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during 	the summer of 1963 at Entebbe, Uganda, with more than fifty mathema

ticians and mathematics teachers from Africa, the United Kingdom, and the 

United States in attendance. 

In order that it might be used experimentally in African training colleges 

as quickly as possible, the book was euited and produced with the utmost speed. 

As a consequence, both editing and production More timesuffer 	from defects. 

might 	have made it possible to eliminate most of these, but it would also have 

made it impossible to try out this book during the 1963-64 acacteic year, and 

it was held that this latter need took priority over the former. The African 

Education Program can only hope that those who use this book will appreciate 

the circumstances under which it has been made available, and will be 
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FOREWORD
 

This experimental text has been produced by the 1963 Entebbe
 

Mathematics Workshop for use 
in training colleges in English-speaking 

Africa. The Entebbe programme is a comprehensive one. Its general purpose 

is to write texts which reflect recent thinking about mathematical education 

and w'Ach adapt this thinking to African conditions. 

Rapid progress in science and technology and in mathematics its-If 

has stimulated major efforts to improve mathematical education elsewhere. 

Principal emphasis has been put on understanding the ideas that have unified 

and simplified modern mathematics. In addition, methods have been adopted 

which lead the student to discover things for himself. New facts are estab

lished either from first principles or from facts already known, so that undue 

reliance on rote learning is eliminated. A general discussion of these points 

will be found in the introductory section "Why Change Our Mathematics 

Teaching ?" 

The Entebbe Mathematics Workshop, comprising mathematicians and 

educators drawn from Africa, the United Kingdom and the United States of 

America, has produced experimental texts for use in Primary One and Two and 

In Secondary One and Two. These texts being triedare out in East and West 

Africa and will be revised in the light of experience in their use. Tests have 

also been devised by the Workshop to measure the effectiveness of the 

material under actual teaching conditions. Further texts are planned to follow 

those so far produced. 
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This experimental text is designed for use in training colleges for
 

primary teachers. It 
 aims to give teachers in training the kind of background 

of understanding which will help prepare them to teach the Primary texts pro

duced by the Workshop, or other texts which are written to achieve the same 

purpose. 

It is hoped that this text will be of interest to all those who are con

cerned with the new approaches tc mathematics teaching. 

This text is written so as to stimulate the discovery of central concepts 

by consideration of concrete examples. Problems are provided, both to
 

deepen the understanding of the teacher and to assist in 
 classroom teaching. 

After Lhe introductory section, the text is planned in two parts: 

"Structure of Arithmetic" and "Introduction to Geometry." At the 1963 

Entebbe Mathematics Workshop the first four units out of a projected seven
 

on "Structure of Arithmetic" 
 were written by the Teacher Training Writing 

Group: basic concepts and language of sets, the whole numbers, the number 

line, and fractions. For expositions of negative numbers, the rational num

bers, and the real numbers, which are the subjects of the units not yet 

written, appropriate portions of the Entebbe Secondary One and Two Student 

Texts and Teachers' Guides may be consulted. These presentations, however, 

are not necessarily organized in the same way as they may be written later for 

teachers. As for "Introduction to Geometry," indications of the directions the 

text for teacher traiaing may take are to be found in Part 3: Content Outline 
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for Primary I - III and the Appendix: Projected Content Outline for Primary' IV -

VI of the Entebbe Mathematics Teachers' Handbook prepared by the Primary 

Writing Group at the 1963 Entebbe Mathematics Workshop. 

To enable both tutors and teachers in training to pursue the subject 

further, a bibliography has been provided at the end of the book. Tutors 

should encourage their students to read widely, to further their knowledge of 

the new approach to mathematics. 

\P
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INTRODUCTION: WHY CHANGE OUR MATHEMATICS TEACHING? 

We live in a rapidly changing world. The younger nations, like the older 

ones, face challenges which call for greater knowledge and greater willingness 

to learn new ways. This is morewhy education is important than ever before. 

Everyone agrees that mathematics is important and that it should be taught 

in our primary and secondary schools. A knowledge of arithmetic is necessary 

for everyone in the modern world. A much greater knowledge of mathematics is
 

required for those who take 
an active part, for example, in harnessing water
 

power to the needs of Africa or in handling the financial problems of a nation.
 

So we must teach mathematics well in 
our schools whether our students are to
 

become ordinary citizens 
or leaders of their countries. But do we need to
 

change the kind of mathematics we teach or the way that we teach it?
 

Most of those concerned with the teaching of mathematics feel dissatisfied 

with the job which has been done in the past. In spite of the importance of the 

subject, very few students have thought of mathematics as alive, exciting and 

interesting. This is not true of other subjects. There are many people who read 

history for fun. How many read books on mathematics for fun? Not very many! 

Everyone will agree that mathematics has not been a very popular subject. This 

points to a weakness in the way in which it has been taught. In any case, the 

methods of the past do not meet the challenges of the present and future. 

But something new has happened. It has been found that students can 

actually get excited about mathematics and enjoy it tremendously. This was a 
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fortun-ate discovery. If it is importat- to know mathematics, it is surely also 

important that students should find it interesting. The change which has come 

about is the result of a big effort to teach mathematics in way.a new 


What is this new way? In brief, it is to get the 
student to understand why 

things work the way they do, to a much great, : extent than has been customary. 

More important is the fact that to interest the student we must get him to take an 

active part in learning. He must be led to discover things for himself. This is 

true in all subjects; it is true in mathematics also. Mathematics is not a
 

strange subject in which everything is different - where, for example, is
it 


unnecessary 
to interest the student; where it is sufficient to drill him so that
 

he always gets the right answer.
 

It is widely believed that there is 
 only one right way to do a problem in 

mathematics, so that all we need to do is to show the student this right way and 

give him lots of practice in doing it. This idea leads the student to think that 

the only way he can be or'iginal is to be wrong. Of course, he is glad to oblige 

us! But, seriously, if we try to teach students to act like machines, we should 

not be surprised to find that huse with independence and originality will rebel. 

In fact, there are many ways to solve a mathematical problem correctly. 

Some may be shorter than others. Some may be longer but more illuminating. 

One way may seem more natural to a student than another. Not all students are 

alike. The important thing is that ways be found to solve problems which 

students can think out for themselves. In this case they will have a better 

chance to remember them. Moreover the subject will make sense to them and 

catch their interest. 
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Every teacher imagines, we suppose, that he teaches the studer: to 

understand the subject. In a way this is true. It all depends on what you mean 

by "understand." We can, if we wish, say that a student understands how to 

divide one fraction by another if he can always apply the "invert and multiply"
" 2 

rule when he is given two fractions to divide. Thus if we ask him to divide 2 by 
3 3 4 23 he will invert the - to - and multiply 
4 4 33 

4 8 
by - to geta9 

39 
In the process he also 

applies correctly the rule for multiplying two fractions: "Multiply the numerators 

and multiply the denominators." To repeat, we can say that the student under

stands a rule if he knows how to apply it with confidence and success. In the 

same way, many of us can truly say that we understand how to drive a car. But 

few of us understand why it operates the way it does. 

There is therefore a deeper meaning of "understand." Suppose that the 

student asks, "Why do we invert and multiply when we wish to divide one 

fraction by another?" To answer this question it is not enough to say, "That is 

the rule." What we have to do is to give a reason for the rule. We have to lead 

the student to see that the rule expresses what ought to be done. We have to 

explain the rule. An explanation always has to be given in terms of something 

else -- something which is already known. 

Later we shall return to this example and show what kind of an explanation 

could be given. We are not quite ready for it now. The point is that mathe

matics hangs together. It has a plot like a novel. Knowledge has to be built up 

in stages. You have to know something about what happened in the earlier 

chapters. In this respect, mathematics is again like other s'1bjects. You cannot 

understand modern physics without first learning something about earlier 
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discoveries and ideas, nor modem history without some knowledge of its back

ground. 

We have said that we should teach mathematics so that the student can 

discover things for himself and can understand why he does what he does. This 

is what makes learning exciting. 

But there is another difference between the newer approach to the teaching 

of mathematics and the older one. This difference is particularly important for 

the students who will go on. 

Mathematics itself has changed. It surprises many people to learn this.
 

They know that science and technology do not stand still. They expect that a
 

man will be 
sent to the moon one of these days. New discoveries are made and 

science grows and renews itself like a living thing. New knowledge cannot be
 

added to the old like 
a new room to a house. The whole subject must be rebuilt 

from time to time to take account of new and better ways of thinking about old 

facts. New ways of talking about the older knowledge are invented which help 

us to understand it better and to connect it with recent discoveries. 

Few people think of mathematics in the same way. Almost everyone tends 

to think of it as somehow finished and complete, so that what we know was 

discovered long, long ago and has not been added to since. This is simply not 

true. Mathematical knowlcdge is growing faster than ever before. New mathe

matics is constantly being created to answer questions that the scientist and 

engineer need to answer and to forge ahead in new directions.
 

The situation is exactly the 
same as with all other subjects of knowledge. 

There are many new things which are so important that they have to be added to 
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the old if we are to have the tools we need to solve our problems. There is only 

so much time. Something has to be done to make room for the new. There are 

two things which can be done: (1) Rework the older material so that it hangs 

together better, is more understandable and ties up with the new. (2) Leave out 

some things which no longer seem as important as they once did. Both of these 

things have been done. If we think about it, it seems obvious that this should 

be so. Mathematics is not something apart, without connection with other 

human concerns. Throughout history it has been developed to solve problems 

which mankind needed to solve. As human needs have changed with changing
 

conditions, mathematics has spread out in new directions and set itself to new
 

kinds of problems. Like everything alive, it must meet new challenges or die. 

We have said that to make room for newer mathematics we have to look at 

the older mathematics in a different way. We arrange the knowledge in new 

patterns. It is like the situation in technology. We are coltinually finding new 

and more suitable ways to do old things. Africa is able to take advantage of the 

experience of the Western nations over the past century or more. It is unneces

sary to go through all the stages over again. We can profit by the experience of 

others. In mathematics, too, we have learned by experience. Quicker and 

better ways of doing things have been found. The Greeks made wonderful dis

coveries in geometry 2,000 years ago but mankind has not been idle all these 

years: for example, the volume of a can nowsphere be found by much simpler 

methods than they knew about. This does not mean that they were wrong. It 

does mean that a good deal has happened since their time. We do make 

progre s s. 
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It is like the opening up of a new territory. A fertile valley may have been 

reached by a very roundabout route. Once discovered it is possible to get there 

by a shorter route. Ultimately paved roads are built which help us to get where 

want to go very quickly and comfortably. We do not havewe to follow the 

country roads. Mathematicians have been busy building wide straight roads so 

that they can get to the limits of the known fairly quickly. They are not worn
 

out by the time they reach the frontier. This is lucky, because there is 
 too
 

much mathematics for anyone to know in 
 detail. 

The newer programmes of instruction have been worked out with the advice 

of mathematicians. They have tried to save time and labour for the students who 

are coming on, to make their paths easier and more comfortable. Tney have 

hoped that the student will reach places where he can look over the landscape 

and enjoy the view without losing himself in the bush. 

What kind of understanding do we hope that the student will reach? What
 

sort of views do we expect him to get on 
this journey through mathematics ? We 

surely want him to think of mathematics as more than a collection of unrelated 

facts to learn by heart. We hope that he will see how the facts fall into patterns 

so that they make sense to him. For one thing, when he discovers these 

patterns he will not have to remember so much. If he should forget something, 

it is not lost forever. He can work out for himself what he nEeds to know. He 

will not be like a man lost in a rain forest.
 

To take a simple example, 
 suppose that the pupil has forgotten how to add 

fractions, say to find - + 2. This is a matter which puzzles many adults. If he 
2 3b 52 2 3 23
multiplies I+- b 10, thus 10X (i+-), he easily gets lOx-+lOx-which 
5 525 2 



Introduction-7 

is 4 + 15 = 19. If 10 times the required answer is 19, that answe: must be 

Again if the pupil wishes to multiply 82 by 98 he can of course multiply in 

the well-known way. If, however, he notices that 98 = 100 - 2, he can multiply 

82 by 100, which is easy, then multiply 82 by 2 which is also easy and do a 

simple subtraction. This makes arithmetic more fun. It changes it from a dull 

routine into something more like a game. It gives the student a chance to uise 

his mind instead of operating like a machine. A 1iachine does not notice any

thing it has not been instructed to do. It does not discover patterns for itself. 

But let us begin farther back. In saying that 3 + 4 = 7 we are already 

stating a geaeral fact. What is adding really? To what actual process does it 

correspond? It involves two separate sets, 0 0000 
two piles of stones for example. We unite 

these piles into a single pile and find the 

number of stones in the combined pile. If 

the first pile contains 3 stones and the 

second pile contains 4 stones, we discover that their "union" contains 7 stones. 

The addition table is based on direct experience of this sort. 

All of this is familiar. The only new thing is the use of the words "set" 

and "union." It has been found that the early use of these words makes things 

clearer. The idea of a set of things has turned out to be perhaps the most basic 

or fundamental one in all of mathematics. 

The child learns quite early to add together any two numbers from 1 to 10. 

He learns the results by heart. At a later stage, he notices that 7 + 6 and 6 + 7 
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are both equal to 13 and in general that the result of adding two numbers does 

not depend on the order in which they are added. This cuts the number of 

addition facts that he has to remember almost in half. He is beginning to dis

cover some pattern. He is noticing something of the structure of arithmetic. 

A little later the student can be led to discover, for example, that he can 

add 8, 7 and 3 in two ways: as (8 + 7) + 3 and as 8 + (7 + 3), and that the 

results are the same. Thereafter he can choose the easier way to get the 

result, which, in this example, is the second way, because it uses the easily 

remembered fact that 7 + 3 = 10 and also the easy result that 8 + 10 = 18. The 

combinations that add up to 10 can be verified by looking at his two hands. If 

the three numbers happen to be given in the order 7, 8 and 3, the student will 

soon see that he can first add 7 and 3 and then add 8. Again he will get the 

correct result quickly and confidently. 

These are examples of the kind of patterns which we hope that the student 

will learn. Of course we could just tell him some rules but it is surely much 

better if he can discover them for himself. We can get him to do this with a 

little guidance. 

A very clever scheme has been invented to record patterns like those that 

we have mentioned. The idea is to use squares and triangles to mark places 

where numerals can be filled in. For example, we can write 

D + A: A+r] 

The El and A do not need to be filled by the same numeral, but 

whatever numeral we put in the first must be put in the second -i 

whatevenumera
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Similarly, the two triangles must be filled by the same numeral. This combina

tion of symbols is a handy way of summarizing very briefly the truth of all 

possible statements like 

R3 +A A +R3 

The expression 

D +V-ID 

is called an open sentence. We make real statements out of it by filling the 

spaces with particular numerals. The point is that all such statements are true. 

The second general fact about addition that we mentioned -- the principle 

of grouping -- can be written in the form 

(E] +A)+O = ] + (A+O)
 
Later the student will write 

a + b = b + a (for all a and b) 

and 

(a + b) + c = a + (b + c) (for all a, band c) 

using the "variables" a, b and c. This is the language of algebra. Experience 

has shown that the squares, triangles and diamonds can be used successfully in 

Primary 4 or 5. They make a natural bridge to the language of algebra which, 

for many people, has been so much of a mystery. 

Actually the boxes can be used in Primary 1 to help review simple addition 
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and subtraction facts. The pupil can be asked what he should put in to 

make 3 + 5 = 1: a true statement or what he should use to make 3 + 

= 8 true. The boxes will be familiar by the time the teacher wants to bring out 

general principles which show the pattern of the subject. 

In teaching arithmetic in the traditional way, little attempt is made to 

bring out such general principles. At the earliest, this is done in an algebra 

course, but even so. too,here it is unusual to do In algebra, it is usual to 

learn a set of rules for working with symbols like x and y. These rules often
 

have little meaning to the student. As one adult said: "To me the
x was 

unknown and so far as I was concerned, I was happy to leave it that way." 

This is not the place to explain the full programme in detail. We would 

want to bring in 0, which has the strange property that 0 + D = ] 
is a true statement whatever numeral is put in the box. We would also want to 

work out patterns for multiplication like those for addition. These patterns 

could be recorded in the open sentences 

II xA= A x
and 

(n x A)x<)oDx (A xQ) 

which become true statements whatever numerals are put in A 
and .K We would also like the student to discover that'with the same 

understanding 

Ix (A+K) (E] x A)(Fx$ 
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This important rule connects multiplication with addition. It is a sort of princi

ple of sharing the multiplier with each of the added numbers. The student would 

also discover the strange property of the number 1. 

I XL[ ] 
and the further property of 0, 

0 XF1=O 

The open sentences which we have written bring out an important part of what 

we call the structure of arithmetic. They are discovered by the student from 

many examples of addition and multiplication. They are then used to simplify 

various numerical calculations and to make clear what goes on when we multiply 

53 X 78, for example, in the standard way. They make the facts of arithmetic 

understandable and interesting to the student. Finally, they make things easier 

for him later on. Algebra will mean much more to him because he already has 

met some of its more important principles. 

In the study of mathematics, it is extremely important for the student to 

keep his feet firmly on the ground. There is a very real danger that mathematics 

will become a game with symbols. Unless the student can see what these 

symbols stand for in terms of his own experience, mathematics will mean little 

to him. The subject will seem to have no point. Moreover, when the student 

makes a mistake he will not see why he was wrong nor how he should correct it. 

Let us take an example. A very common mistake in algebra is to change 

1to 1 + 1. How can a mistake like this be avoided? By replacing x and yx+y x y 

by numerals we can check whether and + 1 have the same value. It is 
x+y x y 
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very easy to see that they do not. For example, if we replace x by 1 and y by 

x'1+y becomes 2, but 1 +--1becomes 1 + 1, or 2.
 

It should, of course, be clear that we 
cannot prove that two expressions 

are equivalent for all values of the variables, by verifying that they are equiva

lent for a few particular numbers. Our point is that if the expresFions are not 

equivalent, this fact can usually be discovered by testing for a particular choice 

of numbers. 

The letters x and y are more than marks on the paper or the blackboard.
 

They stand for numbers. It is very important that students learn the habit of
 

testing an 
equation with particular numbers. This habit can be taught by using 

boxes and triangles. If we write 

WFA 
and ask whether it is equivalent to 

I I 

WA 
it is obvious that we should test by using particular numerals,
 

Our short account has been limited to the 
set of whole numbers 0, 1, 2, 3, 

... and to the operations of addition and multiplication.
 

When subtraction and division are 
included, we soon discover that we 

need new kinds of numbers. We cannot subtract 5 from 3 and get a whole 

number for an answer. Fortunately there are other kinds of numbers, the 

negative integers, -1, -2, -3, . . ., that will help us to do this. If we mark 0, 

1, 2, 3, ... at equally spaced intervals along a "number line" 

-3 I I I I-3 -2 -I 0 I 2 3
I 
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to form a scale, it is very natural to mark corresponding points to the left of 0 

and use the labels -1, -2, ...-3, for them. On a thermometer, for example, 

we can mark degrees "below zero" in this way. With negative integers we can 

talk about subtracting 5 from 3. We write the answer -2. This result can be 

interpreted as follows: if we start with the J o-int marked 3 and count off 5 steps 

to the left, we shall reach the point marked -2.
 

In a similar way we 
find that when we try to divide one whole number by 

another, we do not ordinarily get a whole number for an answer. What is 2
 

divided by 3? 
 There is no possible whole number answer. We need new kinds 

of numbers. But we do not need to look very far to find the fractions. Fractions 

were invented very early in history to represent the result of dividing things into 

parts.
 

For example, on the number line which 
we used a few minutes ago, we
 

often need to locate points between those that we 
have marked. Thus if we cut
 

the interval from 0 to 1 into -ree 
 parts of equal length and count off two of them 

- 2- - 2 

0_1 

we reach a point which we mark 3 This is the same as 2 3. To see this we 

have to be clear about what division is. We are looking for a number which when 

multiplied by 3 gives us 2. Does - do this ? Of course it does. If we use the 
3 

interval from 0 to 2 as a measuring stick and lay it off three times, we do arrive 

at the point 2. It is natural to include negative fractions as well as positive 

ones. For example, -2 should correspond to a point on the opposite side of 0 
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from I and the same distance away.
3 
When we have extended our system of whole numbers to include these new 

kinds, we have to ask ourselves how the new members of the club behave. How 

can we add, subtract, multiply and divide them with each other and the old 

members of the club? 

The old club had certain rules of behaviour, like the rules we have men

tioned. Suppose that we require that no new numbers can be admitted unless 

they obey these, rules. Can we take in the negative integers and the positive or 

negative fractions or shall we have to say to them, "You cannot come in" ? 

Must we form club to accommodatea new these new numbers ? 

It is a really surprising fact that we can admit all of them without any 

difficulty. They really belong. That is, if we take the open sentences and fill 

the blciaks with fractions, the statements we get will all turn out to be true. 

Let us take as an example the positive fractions. 

Is21 

Is 2 J?f 51A 

To answer these questions and others like them, we must make up our minds ho 

we would go about adding and multiplying two fractions. If we look at the 

number line it will not take long to decide that at least the first two questions 

can be answered "Yes." Take the first one. To add -Z to - we should 
3 2 
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.
2 2 + 3
 

0 2 I

T 

begin with the point marked -

2 
and measure off to the right of it an interval equal 

to the interval from 0 to-. Suppose that we do this in the other order. Do we 

come out at the same place? We certainly do. If we test the second question 

in the same way, we also will get the answer "Yes." Of course, we have tested
1 2
 

our first question only with the particular fractions - and . This does not
 
2 3.Ti de o
 

prove that the 
answer would be "Yes" for all fractions. We have merely tested 

the rule with special fractions. But the idea of adding on the number line is a
 

general one and it is 
 not hard to see that the answer will not depend on the 

order of adding or the method of grouping. 

The open sentences that contain a multiplication sign are a little harder to 

test. We must fii st decide on a sensible way to multiply two fractions. One 

way to think of this is to remember that the multiplication of two numbers occurs 

naturally in connection with the area of a rectangle. The rectangle with sides 3 

and 2 has the area 2 X 3 = 6, as we see by counting squares. 

1 2 

What would be the area of a rectangle i by 2? The answer should give
1 

a 
2 2 3.' 

reasonable result for 2 X3 . In the figure, if we cut the desired region 

(shown shaded) in half, we get a rectangle 2 
1 

by 
1 
3. It is easy to see that 6 
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rectangles I by - make up the square 1 X 1.11i 12 2 
Then we are led to say that X- = 1 , and so-X" should bel6 In the2 362 3solde 6 nh 

same way we come to see that in general 
a c aXc 
aX should be a x" 
b d bX d
 

Now that we know how to multiply fractions, we see that the order of multiplica

tion does not matter so that 

o xA=AxDo 

even when we fill the blanks with fractions. The other general rules of the club 

are obeyed by the new members, as can be shown without difficulty. 

We are now able to fulfill a prc-nise. Why do we divide two fractions by 
inverting and multiplying? To take our previous example, why is z " 4 the same 
as -2 X 4 ? We remember what division means. We want to fill the square in 

3 [2 

so that the two sides stand for the same number. We notice that if the 3 is4
multiplied by 4 4the result will be 1. We use this fact to find the numeral to put 

in the box as follows: 

434 x 3 E 4.X2 

The left side can be regrouped to give 
3 

which is 1lX 0 or simply E 
So we h

or what is the 

ave 

same, 

= 
n3 

4X2 

3 
I24 -X Thus 2 is indeed equal to 24 

To return to our main point, we have said that the new numbers can be 
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brought Into the club as law-abiding members. When the student really sees 

this, he understands the structure of arithmetic. When he understands the way
 

things tie together, mathematics means something to him. 
 It make j sense. It
 

also becomes part of him. 
 He does not need to worry about forgetting it. With
 

good luck he will see the beauty and simplicity of the subject and find it excit

ing. In any case he will find as he goes 
on that the kind of understanding which 

he has acquired will help him to take the next steps up the mathematical ladder. 

It sometimes happens that students who have been encouraged to work
 

things out for themselves discover new ways of doing things. 
 For example, a
 

class was asked to subtract 28 from 42. Of course,
 

the standard way to do this is to say that 8 canriot 
42
 
28 
14be subtracted from 2. Therefore we must borrow 

from the next column and subtract 8 from 12 giving 4 in the unit's place and 1 in 

the ten's place. One student did this in quite a different way. 	 The class had 

some familiarity with negative numbers. The boy said that 2 - 8 = -6 and 40 

20 = 20. He reasoned that the answer must be the 42 
2
 

sum of 20 and -6, that is, 14. We do not say 	 28
 
-6
 

that this is a better way to do this exercise. But 	 20 
14
 

it is obvious that to be able to invent this new method is to add greatly to one's 

understanding. It also gives the student the very pleasant feeling of creating 

something new. 

This is an important feeling for the student to have. It gives him confi

dence in using his own mind. In a changing wcrld, we meet new situations. We 

a 
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cannot meet all of our problems by following rules. We have to invent new ways 

of doing things. This means that we must look for new ways of thinking. The 

most important thing which any teacher can do is to encourage any sign of 

originality in his students. If one of them has a new way of doing a problem, 

do not tell him that he must do it in the textbook way. Let him discover for 

himself that the textbook way is better if it is. Meanwhile give him the pleasure 

of using his own mind. 



UNIT I - BASIC CONCEPTS AND LANGUAGE OF SETS 

CHAPTER 1 

SETS AND SUBSETS 

Purpose of unit 

The purpose of this unit is to introduce you to some of the elementary 

ideas of "sets" and to begin to develop for you a language of sets. In recent 

years, the concept of set has become of great importance in the development of 

mathematics. In this and the other units which follow, you will study how 

to make use of sets to get a better understanding of arithmetic. For example, 

you will discover that numbers ca.i be explained and understood in terms of 

sets and this helps children considerably in their learning. You will also 

learn how to compare two sets in order to find out whether one set has 

"just as many members as" another set, "fewer members than" a second se':, 

or "more members than" a second set. You will find out how to match sets of 

objects with the counting sets and how to unite two sets to form a set with 

more members. 

Some of the facts you will learn about sets in this unit will, no doubt, 

be new to you. Refer to the glossary at the end of the unit for an explanation 

of their meaning. Test your own understanding of each section with the exercises. 
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1 - 1 	What is a set?
 

A set as a collection of things. In 
our daily life if we wanted to
 

describe a collection of things we might talk of 
 a bundle of sticks, a flock
 

of sheep, a herd of cattle, a class of boys and girls, 
 and so on. In
 

mathematics, a collection of things is called 
a set. The words "flock",
 

"herd", "class", "bundle" give the same idea as 
the word "set".
 

i - 2 Examples of sets
 

We can talk of the set of books in the school library, the set of the
 

colours of the rainbow, the set of the counting numbers less than ten, 
 the
 

set of all points on the line segment AB. Each of these sets is a set of
 

similar things. A set can, however, contain any variety of objects. For
 

example we may have, if we want, a set that is 
 made up of the following
 

things: a stick, a stone, a book and 
a banana. 

1 - 3 	 Members of a set 

It is 	 important that a set be described so clearly that no-one can have 

any doubt about which objects are included in it. For example a set of numbers 

may be any one of many possible sets, but if we talk of the set of the counting 

numbers less than ten we have only one set in mind. This set consists of 

1, 2, 3, 4, 5, 6, 7, 8, 9. 

Each object in a set is called a MEMBER or element of the set. For instance, 

Uganda is a member of the set of independent African states; a cat is a member 

:f the set of all domestic animals; a dog is also a member of this set. On the 

Dtherhand, a lionis not a member of the set of all domestic animals, because 

t is not a domestic animal. 

.7 
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It is more usual to think of a collection of things which has two or 

more members, as a set. In mathematics, we use the term "set" to in Jude 

a collection of things, which may have only one member or even no members 

at all. We can talk about the set of a book, the set whose member is a 

pencil, or say that the member of our set is a cat. Later we shall have more 

to say about a set vhich has no members at all. 

Exercise 1 - 3a 

1. Write down the members of the following sets: 

(a) the days of the week whose names begin with the letter S, 

(b) the even counting numbers less than 14, 

(c) all the cities in your country with a population greater than 60, 000, 

(d) the months of the year whose names begin 	with the letter S, 

(e) all the cities in Africa with a population of over four million. 

2. 	 How would you describe the members of the set 1, 4, 9, 16, 25, 49, 64, 

81, 100? 

3. What are the members of the set oi all the prime numbers 'which are less 

than twenty? 

4. 	 What -ire the members of the set of all two-digit whole numbers that are 

exactly divisible by five? 

5. 	 Write down the members of the set of all three-digit whole numbers for 

which the sum of the digits is three. 

6. 	 Here are some sets. Below each are phrases. Write the phrase which best 

describes each set. 



1-4
 

(i) 	 0, 2, 4, 6, 8, 10. 

(a) 	 the set of small even numbers; 

(b) 	 the set of some even numbers; 

(c) the set of even whole numbers less than twelve. 

(ii) 	 5, 10, 15, 20, 25, 30. 

(a) 	 the set of counting numbers less than 35; 

(b) 	 the set of the first six counting numbers that are exactly 

divisible by five; 

(c) 	 the set of all numbers counting by fives. 

(iii) January, June, July. 

(a) 	 the set of the months of the year; 

(b) 	 the set of the months whose names have more than 	three letters; 

(c) 	 the set of the months whose names begin with the letter J. 

7. 	 Answer these questions about the members of a set. 

(a) 	 Is a Nigerian a member of the set 	of all Africans? 

(b) 	 Is an elephant a member of the set of all trees? 

(c) 	 Is a square a member of the set of all four-sided figures? 

(d) 	 Is "t" a member of the set 	of all vowels of the English alphabet? 

(e) 	 Is 25 a member of the set of all squares of whole numbers ? 

1 - 4 Ways of describing a set: listing the members 

We want to explain two ways of describing a set. One way is to list 

all the members of a set. For example, if the members of the set are all odd 

numbers less than 11, we list the members as follows: 
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11 3, 5, 7,9 

We read this as "the set whose members are 1, 3, 5, 7 and 9. 

Curly brackets are used to enclose the list of members and coiamas 

may be used to separate the members. Commas are not usually used to 

separate the members of a set when a picture of the members is drawn. 

For example 

is a picture of a set. The members of the set are a football, a star, a 

triangle and a man. 

We may not always be able to list all the members in a set. There are 

several reasons for this. Let us discuss these one at a L ,. 

First we shall look at the set of all odd numbers. No matter which odd 

number we think of there is always a larger one. We list a few of the odd 

numbers and then put three dots after the last listed member to indicate that 

the set of all odd numbers is unending. Thus we write 

111, 3, 5, 7, 9, . . . I 
Similarly the set of all counting numbers may be written 

11, 2, 3, 4, 5, . . . I 

Even if the set is finite we may not be able to list all the members of 

the set either because we have not enough time, or because we have not 

enough space. We could, if we wanted to, name all the members of the set 

of whole numbers less than 10, 000 which are exactly divisible by 3. The 
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first one is 3, the second one is 6, the third one is 9, and the last one is
 

9,999. It would take a long time and 
a lot of paper to list all the members
 

of this set. We might not even 
want to list all the members. Hlere again the 

dots are useful. Once the pattern is established and the last member of the 

set is known, we use three dots thus:

{3, 6, 12, 15, *.., 9,999} 

This is read, "the set consisting of three, six, twelve,nine, fifteen and so 

on up to nine thousand, nine hundred, ninety-nine." 

It is helpful to use a capital letter as a name for a set. For example, 

Set A = f3, 6, 9, .. , 9,999J 

or . 3, 9, ,A 6, .. 9,999 

A is then described as the set of all counting numbers less that 10,000 that 

are exactly divisible by 3.
 

1 - 5 Ways of describing a set: giving a word descripton
 

Sometimes we 
do not wish to list any of the members of a set at all; it 

may be easier to describe them. In this case we give a word description of 

the set. For example, 

A = the set of all countries in the world. 

B = the set whose members are all the even numbers. 

C = the set made up of all the points lying in a certain circle of two 

inch radius. 

D = the set consisting of a football, a star, a triangle and a man. 

E = the set of numbers exactly divisibly by thrue ahd less than 10,000. 
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From 	the word description we can decide whether or not an object
 

is a member of the set. Note that we 
do not use curly brackets when we
 

have a word description of a set.
 

Exercise 1 - 5a
 

1. Describe the following sets in words: 

(a) 1, 8, 27, 64, 125, 2161 

(b) a, b, c, d, 	e, f, g, h I 

(c) Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 

Saturday J 
2. List the members of the following sets: 

(a) the set of whole numbers which are greater than twenty, 

(b) the set of whole numbers less than ten, 

(c) the set of prime numbers between ten and thirty, 

3. 	 Let S be the set of whole numbers between 8 and 50 and exactly divisible 

by 3. 

(a) Describe S by listing its members. 

(b) Describe S in another way. 

4. For which of the following sets is it possible to list all of the members? 

(a) The set of all living human beings. 

(b) The set of all counting numbers. 

(c) The set of all the counting numbers exactly divisible by four. 

(d) 10, 2, 4, 6, . .] 
(e) {0, 2, 4,..., 100, 000, 000 J 
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S. Correct the mistakes in the following listings of sets: 

(a) The set of even whole numbers less than ten: (2. 4, 6, 8] 

(b) The set of all whole numbers: 1. , 3,.. ., 9,999] 

(c) The set of odd numbers less than thirteen:{0. 1 3, 5, 7, 9, 11, 13J 

(d) The set of all the counting numbers which are exactly divisible 

by three: (3, 6, 9, 12, 151 

SPECIAL SETS 

1 - 6 The empty set 

What answer did you give to the question "List the members of all 

cities in Africa with a population of over four million? Did you say that 

this set had no members? 

Let us totry discover the members of the following sets: 

A = the set of all squares with five sides. 

B = the set of all baby boys each of whom weighed 1000 pounds at 

birth. 

C the set of persons who are over 400 years old. 

A has no members, B has no members and C has members.no The set which 

has no members is called the EMPTY set. 

Here are some ways to picture the empty set for our pupils. 

Away to represent the empty set is {J 
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Exercise 1 - 6a
 

Which of the following sets are empty?
 

(a) 	 The set of even prime numbers betwen 20 and 30 

(b) 	 The set of all triangles with four sides 

(c) 	 The set of Presidents of African states 

(d) The set of boys in a Primary One clas:3 who are fifty years old. 

1 - 7 Sets with a single member 

As we have said before, in mathematics we use the term "set" to 

include a collection of things which has only one member. For example, 

A = [31 is a set with only one member, the counting number 3. The set[0O 

has one member and is therefore different from the empty set. Can you make 

up some more examples of sets with only one member, or with no members 

at all, which you could use in your classroom to help your pupils to understand 

these ideas? 

1 - 8 Subsets of a set: what is a subset? 

We are going to discover some new facts about sets. Before we go 

or, let us look again at what we mean by the *erm "set." We have said that 

a set is a collection of things. 

Now let us compare the pairs of sets listed below. 

List 1. List 2. 

(a) 	 The set of players in your (a) The set of forwards in your 

school football team . school football team. 

* 
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(b) The set of all vegetables (b) The set of beans on the same 

on a market stall, market stall. 

C)C= 11, 2, 3, 4J1 (c) D =(12, 3J1 
(d) The set of letters in the (d) The set of vowels in the English 

English alphabet, alphabet. 

(e) K = [pin, tree, bookj (e) N =Ibook} 

(f) Y=LD:] OA-0J (f) Z=OA~ 

(g) (g) 

In the first pair of sets did you find that each member of the set in List 2 

was also a member of the corresponding set in List 1 ? Is this true for the 

other pairs of sets? 

Did you discover in (c) that 2 and 3 are members of set D and that 

they are also members of set C ? In (f) are the members of set Z also members 

of set Y? Have you found out that a book is a member of set N and also a 

member of set K, but a pin and a tree are members of set K and not of set N? 

Each set in the second list is called a SUBSET of its corresponding set in the 

first list. 

If each member of a set A is also a member of a set B then set A is 

called a subset of set B. 

'4
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Exercise 1 - 8a 

1. 	 Copy the following statements and complete them. 

(a)(a, b] is a of[a, b, c, dI 

(b) 	 Set D =12, 4, 6, 8, 10] Set E =f4, 6, 8] is a 

subset of 

2. 	 Set Y = (a house, a tree] 

Set V = (a cat, a house, a tree] 

Which set is a subset of the other? 

3. 	 Is fA, B, C, D, EIa subset ofIA, B, C}? Explain your answer. 

4. 	 Set X = fl, 2, 3, 4, 5, 6, 7, 8, 9] Use the information about set X 

to fill in the blanks and answer the questions. 

(a) 	 Rewrite the statements below filling in the blanks. 

SetK=Kl, Z, 6] SetL=13, 11] SetM=(3, 5, 8, 9] 

Set K is of set X 

Set L is of set X 

Set M is of set X 

(b) 	 How many subsets of set X did you find in (a)? 

(C) 	Which members of set X can be divided exactly by 2? Write 

these as a set. Is this set a subset of set X? 

(d) Which members of set X can be divided exactly by 3 ? Write 

these as a set. Is this set a subset of set X? 

(e) 	 Find three other subsets of set X. 
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1 - 9 Finding subsets of a set 

Look again at Exercise 4. Count the number of subsets of set X = 

I, 2, 3, 4, 5, 6, 7, 8, 9] which you found. Can you find one more? 

Now let us try to write down all the subsets of set A = Fi, 2, 3] 

How many have you found? Six, seven, eight? Did you write 

[1], [?-1, (313, [i, 2 3 1(2 3,3. 1 

or tfI] , [2]1 ([3] fi, 2] , f2, 3i ([3, 1il, [1, 2,3 

or f1I}, 12J1, §3} ( 1, 2J1 [2, 3}s, [ 3, 1], [1, 2, 3}~ ? 
Which of these answers is correct? You will notice that in listing the above 

subsets, 1I, 21 and (2, ljare regarded as being different ways of writing the 

same set. This will be explained fully later. 

To help us decide which answers are correct let us consider again 

what we mean by a subset. Each member of a subset must also be a member 

of the given set. A subset cannot have any member which is not a member of 

the given set. 

It is easy to see from this meaning of a subset that[l], (2], [31, 

(1, 2]. (2, 3] and (3, 1] are subsets ofr1, 2, 3] . Is (1, 2, 3] a subset 

of 1, 2, 3] ? Is there any member of the set (l, 2, 3] that is not a member 

of the given set (1, 2, 3] ? Because the answer to this last question is "No" 

we can say that 1l, 2, 31is a subset of [1, 2, 3] Now what about the empty 

set? If the empty set is a subset of11, 2, 3]it cannot have any members 

which are not members of1, 2, 3]. The empty set has no members at all; 

therefore, it does not have any members which are not members of fl, 2, 3]. 

Therefore the empty set is a subset of A. A picture may help us to understand 
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this idea. 

2
 

There are no members in the empty set. 1, 2, 3 has all the members 

that are in the empty set. Therefore, I I is a subset of Il, 2, 3]. We now 

know that there are eih subsets of the set A = fl, 2, 3] because we must 

include the empty set and 1, 2, 3]. 

Exercise 1 - 9a 

1. Write down all the subsets of each of the following sets. 

(a) SetA=fl, 2] 

(b) Set B = (aP b, c] 

(c) Set C [ x. I 

(d) Set D= f, 2, 3, 4] 

(e) SetE= r- o 

2. What have you discovered about the empty set from your answers to 

problem 1. above? 

3. 	 Have another look at your answers to problem 1. above. Did you find 

that 11, 23 was a subset of Set A? Was [a, b, cj a subset of set B? 

What aboutx, yI,{1, 2, 3, 4]andf DO 1 ? What 	conclusion 



1-14
 

can you draw from these answers?
 

4. Which of the following statements is true? 

(a) 3, 53 is a subset of(3, 5, 7] 

(b) [9, 6, 1J is a subset offl1, 9]1 
(c) [A, B, DI is a subset of the set of letters which name the 

vertices of the square A BC D. 

(d) The set of all birds in the world is a subset of the set of all 

hens in the world. 

(e) The set of names of all the days in the week is a subset of 

fSunday, Monday]I 

(f) I 3is a subset of [a, b, c, dJI 
(g) { red, orange, yellow, blue, green, indigo, violetj is a subset 

of the set of the colours of the rainbow. 

1-10 Picturing sets and subsets 

We can draw pictures and diagrams help usto to understand subsets. 

There are several ways in which we can do this.
 

First let us illustrate by means of a picture 
the fact that the set of 

all forwards in the school football team is a subset of the set of all players 

in the school football team. 
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Kr
 

(a) (b) 

Picture (a) shows the set of all players in the school football team. Picture 

(b) shows the set of all players in the school football team and the subset 

of all forwards in the same school football team. 

Now let us show that the set of all countries in Africa is a subset 

of the set of all countries in the world. 

ALL THE COUNTRIES 

IN THE WORLD 

i (c) 
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ALL THE COUNTRIES 
IINHF IWORI= 

(d) 

Diagram (c) shows the set of all the countries in the world. Diagram 

(d) shows the set of all the countries in the world with the set of all the
 

countries in Africa as a subset of the 
set of all the countries in the world. 

As another example of the use of pictures and diagrams to illustrate 

sets and subsets, let us consider the set of all people in the world and two 

of its subsets. 

Let U the set of all people in the world, 

A : the set of all people in Africa, 

B = the set of all people in the United States of America. 

Let us think of the set of all people in the world as the universal set. 

*What we take as the universal set will depend upon our interest. At one
 
time we might 
use the pupils in a class as the universal set with subsets
of girls, of boys, of pupils in the front row and so on. At another time, 
we might use the set of all the pupils in the school as the universal set. 
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We can picture the universal set by a rectangle. All points inside the 

rectangle are members of the set U. In the figure below we will represent 

the members of set A by the set of points within the circle A; the points 

within the circle B will represent the members of set B. 

U =ALL THE PEOPLE IN THE WORLD 

We -an see that all the members of both set A and set B are members 

of set U. They are therefore represented by circles which lie entirely 

wiLhin the rectangle. The interior of he rectangle represents the set U. 

We also note that set A and set B have no members in common and 

so the circles representing them do not cut each other. We call two sets 

that have no members in common DISJOINT sets. 

For our last example, let us take U to be again the set of all people in 
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the world. We shall look at two subsets of U, one of which is different 

from the subsets used in the last example. 

Let A = the set of all people in Africa, 

and C the set of all people in Nigeria.
 

How shall we represent these sets in 
 a diagram? First we note that both
 

set A and set C are subsets of set U, 
 the set of all people in the world.
 

Let us 
rrpresent set U by the inside of a rectangle. Then we can represent 

set A and set C by the insides of circles lying entirely within the rectangle. 

Since Nigeria is a country in Africa, the set of all the people in Nigeria is 

a subset of the set of all the people in Africa. Therefore the circle for set C 

must lie entirely within the circle for set A. (The two circles, however, do 

not need to have the same centre; also the sizes of the circles do not repre

sent proportionally the number of people in Africa and the number of people 

in Nigeria. The choice of the shape of the figure used to represent a set 

is also one you can make for yourself.) 

U 

U =the set of all the people in the world, 

A =the set of all the people in Africa, 

C =the set of all the people in Nigeria. 
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Exercise 1 - 10a
 

1. 	 Draw pictures that you could use in your classroom to show that the 

set of Iohn, Mary and Kwame is a subset of the set of all pupils in 

a class. Make up other examples of such subsets and draw pictures 

to illustrate them. 

2. Draw diagrams to show the set and subsets, 

A = all the books in your classroom,
 

B z all the mathematics books in your classroom,
 

C = all the English books in your classroom. 

3. Copy this set. 

Tuesday Friday Sunday/ 

~Wednesday -

Show 	each of the following subsets by drawing a shape oa your copy. 

(a) The set of all days of the week whose names begin with T, 

(b) The set of all days of the week whose names begin with W, 

(c) The set of all days of the week whose names begin with K. 
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EQUAL SETS
 

1-11 The idea of equality
 

When you say that two plus two equals four, 

and write it down as 

2+2=4 

you are thinking th;,Z 2 + 2 and 4 stand for the same number. In other words, 

what you write on one side of the sign = and what you write on the other side 

are just different names for the same number.
 

This is 
a point of view which we want to adopt. The statement a = b 

tells us that the thing named "a" and the thing named "b" are the same 

thing. 

Here are some more examples: 

Africa = the second largest continent 

Mt. Kiliminjaro = the highest mountain in Africa 

Tokyo = the capital o-- Japan
 

2 
 = the smallest prime number 

(5 + 3)-4 =2 

1 -- 12 Equal sets 

Let us look carefully at the following sets:
 

A= 1, 3, 4 f 51, 2
 

B = f3, 4, 1, 5, 2}
 

C =the set of the first five counting numbers. 
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Compare set A and set B. Did you discover that the members of set A
 

were exactly the same as the members of set B?
 

The members of set A are 1, 2, 3, 4, 5,
 

The members of set B are 1, 2, 3, 4, 5.
 

