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Particulate Theory of the.Upper Ocean, Stochastic Geometry,
 
Patch Structure, and Coupling with Physical Processes
 

by B. J. Rothschild
 

ABSTRACT
 

Much of our understanding of upper-ocean community metabolism
 

is derived from studies of primary production and calculations of
 

mass-balance. These calculations alone cannot be used to
 

understand the variability in the metabolic system. To understand
 

metabolic variability, it is necessary to understand the phenomena
 

that drive variability: population dynamics and trophodynamics. At
 

the most fundamental level, population dynamics and trophodynamics
 

involves the study of particle-particle interactions, where
 

particles can range from photons and nutrient molecules, to
 

microplankton (the very small heterotrophs and autotrophs), to the
 

components of the more traditional food-chain. An important 

element governing the interactions among particles is the 

interparticle distance. The stochastic geometry or statistical 

distribution of interparticle distance is a measure of patch
 

structure. First and second-order properties of the statistical
 

distributions characterize interparticle distance. In parti.cular,
 

the second-order properties characterize the nature of patch
 

structure; however, they are rarely taken into account. To
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exemplify the theory of interparticle distance, the first and
 

second-order properties of microplankton and phytoplankton patch
 

structure are examined using both point process and random closed
 

set (RCS) theory. Microplankton interparticle distances appear to
 

be such that some are always proximal to one another, or to larger
 

autotrophs, and hence capable of exchanging molecular nutrients,
 

although the magnitude of the exchange depends upon factors
 

external to geometric description. Phytoplankton patch structure
 

is such that second-order statistics convey considerably more
 

information on grazing conditions than the traditionally presented
 

first-order numerical densities. The geometry of microplankton
 

distribution may play an important role in enhancing chemosensory
 

efficiency of grazer search. Stochastic geometry provides the link
 

between the physical setting, trophodynamics, population dynamics,
 

and hence community metabolism because it provides a natural
 

linkage between distance-dependent physical phenomenon (such as
 

homogeneous and isotropic turbulence) and trophodynamics.
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INTRODUCTION
 

Biological transformations a-sociated with upper-ocean
 

community metabolism (see Allee et al. 1949:495) have been the
 

subject of considerable study. The transformation of nitrogen
 

(from "new" and "regenerated" sources), carbon, and sunlight into
 

primary production--the transformation of primary production into
 

secondary production--catabolite and "cell leakage" exchanges
 

between heterotrophs and autotrophs--and the net production of
 

carbon dioxide and oxygen, are all well-known processes, as are
 

other "biological-pump" non-metabolic components, sinking
 

particulate matter and vertical migration (Jahnke, 1990; Longhurst
 

and Harrison, 1989).
 

The biological transformations are the fundamental biological
 

processes in the upper ocean. However, the theory representing the
 

interactions among the transformations is not homogenous as it is
 

represented by a complex of subcomponents, perspectives, or 

approaches. The complex can be exemplified by classifying the 

approaches: 1) ecosystem or community metabolism, 2) population 

dynamics, 3) trophodynamics, and 4) the physiology and behaviour
 

of individual organisms (Figure 1). These approaches are not
 

independent of one another--community metabolism integrates
 

population dynamics, and population dynamics integrates
 

trophodynamics, and trophodynamics integrates individual-organism
 

physiology, and behaviour.
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The integrative relationship can be characterized as a nested
 

hierarchy. The hierarchy represents a set of coherent processes
 

and different epistemological approaches. One approach is
 

aggregative, relating to community-metabolism, mass-balance, and
 

input-output considerations. The other approach is disaggregative,
 

or particulate, relating to the allocation of biomass or bioactive
 

material to individual organisms and non-living bioactive
 

particles. The hierarchical arrangement implies that the quality
 

of understanding of community metabolism depends upon the quality
 

of understanding of the subsidiary hierarchical levels.
 

Accordingly, to understand variability in community
 

metabolism, it is necessary to understand the way variability (and
 

symmetrically, stability) is propagated or damped by population
 

dynamics or trophodynamics. The reverse is of course true, to
 

understand population dynamics and trophodynamics it is necessary
 

to understand the constraints of community metabolism in the
 

allocation of biomass to living and non-living particles.
 

From a particulate point of view, the foundations for
 

understanding variability in upper-ocean community metabolism are
 

represented by a scant literature. The foundation is built upon
 

the population-dynamics process (e.g. Rothschild 1986: Chapter 8)
 

The process operates at the particulate level and paces the
 

stochastic trajectory of metabolic input-output relationships. The
 

process is driven by trophic transactions. The transactions are
 

measured in terms of the temporal distribution of ingestion rates
 

which depend upon predator-prey encounter rates (Rothschild and
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Osborn 1988; Gerritsen and Strickler 1977).
 

The predator-prey encounter rates depend upon the relative
 

numerical density, the relative velocity, and kinetic-structure­

modified relative velocity of predator and prey. However, even the
 

understanding of the relative density and relative velocity of
 

predator and prey has generally been limited to first-order
 

properties of predator-prey relative density, even though the
 

"patch structure" second-order properties generally contain
 

substantial information on encounter rates.
 

Considering only first-order properties implies that living
 

and bioactive particles are distributed randomly--that is, a patch
 

structure does not exist; interparticle distance is consonant with
 

the Poisson process. Assuming that particle distribution is
 

Poisson or random, when it is not, distorts our understanding of
 

1) the magnitude of predator-prey interactions; 2) trophodynamics
 

biology; 3) the linkage between trophodynamics and population
 

dynamics; and 4) the coupling between trophodynamics and physical
 

processes.
 

The statistical distribution of particles and their first and
 

second-order properties involves the study of particle geometry.
 

Because geometry is well defined and unambiguous it is easily
 

linked with computer and field experiments. It is also easily
 

linked with empirical endeavors and an important component in the
 

design and sampling theoretical deployment of sensors because
 

sensors (e.g. plankton nets, acoustics, and optical devices) all
 

measure statistical functions of plankton geometry. Because
 

geometry specifies the position of each living or bioactive non­
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living particle, it also specifies interparticle distance, a
 

fundamental property of trophodynamic interrelationships, and a
 

fundamental metric that links the elements of the subcomponents in
 

the theoretical hierarchy.
 

This paper considers the rudiments of a particulate theory of
 

the upper ocean in the context of interparticle distance. The
 

notions of interparticle distance are contained in the theory of
 

stochastic geometry. The theory enables taking account of, the
 

transition of particle distribution from random to patchy, and
 

biological "feeding scales", rather than anthropocentric sampling
 

scales.
 

The first part of the paper brings together the essential
 

elements of stochastic geometry. The second part presents a
 

geometric viewpoint regarding 1) heterotroph-autotroph,
 

2) grazer-autotroph, and 3) small microplankton-grazer
 

interactions. The third part of the paper shows how stochastic
 

geometry is a requisite for analysis of the coupling between
 

biological and physical processes. The fourth part discusses the
 

way that stochastic geometry facilitates a coupling with dynamic
 

theory and empirical activities.
 

The geometrical analysis of plankton distribution reflects the
 

need to revise models that do not take account of quantitative
 

patchiness and sets the stage for linking basin-scale changes in
 

the wind field with microscale feeding conditions and associated
 

population dynamics. Obviously an understanding of interparticle
 

distance is an essential ingredient to understanding how
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variability in community metabolism interrelates with the 

"biological pump", the analysis of primary and secondary 

production, the causes of very large year classes of fish, the 

fate-and-effect of anthropogenic substances, and the design of 

sampling technology. 

