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PRODUCTION RISK AND OPTIMAL FERTILIZER RATES:
 
AN APPLICATION OF THE RANDOM COEFFICIENT MODEL1
 

A13STRACT
 

This paper investigates the effect of risk aversion on fertilizer use. A Random 
Coefficient Model estimated the probability distribution of yields at different 
nitrogen rates. This technique allows coefficients of explanatory variables to 
vary temporally or spatially. It is thus useful for modeling N response, which 
varies from year to year due to interactions with stochastic disturbances such as 
weather, and insect and disease infestation. 

The procedure used data from 5 yr of N response trials by the Agronomy 
Department at IRRI under rainfed conditions. The results showed only a slight 
effect of risk aversion on fertilizer use. Application of risk-neutral and risk-averse 
decision-making models predicted that moderately risk-averse farmers would 
apply only 7 kg less than 'tie risk-neutral, profit-maximizing N rate of 42 kg/ha. 
Thus, the results do not support the idea that risk is a major reason why farmers 
apply low levels of nitrogen to rice in favorable pioduction environments. 

1By J. Smith, visiting associate economist, and G.Umali, senior research assistant, Agricultural Economics Department. International Rice Re
search Institute, Los Bafios, Laguna, Philippines. The paper is a detailed version of in article with the same title appearing in the American 
Journal of Agricultural Economics, AugLst 1985. Sections are reprinted here with the ,.ditor's permission. 



PRODUCTION RISK AND OPTIMAL FERTILIZER RATES:
 
AN APPLICATION OF THE RANDOM COEFFICIENT MODEL
 

Risk as an impediment to progress has been a recurrent 
theme in development work for the last 15 yr (8, 24). Some 
writers apply risk theory to rice production and argue that 
modem varieties have not realized their full potential be-
cause year-to-year yield variability makes it risky for farmers 
to apply economically optimal levels of inputs (2). The ar-
gument is illustrated in Figure 1, which depicts the probabi-
lity distribution of profit at high (iTh) ioputand low (7rl) 
levels. 

In Figure la, both the mean and variance of pro~it are 
less at the lower input level. If farmers were risk neutral, ie, 
indifferent to risk o orofit variability, they would use the 
higher input level because mean profit is higher for 7TI,than 
for 7r.Farmers, however, are postulated to be risk averse, 
ie, they are more anxious to avoid low incomes than to at-
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1. Probability distribution of profits at different N rates. (Adapted 
from 17]). 

tam high profit levels (19). Therefore, they might prefer Tr! 
because the chance of making very low profits is less when 
they apply the lower level of inputs. The probability of 
making really large gains is also lower for 7TI but this is rela
tively less important to a risk-averse farmer. When risk-averse 
farmers apply suboptimal input levels, lower yields re
present a social cost. 

The critical point in this argument is how profit varia
bility changes as inputs increase. If the profit distribution 
at 	 high input levels is lrh (Fig. lb), ic, if the variance does 
not change, a risk-averse farmer will not gain by choosing 
the lower application rate. This case plesents no conflict 
between risk and profit maximization. 

An intennediate case is shown in Figure lc. Profit varia
bility is greater at the higher input level. However, the in
creased variance is small relative to the increase in mean 
profits. Risk is, therefore, unlikely to significantly change
input use. 

Research has measured how risk aversion alters input 
use, particularly of fertilizer. The evidence is conflicting. 
While Moscardi and de Janvry (16) and Ryan and Perrin 
(20) conclude that eisk aversion substantially lowers input
 
levels, Rcumasset (18) and Rosegrant and Herdt (17) show
 
that profit variability is not responsible for the low ob.
 
served 	levels of input use.
 

This conflicting evidence raises the question, "To what
 
extent are methodological differences responsible 
 for the
 
disparity in conclusions?" Risk studies have two key meth
odological components: the yield distributions of alternativestrategies and the fann decision-making framework. Incor
porath,.g the parameters of the yie.' distribution into the 
hypothesized risk-averse, decision-making model provides 

of input levels applied by rational risk-averse 
farmers. Comparing these risk-averse input levcls with risk
neutral levels permits inferences about the effect of risk on 
input use. 

This paper estimates the yield distribution by applying 
the Random Coefficient Model (RCM), an econometric 
procedure explicitly designed for situations where the 
parameters of the estimated relationship vary either tem
porally or spatially. Therefore, the model is particularly 
suitable for estimating the uncertain yield response to nitro
gen (N) in rice production. The RCM was first used by 
Young and Mount (25) to investigate the variability of crop 
response (25). Huysman later applied the RCM to survey
data from lloito Province, Philippines (13). 

