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PRODUCTION RISK AND OPTIMAL FERTILIZER RATES:
AN APPLICATION OF THE RANDOM COEFFICIENT MODEL/

ABSTRACT

This paper investigates the effect of risk aversicn on fertilizer use. A Random
Coefficient Model estimated the probability disiribution of yields at different
nitrogen rates. This technique allows coefficients of explanatory variables to
vary temporally or spatially. It is thus useful for modeling N response, which
varies from year to year due to interactions with stochastic disturbances such as
weather, and insect and disease infestation.

The procedure used data from S yr of N response trials by the Azronomy
Department at IRRI under rainfed conditions. The results showed only aslight
effect of risk aversion on fertilizer use, Application of risk-neutral and risk-averse
decision-making models predicted that moderately risk-averse farmers would
apply only 7 kg less than the risk-neutral, profit-maximizing N rate of 42 kg/ha.
Thus, the results do not support the idea that risk is a major reason why farmers
apply low levels of nitrogen to rice in favorable pioduction environments.

JBy J. Smith, visiting associate economist, and G. Umali, senior research assistant, Agricultural Economics Department, International Rice Re-
scarch Institute, Los Bafios, Laguna, Philippines. The paper is a detailed version of 1n article with the same title appearing in the American
Journal of Agricultural Economics, August 1985. Sections are reprinted here with the :ditor’s permission.



PRODUCTION RISK AND OPTIMAL FERTILIZER RATES:
AN APPLICATION OF THE RANDOM COEFFICIENT MODEL

Risk as an impediment to progress has been a recurrent
theme in development work for the {ast 15 yr (8, 24). Some
writers apply risk theory to rice production and argue that
modern varieties have not realized their full potential be-
cause year-to-year yield variability makes it risky for farmers
to apply economically optimal levels of inputs (2). The ar-
gument is illustrated in Figure 1, which depicts the probabi-
lity distribution of profit at high (n,) and low (m) input
levels.

In Figure la, both the mean and variance of proiit are
less at the lower input level. If farmers were risk neutral, ie,
indifferent to risk or orofit variability, they would use the
higher input level because mean profit is higher for m), than
for my. Farmers, however, are postulated to be risk averse,
ie, they are more anxious to avoid low incomes than to at-
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1. Probability distribution of profits at different N rates. (Adapted
from {7]).

tain high profit levels (19). Therefore, they might prefer m
because the chance of muking very low profits is less when
they apply the lower level of inputs. The probability of
making really large gains is also lower for ) but this is rela-
tively lessimportant to a risk-averse farmer. When risk-averse
farmers apply suboptimal input levels, lower yields re-
present a social cost.

The critical point in this argument is how profit varia-
bility changes as inputs increase. If the profit distribution
at high input levels is m, (Fig. 1b), ie, if the variance does
not change, a risk-averse farmer will not gain by choosing
the lower application rate. This case piesents no conflict
hetween risk and profit maximization.

An intermediate case is shown in Figure lc. Profit varia-
bility is greater at the higher input level. However, the in-
creased variance is small relative to the increase in mean
profits. Risk is, therefore, unlikely to significantly change
input use,

Research has measured how risk aversion alters input
use, particularly of fertilizer. The cvidence is conflicting.
While Moscardi and de Janvry (16) and Ryan and Perrin
(20) conclude that cisk aversion substantially lowers input
levels, Rcumasset (18) and Rosegrant and Herdt (17) show
that profit variability is not responsible for the low ob-
served levels of input use.

This corflicting evidence raises the question, *““To what
extent are methodological differences responsible for the
disparity in conclusions?” Risk studies have two key meth-
odolcgical components: the yield distributions of alternative
strategies and the farm decision-making framework. Incor-
porating the parameters of the yie.' distribution into the
hypothesized risk-averse, decision-making model provides
estimates of input levels applied by rational risk-averse
farmers. Comparing these risk-averse input levcls with risk-
neutral levels permits inferences about the effect of risk on
input use,

This paper estimates the yield distribution by applying
the Random Coefficient Model (RCM), an econometric
procedure explicitly designed for situations where the
parameters of the estimated relationship vary either tem-
porally or spatially., Thercfore, the model is particularly
suitable for estimating the uncertain yield response to nitro-
gen (N) in rice production. The RCM was first used by
Young and Mount (25} to investigzte the variability of crop
response (25). Huysman later applied the RCM to survey
data from Hoilo Province, Philippines (13).

A brief discuszion of methodological istnes relatad to
yield distributions will highlight the model’s appropriats-
ness. This is followed by the mathematical specification and
the estimation procedure. The final section applies a number
of decision-making models to quantify the effect of risk on
input use,
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METHODOLOGICAL ISSUES RELATED TO
YIELD DISTRIBUTIONS

In estimating yield distributions an important question is
whether to use subjective or objective probability distribu-
tions. Dizectly questioning farmers produces subjective pro-
babilities, ie, decision makers' beliefs about the likelihood
of particular outcomes (1). In practice, such elicitation is
ditficult. Farmers’ perceptions of yield variability are not
usually based on deliberate information processing. The
problems of capturing such preattentive processes has been
documented by anthropologists (5, 10). Herath et al (11)
report that only 50% of the subjective yield distributions
they elicited were usable. Cousidering such difficulties,
most researchers have used objective yield distributions
derived from production functions. The implicit assump-
tion is that experienced farmers are knowledgeable about
actual year-to-year variations in yields.

