PN-AAV-338

 45904DOE/NASA/0195-1 NASA CR-165352 M206

Photovoltaic StandAlone Systems

Preliminary Engineering Design Handbook

H. L. Macomber and John B. Ruzek Monegon, Ltd.
Gaiîhersburg, Maryland
Frederick A. Costello
F. A. Costello, Inc.
Herndon, Virginia
and

Staff of Bird Engineering
Research Associates, Inc.
Vienna, Virginia
August 1981
Prepared for
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
Under Contract DEN 3-195
for
USS. DEPARTMENT OF ENERGY
Conservation and Renewable Energy
Division of Solar Thermal Energy Systems
Washington, D.C. 20545
Under Interagency Agreement DE-Al01-79ET20485

ACKNOWLEDGEMENT

This handbook was prepared by MONEGON, LTD., of Gaithersburg, Maryland under Contract DEN 3-195 with the National Aeronautics and Space Administration, Lewis Research Center. John B. Ruzek served as Project Engineer with management support by Dr. Harold L. Macomber. Valuable assistance was provided by two subcontractors, Frederick A. Costello, Inc., Consulting Engineers, and Bird Engineering-Research Associates, Inc.

NOTE: Throughout this handbook, reference is made to Loss of Load Probability (LOLP) estimation procedures, According to the 1970 National Power Survey of the Federal Power Commission, these estimating procedures may be more correctly defined as Loss of Energy Probability (LOEP) procedures. This definitional difference in no way affects the accuracy or usefulness of these procedures.

CONTENTS

Section Title Page1
INTRODUCTION 1 1-1
2 GUIDE TO HANDBOOK USAGE 2-1
3 TYPICAL STAND-ALONE PHOTOVOLTAIC SYSTEM CONFIGURATIONS 3-1
COMPONENT DESIGN AND ENGINEERING INFORMATION 4-1
4.1 Electrical Loads 4-1
4.1.1 Estimating the Load 4-1
4.1.2 Load Reduction Strategies 4-4
4.1.3 Merits and Disadvantages of Both Ac and Dc Power 4-5
4.2 Photovoltaic Arrays 4-7
4.2.1 Photovoltaic Terminology 4-7
4.2.2 Ideal Solar-Cell Current-Voltage Characteristics 4-12
4.2.3 Current-Voltage Characteristics of Arrays in the Field 4-21
4.2.4 Available Modules 4-24
4.3 Lead-Acid Storage Batteries 4-27
4.3.1 Advantages and Disadvantages of Batteries in Photovoltaic Systems 4-27
4.3.2 Battery Operation 4-28
4.3.3 Battery Current/Voltage Characteristics 4-28
4.3.4 Battery-System Design 4-32
4.3.5 Battery Life 4-33
4.3.6 Lead-Acid Storage Battery Safety 4-36
4.4 Power Handling 4-40
4.4.1 Dc Power Conditioning 4-40
4.4.2 Control Schemes 4-43
4.4.3 Electrical Wiring 4-46
4.5 Emergency Backup Systems 4-51
4.5.1 Load Analysis 4-51
4.5.2 Basic PVPS Design Margin 4-52
4.5.3 Types and Suitability of Backup Systems 4-53
4.5.4 Incorporation of Backup Into the PV System 4-56

CONTENTS (Continued)

Section Title Page
55-1
6
PRELIMINARY SYSTEM DESIGN CONSIDERATIONS 6 6-1
6.1 Insolation and Siting 6-1
6.2 Operation of PV Systems Under Varying Loads 6-7
6.2.1 Array and Battery Quick-Sizing Method 6-7
6.2.2 Component Sizing 6-9
6.3 Basic Approach to Feasibility Assessment of Photovoltaic Power Systems 6-13
6.3.1 Preliminary Estimate 6-13
6.3.2 Life Cycle Cost Determination 6-15
6.4 Reliability Enginєering Approach 6-18
6.4.1 Definition and Specification of PV System R \& M Requirements 6-18
6.4.2 R \& M Networks and Block Diárams 6-24
6.4.3 Reliability Prediction and Feasibility Requirements 6-29
6.4.4 Failure Mode and Effects Analysis 6-30
6.5 Advantages and Disadvantages of PV Power Systems 6-34
7 SYSTEM DESIGN 7-1
7.1 Design Philosophy 7-1
7.2 System Design Procedure 7-2
7.3 Codes and Standards 7-15
7.3.1 Codes 7-15
7.3.2 Standards 7-16
7.3.3 Manuals 7-17
7.3.4 Approved Equipment Listings 7-17
7.3.5 Notes 7-18
7.3.6 Applicable Document List 7-18
Section Title Page
8INST'ALLATIONS, OPERATION AND MAINTENANCE8-1
8.1 Introduction 8-1
8.2 Power Outages 8-1
8.3 Reliability and Maintainability 8-2
8.4 Operation and Maintenance Tradeoffs 8-3
8.4.1 Operation and Preventive Maintenance 8-3
8.4.2 Corrective Maintenance 8-5
8.5 System Maintenance 8-8
8.5.1 Maintenance Concept 8-8
8.5.2 Maintainability Design 8-9
8.6 Logistics Design 8-11
8.6.1 Supply Support 8-11
8.6.2 Power System Drawings 8-13
8.6.3 Tools, Test Equipment, and Maintenance Aids 8-13
8.6.4 Technical Mannuals 8-14
8.6.5 Training 8-15
8.7 Installation Design Considerations 8-15
8.7.1 Physical Considerations 8-15
8.7.2 Equipment Housing and Structure Considerations 8-16
8.7.3 Installation Checkout and Acceptance Testing 8-16SITE SAFETY9-1
9.1 Personnel Safety Checklist 9-1
9.1.1 Safety \& Health Standards 9-1
9.1.2 Electric Shock 9-2
9.1.3 Toxic \& Flammable Materials 9-2
9.1.4 Fire Safety 9-2
9.1.5 Excessive Surface Temperatures 9-3
9.1.6 Equipment Identification Labeling 9-3
9.1.7 Physical Barriers 9-3
Section Title Page
9.2 Facility Safety Checklist 9-4
9.2.1 PVPS Safety Protection from Environmental Conditions 9-4
9.2.2 PVPS Safety Protection from Man-Made Conditions 9-5
9.2.3 PVPS Safety Protection from Component Failure 9-6
9.3 References 9-6
10 DESIGN EXAMPLES 10-1
10.1 Remote Multiple-Load Application 10-1
10.1.1 Northern Hemisphere Location 10-1
10.1.2 Southern Hemisphere Location 10-2
11 INSOLATION 11-1
11.1 Introduction 11-1
11.2 Insolation Calculation Programs 11-5
11.3 Statistical Insolation Computations 11-13
11.4 Sun Angle Charts 11-15
11.5 Row-to-Row Shading 11-15
12
PHOTOVOLTAIC SYSTEM COMPONENTS 12-1
12.1 Solar Cell Modules 12-1
12.2 Batteries 12-7
12.3 De Regulators 12-9
12.4 Dc Motors 12-10
13 GLOSSARY OF TERMS 13-1
13.1 Definitions of Photovoltaic Terminology 13-1
13.2 Conversion Factors 13-3
14 PHOTOVOL'TAIC POWER SYS'TEM EQUIPMENT SUPPLIERS 14-1
14.1 Photovoltaic Cells, Modules 14-1
14.2 Batteries 14-2
14.3 Power Conditioning Equipment 14-3
14.4 Direct Current Motors and Load Devices 14-5

CONTENTS (Continued)

Section Title
APPENDIX A WORLDWIDE INSOLATION DATA A-1
APPENDIX B FAILURE RATES FOR RELIABILITY ESTIMATION B-1
B. 1 Failure-Rate Trends B-1
B. 2 Sources of Failure-Rate Data B-2
B. 3 Estimated Failure Rates for Certain Items in the Typical PV System B-3
APPENDIX C LISTING OF SPONSORS OF CODES AND STANDARDS C-1
C. 1 List of Codes and Standards Agencies and Their Addresses C-1
C. 2 Listing of Codes and Standards by Agencies C-2
REFERENCES R-1
ERRATA SHEET

0 In Exhibit 11.2-4, "Listing of an HP-67 Insolation Computation Program", corrections shown parenthetically in the following tabulation of affected steps should be made:

Step No.	Key Strokes	Key Code		
001	1 LBLA	(31)	25	11
043	$\mathrm{g} \times(>) \mathrm{y}$		32	81
110	8 cos		31	(63)
138	$\mathrm{h} \pi$		(35)	73
152	$\mathrm{h} \pi$		(35)	73
200	h RTN		(35)	22

- In Exhibit 11.2-3. paragraph 4 ("Example"), the tilt angle should be 30° instead of 20°. The paragraph which follows is also numbered "4" and rivisuld be changed to "E".

EXHIBITS

Exhibit
Page
2-1 Flow Chart, Photovoltaic Stand-Alone Systems Preliminary Engineering Design Handbook 2-2
3-1 Generalized Stand-Alone Direct Current Photovoltaic Power System Block Diagram 3-2
4.1-1 Load Diversity 4-3
4.1-2 Load-Reduction Strategies 4-4
4.1-3 Disadvantages of Dc and Ac 4-6
4.2-1 Terminology for Large-Scale Photovoltaic Installations 4-8
4.2-2 Series/Parallel Circuit Nomenclature 4-10
4.2-3 Module Output and Intermediate Loss Mechanisms 4-11
4.2-4 Operation of a Solar Cell 4-13
4.2-5 Equivalent Circuit of a Solar Cell 4-15
4.2-6 Typical Array Characteristics 4-16
4.2-7 Current- ${ }^{1 /}$ oltage Characteristics of Cells in Series and Parallel 4-18
4.2-8 Protection From Open Circuit Failures 4-20
4.2-9 Array Power Loss Fraction Vs. Substring Failure Density 4-23
4.2-10 Typical Available Silicon Solar Modules 4-25
4.2-11 Nominal Array Costs (1975 Cost Levels) 4-26
$\begin{array}{ll}\text { 4.3-1 Characteristics Summary Table: Commercially Available } \\ & \text { Batteries }\end{array}$ 4-29
4.3-2 Lead-Acid Battery Characteristic Curves 4-30
4.3-3 Lead-Acid Battery Failure Mechanis.ms 4-34
4.3-4 Typical Battery State of Charge (SOC) History 4-35

EXHIBI'TS (Continued)

Exhibit Page
4.4-1 Self-Regulated PV System 4-42
4.4-2 I-V Curve of PV Module Exhibiting Self-Regulation 4-42
4.4-3 Voltage-Regulated PV System 4-42
4.4-4 Simplified Block Diagram For a Maximum Power Tracking Controller 4-45
4.5-1 Summary Deseriptions of Backup Systems 4-55
5-1 Minimum Data Requirements to Establish Feasibility 5-2
5-2 General Checklist for Detailed Design 5-3
6.1-1 Average inonthly Insolation ($\mathrm{kWh} / \mathrm{m}^{2}$-day) and the Ratio of Standard Deviation (Sigma 1) to Average 6-3
6.1-2 Horizon Profiles for Two Candidate Sites 6-6
6.2-1 Quick Sizing Computational Procedure for Array and Storage 6-10
6.2-2 Battery Storage Requirements for 1% LOLP 6-11
6.2-3 Effect of Depth of Discharge on Battery Life on Typical Lead-Acid Motive Power Type Cell 6-12
6.3-1 Components, System Costs and Economic Parameters 6-16
6.3-2 Photovoltaic Power System Preliminary Design Life Cycle Cost Computation 6-17
6.4-1 Reliability Functions for Exponential (Random) and Gaussian (Wearout) Facilities 6-19
6.4-2 Partial Description of Requirements for Hypothetical Customer Application 6-22
6.4-3 Example Reliability Allocetion for a Hypothetical System €-23
6.4-4 Functional Reliability Block Diagram 6-25
6.4-5 Functional Oriented Reliability Block Diagram 6-25
6.4-6 Optional Module Configurations: (A) Series: (R) Serios/Pomal 6-26

EXHIBITS (Continued)

Exhibit Page
7.2-1 Loss-cf-Load Probability Computational Procedure 7-3
7.2-2 Cumulative Distribution Function for the Normal Curve 7-4
7.2-3 Example of Loss-of-Load Probability Computation 7-7
7.2-4 Listing of a TI-59 Program for Calculating Loss-of-Load Probability 7-8
7.2-5 Instructions for the Operation of the TI-59 Program for Computing the Loss-of-Load Probability 7-9
7.2-6 Listing of an HP-67 Program for Calculating Loss-of-Load Probability 7-10
7.2-7 Instructions for the Use of the HP-67 Program for Calculating Loss-of-Load Probability 7-13
7.2-8 Typical Cases for the Loss-of-Load Probability 7-14
8.2-1 Causes of Power Loss in PV Systems 8-1
8.4-1 Reliability Improvement with Standby Redundancy 8-7
10.1-1 Multiple Load Application Monthly Load Summary 10-3
10.1-2 Multiple Load Application Equipment Sizing 10-4
11.1-1 Insolation Computation for a South-Facing Array 11-2
11.1-2 Insolation Computation Example: Washington, D.C. 11-3
11.1-3 Ground Reflectances for Various Surfaces 11-4
11.2-1 Instructions for Operating the TI-53 Insolation Computation Program 11-6
11.2-2 Listing of a TI-59 Insolation Computation Program 11-7
11.2-3 Instruations for Operating the HP-67 Insolation Computation Program 11-9
11.2-4 Listing of an HP-67 Insolation Computation Program 11-10
11.3-1 Generalized K_{H} Distribution Curves 11-14

EXHIBITS (Continued)

Exhibit Page
11.4-1 Illus $1:$ ation of Solar Altitude and Azimuth Angles 11-16
11.4-2 Sun Chart for 0° Latitude 11-17
11.4-3 Sun Chart for 8° Latitude 11-17
11.4-4 Sun Chart for 16° Latitude 11-18
11.4-5 Sun Chart for 24° Latitude 11-18
11.4-6 Sun Chart for 32° Latitude 11-19
11.4-7 Sun Chart for 40° Latitude 11-19
11.4-8 Sun Chart for 48° Latitude 11-20
11.4-9 Sun Chart for 56° Latitude 11-20
11.4-10 Sun Chart for 64° Latitude 11-21
11.4-11 Sample Shading Calculation 11-22
11.5-1 Minimum Row-to-Row Spacing Required for No Shading Between 0900 and 1500 Hours on Dec. 21 (June 21) 11-23
12.1-1 Comparison of Typical Specifications for Photovoltaic Modules 12-3
12.2-1 Table of Important Battery Design Characteristics 12-8
12.3-1 De Regulators Specification Requirements 12-9
12.4-1 Representative Data on Dc Motors 12-11
B-1 Failure Rate of an Item as a Function of Operating Time B-1
B-2 Preliminary Failure-Rate Extimates of Selected Items B-3

SECTION 1

INTRODUCTION

The central component of any photovoltaic power system is the solar cell. It is the transducer that directly converts the sun's radiant energy into electricity. The technology for using solar cells to produce usable electrical energy is known and proven. The orbiting satellite Vanguard I, launched in March 1958, used solar cell panels to power its radio transmitter for about six years before radiation damage caused it to fail. The space program that continued after Vanguard I not only used photovoltaic systems, but fostered an industry for producing the spacecraft solar cells and arrays.

The production of photovoltaics associated with the space program reached about 50 kW per year and then leveled off. The 1973 oil embargo provided the stimulus for the government and the industry to begin to take serious steps to accelerate the normally very slow development process in order to seek significant expansion of the initial terrestrial markets. As of 1980 , the annual production of solar cells is well in excess of 4 MW per year.

In 1973 a few pioneers of the photovoltaic industry began the terrestrial photovoltaic industry by shifting from the use of reject space solar cells to cells designed specifically for terrestrial use. This industry has installed thousands of photovoltaic systems representing a cumulative power of more than 6 MW since this beginning.

Since its initiation in 1975, the U.S. Department of Energy (DOE) National Photovoltaic Program has sponsored the design and implementation of nearly 40 system applications classed as "stand-alone" systems with less than 15 kW peak in power rating. In addition, through the DOE managed Federal Photovoltaic Utilization Program (FPUP), 3,118 applications of the small stand-alone class have been funded for installation in the first two of a five-cycle program.

Outside of DOE, the Department of Defense has funded the design and installation of nearly 150 stand-alone photovoltaic systems. A few scattered applications have also been sponsored by other government agencies such as the Indian Health Service of the U.S. Department of Health, Education, and Welfare and by the U.S. Department of State, Agency for International Development.

The purpose of this handbook is to enable a system design engineer to perform the preliminary system engineering of the standalone Photovoltaic Power System (PVPS). This preliminary system engineering includes the determination of overall system cost-effectiveness, the initial sizing of arrays and battery systems, and the considerations which must be specifically addressed in the subsequent detailed engineering stage of the project.

The scope of this handbook is limited to flat-plate, stand-alone PVPS for locations anywhere in the U.S. and in areas of the world which are located between the latitudes of 60° South and 60° North. As a standalone electrical system, the PVPS will be a self-sufficient system which includes an array field, power conditioning and control; battery storage, instrumentation and dc loads. While the intent of this handbook is for low-power applications, serving loads up to 15 kW in size, the theory and sizing methods are not dependent upon the generating capacity of the system or the peak demand of the loads, but only on the desired reliability criteria chosen.

SECTION 2

GUIDE TO HANDBOOK USAGE

This handbook is intended to aid a system design engineer in determining the suitability of stand-alone photovoltaic power systems for specific applications. It will be helpful in the preliminary engineering of the system in which the initial sizing of the major components of the power system are determined.

A flow chart is presented in Exhibit 2-1 which can be used to guide the reader in the use of this handbook. The flow chart expresses the relationships between the various sections of the handbook. The first three sections of the handbook contain introductory material and will not normally be referred to in the design process.

Section 4 enables the user to estimate loads in the PVPS, to estimate array performance, develop current-voltage curves for arrays with parallel and series connections, to estimate power output as a function of time, develop the conceptual design of the array for high reliability. This section of the handbook also shows the reader typical battery operations, battery current-voltage characteristics, and the procedures of estimating system performance with a battery, as well as the safety aspects of using lead-acid batteries in a stand-alone system. This section also describes the power handling portion of the PVPS which interfaces the arrays with the end-use loads. This includes de power conditioning, control schemes, electrical wiring, and emergency back-up systems.

Section 5 contains two lists which will be useful in the assembly of data needed in the design processes. The first list contains the minimum data requirements to establish the feasibility of a photovoltaic power system (PVPS) in the preliminary desiga stage. The second is a more comprehensive list for the detailed design stage of the PVPS prior to construction which follows preliminary engineering.

Exhibit 2-1
FLOW CHART
PHOTOVOLTAIC STAND-ALONE SYSTEMS PRELIMINARY ENGINEERING DESIGN HANDBOOK

Section 6 presents the preliminary design considerations including insolation and siting, operation of the PVPS under varying loads, approaches to reliability engineering, the advantages and disadvantages of PV power systems, the elements of life-cycle costing and the quick-sizing of PV power systems. Section 7 presents the procedure for system design and the met.iod for estimating the loss of load probability.

Sections 8 and 9 cover the installation, operations, maintenance and safety aspects of the PVPS. They set forth the basic design considerations which must be considered during detailed design of the system.

Section 10 presents an example of the quick-sizing procedure to determine the approximate size and cost of a photovoltaic system for any particular application. This quick-sizing is useful in evaluating photovoltaic feasibility without going through a detailed analysis.

Section 11 presents the calculational tools for the determination of the insolation on a tilted surface. Using the clearness index for a specific site (tabulated in Appendix A for a number of cities in the U.S. and throughout the world), the latitude angie of the site, the tilt angle of the site and the reflectarice of the ground in front of the array, the average daily insolation for a given month can be determined.

For quick reference, Sections 12, 13, and 14 contain data on photovoltaic system components, a glossary of terms, and listings of equipment suppliers, respectively.

SECTION 3
 TYPICAL STAND-ALONE
 PHOTOVOLTAIC SYSTEM CONFIGURATIONS

A photovoltaic power system using today's technologies and designed for a stand-alone (non utility-grid connected) application in today's markets includes a solar array using flat plate or concentrating type collectors, and may include such electrical system components as a system controller, a lead acid battery, a voltage regulator, an instrumentation system and an on-site standby generator for emergency back-up. Exhibit $3-1$ is a generalized stand-alone direct current photovoltaic power system block diagram showing the elements of the generating and load portions of the overall system.

A flat plate array or concentrator array functions as the solar collector for the photovoltaic system. At present, flat plate arrays are the principle collectors used in the installed photovoltaic power systems in the world. Some concentrator applications exist. The methodology of sizing the arrays in this handbook applies to either fixed-tilt or seasonally adjusted tilted, flat plate arrays.

The power conditioning subsystem provides the interface between the arrays and the power system's loads. The function of a power conditioning subsystem is to render the variable dc output of the array suitable to meet the power requirements of the loads. For dc systems, the power conditioning subsystem typically includes voltage regulation, energy storage, and possibly a dc/dc converter interface with the loads.

The lead-acid battery provides the energy storage for the photovoltaic system. It increases the reliability level of providing power to the loads and also improves the array efficiency by keeping the solar cell voltage within prescribed limits. The operation of the arrays is presented in Section 4.

A regulator is required when electrochemical storage is employed. The regulator controls the current and voltage inputs to the batteries to protect them from damage at either end of the charging cycle. At the beginning of the cycle,

Exhibit 3-1
GENERALIZED STAND-ALONE DIRECT CURRENT PHOTOVOLTAIC POWER SYSTEM BLOCK JIAGRAM
the discharged batteries would draw a large current from an unregulated photovoltaic array which would cause overheating of the batteries and shorten their lives. At the end of the charging cycle, the voltage across an unregulated battery would be too large and further charging would generate hydrogen gas and dehydrate the batteries.

In order to provide a higher degree of reliability of electric service to the power system's loads than the combination of the photovoltaic arrays and storage batteries might be capable of in a cost effective manner, an emergency back-up generating unit may be connected into the system. When emergency backup is incorporated, it is advantageous to be able to feed just those loads which are deemed to be of an emergency or critical nature. An automatic transfer switch may thus be incorporated to "throw" these loads over to the emergency back-up system upon the complete discharge of the storage batteries during periods of low insolation.

A load management control system may also be included in some systems to reduce the peak aggregate of the loads and thus reduce somewhat the required capacity of both the photovoltaic arrays and that of the energy storage system. It is also possible to control the loads in such a way as to reduce not only the peak diversified demand but also the system's average daily energy requirements by means of duty cycles and load schedules which limit electricity use according to preset patterns. Such a strategy would also help reduce the size of arrays and the energy storage system.

The sections which follow present details of various components for photovoltaic power systems and tradeof f considerations in the preliminary sizing of those systems.

SECTION 4
 COMPONENT DESIGN AND
 ENGINEERING INFORMATION

4.1 ELECTRICAL LOADS

The size and cost of a photovoltaic system is strongly dependent upon the energy requirements of the loads which are to be served. The peak demand and energy requirements must be estimated as well as possible, to avoid unnecessarily oversizing the power system and adding to cost. This is especially apparent when the relative component costs are compared in the capital cost estimate for the life-cycle cost computation based on current-day (1980) levels. It is seen in such a comparison that the unit cost of array capacity is typically appreciably higher than for any other part of the power system. This sub-section reviews load estimations, load reduction strategies and considerations of using de rather than ac for the distribution system and loads.

4.1.1 Estimating the Load

Individual loads are characterized by their power requirements as determined by both voltage and current ratings and duty cycle, which will determine their energy requiremenis. Dc loads may be made of either resistive elements, drawing constant power for given applied voltages, or may be composed of motors which are deperident upon the mechanical torque requirements of the driven loads to determine voltage and current inputs. A third category of energy tranformation utilizing induction coupling applies to ac load categories and includes examples such as fluoresent lamps, power supplies with tranformers, and high frequency converters such as microwave oven supplies. For systems up to 15 kW in size, the load might be comprised of a single device, e.g. a single 15 hp motor, or a multiple combination of lesser-sized motors and resistive loads.

The first aspect of the load analysis is to define energy requirements of the combination of loads to be operated by the power system. The power requirement represents the maximum demand at any one time. Since some of the equipment is operated on a cyclic basis, the average demand or the energy requirement is considerably less than would be obtained by assuming a full-time operation, and multiplying rated power requirements by 24 hours a day.

Cyclic operation of a large number of components permits the undersizing of equipment on the basis of load diversity. The odds are that if there are enough components drawing power from the system, not all components will draw current simultaneously. Large electric utilities make constant use of the low odds associated with their enormous systems in capacity sizing of generating units and distribution circuits. As an example, suppose there are four components on the line, drawing $1,2,3$, and 5 kilowatts peak power randomly with duty cycles of 50 percent, 40 percent, 30 percent, and 20 percent, respectively. The probability that all four loads will operate simultaneously is 1.2 percent, as shown on Exhibit 4.1-1.

The 1.2 percent figure can be translated into 0.012 times 365 days, or 4 days per year that the aggregate load on the system will equal 10 kW . The probability of other load combinations are shown in the exhibit along with the expected energy demand of $72 \mathrm{kWh} / \mathrm{day}$. The daily load factor for this system is 30% (7 ? $\mathrm{kWh} /(10 \mathrm{~kW} \times 24 \mathrm{hr})$), which is equivalent to having an average 3 kIV load running 24 hours/day. The full 10 kW of generating capacity must be installed to meet the peak loads unless either a load management scheme is installed or a 1.2% probability of overload is acceptable.

The probability of any other load can be estimated from the data on Exhibit 4.1-1. For example, the probability that the load will be 2 kW is equal to the probability that the 2 kW load will be on (0.40), multiplied by the probability that the three loads will be of $f(0.5 \times 0.7 \times 0.8)$, giving a probability of 0.112 that the load will be 2 kW . Similar computations can be executed for the other load sizes, so a curve of load size versus probability can be generated.

Exhibit 4.1-1
LOAD DIVERSITY

Load	Operating Time
1 kW	50%
2 kW	40%
3 kW	30%
4 kW	20%

Probability of simultaneous operation $=0.5 \times 0.4 \times 0.3 \times 0.2=0.012=1.2 \%$

Probability of all combinations:

4.1.2

Load Reduction Strategies

The foregoing discussion brings us to the logical concept of load shedding. If the probability of simultaneous operation is low, or if some functions are not critical, the peak demand can be limited by a controller that senses the total demand and supplies power to the low-priority components only when the demand on the power system is low. Reducing the peak load has an indirect effect on the reduction in energy demand, although it is difficult to estimate the energy impact without a detailed, sophisticated computer program that tracks system performance on an hourly basis.

When the energy demand of a potential photovoltaic application is analyzed, methods for reducing the requirements frequently are discovered. Exhibit 4.1-2 lists the most frequent methods of reduction. First, components can be operated cyclically. When one load is operating at peak demand, a second load can be shut off, thereby reducing peak power demand and, consequently, the sizes of the equipment such as motors. Smaller sized motors operating at higher loadings will result in higher system efficiency during off peak operation, and, therefore, lower energy consumption. The cyclic operation of the components can be either manual or automatic, although the automatic system will be more costly and will introduce another power-consuming component into the system. The automatic systems will generally be cost-effective only if the peak power under simultaneous operation is significantly greater than peak power under cyclic operation. At a ratio of approximately $3: 1$ (simultaneous to cyclic), the cyclic operation should be examined.

Exhibit 4.1-2
LOAD-REDUCTION STRATEGIES

Cyclic operation of components
Manual
Automatic
Diversity
Load Shedding

4.1.3 Merits and Disavantages of Both Ac and Dc Power

For a remote stand-alone photovoltaic power system, the advantage of utilizing direct current loads is that the frequency inverter is not required, thus saving both the costs of the inverter equipment and of the added array capacity which would be required to supply the power lost from inverter inefficiency. A disadvantage of using de is that there is very litule flexibility to choose a higher distribution system voltage than that of the load in order tn minimize the losses in the distribution system.

In making an assessment of whether or not to utilize an ac distribution system, the question of regulation should be considered. Although the invelsion of de to ac carries with it a nominal penalty of 12 percent inefficiency, relatively good ac output regulation can be achieved with the inverter within nominal limits of ± 5 percent. Regulating de from an unregulated dc source (of which the array/battery combination is typical with a voltage range of +30 percent) also involves an inefficiency penalty of about 12 percent. Thus, power economy benefits would only result by using unregulated de. Exhibit 4.1-3 lists some of the disadvantages of dc and ac for selected items.

Exhibit 4.1-3
DISALVANTAGES OF DC AND AC

Interacuon		Waveform
Motor Drive	Brushes wear More expensive than ac equipment	
Universal/Induction		Fluorescent less efficient at low frequency operation
Lights	Loss of incandescent and fluorescent reliability	
Electronics	Requires regulation	Requires regulation/ rectification
PV Output	Contact wear	Requires inverter Requires rectification Battery Charging
Controls	Not easily accommodated	
Multiple Voltages		

The intent of this sub-section is to (1) develop the current-voltage curve for arrays of solar cells consisting of parallel and series connections; (2) estimate the power output as a function of time, indicating the decrease that occurs due to cell failure, dirt accumulation, and maintenance routines; and (3) develop the conceptual design of the y for high reliability.

4.2.1 Photovoltaic Terminology

The terminology associated with the photovoltaic power systems, as used in this handbook, is that adopted from U.S. Department of Energy (DOE) projects. The power output from most solar cells currently in use is approximately 0.5 watts for a single cell; therefore, most systems require groups of cells to produce sufficient power. Cells are normally grouped into "modules"*, which are encapsulated with various materials to protect the cells and electrical connectors from the environment. A current typical module is two feet by two feet by two inches, with a glass cover through which the cells are exposed to the sunlight.

The modules are frequently combined into panels of, perhaps, four modules each. These panels are pre-wired and attached to a light structure for erection in the field as a unit. If the power output from a module is 30 watts, then power from a panel containing four modules is 120 watts. The panels are often attached to a field-erected structure to form an array (see Exhibit 4.2-1). Logical groups of arrays form an array subfield, which may feed a single power control system. The subarrays can be combined to form the entire array field. For small systems, the module, panel, array, subarray field, and array field may be identical, with only one module being used.

[^0]SOLAR CELL - The basic photovoltaic device which generates electricity when exposed to sunlight.

MODULE - The smallest complete, environmentally protected assembly of solar cells and other components (including electrical connectors) designed to generate dc power when under unconcentrated terrestrial sunlight.

PANEL - A collection of one or more modules fastened together, factory preassembled and wired, forming a field installable unit.

ARRAY - A mechanically integrated assembly of panels together with support structure lincluding foundations) and other components, as required, to form a free-standing field installed unit that produces dc power.

BRANCH CIRCUIT - A group of modules or paral. leled modules connected in series to provide dc power at the dc voltage level of the power conditioning unit (FCU). A branch circuit may involve the interconnection of modules located in several arrays.

ARRAY SUBFIELD - A group of solar photovoltaic arrays associated by the collection of branch circuits that achieves the rated dc power level of the power conditioning unit.

ARRAY FIELD - The aggregate of all array subfields that generate power within the photovoltaic central power station.

PHOTOVOLTAIC CENTRAL POWER STATION The array field together with auxiliary systems (power conditioning, wiring, switchyard, protection, control) and facilities required to convert terrestrial sunlight into ac electrical energy suitable for connection to an electric power grid.

Exhibit 4.2-1
TERMINOLOGY FOR LARGE-SCALE PHOTOVOLTAIC INSTALLATIONS
(Source: Reference 4-1)

The nomenclature for the electrical circuits associated with the array is shown in Exhibit 4.2-2. Groups of cells arranged in series are called substrings; substrings arranged in parallel are called series blocks; series blocks connected in series are called branch circuits; and branch circuits are connected in parallel to form the array circuit. Blocking diodes are used to prevent the reverse flow of electricity from the load through the solar cells during times when part or all of the array is shadowed, although one blocking diode might be used for the entire array, rather than for each branch circuit as shown in Exhibit 4.2-2. Bypass diodes are frequently used to permit the current to pass through the branch circuit even when one or more of the series blocks has totally failed in the open-circuit condition.

The terminology pertaining to module output and efficiencies is presented in Exhibit 4.2-3. The overall efficiency is partitioned into efficiencies that identify each of the loss mechanisms. The ratio of the cell area to the module area is called the module packing efficiency, n_{p}. The cell active area is the froduct of the module area, the module packing efficiency and the cell nesting efficiency. The cell efficiency, n_{c}, is usually measured by a flash technique in which the cell temperature does not rise because the flash duration is so short. The efficiency so measured, at an insolation of $1.0 \mathrm{~kW} / \mathrm{m}^{2}$ and a cell temperature of $28^{\circ} \mathrm{C}$, is called the bare cell efficiency. If the cell is encapsulated such as with a glass cover, the efficiency measured by this technique is called the encapsulatedcell efficiency.

The NOCT efficiency (Nominal Operating-Cell Temperature) corrects for the temperature at which a cell would operate in the field. The NOCT efficiency is measured at $1.0 \mathrm{~kW} / \mathrm{m}^{2}$ insolation and an outdoor-air temperature of $20^{\circ} \mathrm{C}$, with a wind speed of one meter per second. The efficiency is measured at the cell temperature realized when the circuit is open, so no power is being extracted. The effect of power extraction is small, but the open-circuit temperature is used for purposes of standardization. The NOCT corrects for the losses associated with increased cell temperature.

Exhibit 4.2-2

SERIES/PARALLEL CIRCUIT NOMENCLATURE

Exhibit 4.2-3

MODULE OUTPUT AND INTERMEDIATE LOSS MECHANISMS

Overall Module Efficiency ${ }^{*}$ at $1,000 \mathrm{~W} / \mathrm{m}^{2}$ and
NOCT (Nominal Operating Cell Temperature) is:

$$
n_{m}=n_{p} \times n_{N O C T} \times n_{E C} \times n_{I M}
$$

where: $\quad n_{p}=$ Module Packing Efficiency $=n_{B R} \times n_{N} \quad 81 \%$

$$
\mathrm{n}_{\mathrm{BR}}=\quad 1-\left(\frac{\text { Module Border }+ \text { Bus Area }+ \text { Interconnect Area }}{\text { Module Area }}\right)
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{N}} & =\text { Cell Nesting Efficiency } \\
& =\frac{\text { total cell area }}{\text { Module area }- \text { (Border area }+ \text { Bus area }+ \text { IC area })}
\end{aligned}
$$

$\mathrm{n}_{\mathrm{NOCT}}=$ Nominal Operating Cell Temperature Efficiency $\quad 90 \%$

$$
\mathrm{n}_{\mathrm{EC}}=\text { Encapsulated Cell Efficiency at } 1,000 \mathrm{~W} / \mathrm{m}^{2}, 28^{\circ} \mathrm{C} \quad 13.5 \%
$$

$$
\mathrm{n}_{\mathrm{c}}=\text { Bare Cell Efficiency }\left(1,000 \mathrm{~W} / \mathrm{m}^{2}, 28^{\circ} \mathrm{C}\right) \quad 15 \%
$$

$$
\mathrm{n}_{\mathrm{T}}=\text { Optical Transmission Efficiency } \quad 95 \%
$$

$$
\mathrm{n}_{\text {MIS }}=\text { Electric Mismatch/Series Resistance Efficiency } \quad 95 \%
$$

$$
\mathrm{n}_{\mathrm{IM}}=\text { Ilumination Mismatch Efficiency } \quad 98 \%
$$

Therefore, module output is:

```
\(\mathrm{m}_{\mathrm{O}}=\) Insolation \(\times \mathrm{n}_{\mathrm{M}}\)
    \(=\) Insolation \(\times\left(n_{B R} \times n_{N}\right) \times\left(n_{N O C T}\right) \times\left(n_{c} \times n_{T} \times n_{M I S}\right) \times\left(n_{I M}\right)\)
```

If the cells do not have identical current/voltage characteristics, there will be an additional loss, characterized by the electrical mismatch efficiency. If the cells are not all illuminated uniformly, perhaps due to partial shading by other panels, there is an additional loss which is characterized by the illuminationmismatch efficiency.

The overall panel output is the product of the insolation and tile following efficiencies: module packing, encapsulated cell, NOCT and illumination mismatch. Some of these efficiencies are obtainable directly from the manufacturer. Others must ie calculated, based on the techniques to be presented in this section.

4.2.2 Ideal Solar-Cell Current-Voltage Characteristics

Although the mathematical description of the processes occurring in a solar cell are quite complicated, the physical description is simple. Photons from the sunlight pass through the upper layer (the " n " material) into the thicker " p " material, where they strike the atoms, jarring electrons loose. The electrons wander throughout the " p " material until they are either recaptured by a positively charged ion (an atom that lost an electron) or until they are captured in the " n " material. The electrostatic charge near the junction between the " n " and " p " materials is such that, once in the vicinity of the junction, an electron is drawn across the junction and is held in the " n " material. As a consequence, the " n " material becomes negatively charged and the " p " material, which loses the electrons, becomes positively charged. If the electrons are gathered by the electrodes on the top surface of the cell and connected to an electrode on the bottom surface, the electrons will flow through the external connection, providing electricity through the external circuit. (Exhibit 4.2-4).

The junction in the solar cell is the same as the junction in a diode that might be used to pass electricity in one direction but not in the other. Approximately 0.4 volts is all that is required to drive the electrons from the " n " to the " p " region, across the electrostatic charge at the junction. This internal flow limits the voltage that can be attained with a solar cell. The resistance to electron flow from the " p " to the " n " material is much greater, being on the order of 50

(a) Some are recaptured by the positive charge (hole)
(b) Some wander across the junction and get trapped by the spacecharge barrier across the junction.

P region becomes +
N region becomes -

Exhibit 4.2-4
volts. Only because the photons jar the electrons loose is there a flow in this direction under normal solar cell operation.

An equivalent circuit for c solar cell can be devised that incorporates its diode nature (Exhibit 4.2-5). The photon bombardment acts as a current source, driving the electrical current from the " n " to the " p " material. The diode tends to short this current directly back to the " n " material. An additional shunt resistance, characterizing primarily the losses near the edges and corners of the cell, adds to this shunting, although the shunt resistance is usually too small to be considered in most analyses. A scries resistor characterizes the resistance of the cell material itself, the electrode resistance, and the constriction resistance encountered when the electrons travel along the sheet of " n " material into the small electrodes on the top surface.

The equation that describes the equivalent circuit and the corresponding current/voltage relationship consists of the following terms (Exhibit 4.2-5):
a. the surrent source, called the light current, which is proportional to the illumination;
b. the diode current, given by the Shockley equation; and
c. the current through the shunt resistor.

With slight adjustment of the constants in the equation, excellent agreement can be obtained between the theoretical current/voltage relationship and the actual relationship. Notice that the relationship between the current and voltage is nonlinear, so the computations will be difficult and the relationships somewhat obscure.

Some insight into the importance of the various terms in the current/voltage relationship can be obtained by re-examining the typical performance curves for solar cells (Exhibit 4.2-6). The current is proportional to the illumination, whereas the open-curcuit voltage changes little with illumination. Notice also that temperature has little effect on the short-circuit current, but that increasing temperatures decrease the open-circuit voltage -- an important effect when solar cells are used to charge batterie.s. When the voltage is zero, there is no flow of current throught the diode. For small increases in the voltage, there is still

SERIES RESISTANCE DUE TO FINITE BULK, SHEET, AND ELECTRODE
CONDUCTIVITIES ($\simeq 0.05 \Omega$)

Current density output of solar cell:

Exhibit 4.2-5
EQUIVALENT CIRCUIT OF A SOLAR CELL

OUTPUT CHARACTERISTIC VERSUS TEMPERATURE

TYPICAL IV CURVES OF A SOLAR ARRAY AT THREE DIFFERENT ILLUMINATION LEVELS
(Constant Spectral Distribution and
Temperature, Illustrative Example)

Exhibit 4.2-6
TYPICAL ARRAY CHARACTERISTICS
no flow through the diode, which requires approximately 0.4 volts for significant current flow. Therefore, the slope of the I-V curve at low voltage depends only on the shunt resistance. The curve would be horizontal if the resistance were infinite.

As the cell output voltage increases, the diode current becomes important, so the output current from the cell begins to decrease rapidly. At approximately 0.55 volts, the photon-generated current is passed totally by the diode. At this near-constant-voltage condition, changes in the current have little effect on the diode and shunt current, so the current/voltage relationship is governed by the series resistance. The slope of the cell's I-V curve at zero current is equal to (the negative of) the series resistance. For best performance, the series resistance should be high, so Letter cells have steeper slopes at zero current.

The power output of a cell falls to zero at both zero voltage and zero current. Somewhere in between the power will be at a maximum. The maximum will occur near the knee of the curve, typically at 0.42 V and 1.1 A . The ratio of the peak power to the product of the open-circuit voltage and short-circuit current is called the fill factor.

The characteristics of the individual cells can be combined to obtain the characteristics of strings of cells connected in series or in parallel (Exhibit 4.27). For example, the current passing through two cells in series is the same, so the current-voltage curve of the pair of cells is constructed from that of the individual cells by adding the voltages for each current. For example, in Exhibit 4.2-7, the voltage of one cell is 0.4 when the current is 1.0 A . For two cells operating at 1.0 A, the output would be at $0.4+0.4=0.8 \mathrm{~V}$. Ii the two cells were connected in parallel, rather than in series, the voltage across each of the cells would be the same, but the currents would add. Thus, at 0.4 V , the output current of two cells in parallel would be twice the 1.0 A , or 2.0 A . The same procedures would be used for more cells in parallel or series or for entire modules in parallel or series.

If one cell is only 15% illuminated (dotted I-V curve in Exhibit 4.2-7), it will seriously alter the performance of the pair of cells. For example, if the cells are in series and an output current of 0.4 A is to be obtained, the output voltage would be $0.49-25=-24.5 \mathrm{~V}$, as read from the Exhibit. The negative implies that an external voltage source would be required to drive the current in the forward

Exhibit 4.2-7
direction. Only if the output current were decreased from 0.4 to 0.18 A would a positive voltage be obtained. The 0.18 A represents the short-circuit current of the shaded cell. The current through cells in series is limited by the current of the cell with the lowest illumination. If two cells are in parallel and one is only 15% illuminated, the output voltage would be only slightly reduced. At 0.4 V , the current would be $1.0+0.15=1.15 \mathrm{~A}$ (Exhib:t 4.2-7), down from the 2.0 V realized with 100% illumination on both cells. The voltage across cells in parallel is limited by the voltage of the cell with the lowest illumination, but, as was seen in Exhibit $4.2-7$, this is only slightly less than the voltage of the cell with full illumination.

In the usual photovoltaic system with many cells, diodes can be used beneficially to offset the effects of broken and partialiy illuminated cells (Exhihit 4.2-8). Series blocks can use bypass diodes, so the branch circuit is not totally lost when the series block is shaded or has too many cell failures. The bypass diode also prevents overheating of a partially shaded cell. For example, in the shaded cell in the previous paragraph, a current of 0.4 A would result in a voltage drop of 25 V , so 10 W must be dissipated in the cell. A hot spot would develop that could further damage the cell, its encapsulation, or neighboring cells. Most systems use both blocking and bypass diodes. The optimal arrangement depends on the number of cells in series and parallel and the mantenance cost.s. Blocking diodes can be used to prevent a reverse current from being forced through the branch circuit either by other branch circuits or by the batteries.

The system current-voltage characteristics are determined by the interaction among the photovoltaic array, the battery and the load. The methods for determining the system voltage, as described in conjunction with Exhibit 4.2-6, apply as well for the entire array. The effects of cell failures and partial shading can be examined upon construction of the I-V curves using the series/parallel analyses just described, superimposed upon the I-V characteristics of the battery and load.

(a) Bypass diode prevents Series Block 2 from driving too much current through unfailed substring in Series Block 1 (overheats) but carries loss of entire Series Block 1 upon partial shading.

(a) Blocking diode prevents reverse current -- but gives a constant Δv loss ($\simeq 0.4 \mathrm{v}$) (Use several in parallel to minimize loss)
(b) Blocking diode required fror array to prevent batter.' discharge through array array upon total shading of Series Block 1
(b) Bypass diode prevents loss of
(c) Bypass diode can prevent overheating of shaded cell (module) under reverse bias if many cells in series

Exhibit 4.2-8

4.2.3 Current-Voltage Characteristics of Arrays in the Field

The manufacturer's reported I-V curves, as considered in the previous section, must be modified for field operation by considering the effects of cell mismatch, dirt, cell failures and maintenance strategies. Cell-to-cell I-V differences result in a decrease in array output as compared to the output that would be calculated if all of the cells had the average maximum-power current/voltage combination. For N cells in series in each of P substrings, forming S series blocks and B branch circuits, the decrease in power output due to mismatch is given by the equation

$$
\frac{\Delta \mathrm{P}}{\overline{\mathrm{P}}_{\mathrm{MP}}}=5.06\left[\sigma_{\mathrm{I}}{ }^{2}\left(1-\frac{1}{\mathrm{~N}}\right)+\frac{\sigma_{\mathrm{V}}^{2}}{\mathrm{~N}}\left(1-\frac{1}{\mathrm{P}}\right)+\frac{\sigma_{\mathrm{I}}^{2}}{\mathrm{NP}}\left(1-\frac{1}{\mathrm{~S}}\right)+\frac{\sigma_{\mathrm{V}}^{2}}{\mathrm{NPS}}\left(1-\frac{1}{\mathrm{~B}}\right)\right]
$$

where $\dot{\sigma}_{I}$ is the standard deviation of the maximum-power current and σ_{v} is the standard deviation of the maximum-power voltage. Typcially σ_{I} is 0.07 ; no typical value has been reported for σ_{v}. For this σ_{I} and for σ_{v} equal to zero, the power loss is only 2% for $\mathrm{N}=10$.

Dirt accumulation can be severe for arrays tilted only slightly and for arrays in areas with much air pollution. The dirt will continually accumulate on soft surfaces, such as silicon rubber, so almost all manufacturers now use glass coverplates. Frequent rains help keep the glass clean. After months of operation without cleaning, dirt caused losses of 4% in Chicago; 3% in Lexington, MA; 3% in Cambridge, MA; 1\% at Mount. Washington, NH; and 12% in New York City (Ref. 4-4).

