PN-AAV-338 45904 DOE/NASA/0195-1 NASA CR-165352 M206

Photovoltaic Stand-Alone Systems

Preliminary Engineering Design Handbook

H. L. Macomber and John B. Ruzek Monegon, Ltd. Gaithersburg, Maryland

Frederick A. Costello F. A. Costello, Inc. Herndon, Virginia

and

Staff of Bird Engineering Research Associates, Inc. Vienna, Virginia

August 1981

Prepared for National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Under Contract DEN 3-195

for U.S. DEPARTMENT OF ENERGY Conservation and Renewable Energy Division of Solar Thermal Energy Systems Washington, D.C. 20545 Under Interagency Agreement DE-AI01-79ET20485

ACKNOWLEDGEMENT

This handbook was prepared by MONEGON, LTD., of Gaithersburg, Maryland under Contract DEN3-195 with the National Aeronautics and Space Administration, Lewis Research Center. John B. Ruzek served as Project Engineer with management support by Dr. Harold L. Macomber. Valuable assistance was provided by two subcontractors, Frederick A. Costello, Inc., Consulting Engineers, and Bird Engineering-Research Associates, Inc.

NOTE: Throughout this handbook, reference is made to Loss of Load Probability (LOLP) estimation procedures. According to the 1970 National Power Survey of the Federal Power Commission, these estimating procedures may be more correctly defined as Loss of <u>Energy</u> Probability (LOEP) procedures. This definitional difference in no way affects the accuracy or usefulness of these procedures.

CONTENTS

•

Section			Title	Page
1	INTR	ODUCTI	ON	1-1
2	GUID	E TO HA	NDBOOK USAGE	2-1
3			ND-ALONE PHOTOVOLTAIC FIGURATIONS	3-1
4	COM	PONENT	DESIGN AND ENGINEERING INFORMATION	4-1
	4.1	Electr	ical Loads	4-1
		$\begin{array}{c} 4.1.1 \\ 4.1.2 \\ 4.1.3 \end{array}$	Merits and Disadvantages of Both	4-1 4-4
	4.0		Ac and Dc Power	4-5
1	4.2	Photo	voltaic Arrays	4-7
		$\begin{array}{c} \textbf{4.2.1} \\ \textbf{4.2.2} \end{array}$	Photovoltaic Terminology Ideal Solar-Cell Current-Voltage	4-7
1		4.2.3	Characteristics Current-Voltage Characteristics of	4-12
		4.2.4	Arrays in the Field Available Modules	4-21 4-24
	4.3	Lead-A	Acid Storage Batteries	4-27
		$\begin{array}{c} 4.3.1 \\ 4.3.2 \\ 4.3.3 \\ 4.3.4 \\ 4.3.5 \\ 4.3.6 \end{array}$	Advantages and Disadvantages of Batteries in Photovoltaic Systems Battery Operation Battery Current/Voltage Characteristics Battery-System Design Battery Life Lead-Acid Storage Battery Safety	4-27 4-28 4-28 4-32 4-33 4-36
	4.4	Power	Handling	4-40
		$\begin{array}{c} 4.4.1 \\ 4.4.2 \\ 4.4.3 \end{array}$	De Power Conditioning Control Schemes Electrical Wiring	4-40 4-43 4-46
	4.5	Emerge	ency Backup Systems	4-51
1. ⁴		$\begin{array}{c} 4.5.1 \\ 4.5.2 \\ 4.5.3 \\ 4.5.4 \end{array}$	Load Analysis Basic PVPS Design Margin Types and Suitability of Backup Systems Incorporation of Backup Into the PV System	4-51 4-52 4-53 4-56

Section

Section				Title	Page
5			RMATIO GN PRO	N NEEDED TO START THE CESS	5-1
6		PREL	IMINAR	Y SYSTEM DESIGN CONSIDERATIONS	6-1
		6.1 6.2		tion and Siting tion of PV Systems Under Varying Loads	6-1 6-7
			$\begin{array}{c} 6.2.1\\ 6.2.2\end{array}$	Array and Battery Quick-Sizing Method Component Sizing	6-7 6-9
	v	6.3	Basic of Ph	Approach to Feasibility Assessment otovoltaic Power Systems	6-13
			6.3. <u>1</u> 6.3.2	Preliminary Estimate Life Cycle Cost Determination	6-13 6-15
		6.4	Reliab	ility Engineering Approach	6-18
			$6.4.1 \\ 6.4.2 \\ 6.4.3 \\ 6.4.4$	Definition and Specification of PV System R & M Requirements R & M Networks and Block Diagrams Reliability Prediction and Feasibility Requirements Failure Mode and Effects Analysis	6-18 6-24 6-29 6-30
		6.5	Advan Systen	tages and Disadvantages of PV Power	6-34
7		SYSTI	EM DESIG	GN	7-1
		7.1 7.2 7.3	Systen	Philosophy Design Procedure and Standards	7-1 7-2 7-15
			7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 ?	Codes Standards Manuals Approved Equipment Listings Notes Applicable Document List	7-15 7-16 7-17 7-17 7-18 7-18

iv

Section			Title	Page
8	INST	ALLATION	IS, OPERATION AND MAINTENANCE	8-1
	8.1 8.2 8.3 8.4	Reliabi	ction Outages lity and Maintainability ion and Maintenance Tradeoffs	8-1 8-1 8-2 8-3
		8.4.1 8.4.2	Operation and Preventive Maintenance Corrective Maintenance	8-3 8-5
	8.5	System	Maintenance	8-8
		8.5.1 8.5.2	Maintenance Concept Maintainability Design	8-8 8-9
	8.6	Logistic	es Design	8-11
		8.6.1 8.6.2	Supply Support Power System Drawings	8-11 8-13
		8.6.3 8.6.4 8.6.5	Tools, Test Equipment, and Maintenance Aids Technical Mannuals Training	8-13 8-14 8-15
	8.7	Installa	tion Design Considerations	8-15
		8.7.1 8.7.2	Physical Considerations Equipment Housing and Structure Considerations	8-15 8-16
		8.7.3	Installation Checkout and Acceptance Testing	8-16
9	SITE	SAFETY		9-1
	9.1	Personn	nel Safety Checklist	9-1
¹⁷ 9		9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7	Safety & Health Standards Electric Shock Toxic & Flammable Materials Fire Safety Excessive Surface Temperatures Equipment Identification Labeling Physical Barriers	9-1 9-2 9-2 9-3 9-3 9-3 9-3

Section		Title	Page
	9.2	Facility Safety Checklist	9-4
		 9.2.1 PVPS Safety Protection from Environmental Conditions 9.2.2 PVPS Safety Protection from Man-Made 	9-4
		Conditions 9.2.3 PVPS Safety Protection from Component Failure	9-5 9-6
	9.3	References	9-6
10	DESIGN	N EXAMPLES	10-1
	10.1	Remote Multiple-Load Application	10-1
		10.1.1 Northern Hemisphere Location10.1.2 Southern Hemisphere Location	10-1 10-2
11	INSOLA	ATION	11-1
	11.1 11.2 11.3 11.4 11.5	Introduction Insolation Calculation Programs Statistical Insolation Computations Sun Angle Charts Row-to-Row Shading	11-1 11-5 11-13 11-15 11-15
12	рното	VOLTAIC SYSTEM COMPONENTS	12-1
	12.1 12.2 12.3 12.4	Solar Cell Modules Batteries De Regulators De Motors	12-1 12-7 12-9 12-10
13	GLOSSA	ARY OF TERMS	13-1
	13.1 13.2	Definitions of Photovoltaic Terminology Conversion Factors	13-1 13-3
14	РНОТО	VOLTAIC POWER SYSTEM EQUIPMENT SUPPLIERS	14-1
	$14.1 \\ 14.2 \\ 14.3 \\ 14.4$	Photovoltaic Cells, Modules Batteries Power Conditioning Equipment Direct Current Motors and Load Devices	14-1 14-2 14-3 14-5

.

Section		Title	Page
APPENDIX A	WOR	LDWIDE INSOLATION DATA	A- 1
APPENDIX B	FAIL	URE RATES FOR RELIABILITY ESTIMATION	B-1
	B.1 B.2 B.3	Failure-Rate Trends Sources of Failure-Rate Data Estimated Failure Rates for Certain Items in the Typical PV System	B-1 B-2 B-3
APPENDIX C	LISTI	NG OF SPONSORS OF CODES AND STANDARDS	C-1
	C.1 C.2	List of Codes and Standards Agencies and Their Addresses Listing of Codes and Standards by Agencies	C-1 C-2
REFERENCES			R-1

ERRATA SHEET

.

o <u>In Exhibit 11.2-4</u>, "Listing of an HP-67 Insolation Computation Program", corrections shown parenthetically in the following tabulation of affected steps should be made:

Step No.	Key Strokes	Ke	y Code	
001	f LBLA	(31)	25	11
043	g x (>) y		32	81
110	f cos		31	(63)
138	h Π		(35)	73
152	h Π		(35)	73
200	h RTN		(35)	22

 In Exhibit 11.2-3, paragraph 4 ("Example"), the tilt angle should be 30° instead of 20°. The paragraph which follows is also numbered "4" and should be changed to "5".

EXHIBITS

<u>Exhibit</u>		Page
2-1	Flow Chart, Photovoltaic Stand-Alone Systems Preliminary Engineering Design Handbook	2-2
3-1	Generalized Stand-Alone Direct Current Photovoltaic Power System Block Diagram	3-2
4.1-1	Load Diversity	4-3
4.1-2	Load-Reduction Strategies	4-4
4.1-3	Disadvantages of Dc and Ac	4-6
4.2-1	Terminology for Large-Scale Photovoltaic Installations	4-8
4.2-2	Series/Parallel Circuit Nomenclature	4-10
4.2-3	Module Output and Intermediate Loss Mechanisms	4-11
4.2-4	Operation of a Solar Cell	4-13
4.2-5	Equivalent Circuit of a Solar Cell	4-15
4.2-6	Typical Array Characteristics	4-16
4.2-7	Current- ^v oltage Characteristics of Cells in Series and Parallel	4-18
4.2-8	Protection From Open Circuit Failures	4-20
4.2-9	Array Power Loss Fraction Vs. Substring Failure Density	4-23
4.2-10	Typical Available Silicon Solar Modules	4-25
4.2-11	Nominal Array Costs (1975 Cost Levels)	4-26
4.3-1	Characteristics Summary Table: Commercially Available Batteries	4-29
4.3-2	Lead-Acid Battery Characteristic Curves	4-30
4.3-3	Lead-Acid Battery Failure Mechanisms	4-34
4.3-4	Typical Battery State of Charge (SOC) History	4-35

EXHIBITS (Continued)

<u>Exhibit</u>		Page
4.4-1	Self-Regulated PV System	4-42
4.4-2	I-V Curve of PV Module Exhibiting Self-Regulation	4-42
4.4-3	Voltage-Regulated PV System	4-42
4.4-4	Simplified Block Diagram For a Maximum P ower Tracking Controller	4-45
4.5-1	Summary Descriptions of Backup Systems	4-55
5-1	Minimum Data Requirements to Establish Feasibility	5-2
5-2	General Checklist for Detailed Design	5-3
6.1-1	Average Monthly Insolation (kWh/m ² -day) and the Ratio of Standard Deviation (Sigma 1) to Average	6-3
6.1-2	Horizon Profiles for Two Candidate Sites	6-6
6.2-1	Quick Sizing Computational Procedure for Array and Storage	6-10
6.2-2	Battery Storage Requirements for 1% LOLP	6-11
6.2-3	Effect of Depth of Discharge on Battery Life on Typical Lead-Acid Motive Power Type Cell	6-12
6.3-1	Components, System Costs and Economic Parameters	6-16
6.3-2	Photovoltaic Power System Preliminary Design Life Cycle Cost Computation	6-17
6.4-1	Reliability Functions for Exponential (Random) and Gaussian (Wearout) Facilities	6-19
6.4-2	Partial Description of Requirements for Hypothetical Customer Application	6-22
6.4-3	Example Reliability Allocation for a Hypothetical System	6-23
6.4-4	Functional Reliability Block Diagram	6-25
6.4-5	Functional Oriented Reliability Block Diagram	6-25
6.4-6	Optional Module Configurations: (A) Series: (B) Series/Parallel	6-26

EXHIBITS (Continued)

•

<u>Exhibit</u>		Page
7.2-1	Loss-cf-Load Probability Computational Procedure	7-3
7.2-2	Cumulative Distribution Function for the Normal Curve	7-4
7.2-3	Example of Loss-of-Load Probability Computation	7-7
7.2-4	Listing of a TI-59 Program for Calculating Loss-of-Load Probability	7-8
7.2-5	Instructions for the Operation of the TI-59 Program for Computing the Loss-of-Load Probability	7-9
7.2-6	Listing of an HP-67 Program for Calculating Loss-of-Load Probability	7-10
7.2-7	Instructions for the Use of the HP-67 Program for Calculating Loss-of-Load Probability	7-13
7.2-8	Typical Cases for the Loss-of-Load Probability	7-14
8.2-1	Causes of Power Loss in PV Systems	8-1
8.4-1	Reliability Improvement with Standby Redundancy	8-7
10.1-1	Multiple Load Application Monthly Load Summary	10-3
10.1-2	Multiple Load Application Equipment Sizing	10-4
11.1-1	Insolation Computation for a South-Facing Array	11-2
11.1-2	Insolation Computation Example: Washington, D.C.	11-3
11.1-3	Ground Reflectances for Various Surfaces	11-4
11.2-1	Instructions for Operating the TI-59 Insolation Computation Program	11-6
11.2-2	Listing of a TI-59 Insolation Computation Program	11-7
11.2-3	Instructions for Operating the HP-67 Insolation Computation Program	11-9
11.2-4	Listing of an HP-67 Insolation Computation Program	11-10
11.3-1	Generalized K _H Distribution Curves	11-14

EXHIBITS (Continued)

<u>Exhibit</u>		Page
11.4-1	Illust: ation of Solar Altitude and Azimuth Angles	11-16
11.4-2	Sun Chart for 0 ⁰ Latitude	11-17
11.4-3	Sun Chart for 8 ⁰ Latitude	11-17
11.4-4	Sun Chart for 16 ⁰ Latitude	11-18
11.4-5	Sun Chart for 24 ⁰ Latitude	11-18
11.4-6	Sun Chart for 32 ⁰ Latitude	11-19
11.4-7	Sun Chart for 40 ⁰ Latitude	11-19
11.4-8	Sun Chart for 48 ⁰ Latitude	11-20
11.4-9	Sun Chart for 56 ⁰ Latitude	11-20
11.4-10	Sun Chart for 64 ⁰ Latitude	11-21
11.4-11	Sample Shading Calculation	11-22
11.5-1	Minimum Row-to-Row Spacing Required for No Shading Between 0900 and 1500 Hours on Dec. 21 (June 21)	11-23
12.1-1	Comparison of Typical Specifications for Photovoltaic Modules	12-3
12.2-1	Table of Important Battery Design Characteristics	12-8
12.3-1	Dc Regulators Specification Requirements	12-9
12.4-1	Representative Data on Dc Motors	12-11
B-1	Failure Rate of an Item as a Function of Operating Time	B-1
B-2	Preliminary Failure-Rate Extimates of Selected Items	B-3

SECTION 1 INTRODUCTION

The central component of any photovoltaic power system is the solar cell. It is the transducer that directly converts the sun's radiant energy into electricity. The technology for using solar cells to produce usable electrical energy is known and proven. The orbiting satellite Vanguard I, launched in March 1958, used solar cell panels to power its radio transmitter for about six years before radiation damage caused it to fail. The space program that continued after Vanguard I not only used photovoltaic systems, but fostered an industry for producing the spacecraft solar cells and arrays.

The production of photovoltaics associated with the space program reached about 50 kW per year and then leveled off. The 1973 oil embargo provided the stimulus for the government and the industry to begin to take serious steps to accelerate the normally very slow development process in order to seek significant expansion of the initial terrestrial markets. As of 1980, the annual production of solar cells is well in excess of 4 MW per year.

In 1973 a few pioneers of the photovoltaic industry began the terrestrial photovoltaic industry by shifting from the use of reject space solar cells to cells designed specifically for terrestrial use. This industry has installed thousands of photovoltaic systems representing a cumulative power of more than 6 MW since this beginning.

Since its initiation in 1975, the U.S. Department of Energy (DOE) National Photovoltaic Program has sponsored the design and implementation of nearly 40 system applications classed as "stand-alone" systems with less than 15 kW peak in power rating. In addition, through the DOE managed Federal Photovoltaic Utilization Program (FPUP), 3,118 applications of the small stand-alone class have been funded for installation in the first two of a five-cycle program.

t

Outside of DOE, the Department of Defense has funded the design and installation of nearly 150 stand-alone photovoltaic systems. A few scattered applications have also been sponsored by other government agencies such as the Indian Health Service of the U.S. Department of Health, Education, and Welfare and by the U.S. Department of State, Agency for International Development.

The purpose of this handbook is to enable a system design engineer to perform the preliminary system engineering of the stand-alone Photovoltaic Power System (PVPS). This preliminary system engineering includes the determination of overall system cost-effectiveness, the initial sizing of arrays and battery systems, and the considerations which must be specifically addressed in the subsequent detailed engineering stage of the project.

The scope of this handbook is limited to flat-plate, stand-alone PVPS for locations anywhere in the U.S. and in areas of the world which are located between the latitudes of 60° South and 60° North. As a stand-alone electrical system, the PVPS will be a self-sufficient system which includes an array field, power conditioning and control; battery storage, instrumentation and de loads. While the intent of this handbook is for low-power applications, serving loads up to 15 kW in size, the theory and sizing methods are not dependent upon the generating capacity of the system or the peak demand of the loads, but only on the desired reliability criteria chosen.

SECTION 2 GUIDE TO HANDBOOK USAGE

This handbook is intended to aid a system design engineer in determining the suitability of stand-alone photovoltaic power systems for specific applications. It will be helpful in the preliminary engineering of the system in which the initial sizing of the major components of the power system are determined.

A flow chart is presented in Exhibit 2-1 which can be used to guide the reader in the use of this handbook. The flow chart expresses the relationships between the various sections of the handbook. The first three sections of the handbook contain introductory material and will not normally be referred to in the design process.

Section 4 enables the user to estimate loads in the PVPS, to estimate array performance, develop current-voltage curves for arrays with parallel and series connections, to estimate power output as a function of time, develop the conceptual design of the array for high reliability. This section of the handbook also shows the reader typical battery operations, battery current-voltage characteristics, and the procedures of estimating system performance with a battery, as well as the safety aspects of using lead-acid batteries in a stand-alone system. This section also describes the power handling portion of the PVPS which interfaces the arrays with the end-use loads. This includes de power conditioning, control schemes, electrical wiring, and emergency back-up systems.

Section 5 contains two lists which will be useful in the assembly of data needed in the design processes. The first list contains the minimum data requirements to establish the feasibility of a photovoltaic power system (PVPS) in the preliminary design stage. The second is a more comprehensive list for the detailed design stage of the PVPS prior to construction which follows preliminary engineering.

2-1

FLOW CHART PHOTOVOLTAIC STAND-ALONE SYSTEMS PRELIMINARY ENGINEERING DESIGN HANDBOOK

Section 6 presents the preliminary design considerations including insolation and siting, operation of the PVPS under varying loads, approaches to reliability engineering, the advantages and disadvantages of PV power systems, the elements of life-cycle costing and the quick-sizing of PV power systems. Section 7 presents the procedure for system design and the method for estimating the loss of load probability.

· • •

Sections 8 and 9 cover the installation, operations, maintenance and safety aspects of the PVPS. They set forth the basic design considerations which must be considered during detailed design of the system.

Section 10 presents an example of the quick-sizing procedure to determine the approximate size and cost of a photovoltaic system for any particular application. This quick-sizing is useful in evaluating photovoltaic feasibility without going through a detailed analysis.

Section 11 presents the calculational tools for the determination of the insolation on a tilted surface. Using the clearness index for a specific site (tabulated in Appendix A for a number of cities in the U.S. and throughout the world), the latitude angle of the site, the tilt angle of the site and the reflectance of the ground in front of the array, the average daily insolation for a given month can be determined.

For quick reference, Sections 12, 13, and 14 contain data on photovoltaic system components, a glossary of terms, and listings of equipment suppliers, respectively.

2 - 3

SECTION 3 TYPICAL STAND-ALONE PHOTOVOLTAIC SYSTEM CONFIGURATIONS

A photovoltaic power system using today's technologies and designed for a stand-alone (non utility-grid connected) application in today's markets includes a solar array using flat plate or concentrating type collectors, and may include such electrical system components as a system controller, a lead acid battery, a voltage regulator, an instrumentation system and an on-site standby generator for emergency back-up. Exhibit 3-1 is a generalized stand-alone direct current photovoltaic power system block diagram showing the elements of the generating and load portions of the overall system.

A flat plate array or concentrator array functions as the solar collector for the photovoltaic system. At present, flat plate arrays are the principle collectors used in the installed photovoltaic power systems in the world. Some concentrator applications exist. The methodology of sizing the arrays in this handbook applies to either fixed-tilt or seasonally adjusted tilted, flat plate arrays.

The power conditioning subsystem provides the interface between the arrays and the power system's loads. The function of a power conditioning subsystem is to render the variable dc output of the array suitable to meet the power requirements of the loads. For dc systems, the power conditioning subsystem typically includes voltage regulation, energy storage, and possibly a dc/dc converter interface with the loads.

The lead-acid battery provides the energy storage for the photovoltaic system. It increases the reliability level of providing power to the loads and also improves the array efficiency by keeping the solar cell voltage within prescribed limits. The operation of the arrays is presented in Section 4.

A regulator is required when electrochemical storage is employed. The regulator controls the current and voltage inputs to the batteries to protect them from damage at either end of the charging cycle. At the beginning of the cycle,

3-1

.

Exhibit 3-1

GENERALIZED STAND-ALONE DIRECT CURRENT PHOTOVOLTAIC POWER SYSTEM BLOCK DIAGRAM

3-2

the discharged batteries would draw a large current from an unregulated photovoltaic array which would cause overheating of the batteries and shorten their lives. At the end of the charging cycle, the voltage across an unregulated battery would be too large and further charging would generate hydrogen gas and dehydrate the batteries.

In order to provide a higher degree of reliability of electric service to the power system's loads than the combination of the photovoltaic arrays and storage batteries might be capable of in a cost effective manner, an emergency back-up generating unit may be connected into the system. When emergency backup is incorporated, it is advantageous to be able to feed just those loads which are deemed to be of an emergency or critical nature. An automatic transfer switch may thus be incorporated to "throw" these loads over to the emergency back-up system upon the complete discharge of the storage batteries during periods of low insolation.

A load management control system may also be included in some systems to reduce the peak aggregate of the loads and thus reduce somewhat the required capacity of both the photovoltaic arrays and that of the energy storage system. It is also possible to control the loads in such a way as to reduce not only the peak diversified demand but also the system's average daily energy requirements by means of duty cyclers and load schedules which limit electricity use according to preset patterns. Such a strategy would also help reduce the size of arrays and the energy storage system.

The sections which follow present details of various components for photovoltaic power systems and tradeoff considerations in the preliminary sizing of those systems.

SECTION 4 COMPONENT DESIGN AND ENGINEERING INFORMATION

4.1 ELECTRICAL LOADS

The size and cost of a photovoltaic system is strongly dependent upon the energy requirements of the loads which are to be served. The peak demand and energy requirements must be estimated as well as possible, to avoid unnecessarily oversizing the power system and adding to cost. This is especially apparent when the relative component costs are compared in the capital cost estimate for the life-cycle cost computation based on current-day (1980) levels. It is seen in such a comparison that the unit cost of array capacity is typically appreciably higher than for any other part of the power system. This sub-section reviews load estimations, load reduction strategies and considerations of using de rather than ac for the distribution system and loads.

4.1.1 Estimating the Load

Individual loads are characterized by their power requirements as determined by both voltage and current ratings and duty cycle, which will determine their energy requirements. De loads may be made of either resistive elements, drawing constant power for given applied voltages, or may be composed of motors which are dependent upon the mechanical torque requirements of the driven loads to determine voltage and current inputs. A third category of energy tranformation utilizing induction coupling applies to ac load categories and includes examples such as fluoresent lamps, power supplies with tranformers, and high frequency converters such as microwave oven supplies. For systems up to 15 kW in size, the load might be comprised of a single device, e.g. a single 15 hp motor, or a multiple combination of lesser-sized motors and resistive loads. The first aspect of the load analysis is to define energy requirements of the combination of loads to be operated by the power system. The power requirement represents the maximum demand at any one time. Since some of the equipment is operated on a cyclic basis, the average demand or the energy requirement is considerably less than would be obtained by assuming a full-time operation, and multiplying rated power requirements by 24 hours a day.

Cyclic operation of a large number of components permits the undersizing of equipment on the basis of load diversity. The odds are that if there are enough components drawing power from the system, not all components will draw current simultaneously. Large electric utilities make constant use of the low odds associated with their enormous systems in capacity sizing of generating units and distribution circuits. As an example, suppose there are four components on the line, drawing 1, 2, 3, and 5 kilowatts peak power randomly with duty cycles of 50 percent, 40 percent, 30 percent, and 20 percent, respectively. The probability that all four loads will operate simultaneously is 1.2 percent, as shown on Exhibit 4.1-1.

The 1.2 percent figure can be translated into 0.012 times 365 days, or 4 days per year that the aggregate load on the system will equal 10 kW. The probability of other load combinations are shown in the exhibit along with the expected energy demand of 72 kWh/day. The daily load factor for this system is 30% (72 kWh / (10 kW x 24 hr)), which is equivalent to having an average 3 kW load running 24 hours/day. The full 10 kW of generating capacity must be installed to meet the peak loads unless either a load management scheme is installed or a 1.2% probability of overload is acceptable.

The probability of any other load can be estimated from the data on Exhibit 4.1-1. For example, the probability that the load will be 2 kW is equal to the probability that the 2 kW load will be on (0.40), multiplied by the probability that the three loads will be off (0.5 x 0.7 x 0.8), giving a probablity of 0.112 that the load will be 2 kW. Similar computations can be executed for the other load sizes, so a curve of load size versus probability can be generated.

4-2

Exhibit 4.1-1 LOAD DIVERSITY

Load	Operating Time
1 kW	50%
2 kW	40%
3 kW	30%
4 kW	20%
2 kW 3 kW	40% 30%

.

Probability of simultaneous operation = $0.5 \times 0.4 \times 0.3 \times 0.2 = 0.012 = 1.2\%$

Probability of all combinations:

kW	Probability			Expected kWh/day
0	(1-0.5) x (1-0.4) x (1-0.3) x (1-0.2)	=	0.168	0
1	0.5 x (1-0.4) x (1-0.3) x (1-0.2)	=	0.168	4.0
2	0.4 x (1-0.5) x (1-0.3) x (1-0.2)	=	0.112	5.4
3	0.3 x (1-0.5) x (1-0.4) x (1-0.2) + 0.5	x		
	0.4 x (1-0.3) x (1-0.2)	=	0.184	13.3
4	0.5 x 0.3 x (1-0.4) x (1-0.2) + 0.2 x			
	(1-0.5) x (1-0.4) x (1-0.3)	=	0.114	10.9
5	0.3 x 0.4 x (1-0.5) x (1-0.2) + 0.5 x 0	.2 x		
	(1-0.4) x (1-0.3)	=	0.090	10.8
6	$0.5 \times 0.4 \times 0.3 \times (1-0.2) + 0.2 \times 0.4 \times 0.10 \times 0.$	Σ.		
	(1-0.5) x (1-0.3)	=	0.076	10.9
7	$0.2 \ge 0.3 \ge (1-0.5) \ge (1-0.4) + 0.2 \ge 0$.4 x		
	0.5 x (1-0.3)	=	0.046	7.7
8	0.2 x 0.3 x 0.5 x (1-0.4)	=	0.018	3.5
9	0.2 x 0.3 x 0.4 x (1-0.5)	=	0.012	2.9
10	0.2 x 0.3 x 0.4 x 0.5	=	0.012	
		Тс	otal daily load	72.0

1

4.1.2 Load Reduction Strategies

The foregoing discussion brings us to the logical concept of load shedding. If the probability of simultaneous operation is low, or if some functions are not critical, the peak demand can be limited by a controller that senses the total demand and supplies power to the low-priority components only when the demand on the power system is low. Reducing the peak load has an indirect effect on the reduction in energy demand, although it is difficult to estimate the energy impact without a detailed, sophisticated computer program that tracks system performance on an hourly basis.

When the energy demand of a potential photovoltaic application is analyzed, methods for reducing the requirements frequently are discovered. Exhibit 4.1-2 lists the most frequent methods of reduction. First, components can be operated cyclically. When one load is operating at peak demand, a second load can be shut off, thereby reducing peak power demand and, consequently, the sizes of the equipment such as motors. Smaller sized motors operating at higher loadings will result in higher system efficiency during off peak operation, and, therefore, lower energy consumption. The cyclic operation of the components can be either manual or automatic, although the automatic system will be more costly and will introduce another power-consuming component into the system. The automatic systems will generally be cost-effective only if the peak power under simultaneous operation is significantly greater than peak power under cyclic operation. At a ratio of approximately 3:1 (simultaneous to cyclic), the cyclic operation should be examined.

Exhibit 4.1-2 LOAD-REDUCTION STRATEGIES

Cyclic operation of components Manual Automatic Diversity Load Shedding

4-4

4.1.3 Merits and Disavantages of Both Ac and Dc Power

For a remote stand-alone photovoltaic power system, the advantage of utilizing direct current loads is that the frequency inverter is not required, thus saving both the costs of the inverter equipment and of the added array capacity which would be required to supply the power lost from inverter inefficiency. A disadvantage of using dc is that there is very little flexibility to choose a higher distribution system voltage than that of the load in order to minimize the losses in the distribution system.

In making an assessment of whether or not to utilize an ac distribution system, the question of regulation should be considered. Although the inversion of dc to ac carries with it a nominal penalty of 12 percent inefficiency, relatively good ac output regulation can be achieved with the inverter within nominal limits of ± 5 percent. Regulating dc from an unregulated dc source (of which the array/battery combination is typical with a voltage range of ± 30 percent) also involves an inefficiency penalty of about 12 percent. Thus, power economy benefits would only result by using unregulated dc. Exhibit 4.1-3 lists some of the disadvantages of dc and ac for selected items.

Exhibit 4.1-3 DISADVANTAGES OF DC AND AC

Interaction	Waveform	
	de	ac
Motor Drive	Brushes wear	
Universal/Induction	More expensive than ac equipment	
Lights		Fluorescent less efficient at low frequency operation
	Loss of incandescent and fluorescent reliability	
Electronics	Requires regulation	Requires regulation/ rectification
PV Output		Requires inverter
Battery Charging		Requires rectificatio
Controls	Contact wear	Requires rectification
Multiple Voltages	Not easily accommodated	

5

4.2 PHOTOVOLTAIC ARRAYS

The intent of this sub-section is to (1) develop the current-voltage curve for arrays of solar cells consisting of parallel and series connections; (2) estimate the power output as a function of time, indicating the decrease that occurs due to cell failure, dirt accumulation, and maintenance routines; and (3) develop the conceptual design of the _____y for high reliability.

4.2.1 Photovoltaic Terminology

The terminology associated with the photovoltaic power systems, as used in this handbook, is that adopted from U.S. Department of Energy (DOE) projects. The power output from most solar cells currently in use is approximately 0.5 watts for a single cell; therefore, most systems require groups of cells to produce sufficient power. Cells are normally grouped into "modules"*, which are encapsulated with various materials to protect the cells and electrical connectors from the environment. A current typical module is two feet by two feet by two inches, with a glass cover through which the cells are exposed to the sunlight.

The modules are frequently combined into panels of, perhaps, four modules each. These panels are pre-wired and attached to a light structure for erection in the field as a unit. If the power output from a module is 30 watts, then power from a panel containing four modules is 120 watts. The panels are often attached to a field-erected structure to form an array (see Exhibit 4.2-1). Logical groups of arrays form an array subfield, which may feed a single power control system. The subarrays can be combined to form the entire array field. For small systems, the module, panel, array, subarray field, and array field may be identical, with only one module being used.

^{*}In order to be consistent with much of the current literature which results from DOE-funded studies this Handbook uses the DOE definition of "module" viz., the smallest, independent, encapsulated unit consisting of two or more solar cells in series or parallel. It should be noted, however, that the photovoltaic industry often refers to the same item as a "panel".

SOLAR CELL – The basic photovoltaic device which generates electricity when exposed to sunlight.

MODULE – The smallest complete, environmentally protected assembly of solar cells and other components (including electrical connectors) designed to generate dc power when under unconcentrated terrestrial sunlight.

PANEL – A collection of one or more modules fastened together, factory preassembled and wired, forming a field installable unit.

ARRAY – A mechanically integrated assembly of panels together with support structure (including foundations) and other components, as required, to form a free-standing field installed unit that produces dc power.

BRANCH CIRCUIT – A group of modules or paralleled modules connected in series to provide dc power at the dc voltage level of the power conditioning unit (PCU). A branch circuit may involve the interconnection of modules located in several arrays.

ARRAY SUBFIELD – A group of solar photovoltaic arrays associated by the collection of branch circuits that achieves the rated dc power level of the power conditioning unit.

ARRAY FIELD — The aggregate of all array subfields that generate power within the photovoltaic central power station.

PHOTOVOLTAIC CENTRAL POWER STATION – The array field together with auxiliary systems (power conditioning, wiring, switchyard, protection, control) and facilities required to convert terrestrial sunlight into ac electrical energy suitable for connection to an electric power grid.

Exhibit 4.2-1 TERMINOLOGY FOR LARGE-SCALE PHOTOVOLTAIC INSTALLATIONS

(Source: Reference 4-1)

The nomenclature for the electrical circuits associated with the array is shown in Exhibit 4.2-2. Groups of cells arranged in series are called substrings; substrings arranged in parallel are called series blocks; series blocks connected in series are called branch circuits; and branch circuits are connected in parallel to form the array circuit. Blocking diodes are used to prevent the reverse flow of electricity from the load through the solar cells during times when part or all of the array is shadowed, although one blocking diode might be used for the entire array, rather than for each branch circuit as shown in Exhibit 4.2-2. Bypass diodes are frequently used to permit the current to pass through the branch circuit even when one or more of the series blocks has totally failed in the open-circuit condition.

The terminology pertaining to module output and efficiencies is presented in Exhibit 4.2-3. The overall efficiency is partitioned into efficiencies that identify each of the loss mechanisms. The ratio of the cell area to the module area is called the module packing efficiency, n_p . The cell active area is the product of the module area, the module packing efficiency and the cell nesting efficiency. The cell efficiency, n_e , is usually measured by a flash technique in which the cell temperature does not rise because the flash duration is so short. The efficiency so measured, at an insolation of 1.0 kW/m² and a cell temperature of 28^oC, is called the bare cell efficiency. If the cell is encapsulated such as with a glass cover, the efficiency measured by this technique is called the encapsulatedcell efficiency.

The NOCT efficiency (Nominal Operating-Cell Temperature) corrects for the temperature at which a cell would operate in the field. The NOCT efficiency is measured at 1.0 kW/m^2 insolation and an outdoor-air temperature of 20° C, with a wind speed of one meter per second. The efficiency is measured at the cell temperature realized when the circuit is open, so no power is being extracted. The effect of power extraction is small, but the open-circuit temperature is used for purposes of standardization. The NOCT corrects for the losses associated with increased cell temperature.

Exhibit 4.2-2

SERIES/PARALLEL CIRCUIT NOMENCLATURE

B

Exhibit 4.2-3

MODULE OUTPUT AND INTERMEDIATE LOSS MECHANISMS

Definitions	Typical Values		
Overall Module Efficiency [*] at 1,000 W/m ² and			
NOCT (Nominal Operating Cell Temperature) is:			
$n_m = n_p \times n_{NOCT} \times n_{EC} \times n_{IM}$	10%		
where: $n_p = Module Packing Efficiency = n_{BR} \times n_N$	81%		
$n_{BR} = 1 - \left(\frac{Module Border + Bus Area + Interconnect A}{Module Area}\right)$	90%		
n _N = Cell Nesting Efficiency	100%		
= <u>total cell area</u>			
Module area - (Border area + Bus area + IC area)			
n _{NOCT} = Nominal Operating Cell Temperature Efficiency	90%		
n_{EC} = Encapsulated Cell Efficiency at 1,000W/m ² , 28 ^o C	13.5%		
$n_c = Bare Cell Efficiency (1,000 W/m^2, 28^{\circ}C)$	15%		
n _T = Optical Transmission Efficiency	95%		
n _{MIS} = Electric Mismatch/Series Resistance Efficiency	95%		
n _{IM} = Illumination Mismatch Efficiency	98%		
Therefore, module output is:			

$$m_{O} = \text{Insolation x } n_{M}$$

= Insolation x (n_{BR} x n_N) x (n_{NOCT}) x (n_c x n_T x n_{MIS}) x (n_{IM})

19

*(Reference 4-2, 4-3)

If the cells do not have identical current/voltage characteristics, there will be an additional loss, characterized by the electrical mismatch efficiency. If the cells are not all illuminated uniformly, perhaps due to partial shading by other panels, there is an additional loss which is characterized by the illumination-mismatch efficiency.

The overall panel output is the product of the insolation and the following efficiencies: module packing, encapsulated cell, NOCT and illumination mismatch. Some of these efficiencies are obtainable directly from the manufacturer. Others must be calculated, based on the techniques to be presented in this section.

4.2.2 Ideal Solar-Cell Current-Voltage Characteristics

Although the mathematical description of the processes occurring in a solar cell are quite complicated, the physical description is simple. Photons from the sunlight pass through the upper layer (the "n" material) into the thicker "p" material, where they strike the atoms, jarring electrons loose. The electrons wander throughout the "p" material until they are either recaptured by a positively charged ion (an atom that lost an electron) or until they are captured in the "n" material. The electrostatic charge near the junction between the "n" and "p" materials is such that, once in the vicinity of the junction, an electron is drawn across the junction and is held in the "n" material. As a consequence, the "n" material becomes negatively charged. If the electrons are gathered by the electrodes on the top surface of the cell and connected to an electrode on the bottom surface, the electrons will flow through the external connection, providing electricity through the external circuit. (Exhibit 4.2-4).

The junction in the solar cell is the same as the junction in a diode that might be used to pass electricity in one direction but not in the other. Approximately 0.4 volts is all that is required to drive the electrons from the "n" to the "p" region, across the electrostatic charge at the junction. This internal flow limits the voltage that can be attained with a solar cell. The resistance to electron flow from the "p" to the "n" material is much greater, being on the order of 50

10

Exhibit 4.2-4

OPERATION OF A SOLAR CELL

volts. Only because the photons jar the electrons loose is there a flow in this direction under normal solar cell operation.

An equivalent circuit for e solar cell can be devised that incorporates its diode nature (Exhibit 4.2-5). The photon bombardment acts as a current source, driving the electrical current from the "n" to the "p" material. The diode tends to short this current directly back to the "n" material. An additional shunt resistance, characterizing primarily the losses near the edges and corners of the cell, adds to this shunting, although the shunt resistance is usually too small to be considered in most analyses. A series resistor characterizes the resistance of the cell material itself, the electrode resistance, and the constriction resistance encountered when the electrons travel along the sheet of "n" material into the small electrodes on the top surface.

The equation that describes the equivalent circuit and the corresponding current/voltage relationship consists of the following terms (Exhibit 4.2-5):

- a. the current source, called the light current, which is proportional to the illumination;
- b. the diode current, given by the Shockley equation; and
- c. the current through the shunt resistor.

With slight adjustment of the constants in the equation, excellent agreement can be obtained between the theoretical current/voltage relationship and the actual relationship. Notice that the relationship between the current and voltage is nonlinear, so the computations will be difficult and the relationships somewhat obscure.

Some insight into the importance of the various terms in the current/voltage relationship can be obtained by re-examining the typical performance curves for solar cells (Exhibit 4.2-6). The current is proportional to the illumination, whereas the open-curcuit voltage changes little with illumination. Notice also that temperature has little effect on the short-circuit current, but that increasing temperatures decrease the open-circuit voltage -- an important effect when solar cells are used to charge batteries. When the voltage is zero, there is no flow of current throught the diode. For small increases in the voltage, there is still

4-14

Current density output of solar cell:

EQUIVALENT CIRCUIT OF A SOLAR CELL

OUTPUT CHARACTERISTIC VERSUS TEMPERATURE

THREE DIFFERENT ILLUMINATION LEVELS (Constant Spectral Distribution and Temperature, Illustrative Example)

Exhibit 4.2-6

TYPICAL ARRAY CHARACTERISTICS

no flow through the diode, which requires approximately 0.4 volts for significant current flow. Therefore, the slope of the I-V curve at low voltage depends only on the shunt resistance. The curve would be horizontal if the resistance were infinite.

As the cell output voltage increases, the diode current becomes important, so the output current from the cell begins to decrease rapidly. At approximately 0.55 volts, the photon-generated current is passed totally by the diode. At this near-constant-voltage condition, changes in the current have little effect on the diode and shunt current, so the current/voltage relationship is governed by the series resistance. The slope of the cell's I-V curve at zero current is equal to (the negative of) the series resistance. For best performance, the series resistance should be high, so better cells have steeper slopes at zero current.

The power output of a cell falls to zero at both zero voltage and zero current. Somewhere in between the power will be at a maximum. The maximum will occur near the knee of the curve, typically at 0.42 V and 1.1 A. The ratio of the peak power to the product of the open-circuit voltage and short-circuit current is called the fill factor.

The characteristics of the individual cells can be combined to obtain the characteristics of strings of cells connected in series or in parallel (Exhibit 4.2-7). For example, the current passing through two cells in series is the same, so the current-voltage curve of the pair of cells is constructed from that of the individual cells by adding the voltages for each current. For example, in Exhibit 4.2-7, the voltage of one cell is 0.4 when the current is 1.0 A. For two cells operating at 1.0 A, the output would be at 0.4 + 0.4 = 0.8V. If the two cells were connected in parallel, rather than in series, the voltage across each of the cells would be the same, but the currents would add. Thus, at 0.4 V, the output current of two cells in parallel would be twice the 1.0 A, or 2.0 A. The same procedures would be used for more cells in parallel or series or for entire modules in parallel or series.

If one cell is only 15% illuminated (dotted I-V curve in Exhibit 4.2-7), it will seriously alter the performance of the pair of cells. For example, if the cells are in series and an output current of 0.4 A is to be obtained, the output voltage would be 0.49 - 25 = -24.5 V, as read from the Exhibit. The negative implies that an external voltage source would be required to drive the current in the forward

v

CURRENT-VOLTAGE CHARACTERISTICS OF CELLS IN SERIES AND PARALLES

26

direction. Only if the output current were decreased from 0.4 to 0.18 A would a positive voltage be obtained. The 0.18 A represents the short-circuit current of the shaded cell. The current through cells in series is limited by the current of the cell with the lowest illumination. If two cells are in parallel and one is only 15% illuminated, the output voltage would be only slightly reduced. At 0.4 V, the current would be 1.0 + 0.15 = 1.15 A (Exhibit 4.2-7), down from the 2.0 V realized with 100% illumination on both cells. The voltage across cells in parallel is limited by the voltage of the cell with the lowest illumination, but, as was seen in Exhibit 4.2-7, this is only slightly less than the voltage of the cell with full illumination.

In the usual photovoltaic system with many cells, diodes can be used beneficially to offset the effects of broken and partially illuminated cells (Exhibit 4.2-8). Series blocks can use bypass diodes, so the branch circuit is not totally lost when the series block is shaded or has too many cell failures. The bypass diode also prevents overheating of a partially shaded cell. For example, in the shaded cell in the previous paragraph, a current of 0.4 A would result in a voltage drop of 25 V, so 10 W must be dissipated in the cell. A hot spot would develop that could further damage the cell, its encapsulation, or neighboring cells. Most systems use both blocking and bypass diodes. The optimal arrangement depends on the number of cells in series and parallel and the maintenance costs. Blocking diodes can be used to prevent a reverse current from being forced through the branch circuit either by other branch circuits or by the batteries.

The system current-voltage characteristics are determined by the interaction among the photovoltaic array, the battery and the load. The methods for determining the system voltage, as described in conjunction with Exhibit 4.2-6, apply as well for the entire array. The effects of cell failures and partial shading can be examined upon construction of the I-V curves using the series/parallel analyses just described, superimposed upon the I-V characteristics of the battery and load.

4-19

- (a) Bypass diode prevents Series Block 2 from driving too much current through unfailed substring in Series Block 1 (overheats) but carries loss of entire Series Block 1 upon partial shading.
- (b) Bypass diode prevents loss of array upon total shading of Series Block 1

- (a) Blocking diode prevents reverse current -- but gives a constant Δv loss ($\simeq 0.4 v$) (Use several in parallel to minimize loss)
- (b) Blocking diode required for array to prevent batter, discharge through array

SHORT CIRCUIT (HIGH LOAD)

(c) Bypass diode can prevent overheating of shaded cell (module) under reverse bias if many cells in series

Exhibit 4.2-8

PROTECTION FROM OPEN-CIRCUIT FAILURES

4.2.3 Current-Voltage Characteristics of Arrays in the Field

The manufacturer's reported I-V curves, as considered in the previous section, must be modified for field operation by considering the effects of cell mismatch, dirt, cell failures and maintenance strategies. Cell-to-cell I-V differences result in a decrease in array output as compared to the output that would be calculated if all of the cells had the average maximum-power current/voltage combination. For N cells in series in each of P substrings, forming S series blocks and B branch circuits, the decrease in power output due to mismatch is given by the equation

$$\frac{\Delta P}{\bar{P}_{MP}} = 5.06 \left[\sigma_{I}^{2} \left(1 - \frac{1}{N}\right) + \sigma_{V}^{2} \left(1 - \frac{1}{P}\right) + \sigma_{I}^{2} \left(1 - \frac{1}{S}\right) + \sigma_{V}^{2} \left(1 - \frac{1}{B}\right) \right]$$

where σ_{I} is the standard deviation of the maximum-power current and σ_{v} is the standard deviation of the maximum-power voltage. Typcially σ_{I} is 0.07; no typical value has been reported for σ_{v} . For this σ_{I} and for σ_{v} equal to zero, the power loss is only 2% for N = 10.

Dirt accumulation can be severe for arrays tilted only slightly and for arrays in areas with much air pollution. The dirt will continually accumulate on soft surfaces, such as silicon rubber, so almost all manufacturers now use glass coverplates. Frequent rains help keep the glass clean. After months of operation without cleaning, dirt caused losses of 4% in Chicago; 3% in Lexington, MA; 3% in Cambridge, MA; 1% at Mount Washington, NH; and 12% in New York City (Ref. 4-4).

The effects of failures of individual cells, primarily due to cracking, is important but difficult to compute. The computational difficulties arise from the number of combinations of failed cells. For example, if all of the cell failures occur in one substring of a series block, the effect on the entire array field is much less than if one cell fails in each branch circuit. Some cases already have been analyzed at NASA's Jet Propulsion Laboratory; typical results are presented in Exhibit 4.2-9. The probability of any given configuration of failed cells can be estimated using the binomial and multinomial distributions. Although long and

4-21

tedious, the computations are straightforward. However, the computation of the I-V curve for the system for each of these configurations is a major difficulty. There are many non-linear equations to be solved, with a different set for each combination of failures. The substring failure density is computed for N cells per substring by the formula

expression:

$$F_{ss} = 1 - P_c^N$$

where Pc is the probability of survival of one cell within the time period of interest. For example, the mean time between failures of cells is approximately 200 years, so the probability of survival for one year is

$$Pc = exp(-t/200) = exp(-1/200) = 0.995$$

If 20 cells were connected in series to make a substring, the failure density, F_{ss} , after one year would be 0.095.

The abscissa of Exhibit 4.2-9 would be determined by this value. If there were 8 parallel strings in each of 50 series blocks, the branch-circuit power loss fraction would be 0.29, as read from Exhibit 4.2-9. The power output for this number of cells (20 x 8 x 50 = 8000) would be approximately 4 kW when new; the power output after one year, if none of the modules were replaced, would be 0.71 x 4 = 2.84 kW. In addition, other curves must be used if a simple voltage regulator is used instead of a peak-power tracker. Eventually, there should be enough design charts to cover all practical possibilities.

Although Exhibit 4.2-9 seems to imply that the greater the number of series blocks, the greater the power loss, the opposite is the case. For the 8000 cells, if there were 500 series blocks, there would be only 2 cells per block, so the failure density would be only 0.01. For this failure density, the power loss fraction would be only 0.08 and the output after one year, 3.68 kW. Therefore, the more series blocks (the more cross ties between parallel substrings), the lower the power-loss fraction.

Exhibit 4.2-9

ARRAY POWER LOSS FRACTION VERSUS SUBSTRING FAILURE DENSITY

(Source: Reference 4-5)

31

Much of the loss due to cell failures can be avoided if failed modules are replaced during routine maintenance. There is a tradeoff, however, between the cost of the replacement module and oversizing the array initially to compensate for expected failures. Locating failures also presents a maintenance problem. Monitoring the output from subsections of the array can reduce the area requiring inspection. Visual inspection will frequently be sufficient to discover the broken cells; detecting the higher temperatures of broken cells can also help. (See Section 8 for additional information on maintenance).

4.2.4 Available Modules

Modules are available in almost any combination of operating voltage and current (Exhibit 4.2-10). The unit costs are relatively insensitive to module size, at least for sizes above 2' by 4' (Exhibit 4.2-11). The reliability of the larger modules can be kept sufficiently high by using enough cross ties (series blocks) within the module.

TYPICAL AVAILABLE SILICON SOLAR MODULES

		COST						
ELEMENT	UNITS	2 x 4	4 x 4	4 x 8				
INITIAL: MODULE DIRECT COST MODULE YIELD COST MODULE SUBTOTAL PANEL FRAME PANEL WIRING PANEL SUBTOTAL PANEL INSTALLATION INSTALLED ARRAY STRUCT ARRAY TOTAL	\$/m ² \$/m ² \$/m ² \$/m ² \$/m ² \$/m ² \$/m ² \$/m ² \$/m ²	60 0-5 60-65 24 2-4 26-28 1 22 109-116	60 0-8 60-68 18 2-3 20-21 1 22 103-112	60 0-23 60-83 15 1-2 16-17 1 22 99-123				
PER REPLACEMENT ACTION: FAULT IDENTIFICATION PANEL SUBSTITUTION LABOR MODULE REPLACEMENT LABOR REPLACEMENT MODULE PARTS (INC 1% INVENTORY COST)	\$/PANEL \$/PANEL \$/MOD \$/m ²	4 21 12 61-66	4 21 12 61-69	4 21 12 61-84				

Exhibit 4.2-11

NOMINAL ARRAY COSTS (1975 Cost Levels)

J.

4.3 LEAD-ACID STORAGE BATTERIES

By the end of this sub-section, the reader should be able to (1) list the various reasons batteries enhance the performance of photovoltaic systems; (2) specify reasonable requirements for the batteries used in photovoltaic systems; and (3) analyze the battery-photovoltaics interaction so the system performance can be predicted. Sample problems, illustrating this use of this sub-section, are presented in Section 7.2.

4.3.1 Advantages and Disadvantages of Batteries in Photovoltaic Systems

Batteries give photovoltaic systems the following advantages:

- Capability to provide energy for sunless periods
- Capability to meet momentary peak power demands
- A stable voltage for the system
- Capability to store energy produced by the array in excess of the instantaneous demand, thereby reducing energy loss

One recent study showed that systems without batteries deliver an average of 2.5 hours per day of rated output, whereas systems with batteries deliver 4.5 hours. Another study showed little difference in annual system output when operated at constant (battery) voltage as compared to operation at the instantaneous optimal peak-power array voltage.

Because batteries and the associated charge-rate regulator add to the number of parts in the system, certain disadvantages accrue. Batteries (1) add to the system complexity; (2) add to its cost; (3) increase the maintenance activity and maintenance cost for the system; and (4) frequently reduced the system reliability. Only in those rare circumstances for which low charge rates are acceptable can the charge controllers be omitted. Despite these disadvantages, batteries are frequently worth including in the design, so the understanding of their operation is important.

4.3.2 Battery Operation

Of the many types of batteries available (Exhibit 4.3-1), we will concentrate on lead-acid batteries, because these are the most frequently used in photovoltaic systems. The positive electrode of the lead-acid battery consists of lead oxide; the negative, lead. Both are converted to lead sulfate in the discharge process. The electrodes are immersed in sulfuric acid with an approximately 40% acid concentration.

In practice, the electrodes and sulfuric acid are enclosed in a polyethlene container. The electrodes themselves are formed by a grid made from a lead-calcium alloy. (The less expensive lead-antimony alloy is not suitable for photovoltaics because it causes a higher battery self-discharge rate than desirable). A paste of lead oxide is pressed into the grid such that the paste, when cured, forms a porous structure, thereby exposing a large surface area to the acid. Various fibrous mats separate the two electrodes. The mats are strong enough to keep the electrodes apart and to hold the pasted material in place, but are loose enough to permit the easy flow of ions from electrode to electrode. When the electrons flow through the electrodes, they are captured or released by the porous materials, but are conducted to the grid and hence to the external battery terminal.

4.3.3 Battery Current/Voltage Characteristics

The effect of various processes on the output voltage and current of lead-acid batteries are illustrated in Exhibit 4.3-2. The batteries' discharge period is shown in (a) and the charging period in (b) of the exhibit.

