waters to presalinize the
expected rootzone. However, to ensure an acceptable plant stand, all plots
are irrigated with approx. 5 cm of nonsaline water just prior to sowing to
provide a nonsaline seedbed. Saline irrigations are imposed after the seed-
lings have emerged and are continued throughout the growing season.

The soil should be sufficiently permeable to allow adequate leaching.
Without leaching, salt concentration increases with deptl in the rootzone
and can vary from that of the irrigation water near the soil surface to
concentrations many times higher at the bottom of the rootzone. With such
variable salinity, it is difficul{ to estimate the degree of salt stress to which
the plant is responding. Even with the recommended leaching fraction of
50%, salt concentrations roughly double from the top to the bottom of the
rootzone.

Having accurate measurements of soil salinity in tke rootzone during the
growing season is essential to obtain reliable salt tolerance data. This
requires monitoring salinity at several depths at various times during the
season. These salinity values are averaged to estimate the mean soil salinity
encountered by the crop. Soil salinity is conveniently estimated from the
electrical conductivity (EC) of water extracted from the soil at some reference
water content, e.g. that present in & saturated soil paste. Although the EC
of the saturated-soil extract (EC,) is approximately half that of the soil water
at field capacity, it has commonly been used to express the salinity of the
goil. It is a reproducible value that is directly proportional to the salt
concentration in the soil water. For further details and a description of other
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methods that measure EC of the soil water directly or indirectly, the reader
18 referred to Rhoades and Miyamoto (1990).

Many soil and environmental factors interact with salinity to influence
crop salt tolerance. Therefore, these factors must be considered before
planning any salt tolerance experiments. The &1il should be adequately
fertilized because the lack of nutrients, rather than salinity, can be the
primary factor limiting growth. Plants tested on infertile soils, therefore,
may appear more salt tolerant than those grown on fertile soils. Maintaining
adequate soil water throughout the growing season is also essential to obtain
reliable data. If watsr is limiting, plants not only must endure water stress,
but they are exposed to higher salt concentrations as they extract and
concentrate the soil water. It should be noted that salt-stunted plants grown
in saline treatments will probably require less water than normal-sized
control plants.

The sorghum experiment described by Francois et al. (1984) is typical of
the salt tolerance experiments conducted by the U. S. Salinity Laboratory.
Usually, two cultivars are tested simultaneously in 6-m-square plots. Includ-
ing additional cultivars in the small plots, while desirable, compromises the
reliability of the plant growth and yield data. Our experience also indicates
that six levels of salinity replicated three tinies are required to obtain
reliable data. Furthermore, experiments are normally repeated a second
year and the data are combined, although only one year’s data were reported
for sorghum. The two cultivars, Asgrow Double TX and Northrup King
NK-265, responded alike to increasing soil salinity. A similar experiment
wag conducted at Brawley, CA on two cultivars of pearl millet (Pennisetum
glaucum (L.) R. Br, cvs. 18DB and 23DB). The reduction in shoot dry matter
production with increasing salinity indicated that pearl millet is moderately
tolerant (L. E. Francois, personal communication). Unfortunately, seed
production was well below normal, possibly because pollination was affected
by the extreme summer temperatures. The only known data on seed yield
also indicate that pear]l millet is moderately tolerant (Sirgh and Chandra,
1979).

YIELD RESPONSE CURVE

Maas and Hoffman (1977) proposed that the yield response curve for
agricultural crops could be represented by two linear lines, one, a horizontal
line depicting no response to increasing salinity at low concentrations, and
the second, a concentration-dependent line whose slope indicates the yield
reduction per unit increase in salinity at higher concentrations. The point
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at which the two lines intersect designates the “threshold”, i.e. the maximum
soil salinity that does not reduce yizld below that obtained under nonsaline
conditions. Figure 1 shows the two-piece model fitted to actual grain yields
obtained in a salt tolerance experiment on corn (Zea mays L.). This two-piece
linear response function provides a reasonably good fit for commercially
acceptable yields whcn plotted against time- and depth-averaged salinity in
the rootzone. For soil salinities exceeding the threshold of any given crop,
relative yield (Y,) can be estimated with the following equation:

Y, = 100 - (EC, - a)

where a = the salinity threshold expressed in dS/m (1 d$/m = 1 mmho/cm);
b = the yield reduction, or slope, expressed in % per dS/m; and EC, = the
mean electrical conductivity of saturated-soil extracts taken from the root-
zone.
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RELATIVE YIELD, Y,
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SOIL SALINITY, EC, (dS/m)

Fig.1. The piece-wise linear response function fitted to actual yield data ob-
tained from corn. Data from Hoffman et al. (1983).
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SALT-RESPONSE THRESHOLDS

Tables 1 and 2 list threshold and slope values for over 90 crops in terms
of EC.. Most of the data were obtained where crops were grown under
conditions simulating recommended cultural and management practices for
commercial production. Consequently, they indicate relative tolerances of
different crops grown under different conditions and not under some stand-
ardized set of conditions. Furthermore, the data apply only where crops are
exposed to fairly uniform salinities from the late seedling stage to maturity.
Where crops have particularly sensitive stages, the tolerance limits are
given in the footnotes. These data are also intended to apply where chloride
i8 the predominant anion. Plants grown on gypsifercus soils will tolerate
EC.'s approximately 2 dS m™ higher than those listed in Table 1. The last
column provides a qualitative salt tolerance rating that is useful in catego-
rizing crops in general terms. The limits of these categories are illustrated
in Figure 2. Some crops are listed with only a qualitative rating because
experimental data are insdequate to calculate the threshold and slope.

Table 1. Salt tolerance of herbaceous crops.”
Tolerance Threstold®  Slope (%

Cominon name Botanlcal name® basedon: _ (EC,)dS/m perd/m)  Rating®
Flber, graln, and speclal crops

Artichoko, Jerusalem  Heflanthus tuberosus L. Tuber yleld 0.4 0.6 MS
Barley® Hordeum vulgare .. Grain ylei 8.0 5.0 T
Canola or rapeseed  Brassica campestris L. [syn. B. rapaL.) Seed yleld - — T
Canola or rapeseed  B. napus L. Seed yleld — - T
Chick pea Cleer arletinum L. Seed yleld — - MS
Corn' Zea mays L. Ear FW 7 12 Ms
Cotton Gossyplum hirsutum L. S(;ie: :otton 7.7 52 T
Crambe Crambe abyssinica Hochst. ex R.E. Fries Seed yleld 2.0 8.5 MS
Flax Linum usitatissimum L. Seod yleld 1.7 12 MS
Guar Cyamopsls tetragonoloba (L). Taub. Seed yleld 88 17 T
Kenaf Hibiscus cannabinus L. Stem DW 8.1 11.8 T
Mllet, channel Echinochloa turnerana (Domin) J.M. Black Grain yleld - -— T
Milst, peart Pemnisetum gioucum (L) R.Br Seed yleld - — Mt
Oats Avena sallva L. Grain yleld - — T
Peanut Arachis irpogaea L. Seed yleld 3.2 29 MS
Rice Oryza sativa L. Grain yleld 3.09 129 S
Rosslle Hibiscus sabdariffa L. Stem DW - — MT
Rye Secale corsale L. Grain yleld 11.4 10.8 T
Saffiower Carthamus tnctorius L., Seed yleld —_ —_ MT
Sesama" Sesamum Iindicum L. Pod DW —_ _ S
Sorghum Sorghum bicolor (L) Moench Grain yleld 8B 18 MT
Soybean Glycine max (L.) Merill Seed yleld 5.0 20 MT
Sugarbeet Beta vulgaris L. Storage root 7.0 5.9 T
Sugarcane Saccharum oMcinarum i, Shoot DW 1.7 59 MS
Sunflower Hellanthus annuus L. Seed yleld - - MT
Triticale X Triticosecale Wittmack Grain yied 6.1 2.5 T
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Tolerarice Threshold®  Slopa (%
Common name Botanical name® based on: __ (EC.)dS/m perd/m) _Rating®
Wheat Trtcum aestivum L. Grain yleld 8.0 74 MT
Wheat (semidwarf) T, sestvum L. Grain yloid 8.6 3.0 T
Wheat, Durum T. turgidum L. var. durum Dest. Grain yleid 59 3.8 T
Grasses and forage crops
Alfafa Madicago sativa L. Shoot DW 20 7.3 MS
Alkaligrass, Nuttalt Pucdinaila alroldes (Nutt.) Wats. & Coult Shoot DW - — T
Alkall sacaton Sporobolus akrokes Tor. Shoot DW - - T
Barley (forege)® Hordeum vulgare L. Shoot DW 8.0 7.4 MT
Bentgrass, creeping  Agrosts stolonifera L. Shoot DW — — MS
Bermudagrasa" Cynodon dactylon (L.) Pers. Shoot DW 8.9 6.4 T
Bluestem, Anglaton  Dichanthium aristatum (Polr.) C.E. Hubb. Shoot DW - —-— ms’
[syn. Andropogon nodosus (Willlem) Nash)
Broadbean Vicia faba L. Shoot DW 1.8 9.8 MS
Brome, mountaln Bromus marginatus Nees ex Steud. Shoot DW — MT*
8rome, smooth B. Inermis Leyss Shoot DW — - MT
Buftekjrass Ponnisetum cifara (L), Uink. Shoot DW — — Ms'
[syn. Cenchrus cllaris)
Bumet Poterfum sanguisorba L. Shoot DW - - Mms’
Canarygrass, reed Phalaris arundinacea L. Shoot DW — —_ MT
Clover, alslke Trtdlum, hybrdum L. Shoot DW 1.5 12 MS
Clover, Barsaem T. alaxendinum L. Shoot DW 1.5 5.7 MS
Clover, Hubam Mallotus alba Dest. var. annua H.S. Coe Shoot DW - - Mt
Clover, iadino Trifoloim repens L. Shoot DW 1.5 12 MS
Clover, Parstan T. resupinatum L. Shoot DW - — Ms’
Clover, red T. pratense L. Shoot DW 1.5 12 MS
Clover, strawberry T. fragiferum L. Shoot DW 1.5 12 MS
Clover, sweet Mallotus sp. Ml Shoot DW — — MT
Clover, white Dutch  Tribodum repens L. Shoot DW — - ms’
Corn (forage)t Zoa mays L. Shoot DW 18 74 MS
Cowpea (forage) Vigna unguicuiata (L.) Walp. Shoot DW 25 1 MS
Dallsgrass Paspalum diatatum Palr. Shoot DW — —_ Ms'
Dhalncha Sesbania bispinosa (Unn.) W.F. Wight Shoot DW — —_ MT
[syn. Sesbania aculeala (Wikd.) Poir]
Fesacue, tall Festuca elctior L. Shoot DW 3.9 53 MT
[syn. F. arundinacea)
Fescue, meadow Festuca pratensis Huds. Shoot DW - - Mt
Foxtall, meadow Alopecurus pratensls L. Shoot DW 1.5 9.6 MS
Glydne Neonotonla wightil Shoot DW - -~ MS
[syn. Glycine wightil or Javanica)
Gram, black Vigna mungo (L.) Hepper Shoot DW - —_— S
or Urd bean [syn. Phaseolus mungo L.)
Grama, blue Boutsloua graciils (HBK) Lag. ox Steud. Shoot DW - — ms’
Guinea grass Panicum max'mum Jacq. Shoot DW — — MT
Hardinggrass Phalans tuberosa L. var, stenoplera Shoot DW 46 7.6 MT
(Hack) AS. Hitchc.
Kallargrass Leptochioa fusca (L.} Kunth Shoot DW — —_ T
[syn. Diplachne fusca Beauv.)
Labiab bean Lablab pumpureus (L.) Sweet Shoot DW —_ —_ MS
[syn. Dolichos lablab L.}
Lovegrass' Eragrostis sp. N.M. Wolt Shoot DW 20 6.4 MS
Mikvetch, Clcer Astragalus cicer L. Shoot DW - - Ms*
Mliet, Foxtail Setaria italica (L.} Beauvols Dry matter —_ - MS
Milet, poari Pennisetum gloucum (L) R. Br Dry matter — — mT
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Tolerance Threshold®  Slope (%
Common name Botanical name® basedon: _ (EC.) dS/m per dS/m)  Rating?
Oatgrass, tall Arthenatherum elatius (L.) Beauvols ox Shoot DW - —- ms’
J. Prosl & K. Presl
Oats (forege) Avena sativa L. Straw OW - - T
rchardgrass Dactylls glomerata L. Shoot DW 1.5 8.2 MS
Pani.grass, blue Panlcum antidotale Retz. Shoot W - - Ms’
Plgeon pea Ca/anus cajan (L.) Huth Shoot OW — —_ S
[syr. C. Indicus (K..) Spreng.]
Rape (forage) Brassica nupus L. - - M’
Rescuegrass beomius uniololdes HBK Shoot DW —_ - mr
Rhodesgrass Chiorls Gayana Kunth. Shoot DW - - MT
Rye (forege) Secale careale L. Shoot DW 78 49 T
Ryegrass, ftalian Lallum multfiorum Lam, Shoot DW - - MT*
Ryegrass, perennlal  Lollum persnne L. Shoot DW 5.8 7.8 MT
Ryegrass, Wimmera L. rigidum Gaud, - - mr’
Saltgrass, desort Distichila spicta L. var. stricta (Torr.) Betde  Shoot DW - - T
Sesbania Sesbania exaltata (Ral.) V.L. Cory Shoot DW 23 7.0 MS
Sirato Macroptifum atropurpureum (DC.) Urb, Shoot DW — — MS
Sphaerophysa Sphaerophysa salsula (Pall.) DC Shoot OW 22 7.0 MS
Sudangraas Sorghum bicolor (L.) Moench Shoot DW 28 4.3 MT
[syn. S. zudanense (Piper) Stapf]
Timothy Phieum pratense L. Shoot DW - — ms'
Trefoll, big Lotus pedunculatus C Shoot DW 23 19 MS
Trefoll, narmowleat L. comiculatus var tenulfollum L, Shoot DW 5.0 10 MT
birdsfoot
Trefoll, broadleat L. comicidatus L. var arvenis (Schikuhr) Ser.ex Shoot DW —_ —_ MS
birdsfoot DC
Vetch, common Vidia angustibolia L. Shoot DW 3.0 1 MS
Wheat (forage) Triticum aestivum L. Shoot DW 45 28 MT
Wheat Durum (forage) T. turgidum L. var durum Dest, Shoot DW 2.1 25 MT
Wheatgrass, standard Agropyron sibiricurn (Wild.) Beauvols Shoot OW 3.5 4.0 MT
crested
Wheatgrass, falrway A crfstatum (L.) Gaertn, Shoot DW 7.5 6.9 T
crested
Wheatgrass, A. Intermedium (Host) Beauvols Shoot DW — _ Mt
Intermediate
Wheatgrass, slender A, trachycaulum (Link) Malte Shoot DW —_ MT
Wheatgrass, tall A. elongatum (Hort) Beauvois Shoot OW 75 4.2 T
Wheatgrass, westemn A, smithil Rydb. Shoot DW - —_ mr’
Widrye, Altal Elymus angustus Trin. Shoot OW - - T
Widrye, beard ess E. triticoldas Buci. Shoot OW 27 6.0 MT
Widrye, Canadlan  E. canadensis L. Shoot OW — - Mt
Widrye, Russian E. Junceus Flsch. Shoot DW —_ —_ T
Vegetables and frult crops
Arichoke Cynara scolymus L. Head yleld —_— —-_ MT
Asparagus Asparagus officinalis L. Spear yleid 4.1 2.0 T
Bean, common Phaseolus viigaris L. Seed yleld 1.0 19 S
Beass, lima P. lunatus L. Seed yleld — — Mt
Bean, mung Vigna radlata (L.) R. Wiicz Seed yleld 1.8 20.7 S
Cassava Manihot esculenta Crantz Tuber yleld —_ — MS
Beet, red' Beta vulgaris L. Storage root 4.0 9.0 MT
Broceali Brasslca oferscea L. {Botryis Group) Shoot FW 28 9.2 MS
Brussel Sprouts B. oleracea L. (Gemmifera Group) - - ms'
Cabbage 8. oleracea L. (Capltata Group) Head FW 1.8 9.7 MS
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Tolerance Threshold®  Slope (%

Common name Botanicat name® basedon: _ (EC,)dS/m perdS/m} _ Rating’
Carrot Daucus carota L. Storage root 1.0 14 S
Caullfiower Brassica oferacea L. (Bo'ryis Group) - —_ Ms'
Colery Aplum graveolens L. var duice (Mill.) Pers. Petiole FW 1.8 8.2 MS
Corn, swoet Zea mays | Ear FW 1.7 12 MS
Cowpea Vigna ungulculata (L.) Walp. Seed yleld 49 12 MT
Cucumber Cucumis sativus L. Fruit yleld 25 13 MS
Eggplant Solanum melongena L. var esculantum Noes. Frult yleid 1.1 6.9 MS
Garlic Allum sativum L. Bulb yleld 1.7 10 MS
Gram, black Vigna mungo (L.) Happer Shoot DW _— —_ S
or Urd bean [syn. Phaseolus mungo L.)
Kale Brassica oferacaa L. (Acephala Group) — - Ms’
Kohirabl Brassica oleracea L. (Gongylodes Group) - -~ ms’
Lettuce Lactuca sativa .. Top FW 1.3 13 MS
Musiamelon Cucumis melo L. (Reticulatus Group) Fruit yleld 1.0 8.4 MS
Okra Abelmoschus esculentus (L) Moench Pod yleld —_ —_ MS
Onlon (bulb) Alfum cepa L. Bulb yleid 1.2 18 S
Onlon (seed) Seed yleld 1.0 8.0 MS
Parsnlp Paatinaca sativa L. —_ —_ s
Pea Pisum sativum L. Seed FW 3.4 10.8 MS
Peppor Capsicum annuum L. Fruit yleld 1.5 14 MS
Pigeon pea Cejanus cajan (L.) Huth Shoot DW —_ - S
[8yn C. Indicus (K.) Spreng.)
Potato Solanum tuberosum L. Tuber yleid 1.7 12 MS
Pumpkin Cucurtita pepo L. var Pepo — —_ MS*
Purslane Poitulaca oleracea L. Shoot FW 8.3 9.6 MT
Radish Raphanum sativus L. Storage root 1.2 13 MS
Spinach Spinadia oleracea L. Top FW 2.0 7.6 MS
Squash, scaliop Cucurtita pepo L. var melopepo (L.) Alef. Frult yleld 3.2 18 MS
Squash, zucchini C. pepo L. var melopepo (L.) Alet, Fruit yleld 47 9.4 MT
Strawberry Fragaria x Ananassa Duch. Frult yleld 1.0 33 S
Sweet potato Ipomoea batatas (L.) Lam, Flashy root 1.5 1 MS
Tepary boan Phase. .u3 acutifolius Gray — - MS*
Tomato Lycopersicon lycopersicum (L.) Karst ex Farw. Frult yied 25 9.9 MS
[syn. Lycopetsicon esculentum M1.]
Tomato, chefry L. Iycopersicum var. Cera:.forme (Oune!) Alef, Frultyleid 1.7 9.1 MS
Tumip Brassica rapa L. (Rapifera Group) Storage root 0.9 9.0 MS
Tumip (greans) Top FW 33 43 MT
Watermeion Citndlus lanatus (Thunb.) Matsum, & Nakal  Fruit yield —_ - MS*
Winged bean Psophocarpus tetragonolobus L. D.C. Shoot DW — - MT

“These data servo only as a gukicline 1o relative tolerances - mong crops. Absolule tolerances vary, depending on ciimate,
solf conditions, and cultural practices. Source: Maas and Grattan (1894).

®Botanical and common namos follow convention of Hortus Third {Uberty Hyde Balloy Hortorlum Staff,1976) if possible.

“In gypsiferous salls, plants will wlerate EC,’'s about 2 dS/m higher than Indlcated.

"Raﬂngs are defined by the boundarlios In Figure 2. Ratings with an * are estimatos.

*Less tolerant during seedling stage, EC, at this stage should not exceed 4 of 5 dS/m.

‘Grain and forago yleids of DeKalb XL-75 grown on an organic muck soll decreased about 26% per dS/m above a
threshold of 1.9 dS/m (Hoftman et al., 1883).

9Because paddy rice Is grown under flooded conditions, values refer to the olectrical conductivity of the sail water while the
plants are submerged. Less tolarant during seedling stege.

"Sesame cultivars, Sesaco 7 and 8, may be more 1olera * than Indicatod by the S rating.

I Sensitve during germination and emergence, EC, should not exceod 3 dS/m.

} Data trom one cultivar, *Probrod”.

"Avsrego of several cultivars. Suwannee and Coastal are about 20% more tolerant, and common and Greenfleld are about
20% less wlerant than the average.

! Average for Boer, Wiman, Sand, and Wesning aultivars. Lehmann seems about 50-% more tolerant.
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Table 2. Salt tolerance of woody crops®.

Tolerance Threshold®  Slope %
Commonname  Botanical name® based on: E!ES(/:.) perdS/m  Rating®
m
Almond Prunus duciis (M3.) D.A. Webb Shoot growth 1.5 19 S
Apple Malus sytvestris Mi\. —_ - S
Apricot Prunus armeniaca L. Shoot growth 1.6 24 S
Avocado Psrsea americana Ml Shoot growth - - S
Banana Musa acuminata Colla Frult yleld — —-— S
Bladiberry Rubus marropetalus Doug. ex Hook Frult yleld 1.5 22 S
Boysenbery Rubus :sinus Cham, and Schlechtend Fruit yleld 1.5 22 S
Castorbean Ridinus communis L. - - Ms'
Cherimoya Annona cheiimola Mil. Fallar Injury - - S
Cherry, sweet Prunus avium L. Follar Injury —_ - s
Cherry, sand Prunus besseyi L., H. Balay Follar Injury, — — s
stem growth
Coconut Cocos nudifera L. — - mT'
Currant Ribes sp. L. Fallar Injury, -— - s
stem growth
Date palm Phoenix dactyiifers . Frult yleld 4.0 38 T
Fig Ficus carica L, Plant DW - - MT
Gooseberry Ribos sp. L. - —_ s
Grape Vitls vintera L. Shoot growth 1.5 9.6 MS
Grapefrult Cltrus x paradis! Mactady Frult yleld 1.2 13.5 S
Guava Psidium gusjava L. Shoot & 4.7 3.8 MT
root growth
Guayule Parthenlum amentatum A. Gray Shoot DW 8.7 118 T
Rubber yleld 7.8 10.8 T
Jambolan plum Syzyglum cumini L. Shoot growth — - MT
Jojoba Simmondsia chinensis (Link) C.K. Schneld Shoot growth — — T
Jujube, indlan Ziziphus maurltiana Lam, Frult yield — — MT
Lemon Cltrus imon (L.) Burm. . Fruit yleld 1.5 128 S
Ume Clrus aurantiifolla (Christm.) Swingle - - s
Loquat Enrjobotrya Japonica (Thunb). Und. Follar Injury - - Y
Macadamia Macadamia integrifolia weiarn & Retcne Seedling growth -- — Ms'
Mandarin orange:  Gitrus retfculata Blanco Shoot growth -— -— s
tangerine
Mango Manglfera indica L. Follar Injury — - S
Natal pium Carissa grandifiora (E.H. Mey) A. D.C. Shoot growth — — T
Ollve Ofea europaea L. Seediing growth - - MT
Frult yleld
Orange Clitrus sinensis (L.) Osbeck Frult yleid 1.3 13.1 S
Papaya Carica papaya L. Seadling growth — —_ MS
Follar injury
Passlon frult Passlfiora edulls Sims. — — s*
Peach Prunus persica {L.) Batsch Shoot growth, 1.7 21 S
Frult yleld
Pear Pyrus communis L. —_ —_ S’
Pecan Carya llinoinensis (Wangenh.) C. Koch Nut yleid, - - MS
trunk growth
Persimmon Diospyros virginiana L. - —_ s
Finneapple Ananas comosus (L.) Memill Shoot DW —_ —_ MT
Plstachio Pistacla vera L. Shoot growth —_— — MS
Plum; Prune Prunus domaestica L. Frult yleld 28 31 MS
Pomoagranate Punica granatum L. Shoot growth - - MS
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Tolerance Threshold®  Siope %

Commonname  Botanical name® based on: (ES(/:.) perdS/m  Rating®
daS/m
Popinac, white Leucaena leucocephala {Lam.) de Wit Shoot DW — - MS
[syn. Leucasena glauca Benth.)