STOCHASTIC GEOMETRY
 

An approach to the study of the particulate foundations of
 

community-metabolism variability involves considering the biota of
 

the upper ocean as a collection of stochastic points. The points
 

are particles with dynamic properties representing living or
 

otherwise bioactive particles. Each point is a locus of biodynamic
 

transformation--phytoplankton cells transform photons and nutrient
 

molecules into biomass and copepods remove phytoplankton cells from
 

the environment, and convert the cells into anabolites,
 

catabolites, and pellets, etc.
 

The intensity of the transformational properties of particles
 

are fueled by particle-particle interactions. The propensities for
 

particles to interact is a function of interparticle distance.
 

Interparticle distance is a function of particle distribution.
 

Particle distribution and the metabolic function partition N(n),
 

can be written,
 

V = {XI; 83 (X1 )}, 
m (1) 

N(n) Z n, = I 
7-1 
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where Xi is the three-dimensional stochastic position of the
 

i=l,...,N particles, 8j(X I) is the j-the metabolic function
 

j=1,...,M of the i-the particle, and n, is the number of particles
 

having the j-the metabolic function.
 

There are many possible classifications of 8. These
 

classifications can be taxa, size, location, etc., specific. One
 

simplified classification of metabolic function might be j=l,
 

micro-autotroph; j=2, micro-heterotroph; j=3, large autotroph; j=4,
 

large grazer; j=5, predator.
 

The geometry implied by Eq(1) can be studied via both point­

process and random closed set (RCS) theory. To our knowledge RCS
 

theory has never been applied to plankton distributions. Our
 

discussion of RCS is based on Stoyan, Kendall, and Mecke, 1987.
 

First we draw on the theory of random distribaitions. We then
 

describe the notion of patch structure using the patch structure of
 

a mixed Poisson-point process and RCS theory.
 

The Random Model,
 

The random or Poisson probability distribution implies that
 

the probability distribution function of the distance to the
 

nearest neighbor (see e.g. Pielou 1977) is,
 

DR(r) = 1-exp(---Xn4 r3) (2) 
3
 

where I is the mean density of particles in three-dimensional space
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and r is the nearest-neighbor distance between particles. The
 

derivative of Eq(2) yields the probability density fuaction,
 

DR(r) = 4'Xr 2 exp (--i' r 3 ). (3)
3
 

which enables calculation of the mean nearest neighbor distance,
 

NND,
 

r=47c r3exp(--4Xnr 3 ) dr (4) 
0 

Integration of Eq(4) (see Appendix I) yields the NND,
 

-1/3  
r 55L (5) 

It is important to recognize that 7, is an average value. 

This means that when F is used to appraise interactions among 

particles, roughly half of the interactions will be based upon 

distances that are less than F, and half the interactions will be 

based on distances greater than F. 

However, distances other than the mean distance are important 

for some purposes. As an example, consider the minimum mean 

distance to the nearest neighbor, MNND. The theory of order 

statistics is used to compute the MNND. N independent NND's are 

measured and ranked from smallest to largest to obtain R1 , R2 , . . . RN. 

Instead of F, the mean distance to the nearest neighbor, we are now
 

interested in F', the mean minimum distance to the nearest
 

neighbor. The mean of the minimum of all R, observations, R, (as
 

distinct from the distribution of the random variable R) is
 

obtained from the general formula for the probability density
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function for the minimum value of order statistics,
 

DR (rl) =n[1-DR(r)]"-DR (r) (6) 

using Eq(2) and Eq(3) in Eq(6) we have,
 

4DR(rl) =4nXcr2exp(I-nX 7r) (7) 

calculating the mean from Eq(7), we have,
 

average
 

F"=n4n r 3exp 
0 

In .nr3)dr (8) 

The integral of Eq(8) is, 

F*=.55n-1/3X-71/3 (9) 

In other words, as n increases, the mean MNND decreases. We are 

led to the conclusion that if we are interested in 

distances then F is the appropriate statistic. On the other hand, 

if we are interested in how close distances might be, given n, 

then F is appropriate. Inasmuch as there is always a very large 

number of particles, and a large number of independent distances, 

some interparticle distances can be iade to be arbitrarily small at 

any instant of time.
 

Patch Models
 

There is only one Poisson-process or random model (with
 

several versions). In contrast, there are several classes of
 

patch-structure models (see e.g. Fasham 1978a, 1978b). However, to
 

determine the most appropriate class is difficult using only
 

empirical data. The alternative, selecting a class of patch­
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structure models from first principles is equally problematic,
 

since the first principles are not as yet well understood.
 

Nevertheless, much of the qualitative flavor of the patch-structure
 

problem can be gleaned from simple examples. For this reason, we
 

present two different types of patch models, a point-process mixed-


Poisson model and a RCS model. These examples enable qualitative
 

appraisal of the nature of patchiness, pe:iding a more detailed
 

study of mechanisms.
 

A transition from randot structure to patch etructure. As a
 

special case, the mixed Poisson distribution is a patch structure
 

model containing the random, non-patch structure, Poisson
 

distribution. The mixed Poisson distribution is a mixture of a
 

low-den-ity Poisson parameter and a high density Poisson
11 


parameter (i.e. 11<12). Thus 12 can be thought of as an intrapatch
 

density while 11 can be thought of as an interpatch density. It
 

should be obvious that the mixed Poisson distribution does not
 

result in patches per se but rather point-wise, independent, high 

and low densities. The mixing parameter is v so 11 is specified to 

occur with probability (1-u) and 12 with probability u (for a 

detailed analysis of this process in connection with the biological 

functional response, see Rothschild, submitted). The random 

special case is obtained by letting 11=12. Also, as u approaches 

zero or 1, the mixed Poisson distribution approaches the random or 

Poisson distribution. 
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The intensity of the process is,
 

= (1-v)1 1 +vX 2, (10) 

The NND distribution function is,
 

' 1
D(r) = [).1 (1-v) (l-e-1wrl) + 2v (l-e-2or3)] (ii) 

where w=lw. The probability density function is derived from
 
3
 

Eq(ll),
 

D '(r) = 3a X1& r 2e-xIar 3 +3 012 (r2e - '( 2 
(1.2) 

Accordingly the mean NND is,
 

r= 3 G"f[cXir3e - 1,4r 3 + PI2r3e-1Or3]dr 
0 (13)
 

=~.5[(1 _V) 11 3 + VX2 3] 

The reduced second order moment function (RSOMF) is,
 

K(r) r ( -v) +X2v 14)-(
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The proauct of the mean density I and the reduced second order 

moment function gives the expected number of particles, a distance 

less than r. 

If distributions are random then all of the information on the 

distribution is contained in the mean. If, however, distributions 

are patchy, the'n the second-order properties of the distribution 

need to be considered. To emphasize this point in a patchy
 

distribution, in contrast to a random distribution, knowing the
 

over-all mean, T, does not imply unique value for r, the NND.
 

Random Closed Sets (RCS). The theory of random closed sets can be
 

used to take a different approach to spatial-patch distribution.
 

A RCS is defined as,
 

= + x1) u (S 2 + x 2)u. U(EN + XN) (15) 

where xi is the position in 3-i-imensional Euclidean space of the i­

the particle and 2i is a random closed set associated with xi. The
 

xi's are called the "germs" of the process while a typicalSi, EO
 

is called a "primary grain" (note that SO is not one of the Ei 's). 

If 4 = tx 1 ,x 2 . . .. is a statistically stationary Poisson process and 

if the primary grains can be considered as closed sets, then E is
 

called a Boolean model. The first and second order properties of
 

the Boolean model are well known.
 