Another major issue is how to specily the production
function. Risk analysis rests on the existence of variabi-
lity. Year-to-year vasiability of nitrogen response is ac-
cepted as an agronomic fact (Fig. 2, 3). Several approaches
are available for specifying production functions under
yield variability. The analytical approach accounts for
variability by incorporating interaction terms between N
and the hypothesized stochastic influences. The joint oro-
bability distribution of the stochastic variables generated
by simulation (17) or by direct elicitation (18) provides
an estimate of yield variability. Because of the difficulty
of including all stochastic effects, Anderson et al (N
recommend gross approaches which automatically pick up
all variability without explicitly accounting for its sources.
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3. Nitrogen response of IR36, 1976-81. (Source: Agronomy Depart-
ment, IRRI),

The RCM is a gross approach appropriate for investiga-
ting N variability over time. This model explicitly specifies
that the coefficients of the explanatory variables vary ran-
domly over time or space. In this research, N responses
comprising the data are deemed to be a random sample
from the population of responses. The RCM provides esti-
mates of the mean and variance of the response population.
A unit increase in the explanatory variable produces a ran-
dom increase, with a specified mean and variance, in the
dependent variable (23}. The methodology is, therefore,
useful where the researcher primarily wishes to measure
variability,

The randomness assumption is reasonable, since varia-
bility in N response is caused by factors such as weather
and insect and disease infestation, which, assuming manage-
ment uniformity, are generally regarded as random.

THE RANDOM COEFFICIENT MODEL

Given P observations in each of T-time periods the model
for the ith time period can be written as:
Yi=Xjgi+eji=1,...T) )

where Yj is a Px] vector of observations on the dependent
variable in time period i,
X; is aPxK matrix of observations on K independent
variables in time period i, and
B; iz a KxI vector of random coefficients in time
period i,
For aN response function this indicates that the response
to N varies randomly over time periods.
ej is a Pxl random disturbance vector in time period .
E(e;) =0

E (ejei) = o} I
E(ciCj) =0(i#j)



Each ej captures disturbances to N response within a
particular time period. The heteroscedastic, uncorrelated
nature of the e;’s imply that:

1. the variability of N response within time period i need
not equal variability in time period j. This is plausible
because some sources of variability, such as weed infesta-
tion, interact with N levels whereas others, such as ty-
phoons, affect al! plots uniformly.

2. variability in one period is unconelated with variabili-
ty in other periods. Since the causes of variability are ex-
pected to occur randomly, this assumption appears reason-
able.

The Bi are distributed with mean B and variance A,
ic,ﬁi—'5+ui 2)
where uj is a Kxl vector of random elements:

L(u)) =0. L ()= E (ujuj) = 0 (i + j)

The distribution of the ui’s captures the variability of N
response over time periods. N response over time has a
fixed variance (). N response in different time periods is

independent,
Pooling observations over time periods gives
Y=Xp+e 3
where Y = Y, 7, X={ X,
;I Yy o X,
[ T
A .
LY J X1
(PTx1) (PTxK)
€= ,’xl 0. 01
| W €
0 Xpueururunnn U e
] ' :
0 ......... XU L U CTJ
(PTXKT) (KTx1) (PTx1)

The covariance matrix of the disturbance is a block dia-
gonal matrix of dimension PTxPT with the ith diagonal
given by XjeXi' + o 1.

Since the diagonal elements of the variance covariance
matrix of € are unequal, OLS (Ordinary Least Squares) will
give unbiased but inefficient estimates. GLS (Generalized
Least Squares) provides efficient estimates of §.

Swamy (22) shows that a GLS estimator of § is given by

-_— T ~
B=x Wsj @)
i=1

where f; = (X{X)™1 Y] is the OLS estimator of ; from
equation 1.

T o mg] =1 | - N
\\i=EE=1 {05 057} ] {aroucxixy = @)

As in the GLS estimator without random coefficients,
equation 4 weights the estimate in each year by the inverse
of its variance.
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Swamy also shows that the variance covariance matrix of
the GLS estimator is given by:

:l. -1
Lil {f\ - ojj (Xij)"'} —'J (6)

which is the reciprocal of the denominator of the weight Ww;.
Swamy proposes unbiased estimators for the unknown
parameters, A and 0jj, as follows:

%ii = (Yi = Xif) " (Y{- X3j/P-K (7
which is the error mean square of the OLS regression in

year i. Finelly, the estimate of &, the variance covariance
matrix of the f;. is

We

. 1T : - 1
A= —— - A (N e — . (VW
T l[’;;] (8- 8) (ﬁ—ﬁ):( T o5 (XjXj! (8)
The first term of equation 8§ is a variance covariance
matrix measuring variability of QLS coefficients across
years. The ij!" element is given by

LT
. b
-1 in

where Bjj and Bik are the OLS estimates of Bj and By, res-
pectively, in year i.