A brief discus,-ion of methcdological ismes relat.d to 
yield distributions will highlight the model's appropriate-

This is followed by the mathematical specification andthe estimation procedure. The final section applies a number 
of decision-making models to quantify the effect of risk on
 

use.inu 

input use.
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METIIODOLOGICAL ISSUES RELATI) TO 
YIELD DISTRIBUTIONS 

In estimating yield distributions an important question is 
whether to use subjective or objective probability distribu-
tions. Directly questioning fanners produces subjective pro 

bahilities, ie, decision makers' beliefs about the likelihood 
of particular outcomes ( I ). In practice, such elicitation is 
difficult. Farmers' perceptions of yield variability are not 
usually based on deliberate information processing. The 
problems of capturing such preattentive processes has been 
documented by anthropologists (5,10). Herath et a] (I) 
report that only 50% of the subjective yield distributions 
they elicited were usable. Considering such difficulties, 
most researchers have used objective yield distributions 
derived from production functions. The implicit assump
tion is that experienced farmers are knowledgeable about 
actual year-to-year variations in yields. 

Aniother major issue is how to specify the production 
function. Risk analysis rests on the existence of variabi-
lity. Year-to-year varability of nitrogen response is ac
cepted as an agro.lomic fact (Fig. 2,3). Several approaches 
are available for specifying production functions under 
yield variability. The analytical approach accounts for 
variability by incorpoiating interaction terms between N 
and the hypothesized stochastic influences. The joint pro-
bability distribution of the stochastic variables generated 
by simulation (17) or by direct elicitation (18) provides 
an estimate of yield variability. Because of the difficulty 
of including all stochastic effects, Anderson et al (I)
recommend gross approaches which automatically pick up 
all variability without explicitly accounting for its sources. 
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2. Nitrogen response of IR42, 1976-81. (Source: Agronomy Depart-
rient, IRRI). 
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3. Nitrogen response of IR36, 1976-81. (Source: Agronomy Depart-

The RCM is a gross approach appropriate for investiga
ting N variability over time. This model explicitly specifies 
that the coefficients of the explanatory variables vary ran
domly over time or space. In this research, N responses 
comprising the data are deemed to be a random sample 
from the population of responses. The RCM provides esti
mates of the mean and variance of the response population. 
A unit increase in the explanatory variable produces a ran
dor increase, with a specified mean and variance, in the 
dependent variable (23). The methodology is, therefore, 
useful where the researcher primarily wishes to measure 
variability. 

The randomness assumption is reasonable, since varia
bility in N response is caused by factors such as weather 
and insect and disease infestation, which, assuming manage

uniformity, are generally regarded as random. 

THE RANDOM COEFFICIENT MODEL 

Given P observations in each of T-time periods the model 

for the ith time period can be written as: 
Yi = Xi 0i + ei (i = 1.... T) 0) 

where Yi is a Pxl vector of observations on the dependent 

variable in time period i, 

X i is a PxK matrix of observations on K independent 
variables in time period i, and 
3
i is a Kxl vector of random coefficients in time 

period i. 
For a N response function this indicates that the response

to N varies randomly over time periods. 

ei is a Pxl random disturbance vector in time period i. 
E(e i) = 0 E (eiei') = aiiI 
E(eiej) = 0 (i * j) 
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Each ei captures disturbances to N response within a Swamy also shows that the variance covariance matrix of 
particular time period. The heteroscedastic, uncorrelated the GLS estimator is given by: 
nature of the ei's imply that: [ I 

1. the variability of N response within time period i need b = -'.oi (XiXj (6) 
not equal variability ii time period j. This is plausible
because some sources of variability, such as weed infesta- which is the reciprocal of the denominator of the weight Wi . tion, interact with N levels whereas others, such as ty- Swamy proposes unbiased estimators for the unknown 
phoons, affect all plots uniformly. parameters, zAand oii, as follows: 

2. variability in one period is tncorielated with variabili
=ty in other periods. Since the causes of variability are ex- ait (Yi - Xi) ' (Yi - XiIi)iP-K (7)

pected to occur randomly, this assumption appears reason- which is the error mean square of the OLS regression in 
able. year i. Fin'lly, the estimate of , the variance covariance 

The i are distributed with mean o and variance ,, matrix of the it is 
ie, Pi - + (2)
where ui is a Kxl vector of random elements: A, = , ;1 (XXi)( 

E(ui) 0. E (uiui') 1: uiu ) 0 (i j) T =I 8i 

The distribution of the ui's captures the variability of N The first term of equation 8 is a variance covariance 
response over time periods. N response over time has a matrix measuring variability of OLS coefficients across 
fixed variance (,'). N response in different time periods is years. The ijth element is given by 
independent. [T

Pooling observations over time periods gives I 1 I 

wherc Y y X X where ij and ik are the OLS estimates of 0j and Ok, res
2X pectively, in year i. 