For our application we consider the primary grain to be a 

sphere with radius r. The radius of the sphere is taken as a 

random variable. 
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We might think of each random sphere as a collection of
 

particles enclosed by the sphere perimeter. The particles inside
 

the spheres have equal density, or some minimum density, or
 

densities which are functions of the sphere radius. The spheres
 

can be thought of as "spheres of influence". If a particle from a
 

particular sphere of influence is inside the sphere of influence of
 

another particle, then there is a potential for interaction between
 

the two germs or particles.
 

Given that the germs are randomly distributed with intensity
 

A and that the primary grain is a sphere with normally distributed
 

2
radius N(V,o 2), and hence third moment, 3pO +V3. , we can examine 

a) the volume fraction b) the parameter of the chord length 

distribution c) the contact distribution and d) the covariance 

function. We observe here that the normal distribution is used for 

heuristic purposes, technically having no lower bound, its 

replacement by a gamma distribution (for example) would be more
 

rigorous. In addition, very large variances mimicking larger-scale
 

and more complex patch structure could be more comfortably
 

accommodated with the gamma distribution.
 

The volume fraction or the percentage of the volume occupied 

by E with the parameter set Z (A,V, g2) . is, 

p = l-exp(-_ 4 I (3a 2 + P)) (16)
3 

where I is the intensity of the "germs" and 3j 2+ 3 is the third 

moment associatea with the normally distributed radius of the 

primary grain. Inspection of Eq(16) reveals that an increase in 

15
 



any of the parameters increases the volume fraction.
 

The volume fraction statistic p requires careful
 

interpretation. 
 When p is small there is only a small chance of
 

overlap in the primary grains. However, as p becomes large the
 

chance of overlap increases. So the Boolean 
model really 

represents two patch modalities: i, for small p 'he patchiness
 

results from confining particles 
to spheres; ii, for large p
 

patchiness is 
complex in the sense that patchiness results from
 

confining particles to spheres and from the intersection of spheres
 

where the densities of particles are at least 
doubled. It is
 

important to recognize that the probability of a sphere being
 

isolated (i.e. not overlapped by another sphere) is not symmetrical
 

with the volume fraction.
 

A "mean free" path among the spheres can be deduced. The
 

chord lengths between spheres is exponentially distributed with
 

parameter
 

L = (17)
 

This is the parameter of the familiar waiting-time distribution and
 

enables modeling interactions among the particles as a stochastic
 

process. In particular 
Eq(17) has important applications in
 

reduced-dimensionality problems. 
 One example involves a large
 

phytcplankton cell sinking through a three-dimensional volume.
 

Another involves the penetration of a light beam through the volume
 

(having applicability in situ or in remote sensing).
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The spherical contact distribution is given as,
 

H(r) = 1-exp(-X7cr(4(02+p2) +4p.Z.+_r2)) 
 (.8)

3
 

This is the distance to the nearest sphere from a randomly chosen
 

point outside a sphere. Accordingly H(r) gives a measure of one­

dimensional "void space" from a randomly selected three-dimensional
 

vantage point, not in a sphere of influence.
 

Finally, the covariance function specifies the distribution of
 

distances between points (as distinct from germs) within and among
 

spheres.
 

(1-p)2exp:- A 3(l - 3.r + r3 dF,(x) (19) 
C(r) =2p-1+(1Pexpflxnf X(- 1X 33 /2 4x 16x ' (9 

where
 

dFr(X)_ 1 exp-[(x-ji) 2 /2 0 2], (20) 

because r is N(p, a2). 
 The covariance function characterizes the
 

spacing among germs and primary grains. 
 Note that the maximum
 

value of the covariance function is 
p and the minimum value is
 

2
asymptotically p . In a sense the covariance measures the rapidity
 

with respect to r that the covariance declines, which is a measure
 

of the "redness" of the variability at feeding scales.
 

Note that the covariance function can be used to define an
 

integral feeding scale,
 

F = "C(r)dr (21) 

the scale F, might be perceived by a predator feeding among prey
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with specified germ and typical grain distributions. F is a
 

natural coupling with feeding biology in the context of the theory
 

of homogenous and isotropic turbulence.
 

The theory of random closed sets easily lends itself to
 

considering certain aspects of the intersections among RCS. For
 

example, consider the joint volume fractions and covariance
 

functions,
 

N 
P= lp, 

(22)
N 

c(r) = CC1 r)
.1-1 

When N=2; i=l could refer to a predator; and i=2, to a prey.
 

Larger N could represent various scales of patchiness,
 

Formulations such as Eq(22) permit considerable flexibility.
 

APPLICATIONS TO PLANKTON BIOLOGY
 

The purpose of this section is to exemplify the theory of
 

stochastic geometry in the study of plankton. We 1) make some
 

general observations, 2) consider interactions among micro­

plankton, 3) grazing and 4) grazer/micro-plankton interactions.
 

At the outset it should be clear that at present it is
 

difficult to apply "real numbers" to the theory. This is because
 

1) the knowledge of anabolic-catabolic kinetics of microplankton is
 

limited, 2) most reports or particle-particle interaction are
 

based on units such as chlorophyll quantity or concentration rather
 

than particles, and 3) those numerical densities that are given
 

are difficult to interpret because they are reported only as first­

order statistics.
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General Observations
 

It is remarkable that among the major groups of phytoplankton
 

there is little overlap between the distributions of interparticle
 

distances (at least for the major functional groups). In fact it
 

might be said that in the upper ocean various functional groups
 

appear to have a canonical distribution of densities and size.
 

That is, the larger zooplankton (order of 10-2 cm"3 in number, and
 

1000 Am in diameter) are about 10 times larger than the larger
 

"3
phytoplankton (order of 100 cm in number and 10 Am in diameter)
 

3
which are 10 times larger tha- the microplankton (order of 106 cm
 

in number and 1 Am in diameter). Accordingly, there is a large
 

separation between the NND of each group. These separations are
 

also carried into the MNND. It is also remarkable that the micro­

plankton are so close to one another, and the zooplankton are so
 

large, that zooplankton must be in continual contact with micro­

plankton (Figure 2).
 

Molecule Donor and Accentor Interactions
 

Interactions among molecular donors and acceptors (the small
 

and large autotrophs and the small heterotrophs) are complex and
 

hardly understood. Part of the complexity is that each of these
 

particles is a molecular-nutrient acceptor and a molecular-nutrient
 

donor. Molecular-nutrient donors range from microbial to the
 

largest organisms. Molecular-nutrient acceptors are autotrophs
 

ranging in size from 1 jm to perhaps 50 jm in diameter and
 

heterotrophs which are perhaps no larger than 5 jm.
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Figure 2. Nearest neighbor distance (NND) as found in particle density. The line
 

corresponding to n=1 is the conventional NND. 
 The lines corresponding to n=100
 
and n=1000 are MNND's for n=100 and n=1000 respectively. Typical ranges of
 
numerical densities 'which generally do not overlap) are shown for
 
zooplankton, phytoplankton, and microplankton.
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There is evidently considerable uncertainty with regard to
 

donation of nutrient molecules. These uncertainties involve
 

specific chemical properties of the molecules, their temporal
 

production, and the extent to which they result from catabolism,
 

cell leakage, or feeding debris. In addition, the physical­

chemistry governing the fate of the molecules is hardly understood
 

involving interactions between molecular diffusion and turbulent
 

flow or remnants of turbulent flow.
 