Bij - B) Bix - Ek)‘

Bj and Bk are the means of the OLS estimates for Bi
and ik over the T-time periods.
The second term, 511(X;Xi)"', is the variance covariance
matrix of the OLS coefficients in year i.
& and 6jj are substituted into equation 5 and then into
equation 4 1o compute the GLS estimates of the mean co-
efficient vector.

EMPIRICAL ESTIMATIONZ

A random coefficient model of N rice response was estima-
ted using data from rainfed N trials conducted at the Inter-
national Rice Research Institute by the Agronomy Depart-
ment. N rates were varied from 0 to 120 kg N/ha, at 30-kg
intervals. A split plot experimental design, replicated 3
times, was used with fertilizer as the main plot and varieties
as subplots. The model wa: estimated with two cultivars,
IR36 and IR42, the most widely grown varieties in the
Fhilippines. Thirty observations on each variety were avail-
able for 5yr(1976-79, 1981).

Mean N response at each N level, by variety and year, are
graphed in Figures 2 and 3. These confirm that N response
varied widely across years. The intercept of IR36 was con-
sistently lower than that of IR42, with the difference
varying over time. This was captured in the estimated
model by incorperating a dummy variable to distinguish
the two varicties. In the figures, the 1R36 slopes appear

2Thc computer program for estimating the random coefficient
model is given in the Appendix.
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flatter than the 1R42 slopes. However, interaction terms
between N and varicty, included in the initial model version,
turned out statistically insignificant and were dropped from
the analysis. Of the different functional forms estimated
with the annual data, the quadratic provided the best fit.

YU =a+b NU + ¢ N? ij + dVU + Cij 9)

where Yij = yield (kg/ha) of observation j in time period i;
Nij = nitrogen application (kg/ha);
vij = variety dummy for observation j in time period
i; I for1R42; 0 for IR36:; and
¢jj = crror term for okservation j in time period i.

The OLS estimates of the linear and quadratic N para-
meters change considerably from year to year (Table 1).
The cocfficient sizes in all years except 1981 are plausible,
ie, consistent with expectations based on previous rescarch.
The low and insignificant estimates for 1981 are not sur-
prising given the widely oscillating pattern of response in
that year (Fig. 2, 3).

Swamy (22) proposes the following test for the homo-
geneity of coefficients across years:

Given the null hypothesis:
. B, = § (where § = GLS estimate

without random
coefficients)

Ho =8, =8, =....

the homogeneity statistic Hg is given by

T Lo XXy oLo-
@i~ p)y Gi- 0

i=1 gii

[

Xxi™ L XiXiog (10)

1 i | i=l G

o=

where E:[
i

The asymptotic distribution of HﬁjK (T-1) can be ap-
proximated by F with K (T-1}. T (P-K) degrees of freedom.

The calculated value of I was 13.08 with 16 and 130
degrees of freedom. The data do not support the hypo-
thesis that the coefficients are fixed over time. Therefore,
a varying parameter model is appropriate for this data set.

Table 1. Quadratic nitrogen response functions, 1976-81.7

Year-to-year variations in N response are assumed to be
random. The following regression pooling data over years
was estimated to test whether a significant trend existed.

Yij=u+bNij+cN’ij+dVij+fTi+cij a1)

where T; = time trend
=1...5asyear=1976....1979, 1981,

The trend variable was not statistically significant (Table 2).
Figures 2 and 3 also do not reveal any systematic effect of
time.

GLS estimates with random parameters

Equation & was used (o obtain an unbiased estimate of &
which measures the variability of the OLS coefficients over
time (Table 3). Weights for cach clement of the Bi’s were
computed as follows:

R L o (XX "1-'. P I
k=¥ {Akk ojj (X;X;j) } | {Akk+oii(xixi) 1} (12)

.

Table 2. Quadratic nitrogen response function pooled over all years
and including time trend @

Independent variable Cocfficient estimate Standard error

Intercept 1869.84** 252.71
Nitrogen (kg/ha) 27.50** 6.66
Nitrogen squared (kg/ha) ~-0.13* 0.05
Dummy tor variety (IR42=1) 1096.75** 160.40
Time trend (1976=1) -109.37 56.71
R? 0.39

9As in equation 11. ** = statistically significant at the 1% level, * =
statistically significant at the 5% level.

Table 3. Unbiased estimator of 4 = 4.8

Nitrogen Dummy for

Intercept Nitrogen

squared variety
Intercept 484638.00 6942.55 -47.07 -327210.00
Nitrogen 6942,55 137.99 -0.96 -3373.88

Nitrogen squared -47.07 ~0.96 0.01 24.02
Dummy for variety -327210.00 -3373.88 24.02 204016.00

IEstimated as in equation 8.