The only difference between the members of set A and the members of set
 

B is the order in which they are listed. We say that A and B are different 

names for the very same When write A B inset. we = reference to sets, 

we mean that A is the same set as B. 

Now look at set C. Is this set equal to set A and to set B? What 

are the members of set C? They are 1, 2, 3, 4, 5. The members of set 

C are the same as the members of set A and are the same as the members 

of set B. We say that C - B and C = A. In general, sets with the same 

members are EQUAL. 

It can happen that two sets may have some members which are the 

same and yet the two sets are not equal. 

Consider the sets 

There are three members of set A which are also members of set B but by 

comparing members of both sets we find that they are not equal sets. This. 

example shows the importance of putting commas in the proper places in 

listing sets. 
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Exercise 1 - 12a 

1. 	 SetA= 2, 4, 6, 81 Set B = the set of all even whole numbers 

less than 10. Is A= B? 

2. 	 Which of the following pairs of sets are equai? 

(a) 	 K= fm, t, h, a, sI L= (m, a, t, h, sj 

(b) 	 The set of all toes on your left foot and [a, b, c, d, eJ 

(c) 	 The set of all eyes in the classroom and the set of pupils in 

the classroom. 

(d) 	 (5, 10, 15, 20, 25Jand5 X 1, 5X2, 5 X3, 5 X4, 5 X 5 

(e) 	 (01 and the empty set. 

(f) 	 The set of all odd counting numbers less than 10 and 	the set 

( 1, 	 5, 7, Bj 

(g) The 	set of letters in the word "bundle" and the set n, d, 1, e, b, 

(h) 	 The set of countries in East Africa and the set {Kenya, Nigeria, 

Tanganyika ]. 

3. 	 Look at these sets carefully. 

A=f,5, 	 7, 9} D (9, 7, 2, 3 

B=f,3, 9, 7J E= f5, 7, 9,2 

C ,7, 2, 5J F= (7, 3, 9, 5J 

Whic h sets are not equal to set A? Write three set. equal to set A 

4. 	 Set X is the set of whole numbers less than 9. Set Y is the set of 

counting numbers less than 9. Is set X equal to set Y ? Explain your 

answer. 
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MATCHING OF SETS 

1 - 13 Matching of two sets 

In some African countries children of pre-school age already have the 

idea of matching the objects of one set with the objects of another set.
 

Thus, when a child is given a piece of meat, 
 he sometimes asks for one 

more piece by holding out his other hand. He means that he wants one more 

piece corresponding to the other hand. 

Again, when you ask a cntid his age he may hold up three fingers. 

Each one corresponds to one year of his age. When you ask a child how 

many noses he has, he often touches his nose with one finger. In these and 

other ways the child establishes the idea of an exact matching between the 

members of two sets. 

Consider the sets 

AA 

D { as bc 
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All these sets at first glance appear to be different because they have 

different members. On closer examination, however, we see that set B 

and set C have something in common. We can find for each member of 

set B a oartner from set C. 

The double arrows show how each member of set B is matched with a member 

of set C, and how each member of set C is matched with a member of set B. 

This matching could be done in many different ways. Two other ways are 

shown below. 

(1) 

B Rr 
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No matter which way we match the sets each member of set B is matched 

with exactly one member of set C and each member of set C is matched with 

exactly one member of set B. 

If each member of set P is matched with exactly one member of a 

second set Q and each member of set Q is matched with exactly one member 

of set P, then we say that set P and set Q MATCH EXACTLY. Set P has 

"just as many members" as set Q. The sets are called EQUIVALENT sets. 

We must be careful not to confuse equivalent sets with equal sets. 

The set fa, b, c, di and the se, 1b, c, d, a] are equal sets because 

they have the same members. The set [a, b, c, d] and the set 1,q, t, sJ 

are equivalent sets because they match exactly. All equal sets are also 

equivalent sets but equivalent sets are not necessarily equal sets. 

Look back at the list of sets at the beginning of this section. You can 
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see that set A and set B can be matc,,ed exactly. What happens when we 

try to match the members of set A with the members of set D. 

A0
 

D={ 

The above is one way of trying to match the members of these sets. There 

are many other ways. No matter how we try to match the members of the 

sets there will always be at least one member of set A which will not have 

a partner in set D. We see that these sets ao not match exactly. We say 

that set A has "more members" than set D or that set D has "fewer members" 

than set A. 

1 - 14 Equivalence of more than two sets 

You know that set B and set C are equivalent. Also set A and set B 

are equivalent. Does it follow that set A and set C are equivalent? Let
 

us picture the matching.
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When we remove the set B the picture becomes: 

From thi.s you can see that set A is equivalent to set C. Do you see that this 

result is true for any three sets? If we have three S -ts such that the first 
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is equivalent to the second, and the second is equivalent to the third, it 

follows that the first is equivalent to the third. 

1 - 15 Matching of sets with no last members 

Can we match exactly sets like P, the set of all counting numbers and 

Q, the set of all even counting numbers? 

P=fI, 2, 3, 4, 5, 6, 7, 8, 9, 10, "3
 

Q[,4, 6, 8, 10, 12, 14, 16, 18, 2 0,
 

Suppose we try to match set P with set Q.
 

. 

P 	 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... J 

Q:{ , 4, 6, 8, 10, 12, 14, 16, 18, 20, . .
 

How far can we continue this matching? Which member of set Q could be
 

matched with 107 of set P? 
 Which member of set Q could be matched with
 

2046 of set P? 
 Which member of set Q could be matched with 5, 000, 468
 

of set P? No matter which member of set P we 
choose we can always find
 

a partner for it in set Q and no matter which member of set Q 
we choose we 

can always find a partner for it in set P. We see that set P and set Q match 

exactly. 

Exercise 1 - 15a 

1. 	 Which of the following pairs of sets can be matched exactly ? Illustrate 

how this is done in each case. 

(a) 	 A={1, 2, 3, 4, 5, 6, 7, 8, 9
 
B =fGhana, Guinea, Kenya, Liberia, 
 Nigeria, N. Rhodesia, 

Nyasaland, Sierra Leone, Uganda3 
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(b) 	 X - the set of all even whole numbers less than 20. 

Y 	 the set of all even numbers which are greater than 40 and 

which are also less than 60. 

(c) 	 S 1 , 3, 4,5, ....
 

T 10, 15, 20, . . ., 50, 005j
 

(d) 	 K = the set of all counting numbers. 

L = the set whose members are the cubes of all counting numbers. 

(e) 	 9 = the set of all pupils in your class.
 

Q = the set of all feet in the same class.
 

2. 	 Give examples of three pairs of sets which you could use with your 

pupils to show that the two sets in each pair can be matched exactly. 

3. 	 Is it possible to match exactly the set of all counting numbers and the 

set of all counting numbers great3r than Z00? If your answer is "yes, " 

show how this could be done. If your answer is "no, " explain your 

answer. 

4. 	 Give examples of three pairs of sets, that you could use in your classroom 

to show chat the two sets in each pair do not match exactly. 

5. 	 Demonstrate with double arrows (--i) that the set [a, b}is equivalent 

to each of six subsets of the setIo, q, r, sJ. 



CHAPTER 2
 

OPERATION ON SETS
 

2 - 1 Union of sets 

We have learned some of the facts about sets. Now let us see how 

we can work with sets. 

Study the following class list carefully. It could be for any class in 

any school. 

NAME AGE RELIGION FOOTBALL 
CLUBS/ SOCIETIES 

ATHLETICS SCHOOL CHOIR 

AGESA I1 CATHOLIC 

ALLI II MOSLEM / / 
JUMA 9 PROTESTANT V _ 

KATO II MOSLEM V/ 

KITTA 10 CATHOLIC 

KIZZA II PROTESTANT / / 
KOFI 12 CATHOLIC V 

LULE 10 PROTESTANT 

MUKASA II 

NSIMBI 10 PROTESTANT V 
OKOT 12 CATHOLIC / 

ONGOM 9 CATHOLIC Y/ 

OPIO 10 1' 

OYELESE 9 PROTESTANT 

PATEL 12 HINDU 

SENTAMU 12 CATHOLIC V/ 

SENTEZA 10 PROTESTANT V 
SINGH II SIKH 

SOZI 10 CATHOLIC / V / 

WASSWA 10 PROTESTANT 
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Let us write down the members of the various sets of boys in this class.
 

Example A. Suppose we list
 

(1) the 	set of boys whose names begin with K. 

(2) the 	set of boys whose names begin with S. 

Call the first set K and the second set S.
 

Have you written
 

(1) K = 	 Kato, Kitta, Kizza, Kofi 

(2) S = 	 Sentamu, Senteza, Singh, Sozil ? 

What is the set whose members are in one or the other of the above
 

sets? Call it R.
 

Does your set R look like this ? 

(3) R = 	[Kato, Kitta, Kizza, Kofi, Sentamu, Senteza, Singh, Sozi 

Set R has each of the members of set K and each of the members of set S for 

its members. (Note that set K and set S are disjoint sets.) 

Example B. Suppose we list 

(1) the set Q of boys who are ten years old. 

(2) the set L of boys who play football.
 

Have you written
 

(1) Q =[Kitta, Lule, Nsimbi, Opio, Senteza, Sozi, Wasswa 

(2) L 	 (Agesa, Alli, Juma, Kato, Kizza, Lule, Okot, Ongom, 

Opio, Sentamu, Sozij? 

Now list the new set whose members are in set Q or in set L. Call it V. 

(3) 	 V = (Kitta, Lule, Nsimbi, Opio, Senteza, Sozi, Wasswa,
 

Agesa, Alli, Juma, Kato, Kizza, Okot, Ongom, Sentamu]
 

1/ 
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The members of set V are boys who are ten years old, or who play football, 

or who are ten years old and play football. 

Example C. List the following sets. 

(1) X = the set of boys who take part in athletics 

(2) 	 Y = the set of boys who are in the choir
 

=
(3) N the set of all the boys who take part in athletics or who are 

in the choir or both.
 

Example D. List the members of the following sets.
 

(1) E = the set of boys who are eleven years old. 

(2) F 	= the set of boys whose names begin with the letter A. 

(3) M 	= the set of boys who are eleven years old or whose names begin 

with the letter A. 

Are these your answers ? 

(1) X =fAlli, Kizza, Kofi, Nsimbi, Senteza, SoziJ
 

C (2) Y= Kofi, Oyelese, Sozi J
 
(3) N=(Alli, Kizza, Kof, Nsimbi, Senteza, Sozi, Oyelese 1 

(1) E = tAgesa, Alli, Kato, Kizza, Mukasa, Singh
 

D (2) F= [Alli, Agesa)
 

(3) M =tAlli, Agesa, Kato, Kizza, Mukasa, Singh 

In example A, R is the set whose members the members of K or the membersare 

of S. It is called the "union" of K and S. You obtained the set R by "uniting" 

the members of K with the members of S. In the 	same way, in example B, the 
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set V is the union of Q and L, because the members of V are all those boys 

who are members of Q or are members of L. 

For any two sets G and H, the UNION of G and H is the set whose
 

members are all the things which are members of G or are members of H.
 

In symbols the union of G and H is 
 GUH (which we may read as "G union
 

H'.')
 

Referring again to the examples, you see that N is the union of X and
 

Y and that M is the union of E and F. In symbols R = KUS, V = QUL, 

N = xUY and M = EUF. 

There is something interesting to be discovered in trying to answer the 

following question about the union of two sets. Suppose you know how many 

members there are in each of the sets G and H. Can you tell how many
 

members there will be in the union of G and H? 
 Take a look at example A. 

How many members are there in set K; how many members are there in set S? 

Now how many members are there in set R, the union of K and S? Do you 

recognize the familiar fact that 8 = 4 + 4? Now what happens when you ask 

the same question in example B about the sets Q and L and their union, set V? 

Is it a familiar fact that 15 = 7 + 11 ? How do you account for the difference 

between these two examples? Now try examples C and D to test your 

explanation, To take example D only, you find that Alli and Agesa are 

members of E and are also members of F, but they appear only once as members 

of M, the union of E and F. 

Now you can put the explanation in the formal language of sets: the 
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difference is that in example A the two sets K and S are disjoint, but in each 

of the other examples the two sets are not disjoint; that is they have some 

members in common. 

Exercise 2 - la 

1. 	 Form the union of the following pairs of sets:
 

Example: X =[1, 2, 3,
 

Y[,3, 	 4 

XUY tl, 2, 3, 4~ 

(a) 	 R t5, 10, 15 j T f15, 20} 

(b) 	 B~f 3 
(c) 	 E=( F={a, b, c, d] 

(d) 	 A=4 DOJ0 Bt$QA w 
(e) 	 S is the set of boys whose names begin with S.
 

Y is the set of boys in the choir.
 

(f) 	 I is the set of boys who are Catholics.
 

J is the set of boys who are Moslems.
 

2. 	 Choose three other pairs of sets from the class list. List the members 

of the sets and the members of the union of each pair. 

3. 	 In the following sets, some members are missing. Complete them by 

putting in the missing members. 

(a)(mA,OU {d, , J= fA,Ogon 
(b) fm, ajIU d, I =fm, d, g, o,n= 	 a, 
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2 - 2 Use of diagrams to show union of sets 

You have seen how pictures and diagrams can help us to understand 

sets and subsets. Now let us see how diagrams and pictures can help us in 

understanding how we form the union of two sets. 

Suppose you look again at the class list. List F, the set of boys whose 

names begin with the letter A, andY, the set of boys wno are in the choir. 

F = fAgesa, Allil 

Y=fKofi, Oyelese, Sozi 

F U Y = [Agesa, Alli, Kofi, Oyelese, Sozi} 

The union of these two sets is illustrated in the diagram below. 

Agesa Kofi Agesa Kofi 
AMl Oyelese AMl Oyelese 

(t So
F S 

Y FuY 
(Note that these two sets have no members in common) 

Is F U Ythe same as YUF? Let us find out. 

Kofi Agesa Kof i Agesa 
Oyelese) AIl i 0yelese AliI 
Sozi 

F 
So 

Y ~Yu F 
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By comparing the members of the set YU F and the 
set F U Y we find that 

the two sets have exactly the same mer bers, so Y U F = F U Y. 

Look back at example C where you wro.e down 

X = the set of boys who take part in athletics 

= A!i, Kizza, Kofi, Nsimbi, Senteza, SoziJ 

Y = the set of boys in the choir 

= fKofi, Oyelese, Sozi j
 
As you have already found out set X and set Y have 
some members in common. 

Which 	members are they? Let us draw diagrams to help us see this. 

izza Oyelese [ Kizza Koti 
Nsimbi Sozi Nsimbi Oyelese

zmentea1Senteza Sozi
 

x Y
 Xuy 
Since 	the union of two sets consists of all the members in one set or the
 

other, the members they have in common do not appear twice in the union.
 

Can you see that XUY= YUx? 

2 - 3 	 Intersection of sets 

We have seen how to form the union of two sets. Let us look again
 

at examples B, C, 
 D and 	A (pages 2-2, 2-3). 

Example B. 

Q 	= the set of boys who are ten years old
 

= fKitta, Lule, Nsimbi, Opio, 
 Senteza, Sozi, Wasswaj 
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L = the set of boys who play football
 

= fAgesa, Alli, Juma, 
 Kato, Kizza, Lule, Okot, Ongom, Opio,
 

Sentamu, SoziI
 

We found that the union of these two sets is
 

QUL =jjAgesa, Alli, 
 Juma, Kato, Kizza, Lule, Okot, Ongom, Opio, 

Sentamu, Sozi, Kitta, Nsimbi, Senteza, WasswaI 

While you were forming the union did you notice that Lule, Opio and Sozi 
were members of Q and -Tembers of L. The set ILule, Opio, Sozi l i s called 

the INTERSECTION of set Q and set L. It is written QrqL (and is read "Q 

intersection L"). 

In this case the intersection is the set of boys who play football and 

are 10 years old. 

The INTERSECTION of G and H is the set of things which are in G and 

H. Thus GflH is the set of members common to G and H.
 

Example C.
 

X is the set of boys who take part in athletics.
 

X = 
[Alli, Kizza, Kofi, Nsimbi, Senteza, Sozi J
 
Y is the set of boys who are in the choir
 

Y = fKofi, Oyelese, SoziI
 

Therefore Xly = fKofi, Sozi] because only Kofi and Sozi take part in athletics 

and are in the choir. 

Example D. 

E is the set of boys who are eleven years old
 

E = Agesa, Alli, Kato, 
 Kizza, Mukasa, Singh} 
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F is the set of boys whose names begin with A
 

F = {Agesa, Alli]I
 

The intersection EflF is the 
set of boys who are 11 years old and whose 

names begin with the letter A. ElF = fAlli, Agesa]
 

Example A.
 

K is the set of boys whose names 
begin with the letter K. 

K = [Kato, Kitta, Kizza, KofiL Kza Ita 
S is the set of boys whose names begin with S. 

S =fSentamu, Senteza, Singh, Sozi3 

In this case K"S = 3, the empty set, because the sets have no 

members in common. You can see that the intersection of any two disjoint 

sets is the empty set. 

Exercise 2 - 3a 

1. Find the intersection of the following pairs of sets. List the members. 

Example X=f1, 2, 33 

Y 12 t3,h 4
 

xfly=(2, 33
 

(a) R={f5, 10, 15]1 T = [15, 203 

(b) A= AE]OJ B={OADJ 
(c) E=~ F =([A, B, C, D3 

(d) B={ DD=j. f 

(e) S is the set of boys whose names begin with S. 

Y is the set of boys in the choir. 

(f) I is the set of boys who are Catholics. 

J is the set of boys who are Moslems. 
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2. Choose three other pairs of sets from the class list. Find the members 

of the sets and the members of the intersection of each pair. 

3. Start with a set A. Can you find a set B so that AUB = AnB? Explain 

ycur answer. 

4. Complete the following statements by filling in the blanks. 

n 	 =(a) fa, ] fb, cl fbj 

2 - 4 	 Use of diagrams to show intersection of sets 

You are now quite familiar with the use of pictures and diagrams to 

help 	you understand various facts about sets. Let us now use diagrams to 

illustrate the intersection of two sets. 

First look back once more at the class list. Recall that X is the set of 

boys who take part in athletics, and Y is the set of boys who are in the choir. 

X = fAlli, Kizza, Kofi, Nsimbi, Senteza, Sozi 

Y=tKofi, Oyelese, Sozi] 

How 	can we use diagrams to represent these sets ? First you notice that 

Kofi and Sozi take part in athletics and are members of the choir. That is, 

they are the members which are common to both sets. They are, therefore, 

the members of the intersection of X and Y. Th.;n 	XnY= fKofi, Sozi] 
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This intersection is shown in the diagram below. 

T\ 

I ~~~ ,CT 	 ' Id'L e 
N-ci'mbi -,, 

XnY 

Can you draw a diagram to show that Xn.Y = YflX? Now take another 

look at the class list. What is the set of boys whose names begin with the 

letter A? Set F =IAlli, AgesaI. The set of boys in the school choir is 

Y = fKofi, Oyelese, Sozi}. How can we show thei intersection of these sets 

by a diagram? Have they any members in common? No. Therefore we have 

to represent the sets by circles which do not have any members in common. 

That is, the intersection of the two set- is the empty set. 

F 	 . y 
A~O-i 

Cyel.se 

F 	 ¥
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The intersection of 
set F and set Y is the empty set, because the 
two sets have no members in common. So F ny = f j 

Binary operations
 

It is 
 important to note that the operation of union is defined as an
operation on two sets. When we unite two sets P and Q, we get a third set 
R. That is, PUQ = R. If we only said, however, "P union" or "the union 
of P and ", it would certainly not be clear what was to be done, until we 
were told the 
set with which P should be united. In a -similar way the
 
operation of intersection is defined 
as an operation on two sets. Therefore,
union and intersection are BINARY operations. (Binary means two at a time.)
Thus, given any two sets there is a set which is their union. Also, given any
two sets, there is a set which is their intersection. (Remember that the
 
intersection of two 
disjoint L, ts is the empty set.)
 

Because the operation of union of 
sets is a binary operation, can we
form the union of three sets? Strictly speaking, the answer is "No" since 
we can only form the union of two sets at a time.
 

Let us 
look at the following three sets.
 
F is the set of boys whose 
names begin with the letter A.
 

F =fAgesa, 
AliI 

K is the set of boys whose names begin with the letter K.
 

K = LKato, Kitta, 
 Kizza, KofiI 
and W is the set of boys whose names begin with the letter. W.
 

W = fWasswa
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Can we unite these three sets? We can do this by taking them two at a 

time: (FUK)UW or FU(KUW). Aro these two new sets equal sets? Let 

us use pictures to help us answer the question. First we have 

DI Kizza, Kofi 

F K W 

Kizzaa sKato 

SKizza Kofi 

Fu K)uW 
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Then 

Ageso ao it 
Ali Kizza Kof Wasswa 

F K W 

Agesa Kato Kizza
 
A1K itta Kofi
 

F 

izzi 

Fu (Ku W) 

By comparing the members of the set (FUK)Uw and the set FU(KLJW) 
we find that the two sets have exactly the same members, so
 

(FUK)UW= FU(KUW).
 



SUMMARY OF UNIT I 

A set 	is a collection of things. 

Examples of ways of describing a set are as follows: 

(i) T 	is the set of all trees in the garden 

(ii) V= a, e, i, o, 1u) 
(iii) C= 1, 2, 3, 4,.. 

The empty set has no members and is represented as f 3 
If each of the members of set A is a member of set B then we say A 

is 	 a subset of B. 

If C is a set then both C and the empty set are subsets of C. 

When we write A = B we mean that set A and set B have the same 

members. We say that A and B are the same set. 

For example fc, a, tI = [c, t, aI 

If two sets match exactly they are said to be equivalent sets. 

For example 

if X= {1, 2, 3, 4} 

and Y= a, b, c, dJ 

then X and Y are equivalent sets. 

If set A is eqivalent to set B and set B is equivalent to set C then it 

follows that set A is equivalent to set C. 
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It S and T are sets then SUT, the union of S and T, is the set whose 

members are all the objects which are members of S or members of T. 

For example. 

If S = I, 2, 3, 4] and T= 3, 4, 5 

then SUT= i, 2, 3, 4, 5]
 

also TUS= 1,2,3, 4, 5
 

If K= {1, 3, 5r andL = [2, 4, 6] 

then KUL= (1, 2, 3, 4, 5, 6] 

if 
 S = 
{1, 2, 3, 41 andE={ J 
then SUE = 1, 2, 3, 4] 

If A and B are sets then AAB, the intersection of A and B, is the
 

set whose members are all the objects which are members of A and are
 

members of B. 

For example:
 

ifA= [I, 2, 3, 4) andB= §3, 4, 5}
 

then AnB= {3, 4]
 

also BlA
= (3, 4]1 

A and B are disjoint sets if they have members in common, inno 

other words if AlB =f I 
The operation of union of sets and the operation of the intersection 

of sets are binary operations. 



GLOSSARY 

Counting numbers 

When you first learned to count you began with 1 and counted 1, 2, 

3, 4, 5 and so on. These numbers used in counting are called counting 

numbers. They are also called natural numbers. The set of counting numbers 

is the set tIl, 2, 3, 4, 5.. 

Whole numbers 

in arithmetic the numbers 0, 1, 2, 3, 4 and are members of theso on 

set of whole numbers. The set of whole numbers is the set 0, 1, 2, 3, 

4, 5, ... j The difference between the set of counting numbers and the 

set of whole numbers is that 0 is not a member of the set of counting numbers. 

Even whole numbers 

The set of numbers T0, 2, 4, 6, 8, . . .] is called the set of even 

whole numbers. Note that the set of even counting numbers is the set 

I.2, 4, 6, . . .J. An even number is a number exactly divisible by 2. 

Odd whole numbers 

The set fi, 3, 5, 7, . . is called the set of odd numbers. An 

odd number is a number not divisible exactly by 2. 

Prime numbers 

A prime number is a whole number greater than 1 which is exactly 

divisible only by itself and 1. Note that 1 is andnot a prime number, 2 

is the only even prime number. The set of the first ten prime numbers is 

'N 
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2, 3, 5, 7, 11, 13, 17, 19, 2 3, 29 

The symbols ">" and "<" 

The symbol ">" means "is greater than" and "<" means "is less than". 

Sometimes we also use the symbol "> " (or " > ") to mean "is greater than or 

equal to" and "< " (or "< ") to mean "is less than or equal to". For example 

"5 > 3" is read "5 is greater than 3". "3 < 5" is read "3 is less than 5". 

The set of whole numbers less than ten is 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 

but the set of whole numbers less than or equal to ten is f 0, 1, 2, 3, 4, 5, 

6, 7, 8, 9, 10 1 . The difference is that 10 is a member of the second set. 

One-to-one col, -pondence 

Another expression you may come across in other books is "one-to

one correspondence. " When there is a matching between the members of 

one set and those of another so that each member of the first set is matched
 

with exactly one member of the second set, 
and each member of the second 

set is matched with exactly one member of the first set, we say that the two 

sets are in one-to-one correspondence. For example, the set of heads of the 

pupils in a classroom is in one-to-one correspondence with the set of pupils 

in the same classroom. 

Digit 

In our number system we use the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

called digits, to represent numbers. For example, 343 is a numeral with three 

digits while 43 is a two-digit numeral. With the ten digits we can represent 

any number that we like. In a later chapter when you learn about place value 

you will realize that the first 3 in the numeral 343 represents i hundreds and 
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the second 3 represents three ones. 

The union of two sets 

Our definition of the union of two sets was the following: 

"For any two sets G and H, the union of G and H is the set whose 

members are all the things which are members of G or are members of H." 

You may have some difficulty with the use of or in our definition because 

it is different from its usual meaning. When we say "We will either go to 

town or stay at home " we mean that we will do only one of these things but 

not both. In mathematics, however, when we say "b is a member of X or a 

member of Y" we mean one of the following; 

(1) b is a member of X 

(2) b is a member of Y 

(3) b is a member of both X and Y. 

For example if X = i1, 3, 5, 7} and Y= [5, 7, 9, 11 J, XUY= 1, 3, 5 , 

7, 9, ii. That is,YU Y = [l, 3, 5, 7, 9, l1} consists of all the numbers 

which belong to X or belong to Y. 



ANSWERS TO UNIT I 

CHAPTER ONE 

Exercise 1 	 - 3a 

1. (a) 	 Sunday, Saturday. 

(b) 2, 4, 	 6, 8, 10, 12 

(c) 	 The answer to this question will vary from country to country. 

(d) 	 September. (This is an example of a set with only one member.) 

(e) There 	are no cities in Africa with a population of over four million. 

2. The 	 1, 3, 5, 7, 9set of squares of the numbers 2, 4, 6, 8, and 10. 

or the set of squares of the first ten counting numbers. 

3. 	 2, 3, 5, 7, 11, 13, 17, 19. (1 is not a prime number. Look at the 

glossary for an explanation of this. ) 

4. 10, 	 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 

95. (Look at the glossary for explanation of a digit.) 

5. 	 102, 111, 120, 201, 210, 300. These answers are correct because 

I + 0 + 2= 3. 1+ 1 +I = 3 etc. 

6. (i) 	 The set of even whole numbers less than twelve. 

(ii) 	 The set of the first six counting numbers that are exactly divisible 

by five. 

(iii) The set of the months whose names begin with the letter J. 

(The other descriptions are not good enough because they leave doubts 

about the set intended.) 
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7. (a) 	 Yes (d) No 

(b) 	 No (e) Yes 

(c) Yes
 

Exercise 1 - 5a
 

1. (a) The set of the cubes of the first six counting numbers. 

(b) 	 The set whose members are the first eight letters of the English 

alphabet.
 

c) The set of names 
of days of the w:eek. 

2. (a) 	 f21, 22, 23, 24, . . 

(b) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 

(c) 	 (11, 13, 17, 19, 23, 291 

3. (a) 	 S = (9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48 

(b) 	 S is the set of all multiples of 3 which are greater than six and 

less than 51. 

4. 	 (a) and (e). (It is possible to list all the members of the set of living 

human beings but it would take great amount of space and timea 

and we would not describe this set by listing.) 

5. 	 (a) 0, 2, 4, 6, 8 1 (According to the definition in the glossary 0 

is an even whole number.) 

(b) 	 f0, 1, 2, 3, . . . (There are two errors -- 0 is a whole number 

and 9, 999 is not the last whole number. The set of whole numbers 

has no last member. ) 

Mc) 1,3, 5, 	 7, 9, 11 (0 is not an odd number. The numbers were 

less than 13, so 13 should not be included in the list.) 
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(d) 	 f3, 6, 9, 12, 15, .. . (This is a set without any last member 

so . . . must be inserted within the curly brackets to show this.)
 

Exercise 1 - 6a
 

1. (a), (b) and (d) are example-, of the empty set.
 

Exercise 1 - 8a
 

1. 	 (a) Sa, bI is a subset of fa, b. C d 

(b Set E is a subset of Set D. 

2. 	 Set Y is a subset of set V. 

3. 	 The set(A, B, C, D, E7I is not a subset of the set IA, B, CIbecause 

the set IA, B, C, D, EI has D and E as members, which are not 

members of[A, B, C 1. Note that the set [A, B, C] is,however,a 

subset 	of the set (A, B, C, D$ E 

4. 	 (a) Set K is a subset of set X. 

Set L is not a subset of set X. 

Set M is a subset of set X. 

(b) 	 Two 

(c) 	 (2, 4, 6, 8] The set (2, 4, 6, 8] is a subset of set X. 

(d) 	 {3, 6, 91 The set f3, 6, 9 is a subset of set X. 

(e) 	 There are very many subsets of set X. Compare your answer to 

this question with the answers given by other students. 

Exercise 1- 9a 

(a) 	 f ] , ia , cJ,(a, bc, 

(b) ] al , b , c. I ta, b, Ib, c ], c. a, I a, b, c 
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(c) Y3(x3[{J4 yy 
(d) (l 1 22, f 3 [43 l23Jf2,33 

3, 43 2, 43 , [1, 43 ' 1, 33, 1, 2, 33 . 2, 3, 41 
(3, 4, 1J 2,f 1, 431 (f1, 2, 3, 43 

(e) ].£Ai §jfoJfA DI[E oJ4A 0],

fAoog0 J J
 

(Notice that it does not matter whether yrou write 1i, 2 3or ( 2, 11 
etc. This has been explained.) 

2. The empty set is a subset of all the given sets. 
3. {i, 23 is a subset ofsetA; fa, b, cI is a subset or set B; f x, y 

is a subset of set C; then 2, 3, 41 is4I,a subset of fi, 2, 3, 43/\ L] 0 isa subset fz 0cJ . The whole set 
is a subset of itself. 

4. (a) T rue 

(b) Not true 

(c) True 

(d) Not true 

(e) Not true 

(f) True 

(g) True 
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Exercise 1 -

1. 

10a 

This is just one way of picturing 

the class and Mary, John and Kwame. 

You will have otei ideas. 

I 

Mary 

~--Jd/ohn 

2. 

A= all the books in the classroom 

all the all the 
Maths books English books 

in the in the 
classroom classroom 

This is one way of answering this question. There are many others. 
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3.
 

~Monday 

Tu-dayFriaySunday 

Exercise 1 - 12a 

1. 	 The set of all even numbers less than ten is 1 0, 2, 4, 6, 81 

Therefore A is not equal to B. 

2. 	 (a) and (d) are examples of pairs of equal sets.
 

INote in 
 (d), (5) and (5 X 1) are names for the same lumber3 

3. 	 C is not equal to A. 

D is not equal to A. 

E is not equal to A . 

{13, 5, 7, 9 J ,f[, 3, 9, 7 3, 9, 5JIf7, 

All these sets are equal to A because they have the same members as A. 

4. 	 X 0, 1, 2, 3, 4, 5, 6, 7, 8 

Y= 1l, 2, 3, 4, 5, 6, 7, 81 

X is not equal to Y because X has one member that is 0 which is not 

a member of Y. 

4Q
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Exercise 	1 - 15a 

1. (a) A= 	 2, 3, 4, 5, 6j 

B = na, Guinea, Keya, Lieria, Nigeria, N. Rhodesia, 

7, 8,9/ e//rLoe 
Nyasaland, Sierra Leone, Uganda 

A and B match exactly. 

(b) X = {oi 

Y= f42, 

2,1

I
44, 

4t 

46,0 

6,0 8, 

I48, 5 0, 

10, 

52, 

12, 

5 4, 

14, 16, 

556,54 

18J 

X and Y do not match exactly. (18 in this case has no partner.) 

(c) S =f1 2,II 3, 4, 5,I I I . 

T 5, 10, 15, 20, 25, 30, . .. 50, 005 

S and T do not match exactly because we can match 50, 005 with 

a member of set S and then we can write at least one more 

member in set S. 

L f ip 8, 27, 64,.. 

K and L match exactly because no matter what number of K we 

choose we can always find its cube in L, and every member 

of L is the cube of exactly one number in K. 

(e) 	 Each pupil has two feet. Therefore the set of all pupils does not 

match exactly with the set of feet of all the pupils. 

2. Answers will vary. 
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3. 1, 2, 3, 4, 5, . . . 

1201,202, Z03, 204, 205, .
 

It is possible to match these 
sets exactly. 

4. Answers will vary 

5. (a, bJ [qb a, bJ a, bJ a, bJ a, bJXX 
r, s S, p S, p, 

ANSWERS TO UNIT I 

CHAPTER TWO
 

Exercise 2 - la
 

1. (a) RUT= (5, 10, 15, 203 

(b) BUD f~ 

(c) EU F [a, b, c,, dJ 

(d) AUB =[Air O1J 
(e) S = fSentamu, Senteza, Singh, Sozi3 

Y= [Kofi, Oyelese, Sozi} 

SUY = fSentamu, Senteza, Singh, Sozi, Oyelese, Kofi] 

(f) I = fAgesa, Kitta, Kofi, Okot, Ongom, Sentamu, Sozi3 

f = [Alli, Kato}I 

I.) = fAgesa, Alli, Kato, Kitta, Kofi, Okot, Ongom, Sentamu, 

Sozi] 

2. Answers will vary. 
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3. (a){A OJufD] K01=AOLRB% 
(b) [m, a, n.n}U[d, o, I_ = M, a, d, g, o, nJ 

This is an example of a correct answer.
 

Exercise 2 - 3a
 

1. (a) RflT = {15] 

(b) AlB = fZ\ 0~ 
(c) EflF= 3 
(d) BfnlD, I 
(e) S = {Sentamu, Senteza, Singh, Sozij 

Y = fKofi, Oyelese, SoziJ 

sny =.Sozi I 
(f) I = fAgesa, Kitta, Kofi, Okot, Ongom, Sentamu, Sozi] 

= f=i, Kato] 

2. Answers will vary. 

3. A and B must be equal sets. 

4. (a) {a, b] n b, c = fb] 

This is a correct answer. 



UNIT II - THE WHOLE NUMBERS
 

CHAPTER 3
 

NUMBER 

In the previous unit we have considered some of the elementary facts 

about sets, and ways to use them. In this unit on whole numbers you are 

going to see how pupils first develop the idea of number from sets. We 

shall consider the representation of numbers. Finally, we shall study the 

arithmetic operations of addition, subtraction, multiplication and division, 

as well as the relations of order, in the set of whole numbers. 

3 - 1 Comparison of sets by matching 

It is interesting to consider the way in which pupils first develop 

the idea of number. Let us 13ok at these sets of pawpaws and bananas. 
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We can match each banana with exactly one pawpaw and, in doing so, we 

also match each pawpaw with exactly one banana. You recall that the two 

sets are said to match exactly. We also say that they are equivalent sets. 

We conclude that there are just as many bananas as there are pawpaws. The 

set of pawpaws has JUST AS MANY MEMBERS as the set of bananas. Any 

other matching of the members of these sets will yield the same relationship: 

the sets would match exactly. We can show below some other matchings of 

these sets. 
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Exercise 3 - la 

1. 	 Show some other matchings of the given sets of pawpaws and bananas. 

2. 	 Take sets A and B shown below, and match their members in as many 

different ways as you can. 

Set B
 

P QR S KLMN
 

Set A
 

Now look at these sets:
 

Double arrows have been drawn to match each orange with exactly one 

pawpaw. Matching shows that there are some pawpaws left over. The 

set of pawpaws has MORE MEMBERS than the set of oranges. We may also 

say that the set of oranges has FEWER MEMBERS than the set of pawpaws. 

As in 	the case of exact matching, we may show other ways of matching 
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pawpaws and oranges. In doing this we find that the relationship between 

the sets does not change; the set of pawpaws has more members than the 

set of oranges, and the set of oranges has fewer members than the set of 

pawpaws. We show other matching arrangements of the sets: 

0 C>!o V 
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From 	the preceding illustrations it is clear that when we match the mern

bers 	of a set A with the members of a set B, we discover that one and only one 

of the following relations holds:
 

Set A has as many members as set B.
 

Set A has fewer members than set B.
 

Set A has more members than set B. 

Exercise 3 - lb 

1. 	 Take various sets of objects and try to match their members. When you 

have compared the sets, make sentences about them using the phrases: 

"more members, " "fewer members, " or "as many members. " (This 

matching should be done without counting.) Here are a few suggestions: 

(a) 	 The set of coins in your pocket and the set of fingers on your 

right hand. 

(b) 	 The set 

EQD Elc < 70)
 
and 	the set of tutors in your classroom. 

(c) The set of Prime Ministers in Africa and the set of independent 

African states. 

(d) 	 The set of Ministers in your Government and the set of all 

universities in your country. 

3 	- 2 Sets in natural order 

Let us now compare the following sets of stickmen and boxes: 
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The set of stickmen has more members than the set of boxes. In fact, 

there is one stickman not matched with a box. This "one-more-than" 

relation provides a basis for placing sets in NATURAL ORDER. 

Look at the following sets of triangles: 

CAA
 

QA A A A ) 

(AA AAAAAAA) 
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AzAAAA
 

No set of triangles matches any other set exactly. However, we can arrange 

the set in a one-more-than relation, starting with the set that has fewest 

members. We note that there is an empty set. Because the empty set has 

the fewest members of all, it comes at the beginning of the new arrangement. 

The set consisting of a single triangle has one more member than the empty 

set, so it comes next. By continuing to choose the set which has one more 

member than the preceding set, we place the sets in natural order as shown 

below: 

AA
 

(AAA
rAAAA
(AAAAAAA 

(A AAAAAAAA
AAA
AAA 
GAA~aA(I
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Exercise 3 - 2a 

1. Place the following sets in natural order: 

dm-I 

A< D@ 

C: BC D E F GH
A zzB 

( P Q R S T U V 
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3 - 3 Number as a property of sets 

Suppose that we start with some set, for example, the set pictured 

here: 

Q 00A 

Think of sets which are equivalent to this set, that is, sets which can be 

matched exactly with it. Here are pictures of several such sets: 

QQ 
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It is possible tc form many other sets with exactly as many members as 

the original one. You can always test these sets by matching them with
 

the set you started with. 
 You can assemble in this way the sets equivalent
 

to the original set.
 

Exercise 3 - 3a 

1. Make up a few sets which match this set exactly. 

2. Make up a few sets which match this set exactly. 

Think about all the sets that are equivalent to the original one. Is
 
there something which all these sets have in common? 
 Of course you see 

what it is: each set has jus, as many members as any other. We say that 
all these sets have the same NUMBER of members. It is convenient to give names 

to numbers. The number we use to describe the set we began this section 

6$ 
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with is named "four. " We say that there are four members in this set.
 

This number called "four" is attached 
to all the other sets we have pictured 

above. We speak of these sets as four arrows, four boxes, four stickmen, 

four bananas. This number four also characterizes every other set that is 

equivalent to the original set. All these sets have something in common: 

it is the property of "four-ness, " the number four. 

Every number has both a name and a lymbol: the symbol "4" stands 

for the number whose name is "four. " 

We have now described several concepts for pupils to think about, 

understand, and learn in classes you will teach. There is the set of objects. 

Then there is the number telling how many members the set contains. Each 

number has a name. Each number is represented by a symbol, which is 

called a NUMERAL. 

Exercise 3 - 3b 

1. The number attached to this set 

is called "three, " and is represented by the symbol "3. 

Picture other sets containing 3 members. 

2. What is the name of the number attached to the set which in the natural 

order comes just after the set in problem I? 
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3. 	 Repeat this for any set which in natural order comes just before the 

set in problem 1. Picture a few such sets. 



CHAPTER 4 

THE SET OF WHOLE NUMBERS 

4--1 Identifying the whole numbers 

You have seen how to place sets in natural order. Using this natural 

order, we give a name to the number of members in each set, and we write 

the numeral which represents the number. 

Set Number Numeral 

zero 0
 

(Aone 1
 

ALtwo 2
 

AAA three 3 

AAAA four 4
 

AAAAA -five 5
 

ZAAAAAA six 6
 

A AAAAAA seven 7 

eight 8 

AAA A A AA nine 9 
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The numbers 0, 1, 2, 3, 4, 5 and so on are called WHOLE NUMBERS. 

The set fo, 1, 2, 3, 4, 5,. . is the set of whole numbers. We give these 

numbers a special name because as you will see later there are other kinds
 

of numbers.
 

4-2 	 Order in the set of whole numbers 

When sets are placed in natural order -- as above -- we also say that 

the corresponding whole numbers are themselves in natural order. Thus 

0, 1, 2, 3 are in natural order. On the other hand 3, 6, 5, 4 are not in 

natural ordei; the natural order is 3, 4, 5, 6. 

Exercise 4 - 2a 

Here 	are some sets: 

fA, B, C, 	E 

AB, 	 D} 

[E 3) 
Find the wh,.e numbers attached to each of these sets. Place 

the sets in natural order, and che corresponding numbers also in 

natural order. 

We 	have already seen how a set of objects has a whole number attached 

to it. Suppose the number of members in set A is m, and the number of 

members in set B is n: 

(i) 	 If A has just as many members as B, the number of members 

in A equals the number of members in B. We express this 

fac t: 

m = n. 
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(ii) 	 If A has fewer members than B -- and therefore B has more 

members than A  we say that the number of members in A 

IS LESS THAN the number of members in B. We express 

this fact: 

m <n. 

(iii) 	If A has more than B --members and therefore B has fewer 

members than A -- we say that the number of members in 

A IS GREATER THAN the number of members in B. We express 

this fact: 

m > n. 

From the preceding paragraphs two things should be clear. The statement 

5> 2 amounts to the same thing as 2 <5; similarly, for any whole numbers 

a and b, if a > b then also b <a and if b> a, then also a < b. Furthermore 

to say that a >b amounts to the same thing as saying that the whole number a 

comes after the whole number b in the natural order. Since 3, 4, 5, 6 are in 

natural order, 6 > 5, 6 >4, 6 > 3, 5 >4, 5 > 	3, 4 >3. 

Exercise 4 - 2b
 

Here are four sets:
 

A, 	 B, C, DJIF1 	 OAJ 
t%~ C, E, F
 

Find the number of members in each. 
 Now write all the statements 

you can, using these numbers and < =,>. 
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4-3 Countinq and the counting numbers 

In section 4-1, diagrams show sets of triangles in natural order. Each 

set has one more member than the preceding set. Just as we placed these 

sets of triangles in natural order, we can also form sets of whole numbers
 

and place these sets in natural order. 
 (11 is a set whose one member is
 

the number 
 1. (l, 2) is a set of the two numbL! s 1 and 2 in their natural order. 

11, 2, 31 Is a set of the three numbers 1, 2, and 3 in natural order, so on.and 

We come in this way, for example, to the setfl, 2, 3, .. ., 271, which is 

a set of the twenty-seven numbers 1, 2, 3, and so on up to 27, in natural order. 

The last number in the set is 27, and 27 is the numter of members in the set. 

Similarly, the set {1, 2, 3, . . ., nj is the set of n whole numbers 1, 2, 3, 

and so on up to n in natural order. The last number in the set is n, and n is 

the number of members in the set. These sets of numbers are called COUNTING 

SETS. The numbers in each counting set are counting numbers in natural order 

starting from 1. The complete set of counting numbers is the set fl, 2, 3, 4, 
L 

5, . . .}. Counting sets are represented below.
 

Counting sets 
 Number of members 

1 1, 2] 2
 

f{1, 2, 3] 3
 

fl, 2, 3, 4] 4
 

{1, 2, 3, 4, 55
 

112, 3, 4, 5, 6] .
 

12, 3, 4, 5, 6, 7] 
 7 
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1, 2, 3, 4, 5, 6, 7, 8 1 8
 

(1, 2, 3, 4, 5, 6, 7, 8, 9] 9
 

(1, 2,j 3, 4, 5, 6, 7, 8, 9, . n ) n
 

Corresponding to .-ach counting set is 
 the number of members in that set. 

The last number in a counting set also tells the number of members in that 

counting set. 