The effects of failures of individual cells, primarily due to cracking, is important but difficult to compute. The computational difficulties arise from the number of combinations of failed cells. For example, if all of the cell failures occur in one substring of a series block, the effect on the entire array field is much less than if one cell fails in each branch circuit. Some cases already have been analyzed at NASA's Jet Propulsion Laboratory; typical results are presented in Exhibit 4.2-9. The probability of any given configuration of failed cells can be estimated using the binomial and multinomial distributions. Although long and
tedious, the computations are straightforward. However, the computation of the IV curve for the system for each of these configurations is a major difficulty. There are mary non-linear equations to be solved, with a different set for each combination of failures. The substring failure density is computed for N cells per substring by the formula
expression:

$$
\mathrm{F}_{\mathrm{SS}}=1-\mathrm{P}_{\mathrm{c}}^{\mathrm{N}}
$$

where Pc is the probability of survival of one cell within the time period of interest. For example, the mean time between failures of cells is approximately 200 years, so the probability of survival for one year is

$$
P c=\exp (-t / 200)=\exp (-1 / 200)=0.995
$$

If 20 cells were connected in series to make a substring, the failure density, F_{SS}, after one year would be 0.095 .

The abscissa of Exhibit 4.2-9 would be determined by this value. If there were 8 parallel strings in each of 50 series blocks, the branch-circuit power loss fraction would be 0.29 , as read from Exhibit 4.2-9. The power output for this number of cells $(20 \times 8 \times 50=8000)$ would be approximately 4 kW when new; the power output after one year, if none of the modules were replaced, would be 0.71 x $4=2.84 \mathrm{~kW}$. In addition, other curves must be used if a simple voltage regulator is used instead of a peak-power tracker. Eventually, there should be enough design charts to cover all practical possibilities.

Although Exhibit 4.2-9 seems to imply that the greater the number of series blocks, the greater the power loss, the opposite is the case. For the 8000 cells, if there were 500 series blocks, there would be only 2 cells per block, so the failure density would be only 0.01 . For this failure density, the power loss fraction would be only 0.08 and the output after one year, 3.68 kW . Therefore, the more series blocks (the more cross ties between parallel sutstrings), the lower the power-loss fraction.

Exhibit 4.2-9
ARRAY POWER LOSS FRACTION VERSUS SUBSTRING FAILURE DENSITY
(Source: Reference 4-5)

Much of the loss due to cell failures can be avoided if failed modules are replaced during routine maintenance. There is a tradeoff, however, between the cost of the replacement module and oversizing the array initially to compensate for expected failures. Locating failures also presents a maintenance problem. Monitoring the output from subsections of the array can reduce the area requiring inspection. Visual inspection will frequently be sufficient to discover the broken cells; detecting the higher temperatures of broken cells can also help. (See Section 8 for additional information on maintenance).

4.2.4 Available Modules

Modules are available in almost any combination of operating voltage and current (Exhibit 4.2-10). The unit costs are relatively insensitive to module size, at least for sizes above 2^{\prime} by 4^{\prime} (Exhibit 4.2-11). The reliability of the larger modules can be kept sufficiently high by using enough cross ties (series blocks) within the module.

Exhibit 4.2-10
TYPICAL AVAILABLE SILICON SOLAR MODULES

ELEMENT	UNITS	COST		
		2×4	4×4	4×8
INITIAL:				
MODULE DIRECT COST	\$/m2	60	60	60
MODULE YIELD COST	\$/m2	0-5	0-8	0-23
- MODULE SUBTOTAL	\$/m2	60-65	60-68	60-83
PANEL FRAME	\$/m2	24	18	15
PANEL WIRING	\$/m2	2-4	2-3	1-2
- PANEL SUBTOTAL	\pm / m^{2}	? 6-28	20-21	16-17
PANEL INSTALLATION	\$/m2	1	1	1
installed array struct	$\$ / m^{2}$	22	22	22
- array total	\pm / m^{2}	109-116	103-112	99-123
PER REPLACEMENT ACTION:				
FAULT IDENTIFICATION	\$/PANEL	4	4	4
PANEL SUBSTITUTION LABOR	\$/PANEL	21	21	21
MODULE REPLACEMENT LABOR	\$/MOD	12	12	12
REPLACEMENT MODULE PARTS (INC I\% INVENTORY COST)	\$/m2	61-66	61-69	61-84

Exhibit 4.2-11

NOMINAL ARRAY COSTS (1975 Cost Levels)
(Source: Reference 4-5)

4.3 LEAD-ACID STORAGE BATTERIES

By the end of this sub-section, the reader should be able to (1) list the various reasons batteries enhance the performance of photovoltaic systems; (2) specify reasonable requirements for the batteries used in photovoltaic systems; and (3) analyze the battery-photovoltaics interaction so the system performance can be predicted. Sample problems, illustrating this use of this sub-section, are presented in Section 7.2.

4.3.1 Advantages and Disadvantages of Batteries in Photovoltaic Systems

Batteries give photovoltaic systems the following advantages:

- Capability to provide energy for sunless periods
- Capability to meet momentary peak power demands
- A stable voltage for the system
- Capability to store energy produced by the array in excess of the instantaneous demand, thereby reducing energy loss

One recent study showed that systems without batteries deliver an average of 2.5 hours per day of rated output, whereas systems with batteries deliver 4.5 hours. Another study showed little difference in annual system output when operated at constant (battery) voltage as compared to operation at the instantaneous optimal peak-power array voltage.

Because batteries and the associated charge-rate regulator add to the number of parts in the system, certain disadvantages accrue. Batteries (1) add to the system complexity; (2) add to its cost; (3) increase the maintenance activity and maintenance cost for the system; and (4) frequently reduced the system reliability. Only in those rare circumstances for which low charge rates are acceptable can the charge controllers be omitted. Despite these disadvantages, batteries are frequently worth including in the design, so the understanding of their operation is important.

4.3.2 Battery Operation

Of the many types of batteries available (Exhibit 4.3-1), we will concentrate on lead-acid batteries, because these are the most frequently used in photovoltaic systems. The positive electrode of the lead-acid battery consists of lead oxide; the negative, lead. Both are converted to lead sulfate in the discharge process. The electrodes are immersed in sulfuric acid with an approximately 40% acid concentration.

In practice, the electrodes and sulfuric acid are enclosed in a polyethlene container. The electrodes themselves are formed by a grid made from a lead-calcium alloy. (The less expensive lead-antimony alloy is not suitable for photovoltaics because it causes a higher battery self-discharge rate than desirable). A paste of lead oxide is pressed into the grid such that the paste, when cured, forms a porous structure, thereby exposing a large surface area to the acid. Various fibrous mats separate the two electrodes. The mats are strong enough to keep the electrodes apart and to hold the pasted material in place, but are loose enough to permit the easy flow of ions from electrode to electrode. When the electrons flow through the electrodes, they are captured or released by the porous materials, but are conducted to the grid and hence to the external battery terminal.

4.3.3 Battery Current/Voltage Characteristics

The effect of various processes on the output voltage and current of lead-acid batteries are illustrated in Exhibit 4.3-2. The batteries' discharge period is shown in (a) and the charging period in (b) of the exhibit.

When the discharge period starts, the terminal voltage is high because the ions are uniformly distributed throughout the electrolyte. Shortly thereafter, the voltage has dropped considerably because the ions must migrate between the electrodes, thereby adding to the internal resistance. Since, at this time, the ions are not uniformly distributed, the process is known as polarization. At high currents, the internal resistance causes the terminal voltage to drop. At low

Exhibit 4.3-1
CHARACTERISTICS SUMMARY TABLE: COMMERCIALLY AVAILABLE BATTERIES

LEAD-ACID BATTERY CHARACTERISTIC CURVES

(a) DISCHARGing

(b) charging

Due to Difficulty in Starting Nucleation

(c) REST (OPEN CIRCUIT)
temperatures, the reactivity of the cell decreases, so the terminal voltage drops further. Near the end of the discharge period, the sulfuric acid is nearly completely consumed, so its electrical resisiañe increases greatly. In addition, the lead with which it can react is nearly exhausted. (Most cells are designed such that the acid is depleted before the lead).

At the beginning of the charge cycle, there are few sites of lead oxide. As a result, the terminal voltage must be high to obtain nucleation and a significant charge rate. As the number of lead-oxide sites increases, the terminal voltage can decrease while the current remains constant. However, after a while, the number of sites requiring charging starts to decrease, so ions must congregate at those few sites and the effect of polarization increases. Near the end of the charge period, hydrogen forms at the anode, with the gas layer greatly increasing the internal resistance of the cell.

If left standing (Exhibit 4.3.2 (c)), the terminal voltage of the cell will decrease with time, due to the impurities in the water and the alloys in the cell, which react with the electrolyte and decrease the acid concentration.

The current and voltage during discharge can be described in terms of the state of charge of the cell (SOC, ranging from 0 to 1.0) by the equation:

$$
V=V_{r}-\frac{1}{A} H\left[\frac{0.189}{S O C}+I R\right]
$$

where the SOC is the ratio of the charge at the time of interest to the maximum charge, as measured for the 500 -hour discharge rate. The symbols are defined as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{r}} & =\text { rest voltage }=2.094 *\left[1.0-0.001 *\left(\mathrm{~T}-25 .{ }^{\circ} \mathrm{C}\right)\right] \\
\mathrm{V} & =\text { Terminal Voltage } \\
\mathrm{I} & =\text { current (Amperes) } \\
\mathrm{AH} & =\text { the ampere-hour rating of the battery for the discharge rate } \\
\mathrm{IR} & =\text { internal resistance of the cell } \\
& =0.15 *[1.0-0.02 *(\mathrm{~T}-25)]
\end{aligned}
$$

The 0.189 factor represents the internal resistance due to polarization.

During the charging period, the current and voltage are given by

$$
V=\operatorname{Vr}+\frac{1}{\mathrm{AH}}\left[\frac{0.189}{1.142-\mathrm{SOC}}+\mathrm{IR}\right]+(\mathrm{SOC}-0.9) \operatorname{Ln}\left(\frac{300 * \mathrm{I}}{\mathrm{AH}}+1.0\right)
$$

The underlined term is included only if the first two terms sum to more than 2.28 volts. During the idle period (neither charging nor discharging), the state of charge decreases according to the equation (lead-calcium)

$$
\begin{aligned}
\text { SOC } & =\text { SOC }_{0} * \operatorname{Exp}(-k * t) \\
k & =300^{*} \operatorname{Exp}(-4400 / T)
\end{aligned}
$$

with T in ${ }^{\mathrm{O}} \mathrm{k}, \mathrm{t}$ in hours, and K in hours ${ }^{-1}$. At room temperature, $K=0.0001$.

4.3.4 Battery-System design

The design of the battery system is an iterative process: (1) the battery size is selected; (2) the system performance is computed; and (3) the life-cycle cost is computed. These three steps are repeated until the system with the minimum life-cycle cost is found.

The iterative process must be performed with the battery selection eventually being confirmed by the manufacturer. Most, if not all, battery manufacturers want to know how many ampere-hours or kWh must be stored and in what environment (temperature, charge/discharge cycles, etc.). They will then recommend a battery. Therefore, the manufacturer's recommendation must be anticipated to determine the optimal storage requirements for the system. Thus it is important to be able to compute the battery performance.

The exact computation of the battery performance would require a detailed circuit analysis using Kirchhoff's current law. Because the batteries,
power conditioning equipment and photovoltaic cells have non-linear current/voltage characteristics, solutions to the governing equations are difficult to obtain. Usually, the solution to a set of non-linear algebraic and differential equations must be computed for each instant of time.

A more common procedure is to treat the battery as a simple constantvoltage kWh or Ah storage device. The energy produced by the photovoltaic array is computed first. The load demand is determined, with the excess energy available to the battery. If the battery is fully charged, the excess is assumed to be used by the load. If the battery is not fully charged, the excess energy is absorbed by the battery, increasing the amount of energy stored therein. If the load exceeds the power output of the array, the difference is withdrawn from the battery, decreasing the energy stored therein, until the battery is fully discharged. This state-of-charge accounting can be done on an hourly, daily, weekly or monthly basis. This more common procedure is a reasonable approach to conceptual system design; however, the voltage variation of the battery is significant so final designs should be based on the more accurate method of solving the circuit equations. The foregoing equations, and those to follow, can be used in either approach. The sample problems presented in Section 7.3 will illustrate the use of the more common energy or ampere-hour accounting procedure.

4.3.5 Battery Life

Numerous factors, only some of which can be evaluated quantitatively, influence battery life (Exhibit 4.3.3). Corrosion inside the batteries is controlled by the acid concentration and the temperature. High temperatures also hasten evaporation of the water. Overcharging results in water loss, which can shorten the battery life if the water is not replenished. Low temperatures reduce the capacity by increasing the polarization loss (no equation is available to describe this effect at present). Low temperatures can also cause freezing. Charge/discharge cycles are limited by mechanical and chemical interactions. The only available data is for the same minimum state of charge during tush cycle. A typical state-of-charge history for batteries in photovoltaic systems is depicted in Exhibit 4.3.4. There is no equation to predict cycle life under such variable minimum states of charge.

LEAD-ACID BATTERY FAILURE MECHANISMS

a. Chemical: Life $=\operatorname{Life}$ at $25^{\circ} \mathrm{C} * \exp [-5070 *(1 / \mathrm{T}-1 / 298)]$
$T=$ Temperature ${ }^{\circ} \mathrm{K}$
Corrosion of the terminals
Corrosion of the grid
Growth of large lead sulfite crystals
b. High temperature: $\mathrm{T}=\mathrm{T}$ ambient $+125 *(\mathrm{~V}-\mathrm{Vr}) * \mathrm{I} / \mathrm{AH}$

Hastens chemical effects
Hastens evaporation
c. Water loss: $\mathrm{ml}=0.336$ * ampere-hours of overcharge + evaporation
d. Low temperature

Loss of capacity, per I-V characteristic
Freezing
$\begin{array}{lllllll}\text { specific gravity: } & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5\end{array}$
freezing point $\left({ }^{\circ} \mathrm{C}\right)-0 \quad-8 \quad-27 \quad-70 \quad-36 \quad-29$
e. Mechanical: Cycle life $=9000 * \exp [-(1 .-$ minimum state of charge $)]$

Shorting by dendrite growth
Shorting by sediment at the bottom of the plates
Flaking due to vibration
Flaking due to differential expansion
Dirt
Non-uniform plate growth
f. Self discharge: \quad SOC $=$ Initial SOC * exp $-300 * t *(\exp -4400 / T)$, where
$\mathrm{t}=$ Time, hours
$\mathrm{T}=$ Temperature, ${ }^{\mathrm{O}} \mathrm{R}$
Chemical reactions accelerated by Fe and Cl in the water

Exhibit 4.3-4

TYPICAL BATTERY STATE OF CHARGE (SOC) HISTORY

Exhibit 4.3-3 lists equations from which an estimate can be made of the life of a battery in any set of circumstances, provided certain assumptions are made concerning the effective minimum state of charge to be used in the cyclelife equation. (Note that the cycle life and the life per item (a) of the exhibit are independent. Item (a) gives the years the battery will last before corrosion prevails. The overall life is the lesser of items (a) and (e), as modified by the other life-determining fartors).

The self-discharge characteristic of batteries sometimes causes failures of systems of batteries, rather than a single battery. The equation presented in Exhibit 4.3-3 is the nominal self-discharge rate. However, the rate will vary from battery to battery, depending on the particular materials used. Therefore, in a group of batteries connected in series, some batteries (cells) will be at a lower state of charge than others. On recharging, unless overcharging is used, the lowerSOC cells may not completely recharge before the voltage regulator interrupts the current. Then, while the system is idle, the more rapidly self-discharging cells will self-discharge further and may eventually become totally discharged. Testing of the batteries with an hydrometer will reveal the problem but not eliminate the cause. Overcharging eliminates the cause but depletes the water reserves and increases the maintenance.

Stratification of the electrolyte in the cells also can cause a loss of capacity. The problem occurs at SOC below 1.0 in tall batteries. Although there is no quantitative evaluation available, pumps are sometimes recommended by the manufacturer to keep the electrolyte mixed.

4.3.6 Lead-Acid Storage Battery Safety

Several important safety criteria that are applicable must be considered if lead-acid storage batteries are to be incorporated in the stand-alone system. Lead-acid batteries are of two general types:

- Lead-antimony battery, with voltage output about two volts per cell and ampere-hour (Ah) rating from 100 Ah to 1000 Ah for an 8hour discharge rate. Charge/discharge efficiency is high (85% to 90%). During the charging cycle, an overvoltage (equalizing charge) is required for a period of time to assure that all cells in a battery bank will be recharged to the same voltage level.
- Lead-calcium battery, with output voltage and ampere-hour rating similar to those of the lead-antimony battery. Lead-calcium batteries usually require less maintenance than lead-antimony batteries and do not require an equalizing charge during recharge. Depending on the degree of discharge and cycling rate, batteries can be operated for long periods (e.g., several moriths) without adding water.

The following design "safety" considerations correspond to the more serious hazards experienced in the use of lead-acid batteries in uninterruptable power supplies:
(1) Danger of Hydrogen Explosion. Hydrogen which was liberated during; the charging cycle can accumulate in an unvented room und may result in an explosive mixture. A flame or spark can then cause an explosion, with possible injury to personnel or damage to the charging equipment, although flame arrestors greatly reduce the probability.

Design Guideline: Provide for ventilation in the layout of the proposed battery area or "room" (NEC 480-8(a)). Ensure that no flame-producing or spark-producing devices are installed within the battery area or room. Each vented cell must be equipped with a flame arrestor to prevent destruction of the cell due to ignition of gases (NEC 480-9(a)) . Install a "No Smoking - No Sparks" warning sign in the battery area.
(2) Danger of Electrolyte Spillage. Direct contact with the electrolyte (a mixture of sulfuric acid ($\mathrm{H}_{2} \mathrm{So}_{4}$) and water) can cause severe injury (burns) to the skin and possibly permanent damage to the eyes. Unless properly designed to
relcase accumulated gas pressure, battery cells can explode scattering cell parts and electrolyte. Volumes of fresh water applied quickly and continuously may avert serious damage.

Design Guideline: Provide a fresh-water emergency shower or safety fountain within a few feet of the battery bank. Ensure sealed battery cells are equipped with pressure release vents (NEC 480-9(b)) . Ensure that proposed maintenance manuals for the battery bank include appropriate cautionary notes, e.g.: "Wear rubber apron, gloves, boots, and facemasks when handling, checking, filling, charging, or repairing a battery"; "Wear protective clothing and goggles when mixing acid and water"; "Always add acid carefully to water and stir constantly to mix well when preparing electrolyte". Specify that no sulfuric acid solutions of more than 1.400 specific gravity acid may be used inasmuch as when water is added to high specific gravity acid considerable heat and violent reaction will occur, possibly splashing the hendler.""
(3) Danger of Electrical Shock. If terminal voltage of the proposed battery bank is to be designed for greater than 50 volts ($V_{0} \geqslant 50 \mathrm{~V}$ dc), there is danger of electrical shock during inspection/maintenance/servicing the battery bank (NEC Article $\left.1^{1} 0-17(a)\right)$.

Design Guideline: Ensure that batteries are installed in groups having total voltage of not more than 250 volts on any one rack. Provide spacing (or insulation) between racks (NEC 480-6) . Provide a safety ground-disconnect circuit to allow the battery bank to "float" i.e., $(+)$ and $(-)$ terminals of a highvoltage string are disconnected during maintenance involving servicing, filling, or replacing a battery in a string within the battery bank. Design of the disconnect circuit must provide clearly visible visual indication of the disconnect status. The design should also provide shut-off and disconnection of de/ce regulator chargers from both the solar array (input) side and battery (output) side during repair of the de/de regulator.
(4) Danger of Personnel Physical Injury. Batteries constitute a heavy, concentrated load and can easily cause painful strains or injury to a handler's back, hands, face, or feet. Also, dropped batteries may be damaged, causing injury due to electrolyte spillage as described in (2) above.

Design Guideline: Batteries should be lifted with mechanical equipment, such as hoist, crane, or lift truck. They should be moved horizontally with power trucks, conveyors, or rollers. Safety shoes and "hard hats" are recommended for handlers' protection (metallic safety hats should be avoided). The system design must include the tools and equipment required for handling individual battery replacement as a routine mainterance task. The system layout and structural design for battery racks/benches should facilitate maintenance and thus encourage the use of available handling equipment.
(5) Facility Damage. Spillage or leakage of electrolyte on benches, battery terminals, racks, floors, etc., can cause corrosion or severe damage unless promptly cleaned up with appropriate neutralizing solution (e.g., one pound of baking soda with one gallon of water). Furthermore, loss of electrolyte by leakage from a baltery will lower battery capacity and can cause faults to the rack (and ground circuit).

Design Guidelines: Provide reasonably controlled temperature ambient in the battery room to prevent freezing if decrease in battery electrolyte specific gravity raises the freezing point of the battery above the local ambient temperature.
(6) Damage Due to Corrosion. Fumes and fine spray of dilute acid given off by lead-acid batteries are very corrosive, particularly to metal work and structural items constructed of iron or steel brought in close proximity to cells.

Design Guideline: If steel conduit, structural elements, fasteners, etc., are considered for use in the battery area or room, it is recommended that these items be zinc-coated and kept well painted with asphalt-based paint.

4.4 POWER HANDLING

The power handling portion of the PV power system is essentially that part of the system which interfaces the arrays with the end-use loads. It is comprised of the necessary array control system, voltage regulators, storage batteries, inverters, and distribution system (including cables, overcurrent protection devices, disconnecting means, grounding system and any load management controllers). Except for the array control system, the power handling system ordinarily consists of electrical equipment which is quite conventional in function and design. This sub-section covers those functions and design concerns of the power handling system.

4.4.1 Dc Power Conditioning

The parameters under which solar arrays operate at a given location cause the characteristic dc output voltages to vary over a considerable range throughout the year. Some of these variations are random, such as the levels of insolation during intermittent cloud cover. Insolation and ambient temperature also undergo variations of a more gradual nature due to diurnal and seasonal factors. The voltage and power output of a photovoltaic power system is more variable than that of most conventional generators and thus needs some "conditioning" and storage or back-up before it can be used for most purposes. (For those stand-alone systems having ac loads in whole or in part, an inverter would be required to convert the de output to an alternating current waveform at a specified voltage and frequency).

Design of a stand-alone photovoltaic (PV) system which includes batteries for energy storage requires not only sizing the array power output and battery storage caparity to meet the load, but also fixing the number of battery cells placed in series relative to the number of PV cells in series in order to keep the battery voltage in the neighborhood of the array maximum-power-point voltage during operation.

In a photovoltaic (PV) system, it is desirable to extract the maximum amount of energy out of the array; a situation that would exist if the array were to be operated at the maximum power point at every instant. In a stand-alone system where the array is connected in parallel with a battery storage subsystem, the number of battery cells which are connected in series defines the nominal de bus voltage. Although the nominal dc bus voltage may lie in the neighborhood of the array maximum-power-point voltage for some nominal combinations of insolation level and cell temperature, there will generally be a mismatch between the actual operating de bus voltage and the maximum-power-point voltage of the array at any particular instant in time. This mismatch, which will result in an effective decrease in the efficiency of the array, depends on the state-of-charge of the battery, the battery charge or discharge current, and on the temperature and insolation level of the PV array. If a variable lossless matching network is interposed between the array and the battery, then a maximum-power-point tracking strategy can be used to constrain the array to always operate at the maximum power point.

The decision to include or not to include a maximum-power-point tracker (MPPT) will depend on the additional useful energy which could be collected by using the MPPT and on MPPT costs.

Of those de systems containing storage, the simplest configuration of the power conditioning system is the direct connection (though a blocking diode) of the array to the storage system and then to the load. This is illustrated in Exhibit 4.4-1. This configuration finds cost-effective applications for smaller systems up to approximately 2 kWp capacity. The direct connection of the array to the battery without regulation is advisable only when the peak output current of the array is less than 5 percent of the charge capacity of the batteries in the system.

Exhibit 4.4-1
SELF-REGULATED PV SYSTEM

Exhibit 4.4-2
I-V CURVE OF PV MODULE EXHIBITING SELF REGULATION
(Source: Reference 4-6)

Exhibit 4.4-3
VOLTAGE-REGULATED PV SYSTEM

The storage battery continually supplies power to the loads and is charged by the power produced by the PV array during periods of insolation. When the voltage of the battery storage system equals that of the array (less the voltage drop across the blocking diode), current flow into the storage system would stop, with the batteries being at a full state of charge.

The self-regulated PV system configuration places specific constraints on the selection of the PV array current and voltage operating conditions, resulting in the array operating at other than the maximum power point. These constraints are centered around the battery's charging voltage requirements. For a 12 V leadacid battery, the voltage range under charge varies from 12.8 V (at 60% discharge) to 14.4 V (at full charge). To transfer the maximum power from the array to the battery, the voltage operating-point of the array should be approximately 14.4 V plus the voltage drop across the diode of approximately 0.75 V , or a level of 15.15 V , as shown on Exhibit 4.4-2. The output current of the array is 0.97 A at this operating point. For a slight increase in cell voltage above the nominal array voltage, cell current will decrease rapidly, limiting the charging current.

The voltage variations caused by changing weather conditions and degradation due to aging can be compensated by controlling the array voltage by means of a voltage regulator. A typical voltage regulator, either in parallel or series with the array, the storage system, and the load, is shown in Exhibit 4.4-3. In order to regulate the voltage with the required limits to prevent battery overcharge and outgassing, the (shunt) voltage regulator must dissipate a certain amount of power to ground. If the load can utilize all of the PV power, the shunt regulator consumes no power. Based on the output voltage, a simple design regulator "shunts" current through a regulating transistor to keep the output voltage constant.

4.4.2 Control Schemes

The output of a PV array has the same characteristics as portrayed in Exhibit 4.2-6 as a series of I-V curves, dependent upon illumination levels and temperature. The specific operating point on a particular curve is dependent upon both the characteristics of the load and the available output from the array. Possible types of loads are constant resistance, constant voltage loads (such as
batteries) and constant power loads with dynamic impedances. Fluctuations in operating points can be caused by changes in the load as well as from changes in the array's output due to dynamic variation with either insolation, temperature or wind.

The voltage and current output of the array can be manipulated so that maximum energy can be extracted from the system. Maximum power tracking allows the greatest precision in operating near the maximum power point of the photovoltaic I-V characteristics as shown in Exhibit 4.2-6 by using a feedback method to determine operating points. The control accomplishes the change of operating point voltage with respect to the required load voltage by driving a dc/dc converter. The converter provides the interface between the array and the loads as shown in Exhibit 3-1. A simplified block diagram is shown in Exhibit 4.4-4 for a tracking controller. The basic elements include:

- A wattmeter circuit that continuously measures the power level and provides a signal output proportional to actual power.
- Two sample and hold circuits, controlled by a timer, that alternately sample the wattmeter signal output and hold it for comparison with the next sample.
- A flip-flop circuit that changes state whenever a new sample is smaller than the preceding one, but remains in the same state if a new sample is larger than the preceding one, thus representing an increase in power level.
- An integrator circuit that provides a constantly changing output whose direction of change is increasing for one state of the flipflop and decreasing for the other state of the flip-flop.

The decision of whether to use maximum power tracking or not can be best answered by performing a system simulation on an hourly basis with the control system modeled in detail. The performance of the system both with and without maximum power tracking can be measured and uied as a gauge in determining the cost-effectiveness of the control system and the required de/dc converter.

Exhibit 4.4-4
SIMPLIFIED BLOCK DIAGRAM FOR A MAXIMUM POWER TRACKING CONTROLLER

The various control functions which a power conditioning system can incorporate include:

- Configuration Control
- System autostart/shutdown
- Battery state of charge estimation (if applicable)
- Maximum power point trasking (if applicable)
- Selection of emergency back-up source
- System operation summary displays
- Data recording interface
- Load management
- Failure reporting/automatic recovery

4.4.3 Electrical Wiring

The electrical systems which require wiring in the field and which must be addressed consist of intra- and inter-array wiring, wiring to the power conditioning system, control and instrumentation wiring, and distribution wiring to the loads. A wiring installation for a power system must consider the following factors:

- Safety and reliability
- Avoidance of excessive voltage drop
- Avoidance of excessive copper (power) loss
- Flexibility in changing locations of equipment
- Provision for supplying increased loads
- Provision for economical maintenance

The interconnection and cabling (I \& C) design criteria for a photovoltaic power system are similar to those for de power systems. The design load and the photovoltaic array design configuration must be completed before attempting I \& C design.

Proper wiring design involves the cost-effective selection of cabling to:

- Intraconnect panels of the PVPS array
- Interconnect the PVPS array to the load
- Provide integrated grounding of the arrays and a lightning protection system (NFPS 78-1975)
- Comply with national/local electrical installation codes
- Satisfy environmental requirements

Tables 250-94, 250-95, and 310-16 through 310-19 of the National Electrical Code (NEC) provide the requirements for cable sizing. Table 310-13, of the NEC provides the insulation requirements based on the cable's environment. Normally, more than one cable type will satisfy the load and environmental requirements. For such a case, the least expensive cable should be selected.

To ensure satisfactory operation of electrical devices, full voltage should be applied. Under load, the voltage drop from the source should be minimized. Good practice is to limit the voltage drop from the service entrance to any motor to 5%. In electric heating equipment, the voltage drop should generally not exceed 2%.

Power Loss

The power loss in a distribution system depends upon the resistance of the wires and the square of the individual currents which each carries. Feeders sized by the NEC will not always be the most economical size, especially if loads such as motors are operated at or near full load any considerable part of the time. In many cases, it may be more economical to increase the conductor size to reduce copper losses.

Flexibility of Wiring Systems

In industrial power systems, the changing of locations of loads such as motors is a more or less common occurence throughout the life of the facility and
suitable designs should be incorporated to meet these changing conditions. Flexibility is usually accomplished by using busways which will accommodate plugin devices, wireways and raceways where a large number of feeders and motor branch circuits are carried. Where motor sizes may increase, some oversizing of raceways is prudent.

Provisions for Expansion and Maintenance

Spare capacity for future load growth can be installed initially at less cost than if provided after construction is completed. The provision for providing capacity for increased loads must be made with respect to physical constraints as well as electrical capacity limitations. For example, conduits embedded in a concrete slab imply a permanent job and future demands must be considered in the early stages of the layout. Maintenance must likewise be considered by providing enough access for working clearances in front of equipment line-ups such as switchgear and for the complete removal of the same.

Economics of Wiring Design

There are many considerations in selecting a conductor for a particular wiring installation. Some of these are mechanical strength, current carrying capacity, reasonable voltage drop and insulation. With increasing costs of electrical energy, it is more apparent that the cost of annual losses often may dictate a higher initial investment in larger copper. This is especially true for both PVPS and for any circuits which operate at high capacity factor such as main feeders and where conductor and raceway investment is heavy.

Annual costs of different alternative systems should be compared to select the most economical. These costs are made up of the annual fixed charges of the investment and the cost of copper losses. By using the resistance of a circular mil-foot of commercial copper wire (a wire 1 foot long and having a cross sectional area of 1 cmil) at 10.7 ohms, the power loss in a circuit at $20^{\circ} \mathrm{C}$ is:

$$
\mathrm{P}=\frac{10.7 \times \mathrm{I}^{2} \times \mathrm{L} \times \mathrm{n}}{\mathrm{cmils}}
$$

Where:

$$
\begin{aligned}
\mathrm{P} & =\text { the power lost in the conductors in watts } \\
\mathrm{I} & =\text { the current in amperes in the conductor } \\
\mathrm{L} & =\text { length of the conductor in feet } \\
\text { coils } & =\text { the area of the conductor in circular mils } \\
\mathrm{n} & =2 \text { for a } 2 \text { wire circuit (dc or single phase) } \\
\text { or } \quad \mathrm{n} & =3 \text { for a } 3 \text {-wire 3-phase circuit (assuming balanced currents) }
\end{aligned}
$$

The cost of the energy lost due to the power losses should be based upon the number of hours of operation each year and the cost of replacement energy at the PV site. By reducing the information to a table, the total annual costs of various sized conductors may be readily determined and the minimum annual cost scheme chosen.

Array Wiring

Array wiring costs tend to increase greatly as module size is reduced. Wiring costs are inversely proportional to branch circuit voltage level, the optimum (minimum) for residential applications being between 100 V dc and 300 V dc. Electrical terminations are the principal cost drivers for array branch circuit wiring, although a modular quick-connect wiring system can be significantly less expensive than junction box wiring systems, particularly when the branch circuit wiring is exposed to weather. However, until such time as a modular quick-connect system is developed and code-approved, the junction-box system should be used. The conductor construction for use at 600 V or less shall comply with section 310-13 of the NEC. Conductors must be selected depending upon their installation (wet, dry) and the resistance of the outer covering to moisture and ultraviolet light.

Wiring Me hods

Numerous wiring methods are authorized by the NEC, with most of them being used to a greater or lesser extent in commercial and industrial buildings. For procedures in planning power distribution systems, the reader is referred to several of the IEEE recommended practices (See Appendix C).

Sources for Additional Design Data

An analysis of the several factors to be considered in selecting wiring and cabling for photovoltaic purposes is contained in Reference 4-7. These factors, corresponding to chapter headings in the volume are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

The need for backup to a stand-alone photovoltaic power system is determined by the definition of "criticality" of the load to be serviced by the proposed PVPS. The choice of a particular type of backup suitable for the application is influenced primarily by the size of the critical load (in $\mathrm{kWh} / \mathrm{day}$) relative to total load to be serviced by the PVPS; by the design margin of the basic PVPS relative to predicted insolation at the proposed site; and by the owner's plan for operation and maintenance of the installed system.

Thus, all of these factors must be considered early in the preliminary phase of design to produce an integrated PVPS which will satisfy the load demand.

4.5.1 Load Analysis

It is necessary to identify, subdivide, and quantitatively describe the characteristics of the total load into those which are classified as emergency, essential, or convenience loads. If none of the load elements are considered as an emergency (or critical) load, a backup system should not be required. However, if any part of the load is critical, then there is the need for sufficient backup to cover only that portion of the critical load. Provision can be made in the PVPS design to unload (disconnect) non-critical elements of the load to delay (or possibly avoid) power loss to the critical load. Emergency, essential and convenience loads are defined as follows:
(1) Emergency Loads -- continuous power is required and loss of such power would have severe and lasting impact. The emergency load category is further subdivided into (a) those loads which are essential for safety to life or whose interruption would produce serious hazards to industrial processes and (b) those loads which are critical whose interruption would lead to economic hardship. Critical loads cannot tolerate power loss in excess of a specified period of power outage. Emergency loads are normally supplied by two separate sources with automatic switching upon loss of one supply.

Essential Loads -- Power normally supplied by two sources with either manual or delayed automatic switching. Power loss would have disruptive impact but would not be classified as critical.
(3) Non-essential or Convenience Loads -- power loss would have little impact on daily operations or routine -- and would, at most, cause some inconvenience.

Not all applications will have all three load categories, and the number and duration of power outages that can be accepted will vary for each category.

4.5.2 Basic PVPS Design Margin

At this time, there is insufficient data to accurately estimate the frequency and duration of power losses (outages) due to the various "failure modes" which can jeopardize the operational success of a well designed photovoltaic power system. The major causes of power failure will be due primarily to the inadequacy of the design to cope with the variability of nature and to the limitation of hardware reliability.

Choice of basic PVPS design margins adequate to cope with all possible combinations of extreme weather conditions could not be cost-effective. For example, the insolation in many parts of the country is not known to within perhaps 30%. Some of these variables include the following:
(1) Extremes in Weather Conditions. In the design process, an allowance is made for the maximum number of low-insolation days. However, the design margin will not be based on the worst possible condition, but the worst experienced over the past ten to twenty years. There is always a possibility that there will be less sunlight than considered in the design. Similarly, the design margin considers the recent cold weather history for the site. Cold weather, even if it does not cause battery failure, will cause a loss in battery capacity. This loss in capacity can result in deeper discharge of the batteries, with an attendant shortening of the battery life, or a loss in ihe capability to store and later supply the needed energy. Again, cold weather is considered in the design, but
nature may provide colder weather than anticipated. In some locations, the PVPS may be subjected to unpredictable extremes of other conditions (lightning, hail, tornadoes, etc.) which cannot be completely designed against.
(2) Changes in Load Demands. An "apparent" deficiency in design margin is often traced either to changes in the load (loads added after completion of system design), or to underestimating the load as defined in the original system specification.

4.5.3 Types and Suitability of Backup System's

Several backup systems might be suitable ior the applications envisioned for the proposed stand-alone system. In many cases, the loss of power will not be critical, and backup will not be required. However, as discussed above, those loads which are judged to be critical are sensitive primarily to downtime (i.e., time that will elapse before the power can be restored). Maintaining some
inventory of spares will help keep the elapsed time to a minimum, and standardizing replacement components (e.g., modularity of the array) will reduce the cost of replacement spares.

Manual backups are a viable, low-cost alternative for inhabited PVPS installations. For example, village water can be hand pumped on an emergency basis, although provision must be made in the initial design for hand pumping by positive-displacement pumps (centrifugal pumps cannot be manually operated). For larger pumping operations or large-power operations, an engine can be justified for the backup system. Since the engine will be used only on occasion, it may prove troublesome to start; therefore, it should be started regularly (e.g., once a week).

Low power radio communications equipment (transceivers) and other low power devices can be powered by primary batteries or pedal-powered generators in emergencies. However, primary batteries (e. g., zinc-air batteries), once discharged, must be manually replaced when depleted, so the operating costs (replacement costs) would be high.

Battery backups may be more practical, if standby rechargeable batteries are used. For example, lead-acid batteries could be maintained in fully charged state by the solar array, although the backup battery should not be connected to the main battery bank. However, if the solar-recharged battery cannot recover from an emergency condition, it may be necessary to recharge the backup batteries by a fixed engine/generator (or by a portable engine/generator carried by the maintenance team). The engine/generator may be considered an essential backup for those unpredicted periods of extremely low insolation for many days.

The advantages and disadvantages of various combinations just described are summarized in Exhibit 4.5-1. Life cycle cost of alternative backup types should be performed, taking into account the maintenance support cost as well as the initial cost. For example, a low-power engine/generator may be low in initial cost, but the cost of maintenance support might make the life cycle cost higher than a solar (or wind) recharged battery. Moreover, the engine/generator requires periodic transport of fuel (gasoline ci diesel oil) to the site, which may be a physical problem for remote installations.

Exhibit 4.5-1
SUMMARY DESCRIPTION OF BACKUP SYSTEMS

Type of System	Application Suitablity	Advantages	Disadvantages
1. Manual (e.g., Hand pumps, manual hoists, hand or pedal driven generators, etc.)	Suitable for low-power loads. Applicable primarily to local (inhabited) sites; can be lised in remote (unatlended) sites wills adequate monitoring (alarm) and response by off-site personnel. Very low initial cost ($\$ 200-\$ 500$).	Simpie to operate; highly reltable; minimum maintenance.	Requires operating manhours for duration of power outage.
2. Frimary Battery (e.g., Non-rechargeable zinc-carbon batteries.)	Suitable for very low power loads. Applicable primarily to remote sites for emergency lighting (signal beacons). communication, instrumentation, etc. Relatively low initial cost (\$200. $\$ 500$ per KW).	Highly reliable; no maintenance (except for batiery replacement).	Requires immediate replacement of battery with new battery.
3. Gasoline Engine/Generator	Suitable for medium power load ($\mathrm{P}<5 \mathrm{KK}$) for long periods of power outage. Readily applicable to local (inlabited) sites; adaptable to remote sites with provision for offsite control. Relatively low initial cost (\$200-\$500 per KW).	Highly reliable (local); moderately reliable (remote). Durable (many years) under long periods of operation. Light weight (2-man portability).	Requires weekly preventive maintenance and operability "run-up" test under load, to verify equipment a vailability. Requires transport and storage of fuel (gasoline) at site. In remote application, may experience carburetion failure in "start" mode, requiring off-site maintenance team.
4. Diesel Engine/Generator	Suitable for full critical power load ($5 \mathrm{KW}<\mathrm{P}<\mathrm{I} 5 \mathrm{KW}$) of the PVPS. Readily applicable to local (inhabited) sites; adaptable to remote sites equipped with automatic switchover provisions. Relatively low initial $\operatorname{cost}(\$ 300-\$ 600$ per KW).	Highly reliable under local control; moderately reliable (higher than gasoline engine) under remote control. Durable (many years) under long periods of operation.	Requires weekly preventive maintenance and operability "run-up" test under load, to verify equipment availabillty. Requires iransport and storage of diesel fuel at the site. In remote application, may faid to start in extremely cold weather, requiving off-site maintenance team.
5. Rechargeable Secondary Battery (e.8., lead-calcium batiery): (A) - solar recharged (B) - wind recharged (C) - Cossil recharged (D) - portable charger	Suitable for full capacity of critical load. Readily applicable to local sites; adapiable to remote sites equipped with automatic switching and charge regulation. High initial cost ($\$ 150-\$ 500$ per KWH), depending or required capacity: (A) - High initial cost of additional solar modules ($\$ 20,000$ - $\$ 40,000$ per KW). (B) - Moderate cost of wind generator ($\$ 2,000-\$ 5,000$ per KW). (C) - Relatively low cost of gasoline or diesel engine/generator (as in 3 and 4 above). (D) - Low cost of portable gasoline engine/generator charger ($\$ 500-\$ 1,000$).	Backup battery bank is reliable. Recharging either solar array or wind charger highly reliable. Gasoline/diesel engine reliable under conditions described in 3 and 4 above. Portable charger Is reliable.	Battery life limited (5-10 years). Engine generators require relatively high maintenance (sec 3 and 4 above). Solar or wind recharge capability depends on weather conditions.

As indicated in the exhibit, suitability of a given backup system for critical loads depends on size of the critical load in kWh allowable duration of power outage, whether the application is local (i.e., inhabited) or remote (i. e., unattended), and accessibility of the site for of f-site maintenance support.

4.5.4 Incorporation of Backup Into the PV System

Once the type of backup has been selected, the backup system must be integrated into the basic photovoltaic power supply. Means of switchover from PV to backup (and visa versa when the emergency is over) may be manual or automatic, depending on whether the system is designed for local or remote operation. Manual operation involves a simple alarm system and a control panel to provide status information (instrumentation), and switching controls to make the timely switch over from PV array to backup system. On the other hand, remote sites must relay this status information by telemetry to the off-site receiver (control) station which alerts the maintenance team when the system is not performing properly. Switchover to the backup system can be accomplished either by transporting the maintenance team to the site, or by including a control channel in the telemetry link by which the backup system can be "commanded" to come on line. A remote actuator will be required for this type of backup, although the actuator can be a simple electrical relay or solid-state switch. Automatic switchover (without telemetry command) is also possible, although the electronic circuitry for the sensing and controlling functions will be more complex and somewhat more failure-prone than the telemetry control method.

A reliability/maintenance/cost tradeoff analysis should be performed to support a design decision between employing on-site manual switching with on-site personnel, or iransported off-site personnel, semi-automatic switching via telemetry monitoring and control, or fully automatic on-site sensing and switching.

SECTION 5
 INFORMATION NEEDED TO START THE DESIGN PROCESS

This section presents the system design engineer with two lists which will guide him in assembling data needed in the design process. The first list presents the minimum data required to perform design computations. The second is a checklist for the entire design process, including tradeoffs, site investigations, and design pitfalls. The reader is expected to use this section as a quick reference to ensure that he has gathered the requisite data.

Little data is needed to perform the design computations for the preliminary stage covered by this handbook. In essence, the daily loads and daily solar radiation are almost sufficient (Exhibit 5-1). Other factors are needed to compute the economics of the system and to compare the photovoltaic life-cycle cost to costs of the competing systems. If each item of Exhibit 5-1 is obtained, then all of the computations required in the various sections of this handbook can be completed. If the data requirements of Exhibit 5-1 are compared to the data requirements of Exhibit 5-2, some appreciation can be obtained of the scope of this handbook. The handbook covers preliminary design approaches only in order to evaluate total photovoltaic systems. The detailed design required to actually construct a system, must address the many questions raised in Exhibit 5-2.

Exhibit 5-1
Minimum Data Requirements
to Establish Feasibility

Technical requirements
Daily energy to be supplied by the system, on the average for each month

Peak power demands
Future power and energy requirements
Reliability criteria for photovoltaic power system
Estimated output of the system when insolation is $1 \mathrm{~kW} / \mathrm{sq}$. meter
Siting requirements such as fences, grading, markers, site preparation, similar weather (world insolation data are listed in Appendix A)

Current costs of photovoltaic system components

PV modules
Batteries
Power conditioning system
Structures and supports
Electrical distribution system

Costs of alternate power systems:
Utility-supplied electricity, including connection costs, demand costs, and energy costs or engine-generator set costs

Fuel costs, including the cost of resupplying
Battery recharge costs
Cost of transportation to the site for repairs to whichever system is adopted (depending on distance to nearest repair station)

Exhibit 5-2

General Checklist for Detailed Design

Site

1. Check array location for foundation and structural support.
2. Check site for locations of underground or overhead cables and utilities and any other obstructions which could cause shading problems.
3. Check installation route and shipping route.
4. Check foundation requirements for battery housing.
5. For existing load centers, check power/energy requirements.
a. Check equipment on line
b. Check life-styles as they influence use of equipment
c. Measure total power/energy consumption for sample days

Criteria

1. Power and energy requirements
2. Reliability requirements for power system operation
3. Allowable load separation for startup purposes.
4. 'Required voltage regulation.
5. Maintenance strategy/frequency of site inspections
6. Instrumentation and monitoring system requirements for initial checkout and maintenance, and operation.