A key problem in evaluating interactions between donors and
 

acceptors is the typical modality by which molecules are
 

transferred by donors to acceptors. There are two distinct points
 

of view (see Jackson, 1987, for review). One is that donors and
 

acceptors are sufficiently close that exchanges occur at nutrient
 

concentrations greater than at diffused background levels. The
 

other is that particles are so far apart and diffusion is so rapid
 

that nutrient exchanges occur only at diffuse background levels.
 

The distance between donors and acceptors is thus a key issue
 

in considering the modality of interaction among micro-organisms.
 

The problem might be studied by focusing on the spatial
 

distribution of micro-plankton as might be perceived by a random
 

point occupied by an autotroph. We assume that there are l.5x106
 

micro-plankton cm-3; that each micro-plankton has a radius of 1 Am;
 

and that the autotroph has a radius of 10 Am. Accordingly, the NND
 

among random points with density l.5x106 is 48 Am.
 

This means that the averaQe distance between cell walls is 37
 

Am. The probability distribution function corresponding to these
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specifications is shown in Figure 3. Roughly one-half the micro­

plankton cells are within 37 Am of the autotroph cell wall. Taking
 

expectations, p=.06 percent of the nearest neighbor distances are
 

as close as 10 Am distant from the autotroph. This is 90,000
 

nearest neighbor distances. Examination of the RSOMF shows that on
 

the average 6 cells are in a shell having inside diameter of about
 

50 Am and an outside diameter of about 100 Am (Figure 4). This is
 

of interest because while on one hand there are on the average six
 

cells within 100 Am of a typical cell, there are r n average no
 

cells within 50 jm. It is reasonable to expect that of these, half
 

will be closer than the NND to each other and hence could increase
 

the local density of catabolites. On consideration of the
 

probability distribution of NND and the MNND in the random case, it
 

is likely that at any fixed instant some autotrophs and
 

heterotrophs are sufficiently close to exchange or transmit
 

metabolites at concentrations in excess of background levels, a
 

line of reasoning certified by the MNND type of calculation, yet
 

potentially flawed by a lack of understanding of catabolite
 

kinetics.
 

RCS theory can be specifically applied to the sphere of 

influence or microzone (Mitchell et al) around each particle. 

Mitchell et al give the radius of a microzone, 

r - Q (23) 
4nDC 

where Q is the total nutrient flux per cell, D is the molecular
 

diffusivity and C is threshold concentration (they set C=.10) above
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the background concentration. Using this formula they compute that
 

the algal-cell DOC microzone, 10 percent above background level
 

would have a radius of -1 mm.
 

As Mitchell et al. imply, the calculations of the magnitude of
 

a microzone have not reached a level where they can be applied with
 

certainty. In particular, there are many alternate assumptions
 

regarding the factors that drive the temporal and spatial microzone
 

volume. Among these are the temporal relation between the input
 

and output of anabolites and catabolites respectively and the
 

nature of the proportion between the volume of the microzone and
 

the surface area per unit volume of the cell.
 

Uncertainty, regarding the microzone radius (both temporally
 

and spatially) suggest treating the microzone radius as a variable
 

and exploring how the volume fraction occupied by greater than
 

background level metabolite might vary. The volume fraction
 

occupied by the spheres of influence of the large autotrophs (based
 

"
on a density of 400 individuals per cm 3 is plotted in Figure 5).
 

If we agree that a microzone radius of 100 pm is "large", then we
 

see that even at this large volume only .00250 of the volume is
 

occupied by large autotroph microzones. On the other hand there
 

are a very large number of small heterotrophs, so at a large
 

microzone radius of 100 gm and a concentration of microzone 1.5x10
6
 

"3
heterotroph cells cm , we would expect to find .(l.5x106) (2.5xi0-3) 

= 3.75x103 small heterotrophs cm "3 within autotroph microzon#f. 

The volume fraction Ph and the radius of the sphere of 

"influence for a small heterotroph (having a density of 1.5x10 6 cm 3) 

is plotted in Figure 6. By contrast the volume fraction increases 
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much more rapidly by virtue of the fact that the numerical density
 

of small heterotrophs is much greater than that of large 

autotrophs. Placing a large autotroph in a field of small 

heterotrophs leads to a sufficiently large expectation of 

intersections to expect interactions at higher than background 

levels. 

The notion of the volume fraction can be used to estimate
 

zones of synergy or "hot spots" between particles. To give an
 

example of these calculations, we divide the pool of micro-plankton
 

"3
into two groups of .75xi06 cells cm each. The effect of the
 

radius of the sphere of influence on the volume of intersection of
 

spheres can be calculated using Eq (22). The results of the
 

calculations are shown in Figure 7. The figure shows that the
 

length of the radius has to be at least 20 Am before interaction
 

occurs. Between a radius of 20 Am and a radius of 50 Am, roughly
 

from 40 to 100 percent of the average NND, the volume occupied by
 

catabolites from the two pools of cells taken jointly increacec
 

from 0 to 10 percent. The overlaps would increase if the iadii
 

were considered to have a variance. The crucial question regarding
 

joint "hot spots" is whether conditions exist when microzones have
 

radii greater than 20 Am. On the other hand such "hot spots"
 

almost certainly exist given the arguments implied by Eq (6).
 

We conclude that in the, fixed point in time, random,
 

particle-interaction "worst case" interparticle catabolites are
 

donated and accepted at catabolite concentrations of greater than
 

background levels. The over-all intensity an,! importance of the
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interaction depends upon the size of the microzones and the 

dynamics of geometry. 

Grazing--The Structure of Phytoplankton Patchiness. Grazing 

(recent analyses include Costello et al, 1990 and Marrasd et al
 

1990) may be one of the more important classes of trophic
 

transactions in the ecosystem, playing a key role in community
 

metabolism, particularly in the transport of carbon to the lower
 

ocean via fecal pellets. Surprisingly, data amenable to
 

theoretical analysis of grazing are difficult to come by. This is
 

because the most fundamental metric for studying such interactions
 

involve the encounter of a grazer (e.g. a copepod) with an algal
 

cell. Rather, than measuring encounters per-unit-time most studies
 

have dealt with ingestion per unit time. Ingestion has been
 

measured in a variety of ways that make comparisons difficult.
 

These include measurements in terms of carbon, parts per million of
 

particles, chlorophyll, in terms of behavioral responses, and
 

numbers of prey per unit volume.
 

As pointed out by Rothschild (submitted) these approaches and
 

the more classical approaches (e.g. Holling 1965) all are based
 

upon a random distribution of prey relative to the predator even
 

though there is ample evidence that distributions in the ocean are
 

patchy. Accordingly, there is little data that can be used to
 

study the spatial distribution of prey relative to the grazers.
 

However, it is possible to infer the consequences of patchiness.
 

The idea is to take a copepod's world view of the distribution
 

of its phytoplankton food. It is easy to show that a fixed or
 

constant number of phytoplankton cells as might be represented by
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actual counts, chlorophyll, behavioural response, etc. can be
 

interpreted in a variety of ways by a copepod and that these ways
 

depend as much upon the second-order properties of copepod
 

distribution as the traditionally measured first-order properties.
 

First, we consider the copepods world view in a transition
 

from random to patchy distribution for algal cells using a point­

process theory. We suppose that the cells have intrapatch
 

"
densities ranging from 0 to 700 cells cm 3 and interpatch densities
 

ranging from 0-700 cells cm'3 . For demonstration purposes we select
 

the parameter, u=.75 (as u decreases contours rotate to the
 

vertical). The mean over-all densities and the NND's for these
 

combinations are shown in Figure 8. Let us focus on a single mean
 

"3
density, 400 cells cm , for example. At the point where the
 

intrapatch and interpatch densities are equal to 400 cells, the
 

distribution is random or Poisson, and the NND is roughly 750 Am.
 