When the discharge period starts, the terminal voltage is high because the ions are uniformly distributed throughout the electrolyte. Shortly thereafter, the voltage has dropped considerably because the ions must migrate between the electrodes, thereby adding to the internal resistance. Since, at this time, the ions are not uniformly distributed, the process is known as polarization. At high currents, the internal resistance causes the terminal voltage to drop. At low

	Units										NICKEL-CADWIUM (NI/Cd)							
Cheracteristic		AUTOWOTIVE (BLI)			MOTIVE POWER				<u> </u>			PHOTOVOLTAIC		al di m	d	VENTED POCKET PLATE		
		Calcium	Antimony	DIESEL	Antimony	Calcium	Antimany	Calcium	Plante'		Calcium	Rate Pure Load	Medium Rate	SEALED SINTERED PLATE	BEALED POCKET PLATE	Low Rate	Medium Rate	High Rat
Rated Capacity - 17"F	A7	Set and the set of the	11 140(11	57 300(2)	180 21/5(3)	150 2250(3)	10 6000 (2)	50 2550(2)	10 1000(2)	1 40(11)	(4)	(5)	(1)					
Nominal over sting willage	rolls cett	1 10 10	1 98(1)	1.46(2)	1 94(3)	1 44(2)	1 44(2)	1 94(2)	10 1000(2)	1 40(1)	50 3000 ⁽⁴⁾ 2 05 ⁽⁴⁾	26 600(5)	150 2250(3)	01 23(0)	08 30(8)	5 488(2)	9 387(2)	9 470 12
Nominal and ut charge voltage	-045 Cell	255		235	244	744	233					200(5)	1 94(2)		1 25 (0)		1 25(2)	2 25 12
Nominal discharge Culuff voltage	vulls cell	17500	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 /5(2)	. /6(3)	, 76(3)	1,5(2)	175(2)	2 55 (2)	175(1)	245(4)	1/5(5)	255 (3)	1 45	1 60	1 65	1 60	1 60
Available Capacity = 104'F	of rated	105	105	105	105	105	105	105	105	108	102	102						
Anadable Cauacity = 32"F	of rated	10	10	10	10	10	10	10	10	87	102	102	105	98	98 90	96	96	28
Available capacity = 20"	of rated	20	20	40	20	20	20	20	20	60	20	20	20	90	90	90 65	90	90
Numinal energy efficiency		70 60	70 80	70 80	70 Mil	70 80	70 80	70 80	70 80	70 80	70 80	70 80	70 80	60 70	60 70	60 70	60.10	-0.70
Self discharge rate = 77%			7 50(8)	1 50(0)	7 50(8)		1 50(3)			,		1		,(0)	,(0)	,(B)	5(0)	,(0)
Nominal Cycle Ide (10)	Crews	20 50	150 750	500	1500 2000	1000 1500	259 500	100 500	250 500	100 200	350	180	1000 1500		100			
Nominal Calendar Me ⁽¹¹⁾	Tears	25	25		\$ 15	10 20	15	15 24	24 30	25	5 15	5 15	10 23	500	500 1000	1500 2000 24	1500 2000	1500 230
Energy density Energy density	Wn 10 Wn 10	13 /2 ⁽¹⁾ 08 16 ⁽¹⁾	13 22(1)	5 e(2) 03 (5(2)	8 4 11 0 ⁽³⁾ 1 1 1 4 ⁽³⁾	8 + 1/ 3 ⁽³⁾ 0/ 15 ⁽³⁾	5 10 ⁽²⁾	6 10 ⁽²⁾ 04 08 ⁽²⁾	4 ,(2) 0 2 0 6 (2)	9.6(1)	56 188(4) 04 14(4)	1/ :9 ⁽⁵⁾	6 13 ⁽³⁾	7 19 ⁽⁸⁾ 08 27 ⁽⁸⁾	4 11 ⁽⁰⁾ 03 10 ⁽⁰⁾	9 11(2)	9 10 ⁽²⁾ 0 1 06 ⁽²⁾	6 7 21
Con(12)		10.11	10	142 162	112 110									0877	03.0	0405	0106	0304-
Cost	S NWR CICH	1 40 3 85	028047	078 0 12	036 009	150 200	112 130	122 130	365	3/5	135 175	96	165 195	400 52 000	900 1100	315 1050	315 1050	315-105
Cost	Sawn year	140 185	140 350	1/8 203	75 26 9	10 0 20	022 052	0 24 1 30	073146	108 375	0 39 0 50	180	011 020	18 104	0 80 5 50	016 070	016070	016 07
						15.0	1587	5187	122 152	75 188	90 350	65 196	8 3 195	113 6500	75 92	131 438	131 438	131 438
(1) At the 20 hour rate																		
(2) At the 8 hour rate										N A - Not appl								
										TBD - To be de	termined							

4-29

61

131 At the 6 now rate

(4) At the 500 mountale (5) At the 600 nour rate

(.) At the 5 nour rate

[8] Range indicates increase in self discharge rate with age

(.) For first 4 munitis after complete charge after 4 months rate reduces to 0.25 per muniti

(10) to b0 percent depth of discharge

(11) in the absence of cycle operation

CHARACTERISTICS SUMMARY TABLE: COMMERCIALLY AVAILABLE BATTERIES

(Source: Reference 4-1)

Exhibit 4.3-2

LEAD-ACID BATTERY CHARACTERISTIC CURVES

(a) DISCHARGING

~55

temperatures, the reactivity of the cell decreases, so the terminal voltage drops further. Near the end of the discharge period, the sulfuric acid is nearly completely consumed, so its electrical resistance increases greatly. In addition, the lead with which it can react is nearly exhausted. (Most cells are designed such that the acid is depleted before the lead).

At the beginning of the charge cycle, there are few sites of lead oxide. As a result, the terminal voltage must be high to obtain nucleation and a significant charge rate. As the number of lead-oxide sites increases, the terminal voltage can decrease while the current remains constant. However, after a while, the number of sites requiring charging starts to decrease, so ions must congregate at those few sites and the effect of polarization increases. Near the end of the charge period, hydrogen forms at the anode, with the gas layer greatly increasing the internal resistance of the cell.

If left standing (Exhibit 4.3.2 (c)), the terminal voltage of the cell will decrease with time, due to the impurities in the water and the alloys in the cell, which react with the electrolyte and decrease the acid concentration.

The current and voltage during discharge can be described in terms of the state of charge of the cell (SOC, ranging from 0 to 1.0) by the equation:

$$V = V_{r} - \frac{I}{AH} \left[\frac{0.189}{SOC} + IR \right]$$

where the SOC is the ratio of the charge at the time of interest to the maximum charge, as measured for the 500-hour discharge rate. The symbols are defined as follows:

~

$$V_{r} = \operatorname{rest voltage} = 2.094 * \left[1.0 - 0.001 * (T-25. {}^{\circ}C) \right]$$

$$V = \operatorname{Terminal Voltage}$$

$$I = \operatorname{current} (Amperes)$$

$$AH = \operatorname{the ampere-hour rating of the battery for the discharge rate}$$

$$IR = \operatorname{internal resistance of the cell}$$

$$= 0.15 * \left[1.0 - 0.02 * (T-25) \right]$$

The 0.189 factor represents the internal resistance due to polarization.

During the charging period, the current and voltage are given by

$$V = Vr + \frac{I}{AH} \begin{bmatrix} 0.189 \\ 1.142 - SOC \end{bmatrix} + IR + (SOC - 0.9) Ln (\frac{300*I}{AH} + 1.0)$$

The underlined term is included only if the first two terms sum to more than 2.28 volts. During the idle period (neither charging nor discharging), the state of charge decreases according to the equation (lead-calcium)

SOC = SOC₀ * Exp (-k*t)

$$k = 300 * Exp (-4400/T)$$

with T in ⁰k, t in hours, and K in hours⁻¹. At room temperature,
K = 0.0001.

4.3.4 Battery-System design

The design of the battery system is an iterative process: (1) the battery size is selected; (2) the system performance is computed; and (3) the life-cycle cost is computed. These three steps are repeated until the system with the minimum life-cycle cost is found.

The iterative process must be performed with the battery selection eventually being confirmed by the manufacturer. Most, if not all, battery manufacturers want to know how many ampere-hours or kWh must be stored and in what environment (temperature, charge/discharge cycles, etc.). They will then recommend a battery. Therefore, the manufacturer's recommendation must be anticipated to determine the optimal storage requirements for the system. Thus it is important to be able to compute the battery performance.

The exact computation of the battery performance would require a detailed circuit analysis using Kirchhoff's current law. Because the batteries,

40

power conditioning equipment and photovoltaic cells have non-linear current/voltage characteristics, solutions to the governing equations are difficult to obtain. Usually, the solution to a set of non-linear algebraic and differential equations must be computed for each instant of time.

A more common procedure is to treat the battery as a simple constantvoltage kWh or Ah storage device. The energy produced by the photovoltaic array is computed first. The load demand is determined, with the excess energy available to the battery. If the battery is fully charged, the excess is assumed to be used by the load. If the battery is not fully charged, the excess energy is absorbed by the battery, increasing the amount of energy stored therein. If the load exceeds the power output of the array, the difference is withdrawn from the battery, decreasing the energy stored therein, until the battery is fully discharged. This state-of-charge accounting can be done on an hourly, daily, weekly or monthly basis. This more common procedure is a reasonable approach to conceptual system design; however, the voltage variation of the battery is significant so final designs should be based on the more accurate method of solving the circuit equations. The foregoing equations, and those to follow, can be used in either approach. The sample problems presented in Section 7.3 will illustrate the use of the more common energy or ampere-hour accounting procedure.

4.3.5 Battery Life

Numerous factors, only some of which can be evaluated quantitatively, influence battery life (Exhibit 4.3.3). Corrosion inside the batteries is controlled by the acid concentration and the temperature. High temperatures also hasten evaporation of the water. Overcharging results in water loss, which can shorten the battery life if the water is not replenished. Low temperatures reduce the capacity by increasing the polarization loss (no equation is available to describe this effect at present). Low temperatures can also cause freezing. Charge/discharge cycles are limited by mechanical and chemical interactions. The only available data is for the same minimum state of charge during each cycle. A typical state-of-charge history for batteries in photovoltaic systems is depicted in Exhibit 4.3.4. There is no equation to predict cycle life under such variable minimum states of charge.

Exhibit 4.3-3

LEAD-ACID BATTERY FAILURE MECHANISMS

a. Chemical: Life = Life at
$$25^{\circ}C * \exp[-5070*(1/T - 1/298)]$$

T = Temperature ^OK Corrosion of the terminals Corrosion of the grid Growth of large lead sulfite crystals

b. High temperature: T = T ambient + 125 * (V - Vr) *I/AH Hastens chemical effects Hastens evaporation

c. Water loss: ml = 0.336 * ampere-hours of overcharge + evaporation

d. Low temperature

Loss of capacity, per I-V characteristic

Freezing

specific gravity: 1.0 1.1 1.2 1.3 1.4 1.5 freezing point $(^{O}C) - 0$ -8 -27 -70 -36 -29

e. Mechanical: Cycle life = 9000 *exp [-(1. - minimum state of charge)] Shorting by dendrite growth

Shorting by sediment at the bottom of the plates

Flaking due to vibration

Flaking due to differential expansion

Dirt

Non-uniform plate growth

f. Self discharge: SOC = Initial SOC * exp -300*t*(exp-4400/T), where

t = Time, hours

 $T = Temperature, ^{O}R$

Chemical reactions accelerated by Fe and Cl in the water

42

Exhibit 4.3-4

TYPICAL BATTERY STATE OF CHARGE (SOC) HISTORY

(3

Exhibit 4.3-3 lists equations from which an estimate can be made of the life of a battery in any set of circumstances, provided certain assumptions are made concerning the effective minimum state of charge to be used in the cycle-life equation. (Note that the cycle life and the life per item (a) of the exhibit are independent. Item (a) gives the years the battery will last before corrosion prevails. The overall life is the lesser of items (a) and (e), as modified by the other life-determining factors).

The self-discharge characteristic of batteries sometimes causes failures of systems of batteries, rather than a single battery. The equation presented in Exhibit 4.3-3 is the nominal self-discharge rate. However, the rate will vary from battery to battery, depending on the particular materials used. Therefore, in a group of batteries connected in series, some batteries (cells) will be at a lower state of charge than others. On recharging, unless overcharging is used, the lower-SOC cells may not completely recharge before the voltage regulator interrupts the current. Then, while the system is idle, the more rapidly self-discharging cells will self-discharge further and may eventually become totally discharged. Testing of the batteries with an hydrometer will reveal the problem but not eliminate the cause. Overcharging eliminates the cause but depletes the water reserves and increases the maintenance.

Stratification of the electrolyte in the cells also can cause a loss of capacity. The problem occurs at SOC below 1.0 in tall batteries. Although there is no quantitative evaluation available, pumps are sometimes recommended by the manufacturer to keep the electrolyte mixed.

4.3.6 Lead-Acid Storage Battery Safety

Several important safety criteria that are applicable must be considered if lead-acid storage batteries are to be incorporated in the stand-alone system. Lead-acid batteries are of two general types:

J.

- <u>Lead-antimony battery</u>, with voltage output about two volts per cell and ampere-hour (Ah) rating from 100 Ah to 1000 Ah for an 8-hour discharge rate. Charge/discharge efficiency is high (85% to 90%). During the charging cycle, an overvoltage (equalizing charge) is required for a period of time to assure that all cells in a battery bank will be recharged to the same voltage level.
- <u>Lead-calcium battery</u>, with output voltage and ampere-hour rating similar to those of the lead-antimony battery. Lead-calcium batteries usually require less maintenance than lead-antimony batteries and do not require an equalizing charge during recharge. Depending on the degree of discharge and cycling rate, batteries can be operated for long periods (e.g., several months) without adding water.

The following design "safety" considerations correspond to the more serious hazards experienced in the use of lead-acid batteries in uninterruptable power supplies:

(1) <u>Danger of Hydrogen Explosion</u>. Hydrogen which was liberated during the charging cycle can accumulate in an unvented room and may result in an explosive mixture. A flame or spark can then cause an explosion, with possible injury to personnel or damage to the charging equipment, although flame arrestors greatly reduce the probability.

Design Guideline: Provide for ventilation in the layout of the proposed battery area or "room" (NEC 480-8(a)). Ensure that no flame-producing or spark-producing devices are installed within the battery area or room. Each vented cell must be equipped with a flame arrestor to prevent destruction of the cell due to ignition of gases (NEC 480-9(a)). Install a "No Smoking - No Sparks" warning sign in the battery area.

(2) Danger of Electrolyte Spillage. Direct contact with the electrolyte (a mixture of sulfuric acid (H_2So_4) and water) can cause severe injury (burns) to the skin and possibly permanent damage to the eyes. Unless properly designed to

release accumulated gas pressure, battery cells can explode scattering cell parts and electrolyte. Volumes of fresh water applied quickly and continuously may avert serious damage.

Design Guideline: Provide a fresh-water emergency shower or safety fountain within a few feet of the battery bank. Ensure sealed battery cells are equipped with pressure release vents (NEC 480-9(b)) . Ensure that proposed maintenance manuals for the battery bank include appropriate cautionary notes, e.g.: "Wear rubber apron, gloves, boots, and facemasks when handling, checking, filling, charging, or repairing a battery"; "Wear protective clothing and goggles when mixing acid and water"; "Always add acid carefully to water and stir constantly to mix well when preparing electrolyte". Specify that no sulfuric acid solutions of more than 1.400 specific gravity acid may be used inasmuch as when water is added to high specific gravity acid considerable heat and violent reaction will occur, possibly splashing the handler.*

(3) Danger of Electrical Shock. If terminal voltage of the proposed battery bank is to be designed for greater than 50 volts ($V_0 \ge 50V$ dc), there is danger of electrical shock during inspection/maintenance/servicing the battery bank (NEC Article 1+0-17(a)).

Design Guideline: Ensure that batteries are installed in groups having total voltage of not more than 250 volts on any one rack. Provide spacing (or insulation) between racks (NEC 480-6). Provide a safety ground-disconnect circuit to allow the battery bank to "float" i.e., (+) and (-) terminals of a highvoltage string are disconnected during maintenance involving servicing, filling, or replacing a battery in a string within the battery bank. Design of the disconnect circuit must provide clearly visible visual indication of the disconnect status. The design should also provide shut-off and disconnection of dc/dc regulator chargers from both the solar array (input) side and battery (output) side during repair of the dc/dc regulator.

(4) <u>Danger of Personnel Physical Injury</u>. Batteries constitute a heavy, concentrated load and can easily cause painful strains or injury to a handler's back, hands, face, or feet. Also, dropped batteries may be damaged, causing injury due to electrolyte spillage as described in (2) above.

4-38

Design Guideline: Batteries should be lifted with mechanical equipment, such as hoist, crane, or lift truck. They should be moved horizontally with power trucks, conveyors, or rollers. Safety shoes and "hard hats" are recommended for handlers' protection (metallic safety hats should be avoided). The system design must include the tools and equipment required for handling individual battery replacement as a routine maintenance task. The system layout and structural design for battery racks/benches should facilitate maintenance and thus encourage the use of available handling equipment.

(5) <u>Facility Damage</u>. Spillage or leakage of electrolyte on benches, battery terminals, racks, floors, etc., can cause corrosion or severe damage unless promptly cleaned up with appropriate neutralizing solution (e.g., one pound of baking soda with one gallon of water). Furthermore, loss of electrolyte by leakage from a battery will lower battery capacity and can cause faults to the rack (and ground circuit).

Design Guidelines: Provide reasonably controlled temperature ambient in the battery room to prevent freezing if decrease in battery electrolyte specific gravity raises the freezing point of the battery above the local ambient temperature.

(6) <u>Damage Due to Corrosion</u>. Fumes and fine spray of dilute acid given off by lead-acid batteries are very corrosive, particularly to metal work and structural items constructed of iron or steel brought in close proximity to cells.

<u>Design Guideline</u>: If steel conduit, structural elements, fasteners, etc., are considered for use in the battery area or room, it is recommended that these items be zinc-coated and kept well painted with asphalt-based paint.

4-39

4.4 POWER HANDLING

The power handling portion of the PV power system is essentially that part of the system which interfaces the arrays with the end-use loads. It is comprised of the necessary array control system, voltage regulators, storage batteries, inverters, and distribution system (including cables, overcurrent protection devices, disconnecting means, grounding system and any load management controllers). Except for the array control system, the power handling system ordinarily consists of electrical equipment which is quite conventional in function and design. This sub-section covers those functions and design concerns of the power handling system.

4.4.1 Dc Power Conditioning

The parameters under which solar arrays operate at a given location cause the characteristic de output voltages to vary over a considerable range throughout the year. Some of these variations are random, such as the levels of insolation during intermittent cloud cover. Insolation and ambient temperature also undergo variations of a more gradual nature due to diurnal and seasonal factors. The voltage and power output of a photovoltaic power system is more variable than that of most conventional generators and thus needs some "conditioning" and storage or back-up before it can be used for most purposes. (For those stand-alone systems having ac loads in whole or in part, an inverter would be required to convert the dc output to an alternating current waveform at a specified voltage and frequency).

Design of a stand-alone photovoltaic (PV) system which includes batteries for energy storage requires not only sizing the array power output and battery storage capacity to meet the load, but also fixing the number of battery cells placed in series relative to the number of PV cells in series in order to keep the battery voltage in the neighborhood of the array maximum-power-point voltage during operation.

4 - 40

In a photovoltaic (PV) system, it is desirable to extract the maximum amount of energy out of the array; a situation that would exist if the array were to be operated at the maximum power point at every instant. In a stand-alone system where the array is connected in parallel with a battery storage subsystem, the number of battery cells which are connected in series defines the nominal dc bus voltage. Although the nominal dc bus voltage may lie in the neighborhood of the array maximum-power-point voltage for some nominal combinations of insolation level and cell temperature, there will generally be a mismatch between the actual operating dc bus voltage and the maximum-power-point voltage of the array at any particular instant in time. This mismatch, which will result in an effective decrease in the efficiency of the array, depends on the state-of-charge of the battery, the battery charge or discharge current, and on the temperature and insolation level of the PV array. If a variable lossless matching network is interposed between the array and the battery, then a maximum-power-point tracking strategy can be used to constrain the array to always operate at the maximum power point.

The decision to include or not to include a maximum-power-point tracker (MPPT) will depend on the additional useful energy which could be collected by using the MPPT and on MPPT costs.

Of those de systems containing storage, the simplest configuration of the power conditioning system is the direct connection (though a blocking diode) of the array to the storage system and then to the load. This is illustrated in Exhibit 4.4-1. This configuration finds cost-effective applications for smaller systems up to approximately 2 kWp capacity. The direct connection of the array to the battery without regulation is advisable only when the peak output current of the array is less than 5 percent of the charge capacity of the batteries in the system.

4-41

I-V CURVE OF PV MODULE EXHIBITING SELF REGULATION

VOLTAGE-REGULATED PV SYSTEM

5

The storage battery continually supplies power to the loads and is charged by the power produced by the PV array during periods of insolation. When the voltage of the battery storage system equals that of the array (less the voltage drop across the blocking diode), current flow into the storage system would stop, with the batteries being at a full state of charge.

The self-regulated PV system configuration places specific constraints on the selection of the PV array current and voltage operating conditions, resulting in the array operating at other than the maximum power point. These constraints are centered around the battery's charging voltage requirements. For a 12 V leadacid battery, the voltage range under charge varies from 12.8 V (at 60% discharge) to 14.4 V (at full charge). To transfer the maximum power from the array to the battery, the voltage operating-point of the array should be approximately 14.4 V plus the voltage drop across the diode of approximately 0.75 V, or a level of 15.15 V, as shown on Exhibit 4.4-2. The output current of the array is 0.97 A at this operating point. For a slight increase in cell voltage above the nominal array voltage, cell current will decrease rapidly, limiting the charging current.

The voltage variations caused by changing weather conditions and degradation due to aging can be compensated by controlling the array voltage by means of a voltage regulator. A typical voltage regulator, either in parallel or series with the array, the storage system, and the load, is shown in Exhibit 4.4-3. In order to regulate the voltage with the required limits to prevent battery overcharge and outgassing, the (shunt) voltage regulator must dissipate a certain amount of power to ground. If the load can utilize all of the PV power, the shunt regulator consumes no power. Based on the output voltage, a simple design regulator "shunts" current through a regulating transistor to keep the output voltage constant.

4.4.2 Control Schemes

The output of a PV array has the same characteristics as portrayed in Exhibit 4.2-6 as a series of I-V curves, dependent upon illumination levels and temperature. The specific operating point on a particular curve is dependent upon both the characteristics of the load and the available output from the array. Possible types of loads are constant resistance, constant voltage loads (such as

batteries) and constant power loads with dynamic impedances. Fluctuations in operating points can be caused by changes in the load as well as from changes in the array's output due to dynamic variation with either insolation, temperature or wind.

The voltage and current output of the array can be manipulated so that maximum energy can be extracted from the system. Maximum power tracking allows the greatest precision in operating near the maximum power point of the photovoltaic I-V characteristics as shown in Exhibit 4.2-6 by using a feedback method to determine operating points. The control accomplishes the change of operating point voltage with respect to the required load voltage by driving a dc/dc converter. The converter provides the interface between the array and the loads as shown in Exhibit 3-1. A simplified block diagram is shown in Exhibit 4.4-4 for a tracking controller. The basic elements include:

- A wattmeter circuit that continuously measures the power level and provides a signal output proportional to actual power.
- Two sample and hold circuits, controlled by a timer, that alternately sample the wattmeter signal output and hold it for comparison with the next sample.
- A flip-flop circuit that changes state whenever a new sample is smaller than the preceding one, but remains in the same state if a new sample is larger than the preceding one, thus representing an increase in power level.
- An integrator circuit that provides a constantly changing output whose direction of change is increasing for one state of the flip-flop and decreasing for the other state of the flip-flop.

The decision of whether to use maximum power tracking or not can be best answered by performing a system simulation on an hourly basis with the control system modeled in detail. The performance of the system both with and without maximum power tracking can be measured and used as a gauge in determining the cost-effectiveness of the control system and the required dc/dc converter.

Exhibit 4.4-4

SIMPLIFIED BLOCK DIAGRAM FOR A MAXIMUM POWER TRACKING CONTROLLER

The various control functions which a power conditioning system can incorporate include:

- Configuration Control
- System autostart/shutdown
- Battery state of charge estimation (if applicable)
- Maximum power point tracking (if applicable)
- Selection of emergency back-up source
- System operation summary displays
- Data recording interface
- Load management
- Failure reporting/automatic recovery

4.4.3 Electrical Wiring

The electrical systems which require wiring in the field and which must be addressed consist of intra- and inter-array wiring, wiring to the power conditioning system, control and instrumentation wiring, and distribution wiring to the loads. A wiring installation for a power system must consider the following factors:

- Safety and reliability
- Avoidance of excessive voltage drop
- Avoidance of excessive copper (power) loss
- Flexibility in changing locations of equipment
- Provision for supplying increased loads
- Provision for economical maintenance

The interconnection and cabling (I & C) design criteria for a photovoltaic power system are similar to those for dc power systems. The design load and the photovoltaic array design configuration must be completed before attempting I & C design.

GY

Proper wiring design involves the cost-effective selection of cabling to:

- Intraconnect panels of the PVPS array
- Interconnect the PVPS array to the load
- Provide integrated grounding of the arrays and a lightning protection system (NFPS 78-1975)
- Comply with national/local electrical installation codes
- Satisfy environmental requirements

Tables 250-94, 250-95, and 310-16 through 310-19 of the National Electrical Code (NEC) provide the requirements for cable sizing. Table 310-13, of the NEC provides the insulation requirements based on the cable's environment. Normally, more than one cable type will satisfy the load and environmental requirements. For such a case, the least expensive cable should be selected.

To ensure satisfactory operation of electrical devices, full voltage should be applied. Under load, the voltage drop from the source should be minimized. Good practice is to limit the voltage drop from the service entrance to any motor to 5%. In electric heating equipment, the voltage drop should generally not exceed 2%.

Power Loss

The power loss in a distribution system depends upon the resistance of the wires and the square of the individual currents which each carries. Feeders sized by the NEC will not always be the most economical size, especially if loads such as motors are operated at or near full load any considerable part of the time. In many cases, it may be more economical to increase the conductor size to reduce copper losses.

Flexibility of Wiring Systems

In industrial power systems, the changing of locations of loads such as motors is a more or less common occurence throughout the life of the facility and suitable designs should be incorporated to meet these changing conditions. Flexibility is usually accomplished by using busways which will accommodate plugin devices, wireways and raceways where a large number of feeders and motor branch circuits are carried. Where motor sizes may increase, some oversizing of raceways is prudent.

Provisions for Expansion and Maintenance

Spare capacity for future load growth can be installed initially at less cost than if provided after construction is completed. The provision for providing capacity for increased loads must be made with respect to physical constraints as well as electrical capacity limitations. For example, conduits embedded in a concrete slab imply a permanent job and future demands must be considered in the early stages of the layout. Maintenance must likewise be considered by providing enough access for working clearances in front of equipment line-ups such as switchgear and for the complete removal of the same.

Economics of Wiring Design

There are many considerations in selecting a conductor for a particular wiring installation. Some of these are mechanical strength, current carrying capacity, reasonable voltage drop and insulation. With increasing costs of electrical energy, it is more apparent that the cost of annual losses often may dictate a higher initial investment in larger copper. This is especially true for both PVPS and for any circuits which operate at high capacity factor such as main feeders and where conductor and raceway investment is heavy.

Annual costs of different alternative systems should be compared to select the most economical. These costs are made up of the annual fixed charges of the investment and the cost of copper losses. By using the resistance of a circular mil-foot of commercial copper wire (a wire 1 foot long and having a cross sectional area of 1 cmil) at 10.7 ohms, the power loss in a circuit at 20° C is:

$$P = \frac{10.7 \times I^2 \times L \times n}{\text{cmils}}$$

Where:

4-48

	Р	Ξ	the power lost in the conductors in watts
	I	=	the current in amperes in the conductor
	\mathbf{L}	=	length of the conductor in feet
	cmils	-	the area of the conductor in circular mils
	n	=	2 for a 2 wire circuit (dc or single phase)
or	n	=	3 for a 3-wire 3-phase circuit (assuming balanced currents)

The cost of the energy lost due to the power losses should be based upon the number of hours of operation each year and the cost of replacement energy at the PV site. By reducing the information to a table, the total annual costs of various sized conductors may be readily determined and the minimum annual cost scheme chosen.

Array Wiring

Array wiring costs tend to increase greatly as module size is reduced. Wiring costs are inversely proportional to branch circuit voltage level, the optimum (minimum) for residential applications being between 100 V dc and 300 V dc. Electrical terminations are the principal cost drivers for array branch circuit wiring, although a modular quick-connect wiring system can be significantly less expensive than junction box wiring systems, particularly when the branch circuit wiring is exposed to weather. However, until such time as a modular quick-connect system is developed and code-approved, the junction-box system should be used. The conductor construction for use at 600V or less shall comply with section 310-13 of the NEC. Conductors must be selected depending upon their installation (wet, dry) and the resistance of the outer covering to moisture and ultraviolet light.

Wiring Methods

Numerous wiring methods are authorized by the NEC, with most of them being used to a greater or lesser extent in commercial and industrial buildings. For procedures in planning power distribution systems, the reader is referred to several of the IEEE recommended practices (See Appendix C).

Sources for Additional Design Data

An analysis of the several factors to be considered in selecting wiring and cabling for photovoltaic purposes is contained in Reference 4-7. These factors, corresponding to chapter headings in the volume are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

4.5 EMERGENCY BACKUP SYSTEMS

The need for backup to a stand-alone photovoltaic power system is determined by the definition of "criticality" of the load to be serviced by the proposed PVPS. The choice of a particular type of backup suitable for the application is influenced primarily by the size of the critical load (in kWh/day) relative to total load to be serviced by the PVPS; by the design margin of the basic PVPS relative to predicted insolation at the proposed site; and by the owner's plan for operation and maintenance of the installed system.

Thus, all of these factors must be considered early in the preliminary phase of design to produce an integrated PVPS which will satisfy the load demand.

4.5.1 Load Analysis

It is necessary to identify, subdivide, and quantitatively describe the characteristics of the total load into those which are classified as emergency, essential, or convenience loads. If none of the load elements are considered as an emergency (or critical) load, a backup system should not be required. However, if any part of the load is critical, then there is the need for sufficient backup to cover only that portion of the critical load. Provision can be made in the PVPS design to unload (disconnect) non-critical elements of the load to delay (or possibly avoid) power loss to the critical load. Emergency, essential and convenience loads are defined as follows:

(1) <u>Emergency Loads</u> -- continuous power is required and loss of such power would have severe and lasting impact. The emergency load category is further subdivided into (a) those loads which are essential for safety to life or whose interruption would produce serious hazards to industrial processes and (b) those loads which are <u>critical</u> whose interruption would lead to economic hardship. Critical loads cannot tolerate power loss in excess of a specified period of power outage. Emergency loads are normally supplied by two separate sources with automatic switching upon loss of one supply.

4-51

(2) <u>Essential Loads</u> -- Power normally supplied by two sources with either manual or delayed automatic switching. Power loss would have disruptive impact but would not be classified as critical.

(3) <u>Non-essential or Convenience Loads</u> -- power loss would have little impact on daily operations or routine -- and would, at most, cause some inconvenience.

Not all applications will have all three load categories, and the number and duration of power outages that can be accepted will vary for each category.

4.5.2 Basic PVPS Design Margin

At this time, there is insufficient data to accurately estimate the frequency and duration of power losses (outages) due to the various "failure modes" which can jeopardize the operational success of a well designed photovoltaic power system. The major causes of power failure will be due primarily to the inadequacy of the design to cope with the variability of nature and to the limitation of hardware reliability.

Choice of basic PVPS design margins adequate to cope with all possible combinations of extreme weather conditions could not be cost-effective. For example, the insolation in many parts of the country is not known to within perhaps 30%. Some of these variables include the following:

(1) Extremes in Weather Conditions. In the design process, an allowance is made for the maximum number of low-insolation days. However, the design margin will not be based on the worst possible condition, but the worst experienced over the past ten to twenty years. There is always a possibility that there will be less sunlight than considered in the design. Similarly, the design margin considers the recent cold weather history for the site. Cold weather, even if it does not cause battery failure, will cause a loss in battery capacity. This loss in capacity can result in deeper discharge of the batteries, with an attendant shortening of the battery life, or a loss in the capability to store and later supply the needed energy. Again, cold weather is considered in the design, but

4-52

nature may provide colder weather than anticipated. In some locations, the PVPS may be subjected to unpredictable extremes of other conditions (lightning, hail, tornadoes, etc.) which cannot be completely designed against.

- (2) <u>Changes in Load Demands.</u> An "apparent" deficiency in design margin is often traced either to changes in the load (loads <u>added</u> after completion of system design), or to underestimating the load as defined in the original system specification.
- (3) Optical Degradation. Optical degradation of the outer surface of the solar array is caused by "dirt" accumulation. Arrays covered with silicon rubber have experienced a 30-percent loss of power in 15 months in some circumstances. Cleaning restores much of this loss, although some ultraviolet degradation persists. Although an allowance is made in the design, loss of transmission through the optical coating could cause significant power losses and ultimately loss of rated power required by the load. (As a consequence of the high losses with silicone, most modules now have cover material made of glass).
- (4) <u>Component Failure</u>. Failure rates of components integrated into the PVPS design can be estimated on the basis of historical data, plus test data accumulated by vendors and certified test facilities. The PVPS design is configured (as described in subsection 6.4) to provide an adequate design margin to protect (at a specified risk) against power loss due to component failure for a given period (e.g., 30 days, 90 days, 6 months, etc.), consistent with specified operating and maintenance provisions.

4.5.3 Types and Suitability of Backup System's

Several backup systems might be suitable for the applications envisioned for the proposed stand-alone system. In many cases, the loss of power will not be critical, and backup will not be required. However, as discussed above, those loads which are judged to be critical are sensitive primarily to downtime (i.e., time that will elapse before the power can be restored). Maintaining some

4-53

inventory of spares will help keep the elapsed time to a minimum, and standardizing replacement components (e.g., modularity of the array) will reduce the cost of replacement spares.

Manual backups are a viable, low-cost alternative for inhabited PVPS installations. For example, village water can be hand pumped on an emergency basis, although provision must be made in the initial design for hand pumping by positive-displacement pumps (centrifugal pumps cannot be manually operated). For larger pumping operations or large-power operations, an engine can be justified for the backup system. Since the engine will be used only on occasion, it may prove troublesome to start; therefore, it should be started regularly (e.g., once a week).

Low power radio communications equipment (transceivers) and other low power devices can be powered by primary batteries or pedal-powered generators in emergencies. However, primary batteries (e. g., zinc-air batteries), once discharged, must be manually replaced when depleted, so the operating costs (replacement costs) would be high.

Battery backups may be more practical, if standby rechargeable batteries are used. For example, lead-acid batteries could be maintained in fully charged state by the solar array, although the backup battery should not be connected to the main battery bank. However, if the solar-recharged battery cannot recover from an emergency condition, it may be necessary to recharge the backup batteries by a fixed engine/generator (or by a portable engine/generator carried by the maintenance team). The engine/generator may be considered an essential backup for those unpredicted periods of extremely low insolation for many days.

The advantages and disadvantages of various combinations just described are summarized in Exhibit 4.5-1. Life cycle cost of alternative backup types should be performed, taking into account the maintenance support cost as well as the initial cost. For example, a low-power engine/generator may be low in initial cost, but the cost of maintenance support might make the life cycle cost higher than a solar (or wind) recharged battery. Moreover, the engine/generator requires periodic transport of fuel (gasoline cr diesel oil) to the site, which may be a physical problem for remote installations.

4-54

Exhibit 4.5-1 SUMMARY DESCRIPTION OF BACKUP SYSTEMS

-

Type of System	Application Suitability	Advantages	Disadvantages
 Manual (e.g., Hand pumps, ma hand or pedal driven g etc.) 		Simple to operate; highly reliable; minimum maintenance.	Requires operating manhours for duration of power outage.
2. Primary Battery (e.g., Non-rechargeable zinc-carbon batteries.)	Suitable for very low power loads. Applicable primarily to remote site for emergency lighting (signal beac communication, instrumentation, e Relatively low initial cost (\$200 - \$500 per KW).	es (except for battery replacement).	Requires immediate replacement of battery with new battery.
3. Gasoline Engine/Genera	ator Suitable for medium power load (P < 5KW) for long periods of pow outage. Readily applicable to local (inhabited) sites; adaptable to remote sites with provision for off- site control. Relatively low initial cost (\$200 - \$500 per KW).	under long periods of operation.	Requires weekly preventive maintenance and operability "run-up" test under load, to verify equipment availability. Requires transport and storage of fuel (gasoline) at site. In remote application, may experience carburetion failure in "start" mode, requiring off-site maintenance team.
4. Diesel Engine/Generato	r Suitable for full critical power load (SKW < P < 15KW) of the PVPS. Readily applicable to local (inhabit sites; adaptable to remote sites equipped with automatic switchove provisions. Relatively low initial cost (\$300 - \$600 per KW).	ed) moderately reliable (higher than gasoline engine) under remote control. Durable (many years) under long period	Requires weekly preventive maintenance and operability "run-up" test under load, s to verify equipment availability. Requires transport and storage of diesel fuel at the site. In remote application, may fail to start in extremely cold weather, requiring off-site maintenance team.
 Rechargeable Secondar (e.g., lead-calcium batte (A) - solar recharged (B) - wind recharged (C) - fossil recharged (D) - portable charger 	ery): load. Readily applicable to local sites; adaptable to remote sites equipped with automatic switching and charge regulation. High initial	Recharging either solar array or wind charger highly reliable. Gasoline/diesel engine reliable under conditions described in 3 and 4 above. Portable charger 1s reliable.	Battery life limited (5 - 10 years). Engine generators require relatively high maintenance (see 3 and 4 above). Solar or wind recharge capability depends on weather conditions.

5,

As indicated in the exhibit, suitability of a given backup system for critical loads depends on size of the critical load in kWh allowable duration of power outage, whether the application is local (i.e., inhabited) or remote (i. e., unattended), and accessibility of the site for off-site maintenance support.

4.5.4 Incorporation of Backup Into the PV System

Once the type of backup has been selected, the backup system must be integrated into the basic photovoltaic power supply. Means of switchover from PV to backup (and visa versa when the emergency is over) may be manual or automatic, depending on whether the system is designed for local or remote operation. Manual operation involves a simple alarm system and a control panel to provide status information (instrumentation), and switching controls to make the timely switch over from PV array to backup system. On the other hand, remote sites must relay this status information by telemetry to the off-site receiver (control) station which alerts the maintenance team when the system is not performing properly. Switchover to the backup system can be accomplished either by transporting the maintenance team to the site, or by including a control channel in the telemetry link by which the backup system can be "commanded" to come on line. A remote actuator will be required for this type of backup, although the actuator can be a simple electrical relay or solid-state switch. Automatic switchover (without telemetry command) is also possible, although the electronic circuitry for the sensing and controlling functions will be more complex and somewhat more failure-prone than the telemetry control method.

A reliability/maintenance/cost tradeoff analysis should be performed to support a design decision between employing on-site manual switching with on-site personnel, or transported off-site personnel, semi-automatic switching via telemetry monitoring and control, or fully automatic on-site sensing and switching.

64

SECTION 5

INFORMATION NEEDED TO START THE DESIGN PROCESS

This section presents the system design engineer with two lists which will guide him in assembling data needed in the design process. The first list presents the minimum data required to perform design computations. The second is a checklist for the entire design process, including tradeoffs, site investigations, and design pitfalls. The reader is expected to use this section as a quick reference to ensure that he has gathered the requisite data.

Little data is needed to perform the design computations for the preliminary stage covered by this handbook. In essence, the daily loads and daily solar radiation are almost sufficient (Exhibit 5-1). Other factors are needed to compute the economics of the system and to compare the photovoltaic life-cycle cost to costs of the competing systems. If each item of Exhibit 5-1 is obtained, then all of the computations required in the various sections of this handbook can be completed. If the data requirements of Exhibit 5-1 are compared to the data requirements of Exhibit 5-2, some appreciation can be obtained of the scope of this handbook. The handbook covers preliminary design approaches only in order to evaluate total photovoltaic systems. The detailed design required to actually construct a system, must address the many questions raised in Exhibit 5-2.

Exhibit 5–1 Minimum Data Requirements to Establish Feasibility

Technical requirements

Daily energy to be supplied by the system, on the average for each month

Peak power demands

Future power and energy requirements

Reliability criteria for photovoltaic power system

Estimated output of the system when insolation is 1 kW/sq. meter

Siting requirements such as fences, grading, markers, site preparation, similar weather (world insolation data are listed in Appendix A)

Current costs of photovoltaic system components

PV modules Batteries Power conditioning system Structures and supports Electrical distribution system

Costs of alternate power systems:

Utility-supplied electricity, including connection costs, demand costs, and energy costs or engine-generator set costs

Fuel costs, including the cost of resupplying

Battery recharge costs

Cost of transportation to the site for repairs to whichever system is adopted (depending on distance to nearest repair station)

Exhibit 5-2 General Checklist for Detailed Design

Site

- 1. Check array location for foundation and structural support.
- 2. Check site for locations of underground or overhead cables and utilities and any other obstructions which could cause shading problems.
- 3. Check installation route and shipping route.
- 4. Check foundation requirements for battery housing.
- 5. For existing load centers, check power/energy requirements.
 - a. Check equipment on line
 - b. Check life-styles as they influence use of equipment
 - c. Measure total power/energy consumption for sample days

Criteria

- 1. Power and energy requirements
- 2. Reliability requirements for power system operation
- 3. Allowable load separation for startup purposes.
- 4. 'Required voltage regulation.
- 5. Maintenance strategy/frequency of site inspections
- 6. Instrumentation and monitoring system requirements for initial checkout and maintenance, and operation.

System

- 1. Determine optimal array tilt, including the possibility of tracking and occasional reorientation.
- 2. Determine the optimal array size, storage size, etc., on the basis of life-cycle cost but meeting the requirements of performance, reliability, and safety.
- 3. Determine the effect of degradation of the array, power conditioning components, batteries, cables, connectors, etc., on the longterm system performance and the initial design requirements.
- 4. Determine array output as a function of time of day, month, and year; include in the effects of temperature, dust accumulation, partial system failure (outages), state of battery charge, load demand, etc., using a detailed simulation.

Exhibit 5-2 Continued

General Checklist for Detailed Design

- 5. Determine the optimal system voltage, including the effects of partial shading, reliability of the array, module failure, safety, component efficiencies, cable costs, component costs, availability of components.
- 6. Define the auxilary power system: total, partial, etc., connection to the load, interface with the array and power conditioning subsystem.
- 7. Determine optimal arrangement of diodes in the array, including isolation diodes and shunt diodes.
- 8. Allocate the voltage losses, such as the diode losses, cable losses, battery losses, etc., justifying on the basis of cost.
- 9. Examine the load and power-system I-V characteristics so potential mismatches (average or instantaneous) can be identified. List and rectify potential mismatches (e.g., define a control system to provide matching).
- 10. Determine the temperature control requirements and how the batteries, voltage regulators and power converters will meet them.
- 11. Determine how the maintenance personnel will identify a failed module component.
- 12. Define the test points for startup and monitoring of system performance.
- 13. Determine optimal cleaning cycle, if any.
- 14. Determine how protection against vandalism will be provided.
- 15. Determine the requirements for spare parts.

Array

- 1. Obtain from the manufacturers the I-V characteristics of the modules as combined functions of temperature and illumination. Include the range of I-V characteristics.
- 2. Determine if modules should be matched within a series string to maximize the array output, considering the cost savings possible but also the difficulty in replacement matching.
- 3. Provide test points within the array.
- 4. Provide indications to identify failed modules or connections.
- 5. Segment the array for maintenance safety and performance during maintenance.

S.

Exhibit 5-2 Continued

General Checklist for Detailed Design

- 6. Determine the least-cost structure, allowing for expansion and contraction due to temperature and humidity. Include aluminum, steel, wood, concrete, and any other native materials. Include foundation design. Include deflection analysis. Protect against corrosion.
- 7. Estimate the cost of the structure so the optimal cell packing density can be determined.
- 8. Design the array to withstand the environment: dust, wind, sand, temperature cycling, hail, rain, humidity cycling, installation and maintenance loads, normal and abnormal voltages, lightning, earthquakes, ice, freezing rain, settlement, ground uplift, combinations of loads and their probability of occurence.
- 9. Review for design compliance with the national codes and standards, such as BOCA, UBC, SBC, ANSI, NEC, NEMA, and their local variations.
- 10. Obtain the data on soil borings as required for the foundation work.
- 11. Decide on custom-designing a structure or purchasing a structure from manufacturer.
- 12. Determine if shading is prevented.
- 13. Protect the array and cables from falling objects.
- 14. Design to protect the maintenance personnel from high voltages and temperatures.
- 15. Provide sufficient redundancy to meet the reliability requirements, such as dual leads, alternate circuit paths, etc.

Conditioning System

- 1. Develop the voltage/cost/reliability data for the components in the systems.
- 2. Define the input/output voltages and currents, including auxiliary power requirements, for a complete range of loads for use in the system design.
- 3. Examine the system for potential instabilities at high loads and other combinations of battery/array/load supply and demand conditions.
- 4. Define the environmental requirements for the equipment.

Exhibit 5-2 Continued

General Checklist for Detailed Design

- 5. Protect the equipment from weather: rain, dust, wind, humidity, temperature, earthquake, lightning, sand, installation and main-tenance loads, shipping loads, normal and abnormal voltages and currents, settlement, ground uplift.
- 6. Specify compliance to the applicable national standards and codes: ANSI, IEEE, NEC, NEMA and their local variations.

Energy Storage System

- 1. Determine if battery use can be minimized by storing the end product (such as pumped water) rather than electricity.
- 2. Select the battery type: pure lead, lead-calcium, sealed, SLI, silver-zinc, iron-redox, nickel-cadmium (pocket plate). Consider cost, availability, depth of discharge, reliability, life (cycles, years), capacity vs temperature.
- 3. Obtain the I-V characteristics of the batteries as a combined function of temperature and state of charge for use in the system simulation.
- 4. Obtain the life estimates for the batteries as a function of temperature and number of cycles.
- 5. Determine the optimal voltage of the battery array in terms of the entire system.
- 6. Estimate the frequency of, and provide for the failure of, one battery in the entire storage system.
- 7. Determine how rapidly the batteries will self-discharge.
- 8. Estimate the battery reliability and maintenance requirements and costs.
- 9. Determine the number of spare batteries needed.
- 10. Estimate the cost of the batteries in place for use in the systems design.
- 11. Layout the batteries to minimize the potential faults.
- 12. Determine the need for and method of dispersing hydrogen generated in the battery housing.

Exhibit 5-2 Continued General Checklist for Detailed Design

- 13. Design the housing for the following loads: weight, wind, maintenance, earthquake, lightning, hail, deflection, thermal and humidity cycling, ground uplift, dust, sand and combinations thereof.
- 14. Design to the applicable standards and codes: ANSI, IEEE, NEC, NEMA, OSHA and their local variations.

Emergency Power System

- 1. Provide a power source as required during the times when the photovoltaics need repair or routine maintenance.
- 2. Determine if the emergency (backup) power system need be automatically activated.
- 3. Establish a procedure and cost for maintaining the emergency system in a state of readiness.
- 4. Estimate the reliability of the emergency power system. Provide a second emergency generating unit if needed to obtain the desired reliability
- 5. Design the emergency power system to the national standards and codes: BOC, UBC, SBC, ANSI, NEC, IEEE, NEMA, OSHA and their local variations.
- 6. Design the housing for the following loads: weight, wind, maintenance, earthquake, lightning, hail, deflection, thermal and humidity cycling, ground uplift, dust, sand and combinations thereof.
- 7. Estimate the installed, operating and maintaining costs for use in the system design.
- 8. Determine the efficiency of the system versus load for use in the system simulation.
- 9. Determine the spare-parts requirements.
- 10. Determine the availability and cost of competent repair services.

SECTION 6 PRELIMINARY SYSTEM DESIGN CONSIDERATIONS

6.1 INSOLATION AND SITING

A generally open, sunlit area will be required for the array. The first step is to identify such an area. The area can be considered open if the angular elevation of neighboring trees, buildings, etc., within an azimuth angle \pm 60[°] degrees of South (northern hemisphere) or North (southern hemisphere) satisfies the relationship:*

elevation angle (above horizon) \leq 56[°] - Latitude angle

The next step is to determine if the area is large enough. The clearness index, \overline{K}_{H} , for the site should be estimated from Appendix A, based on the closest city that also has similar weather. Values of \overline{K}_{H} should be read for the four winter months. For each of these months, the corresponding solar radiation (called insolation in the U.S.) should be read from Exhibit 6.1-1. (Linear interpolation is permissible between values of \overline{K}_{H} for any one month.). The area of the clearing required for the array is given by the equation:

Area (sq. meters) =
$$\frac{\text{Load (in kWh/day) * [cos(t) + sin(t)/tan(66.5-|L|)]}}{\eta * \text{solar radiation (in kWh/m2 - day)}}$$

where, as in the first equation, the magnitude of the latitude angle L is used. The array tilt angle is given by t; it is usually equal to the absolute value of the latitude angle. The system efficiency, η , typically is composed of 14 percent for the array, 80 percent for the battery, and 90 percent for the power conditioner, giving $\eta = 0.14*0.80*0.90 = 10$ percent. The solar radiation to be used on the equation is the minimum for the four winter months.

^{*}The sun-angle charts of Section 11.4 can be used to estimate how much the horizon obstructs the sun. The charts must be used at latitudes above 56° because there may be no sunlight in December.

Example: Suppose two candidate sites for a 12 kWh/day load are in a remote area near Washington, D.C. Suppose a surveyor's transit had been used, looking within 60° of South, to determine the skyline (horizon) to be shown in Exhibit 6.1-2 for the two sites. Both have 110 m² available. Which site is most suitable?

From Appendix A, we find that Washington, D.C. is at a latitude of 38.95 degrees. For the space to be considered "open", the skyline must be lower than

$$56 - 38.95 = 17.05$$

Site A (Exhibit 6.1-2) is not suitable; Site B is.

The values of the clearness index are first obtained from Appendix A, and the average daily insolation on an array tilted at the latitude angle is obtained from Exhibit 6.1-1 by interpolation for the winter months. For November, for example:

a. Interpolation between 30 degrees and 45 degrees latitude:

at
$$K_{H} = 0.3$$
: 2.180 + (1.636 - 2.180) * (38.95 - 30) / (45 - 30) = 1.855

at
$$K_{H} = 0.5$$
: 4.011 + (3.328-4.011) * (38.95-30) / 45-30) = 3.603

b. Interpolation between \overline{K}_{H} 's:

at $\overline{K}_{H} = 0.421$: 1.855 + (3.603 - 1.855) (0.421 - 0.3) / (0.5 - 0.3) = 2.912 kWh/m² day

Similarly, for December, interpolation gives 2.32 kWh/m² day, so the land area required is ($\eta = 10\%$):

A = 12 * R/(2.32 η) = 103 square meters of land

Where $R = \cos t + \sin t/\tan (66.5-L) = 1.983$. The required area is 103 square meters and 110 square meters are available, so Site B is a good candidate.

13

Exhibit 6.1-1

AVERAGE MONTHLY INSOLATION (KWH/M²-DAY) AND THE RATIO (SIGMA 1) OF STANDARD DEVIATION TO AVERAGE

$K_{\rm H} = 0.3$

КН =	:.3		Tilt = La	atitude			··	Tilt = L	atitude +	· 10 ⁰	
Lat	titude	0 ⁰	15 ⁰	30 ⁰	45 ⁰	60 ⁰	0 ⁰	15 ⁰	30 ⁰	45 ⁰	60 ⁰
JAN	MEAN [*]	2, 989	2, 592	2, 073	1, 504	0, 895	3, 067	2, 633	2, 097	1, 531	0. 928
	SIGMA 1	0, 692	0, 748	0, 852	1, 036	1, 328	0, 716	Ø. 778	0, 891	1, 079	1. 355
FEB	MEAN	3, 092	2, 800	2, 360	1, 842	1, 307	3, 130	2, 8 01	2. 342	1, 826	1, 310
	SIGMA 1	0, 692	0, 731	0, 808	0, 948	1, 182	0, 706	0, 751	0. 837	Ø, 985	1, 217
Mar	MEAN	3, 130	2, 995	2, 681	2, 248	1, 772	3, 111	2, 936	2, 597	2, 159	1, 701
	SIGMA 1	0, 692	0, 709	0, 757	0, 848	1, 007	0, 693	0, 716	0, 770	0, 870	1, 038
ÄPR	MEAN	3, 040	3. 073	2, 910	2, 589	2, 177	2, 965	2, 955	2, 757	2, 418	2, 008
	SIGMA 1	0, 692	0. 689	0, 710	0, 761	Ø. 852	0, 680	Ø, 682	0, 709	0, 766	0, 866
MAY	MEAN	2, 875	3, 044	3. 018	2, 817	2, 504	2, 758	2. 883	2, 815	2, 583	2, 256
	SIGMA 1	0, 692	0, 673	0. 677	0, 703	0, 754	0, 668	0. 655	0, 664	0, 696	0, 753
JUN	MEAN	2, 761	2, 996	3. 042	2, 910	2, 664	2, 626	2, 816	2, 816	2, 647	2, 379
	SIGMA 1	0, 692	0, 665	0. 661	0, 677	0, 712	0, 662	0, 642	Ø. 643	0, 665	0, 705
JUL	MEAN	2, 793	3. 003	3, 023	2. 866	2, 595	2, 665	2, 831	2, 806	2, 614	2, 325
	SIGMA 1	0, 692	0. 668	0, 667	0. 686	0, 726	0, 665	0, 647	0, 651	0, 676	0, 722
AUG	MEAN	2, 935	3. 039	2, 949	2, 691	2. 328	2, 838	2, 899	2, 770	2, 487	2, 119
	SIGMA 1	Ø. 692	0. 680	0, 692	0, 729	0. 798	0, 674	0, 668	0, 685	0, 728	9, 804
SEP	MEAN	3. 066	3, 014	2. 775	2, 396	1, 950	3. 019	2, 926	2. 657	2, 268	1. 832
	SIGMA 1	0. 692	0, 699	0. 733	0, 803	0, 926	0. 687	0, 699	0. 739	0, 816	Ø. 949
0CT	MEAN	3, 091	2, 873	2. 493	2. 018	1, 520	3, 103	2, 847	2, 446	1, 971	1, 492
	SIGMA 1	0, 692	0, 721	0. 783	0. 899	1, 098	0, 700	0, 734	0, 805	0, 930	1, 133
NOV	MEAN	3. 017	2. 665	2, 180	1, 636	1, 067	3. 079	2, 690	2, 188	1, 646	1, 090
	SIGMA 1	0. 692	0. 741	0, 833	0, 998	1, 265	0. 712	0, 767	0, 868	1, 039	1, 297
DEC	MEAN	2, 945	2, 524	1. 989	1, 411	0. 773	3, 034	2, 575	2. 023	1, 446	0, 809
	SIGMA 1	0, 692	0, 753	Ø. 864	1, 060	1. 369	0, 718	0, 786	0. 906	1, 105	1, 392

*Note: In all cases the MEAN is (I) and SIGMA 1 is (R)

For southern latitudes, the values listed for July pertain to January, August to February, etc. Otherwise, the tables are equally valued for northern and southern latitudes.