4-4 Finding the number of members in a set 

When we use the counting sets we follow the natural order of numbers; 

that is, we count: "one, two, three, .. . ". "HowNow you may ask, do we 

find the number of members in any given set?" For example, take the set of 

fish shown below. 

f I 2 3 '4 

Match the fish with the numbers in a counting set starting with 1, proceeding 

in natural order. The set of fish is exhausted when the last fish is matched 

with the last number in a counting set. This number tells us the number of 

fish. It is the largest number in the counting set. 

1, 
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When we teach children how to count, we teach them to use a set
 

which they describe with the spoken words 
 "one, " "two, " "three, " "four,
 

and so on. It is important 
 to note that as they say "one, " they are matching 

the number 1 with an object; as they say "two, " they are matching the number 

2 with another object; etc. The last number they name is matched with the
 

last remaining object in the set. 
 This last number tells the number of objects 

in the set. 

In counting, it is important to attach just one number to each member 

of a set. In the preceding example of counting fish, the order in which we take 

the fish is not important. What is important is that each fish is counted just 

once. When we count the members of a set, no matter how we do the counting, 

we always find the same number of members. When you count the sides of a
 

square, for example, you always get 4.
 

Exercise 4 - 4a 

1. Count the set of chairs in your classroom. 

2. How many walls are in your classroom? 

3. How many brothers and sisters do you have? 

4. How many palm trees are there in your training college compound? 

4-5 Equivalence using counting sets
 

You can use counting sets to tell whether two sets 
are equivalent. 

Recall that earlier in this unit we stated that two sets A and B are equivalent 

when there is an exact matching of the members of set A with the members 

of set B. We can now restate the idea of equivalence of sets using counting 

sets. 
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Let u§ suppose we have a set A of fish and a set B of oranges. In order 

to tell whether the two sets are equivalent, find the counting set which matches 

exactly the set A. See whether the set B also matches exactly the same 

counting set. If it does, then we can conclude that because set A is equivalent 

to the counting set, and set B is equivalent to the counting set, then set A 

is equivalent to set B. 

In this case we see that set A is equivalent to the counting set f1, 2, 3, 4J, 

and set B is equivalent to the counting set l, 2, 3, 4}. So A and B are 

equivalent. 

Exercise 4 - 5a 

Find, 	 by counting, wht.her set A and set B are equivalent sets. 

1. 	 SetA: -- OA O_ 

Set B: the set of fingers on your left hand. 

2. 	 Set A: the set of consonants in the word relation. 

Set B: thu set of sides in the figure 1:I 



CHAPTER 5
 

REPRESENTATION OF NUMBER
 

5-1 Formino the number concept. Abstraction 

Children are not born with the idea of number. It takes them some years to 

learn it. 

We say that a set of objects like 

has three members. But at first a child sees only the objects or notices that 

they are together on the table. Even after he has learned the number names: 

one, two, three, four, ... , he may not connect the word "three" with the set 

shown. Before he can do this, he must see many sets of three objects and come 

to notice what these sets have in common. He must see them as sets of three 

things. To do this he must, as we say, abstract from the nature of the objects, 

that is, learn not to pay attention to what the things are. For example, he must 

forget or not paEy attention to the fact that 

is a set of pencils 

and is a set of bananas. 
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These are the most obvious things he notices about these sets. They are hard to 

push out of his mind so that he sees something alike about the two sets even if 

their members are so different. These sets are alike in a way that the two sets 

SJJ
 

and
 
?2D 

are not alike, even though these two sets have elements of the same kind. 

In learning to see the likeness of the set of pencils and the set of bananas 

(in spite of their obvious difference) he is learning to abstract. At an earlier
 

age, he has already made a 
beginning in this process of abstraction. He has
 

learned for example to 
use the word "banana" for any one of a great many
 

objects which look somewhat alike but not exactly alike. 
 Somc of these objects 

may be green and some may be yellow! He has learned that this does not matter. 

They are bananas just the same.
 

The abstraction needed for number is 
 more difficult than that needed in 

naming simple objects. Much more has to be taken away from what is see:n to 

leave what is wanted. Usually a child has to be about 6 years old before he can 

understand what number words mean in his own experience. Teaching this 

understanding takes great patience. As we have seen it can be done by showing 

the student sets of many sorts, matching them with each other, and learning the 

proper number words and numerals. 
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5-2 The need for symbols 

The number four cannot be seen like a stone or a banana. It is an idea. To 

make it real we must represent it by a word or a symbol. Thus we can use the 

word "four" or the symbol "4" which we call a numeral. Just as there are 

different words for the number four in different languages, there are different 

systems of numerals which have been used. The ancient Egyptians would have 

written II II instead of 4. The Romans would have written IV. 

While numbers cannot be seen, numerals can be. They can be written on 

paper or on the chalk board. They seem more like real things. This is good. 

However, there is a danger. Numerals can become just marks on the paper which 

the student learns to write without connecting them with sets of objects. A 

little further on he may learn to put down 5 when he sees 2 + 3 without having 

any idea why he can do this or what 2 + 3 means in his experience. Then arith

metic becomes a meaningless game with symbols. 

The facts of arithmetic do not depend on the names which we give to 

numbers. For example 

2 + 3 is 5 

says the same thing as 

II + III is V 

The first statement is written in Hindu-Arabic nume, s; the second in Roman 

numerals. They mean the same thing. 



5-4
 

5-3 	 Ways of representing numbers (Egyptian, Babylonian) 

Probably among the earliest symbols in use were model matching sets such 

as stroke ( I ) for one, the wings of a bird (Y) for two, three leafed clover 

( ? ) for three, the four legs of an animal (t34 ) for four, and so on, This 

principle was adopted by the early Egyptians around 3,500 B.C. possibly as an 

extension of a system of tallying as follows: 

1 2 3 4 9 
I II III IIII IlIII! 

Clearly such systems are of little use for larger numbers. We cannot keep 

on making up and remembering new symbols and names for numbers. Some kind 

of grouping becomes necessary with special symbols to represent the groups and 

groups of groups. The early Egyptians built up their system in ;:Loups of ten. 

Their 	single numerals were the following: 

NUMBER EGYPTIAN OBJECT REPRESENTED BY THE NUMERAL 
NUMERAL 

ONE STROKE OR STAFF 

TEN C HEEL BONE 

ONE HUNDRED @ SCROLL OR COILED ROPE 

ONE THOUSAND LOTUS FLOWER 

TEN THOUSAND 9 POINTING FINGER 

HUNDRED THOUSAND POLLIWOG 

ONE MILLION _ ASTONISHED MAN 
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In the Egyptian system, the order in which the symbols are arranged does 

not matter. Thus o nin are all numerals for twenty-one. Othernni i, I A, fl 

examples of Egyptian numerals are as follows: 

7 23 456 1821
 

EGYPTIAN NUMERALS mIIII n n ii @ @

rnf nniN., nnieG@G@ 

Exercise 5-3a 

1. 	 Write Egyptian numerals for the following: six, fourteen, three hundred and 

fifty-six, three thousand and twenty. 

2. 	 What numbers are represented by the following Egyptian numerals: 

IIIJ,nnii,@@ @@11.,, nm " @osn 

In the Babylonian system which was used about 4,000 years ago, there 

are only two symbols, W and 4 . v was used to represent 

one and 4 to stand for ten. These two symbols were repeated to write 

numeral.- from 1 to 59. Examples of Babylonian numerals are as follows: 

6 23 39 45
 

BABYLONIAN A
 
NUMERALS 	 44VvW~v 4v 
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In the 	Babylonian system, unlike the Egyptian system, a symbol for a 

large number always precedes a symbol for a smaller number. The same two 

symbols were used to represent numbers greater than 59, but the method was 

confusing. For example, 1 could represent either sixty or three hundred 

and sixty, as well as one. 

5-4 	 The Hindu-Arabic system of numeration 

Nowadays we use a system of numerals which is called the Hindu-Arabic 

system. This system has ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 which are 

called digits. We are able to represent any number, however large, by using 

these digits and an especially clever idea, that of place value. As you know, 

in the Hindu-Arabic system, we write digits in the ones place, the tens place, 

the hundreds place, the thousands place, and so on. The value of any digit 

depends both on the digit and on the place it occupies in the row of digits. 

Thus, 	 in the numeral 3234, the 

I -I first 3 represents three thousands 
-4 ZXT 0 
0 :oc 

-MI 
0 

Z -1 r 
0C 

-
z and the second 3 stands for three 

a C TWO 

0 
Sz 

(fD 
0 
Cl 

0 
U 

0 
m 

M 
z 

0 
z 
n, 

tens. 

This number would be written 
3 2 3 4 

in the Egyptian system as 

T eAe@ nnniii where 
the symbols could be arranged in any order. This could be described as an 

additive method and it is interesting to compare it with the Hindu-Arabic way of 

writing numerals. Discuss the two systems among yourselves. 
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You will notice that both systems work with groupings of ten. We are told 

that early man chose this particular grouping because he used his ten fingers for 

counting. When counting or matching sets of more than ten objects, his ten 

fingers would soon be us ed up. He would have to record this in some way or 

another. Perhaps he put a stone in his pocket if he had one, and then he could 

continue using his fingers again. Each 	stone would then stand for ten. If he 

got a large number of stones in his pocket, he could replace each ten of them by 

a larger stone, again 	using ten as the natural group. Each larger stone would 

then 	stand for ten tens, i.e. one hundred or 10 X 10 written as 102 for short.
 

And so he could continue. Ten of these larger 
stones would form a new group of 

one thousand, i.e. 10 X 10 X 10 written as 103 for short. The next group would 

consist of ten thousands or 10 X 10 X = 410 X 10 10 .	 When we write numerals in 

this way, the raised numeral (the 4 in 10 4 , for example) is called an index or
 

-power. We speak of 4 
as the 	power to which 10 must be raised to give 10,000,
 

or as the index of 10.
 

5- 5 	 Grouping 

The idea of grouping is fundamental in recording numbers and we must see 

that our pupils understand it thoroughly. They must realise the necessity for 

grouping. Our position is similar to that of a messenger boy of long ago who 

had to report to his chief how many people there were in a village. For each 

person he put a small stone in his sack. He intended to carry the sack to the 

chief and say, "Behold! There are as many people as stones." This would have 

been a good method if there had been only a few people in the village, but many 
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stones would make the sack too heavy to carry. The messenger, thereforo, used 

two sizes of stones, with the larger representing ten of the smaller ones but 

weighing much less. He made the sack lighter by taking out ten small stones 

and putting in one He used ten because this islarge stone. the number of his
 

fingers. He could easily tell whether a 
 set of small stones corresponded to a 

large stone by matching them with his fingers. He now said to his chief. 

"Behold! For each large stone there many peopleare as as fingers on my hands. 

For each small stone there is one person." The messenger needed no more than 

nine small stones. Instead of ten small stones, he could use one large stone. 

In the above story the messenger was matching and not counting. Before 

people had developed the idea of counting and systems of numeration, they were 

able to keep track of large numbers of people or cattle by tallying, which is a 

process of matching equivalent sets. If the messenger had cut notches in a 

stick to match the number of people, he could have cut a deeper notch to repre

sent each group of ten and so simplified his task. Children need to be given 

much practice in this kind of wrk, putting sticks into bundles of ten, arranging 

beans in groups of ten and so on. Some people carry out the process by writing 

nine strokes and a final one which crosses all the others (6-l--H) for each ten. 

Sometimes people work in fives in this way. It makes the final counting of a 

large number of strokes much easier than it would be otherwise. Matching sets 

of things with sets of strokes or notches is sometimes called tallying. 
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5-6 	 A symbol for zero
 

When you were 
comparing the Egyptian system with the Hindu-Arabic 

system, you would realise that the Egyptian does not need a symbol for zero. 

Can you explain why this i.s so? Why, then, does the Hindu-Arabic system
 

need such a symbol? If we 
could manage without it, the children would have 

much less trouble. However, the symbol for zero is absolutely essential to 

keep the digits in their correct position when there happen to be empty places. 

For example, if there are no groups of ten in a particular numeral, we must have 

a symbol to show this. Take the numeral 306. Without the symbol 0, the 3 or 

the 6 could easily he written in the tens place and the numeral would look like 

36. The symbol 0 shows that the tens place in 306 is empty. Thus we could not 

use place value without a symbol for an empty place. The symbol for zero was
 

invented by the Hindus. 
 It is 	 said to be one of man's greatest inventions
 

because it made possible our system of numeration.
 

5-7 Representing numbers on the abacus 

It has taken the human race thousands of years to develop and accept the 

Hindu-Arabic system of writing numbers. It is not easy to understand and many 

people who have studied mathematics at school may still not understand fully 

how it works. One way of giving your pupils experience in building numbers and 

then writing them is to use an abacus. This is really an aid in counting and is 

simply a set of sticks on which beads are put to stand for numbers. The sticks 

are mounted on a stand so that they can be used more easily. There are several 

ways of making an abacus. Here 	are two for you to try. Make one of them to 
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use for the exercises which follow. 

Method 1. Use a piece of wood about 9" long, 3" wide and 1"' thick. 

Mark 4 points along the middle of the wood about 2" apart. Knock a 

very long nail right through the wood at each of the points until it cannot go any 

further. File the ends of the nails if they are sharp. Your abacus is now made. 

9 , 

Method 2. You will need 4 reels or spools such as are used for thread for sew

ing. Push a stick or pencil or used ball. point pen into each hole. 

Now you need some way to keep the 4 reels together in line. You can put them 

into a box of suitab, size, or glue them to a piece of cardboard, or nail a piece 

of wood onto their bases. Your abacus should look like this. 

Now you will need some beads, or rings to slip over the rods to show the 

numbers. These Alould look like this ( or this E3 and can be made 

from rings of grass stems, or twisted grass or bamboo slices, or cardboard from 
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a circular sweet packet like this. 

I()
 
' 'l, \ ' \ 

Cut this along the dotted lines. It must be possible to put 10 rings on a rod. 

To show numbers from 1 to 9 you put rings on the first rod from the right 

hand side. This is the ones rod and every ring on the ones rod stands for one. 

ONES ONES ONES
PiI S SHOWS 3 THIS SHOWS n THIS SHOWS n 

Your pupils can use an abacus for scoring games. Sooner or later they will want 

to show a score of ten. This is where they must learn Lhe rule for using an 

abacus. 

RULE OF PROCEDURE. Whenever there are 10 rings on 1 rod you must take them 

off and replace them by 1 ring on the next rod to the left. 

So every ring on the second rod from the right represents ten and it is 

called the tens rod. Here is thirteen shown on the abacus. 

Thirteen is 1-ten and 3-ones and so we 

have 1 ring on the tens rod and 3 rings 

on the ones rod. 

TENS ONES Exercise 5-7a 

Make your abacus look like each of these in turn and write the numbers 

which are represented on them. 
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2. 3. 4 

11 1 -j() . 

TENS ONES TENS ONES TENS ONES TENS ONES 

Here is the first one written out fully for you: there are 5 tens and 2 ones; this 

is 50 + 2 which is 52. Look at the last picture. Suppose we add another ring to 

the tens rod. This will make 10 rings and so by the rule we must take them off 

and replace them by 1 ring on the next rod to the left. This ring will represent 

10 tens which is 100. So the rings on the third rod are each worth 100 and we 

call this the hundreds rod. 

BECOMES 
I 

10 5 I 5 HUN- TENS ONES
ON THIS ON THIS ON THIS ON THIS DREDS 

Every ring on the hundreds rod is worth 10 times as much as a ring on the tens
 

rod.
 

Every ring on the.tens rod is worth 10 times as much as a ring on the ones rod.
 

Every ring on any rod is worth 10 times as much as a ring on the rod next on the
 

right.
 

HUN- TENS ONES 
DREDS
 

This abacus shows 3 hundreds, 4 tens and 2 ones. This is 300 + 40 + 2, which 

is 342.
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Exercise 5-7b 

Explain these in the same way. 

2. 

-I I CA I 
HUN-TENS ONES HUN-TENS ONES HUN-TENS ONES 
DREDS DREDS DREDS 

In the last example there is a ring on tho fourth rod from the right; what is it 

worth? It is worth 10 of the rings on the rod to the right of it, so it is worth 10 

hundreds. You know that 10 hundreds are 1,000 and so the fourth rod is the 

thousands rod. Every ring on this rod is worth 1,000. So the last number is 1 

thousand, 2 hundreds, 5 tens and 5 ones which is the same as 1,000 + 200 + 

50 + 5 which is 1,255. 

Exercise 5-2c 

Show each of these numbers on your abacus and make drawings of them. 

1. (a) ,,324 (b) 7,562 (c) 6,666 (d) 3,427 

2. Write each of the numbers represented on these abaci in (a) Hindu-Arabic 

numerals and (b) Egyptian numerals. 

)i) i 
 ) 

. 2. 3. 

3. If you had an abacus with eight rods, what would a ring on 

(a) the 5th rod represent? (c) the 7th rod? 

(b) the 6th rod? (d) the 8th rod? 

Draw a large abacus with 8 rods and label each rod. 
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4. 	 Draw a picture of an abacus which shows a million. 

5. 	 Draw an abacus with 8 rods and then mark some rings on each rod. 

Write underneath this the number it represents. Make 4 more numbers In 

this way. 

6. 	 Draw a picture of this number represented on an abacus: 2 ten millions, 

5 millions, 3 hundred thousands, 6 ten thousands, 1 thousand, 8 hun

dreds, 8 tens and 5 ones. This is the numYEr: 25,361,885. 

7. 	 Write the numbers which are represented on these abaci, first in symbols, 

then in words. 

J 	 b. 

C. d. 

5-8 	 The empty rod on the abacus 

Some kind of abacus has been known for a very long time. It has been 

used in some form by most races of people from the ancient Egyptians to the 

present-day Russians and Japanese. The abacus is first used to make a record 

of a count. Its other use, in calculation, you will read about later in this book. 

Suppose that you have counted all the people in a town and have made a record 

of your count on an abacus like this: 
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2 i)
 
Now the question arises. "How shall we record in writing the number represented 

above?" What symbols shall we use? Different races of people have solved 

this problem in different ways. You have already heard about the ancient 

Egyptian way, and the Hindu-Arabic way we use today, and you will hear soon 

about the Ancient Roman way. 

Exercise 5-8a
 

Write the number represented on the abaci below in
 

(1) Egyptian numerals (2) Hindu-Arabic numerals 

2. 3. 4, 

How did you show the empty rod? 

In the Egyptian numerals there is no symbol for an empty rod but you will 

remember that we do not need one. An Egyptian symbol tells us which power of 

ten it represents, but it does not tell us how many there are. To show thirty, 

that is 3 tens, we write fl fl (n . This is like writing ten ten ten. We do 

not need a zero. We just leave out the symbol which is used for the rings on 

that particular rod. 

In the Hindu-Arabic system the symbol does not hell us "how big" but only 

"how many". We can only tell how big a number is by its place value, that is, 
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by its position in the line of digits. The tens place is the second from the right, 

and so to show 3 tens we put a 3 into the second place. But if we just write 3 

we do not know to which of the rods it refers and so we use a zero to show the 

empty rod to its right. Try to write the answers to questions 2, 3, and 4 above 

without a zero. This is what they will be like: 314 , 31 4, 3 14. You can see 

that i.' would be easy to read these wrongly. We need the zero to keep the 

symibols in their right places. Then we can write the answers as 3140, 3104, 

3014. We can think of zero as standing for the empty rod in the abacus. This 

fits in with what you have learned about sets. The set of rings on the empty rod 

is the empty set. The number of members in the empty set is zero and is written 

0. 

Exercise 5-8b 

Draw abaci to show these numbers: 

(a) 3,052 (d) 700,103 (g) 7,602,019 

(b) 2,308 (e) 6,500 (h) 9,999 

(c) 31,450 (f) 5,000 

Exercise 5-8c 

Add one to the number in(h),and draw the result. 

Exercise 5-8d 

Write the numbers represented on these abaci in 

(a) Egyptian numerals (b) Hindu-Arabic numerals 

.I. 2. 

SIf
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4. 5. 6. 

5-9 The Roman system of numeration. Comparison with Hindu-Arabic system 

'he Hindu-Arabic system of numeration replaced the Roman system in 

European countries. The Roman system apparently came into use in its original 

form about 300 B.C. It took several centuries for people to give up the Roman 

system for the other and even today we still use Roman numerals on clock faces 

and in other ways. Why did the Roman system persist for so long? Why do we 

now prefer the Hindu-Arabic system? 

The symbols are as follows: 

1 5 10 50 100 500 1,000 

ROMAN 

NUMERALS I V X L C D M 

By combining these, new numerals are formed, for example: 

4 6 54 45 90 110 1900 2100 1778 

ROMAN 

NUMERALS 
IV VI LIV XLV XC CX MCM MMC MDCCLXXVI[I 

Note that both an additive and a subtractive method is used in forming numerals. 

Thus XI has the stroke I written after X showing the addition of one to ten to name 

eleven, while IX has the stroke I written before X showing the subtraction of one 

from ten to name nine. Similarly the symbol for four is IV, for ninety XC, and for 
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one hundred and ten CX.
 

Exercise 5-9a
 

1. 	 Write Roman numerals for the following:
 

14, 19, 23, 468, 1964, 44, 82.
 

2. 	 What numbers are named by the following Roman numerals:
 

XXIV, XVI, IXV, XLVI, CCXXVIII, MMCMLXXIX, MDCCLII.
 

3. 	 Show how both the addition and subtraction methods are used to write: 

XLVI, LXIX, LIV, MCM. 

We have systems of numeration for two purposes, (a) in order to be able to 

name numbers and (b) so that we can calculate with numbers. Which system do 

you think is better, Roman or the Hindu-Arabic for naming numbers ? In the Roman 

system, the five symbols I, V, X, L and C will take us up to four hundred and 

ninety-nine and there is no zero to trouble us, whereas in the other system all 

nine symbols are required to take us to ten. Young children find the learning of 

ten symbols burdensome, as you know, and it seems that 	the Roman system may 

be easier for smaller numbers than the Hindu-Arabic system. The Roman system 

is not so useful with larger numbers, however, especially when we reach 

thousands and over. 
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5-10 Calculation with Roman numerals* 

Can we calculate with Roman numerals ? 

Addition: 

Addition is easy in the Roman system for we simply collect all the symbols 

together, combine them where necessary and write them in order. For example: 

i. MCL + CCXII = MCLCCXII = MCCCLXII 

2. XXV + LXIV = XXVIXIV = LXXIV = LxxIX (because VIV = IX). 

This work can be carried out quickly with practice. 

Perhaps the working of these examples is easier to understand if we use a 

Roman abacus. The rods on a Roman abacus would have to represent ones (I), 

fives (V), tens (X), fifties (L), hundreds (C), five hundreds (D) and thousands 

(M), as in the diagram. 

Roman Abacus 

M D C L X V I 
-4

S 
0 

< 
m 

I
C 
z 

11 

-

-4 
m 
zz 

-n1 

m 

0 
z 
m 

C M V 
z z a 

If desired, sections 10 and 11 can be omitted until after addition and multi

plication have been studied. 
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5 rings on the I-rod are equivalent to 1 ring on the V-rod. 2 rings on the V-rod 

are equivalent to 1 ring on the X-rod, and so on. How many L-rings are equiva

lent to a C-ring? How many C-rings to a D-ring? Consider question 2 above,
 

XXV + LXIV. 

Place 	rings on the abacus as shown, one set for each numeral. 

Putting the sets together, we can read off the answer as 

LXXXVIV or LXXXIX 

I (LXIV) 

1 XXV)
M 	 D C L X V I 

Work out the remaining examples for yourselves. Remember that when a 

symbol is subtractive (for example, the I in IX, or the X in XC) remove a ring 

from the appropriate rod on the abacus when this is possible. If not, as in the 

example above, IV becomes 4 rings on the I-rod. 

Subtraction: 

1. 	 X III - MII 

This 	means that we have to take away XXII from XXXIII. 

Write and remove the symbols in the circles. 

We have XI left. XXXIII - XXI = XI. 

2. 	 L - XXX. 

This time we have to subtract X=X from L. To do this we have to write L 

as XXXXX. Then it is easy. L = XXXXX. Take away (subtract) XXX. We 

are left with X 

L - XXX = XX. 

-N 
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3. 	 XXxIV - XXV 

XXIV - XXV =XV- V = VVIV - V = VIV = IX 

Multiplication: 

For multiplication in the Roman system, we could use a multiplication 

table 	as follows: 
I V X L CM 

I 1 V X L C M 

V V XXV L 

X X L C 
L__ 
C 

M 

This is obtained by multiplying each number represented in the top row in the 

left hand column by each number represented. Each result is entered in its 

appropriate place in the table. 

Thus X (left hand column) multiplied by V (top row) = L (entered directly 

oppusite X and below V). X (left hand column) multiplied by X (top row) = C 

entered directly opposite one X and below the other). 

Use the table to multiply XXV by XIV.
 

XXV xXIV = (XXV XX) - (XXV XI) + (XXV XV)
 

But XXV X X = CCL (using the multiplication table)
 

XXVXI= XXV ( 	 " " " ) 

" ")XXVXV=LLXXV ( " 


Altogether we have XXV X XIV = CCL + LLXXV - XXV
 

= CCLLLXXV - XXV 

= CCLLL = CCCL 
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The abacus could be used to help if necessary.
 

Division:
 

Division problems may take 
a long time to work out in the Roman system. 

Do not try to master the process unless you wish to. Apparatus is often neces

sary. Consider, for example, CCCLXIX -XXIV. We could obtain CCCLXIX
 

stones and count how many times 
we could remove XXIV stones, perhaps using 

an abacus to help. Alternatively, we might notice that XXIV divides IV times
 

into C with the remainder IV. How 
many times will XXIV divide into CCC and 

what is the remainder? Can you now solve the problem? 

Generally speaking, division is not a straightforward process. The 

notation serves the purpose of stating the prcblem and recording the result when 

it has been obtained. But it does not permit easy written calculation by rule. 

Exercise 5-10a
 

Work the following examples in any way you 
can but without using the 

Hindu-Arabic system: 

(a) with an abacus 

(b) without an abacus. 

1. (a) CCLXV + DCCLVIII (b) MDXCLX + MCCXLIV 

2. (a) LXXVII - XLIII (b) CCLXIV- CLXIX 

3. Complete the multiplication chart begun above and use it in the following: 

(a) LXXVIII x XXI (b) CCLXIV X CLXIX 

4. See what you can do with the following: 

(a) CCLXXIV + XXV (b) MCXCVIII + LI 
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Use any method ycu wish. Note the difficulty we g61 into with 3 (b)
 

because there are no symbols for numbers greater than M.
 

5-11 Calculation in the Hindu-Arabic system 

Addition and subtraction in the Hindu-Arabic system present little difficulty 

even with large numbers if we have understood the rules. Even the division 

example above, 369 + 24, can be worked quite easily. To find the answer, we 

do not look for stones but for pencil and paper. With practice, we can proceed
 

mechanically. It is as if the notation does our thinking for us 
and is its own
 

reckoning instrument. The Hindu-Arabic -ystem has a power which the Roman
 

system lacks. The secret is in place value and 
zero. The Hindu-Arabic system
 

of numeration solved the problem of reckoning for man and is 
 an example of a 

good mathematical notation. 

When we are teaching ar.thmetic to children, we show them how to use the 

Hindui-Arabic system as a calculating tool. As we do this, we are giving the 

children their first taste of mathematical language as an aid to thinking and we 

must be careful to ensure that they know what they are doing. At first, they will 

use the notation simply to record the results of problems solved by other means, 

maybe counters, beads, imitation money, abacus, and other kinds of apparatus. 

They will then gradually learn to change the method of calculation. They will 

rely less and less on the apparatus and more and more on the notation until the 

notation becomes their calculating instrument and a genuine aid to thinking. 

Exercise 5-11a 

1. Add 74, 362, 57 and 138. 
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2. Subtract 172 from 634. 

3. (a) 149X7 (b) 36 X9 (c) 128 X8 (d) 392 X6 

4. (a) 217 +4 (b) 395 +5 (c) 207 - 2 (d) 309 - 6 

5. (a) 1493 X57 (b) 608 X78 (c) 297 X97 

6. (a) 2432 + 19 (b) 1006 - 31 (c) 74002 74 

7. My typewriter had a missing key and typed the following addition. What 

key was missing? 

32 
53
 
87
 

9 

8. Find the missing digits 

(a) 71lx8xlx (b) 6x4x2 
1 9 8 3 0 rem. 3. 4 

x6 17 2x
 



CHAPTER 6 

NUMBER BASES IN THE HINDU-ARABIC SYSTEM 

6-1 	 Numeration in base five 

We saw earlier that because man possesses ten fingers, ten became his 

natural counting group. For this reason, he chose to work in units, tens 

(10), 	 hundreds (tens of tens = 10 X 10 = 10 ), thousands (tens of tens of 

tens= 10 X 10 < 10 = 10 3 ) and so on. Some people, the Romans and certain 

Liberians for example, have chosen five, the number of fingers on one hand, 

as a natural counting group. In practice, they 	do not all count alike but some 

count as follows: one, two, three, four, 1-fivL, 1-five and one, 1-five 

and 2-ones, 1-five and 3-ones, 1-five and 4 -ones, 2-fives, 2-fives and 

one, and so on, as in the following table: 

Counting numbers in Numerals for counting 
groups of five numbers in base five 

one 1 

two 2 

three 3 

four 4 

1-five 10 

1-five 	and one 11 

1-five 	and 2-ones 12 

1-five and 3-ones 13 

41-five 	and -ones 14 

2-fives 20 

Z-fives and one 21 

2-fives and 2-ones 22 
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Counting numbers in Numerals for counting 
groups of five numbers in base five 

2-fives and 3-ones 23
 

2-fives and 4-ones 
 24
 

3-fives 
 30 

4-fives and 3-ones 43 

4-fives and 4-ones 44 

1-twenty-five (52) 100 (1 x 52 + 0 X 5 + 0 x1) 

-twenty-five and one 	 101 (l X 52 + 0 X 5 + I Xi) 

We read 10 as one-zero and 12 as one-two. Notice that we need only five 

digits 0, 1, 2, 3, and 4 when counting in groups of five. When we are 

counting in groups of five as in the above table, we sa we are using the 

five-system of enumeration or that we are working in base five. We refer to 

the numerals as base five numerals, 

Exercise 6-la 

1. 	 Copy the chart below for counting numbers from one to one hundred, 

and complete the chart with numerals in base five: 
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I 2 3 4 10 II 12 13 14 20 
!21 

41 

124 

232 

331 

2. 	 Use your chart to answer the following question. What are the largest 

numbers in base ten which are represented as one-digit, two-digit and 

three-digit numbers in your chart? 

3. 	 In the United States of America and in some other countries such as 

Liberia, the smallest unit of money is 1 cent. 5 cents make 1 nickel 

and 5 nickels make 1 quarter. 

(a) 	 Express the following amounts in quarters, nickels and cents: 

(1) 6 	cents (3) 26 cents (5) 33 cents 

(2) 10 	cents (4) 46 cents 

(b) 	 How many cents are there in: 

(1) 2 	quarters, 1 nickel and 2 cents? 

(2) 3 	quarters, 4 nickels and 3 cents? 

(3) 4 	nickels, 4cents? 

(4) 2 	quarters, 2 nickels and 2 cents ? 

(5) 8 quarters and 6 nickels ? 

Notice that in question 3, we are dealing in the five system of enumeration. 
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6-2 Calculation in base five (addition and subtraction) 

If we wish, we may do our reckoning with base five numerals instead of 

the base ten numerals we are used to. We could set up a base five abacus to 

help us. The first rod would register ones as usual but whenever we have 5 

rings on it we should remove them and put 1 ring on the second rod. 

125's 25's 5's i's 

Thus 1 ring on the second rod is equivalent to 5 rings on the first rod. Sim

ilarly, I ring on the third rod represents 5 rings on the second rod which re

presents 25 rings on the first rod or 25 ones. A ring on the fourth rod repre

sents 5 rings on the third rod or 125 ones in all. In the five system, as you 

remember, we work in ones, fives (5), twenty-fives (5 2), one hundred and 

twenty-lives (5 3) and so on. 

Exampl: 

Find the value of 4five + 3five 

(Note: we indicate that a numeral is a base five numeral by means of the 

subscript five. If there is no subscript, we intend a base ten numeral.) 
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Place 4 rings and 3 rings on the first rod of a base five abacus. Remove 5 

rings and place 1 ring on the second rod, leaving 2 rings on the first rod. 

Thus 
4five + 3five = 12five 

Example: 

23five +44five 

Place 3 rings and 4 rings on the first rod; and 2 rings and 4 rings on the 

second rod. 

Step 1. Replace 5 rings on the first rod by 1 ring on the second rod (diagram 2). 

Step 2, Replace 5 rings on the second rod by 1 ring on the third rod (diagram 3). 

Thus 23five + 44five = i22five. 

Subtraction may be worked similarly. 

Example: 34five- 21five 

Method 1. 

34 five 13 five 
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Set up 34five on the abacus. In order to subtract 21five' we remove one ring 

from the 1-rod and two rings from the 5-rod. This leaves three rings on the 1

rod and one ring on the 5-rod. Hence 34five - 21 five 13five " 

Method 2. 

(Extra rings added to 
match up the two above.) 

34 five 21 five 

Here we need two abaci and use the method of complementary addition. Set 

up 34iv on one abacus and 21 on the other. We then match the rings on 

the second abacus to those on the first abacus by adding extra rings. We add 

three rings to the I-rod and one ring to the 5-rod. The extra rings added are 

equivalent to 13.five Hence 34five - 21fiv e =13five 

Example: 42five- 24five 

Method I. Set up 42five on the abacus (diagram 1). 

42 five 
13 fiveWe must now remove four rings from the 1-rod which is impossible. What can 

we do? One ring on the 5-rod is worth five rings on the l-rod. We take a 5

ring off and replace it by five rings on the I-rod (diagram 2). The subtraction 
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can now proceed. Remove four rings from the 1-rod and two rings from the 5

rod (diagram 3). This leaves one ring on the 5-rodand three rings on the 3-rod. 

Hence 42five - 24five = 13five . 

Method 2. Work this out for yourselves as in the previous example. 

Exercise 6-2a 

Work the following on a base five abacus. 

1. 	 3five + 3five 4. 	 12five - 2five 6. 142five - five 

13five + 2fivef. 5. 12five - 4five 7. 	 113five -31five 

3. 	 11five + 31five 

Perhaps now you will be able to add and subtract base five numerals 

without using an abacus. 

gxample: Find the sum of 242five' 10five and 3 4 five* 

Set 	this down in the usual way. 

(1) 	 4 + 1 + 2= I five and 2 ones. 242 
101 

Write 	down 2 and carry 1. 34 
432 

(2) 	 1 + 3 + 0 + 4= 1 five and 3 ones.
 

Write 3 down and carry 1.
 

(3) 1 + 1 + 2 =4. Write down 4. 

Example: Subtract 2A., from 241 
five 4five 

Method 1. 

Z41 (1) 4 from i, I can't. Borrow I from the 4 leaving 3. 
24 

212 (>,) 4 from 1Ifive = 2. Write down 2. 

five -
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(3) 	 2 from 3 leaves 1 . Write down 1,. 

(4) 0 from. 2 leaves 2. Write down 2.
 

Hence 241five - 24fiv= 212fiv e
 

Check the procedure and result on the abacus. 

Method 2. 

241 (1) 4 from 1, I can't. Give it 10five
 
24
 

212 4 from 11five = 2. Write down 2.
 

(2) 	 Give 1 to the 2, making 3.
 

3 from 4 leaves 1. Write down 1.
 

(3) 	 Nothing from 2 leaves 2. Write down 2. 

Check the procedure with an abacus.
 

Notice that the method used is 
 identical with that for base ten numerals, as 

you would expect. 

Exercise 6-2b 

I. 	 Complete the following addition table for base five numerals: 

0 1 2 3 4 
0 

I 3 

2 

3 II 

4 

2. 	 Without using an abacus, work the following: 

five 324(a) Ifive + 4five (d) 14five- 3fivefivefive- (g) -1424five 

(b) 	 2 five + 4five (e) 13five - 4 five (h) 222five - 133five 

(c) 	 3 3 five + 42 five (f) 34five -2 1five 



6-9 

Check your working on an abacus. 

Working with base five numerals can be fun. Can you understand the 

following statements written in a secret code ? 

1. 	 The enemy is fast approaching. They outnumber us 2 to 1 because 

they have 33 men against our 14. Send help quickly, please. And the 

102 men will bring our strength up to 121 when we ourselves would out

number the enemy by 2 to 1 and spring on him a surprise. 

2. 	 I have two brothers, Kwame and Kobi. Kobi is aged 100 years and is 

the eldest. My age is 31 years for I am 14 years younger than Kobi. 

Kwame 	 is exactly half my age for he is 13. (What are our three ages ?) 

6-3 	 Changing the base of a numeral 

Changing base five numerals to base ten and vice versa can often be 

done 	by inspection as follows: 

= =24f, 	 = 2 X 5 + 4 10 + 4 14five ten
 

24e n = 2 Xl0 + 4 = 4 X 5 + 4or 4 fives and 4= 44five
 

(a) From base ten to base five 

With larger numbers, we need a rule. Consider expressing 234 tenas a base 

five numeral. How should we do it? We have to divide the numeral up into 

ones, 	 fives, twenty-fives, one hundred and twenty-fives and so on. The 

way to 	do this is to keep dividing by 5 as follows: 

46 fives and 4 ones left over. 
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46 
rings 

Thus on the base five abacus, we should put 4 rings on the first rod and 46 
rings on the second rod. Every 5 rings on the second rod could be replaced 

by 1 ring on the third rod. Dividing 46 by 5 shows that we would be left with 

1 ring on the second rod and there would be 9 rings on the third rod. 5 rings 

from the third rod would make 1 ring on the fourth rod leaving 4 rings on the 

third rod. 

5 L46 
9 fives and one left over. 

Thus 234ten= 1414five 

The division could be set out as follows: 

5 234 

5 46 fives and 4 ones left over 

5 9 twenty-fives and 1 five left over 
1 One-hundred and twenty-five and 4twenty-fives left over 
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Hence 234te n = 1414five 

Thus 234 = 2X102 + 3 X10 + 4ten 
= 3 52
 

IX 5 3+4X5 +1X5+4
 

= 14 14 five 

Note that the successive remainders and the final quotient give the digits. 

Study this carefully until you understand it. 

(b) From base five to base ten
 

Changing from a base five numeral to a base ten numeral is rather easier.
 

Example: Express 2304five as a base ten numeral.
2304five =2 X 53 +
 
234 =2X +3X5 +0X5+4
 

= 2 X 125 F 3 X 25 + 0 X 5 + 4 

= 250 + 75 + 0 +4=329 

2304five = 329ten 

Exercise 6-3a 

1. Change the following to base ten numerals: 

(a) llfive (c) 34five (e) 331five 

(b) 2 1 five (d) 1 2 4 five (f) 4 2 Olfive 

\\
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2. Change the following to base five numerals: 

(a) 7 (d) 27 (f) 819 

(b) 9 (e) 264 (g) 490 

(c) 16 

3. Perform the following additions: 

(a) 2 13fi ^II~e (b) 1 0 4 five (c) .4213ffive
4 2 0 five 2 4 1five 123 five 

Check your answer by reworking in the ten system. 

4. Perform the following subtractions: 

(a) 213fi (b) 132f (c) 40.2
S 4 1 ive 1 3 4 ive2 Ofive five five
 

Che ck your answer by working in the ten system.
 

6-4 Multiplication and division in base five
 

We see that we can add and subtract with base five numerals. Can we 

also multiply and divide? Try some examples. 

Exercise 6-4a 

1. (a) 4five X Ifive (c) 2 five X 2five (e) 1Zfive X 4five 

(b) 3five X 3five (d) 4five X 3five 

. (a) 33five 3five (c) 102five 3five 

2, (a) 31 five 4-five (c) 310 five 10five 

If you are not sure how to work these out, get a base five abacus to help, 

regarding multiplication repeatedas addition and division as repeated 
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subtraction. ("heck your answer by changing to base ten numerals and 

reworking the exercise. 

When dealing with large numbers we cannot proceed by inspection. We 

need a rule and this operates as in the ten system. We make use of the 

multiplication tables. Consider, for instance', 433five X 32 five. Let us 

make out the table of twos and the table of threes. 

1 x 2=2 1 x 3=3 

2 X 2= 4 2 X 3= ii 

3 X 2= 11 3 X 3= 14 

4 X 2= 13 4 X 3= 22 

10 X 2= 20 10 X 3= 30 

The multiplication can then proceed in the usual way as follows: 

4 3 3 five 
3 2 five 

24040 
142). 

31011five 

The first partial product, 24040, is obtained by multiplying 433five by 3five 

using the 3 times table. 

We say: 

3 X 3 =14; 4 down, carry 1. 

3 X 3 =14; 1 to carry makes 20; 0 down, carry 2o 

3 X 4 = 22; 2 to carry makes 24; 24 down. 
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For the second partial product, 1421, we have: 

2 X 3 = 11; 1 down, carry 1. 

2 X 3 = 11; 1 to carry makes 12; 2 down, carry 1. 

2 X 4 = 13; 1 to carry makes 14; 14 down.
 
Check the addition for yourself, 
 and finally rework the example in base ten 

numerals as a check.
 

433five = 
4 X 52 + 3 X5 + 3 = 118five ten 

32five = 3 X5 -f 2five = 17ten 

31011five = 3 X5 4 + 1X 53+ 0 X52+ 1×5 + 1 

= 1875 + 125 + 5 + 1 

= 2006
 
ten
 

118
 
17
 

1180
 
826 

2006 
 This checks.
 

Notice that multiplication tables in the five-system are shorter and there 
are fewer of them to learn. This is an advantage but on the other hand, a long
 
line of digits is needed 
to express quite small numbers and this is inconvenient. 

Exercise 6-4b 

1. 123five X23five 2. 104five X21five 

3. 240five X43five 4. 1043five X24five 

Rework each example in base ten as a check. 
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Division with base five numerals proceeds as with base ten nu 
Example 31014five + 32five 

433 	 We say: 

32)31014 	 32 into 3 won't go. 

233 32 into 31 won't go. 

221 32 into 310 goes 4 times. (The 

201 is found by trial. Clearly 32 goi 

204 into 310 nearly 10 times and we 
201 try the next figure below 10 whic 

3 remainder is 4). 4 X 32 = 233 which we wr 
down and subtract from 310, leai 
22. Bring down the 1. Check th 
working as 	it continues for yours 

Check in base ten 

=
32 = 3X 5 + 2 17 

31014 =3X54+ 1X53+ 0X52+ 1X5+4 

= 1875 + 125 + 5 + 4 = 2009 

118
 
17)2009 	 433five 4 X 5= +3X5+ 3 

17f 
30 	 = 100+ 15 + 3 
17 
139 = 118 
136 

3 remainder This checks. 

Exercise 6-4c 

1. 	 2431 + 2 2five 2. 3004 +14 
five23ivevfive five 

3. 4231 a 42five five 

Rework each example in base ten as a ch'-ck. 
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We see 	that reckoning with base five numerals is possible and that it
 

takes place exactly as in the decimal system. 
 The work may have seemed
 

difficult because it is unfamiliar but it is very valuable. It makes you think
 

more deeply about the Hindu-Arabic system of numeration and makes the
 

understanding of place value much clearer to you.
 

If you have found the work difficult, how much more so must young
 

children when they are learning 
to use base ten numerals for the first time.
 

It is not surprising that they sometimes get lost. 
 At this stage, they are still
 

learning the shapes of the symbols and how to write properly. You must be
 

especially patient with them in your teaching in these early stages. 
 Time is
 

needed for children to understand numbers and how they are written before
 

they do calculations with them. 
 When they have begun calculation, give them
 

plenty of easy examples carefully graded in order of difficulty so that they
 

can build up confidence. 
 Let each child proceed at his own pace and remember 

that praise and encouragement are much appreciated. If your teaching fails 

in these early stages, it may cause some children to dislike mathematics and 

give up its study and this at a time when your country needs all the mathematicians 

it can get. 

6- s 	 Other bases, particularly base seven 

There is an important discovery to be made in the above work which 

perhaps you have already made for yourself. We know now how to reckon with 

base five and base ten numerals. Has it occurred to you that numerals may be 
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written in other bases, base two, base three, base four, ... base twelve, 

base twenty, ... and that we can calculate with these as with base ten 

numerals? In other words, there is nothing special about the decimal system. 

If you have realized this, you have done very well indeed. You have made a 

generalization of the kind which mathematicians frequently have to make and 

which is fundamental to the growth of mathematics. As your studies progress, 

you will realize that generalization is at the heart of mathematical thinking. 

Help your pupils to develop its power. 

Check chat you have made the generalization by working the following 

examples which use base seven numerals. The first three questions illustrate 

a practical illustration of grouping in sevens. 

Exercise 6-5a 

1. 	 Make up a number chart for base seven numerals for numbers from one 

to one hundred. 

HQw many symbols do base seven numerals require? 