Pummelo Citrus maxima (Burm.) Follar injury - - s’
Raspberry Rubus idaeus L. Fruit yleld - - S
Roso applo Syzyglum jambos (L.) Alston Fallar injury — - s
Sapote, white Casimoroa eculls Llave Follar Injury - —_ s’
Scarlet wisteria Sesbanla grandifiora Shoot DW — —_ MT
Tamarugo Prosopis tamearugo Phil. Observation — -— T
Walnut Juglans spo. Follar Injury - —_ s

*These data sorve only as a guidoilne to relative ierances among cropa. Absoluts tolerances vary, depending on dimate,
soll conditions, and cultural practices. The data are app!icable when rootstocks are used that do not accumulate Na* or
C1° rapldly or when these lons do not predominate in the soll. Source: Maas and Grattan (1994),

®Botanical and common names follow the convontion of Hortus Third (Uberty Hyde Balley Hortorlum Staff, 1976) where
possible.

“In gypsiferous soils, plants will ierate EC,'s about 2 dS/m higher than indicated.

“Ratings are defined by the boundarias in Figure 2. Ratings with an * are estmates.
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Fig.2.  Divisions for classifying crop tolerance to salinity.
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The salt tolerance of trees, viaes, and other woody crops is ¢/ aplicated
because of additional detrimental effects caused by specific jon toxicities.
Many perennial woody species are susceptible to foliar injury caused by the
toxicaccumuletion of Cl" and/or Na'in the leaves. Because different cultivars
and rootstocks absorb Cl" and Na" at different rates, considerable variation
in tolerance occurs within an individual species. In the absence of specific-ion
effects, the salt tolerance data for woody crops are reasonably accurate.
Because of the cost and time required to obtain fruit yields, tolerances of
several crops are based on vegetative growth. In contrast to other crop
groups, most woody species are salt sensitive, even in the absence of specific-
ion effects. Guayule (Purthenium argentatum A. Gray) and date palm
(Phoenix dactylifera L.) are relatively salt tolerant and olive (Olea europaea
L.) and a few others are believed to be moderately tolerant.

SPRINKLER-INDUCED FOLIAR INJURY

The salt tolerance data in Table 1 apply to crnps irrigated with surface
methods, such as furrow or basin-type flooding. Sprinkler-irrigated crops
are subject to add:tional damage from salt spray on the foliage (Maas, 1985).
Salts may be directly absorbed by the leaves, resulting in injury and loss of
leaves. In crops that normally restrict salt movement from the roots to the
leaves, foliar salt absorption can cause serious problems not normally
encountered with surface irrigation systems. For example, compared to
nonsaline water (EC = 0.6 dS/m), water with an EC = 4.5 dS/m reduced
pepper (Capsicum annuum L.) yields by over 50% when applied by sprinkler,
but oaly 16% when applied to the soil surface (Bernstein and Francois, 1973).

Unfortunately, no information is available to predict yield losses as a
function of salinity levels in sprinkler irrigation water. Table 3 lists some
susceptible crops and gives approximate salt concentrations in sprinkler
water that can cause foliar injury. The degree </ injury depends on weatler
conditions and water stress. Fcr instance, leaves may contain excessive
levels of salt for several weeks without any visible injury symptoms and then
become severely burned when the weather becomes hot and dry.

Saline irrigation water will assumably reduce yields of sprinkled crops at
least as much as those of surface-irrigated crops. Additional reductions in
yield could be expected for crops susceptible to sprinkler-induced foliar
injury. Sorghum accumulates salt very slowly through the leaves and is
relatively tolerant cf saline sprinkling waters (Maas, 1985). No data are
available to judge the sensitivity of pearl millet.



Table3. Relative susceptibility of crops to foliar injury from saline sprinkling

waters."
Na or CI concentration (mol m™) causing foliar injury"

<3 5-10 10-20 >20 .
Almond Grape Alfalfa Cauliflower
Apricot Pepgper Barley Cotton
Citrus Potato Com Sugarbeet
Plum Tomato Cucumber Sunflower

Safflower

Sesame

Sorghum

Suscepdbility based on direct accumulation of salts through the leaves. Sou ce: Maas and Grattan (1994).
®Follar Injury is Influenced by cultural and environmental conditions. Theso data are presented only us general
guldetines for dayime sprnking.

ENVIRONMENTAL INTERACTION

Generally, salt tolerance data are only valid for the climatic conditions in
which the data were obtained. Temperature, relative humidity, and air
pollution all significantly affect plant responses to salinity. Most crops
tolerate more salinity stress if the weather is cool and humid than if it is hot
and dry. The coznbined effects of selinity and conditions of high evaporative
demand, whether caused by high temperature, low humidity, wind, or
drought, are more stressful than salinity alone. Because climate has a
pronounced effect on plant response to salinity, the time of year salt toler-
ance experiments are conducted can affect the outcome. For example, if the
salt tolerance of cool-season vegetabie crops was assessed in hot, dry cli-
mates, results may underestimate the level of salinity they can tolerate
when grown in their normal environment, which is cooler with a lower
evaporative demand. Conversely, crops tested in cooler and damper (high
humidity) environment than they normally grow in would appear more
tolerant than normali.

Air pollution, which is a serious problem around industrial and urban
areas, increases the apparent salt tolerance of oxidant-sensitive crops.
Ozone, a mgjor air poilutant, decreases the yield of some crops more under
nonsaline than saline conditions. Consequently, air-polluted areas should
be avoided when evaluating the response of crops to soil salinity stress.
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SUMMARY

Salt tolerance ratings cannot provide accurate estimates of actual crop
yields that depend on many other growing conditions, including weather,
soil type and fertility, water stress, insects, and disease. The ratings are
useful, however, in predicting how one crop might fare relative to another
on saline soils. As such, they are valuablz aids in managing salinity problems
in irrigated agriculture.
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ABSTRACT

In South and SBoutheast Asin, 23 m ha of land suited to rice lie idle beczuse of soil
problems. Among them are saline, alkali, acid sulfate and peat soils. Axlde from
these soils that have an array of stresses for crop growth, various soils with only
one major stress, either a nutrient deficiency or toxicity, are found.

Rice, being a semi-aquatic plant has been able to benefit from hydrological
conditions alleviating certain soil stresses to develop some degree of tolerance
durieg its evolutionary yrocess. Cultivars with high level of tolerance to soil
stresses are mostly traditional type with poor plant structure and susceptibility to
pests and diseases. Their yielding ability must be improved while retaining their
adaptability to different soil and nutritional stresses. Using laboratory, green-
house and field screening techniques at the Internationnl Rice Research Institute
(IRRI), about 200,000 ricc cultivars and breeding lines for tolerance to soil toxici-
ties nnd nutrient deficiencies. Materials identified as tolerant have been success-
fully used as parents in hybridization programs at IRRI and national programs.
Availability of donors and rapid exchange of materials through the International
Network for Genetic Evaluaticn of Rice INGER) coordinated by IRRI, have en-
couraged scientists to intensify breeding through hybridization and selection.

INTRODUCTION

The need for more food for a rapidly expanding population, scarcity of
arable lands and high cost of energy necessitate expansion of total world
cultivation area to include lands lying idle due to soil problems. Saline, sodic,
acid sulfate, and organic soils occupying about 58 m ha in South and
Southeast Asia, 23 m ha of which are potential areas for adverse soils-toler-
ant rice cultivars (Boje-Klein, 1988). The largest potential areas for saline
and sodic soil-tolerant verieties occur in India and Pakistan, those for acid



sulfate soil-tolerant cultivars in Vietnam, and those for organic soil-tolerant
cultivars in Indonesia (Table 1).

Saline, alkaline, acid sulfate and peat soils (Histosols) are characterized
by an array of adverse properties for the cultivation of crops. The major
stresses associated with problem rice soils are listed in Table 2. Some of these
problems can be alleviated by breeding, some are more conveniently cor-
rected by soil amendments.

Salinity is the main obstacle to high rice yields in coastal areas in the
humid tropics and in arid and semiarid areas where evaporation exceeds
precipitation. Saline soils are those that have an electrical conductivity in
the saturation extract (EC,) exceeding 4 dS/m at 298K (U.S. Salinity Labo-
ratory Staff, 1954).

Saline soils vary widely in their chemical and physical properties. The pH
ranges from extremely acid in saline acid sulfate soils to alkali in saline sodic
soils, organic matter content from very low to peaty; and nutrient status is
varied (van Breemen, 1976; CSSRI, 1979; Ponnamperuma and Bandyopad-
hyay, 1980).

Alkali soils contain sufficient exchangeable sodium to depress plant
growth, The sodium adsorption ratio (SAR) of the saturation extract exceeds
15 and the pH is usually above 8.5. FAO/UNESCO (1973) grouped rice as

Table 1. Estimates of areas of adverse soils in South and Southeast Asia suited to

rice cultivation.
Area (million ha)
Saline Sodic Acid Peat

Country soils soils sulfate soils soils Total
Bangladesh s - 0.1 s 0.1
Brunei s - s 0.2 0.2
Myanamar 1.0 s s s 1.0
Kampuchea 0.1 - 0.3 ] 0.4
India 2.8 25 [ - 53
Indonesia P - P 10.0 100
Malaysiu ] - p 0.2 0.2
Pakistan 2.1 0.5 - - 26
Philippines ] - p ] L]

Sri Lanka 0.1 ] . 0.1 0.2
Thailand s 03 [] [ 0.3
Vietnam ol = 26 o1 28
Total 6.2 33 3.0 10.6 23.1

8 = areas aro (8ss than 0.1 milllon hectares; p = overlapping with other adverse 80lls; - = not axisting.
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Table 2. Some soil types and associated stresses.

SOIL TYPE
Saline Sodic| Acid Acid suliate Peat Aerobic
(upiand)
arid acd coastal

Strecs sal __ sal & sodic pH<7 pH>7 coast peat Inland| acid Inland coast| acid cal
sa“nny " - - - - L -~
P mﬁdency * - - - - - - < - - . - - *
Ac‘dny - - - - L ] - - - - -
H2S toxicity * * . * *
Fe toxbhy - - L 4 - - -
Al toxicity * * * *
Mn toxicity . *
Fe deficiency * . * *
Zndeficlency | * * * * * *
Kigh pH * * * *
ESP>15 * . *
B toxicity * * * *
Org. toxicity * * * * *
N mﬂdency L 2 - - - - - - - -
K deficlency * * * *
Si deficlency * *
Low base - - - - - - -

* = assoclated stress




moderately tolerant to alkalinity. Most of the growth limiting factors are
alleviated by flooding, but Zn deficiency remains severe and P deficiency
increases with progressing reclamation and cultivation.

Acid sulfate soils are characterized by a pH <4.0 due to sulfidic/sulfuric
materials. Though flooding alleviates some growth limiting factors, Fe
toxicity and P deficiency remain as serious problems.

Peat soils are characterized by the presence of a surface layer at least 30
cm thick containing 30% or more, if the mineral fraction is clay, or 20 % if
clay is absent. Rice on peat soils suffers from N, P, K, Cu, Zn, and Mo
deficiencies.

Phosphorus deficiency limits rice yields on Ultisols, Oxisols, acid sulfate
soils, Andosols, and some Vertisols (De Datta, 1981). A large proportion of
P depleted by wetland rice comes from the native P content of the soil, and
this should be replenished primarily through inorganic P fertilizers (Sanyal
and De Datta, 1991). P deficiency has been identified as the major nutrient
deficiency on the 20 m ha cultivated to upland rice (Arraudeau, 1985).
Phosphorus deficiency occurs even if the P availability appears to be ade-
quate because of the various interactions (pH, Eh, clay humus, Al, Ca, Fe,
Mn, Zn content, temperature, and soil moisture content).Because P is
deficient in almost all problem soils, some tolerance to P deficiency is
essential for cultivars to be grown in these soils. The yield advantage of
tolerant modern cultivars is often dramatic in P deficient soils (Table 3).

Zinc deficiency is the most common nutritional deficiency of wetland rice
secondary to N and P deficiency. It is a limiting factor on calcareous soils,
sodic soils, sandy scils, peat soils and regardless of pH on continuously wet

Table 3. Yield advantage of tolerant modern rices on problem soils in farmer’s
field in the Philippines, 1977-1988.

Total number Maan yieid
Farmer Tolerant
Stress Tests Sltes Rices rices rices {(Vha) Oift.
Salinity 50 20 120 14 34 2.0
Alkalinity 8 2 103 0.8 34 28
Iron toxdcity 22 4 104 2.2 4.1 19
Peatiness 33 8 103 1.3 3.2 1.9
P deficiency 24 2 338 2.2 4.9 27
Zn defidency 48 11 411 18 4.4 28
B toxicity 5 1 34 1.1 3.0 1.9
Fe deflctency 13 1 89 0.9 28 1.9
Al/Mn toxicity 10 3 44 1.2 3.0 1.8
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soils (IRRI, 1971; 1972). Intensive screening and breeding has resulted in
the high tolerance of all IRRI's late elite lines. The yield advantage of
Zn-efficient cultivars on Zn-deficient soils is as dramatic as for P efficient
cultivars on P-deficient soils (Table 3).

VARIETAL IMPROVEMENT FOR
TOLERANCE TO SOIL STRESSES

At present, cultivars with high level of tolerance to soil stresses are mostly
traditional types (Table 4) They are low yielding due to poor plant architec-
ture and susceptibility to pests and diseases. Their yielding ability must be
improved while retaining the adaptability. Breeding programs designed
specifically for adverse environments are essential. Basic needs of cultivar
improvement research on soil stresses are:

understanding the constraints

availability of cultivars with high stress tolerance

adapted screening methodology

knowledge of genetics and the mechanism of tolerance traits
suitable breeding methodology and

mechanisms for evaluating improved germplasm

IDENTIFICATION OF SOIL STRESSES IN RICE

Visible scoring of chemical stresses is still an indispensable method of
stress identification. Visual diagnosis is fast and does not require special
equipment. The diagnostic criteria and related scoring for tolerance of rice
to soil stresses that have been implemented at IRRI during the last decade
have been published elsewhere (IRTP, 1988; Ponnamperuma, 1976).

Table 4. Traditional cultivars with high level of tolerance to soils stresses
Stress Cultivar

Salinity Cheriviruppu, Damodar, Getu, Kalarata I-24, Nona Bokra, Nona Sail, Pokkali, SR26B

P deficiency Doc Phung Lun, Engkatek, Jhona 349, KDML 105, Patnai 23, SR26B

Zn deficiency Getu, Madhukar, Nam Sa Gui 19, Pokkali, Ta-Pow-Gaew 161, Tica Phat

Fe deficiency Azmil 26, Azucena, Dinalaga, Palawan, Pinulot 330

Al/Mn toxicity Azucena, Dinalaga, Khao Daeng, Monolaya Palawan, Salumpikit

Fe toxicity Banih Kuning, Banut, Cadung Go Gung, Deveredderi, Dunia, Engkatak, Herath Banda, Kuatik
Putih, Obics, Mat Candu

Alkalinity Beak Ganzas, Cheriviruppu, Damodar, Getu, Pokkali

Peatiness Bengawan, Beobaon, Cepat, Kuatik Putih, Layang, Lemo, Potal
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To cope with large numbers of lines of the hybridizations at IRRI, the
various and related stresses have to be amalgamated into broader groups,
representing the most crucial soil stresses and traits for tolerance. Since
1969, more than 200,000 rices have been screened for soil toxicities and
nutrient deficiencies. On average, about 15% of the entries have shown
tolerance (Table 5). The proportion of tolerant entries is large because only
breeding lines that are expected to have tolerance are screened.

Materials identified as tolerant have been successfully used as parents in
hybridization programs at IRRI and in national programs. IRRI breeding
lines tolerant to acid sulfate soils have been released especially in Vietnam
(Table 6) while the most tolerant modern cultivars have been developed in
Sri Lanka and Colombia (Table 7).

VARIABILITY OF AND RELATIONSHIP BETWEEN
TOLERANCE TO DIFFERENT STRESSES

Because rice has adapted to a wider range of environments than any other
crop, potential variability with regard to soil stresses should be high.
Marked differences between cultivars in tolerance to various soil stresses
have heen reported (Akbar et al., 1972; Ikehashi and Ponnamperuma, 1978;
Fageria, 1985; Neue et al., 1990a). The frequency of scores, based on IRRI’s
standard evaluation system (IRTP, 1988), reveal a normal distribution for
each of the stresses. The variability of tolerance within a cultivar may be
very high too, as shown for salinity (Flowers and Yeo, 1981; Akita and
Cabuslay, 1989).

Table 5. Summary of screeaing for chemical stress tolerance, IRRI 1989-1992.

No. entries Entries found tolerant

Stress tested (No.) %
Salinity 136,569 23,127 17
Alkalinity 33,158 4,712 14
Peat s0il 2,855 282 10
Fe toxicity 7,161 605 8.4
P deficiency 10,989 1,870 17
Zn deficiency 23,442 2,026 8.6
Fe deficiency 891 8s 9.5
Al or Mn toxicity 2,055 222 it
B toxicity 664 140 21

Total 217,784 33,069 15
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Table 8. IRRI lines released as varieties due specifically to their tolerance to

specific soil stress.
Variety Country
Yoar IRRI lines name given where named Sall stress
1980 |IR2623-389-5-6 NN2B Vietnam Adverse condltion In
acd sulfate sall
1981 {R1416-131-5 Suakoko 12 Uberia Fe toxidty
{R2071-825-1-252 IR38 Philppines Multiple stress
Indta
1982 |R2071-586-5-6-3 IR42 Philppines Multple stress
Indonesia
Malaysia
Kampuchea
Nigeria
IR4570-83-3-3 NNSB Vietnem Add & ifate
1985 IR5857-33-2-2-3 Citanduy Indonesia Salin .y
1987 1R8192-200-3-3-1 Lomaya Malaysia Fe to:ddty
IR2151-196-3-1-3 IR2151 Vietnam Saline acld sulfate
IR2153-26-3-5-6 IR2153 Vietnam
1968 IR64 IRB64 Indonesia Add peat
1991 1R11268-8-B-69-1 Sungallin Indonesla Adld peat

Evaluation of the relationship between tolerance scores of different
stresses revealed that salinity scores are positively correlated with scores
for alkalinity (0.15), Zn deficiency (0.07), and peatiness (0.19). Other signifi-
cant positive correlations were found between scores for Fe toxicity and Zn
deficiency (0.08), between alkalinity and P deficiency scores (0.08), and
between tolerance to P deficiency and Zn deficiency (0.12). The only signifi-
cant negative correlations were found between Fe toxicity and salinity
(-0.07) and between Fe toxicity and peatiness / 0.16).

Climatic factors affect soil stress tolerance in various ways. Most correla-
tions between tolerance scores of different soil stresses are only significant
for ratings that have been done in the dry season, when solar radiation is
high and relative humidity is low. The positive correlation between salinity
and Zn deficiency (0.10) and the negative correlation between salinity and
Fe toxicity (-0.09) are only significant in the wet season .

Vigor and lodging resistance are significantly correlated to scores of stress
tolerance. Vigor is positively correlated with tolerance to salinity (0.12),
alkalinity (0.18), and P deficiency (0.06) but negatively correlated to Zn
deficiency (-0.16) and Fe toxicity (-0.32). Lodging resistance, which is linked
to plant height and strength of the culm and rooting is negatively correlated
with tolerance to salinity (-0.10), alkalinity, (-0.12) Zn deficiency (-0.19) and
Fe toxicity (-0.08).

Nutrient stresses are caused by a wide range of synergistic and antago-
nistic effects that hinder or stimulate uptake and/or metabolic processes.
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Table 7. Adverse soil-tolerant rice cultivars’ developed in national programs.

Cultivars Country of origin
Salinity
A69-1 Sri Lanka
RP975-109-2 India
BR 51-282-5 Bangladesh
B2433-b-Kn-10-1-1-1 Indonesia
C100 India
2 India
ROK S Sierra Leone
PNL §-1-1-1 India
PNL36-184-3-2 India
PNL §-30 India
Alkalinity
RP 975-109-2 India
BR 51-282-8 Bangladesh
ROK S Sierra Leone
Acid Upland
IRAT 144 Ivory Coast
IRAT 104 Ivory Coast
UPL Ri-5 Philippines
UPR 103-80-1-2 India
MSs Liberia
GA 305 Indonesia
ITA 142 Nigeria
ITA 235 Nigeria
ITA 116 Nigeria
BQ 3s-2 Sri Lanka
BPIRi-6 Philippines
B733C-167-3-2 Indonesia
Acid Lowland
BRS51-120-2 Bangladesh
BW 267-3 Sri Lenka
BQ 374-1 Sri Lanka
BW 271-1 Sri Lanka
P1369-4-16M Colombia
MRC 172-9 Philippines
BW267-3 Sri Lanka
B2149b-Pn-26-1 Indonesia
MRC 172.0 Philippines
P1274-6-8M-1-3M Colombia
P1369-4-16M-1.2M Colombia
P1391-6-11M Colombia

*From Nursery Trials of the International Rice Testing Program (IRTP) 1962-1967, IRRI, Manlia, Phliippines.
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The deficiency of one element may be induced Ly surplus of other elements
and the toxicity of an element may be caused by the deficiency of the others.

The following nutrient interactions and their optimum ratios have been
identified for rice: K/Na, Ca/Mg (1.0-1.5), Fe/Zn (5-7), Fe/Mn (1.5-2.5), P/Fe
(10-20) and P/Zn (20-60). The interaction of nutrients is puzzling and
detailed studies on these mechanisms in rice are needed. The importance of
nutrient imbalances that prevent cultivars from expressing their maximum
productivity potential are highly underestimated.

Tolerance to salinity, P deficiency and Zn deficiency are the most crucial
traits. Rices that reveal some tolerance to salinity, P deficiency and Zn
deficiency are often found to be tolerant to multiple soil stresses. Cultivars
IR36 and IR42 (Table 6) show outstanding performance on various adverse
soils. The multiple stress tolerance of IR36 has likely contributed io its
cultivation on almost 11 million ha worldwide (IRRI, 1982).

For long term sustainability of rice cultivation, traits of higher nutri-
ent/water efficiency might become more important than traits of higher
nutrient exploration, especially in soils of low fertility. The multiple stress
tolerant cultivar IR36, for example, is only moderately tolerant to P defi-
ciency in terms of exploration, but its high P efficiency is crucial for its
excellent performance on adverse soils (Davalos, 1985).