74

6--3

Exhibit 6.1-1 (Continued)

AVERAGE MONTHLY INSOLATION (KWH/M²-DAY) AND THE RATIO (SIGMA 1) OF STANDARD DEVIATION TO AVERAGE

					-						
КН =	• . 5		Tilt = Li	atitude					= Latituc	le + 10 ⁰	
		0 ⁰	15 ⁰	30 ⁰	45 ⁰	60 ⁰	0 ⁰	15 ⁰	30 ⁰	4 5 ⁰	60 ⁰
JAN	MEAN *	4. 955	4, 489	3, 861	3, 126	2.150	5, 182	4. 663	4. 005	3, 255	2, 256
	SIGMA 1	0.413	0.453	8, 517	0, 608	0, 718	0, 430	0, 473	0, 538	0, 627	0, 726
FEB	MEAN	5, 126	4, 787	4, 268	3. 642	2. 930	5. 248	4, 863	4. 319	3, 688	2. 986
	SIGMA 1	0.413	0.441	0.491	0.568	0.667	0. 424	9. 455 0. 455	0.508	0.585	2. 906 0. 680
MOR	h d Provinsi h		_								0. 000
MAR	MEAN	5, 188	5.033	4, 674	4, 176	3, 625	5.161	4, 962	4, 574	4. 070	3. 537
	SIGMA 1	0,413	0, 426	0, 459	0.515	0, 595	0.414	0, 431	0, 468	0, 527	0.609
APR	MEAN	5. 039	5. 079	4. 895	4, 529	4. 057	4. 863	4: 855	4. 631	4. 245	3. 776
	SIGMA 1	0.413	0.411	0.426	0.462	0.517	0.404	0.405	0.425	0, 465	9. 110 9. 525
										0. 100	0. 020
MAY	MEAN	4. 766	4, 962	4, 937	4. 711	4.356	4. 480	4. 627	4. 554	4, 294	3, 923
	SIGMA 1	0.413	0.398	0.401	0, 421	0, 457	0.395	0. 384	0.392	0, 416	0, 457
JUN	MEAN	4. 578	4.850	4, 907	4. 762	4. 487	4. 242	4. 465	4. 471	4. 284	3, 984
	SIGMA 1	0.413	0.392	0.389	0.402	0.428	0.390	9. 403 0. 373	0.375	4.204 0.392	3. 564 0. 423
									0. 210	*⊷*. ant-r*£in	0. 423
JUL	MEAN	4. 630	4. 874	4. 901	4. 727	4. 422	4. 313	4, 508	4, 485	4. 272	3, 946
	SIGMA 1	0.413	0.394	0, 393	0, 409	0. 438	0.392	0.377	0.381	0.400	0, 435
AUG	MEAN	4.865	4. 987	4. 887	4, 594	4. 181	4. 632	4, 705	4. 561	4. 241	3. 822
	SIGMA 1	0.413	0.404	0.413	0.440	0.485	0.399	0.394	9. 407	4. 241 0. 439	3. 022 0. 489
	64 m										0. 102
SEP	MEAN	5.082	5. 023	4, 750	4. 317	3, 804	4. 981	4. 877	4. 570	4. 125	3. 624
	SIGMA 1	0.413	0. 418	0, 443	0, 488	0, 556	0.409	0.418	0.447	0.496	0.568
OCT	MEAN	5, 124	4. 872	4, 432	3, 874	3. 265	5. 176	4. 881	4. 415	3. 855	3. 263
	SIGMA 1	0.413	0.434	0.476	0.543	0.634	0.419	9. 444 Ø. 444	9. 489	3.855 0.559	3.203 0.648
											0.010
NOV	MEAN	5.002	4. 590	4.011	3, 328	2, 490	5. 184	4. 724	4. 117	3, 425	2, 581
	SIGMA 1	0.413	0. 448	0, 506	0.591	0.697	0, 428	0, 465	0, 526	0.610	0. 707
DEC	MEAN	4. 883	4. 387	3. 735	2. 971	1. 891	5. 135	4. 585	3. 899	3. 116	1, 999
	SIGMA 1	0. 413	0.456	0.524	0.619	0.731	0.432	9. 477 0. 477	0.546	9. 637	1. <i>333</i> 0. 738
											0.100

 $K_{\rm H} = 0.5$

*Note: In all cases the MEAN is (I) and SIGMA 1 is (R)

For southern latitudes, the values listed for July pertain to January, August to February, etc. Otherwise, the tables are equally valued for northern and southern latitudes.

Exhibit 6.1-1 (Continued)

AVERAGE MONTHLY INSOLATION (KWH/M²-DAY) AND THE RATIO (SIGMA 1) OF STANDARD DEVIATION TO AVERAGE

к _н	=	0.7	

:

KH =	• . 7		Tilt = 1	Latitude				Tilt = I	Latitude	+10	
JAN	MEAN * SIGMA 1	0 ⁰ 6. 952 0. 178	15 ⁰ 6. 529 0. 196	30 ⁰ 5. 928 0. 224	45 ⁰ 5. 146 0. 257	60 ⁰ 3. 816 0. 292	0 ⁰ 7. 387 0. 186	15 ⁰ 6, 902 0, 205	30 ⁰ 6. 254 0. 232	45 ⁰ 5. 430 0. 263	60 ⁰ 4. 027 0. 294
FEB	MEAN	7. 193	6, 890	6, 418	5, 817	5. 028	7. 434	7. 086	6, 585	5, 970	5, 170
	SIGMA 1	6. 178	0, 191	0, 213	0, 243	0. 277	0. 183	0. 197	0, 220	0, 249	0, 280
Mar	MEAN	7, 280	7, 145	6, 834	6, 399	5, 910	7, 246	7.075	6, 740	6, 300	5, 826
	SIGMA 1	0, 178	0, 184	0, 199	0, 223	0, 253	0, 178	0.186	0, 203	0, 228	0, 258
APR	MEAN	7, 071	7. 108	6, 952	6, 638	6, 230	6, 762	6, 759	6, 572	6, 241	5, 835
	SIGMA 1	0, 178	0. 176	0, 184	0, 200	0, 224	0, 173	0, 174	0, 184	0, 202	0, 227
MAY	MEAN	6. 687	6, 863	6. 847	6, 659	6, 358	6, 174	6, 309	6, 255	6, 039	5.726
	SIGMA 1	0. 178	0, 170	0. 172	0, 182	0, 198	0, 168	0, 163	0, 167	0, 179	0.198
JUN	MEAN	6, 423	6.665	6. 723	6, 607	6, 380	5, 819	6. 020	6. 037	5.887	5.639
	SIGMA 1	0, 178	0.167	0. 165	0, 172	0, 185	0, 166	0. 157	0. 158	0.167	0.182
JUL	MEAN	6, 496	6, 714	6, 745	6, 603	6, 348	5, 926	6, 103	6, 094	5, 920	5. 648
	SIGMA 1	0, 178	0, 168	0, 168	0, 175	0, 190	0, 167	0, 159	0, 161	0, 171	0. 188
AUG	MEAN	6. 827	6. 936	6, 855	6, 606	6, 252	6. 411	6. 481	6. 364	6, 093	5, 734
	SIGMA 1	0. 178	0. 173	0, 178	0, 190	0, 210	0 171	0. 168	0. 175	0, 190	0, 212
SEP	MEAN	7. 131	7. 081	6. 847	6, 472	6. 024	6, 961	6. 874	6, 612	6, 227	5, 789
	SIGMA 1	0. 178	0. 180	0. 192	0, 212	0. 23°	0, 176	0. 180	0, 194	0, 215	0, 243
OCT	MEAN	7 190	6, 968	6, 578	6. 071	5, 476	7. 303	7. 042	6, 628	6, 115	5, 528
	SIGMA 1	0.178	0, 188	0, 207	0. 234	0, 266	0. 181	0. 192	0, 212	0, 240	0, 271
NOV	MEAN	7. 018	6, 647	6, 105	5. 410	4, 359	7. 371	6, 947	6. 366	5, 644	4, 552
	SIGMA 1	0. 178	0, 194	0, 219	0. 251	0, 286	0. 185	0, 202	0. 227	Ø, 258	0, 289
DEC	MEAN	6. 851	6. 400	5. 766	4, 929	3, 386	7. 332	6, 813	6, 126	5, 238	3, 595
	SIGMA 1	0. 178	0. 198	0. 226	0, 261	0, 295	0. 187	0, 207	0, 235	0, 267	0, 297

*Note: In all cases the MEAN is (I) and SIGMA 1 is (R)

For southern latitudes, the values listed for July pertain to January, August to February, etc. Otherwise, the tables are equally valued for northern and southern latitudes.

14

HORIZON PROFILES FOR TWO CANDIDATE SITES

6.2 PRELIMINARY ASSESSMENT OF PHOTOVOLTAIC SYSTEM DESIGN

An initial estimate can be made of the array-area and storage-capacity requirements to supply a particular load at a given site, for a required level of reliability, using a quick-sizing system approach. Once the capacity of the system is determined, the major components are sized. The gross system cost can be computed on the basis of the array and battery costs, and the process can be repeated by varying the array tilt angles, array areas and battery capacity until the minimum cost is determined. After the detailed engineering design phase is completed, a final cost estimate should also include the costs of site grading, array structures, buildings, power conditioning equipment, instrumentation, distribution wiring and any emergency (back-up) generator system.

6.2.1 Array and Battery Quick-Sizing Method

An estimate of the array-area and storage-capacity requirements by use of a monthly output computation is shown in Exhibit 6.2-1. Implicit in the computation is an assumption concerning the loss-of-load probability (LOLP). The LOLP was assumed to be 1 percent in the development of Exhibit 6.2-2, which is used in the monthly computation of Exhibit 6.2-1. After studying Section 7 of this handbook, adjustments may be made for other LOLP's. The monthly computations proceed as follows:

- 1. The clearness factor, \overline{K}_{H} , is obtained for the location of interest for each month from Appendix A. The values are entered in Column 1 of Exhibit 6.2-1.
- 2. A tilt angle is selected for the array at either latitude or latitude plus 10 degrees.
- 3. The average monthly insolation, I, on the tilted array is obtained from Exhibit 6.1-1 by interpolation and entered in Column 2.
- 4. The ratio, R, of the standard deviation of the insolation to the average is obtained from Exhibit 6.1-1 by interpolation and entered in Column 3.

- 5. The standard deviation (S), is computed for each month from the formula S = R * I, S being entered in Column 4.
- 6. The kWh/day load is entered in Column 5.
- 7. The array performance factor, η_{α} , is obtained from the manufacturer, expressed in daily output per unit of array per kWh/day-m² of insolation.
- 8. Estimate the system efficiency, η. It will be approximately equal to the product of the array performance parameter, the battery efficiency and the power-conditioner efficiency. In Exhibit 6.2-1, = 8 percent.
- 9. Determine the optimal design by trial and error, selecting various values of M* for entry into Exhibit 6.2-1. A reasonable starting value is 0.33. For each selected value of M, compute the array area required for each month, according to the formula

Area (m²) = Load/
$$\left[\eta * (I-M*S)\right]$$

In the example of Exhibit 6.2-1, the values of the area are presented in Column 6 for M = 0.33.

10. For the value of M and the ratio R, the storage requirement, C, is read from Exhibit 6.2-2. This capacity is given in days of load. For example, if the load is 20 kWh and the storage capacity C is six days, then the required storage capacity is 120 kWh. The value of C is entered for each month in Column 7. The storage capacity is expressed in the same units as the load in Column 8.

^{*}As indicated in the theory described in Section 7 of this handbook, $M = (\overline{I} - I_D)/S$ where \overline{I} is the average monthly insolation; S, the standard deviation of the insolation; and I_D , the value of the insolation at which the average daily electrical demand is exactly met by the solar system.

11. The month requiring the largest value of array area and storage capacity will determine the equipment size. At first, several values of M should be selected to determine which gives the lowest life-cycle cost. (The value 0.33 is a reasonable starting point.) If the maximum area and maximum storage do not occur in the same month, the maximum array area should be selected according to the foregoing procedures. However, M must be computed from the equation, $M = (\overline{I} - \text{Load}/\eta A)/S$. The storage capacity C is then obtained from Exhibit 6.2-2 for this M and the monthly R. The month with the maximum product (C * Load) determines the battery size.

6.2.2 Component Sizing

Once the operating sizes of the array and the storage system have been computed, all the compnents of the PV system can be sized. The necessary array size has been computed to meet the required reliability criterica, but must be adjusted to allow for degradation with time. Assuming a 10% loss of array performance over its life due to aging, the 12 kW nominal array size must be divided by 0.9, giving a 13.33 kW required capacity at the time of installation.

The necessary battery size to be installed is the equivalent cell capacity to provide a 20-year system life divided by the allowable percent depth of discharge for the battery. A medium rate lead-acid battery is assumed with a 1000 cycle life or a 10 year calendar life. The maximum number of cycles a 9.2 day (184 kWh) battery would be subjected to over a 10 year life would be about 500. Referring to Exhibit 6.2-3 it can be seen that even at the higher mean battery temperatures, an apparent life of 500 cycles would be possible with a maximum depth of discharge of 95%. Thus, the required installed capacity of the battery will be 105% (100%/0.95) of its end-of-life operating capacity, or 193 kWh in the case of the 184 kWh battery.

	Clearness Factor ⁽²⁾	Average Insolation ⁽³⁾		Standard Deviation ⁽³⁾	Monthly Load	Array Area ⁽⁴⁾	Sto Require	rage ement ⁽⁵
Units	к _н	I	R	S			C	
		kWh/m ² day		kWh/m ² day	kWh/day	m^2	Days	кV
Month/Col.	1	2	3	4	5	6	7	8
January	0.41	2.72	0.73	2.00	20	122	8.1	16
February	0.447	3.41	0.63	2.15	20	93	6.7	13
March	0.460	3.99	0.55	2.19	20	77	5.7	11
April	0.480	4.48	0.48	2.15	20	66	4.8	9
May	0.496	4.76	0.42	2.00	20	61	4.2	8
June	0.521	5.01	0.37	1.85	20	57	3.6	7
July	0.509	4.88	0.39	1.90	20	59	3.8	7
August	0.499	4.70	0.43	2.02	20	62	4.3	8
September	0.494	4.43	0.48	2.13	20	67	4.7	9
October	0.480	3.91	0.55	2.15	20	78	5.7	11
November	0.421	2.91	0.70	2.05	20	112	7.7	15
December	0.383	2.32	0.81	1.89	20	148	9.2	18

EXHIBIT 6.2-1 QUICK SIZING COMPUTATIONAL PROCEDURE FOR ARRAY AND STORAGE⁽¹⁾

Notes:

Based upon Washington, D.C. location, Latitude = 38.95[°], Tilt = 38.95[°]. (1)

- (2) From Appendix A Insolation Tables.
- (3)

(4)

Average monthly insolation from Exhibit 6.1-1. Array area = Load/(η (I - M*S)): η = 0.08. Based upon M = ($\overline{I} - I_D$)/S = 0.33. Col. 7 entry read from Exhibit 6.2-2 Col. 8 = Col. 5* Col. 7. (5)

4

BATTERY STORAGE REQUIREMENTS FOR 1% LOLP

MONTHLY AVERAGE INSOLATION – LOAD FACTOR, $M \equiv (\vec{I} - I_D)/S$

97

Exhibit 6.2-3

EFFECT OF DEPTH OF DISCHARGE ON BATTERY LIFE ON TYPICAL LEAD-ACID MOTIVE POWER TYPE CELL (Reference 6-1)

6.3 BASIC APPROACH TO FEASIBILITY ASSESSMENT OF PHOTVOLTAIC POWER SYSTEMS

6.3.1 Preliminary Estimate

The preliminary estimate of cost effectiveness is the first step in determining whether or not to use a photovoltaic power system when there is an alternative power source. This section provides the methods for evaluating the life cycle costs of a system once the capital and operating costs and system performance factors are known. For a photovoltaic system, the cost of the arrays and the cost of the battery system are the two most important cost elements on which the initial capital and recurring operating costs are based.

The basic approach in making economic comparisons between a photovoltaic power system and a conventional power system is to determine the life cycle costs for each alternative. The life cycle cost procedure includes all initial capital costs and the expenditures for the entire life of each alternative including all replacements, maintenance, fuel and operating costs. Photovoltaic systems typically will require a large initial investment, but the operating cost expenditures are negligable when compared to a fuel-consuming engine-generator. Engines require a relatively modest initial expenditure, but also require continuing (escalating) expenses for fuel. For any power system alternatives which differ so in the time sequence of expenditures, the amount of back-up capacity, the cost and escalation rate of consumables and the amount of energy supplied (load factor) are all important factors in determining the break-even cost between alternatives.

In its simplest form, the life-cycle cost is the amount of money needed on hand today in order to finance the project over its entire lifetime, assuming a known rate of inflation and a given discount or cost of money interest rate. This amount is' called the net present value of the project life-cycle cost. It can be written as:

Life-cycle cost = Initial cost + Total Present Worth of Annual Costs

Qu

6-13

The total present worth of the annual cost streams throughout the life of the project must include all maintenance costs, all battery replacement costs (for a PV system), all operating costs and all fuel costs for those alternatives using engine generator sets.

The present values for the recurrent costs of operations, maintenance, and back-up energy can be formulated to account for both escalation and discounting and expressed in terms of the year of first operation. The expression for the present value of recurrent costs is:

$$X_{pv} = \begin{cases} X_{o} \cdot \left(\frac{1+g_{o}}{k-g_{o}}\right) \left[1 - \left(\frac{1+g_{o}}{1+k}\right)^{N}\right], & \text{if } k \neq g. \\ X_{o} \cdot N, \text{ if } k = g \end{cases}$$

where

X_{pv} = (operation + maintenance, or fuel cost) present value X_o = Operation + maintenance, or fuel cost in first year g_o = The escalation rate for operations, maintenance, or fuel cost k = The cost of money interest rate (discount rate) N = System life in years

For those recurring replacement costs for equipment such as batteries which have component lives shorter than the system life, the present value of the replacement costs is:

$$R_{pv} = X_1 (1-S) \sum_{i=1}^{\eta} \left(\frac{1+g_1}{1+k}\right) \frac{N_i}{n+1}$$

where

- $X_1 =$ The replacement cost of the equipment in the first year of operation
 - S = Per unit salvage value of replaced equipment
 - N = The system life in years
 - n = The number of component replacements over N years
- $g_1 =$ The inflation rate for equipment replacements
 - k = The cost of money interest rate

The economic analysis should be conducted assuming appropriate system lifetimes for the power system components and the application. For our purpose, a system life of 20 years is assumed. This restriction does not mean, however, that the original solar equipment must be designed to last that long or that components which have longer lifetimes should be discarded in 20 years. It is not intended that the economic analysis should constrain the optimal design. The 20-year standard might be met, for instance, by replacing all the batteries at the end of 10 years or by replacing them at 5, 10, and again at 15 years if the cycling and design depth of discharge result in five year battery lives.

6.3.2 Life Cycle Cost Determination

The system components, cost and economic parameters for the system sized in Section 6.2 are presented in Exhibit 6.3-1. The hardware costs are based upon 1980 nominal levels and do not represent industry projections for the future. The indirect costs are expressed as a percentage of the material costs. Installation costs are very dependent upon the location and remoteness of the construction site and are likely to vary from the nominal value of 30% of the hardware costs. Engineering costs are likely to be higher on initial first of a kind projects than on subsequent follow-on jobs.

The inflation rates presented in Exhibit 6.3-1 for use in comparisons were chosen to be typical but may not reflect recent changing economic conditions. The absolute magnitudes of the inflation rates are not really crucial to a comparative engineering economy analysis. The important requirements are uniform assumptions and the relative rates of price change.

Exhibit 6.3-2 presents a form for the computation of the life cycle cost of the system. The costs of components and the factors for determining the present worth of annual recurring operations and maintenance cost as well as the replacement costs for batteries are based upon Exhibit 6.3-1. The evaluated lifecycle cost for the determination of leasibility is shown on Line 13 of the exhibit. This value can be compared with the costs of other alternatives and then refined by testing the sensitivity to different levels of reliability as discussed in Section 7.

6-15

Exhibit 6.3-1

COMPONENTS, SYSTEM COS'I'S AND ECONOMIC PARAMETERS

Components	Quantity
PV Array: 12 kW÷0.9 degradation factor	13.33 kW
Battery: 184 kWh÷0.95 for depth of discharge	193 kWh
Array Life, N	20 yrs.
Battery Life	10 yrs.
Hardware	
PV Array Cost	\$ 10/W _p
Battery Cost	\$ 150/kWh
Salvage Value of Battery, S	0.10
Indirect Costs	
Engineering/Total Hardware Costs	0.10
Installation/Total Hardware Costs	0.30+*
Management/Total Hardware Costs	0.06
Economic Parameters	
Discount Rate, k	0.12
General Inflation Rate	0.08
Inflation Rate for O&M, g	0.09
Inflation Rate for Battery Replacements, g ₁	0.08
Annual Recurring Costs	
Array O&M (% of First Costs)	0.01
Battery O&M (% of First Costs)	0.01

Present Value Factors

.

•

$$X_{pv}/X_{o} = (1.09/0.03) \left[1 - (1.09/1.12)^{20} \right] = 15.22$$

$$R_{pv}/[X_{1} (1-S)] = (1.08/1.12)^{10} = 0.695$$

*These costs are very dependent upon location of site.

Exhibit 6.3-2

PHOTOVOLTAIC POWER SYSTEM PRELIMINARY DESIGN LIFE CYCLE COST COMPUTATION

		Quantity	
<u>C</u>	omponent Size		
1.	PV Array: nominal size degradation factor	13.33	ĸW
2.	Battery size: nominal size depth of discharge	193	k₩h
<u>C</u> (omponent Costs		
3.	PV Array	\$133,330	
4.	Battery	28,950	
5.	Power Conditioning System at \$1 per watt	_15,000	
ΰ.	Total Components	177,280	
7.	Engineering	17,730	
8.	Installation	53,180	
9.	Project Management	10,640	
10.	Total First Costs	258,830	
Ar	nual Costs		
11.	Maintenance = 0.01 x Line 3 + 0.01 x Line 4 (from Exhibit 6.3-1)	1,623	
Re	placements Present Value		
12.	Battery = 0.695 x 0.9 x Line 4	18,108	
	Total Life Cycle Cost		
	Line 10 + Line 12 + 15.22 x Line 11	\$301,640	

6.4 RELIABILITY ENGINEERING APPROACH

Beginning in the early conceptual and feasibility analysis phase of PV system design, the system design engineer is confronted with many tradeoff decisions involving the alternative choice of PV array configurations, equipment/component types, physical plant (site) layout, etc. These tradeoffs are conducted primarily to optimize system performance with respect to life-cycle cost. In the design of stand-alone PV power plants, system reliability and maintainability (R&M) become key integral factors in these performance/cost tradeoff analyses.

This section discusses the more important R & M engineering and analytical technologies used in these analyses. Maintainability and maintenance aspects of system design are discussed in Section 8.

6.4.1 Definition and Specification of PV System R & M Requirements

Reliability and maintainability requirements for stand-alone PV power systems can be expressed in quantitative terms amenable to specification as design requirements, estimation in the design phase, measurement in the development/testing phase, and evaluation during operational use phases of the system life cycle. Definitions and terms are consistent with those used throughout the DOD/NASA industry (Refs. 6-2, 6-3).

Reliability

Reliability is generally defined as the probability that an item (PV system, equipment, module, etc.) will perform its specified function (within specified limits of performance) without failure for a specified period of time (or number of cycles) when operated under specified conditions. Reliability characteristic curves (reliability functions for an item are illustrated in Exhibit 6.4-1) for two basic types of failure modes common in PV power systems:

6-18

(1) <u>Exponential Case</u> -- failure modes which occur at random points in time (e.g., failure attributed to quality defects in PV cell manufacture, cell failures due to hail damage, etc.), which are independent of prior experience. The reliability function follows exponential (Poisson) law, given as:

$$R(t) = e^{-t/MTBF} = e^{-\lambda t}$$
Where: $R(t)$ = reliability of the item for
a given period of time, t
t = calendar time in units of hours,
days, months, etc., as applicable
MTBF = mean time between failures for the item
 λ = item failure rate, in failures per unit of
time; = 1/MTBF

QU

(2) <u>Gaussian Case</u> —failure modes which occur at predictable points in time, attributed to performance degradation or "wear-out" after an extended period or number of cycles of use (e.g., PV cells and batteries). The reliability function is given by:

	R(t) =	1 - F(Z _t), for time-dependent failure modes
	R(e) =	1 - $F(Z_c)$, for cycle-dependent failure modes
where: $F(Z) =$		area under the cumulative normal distribution curve (see typical statistics textbook, e.g. Ref. 6-4).
	Z =	$(x - \mu)/\sigma$
	x =	time (t) or cycles (c) at which reliability is to be estimated or specified
	μ =	mean time between failures (MTBF) or mean cycles between failures (MCBF) for the reliability function at R ≈ 0.50
	σ =	standard deviation in hours (or cycles) between 50th percentile

MTBF (or MCBF) and 84th percentile on the reliability function

Maintainability (MTTR) and Downtime (MDT)

Maintainability is generally defined in terms of the mean time to repair (MTTR) an item after a failure has occurred. Repair time includes the active time required to: trace and localize the failure; perform the necessary disassembly, corrective repair, and reassemby of the item, and; "check out" (verify) the repair action.

Repair time does not include travel time (time required for the technician to arrive at the site following the indication of a failure) or logistic delay time (time involved in getting the necessary replacement parts). These time elements, along with active repair time, account for the average downtime (MDT) for the repair action.

Availability (A)

Availability of an item is generally defined as the probability that at any point in time the item will be in a satisfactory state of operation (i.e., either

 $\alpha/$

operating or ready to operate when demanded) in accordance with specified performance requirements under the specified use conditions. System availability can be defined for its design (inherent) availability, A_I , and for its operating (operational) availability (A_o):

$$A_{I} = \frac{MTBF}{MTBF + MTTR} = (1 + \frac{MTTR}{MTBF})^{-1}$$
$$A_{o} = \frac{MTBF}{MTBF + MDT} = (1 + \frac{MDT}{MTBF})^{-1}$$

Specification of R&M Requirements

A stand-alone PV power system for particular application may be required to deliver a specified level of dc power without interruption for long periods with only periodic (e.g., weekly or monthly) scheduled maintenance/inspection. The system "operational" requirements should be stated by (or made known to the potential customer) in a formal system specification. The system specification serves two purposes: (1) it provides the contract basis for delivery and acceptance of the installed PV power system; and (2) it provides the basis for translating the system <u>operational</u> requirements into reliability and maintainability parameters allocable to lower-level subsystem/equipment as quantitative design R&M requirements. This section deals with the latter.

Assume, for example, the key system requirements for a particular customer's application might be summarized as illustrated in Exhibit 6.4-2. Since the customer has indicated the proposed PV installation is to be 30 miles NE of Billings, Montana, the solar parameter (e.g., average daily insolation, percent of clear days, etc.) can be computed for the intended site. The system designer must now translate this customer's system requirements into design requirements in quantitative terms (values of performance, reliability, and maintainability characteristics) allocated to the major subsystem. These design requirements are identified and quantitatively allocated to the subsystems in the system design

CVV

specification. The allocated requirements are appropriately up-dated following each design trade-off iteration during preliminary design phase(e.g., trade-off solar-array, battery-bank, and estimated cycle cost within constraints of a backup generator, load criticality, and available insolation). The following two paragraphs illustrate the reliability and maintainability design requirements which might be included in a proposed system specification. The values shown in these paragraphs are based on the customer's stated operational requirements in Exhibit 6.4-2.

Exhibit 6.4-2 PARTIAL DESCRIPTION OF REQUIREMENTS FOR HYPOTHETICAL CUSTOMER APPLICATION

Voltage:	200V <u>+</u> 20V DC
Load Demand:	Continuous, with 1 to 10 kW; Average = 50 kWh per day
Load Critically: Load I Critical Level	10 kWh/day (with less than 1% risk of power loss between scheduled maintenance visits)
Load II Essential Load:	40 kWh/day (with less than 10% risk of power loss)
Site/Location:	Remote; 30 miles NE of Billings, Montana; latitude approximately 35 ⁰ N; altitude 3,500 ft; rolling terrain
Operation:	Unattended
Planned Inspection/ Maintenance:	30-day intervals
Maintainability:	Not to exceed 2-hour active repair time, on the average (excluding travel and logistic delay time)
Spares Provisioning:	Initial spares to provide 90 percent of first- year repairs; to be stocked at the PVPS site
Monitoring:	Telemetry (wire or radial) of key parameter status to off-site customer office (30 miles)

Reliability Design Requirements

1. <u>System Reliability</u> -- System design shall provide continuous dc power to the specified loads for uninterrupted service (excluding 30 seconds start-up of back- $u_{\rm P}$ unit, if necessary) during thirty (30) days of unattended operation between scheduled monthly preventive maintenance visits.

Load I (Critical Load)	R = 0.99 for specified load, P = 10 kWh/day
Load II (Essential Load)	R = 0.90 for $P_0 = 40 \text{ kWh/day}$

2. <u>Subsystem Reliability</u>—The following subsystem/equipment design requirements shown in Exhibit 6.4-3 are preliminary design allocations to satisfy system requirements specified in (1) above. Values shown in the table are subject to revision as the result of design trade-off iterations in the design verification phase. Subsystem R-values are keyed to the functional block diagram shown in Exhibit 6.4-4 and reliability modeling procedures discussed in Paragraph 6.4.2, following.

Exhibit 6.4-3

EXAMPLE RELIABILITY ALLOCATION FOR A HYPOTHETICAL SYSTEM

System/Equipment	Allocated R Value
I* Insolation, $\overline{I}_{min} = 3.4$; $P(I \ge I_{min}) =$	0.50
A Solar Array	0.95
B Array Terminal Box	0.99
C DC/DC Regulator	0.98
D Battery Bank and Terminal Box	0.95
E Generator, Primary Back-Up	0.85
F Generator, Critical Load Back-Up	0.90
G Main Power Switching Panel	0.99
H Critical Power Switching Panel	0.99
J Maintaining & Telemetry Equipment	0.995
K Distribution Panel	0.995
System Reliability (Load I and II)	0.90
(Load I only)	0.99

*For 35°N latitude (Billings, Montana), the value of minimum solar insolation (I_{min}) during January is $\overline{I}_{min} = \overline{K}_T \overline{R}E = 3.4 \text{ kWh/m}^2$ -day, where $\overline{K}_T = 0.44$, $\overline{R} = 1.54$ for 50° tilt, and $E = 18.1 \text{ kWh/m}^2$ -day. Thus the value of $P(I \ge I_{min}) = 0.50$ assuming $\overline{K}_T \approx \widetilde{K}_T$.

6.4.2 R&M Networks and Block Diagrams

A reliability block diagram is prepared as a series-parallel network comprising the major components to be used in the proposed PV power system. The block diagram assumes failure-independence (i.e., no interactions) between the blocks. If interactions (failure dependencies) are known to exist between components, these components are combined and identified in the block diagram to account for the interactions. Reliability estimating models (math models) are then developed for each component and path in the network and for the overall PVPS system level. Procedures are illustrated in the following steps:

(1) Prepare a top-level "function-oriented" reliability block diagram based on the preliminary design functional block diagram for the system. Exhibit 6.4-5 shows the functional-oriented reliability block diagram based on the hypothetical system depicted in Exhibit 6.4-4. At the system level, reliability is given as follows for normal operation (with backup), and including solar insolation $R_I^* = P(I)$.

• Load II Performance

$$\mathbf{R}_{\mathbf{S}} (\mathbf{II}) = \begin{bmatrix} 1 & (1 - \mathbf{R}_{\mathbf{E}})(1 - \mathbf{R}_{\mathbf{I}} * \mathbf{R}_{\mathbf{A}} \mathbf{R}_{\mathbf{B}} \mathbf{R}_{\mathbf{C}} \mathbf{R}_{\mathbf{D}} \end{bmatrix} \mathbf{R}_{\mathbf{G}} \mathbf{R}_{\mathbf{K}} \mathbf{R}_{\mathbf{J}}$$

• Load I Performance

$$R_{S}(I) = \left[1 - R_{F}\right)(1 - R_{E})(1 - R_{I} * R_{A} R_{B} R_{C} R_{D})\right] R_{G} R_{K} R_{J}$$

(2) Expand the individual blocks in the "functional" reliability diagram into "equipment/circuit" oriented reliability block diagrams to show series and parallel status and major components in each path in the block.

Develop reliability math models for each block in the system. For example, Block A in Exhibit 6.4-6 is the solar array. The solar array may be configured as simple series "strings" of PV cells, or as a series/parallel network, as illustrated.

Exhibit 6.4-5

FUNCTION ORIENTED RELIABILITY BLOCK DIAGRAM

Exhibit 6.4-6

OPTIONAL MODULE CONFIGURATIONS: (A) SERIES: (B) SERIES/PARALLEL

91

The choice of one configuration over another will depend on the size of array (in peak watts and voltage), cost of cross-connections vs additonal series strings, ease of maintenance, reliability requirement in unattended installation, etc. Generally, configuration (b) provides higher "system" reliability for a given PV cell population in the array. Reliability models for the two configurations are given as follows:

(a)

Series Case

$$\overline{R_A} = R_i^n \qquad \sum_{x=0}^r \qquad \binom{n}{x} \left(\frac{\overline{R_i}}{R_i}\right)^x,$$

where: R_i = reliability of individual PV "string" in the operative redundent configuration

 $\bar{R}_i = (1 - R_i)$ n = number of PV strings in the array

r = number of allowable string failures

and $\binom{n}{x}$ is the binomial coefficient $\frac{n!}{x!(n-x)!}$ (Fer complete tables of values see, National Bureau of Standards, "Tables of Binomial Probability Distribution", GPO 1949, Applied Mathematics Series 6.)

For illustration, assume the first design iteration (preliminary design) has sized the array with 64 parallel strings, each composed of 14 modules in series. Each module is configured with 36 cells in series to deliver rated array power output of 15 kWp at 200 V dc (under standard insolation, $I = 1000 W/m^2$).

Assume that module failure rate for a 30-day unattended operation is

 λ m = 780 x 10⁻⁶ module failures/month and reliability for R_m = e^{-780 x -10⁶} = 0.9992 for a 30 day period.

Reliability for a series string of 14 modules for a 30-day period is given

by

$$R_{S} = (R_{M})^{14} = (0.9992)^{14} = 0.989$$

Array reliability for a 30-day period can then be estimated for r = 0 1, or 2 string failures using the binomial expression above:

$$R_{A} (r = 0) = R_{i}^{n} = (0.989)^{64} \approx 0.493$$

$$R_{A} (r = 1) = 0.493 [1 + 64 (\frac{0.011}{0.989})] = 0.844$$

$$R_{A} (r = 2) = 0.493 [1 + 64 (\frac{0.011}{0.989}) + \frac{63 \times 64}{2} (\frac{0.011}{0.989})^{2}] = 0.967$$

This indicates the simple series configuration (a) would require the addition of two redundant strings to satisfy the allocated reliability requirement, $R_A \ge 0.95$. This is verified here to illustrate use of Poisson approximation of the binomial expansion. Techniques for graphical solution of parallel redundant reliability estimation can be found in Ref. 6-4.

$$R(30 \text{ days}) = \sum_{x=0}^{r} \frac{e^{-m\lambda} m \ln(m\lambda \ln)^{x}}{x!}$$
where m = number of modules in string, e.g., m = 14
 λ_{m} = module failure rate, e.g., λ_{m} = 26 x 10⁻⁶ failures/day
t = unattended system operating time between scheduled
preventive maintenance visits, e.g., t = 30 days
n = number of strings in the array, e.g., n = 64 + 2
redundant strings = 66 strings
then m λ_{m} tn = 14 x 26 x 10⁻⁶ x 30 x 66 = 0.72
R(30 days) = $\sum_{x=0}^{r=2} \frac{(0.49)(0.72)^{x}}{x!}$, for r = 2, n = 66 (2nd iteration)
= 0.49 + 0.35 + 0.13
 ≈ 0.97

However, only one redundant string would be required using the crossconnection configuration discussed in (b), following.

Assume the circuit configuration is to consist of cross connections to produce two blocks each of 64 substrings (of three series modules) in series with two blocks of 64 substrings (of four series modules). month, and module reliability = $e^{-778 \times 10^{-0}} = 0.99922$.

Substring (3 module) reliability, $R_{SS_3} = (0.99922)^3 = 0.99767$ Substring (4 module) reliability, $R_{SS_4} = (0.99922)^4 = 0.99689$ $R_A = \left\{ (R_{SS_3})^{64} \left[1 + 64 \frac{(1 - R_{SS_3})}{R_{SS_3}} \right] \right\}^2 \left\{ (R_{SS_4})^{64} \left[1 + 64 \frac{(1 - R_{SS_4})}{R_{SS_4}} \right] \right\}^2$ $= \left\{ (0.8613) \left[1 + 64 \frac{(0.00233)}{(0.99767)} \right] \right\}^2 \left\{ (0.8193) \left[1 + 64 \frac{(0.00311)}{(0.99689)} \right] \right\}^2$ $= (0.9900)^2 (0.9829)^2$ = (0.947)

Trade-off analysis of configurations (a) and (b) should consider the cost of interconnection required to save one string vs the cost of that string.

In this example, configuration (b) would be recommended from a maintenance/safety standpoint. PV substrings can be grounded at crossconnections during maintenance to limit exposure of voltage less than 50 volts consistent with Article 110-17 of the National Electrical Code (NEC).

6.4.3 Reliability Prediction and Feasibility Estimation

Feasibility of the allocated reliability and maintainability requirements defined in 6.4.1 are evaluated by using the math models developed in 6.4.2 based on equipment and component failure rates presented in Appendix B. These failure rates are based on field experience over the past few years and are subject to revision with changes in the state of the art.

 $\langle q_{n} \rangle$

For example, failure rates reported on photovoltaic cells may range from 0.005×10^{-6} to 0.5×10^{-6} (failures per hour) due to variation in application stresses, environmental conditions (temperature, relative humidity, etc.), basic design, materials, and processes used in PV manufacture, and also the scarcity of PV cell failure data itself.

In jointly estimating reliability and maintainability (scheduled periodic maintenance) for the stand-alone PV system, power loss must be considered due to accumulation of "dust" on the surface of PV modules. Dust includes sand, pollen, and other air-borne particles, peculiar to the local atmosphere at the proposed site. Design discusions will involve trade-offs, primarily among cost of frequency of array "cleaning" (preventive maintenance), cost of glass outer covers for the modules, and cost of additional PV strings to make up the power loss during the desired length of unattended operating period.

Field data collected from several existing sites indicates dust accumulation rate and corresponding array power loss ranging from 1% to 38% over a oneyear period without cleaning (see Appendix B). Variation in dust accumulation can be attributed to differences in the materials used in module outer surface (e.g., glass, silicone rubber, hard-coated silicone rubber), array tilt angle, and local atmospheric/pollution/weather conditions (e.g., city, suburban, rural, mountainous, desert, etc.).

6.4.4 Failure Mode and Effects Analysis

The PV power system designer should perform failure mode and effects analyses (FMEA) for his intended design (and subsequent engineering changes) to identify and evaluate any potential critical failure modes which could jeopardize personnel safety or equipment reliability during installation, operation, or maintenance of the proposed PV power system. These analyses are also useful for identifying potential maintainability problems (excessive maintenance burden in terms of maintenance manhours, equipment downtime rate); logistic support problems (excessive requirements for spares and replacement parts); and inadequacy of specified quality controls (in component production and system installation in terms of process controls, special inspections, test procedures, etc.). Results of the FMEA should provide design guidance in choosing between several alternatives for the correction or circumvention of the identified critical failure modes -- e.g., choice between use of parts derating, feedback stabilization, circuit redundancy, location of test points for performance monitoring and failure indication (for on-line maintenance), etc.

Procedures for failure mode and effect analysis (and "fault-tree" analysis) are published in the literature,¹ describing the following basic steps:

(1) Develop the Equipment Functional/Reliability Block Diagram

Extend the reliability block diagram and mathematical models described in 6.4.2 down to the lowest replaceable item (e.g., unit, curcuit, component, or part) in each functional path or "network" in the proposed design configuration.

(2) Identify Critical Failure Modes.

Identify and determine the specific failure modes within replaceable items which could render each functional path hazardous (or unsafe) to operating/maintenance personnel, unreliable (inoperable or excessively degraded performance) in equipment operation, or nonconformance to other "desired" specified system performance parameter requirements (e.g., performance tolerance limits, downtime rates, maintenance skills, etc.).

,0V

¹For example, two sources are: Military Standard 2070 (AS), "Procedures for Performing a Failure Mode Effects and Criticality Analysis for Aeronautical Equipment"; Reliability Guides (Vol. 4), NAVORD OD 44622, pp. 7-4 through 7-21, "Failure Mode and Effects Analysis by Prediction".

(3) Estimate Failure Rate for Identified Critical Failure Modes.

Determine failure rate for each identified critical failure mode by subdividing the failure rates applied in 6.4.3, allocated according to the relative frequency with which the critical failure modes occur within the estimated overall failure rate.

For example, estimated failure rates for a particular type of DC relay may be 5×10^{-6} failures per operating hour in all failure modes. Assume that life test data reveal 50 percent of the failures were due to open mode, 20 percent were due to short mode, and 30 percent were due to degraded performance (high resistance contact, chattering contacts, etc.). If "short" mode is critical in terms of safety or reliability in the proposed application, the failure rate for the critical failure mode is:

$$\lambda_{c} = 5 \times 10^{-6} (0.20)$$

= 1 x 10⁻⁶ critical "short" failures per operating hour

In the absence of experience data (operating history or life-test data) for particular items used in the proposed PVPS design, failure-rate estimates for generic part types can be obtained from MIL-HDBK-217.² Life-test failure-mode data for certain part types can be obtained from GIDEP reports.³ However, a "worst-case" analysis may be justified if data are meager, by allocating the total failure rate to the critical failure mode.

², ³See Appendix B-2

(4) Assess Safety/Reliability Design Adequacy.

Apply estimated failure rates of identified critical failure modes in the reliability modes evolved in (1) above, and compute functional path and system-level reliability (inoperable) failure rate and safety (hazardous or unsafe) failure rate. Transform these critical failure rates to reliability and safety probability estimates (or in terms of mean time between critical failures (MTBCF). Compare these values with the specified PV power system requirements for safety and reliability (or downtime rate).

(5) Evaluate Design Changes.

If results of FMEA indicate nonconformance to specified (or desired) requirements in (4) above, rank the identified problem areas according to their relative impact and evaluate alternative design changes for circumvention of or minimizing the undesired failure modes.

(6) Evaluate Other Hazards to System Safety/Reliability.

Other critical failure modes may be induced by human/equipment interface problems (<u>not</u> due to component failure) resulting in equipment operation or maintenance in modes not intended by design. Although these failure modes usually cannot be quantified in terms of failure rate, they nevertheless can be identified qualitatively as potential threats requiring placement of cautionary labels and protective measures at appropriate points in the installed system.

For example, to evaluate the safety aspect of human/equipment interface.design, consider the following: electrical grounds for external metal parts, panels, controls, etc.; safety covers and notations with interlocks in the highvoltage devices; connectors and plugs designed so as not to expose high-voltage "hot" pins; local safety switch at base of solar-tracking arrays; discharging devices for high voltage PV circuits during cleaning or maintenance of solar array; barriers between adjacent test points on terminals to prevent accidental shortage by slippage of test probe; installation of fuses and circuit-breakers at ground or lowvoltage end of PV strings; protection from moving parts or high-temperature parts; protection from sharp edges of components and maintenance access openings; identification of points for lifting or hoisting batteries, solar panels, etc., during installation or removal.

6.5 ADVANTAGES AND DISADVANTAGES OF PV POWER SYSTEM

Current solar technology and cost suggest that adequately designed PV power systems (PVPS) are well suited for high-reliability/low maintainability requirement applications at remote locations. Typical examples of such applications have included remote weather stations, communications relay stations, navigational buoys and agricultural water-pumping systems. Other power sources are used with varying degrees of success, with or without battery storage and rechargeable on-site battery storage. Generally, the advantages of PV power systems over other systems are their simplicity (fewer moving parts), relative ease of maintenance, high (equipment) reliability, and unattended operation. However, the major disadvantages of PV power systems (by their nature) are their dependence on adequate solar insolation, relative large size of installation area required for the solar array, and the need for dc/ac inversion equipment for ac loads.

105

SECTION 7 SYSTEMS DESIGN

7.1 DESIGN PHILOSOPHY

The foregoing sections of this handbook give the ingredients for an analysis of the annual energy output from a photovoltaic system. However, the systems being considered are stand-alone systems; therefore, the design must be based on the photovoltaics supplying all of the electrical power. The average power output from the system must thus be equal to the average power consumption of the load. The question to be answered is: what is the probability that the solar system will not meet the momentary load requirement? This section presents the loss-of-load probability (LOLP) computational procedure to answer this question.

If the LOLP is too high to be acceptable, either the array and/or the storage size can be increased or an emergency power system can be provided as a backup to the photovoltaics. In the latter case, the LOLP computation will indicate how often the emergency system will be used. It can then be determined, for example, how much fuel must be stored at the site to power the emergency system and how frequently it must be replenished.

The procedure, which is intended to provide the basis for developing first cut designs for cost-effective stand-alone PV power systems, involves the following steps:

- 1. Determination of the load (see Section 4.1)
- 2. Computation of the insolation (see Section 11)
- 3. Selection of the array and storage-system size
- 4. Computation of the LOLP
- 5. Computation of the life-cycle costs

The last three elements are considered in this section of the handbook.

Db

7.2 SYSTEM DESIGN PROCEDURE

The system design procedure is iterative. The array and storage sizes must be selected, with the help of the quick-sizing method of Section 6, and the system performance must be computed. The performance computation is then incorporated into a life-cycle cost analysis. If the technical performance or lifecycle cost are unacceptable, then a new set of array and storage sizes must be selected.

The computational process has been systematized in Exhibit 7.2-1. The average insolation is determined via the procedures of Section 11, based on the data in Appendix A and Exhibit 6.1-1. If Exhibit 6.1-1 does not include the tilt angles of interest, then the computational procedure of Section 11.3 can be used. The standard deviation of the insolation -- a measure of its variability -- is presented in Exhibit 6.1-1, as required in Step 2 of Exhibit 7.2-1. The insolation required to meet the load, I_D , can be estimated from the load requirements. With the load measured in kWh per day, and system efficiency in kWh/m² output per kWh/m² of insolation,

 $I_{D} = \frac{[kWh/day of load]}{([(kWh/m² output per kWh/m² of insolation)* (the area of the array in square meters)])}$

The value of I_D is required in Step 3 of Exhibit 7.2-1.

The storage size is expressed in days of storage over which the load could be met in the complete absence of sunlight. If the load were 2 kWh per day and the storage size were 12 kWh, C, the storage capacity as required in Step 4 of Exhibit 7.2-1, would be 12/2 = 6 days. The remaining computations are self-explanatory.

An outline of the procedure is presented herein to enable the reader to understand its applicability. The equation for Step 9 is based on having the storage system initially fully charged, to capacity C. Over N-1 days, the storage would be depleted gradually, so the required average insolation to meet the load up to

Exhibit 7.2-1

LOSS-OF-LOAD PROBABILITY COMPUTATIONAL PROCEDURE

- 1. Obtain the average insolation, \overline{I} , from Exhibit 6.1-1.
- 2. Obtain the standard deviation, s, of the insolation from Exhibit 6.1-1.
- 3. Select an insolation value, $I_{\rm D}^{}$, at which the load will be exactly met (I $_{\rm D}^{}$ should be less than \overline{I} :

$$I_{\rm D}$$
 = Load/(η A)

 $I_D = Load/(\eta A)$ where A is the array area and the units of η should give I_D in kWh/day-m².

- 4. Select the storage capacity, C, in days of load.
- 5. Set N=C+1 and SUM = 0.0
- 6. Compute $Z_1 = (\bar{I} I_D) / S$
- 7. If Z_1 is less than 2, read from Exhibit 7.2-2 the value of Y.
 - If Z_1 is greater than 2, compute

Y = exp(-0.5 *
$$Z_1^2$$
)/($\sqrt{2 * \pi} * Z_1$)

- 8. Compute the probability of failing in one day, $F_1 = Y$
- 9. Compute $Z_{N-1} = \left[\tilde{I} I_D + C * I_D / (N-1) \right] * \sqrt{N-1} / S$
- 10. If Z_{N-1} is less than 2, read from Exhibit 7.2-2 the value of Y.
 - If Z_{N-1} is greater than 2, compute

$$X = \exp(-0.5 * Z_{N-1}^2) / (\sqrt{2 * \pi} * Z_{N-1})$$

11. Compute the probability of surviving up to day N-1: $F_{N-1} = 0.5 - Y$

- 12. Compute $Z' = Z_{N-1} + I_D / (\sqrt{N-1} * S)$
- 13. If Z' is less than 2, read from Exhibit 7.2-2 the value of Y.

If Z' is greater than 2, compute

Y = exp
$$\left[-0.5*(Z')^2\right] / (\sqrt{2 * \pi * Z'})$$

- 14. Compute the probability of surviving corresponding to Z': F' = 0.5 Y
- 15. Compute SUM = SUM + $(F' F_{N-1})$
- 16. If N is greater than N*, where N*=10*(C+1) I_D /(I-I_D), go to Step 18.
- 17. Set N = N + 1 and return to Step 9.
- 18. Compute the probability of failure:

LOLP =
$$F_1 * [SUM + exp(-C*K_1)*[1. -exp(-K_1)] *exp(-K_2)/B]$$

 $K_1 = I_D*K/S$
 $K = (I - I_D)/S = Z_1$
 $K_2 = K * (N*/20)^{0.5}$
 $B = K^2 * (K_2 + \sqrt{K_2^2 + 4/\pi})$

Exhibit 7.2-2

CUMULATIVE DISTRIBUTION FUNCTION FOR THE NORMAL CURVE

10⁽¹⁾

day N-1 is $I_D - C*I_D/(N-1)$. The function Z_{N-1} is the number of standard deviations the required average insolation is from the average, \overline{I} . The probability distribution function is not exactly normal (Gaussian), but closely approximates the normal after ten days. Therefore, the insolation on the tilted surface, which has been assumed as averaged over N days, is a normal distribution. This assumption is consistent with the law of large numbers in probability theory. The (cumulative) distribution function for the normal curve is called the error function. There is no simple expression for the error function, nor do hand-held calculators have the error function pre-programmed. Therefore, Exhibit 7.2-2 must be used. However, for Z greater than 2.0, the exponential function, Y, of Step 10, is a close approximation. The crossed points of Exhibit 7.2-2 show the comparison.

The LOLP computation for any one day, N, involves three factors: (1) Z_1 , which is related to the probability that the load will be lost in a single day; (2) Z_{N-1} , which corresponds to losing the load when the insolation is nearly zero on the following day; and (3) Z', which corresponds to the losing the load when the insolation is relatively high on the following day. These three factors are combined in Step 15, although, for speed of computation, multiplication of the sum by the constant factor F_1 is deferred until after the summing is completed (Step 18).

The total LOLP must be computed by summing the probabilities for the individual days. Typically, several hundred days are required to provide an adequate estimate. When the number of the day is large, the summation can be approximated by an integral, as given in Step 18. Therefore, the summation computation need be executed only up to 10 times N^* , with the integral giving the value of the remaining terms in the summation. Consequently, the probability of failure (LOLP) of Step 18 includes all the days, up to N equal to infinity.

The procedure gives an approximate evaluation of the exact expression:

LOLP =
$$\sum_{N=C+1}^{\infty} \int_{I_{N-1/I}}^{(N/N-1)I_N/I} (N*I_N/I - (N-1)x) F'_{N-1}(x) dx$$

where:

$$I_{N} = (1 - C/N) * I_{D}$$

An example of the computational procedure is presented in Exhibit 7.2-3. The example is for a latitude of 45 degrees, a tilt of the array at 45 degrees, and a K_H of 0.5. Starting points for both the array size and battery capacity are chosen. A value of the insolation, I_D , required to meet the load, is selected (2.3 kWh/day-m²) based on the average daily kWh load, and an assumed array area with a known efficiency. Eight days storage capacity is used. Computations for only the first day are presented in detail; however, the computations were carried out to completion with a LOLP computed of 0.0016, or approximately six days loss of load over a ten year period. This relatively high level of reliability approaches the reliability criteria of bulk, interconnected utility grids that are generally designed for a one day loss of load per ten year period.

The computations were performed on a Texas Instruments TI-59 electronic calculator using the program listed in Exhibit 7.2-4. Instructions for the operation of the program are presented in Exhibit 7.2-5. Running time on this calculator was approximately 0.1 minute per day, or 0.1*N minutes. The corresponding Hewlett Packard HP-67 calculator program is presented in Exhibits 7.2-6 and 7.2-7.

With the aid of the calculator programs, the LOLP may be obtained for many variations in the design parameters. Exhibit 7.2-8 was prepared to show some of the results of a parametric variation study of LOLPs for a range of array sizes. (I_D) and storage capacities (C) that might be tried. Note that the units of insolation are immaterial, although, I, S, and I_D must all be expressed in the same units. The area of the array in square meters is determined from the expression for I_D and is expressed as:

Where I_D is expressed in kWh/day-m².