Coefficient estimate and standard error®

Independent variable

1976 1977 1978 1979 1981
Intercept 1124,13** 2677.82%* 724,72%* 1300.65%* 1881.38**
(352.37) (261.32) (240.46) (291.03) (352.74)
Nitrogen (kg/ha) 27.55* 48.51** 22,03** 34.33%* 5.11
(12.57) 9.32) (8.58) (10.38) (12.58)
Nitrogen squared (kg/ha) =0.11 ~0.,29** ~0.11 -0.19* 0.03
(0.10) (0.07) (0.07) (0.08) (0.10)
Dummy for variety (IR42=1)  1352.60** 243,33 1361.27** 1552.80** 973.73**
(302.47) (224.31) (206.41) (249.82) (302.79)
R3 0.59 0.63 0.70 0.69 0.39

%As in equation 9, b»» = statistically significant at the 1% level, * = statistically significant at the 5% level.



where Wik is the weight for the kth parameter in year i and
the subscripts of & indicate the relevant elements of the &
matrix. The weighted estimates are aggregated over years to
give the mean coefficient vector of GLS estimates with ran-
dom parameters (Table 4). The magnitudes of all coeffi-
cients are reasonable. On an average, maximum yield is at
102 kg N/ha, which is plausible considering that Figures 2
and 3 show a downtumn between N rates of 90 and 120.
The marginal product at the mean N level of 60 kg/hais 12
kg grain/kg N, reasonable under rainfed conditions. The
base yields of IR42 are about a ton more than those of
IR36. This reflects agronomic characteristics of IR42, a
high yielder even without fertilizer (14).

The asymptotic standard errors are listed in parenthesis
below the coefficient estimates. These were obtained by
taking the square root of the diagonal elements of /5 (22).
All estimates are significant at the 1% level. The OLS esti-
mates fcr the pooled data set given in the second column of
Table 4 are similar to the GLS estimates.

Variance of yield distributions

Estimates of the relationship between yield variability and
N rates are given in this section. The variance of Y at each
level of N is based on the covariance matrix of the distur-
bance term (25):

Var (YIN)=X & X'+5 (13)
where V = the value of N at which the variance of Y is to be
evaluated,

X = a IxK vector of ind:'pendent variables with N =
N and all others valued at the sample means

= the mean error suti of squares over years. given
by

Q>

L (P-K)
i=1

where SSEj = sum of squared crrors from the OLS regressicn
in year i,

OPTIMAL FERTILIZER RATES UNDER UNCERTAINTY

A comparison of optimal N rates under risk-neutral and
risk-averse decision-making models quantifies the effect of
risk aversion on fertilizer use.

Farm costs for the optimality analysis were obtained by
interviewing a small sample of farmers in Barrio Taysan,
Batangas Province (Table 5), a rainfed rice growing area
climatically and topographically similar to the IRRI experi-
mental site from which the production data were obtained .

Farm size in Taysan is small, averaging 1.5 ha. All farm-
ers grew modern rices: C4 and a number of IR varieties.
Average yields were 2.4 t/ha with a mean N rate of 44 kg/
ha. At the same fertilizer application rate, the mean para-
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Tatle 4. Generalized Least Squares (GLS) and Ordinary Least
Squares (OLS) estimates of quadratic nitrogen response function,
1976-81 pooled data.b

Pooled OLS
estimate and
standard error®

GLS estimate and
asymptotic_
standaid error

Independent variable

Intercept 1541.37 1541.74
(311.33) (188.60)

Nitrogen (kg/ha) 28.50 27.50
(5.25) 6.73)

Nitrogen squared ~-0.14 -0.13
(kg/ha) (0.04) (0.05)
Dummy for variety 1090.19 1096.75
(IR42=1) (201.99) (161.89)

a _ .
All coefficients are significant at the 1% level, PGLS estimates as
in equation 4, COLS estimates as in equation 9.

Var (Profit)<103

400
300} /__\
200}
100 |-
0 1 | !
0 30 60 90 120

Nitrogen (kg/t7)
4. Profit variability, IR36.

Table S. Mean production and price data for 12 farmers, Batangas
Province, Philippines.

Farm size (ha) 1.5
Yield (t/ha) 2.4
Nitrogen application (kg/ha) 44
Palay price (B/kg) 1.3
Nitrogen (urea) price: (B/kg) 5.1
Interest rate on production credit (% per year) 137
Expenditure on inputs other than fertilizer (/ha) 600

meter estimates of the RCM predict a slightly higher yield
of 2.5 t/ha for IR36,

Share tenancy was predominant. Landlords did not con-
tribute to production costs. They received one-third of the
output net of harvesters/threshers’ share (one-fifth) as land
rent,

Risk-neutral model

A rational risk-neutral farmer maximizes expected profits.
The decision rule adjusted to reflect the institutional envi-
ronment is:
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Max E(m) = wi Py E(Y) - w, Py N - C 14

where 7 = net returns/ha,
Py =reported piice of rough rice/kg,

E(Y) = f (N) is the mean production function estimated
by the RCM,

PN = reported price of nitrogen/kg from urea,

N = nitrogen rate (kg/ha), and

C = expenditure per ha on inputs other than nitrogen.