2. 	 Complete the following addition table for base seven numerals: 

0 1 2 3 4 5 6 10 

0 0 I 2 

I I 2 

2 2 4 

3 6 

4 II 

5 13 

6 15 

10 20 
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3. Complete the following multiplication table for base seven numerals: 

0 I 2 3 4 5 6 10 

I I 

2 4 

3 

4 22 

5 

6 

I0 	 100 

4. 	 What numbers are named by the numerals 11 , 16s 34 , 

246 , and 125 ? Express these in base ten numerals.s 	 evenseven 

5. Express 32, 56, 129 and 421 as base seven numerals. 

6. 	 Find answers to the following: 

(a) 12 + 24 	 (b) 24 + 23seven seven 
 seven seven
 

(c) 43 + 35 	 (d) 45 - 15 
Seven seven 
 seven seven
 

Ce) 44 - 26 ()3 1
seven 
 seven 
 (f) ven 1 5 s even 

Express your answers as base seven and as base ten numerals. 

7. 	 Work out 

(a) 405sevenX 24 (b) 4362 - 21 

Write out any necessary tables and rework the problems in the base ten system 

as a check. 

6-6 Grouping in twelves 

Now that you can work in base seven, base five and base ten, you will 

find it easy to work in any base. The base twelve system is worth special 
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mention because we often group in twelves in everyday life. We often work 

with dozens for instance. We may buy a dozen eggs and this is grouping in 

twelves. Your school may buy pencils and exercise books by the gross where 

2a gross 	consists of twelve dozen or twelve twelves or 12 . Twelve inches 

make one foot and twelve months make one year. There are twelve hours 

marked on the face of the clock and in many countries, there are 12 pennies 

to a shilling. Here are some examples in grouping by twelves: 

Exercise 6-6a 

(In these examples, work in base ten and then regroup into twelves.) 

1. 	 Add 

(a) 	 s. d. (b) s. d.
 
4 3 5 1
 
2 7 17 3
 
1 6 	 15 9
 
4 2 	 7 6 

2. 	 Subtract 

(a) 	 s. d. (b) s. d. 
7 9 15 3
 
4 7 7 8
 

3. 	 (a) Multiply 2s. 7d. by 12 (b) Multiply 16s. 6d. by 7 

4. 	 (a) Divide 19s. 4d. by 8 (b) Divide 12s. 4d. by 4 

5. 	 If a carpenter is paid 10s. 6d. a day, how much does he earn in 4 days, 

7 days, 9 days? 

6. 	 Change to pence : 4s., 3s. 9d., 2s. 6d., 9s. 10d. 

7. 	 Add feet inches 
1 4 

9 
8 



----------------------------------
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8. What is the total length in feet and inches of 5 sticks if each is 6 

inches long? 

9. Add 3 dozen and 5, 2 dozen and 7, 5 dozen and 0, and 10. 

10. Divide 5 dozen and 8 pencils exactly between 2 classes. How many 

will each receive? 

When working with base twelve numerals, we need 12 symbols, which 

is two more than in the base ten system. The extra ones needed are for ten and 

eleven which we may depote by t and e respectively. Counting then proceeds: 

1, 2, 3, 4, 5, 6, 7, 8, 9, t, e, 10, 11, 12, ... 19, It, le, 20, 21 .... 1 0 twelve 

represents 1-twelve, 11twelve represents 1-twelve and one, and so on. 

Exercise 6-6b 

1. Copy and complete this number chart for base 12 numerals for numbers 

from one to one hundred and forty-four. 

1 2 3 4 5 6 7 8 9 t e 10 

II 
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2. From the chart say what numbers are named by 20,twelve 3ttwelve' 

e6twelve' ettwelve' tetwelve' 

3. Complete the following addition table for base 12 numerals. 

0 I 2 3 4 5 6 7 8 9 t e 

0 0 I 

I I 2 

2 2 4 

3 3 

I I 

o I I It 

4. Complete the following multiplication table for base 12 numerals. 

I 2 3 4 5 6 7 8 9 to 

I I 2 

2 2 

3 

4 

5
 

6
 

7
 

8
 

9
 

t
 

S 
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6-7 	 Grouping in twenties 

Grouping by twenties is also commonly practised. Twenty shillings
 

make one 
pound and twenty hundredweights make one ton. In some African
 

countries counting is 
 done in 	groups of twenty (the total number of a person's
 

fingers and toes),. 
 In the Ibo country of Eastern Nigeria, twenty is called ogu. 

Forty, i and eighty are referred to as ogu abua, ogu abo and ogu ano meaning 

2-twenties, 3 -twenties, and 4-twenties. Do you have any words like these in 

your own language? The word in English meansscore twenty. 

6-8 Grouping and calculation in base two 

Base two numerals are especial>y iteresting because they employ only 

two symbols 0 and 1. Counting in the base two system proceeds: 

1, 10, 11, 100, 101, 110, ill, 1000, 

The places represent units, twos, fours (22), eights (23) and so on. The 

only tables needed for calculation are: 

0 + 0 = 0; 0 + 1 = 0; 1 + 0 = 0; 1 + 1 = 10; 0 X 0 = 0; 0 X I = 0; 1 X 0 = 0; 

IX 1 =1. 

Here is 	 a multiplication example: 

11010 Now 11010 = 1 X 24 +1X23 +0X2 +1X2+ 
101two 

11010 wo = i6+ 8+ 0+ 2+ 0 26= 11010 ten 
10000010 two 

101 two 	= I X 22 + 1 = = t4 + 5ten 

10000010tw = 27 + o 2 = 128 + 2 = 130e n 
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Hence 	the multiplication expressed in base ten numerals is 

26 X 5 = i30 and the two results check. 

Calculation is very easy with base two numerals and the tables are easy to 

learn. What is the drawback to using the base Lwo (binary) system, do you 

think ? 

The binary system does have a very important use, however, in electronic 

calculating machines. These machines calculate at lightning speed. They take 

only seconds to work problems which would take a man weeks and months to do. 

Binary arithmetic is used because it needs only two symbols, 0 and 1. These 

can correspond to current switched on and current switched off, or a long and short 

buzz. Binary numerals can also be recorded on tape by means of a punched hole 

for the symbol 1 and no hole for the symbol 0. 

Exercise 6-8a 

1. 	 Copy and complete the chart below for base 2 numerals from one to one 

hundred. 

I 10 I 100 101 110 II1 11 oeool 1010 

I0 

II 

100 

101 

110 

III 

1000 

1001 

I010 
------------------------

I100100 
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2. Construct the addition and multiplication tables for base two numerals. 

3. Rework the examplo 65 tenX 17te n with base ten and base two numerals 

and check that your two answers are equivalent. 

You will find further examples dealing with numerals in bases other than ten 

in Chapters 14 and 15. 



CHAPTER 7 

ADDITION 

7-1 Reminder of union of sets 

Let us go back to what we have learned about sets, particularly about 

the union of sets and about counting sets. We learned that from the set 

j @ZA D j andthe set f-+\V 0J we can get a third set 

[ c -- -*K which we call the union of the twoA 7+ Y 
original sets. This third set contains all the members of the two previous sets. 

We express the result thus: 

§©A viJu01=oA l v±+*OJ
 
Your pupils have learned how to form the union of disjoint sets. For example, 

they have made a set of a pencil, a rubber and a book; a second set of a piece of 

chalk and a pen; and have put these two sets together to make their union. 

7-2 Reminder of counting sets 

You will remember that we saw how in counting we match the members of a 

set with the members of a counting set and so find the number of members in the set. 

Sets of objects [9A -F U~±- 7+HD-©-±J-I 

Counting sets 1 2 3J{12 3 41 2 3 4 5 b 
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We recognise that there are 3 members in the first set, 4 members in the second 

set and 7 members in their union. 

7-3 	 Addition of numbers
 

We write what we 
found in the previous section as 

3 + 4 = 7.
 

This statement expresses the fact that the 
sum of the numbers of members of the
 

two sets is the same 
as the number of members in their union. Here is another
 

example:
{AB C D E}U X Y Z PABCD 	 E XYZP 

f12 3 5J 1 2 34J t12 3456 7891
 
So we can write 5 + 4 = 9.
 

When we as
find, in these examples, the number of members in the union
 

of two disjoint sets we 
are doing ADDITION. If there are 12 boys in the classroom 

and 8 girls come in (these are disjoin" sets), there will be 12 + 8 pupils in the 

classroom altogether. The sign + tells us to add 8 to 12. We read it as "plus.
 

(12 + 8) is called the "sum" 
 of 12 and 8.
 

If we 
have to find how many chairs we need to seat three boys and four 

girs, we want to know what number is represented by 3 + 4; that is, what is the 

sum (3 +4). We can write this as 3 + 4 = L and we want to find the numeral 

to put into the box to make a true statement. You will be able to help your 

pupils to work this out by using sets. They will have beans or stones or sticks 

and will put out a set of 	three things and a set of 	four other things, 
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00(00Q0>- 000000
 
They will then put them together and count the number of things in their union. 

The numeral to be put into 	the box is of course we7 and write 

3 + 4 47 ] 

Exercise 7-3a 

Draw pictures to show how you would help children to find the numerals to 

put into the boxes to make these equations true. 

(1) 3 -1 	 (3) 2+8= D 
(2) 	 7+.= ] (4) 5+5= F1 

Exercise 7-3b 

Make up a word problem about each equation in the preceding exercise. 

Exercise 7-3c 

In the discussion in the text we have seen in the explanation of addition 

that if A and B are disjoint sets, then the number of elements in the union of A 

and B is the number of elements in A plus the number of elements in B. Can you 

see what happens when sets A and B are not disjoint? Make up several examples 

and so decide what the result should be. 

7-4 Many names for one number 

You will have noticed that the answers to the last two problems were the 

same. 

2 + 8 = 10 and 5 + 5 = 10 
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We can say that the sum of the number of members in the two sets is (2 + 8) and 

that 10 is the number of members in their union. We therefore have two ways of 

naming the number, as 10 and as 2 + 8. Also 5 + 5 gives us another name for 10. 

2 + 8, 10 and 5 + 5 are symbols which represent the same number. So do 3 + 7, 

7 + 3 and 9 + 1. 

Exercise 7-4a
 

Write four different symbols which name 
each of these numbers: 6, 13,
 

22, 8.
 

7-5 	 Working wi-h the empty set
 

If there is a 
set of 5 boys and 0 girls we can represent the union of these 

sets in a picture. 

If we 	form the union of a set with the empty set, the resulting set is the same as 

the first set. This will help your pupils to understand how to add 0. They will 

put out five stones to represent the set of five boys, and no stones to represent 

the empty set of girls. 

Exercise 7-5a
 

Explain how 
you would help your pupils to work out 

(1) 4+0 (3) 0+2 (5) 0+0 

(2) 9+0 (4) 0+5 



7-5
 

Exercise 7-5b
 

1. 	 Make up story problems for each one of the problems of the preceeding
 

exercise.
 

Exercise 7-5c 

1. 	 Form the union of the two sets in a and in b below: 

a.fQ( C 9J f Rg6f 

2. 	 Match each of the sets in a and b with a counting set: 

a,. Q R S T 	 0 WJI 
b.{7 LV1LJAJ} 

3. 	 In a and b explain each statement fully in terms of numbers of members in 

the sets to show the relation which two sets bear to their union: 

a. 	 1+9 = 10 b. 0+9=9 

4. 	 Give 4 different iiames for each of the numbers named 	by these symbols: 

a. 	 2 + 6 b. 25 c. 7 + 1 d. 17 

5. 	 In the following fill in the missing member or members as necessary in one 

or more of the sets in each statement to make the statement complete and 

correct: 

a. 	 £0X V X V 

be L u x Y z

C.fy 	 JU Y IO v x Y 
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7-6 The use of the box ( 11 ) 

In problem 5 of the preceding exercises, to answer correctly you had to 

examine the members of all the sets in each statement. You did this to find 

which members were missing. In a., for example, you see that the missing
 

member or members are in the union. 
 You know this because a space has been 

left to hold a place for them. You match the members of the two sets with the 

members of their union and find that the symbol A has been left out. 

A, then, is the missing member and you put it into the place left for it. 
When we work with numbers we sometimes have to find a missing numeral 

in a statement. You worked one example earlier. It was 3 + 4 = 1 . The 

box holds the place for the numeral which represents the sum 3 + 4. We use the 

box to remind us that we have a missing number. The box is holding the place
 

for it. You know already how to help your pupils to find the number which is
 

needed by using sets of stones or sticks. 

7-7 Missing numbers in addition equations 

We can use zi box in any position in a number statement. We can write 

4 + F- = 7. The box is holding a place tor a numeral which gives the number 

of members in a set which must be added to a set of 4 members to give 7 mem

bers in their union. This is not the kind of addition we have been doing but it 

is very useful for pupils. It helps them to understand how one number can be 

made up by adding many different pairs of numbers. Therefore it helps them to 

realise that one number can have many names. We can write statements about 

the number 4 like this: 
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D +4=4, D +2=4, D+I=4, 3+ E =4 
and so on. We can fill in the missing numerals and write the true statements 

++1=4, 3 

Exercise 7-7a
 

Find the numerals to put into the boxes to make each of the following
 

equations true:
 

(1) D- +2=4 (3) 4+7=+ (5) 4+3= j +5 

(2) 3+ =10 (4) 0+ El =8 
Now you may be wondering how your pupils will be able to find the
 

missing numerals. 
 They will be able to work them out with sets. Perhaps they
 

have to find the missing numeral for this 
statement: ] + 7 = 9. They can use 

a single bar abacus with nine beads or they can use a set of nine objects. If
 

they use an abacus they arrange seven of the beads 
on the right hand side. 

Then the number of beads on the left hand side will be the number we need to 

make the statement true. The number of course is two. 

Similarly, if the statement is 

6+ Z=9, 

the abacus would look like this: 

so that we find that the box is holding a place for the numeral 3. 

What numeral should be put into the box in the statement below to make it true? 

S9+=9. 

X-v 
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You know that It is 0, but your pupils may have difficulty with this and so it 

can be 	shown on the abacus: 

LI------o -- 0&o-o oLZI 
There is no bead on the extreme left of the abacus and so the box is holding the 

place for the numeral 0. So we write 

l + 9 = 9 

Using the abacus in this way it is easy to discover each of these true 

statements: 

0+9=9 5+4=9 

1+8=9 6+3=9 

2+7=9 7+2=9 

3+6=9 8+1=9
 

4+5=9 9+0=9
 

Thus the sums 0 + 9, 1 + 8, 2 + 7, etc., are all the same number 9. 

Exercise 7-7b 

Find, by use of the abacus or otherwise, all the sums of pairs of numbers 

that give 5. Do the same for 7 and for 8. 

Exercise 7-7c 

1. 	 I am thinking of a number. This number plus 5 is 11. What is the number 

I am 	thinking of? 

2. 	 Each of the 12 children in a class is assigned a number from 1 to 12 so that 

all these numbers are assigned. If some of the students form pairs so that 

the sum of the numbers assigned to the pairs are 13 ,which children are left 

without partners? (Same question with 13 replaced by 14, 15, 16J.) 
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7-8 Addition table 

When your pupils thoroughly understand how to find the sum of two numbers 

by forming the union of disjoint sets, they can build an addition table. 

First make a square with 121 small squares in it. That means that there 

will be 11 rows with 11 squares in each row. In the top left hand square put the 

+ sign to show that you are adding. Follow this by the symbols 0, 1, 2, ... 9, 

one in each square along the top row. Similarly, write these symbols 0, 1, 2, 

... 9 in the squares down the left hand side. You now have a square like this: 

H - COLUMNS 

0 1 2 3 4 5 6 7 8 9 

0 

2 I 
2 

ROWS 3 I 
4I 

5 
6 . II1 

7 

Begin with the first empty square on the second row. Put into this square the 

numeral which represents the sum of the numbers you have already shown in the 

outside spaces at the left end of the row and the top of the column. This sum is 

0 + 0 so we put 0 into the first empty space. The space next to this on the 
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right 	is for the sum of 0 + 1. So 1 is put into this space. The next square along 

the second row has 0 and 2 at the ends of its row and column and so its numeral 

stands for 0 + 2 = 2. 

Where do we put 6 + 5, 11?that is, We find the row which begins with 6, 

then the column which begins with 5. Then we find the square which is their 

intersection and in this square we pui 11. 

Exercise 7-8a 

1. 	 Prepare a table similar to the one described and fill in all the sums for
 

pairs of numbers from 0 + 0 to 9 + 9.
 

2. 	 Use the table to find six pairs of numbers whose sum is 8, and write tne 

addition equations which show these facts. 

3. 	 Mary and her sister went to market. Mary bought six pineapples and her 

sister bought eight coconuts. How many fruits did they buy altogether? 

4. 	 Yabu and Konteh went to their farm to collect oranges. They collected 

twenty oranges, but while Yabu was busy packing oranges in the basket 

she brought with her, Konteh went away to look at a bird's nest. When 

Yabu had put fifteen oranges into her own basket, Konteh came back. How 

many oranges were left for Konteh to take home? Write an equation for this 

problem using numerals and a box. 

5. 	 Thirteen children were picked by a teacher to play a game of "pairs." Each 

child was given a card on which was printed one of the numerals from 0 to 

12. 	 When the teacher called a each child was to find anumber, partner so 

that the sum of the numbers marked on their cards was the number called by 

the teacher. If the teacher called "ten, " how 	many pairs could be formed? 
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Write 	them down. Which children had no partners? 

6. 	 If the teacher called "eight, " how many children would have no partner? 

Which cards were they holding? Write down the pairs of numbers held by 

the children who found partners. 

7. 	 Imagine that you are given two dice. Each dice has 6 sides which each 

show one of the numerals 1, 2, 3, 4, 5 or 6. Throw both of them on a 

table at the same time. Make a table showing the pairs of numbers that 

could 	turn up and t'. ir sums. 

8. 	 Find the numerals to put into the boxes to make each of the following 

equations true: 

(a)[- + 9 =9 + 5 =5 2 +(d) 	 (g) D=2 

(h) = 8 	 (e) + 4 =4 

(c) 6+ D-=6 	 (f) D +1=1 

7-9 	 Property of zero in addition 

In the last problem of the preceding exercise you found that in each case 

the box must be filled by 0 to make the equation true. 

Consider the following true equations 

0+=I1 	 1+0=1 

0+2=2 2+0=2 

0+3=3 3 +0--3
 

0+4=4 
 4+0=4 

0+5=5 	 5+0=5 

(and 	so on) (and so on) 
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Do you notice the effect of adding 0 to a number? It leaves the number the same 

as it was before added to it.zero was You can see that this is always true. 

Zero is the number of members of the empty set. If we take the union of the 

empty set with any set we get just that set. 

We can write this property of zero as 

which is true no matter what numeral is put in the boxes, You can choose any 

numeral you please (so long as both boxes are filled in the same way). Similarly 

is true no matter what numeral is put in the boxes. 

Exercise 7-9a 

Put 6 different numerals in tun into the boxes in the equations which show 

the property of zero in addition. Here is one: Ef + 0 = 0 + R= 

Exercise 7-9b 

Explain how you would help your pupils to understand this property of zero. 



CHAPTER 8 

PROPERTIES OF ADDITION 

8-1 	 Commutative property of union of sets 

When you form the union of two sets of things you know that it does 

not matter which set you take first. The union of a set of 3 bananas and 

a set of 2 oranges is the same set as the union of the set of 2 oranges and 

the set of 3 bananas. The order does not make any difference to the result. 

We can draw a picture to show this property of the union of sets. 

A is a set of 3 bananas, B is a set of 2 oranges. 

BA 

B A 	 B UA 

We can make an exact matching between the members of the united sets. 

We see that the sets AUB and BUA contain the same members and so are 

equal sets: AUB and BUA are names for the same set and so we write 

AUB 	= BUA 
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Exercise 8-la 

Make up some illustrations of the commutative property of the union 

of sets and draw pictures which show them. 

8-2 	 Commutative properny of addition
 

Is this property of the union of sets 
also 	a property of addition of numbers ? 

You know that it is. We write the number facts for the union of the set of 

3 bananas and the set of 2 oranges like this: 

3+2=5 

2+3 5 

and therefore 3 + 2 =2 + 3. 

Experience of uniting sets suggests that this works for any two numbers we 

choose. This property of addition is known as the commutative property of 

addition. The children you will teach will have had many experiences of 

making the union of two sets of objects. This will help them to discover this 

property for themselves. When 	 they have found the member which is 

represented by' 8 + 4, they should realize that it is also represented by 4 + 8. 

You will help them to realize this by encouraging them to find the "twin facts" 

such as 3 + 2 = 5 aad 2 + 3 = 5, 6 + 4 = 10 and 4 + 6 = 10. 

Exercise 8-2a 

Find numerals to put into the boxes to make the following statements 

true: 
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1. D +3=3+2 

2. 11 + = 7 + 11 

3. 7+9= F]+7 

4[11+3=3+ LI1 
8-3 General notion of a variable 

In Exercise 8-2a, problem 4 is very different from problems 1, 2, and 3. 

Do you see why? For how many numerals is it true that D + 3 = 3 + 2? 

Only for the single numeral "2". For how many numerals is it true that 

D +3 =3 +n? 

For all numerals ! Of course we must agree that whatever numeral is put in 

the left-hand box must also be put in the right-hand box. 

Thus in + 3 = 3 + Wi 
nW+ 3 z3+ W] 

and so on and so on. 

We speak of 

D + 3= 3+ EZ 
as an identity. An identity is an equation which is true for all the things 

under consideration -- here for all whole numbers. 

We can go further than this actually 

+ 1 s1 + 

D+ 3=3 + I 

and so on. 
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All of these identities can be put together in the single one 

El +jA= A+ Di 
In writing this it is important to understand that the two Li 's must be 

filled in the same way and the two A 's must also be filled ir, the same 

way (which may or may not be the same as the one used for the l 's).
 

For example,
 

l+A,&=A+F 
is true.
 

So is
 

El + +i] 
For all numerals, it is true that 

+A= A+ Li 
The order in which any two whole numbers are added does not matter. 

LI +A=A+Li 
expresses what we call the commutative property of addition. 

Exercise 8-3a 

1. Fill the boxes in 6 different ways so that 

Li+A=A+EL 
becomes a true statement. 

2. In 

Li ++i ED+A= 0 
put 3 in the squares and 9 in the triangles. What must we put in the 

circle to get a true statement? 

A 
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When we go on in mathematics we use letters instead of boxes to
 

express identities. For example, we can write the commutative property
 

of the addition of whole numbers as follows: 

a + b = b + a 

for all whole numbers a and b. 

Exercise 8-3b 

What does the commutative property tell us if 

1. a =3, b= 1 Answer: 3 + 1 = 1 + 3 

2. a= 5, b= 2 

3. a= 4, b= 9 

4. a=6, b=4 

A letter which is used to stand for any one of a set of numbers is 

called a variable. We can use variables in this way to help s to write down 

and remember more easily such properties of numbers as the commutative 

property of addition. 

8-4 Associative property of union of sets 

What do we mean by 1 + 2 + 3? Here we are asked to add three numbers 

and we have so far talked only about adding two numbers. The only way we 

can add three numbers is to add two of them and then add the remaining one to 

the result. Does it matter which pair of numbers we add first? Let us try 

both ways. To show which pair of numbers to add first we put brackets (or 

parentheses) around them 

(I + 2) + 3 3 + 3 = 6 

1 + (z + 3) =1 + 5 6. 

\ 
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So it does not matter how we group these numbers.
 

We can 
show this with sets also. If you have a set of 3 bananas and 

a set of 2 oranges in a basket you have a set of 5 fruits. If someone then 

gives you a set of 4 pawpaws you will now have set of 9 fruits in youra 


basket. 
 If you have a set of 3 bananas first and then someone brings you a 

basket holding a set of 2 oranges and a set of 4 pawpaws you will, again, 

have a set of 9 altogether. 

We can draw a picture of this. 

AV1S0C AU C 

You can see that the combined sets (AUB)Uc and AU(Bc) can be exactly 

matched with each other. They contain the same members and so are equal 

sets. Therefore we can write 

(AUB)UC = AU(BUC) 

So you see it does not matter how we group sets when we form their union, 

8-5 Associative property of addition 

As you know already you can write the number facts which go with the 

example above as 

(3 + 2) + 4= 5 + 4 9 

3 + (2 + 4)= 3 + 6= 9 

and therefore 

(3 + 2) + 4 = 3 + (2 + 4). 
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So you see that if you have to find the sum of these three numbers it does not matter 

how you group them in pairs to add them. Expcience in forming unions of sets 

suggests that this will work for any numbers we choose, so writeand we (for all 

whole 	numbers a, b and c) 

(a + b) 	+ c = a + (b + c). 

This is called the associative property of addition. 

Exercise 8-5a
 

What does the associative property of addition tell us if
 

1. a= 1, b= 2, c= 1 Answer: (1+2)+ = 1+ (2+1) 

2. a= 4, b= 3, c= 0 

3. a 5, b= 5, c= 2 

4. a =3, b= 7, c= 6 

5. a= 0, b= 8, c= 6 

Exercise 8-5b 

1. 	 Write down 6 examples of the associative property of addition. 

2. 	 Give three problems you could use to help your pupils to understand 

this property. 

This is a useful property because it sometimes makes addition easier 

for us. If we have 19 + 6 + 4 we might find 19 + 6 first and then add 4. 

When we know the associative property we can first find 6 + 4 = 10 and then 

19 + 10 = 29. This is easier. We write this 

19 + 	(6 + 4) 19 + 10 = 29. 

Exerc'ise 8-5c 

Put brackets (parentheses) in these sums to show how you would 

group them for adding. Then find the answers. 
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1. 9+7+3 

2. 6+4+7 

3. 4+16+7 

4. 9+5+15 

5. 7+4+6 

6. 7+3+3
 

Suppose that you wish 
to add 4 and 7 and 6. We could write 

4 + (7 + 6). 

But by the commutative property we can replace 7 + 6 by 6 + 7 to 

get
 

4 + (6 + 7)
 

= (4 + 6) + 7 (associative property)
 

= 10+ 7= 17. 

In this case we have changed both the order and the grouping to take 

acvantage of the fact that 4 + 6 = 10.
 

Exercise 8-5d
 

Make up 5 more problems like those 
above. Put brackets around pairs 

of numerals to show which sums you would find first.
 

Exercise 8 -5e
 

Find the numeral 
to put into the box to make the following sentence 

true: 

5 + (4 ) = (4 + 5) + 6. 

Make up other similar problems to illus rate the associative property 

of addition. 
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8-6 	 Generalized properties of addition 

You will see from these exercises that you can add numbers in any order 

and in any grouping that you like. This means that if you have to find tbe 

sum of several numbers you can begin with pairs whose sum is easy to find, 

and that you can re-arrange the numbers to bring the pairs together. 

Exercise 8-6a 

1. 	 Name the property of addition illustrated below when each sum is stated 

to be equal to the following one: 

(4 + 3) + 2 = 4-- (3 + 2) = 4 + (2 + 3) = (? + 3) + 4 = 2 + (3 + 4) 

2. 	 The a . ' ciative property of addition makes it possible, in adding
 

three numbers, to group them however you please. If you add four
 

numbers, can you group them in any way you please? Explain. Is 

this also true for more numbers? 

3. 	 How many different combinations of five or fewer different numbers 

from 1 to 10 add up to 15? (For example, 10 and 5 is the same 

combination as 5 and 10. Also 3 + 3 + 9 uses the number 3 twice and 

this is not allowed.) 

4. 	 The game of "31" is played by two players. The first player announces 

a number from 1 to 5. The players then alternate, each adding a number 

irom 1 to 5 to the previous result and announcing the new result. The 

player who announces 31 is the winner. Explain how the player who 

goes first can be sure of winning if he knows the secret. (You can find 

the secret at the end of the second section of the next chapter.) 



CHAPTER 9 

SUBTRACTION 

9-1 Reminder of addition 

You learned how to add when you were a school child yourself. At
 

that time you did not give much thought to it, but you just learned all the
 

different sums by heart. In this course, you have studied the meaning of
 

addition in terms of the union of sets. You know that it is based on putting
 

together the members of two disjoint sets into 
one set and counting the
 

members in that union. In 
this section, you will study subtraction in the
 

same way, using the idea of sets, 
 and discover that it means the inverse of 

addition. In subtraction, instead of putting sets together you separate seta 


into parts called subsets. For example, 
 you know that if you have a set 

of 2 members and a set of 3 members these when put together give a set of 

5 members. On the other hand, if you have a set of 5 members and remove 

a subset of 3 members, you have left a subset of two members. You know 

that if you add 3 to 2 you get 5; if you subtract 3 from 5 you get 2. In this 

section you will find why this is so.
 

When you learned to add, you saw 
that you could build tables of sums 

of pairs of numbers. For example, you found that 6 + 0 = 6, 5 + 1 = 6, 

4+2= 6, 3+3= 6, 2+4= 6, 1+ 5= 6and0+ 6= 6. This is thefamily 

of all the pairs of whole numbers whose sum is 6. Each of the sums theon 

left hand sides of the statements is a different way of representing the number 6. 
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Exercise 9-la 

Write similar tables for the pairs of numbers with sums 5, 8 and 9. 

9-2 	 Tables of constant sums
 

Just as you found that there 
are many ways of selecting pairs of sets
 

to make a given third set, so you can see that there are man-, ways to
 

separate the members of a given set into subsets. For example, 
 begin with
 

a set of numbers and separate the numbers to form two sets in as many ways
 

as possible. If you look at your addition table, 
 you will find that these 

separations suggest the following pairs for 7: 0 and 7, 1 and 6, 2 and 5,
 

3 and 4, 4 and 3, 5 and 2, 6 and 1, 7 and 0.
 

Exercise 9-2a 

Use a single bar abacus with beads and separate the beads to show 

each of these statements in turn. For example: 

This shows that 7 = 4 + 3. Do the others in the same way. 

Exercise 9-2b 

Repeat the above exercise, using an abacus with 6 beads to show the 

different pairs of subsets into which a set of 6 thfngs can be separated. 

Exercise 9-2c 

You can make up many problems using the idea of a number being 

the sum of different pairs of numbers. Here is one: Suppose you had 

9 girls in your class and you wanted some of them to work on the blackboard, 

while others worked at their desks. You could show all the different ways 

of separating the class. Tell all the different ways you can separate the 

\k~ 
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9 girls in this problem. 

In the statement 2 + 3 = 5, 2 and 3 are called addends. Sometimes the 

sum and only one of the addends may be already known. In such cases, the 

other addend can be chosen in only one way. In the problem above, suppose 

that you had space for only 3 girls at the blackboard and tMat you wanted to 

use all the blackboard space. Then you know that of your 9 girls, 3 must be 

at the blackboard and the others at their desks. You would look at your 

addition table and find that the only pair of numbers in which one of the 

addends is 3 and the sum 9 is the pair 3 and 6. And so you would know that 

there had to be 6 girls at their desks because 9 = 3 + 6. 

Exercise 9-Zd 

Make up a problem of this type which you would use with your pupils. 

Work this problem in the way shown above. 

Exercise 9-2e 

102 

10 2 
9 3 

8 4 

The figure above shows a clock face with the hands locked so that they 

always point in opposite, directions; at what numbers do the hands point 

when the sum of these numbers is 16? 

Note: The secret for problem 4 of Exercise 8-ba in the preceding chapter is 

for the first player to announce the numbers 1, 7, 13, 19, 25 and 31. 

N' 
N 
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9-3 	 Missing addends in addition problems
 

You can write problems like this in a special way. 
 In the example above, 

there are 9 girls and 3 will work at the blackboard. You want to know how
 

many will work at their desks. This is the missing addend. Thus you can
 

write 9 = 3 + E where the box shows that 
some numeral is missing or not
 

known. The box is holding the place for some numeral you want 
to find.
 

Another problem of this kind is the following: you want 6 slates for
 

your class, but you have cnly 4. 
 How many more do you need? You can
 

write the sentence like this
 

6 = 4 	+ 

You all know of course that if you have 2 more slates, you will have enough. 

So you can put 2 in the box and have the true statement 6 = 4 + 2, 

::xercise 9-3a
 

Kafi is looking for his eight chicks and he has found five. 
 How many
 

more must be found? Write 8 = 5 + 0j. What numeral must you put into
 

the box to make this statement true? Now write the 
answer to the question 

in this way: Kafi must put 3 in the box to make the statement true. 

Exercise 9-3b
 

Find the numerals which make these statements true:
 

(a) 3±DF= 4 (c) 3 +Jn=6 (e) 3 +11= 9 
(b) 7 =5+ D (d) 7=7±+1n (f) 8=1 +11 
You can look at problems involving missing addends in another way. 

Suppose you had some money, and a man gave you3s more, so that you now 
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had4f8. How much money did you have at the start? You could express
 

this as follows:
 

S++3=8 

You know, of course, that you had45 to start with, and so you should 

put the numeral 5 in the box. You can see now that it does not matter whether 

the box, which holds the place for the missing numeral,comes first or 

second.
 

Exercise 9-3c
 

Find the numerals which make these equations true:
 

(a) 1 + 5 = 5 (c) 1+ 2 = 7 (e) 4 + [-]= 8 

(b) = 3 +D (d) 8= -]+ 6 (f) 9 +-]= 9 

Exercise 9-3d
 

For each of the problems in the exercise above, make up 
a word problem 

suitable for a class of children. 

9-4 Subtraction as finding the missing addend 

When you find the missing addend in an addition equation you should 

see that you are really doing SUBTRACTION. In the example above, when 

someone gave you .£3, so that you had Z8, you could have found how much 

you started with by subtracting 3 from 8. this isIn fact, what you really did, 

because subtraction means finding a missing addend in an addition equation. 

The sign for subtraction is written "-" and is read "minus. " In this example 

we wrote the addition equation 

D] + 3= 8 
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and so now we write the subtraction equation 

8-3= L 
where we will, of course, put 5 in the box. 

Exercise 9-4a
 

For each of the addition equations below write a corresponding
 

subtraction equation:
 

Addition Equation Subtraction Equation
 

(a) 4+ 1-= 6 Answer 6-4= LI] 
(b) E1+ 7 = 7 

(c) 4 = 34. 

(d) 8+ -- = 9 

(e) Li + 6 = 6 

(f) 7=LII+2 

Exercise 9-4b
 

Make up more 
problems of this type, writing both addition and sub

traction equations. 

Exercise 9-4c 

Write word problems suitable for your pupils for examples (d), (e), 

and (f) in Exercise 9-4a. 

Exercise 9-4d 

For the following subtraction equations write the corresponding 

addition equations: 
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Subtraction Equation Addition Equation 

(a) 8- 6= Answer 6+ F-= 8 

(b) 1j = 4 - 4 

(c) 9- 2 D 
(d) F = 8- 7
 

In each of the problems above the answer is 
 very easy to find. All
 

you have to do is to look up your addition table or to separate a set of things
 

into two subsets. You 
can use an abacus or a set of stones, to help teach 

children how to find answers to these problems. In the last problem above, the 

children could take a set of 8 stones, and then remove 7 stones. They should 

then see immediately that a subset of 1 stone remained and that 8 - 7 = 1. 

Exercise" 9-4e 

Find the numbers that make the subtraction equations true in the exercises 

above. 

Exercise 9-4f 

1. One tree is 90 feet highand another is 70 feet high. How much 

higher is the first tree than the second? 

2. Find two numerals to put into the boxes to make 3 + (5+ 

= 2 + (4 + A ), a true sentence. If you put the same numerals into 

the same boxes in A- Ej, what result do you get? 

9-5 Subtraction problems which cannot be solved with whole numbers 

Sometimes you will find that you cannot do what a problem tells you to do. 

For instance, if someone tells you to separate a set of 8 stones into a subset 

of 9 stones and another unknown subset, you cannot do it. You can write 

the addition and subtraction ,ah1rinnc: n f,11 ...... 
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8 = 9+ 	 8-9= 

But you know that you 	cannot find any whole number which makes the 

equations true 

Exercise 9-5a
 

In the following, find the missing numeral that would make each
 

equation true, whenever possible to do so:
 

Addition Equations Subtraction Equations
 

(a) 7+ = 7 	 (d) 9 -2 = D-] 

(b) 5= L+ 8 	 (e)F]= 6-6 
(c)-- + 2 = 3 	 (f) - 8 

9-6 Subtraction facts 	from addition facts 

Think about the statement 4 + 2 = 6. What subtraction facts do you 

think you can make from it? You can cover up the 4 and have as a result 

the addition equation U-1 + 2 = 6; or you can cover up the 2 -nd have, as 

a result, the addition equation 4 + 1-1 = 6. From these you can get the 

subtraction equations 6 - 2 = W and 6-4 and finally the subtraction 

facts: 6 - 2 = 4 and6 - 4 = 2. 

Exercise 9-6a 

Make up two subtraction facts from each of the addition facts: 

(a) 	 3 + 2 = 5; (b)6 = 6+ 0; (c)7 + 1= 8; (d)2 + 5 = 7. 

Exercise 9-6b 

Make up word problems from the subtraction facts you wrote in 

Exercise 9-6a which you can use with children. 
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9-7 	 Separation of sets into subsets 

Now you can see that if you separate a given set into two subsets and 

you know the number of members in one subset you subtract to find the number 

of members in the other subset. For example, you could tell your pupils that 

father 	caught 5 fishes, of which 3 are big and the others little. To find the 

number of little fishes, you write the addition equation first, 5 = 3 + L
and then the subtraction equation 5 - 3 = - . You can in this way guide 

the class to give the correct answer. 

Exercise 9-7a 

Write the addition and subtraction equations for each of the following 

problems and then write the answers: 

1. 	 There are 6 of them are9 people in a room, seated and the rest are 

standing. How many are standing? 

2. 	 Kwame found 8 eggs, but 2 	were broken. How many were not broken? 

3. 	 Esi puts 7 cups on a table. Only one cup is large and the rest are 

small. How many are small? 

4. 	 Aba picks 10 flowers, 5 are red and the rest are blue. How many blue 

flowers did Aba pick? 

Exercise 9-7b 

If A and B are sets, we let A - B be the set of members of A which 

are not members of B. Find [a, b, c, d, e, f, g}-[b, d, fl. Interpret 

this in terms of the number of members in each set. 

I, 
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9-8 Comparing sets 

You can use this approach in comparing two sets with different numbers 

of members. Show your pupils how many more or fewer members the first
 

set has than the second. For example, you might show your class 6 red
 

flowers and 4 white flowers and ask them how many 
more red flowers than
 

white flowers there are. You can write the addition equation =
4 + 1 6,
 

from which the subtraction equation 6 - 4 =D follows. Another way to
 

approach this problem would be 
 to make a matching between the members 

of the two sets as follows: 

0 0 red flowers 

white flowers
 

In this way you compare the two sets. This shows a 
remainder in the iarger
 

set after matching each member in the one 
set with one member of the other
 

set. In the problem above you have matched 4 flowers in 
 the upper set with 

4 flowers in the lower set, that 2 remain.so 2 is called the DIFFERENCE 

between the numbers 6 and 4. 

Exercise 9-8a 

1. For each of the following sentences make a picture of the two 

sets and make a matching between the members in order to show which has 

more members and find how many more members it has. Then write the 

addition and subtraction equation for each, and a sentence describing the 

result. 
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Example 

Ama has two oranges and Araba has seven oranges. We match the sets 

of oranges in this way: 

Ama 

Araba00000 

The addition and subtraction 	equations are 

7= 2+ D
 
7-2 D 

and we state the difference in the form 

7-2=5 

and say that Araba has five more oranges than Ama. 

Now work the rest: 

(a) 	 There are 7 good eggs and 2 broken ones. 

(b) 	 Kofi caught 2 fish and Kwvesi caught 2 fish. 

(c) There ar,*! 3 houses here 	and 5 houses across the road. 

2. Try these next: 

(a) 	 I have six counters. My sister has 9 counters. Find the 

difference between the number of counters my sister has and 

the number I have. 

(b) 	 There are 7 buttons on Lucy's dress and 6 buttons on mine. 

How many more buttons has Lucy? 
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(c) 	 There are 8 birds on a tree and 4 chickens on the 

ground. How many more birds are there than chickens ? 

(d) 	 We have 7 pots and 2 spoons. What is the difference 

between the number of pots and the number of spoons? 

(e) 	 Ama has 2 oranges. She wants 6 to make juice. How 

many more does she need ? 

(f) 	 Araba has 6 pawpaws and Lucy has 8. How many more 

did 	Lucy have than Araba? 

9-9 Subtraction problems 

There are many kinds of problems which give rise to a subtraction 

equation. Here are some of these problems, all of which give the same 

subtraction equation 

5 - 3
 

The 	addition equation for each problem is stated. 

(a) 	 What whole number must be added to 3 	to give the sum 5? 

3 + 	[]= 5. 

(b) 	 If a set of 5 members is separated into two subsets, one of 

which has 3 members, how many members has the other subset? 

5 = 3 + [] 
(c) If the members of a set of 5 are compared with the members of a 

set of 3 , find the difference between the number of members in 

the first and second sets. 3 + E= 5. 

(d) 	 If 3 members are removed from a set of 5 members, how many 

members remain? 5 = 3 + 

k4 
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Exercise 9-9a 

Below are some subtraction problems. For each one write the addition 

equation as was done in -- 9(a), 9(b), 9(c) or 9(d). Then write its subtraotion 

equation. 

(a) There were 5 empty chairs in a room. 9 people came in and 5 

sat in the chairs. How many people were left standing? 

(b) Mary picked 3 flowers to put into a jar. Her mother wanted 9 

flowers, so how many more must Mary picK? 

(c) 	 One tree has 9 mangoes ready to eat. A second tree has only 

2 mangoes ready to eat. How many more are ready to eat on 

the first tree? 

(d) 	 We have 4 hens and 8 chickens. Find the difference between 

the number of chickens and the number of hens. 

(e) 	 We have 7 pots and we need 9 pots. How many more pots do 

we need? 

(f) 	 Kofi and Kwesi went fishing. Kofi caught 5 fish and Kwesi 

caught 3. How many more did Kofi catch than Kwesi' 

(g) 	 Efua has 2 mangoes in her hand and 4 in her basket. How 

many more mangoes are in the basket than in her hand? 

(h) 	 I had 7 balls in a basket and my friend took 4 of them. How 

many were left in the basket? 

(i) 	 Kiajuma was putting spoons on the table. There were places 

for eight spoons and she has put four spoons out already. How 

many more must she place? 
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(j) Araba has 8 pawpaws and she gives Lucy 2 pawpaws. How many 

does Araba have left? 

You can see by now that there are mdny ways of talking about the same 

sets. Think of a set of 5 bananas, of which 3 are green and 2 are yellow. 

You can write four statements about these bananas: 

3+ 2=5 5-2= 3 

2+3=5 5-3=2
 

Exercise 9-9b
 

Make up sets of four statements 
like those above, which connect the 

three numbers in each of the following: 

1. ;:, 8, 15 4. 1, 19, 20 

2. 3, 11, 14 5. 12, 2, 10 

3. 15, 5, 20 6. 6, 6, 12 

9-10 Subtraction as the invrse of addition
 

Suppose you have 
a set of 3 books. Now put 2 more with them. From
 

this new set remove 2 of the books. 
 How many books remain? Of course 

you have just 3. canYou state this as follows:
 

(3 + 2) - 2 = 3
 

Again, suppose you 
start with a set of 3 coins. Now remove 2 coins. 

Then put in 2 coins again. How many coins are there? Once again you 

have just 3. You can state this: 

(3 - 2) + 2 = 3 
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Exercise 9-10a 

Show these two patterns with each of the pairs of members below: 

1. 15, 10 3. 12, 0 

2. 8, 3 4. 9, 9 

You ought by now to be saying to yourself that addition and subtraction each
 

undoes the work 
 that the other has done. We thus talk of them in mathematical 

language as "inverse" operations. Subtraction is the inverse of addition and 

addition is the inverse of subtraction. 

Thus we can summal.ze: 

(a + b) - b = a 

(a - b) + b = a
 

(Naturally we have to be sure that (a - b) is a whole number.)
 

As one more example, when a = 25 and b = 13, these become
 

(25 + 13) - 13 = 25 

(25 - 13) + 13 = 25 

Exercise 9-10b 

1. Write these statements for a 12 and b = 6 and 

a = 5 and b = 0. 

2. Write a word problem for your pupils using a = 15, b = 3. 

Exercise 9-10c
 

A bag contains 6 oranges but will hold 10 oranges when it is 
 full. 

If John takes 2 oranges out of the bag, how many oranges will it take to 

fill it? 

http:summal.ze


CHAPTER 10 

MULTIPLICTION 

10-1 	 Reminder of addition 

You know that addition is based on counting the number of things in 

a union of disjoint sets. For example, you know that, if three boys and 

four girls get perfect papers on your arithmetic test, there are seven children 

who get perfect papers. You have learned the addition table, and you know 

why each of the sums works out as it does. You also know how to teach 

addition to the children in your school so that they too will never forget what 

it means. 

10-2 	 Repeated addition 

Now you will do problems in which addition is repeated several times. 

