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ABSTRACT
 

The importance of coral reef and shallow tropical coastal areas for studies related to 

biodiversity is indicated. A continuous time Markov chain model for the recolinization of 

perturbed areas is developed and described. The application of this model to previous data 
on recolonization of benthic invertebrates gave results identical to the deterministic model 

of McArthur and Wilson (1967) for island biogeography. However, the stochastic nature of 

the new model is believed to provide more realism in application than the deterministic 

model previously developed. This latter model can be applied to data now being gather in a 

corml reef environment in the Philippines. 



INTRODUCTION
 

Wilson (1989) has clearly pointed out the current global decline in biological 

diversity and the probable grave consequence of its loss. He also emphasized the fact 

that the task of studying biodiversity i, still in an early stage of development. The 

report of the National Science Board (1989) referred specifical'y to marine biota and 

quoted Ray (1988) who suggested that disturbance and degradation of coastal zones is 

occurring as rapidly as tropical forest destruction. The Board also indicates that 

biological diversity is highest in the tropics and that these are the areas of highest risk. 

A specific example is provided by coral reefs which can be both highly diverse and 

extremely fragile. 

Over two-thirds of the surface of planet earth is ocean, and the biota of the 

earth's oceans are em.ential to the structure and function of the global ecosystem. 

Although the global coastal zone covers only about 8 percent of the earth's surface 

(Ketchum, 1972), more than 50 percent of the entire human population lives within or 

very near it. In addition, about 90 percent of the total annual yield of living marine 

organisms is taken from the coastal zone. The biological diversity of the zone is very 

high, as attested tn by the fact that of all living species of chordates, the class 

Osteichthys (bony fishes) contains the greatest diversity of species, more than 18,000 in 

contrast to a total of about 4,000 species of mammals. Tropical coral reefs and shallow 

coastal areas (especially in Southeast Asia) contain the most diverse fish communities 

in the world. It is clear that more attention needs to be focused on tropical coastal 

areas and coral reefs as centers of biological diversity, not only because they contain 

large numbers of species but also because these fragile environments are being 

increasingly affected by man's activities. 
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This project's overall objectives involve developing and testing new 

methodologies for dete-ting and assessing changes in biodiversity of tropical coral reef 

and shallow marine communities affected by destructive fishing methods, with special 

reference to blast fishing. The latter term refers to the use of various type of 

explosives for the capture of fish. 

Blast fishing is one of the most common among illegal fishing activities in the 
Lingayen Gulf, the Philippines. Blast fishing is also common in other tropical third 

world. It poses a threat to the fishing industry due to the possibility of indiscriminate 

destruction of marine resources and the coralline environment. Studies are in 

progress to monitor the temporal recovery of areas affected by blast fishing, and to 

study the species composition and the size distribution of coral fish assemblages and 

the recovery rate of the coral reef environment. 

This report is restricted to the conceptual development and description of a 

model for the recovery of fish assemblages or coral communities affected by blast 

fishing or othter perturbations. The model is believed to be a refinement and 

extension of the original model described by McArthur and Wilson (1967) and applied 

by Saila (1975) for the recolonization of macroinvertabrates on dredged material 

which had been dumped in Rhode Island Sound. 

MODEL ASSUMPTIONS 

Consider a relatively large tropical coral reef area that has been significantly 
perturbed by some means, such as blast fishing, and has suffered substantial damage to 

its fish population. As the perturbed area recovers certain species of fish will begin to 

re-enter from the perimeter region, assuming the habitat is suitable. Evidence from 
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tropical reef studies indicates that this re-entry may be done primarily by juvenile fish 

or from their pelagic larval phase. It seems unlikely to expect large scale re-entry into 

tais area by adult reef fish, since many species of reef fish tend to spend their entire 

life within :ery restricted areas (Sale et al., 1984). Hence, the availability of early life 

history stages may play a large role in the rate at which this re-entry occurs (Williams 

1980: Victor 1982; Doherty 1983). A mathematical model describing the movement of 

species in and )ut of a perturbed area, such as a recovering blast site, would be of use 

in predicting its eventual state. In particular, inferences could be drawn from such a 

model about the number of species expected in the repopulateci area as a function of 

recovery time. In addition, these results would indicate,whether or not there are 

significant differences in the diversity and relative abundance of species in the 

repopulated site as compared to an equivalent pristine area. Use of a stochastic 

model permits such statistical comparisons. 

Suppose there is a potential pool of P species of fish in the surrounding area. 

Assume the arrivals and departures of species into the depleted area are random. 

This assumption is based on the consideration that knowing the time since the last 

arrival or departure is of little or no value in predicting the time of the next event. 