System

1. Determine optinal array tilt, including the possibility of tracking and occasional reorientation.
2. Determine the optimal array size, storage size, etc., on the basis of life-cycle cost but meeting the requirements of performance, reliability, and safety.
3. Determine the effect of degradation of the array, power conditioning components, batteries, cables, connectors, etc., on the longterm system performance and the initial design requirements.
4. Determine array output as a function of time of day, month, and year; include in the effects of temperature, dust accumulation, partial system failure (outages), state of battery charge, load demand, etc., using a detailed simulation.

Exhibit 5-2 Continued

General Checklist for Detailed Design

5. Determine the optimal system voltage, including the effects of partial shading, reliability of the array, module failure, safety, component efficiencies, cable costs, component costs, availability of components.
6. Define the auxilary power system: total, partial, etc., connection to the load, interface with the array and power conditioning subsystem.
7. Determine optimal arrangement of diodes in the array, including isolation diodes and shunt diodes.
8. Allocate the voltage losses, such as the diode losses, cable losses, battery losses, etc., justifying on the basis of cost.
9. Examine the load and power-system I-V characteristics so potential mismatches (average or instantaneous) can be identified. List and rectify potential mismatches (e.g., define a control system to provide matching).
10. Determine the temperature control requirements and how the batteries, voltage regulators and power converters will meet them.
11. Determine how the maintenance personnel will identify a failed module component.
12. Define the test points for startup and monitoring of system performance.
13. Determine optimal cleaning cycle, if any.
14. Determine how protection against vandalism will be provided.
15. Determine the requirements for spare parts.
16. Obtain from the manufacturers the I-V characteristics of the modules as combined functions of temperature and illumination. Include the range of I-V characteristics.
17. Determine if modules should be matched within a series string to maximize the array output, considering the cost savings possible but also the difficulty in replacement matching.
18. Provide test points within the array.
19. Provide indications to identify failed modules or connections.
20. Segment the array for maintenance safety and performance during maintenance.

Exhibit 5-2 Continued
 General Checklist for Detailed Design

6. Determine the least-cost structure, allowing for expansion and contraction due to temperature and humidity. Include aluminum, steel, wood, concrete, and any other native materials. Include foundation design. Include deflection analysis. Protect against corrosion.
7. Estimate the cost of the structure so the optimal cell packing density can be determined.
8. Design the array to withstand the environment: dust, wind, sand, temperature cycling, hail, rain, humidity cycling, installation and maintenance loads, normal and abnormal voltages, lightning, earthquakes, ice, freezing rain, settlement, ground uplift, combinations of loads and their probability of occurence.
9. Review for design compliance with the national codes and standards, such as BOCA, UBC, SBC, ANSI, NEC, NEMA, and their local variations.
10. Obtain the data on soil borings as required for the foundation work.
11. Decide on custom-designing a structure or purchasing a structure from manufacturer.
12. Determine if shading is prevented.
13. Protect the array and cables from falling objects.
14. Design to protect the maintenance personnel from high voltages and temperatures.
15. Provide sufficient redundancy to meet the reliability requirements, such as dual leads, alternate circuit paths, etc.

Jonditioning System

1. Develop the voltage/cost/reliability data for the components in the systems.
2. Define the input/output voltages and currents, including auxiliary power requirements, for a complete range of loads for use in the system design.
3. Examine the system for potential instabilities at high loads and other combinations of battery/array/load supply and demand conditions.
4. Define the environmental requirements for the equipment.

Exhibit 5-2 Continued
General Checklist for Detailed Design
5. Protect the equipment from weather: rain, dust, wind, humidity, temperature, earthquake, lightning, sand, installation and maintenance loads, shipping loads, normal and abnormal voltages and currents, settlement, ground uplift.
6. Specify compliance to the applicable national standards and codes: ANSI, IEEE, NEC, NEMA and their local variations.

Energy Storage System

1. Determine if battery use can be minimized by storing the end product (such as pumped water) rather than electricity.
2. Select the battery type: pure lead, lead-calcium, sealed, SLI, silver-zinc, iron-redox, nickel-cadmium (pocket plate). Consider cost, availability, depth of discharge, reliability, life (cycles, years), capacity vs temperature.
3. Obtain the $I-V$ characteristics of the batteries as a combined function of temperature and state of charge for use in the system simulation.
4. Obtain the life estimates for the batteries as a function of temperature and number of cycles.
5. Determine the optimal voltage of the battery array in terms of the entire system.
6. Estimate the frequency of, and provide for the failure of, one battery in the entire storage system.
7. Determine how rapidly the batteries will self-discharge.
8. Estimate the battery reliability and maintenance requirements and costs.
9. Determine the number of spare batteries needed.
10. Estimate the cost of the batteries in place for use in the systems design.
11. Layout the batteries to minimize the potential faults.
12. Determine the need for and method of dispersing hydrogen genaerated in the battery housing.

Exhibit 5-2 Continued

General Checklist for Detailed Design

13. Design the housing for the following loads: weight, wind, maintenance, earthquake, lightning, hail, deflection, thermal and humidity cycling, ground uplift, dust, sand and combinations thereof.
14. Design to the applicable standards and codes: ANSI, IEEE, NEC, NEMA, OSHA and their local variations.

Emergency Power System

1. Provide a power source as required during the times when the photovoltaics need repair or routine maintenance.
2. Determine if the emergency (backup) power system need be automatically activated.
3. Establish a procedure and cost for maintaining the emergency system in a state of readiness.
4. Estimate the reliability of the emergency power system. Provide a second emergency generating unit if needed to obtain the desired reliability
5. Design the emergency power system to the national standards and codes: BOC, UBC, SBC, ANSI, NEC, IEEE, NEMA, OSHA and their local variations.
6. Design the housing for the following loads: weight, wind, maintenance, earthquake, lightning, hail, deflection, thermal and humidity cycling, ground uplift, dust, sand and combinations thereof.
7. Estimate the installed, operating and maintaining costs for use in the system design.
8. Determine the efficiency of the system versus load for use in the system simulation.
9. Determine the spare-parts requirements.
10. Determine the availability and cost of competent repair services.

SECTION 6

PRELIMINARY SYSTEM DESIGN CONSIDERATIONS

6.1 INSOLATION AND SITING

A generally open, sunlit area will be required for the array. The first step is to identify such an area. The area can be considered open if the angular elevation of neighboring trees, buildings, etc., within an azimuth angle $\pm 60^{\circ}$ degrees of South (northern hemisphere) or North (southern hemisphere) satisfies the relationship:*

$$
\text { elevation angle (above horizon) } \leq 56^{\circ}-\mid \text { Latitude angle } \mid
$$

The next step is to determine if the area is large enough. The clearness index, $\overline{\mathrm{K}}_{\mathrm{H}}$, for the site should be estimated from Appendix A, based on the closest city that also has similar weather. Values of $\overline{\mathrm{K}}_{\mathrm{H}}$ should be read for the four winter months. For each of these months, the corresponding solar radiation (called insolation in the U.S.) should be read from Exhibit 6.1-1. (Linear interpolation is permissible between values of $\overline{\mathrm{K}}_{\mathrm{H}}$ for any one month.). The area of the clearing required for the array is given by the equation:

$$
\text { Area (sq. meters) }=\frac{\text { Load (in } \mathrm{kWh} / \text { day }) *[\cos (\mathrm{t})+\sin (\mathrm{t}) / \tan (66.5-|\mathrm{L}|)]}{\eta * \text { solar radiation }\left(\text { in } \mathrm{kWh} / \mathrm{m}^{2}-\text { day }\right)}
$$

where, as in the first equation, the magnitude of the latitude angle L is used. The array tilt angle is given by t; it is usually equal to the absolute value of the latitude angle. The system efficiency, η, typically is composed of 14 percent for the array, 80 percent for the battery, and 90 percent for the power conditioner, giving $\eta=$ $0.14 * 0.80 * 0.90=10$ percent. The solar radiation to be used on the equation is the minimum for the four winter months.

[^1]Example: Suppose two candidate sites for a $12 \mathrm{kWh} /$ day load are in a remote area near Washington, D.C. Suppose a surveyor's transit had been used, looking within 60° of South, to determine the skyline (horizon) to be shown in Exhibit 6.1-2 for the two sites. Both have $110 \mathrm{~m}^{2}$ available. Which site is most suitable?

From Appendix A, we find that Washington, D.C. is at a latitude of 38.95 degrees. For the space to be considered "open", the skyline must be lower than

$$
56-38.95=17.05
$$

Site A (Exhibit 6.1-2) is not suitable; Site B is.

The values of the clearness index are first obtained from Appendix A, and the average daily insolation on an array tilted at the latitude angle is obtained from Exhibit 6.1-1 by interpolation for the winter months. For November, for example:
a. Interpolation between 30 degrees and 45 degrees latitude:

$$
\begin{array}{ll}
\text { at } \overline{\mathrm{K}}_{\mathrm{H}}=0.3: & 2.180+(1.636-2.180) *(38.95-30) /(45-30)=1.855 \\
\text { at } \overline{\mathrm{K}}_{\mathrm{H}}=0.5: & 4.011+(3.328-4.011) *(38.95-30) / 45-30)=3.603
\end{array}
$$

b. Interpolation between \bar{K}_{H} 's:

$$
\text { at } \overline{\mathrm{K}}_{\mathrm{H}}=0.421: \quad 1.855+(3.603-1.855)(0.421-0.3) /(0.5-0.3)=
$$

Similarly, for December, interpolation gives $2.32 \mathrm{kWh} / \mathrm{m}^{2}$ day, so the land area required is ($\eta=10 \%$):
$A=12 * R /(2.32 \eta)=103$ square meters of land

Where $R=\cos t+\sin t / \tan (66.5-L)=1.983$. The required area is 103 square meters and 110 square meters are available, so Site B is a frood candidate.

AVERAGE MONTHLY INSOLATION (KWH/M ${ }^{2}$-DAY) AND THE RATIO (SIGMA 1) OF STANDARD DEVIATION TO AVERAGE

$\mathrm{KH}=$		Tilt = Latitude					Tilt = Latitude $+10^{\circ}$				
Latitude		0°	15°	30°	45°	60°	0°	15°	30°	45°	60°
JTN	HEFAN *	2. 969	2. 59	2. 017	1. 5044	-1. 695	3.607	2. 63	2. 097	1. 51	61. 928
	SIGMA 1	6. 692	[1. 745	[. 85	1. 185	1. 2.3	6. 71E	Q. 378	5. 891	1. 1079	1. 355
FEE	MEFIN	2. 199	2. 800	c. 360	1. 842	1. 307	2. 130	2.801	2. 342	1. 826	1. 316
	510 mma	0. 692	a. 731	a. 308	6. 948	1. 162	a. P96	6. 7 751.	6. 837	6. 985	1. 217
MAR	MEFN	3.120	2. 995	2. 681	2. 243	1. 772	2. 111	2. 936	2. 597	2. 159	1. 761
	Elime 1	6. 698	a. 709	6. 7517	[1. 848	1. 1047	9. 693	a. 716	Q. 770	a. 876	1. 138
HF'E:	MECN	3. 046	2.173	2. 916	2. 569	2. 137	2. 365	2. 955	2. 3.7	2. 413	2. 168
	S1GME 1	E. 692	6. 689	6. 716	a. PG1	[1. 852	6. 880	[. 882	■. 76	a. 766	6. 86
$\mathrm{MAF}^{\prime \prime}$	MEFN	2. 675	3.144	3. 619	2.817	2. 514	2. 759	2.853	2.815	2. 565	2. 256
	SITMA 1	6.692	E. 6.73	a. 677	a. 303	-. 754	9. 669	6. 655	6. 664	6. 696	-. 753
IUPN	HEFH.	2. 761	2. 996	3. 642	2. 310	2. 664	2. 626	2. 816	2.816	2. 6.47	2. 379
	SIGMA 1	6. 692	日. 665	6. 6.61	0.677	Q. 712	6. 662	6. 6.42	6. 6.43	6. 6.65	6. 76.5
J1/L	MEA? ${ }^{\text {d }}$	2. 793	3. 4013	3. 423	2. 865	2. 595	2. 665	2.831	2. 206	2. 614	2. 325
	5 SIMA 1	6. 692	区. 668	Q. 6.9	6. 686	Q. 726	a. 665	6. 647	[1. 6.4	a. 676	-. 722
Fillis	MEFN	2. 95	3. 039	2.949	2. 691	2. 328	2. 336	2. 899	2. 370	2. 487	2. 11.9
	SIMM 1	6. 692	6. 680	6. 692	-. 729	Q. 798	a. 674	a. 663	6. 685	-. 728	a. 804
SEF	MEFN:	3. a 6 E	3.014	2. 775	2. 396	1. 950	3. 015	2. 926	2. 6.57	2. 269	1. 832
	Silime 1	[1. 692	6. 699	9. 73	a. 808	a. 926	[1. 687	6. 699	-. 739	6. 816	6. 949
OCT	HEFN	2. 09	2. 875	2. 495	2. 416	1. 520	2. 105	2. 347	2. 446	1. 971	1. 492
	SIMMA 1	6. 692	6. 721	0. 783	[1. 899	1. 6198	[1. 760	6. 734	6. 805	[1. 936	1. 133
NOU	MEFAN	2. 017	2. 665	2. 135	1. 685	1. 667	3. 079	2. 690	2. 188	1. 646	1. 090
	SIGMA 1	6. 692	C. 741	[1. 83	6. 998	1. 265	9. 712	6. PET	6. 868	1. 99	1. 297
DEL	MEFN	2. 34.5	2. 524	1. 989	1. 411	Q. 773	2. 0.4	2.575	2.193	1. 446	Q. 809
	SIGMA 1	-1. 692	6. 753	- 1.864	1. \square E]	1. 369	0. 718	6. 786	[1. 961	1. 165	1. 392

* Note: In all cases the MEAN is (I) and SIGMA 1 is (R)

For southern latitudes, the values listed for July pertain to January, August to February, etc. Otherwise, the tables are equally valued for northern and srouthern latitudes.

Exhibit 6.1-1 (Continued)

AVERAGE MONTHLY INSOLATION (KWH/M ${ }^{2}$-DAY) AND THE RATIO (SIGMA 1) OF STANDARD DEVIATION TO AVERAGE

$\mathrm{K}_{\mathrm{H}}=0.5$											
$K H=$	5	Tilt $=$ Latitude					Tilt $=$ Latitude $+10^{\circ}$				
		0°	15°	30°	45°	60°	0^{0}	15°	30°	45°	60°
ITN	MEAR *	4. 955	4. 489	2. 861	3126	2. 156	5.182	4. 663	4. 605	3.255	2. 256
	SIGMA 1	a. 413	6. 453	6. 517	6. 608	6. 718	6. 438	6. 472	a. 58	6. 627	ล. 726
FEE	MEFN	5.125	4. 767	4. 268	3. 642	2. 930	5.248	4. 862	4. 319	3.688	2. 986
	SIGMA 1	[1. 413	6. 441	6. 491	6. 56.6	a. 667	a. 424	6. 455	(1). 568	[1. 585	a. 6 ea
MARE	MEFN	5. 189	5. 613	4. 6.74	4. 17E	2. 625	5. 161	4. 962	4. 514	4. 970	359
	SITMAF 1	6. 415	E. 426	9. 459	6. 515	6. 595	6. 414	6. 431	a. 463	6. 507	0. 6.19
AFF:	MEAN	5.189	5. 1979	4. 895	4. 529	4. 0.57	4. 863	4. 65	4. 631	4. 245	2. 776
	Slbink 1	9. 413	[. 411	6. 426	-1. 46	9. 517	0. 404	6. 465	0. 425	a. 465	0. 585
Mf't'	MEFN	4. TEE	4. 962	4. 957	4. 711	4. 356	4. 488	4. 627	4. 5.5	4. 294	3.923
	SITMA 1	a. 413	, 9.398	a. 401	b. 421	6. 45.7	6. 295	6. 3.84	9. 392	0. 416	[. 457
TIM	MEFN	4. 576	4. 850	4. 9967	4. 762	4. 487	4. 242	4. 465	4. 471	4. 284	3. 984
	SIGNH 1	[1. 413	6. 392	B. 389	6. 462	a. 428	6. 390	0. 372	(1. 375	a. 392	0. 423
TUL	MEFP ${ }^{\text {d }}$	4. 636	4. 814	4. 901	4. 727	4. 422	4. 313	4. 508	4. 485	4. 272	3. 946
	SISMA 1	Q. 412	a. 394	6. 393	a. 409	a. 438	a. 392	Q. 377	6. 381	6. 406	1. 435
Fus	MEFN	4. 865	4. 987	4. 887	4. 594	4. 181	4. 6.32	4. 765	4. 561	4. 241	382
	SICMA 1	6. 412	[1. 404	6. 413	a. 446	Q. 485	6. 399	6. 394	6. 40.7	a. 439	(1) 489
SEF-	MEFN	5. 198	5. 122	4. 750	4. 317	2. 504	4. 981	4. 8.77	4. 575	4. 125	3.624
	SITMA 1	©. 413	a. 418	Q. 443	Q. 488	[1. 556	-. 409	-1. 418	0. 447	6. 496	[1. 56
00.	MEFN	5. 124	4. 872	4. 422	3874	2. 265	5. 17E	4. 881	4. 415	3. 355	3. 263
	SIGPIN 1	[. 413	E. 434	日. 476	1. 543	6. 6.4	c. 419	B. 444	0. 489	1. 559	0. 6.43
NOW	MEFN	5. 6092	4. 590	4. 011	3. 258	2.490	5. 184	4. 724	4. 117	3. 425	2. 581
	SICMA 1	6. 413	6. 448	日. 518	[. 591	6. 697	6. 428	6. 465	6. 526	6. 610	Q. 307
DEC	MEFN	4. 883	4. 387	3. 735	2. 971	1. 691	5. 135	4. 585	3. 899	3116	1. 999
	SICMA 1	6. 413	-0. 456	D. 524	6. 619	1. 731	0. 432	0. 477	6. 546	[1. $6 \leq 7$	1. 738

* Note: In all cases the MEAN is (I) and SIGMA 1 is (R)

For southern latitudes, the values listed for July pertain to January, August to Februaly, etc. Otherwise, the tables are equally valued for northern and southern latitudes.
$\underline{K_{H}=0.7}$

*Note: In all cases the MEAN is (I) and SIGMA 1 is (R)
For southern latitudes, the values listed for July pertain to January, August to February, etc. Otherwise, the tables are equally valued for northern and southern latitudes.

Exhibit 6.1-2
HORIZON PROFILES FOR TWO CANDIDATE SITES

6.2

 PRELIMINARY ASSESSMENT OF PHOTOVOLTAIC SYSTEM DESIGNAn initial estimate can be made of the array-area and storage-capacity requirements to supply a particular load at a given site, for a required level of reliability, using a quick-sizing system approach. Once the capacity of the system is determined, the major components are sized. The gross system cost can be computed on the basis of the array and battery costs, and the process can be repeated by varying the array tilt angles, array areas and battery capacity until the minimum cost is determined. After the detailed engineering design phase is completed, a final cost estimate should also include the costs of site grading, array structures, buildings, power conditioning equipment, instrumentation, distribution wiring and any emergency (back-up) generator system.

6.2.1 Array and Battery Quick-Sizing Method

An estimate of the array-area and storage-capacity requirements by use of a monthly output computation is shown in Exhibit 6.2-1. Implicit in the computation is an assumption concerning the loss-of-load probability (LOLP). The LOLP was assumed to be 1 percent in the development of Exhibit 6.2-2, which is used in the monthly computation of Exhibit 6.2-1. After studying Section 7 of this handbook, adjustments may be made for other LOLP's. The monthly computations proceed as follows:
i. The clearness factor, $\overline{\mathrm{K}}_{\mathrm{H}}$, is obtained for the location of interest for each month from Appendix A. The values are entered in Column 1 of Exhibit 6.2-1.
2. A tilt angle is selected for the array at either latitude or latitude plus 10 degrees.
3. The average monthly insolation, $\overline{\mathrm{I}}$, on the tilted array is obtained from Exhibit 6.1-1 by interpolation and entered in Column 2.
4. The ratio, R, of the standard deviation of the insolation to the average is obtained from Exhibit 6.1-1 by interpolation and entered in Column 3.
5. The standard deviation (S), is computed for each month from the formula $\mathrm{S}=\mathrm{R} * \mathrm{I}, \quad \mathrm{S}$ being entered in Column 4.
6. The $\mathrm{kWh} /$ day load is entered in Column 5.
7. The array performance factor, η_{a}, is obtained from the inanufart•यrer, expressed in daily output per unit of array per $\mathrm{kWh} /$ day $-\mathrm{m}^{2}$ of insolation.
8. Estimate the system efficiency, η. It will be approximately equal to the product of the array performance parameter, the battery efficiency and the power-conditioner efficiency. In Exh:bit 6.2-1, $=8$ percent.
9. Determine the optimal design by trial and error, selecting various values of M^{*} for entry into Exhibit 6.2-1. A reasonable starting value is 0.33 . For each selected value of M, compute the array area required for each month, according to the formula

$$
\operatorname{Area}\left(\mathrm{m}^{2}\right)=\operatorname{Load} /[\eta *(\mathrm{I}-\mathrm{M} * \mathrm{~S})]
$$

In the example of Exhibit 6.2-1, the values of the area are presented in Column 6 for $M=0.33$.
10. For the value of M and the ratio R, the storage requirement, C, is read from Exhibit 6.2-2. This capacity is given in days of load. For example, if the load is 20 kWh and the storage capacity C is six days, then the required storage capacity is 120 kWh . The value of C is entered for each month in Column 7. The storage capacity is expressed in the same units as the load in Column 8.

[^2]11. The month requiring the largest value of array area and storage capacity will determine the equipment size. At first, several values of M should be selected to determine which gives the lowest life-cycle cost. (The value 0.33 is a reasonable starting point.) If the maximum area and maximum storage do not occur in the same month, the maximum array area should be selected according to the foregoing procedures. However, M must be computed from the equation, $M=(\bar{I}-\operatorname{Load} / \eta A) / S$. The storage capacity C is then obtained from Exhibit $6.2-2$ for this M and the monthly R. The month with the maximum product (C * Load) determines the battery size.

6.2.2 Component Sizing

Once the operating sizes of the array and the storage system have been computed, all the compnents of the PV system can be sized. The necessary array size has been computed to meet the required reliability criterion, but must be adjusted to allow for degradation with time. Assuming a 10% loss of array performance over its life due to aging, the 12 kW nominal array size must be divided by 0.9 , giving a 13.33 kW required capacity at the time of installation.

The necessary battery size to be installed is the equivalent cell capacity to provide a 20 -year system life divided by the allowable percent depth of discharge for the battery. A medium rate lead-acid battery is assumed with a 1000 cycle life or a 10 year calendar life. The maximum number of cycles a 9.2 day (184 kWh) battery would be subjected to over a 10 year life would be about 500 . Referring to Exhibit 6.2-3 it can be seen that even at the higher mean battery temperatures, an apparent life of 500 cycles would be possible with a maximum depth of discharge of 95%. Thus, the required installed capacity of the battery will be 105 ? $00 \% / 0.95$) of its end-of-life operating capacity, or 193 kWh in the case of the 184 kWh battery.

EXHIBIT 6.2-1
QUICK SIZING COMPUTATIONAL PROCEDURE
FOR ARRAY AND STORAGE ${ }^{(1)}$

Notes:
(1) Based upon Washington, D.C. location, Latitude $=38.95^{\circ}$, Tilt $=38.95^{\circ}$.
(2) From Appendix A Insolation Tables.
(3) Average monthly insolation from Exhibit 6.1-1.
(4) \quad Array area $=$ Load $/(\eta(I-M * S)): \eta=0.08$.
(5) Based upon $\mathrm{I}=\left(\overline{\mathrm{I}}-\mathrm{I}_{\mathrm{D}}\right) / \mathrm{S}=0.33$. Col. 7 entry read from Exhibit $6.2-2 \mathrm{Col} .8=$ Col. 5^{*} Col. 7 .

Exhibit 6.2-2
BATTERY STORAGE REQUIREMENTS FOR 1\% LOLP

Exhibit 6.2-3
EFFECT OF DEPTH OF DISCHARGE ON BATTERY LIFE ON TYPICAL LEAD-ACID MOTIVE POWER TYPE CELL (Reference 6-1)

6.3.1 Preliminary Estimate

The preliminary estimate of cost effectiveness is the first step in determining whether or not to use a photovoltaic power system when there is an alternative power source. This section provides the methods for evaluating the life cycle costs of a system once the capital and operating costs and system performance factors are known. For a photovoltaic system, the cost of the arrays and the cost of the battery system are the two most important cost elements on which the initial capital and recurring operating costs are based.

The basic approach in making economic comparisons between a photovoltaic power system and a conventional power system is to determine the life cycle costs for each alternative. The life cycle cost procedure incluries all initial capital costs and the expenditures for the entire life of each alternative including all replacements, maintenance, fuel and operating costs. Photovoltaic systems typically will require a large initial investment, but the operating cost expenditures are negligable when compared to a fuel-consuming engine-generator. Engines require a relatively modest initial expenditure, but also require continuing (escalating) expenses for fuel. For any power system alternatives which differ so in the time sequence of expenditures, the amount of back-up capacity, the cost and escalation rate of consumables and the amount of energy supplied (load factor) are all important factors in determining the break-even cost between alternatives.

In its simplest form, the life-cycle cost is the amount of money needed on hand today in order to finance the project over its entire lifetime, assuming a known rate of inflation and a given discount or cost of money interest rate. This amount is' called the net present value of the project life-cycle cost. It can be written as:

$$
\text { Life-cycle cost }=\text { Initial cost }+ \text { Total Present Worth of Annual Costs }
$$

The total present worth of the annual cost streams throughout the life of the project must include all maintenance costs, all battery replacement costs (for a PV system), ull operating costs and all fuel costs for those alternatives using engine generator sets.

The present values for the recurrent costs of operations, maintenance, and back-up energy can be formulated to account for both escalation and discounting and expressed in terms of the year of first operation. The expression for the present value of recurrent costs is:

$$
X_{p v}=\left\{\begin{array}{l}
X_{0} \cdot\left(\frac{1+g_{0}}{k-g_{0}}\right)\left[1-\left(\frac{1+g_{0}}{1+k}\right)^{N}\right], \quad \text { if } k \neq g \\
X_{0} \cdot N, \text { if } k=g
\end{array}\right.
$$

where

$$
\begin{aligned}
& X_{p v}=\text { (operation }+ \text { maintenance, or fuel cost) present value } \\
& X_{0}=\text { Operation + maintenance, or fuel cost in first year } \\
& \mathrm{g}_{\mathrm{o}}=\underset{\text { The }}{ }=\text { escalation rate for operations, maintenance, or fuel } \\
& k=\text { The cost of money interest rate (discount rate) } \\
& \mathrm{N}=\text { System life in years }
\end{aligned}
$$

For those recurring replacement costs for equipment such as batteries which have component lives shorter than the system life, the present value of the replacement costs is:

$$
R_{p v}=X_{1}(1-S) \sum_{i=1}^{\eta}\left(\frac{1+g_{1}}{T+k}\right)^{\frac{N_{i}}{n+1}}
$$

where

$$
\begin{aligned}
\mathrm{X}_{1} & =\begin{array}{l}
\text { The replacement cost of the equipment in the first year } \\
\mathrm{S}
\end{array} \\
\mathrm{~N} & =\text { Per unit salvage value of replaced equipment } \\
\mathrm{n} & =\text { The system life in years } \\
\mathrm{g}_{1} & =\text { The number of component replacements over } \mathrm{N} \text { ycars } \\
\mathrm{k} & =\text { The inflation rate for equipment replacements } \\
& =\text { The cost of money interest rate }
\end{aligned}
$$

The economic analysis should be conducted assuming appropriate system lifetimes for the power system components and the application. For our purpose, a system life of 20 years is assumed. This restriction does not mean, however, that the original solar equipment must be designed to last that long or that components which have longer lifetimes should be discarded in 20 years. It is not intended that the economic analysis should constrain the optimal design. The 20 -year standard might be met, for instance, by replacing all the batteries at the end of 10 years or by replacing them at 5,10 , and again at 15 years if the cycling and design depth of discharge result in five year battery lives.

6.3.2 Life Cycle Cost Determination

The system components, cost and economic parameters for the system sized in Section 6.2 are presented in Exhibit 6.3-1. The hardware costs are based upon 1980 nominal levels and do not represent industry projections for the future. The indirect costs are expressed as a percentage of the material costs. Installation costs are very dependent upon the location and remoteness of the construction site and are likely to vary from the nominal value of 30% of the hardware costs. Engineering costs are likely to be higher on initial first of a kind projects than on subsequent follow -on jobs.

The inflation rates presented in Exhibit 6.3-1 for use in comparisons were chosen to be typical but may not reflect recent changing economic conditions. The absolute magnitudes of the inflation rates are not really crucial to a comparative engineering economy analysis. The important requirements are uniform assumptions and the relative rates of price change.

Exhibit 6.3-2 presents a form for the computation of the life cycle cost of the system. The costs of components and the factors for determining the present worth of annual recurring operations and maintenance cost as well as the replacement costs for batteries are based upon Exhibit 6.3-1. The evaluated lifecycle cost for the determination of feasibility is shown on Line 13 of the exhibit. This value can be compared with the costs of other alternatives and then refined by testing the sensitivity to different levels of reliability as discussed in Section 7.

COMPONENTS, SYSTEM COS'I'S

 AND ECONOMIC PARAMETERS| Components | Quantity |
| :--- | ---: |
| PV Array: $12 \mathrm{~kW} \div 0.9$ degradation factor | 13.33 kW |
| Battery: $184 \mathrm{kWh} \div 0.95$ for depth of discharge | 193 kWh |
| Array Life, N | 20 yrs. |
| Battery Life | 10 yrs. |

Hardware	
PV Array Cost	$\$ 10 / \mathrm{W}$
Battery Cost	$\$ 150 / \mathrm{kWh}$
Salvage Value of Battery, S	0.10

Indirect Costs

Engineering/Total Hardware Costs	0.10
Installation/Total Hardware Costs	$0.30+*$
Management/Total Hardware Costs	0.06

Economic Parameters

Discount Rate, k	0.12
General Inflation Rate	0.08
Inflation Rate for $\mathrm{O} \& \mathrm{M}, \mathrm{g}_{\mathrm{o}}$	0.09
Inflation Rate for Battery Replacements, g_{1}	0.08

Annual Recurring Costs
Array O\&M (\nsim of First Costs)
Battery O\&M (\% of First Costs) 0.01

Present Value Factors
$\begin{array}{lr}\mathrm{X}_{\mathrm{pv}} / \mathrm{X}_{\mathrm{o}}=(1.09 / 0.03)\left[1-(1.09 / 1.12)^{20}\right]= & 15.22 \\ \mathrm{R}_{\mathrm{pv}} /\left[\mathrm{X}_{1}(1-\mathrm{S})\right]=(1.08 / 1.12)^{10}= & 0.695\end{array}$
*These costs are very dependent upon location of site.

Exhibit 6.3-2

PHOTOVOLTAIC POWER SYSTEM PRELIMINARY DESIGN LIFE CYCLE COST COMPUTATION

Quantity
Component Size

1. PV Array: nominal size degradation factor 13.33 кW
2. Battery size: nominal size depth of discharge 193
kWh
Component Costs
3. PV Array \$133,330
4. Battery 28,950
5. Power Conditioning System at $\$ 1$ per watt 15,000
6. Total Components 177, 280
7. Engineering 17,730
8. Installation 53, 180
9. Project Management 10,640
10. Total First Costs 258,830
Annual Costs
11. Maintenance $=0.01 \times$ Line $3+0.01 \times$ Line 4 1,623 (from Exhibit 6.3-1)
Replacements Present Value
12. Battery $=0.695 \times 0.9 \times$ Line 4 18,108
Total Life Cycle Cost
Line $10+$ Linc $12+15.22 \times$ Line 11 $\$ 301,640$

6.4 RELIABILITY ENGINEERING APPROACH

Beginning in the early conceptual and feasibility analysis phase of PV system design, the system design engineer is confronted with many tradeoff decisions involving the alternative choice of PV array configurations, equipment/component types, physical plant (site) layout, etc. These tradeoffs are conducted primarily to optimize system performance with respect to life-cycle cost. In the design of stand-alone PV power plants, system reliability and maintainability ($R \& M$) become key integral factois in these performance/cost tradeoff analyses.

This section discusses the more important $R \& M$ engineering and analytical technologies used in these analyses. Maintainability and maintenance aspec ts of system design are discussed in Section 8.

6.4.1 Definition and Specification of PV System R \& M Requirements

Reliability and maintainability requirements foir stand-alone PV power systems can be expressed in quantitative terms amenable to specification as design requirements, estimation in the design phase, measurement in the development/testing phase, and evaluation during operational use phases of the system life cyole. Definitions and terms are consistent with those used throughout the DOD/NASA industry (Refs. 6-2, 6-3).

Reliability

Reliability is generally defined as the probability that an item (PV system, equipment, module, etc.) will perform its specified function (within specified limits of performance) without failure for a specified period of time (or number of cycles) when operated under specified conditions. Reliability characteristic curves (reliability functions for an item are illustrated in Exhibit 6.4-1) for two basic types of failure modes common in PV power systems:
(1)

Exponential Case -- failure modes which occur at random points in time (e.g., failure attributed to quality defects in PV cell manufacture, cell failures due to hail damage, etc.), which are independent of prior experience. The reliability function follows exponential (Poisson) law, given as:

$$
R(t)=e^{-t / M T B F}=e^{-\lambda t}
$$

Where: $\quad R(t)=$ reliability of the item for
a given period of time, t
$\mathrm{t}=$ calendar time in units of hours, days, months, etc., as applicable MTBF = mean time between failures for the item $\lambda=$ item failure rate, in failures per unit of time; $=1 / \mathrm{MTBF}$

Exhibit 6.4-1

RELIABILITY FUNCTIONS FOR EXPONENTIAL (RANDOM) AND GAUSSIAN (WEAROUT) FACILITIES

Gaussian Case -failure modes which occur at predictable points in time, attributed to performance degradation or "wear-out" after an extended period or number of cycles of use (e.g., PV cells and batteries). The reliability function is given by:

$$
\text { where: } \quad \begin{aligned}
& \mathrm{R}(\mathrm{t})=1-\mathrm{F}\left(\mathrm{Z}_{\mathrm{t}}\right) \text {, for time-dependent failure modes } \\
& \mathrm{R}(\mathrm{c})=1-\mathrm{F}\left(\mathrm{Z}_{\mathrm{c}}\right), \text { for cjcle-dependent failure modes } \\
& \mathrm{F}(\mathrm{Z})=\begin{array}{l}
\text { area under the cumulative normal distribution curve } \\
\text { (see typical statistics textbook, e.g. Ref. } 6-4) .
\end{array} \\
& \mathrm{Z}=\quad \begin{array}{l}
(\mathrm{x}-\mu) / \sigma
\end{array} \\
& \mathrm{x}=\quad \begin{array}{l}
\text { time }(\mathrm{t}) \text { or cycles (c) at which reliability is to be estimated or } \\
\text { specified }
\end{array} \\
& \mu=\quad \begin{array}{l}
\text { mean time between failures (MTBF) or mean cycles between } \\
\text { failures (MCBF) for the reliability function at } \mathrm{R} \approx 0.50
\end{array} \\
& \sigma=\begin{array}{l}
\text { standard deviation in hours (or cycles) between } 50 \text { th percentile } \\
\\
\\
\text { MTBF (or MCBF) and 84th percentile on ihe reliability }
\end{array}
\end{aligned}
$$

Maintainability (MTTR) and Downtime (MDT)

Maintainability is generally defined in terms of the mean time to repair (MTTR) an item after a failure has occurred. Repair time includes the active time required to: trace and localize the failure; perform the necessary disassembly, corrective repair, and reassemby of the item, and; "check out" (verify) the repair action.

Repair time does not include travel time (time required for the technician to arrive at the site following the indication of a failure) or logistic delay time (time involved in getting the necessary replacement parts). These time elements, along with active repair time, account for the average downtime (MDT) for the repair action.

Availability (A)

Avallability of an item is generally defined as the probability that at any point in time the item will be in a satisfactory state of operation (i.e., either
operating or ready to operate when demanded) in accordance with specified performance requirements under the specified use conditions. System availability can be defined for its design (inherent) availability, A_{I}, and for its operating (operational) availability (A_{0}):

$$
\begin{aligned}
& A_{I}=\frac{M T B F}{M T B F+M T T R}=\left(1+\frac{M T T R}{M T B F}\right)^{-1} \\
& A_{0}=\frac{M T B F}{M T B F+M D T}=\left(1+\frac{M D T}{M T B F}\right)^{-1}
\end{aligned}
$$

Specification of R\&M Requirements

A stand-alone PV power system for particular application may be required to deliver a specified level of de power without interruption for long periods with only periodic (e.g., weekly or monthly) scheduled mairtenance/inspection. The system "operational" requirements should be stated by (or made known to the potential customer) in a formal system specification. The system specification serves two purposes: (1) it provides the contract basis for delivery and acceptance of the installed PV power system; and (2) it provides the basis for translating the system operational requirements into reliability and maintainability parameters allocable to lower-level subsystem/equipment as quantitative design $\mathrm{R} \& \mathrm{M}$ requirements. This section deals with the latter.

Assume, for example, the key system requirements for a particular customer's application might be summarized as illustrated in Exhibit 6.4-2. Since the customer has indicated the proposed PV installation is to be 30 miles NE of Billings, Montana, the solar parameter (e.g., average daily insolation, percent of clear days, etc.) can be computed for the intended site. The system designer must now translate this customer's system requirements into design requirements in quantitative terms (values of performance, reliability, and maintainability characteristics) allocated to the major subsystem. These design requirements are identified and quantitatively allocated to the subsystems in the system design
specification. The allocated requirements are appropriately updated following each design trade-off iteration during preliminary design phase (egg., trade-off solar-array, battery-bank, and estimated cycle cost within constraints of a backup generator, load criticality, and available insolation). The following two paragraphs illustrate the reliability and maintainability design requirements which might be included in a proposed system specification. The values shown in these paragraphs are based on the customer's stated operational requirements in Exhibit 6.4-2.

Exhibit 6.4-2
PARTIAL DESCRIPTION OF REQUIREMENTS FOR HYPOTHETICAL CUSTOMER APPLICATION

1. \quad System Reliability -- System design shall provide continuous de power to the specified loads for uninterrupted service (excluding 30 seconds startup of back-up unit, if necessary) during thirty (30) days of unattended operation between scheduled monthly preventive maintenance visits.

$$
\begin{array}{ll}
\text { Load I (Critical Load) } & \begin{aligned}
R & =0.99 \text { for specified load, } \mathrm{P}_{\mathrm{O}} \\
& =10 \mathrm{kWh} / \text { day }
\end{aligned} \\
\text { Load II (Essential Load) } & R=0.90 \text { for } \mathrm{P}_{\mathrm{o}}=40 \mathrm{kWh} / \text { day }
\end{array}
$$

2. Subsystem Reliability-The following subsystem/equipment design requirements shown in Exhibit 6.4-3 are preliminary design allocations to satisfy system requirements specified in (1) above. Values shown in the table are subject to revision as the result of design trade-off iterations in the design verification phase. Subsystem Revalues are keyed to the functional block diagram shown in Exhibit 6.4-4 and reliability modeling procedures discussed in Paragraph 6.4.2, following.

Exhibit 6.4-3

EXAMPLE RELIABILITY ALLOCATION FOR A HYPOTHETICAL SYSTEM

System/Equipment

I* Insolation, $\bar{I}_{\text {min }}=3.4 ; \mathrm{P}\left(\mathrm{I} \geqslant \mathrm{I}_{\mathrm{min}}\right)=$	0.50
A Solar Array	0.95
B Array Terminal Box	0.99
C DC/DC Regulator	0.98
D Battery Bank and Terminal Box	0.95
E Generator, Primary Back-Up	0.85
F Generator, Critical Load Back-Up	0.90
G Main Power Switching Panel	0.99
H Critical Power Switching Panel	0.99
J Maintaining \& Telerietry Equipment	0.995
K Distribution Panel	0.995
System Reliability \quad (Load I and II)	
	(Load I only)

A Solar Array min 0.95
B Array Terminal Box
0.99

C DC/DC Regulator $\quad 0.98$
D Battery Bank and Terminal Box 0.95
E Generator, Primary Back-Up 0.85
F Generator, Critical Load Back-Up 0.90
G Main Power Switching Panel 0.99
Critical Power Switching Panel 0.99
Maintaining \& Telemetry Equipment 0.995

System Reliability (Load I and II) 0.90
(Load I only)
0.99
*For $35^{\circ} \mathrm{N}$ latitude (Billings, Montana), the value of minimum solar insolation ($\mathrm{I}_{\text {min }}$) during January is $\overline{\mathrm{I}}_{\text {min }}=\overline{\mathrm{K}}_{\mathrm{T}} \overline{\mathrm{R}} \mathrm{E}=3.4 \mathrm{kWh} / \mathrm{m}^{2}$-day, where $\overline{\mathrm{K}}_{\mathrm{T}}=0.44, \overline{\mathrm{R}}=1.54$ for 50° tilt, and $E=18.1 \mathrm{kWh} / \mathrm{m}^{2}$-day. Thus the value of $\mathrm{P}\left(\mathrm{I} \geqslant \mathrm{I}_{\mathrm{min}}\right)=0.50$ assuming $\overline{\mathrm{K}}_{\mathrm{T}} \approx \widetilde{\mathrm{K}}_{\mathrm{T}}$.

6.4.2 R\&M Networks and Block Diagrams

A reliability block diagram is prepared as a series-parallel network comprising the major components to be used in the proposed PV power system. The block diagram assumes failure-independence (i.e., no interactions) between the blocks. If interactions (failure dependencies) are known to exist between components, these components are combined and identified in the block diagram to account for the interactions. Reliability estimating models (math models) are then developed for each component and path in the network and for the overall PVPS system level. Procedures are illustrated in the following steps:
(1) Prepare a top-level "function-oriented" reliability block diagram based on the preliminary design functional block diagram for the system. Exhibit 6.4-5 shows the functional-oriented reliability block diagram based on the hypothetical system depicted in Exhibit 6.4-4. At the system level, reliability is given as follows for normal operation (with backup), and including solar insolation $R_{I}^{*}=$ $\mathrm{P}(\mathrm{I})$.

- Load II Performance

$$
R_{S}(I I)=\left[1-\left(1-R_{E}\right)\left(1-R_{I} * R_{A} R_{B} R_{C} R_{D}\right)\right] R_{G} R_{K} R_{J}
$$

- Load I Performance

$$
\left.R_{S}(I)=\left[1-R_{F}\right)\left(1-R_{E}\right)\left(1-R_{I}^{*} R_{A} R_{B} R_{C} R_{D}\right)\right] R_{G} R_{K} R_{J}
$$

(2)

Expand the individual blocks in the "functional" reliability diagram into "equipment/circuit" oriented reliability block diagrams to show series and parallel status and major components in each path in the block.

Develop reliability math models for each block in the system. For example, Block A in Exhibit 6.4-6 is the solar array. The solar array may be configured as simple series "strings" of PV cells, or as a series/parallel network, as illustrated.

Exhibit 6.4-4 FUNCTIONAL RELIABILITY BLOCK DIAGRAM

- Solar Insolation (I)
- Solar Array (A)
- Array terminal (switching) board (B)
- Primary Generator Backup (E)
- Critical Generator Backup (F)
- DC/DC Regulator (C)
- Battery Bank (D)
- Power Switching/Controls (G)
- Critical Load Controls (H)
- Performance Status Monitoring/ Telemetry Equipment (J)
- Distribution Panel (K)

Exhibit 6.4-5

Exhibit 6.4-6
OPTIONAL MODULE CONFIGURATIONS:
(A) SERIES: (B) SERIES/PARALLEL

The choice of one configuration over another will depend on the size of array (in peak watts and voltage), cost of cross-connections vs additonal series strings, ease of maintenance, reliability requirement in unattended installation, etc. Generally, configuration (b) provides higher "system" reliability for a given PV cell population in the array. Reliability models for the two configurations are given as follows:
(a) Series Case

$$
\overline{R_{A}}=R_{i}^{n} \quad \sum_{x=0}^{r}\binom{n}{x}\left(\frac{\bar{R}_{i}}{R_{i}}\right)^{x}
$$

where: $\quad R_{i}=$ reliability of individual PV "string" in the operative redundent configuration
$\bar{R}_{i}=\left(1-R_{i}\right)$
n = number of PV strings in the array
$r=$ number of allowable string failures
and $\binom{n}{x}$ is the binomial coefficient $\frac{n!}{x!(n-x)!}$ (F, : complete tables of values see, National Bureau of Standards, "Tables of Binomial Probability Distribution", GPO 1949, Applied Mathematics Series 6.)

For illustration, assume the first design iteration (preliminary design) has sized the array with 64 parallel strings, each composed of 14 modules in series. Each module is configured with 36 cells in series to deliver rated array power output of 15 kWp at 200 V de (under standard insolation, $\mathrm{I}=1000 \mathrm{~W} / \mathrm{m}^{2}$).

Assume that module failure rate for a 30 -day unattended operation is
$\lambda \mathrm{m}=780 \times 10^{-6}$ module failures/month and reliability for $\mathrm{R}_{\mathrm{m}}=\mathrm{e}^{-780 \times-10^{6}}=$ 0.9992 for a 30 day period.