0 and Ok are the means of the OLS estimates for 0jL YT XT and Ok over the T-time periods.(PTxI) (PTxK) The second term, ii(XiXi)- 1, is the variance covariance 

matrix of the OLS coefficients in year i. 
and oii are substittited into equation 5 and then into 

[X ..... equation 4 to compute the GLS estimates of the mean co]eo X2 ......... 0 u2 
 e2 efficient vector. 
+ 

0 ......... T
 

(P'xKT) (KTxl) (PTxl) EMIRICAL IESTIMATION 2 

The covariance matrix of the disturbance is a block dia
gonal matrix of dimension PTxPT with the ith diagonal A random coefficient model of N rice response was estima
given by Xi/,X i' + uii I. ted using data from rainfed N trials conducted at the Inter-

Since the diagonal elements of tie variance covariance national Rice Research Institute by the Agronomy Depart
matrix of e are unequal, OLS (Ordinary Least Squares) will ment. N rates were varied from 0 to 120 kg N/ha, at 30-kg 
give unbiased but inefficient estimates. GLS (Generalized intervals. A split plot experimental design, replicated 3
Least Squares) provides efficient estimates of . times, was used with fertilizer as the main plot and varieties 

Swamy (22) shows that a GLS estimator of is given by as subplots. The model wa: estimated with two cultivars,
T IR36 and IR42, the most widely grown varieties in the 

= 1 Wifli (4) Philippines. Thirty observations on each variety were availi~lable for 5 yr ( 1976-79, 198 1). 

Mean N response at each N level, by variety and year, are 
where Oi = (X Xi)- XjYi is the OLS estimator of Pi from graphed in Figures 2 and 3. These confirm that N response 
equation I . varied widely across years. The intercept of IR36 was con

sistently lowe- than that of IK42, with the difference 
1

S=h 1A{+ (xX-'} '-l r ) varying over was in01._ oj j +((i time. This captured the estimated- (i) model by incorporating a dummy variable to distinguish 
As in the GLS estimator without random coefficients, the two varieties. In the figures, the IR36 slopes appear

equation 4 weights the estimate in each year by the inverse 2The computer program for estimating the random coefficient 
of its variance. model is given in the Appendix. 
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flatter than the IR42 slopes. However, interaction terms 

between N and variety, included in the iiitial model version, 

turned out statistically insignificant and were dropped from 

the analysis. Of the different functional forms estimated
 
with the annual data, the quadratic provided the best fit. 


Yij a+ b Nij +cN ij+ dVij +e.i 	 (9) 

where Yij = yield (kg/ha) of observation j in time period i;
 
Nij = nitrogen application (kg/ha); 

Vij = variety dummy for observation j in time period 


i; I for IR42; 0 for IR36; and 

eij =error term for observation jin time period i.
 

The OLS estimates of the liiiear and quadratic N para-

meters change considerably from year to year (Table I). 

The coefficient sizes in all years except 1981 are plausible, 

ie, consistent with expectations based on previous research. 
The low and insignificant estimates for 1981 are not sur-FTj
prising given the widely oscillating pattern of response in 
that year (Fig. 2, 3). 

Swamy (22) proposes the following test for the homo
geneity of cofficients across years: 

Given the null hypothesis: 


HIo = = 3(where = GLS estimate 
without random 

coefficients) 
the homogeneity statistic I-1Fis given by 

T.1•X
T ixi 

i=i 


T-1 


where 	 0 Xji (10) 

The asymptotic distribution of Ho/K (T-I) can be ap-
proximated by F with K (T- 1' T (P-K) degrees of freedom. 

Tile calculated value of F was 13.08 with 16 and 130 
degrees of freedom. The data do not support the hypo-
thesis that the coeffi'ients are fixed over time. Therefore, 
a varying parameter model is appropriate for this data set. 

Table 1. Quadratic nitrogen response functions, 19 76 -8.a 

Year-to-year variations in N response are assumed to be 
random. The following regression pooling data over years 
was estimated to test whether asignificant trend existed. 

= a + b 	 + c N2 
+ d Vij + fTi + Cij (11) 

whereT 	 = time trend 
= I ...5 as year = 1976 ....1979, 1981. 

The trend variable was not statistically significant (Table 2). 
Figures 2 and 3 also do not reveal any systematic effect of 
time. 

GLS estimates with random parameters 
Equation 8 was used to obtain an unbiased estimate of , 
which measures the variability of the OLS coefficients over 
time (Table 3). Weights for each element of iePi's were 
computed as follows: 

= Wik T {kk + ojj(XjXj)-} - kk+ii(XjX ) '-' (12)
j .	 

° 

Table 2. Quadratic nitrogen response function pooled over all years 
and including time trend.a 

Independent variable Coefficient estimate Standard error 

Intercept 	 1869.84* * 252.71 
Nitrogen (kg/ha) 27.50** 6.66
Nitrogen squared (kg/ha) -0.13* 0.05 
Dummy for variety (IR42=1) 1096.75** 160.40Time trend (1976=1) -109.37 56.71 
R2 	 0.39
 

aAs in equation It. statisticallysignificant atthe 1% level,
 

statistically*~ significant at thestatistically significant at the 5%level. %level 

Table 3. Unbiased estimator of =a 

Intercept Nitrogen Nitrogen Dummy for 
squared variety 

Intercept 484638.00 6942.55 -47.07 -327210.00 
Nitrogen 6942.55 137.99 -0.96 -3373.88 
Nitrogen squared -47.07 -0.96 0.01 24.02 
Dummy for variety -327210.00 -3373.88 24.02 204016.00 
aEstimated as in equation 8. 