111

Exhibit 7.2-3

EXAMPLE OF LOSS-OF-LOAD PROBABILITY COMPUTATION

1. For Latitude =
$$45^{\circ}$$
, $\vec{k}_{H} = 0.5$, $\vec{l} = 2.971 \text{ kWh/day-m}^{2}$ (Exhibit 6.1-1)
2. For Latitude = 45° , $\vec{k}_{H} = 0.5$, (Sigma 1) * $\vec{l} = 1.839 \text{ kWh/day-m}^{2}$ (Exhibit 6.1-1)
3. Select $I_{D} = 2.3 \text{ kWh/day-m}^{2}$
4. Select $C = 8 \text{ days}$
5. $N = 9$, SUM = 0.0
6. $Z_{1} = (2.971 - 2.3)/1.839 = 0.3649$
7. Read $Y = 0.36$
8. $F_{1} = 0.36$
9. $Z_{N-1} = Z_{8} = (2.971 - 2.3 + 8 * 2.3/8) * \sqrt{8}/1.839 = 4.569$
10. Compute: $Y = EXP(-0.5 * 4.569^{2})/(\sqrt{2\pi} * 4.569) = 0.000 002 55$
11. $F_{8} = 0.499 997 45$
12. $Z' = 4.569 + 2.3/\sqrt{8} * 1.839) = 5.012$
13. Compute: $Y = EXP(-0.5 * 5.012^{2})/(\sqrt{2\pi} * 5.012) = 0.000 000 28$
14. $F' = 0.499 999 72$
15. SUM = 0 + 0.499 999 72 - 0.499 997 45 = 0.000 002 27
16. $N < N^{*} = 10^{*9} * 2.3/(2.971 - 2.3) = 308.4$
17. $N = 9 + 1 = 10$
etc.
18. $K = (2.971 - 2.3)/1.839 = 0.3649$
 $K_{1} = 2.3 * K/1.839 = 0.4563$
 $K_{2} = K * \sqrt{308.4/20'} = 1.433$
 $B = (0.3649^{2}) * (1.433 + \sqrt{1.433^{2} + 4/\pi}) = .4336$
LOLP *= $(0.36) [0.00159 + 0.00282]$
 $= 0.0016$

*Variations may occur in the value of LOLP due to different readings off the exhibit.

112

LISTING OF A TI-59 PROGRAM FOR CALCULATION OF LOSS OF LOAD PROBABILITY

EXHIBIT 7.2-4

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		151 01 01 152 95 = 153 42 STD 154 06 08 155 11 A 156 42 STD 157 11 11 158 76 LBL 157 11 11 158 76 LBL 160 43 RCL 161 08 08 162 65 × 163 43 RCL 164 04 04 165 34 r_X 166 85 FCL 164 04 04 165 85 FCL 166 43 RCL 164 04 04 165 84 r_X 166 43 RCL 164 04 04 165 85 FCL 173 43 FCL 173 43 FCL 173 43 FCL 174 04 04 175 55 - 177 43 RCL 178 915 - 177 43 RCL 178 95 S 180 42 STD 161 12 12 182 11 A 184 93 . 185 95 S 186 95 S 186 95 S 186 95 FCL 190 12 12 191 85 FCL 191 85 FCL 193 02 02 194 55 + 195 04 04 197 34 r_X	
046 03 3	096 55 ÷	146 43 RCL	196 04 04	

201 95 = 202 11 A 203 94 +/- 204 95 + 205 93 . 206 05 5 = 207 95 5 = 208 44 SUM 209 05 05 210 43 RCL 211 05 05 212 43 RCL 213 43 RCL 213 43 RCL 214 07 07 215 32 X:T 216 43 RCL 217 04 04 218 77 GE 219 18 C ⁺ 220 01 1 221 44 SUM 222 04 04 223 61 GT 224 43 RCL 225 76 LBL 225 76 LBL 226 18 C ⁺ 227 43 RCL 228 08 08 08 230 43 RCL 229 43 RCL 238 09 09 239 43 RCL 237 42 STD 238 09 09 239 43 RCL 238 77 RCL 237 42 STD 238 09 09 239 43 RCL 237 42 STD 238 09 09 241 65 \times 242 53 $(L2)^{2}$ 243 43 RCL 244 07 07 245 55 $+$ 246 02 02 247 00 0 248 RCL 247 00 0 248 RCL 249 RCL 249 RCL 249 RCL 240 RCL 240 RCL 241 RC^{+} 242 RCL 243 RCL 243 RCL 244 RCL 244 RCL 245 RCL 245 RCL 247 RCL 247 RCL 248 RCL 249 RCL 249 RCL 240 RCL 241 RC^{+} 240 RCL 241 RCC 242 RCL 243 RCL 243 RCL 244 RCL 244 RCL 245 RCL 245 RCL 247 RCL 247 RCL 248 RCL 247 RCC 248 RCL 247 RCC 247 RCC 248 RCL 247 RCC 247 RCC 247 RCC 247 RCC 247 RCC 247 RCC 247 RCC 248 RCC 247 RCC 247 RCC 247 RCC 248 RCC 247 RCC 247 RCC 248 RCC 247 RCC 248 RCC 247 RCC 248 RCC 247 RCC 247 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 247 RCC 248 RCC 248 RCC 248 RCC 247 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 248 RCC 248 RCC 247 RCC 248 RCC 2	251 42 STU 252 10 10 253 33 X2 254 94 +/ 755 22 INV 256 10 LNX 257 258 43 RCL 259 43 RCL 259 43 RCL 260 03 03 261 65 RCL 263 09 09 264 52 INV 266 253 (269 01 - 275 553 (269 075 - 275 553 (269 075 - 275 553 (269 075 - 277 43 RCL 267 43 RCL 267 55 (269 01 - 277 43 RCL 267 55 (269 075 - 277 55 55 (2779 85 + 288 69 π) 288 69 54 () 288 55 π) 288 69 54 () 288 69 54 () 289 34 IX) 291 54 () 291 54 () 291 54 () 291 54 () 292 295 33 X2 296 95 55 FC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
246 02 2 247 00 0 248 54) 249 34 JX 250 95 =		34P (N Ú

∕'₃

Exhibit 7.2-5

INSTRUCTIONS FOR THE OPERATION OF THE TI-59 PROGRAM FOR COMPUTING THE LOSS-OF-LOAD PROBABILITY

- 1. Depress B to ready the calculator for input.
- 2. Enter the average insolation on the tilted surface, I. (Stored in 00) Depress R/S. Enter the standard deviation of the insolation on the tilted surface, S. (Stored in 01) Depress R/S. Enter the insolation required to exactly meet the load, I_D. (Stored in 02) Depress R/S. Enter the number of days of storage capacity, C. (Stored in 03) Strike R/S.
- 3. The calculator prints the number of days that must be summed, then proceeds with the computations. If the LOLP is predicted to be high, the calculator will print HIGH RISK. The prediction method is approximate only, being based on the estimated maximum value of Z_{N-1} . If this value is less than 2, the risk is likely to be high. After printing HIGH RISK, the calculator proceeds with the computations.

If Z is greater than 2.0, the calculator uses the approximate formulas. If Z is less than 2.0, it will ask for the user to input the value of the probability, with the words INPUT PROB. The value of Z is displayed. After the probability is read from Exhibit 7.2-2 and entered, the user should strike R/S. The calculator will print the probability and continue with the computations.

- 4. The calculator will flash the probability (LOLP) up to the day being calculated, as the computations proceed.
- 5. If an error should occur, the calculator will stop at the point of the error, because SET FLAG 8 is incorporated in the program.
- 6. At the end of the computation, the calculator will print the LOLP, stop, and display the LOLP, storing the value in 05.

7 - 9

Exhibit 7.2-6

LISTING OF AN HP-67 PROGRAM FOR CALCULATION OF LOSS OF LOAD PROBABILITY

Step Number	Key- strokes		Koy Cod	_	Step	Key-			
number	Stickes		Key Code	3	Number	strokes		Key Co	de
001	f LBA A	31	25	11	029	1			01
002	RCL O		34	00	030				51
003	RCL 2		34	02	031	STO 6		34	06
004				51	032	÷		•••	89
005	RCL 1		34	01	033	1			01
006	÷			81	034				51
007	STO 8		33	08	035	RCL 2		34	02
008	R/S			84	036	Х			71
009	STO 9		33	09	037	RCL 0		34	00
010	0			00	038				
011	STO 5		33	05	038	+			61
012	RCL 3		34	03	039	RCL 6		34	06
013	1			01	040	f√X		31	54
014	+			61	041	X			71
015	STO 4		33	04	042	RCL 1		34	01
016	RCL 2		34	02	043	-			81
017	Х			71	044	f GSB 1	31	22	01
018	RCL 0		34	00	045	STO + 5	33	61	05
019	RCL 2		34	02	046	RCL 2		34	02
020				51	047	RCL 4		34	04
021	÷			81	048	1			01
022	1			01	049				51
023	0			00	050	f√x		31	54
024	Х			71	051	RCL 1		34	01
025	STO 7		33	07	052	Х			71
026	f LBL B	31	25	12	053	÷			81
027	RCL 3		34	03	054	RCL 6		34	06
028	RCL 4		34	04	055	+		_	61

Exhibit 7.2-6 (Continued) LISTING OF AN HP-67 PROGRAM FOR CALCULATION OF LOSS OF LOAD PROBABILITY

Step Number	Key- strokes		Key Code	9	Step Number	Key- strokes]	Key Co	de
056	f GSB 1	31	22	01	083	f LBL 2	31	25	02
057	STO-5	33	51	05	084	h RTN	• •	35	22
058	RCL 7		34	07	085	f LBL 3	31	25	03
059	RCL 4		34	04	086	h x≷y	•1	35	52
060	g x>́y		32	81	087	R/S		00	84
061	GTO C		22	13	088	GTO 2		22	02
062	1			01	089	f LBL C	31	25	13
063	STO + 4	33	61	04	090	RCL 7		34	07
064	RCL 5		34	05	091	2			02
065	h PAUSE		35	72	092	0			00
066	GTO B		22	12	093	÷			81
067	f LBL 1	31	25	01	094	f√X		31	54
068	2			02	095	RCL 8		34	08
069	h x≷y		35	52	096	Х			71
070	g x ≤y		32	71	097	STO A		33	11
071	GTO 3		22	03	098	RCL 8		34	08
072	STO 6		33	06	099	RCL 2		34	02
073	g x ²		32	54	100	Х			71
074	ĊHS			41	101	RCL 1		34	01
075	CHS g e ^X		32	52	102	÷		• -	81
076	RLC 6		34	06	103	STO B		33	12
077	÷			81	104			•••	42
078	$h\pi$		35	73	105	CHS g e ^X		32	52
079	2			02	106	CHS		•	42
080	Х			71	107	1			01
081	f√x⊤		31	54	108	+			61
082	÷			81	109	RCL B		34	12

 $I_{l,k}$

Exhibit 7.2-6 (Continued) LISTING OF AN HP-67 PROGRAM FOR CALCULATION OF LOSS OF LOAD PROBABILITY

Step Number	Key- strokes		Key Code	Step Number	Key- strokes		Key Code
110	RCL 3	34	03	123	RCL A	34	11
111	Х		71	124	g x ²	32	54
112	CHS		42	125	+		61
113	g e ^x	32	52	126	$f\sqrt{x}$	31	54
114	Х		71	127	RCL A	34	11
115	RCL A	34	11	128	+		61
116	$g x^2$	32	54	129	RCL 8	34	08
117	CHS		42	130	g x ²	32	54
118	g x ^e	32	52	131	Х		71
119	Х		71	132	÷		81
120	4		04	133	RCL 5	34	05
121	$h\pi$	35	73	134	+		61
122	÷		81	135	RCL 9	34	09
				136	Х		71
				137	h RTN	35	22

11

Exhibit 7.2-7

INSTRUCTIONS FOR USE OF THE HP-67 PROGRAM FOR CALCULATING LOSS-OF-LOAD PROBABILITY

- 1. Key the input data into the following registers:
 - I REG 0 (Value from Exhibit 10.1-1) S REG 1 " I_D REG 2 (Value dependent upon application) C REG "
- 2. Depress R/S. The program will calculate Z_1 and stop with Z_1 in the X-register. Input the value of Y_1 corresponding to Z_1 from the graph in Exhibit 7.2-2. Press R/S to re-start the program. If the program encounters a value of Z less than 2, it will stop with 2.00 in the X-Register. Press h x y to display the value of Z. Input the Y value from Exhibit 7.2-2 into the X-register. Press R/S to re-start the program. (Note: Values of Z less than 2 may indicate a high loss of load probability).
- 3. The program will pause and display the contents of register 5 (the running sum of Y) after each day.
- 4. The program will halt with the loss of load probability displayed in the X-register.

Exhibit 7.2-8

TYPICAL CASES FOR THE LOSS-OF-LOAD PROBABILITY

S /-	T]		Stora	ge Cap	acity, (C (days)			
S/ _Ī	I _{D/Ī}	2	4	<u>6</u>	<u>8</u>	<u>10</u>	<u>12</u>	<u>14</u>	<u>16</u>	<u>18</u>	<u>20</u>
1.0	0.5	1.2-1	4.5-2	1.8-2	7.1-3	3.2-3	1.2-3	5.2-4	2.2-4	9.6-5	4.2-5
1.0	0.4	6.8-2	2.6-2	1.0-2	4.2-3	1.8-3	7.7-4	3.4-4	1.5-4	6.8-5	3.1-5
0.8	0.5	5.3-2	1.2-2	2.9-3	7.4-4	2.0-4	5.3-5	1.4-5	4.1-6	1.2-6	3.1-7
0.8	0.4	-					3.7-5				
0.7	0.8	4.1-2	1.4-2	2.5-2	1.4-2	4.2-3	1.4-3	4.5-4	1.5-4		
0.7	0.7	1.4-1	3.0-2	6.5-3	1.4-3	3.3-4	7.8-5	1.9-5	4.8-6	1.0-6	2.7-7
0.7	0.6	5.6-2	9.5-3	1.6-3	3.0-4	5.8-5	1.2-5	2.4-6	4.3-7	9.5-8	2.0-8
0.6	0.8										
0.6	0.7	6.5-2	7.8-3	1.0-3	1.3-4	1.9-5	3.0-6	4.0-7	6.6-8	1.1-8	1.8-9
0.6	0.6						2.5-7				
0.4	0.9	L					2.4-5			1.0-7	1.8-8
0.4	0.85	_					1.1-7				
0.3	0.9	4.7-2									
0.3	0.85	3.9-3									
0.3	0.8	4.8-4 1	L.1-6	3.8-9							
0.3	0.7	1.7-5 6	6.6-7								

Notes:

- 1. Read LOLP entries such as 7.2-3 as 7.2 * $10^{-3} = 0.0072 = 0.72\%$
- 2. The vertical lines in the table separate those cases for which the $LOLP \ge 0.01$ to the left from those for which LOLP < 0.01
- 3. Based on the curve fit (All Z)

Y = Exp
$$(-Z^2/2)$$
 * $(1 + 0.083 * Z)/(\sqrt{2\pi} * Z + 2)$

4. The results depend only on S/\overline{I} , I_D/\overline{I} and C

ſλ

When evaluating several designs which involve different array sizes, and different battery capacities, but which have a constant LOLP level, the methods of life cycle cost determination discussed in Sections 6.3 and 6.4.2 should be used again to determine the optimum design which has minimum life cycle costs. Other evaluations might be performed holding the array size constant and varying storage capacity and reliability levels. The life-cycle cost differentials can then be used to evaluate the worth of any improvement in power system reliability.

7.3 CODES AND STANDARDS

The PV power system should conform to all of the appropriate regulations in the building industry. Nationally recognized regulations known as codes are the laws which have been developed to protect the health, safety, and welfare of the general public. Standards, manuals, and approved equipment listings have been developed to support these codes. The following subsections will discuss the codes, standards, and related documentation applicable to photovoltaic power systems, and requirements the designer should include in the overall PVPS design.

7.3.1 Codes

As of the writing of this handbook, there are no existing applicable electrical or building code categories into which photovoltaic modules, panels, arrays, or support equipment can be conveniently placed. Until specific codes governing PVPS components are developed, code officials will rely on existing code catageories which can be interpreted as applying to photovoltaic systems. The lack of nationally recognized codes governing photovoltaics will most likely cause problems for both designers and installers in areas where building code officials are resistant to innovative products. The only areas regarding photovoltaic systems which are addressed in the codes relate to the use of storage batteries and their special wiring/interconnections procedures. These areas are covered in the National Electric Code (NEC). The NEC is one code which is almost universally accepted throughout the country and has been recognized by all major model codes to insure the safety of persons and property using electricity. It is expected that compliance with the NEC will be an outstanding requirement for the design installation, operation, and maintenance of PV power systems. The NEC should be fully reviewed during the system design phase.

An example of how the NEC applies directly to the installation of PV power systems is as follows: The NEC (Article 110-17(a)) requires that live parts operating at 50 volts or more shall be guarded against accidental contact during installation. This code places special requirements on the installation of photovoltaic panels, since daylight will cause these panels to become active electric generators. These types of general electrical codes can be applied to photovoltaics for wiring sizes, current ratings, grounding requirements, ground fault requirements, lightning protection, insola⁺ⁱon of live electrical parts, and power conditioning equipment.

7.3.2 Standards

Standards are written to support the codes and provide ways through which the code requirements can be satisfied. There are four generic types of standards: (1) specifications, (2) test methods, (3) classifications, and (4) recommended practices.

The system design engineer should be aware that standards pertaining directly to photovoltaic power systems do not exist. The Solar Energy Research Institute (SERI) is developing documentation on performance criteria and test methods for photovoltaic systems. These documents should be available in the near future. Until such standards are available, existing general standards can be interpreted to include PV power systems.

The Federal Occupational Safety and Health Act (OSHA) of 1970 authorizes the issuance of National Health and Safety Standards for work places. This includes PV power system construction sites, and it is the responsibility of the contractor or builder to insure the health and safety of his employees. The designer of the PV power system should also be aware of OSHA requirements, for these requirements can affect system installation costs considerably.

7-16

7.3.3 Manuals

Accepted practice manuals are used in industry to interpret codes and standards, as well as to allow the installer to realize the intent or purpose for specific design decisions represented on system design drawings. Accepted practice manuals are written by the building industry to describe proven procedures or techniques which are most often used, and they change rapidly as a new technology develops.

As with codes and standards, accepted practice manuals written specifically for photovoltaic power systems do not exist due to the limited use of PV power system in industry. It is advisable, therefore, that manufacturers of the PV power system's components develop their own installation, maintenance, and operation manuals which shall comply with all existing codes and standards.

The building industry has been using components which display similarities to components utilized in PV power systems. For example, there are manuals of accepted practice for the installation of wiring systems that directly relate to wiring practices utilized in PV power systems.

7.3.4 Approved Equipment Listings

One way to accelerate code approval is for PV power system components to be tested (or listed) by a qualified testing laboratory, such as Underwriters Laboratories, Inc. (UL). Codes like the NEC generally allow the installation of equipment bearing the label of such a nationally recognized testing facility. Most code officials feel that there is little question as to the risk involved in allowing a new and innovative piece of equipment bearing laboratory approval labels to be installed in a construction site under their jurisdiction. If unlisted components must be used, the designer should be prepared to obtain a variance to the code. This process can be very time-consuming and costly.

7.3.5 Notes

Most local jurisdictions have adopted nationally recognized codes and standards and are enforcing them at the local level.

Any local building official has the authority to allow or disallow any product or process if he feels that compliance with established codes and standards is not met.

It may be found that, in some instances, the planned installation of a PV power system is inhibited by local officials who are not well versed or willing to make affirmative decisions about this new technology. With this fact in mind, it is important to have a good working knowledge of photovoltaics. The system design engineer should also have the ability to convey the necessary concepts about this technology to the local code officials.

7.3.6 Applicable Document List

Engineers, manufacturers and installers of photovoltaic power systems should be aware of all documentation applicable for designing, manufacturing and installing of PV power systems. Appendix C contains a listing of appropriate codes and standards and the addresses of the sponsoring agencies.

N

SECTION 8 INSTALLATION, OPERATION AND MAINTENANCE

8.1 INTRODUCTION

PV power systems are inherently capable of unattended operation, require only a minimum of scheduled maintenance, and only rarely require unscheduled corrective maintenance. The accessibility of the PV system site to operations and maintenance personnel and the reliability, maintainability, and availability of the power provided to the load have significant impact upon the PV system design. This section sets forth the basic operation and maintenance design considerations and tradeoffs to be considered during detailed design.

8.2 POWER OUTAGES

The principal operational requirement is the number and duration of power outages that the load can tolerate. Exhibit 8.2-1 lists the primary causes of power losses.

Natural Causes:	Consecutive cloudy days Environmental effects: Cold weather on batteries
	Lightning
System Design:	Less insolation than expected
	More load than designed for
	Scheduled maintenance shutdown
Equipment Malfunctions:	Array fault, or open circuit
	Optical degradation
	Electrical/electronic failure in power
	Conditioning and distribution equipment
	Batteries

Exhibit 8.2-1 Causes of Power Loss in PV Systems

8.3

RELIABILITY AND MAINTAINABILITY

Since power outages, with the exception of scheduled maintenance shutdown periods, are expected to occur randomly, the preferred method of establishing operational performance requirements on power outages is to use a statistical approach. The following parameters are recommended:

> <u>Reliability</u> -- the probability of operating "x" days without loss of power <u>Maintainability</u> -- the probability that system power will be restored within "y" hours

For example, emergency loads may be required continuously. While it is impractical to build a system that can assure no outages, a requirement of a 0.99 probability of no outages in a month could be specified. Such a stiff requirement would require consideration of back-up, non-solar systems sized to handle the critical load during natural-caused outages, an auxiliary power unit to handle the load during scheduled maintenance, significant over-capacity of the energy storage coupled with load-shedding (shut-off of convenience and even essential loads) to account for less insolation than anticipated, and a redundant fail-safe design. A 0.01 probability of outages in a month can be interpreted that, <u>on the average</u>, a power outage will occur once every 100 months (or every 8.3 years). However, that outage can occur at any time during the 100-month period.

For essential loads, a more realistic requirement may be a 0.10 probability of an outage in a month; that is, an outage, <u>on the average</u>, once every 10 months.

The second parameter of operational interest is the down time following a power outage. Components of down time are:

- Delay time in reporting power outage occurrence
- Time for operation or maintenance personnel to arrive at site
- Time to restore power, either by bringing a back-up source on line, or repairing malfunction at the site
- In the case of malfunction, time to acquire spare or repair parts and materials required to effect repair

There is generally little difference in the down time limits following a power outage among the load categories. With critical power losses being very infrequent, down time requirements are based on essential loads. For example, a down time requirement for essential loads for sites in the proximity of qualified maintenance personnel would be stated as a 95% probability that system power would be restored within 4 hours. For a remote site, the time requirement would have to be extended to permit notification and travel time.

8.4 OPERATION AND MAINTENANCE TRADEOFFS

Operation and maintenance procedures to be implemented at each site will have a significant impact on the system design. These procedures must be included in the system design tradeoff analyses involving array sizing, battery capacity, redundant features, the degree of automatic controls, and automatic monitoring and telemetry. Major operation and maintenance factors to be considered in the design tradeoff analyses are discussed in the following paragraphs.

8.4.1 Operation and Preventive Maintenance

Stand-alone PV power systems do not require an on-duty operator under normal conditions of system utilization. The routine functions of an "operator" consist of inspection and preventive maintenance. Typical tasks include:

(1) Inspection Tasks:

- Site physical security fencing intact, breach of security alarm test
- Array shading by debris, vegetation
- Array cleanliness -- dust, bird droppings
- Cabling damage by elements or rodents
- Grounding paths -- loose connections, corrosion
- Battery terminals -- corrosion

8 - 3

- Batteries -- electrolyte leakage and corrosion of support structure
- Control equipment -- cleanliness; accumulation of dirt, bird nests, rodent damage
- Fuel/oil/water -- at or above specified storage levels for backup systems

(2) Preventive Maintenance Tasks:

- Clean array surface
- Clean battery terminals and tighten connections
- Check and refill electrolytic solution
- Read and record all metered points
- Perform operability tests to assure that all automatic switching and monitoring is functional and that standby backup and emergency generator units will start and operate
- Lubrication
- Restock stored fuel
- Record all discrepancies observed by inspection and in performing preventive maintenance

In general, the PV systems should require inspection and preventive maintenance only on a scheduled periodic basis (e.g., 30 days, 60 days, 90 days, 6 months, etc.), consistent with known system degradation rate due to dust accumulation, etc. However, backup systems of the engine/generator type should be started and run for at least one hour on a weekly basis.

Site visits by operational and preventive maintenance personnel are primarily for the purpose of fault detection, exercise of switching/controls, exercise of backup systems, and observation of abnormal deterioration conditions. All of these functions (except abnormal deterioration detection) can be performed automatically and the results monitored remotely via telemetry -- either by radio or land line. Thus the tradeoff over the life of the installation is the cost of automation and remote monitoring versus the cost of having a human perform site visits (note: as a safety precaution, site operation and preventive maintenance should be performed by a two-man team). Included in the human costs are the costs of training, transportation, site access maintenance, and the method of communication with repair facilities.

8.4.2 Corrective Maintenance

Maintenance is divided into preventive and corrective categories to permit separation of skill levels and training in the design tradeoff analyses. Whereas preventive maintenance of the entire site can be performed by one trained individual, corrective maintenance involves several different skills, including electrical, electronics, engine mechanics, and at times, construction training. Corrective maintenance also requires spare parts, test equipment, and documentation.

PV systems can be designed to permit scheduling of corrective maintenance by designing in a tolerance to faults -- that is, a design which is not sensitive to individual faults, thus permitting accumulation of faults between scheduled corrective maintenance site visits. The other end of the design spectrum is a system without fault tolerance -- corrected prior to reconnecting the load.

Establishing the design to corrective maintenance tradeoff requires consideration of the following:

- Frequency of site visits.
- Delay time when a system drops the load until unscheduled corrective maintenance can be performed, assuming full availability of personnel, test equipment, and spare parts.

Both the frequency of power outages and the maximum downtime requirement when an outage occurs are affected by corrective maintenance tradeoffs. If the maximum downtime limits are less than the delay time required to travel to the site, then only two alternatives are available:

(1) To design a system that is fault tolerant and capable of repair without dropping the load; i. e., mechanisms must be built in for isolating the fault and deenergizing the faulty item while leaving the remainder of the system operational.

This alternative will have the practical effect of eliminating downtime periods, thus increasing the probability of operating between scheduled corrective maintenance visits to nearly unity.

If this alternative is chosen, an additonal trade off should be performed--whether to design the system:

(a) With sufficient redundancy to permit deferral of maintenance until the next scheduled corrective maintenance visit; or

(b) With only sufficient redundancy to ensure system operation until a repair crew can be dispatched to the site to accomplish the corrective maintenance. This case must include: the cost of more detailed fault detection and telemetry to tell the crew prior to dispatch what has failed; the cost of maintaining a ready repair crew; and the additonal transportation and personnelrelated costs of an expected larger number of unscheduled site trips rather than a predefined number of scheduled site trips. (Note: Since failures occur randomly, there is always a finite probability of having power outages between scheduled vists. This probability is a function of the fault-tolerance margin designed into the system).

(2) To design a system without fault tolerance, and to provide trained repair personnel capable of immediate reaction at or near the site, this alternative also requires adequate logistic (spare parts) support at the site. In this alternative, the system design needs only to meet the reliability requirement.

Exhibit 8.4-1 illustrates the design tradeoff advantages of initiating repair as soon as a fault occurs versus having redundant hardware to maintain a high probability of no power outage between scheduled corrective maintenance periods. The reliability functions shown in the figure are plotted as a function of system operating time (t_0) "normalized" to individual equipment MTBF (i.e., t' = $t_0/MTFB$). The figure depicts the case of standby redundancy; that is, the redundant element does not operate until the "ON" element has failed, the failure is sensed, and the standby element is activated. The apparent advantages of the type of redundancy can be significantly reduced if similar design consideration is not given to the failure-sensing and switching circuitry which should also be redundant, or if not, its reliability should exceed that of the sensed element by at least 10-to-1.

129

8-6

For small, simple systems, the most promising tradeoff against too much additonal equipment is to combine scheduled corrective maintenance with the periodic inspection and preventive maintenance site visits plus an infrequent unscheduled corrective maintenance.

Normalized System Operation Time, t' = System Operating Time/Equipment MTBF

Exhibit 8.4-1 RELIABILITY IMPROVEMENT WITH STANDBY REDUNDANCY

 $\sqrt{30}$

8.5 SYSTEM MAINTENANCE

Section 8.4 identified the major tradeoffs associated with the scheduling of maintenance and identified a major component of downtime as the time from fault occurrence until arrival of the maintenance team at the site. This discussion covers the design for hands-on maintenance once the team arrives at the site.

8.5.1 Maintenance Concept

Maintenance planning begins with establishment of the concept to be followed; this should be done prior to detailed equipment design or site layout. Decisions required in establishing the maintenance concept include:

(1) <u>Personnel Skill Level</u> -- based on experience and training provisions. If skilled personnel are to be used, fault isolation can be accomplished using portable test equipment and technician interpretation of results; repair then can be accomplished at lower levels of complexity, such as part replacement on an electronic assembly instead of removal and replacement of the assembly.

(2) <u>Level of Repair</u>. The level of on-site repair can vary from removal and replacement of whole equipments or array panels to the replacement of parts or modules. In the case of fossil-fueled backup engine generators, this can vary from complete replacement and remote repair to on-site overhaul. The level of repair selected for the site is a function of skill of personnel, ease of handling and transporting replacement parts, and test equipment required for fault isolation. The level of repair (e. g., remove and replace level) and the built-in means for fault isolation must be compatible, whether the fault-isolation procedures consist of accessible test points or built-in automatic fault localization.

(3) <u>On-Line Repair</u>. This term means preventive or corrective maintenance at the site without load interruption. If the critical or essential loads cannot

8-8

31

be "down" during scheduled maintenance periods, then the design must be such that portions of the system can be removed from on-line status while the remainder carry the load, or auxiliary power-generating units must be brought to the site to provide a power source while the PV system is undergoing maintenance.

(4) <u>Faulty Item Disposition</u>. The level of remove-and-replace is influenced by whether the replaced faulty item should be discarded or returned to a centralized repair facility (such as the original vendor) for more detailed troubleshooting, repair, retest, and return to stock. This in turn affects the cost of stocking site spares, whether stored at the site or at the corrective maintenance facility.

The result of the maintenance concept is to provide design requirements on the location of fault isolation test points, the amount of automatic fault isolation to be built in, and the mechanical fasteners and electrical connections for ease of removal and replacement.

8.5.2 Maintainability Design

Maintainability, expressed as the mean time to repair (MTTR) a fault in the system, given a properly trained personnel, authorized test equipment and documentation, and the required replacement parts, is a quantitative parameter often specified to drive the physical and mechanical design of the system. Generally, MTTR should be in the range of 1.5 to 3 hours for a typical PV system. Design considerations for achieving MRRT include:

(1) <u>Fault Isolation</u>. This term was covered under "Maintenance Concept", in 8.5.1 above. If fault isolation is automatic, then the time required is negligible. If fault isolation is manual (i. e., using test points and portable test equipment), it may require up to 15% of the specified MRRT.

(2) Accessibility. The physical layout and packaging design for the system must assure that the equipment is accessible for each planned maintenance task and that sufficient space exists for the task to be accomplished safely. (safety involves first the safety of the maintenance personnel, and second the protection of the equipment against damage in the repair process). Accessibility involves ease

8-9

of opening or unfastening covers and doors, not locating replaceable items under other items or beyond arms reach, and providing handles or places to grip items for removal. Where solar arrays are elevated or battery storage is on elevated racks, means must be provided for accessibility by built-in catwalks, ladders, and places to setup and lay tools, or by defined portable devices such as ladders.

(3) Weight of Replacement Items. The size and weight of replacement items must be compatible with accessibility at the site and transportability to and from the site. In general, the maximum weight of a replaceable item to be handled by one person without mechanical lifting devices is 40 pounds. If the replacement area is elevated and requires ladders or various walkways, the replacement item should also be equipped with a means for carrying it with one hand (the other being used to maintain safe balance). Where two people are used or mechanical lifting and handling devices can be taken to or left at the site, the size and weight of replacement items may be increased.

(4) <u>Maintenance Safety</u>. The means of access to site equipment for maintenance must comply with OSHA requirements for physical safety of maintenance personnel. This includes built-in steps, walkways, and ladders. The equipment design must provide protection against inadvertent electrical, thermal, or chemical contact with maintenance personnel. Where on-line maintenance is contemplated, positive means for assuring electrical disconnections are required. System grounding must not be compromised during maintenance.

(5) <u>Standardization</u>. Standardization of parts, wire, connectors, sizes of nuts and bolts, and modules is an essential discipline for ease in maintenance. It reduces training, tools, and spare item inventories.

(6) <u>Replacement Availability Warrants</u>. Parts, modules, and assemblies used in the PV design should carry with them a replacement availability warranty which warrants that during the 20-year life of the system, replacements will be available for purchase which provide workable and consistent (not necessarily identical) form (having the same connections and attachment points), fit (capable

8-10

of fitting in the same space), and <u>function</u> (performs the same function and is compatible with the other items in the system). Where such warranty is not available, the design should be sufficiently simple and spacious to permit substitutes or local fabrication of replacements.

(7) <u>Test and Checkout</u>. Maintenance actions are not complete until the repaired system has been tested and the effectiveness of the repair has been verified. This may be accomplished automatically by built-in fault-sensing circuitry, or it may require special provisions such as a light source to verify that a replaced circuit breaker will trip on overload.

(8) <u>Maintenance Data</u>. An often neglected part of maintenance is documentation of the maintenance action so the owner and designer may feed back this experience into either new designs or upgrading of the existing system.

8.6 LOGISTICS DESIGN

The system design engineer is responsible for planning logistic elements for the operating life of the PV system, as described in the following paragraphs.

8.6.1 Supply Support

This logistic element has a potentially greater impact on reliability and maintenance than does the basic equipment design or maintenance transit and repair times. The lack of a spare part defeats designed-in redundancy, contributing to more power outages; once power outage occurs, the lack of a spare can keep the system down until one is obtained. The supply support planning cycle requires the following steps:

(1) <u>Prepare a site spares list</u>. This is a list of all items designated for removal and replacement at the site; it includes:

- Identification in an unambiguous manner and in sufficient detail to permit reordering by the identification.
- Source where replacements can be obtained.
- Statement as to whether the item should be scrapped or returned for off-site repair.

• The importance of the item to power outage for critical loads and essential loads. The importance is assessed for two levels: Major, failure of the item will cause the system to drop load: Minor, failure of the item will not cause the system to drop load although it may induce some degradation.

• The expected number of removals of the item at the site during a 12-month period.

(2) Determine recommended quantity of initial spares to be purchased and delivered with the system. The simplest method¹ is to consider each part individually on the list of Step (1), planning to provide an x% probability of having the required spares on hand throughout a one-year period or a spares procurement or repair cycle if that exceeds one year. The following tabulation provides a guide for typical x-values:

Failure	Load							
Impact	Critical	Essential	Convenience					
Major	0.999	0.99	0.90					
Minor	0.99	0.95	0.90					
Other	0.90	0.90	0.90					

Following is the basic formula for determining the quantity of spares:

Prob = x*? x=0 e^{-m} m x x=0 x! Where: m = number of expected failures in 1 year, and x = number of spares Examples: GOAL is Prob = 0.99 for essential load and major failure impact (1) m = 0.5 failures in 1 year Prob = 0.9856 with x = 2 spares Prob = 0.9982 with x = 3 spares To exceed goal (Prob = 0.99) retain 3 spares (2) m = 1.5 failures in 1 year Prob = 0.9814 with x = 4 spares Prob = 0.9955 with x = 5 spares To exceed goal (Prob = 0.99) retain 5 spares

¹More sophisticated cost optimization and system-protection level models can be developed for determining spares sets, but are beyond the scope of this handbook.

(3) <u>Prepare a list of consumables</u>. This would include distilled water for batteries, array face washing compound, terminal grease, paint, fuel and lubricants for backup systems, etc. The list must clearly identify the consumable product and the estimated quantity required at each preventive maintenance period.

(4) <u>Prepare list of common and bulk items</u>. This is a list of screws, nuts, bolts, washers, spacers, gasket material, fasteners, and other items commonly used in maintaining the equipment; include items which can be locally purchased or fabricated at local hardware-equivalent outlets and need not be provided with the system.

(5) <u>Prepare list of off-site repair parts</u>. This is an optional step, depending on where and by whom off-site repair will be performed. If it is to be accomplished by facilities not specializing in the specific site equipment, a complete list of repair parts containing the same information supplied in Step (1) should be prepared.

8.6.2 Power System Drawings

At least two complete sets of equipment drawings, site structural drawings, and site installation drawings should be delivered to the PV system owner, one for permanent records and the other for use in corrective maintenance that requires more knowledge than is available in the operation and maintenance manuals. These drawings may be in contractor format, with completeness and legibility the overriding criteria.

8.6.3 Tools, Test Equipment, and Maintenance Aids

Planning for this element of logistics involves preparing a list of all the tools, test equipment, and maintenance aids, such as step ladders, array covers, etc., that are required for site inspection, preventive maintenance, and on-site corrective maintenance. The list should show which items are required for inspection and preventive maintenance and which are for corrective maintenance. Special tools, test equipment, and maintenance aids are those not readily available

8-13

over the counter locally; these should be clearly identified and provided to the owner as part of the system equipment included with the system.

8.6.4 Technical Manuals

At least three manuals are required and should be prepared under cognizance of the system design engineer by personnel capable of writing clearly for the level of education and background of the user, and the user's language if necessary:

(1) <u>Operation Manual</u>. This manual provides an overview of what the system is, how it works (theory of operation), and how the major equipment groups, including backup systems, are interrelated to provide the power output. The manual must define the system-to-load interface and should discuss the impact on system performance of changing the load after installation. The Operation Manual must define the duties and responsibilities of the operator (inspection and preventive maintenance), and the duties of corrective maintenance personnel. It must also include safety warnings, notices, and emergency treatment for accidents such as chemical burns.

(2) <u>Inspection and Preventive Maintenance Manual</u>. This manual must contain a procedure for each inspection and preventive maintenance task, detailing step-by-step the action to be taken and observation made. The procedure must also tell the operator what to do when anomalies are detected. The manual must present the schedule for each task (weekly, monthly, or semi-annually), and repeat safety information.

(3) <u>Corrective Maintenance Manual</u>. This manual must contain the information needed to accomplish corrective maintenance to the level established by the maintenance concept. It must cover fault detection, fault isolation, removeand-replace instructions, and -- most important -- verification testing to ensure that the repair was effective. Again, safety information must be included.

All three manuals may have individual sections covering different equipment in the design, such as solar array, batteries, and backup systems. This is acceptable provided introductory material puts each in perspective with respect to the total system.

8-14

8.6.5 Training

This logistic element ties all the preceding elements together into the total logistic support package. The planning for training consists of:

(1) Preparation of instructors' guide for teaching courses for both operators and corrective maintenance personnel.

(2) Determining the length of courses and the percent of hands-on training versus classroom discussions.

(3) Providing an initial training course concurrent with site installation.

The operation and maintenance manuals discussed under 8.6.4 provide the basic course text material for the students.

8.7 INSTALLATION DESIGN CONSIDERATIONS

This discussion is written from the operation and maintenance point of view, addressing those concerns most often leading to excessive maintenance problems.

8.7.1 Physical Considerations

The following physical considerations in site layout should be adequately addressed:

- Local ground cover and vegetation growth that could arise and cause unplanned array shading.
- Location of buildings and security fences that act as snow fences and actually contribute to snowdrifts in the vicinity of arrays.
- Location of buildings and security fences that act as snow fences may provide bird perches and thus contribute to fouling of the array face.
- Personnel safety, to protect personnel from accidentally coming in contact with high voltage, thermally hot arrays, or dangerous chemicals.

8.7.2 Equipment Housing and Structure Considerations

The equipment housing and structure should be designed to prevent the following problems:

- Array edges being used as bird perches, thus inducing extreme fouling of the array face.
- Rough edges, grooves, or protusions that will catch, hold, and permit build-up of airborne debris on the array faces.
- Junction boxes and cable runs which allow entry of rodents which in turn might gnaw on insulation.
- Cable insulation and coverings which provide rodent food.
- Protective structures and buildings that provide sites for bird nests and their droppings on electronic equipment.

8.7.3 Installation Checkout and Acceptance Testing

The system design engineer and owner must agree on the means of determining structural and physical compliance with drawings and specification and for performance acceptance tests of the system. Conformance to structural and physical requirements can be determined by the owner or his representative. Conformance to performance requirements requires the development of detailed test procedures and acceptable tolerances of measured parameters; these test procedures must be documented prior to the start of site installation.

SECTION 9 SITE SAFETY

The personnel safety design requirements for both the general public and installation, maintenance, and operating personnel, and the site safety design requirements for the facility while in operation and undergoing maintenance, shall be in accordance with applicable local codes and nationally-recognized standards. Lead-acid storage battery safety is covered separately in Section 4.3.6.

The design safety checklists, described in the following paragraphs, are divided into two areas: (1) personnel and (2) facility. These should be treated with equal i aportance. Portions of these will be repeated. Various items within these checklists are not covered under any local or nationally recognized codes or standards, but should be considered to increase the overall safety of the PVPS facility and personnel.

9.1 PERSONNEL SAFETY CHECKLIST

9.1.1 Safety & Health Standards

The PV modules, arrays, wiring, power distribution, power conditioning, batteries, and structures (PVPS) shall comply with the Occupational Safety & Health Administration (OSHA) Standards. OSHA standards apply primarily to the on-site construction and installation procedures of the above equipments. The manufacturers of these equipments must adhere to the OSHA standards in their design of these equipments.

Electrical materials, equipments, and their installation shall be in accordance with applicable local and nationally recognized codes and standards. Such codes shall include, but not be limited to, the National Electric Code (NFPA 70-1981), American National Standards Institute (ANSI nos. A. 58.11-1972 and Z 97.1-1975), Building Official & Code Administrators International (BOCA), and others: i. e., NEMA and UL. Electrical components shall be listed and/or approved by a nationally recognized testing laboratory. (See Appendix B for a listing of codes and standards).

9.1.2 Electric Shock

The PVPS equipments and structures described in Section 9.1.1 shall be designed to prevent shock hazard during installation, normal operation, and during maintenance procedures. The life-safety hazards, which could occur as a result of a failure of any of the above equipment, shall not be greater than those imposed by conventional electrical systems. The above equipments shall be grounded in accordance with the National Electrical Code (NEC) Sections 250-72 and 250-92. These equipments shall also be designed to comply with all existing OSHA standards for installation, operation, and maintenance protection of the workers. These equipments should also be isolated from casual contact, as well as being adequately insulated, to reduce the possibility of electrical shock as a result of system anomalies.

9.1.3 Toxic & Flammable Materials

The materials used in the PVPS, as described in Section 9.1.1, shall not expose the installing, operating, or maintenance personnel to hazards related to toxicity or flammability. The PV system shall be designed to utilize materials which in the presence of fire do not endanger the installing, operating, or maintenance personnel with excessive levels of smoke or toxic fumes in accordance with nationally recognized codes such as NFPA 251-1972, ASTM E119, ASTM E84, and UL 263.

9.1.4 Fire Safety

The design, installation, operation, and maintenance of the PVPS shall provide a level of fire safety that is consistant with applicable codes and standards including, but not limited to, NFPA 256-1976 and the NEC (NFPA 70-1981). Some factors which shall be considered in assessing potential fire hazard are: potential heat, rate of heat release, smoke generation, firestopping, and ease of ignition.

The protection against auto-ignition of combustible solids used in the PVPS, especially in the PV modules, should be addressed. Combustible solids, such

J,

9-2

as plastics, shall not be exposed to elevated temperatures which may cause ignition. Exposure of these materials over an extended period of time may result in the materials reaching, and possibly surpassing, their auto-ignition temperatures.

The PVPS site shall have on-hand emergency fire extinguishing apparatus in accordance with all local fire protection ordinances.

9.1.5 Excessive Surface Temperatures

The PVPS shall not create a hazard to installation, operation, or maintenance personnel due to excessive exterior surface temperatures. Any component that is located in areas normally subjected to personnel or general public traffic, and which is maintained at elevated temperatures in excess of 140° F or 60° C, shall be isolated from casual contact with proper clearances or passageways. Any surface where isolation is impossible shall be identified with appropriate warnings.

9.1.6 Equipment Identification Labeling

All PVPS components should be identified as to: their function; their voltage, current, power, and temperature warnings; corrosive or toxic properties; and procedures for handling accidental contact and natural or man-made occurrences (flooding, structural damage, foreign objects); and a list of authorities and their telephone numbers to contact if such occurrences should take place.

9.1.7 Physical Barriers

The PVPS shall be totally enclosed by a seven-foot (minimum) barbedwire-top security fence approximately 30 feet from any part of the array. This barrier shall be erected before construction begins, and shall remain in place throughout the PVPS life cycle and until the PVPS is totally dismantled. Warning signs shall be displayed in plain view of the general public stating the danger of active high voltage within the fenced area (in the language of the area).

Local codes should be investigated for the appropriate distance a PVPS shall be from any residential or commercial building and from public roads.

9.2 FACILITY SAFETY CHECKLIST

9.2.1 PVPS Safety Protection from Environmental Conditions

The PVPS safety requirements shall include protection from the possibility of power interruption, transients, and electrical faults caused by natural environmental conditions. The meteorological/environmental factors should be investigated for the particular site location. Historical meteorological information is available from the National Weather Service on a national or local level, such as:

- Average wind speed
- Annual rainfall and flooding data
- Average snow loads
- Annual number of days with hail
- Annual number of days with glaze (freezing rain)
- Annual number of thunderstorm days
- Seismic data

Some or all of these areas may affect the design and safety aspects of the PVPS.

Most of these areas are covered in the design consideration sections from a structural loads aspect in other works (Refs 4-5, 9-1). Due to the uniqueness of a PVPS, these areas must also be investigated from a safety aspect. The following are examples of questions that should be answered before site construction in order to increase the reliability and overall safety of the proposed PVPS site, and which may effect the system design itself:

• Is there a history of flooding or high snow accumulation in the proposed PVPS site location? If so, what are the effects of frequent flooding or high snow accumulation on the system and personnel (including the general public)? Has the design been modified to allow sufficient ground clearances for both array and battery-storage areas?

- Is the vegetation growth rate in the proposed PVPS site location high enough to become overgrown and create a shading condition if left unattended? Has the array design been modified to allow sufficient ground clearance to compensate for this potential problem?
- Is there a history of seismic activity in the proposed site location?
 If so, are the system's components adequately sized to withstand frequent seismic forces and remain safe?
- Is the annual number of thunderstorm days for the proposed site location high? Has the frequency of lightning strokes to earth in the proposed site location caused an unusual amount of damage to existing structures in the past? Are the array module covers plastic, which could increase the electrostatic potential between ground and air, and could induce the lightning hazard in areas of high ligtning incidence? If so, then lightning protection should definitely be a design consideration (Ref. 9-2). The NFPA Lightning Protection Code should be consulted for lightning protection procedures.

9.2.2 PVPS Safety Protection from Man-Måde Conditions

The PVPS site design safety should include provisions for the protection from the possibility of power interruptions, transients, and electrical faulting created by man-made conditions.

The security fence described in Section 9.1.7 will protect the PVPS site from invasion of casual unauthorized personnel, but the temptation of vandalism is always present. Projectiles thrown or shot from any type of firearms at the photovoltaic arrays can cause enormous damage to the system.

,44

Accidental penetration of the PVPS site by means of motorized vehicles (automobiles, tractors, etc.) is also possible. Although the site shall be isolated from public roads, as described in Section 9.1.7, an out-of-control vehicle can penetrate the security fence. A bunker-type knoll surrounding the fenced-in site can serve as both a way to hide the site from plain view and a way to create a double barrier.

9.2.3 PVPS Safety Protection from Component Failure

To prevent damage to the system from component failures, the system should be designed to eliminate excessive temperatures and reverse biasing which may occur as a result of shading or cell cracking. Examples of devices which automatically detect and isolate component failures are: high-speed faultdetection devices, fuses, circuit breakers (with adequate interrupting capacity), etc. These should be included in the detailed system design. These devices will also prevent system damage due to operator or maintenance personnel errors. This protection system should include automatic system shutdown circuitry, automatic system failure alarm, and/or telemetric failure alert system.

9.3 REFERENCES

An extensive list of codes ϵ nd standards referenced in the section is presented in Appendix C and covers all aspects of the PVPS design, installation, operation, and maintenance.

SECTION 10 DESIGN EXAMPLES

10.1 REMOTE MULTIPLE-LOAD APPLICATION

10.1.1 Northern Hemisphere Location

A typical load profile for a remote village is presented in Exhibit 10.1-1, derived from data supplied by the NASA-Lewis Research Center on the Papago Indian Village of Schuchuli, Arizona (Reference 10-1). The actual installation allowed for load shedding and for tilting the collector four times per year $(3.5^{\circ}$ tilt in summer, 26° in spring and fall, and 48° in winter). To permit the direct use of the tables and charts presented in this report, a fixed array tilted at the latitude angle of 32.11° will be considered. The methods of Section 11 could be used to compute the insolation at other tilt angles; the standard deviation of the insolation could be similarly calculated or could be estimated from Exhibit 6.1-1, based on having the same sigma ratio for any tilt. The load-shedding capability will also be ignored, although this would reduce the energy-storage requirements.

The design computations are presented in Exhibit 10.1-2 in the format of the quick-sizing procedure of Section 6.2.1. The K_H values were obtained from NASA; the values are in reasonable agreement with the data of Tucson as reported by the National Weather Service (last column). The first computation of the collector area and storage capacity, for a one percent loss-of-load probability, is based on M = 0.33. Values of C were read from Exhibit 6.2-2. The array area required to meet the load is 45 square meters, as dictated by the August load. The storage capacity is 51 kWh, as determined by the August load. The collector area required for a one percent LOLP can be re-computed based on the storage capacity of 51 kWh. This capacity is converted to days of load (C') and the revised value of M (= M') is read from the battery storage chart (Exhibit 6.2-2). The collector area is computed from the formula in Note 3 of Exhibit 10.1-2. The required collector area is again 45 square meters, as determined by the August requirement.

For the parameters chosen, the array size is 3.6 kW at 1.0 kW/m^2 of insolation. This figure compares favorably with the 3.5 kW actually installed. The 51 kWh battery capacity, however, represents the nominal capacity. Thus, when a depth of discharge of 50 percent and a round trip charging efficiency of 85 percent is assumed, the actual battery capacity would be 120 kWh. The difference between the installed 285 kWh battery and the calculated capacity can be attributed to the difference in LOLP calculated in the design example and that for the installed system.

10.1.2 Southern Hemisphere Location

The requirements for the Papago Indian Village can be applied in the Southern hemisphere as well. If we assume that the installation is at 32.11° South latitude and the tilt is again 32.11° , all of the computations would be the same, although a <u>+6</u> percent correction to the insolation should be made due to the seasonal variation in the earth-sun distance (Section 11). If the K_H profile were the same, except with the January value for the Northern hemisphere being used in July in the Southern hemisphere and all other months shifted also by six months, the month-by-month computation would be identical. The only difference in Exhibit 10.1-2 would be the labeling in the "MONTH" column entry for July being used for the January entry in the Southern hemisphere.

Exhibit 10.1-1 MULTIPLE LOAD APPLICATION MONTHLY LOAD SUMMARY

Load Ah/day

Device	Water Pumps 2 hp	Refrigerators 1/8 hp	Clothes Washer 1/4 hp	Sewing Machine 1/8 hp	Fluorescent Lights 20 W	Instruments	Total
Quantity	1	15	1	1	44	1 lot	
Month							
January	34.9	15.2	31.1	2.4	44.8	13.0	141.4
February	34.9	17.8	31.1	2.4	38.8	12.7	137.7
March	49.1	21.1	31.1	2.4	26.8	13.9	144.4
April	49.1	26.5	31.1	2.4	17.7	14.2	141.0
May	70.4	31.7	31.1	2.4	17.3	15.5	168.4
June	70.4	37.8	31.1	2.4	11.5	15.5	168.7
July	70.4	42.2	31.1	2.4	11.5	13.9	171.5
August	70.4	41.8	31.1	2.4	17.3	13.9	176.9
September	49.1	37.8	31.1	2.4	20.6	13.9	154.9
October	49.1	28.3	31.1	2.4	32.6	13.9	157.4
November	34.9	20.4	31.1	2.4	38.8	13.5	141.1
December	34.9	16.1	31.1	2.4	44.8	13.0	142.3

S L'

Exhibit 10.1–2
MULTIPLE LOAD APPLICATION EQUIPMENT SIZING

LOLP = 1 percent Latitude = 32.11° N Tilt = 32.11° N

	Cleaness Factor	Average Insolation		Standard Deviation	Load (kWh/ day)	Array Area		rage ement		vised Val Based on Q = 51 kW	l	
Month	к _н	I ⁽¹⁾	R	S	uay)	A ⁽²⁾	С	Q	C'	M'	A۱	к _н (5)
	11	<u>kWH</u> Day-m ²	_	$\frac{kWH}{Dcwm^2}$		m^2	Days	kWH	Days	-	m^2	Н
Januarý	0.667	5.48	0.070	Day-m ²	18.0							·
February	0.667			1.53	17.0	43	2.6	44	3.0	0.29	42	0.633
March	0.737	5.98	0.264	1.58	16.5	38	2.4	40	3.1	0.28	37	0.665
		7.17	0.153	1.10	17.3	32	1.1	19	2.9	0.23	31	0.692
April	0.758	7.51	0.115	0.87	16.9	29	1.1	19	3.0	0.17	29	0.744
May	0.768	7.47	0.095	0.71	20.2	35	1.0	20	2.5	0.16	34	0.765
June	0.711	6.81	0.154	1.05	20.2	39	1.3	26	2.5	0.21	38	0.755
July	0.647	6.24	0.229	1.43	20.6	45	2.3	47	2.5	0.25	44	0.658
August	0.651	6.34	0.238	1.51	21.2	45	2.4	51	2.4	0.33	45	0.657
September	0.720	7.00	0.169	1.19	18.6	35	1.6	30	2.7	0.21	34	0.680
October	0.681	6.30	0.237	1.49	18.9	41	2.1	40	2.7	0.29	40	0.671
November	0.690	5.90	0.238	1.41	16.9	39	2.1	36	3.0	0.28	38	0.637
December	0.690	5.55	0.246	1.37	17.1	42	2.2	38	3.0	0.28	41	9.612
				For 1% Installed		3.6 kW 3.5 kW		51 kW 121 kW	H (4)		3.6kW	1

Notes:

 ρ_{g} 1. 2. 3. Ξ

= η Δ

0.05 0.08 Load/[η (I - MS)] (I - Load/A $_{\eta}$)/S = (0.33 assumed starting value) Μ =

2,380Ah battery rating chosen to operate with 50% \leq SOC \leq 100%, so 1,190Ah $\,$ provided at 120 volts K_{\rm H} per SOLMET for Tucson, Arizona. 4.

5.