C was taken as fixed and independent of the fertilizer rate.
Reported production and prices were adjusted to consider
other costs farmers incurred. wy, the adjustment parameter
for production, was set at 0.39, to account for output
shares paid to landlords and harvesters, It also incorporated
transport and storage losses and cleaning and drying costs,
w2, the adjustment parameter for nitrogen, was set equal
to 1.6 to represent fertilizer, fertilizer application, and
transport costs (Table 6).

Risk-averse full optimality model

In this model, farme.s are assumed to maximize the expec-
ted value of a concave utility function which consistently
orders outcomes according to underlying preferences. Using
a Taylor series expansion, Anderson et al (1) show that the
utility of (7) can be written as:

U= U[E(m)] +U, [Em] M, (n)/2
+Uy [E@ M, (mf6+...... (15)

where Uj is the ith derivative of the utility function and M;
is the ith moment of the probability distribution of profits,

The variance of yield (obtained from equation 13) was
used to compute the variance of profit as follows (15):

Var (m) = (w)Py)? Var (Y) (16)

As N rates increased, profit variance increased at a de-
clining rate, reaching a maximum at 70 kg N/ha (Fig. 4).
This is consistent with the pattern of variability exhibited
by the data set (Fig. 2, 3).

RCM provides estimates of the first two moments of the
yield distribution. This is no problem if yields are normally
distributed. Theoretically the Central Limit Theorem “)

Table 6. Adjustment parameters applied to reported data: gross
revenue and fertilizer cost,

Adjustment parameter

Gross revenue

Harvester’s/thresher’s share .20
Landlord’s share .27
Transport/storage *osses, 14
cleaning/drying costs
Total adjustment (1 - w,) .61
Fertilizer cost
Interest (137%/yr for 5 mo) 57
Fertilizer application and transport costs .03
Total adjustment (w, - 1) .60

Table 7. Test of normality: experimental data, IRRI, Los Banos,
Philippines: 30 observations at cach N level,

H,: Data values are a random sample from a normal distribution,

Kolmogoroy-

N level . Significance
Smirnov

(kg/ha) D-statistic level
0 0.13 .20

30 0.15 =0.11

60 0.07 >.20
90 0.08 >.20
120 0.09 >.20

can be invoked to suppert the assumption of normality.
On the other hand, Day (6) points out that since crep yields
are necessarily nonnegative the normality assumption is not
plausible. The real issue is whether the normal distribution
provides an adequate approximation for the data set under
consideration. The distribution of sample yields at each N
rate was tested for normality by using the Kolmogorov-
Smirnov D-statistic. The hypothesis of normality could not
be rejected (Table 7). (If initial tests indicate that yields are
not normally distributed, the Pearson curve fitting system
can be used to identify the distribution and its higher
moments.)

The normality assumption allowed equation 15 to be
estimated with all, except the first two, moments of the
profit distribution set equal to zero. Tha utility function
used was the Constant Partial Risk Averse Function
(CPRA) specified by Binswanger (3) as

U@m=@-8)rRY™S an

where S is the partial risk aversion coefficient? and R is the
stochastic profit at each ievel of N application. This function
has been estimated in different parts of the developing
world; results indicate most farmers are moderately risk
averse (4). In the Philippines, CPRA function estimates are
available from Sillers’ work (21) in Nueva Ecija. Seventy-
eight per cent of farmers fell into two intermediate cate-
gories of risk aversion. The S value used in this paper (0.8)
is thie common endpoint of these two categories,

The CPRA function is a local approximation derived
from a utility function in which risk aversion increases with
the size of the prospect at stake (3). Ideally, therefore, the
value of S should be increased as farm size increases. Be-
cause there were no indications of the magnitude of change,
this paper attempted no such adjustment.

RESULTS

Tre effect of risk aversion on cptimal N rates is much
smaller than previously believed. The optimal choice in the
risk-averse model is 35 kg N/ha, compared with the risk-
neutral optimum of 42 kg/ha (Table 8). This 17% reduction
in fertilizer use lowers yields by 122 kg/ha. These results

3Pa:tial risk aversion traces the behavior of an individual when the
amount at risk increases but wealth remains the same.



Table 8, Risk-neutral and risk-averse optimal N rates,

kg/ha
Risk-neutral optimai N rated 42
Risk-averse optimal N ratc? 35
Effect of risk on fertilizer uze 7
Lffect of risk on yield 122

9Estimated as in equation 14, PEstimated as in equation 1§.

are consistent with the findings of risk studies conducted in
irrigated areas of the Philippines. Roumasset (18) and Rose-
grant and Herdt (17) reported that risk did not significantly
lower fertilizer levels in irrigated areas. This paper shows it
may be possible to extend this conclusion to favorable
shallow rainfed areas.

Roumasset (18) noted no conflict between risk aversion
and profit maximization if yield variability remained con-
stant or increased relatively slowly as N rates were increased.
This might account for the conflicting evidence on the ¢f-
fect of risk aversion. In Roumasset’s data set, risk (defined
as the probability of a negative rate of return) increased
slowly with changes in fertilizer application. By contrast,
Ryan and Perrin (20) found that the variance of profits in
potato cultivation increased sharpiy with N rates. Consis-
tent with this, they reported that risk aversion substan-
tially reduced input levels.