MECHANISMS OF CRUCIAL TRAITS
FOR TOLERANCE TO SOIL STRESSES

Salinity. Various studies have been conducted in recent years on the
mechanisms of salinity tolerance in rice (Yeo and Flowers, 1982, 1983, 1984;
Yeo et al., 1988; Flowers and Yeo, 1981; Fageria, 1985; Pandey and Saxena,
1987; Akita and Cabuslay, 1989; Tsuchiya et al., 1987; Bal and Dutt, 1986;
Neue, et al., 1990b). Except for the wild rice species Oryza coarctata, all rices
are glycophytes. Cultivar differences at the seedling stage are manifested
only at rather moderate (50 mol m™ NaCl) salt concentration and the time
for 50% of individuals to die ranged from 9-60 days (Yeo and Flowers, 1984).
Salinity tolerance increases with age but becomes low at flowering.

Salinity damage is predominantly due to excessive Na ion uptake and Na
accumulation in the leaves. Na ions are absorbed and translocated in the
transpiration stream. Reduction of transpiration or increased water use
efficiency increases salt tolerance of rices. The visual symptoms vary with
salinity levels. At moderate salinity, leaf tips become white and older leaves
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wither. At high salinity levels, growth is severely retarded, plants wither
and die. Since rice is a glycophyte mechanisms of tolerance are directed to
avoidance rather than tolerance of high salt concentrations in the tissue.

Morphophysiological variables that affect salt tolerance of rice are re-
stricted uptake, retention in roots, compartmentation in th- shoot (accumu-
lation in the stem, leaf sheath, older leaves), dilution by growth, cellular
compartmentation, and metabolic tolerance (Yeo and Flowers, 1984; Akita
and Cabuslay, 1989; Neue et al., 1990a). Excretion of salt by unicellular selt
hairs is only found in the halophytic species Oryza coarctata (Bal and Dutt
1986). Compartmentation (stem to leaf leafto leaf, leaf sheath to leafblade)
is a major mechanism of regulating Na concentrations in those tissues that
perform essential metabolic reactions. Compartmentation may be linked in
younger roots and leaves (Akita and Cabuslay, 1989). Younger roots do not
differ in Na selectivity but show better K selectivity than older roots (Neue
et al., 1990a). Older roots absorb more water and nutrients (Okajima, 1962)
and supply more salt to older leaves. As a result, the net input of Na to the
voung top leaf is quite low. In many traditional salt tolerant cultivars, like
Pokkali, salt concentrations in the tissue are also kept low by growth. Vigor
growth and salinity tolerance are associa’ed with higher embryo and
endosperm weight, providing a reliable tool for screening. Exceptions like
IRA2 derive salinity tolerance by its ability to keep the Na/K ratio lcw in the
shoot and root.

The relationship between the net transport of Na from the root and the
resulting Na concentration in the shoot is determined by retention in the
root, water accumulation in the shoot tissue, transpiration and growth rate.
The low shoot Na contents of Pokkali is not due to better control of Na
transport, but is directly attributable to the dilution effect of its rapid
vegetative growth (Yeo and Flowers, 1984) and higher K-uptake resulting
in low Na/K ratios in shoot and root. The correlation of salinity tolerance
scores with vigor growth (positive correlation) and lodging resistance (nega-
tive correlation)indicates that the combination of these tolerance traits were
favored by natural selection pressure and domestication. The most salinity
tolerant traditional cultivars like Pokkali, Nona Bokra, Patnui 23 emerged
in the coastal belts of Southwest India and West Bengal which are prone to
inundating seawater and flood periods. Traditional rices from inland salin-
ity/alkalinity areas like Getu, Damodar, and Dasal are shorter, but have a
higher Zn uptake ability.

Most modern rice cultivare are less salt tolecant although they may have

a higher tissue tolerance than Pokkali cultivars. Tissue tolerance to salt is
an important trait. Plants rejuvenated from cell culture with high tissue
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tolerance were not aiways tolerant (Zapata and Abrigo, 1986). Akita and
Cabuslay (1989) emphasized the importance of Na selectivity in roots and
the leaf area per total dry weight (LAR). Most tolerant cultivars lowered
transpiration by reducing the LAR with increasing salinity levels. Na uptake
and salt injury increased with increasing temperature or reduced humidity
due to increased transpiration (Neue et al., 1990b).

Phosphorus Deficiency

Because P plays a key role in the energetics of metabolism and biosya-
thetic reaction, P deficiency can affect plant growth in numerous weys.
Deficinncy symptoms are often not easily recognized because plants may not
show any leaf symptoms. Effects of P deficiency may resemble those of
nitrogen deficiency. Stunted growth, suppression of tillering, shorter and
erect leaves, and delayed flowering are common in rice. Older leaves may be
darker or may turn purple. The partial productive efficiency of P for grain
is higher at early growth stages than at later stages, because Pis needed for
tillering (Yoshida, 1981). Furthermore, if sufficient P is ahsorbed at early
growth stages, it will be redistributed to growing organs.

Since the bulk flow of solution to roots cannot account for P uptake,
interception of P by roots and P diffusion tc the root are decisive fretsrs for
P uptake. Diffusion is dependent on the soil moisture content and the
concentration gradient. Both the net movement of P, which is inversely
related to the path length of the concentration gradient, and the interception
i influenced by rhizosphere characteristics, root bulk and rooting pattern.
For a given mass of root tissue, long and thin roots have larger surface area
than short and thick roots that explore the same soil volume more efficiently
by reducing the mean diffusion path. Root exudates and gas release can
change P uptake by modifying the H, Eh, chelating reactions and energy
supply of bacteria. Associated rhizosphere characteristics have not been
sufficiently established to serve as screening criteria.

Average deficiency symptoms occur at concentrations below 0.5 mg P/L.
The reduction of tillers at low P concentrations in culture solution has been
a good indicator for assessing tolerance to P deficiency in rice. Cultivar
tolerance to P deficiency and tolerance to Al or Mn toxicity seem to be closely
related, since Al toxicity causes P deficiency. Rices respond wiso differently
to increased P supply. Some cultivars, tolerant to low P availability do not
respond to addition of P fertilizer, while even some less tolerant cultivars
outyielded the nonresponding ones after application of 25 kg P/ha. Both
types of P respenses are found in cultivars of differert rice subspecies. The
mechanisms are unknown.

258



Very li..le information is avail~ble on traits and mechanisms associated
with an increased physiological efficiency of P that would be more desirable
for sustainable agriculture. The cultivar IR36 is a striking example of
increased P efficiency (Davelos, 1985).

Zinc Deficiency

Zn deficiency is the most widespread micronutrient disorder in wetland
rice soils with high organic matter content, high pH or with prolonged
flooding. It can be induced through high P and Fe supply (Mengel and
Kirkby, 1982), which reduces the translocation of Zn from the root to the
shoot and within the tissue. Blasl and Mayr (1978) showed the increased
uptake of Fe on acid upland soils induced Zn deficiency in maize. Addition
of K can reduce Fe uptake on acid wetland soils (Tanaka et al., 1973) and
alleviate induced Zn deficiency (Tanaka and Tadano, 1972).

Zn deficiency leaf symptoms may start with chlorosis at the base of the
youngest leaf. Brown spots appear on the older leaves and enlarge (De Datta,
1981). Tillering and growth is retarded and flowering is delayed. Cultivars
may not show any leaf symptoms at moderate stresses. Deficiency symptoms
are more pronounced at higl light intensity. Zn is an essential catalyst in
the synthesis of auxin whnse breakdown is escalated at high light intensity.

Zn concentration of plant tissue is not always a reliable indicator for Zn
deficiency. P/Zn and Fe/Zn ratios are better discriminators. Symptoms
attributed to Zn deficiency in leaves with adequate Zn contents may there-
fore be the result of P toxicity, as reported by Webb and Loneragan (1988)
for wheat. Zinc deficient rice plarts ahsorb divalent cations at the expense
of monovalent cations, probably hecause of an increased prodaction of a
charge-specific carrier (Moore and Patrick, 1988). Tolerant ¢ tivars in-
crease Zn translocation to the shoot and regulate Ca, Cu, Fe, Mg, and P
transport in order to maintain balanced nutrient ratios with respect to Zn
(Cayton et al., 14C5). Zinc applictition on moderately Zn-deficient soils leads
to Zn toxicity ard yield reduction in highly tolerant modern cult.vars.

Moore and Patrick (1988) reported that Zn deficiency reduces alcohol
dehydrogenase (ADH) activities in rice and thereby decreases root alcoholic
fermentation followed by a subsequent drop in ATP production. This effect
would explain why Zn deficiency occurs in wetland rice during the early
growth stage of wetland rice and is alleviated after draining. High ADH-ac-
tivity is essential for anaerobic root metabolisin until the aerenchyma
formation provides adequate O, transport to the submerged roots. Drainage
increases both Zn availability and O supply for root respiraticn.
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SCREENING TECHNIQUES

Laboratory, greenhouse, artificial field, and natural field techniques are
used to detect genotypic differences for tolerance to soil stresses. Laboratory
tests for salinity tolerance are confined to the germination stage (Pearson et
al., 1966; Shafi et al., 1970; Borkat et al., 1971; Younis and Hatata, 1971;
Bari et al,, 1973; and Carlson et al., 1983). Greenhouse techniques for
salinity tolerance allow the screening genotypes up to the maturity stage.
Saline soil pots (De Datta, 1972), salirized culture solutions (Akbar and
Yabuno, 1974; Yeo et al., 1990) and sometimes microplots (Janardhan and
Murty, 1972) are used.

Relative tillering ability under low and high available P conditions in both
greenhouse (culture solution) and field conditions are used at IRRI to isolate
P-efficient genotypes. P-deficient fields have also been used by other re-
searchers (Ikehashi and Ponnamperuma, 1978; Majumdar et al., 1989).

Among the several techniques available for screening for Al toxicity
tolerance (Howeler and Cadavid 1976; Martinez 1976; Polle et al., 1978),
relative root length technique was found to be the best (Coronel et al., 1990).

Reliable and repeatable screening methods are not available yet for
isolating genotypes with tolerance to toxicities of Fe, hydrogen sulfide, and
organic acids, and Zn deficiency. Even in culture solution, toxic levels of Fe
vary from 10 to more than 500 mg Fe/L (Ishizuka, 1961; Tanaka et al., 1966)
and some cultivars do not produce leaf symptoms, even if growth is retarded
by excess Fe (Jayawardena et al., 1977). At IRRI, a soil containing over 400
ppm water-soluble Fe is used to evaluate tolerance during the seedling stage.
Field screening is most commonly used by breeding programs, but stress
variability over both time and space is high and other nutritional stresses
(P and K deficiency) usually found in Fe toxic soils complicate the screening
process.

A Zn-deficient soil near the IRRI Experimental Farm is used to screen
breeding materials for Zn-efficiency. New solution culture techniques devel-
oped at the University of Minnesota is presently being tested (P. Bloom -
persoral communication).

For multiple stresses such as rlkalinity, acid sulfate conditions, and

organic acids and H;S toxicity in acid peatsoils, screening is conducted under
naturally occurring field conditions.
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TOLERANCE DONORS

Up to December 1992, IRRI has screened about 200,000 rice cultivars and
breeding lines for tolerance to salinity, alkalinity, peatiness, Fe toxicity, P
deficiency, Zn deficiency, Fe deficiency, AUMn toxicity, and boron toricity.
On the average, about 15 % are tolerant. Traditional cultivars with high
level of tolerance to soil stresses (Table 4) possess many undesirable traits,
such as susceptibility to lodging, pests, and diseases, and low yield potential.
The main objective of IRRI’s problem soils breeding program therefore is to
improve these donors so that national programs can utilize them directly as
cultivars or in their hybridization work for incorporating any additional
traits needed for target environments. Some improved donors IRRI has
developed so far are snown in Table 8. These possess high yielding charac-
teristics and the same level of tolerance as in traditional cultivars.

GENETICS OF STRESS TOLERANCE

Fe toxicity tolerance is controlled by a dominant gene in one cultivar, but
by a recessive gene in another (Abifarin, 1986). Another study indicated
complex inheritance of this trait involving three genes, two acting in com-
plementary fashion and the third in an inhibitory gene (Virmani, 1979).

Additive as well as dominance effects were found for almost all plant traits
that are dircctly related to salt tolerance (Akbar et al., 1986). Three groups
of'genes were involved. Two groups of genes governing salinity tolerance was
found in rice (Gregorio and Senadhira, 1992).

The simple additive-dominance model could not fuiiy explain tolerance for
P deficiency in rice (Davalos, 1985). Two major non-linked genes each
controlling separately P absorption efficiency and P-utilization efficiency

Tgble 8. Some improved rice linesg/cuitivars with tolerance to soil streeses.

Stress Line/Cultivar designation

Salinity IR4630-22-2-5-1-2, 1R9884-54-3, IR10198-66-2, IR 10206-29-2,
IR45427-2B-2-2-2B-1-1, IR46712-3B-1-2B-1-2, TCCP266-2-49-B-B-3

P deficiency IR54, IR42, IR60, IR62, [R64, IR9764-45-2-2, IR51337-2B-9-2B-2-2

Zn deficiency IR42, IR9764-45-2-2, IR8192-31.2-1-2

Fe deficiency IR43, IR4432-52-6

AlMn toxicity IR43, IR4S, IR4432-52-6, IR5853-196-1-P1, IR7812-16-1-4

Fe toxicity IR8192-200-3-3-1-1, IR9764-45-2-2, IR24637-

Alkalinity IR4595-4-1-13, IR8192-200-3-3-1-1, IR9764-45-2-2

Source: Soll and Water Sclence Division, IRRI,
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have also been detected (Gunawardena and Wijeratne, 1978). Multiple genes
showing epistatic interactions was found in another study (Majumder et al.,
1989).

Zn-efficiency in rice is governed by three multiple genes (Afzal et al., 1980).

The inheritance of Al toxicity tolerance is quantitative (Anjos et al., 1981).

CULTIVAR REQUIREMENTS

Soil stresses rarely occur alone. As a result, cultivars must possess
tolerance to more than one stress. Tolerance needed for different types of
problem soils are summarized in Table 7. In addition to these, there are
many other traits that determine adaptability and acceptability of rice
cultivars. Salinity’ and/or alkalinity-affected ricelands in temperate regions
require cold tolerant, high-yielding and japonica-type cultivars. Similar
lands of arid and semi-arid regions of the tropics require short duration
indica types. Cultivar requirements of other tropic areas are the most
complex. Most ricelands with poor or problem soils are rainfed; growth
duration requirements range from 90 to 150 days, and photoperiod sensitiv-
ity ranges from insensitive to highly sensitive. The majority of these lands
are flood prone, thus requiring submergence tolerance and in some cases
adaptation to stagnant flood depths as high as 3 m. Grain quality is the most
important factor that determines acceptability. Intermediate or high amy-
lose grain types are preferred. Some problera soil areas accept only red-peri-
carp rices. The number of different types of cultivars needed therefore is very
large.

BREEDING STRATEGIES

Based primarily on resources and maturity of breeding programs, differ-
ent strategies are deployed to improve rice cultivars for adverse soils.
Introductions of stress-tolerant rices will play a major role. The oldest
recorded introduction of a salt-tolerant land race was Pokkali, from India to
Sri Lanka in 1939, and it was recommended for cultivation in 1945 on saline
ricelands of the west coast (Fernando, 1949). The International Network for
Genetic Evaluation of Rice (INGER), coordinated by IRRI, plays a major role
in the exchange of germplasm among rice growing countries. It has three
nurseries designed specifically for adverse soils; namely, for acidity, salis-
ity/alkalinity, and acid upland soils.
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Pure line selection of ]=ad races is still practiced in Cambodia, Thailand
and Vietnam for acid - alfate soils tolerance. In the past, this strategy has
contributed significr.atly to the development of salt tolerant cultivars par-
ticularly in Banglr.desh, India, and Pakistan.

Mutation breed: og has been attempted for Al toxicity tolerance (IRRI,
1984), and salinity tolerance (Sajjad, 1990; Sinha and Bandyopadhyay,
1984; Yadav, 1979). Heterosis breeding has great potential for developing
high yielding rices for adverse soils, since hybrids show enhanced tolerance
(Akbar and Yabuno, 1975; Maoeljapawiro and Ikehashi, 1981; Senadhira
and Virmani, 1987).

Most adverse soil ricelands are cultivated only once a year. As a conse-
quence, breeding progress is slow as only one generation of breeding mate-
rials can be evaluated within a year, compared with 2-3 in other normal
situations. Shuttle breeding is widely practiced to overcome the difficulty.
During the off-season, breeding materials are grown in another suitable
location with or without selection for generation advancement. Breeding
materials are shuttled between locations and generation advancement is
expedited. India deploys this technique within the country for salinity
tolerance breeding. IRRI has shuttle breeding programs with Egypt, Korea,
and Thailand for adverse soils. The single-seed-descent method in green-
houses with darkroom facilities is used to advance generations of photope-
riod-sensitive breeding materials (Ikehashi, 1977; Jones, 1989). Somaclonal
variants and F1 anther culture are techniques that also could accelerate
breeding progress. Presently, there are some difficulties in using these on
indica cultivars. IRRI has developed an improved salt tolerant donor
through somaclonal variants of Pokkali, and several salt tolerant high
yielding lines developed by F1 anther culture are now in INGER nurseries.

PROGRESS

In spite of inadequate understanding of the genetics and :nechanism of
tolerance traits, substantial progress has been made in identifying and
developing better rice cultivars for adverse soils. India has released 17 pure
line selections for cultivation on saline soils (Sinha and Bandyopadhyay,
1984; IRRI, 1984). In Bangladesh, pure line selections Patnai 23, DA29,
Rajasai (early) and Rajasail (late) are widespread in coastal saline areas
(IRRI, 1984). Pure line selection Khao Dawk Mali 105 is still extremely
popular on acid sulfate and moderately saline soils of Northeast Thailand.
This selection is now advancing rapidly into similar soils of Mekong Delta
in Vietnam,
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Breeding programs designed specially for adverse soils were rare about
20 years ago. IR6-156-2 was found suitable for saline soils of Sind Province
in Pakistan (Soomro and McLean, 1972). It is still being widely cultivated.
A derivative of indica/jagponica hybridization, Mahsuri, developed in Malay-
sia, is a popular cultivar in some large areas of Bangladesh, India, Myanmar
and Nepal having infertile and P and Zn deficient soils. The rice cultivar
(IR42) has the largest adoption in stressed-soil environments. Moderate
tolerance to salinity and Zn deficiency, good plant type, high yield potential
and good grain quality have made IR42 the most acceptable cultivar for
problem soils where stresses are moderate. It is widely grown in Indonesia,
Philippines and Vietnam.

Cultivars have also been bred specifically for problem soils. Ten cultivars
tolerant to Fe-toxic soils and two for saline soils have been developed and
released in Sri Lanka (P.E. Peiris - personal communication). Acidity toler-
ant cultivar “Deepak”, released in the Fiji Islands, was developed by hybrid-
izing IR661 with a local cultivar Lalka Motka (Reddy et al., 1987). Kapuas,
grown in tidal swamps of Indonesia, was developed for peaty, acid sulfate
goils (Subartini et al., 1989). In 1992, Sungai Lilin (IR11288-B-B-69-1) was
released for cultivation on acid sulfate soils of South Sumatra, Indonesia
(C.P. Mamaril - personal communication). C3R10, a high yielding cultivar
has been released in India for cultivation on inland saline-alkaline lands
(Mishra et al., 1992).

These and other cultivars being developed will help increase rice produc-
tion in problem soils. Furthermore, these cultivars and associated technolo-
gies will help to bring marginal lands under cultivation that are physiog-
raphically and hydrologically suitable for rice production.
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Success in Wheat Improvement for Poor Soils:
Experience with the Aluminum
Tolers zce System in NW Canada

K.G. Briggs and G.J. Taylor
University of Alberta
Edmonton, Alberta, Canada

ABSTRACT

Western Canade kus some 5.5 m ha of significantly acid arable soilg, but very
little research on thiz topic was conducted during the 1965 - 1980 p- -iod, when the
emphasis was on development of liming protocols suitable for ali crop species.
Liming costs are now very high and lime use is diminishing. The genetic tolerance
approach to solving Cangda’s acid soil problewus was targeted in wheat by Keith
Briggs in conjunction with physiolegical studies by Greg Taylor, starting in 1983.
Existing Canadian Western Spring wheats are very semitive to aluminum toxicity,
but excellent tolernnces were readily transferred into them by the backcross
procedure, using tolerance sources from CIMMYT and East Africa, (mostly of
Brazilian origin). SBuccesses in this program include release of an aluminum toler
ant cultiver (Cutler) for Alberta, development of aluminum tolerant/sensitive
near-igsogenic sets (for genetic, physiological and agronomic studies), and the
development of ceveral new approaches to selection and evaluation of aluminum
tolerant materials. Physiological studies continue, targeted to understanding the
physiological mechanisms of acidity tolerance, and the future isolation of toler-
ance genes. Successes in the University of Alberta program are attributed io the
use of a muliidisciplinary approach involving plant breeders, physiologists, soil
scientists and geneticists. A special focux «n aluminum dose response curves of
variable shapes in tole.'ant genotypes has been initiated. Such differences are
important in understanJing the suite of genetic mechaniems that govern plant
tolerance, for devising the most efficient selection methodologies, and for consid-
eration of adaptabiiity to soil acidity variation within individual fields.

DEFINING THE PROBLEM IN NW CANADA

Prior to 1965, soil acidity was not considered to be an important agronomic
problem in Alberta or NE British Columbia (McKenzie, 1973). McKenzie's
PhD studies at the University of Alberta, and studies of Penney (1973) drew
attention to the extent of subsoil acidity in the region, and provided the first
regional quantification of potential crop losses directly due to acidity. Yield
reductions in field and greenhouse siudics with barley and alfalfa were
closely correlated with the amount of aluminum (Al) (soluble in 0.02 mol
CaCl;) in unlimed soil, suggesting that yield loss was largely attributable to
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Al toxicity. When an array of Alberta barley cultivars were assayed for Al
tolerance in hydroponics by McKenzie (1973) significant differences in
tolerance were demonstrated. These differences were in general agreement
with cultivar differences identified in acid soil testin.s systems, with and
without lime remediation (Penney, 1973). For example, Olli. Betzes and
Volla were consistently shown to have better tolerance to soils high in goluble
Al than Galt and Conquest, and Betzes was often the best performing.
Unfortunately, the interest in the region for exploiting potential cultivar
differences did not extend beyond these studies, and McKenzie's recommen-
dation to select for acid soil adapted barley cultivars for Alberta was never
pursued. It is of historic note that Dr. Charlee Foy served as one of the
examiners of McKenzie's thesis, as did the first author of this paper.

Twenty years later it is interesting to comnpare McKenzie’s recommenda-
tions with the tolerance levels of current Alberta barley cultivars, and with
the Al tolerance array described in world barleys by Minella and Sorrells
(1973). In 1993, our own laboratory tested current Alberta cultivars and
three moderately tolerant barleys (Antarctica 1, FM404, and PFC7802,
assessed by Sorrells (1992), in the same Spirit River soil used by McKenzie
and others. Comparisons were made to the local barley cultivars Harrington
and Bonanza, to intolerant Katepwa wheat (the most widely grown Cana-
dian cultivar), and to PT741, a very tolerant wheat cultivar developed at the
University of Alberta. These results confirmed the findings of Sorrells
(1992), but the barley tolerance levels did not approach those available in
Al tolerant wheat cultivars (Figure 1). All current Alberta barley cultivars
are quite intolerant of this particular Alberta acid soil, which was charac-
terized in 1972 as grey wooded, pH (Ca) 4.8, Al 53.8 ug g', Mn 2.4 ug g,
CEC 23.5 meq 100 g, exchangeable Ca 4.0 meq 100g’, and base saturation
25%. Neither of W. Canada’s major barley breeding programs conduct
testing on acid soil sites. Thus, Al tolerant W. Canadian barleys cannot be
expected in the foreseeable future. Nonetheless, considerzblz barley acreage
18 grown on acid soils, perhaps 1.5 m ha or more (author’s estimate).