Independent variable 
1976 1977 1978 

Intercept 1124.13** 2677.82** 724.72** 
(352.37) (261.32) (240.46)Nitrogen (kg/ha) 27.55* 48.51** 22.03** 

Coefficient estimate and standard errorb 

Nitrogen squared (kg/ha) 
(12.57) 
-0.11 

(9.32)
-0.29* 

(010)
Dummy for variety (IR42= 1) 1352.60"* 

(0.07)
243.33 

R2 
(302.47) 

0.59 
(224.31) 

0.63 
aAs in equation 9.b, =statistically significant at the 1%level, * = 

(8.58) 
-0.11 
(0.07)

1361.27** 
(206.41) 

0.70 
statistically significant at the 5%level. 

1979 1981
 

1300.65** 1881.38** 
(291.03) (352.74)

34.33** 5.11 
(10.38) (12.58)
-0.19* 0.03 
(0.08) (0.10)

1552.80* 973.73** 
(249.82) (302.79) 

0.69 0.39 
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where Wik is the weight for the kth parameter in year i and 
the subscripts of A indicate the relevant elements of the A 
matrix. The weighted estimates are aggregated over years to 
give the mean coefficient vector of GLS estimates with ran-
dom parameters (Table 4). The magnitudes of all coeffi-
dents are reasonable. On an average, maximum yield is at 
102 kg N/ha, which is plausible considering that Figures 2 
and 3 show a downturn between N rates of 90 and 120. 
The marginal product at the mean N level of 60 kg/ha is 12 
kg grain/kg N, reasonable under rainfed conditions. The 
base yields of IR42 are about a ton more than those of 
IR36. This reflects agronomic characteristics of IR42, a 
high yielder even without fertilizer (14). 

The asymptotic standard errors are listed in parenthesis
below the coefficient estimates. These were obtained by 
taking the square root of the diagonal elements of -/5 (22). 
All estimates are significant at the 1% level. The OLS esti-
mates for the poo!ed data set given in the second colunn of 
Table 4 are similar to the GLS estimates. 

Variance of yield distributions 
Estimates of the relationship between yield variability and 
N rates are given in this section. The variance of Y at each 
level of N is based on the covariance matrix of the distur-
bance term (25): 

Va (YIN) = X X + (13) 
where N= the value of N at which the variance of Y is to be 

evaluated, 
a lxK vector of ind-pendent variables with N =0 

N and all others valued at the sample means 
a = the mean error suia of squares over years. given 

by 

T 
E SSE i 
i=l -Table 

T 

E (Pi- Ki)

i=l 

where SSEi = sum of squared errors from the OLS regressicn
in year i. 

OPTIMAL FERTILIZER RATES UNDER UNCERTAINTY 

A comparison of optimal N rates under risk-neutral and 
risk-averse decision-making models quantifies the effect of 
risk aversion on fertilizer use. 

Farm costs for the optimality analysis were obtained by 
interviewing a small sample of farmers in Barrio Taysan, 
Batangas Province (Table 5), a rainfed rice growing area 
climatically and topographically similar to the IRRI experi
mental site from which the production data were obtained. 

Farm size in Taysan is small, averaging 1.5 ha. All farm-
ers grew modern rices: C4 and a number of IR varieties. 
Average yields were 2.4 t/ha with a mean N rate of 44 kg/ 
ha. At the same fertilizer application rate, the mean para-

IRPS No. 115, October 1985 

Talle 4. Generalized Least Squares (GLS) and Ordinary Least
 
Squares (OLS) estimates of quadratic nitrogen response function,
 
1976-81 pooled data.' 

GLS estimate and Pooled OLS 
Independent variable asymptotic estimate and 

standaid errcrb standard error" 

Intercept 1541.37 1541.74 
(311.33) (188.60) 

Nitrogen (kg/ha) 28.50 27.50 
Nitrogen squared 

(5.25)
-0.14 

(6.73)
-0.13 

(kg/ha) (0.04) (0.05) 
Dummy for variety 1090.19 1096.75 

(1R42= 1) (201.99) (161.89) 

aAll coefficients are significant at the 1% level. bGLS estimates asin equation 4. cOLS estimates as in equation 9. 

( 
400

300

200 

100 

0 30 60 90 120 
Nitrogen (kg/t-i) 

4. Profit variability, IR36. 

5. Mean production and price data for 12 farmers, Batangas
Province, Philippines. 

Farm size (ha) 1.5 
Yield (t/ha) 2.4 
Nitrogen application (kg/ha)
Palay price (i/kg) 

44 
1.3 

Nitrogen (urea) price: (i/kg) 5.1 
Interest rate on production credit (% per year) 137 
Expenditure on inputs other than fertilizer (1i/ha) 600 

meter estimates of the RCM predict a slightly higher yield 
of 2.5 t/ha for IR36. 

Share tenancy was predominant. Landlords did not con
tribute to production costs. They received one-third of the 
output net of harvesters/threshers' share (one-fifth) as land 
rent. 