CONCLUSIONS

This paper investigate: the effect of risk aversion on fertili-
zer use. A Random Coefficient Model estimated the pro-
bability distribution of yields at different nitrogen rates.
This technique allows coefficients of explanatory variables
to vary temporally orspatially. It is thus useful for modeling
N response, which varies year to year because of interactions
with stochastic disturbances such as weather, and insect
and disease infestation.

The procedure used data from 5 yr of N response trials
by the Agronomy Department at IRRI under rainfed con-
ditions. The results showed only a slight effect of risk
aversion on fertilizer use. Application of risk-neutral and
risk-averse decision-making models predicted that moderate-
ly risk-averse farmers would apply only 7 kg less than the
risk-neutral, profit-maximizing N rate of 42 kg/ha.

These results should be interpreted cautiously because
experiment station data ma’ not reflect conditions pre-
vailing on farmer fields. Results, however, are consistent
with other risk studies in irrigated environmenis in the
Philippines (17, 18).

Fertilizer is largely responsible for the gap between
potential and actual yields, Using data from 6 Asian coun-
tries, Herdt and Mandac (12) showed that 0.4 t of the
average yield gap could be attributed to fertilizer. The risk
studies cited above provide increasing evidence that risk
aversion accounts for only a small proportion of this gap,
at least in irrigated and favorable shallow rainfed sites. Pro-

IRPS No. 115, October 1985 9

duction conditions may not be risky enough to significant-
ly affect input levels.

These conclusions are valid only for favorable produc-
tion environments. Clearly, further work is required in
harsh environmental conditions whers risk could have a
greater impact on input use. However, the crucial factor
is the rate at which yield variability increases as N rates go
up. If, w1 unfavorable environments, absolute yield varia-
bility is higher but the rate at which variability increases
with N rates is relatively slight, the reported results on the
effect of 1isk aversion would still be valid. If, however, yield
variability is found to increase faster, risk aversion could
susstantially affect inputs. If strong interactions exist
between N ana stochastic factors such as wea her, risk
aversion could impede progress. The larger these inter-
actions, the more significant would be the conflict between
risk and profit maximization.
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Appendix. Computer program for estimating the Random Cocfficient Model

left hand side; explanutory comments appear on the right.

PROGRAM

DATA IN;

INPUT YEAR YIELD N VAKIETY;

D42 = ¢,

IF VARIETY="IR42" THEN D42=];
NSQ=N*N;

INT=_N_/_N_;

CARDS;

DATA YEART76; SET IN; IIF YEAR=T6;
DATA YEARTT; SET IN; II' YEAR=T77;
DATA YEART8;SET IN; II' YEAR=78:
DATA YEAR79;SET IN; I YEAR=79;
DATA YEARST; SET IN; 1I° YEAR=R1;

PROC SYSRIG

DATA=YEART76
OUTSSCP=XXQ1
OUTEST=BETAQI;

MODEL YIFLD=N NSQ D42/COVB;

IPROC SYSREG

DATA=YEAR77
OUTSSCP=XXQ2
OUTEST=BETAQ2;

MODEL YIELD=N NSQ D42/COVB:

PROC SYSREG

DATA=YLEAR/S
OUTSSCP=XXQ3
OUTEST=BLETAQ3;

MODEL YIELD=N NSQ D42/COVB;

PROC SYSREG

DATA=YEAR79
OUTSSCP=XXQ4
OUTEST=BLTAQ4;

MODEL YIELD=N
PROC SYSRLG

MODEL YIELD=N

NSQ D42/COVBE;
DATA=YEARSI
OUTSSCP=XXQ5
OUTEST=BETAQS;
NSQ D42/COVB;

DATA SPVARCOV; SET BETAQL BETAQ2
BETAQ3 BETAQ4 BETAQS;

PROC CORR COV:

Ryan, J. C., and R, K. Perrin, 1973, The estimatjon and use of
a generalized response function for potatoes in the Sierra of
Peru, North Carolima Agricultural Lxperiment Station Tech,
Bull. 214.

Sillers, D, A, 1980, Measuring risk preferences of rice farmers
in Nueva Feija, the Philippines: an experimental approach,
Ph D dissertation, Yale University.

Sxyamy, Po AUV B. 1970, Etficient inference in a random coef-
ficient regression model. Econometrica 38:311-323,

Theil, H. 1971, Principles of econometrics. John Wiley and
Sons, Inc., New York,

Wharton, C, R,, Jr. 1969. The Green Revolution: Cornucopia or
Pandora’s Box? Foreign Aftairs 47 (3):464-476.

Young, R., and T. D. Mount, 1979, An cconometric analysis of
uncertainty in rice production, Cornell University, Agricultural
Economics Depariment. (mimeo.)

The computer package Statistical Analysis System (SAS 1979) was used to estimate the model. A complete program listing appears on the

RIEMARKS

The DATA statement creates a SAS data set. The word following
DATA (in this case IN) is the name given to the data set.