Transiting from a random to a patch distribution and constraining
 

our observations to maintain a mean density of 400 cells cm"3, we
 

observe, for example, that at intrapatch densities of slightly more
 

3
than 500 cells cm 3 and interpatch densities of roughly 50 cells cm
 

the NND drops to about 700 Am. The importance of this reduction in
 

NND needs further study, however, from a copepod's point of view
 

traveling at 720 cm hour means that it would increase its encounter
 

rate on the average from about 9600 to 1029 cells per hour.
 

Examining now the same 400-cell population isoline in connection
 

with the RSOMF (Figure 9) shows that the RSOMF constant parameter
 

increases from 400 to 500 as patchiness increases over the same
 

range of intra/interpatch densities. The effect of increasing this
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constant on the product of the density and the RSOMF is shown in
 

Figure 10. It can be seen from the Figure that in a 720 cm search
 

sphere the random and patchy distribution would yield population
 

roughly 3x107 and 4x107 cells respectively. In other words,
 

structure has increased the opportunity of contact
particle patch 


This brings
in a fixed radius=720 cm search sphere by 33 percent. 


to mind the question of random versus directed search on the part
 

of the copepod in the sense that for the copepod to really take
 

advantage of the increased numbers of cells in a patch environment
 

it would have to find situations where the nearest neighbor
 

To put it more
distance was substantially less than say 700 Am. 


precisely, how does the copepod capitalize on MNND's in either a
 

random or patchy distribution?
 

A different patch-structuring approach can be developed via
 

RCS theory. In the point-process approach, a specified point
 

process (e.g. a particular cluster process) with specified
 

parameter values allocates particles to spatial points. Once the
 

point process is chosen and once the parameters are set, the
 

position of the points is determined automatically. In the RCS
 

approach it is necessary to choose the germ distribution and its
 

parameters and then the form of the grain, its distribution and
 

In other words, the RCS approach accommodates
parameter value(s). 


much more information than the point process approach, a blessing
 

if it is not.
if the information is available, and a curse 


of points in RCS requires a
Accordingly, the allocation 


greater range of decisions by the investigator. (We assume the
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special case that each patch is spherical; the plankton particles
 

are at fixed density inside a sphere, and nominally at zero density
 

outside the sphere.) For example for any fixed volume such as 1M3
 

information needs to be supplied regarding,
 

1. The total number of cells
 

2. The number of patches
 

3. The volume fraction
 

4. The sphere radius and radius-variance
 

5. The allocation of cells to patches (e.g. fixed number or
 

fixed density).
 

Determination of these properties is an important research
 

undertaking which is necessary for an evaluation of the grazing
 

problem.
 

To put the problem in more quantitative terms, consider Figure
 

11 which shows the volume fraction in the Boolean spherical model
 

as a function of patch density, and patch radius. Because of the
 

Boolean assumption patch density immediately gives the NND of patch
 

centers whereas the patch volume is determined from its radius.
 

Figure 11 shows how in an allocation scheme density of patch could
 

be fixed; radius of patches could be fixed, and the volume fraction
 

could be fixed. We can also see that when the volume fraction is
 

low and the radius is low then there is an on the average
 

separation of spheres, but when these variables are high the
 

spheres coalesce.
 

Because the theory of RCS does not recognize the properties
 

internal to the spheres the question of sphere coalescence is
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important. The requirements for coalescence can be seen in Figure
 

11. Minimum coalescence occurs at small values of volume fraction
 

and small values of the patch radius to patch density ratio or to
 

place the ratio in appropriate metric, r3/1.
 

The next problem is to allocate cells to spheres. An example
 

of such an allocation using 200x106 cells M-3 is shown in Figure 12.
 

The hyperbolic relation is of course a constraint since given the
 

density for the entire volume, all allocations must lie on the
 

functional relationship. As an example 200x106 cells M-3 (i.e. 200
 

"
cells cm 3) are allocated to 50 and 500 patches M-3 maintaining
 

intra-patch densities of 400 and 800 cells cm3. For this
 

particular example we divided the total number of cells 200x10 6 by
 

either 50 or 500 giving the number of cells per patch--4x106 or
 

.4x106 respectively. We then divided the number of cells per patch
 

"
by the patch density (400 or 800 cells cm 3) to obtain the patch
 

volume. The patch radius was then determined directly from the
 

volume. To obtain the covariance functi.on it is necessary to
 

assume some positive value for the radius variance, we let the
 

standard derivation equal approximately one-half the mean radius.
 

The results of the calculations are shown in Table 1.
 

We can see with this particular allocation scheme that if the
 

within-patch density is fixed, then the within patch NND and the
 

volume fraction is constant. On the other hand, if the number of
 

patches per unit volume is fixed, then only the distance between
 

the patches remains constant. Both the volume fraction and the
 

integral scale vary over all four cases. Note, however, that
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Table 1. Statistics representing an example of fixed allocations of 200x106 cells m­3 
and
50x106 cells m-3 to 50 and 500 patches with 400 and 800 cells per patch. 
Note that
if 
a grazer perceived only within patch density, then it could not distinguish
among the four 400 cells cm3 patch"I or 3 ­the four 800 cells cm" patch ' allocations. 

Cetts Cells 
 JPaches 
 Volume ol
m'- cm'- M'" Patch CM Patch Within Between Patch Std.
patch Radius Patch Patch Center Dev. cm. Votume Integral
cm NND CM NND CM Fraction scale
p cM.
 

50 10,000 13.365 
 .0746 14.93 
 6.5 .55 34
 
400
 

204006 500 1,000 6.2035 .0746 6.93 3.0 .55 30
 
50 5,000 10.608 .0592 14.93 5.5 
 .39 18
 
500 500 
 4.923 .0592 6.93 
 2.5 .37 15
 

50 2,500 8.410 .0746 
 14.93 4.0
 
400
 

500 250 
 3.908 .0746 
 6.93 2.0

50x106
 

50 1,250 6.682 .0592 
 14.93 3.0
800
 

1 500 125 3.102 .0592 6.93 1.5
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because in this example the ratio's r3/1 are large (in contrast
 

with the heterotroph example) the propens.ty for overlap is also
 

large (compare the patch NND with the patch radius). To take a
 

different tack let us require a volume fraction smaller than p=.l
 

(cf Figure 11). We maintain 200 X 106 cells m-3 patch density at 50
 

patches m"3. This means that we have all concentrations of .8x10 0
 

"
cells m-3 or .8x104 cells cm 3 within each patch a seemingly high
 

concentration. In other words the problem is constrained: given
 

what seem to be reasonable cell densities results in large spheres,
 

large volume fractions, and a high degree of coalescence with a
 

complex structure. On the other hand, if we fix the size of the
 

patch at a small value relative to the density of patches, we have
 

a small volume fraction, a low degree of coalescence, a simple
 

structure, but a seemingly high concentration of cells. The grazer
 

is faced with hypothetical search situation where the concentration
 

of cells varies at relatively low levels between patch and patch
 

intersection (at very high volume fractions multiple intersections
 

are possible) at large volume fraction and situations where the
 

concentration of cells varies to a much greater degree at small
 

volume fractions.
 