Reliability for a series string of 14 modules for a 30 -day period is given by

$$
P_{S}=\left(R_{M}\right)^{14}=(0.9992)^{14}=0.989
$$

Array reliability for a 30 -day period can then be estimated for $\mathrm{r}=01$, or 2 string failures using the binomial expression above:

$$
\begin{aligned}
& R_{A}(r=0)=R_{i}^{n}=(0.989)^{64} \approx 0.493 \\
& R_{A}(r=1)=0.493\left[1+64\left(\frac{0.011}{0.989}\right)\right]=0.844 \\
& R_{A}(r=2)=0.493\left[1+64\left(\frac{0.011}{0.989}\right)+\frac{63 \times 64}{2}\left(\frac{0.011}{0.989}\right)^{2}\right]=0.967
\end{aligned}
$$

This indicates the simple series configuration (a) would require the addition of two redundant strings to satisfy the allocated reliability requirement, $R_{A} \geqslant 0.95$. This is verified here to illustrate use of Poisson approximation of the binomial expansion. Techniques for graphical solution of parallel redundant reliability estimation can be found in Ref. 6-4.

$$
\begin{aligned}
& \mathrm{B}(30 \text { days })=\sum_{\mathrm{x}=0}^{\mathrm{r}} \frac{\mathrm{e}^{-\mathrm{m} \lambda_{m} \mathrm{tn}}(\mathrm{~m} \lambda \mathrm{tn})^{\mathrm{x}}}{\mathrm{x}!} \\
& \text { where } \lambda_{m}^{m}=\text { number of modules in string, e.g., } m=14 \\
& \lambda_{\mathrm{m}}=\text { module failure rate, e.g., } \lambda_{\mathrm{m}}=26 \times 10^{-6} \text { failures/day } \\
& \mathrm{t} \quad=\text { unattended system operating time between scheduled } \\
& \text { preventive maintenance visits, e.g., } t=30 \text { days } \\
& \mathrm{n}=\text { number of strings in the array, e.g., } \mathrm{n}=64+2 \\
& \text { redundant strings }=66 \text { strings } \\
& \text { then } \\
& \mathrm{m} \lambda_{\mathrm{m}} \mathrm{tn}^{\mathrm{n}}=14 \times 26 \times 10^{-6} \times 30 \times 66=0.72 \\
& R(30 \text { days })=\sum_{x=0}^{r=2} \frac{(0.49)(0.72)^{x}}{x!} \text {, for } r=2, n=66 \text { (2nd iteration) } \\
& =0.49+0.35+0.13 \\
& \approx 0.97
\end{aligned}
$$

However, only one redundant string would be required using the crossconnection configuration discussed in (b), following.

(b) Cross-Connected (Series Parallel Modules)

Assume the circuit configuration is to consist of cross connections to produce two blocks each of 64 substrings (of three series modules) in series with two blocks of 64 substrings (of four series modules).
month, and module reliability $=e^{-778 \times 10^{-\mathrm{v}}}=0.99922$.

$$
\begin{aligned}
& \text { Substring (3 module) reliability, } \mathrm{R}_{\mathrm{SS}_{3}}=(0.99922)^{3}=0.99767 \\
& \text { Substring (4 module) reliability, } \mathrm{R}_{\mathrm{SS}_{4}}=(0.99922)^{4}=0.99689
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left\{(0.8613)\left[1+64\left(\frac{0.00233}{0.99767}\right)\right]\right\}^{2}\left\{(0.8193)\left[1+64 \frac{(0.00311}{0.99689}\right)\right]\right\}^{2} \\
& =(0.9900)^{2}(0.9829)^{2} \\
& =(0.947)
\end{aligned}
$$

Trade-of f analysis of configurations (a) and (b) should consider the cost of interconnection required to save one string vs the cost of that string.

In this example, configuration (b) would be recommended from a maintenance/safety standpoint. PV substrings can be grounded at crossconnections during maintenance to limit exposure of voltage less than 50 volts consistent with Article 110-17 of the National Electrical Code (NEC).

6.4.3 Reliability Prediction and Feasibility Estimation

Feasibility of the allocated reliability and maintainability requirements defined in 6.4.1 are evaluated by using the math models developed in 6.4.2 based on equipment and component failure rates presented in Appendix B. These failure rates are based on field experience over the past few years and are subject to revision with changes in the state of the art.

For example, failure rates reported on photovoltaic cells may range from 0.005×10^{-6} to 0.5×10^{-6} (failures per hour) due to variation in application stresses, environmental conditions (temperature, relative humidity, etc.), basic design, materials, and processes used in PV manufacture, and also the scarcity of PV cell failure data itself.

In jointly estimating reliability and maintainability (scheduled periodic maintenance) for the stand-alone PV system, power loss must be considered due to accumulation of "dust" on the surface of PV modules. Dust includes sand, pollen, and other air-borne particles, peculiar to the local atmosphere at the proposed site. Design discusions will involve trade-offs, primarily among cost of frequency of array "cleaning" (preventive maintenance), cost of glass outer covers for the modules, and cost of additional PV strings to make up the power loss during the desired length of unattended operating period.

Field data collected from several existing sites indicates dust accumuration rate and corresponding array power loss ranging from 1% to 38% over a oneyear period without cleaning (see Appendix B). Variation in dust accumulation can be attributed to differences in the materials used in module outer surface (e.g., glass, silicone rubber, hard-coated silicone rubber), array tilt angle, and local atmospheric/pollution/weather conditions (e.g., city, suburban, rural, mountainous, desert, etc.).

6.4.4 Failure Mode and Effects Analysis

The PV power system designer should perform failure mode and effects analyses (FMEA) for his intended design (and subsequent engineering changes) to identify and evaluate any potential critical failure modes which could jeopardize personnel safety or equipment reliability during installation, operation, or maintenance of the proposed PV power system. These analyses are also useful for identifying potential maintainability problems (excessive maintenance burden in terms of maintenance manhours, equipment downtime rate); logistic support problems (excessive requirements for spares and replacement parts); and inadequacy of specified quality controls (in component production and system installation in terms of process controls, special inspections, test procedures, etc.).

Results of the FMEA should provide design guidance in choosing b́etween several alternatives for the correction or circumvention of the identified critical failure modes -- e.g., choice hetween use of parts derating, feedback stabilization, circuit redundancy, location of test points for performance monitoring and failure indication (for on-line maintenance), etc.

Procedures for failure mode and effect analysis (and "fault-tree" analysis) are published in the literature, ${ }^{1}$ describing the following basic steps:
(1) Develop the Equipment Functional/Reliability Block Diagram

Extend the reiiability block diagram and mathematical models described in 6.4.2 down to the lowest replaceable item (e.g., unit, curcuit, component, or part) in each functional path or "network" in the proposed design configuration.
(2) Identify Critical Failure Modes.

Identify and determine the specific failure modes within replaceable items which could render each functional path hazardous (or unsafe) to operating/maintenance personnel, unreliable (inoperable or excessively degraded performance) in equipment operation, or nonconformance to other "desired" specified system performance parameter requirements íe.g., performance tolerance limits, downtime rates, maintenance skills, etc.).

[^3](3) Estimate Failure Rate for Identified Critical Failure Modes.

Determine failure rate for each identified critical failure mode by subdividing the failure rates applied in 6.4.3, allocated according to the relative frequency with which the critical failure modes occur within the estimated overall failure rate.

For example, estimated failure rates for a particular type of DC relay may be 5×10^{-6} failures per operating hour in all failure modes. Assume that life test data reveal 50 percent of the failures were due to open mode, 20 percent were due to short mode, and 30 percent were due to degraded performance (high resistarice contact, chattering contacts, etc.). If "short" mode is critical in terms of safety or reliability in the proposed application, the failure rate for the critical failure mode is:

$$
\begin{aligned}
\lambda_{\mathrm{c}} & =5 \times 10^{-6}(0.20) \\
& =1 \times 10^{-6} \text { critical "short" failures per operating hour }
\end{aligned}
$$

In the absence of experience data (operating history or life-test data) for particular items used in the proposed PVPS design, failure-rate estimates for generic part types can be obtained from MIL-HDBK-217. ${ }^{2}$ Life-test failure-mode data for certain part types can be obtained from GIDEP reports. ${ }^{3}$ However, a "worstcase" analysis may be justified if data are meager, by allocating the total failure rate to the critical failure mode.

[^4](4) Assess Safety/Reliability Design Adequacy.

Apply estimated failure rates of identified critical failure modes in the reliability modes evolved in (1) above, and compute functional path and system-level reliability (inoperable) failure rate and safety (hazardous or unsafe) failure rate. Transform these critical failure rates to reliability and safety probability estimates (or in terms oí mean time between critical failures (MTBCF). Compare these values with the specified PV power system requirements for safety and reliability (or downtime rate).
(5) Evaluate Design Changes.

If results of FMEA indicate nonconformance to specified (or desired) requirements in (4) above, rank the identified problem areas according to their relative impact and evaluate alternative design changes for circumvention of or minimizing the undesired failure modes.
(6) Evaluate Other Hazards to System Safety/Reliability.

Other critical failure modes may be induced by human/equipment interface problems (not due to component failure) resulting in equipment operation or maintenance in modes not intended by design. Although these failure modes usually cannot be quantified in terms of failure rate, they nevertheless can be identified qualitatively as potential threats requiring placement of cautionary labels and protective measures at appropriate points in the installed system.

For example, to evaluate the safety aspect of human/equipment interface. design, consider the following: electrical grounds for external metal parts, panels, controls, etc.; safety covers and notations with interlocks in the highvoltage devices; connectors and plugs designed so as not to expose high-voltage "hot" pins; local safety switch at base of solar-tracking arrays; discharging devices for high voltage PV circuits during cleaning or maintenance of solar array; barriers between adjacent test points on terminals to prevent accidental shortage by slippage of test probe; installation of fuses and circuit-breakers at ground or lowvoltage end of PV strings; protection from moving parts or high-temperature parts; protection from sharp edges of components and maintenance access openings; identification of points for lifting or hoisting batteries, solar panels, etc., during installation or removal.

6.5 ADVANTAGES AND DISADVANTAGES OF PV POWER SYSTEM

Current solar technology and cost suggest that adequately designed PV power systems (PVPS) are well suited for high-reliability/low maintainability requirement applications at remote locations. Typical examples of such applications have included remote weather stations, communications relay stations, navigational buoys and agricultural water-pumping systems. Other power sources are used with varying degrees of success, with or without battery storage and rechargeable un-site battery storage. Generally, the advantages of PV power systems over other systems are their simplicity (fewer moving parts), relative ease of maintenance, high (equipment) reliability, and unattended operation. However, the major disadvantages of PV power systems (by their nature) are their dependence on adequate solar insolation, relative large size of installation area required for the solar array, and the need for dc/ac inversion equipment for ac loads.

SECTION 7

SYSTEMS DESIGN

7.1 DESIGN PHILOSOPHY

The foregoing sections of this handbook give the ingredients for an analysis of the annual energy output from a photovoltaic system. However, the systems being considered are stand-alone systems; therefore, the design must be based on the photovoltaics supplying all of the electrical power. The averas ${ }_{2}$ power output from the system must thus be equal to the average power consumption of the load. The question to be enswered is: what is the probability that the solar system will not meet the momentary load requirement? This section presents the loss-of-load probability (LOLP) computational procedure to answer this question.

If the LOLP is too high to be acceptable, either the array and/or the storage size can be increased or an emergency power system can be provided as a backup to the photovoltaics. In the latter case, the LOLP computation will indicate how often the emergency system will be used. It can then be determined, for example, how much fuel must be stored at the site to power the emergency system and how frequently it must be replenished.

The procedure, which is intended to provide the basis for developing first cut designs for cost-effective stand-alone PV power systems, involves the following steps:

1. Determination of the load (see Section 4.1)
2. Computation of the insolation (see Section 11)
3. Selection of the array and storage-system size
4. Computation of the LOLP
5. Computation of the life-cycle costs

The last three elements are considered in this section of the handbook.

7.2 SYSTEM DESIGN PROCEDURE

The system design procedure is iterative. The array and storage sizes must be selected, with the help of the quick-sizing method of Section 6, and the system performance must be computed. The performance computation is then incorporated into a life-cycle cost analysis. If the technical performance or lifecycle cost are unacceptable, then a new set of array and storage sizes must be selected.

The computational process has been systematized in Exhibit 7.2-1. The average insolation is determined via the procedures of Section 11 , based on the data in Appendix A and Exhibit 6.1-1. If Exhibit 6.1-1 does not include the tilt angles of interest, then the computational procedure of Section 11.3 can be used. The standard deviation of the insolation - a measure of its variability - is presented in Exhibit 6.1-1, as required in Step 2 of Exhibit 7.2-1. The insolation required to meet the load, I_{D}, can be estimated from the load requirements. With the load measured in kWh per day, and system efficiency in $\mathrm{kWh} / \mathrm{m}^{2}$ output per $\mathrm{kWh} / \mathrm{m}^{2}$ of insolation,

$$
\mathrm{I}_{\mathrm{D}}=\frac{[\mathrm{kWh} / \text { day of load }]}{\left(\begin{array}{c}
\left(\left(\mathrm{kWh} / \mathrm{m}^{2} \text { output per } \mathrm{kWh} / \mathrm{m}^{2} \text { of insolation }\right)^{*}\right. \\
(\text { the area of the array in square meters })]
\end{array}\right.}
$$

The value of I_{D} is required in Step 3 of Exhibit 7.2-1.

The storage size is expressed in days of storage over which the load could be met in the complete absence of sunlight. If the load were 2 kWh per day and the storage size were $12 \mathrm{kWh}, \mathrm{C}$, the storage capacity as required in Step 4 of Exhibit $7.2-1$, would be $12 / 2=6$ days. The remaining computations are selfexplanatory.

An outline of the procedure is presented herein to enable the reader to understand its applicability. The equation for Step 9 is based on having the storage system initially fully charged, to capacity C. Over $\mathrm{N}-1$ days, the storage would be depleted gradually, so the required average insolation to meet the load up to

Exhibit 7.2-1

LOSS-OF-LOAD PROBABILITY COMPUTATIONAL PROCEDURE

1. Obtain the average insolation, $\overline{\mathrm{I}}$, from Exhibit 6.1-1.
2. Obtain the standard deviation, s, of the insolation from Exhibit 6.1-1.
3. Select an insolation value, I_{D}, at which the load will be exactly met (I_{D} should be less than $\overline{\mathrm{I}}$:

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{Load} /(\eta \mathrm{A})
$$

where A is the array area and the units of η should give I_{D} in $k W h / d a y-m^{2}$.
4. Select the storage capacity, C , in days of load.
5. Set $N=C+1$ anc $S U M=0.0$
6. Compute $\mathrm{Z}_{1}=\left(\overline{\mathrm{I}}-\mathrm{I}_{\mathrm{D}}\right) / \mathrm{S}$
7. If Z_{1} is less than 2 , read from Exhibit 7.2-2 the value of Y.

If Z_{1} is greater than 2, compute

$$
Y=\exp \left(-0.5 * Z_{1}{ }^{2}\right) /\left(\sqrt{2^{*} \pi} * Z_{1}\right)
$$

8. Compute the probability of failing in one day, $\mathrm{F}_{1}=\mathrm{Y}$
9. Compute $Z_{N-1}=\left[\overline{\mathrm{I}}-\mathrm{I}_{\mathrm{D}}+\mathrm{C}^{*} \mathrm{I}_{\mathrm{D}} /(\mathrm{N}-1)\right] * \sqrt{\mathrm{~N}-1} / \mathrm{S}$
10. If Z_{N-1} is less than 2, read from Exhibit 7.2-2 the value of Y.

If $\mathrm{Z}_{\mathrm{N}-1}$ is greater than 2, compute

$$
\mathrm{Y}=\exp \left(-0.5 * \mathrm{Z}_{\mathrm{N}-1}^{2}\right) /\left(\sqrt{2 * \pi} * \mathrm{Z}_{\mathrm{N}-1}\right)
$$

11. Compute the probability of surviving up to day $\mathrm{N}-1: \mathrm{F}_{\mathrm{N}-1}=0.5-\mathrm{Y}$
12. Compute $\mathrm{Z}^{\prime}=\mathrm{Z}_{\mathrm{N}-1}+\mathrm{I}_{\mathrm{D}} /(\sqrt{\mathrm{N}-1} * \mathrm{~S})$
13. If Z^{\prime} is less than 2, read from Exhibit 7.2-2 the value of Y.

If Z^{\prime} is greater than 2 , compute

$$
Y=\exp \left[-0.5^{*}\left(Z^{\prime}\right)^{2}\right] /\left(\sqrt{2 * \pi^{*}} Z^{\prime}\right)
$$

14. Compute the probability of surviving corresponding to $Z^{\prime}: F^{\prime}=0.5-Y$
15. Compute $\operatorname{SUM}=\operatorname{SUM}+\left(\mathrm{F}^{\prime}-\mathrm{F}_{\mathrm{N}-1}\right)$
16. If N is greater than N^{*}, where $N^{*}=10^{*}(C+1) I_{D} /\left(I-I_{D}\right)$, go to Step 18.
17. Set $N=N+1$ and return to Step 9 .
18. Compute the probability of failure:

$$
\begin{aligned}
\text { LOLP } & =\mathrm{F}_{1} *\left[\operatorname{SUM}+\exp \left(-\mathrm{C} * \mathrm{~K}_{1}\right) *\left[1 .-\exp \left(-\mathrm{K}_{1}\right)\right] * \exp \left(-\mathrm{K}_{2}^{2}\right) / \mathrm{B}\right] \\
\mathrm{K}_{1} & =\mathrm{I}_{\mathrm{D}} * \mathrm{~K} / \mathrm{S} \\
\mathrm{~K} & =\left(\overline{\mathrm{I}}-\mathrm{I}_{\mathrm{D}}\right) / \mathrm{S}=\mathrm{Z}_{1} \\
\mathrm{~K}_{2} & =\mathrm{K}^{*}\left(\mathrm{~N}^{*} / 20\right)^{0.5} \\
\mathrm{~B} & =\mathrm{K}^{2} *\left(\mathrm{~K}_{2}+\sqrt{\mathrm{K}_{2}^{2}+4 / \pi}\right)
\end{aligned}
$$

Exhibit 7.2-2
CUMULATIVE DISTRIBUTION FUNCTION
FOR THE NORMAL CURVE
day $N-1$ is $I_{D}-C{ }^{*} I_{D} /(N-1)$. The function Z_{N-1} is the number of standard deviations the required average insolation is from the average, $\overline{\mathrm{l}}$. The probability distribution function is not exactly normal (Gaussian), but closely approximates the normal after ten days. Therefore, the insolation on the tilted surface, which has been assumed as averaged over N days, is a normal distribution. This assumption is consistent with the law of large numbers in probability theory. The (cumulative) distribution function for the normal curve is called the error function. There is no simple expression for the error function, nor do hand-held calculators have the error function pre-programmed. Therefore, Exhibit 7.2-2 must be used. However, for Z greater than 2.0 , the exponential function, Y, of Step 10 , is a close approximation. The crossed points of Exhibit 7.2-2 show the comparison.

The LOLP computation for any one day, N, involves three factors: (1) Z_{1}, which is related to the probability that the load will be lost in a single day; (2) $\mathrm{Z}_{\mathrm{N}-1}$, which corresponds to losing the load when the insolation is nearly zero on the following day; and (3) Z , which corresponds to the losing the load when the insolation is relatively high on the following day. These three factors are combined in Step 15, although, for speed of computation, multiplication of the sum by the constant factor F_{1} is deferred until after the summing is completed (Step 18).

The total LOLP must be computed by summing the probabilities for the individual days. Typically, several hundred days are required to provide an adequate estimate. When the number of the day is large, the summation can be approximated by an integral, as given in Step 18. Therefore, the summation computation need be executed only up to 10 times N^{*}, with the integral giving the value of the remaining terms in the summation. Consequently, the probability of failure (LOLP) of Step 18 includes all the days, up to N equal to infinity.

The procedure gives an approximate evaluation of the exact expression:

LOLP $=\sum_{N=C+1}^{\infty} \int_{I_{N-1 / I}}^{(N / N-1) I_{N} / I} F_{1}\left(N * I_{N} / \bar{I}-(N-1) x\right) F_{N-1}^{\prime}(x) d x$
where:

$$
\mathrm{I}_{\mathrm{N}}=(1-\mathrm{C} / \mathrm{N}) * \mathrm{I}_{\mathrm{D}}
$$

An example of the computational procedure is presented in Exhibit 7.23. The example is for a latitude of 45 degrees, a tilt of the array at 45 degrees, and a K_{H} of 0.5 . Starting points for both the array size and battery capacity are chosen. A value of the insolation, I_{D}, required to meet the load, is selected (2.3 $\mathrm{kWh} /$ day $-\mathrm{m}^{2}$) based on the average daily kWh load, and an assumed array area with a known efficiency. Eight days storage capacity is used. Computations for only the first day are presented in detail; however, the computations were carried out to completion with a LOLP computed of 0.0016 , or approximately six days loss of load over a ten year period. This relatively high level of reliability approaches the reliability eriteria of bulk, interconnected utility grids that are generally designed for a one day loss of load per ten year period.

The computations were performed on a Texas Instruments TI-59 electronic calculator using the program listed in Exhibit 7.2-4. Instructions for the operation of the program are presented in Exhibit 7.2-5. Running time on this calculator was approximately 0.1 minute per day, or $0.1 * \mathrm{~N}$ minutes. The corresponding Hewlett Packard HP-67 calculator program is presented in Exhibits 7.2-6 and 7.2-7.

With the aid of the calculator programs, the LOLP may be obtained for many variations in the design parameters. Exhibit $7.2-8$ was prepared to show some of the results of a parametric variation study of LOLPs for a range of array sizes. (I_{D}) and storage capacities (C) that might be tried. Note that the units of insolation are immaterial, although, I, S, and I_{D} must all be expressed in the same units. The area of the array in square meters is determined from the expression for I_{D} and is expressed as:

$$
\text { Area }\left(m^{2}\right)=(k W h / \text { day of load }) /\left(\text { system efficiency* } l_{D}\right)
$$

Where I_{D} is expressed in $\mathrm{kWh} /$ day $-\mathrm{m}^{2}$.

Exhibit 7.2-3
EXAMPLE OF LOSS-OF-LOAD PROBABILITY COMPUTATION

1. For Latitude $=45^{\circ}, \overline{\mathrm{K}}_{\mathrm{H}}=0.5, \overline{\mathrm{I}}=2.971 \mathrm{kWh} /$ day- ${ }^{2}$ (Exhibit 6.1-1)
2. For Latitude $=45^{\circ}, \vec{K}_{H}=0.5$, (Sigma 1) $* \bar{I}=1.839 \mathrm{k}: \mathrm{Wh} / \mathrm{day}-\mathrm{m}^{2}$ (Exhibit 6.1-1)
3. Select $I_{D}=2.3 \mathrm{kWh} /$ day $-\mathrm{m}^{2}$
4. Select $C=8$ days
5. $\mathrm{N}=9, \mathrm{SUM}=0.0$
6. $Z_{1}=(2.971-2.3) / 1.839=0.3649$
7. Read $Y=0.36$
8. $F_{1}=0.36$
9. $\mathrm{Z}_{\mathrm{N}-1}=\mathrm{Z}_{8}=(2.971-2.3+8 * 2.3 / 8) * \sqrt{8 / 1.839}=4.569$
10. Compute: $Y=\operatorname{EXP}\left(-0.5 * \overline{4.569}^{2}\right) /\left(\sqrt{2 \pi^{*}} 4.569\right)=0.00000255$
11. $F_{8}=0.49999745$
12. $\left.Z^{\prime}=4.569+2.3 / \sqrt{8}^{-} * 1.839\right)=5.012$
13. Compute: $Y=\operatorname{EXP}\left(-0.5 * \overline{5.012}^{2}\right) /\left(\sqrt{2 \pi^{*}} 5.012\right)=0.00000028$
14. $\mathrm{F}^{\prime}=0.49999972$
15. $\operatorname{SUM}=0+0.49999972-0.49999745=0.00000227$
16. $\mathrm{N}<\mathrm{N}^{*}=10 * 9 * 2.3 /(2.971-2.3)=308.4$
17. $\mathrm{N}=9+1=10$
etc.
18. $\mathrm{K}=(2.971-2.3) / 1.839=0.3649$

$$
\mathrm{K}_{1}=2.3 * \mathrm{~K} / 1.839=0.4563
$$

$$
\mathrm{K}_{2}=\mathrm{K} * \sqrt{308.4 / 20}=1.433
$$

$$
B=\left(0.3649^{2}\right) *\left(1.433+\sqrt{1.433^{2}+4 / \pi}\right)=.4336
$$

$$
\text { LOLP }{ }^{*}=(0.36) \quad[0.00159+0.00282]
$$

$$
=0.0016
$$

*Variations may occur in the value of LOLP due to different readings off the exhibit.

1. Depress B to ready the calculator for input.
2. Enter the average insolation on the tilted surface, I. (Stored in 00) Depress R/S.

Enter the standard deviation of the insolation on the tilted surface, S . (Stored in 01)
Depress R/S.
Enter the insolation required to exactly meet the load, I_{D}. (Stored in 02)
Depress R/S.
Enter the number of days of storage capacity, C. (Stored in 03)
Strike R/S.
3. The calculator prints the number of days that must be summed, then proceeds with the computations. If the LOLP is predicted to be high, the calculator will print HIGH RISK. The prediction method is approximate only, being based on the estimated maximum value of $\mathrm{Z}_{\mathrm{N}-1}$. If this value is less than 2 , the risk is likely to be high. After printing HIGH RISK, the calculator proceeds with the computations.

If Z is greater than 2.0 , the calculator uses the approximate formulas. If Z is less than 2.0, it will ask for the user to input the value of the probability, with the words INPUT PROB. The value of Z is displayed. After the probability is read from Exhibit 7.2-2 and entered, the user should strike R/S. The calculator will print the probability and continue with the computations.
4. The calculator will flash the probability (LOLP) up to the day being calculated, as the computations proceed.
5. If an error should occur, the calculator will stop at the point of the error, because SET FLAG 8 is incorporated in the program.
6. At the end of the computation, the calculator will print the LOLP, stop, and display the LOLP, storing the value in 05.

Exhibit 7.2-6
 LISTING OF AN HP-67 PROGRAM FOR
 CALCULATION OF LOSS OF LOAD PROBABILITY

Step Number	Keystrokes	Key Code			Step Number	Keystrokes		Key Code	
001	f LBA A	31	25	11	029	1			01
002	RCL O		34	00	030	--			51
003	RCL 2		34	02	031	STO 6		34	06
004	--			51	032	\div			89
005	RCL 1		34	01	033	1			01
006	\div			81	034	-			51
007	STO 8		33	08	035	RCL 2		34	02
008	R/S			84	036	X			71
009	STO 9		33	09	037	RCL 0		34	00
010	0			00	038				
011	STO 5		33	05	038	+			61
012	RCL 3		34	03	039	RCL 6		34	06
013	1			01	040	$\mathrm{f} \sqrt{\mathrm{x}}$		31	54
014	+			61	041	X			71
015	STO 4		33	04	042	RCL 1		34	01
016	RCL 2		34	02	043	RCL			81
017	X			71	044	f GSB 1	31	22	01
018	RCL 0		34	00	045	STO +5	33	61	05
019	RCL 2		34	02	046	RCL 2		34	02
020	--			51	047	RCL 4		34	04
021	\div			81	048	1			01
022	1			01	049	--			51
023	0			00	050	$\mathrm{f} \sqrt{\mathrm{x}}$		31	54
024	X			71	051	RCL 1		34	01
025	STO 7		33	07	052	X			71
026	f LBL B	31	25	12	053	\div			81
027	RCL 3		34	03	054	RCL 6		34	06
028	RCL 4		34	04	055	+			61

Exhibit 7.2-6 (Continued)

LISTING OF AN HP-67 PROGRAM FOR
CALCULATION OF LOSS OF LOAD PROBABILITY

Step Number	Keystrokes	Key Code			Step Number	Keystrokes	Key Code		
056	f GSB 1	31	22	01	083	f LBL 2	31	25	02
057	STO-5	33	51	05	084	h RTN		35	22
058	RCL 7		34	07	085	f LBL 3	31	25	03
059	RCL 4		34	04	086	h $x \geqslant y$		35	52
060	g $\mathrm{x}>\mathrm{y}$		32	81	087	R/S			84
061	GTO C		22	13	088	GTO 2		22	02
062	1			01	089	f LBL C	31	25	13
063	STO + 4	33	61	04	090	RCL 7		34	01
064	RCL 5		34	05	091	2			02
065	h PAUSE		35	72	092	0			00
066	GTO B		22	12	093	\div			81
067	f LBL 1	31	25	01	094	$f \sqrt{x}$		31	54
068	2			02	095	RCL 8		34	08
069	h $\mathrm{x} \geqslant \mathrm{y}$		35	52	096	X			71
070	$\mathrm{g} \mathrm{x} \leq \mathrm{y}$		32	71	097	STO A		33	11
071	GTO 3		22	03	098	RCL 8		34	08
072	STO 6		33	06	099	RCL 2		34	02
073	g x^{2}		32	54	100	X			71
074	$\mathrm{CHS}^{\text {c }}$			41	101	RCL 1		34	01
075	$\mathrm{g} \mathrm{e}^{\text {X }}$		32	52	102	\div			81
076	RLC 6		34	06	103	STO B		33	12
077	$\stackrel{+}{+}$			81	104	CHS			42
078	$\mathrm{h} \pi$		35	73	105	$\mathrm{g} \mathrm{e}^{\text {x }}$		32	52
079	2			02	106	CHS			42
080	X			71	107	1			01
081	$\mathrm{f} \sqrt{ } \mathrm{X}$		31	54	108	+			61
082	\div			81	109	RCL B		34	12

Exhibit 7.2-6 (Continued)
 LISTING OF AN HP-67 PROGRAM FOR
 CALCULATION OF L:OSS OF LOAD PROBABILITY

Step Number	Keystrokes		Key Code	Step Number	Keystrokes		Key Code
110	RCL 3	34	03	123	RCL A	34	11
111	X		71	124	g x ${ }^{2}$	32	54
112	CHS		42	125	+		61
113	$g \mathrm{e}^{\mathrm{X}}$	32	52	126	$f \sqrt{\mathrm{X}}$	31	54
114	X		71	127	RCL A	34	11
115	RCL A	34	11	128	+		61
116	g x	32	54	129	RCL 8	34	08
117	CHS		42	130	$\mathrm{g} \mathrm{x}{ }^{2}$	32	54
118	g x ${ }^{\text {e }}$	32	52	131	X		71
119	X		71	132	+		81
120	4		04	133	RCL 5	34	05
121	$\mathrm{h} \pi$	35	73	134	+		61
122	\div		81	135	RCL 9	34	09
				136	X		71
				137	h RTN	35	22

Exhibit 7.2-7
INSTRUCTIONS FOR USE OF THE HP-67 PROGRAM FOR CALCULATING LOSS-OF-LOAD PROBABILITY

1. Key the input data into the following registers:

I	REG 0	(Value from Exhibit 10.1-1)
S	REG 1	$"$
I_{D}	REG 2	(Value dependent upon application)
C	REG	$"$

2. Depress R / S. The program will calculate Z_{1} and stop with Z_{1} in the X register. Input the value of Y_{1} corresponding to Z_{1} from the graph in Exhibit $7.2-2$. Press R / S to re-start the program. If the program encounters a value of Z less than 2, it will stop with 2.00 in the X-Register. Press $h x y$ to display the value of Z. Input the Y value from Exhibit 7.2-2 into the X register. Press R / S to re-start the program. (Note: Values of Z less than 2 may indicate a high loss of load probability).
3. The program will pause and display the contents of register 5 (the running sum of Y) after each day.
4. The program will halt with the loss of load probability displayed in the X register.

TYPICAL CASES FOR THE LOSS-OF-LOAD PROBABILITY

		Storage Capacity, C (days)								
S/ ${ }_{\text {I }}$	$\stackrel{{ }^{\mathrm{D}} /{ }_{-}^{1}}{ }$	$\underline{2} \quad \underline{4}$	$\underline{6}$				14	$\underline{16}$	18	$\underline{20}$
1.0	0.5	1.2-1 4.5-2 1	1.8-2	7.1-3	3.2-3	1.2-3	5.2-4	2.2-4	9.6-5	4.2-5
1.0	0.4	6.8-2 2.6-2	1.0-2	4.2-3	1.8-3	7.7-4	3.4-4	1.5-4	6.8-5	3.1-5
0.8	0.5	5.3-2 1.2-2 2	2.9-3	7.4-4	2.0-4	5.3-5	1.4-5	4.1-6	1.2-6	3.1-7
0.8	0.4	3.0-2 6.8 -3 1	1.7-3	4.6-4	1.3-4	3.7-5	$1{ }^{\circ}-2$	3.2-6	9.8-7	2.9-7
0.7	0.8	4.1-2 1.4-2 2	2.5-2	1.4-2	4.2-3	1.4-3	4.5-4	1.5-4		
0.7	0.7	1.4-1 3.0-2 6	6.5-3	1.4-3	3.3-4	7.8-5	1.9-5	4.8-6	1.0-6	2.7-7
0.7	0.6	5.6-2 9.5-3 1	1.6-3	3.0-4	5.8-5	1.2-5	2.4-6	4.3-7	9.5-8	2.0-8
0.6	0.8									
0.6	0.7	6.5-2 7.8-3 1	1.0-3	1.3-4	1.9-5	3.0-6	4.0-7	6.6-8	1.1-8	1.8-9
0.6	0.6	2. 2-2 2 2.0-3 2	2.0-4	2.1-5	2.5-6	2.5-7	3.2-8	4.0-9		
0.4	0.9	3.7-1 4.8-2 6	6.6-3	9.5-4	1.4-4	2.4-5	3.3-6	5.8-7	1.0-7	1.8-8
0.4	0.85	7.0-2 4.0-3 2	2.6-4	1.9-5	1.2-6	1.1-7	9.1-9			
0.3	0.9	4.7-2 1.4-3 1.	1.4-3	4.7-5	1.6-6	7.3-8	3.4-9			
0.3	0.85	3.9-3 3.0-5 2	2.6-7	3.2-9						
0.3	0.8	4.8-4 1.1-6 3.8	3.8-9							
0.3	0.7	1.7-5 6.6-7								

Notes:

1. Read LOLP entries such as $7.2-3$ as $7.2 * 10^{-3}=0.0072=0.72 \%$
2. The vertical lines in the table separate those cases for which the LOLP $\geqslant 0.01$ to the left from those for which LOLP <0.01
3. Based on the curve fit (All Z)

$$
\mathrm{Y}=\operatorname{Exp}\left(-\mathrm{Z}^{2} / 2\right) *(1+0.083 * \mathrm{Z}) /(\sqrt{2 \pi} * \mathrm{Z}+2)
$$

4. The results depend only on $S / \bar{I}, I_{D} / I$ and C

$$
7-14
$$

When evaluating several designs which involve different array sizes, and different battery capacities, but which have a constant LOLP level, the methods of life cycle cost determination discussed in Sections 6.3 and 6.4 .2 should be used again to determine the optimum design which has minimum life cycle costs. Other evaluations might be performed holding the array size constant and varying storage capacity and reliability levels. The life-cycle cost differentials can then be used to evaluate the worth of any improvement in power system reliability.

7.3 CODES AND STANDARDS

The PV power system should conform to all of the appropriate regulations in the building industry. Nationally recognized regulations known as codes are the laws which have been developed to protect the health, safety, and welfare of the general public. Standards, manuals, and approved equipment listings have been developed to support these codes. The following subsections will discuss the codes, standards, and related documentation applicable to photovoltaic power systems, and requirements the designer should include in the overall PVPS design.

7.3.1 Codes

As of the writing of this handbook, there are no existing applicable electrical or building code categories into which photovoltaic modules, panels, arrays, or support equipment can be conveniently placed. Until specific codes governing PVPS components are developed, code of ficials will rely on existing code catageories which can be interpreted as applying to photovoltaic systems. The lack of nationally recognized codes governing photovoltaics will most likely cause problems for both designers and installers in areas where building code officials are resistant to innovative products. The only areas regarding photovoltaic systems which are addressed in the codes relate to the use of storage batteries and their special wiring/interconnections procedures. These areas are covered in the National Electric Code (NEC).

The NEC is one code which is almost universally accepted throughout the country and has been recognized by all major model codes to insure the safety of persons and property using electricity. It is expected that compliance with the NEC will be an outstanding requirement for the desigr installation, operation, and maintenance of PV power systems. The NEC should be fully reviewed during the system design phase.

An example of how the NEC applies directly to the installation of PV power systems is as follows: The NEC (Article 110-17(a)) requires that live parts operating at 50 volts or more shall be guarded againsi accidental contact during installation. This code places special requirements on the installation of photovoltaic panels, since daylight will cause these panels to become active electric generators. These types of general electrical codes can be applied to photovoltaics for wiring sizes, current ratings, grounding requirements, ground fault requirements, lightning protection, insolation of live electrical parts, and power conditioning equipment.

7.3.2 Standards

Standards are written to support the codes and provide ways through which the code requirements can be satisfied. There are four generic types of standards: (1) specifications, (2) test methods, (3) classifications, and (4) recommended practices.

The system design engineer should be aware that standards pertaining directly to photovoltaic power systems do not exist. The Solar Energy Research Institute (SERI) is developing documentation on performance criteria and test methods for photovoltaic systems. These documents should be available in the near future. Until such standards are available, existing general standards can be interpreted to include PV power systems.

The Federal Occupational Safety and Health Act (OSHA) of 1970 authorizes the issuance of National Health and Safety Standards for work places. This includes PV power system construction sites, and it is the responsibility of the contractor or builder to insure the health and safety of his employees. The designer of the PV power system should also be aware of OSHA requirements, for these requirements can af fect system installation costs considerably.

7.3.3 Manuals

Accepted practice manuals are used in industry to interpret codes and standards, as well as to allow the installer to realize the intent or purpose for specific design decisions represented on system design drawings. Accepted practice manuals are written by the building industry to describe proven procedures or techniques which are most often used, and they change rapidly as a new technology develops.

As with codes and standards, accepted practice manuals written specifically for photovoltaic power systems do not exist due to the limited use of PV power system in industry. It is advisable, therefore, that manufacturers of the PV power system's components develop their own installation, maintenance, and operation manuals which shall comply with all existing codes and standards.

The building industry has been using components which display similarities to components utilized in PV power systems. For example, there are manuals of accepted practice for the installation of wiring systems that directly relate to wiring practices utilized in PV power systems.

7.3.4 Approved Equipment Listings

One way to accelerate code approval is for PV power system components to be tested (or listed) by a qualified testing laboratory, such as Underwriters Laboratories, Inc. (UL). Codes like the NEC generally allow the installation of equipment bearing the label of such a nationally recognized testing facility. Most code officials feel that there is little question as to the risk involved in allowing a new and innovative piece of equipment bearing laboratory approval labels to be installed in a construction site under their jurisdiction. If unlisted components must be used, the designer should be prepared to obtain a variance to the code. This process can be very time-consuming and costly.

7.3.5

Notes

Most local jurisdictions have adopted nationally recognized codes and standards and are enforcing them at the local level.

Any local building official has the authoriiy to allow or disallow any product or process if he feels that compliance with established codes and standards is not met.

It may be found that, in some instances, the planned installation of a PV power system is inhibited by local officials who are not well versed or willing to make affirmative decisions about this new technology. With this fact in mind, it is important to have a good working knowledge of photovoltaics. The system design engineer should also have the ability to convey the necessary concepts about this technology to the local code officials.

7.3.6 Applicable Document List

Engineers, manufacturers and installers of photovoltaic power systems should be aware of all documentation applicable for designing, manufacturing and installing of PV power systems. Appendix C contains a listing of appropriate codes and standards and the addresses of the sponsoring agencies.

SECTION 8
INSTALLATION, OPERATION AND MAINTENANCE

8.1 INTRODUCTION

PV power systems are inherently capable of unattended operation, require only a minimum of scheduled maintenance, and only rarely require unscheduled corrective maintenance. The accessibility of the PV system site to operations and maintenance personnel and the reliability, maintainability, and availability of the power provided to the load have significant impact upon the PV system design. This section sets forth the basic operation and maintenance design considerations and tradeoffs to be considered during detailed design.

8.2 POWER OUTAGES

The principal operational requirement is the number and duration of power outages that the load can tolerate. Exhibit 8.2-1 lists the primary causes of power losses.

Natural Causes:	Consecutive cloudy days
	Environmental effects:
	Cold weather on batteries
	Lightning
System Design:	Less insolation than expected
	More load than designed for
	Scheduled maintenance shutdown
Equipment Malfunctions:	Array fault, or open circuit
	Optical degradation
	Electrical/electronic failure in power
	Conditioning and distribution equipment
	Batteries

8.3 RELIABILITY AND MAINTAINABILITY

Since power outages, with the exception of scheduled maintenance shutdown periods, are expected to occur randomly, the preferred method of establishing operational performance requirements on power outages is to use a statistical approach. The following parameters are recommended:

Reliability -- the probability of operating "x" days without loss of power Maintainability -- the probability that system power will be restored within "y" hours

For example, emergency loads may be required continuously. While it is impractical to build a system that can assure no outages, a requirement of a 0.99 probability of no outages in a month could be specified. Such a stiff requirement would require consideration of back-up, non-solar systems sized to handle the critical load during natural-caused outages, an auxiliary power unit to handle the load during scheduled maintenance, significant over-capacity of the energy storage coupled with load-shedding (shut-off of convenience and even essential loads) to account for less insolation than anticipated, and a redundant fail-safe design. A 0.01 probability of outages in a month can be interpreted that, on the average, a power outage will occur once every 100 months (or every 8.3 years). However, that outage can occur at any time during the 100 -month period.

For essential loads, a more realistic requirement may be a 0.10 probability of an outage in a month; that is, an outage, on the average, once every 10 months.

The second parameter of operational interest is the down time following a power outage. Components of down time are:

- Delay time in reporting power outage occurrence
- Time for operation or maintenance personnel to arrive at site
- Time to restore power, either by bringing a back-up source on line, or repairing malfunction at the site
- In the case of malfunction, time to acquire spare or repair parts and materials required to effect repair

There is generally little difference in the down time limits following a power outage among the load categories. With critical power iosses being very infrequent, down time requirements are based on essential loads. For example, a down time requirement for essential loads for sites in the proximity of qualified maintenance personnel would be stated as a 95% probability that system power would be restored within 4 hours. For a remote site, the time requirement would have to be extended to permit notification and travel time.

8.4 OPERATION AND MAINTENANCE TRADEOFFS

Operation and maintenance procedures to be implemented at each site will have a significant impact on the systerr. design. These procedures must be included in the system design tradeoff analyses involving array sizing, battery capacity, redundant features, the degree of automatic controls, and automatic monitoring and telemetry. Major operation and maintenance factors to be considered in the design tradeoff analyses are discussed in the following paragraphs.

8.4.1 Operation and Preventive Maintenance

Stand-alone PV power systems do not require an on-duty operator under normal conditions of system utilization. The routine functions of an "operator" consist of inspection and preventive maintenance. Typical tasks include:
(1) Inspection Tasks:

- Site physical security - fencing intact, breach of security alarm test
- Array shading -- by debris, vegetation
- Array cleanliness -- dust, bird droppings
- Cabling - damage by elements or rodents
- Grounding paths -- loose connections, corrosion
- Battery terminals -- corrosion
- Batteries -- electrolyte leakage and corrosion of support structure
- Control equipment -- cleanliness; accumulation of dirt, bird nests, rodent damage
- Fuel/oil/water -- at or above specified storage levels for backup systems
(2) Preventive Maintenance Tasks:
- Clean array surface
- Clean battery terminals and tighten connections
- Check and refill electrolytic solution
- Read and record all metered points
- Perform operability tests to assure that all automatic switching and monitoring is functional and that standby backup and emergency generator units will start and operate
- Lubrication
- Restock stored fuel
- Record all discrepancies observed by inspection and in performing preventive maintenance

In general, the PV systems should require inspection and preventive maintenance only on a scheduled periodic basis (e.g., 30 days, 60 days, 90 days, 6 months, etc.), consistent with known system degradation rate due to dust accumulation, etc. However, backup systems of the engine/generator type should be started and run for at least one hour on a weekly basis.

Site visits by operational and preventive maintenance personnel are primarily for the purpose of fault detection, exercise of switching/controls, exercise of backup systems, and observation of abnormal deterioration conditions. All of these functions (except abnormal deterioration detection) can be performed automatically and the results monitored remotely via telemetry -- cither by radio or land line. Thus the tradeoff over the life of the installation is the cost of automation and remote monitoring versus the cost of having a human perform site visits (note: as a safety precaution, site operation and preventive maintenance
should be performed by a two-man team). Included in the human costs are the costs of training, transportation, site access maintenance, and the method of communication with repair facilities.

8.4.2 Corrective Maintenance

Maintenance is divided into preve, ive and corrective categories to permit separation of skill levels and training in the design tradeoff analyses. Whereas preventive maintenance of the entire site can be performed by one trained individual, corrective maintenance involves several different skills, including electrical, electronics, engine mechanics, and at times, construction training. Corrective maintenance also requires spare parts, test equipment, and documentation.

PV systems can be designed to permit scheduling of corrective maintenance by designing in a tolerance to faults -- that is, a design which is not sensitive to individual faults, thus permitting accumulation of faults between scheduled corrective maintenance site visits. The other end of the design spectrum is a system without fault tolerance -- corrected prior to reconnecting the load.

Establishing the design to corrective maintenance tradeoff requires consideration of the following:

- Frequency of site visits.
- Delay time when a system drops the load until unscheduled corrective maintenance can be performed, assuming full availability of personnel, test equipment, and spaie parts.

Both the frequency of power outages and the maximum downtime requirement when an outage occurs are affected by corrective maintenance tradeoffs. If the maximum downtime limits are less than the delay time required to travel to the site, then only two alternatives are available:
(1) To design a system that is fault tolerant and capable of repair without dropping the load; i. e., mechanisms must be built in for isolating the fault and deenergizing the faulty item while leaving the remainder of the system operational.

This alternative will have the practical effect of eliminating downtime periods, thus increasing the proiability of operating between scheduled corrective maintenance visits to nearly unity.