Even in the extreme case of predator-prey relationships, the point in time that the 

predator species is aware of the presence of the prey species and subsequently enters 

this area, is random. It is also possible for a predator species to enter this area before 

a prey species is present. After a species has re-entered this area there may be several 

reasons for its departure/extinction from this area. For example, perhaps not enough 

fish from a given species have entered to create a necessary mass for survival. In 

addition a given species may not be able to locate a suitable food source or habitat and 

hence, some will not remain in this area. Intense competition amongst the species 

already present or the arrival of predators could also create an inhospitable 
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environment resulting in predation mortality or departure. All of these factors can be 
considered random in their occurrence. Hence, the arrivals and departures of a 
species in this area are Poisson events, which implies that the time between an arrival, 
or similarly a departure, is exponentially distributed. Note that the rate of arrivals 
shouid be dependent on the number of species already in the recovering site. Also, 
from the above discussion we would expect ' any species that enter this area to go 
extinct shortly after their arrival. This agrees with the usual behavior of an 
exponential model which likewise has a high occurrence of early failures. Moreover, 
as the number of species in the site increases, we would concurrently expect an 
increase in the extinction rate. The model to be described satisfies these 

characteristics. 

It is recognized that the theory of island biography as developed originally by 
MacArthur and Wilson (1967) and this work which are closely related, may be 
oversimplifications in several respects. Variability within defaunated areas, dispersal 
across variable habitat gradients (P-diversity factors) and sequences of equilibria over 
time are not explicitly considered. However, we believe that all models are 
simplifications of reality, but the addition of stochasticity to the original model 
provides a practical advantage in its real world application. 

MODEL DESCRIPTION 

Let Xi, i = 1, ..., P, represent the time until the it h species enters the area. Theneach Xi is an independent continuous random variable that is exponentially 

distributed. We will assume that each species is equally likely to enter this area and 
hence, that the average entry rate for each species is a constant, \, i.e., Xi has a density 
function, Aexp(-,\ t). We can now determine the distribution for the entry of a species 
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when n species have already migrated into the recovery area. Note that when a 

species is in the system i.e. the recovery area, it is temporarily taken out of the pool of 
potential species. Hence, when n species are in the affected area, P-n different species 
can potentially enter the system. Next order the random variables X1, ..., Xp- n and 

denote the ordered random variables by X(1),..., X(P-n) where X(1) <...< X(P-n). 

Thus, X(1) represents the minimum time until another species enters and is the 

minimum of P-n exponentially distributed random variables. Therefore, X(1) is 
exponentially distributed with mean (P-n) A,which we shall denote by xn ' 

Again, assuming that n species are in the system, we next determine the 
distribution for the departure/extinction time. Let Yi represent the time that the ith 

species remains in the repopulated area, i = 1,...,n. We will assume that the rate at 
which any individual species leaves this area, g, is constant. Since we have assumed 

that a species leaving an area is a random event, then each Yi is exponentially 

distributed with density function 4 exp(- u t). Now, when n species are in the system, 

let Y(1),...,Y(n), represent the ordering of the random variables Yi i = 1,..., n. Hence, 

Y(1) denotes the time when the first of these species leaves this area. Again, since 

each Yi is exponentially distributed then so is Y(1) with mean, 1/nA. For consistent 

notation, we shall denote ng by gn" We also note that when a species leaves the 

recovery area, it returns to the pool of species in the perimeter region. Hence, the 

number of potential species has increased to P- n+ 1. It is of interest to observe that 

under these assumptions, both An and gtn are linear functions of n, the number of 

species in the system. 

Let us further consider the situation when n species, n = 1,...,P, have entered the 
recovery area. We will refer to the process of repopulation as being in state n. We 

will assume that at most a single arrival and/or single departure can occur during a 
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small time period of length At. Hence, if the system is in state n at time t, the 

probability of a single arrival or departure in the interval (t, t +At) for small At are An 

At and Azn At, respectively. The probability of more than one arrival or more than one 

departure during a small time interval, AT, is O(At) where: 

lim Q(A = 0 
At-,0 At 

Thus, we have described a continuous-time Markov chain with states (0,1,...,P) for which 

transitions from state n can only be to state n-I or n+ 1 in a small interval of time At. 

Let Pn(t) represent the probability of being in state n at time t. Then, we can obtain the 

following differential difference equations for pn(t) from the forward Chapman-Kolmogrov 

equations: 

for n = 0, 

dpo(t) -x o po(t) + AI p1 (t) (1)-

dt 

for n >, 1, 

dPn(t) - "(Xn + n Pn(t) + An- 1 Pn-1 (t) + An+ 1Pn+ 1 (t) (2) 

dt 

For the long-run behavior of our system, we derive the steady state solutions to 

these equations. In particular then, the derivative of Pn(t) would be zero and hence, 

pn(t) would be a constant which we shall denote by Pn" The steady state solutions for 

these equations are well known and are given by: 
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n=Pn ' ir" (-, / tAi)p o (3 
i=1 

For our particular case, i 1 = P - (i-1) Aand u i t&which implies that Pn is: 

= nPn Or (P -i + 1) "u// ) Po (4)
i=l
 

or simply 

P= n) 0A~)1 (5) 
We can solve for po by applying the identity: 

PE pn =
 

n=O 
 (6) 

which yields 

Po = (A/ A + A')P (7) 
However, we can gain additional insight into the system by returning to equations 

(1) and (2) and investigating the expected state of the system at time t. 