The covariance function and the contact distribution contain
 

information on overlap for the RCS. However, they do not contain
 

information on heterogeneity within the sphere (should it exist,
 

such as in the diffusion mediated heterotroph case) or interactions
 

among the particles within the spheres. In a sense both the
 

covariance function and the contact distribution can be thought of
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in terms of particulate interaction whether or not spheres are
 

completely isolated. The covariance function measures the
 

distribution of distances within the volume fraction for all points
 

inside all spheres. The contact distribution measures the
 

intersphere distance in the sense that it involves the array of
 

distances required to reach a sphere from a point external to a
 

sphere. The covariance functions are plotted for each of the four
 

cases in Figure 13. We can see that the property that the upper
 

and lower ocean bounds of the covariance function are the volume
 

fraction and the volume fraction squared. Inasmuch as the volume
 

fractions depend only on the density of patches and their radius
 

and variance and the volume of patches is held constant for 400
 

" "3
cells cm 3 and 800 cell cm cases the upper and lower bounds for
 

each of these cases is the same. However, in both instances the
 

high number of smaller patches results in a much more rapid decline
 

in the covariance function. Put another way, to use the jargon of
 

Fourier analysis, the statistical power drops more rapidly as wave
 

number increases with increased patch density.
 

The contact distribution for the four cases is shown in Figure
 

14. The contact distribution can be thought of in terms of the
 

search opportunities of a grazing copepod. In this case the
 

results are asymmetrical with those for the covariance function in
 

the sense that there is more similarity within the number of
 

patches per unit volume then between the number of patches per unit
 

volume.
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Figure 13. 	 Covariance function as a function of distance from patch center for the cases
 
indicated in Table 1. 
 It is important to note that the Kolmogorov length

scale can be superimposed on the x-axis. Its position would depend upon the
 
magnitude of E.
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Even though the overall density of phytoplankton cells is
 

fixed, allocations to 500 rather than 50 patches m-3 result in
 

higher values of H(r) and hence lower values of F. Given the
 

particles allocation scheme high density patches are smaller and
 

hence more distant.
 

In some ways more important than measuring the physical
 

dimensions of particles spacing and its variability are the
 

biological interpretations of such spacing. The covariance
 

function and the contact distribution provide specifications that
 

need to be taken into account when considering the search pattern
 

of a copepod grazing on the phytoplankton cells. For example, if
 

a copepod finds itself in the volume fraction occupied by a patch
 

then the covariance function gives a statistical measure of the
 

patch centered on the copepod. In a way the covariance specifies
 

the turning radius that a copepod would want to maintain if it
 

wanted to stay within a patch. The covariance function also gives
 

a measure of "memory" in the sense that if the copepod moves
 

farther than the integral scale, all traces of the patch are lost.
 

In contrast, the contact distribution specifies the situation where
 

the grazer is outside of a patch and is a measurement of the
 

distance that would be necessary for the grazer to travel to find
 

a patch.
 

The patch structure is critical to variability in the
 

biological pump. On one hand, given a fixed number of cells per
 

unit volume, patch structure regulates the variability in
 

interencounter time of phytoplankton cells. If encounter times are
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reduced more food is available per unit time. However, because of
 

the functional response a reduced interencounter time may mean that
 

less of the available food is eaten (Rothschild, submitted).
 

Two interesting applications arise, the first relates to
 

chemosensation and the other relates to relative motion. 
 First
 

with respect to chemosensation or chemotactic search for food
 

chemosensory distance thresholds can be superimposed on both the
 

covariance and the contact distributions. As threshold differences
 

change slightly small changes in probability occur. However, these
 

could represent large changes in population properties because of
 

expected value considerations. Second with respect to relative
 

motion the kinetic forces on particles of water depend upon their
 

distance apart and both the covariance and distance are
 

statistically summarized by the covariance and contact distribution
 

functions. The issues of chemotaxis and relative motion are
 

discussed in subsequent sections.
 

Micro-plankton ald Grazer Search. As shown in Figure 2, there is
 

little chance for overlap in the NND of copepods and micro­

plankton. On the other hand because the NND of the micro-plankton
 

is of the order of 50 gm and the diameter of a copepod is orders of
 

magnitude greater, it is difficult for a copepod to swim through
 

the water without being in constant contact with micro-plankton.
 

"
In fact a copepod proceeding at .2 cm sec 1 through densities of 106 

"micro-plankton cm 3 will encounter 107 micro-plankton hour-1!
 

There are a number of studies that suggest that grazers find
 

their food via chemotaxis. But if the DOC catabolized or leaked
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from phytoplankton cells is rapidly diffused then chemical
 

directional signals will certainly be obscured in the background­

level chemical noise. On the other hand if the micro-plankton are
 

metabolizing phytoplankton DOC then the chemical influence of the
 

plankton patch would tend to extend farther than might otherwise be
 

thought. In other words the micro-plankton serves as "repeaters"
 

for phytoplankton catabolites and because of this, the grazer can
 

steer more effectively to a patch of phytoplankton searching out
 

particular MNND. The process would be even more efficient if the
 

micro-plankton catabolism was actually triggered by either contact
 

or catabolites from the grazer.
 

It is interesting to speculate on the structure of this
 

system. In Figure 15 we portray the random distribution of 29
 

"signaling" micro-plankton points. We have connected this
 

particular realization of points with a minimum-spanning tree
 

(MST). The MST is computed such that the tree gives the path of
 

the shortest distance among the points. For the copepod to use the
 

MST to track the shortest distance the distance between the points
 

has to be no greater than the signal detection capability of the
 

copepod. If one such distance is too long then the switch is
 

opened and the search has to be reinitiated. The affect of patch
 

structure is to reorient the path. In Figure 16 we have moved some
 

of the'same points at random to the southwest corner of the plot.
 

While some of the MST distances increase most decrease and the
 

isotropic appearance of Figure 15 becomes anisotropic in Figure 16.
 

It is likely that micro-plankton play an important role in the
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search for phytoplankton patches by grazers and that the patch
 

structure of the micro-plankton may play an important role in these
 

phenomenon.
 

COUPLING WITH PHYSICAL PROCESSES
 

Physical processes are coupled with the integrative hierarchy
 

in two fundamentally different ways. These are identified as Type
 

I and Type II effects. Type I effects affect the physiology of the
 

organism. Type II effects affect the interaction among organisms
 

or their food resources. An example of a Type I effects are
 

temperature. An example of Type II effect is the kinetic structure
 

of the environment that would affect the relative velocity and
 

hence the encounter rate of predator and prey. Another example of
 

a Type II effect is the exposure of a phytoplankton cell to
 

irradiance. We will concern ourselves with Type II effects since
 

Type I effects are the subject of a considerable literature.
 

The fundamental question associated with Type II effects is
 

how the particles sample the kinetic fiuld. In a sense the
 

particle distribution serves as an estimator of initial temporal
 

values in a Lagrangian flow field. What are the statistical
 

properties of the flow-field estimator? Estimator properties are
 

generally related (among other things) to statistical accuracy
 

(i.e. the interaction between bias and precision). These
 

properties quantify the dynamics of interparticle distance and
 

hence the propensity of particles to interact trophodynamically or
 

behaviourly (as in the case of the grazer/large phytoplankton/
 

microplankton interactions.
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An important point in this analysis is not whether the
 

sampling process is biased or unbiased, but how the biodynamic
 

structure evolves. The most primitive particles (in an
 

evolutionary sense) move with the flow. In a random particle
 

distribution they provide unbiased samples of flow. The most
 

specialized organisms provide biased samples. In fact moving from
 

primitive to specialized involves the evolutionary acquisition of
 

motility. Because of this, from an individual-organism energetics
 

perspective, it is necessary to take account of the net gains in
 

fitness afforded by variability in the physical environment for
 

immotile organisms and the net gains in fitness afforded by the
 

interaction of motility and the physical environment. In other
 

words, the position of particle results either from the kinetic
 

field or from the kinetic field plus locomotion, two features which
 

are critical to evaluating the effects of the physical environment
 

on the organism.
 