Risk-neutral model 
A rational risk-neutral farmer maximizes expected profits. 
The decision rule adjusted to reflect the institutional envi
ronment is: 
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Max E() = wi Py E(Y) - w2 PN N - C (14) 

where 7r net returns/ha, 

Py = reported piice of rough rice/kg,
E(Y) = f (N) is the mean production function estimated 

by the RCM, 

PN = reported price of nitrogen/kg from urea,N nitrogen rate (kg/ha), and 

C = expenditure per ha on inputs other than nitrogen. 


C was taken as fixed and independent of the fertilizer rate.
Reported production and prices were adjusted to consider 
other costs farmers incurred. Wl, the adjustment parameter 
for production, was set at 0.39, to account for output 
shares paid to landlords and harvesters. It also incorporated 
transport and storage losses and cleaning and drying costs, 
w2, the adjustment parameter for nitrogen, was set equal 
to 1.6 to represent fertilizer, fertilizer application, andble6).ratetran por cots(T 

Risk-averse full optimality model 
In this model, farmes are assumed to maximize the expec-
ted value of a concave utility function which consistently 
orders outcomes according to underlying preferences. Using 
a Taylor series expansion, Anderson et al (1) show that the 
utility of(n) can be written as: 

U (n) = UIE (n) ] + U2 [E (T) I M2 (rr)/2 
-t-U [E (r) I M (rr)/6 +...... (15) 

where Ui is the ith derivative of the utility function and Mi
is the ith moment of the probability distribution of profits. 

The variance of yield (obtained from equation 13) was 
used to compute the variance of profit as follows (15): 

Var (n)= (WlPy) 2 Vart(Y) (16) 

As N rates increased, profit variance increased at a de-
clining rate, reaching a maximum at 70 kg N/ha (Fig. 4).
This is consistent with the pattern of variability exhibited 
by the data set (Fig. 2, 3). 

RCM provides estimates of the first two moments of the 
yield distribution. This is no problem if yields are normally
distributed. Theoretically the Central Limit Theorem (9) 

Table 6. Adjustment parameters applied to reported data: gross 
revenue and fertilizer cost. 

Adjustment parameter 

Grossrevenue 
ltarvester's/thresher's share .20Landlord's share .27
Transport/storage 'osses, .14 

cleaning/drying costs 

Total adjustment (1 - w) 
 .61 

Interes(137%/yr for 5 mo)os 
Fertilizer application and transport costs .03
Total adjustment (w2 
 - 1) .60 

Table 7. Test of normality: experimental data, IRRI, Los Bafios,
Philippines: 30 observations at each N level. 
110: Data values are a random sample from a normal distribution. 

Nlevel Komogor-ov lg 
(kg/ha) D-statistic 

30 0.15 -0.11 
60 0.07 >.20 
90 

120 
0.08 
0.09 

>.20 
>.20 

can be invoked to support the assumption of normality. 
On the other hand, Day (6) points out that since crop yields 
are necessarily nonnegative the normality assumption is not 
plausible. The real issue is whether the normal distribution 
provides an adequate approximation for the data set under 
consideration. The distribution of santple yields at each Nwas ested for normality by using the Kolmogorov-Smirnov D-statistic. The hypothesis of normality could not 
be rejected (Table 7). (If initial tests indicate that yields are 
not normally distributed, the Pearson curve fitting system 
can be used to identify the distribution and its higher 
tllorlients.) 

The normality assumption allowed equation 15 to be 
estimated with all, except the first two, moments of the 
profit distribution set equal to zero. Th. utility function 
used was the Constant Partial Risk Averse Function 
(CPRA) specified by Binswanger (3) as 

U (r) = (1- S)R(I- S) (17) 
where S is the partial risk aversion coefficient 3 and R is the 

stochastic profit at each level of N application. This function 
has been estimated in different parts of the developing 
world; results indicate most farmers are moderately risk 
averse (4). In the Philippines, CPRA function estimates are
available from Sillers' work (21) in Nueva Ecija. Seventy
eight per cent of farmers fell into two intermediate cate
gories of risk aversion. The S value used in this paper (0.8) 
is the common endpoint of these two categories. 

The CPRA function is a local approximation derived 
from a utility function in which risk aversion increases with 
the size of the prospect at stake (3). Ideally, therefore, the 
value of S should be increased as farm size increases. Be
cause thete were no indications of the magnitude of change, 
this paper attempted no such adjustment. 