P
M(t) = E n pn(t) (8)

n=1 

Taking the derivative with respect to time and substituting equation (2) into the 

summation yields the following linear differential equation (see appendix 1 for 

details): 

M (t) = P +) M(t) (9) 

If immediately after a perturbation the system is in state no, then we may use the 

initial condition, M(O) = no, to determine the solution to (9) as: 
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M(t) = (P A/ A+ a ) [1-exp{-A + A)t}] + no exp {-(A + A)t}. (10) 

In most situations, it would be reasonable to let no = 0 in equation (10), yielding: 

M(t) = (PA /A + M) 1 -exp {-(A + /i)t}] (11) 

Figure 1indicates the general shape of M(t) which would be controlled by the parameters A 

and . 

As t -> - in (11), the steady state value for the expected state of the system issimply: 

E(n) = P \ / (,\ + A) (12) 

Since M(t) is a monotone increasing function, we can determine the time until the
 

system is within a specified bounded region of the steady state value. 
 In particular,
 
using equation (11) we can find the time tB = - (A\+ 1)-1 ln(1-B) such that for t> tB,
 

then M(t) > B ( P \ / (, + g )). For example, if B equals .95 then for: t > t .95= 

2.996 (A + 4 ) -1, we have M(i) > .95 ( P/A + 

To find the variance: 

P2
 

V(t) = E (n - M(t)) Pn(t) 
 (13)
n=O 

we shall again take the derivative with respect to time. This results in: 

P2
 

V'(t)= E (n-M(t)) 
 pn (t), (14)
n=0­
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since Z (n - M(t)) Pn(t) = 0. Substituting (1) and (2) into (14) and after some 

manipulations (see appendix 2) we obtain the linear differential equation: 

V (t) = -2(Ax + t ) V(t) + PA + (-x ) M(t), (15) 

which can be solved to yield: 

V (t) = P)]-[(,-) { 1/2 - exp-(A\ + 4)t}[P x / 2(,\ + PA/(A\ + 4) 2 

+ c exp-2(.\ + 4)t (16) 

Again if we let V(0) = 0 then we can solve for c. However, we are more interested
 

in the variance as t -> 
- which yields the steady state variance as: 

V(n)=P, g/(A +A) 2 
(17) 

Before applying these outcomes to an example, we note that for our values of A nand ln, the results obtained for the mean and variance agree with results from the 

generalized model suggested by Mac Arthur and Wilson (1967) and the model 
described by Goel and Richter-Dyn (1974). Further, the expected value generated by 
our stochastic process is equivalent to a deterministic model suggested by MacArthur 

and Wilson. The obvious advantage to a stochastic model is that it allows a 
probabilistic range of values for the model parameters, and permits critical statistical 

comparisons over time or space. 

Let us now apply this model to a case reported by Saila (1975) for a dredge spoil 
site and its surrounding area. A reasonable estimate of the number of invertebrate 

species in the surrounding area is P 150.= In the first sample from this area 32 
species of benthic organisms were noted. Two years later 55 species were present. It 
was also observed that 9 of the original 32 species found were no longer in this area, 

indicating that over the two year period an additional 32 species had actually entered 
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the area. Hence, from this data an estimate of A,the arrival rate per species is given 

by A= 16/(150 - 32) - .14. Similarly, A, the extinction rate per species (present in the 

system) is A = 4.5 / 32 = .14. Fig. 1 illustrates the application of these data and the 

derived model. 

Using these values for \ and g in equation (12) and (17), the expected number of 

species in the repopulated area at steady state is 75 species with a standard deviation 

of 6.12. Hence for this distribution, which can be shown to be symmetrical and mound 

shaped, the empirical rule indicates that with .95 probability, the number of species at 

steady state should be between 63 and 88 species. Using our expected value of 75 

species, we can predict that it would take a minimum of 10.7 years to achieve this 

expected value. As mentioned earlier, due to the agreement of the expected value, 

M(t), with the deterministic model of MacArthur anu Wilson used by Saila, we find 

the mean and years to achieve this value are identical to this earlier work. 