SECTION 11 INSOLATION

11.1 INTRODUCTION

The purpose of this section is to present the calculational tools for determination of the insolation on a tilted surface. The quantity that is required for system sizing is the average daily insolation for a given month on the tilted array surface. Four numbers are needed to perform the calculation of average daily insolation. These are: the clearness index or \overline{K}_{H} ; the latitude angle of the site; the tilt angle of the array; and the reflectance of the ground in front of the array. The clearness index is the ratio of the average monthly horizontal insolation to the extraterrestrial horizontal insolation. \overline{K}_{H} varies from month to month with the lowest values usually occurring in the winter.

In Appendix A, monthly values of \overline{K}_{H} are tabulated for a number of cities in the United States and throughout the world. The locations listed are grouped according to country. If there is no listing for a proposed site, then the closest listing should be used as long as the general weather conditions are similar. (Note that the values of \overline{K}_{H} in Appendix A must be divided by 1000 before they are input to the insolation calculation programs described in the following sections).

The equations that form the basis for the insolation calculation programs are presented in Exhibit 11.1-1. A sample calculation is given in Exhibit 11.1-2. A table listing the reflectances of various types of ground covers is presented in Exhibit 11.1-3.

Exhibit 11.1-1

INSOLATION COMPUTATION FOR A SOUTH-FACING ARRAY

- A. Select Latitude (L), Day of Year (Day) Ground Reflectance (ρ) and Array Tilt (ϕ) (O^O for Horizontal)
- B. Obtain the monthly average clearness index, \overline{K}_{H} , from Appendix A.
- C. Compute the Solar Hour Angle at Sunset

 $\cos \Theta_{SS} = -\tan L \tan \delta$ L = Latitude $\sin \delta = \sin(\operatorname{declination angle}) = \sin(23.45) \sin(\frac{284 + \operatorname{day}}{365} \times 360^{\circ})$

D. Compute the Solar Hour Angle at Sunset for the Tilted Surface

 $\cos \Theta_{\text{TS}} = -\tan(L - \phi) \tan \delta$

E. Determine which Sunset Occurs First

 $\Theta = \min(\Theta_{TS}, \Theta_{SS})$

F. Compute the Extraterrestrial Irradiance on a Plate Held Normal to the Sun's Rays

 $S_{O} = 1.356 (1 + 0.0167 \cos(\frac{Day}{365} * 360))^2 kW/m^2$

G. Compute the Extraterrestrial Insolation on a Horizontal Surface

$$S_{OH} = S_O \frac{24}{\pi} (\cos L \cos \delta \sin \theta_{SS} + \frac{\pi \theta_{SS}}{180} \sin L \sin \delta) \frac{kWh}{m^2 - Day}$$

H. Compute the Horizontal Insolation

 $s_{H} = \bar{\kappa}_{H} * s_{OH}$

I. Compute the Diffuse-Insolation Factor (Ref. 11-1)

J. Compute the daily-direct radiation factor

$$R_{D} = \frac{\cos(L - \phi)}{\cos L} * \left\{ \frac{\sin \theta - \frac{\pi}{180} - \theta \cos \theta}{\sin \theta SS} - \frac{\pi}{180} - \frac{\pi}{180}$$

K. Compute the average daily insolation on the tilted surface $I_T = S_H \left\{ (1 - K_D) R_D + \frac{1}{2} (1 + \cos \phi) K_D + \frac{1}{2} (1 - \cos \phi) p \right\}$ where ρ = ground reflectance (See exhibit 11.1-3)

<u>ر ه</u>/

Exhibit 11.1-2

INSOLATION COMPUTATION EXAMPLE: WASHINGTON, D.C.

A. Let: L = 38.95° , Day = 15 (Jan), $\phi = 55^{\circ}$ Find from Appendix A: $\overline{K}_{H} = 0.417$ Β. C. Compute: $\sin \delta = \sin (23.45) * \sin (\frac{284 + 15}{365} * 360) = -0.36094$ $\delta = -21.16^{\circ}$ $\cos \theta_{\rm SS}^{=}$ -(tan 38.95) (tan (-21.16)) = 0.31286 $\theta_{\rm SS} = 71.77^{\circ}$ D. Compute: $\cos \theta_{\text{TS}}$ = -tan (38.95 -55) tan (-21.16) = -0.11134 $\theta_{\rm TS} = 96.39^{\rm O}$ θ = min (71.77, 96.39) = 71.77° Ε. Set: Compute: S₀ = 1.356 * $(1 + 0.0167 * \cos(\frac{15}{365} * 360))^2 = 1.400 \text{ kW/m}^2$ F. G. Compute: $S_{OH} = 1.400 * \frac{24}{\pi} * \int \cos(38.95) \cos(-21.16) \sin(71.77)$ + $\left(\frac{\pi^{*} 71.77}{180}\right) \sin(38.95) \sin(-21.16)$ $S_{OH} = 4.328 \text{ kWh/m}^2 - \text{day}$ so H. Compute: S = $0.417 * 4.328 = 1.805 \text{ kWh/m}^2 - \text{day}$ Compute: $K_D = \left\{ 0.230 + 71.77/165 - \left[0.095 + 71.77/220 \right] \right\}$ I. $\cos\left[114.6 * (0.417 - 0.9)\right] = 0.426$ Compute: $R_D = \frac{\cos(38.45 - 55)}{\cos(38.95)} *$ J. $\sin(71.77) - (\pi * 71.77/180) * \cos(96.39)$ $\sin(71.77) - (\pi * 71.77/180) * \cos(71.77)$ = 2.416 K. For $\rho = 0$: $I_{T} = 1.805 * \left\{ (1 - 0.426) * 2.413 + \frac{1}{2} (1 + \cos 55) \\ * 0.426 + \frac{1}{2} (1 - \cos 55) * 0 \right\}$ so $I_{\rm T}$ = 3.106 kWh/M² - day

,5V

Exhibit 11.1-3 GROUND REFLECTANCES FOR VARIOUS SURFACES

Ocean	0.05
Bituminous concrete	0.07
Wheat field	0.07
Dark soil	0.08
Green field	0.12 to 0.25
Grass, dry	0.20
Crushed rock surface	0.20
Concrete, old	0.24
Concrete, light colored	0.30
Paved asphalt	0.18
Concrete, new	0.32
Snow, fresh	0.87
Snow, old	0.50

References: (11-2, 11-3)

11.2 INSOLATION CALCULATION PROGRAMS

Programs for calculating the average daily insolation on a tilted array surface have been developed for the TI-59 and HP-67 programmable calculators. The programs are based on the equations of Exhibit 11.1-1. They will enable the effects of $K_{\rm H}$, tilt angle and other variables on the performance of the PV system to be analyzed.

Instructions for using the TI-59 program are given in Exhibit 11.2-1. A listing of the program is presented in Exhibit 11.2-2. The instructions for use of the HP-67 program are in Exhibit 11.2-3 with the program listing given in Exhibit 11.2-4.

Exhibit 11.2-1 INSTRUCTIONS FOR OPERATING THE TI-59 INSOLATION-COMPUTATION PROGRAM

1. Enter the following values in the respective storage locations: Value Storage Location

Latitude degrees	00
Tilt, degrees	02
Ground reflectance, decimal	13

- 2. Depress C to start the entry of the monthly \overline{K}_{H} 's. The calculator displays the month number for which the \overline{K}_{H} is to be entered (1.0 for January).
- 3. Enter the \overline{K}_{H} for the month indicated. Depress R/S. The calculator will display the next month number for which \overline{K}_{H} is to be entered. Repeat this step until all twelve values are entered.
- 4. Depress A to obtain the output. Typical output for the case of \overline{K}_{H} = 0.5 for each month is presented below. The average monthly insolation is printed for each month and for the year, in kWh/day-m², for the tilted surface.

Latitude Tilt Ground ref.	20 ⁰ 30 ⁰ 0.050
Month	I _T (kWh/day-m ²
Jan	4.595
Feb	4.798
Mar	4.910
April	4.832
May	4.646
June	4.512
July	4.544
Aug	4.703
Sept	4.837
Oct	4.821
Nov	4.657
Dec	4.517
Average	4.698

 $\chi\chi$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	051 04 04 052 30 TAN 053 94 +/- 054 95 = 055 27 INV 056 39 CDS 057 42 STD 058 06 06 059 32 X:T 060 43 FCL 061 05 05 062 22 INV 063 77 GE 064 37 K:T 066 76 LBL 067 32 X:T 068 42 STD 069 07 07 070 43 FCL 067 32 X:T 068 42 STD 069 07 07 070 43 FCL 071 01 01 072 55 + 073 03 3 074 06 6 075 06 5 076 65 \times 077 03 3 078 06 6 079 00 0 081 39 CDS 082 65 \times 083 90 0 081 39 CDS 082 65 \times 083 90 1 086 06 6 057 07 7 088 85 + 089 01 1 086 06 6 057 07 7 088 85 + 089 01 1 090 95 \times 091 33 X ² 092 65 \times 093 01 1 094 93 . 095 03 3 096 05 5 097 06 $=$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201 53 (°) 202 43 RCL 203 07 07 204 36 SIN 205 75 + 206 89 4 207 55 + 208 01 1 209 96 8 210 00 0 211 65 x 212 43 RCL 213 07 07 214 65 x 215 40 RCL 216 06 06 217 39 CDS 218 54 + 220 55 6 221 40 RCL 222 05 05 223 36 \$11 224 75 - 225 89 # 226 55 + 227 01 1 228 08 8 230 65 <th>251 05 5 252 65 × 253 53 (254 01 1 255 85 + 256 43 RCL 257 02 02 258 39 CDS 259 54) 260 65 × 261 42 FCL 262 11 11 263 85 + 264 93 . 266 65 × 267 53 (268 01 1 269 75 - 270 42 FCL 271 02 02 272 39 CDS 273 54) 274 65 × 274 65 × 275 43 FCL 276 13 13 277 95 = 278 65 × 279 43 RCL 280 10 10 281 95 = 282 42 STD 283 14 141 284 99 FET 285 72 ST+ 286 30 30 287 92 FT 288 76 LBL 289 11 A 289 11 A 289 11 A 289 25 CLR 289 25 CLR 295 28 28 296 43 RCL 297 00 00</th>	251 05 5 252 65 × 253 53 (254 01 1 255 85 + 256 43 RCL 257 02 02 258 39 CDS 259 54) 260 65 × 261 42 FCL 262 11 11 263 85 + 264 93 . 266 65 × 267 53 (268 01 1 269 75 - 270 42 FCL 271 02 02 272 39 CDS 273 54) 274 65 × 274 65 × 275 43 FCL 276 13 13 277 95 = 278 65 × 279 43 RCL 280 10 10 281 95 = 282 42 STD 283 14 141 284 99 FET 285 72 ST+ 286 30 30 287 92 FT 288 76 LBL 289 11 A 289 11 A 289 11 A 289 25 CLR 289 25 CLR 295 28 28 296 43 RCL 297 00 00

EXHIBIT 11.2-2

LISTING OF A TI-59 INSOLATION COMPUTATION PROGRAM

*For calculators without printers, a step "R/S" should be inserted between #283 and #284.

11-7

EXHIBIT 11.2-2 (Continued)

LISTING OF A TI-59 INSOLATION COMPUTATION PROGRAM

Exhibit 11.2-3 INSTRUCTION FOR OPERATING THE HP-67 INSOLATION-COMPUTATION PROGRAM

1. Load the following quantities into the storage registers indicated below:

Value	Register
s _H	0
Day (Jan 1=1)	1
Latitude, L	· 2
Tilt Angle,	3
Reflectance	4

- 2. Depress A to initiate the program. In approximately 45 seconds, the value of S_T , the average monthly insolation on the tilted surface will be displayed in the x-register. The units of S_H are kWh/day-m².
- 3. To calculate I_T for a different month, the value of \overline{K}_H and the value of DAY corresponding to the middle of the month must be stored in Registers 0 and 1 respectively. Alternatively, the variation of S_T with tilt angle or ground reflectance can be studied by changing these variables with the remaining ones fixed.
- 4. Example:

For $K_{\rm H}$ = 0.5, L = 20, DAY = 15 (January) Tilt = 20, and ρ = 0.05, the calculated

value of
$$I_{T} = 4.595$$
.

4. The following quantities are also calculated and stored by the program:

<u>Quantity</u> *	Register
δ	5
A 38	6
heta sr	7
θ	8
s _{oh}	9
К _D	А
R _D	В

* See Exhibit 11.1-1 for a definition of these guantities

Exhibit 11.2-4

LISTING OF AN HP-67 INSOLATION COMPUTATION PROGRAM

Step Number	Key- strokes		Key Code		Step Number	Key- strokes		ey ode	Step Number	Key- strokes		ey ode
$\begin{array}{c} 001\\ 002\\ 003\\ 004\\ 005\\ 006\\ 007\\ 008\\ 009\\ 010\\ 011\\ 012\\ 013\\ 014\\ 015\\ 016\\ 017\\ 018\\ 019\\ 020\\ 021\\ 022\\ 023\\ 024\\ 025\\ 026\\ 027\\ \end{array}$	f LBL A RCL 1 2 8 4 + 3 6 5 \div 3 6 0 X f sin 2 3 4 5 f sin 2 3 4 5 f sin 2 3 f sin 2 3 f sin 2 5 f sin 5 f TAN RCL 2 f TAN	32	25 34 31 31 32 33 31 34 31	$ \begin{array}{r} 11\\ 01\\ 02\\ 08\\ 04\\ 61\\ 03\\ 06\\ 05\\ 81\\ 03\\ 06\\ 00\\ 71\\ 62\\ 03\\ 83\\ 04\\ 05\\ 62\\ 71\\ 62\\ 71\\ 62\\ 64\\ 02\\ 64 \end{array} $	$\begin{array}{c} 028\\ 029\\ 030\\ 031\\ 032\\ 033\\ 034\\ 035\\ 036\\ 037\\ 038\\ 039\\ 040\\ 041\\ 042\\ 043\\ 044\\ 045\\ 044\\ 045\\ 044\\ 045\\ 046\\ 047\\ 048\\ 049\\ 050\\ 051\\ 052\\ 053\\ 054 \end{array}$	X CHS $_{-1}$ STO 6 RCL 2 RCL 3 - f TAN RCL 5 f TAN X CHS $_{-1}$ g cos STO 7 RCL 6 g x <y h x\gey STO 8 RCL 1 3 6 0 X 3 6 5 \div</y 	32 33 34 34 31 34 31 32 33 34 32 35 33 34	$\begin{array}{c} 71\\ 42\\ 63\\ 06\\ 02\\ 03\\ 51\\ 64\\ 05\\ 64\\ 71\\ 42\\ 63\\ 07\\ 06\\ 81\\ 52\\ 08\\ 01\\ 03\\ 06\\ 00\\ 71\\ 03\\ 06\\ 05\\ 81 \end{array}$	$\begin{array}{c} 055\\ 056\\ 057\\ 058\\ 059\\ 060\\ 061\\ 062\\ 063\\ 064\\ 065\\ 066\\ 067\\ 068\\ 069\\ 070\\ 071\\ 072\\ 073\\ 074\\ 075\\ 076\\ 077\\ 078\\ 079\\ 080\\ 081 \end{array}$	$f \cos 0$ 1 6 7 X 1 $+$ $g x^{2}$ 1 $.$ $g x^{2}$ 1 $.$ 3 5 6 X $RCL 5$ $f \sin RCL 2$ $f \sin RCL 2$ $f \sin X$ $RCL 2$ $f \sin X$ $RCL 6$ X $h \pi$ X 1 8	31 32 34 31 34 31 34 31 34 35	$\begin{array}{c} 63\\ 83\\ 00\\ 01\\ 06\\ 07\\ 71\\ 01\\ 61\\ 54\\ 01\\ 83\\ 05\\ 06\\ 71\\ 05\\ 62\\ 02\\ 62\\ 71\\ 06\\ 71\\ 73\\ 71\\ 01\\ 08 \end{array}$

Exhibit 11.2-4 (Continued)

LISTING OF AN HP-67 INSOLATION COMPUTATION PROGRAM

Step Number	Key- strokes		ey ode	Step Number	Key- strokes		ey ode	Step Number	Key- strokes		ey ode
082	0		00	109	Х		71	136	RCL 8	34	08
083	÷		81	110	f cos	31	65	137	Х		71
084	RCL 6	34	06	111	RCL 6	34	06	138	$h\pi$	32	73
085	f sin	31	62	112	2		02	139	x	•2	71
086	RCL 5	34	05	113	2		02	140	1		01
087	fcos	31	63	114	0		00	141	8		08
880	X		71	115	÷		81	142	0		00
089	RCL 2	34	02	116	•		83	143	÷		81
090	fcos	31	63	117	0		00	144	CHS		42
091	X		71	118	9		Ü9	145	RCL 8	34	08
092	+		61	119	5		05	146	f sin	31	62
093	Х		71	120	+		61	147	+	01	61
094	2		02	121	Х		71	148	RCL 6	34	01
095	4		04	122	CHS		42	149	f cos	31	63
096	Х		71	123	RCL 6	34	06	150	RCL 6	34	05
097	h $oldsymbol{\pi}$	35	73	124	1		01	151	X	94	7 <u>1</u>
098	÷		81	125	6		06	152	$h\pi$	32	73
099	STO 9	33	09	126	5		05	153	X	02	71
100	RCL 0	34	00	127	÷		81	154	1		01
101	•		83	128	+		61	155	8		08
102	9		09	129	•		83	156	Õ		00
103			51	130	2		02	157	-		81
104	1		01	131	3		03	158	CHS		42
105	1		01	132	+		61	159	RCL 6	34	42 06
106	4		04	133	STO A	33	11	160	f sin	31	62
107	•		83	134	RCL 7	34	07	161	+	91	61
108	6		06	135	f cos	31	63	162	÷.		81

Exhibit 11.2-4 (Continued)

Step Number	Key- strokes	Key Code		Step Number	Key- strokes		Key Code	
163	RCL 2	34	02	190	+		61	
164	RCL 3	34	03	191	2		02	
165			51	192	÷		81	
166	f cos	31	63	193	RCL 4	34	04	
167	Х		71	194	Х		71	
168	RCL 2	34	02	195	+		61	
169	f cos	31	63	196	RCL 9	34	09	
170	÷.		81	197	Х		71	
171	STO B	33	12	198	RCL O	34	00	
172	RCL A	34	11	199	Х		71	
173	CHS		42	200	h RTN	32	22	
174	1		01	201	R/S		84	
175	+		61		1			
176	Х		71					
177	RCL 3	34	03		Ţ		Į	
178	f cos	31	63	224	R/S		84	
179	1		01					
180	+		61					
181	2		02					
182	÷		81					
183	RCL A	34	11					
184	Х		71					
185	+		61					
186	RCL 3	34	03					
187	f cos	31	63					
188	CHS		42					
189	1		01					

.

LISTING OF AN HP-67 INSOLATION COMPUTATION PROGRAM

11.3 STATISTICAL INSOLATION COMPUTATIONS

The tilted surface insolation computation using monthly averages directly, as was done in Exhibit 11.1-1 disagrees with the monthly averages computed by averaging day-by-day tilted surface insolations by as much as 30%; therefore, results of the monthly method will not agree exactly with Section 6 for which the data were generated by a day-by-day method. More accurate day-by-day data can be generated by using the following method.

The insolation for each month and for each K_H ranging from 0.0 to 1.0 must be computed. The procedure is identical to that presented in Exhibit 11.1-1, with one exception: the expression for K_D must be modified. The day-by-day expression for K_D is:

$$\begin{split} K_{D} &= 0.99 & \text{if } K_{H} \text{ is less than } 0.1557 \\ K_{D} &= 1.188 - K_{H} * (2.272 - K_{H} * \begin{bmatrix} 9.473 - K_{H} * (21.856 - 14.648 * K_{H}) \end{bmatrix}) \\ & \text{if } K_{H} \text{ is between } 0.1557 \text{ and } 0.761 \\ K_{D} &= 0.2255 & \text{if } K_{H} \text{ is greater than } 0.761 \end{split}$$

The frequency with which each K_H is encountered can be determined from Exhibit 11.3-1, which gives the (cumulative) distribution, M, for each K_H as a function of the monthly average K_H . The average and standard deviation are computed from the formulas:

Average insolation =
$$\sum_{i=1}^{\infty} (M_{i+1} - M_i) (I_{T, i+1} + I_{T,i})/2$$

Standard deviation = $\sqrt{\sum_{i=1}^{\infty} (M_{i+1} - M_i) [(I_{T, i+1} + I_{T,i})/2 - Average insolation]^2}$

This procedure is tedious and is best performed on a computer, rather than a hand-held calculator. The latter would probably require several days of computation, whereas the former requires approximately one hour on a micro computer.

	Average K _H								
K _H	.3	.4	.5	.6	.7				
.04	.073	.015	.001	.000	.000				
.08	.162	.070	.023	.008	.000				
.12	.245	.129	.045	.021	.007				
.16	.299	.190	.082	.039	.007				
.20	.395	.249	.121	.053	.007				
.24	.496	.298	.160	.076	.007				
.28	.513	.346	.194	.101	.013				
.32	.579	.379	.234	.126	.013				
.36	.628	.438	.277	.152	.027				
.40	.687	.493	.323	.191	.034				
.44	.748	.545	.358	.235	.047				
.48	.793	.601	.400	.269	.054				
.52	.824	.654	.460	.310	.081				
.56	.861	.719	.509	.360	.128				
.60	.904	.760	.614	.410	.161				
.64	.936	.827	.703	.467	.228				
.68	.953	.888	.792	.538	.295				
.72	.967	.931	.873	.648	.517				
.76	.979	.967	.945	.758	.678				
.80	.986	.981	.980	.884	.859				
.84	.993	.997	.993	.945	.940				
.88	.995	.999	1.000	.985	.980				
.92	.998	.999		.996	1.000				
.96	.998	1.000		.999					
1.00	1.000			1.000					

Exhibit 11.3-1 GENERALIZED K_{H} DISTRIBUTION COVERAGE, F (K_{H})

163

11.4 SUN ANGLE CHARTS

In this section, charts are presented to predict the amount and duration of array shading caused by objects located in front of and to the side of the array. The determination of array shading is an important part of site selection in view of the sensitivity of array output to shadowing. This sensitivity is due to series connection of cells and of modules and can be minimized but never eliminated. Thus, it is imperative that shading be kept to a minimum especially during the hours of 0900 to 1500 solar time.

From the point of view of an observer standing on earth, the position of the sun in the sky can be specified by two angles, the altitude angle and the azimuth angle. The altitude angle is the elevation of the sun above the horizon. The azimuth angle is the angle between true south (or north in the southern hemisphere) and the projection of the sun's rays onto the horizontal surface. Exhibit 11.4-1 illustrates these angles. To estimate shading, the skyline must be plotted on the sun chart closest to the site latitude. The sun charts are presented in Exhibits 11.4-2 through 11.4-10 for latitude angles from 0 to 64 degrees in 8 degree increments. The altitude and azimuth angles of objects on the horizon can be measured directly or estimated based on the known locations and elevations of objects relative to the array site. For close objects or an extended array, the measurements should be referenced to several locations along the array. An example calculation is presented in Exhibit 11.4-11.

11.5 ROW TO ROW SHADING

For PV arrays arranged in multiple rows of PV modules, the largest source of shading in the winter is likely to be the adjacent row. Sufficient spacing between rows must be provided to keep the shading to a minimum. This is most important for stand-alone systems, since the months of maximum shading (winter months) are also usually the months of lowest insolation.

In Exhibit 11.5-1 a graph is presented showing the minimum spacing between rows as a function of latitude angle for no row-to-row shading between the hours of 0900 to 1500 solar time for December 21 (June 21). It is seen that the land areas taken up by the array at the higher latitudes is excessive. The technique used to overcome this is to locate the array on a slope or to artificially create a slope by raising the rear rows. This is depicted in the exhibit.

Exhibit 11.4-1

ILLUSTRATION OF SOLAR ALTITUDE AND AZIMUTH ANGLES

Nor

Exhibit 11.4-3

Exhibit 11.4-4

SUN CHART FOR 16⁰ LATITUDE

LATITUDE = 24°

Exhibit 11.4-5

SUN CHART FOR 24⁰ LATITUDE

Exhibit 11.4-6

SUN CHART FOR 32⁰ LATITUDE

LATITUDE = 32º

LATITUDE = 40°

1.0

Exhibit 11.4-7

SUN CHART FOR 40° LATITUDE

Exhibit 11.4-8

SUN CHART FOR 48⁰ LATITUDE

LATITUDE - 48°

LATITUDE = 56°

SUN CHART FOR 56⁰ LATITUDE

16ª

LATITUDE = 64°

 $\langle \gamma \rangle$

Exhibit 11.4-10

Exhibit 11.4-11 SAMPLE SHADING CALCULATION

SUN CHART FOR 40⁶N

 $\langle \gamma \rangle$

MINIMUM ROW-TO-ROW SPACING REQUIRED FOR NO SHADING BETWEEN 0900 AND 1500 HOURS ON DECEMBER 21 (JUNE 21)

SECTION 12 PHOTOVOLTAIC SYSTEM COMPONENTS

A brief survey of manufacturers and standard catalogs reveals the availability and costs of the major components for photovoltaic power systems. The results of this survey are presented in the exhibits of this section. For typical systems under 1.5 kWp array sizes, there are components available off the shelf (within approximately 16 weeks). In the following subsections, each of the components will be discussed individually. The data are arranged in the order that the components appear in the system, starting with the solar array.

12.1 SOLAR CELL MODULES

Exhibit 12.1-1 lists data obtained from representative module manufacturers. The specifications were obtained from GSA lists, brochures and telephone calls. The prices referred to as minimum are based on small quantities, typically less than 5 kWp. Most suppliers reserve the right to determine large quantity prices at the time of the contract based on supply and demand. It should be noted that at the present, the demand exceeds the immediately available supply. Thus, some delays in delivery may be experienced. Also there are several firms not listed here which are developing new processes that will substantially effect the cost in the future. Some of these firms may enter the market as suppliers. This is meant to be a sampling of what is available and not a complete reference for these products.

The most popular modules for terrestrial power are made with silicon cells, although much research and development is being done with cadmium sulfide solar cells and other semi-conductor materials. Availability of cadmium sulfide cells is limited at present, and therefore specifications are limited too. It has been projected that the cadmium sulfide cells will become available in quantities at competitive prices (less than \$8/Wp) within the year. Furthermore, an anticipated price in the range of \$3/watt peak for installed dc power systems may offset the relatively low (typically 3-8 percent) efficiency posed by a cadmium silfide manufacturer.

5

12-1

The efficiency of silicon cells depends primarily on their purity. Lab experiments have produced samples at near theoretical maximum. Yet the variables of mass production tend to limit the efficiency of silicon cells to about 17 percent and average close to 10 percent. When the fill factor of a module or space between the cells is considered it can be understood why module sizes have not been standardized for commercial applications; however, most manufacturers supply their own structures, so standardization is of lesser importance unless it is desired to have the capability to interchange different manufacturers modules.

Although manufacturers may vary from one to another in the relativeness of their test data, some general conclusions can be drawn: photovoltage is independent of area (typically 0.5 V/cell), while current is directly related to area and light intensity. The change in current is directly proportional to the change in temperature by about 25 micro amperes per centimeter squared per degree celsius. 100 milliwatts per centimeter squared is the typical maximum intensity of sunlight. As discussed in Section 6.2 on pv arrays, the open-circuit voltage (V_{oc}), shortcircuit current (I_{sc}) and series resistance (R_{series}) are important in combining arrays. For the same reason, the temperature coefficients are important. Arrays matched at one temperature may not be matched at another. The JPL (I-V) current per voltage tests are cited by one cell manufacturer; based on their findings a cell temperature of $28^{\circ}C$ is standard. Yet, under nominal working conditions there is an increase in cell temperature of 15° - 20° C above ambient temperature. As mentioned before, manufacturers may vary on this point.

Some arrays come with dual leads from each cell. If one should fail, the other will suffice. Few of the GSA listed arrays come with an intermediate tap that would permit the use of a partial-shunt regulator. In total, there are approximately nine manufacturers from whom modules can be bought off the shelf. At present there is a greater demand for P.V. modules than is being supplied. This is an unusual condition. Partially due to the effects of supply and demand and partially due to mass production techniques, there is a wide range in cost per watt peak from about \$26/Wp to \$8/Wp. Typically the mean price is about \$15/Wp.

Exhibit 12.1-1

COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Model #: 60-3012 60-3013 60-3014 60-3015 60-3016 Price/pc. min/max: ⁽¹⁾ $\$ 34_44$ $\$ 62_74$ $\$ 103_124$ $\$ 83_99$ $\$ 150_180$ $\$/Watt peak:^{(1)}$ $\$ 11.81=14+\$ 11.78=14+\$ 9.78=11+\$ 16.12=19+\$ 14.25=17+$ Efficiency: ⁽²⁾ 7.22% 7.79% 7.92% 7.67% 8.71% Standard Operating Conditions: $T_a:20\%$ 7.79% 7.92% 7.67% 8.71% Standard Operating Conditions: $Wind:1m/s$ same	Manufacturer:		T	1	1	
Price/pc. min/max: ⁽¹⁾ $S_34_4=4_1$ $S_62=74_4$ $S_10_3=124_4$ $S_83=92_4$ $S_150=180_4$ $S/Watt peak:^{(1)}$ $S_11*81=14+31:78=14+39:78=11+316:12=19+314:25=17+11:78=14+39:78=11+316:12=19+314:25=17+11:11:11:11:11:11:11:11:11:11:11:11:11:$	Model #:	60-3012	60-3013	60-3014	60-3015	60 7010
\$/Watt peak: \$11.81-14+\$11.78-14+\$9.78-11+\$16.12-19+\$14.25-17+ Efficiency: 7.22% 7.79% 7.92% 7.67% 8.71% Standard Operating Conditions: Ta:20°C same sa		1			1	
Efficiency: ⁽²⁾ 7.22% 7.79% 7.92% 7.67% 8.71% Standard Operating Conditions: ⁽³⁾ Ta:20°C Wind:1m/s same NOCT:oc same same same same Watts Peak: 10° Vp) 2.88 5.265 10.53 5.148 10.55 Voits Peak: 9.0 8.1 8.1 16.2 16.2 Amps Peak: 0.32 0.65 1.30 0.32 0.65 V. open circuit: V. Temp. Coeff.: I. Temp. Coeff.: R. Temp. Coeff.: No. of Cells & Size: 20@±of3" 18@±of3" 36@±of3" 36@±of3" Jual Leads: Intermediate Tap: Intermediate Tap: Panel Dimensions:1.75x6.87x9" 6.87x15.25"6.87x30" 6.87x15.25"12.5.3 1bs.		3 34-41	862-74	\$103-124	1983-99	<u>\$150-180</u>
Standard Operating Conditions; Ta: 20°C Wind: 1m/s NOCT: oc same	\$/Watt peak:	617.81-14+	\$11 • 78 - 14+	§9•7811+	16.12-19+9	14-25-17+
Standard Operating Conditions: wind:1m/s NOCT:oc same	Efficiency: ⁽²⁾	7.22%	7.79%	7.92%	7.67%	8.71%
Conditions: (3) NOCT: oc NOCT: oc Watts Peak: $(1_p \cdot V_p)$ 2.88 5.265 10.53 5.148 10.53 Volts Peak: 9.0 8.1 8.1 16.2 16.2 Amps Peak: 0.32 0.65 1.30 0.32 0.65 V. open circuit: J. short circuit: I. Temp. Coeff.: R. Temp. Coeff.: .			same	Samo	como	0070
Watts Peak: $(1_p \cdot V_p)$ 2.88 5.265 10.53 5.148 10.53 Volts Peak: 9.0 8.1 8.1 16.2 16.2 Amps Peak: 0.32 0.65 1.30 0.32 0.65 V. open circuit:	Conditions: ⁽³⁾	NOCT: oc	Dame	Bame	Same	same
Volts Peak: 9.0 8.1 8.1 16.2 16.2 Amps Peak: 0.32 0.65 1.30 0.32 0.65 V. open circuit:	Watts Peak: $(I_p \cdot V_p)$	2.88	5.265	10.53	5.148	10 53
Amps Peak: 0.32 0.65 1.30 0.32 0.65 V. open circuit: 0.65 0.65 0.65 0.65 V. open circuit: 0.65 0.65 0.65 0.65 V. open circuit: 0.65 0.65 0.65 0.65 I. short circuit: 0.72 0.65 0.65 0.65 I. Temp. Coeff.: 0.72 0.65 0.65 0.65 R. Temp. Coeff.: 0.75 0.65 0.65 0.65 P. Temp. Coeff.: 0.75 0.65 0.65 0.65 No. of Cells & Size: 200±015" 18@±01" 18@ 3" 36@±013" 36@±013" Configuration: 20s x 1p 18s x 1p 18s x 1p 36s x 1p 36s x 1p Dual Leads: 0.687x15.25" 0.687x15.25" 26.87x15.25" 26.87x15.25" 22.12x15.62" Failure Rate (MTBF): 0.87x15.25" 0.6.87x15.25" 20.6.1"2" 004.77"2" 187.44"2" Cover Material: Glass Glass Glass Glass Glass Glass Glass Glass Weight: <t< td=""><td>Volts Peak:</td><td></td><td></td><td></td><td></td><td></td></t<>	Volts Peak:					
V. open circuit: V. Temp. Coeff.: V. Temp. Coeff.: I. short circuit: V. Temp. Coeff.: V. Temp. Coeff.: R. series/cell: V. Temp. Coeff.: V. Temp. Coeff.: R. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: P. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: No. of Cells & Size: 20@#cf3" 18@ 3" 36@#of3" You of Cells & Size: 20@#cf3" 18@ 3" 36@#of3" 36@#of3" No. of Cells & Size: 20@#cf3" 18@ 3" 36@# of3" 36@# of3" 36@# of3" Point Sufface Tap: V. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: Protection: V. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: Protection: V. Temp. Limit: V. Temp. Coeff.: V. Temp. Coeff.: V. Temp. Coeff.: Panel Dimensions: 1.75x6.87x9" 6.87x15.25" 6.87x15.25" 12x15.62" 12x15.62" Front Surface Area: 61.83" Glass Glass Glass Glass Glass Weight: 2 1bs. 3 1bs. 5.75 1bs. 3 1bs. <t< td=""><td>Amps Peak:</td><td></td><td></td><td></td><td></td><td></td></t<>	Amps Peak:					
I. short circuit:I. Temp. Coeff.:R. series/cell:I. Temp. Coeff.:R. Temp. Coeff.:I. Temp. Coeff.:P. Temp. Coeff.:I. Temp. Coeff.:No. of Cells & Size: $20@\pm of 3''$ 18@ $\pm 0f 3''$ $36@\pm of 3'''$ Configuration: $20s x 1p$ 18s x 1p $36s x 1p$ Dual Leads:I. Termediate Tap:Intermediate Tap:I. Termediate Tap:Failure Rate (MTBF):I. Termediate Tap:Protection:I. Termediate Tap:Fill Factor:I. Termediate Tap:Failure Rate (MTBF):I. Termediate Tap:Protection:I. Termediate Tap:Fill Factor:I. Termediate Tap:Fill Factor:I. Termediate Tap:Front Surface Area: $61.83''''$ I. GlassGlassGlassGlassGlassGlassGlassGlassGlassGlassJbs. 5.75 Ibs.I. Tested:Insulation:I. Tested:Max. Wind Load:I. Tested:GSA Listed:YesYesYes	V. open circuit:					
I. Temp. Coeff:Image: Second systemR. Temp. Coeff:Image: Second systemR. Temp. Coeff:Image: Second systemP. Temp. Coeff:Image: Second systemNo. of Cells & Size: $200\pm cf5''$ Image: Configuration: $20s \times 1p$ Image: Configuration: $20s \times 1p$ Image: Dual Leads:Image: Second systemIntermediate Tap:Image: Second systemFailure Rate (MTBF):Image: Second systemProtection:Image: Second systemFill Factor:Image: Second systemPanel Dimensions: 1-75x6.87x9" $6.87x15.25"6.87x30"$ GlassGlassGlassGlassGlassGlassGlassGlassGlassGlassGlassGlassGlassGlassMeight:Image: Second systemInsulation:Image: Second systemMax. Wind Load:Image: Second systemMax. Wind Load:Image: Second systemGSA Listed:yesYesyes	V. Temp. Coeff.:					
R. series/cell:	I. short circuit:		· · · · · · · · · · · · · · · · · · ·			
R. series/cell:	I. Temp. Coeff.:					
R. Temp. Coeff.:						
Temp. cell-Temp. air	R. Temp. Coeff.:		*********			
P. Temp. Coeff: 18@30f3" 36@10f3" 36@20f3" No. of Cells & Size: 20@10f3" 18@30f3" 36@10f3" 36@20f3" Configuration: 20s x 1p 18s x 1p 36s x 1p 36s x 1p Dual Leads: 18s x 1p 18s x 1p 36s x 1p 36s x 1p Intermediate Tap: 18s x 1p 36s x 1p 36s x 1p Failure Rate (MTBF): 18s x 1p 36s x 1p 36s x 1p Protection: 18s x 1p 36s x 1p 36s x 1p Front Surface Area: 61.83"2" 104.77"2 206.1"2 104.77"2 Cover Material: Glass Glass Glass Glass Glass Weight: 2 1bs. 3 1bs. 5.75 1bs. 3 1bs. 4 1bs. Ambient Temp. Limit: 104.77"2 105.3 1bs. 4 1bs. 105.3 1bs. Max. Snow Load: 18x 18x 18x 18x 18x Max. Impact: 18x 18x 18x 18x 18x Max. Impact: 19x 19x 19x 18x 18x Max. Impact: 18x <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
No. of Cells & Size: 20@±of3" 18@±of3" 36@±of3" 36@±of3" <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Configuration: 20s x 1p 18s x 1p 18s x 1p 36s x 1p 36s x 1p Dual Leads:	No. of Cells & Size:	20@+013"	18@ + of 3"	18@ 311	36@tofzu	360+0+31
Dual Leads:Image: Constraint of the second seco			and the second se			
Failure Rate (MTBF):			<u> </u>	100 x 10	208 A 10	<u></u>
Failure Rate (MTBF):	, Intermediate Tap:			******		
Protection: Image: Constraint of the system of the sys						
Panel Dimensions:1.75x6.87x9" 6.87x15.25"6.87x30" 6.87x15.25"12x15.62" Front Surface Area: 61.83"2 104.77"2 206.1"2 104.77"2 187.44"2 Cover Material: Glass Glass Glass Glass Glass Glass Weight: 2 lbs. 3 lbs. 5.75 lbs. 3 lbs. 4 lbs. Ambient Temp. Limit:						
Front Surface Area:61.83"2104.77"2206.1"2104.77"2187.44"2Cover Material:GlassGlassGlassGlassGlassGlassWeight:2 lbs.3 lbs.5.75 lbs.5 lbs.4 lbs.Ambient Temp. Limit:Insulation:Insulation:Insulation:Insulation:Max. Snow Load:Insulation:Insulation:Insulation:Insulation:JPL Tested:Insulation:Insulation:Insulation:Insulation:JPL Tested:Insulation:In	Fill Factor:					
Front Surface Area:61.83"2104.77"2206.1"2104.77"2187.44"2Cover Material:GlassGlassGlassGlassGlassGlassWeight:2 lbs.3 lbs.5.75 lbs.5 lbs.4 lbs.Ambient Temp. Limit:Insulation:Insulation:Insulation:Insulation:Max. Snow Load:Insulation:Insulation:Insulation:Insulation:JPL Tested:Insulation:Insulation:Insulation:Insulation:JPL Tested:Insulation:In	Panel Dimensions:1.79	x6.87x9"	6.87x15.25	16-87×301	6.87-15 25	112415 (211
Cover Material:GlassGlassGlassGlassGlassWeight:2 lbs.3 lbs.5.75 lbs.3 lbs.4 lbs.Ambient Temp. Limit:	Front Surface Area:			The second se	101 7714	187 111C
Weight:2 lbs.3 lbs.5.75 lbs.3 lbs.Ambient Temp. Limit:	Cover Material:		Glass			
Ambient Temp. Limit:JeroJeroJeroJeroJeroInsulation:Insulation:Insulation:Insulation:Insulation:Insulation:Max. Snow Load:Insulation:Insulation:Insulation:Insulation:Insulation:Max. Wind Load:Insulation:Insulation:Insulation:Insulation:Insulation:Max. Wind Load:Insulation:Insulation:Insulation:Insulation:Insulation:JPL Tested:Insulation:Insulation:Insulation:Insulation:Insulation:GSA Listed:YesYesYesYesYes			3 lbs.	2.75 lbs.		
Insulation:Image: Second s				<u></u>		
Max. Snow Load:Image: Constraint of the second						
Max. Wind Load:Image: Constraint of the second						
Max. Impact:JPL Tested:GSA Listed:yesyes						
JPL Tested: gs yes yes						
GSA Listed: yes yes yes yes yes						
		ves	Ves	Ves	VAS	VAS
	Delivery:		<u> </u>		<u>105</u>	<u>, , c s</u>

⁽¹⁾ Based on present 1980 \$ value Domestic Price List effcective March 1, 1979

⁽²⁾Based on gross frontal area

⁽³⁾Based on 100 mw/cm², 28[°] cell temp. (or State Other Conditions)

Exhibit 12.1-1 (Con't)

COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Manufacturer:			<u> </u>]	
Model #:	ASI16-2000				
Price/pc. min/max: ⁽¹⁾	\$ 264 - 495				
\$/Watt peak:	\$8 -\$15				
Efficiency: ⁽²⁾	8.97%				
Standard Operating					
Conditions: ⁽³⁾					
Watts Peak:(4)	33				
Volts Peak:	16.1			<u> </u>	
Amps Peak:	2.05				
V. open circuit:	20.3		<u> </u>		
V. Temp. Coeff.:	2.5-3mV/C/	PC			
I. short circuit: I. Temp. Coeff.:	2.3				
R. series/cell:			<u> </u>		
R. Temp. Coeff.:					
Temp. cell-Temp. air	40°C				
P. Temp. Coeff.:	40.00				
No. of Cells & Size:	35@ 4"		+		
Configuration:	35series		1	{	
Duai Leads:	yes				
Intermediate Tap:					
Failure Rate (MTBF):			1	1	
Protection:	ves/op.				
Fül Factor:	yes/ou				
Fanel Dimensions:	47.9x11.9	x1,5"			
Front Surface Area:	570.01"2				
Cover Material:	Glass		1		
Weight:	11 lbs.		1		
Ambient Temp. Limit:		1 1	1		
Insulation:		e	<u> </u>		
Max. Snow Load:		·	1		
Max. Wind Load:		· · · · · · · · · · · · · · · · · · ·	1	1	
Max. Impact:			1	<u> </u>	
JPL Tested:		·	1		
GSA Listed:					
Delivery:					

⁽¹⁾Based on present 1980 \$ value

176

⁽²⁾Based on gross frontal area

 $^{^{(3)}}$ Based on 100 mw/cm², 28^o cell temp. (or State Other Conditions

⁽⁴⁾ Recent production units have 37 watts peak which may result in a second module becoming available soon.

Exhibit 12.1-1 (Con't)

COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Manufacturer:]	(1)			
Model #:	9200J ⁽⁴⁾	HE50J/JG	(4) HE51J/JG	HE60J/JG	4200C
Price/pc. min/max: ⁽¹⁾	3335-5-419	1	1		
\$/Watt peak:	\$13.4-16+\$	15.13-18+	\$14.82-18+	\$15 . 57 - 19+:	310.95-15
Efficiency: ⁽²⁾	7.33%	11.60%	11.95%	11.38%	7.03%
Standard Operating	T :25°C				
Conditions: ⁽³⁾	T _c :25 ^o C <u>+3</u> °C 25.0	same	same	same	same
Watts Peak:	25.0	33.0	34.0	37.0	20.0
Volts Peak: Amos Peak:					
V. open circuit:	23	18/36	20	20/40	20
V. Temp. Coeff.:			<u> </u>	20740	_20
I. short circuit:					
I. Temp. Coeff.:					
R. series/cell: R. Temp. Coeff.:					
Temp. cell-Temp. air					
P. Temp. Coeff.:					
No. of Cells & Size:					
Configuration:					
Dual Leads:					
Intermediate Tap:					
Failure Rate (MTBF):					
Protection:					
Fill Factor:					
Panel Dimensions:	23x2311 529112	21x21"	21x21"	21x24"	21x21"
Front Surface Area:	529112	441112	441112	504112	441112
Cover Material:		/Glass	/Glass	/Glass	Class
Weight: 1bs.	21	23	_23	- 75	19
Ambient Temp. Limit: Insulation:					
Max. Snow Load:					
Max. Wind Load:					
Max. Impact:					
JPL Tested:					
GSA Listed:	yes	yes	yes	yes	yes
Delivery:					

(1) Based on present 1980 \$ value GSA Discounts thru April 30, 1980

⁽²⁾ Based on gross frontal area

⁽³⁾ Based on 100 mw/cm², 28^o cell temp. (or State Other Conditions)

⁽⁴⁾ J: Integral mounting frame with junction box

Exhibit 12.1-1 (Con't)

COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Manufacturer:	T	<u> </u>		Γ	1
Model #:	1263-4G	1294 - G	1263-5	1203-5	1264 - 5
Price/pc. min/max: ⁽¹⁾	\$136-152		\$301-337		\$395-441
\$/Watt peak: ⁽¹⁾	\$34-38				\$12.34-13+
Efficiency: ⁽²⁾	8.86%	7.66%	8.81%	7.78%	7.05%
Standard Operating					
Conditions: ⁽³⁾					
Watts Peak:	4	35	22	23	32
Volts Peak:					
Amps Peak: V. open circuit:			 		
V. Temp. Coeff.: I. short circuit:					
I. Temp. Coeff.:					
R. series/cell:					
R. Temp. Coeff.:					
Temp. cell-Temp. air					
P. Temp. Coeff.:					
No. of Cells & Size:	7601 70	76.61.11			
Configuration:	36@=======	39@4"	36@311	42@3"	36@4"
Dual Leads:					
Intermediate Tap:					
Failure Rate (MTBF):					
Protection:					
Fill Factor:					
Panel Dimensions: (4)	20x3.5 7012	30x23.6	21.8x17.75	22.9x20	46x15.3
Front Surface Area:		708"2		458112	703.8112
Cover Material:	Glass	Glass	Silicone		Silicone
Weight: 1bs.	2.5	24.9	4	5	7
Ambient Temp. Limit:					·
Insulation:					
Max. Snow Load:					
Max. Wind Load:					
Max. Impact:					/
JPL Tested:					
GSA Listed:	Yes	Yes	Yes	Yes	Yes
Delivery:					

- (1) Base present 1980 \$ value GSA Discount list effective thru April 30, 1980 (2) Based o. gross frontal area
- ⁽³⁾Based on 100 mw/cm², 28° cell temp. (or State Other Conditions)

(4) Heighth: Glass-1.75", Silicone-.25"

13

12.2 BATTERIES

A detailed analysis of various batteries has been presented in Section 4.3. Both nickel cadmium and lead-acid batteries are represented in Exhibit 4.3-1. A distinction should be made between two types of lead-acid batteries, the leadantimony (typically useful to 5 to 10 percent maximum depth of discharge) and lead-calcium (most useful to 20 percent, some useful to 80 percent maximum depth of discharge). The specifications for depth of discharge and number of cycles per life vary widely. It is therefore difficult to compare the various types. For instance, nickel cadmium batteries are generally capable of being used to 100 percent of the maximum rated depth of discharge for thousands of cycles over many years.

The prime contenders for use with photovoltaic systems are the NiCd and lead-calcium. Some loads may not require battery storage, while some may require the storage to be displaced in a day, and others may require several days of storage or even several weeks where high dependability is demanded. In any case the battery manufacturer should always be consulted before making the final choice as to the appropriate cell for a particular application.

The actual battery size is not usually important, because battery cells, like PV cells, can be grouped to obtain the desired voltage and current.

For very small applications, automotive batteries, sized to prevent more than a 10 percent discharge, might be the most cost-effective.

Exhibit 12.2-1 lists many of the characteristics and specifications of importunce in determining the appropriate cell and block of cells for a photovoltaic application. The information asked for here is general and battery manufacturers prefer to quote on specific applications; therefore, companies such as those listed in Section 14 and elsewhere should be referred to for exact specifications.

12 - 7

Exhibit 12.2-1

TABLE OF IMPORTANT BATTERY DESIGN CHARACTERISTICS

Manufacturer: Type: Model: **Typical Application:** Price: total \$/kwh Delivery: Efficiency: Input (at 5 hr. rate): Charging: Max. volts Max. current Overcharging: Max. volts Max. current Output (at 8 hr. rate): at 20 hr. rate: at 7 day rate: at 3week rate: kwh Ah volts Max. current Life Cycles: 10% depth 20% depth 50% depth 80% depth 90% depth 100% depth Shelf Self Discharge: Physical: Dimensions: Weight: Temp. Limits: 0% charge: 50% charge: 100% charge: $(cycle x kwh)_{2}^{\times}$ \$ (years x kwh)*₂

1) Nickel Cadmium Calcium or Lead Antimony, etc.

2) Based on 100% discharge except as noted.

(10

12.3 DC REGULATORS

The primary purpose of regulators is to prevent storage batteries from overcharging.

Most solar module manufacturers will supply regulators or recommend if specified. These specifications vary according to the combination of arrays and the configuration of the batteries and the load. Typical data which should be specified are listed in Exhibit 12.3-1. Costs will be on the order of \$1/W.

> Manufacturer Model Price **Delivery** Efficiency Input Volts Amps Protection Output Waveform Volts Amps Protection MTBF Physical Dimensions Weight (kg) Temp. Limits Cooling

Exhibit 12.3-1 DC REGULATORS SPECIFICATION REQUIREMENTS

 $\langle Q \rangle$

*12.4 DC MOTORS

Direct-Current motors are acknowledged to be unsurpassed for adjustable-speed applications and other applications with severe torque requirements.

Since dc is no longer generally available from most industrial plant buses or utility networks, the most common practice to supply dc motors has been by a solid state rectifier for each motor, or for a group of motors in a process. Manufacturers of dc motors generally offer a very limited selection of dc motors for special applications as compared to ac motors. Exhibit 12.4-1 contains some representative data on dc motors obtained from manufacturers.

Permanent magnet motors are offered in small fractional horsepower ranges, sometimes in integral ratings, but rarely above 10 hp. Wound field motors are offered with either shunt, series or compound field configurations. For efficiency data and discount multipliers against List Prices, it is recommended that the manufacturer's factory be contacted directly for the specific application at hand.

42

Exhibi	it 12.4-1		
REPRESENTATIVE I	DATA ON	DC	MOTORS

Permaner	Speed	Armature	NEMA	Encl*	Max. Peak	F.L.	List	Est. Shpg.
HP	RPM	Volts	Frame		Current	Amps	Price	Wt. (Lbs.)
1/4	1725	90	56C	TENV	30	2.8	\$149.00	20
1/3	1725	90	56C	TENV	40	3.6	165.00	26
1/2	1725	90	56C	TEFC	52	5.5	181.00	32
3/4	1725	90	56C	TEFC	70	8.0	221.50	40
		180	56C	TEFC	34	4.0	231.50	40
1	1725	90	56C	TEFC	88	10.7	267.00	46
		180	56C	TEFC	44	5.2	279.00	46

33

Wound Field

Exhibit 12.4-1 (Continued) REPRESENTATIVE DATA ON DC MOTORS

Hp	Speed, Rpr		% Hour 8	ating	% Hour R	ating
	Series Wound	Compound Wound	Frame	Basic List Prico⊕ W-26	Frame	Basic List Price() W-26
¥₄	1050	1150	187A	\$ 576	187A	\$ 651
	750	850	187A	744	187A	772
1	1600	1750	187A	580	187A	604
	1050	1150	187A	693	187A	719
	750	850	187A	817	187A	847
1%	1600	1750	1874	668	187A	601
	1050	1150	187A	782	187A	691
	750	850	187A	894	187A	786 945
				004	10/4	540
2	1600	1750	187A	753	187A	785
	1050	1150	187A	891	187A	945
	750	850	216.4	1571	216A	1608
3	1600	1750	187A	838	187A	956
	1050	1150	216A	1067	216A	1098
	750	850	216A	1627	218A	1679
5	1600	1750	216A	1053	216A	1086
	1050	1150	2:8A	1661	218A	1669
	750	850	256A	1938	256A	2045
7%	1600	1750	216A	1685	218A	1730
	1050	1150	218A	2109	283AT	
	750	850	283AT	2499	283AT	2142 2555
0	1600	1750	218A	2008	256A	244.0
	1050	1150	283AT	2516	283AT	2118
	750	850	283A1	2958	283AT	2572 3040
5	1600	1750	256A	2640	70247	
	1050	1150	283AT	3120	283AT	2686
	750	850	283AT	3632	284AT	3196
			20441	JDJ2	286AT	3922

120 Volts, ¼ to 15 Horsepower

O Prices shown are in U.S.A. dollars.

*Totally-Enclosed Non-Ventilated Series or Compount Wound Single Straight Shaft, Class F Insulation, 40⁰C Ambient 1.00 Service Factor

SECTION 13 GLOSSARY OF TERMS

This section includes definitions of photovoltaic terminology and conversion factors to convert English units to SI units.

13.1 DEFINITIONS OF PHOTOVOLTAIC TERMINOLOGY

ALTITUDE - Angle between the horizontal plane and the direction of beam radiation.

ANGLE OF INCIDENCE - Angle between the normal to a surface and the direction of incident radiation; applies to aperture plane of a solar collector.

ARRAY - A mechanically integrated assembly of modules together with support structure, exclusive of foundation, inclusive of tracking, heat transfer, and other components, as required to form a dc power producing unit.

ARRAY FIELD SUBSYSTEM - The aggregate of all solar photvoltaic arrays and support foundations generating de power within a photovoltaic system.

AZIMUTH (of Surface) - Angle between the North direction and the projection of the surface normal into the horizontal plane; measured clockwise from North.

BEAM - Refers to radiation received from the sun without change of direction; applied as beam irradiance or beam irradiation.

BLOCKING DIODE - A semi-conductor connected in series with a solar cell or cells and a storage battery to prevent a reverse current discharge of the battery through the cell when there is no output, or low output from the cell.

BRANCH CIRCUIT - A group of modules or paralleled modules connected in series to provide dc power at the dc voltage level of the power conditioning subsystem. A branch circuit may involve the interconnection of modules located in several arrays.