The INPUT statement reads the data into the data set. The words
following INPUT are the variables in the data set.

Mathematical operations create new variables in the data set,

The CARDS statement specifies that all cards read hercafter are
data cards until 3 new SAS command is met.

Subsetting 11 creates a new data set whose observations satisfy
the condition(s) in the 1F statement. The observations come
from the data SET (IN) specified in the SET statement.

PROC statement invokes the procedure specified after PROC.,
DATA option in the procedure specifies the data set to be used
in the procedure.

OUTSSCP and QUTEST options output the crossproducts
matrix into the data set specified by OUTSSCP= and the vector
of parameter estimates into the data set specified by OUTEST=
MODEL statement in the SYSRIG procedure specifies the re-
gression model,

COVB option in the MODEL statement of the SYSREG pro-
cedure prints the variance-covariance matrix of the OLS cocf-
ficient estimates.

SYSREG procedure computes OLS parameter estimates,

Specifying 2 or more duta sets in a SET statement vertically
concatenates the data sets.

When no DATA option is given in any PROC statement, the
data set immediately preceding the procedure is used. in this
case, PROC COPR will use SPVARCOV.,
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Appendix continued
PROGRAM REMARKS

DATA FORMEANS; SET IN;

PROC SCRT; BY N; By statement in any procedure performs the procedure at each
value of the variable(s) specified in the BY statement, Thus, the
BY statement in the SORT procedure groups the data at cach
value (level) of N,

PROC MEANS; BY N; VAR INT N NSQ D42; MEANS procedure computes the means of the variables speci-

OUTPUT OUT=BARNQ fied in the VAR statement. OUTPUT statement outputs data

MEAN=INTMEAN NMEAN into the data set specified by OUT= which contains the variables
NSQMEAN D42MEAN; specified by MEAN=

DATA BAR®; SET BARNQ; IFF N=¢:
DATA BAR3@; SET BARNOQ; I N=3p;
DATA BARG®; SET BARNQ; I N=5¢;
DATA BAR9®; ST BARNOQ; IFF N=9¢;
DATA BAR12(; SET BARNQ; I N=:12¢):

GLS ESTIMATION OF THE RCM COEFFICIENTS

® Before attempting to estimate any model urder the set of assumptions implied by equatiop 2, test whether B are all fixed and are all equal,
® The MATRIX procedure was used in the empirical estimation,

1. ASYMPTOTIC TESTS Ol EQUALITY BETWEEN FIXED COEFFICIENT VECTORS IN 1t RELATIONS WITH HETEROSCEDASTIC
DISTURBANCES - equation 10 (HB)

PROGRAM REMARKS
PROC MATRIX;

FETCH XPRIMEX] DATA=XXOQI:; FETCH statement in the MATRIX procedure inputs the data set specified in the
FETCH XPRIMEX2 DATA=XXQ2; DATA= option into the matrix specified by the FETCH command,
FETCH XPRIMIEX3 DATA=X.XQ3; XPRIMEXq is a (k+1) x (k+1) matrix.

FETCH XPRIMEX4 DATA=XXQ4:;

FETCH XPRIMEXS DATA=XXQS;
Delete row 2 and column 2 of each XPRIMEX,. They contain crossproducts for
the dependent variable.

XX1=XPRIMEXI (1345,1345); This statement creates the matrix XXy with 4 rows equal to 1ows 1 34 and 5 of
XX2=XPRIMEX2 (1345,1345); XPRIMEX; and 4 columns equal to columns | 3 4 and S of XPRIMEX;. The
XX3=XPRIMEX3 (1 345,134 5); general term for this operation is Matrix Reshaping. XX{ is a kxk matrix.
XX4=XPRIMEX4 (1345,1345);

XX5=XPRIMEX5 (1345,1345);

Divide each XX by its corresponding MSE, obtained from the OLS estimation.
CI=XX1 #/MSEL;
C2=XX2 #/MSE2;
C3=XX3 #/MSE3,
C4=XX4 #/MSL4;
C5=XX5 #/MSES;

D=C1+C2+C3+C4+C5; -
E=INV(D) E is the {irst term of 3 of equation 10,
FETCH Al DATA=BETAQI; Agisa l x(k+2) vector.

FETCil A2 DATA=BETAQ2;

FETCH A3 DATA=BLETAQ3;

FETCH A4 DATA=BETAQ4;

FETCH A5 DATA=BETAQS;
Delete columns 1 and 2 of each Ay. Move the last column of the vector to
column 1. The last column given by OUTEST contains the intercept.

AVECTORI=A1 (1,6 34 5); This statement creates AVECTOR; with 1 row equal to row 1 of Agand 4
AVECTOR2=A2 (1,6 34 5); columns equal to columns 6 34 and S of Aq.

AVECTOR3=A3 (1,6 34 5); '

AVECTOR4=A4 (1.6 34 5);

AVECTORS=AS5 (1,634 5);

Al=AVECTORI"; Each A¢ is a kxl vector,
A2=AVECTOR2’; Ay is §; in equation 4,
A3=AVIECTOR3; ‘denotes transpose of the matrix.