To visualize the sampling notion consider N particles
 

distributed in a plane vortex. Each particle samples a point in
 

the vortex and each point is represented by a vector giving the
 

direction and velocity at that point. We consider a patch as a
 

more or less compact bounded collection of particles with an outer
 

perimeter. All of the particles inside the perimaeter are
 

collectively called a patch. Some of the sampling possibilities
 

are as follows (Figure 17):
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Figure 17. Influence o+2 patch structure on flow sampling by particles. If the vortex isin the vertical plane then there are important implications with respect to
sinking and exposure to irradiance. 
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1. 	 The patch is roughly the same size as the vortex. The
 

particles provide an unbiased estimate of vortex flow
 

vectors.
 

2. 	 The patch is larger than the vortex. The particles still
 

provide an unbiased estimate of the flow vectors but with
 

reduced precision.
 

3. 	 The patch is much smaller than the vortex. Near the
 

outside of the patch - the patch is advected east, west,
 

south or north (or left, right, up and down). The patch
 

can be deformed because of shear, although at the center
 

of the vortex it simply rotates.
 

4. 	 The behaviours of multiple patches in different
 

configurations say with partitions 25, 25, 25, 25 or 50,
 

50 can be deduced from propositions 1, 2, or 3.
 

The main point is that stochastic geometry can be used to
 

quantify the chance allocation of points to a flow field. As
 

virtually all extant biological and theoretical studies implicitly
 

imply that particles are randomly distributed, the use of
 

stochastic geometry is a considerable advance, for as we have
 

shown, a variety of first and second moment statistics (i.e.
 

summarizations of chance data) provide compact summaries of the
 

interparticle distances.
 

We are now prepared to give some precise interrelationships
 

between the sampling process and the flow field. Any geometry *
 

(say') samples the flow field such that at small scales, the
 

velocity of each particle, or the force on a motile non-statistical
 

53
 



equilibrium particle is predictable. As Rothschild and Osborn have
 

shown in fields of homogenous-and-isotropic turbulent flow the RMS
 

uncorrelated velocities of two particles is a function of the
 

turbulent kinetic energy dissipation rate, E, and the distance
 

separating the particles.
 

But the distances separating particles for any T* is naturally 

summarized by the covariance function Eq(19). Accordingly, we 

superimpose the Rothschild-Csborn function on the covariance 

function to demonstrate that the interaction among organisms are 

driven by patch scale given e or that a change in E can have a 

dramatic effect on patch interactions. Of course the problem is 

much more complex since c is in itself a random variable -­

possibly lognormal. In principle, then, it should, in addition to 

specifying the relative velocity of each particle be possible given 

any of the spatial distribution in this paper to derive the 

probability distribution of relative velocity as a function of two 

random variables problems. 

The most interesting part of the analysis through is that we
 

have sketched the linkage between basin-scale wind forcing (e.g.
 

Dickson et al) and microscale patchiness. As Oakey and Elliot
 

(1982), have pointed out (see also Sundby and Fossum 1990) e is a
 

function (of among other things) surface wind velocity.
 

There are of course other distance related effects. For
 

example, changes in wind velocity affect many properties of the
 

upper ocean in particular we assume that wind velocity affects the
 

general magnitude of turbulent diffusion at the motion of organisms
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relative to one another. The significance of diffusion relates to
 

patch maintenance. We can infer that the conditions for patch
 

maintenance are such that the length scale of a patch must be
 

greater than a function of the diffusion coefficient, and the birth
 

and death rate of the particles is the patch, viz.,
 

L> (a)
 

(23)
 

where L is the patch dimension, D is the diffusion coefficient
 

associated with the patch and P and 6 are birth and death rates 

respectively. This means that if birth and death rates do not
 

change, but diffusion increases then the critical dimensions of the
 

patch would need to increase. Similarly a decrease in the
 

diffusion constant implies that smaller patches could be
 

maintained. Further, as birth rates increased over death rates
 

larger patches could be maintained.
 

COUPLING THEORY AND OBSERVATION
 

An exemplification of plankton geometry finally makes it
 

possible to couple in a logical way theory and observation. The
 

basic idea is that validation of a theory on community-metabolism
 

variability requires a capability to measure components of the
 

system with well-defined and unambiguous methodology. The only way
 

this can be done at the present time is via measurements of
 

geometry, since it is difficult to put the measurements of rates in
 

an unambiguous setting.
 

To firm up this idea consider a computer experiment on the
 

metabolism of the upper ocean which proceeds for a large number of
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time steps. A single time step is portrayed in Figures 18A, B.
 

The initial geometry is To. The geometry is shuffled by kinetic
 

events driven by a hierarchy of basin and regional scale models
 

(see G:50). The shuffling places predator and prey particles in
 

new proximities to one another. In this intermediate geometry,
 

70.0.5, trophodynamics deletes prey particles and population dynamics
 

modifies the mass of each remaining particle and its partitioning
 

into somatic and reproductive biomass, creating the first step
 

geometry.
 

Because there is considerable concern regarding how the "real
 

world" should be measured the computer experiment also lends itself
 

to facilitating the design of sensors and sampling-theoretical
 

approach to making inferences about ecosystem structure. Simulated
 

optic, acoustic, optic acoustic deployed in various ways (e.g. a
 

moored optic/acoustic device or a satellite mounted radiometer) can
 

be tested for optimality where the measure of performance compares
 

*i with i.. The computer experiment needs to be enhanced to take
 

into account organisms motility and criteria for the choice of
 

populations.
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Figure 18a. 	 One step flow in computer experiment linking physical models with geometry.

The flow diagram shows how physics shuffling, trophodynamics, and population

dynamics interact to form the dynamical events for geometrical change. Put

another way these collective phenomena are the patch-genesis and patch-lysis

mechanisms.
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Figure 18b. Empirical theoretical coupling 
at time steps 0 and 1 assuming one-to-one
 
temporal correspondence at all levels. This correspondence will generally
 
need to be sacrificed.
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DISCUSSION
 

Upper-ocean community metabolism and its function as a
 

biological-pump are critical elements in the attempt to explain the
 

role of the sea in global-change phenomena. In addition to global
 

change, other practical problems such as pollution and fishery
 

management are of concern. With regard to pollution, forecasting
 

the fates-and-effects of anthropogenic activity is a critical
 

priority. These "fates and effects" must certainly depend upon
 

variability in upper-ocean metabolism and the way that metabolism
 

interacts with physical processes. Variations in community
 

metabolism can be linked with variability in community-metabolism
 

pathways (see e.g. LeFbvre and Frontier, 1988). As pathways change
 

the relative importance of various sets of pollutants change.
 

Knowledge of the changing pathways can have considerable impact on
 

the public-policy decision process with respect to pollutants.
 

With regard to fisheries, the saltatory occurrence of very large
 

year classes and the consequent intervening small year classes set
 

the stage for fishery management requirements. At present,
 

capability to forecast the large year classes does not exist. If
 

forecasts were available, fishery management could be much more
 

efficient. The occurrence of the large year classes probably
 

depends upon variability in metabolism.
 