BYPASS DIODE - A semiconductor connected in parallel with a series block of parallel strings to prevent excessive current from flowing through any unfailed substring in the series block upon partial shading of another substring in the same block.

DIFFUSE - Refers to radiation received from the sun after reflection and scattering by the atmosphere; also scattered; applied as diffuse irradiance or diffuse irradiation.

ELECTRIC POWER BUS - A conductor, or group of conductors, that serve as a common connection for two or more circuits.

EQUINOX - The time when the sun in its apparent motion in the celestial sphere crosses the equator; c. March 21 is the vernal equinox (northern hemisphere) and c. September 23 is the autumnal equinox (northern hemisphere); declination is zero; vernal equinox more precisely defined as the point of intersection of the ecliptic and the equator on the celestial sphere.

FILL FACTOR - The ratio of maximum power output of a cell or array to the product of the open circuit voltage and the short circuit current.

HOUR ANGLE - The angle between the hour circle of the sun and the observer's meridian.

INSOLATION - The solar radiation incident on an area. Usually expressed in milliwatts per square centimeter or watts per square meter.

LIFE CYCLE COST - An estimate of the cost of owning and operating a system for the period of its useful life; usually expressed in terms of the present value of all lifetime costs.

MAXIMUM POWER - Refers to a photovoltaic cell; the power at the point on the current-voltage curve where the current-voltage product is a maximum.

MODULE - The smallest, complete, environmentally-protected assembly of solar cells, optics, and other components designed to generate dc power.

ORIENTATION - Placement with respect to the cardinal directions, N, S, E, W; azimuth is the measure of orientation.

PHOTOVOLTAIC CELL - A photovoltaic cell is one that generates electrical energy when light falls on it. This term distinguishes it from a photoconductive cell (photoresistor) which changes its electrical resistance when light falls on it.

PHOTOVOLTAIC SYSTEM - An installed aggregate of solar arrays and other subsystems transmitting power to a given application. A system will generally include the following sub-systems:

- Array field
- Power conditioning and control
- Storage (if required)
- Backup (if required)
- Thermal (if required, noting that portions of a thermal subsystem may be included in the fabrication of the array)

186

- Land, security systems and buildings
- On-site conduit/wiring
- Instrumentation
- Maintenance and repair equipment

13-2

POWER CONDITIONING - The function of a subsystem which generally renders the variable dc output of an alternate energy source to be suitable to meet the power supply requirements of more traditional loads. The power conditioning subsystem of a dc photovoltaic power system would typically include voltage regulation, energy storage and possibly a dc/dc converter interface with loads. The power conditioning subsystem of an ac photovoltaic power system may also typically include energy storage, and conversion of the dc output to an ac waveform, wave form filtering and voltage transformation to meet the requirements of the load.

SOLAR CELL - Photovoltaic cell.

SOLSTICE - The time when the sun in its apparent motion in the celestrial sphere attains the maximum distance from the equator; c. June 21 is the sumer solstice (northern hemisphere) and c. Dec. 22 is the winter solstice (northern hemisphere); declination is a maximum.

SPECTRAL - refers to reflection in which the angle of incidence is equal to and in the same plane as the angle of reflection; reflection as in a mirror.

TILT (of Surface) - Angle of inclination of collector.

13.2 CONVERSION FACTORS

The following tables express the definitions of miscellaneous units of measure as exact numerical multiples of coherent SI units, and provide multiplying factors for converting numbers and miscellaneous units to corresponding new numbers and SI units.

The first two digits of each numerical entry represent a power of 10. An asterisk follows each number which expresses an exact definition. For example the entry "-02 2.54*" expresses the fact that 1 inch = 2.54×10^{-2} meter, exactly, by definition. Numbers not followed by an asterisk are only approximate representations of definitions, or are the results of physical measurements. The primary source of these tables is Reference 13-1. Most of the definitions are extracted from National Bureau of Standards documents.

13-3

Ċ,

To convert from	to	multiply by
acre	meter ²	
atmosphere	newton/meter ²	+05 1.013 25*
British thermal unit (thermochemical)	joule	+03 1.054 350
Btu (thermochemical)/foot 2	hour watt/meter ²	+00 3.152 480 8
calorie (International Steam	Table) joule	+00 4.1868
Celsius (temperature)	kelvin	$t_k = t_C + 273.15$
circular mil	meter ²	
degree (angle)	radian	02 1.745 329 251 994 3
Fahrenheit (temperature)	kelvin	$t_{K} = (5/9) (t_{F} + 459.67)$
	Celsius	
foot	meter	01 3.048*
footcandle	lumen/meter ²	+01 1.076 391 0
footlambert	candela/meter ²	+00 3.426 259
gallon (U.S. liquid)	meter ³	03 3.785 411 784*
horsepower (550 foot lbf/secc	ond) watt	+02 7.456 998 7
inch	meter	02 2.54*
kilocalorie (thermochemical)-	joule	+03 4.184*
lambert	candela/meter ²	+03 3.183 098 8
angley	joule/meter ²	+04 4.184*

<u></u>49

To convert from	to	multiply by
mil	meter	05 2.54*
mile (U.S. statute)	meter	+03 1.609 344*
mile/hour (U.S. statute)	meter/second	01 4.4704*
ounce force (aviordupois)	newton	01 2.780 138 5
ounce mass (aviordupois)	kilogram	02 2.834 952 312 5*
phot	lumen/meter ²	+04 1.00
pound force (lbf avoirdupois)	- newton	+00 4.448 221 615 260 5*
pound mass (lbm avoirdupois)	kilogram	01 4.535 923 7*
psi (lbi'/inch ²)	newton/meter ²	- +03 6.894 757 2
Rankine (temperature)	kelvin	- $t_{k} = (5/9) t_{R}$
yard	meter	-01 9.144*

SECTION 14 PHOTOVOLTAIC POWER SYSTEM EQUIPMENT SUPPLIERS*

14.1 PHOTOVOLTAIC CELLS, MODULES

APPLIED SOLAR ENERGY CORP. 15251 E. Don Julian Road P.O. Box 1212 City of Industry, CA 91749 ATTN: George Holme III Product Marketing Manager (213) 968-6581

ARCO SOLAR INC. 20554 Plummer Street Chatsworth, CA 91311 ATTN: Tim Geiser Eastern Region Sales Manager (213) 998-0667

MOTOROLA INC. Solar Products Operations 5005 East McDowell Road Phoenix, AZ 85008 ATTN: Pat Walton Solar Product Marketing (602) 244-6511

PHOTON POWER 10767 Gateway West El Paso, TX 79935 ATTN: Martin F. Wenzler (915) 593-2861

PHOTOWATT INTERNATIONAL INC. 2414 W. 14th Street Tempe, AZ 85281 Vice President & Tec. Dir. (602) 894-9564

SES, INC. Tralee Industrial Park Newark, DE 19711 ATTN: Greg T. Love Manager, Industrial Sales (302) 731-0990 SOLAREX CORP. 1335 Piccard Drive Rockville, MD 20850 ATTN: Theodore Blumenstock Director of Marketing (301) 948-0202

SOLAR POWER CORP. Affiliate of Exxon Enterprises 20 Cabot Road Woburn, MA 01801 ATTN: Kurt Grice Marketing Services (617) 935-4600

SOLEC INTERNATIONAL, INC. 12533 Chadron Avenue Hawthorne, CA 90250 ATTN: Ishaq Shahryar, President (213)970-0065

SOLENERGY CORP. 23 North Avenue Wakefield, MA 01880 ATTN: Bob Willis, President (617) 246-1855

SOLLOS, INC. 2231 S. Carmelina Los Angeles, CA 90064 (213) 820-5181

TIDELAND SIGNAL CORP.SES, INC. 4310 Directors Road P.O. Box 52430 Houston, TX 77052 (713) 681-6101

^{*}See footnote on p. 14-5

14.2 BATTERIES*

CHLORIDE. Mallard Lane North Hayen, CT 06473 (203) 624-7837

C & D BATTERIES DIV. 3043 Walton Road Plymouth Meeting, PA 19462 ATTN: Clayton J. Molnar Sales Manager (215) 828-9000

DELCO-REMY Division of G.M. 2401 Columbus Avenue Anderson, IN 46011 ATTN: Charlie Erk (317) 646-7816

EAGLE-PICHER INDUSTRIES, INC Department G P.O. Box 130 (417) 776-2258

THE EXIDE CORP. "Horsham I" 101 Gibralter Road ATTN: Mr. Gene Cook Specialty Battery Division (215) 674-9500

GENERAL ELECTRIC CO. Battery Business Department G P.O. Box 861 Gainesville, FL 32602 (904) 462-3911 GLOBE-UNION Battery Division Gel/Cell Marketing 5757 N. Green Bay Avenue Milwaukee, WI 53201 ATTN: Fred Gruner Reg. Marketing Manager (414) 228-2393

KEYSTONE BATTERY CORP. 35 Holton Street Winchester, MA 01890 ATTN: Edward J. Modest Vice President

MC GRAW-EDISON COMPANY Power Systems Division (Batteries) P.O. Box 28 Bloomfield, NJ 07003 ATTN: Mr. Robert Enters Chief Engineer

NIFE INCORPORATED P.O. Box 100 George Washington Hwy. Lincoln, RI 02865 ATTN: Richard V. Barone, Sc. D Manager, Applications Engineering (800) 556-6746

SGL BATTERY MANUFACTURING CO. 14650 Dequindre Detroit, MI 48212 ATTN: Paul Rosser Sales & Service Coordinator (313) 868-6410

SURRETTE STORAGE BATTERY CO., INC. Engineering Division 15 Park Street Tilton, NH 03276 ATTN: Archie McGowan (603) 286-8974

*See footnote p. 14-5

14.3 **POWER CONDITIONING EQUIPMENT***

ABACUS CONTROLS, INC. P.O. Box 893 80 Readington Road Somerville, NJ 08876

EMERSON ELECTRIC CO. 8100 W. Florissant Avenue St. Louis, MO 63136

ADVANCE CONVERSION DEVICES CO. EMERSON ELECTRIC CO. 109 Eighth St. 3301 Spring Forest Road Passaic, NJ 07055 Raleigh, NC 27604

AVIONIC INSTRUMENTS, INC. 943 East Hazelwood Ave. Rahway, NJ 07065

BEHLMAN ENGINEERING CORP. P.O. Box 4518 Santa Barbara, CA 93103

CALIFORNIA INSTRUMENTS 5151 Convoy St. San Diego, CA 92111

COMPUTER POWER INC. 124 West Main St. High Bridge, NJ 08829

DELTA ELECTRONIC CONTROL CORP NOVA ELECTRIC MFG., CO. 2801 S.W. Main Street 263 Hillside Avenue Irvine, CA 92714

DELTEC CORP. 980 Buenos Ave. San Diego, CA 92110

DUEL-LITE, INC. Simm Lane Newton, CT Newton, CT

ELGAR CORP. 8225 Mercury Court San Diego, CA 92111 GARRETT CORP. 1 Huntington Quadrangle

Suite 4 S04 Huntington Station, NY 11746

LAMARCHE MFG. CO. 106 Bradock Drive Des Plaines, IL 60018

LOR TEC POWER SYSTEMS, INC. 5214 Mills Industrial Parkway North Ridgeville, OH 44305

MCGRAW EDISON CO P.O. Box 23 Bloomfield, NJ 07003

Nutley, NJ 07110

PACIFIC POWER SOURCE DIV. 5219 Systems Drive Huntington Beach, CA 92649

RATELCO, INC. 1260 Mercer Street Seattle, WA 98109

RELIANCE ELECTRIC CO. 1130 F. Street Lorain, OH 44052

 $\langle \langle \rangle$

*See footnote on p. 14-5

SOLEQ CORP. 5969 North Elston Avenue Chicago, IL 60646

STACO ENERGY PRODUCTS CO. 301 Gaddis Blvd Dayton, OH 45403

TELEDYNE, INC. 1901 Avenue of the Stars Los Angeles, CA 90067

TOPAZ ELECTRONICS 3855 Ruffin Road San Diego, CA 92123

TRIPP MANUFACTURING CO. 133 N.Jefferson St. Chicago, IL 60606

UNITED TECHNOLOGY CORP. Power Systems Division P.O. Box 109 South Windsor, CT 06074

VARO, INC., POWER SYSTEMS DIV. 2201 Walnut St. Garland, TX 75040

VERSACOUNT PRODUCTS 553 Libley Blvd. Elk Grove Village, IL 60007

WESTINGHOUSE ELECTRIC CO. P.O. Box 989 Lima, OH 45802

WILMORE ELECTRONICS CO., INC. P.O. Box 1329 Hillsborough, NC 27278

WINDWORKS INC. Route 3, Box 44 A Mukwonago, WI 53149

くいう

14.4 DIRECT CURRENT MOTORS AND LOAD DEVICES*

GENERAL ELECTRIC CO. General Purpose Motor Dept. 2000 Taylor St. Fort Wayne, IN 46804

GOULD INC. Electric Motor Division 1831 Chestnut St. St. Louis, MO 63166

INLAND MOTORS Industrial Drives Division 609 Rock Road Radford, VA 24141

LOUIS ALLIS Drives & Systems Division New Berlin, WI 53151

PMI MOTORS Division of Kollmorgen Corp. 5 Aerial Way Syos: et, NY 11791

WESTINGHOUSE ELECTRIC CORP. Defense Group P.O. Box 9892 Lima, OH 45802

WESTINGHOUSE ELECTRIC CORP. Large Motor Divsion Buffalo, NY 14240

*Note: This compendium is not intended to be an exhaustive listing of equipment suppliers for photovoltaic power systems, but rather a representative sampling of manufacturers in a dynamic and changing field. It is expected that additional firms will be developing products for the photovoltaic market in the future. This list does not in any way constitute endorsement of any manufacturer, any supplier, or any product by MONEGON, Ltd., or NASA, or the U.S. DOE, or any of their employees or subcontractors.

14 - 5

 Q_{i}

APPENDIX A WORLDWIDE INSOLATION DATA

Note:

The data have been generated from the SOLMET (Reference A-1) and the University of Wisconsin reports (Reference A-2). The data are presented as values of monthly average K_H , the ratio of insolation on a horizontal surface to the insolation on an extraterrestrial horizontal surface. The values of the monthly average K_H are listed in per unit (X 10³).

The key to the abbreviations used is as follows:

General

- Data Missing
- * Theory Not Applicable
- [1] The data should read as if it were preceded by a decimal point. I.e., the datum 495 is $K_{H} = 0.495$.
 - CFP Computed From Percent Sunshine
 - PPS Data is in Percent Possible Sunshine (conversion values not available). Note [1] does not apply to these data as they are listed in percent, i.e. the datum 057 is 57% possible sunshine.

Specific

- LAT/LONG data for Hochserfaus, Switz. could not be found. Used LAT/LONG values for Hochdorf.
- All data under 'United States' comes from Input Data For Solar Systems (SOLMET data), Ref. A-1.
- New York City has two separate stations: Central Park (CN. PRK) and La Guardia (LGA).

A-1

RPPENDIX A (CON/T)																
STATION	LAT	LONG	ELEV	jan	FEB				ITHLY ' JUN					r nov	DEC	NŰ
							HDE ===									
ADEN	12 50'N	45 01′E	4	573	607	627	656		592	562	597	618	663	668	632	
							RLGER									
RDRAR	27 521N	0 17'W		716	708	730	706	 699	723	721	716	686	665	666	658	
ain sefra Aoulef	32 45/N	0 364W		693	694	690	700	687	703				672	672	672	
BENI ABBES	26 584N 30 084N	1 057E 2 117W	290	700 700	681 682	697 662	693 693	689	673	691	682			653	622	
BISKRA	30 88 M 34 51/N	5 44'E	498 124	702 602	690 619	- 668 - 644	690 500	666 500	656 coo	666	-		629	610	639	
CHOTTECH CHERQUI	34 00'N	1 00/E	124	602 505	577	611 672	590 622	593 612	609 638	631	638 775	599		566	574	
COLOMB-BECHAR	31 36'N	2 13'W	-	669	677	680	672	676	- 654 - 654	- 634 - 664	663 666	586 - 586		651	566 205	
DJANET	24 33'N	9 29'E	-	677	801	719	698	670	790	717	- 000 - 703	644 659	644 663	633 620	625 675	
DJELFR	34 41'N	3 15′E	160	553	581	567	554	603	609	620	627	624	- 566 - 566	- 620 - 564	670 545	
EL GOLEA	30-35′N	2 531E	397	690	696	699	680	687	686	707	709	689	663	636	670	
EL OUED	33/224N	6 534E	70	766	790	664	806	787	674	725	676	798	722	716	786	
FORT FLATTERS	28 064N	6 49′E	381	680	693	678	673	678	671	710	705	687	680	668	640	
FORT DE POLIGNAC	26 301N	8 291E	566	674	690	694	680	668	684	703	704	692	680	663	633	
GERRYVILLE GHARDAIA	33 414N	1 01'E		558	603	587	586	613	620	621	625	630	588	548	550	
LAGHOURT	32-294N	3 40/E	527 747	698 500	700 For	697 5	697	697	694	705	711	672	679	659	678	
OUALLEN	33 48/N 24 36/N	2 53′E 1 14′E	767 242	589 707	594 000	582	584 302	603 	601	621	613	601	565	558	561	
OUARGLA	24 36 N 31 57'N	1 14°E 5 20'E	347 138	703 676	808 683	715 683	697 (72	681 CEE	681 672	687 Don	681 682	681	485	694	630	
TAMANRASSET	22 42'N	5 301E :		716	663 717	663 723	673 709	655 691	633 658	705 687	689	659 744	648	639 65 4	632	
TIMIMOUN	29 15'N	0 14/E	284	704	710	715	699	698	699 699	601 708	604 696	611 694	643 aan	654 500	678 445	
Töuggourt	33 07'N	6-04'E	69	655	698	665	607	676	652	704	626 702	690 690	664 644	597 617	643 631	
			•••						0.02	107	102	0.70	044	ΦTΥ	041	
							RNGOLI =====									
DUNDO		20-081E	745	470	472	482	538	584	578	520	476	498	509	498	471	
LUANDA	8 4915	13 13 E	42	536	558	527	525	556	542	420	416	462	477	512	558	
luso Malange	11 0815	19 09'E :		465	539	509	641	690	729	741	760	696	550	532	507	
MOCAMEDES		16 221E :		489	543 566	515	509	614	664	610	549	514	514	488	506	
nochhebeb	13 02 3	12 021E	44	578	586	591	584	590	459	449	450	471	516	589	576	
							rarct) Heren									
AMUNDSEN-SCOTT	90-001S		2800	*	*	*		-	-		_	*	: 4 :	4:	i ł .	
BASE ROI BAUDOUIN	70 2615		37	*	651	532	438	*	-	:4:	571	619	627	669	*	
BYRD STATION	79 5915 1			-	-	-	*	*	*	*	*	535	541	4:	:	
CHARCOT FLL CHORTH CTOTION	69 22/5 1			*	381	-		-	-	*	613	754	785	845	*	
ELLSWORTH STATION HALLETT STATION		41 07'W	43	*	*	578	-	-	-		-	617	646	. † :	:#:	
HALLEY BAY	72 1815 1 75 3115		5		449 500	384	383	*	*	*	-	675	680	.#:	*	
LITTLE AMERICA V		26 364W - 26 364W -	30 30				543 ope	. # :	*	*	*	582	669	*	*	
MAWSON		20-30 W 62-531E					230 244	* 740	*	*	*	514	590	*	*	
MIRNY		02 US E 93 01/E						769 571	*	882	- st Enz	746 204		684 000	* 740	
NORWAY STATION	70 301S	2 321W	58		-		543	071 *	*	* *	596 581	694 622 -		820 718	712	
PIONERSKAJA		95 301E 2						978	-	- -		622 622		718 848	*	
SCOTT BASE	77 15'S 10	56 481E	16	:#:			429	-	-	-		ozz 572 -	719	040 	т +:	
WILKES STRTION	66 1615 1:	10 347W	12	••				333	985	412	507	529			576	
	ARCTIC OCEAN															
DRIFTING STATION A	84 30'N 14	18 00'W	2	-	-	====: -	===::: *	-		_	_	_	-	-	-	

APPENDIX & (CON1T)

.

·	•		10 1		• • • •			1151.1	ing of		T III II 7							
STRTION		LAT	L	.ONG	ELEV	JAN	FEB	MAR	NES UN APR	· NUN MAY	THLY A JUN	iya. P JUL	(H *) AUG	1000 [SEP	1 J 0CT	NOV	DEC	NOTES
	ARCTIC OCEAN (CONTT)																	
ICE ISLAND TH3	87	001N	100	- RAAN	8	*	=: *	====:: *	:====: :*:	===== *	==== *	.1.		600	.4.	J.	4.	
NP-6		2 18'N			0 Ø	:4:	*	642	*	*	*	*	*	602 451	*	*	*	
NP-7		6 40'N		301W	0 0	*	*	*	*	*	*	*	*	490	* *	*	*	
		, 19 H	-	20 11		•						4.		420	-7-	ጥ	*	
									RGENT									
ONDOL COL O	07		مر مر		4004		F 20				450							
ANDALGALA ARGENTINE IS.		1361S 151S		201W		575	562	571	587	494	450	564	616	645	678	616	548	CFP
BARILOCHE		094S		- 16'W	10	466	459	358 540	413	431	*	704	570	540	590	518	558	
BUENOS AIRES OBS.		3515		014W :294W	826 25	591 623	507 599	569 562	413 543	- 382 - 522	- 362 - 482	365	486	534 550	545 570	576	621	
CASTELAR		3615		- 25 M - 40/W	16	600	552	062 554	045 530	- 473		505 540	540 550	558	568	575	614 570	
CIPOLLETTI		: 571S		- чеги 1597W	265	666	659	- 630	552	480	413 423	513 488	558 532	571	- 594 area	584	578 774	000
COLONIA SARMIENTO		3515		- 00 M - 04 M	203	543	564	522	528	400 518	432	400	- 567 - 567	609 527	602 551	601 528	674 502	CFP
COMODORO RIVADAVIA		4715	67		61	-	650		478		452	329	- 438	- 537	- 501 - 501	632		CFP
CONCORDIA	31			- 30 M - 02/W	37	633	633	- 587	470	- 451	344	450	438	- 537 - 542	- 501 - 607	632	604 608	
CORDOBA		1915		13/W	484	-		- 100	_	- 401 - 509	429	381	469	042 652	516	545	608 548	
CORRIENTES	27		-58		52	590	581	570	549	535	527	524	550	565	566	590	573	
ESQUEL		5415		21 W	568	585	579	500	479	409	403	432	495	559	577	552	562	ÛFP
HUINCA RENANCO		50/S		221W	182	613	625	610	556	470	508	+⊅⊆ 527	528	561	590	612	611	ULL
LA QUIACA	22		65			-		749	822	793	798	896	- 326 841	876	871	835	796	
LABOULAYE		0815		24 W	ů Û	624	583	584	612	946	-		640	609	644	628	627	
LAS LAJAS		3215		234W	713	674	676	639	586	497	448	522	549	626	636	618	691	CFP
LAS LOMITAS		4215		357W	130	_	-	-	-	449	360	455	466	457	469	482	537	GT
LAURIE IS.		001S		004W	8	177	171	151	181	145	165	211	274	312	211	178	196	CFP
LORETO	27	2115	55	30'W	163	575	546	587	509	458	431	448	443	463	525	585	556	917
MAR DEL PLATA	37	567S	57	354W	19	624	601	568	493	_	-	365	523	530	512	-	-	
MAZARUCA	33	357S		247W	4	658	591	569	483	483	394	474	499	625	607	613	633	
MENDOZR	32	534S	68	524W	827	702	693	318	545	518	539	544	564	657	690	686	646	
NEUGUEN	38	57′S	68	091W	270	599	539	479	444	411	315	289	545	616	49й	520	546	
ORCADAS	60	447S	44	441W	Ø	-	-	-	-	-		-	-	-	361	329	269	
PRSO DE LOS LIBRES	29	4 3/S	57	067W	66	617	594	556	568	545	518	557	575	538	572	580	521	
PATAGONES	40	4 845	62	594W	34	584	587	571	556	519	514	473	552	553	544	567	579	
PILAR	31	4015	63	53′W	338	617	579	545	553	485	441	521	573	594	618	590	582	
POSADAS		221S		567W	117	551	570	568	530	511	479	517	512	508	543	560	545	
PUELCHES		0815		66′W	160		731	-	-	447	383	328	456	513	614	647	683	
PUERTO MADRYN		4619	65	024W	8	576	572	558	543	531	641	552	539	557	566	550	379	
RAFAELE		15′S	61	30'W	130	431	440	390	333	356	266	427	361	380	398	430	432	
RESISTENCIA		281S		29°W	49	538	469	465	347	343	409	415	454	476	528	523	515	
ROSARIO		5616		42′W	222	594	589	573	536	509	500	495	524	561	559	570	536	
SAN CARLOS DE BAR LO				18 W	825	594	615	573	502	441	339	410	473	544	576	604	553	CFP
san juan		361S		337W	636	541	529	543	517	556	684	642	552	636	611	559	499	
SAN LUIZ		1615		21/W	716	-	-	-	525	436	437	453	486	656	663	644	733	
SAN MIGUEL		331S		42′W	27	539	515	461	388	406	344	380	422	483	496	456	511	
SANTA CRUZ				32′W	11	348	580	524	456	372	360	280	*	516	552	508	476	CFP
SANTIAGO DEL ESTERO		47/5			Ø	560	550	548	521	502	490	548	570	553	590	580	563	
TRELEW		1415 6576			39	676	609	582	509	403	336	345	492	572	536	555	515	
TRES CRUCES		051S -				802	565	720	934	913	907	8./2	-	942	860	782	753	
TUCUMBYN	26	501S	65	12′W	421	365	571	524	473	431	419	543	054	567	552	550	510	
ATLANTIC OCEAN NORTH																		
0	~~	00.00	•••	00.00			===	=====		=====	===							

Ĥ	62 00'N	33 00'W	6	256	408	266	327	414	240	347	433	-	154	335	-
I	59 00'N	19 00'W	б	355	201	420	326	371	340	401	399	433	270	356	261
J	52 30'N	20 001W	6	351	-	419	-	187	481	446	401	359	342	258	292

*,*α/\

APPENDIX A (CON1T)

STATION

values of Monthly Avg. KH * 1000 [1] Lat Long Elev Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Notes

ATLANTIC OCEAN NORTH (CON/T) ====================================															
К	45 00'N 16 (30'W 6						600	525	442	-	-			
					TRALIA										
ALICE SPRINGS	23 4815 133 9		642 653		 656 628	645	664	718	713	661	637	631			
ASPENDALE BOX HILL	38 0215 145 (663 598		565 470		496	489	469	517	491	566			
BRISBANE	37 4815 145 (549 541		158 423	423	444	471	493	507	508	542			
DARWIN	27 2845 153 (12 2645 130 5		551 550 464 488		549 553		564	567	565	566	560	554			
DRY CREEK S. A.	34 5015 138 3		404 400 672 648		547 632 '17 521	658 526	675 524	- 704 - 550	- 653 Fox	- 612 E/E					
GUILDFORD	31 5615 115 5	, .	649 652		17 - 521 562 - 526		024 542	559 581	- 586 - 692	-565 -615	- 612 - 636	632 659			
GARBUTT	19 15'5 146 4		511 518		702 - 520 196 - 584	626	544 644	664	- 689 - 689	660 660	636 644	623			
MELBOURNE	37 4915 144 5		625 592		500 509 519 529	528	531	507	520	523	479	510			
MOUNT STROMLO	35 2175 149 1		611 598		194 609	567	590	610	643	606	615	616			
SYDNEY	33 5218 451 4		428 537		29 522	542	559	573	554	551	540	535			
WILLIAMTOWN	32 4915 151 5	01E 4 5	513 483	559 5	07 526	513	550	615	551	620	593	527			
					TRIA										
GMUNDEN 47 55'N 13 47'E 425 369 400 431 401 453 395 406 425 453 370 725 275 GRAFENHOF 47 19'N 13 10'E 766 412 584 474 481 450 369 414 413 585 489 374 351															
GRAFENHOF	47 19'N 13 1														
	IMPENSTEIN 47 30'N 14 06'E 710 388 442 483 493 400 420 441 422 317 319 MOENEURT 46 20'N 46 20'N 44 20'N 44 20'N 310'N 310'N														
GUMPENSTEIN 47 30'N 14 06'E 710 388 442 483 453 493 405 420 441 422 317 319 KLAGENFURT 46 38'N 14 19'E 448 446 505 563 452 510 434 488 485 481 439 226 271															
KRIPPENSTEIN	47 321N 13 4		591 531	551 5	50 510	380	388	410	506	556	530	486			
LUNZ-AM-SEE	47 50'N 15 0		284 - 391	464 3	84 444	399	368	395	388	462	270	241			
MONICHKIRCHEN	47 321N 16 0		498 418		15 469	378	415	449	44E	495	395	454			
NEUSTEDLAM SEE OBERGURGL	47 571N 16 5		365 284		52 559	431	470	508	400	394	231	281			
OBERSIEBEN-BRUHN			409 494		05 533	300	456	457	448	468	359	324			
PERTISAU/ACHENSEE	- 48 46/N - 16 4 - 47 26/N - 11 4		358 330		28 489	421	425	477	444	379	230	242			
RETZ	- 47 26/N - 11 4: - 48 46/N - 15 5		175 377 262 347		25 430	354	345	370	424	434	339	303			
SALZBURG	47 48'N 13 0		262 347 395 431		02 493 00 450	445 202	433 204	459	454	679	183	211			
SEMMERING	47 394N 15 5		390 4 31 326 359		20 452 36 454	387 368	396 381	274	434	423	260	311			
SONNBLICK	47 031N 12 5		i94 660	621 58				422 472	383 - 564	450 502	299 522	243 500			
STEYR	48 04/N 14 3		368 392		53 456	417	421 417	433 457	561 451	587 385	537 225	520 240			
VIENNA	48 15'N 16 22		92 359	398 43				467	401 581	360 355	273	240 248			
YBBS-PERSENBEUG			74 383		32 490			448	443	377		240			
					RES										
ANGRA	38 071N 27 02	21W - 92 - 4	16 431	438 49	:=== 00 544	5 00	5 77	EAC	E	100	100				
CORYO	39 40'N 31 0		42 431	438 42			533 563	546 500	533 559	499	429 44 E				
ponta delgada	37 45/N 25 40		88 497	514 50			570 570		616 -	483 586					
				BELC											
BRUSSEL-UCCLE	50-481N -4-22	rE 100 2:	919 727	==== 257 797		402	482	ፈፅን	798	744	ידוי	244			
		k.				102	402	чы);	200	244	211	241			
				80L I ====	===										
LA PAZ	16 3145 68 93	1W 3658 42	25 457	519 55	6 658	756	611	542	611	613	552	516	Cl		
				BRA	ZIL										

======

N.C.

A-4

		APPENDI	IX A (CO	N'T)													
	1							JES OF	MONT	THLY A		<h *="" 1<="" td=""><td>1 000</td><td>1]</td><td></td><td></td><td></td></h>	1 000	1]			
	STATION	LAT	LONG	ELEV	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	NOTES
			-				BR82	21L (0	:0N/T)								
	ALEGRETE	29 47'5	55 47'W	-	607	616	594	569	546	519	536	559	552	573	600	608	
	ARACAJU	10 55'S	37 03'W	. =	625	588	515	454	384	353	374	418	483	550	609	649	
	ARAXA	19 36'S	46 56'W	-	425	533	519	539	590	552	569	567	501	477	501	371	CFP
	BAGE	31 20'S	54 06'W	-	586	576	552	553	548	521	516	541	521	543	580	586	
	BARBACENA	21 15'S	43 46'W	-	464	490	482	514	561	608	622	592	472	453	418	377	CFP
	BARRA CORDA	5 30'S	45 16'W	-	404	400	393	414	441	526	550	509	496	491	465	473	CFP
	BAURU	22 1915	49 041W	-	489	473	516	607	595	591	605	609	523	512	554	505	
	BELEM	1 28/5	48 29'W		518	459	456	495	576	652	682	682	672	673	652	642	
	BELO HORIZONTE	19 56'S	43 57'W	-	504	516	521	550	585	612	626	617	550	509	495	451	050
	BLUMENAU CABO FRIO	26 55/S 22 52/S	49 04'W 42 01'W	-	470 488	489 516	511 517	479 514	460 518	477 543	434 540	437 538	398 462	430 446	433 471	458 455	CFP
	CAMPINAS	22 53/5	42 01 W	-	558	558	565	584	602	599	613	600	462 564	568	563	400 544	
	CAMPOS	21 45'5	41 20'W	-	480	515	479	493	523	529	545	528	444	422	441	437	
	CAMPOS DE JORDAO	22 52'5	43 22'W	-	438	442	478	473	518	543	558	569	487	457	440	405	
	CANANEIR	25 01/5	47 56'W	5	502	477	446	446	426	448	449	421	342	374	462	453	
	CATALAO	18 10'5	47 57'W	-	488	506	539	591	613	640	637	644	567	540	518	476	
	CAXIAS	4 52'S	43 22'W	-	504	506	500	515	543	584	615	624	608	589	559	543	
	CAXIAS	29 10'5	51 12'W	-	529	530	529	518	519	532	540	534	521	525	539	531	
	CORRENTES	9 06'5	36 21'W	-	540	492	472	446	396	444	394	428	574	577	626	568	CFP
	CORUMBA	19 00'S	57 39'W	-	405	411	415	424	435	429	448	449	422	419	424	413	
	CRUZ ALTA	28 38'5	53 37'W	-	559	561	539	528	531	502	540	546	504	547	570	571	
	CUIABA	15 36'S	56 06'W	-	396	391	402	490	527	518	541	484	445	483	474	422	CFP
	CURITIBA	25 26'S	49 16'W	-	504	506	502	504	511	519	536	530	500	506	510	509	
	DIRMANTINA	18 15'S	43 36'W	-	458	580	512	459	514	538	536	620	528	477	405	374	CFP
	FLORINOPOLIS	27 36'5	48 34'W	-	513	523	545	521	537	502	502	488	466	472	485	509	CFP
	FORTALEZA	3 46'5	38 31'W	-	565	520	500	489	525	577	582	607	618	624	608	606	
	GUIANIA GOIAS	16 40'S 15 56'S	49 15'W 50 08'W	-	491	507 486	353 512	569 552	613 591	637 628	635 595	631	549 546	528 528	500 501	450 462	
	GRAJAU	5 49'5	46 09'W		483 387	366	402	439	492	560	609	611 569	530	474	482	456	CFP
	GUANABARA OBS.	22 54/5	40 00 W	-	498	505	506	514	518	524	541	523	462	446	471	474	Grr
	GUARAMIRANGA	4 16'5	39 01'W	-	468	426	389	405	442	449	490	479	482	498	491	483	CFP
	IGUATU	6 22'5	39 18'W	-	550	523	534	545	581	587	604	623	612	609	595	577	
	ILHEUS	14 48'5	39 02'W	-	590	565	543	544	555	587	553	627	569	590	524	549	CFP
	JUIZ DE FORA	21 46'5	43 21'W		430	452	444	466	474	511	492	498	419	411	411	387	
	JOAD PESSOR	7 06'S	34 52'W	-	589	586	568	561	562	554	558	579	591	596	601	593	
	LAGES	27 49'5	50 20'W	-	521	508	511	492	502	490	528	537	499	522	529	524	
	LAGUNA	28 2915	48 47'W	d. =	521	508	554	560	613	601	554	520	525	497	546	541	CFP
	LORENA	22 42'5	45 05'W	-	459	473	470	485	500	485	538	521	435	445	471	435	
	MACEIO	9 3415	35 47'W		602	581	569	568	562	557	560	564	572	595	594	594	
	MANAUS	3 08/5	60 02'W	-	418	398	400	407	462	525	556	571	538	513	473	446	
	NATAL NORTO POTONI	5 46'S	35 12'W	-	588	580	556	553	562	566	570	593	610	621	621	605	
	NITEROI HORTO BOTANI OLINDA	22 54/S 8 01/S	43 07'W 34 51'W	-	478	484	494	501	485 512	487	505	523	449	446	450	445	CCD.
	OURO PRETO	20 23'5	43 30'W	-	624 398	531 487	526 418	527 467	472	519 538	468 519	568 552	620 452	616 417	600 379	625 339	CFP CFP
	PALMAS	26 29'5	43 36 W	2	522	528	530	526	523	534	569	557	519	530	540	526	Grif
	PARANAGUA	25 31/5	48 31'W	-	453	455	502	479	503	545	477	445	441	421	425	433	CFP
	PASSO FUNDO	28 16'5	52 25'W	-	550	540	537	525	526	518	535	542	515	534	549	542	
	PESQUERIA	8 24'5	36 46'W	-	568	535	547	517	436	474	479	557	631	684	631	629	CFP
	PERTOPOLIS	22 31'5	43 11'W	-	449	410	469	484	514	538	536	535	460	434	430	416	
1	PIRACICABA	21 43'5	47 38'W	-	489	541	601	556	553	617	648	677	566	538	546	471	CFP
	POCOS DE CALDAS	21 47'5	46 33'W	-	407	478	495	561	557	581	604	612	520	553	507	433	CFP
	PORTO NACIONAL	10 42'5	48 25'W	-	510	482	493	539	615	645	645	652	577	528	492	490	
	RIO GRANDE	32 02'5	52 06'W	-	585	577	555	559	538	533	504	531	469	556	580	595	
	SALVADOR	12 56'S	38 31'W	-	616	582	586	569	521	579	553	618	603	616	575	583	CFP

2

199,

	APPEND)	IX A (CO	N/T)													
STATION	LAT	LONG	ELEV	JAN	FEB			F Mon' May		AVG. I JUL	: * H AUG			NOU	ALC:	NATEC
	2	2000		orut	1 20	THUN	TH IX	1.0.11	300	JUL	nuu	DEF	OCT	Nüv	DEC	NOTES
						BRA2	ZIL (I	DON'T)							
CON DOLL O						= = = =	=====	=====	=							
SAN PAULO SANTO COUZ	23 3315	46 38/W		467	484	461	491		514	476	466	490	491	481	463	
SANTA CRUZ SANTA MARIA	22 5615	43 221W	-	478	494	506	501	519	544	541	538	449	435	461	445	
SANTAREM	29 41/S	53 491W	-	548	552	531	522	506	495	513	505	497	526	549	559	
SANTOS	2 451S 23 561S	54 431W	-	434	400	389	405	433	466	498	530	525	515	499	474	
SRO LUIZ	23 3615	46 201W	-	437	453	462	465	495	519	480	469	402	425	439	403	
SOURE	2 32 5 Ø 4415	- 44-187W - 48-317W		468 548	434 473	41.1 456	428	457	517	536	530	513	503	511	520	
TEREZINA	5 05'S	40 SI W 42 49'W	-	048 522	473 515		493 540	582	657	674	701	705	699	693	686	
TERE-ZOPOLIS	22 27/5	42 45 W	-	J22 449	463	511 446	542 470	587 404	619 500	583	655 564	621	599	588	560	
UAUPES	0.0315	67 05'W	-	454	463	446 456	470	481 437	500 440	500 460	504 400	447	412	420	396	
UBERABA	19 45/5	47 56/W	_	484	516	406 520	436 562		442 500	462 707	499	500	484	484	461	
URUGUATANA	29 45/5	-57 05/W	-	587	595	569	553	630 546	592 519	606 557	615 558	549 552	531 520	526 500	482 500	
VASSOURAS	22 24/5	43 40/W	-	459	484	481	484	513	537	535	008 488	002 460	538 445	580 451	502 442	
VITORIA	20 19'S	40 19'W		503	526	510	512	525	423	528	400 546	460 489	440 454	401 453	446 460	
				·····	000	010	012	020	723	920	940	407	404	403	469	
						BRIT	ISH G	UTANA								
OF OF OF TOURI								=====								
GEORGETOWN	7 45'N	58 041W		495	512	498	504	470	469	513	536	555	538	521	480	
MAZARUNI	5 584N	59 371W	-	433	421	427	416	453	442	451	437	419	427	437	455	
						B	ULGAR	18								
							=====									
KARDJALI	41 39'N	25/221E	231	379	446	393	382	-	436	418	463	447	390	270	206	
POLIANOVGRAD	42 31'N	26/511E	196	484	626	504	532	592	557	607	603	612	555	461	520	
SOFIA OBS.	42 49'N	23/23/E	582	342	521	442	041	460	503	574	555	485	436	321	324	
SOMMET STRUIN	42 11'N	23/351E	2925	335	524	550	491	409	344	439	490	481	495	490	450	
TCHERNI-VRAH	42 341N	23 17'E	2286	670	813	665	603	539	523	669	664	617	718	650	632	
TCHIRPAN	42 12'N	25 201E	170	425	626	539	484	598	569	642	647	601	575	474	396	
Varna	43 12'N	27 551E	51	429	520	458	420	447	475	488	594	554	*	365	388	
							Burma									
							22222									
RANGOON	17 00'N	96 001E	30	727	743	701	 678	576	424	414	386	405	595	697	708	
			- - -		• ••	• • •	0.0	010	16.7	747	200	700	575	0.27	100	

	CANADA =====														
AKLAVIK	68 141N 13	5 00'W	9	*	612	719	697	622	*	482	432	386	381	441	*
CHURCHILL	58 451N S	94 041W	35	697	704	731	676	587	543	541	499	427	383	435	515
Dartmouth	44 361N (3 281W	31	41.4	444	467	478	491	454	498	498	512	474	354	387
DEPARTURE BAY	49 13'N 12	3 57'W	-	359	370	418	429	560	320	640	597	457	438	360	-
EDMONTON	53 34/N 1:	.3 31′W	676	551	611	640	582	570	522	556	512	506	503	529	497
FORT SIMPSON	61 521N 12	1 21'W	129	534	534	615	623	586	534	497	502	451	431	309	290
GOOSE BAY	53-191N (0 251W	44	-724	548	591	534	492	437	443	412	406	371	375	441
GUELPH	43 331N 8	0 16'W	320	475	475	531	473	495	529	570	530	512	461	367	384
KAPUSKASING	49 251N 8	2 281W	229	500	546	573	496	451	486	502	484	425	371	297	422
KNOB LAKE	54 48'N 6	6 491W	512	414	518	658	602	451	438	381	418	366	336	364	429
LETHBRIDGE	49 381N 11	2 481W	920	553	609	632	564	572	587	638	631	585	560	526	483
MONCTON	46 071N 6	4 41′W	76	374	455	499	491	477	454	488	485	463	441	347	381
Montreal	45 30'N 7	3 37'W	133	398	495	543	514	509	494	530	519	459	413	307	326
MOOSONEE	51 16'N 8	0 391W	10	490	529	589	541	449	477	457	424	439	369	309	427
NANAIMO	49 00'N 12	3 00 W		363	359	434	570	594	526	680	390	460	444	389	292
NORMANDIN	48 51'N 7	2 321W	137	504	842	648	473	504	470	475	470	445	387	378	456
uttawa	45 27'N 7	5 374W	98	519	563	568	518	538	563	568	553	525	456	377	443
Resolute Bay	74 43'N 9	4 591W	64	*	*	*	766	*	*	:*	413	397	443	*	*

	HFPEND	IX A (CO	4/T)			मन्द्र १	inte de	- MOM	CT 11 11 7	nue i	/11 a. 7	1000 1	. 4 J			
STATION	LĤT	LONG	ELEV	JAN	FEB			F MONT Maay						NOV	DEC	NOTES
								0N/T)								
ST. JOHNAS WEST SASKATOON SUFFIELD SUMMERLAND TORONTO VANCOUVER WINNIPEG	52 081N 50 161N 49 341N 43 401N 49 331N	52 47'W 106 38'W 111 11'W 119 39'W 79 24'W 123 30'W 97 14'W	515 775 454 116	324 551 553 367 399 349 615	400 631 700 405 430 300 659	425 632 605 501 478 347 679	420 575 623 577 470 460 592	436 588 539 515 515 562	434 538 546 536 524 488 532	458 589 634 586 546 570 595	406 557 605 582 506 482 574	428 537 521 521 496 398 507	372 507 498 419 441 372 482	270 456 517 374 349 355 454	324 493 535 320 350 298 504	
							ON 19									
CANTON ISLAND	2 4615	171 43'W	9	674	690	698	699	694	706	699	715	729	730	685	670	
								ISLAN								
MINDELO PRAIA	16 521N 14 541N	25 00′W 23 31′W	2 27	634 666	669 686	739 738	752 746	745 703	689 684	637 590	581 548	629 590	617 635	612 614	582 575	
								SLAND								
truk Yap		151 547E 138 077E	110 35	057 056	063 065	856 867	058 061	050	056 056	055 042	050 041	056 048	052 055	950 055	048 056	PPS PPS
								IFRICA								
BANGUI	4 221N	18 34′E	-	474	516	562		549	496	460	462	496	521	480	467	
							CEYLO									
BATTICALOA COLOMBO		81 427E 79 527E	3 7			622 620		619 565			604 573		584 558	583 589	545 589	
							CHAD ====									
FORT LAMY	12 08'N	15 02′E	297	689	711	725	668		649	605	556	625	699	729	713	
							CHILE									
RTACAMA DESERT SANTIAGO	23 401S 33 271S		- 520	757 662	755 708	748 652	765 607	749 473	748 432	809 455	849 473	818 478	801 608	779 591	780 669	
							CHINA									
AIGUN CHANGCHUN CHEFOO CHINCHOW CHINKIRNG DARIEN HANKOW HARBIN HULUN KHINGAN KOSHAN LUSKAING	43 52'N 37 34'N 41 08'N 32 10'N 38 54'N 30 35'N 44 50'N 49 13'N 48 50'N 48 04'N	127 29'E 125 20'E 121 31'E 121 07'E 119 40'E 121 14'E 114 17'E 126 38'E 119 44'E 121 40'E 125 52'E 123 56'E	131 215 27 52 12 97 36 145 619 984 223 147	529 533 510 558 362 550 487 559 539 526 543 560	595 562 559 411 557 448 580 598 589 589 571 582	547 543 552 548 397 566 457 556 552 565 538 476	487 519 553 531 442 569 484 511 508 519 502 511	485 506 531 525 507 497 516 493 492 501	506 504 504 398 502 504 516 496 505 505	482 497 496 446 498 498 502 498 491 490 458	500 502 498 494 478 463 520 505 508 506 492 501	479 521 522 530 444 539 476 499 487 484 493 503	476 514 531 495 553 467 507 507 478 511 522	505 515 501 506 528 505 507 661 576 519 501	506 521 498 551 477 524 454 510 520 556 528 548	

	F	IPPEND	IX F	1 (00	N(T)													
STRTION		LAT	-	oue		104				F MON			KH *				2.0	
5111100		LUI	L	.ONG	ELEV	JAN	I FEE	MAR	R APF	: MAY	' JUN	JUL	AUG	SEP	001	r Nov	DEC	NOTES
								CHI	NR (C	ON(T)			n v Roman					
MANCHOULI	49) 35/N	117	26/5	641	552	607	=== 575		495		643	407	400	1			
MUKDEN		47'N									506 504	513 496	497 508	490	536 564		534 501	
NRIJUMATU	50			06 E		537	601	549	516	and the second se			488	465	503		515	
SHANGHAI SUIFENHO	31 44			. 281E . 091E	2	477	387	461	474	497	429		577	541	518		464	
TAILEN	38			38'E			548 525		509 534	475	484	498 475	492	481	521 528	497	497	
TIENTSIN	39			091E		542	528	530	523		515	506	501	518	531	528	498 503	
TSINAN	36				-	543	514	525	525	498	516	516	507	530	538		508	
TSINGTAU	36	04'N	120	197E	77	580	544	549	535	509	506	527	529	514	565	544	548	
10									COLOM									
BOGOTA	4	38'N	74	05 W	2560	554	517	469	423	441	474	487	478	470	408	464	500	
				- 1			1											
						. 7			CONG(1		
ALBERTVILLE BAMBESA		53/S		11 E	790	486	527	522	527	672	642	644	588	612	537	471	531	
BOENDE		271N 1315	20	43'E 51'E	621 379	483	489	506 476	507 500	543 480	504	433	465	496	524	554	531	
BUKAVU		31/5			1635	-	405	487	509	561	494 575	429 551	455 530	500 427	471 508 ·	450 487	424 481	
BUNIA-RUAMPARA		32'N		10'E		516	549	544	575	554	520	479	515	524	507	525	550	
COQUILHATVILLE ELIZABETHVILLE-KARAV		03/N 39/S		16'E	325	441	489	497	490	503	460	434	439	466	472	479	459	-
GRNDAJIKA		4515	27 23		1260 780	468 481	439 467	509 513	571 624	659 586	691 568	690 542	684 502	650 501	620	515	464	
KAMINA-BAKA		38/5			1085	459	415	524	615	721	684	701	597	557	505 512	513 508	517 477	
KINDU		571S		551E	475	-	-		-	-	417	350	435	463	459	421	405	
KIYAKA-PLATEAU LEOPOLDVILLE		16'S 22'S	18 15	57'E 15'E	735	422	ici		480	559	536	509	503	477	506	501	476	
LULUABOURG		5315		25'E	670	488	464 508	498 512	505 530	466 605	423 551	377 531	416 510	421 543	425 522	464 515	438 486	
LWIRO		031S	28	081E	1680	515	502	528	528	497	492	520	496	536	514	538	536	
RUBONA SIMAMA		2915 3715		46'E 91'E	1706 852	497	495	531	504	557	589	573	580	550	526	513	545	
STANLEYVILLE		31 N		11 E	415	459	496	507	575 513	662 509	666 468	640 424	606 419	551 481	451 486	461 491	450	
YANGAMBI		49'N		29'E	500	478	508	510	511	530	499	438	433	464	462	491	461 442	
								CONC	O REPI									
									C KEP									
BRAZZAVILLE	4	15/5	15	14′E	320	479	486	509	544	472	445	387	430	446	443	504	474	
									HOSLA									
BRATISLAVA		10'N	17	061E	289	378	393	429	481	551	498	509	563	489	426	258	232	
DOKSANY				10 E	158	331	405	441	494	525	510	461	498	500	374	228	217	
HURBANOVO LOMNICKY STIT		52'N 12'N		121E 131E	120	392	410	486	539	593	544	539	576	539	488	312	308	
MILESOVKA		33'N		56'E	835	637 417	646 497	662 475	594 482	526 516	407 500	453 459	438 491	527 517	596 433	576 285	587 299	
NOVY HRADEC KRALOVE	50 :	11'N	15	501E	280	359	409	463	480	523 /	489	454	496	472	385	285	299	
PODERSAM PRAHA-KARLOV		13'N		24/E	320	254	351	397	390		409		441	402	309	233	230	
SKALNATE PLESO		04′N 11′N		261E 151E :	254 1783	271 564	336 609	398 546	424 496		455 352		455 397	446	329	215	200	
Service on Provide	Serve						505	010	120	111	302	310	391	427	501	491	477	
									UADOR									
								==	=====									

10

AMBATO

.....

\$ fr.

1. 19

A-8

1 15'S 78 44'W 2621 395 362 286 419 344 306 309

337 279

374

408

419

CFP

202

	APPEND	IX A (CO	N/T)	TAN)				1	oʻpri Ali							and is
STATION	LAT	LONG	ELEV	JAN	FEB	VAL	UES O APR		thly i Jun			1000 SEP		NOV	DEC	NOTES
21111201	Em	Long	LLLY	JUN	1 60					JUL	nuu	DCF	001	NUY	DEC	NUTES
				-	1	EQUAL	DOR (CON/T.				- 15				16 7
QUITO	0 17/5	78 32'W	2851	505	490	397	428	437	476	505	584	449	467	484	487	CFP
						C (SALV	onop								
						===		====		- 4						
SAN SALVADOR	13 34'N	89 13'W	698	696	692	653	609	582	499	589	664	519	621	688	727	
						FALK	LAND	ISLAN)S							
PORT STANLEY	51 42'5	57 52'W	i al	455	474			404		104		504				10 -
FORT STRINEET	JI 42 5	DY DZ W	-	455	431	468	431	421	384	401	453	504	515	491	459	
							FINLA									
HELSINGFORS	60 10'N	24 57'E	40	250	358	485	443	== 456	480	474	397	359	293	185	230	
HELSINKI	60 12'N	24 55'E	60	305	432	561	536	500	519	518	484	432	337	219	174	
JOKIONEN LUONETJARVI	60 491N 62 251N	23 28/E 25 39/E	104	279	297	530	493	475	501	487	441	415	266	190	221	
SODANKYLA	67 22'N	20 39 E	145 180	340 833	436	558 527	485 548	448	509 *	472	482	418 344	263 325	189 300	239 *	
								1				211	200	200	1-11	
	FORMOSA 															
KOSHUN		Development of the second second					AUD COACU									
KWARENKO SHINCHIKU		121 37'E 120 58'E		475	394	342	397	472	601	571	587	550	558	490	485	
TAICHU		120 36 E	-	461	369 474	291 363	473	484 483	633 439	507 464	512 417	561 489	486	468	446	
TAINAN		120 13'E	13	649	623	496	495	522	520	425	435	532	590	590	672	
TRIPEI		121 31'E	23	327	323	331	352	405	410	421	453	410	472	488	416	
TAITO	22 45'N	121 09'E	10	524	468	416	436	514	681	599	527	560	615	557	524	
							FRANC	Ε								
AGEN	44 10'N	0 40'E		372	426	496	508	485	504	560	550	494	459	377	302	
ALENCON	48 25'N	0 05'E	-	341	414	452	477	482	475	501	493	434	427	352	295	No.
ANGERS ANGOULEME	47 30'N 45 40'N	0 35'W 0 10'E	-	364 438	426 448	478	538 541	491 509	495	531	526	473	459	370	369	
AUXXERRE	47 15'N	3 35'E	-	358	440	511 493	523	501	525 505	561 541	543 525	505 487	477 456	402	371 318	
BAGNERES-DE-BIGORRE	43 05'N	0 05'E	-	417	434	470	440	419	434	455	453	430	466	444	357	
Bauge Bergerac	47 35'N	0 05/W	-	365	427	461	552	491	495	531	526	474	438	338	325	
BESANCON	44 50'N 47 20'N	0 30/E 6 02/E		384 360	411 397	503 512	511 498	475	504 525	539 552	517 537	484 503	446 479	388 367	353 320	
BREST	48 35'N	4 30'W	-	345	389	472	465	471	455	470	494	435	429	355	348	
CHATEAU-CHINON	47 '09'N	0 13'E	-	396	394	492	497	479	495	531	500	471	476	397	316	
CHATEAU ROUX CLERMONT-FD	46 50'N 49 25'N	1 40'E 2 25'E	-	389 364	415 460	489 499	482	468	495	531	499	469	450	359	310	
DIJON	47 20'N	5 02'E	-	360	400	529	496 524	473 512	496 535	544 562	521 549	488 518	487 479	408 367	422 320	
LA MOTHE-ACHARD	46 44'N	0 17'W	- :	425	440	505	547	533	505	562	535	483	470	390	396	
LE MANS	48 00'N	0 10'E	-	375	380	483	541	492	495	532	503	462	444	380	334	
LE PUY LIMOGES	45 05'N 48 50'N	3 50'E 1 15'E	-	389 438	463 449	522 511	512 519	497 482	545 496	591 543 ·	553 531	530 515	490 523	422 432	398 405	
LILLE	50 04'N	3 03'E	-*	380	413	432	473	463	466	461	450	414	426	432 308	333	
LYON	45 45'N	4 50'E	-	366	399	529	541	531	545	592	567	520	458	341	331	
LUXE/1BOURG-VILLE MARSEILLE	49 35'N 43 20'N	6 08'E 5 20'E	-	322 454	376 506	464 521	470 541	473 516	466 585	481	473	427	419	300	321	
MONTELIMAR	44 33'N	4 47'E	-	413	575	550	573	540	585 605	642 664	593 609	575 599	488 524	476 442	434 386	
MONTPELLIER	43 35'N	3 50'E	-	493	557	556	581	560	635	704	629	605	511	481	440	
C. C.																