This model remains to be further tested with emprical data derived from 

perturbed areas in the Philippines, and other approaches to modeling are also under 

active consideration. 
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Appendix I 

P
We take the derivative of M(t) = z n Pn (t) to get
 

n=1
 

P 
M (t)= El n p n (t) . Substituting (2) yields 

n=1 

P 
M(t)= z - (Xn+ /I n Pn(t) + 

n=1 

P 
n An-1 n Pn-1 (t) + 

P 
1 n + I nPn+ 1 (t)n=1
 

P
 
E= .\n +n /I 
 n Pn (t) + 

P P 
n=1SA),n-1 (n-l)Pn-1 (t) + n=l1 P-Z An-1 Pn-i (t) + 

P P
E /n+1 (n+ 1) Pn+1(t) - E An+ 1 Pn+ 1 (t)

n=1 n=l 

Let i = n-1. Then n = 1 implies i = 0 and n = p implies i = p-1. 

Similarly let i =n + 1 then n = 1 implies i 2 and n= = p = > i = p+1. 

Making these index changes and regrouping yields: 

/ P 	 P-1 
M(t) = -Zn=l An Pn(t) + r Ai i Pi(t)n= 

P P+I 
-E An n Pn (t) + E. ii Pi (t)
n=1 i=2 

P-1 P+1 
+ 	 E Ai p(t) - E /Ai Pi(t) 

i=o i=2 
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P-1 P+1E A.i Pi (t) . Aip i ( t ) 
io 1 (t i=l 

Note A = o and Ap +1 = 0 , so we can re-arrange the upper summation limits 

to give: 

P P
M (t) = E Ai Pi (t) - . i Pi (t) 

i=o i=1 

Letting xi = (P-i) Aand Ai = 4i we obtain 

PM (t) = PA E 
P 

Pi(t) - x 
P 
E i Pi(t)-,U E i Pi(t)i=o i--o i=o 

= PA - (A + 4) M(t) 
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Appendix 2 

P2 

V(t) = E [n-M(t)] 2 pn(t) 
n=o 

P
V(t) = E [n-M(t)]' Pn(t) Substituting (1) and (2) 

n=o 

yields: 

P 
(n-M(t)) 2 p n( t ) V(t) =- (An + /n) 

n=o 

P2 
+ 	 E An- 1 (n-M(t)n'M(t) 
n=o 

P 

n+ A'n+ 1 (n'Mt) 2 Pn+ 1 

+ E ()+i -M(t)) 2 p(t) 
no
=-P ((n) + Un (n'M(t))2 Pn ( t ) 

n=o 

+ E ,An- 1 ([(n-l)- M(t)]+ 1) Pn 1 (t)n=o 

P2+E /In+ 1 ([(n+ 1) - M(t) - 1)2 P 
n=o 

P 
=- \n (n-M(t))2 Pn(t) 

n=o 

P 2)+E An-1 ((n-i) - M(t)) 2 pn-(t) 
n=o 

P 
+ 2 E n 1 ((n-i) - M (t)) Pn-1 (t) 

n=o 

P 
+ 	 E An 1 Pn-I(t) 

n=o 
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E /A (n- M(t))2 Pn(t)ntn=o n 

+E n+1((n +1)- M(t)) 2 Pn+ 1(t) 

n=o 

P 

-2 z An+1 ((n+l - M(t) Pn+i(t)
 
n=o
 

P 
+ E An+l Pn+i(t) 

n=o
 

P 
= 2 z An1 ((n-i) - M(:)) Pn- (t) 

n=o
 

P 
+ 	 E An-1 Pn-1 (t) 

n=o 

P 
- 2 z An+ 1 ((n+1)- M(t)) Pn+ 1(t) 

n=o
 

P 
+ Z An+l Pn+I (t) 
n=o
 

Let i = n-1 then n = o implies i = -1, and n = P implies i = P-1. 

Also for i = n+ 1, then n = o implies i-i and n = P = > i = P+ 1. 

Re-indexing yields (note A-I p_1 (t) = 0, also x= 0) 

Vt) = 2 EP A (i - M(t)) pi (t)
 
i=o
 

P 
+ Ai Pi (t)i=o 

P 
-2 i ((i- M(t))pi(t) 

i=1 
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P 
+ Ai Pi (t)i= 1 

Substitute x = (p-i) Aand ui = gi and obtain 
P P 

V (t)=2 P, xE (i - M(t))pi (t) -2x E i(i- MOt))Pi(t) 

i=o i=.o 

P 	 P 
+ 	 PA z p. (t) -A E i Pi(t) 

i=0 i=o 

P 
- 2/tt i (i - M (t)) Pi (t) 

i=1 

P+ iPi (t) 

But E i (i - M(t)) Pi (t) = V(t) and hence: 
i=o 

V'(t) = -2( + ) V (t) + P , + (i-,)M(t) 

which is a linear differential equation. 
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