The relative tolerance levels of different cereal crops was ziready deter-
mined in the literature (Foy et al., 1965) and was reconfirmed with Alberta
acid soils. There is general agreement with the tolerance rankings in the
literature for unselected crops, which is, in order from best to worst, rye
(Secale cereale), nat (Avena sativa), common wheat (Triticum aestivum), and
harley (Hordeum vulgare), and as reconfirmed by Bona et al. (1991) and
Wheeler et al. (1993). No attention was paid in the 1960’s to the prospect of
improving Al tolerance in Canadian wheats for acid soils of NW Canada.
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Root !ength soil bioassay test (7 days)
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Figure 1. Seminal root length of barley cultivars after seven days growth in soils
of pH 4.7 and 6.7 (Mean of 5 plants x 4 replicates; ANT = Antarctica 1, FM
= FM404, PFC = PFC7802, HAR = Harrington, BON = Bonanza, W-PT =
PT741 wheat, W-KT = Katepwa wheat. Standard error 5.9).

Throughout the 1965-1975 period, considerable agronomic field research
was conducted in NW Canada to determine the best protocols for remediat-
ing topsoil and subsoil acidity. The University of Alberta group, including
McKenzie, Penney, Hoyt, Nyborg, Robertson and others, was considered to
bein the forefront of Canadian soil acidity work at the time, but de velopment
of other interests led to the fragmentation of this group by the mud 1970’s.
Nevertheless, their reeearch resulted in publication of a series of Alberta soil
acidity extension pamphlets for use by farmers, which describe the nature
and extent of the problem, and recommended liming procedures (Robertson,
1992; Penney and Goettel, 1985; Anon, 1986). A generalized topsoil acidity
nap for Alberta was also developed (Figure 2; Anon, 1986) that showed the
severity of the acidity problem in northern regions, a paitern generally
associated ‘ vith higher moisture regimes, and particular soil classifications.
Current es: imates conservatively place the acreuge affected by soil acidity
at 5.0 m he in all of Cansza, with 2.2 m ha of this located in W. Canada.
Most of the 1att=r acreaye is located in Alberta and the Peace River block
(Hoyt, 1979). Natural and nianagement factors (particularly N fertilization)
are contributing to further acidification over time (Penney, 1973; Robertson,
1982; Malhi et al., 1991). The liming recommendations of the earlier ara,
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Figure 2. Percentage of cultivated acid soils with pH below 6.1 in various areas of
Alberta. From Anon 1988.

and management advice for maiutainirg high pH and favorable economic
returns over time (Figure 3) have not changed, nor has there been much new
field research in Alberta on the topic since then. Interestingly, the extent of
liming in the Province has also declined markedly in recent years, especialiy
since the Government removed the transportation subsidy for lime applica-
tion (Figure 4, derived from Alberta Government Statistics, Agricultural
Lime Freight Assistance Program). Under these conditions, improved ge-
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netic tolerance to acid soils was an attractive alternative, but by 1980
breeding programs had not yet adopted this chillenge for NW Canada.

CONVERGENCE OF INTERESTS AT
THE UNIVERSITY OF ALBERTA

Renewed research interest at the University of Albarta on aspects of Al
tolerance developed during the early 1980’s, with the start of Canada -
specific genetics studies by Keith Briggs, and the simultaneous estab-
lishment of Greg Taylor’s stress physiology laboratory. The complementarity
of these two interests led to research funding from NSERCC through a series
of personal and joint operating, equipment and strategic grants. The history
of the development of this joint collaboration, and the involvement of other
researchers, is reviewed here.

TEke Genetics and Breeding Compone::?

From 1981-1983 Keith Briggs was seconded as Senior Cereal Breeder to
the Kenya Government cereal research program at Njoro. During this time,
familiarity was obtained with the extent of soil acidity problems in many
parts of East and Central Africa, including Western Kenya and Zambia. The
potential to select adapted cultivars of wheat and triticale for these areas
was noted. In wheat, the adaptability to acid soils of W. Kenya for many
entries from the CIMMYT shuttle program with Brazil was identified in
collaboration with the E. Africa CIMMYT program. Several tolerant Kenyan
and introduced cultivers were identified by greenhoure screening in +/-
limed conditions with Kenyan acid soils. ""'his variability was later recon-
firmed with other methods (Nyachiro, 1986, Nyachiro and Briggs, 1993).
Genotypes for potential use as parents in a Canadian breeding program were
isolated, including Maringa, PF7748 (= Wi.ydah in Zambia), Kenya Kongoni,
and Romany. Following Dr. Briggs’ return to Canada, the Al tolerance in all
released Canacian cultivars was assessed by Zale (Zale and Briggs, 1988),
the genetics of Al transference into Canadian cultivars was investigated,
and comparison of selection methodologies was undertaken. The primary
purpose for this work was to deiermine the extent of variability for Al
tolerance avab.ob'e in existing Canadian wheat germplasm, and to deter-
mine whether these ncw Al tolerance sources would provide additional
variability. The most significant finding from this work was that most of the
important current Canadian cultivars were sensitive to Al in hydroponic or
hematoxylin testing. Several of the older Canadian germplasm (eg. Kitch-
ener, Chinook, Renown, Frelude, Garnet and Marquis) exhibited slerance,
but this had not been maintained in the newer cultivars derived from
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Marquis, or in any Thatcher derivatives. It was hypothesized thst Al
tolerance in earlier cultivars may have originated through introductions
from N. Europe, where acid soils prevail, but pedigree lineages on tolerance
levels were inconclusive for this concept. Absence of specific selection for acid
soil tolerance nevertheless led to los. of tolerance in Canadian Western Red
Spring (CWRS) wheats.

Exceptions to the above generalization were found, but only in the case of
the newest cultivars of non-CWRS wheat quality type, which also possessed
asubstantial complement of CIMMYT germplasm in their pedigree (eg. Pitic
62, Fielder, HY320 and Norquay). Parents with Brazilian origin were
normally identified in their pedigree. Zale’s work recenfirmed the Al toler-
ances of Romany, Kenya Kongoni, Maringa and PF7748, some of which were
then used as donor parents in crosses with significant Canadian cultivars
(eg. Katepwa, Columbus, Oslo). In addition, Zale (1988) conducted a six
parent, half diallel genetic study, using Thatcher and Park (sensitive),
Garnet, PIF7748 and K. Kongoni (tolerant), and Alondra ‘S’ (reported by
Rajaram et al., 1981, to be intermediate). Evaluation of seedling root lengths
of F, and backcross lines revealed monog=nic inheritance with dominant
tolerance in some crosses. Varying degrees of dominancc in the F, suggested
the possibility of multiple alleles for tolerance. Root regrowth analyzis of Fy
lines detected monogenic and digenic inheritance with ambi-divectional
tolerance classes within some families. Such cross-specific results are not
uncommon in the literature, and suggest that the control of tolerance may
involve more than just one or two genetic mechanisms. Similar cross-specific
responses were found by Nyachiro (1986) in his genetic studies involving
African germplasm. In the majority of cases, and particularly in the breeding
program, little difficulty was found in selecting Al tolerant lines from
segregating populations, although there have been tolerant x tolerant
crosses that gave rise to populations from which no tolerant plants were
recovered (Nyachiro, 1986).

During this work, we have used most of the reported techniques in the
literature for assessing Al tolerance and have published a review describing
the merits of many of these methods (Briggs et al., 1952). We have observed
that the results of genetic analysis are often dependent on the technique
used and the specific level of aluminum stress applied, as well as on the
specific cross. Wheeler et al. (1993) discussed aspects of this issue. In field
situations in NW Canada, the extent of soil acidity and Al level may be
variable within a field. Therefore, tolerance at various stress levels is of
agronomic importance. During the application of known methodologies for
selection the following questions have come to the fore frontin the University
of Alberta program.
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1. In artificial selection systems using hydroponics or soil systems, is
there a ‘best’ Al concentration at which to select, or are adaptability traits
being by-passed because dcse response curves are not being determined?

2. Because acid soil adaptability traits other than Al tolerance may be
involved (as speculated by many authors), is it appropriate to return to the
" integrating’ soil bioassay selection test as described by Bona et al. (1991),
as now adopted for selection in a modified form at the University of Alberta?

3. In many cases only one or two genes are involved in tolerance. Why not
develop near-isogenics for different tolerance sources in different, locally
adapted, genetic backgrounds, for evaluating the dollar value of Al tolerance
in Alberta soils of different pH and Al content, for comparison to the cost of
liming? Progress on development of these isogenics was described by our
group in Canberra (1991, unpublished abstract) and in Kenya (Briggs et al.,
1991).

Further progress on these three questions has required expausion of the
collaborative approach with researchers in the disciplines of plant physiol-
ogy, soil science and molecular biology.

Selection Methods

As reviewed in Briggs et al. (1992), we have used most of the reported
screening methodologies. Our screening started by using hematoxylin stain-
ing, and then moved to use of single tube and then tank testing, hydroponic
selection methods. Later, full scale root growth analysis was performed
using solution culture techniques. These methods were recognized only as
prediction tests for performance in s0i! systems. Qur program now uses a
soil bioassay selection system, modified from Bona et al. (1991). The follow-
ing summarizes our experiences in the area of methodologies, which are in
agreement with results from other laboratories.

1. Aluminum stress in hydroponic systems affects root characteristics
much more than shoot characteristics. Thus, measurement of root parame-
ters offers the best approach to selection. Indexing of measurements com-
pared to non-stressed controls can remove variability due to plant cize, such
as arises in crosses of semidwarf x tall cultivars. When screening large
numbers of individual plants, visual assessment of root length can be used
instead of individual measurements.

2. Shoot responses to Al stress are not well correlated with root responses,
as indicated by data from Zale, (1987) (Table 1). Although significant
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Table1l. Correlaticns between hematoxylin scores, and shoot and root paraine-
ters in hydroponic conditions, for 74 Canadian and other cultivars
grown under conditions of aluminium strese. From Zsle and Briggs

_ (1988).
Shoot length
Shoot lenpth index
Root length (RL) 0.46¢* 0.26%¢
Root length index (RLI) 032¢° 0.44%+
Longest seminal root (LSR) 0.4]%* 0.25¢+
LSR index (LSRI) 0.3]¢e 0.43%+
Hematoxylin score 0.03NS -0.0INS
LSRve AL 0.89** LSR vs Hematoxyiin 0.58°*
LSR vs RLI0.54°¢ RL vs Hematoxylin 0.64°°

**Significant at the 89% confldence level; NS Not slgnificant at the 85% confidence level.

Table2. Ten day seedling root bioassay, nonfertilized grey wooded soil, pH 4.8.
(Mean of 6 plante x 3 replicates, grown in root-traineres). From Briggs et

ai (1992)
Root weight index; Mcan maximum root length (mm);
Root dry matter (mg planl'l)
Isogenic Lines
Recipient Parent Donor (A) (B) (C)
Colwunbus 0.38;16;2 PF7748 0.88;157;12 0.93;213;13 0.82;223;16
(BC*4) Maringa 1,29;211;14 1.13;185;5 0.72;191;14
R4S5S 0.90;174;9

Katepwa 0.34;14;3 PF7748 1.07;193;13 1.08;187;14 0.80;212;14
(BC*3) Maringa 0.90:236;18 0.85;244;17
Controls
Scout 0.27;8;3 Atlas 66 1.21;218;17 PF7748 0.87;180;17
Maringa 107:246:15 R455 0.82;204:15 Cutler 0.81:225:19

correlations were found between scores from hematoxylin staining and root
growth in hydroponics under Al stress, the best correlations only accountad
for 41% of the covariability (i.e., hematoxylin score vs. root length). We lack
specific data describing the correlation of these methods with the soil
bioassay system now in use, but we believe the latter method gives a more
direct measure of adaptation to soil stress. Tolerant or sensitive materials
selected by other metheds have maintained their tolerance in the soil
bioassay, as indicated in Table 2 (Briggs et al., 1992).

3. Resulting from Taylor’s physiology research, an assay for callese pro-

duction by roots under Al stress is being considered for use in selection.
Measurable callose production is induced as little as 30 min after exposure
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Table8. Performance of aluminum tolerant and intolerant cultivars at Ellerslie in 1992, on a Chernozemic soil
with variable pH levels artificially induced with aluminum sulphate.

Graln yleld, kg ha’’ Flour yleld, 5
Acidity Mean pH Mean pH
_response Cuttivar 5.9 5.1 4.9 4.5 5.9 5.1 4.9 4.5
Al sensitive Katepwa 4030 3870 3600 2950 G4.0 64.0 63.2 62.2
Oslo 4220 3940 3740 2585 76.2 694 69.4 68.8
Al tolerant Cutler 4260 4260 4040 2910 69.9 704 69.7 68.9
PT741 4200 3925 3740 3170 67.2 67.2 66.8 66.3
Mean, all cultivars 4180 4000 3780 2905 67.8 67.8 67.2 66.6
# of plants m™ of row 1000 keme! weight, g
Al sensitive Katepwa 59 59 5e 59 355 354 35.1 33.1
Oslo 68 57 61 63 43.6 440 440 414
Al tolerant Cutler 58 54 53 53 41.7 400 40.5 40.0
PT741 58 56 57 58 459 464 458 45.8
Mean, all cultivars 61 57 57 58 41.7 415 414 40.1
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Table8. Performance of aluminum tolerant and intolerant cultivars at Ellerslie in 1992, on a Chernozemic soil
with variable pH levels artificially induced with aluminum sulphate.

Graln yield, kg ha’l Flour yield, %
Acidity Mean pH Mean pH
response Cultivar 5.9 5.1 4.9 4.5 5.8 5.1 4.9 4.5
Al sensitive Katepwa 4030 3870 3600 2950 64.0 64.0 632 62.2
Oslo 4220 3940 3740 2585 70.2 4 69.4 68.8
Al tolerant Cutler 4260 4260 4040 2910 €69.9 704 69.7 68.9
PT741 4200 3925 3740 3170 67.2 67.2 66.8 66.3
Mean, ail cultivars 4180 4000 3780 2905 67.8 67.6 t..2 66.6
# oi plants m™' of row 1000 kemsl welght, g
Al sensitive Katepwa 59 59 58 59 35.5 354 351 33.1
Oslo 68 57 61 63 436 440 440 41.4
Al tolerant Cutler 58 54 53 53 417 40.0 40.5 40.0
PT741 58 56 57 58 459 46.4 458 45.8
Mean, all cultivars 61 57 57 58 41.7 415 41.4 40.1
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Figure 5. Differential pH changes induced by an Al-tolr ant (Atlas 68) and an
Al-sonsitive (Monon) cultivar of wheat grown in nutrient solutions con-
taining both NOs- and NH +. Tolerance to Al was associated with an
ability to raise the pH of nutrient solutions. Adaptced from Foy et al., 1966.

In a 1565 paper, Dr. Foy had suggested that diiferences in tolerance to Al
among cultivars of wheat might be related to the ability of plants to increase
pH at the root soil interface (Figure 5). Dr. Taylor was not convinced by these
data, because substantive differences in plant-induced pH were not observed
until 10-12 days after t -eatment with Al. In contrast, growth effects were
clearly observed over a much shorter time interva! (less than 3 days). In
attempting to discredit Foy’s (1968) hypothesis, Dr. Taylor discovered that
differences in plant-induced pH between Al-tolerant and Al-sensitive culti-
vars could be observed over a much shorter time frame than previously
believed (Taylor and Foy, 1985a,b). Furthermore, these differences in plant-
induced pH were correlated with the cultivar tolerance to Al (Figure 6).
Subsequent experiments demonstrated that the ability of tolerant cultivars
to resist acidification of the rhizosphere was related to a higher preference
(relative to sensitive cultivars) for NO ; over NH { in mixed N syetems
(Taylor and Foy, 1985c¢). It was not until experiments in which the supply of
NO 3versus NH ; was varied (providing experimental control over plant-in-
duced pH), that convincing evidence discounting the role of plant-induced
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Figure 8. Relationsl:’;: between relative root growth expressed as a fraction of
aluminur: :7ee control and the negative log of the mean H+ concentra-
tion induced by 20 cultivars of Triticur: aestivum during the period of pH
decline (days 1-9) in nuizient solutions. Plants which resisted acidifica-
tion of the rhizosphere were more tolerant to AL Adapted from Taylor
and Foy, 1985a.

pH in Al tolerance was forthcoming. Experimental manipulation of plant-
induced pH had virtually no effect on the relative Al tolerance of cvs. Atlas-66
and Scout-66, the well established benchrarks for Al tolerance and Al
sensitivity, respectively (Taylor, 1988).

For several years, this experience with Al-tolerant and Al-sensitive culti-
vars of wheat had scftened Dr. Taylor's reservations about Foy's (1965)
plant-induced pH hypothesis to the point where the N source experiments
reported by Taylor {1988) were being conducted to provide support for the
hypothesis. Ironically, these experiments eventually played a decisive role
in rejecting plant-induced pH a5 a major factor in tolerance. Nonetheless,
they created a lasting impression about the importance of using tolerant and
sensitive germplasm in physiological studies. After arriving at the Univer-
4ity of Alberta in 1985, collaborative work with Dr. Briggs followed natu-
rally. Dr. Briggs provided a persistent reminder of the importance of moving
towards near-isogenic material and the breeding perspective required to
develop this improved genetic resource. In return, Dr. Taylor provided a
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physiological perspective ::nd an experimental system with which to evalu-
ate the products of plant breeding efforts.

This collaboration initially took the form of a large screening exercise to
identify sources of Al tolerance among cultivars of wheat adapted for growth
in NW Canada. This work was already underway in Dr. Briggs’ lab as part
of Janice Zale’s M.Sc. thesis (1287). In this new study, however, evaluation
of root growth in solution cnlture was used instead of hematoxylin staining
to provide a more direct measure of Al tolerance. These studies confirmed
Zale and Briggs' (19P8) observation that Canadian CWRS wheats were
uniformly sensitive to Al (Briggs et al., 1989). It also established experimen-
tai line PT741 and cv. Katepwa as locally adapted, spring wheat standards
for Al tolerance and Al sensitivity. Perhaps more importantly, however, we
attempted a more rigorous evaluation of the exient of Al tolersnce in our
most tolerant germplasm. These results emphasized the importance of
screening genotypes ¢ver a broad range of stress levels in order to identify
potentially superior germplasm (Briggs et al., 1991). This concept is illus-
trated in Figure 7. In Panel A of this figure, hypothetical dose responzes of
four cultivars are presented. If these cultivara were screened using conven-
ticnal root growth techniques where tolerance is expressed as root growth
in the presence of Al divided by root growth in the absence of Al, differences
between cultivars would not be observed at concentrations higher than 700
uM Al, or at concentrutions less than 50 pM Al. Under these conditions, all
cultivars would be ranked as sensitive or tolerant respectivelv. At interme-
diate concentrations, the apparent magnitude of the genetic differences will
reflect the stress level sclected for the +Al treatment. In the example
provided in Panel A, a concentration of 300 uM would lead to the conclusion
that two cultivars were tolerant, one was intermediate, and another sensi-
tive. A concentration of 400 uM Al might be considered optimal for screening,
but this conclusion is based on the assumption that the most tolerant
standard represents the most tolerant selection to be screened. We helieve
this issue may be important under real world conditions. In Figure 7, Panel
B and C describe the dose response of two tolerant and sensitive pairs to
increasing levels of Al in solution. In both cases, 756 uM Al was sufficient to
distinguish between tolerant and sensitive germplasm. This concentration,
however, would be inadequate to identify the superior tolerance of Atlas 66
over PT741. At 200 uM Al, root grosvth of PT741 was reduced to 47+3% of
control, while growth of Atlas 66 was unaffected (95£11% ot ontrol). Given
the variability of soil solution Al levels under field conditions, differences
between genotypes under high stress levels may be important for cultivar
adaptability to soil acidity (Briggs et al., 1992).
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Figure 7. The response of Al-tolerant and Al-sensitive cultivars of Triticum aestivum
to increasing concentrations of Al in the growth solution. A. Hypotheti-
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spring wheat standards, PT741 and Katepwa. C. Actual dose reponses for
the winter wheat standards Atlas 668 and Scout 66. Selection of an Al dose
for screening studies may have a powerful imys.ct on the relative ranking
of cultivars. Adapted from Briggs et al., 1901,
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This lesson proved to be en important one in our subsequent efforts to
develop near-isogenic, Al-tolerant lines. Our breeding effort included crosses
between several Al-tolerant and Al-sensitive parents, followed by backcross-
ing Al-tolerant offspring to tlie Al-sensitive recipient parent for 3-4 genera-
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Figure 8. The effect of Al on two Al-tolerant backcross lines, their Al-tolerant
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donor parents, and their Al-sensitve recipient parents. All backcross
lines showed a tolerance censistent with their donor parent up to 200 M
Al the concentration at which they were selected. At higher concentra-
tions, not all backeross lines performed as well as their donor parents.



tions. The acidity tolerance of all our isolines was expressed consistently.
However, not all isolines showed tolerance equal to the donor parent across
the entire range of Al doses tested. In solution culture, most showed the same
level of Al tolerance as their tolerant parent up to 200 uM Al, the concentra-
tion at which they were initiully selected. Above 200 uM Al, one isoline
performed as well as its tolerant parents (Figure 8A), while others showed
a lower level of tolerance (Figure 8B). Coincident with our observations of
incomplete inheritance of tolerance was an incomplete reconstitution of
other traits present in the Al-sensitive parental cultivara, despite completion
of up to foir backcrosses (Table 4). Our most promising line was preduced
by crussing the Al-tolerant cultivar, Maringa, with the Al-sensitive cultivar,
Katepwa, and backcrossing the Al-tolerant offspring to Katepwa three
generaiions. This backcross line showed elevated Al-tolerance consistent
with its donor parent Maringa up to 600 uM Al (Isoline -199, Figure 8B), and
sgronomic characteristics consistent with the locally-adapted parent
Katepwa. It has been ramed Alikat.

The results of this collaborative effort to develop near- isogenic Al-tolerant
lines has become an integral part of research in Dr. Taylor’s physiological
research. After completing research on the plant-induced pH hypothesis, Dr.
Taylor has focused his attention on the role of exclusion in tolerance to Al.
Short-term kinetic studies have provided evidence that Al-tolerant cultivars
of wheat may utilize metabolic energy to limit movement of Al across the
plasma membrane (Zhang and Taylor, 1989, 1991). Initially, these short-
term experiments were complicated by short-tesm accumulation of Al in the
cell wall (Zhang and Taylor, 1990). However, recent refinements to experi-

Table 4. Agronsmic performance of some aluminum tolerant, near-isoyenic lines
compared with their recipient parents, in the sbsence of aluminum
stress (Edmonton 1991 data, 2 replicate trial).