•

-

203

RPPENDIX 8 (CON/T)

						VALU	ES OF	MONT	HLY A	VG. K	H * 1	000 [1]				
STATION	LAT	LONG	ELEV	JAN	FEB	MAR	APP:	MAY	JUN	JUL	ĤŪĠ	SEP	0CT	NOV	DEC	NOTES	
						FRAN ====	CE (C	0N/T) =====									
MONTPELLIER	43 15'N	3 501E	-	485	528	488	528	516	605	663	570	545	468	475	432		
NANTES	47 15'N	1 35 W		398	422	440	497	501	495	531	501	441	434	366	363		
NICE	43 42/N	7 18′E		545	559	539	558	567	637	671	663	567	530	489	494		

MONTPELLIER	43 15'N	3 501E	-	485	528	488	528	516	685	663	570	545	468	475	422	
NANTES	47 15'N	1 35 W		398	422	440	497	591	495	531	501	441	434	366	363	
NICE	43-421N	7-18′E		545	559	539	558	567	637	671	663	567	530	489	494	
NIMES	43 50'N	4-201E	-	499	538	542	569	538	615	684	607	579	494	486	445	
PARIS-ST. MAUR	48 491N	2 301E	50	328	367	452	449	472	486	476	461	454	387	306	313	
PERPIGNAN	42 45'N	2 50′E	-	505	565	548	551	526	565	621	580	570	519	520	456	
POITIERS	46 40'N	2 50 E	-	385	439	504	546	511	515	562	535	513	491	388	350	
REIMS	49 201N	4 021E	-	362	401	461	495	483	465	491	472	441	416	333	315	
ROUEN	49 30'N	1 05 E	-	328	275	444	483	473	466	481	460	426	395	336	319	
ST. QUENTIN	49 50'N	3-20 E	-	327	380	429	471	451	445	461	437	413	399	304	327	
ST. RAPHAEL	43 254N	6 50'E	-	489	577	587	605	581	645	725	664	647	548	534	472	
STRASBOURG	48-401N	7.001E		347	390	454	452	493	506	522	518	451	453	321	300	
SUR SEINE	48-48'N	0-06/W		358	423	439	496	556	524	482	494	463	477	356	237	
TARARE	45 554N	4 25°E	••	379	402	480	490	477	515	561	532	597	460	375	33A	
TOULON	43 051N	5 55/E		513	571	567	596	589	645	714	651	630	543	527	499	
TOULOUSE	43 40/N	0/45′E	-	396	465	524	518	495	504	559	560	534	492	426	368	
TOURS	47 204N	0 45 E	-	360	423	476	537	489	485	531	501	472	457	334	320	
VICHY	46 10'N	3 257E	-	375	405	482	518	499	525	561	545	494	463	380	339	
VILLEFRANCHE-DE-ROU	E 44 20/N	3-257E	-	375	4/14	498	508	485	504	560	538	510	461	379	343	

	GERMANY ====== 51 291N 7 131E 118 205 258 317 378 356 362 341 357 335 288 217 187														
BOCHUM 51 29/N	7 13/E 1:	8 205	258	317	378	356	362	341	357	335	288	217	187		
BRAUNLAGE 51 431N	10 371E		359	416	435	399	408	372	396	358	368	250	260		
BRAUNSCHWEIG-VOLKENR 52 181N		7 385	378	420	434	459	455	447	422	473	396	246	247		
COLLM OBS. 51 191N	13-001E - 24	7 326	427	439	422	461	506	426	469	505	368	248	251		
DRESDEN 51 071N	13 411E - 23	1 396	328	398	435	441	441	432	442	430	392	270	265		
FICHTELBERG 50/261N	12 571E 121	4 207	573	479	460	422	433	421	413	534	436	348	268		
FREIBURG 48-011N	7 521E - 20	5 237	304	457	413	446	494	471	482	474	408	249	306		
GOTHA 58 57/N	10-417E - 33	5 353	414	4Ø3	433	4413	466	450	441	466	380	222	232		
GRIEFSWALD 54 06/N	13-231E - 2	3 246	317	424	460	509	525	493	493	448	385	257	223		
HAMBURG-FUHLSBUTTEL 53 38/N	10-00'E (4 317	355	405	449	462	439	425	423	434	367	262	250		
HANNOVER-LANGENHAGEN 52 281N	9-42°E -	254	362	382	448	429	403	392	418	394	444	284	264		
HEILIGENDRMM 54 091N	11-517E - 2	1 280	300	363	475	566	535	487	456	519	415	218	240		
HOEFCHEN 51 061N	7.061E -	250	259	339	390	413	379	4119	402	393	321	175	205		
HOHENPEISSENBERG 47 481N	-11-01/E-100	5 498	512	535	473	479	456	467	502	494	485	414	438		
KARLSRUHE 49-01/N	8 251E - 10	0 301	418	44Ø	456	551	524	549	447	473	462	251	267		
KONIGSTEIN-TAUNUS 50 11/N	8-291E ·	325	356	435	469	472	464	465	471	452	397	271	235		
LEIPZIG 51 18/N	12-287E 14	6 259	349	387	438	494	479	452	463	479	380	211	202		
LINDENBERG 52/13/N	14 071E S	8 360	387	305	402	453	473	418	441	417	372	221	252		
MUNCHEN-RIEM 48 081N	-11-421E 5.	8 474	491	488	476	500	471	482	490	460	459	264	357		
OBERSTOORF 47 241N	10-17 E	341	358	401	409	386	373	397	400	390	371	312	321		
POTSDAM 52-231N	-13-041E -10	15 - 326	.41	421	443	461	478	464	451	455	366	269	269		
QUICKBORN 33-441N	9-53 E	4 - 116	220	289	372	392	417	365	389	326	204	102	089		
SAARBRUCKEN 49-13/N	7 01 E	229	293	392	427	464	430	435	445	416	355	272	244		
TRIER-PETRISBERG 49-45 N	6 401E - 21	6 -		510	502		419	450	420	385	361	242	276		
TUBINGEN 48-31/N	9-031E -	249	324	388	360	380	372	387	380	345	363	298	233		
WURZBURG-STEIN 49 48/N	9 547E - 2)	2 420	391	442	450	438	432	477	472	539	401	212	250		
WYKZFOHR 54-431N	8-351E -	343	387	436	520	513	460	433	450	460	400	310	280		
					GHANE	ł									
					=====										
ACCRA 5.361N HO 6.001N		5 445 • 437	509 475	543 543	559 559	558 558	461 487	432 364	427 317	473 431	542 499	558 592	506 540		

-254

AFPENDIX A (CON'T)																
			••••			YĤL	UES (F MON	NTHLY	AVG.	КН ж	1000	[1]			
STATION	LAT	LONG	ELEV	JAN	FEB		APR			JUL		SEP		NOV	DEC	NOTES
							NA (C =====									
KUMASI	6 43'N	1 36'W	287	292	356	441			308	254	206	278	355	371	328	CFP
TAF0	6 00'N	0.007	-	420	450	492	517	481	393	313	283	295	397	456	455	CFP
TAKORAD I	4 53/N		4	437	509	552		499		432	376	362	474	541	481	
TAMALE	9 25'N			600	582	570						499	569		-	CFP
				000	0.02	010	000	000	0.02	000	403	422	J62	623	602	
							GREE	DΕ								
· · · · · · · · · · · · · · · · · · ·							====									
ATHENS	37 584N	23 43/E	107	466	543	496	551	548	563	591	564	532	477	432	453	
						C 1										
							REENLI									
THULE	76 00'N	70 001W	-	*	*	664		*	*	*	*	_	-	*	*	
															.1.	
							GUIN	EĤ								
BOKE	10 57/11	44 4500	~~		c= 4		2225		.							
CONRKRY	10 56'N		69	067	074	078	075			030		039	054		062	PPS
LABE	9 34'N 11 19'N		46	041 070	956 070	066	057	042		016	013	027	944	047	028	PPS
	11 15 N	12 18'W	1020	079	079	075	0 67	055	044	036	025	041	052	961	070	PPS
						HC) Ng Ko	ing								
							=====									
HONG KONG	22 18'N	114 10'E	65	528	449	382	367	417	438	506	441	443	623	621	566	
							iungrf :=====									
BEKESCSABA	46 41'N	21 05′E	88	401	369	487	471	 537	501	531	524	538	495	337	311	
BUDAPEST	47 26'N	19 11'E	140	382	393	492	526	580	495	566	578	563	515	292	280	
DEBRECEN	47 30'N		113	384	357	524	500	610	568	590	595	597	544	381	328	
KALOCSA	46 321N	18 591E	108	428	401	507	535	600	522	583	581	594	534	331	339	
KECSKEMET	46 54′N		116	398		507		585		566		572		357	364	
KEKESTETO	47 52'N	20 01'E	991	413	502	486	469	581	511	562	589	587	563	377	336	
KESZTHELY	46 46'N	17 14′E	143	426	425	560	64.	631	541	602	619	608	548	328	335	
KISVARDA	48 14'N	22/071E	114	312	348	527	548	494	492	489	456	460	480	321	204	
MARTONVASAR	47 21'N	18-497E	150	409	410	575	528	633	513	557	579	521	481	284	283	
PECS	46 041N	18-12'E	124	403	427	512	551	570	501	551	556	530	468	299	321	
SIOFOK	46 544N		112	425	432	542	571	617	533	620	594	581	524	321	293	
SOPRON	47 41'N	16 357E	234	343	340	469	486	543	456	492	549	490	486	268	285	
SZEGED	46 15'N	20-061E	83	354	389	479	466	535	497	541	531	529	487	324	320	
TISZRORS	47 32'N		99	389	346	501	482	556	495	537	534	542	514	310	278	
							ELAN									
KEFLAVIK	64 00'N	22 40/W	_	238	375	=: 449	=====: 491	= 431	506	463	526	434	312	424	704	
REYKJAVIK	64 08'N		56	371	410	405	439	470		448	414	434 360	297	424 260	704 343	
															~ 12	
							INDIA									
ADARTAL	23 05'N	79 561E	-	722	709		695 in 195	670	500	11F	100	E74	C04	700	<u> </u>	
RDUTHURAI	11 01'N	79 32'E	-			664 724		672 670	526 674	445	406		691 550	729	633	
AGRA	27 10'N	78 02'E	-	592	692 574	724 569	667 540	670	634 507	577	594	648	553	626	649	
AHMEDABAD	23 02'N	70 02 E 72 38'E	_				568 740	551 745	507 C40	482	473	525	572	586	567	
RKOLR	23 02 N 20 45'N	72 38 E 77 00'E	-	738 754		721	740	715	642 696	488	439	642 500	731	744	668	
ALLAHBAD		81 52'E	-	751 728	740 708	720 674	714	729 200	606	460 545	484 405	599 570	698	743	733	
BRBBUR	13 57'N	76 37'E	_	760	708 754	674 758	700 722	690 715	573 587	515 499	495 534	579 504	699 504	731 746	728	
	•			1.00	104	. 50		170	507	777	924	584	591	746	697	

A-11

WC

ĤΡ

LONG

73/15'E

-

-

706

742

707

743

12 58/N 77 35/E

VALUES OF MONTHLY AVG. KH * 1000 [1]

INDIA (CON'T) ===============

728

663

737

731 688

716

PPENDIX	8 (CON/1	E)
---------	-----	-------	----

LAT

22/15/N

STRTION

BANGALORE

BARODA

ELEV JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC NOTES

633

513 446

479

513 525

639

439

549

630

669

748

699

724

DEC	NOTES

116

BHRUDH	22 1516		-	742	743	716	728	737	633	479	439	639	630	- 748	724	
BOMBAY	18 56/N		-	798	708	698	679	680	494	421	407	536	659	734	721	
CALCUTTA	22 304N		-	630	602	607	594	577	506	457	461	521	565	611	607	
CALCUTTA/DUM DUM	22 391N		10	*	613	684	579	579	483	450	475	463	508	635	630	
CHINSURA	22 524N		-	735	721	695	695	683	516	478	505	570	635	694	718	
COIMBATORE	11 00'N	I 76 551E		685	692	712	667	659	544	486	583	637	589	599	676	
DELHI	28 401N	l 77 151E	-	693	686	671	662	666	628	522	552	555	782	714	714	
Dharwar	15 274N	75 00'E	-	754	741	729	666	645	461	396	443	529	574	722	747	
HAGARI	15 10'N	1 77 04/E	-	704	752	748	710	679	571	596	565	586	597	746	743	
JAIPUR	26 554N	1 75 501E		736	726	723	715	710	590	471	484	645	727	738	718	
JALGAON	21 03′N	1 75 34/E	-	755	730	722	726	729	595	460	495	588	714	732	738	
JODHPUR	26-184N	73 014E	-	74R	734	718	714	721	706	556	528	655	721	745	726	
JULLUNDAR	31/25/N	H 75 354E	-	666	692	652	706	697	674	559	577	668	718	726	710	
Karjat	18 55′N	73 18 E		739	735	722	723	723	526	410	407	547	646	734	736	
Kodaikanal	10-14'N	77 281E	••	664	675	675	635	640	524	421	484	523	490	529	654	
KOILPATTI	9-124N	1 77 531E	-	652	667	695	636	644	587	562	576	658	557	635	655	
LABANDHE	21 204N	E 81 457E	-	744	704	674	659	664	530	448	418	554	663	705	709	
LAHORE	31 354N	74 181E	-	669	694	694	797	697	664	571	632	694	700	748	691	
MADRAS	13/05/N	80 151E	-	708	721	719	700	663	569	513	524	583	586	643	687	
MADRAS	13-11'N	80 11 E	16	661	704	706	637	627	540	481	508	608	485	478	530	
NAGPUR	21 09′N	79 071E	-	741	717	698	681	675	589	427	418	565	662	733	706	
NEW DELHI	28 354N	77 12'E	210	676	752	738	688	687	624	416	531	582	697	730	684	
NIPHAD	20-064N	74 071E	-	757	747	728	725	731	629	451	484	621	706	749	739	
PATTAMBI	10 484N	76-121E	-	736	716	700	667	660	477	464	516	648	576	676	715	
PEDEGRON	18-12'N	74 10′E	-	744	741	718	701	703	582	455	540	581	666	725	726	
POONA	18-32′N	73/51/E	559	735	771	739	735	718	571	436	441	551	636	678	686	
POWERKHERA	22 501N	78 001E		752	735	695	786	704	589	456	439	546	702	757	734	
RHICHUR	16 12'N	77 12'E	-	746	748	732	711	665	524	503	553	553	641	730	727	
Sakharnagar	18 39′N	77 451E	-	751	722	721	701	691	548	443	463	535	657	745	732	
SAMALKOT	17 03/N	82/131E	-	742	730	701	700	673	543	523	486	520	621	697	724	
SHOLAPUR	17 40'N	76-001E	-	752	736	749	790	693	530	434	474	522	663	762	749	
SRINAGAR	34 051N	74 501E	1593	456	396	439	520	595	571	648	598	652	651	646	334	CFP
SURAT	21 12'N	72 521E	-	742	745	723	726	728	626	481	462	647	728	734	724	
TRIVANDRUM	8 294N	76 581E	-	683	709	670	558	603	464	462	544	555	518	540	686	
VIRANGAM	23 021N	72 071E	-	755	728	709	740	725	705	520	472	701	731	744	668	
						IN	DONES	ĪĤ								
						==	=====	==								
DJAKARTA		106 50'E		397	416	445	469	482	493	520	531	520	467	437	411	
SOEMOBITO	7 3215	112 201E	16	461	455	426	460	519	539	547	515	530	510	469	388	
		,					IFAN									
BABOLSAR	36 43'N		-21	043	043	024	075	034	054	0 58	048	034	Ø41	044	034	PPS
ESFAHAN	32 371N	51 40 E	1590	Ø67	073	075	-	059	070	083	883	681	0 87	070	061	PPS
Kermanshah	34 191N	47 071E	1298	071	847	054	074	057	Ø61	Ø78	086	093	077	063	857	PPS
Meshhad	36 164N	53 381E	985	058	959	028	070	056	082	086	084	087	075	054	044	PPS
PAHLAVI	38 054N	46 171E	1405	034	032	0.22	050		047	059	042	028	023	032	032	FP5
SHIRAZ	29 364N			970	968	977	069	979	084	083	080	087	090	077	071	PPS
Teheran	35 41/N	51 191E	1191	065	050	054		049	072	080	079	083	075	Ø66	063	PPS
														-	-	

=======

TRELAND

	APPEND	NX A (CO	N' D			UGI	une a			aue	1411 .	1000				
STATION	LAT	LONG	ELEV	JAN	I FEE		RES (avg. V Jul				T NOV	/ DEC	NOTES
							.and (
VALENTIA	51 56′N	10 15'W	14	407	378		486		== 6 479	403	430	403	353	330	1 343	
							ISRA									
DEAD SEA	31 15'N		-	584	597	638	==== 659		716	720	716	-	678	8 620	583	
JERUSALEM LOD	31 464N 32 004N		789 40	610 580												
	32 00 N	34 34 L	40	.JOU	000	001	676	713	739	722	713	701	684	628	635	
							ITAL									
ALGHERO	40 381N		4Ø						575	655	618	581	483	379	373	
ancona Bari	43 374N		105	299							533	505				
BÚLUGNA	41 07/N 44 31/N		28	432	563 200	460	488	509	540	566	527	493	448		356	
BOLZANO	44 31 N 46 28/N	11 18′E 11 19′E	43 237	- 313 - 381	388 425	346 450	461 480	518 507			504 472	479	423		281	
BRINDISI	40 394N	17 57/E	231	455	515	422	455	- 508 - 508	456 513	470 564	466 540	490 523	460 483	369 387	337 415	
CAGLIARI	39-14/N	9 03'E	12	416	422	456	494	549	580	611	589	532	481	207 400	410 392	
CAMPO IMPER, M.	42-271N	13 34'E	2138	290	316	477	462	558	502	593	596	522	512	379	418	
CAPO-PALINURO	40 01'N	15-16'E	185	463	516	488	504	562	573	591	508	582	531	428	458	
COZZO SPADARO SPOTONE	36 41'N	15 091E	46		-	-	677	572	656	675	665	578			433	
Crotone Etna C. C. M.	39-00/N 27-40/N	17 05'E	154	428	502	438	443	556	551	573	583	520	471	337	412	
FIRENZE	37 424N 43 484N	15 00′E 11 12′E		476	457	589 245	401	565	605	699	682	544	469	451	468	
FOGGIA	41 26/N	11 12 E 15 33'E	48 62	285 405	- 332 - 490	365 415	483 433	545 454	557 468	574 506	545 567	487	411	300	263 262	
GENOVA	44 241N	8 58/E	98	345	365	382	433	444	493	006 557	507 525	478 497	418 459	341 351	368 322	
grappa M	45 53 N	11 48'E		517	547	633	677	489	441	528	486	495	447	496	322 492	
MARSALA	37 491N	12/271E	2	425	427	498	515	582	634	693	630	553	503	416	411	
MESSINA	38/12/N	15 334E	54	394	440	470	477	544	576	613	584	522	461	388	387	
MILANO	45 284N	9 17′E	120	224	329	373	470	534	503	535	507	481	388	257	191	
MODENA MONTE CIMONE		10 44 E	64	447	490	391	393	526	575	623	565	553	525	314	353	
MONTE TERMINILLO	44 12/N 42 28/N	10 42'E : 12 59'E :		599 Ege	-	409 504	-	584	414	478 500	489	452	409	380		
NAPOLI	40 53/N	12 05 E	1070	505 628	511 389	381 427	387 488	444 517	428 556	526 586	491 552	490	- 503 466	360 240	373	
NAPOLI (I.U.N.)	40 50 N	14 15 E	25	342	369	448	400 527	534	573	571	561	487 530	466 487	362 397	368 393	
OLBIA	40 56/N	9 301E	2	449	458	432	460	511	519	567	540	512	418	371	388	
PALLANZA	45 55′N	8-334 E	222	577	532	411	515	512	520	551	499	511	483	382	426	
PANTELLERIA	36 494N	11 57′E	254	432	428	424	445	474	477	502	486	469	410	414	403	
PESCARA	42 261N	14-13'E	16	417	492	388	450	534	533	616	552	511	445	319	349	
PIANOSA PIAN ROSA/M	42 354N 45 564N	10 061E	17	445	449	435 50 a	538	579	576	591	489	532	508	400	414	
PISR	40-06°N 43-41/N	- 7 421E 3 10 241E	443 11	477	580 450	586 204	639 400	612	575 500	570	528 520	532	548	491	477	
PROCIDA	40 45 N	10 24 E 14 02'E	11. 80	469 416	452 400	380 407	480 396	530 489	508 504	542 518	530 475	537 431	534 440	429 255	390 250	
ROMA CIAMPINO	41 48 N		131	445	452	407	462	516	551	578	970 557	931 511	440 493	355 404	350 395	
SAN REMO	43 49/N		113	455	484	452	526	563	531	584	550	537	520	414	427	
SASSARI	40-43/N	8/334E	512	289	346	401	518	566	573	624	577	565	471	406	352	
SERPEDDI M	39 22 N	9 18′E 1	048	290	301	378	466	576	621	708	670	521	420	343	323	
SIRACUSA	37 04'N	15 17'E	15	405	415	428	447	488	492	500	505	455	407	365	380	
SORATTE M.				355	376		615	620	687		635	576	488	416	362	
strombol i Taranto		15/15/E		366 274	338		541	602	623	646	575	508	462	365	356	
TORINO	40-28/N 45-12/N	17 171E 7 391E		374 274	420 440	498 270	566 440	647 460	645 460		664	598	521	410	455	
TRIESTE		13-461E		374 346	419 383			469 44.4			471 400	468 466	428		329	
UDINE		13 46 E 13 11/E		240 439	419 -			414 477	475 432		480 502		417 700		333	
USTICA				484	518			907 562	432 565			493 542	489 489	396 444	379 430	
											-					

 $\frac{1}{2}$

REPENDIX 8 (CONTT)

	OFFERDIX R	CON. D													
STATION							OF MON								
SINITON	LAT LO	NG ELE	V JRM	FEE	s mar	R HPF	(MAY	' JUN	JUL	AUG	SEP	001	NOV	DEC	NOTES
							:0N/T)								
HENEZIO							=====								
VENEZIA	45 26'N 12 2						534	504	538	515	493	456	337	288	
VIESTE	41 531N 16 1						671	. 662	673	678	593	501	360	413	
VIGNA DI VALLE	42 05'N 12 :	L31E - 270	0 383	383	388	3 496	584	610	654	612	540	i 477	' 371	353	
						JAP 9	iN								
6636U101						====	=								
ABASHIRI	44 01'N 144 1		530			531	486	455	465	389	486	532	539	540	
AKITA SENSEL	39 431N 140 0				483	508	502	465	45Й	501	484	495	426	370	
AOMORI ACONTRANA	40 49'N 140 4		¥ 467				491	470	459	490	473	520	455	418	
ASAHIKAWA	43 461N 142 2		351	401	489	463	417	436	434	383	429	411	348	348	
ASHIZURI	32 431N 133 0		597	609	408	499	364	396	466	525	422	422	555	588	
ASOSAN	32 521N 131 0		400	480	420	422	397	314	377	379	363	464	504	472	
ESASHI	41 521N 140 0		310	391	441	465	424	373	454	494	476	433	381	359	
FIUKUOKA	33 35′N 130 2		: 378	396	417	417	389	338	358	408	386	458	463	410	
FUKUSHIMA	37 454N 140 2		503	536	484	503	438	369	365	466	397	450	490	558	
HACHIJO-JIMA	33 06′N 139 4	7′E -	370	341	372	329	345	260	373	441	407	360	361	366	
HACHINOHE	40 321N 141 3	2′E -	490	459	423	461	410	383	397	414	389	453	458	450	
Hakodate	41 49'N 140 4		633	637	608	544	492	470	446	437	493	551	560	676	
HAMADA	34 547N 132 0	4′E -	320	407	425	464	442	381	420	498	413	488	481	420	
Hamamatsu	34 42'N 137 4	3'E -	544	436	436	404	353	279	329	394	342	330	363	427	
HIKONE	35 16/N 136 1	57E -	486	532	483	521	524	411	453	510	469	499	571	496	
HIROSHIMA	34 221N 132 20	6′E -	497	533	474	484	441	404	430	501	435	512	558	544	
HOFU	34 031N 131 3	24E -	512	572	497	507	448	382	434	543	485	581	623	630	
TIDĤ	35 31/N 137 5	81E 482		537	509	488	464	403	430	519	443	450	488	529	
INAWASHIRO	37 341N 140 0	7′E -	599	639	603	517	555	472	512	552	487	538	522	540	
ISHIGAKI-JIMA	24 20'N 124 10	9′E -	406	368	361	358	415	395	456	466	580	501	518	457	
ISHINOMAKI	38 23'N 141 1	3′E ~	513	516	444	529	419	402	322	438	413	371	545	487	
1 ZUHARA	34 121N 129 1	3′E -	508	538	417	503	487	4114	429	481	389	539	624	597	
KAGOSHIMA	31 344N 130 33	31E - 20	458	493	454	431	400	342	437	490	471	493	525	528	
KOBE	34 411N 135 11	L′E 58	426	415	399	384	376	319	367	404	353	382	409	417	
KOCHI	33-34/N-133-30	31E -	562	557	469	471	383	355	393	483		498	578		
KUMAMOTO	32 491N 130 43	34E - 38	449	459	464	430	411	358	386	453	440	491	505	483	
KUSHIRO	43 59'N 144 24		576	590	579	594	527	495	464	427	512	562	621	403 632	
KUTCHAN	42 54'N 140 45		582	577	585	578	502	465	483	467	521	572	523	632 537	
MAEBASHI	36 24'N 139 04		555	458	464	379	437	293	274	440	418	492	562	537 627	
MAIZURU	35 28'N 135 23		412	429	387	472	435	411	454	487	416	492	508	047 485	
MINAMI-DAITO-ZIMA	25 50'N 131 14		321	291	274	300	296	325	369	334	359	320	317	700 285	
MITO	36 23'N 140 28		532	482	428	405	402	320	369	386	354	368	437	200 502	
MIYAKO	39 39'N 141 58		580	561	482	510	434	383	367	419	443	467	574	581	
MIYAZAKI	31 55'N 131 25		595	578	473	453	394	388	416	520	487	509	551	501 600	
MIZUSAWA	39 08'N 141 08		457	494	454	460	432	366	379	407	426	453	458 -	432	
MORIOKA	39 421N 141 10		720	720	642	601	495	455	478	486	510	586	641	432 643	
MURORAN	42 191N 140 59		514	584	579	631	521	432	482	465	496	586	573	569	
MUROTOMISAKI	33 15'N 134 11		695	706	574	599	511	486	702 568	666	420 593	577	073 706	36 <i>3</i> 882	
NAGANO	36 40'N 138 12		533	537	533	510	488	432	450	494	435	471			
NAGASAKI	32 44'N 129 53		329	403	402	381	400	932 372	456	424 551	420	471 473	518 490	534 424	
Nagoya	35 10'N 136 58		583	617	402 522	526	401 436	398 398	406 427	001 466			498 64 0	431	
NAZE	28 231N 129 30		329	332	338	355	430 311	398 401			432 456	474	612 254	611	
NEMURO	43 30'N 145 35		556	332 585	547	300 493	311 450		486	461	466 425	390 400	351 Sof	336	
0BIHIR0	42 55'N 143 13		576	580 600	047 595	493 532		411	387	399 207	435 452	498 504	525 500	540	
OLTA	33 14'N 131 37		525	600 481	595 464		450 440	423 204	369 400	397 450	456 400	524	598	598 520	
ŬKI-DAITO-ZIMA	24 24'N 137 17		537	481 470		44 <u>3</u> 500	419 540	364	402 550	452 547	428	471	487	530	
ONRHAMA	36 57'N 140 54		578		504 276	522 404	510				526	499		400	
osaka	- 36 57 N 146 54 - 34 39'N 135 32			533 455	376	424	361	348		424	386	352	474	594	
	20 U I I I I I I I I I I I I I I I I I I	L -	490	455	398	396	314	253	355	385	345	393	425	446	

ાર્લ્ઝ

APPENDIX A (CON'T)

34 46/N 139 23/E

34 041N 136 121E

43 574N 141 384E

36 121N 133 201E

38 54'N 139 50'E

43 03'N 141 20'E

38 16'N 140 54'E

32 471N 132 581E

33 271N 135 461E

37 07/N 140 13/E

34 17'N 133 46'E

34 19'N 134 03'E

36 03'N 140 08'E

38 15'N 140 52'E

35 41/N 139 46/E

32 37'N 128 46'E

30 291N 140 181E

35 31/N 134 11/E

36 421N 137 121E

36 131N 140 061E

42 10/N 142 47/E

36 331N 139 521E

37 29'N 139 55'E

45 25'N 141 41'E

30 271N 130 301E

38 15'N 140 21'E

35 261N 433 214E

37 29'N 126 38'E

37 45'N 128 54'E

35 06'N 129 02'E

39 01'N 125 49'E

35 531N 128 371E

42 19'N 130 24'E

39 11'N 127 26'E

39 56'N 124 22'E

33 49'N 35 53'E

341N 126 581E

00 4215

00 1915

00 35'N

01 1215

01 1815

571N 130 561E

15'N 130 18'E

-

-

-

.

_

_

_

-

-

_

_

36 421E 2463

35 281E 2042

36 00'E 1219

36 381E 2073

36 451E 1799

4/42

STREEDN

OSHIMA

ONHSHI

RUNOT

SHGR

SHIGU

SAKATA

SHPPORD

SHIMIZU

SHIMONOSEKI

SHIPAKAWA

TAKAMATSU

TOHOKU UNIV

TORISHIMA

TSUKUBASAN

UTSUNOMIYA

MAKAMATSU

YAKUSHIMA

FORT ESSEX

VERICHO

MARIGAT

MUGUGUA

NAIROBI

INCHON

PUZHN

SEQUE

THIFTU

UNGGI

MONSAN

YOGHNPO

KSARA OBSEVATORY

KRNGNUNG

FYUNGYANG

MAKKANA

YAMAGATA

YONAGO

TOTIOPI

TÜVÜMME

HELKAMA

TROOTSU

TATENO

TOKYO

TUMIE

SHIONOMISAKI

SENDRI

VALUES OF MONTHLY AVG. KH * 1000 [1] LHT LONG ELEV JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NûV DEC NOTES

41Ñ

₹4Й

Й

4йй

_

-

6й5

_

9Ø

JAPAN (CON/T) ***********

4йй

54Ň

KENYA ____

KOREA =====

LEBANON =======

MACHU =====

·),()'\

Α	_	1	5
41			υ

	APPENDIX A (CON/T)	
STATION	VALUES OF MONTHLY AVG. KH * 1000 [1] LAT LONG ELEV JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC NOTES	
	MACAU (CON'T)	
Macau		
	MRDEIRA ISLANDS	
Funchal Porto santo	32 38'N 16 54'W 58 531 521 571 564 571 537 578 583 599 566 489 543 33 01'N 16 03'W 45 548 527 612 574 630 642 648 588 618 581 526 512	
TONOLODIUE	MALIGASY	
TANANARIYE	18 54′5 47 32′E 1310 520 539 564 617 630 624 631 682 697 683 645 585	
	MALAYA	
SINGAPORE	1 19'N 103 49'E 36 432 428 420 422 417 456 389 363 519 520 408 473	
	MALI	
GAO	==== 16 16'N 0 03'W 270 645 617 603 611 599 567 580 575 588 603 633 607	
TESSALIT	20 12'N 0 59'E 496 790 748 729 714 698 661 697 682 691 707 691 691	
	MALTA	
QREND I	===== 35 50'N 14 26'E 135 549 511 623 594 654 689 712 726 649 604 520 556	
	MARIANA ISLANDS	
Sripan		
WOLEAI	15 14'N 145 46'E 212 561 597 658 688 646 637 517 532 506 535 553 550 7 22'N 143 55'E 2 545 571 611 582 584 504 525 502 4,8 538 546 571	
	MARSHALL ISLANDS	
JALUIT		
PONAPE	5 55´N 169 39´E 2 056 060 048 048 051 050 051 050 056 049 050 048 PPS 6 58´N 158 13´E 30 042 047 043 040 040 041 045 048 043 045 043 038 PPS	
	MAURITANIA	
Atar	20 21/N 12 01/N 227 700 724 706 726 520 745 505 505 505 505 505	
FORT GOUROUD	22 41'N 12 42'W 297 732 705 719 740 726 695 669 637 617 566 629 732	
Nema Nouakchott	16 37'N 7 16'W 269 634 633 616 600 587 533 568 575 577 593 565 565 18 07'N 15 56'W 5 743 713 742 745 714 712 672 672 673 691 681 693	
PORT ETIENNE	20 56'N 17 03'W 8 706 714 709 726 718 722 674 681 682 673 669 669	
	MEXICO	
ALTOZOMONI	====== 19 07'N 98 38'W 3975 618 847 817 525 317 400 497 619 544 666 697 -	
Chihuahua Ciudad Uniy.	28 38'N 106 05'W 1430 342 563 390 343 402 387 339 468 513 465 510 346	
TACUBAYA	19 20'N 99 11'W 2268 546 706 786 595 555 461 461 518 503 502 557 594 19 24'N 99 06'W 2300 594 623 633 578 531 514 455 483 449 501 570 592	
YERACRUZ	19 12'N 96 08'W 12 503 594 643 664 541 616 616 654 630 657	
-	27 30'N 110 00'W - 672 687 688 683 688 682 649 650 685 762 678 631	
	27 30'N 107 00'W - 672 687 688 683 688 651 649 650 685 719 678 631 25 00'N 109 00'W - 562 583 582 586 584 584 527 550 553 611 560 517	
-	25 00'N 109 00'W - 562 583 582 586 584 584 527 550 553 611 560 517 23 00'N 110 00'W - 570 578 584 583 629 621 583 615 582 609 585 527	
-	20 00'N 106 00'W - 582 594 594 568 570 555 569 572 550 575 568 541	

THE FREETO DE VOOR L	PPENDIX	A (CON1	T)
----------------------	---------	-----	------	----

	HPPENDIX A (CONT)	
STRTION	values of monthly avg. KH * 1000 [1] Lat Long Elev Jan Feb Mar Apr May Jun Jul Aug sep oct nov dec N	OTES
	MEXICO (CON/T)	5165
-	20 00'N 91 00'W - 535 594 594 524 527 491 494 528 515 562 553 508	
	17 301N 93 001W - 494 534 488 445 444 411 446 441 405 445 487 482 17 001N 100 001W - 624 610 594 567 576 554 567 574 543 570 597 616	
-	17 001N 100 001N - 624 610 594 567 576 554 567 574 543 570 597 616 30 001N 110 001N - 699 721 681 724 729 687 687 686 723 717 719 679	
	MONGOLIR	
ULAN-BATOR	47 51′N 106 45 - 639 653 657 568 619 548 530 551 553 583 538 558	
	MOZAMBIQUE	
BEIRA		
LOURENCO MARQUEZ	25 58'S 32 36'E 59 572 593 610 639 672 690 669 657 555 484 535 506	
LUMBO	15 00'S 40 07'E 10 519 534 571 635 640 614 660 708 731 716 718 585	
	NETHERLANDS	
DE BILT	======================================	
WAGENINGEN	52 00'N 5 11'E 42 341 323 414 428 466 462 432 407 416 337 269 256 52 00'N 5 36'E 20 305 306 392 424 444 425 393 398 412 338 258 267	
	NEW GUINER	
BAL IEM	4 0415 138 571E 1615 607 637 626 659 625 629 547 659 629 570	
HOLLANDIA	2 3415 140 291E 99 455 474 509 352 490 531 492 495 480 489 485 473	
Merauke Rabual	8 2815 140 231E 3 523 516 489 485 480 360 451 502 547 542 558 458	
KNEVNL	4 00'S 152 00'E 6 517 503 529 516 565 592 520 556 548 534 510 486	
	NEW ZEALAND	
INVERCARGILL	======================================	
NANDI	46 2515 168 191E - 0 - 518 - 511 - 473 - 429 - 433 - 399 - 479 - 504 - 522 - 508 - 489 - 495 17 4515 177 271E - 16 - 650 - 612 - 541 - 556 - 599 - 646 - 657 - 652 - 644 - 640 - 616 - 609	
OHAKEA	40 1215 175 231E 51 577 537 522 502 457 486 477 520 557 531 535 544	
RAOUL ISLAND	29 15'S 177 55'W 49 590 545 565 532 566 478 535 520 563 553 596 658	
WELLINGTON	41 17'S 174 45'E 126 549 502 506 483 420 455 435 486 542 513 502 494	
VHENUAPAI	36 471S 174 391E - 31 - 532 - 501 - 509 - 515 - 461 - 478 - 478 - 483 - 523 - 483 - 511 - 501	
	NIGER =====	
AGADEZ	16 591N 7 591E 496 757 742 701 711 684 684 687 674 705 734 753 739	
BILMA NAIMEY	18 41'N 12 55'E 362 674 692 625 645 637 656 605 661 640 683 702 669	
	13 291N - 2-101E - 223 - 698 - 742 - 724 - 671 - 662 - 650 - 601 - 562 - 622 - 703 - 732 - 750	
	NIGERIA ======	
BENIN CITY	6 33'N 5 37'E 109 394 441 452 441 429 414 339 330 367 433 464 458	
ENUGU	6 28'N 7 33'E 137 501 508 462 494 496 567 400 378 419 453 516 538	
I BADAN	7 261N 3 541E 228 508 512 486 481 481 445 373 342 385 456 521 519	
IKEJA ILORIN	- 6 351N - 3 201E - 38 503 571 565 559 501 454 432 402 430 484 607 528 CF - 8 291N - 4 351E - 287 586 601 556 545 530 635 460 429 419 504 593 598 CF	
JOS	8 291N 4 351E 287 586 601 556 545 530 635 460 429 419 504 593 598 (F 9 521N 8 541E 1286 639 630 581 558 531 530 482 463 499 568 648 655	Р
Kaduna	10 36'N 7 27'E 646 627 628 596 579 560 546 488 449 500 563 635 644	
KANO	12 03'N 8 23'E 476 628 613 589 589 578 573 561 514 570 618 634 632	
MAIDUGURI MAKURDI	11 51'N 13 05'E 354 653 636 588 600 601 585 540 503 570 629 659 644	
	7 411N 8 371E 970 595 585 530 579 564 635 485 404 487 530 584 632 (P	P

 γ''

APPENDIX A (CON/T)

	ł	HFFEN	ЯΧ	н (С	UN' D													
STATION		Lor		LONG	5 1 54	1.1.5.6			UES C									
DINITOR		LAT		LONG	ELEV	/ JAN	I FEE	MAR	ßPR	MAY	JUN	JUL	âug	SEP	9 QC	F NOV	/ DEC	NOTES
								NIGE	RIA (DNY T)							
									=====									
MAMFE (Camaroon	,	5 4344		9 174					439	453	406	368	345	374	427	2 44 <u>9</u>	467	
MINNA DODI HODOOUDI		9 374N		6 3241						569			407	492			627	L F F
PORT HARCOURT SOKOTO) 514) Gatzu		7 014 - 454						433		247	359	362			1 485	
YOLA		: 01/N 14/N		5 1548 2 2848		651 626	632	603 500	600 500	575	682	536	513	571	623		643	
(CEII	-'	· 14 [i	. 1	2 20 6	11.1	020	630	570	589	576	553	516	497	533	592	636	642	
									NORWE	i.								
									=====									
BERGEN		2411		5 19 8		301	301	507	387	487	427	361	369	298	232	233	202	
BL INDERN BERNARD BERN		561N	-	9 44 E		022	031	040	047	043	046	045	644	035	029	022	017	PPS
BRONNOYSUND C TEDMENISHER		- 29 (N		2 13/E		917	034	843	040	034	033	026	035	033	021	820	<u>UUE</u>	PP ₂
GJERMUNDNES GREEN HARBOR		- 374N - 884N		2 10 E		019	949	038	034	036	035	028	032	034	027	024	916	PPS
HAUGASTOL		- 60 H - 31 N	-	051E 2 521E		* 10.55	* 072	442	515	140 	*	*	*	317	351	ŧ.	4	
HORNSUND		- 90 A		5 30 E		926 *	- 033 	- 648 - 667	054 160	048 *	047 *	040	Ø36	- 036 - 4	021	029		PPS
K JEVIK		12 1		8 05 E		026	032	041	160 052	649	057	* 049	* 047	- 616 - 640	278 - 932		4. 	F utur
LILLEHAMMER		96 N				919	034	851	050 050	045 045	041	042	046 038	042	052 032		022 018	899 899
MURCHISON BAY	89	03 N	18	15 E		÷	4	576	648	+	*	4		- 372	- 10-2- 		4	0.2
SOLA	58	53 N	c -	18 E	13	úzú	033	038	944	645	045	035	035	927	026	021	01.2	PPS
TROMSO		394N		: 57 E		÷	422	423	492	413	.+.	*	368	351	309		4	
TRONDHEIM				1 27 E		616	639	649	035	039	036	$\mathfrak{Y}\mathfrak{Y}\mathfrak{Y}$	636	030	826.	018	915	PP5
ULLENSVANG		-201N		40'E		023	027	Ø47	048	044	94≧	040	030	Ø37	022	021	Ø17	PPS -
UTSIRA	59	184N	4	534E	56	917	929	037	046	<u>19</u> 44	044	033	035	035	024	020	914	PFS
PAKISTAN																		
									=====									
KARACHI		54 N		081E		630	653	670	614	574	542	409	449	472	605	634	642	
MULTAN		1241		261E	-	607	609	557	599	566	579	573	546	570	599	530	547	
Peshawar Queta		00'N		31°E	-	556	641	552	569	546	594	559	555	595	638	565	530	
wosin	₹Ñ	12'N	66	574E	-	663	638	613	680	712	750	729	747	735	754	643	585	
								£Ĥ	AU IS	I AND								
									=====									
PALAU ISLAND	7	201N	134	291E	-	507	499	520	515	481	492	443	467	476	479	471	545	
									Pànam									
Albrook A.B.	2	794N	74	347W	c	505	570		=====:		200	100	45.0	500		125		
	Ŭ	50 M	1.2	27 14	0	JUJ	Jic	020	554	409	390	428	422	390	457	478	554	
									PERU									
									====									
HUANCAYO	12	02′S	75	19′W	3313	705	552	645	669	695	736	760	752	707	696	669	629	
								5 44 7 1	10.0.1	u								
									_ IPP II									
QUEZON CITY	14	401N	121	051E	-	439	389		575		477	389	404	407	451	484	511	
													10.1	101	101	101	011	
									POLANC									
BIALOWIEZA	50	10/01	<u></u>	5475	000	745	250											
		421N - 081N -		511E 437E	200 96	346 308	352 350	 440		513 507		475	 4724		422	207	222	
		231N		чэ с 3716	20 -	306 232	300 528	440 422	526 473	507 511		424 494		458 466	429 270	256	296	
		30'N			-	296	379	433				484 465		466 429	378 366	287 300	270 232	
				591E	2007	517	405	596		466		380 		419	300 541	500 515	232 422	
			-	-	<i>,</i>				*			200	291	· ****	0-17 1	040	766	

112

APPENDIX A (CONTI)

STATION	LAT	LONG E		i feb	VALU MAR	JES OF APR		rhly i Jun		(H * 1 AUG	1000 (SEP	1) 001	NOV	DEC	NOTES
					POLA	NU (C	0N1T)	I							
KOLOBRZEG SUWALKI SZCZAWNO-ZDROJ SZRENICA WARSAW WROCLAW ZAKOPANE	54 061N 50 481N 50 481N 52 191N 51 071N	16 164E + 15 314E 1 20 594E + 17 054E +	19 431 165 467 441 424 364 - 113 246 116 327 486 415	432 378 - 326 361	==== 446 576 420 - 395 358 468	489 551 414 328 418 377 426	564 595 475 359 468 360 365	519 560 475 323 363 487	490 539 413 353 406 484 315	506 546 469 310 406 458 491	495 511 429 337 385 441 484	394 447 412 344 322 390 498	268 282 305 373 228 257 402	361 366 405 - 187 265 387	
						ORTUG									
BRAGANCA CALDAS DA SAUDE COIMBRA EVORA FARO LISBOA M. ESTORIL PENHAS DOURADAS PORTO VENDAS NOVAS	41 49'N 41 22'N 40 12'N 38 34'N 37 01'N 38 07'N 38 07'N 40 25'N 41 08'N 38 07'N	8 291W 8 251W 2 7 541W 3 7 551W 9 061W 7 331W 13 8 361W	725 427 74 424 141 503 309 492 14 550 77 507 31 559 383 470 96 435 127 500	582 570 626 585 563 611	499 464 481 518 599 545 590 512 509 483	617 567 614 646 700 652 676 624 655 603	620 584 592 644 721 665 673 646 659 525	672 595 701 763 710 701 664 668	744 649 627 743 769 743 751 784 685 706	691 578 618 695 746 710 695 722 644 671	632 524 591 640 715 649 650 672 614 619	608 564 618 596 652 613 629 634 589 603	573 488 565 544 569 569 564 533 457	422 439 509 479 555 490 510 492 431 357	
						T. GU									
BISSAU KANKAN SIGUIRI	11 521N 10 231N 11 261N		29 615 377 625 362 622	614	707 596 610	716 568 589	676 561 569	579 558 564	525 500 519	420 483 482	554 523 535	596 586 591	594 595 590	605 601 598	
DILI	8 0615 1	.25 061E	3 530	529		T. TII 576		605	593	622	616	617	587	534	
						rto ri									
SAN JUAN	18 28'N	66 06'W	26 655	661	697			659	695	632	630	636	623	679	
				RH0 ===	DESIA	AND 1									
BULAMAYO ZOMBA	20 0915 15 2315	28 371E 13 35 181E	330 552 - 039		625 038		706 054	696 047	718 046	723 064	676 061	622 065	556 050	502 036	PPS; 86
0010	12 10/0 1	70.00/0	F 653		=	58M0A									
APIA	13 4815 1	72 00'W	5 037	039				046	053	856	050	048	043	037	
ILHA DE	0 23'N	6 43′E	8 378	404	=== 392) Tome ====== 438 :Negal	= 485	479	431	420	414	396	412	385	
Dakar	14 43'N :	17 26'W	17 563	594		 629		594	503	424	476	517	550	536	
						RA LE									

A-19

 ν^{ij}

	APPENDIX 8	CONTT)												
STATION	LAT LON	i ELEV JI	AN FE		.UES () } APR							Nov	DEC	NOTES
						•						1101	L' Le 'e'	10120
			:	222223	=====	=====	====							
LUNGI	8 37'N 13 12	YW 38 49	99 50	8 546	590	473	493	336	386	426	568	513	535	
					SPAI									
RLMERIA	37 00'N 2 30		37 568	3 590			595	614	611	589	570	539	514	
BADAJOZ LAS ROZAS	39.001N 7.00							630			522	492		
SAN PABLO	40 30'N 3 30 37 30'N 6 00			_		567 565	580 573	626 592	616 571	558 552			• • -	
								552	JIT	552	003	440	420	
0000 MIRU					=====	=====	==							
CABO JUBY	27 564N 12 55	1W 6 58	5 583	\$ 574	570	550	506	491	529	540	564	544	539	
					SUDAN									
EL-FASHER	13 371N - 25 20	′E 730 62	0 639	636			573	570	595	609	625	632	605	
JUBA KHARTOWN	4 521N 31 37					593	583	628	565	589	604	582	580	
PORT SUDAN	15 364N 32 33 19 354N 37 13				627	613 (E4	576 500	574	570 520	589	611	639	647	
TOZI	12 30'N 34 00				666 531	654 550	602 524	605 500	596 516	633 547	601 558	609 550	552 566	
WAD MEDANI	14 241N - 33 29				599	614	573	528	560	595	670	646	006 653	
				SWA	N ISLI	and								
SWAN ISLAND	17 24'N - 83 56'	W 18 657	632	=== 692	:===== 680		571	609	585	625	543	587	582	
					SWEDE	н								
ERKEN		-	_		=====									
FROSON	59 50'N 18 38 63 12'N 14 29				473 574		483 545	474	422		-	210		
HARADS	66 05'N 20 57			589 400	041 364	043 350	515 406	463 501	487 409	414 360	314 248	249 171	270 829	
KARLSTAD	59 224N - 13 28	E 47 367		509	448	527	567	485	476	460	326	208	246	
KIRUNA SANDVIKEN	67 481N 20 24 60 371N 16 48		550		615	499	*	430	421	395	355	378	*	
STOCKHOLM	60 371N 16 48 59 214N 17 574			445 494	488 457	533 501	472 500	494 400	450 400	438 435	329	256	254	
SVALOV	55 55'N 13 07'			438	440	475	517	499 440	482 430	435 493	343 390	246 215	278 147	
TEG	63 491N - 20 041			480	488	506	582	580	504	441	331	137	147	
TORSLANDA	57 42'N 11 58'			431	474	490	549	449	454	493	349	177	137	
ULTUNA VISBY	59 49'N 17 49' 57 39'N 18 20'			566	474	467	464	429	449	309	284	275	286	
1201	57 391N 18 201	E 47 243	398	492	530	561	582	498	480	474	326	183	161	
					TZERLI									
BASLE	47 351N - 7 351		486	385	437	515	457	-	-	500	316	206	316	
DAVOS GENEVE		E 1590 532		605	606	546	521		511	520	518	498	512	
geneve Hochserfaus	46 15'N 6 10'			047 646	052 614	052	057	064	061	054	040	022	014	PPS
JUNGERAUJOCH		E 1817 - 533 E 3472 - 612		642 718	611 699	604 572	608 574	584 204	536 620	582 582	583	485 500	539	HOC
LOCARNO-MONTL	46 10'N 8 48'			718 532		573 479	571 534	664 562	630 529	508 507	557 459	589 455	599 474	
WEISSFLUHJOCH		E 2670 688		679	757	579	422	469	439	639 -	409 583	400 610	471 628	
ZURICH	47 23'N 8 33'			443					491	463	331	295	284	

THILAND

nyy

Bessare

	APPEN	DIX A (C	ON/T>													
STATION	Lat	LONG	ELEV	JAN	FEB		JES () APR	f Mon' May	thly (Jun		<h *="" :<br="">AUG</h>	1000 (SEP	11 00T	NOV	DEC	NOTES
						-		DUN (T.)								
Bangkok Chiangmai		N 100 301 N 98 591		600 603	619 596	526 509	537 1550	532 547	504	431 205	447	429 500	469 570	620 674	628	
Nakhon Phanom		N 30 33 N 104 40'		656	511	503	- 506 - 507	547 518	478 381	395 373	503 469	522 391	578 592	631 622	663 641	
SUNGKHLA	7 11′	N 100 371			676	583	568	550	572	528	529	506	460	521	564	
						-	(RINII	DRD								
	40.70/	N 64 047	1	507	C 47	-	=====: ====		500	507	e:07	, 	F 74		507	
PURT-OF-SPAIN	10 38.	N 61 247	4 -	587	647	674	562	518	503	507	587	613	570	555	587	
							IUNIS:									
TUNIS-EL AOUÌNA	36 501	N 10 14'	E 3	606	589	- 562	628		653	704	696	-	542	559	543	
							UGAND	\ A								
							22222									
MOROTO	2 317	N 34 404	E 1372	716	672	660	642	674	676	559	644	664	793	687	691	
								ih aff								
ALEXANDER BAY	28-341	S 16 32′	E 21	727	=== 712	 693	===== 707	 687	=== 684	662	697	712	713	715	706	
BLOEMFONTEIN	29 071			635	617	609	663	658	695	710	734	716	670	685	645	
CAPETOWN CAPETOWN (WINGFIELD)	33 541			712 715	681 682	675 682	607 610	527 632	594 602	586 567	589 580	640 633	646 652	687 660	696 684	
DURBAN	29 501			475	602 507	602 544	557	632 574	624	595	575	633 532	602 474	660 470	664 486	
KEETMANSHOOP	26 341	5 18 071	E 1066	723	707	675	724	737	753	769	762	759	741	746	727	
KIMBERLY	28 481			592	608	595	645	640	671	676	724	711	693	684	659	
MARION ISLAND MAUN	46 511 19 591			477	505 504	492 575	453 500	460 Cae	453 669	499 600	541 720	535 (222	551	530 500	497	
PIETERSBURG	23 521			536 613	524 594	575 620	589 648	645 703	660 717	692 658	708 678	682 625	613 632	588 635	547 581	
PORT ELIZABETH	33 591			594	630	592	563	583	632	622	619	603	587	630	589	
FRETORIA	25 451			575	557	588	607	644	690	686	711	650	605	587	552	
ROODEPLAAT	26 351			514	606 505	606 64 o	641 690	676 624	696 642	663 550	705 674	634	615	613	558	
SWAKOFMUND UPINGTON	22 411 28 2613			603 648	585 631	619 621	609 641	601 672	643 731	552 701	631 705	607 678	641 652	656 649	620 637	
WINDHOEK	22 341			638	609	615	680	744	758	787	778	740	698	683	669	
							. S. S. =====									
ARALSKOYE MORE		N 61 401		609	625	606	589	696	693	614	634	660	551	447	451	
ARARAT FLAIN	40 111			534 247	485 250	481 54 0	560 574	654	693 472	704 500	786	677	694 070	512	434 432	
ARKHANGLSK CAPE CHELYUSKIN	64 30 ⁷ 77 437	N 40 421 N 104 171		347 *	350 *	512 595	574 672	414 *	473 ∗	500 *	462 *	311 356	272 462	216 *	422 *	
CHETYREHSTOLBOVOY)		162 244		*	612	668	702	630	*	*	397	377	326	833	*	
CHITA (TCHITA)	52 031	113 291	671	547	629	631	600	559	519	461	404	498	521	510	457	
DIXON ISLAND		80 24/1		*	756	594	726	*	*	*	416	347	440	*	*	
HRYES ISLAND JAKUTSK		N 58 03/6 N 129 43/6		*	* 500	565 494	509 705	*	*	* 175	*	276 400	879 402	* 107	* 101	
KAUNAS		1 129 431 1 23 591		532 322	589 350	694 515	705 471	575 501	571 503	476 4961	531 463	492 433	482 352	483 205	484 261	
KHARBOROVSK		N 135 071			651	590	482	497	479	458	468	-33 509	478	200 535	201 569	
KIEV	50 241			340	392	420	380	528	490	515	509	457	438	251	273	
KICHINEV		V 28 51/B		425	455	471	468	555	542	611	570	540	528	298	384	
KOTELNYI ISLAND		137 5418		*	*	585 500	690	*	*	*	*	327	360	*	*	
KUIBYCHEY LENINGRAD		N 50 1018 N 30 4218		385 293	478 271	529 529	573 467	535 472	516 510	536 527	516 464	417 392	330 265	359 210	292 257	
CETTION IV	U- U1 1	• 20 M2 (. 1±	273	211	962	101	714	240	120	707	226	という	<u>c</u> 1.	4 J (

1 13

REPENDIX 8 (CONTE)

	f	APPENI	XIC	A (CQ	NT)													
CTOTION										F MON			KH *	1000	[1]			
STATION		LAT		LONG	ELEV	JAN	I FEE	Mar	: APR	: MAY	JUN	JUL	AUG	SEF	' 00T	i Nov	DEC	NOTES
											_							
										(CON/								
NOVOSIBIRSK	54	1 541	JO	2 57′E	130	516	554			=====		100						
ODESSA		5 2641	-	2 JI E 0 46/E						_								
01MYAKON				3 09/E								598 402						
OKHOTSK				3 12'E	6	584						496 358		496			647 594	
OLENEK				2 26'E		*	587				442	002 *	480 419				591	
OMSK				- 17 I 3 23/Е													*	
PREOBRAZHENIA ISLAN						*	919				*	 *	373				439 *	
SEMIFALATINSK		9 254		0 18′E		651												
OVERDLOVSK	56	5 44 N	6	1 047E		445					491	496	483	=			369	
TASHKENT	41	. 201N	6	9 181E	478	394	422				618	653					402	
TBILISI	41	. 4311	4	4 48′E	403	389	466				522	584	580				390	
TIKHAYA BAY	8Ø	1 204 N	5,	2 481E	16	*	*	-	-	*	:*	*	*	373		*	*	
Turukhansk	65	i 474N	8	7 571E	38	575	561	593	685	569	497	510	479				*	
UEDINENIA ISLAND	- 77	1304N	82	2 14 E	17	:k	*	581	676	*	*	:4:	*	280	377	*	:#:	
VERKHOVANSK				3/231E	137	*	596	653	706	578	*	460	501	428		476	:*:	
VLADIVOSTOK				2 031E	80	605	641	584	495	518	413	434	388	551	540	587	555	
WELLEN				9 534E	6	488	477	600	649	601	529	442	354	262	353	239	973	
WRANGEL ISLAND				321E	3	*	581	658	692	561	*	*	359	311	388	*	*	
YUZNO-SAKHALINSK	46	574N	142	2 431E	22	556	641	595	534	498	422	402	414	463	475	525	642	
										REPUE								
<u>GIZR</u>	50	00/11		17.00						*****								
UIZN	30	021N	12	. 1 37E	21	580	623	672	670	656	671	667	664	659	626	570	565	
									· · · · · · ·									
										NGDOM								
ABERPORTH	52	081N	đ	347W	115	757												
CAMBRIDGE		13'N		061E	23	353 333	363 331	423 376	457 204	521	589 474	431	454	471	360	300	309	
ESKDALEMUIR		191N		12′W	246	406	297	375	394 44 0	443	434	434	396	407	384	292	278	
GARSTON; WATFORD		421N		12 W	240 85	235	279	300 322	410 372	433 394	371	379	368	385	352	275	264	
KEW OBSER		281N		19'W	5	251	282	330	394	354 413	388 416	375 295	367 200	367	300	228	215	
LERWICK OBSERV.		081N		11'W	82	354	383	382	404	415	432	395 245	390	382	322	263	236	
ROTHANSTED		48'N		21'W	128	312	344	374	408	429	425	345 386	328 379	382 376	318	301 272	286 247	
			-	//	ALV.		2.1.1	217	700	722	420	200	2(2	210	324	272	243	
				1				UNIT	ed st	RTES								
ak adak	51	531N	176	381W	5	339	375	381	386	355	325	319	317	339	360	357	326	
ANNETTE	55	924N	131	347W	34	341	380	415	448	451	405	414	400	385	324	312	291	
BARROW	71	18'N	156	47′W	4	*	446	565	545	374	*		348	310	285	356	*	
SETHEL				481W	46	380	466	514	511	459	422	376	335	378	370	330	286	
BETTLES	66	554N	151	31′W	205	306	472	555	583	553	*	459	418	432	376	286	*	
BIG DELTA				44'W	388	363	484	562	559	536	495	474	463	451	394	353	156	
FAIRBANKS				521W	138	315	471	552	544	517	486	454	425	427	373	328	056	
GULKANA				27′W	481	368	472	555	568	514	489	472	462	445	421	336	239	
HOMER				301W	22	399	451	508	521	496	486	465	427	415	412	376	299	
JUNERU				354W	7	321	350	391	428	402	392	371	349	325	284	280	228	
KING SALMON		714N			15	451	494	527	500	464	428	402	374	404	437	416	392	
KODIAK				201W	34	382	423	491	490	427	424	408	411	399	421		330	
KOTZEBUE NC GRATH		521N -			5	236 250	447	535	560	535	*	449	406	416	385	225	000	
10 116818	1 C A	-1-1-1 II		12711	412.2	160	457	E O 4	EO 4	177	4 4 4	4.0.7			-			

356 415 438

MC GRATH

NOME

SUMMIT

YAKUTAT

AL BIRMINGHAM

62 58'N 155 37'W

64 30'N 165 26'W

59 31'N 139 40'W

63 201N 149 081W

33 34'N 86 45'W 192 425 464

733 370

9 324

490 531 532

.