If this alteinative is chosen, an additonal trade off should be per-formed--whether to design the system:
(a) With sufficient redundancy to permit deferral of maintenance until the next scheduled corrective maintenance visit; or
(b) With only sufficient redundancy to ensure system operation until a repair crew can be dispatched to the site to accomplish the corrective maintenance. This sase must include: the cost of more detailed fault detection and telemetry to tell the crew prior to dispatch what has failed; the cost of maintaining a ready repair crew; and the additonal transportation and personnelrelated costs of an expected larger number of unscheduled site trips rather than a predefined number of scheduled site trips. (Note: Since failures occur randomly, there is always a finite probability of having power outages between scheduled vists. This probability is a function of the fault-tolerance margin designed into the system).

To design a system without fault tolerance, and to provide trained repair personnel capable of immediate reaction at or near the site, this alternative also requires adequate logistic (spare parts) support at the site. In this alternative, the system design needs only to meet the reliability requirement.

Exhibit 8.4-1 illustrates the design tradeoff advantages of initiating repair as soon as a fault occurs versus having redundant hardware to maintain a high probability of no power outage between scheduled corrective maintenance periods. The reliability functions shown in the figure are ploted as a function of system operating time (t_{o}) "normalized" to individual equipment MTBF (i.e., $\mathrm{t}^{\prime}=$ $\left.t_{o} / \mathrm{MTFB}\right)$. The f:gure depicts the case of standby redundancy; that is, the redundant element does not operate until the "ON" element has failed, the failure is sensed, and the standby element is activated. The apparent advantages of the type of redundancy can be significantly reduced if similar design consideration is not given to the failure-sensing and switehing eircuitry which should also be redundant, or if not, its reliability should exceed that of the sensed element by at least 10 -to-1.

For small, simple systems, the most promising tradeoff against too much additional equipment is to combine scheduled corrective maintenance with the periodic inspection and preventive maintenance site visits plus an infrequent unscheduled corrective maintenance.

Exhibit 8.4-1
RELIA BILITY IMPROVEMENT WITH STANDBY REDUNDANCY

8.5 SYSTEM MAINTENANCE

Section 8.4 identified the major tradeoffs associated with the scheduling of maintenance and identified a major component of downtime as the time from fault occurrence until arrival of the maintenance team at the site. This discussion covers the design for hands-o:l maintenance once the team arrives at the site.

8.5.1 Maintenance Concept

Maintenance planning begins with establishment of the concept to be followed; this should be done prior to detailed equipment design or site layout. Decisions required in establishing the maintenance concept include:
(1) Personnel Skill Level -- based on experience and training provisions. If skilled personnel are to be used, fault isolation can be accomplished using portable test equipment and technician interpretation of results; repair then can be accomplished at lower levels of complexity, such as part replacement on an electronic assembly instead of removal and replacement of the assembly.
(2) Level of Repair. The level of on-site repair can vary from removal and replacement of whole equipments or array panels to the replacement of parts or modules. In the case of fossil-fueled backup engine generators, this can vary from complete replacement and remote repair to on-site overhaul. The level of repair selected for the site is a function of skill of personnel, ease of handling and transporting replacement parts, and test equipment requi.ed for fault isolation. The level of repair (e. g., remove and replace level) and the built-in means for fault isolation must be compatible, whether the fault-isolation procedures consist of accessible test points or built-in automatic fault localization.

On-Line Repair. This term means preventive or corrective maintenance at the site without load interruption. If the critical or essential loads cannot
be "down" during scheduled maintenance periods, then the design must be such that portions of the system can be removed from on-line status while the remainder carry the load, or auxiliary power-generating units must be brought to the site to provide a power source while the PV system is undergoing maintenance.
(4) Faulty Item Disposition. The level of remove-and-replace is influenced by whether the replaced faulty item should be discarded or returned to a centralized repair facility (such as the original vendor) for more detailed troubleshooting, repair, retest, and return to stock. This in turn affects the cost of stocking site spares, whether stored at the site or at the corrective maintenance facility.

The result of the maintenance concept is to provide design requirements on the location of fault isolation test points, the amount of automatic fault isolation to be built in, and the mechanical fasteners and electrical connections for ease of removal and replacement.

8.5.2 Maintainability Design

Maintainability, expressed as the mean time to repair (MTTR) a fault in the system, given a properly trained personnel, authorized test equipment and documentation, and the required replacement parts, is a quantitative parameter often specified to drive the physical and mechanical design of the system. Generally, MTTR should be in the range of 1.5 to 3 hours for a typical PV system. Design considerations for achieving MRRT include:
(1) Fault Isolation. This term was covered under "Maintenance Concept", in 8.5.1 above. If fault isolation is automatic, then the time required is negligible. If fault isolation is manual (i. e., using test points and portable test equipment), it may require up to 15% of the specified MRRT.
(2) Accessibility. The physical layout and packaging design for the system must assure that the equipment is accessible for each planned maintenance task and that sufficient space exists for the task to be accomplished safely. (safety involves first the safety of the maintenance personnel, and second the protection of the equipment against damage in the repair process). Accessibility involves ease
of opening or unfastening covers and doors, not locating replaceable items under other items or beyond arms reach, and providing handles or places to grip items for removal. Where solar arrays are elevated or battery storage is on elevated racks, means must be provided for accessibility by built-in catwalks, ladders, and places to setup and lay tools, or by defined portable devices such as ladders.
(3) Weight of Replacement Items. The size and weight of replacement items must be compatible with accessibility at the site and transportability to aid from the site. In general, the maximum weight of a replaceable item to be handled by one person without mechanical lifting devices is 40 pounds. If the replacement area is elevated and requires ladders or various walkways, the replacement item should alsc be equipped with a means for carrying it with one hand (the other being used to maintain safe balance). Where two people are used or mechanical lifting and handling devices can be taken to or left at the site, the size and weight of replacement items may be increased.
(4) Maintenance Safety. The means of access to site equipnent for maintenance must comply with OSHA requirements for physical safety of maintenance personnel. This includes built-in steps, walkways, and ladders. The equipment design must provide protection against inadvertent electrical, thermal, or chemical contact with maintenance personnel. Where on-linc maintenance is contemplated, positive means for assuring electrical disconnections are required. System grounding must not be compromised during maintenance.
(5) Standardization. Standardization of parts, wire, connectors, sizes of nuts and bolts, and modules is an essential discipline for ease in maintenance. It reduces training, tools, and spare item inventories.
(6) Replacement Availability Warrants. Parts, modules, and assemblies used in the PV design should carry with them a replacement availability warranty which warrants that during the 20 -year life of the system, replacements will be available for purchase which provide workable and consistent (not necessarily identical) form (having the same connections and attachment points), fit (capable
of fitting in the same space), and function (performs the same function and is compatible with the other items in the system). Where such warranty is not available, the design should be sufficiently simple and spacious to permit substitutes or local fabrication of replacements.
(7) Test and Checkout. Maintenance actions are not complete until the repaired system has been tested and the effectiveness of the repair has been verified. This may be accomplished automatically by built-in fault-sensing circuitry, or it may require special provisions such as a light source to verify that a replaced circuit breaker will trip on overload.
(8) Maintenance Data. An often neglected part of maintenance is documentation of the maintenance action so the owner and designer may feed back this experience into either new designs or upgrading of the existing system.

8.6 LOGISTICS DESIGN

The system design engineer is responsible for planning logistic elements for the operating life of the PV system, as described in the following paragraphs.

8.6.1 Supply Support

This logistic element has a potentipily greater impact on reliability and maintenance than does the basic equipment design or maintenance transit and repair times. The lack of a spare part defeats designed-in redundancy, contributing to more power outages; once power outage occurs, the lack of a spare can keep the system down until one is obtained. The supply support planning cycle requires the following steps:
(1) Prepare a site spares list. This is a list of all items designated for removal and replacement at the site; it includes:

- Identification in an unambiguous manner and in sufficient detail to permit reordering by the identification.
- Source where replacements can be obtained.
- Statement as to whether the item should be scrapped or returned for offsite repair.
- The importance of the item to power outage for critical loads and essential loads. The importance is assessed for two levels: Major, failure of the item will cause the system to drop load: Minor, failure of the item will not cause the system to drop load althoursh it may induce some degradation.
- The expected number of removals of the tern at the site during a 12 -month period.
(2) Determine recommended quantity of initial spares to be purchased and delivered with the system. The simplest method ${ }^{1}$ is to consider each part individually on the list of Step (1), planning to provide an $\mathrm{x} \%$ probability of having the required spares on hand throughout a one-year period or a spares procurement or repair cycle if that exceeds one year. The following tabulation provides a guide for typical x -values:

Failure Impact	Load			
		Critical		Essential
Major		Convenience		
Minor	0.999		0.99	0.90
Other	0.99		0.95	0.90
	0.90		0.90	0.90

Following is the basic formula for determining the quantity of spares:

Where: $m=$ number of expected failures in 1 year, and
$x=$ number of spares
Examples: GOAL is Prob $=0.89$ for essential load and major failure impact
(1) $m=0.5$ failures in 1 year

Prob $=0.8856$ with $x=2$ spares
Prob $=0.9982$ with $x=3$ spares
Prob $=0.8982$ with $x=3$ spares
To exceed goal (Prob $=0.99$) retain 3 spares
(2) $m=1.5$ failures in 1 year

> Prob $=0.9814$ with $x=4$ spares
> Prob $=0.9955$ with $x=5$ spares

To exceed goal (Prob $=0.99$) retain 5 spares

[^5]Prepare a list of consumables. This would include distilled water for batteries, array face washing compound, terminal grease, paint, fuel and lubricants for backup systems, etc. The list must clearly identify the consumable product and the estimated quantity required at each preventive maintenance period.
(4) Prepare list of common and bulk items. This is a list of screws, nuts, bolts, washers, spacers, gasket material, fasteners, and other items commonly used in maintaining the equipment; include items which can be locally purchased or fabricated at local hardware-equivalent outlets and need not be provided with the system.
(5) Prepare list of off-site repair parts. This is an optional step, depending on where and by whom off-site repair will be performed. If it is to be accomplished by facilities not specializing in the specific site equipment, a complete list of repair parts containing the same information supplied in Step (1) should be prepared.

8.6.2 Power System Drawings

At least two complete sets of equipment drawings, site structural drawings, and site installation drawings should be delivered to the PV system owner, one for permanent records and the other for use in corrective maintenance that requires more knowledge than is available in the operation and maintenance manuals. These drawings may be in contractor format, with completeness and legibility the overriding criteria.

8.6.3 Tools, Test Equipment, and Maintenance Aids

Planning for this element of logistics involves preparing a list of all the tools, test equipment, and maintenance aids, such as step ladders, array covers, etc., that are required for site inspection, preventive maintenance, and on-site corrective maintenance. The list should show which items are required for inspection and preventive maintenance and which are for corrective maintenance. Special tools, test equipment, and maintenance aids are those not readily available
over the counter locally; these should be clearly identified and provided to the owner as part of the system equipment included with the system.

8.6.4 Technical Manuals

At least three manuals are required and should be prepared under cognizance of the system design engineer by personnel capable of writing clearly for the level of education and background of the user, and the user's language if necessary:
(1) Operation Manual. This manual provides an overview of what the system is, how it works (theory of operation), and how the major equipment groups, including backup systems, are interrelated to provide the power output. The manual must define the system-to-load interface and should discuss the impact on system performance of changing the load after installation. The Operation Manual must define the duties and responsibilities of the operator (inspection and preventive maintenance), and the duties of corrective maintenance personnel. It must also include safety warnings, notices, and emergency treatment for accidents such as chemical burns.
(2) Inspection and Preventive Maintenance Manual. This manual must contain a procedure for each inspection and preventive maintenance task, detailing step-by-step the action to be taken and observation made. The procedure must also tell the operator what to do when anomalies are detected. The manual must present the schedule for each task (weekly, monthly, or semi-annually), and repeat safety information.
(3) Corrective Maintenance Manual. This manual must contain the information needed to accomplish corrective maintenance to the level established by the maintenance concept. It rust cover fault detection, fault isolation, remove-and-replace instructions, and -- most important -- verification testing to ensure that the repair was effective. Again, safety information must be included.

All three manuals may have individual sections covering different equipment in the design, such as solar array, batteries, and backup systems. This is acceptable provided introductory material puts each in perspective with respect to the total system.

8.6.5 Training

This logistic element ties all the preceding elements together into the total logistic support package. The planning for training consists of:
(1) Preparation of instructors' guide for teaching courses for both operators and corrective maintenance personnel.
(2) Determining the length of courses and the percent of hands-on training versus classroom discussions.
(3) Providing an initial training course concurrent with site installation.

The operation and maintenance manuals discussed under 8.6.4 provide the basic course text material for the students.

8.7 INSTALLATION DESIGN CONSIDERATIONS

This discussion is written from the operation and maintenance point of view, addressing those concerns most often leading to excessive maintenance problems.

8.7.1 Physical Considerations

The following physical consideratiors in site layout should be adequately addressed:

- Local ground cover and vegetation growth that could arise and cause unplanned array shading.
- Location of buildings and security fences that act as snow fences and actually contribute to snowdrifts in the vicinity of arrays.
- Location of buildings and security fences that act as snow fences may provide bird perches and thus contribute to fouling of the array face.
- Personnel safety, to protect personnel from accidentally coming in contact with high voltage, thermally hot arrays, or dangerous chemicals.

8.7.2 Equipment Housing and Structure Considerations

'The equipment housing and structure should be designed to prevent the following problems:

- Array edges being used as bird perches, thus inducing extreme fouling of the array face.
- Rough edges, grooves, or protusions that will catch, hold, and permit build-up of airborne debris on the array faces.
- Junction boxes and cable runs which allow entry of rodents which in turn might gnaw on insulation.
- Cable insulation and coverings which provide rodent food.
- Protective structures and buildings that provide sites for bird nests and their droppings on electronic equipment.

8.7.3 Installation Checkout and Acceptance Testing

The system design engineer and owner must agree on the means of determining structural and physical compliance with drawings and specification and for performance acceptance tests of the system. Conformance to structural and physical requirements can be determined by the owner or his representative. Conformance to performance requirements requires the development of detailed test procedures and acceptable tolerances of measured parameters; these test procedures must be documented prior to the start of site installation.

SECTION 9
SI'TE SAFETY

The personnel safety design requirements for both the general public and installation, maintenance, and cperating personnel, and the site safety design requirements for the facility while in cperation and undergoing maintenance, shall be in accordance with applicable local codes and nationally-recognized standards. Lead-acid storage battery safety is covered separately in Section 4.3.6.

The design safety checklists, described in the following paragraphs, are divided into two areas: (1) personnel and (2) facility. These should be treated with equal i aportance. Portions of these will be repeated. Various items within these checklists are not covered under any local or nationally recognized codes or standards, but should be considered to increase the overall safety of the PVPS facility and personnel.

9.1 PERSONNEL SAFETY CHECKLIST
 9.1.1 Safety \& Health Standards

The PV modules, arrays, wiring, power distribution, power conditioning, batteries, and structures (PVPS) shall comply with the Occupational Safety \& Health Administration (OSHA) Standards. OSHA standards apply primarily to the on-site construction and installation procedures of the above equipments. The manufacturers of these equipments wust adhere to the OSHA standards in their design of these equipmerits.

Electrical materials, equipments, and their installation shall be in accordance with applicable local and nationally recognized codes and standards. Such codes shall include, but not be limited to, the National Electric Code (NFPA 70-1981), American National Standards Institute (ANSI nos. A. 58.11-1972 and Z 97.1-1975), Building Official \& Code Administrators International (BOCA), and others: i. e., NEMA and UL. Electrical components shall be listed and/or approved by a nationally recognized testing laboratory. (See Appendix B for a listing of codes and standards).

9.1.2 Electric Shock

The PVPS equipments and structures described in Section 9.1.1 shall be designed to prevent shock hazard during installation, normal operation, and during maintenance procedures. The life-safety hazards, which could occur as a result of a failure of any of the above equipment, shall not be greater than those imposed by conventional electrical systems. The above equipments shall be grounded in accordance with the National Electrical Code (NEC) Sections 250-72 and 250-92. These equipments shall also be designed to comply with all existing OSHA stundards for installation, operation, and maintenance protection of the workers. These equipments should also be isolated from casual contact, as well as being adequately insulated, to reduce the possibility of electrical shock as a result of system anomalies.

9.1.3 Toxic \& Flammable Materials

The materials used in the PVPS, as described in Section 9.1.1, shall not expose the installing, operating, or maintenance personnel to hazards related to toxicity or flammability. The PV system shall be designed to utilize materials which in the presence of fire cio not endanger the installing, operating, or maintenance personnel with excessive levels of smoke or toxic fumes in accordance with nationally recognized codes such as NFPA 251-1972, ASTM E119, ASTM E84, and UL 263.

9.1.4 Fire Safety

The design, installation, operation, and maintenance of the PVPS shall provide a level of fire safety that is consist,nt with applicable codes and standards including, but not limited to, NFPA 256-1976 and the NEC (NFPA 70-1981). Some factors which shall be considered in assessing potential fire hazard are: potential heat, rate of heat release, smoke generation, firestopping, and ease of ignition.

The protection against auto-ignition of combustible solids used in the PVPS, especially in the PV modules, should be addressed. Combustibie solids, such
us plastics, shall not be exposed to elevated temperatures which may cause ignition. Exposure of these materials over an extenced period of time may result in the materials reaching, and possibly surpassing, their auto-ignition temperatures.

The PVPS site shall have or-hand emergency fire extinguishing apparatus in accordance with all local fire protection ordinances.

9.1.5 Excessive Surface Temperatures

The PVPS shall not create a hazard to installation, operation, or maintenance personnel due to excessive exterior surface temperatures. Any component that is located in areas normally subjected to personnel or general public traffic, and which is maintained at elevated temperatures in excess of $140^{\circ} \mathrm{F}$ or $60^{\circ} \mathrm{C}$, shall be isolated from casual contact with proper clearances or passageways. Any surface where isolation is impossible shall be identified with appropriate warnings.

9.1.6 Equipment Identification Labeling

All PVPS components should be identified as to: their function; their voltage, current, power, and temperature warnings; corrosive or toxic properties; and procedures for handling accidental contact and natural or man-made occurrences (flooding, structural damage, foreign objects); and a list of authorities and their telephone numbers to contact if such occurrences should take place.

9.1.7 Physical Barriers

The PVPS shall be totally enclosed by a seven-foot (minimum) barbed-wire-top security fence approximately 30 feet from any part of the array. This barrier shall be erected before construction begins, and shall remain in place throughout the PVPS life cycle and until the PVPS is totally dismantled. Warning signs shall be displayed in plain view of the general public stating the danger of active high voltage within the fenced area (in the language of the area).

Local codes should be investigated for the appropriate distance a PVPS shall be from any residential or commercial tuilding and from public roads.

9.2 FACILITY SAFETY CHECKLIST

9.2.1 PVPS Safety Protection from Environmental Conditions

The PVPS safety requirements shall include protection from the possibility of power interruption, transients, and electrical faults caused by natural environmental conditions. The meteorological/onvironmental factors should be investigated for the particular site location. Historical meteorological information is available from the National Weather Service on a national or local level, such as:

- Average wind speed
- Annual rainfall and flooding data
- Average snow loads
- Annual number of days with hail
- Annual number of days with glaze (freezing rain)
- Annual number of thunderstorm days
- Seismic data

Some or all of these areas may affect the design and safety aspects of the PVPS.

Most of these areas are covered in the design consideration sections from a structural loads aspect in other works (Refs $4-5,9-1$). Due to the uniqueness of a PVPS, these areas must also be investigated from a safety aspect. The following are examples of questions that should be answered before site construction in order to increase the reliability and overall safety of the proposed PVPS site, and which may effect tie system design itself:

- Is there a history of flooding or high snow accumulation in the proposed PVPS site location? If so, what are the effects of frequent flooding or high snow accumulation on the system and personnel (including the general public)? Has the design been modified to allow sufficient ground clearances for both array and battery-storage areas?
- Is the vegetation growth rate in the proposed PVPS site location high enough to become overgrown and create a shading condition if left unattended? Has the array design been modified to allow sufficient ground clearance to compensate for this potential problem?
- Is there a history of seismic activity in the proposed site location? If so, are the system's components adequately sized to withstand frequent seismic force'; and remain safe?
- Is the annual number of thunderstorm days for the proposed site location high? Has the frequency of lightning strokes to earth in the proposed site location caused an unusual amount of damage to existing structures in the past? Are the array module covers plastic, which could increase the electrostatic potential between ground and air, and could induce the lightning hazard in areas of high lightning incidence? If so, then lightning protection should definitely be a design consideration (Ref. 9-2). The NFPA Lightning Protection Code should be consulted for lightning protection procedures.

9.2.2 PVPS Safety Protection from Man-Mȧde Conditions

The PVPS site design safety should include provisions for the protection from the possibility of power interruptions, transients, and electrical faulting created by man-made conditions.

The security fence described in Section 9.1.7 will protect the PVPS site from invasion of casual unauthorized personnel, but the temptation of vandalism is always present. Projectiles thrown or shot from any type of firearms at the photovoltaic arrays can cause enormous damage to the system.

Accidental penetration of the PVPS site by means of motorized vehicles (automobiles, tractors, etc.) is also possible. Although the sit \in shall be isolated from public roads, as described in Section 9.1.7, an out-of-control vehicle can penetrate the security fence. A bunker-type knoll surrounding the fenced-in site can serve as both a way to hide the site from plain view and a way to create a double barrier.

9.2.3 PVPS Safety Protection from Component Failure

To prevent damage to the system from component failures, the system should be designed to eliminate excessive temperatures and reverse biasing which may occur as a result of shading or cell cracking. Examples of devices which automatically detect and isolate component failures are: high-speed faultdetection devices, fuses, circuit breakers (with adequate interrupting capacity), etc. These should be included in the detailed system design. These devices will also prevent system damage due to operator or maintenance personnel errors. This protection system should include automatic system shutdown circuitry, automatic system failure alarm, and/or telemetric failure alert system.

9.3 REFERENCES

An extensive list of codes ε nd standards referenced in the section is presented in Appendix C and covers all aspects of the PVPS design, installation, operation, and maintenance.

SECTION 10
DESIGN EXAMPLES

10.1 REMOTE MUL'TIPLE-LOAD APPLICATION

10.1.1 Northern Hemisphere Location

A typical load profile for a remote village is presented in Exhibit 10.11, derived from data supplied by the NASA-Lewis Research Center on the Papago Indian Village of Schuchuli, Arizona (Reference 10-1). The actual installation allowed for load shedding and for tilting the collector four times per year (3.5° tilt in summer, 26° in spring and fall, and 48° in winter). To permit the direct use of the tables and charts presented in this report, a fixed array tilted at the latitude angle of 32.11° will be considered. The methods of Section 11 could be used to compute the insolation at other tilt angles; the standard deviation of the insolation could be similarly calculated or could be estimated from Exhibit 6.1-1, based on having the same sigma ratio for any tilt. The load-shedding capability will also be ignored, although this would reduce the energy-storage requirements.

The design computations are presented in Exhibit 10.1-2 in the format of the quick-sizing procedure of Section 6.2.1. The K_{H} values were obtained from NASA; the values are in reasonable agreement with the data of Tucson as reported by the National Weather Service (last column). The first computation of the collector area and storage capacity, for a one percent loss-of-load probability, is based on $M=0.33$. Values of C were read from Exhibit $6.2-2$. The array area required to meet the load is 45 square meters, as dictated by the August load. The storage capacity is 51 kWh , as determined by the August load. The collector area required for a one percent LOLP can be recomputed based on the storage capacity of 51 kWh . This capacity is converted to days of load $\left(\mathrm{C}^{\prime}\right)$ and the revised value of $\mathrm{M}\left(=M^{\prime}\right)$ is read from the battery storage chart (Exhibit 6.2-2). The collector area is computed from the formula in Note 3 of Exhibit 10.1-2. The required collector area is again 45 square meters, as determined by the August requirement.

For the parameters chosen, the array size is 3.6 kW at $1.0 \mathrm{~kW} / \mathrm{m}^{2}$ of insolation. This figure compares favorably with the 3.5 kW actually installed. The 51 kWh battery capacity, however, represents the nominal sapacity. Thus, when a depth of discharge of 50 pervent and a round trip charging eff iciency of 85 percent is assumed, the actual battery capacity would be 120 kWh . The Jifference between the installed 285 kWh battery and the calculated capacity can be attributed to the difference in LOLP calculated in the design example and that for the installed system.

10.1.2 Southern Hemisphere Location

The requirements for the Papago Indian Village can be applied in the Southern hemisphere as well. If we assume that the installation is at 32.11° South latitude and the tilt is again 32.11°, all of the computations would be the same, although a ± 6 percent correction to the insolation should be made due to the seasonal variation in the earth-sun distance (Section 11). If the K_{H} profile were the same, except with the January value for the Northern hemisphere being used in July in the Southern hemisphere and all other months shifted also by six months, the month-by-month computation would be identical. The only difference in Exhibit 10.1-2 would be the labeling in the "MONTH" column entry for July being used for the January entry in the Southern hemisphere.

Exhibit 10.1-1
 MULTIPLE LOAD APPLICATION ivIONTHLY LOAD SUMMARY

Device	Load Ah/day						
	Water Pumps 2 hp	$\begin{aligned} & \text { Refrigerators } \\ & 1 / 8 \mathrm{hp} \\ & \hline \end{aligned}$	Clothes Washer $1 / 4 \mathrm{hp}$	Sewing Machine $1 / 8 \mathrm{hp}$	Fluorescent Lights 20 W	Instruments	Total
Quantity	1	15	1	1	44	1 lot	
Month							
January	34.9	15.2	31.1	2.4	44.8	13.0	141.4
February	34.9	17.8	31.1	2.4	38.8	12.7	137.7
March	49.1	21.1	31.1	2.4	26.8	13.9	144.4
April	49.1	26.5	31.1	2.4	17.7	14.2	141.0
May	70.4	31.7	31.1	2.4	17.3	15.5	168.4
June	70.4	37.8	31.1	2.4	11.5	15.5	168.7
July	70.4	42.2	31.1	2.4	11.5	13.9	171.5
August	70.4	41.8	31.1	2.4	17.3	13.9	176.9
September	49.1	37.8	31.1	2.4	20.6	13.9	154.9
October	49.1	28.3	31.1	2.4	32.6	13.9	157.4
November	34.9	20.4	31.1	2.4	38.8	13.5	141.1
December	34.9	16.1	31.1	2.4	44.8	13.0	142.3

Exhibit 10.1-2
MULTIPLE LOAD APPLICATION EQUIPMENT SIZING

$$
\begin{gathered}
\text { LOLP }=1 \text { percent } \\
\text { Latitude }=32.11^{\circ} \mathrm{N} \\
\text { Tilt }=32.11^{\circ} \mathrm{N}
\end{gathered}
$$

	Month	Cleaness FactorK_{H}	Average Insolation$\begin{gathered} \mathrm{I}^{(1)} \\ \frac{\mathrm{kWH}}{\underline{\text { Day-m }}^{2}} \end{gathered}$	R	Standard Deviation S $\frac{\mathrm{kWH}}{\mathrm{Day}-\mathrm{m}} 2$	Load (kWh/ day)	Array Area$\begin{gathered} \mathrm{A}^{(2)} \\ \mathrm{m}^{2} \end{gathered}$	Storage Requirement		Revised Values Based on $\mathrm{Q}=51 \mathrm{kWH}$			$\mathrm{K}_{\mathrm{H}}{ }^{(5)}$
								$\begin{gathered} \text { C } \\ \text { Days } \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \mathrm{kWH} \end{gathered}$	$\begin{gathered} \mathrm{C}^{\prime} \\ \text { Days } \end{gathered}$		$\begin{aligned} & \mathrm{A}^{1} \\ & \mathrm{~m}^{2} \end{aligned}$	
$\stackrel{+}{+}$	January	0.667	5.48	0.278	1.53	17.0	43	2.6	44	3.0	0.29	42	0.633
	February	0.667	5.98	0.264	1.58	16.5	38	2.4	40	3.1	0.28	37	0.665
	March	0.737	7.17	0.153	1.10	17.3	32	1.1	19	2.9	0.23	31	0.692
	April	0.758	7.51	0.115	0.87	16.9	29	1.1	19	3.0	0.17	29	0.744
	May	0.768	7.47	0.095	0.71	20.2	35	1.0	20	2.5	0.16	34	0.765
	June	0.711	6.81	0.154	1.05	20.2	39	1.3	26	2.5	0.21	38	0.755
	July	0.647	6.24	0.229	1.43	20.6	45	2.3	47	2.5	0.25	44	0.658
	August	0.651	6.34	0.238	1.51	21.2	45	2.4	51	2.4	0.33	45	0.657
	September	0.720	7.00	0.169	1.19	18.6	35	1.6	30	2.7	0.21	34	0.680
	October	0.681	6.30	0.237	1.49	18.9	41	2.1	40	2.7	0.29	40	0.671
	November	0.690	5.90	0.238	1.41	16.9	39	2.1	36	3.0	0.28	38	0.637
	December	0.690	5.55	0.246	1.37	17.1	42	2.2	38	3.0	0.28	41	0.612
					For 1\% LOLP: Installed:		$\begin{aligned} & 3.6 \mathrm{~kW} \\ & 3.5 \mathrm{~kW} \end{aligned}$	$\underset{121 \mathrm{kWH}}{51 \mathrm{kWH}}$				3.6 kW	

Notes:

1. $\rho_{\mathrm{g}}=0.05$
2. $\eta=0.08$
3. $\mathrm{A}=\mathrm{Load} /[\eta(\mathrm{I}-\mathrm{MS})]$
$\mathrm{M}=\left(\mathrm{I}-\mathrm{Load} / \mathrm{A}_{\eta}\right) / \mathrm{S}=$ (0.33 assumed starting value)
4. $2,380 \mathrm{Ah}$ battery rating chosen to operate with $50 \% \leqslant \mathrm{SOC} \leqslant 100 \%$, so $1,190 \mathrm{Ah}$ provided at 120 volts
5. K_{H} per SOLMET for Tucson, Arizona.

SECTION 11

INSOLATION

11.1
 INTRODUCTION

The purpose of this section is to present the calculational tools for determination of the insolation on a tilted surface. The quantity that is required for system sizing is the average daily insolation for a given month on the tilted array surface. Four numbers are needed to perform the calculation of average daily insolation. These are: the clearness index or $\overline{\mathrm{K}}_{\mathrm{H}}$; the latitude angle of the site; the tilt angle of the array; and the reflectance of the ground in front of the array. The clearness index is the ratio of the average monthly horizontal insolation to the extraterrestrial horizontal insolation. $\overline{\mathrm{K}}_{\mathrm{H}}$ varies from month to month with the lowest values usually occurring in the winter.

In Appendix A, monthly values of \bar{K}_{H} are tabulated for a number of cities in the United States and throughout the world. The locations listed are grouped according to country. If there is no listing for a proposed site, then the closest listing should be used as long as the general weather conditions are similar. (Note that the values of $\overline{\mathrm{K}}_{\mathrm{H}}$ in Appendix A must be divided by 1000 before they are input to the insolation calculation programs described in the following sections).

The equations that form the basis for the insolation calculation programs are presented in Exhibit 11.1-1. A sample calculation is given in Exhibit 11.1-2. A table listing the reflectances of various types of ground covers is presented in Exhibit 11.1-3.

INSOLATION COMPUTATION FOR A SOUTH-FACING ARRAY

A. Select Latitude (L), Day of Year (Day) Ground Reflectance (ρ) and Array Tilt (ψ) (O° for Horizontal)
B. Obtain the monthly average clearness index, $\overline{\mathrm{K}}_{\mathrm{H}}$, from Appendix A.
C. Compute the Solar Hour Angle at Sunset
$\cos \theta_{\mathrm{SS}}=\quad-\tan \mathrm{L} \tan \delta$
$\mathrm{L}=$ Latitude
$\sin \delta=\sin$ (declination angle) $=\sin (23.45) \sin \left(\frac{284+\text { day }}{365} \times 360^{\circ}\right)$
D. Compute the Solar Hour Angle at Sunset for the Tilted Surface $\cos \theta_{\text {TS }}=-\tan (L-\phi) \tan \delta$
E. Determine which Sunset Occurs First

$$
\theta=\min \left(\theta_{\mathrm{TS}}, \theta_{\mathrm{SS}}\right)
$$

F. Compute the Extraterrestrial Irradiance on a Piate Held Normal to the Sun's Rays
$S_{O}=1.356\left(1+0.0167 \cos \left(\frac{\text { Day }}{365} * 360\right)\right)^{2} \mathrm{~kW} / \mathrm{m}^{2}$
G. Compute the Extraterrestrial Insolation on a Horizontal Surface $\mathrm{S}_{\mathrm{OH}}=\mathrm{S}_{\mathrm{O}} \frac{24}{\pi}\left(\cos \mathrm{~L} \cos \delta \sin \theta_{\mathrm{SS}}+\frac{\pi \theta \mathrm{SS}}{180} \sin \mathrm{~L} \sin \delta\right) \frac{\mathrm{kWh}}{\mathrm{m}^{2} \text {-Day }}$
H. Compute the Horizontal Insolation

$$
\mathrm{S}_{\mathrm{H}} \quad=\overline{\mathrm{K}}_{\mathrm{H}} * \mathrm{~S}_{\mathrm{OH}}
$$

I. Compute the Diffuse-Insolation Factor (Ref. 11-1)
$\left(\mathrm{K}_{\mathrm{D}}=\mathrm{S}_{\mathrm{D}} / \mathrm{S}_{\mathrm{H}}\right.$) for the monthly average insolation:
$\mathrm{K}_{\mathrm{D}}=\left\{0.230+\theta_{\mathrm{SS}} / 165-\left[\begin{array}{c}0.095+\theta_{\mathrm{SS}} / 220 \\ =\end{array} *\right.\right.$

$$
\left.\cos \left[114.6 *\left(\overline{\overline{\mathrm{~K}}}_{\mathrm{H}}-0.9\right)\right]\right\}
$$

$$
\begin{aligned}
{ }^{R_{\mathrm{D}}} \quad & \frac{\cos (\mathrm{~L}-\phi)}{\cos \mathrm{L}} * \\
& \left\{\frac{\sin \theta-\frac{\pi}{180} \theta^{\theta} \cos \theta_{\mathrm{TS}}}{\sin \theta \mathrm{SS}-\frac{\pi}{180} \theta_{\mathrm{SS}} \cos \theta_{\mathrm{SS}}}\right\}
\end{aligned}
$$

K. Compute the average daily insolation on the tilted surface
$\mathrm{I}_{\mathrm{T}}=\mathrm{S}_{\mathrm{H}}\left\{\left(1-\mathrm{K}_{\mathrm{D}}\right) \mathrm{R}_{\mathrm{D}}+\frac{1}{2}(1+\cos \phi) \mathrm{K}_{\mathrm{D}}+\frac{1}{2}(1-\cos \phi) \mathrm{p}\right\}$
where $\rho=$ ground reflectance (See exhibit 11.1-3)

Exhibit 11.1-2

INSOLATION COMPUTATION EXAMPLE: WASHINGTON, D.C.
A. Let:
$\mathrm{L}=38.95^{\circ}$, Day $=15(\mathrm{Jan}), \phi=55^{\circ}$
B. Find from Appendix A: $\quad \overline{\mathrm{K}}_{\mathrm{H}}=0.417$
C. Compute: $\sin \delta=\sin (23.45) * \sin \left(\frac{284+15}{365} * 360\right)=-0.36094$

$$
\begin{aligned}
\delta & =-21.16^{\circ} \\
\cos \theta_{\mathrm{SS}} & =-(\tan 38.95)(\tan (-21.16))=0.31 .286 \\
\theta_{\mathrm{SS}} & =71.77^{\circ}
\end{aligned}
$$

D. Compute: $\cos \theta_{\mathrm{TS}}=-\tan (38.95-55) \tan (-21.16)=-0.11134$

$$
\theta_{\mathrm{TS}}=96.39^{\circ}
$$

E. Set:

$$
\theta=\min (71.77,96.39)=71.77^{\circ}
$$

F. Compute: $\mathrm{S}_{\mathrm{O}}=1.356 *\left(1+0.0167 * \cos \left(\frac{15}{365} * 360\right)\right)^{2}=1.400 \mathrm{~kW} / \mathrm{m}^{2}$
G. Compute: $\mathrm{S}_{\mathrm{OH}}=1.400 * \frac{24}{\pi} *[\cos (38.95) \cos (-21.16) \sin (71.77)$ $\left.+\left(\frac{\pi^{*} 71.77}{180}\right) \sin (38.95) \sin (-21.16)\right]$

$$
\text { so } \quad \mathrm{S}_{\mathrm{OH}}=4.328 \mathrm{kWh} / \mathrm{m}^{2}-\text { day }
$$

H. Compute: $\mathrm{S}=0.417 * 4.328=1.805 \mathrm{kWh} / \mathrm{m}^{2}$ - day
I. Compute: $\mathrm{K}_{\mathrm{D}}=\left\{\begin{array}{c}0.230+71.77 / 165-[0.095+71.77 / 220] *\end{array}\right.$ $\cos [114.6 *(0.417-0.9)]\}=0.426$
J. Compute: $\mathrm{R}_{\mathrm{D}}=\frac{\cos (38.45-55)}{\cos (38.95)} *$

$$
\frac{\sin (71.77)-(\pi * 71.77 / 180) * \cos (96.39)}{\sin (71.77)-(\pi * 71.77 / 180) * \cos (71.77)}
$$

K. For $\rho=0: \quad=2.416$

$$
\begin{aligned}
& \rho=0: \\
& \mathrm{I}_{\mathrm{T}}= 1.805 *\left\{(1-0.426) * 2.413+\frac{1}{2}(1+\cos 55)\right. \\
&\left.* 0.426+\frac{1}{2}(1-\cos 55) * 0\right\} \\
& \text { so } \mathrm{I}_{\mathrm{T}}= 3.106 \mathrm{kWh} / \mathrm{M}^{2}-\text { day }
\end{aligned}
$$

Exhibit 11.1-3
GROUND REFLECTANCES FOR VARIOUS SURFACES

Ocean	0.05
Bituminous concrete	0.07
Wheat field	0.07
Dark soil	0.08
Green field	0.12 to 0.25
Grass, dry	0.20
Crushed rock surface	0.20
Concrete, old	0.24
Concrete, light colored	0.30
Paved asphalt	0.18
Concrete, new	0.32
Snow, fresh	0.87
Snow, old	0.50

References: (11-2, 11-3)

11.2 INSOLATION CALCULATION PROGRAMS

Programs for calculating the average daily insolation on a tilted array surface have been developed for the TI-59 and HP-67 programmable calculators. The programs are based on the equations of Exhibit 11.1-1. They will enable the effects of K_{H}, tilt angle and other variables on the performance of the PV system to be analyzed.

Instructions for using the TI-59 program are given in Exhibit 11.2-1. A listing of the program is presented in Exhibit 11.2-2. The instructions for use of the HP-67 program are in Exhibit 11.2-3 with the program listing given in Exhibit 11.2-4.

Exhibit 11.2-1

INSTRUCTIONS FOR OPERATING THE TI-59 INSOLATION-COMPUTATION PROGRAM

1. Enter the following values in the respective storage locations:

Value

Latitude degrees 00
Tilt, degrees 02
Ground reflectance, decimal 13
2. Depress C to start the entry of the monthly $\overline{\mathrm{K}}_{\mathrm{H}}$'s. The calculator displays the month number for which the $\overline{\mathrm{K}}_{\mathrm{H}}$ is to be entered (1.0 for January).
3. Enter the $\overline{\mathrm{K}}_{\mathrm{H}}$ for the month indicated. Depress R / S. The calculator will display the next month number for which \bar{K}_{H} is to be entered. Repeat this step until all twelve values are entered.
4. Depress A to obtain the output. Typical output for the case of $\overline{\mathrm{K}}_{\mathrm{H}}=0.5$ for each month is presented below. The average monthly insolation is printed for each month and for the year, in $\mathrm{kWh} /$ daym^{2}, for the tilted surface.

Latitude	$20{ }^{\circ}$
Tilt	30°
Ground ref.	0.050
Month	$\mathrm{I}_{\mathrm{T}}\left(\mathrm{kWh} /\right.$ day $-\mathrm{m}^{2}$
Jan	4.595
Feb	4.798
Mar	4.910
April	4.832
May	4.646
June	4.512
July	4.544
Aug	4.703
Sept	4.837
Oct	4.821
Nov	4.657
Dec	4.517
verage	4.698

EXHIBIT 11.2-2

Exhibit 11.2-3
 INSTRUCTION FOR OPERATING THE HP-67 INSOLATION-COMPUTATION PROGRAM

1. Load the following quantities into the storage registers indicated below:

Value	Register
S_{H}	0
Day (Jan 1=1)	1
Latitude, L	2
Tilt Angle,	3
Reflectance	4

2. Depress A to initiate the program. In approximately 45 seconds, the value of S_{T}, the averege monthly insolation on the tilted surface will be displayed in the x-register. The units of S_{H} are $\mathrm{kWh} /$ day- m^{2}.
3. To calculate I_{T} for a different month, the value of $\overline{\mathrm{K}}_{\mathrm{H}}$ and the value of DAY corresponding to the middle of the month must be stored in Registers 0 and 1 respectively. Alternatively, the variation of S_{T} with tilt angle or ground reflectance can be studied by changing these variables with the remaining ones fixed.
4. Example:

$$
\begin{gathered}
\text { For } \mathrm{K}_{\mathrm{H}}=0.5, \mathrm{~L}=20, \text { DAY }=15 \text { (January) } \\
\text { Tilt }=20, \text { and } \rho=0.05 \text {, the calculated } \\
\text { value of } \mathrm{I}_{\mathrm{T}}=4.595 .
\end{gathered}
$$

4. The following quantities are also calculated and stored by the program:

Quantity *	$\frac{\text { Register }}{\delta}$
θ	5
θ is	6
$\theta \mathrm{sr}$	7
θ	8
$\mathrm{~S}_{\mathrm{OH}}$	9
$\mathrm{~K}_{\mathrm{D}}$	A
R_{D}	B

[^6]Exhibit 11.2-4
LISTING OF AN HP-67 INSOLATION COMPUTATION PROGRAM

	Step Number	Keystrokes		Key Code		Step Number	Keystrokes			Step Number	Keystrokes	Key Code	
	001	f LBL A	32	25	11	028							
	002	RCL 1		34	01	029	$\stackrel{\text { CHS }}{ }$		71	055	$\mathrm{f} \cos$	31	63
	003	2			02	030	$\mathrm{g} \mathrm{cos}{ }^{-1}$		42 63	056 057 050			83 00
	004	8			08	031	$\stackrel{\text { g cos }}{ }$	32 33	63 06	057	0		00 01
	005	4			04	032	RCL ${ }_{2}$	$\bigcirc 3$	02	059	1		01 06
	006	+			61	033	RCL 3	34	03	050	6 7		06
	007	3			03	034			51	061	X		07
-	008	6			06	035	f TAN	31	64	061	1		71 01
$\stackrel{1}{2}$	009	5			75	036	RCL 5	34	05	063	+		01
	010	\div			81	037	f TAN	31	64	063	$\mathrm{g} \mathrm{x}^{+}$	32	61
	011	3			03	038	X		71	065	${ }_{1}$		54
	012	6			06	039	CHS		42	066			01 83
	013	0			00	040	$\mathrm{g} \cos ^{-1}$	32	63	067	3		83
	014	X			71	041	STO 7	33	07	068	5		03
	015	f \sin		31	62	042	RCL 6	34	06	069	6		05
	016	2			02	043	$\mathrm{g} \mathrm{x}<\mathrm{y}$	32	81	070	${ }^{6}$		${ }_{71}$
	017	3			03	044	h $\mathrm{x}>\mathrm{y}$	35	52	071	RCL 5		71
	018				83	045	STO 8	33	08	072	f sin	34 31	05 62
	019	4			04	046	RCL 1	34	01	073	RCL 2	31	62
	020	5			05	047	3		03	074	$\mathrm{f}_{\sin }$	34	62
	021	f \sin		31	62	048	6		06	075	${ }^{1} \mathrm{X}$	31	71
	022	${ }^{\mathrm{X}}$ - -1			71	049	0		00				71 06
	023	${ }_{5} \sin ^{-1}$		32	62	050	X		71	076 077	RCL 6 X	34	06 71
	024	STO 5		33	05	051	X		71 03	077 078	X $\mathrm{h} \pi$		71
	025	f TAN		31	64	052	6		06	078 079	¢ ${ }^{\text {X }}$	35	73
	026	RCL 2		34	02	053	5		05	080	X 1		71
	027	f TAN		31	64	054	J		81	080	1		01

Exhibit 11.2-4 (Continued)
IISTING OF AN HP-67 INSOLATION COMPUTATION PROGRAM

	Step Number	Keystrokes	Key Code		Step Number	Keystrokes	Key Code		Step Number	Keystrokes	Key Code	
	082	0		00	109	X		71	136			
	083	\div		81	110	$\mathrm{f} \cos$	31	65	137	$\underset{\mathrm{X}}{\mathrm{RCL}} 8$	34	08
	084	RCL 6	34	06	111	RCL 6	34	06	138	$\xrightarrow{\boldsymbol{\gamma}} \boldsymbol{\pi}$		71 73
	085	f \sin	31	62	112	2		02	139	h x	32	73 71
	086	RCL 5	34	05	113	2		02	140	x		71 01
	087	f cos	31	63	114	0		00	141	8		01
	088	X		71	115	\div		81	142	0		08 00
$\stackrel{1}{\square}$	089	RCL 2	34	92	116	.		83	143	\div		00 81
$\stackrel{\square}{\square}$	090	f cos	31	63	117	0		00	144	CHS		81
	091	X		71	118	9		ソ9	145	RCL 8		42 08
	092	+		61	119	5		05	146	$\mathrm{f}_{\sin }$	34	08
	093	X		71	120	+		61	147	${ }_{+}+$	31	62
	094	2		02	121	X		71	148	RCL 6	34	61 06
	095	4		04	122	CHS		42	149	f cos	31	06
	096	X		71	123	RCL 6	34	06	150	RCL 6	31 34	63
	097	$\mathrm{h} \pi$	35	73	124	1		01	151	X ${ }^{\text {¢ }}$	34	06 71
	098	\div		81	125	6		06	152	$\mathrm{h} \boldsymbol{\pi}$	32	71
	099	STO 9	33	09	126	5		05	153	h \quad X	32	73
	100	RCL 0	34	00	127	\div		81	154	X		71
	101			83	128	+		61	155	8		01
	102	9		09	129			83	156	0		08
	103	-		51	130	2		02	157	0		00 81
	104	1		01	131			03	158	CHS		81 42
	105	1		01	132	+		61	159	RCL 6		42
	106	4		04	133	STO A	33	11	160	f sin	34	06 62
	107			83	134	RCL 7	34	07	161	$\stackrel{+}{+}$		62
	108	6		06	135	$f \mathrm{cos}$	31	63	162	\div		81

Exhibit 11.2-4 (Continued)
LISTING OF AN HP-67 INSOLATION COMPUTATION PROGRAM

Step Number	Keystrokes		Key Code	Step Number	Keystrokes		Key Code
163	RCL 2	34	02	190	+		61
164	RCL 3	34	03	191	2		02
165	-		51	192	\div		81
166	$\mathrm{f} \cos$	31	63	193	RCL 4	34	04
167	X		71	194	X		71
168	RCL 2	34	02	195	+		61
169	$\mathrm{f} \cos$	31	63	196	RCL 9	34	09
170	\div		81	197	X		71
171	STO B	33	12	198	RCL O	34	00
172	RCL A	34	11	199	X		71
173	CHS		42	200	h RTN	32	22
174	1		01	201	R/S		84
175	+		61				1
176	X		71				
177	RCL 3	34	03	\downarrow			,
178	$\mathrm{f} \cos$	31	63	224	R/S		84
179	1		01				
180	+		61.				
181	2		02				
182	\div		81				
183	RCL A	34	11				
184	X		71				
185	+		61				
186	RCL 3	34	03				
187	$\mathrm{f} \cos$	31	63				
188	CHS		42				
189	1		01				

11.3

STATISTICAL INSOLATION COMPUTATIONS

The tilted surface insolation computation using monthly averages directly, as was done in Exhibit 11.1-1 disagrees with the monthly averages computed by averaging day-by-day tilted surface insolations by as much as 30%; therefore, results of the monthly method will not agree exactly with Section 6 for which the data were generated by a day-by-day method. More accurate day-by-day data can be generated by using the following method.