Days to Days to Height Gnin yicld
Cultivar head mature cm kg ha?!
Katepwa 60.3 102.0 114.0 3805
Kat*3/PF7748 A 61.0 104.3 128.0* 3100
B 60.0 105.0 127.3¢ 3680
C 58.0* 104.0 124.7¢ 3490
Kat*3/Maringa A 58.0* 160.0 108.0 3590
Columbus 65.0 108.9 116.7 3530
Col*4/PrT148 A 61.0* 105.7+ 119.0 3530
B 60.7+ 106.0* 106.0¢ 2910
Col*4/Maringa A 59.3+ 107.0 115.7 3720
B 65.0 109.0 131.7* 3600
lsd (P<0.05) L1 24 7.6 891.2

‘Significantly difterent to recipient parent at 95% confidence ievel.
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m:ntal techniques appear to provide a direct means cf measuring uptake of
Al across the plasma membrane (Archambault and Taylor, in preparation).
Using these techniques, we have also demonstrated that patterns of Al
uptake observed in excised roots reflect transport events occurring at the
cellular level (McDonald and Taylor, unpublished data). While the physi-
ological basis of the putative exclusion mechanism remains speculative, we
have identafied proteins in microsomal membranes (Basu and Taylor vnpub-
lished data) and root exudates (Basu and Taylor, unpublished data) that are
induced by Al in a time-dependent and dose-dependent fashion. The near-
isogenic material we have developed provides an exciting expe:imental tool
that can be used to evaluate the role of metabolism-dependent e -lusion in
tolerance to Al.

The Soil Science Component

Until very receatly, the absence of a soil scientist in our research group
could be viewed as a deficiency in out collaborative program. In any studies
involving use of scil, including screening techniques, we relied on advice from
three different sources: University of Alberta soil scientists, th2 Alberta
Agriculture soils advisory group, or private soils consulting services. Well
intentioned advice from these sources has often been in conflict, forcing us
to set our own experimenial protocols. A typical question we have posed was
to ask about the recommended fertilization protocol to use in an acid soil
(compared to a non-acidic soil) in a greenhouse or field test where a number
of cultivars were to be grown to maturity to study their growth and devel-
opmental patterns. Such a simple question brought forth a plethora of
supplemental questions and/or needs for assumptions. In our experience,
this tended to stop the decision-making process for a soils-based cxperiment.
Our program is at a stage where much more testing and evaluation in soil
is required. We are therefore pleased to be reinvolving Doug Penney in this
work.

At this time the predominant establishment interest in Alberta snils
research is in soil conservation, particularly against wind a.2d water erouion,
and against salinity. The Federal and Provincial governments have con-
cluded a joint review under the national Green Plan, in which these soil
issues were placed as highest priority. Problems witk soil acidity and
acidification were mentioned in the earliest drafts, but did not make the final
agenda. Liming protocols were considered well enough researched to deal
with any such problems. Other factors that led to this unfortunate exclusion
probably include the fact that Federal and Provincial laboratories are not
conducting significant acid soil research programs at this time (i.e.,. lack of
an establishment interest group). Linked to this shortfall is the fact that the
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economic value in Canada of crop losses due to soil acidity has never been
systematically est’mated, compared to salinity or soil erosion losses, for
example. There ar2 no estimates about the marginal yield losses on land of
intermediate acidity, where the crop canopy may look quite healthy, where
liming is pot being done, and where the root pruning effects, and ccuse-
quences to root penetration of subsoils, and for nutrient and moisture
uptake, cannot be visualized. Research funds fcr such field work have been
very limited. We do know that the most widely grown Canadian cultivars
(e.g., Katepwa) are seriously affected by acidity, and they are extensively
grown in areas of acid snil. Another problem in Alberta has been that most
acid soils are far distant from the University of Alberta, and field trials have
been lost due to site inaccessibility, inclement weather, and from wildlife
activity fe.g., deer grazing).

Because of these cumulative problems, our rescarch has adopted two new
approaches (a) the Bona et al. (1891) soil bioassay approach where the
problem soil is brought to the lab, and (b) a novel approach wh:re previously
non-acid soil is acidified with aluminum sulphate to controlled acidity levels
at the home site, for use in cultivar evaluation and for other agronomic
assesements, as previously described. These two techniques will be used te
determine the economic value of Al tolerance genes, prior to future on-farm
validation,

The Molecular Biology Component

In most crops, a molecular approach is not needed in order to breed for
improved Al tolerance. Nevertheless, molecular approaches could possitly
lead to improved selection methodologies, or to expanding the genetic vari-
ability for tolerance in intolerant species throngh interspecific genetic engi-
neering. In addition, if Al tolerance genes could be isolated and cloned, this
would be very helpful for use in the a~4lysis of the physiological mechanisms
involved. In the area of speculation, such an isolated gene might also be
readily used in a genetic construct as & linked selectable marker (tag) for
other genes of interest, in transformable species.

At this point an aluminum tolerance gene has not been isolated or
identified in terms of functional proteins, althoussh Picton et al. (1993) and
Delhaize et al. (1993) both reported some progress in this direction. Delhaize
et al. (1991) reported a luck of consistent co-segregation of tolerance with
the putative Al-tolerance prlypeptides. We have chcsen to approach this type
of work using our near-isogenic pairs for Al tolerance in the Katepwa
background, with a hope that this will minimize background segregation for
uninvolved proteins. Research in Dr. Taylor’s laboratory has identified
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several proteins that are involved in Al-tolerant plants in a dose-dependent
and time-dependewt fashion. One of these proteins is a membrane-bound
protein (microsomal membrane), which appears less than 24 hours after the
onset of Al stress, and is subsequently lost after return to control conditions
(Basu and Taylor, 1993a). Several other Al-induced proteins are exuded from
plant roots under conditions of Al stress, and show considerable capacity to
bind Al (Basu and Taylor, 1993b). Dr. Allen Good (Department of Genetics)
will be working with us on this phase of our collaborative work. Dr. Good
p'ans to develop RAPD markers for Al tolerance, that will facilitate our
ongoing studies. As part of this work, fully homozygous, doubled haploid,
near-isogenics in the Katepwa background are also being established using
the corn pollination system, with tie kind cooperation of Dr. Taing Aung,
Agriculture Canads, Winnipeg. These near-isogenic materials will be avail-
able for gencral distribution, and will probably be registered through Crop
Scieace.

WHERE DO WE SUCCEED?

We have achieved some successes in improving wheat for growth on the
poorer soils ¢i NW Canada, zltbough the field validation aspect of our work
and its extension to farmers remains somewhat uasatisfying. Some specific
examples of these achievements are illustra’ :d here in notated form.

1. Canadian wheat cultivars have been characterized, and a lack of Al
tolerance was shown to be the norm. Al tolerance present in historic
germplasm has been lost in modern Cansdian cultivars.

2. Severa! different sources of Ai tolerance in wheat suitable for Alberta’s
most acid arable soils have been identified. These were readily transferred
by backcrossing into current Canaan cultivars. The best sources included
Maringa and PF7748, originating from Brazil, although both are very late
maturing. The genetics of tolerance was very similar to prior reports in the
literature, with few major genes involved, mostly dominant.

3. High levels ol Al tolerance were developed in the early maturing,
semidwarf cultivars PT741 (experimental standard, pedigree
Tp// >no/No66/3/Bb/Cno/4/Grajo’S’) and the newly released University of
Alberta, Canada Prairie Spring semidwarf wheat Cutler (pedigree
Ciano’S"/4/Sonora 64/Yaqui 50E5/Gaboto /3/Inia’S’). (Table 5; Briggs ot al.,
1992).


http:improv.ng

Table 5. Aluminum tolerance ratings of Cutler and check cultivars, assessed by
the method of Briggs et al. (1989). From Briggs et al. (1992).

Root length index % Root dry weight index %
Aluminum concentration (UM) Aluminum concentration (UM)
150 225 150 225
Cutler 98.8a 97.8a 69.0a 91.5a
PT741 94.3a 94.7a 68.4a 90.7a
Oslo 77.8b 60.0b 63.3a 62.3b
Katepwa 40.8¢c 45.2c 10.3b 45.4c
SE 4.02 2.98 5.30 299

Indices are calculated as a percant ot mean performance with aluminum, compared to controls without aluminum (mean of
three replicates). a-c Means followed by the same letter within a column are not sign!ficanty difterent (P<0.05),
according to Duncan's muttiple range test.

4. Avear-isogenic, Al tolerant Katepwe (Katepwa*3/Maringa), now called
AliKat, nas been developed. This line has been iso-phenotypic with Katepwa
for ali field, agronomic, seed and flour quality traits so far tested. AliKat is
being further developed for use in agronomic, physiological and molecular
research.

5. Unexpected convergence of three different University of Allerta cereal
research programs occurred in the late 1980’s when it was dizcovered that
the best yielding, early maturing, genotypes from the breeding program were
also the best performers in intensive management cropping systems. They
also all possessed excellent Al tolerance, although this trait had never been
consciously selected for in this material, nor had the parents ever been
selected for Al tolerance (Briggs et al., 1989). Since our breeding nursery
fields are not very acidic (pH 5.8-6.4 range), it is still unclear how we could
have selected so much Al tolerant material. At this time, our only explana-
tion is that of serendipity, that our high pressure of selection for early
maturity just happened to lock onto a linkage block of adapted materials
that possessed Al tolerance. We doubt that we could reproduce this effect!

6. We have established a new set of physiological standards for research
on Al tolerance in epring wheats, with the cultivar pair PT741 and Katepwa,
adapted tc MW Canadian field conditions. This pair complements the long-
stuading winter wheat cultivar pair Scout-66 and Atlas-66, which cannot be
grown in the fiel in NW Canada due to insufficient hardiness, but about
which the Al tolerance literature is extensive.

7. Aluminum dose response curves have been determined in hydroponic
systems for tolerant and sensitive cultivars (Figure 7; Briggs et al., 1992;
Figure 8) that indicated non-homogeneity of response of different tolerance
sources, and that also implies more complexity of tolerance mechanisms
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than is explainable by simple genetic models. The variable shape of these
response curves diaws atiention to the potential drawback of selecting at
any narticular Al concentration.

8. For the series of near-isogenic sets (isolines) aveloped, dose response
curves indicated that Al tolerance vras maintained equal to the tolerant
pareat up to the Al dose level at which selection was practiced (200 pM).
Above this selection stress level, performance of the isogenic compared to
«he donor varied according to which donor source was used. For example,
performance of the Maringa-derived isoline Iso-199 (= AliKat) closely
tracked that of Maringa, whereas the tolerance of the PF7748-derived isoline
Iso-65 fell significantly below PF7748 when gelected above 200 uM Al
(Figure 8). An additional problem with the series of isogenics developed was
that, despite three, four or five backcrosses, iso-phenotypic performance
compared to the recipient parent was not achieved for all other traits
measuscd in agronomic field trials, in the greenhouse, or in the wheat quality
laboratory. This suggests incomplete reconstitution of the target parent.
Examples of this were presented in Table 4. This effect in backcross pro-
grams is often attributed to “linkage drag”. Although the line AliKat has
only three backcrosses to Katepwa, this line has been chosen for more
detailed studies because it is the only one of over twenty Al tolerant isoline
derivatives that so far has exhihited no linkage drag.

CURRENT ISSUES FORK CONSIDERATION
BY THE WORKSHOP

Aluw.ainum Dosc Response Issues,
and Critical Tolerance Levels Required

The level of Al stress limits the level of tolerance achievable, and not all
tolerant lines have similar response curves. Perhaps a suite of genes is
involved acting at different stress levels, and simple inheritance is usually
seen because the selection assay protocol only switches on one or two of these
at a time. Ir a specific cross, if parents were genetically homogeneous for
other genes involved, then segregation would not be seen for those.

Aniol (1991) has described the location on chromosomes 54, 2D and 4D of
several specific genes from different wheat cultivars. A useful diallel cross-
ing experiment could be conducted out involving all known cultivar sources
of Al tolerance believed to be of different origin. The parents and progenies
should be evaluated in a systematic manner over & range of Al stress, by
hydroponic as well as soil assessmen* methodologies. Internationally impor-
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tant tolerant spring wheats would include BH1146, Maringa, Carazhino,
Cutler, PT741, Romany, Kenya Kongoni, Waalt, Dollarbird, and others. This
is a large project that would have to involve cooperation between many
laboratories, but it could result in an international rationalization of the
genetics, it could be coordinated with previous and current gene mapping
efforts in wheat, and it would provide some estimate of the importance of
the differential dose response effects in tolerant germplasm. For example,
with respect to the best Al tolerances in use in NW Canada, nothing is known
about the characterization of the tolerance genes involved, compared to
previously mapped tolerance genes reported in the literature. This problem
is probably not unique to this program, or to Canadian germplasm.

In addition, more research is needed to characterize the extent of variabil-
ity for acidity and Al levels within a field, to determine guidelines for
minimum acceptable Al tolerancz levels required. Such work will have to be
region-specific in view of the veriable speciation of Al, and other unique
stress effects in different sail types. Results from such work may help in the
further refinement of soil bioassay methods for use by breeders.

Continuation of Basic Physiolegical Research

Continued physiological research is required so that individual mecha-
nisms of tolerance can be elucidated, which will lead to the development of
less empirical selection techniques and breeding strategies. This is funda-
mental to further improvement of tolerance levels in many crops, particu-
larly those now described as very susceptible. This understanding will be
needed before the next step can be achieved, and will have to be developed
in synergy with the development by breeders of appropriate genetic stocks.
Inter-laboratory networking opportunities are abundant here, both for
methodology and genetics.

Identification, Isolation and Cloning
¢f Aluminum Tolerance Genes

Genes for Al tolerance offer many opportunities for development of model
gene transfer systems that can be tested in wheat, in ways described earlier.
Success in this area would be improved if international laboratories with
these interests would work with common genetic cultivars. Duplication of
research efforts in this area is not affordable, but the impact of an isolated,
cloned gene would be of major significance to international agriculture.
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Pa: ticipants at this 1993 meeting showld address this prospect, and set goals
ar a target date to achieve this success. These genes are present in a wide
range of important crops. Is there a will to fish them out? In the NW Canada
acid soil research program at the University of Alberta, 1993 is the year we
start fishing!
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Achievements in Improving the Adaptation
of Forages to Acid, Low Phosphorus Soils

J.R. Caradus
AgResearch Grasslands
Palmerston North, New Zealand

ABSTRACT

Forage species are often grown on acid, lov phosphorus (P) soils to which they
are not naturally adapted. During the past two decades, a number of programs have
been undertaken to select genniypes and cultivars within these species with better
adaptation to such edaphic stresses. Genetic vr riation has boen identified witis
white clover for diry matter response to added P and a number of adaptive plant
characters, including aspects of root morphology, P uptake rate, delivery to the
shoot under P-deficiency stress, partitioning of P within leaves and shoot total P
concentration. Within some specics, including ved clover, subterranean clover,
annual ryegracs and lespesieza, differences in eluminum (Al) tolerance have been
icentified among existing cultivars. Specific s-lection a::1 breeding programs for
Al tolerance Lu:ve been successful in white clover and phalaris. In all forage spscies
tested, significant differences in manganese tolerance have been demonsicated
among existing cultivars.

Taking into consideration the limited investment worldwide in forage plant
improvement for cid, low-P soils, cossiderable advances both in the ideniification
of genetic differences and in gaining an understanding of possible mechanisms
involved have occurred. Successes will continue in proportion to the investment
made, combired with the usc of appropriste acreening sxud selection strategies.

INTRODUCTION

Some forage species occur naturally and appear well adapted to infertile
or acid soils. However, such species are most often either of low quality (e.g.
Danthonia (Black, 1990), Agrostis tenuis (Ulyatt, 1978), Stylosanthes (Ritson
et al,, 1971; Winks et sl., 1977)), low productivity (Trifolium dubizin) (Scott
et al., 1989) or, if legumes, are poor competitors when grown iu association
with grasses under frequent grazing pressure (e.g. Lotus pedunculatus
(Sheath, 1980), (T. ambiguum (Townsend, 1985)). As a result, attempts have
been made to select for tolerance to edaphic stresses within species normally
found in more fertile soils and known to be adapted to grazing pressures (e.g.
Trifolium repens (Caradus and Willianis, 1989)) or conservation practices
(e.g. Medicago sativa (Buxton, 1989)). Seclection has been predominently
conducted within lcgumes since it is generally accepted that they are poor
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competitors for phosphorus (P) in P-deficient soils (Ozanne et al., 1969;
Jackman and Mouat, 1972; Barrow, 1975a and b) and are less tolerant of
acid snils than many grasses (Pearson and Hoveland, 1974; Cregan, 1980;
McLean and Brown, 1984). A recent study, however, showed that under
controlled conditions, grasses as a group were not aecessarily mor ¢ tolerant
to aluminum than temperate pasture legu nes (Edmeades et al., 1991).

The majority of forage species mentioned above are suitable for pastures
in temperate regions of the world. Perhaps the more perplexing breeding
attempts have been to find suitable forage legumes for acid infertile soils of
the subtropics and tropics, where Al and Mn toxicities problems can be
severe (MacLeod, 1991). Spain (19773) observed that the most acid soil-toler-
ant tropical forage species were less productive than other tropical forage
species. For t:opical acid soils, iraprovement in species such as Macro-
philium atropurpureum (Hutton and Beale, 1977), Centrosema, Stylosan-
thes, Desrmodium, Aeschynomene (Schultze-Kraft and Giacome.ti, 1978;
Kretachmer, 1989) has been pursued. For a number of species, which are
naturally adapted to acidic, low-P soil, the aim has been to improve agro-
nomic characteristics (e.g. in Lotus pedunculatus) or nutritive value (e.g. in
Stylosanthes).

The aim of this paper is to examine successes in seleciion of forages for
better adaptation to acid, low-P soils. Adaptation will be principally for
tolerance to Al and Mn toxicity and P deficiency. Emphasis will be on white
clover and alfalfa since it is with these species that most of this work has
addressed. Succecs will be identified at three levels: (a) identification of
genetic variation for potentially adaptive plant characters, (b) identification,
selection and progeny testing for genetic variants adapted to soil nutrient
imbalances, and (c) release of germplasm and cultivars specifically for
infertile, acid soils. Since many forages of economic :mportance are legumes,
successes in identifying edaphic stress tolerance of Rhizobium and the hest
- Rhizobium symbiosis will also be reviewed.

In relation to the successful adoption of released germplasm and cultivars
in low-P, acid soils, the additional requireraents of such cultivars to tolerate
competition and defoliation and their adaptation to other environmental
stresses that may limit their input will, when possible, be examined. Con-
versely, germplasm that shows promise may require a change in current
management practices. For perennial species, the persistence of new culti-
vars must also warrant consideration.
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GENETIC VARIATION FOR ADAPTIVE PLANT CHARACTERS

Genetic variation has been identified for a large number of plant charac-
tersimplicated with mechanisms enabling plants to tolerate acid, low-P soils
(Duncan and Baligar, 1990).

ADAPTATION TO LOW PHOSPHORUS SOILS

Root Morphology

Genetic variation has been identified in white clover for root/shoot ratio.
(Godwin and Blair, 1991), root system structure (Caradus, 1977; Caradus
and Snaydon, 1986¢,, 1588; Godwin and Blair, 1991; Gourley et al., 1993),
root depth distribution (Caradus, 1981a), and root hair length (Caradus,
1979). In alfalfa, genetic variation for degree of root branching has been
reported (Smith, 1951; Avendano and Davis, 1966; McIntosh and Millee,
1980; Pederson et al., 1984). The advantage of a denser, more branched root
system composed of finer roots with larger root hairs is increased P absorp-
tion due to extended effective root surface area. Similar advantages are
achieved by mere prolific root mycorrhizal attachments. Variation among
cultivars of both white clover (Hall et al., 1977; Powell, 1982) and alfalfa
(Lambert et al., 1980; Satterice et al., 1983) have been observed for incidence
of mycorrhizal infection. Increasing root hair length, by selection, within
white clover had a significant effect on plant dry weight because of increased
P absorption, but only if roots were not mycorrhizal (Caradus, 1981¢).

Fhosphorus Uptake Physiology

Genetic variation for P uptake per unit root length has been observed
among populations of white clover (Caradus, 1983; Godwin and Blair, 1991).
Populations supposedly adapted to P-deficient soils had lower rates of P
uptake per unit root length than those adar:ed to high-P soils (Caradus,
1983). The physiological significance of this character has been ques inned
(Caradus and Snaydon, 1986a and b) and its ecological significance may also
be doubtful since even a low root absorption capacity is adequate to absorb
a nutrient, such as P, the availability of which is limited by diffusion at low
levels of supply (Nye, 1977).
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Modification of the Rhizesphere

Genetic variation for root exocellular acid phosphatase activity has been
shown in white clover, but did not seem to have any adaptive significance
(Caradus and Snaydon, 1987b).

Delivery to Shoot under P Deficiency

At low P, shoot %P can vary nearly 2X among genotypes of white clover
with similar shoot yields (Caradus, 1986). However, these genotypes were
low yielding. The highest-yielding genotypes at low P were associated with
low shoot P concentrations.

Short Total P Concentration

In the decire to identify or hreed cultivars of plants that are more P
efficient, in terms of being able to grow at low levels of P supply or being able
to utilize applied P more eificiently, P efficiency ratio .r P utilization
quotient (PUQ) has often been used. This is the amount of dry matter
produced per unit of P absorbed (Gerloff, 1976; Mehell et al., 1983) or the
inverse of %P. The advan‘’ages of this measure of P efficiency are ease of
measurement and its relatively high heritability, and therefore selection is
generally effective.

Genetic variation fer shoo! %P has been obscrved in several forage species.
Within white ciovey, significant variation has been demonstrated among
cultivars (Mackay et al., 1990b), ecotypes (Caradus, 1983), and among
genotypes (Robirson, 1942; Caradus, 1992) for shoot %P. Critical values of
shoot %P for 90% maximum shoot dry weight of white clover ranged from
0.46 to 0.66 among five lines of white clover (Godwin and Blair, 1991). Broad
sense heritabilities for shoot %P have ranged from 0.47, when grown under
P stress. to 0.65 when grown with adequate P (Caradus, 1992).

Forage species selection programs have successfully manipulated shoot
%P. Bidirectional selection programs for %P in herbage of alfalfa have: heen
established (Kendall and Hill, 1980; Hill, 1981; Hill and Lanyon, 1983 and
Miller et al., 1987). Low %P selections, considereq to be more P-efficient, had
higher germination, high Ca : P ratio, low concentrations of other nutrients
and lower protein and fibre conteat. In some studies, low %P selections were
higher yielding than selections for high %P (Kendall and Hill, 1980; Hill,
1981; Miller et al., 1987), but Hill and Lanyon (1983) found no yield
differences at two sites.
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Despite the apparent successes in selections for lowered shoot %P and
hence supposedly increased P efficiency, caution is needed when interpreting
these results. PUQ may be misl-uading, since low P concentration in shoot
tissue may be due to poor P uptake rates, poor translocation from root to
shoot, and dilution cffects related to growth rate (Caradus, 1991a).

Partitioning of Phosphorus

Phosphorus in plants can be broadly classified as orgaric P(Po) and
inorganic P(Pi). Variation in P supply results in greater fluctuations in Pi
concentrations than Po concentrations (Bieleski, 1973). White clover popu-
lations adapted to low P soils accumulated more Pi in their leaf iissuz, when
grown at high levels of P supply, and were a's0 able to reduce these Pi levels
to lower concentrations when P supply was deficient (Caradus and Snaydon,
1987a). On the basis of ecological studies comparing species (Rorison, 1968;
Nassery, 1971), this characteristic may be an important adaptive feature of
white clover plants that are able to survive in low-P soils.