RESULTS 

Tte effect of risk aversion on optimal N rates is much
smaller than previously believed. The optimal choice in the
risk-averse model is 35 kg N/ha, compared with the risk
neutral optimum of A2 kg/ha (Table 8). This 17% reduction 

in fertilizer use lowers yields by 122 kg/ha. These results 
3Partial risk aversion traces the behavior of an individual when the 
amount at risk increases but wealth remains the same. 
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Table 8. Risk-neutral and risk-averse optimal N rates. duction conditions may not be risky enough to significant
ly affect input levels.kg/ha These conclusions are valid only for favorable produc

Risk-neutral optima; Nratea 42 tion environments. Clearly, further work is required inRisk-averse optimal Nrateb 35 harsh environmental conditions where risk could have a
Effect of risk on fertilizer u'.e 7
Effect of risk on yield 122 greater impact on input use. However, the crucial factor 

is the rate at which yield variability increases as N rates goaEstjmat~d as in equation 14. hi'stininated as in equation 1. up. If, iii unfavorable environments, absolute yield varia

bility is higher but the rate at which variability increases 
are consistent with the findings of risk studies conducted in with N rates is relatively slight, thu reported results on the 
irrigated areas of the Philippines. Roumasset (18) and Rose- effect of risk aversion would still be valid. If, however, yield 
grant and Herdt (17) reported that risk did not significantly variability is found to increase faster, risk aversion could 
lower fertilizer levels in irrigated areas. This paper shows it substantially affect inputs. If strong interactioms exist 
may be possible to extend this conclusion to favorable between N and stochastic factors such as wea her, risk 
shallow rainfed areas. aversion could impede progress. The larger these inter-

Roumasset (18) noted no conflict between risk aversion actions, the more significant would be the conflict between 
and profit maximization if yield variability remained con- risk and profit maximization. 
stant or increased relatively slowly as N rates were increased. 
This might account for the conflicting evidence on the ef- ACKNOWLt:DGM'ENT 
fect of risk aversion. In Roumasset's data set, risk (defined 
as the probability of a negative rate of return) increased We acknowledge the generosity of Dr. S. K. De Datta in 
slowly with changes in fertilizer application. By contrast, making the data available to us. We are grateful to Dr. J. C. 
Ryan and Perrin (20) found that the variance of profits in Flinn for his encouragement and valuable suggestions,
 
potato cultivation increased sharply with N rates. Consis. Dr. K. Kalirajan for helpful comments, and N. Palma for
 
tent with this, they reported that risk aversion substan- computation assistance.
 
tially reduced input levels.
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Appendix. Computer program for estimating tileRandom Coefficient Model 

The computer package Statistical Analysis System (SAS 1979) was 
left hand side; explanatory comments appear on the right. 

PIROGRAM 


DATA IN; 


INPUT YEAR YIELI N VAIlETY; 


D)42
IF VARII-TY='IR42' THEN D42=1 

NSQ=N*N;
 
INT=_N.-/ N_;
 

CARDS; 

DATA YEAR76; SET IN; IF YEAR=76;
DATA Yl-AR77; SET IN; IF YEAR=77; 

DATA YEAR78; SET IN; IF YEAR=78; 

DATA YEAR79; SET IN; II YEAR=79; 

DATA YEAR8 I; SET IN; IF YEAR=81; 
PROC SYSREG 	 DATA=Yl 'AR76 


OUTSSCP=XXQI 

OUTEST=BITAQI;


MODEL YIILD=N 	 NSQ D42/COVB; 
PROC SYSREG 	 DATA=YEAR77 


OUTSSCP=XXQ2 

OUTEST=BIETAQ2; 


MODEL Y1ELD=N NSQ D42/COVB; 
PROC SYSREG DATA=YIEAR/8 

OUTSSCP=XXQ3 
OUTI'ST=BI-TAQ3;

MODEL YI-LD=N NSQ D42/COVB; 
PROC SYSRIG DATA=YEAR79 

OUTSSCP=XXQ4 
OUTEST=BI-TAQ4; 

MODEL YIELD=N NSQ D42/COVB;
PROC SYSREG DATA=YEAR81 

OUTSSCP=XXQ5 
OUTEST=BETAQ5; 

MODEL YIFLD=N NSQ D42/COVB; 

DATA SPVARCOV; SET BETAQI BETAQ2 
BETAQ3 BETAQ4 BETAQ5; 

PROC CORR COV: 

used to estimate the model. A complete program listing appears on the 

RI-:MARKS
 
The DATA statement creates 
a SAS data set. The word following
DATA (in this case IN) is the name given to the data set. 
The INPUT statement reads the data into the data set. The words
following INPUT are the variables in the data set. 

Mathemalical operations create new variables in the data set. 

The CARI)S statement specifies that all cards read hereafter are 
data cards until a new SAS conmand is met. 

Subsetting I1:creates a new data set whose observations satisfy
the condition(s) in the I1:statement. The observations conic 
from the data SET (IN) specified in the SET statement. 

PROC statement invokes tihe procedure specified after PROC. 
DATA option in the procedure specifies the data set to be used 
in the procedure.
OUTSSCP and OUTEST options output the croasproducts
matrix into the data set specified by OUTSSCP= and the vector 
of parameter estimates into the data set specified by OUTEST= 
MODEL statement in the SYSRI.G procedure specifies the re
gression model.
 
COVB option in the MODEL statement of the SYSREG pro
cedure prints the variance-covariance matrix of the OLS coef
ficient estimater.
 
SYSREG procedure computes OLS parameter estimates.
 

Specifying 2 or more data sets in a SET statement vertically 
concatenates the data sets. 