If a man 5 shsearns day, and works for 7 days,a you can find how much he 

earns by taking 7 sets of 5 shs each and putting them together. You get an 

addition equation like this: 

5+54-5+5+5+5+5= 

You know how to find the numeral to put in the box, because you know how to 

add. Of course, you find the answer to be 35. Thus, since the sum of seve 

5's is 35, the man earns 35 shs for his 7 days work. 
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Exercise 10-2a
 

Find the answers to the following:
 

1. 3+3+3+3+3+3 
 -3
 

2. 7+7+7= D 
3. 4 = --] 

4. 9+9+9+9+9+9+9+9= 
ii
 
5. 8+8+8+8=
 

Exercise 10-2b
 

Make up word problems to fit each of the problems in the above
 

exercise. These word problems should be 
ones which you could use with
 

primary school children who are 
just learning about repeated addition.
 

Show the way in which you would present the solution to each of these
 

problems to your class.
 

10-3 Ways of writing repeated addition 

If your children have trouble with such problems, you can always use 

sets to help them, For instance, in problem 5, above, you can take 4 sets 

of 8 stones each, and lay them on the table as follows: 

0 0 0 0 0 0 0 0 

You may need to remind the children that adding is based on counting. If 

so, you can ask the children to count the number of stones in the union of 

the four sets. In this way they will that thesee answer is 32. Draw a picture 
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of the 4 sets of 8 stones on the blackboard, and then write the following 

statements underneath the picture. 

8 + 8 + 8 + 8 = 32 

The union of 4 sets of 8 things has 32 members. 

8 added 4 times = 32 

4 8's are 32 

Exercise 10-3a 

Draw pictures for each of the problems in exercise 10-2a above. Then 

write under each picture the four sentences as in the example above. 

10-4 Multiplication as repeated addition 

You can see what this is leading to. And if you have done this correctly 

in the classroom, your children will see where you are leading them. 

They -- and you -- will want to write this in an easierway. Repeated additions, 

based on repeated unions of equivalent sets, are so common that mathematicians 

give them a special name. You know that name, of course. It is multiplication, 

sometimes called finding the product. Instead of writing any of the four 

sentences which were given in section 3 above, you write the one short and 

easy sentence, 

4 X 8 = 32. 

Point out to your pupils that "X" is read "times," so that this statement is 

read "4 times 8 equals 32 ," This means concretely that you take the union of 

4 disjoint sets of 8 things each, and count the resulting set. This is the same 

as repeated addition, and is the same as adding the number 8 four times. So 

you have the following five statements, all of which say the thing insame 
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different ways. 

8 + 8 + 8 + 8 = 32 

The union of 4 sets of 8 things has 32 members. 

8 added 4 times = 32 

4 8's are 3z 

4 X 8 = 32 

Exercise 10-4a 

Draw sets and write the five statements to show the meaning of the 

following multiplicaLion equations. Find the numerals to put in the boxes. 

1. 9X3= -1 4. 7X1= D-F 
2. 2X5= D 5. 5X0= D
3. 1X7= D 

Exercise 10-4b
 

Write word problems 
to go with each of the problems in the above
 

exercise. 
 These word problems should be suitable for primary students just 

learning how to multiply. 

10-5 Problems of the type aX 0
 

You may have had 
some trouble with problem 5,in the exercise above. 

The first step in thinking about such a problem is to think what multiplication 

means. You know that it goes back to addition. So if you mult ply 3 X 0, 

you know that it means the same as 

0+0+0= [] 

And if you remember that each of these O's is the number of the empty set, 

you will know that this means 
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the union of 3 sets of 0 things.
 

And of course that union has no members in it. It is itself the empty set.
 

And so you can write
 

0 added 3 times = 0.
 

And so you can see easily that the last two lines of the work would be as
 

follows: 

3 O's are 0
 

3X0 = 0
 

Exercise 10-5a 

Draw pictures and write the five statements which show the meaning 

of the following multiplication equations. Fill in the boxes correctly. 

1. 4XO=0 

2. 7XO= 

3. 2xo= 

10-6 Problems of the type 0 X a 

Another problem which will give you trouble is one like 0 X 4. You have 

to think what is really means. Again you go back to addition. So to find 

0 X 4, you take a set of 4 things a certain number of times. How many times? 

Think of 2 X 4 and 1 X 4. In the case of 2 X 4, you take 2 sets of 4 things. 

In the case of 1 X 4, you take 1 set of 4 things. In this case, then, you take 

the union of 0 sets of 4 things. 

What does that mean? Draw a picture showing 2 X 4, and a picture showing 

1 X 4. They look like this: 
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0 0 0 
0 0 0 

0 0 0 
0 0 0
 

Thus a picture showing 0 X 4 would have 0 sets of 4 
 things and would look
 

like this.
 

And so you can see that this union has 0 members, and is itself the empty set. 

And so you can write 

4 taken 0 times = 0 

0 4's are 0 

0 X4 = 0 

Exercise .0-6a 

Tell in words the meaning of the following multiplication equations 

in the way described above.0 0a0en 0 0e 0 0 

1. 0 0' 0r 000000 Xl1= [- 2. 0 X5= 3. OXO DF 
10-7 Multiplicationin terms ofarraysof dots
 

You may have noticed another way 
to think about multip~ication. 

Remember that you show ascan 4 X 8 follows: 

In this way you show the product as a rectangular array, with four sets of 

eight members each. You can think of that array as having a set of eight 
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members on one side and a set of four members on the other side. You can 

show any product in this way, using an array of dots. If you show 3 X 9, 

for instance, you would draw 3 dots in each column, and nine dots in each 

row, 	 as follows: 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

Exercise 10-7a
 

Show these products as arrays of dots.
 

1. 2X9 2. 4X3 3. 9X7 4. 1X6 

10-8 	 Multiplication as mixing sets 

An interesting way to look at this is in terms of a problem like the 

following. 

Flumo and Sumo enter a restaurant, which is serving jolof rice, fufu 

and soup, or rice and palm butter. What are the different possible ways of 

pairing boys and foods? You could make a chart showing this as follows. 

jolof 	rice fufu and soup rice and palm butter 

Flumo (Flumo, jolof rice) (Flumo, fufu and soup) (Flumo, rice and palm 
butter)

Sumo (Sumo, jolof rice) (Sumo, fufu and soup) (Sumo, rice and palm 
butter) 

This 	chart can be made simpler in this way., 

o 0 0
 
0 0 0
 

Thus you can easily see that it is equivalent to an array with 2 dots in each 

column and 3 dots in each row. 
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What you are doing in problems like this is mixing one set with 

another set, so that you get a new set whose members are pairs of members, 

one from each of the original sets. Moreover, such sets of pairs are
 

equivalent to 
arrays of dots. In this problem the two sets are the set of
 

boys and the set of foods. The members of the new 
set are all the possible 

combinations of boys and goods. You can see that in this case the first
 

boy has three choices and the second boy has the 
same three choices. Thus 

there are 2 sets of 3 sopossible choices, that you can write the equation
 

for this as
 

3 + 3 = ]
 
You can see that this gives rise to the same type of multiplication equation
 

you found before, in the same way,
 

2 X 3= D 
Ic is easy to see that the number of pairs in such a set is found by multiplying 

the number of members in the first set and the number of members in the second 

set. You can see this by thinking of the equivalent array of dots. Sometimes 

it is easier to think of multiplication in terms of repeated union of sets, and 

at other times it is easier to think of it in terms of mixing sets. The two ways 

give the same result, and so you should learn both. And, what is more, you 

can use both in teaching children.
 

Exercise 10-a
 

Show each of the following multiplication equations by drawing 
two 

sets and mixing them as shown above. The first one is done for you. 
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1 2 3 4
1. 2X4= aI (a, 1) (a, 2) (a, 3) (a, 4) 

2. 5 X7= F-] b (b, 1) (b, 2) (b,3) (b, 4) 

3. lX 8= D-- Here a and b name the members of the 

first set, and I, 2, 3, 4 name the 

members of the second set. 
5. 2 X = ] 
6. 7Xl = --

Exercise 10-8b 

For each of the above problems, make up a story which shows the idea 

of mixing sets in a way which can be taught to primary children. 

Exercise 10-8c 

Every road from Aras to Cona passes through Buka. If there are 5 routes 

from Aras to Buka and 7 routes from Buka to Cona, how many routes are
 

there from Aras to Cona?
 

10-9 Multiplication table 

You a. now ready to work out the whole multiplication table for your

self. At first, take only numbers from 0 to 9. You will have a chance, later 

on, to work with products of numbers which are themselves greater than 9. 

But this needs special methods, which are better learned by themselves. 

You already know the multiplication table, since you learned it when you were 

a school child yourself. Maybe you never thought much about it at the time, 

since your teacher might not have told you what it meant and how to work it 

out. But now that you know the way to work it out, you should go through the 

whole thing for ycurself, find each answer, and put it in the proper place in 

the table. Remember that there are several ways of finding the product of two 
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numbers. Repeated union of sets, repeated addition of numbers, arrays
 

of dots, and mixing of sets, are some of these. Any way you do it is 
 all 

right, just so long as you satisfy yourself that the answers you learned as a 

child are right. In this way, you will be getting yourself ready to teach 

children what multiplication really means. Thus your classes will never
 

sing the multiplication tables without knowing what the words 
mean: In
 

doing this work, set up a taible like the one below. 
 One example -- to 

find 6 X 4 -- is given to you already, where the 6 in the column at the 

left is multiplied by the 4 in the row at the top. In every case, when you 

are multiplying a by b, find a in the left column and b in the top row, and 

find the place where the row and column beginning at those numbers meet. 

Put the answer in that spot. In the example given, a = 6 and b = 4, and so 

24 is put in the place where the proper row and column meet each other. 

Exercise 10-9a 

Complete the following multiplication table, using in turn all of the 

methods given in this section. 

xO T2 374 5678 9 
0 

2
3 

4I
 

5 
6 24
 
7 
8
 
9
 



10-11
 

10-10 Property of 1 

You can see from this table that, for instance, 1 X 3 = 3 and 7 X 1 = 7. 

In general, 1 X a = a and b X 1 = b, where a and b are any whole numbers. 

You can see this by thinking of multiplication as repeated addition or in terms 

of mixing sets or in terms of arrays of dots. For instance, 1 set of 2 members 

has 2 members. Likewise, 2 sets of 1 member have 2 members. 

Exercise 10-10a
 

Show by pictures these products.
 

1. 1X9 

2. 16X1 

3. 1X45 

4. lOX1 

..1o/
 



CHAPTER 11
 

PROPERTIES OF MULTIPLICATION
 

11-1 	 A reminder of multiplication
 

You learned above that you can 
show children the meaning of multipli

cation in several ways. You can take the union of several disjoint sets, 

each with the same number of members. In this case, the product of the 

numbers is found by counting the union of the sets. This 	in turn gives the 

same 	result as adding the same number to itself several times. Another way 

of explaining multiplication is through the mixing of sets. The result is the 

same 	as in a repeated union, but the concrete interpretation is a bit different. 

Both ways are useful, and both ways help children really to understand 

multiplication. 

Exercise 11-la 

1. 	 If a pattern 7f dots consists of 3 rows of 6 dots each, how many dots 

are there in the pattern? 

2. 	 The sum of two numbers is 10 and their product is 24. What are the 

numbers ? 

3. 	 Ama has 3 shillings and Jacob has 4 times as many. How many more 

shillings than Ama does Jacob have? 
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4. 	 Find the difference between the product of the numbers 6 and 8 and 

their 	sum. 

5. 	 A merchant sold articles for 5 shillings which had cost him 3 shillings. 

If he sold 7 of these articles i.. one sale what would be his profit
 

on this sale?
 

11-2 	 Introduction to Commutative property 

You will use these ways of looking at multiplication to find out some
 

important facts about products. 
 Look back at the multiplication table you 

made, and think about it. Do you see anything special? Does one part of 

the table look the same as some other part? Look at the products 5 x 7 and 

7 X 5, for instance. Do you see something special there? Of course you do. 

You see that they have the same product (35). Look at 2 x 9 and 9 X 2. You 

find the same thing again, i.e., they have the same product (18). 

Exercise 11-2a 

1. 	 Go through the multiplication table arid find all the pairs of numbers 

with the same product. Some of these pairs are like 5 X 7 and 7 x 5, 

and others are not. 5 X 7 and 7 X 5 in aMark pairs like special way,
 

and list them.
 

2. 	 Go back to the section on addition, and find a property that you used 

there, which gave results very much like those in the exercise above.
 

Give the name of that property, and write down a 
similar property for
 

multiplication.
 

'LA 
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11-3 Generalized form of commutative property 

If you did your work right in the last exercise, you used the commuta

tive property of addition. You found a similar property, the commutative 

property of multiplication, which states that any pair like 5 X 7 and 7 X 5 

gives the same result. You can write this, as you did for addition, as 

aXb=bXa 

where a and b are any whole numbers. 

Exercise 11-3a 

What does the commutative property of multiplication say when: 

1. a = 3 andb= 9 

2. a=5andb=5 

3. a=0andb=l 

4. a=nandb=3 

5. a=nandb=m 

11-4 Commutat.ve property in terms of repeated union 

You can see from the table the commutative property of multiplication 

for any one-digit number (that is, numbers from 0 to 9). But you would like 

to know it for all whole numbers. Of course, it must always be true, but it 

is not fair in mathematics to believe something without trying to think of how 

it can be understood. Think of two sets, each with a goat, a chicken and a 

cow. Then think of three sets, each with a goat and a chicken. Do the unions 

http:Commutat.ve
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in each case have the same number of members? You know that they do, and 

you know how to find out. Two sets have the same number of members if you 

can pair each member of either set with one and only one member of the other 

set. To start this problem, line the sets up like this: 

goat goat 

chicken chicken 
goat goat goat 

c cow ~ 
chicken 

cow____________ 
chicken chicken 

It is easy to pair the members of the first set with the members of the second 

set. Probably the best way to do it is to pair the two goats of the first set 

with the first goat and chicken of the second set, the two chickens of the 

first set with the second goat and chicken of the second set, and the two cows 

of the first set with the third goat and chicken of the second set. Your pairing 

would look like this. 

"chicken chicken I 
/f kcicc,cken chicken chcken ] 

Exercise 11-4a 

Show in the same way, using a drawing, that the union of 5 sets of 7 

houses has the same number of members as the union of 7 sets of 5 houses. 

Now, if you think about it, you can see why a Xb = b Xa is true for any whole 

numbers a and b. 
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Exercise 1l-4b
 

Show in this same way that these statements are true:
 

1. 	 3 X5 = 5 X3 

2. 	 6 X9=9 X6 

3. 	 1 X8=8 Xl 

11-5 	 Commutative property in terms of-mixing sets
 

You can see the 
same thing by using mixing of sets instead of the re

peated union of sets. In this case it is even easier to see the argument.
 

For instance, mix a set of two boys and a 
set of three girls. This is the set 

of pairs of boys and girls, as follows: 

i 

Now take the product the other way, that is, the product of a set of three 

girls and a set of two boys. You can draw it this way. 
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You can see that the pairs in the first product have the boy first and the girl 

second, and that the pairs in the second product have the girl first and the
 

boy second. Otherwise, 
 except for their place in the picture, the pairs are
 

exactly alike. This is just as 
true in the case where the two sets have a and 

b members. The pairs in the set product which gives a x b will be just the
 

same 
as the pairs in the set product which gives b x a, except that they will 

be turned around. So you can see in this way that a X b = b x a. 

Exercise ll-5a
 

Three Nigerians, three Ghanaians, 
 three LiberiL - and three Sierra 

Leoneans met. Show this as the mixing of a set of the four countries and a set 

of three persons. Hint: use N, G, Land S as letters for the countries, and 

1, 2 and 3 as numbers for the persons in each set. Show that the result is 

the same if three sets, each containing a Nigerian, a Ghanaian, a Liberian, 
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and a Sierra Leonean, meet. Show in this way, following the method given 

above for mixing sets, that 4 X 3 = 3 X 4. 

11-6 Commutative property in pictures 

You can help children to understand the commutative law of multiplica

tion by using objects. You can bring to your class 3 sets of 5 blocks, and 

put them together to look like this: 

Now take 5 sets of 3 blocks, and put them together in the other way, to look 

like this: 
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Now you can see by simple pairing that the two figures have the same number of
 

blocks. 
 This method will always work, as you can plainly see. 

Exercise 11-6a
 

Make a drawing, showing the same thing for 2 X 9 and 9 X 2. 
 Give
 

other examples useful for explaining the commutative property of multiplica

tion to children.
 

11-7 Introduction to associative property 

Now look back again to the section on the properties of addition. Do
 

you find another property there which, 
 like the commutative property, might
 

suggest a 
similar property for multiplication? Yes, you do, if you look hard.
 

You find the associative property of addition, 
which says that: 

(a + b) + c = a + (b + c) (for all whole numbers a, b and c.) 

You remember that this property tells you that if you add three numbers, adding
 

first either the first two or the last two you will get the 
same result. You 

remember that addition combines only two numbers at a time. So this is a 

very useful p'vpefty, since it extends addition to three numbers by starting 

with two an,-". then adding the third to the result in the proper order. Now see 

what the same property would be for multiplication. It would read as follows: 

(a x b) xc = a x (b Yc) (for all whole numbers a, b and c.) 

You should check some special cases to see if this property may hold. Let 

a = 2, b = 3 and c = 2. You will get 

(2 x3) x2 = 2 X(3 x2) 

0\
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If you check it, you will find that this is true. 

Exercise 11-7a
 

Check the following statements, to see if both sides give the same
 

results:
 

1. (1 X2) X4= 1 X (2 X4) 

2. (3 X0) X5 =3x (0 x 5) 

3. (4X2) X4=4X(2X4) 

Exercise 11-7b
 

Make up word problems for your primary 
class to show the meaning of 

the products in the exercise above. For example, (1 x2) x 4 can be thought 

of as (1 X 2) sets of four things, thinking of multiplication as repeated union. 

(1 X 2) can itself be thoivAt of as one set of two things. This problem can be 

illustrated through the following example. A man is building a wall with 

concrete blocks. Each section is four blocks long, and is built of the 

number of such four-block units given by the fact that the wall is one block 

deep and two blocks high. Thus each section of the wall has (1 x 2) four 

block units, and thus has ( 1 X 2) X 4 blocks in it. Give word problems for 

each of the other products. Here is a picture of a section of this wall. 
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11-8 	 Example of associative property
 

You have found that this property holds in each 
case you have tried, 

but you do not yet know whether it always holds. You would like to know 

this fact, but it might seem hard for you to see it. Actually it is easy, but
 

it takes a lot of words. You can do it 
 in either of the two ways you understood the 

commutative property for multiplication. You can think of multiplication as 

repeated addition, or you can think of it as coming from the mixing of sets. 

Both 	ways are shown by the example in the exercise above of the wall built 

of sections made of (1 X 2) X 4 concrete blocks. You can think of that wall as 

built of sections of 1 X (2 X 4) blocks. In this case the (2 x 4) means that 

there are two sets of four blocks each, or the product of two blocks by four 

blocks. Then taking 1 X (2 x 4) means either to take one set of (2 x 4) 

blocks or to mix the set of one block and the set of (2 X 4) blocks. In either 

way you will find that (1 X 2) X 4 blocks is the same as 1 X (2 X 4) blocks. 
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Exercise 11-8a 

Show in the ways given above that the following statements are correct: 

1. 	 (3X1)X5=3X(lX5) 2. 	 (4 X2) X4=4 X(2X4) 

3. (7 X1) X8 = 7 X(i X8) 

Exercise 11-8b 

Try to give a general argument for the associative property of multiplica

tion, in either of the two ways suggested above. 

Exercise 11-8c 

1. 	 Give three whole numbers whose sum is 6 and whose product is 6. 

Can you think of any other numbers for which this can be done? 

(You 	can find the answer at the end of the next section.) 

2. 	 Give four whole numbers whose sum is 8 and whose product is 8 (they 

need riot all be different numbers.) Can you think of any other numbers 

for which this can be done? (You can find the answer at the end of the 

next section.) 

11-9 Associative property in pictures 

You can draw pictures to show the associative property. For instance, you 

can draw the following picture of (3 X 2) X 4, where (3 X 2) is shaded: 

2' 
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and the following picture of 3 X (2 X 4), where 	(2 X 4) is shaded: 

........................
 

It is 	 easy to see that both pictures have the same number of blocks. You 
can use sets of blocks in this way in teaching children. 

Exercise11 -9a 
Draw pictures like those above for the products given in Exercise 11-8a 

of the preceeding section. 

NOTE: Answers for Exercise 8c: (1) 1, 2, 3; no 	others possible. (2) 1, 1, 2, 4; 

no others possible. 

11-10 	Introductionto distributive property
 

There is 
 one last property, which 	combines multiplication and addition. 
Think 	of a class 	which has 3 girls and 4 boys. Then 	think of 2 such classes, 
each 	with 3 girls and 4 boys. How 	many children would there be altogether in 
the 2 	classes? You could do it in two different ways. You could find the total 
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number of girls (which is 6) and the total number of boys (which is 8) and 

add them to get 14 children. Or you could find the total number of children 

in one class (which is 7) and multiply it by 2 to get the same 14. 

Exercise 1l-10a
 

Find out by working the problems if you get the same answer on both
 

the right and the left hand sides.
 

1. 1 X (3 + 2) = (1 X 3) + (1 X 2) 

2. (4 X 1)+ (4 X 2) = 4 X (1+ 2) 

Exercise 11-10b
 

Write word problems which you 
 could use with primary school children 

for each of the problems in the exercise above. 

11-11 Distributive property in pictures 

You can understand this property in the same two ways as you under

stood the commutative property for multiplication. However, again it would 

take many words. If you v'buld like to exercise your brain, it would be good 

for you to try to write out an argument. It's not too hard. But, whether or 

not you try it, you can see that it is true with particular numbers by drawing 

a picture. For example, you can show (4 X 1) + (4 X 2) as follows: 
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o 0 0 

0 0 0 

o 0 0 

o 0 0 

You 	can also show 4 X (1 + 2) as follows: 

0 0 0 

0 0 0 

It is easy to match the two sets of dots and see that they have the same 

number of members. 

It is also useful in your class to show this property by using blocks, 

as in these two pictures. 
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Exercise 11-H1a
 

Draw arrays of dots and pictures for these problems:
 

1. X(3 + 2)= (1X3) + (I X2) 

2. 	 3 X ,3 +3) =(3 X3) + (3 X3) 

3. 	 (4 X2) + (4'X0) = 4 X(2 +0) 

11-12 	Generalized form of distributive property
 

This property can be written 
as follows:
 

a x(b+c) = (a xb) + (a Xc) 
 (for all whole numbers a, band c).
 

It is called the distributive property, 
 and says that if you multiply one 

number and the sum of two other numbers, you get the same result as if you 

multiplied that number by each of the other two numbers, and then added
 

the two results.
 

Exercise ll-12a
 

Tell what the distributive property says in the following 
cases: 

1. 	 a= , b=2, c=3 

2. 	 a=0, b= 5, c=4
 

a=x,b=2, c=3
 

Exercise1l-12b 

1. 	 Is (2 + 	3) X (2 + 3) equal to (2 X 2) + (3 X 3)? Explain. 

2. 	 What numeral must be put into each box to make 3 XD+ 2 Xf= 35 

into a 	true statement? 
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3. A newspaper boy sold on a certain day 30 newspapers and on another 

day 60. If the cost of a newspaper is 2 pence, which of the following 

statements can be used to determine his total sales on the two days? 

60 X4 pence 

30 X 4 pence 

(20 X2) + (60 x2) pence 

(30 + 60) X4 pence 

(30 + 60) x 2 pence 

2 X (60 + 30) pence 

4. 	 A group of children were divided into 4 teams of 3 children each. Each 

person on each team was assigned one of the numbers 1, 2, and 3 so 

that each of these numbers appeared on each team. What was the 

total sum of all the numbers assigned? Can you think of several 

wa'!s 	to work this problem? 

5. 	 To mns A, B and C lie on a straight road with B between the other two. 

Th, disLance from A to B is 5 miles and the distance from B to C is 4 miles. 

The distance from another town D to town A is 3 times the distance from 

town A to town C. What is the distance between town A and D? Illustrate 

the distances mentioned by means of a picture. 

6. 	 Find the number (2 + 3) X (4 + 	5). Can you think of three or more different 

ways 	to do this? In each case state the properties of the operations 

you use. 
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7. 	 If a set with 15 members is separated into 3 disjoint subsets, so that 

each successive subset has one more member than the preceeding subset, 

what is the number of members in each of these subsets? 

(Make up another exercise like this one which you could use with pupils 

in your classes, in which the number of members in the total set is 

different from 15.) 



CHAPTER 12 

DIVISION 

You remember from your own school days that division and multiplication 

are closely related. Maybe you never knew why, but you must have noticed 

that if you multiplied, for instance, 2 X 3 to get 6, then you could divide the 

result 6 by 2 and get back to 3 again. There is a reason for this and you are 

going to look at the reason. 

12-1 Reminder of multiplication in terms of union of equivalent sets 

First think of what you do when you multiply. For example, you can take 

a set of two members and then take another set of two members and then a third 

set of two members and form their union by putting them all together. At first 

you thought of this as repeated addition and wrote it as 2 + 2 + 2 = 6 but later 

learned to write it more briefly as 3 X 2 = 6 and to call this multiplication. 

Similarly 4 + 4 + 4, which you first knew as the union of 3 sets of 4 thingswas 

later written as 3 X 4. 

If you forget a multiplication fact such as 6 x 9 = 54 you can work it out 

because you know that 6 X 9 = 9 + 9 + 9 + 9 + 9 + 9 and you can add the nines 
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to find their sum. When we multiply two numbers we find their product. The 

numbers which are multiplied are called factors of the product. 

Exercise 12-1a 

Write the products in the boxes in these equations. Show them also as 

addition equations. 

I. 3X 5= -- 4. = 96 X 9 7. X8= 

2. 4x 3= 5. 7 X8= 8. 8 X9= El 
3. 9 x 6 = 6. 8 X 5 = 9. 7 X 7 =E 

12-2 Tables of multiplication facts 

You have memorized many multiplication facts and so do not need to work 

them out by repeated addition. It is necessary for your pupils to know these 

facts very thoroughly in order to be able to do arithmetic quickly. It is even 

more important that they shall understand how these multiplication tables are 

built up and so be able to work them out for themselves. Each table can be 

written in two ways: 

The table of "twos" The "2-times" table
 

1X2= 2 2X1=2
 

2x 2 =4 2X2 =4
 

3 x2 = 6 2 X3=6
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Exercise 12-2a 

Write out the "fives" and "5-times" tables for the numbers from 0 to 9. 

12-3 Tablos of oonstant products 

Now we will look at a different way of grouping these tables. Can you find 

the set of all the multiplication facts where the product is 8 ? Here is one such 

product: 2 X 4 = 8. You can do this in two ways: 

Method 1. Using sets of things. 

Make up a set of things whose number is the product you want, for example 

8 stones. Arrange them on the table in rows having the same number of stones 

in each row. You might have any of these arrangements: 

4 rows with 2 stones in each o 0 4 X 2 

0 0 

0 0 

0 0 

2 rows with 4 stones in each 0 0 0 0 2 X4 

1 row with 8 stones 0 0 0 0 0 0 0 0 1 <8 

8 rows with I stone in each O 8 X 1 

0 

0 
0 

0 

0 

0 

0 
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So we can write the table which shows the pairs of numbers whose product 

=is 8: 8=1X8; 8 2X4; 8=4X 2; 8=8X1. Note that in this list the first 

factors in each pair are in order of increasing size. 

Exercise 12-3a 

Using sets of objects, arrange them in rows to show all the pairs of factors 

which give as their product 6, 7, 9, 12, 20. Write oLt the table for each product 

as we did for 8. 

Method 2. Using multiplica'din facts. 

You do not need to work out all these pairs with sets. You know them already. 

If you want to be quite sure that you have written every one of them you can look 

at the multiplication table you made out in a big square. Write down the multi

plication facts where the product is 6. You will have, 6 = 1 X 6, 6 = 2 X 3, 

6 = 3 X 2, 6= 6 X1. 

Exercise 12-3b 

Write down the table for all pairs of factors whose product is 16, 18, 23, 36, 

40, 56. 

There are many problems which show this kind of multiplication. You might, 

for example, have a class of 27 children and you might want to arrange the desks 

in your classroom so that you have them in rows of equal length. If you think 

about it you will see that one way is to have 3 rows with 9 desks in each row, 
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because 3 X 9 is one of the pairs which make 27. You could have worked out 

this problem by arranging 27 stones in 3 rows, or you could have looked at
 

your multiplication table to find pairs of numbers whose product is 
 27. 

Exercise 12-3c 

If there are 18 children in the Primary I class at your school, and you
 

want them to march in a parade, in how many different ways can you arrange
 

them in rows of equal length ? Write 18 
as a product of factors to show all these 

different ways. 

12-4 Division as finding the missing factor 

It may be that in some cases one of the pair of factors in a certain pro

duct is already fixed. For example, there might have to be 6 children in each 

row in the parade above. We can make the equation like this X 6 = 18 

and we know that 3 is the numeral to be put into the box. So we must make 

3 rows of children with 6 in each row. 

Here is another example: Think of a hand of bananas with 14 bananas on 

it. You want to give each man who is working on your farm 2 bananas. In this 

case each subset must have 2 bananas. You would like to know the number of 

such subsets you can have, so you can know the number of men to whom you 

can give 2 bananas each. You write the equation - X 2 = 14 and find that 

7 men can each receive 2 bananas. 
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In these problems we have to find the missing factor. You will remember
 

that when we have to find a 
missing addend in an addition equation we are
 

doing subtraction and we write the equation to show this. Por example: 
 3 +1= 5 

becomes 5 - 3 = . When we find the missing factor in a multiplication
 

equation, we are doing DIVISION. 
 The sign for division is " " and is read
 

"divided by". 
 X 2 = 14 may be written as 14 " 2 Z
 

In this example the missing factor is, 
 of course 7. We call 7 the QUOTIENT 

of .14 7 2 . In other words, the quotient of - : b is the number which makes 

X b = a into a true equation. 

Exercise 12-4a 

1. I am thinking of a number. Three times this number is 18. What is the 

number? 

2. What is the number which, when it is divided by 5 and multiplied by 3, 

gives 6? 

3. What is the number which, when divided by 3 three times in succession, 

gives 2 ? 

12-5 Division as grouping or as sharing 

Division can be thought of in the following way. Suppose you have a set 
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of things you wish to break up into subsets each with the same number of members. 

How many such subsets can you get? To put this in another way, if there are n 

members of a set and m members in each subset, how many such subsets can
 

be found? This can be written- X m = n or n m = This kind of divi-
L-I. 
sion problem is sometimes called "grouping" because we group the members of 

the set into equivalent subsets. 

Exercise 12-5a 

Write each of these multiplication equations as a division equation. 

Then find each quotient. 

Example 24 X= ×4 24 - 4 = quotient is 6. 

1. 72= X 8 5. 8=Z-X1 
2. 56=L X 7 6. 28=fX4 

3. 42 LX 6 7. 18 ~18 

4. 21 X 3 8. 45 =1X 5 
This way of thinking of division helps young children to understand it 

and gives them a way to work out the answer. For example if a child wants 

to find an aiiswer to 42 6 he can change it to X 6 = 42 and he then 

has to find how many subsets with 6 members each he can make from 42. If 

he knows the multiplication table of sixes he knows that 7 X 6 = 42 and gets 

the quotient 7 quickly. But if he does not know this then he take 42can stones 

anrd put them into subsets of 6 to find how many subsets can be made. 

lip
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Exercise 12-5b 

1. 	 A man had 15 bags of rice on his farm, which was away from the motor 

road. He had 5 workers who could each carry one bag of rice. How 

many trips would the 5 workers have to make to get all the rice to the 

road ? 

2. 	 If each man can head-load four cement blocks, how many men are 

needed to head-load 32 cement blocks to a construction job in the bush? 

Division can also arise in the following wey. You have 21 copybooks
 

for your family of 7 children. How many 
can they each have if the copybooks
 

are shared equally? Here we break up a set of objects into a given number of
 

equivalent subsets and have to find how many members there 
are in a subset. 

In this case each of the 7 children will receive 3 copybooks. 

21 = 7 Xj 21 7 3] 

One practical way to find the answer to this problem is to hand the 

copybooks out to 	the children, one by one, until they are finished. You will 

go around the circle of children 3 times. You will "share" the copybooks among 

the seven children. This is why this kind of division problem is sometimes 

called "sharing." 

Exercise 12-5c 

If you have 24 oranges to share equally among 6 people how many 

oranges will they each receive? Write the multiplication and division equations, 

and write the answer in words in a sentence. 
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In such cases division can be described in this way. If You have a set 

of n members which must be broken up into m equivalent subsets, how many 

members are there in each subset? The equation can be written n = m XI

or n M 

It is good for young children to do division in this way also. If they 

do not see how to find the answer to the problem about the oranges they can 

take 24 stones and put them out into 6 piles, one by one. 

Both these ways cf division give the same answer. If we have 6 bananas 

we can divide them in 2 ways. 

1. How many children can have 2 iananas each? 

The answer is 3 children. 

6"2=3 

2. Share 6 bananas equally between 2 children. 

The answer is 3 bananas 
each. 

6-2=3 
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Both 	these ways of division give the numbersame as the answer which can 

be written n =E] 	and this equation can havem come from either of two 

equations 

n =X m
 

n= mXII 

Exercise 12-5d 

1. 	 If 30 pieces of candy are to be shared equally among 6 children, what 

is each child's share? 

2. 	 A farmer has 20 acres of crops to be harvested and he and his helpers 

have allowed 5 days to do the harvesting. If the farmer and his helpers 

work equally hard each day, how many acres should he plan to harvest 

each day? 

3. 	 The cost of sending a telegram is 1 shilling for the first 9 words or 

part thereof, and 1 penny for each additional word. How much will it 

cost a man to send a telegram of 

a. 18 words? 

b. 12 words? 

c. 8 words? 

d. x words? 

12-6 	 Remainders 

Sometimes we have a division problem whi.h cannot be answered with a 

whole number. For example, if you wish to arrange 27 children in rows of 8 
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you cannot do it. There will be 3 rows of 8 children and 3 children left over. 

You remember that we call this a remainder of 3. A set of 27 members can be 

separated into 3 subsets of 8 and a subset of 3. We can write this as 

27 = (3 X 8) + 3. The remainder is 3. Your pupils should answer the problem 

in words as follows: There will be 3 rows of 8 children and 3 children left 

over. There is no answer to 27 . 8 in the set of whole numbers. 

Again we might have the problem: How many oranges will there be for 

each of 4 people if there are 25 oranges to sbh:e among them? We can see 

that there will be 6 each and 1 orange left over. Again we could write this 

=25 (4 > 6) + 1 but also as 

0 0 0 0 0 0 0 0 
00 0 0 0 0 00 
00 00 0 0 0 0 0 

Your pupils should write the answer in a sentence explaining that there will 

be 1 orange left over. 

In these two examples we speak of division with a remainder, since 

there is no whole number which is the quotient of 27 . 4. The remainder in 

the first example is 3 because 27 = (3 X 8) + 3, and in the second the re

mainder is 1 because 25 = (6 X 4) + 1. 

If there is no whole number which will make the equation n "m=L 

true,we say that there is no quotient in the set of whole numbers. 

-t 
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Exercise 12-6a 

Show each of the following division equations as multiplication equa

tions and give if possible the whole number quotient to each 
1. 48 ' 8 =---J 	 4. 63"9 = 

2. 65 9 =] 	 5. 63e8.f_ 
3. 47 "5 =1 

Exercise 12-6b 

Bankole has 45 shillings which he wants to share among his five 

brothers. How much will each receive? 

Exercise 12-6c 

Bankole has 28 shillings to buy petrol. How many gallons can he bu 

if petrol costs 4 shillings a gallon? 

Exercise 12-6d 

Solve these problems, if possible, by finding a whole number which 

makes the equation true. 

2. 	 3 X1 = 24 5. jx4=-36 

=.=35 6. 6XLR= 16 

Exercise 12-6e 

1. If a 	number is divided by 12 the quotient is 6 and the remainder is 3, 

what is the number? 
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2. 	 John has 23 shillings and toy dogs cost 5 shillings each. If John buys 

as many toy dogs as he can, how many does he buy and how many 

shillings does he have remaining? 

12-7 	 Division as inverse of multiplication 

It should be clear to you now that multiplication and division are very 

closely related to each other. The division equation n - m = D corresponds 

to either of the two multiplication equations. 

n =] Xm 

n = mXi1iJ 

Thus division finds one of the factors in a product if the product and the other 

factor are known. It does it by dividing the product by the known factor giving 

the missing factor as the answer, The missing factor is thus the quotient. 

You. should be saying to yourself by this time that division is just the opposite 

of multiplication. Multiplication builds up a product from two numbers. 

Division breaks down that product again. 

For instance we know that 7 X 9 = 63, because 7 sets each with 9 

objects make a total of 63 objects. We also know that if we divide a set of 

63 objects into sets of nine objects each, we will get 7 such sets. From this 

situation we can see the following facts. If we begin with 7, multiply by 9 

and then divide the product by 9, we get back to 7 again. We can write this 

7 X 9	= 63 

=63 	 9 7 

=(therefore) (7 x 9) 9 7 
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so you can see that division undoes what multiplication does. We say that 

division is the inverse operation to multiplication. On the other hand, if we 

begin with 63, first divide by 9, and then multiply the quotient by 9, we again 

get back to the number with which we began, in this case 63. 

(63 - 9) X 9 = 63 

So multiplication builds up what division has broken down and we can also
 

think of multiplication 
as the inverse operation to division.
 

Whatever pairs of factors 
we choose we can always make similar
 

multiplication -,,id division statements. We can show this using and
m n: 

(m X n) . n =m 

(m n) X n =m 

From these equations you can see that multiplication and division do opposite 

things. This is why each is said to be the inverse of the other. 

Exercise 12-7a
 

Make sets of equations, similar to those above, 
 with: 

1. m =3 2. m =7 3. m=10 4. m= 9 
n=5 n=8 n= 4 n=6 

12-8 Division by zero 

Suppose you were asked to solve the division problem 2 ' 0= 

What would you do? You would write the corresponding multiplication equation: 

Sx 0 = 2 
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But there is no numeral which can be put in the box to make this equation 

true. Why not? Because F X 0 = 0 is an identity (true for any numerals put 

in the box) and X 0 cannot be both 2 ,nd 0. 

Exercise 12-8a 

Show in the same way that it is impossible to solve any of the following 

division problems. 

1 -0 3"0 4"0 5.0 

Could we perhaps find 0 ' 0? That is, could we fill the box in 

0 0= l 
by a numeral so as to make the equation true? The corresponding multiplication 

equation is: 0 =D X 0 

But this is true for allnumerals. To be able to get every answer is almost as 

bad as to get no answer at all. If we use 0 + 0 we would like to have it 

stand for some particular number. 

In mathematics we agree to say that division by zero is impossible. 



CHAPTER 13 

SUMMARY OF PROPERTIES OF ADDITION AND MULTIPLICATION 

13-1 Commutative property of addition end multiplication 

You found out when you were doing addition that if you had to add any 

two whole numbers, the order in which the operation is done does not affect 

the answer. For example, 8 + 3 = 3 + 8. This illustrates the commutative. 

property of addition, which, put in generalized form and using a and b for 

any whole numbers, reads thus: 

a + b = b + a. 

You will remember that multiplication also has this same property; 

that the order in which any two whole numbers are multiplied does not affect 

the product. For example, 5 X 7 = 7 X 5. Using a and b for any whole 

numbers: 

a X b = b X a. 

From the above, this question follows naturally. "Do subtraction and 

division have this commutative property?" You can easily answer this for 

yourself by using any two different numbers you wish. For example, is 6 - 2 

2 - 6 or is 6 + 2 = 2 + 6? Take some more whole numbers and try them and 

then state your conclusion in a sentence. You will notice that a - b = b - a 

if a = b. For example, 6 - 6 = 6 - 6. We do not on this account say that 

subtraction is commutative. If subtraction were commutative, we should have 

a-b=b-a 
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for all pairs of whole numbers and this is not the case. In fact if a X b 

(a not equal to b) only one of a - b and b - a is a whole number. Similarly 

for division, if a = b, a - b = b + a. This does not make division commutative 

If division were commutative we would require that a -*. b b + a for every 

pair of whole numbers. For b X a only one of a -! b and b +a is a whole 

number. 

13-2 Associative property of addition and multiplication 

You have discovered that in adding any three whole numbers the manner 

of grouping the numbers does not affect that sum. For example, if we have to
 

add 2, 3 and 5, then we know that 
 2 + (3 + 5) = (2 + 3) + 5. This illustrates 

the associative property of addition. Put in general form it reads thus: 

a + (b + c) = (a + b) + c 

where a, b and c represent any whole numbers. 

You ought to remember that multiplication also has this property,same 

namely, that no matter how you group three whole numbers which are to be 

multiplied together, the product will be the same. For evample 2 X (5 X 3) = 

(2 X 5) X 3. 

Using a, b and c to represent any whole numbers, this property of 

mulciplication can be stated thus: 

a X (b X c) = (a X b) Xc. 

You will also be interested to know whether this associative property 

holds for subtraction and division. This you can discover for yourself by using 
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three whole numbers.
 

For £xample: Is it true that (8 - 4) -2 = 8- (4- 2) and
 

(8 -4) 	 + 2 = 8 (4 2) ? 

Obviously neither of these is true, and we conclude that subtraction 

and division do not have the associative property. 

Exercise 13-2a 

Give the whole number answer, if any, in each of the sentences below. 

In each 	pair, what evidence do the answers give abouL the associative property 

for the 	operation involved? 

(a) 3+ 	 (2+4)=L (3+2)+4=ZI

(b)sx(4x 2)= 	 (5x 4)x 2=
(c) 4+ 	(2 1) [- (4 +2) 1= D 
(d) 8-	(7 -)= (8- 7)-= D 
(e) 7+ (6+ 5)= (7+ 6)+ 5 

(0 12- (4 2)=LIJ (12- 4) 2= 

(g) 0 	- (5- 3) = ] (0 - 5) - 3= 

(h) (8-5 -2= 1 8- (5 - 2)= E] 
(i) (12-	 6) + 2 = D] 12 -(6 + 2)=

13-3 	 The distributive property 

This property states in general form that if a, b and c are whole 

numbers then 

a X (b + c) = (a x b) + (a x c). 
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For example, when a 5, = and 2= b 4 c = this becomes 

5X (4+ 2) = 5X 4+ 5 X2. 

Multiplication is said to be distributive over addition. Is multiplication also 

distributive over subtraction?
 

For example: Is it true that 5X (4 
- 2) = 5X 4 - 5 X 2? Yes, it is.
 

Examples like this lead us to believe that multiplication is indeed
 

distributive over subtraction; in other words that
 

-ax (b c) = (a Xb) - (aX c) 

for whole numbers a, b and c. (Of course, we must assume also that is 

not greater than b, to make sure that b - c is a whole number.) We can 

see that this statement holds if we can show that the number a X (b - c) makes 

the sentence 

D + a Xc = a Xb 

true. That means we want to see whether it is true that 

[aX(b-c)] + aXc=aXb.
 

The left-hand side 
can be written 

a X [(b - c) + c] 
(using the distributive property of multiplication over addition) and this is 

equal to 

aXb. 

Therefore, we see that aX (b - c) does make our sentence true, and so it is 

the case, as we guessed, that a X(b - c) = (aXb) - (a Xc).
 

Multiplication is 
 therefore distributive over subtraction. Is it also 

c 
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distributive over multiplication? Is 5 X (4 X 2) = (5 X 4) X (5 X 2)? Obviously 

not. Is multiplication distributive over division? 

Is 5 X (4 2) = (5 x 4) (5 X 2) ? 

Again obviously not. So multiplication is distributive over addition and 

subtraction only. These two distributive properties can be combined in the 

form: 

a x (b ± c) = (a x b) ± (ax c). 

Exercise 13-3a 

Give the whole number ai.swer, if any, in each of the sentences 

below. 

(a) 6x(3+ 2)=-] 6x 3+6x2= 

(b) 	 8x(6- 2)= - 8X 6- 8X 2 =L
()9 X (6 +1) F-1 (9 X 6) (9 X 1) E
 

(d) 12 X (4- 0)=- 12 x 4 -12 x 0= 

(e) 5X(5+5)= [- 5X 5+5X 5= 

L](f) 5X(55) 	 5X5-5X5= 

(g) 5X (55)= ] (5 X 5)+ (sx 5) =

(h) 5 X (5 X 5) [] (s Xs) x (s x s) =[-] 
(i) 20 X (8 -4) = 1- (20 X8) (20x 4) = L-

Next you will now wonder whether division like multiplication is 

distributive over addition and subtraction, but not over multiplication and 

division. You can find these out yourself by considering each of these 

statements: 
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1. 	 To test whether division is distributive over addition, test this
 

statement:
 

20 -L (5 + 4) = (20 -5) + (20 + 4) 

2. 	 To test whether division is distributive over subtraction, test this
 

statement:
 

20 - (5 - 4) = (20 + 5) - (20 -4) 

3. 	 Similarly to test whether division is distributive over multiplication, 

test 	this: 

20- (5 X 4) = (20 5)x (20 4) 

4. 	 Test whether 20 - (5 +4) = (20 - 5) (20 -- 4) to test whether division
 

is distributive over division.
 