ADAPTATION TO ACID SOILS

Exclusive Mechanisms

The existence of an exclusion mechanism associated with Al tolerance
(Foy, 1284) has not been demonstrated in forage species. To my knowledge,
no incidence of similar Al shoot concentration of Al-tolerant and Al-sensitive
populations ccmbined with lower root Al concentrations in the Al-tolerant
population has been documented. However, Al-tolerant c:dtivars of Lolium
multiflorum have the ability to increase solution pH more rapidly than
Al-susceptible cultivars (Renge! and Robinson, 1989a).

Mn tolerance has been associated with oxidizing ability of roots in some
crop species (Foy, 1984), but again this has not been clearly demonstrated
for forage species. HHowever, some lines of Macroptilium appear to have the
capacity to resist the uptake of Mn (Hutton et al., 1978).

Internal Mechanisms
Roots of an Al-tolerant genotype of white clover had higher Al concentra-
tions than roots of an Al-susceptible genotype, although shoot Al concentra-

tions were similar (Crush and Caradus, 1993). The ability of Al-tolerant
genotypes to grow, despite similar or higher absorption of Al, suggested that
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tolerance was related to an internal mechanism rather than Al exclusion or
efflux.

The ability to absorb and rcetain Mg in the presence of Al stress has been
highlighted in white clover (Crush and Caradus, 1993) and ryegrass (Rengal
and Robinson, 1989a, b, 1990) as an important component of Al tolerance.
Mg may be effective in blocking the penetration of cell wall crystalline
materials by Al or, alternatively, may influence the molecular construction
of cell membranes and change their permeability to Al. In comparison with
alfalfa, the Al-tolerance of sericea lespedeza was associated with accumula-
tion of Al in the root cortex and epidermal cell walls, restricting movement
to the shoot (Joost and Hoveland, 1%35).

The most important mechanism for Mn tolerance in Phalaris is related to
an ability to tolerate high internal levels rather than an exclusion mecha-
nism or retention of Mn ix: roots (Culvenor, 1985). However, Mn toierance
in subterranean clover was associated with restricted movement of Mn from
roots; Lo shoots (Osborne et al., 1981; Evans et al., 1987).

GENETIC VARIATION FOR WHOLE PLANT ADAPTATION

Phosphorus
White clover (Trifolium repens L.)

Intraspecific variation for response to added P has been observed in white
cloverinseveral studies (Snaydon and Bradshaw, 1962; Caraduset al., 1980;
Caradus and Snaydon, 1986¢; Godwin et al., 1991; Gourley et al., 1993). A
breeding program is underway to develop a cultivar of white clover that
requires lese P to sustain the same production as that of present cultivars
or is capable of producing more dry matter with the same amount of applied
P (Dunlop et al., 1990). The initial aim was to identify germplasm differing
in response to P. P response refers to a change in dry matter yield with
increasing levels of P. High P-responses are associated with a rap:d increase
in dry weight or plant size with small increases in P supply, and maximum
vields are reached at lower P levels than for plants with a low P-response.
variation for P response Las been identified among a world collection of
white clover cultivars (Mackay et al., 1990a), and among genotypes from
within a range of cultivars (Caradus et al., 1992b). Genotypes were identified
that combined Loth tolerance to low-P (i.¢. had high yields at low-P) and an
ability to respond to added P (Caradus et al., 1992a). Inheritance studies
showed that high P-response was dominant over low P-response; general
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combining abilities of high P-response genotypes were generally greater
than tizat of low P-resporiee genotypes; and that narrow sense heritabilities
for P-response were moderate (0.33 to 0.45) (Caradus et al., 1992b). Selec-
tioi:s and breeding lines from this stidy are currently being field tested. This
work hass so far shown that it is possible to select for high and low P-response
i a relatively controlled envirorment and that it should be feasible to
incorporate: the appropriate P response characteristics into agronomically
suitable cermvplasm.

Alfalfa (Medicago sativa L.)

In alfalfa effort has been centered oa selecting for P concentration in shoot
tissue (Kendall and Hill, 1580; Hill, 1981; Hill and Lanyon, 1983; Miller et
al., 1984, 1987); low concentrations may lead to improved P efficiency and
high concentrations of imoroved nutritional quality of herbage. This work
has been reviewed previously (Caradus, 17 0a). Relatively little effort has
been directed to identifying whole-plant adaptation to low P inputs in alfalfa.

In one study comparing six clones from esch of six cultivars of alfalfa, no
significant cultivar x P level interaction for shoot dry weights was found,
irrespective of whether plants were mycorrhizal or non-mycorrhizal; how-
ever, a significant clone-within-cultivar x P level interaction occurred (Lam-
bert et al., 1980). In another study comparing two alfalfa populations, the
cultivar Mesilla and a population derived by three cycles of phenotypic
recurrent selection from within Mesilla for higl rates of acetylene "eduction,
demonstrated differences iu response to i* between populations (Satterlee et
al., 1983). The cultivar M silia did not respond to P added to the soil culture
system, whereas the deriveu population vesponded to addea P (Table 1). For
example, selection within M. rigidula, an annual medic, for high and low
growth rate at low P levels did not result in lines diffcring in response to P
(Lorenzetti et al., 1992).

Table 1. Differential shoot dry weight (g/plant) responsc to added P of two alfalfa

populations.
P level applied (kg/f/ha)
Population 0 600
Mesilla 6.36 6.47
Cerived population 5.33 7.33
P [
LSDgps 0.86

Data adapied from: Tabie 1 of Sattoriee et al. 1883, Agron.J. 75:715-718,
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Orchardgrass (Dactylis glomerata)

Differences in response to added P among four cultivars of orchardgrass
have been identified (Finn and Mack, 1964). However, differences in re-
sponse varied with the level of 30il temperature and rsoisture. Comparison
of six ecotypes with two cultivars showed more than 4X the difference in P
response, with the cultivars having the greatest vesponse (Cistley and
Bradshaw, 1968).

Stylosanthes

Comparison of 2 wide range of lines from sevea species of Siylosanthes
showed relatively small differences in growth under severe P deficiency, but
considerable differences in dry matter response to added P (Jones, 1974).
Differences among accessions for shoot %P concentration at similar relative
yields differed little below 0.3%P. Differences increased with increased P

supply.

Aluminum
‘White clover (Trifolium repens L.)

A selection program with white cover, cultivar Grasslands Huia, has
successfully identified genotypes tolerant and susceptible to Al based on
shoot yield (Caradus et al., 1987, 1991) (Table 2). A breeding program based
on three tolerart and three susceptible genotypes showed that Al tolerance
was heritable, with narrovs sense heritabilities of 0.43 to 0.53; and that Al
tolerance may be inherited as a recessive character in some genotypes of
white clover (Caradus et al., 1991). Continuing studies with this material
have shown that Al-tolerant genotyp.es have a lower shoot P concentration
and are more responsive to applied P than Al suaceptit. genotypes (Crush
and Caradus, 1993), suggesting that screening white clover tor Al tolerance
may produce plants well-adapted to acid soils to which P fertilizer is applied
intermittently.

Phalaris (Phalaris aquatica)

Phalaris has been selected in Ausiralia forimproved Al-tolerance. In early
studies, significant variation for Al tolerance was observed between and
within accessions and cultivars of P. aquatica (Culvenor et al., 1986a). In
many lines, a discrete highly Al-sensitive class of plants was found that
exhibited extremely poor root growth. Elimination of this class would lead
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Table 2. Aluminum tolerance ratios (400 mg Al per kg soil/ 0 mg Al per kg eoil) and
shoot and root dry weight at 400 mg AVkg soil of Huia, Maku lotus and
selections for sluminum telerance and susceptibility.

400 mg Al perkg soil
Geaotype/ Al-tolerance Shoot dry Root dry
line/cultivar ratio weight (mg) weight (ng)
Huia 0.09 237 104
Maku lotus 0.2/ 944 32
.7 0.21 588 202
T.97 0.21 439 195
T.28 0.31 673 199
T.81 0.22 555 206
S.110 .12 482 206
S.129 0.10 262 T4
S.8 0.16 387 157
T.771XT.97 0.35 909 329
S.129XS.8 0.07 176 85
p *e *o8 s
LSR 0.05} . L7 x11.80
LSD 0.05 0.07 - -

T denctes Al-tolerant genotypesa and S donotes Al-susceptible genotypes.
* lsast mignificant ratio from untransformed log-data.

Data from Table 5 of Carredus. 1991b. Proceedings Agron. Soc, (NZ) 21:55-60.

to a cultivar with improved Al tolerance. The difference between the highly
sensitive and mederately tolerant classes was largely explained by a two-
gene hypothesis in which tolecrance requirad at least one dominant allele at
eachlocus (Culvenor et al., 1986b). Variation within the mod-~rately tolerant
class was polygenic. Heritability for Al tolerance based on root growth in
solution culture ranged from 0.48 to 0.75, but based on shoot growth in the
fielq, it was much lower, from 0.07 t9 0.26 {Culvenor et al., 1986b). This was
attributed to variabilitv in soil Al concentrations.

An alternative approach to selection within P. aquatica has involved
hybridization with the more Al-tolerant P. arundinacea, followed by a
backcrossing program (Oram et al., 1990). However, transfer of undesirable
characters from P. arundinacea may also occur, resulting in poor palatability
in summer, poor survival during long dry summers and shedding of mature
seed from panicles (George and Croft, 1968). However, 2% of genotypes after
two backcrossings cycles have exhibited acid soil tolerance, palatability and
the ability to retain seeds in their panicles (Oram et al., 1990). Development
of a range of P. aquatica cultivars adapted to acid soils with appropriate
agrononic characteristics should he possible.
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Table 3. Visual scores of yield (1-6 increasing) of phalg.is cultivars and backeross
populations of phalaris derived form P.aruundinacea x P. aquatica
crosses in an acid soil {Al-toxic) and acid-eoil tolerence ratio (un-

limed/limed).
Visual score of growth Acid-sail -
Line {acid soil) telerance ratio
Australiac 1.25 0.38
Sircsa 0.97 033
Sirolan 0.56 032
Holdfast 042 036
AT 88 1.67 0.77
BC2-5-26-1-3-1 1.81 0.88
BC2-6-4 222 1.06
BC2-10-20 L1 0.69
BC2-11-36 2.50 1.32

Data adapl.ad from Tabie 1 of Oram et al., 1983, In P.J, Randall et &l. (eds) Genatc aspects of plant mineral hutrition
p. 17-22.

In an acidic, Al-tode soil, the s2cond backeross (between P. arundinacea
and P. aquatica) F2 generation was considerably more tolerant than existing
cultivars (Table 3) (Cram -t al., 1993). Further selection within this back-
cross population is expected to lead to a productive, acid-tolerant cultivar of
phalaris.

Alfalfa (Medicago sativa)

The earliest study identifying intraspecific variation of Al tolerance in
forages was in alfalfa (Ouellette and Dessureaux, 1958). They found that the
more tolerant genotypes retained more Al in their roots and had lower Al
concentrations in their shoots. However, it was not until more than a decade
later that breeding programs for increased tolerance to high Al were docu-
mented (Buss et al., 1975, Devine et al., 1976). Buss et al. (1975) selected
genotypes on the basis ¢f root penetretion into an acid soil. When retested,
genotypes designated Al-susceptible tended to be more Al-susceptitie than
most genotypes designated Al-tolerant. However, they concluded that devel-
opment of an Al-tolerant cultivar might be slow and that the level of Al
tolerance attained may be less than that observed in cther crops. Devine
et al. (1976) not only selected genotypes for Al tolerance and Al susceptibil-
ity, but selections were interpollinated separately and a further cycle of
recurrent selection made within selections. Plants from the population
selected for Al tolerance had significantly higher root and shoot growth in
an Al-toxic soil than genotypes from the population selected for Al suscepti-
bility (Table 4). Al tolerance in these alfalfa populations was a heritable
character controlled by a polygenic system rather than a single major gene.
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Teblo 4. Response of two alfalfa populations to recurrent selection for tolerance
and susceptibility to Al toxicity as determined by frequency distribution
of plants in root score classes and mean root score after two weeks
growth on Al-toxic Tatum soil at pH 4.8.

Plants in root score classes’ MMecan
Bntry 1 2 k) 4 _5 1enre
AR3 (Tolerant strain) 1.75 6.36 31.33 41.41 19.16 3.70
AS3 (Susceptibie strain) 0.19 1.11 1132 49.09 38.29 4.24
LSDngy 0.06

' = vigorous growth, secondary and tertiary teanching;
S = saverely stunted growth,

Data from Table 1 of Davine et. al. 1976. Plant and Soll 44:72-76.

Recurrent selection was an effective method of developing breeding lines in
alfalfa with differential tolerance for Al-toxic soils.

In the 1980’s a program was undertaken at Georgia, USA to select an
Al-tolerant alfalfa (Bouton et al., 1981a, b; 1982; Brooks et al., 1982).
Genotypes were selected tor two generaticns (cycles) from within the cultivar
Florida 66 for high shoot yields in either an addic, high Al-soil or the same
soil limed to pH 6.5. When progeny from these selections were tested in an
acid soil with added P, the Al-tolerant selection had significantly higher
shoot yields than the selection from lirced soils or the original seed. When
grown in the limed soil without added ., the Al-tolerant selection yielded
significantly less (Brooks et al., 1982). Additionally, Al-tolerant selections
had roots peretrating deeper into an acid supsoil than selections from limed
soil (Bouton et al.1982). However, in field tests, the advantage of Al tolerance
was not apparent in a low pH environment (pH 4.8) (Bouton and Sumner,
1983). Reasons for this apparent disparity were not explained. However,
such an inconsistency is not unique. In some studies, superior yielding
germplasm has come from selections made in stress environments, while in
other studies, the opposite has been the case (Devine, 1982).

Red Clover (Trifolium pratense L.)

Only recently have red clover cultivars been examined for their tolerance
to Al, A soiution culture study showed large differences among 23 red clover
cultivars for tolerance to Al, with Al-tolerance ratios at 50 mol ! Al ranging
from 22 tv 61 for shoot growth and 10 to 84 for root growth (Table 5) (Baligar
et sl., 1967). On the basis of this solution culture study, two red clover
cultivars, Kuhn and Prosper, I are recommended for moderately acid soils
(Baligar et al., 1987). Relative to Kenstar, they had 47% and 5%, respec-
tively, higher shoot yields at 50 mol L''Al. At zero Al, Kuhn and Kenstar
yields were similar, but Prosper I was only 73% that of Kenstar (Baligar et
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Table 6. Red clover cultivars shoot and root T'mwth as influenced by Al.

Shoot wt Root wt
pmol L Al pmol L Al
Cultivar 0 S0 100 0 50 100
—g 10plants™ —

Altaswede 4.6 1.5 031 1.6 0.87 0.09
Arlington 9.4 1.2 047 21 048 0.16
Chesapeake 59 13 026 1.4 0.58 0.10
Dollard 43 1.1 034 1.3 039 0.07
Flare 82 1.8 0.68 24 0.84 0.07
Florex 82 1.6 047 1.8 0.66 0.17
Florle s.S 1.5 0.42 1.3 051 0.09
Kealand 74 1.3 041 1.8 054 0.12
Kenstar s.1 1.9 041 1.6 077 0.08
Kuhn 4.6 28 0.64 1.6 1.17 0.14
K4-183 3.2 1.0 038 0.9 047 0.07
K4-184 26 0.5 0.20 0.6 027 0.06
Lakeland 8.8 25 0.60 2.0 0.87 0.11
Nolin 13 1.0 032 1.6 036 0.07
Norlac 1.0 13 035 2.6 058 0.06
Pennscott 1.8 1.7 0.69 1.4 065 0.11
Prosper | 37 20 0.23 1.0 0.86 0.06
Redland 6.4 0.4 0.29 1.4 0.14 0.10
Redland 11 19 1.2 024 1.3 045 0.05
Redman 7.9 24 054 1.7 0.84 0.09
Redmor 44 1.6 043 L1 063 0.10
Sapporo s.8 1.2 043 1.2 0.40 0.11
Tristan 6.0 22 0.54 L1 081 0.14
Mean 6.0 1.5 042 1.5 061 0.10
LSD s 097 025

Data trom Table 2 of Baligar et al. 1887, Agron. J. 79:1038-1044,

al., 1987). Root growth of Prosper I was least affected by 50 mol L*Al. In a
separate study, in which Kuhn was not included, Prosper I also performed
well for Al tolerance response in nutrient solution (Campbell et al., 1990).
However, in 8oil culture, it was not exceptiongl (Nuernberg et al., 1990). The
cultivar Tristan, however, had an Al tolerance ratio nearly twice that of
Kenstar when grown in s0il, but the differences were due almost entirely to
growth differences in unstressed conditions (Table 6) (Campbell et al., 1990).
Nuernberg et al. (1990) showed that in both soil and solution culture, the
cultivars Arlington, Lakeland, Tristan and YKYC were consistently Al-tol-
erant and the cultivars Kenstar, 151-84-KM and Kenlend were consistently
Al-susceptible.
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Table 8. Shoot yield and Al tolerance of red clover cultivars grown in an acidic

Al-toxic soil.

Shoot DW (mg/plant)

2.8% Al saturstion

26.2% Al saturation

Al-tolerance
ratio

Kenstar
Prosper |
Tristan

045
0.67
0.83

Data adapted from Tabie 1 of Campbell et al., 1890. J. Plant Nutrition 13:1483-1474,

Table 7. Effect of solution aluminum (4M) on the top yield (mg pot’') of perennial
ryegrass (Lolium perenne) grown from tiller isolates from 23 selected
aluminum tolerant plants and the stander: cultivar Grasslands Nui.

Aluminum concentration (uM)

Line 0 20 40 60
1 260 129 1 49
2 128 249 92 69
3 508 199 112 59
s n7 3 183 119
6 404 236 130 ')
7 452 412 211 120
8 416 285 n7 106
9 625 223 174 94
10 417 125 89 76
11 a7l 107 76 7
12 548 255 158 97
13 569 195 109 79
14 38s 254 256 189
15 330 123 95 51
16 643 269 165 109
17 403 195 92 78
18 274 108 81 44
19 507 171 72 S8
20 308 242 127 82
21 496 292 216 138
22 518 308 142 93
23 351 201 %46 36
24 s41 174 9% 53
Grasslands Nui 709 176 118 86
SED 209* 60 47 28

181" 52 41 24
! tor comparing haif-sib tamiles.

* for comparing hall-sib families vith Grasslands Nul,

Data from Tabie 1 Wheelor et al. 1892. Plant and Scil 148:9-19,
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Perennial ryegrass (Lolium perenne L.)

Al tolerance in perennial ryegrass has been described as polygenic (Ran-
dall, 1963). In this study, the tolerant lines were higher yielding than
susceptible lines when grown with Al, but lower yielding when grown in the
absence of Al. The Al absorbed by the Al-tolerant plants was confined to the
roots, and the reduction in shoot growth was considered to be a secondary
effect of Al on the uptake and translocation of mineral nutrients.

A selection program using low ionic strength culture solutions has iden-
tified genotypes of perennial ryegrass that were more Al-tolerant than
current standard cultivars (Table 7) (Wheeler et al., 1992). Results indicated
that genotypes selected for Al-tolerance had good agronomic potential in
both acid and fertile soils. Al-tolerant genotypes were more drought tolerant
in re-constructed acid soil profiles. However, additional improvements in an
Al-tolerant cultivar may be slow because of the relatively low heritability
for Al tolerance (h?® = 0.24).

Annual ryegrass (Lolium multiflorum Lam.)

A screening program has shown a 3X range in Al-tolerance ratios based
on root length in solution culture for annval ryegrass (Nelson and Keisling,
1980). Four cultivars, MOM96, Anbade, Tetragulf and Urbana showed no
detrimental effects of 4mM Al on root growth. However, retesting of these
with control cultivars showed little consistency, and it was concluded that a
more reliable screening technique was required for this species.

A morerecent study (Rengel and Robinson, 1989a, b) hasidentified annual
ryegrass cultivars, Gulf and Marshall as being more Al-tolerant than culti-
vars Urbana and Wilo (Table 8). The more Al-tolerant cultivars were
distinguished not only by growth differences, but also by (a) root-mediated
changes on solution pH (pH increased more rapidly for tolerant cultivars
after response to Al), (b) shoot Al concentration (lower in Al-tolerant culti-
vars), (c) cation uptake (greater n_. influx of Ca and Mg and lower net influx
of K for tolerant cultivars after exposure to Al (Rengel and Robinson, 1989a,
b; 1990).

Turfgrasses

Screening of 35 Kentucky bluegrass (Poa pratensis L.) cultivars showed a
10X difference in Al tolerance based on shoot yields and a 20X difference
based on root yields (Table 9) (Murray and Foy, 1978).
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Table 8. Al tolerance of four annual ryegrass cultivars grown in solution culture
based on root weights (mg/plant).
Al exposure
8d 18d
Al concentration Al-tolerance Al-tolerance
Cultivar pmolL”! DW ratio DW ratio
Gulf 0 7.0 1.00a' 93.3 1.00a
37 7.1 1.02a 76.7 082b
74 7.1 10la 70.0 075¢
296 6.4 091b 333 0.36d
Manshall 0 7.1 1.00 ab 83.3 1.00a
37 19 1.10a 76.7 092 ab
74 19 1.10a 68.3 0.82b
296 71 1.00 ab 43.3 052¢
Urbana 0 12.1 1.00a 106.7 1.00a
37 9.3 0.77b 86.7 081b
74 8.6 0.71b 68.3 064 b
296 59 0.49¢c 123 0.12¢
Wilo 0 8.6 1.00a 100.0 1.00a
37 5.6 0.66b 60.0 0.60b
74 54 0.63b 41.7 042¢
296 33 0.38¢ 9.8 0.10d

! For each cultivar, means followsd by the same letter within a calumn are not significantly different at the 85% confildence

level,

Data adapted from Table 1 Renyiel and Robinson. 1989a. Agron. J. 81:208-215,

Table 8. Al tolerance of Kenlucky bluegrass culiivars grown in Al-toxic soil and
relative to that in limed soil (Al-tolerance ratio).

DW (g/pot) Al tolerance natio
Cultivar Shoot Root Shoot Root
Victa 1.97 0.55 0.84 1.02
Bonnieblue 1.71 0.51 0.76 0.86
Pennstor 1.71 051 0.82 0.77
Fylking 1.91 0.54 091 077
Belturf 048 0.17 023 0.21
Arboretum 0.21 0.06 0.16 0.09
Windsor 0.15 0.08 0.08 0.08
Kenblue 0.15 0.04 0.10 0.05

Data adapisd from Tables 1 arv] 2, Muray & Foy. 1878, Agron. J. 70:760-774.
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Red fescue (Festuca rubra L.) is more tolerant of acid soils (Palazzo and
Duel, 1974). However, a 5X variation in tolerance to acid soils, based on shoot
yield, was found among 15 cultivars grown in an acidic soil (Murray and Foy,
1978); Al-tolerance ratios ranged from 0.17 to 0.91.

Tall fescue (Festuca arundinacea Schreb.) is more sensitive to acid soils
than red fescue, with Al-tolerance ratios ranging from 0.02 to 0.35 for six
cultivars (Murray and Foy, 1978). However, some genotypes-within-culti-
vars of tall fescue showed a high level of tolerance to Al.