When no DATA option is given in any PROC statement, the 
data set immediately preceding the procedure is used. il this 
case, PROC COPR ws'ill use SPVARCOV. 
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Appendix continued 

PROGRAM REMARKS 

DATA FORMEANS; SET IN;
 
PROC SORT; BY N; 
 By statement in any procedure performs the procedure at each 

value of the variable(s) specified in the BY statement, Thus, the 
BY statement in the SORT procedure groups the data at each 
value (level) of N.

PROC MEANS; BY N; VAR INT N NSQ D42; MEANS procedure computes the means of the variables speci-OUTPUT OUT=BARNQ fied in the VAR statement. OUTPUT statement outputs dataMEAN=INTMEAN NMEAN into the data set specified by OUTr which contains the variables
NSQMEAN D42MI"AN; specified by MEAN= 

DATA BAR0; SET BARNQ; IF N=0:
 
DATA BAR30; SET BARNQ; IF N=30;
 
DATA BAR60; SET BARNQ; IF N=50;
 
DATA BAR90; SET BARNQ; IF N=90;
 
DATA 13ARI20; SET BARNQ; If- N:-120;
 

GLS ESTIMATION OF TIlE RCM COEFFICIENTS 

" Before attempting to estimate any model ur-der the set of assumptions implied by equation 2, test whether fli are all fixed and are all equal. 
" The MATRIX procedure was used in the empirical estimation. 
1. ASYMIPTOTIC TESTS 01: EQUALITY BETWEEN FIXED COEFFICIENT VECTORS IN t RELATIONS WITH IIETEROSCEDASTIC 

DISTURBANCES equation 10 (l1B) 
PROGRAM REMARKS 

PROC MATRIX; 
FETCII XPRIMEXI DATA=XXQI; FETCH statement in the MATRIX procedure inputs the data set specified in theFETCH XPRIMEX2 DATA=XXQ2; DATA= option into the matrix specified by the FETCH command.
FETCH XPRIMEX3 I)ATA=XXQ3; XPRIMEX t is a (k+l) x (k+l) matrix.
 
FETCH 
 XPRIMEX4 DATA=XXQ4;
 
FETCH XPRIMEX5 DATA=XXQ5;
 

Delete row 2 and column 2 of each XPRIMEXt. They contain crossproducts for 
the dependent variable. 

XXI=XPRIMEX1 (1 3 4 5, 1 3 4 5); This statement creates the matrix XXt with 4 rows equal to lows 1 3 4 and 5 ofXX2=XPRIMIEX2 (I 3 4 5, 1 3 4 5); XPRIMEXt and 4 columns equal to columns 1 3 4 and 5 of XPRIMEXt. TheXX3=XPRIMEX3 (I 3 4 5,1 3 4 5); general term for this operation is Matrix Reshaping. XXt is a kxk matrix.
XX4=XPRIMEX4 (I 3 4 5, 1 3 4 5);
 
XX5=XPRIMEX5 0 3 4 5, 1 3 4 5);
 

Divide each XXt by its corresponding MSEt obtained from the OLS estimation.
CI=XXI -/MSEI;
 
C2=XX2 #/MSE2;
 
C3=XX3 #/MSE3;
 
C4=XX4 #/MSE4; 
C5=XX5 #/MSE5; 
I)=C1+C2+C3+C4+C5 ;
E=INV(D) E is the first term ofg of equation 10. 

FETCH Al DATA=BETAQI; A t is a I x(k+2) vector.
 
FEWCNI A2 DATA=BETAQ2;
 
FETCH A3 i0ATA=BETAQ3;
 
FETCH A4 DATA=BETAQ4;
 
FETCH AS DATA=BETAQ5;
 

Delete columns 1 and 2 of each A t . Move the last column of the vector to 
column 1. The last column given by OUTEST contains the intercept. 

AVECTOR I =A 1 (1,6 3 4 5); This statement creates AVECTORt with I row equal to row 1 of At and 4AVECTOR2=A2 (1,6 3 4 5); columns equal to columns 6 3 4 and 5 of At. 
AVECTOR3=A3 (1,6 3 4 5); 
AVECTOR4=A4 (1.6 3 4 5); 
AVECTOR5=A5 (1,6 3 4 5); 

Al=AVECTORI'; Each At is a kxl vector.A2=AVECTOR2'; At is fi in equation ,.
A3=AVECTOR3'; 'denotes transpose of the matrix. 
A4=AVECTOR4'; 
A5=AVECTOR5'; 
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Appendix continued 

PROGRAM 


FI--CI * AI;
 
F2=C2 * A2;
 
F3=C3 * A3;
 
F4=C4 * A4;
 
F5=C5 * A5;
 
F=FI + F2 + 13 + 1:4 + [5; 

B = E * F; 

XI=AI -B; 
X2=A2-B; 
X3=A3-13; 
X4=A4--B; 
X5=A5-- B; 

XIPRIME=XI';
 
X2PRIMI-=X2';
 
X3PRIM.=X3';
 
X4PRIME=X4';
 
X5PI3 tMII=X5'; 