You discover that each of the four statements above is false. Therefore,
 

division is 
 not distributive over addition, subtraction, multiplication, or
 

division.
 

13-4 Properties of zero and one 

You recall that 0 has the property that when it is added to any whole 

number, the sum is such as to leave the whole number unchanged. For 

=example, 0+5 5 and 5+ 0=5. Infact, 0+a=a and a+ 0=a, where 

a is any whole number. The similar property for multiplication is that when 

any whole number is multiplied by 1, the product is such as to leave the 

whole number unchanged. Thus 1 X a = a and a X 1 = a, where a is any 

whole number. To 	summarize these two prop-erties, it is said that 0 i the 

identity element for addition and 1 is the identity element for multiplication. 
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This statement means that the result you obtain after adding 0 or multiplying 

by 1 is identically the same as the whole number you started with. Let's 

put 	these findings all together:. 

1. 	 0+a a 

a+0=a 

2. 	 IXa a 

aX 1 =a 

where a is any whole number. 

You will now be wondering whether 0 and 1 act as identity elements 

for subtraction and division. Let us try to test this: 

3-0=3 but 0-3/3 

also 3-1/3 and 1-3/3 

so neither 0 nor 1 is an identity element for subtraction. Again 

3- 1=3 but 1+3X3 

so 1 is therefore not an identity element for division. 

There is another important property of 0. The product of any whole 

number and 0 is always 0; that is, if a is any whole number then a X 0 = 0 

and 0 X a = 0. In multiplication, therefore, 0 is as different from the identity 

element as possible. 

Now let us consider the effect of 0 in division. What meaning can 

we attach to 0 + 3 and 3 - 0? We will think of the answers as missing 

factors in multiplication equations. 

Thus 0=3 becomes 0 =LX 3 and we know that 0 is the only 
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number which we can put in the box to make this statement true. Therefore 

0 = IX3 andso 0 +3=0. Now 3-0 = maybewrittenas 3=0XFD 

What number can we put into the box to make the statement true? We know
 

that the product of 0 and any number is 0, 
 and so there is no whole numbei 

which will make this statement true. So we do not divide a number by 0 

because as with 3 0 there is no whole number answer. 

You see now that 0 does not act as identity element for division and 

so we can say that neither 0 nor 1 is an identity element for division. In
 

fact, subtraction and division do not have any identity elements.
 

Exercise --3-4a
 

Complete the sentences by putting a whole number into
 

each box, if possible.
 

1. 3+0=F1 6. 0 5=[] 

2. 3X0= 7. 0-O=D 

3. 3-0 8. 100 - 0= 

4. 3- 0=F- 9. 2X(16X o)=F

5. 0X5=F 10.(12 - 3)- 0 = 

13-5 Properties summarized 

Herc a, b, and c stand for any whole numbers 

Commutative property of Addition Commutative Property of Multiplication 

a+b=b+a a xb =bx a 

Associative Property of Addition Associative property of Multiplication 

= a + (b + c) (a + b) + c ax (bX c) = (aX b) Xc 

. ;' /, 
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Distributive Property 

a X (b+ c) = (aXb) + (a Xc) 

Additive Property of Zero Multiplication Property of One 

a+O=a aXla 

O+a a 1 Xa = a 

Multiplication Property of Zero 

aX 0 = 

OX a = 0 



CHAPTER 14
 

PROCEDURES FOR ADDITION AND SUBTRACTION IN THE DECIMAL SYSTEM 

14-1 Basic addition facts and related facts in column addition
 

In earlier work attention was given to the meaning of addition as an
 

operation. 
 Two whole numbers were selected and an operation was performed on 

them, and that operation yielded a third whole number, called the sum of the 

two numbers. The sum was shown in terms of an operation on sets. For
 

example, the sum of 7 and 2 was 
found by choosing two disjoint sets, a set C 

of 7 objects and a set K of 2 objects, and finding their union. The sum of 7 and 

2 is the number of objects in the union of sets C and K. 

Addition is a commutative operation: 

5 + 4 = 4 + 5, 

and so on. In general, the order in which two numbers are added does not 

affect the sum. We say a + b = b + a. 

Addition is an associative operation. (97 + 75) + 25 = 97 + (75 + 25). 

In general, the grouping of numbers in addition may be changed without changing 

the sum. We say (a +b) +c=a+ (b+c). 

The above discussion is concerned with the operation of addition. A 

clear distinction needs to ]_c- made between the operation and the various 

procedures for performing addition which you will study in this chapter. How-

seeever, you will that these procedures rely on your understanding of the 

number system to rename numbers and ,',-ur ability to use such 1 

commutative and associative properties. 
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You have dealt with the basic facts of addition. An understanding of the 

relations which exist among these basic facts should aid in learning new facts. 

For example, when the child has mastered the basic fact 5 + 3 = 8, he can see 

how this fact is related to other facts such as 

15 + 3 = 18 

25 + 3 = 28 

35 + 3 = 38 

95 + 3 = 98 

145 + 3 = 148
 

and so on.
 

The mathematics is 
 merely the application of the associative property as 

shown below: 

15 + 3= (10 + 5) + 3 

= 10 + (5 + 3) 

= 10 + 8 

= 18. 

It is important that the meaning be made clear. It is also necessary that 

with much meaningful practice, the child should gain the ability to give auto

matic responses to such facts as 15 + 3 = 18. Important applications of these 

facts are found in column addition. If the child is adding 8 + 7 + 3 he needs to 

be able to give automatic responses to the basic fact 8 + 7 = 15, and then to the 
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fact that 15 + 3 = 18 which is related to the basic fact 5 + 3 = 8. 

Similarly, the basic facts with sums greater than 10 are useful in learn

ing new facts. For example, when the child has mastered the basic fact 8 + 6 = 

14, he can see how this is related to other facts such as 

18 + 6 = 24 

28 + 6 = 34 

38 + 6 = 44 

78 + 6 = 84 

288 + 6 = 294
 

and so on.
 

Again, we an application of the associative
see propertj 

18 + 6= (10 + 8) + 6 

= 10 + (8 + 6) 

= 10 + 14 

= 10 + (10 + 4) 

= (10 + 10) + 4 

= 20 + 4 

= 24. 

It is important to note that the example above is not taught to children in 

the same way as the addition of two numbers each represented by a two-digit 

numeral. Rather show childrenwe that the sum of 18 + 6 will end in 4 because 

of the basic fact 8 + 6 = 14. NexL, because children understand the number 

,7
 



14-4
 

system, they can see that the sum 18 + 6 will be in the twenties. Therefore,
 

the sum is 24.
 

It is essential that the meaning be made clear. 
 It is also necessary that 

with much meaningful practice, the child should gain the ability to give auto

matic responses to sucn facts as 18 + 6 = 24. Unless he can do this, he is not 

ready for examples in column addition requiring this ability. 

Look at this column addition: 9 
9 
6
 

If a child adds downwards, he should give an automatic response to the basic
 

fact 9 + 9 = 18, 
 and then to the fact 18 + 6 = 24, which is related to the basic
 

fact 8 + 6 = 14. When performing the addition, he will think: "9, 18, 24".
 

Although the examples 
 illustrate addition downwards, the direction is 

not significant. In column addition it is desirable that children learn to add in 

both directions to check their work. Regardless of the direction in which pupils 

add, they will ieed automatic responses to the basic facts of addition and the 

related facts.
 

14-2 Addition of multiples of 10 

In this unit we are mainly concerned with the addition of two numbers 

each of which is represented by a two-digit numeral. Let us first consider the 

addition of two numbers each of which is represented by a two-digit numeral 

ending in zero. Let us take the example 30 + 20 which may appear in vertical 

form thus: 

30 
+20 

+z__00



14-5
 

Class activity will include revision of the meaning of numbers represented by 

two-digit numerals. The child should be able to count by tens with understand

ing. He represents 30 as 3 bundles of sticks with 10 sticks in each bundle. He 

checks by counting 10, 20, 30, which gives him 3 tens. Similarly, he repre

sents 20 as 2 tens. With bundles of sticks the children discover that: 

3 bundles of ten + 2 bundles of ten =,5 bundles of ten 

3 tens + 2 tens = 5 tens 

30 + 20 = 50. 

It is important that children understand that: 

3 tens is the same as thirty (30) 

2 tens is the same as twenty (20) 

5 tens is the same as fifty (50). 

The problem should also appear in vertical form. This emphasizes the place 

value in the numeration system. 

30 3 tens 
+20 +2 tens 

50 5 tens 

Exercise 14-2a 

Get a collection of single sticks. Form bundles of ten from the large 

collection. Use these bundles in the same way as you will teach children to 

use them. Solve the following examples: 

(a) 40 + 10 (b) 60+30 
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14-3 Renaming numbers in the decimal system 

The previous work leads to the addition of two numbers represented by 

two-digit numerals ending in non-zero digits. In this type of example, con

siderable emphasis is placed 
on the way in which we name numbers. 

There are many ways of naming a number. The idea of different names 

for the same number is basic for learning the procedures of addition and sub

traction. For example, 46 may be renamed as 48 - 2, 46 + 0, 47 - 1, 14 + 32, 

20 + 26, 92 - 2, 2116 ............ 
It is clear that a number can be renamed 

in a very great variety of ways. But here we are concerned with using names 

which are particularly helpful in addition and subtraction. For example we name 

46 as 40 + 6, or (4 X 10) + (6 X L). or 4 tens + 6 ones. Sometimes it is useful 

4 6to name as 30 + 16, or (3 X 10) + (16 x 1)or 3 tens + 16 ones. In each 

situation, we are expressing the number as (so many) tens + (so many) ones. 

We may extend this to larger numbers. For instance, 376 may be written as 

follows: 

300 + 70 + 6 

3 hundreds + 7 tens + 6 ones 
W--1 
 ON
 

r+ 0 

j (D
En En 

(D 

01 

(3 X100) + (7 X10) + (6 x1) 

(3 X10Xl10) + (7 X10) + (6 X1) 

(3lX 0) + (7 X10) + (6 x1) 

These representations show that the grouping is by ten or that the base 

of the number system is ten. The system is called a decimal system from the 



14-7
 

Latin word "decem" which means ten. In the operations of addition and subtrac

tion, it is sometimes necessary to use slight modifications of he representations 

shown above. These modifications are often referred to as regrouping. For 

example, we may use the following names for 376: 

300 + 60 + 16 (3 X 100) + (6 x 10) + (16 x 1) 

3 hundreds + 6 tens + 16 ones (3 X 10 X 10) + (6 X 10) + (16 X 1) 

(3 X 10 ) + (6 X 10) + (16 X 1) 

200+170+6 (2x100)+(17X10)+ (6x1) 

2 hundreds + 17 tens + 6 ones (2 X 10 X 10) + (17 X 10) + (6 X 1) 

(2X 102) + (17 X 10) + (6 X 1) 

200 + 160 + 16 (2 X 100) + (16 X 10) + (16 X 1) 

2 hundreds + 16 tens + 16 ones (Z X 10 X 10) + (16 X 10) + (16 X 1) 

Besides using bundles of sticks it is also possible to show representa

tions such as these on an ABACUS. The abacus pictured on the left shows 32 as 

3 tens + 2 ones and the abacus on the right shows 32 as 2 tens + 12 ones. 

There is a distinct difference between representations of numbers on the 

abacus and representations of numbers with bundles of sticks. With the bundles 

we actually use ten sticks tied together to form 1 ten. 3 bundles of 10 sticks 

-V 
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each would represent thirty (30). It is physically possible for the child to count 

one, two, three --- to thirty and actually see thirty single sticks in these
 

lundles. 
 At this stage of development, the child should count by tens to be
 

convinced that he has thirty sticks. 
 On the abacus, however, we do not have 

thirty beads. The position of the wires on the abacus shows whether a bead
 

represents 
1 bead or 10 beads or (10 X 10) beads and so on. 

14-4 Addition without reqrouping 

In the work that follows we will try to show the transition from the stage 

in which the child deals with three bundles of ten to the stage where he sees
 

three beads in the tens position or on the tens' wire.
 

Let us take 
an example requiring the addition of numbers represented by 

two-digit numerals. How do we add 46 and 12? What is the sum of 46 and 12? 

Because you already have skill with the basic operations of arithmetic,
 

you follow the systematic procedure you have learned and you arrive at a 
sum of 

58. You are so well acquainted with the procedure, that you follow it auto

matically. 
 Your work is almost mechanical. It requires very little thought.
 

This is an advantage to you, of course, 
 but when you teach children you must 

realize that the mechanical procedure you use as an adult is the result of a long
 

period of development. It 
 is the final stage in a carefully planned sequence to 

teach children the meaninq of each step along the way. As teachers, we should 

strive to teach children in such a manner that they will discover basic meanings 

and important relationships which lead to a greater understanding of mathematics 

and its applications. In teaching children how to add 46 and 12, a particularly 

badbeginninq would be to write on the blackboard 46 + 12 and then proceed to 
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say mechanically: "6 + 2 = 8. Write 8 under 6 and 2. 4 + 1 = 5. Write 5 under 

4 and 1." This is a poor way to begin teaching children to add. It merely tells
 

children what to do, 
 but not why they do it. Our job is to help children discover
 

why certain procedures 
will lead them to correct answers. If children really
 

understand 
the number system and the important properties which govern opera

tions, they will be more 
likely to enjoy mathematics, to remember what they
 

have learned, and to excel in applying it. 
 With this goal in mind, we proceed
 

with the example of 46 + 
12 to show how children should learn the procedure in 

the very beginning. Then from this introductory stage we show a development 

through an intermediate stage to a final and more mature form of the procedures
 

for performing the operation.
 

Example: What numeral goes in the box to make the following sentence true? 

46 + 12 =-D 

We shall solve this example by showing three stages in the learning 

process. The introductory stage will be referred to as Stage I. In this stage we 

will emphasize place value using physical objects; namely, bundles of sticks. 

Stage I. (An introductory stage in learning) 

46 will be shown as 4 bundles of 10 sticks + 6 loose sticks. We shall 

call the loose sticks 6 ones. Similarly, 12 will be shown as 1 bundle of 10 + 2 

ones. 

LV 
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46 can be renamed as 40 + 6 

12 can be renamed as 10 + 2 

Next, show the result of adding the ones. 

Show the result of adding the tens. 

40 + 6 

10 + 2 

50 + 8 

50 + 8 is ordinarily expressed in the decimal system as 58. 

40 + 6 

10 + 2 

50 + 8 = 58. 

Exercise 14-4a (Stage I) 

Get a collection of single sticks. Form bundles of ten from the large 

collection. Solve the following examples by using these bundles in the same 

way you will teach children to use them. 



--
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(a) 68 + 21= (b) 32 + 44=LI (c) 15 + 33 =-1 

In preceding work, we found the number which made the statement 

46 + 12 = F true by using bundles of sticks. If we were to solve the 

same example on the abacus, we would proceed as follows. 

Stage II. (An intermediate state in learning) 

First, place on abacus to show each addendbeads the separately. 

Emphasize that 1 bead on the tens' wire represents 10 beads on the ones' 

wire. 12 { 

46{ 

r Cn to 

Next/ show the result of adding the ones. 

Show the result of adding the tens. 

The abacus below shows the two addends combined, giving 58, which is 

their sum. 

12 { }58 

+46 
58J 

The solution which we have shown on the abacus can be recorded in two 

ways as shown below: 
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4tens + 6 ones (4X10) + (6 x1) 

I ten + 2 ones __LI X 10) + (2 Xl)
 
5 tens + 8 ones 
 (4 X10) + (I X10) + (6 X1) + (2 X l) 

(4+1) X10 + (6+ 2) X Note the use 
of the distri
butive property. 

(5 x 10) + (8 x 1) 

50 + 8 

58
 

Exercise 14-4b (Stagre II)
 

Solve the following problems using abacus or
the using the notation as
 

indicated.
 

(a) 31 + 47=D Use the abac-us. 

(b) 53 + 15 = Represent 53 as 5 tens and 3 ones,Ri etc. 
(c) 29 + 60 Represent 29 as (2 X 10) + (9 X 12), etc. 

The previous work provides the kind of meaningful practice -.?hich is 

essential for children in learning addition. The child so far has represented 

46 as 4 tens + 6 ones or (4X 10) + (6 Xl). The abacus was used to 

strengthen this meaning. With sufficient practice, the child masters these 

ideas and is ready to record them in a shorter form as shown below. 

State III (A final stage in learning). 

Solve 46 + 12 =D U) 

1E 01 
14 I 61 
I 1 I 21 

tIW5 eWe think in this way: 
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Ones: 6 + 2=8 

Write 8 in ones' place. 

Tens: 4 + 1=5 

Write 5 in tens' place. 

Exercise 14-4c (Stage III) 

Solve the following problems: 

What numerals go into the boxes to make the following sentences true? 

(a) 44 + 33 = 
(b) 72 = D+ 27 

(c) R= 51 +100
 

Stage I with bundles is 
 really basic to the process of adding. All 

three stages are familiar to us as teachers, but it is very important that we 

take the child gradually through each of them so that he understands how we 

arrive at the final stage. The last stage has no magic behind it* rather it 

is the process which we learn to use and which we understand better when 

we realize that it is an outgrowth of the preceding stages. 

14-5 Addition with reqrouping 

Now let us move to examples which require regrouping. 

Example: 

What is the sum of 35 and 27? 

OR 

What numeral goes in the box to make the following sentence true? 

35 + 27 =] 
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Use bundles as demonstrated in Stage I.
 

35= 30 + 5
 

27 = 20 + 7
 

Next, show 
 the result of adding the ones.
 

Show the result of adding the tens.
 

30 + 5 

20 +-7
 
50 + 12 = 50 + (10 + 2) 
 Note that 12 loose 

form I bundle of 10 
and 2 ones. 

=(50 + 10) + 2 Note the ofuse the 
associative property. 

= 60 + 2 

= 62. 

Exercise 14-5a (Stage II)
 

Use an abacus to solve 
 the example: 

35 + 27 = E]
Note that the 12 beads on the ones' wire are replaced by I bead on the tens' 

wire and 2 beads on the ones' wire.
 

Do you agree that tine solution on the 
 abacus could be recorded in 

the two ways shown on the next page? 

/
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35= 3 tens + 5 ones (3X 10) + (5 x1) 

27 = 2 tens + 7 ones (2 x 10) + (7x 1) 

5 tens + 12 ones = 5 tens +(I ten + 2 ones) [(3x 10) + (2 x 10)] + 

= (5 tens + I ten) + 2 ones) [(5X 1) + (7X 1)] 

= 6 tens + 2 ones =[(3+2) x 10]+ [(5 +7) X I](Why?) 

= 62 = (5x10) + (12 xl) 

= (5 x 10) + [(10 + 2) x 1]
 

= (5 X 10) + [(10 X 1) + (2 x 1)]eWhy?)
 

= [(5x 10) + (1x10)] + (2?X 1) (Why?) 

= [(5+ 1)×10]+ (2x1)(Why?) 

(6 x 10) + (2 x 1) 

= 60+2 

= 62 

Exercise 14-5b (Stage II) 

Solve the examples stated below. You need not use the abacus, but 

record your solution in the two ways shown above. The regrouping which 

makes use of the distributive property is particularly important. 

(a) 36+58= (b) 45 + 45 = -] (c) = 29 + 17 

Stage III. 

JoI 
I 

'3 5 
2 

I71 
61---
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We think in this way: 

Ones: 	 5 + 7 = 12 

Think of 12 as 1 ten and Z ones. 

Record 2 in the ones' column and remember that I ten must 

be added to the tens' column. The most efficient practice 

is to begin the addition in the tens' column with the I ten. 

Tens: 	 1+ 3 + 2 = 6 

Record 6 in the tens' column. 

Exercise 14-5c 

Solve the following problems using the procedure demonstrated in 

Stage III. 

(a) 64 +26=P 	 (b) 74+19= 1- c) 46 +29=~ 

In the exercises above, you were required to regroup 10 ones as 1 ten. 

It is sometimes necessary to regroup further using names shown below: 

1 hundred in place of 10 tens 

1 thousand in place of 10 hundreds, 

and so on. 

Example: 

848 + 537 + 192 = 
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Stage I. 

(It may not be possible for you to use bundles of sticks to solve the 

problem below. Nevertheless, you should think of 800 as 8 bundles of 100 

with each 100 formed by 10 bundles of 10.) 

848 = 800 + 40 + 8 

537 = 500 + 30 + 7 

192 = 100 + 90 + 2 

1400 + 160 + 17 

= (1000 + 400) + (100 + 60) + (10 + 7) 

= 1000 + (400 + 100) + (60 + 10) + 7 

= 1000+ 500 + 70 + 7 

= 1577 

Stage II. 

848 = 8 hundreds + 4 tens + 8 ones 

537 = 5 hundreds + 3 tens + 7 ones 

192 = 1 hundred + 9 tens + 2 ones 

14 hundreds + 16 tens + 17 ones 

= (10 hundreds + 4 hundreds) + (10 tens + 6 tens) + (10 ones + 7 ones) 

= 1 thousand + (4 hundreds + 1 hundred) + (6 tens + 1 ten) + 7 ones 

= 1 thousand + 5 hundreds + 7 tens + 7 ones 

= 1000 + 500 + 70 + 7 

= 1577 

"Or 
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Exercise 14-5d
 

Use the procedure demonstrated in Stage II.
 

(a) 563 + 77 D 
(b) 641 + 279= j

(c) 1- = 179 + 658 

(d) 888 + 135 + 38 D1 

Stage III (Final Stae). 

8 48+ 53 7+19 D 

i I I 

l i'i I I 
1118 14 8 

E- I
 

5 1317
I I iI 

11 814 1 8 
Ii 9 1 2i 
I I I I 

I171I 7I 

We think in this way: 

Ones: 8 + 7 + 2= 17
 

Think of 17 as 1 ten and 7 ones.
 

Record 
 the 7 in the ones' column and remember 1 ten must be 
added in the tens' column. 

Tens: 1 + 4 + 3 + 9 = 17
 

Think of 17 tens as 1 hundred and 7 tens.
 

Record 7 in the tens' column, and remember I hundred must be
 

added in the hundreds' column.
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Hundreds: 1 + 8 + 5 + 1 = 15 

Think of 15 hundreds as 1 thousand and 5 hundreds. 

Record 5 in the hundreds' column. 

Record 1 in the thousands' column, 

Exercise 14-5c 

Use the procedure demonstrated in Stage III to solve the following problems: 

(a) 325 + 146 + 946 = ] 	 (c) 127 + 376 + 298 = F-1 
(b) 808 + 136 + 3V= L 	 (d) 528 + 643 + 729 = L 

14-6 	 Addition ir. other bases 

Just as we added numbers in base ten or the decimal notation, we can 

use the same principles to add numbers expressed in other bases. In the 

examples which follow, you will use the addition table, base five, which is 

already familiar to you. 

ADDITION TABLE BASE FIVE 

+ 0 I 2 3 4 

0 0 I 2 3 4
 

I I 2 3 4 10
 

2 2 3 4 10 II
 

3 3 4 10 II 12
 

4 4 10 II 12 13 

, / " . 
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Example:
 

321five + 122five = five
 

Stage II.
 

You may enjoy using an abacus to solve this problem. Remember that
 

the wires, moving from right to left, represent the ones' column, the fives'
 

column, the five times fives' column and so on.
 

Note: All numerals are
 

expressed base five.
 

321 = 3 twenty-fives + 2 fives + 1 one 
 (3 X 100) + (2 X 10) + (1 x 1)122five I twenty-five + 2 fives + 2 ones (1 X 100) + (2 X 10) + (2 x 1) 

4 twenty-fives + 4 fives + 3 ones (3X 100) (1 100) + (2 x+ x 10) 

44 
+ (2 X 10) + (1 X 1) + (2X 1)

five 

=(3 + 1) X 100 + (2 + 2) x 10 + 
(I + 2) x 1 

=4 X 100 + 4 X 10 + 3 x 1 

= 4 4 3 five 

Exercise 14-6a (Stage II) 

(a) 123five + 201 = D five 

(b) D five = 1 0 1 five + 122five 

Let us use the procedure demonstrated in Stage II to work an example 

which requires regrouping. 
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Examtple: 

4 3 2 five + 4 14 five D five 

Stage 	II, 

432five= 4 twenty-fives + 3 fives + 2 ones 

414 = 4 twenty-fives + 1 five + 4 ones 

13 twenty -ives + 4 fives + 11 ones 

= (I one hundred twenty-five + 3 twenty-fives) + 4 fives + (I five 
+ I one) 

= 1 one hundred twenty-five + 3 twenty-fives + (4 fives + 1 five) 
+ 1 one 

= I one hundred twenty-five 4 3 twenty-fives + 10 fives + 1 one 

= 1 one hundred twenty-five + (3 twenty-fives + 1 twenty-five) 

+ 0 fives + 1 one 

= 1 one hundred twenty five + 4 twenty-fives + 0 fives + 1 one 

=1401 
five 

We can solve the above example in brief form using Lhe procedure demon

strated in Stage III. 

Example: 

432 + 414 =
 

five five five
 



14-22
 

_Stage III. 

I1 j J 

.c i~~ I 

~ I 

14 131 21 
(51 I I I4 

01411141
I I 

We think in this way: 

Ones: 2 + 4= 11 

Think of 11 as 1 five and 1 one 

Record 1 in ones'the column, and remember 1 five must be 

added to the fives' column. 

Fives: 1 + 3 + 1 = 10 

Think of 10 as 1 twenty-five and 0 fives. 

Record 0 in the fives column and remember 1 twenty-five 

must be added to the twenty-fives' column. 

Twenty-fives: 1 + 4 + 4 = 4
 

Think of 14 as 
1 one hundred twenty-five and 4 twenty- fives. 

Record 4 in the twenty-fives column. 

Record I in the one hundred twenty-fives column. 
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Exercises 14-6b (Stage III)
 

(a) 	 324 + 122 = 
five five five
 

(b) 	 4321 +314 = D
 
five five five
 

(c)4322 + 320 + 432 = D
 
five five five five
 

(d) 	2001 + 212 + 433 +23 =D 
five five five five five 

We iave worked problems in the addition of numbers expressed in 

base ten and base five. The purpose of these exercises is to emphasize 

that the particular choice of ten or five for the base does not change the 

underlying principles of addition. These principles of place value and 

regrouping remain the same regardless of the of a base.choice To further 

emphasize that these principles remain unchanged in the addition of numbers, 

let us 	 work a few examples comparing addition in various bases. Addition 

tables 	 in base two and base twelve are included for your reference. 

ADDITION
 
TABLE
 

BASE TWO
 

+ oi 

0 0 i 

I I 10 
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ADDITION TABLE BASE TWELVE 

+ 0 1 2 3 4 5 6 7 8 9 T E 

0 0 I 2 3 4 5 6 7 8 9 T E1 0 2 3 4 5 6 7 8 9 T E 1 

2 2 3 4 
 5 6 7 a 9 T E 10 1 

a 4 5 6 7 a 9 T E 10 !1 12 

4 4 5 6 7 8 9 T E I0 if 12 13 

5 5 6 7 8 9 T E I0 If 12 13 14 

6 6 7 8 9 T E 10 ifI 12 13 14 15 

7 7 8 9 T E 10 II 12 !3 14 1,3 16 

8 9 T E 1 0 II 12 13 14 15 I f 17 
9 9 rT E 10 11 r2 13 14 15 16 17 18 

T T E 10 II 12 13 14 15 16 17 18 19 

E E 10 -- 12 13 14 15 16 7 18 I T 
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Example: i) 19 te n + 23ten = ten
 

ii) Express 19te n and 23te n in base two, 
 in base five, and in base 

twelve, and find their sum working in the different bases. Use 

the procedure demonstrated in Stage Ill. 

19te n 10011 two 34 five 1 7 twelve
 

23ten 1011 two 
 43five 1Etwelve 
42ten 101010two 132five 36twelve
 

Each of these numerals represents the sum of the same two numbers 
even 

though these numbers are expressed in different bases and different numerals. 

Exercise 14-6c 

Find the numerals which make the following sentences true: 

(a) 70ten + 35ten + 76ten = F ten 

(b) 240five + 1 2 0 five + 3 0 1 five = F] five 

(c) 5Ttwelve + 2 Etwelve + 64twelve = D twelve 

The following two addition problems illustrate the fact that the same 

numerals represent different numbers in. different bases. 

Example: 968e n 968 

47 4 7 twelve 
1015e n 

9 E 3 twelve 

1 0 1 5 ten 9 E3 twelve 

twelve 
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since 968te n 968twelv e 

and 4 7 ten / 47twelve
 

968te n = (9 X 10 x 10) + (6 x 10) + (8 x 
1) 

968twelve = (9 X 12 X 12) + (6 X 12) + (8 X 1) = 1376te n
 

and
 

47te n 
 = (4X 10) + (7 X1)
 

tenn

47 twl 	 e= (4 X 12) + (7 X 1) 	 = 55te 

14-7 	 Subtraction in relation to addition
 

In earlier work you have 
seen subtraction discussed as the inverse
 

operation to addition. You 
saw for instance that the addition problem
 

46 + 12 = 
 D may be stated as a subtraction problem thus: 

46 + 1- = 58,
 

in which we now 
look for 	the missing addend. This basic relationship between
 

addition and subtraction will be helpful in this section 
on subtraction. It is
 

essential that pupils 
master 	the basic subtraction facts, and further understand 

that place value and regrouping will be as essential in finding thc missin_
 

addend in subtraction problems 
as in finding the sum in addition problems. We 

shall proceed systematically from easy subtraction problems to mo:e difficult 

problems just as in the 	case of addition. 

14-8 Subtraction without regrouping 

Take this example requiring the subtraction of numbers represented by 

two-digit numerals. Subtract 34 from 97. This may be restated as: what 

A 



14-27
 

number would make the following statement true? 

97 - 34 = D 
Furthermore, we have learned to phrase the statement as D+ 34 = 97 in
 

which we think of subtraction 
as the inverse operation to addition. In future
 

we shall make use 
of any of these forms to help increase our familiarity with
 

them.
 

As in the case 
of addition, let us use the numeration system (and
 

regrouping where necessary) to solve problems. 
 Thus 97 - 34 =11 may be
 

treated in this manner.
 

Stage I. 

You will recall that in the procedure demonstrated in Stage I in addition, 

numbers were represented by loose sticks, bundles of 10 sticks, bundles of 

(10 X 10) sticks and so on. Similarly, we shall represent 97 s 9 bundles of 

10 sticks and 7 loose sticks (ones). When we subtract 34 from 97, we merely 

remove 4 loose sticks (ones) and 3 bundles of 10 sticks. It is easy to subtract 

4 ones from 7 ones. The result is 3 ones. In the same way, we can remove 3 

bundles of 10 (30) from 9 bundles of 10 (90). The result is 6 bundles of 10 (60). 

We may state our solution in this way: 

97 = 90 + 7 

34 = 30 + 4 

60 + 3 = 63 

In the above example we have subtracted the ones separately, and the sub

tracted the tens separately. No regrouping was necessary. The general 

10 
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form of this solution is stated as follows: 

For a pair of whole numbers like 97 and 34 which have the form 

(a + b) and (c + d) where (a + b) is greater than or equal to (c + d), and a 

is greater than or equal to c, and b greater than or equal to d, it is true 

that 

(a + b) - (c + d) = (a - c) + (b - d) 

In vertical form we may state this as follows: 

Subtract: 

a+ b 

c+d 

(a - c) + (b- d) 

For the particular problem which we started with we would have: 

Subtract: 

97 = 90 +7 

34 =30 + 4 

(90- 30) +(7- 4) =60+ 3 

= 63 

Exercise 14-8a (Stage I) 

Get a collection of single sticks. Form bundles of 10 from the large 

collection. Solve the following examples by using these bundles in the same 

way you will teach children to use them. 

(a) 86-5 = (b) 74 -3 = -] 



14-29
 

The work above leads easily to the solution of the problem in Stage II.
 

Stage II. 97-34 = D
 
Using an abacus, we can solve the problem in the following way:
 

(n (0 

CD M 
CD :3 C 

In the abacus on the left, 97 is shown as 9 tens and 7 ones. In the abacus on 

the right, 4 ones have been separated from the 7 ones leaving 3 ones. Simi

larly, 3 tens have been separated from 9 tens leaving 6 tens. The result is 

63, as shown on the lower part of the abacus. 

The solution shown on the abacus can be recorded in either of the 

forms stated below: 

9 tens + 7 ones (9 X 10) + (7 X 1) 

3 tens + 4 ones (3 x 10) + (4 X 1) 

(9 tens - 3 tens) + (7 ones - 4 ones) [(9 X 10) - (3 X 10)] + [(7 x 1) - (4 X 1)] 

= 6 tens + 3 ones = [(9- 3) x 10] + [(7 - 4) X 1)] (Why?) 

= 60 + 3 = (6X10) + (3X1) 

= 63 60 + 3 

63 
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Exercise 14-8b (Stage II)
 

Solve the following problems using the abacus 
or using the notations 

as indicated: 

(a)  64 Use the abacus. 

(b) 74 99 Represent 99 as 9 tens and 9 ones etc. 

(c) 95 - 62 = 1 Represent 95 as(9 X 10) + (5 X 1)etc. 

In previous work in addition, we gradually proceeded to a point where 

it was no longer necessary tr write out fully the meaning of every number. 

It was possible for us at that stage to add our separate units and regroup
 

(where necessary), 
 mentally and quickly. This was the procedure in Stage III. 

In much the same way we may now write out the subtraction procedure in 

Stage III. 

97 - 34 = L

En~I I r j
 

9 7
 
I i 
3 4
 

I1613j 

We think in this way: 

Ones: 7- 4 3. (4 from 7= 3)
 

Write 3 in ones' column
 

Tens: 9 - 3 = 6 
 (3 from 9 =6) 

Write 6 in tens' column. 
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Exercise 14-8c (Stage III) 

Solve the following problems using the procedure demonstrated in 

Stage III. 

(a) 57- 47 

(b) 943 - 803 = D 
(c) 649- [:] = 508 

(d) + 875 = 886 

(e) + 35 = 68 

(f) 205-201 

14-9 Subtraction with regrouping 

You will have noticed that regrouping has not been necessary in our 

work thus far. Let us take examples where regrouping is a necessary step 

in finding the missing addend.
 

Example: 97 - 79 = [
 

What number makes the above sentence true?
 

Stage I. 

Solving this problem by the procedure demonstrated in Stage I, 97 is 

represented as 9 bundles of 10 sticks and 7 loose sticks (ones). We are re

quired to subtract 7 bundles of 10 sticks and 9 loose sticks (ones). Since we 

cannot tdke 9 loose sticks from 7 loose sticks, we must regroup 97 in order 

to provide mire loose sticks. Therefore, we represent 97 as 8 bundles of 

10 sticks and 17 loose sticks. 

Exercise 14-9a (Stage I) 

Study the explanation above and complete the solution using sticks 

and bundles of sticks. 
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The procedure in Stage I is particularly important because it gives
 

children the physical interpretation of the need to regroup. 
 Whereas in
 

addition the children discover that they had enough 
ones to make more bundles 

of 10, in subtraction they see the need to do the reverse; namely, to break
 

up one bundle of 10 sticks into 10 loose 
sticks. With larger numbers it is
 

sometimes necessary to break a 
bundle of (10 X 10) sticks into 10 bundles of 

10 sticks and so on. 

Exercise 14b ( Stage I)
 

Using sticks and bundles of sticks, 
 solve the following problems. 

(a) 43- 25= 

(b) 127 - 93 

(c) 100-78= 

(d) 111 - 56 = 

Stage II. 

Suppose we attempt to solve the problem 97 - 79 D using the 

abacus. We represent 97 with 9 beads on the tens' wire and 7 beads on the 

ones' wire. (See A below). We are required to subtract 7 tens and 9 ones. 

We see the need to regroup 97 as 8 beads on the tens' wire and 17 beads on 

the ones' wire. (See B below). The important step from A to B is the replace

ment of one bead on the tens' wire by 10 beads on the ones' wire. Diagram C 

below shows the result of subtracting 7 tens and 9 ones. We have left 1 ten 

and 8 ones, 18. 
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A(
 
oB C
 

.1- 0 I 0 -.
M 0 

C M 

(n CL t CL
 

U) 0. 0.
 

Stage II.
 

The solution demonstrated on the abacus 
may be stated in either of the 

forms shown below. 

97 = 9 tens + 7 ones 97 = (9 X 10) + (7iX 1) 

7 9- 7tens+9 ones -79 =(7 X10) +(9 X1) 

(9 tens-7 tens)+ (7 ones-9 ones) = (9 X 10) - (7 X 10) ] + [ (7 X 1) - (9 X 1)] 

We should notice imme- = (8 + 1) X 10 - (7 X 10)3] + [ (7 X 1) - (9 X1)] 

d~ately that we have more = (8 X<10) + (1 X<10) - (7 X 10)] + [(7 X 1) - (9 X 1)] 

ones in the given addend [( 8 X10) - (7 X10) +(IX 10)] +[(7 X1) - (9 X1)] 

(79), than in the sum (97). = (8 X<10) - (7 X 10) + (10 X 1)] + [(7 X< 1) - (9 X<1)] 

This calls for iegrouping = (8 X 10) - (7 X 10) + (10 X 1)1 + [(7 X<1) - (9 X 1)] 

97 = 8 tens + 1 ten + 7 = (8 - 7) X 10] + [ (10 + 7) Xl1 (9 Xl1)] 

ones = 8 tens + 17 ones. 
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We may now state the problem thus: = (1 X 10) + [(17 X 1) - (9 X 1)] 

97 = 	8 tens + 17 ones = (1 X 10) + (17 - 9) X 1 

=-79 7 tens+ 9 ones 	 = (1 X 10) + (8 X 1) 

= 10 + 8
 

(9 tens - 7 tens) + (17 ones - 9 ones) = 18
 

= 1 ten + 8 ones
 

=18
 

The solution on the right is very lengthy. Nevertheless, it is valuable for 

teachers in training because it provides a revision of basic mathematical 

principles. 

Exercise 14-9c (Stage II)
 

Solve the following problems using the abacus or using the notation
 

as indicated:
 

(a) 	 38 + 31 = 93. Use the abacus. 

(b) 	 82 - 65 = 3-1 Represent 82 as (8 X 10) + (2 X i) etc. 

=(c) 817 - 748 1 Represent 817 as 8 hundreds and 1 ten and 7 ones. 

When understanding has been developed in Stage IT, we may proceed
 

to the final stage in which we record our work in brief form as shown below:
 

Stage I1. 97 - 79 = 

19 	 7 

17 	 91
 

8 1
 

i 	 IN 

V 
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We think in this way:
 

Ones: We need more ones 
in the sum, 97. Mentally, we 

rename 97 as 8 tens and 17 ones. Then 17 - 9 = 8 

("9 from 17 equals 8"). Write 8 in ones' column. 

Tens: 8 - 7 = 1 ("7 from 8 equals I") 

Write 1 in the tens' column. 

Exercise 14-9d (Stage III)
 

Solve the following problems.
 

(a) ()87- 29 = F87-2= 

(b) 736 - 495 = t-] 
(c) Subtract 398 from 576. 

(d) Find the result: 

8021 

-5167 

14-10 Subtraction operations in other bases 

In order to emphasize place value and regrouping in subtraction, let 

us take examples where the bases are different from ten. The solutions can 

be demonstrated in the introductory and intermediate stages, but it is assumed 

here that the teacher in training can work through Stages I and II for himself. 

The solution will be stated in Stage III. 

1'"
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Stage III. 

Example: Find the missing addend. 

302- 143 = fv 

five five five 

3 0 2 five 

- 1 4 3 five 

1 0 4 fiv e 

We think in this way. 

Ones: We need more ones in the sum, 3 0 2 five. 

Fives: We also need more fives (10's) in the sum. Mentally we rename 
302five as 2 twenty-fives, 4 fives, 12 ones. 

Then, 

Ones: 12 - 3 = 4five (3 from 12 in base five = 4 in base five)
five five ~v 

Fives: 4five - 4five = 0fiv e 

Twenty-fives: 2five fiv e fiv e 

3taqe III.
 

£xample: 10336 twelve 2ET 7 twelve 
= Dtwelve 

Ae observe that regrouping is essential in each place. Quickly we rename 

10336twelve as follows: 

16 ones 

12 twelves 

12 (twelve X twelve) 

E (twelve X twelve X twelve) 
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Then subtract. 

Ones: 16twelve 7 twelve Etwelve
 

Twelves: 
 12twelve T twelve 4twelve 

Twelve X Twelve: 12twelve - Etwelve =3twelve 

Twelve X Twelve X Twelve: twelve twelve =E - 2 t 9twelve 

Therefore 10 3 3 6twelve 

- 2ET7twelve 

934Etwelve 

Exercise 14-10a 

Use any method we have studied to solve the following problems: 

(a) 4321 five- 1 2 3 4 five = five. 

(b) In base ten we could state problem (a) as follows: 

586 - 194= . Write the answer in ba. ten. Note that the 

numerals in these two problems are different, but the numbers 

remain the same. Express these numbers in base twelve and 

subtract. Compare your answer with the results obtained in 

base five and base ten. 

(c) 6 7E8twelve - 4TE9 twelvee:--F twelve. 

Repeat the exercise required in the above problem. 

State these numbers in base 10 and solve. 
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Answers to chapter 14 

Exercise i4-2a: 

(a) 50 (b) 90 

Exercise 14-4a: 

(a) 89 (b) 76 (c) 48 

Exercise 14-4b: 

(a) 78 (b) 68 (c) 89 

Exercise 14-4c: 

(a) 77 (b) 99 (c) 61 

Exercise 14-5b: 

(a) 94 (b) 90 (c) 46 

Exercise 14-5c: 

(a) 90 (b) 93 (c) 75 

Exercise 14-5d: 

(a) 640 (b) 920 (c) 837 (d) 1 061 

Exercise 14-5e: 

(a) 1419 (b) 980 (c) 801 (d) 1,900 

Exercise 14-6a: 

(a) 324five (b) 2 2 3 five 

Exercise 14-6b: 

(a) 1,001five (b) 1 0 , 1 4 0 five (c) 1 1 , 1 2 4five (d) 3,224five 
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Exercise 14-6c: 

(a) 181 te n (b) 1,21 ifive (c) 13 'twelve 

Exercise 14-8a: 

(a) 34 

Exercise 14-8b: 

(a) 21 

Exercise 14-8c: 

(a) 10 

(d) ii 

Exercise 14-9b: 

(a) 18 

Exercise 14-9c: 

(b) 

(b) 

(b) 

(e) 

(b) 

43 

25 

140 

33 

34 

(c) 

(c) 

(f) 

(c) 

33 

141 

4 

22 (d) 55 

(a) 55 

Exercise 14-9d: 

(a) 58 

Exercise 14-10a: 

(b) 

(b) 

17 

241 

(c) 

(c) 

69 

178 (d) 2,854 

(a) 3,032 five 

(b) 392 

40Ttwelve - 142twelve 288twelve 

(c) 67E8twelve - 4TE9twelve 18EEtwelve 

11516te n - 8493te n 3023te n 



CHAPTER 15 

PROCEDURES FOR MULTIPLICATION AND DIVISION IN THE DECIMAL SYSTEM 

15-1 Review of multiplication as repeated addition 

Multiplication of whole numbers may be thought. of as repeated addition. 

We saythat 4X3means 3+ 3+ 3+ 3, thus we have 4X3= 12. Butwhenwe 

set out to solve more difficult examples such as 14 X 39, the product is not so 

obvious. However we know how to find the product because we have learned a 

few rules and have practised them. We cannot say that we really understand 

rules merely because we can apply them successfully. It is not sufficient to 

say "Those are the rules." We want to be able to give reasonz for rules. 

To understand why 14 X 39 = 546 is more difficult than to perform the 

multiplication 14 X 39. Can you actually explain why the rules we apply give 

that product? If you think you really understand the procedure, then try to work 

the example 14twelve X 39twelve * 

You will discover that in solving such problems you have depended on 

principles of the notational system, the commutative and associative properties 

of addition and multiplication, the properties of zero and one, and the distribu

tive property of multiplication over addition. Therefore, let us examine the use 

of these properties in the procedure of multiplication. Let us start with the 

product of 10 and a number expressed by a one-digit numeral. 