Old World bluestems (Bethriochloa intermedia, B ischaemum, B. cau-
casica)

From a screening of 29 lines from these three species, only five survived
in an acid Al-toxic soil (pH 4.1); four from B. intermedia and one from B.
caucasica (Foy et al., 1987). Even among these five, there was a 2X range in
Al tolerance (Table 10). These five lines may enable Old World Bluestems
to be grown in acid soils.

Sericea lespedeza (Lespedeza cuneata)

Sericea lespedeza is considerably more tolerant of subsoil Al than is alfalfa
(Joost and Hoveland, 1986). Screening of 15 serica lespedeza lines, using
radicle length in solutions containing Al, showed a 2X range in Al tolerance
(Joost et al., 1986). Al-tolerance ratio based on radicle length was signifi-
cantly correlated with Al-tolerance ratio in the field based on shoot and root
yields (r = 0.82 and 0.89, respectively, p<0.05). The most Al-tolerant cul ti-
vars were Interstate and All Lotan.

Table 10. Shoot and and root growth of five Old World bluesiems in acid, Al-toxic
soil (rH 4.1) and growth relative to thiat in limed soil (pHd 5.3).

DW (g/pot) Al-tolerance ratio
Line Shoot Root Shoot Root
B. intermedia
860 1.87 1.59 0.46 n.g.
857 1.82 1.58 0.44 049
858 1.66 1.32 0.38 0.46
886 0.87 1.03 023 039
B. caucasica
442 0.85 051 0.19 0.26

n.g. data not given In source reierence.

Data adapted from Table 2 Foy etal. 1867. In H.W. Gabeiman and B.C. Loughman (eds) Genstic Aspects of Plant
Mnseal Nutrition, p. 181-183,
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Leucaena leucocephala

Various reports have shown significant variation among lines of leucaena
for Al tolerance (Del Rosario and Salaparc, 1980; Hutton, 1981a). The
screening of more than 100 lines of leucaena in an acid soil (pH 4.1) and the
same s0il limed to pH 5.3 showed a 3X range and 7X range for Al-tolerance
based on shoot and root weight, respectively (Oakes and Foy, 1984). The
most Al-tolerant lines had twice the yield at pH 4.1 as that at pH 5.3. The
distribution of leucaena may be expanded into oxigoils and ultisoils of the
tropics and subtropics by the using acid-soil-tolerant lines. An alternative
source of Al tolerance has been obtained through interspecific hybridization
with L. diversifolia (Hutton, 1990). Selection of vigorous, deep-rooting,
acid-soil-tolerant lines has been achieved, with Al tolerance transmitted to
all generations up to F4.

Subterranean clover (Trifolium subterraneum)

Variation for Al tolerance among seven cultivars of subterranean clover
varied 2X bused on both shoot and root growth, with cultivars Trikkala,
Woogenellup, Mt. Barker and Seaton Park appearing the most tolerant
(Osborne et al., 1981).

Lotus

Interspecific hybridization with Lotus pedunculatus has been used to
transfer Al tolerance to L. corniculatus (Blamey et al., 1990). The extent of
variation for Al tolerance in the F1 and F2 generations suggested that it
should be possible to select for a combination of desirable agronomic char-
acteristics and Al tolerance.

Centrosema pubescens

Adaptation of Certrosema to acid soils has been improved using interspe-
cific hybridization (Hutton, 1981b). Centrosema pubescens coramonly used
in South Africa is poorly adapted to acidic soils. However, hybridization was
possible with the acid-tolerant species C. macrocarpum, and 20-25% of
progeny inherited the high acid tolerance of C. macrocarpum.

Manganese

Alfalfa (Medicago sativa)

Variation for Mn tolerance in alfalfa was demonstrated more than 30
years ago (Dessureaux and Ouellette, 1958). The most Mn-tolerant cultivar
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was Saureluzerne from Germany, which had been selected for tolerance to
goil acidity. Selection, crossing and progeny testing indicated that tolerance
to Mn in alfalfa was an inherited trait with high heritability (Dessureaux,
1959).

More recently, variation in Mn tolerance among a range of Australian
alfalfa cultivars was identified based on differences in severity of Mn toxicity
symptoms (Salisbury and Downes, 1962), although this means of identifying
Mn tolerance has been criticized {Sale et al., 1993). Another study identified
Mn tolerance among modern commercial cultivars of alfalfa (Sale et al.,
1993) Variation in Mn tolerance was observed among 11 cultivars, with
WLSS the most tolerant and Trifecta the least tolerant cultivars (Table 11).
Genotypes with greater growth at high Mn levels were observed within
cultivars, suggesting that further improvements can be expected.

Perennial ryegrass (Lolium perenne)

Mn tolerance in perennial ryegrass was associated with an absence in
necrotic spotting due to a higher proportion of readily soluble Mn in the
leaves (Randall, 1963).

Phalaris (Phalaris aquatica)

Screening trials in Australia have shown that while phalaris is very
tolerant to excess Mn a 2X range in tolerance to Mn existed among 16 lines
and cultivars (Table 12) (Culvenor, 1985). The more tolerant cultivars
actually showed a positive response to 40 ppm Mn. The primary mechanism
determining tolerance of phalaris lines was differential tolerance to high

Table 11. Shootyield at 256 mg Mn L’ and Mn-tolerance ratio (Mn;/maximum yield)

for 11 alfalfa cultivars.
Shoot DW Mn wlerance
Cultivar (mg/plant) raio
Validor 287 0.45
WLSS 26.3 0.84
L 318 256 0.58
PB 581 246 0.38
Shefllsld 241 0.44
Cimmaron 238 0.50
Trtecta 225 0.37
Aurora 224 0.58
PB 545 20.7 0.43
PB 577 19.7 0.38
WMaxidor II 14.9 0.39

Data sdapted from Table 1, Sale et al, 1993, in P.J, Randall et &l (eds). Genatic Aspects of Plant Mineral Nutriton, p. 45-
52.
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Table 12. Shoot yield at 210 ppm Mn and Mn-tolerance ratio (yield Mn;;/max yield
- has correlation of r = 0.92, p<0.001 with tolerance index used by Cul-
venor 1985) of phalaris cultivars and lines.

Stoot DW (mg) Mn-tolerance
Line (210 ppm Mn) ratio
Pl 15022 166 0.76
CP1 19299 108 0.66
Sirosa 206 0.62
Australian 146 0.64
Noy 103 0.66
CPI 19357 164 0.72
CPI1 19315 146 061
Sirolea 258 0.56
CPI 15220 132 051
CPI 19305 212 0.55
CPI 19306 169 050
CPI 15021 152 056
CPI 19280 121 048
CPl 19289 139 0.47
CPI1 19275 83 041
CPI 14496 117 043

Data adapted from Table 2, Culvenor. 1985. Aust. J. Agric. Res. 36:695-708

internal Mn levels in shoots, rather than Mn ezclusion or retention in roots.
The most Mn-tolerant lines included Sirosa and Australian (Table 12);
selection involving Mn tolerance of phalaris cultivars should be low priority,
but the major effort should be directed for Al tolerance.

Subterranean clover (Trifolium subterranean)

Variations for Mn tolerar cz has been demonstrated among seven cultivars
of subterranean clover; the cultivars Trikkala, Yarloop, Seaton Park and
Dinninup showed a high degree of Mn tolerance (Table 13) (Osborne et ul.,
1981). In a more recent study of 76 lines, lines more tolerant than Trikiala
and Seaton Park were identified (Table 13) (Evans et al., 1987). Retention
of Mn in roots was a possible mechanism for tolerance to high Mn ia
subterranean clover.

Macroptilium atropurpureum
Variation in Mn tolerance has been shown among 15 lines of M. atropur-

pureum, with several more tolerant than the most commonly used cultivar
Siratro (Table 14) (Hutton et al., 1978).
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Table 13. Dry weight Mn-tolerance ratio (l\gxim/Mn.m) of subterranean cultivars
_grown in solution culture in two .

Trial 1 - Shoot DW Trial 2 - Total DW
Cultivar Mispi, = 60 ppm Mn Mnyp;p, = 90 ppm Mn
T.S. subterranean
4n9Cc A 042
Mulwals - 0.60
Seaton Park 0.57 043
69985 A - 0.62
47309 C - 040
Woogenellup 022 0.2s
Nungarin - 037
65320 - 022
Mt Barker 0.18 0.18
68043 C - 0.19
Northam - 0.15
48515 A - 0.15
Daliak 0.35 -
Dinninup 043
T.5. yanninicum
Yanvop 0.61 0.25
Lasissa - 0.17
Trikkala 0.62 034
T.S. brachycalycinum
69984 B - 0.18
Clare - 0.36
68045 B - 0.09

Data source, Trial 1 adapted from Table 4, Osbome st al. 1881. Fleld Crops Research 3:347-353; Trial 2 adapted from Ta-
bie 1, Evane ot al. 1087, Plant and Soll 87:207-215,

'Denotes not measured.

SCREENING HOST-RHIZOBIUM SYMBIOSIS
FOR TOLERANCE TO ACIDITY, AL AND MN

Rhizobium Growth and Survival

Aluminum inhibits Rhizobium trifolii multiplication in the rhizosphere of
white clover (Wood et al., 1984) and subterranean clover (Whelan and
Alexander, 1986). However, rhizobial strains differ in ability to nodulate at
low pH and high Al (Munns, 1978). Screening trials have shown variation
among strains of R. meliloti (Lowendorf and Alexander, 1983) and R. trifolii
(Wood and Cooper, 1985; Lindstrom and Myllyniemi, 1987), for ability to
grow in acidified culture media; and among strains of R. trifolii (Wood and
Cooper, 1985), for ability to grow in media containing Al.
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Table 14. Dry matter yield at 40 ppm and 46 ppm Mn and Mn-tolerance ratio (Mny,
or 4/Mng 5) of Macrophilium atrapurpurcum lines grown in solution cul-
ture.

DM yicld Mn-tolerance

Line (g/pot) ratio
Trial 1 (40 ppm Mn)

Siratro 3.7 0.54
2 28 0.37
3 38 0.54
4 4.1 0.56
5 6.9 0.83
6 5.7 0.76
7 30 0.28
8 25 0.33
9 21 0.37
10 4.5 056
11 8.1 015
Trial 2 (45 ppm Mn)

Simtro 22 0.13
24 9.8 0.36
13 43 0.20
15 9.8 043
18 6.4 033

Data adapted from Table 1 Hutton et al. 1978, Aust. J. Agric. Res. 29:67-79.

Among rhizobia capable of nodulating Lotus pedunculatus, fast-growing
rhizobia (R. loti) were more tolerant of acidity and Al in liquid culture than
slow-growing rhizobia (Bradyrhizobium sp. (Lotus)) (Wood et al., 1988).
However, nodulation of L. pedunculatus grown in an acid soil was more
effective when inoculated with slow-growing rather than fast-growing
strains. Simi'arly, correlation between the symbiotic properties of strains of
R. trifolii with red clover (Lindstrom and Myllyniemi, 1987) and subterra-
nean clover (Richardson and Simpson, 1989) in acidic soil and their growth
on acid media have not been demonstrated. Predictions of symbiotic perform-
ance in acid soils was best when related to the pH of isolation sites of the
strains (Lindstrom and Myllyniemi, 1987).

Cellular regulation of cytoplasmic pH has been associated with growth of
R. meliloti in acid environments (O'Hara et al., 1989). Acid-tolerant strains
generated a pH gradient under acid conditions and always maintained an
alkalir.e interior, whereas strains sensitive to acidity were unable to control
internal pH and maintained only a small pH gradient in acid solutions. They
concluded that the ability to generate a large pH gradient under acia



conditions would give a good indication of acid tolerance of R. meliloti
strains.

Acid tolerance of rhizobia is linked not with growth and survival in acid
soils but with an ability to be stimulated to infect the host legume in acid
soils (Lowendorf and Alexanaer, 1983). However, both host cultivar and
Rhizobium strain influence competition for nodule sites (Vergas and Gra-
ham, 1989). For example, cultivars of subterranean clover affect the com-
petitive success of inoculant strains of R. trifolii in soils with resident
populations (Roughley et al., 1977). These effects seem to be more pro-
nounced in acid soils (Dughri and Bottomley, 1984).

Nodulation and N-fixation in Acid Soils

Nodulation of legumes can often be more sensitive to low pH and the
concomitant effects of low pH (Al and Mn toxicity) than the growth of the
host plant (Kim et al., 1985; Blamey et al., 1987). Al interferes with root
infection and/or nodule initiation, and as a result of a reduction in lateral
root density, the potential numbher of sites for root infection and nodule
formatior is also reduced (de Carvalho et al., 1982). Nitrogenase activity
may be more sensitive to Al than nodulation in white clover (Jarvis and
Hatch, 1985).

Variation for both rate and extent of noduiation in the presence of Al has
been observed among 11 subterranean cultivars (Kim et al., 1985). The
cultivars Howard and Tallarook formed noduies more rapidly and to a
greater extent than Seaton Park, Woogenellup, Daliak and Dwalganup,
which produced no nodules after 14 days at 11.9 M Al. In another study
comparing nine cultivars of subterranean clover (which did not include
Howard and Tallairook), no major differences were epparent in the activity
of exudates from seedling roots in inducing nodulation. over a range of pH
levels (Richardson et al., 1988).

INCREASING OUR CHANCES FOR SUCCESS

When selecting for adaptation to a nutrient deficiency or edaphic stress,
care must be taken to use the appropriate type of environment (Gerloff, 1987)
for the screening procedure. While good correlations between controlled
ervironment and field results are found in the selecticn of edaphic stress
tolerant germplasm mainly for crop species (e.g. Campkell and Lafever,
1976; Howeler and Cadavid, 1976; Joost et al., 1986), there are cases of poor
correlations (e.g. Caradus ar:d Snaydon, 19864), or of selections that fail for
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reasons of poor agronomic performance while still being adapted to the
edaphic stress (Devine ct al., 1990). Inappropriate screening strategies may
result in selection for growth rate or vigor rather than an adaptive tolerance
to an edaphic stress (Campbell et al., 1988; Bouton and Sumner, 1985). To
ensure that such an outcome is less likely to occur and confound attempts
to select for adaptation to edaphic stress, two criteria can be used. Firstly,
log-transformation of data before analysis provides confidence that signifi-
cant genotype x nutrient stress interactions are due more to differences in
mineral nutrition than growth rate alone (Antonovics et al., 1967). Secondly,
testing differencea in unstressed growth are not significant when large
differences occur under stress. Apparent differences in Al tolerance can be
due to differences in growth in unstressed conditions rather than when
subjected to an edaphic stress (Table 6). Another result that must be
considered with. caution occurs where stress tolerance is high because of
reirtively poor growth when unstressed. This type of plant, while presum-
ably stress folerant, is unresponsive to favorable conditions.

Thz screening technique must have the ability to critically select for the
dcsired character. Caution is required in extrapolating specific character
selection for improved whole plant adaptation to edaphic stresses. Reasons
for this include: 1) edaphic stress tolerance may be a complex of characters
rather than a single character, 2) selection fcr one character may cause a
detrimental effect on other characters due to genetic correlation among
characters, 3) selection for one character may result in a plant type that has
an unsuitable agronomic type not able to persist under grazing or competi-
tion, and 4) most often it is a combination of stresses that affect a plant rather
than a single stress such as low P or high Al.

Additionally, demonstrating that the character is heritable and repeat-
able under different conditions should be emphasized. Selection for the
desired character within germplasm that has sgronomic merit is recom-
mended.

FUTURE RELEASES OF GERMPLASM AND CULTIVARS

Phosphorus

Intraspecific variation exists within forage species for a number of facets
of P nutrition, which may contribute to increased tolerance of low P and
increased P-efficiency at higher levels of added P. However, few breeding
programs have achieved these aims and resulted in a commercially aveilable
cultivar (Table 15). Alfalfa germplasm P3 (PI 525455) was released in 1988
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Table 15. Status of identification and sclection for cultivars with edaphie stress
tolurance in the maia forage cpecies.

Edaphic stress  Species Cultiver dfferences Sdlectien program
P-defidency Trholum repens Not consistently apparent Progressing
Meodicago sativa Not apparent None
Slylosanthes gulanensls Cultivar dfferences documented  None
Al-tudcity T. repons None Succassful selecion
Phalaris squatica None Successful salection enhanced by
use of Interspecific hybridizaton
M. sativa None Somo succsss
T. pratenso Consistent cultivar differences None
Lalkun perenne None Some sucass
L. multforurn Conslstent culdvar differences None
Lespadeza cuneata Cultivar dfferences docurnentsd  None
T. subterranean Consistent cultivar dfferencea None
Mn-toxicity M. sativa Cultiver dfferences documented  Some success
P. afuatica Cultivar differencas documented  None
T. sublormanewn Consistent cultivar dfferences None

Mocrogiiium atropurpureum Cultivar differences documented  None

as a source of genes for increasing P concentration in leaf tissue (Melton et
al., 1989). It was developed thirough 3 cycles of recurrent phenotypic selection
to give a 39% higher shoot P concentration than in unselect :d populations.
The Stylosanthes guianensis cultivar Schofield has been released with some
evidence that it is highly efficient in P uptake and will grow on a wide range
of soils of inherently low fertility. However, Schofield is now susceptible to
anthracnose and has been replaced by Graham (Oram, 1990).

This general lack of progress towards forage cultivars adapted to P-defi-
cient soils is perhaps not surprising if one considers the extent to which P is
involved in plant metabolism. P is intrinsic to the formation of both pyro-
phosphate bonds that allow energy transfer, and nucleotide triphosphates
that are involved in the synthesis of RNA and DNA. However, differences in
P metabolism exist, e.g.. the extent to which Pi levels can be increased and
reduced with fluctuating P supply. Vose (1982) suggests that a possible
reason why this variation has not been ‘captured’ in a commercial cultivar
is that our knowledge of the genetics of P nutrition is still very poor and is
limiting progress. I would tend to agree and would go further in stating that
it is likely that the control of critical facets of P nutrition that might be
exploited to improve low P tolerance or P efficiency ;re polygenic and may
prove difficult to transfer, particularly in outcrossing species, to successive
generations,
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However, with the relatively small effort involved in forage species,
considerable advances have been made and give the promise of improved
adaptation to low P soils. For example, genetic variation has been identified
in white clover for P response (Caradus et al., 1992b), various aspects of root
morphology (Caradus, 1990b), P uptake rates, delivery to the shoot under
P-deficiency stress, partitioning of P in leaves (Caradus, 1990a), and shoot
total P concentration (Caradus, 1992).

Acid Soils

In both white clover (Mackay et al., 1990¢) and alfalfa (Simpson, 1974),
attempts to characterize cultivars for Al tolerance have been inconclusive
(Table 15). This can be partly attributed to the large degree of variation for
Al tolerance within cultivers. In forage species, selection for Al tolerance has
produced no commercial product, due mainly to the small effort investad in
this work. Programs that give the greatest optimism for success are in
Trifolium repens and Phalaris aquatica (Table 15). However, within some
species including T. pratense, T. subterraneum, Lolium multiflorum and
Lespedeza cuneata, differences in Al-tolerance have been described among
existing cultivars. Additionally, a crown vetch germplasm, Virginia Syn-
thetic A, was released in 1979 as a selection tolerant to acid soils (Miller,
1980). In white clover and phalaris, variation has been found, providing
gerninplasm for ongoing breeding programs.

Frograms aimed at selecting for improved Mn tolerance have had limited
success due to a small investment. Yet in all species tested, significant
differences in Mn tolerance have been demonstrated among existing culti-
vars (Table 15).

RESPONSIY ILITIES ASSOCYATED
WITH GERMPLASM RELEASE

If it is accepted that the current state of our land resource is a product of
current management approaches, simply switching to better adapted
germplasm, while providing rome possibly temporary increase in produc-
tion, does not necessarily address the underlying probleris. Sustainable land
management embodies the idea of preserving the productive capability of
our land resources. The two approaches of fertilizer and lime application,
and breeding bettsr adapted cultivars should be seen as complementary.
Release of cultivare with improved edaphic adaptation cannot be considered
the complete panacea and for some, there has been criticism that better
adapted plants may simply accelerate land degradation. A balance must be
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reached by combining sensible fertilizer use, adapted germplasm, and ap-
propriate management to ensure susteined production.

CONCLUSION

Even with the limited investment worldwide in forage plant improvement
for acid, low-P soils, there have been considerable advances both in identi-
fication of genetic differences and in gaining an understanding of possible
mechanisms involved. The use of screening strategies that corabine selection
for the desired character in an eppropriate environment will continue to
ensure the success of this effort.
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Administrative Overview on Solving
the Problem: Coordination, Collaboration
and Funding on a Global Basis

Richard L. Sawyer
IBSRAM
Sanford, NC

ABSTRACT

The image of agriculture has changed tremendously in recent years. The green
revolution of approximately three decades ago placed agricultural research on a
pedestal with money available for almost any interesting program through the
1870’s. Today the image of agriculture is low with enrollment falling off in univer-
sities and major reductions in funding for research nationelly and internationally.

Many changes are taking place today in the international agricultural develop-
ment community. The aggressive leadership of the early international research
centors has been replaced by a new generation of director generals. Leadership
has changed in the donor organizatione and reforms are taking place as assess-
ments are made about past investments in countries where doubtful leadership
and corruption bave given lit‘le chance for success. As the funding package of
donors shrinks reforms become necessary in the institutions they have been
financing.

Donors are faced with very different pressures today than when agriculture was
on a podestal. Bupport groups have seasitized the general public to environmental
issues. The Bruntland report has been followed by Agenda 21, which is a reaction
of political leaders to the pressures from support groups and the general public to
do something about environmental enhancement. A new area for donor supportis
in countries where democracy is emerging and privatization of irustry and
agriculture is taking place. The use of the word sustainability in almost any
proposal appears necessary for project consideration today.

The probiem of belancing population with food production in an enhanced
environment will h:uve to become a top priority soon for everyone. Many of the
recommendations made at Rio will have to be solved by research in agriculture,
Agricultural research should ehortly be entering a golden era if the decision
makers wee genuine in the recommendations they ruade at Rio and the level of
funding they suggested for solutions is forthcoming.

INTRODUCTION

Any overview of coming actions to take place amongst governments,
foundations and institutions both public and private across planet earth to
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solve the problem of adaptatinn of plants to soil stresses is highly speculative.
The decision makers on whom the funding for agricultural research depends
react to very different pressures than do scientists in their classrooms,
laboratories, greenhouses and research plots. With the ending of the cold
war the funds which might be shifted to other priorities may well be required
for the ethnic wars which are probably only at their beginning. [n agricul-
tural research we talk about the value of genetic variability but in the human
race we have not yet recognized the tremendous value of differences in color,
race, and even religion on this planet and until we do racial disturbances
can interfere with the best of planning tv address the problems of a sustain-
able environment where focd production is balanced with population.

My comments will be aimed at a sustainable and adequate agricultural
production in an enhanced environment that includes adaptation of plants
to soil stresses. I shall approach this subject from several directions. The
first will be to look at the present low image of agriculture and the present
trend for funding research in agriculture nationally and internationally. The
second direction will be to recognize the problems of food and environment
and the shifts in the interest of the donor community that has been funding
agricultural research up until now. The third direction will be to look briefly
at the declarations made by our political leaders, the decision makers from
around the world in the 40 chapters of Agenda 21 at the Rio convention and
the need it demonstrates for a dialogue between the pclitical and scientific
community which has not been taking place. Finally, I will try to pull this
all together, recognizing that science is the only super power today that can
lead to a future for planet earth; that you have in your portfolio already the
tools to do almost anything imaginable in agriculture if funding is available.
My conclusions will indicate that we should shortly be entering what could
be called the golden days for agricultural research.