The insolation for each month and for each K_{H} ranging from 0.0 to 1.0 must be computed. The procedure is identical to that presented in Exhibit 11.1-1, with one exception: the expression for K_{D} must be modified. The day-by-day expression for K_{D} is:

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{D}}=0.99 & \text { if } \mathrm{K}_{\mathrm{H}} \text { is less than } 0.1557 \\
\mathrm{~K}_{\mathrm{D}}=1.188-\mathrm{K}_{\mathrm{H}} *\left(2.272-\mathrm{K}_{\mathrm{H}} *\left[9.473-\mathrm{K}_{\mathrm{H}} *\left(21.856-14.648 * \mathrm{~K}_{\mathrm{H}}\right)\right]\right) \\
& \text { if } \mathrm{K}_{\mathrm{H}} \text { is between } 0.1557 \text { and } 0.761 \\
\mathrm{~K}_{\mathrm{D}}=0.2255 & \text { if } \mathrm{K}_{\mathrm{H}} \text { is greater than } 0.761
\end{array}
$$

The frequency with which each K_{H} is encountered can be determined from Exhibit 11.3-1, which gives the (cumulative) distribution, M, for each K_{H} as a furction of the monthly average K_{H}. The average and standard deviation are computed from the formulas:

$i=1$
This procedure is tedious and is best performed on a computer, rather than a hand-held calculator. The latter would probably require several days of computation, whereas the former requires approximately one hour on a micro computer.

Exhibit 11.3-1
GENERALIZED K_{H} DISTRIBUTION COVERAGE, $F\left(K_{H}\right)$

K_{H}	Average K_{H}				
	. 3	. 4	. 5	. 6	. 7
. 04	. 073	. 015	. 001	. 000	. 000
. 08	. 162	. 070	. 023	. 008	. 000
. 12	. 245	. 129	. 045	. 021	. 007
. 16	. 299	. 190	. 082	. 039	. 007
. 20	. 395	. 249	. 121	. 053	. 007
. 24	. 496	. 298	. 160	. 076	. 007
. 28	. 513	. 346	. 194	. 101	. 013
. 32	. 579	. 379	. 234	. 126	. 013
. 36	. 628	. 438	. 277	. 152	. 027
. 40	. 687	. 493	. 323	. 191	. 034
. 44	. 748	. 545	. 358	. 235	. 047
. 48	. 793	. 601	. 400	. 269	. 054
. 52	. 824	. 654	. 460	. 310	. 081
. 56	. 861	. 719	. 509	. 360	. 128
. 60	. 904	. 760	. 614	. 410	. 161
. 64	. 936	. 827	. 703	. 467	. 228
. 68	. 953	. 888	. 792	. 538	. 295
. 72	. 967	. 931	. 873	. 648	. 517
. 76	. 979	. 967	. 945	. 758	. 678
. 80	. 986	. 981	. 980	. 884	. 859
. 84	. 993	. 997	. 993	. 945	. 940
. 88	. 995	. 999	1.000	. 985	. 980
. 92	. 998	. 999		. 996	1.000
. 96	. 998	1.000		. 999	
1.00	1.000			1.000	

In this section, charts are presented to predict the amount and duration of array shading caused by objects located in front of and to the side of the array. The determination of array shading is an important part of site selection in view of the sensitivity of array output to shadowing. This sensitivity is due to series connection of cells and of modules and can be minimized but never eliminated. Thus, it is imperative that shading be kept to a minimum especially during the hours of 0900 to 1500 solar time.

From the point of view of an observer standing on earth, the position of the sun in the sky can be specified by two angles, the altitude angle and the azimuth angle. The altitude angle is the elevation of the sun above the horizon. The azimuth angle is the angle between true south (or north in the southern hemisphere) and the projection of the sun's rays onto the horizontal surface. Exhibit 11.4-1 illustrates these angles. To estimate shading, the skyline must be plotted on the sun chart closest to the site latitude. The sun charts are presented in Exhibits $11.4-2$ through 11.4-10 for latitude angles from 0 to 64 degrees in 8 degree increments. The altitude and azimuth angles of objects on the horizon can be measured directly or estimated based on the known locations and elevations of objects relative to the array site. For close objects or an extended array, the measurements should be referenced to several locations along the array. An example calculation is presented in Exhibit 11.4-11.

11.5
 ROW TO ROW SHADING

For PV arrays arranged in multiple rows of PV modules, the largest source of shading in the winter is likely to be the adjacent row. Sufficient spacing between rows must be provided to keep the shading io a minimum. This is most important for stand-alone systems, since the months of maximum shading (winter months) are also usually the months of lowest insolation.

In Exhibit $11.5-1$ a graph is presented showing the minimum spacing between rows as a function of latitude angle for no row-to-row shading between the hours of 0900 to 1500 solar time for December 21 (June 21). It is seen that the land areas taken up by the array at the higher latitudes is excessive. The technique used to overcome this is to locate the array on a slope or to artificially create a slope by raising the rear rows. This is depicted in the exhibit.

Exhibit 11.4-1
ILLUSTRATION OF SOLAR ALTITUDE AND AZIMUTH ANGLES

SUN CHART FOR 0° LATITUDE

LATITUDE $=80$

Exhibit 11.4-3
SUN CHART FOR 8° LATITUDE

LATITUDE $=24^{\circ}$

Exhibit 11.4-5
SUN CHART FOR 24° LATITUDE

LATITUDE = 40°

Extibit 11.4-7
SUN CHART FOR 40° LATITUDE

LATITUDE $=56^{\circ}$

Exhibit 11.4-9
SUN CHART FOR 56° LATITUDE

Exhibit 11.4-10
SUN CHART FOR $64{ }^{\circ}$ LATI'TUDE

Exhibit 11.4-11

SAMPLE SHADING CALCULATION

$\begin{aligned} & \text { AZIMUTH GF TREE }=40^{\circ} \mathrm{E} \\ & \text { ALTITUDE OF TREE }=\operatorname{TAN}^{-1}\left(\frac{45}{87.5}\right)=43.5^{\circ} \end{aligned}$	AZIMUTH OF EAST CORNER OF BUILDING $=12^{\circ} \mathrm{E}$ ALTITUDE OF EAST CORNER OF BUIIDING $=\operatorname{TAN}^{-1}\left(\frac{30}{102}\right)=16^{\circ}$
AZIMUTH OF CENTER OF BUILDING $=14^{\circ} \mathrm{W}$ ALTITUDE OF CENTER OF BUILUING $=\gamma A N^{-1}\left(\frac{30}{103}\right)=\underline{\underline{16}}^{\circ}$	AZIMUTH OF WEST CORNER OF BUILDING $=37^{\circ} \mathrm{W}$ AI.TITUDE OF WESTCORNER OF BUILDING $=\operatorname{TAN}^{-1}\left(\frac{30}{125}\right)=13.5^{\circ}$

SUN CHART FOR $40^{\circ} \mathrm{N}$

Exhibit 11.5-1
MINIMUM ROW-TO-ROW SPACING REQUIRED FOR NO SHADING BETWEEN 0900 AND 1500 HOURS ON DECEMBER 21 (JUNE 21)

SECTION 12
 PHOTOVOLTAIC SYSTEM COMPONENTS

A brief survey of manufacturers and standard catalogs reveals the availability and costs of the major components for photovoltaic power systems. The results of this survey are presented in the exhibits of this section. For typical systems under 1.5 kWp array sizes, there are components available off the shelf (within approximately 16 weeks). In the following subsections, each of the components will be discussed individually. The data are arranged in the order that the components appear in the system, starting with the solar array.

12.1 SOLAR CELL MODULES

Exhibit 12.1-1 lists data obtained from representative module manufacturers. The specifications were obtained from GSA lists, brochures and telephone calls. The prices referred to as minimum are based on small quantities, typically less than 5 kWp . Most suppliers reserve the right to determine large quantity prices at the time of the contract based on supply and demand. It should be noted that at the present, the demand exceeds the immediately available supply. Thus, some delays in delivery may be experienced. Also there are several firms not listed hrre which are developing new processes that will substantially effect the cost in the future. Some of these firms may enter the market as suppliers. This is meant to be a sampling of what is available and not a complete reference for these products.

The most popular modules for terrestrial power are made with silicon cells, although much research and development is being done with cadmium sulfide solar cells and other semi-conductor materials. Availability of cadmium sulfide cells is limited at present, and therefore specifications are limited too. It has been projected that the cadmum sulfide cells will become available in quantities at competitive prices (less than $\$ 8 / \mathrm{Wp}$) within the year. Furthermore, an anticipated price in the range of $\$ 3 /$ watt peak for installed de power systems may of fet the relatively low (typically $3-8$ percent) efficiency posed by a cadmium silfide manufacturer.

The efficiency of silicon cells depends primarily on their purity. Lab experiments have produced samples at near theoretical maximum. Yet the variables of mass production tend to limit the efficiency of silicon vells to about 17 percent and average close to 10 percent. When th: fill factor of a module or space between the cells is considered it can be understood why module sizes have not been standardized for commercial appiications; however, most manufacturers supply their own structures, so standardization is of lesser importance unless it is desired to have the capability to interchange different manufacturers modules.

Although manufacturers may vary from one to another in the relativeness of their test data, some general conclusions can be drawn: photovoltage is independent of area. (typically $0.5 \mathrm{~V} /$ cell), while current is directly related to area and light intensity. The change in current is directly proportional to the change in temperature by about 25 micro amperes per centimeter squared per degree celsius. 100 milliwatts per centimeter squared is the typical maximum intensity of sunlight. As discussed in Section 6.2 on pr arrays, the open-circuit voltage ($V_{o c}$), shortcircuit current (I_{Sc}) and series resistance ($\mathrm{R}_{\text {series }}$) are important in combining arrays. For the same reason, the temperature coefficients are important. Arrays matched at one temperatu a may not be matched at another. The JPL (I-V) current per voltage tests ate cited by one cell manufacturer; based on their findings a cell temperature of $28^{\circ} \mathrm{C}$ is standard. Yet, under nominal working conditions there is an increase in cell temperature of $15^{\circ}-20^{\circ} \mathrm{C}$ above ambient temperature. As mentioned before, manufacturers inay vary on this point.

Some arrays come with dual leads from each cell. If one should fail, the other will suffice. Few of the GSA listed arrays come with an intermediate tap that would permit the use of a partial-shunt regulator. In total, there are approximately nine manufacturers from whom modules can be bought off the shelf. At present there is a greater demand for P.V. modules than is being supplied. This is an unusual condition. Partially due to the effects of supply and demand and partially due to inass production techniques, there is a wide range in cost per watt peak from about $\$ 26 / W p$ to $\$ 8 / \mathrm{W}$. Typically the mean price is about $\$ 15 / \mathrm{Wp}$.

COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Manufacturer： Model $\frac{1}{r}$ ：	60－2012	60－3013	60－3014	60－3015	60－3016
Price／pc．min／max：${ }^{(1)}$	\＄34－41	862－74	5103－12L	\＄83－90	\％150－180
\＄／Watt peak：${ }^{(1)}$	811．81－14＋\＄11．78－14＋		9．78－11＋	16．12－19＋	14．25－17＋
Efficiency：${ }^{(2)}$	7．22\％	7．79\％	7．92\％	7．67\％	8．71\％
Standard Operating Conditions：${ }^{(3)}$	$\begin{aligned} & \text { Ta:cor } \\ & \text { Wind: } 1 \mathrm{~m} / \mathrm{s} \\ & \text { NOCT: } 0 \mathrm{c} \end{aligned}$	same	same	same	same
Watts Peak：（ $I_{\square} \cdot V_{\square}$ ）	2.88	5.265	10.53	5.148	10.53
Volts Peak：	9.0	8.1	8.1	16.2	16.2
Amps Peak：	0.32	0.65	1.30	0.32	0.65
Y Y，open circuit：					
V．Temp．Coeff．：					
I．Short circuit：					
I．Temp．Coeff．：					
P．series／cell：					
R．Temp．Coeff．：					
Temp．cell－Temp．air					
P．Termp．Coeff．：					
No．of Cells \＆Size：		189\％${ }^{\text {¢ }}$	18＠3！	36＠	369⿺𠃊⿳亠丷厂犬
Configuration：	203×10	185×10	$18 \mathrm{~s} \times 10$	368×10	365×10
Intermediate Tap：					
Failure Rate（MTBF）：					
Protection：					
Fill Factor：					
Panel Dimensions： $1.79 \times 6.87 \times 9^{\prime \prime} 16.87 \times 15.27^{\prime \prime} 6.87 \times 30^{\prime \prime}$				6.87×15.25	112×15.6211
Front Surface Area：	61.83112	104．77112	206.112	104.77 mc	187．4．4．2
Cover Material：	Glass	Glass	Glass	Glass	Glass
Weight：	21 bs.	3105.	$\overline{3} .75 \mathrm{lbs}$ ．	3 ？ ls ．	41 lbs ．
Ambient Temp．Limit：					
Insulation：					
Max．Snow Load：					
Max．Wind Load：					
Max．Impact：					
JPL Tested：					
GSA Listed：	yes	yes	yes	yes	yes
Delivery：					

[^7]Exhibit 12.1-1 (Con't)
COMPARISON OF TYPISAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

(1) Based on present $1980 \$$ value
${ }^{(2)}$ Based on gross frontal area
${ }^{(3)}$ Based on $100 \mathrm{mw} / \mathrm{cm}^{2}, 28^{\circ}$ cell temp. (or State Other Conditions
${ }^{(4)}$ Recent production units have 37 watts peak which may result in a second module becoming available soon.

Exhibit 12.1-1 (Con't)

COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Marufacturer: Model \#:	$92.00 J^{(4)}$	$\begin{array}{r} \left(I_{+}\right) \\ \mathrm{HE} 50 \mathrm{~J} / \mathrm{J} \\ \hline \end{array}$	$\begin{array}{r} (4) \\ \mathrm{HE} 51 \mathrm{~J} / \mathrm{JG} \\ \hline \end{array}$	$\begin{array}{r} (4) \\ \mathrm{HE} 60 \mathrm{~J} / \mathrm{JG} \\ \hline \end{array}$	4200C
Price/pe. min/max: ${ }^{(1)}$	3335.5-419	+\$499.2-62	+\$504-630	576-720	219-300
\$/Watt peak: ${ }^{(1)}$	\$ $13 \cdot 4-16+$ \$	15.13-18+	514.82-18+	15,57-19+	10.95-15
Efficiency: ${ }^{(2)}$	7.33\%	11.60\%	11.95\%	11.38\%	7.03\%
Standard Operating Conditions: (3)	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}: 25^{\circ} \mathrm{C} \\ &+3{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	same	same	pame	same
Wats Peak:	25.0	33.0	34.0	37.0	20.0
Yolts Peak:					
Amos Peak:					
V, open circuit:	23	18/36	20	$20 / 40$	20
V. Temp. Coeff.:					
I. short circuit:					
I. Temp. Coeff.:					
R. series/cell:					
R. Temp. Coeff.:					
Temp. cell-Temp. air					
P. Temip. Coeff.:					
No. of Cells \& Size:					
Configuration:					
Dual Leads:					
Intermediate Tap:					
Failure Rate (MTBF):					
Protection:					
Fill Factor:					
Panel Dimensions:					
Front Surface Area:	529115	44112	441112	$504+112$	$441^{\prime \prime 2}$
Cover Material:		lGlass	/Glass	CGlass	class
Weight: Insa	21	23	23	75	19
Ambient Temp. Limit:					
Insulation:					
Max. Snow Load:					
Max. Wind Load:					
Max. Impact:					
JPL Tested:					
GSA Listed:	yes	yes	yos	yes	yes
Delivery:					

(2) Based on present 1980 \$ value GSA D: scounts thru April 30, 1980

Based on gross frontal area
${ }^{(3)}$ Based on $10 \mathrm{mw} / \mathrm{cm}^{2}, 28^{\circ}$ cell temp. (or State Other Conditions)
${ }^{(4)} \mathrm{J}$: Integral mounting frame wi.th junction box

Exhibit 12.1-1 (Con't)
COMPARISON OF TYPICAL SPECIFICATIONS FOR PHOTOVOLTAIC MODULES

Manufacturer: Model \#:	1263-4G	1294-G	1263-S	1203-S	1264-S
Price/pc. min/max: ${ }^{(1)}$	\$136-152	3450-502	\$301-337	\$310-346	\$395-441
\$/Watt peak: ${ }^{(1)}$	\$34-38	\$12.86-1 + 2 13.68-i5+ $13.48-15+$			\$ $12.34-13+$
Efficiency: ${ }^{(2)}$	8.86\%	7.66\%	8.81\%	7.78\%	7.05\%
Standard Operating Conditions: ${ }^{(3)}$					
Watts Peak:	4	35	22	23	32
Volts Peak:					
Amps Peak:					
V. opers circuit:					
V. Ternp. Coeff.:					
1. Short circuit:					
I. Temp. Coeff.:					
R. Series/cell:					
R. Temp. Coeff.:					
Temp. cell-Temp. air					
P. Temp. Coeff.:					
Nc. of Cells \& Size:	$36 @ 1{ }^{\frac{1}{4}-211}$	32031	36@3'	L2@ ${ }^{\text {a }}$	36®4+1
Configuration:			-	-2@	36@4
Dual Leads:					
Intermediate Tap;					
Failure Rate (MTBF):					
Protection:					
Fill Factor:					
Panel Dimiensions: (4)					
Front Surface Area:	70 र	70812	$386.95^{\prime \prime}$ ¢	4.58.920	703.8112
Cover Material:	Glass	Glass	Silicone	Silicone	Silicone
Weight: Ibs. Ambient Temp. Limit:	2.5	24×9	4	5	2
Insulation:					
Miax. Snow Load:					
Max. Wind Load:					
Max. Impact:					
JPL Tested:					
GSA Listed:	Ies	Yes	Yes	Yes	Ves
Delivery:					-es

(1) Base... ? present $1980 \$$ value GSA Discount list effective thru April 30,1980
(2) Based o. gross frontal area
${ }^{(3)}$ Based on $100 \mathrm{mw} / \mathrm{cm}^{2}, 28^{\circ}$ cell temp. (or State Other Conditions)
(4) Heighth: Glass-?.75", Silicone-. 25"

A detailed analysis of various batteries has been presented in Section 4.3. Both nickel cadmium and lead-acid batteries are represented in Exhibit 4.3-1. A distinction should be made between two types of lead-acid batteries, the leadantimony (typically useful to 5 to 10 percent maximum depth of discharge) and lead-calcium (most useful to 20 percent, some useful to 80 percent maximum depth of discharge). The specifications for depth of discharge and number of cycles per life vary widely. It is therefore difficult to compare the various types. For instance, nickel cadmium batteries are generally capable of being used to 100 percent of the maximum rated depth of discharge for thousands of cycles over many years.

The prime contenders for use with phoiovoltaic systems are the NiCd and lead-calcium. Some loads may not require battery storage, while some may require the storage to be displaced in a day, and others may require several days of storage or even several weeks where high dependability is demanded. In any case the battery manufacturer should always be consulted before making the final choice as to the appropriate cell for a particular application.

The actual battery size is not usually important, because battery cells, like PV cells, can be grouped to obtain the desired voltage and current.

For very small applications, automotive batteries, sized to prevent more than a 10 percent discharge, might be the most cost-effective.

Exhibit 12.2-1 lists many of the characteristics and specifications of impor 'ice in determining the appropriate celi and block of cells for a photovoltaic application. The information asked for here is general and battery manufacturers prefer to quote on specific applications; therefore, companies such as those listed in Section 14 and elsewhere should be referred to for exact specifications.

Exhibit 12.2-1

TABLE OF IMPORTANT BATTERY DESIGN CHARACTERISTICS

Manufacturer: Type: ${ }_{1}$
Model:
Typical Application:
Price: total
\$/kwh
Delivery:
Efficiency:
Input (at 5 hr . rate):
Charging:
Max. volts
Max. curient
Overcharging:
Max. volts
Max. current
Output (at 8 hr . rate):
at 20 hr . rate:
at 7 day rate:
at 3 week rate:
kwh
Ah
volts
Max. current
Life Cycles:
10\% depth
20\% depth
50\% depth
80\% depth
90\% depth
100\% depth.
Shelf
Self Discharge:
Physical:
Dimensions:
Weight:
Temp. Limits:
0\% charge:
50\% charge:
100\% charge:
\$ (cycle x kwh)* ${ }_{2}$
\$ (years x kwh)*

1) Nickel Cadmium Calcium or Lead Antimony, etc.
2) Based on 100% discharge except as noted.

The primary purpose of regulators is to prevent storage batteries from overcharging.

Most solar module manufacturers will supply regulators or recommend if specified. These specifications vary according to the combination of arrays and the configuration of the batteries and the load. Typical data which should be specified are listed in Exhibit 12.3-1. Costs will be on the order of $\$ 1 / W$.
Manufacturer
Model
Price
Lolivery
Efficiency
Input
Volts
Amps
Protection
Output
Waveform
Volts
Amps
Protection
MTBF
Physical
Dimensions
Weight (kg)
Temp. Limits
Cooling

Exhibit 12.3-1
DC REGULATORS SPECIFICATION REQUIREMENTS
*12.4 DC MOTORS

Direct-Current motors are acknowledged to be unsurpassed for adjustable-speed applications and other applications with severe torque requirements.

Since de is no longer generally available from most industrial plant buses or utility networks, the most common practice to supply de motors has been by a solid state rectifier for each motor, or for a group of motors in a process. Manufacturers of de motors generally offer a very limited selection of de motors for special applications as compared to ac motors. Exhibit 12.4-1 contains some representative data on de motors obtained from manufacturers.

Permanent magnet motors are offered in small fractional horsepower ranges, sometimes in integral ratings, but rarely above 10 hp . Wound field motors are offered with either shunt, series or comp. nd field configurations. For efficiency data and discount multipliers against List Prices, it is recommended that the manufacturer's factory be contacted directly for the specific application at hand.

Exhibit 12.4-1
REPRESENTATIVE DATA ON DC MOTORS

Exhibit 12.4-1 (Continued) REPRESENTATIVE DATA ON DC MOTORS

(1) Prices shown are in U.S.A. dollars.

[^8]
SECTION 13

GLOSSARY OF TERMS

This section includes definitions of photovoltaic terminology and conversion factors to convert English units to SI units.

13.1 DEFINITIONS OF PHO'TOVOLTAIC TERMINOLOGY

ALTITUDE - Angle between the horizontal plane and the direction of beam radiation.

ANGLE OF INCIDENCE - Angle between the normal to a surface and the direction of incident radiation; applies to aperture plane of a solar collector.

ARRAY - A mechanically integrated assembly of modules together with support structure, exclusive of foundition, inclusive of tracking, heat transfer, and other components, as required to form a de power producing unit.

ARRAY FIELD SUBSYSTEMi - The aggregate of all solar photvoltaic arrays and support foundations gencrating de power within a photovoltaic system.

AZIMUTH (of Surfacs) - Angle between the North direction and the projection of the surface normal into the horizental plane; measured clockwise from North.

BEAM - Refers to radiation reccived frem the sun without change of direction; applied as beam irradiance or beam irradiation.

BLOCKING DIODE - A semi-conductor connected in series with a solar cell or cells and a storage battery to prevent a reverse current discharge of the battery through the cell when there is nc output, or low output from the cell.

BRANCH CIRCUIT - A group of modules or paralleled modules connected in series to provide de power at the de voltage level of the power conditioning subsystem. A branch circuit may involve the interconnection of modules located in several arrays.

BYPASS DIODE - A semiconductor connected in parallel with a series block of parallel strings to prevent excessive current from flowing through any unfailed substring in the series block upon partial shading of another substring in the same block.

DIFFUSE - Refers to radiation received from the sun after reflection and scattering by the atmosphere; also scattered; applied as diffuse irradiance or diffuse irradiation.

ELECTRIC POWER BUS - A conductor, or group of eonductors, that serve as a common connection for two or more circuits.

EQUINOX - The time when the sun in its apparent motion in the celestial sphere crosses the equator; c. March 21 is the vernal equinox (northern hemisphere) and c. September 23 is the autumnal equinox (northern henisphere); declination is zero; vernal equinox more precisely defined as the point of intersection of the ecliptic and the equator on the celestial sphere.

FILL FACTOR - The ratio of maximum power output of a cell or array to the product of the open circuit voltage and the short circuit current.

HOUR ANGLE - The angle between the hour circle of the sun and the observer's meridian.

INSOLATION - The solar radiation incident on an area. Usualiy expressed in milliwatts per square centimeter or watts per square meter.

LIFE CYCLE COST - An estimate of the cosí of owning and operating a system for the period of its useful life; usually expressed in terms of the present value of all lifetime costs.

MAXIMUIM POWER - Refers to a photovoltaic cell; the power at the point on the current-voltage curve where the current-voltage product is a maximum.

MODULE - The smallest, complete, environmentally-protected assembly of solar cells, optics, and other components designed to generate dc power.

ORIENTATION - Placement with respect to the cardinal directions, N, S, E, W; azimuth is the measure of orientation.

PHOTOVO \quad TAIC CELL - A photovoltaic cell is one that generates electrical energy when light falls on it. This term distinguishes it from a photoconductive cell (photoresistor) which changes its electrical resistance when light falls on it.
PHOTOVOLTAIC SYSTEM - An installed aggregate of solar arrays and other subsystems transmitting power to a given application. A system will generally include the following sub-systems:

- Array field
- Power conditioning and control
- Storage (if required)
- Backup (if required)
- Thermal (if required, noting that portions of a thermal subsystem may be included in the fabrication of the array)
- Land, security systems and buildings
- On-site conduit/wiring
- Instrumentation
- Maintenance and repair equipment

POWER CONDITIONING - The function of a subsystem which generally renders the variable de output of an alternate energy source to be suitable to meet the power supply requirements of more traditional loads. The power conditioning subsystem of a de photovoltaic power system would typically include voltage regulation, energy storage and possibly a dc/dc converter interface with loads. The power conditioning subsystem of an ac photovoltaic power system may also typically include energy storage, and conversion of the de output to an ac waveform, wave form filtering and voltage transformation to meet the requirements of the load.

SOLAR CELL - Photovoltaic cell.
SOLSTICE - The time when the sun in its apparent motion in the celestrial sphere attains the maximum distance from the equator; c. June 2.1 is the sumer solstice (northern hemisphere) and c. Dec. 22 is the winter solstice (northern hemisphere); declination is a maximum.

SPECTRAL - refers to reflection in which the angle of incidence is equal to and in the same plane as the angle of reflection; reflection as in a mirror.

TILT (of Surface) -Angle of inclination of collector.

13.2 CONVERSION FACTORS

The follnwing tables express the definitions of miscellaneous units of measure as exact rumerical multiples of coherent SI units, and provide multiplying factors for converting numbers and miscellaneous units to corresponding new numbers and SI units.

The first two digits of each numerical entry represent a power of 10. An asterisk follows each number which expresses an exact definition. For example the entry "-02 $2.54 *$ " expresses the fact that 1 inch $=2.54 \times 10^{-2}$ meter, exactly, by definition. Numbers not followed by an asterisk are only approximate representations of definitions, or are the results of physical measurements. The primary source of these tables is Reference 13-1. Most of the definitions are extracted from National Bureau of Standards documents.

To convert from	multiply by
British thermal unit (thermochemical) \qquad joule $+031.054350$	
Btu (thermochemical)/foot ${ }^{2}$ hour --- watt/meter ${ }^{2}$----------------003.1524808	
langley	+04 4.184*

14.1 PHOTOVOLTAIC CELLS, MODULES

APPLIED SOLAR ENERGY CORP. 15251 E. Don Julian Road P.O. Box 1212

City of Industry, CA 91749
ATTN: George Holme III
Product Marketing Manager (213) 968-6581

ARCO SOLAR INC.
20554 Plummer Street
Cnatsworth, CA 91311
ATTN: Tim Geiser
Eastern Region Sales Manager
(213) 998-066'7

MOTOROLA INC.
Solar Products Operations
5005 East McDowell Road
Phoenix, AZ 85008
ATTN: Pat Walton
Solar Product Marketing
(602) 244-6511

PHOTON POWER
10767 Gateway West
El Paso, TX 79935
ATTN: Martin F. Wenzler
(915) 593-2861

PHOTOWATT INTERNATIONAL INC.
2414 W. 14 th Street
Tempe, AZ 85281
Vice President \& Tec. Dir.
(602) 894-9564

SES, INC.
Tralee Industrial Park
Newark, DE 19711
ATTN: Greg T. Love Manager, Industrial Sales
(302) 731-0990

SOLAREX CORP. 1335 Piccard Drive Rockville, MD 20850
ATTN: Theodore Blumenstock
Director of Marketing
(301) 948-0202

SOLAR POWER CORP.
Affiliate of Exxon Enterprises
20 Cabot Road
Woburn, MA 01801
ATTN: Kurt Grice
Marketing Services
(617) 935-4600

SOLEC INTERNATIONAL, INC. 12533 Chadron Avenue
Hawthorne, CA 90250
ATTN: Ishaq Shahryar, President (213)970-0065

SOLENERGY CORP.
23 North Avenue
Wakefield, MA 01880
ATTN: Bob Willis, President
(617) 246-1855

SOLLOS, INC.
2231 S. Carmelina
Los Angeles, CA 90064
(213) 820-5181

TIDELAND SIGNAL CORP.SES, INC.
4310 Directors Road
P.O. Box 52430

Houston, TX 77052
(713) 681-6101

[^9]
14.2

 BATTERIES*CHLORIDE.
Mallard Lane
North Ha :en, CT 06473
(203) 624-i 337

C \& D BATTERIES DIV.
3043 Walton Road
Plymouth Meeting, PA 19462
ATTN: Clayton J. Molnar
Sales Manager
(215) 828-9000

DELCO-REMY
Division of G.M.
2401 Columbus Avenue
Anderson, IN 46011
ATTN: Charlie Erk
(317) 646-7816

EAGLE-PICHER INDUSTRIES, INC Department G
P.O. Box 130
(417) 776-2258

THE EXIDE CORP.
"Horsham I"
101 Gibralter Road
ATTN: Mr. Gene Cook
Specialty Battery Division
(215) 674-9500

GENERAL ELECTRIC CO.
Battery Business
Department G
P.O. Box 861

Gainesville, FL 32602
(904) 462-3911

GLOBE-UNION
Battery Division
Gel/Cell Marketing
5757 N. Green Bay Avenue
Milwaukee, WI 53201
ATTN: Fred Gruner
Reg. Marketing Manager
(414) 228-2393

KEYS'TONE BATTERY CORP.
35 Holton Strect
Winchester, MA 01890
ATTN: Edward J. Modest
Vice President
MC GRAW-EDISON COMPANY
Power Systems Division (Batteries)
P.O. Box 28

Bloomfield, NJ 07003
AT'TN: Mr. Robert Enters
Chief Engineer
NIFE INCORPORATED
P.O. Box 100

George Washington Hwy. Lincoln, RI 02865
ATTN: Richard V. Barone, Sc. D
Manager, Applications Engineering
(800) 556-6746

SGL BA'TTERY MANUFACTURING CO. 14650 Dequindre
Detroit, MI 48212
ATTN: Paul Rosser
Sales \& Service Coordinator
(313) 868-6410

SURRETTE STORAGE BATTERY CO., INC.
Engineering Division
15 Park Street Tilton, NH 03276
ATTN: Archie McGowan
(603) 286-8974

[^10]
14.3 POWER CONDITIONING EQUIPMEN'T*

ABACUS CONTROLS, INC.
P.O. Box 893

80 Readington Road
Somerville, NJ 08876

EMERSON ELECTRIC CO. 8100 W. Florissant Avenue St. Louis, MO 63136

ADVANCE CONVERSION DEVICES CO. EMERSON ELECTRIC CO.

109 Eighth St.
Passaic, NJ 07055
AVIONIC INSTRUMENTS, INC.
943 East Hazelwood Ave.
Rahway, NJ 07065

BEHLMAN ENGINEERING CORP.
P.O. Box 4518

Santa Barbara, CA 93103
CALIFORNIA INSTRUMENTS
5151 Convoy St.
San Diego, CA 92111
COMPUTER POWER INC.
124 West Main St.
High Bridge, NJ 08829

3301 Spring Forest Road
Raleigh, NC 27604
GARRETT CORP. 1 Huntington Quadrangle
Suite 4 S04
Huntington Station, NY 11746
LAMARCHE MFG. CO.
106 Bradock Drive
Des Plaines, IL 60018
LOR TEC POWER SYSTEMS, INC.
5214 Mills Industrial Parkway
North Ridgeville, OH 44305
MCGRAW EDISON CO
P.O. Box 23

Bloomfield, NJ 07003

DELTA ELECTRONIC CONTROL CORP NOVA ELECTRIC MFG., CO.

2801 S.W. Main Street
Irvine, CA 92714
DELTES CORP.
980 Buenos Ave.
San Diego, CA 92110
DUEL-LITE, INC.
Simm I,ane Newton, CT
Newton, CT
ELGAR CORP.
8225 Mercury Court
San Diego, CA 92111

263 Hillside Avenue
Nutley, NJ 07110
PACIFIC POWER SOURCE DIV. 5219 Systems Drive Huntington Beach, CA 92649

RATELCO, INC.
1260 Mercer Street
Seattle, WA 98109
RELIANCE ELECTRIC CO.
1130 F. Street
Lorain, OH 44052

SOLEQ CORP.

5969 North Elston A venue
Chicago, IL 60646
STACO ENERGY PRODUCTS CO.
301 Gaddis Blvd
Dayton, OH 45403
TELEDYNE, INC.
1901 Avenue of the Stars
Los Angeles, CA 90067
TOPAZ ELECTRONICS
3855 Ruffin Road
San Diego, CA 92123
TRIPP MANUFACTURING CO.
133 N.Jefferson St.
Chicago, IL 60606
UNITED TECHNOLOGY CORP.
Power Systems Division
P.O. Box 109

South Windsor, CT 06074
VARO, INC., POWER SYSTEMS DIV. 2201 Walnut St.
Garland, TX 75040
VERSACOUNT PRODUCTS
553 Libley Blvd.
Elk Grove Village, IL 60007
WESTINGHOUSE ELECTRIC CO.
P.O. Box 989

Lima, OH 45802
WILMORE ELECTRONICS CO., INC.
P.O. Box 1329

Hillsborough, NC 27278
WINDWORKS INC.
Route 3, Box 44 A
Mukwonago, WI 53149

14.4 DIRECT CURRENT MOTORS AND LOAD DEVICES*

GENERAL ELECTRIC CO. General Purpose Motor Dept. 2000 Tavlor St. Fort Wayne, IN 46804
GOULD INC. Electric Motor Division 1831 Chestnut St.
St. Louis, MO 63166
INLAND MOTORS
Industrial Drives Division
609 Rock Road
Radford, VA 24141
LOUIS ALLIS
Drives \& Systems Division
New Berlin, WI 53151
PMI MOTORS
Division of Kolimorgen Corp.
5 Aerial Way
Syos: et, NY 11791
WESTINGIIOUSE ELECTRIC CORP.
Defense Group
P.O. Box 9892
Lima, OH 45802
WESTINGHOUSE ELECTRIC CORP.
Large Notor Divsion
Buffalo, NY 14240

* Note: This compendium is not intended to be an exhaustive listing of equipment suppliers for photovoltaic power systems, but rather a representative sampling of manufacturers in a dynamic and changing field. It is expected that additional firms will be developing products for the photovoltaic market in the future. This list does not in any way constitute endorsement of any manufacturer, any supplier, or any product by MONEGON, Ltd., or NASA, or the U.S. DOE, or any of their employees or subcontractors.

APPENDIX A

WORLDWIDE INSOLATION DATA

Note:

The data have been generated from the SOLMET (Reference A-1) and the University of Wisconsin reports (Reference A-2). The data are presented as values of monthly average K_{H}, the ratio of insolation on a horizontal surface to the insolation on an extraterrestrial horizontal surface. The values of the monthly average K_{H} are listed in per unit ($\mathrm{X} 10^{3}$).

The key to the abbreviations used is as follows:

General

- Data Missing
* Theory Not Applicable
[1] The data should read as if it were preceded by a decimal point. I.e., the datum 495 is $K_{H}=0.495$.

CFP Computed From Percent Sunshine
PDS Data is in Percent Possible Sunshine (conversion values not available). Note [1] does not apply to these data as they are listed in percent, i.e. the datum 057 is 57% possible sunshine.

Specific

- LAT/LONG data for Hochserfaus, Switz. could not be found. Used LAT/LONG values for Hochdorf.
- All data under 'United States' comes from Input Data For Solar Systems (SCLMET data), Ref. A-1.
- New York City has two separate stations: Central Park (CN. PRK) and La Guardia (LGA).

VALIES UF MONTHL＇＇H＇v＇j．KH＊1006［1］

LRT LONG ELEV JHN FEE MAF HFR HR＇T JUN JUL HOUG SEF OCT NON DEE：NI

ADEN	1250	$4501{ }^{\prime} \mathrm{E}$	E 4	573	607	627	RDEN $==$ B5E	N $=$ 6.34	59	56	597	618	6	6	6.2
	FLGERIA ＝＝＝＝＝－														
HORAF＇	$27.5 \times N$	（17） $1{ }^{\prime}$	W 258	716	768	730	7 T \％	699	72	721	716	686	66.5	EEF	6.58
RIN SEFRA	$3245 N$	0 \％${ }^{\circ}$	N1072	693	694	696	P109	687	76	714	701	70	6.72	6	672
AOULEF	26.58	$19^{5} \mathrm{E}$	E 290	7 BLI	681	697	693	689	673	6.11	E8C	694	0.1	55	E2
BENI RBEES	30 ncN	211 N	N 498	7 D 2	Egi	6e\％	694	6－6	85	EES	E． 6	E－1	5	6.16	0.9
BISKRH	3451 N	$544 . \mathrm{E}$	E 124	$6{ }^{6}$	619	6.11	590	59	Tiv	$E 1$	EQ	594	584	5ex	5.74
CHOTTECH ETEFEUI	$34.010 N$	$1 \mathrm{bu}^{\circ} \mathrm{E}$	E－	519	597	ETC	62\％	612	ES	ES 4	E63	506	719	651	Ses
COLOHE－BESHFF：	$3136 N$	21314	1	669	6.7	6814	672	676	654	6.4	66	8.44	E44	ET	695
DJTHNET	$24 \leq N$	$929^{\prime} \mathrm{E}$	E	677	801	719	698	674	7 Ba	717	3 B	65	EES	E01	675
DJELFA	5441 N	了 $15^{\prime} \mathrm{E}$	E 169	553	581	567	5.54	ETS	009	E¢	E27	6.4	5	56.4	5.45
EL TOLEF	$3635 N$	$25{ }^{\text {c }}$ E	E 397	690	696	699	680	68\％	68	$7 \mathrm{Cl} \mathrm{T}^{7}$	？ 6	689	Ese	E6	6.74
EL CULED	$332 N$	65 E	E 70	366	70	E6． 4	B6E	76	6.4	$7{ }^{3}$	69	79	$7{ }^{2}$	716	3e6
FURT FLFTTEFS	$2806 N$	$649 . \mathrm{E}$	E	E\％	693	618	6T：	678	6.1	716	Tus	97	E8i	E6\％	840
FORT DE FULIGNAE： GERFUYILIE	2630 N	829 E	E	674	091	694	604	668	0.6	7过	764	－92	601	65	E？
GERF＇TVILLE	541 N	$1 \mathrm{H1} \mathrm{E}$	15155	558	6013	587	586	6.13	Ect	621	E5	E4	5a	548	55.5
LALGHOLUET	$229 N$ 3348.1	$34{ }^{\circ} \mathrm{E}$	527	698	7010	697	697	69	6	74	711	E7\％	679	5	678
OLHLLLEN	$3548 N$ 246 N	25 114 E	767 447	569	594	582	584	60．4．	6.11	621	613	6 d 1	5	558	51
OUl／ARGLEM	3157 N	$5{ }^{5} \mathrm{E}$	138	6.76	693	68	6．97	68	681	68	＋81	681	¢85	64	6.4
TGMENEFGSET	$2242 \times \mathrm{N}$	5 30．E	1376	716	717	72	769	691	6	9，	1	611	E．4	$\underline{4}$	E．76
TIMIMOUN	2915 N	（14．E	284	714	710	715	699	698	69	768	E．9．	6.94	60.4	59	E4E
TOUGOLOLT	3 S 1 N	$664{ }^{\circ}$	69	6.55	698	655	607	676	59	704	3 C	69	64	617	51
	MiNGTLH ＝＝＝＝＝														
comber	704.5	$266^{\prime} \mathrm{E}$	745	479	472	482	598	584	578	5	476	4514	519	490	471
LUARNDA	8495	1318 E	42	5	558	57	525	556	542	420	416	HE\％	477	512	55
LUSO	$1148{ }^{\prime} 5$	$1981{ }^{\circ} \mathrm{E}$	158	465	59	599	6.41	E． 01	720	741	TEO	EHE	5	52	50
	935	$162{ }^{\circ} \mathrm{E}$	1151	489	543	515	510	614	6.64	¢16	549	514	5.14	483	516
MOCCMEDES	$15 \mathrm{~V}^{2} \mathrm{~S} 1$	1202 E	44	578	586	591	584	590	459	44＊	454	$4 \cdot 1$	5.15	5	5176
	BNTEFCTIGH ＝ニ：：ニニニニ＝ニ														
RMLHNSEN－SCOTT	901095		2806	：	＊	＊		－	－	－	－	＊	4	＊	＊
ERGE FOOI ERHDOULIN	$7026 \cdot 2$	2419 E	37	＊	6.5	51.2	436	＊	－	＊	571	619	8.2	E69	1
ETRED STHTION	795912	$120.1{ }^{\prime} \mathrm{W}$	1515	－	－	－	＊	＊	＊	＊	＊	5	54	＊	＊
CHFFCOT	6922513	13901 E	2491	＊	561	－	－	－	－	＊	6．13	55	36	845	＊
ELLENORTH STATION	7744×54	41.17 W	43	＊	＊	578	－	－	－	－	－	617	6．4E	＊	＊
Hallett statioun	7218.517	$17019 . \mathrm{E}$	5	＊	449	384	3s	＊	＊	＊	－	6	E00	1	＊
HFLLEE＇E＇F＇y	7531.52	2636	30	＊	528	554	543	＊	＊	＊	＊	56	0.9	＊	t
LITTLE HMEFILA V	7531.52	2636	30	\cdots	466	467	220	＊	＊	＊	＊	5.14	5	＊	：
MFWETIN	67375	6253 E	8	643	584	514	614	769	＊	83	1.	T4E	59	ES4	＊
MIFNH＇	66 STS 9	$9301{ }^{\prime} \mathrm{E}$	37	729	769	6．79	595	571	＊	＊	5	6.94	is	820	712
NORUF＇Y STATIUN	76305	$\therefore 32 W$	58	＊	614	50.4	513	＊	＊	＊：	50.	Ect	ET：	316	＋
FIONERSKAJH	694459	$9530 . E$	$27 \mathrm{B6}$	－	9611	836	518	979	－	－	564	Q	アら	848	＊
SCOTT ERSE	$3715 \leq 16$	$166^{\prime \prime} 8^{\prime} \mathrm{E}$	15	＊	＊	488	429	－	－	－	＋	5 C	114	＋	＊
WILKES STATION	$6 E 16.511$	$1193{ }^{4} \mathrm{~W}$	12	－	－	476	36E	3	985	412	519	$\mathrm{S}_{6} 9$	596	5.45	515
	ARETIC UREEN ＝ニニ＝ニ＝ニニ＝＝ニー														
LRIFTING STATIONR	84351148	$148{ }^{101} \mathrm{~N}$	2	－	－	－	＊	－	－	－	－	－	－	－	－