15-2 Multiplication by 10 and by multiples of 10 

Example: 8 X 10 = D] 
This may be written as 8 X 1 ten or 8 tens, which is 80. 
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1 ten 10 
X8 X 8 

8 tens 80 

All we have used here is the principle of place value. To write the 

product we have merely recorded 8 in the tens column. Using the same idea, we 

may write the following statements: 

8Xi0= 8Xl ten= 8tens= 80 

9XO= 9X 1ten= 9tens= 90 

10 X 10 = 10 X 1 ten = 10 tens = 100 

Note that 100 can be named 10 tens or 1 hundred. 

Similarly, 

11 X 10 = 11 X 1 ten = 11 tens= 110 

26 X i0 = 26 X 1 ten = 26 tens = 260 

Do you agree that 110 can be named 11 tens as well as 1 hundied plus 1 ten? 

Exercise 15-2a 

Write the numerals for the following: 

(a) 12 tens 	 (c) 19 tens 

(b) 14 tens (d) 37 tens 

The ideas presented above will enable you to write quickly the following 

products: 

13 x 10 = 

15 X 10 = 

48 X 10 = 

To 	arrive at the answers, did you think in this manner: 

13 X 10 = 13 tens = 130 
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15 X 10 = 15 tens = 150 

48 X 10 = 48 tens = 480 

480 may be grouped as 4 hundreds + 8 tens or it may be regrouped as 48 tens. 

Example: If the following are grouped as all tens, how many tens do you have in 

each? 

(a) 160 (d) 740 

(b) 210 (e) 1250 

(c) 350 

Your answers in this example can be shown as: 

(a) 160 = 16 tens = 16 X 10 (d) 740 = 74 tens = 74X 10 

(b) 210 = 21 tens = 21 X 10 (e) 1250 = 125 tens = 125 X 10 

(c) 350 = 35 tens = 35 X 10 

When we teach children, we give them many exercises similar to those 

shown above. We gradually lead pupils to discover that to multiply any number 

by 10, we write the numeral which states how many tens are in the number. 

Exercise 15-2b
 

Write the following products:
 

(a) 14X 10 (d) 248 X 10 

(b) 60 x 10 (e) 10 X 965 

(c) lOX 53 (f) 730 X 10 

We have shown how to multiply two numbers when one of the factors is 

10. Now we want to learn how to multiply two numbers when one of them is a 

multiple of 10. 
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Example: 3 X 20 = FI 
3 X20 = 3 X ( X10) Why? 

= (3 X 2) X 10 Why? 

= 6X 10 Why? 

= 60 

This is not a difficult example. Nevertheless, you recognize the use of place 

value when 20 is expressed as 2 X 10. In the second step, observe the use of 

the associative property of multiplication, 3 X (2 X 10) = (3 X 2) X 10 which 

leads to 6 X 10. Again the use of place value enables us to write 6 X 10 60.= 

Exercise 15-2c 

Show how you arrive at the products below. List in order the properties 

used: 

(a) 6X 30= [ (d) 270 =[-X 10 

(b) L =70 X7 (e) 3900 = 390 X =I 

(c) -=50 X 8 (f) 4200=Z x zo 

15-3 Multiplication by a number represented by a sinqle-ddigt numeral 

You should now be able to tell the products in the last exercise by using 

what we have learned about multiplying by 10 and its multiples. We shall pro

c d to the multiplication of two numbers, neither of which is a multiple of 10. 

Take the case where one of these factors is represented by a single-digit 

numeral, and the other factor represented by a numeral of two or more digits. 

Example: What would make the following statement .rue? 

7 X 56 = 

You are aware that 56 may be named as 50 + 6; this is the expanded numeral for 
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56. We may therefore write 7 X 56 = 7 X (50 + 6) and proceed as follows: 

Stage I. 

7 X 56 = 7 X (50 + 6) 

= (7 X 50) + (7 x 6) 

= 350 + 42 

= 392 

Below is the solution demonstrated in Stage I presented in diagram form. 

350 

50 

7 += 350+42 

392 

6 
42 

Explanation of diagram: Use one of the factors as the starting point of 

multiplication. Write the other factor (preferably in this case the larger number) 

in decimal notation along the lines as shown. At each aiTowhead write the 

product of the number at the starting point and the number along that line. Add 

the separate products. 

We may develop this diagram to find the product of two numbers, one of 

which is represented by a single-digit numetal and the other by a three-digit 

numeral. 

6 X 429 = 

6 X 429 = 6 x (400 + 20 + 9) 
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2400 

0 120 = 2400 + 120+ 54 
0= 2574 

+ 

54
 

Exercise 15-3a 

Solve each of the following problems, using the diagram or the expanded 

numeral form as indicated: 

(a) 31 X F] (Expanded numeral form) 

(b) 11= 5 X 77 (Diagram) 

(c) 1302 X 4 = F (Expanded numeral form) 

(d) 4 X 80 = 1 	 (Diagram) 

(e) 	 6 X 324 = L (Diagram) 

. solutions presented in Stage I above would be long and laborious if 
1e 

both factors were large numbers. However, there is value in revising these 

procedures because they demonstrate the processes which guide the brief form 

of multiplication which we use. In the brief form whichn we shall now describe, 

many of the steps which we have learned in the preceding work will be used; 

but often they are not explicitly stated. In the following worked examples, try 

to find and identify these steps, 

.X1L 
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Stage II. 	 Example: 7 X 56 = [___ 

Lead up 

56 
X 7 

42 
350 
392 

When you studied the brief form of multiplication above, did you find any hidden 

steps? They are shown below: 

56 
X 7 

42 (7 x 6) 
350 (7 X 50) 
392 

But we ordinarily work the problem in a form that is even briefer: 

Stage III. 

56 
X 7 

392 

We think in this manner: 

Ones: 7 X 6 = 42. Record 2 in the one's column and remember 4 tens for the 

ten's column. 

Tens: 7 X 5 = 35. 35 + 4 = 39. Record 39 tens or 9 tens and 3 hundreds. 

Exercise 15-3b 

Solve the following problems using the stages indicated. 

(a) 82 X 7 = 	 Stage II 

(b) 586 X 9 = 	 Stage II 

(c) 97 X 4= 	 Stage III 

(d) 451 X 3 = 	 Stage III 

y. 
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15-4 Multiplication in which each factor is represented by a numeral of two 

or more digits 

Now we are ready to find the product of two numbers, both of which are 

represented by numerals of two or more digits. 

Example: 27 X 34 = 

Let us solve the problem in each of the three stages learAed thus far. 

Stage I. 

27 X 34 = (20 + 7) X (30 + 4) 

= [20 X (30 + 4)] + [7 X (30 + 4)] Why? 

= (20 X 30) + (20 X 4) + (7 X 30) + (7 X 4) Why? 

= 600 + 80 + 210 + 23 

= 918 

Stage I, (Diagram) 600 

30 

20 + 

4
 
20< 

80 

= (600+80)+ (210 + 28) 

= 680 - 238 

= 918 

210 

7
 

30 

7 
 4+
 

4
 

<2 8
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Explanation of Diagram: Note that we have used 1 as the starting point 

and we have stated 27 as the product of (20 X 1) and (7 X 1). Briefly, 27 = 

(20 X 1) + (7 X 1). The rest is repeated application of the procedure already ex

plained.
 

Stage I. 27 X 34 =
 

Lead up 34 
X 27 

28 (7 x 4) 
210 (7 X 30) 

80 (20 X 4) 
600 (20 X 30) 
918 

thus we have 

34 
X 27 

238 (7 X 34) 
680 (20 X 34) 
918 

Stage III. The intermediate steps recorded in Stage II are not only shortened 

but now we just make mental notes of the various products, stating only those 

necessary.
 

34 
X 27 

238 
680 
918 

Exercise 15-4a
 

Find the following products, using the stage indicated:
 

(a) 57 X 86 = Stage II 

(b) 26 X 143 = Stage III 

(c) 42 X 95 = Stage III 
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(d) 73 X 502 = ii Stage II 

(e) 703 X 502 = Stage III 

15-5 Review of multiplication and division as inverse operations 

The idea of division as the inverse of multiplication has been discussed 

in earlier work. We have seen that these two statements
 

6 X = 18 and 18 - 6 =
 

are both true if 3 is placed in the box. We have emphasized that in order to
 

divide 18 by 6, we 
must find the number which multiplied by 6, gives 18. 

Division has been defined in terms of multiplication in this wa,,: 

If a is a counting number, and b is a whole number, then the numeral put 

in the box to make the statement b - a = =true is the as the numeralsame 

put in the box to make the statement a X ___= b true. 

In the division problem, b -L a =1--] the numeral in the box (II) 

names the quotient. 

We must keep in mind that a D = b does not always have a solution 

in the set of whole numbers. For example, can you find a whole number which 

will make the following statements true? 

6 =17 and 17 6=D 

But 17 - 6 is not a whole number. In this chapter we are concerned only with 

those statements b - a = F] where the solution is a whole number. 

Just as the procedure for subtraction was shown in terms of addition, so 

the nrocedure for division is shown in terms of multiplication. For example, if 

pupils are asked to find 36 - 4, they must find the number to be multiplied by 4 

to give 36. For what numeral in the box is it true that 4 X F = 36? The 
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solution can be reached by distributing 36 objects into 4 rows with the same
 

number of objects in each row. By counting, the pupils find that there 9
are 

objects in each row. They would conclude that 9 is the number to be multiplied 

by 4 to give 36. 

4X = 36 and 36" 4= 

describe a basic fact in multiplication and division. The basic multiplication 

facts have been summarizcd in the multiplication table, which is familiar to you. 

Exercise 15-5a 

Use the multiplication table to find the solutions: 

(a) 8-X 56 (d) + 3 =7 

(b) 63+9= ] (e) 5X 0 
=(c)(c-5454+-Z ] 6 Mf "i + F'-1 16() I~ 

Before we proceed to more difficult work on division, Lt us underline 

tese two facts: 

i) The meaning of division as the inverse of multiplication is basic to this 

study and must be clearly grasped. 

ii) The basic facts of multiplication and division should be understood and the 

facts eventually memorized. 

15-6 Division by a number represented by a s.-icle-digit numeral: no 

regrouping 

With this background we may proceed to the division of numbers where 

the quotient is not stated in the multiplication table. Let us start with an 

example where we already know the answer but which may illustrate the ideas 

we wish to master. 
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Exam le:
 

Stage I.
 

Solve: 48-2= 
 D- or 2X D 48. Replace the D in the 

problem stated above by ( ) for convenience. We may now write: 

48+2=( ) orX( )= 48. 

2X( ) 48 may be written as2X( )= 40 + 8. 

Former work with the expanded form of numerals coupled with the immediate 

object suggests such an expansion. Thus, we now have 2 X ( ) = 40 8. 

We see that 2 >X4 gives 8, and 2 X 20 gives 40. Therefore, 

2 X (20 + 4) = 40 + 8 

or 2 X 24 = 48 

or 48 - 2 = 24. 

This form of solution uses the expanded form of the numeral shown ir 

Multiplication Stage I. We may therefore label this as Division Stage I. 

Exercise 15-6a 

Find the quotients in the following problems using the procedure 

demonstrated in Stage I: 

(a) 963 3 = 

(b) 770 7 = r I 

(c) 484 +4= 

(d) 105 5 = (Remember 1 hundred = 10 tens). 

Stage II. We can also write the problem out in the following manner 

48 " 2 as 24 tens + 8 ones 

or 240 + 8 
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As before, 2 is multiplied by 2 tens to give 4 tens
 

2 is multiplied by 4 ones to give 8 ones.
 

We record this as follows
 

2 tens + 4 ones 20 + 4
 
2 14 tens + 8 ones or 2/40 + 8
 

Stage III. Using place value, the division procedure may be further abbreviated, 

We no longer write out the full meaning of numbers, we record numerals in the 

appropriate columns. 

(AiI~IU) 

24 24 
2/418Tand this may be further abbreviated thus: 248-

In the solutions presented in Stages II and III, the quotient is the sum of 

the separate quotients obtained by dividing 40 by 2 and then 8 by 2. This is an 

application of the distributive property. 

Exercise 15-6b 

Find the quotients in the following problems, using the stages indicated. 

840 4 = --- Stage II 

909 9 = Stage II
 

2468 p2 = L ] Stage III
 

15-7 Division by a number represented by a single-digit numeral: regrouping 

necessary
 

Thus far it has been possible to complete the division examples by 

using the expanded decimal notation form of the numeral. But if we attempted 

to find the quotient in the problem 48 - 3 = ,, it will be necessary to 

regroup 48 in a different manner, since (40 + 8) would not yield the desired 
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results. Let us solve the problem 48 z =3 in the three stages demon

strated thus far. 

Stage I. 

48 - 3 = =may be stated as 3 XIIZ= 48. 

48 3 =( ) may be stated as3x( )= 48. 

3x( )= 48 may be expressed as3X( )= 40 + 8 

or3X( )= (4X 0) + 8 

(4 X 10) is not a multiple of 3 but 4 = 3 + 1.
 

Therefore
 

(4X 10) may be expressed 
as (3 + 1) X 10 or (3 X 10) + (I X 10). Why? 

We may now write 3 X ( ) = 48 as 

3X( )= (4X10)+8 

= [(3 + 1) X 10] + 8 

=(3 x 10) + (1 x 10) + 8 Why?
 

= (3 X 10) + (10 + 8)
 

= (3 X 10) + 18
 

=(3 x 10) + (3 x 6) Why?
 

3 must be multiplied by 6 to give 18, and 3 must be multiplied by 10 to give 30. 

It is important (and it tends to simplify the solution) to choose the highest 

possible factor in each place. 

We may continue the solution as follows:
 

3X( )= (3X 10) + (3 X 6)
 

=3x(10+6) Why?
 

=3 x 16 
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We see that 

48+3=( )or3x( )=48 

can be solved when we put 16 in the brackets or box. 

Stage II. 

48 3 = 

We may write 48 as (4 tens + 8 ones) or as (40 + 8). 

Thus we would have 

3/4 tens + 8 ones or 340 + 8 

which can be reduced to 

313 tens + 18 ones or 330 + 18 

and which give the solutions 

1 ten + 6 ones 10 + 6 

3/3 tens + 18 ones or 3130 + 18 

The answer to a problem such as the above division is easy to establish. 

With more difficult problems, it may not be easy to find the suitable multiples. 

Therefore we show a detailed solution below. 

Stage III. 

48 3 = --


Lead up
 
6
 

10
 
3j48- 3 148
 

subtract 30 10 (3 X 10) -30
 
18 18
 

subtract 18 6 (3 X 6) -18
 
116
 

These two solutions differ only in the manner in which the quotient is 

recorded. 48 has been regrouped as (30 + 18) as in Stage II. However, the 

computation appears in vertical form and this is more convenient in later work. 
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We may further shorten the solution on the right-hand side. Instead of writing 

10 in the quotient, merely record 1 in the tens column, and later record 6 in the 

ones column as follows 

116 

118 
-18 

We have only regrouped one time in the given example. When we are 

working with larger numbers it is often necessary to repeat the regrouping. 

Study the example below: 

1935 9 = 

Stage III. 

5 
10 215 

200 
9/1935 In the solution at the left, note that 

-1800 (9 X 200) 1935 has been regrouped as (1800 + 90 
135 + 45). In each place, we have used 
-90 (9 X 10) the largest possible multiple of 9. 
45
 

-45 (9 X 5) 

Suppose we had the example 3123 9 = F . Which of the regroupings shown 

below would give the "easier" solution? 

(3000 + 100 + 20 + 3) 

(2700 + 360 + 63) 

Exercise 15-7a 

Use the procedure demonstrated in Stage III to find the following quotients: 

(Regroup carefully, taking the largest possible multiple for each place.) 
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(a) 340 4= 	 (c) 50411= 7 

(b) 	 1435 5= (d) 1056 - 8= 

15-8 Division by multiples of 10 

So far we have divided by numbers represented by one-digit numerals. 

We can also divide by numbers represented by two-digit numerals. The same 

principles which we have followedi thus far will still be used. We shall regroup 

the number to be divided, keeping in mind the largest multiples of the divisor 

in each place. As in previous work, let us start with an easy case, 480 - 20 =F] 

In order to regroup 480, keeping in mind multiples of 20, we may regroup 

it as (400 + 80). In horizontal form, the solution appears: 

20 + 4 = 24 
20 1400 + 80 

In vertical form, we have either of the solutions shown below: 

Sta egI. 

40 24 

201480 
-400 

80 
-80 

20 

-
24 

(20 

(20 

x 

X 

20) 

4) -

20 
-

-

480 
400 
80 

80 

Only when the ideas above are completely understood do we go to the short 

form: 

214

20 	 4810 

401 

810 
810
 
7-
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Exercise 15-8a 

(a) 960 	- 30= (e) = 1350 1i0 

(b) ii=840 +20 	 (f) 1560 11=30 
(c) 460 	+ I= 20 (g) 41,200 40 = 

(d) 2060 - 20 =E---	 (h) 50,250 + 5l = 

15-9 	 Division by a number represented by a numeral of two or more digits not
 

a multiple of 10
 

In light of this approach, consider the example 18,102 + 21 = E
 
First we 	look upon 18,102 as 1 ten thousand + 8 thousands + 1 hundred + 0 tens 

+ 2 ones. Since we 	do not have a multiple of 21 in the ten-thousands place, 

we 	use the associative property to regroup 18,102 as 

18 thousands + 1 hundred + 0 tens + 2 ones. 

Again, we do not have a multiple of 21 in the thousands' place. Therefore, we 

regroup again and get: 

181 hundreds + 0 tens + 2 ones. 

We notice that 181 in the hundreds' place includes a multiple of 21, since 

21 X 8 hundreds = 168 hundreds. 

So we begin with the regrouping 

168 hundreds + 13 hundreds + 0 tens + 2 ones. 

just as we took care to find the largest possible multiple of 21 in hundreds' 

place, we shall do the same in tens' place and in ones' place successively. 

This solution can be written in the vertical form of Stage III as follows: 

VP 
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60800J 862 

2118102 
-16800 800 - 21 X 8 hundreds - -

21/18102 
-16800 

1302 1302 
-1260 60 - 21 X 6 tens -1260 

42 42 
-42 2 -- 21 X 2 ones 0- -42 

862 

In the solution above, we have found the numeral which makes the 

following statement true. 

18,102 - 21 = 

Do you recall that the same numeral makes this sentence true? 

21X [ = 18,102 

In order to check the solution by division, we nay perf-- L. 

operation 

21 X 862. 

If you perform this multipli-'ation, you should obtain 

21 X 862 = 18,102. 

In division examples involving large numbers, it is useful to check the accuracy 

of the division procedure by performing the multiplication operation. 

The solution below shows the sequential steps taken separately. Step (c) 

is the complete form of the division problem where we record the numerals in the 

appropriate place-value columns without writing out the full meaning of the 

separate quoLients. 
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Stage II. 

IOr 	 = I= . I 1*II 

(a) 
81 

21 1811012 
-1 1 1 

13 i 

(b) 
8161 

21 1811012 
-1681 1 

13101 

I -12161 

81612 
(c) 	 21 181I12 

- 1 6 811 
13101 

-12161 

We encourage pupils 	to check division by multiplication in order to emphasize 

the meaning of division and multiplication as mutually inverse operations and to 

provide revision of multiplication where children actually see the need to multiply. 

Exercise 15-9a 

Solve the following problems. Check 	your answers by multiplication: 

(a) 6,496 +(I]= 32 (d) 9,204+ 13 = 

(b) 14,605-- 23 = (e) 1,888 + 59 = 

(c) 323 ----- = 17 

,)01
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Answers to c, haptpr is 

Exercise 2a" (d) 320 

(a) 120 (e) 1944 

(b) 140 Exercise 3b: 

(c) 190 (a) 574 

(l) 370 (b) 5274 

Exercise 2b: (c) 388 

(a) 140 (d) 1353 

(b) 600 Exercise 4a: 

(c) 530 (a) 4902 

(d) 2480 (b) 3718 

(e) 9650 (c) 3990 

(f) 7300 (d) 36646 

Exercise 2c: (e) 352906 

(a) 180 Exercise 5a: 

(b) 490 (a) 7 

(c) 400 (b) 7 

(d) 27 (c) 9 

(e) 10 (d) 21 

(f) 210 (e) 0 

Exercise 3a: f) 4 

(a) 186 Exercise 6a: 

(b) 385 (a) 321 

(c) 5208 (b) 110 
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(c) 121 (c) 19 

(d) 21 (d) 708 

Exercise 6b: (e) 32 

(a) 210 

(b) 101 

(c) 1234 

Exercise 7a: 

(a) 85 

(b) 287 

(c) 72 

(d) 132 

Exercise 8a: 

(a) 32 

(b) 42 

(c) 23 

(d) 103 

(e) 135 

(f) 52 

(g) 1030 

(h) 1005 

Exercise 9a: 

(a) 203 

(b) 635 



UNIT III - THE NUMBER LINE 

CHAPTER 16
 

INTRODUCTION TO THE NUMBER LINE
 

16-1 Sets in natural order
 

You learned before how to put sets in natural order. For example, the 

following sets are in natural order: 

CiD 
x x) 

Qx x _x 

Cx x x x) 

Cx x x x x 

(and so on ) 

Each of the sets has one more member than the set above it. There is, of 

course, no end to the sets that you can build inthis way, 

Exercise 16-la 

Use matches to form sets in natural order. Make sure that the matches are al1 

of the same size. Arrange them in sets as shown below: 

6 
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Wt 

What set is just beore 

What set isjust after
 

16-2 Countings(etsandsets in naturalorder
 

You also learned how to match 
a set with a ting set. You can 

thus tell the number of things in the set you started with. The sets of matches 

picLAred above can be matched with counting sets as follows: 
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Set Counting Set Number 

I I } 0 

{1 2I 2 

1=2 3f 3 
1 2 - 4 4 

1 2 3 4 5 5 

(and so on)
 

In this way the sets are assigned numbers, 
 and we say we have counted the 

sets. 

Exercise 16-2a 

In the exercise above you arranged sets of matches end-to-end so
 

that the sets were in natural order. 
 Now match these sets of matches with
 

counting 
sets, as we did above. An easy way to make your counting sets is 

as follows. Take a set of matches, and lay a strip of paper beside it a 

below: 

At the left-hand end of the strip mark 0 for the number of matches in the empty 

set. At the right-hand end of each match mark the proper numeral on the strip 

of paper so that the strip is a counting set for that set of matches. Below you 

can see the example finished. 
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1 2 3 4 5 6 78
 

Do this for all the sets of matches which you have already put in natural ord 

16-3 Using counting sets 

What would you do if you wished to make more sets of matches like 

those you made above, but you had no more matches? One answer would be 

to use the counting sets, which you made on strips of paper in the preceding 

exercise, to help you cut from a stick of wood more pieces of the same size 

as the matches. If you had a thin piece of bamboo or long twig from a tree, 

you could cut it into pieces of the same size as the matches, by laying one 

of your counting sets against the bamboo or the twig. If you had a paper 

counting set long enough, you could tell how many match-lengths you could 

get from any stick. An example is drawn below: 

1 2 3 4 5 6 7 81 

There are 5 match-lengths in this stick. 
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Exercise 16-3a 

1. Use your paper counting sets to find the number of match-lengths in 

pencils, sticks, desk-tops and other objects which you find in ihe class

room. There may be something left over. For example, a stick could be 

longer than 5 match-lengths and shorter than 6 match-lengths. 

2. Make up a new collection of paper counting sets. This time use nails 

of the same size. With these new paper counting sets find the number 

of nail-lengths in the same objects used in problem 1. 

16-4 Counting sets used to build the number line 

By now you have already seen that these numbered strips of paper, these 

sets which help count match-lengths in things, are very much like rulers. You 

are really using them to "measure" things when you count the number of match

lengths. If you have a long enough strip of paper, with enough numbers on it,
 

you can use it to measure very many things. 
 In this way you can tell the num

ber of pieces of a 
given size that are in any of these things. 

There is no limit to the length of such a strip of paper, since if you have 

enough paper and enough time you can make one as long as you wish. And so 

in your mind you can think of a paper counting set which is longer than any

thing you can make. The edge of such a paper counting set illustrates a num

ber line. All the whole numbers are on it in order, and you can use the number 

line to tell the number of pieces of the size you chose, in any object. 
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Exercise 16-4a 

You cannot draw the whole number line, since there is no end to it. 

But you can draw a piece of it. Make such a piece of the number line on a 

straight-edged piece of cardboard or flat stick, and use it to count the
 

number of lengths (of the size you chose) in different things in the class

room.
 

16-5 Size of the unit piece on the number line 

In the preceding exercise you made a part of the number line, and used 

it for counting the number of lengths of a given size in things. In making it, 

you did one thing which is very important, and if you did not do it, you must 

work the exercise again. You should have labeled your line in such a way 

that each numeral was the same distance from-the next numeral. When you 

arranged your sets of matches, you had to do this, because the matches were 

all the same size. And when you made your counting sets on strips of paper, 

you had to number your line in this way, because these strips were paired 

with the sets of matches. You did the same thing when you arranged your sets 

of nails. You must always do this in making number line,a since only in this 

way can you count pieces of a given size. 

To build a number line, you can use any size piece as your unit piece. 

But you must keep the same unit size for as much of the number line as you 

build. 
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Exercise 16-5a
 

Make two different number lines 
on pieces of cardboard or flat sticks. 

One should have small unit pieces, and the other should have larger unit pieces. 

Use the two number lines to count the number of unit lengths in different 

objects in the classroom. Compare the results you get using the two number 

lines on each object. 

16-6 Drawing the number line 

You saw in the last exercise that you can put many numerals on a section 

of the line when each unit piece is small. You probably wondered how many 

numerals can go on a number line. The answer is easy. The line can be extended 

further than any part of it you can draw. Someone else can extend your section
 

of line, and you can then go on adding pieces to the end of his line. 
 In fact,
 

pieces can 
be added to either end of your section of line, so that the line can
 

be extended 
in either direction. 

When you draw a line without any numbers on it, you need to show that 

it can be extended in both directions. Therefore, you -put arrows at both ends 

of your line. Your line will look like this: 

To make a number line out of a given straight line, you mark some point as 

the starting point, or 0 point. You choose some length as your unit length, 

and then you keep putting down succeeding numerals as you attach more and more of 

these units to each other end-to-end. You could add unit pieces in either direction 
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from 	the 0 point, but only the pieces going to the right from the 0 point are 

numbered. Thus you will end up with a line which looks like this: 

0 	 1 2 	 3 4 5 6 7 8 9 10 11 12 

You can put your 0 point anywhere, and you can make your unit length any 

length 	you wish. But once you pick this, and decide to go to the right, you 

can draw your number line in only one way. 

On a number line there is a point for every whole number. Between the 

points for one whole number and the next whole number, there is une unit of 

length. 

Exercise 16-6a 

1. 	 Draw a number line on a piece of paper as carefully as you can. Find 

these numerals on it: 7, 3, 0, 12, 1, 10. 

2. 	 On the number line, what number is four units to the right of 9 ? 

What number is four units to the left of 9 ? 

3. 	 On a number line, mark the whole numbers 8 through 14 only in 

red. How many whole numbers are marked in red? 

4. 	 If a match stick is taken to represent the unit length on a number line, 

exactly how many match sticks could be placed end-to-end between the 

points marked 81 and I1? 

5. 	 A man takes 6 steps east, 3 steps west, and then 4 more steps east. 

How many steps is he away from his starting point? Also show the steps 

on the number line. 
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6. 	 A man takes 3 steps forward, 1 step backward, 5 steps forward, another 

2 steps forward, and then 4 steps backward. How many steps must he 

take to return to his starting point? Also mark the steps on a number 

line. 

7. 	 Suppose you start at the point 2 on the number line and in each successive 

step move 3 units to the right. What point do you reach 

(a) after 2 steps? 

(b) after 7 steps? 

(c) after n steps? 



CHAPTER 17 

ORDER PROPERTIES ON THE NUMBER LINE 

17-1 "Less than" on the number line
 

When you put counting sets in natural order, 
 a counting set with fewer 

members comes before a counting set with more members. For example, com

pare the counting sets for 3 and 5, as shown below: 

1, 2, 3
 

t1, 2, 3, 4, 5
 

The counting set for 3 has fewer members than the counting 
set for 5, because 

matching the sets always leaves members in the second set. In this case, you 

write 

3 is less than 5,
 

or, in symbols,
 

3 < 5.
 

You remember that the number line is 
 built up out of successive counting 

sets. Look at this number line: 

0 1 2 3 4 5 6 

The section of the number line representing the counting set for 5 goes all the 

way from 0 to 5. The seclion of the numbgr line representing the counting set 

for 3 goes from 0 to 3, and thus stops before 5. You see one more important 
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fact here. The numeral 3 is to the left of the numeral 5. Since the counting set 

for 3 is completed before the counting set for 5, 3 is to the left of 5. 

Exercise 17-la
 

Make a general statement for whole numbers, 
 so that you can tell from
 

their places 
on the 	number line which of two numbers is less. 

17-2 	 "Greater than" on the number line
 

In the same way you can see when 
one whole 	number is greater than an

other 	by looking at their places on the number line. You know that 9 is greater
 

than 4. You write this as follows:
 

9 is greater chan 4
 

or, in symbols,
 

9 >4. 

On the number line 9 is to the right of 4. 

If you did the exercise above correctly, you learned that a number m is 

less than another number n is ofif m to the left n on the number line. Likewise, 

see that the number p is greater than the number q,you can if p is to the right 

of q on the number line. Look at this number line: 

0 1 2 3 4 5 6 7 8 9 10 11 12 

You can see that 12 is to the right of 10, and thus 12 is greater than 10. Also 

7 is to the left of 10, and so 7 is less than 10. You can write these two facts 

in this way: 
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12 > 10 12 is greater than 10 

7 < 10 7 is less than 10 

Exercise 17-2a 

Draw a number line and show by a picture which of the following statements 

are true: 

1. 5 < 9 

2. 0 > 1 

3. 12 < 11 

4. 45 < 54 

5. 27 < 20 

Exercise 17-2b 

1. If a > 5 and 5 < c, can you find numbers a and c such that: 

(a) a < c? 

(b) a = c? 

(c) a > c? 

2. Arrange the numbers a, b, c and d on the number line so that the following 

relations are satisfied: 

a <b 

c <d 

c < a
 

b < d 

bO 
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3. Arrange the numbers d, f, n, p and r on the number line using the following 

relations: 

n < p 

f <r
 

d< f
 

p < d
 

d< r 

4. Arrange the following numbers on the number line using the given relations: 

a > b
 

n < b
 

p >q
 

p >a
 

q >a
 

From the number line find the relation between the .uilowing pairs of 

numbers: 

q, a 

b, p 

b, n
 

17-3 "Between" on the number line 

You can say one more thing about the order of whole numbers on the 

number line. Go back to the three numbers 10, 12 and 7. You can say which 

one number lies "between" the other two numbers. 10 is between 7 and 12 be
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cause it lies to the right of 7 and to the left of 12. Or we can say that 10 

is greater than 7 and less than 12. 

Exercise 17-3a 

Using the number line, put the three numbers in each of the following 

sets into natural order, and tell which number is between the other two: 

1. 	 1, 0, 3 

2. 	 5, 7, 8 

3. 	 6, 2, 3 

4. 	 0, 1, 9 

5. 	 11, 16, 14 

6. 	25, 14, 13
 

Exercise 17-3b
 

How many whole numbers on the number line lie between:
 

1. 	 3 and 7 ? 

2. 	 30 and 39? 

3. 	 a and b when a and b are whole numbers such that a < b? 

17-4 	 Order and addition and subtraction 

Let us locate 1 and 5 on the number line. 
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0 I 2 3 5 6 7 

Now let us add 2 to each of them. Each point has been replaced by one 2 units 

to the right. Since 1 is to the left of 5, 1 + 2 is to the left of 5 + 2. In terms 

of inequalities we can write 

1<5 

1+2<5+2 

3<7 

From the true sentence 1 < 5, we get the new true sentence 3 < 7 by adding the 

same number 2 to both sides. 

In general, let a and b be two whole numbers with a < b. Let us add the 

whole number c to both a and b. We get a + c and b + c. Now a + c is c units 

to the right of a on the number line and b + c is c units to the right of b. We 

have moved equal distances to the right of a and b. This does not change the 

order. So if a < b is true 

a + c < b + c is true. 

For example, from 

4<6 

we conclude that 

8 < 10. 

What have we added to both sides of the first inequality? 

Again, let a and b be whole numbers with a < b. Let us subtract the 
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same whole number c from both a and b. This means that we have moved c units 

to the left on the number line.
 

a-c b-c
 

0 a 
Again the order has not been changed so that 

a - c < b - c must be true. 

For example, from 

4<6 

it follows that 

4 - 3 < 6 - 3, 

that is 

1 < 3. 

Of course, if c is too large, a - c will not be a whole number. Fo 

example, if we tried -o subtract 5 L-m both sides of 4 < 6, we would disc, 

that 4 - 5 was not a whole number. 

Exercise 17-4 

1. 	 We know that it is true that 0 < 2. By adding c = I, 2, 3, 4and 5 

to both sides of this inequality write five new inequalities which 

are true. 

2. 	 Given 4 < 9 show that by subtracting a proper number from both sides 

we can get a new inequality with 0 on the left side. Show what you 

have done by using the number line and arrows. 

3. 	 Show that if a and b are whole numbers and a < b then 0 < b - a. 

Show also that if 0 < b - a then < b.a 



CHAPTER 18
 

OPERATIONS ON THE NUMBER LINE
 

18-1 	 Comparing sections of the number line
 

You may have thought of a new problem about the number line. 
 How can 

you compare two sections or "segments" of the number line which do not begin 

at zero? All you have done so far is to compare segments beginning at the 0
 

point, telling which 
one is bigger and which one is smaller. Look at the num

ber line below and think how you would compare the segment from 3 to 5 with the 

segment from 0 to 2. 

0 1 2 3 4 5 6
 

Do they look in some way alike? Yes. Is the number of unit pieces the same
 

in each? Yes. Do they seem to be the same length? Yes. 

Exercise 18-la 

How many units are there on the segment from 0 to 2? How many units 

are there on the segment from 3 to 5? 

18-2 Addition 

The segment from 0 to 5 is made up of two segments, one from 0 to 3, 
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and the other from 3 to 5. Thus the segment consisting of 5 unit pieces can 

be broken down into two pieces, one rx 3 units, and one of 2 units. You can 

see what you are leading up to in this way -- and if you guide children correctly 

they will see it too. You are leading up to addition, shown on the number line. 

The sum 3 + 2 on the number line thus looks like the following: 

0 1 2 3 4 5 6 

3+2 

Any addition problem can this way, as you canbe shown in plainly see. 

In general we may picture (a + b) on the number line as follows: 

a b 

0 a a+b 

When you add on the number line you move to the right. 

Exercise 18-2a 

Show the following additions on the number line: 

1. 2+4 6. 12+ 7 

2. 3+3 7. 19+ 0 

3. 4+2 8. 6+11 

4. 5 + 1 9. 11 + 6 

5. 6+0 10. 0+ 6 

$d.,v
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Exercise 18-2b 

While Bandele sat at his desk looking at the number line in his arith

metic book, a cricket jumped on the book, landing at 0. First it jumped to 7 

and then it jumped on to 11. This was a very smart cricket and was really
 

doing an addition problem. 
 What was that problem? 

Exercise 18-2c
 

Tell how you can use 
examples of the kind in the exercise above to help 

children understand the number line. Make up games and stories to explain 

each of the addition problems given above. 

Exercise 18-2d 

1. 	 If x is a whole number between 3 and C and y is a whole number between 

2 and 7, illustrate on the number line the set of all possible points 

corresponding to x + y. 

2. 	 Starting from the point 0 on the number line a boy lays match sticks in 

the following order: 

1 stick, then 2 sticks, next 3 sticks and so on. How many sticks would 

he have used after laying the fifth set of sticks? 

3. 	 A child jumping along a straight track marked in feet, made jumps of 

3 feet, 4 feet, 3 feet, 4 feet, and so on. If he started at the point 0 

with a jump of 3 feet, after what jump would he land on the point marked 

31 feet? 
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18-3 Commutative and associative properties of addition
 

You can see from the number line that such sums as 3 + 2 and 2 + 3
 

give the same number.
 

3 	 2 

0 1 2 3 4 5 

2 	 3 

o 1 2 3 4 5 

In illustrating the operation of addition it does not matter which of the moves 

on the number line is taken first. 

Exercise 18-3a 

1. 	 What is the name of this property of addition, and what is the most 

general way to state it? If you do not remember, refer to the section 

on properties of addition. 

2. 	 Prepare wcrd problems which will help children to understand this pro

perty through use of the number line. 

3. 	 Name another property of addition. Give examples on the number line to 

help children understand the prop 3rty. 

4. 	 Fill in the missing blanks. 

0 1 2 3 4 5 6 7 8 9 
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(a) The above diagram on the number line shows that. 

(b) The diagram illustrates the - property and also the 

property of addition. 

18-4 Subtraction 

It is not always necessary to go in one direction on the number line. 

The cricket who landed on Bandele's book might have jumped from 0 to 7 and 

then jumped back 2 units. In this case he would have landed at 5. You can
 

draw his moves on the number line below:
 

7 
2 

0 1 2 3 4 5 6 7 

Exercise 18-4a
 

Draw on a number line the moves of 
a frog making the following jumps
 

in the order given:
 

1. 0 to 3 2. 3 to 7 3. 7 to 5 

4. 5 to 11 5. 11 to 4 

Exercise 18-4b 

What operation do you think the frog is performing when he jumps to the 

left on the line? What operation when he jumps to the right? What name was 

given in an earlier section to the relation between these two operations? 

This second operation, that of jumping to the left on the number line, is 

of course subtraction. In the drawing above, the final resting place of the 

cricket is at 5, which is 7-2. You can also think of subtraction on the number 

Ijr 
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line 	as finding a missing jump to the right: if the cricket jumned from 0 to 3 

on his first jump, and then wanted to land at 8, how many units would he have 

to jump to the right? Of course, the answer is 5, since 8 - 3 5.= 

Exercise 18-4c 

Show the following subtractions on the number line, both as jumps to the 

left, and as missing jumps to the right: 

1. 4-2 5. 17- 8 

2. 5-3 6. 	 9- 0 

3. 6 	 - 4 7. 15 	 - 14 

4. 2 	-0 8. 12 	 -12 

Exercise 18-4d 

1. 	 If x is a whole number between 8 and 12, and y is a whole number be

tween 3 and 7, illustrate on the number line the set of all possible points 

corresponding to whole numbers x y. 

2. 	 if you begin with 12 and repeatedly subtract 2, after how many steps 

will the process end ? 

3. 	 Starting from the point marked 35 on the number line, every third point 

to the left is marked with a cross. What is the last point marked with 

a cross? How many points are marked with a cross? 
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Exercise 18-4e 

1. 	 You have learned that addition is commutative. Do you think that sub

traction is commutative? Hint: On the number line, do the subtraction
 

5 - 3. Can you do the subtraction 3 - 5?
 

2. 	 Determine the points 4 - (3 - 1) and (4 - 3) - 1 on the number line. What
 

does this show about the associative property for subtraction?
 

18-5 	 Repeated addition 

Imagine now that you have a cricket land at 0 on your book, and then 

start to jump by 3's to the right along the number line. He will start at 0 and 

then land at 3, 6, 9, 12, 15 and so on. His jumps will look like this: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

This method of jumping illustrates repeated addition of successive 3's. It 

would be possible to think of other ways of jumping -- by 2's or 7's or by any 

other 	number. 

18-6 	 Multiplication as repeate(d addition 

What operation is related to repeated addition? What other way did you 

find to think of this operation? This operation is, of course, multiplication, 

which can be shown on the number line as r'eated addition. Thus the stopping 

points of the cricket in the previous section could be written as 1X 3, Z X 3, 3 X 3 

4 X 3, and so on. The first number shows the number of jumps it makes, and 
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the second number shows how many units it covers in each jump. 

Exercise 18-6a
 

Show on the number line the following products:
 

1. 6X 2 3. 1 X7 5. 2X 6 

2. 7X 1 4. 5X 3 6. 6X 2 

Exercise 18-6b
 

Make up word problems 
to go with each of the above products, which 

will help children see how they can use the number line to find the answers. 

18-7 Commutative property of multiplication 

You have noticed by now that, for example, 2 X 6 and 6 X 2, wi.cT you 

to the same point on the number line. On the number line, you can illustrate 

that the product of two numbers takes you to the same point, in whichever 

order they are multiplied. We may say that a X b = b X a. 

Exercise 18-7a
 

Illustrate that when 3 X 5 and 5 X 3 are shown 
on the number line, they 

give the same point. Does this give you any idea how you might illustrate 

that a X b gives you the same as b X apoint cn the number line? Hint: Look 

back at the section under multiplication to see how the commutative property 

was demonstrated. Try to do the same thing on the number line, using an 
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argument based on repeated addition. 

18-8 Associative and distributive properties of multiplication 

You remember that there are two other properties of multiplication -

the associative and distributive properties. An illustration of the associative 

property on the number line is as follows: 

(2x 2) x 3 

3 3 3 3
 

0 1 2 3 4 5 6 7 8 9 10 11 12
 

2x 3 2x 3 

Thus, (2X 2)X 3 = 2 X (2 X 3). 

An illustration of the distributive property on the number line is as 

follows: 

3 X (2 + 4) 

2 4 2 4 2 4 

0 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 

2 2 2 4 4 4 

(3 X 2) + (3 x 4) 

Thus, 3X (2 + 4) = (3X 2) + (3X 4) 

Exercise 18-8a 

Make up other sample problems for the associative and distributive 
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properties and show them on the 	number line. 

18-9 	 Division
 

Suppose that the cricket landed on your number line at 0, 
 and that he
 

could jump only 3 spaces at a time. How many jumps would he need to get
 

to 12 ? You could draw it this way: 

0 1 2 3 4 5 6 7 8 9 10 11 12 

You can see that this is really a division problem since he makes 4 jumps of
 

3 units each to get to 
12. You know this because 12 - 3 = 4. 

Exercise 18-9a 

I. 	 Kofi had 10 shs., of which he spent 2 shs. every day. How many days
 

aid his money last? Show the result on the number line.
 

2. 	 Make up other word problems to help children understand division on 

the number line. 

3. 	 You were asked in a previous exercise to tell the name for the relation 

between addition and subtraction, since each "undoes" what the other 

"does." What is the name for the relation between multiplication and 

division? Give an example on the number line. 

Exercise 18-9b 

1. 	 You can make a very simple 	adding machine in the following way. Take 

19P
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a piece of paper and draw a thick straight line. Construct a portion 

of the number line on this straight line, and mark the points heavily, 

placing the numerals both above and below the line as follows: 

0 1 2 3 4 5 6 7 8 
I I I I I I I I 

0 1 2 3 4 5 6 7 8 

Now cut the paper along this line. You should now have two copies 

of the number line which fit together. To add two numbers, simply 

place the 0 on the upper line over the first of the numbers on the lcIer 

line, and read the answer on the lower line below the second number 

on the upper line. For example, the following shows how to find 

2 + 3 and obtain 5. 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 9 10 

Notice that we can read off the answer for 2 plus any whole number with 

this setting. Do several additions in this way. 

2. 	 Devise a simple machine using two number lines which perform sub

tractions. 

3. 	 Devise a simple machine which can be used to multiply by 3, using two 

number lines. Two possibilities are illustrated below: 
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UNIT IV - FRACTIONS
 

CHAPTER 19
 

INTRODUCTION TO FRACTIONS
 

19-1 A reminder of division 

You can think of division in several ways. If you have a set of objects, 

division can tell you how many members are in each of a given number of equi

valent disjoint subsets into which the set is shared. Or you can reverse the
 

conditions and use to
division tell you how many disjoint subsets, each with 

a given number of members, can be formed from the set. Either way, division 

helps you work out a multiplication problem with a missing factor. 

You learned how to solve such problems as the following: 

24=6 xF

132 = [ X 11. 

In the first problem, you want to know how many members there are in each of 

6 equivalent disjoint subsets of a set of 24 members. In the second problem, 

you want to know the number of disjoint subsets of 11 members each that can be 

formed from a set of 132 members. The answers to these problems can be writ

ten using division, as follows: 

D = 24 + 6 = 4 

D = 132 I1 = 12. 

In both the answer is a whole number. You know that for many problems like 

these the answers are whole numbers. Such problems cause you no real 

trouble. 

Exercise 19-la
 

Which of these division problems have whole-number answers ?
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1. 934 27 4. 435 	+ 5 

2. 204 12 5. 211 6 

3. 81 	 - 8 6. 275 + 11 

There is real trouble, however, when you cannot find a whole-number 

answer to a division problem. If you divide 81 by 8, you find that there are
 

ten 8's, with 1 remaining. Thus, if you have 
81 candies and wish to share them 

equally among 8 children, each can have 10 candies, but there will remain 1
 

candy which is not shared. It is hard to know how 
to speak of this remaining 1. 

In this chapter you will learn how to take care of such problems with fractions. 