YI=XlPRIME * CI * Xl;
 
Y2=X2PRIME * C2 * X2;
 
Y3=X3PRIMlE * (3 * X3;
 
Y4=X4PRlIlE * C4 * X4;
 
Y5=X5PRIMNII * C5 * X5;
 

lIB = YI + Y2 + Y3 + Y4 + Y5; 

11. ESTIMATION OF: TIlE RANDOM COEFFICIENTS 

PROGRAM 
=VARCOVQI	 vc II vcl12...vcl I k/ 

vc121 vcl22...vcl2k/
 

vclkl vclk2...vclkk; 
VARCOVQ2 = vc211 vc212...vc2lk/ 

vc221 vc222...vc22k/ 

vc2kl vc2k2...vc2kk; 

VARCOVQ5 = 	 vc511 vc512...vc5lk/ 
vc521 vc522...vc52k/ 

vc5kl vc5k2...vc5kk; 

VARQ1 = DIAG (VARCOVQ1); 
VARQ2 = DIAG (VARCOVQ2); 
VARQ3 = DIAG (VARCOVQ3); 
VARQ4 = DIAG (VARCOVQ4); 
VARQ5 = DIAG (VARCOVQ5);
VARQ = DIAG (VARCOVQ); 

Z2 = (VARQl + 	VARQ2 + VARQ3 + VARQ4 + 
VARQ5) #15; 

Z3 = VARQ - Z2; 

Will = Z3 + VARQI; 
W112 = Z3 + VARQ2; 
W113 = Z3 + VARQ3; 
W114 =Z3 + VARQ4; 
WI15 = Z3 + VARQ5; 

REMARKS
 

F is the second tern, inp of equation 10.
 

B is 0 in equation 10.
 

Xt is (P3i'fl) in equation 10.
 

HB is the homogeneity statistic given by equation 10. 

- equations 4,5,6,7, and 8 (BETA) 

REMARKS 

Input the variances-covailances matrix of the OLS coefficient estimates for each year, 

VARCOVQt is a kxk matrix. The vctij element is the covariance of the ith and the jth
parameter in the model for year t. For I=j, vctj is the variance of the ith para.,:?ter. 

Input also the special variance-covariance matrix (VARCOVQ) printed by the PROC 
CORR COV statement in the preceding procedure. 

Get the matrix of parameter variances and set covariances to zero. 
The DIAG (argumIent) statement creates a matrix whose diagonal elements are equal to 
the diagonal elements of the argument, and whose off-diagonal elements are zeroes. 

VARQ is the first term in , of equation 8. 

Sum the variance matrices across T years and divide by T. 
Z2 is the second term in of equation S. 
Z3 is A in equation 8. 
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Appendix continued 

PROGRAM 
 REMARKS 

WI1 = INV (WI 11); WI t is the second term in W i of equation 5.
 
W12 = INV (WI 12);
 
WI3 = INV (W113);
 
W14 = INV (WI 14);
 
WI5 = INV (WI 15);
 

W =WII 2 + W13 + W14 + WI5; W is the first term in W i of equation 5. 

W1 = WI 1 * INV (W); W is W iin equation 5.t 
W2 = W12 * INV (W); 
W3 = W13 * INV (W); 
W4 = WI4 * INV (W); 
W5 = W15 * INV (W); 

BETA = WI * Al + W2 * A2 + W3 * A3 + The At's in BETA are the same At's used in computing 1iB. 
W4 * A4 + W5 * A5; BETA is# in equation 4. 

III. ASYMPTOTIC STANDARD ERRORS - square roots of the relevant elements in the variance-covariance matrix given by equation 8
divided by T (ASE)
 

PROGRAM 
 REMARKS 
ZASE = Z3 #15; Divide each element of ,by T. 
DIAGZASlI = DIAG (ZASI,); Create a new matrix whose diagonal elements are those of ZASE 

and whose off-diagonal elements are zeroes. 
ASE = DIAGZASE ## 0.5; ASE is the matrix of the standard errors of the random 

coefficients. 

IV.VARIANCE OF Y AT DIFFERENT N LEVELS - equation 13. (VARN2 ) 

PROGRAM 
 REMARKS
 

FETCH XOMEAN DATA = BARO; X 2 MEAN is X in equation 13 where 2 = N. 
FETCH X30IMEAN DATA = BAR30; 
FETCH X60MEAN DATA = BAR60; 
FETCH X90MEAN DATA = BAR90; 
FETCH X120MEAN DATA = BARI20; 

VARNO = XOMEAN * Z3 * XOMEAN' + 488947.61; VARN2 isthe variance of Y when N = Q. 
VARN30 = X30MEAN * Z3 * X30MEAN' + 488947.61; 
VARN60 = X60MEAN * Z3 * X60MEAN' + 488947.61; 
VARN90 = X90MEAN * 73 : X9iMEAN' + 488947.61; 
VARN120 = XI20MI'AN * Z3 * XI20MEAN'+ 488947.61; 

http:488947.61
http:488947.61
http:488947.61
http:488947.61
http:488947.61
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