THE PRESENT IMAGE OF AGRICULTURAL RESEARCH

The green revolution of three decades ago placed agricultaral research on
a pedestal. Funding became available for all kinds of interesting programs
in agriculture nationally and internationally for approximately two decades.
The two foundation sponsored centers that provided the building blocks for
the green revolution in the 1960’s stimulated donors in the 1970’s to pool
their resources and form the Consultative Group for International Agricul-
tural Research, the CGIAR system of centers which concentrated their
efforts on crop improvement through breeding with the major world fond
crops. In a relatively short time, this system grew to 18 Centers funcded at
approximately cne quarter of a billion dollars annually and several associ-
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ated centers outside the system funded by the same group of approximately
forty donors. During this period of growth for the centers, a number of
national agricultural research programs in developing countries eraerged
with strength. Loan money from international development agencies was
utilized by some countries to build a major national research capacity in
agriculture. With the networking of the International Agricultural Research
Centers amongst developing countries and their research linkages into
capabilities wherever they existed, the scientific community appeared to be
moving rapidly towards the global villagz, except for the continent of Africa.

Today agriculture is no longer on a pedestal. Enrollment in agricultural
universities is down and budgets for agricultural research nationally and
internationally are being reduced. The CGIAR centers h-ve been going
through annual fi:nding reductions at the same time as they o being asked
to include programs which will provide a higher ecological visibility. The
growth that took place in the 1970’s and early 1980’s in the CGIAR system
has changed recently to consolidations and reductions. At the 1993 mid-year
meeting cf the CGIAR centers, the decisions made by donors for consolida-
tions over the next few years will bring the system down from 18 to 16 centers
and this is probably just the beginning of reforms to take place. Many of the
donor organizations for agricultura! development have been or are going
through reorganizations. Bureaucracy leading to overmanagement of the
centers has crept into the CGIAR system at a time when the aggressive
leadership that built the centers has been replaced with a new generation
of center directors genersl. Also changing during this same period is the
leadership in those msjor donor agencies that have been primarily respon-
sible for the birth and funding ol the centers through their first two decades.
These dopor organizations under new leadership are responding to different
pressures today than they were when sigriculture was on its pedestal.

All major donor agencies are giving similar responses to funding requests
at present. All are working with a shrinking funding package. Cutting at
the margins and eliminating poor projects will no longer meet budget
reduction needs; good, and what are called essential programs are having to
be reduced and even terminated. The long term funling commitments by
donors that produced the green revolution appears to have changed to
mainly the availability of catalytic funds that must produce early results.
In my opinion, scientists and the scientific community have a responsibility
for the present attitude towards agricultural research and there are steps
we should be taking that may eventually lead to increased fnancing for our
research.
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One can already see changes in the attitudes of the donar community. In
the past, many of the most influential donors have had a tendency to go their
separate ways and start things and pressure others to join and help finance
their ventures. In todsay’s financial climate, donors are becoming joiners and
discussing ways to compliment each others abilities to address the priority
problems of fond anc environment. If the world is fortunate, the donor
collaboration may reach the point where within their own individual pro-
grams we may see bilateral funds complimenting multilateral funds in the
days ahead. This would be welcome progress.

Approximately a decade ago as annual inflation became greater than
increases in funding for the international research centers, the CGIAR
system stimulated the development of national support organizations for
agricultural research. This was at a time when the CGIAR wished to
consider adding new priorities not directly associated with the major world
food crops. The national support organizations ware supposed to be able to
identify new sources of funding for the basic programs of the system and
start tapping the private sector as a new rescurce. During this same period
the internationa! centers formed a Public Awareness Association in an
attempt to stimulate support Ly reaching out to the many audiences on
whom funding depends and explaining the importance of investments in
research. The history of both of these efforts has been poor. The new donors
that were suppoced to be ready for tapping have not materialized and the
support organizations are having difficulty obtaining sufficient operational
funding to stay alive. If they are to ever be successful, they will have to
change from services and .ind a way to become economically sustainable
through products being developed that will help the financing of agricultural
research. The Public Awareness Association had a successful initial period
and then floundered as the competition for available funding caused centers
to turn communications capabilities inward towards individual center needs
at the expense of the system. Leadership for the public awareness associa-
tion has recently moved to the donor community and the program is being
reactivated with an array of articles about research at the centers reaching
the general public.

The New Pressures and Challenges Facing Donors

Let me now change direction and indicate some of the new pressures that
donors face ir the global arena of programs required to balance sustainable
food production with population in an enhanced environment. The environ-
mentalists with their aggresaive support organizations have focused the
attention of the world to the problems of environment and sustainability of
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life on planet earth. The Bruntland report of the last de..de has been
followed by the Rio convention and Agenda 21. Donor organizations have
had to react to this public and political pressure for environmental prograias.
The international agricultural research centers are being forced to incorpo-
rate environmental approaches at the possible expense of what they have
been developed to do best, and probably what they need to continue doing,
which is keeping production of priority food crops in balance with population
increases. Many parts of their programs have beer very much environmen-
tally oriented without waving an ecological flag and joining actively the
environmental revolution. Those of us involved in agricultural research
should have learned quickly from the environmentalists and established
similar support groups for agriculture. If we had reacted with wisdom, we
would see agriculture today carried along and united with the environmental

campaigns,

There is little doubt that some donors are withdrawing funds from agri-
cultural research in order to be able to support environmental programs.
They have no choice but to take funds from other programs in order to add
environmental concerns at a time when the total budget package is decreas-
ing. This was made very clear in a recent discussion with the new adminis-
trator of the Agency for International Development. With a shrinking budget
and the many pressures for funds, those programs that appear to have the
greatest justification will be financed. We in agriculture are competing with
all the other requests for funding and we must position ourselves better in
the future than we have in the past. We must make sure we get repeated
audiences with these new leaders and that we present our case well.

Agricultural development must be a part of any concern for the environ-
ment. This appears to be forgotten by the environmentalists. The environ-
ment has neither geographical nor political boundaries and must be ad-
dressed on a global basis. Until .here is economic improvement for the whole
global village, attempts for environmental enhancement will be confined to
those pockets where poverty and hunger have been eliminated. Immediate
survival will coatinue to be at tha expense of the environment in many
countries on this planet until there is adequate economic development. For
most countries, economic develepment has depended on agricultural im-
provement. Thus, the key to environmental enhancement is agricultural
development that becomes the stimulant for an improved economy.

The breaking up of the Soviet Union and the democratization of major
portions of the world that have previously been under ridged centralized
governmental control is providing a new challenge to many donors. The new
administrator of the Agency for International Developruent at his swearing
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in ceremony listed the fostering of democracy as one of the present four goals
of USAID, and by the way, agriculture is not mentioned directly in any of
the four goals. As these newly democratized countries go through the process
of privatization of their industries and their agriculture, they are calling for
help from the same donors who have been supporting our activities in
agricultural development. It ig to our interest to help these countries go
through the process of privatization and become part of the global village
towards which we need to move politically as well as scientifically. But this
new pressure for support comes from the same shrinking total budget of
USAID and is competing for the fu.ds that have been helping finunce our
activities in agricultural development up until now.

The word sustainable has become the “buzz” word of today and is now very
much a part of development language and weighs heavy in some donor
considerations for project financing. There is sustainable development, a
sustainable environment, a sustainable agriculture, a sustainable economy.
What do we really mean by the word sustainable, which is so loosely used
these days? What is a donor financing when a project is funded on sustaia-
able agriculture? How is sustainability measured to know whether the
project has accomplished its goals? In what time frames are we speaking
when we use the word? Whatever the definition, the present funding situ-
ation for agriculture across both the developed and developing world leaves
little room for new shifts to sustainability issues without affecting what has
been considered priority research for the principle food crops up until now.

Donor organizations for programs in agricultural development have many
new pressures for funds from a shrinking budget. A lesser amount of money
has to cover a wider number of priority issues and pressures. In such a
climate, many donors are going through reforms and reorganizations, cut-
ting down c¢n the number of goals, trying to eliminate bureaucracy and
duplications, in order to be able to continue the essential anc have flexibility
to address the new. Donors are recognizing that murch money was wasted in
the past thirty years in countries where corruption and incompetent leader-
ship made development doubtful, no matter how essential the humanitarian
need or how good the project looked on paper. I believe we will see far less
funding to countries where leadership is doubtful and corruption is in
evidence in the future. Some donors are already showing their disappoint-
ment with programs in many African countries and are apparently changing
to other locations where the possibilities fcr early progress is greater. Latin
America is going through a period of needed witch hunting in order to
recognize the corruption of past leaders and send a clear signal to the world
that their houses are being put in order. Hopefully, Africa will learn from
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Latin America and go through the same cleansing process so that the
possibilities for development progress will increase.

A CHALLENGE TO SCIENCE FROM
POLITICAL LEADERS AROUND THE WORLD

The political leaders from countries around the world at their meeting in
Rio a year ago gave relatively clear indications of their expectations for
accomplishments from the scientific community in the 40 chapters of Agenda
21. Agenda 21 is a political reaction to the pressure that has been built up
to address environmental concerns. Sclutions to many of the recommenda-
tions in Agenda 21 must come from research in our agricultural research
facilities. A look at recommendations and the funding that is suggested for
implementation clearly indicates the lack of dialogue between the scientific
and the political community. What has been recommended in Agenda 21 as
the cost for solutions has little reality with the pittance being given by the
decision makers in recent years to agricultural research. The difference in
thinking between the scientific and the political communities can best be
indicated in the concerns for controlling the use of dangerous chemicals. The
political community in Agenda 21 would set up an e¥pensive bureaucratic
structure to guard against the use of dangerous chemicals in agricultural
production. The bureaucratic controls would be impossible to implement in
many countries where the use of dangerous chemicals is essential by gov-
ernments and their farmers in the production of sufficient food for survival
until safe alternatives are available. The scientific community would invest
in research that would provide safe and economically feasible alternatives
whose scceptance by farmers would be automatic.

It is imperative that a much needed dialogue be initiated now between
the scientific and political community as the funding is sought for the
implementation of the recommendations of the political decision makers.
How fortunate that they have declared what they want done. Wr: must help
them look at alternative solutions. We must let them know that many of our
present research programs are already addressing the problems for which
they want solutions, programs that are presently under severe financial
limitations because of budgetary restrictions.

We in the scientific community have done a very poor job communicating
outside of our portals. We have done a good job communicating with each
other. We have recognized research accomplishments with an overemphasis
of results and the prizes given have made front page news in the major
papers. As we have accepted praise for accomplishments, we have forgotten
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to identify how far we still have to go and thus the general public and the
decision maker could well believe that we have already in our science
portfelio the answers to the problems with which mankind is faced in
balancing food production with population in a sustainable environment.
How do we provide an adequate balance between a necessary recognition of
research accomplishments snd an indication of the priority research still
needed?

Agenda 21 accentuates the need for s dialogue between the scientific
community and the political decision maker that has been missing. Agenda
21 clearly indicates the solutions that are expected from the scientific
community and what the solutions will cost. We in research have not been
receiving the kinds of financing suggested for solutions. Reforms, reorgani-
zations, and adjusting priorities in ourinstitutions will not identify the kinds
of financing mentioned in Agenda 21. Thus, I can only surmise that new
funds must be forthcoming if our policy makers are genuine about the
recommendations they made at Rio. We must make sure that they were
genuine in their recommendations.

THE EMERGING GOLDEN AGE
OF AGRICULTURAL RESEARCH

I strongly believe that we should look and act with enthusiasm to what is
just ahead for agricultural research. The policy makers have declared
themselves in Agenda 21. Many of the answers they want must come from
our agricultural research institutions. There are steps we should be taking
now to see that our house is in order and our institutions are positioned
correctly to give priority attention to solutions as funds start flowing. Let
me identify a few of the steps that I believe are most important.

1. Just as donor agencies are going through reforms and trying to elimi-
nate the unessential so should the institutions they are fuxding. With today’s
funding limitations, there is no rcom for the interesting unless there is a
high potential for a practical application to solving the problems of food and
environment.

2. Start the needed dialogue now between yourselves and those on whom
your funding depends. An article in the local newspaper about your research
may be more important than another article in “Soil Science” or other
scientific journals. Attendance at a congressional luncheon may be more
important than attending a scientific meating such as this.
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3. Some of the research you are already doing may be aimed at finding
answers to the problems the decision makers want solved. You may want to
repackage this research so it iooks like new and is described in the language
of the environmentalists. We need to do everything possible to honestly
associate our agricultural research with environmental concerns.

4. Be more concerned with doing the right things in your institutions than
you are with doing things the right way. We need today in our institutions,
nationally and internationally, the aggressive leadership and wisdom that
shaped the green revolution. I have little respect for the participatory
management that has crept into the leadership of many of our institutions
today through overmanagement as bureaucracy increases. The aggressive
use of respensibility and authority with wisdom and vision is needed to
address the recommendations of Agenda 21 and the problems of food and
environment.

5. All of our research activities must help move science towards the global
village approach. Become a joiner and recognize comparative advantages in
other institutions. Team #pproaches are reeded for problems coming to us
for solutions. Donors are going to insist on joint efforts at the scientist level
across institutions and not compartmentalization amongst institutions. You
will certainly see this as the CRSP projects of USAID go through a period of
evaluation and reform.

Returns from investments in agricultural research are excellent and in
cur profit motivated society, this information must be used We must
perceive research as a product that can be promoted and exploited. The
annual returns from investments in agricultural research are from 25 to 100
%. Although some of the international research centers have considered
utilizing professional fund-raisers for financing their activities, none have
so far taken the step. In my opinion, this would be a move in the right
direction.

In summary, the portfolio of tools that science has available today to solve
the problems of food and environment are tremendous when compared with
what was available as the green revolution took shape. Although the ethnic
disturbances will continue to disrupt the political world, in the scientific
world, we have the ability to rapidly approach the global village. Let me list
briefly why I believe agriculture is approaching the golden age for research.

First. I have to believe that policy makers were genuine in their declara-

tions at Rio and that funding will be made available for the problems they
identified that must come to us for solutions. Much of the present insecurity
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of funding for research may be necessary as shifts are made in order to
finance the solutions needed.

Second. Support groups have already sensitized the general public to
environmental needs. We in agriculture must reach out and join them, since
an enhanced and sustainable environment depends to a great extent on
agricultural research.

Third. Communications capabilities today make joint research programs
possible anywhere and the sharing of results quickly with all countries. In
science, we can have the global village today.

Fourth. The International Research Centers are already working on the
major problems of food production and are providing linkages between
developed and developing country research programs. Their partnership
relations will undoubtedly increase as reforms take place.

Fifth. Since the green revslution, excellent research capabilities have
emerged in many developing countries and they continue tv grow.

Sixth. Active collaboration in research between the public and private
sectorsisincreasing rapidly today as the need for each other is demonstrated
with new tools such as biotechnology.

Seventh. Non-governmental agencies in agriculture have become organ-
ized in many countries and are becoming a valuable force in forwarding
essential research. Their help is available for our utilization.

The time has come to view budget reductions as a needed exercise to nut
our house in order and prepare for the challenge we have been given. No
longer can the scientific world afford to be isolated from political reality and
the general public. The kind of aggressive leadership with wisdom and vision
that shaped the green revolution is needed again today. Let us look with
enthusiasm at what is ahead for research in agriculture and position our
institutions accordingly so that we are already moving with force as new
funds become available to bolance food production with population in an
enhanced environment.



Workshop
Participants

341



Workshop Participants

Rashad Abo-Elenlen

Egyptian Natlonal Agric. Res. Program
Field Crops Research Institute

Giza, Egypt

David J. Andrews
Depariment of Agronomy
University of Nebraska
Lincoln, NE 68583-0915

A.F.C. Bahla Filho
CNPMS/EMBRAPA

Cx. Postal 151

35700 Sete Lagoas, MG Brazll

V.C. Baligar
USDA/ARS
Airport Rd., P.O. Box 867
Beckley, WV 25802-0867

Mohamed I. Bashir

Egyptian National Agric. Res. Program
Fleld Crops Research Institute

Glza, Egypt

K. G. Briggs

University of Alberta

Department of Plant Sclence
Edmonton, Alberta, Canada T6G 2P5

Stan W. Buol

North Carolina State University
Soil Sclence Department
Raleigh, NC 27695-7619

Samuel Buah
Department of Agronomy
University of Nebraska
Lincoln, NE 68583-0915

E?Eé SN

- o
s D e F
vy le g e e D) el i A :
R AN R TV BN S O AV " wter n‘.\.r"whl;ﬂ:ﬂ.m.

o

John Caradus

AgResearch Grasslands
Private Bag 11008

Palmerston North, New Zealand

R.B. Clark

USDA-ARS

P.O. Box 867 - Alrport Road
Beckley, WV 25802-08687

Max D. Clegg
Department of Agronomy
University of Nebraska
Lincoln, NE 68583-0817

Dermot P. Coyne
Department of Horticulture
University of Nebraska
Lincoln, NE 68583-0724

S.K. DeDatta

Virginia Polytechnic Inst.
1060 Litton Reaves Hall
Blacksburg, VA 24061-0334

R.R. Duncan

Crop and Soil Sciences

Unlversily of Georgla/Georgla Station
Griffin, GA 30223-5135

Jerry D. Eastin
Depariment of Agronomy
University of Nebraska
Lincoin, NE 68583-0817

Steve Eberhart

USDA, ARS, National Seed Storage Lab
1111 South Mason Street

Fort Collins, CO 80F »3-4500

[ )

“F e B

L2440

343



Fathy |. El-Attar

Eyyptian National Agric. Res. Program

Field Crops Research Institute
Giza, Egypt

Ibrahim El-Fangary

Egyptian National Agric. Res. Program

Field Crops Research Institute
Giza, Egypt

N.K. Fageria
CNPMS-EMBRAPA

Cx. Postal 179

74001 Golania Golas Brazil

C.D. Foy

USDA, ARS, Climate Stress Lab
10300 Battimore Avenue
Beltsville, MD 20705-2360

Gandoul |. Gandoul
Department of Agronomy
University of Nebraska
Lincoln, NE 68583-0817

Joao C. Garcia

EMBRAPA

Cx Postal 151

Sete Lagoas MG Brazil 36570

Dr. Brhane Gebrekidan
INTSORMIL/Consultant
University of Nebraska
Lincoln, NE 68583-0948

Dr. Lynn Gourley
MIAC/KARI/NARP/Kebete Station
P.O. Box 58137

Nairobl, Kenya

344

Mohamed Hovney

Visiting sclentist from Egypt
University of Nebraska
Lincoln, NE 68583-0817

Osman E. tbrahim
Agricuitural Research Station
P.O. Box 126

Wad Medani, Sudan

Blaine Johnson
Department of Agronomy
University of Nebraska
Lincoin, NE 68583-0915

Monty Patrick Jones

West Africa Rice Development Assn.
01 BP 2551

Bouake, Cote d'lvoire, West Africa

Issoufou Kapran

INRAN - Department of Agronomy
Purdue University

West Lafayette, IN 47907-1150

Abdul Mujseb Kaz!

CIMMYT, Lisboa 27

Apdo. Postal 6-641

06600 Mexico City, D.F., Mexico

Dan Krieg

Protessor of Crop Physiology
Texas Tech University

Box 42122

Lubbock, TX 79409

Renée Lafitte

CIMMYT

Lisboa 27, Apdo Postal 6-641
Maexico City D.F. 06600, Mexico



E.V. Maas

U.S. Salinity Laboratory
4500 Glenwood Drive
Riverside, CA 92501

Gabrlel Alves Maciel
Department of Agronomy
Kansas State University/IPA
Manhattan, KS 66506-5501

Ricardo Magnavaca
CNPMS/EMBRAPA

Cx. Postal 151

35700 Sete Lagoas, MG Brazil

Jorry Maranville
Department of Agronomy
University of Nebraska
Lincoln, NE 68583-0817

Cassim E. A. Masi
Department of Agronomy
University of Nebraska
Lincoln, NE 68583

Stephen C. Mason
Department of Agronomy
Universtty of Nebraska
Lincoln, NE 68583-0915

Milton S. Mkhabela

Department of Agronomy, Hort. and Entomol.

Texas Tech University
Lubbock, TX 79409-2122

Keoaglle F. Molapong
Department of Soil Science
North Carolina State University
Ralelgh, NC 27695

Darroll W. Nelson

Dean & Director Agricultural Research
207 Ag Hall, University of Nebraska
Lincoln, NE 68583-0704

Rachel Ngulube-Msikita
Department of Agronomy
University of Nebraska
Lincoln, NE 68583

Ermson Z. Nyakatawa
Department of Agronomy
University of Nebraska
Lincoln, NE 68583

Mohamed Kadry Omara
Visiing Sclentist from Egypt
International Programs
Lincoin, NE 68583-0706

irvin T. Omtvedt, Vice Chancellor
Institute of Agric. & Natural Resources
202 Ag Hall, University of Nebraska
Lincoln, NE 68583-0708

Arthur B. Onken

Texas Agricultural Exp. Station
Rt. 3 - Box 219

Lubbock, TX 79401

Gary C. Peterson

Texas Agricultural Exp. Station
Rt. 3-Box 219

Lubbock, TX 79401

Doneld L. Plucknett
Sclence Advisor, CGIAR
1818 H. St., N.W.
Washington, D.C. 20433

345



Dr. Rajendra Prasad

{Visiting sclentist from India)
University of Nebraska (USDA ARS)
Lincoln, NE 68583-0915

Raberto E. Rivera I..
Department of Agronomy
University of Nebraska
Linzoln, NE 68583

Kamal Melad Rizk

Egyptian National Agric. Res. Program
Field Cropis Research Institute

Glza, Egypt

Darreli T. Rosenow

Texas Agricultural Research Sta.
Rt. 3-Box 219

Lubbock, TX 79401

John H. Sanders

Department of Ag Economics
Purdue Universtty

West Lafayette, IN 47907

Richard L. Sawyer
1547 Hidden Lake, Carolina Trace
< anford, NC 27330

Robert E. Schatfert
CNPMS/EMBR;\PA

Caixa Postal 151

35701-970 Sete Lagoas, MG, Brazil

Steve F. Schuler
Departm:.. 1t of Agronomy
Kansas State University
Manhattan, KS 66506

346

Brendan Scott

Wagga Agricultural Research Institute
Private Mall Bag (Pine Gully Road)
Wagga Wagge NSW 2650 Australia

Dr. Michael C. Shannon
USDA-ARS-PWA

U.S. Salinity Laboratory
Riverside, CA 92501

Charles A. Shapiro

NE Research & Extension Center
University of Nebraska

Concord, NE 68728

Roberta Smith

Soil & Crop Sciences Dept.
Texas A&M University

College Station, TX 77843-2474

Michael Thung
CIAT
Brazi|

Aboubacar Toure

Institut d'Economie Rurale
B.P. 258

Bamako, Mall (West Africa)

Abdoulaye Traore
Department of Agronomy
University of Nebraska
Lincoln, NE 68583-0817

W.P. Warren

Agricuitural Development Officer
Agency for Intemational Davelopment
Washington, D.C. 20523-1309



Mark D. Winslow

CIAT - Rice Program Leader
1380 NW 78th Avenue
Miemi, FL 33126-1606

John M. Yohe

INTSORMIL. Program Director
University of Nebraska
Lincoin, NE 68583-0948

R.W. Zobel
USDA-ARS-NAA
Comaell University
lthaca, NY 14853-1901

347