STGTION

HFCTIC DCEAN (GONT

htLhntic acean nujit

HFFENDIX，A（CONT）
VRLIES OF MONTHL＇t FVG．KH＋1606［1］

STATION	LHT	LONE	ELEV	JTMN	FEB	MHR	HFF：	Mrin^{\prime}	IIN	IIU	Hillij	SEF＇	DT	NOW	DEC	RUTES
					TLAMT	IC: III		NOFTH		$=$						
K	450101	16.6	θ	－	484	434	482	555	－	－	604	5	44%	－		

HUSTFILIA

5135	546	－	6.	－	6．ts	60	645	E．4	718	713	6.6	637	
		56	598	54	565	470	4	496	469	46.9	517	，	5
$3748{ }^{\prime \prime} 5450{ }^{\prime \prime} \mathrm{E}$	16910	549	541	536	458	$42 ?$	423	444	4	493	5	18	
272851580		55	550	546	549	55	5	5	\cdots	－	－10	－ril	
$12 \mathrm{c}=1 \mathrm{TE} 5$	27	48.4	48	5.41	547	6 c	65	5.5	$7{ }^{7}$	8		56	
3451565	4	672	6.46	E2	717	51	5	5	5	5 5	5	E12	－
315611557 E	15	649	65	03	5	56	5	542	51	9	G1	6.8	65
1915514646	4	511	518	55	596	584	Et	E44	68.4	609	E64	44	
3749514456 E	5	E	59	42	519	5	50	51	$5{ }^{6}$	5	5	479	
$521514910^{\circ} \mathrm{E}$	－－	611	5	56	594	6	56	5911	616	643	Efor	615	
S 52 51512 E	42	428	57	57	$5{ }^{2}$	52	542	55	5.72	55	5	5419	5
	4	513	483	559	50.1	526	515	55	615	5	Ecil	59	5

	CTMANEN
	GRHFENHOF
	WMPENSTEIN
	KLAGERFIRT
	KRIPFENSTEIN
	LOHNC－H14－SEE
	MOHISHKIRCHEN
	NEUSIEDLAM SEE
	OBEFIJITIL
	UEERSIEEEM－EFIIHM
	FEFTISHU＇ALHENGEE
	FETL
	ShL 2 EHFTS
	SEIMEFINJ
	Silweclick
	＇TE＇TF＇
	VIENNH
	PEES－FEFSEMSEIGO

4755	$134{ }^{\prime} \mathrm{E}$	425	56	410	431	401	453	355	416	425	453	379	725	275
47 19＇N	13 10＇E	760．	412	584	474	481	45.1	369	414	413	5	489	374	351
4730 N	14 包E	716	38	442	483	453	493	4 da	420	442	441	422	317	37
45 SeN	1414 E	446	446	5	56	452	514	434	489	48	481	439	226	271
475	$1541^{1} \mathrm{E}$	206	591	$5 i$	551	$5{ }_{5}$	510	360	388	410	516	55	50	486
47501 N	15 614E	6.15	284	391	464	384	444	39	S68	395	30	$40{ }^{\circ}$	270	241
47 CN	16 日e	978	496	418	464	415	469	378	415	449	44.	495	35	45.4
$47^{7} 51 \mathrm{~N}$	16． 51 E	116	36.5	284	$44^{4} 9$	45	559	431	476	50	4或	94	231	201
46.5	11 日2	1950］	469	494	563	605	$5]$	3914	450，	4517	448	468	25	324
4846 N	$16.4{ }^{\prime} \mathrm{E}$	1514	558	530	441	420	489	421	$4 \mathrm{c}^{5}$	473	444	39	2 L	242
$4720 N$	1142 E	93	475	377	516	42^{5}	4301	354	345	370	424	43	399	30
4846 N	15.58 E	24	23	347	39	40^{2}	453	445	43	459	45.4	6.7	185	211
4 4 48 N	13 mat	$4 \leq 7$	395	431	446	420	45	37	39	274	434	42 C	260	511
47 TN	1550	995	36	55	362	36	454	368	281	42 c	36	4511	29	243
47 是N	12517	316	594	6－6	6.1	56	56.1	461	421	4 S	50.1	5.87	57	524
48 B 4 H	14.5 E	5	36	प2	427	4E3	45E	417	417	$4{ }^{5}$	45.1	36	295	241
4815%	162E	－	292	559	298	438	473	461	47^{3}	40.7	561	Sc，	27	248
$4811 / N$	153	28	374	385	485	4 E	4	408	414	448	443	37	244	27
HZURES														
$38.10{ }^{1}$	276	92	416	$4 \leq 1$	438	498	544	59	5	546	5	49	429	455
3940%	3610	28	442	$4 \leq 1$	469	514	5 S 6	5	56	5	5	483	415	443
3745%	540%	ET	488	49	514	519	55.4	561	5104	010	Git．	58	479	488

EELGJIM

EOLIVIA
＝＝ニニ＝＝
LH F＇HZ

BFHZIL
ニニニニニニ

flegirete	2947 ＇5	$5547 \times W$	－	607	616	594	569	546	519	536	559	552	573	600	608	
RRACAJU	10.55 ＇S	37 03＇W	－	625	588	515	454	384	353	374	418	483	550	699	649	
RRRXA	19 36＇S	$4656 \prime W$	－	425	533	519	539	590	552	569	567	501	477	501	371	CFP
BRGE	$3120^{\prime} 5$	54 日6＇W	－	586	576	552	553	548	521	516	541	521	543	580	586	
BARBRCENA	21 15＇5	$4346 \prime W$	－	464	490	482	514	561	608	622	592	472	453	418	377	CFP
BARRA CORDA	53015	4516 W	－	404	480	393	414	441	526	550	509	496	491	465	473	CFF
BRURU	2219 ＇5	4904 W	－	489	473	516	607	595	591	605	609	523	512	554	505	
BELEI9	$128^{\prime} 5$	4829 W	－	518	459	456	495	576	652	682	682	672	673	652	642	
BELO HORIZONTE	1956	4357 W	－	504	516	521	550	585	612	626	617	550	509	495	451	
BLUMENAIJ	2655	$49044^{\prime} \mathrm{W}$	－	470	489	511	479	460	477	43.4	437	398	430	433	458	CFF
CRBO FRIO	$2252 \prime 5$	$4201{ }^{\prime} \mathrm{W}$	－	488	516	517	514	518	543	540	538	462	446	471	455	
CAMPINAS	$2253 ' 5$	47 85 ${ }^{\prime} \mathrm{W}$	－	558	558	565	584	602	599	613	600	564	568	563	544	
CAIMFOS	2145	$4120{ }^{\circ} \mathrm{N}$	－	480	515	479	493	523	529	545	528	444	422	441	437	
CAMPOS DE JURDEO	$2252 \prime 5$	$4322^{\prime} \mathrm{W}$	－	438	442	476	473	518	543	558	569	487	457	440	405	
CRNFiNEIA	2501 ＇5	4756 W	5	502	477	446	446	426	448	449	421	342	374	462	453	
CHTALAO	1810 ＇S	4757 W	－	488	506	539	591.	613	640	637	644	567	540	518	476	
CRXIAS	$452 \cdot 5$	4322 W	－	504	506	500	515	543	584	615	624	608	589	559	543	
CFXIFS	29 10＇5	51 12＇W	－	529	530	529	518	519	532	545	534	521	525	539	531	
CORRENTES	90615	$3621 / W$	－	540	492	472	446	396	444	394	428	574	577	626	568	CFP
CORUMBA	19 00＇5	$5739 \prime W$	－	405	411	415	424	435	429	448	449	422	419	424	413	
CRUZ RLTA	2838 ＇S	$5337 / \mathrm{W}$	－	559	561	539	528	531	502	540	546	504	547	570	571	
CUIAEF	1536 ＇S	56 06＇W	－	396	391	402	490	527	518	541	484	445	483	474	422	CFP
CURITIER	25 26＇s	$4916^{\prime} \mathrm{W}$	－	504	506	502	504	511	519	536	530	501	506	510	509	
DIFIMANTINA	18 15＇S	4336	－	458	580	512	459	514	538	536	620	528	477	495	374	CFP
FLORINOPOLIS	2736 ＇s	$4834^{\prime} \mathrm{W}$	－	513	523	545	521	537	502	502	488	466	472	485	509	CFF＇
FORTALEZA	346 ＇5	3831 W	－	565	520	501	489	525	577	582	607	618	624	608	606	
GUIFNIA	1640 ＇S	4915 N	－	491	507	353	569	613	637	635	631	549	528	500	450	
G0IAS	15 56＇S	50 98＇W	－	483	486	512	552	591	628	595	611	546	528	501	462	
GRAJFIJ	5 49＇5	46091 W	－	387	366	402	439	492	560	609	569	530	474	482	456	CFF
GUANABARA OBS．	$2254 \prime 5$	4310 W	－	498	505	506	514	518	524	541	523	462	446	471	474	
GUJFRFMIRTANGF	$416^{\prime} 5$	3901 W	－	468	426	389	405	442	449	490	479	482	498	491	483	CFP
IGUATU	$622 ' 5^{\prime}$	$3918 . \mathrm{W}$	－	550	523	534	545	581	587	604	623	612	609	595	577	
ILHEUS	14 48＇S	$3902{ }^{\prime} \mathrm{W}$	－	590	565	543	544	555	587	553	627	569	590	524	549	CFP
JUIZ DE FORA	2146 ＇5	4321 W	－	430	452	444	466	474	511	492	498	419	411	411	387	
JORD PESSOR	$70^{\prime \prime} 5$	$3452 . \mathrm{W}$	－	589	586	568	561	562	554	558	579	591	596	601	593	
LAGES	27 49＇5	$5020{ }^{\prime} \mathrm{W}$	－	521	508	511	492	502	490	528	537	499	522	529	524	
LRGUNA	28 29＇5	$4847^{\prime} \mathrm{W}$	－	521	508	554	560	613	601	554	520	525	497	546	541	CFP
LORENG	$2242{ }^{\prime} 5$	45 05＇W	－	459	473	470	485	500	485	538	521	435	445	471	435	
MACEIO	934 ＇S	$3547 \prime W$	－	602	561	569	568	562	557	560	564	572	595	594	594	
MFINRUS	3108.5	60.02 W	－	418	398	400	497	462	525	556	571	538	513	473	446	
NATAL．	546 ＇S	$3512^{\prime} \mathrm{W}$	－	588	580	556	553	562	566	570	593	610	621	621	605	
NITEROI HORTO BUTTHII	22 54＇5	43 日7＇W	－	478	484	494	501	485	487	505	523	449	446	450	445	
OLINDA	8 01＇5	$3451 / \mathrm{W}$	－	624	531	526	527	512	519	468	568	620	616	609	625	CFP
OURO FRETO	2023 ＇s	$4330 \% \mathrm{~W}$	－	398	487	418	467	472	538	519	552	452	417	379	339	CFP
PFLLIRS	26 29＇5	51 56＇W	－	522	528	530	526	523	534	569	557	519	530	540	526	
P＇RRANAGLIA	2531 ＇S	4831 W	－	453	455	502	479	503	545	477	445	441	421	425	433	CFP
PFSSO FUNDO	$2816^{\prime \prime}$	5225 W	－	550	540	537	525	526	518	535	542	515	534	549	542	
PESSUERIA	$824^{\prime} 5$	$3646 \prime W$	－	568	535	547	517	436	474	479	557	631	684	631	629	CFF
PERTOPOLIS	$2231 / 5$	$4311{ }^{\prime} \mathrm{W}$	－	449	410	469	484	514	538	536	535	460	434	430	416	
PIRACICABA	$2143^{\prime} 5$	$4738^{\prime} \mathrm{W}$	－	489	541	601	556	553	617	648	677	566	538	546	471	CFP
POCOS DE CHLDAS	21 47＇5	$4633 ' W$	－	407	478	495	561	557	581	604	612	520	553	507	433	CFP
PORTO NACIONAL	$1042 \prime 5$	4825 W	－	510	482	493	539	615	645	645	652	577	528	492	490	
RIO GR＇RNDE	32 日2＇5	$5206{ }^{\prime} \mathrm{W}$	－	585	577	555	559	538	533	504	531	469	556	580	595	
SALVADOR	12 56＇s	$3831 \times h$	－	616	582	586	569	521	579	553	618	603	616	5i亏	583	CFP

GFFENDI：A（COHT）

23335	4638.1		467	484	46.1	491	474	514	476	466	1	491	481	46
2256	4322×1		478	$4: 34$	506	5191	519	544	541	588	9	455	E． 1	45
29 41＇5	5349%		548	552	53	522	546	495	$51 ?$	5	497	526	9	59
24515	54 43＇W		43.4	4101	369	405	433	46E	498	5	5	515	409	474
2356.5	46． $20 \cdot 1$		437	45	45^{-}	46.	495	519	489	469	40_{2}	$4{ }^{2}$	43	419
$23{ }^{2}$	44 48以	－	468	43.	41.1	428	457	517	55	5×14	513	5110	511	50
$644{ }^{1} 5$	4831%	－	546	473	456	49	$56{ }^{\circ}$	6.57	674	701	76	699	693	686
5015	$42^{2} 49^{\prime} \mathrm{W}$	－	5	515	511	542	58	619	583	65.	6.1	59	50	560
2227×5	42.56	－	449	46？	446	470	481	5 Bri	50	504	447	412	420	\％
10895	67051 W	－	454	42	456	436	437	$44{ }^{\circ}$	46.2	494	504	484	48.4	46.1
19455	4756	－	484	516	520	562	6.4	59	66\％	6.15	54	51	526	48.2
2945	517.51 .10	－	567	595	56	55	546	519	557	558	552	5 50	580	$5.14{ }^{2}$
$22 \cdot 45$	43461 W	－	459	484	481	484	513	517	555	488	460	445	45.1	446
$2019 \times$	4119	－	518	526	510	512	5	423	5	5.46	48	454	453	469

BFITIGH GIIANA

Bultiantia
＝＝ニー＝＝＝

$4139 N$	$2522^{\prime} E$	231	379	446	39？	382		436	418	463	44	390	270	206
$42^{\circ} 31 \times N$	ce $51{ }^{1} \mathrm{E}$	196	484	E\％ 6	504	5 C	592	557	607	603	612	55.	461	5
42 49＇N	23 23＇E	58.	342	521	$44{ }^{2}$	141	46.1	503	574	555	485	436	31	$3{ }^{2} 4$
$4211 \times N$	2s $35 . E$	2925	355	524	550	491	419	344	439	490	481	495	490	456
$4234 / N$	$2 \overline{17}{ }^{\prime} \mathrm{E}$	2286	670	813	66.5	608	539	52	669	664	617	718	65.	6．2
$4212^{\prime} \mathrm{N}$	25 $20^{\prime} \mathrm{E}$	170	425	626	539	484	596	569	$64{ }^{2}$	6.47	601	575	474	396
43 12＇N	$2755 \times$	51	429	520	458	420	447	475	485	594	554	，	365	388

BIURMA
$\begin{array}{lllllllllllllll}17 & 040 N & 96 & 10 . E & 30 & 727 & 743 & 701 & 678 & 576 & 424 & 414 & 366 & 405 & 595 \\ 697 & 708\end{array}$

CANGDH
 ＝＝＝＝＝

GKLFMVIK
CHIFTHILL
DARTMOUTTH
DEFFRTURE BHY
EDTONTOUN
FIRT SIMFSOM
GUUSE BHy
GUELFH
KAFISKASING
KNOE LAKE
LETHBRIDGE
MONCTCN
MONTREAL
MOCGOHEE
NRNGIMO
NORNHEDDIN
UTTANE
RESOLUTE BHY
ERHEIL（ONNT）
$======$

FFFENDIX H（GON T）

CAPE UEFD ISLRNG
 14541423 उ14 27 606 686

GHOLINE IELHAS

NHP

CEATEHL HFFICH
ニニニニニーニッニニニニニニ
$42 c^{2} N 1834 \mathrm{E}-474516 \quad 56$

GEMD
＝＝：＝：＝
 COLMEOT

CHED
＝＝：＝

CHILE
$====$
RTRCHTHE DESERT
Sind ImLig

> THIMA
$====$
CIGIN
CHENGCHIN
CHEFOO
CHINCHOW
CHINKIRING
［HRIEId
HANKIW
HREBIN
HULUN
KHINGGIN
KUSHRN
LUSKAING

FFFENOIX A（CON T）
STRTION
RLUES UF MONTHLY RVG．KH＊ 1000 ［1］
LAT LONG ELEV JANX FES MAR AFF：MRY＇JUN JUL FUUS SEP OCT NOW DEC NOTES
MANCCHOULI
MUKDEN
NRI JUMATU
SHPNGHAI
SUIFENHO
TAILEN
IIENTSIN
TSINAN
TSINGTRU

BOGOTA

CONGO REPUGLIC
$\begin{array}{lllllllllllllll}4 & 15^{\prime} 5 & 15 & 14^{\prime} \mathrm{E} & 320 & 479 & 486 & 509 & 544 & 472 & 445 & 387 & 430 & 446 & 443 \\ 504 & 474\end{array}$
CZECHOSLRVAKIA

EQUADOR

ニニニニニニニ
AMBATO
$\begin{array}{llllllllllllllll}1 & 15^{\prime} ' & 78 & 44 \prime W & 2621 & 395 & 362 & 286 & 419 & 344 & 306 & 309 & 337 & 279 & 374 & 408 \\ 419 & \text { CFF }\end{array}$

AFPEPDIX A（CON＇T）
STATION
VALUES OF MONTHL＇＇FVG．KH＊ 1006 ［1］
LAT LONG
ELEV JRN F

EL．SALV／VOUR
SAIN SALVAOOR

PORT STANLEY
$\begin{array}{lllllllllllllll}51 & 42^{\prime} 5 & 57 & 52^{\prime} \mathrm{W} & - & 455 & 431 & 468 & 431 & 421 & 384 & 401 & 453 & 504 & 515\end{array} 491 \quad 459$
FINLAND
$\begin{array}{lllllllllllllll}60 & 10 \\ 10 & N & 24 & 57^{\prime} \mathrm{E} & 40 & 250 & 358 & 485 & 443 & 456 & 480 & 474 & 397 & 359 & 293 \\ 185 & 230\end{array}$ $\begin{array}{lllllllllllllll}6012 & 12 \prime N & 24 & 55^{\prime} \mathrm{E} & 60 & 305 & 432 & 561 & 536 & 500 & 519 & 518 & 484 & 432 & 337 \\ 2019 & 174\end{array}$
 $\begin{array}{llllllllllllllll}62 & 25 \prime N & 25 & 39 \\ \prime & E & 145 & 340 & 436 & 558 & 485 & 448 & 509 & 472 & 482 & 418 & 263 & 189 & 239\end{array}$

FORMOEA
ニニニ：ニー＝
KOSHUN KWARENKO SHINCHIKU THICHU TAINAN TAIFEI THITO

HELSINGFORS HELSINKI JOKIONEN LUONETJARYI SODRNKYLA
$\begin{array}{lllllllllllllll}13 & 34 & N & 89 & 13\end{array}$
FflkLand islainds

$\begin{array}{lllllllll}499 & 500 & 530 & 485 & 382 & 475 & 472 & 487 & 535\end{array}$ | 23 | $58^{\prime} N$ | 121 | $37^{\prime} \mathrm{E}$ | 176 | 475 | 394 | 342 | 397 | 472 | 601 | 571 | 587 | 550 | 558 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 490 | 485 | | | | | | | | | | | | | |

 $\begin{array}{lllllllllllllll}25 & 02 \prime N & 121 & 31^{\prime} E & 23 & 327 & 323 & 331 & 352 & 405 & 410 & 421 & 453 & 410 & 472\end{array} 488 \quad 416$

FFANCE

FGEN	4410 N	（1） $40^{\prime} \mathrm{E}$		372	426	496	508	485	504	560	550	494	459	377	302
flemicon	4825 N	0051 E		341	414	45%	477	482	475	501	493	434	427	352	5
FiNGERS	4730 N	6 35＇W		364	426	478	518	491	495	531	526	473	459	370	369
FINGOULEME	4549 N	$910^{\prime} \mathrm{E}$		438	448	511	541	509	525	561	543	505	477	402	371
FIJPMERRE	4715 N	3351 E		356	422	493	523	501	505	541	525	487	456	366	318
BAGINERES－DE－BIGGRRE	$43.65 / \mathrm{N}$	（1） $95{ }^{\prime} \mathrm{E}$		417	434	470	449	419	434	455	453	430	466	444	357
BFIJGE	47 3 5 N	0． 05 W		365	427	461	552	491	495	531	526	474	438	338	325
BERGERAC	4450 N	（3） 30		384	411	503	511	475	504	539	517	484	446	388	353
BESANCON	$4720{ }^{\prime} \mathrm{N}$	$6 \mathrm{H}^{\prime} \mathrm{E}$	－	364	397	51 c	498	501	525	552	537	503	479	367	320
BREST	48351	． 4301 W		345	389	472	465	471	455	470	494	435	429	355	348
CHHTEFIL－CHINON	47.19 N	913＇E	－	396	394	492	497	479	495	531	500	471	476	397	316
CHETEFU ROUK	4650 N	$140^{\prime} \mathrm{E}$	－	389	415	489	482	468	495	531	499	469	450	359	310
CLERMONT－FD	4925 N	2251 E	－	364	460	499	496	47？	496	544	521	488	487	408	422
DIJON	4720 N	$502^{\prime} \mathrm{E}$	－	360	423	529	524	512	535	562	549	518	479	367	320
LA MOTHE－ACHAR	$4644^{\prime} N$	（17）W	－	425	440	505	547	533	505	562	535	483	470	390	396
LE MRNS	4800 N	（10） $1{ }^{\prime} \mathrm{E}$	－	375	380	483	541	492	495	532	503	462	444	380	334
LE PU＇＇	4505 N	$350{ }^{\prime} \mathrm{E}$	－	389	463	522	512	497	545	591	553	530	490	422	398
LIMOGES	$4850{ }^{\circ} \mathrm{N}$	$15^{\prime} \mathrm{E}$	－	438	449	511	519	482.	496	543.	531	515	523	432	465
LILLE	$50.14{ }^{\prime} \mathrm{N}$	303 E	－	380	413	432	473	463	466	461	450	414	426	308	333
LYON	4545 N	$450^{\prime} \mathrm{E}$	－	366	399	529	541	531	545	592	567	520	458	341	331
	4935 N	6 08＇E	－	322	376	464	470	473	466	481	473	427	419	300	321
MRRSEILLE	$4320{ }^{\prime} \mathrm{N}$	$520^{\prime} \mathrm{E}$	－	454	506	521	541	516	585	642	593	575	488	476	434
MONTELIMAR	$4433^{\prime} \mathrm{N}$	$447^{\prime} \mathrm{E}$		413	575	550	573	540	605	664	609	599	524	442	386
MONTPELLIER	43 35 N	350 E	－	493	557	556	581	569	635	704	629	605	511	481	440

FFHNE CDIT T

BEFMHN:

AFPEROIX H（CON＇T）
STAT ION
LRT Lontg elev JAN fee mpr
VALLUES OF MONTHLL＇HVES．KH：＊ 1910 ［1］
MAR GPFE MAY JUN JUL RUJS SEF UCT NOU DEE NOTES

	GHENH（OUN＇T）															
KLMASI	$64{ }^{6} \mathrm{~N}$	136	287	292	356	441	465	413	368	254	296	278	355	371	328	CFF＇
TAFO	6 614N	（10）	－	420	450	492	517	481	393	313	285	295	397	456	455	OFF
TEKMETOI	45 S	146%	4	437	509	552	551	499	402	4 C	T76．	362	474	541	481	CFF
THMFFLE	925%	153\％	193	600	582	570	5	565	552	505	$46!$	499	569	6.3	692	

HTHENS
THILE

BOKE
CONAKPU＇
LHBE

HOWS KONG

CREENLRMND

> GUIUNEF

ニニニニニニ

HONNJ KONJ
＝$=======$

HJNGRFWM

＝＝＝＝＝＝＝
BEKESCSHBA
BUORFEST
DEBRECEN
Kflocsa
KECSKEMET
KEKESTETO
KESZTHEL＇r＇
KISVARDA
MARTONVASERE
PECS
SIOFOK
SOFPRON
SZEGED
TISCRUFFS

	$\begin{aligned} & \text { ICELAND } \\ & ====== \end{aligned}$														
KEFLAYIK REY＇KJFYIK	$64 \mathrm{ga} \mathrm{\prime N}$	$2240^{\circ} \mathrm{W}$	－	238	375	449	491	431	596	453	526	434	312	424	704
	64081 N	2154%	56	371	410	405	439	478	375	448	414	364	297	260	345
$\begin{aligned} & \text { INDIG } \\ & ===== \end{aligned}$															
ADARTAL	23051 N	$7956{ }^{\prime} \mathrm{E}$	－	722	709	684	695	672	526	445	406	571	691	729	6.3
FDUTHURAI	$1101{ }^{\prime} N$	79 32＇E	－	658	692	724	667	670	634	577	594	648	553	E26	6.49
AGIRA	$2710 \cdot N$	78 62＇E	－	592	574	569	568	551	507	482	473	525	572	586	567
AHMEDABFS	$2302 \times N$	$7238{ }^{\prime} \mathrm{E}$	－	738	738	721	740	715	642	488	439	642	731	744	668
FKOLR	2045 N	$7700{ }^{\circ} \mathrm{E}$	－	751	740	720	714	729	686	460	484	599	698	743	733
ALLAHBPAD	25 28 ${ }^{\prime} \mathrm{N}$	$8152^{\prime} \mathrm{E}$	－	728	798	674	700	690	573	515	495	579	699	751	728
ERBBUUR	$1357^{\prime} \mathrm{N}$	$7637^{\prime} \mathrm{E}$	－	760	754	758	722	715	587	499	5 2］	584	591	746	697

GPFENDIX A COUNT

							$=====$	$\operatorname{ton}(\mathrm{T}$								
RGMGFLIFE	12581	7351	－	30.	76	71	68	E 65	513	446	513	525	543	669	699	
EAROUTH	22 15N	7215 E	－	T42	743	716	728	873	63	479	439	639	630	748	724	
EOMEFY＇	1856%	7250	－	80	TGE	E8	E99	960	494	421	44^{3}	536	659	$7 \leq 4$	721	
Chlcuith	2230 N	$889^{\prime \prime} \mathrm{E}$	－	Qu	Eic	617	594	457	5196	457	461	521	565	611	697	
Chloutherum mimy	229%	829 E	14	＊	E13	064	59	599	483	450	475	462	598	635	6in	
CHINSURH	2252 N	8525 E	－	75	31	E95	Et	68	516	478	505	570	65	694	718	
comertufe	11 的等	P65\％	－	05	692	12	$6{ }^{2}$	769	5.44	486	53	E37	589	599	676	
DELHI	2840 N	$7715 . \mathrm{E}$	－	693	66	0.1	E6	6ef	E8	$5{ }^{2}$	558	555	702	714	714	
［HAFLHE：	1529%	7504 E	－	251	341	Ba	ebe	E．45	4 C 1	36	443	529	574	72	747	
Hemidel	15．16\％	if 64 E	－	7 O	TE	741	T14	E9	571	596	565	566	597	746	743	
Jhifulk	265N	75 59，	－	786	726	I2	315	710	59	471	484	645	727	75	719	
Jiturioln	21 EN	75， 34 E	－	75	Th	3	T： 5	3	55	464	495	588	714	72	738	
JOCHFITR	2 E 18 N	7216		34	724	116	714	－1	76E	55	58	65.	721	745	726	
JULLIMPAFR＇	3125 N	3585	－	6 E	09	E5：	Tic	－ 69	6.4	559	5.77	668	718	726	715	
KifiJt	185	is 18 E		78	－5	\cdots	T2	Tas	56	419	467	5.47	E46	734	726	
	1614%	$778{ }^{3} \mathrm{E}$		64	Es	Q5	Es	644	$5{ }^{5} 4$	421	484	52	494	59	$\underline{5}$	
MOLPFTTI	912 M	775 E	－	65	6.7	E45	60	－ 8.44	56	56	5.76	658	557	65	E5	
LTEEHIDHE	212 N	2145 E	－	344	764	64	659	664	50	448	418	554	EE	7 S 5	769	
LAHOPE	31351	$3418 . \mathrm{E}$	－	69	E94	69	$7{ }^{2}$	E97	E6．4	531	62	694	7	748	691	
MRIDES	135N	81515	－	36	21	319	7 Ta	EE	59	513	524	53	586	643	68.7	
Mhibitic	1311 N	8011．E	16	601	Ti4	Tict	ET	－ 27	546	431	50	688	485	478	5×1	
NAITFIFS：	2149%	796 E	－	$i 41$	117	E8	di	Et	50	427	418	565	66	72	766	
NEN DELHI	2835 N	7712 E	216	036	35	Te	\％	－ 8	E． 2	416	51	582	697	73	60_{4}	
NIPHFL	20 UEN	T 4 的E		757	347	Pa	Tas	31	629	451	484	62.1	706：	749	739	
Fritiminel	104811	76． 12 E	－	TE	TE	Tun	667	6en	4i	$4{ }^{4} 4$	516	$\underline{8} 48$	576	676	715	
FECETSTOM	1812 N	7416 E	－	744	341	718	T1	TE	5	455	544	581	666	725	226	
Fowir	18 SN	73518	559	35	71	38	725	719	5.7	486	441	551	636	678	686	
FTUWEEKHEFM	22.5010	78 6in E		75	rs	Q5	76.	314	589	45.6	49	5.46	762	757	734	
FHICHUR	1812N	3712 E	－	746	T48	73	711	1 ES 5	524	5	55	5	641	730	727	
SARHAFINGGAF：	18 SN	3745 E	－	3 c	\cdots	a1	311	691	5.48	443	46	55	657	745	73	
Sindilkit	$17 \mathrm{G3} \mathrm{~N}$	8213 E	－	74	\％	7 C 1	300	673	5.43	523	486	594	621	69	724	
SHOLCAPIE：	1740 N	76 ain E	－	35	Te	749	740	693	51	434	474	522	663	76	749	
	3405 N	74 E．4．E	1593	456	396	49	51	595	571	648	598	6.2	651	6.46	334	CFP
SURFT	2112 N	$722^{2} \mathrm{E}$		342	345	Pa	126	728	626	48.1	462	647	728	724	724	
TEIMANDEIM	82 N	7658	－	O	749	60］	58	E日	46.4	462	5.44	555	518	540	626	
VIEFHLSAM	22 日成	2 Ca E	－	res	128	399	741	325	305	520	472	791	731	744	668	
	$\begin{aligned} & \text { INUNESIH } \\ & ======== \end{aligned}$															
D．JEKARTA	$611^{\prime} 5$	$1065{ }^{\prime}$＇E	8	397	416	445	469	482	43	520	531	524	467	437	411	
SUEMOBITO	32×1	$1122{ }^{\prime \prime} \mathrm{E}$	16.	461	45	426	46.4	519	59	547	515	50	516	469	388	

IF＇RN

ニニニニ

IFELGTO
コニニニニニ＝

FFFENOIS A（GONT T）
WHLIES OF MONTHLY RVIJ．KH： 101010 ［1］
LIT LONG ELEY JAN FEE MRR AFR MR＇t JUN JUL RUG SEF OCT NOM DEE NOTES
IFELAND（CON＇T）
＝＝ニニ＝＝＝ニ＝＝＝＝＝＝＝＝
Yhlentia
（UEHD SEA JEFUSFLEM LOO

NAFOLI
NFPOLI ：IUN． OLEIA
F＇HLLAMZAM
FANTELLEFIT
FESCAFA
FIMNOA
FIGIN FOSMM
FISA
FFOLIDA
FOMA CIMFIMO
STHI FEDH
SGOSFI
SEFFEDOI 14
SIFHCISA
GRITTTE M
STRONBLI
THFRRITIU
TOFINO
TRIESTE
IUTIUE
ISTIG

ISFREL
ニニニニニニ

Thli＇

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $4 Q$ | $Z Q^{\prime} N$ | 8 | 17 |

RPFENDIX B（GOH：T）
STATION
LGT LINNG EL

ITAL＇íGON＇T）

YEMECIA VIESTE VIGNR DI VHLLE

GERSHIPI

GK‥IA

ROMOEI
ASHHIKRLA
HSHIZUFII
CSOMN
EGHI
FIUMOUN
FIIMISHIMA
HAIICISO－JIMA
HACHIDIHE
HAGODATE
Himen

HIFOME
HIFUGHIMA
HOF！
IIDA
1 NHAHEHIFCI
ISHIGAKI I－I IMA
ISHIWOMAKI
1ZIIAFFA
KHOSHIMH
kiee
MOCHI
kMAMOTO
KISHIFO
kUTCHFII
MAEEMSHI
MAIZUFIJ
MIMAMI－DRITO－ZIMA
MITO
MITHKO
MI＇REKKI
MILUSAMH
MUFIOKA
MUFIOFITM
MLROTOMISFKI
NHGGROO
NAGASFKKI
NAGIOM
NHZE
NEMURG
oeihifio
017 H
OKI－DHITO－ZIMA
DNAHFME
OSHKA
441^{\prime} N $14417^{\prime} E$ $394 \leq N 14146{ }^{\circ} \mathrm{E}$ $41^{\prime} 49^{\prime} N 14047^{\circ} E$ $434 \varepsilon^{\prime}$ N $14222^{\prime} E$ S4EN13 $11^{\circ} E$ $325 \times 13105^{\prime} E$

 $375 \times 14028 \mathrm{E}$ 306 N 13947 E 40 3＇N 141 こe $4149^{\prime} N 14045{ }^{\prime} \mathrm{E}$ $345415014{ }^{\circ} \mathrm{E}$
 316 N 13615 E 342 c 1 c 2 E E 34 日 1312 E
 $374^{\prime} N 14190^{\prime} E$ $2420 N 12410^{\circ} \mathrm{E}$ ढ8 25＇N $14118{ }^{\circ} \mathrm{E}$ $3412 N 12918 \mathrm{E}$
 $544 \times 1511 \mathrm{E}$ $35 \times 13 \mathrm{SE} \mathrm{E}$ $349^{\prime} N 1343^{\prime} E$ 4359 N $14424^{\circ} \mathrm{E}$ 4254 N $14945{ }^{\circ} \mathrm{E}$ 26． $24 \times 139194^{\prime} \mathrm{E}$ 35 28N135 23＇E $2550^{\circ} N 13114^{\circ} \mathrm{E}$ $3625 \times 14020 . \mathrm{E}$ $3939 \times 14158 \times$ 3155 N 13125 E 39 08N 141 日时 $5942 \times 14116 \mathrm{E}$ $4219^{\prime N} 14059{ }^{\prime} E$了 $15 \times 12411^{\prime} \mathrm{E}$ $3640^{\prime} N 13812^{\prime} E$ $3244^{\prime} N 12953^{\prime} E$ $3510^{\prime} \times 13658 \times$ $282 \mathrm{SN} 129 \operatorname{sic} \mathrm{C}$ 4331114535 E $4255 \cdots 14313 \mathrm{E}$ $3314^{\prime N} 13137{ }^{\prime} \mathrm{E}$ $2424^{\prime} \mathrm{N} 13717^{\prime} \mathrm{E}$ $3657^{\prime} \mathrm{N} 14054^{\prime} \mathrm{E}$ $3439 \times 1353 e^{\prime} E$

ITF＇FN
 ＝ニニーニ

	531	569	594	51	486	45.	465	389	486	59	519	410
9	41 ？	46.9	48 ？	508	510	46.5	450	51	484	495	426	0
4	467	496	59	496	491	474	459	490	473	$5{ }^{5} 11$	455	418
－	351	401	489	463	417	436．	$4 \leq 4$	363	429	411	I48	348：
－	597	609	46	499	3 Se 4	396	466	525	422	42 c	55	568
－	4914	480	420	422	397	314	377	379	563	464	514	472
－	311	391	441	46.5	424	37	454	494	476	$4 \leq 3$	3 S 1	359
2	39	396	417	417	289	33	358	488	386	459	453	410
－	514	536	484	519	438	369	365	46E．	397	450	490	558
－	370	341	372	59	345	260	373	441	407	30．11	361	－6E
－	494	459	425	46.1	410	385	397	414	389	45	458	450
－	63	E3？	608	544	432	471	446	4 B 7	493	55.	560	676
－	¢ 1	419	425	46.4	$44{ }^{2}$	381	$4{ }^{2}$	498	$41 ?$	488	48.1	420
－	544	425	436	414	55	279	20	394	342	31	Sts	$4 \% \%$
－	48.6	59	483	51	5.24	411	453	510	469	499	571	496
－	497	533	474	484	441	414	43 C	501	435	512	558	5.44
－	512	572	497	5017	448	382	434	543	485	561	62	6.9
482	512＇	53	589	488	46.4	413	$4 \leq 10$	519	443	450	486	529
－	599	62	$60 \leq$	517	55	472	512	55	487	5.8	522	541
－	4可	569	E61	358	415	395	456	46E	58	511	518	457
－	513	516	444	5 E 9	419	40	22	438	413	371	545	487
－	5198	58	417	50.	487	414	429	481	39	59	Ec＇4	597
24	458	493	454	4.1	460	34：	477	430	471	493	5	58
5	426	415	394	384	376	319	36	404	－5	30^{2}	419	417
－	56	557	469	471	3？	－55	3？	48 S	4 S 7	498	578	509
36	449	45	46.4	46	411	359	286	45 E	4411	491	519	4 S
－	576	580	579	594	523	495	48.4	427	512	562	6.1	6.6
－	582	577	565	578	5192	465	485	467	521	572	52	53
－	555	458	464	379	437	293	274	446	418	492	562	627
－	412	405	387	472	425	411	454	487	416	417	514	485
15	Q1	291	274	3ñ	296	325	269	354	359	${ }^{4}$	$\underline{17}$	28
29	532	482	426	405	402°	ca	369	286．	55	36	437	502
－	564	56.1	482	5111	424	383	36.7	419	443	$4 \cdot 7$	574	581
－	535	578	475	45	394	388	416	50	40°	50	55_{5}	－614
－	457	494	45.4	469	42	IEG	379	407	$4{ }^{\text {de }}$	451	45.5	432
－	720	720	6.42	601	495	455	478	486	510	586	6.41	643
－	514	58	579	6.1	5.21	42	482	465	496	56	57	569
－	695	766	574	599	511	486	568	666	593	577	716	88
418	53	5157	53	516	48 c	432	450	494	475	471	518	5.4
－	329	$40 \leq$	402	331	401	372	456	551	421	475	498	431
－	585	617	522	596	436	398	427	46，6	$43{ }^{\circ}$	474	612	611
－	329	332	358	355	311	401	486	461	466.	390	351	356
26	556	58.5	547	495	450	411	387	399	435	498	$5{ }^{5} 5$	5.41
－	576	600	595	552	450	423	369	397	456	524	598	598
5	525	481	464	445	419	364	$4 \mathrm{C}^{2}$	452	428	471	487	534
25	53.7	470	514	522	510	539	5511	547	526	499	493	400
－	578	533	376	424	361	348	357	424	S 86	352	474	594
	490	455	398	396	\14	253	355	385	345	393	425	446

Ohin	3446 N 1392 E	－	36.	496	417	388	389	253	264	438	406	347	41	1941
OMESI			519	42	488	399	88	27	276	49	372	424	41	6． 45
Fillow	4557 N 14138 EE	－	358	$24 ?$	4 C	400	zi4	361	352	2 c	342	355	3	2 c
Shlif		－	45	518	459	459	4 E	28	20	495	447	550	5	5
Sitiol	36， $12 \times \mathrm{NE}$	－	48	58	5.47	5	0.4	484	50	617	59	60	Q	4
Silkith	3954＇N129 506		ET	796	39	467	420	419	45.2	412	495	412	41	53
SAPPTEO	43 日N 14120 E	17	407	445	457	451	436	415	404	465	428	436		1341
Etaris	$318 N 14054 \mathrm{E}$		618	619	572	51	514	419	412	495	469	56	F	81
Ehimial	247N128 ${ }^{6} \mathrm{E}$	－	512	5.47	439	424	39	3	53	431	459	465	5	
ammocek	$35 N 1566 \mathrm{E}$	－	3 Ca	375	390	392	3	317	348	459	374	447	42	353
Ehtomismal	$3227 \mathrm{~N} 13546^{\circ} \mathrm{E}$	－	56.	599	482	489	418	94	449	5.42	489	443	5	E6 6
SHIFHEFMA	3 B	－	99	ES 5	48.	5.41	417	365	3	413	404	37	6	Fis
rioutay	3417 N 12346 E		414	354	30	38	4 c 9	360	401	441		－		
Tatmater	$3419 \times 184 \mathrm{Ec}$	9	495	498	479	465	45.2	\％910	426	485	421	425	44	4240
thtelo	36 日N 140 咟 E	6	599	529	5	515	514	448	419	493	429	489	48	55
Tiblow miv	$3815 \times 140 \mathrm{EzE}$	48	471	45.2	439	471	419	5	291	314	29	29	4	8.
Tokto	$3541 \times 1396 \mathrm{E}$	4	443	420	35	3 E 2	256	EM	341	372	32	2 C	c	
tinle	35 N 1284 EE	－	270	315	356	3 BE	245	22^{4}	229	315	29	46.	44	478
Tifichlum	3529 N 14018 E	81	467	88	50	366	29	326	396．	441	48	45	9	48
Titurl	$3531 \sim 13411 \mathrm{E}$	17	356	33	367	410	418	374	19	452	461	42	41	1936
Tountra	$3642 \times 17812 \mathrm{E}$	－	373	434	$4{ }^{2} 1$	448	472	\％	296	472	412	36	4	83
TSukuersitu	3612 N 14066 F	－	624	5	489	471	496	39	\％6	414	377	45	51	56
	$4210 \mathrm{~N} 1422^{\prime} \mathrm{E}$	－	31	3T	395	364	359	348	S114	31	35	402		
	$36 \mathrm{SN} 1395{ }^{\text {c }}$ E	124	619	569	516	474	454	35	370	415	3	4 ta	5	59
Welk infictu	3729 N 1955		562	$6{ }^{2} 4$	57	548	50.5	486	515	5.5	524	515	49	558
Whkl：atrim	4525 N $14141^{\prime} \mathrm{E}$	－	356	392	495	479	456	410	790	382	494	476	6.	I 241
L＇Fkushimit		－	311	347	29	419	351	419	518	53	58	311	55	220
Simimita	$3515 \times 14821 \mathrm{E}$		523	543	5196	488	450	417	440	520	467	458	487	7479
Hidhog	520N1321E	6	418	42	457	496	511	$4 \geq 4$	45	535	471	515	49	443

FOF：I ESSE：
YEFIITHIT
MARIGAT
A1HIGTHA
MHIFUBI

	KOREA													
INSHOM	$3729 \times 12638 . \mathrm{E}$	69	534	544	516	504	516	5196	475	498	548	519	52	524
Mandinmis	$3745 \times 1205^{5} 4^{\prime} \mathrm{E}$	26	594	529	516	5.19	478	455，	465	498	5519	516	$5{ }^{2} 1$	530
FlLCHN	$3506 \times 1290{ }^{\prime} \mathrm{E}$	71	596	6.4	604	580	569	489	404	59	554	561	632	671
	39 M1N $12549^{\circ} \mathrm{E}$	－	56.	547	544	522	546	485	454	455	513	510	56	50
SEOH		86	55	526	517	50.5	514	516	465	475	508	531	51.1	498
THIJ＇rill	$3553 \times 12837^{\prime} \mathrm{E}$	61	864	726	619	589	544	488	460	491	514	60］	63	i44
Whaj	$49^{\circ} 19^{\prime} N 1304^{\prime} \mathrm{E}$	88	568	579	543	499	461	424	424	440	496	59	511	515
WOILEFH	I9 11＇N 12726 E	\％	597	576	536	5 c	4910	40．4	423	433	477	52	5	$5{ }^{5}$
Miblitio	345N124 2×15	12	503	5414	537	514	512	5195	475	514	523	544	518	551
	$\begin{aligned} & \text { LEBFNOM } \\ & ======= \end{aligned}$													
KSPFP OBSEVGTOR＇Y	$3349^{\prime} N 355{ }^{\prime} \mathrm{E}$	927	486	562	580	628	673	337	741	73	209	642	558	481
						$\begin{aligned} & \text { MACFU } \\ & ===== \end{aligned}$								
					15									

RPFEHDIK A（GON＇T）
STRTIGN

-
-
-
-
ULAN－ERTOR
EEIRA
LOURENCO MFRENEZ
LIMREO

$\begin{aligned} & \text { MEXIOD (CON'T) } \\ & ========== \end{aligned}$													
$2080 \times \mathrm{N} 9180{ }^{\circ} \mathrm{W}$	－	535	5.94	594	524	527	491	494	58	515	$5{ }^{\circ}$	55	546
	－	494	534	488	445	444	411	446	441	40.5	445	487	485°
17 10\％ 10060%	－	624	615	594	567	576	554	5.6	574	543	570	597	616
300811060	－	699	721	681	724	729	687	667	686	723	717	719	674

Momgita in
＝＝ェ＝＝＝：＝

MOZAMEILOE
＝＝ニニニニ＝＝ニ＝

19 18＇5	34 ger	i	56.6	515	6e9	646	6.4	66.5	6.7	6.76	6 m	594	59	2
25 58＇5	$33^{\circ} \mathrm{E}$	59	572	593	6.11	69	62	691	6．69	657	555	464	5.5	506
15045	$4067{ }^{\prime} \mathrm{E}$	16	5.9	5	571	E35	6419	614	66.4	70	is1	716	718	5

NETHERLAHOS

HEN GIUINEF
＝ニニニーニニニニ＝

EiHLIEM	$44^{\prime} 513657^{\prime} \mathrm{E}$	16.15	－	－	6 B 7	6.7	626	659	625	629	547	659	69	576
hollindif	$234^{\prime} 514029^{\prime} E$	99	455	474	519	35\％	490	51	492	495	480	495	485	473
MEPRULIE	$826^{\prime} 51402{ }^{\prime \prime} \mathrm{E}$	3	525	516	489	485	480	360	451	592	547	542	558	458
FifBluti．		6	517	503	59	516	565	592	520	556	548	5.34	510	486