470 427

RPPENDIX R (CONTT)

	HFPEND	IX H (CU	N° D													
CTOT LON	1.57								ITHLY				[1]			
STATION	LAT	LONG	ELEV	JAN	FEB	MAR	APR :	t May	JUN	JUL	RUG	SEP	OCT	NOV	DEC	NOTES
								S (CO								
								====	====							
NOBILE	30 41'N			457					519	483	493	492	531	485	446	
MONTGOMERY	32 18'N	86 241W	62	435	472	499	545	544	545	517	526	505	530	485	445	
AR FORT SMITH	35 201N	94 221W	141	474	499	508	518	549	574	579	571	532	533	491	469	
LITTLE ROCK	34 44'N	92 14′W	81	457	494	504	515	553	580	570	565	535	539	480	453	
RZ PHOENIX	33-264N	$112\ 01^{\prime}\text{W}$	339	613	657	685	747	767	756	698	693	701	676	628	600	
TUCSON	32 074N	110 56′W	779	633	665	692	744	765	755	658	657	680	671	637	612	
NINSLOW	35 01′N	110 44 W	1488	622	658	687	731	744	746	657	650	681	668	639	608	
YUMA		114 367W	63	642	678	718	762	782	777	689	703	709	687	650	627	
CR ARCATA		124 06'W	69	418	460	479	531	534	536	506	492	507	468	411	409	
BAKERSFIELD		119 03'W	150	490	551	619	673	720	756	752	736	706	649	545	468	
CHINA LAKE		117 41/W		587	619		718			732	796					
(HIGGET T		116 47'W	588	602	632	682	728		761	730	723	704	658	602	586 586	
EL TORO		117 44'W	116	572	- 594	610	613		605	663	652	708	- 667 - 664	- 617 E 64	593 E.a.	
FRESHO		119 43'N	100	440	524	619	678					606	584	564 625	564	
LONG BEACH		119 43 W	100	- 563	586	615	616		750	752	741	714	653	535	417	
LOS ANGELES		118 00 W	32	564	587	615				645	635	594	573	554	552	
HOUNT SHASTA		122 19'W		450	- 502	532	621	590 634	584	647	630	588	570	556	555	
NEEDLES		114 37'W		322	423	554	589	634	666 000	722	691	665	582	463	44E	
0AMLAND		122 12'W	210				711	848	922	833	719	619	476	362	304	
POINT MUGU		119 07/W		492 570	540 500	585 200	627	637	644	650 504	630	619	565	510	489	
FED BLUFF			4	568	592 592	623	622	579	566	504	586	563	563	560	564	
SACRAMENTO		122 154W 121 304W	108	436	506 500	565	635	687	711	748	717	690	602	476	428	
SAN DIEGO			8	427	509	593	657	702	735	753	729	699	622	498	420	
		117 10'W	9	572	596	610	613	574	570	614	621	594	582	569	567	
SAN FRANCISCO CANTA MODIA		122 23/W	5	490	534	583	626	641	651	669	649	633	570	508	483	
SANTA MARIA		120 27'W	72	537	564	609	615	614	646	656	639	611	596	554	544	
SUNNYVALE	37 251N		12	507	546	593	632	655	672	683	664	637	578	518	493	
CO COLORADO SPRINGS		104 43'W		645	643	633	635	614	649	619	624	647	647	607	618	
DENVER		104 527W		632	632	634	622	617	643	636	633	642	632	587	602	
ERGLE		106 55′W		565	602	621	639	652	686	668	645	656	634	575	566	
GRAND JUNCTION		108 327W		580	616	637	655	687	711	690	674	677	645	597	586	
PUEBLO OT HORITORI		104 31'W					641	623	667	647	647	651	641	603	605	
OT HARTFORD		72 41′W	55	394	426	421	443	455	461	462	445	441	436	357	351	
CU GUANTANAMO BAY	19 54′N	75 091W	16	597	617	633	641	594	568	606	597	579	560	579	582	
DC WASHINGTON	38 57′N	77 271W	88	417	447	460	480	496	520	509	499	494	479	420	383	
DE WILMINGTON	39 404N	75 364W	24	428	462	476	490	494	515	510	500	490	477	427	401	
FL APALACHICOLA	29 44'N	85 02 W	Ç.	458	497	532	585	599	556	512	506	518	553	516	466	
DRYTONR BEACH	29/11/N	81 031W	12	507	530	555	585	564	509	504	503	496	500	507	489	
JACKSONVILLE	30-304N	81 42′W	9	494	523	554	580	561	524	508	508	489	499		477	
MIAMI	25-484N	80-167W		513	540	555	570	530	481	502	486	477	496	508	521	
URLANDO		81 20'W		520	537	563	588	571	511	510	500	500	516		510	
TALAHASSEE	30-234N		21	480	509	538	569	555	523	493			537		473	
								000	000	122	005	000	991	202	412	

SPRENDLY & CONVEN

						VALU	IES OF	MONT	HLY AV	/G. K	H * 1	. 1 000	1]				
STATION	LHT	LONG	ELEV	JAN	FEB	MAR	8PR	MAS	JUN	JUL	AUG	SEP	00T	NOV	DEC	NOTES	

UI.	L C	340	10	n	(U	nu.	12.	

.

						•					es co							
	TALLAHASSEE	3	0 23 N	8	4 2274	1 21	486				=====: 9 555		3 493	3 50	3 500	s 531	7 503	5 477
	TAMPA		7 584N		2 324k													
	NEST PRLM BEACH		6 41 N		0 064													
GF	r atlanta	3	3 394N	8	4 26 18	315												
	AUGUSTR	3	3 224N	8	1 584W	45	450	484	505									
	MACON	2	2 42′N	8	3 39 W	110	450	479	510	549	546	1 530	501					
	SAVANNAH		2-08 N		1 12 W				519					488	469	510	496	
112	BARBERS POINT				3 04 W			550	547	555				587		559	540	533
	HILO HONOLULU				5 04 N		475	465									446	450
	HONOLULU LIHUE				7 55/W	-	517	533	539					586			526	518
ĪĒ	BURLINGTON		U ⊐⊒ N 8 47/N		3 21 W 1 07 W	45	490	501 105	493	498				542		525	485	489
111	DES MOINES		2 90 14 1 72/N		толи 2.39 М	214 294	455 470	495 508	492 504	513 523				569		528		415
	MASON CITY		: 09 N		. 22 м 3 201М		482						588 , sos	571 577				435
	SHOUX CHY		2 24 11		5 23 W		479	510										
IÐ	BOISE		34 N			874	432	528	578	625			. 020 734	694		- 605 - 605		438 434
	LENISTON	4e	5 23 M	117	7 91 W	438	349	422	478							493		334
	POCRIELLO	42	2 55 N	11	L 234W	1365	465	5.,_	601	619	664							457
IL	CHICAGO		. 47/N	81	' 45 W	190	416	451	475	491	519	549						363
	MOLINE		. 27 N		131 W	181	432	478	477	<u>490</u>							420	385
Di	SPRINGFIELD EVANSVILLE		+ 50°N ⊾a≂⊴u		40 N	187	441	483	475	502			576					
114	FORT WRYNE		: 03/N . 00/N		7 324W 3 124W	- 118 - 252	404	449	464	490				533		510	428	381
	INDIANAPOLIS		: 00 m : 44/N		5 12 94 5 174W	202 246	- 361 272	405 418	416 430	455 463		504 544	501 504	497		462	358	322
	SOUTH BEND	41		- 86		236	339	391	425	467 467	488 500	511 525	506 519	509 521	493 492	475	384	343 267
KS	DODGE CITY		46/N) 58/W	787	575	596	593	615	602	- 520 - 646	- 643	- 631	452 613	462 606	354 555	307 553
	GOODLAND				42/W		584	585	586	- 694	595		649	632	- 603 - 603	612	- 561	003 562
	TOPEKA		64 H	95		270	498	517	515	541	553	582	596	590	560	549	500	
	WITCHINR	37	294N	97	254M	408	543	560	563	581	586	621	627	623	587	581	539	400 519
KY	LEXINGTON		024N	84	364W	301	383	417	443	484	503	520	518	518	497	489	412	371
	LOUISVILLE		11 N		44 W	149	386	424	446	480	495	521	514	517	497	490	411	375
LR	BRTON ROUGE		324N		09 W	23	432	473	562	525	536	535	492	503	497	531	466	431
	LAKE CHARLES		074N Ec.(N		134W	1	396	449	476	490	530	548	504	497	502	560	459	407
	NEN ORLEANS SHREVEPORT		594N 2074	-	15 W	3	451	494	512	555	564	557	511	515		540	486	448
MB	BOSTON		284N 224N		494W 024W	79 5	444	486	500 444	509	540	571	566	566	536	550	494	454
	BALTIMORE		11 N		02 M 40711	ں 47	400 431	429 463	441 477	448 490	471	497 544	491 540	466	484	459	367	376
	PATUXENT RIVER		17/N		25/W	14	432	464	478	450 504	495 508	514 519	510 508	494 501	492 496	479	430 446	401 445
ME	BANGOR		481N		49/W	62	429	475	496	498	506	508	523	513	499 499	481 461	446 380	415 401
	CARIBOU		52/N		01/W	1.90	443	510	537	500	465	481	497	484	452	400	324	373
	PORTLAND	43	39 N	70	19 N	19	402	429	430	446	457	468	466	461	453	439	353	361
	ALPENA		04 / N		347W	243	347	407	469	488	564	514	530	505	461	411	312	291
	DETROIT		250N		01 W	191	352	412	424	474	499	510	515	494	482	453	349	321
	FLINT SPOND FORMER		58/N		44 W	233	331	392	419	456	483	496	504	489	463	434	321	296
	GRAND RAPIDS		53°N		314W	245	348	399	444	489	511	535	537	527	489	449	332	297
	HOUGRITON SAULT STEL MARIE		10°N 10°N		301W 5570	229	262	345	445	484	490	503	519	492	416	393	262	234
	TRAVERSE CITY		284 N - 44 OC		224W -	221	235	419	483	487	497	495	517	490	427	387	288	295
	DULUTH		44 (N - 50 (N -		15 W 11 W	192 432	292 489	271 473	454 489	486 405	506 404	523 404	537 500	512	463	413	303	271
	INTERNATIONAL FAL				234W	чэ <u>г</u> 361	402 (10	473 498	489 514	485 519	484 510	484 508	523 544	498 528	449 470	421 420	336	349 275
	MINNEHPOLIS-ST P				13 W	255	441	501	502	015 499	509 509	527	044 554	528 537	472 499	430 473	332 389	365 377
	ROCHESTER		55° N		3011	402	432	478	483	484	495	520	536	526	491	467	389 384	374
	COLUMBIA				134W		443			501	542	572	592	579	534	524	452	413
	KANSAS CITY	<u>39</u>	18 N	94	43/W	315	478	495	495	520	541	569	589	575	537	526	482	453

 u^{5}

APPENDIX A (CON'T)

1510

STATION

VALUES OF MONTHLY AVG. KH * 1000 [1] LAT LONG ELEV JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC NOTES

6

UNITED STATES (CON'T) (CON'T)

							=	=====	=====			=====	===						
	SPRINGFIELD	37	14/1	1 93	3 23 1	387	466	484	492	521	541	569	578	574	535	5 527	474	446	
	ST. LOUIS	38	1000		23'W		453		491	514	540	573	574	560	537				
MS	JACKSON		191		05%		436		510	539	556	560		537	520	Contraction of the local distance of the loc			ų.
	MERIDIAN	and the second	201		45%	10000	431	472	494	524	533	543		524	501				
MT	BILLINGS	and the second second	48'N			1088	484	517	551	533	562	595	671		593		473		12
	CUT BANK					11170	471	518	555			100 V A. A. A.		048					
	DILLON			A CONTRACTOR OF A		1588	505	560		534	559	561	647	619	569			Contraction of the second	귀날
	GLASGOW				37'W			A. 17 1. 16	584	569	583	586	673	645	607	567	492		
	GREAT FALLS	40	and the second second				444	498	538	534	542	561	620	606	561		452		
	HELENA					1116	460	519	562	529	546	576	658	626	570		454	420	
	LEWISTOWN	46			001W		436	494	539	524	548	558	658	621	577				-
		47			27/W	Constanting of the	448	491	536	511	533	564	646	614	564	529	449	441	
	MILES CITY MISSOULA				521W	803	471	517	556	543	558	587	646	636	588	552	478	467	
110	C. B. Starting and C.				051W	972	329	405	465	489	526	529	657	697	557	473	364	322	
NC	ASHEVILLE	35		COLUMN AND	321W	661	462	486	507	535	518	510	498	495	483	511	491	454	
	CAPE HATTERAS	Contraction of the local distribution of the	16'N		33/W	2	436	475	513	569	563	560	538	519	521	504	502	452	
	CHARLOTTE	35			561W	234	457	484	510	544	532	528	513	515	501	520	497	461	
	CHERRY POINT	34			53/W	11	476	507	534	574	552	533	513	496	504	515	516	487	
	GREENSBORO		05/N		57'W	270	468	494	514	543	537	536	522	517	506	514	495	466	
MIN	RALEIGH BISMARCK		52/N		47'W	134	451	477	498	530	519	512	497	491	491	496	476	446	
no	FARGO		46'N			502	490	544	552	515	545	564	616	605	554	526	447	444	
	MINOT	46			48'W	274	438	498	520	521	541	546	598	589	535	509	406	406	
NE	GRAND ISLAND		16'N 58'N		17'W	522	439	487	510	524	548	541	593	586	535	515	415	409	
HC.	NORTH OMAHA			98		566	523	532	535	566	571	613	621	604	570	568	51.2	496	
	NORTH PLATTE	1000	221N 081N		01/W	404	510	524	521	523	543	580	590	580	521	529	453	454	
	SCOTTSBLUFF	1000		Constant of	41'W	849	551	559	566	577	576	620	638	620	592	591	530	531	
NH	CONCORD	41	12'N		36°W	Conversion Conversion	555	566	562	562	561	611	640	626	611	585	519	523	
1. 1 C P 1	LAKEHURST		02'N		201W	105	401	426	429	449	461	466	470	459	443	431	349	352	
140	NEWARK		42'N		10'W	37	425	450	462	483	484	485	477	475	471	467	417	396	
NM	ALBUQUERQUE	100			37'W		431	457	467	483	489	491	493	487	479	472	410	391	
1411	CLAYTON	36			091W		643 638		682	714	728	737	697	696	697	683	648	632	
	FARMINGTON		45'N	A		Section 1	633	637 662	650	659	638	664	639	640	646	651	613	618	
	ROSWELL	() - ing	24'N			1103	627	655	670 682	691 703	705	731	694	689	696	675	630	608	
	TRUTH OR CONSEQUE				16'W		666	690	710	741	783		685	678	666	655	617	611	
	TUCUMCARI		11'N				640	645	662	673		731	664	669	674	675	661	640	
	ZUNI		Strength and Station	Supplements and	48'W	and the second second second	625	644	652		664	683	658	658	647	639	616	623	
NV	ELKO				47'W		541	598	618	695 634	710 667	716 693	634	632	670	662	623	609	
	ELY /	1000			52'W		605	631	661		667		735	721	713	659	561	534	
	LAS VEGAS				10'W		641	681	714	663 748	760	688	685	689	716	677	605	583	
	LOVELOCK				33'W		613	659	690	719	739	763 752	725 779	718 770	728 757	694	640	623	
	RENO				47'W		596	639	681	714	729	739	754	744	741	71.1 692	624 601	597	
	TONOPAH			Contraction of the local distance of the loc	08'W		646	682	717	736	742	764	756	749	745	713	647	575	
	WINNEMUCCA				48'W		544	595	622	658	684	703	750	731	720	660	560	633 537	
	YUCCA FLATS				03'W		644	662	700	729	741	750	743	729	729	695	631	624	
	ALBANY		45'N		48'W	89	390	421	430	453	457	473	484	471	452	426	339	338	
	BINGHAMTON		13'N		59'W	499	322	346	372	420	435	460	465	447	434	401	300	275	
	BUFFALO .		56'N		44'W	215	301	336	389	447	465	493	498	476	446	411	301	272	
	MASSENA		56'N		52'W	63	372	408	445	465	473	486	492	473	447	406	314	315	
			47'N		58'W	57	393	416	438	455	474	468	473	462	457	406	367	349	
	NEW YORK (LGR)		46'N		54'N	16	429	458	471	486	490	493	500	493	482	473	408	394	
	ROCHESTER		07'N		40'W	169	317	346	397	456	468	497	500	479	450	411	303	271	
	SYRACUSE		07'N		07'W	124	335	354	391	451	460	486	493	474	458	409	300	271	
	AKRON-CANTON		55'N		26'W	377	338	376	408	454	483	503	500	497	480	453	349	307	
	CINCINNATI		04'N		40'W	271	366	406	421	461	483	503	496	504	484	474	382	345	
			. n	04	IO M	ELT.	200	100	-ICT	101	103	003	450	004	104	414	302	540	

19

APPENDIX A (CON'T)

1

the state of the second						VAL	UES C	F MON	THI Y	8VG	KH *	1000	611	×		and the second
STRTION	LAT	LONG	ELEV	JBN	FEE									NON 1	DEC	NOTES
																nones
				U	NITED	STAT	ES (C	ON/T)	CON	(T)						
					=====									4		
CLEVELAND	41 24/1	0 81 51/W	245	313	353	393	453	488	504	512	494	471	438	329	282	
COUMBUS	40 00/1	82 53 W	254	349	381											
DRYTON	39 54/N	84 13'W	306	370	408								472		338	
TOLEDO	41-36'N	83 48'W	211	353	402											
YOUNGSTOWN	41 16'N		361	309	343											
OK OKLAHOMA CITY	35-24/N		397	512	528											
TULSA	36 12'N		206	481	499	512		524			569	527	525			
OR ASTORIA		123 53'W	7	319	374	404		Contraction of the				480				
BURNS		119 03'W		436	498	527	564				658					
MEDFORD		122 52'W	396	342	446	491	554	0000	623							
NORTH BEND		124 15'W	5	387	440	467	516			1000000000	665		507			
PENDLETON	and the second	118 51'W	456	345	414	482					CONTRACTOR OF STREET	537	473			
PORTLAND		122 36'W	12	306	373					674	638	605	511			
REDMOND		122 30 W				413					535		406		285	
SALEM			940	452	498	535	579			687	656	625	542		437	
PA ALLENTOWN		123 01/W	61	316	387	431	475					529	424		296	
ERIE			117	411	439	454	470	474	486	494	481	466	460	390	369	
	42 05'N		225	287	346	397	459	478	505	514	456	460	425	301	255	
HARR1SBURG	40 13/N	76 51'W	106	410	438	453	469	478	494	494	481	474	459	390	376	
PHILADELPHIA	39 53/N	75 15'W	9	420	447	460	475	480	496	492	488	477	467	413	390	
PITTSBURG	40 30'N	80 13'W	373	329	358	396	438	463	482	473	469	454	443	344	295	
WILKES-SCRANTON	41 20'N	75 44'W	289	366	404	422	449	461	481	489	472	455	452	344	325	
PN KORROR ISLAND	7 20'N		33	480	502	500	513	487	463	456	458	469	477	487	471	
KWAJALEIN ISLAND		167 44'E	8	549	570	553	527	502	507	505	519	496	486	496	518	
WAKE ISLAND		166 39'E	4	567	583	593	590	600	595	562	558	550	552	575	573	
PR SAN JUAN	18 26'N	66 00'W	19	548	563	581	570	531	531	549	549	528	528	540	534	
RI PROVIDENCE	41 44'N	71 26'W	19	414	438	442	462	481	485	475	469	461	461	383	378	
SC CHARLESTON	32/54/N	80 02'W	12	439	470	502	548	533	509	505	479	483	507	503	455	
COLUMBIA	33 57/N	81 07'W	69	464	493	515	557	543	536	516	515	503	524	510	473	
GREENVILLE	34 54'N	82 13/W	296	459	485	512	543	527	528	513	516	496	520	501	454	
SD HURON	44 23'N	98 13'W	393	452	481	501	528	547	575	613	601	560	537	458	420	
PIERRE		100 17'W	526	491	513	543	556	575	600	640	632	591	571	493	458	
RAPID CITY	44 03'N	103 04'W	966	494	528	550	546	551	583	625	622	597	573	505	485	
SIOUX FALLS	43 34/N	96 44'W	435	473	504	511	528	552	574	604	583	551	535	465	438	
TN CHATTANOOGA	35 02'N	85 12'W	210	398	426	454	496	497	504	486	495	472	489	441	395	
KNOXVILLE	35 49/N	83 59'W	299	402	436	464	515	518	522	505	507	493	502	444	399	
MEMPHIS	35 03'N	89 59'W	87	431	468	493	525	541	562	553	554	520	532	467	428	
NASHVILLE	36 07/N	86 41'W	180	380	419	443	498	524	539	530	530	499	502	420	369	
TX ABILENE	32 26/N	99 41'W	534	537	553	588	582	584	610	601	590	551	554	535	537	
AMARILLO	35 14'N	101 42'W		611	620	631	648	635	658	639	639	623	622	593	598	
AUSTIN	30 18'N	97 42'W	189	472	503	519	501	525	576	593	579	544	542	496	479	
BROWNSVILLE	25 54'N	97 26'W	6	444	467	505	533	554	596	630	604	555	548	480	442	
CORPUS CHRISTI	27 46 N	97 30'W	13	458	488	505	507	536	586	628	595	560	554	494	455	
DALLAS	32 51'N	96 51'W	149	484	505	533	514	541	589	596	589	549	542	503	492	
KINGSVILLE	27 31'N	97 49'W	17	462	492	505	513	535	570	599	574	538	542	487	454	
LAREDO	27 32'N	99 28'W	158	485	506	534	533	560	581	604	600	565	549	490	476	
LUBBOCK		101 49'W	988	622	639	667	689	687	702	676	668	635	632	613		
LUFKIN	31 14'N			445	487	505	509	535	570						605	
MIDLAND-ODESSR	31 56'N			619	639	681	690	696		565 672	560	522	557	496	459	
PORT ARTHUR	29 57'N	94 01'W		432	475	489	502		709		666	633	636	617	611	
SRN ANGELO	31 22'N			432 541	552			536	559	521	521	516	534	475	433	
SAN ANTONIO	29 32'N	98 28'W				591	581	582	606	597	591	549	553	539	537	
SHERMAN		Construction and a second second		478	508	522	502	543	576	599	583	551	543	498	481	
WACO	33 43'N	96 40'W		480	499	517	512	531	583	582	584	551	547	506	483	
WICHITA FALLS	31 37'N			472	504	527	507	508	585	599	589	548	541	498	486	11
MIGHTIN FALLS	33 58'N	98 29'W	314	526	543	560	561	578	612	608	596	560	559	531	523	

220

REPENDIX A (CONTT)

		47.0 (00	. 12			VALU	JES OF	F MONT	THLY A	avg. k	(H * 1	.000 [1]			
STATION	LAT	LONG	ELEV	JAN	FEB	Mar	hpr	MAY	JUN	JUL	RUG	SEP	00T	NOV	DEC	NOTES
									(CON/							
UT BRYCE CANYON	37 42/N	l 112 091W	2313	634	655	 676	696	706	728	.== 678	662	698	682	630	618	
CEDAR CITY		113 06'W		613	625	656	682	710	742	701	688	715	679	615	593	
SALT LAKE CITY		111 58 W		501	570	613	632	684	700	726	701	694	644	542	491	
VA NORFOLK	36 54 N			457	483	508	544	543	549	519	514	503	496	491	456	
r Ichmond Rohnoke	47 30 N			691	633	581 402	557	521 507	513	501	518	558 466	612	669	709	
VT BURLINGTON	- 27 1940 - 44 2840			452 358	472 393	493 424	514	507 464	516 473	503 404	496	492	499	463	439 566	
WA OLYMPIA		122 54 W		285	355	401	447 444	461 481	464	484 540	468 500	444 475	403 371	298 302	295 267	
SERTTLE- TROOMS		122 18'W		285	357	407	460	566	493	635	525	475	386	3952 1957	263	
SPOKANE	47 3844	117 32°W		348	439	501	532	567	570	666	630	595	500	365	322	
WHIDBEY ISLAND		122 40 W	17	325	396	449	483	522	499	561	519	492	398	339	309	
VAKIMA		120 12 W		379	464	528	563	592	594	665	635	605	514	288	247	
WI EAU CLAIRE	44 52°N			428	492	496	494	492	512	531	516	476	455	364	262	
GREEN BAY LA CROSSE	- 44 29/N - 43 52/N		214 205	420 434	469	498 464	496	503 500	522 504	531	515	482	447	370	364	
MADISON	43 02 N 43 08 N			449	485 499	491 500	489 476	500 508	521 532	534 543	527 538	487 505	463 479	383 380	172 376	
MILWHUKEE	42 57 1		211	414	454	477	491	515	541	550	541	508	476	392	363	
WV CHARLESTON	38-22/N			355	381	409	444	472	486	471	466	466	459	389	342	
HUNTINGTON	- 38 - 22 M	82-337W	255	375	408	432	474	493	505	495	486	478	474	404	362	
WY CASPER	42 55 M	106 284W	1612	589	624	631	628	642	684	711	700	678	638	572	570	
CHEVENNE		104 49'W		610	623	603	593	578	618	625	613	631	623	574	590	
ROCK SPRINGS SHERIDAN		109 041W		599 400	645 547	655 544	654 520	680	704	714	700	698 5 67	663 550	588 474	585	
2012/01/20190	44 40 14	106 584W	1205	488	516	546	532	551	590	655	638	597	552	476	467	
							RUGUA'									
MONTEVIDEO	34 5215	56 10/W	25	652	358	- 636	 605	= 582	535	528	548	576	590	632	639	
SRN JORGE	32 05 5		122	663	705	619	592	559	486	551	587	555	591	631	623	
							NEZUEI =====									
BARCELONA	10-07/N	64 41'W	7	596	603	538	546	527	500	544	561	595	567	577	592	
BARQUISIMETO	10-04/N		591	545	598	540	530	519	559	584	568	588	599	505	587	
CALABOZO	8 481N		100	579	613	602	558	512	545	509	522	431	553	566	554	
CARACAS CIUDAD BOLIVAR	- 10-304N 		862 50	594 562	647 570	612 554	573	479 544	503 405	536	561	564	523	529 522	576 500	
CORD	- 11 25/N		50 20	678 678	572 690	554 705	543 641	541 602	485 630	547 673	584 663	607 678	574 621	563 639	588 656	
GUIRIA	10 35'N		8	494	496	502	516	531	491	521	538	542	481	479	507	
L ORCHILR	11 48'N		3	613	660	662	652	538	590	503	642	663	644	607	663	
MAIQUETIA	10-36/N	66 597W	43	594	661	564	496	475	617	661	636	675	598	596	609	
MARACAIBO	10-394N		4 <u>0</u>	580	562	510	535	468	511	553	575	687	538	576	631	
MARACAY	10 15/N		442	715	725	689	645	514	589	619	637	674	570	622	652	
MATURIN	9 451N 0 50/N		70 4 405	518 204	536	508 640	475	461	415	441	495 422	474	487 504	474 275	487 247	
MERIDA MORON	8 30/N 10 31/N		1495 4	681 722	665 696	649 692	636 630	592 591	548 619	598 733	637 699	633 700	594 661	635 685	716 698	
PUERTO AYACUCHO	10 M N 5 41/N		4 134	722 551	626 532	652 481	636 508	393	421	700 496	6 <i>95</i> 497	700 483	661 499	530 012	693 514	
SAN ANTONIO	7 51/N		404	566	567	466	416	493	476	507	522	517	522	533	556	
SANTA ELENA	4 36/N		907	546	522	551	554	467	491	512	553	592	534	541	507	
San Fernando	7 54′N		73	538	552	531	459	394	391	424	429	452	476	514	536	
TUMEREMO	7 18′N	61 27/W	180	465	451	452	470	472	452	485	476	567	523	515	486	
						۷	IETNA	М								

Chapa

======= 22 21'N 103 49'E 1570 395 442 574 376 404 363 403 378 439 389 478 607

and a

	APPENDIX A (CON	(T)												
STATION	107 1000 -						FHLY A	ivg, k	(H * 1	.000 (1]			
2010/12/014	lat long (elev Jrn	FEB	MAR	8PR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	NOTES
				VIETN	1814 (C	ONYT)								
FHU-LEIN	20 487N 106 387E	125 305	-	234	384	474	493	492	-	-	-	505	450	
				NAKI ===	E ISL(=====	AND ===								
WAKE ISLAND	19 17'N 166 39'E	12 679	708	688	694	694	694	685	686	685	687	716	644	
				YU	GOSER	VIA								
				==	=====	===								
BANJA LUKA	44 47′N 17 13′E	153 366	420	404	488	576	513	559	536	575	470	167	278	
BEOGRAD	44 47′N 20 32′E	243 394	439	459	452	504	528	550	498	523	478	339		
HERCAGNOV1	42 284N - 18 314E	34 299	112	343	402	502	511	575	565	508	439	290 290	344 540	
LJUBLJANA	46 044N - 14 014W	300 224	268	320	401	471	419	483	455	41.4	302		242 470	
NEGOTIN	44 14/N 22 32/E	29 400	476	381	477	556	570	403 601	700 586			139	169 505	
PARG		863 378	330	343	341	416	357	450 450	206 431	518	421	206	326	
SKOPJE		240 311	472	394	465	553	556			408 500	358	188	234	
SLJEME		999 347	366	384				601	582	528	431	303	270	
SPLIT		122 403	41 41	304 405	427 474	492 492	407	489	461	454	382	231	276	
ULOINJ	41 55 N 19 13 E				464	488	458	552	539	511	441	313	310	
ZAGREB-GRIC			476 274	457 204	521	633 500	661	688	664	574	494	323	306	
ZLATIBOR			376	396	466	539	460	436	525	499	390	224	253	
	43 444N 19 434E 1	.030 476	601	525	495	556	547	593	566	549	459	364	410	

APPENDIX B FAILURE RATES FOR RELIABILITY ESTIMATION

B.1 FAILURE-RATE TRENDS

A system or equipment of mature design, when operated and maintained under specified conditions or operational environment, should exhibit a relatively constant failure rate throughout a specified period of use. Exhibit B-1 depicts the three failure-rate trends normally encountered in the life cycle of an item -- a decreasing failure rate during manufacture of initial installation; a constant failure-rate trend during the useful period; and an increasing failure-rate trend signifying wearout of certain constituent elements of the system.

The "useful" period is defined as the period of operation between the installation "debugging" period and the scheduled replacement of items causing the wearout trend. A constant failure rate can be achieved in PV systems when quality acceptance criteria are applied in the purchase of components (e. g., PV modules, batteries, regulators, etc.) for the system; when the installed PV system is fully debugged of any design-margin and interface tolerance problems; and when wearout failure modes in these constituent components are identified and are circumvented by planned (scheduled) replacement of <u>impending</u> failures as a preventive maintenance policy.

FAILURE RATE OF AN ITEM AS A FUNCTION OF OPERATING TIME

B.2 SOURCES OF FAILURE-RATE DATA

No formal failure experience data collection/analysis system has yet been established specifically for PV system applications. However, failure experience data from other system applications have been collected, analyzed, and periodically updated by several government activities. The data are published in useful handbook format for the guidance of design engineers in estimating and optimizing the reliability and maintainability of their system designs. Until PVrelated failure data becomes available, the following existing failure-data sources are useful:

- (a) <u>Basic Electrical/Electronic Failure-Rate vs Stress Data</u> -- Military Standardization Handbook (MIL-HDBK-217B), "reliability prediction of Electronic Equipment", published by the Government Printing Office. Provides basic failure rates under different levels of "use" stress factors (temperature, voltage, current, quality, application, etc.) for generic electrical and electronic part types (semiconductors, tubes, resistors, capacitors, relays, switches, connectors, wires, cables, etc.).
- (b) <u>Nonelectronic Parts Failure-Rate Data</u> -- Nonelectronic Parts Reliability Data Book (NPRD-1), published by the DOD Reliability Analysis Center operated by IIT Research Institute (IITRI/RAC), Griffiss AFB, New York 13441.
- (c) <u>Government-Industry Data Exchange Program GIDEP</u> -- provides summaries of failure-rate data reported by the GIDEP membership and published by GIDEP Operations Center, NWS Seal Beach, Corona, California 91720
- (d) <u>Photovoltaic Module Failure Experience</u> -- monitored and periodically reported by MIT Lincoln Laboratory, Lexinggton, Massachusetts, under DOE sponsorship.

B.3 ESTIMATED FAILURE RATES FOR CERTAIN ITEMS IN THE TYPICAL PV SYSTEM

Exhibit B-2 is a table presenting the range and average failure-rate experience for generic part and equipment types which may be used in stand-alone PV systems. These values are derived from the sources described in paragraph B-2 above. They are useful for feasibility estimation in preliminary design, pending receipt of test data pertaining to the specific items actually to be employed in the PVPS final design. Failure rates are expressed in failures per 10^6 calendar hours or 10^6 operating cycles, as appropriate.

Exhibit B-2
PRELIMINARY FAILURE-RATE ESTIMATES OF SELECTED ITEMS

Generic Item (Part or Component)	Range of Failure Rates (failures per 10 ⁶ hrs)			Reference
	Minimum	Average	Maximum	
Photovoltaic Cells: Failures (Open Circuit) Estimated From Diode Model Experience (Nebraska MIT/LL)	0.01	0.03 0.02	0.30	(a) (d)
Degradation (Dirt Accumulation Between Cleaning) Nebraska Site Experience Cambridge Site Experience NYC Site Experience	10.0 36.0 44.0	16.0 38.0 53.0	26.0 40.0 65.0	(d) (d) (d)
Diode (Silicon), General Purpose	0.002	0.02	0.10	(a)
Circuit Breakers (CB)	1.0	3.0	10.0	(Ն)
Relay	0.5	2.0	8.0	(b)
Connections: Weld Wire Wrap Crimp		0.002 >0.0001 0.007		(a) (a) (a)
Connectors		0.5		(a)
Switches (All Types)	1.0	3.0	10.0	(b)
Battery Cells (2 Volts/Cell): Random Cell Failure (Open/Short) Gaussian Wearout (Mean Cycles to Failure)	0.30 150 cy.	0.80 500 cy.	2.40 1500 cy.	(b) Depends on Vendor Data
DC/DC Regulator (Typical 15 KW)	70.0	200.0	500.0	(a)
Engine/Generator Equipment: Engine (Diesel) Generator (DC) Switching Device (Typical)	130.0 50.0 100.0	350.0 100.0 200.0	850.0 200.0 445.0	(c) (c) (2)

جه.

APPENDIX C

LISTING OF SPONSORS OF CODES AND STANDARDS

C.1 LIST OF CODES AND STANDARDS AGENCIES AND THEIR ADDRESSES

American National Standards Institute, Inc. 1430 Broadway New York, New York 10018

American Society for Testing and Materials 1916 Race Street Philadelphia, Pennsylvania 19103

Building Officials and Code Administrators International, Inc. 17926 South Halsted Street Homewood, Illinois 60430

ETL Testing Laboratories, Inc. Industrial Park Cortland, New York 13405

Factory Mutual Research 1151 Boston-Providence Turnpike Norwood, Massachusetts 02062

Institute of Electical and Electronics Engineers, Inc. 345 East 47th Street New York, New York 10017

International Conference of Building Officials 5360 South Workman Mill Road Whittier, California 90901 National Fire Protection Association 470 Atlantic Avenue Boston, Massachuesetts 02210

Occupational Safety and Health Administration Department of Labor ?00 Constitution Ave, N.W. Washington, D.C. 20004

Solar Energy Research Institute 1536 Cole Boulevard Golden, Colorado 80401

Southern Building Code Congress International 3617 Eighth Avenue South Birmingham, Alabama 35222

Underwriters Laboratories, Inc. 333 Pfingsten Road Chicago, Illinois 60062

C.2 LISTING OF CODES AND STANDARDS BY AGENCIES

American National Standards Institute, Inc.

StdNo.	Title
ANSI A. 58.1-1972	Building Code Requirements for Minimum Loads in Building and Other Structures
ANSI Z97.1-1975	Safety Performance Specifications and Methods of Test for Safety Glazing Material Used in Buildings

American Society of Testing and Materials

StdNo.	Title
B 117-73 B 287-74 B 368-78	Standard Method of Salt Spray (Fog) Testing Standard Method of Acetic Acid - Salt Spray (Fog) Testing Standard Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (Cass Test)

121

American Society of Testing and Materials (Continued)

Std. No.	Title
C 297-61	Standard Method of Tension Test of Flat Sandwich
C 355-64	Constructions in Flatwise Plane Standard Methods of Test for Water Vapor Transmission of Thick Materials
C 393-62	Standard Method of Flexure Test of Flat Sandwich Constuctions
D 568-61	Flammability of Plastics 0.127 cm (0.050 m) and Under in Thickness
D 635-63	Flammability of Rigid Plastics over 0.127 cm (0.050 in.) in Thickness
D 638-77a	Standard Test Method for Tensile Properties of Plastics
D 750-68	Recommended Practice for Operating Light-and Weather- Exposure Apparatus (Carbon-Arc Type) for Articficial Weather Testing of Rubber Compounds
D 775-73	Standard Method of Drop Test for Shipping Containers
D 790-71	Standard Test Method for Flexural Properties of Plastics
	and Electrical Insulating Materials
D 822-73	Standard Recommended Practice for Operating Light-and
	Water-Exposure Apparatus (Carbon-Arc Type) for Testing
D 897-78	Paint, Varnish, Lacquer, and Related Products Standard Test Method for Tensile Properties of Adhesive Bonds
D 1006-73	Standard Recommended Practice for Conducting Exterior Exposure Tests of Paints on wood
D 1014-66	Standard Method of Conducting Exterior Exposure Tests of Paint on Steel
D 1044-76	Resistance of Transparent Plastics to Surface Abrasion Standard Test Method
D 1149-78	Standard Test Method for Rubber Deterioration-Surface Ozone Cracking in a Chamber (Flat Specimen)
D 1433-58	Flammability of Flexible Thin Plastic Sheeting
D 1435-75	Standard Recommended Practice for Outdoor Weathering of Plastics
D 1828-70	Recommended Practice for Atmospheric Exposure of Adhes [:] ve-Bonded Joints and Structures
D 1929-68	Ignition Properties of Plastics
D 2247-73	Standard Method for Testing Coated Metal Specimens of 100% Relative Humidity
D 2249-74	Standard Method of Predicting the Effect of Weathering on Face Glazing and Bedding Compounds on Metal Sash D 2305-72 Methods of Testing Polymeric Film Used for Electrical Insulation
D 2565-76	Standard Recommended Practice for Xenon Arc-Type (Water Coded Light-and Water-Exposure Apparatus for Exposure of Plastics)
D 2843-70	Measuring the Density of Smoke from the Burning or Decomposition of Plastics
D 3161-76	Standard Test Method for Wind Resistance of Asphalt Shingles

228

American Society of Testing and Materials (Continued)

Std. No.	Title
E 72-74a	Standard Methods of Conducting Strength Tests of Panels for Building Construction
E 84-70	Standard Method of Test for Surface Burning Characteristics of Building Materials
E 96-66	Standard Methods of Test for Water Vapor Transmission of Materials in Sheet Form
E 108-58	Standard Methods of Fire Tests of Roof Coverings
E 119-73	Standard Methods of Fire Tests of Building Construction and Materials
E 136-73	Standard Method of Test for Noncombustibility of Elementary Materials
E 424-71	Standard Methods of Test for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
F 146-72	Standard Methods of Test for Fluid Resistance of Gasket Materials
G 7-77a	Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials
G 21-70	Standard Recommended Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi
G 23-75	Standard Recommended Practice for Operating Light-and Water-Exposure Apparatus (Carbon-Arc Type) for Exposure of Nonmetallic Materials
G 24-73	Standard Recommended Practice for Conducting Natural Light Exposures Under Glass
G 26-77	Standard Recommended Practice for Operating Light- Exposure Apparatus (Xenon-Arc Type) with and without Water for Exposure of Nonmetallic Materials
G 29-75	Method of Test for Algal Resistance of Plastic Films

Institute of Electrical and Electronics Engineers

Std. No.

Title

141	Recommended Practice for Electric Power Distibution for
142	Industrial Plants (IEEE Red Book) Recommended Practice for Grounding of Industrial and
242	Commercial Power Systems (IEEE Green Book) Recommended Practice for Electric Power Systems in
446	Commercial Buildings (IEEE Gray Book) Recommended Practice for Emergency and Standby Power Systems (IEEE Orange Book)
485	Sizing of Large Lead Storage Batteries for Generating Stations and Substations

Federal Specification (General Services Administration)

No		
_		

Title

DD-G-451C Flat Glass for Glazing, Mirrors, and Other Uses

Military Standard

No.

Title

MIL-STD-810C/10 March 1975/Environmental Test Methods:

Method 501.1 High Temperature Method 502.1 Low Temperature Method 508.1 Fungus Method 509.1 Salt Fog Method 507.1 Humidity Method 506.1 Rain Method 516.2 Shock

National Fire Protection Association

No.

Title

NFPA 70-1981	National Electical Code
NFPA 78-1975	Lightning Protection Code
NFPA 251-1972	Standard Methods of Fire Tests of Building Construction and
	Materials NFPA-255-1972Method of Test of Surface Burning
	Characteristics of Building Material
NFPA 256-1976	Standard Methods of Fire Tests of Roof Coverings
NFPA 258-1976	Standard Test Method for Measuring the Smoke Generated by
	Solid Materials

National Bureau of Standards

No.

Title

NBS-23	Hail Resistance of Roofing Products	
NBS-Special	Publication 473-003-003-017-15-2	
	Eesearch and Innovation in the Building Regulatory Process	
	Sesstion 2B, Issues in Building Regulation	
	"Decision-Aiding Communications in the Regulatory Agency:	The
	Partisan Uses of Technical Information," Francis T. Ventre	

National Building Codes

Title

Uniform Building Code International Conferences of Building Officials Southern Building Code Southern Building Code Congress International National Electric Code National Fire Protection Association BOCA Building Officials and Code Administrators International Underwriters Laboratories

<u>No.</u>	Title
UL 1 UL 6 UL 33 UL 50 UL 94 UL 96 UL 231 UL 263 UL 310 UL 360 UL 467 UL 486 UL 514 UL 651 UL 729 UL 723	Flexible Metal Conduit Rigid Metal Conduit Fusible Links Cabinets and Boxes Tests for Flammability of Plastic Materials Lightning Protection Components Power Outlets Fire Tests of Building Construction & Materials Quick Connect Terminals Liquid-Tight Flexible Steel Conduit Grounding and Bonding Equipment Electric-Wire Connector and Soldering Lugs Outlet Boxes and Fittings Rigid Nonmetallic Conduit Nonmetallic – Sheathed Cable Tests for Surface Buring Characteristics of Building Materials
UL 790 UL 854	Tests for Fire Resistance of Roof Covering Materials
UL 857	Service Entrance Cables Busways and Associated Fittings
UL 997 UL 1059	Wind Resistance of Prepared Roof Covering Materials Terminal Blocks

REFERENCES

- 1-1 MONEGON, LTD, Selecting Solar Photovoltaic Power Systems (Seminar-Text), Volumes 1 & 2, Report M102, Gaithersburg, Maryland, 1980.
- 4-1 Ruzek, J.B. and W.J. Stolte, (Bechtel National Inc., San Francisco, California) Requirements Definition and Preliminary Design of a Photovoltaic Central Station Test Facility, Final Report, Sandia Laboratories SAND 79-7012, April 1979.
- 4-2 Crippi, R.A., Module Efficiency Definitions, Characteristics, and Examples. LSSA Report No. 5101-43, Jet Propulsion Laboratory, Pasadena, California October 1977.
- 4-3 Ross, R.G., C.C. Gonzalez, "Reference Conditions for Reporting Terrestrial Photovoltaic Performance". Paper presented at American Section of International Solar Energy Society, 1980 Annual Meeting, Phoenix, Arizona. June 2-6, 1980.
- 4-4 Forman, S.E. Endurance and Soil Accumulation Testing of Photovoitaic Modules at Various MIT/LL Test Sites, MIT Lincoln Laboratory, Lexington Massachusetts Report C00-4094-23 under ERDA Contract EY-76-C-02-4094, Sept. 1978.
- 4-5 Workshop on Flat Plate Photovoltaic Module & Array Circuit Design Optimization, Jet Propulsion Laboratory, Pasadena, California, May 19 & 20, 1980.
- 4-6 Solar Photovoltaic Applications Seminar: Design, Installation and Operation of Small, Stand-Alone Photovoltaic Power Systems, PRC Energy Analysis Co., McLean, Virginia, DOE report DOE/CS/32522-TI, July 1980.
- 4-7 Klein, D.N. Handbook for Photovoltaic Cabling, MIT Lincoln Laboratory, Lexington, Massachusetts, Report C00-4094-90, August, 1980.
- 6-1 Bechtel National Inc., Handbook For Battery Energy Storage Photovoltaic Power Systems, Final Report, San Francisco, California. Work performed under DOE Contract No. DE-AC03-78ET 26902, Sandia National Laboratories, SAND80-7022, February 1980.
- 6-2 Bird Engineering Research Associates, Inc., <u>Reliability Guides</u>, Vols. 1-4, Prepared for Naval Ordinance Systems Command Under contract N00017-69-C-4441, Octorber 1971.
- 6-3 Bird Engineering Research Associates, Inc., Maintainability Engineer-ing Handbook, Prepared for Naval Ordinance Systems Command Under Contract N00017-68-C4403, June 1969.

352

REFERENCES (Continued)

- 6-4 Mood, A.M., Introduction to the Theory of Statistics, McGraw-Hill, New York, NY, 1963.
- 9-1 NASA-Lewis Research Center <u>Photovoltaic Structures Handbook</u>, -- (in preparation).
- 9-2 J.L. Marshall, Lightning Protection, John Wiley & Sons, 1973.
- 10-1 Bifano, W.J., A.F. Ratajczak, W.J. Ice, NASA-Lewis Research Center, "Design and Fabrication of a Photovoltaic Power System for the Papago Indian Village of Schuchuli (Gunsight), Arizona," NASA TM-78948, June 1978.
- 11-1 Collares-Pereira, M., A. Rabl, "The Average Distribution of Solar Radiation -- Correlations Between Diffuse and Hemispherical and Between Daily and Hourly Insolation Values," pp 155-164, <u>Solar Energy</u>, Vol. 22, No. 2, 1979.
- 11-2 Threlkeld, J.L., Thermal Environmental Engineering, Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1962.
- 11-3 1972 ASHRAE Handbook of Fundamentals. New York, N.Y.: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., 1972.
- 11-4 Liu, B.H.Y., R.C. Jordan, "The Interelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation," <u>Solar</u> Energy. Vol. 4, No. 1, 1960.
- 13-1 Mechtly, E.A., Unviersity of Illinois The International System of Units Physical Constants and Conversion Factor Second Revision, National Aeronautics and Space Administration Report NASA SP-7012, 1973.
- A-1 Cinquemani, V, J.R. Owenby, Jr., and R.G. Baldwin (National Oceanic and Atmospheric Administration, National Climatic Center, Asheville, N.C.) Input Data for Solar Systems, prepared for USDOE under Interagency Agreement No. E (49-26) - 1041, November 1978.
- A-2 Lof, G.O.G., J.A. Duffie, C.O. Smith, World Distribution of Solar Radiation, College of Engineering University of Wisconsin, Engineering Experimental Station Report No. 21, July 1966.

R-2