A4=AVECTOR4';
AS=AVECTORS’;
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Appendix continued

PROGRAM

B=L*I;

X1=A1--B;
X2=A2-B;
X3=A3-1;
X4=A4-B;
X5=A5--B;

X1PRIME=X1";
X2PRIME=X2";
X3PRIME=X3";
X4PRiIME=X4",
XSPRIME=X5";

Y1=X1PRIME *C} * X1;
Y2=X2PRIML * C2 * X2;
Y3=X3PRIME * 3 * X3;
Y4=X4PRIME * C4 * X4;
Y5=XSPRIME * C5 * X§;

HB=Yl +Y2+Y3+Y4+YS;

REMARKS )

IF is the second term in 5 of equation 10.

B is E in equation 10.

Xy is (fii-{.i) in equation 10.

HB is the homogeneity statistic given by equation 10.

11. ESTIMATION Ot TH: RANDOM COEFFICIENTS — equations 4,5,6,7,and 8 (BETA)

PROGRAM

VARCOVQIl = wvclll velll...
vcl2l vel22..,

velkl velk2...
VARCOVQ2 = ve2ll ve212..
ve221 ve222...

ve2k1 ve2k?

VARCOVQS = veS11 veS12...
ve521 ves22...

veSk1 vesk2...

VARQ! = DIAG (VARCOVQI);
VARQ2 = DIAG (VARCOVQ2);
VARQ3 = DIAG (VARCOVQ3);
VARQ4 = DIAG (VARCOVQ4);
VARQS = DIAG (VARCOVQS);
VARQ = DIAG (VARCOVQ);

Z2 = (VARQI + VARQ2 + VARQ3 + VARQ4 +

VARQS) #/5;
Z3 = VARQ -~ Z2;

W11l =73 + VARQI;
W112 =73 + VARQ2;
W113 =23+ VARQ3;
W114 =73 + VARQ4;
W115 =23 + VARQS;

vellk/
vel2k/

vclkk;
vc2lk/
vc22k/

..vc2kk;

veS1k/
ve52k/

veSkk;

REMARKS

Input the variances<ovatiances matrix of the OLS coefficient estimates for each year,

VARCOVQ, is a kxk matrix. The vctjj element is the covariance of the ith and the jth
parameter in the model for year t, For i=j, Ve is the variance of the ith parar:eter.

Input also the special variance-covariance matrix (VARCOVQ) printed by the PROC
CORR COV statement in the preceding procedure,

Get the matrix of parameter variances and set covariances to zero.
The DIAG (argunient) statement creates a matrix whose diagonal elements are equal to
the diagonal elements of the argument, and whose off-diagonal elements are zeroes.

VARQ is the first term in 4 of equation 8.

Sum the variance matrices across T years and divide by T.
Z2 is the second term in & of cquation 8.

Z3 is & in equation 8.
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PROGRAM
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REMARKS

W11 =NV (Wll1); W1y is the second term in Wj of equation 5.

W12 =INV (W112),
W13 = INV (W113);
Wi4 = INV (W114);
W15 = INV (W115);

W=WIl+WI2 +WI3+ W4 + WI5; W is the first term in W of equation 5.

Wi =WI1*INV (W), Wi is Wj in equation 5.

W2 =WI2* INV (W),
W3 =WI3*INV (W),
W4 = W14 * INV (W),
W5 = WIS * INV (W),

BETA=WI * Al + W2 * A2 + W3 * A3+ The A¢’s in BETA are the same A¢'s used in computing 1iB,
W4 * A4 + W5 * AS; BETA is § in equation 4.

L. ASYMPTOTIC STANDARD ERRORS — square roots of the relevant elements in the variance-covariance matrix given by equation 8

divided by T

PROGRAM
ZASE =723 #/5;
DIAGZASI = DIAG (ZASL);

ASL = DIAGZASE ##0.5;

IV.VARIANCL OF Y AT DIFFERENT N LEVELS - equation 13.

PROGRAM

FETCH X¢MEAN DATA = BARY;
FETCH X3¢MLEAN DATA = BAR3(;
FFETCH X60MFEAN DATA = BARGY;
FETCH X99MEAN DATA = BARY(;
FETCH X12¢MEAN DATA = BAR129;

VARN@ = XOMEAN * 23 * XPMEAN' + 488947.61;
VARN30 = X3§MEAN * Z3 * X30MEAN' + 488947 61;
VARNGO = X6@MEAN * Z3 * X6OMEAN' + 488947.61;
VARNI0 = X99MEAN * 73 * X9PMEAN' + 488947.61;
VARNI20 = XI120MEAN * Z3 * X12¢0MEAN’ + 488947 61;

(ASL)

REMARKS
Divide each element of A by T.

Create a new matrix whose diagonal ¢lements are those of ZASE
and whosc off-diagonal elements are zeroes.

ASE is the matrix of the standard errors of the random
coefficients,

(VARNg)
REMARKS

X, MEAN is X in equation 13 where 2 = N,

VARN is the variance of Y when N = ¢,
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