NEW ZEfLARND
＝＝＝＝＝＝＝＝

INUERCARGILL	46． $25 \times 516819^{\prime} \mathrm{E}$	9	518	511	473	429	43	399	479	519	52%	518	469	49.5
NTMDI	$1745{ }^{\prime} 5177{ }^{\prime}{ }^{\prime} \mathrm{E}$	16	659	612	5.41	556	599	646	65.7	652	644	541	616	6.69
OHAKEF	$401 c^{\prime \prime} 5175 z^{\prime} \mathrm{E}$	51	577	537	522	$50{ }^{2}$	457	486	477	50	557	531	535	544
FFOHLL ISLAN	29 15＇s 17755	49	599	545	565	5132	566	478	535	520	56.	55.3	596	558
WELLINGTOM	$4117^{\prime} 517445^{\prime} \mathrm{E}$	126	549	5й	506	483	$4 c^{\circ} 9$	455	435	486	$54{ }^{\prime}$	515	50	494
DHENJAFFII	36 47＇S $17439{ }^{\prime}$	31	53	511	509	515	461	478	478	483	5	4 B	511	501

FGIHDEZ	15.99 N	759E	496	757	742	761	311	684	684	687	674	705	754	75	73
EILIH	18.41 N	12 SE	362	674	69	Eic	645	6.7	$6{ }^{5}$	695	661	640	683	76	669
NGIMEH	1329	c $10 \cdot \mathrm{E}$	$2 ?$	69	342	724	6.7	66%	650	601	56	$6 c^{2}$	76	75	75

EEIIN SIT ${ }^{\prime}$	63 N	$537 \times$	109	394	441	$45 i 2$	441	429	414	39	331	367	433	464	458	
Emugil	628 N	73 s ¢	137	51.1	508	$46{ }^{\circ}$	494	496	567	4010	378	419	453	516	59	
IEFDAN	7261	$354{ }^{\circ}$	228	508	512	486	481	461	445	37	342	385	45	521	519	
IKEJH	$635 N$	$320^{\prime} \mathrm{E}$	38	5n？	571	565	559	5.91	454	4 c	$46{ }^{2}$	430	484	E日	58	IFF
ILOESH	829 N		287	586	601	556	545	530	635	461	40^{4}	419	504	593	598	QFP
T05	952 N	$854 . E$	1286	639	6.0	561	558	51	55	482	46.	499	568	E．4	655	
KMDIHAM	10 6 N	727 E	646	627	62	596	579	560	546	488	449	5 5	5	$6{ }^{5}$	6.44	
KHill	12 ys	$82 Z^{\prime}$ E	476	62\％	613	589	589	578	573	561	514	576	618	6.3	E2	
MHIDUGULII	1151 N	$1385 . E$	354	65	5.6	588	696	601	585	548	543	570	6	659	644	
MAKKUPDI	$741 N$	$9 ? \mathrm{P}$	970	595	585	530	579	56.4	6－5	485		487	C 0	5	62	1 FP

$$
A-17
$$

YRLIES OF MONTHL＇Y FVIS KH：1G日G［1］

NIGEFIH（OTll）

MEMFE（Camaroon）	545	$\underline{17}$ E	152	470	514	46.1	439	45.	4 4	－6．	345	374	427	445	40.7	
MINNH	937 N	6.5	260	56	5.77	56.2	571	569	478	411	467	492	56	E44	6%	F F＇
Fotit hificiume	451 N	$\therefore \mathrm{GE}$	21	452	45ic	437	4419	43	36．	24i	\％ 9	562	2 H	40	H6C	
Sokoro	1301 N	515 E	\％ 5	6.	6 Cl	－15	E－61	5175	0．12	56	513	51	6．	6．43	0.4	
YOLF	914 N	123 E	175	626	6511	510	509	STE	5	516	497	5	52	Ot		

NORUA：

＝$====$
EEFLEN
ELINDEFN

G．JEFWUMONES
BEEEN HRFEIOR
HFBLHETOL
MOFNGHO
f EEVIS
LILLEMAMMEF
MIFCHISON EH：＇
SOLM
TFWHEO
TFITHEDEIM
！LLENEMANTS
UTSIFH
KHRHEHI
MULTAN
FESHEDAF：
RUETG

Phlalu islmand	720×13429－	507	499	520	515	481	49	443	467	476	479	471	545
	FHINHIH ＝＝＝ニ＝												
HLEFOUM R E E	839×79346	585	572	596	5.54	459	390	428	422	508	4517	486	564
					$\begin{aligned} & \text { FEFEU } \\ & ==== \end{aligned}$								
HUANCATO	12 日2＇s 7519×313	705	552	6.45	669	695	736	761	75ic	707	69.	66.9	64
					$\begin{aligned} & \text { ILIFPI } \\ & ===:= \end{aligned}$								
QUEZOHN CITY	$144 \mathrm{H}^{\prime} \mathrm{N} 121$ 日 $\mathrm{E}^{\prime} \mathrm{E}$－	49	389	514	575	545	477	389	414	4117	451	484	511
					$\begin{aligned} & \text { FUlURUN } \\ & ===== \end{aligned}$								
EIFLCOUIEZA	$5242 \times 2351 \% 204$	346.	5	－	50	513	－	475	－	－	422	207	2 c
BRWIMLU		3	351	449	5ict	$5 \mathrm{SiP}_{1}$	491	424	431	458	429	256	20，
GrNzIG	54 23N 18 37E－	\square	528	4×2	473	511	525	484	4 B ？	46.6	378	287	Cin
LITMIA		29	7\％	4 S	448	494	515	465	451	429	366	304	23
KFSFROWH＇WIERCH	$4914 \% 1959 \mathrm{E}$ 2 19.	517	41.5	59	516	466	359	－801	364	419	541	515	42 c
			A－										

AFFENOIX H（CON＇T）

FURTIITAL
＝＝＝＝＝＝

FHOESIA GNO NHGSALAND
コニニニニニニニニニニニニニニニニニニニニニ
EDTMATOO
ZOMEH
HPIA

APPENDIX A (CON'T)
STHTIUN
LHT LONE ELEU JiN MEE MLILS OF MONTHLY RYG. KH: 18G0 [1]
LAT LONG ELEY JHN FEE RAP AFR MAY JUN JUL BUIG GEF DET NOH DES NOTES
...... LoNE (CONT)

RLMERIA
EROADIOZ
LAS ROZRS
SAR PHELO

EAEO SUEM

EL-FASHER:
JUEA
KHAFTOUN
FIFTT SUORN
TOZI
WHO MEDANI
EL-FASHER:
JUEA
KHAFTOUN
FIFTT SUORN
TOZI
WHO MEDANI
EL-FASHER:
JUEA
KHAFTOUN
FIFTT SUORN
TOZI
WHO MEDANI
EL-FASHER
JUEG
KHAFTIUNN
FITFT SUDAN
TOZI
WHO MEDANI
EL-FASHER:
JUEA
KHAFTOUN
FIFTT SUORN
TOZI
WHO MEDANI
EL-FASHEF:
JUEH
KHAFTOUN
FIFTT SUDAN
TOZI
WHO MEDANI -

SWAN IGLARTD

SHEDEN

SUI TZERLLAMD
BHELE
DHVOS
GETIEME HOCHSEFFFUS JURGFREUJUCH LDCAFMO-MOHTL WEISGFLOHJOCH ZIWICH

$837^{\prime} N$	1312 W	38	499						53	386	426	568	513	535
				508	546	590	473	498						
						$\begin{aligned} & \text { SPAIM } \\ & ===== \end{aligned}$								
370010	2306	-	53.7	568	590	692	586	595	6.14	611	589	576	59	514
3980 N	7 ¢ ${ }^{\text {a }}$	-	442	516	458	$4 \leq 5$	448	6句	530	619	570	52	492	438
4030×1	330%	-	449	540	513	58.	567	580	62.	6.16	558	518	470	443
3736 N	600%	-	392	531	5	57%	5.55	573	59	571	552	518	446	425

SFHNISH W. HFRILA

STATION LET LONG ELEY JAN FEB MAR GFF MA＇JIN JLL AUGG SEF OGT NOU DEE：NOTES

TRINIDFE

＝ニニニニ＝ニ＝

TUNISIA
＝ニニニニニニ

> InION OF EOUTH RFEICH

U．S．S．F．

＝ニ＝＝＝＝＝

APPERIDIX A (OIN'T)
STRTION Uhlues af Manthli' fuls. KH * lagu [1]

IINITED ARHE REFUELIC

united kingidam

INITED STRTES

APPENDR H（GUN T）
STHITIN
LET VALUES OF MONTHL＇r＇BVG．KH： k 1000［1］
LRT LONG ELEV JHN FEE MAR AFR MAY JUN JUL RUG SEF OCT NOY DES NOTES
UNITED STHTES（OON＇T）
MEILE
HOMTGMEEY
GF：FIRT SMITH LITTIE ROMF：
AZ FHOENIK
rucom
WIHELIW
THMA
IA FFGTH
EFKEFGFIELO
OHIAH LTKE
［ATVETT
EL TUFIT
FRESTO
LONJ BEFTOH
LUS RHISELES
HMPIT SHESTK
HEECIES
OHM Lindi
FinINT MUG！
FED ELIFF
GhDEMEMTO
SAll biego
Sill FRARICIOO
ganta hikith
GINNMMGLE
OU DGRHOO SPRIME
DEPHEF：
EMije
EFFHO IUPTION
FileEL
it HiAFTFIFR

［a．mehimgond
［EE WILMinjond

JHCKONVILLE
MIMMI
ERLAHDO！
THLAHESEEE
ョニニニニニニニニニニニニニニニニニニニニ

41／N 85 15＇N	67	457	495	513		536	5	48	4	492	531	5	46
$3218 \% \mathrm{~N} 8624 \%$	6.2	4	，	9	545	544	545	517	56	516	510	485	44.5
5520 N 9422 l	141	47	499	508	518		574	5．	571	59	53	491	
$3444 \mathrm{~N} 9214 \%$	81	457	494	564	515	$5{ }_{5}$	564	5	565	5	59	486	
35 26 N 112 Cl W	39	613	657	685	74i	767	756	698	69	701	676	6	
c的N 116 56\％	779	E 3	66	692	744	76	75	65	657	81	6.1	$\underline{6}$	8.12
5 $\mathrm{ESN}^{\text {N } 11044 \%}$	1489	$6{ }^{6}$	658	687	73	74	145	657	¢	81	6 ES	39	
3246114 36． 4	θ	642	6.6	718	76	8	37	664	717	769	687	1	27
4059×12460	69	412	460	79	51	54	56	546	492	509	469	411	40
595N119 120	159	498	5	619	67	\％20	75	75	7	7	649	545	4 E 3
\％ 41 N 11741%	69	587	6.15	5	718	75	755	7 C	79	7 T 4	6E	$6{ }^{6}$	5 c
$345 N 11647 \times W$	58	61	6	62	T28	4	761	51		708	66	$61{ }^{\circ}$	
T3 4501117 44%	116	51	59	61	61	594	0.05	66	E5＇	6.6	58	564	56.4
36． 46 N 11943×12	100	440	5	619	678	714	756	1．	11	14	53	685	417
389×11869	17	56	586	611	616	592	59	64	685	594	5	554	5
356\％ 11824 W	52	564	587	61.5	621	59	58	64	6	588	579	556	55
$41.9 \times 12219 . \mathrm{N}$	1093	450	51	53	589	6	6	72	－	66	582	$4 E$	$44{ }^{\circ}$
$346^{\circ} \mathrm{N} 1143 \mathrm{~F}^{\prime} \mathrm{W}$	270	S	4	5	71	84	92	8	1	619	476	8	14
$34^{4} \mathrm{~N} 12212{ }^{\prime} \mathrm{N}$	－	492	5419	585	E2？	6.	644	65	636	615	56	16	9
3467 N 11961 W	4	Ste	59	62	6	51	56	5	58	5	56	56， 1	66.4
	108	456	516	56.5	65	$6{ }^{6}$	71	74	717	690	6， 0^{2}	PE	8
¢ $11 / 1214 W$	－	427	5099	59	E57	719	735	753	729	69	6	49	420
	9	572	596	6.15	613	56	574	6.14	621	594	$5 \mathrm{SFO}^{2}$	56	$5{ }_{5}$
3512 T 12 y	－	490	51	58	626	E． 4	6.51	$E 6$	6.49	63	570	50	485
$3454 \times 120{ }^{2} 7^{\prime} W$	72	53	564	60.9	61	614	6.4	656	E9	S	596	554	
$3{ }^{7} 512204 \% \mathrm{~N}$	12	507	546	59	32	6.5	572	683	6.64	637	57	518	493
39^{49} N104 43＇W	1881	645	643	63	6	6.14	649	619	624	647	47	817	616
$35^{51} \mathrm{~N} 1045$	16.5	6.2	6.9	$6 \leq 4$	Ec2	6.17	6.43	636	6	642	6	587	6.12
39391665	1985	56.	E02	$\stackrel{8}{61}$	639	652	686	668	645	656	5.3	57	560
596N108 3	1475	580	516	6.7	65	687	711	690	674	677	645	597	58
517N104 \square_{1} N	149	635	6.0	6	6.41	$6{ }^{3}$	66.7	64	647	651	641	605	605
4156 N 241 N	55	394	426	421	44	455	46.1	46	445			）	－
$1954 N 758910$	16	597	617	63	6.1	594	568	606．	597	57	560	574	582
385017870	88	417	$44{ }^{7}$	46.4	481	496	5.4	509	499	494	47.	420	363
3940×175	\％	428	46_{6}	476	496	494	515	510	518	490	477	427	401
$244 \times \mathrm{N}$ 85 6	¢	40	497	5	565	599	55	512	506	518	55	516	$4{ }^{4} 6$
2911 N	12	51	5	55	58	56.4	509	504	50	495	50	507	489
3030118140\％		494	52	554	584	561	524	508	50	489	439	514	477
25 48N 6016 16	2	Stis	546	5	514	59	481	$5{ }^{5}$	486	477	496	5.18	5.21
2833118120	36	524	537	565	588	571	511	514	509	504	516	$5{ }^{2} 9$	510
$342 ?$	21	48 n	509	538	569	55.5	5	493	503	506	537	509	475

HFFENOICA CONT

LndiED STFTES (CON'T)

THILLHHESEE THFFH WEST PALM EEFED
Gif atlindth FHGUSTA
MhCon
SAYAINHMH
HI ERREEFG PIIHT HILU HONOLII! LIHUE:
IH EURELIHTOM
DES MOALS
Mrem 61 T
GIOLE Ol
If EOISE LENJETIN FOGTELIO
IL OHIGTO MOLINE SFFINGFIELO
IN EVAREVILLE FOFT WHITHE Indiñamale SOUTH EEPLI
KS DOLE EIT: modeling TITEEFA WITEHITH
 LOUCOIILE
LA EGTOIN FIGISE Late ohffles NEN GFLEFIS GHPEVEFOTT
MAB EOGTON.
Mo Efllimorc FATURERT FIMEF:
ME EATGIT: GFIEN FOETLAHE
MI PGEFHA
DETFITI
FLINT
BEHO FAFIES
HOMHOMAN
SHOLIT STE. HAFIE.
TFHVEFE EITH
INT GULIITI
$32 \pi \% 84$

 41 Lin N

 4710 H

VFLUES OF MONTHLY RVG. KH * 1000 [1]
STATION LAT LONG LEY JAN

UNITED STRTES (CON'T) (CON'T)

SPRIIGFIELD ST. LOUIS
MS JRCKSON MERIDIAN mt billings CUT EANK dillon GLASGOW GBEET FGLLLS HELENA LEWISTOWN MILES CITY MISSOULA
NC FSHEVILLE CAPE HATTEEAS CHARLUTTE CHERRY POINT GREENSRORO RALEIGH
ND BISMARCK FARGO MINOT
NE GRAND ISLAND NORTH OMFHA NORTH FLATTE SCOTTSELIFF
RH CONCORD
NJ LRKEHURST NEWARK
NM fleunfueroue CLAYTON FARMINGTON ROSWELL TRUTH OR CONSEQUE TUCLIMCARI ZUNI
NV ELKO ELY LAS VEGAS LOVELOCK. RENO TONOPFH WINMEMUCCA PUCCH FLATS
Ni RLBFNY' BINGHFMTON BUFFflo MASSENH NEW YORK (CN PFK) NEN YORK (LGAB) ROCHESTER STRRCUSE
OH AKRON-CANTON CINCINNATI

3714 N $9323 / \mathrm{W} 787$
 32 19'N 90 05' W $191 \quad 436470 \quad 510$
 45.481 N 108 $\begin{array}{llllllllllllll}48 & 6\end{array}$

 $46 \quad 36$ N 112000 W 1188
 $\begin{array}{lllllllllllllll}46 & 26 \\ & \mathrm{~N} & 105 & 52\end{array} \mathrm{~W} 803 \quad 471$

 | 35 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllllll}35 & 12 \prime N & 80 & 56 \prime W & 234 & 457 & 484 & 510 & 544 & 532 & 528 & 513 & 515 & 501 & 520 & 497\end{array} 461$

 $\begin{array}{lllllllllllllll}36 & \text { u5'N } & 79 & 57 \prime W & 270 & 468 & 494 & 514 & 543 & 537 & 536 & 522 & 517 & 506 & 514 \\ 495 & 466\end{array}$

 $\begin{array}{lllllllllllllll}46 & 54 \\ \end{array}$ $\begin{array}{lllllllllllllll}48 & 16 & \mathrm{~N} & 101 & 17 & W & 522 & 439 & 487 & 510 & 524 & 548 & 541 & 593 & 586 \\ 535 & 515 & 415 & 409\end{array}$
 4122 'N 96011 ' $\mathrm{W} 404510424 \begin{array}{lllllllllll}521 & 523 & 543 & 580 & 590 & 580 & 521 & 529 & 453 & 454\end{array}$
 4152 N 10326 'N 1206
 $\begin{array}{lllllllllllllll}40 & 02 N & 74 & 201 N & 37 & 425 & 450 & 462 & 48< & 484 & 485 & 477 & 475 & 471 & 467 \\ 4817 & 396\end{array}$

 $\begin{array}{llllllllllllll}36 & 27\end{array} 1 \begin{array}{lllllllll} & 103 & 199 & 1515 & 638 & 637 & 650 & 659 & 638 \\ 664 & 639 & 641 & 646 & 651 & 613 & 618\end{array}$

 33 14 N 10716 'N 1481 35 11'N 103 36'W 1231 $3506^{\prime} \mathrm{N} 10848$ 'N $1965 \quad 625 \quad 644$ 4050 'N 115 47'W $1547 \begin{array}{llllllllllll}541 & 598 & 618 & 634 & 667 & 692 & 735 & 721 & 713 & 659 & 561 & 534\end{array}$ $\begin{array}{lllllllllllllll}39 & 17^{\prime} N & 114 & 52 \prime \text { 'l } & 1906 & 605 & 631 & 661 & 663 & 667 & 688 & 685 & 689 & 716 & 677\end{array} 605 \quad 583$

 $\begin{array}{llllllllllllllll}42 & 45 \% & 73 & 48 & \mathrm{~N} & 89 & 390 & 421 & 430 & 453 & 457 & 473 & 484 & 471 & 452 & 426\end{array} 339 \quad 338$
 $\begin{array}{lllllllllllllll}42 & 56\end{array} 117844^{\prime} \mathrm{N} \quad 215 \quad 301 \quad 336$ 4456 'N 745^{2} 'N $63 \begin{array}{llllllllllll}672 & 498 & 445 & 465 & 473 & 486 & 492 & 473 & 447 & 406 & 314 & 315\end{array}$

 | 43 | 07 | N | 77 | 40 | 16 | 169 | 317 | 346 | 397 | 456 | 468 | 497 | 500 | 479 | 450 | 411 | 303 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllll}43 & 07 & N & 76 & 187 & W & 124 & 335 & 354 & 391 & 451 & 460 & 486 & 493 & 474 & 453 & 469 \\ 3001 & 276\end{array}$

LAT LONG ELEV JAN FEB MRR FPR MAY JUN JUL FUUG SEF DOT NOV DEC NOTES
UNITED STATES (CON T) (CON T)

CLEVELANID COUMEUS DAYTON
TOLEDO
YOUNGSTOWN
OK OKLAHOMA OITY TULSA
OR RSTORIH BUJFNS MEDFORD
NORTH EEND
PENDLETON
PORTLAND
REDMOND
SRLEM
FA RLLENTOUN
ERIE
HARRISBURTS
FHILADELFHIA PITTSBURG
WILKES-SCRANTON FN KORROR ISLAND KWHJJLLEIN ISLAND WFKE ISLATID
PR SAN JUAN RI PROVIDENCE
SC CHARLESTON COLUMEIA GREENWILLE SD HURON PIERFE RHPID CITH SIOUX FFLLS
IN CHATTANGOLGA KNOXVILLE MEMFHIS NASHVILLE
TX RBILEHE GMARILLO RUSTIN

BROWNSYILLE CORPUS EHRISTI DALLAS KINGSVILLE LAREDO LUBBOCK

LUFKIN MIDLFAND-ODESSA FORT RRTHUR
SAN GINGELO
SAN FINTONIO
SHERIMAN
WACO
WICHITA FALLS

4124 'H $8151 \mathrm{~W} \quad 245 \quad 312$
 3954 'N 8413 W $4136 \mathrm{~N} \quad 8348 \mathrm{~N}$ 4116 N 8040 N $3524^{\prime} \mathrm{N} 9736 / \mathrm{W}$ 3612 N 9554 W $4609^{\prime} \mathrm{N} 12353^{\prime} \mathrm{W}$ 43 35'N 119 03'N 1271
$4222^{\prime} \mathrm{N} 12252^{\prime} \mathrm{W} 396$

$4541^{\prime} \mathrm{N} 11851^{\prime} \mathrm{W} \quad 456$

$\begin{array}{llllllllllllllllllllll}40 & 79^{\prime} N & 75 & 26^{\prime} \mathrm{W} & 117 & 411 & 439 & 454 & 470 & 474 & 486 & 494 & 481 & 466 & 460 & 390 & 369\end{array}$

$\begin{array}{lllllllllllllllllllll}40 & 13 \prime N & 76 & 51\end{array}$

$\begin{array}{lllllllllllllll}41 & 20\end{array} \mathrm{~N} \quad 7544^{\prime} \mathrm{N} \quad 289$

$720^{\prime} N$	134	$29^{\prime} \mathrm{E}$	33	480	502	500	513	487	463	456	458	469	477	487
171														

$\begin{array}{llllllllllllllll}8 & 44^{\prime} N & 167 & 44^{\prime} \mathrm{E} & 8 & 549 & 570 & 553 & 527 & 502 & 507 & 505 & 519 & 496 & 486 & 496 \\ 518\end{array}$

19	$17^{\prime} N$	166	$39^{\prime} \mathrm{E}$	4	567	583	593	590	600	595	562	558	550	552

$\begin{array}{llllllllllllllll}18 & 26 ' N & 66 & 061 W & 19 & 548 & 563 & 581 & 570 & 531 & 531 & 549 & 549 & 528 & 528 & 540 \\ 51\end{array}$
$\begin{array}{lllllllllllllllllll}41 & 44^{\prime} N & 71 & 26 \prime W & 19 & 414 & 438 & 442 & 462 & 481 & 485 & 475 & 469 & 461 & 461 & 383 & 378\end{array}$

$\begin{array}{llllllllllllllllllllll}33 & 57 & \mathrm{~N} & 81 & 17 & \mathrm{~N} & 69 & 464 & 493 & 515 & 557 & 543 & 536 & 516 & 515 & 503 & 524 & 510 & 473\end{array}$

44 日コ'N 103 प4'W 966
$\begin{array}{lllllllllllllll}43 & 34^{\prime} N & 96 & 44^{\prime} \mathrm{N} & 435 & 473 & 504 & 511 & 528 & 552 & 574 & 604 & 583 & 551 & 535\end{array} 4651488$

35	$92 \prime N$	85	$12 \prime \mathrm{~N}$	210	398	426	454	496	497	504	486	495	472	489	441
-5	395														

36	17	N	86	41	N	180	389	419	443	498	524	539	530	530
20	494	502	420	369										

$\begin{array}{llllllllllllll}35 & 14 \prime N & 101 & 42^{\prime} \mathrm{N} 1098 & 611 & 620 & 631 & 648 & 635 & 656 & 639 & 639 & 623 & 622 \\ 593 & 598\end{array}$

30	$18^{\prime} N$	97	$42^{\prime} N$	189	472	503	519	501	525	576	593	579	544	542	496
259															

$\begin{array}{lllllllllllllll}25 & 54 & N & 97 & 26^{\prime} W & 6 & 444 & 467 & 505 & 533 & 554 & 596 & 640 & 604 & 555 \\ 548 & 480 & 442\end{array}$
$\begin{array}{lllllllllllllll}27 & 46 & \mathrm{~N} & 97 & 30 & \mathrm{~N} & 13 & 458 & 488 & 505 & 507 & 536 & 586 & 620 & 595 \\ 560 & 554 & 494 & 455\end{array}$

 $\begin{array}{lllllllllllllll}29 & 57^{\prime} N & 94 & 01\end{array}$
 $\begin{array}{lllllllllllllll}29 & 32^{\prime} N & 98 & 28^{\prime} \mathrm{W} & 242 & 478 & 508 & 522 & 502 & 543 & 576 & 599 & 583 & 551 & 543\end{array} 498 \quad 481$ $\begin{array}{lllllllllllllllll}33 & 43^{\prime} \mathrm{N} & 96 & 40 \prime \mathrm{~N} & 233 & 480 & 499 & 517 & 512 & 531 & 583 & 582 & 584 & 551 & 547 & 506 & 483\end{array}$ $\begin{array}{llllllllllllllll}31 & 37 & N & 97 & 12^{\prime} \mathrm{W} & 155 & 472 & 504 & 527 & 507 & 548 & 585 & 599 & 589 & 548 & 541\end{array} 498 \quad 486$

BFFEMOIXA（CONT）
VRLIIES GF MINTHL＇i＇AYG．KH＊ 1010 ［1］

UNITE STATE（GTN T）UONT：

UFITjIMA＇

ニニニニニニニ

YETMEZUEL．M

YIETNFM

z＝＝＝＝＝
CHAPF

MFFENDLS H GONT

APPENDIX B
 FAILURE RATES FOR RELIABILITY ESTIMATION

B. 1 FAILURE-RATE TRENDS

A system or equipment of mature design, when operated and maintained under specified conditions or operational environment, should exhibit a relatively constant failure rate throughout a specified period of use. Exhibit B-1 depicts the three failure-rate trends normally encountered in the life cycle of an item -a decreasing failure rate during manufacture of initial installation; a constant failure-rate trend during the useful period; and an increasing failure-rate trend signifying wearout of certain constituent elements of the system.

The "useful" period is defined as the period of operation between the installation "debugging" period and the scheduled replacement of items causing the wearout trend. A constant failure rate can be achieved in PV systems when quality acceptance criteria are applied in the purchase of components (e. g., PV modules, batteries, regulators, etc.) for the system; when the installed PV system is fully debugged of any design-margin and interface tolerance problems; and when wearout failure modes in these constituent components are identified and are circumvented by planned (scheduled) replacement of impending failures as a preventive maintenance policy.

FAILURE RATE OF AN ITEM AS A FUNCTION OF OPERATING TIME

B. 2 SOURCES OF FAILURE-RATE DATA

No formal failure experience data collection/analysis system has yet been established specifically for PV system applications. However, failure experience data from other system applications have been collected, analyzed, and periodically updated by several government activities. The data are published in useful handbook format for the guidance of design engineers in estimating and optimizing the re'iability and maintainability of their system designs. Until PVrelated failure data becomes available, the following existing failure-data sources are useful:
(a) Basic Electrical/Electronic Failure-Rate vs Stress Data -- Military Standardization Handbook (MIL-HDBK-217B), "reliability prediction of Electronic Equipment", published by the Government Printing Office. Provides basic failure rates under different levels of "use" stress factors (temperature, voltage, current, quality, application, etc.) for generic electrical and electronic part types (semiconductors, tubes, resistors, capacitors, relays, swithes, connectors, wires, cables, etc.).
(b) Nonelectronic Parts Failure-Rate Data -- Nonelectronic Parts Reliability Data Book (NPRD-1), published by the DOD Reliability Analysis Center operated by IIT Research Institute (IITRI/RAC), Griffiss AFB, New York 13441.
(c) Government-Industry Data Exchange Program GIDEP -- provides summaries of failure-rate data reported by the GIDEP membership and published by GIDEP Operations Center, NWS Seal Beach, Corona, California 91720
(d) Photovoltaic Module Failure Experience -- monitored and periodically reported by MIT Lincoln Laboratory, Lexinggton, Massachusetts, under DOE sponsorship.

B. 3 ESTIMATED FAILURE RATES FOR
 CERTAIN ITEMS IN THE TYPICAL PV SYSTEM

Exhibit B-2 is a table presenting the range and average failure-rate experience for generic part and equipment types which may be used in stand-alone PV systems. These values are derived from the sources described in paragraph B-2 above. They are useful for feasibility estimation in preliminary design, pending receipt of test data pertaining to the specific items actually to be employed in the PVPS final design. Failure rates are expressed in failures per 10^{6} calendar hours or 10^{6} operating cycles, as appropriate.

Exhibit B-2
PRELIMINARY FAILURE-RATE ESTIMATES OF SELECTED ITEMS

Generic lem (Part or Component)	Range of Failure Rates (failures per $10^{6} \mathrm{hrs}$)			Reference
	Minimum	Average	Maximum	
Photovoltaic Cells:				
Failures (Open Circuit) --				
Estimated From Diode Model	0.01	0.03	0.30	(a)
Experience (Nebraska MIT/LL)	--	0.02	--	(d)
Degradation (Dirt Accumulation Between Cleaning) --				
Nebraska Site Experience	10.0	16.0	26.0	(d)
Cambridge Site Experience	36.0	38.0	40.0	(d)
NYC Site Experience	44.0	53.0	65.0	(d)
Diode (Silicon), General Purpose	0.002	0.02	0.10	(a)
Circuit Breakers (CB)	1.0	3.0	10.0	(b)
Relay	0.5	2.0	8.0	(b)
Connections:				
Weld	--	0.002	--	(a)
Wire Wrap	--	>0.0001	--	(a)
Crimp	--	0.007	--	(a)
Connectors	--	0.5	--	(a)
Switches (All Types)	1.0	3.0	10.0	(b)
Battery Cells (2 Volts/Cell):				
Random Cell Failure (Open/Short)	0.30	0.80	2.40	(b)
Gaussian Wearout (Mean Cycles to Failure)	150 cy .	500 cy .	1500 cy .	Depends on Vendor Data
DC/DC Regulator (Typical 15 KW)	70.0	200.0	500.0	(a)
Engine/Generator Equipment:				
Engine (Diebel) Generator (DC)	130.0 50.0	350.0 100.0	850.0 200.0	(c) (c)
Switching Device (Typical)	100.0	200.0	445.0	(a)

APPENDIX C
 LISTING OF SPONSORS OF CODES AND STANDARDS

C. 1 LIST OF CODES AND STANDARDS AGENUIES AND THEIR ADDRESSES

American National Standards Institute, Inc. 1430 Broadway
New York, New York 10018
American Society for Testing and Materials
1916 Race Street
Philadelphia, Pennsylvania 19103
Building Officials and Code Administrators
International, Inc.
17926 South Halsted Street
Homewood, Illinois 60430

ETL Testing Laboratories, Inc.
Industrial Park
Cortland, New York 13405
Factory Mutual Research
1151 Boston-Providence Turnpike
Norwood, Massachusetts 02062

Institute of Electical and Electronics Engineers, Inc.
345 East 47 th Street
New York, New York 10017
International Conference of Building Officials
5360 South Workman Mill Road
Whittier, California 90901

```
            National Fir': Protection Association
            470 Atlantic Avenue
            Boston, Massachucsetts 02210
                    Occupational Safety and Health Administration
                    Department of Labor
                    ?00 Constitution Ave, N.W.
                    Washington, D.C. 20004
                    Solar Energy Research Institute
                    1536 Cole Boulevard
                    Golden, Colorado 80401
                    Southern Building Code Congress International
                    3617 Eighth Avenue South
                    Birmingham, Alabama }3522
                    Underwriters Laboratories, Inc.
                    333 Pfingsten Road
                    Chicago, llinois 60062
                    C. 2 LISTING OF CODES AND STANDARDS BY AGENCIES
American National Standards Institute, Inc.
```

Std.-No.
ANSI A. 58.1-1972
ANSI Z97.1-1975

Title
Building Code Requirements for Minimum Loads in Building and Other Structures Safcty Performance Specifications and Methods of Test for Safety Glazing Material Used in Buildings

```
American Society of Testing and Materials

B 117-73
B 287-74
B 368-78

Standard Me thod of Salt Spray (Fog) Testing
Standard Method of Acetic Acid-Salt Spray (Fog) Testing Standard Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (Cass Test)

American Society of Testing and Materials (Continued)

Std. No.
C 297-61
C 355-64
C 393-62
D 568-61
D 635-63
D 638-77a
D 750-68

D 775-73
D 790-71
D 822-73

D 897-78
D 1006-73
D 1014-66
D 1044-76
D 1149-78
D 1433-58
D 1435-75
D 1828-70
D 1929-68
D 2247-73
D 2249-74

D 2565-76

D 2843-70
D 3161-76

Title
Standard Method of Tension Test of Flat Sandwich Constructions in Flatwise Plane
Standard Methods of Test for Water Vapor Transmission of Thick Materials
Standard Method of Flexure Test of Flat Sandwich Constuctions
Flammability of Plastics \(0.127 \mathrm{~cm}(0.050 \mathrm{~m})\) and Under in Thickness
Flammability of Rigid Plastics over 0.127 cm ( 0.050 in .) in Thickness
Standard Test Method for Tensile Properties of Plastics
Kecommended Practice for Operating Light-and WeatherExposure Apparatus (Carbon-Arc Type) for Articficial Weather Testing of Rubber Compounds
Standard Method of Drop Test for Shipping Containers
Standard Test Method for Flexural Properities of Plastics and Electrical Insulating Materials
Standard Recommended Practice for Operating Light-and Water-Exposure Apparatus (Carbon-Arc Type) for Testing Paint, Varnish, Lacquer, and Related Products
Standard Test Method for Tensile Properties of Adhesive Bonds
Standard Recommended Practice for Conducting Exterior Exposure Tests of Paints on wood
Standard Method of Conducting Exterior Exposure Tests of Paint on Steel
Resistance of Transparent Plastics to Surface Abrasion Standard Test Method
Standard Test Method for Rubber Deterioration-Surface Ozone Cracking in a Chamber (Flat Specimen)
Flammability of Flexible Thin Plastic Sheeting
Standard Recommended Practice for Outdoor Weathering of Plastics
Recommended Practice for Atmospheric Exposure of Adhes: ve-Bonded Joints and Structures
Ignition Properties of Plastics
Standard Method for Testing Coated Metal Specimens of 100\% Relative Humidity
Standard Method of Predicting the Effect of Weathering on Face Glazing and Bedding Compounds on Metal Sash D 2305-72 Methods of Testing Polymeric Film Used for Electrical Insulation
Standard Recommended Practice for Xenon Arc-Type (Water Coded Light-and Water-Exposure Apparatus for Exposure of Plastics;
Measuring the Density of Smoke from the Burning or Decomposition of Plastics
Standard Test Method for Wind Resistance of Asphalt Shingles
\begin{tabular}{|c|c|}
\hline Std. No. & Title \\
\hline E 72-74a & Stendard Methods of Conducting Strength Tests of Panels for Building Construction \\
\hline E 84-70 & Standard Method of Test for Surface Burning Characteristics of Building Materials \\
\hline E 96-66 & Standard Methods of Test for Water Vapor Transmission of Materials in Sheet Form \\
\hline E 108-58 & Standard Methods of Fire Tests of Roof Coverings \\
\hline E 119-73 & Standard Methods of Fire Tests of Building Construction and Materials \\
\hline E 136-73 & Standard Method of Test for Noncombustibility of Elementary Materials \\
\hline E 424-71 & Standard Methods of Test for Solar Energy Transmittance and Feflectance (Terrestrial) of Sheet Materials \\
\hline F 146-72 & Standard Methods of Test for Fluid Resistance of Gasket Materials \\
\hline G 7-77a & Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials \\
\hline G 21-70 & Standard Recommended Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi \\
\hline G 23-75 & Standard Recommended Practice for Operating Light-and Water-Exposure Apparatus (Carbon-Arc Type) for Exposure of Nonmetallic Materials \\
\hline G 24-73 & Standard Recommended Practice for Conducting Natural Light Exposures Under Glass \\
\hline G 26-77 & Standard Recommended Practice for Operating LightExposure Apparatus (Xenon-Arc Type) with and without Water for Exposure of Nonmetallic Materials \\
\hline G 29-75 & Method of Test for Algal Resistance of Plastic Filrns \\
\hline Institute of & 1 and Electronics Engineers \\
\hline Std. No. & Title \\
\hline 141 & Recommended Practice for Electric Power Distibution for Industrial Plants (IEEE Red Book) \\
\hline 142 & Recommended Practice for Grounding of Industrial and Commercial Power Systems (IEEE Green Book) \\
\hline 242 & Recommended Practice for Electric Power Systems in Commercial Buildings (IEEE Gray Book) \\
\hline 446 & Recommended Practice for Emergency and Stendby Power Systems (IEEE Orange Book) \\
\hline 485 & Sizing of Large Lead Storage Batteries for Generating Stations and Substations \\
\hline \multicolumn{2}{|l|}{Federal Specification (General Services Administration)} \\
\hline No & Title \\
\hline DD-G-451C & Flat Glass for Glazing, Mirrors, and Other Uses \\
\hline
\end{tabular}
C-4

Military Standard
\[
\text { No. } \quad \text { Title }
\]

MIL-STD-810C/10 March 1975/Environmental Test Methods:
Method 501.1 High Temperature
Method 502.1 Low Temperature
Method 508.1 Fungus
Method 509.1 Salt Fog
Me thod 507.1 Humidity
Method 506.1 Rain
Method 516.2 Shock
National Fire Protection Association
No. Title
\begin{tabular}{ll} 
NFPA 70-1981 & National Electical Code \\
NFPA 78-1975 & Lightning Protection Code \\
NFPA 251-1972 & \begin{tabular}{l} 
Standard Methods of Fire Tests of Building Construction and \\
Materials NFPA-255-1972Method of Test of Surface Burning
\end{tabular} \\
& \begin{tabular}{l} 
Characteristics of Building Material
\end{tabular} \\
NFPA 256-1976 & \begin{tabular}{l} 
Standard Methods of Fire Tests of Roof Coverings
\end{tabular} \\
NFPA 258-1976 & \begin{tabular}{l} 
Standard Test Method for Measuring the Smoke Generated by \\
Solid Materials
\end{tabular}
\end{tabular}

National Bureau of Standards
No. Title
\begin{tabular}{ll} 
NBS-23 & :lail Resistance of Roofing Products \\
NBS-Special & Publication 473-003-003-017-15-2 \\
& Fesearch and Innovation in the Building Regulatory Process \\
& Sesstion 2B, Issues in Building Regulation \\
& "Decision-Aiding Communications in the Regulatory Agency: \\
& Partisan Uses of Technical Information," Francis T. Ventre
\end{tabular}

National Building Codes
Title
Uniform Building Code
International Conferences of Building Officials
Southern Building Code
Southern Building Code Congress International
National Electric Code
National Fire Protection Association
BOCA
Building Officials and Code Administrators International

No. Title
UL \(1 \quad\) Flexible Metal Conduit
UL \(6 \quad\) Rigid Metal Conduit
UL 33 Fusible Links
UL \(50 \quad\) Cabinets and Boxes
UL \(94 \quad\) Tests for Flammability of Plastic Materials
UL 96 Lightning Protection Components
UL 231 Power Outlets
UL 263 Fire Tests of Building Construction \& Materials
UL 310 Quick Connect Terminals
UL 360 Liquid-Tight Flexible Steel Conduit
UL 467 Grounding and Bonding Equipment
UL 486 Electric-Wire Connector and Soldering Lugs
UL \(514 \quad\) Outlet Boxes and Fittings
UL 651 Rigid Nonmetallic Conduit
UL 729 Nonmetallic - Sheathed Cable
UL \(723 \quad\) Tests for Surface During Characteristics of Building Materials
UL \(790 \quad\) Tests for Fire Resistance of Roof Covering Materials
UL 854 Service Entrance Cables
UL \(857 \quad\) Busways and Associated Fittings
UL 997 Wind Resistance of Prepared Roof Covering Materials
UL 1059 Terminal Blocks

\section*{REFERENCES}

1-1 MONEGON, LTD, Selecting Solar Photovoltaic Power Systems (SeminarText), Volumes \(1 \&\) 2, Report M102, Gaithersburg, Maryland, 1980.

4-1 Ruzek, J.B. and W.J. Stolte, (Bechtel National Inc., San Francisco, California) Requirements Definition and Preliminary Design of a Photovoltaic Central Station Test Facility, Final Report, Sandia Laboratories SAND 79-7012, April 1979.

4-2 Crippi, R.A., Module Efficiency Definitions, Characteristics, and Examples. LSSA Report No. 5101-43, Jet Propulsion Laboratory, Pasadena, California October 1977.

4-3 Ross, R.G., C.C. Gonzalez, "Reference Conditions for Reporting Terrestrial Photovoltaic Performance". Paper presented at American Section of International Solar Energy Society, 1980 Annual Meeting, Phoenix, Arizona. June 2-6, 1980.

4-4 Forman, S.E. Endurance and Soil Accumulation Testing of Photovoltaic Modules at Various MIT7LL Test Sites, MIT Lincoln Laboratory, Lexington Massachusetts Report C00-4094-23 under ERDA Contract EY-76-C-02-4094, Sept. 1978.

4-5 Workshop on Flat Plate Photovoltaic Module \& Array Circuit Design Optimization, Jet Propulsion Laboratory, Pasadena, California, May 19 \& 20, 1980.

4-6 Solar Photovoltaic Applications Seminar: Design, Installation and Operation of Small, Stand-Alone Photovoltaic Power Systems, PRC Energy Analysis Co., McLean, Virginia, DOE report DOE/CS/32522-T1, July 1980.

4-7 Klein, D.N. Handbook for Photovoltaic Cabling, MIT Lincoln Laboratory, Lexington, Massachusetts, Report C00-4094-90, August, 1980.

6-1 Bechtel National Inc., Handbook For Battery Energy Storage Photovoltaic Power Systems, Final Report, San Francisco, California. Work performed under DOE Contract No. DE-AC03-78ET 26902, Sandia National Laboratories, SAND80-7022, February 1980.

6-2 Bird Engineering - Research Associates, Inc., Reliability Guides, Vols. 1-4, Prepared for Naval Ordinance Systems Command Under contract N00017-69-C-4441, Octorber 1971.

6-3 Bird Engineering - Research Associates, Inc., Maintainability Engineer-ing Handbook, Prepared for Naval Ordinance Systems Command Under Contract N00017-68-C4403, June 1969.

\section*{REFERENCES (Continued)}
\begin{tabular}{cl} 
6-4 & \begin{tabular}{l} 
Mood, A.M., Introduction to the Theory of Statistics, McGraw-Hill, \\
New York, NY, 1963.
\end{tabular} \\
9-1 & \begin{tabular}{l} 
NASA-Lewis Research Center Photovoltaic Structures Handbook,
\end{tabular} \\
-- (in preparation).
\end{tabular}\(\quad\)\begin{tabular}{l} 
J.L. Marshall, Lightning Protection, John Wiley \& Sons, 1973.
\end{tabular}```


[^0]:    *In order to be consistent with much of the current literature which results from DOE-funded studies this Handbook uses the DOE definition of "module" viz., the smallest, independent, encapsulated unit consisting of two or more solar cells in series or parallel. It should be noted, however, that the photovoltaic industry often refers to the same item as a "panel".

[^1]:    *The sun-angle charts of Section 11.4 can be used to estimate how much the horizon obstructs the sun. The charts must be used at latitudes above $56^{\circ}$ because there may be no sunlight in December.

[^2]:    *As indicated in the theory described in Section 7 of this handbook, $M=\left(\bar{I}-I_{D}\right) / S$ where $\bar{I}$ is the average monthly insolation; $S$, the standard deviation of the insolation; and $I_{D}$, the value of the insolation at which the average daily electrical demand is exactly met by the solar system.

[^3]:    ${ }^{1}$ For example, two sources are: Military Standard 2070 (AS), "Procedures for Performing a Failure Mode Effects and Criticality Analysis for Aeronautical Equipment"; Reliability Guides (Vol. 4), NAVORD OD 44622, pp. 7-4 through 7-21, "Failure Mode and Effects Analysis by Prediction".

[^4]:    $2,3^{\text {See Appendix B-2 }}$

[^5]:    ${ }^{1}$ More sophisticated cost optimization and system-protection level models can be developed for determining spares sets, but are beyond the scope of this handbook.

[^6]:    * See Exhibit 11.1-1 for a definition of these quantities

[^7]:    （1）
    Based on present 1980 \＄value Domestic Price List effcective Karch 1， 1979
    ${ }^{(2)}$ Based on gross frontal area
    ${ }^{(3)}$ Based on $100 \mathrm{mw} / \mathrm{cm}^{2}, 28^{\circ}$ cell．temp．（or State Other Conditions）

[^8]:    *Totally-Enclosed Non-Ventilated Series or Compound Wound Single Straight Shaft, Class F Insulation, $40^{\circ} \mathrm{C}$ Ambient
    1.00 Service Factor

[^9]:    *See footnote on p. 14-5

[^10]:    *See footnote p. 14-5