The address of any these issues has always been difficult
 

because observations generally seem to be associated with
 

considerable variability. Does the unexplained variability arise
 

from a truly entropic system, or on the other hand, does the
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variability arise from sources of variability which are not taken
 

into account. If such sources did exist, and they could be
 

statistically controlled, then a materially improved understanding,
 

and perhaps even predictability could be associated with the upper­

ocean biodynamic process.
 

One critical source of variability that must play an important
 

role in biodynamics and yet is scarcely understood is the coupling
 

between biological and physical processes. We have shown that the
 

existence of a non-random patch structure requires placing the
 

plankton-particles in a physical framework. This framework begins
 

with the geometrical distribution of the plankton. If the
 

universality of feeding-scale patch structure can be demonstrated
 

then it must be an important source of variability and a driving
 

force in structuring the commonly observed larger-scale sampling or
 

synoptic scale patchiness.
 

One of the interesting aspects of patch-structure study is the
 

implication that the velocity (cf Goldman 1988) of the metabolic
 

system in any fixed location, with any fixed set of organisms is
 

controlled by interparticle distance. Proximity of microplankton
 

(heterotrophs and autotrophs) and larger autotrophs increases
 

primary production and increased primary production increases the
 

particle available to grazers.
 

In studying the interactions among microplankton, we found
 

that the understanding of temporal-spatial nature of microzones and
 

the chemical kinetics with which they are formed was critical to
 

determining the extent to which chemical communication among cells
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occurred at greater than diffuse background levels. On one hand it
 

appears that some cells are always close enough to exchange
 

nutrients at greater than background levels. On the other hand,
 

many of the cells are on the average, seemingly distant and so the
 

frequency of functionally close proximity must depend upon the
 

physical kinetics of the environment or particle motility. It is
 

easy to conceive that any phenomena that promote either geometric
 

or dynamic proximity create microbursts of productivity among the
 

microplankton which are either spatially and temporally propagated
 

or damped. The propagation of the microbursts results in the
 

possible propagation of enhanced production in larger autotrophs,
 

grazers, etc. In fact, such microburst propagation among the
 

microplankton may even result in explaining the phenomenon of the
 

periodic occurrence of very large year classes of fish.
 

In considering the world view of the zooplankton-grazer's food
 

supply we found that even constraining the first-order abundance of
 

phytoplankton cells to a constant value resulted in a rich
 

variability of feeding conditions and even the genesis of "hot
 

spots" of phytoplankton. The occurrence of a high-degree of
 

patchiness suggests considerable variability in the nature of the
 

functional response and in particular the efficiency with which a
 

grazer ingests food, and symmetrically, the degree to which the
 

phytoplankton cells are sequestered from predation. After all, the
 

nature of functional response, ceteris paribus, controls the
 

downwelling of organic carbon from the upper ocean.
 

In fact the opportunities for a grazer to find food seem to be
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served least by a random search. But random search is in this case
 

a anthropocentric frame of reference. To move out of that frame of
 

reference it is necessary to understand, on one hand, the way in
 

which phytoplankton cells are allocated to time-space points and,
 

on the other hand, how the grazer moves from the anthropocentric 

world where F is a measure of proximity to another world where 

something like F" is a measure of proximity. We have suggested 

that the microplankton might serve a function in moving from anr 

world to something like a F" world. 

Finally, we have shown that geometry provides an important 

coupling between trophodynamics and population dynamics and a 

setting in turbulent flow. Not taking account of geometry, could
 

lead to important discrepancies in the encounter rate of predator
 

and prey, for example. Perhaps more importantly we have shown that
 

second-order spatial di-tribution couple directly with physical
 

theory. In particular the RCS covariance function couples directly
 

with the theory of homogeneous and isotropic turbulence.
 

The computer experiment is a plan of attack for the study of
 

patch structure dynamics and emphasizes the relative simplicity of
 

the study of patch-structure geometry. The geometry is fixed;
 

particles are where they are; from a geometrical point of view
 

there is no "why". However, without particle geometry as an
 

initial and possible boundary condition, it is difficult to
 

conceive a point of departure for setting the particles into
 

motion, for considering the juxtaposition of predator and prey, or
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for evaluating the resultant population-dynamic effects in terms of
 

reproduction, growth and mortality. In fact the computer
 

experiment is a point of departure for the study of what might be
 

called "patchogenesis" and "patcholysis".
 

Stochastic geometry provides yet other opportunities. For
 

example RCS theory provides other opportunity in the study of
 

plankton dynamics. For example, volume scattering in acoustics and
 

the clarity of water (the type I water clarity problem) are as
 

dependent upon second order properties as might be articulated in
 

RCS and point-process theory as the traditionally studied first­

order properties. The theory of microzones which is perhaps one of
 

the most critical and relatively least understood components of
 

biodynamic theory is amenable to extensions of RCS theory, as well
 

as immediate dynamic-like geometric consequences of geometry such
 

as might be involved in the study of patch isolation.
 

The advancement of particulate theory requires study of two
 

additional problems. These involve the motility and behaviour of
 

organisms and the development of criteria to select populations for
 

study. With regard to particle motility and behaviour, in general,
 

all particles have dn encounter-enhancing relative motion with
 

respect to one another, simply by virtue of Stokes-law
 

considerations. Many classes of particles are immotile and thus
 

have no particular motility behaviour. On the other hand, even
 

some of the smallest particles have propulsive mechanisms and
 

behaviour with respect to food search (among other things). So a
 

particle is at a space-time point either because it is carried to
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that point in the process of interaction between its physical 

properties and the flow field, or because it has motility and 

behaviour that enable it to escape from statistical physical 

equilibrium. However, the 
escape from statistical equilibrium
 

requires energy. At least some component of this energy affects
 

the elaboration of reproductive biomass. Hence the energy required
 

to escape from statistical physical equilibrium is of considerable
 

population-dynamic significance particularly inasmuch as the energy
 

expended by an organism to encounter prey is a function of the flow
 

field enabling the causal linkage between flow and population
 

dynamics.
 

With regard to the choice of populations, it is obvious that
 

it is impossible to model all population in toto. This situation
 

has given rise to the metabolic and other highly integrated
 

approaches in the first place. The integrated approaches are
 

justifiably criticized because they suppress population dynamics
 

and the Type II physical effects as sources of variability. There
 

is no easy answer to the choice of populations, but perhaps the
 

problem can be reconfigured. One approach is to focus on the
 

population dynamics process foi: a selected population. The process
 

involves a number of populations it would be useful to study the
 

extent to which the variability in any process was propagated or
 

damped by associated populations. Another approach is the study of
 

the variability structure of populations. For example an analysis
 

of the eigenstructure of species composition or life tables reveals
 

that there are generally biomass dominant and variability dominant
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components in any mix of populations or age or stage classes.
 

(ms) found that in
(Rothschild, in press). Rothschild and Ault 


terms of both biomass and variability dominance the youngest age
 

classes contained the bulk of variability. This suggests that a
 

study of the egenstructure of population variability might resolve
 

focusing on first one subset of populations and then on another set
 

of populations, possibly enabling insights into how the development
 

selecting manageable subsets of populations for
of criteria of 


study.
 

In conclusion the study of the particulate theory of the upper
 

and its coupling with physical processes is facilitated
ocean 


through the study of stochastic geometry. The geometrical
 

representation is, however, just a first step needed to link the
 

physical influence on particle distribution with tropho- and
 

population-dynamics.
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APPENDIX I
 

Integration of Eq(4) and Eq(9) involves integration of a gamma
 

function. Solutions are not available in simple tables. The
 

appropriate formula is,
 

fxme -dx 1 r1 m+1) 
0 na( T+ -n-f 
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