Exercise 19-1b
 

Write out some word problems 
 involving division with remainders, which 

you can use with children in primary classes. 

19-2 	 Names for fractions
 

Problems like that of sharing 
81 candies among 8 children are not new
 

problems, of course. 
 Nor is he way of solving the problem new. The 1 remain

ing candy can be broken into 8 parts of equal size, and each child given 1 of 

these 8 parts. The more difficult problem is how to speak of what each child 

gets. For this purpose, special words have been made up, telling what each
 

receives in the sharing. In English, you 
say that each child has received 1
 

eighth part of the left-over piece of candy. the
Thus answer to the problem of 

sharing 81 candies among 8 children is that each child receives 10 and 1 

eighth 	candie-s. 

You can speak in the same way in English of the result in any sharing 

problem. For example, if 1 banana is shared 	between 2 people, each is said to 
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receive 1 half of that bananaas in the following picture: 

If it is shared among 3 people, each receives 1 third of itas in the following 

picture:I 

If there are 4 persons, each receives 1 fourth, and so on. 

Moreover, you know how to speak in English of what happens when 2 or 

more things are shared among several people. For example, if 2 bananas are 

shared among 3 people, each receives 2 thirds, as in the following picture: 

If 5 things are shared among 8 people each receives 5 eighths. In a more dif

ficult problem, if 13 oranges are shared among 5 people, you can think of the 

number each gets as follows. Clearly each will get 2 whole oranges, and then 

the remaining 3 oranges will be shared so that each gets 3 fifths. Thus each 

gets 2 and 3 fifths oranges. You can show this in a picture as follows: 

Words describing results of such sharing problems are found in most Ian

gauges , although in some cases the system is not so complete as in English. 

Exercise 19-2a 

If you speak a language other than English, find what words are used for 
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naming fractions. Write them in a list and compare them with the English words. 

What use do you think you can make of this list in teaching fractions to children 

who speak your language? 

19-3 Symbols for fractions 

As you can see, the idea of a fraction is really very easy. The fraction 

words simply name what part is received when the corresponding division prob

lem has a remainder. 

It is more difficult to choose good symbols for fractions. One such 
system of symbols is that invented in Europe a few hundred years ago. This 
system is related to the Hindu-Arabic system of symbols for whole numbers in
 

a direct way. The fraction names, such as 
2 thirds, are simply written as
 

pairs of numerals separated by a stroke. 
 Thus you have learned to write 2

thirds as 2/3 or -. 
 It does not matter whether the stroke is a slanting line
 

separating two numerals on the same line, or a horizontal line separating one
 

numeral above another. The numeral above the line is clled the NUMERATOR, 

and the numeral below the line is called the DENOMINATOR. The fraction 2 
3'
 

to use the example given above, tells what part each gets when 2 bananas are 

shared among 3 people. The result can be shown in this picture: 

2/3 2/3 2/3 
The symbol for a fraction is useful since it tells into how many parts 

each whole thing is divided, and how many of these parts each person receives. 

Thus, in the example of 2 bananas shared among 3 persons, the fraction-
3 
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tells that each 	banana is divided into 3 parts, and each person receives 2 of 

these parts. Each of these parts is 1 third of a whole banana, and each person 

receives 2 of these third parts.
2 

Thus you read 2 as "2 thirds." You can see, 

therefore, that - can be thought of either as 
3 

the result of sharing 2 things into3 
3 by 	breaking the things into 3 parts each, or as 2 of the third parts of a given 

type of thing. 

Exercise 19-3a
 

State in words 
 the meanings of the following fractions: 
1 31. 	 41 4. 	 3 

1 4 2 
5 12.. 	 5 5. 1 
8 

.100 

3. 	 6. 2
 

10 1
 

19-4 	 Proper and improper fractions and mixed numbers 

Some of the problems above may have given you trouble. Number 4 is one 

to think about. What does it mean to write -. An 

you is the following. Suppose you had 3 bananas to share between 2 people. 

Perhaps the fairest way to share them would be cut each in half,to of them and 

then give each person half of every banana. In this way each person gets 3
3 

halves of bananas, and this can be written 2. Such a fraction is called an 

improper fraction. Actually there is nothing at all improper about it. It is just 

as good a fraction as - which you learned to call a proper fraction. The 

reason why people have used the word improper was that they could not, obvi

ously, divide one thing into more than 2 halves. But there is no reason why 

you cannot divide 3 whole things into halves and count the halves you get. 
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There is another way of writing an improper fraction, and that is as a
 

mixed number. Take the same problem of 3 bananas to be divided between 
2
 

people. If the bananas all looked the same, the people might each take 1
 

banana and then cut the remaining banana in half. In 
 this way each person
 

receives 1 banana and 1 half banana. 
 This 	can be written in short form, of 

course, as 11- bananas. This kind of fraction you learned to call a mixed num2 1
 

ber because it has in it 
both the whole number 1 and the fraction 2 . Of course, 

it means the same thing as the improper fraction -3 

2" 

Exercise 19-4a 

Make up word problems which show the meaning of each of the following
 

fractions:
 

2 
 2 
1. 	 2 4. 2

5 3 

2. 	 8 5. 17
 
8 
 2 

3. 31 6. 5 	 5 
2 6 

Exercise 19-4b
 

Find the improper fractions which are 
equal to each of the mixed numbers 

in the problems of the preceding exercise. Find the mixed numbers which are 

equal to each of the improper fractions in the problems of the preceding exercise. 

19-5 	 The relation of fractions to division 

Fractions can give answers to problems which arise in division. Thus we 

can reliLe fractions to division in an easy way. Take the fraction -	 This
2m 

means, is you know, 4 halves, and may be seen to come from sharing 4 whole 
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things between 2 people so that each person gets half of each of the things. 

But you can also think of sharing 4 things between 2 people in terms of the divi

sion equation 2 X =. Both - and 4 + 2 can be put into the box to make2
 

the sentence true, and so you can write
 

4- = 4- 2.
 

Similarly, you 
can think of any fraction as answering a division problem. For 

example, the fraction - can be thought of as the answer to the division 
5 

equation 

D = -5.
 

In this way you see that fractions help you 
answer division problems which 

previously you could not do. In the problem 2 = 5 X 1-1, you wish to know how 

much is in each of the 5 parts into which 2 whole objects are divided. From
 

division, you can write D = 2 - 5, 
 and you know that the answer Is not a
 

whole number. 
 But from your study of fractions you know that =-5 Thus 

5. you can write 

2-52
 
2 +5 = 2 

5
 
which gives you 
the answer to the division problem you could not do before. 

In general, if you have the problem 

P- Xa= b, 

you can see that the answer, by division, is to be written 

= b -a1: 
Now you know that it is possible to show b + a as a fraction and get the 

answer 

b 
F1-a 
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so that you can write 

b 
a 

Exercise 19-5a 

Solve the following division problems, u..ikg both improper fractions and 

mixed numbers in your answers. 

1. 72± 7 5. 2176 + 322 

2. 13± 4 6. 625 10 

3. 96± 6 7. 83± 83 

4. 147 24 8. 1215 + 100 

19-6 Decimal fractions 

There is a way to write the special mixed numbers which are answers to 

such problems as 6. and 8. in the previous exercise. Instead of writing 

10 62 
10 

625 1 = 

you can write 

625 1 = 62.510 

In this statement, the number 62.5 is called a decimal fraction. It is a short 
5 

way of writing 62 5--O The decimal point separates the whole number from the 

fract'-)nal part. The one-digit numeral after the decimal point tells how many 

tenths there are. Thus, for example, the decimal fraction 2.3 means 2 -
107 

In the same way, you can see that the decimal fraction .7 means simply 7o. 

Problem 8. in the exercise above is another problem of this same kind. 

In it you were asked to divide 1215 by 100. In this case, you write 

1215 - 100 = 12 11 
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which is a short way of writing 

121215 - 100 = 
100 

The two-digit numeral after the decimal point tells how many hundredths there 

are, just as in the former case the one-digit numeral after the decimal point tells 

how many tenths there are. 

Exercise 19-6a 

Write the answers to the following division problems as decimal fractions: 

1. 23 + 10 3. 813 +00 

2. 7 + 10 4. 2+ i00 

Exercise 19-6b 

State in words the numbers represented by the following decimal fractioi 

1. 61.7 3. .54 

2. 8.81 4. 1.06 

19-7 Pictures to represent fractions 

One easy way to show the meaning of a fraction 	by a picture is to use 

pieces of paper cut or folded into parts. For example, the fraction 	 - can be
2 

shown as in the following picture: 

2 

1 

Then to show the fraction -, 

4, 
each of the parts in the above picture can 

be cut or folded in half. The result looks like this: 
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_IZ3 

4 

If you want to help young children understand fractions, you can let them fold 

or cut pieces of paper to look like these pictures. It is useful to fold a piece 

of paper and then have the child name the parts, as in this picture, where sixths 

are shown. 
SI I I I 

6- 6 6 
I

6 I 6 

To show an improper fraction, more than one such piece of paper can be 

used. For instance, the fraction can be shown as follows, where the shaded 
4 

part shows the fraction:

ME 
If the first rectangle were not folded into fourths, the same picture drawn as 

follows would show the mixed fraction. 1 3
4 
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Exercise 19-7a 

Make pictures for the following fractions by using folded pieces of paper. 

Explain how this method is useful for teaching fractions to children. 
. 3 4. 

8 
21 

3 
2 . 3 5 . 1 -

3 8 

3. 11 
2 

6. -
28 

Another common way to show fractions in a picture is by cutting up a 

circle of paper into pieces. For example, you can show this way:-

4 

Or you can show - this way:
5 

In the same manner as above, 	 you can show mixed and improper fractions by 

using circles cut into pieces. The fraction 	 - can be shown this way: 
4 
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Exercise 19-7b 

1 
Draw circle pictures to show these fractions: 

1 
1. 4 3. 2 -

4 4 
9 10 
8 5 

Exercise 19-7c 

Describe some concrete examples for fractions as parts of circles. 

It is also useful to picture a fraction in terms of a subset of a set. For 

example, you might have 35 children in your class, and 23 of them might be 

boys. 
In this case you can say that of the class are boys. This means, of 
35 

course, that there are 35 members, or parts, in the class, and of those 35 

partst23 are boys. For another example, we can say that 	 - of the independent
32 

African states have emperors, since only Ethiopia has an emperor. 

You can show 	fractions as subsets by drawing pictures of sets. If you 

have a set with 7 members, and subset with 2 members, as drawn below, the 
2 

subset can be said to have 7 of the members of the set. 
7 

NT 

Exercise 19-7d 

1. What fraction of all the countries in the United Nations Africanare 

countries ? 

2. What fraction of the trainees in your class have names beginning with A? 
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Exercise 19-7e
 

Write word problems using sets and subsets 
to show the meaning of these 

fractions for school children:37
 
. 3. 7 

5 7 
2. 


4. 	.8
11 

One 	further common way in which sets often appear is as arrays of dots. 

For instance, a set 	of 20 dots can 	be drawn as follows: 

0 	 0 0 0 0 

0 	 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

4
 
You can show the fraction - as the left-hand column of dots in the array, 
 as 

inthis picture:
 

0 	 0 0 0 0 

00 0 0 0 

00 0 0 0 

00 0 0 o0 o a a 

Exercise 19-7f
 

Show the following fractions by using arrays of dots:
 

1. 	 93 4. I-

9 15
 

3. 	 46. 1
10 
 6.45
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19-8 Fractions on the number line
 

If you look back to the sections on the number line, you will see that you
 

thought of the number line as 
growing out of successive counting sets. The
 

ruler represents part of such a number line, 
 and can be used to tell the number
 

of pieces of a certain size in a portion of a line. If the ruler is placed against
 

an object having a straight edge, it can be used 
to tell, for instance, the num

ber of inch-lengths in that object, 
 as in the following picture: 

0
J I 2 3 4 5 6 7 8I I , I , I 9 10 I1 12I , 

As you know, very often the thing to be measured with a ruler does not 

come out just at an exact inch mark. You might get a situation like this: 

0
1 

1
I 

2
1 

3 4
I 

5
I1 

6
I 

7 8 9 10 1, 12I I 

In this case, the inch isunit length of one too large, because the stick being 

measured does not come out exactly in inches. 

In order to speak of the length of the stick, haveyou to divide the unit 

into smaller pieces. In the case shown above, it is enough to break each unit piece 

into two smaller equal-sized pieces. Each of those pieces is, of course, half an inch, 

and thus the length of the stick is 5 inches. In this way, you can see how 

to show fractions on the number line. You break up the unit piece the numberon 

line into the right number of equal-sized parts, and name these parts as fractions. 

Here is a number line with the unit pieces broken into four parts, and with the 
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correct fractions attached to each point. 

1 2 3 -I -25 6 _ 7 9 10 11 13 14 15 17.
0 4 4 4 4 44 4 44 4 44 4 

Exercise 19-8a
 

Draw carefully 
a number line showing each unit piece divided into tenths. 

Label each point with the proper fraction. 

Exercise 19-8b 

Place the following fractions at the proper points on that number line you 

drew in the last exercise: 

2 3 7 3 

2.5 4. 3.8 

You can see by looking at the number line that if you have a good enough
 

pencil and a sharp enough eye, you 
can mark a point showing any fraction. And
 

between any two points you can 
always put another point, marking another frac

tion between 
those two fractions. Thus there is no end to fractions. 

19-9 Order properties 

When you learned about the n,-ber line before, you saw that you could 

put the whole numbers in order, from 0 and on to the right. You saw that the 

fact that 5 < 8 means that 5 is to the left of 8 on the number line. Another reason 

that 5 < 8 is, of course, that a set of 5 things has fewer members than a set of 

8 things. 

)~'
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You can do the same sort of thing wiLh fractions. Look at the number line 

drawn below, where each unit piece is divided into three equal-sized parts, 

and the fractions are put at the proper points. 

I 2 4 5 7 8 10 I1 13 14 16 17 19 20
50 3 3 1 3 3 2 3 3 3 3 3 3 3 6" 

1 2 1 efof2
You can say from the number line that 1< - because - is to the left of on 

1 2 3 3' 3 3 
the line. That -< -can be pictured in teims of sets. If a thing is divided into3 3 

thirds, the set 	of 1 of those thirds has fewer members than the set of 2 of those 

thirds. 

In a similar way you can say that one fraction is greater than another. On 
7 4 7 4
 

the number line you can see that 3 > 3, because 3 is to the right of -.
 

Moreover, by looking at the number line, you can see that 5 is greater than 4 

and less than -6, and thus lies between 4 and 16
 
3 3
 

Exercise 19-9a 

By drawing a number line and carefully labeling the points, find which 

one of the two fractions in each pair is greater. 
I 3 ad3 1 1 

1. 	 -and 3 	 4. 2- and 34 52 2 

2. 1.2 and 1.1 5. 	 - and 1
5 35 3 

3. 5 and 3 6. 	 3.2 and 17 
5 

Exercise 19-9b 

Tell how you would make a number line which you could use to demonstrate 

fractions in a classroom with no blackboard. 



CHAPTER 20 

PROPERTIES OF FRACTIONS 

20-1 Equal fractions: parts of a whole 

You probably noticed in some of the problems you have done that there
 

seemed to be different ways of writing the 
same fraction.
 

Take this problem, for example. A man had a 
piece of sugar cane, which he 

cut into 4 equal pieces for his children. But only 2 of the children came to get 

some. Each of the 2 children thus got 2 pieces of sugar cane. You writecan 

2 
this fraction then as -, since each got 2 fourth parts. You can draw the 

picture as follows: 

2 2 
4 4 

When you look at the picture, you see that each child would get the same 

amount of sugar cane he would if theas man cut his piece into only 2 equal parts 

and gave each child I part. n this case you can write the fraction as 1 
2'
 

since each got 1 part out of 2. The picture looks like this: 

2 1
2 2 
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20 -2 

You can see from this example that the fraction I and the fraction 
2 

2 give the same thing, Thus you can write 

1=2 

2 4 
If you think about fractions in this way, you can see that there are many 

equal pairs of fractions. Think about the fraction -- for example. One way 

to show it is in terms of circles: 

Here the circles are each cut into 5 parts, and 6 of these fifth parts are shaded 

Now if each of the 5 parts is again cut into 2 parts, the picture looks like this: 

\ /~.'...." 

N 

You can see that the first picture shows 6 The second picture shows 
5
 

I2 since each circle is divided into 10 parts, and 12 of these tenth parts
10 
are shaded. Thus you can write 

6 - 12 
5 10 

You remember also from earlier work that 

12 = 1.2 
10 

(1 
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cind thus you can see that
 

6- 1.2
 
5
 

Another way to write the same fraction is
 

6 i1 
5 5
 

Thus you can see the following:
 

I _ 6 _ 12 _ 12 1.2 
5 5 10 10 

Exercise 20-la 

Write each fraction in five different ways, and show a picture for each 

way of writing it. 

2.2 	 4. .7 

8 

2. 1.7 5. 1.25 

3. 	 32 6. 16
 
3 4
 

Exercise 20-lb 

Write word problems suitable for use with young children to help them 

understand different ways of writing fractions. 

20-2 Fractions on the number line 

You can see these same things about fractions by using the number line. 

For example, you can divide each unit length on the number line into 2 equal 

parts, as 	in this picture: 

1 1
 
0 1 2 
 3 
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If you then divide each of those parts again into 3 parts, you get this picture. 

0 
1 2 

6 
1 

6 
4 5 1 

1-
2 1 4 

1T1"T-
5 

2 
1 2 1 

2T-2 -;" 2-
4 5

2 -E 2T 3 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
6 6 6 6 6 6 6 6 6 66 66 6 66 6 6 

From these two pictures of the number line, you can see that there can be 

many different ways of naming the same fraction. For instance, you can see 

that the point which was before numbered - can now be numbered 3, since 
2 6

1 	 ad3 
and -1 come at the same point on the line. This is easy to see also in

2 6 

terms of parts of wholes, since 1 part out of 2 can be thought of as the same 

as 3 parts 	olt of 6. For another example, you can see that the point marked 

I can now be given the name -. Of course it could also be given the name 
2 6 

3 	 . So you get the following:
2 

1 J1 3 _ 9 = 13 
2 2 6 6 

You know that you can keep on dividing the number line up into smaller 

and smaller pieces, and so you see that you can get many different fraction 

nar,aL for the same fraction. 

Exercise 20-2a 

Draw a number line as carefully as you can on a large sheet of paper. 

Mark itwith numbers from 0 to 3 and show that the following strings of 

facts hold for that number line. 

1. 	 1 .2 - 4 - 8 
2 4 8 16 

2. 	 11, _ 4 _ = 8 = 13 12 
3 3 6 6 9 9 
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3= = 2.24 = 24 = 2_4 
5 5 10 10 

20-3 Many names for one number 

Each time you have thought about numbers you have learned that they 

could be named in many different ways. For example, when you were studying 

whole numbers, you learned that 2 could be written in all the ways shown in 

this string: 

2 = I + I = 5 - 3 = 2 X 1 = 6 - 3 

There is no end to the numb,2r of ways you can write names for 2 using the 

four operaticrns. But now you have learned some more ways to write names 

for numbers, this time the fractions. For example, you can write the following 

string: 

2 4 6 20 

1 2 3 10
 

or the following: 

13 = 7 - 14 = 16 
4 4 8 8 

just as you yourself may be called by more than one name, so every 

number has many names. If you are going to understand numbers well, you 

must know how to find their names. 

20-4 The secret 

There is an easy way to tell when two names represent the same fraction. 

You know how to do this already, because someone taught it to you as a 

schoolchild. But when you enter a classroom to teach, you will find that you 

have to teach the easy way to children. There are two ways in which you can 
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do this: tell it to them, and let them memorize it; or let them find i! out
 

for themselves. 
 S_-xely the better way is to let the children find it out for
 

themselves, since then 
they can have the joy of discovery. Ask them "What 

is the secret?", and they will soon know it and never forget it' 

You probably already know the secret, but if you don't, you should think 

about it. Are the following fractions all equal? 

2 4 86 10
 
5 10 20 17 25
 

If you start with ---, some of the rest are names for the same fraction, but
 

not all of them are. Which ones 
are not 5 ? If you draw a number line, you 
6 n4can see that and are wrong, but that -- and -10 are right. But 

do you have to draw a number line or some other picture? No, you don't. 

What is the secret? 

To find the secret, try to think, without drawing any picture, of more
 

names for the fraction -p- Some of them are 4 6 8 
 10 12 How 
5" 10 15' 20' 25' 30"
 

can you find more? How can 
you find as many as you want? Can you find 100 

different names for the same fraction in an easy way? Yes, you can, if you 

know the secret. And so can your pupils if they also know it. But do not 

tell them the secret. They should find it out for themselves. And if you help 

them in the way shown in this section, they will find out, and the' will 

understand it. 

If they -- and you -- still do not know the secret, you can think of 

the reason why 
5 
- and - are names for the same fraction. You remember that10 

you can take a circle divided into 5 parts, and then divide each part into 2 

parts. In this way 2 fifth parts are the same as 4 tenth parts. Or you can 
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divide each part into 3 parts, and find that 2 fifth parts are the same as 6 

fifteenth parts. Or you can divide each part into 43 parts, and find that 2 

fifth parts are the same as 86 215th parts. You get this string of facts: 

2_ 4 6 = 86 
5 10 15 215 

Now what is the secret? 

You will learn the secret here, because you will be a teacher, and you 

should know how to say it in an easy way. Bu t when you are in a class you 

should not teil it, until all the children have figured it out for themselves. 

The secret can be put this way: 

MULTIPLY TOP AND BOTTOM PY THE SAME NUMBER 
2 

You get a new name which represents the same fraction as - this way:
5 

multiply the top (the numerator) and bottom (the denominator) of by 7. You
 
14 2
 
-i, which you can see is another name for 5 .get 

2 2X 7 14 
5 5X 7 35 

6 
The secret works the other way around, too. Start with 1-. You get this fraction

2 
if you multiply the top and bottom of - by 3. So if you divide the numerator and 

5 

by you get- and you another name fordnominator of - 3 see that lis 

6 2x3 = 2 
15 5X 3 5 

A useful way to think of the secret in a case like this is: 

DIVIDE TOP AND BOTTOM BY THE SAME NUMBER 

We can put the property of equal fractions, which is expressed in the 

/
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a 

secret we have found as follows: if a is a fraction and c is not 0, then
b 

a aXc
 
b bXc
 

If we think of this property of equal fractions as going from left to right, it
 

"fattens up" the fraction a (a Xc)

b to (b X c) * If we think of this property as
 

going from right to left, it "slims down" the fraction (a Xc a
 
(bXc) to
 

Now you know the secret. 
 Don't tell your pupils the secret. Let them
 

find it out, but help them in every way you can to find it out.
 

Exercise 20-4a 

Use this property of fractions to find ten other names for each of these 

fractions. 

1. 2 4. 5 
3 6 

2. 5 5. 1
2 5 

3. 4 6. 2.2 

Exercise 20-4b
 

Use the secret 
to find numbers which make each of the following sentences 

true:
 
2[II 7 2
 

. 0 b = 

7 63 x 5
 
3 - - 220 11
 

3a 39 
 64 
5 - 15 6. 3.2 = n 

Exercise 20-4c 

Write out a sLory from your pupils' experience which will help them find 

the secret. 
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Exercise 20-4d 

For each fraction find the fraction wiLh the smallest numerator and 

denominator which is equal to it: 

1. 12 3. 722. 27 
15 28 18 

__4 
4. 5040 

2. 24 
36 so 

20-5 Whole numbers and fractions 

In the preceding section you thought about this string of facts: 

2 4 6 20 
1 2 3 10 

4 
You know what the last three fractions mean. 4 means to divide wholes into6 

halves and take 4 such halves. - means to divide wholes into thirds and 
3 

take 6 such thirds. -0 mearns to divide wholes into tenths and take 20 such 
10 

tenths. But what does mean? On this same basis it would mean to divide1 

wholes into 1 part each, and take 2 such parts. 

Another way to think about such fractions is to take the fractions 

3 3 j3 . and 3. The first one means to divide things into fourths and to 
4 3 2 1 

take 3 such fourths. The second one means to divide things into thirds, 

and take 3 such thirds. The third one means to divide things into halves and 

take 3 such halves. The fourth one means to divide things into 1 part, and 

take 3 such parts. Using rectangles to show fractions, these look like this: 

3/4 333/23/
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Exercise 20-5a 

Draw pictures, using rectangles, circles and the number line, to show 

these fractions. 

i.5 3. 

2. 	 3 4. 10
 
1 1
 

You should be saying by this time that such fractions are not at all 

different from the whole numbers related to them. For example, in the picture 

above, 3 is clearly shown as 3 whole things, as a set of 3 things. can bE 

considered the same as the whole number 3. You can write 

3 
3.3 = 

-It is clear that thi is so no matter what whole number you take, so
 

that you can have the general equation
 

a = a,
1 

where a is any whole number. 

From this you can learn some more facts. For example, you know from 

the property of fractions you discovered above that 

3 6 9 
1 2 3' 

and so on. Thus you can have the following string of facts: 

3 6 9 
1 2 3 

and so on. You see that there are many more ways of writing the same whole 

number than you knew before. Some of the ways of writing the number 5 

would be 
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5 10 20 
+ 3 = 5 - 0 = 1 X 5 = 15 +3 = 1 20 4 

5 = 2 

Exercise 20-Sb 

Find five different ways to write each of the following whole numbers. 

Draw a suitable picture (rectangles, circles, sets and subsets, number line) 

for each way. 

1. 3 3. 7 

2. 10 4. 1 

20-6 The special question of zero 

Just as you thought about the special problem of multiplying a whole 

number by 0, so with fractions there are special problems with 0. Think of 

the following string: 3 2 1 0 The first one is 3 halves, the second 2 
2' 2' 2' 2* 

halves, the third 1 half, and the last -- what? Of course, it is 0 halves. 

But to take 0 halves is the same as to take 0 thirds or 0 fourths, or 0 anything. 

The answer is the same in uvery case -- it is 0. Just as 

0 X a = 0
 

so you can se(.e that if a is not 0, 

0 
-- = 0 

a 

You can tell stories about such problems which will help explain this 

answer to children. For instance, you can tell about the man who hired 5 

men to work for him. They worked for a month and then went to get their pay. 

But they were told that the employer has no money at all. Thus they had 0 

to divide up among them. Each one got paid O when 0 was divided 5 ways.
5, 

But this is clearly 0. 
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Exercise 20-6a
 

Make up some different stories which help explain 
to children why 
0 = 0 
2 

A harder problem is to decide what to do with something like 3 

You will find that such things are not even fractions. Think of the string: 

3 3 take 3 fourth parts of whole things. 
3 3 3 The first one means to 


4' 3' 2' 1' 0"
 
The second one means to 
 take 3 thirds. The third tomeans take 3 halves.
 
The fourth means 
to take 3 whole things, broken into 1 part each, and this 

3 
means to take 3 wholes. But what can 	 3 mean? We learned in the chapter

0 
on division that division by zero is impossible. There is no answer for 
If you think you have 

0" 
an answer for -3 , where do you think the point is for it 

on the number line? 

20-7 Multiplication equations and fractions: relation to division 

You remember from the earlier work that whole numbers are often found
 

as solutions of multiplication equations. 
 For example, 	 you see that 9 is 

a solution of the multiplication tAuation 

12 X[:]= 108, 

because putting the numeral 9 into the box in the sentence makes a true 

statement. 

But you also know that whole number solutions cannot always be 

found for multiplication equations. For example, 	 this equation has wholeno 

number answer. 

101 =OIX 7 
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But now you know that you can find a fraction which is a solution of this
 
101
7"namely,equation, 

Of course, the earlier problem had a fractional answer too, but that 

fraction you can show 	to be the same as the whole number answer. For that 

earlier problem, you can write 

108 = 9
 
12
 

10 8 (9 X 12) - 912 (1 X 12) 1
 

Exercise 20-7a 

Find fractions which are solutions of each of the following multiplication 

equations: 

1. 13 XF]= 182 4. 2154 = 17 X y 

2. a X22 = 451 5. 9 X y = 828 

3. 	 625 = 25 X 1I] 6. F] X 15 = 1253 

Exercise 20-7b 

Find six other names for the fractions which are the answers in the 

preceding exercises. 

Exercise Z0-7c 

For which of the problems above are there whole number answers? 

What are these answers? 

How did you find answers to the problems in the exercises above? You 

used division, because you remember that a fraction a can be shown in termsb 

of division as a + b, and any answer to a division problem can be shown as 

a fraction. For instance, the answer to problem 1. in the first exercise can be 

182 
shown as 182 + 13, which is the same as 

13"
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In both cases you got 14 as the answer. In other cases, such as
 

problem 2 above, you cannot get a 
whole number answer, but a fraction.
 

In this particular problem your answer turns out to be
 

451
22451 + 22 22
 

If you worked out the division problem by the procedures shown in the chapter 

on division of whole numbru-s, you found the answer as 'ollows: 

20 
22/ 451
 

44
 
11
 
0
 

11 

Thus 451 22 gives you 20 with a remainder of 11, that is, 451 = 20 + 11 

22 X 20 + 11. Using fractions, you can write this as 

4 22 20-11- = 
22Of cus,2011of 4551 

* 45 
O course, 22- is just another way of writing Another even simpler 

way of writing this fraction, using the property of equal fractions is: 

451 = 201 = 20
22 22 2 

Exercise 20-7d
 

Do the following division proble-,m.
1 , g*iving your answers as fractions. 

1. 655 + 41 3. 2526 il1 

2. 1349 + 21 4. 5482 84+ 


Exercise 20-7e
 

Write word problems suitable for primary children to 
 show the relation 

between long division and fractions. 



CHAPTER 21
 

OPERATIONS ON FRACTIONS
 

21-1 Addition: its meaning in pictures and on the number line 

If fractions are to act as numbers, you must be able to do the things with 

them that you can do with whole numbers. You want to be able to add, subtract, 

multiply and divide them. Thus, the first thing to think about is what it means
 

to add fractions.
 

You know what addition means for whole numbers. If you want to under

stand addition for fractions, you must build on what addition is for whole 

numbers. Addition of whole numbers is based on union of sets. Because you 

can show fractions in terms of pictures and sets, you can try to build up the 

meaning of addition of fractions through pictures and sets. 

Thus you can begin by looking at a picture. For instance, think of 

rectangles divided into parts, as in the following picture: 

3 1 
5 4The first rectangle is divided into 5 parts, and the fraction shown by the shading 

3 

is 3 The second rectangle is divided into 4 parts, and the fraction shown by5.* 

the shading is 1 The total shaded parts of the two rectangles would be one 
3 1 

way of giving the meaning of the sum of - and " , since it shows how much of 
5 4 

the two rectangles is shaded. This is the same sort of operation as addition of 

whole numbers, because it is very much like taking a union of sets. In 

fact, to take a slightly different example, if each rectangle is only divided 
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into 1 part, and that part of each shaded, as in the picture below, the sum of 

the two fractions, y1 and 1- , represented by the shaded portions is the same 

as the sum of the whole numbers 1 and 1. That sum is found, you remember, by 

taking the union of the two sets of rectangles. 

From this you can see that
 

1 1 2
 
1 1 1
 

which is the same addition fact as
 

1 + 1 = 2. 

You must not fall into the trap of thinking that you can do this same type of thing3 1
 
for any pair of fractions. In the pictures of 
 - and - above, you cannot just 

5 4 
put together 3 parts and 1 part and get 4 parts and still think of them as fractions. 

It is true, of course, that there are 4 parts shaded in the picture, but to think of 

them this way is not to think of them as fractional parts of certain given wholes. 

Look at another picture of fractions, this time on the number line. Here 

you see the points 1 -
3 and 2 1 . From the point 1 3 to the point 2 1 , you see 

22an additional 
4. 3
 

0 
 1 - 2 3 

You remember that you can show addition of whole numbers on the number line by 

marking off one distance from 0, and then marking off the second distance to the 

right after it. Thus to explain addition of fractions in the same way, you could 
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3 2 

say that the picture here shows the sum of 1 - and - . (You remember the story
4 4 

of the cricket that landed on the number line on a book, and then did addition 

problems for the owner of the book. You can use Oat story with your children to 

show addition of fractions as well as addition of whole numbers.) 

Exercise 21-la 

Draw pictures, using rectangles, circles and the number line, which 

show the following additions. Do not give the answers. )'!ist show what the 

answers look like with pictures. 

1. 2 + 1 3. 1.2+ 2.3 
5 2 1 3 

3 4.2- 4 

Exercise 21-lb 

Write some word problems which help to introduce addition of fractions 

to children. 

21-2 Addition: 	 a + C 
b +b 

You probably began to see ways to find the fractions which must be the 

sum of the two fractions in some of the problems in the previous section. For 

instance, you can show a picture for problem 2. as follows: 

5 2 
3 3 

If you actually count the total number of thirds shown in the picture, yo. will 

see that there are 7. Thus you can say, from this picture, that 

I; 



21-4
 

5 2 7 
3 3 3 

Another problem is the one shown above on the number line, where 	 - is 
4added to 13 bringing you to the point 2 4. Can you work this problem the4 4 

same way as the problem - 2 ? Yes, you can, if you change the mixed3 3 
numbers to improper fractions. You know that 1 -2 is the same as - and that1 9 4 4'2 1 is the same as 9 Thus you get the statement4 4* 

7 2 9 
4 4 4 

You should by now see what addition of fractions must mean, when the 

fractions have the same denominator. In such a situation they both refer to the 

same kind of parts of a whole. Thus when you add I and - , you get 9 
4 4' 4'because all the fractions have to do with fourth parts. 

Exercise 21-2a 

Find the answers to the following addition problems, using pictures and 

the number line to help. 

1. -2 + 7 3.. + 2 = 
3 
 4~9 

2. 1-i + --
 4. 7.1+-1 =0 

Did problem 4. in the exercise give you trouble? If it did, you should 

remember that a decimal fraction like 7. 1 is a short way to write fractions with 

denominator 10. Thus 7.1 is the same as 7 _, and is the same as .9. So 

you can write this problem either as 

7 - + i0
10 10 

or as 

7.1 + .9 =J] 
In either way you get the same answer, which can be written in many different 
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form s:
 

1 9 71 9 = 80 8 
10 10 10 10 10 1 

Exercise 21-2b 

Ifyou had a classroom with no blackboard, what kinds of things could 

you make which would help you to teach children how to add fractions with the 

same denominator, as in the above problems? 

You now see from the problems above what it means to add any two 

fractions with the same denominator. In this way, you can find the missing 

fraction in this sentence. 

a + c=1 
b b L 

You get the answer in an easy way, as follows: 

a c (a+c) 
b b b 

You say that the sum of two fractions with the same denominator is a fraction 

with that same denominator whose numerator is the sum of the two numerators. 

21-3 Addition: a + C 
b d 

It was easy to decide how to add the fractions in the Frevious section 

because they were of the same kind, that is, they had the same denominator. 

It is harder to deal with a problem like: 

1 3 
2 4 

It helps to look at it on the number line. First mark the point 
1 
2 Then go 

_3 
4 

beyond that point, as shown below. 

0 0 1 3 
-~1 

11- - 1 31- 2 
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You can see from the number line that the second jump brings1 you to the point
5 

1 , which can also be written - . Thus you get the following: 

1 3 -5
 

2 4 4
 
Is there an easy way to see 
why this must be so from what has already been
 

decided about addition of fractions with the 
same denominator?
 

Yes, there is, if you remember the secret 
of equality of fractions. There
 

are 
many names for one number, and you should think of another name for 1
 

which will help you work this problem. The number 
2
 

2- has to do with halves
 

and the number  has to do with fourths. Is 
4 

there any way to bring them together? 

Yes, by remembering that each of the halves can be cut in half again to find
 

fourths. 
 Thus you can write 

1 2
 
2 4'
 

which leads you to the statement:
 

2 3 5 
4 4 4" 

What works is to make both fractions of the same kind, with the same 

denominator. In the problem above, you renamed - as  so that you could 
2 4' 

easily add 2 
and -

3 
to get -. 

5 
Thus, 1 + 3 5 

- 4" Is it always possible to 

do this for any pair of fractions, say, and -' ? Look at them as pictured 
5 3 

below, and you will think of a way to do it. 

-- /x 

Z3 M 
5 -3 
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You see that the rectangle showing -2 is divided by lines which run from top to
15 

bottom, and the rectangle showing - is divided by lines which run from side to3 
side. If you look long and hard at that picture, you will see that one way to 

have both fractions refer to the same parts of a whole is to subdivide each 

rectangle in the same way that the other has already been divided as in this 

picture. 

S I I

3 1 
5 3 

Into how many parts has the first rectangle now been divided? Into 15, 

of course. And into how many parts has the second rectangle now been divided? 

Into 15, also. How many parts of the first rectangle are shaded? The answer 

is 9. How many parts of the second rectangle are shaded? The answer is 5. 

So how many parts--fifteenth parts, that is--of the two rectangles are shaded? 

The answer is 14. Thus you can write for the sum of these two fractions the 

following: 

3 159 because QSX 3) 

3 1 9 5 14 
5 3 15 15 15 

This is so because 3-
5 

- 9 
15 

1and-
3 

5 
15 

You saw those facts from the picture 

but the property of equal fractions which you learned earlier tells you them also. 
3 9(3X3 9 

-_ If you use the secret of equal fractions again 

you can also see that 1 = 1X 5 
3 (3 X 5) 15 

Clearly this plan will always work. For another example, take the sum 
2 5 
3 + 5 2 

2 
can be shown as 2 third parts of a rectangle. -

5 
can be shown as 

5 fourth parts of two rectangles. Break up the parts of the first rectangle into 4 
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parts each and the parts of the second pair of rectangles into 3 parts each. In 

this way, each rectangle will be broken into twelfth parts, and you can then 

add the fractions easily. The picture looks like this: 

2 5 
3 4 

If you count the number of twelfth parts in the three rectangles, you can see 

that there are 23 of them. Thus you can write 

2 5 8 15 23 
3 4 12 12 12 

But this method would not be very useful if you always had to draw 

rectangles and count parts. Clearly, there ic an easier way. In the case of
 

3 + - you finally found the answer in terms 
of fifteenth parts. In the case of5 3" 
2 +5 , you finally found the answer in terms of twelfths. What do you think,3 4- o ilfn h 

without drawing pictures, you can do with the sum + 8 You will find the

7 8 *
 

answer in terms of 56th parts. This is true because your rectangles would be 

divided into sevenths along one side and into eighths along the other side. And 

you know from what has been done before that an array like that with 7 on one 

side and 8 on the other will have 7 X 8 = 56 individual parts in it. Thus you see 

that you can always find an answer by multiplying the denominators of the two 

fractions, and then finding new names for the two original fractions in terms of 
3 9 

this new denominator. To finish this problem started above, namely, I + 8 

you would have 

3 (3 X 8) 24 
7 (7 x 8) - 56 

21
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and 	 9 _ (9 X 7) 63 

8 (8 x 7) - 56
 

Thus your sum is
 

3 9 24 63 87
 
7 8 56 - 56 56
 

Now we can say that for two fractions a and c
-
b d 

a c (a X J) (b Xc) (a Xd) + (bX c) 
b d (bXd) (bXd) - (bXd) 

(Or we could abbreviate this as + c - ad bc)
 
b d hd
 

We have finally explaine( Lhe meaning of addition for fractions. 

Exerci- 21-3a
 

Find the answers to the following addition problems.
 

1. 73 + 9 	 4. 1.3+ 314 3 
2 _+5 5. 7 3 
3 2 10+5
37 3 7 23. 	 -7 + 34 6. i -2 + 3 23


*6 4 
 6. 8 3 
You may have noticed that in some of the problems in the exercise there 

are two ways of finding the answer. In problem 1., for instance, you can replace 

3 6 15and add,Sby getting Or you can change both denominators to 98, and7 14 14 

get the answer as follows: 

3 9 42 63 105 
7 14 98 98 98" 

But use of the property of equal fractions will tell you that 

10 5 i x _71 15 
98 (14X7) - 14' 

so that the answers are the same fraction. The easier way is to think, by any 

means possible, of some common denominator, and then rewrite both fractions to 

have that denominator. But sometimes, as in problem 6., you cannot use this 

easier way and you have to use the more difficult way. 
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Exercise 21-3b 

In Exercise 3a, do the problems in both ways where possible, and show 

that the answers found in the two ways are equal. Write each answer in three 

other ways. 

Exercise 21-3c 

Describe how you would teach this lesson on fractions in a classroom 

with no blackboard. 

Exercise 21-3d 

Outline the steps of a classroom presentation which you can use to lead 

your pupils to find and understand the way to do addition of the type + d 

b d 

21-4 Commutative property of addition 

If you look back to the section on addition of whole numbers, you will 

find certain properties of addition of whole numbers. Do these same basic 

properties hold for addition of fractions? Look at the following statement: 

3 5 5 3 
4 6 + 4 

Do you agree with it? If you draw a picture, you can easily see that you get thE 

same answer both ways. 

3 5 5 34- -

1824 20-4" 2024 1824" 

You can write 

3 
4 

5 
6 

18 
24 

20 
24 

38 
24' 
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and you can write 

_205 3 18 38 
6 4 24 24 24'
 

so that both sums give the same fraction.
 

You can see the same thing if you show the two fractions added on the 

number line, first in one way, and then in the other. 

1 1 3 5 5 338 7 
4 2 4- 2 24 4 2 

I .. . .. 3 1 18 I15 _20I '" s 

5 20) 

It does not matter, in the picture, which arrow comes first, since, in each casE 

the two put together reach the same point. 

You can also see the commutative property of addition for fractions from 

the general equation for addition of fractions, which we have found. You know 

that (remember the abbreviations ad for a X d, and so forth)
 
a + = l(ad+bcj
 

b d bd
 

and that
 

c + _ (cb + da)
 
d b db
 

You know that 

cb=bc (why?) 

da = ad (why?) 

db= bd (why?) 

Also you know that 

cb + da = da + cb (why?) 

So you can write 
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c + a - (cb +da) - (ad + bc) 

a d b db bdc
 
which is the same as A + - " Thus you can see that


b d*Thsyucnseta 
a c c a 
b d d b 

Exercise 21-4a 

Show that the following statements hold and explain them. 

1. 	 --7 5 - 45 -7
 
10 4 4 10
 

7 2 	 7 
= 9 ? + 12. 	 12 + 9-

8 3 3 8 
15 	 _15 

3. 	 2.3 + - -+ 2.3
2 2
 

a 3 3 a
 
*2 d d 2
 

21-5 Associative property of addition 

Another property of addition of whole numbers is the associative property. 

If you think about it, you can see that this property holds for fractions. For 

instance, you can see easily that 

(-1 + -)1 +8-2+1 1 7+ + 1 " 
2 4 8 2 4 8 

By adding the fractions in parentheses, you get -+ i on the left and + 

4 8 	 2 8 
on the right. 

Then adding these fractions you get - on both sides. Thus,
81 1 1=1 1 1 

(-+ +)+ + 
2 4 8 2 4 

You will find in general that 

+ I(bA+ +d)c fe -b ( cd +e f 

It is not useful here to work out all the steps to show this result, but it will give 

you good practice to try it for yourself. 
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Exercise 21-5a 

Show the associative property of addition of fractions in the following 

cases: 

1. -3 	 + ( 2 + -5 )=(7~1 3 + -3) + 85 

2. (1.3 + i) + 2.7 =1.3 + (i + 2.7) 

8 2 5 8 2 5 

21-6 	 Property of zero 

Another fact about addition of whole numbers that you have discovered 

was the property of 0 that 

0 + a = a and a + 0 = a. 

Do you think this result holds for fractions, that 

0+ a 
b 

a 
b 

1 
Think for example, about 0 + - . First of all, since 0 is a whole number, you 

0 
know that 0 = - But you also know that 

0 _ ( 2) h0 
1 - (i x 2) - 2 " (Why?) 

And so 

0= 
2 

Thus you can write 

0 i _ + - (0+ 1) _ 1 
2 2 2 2 2 

Using the commutative property of addition, you can see that 

1 1I +0= 
2 2 

You can do the general problem in the same way. You can write 
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0 o (o X b) o h01 - ( Xb) b (Why?)
 

Thus you can write
 

0+ a0 + A (0 +a) a
 
b b b b b
 

Again using the commutative property of addition, you can see that
 

a a
b-+0=b b" 

Exercise 21-6a 

Show that the following statements are correct. 

1 0+5 5 22+ 0 _ 2 
S 3 -3 9 15 9 

21-7 Subtraction 

You will not have trouble with subtraction of fractions if you remember 

what addition means for fractions, and how to do it. To add two fractions, you 

write both as fractions with the same denominator. Thus to add fractions: 

5 13
 

7 1 

you first find a common denominator which in this case is 70. 

The same method works for subtraction of fractions. You remember that 

subtraction is the inverse of addition. For example, the missing addend in the 

whole number equation: 

1-35 + = 63 

is found by subtracting, and the equation can b- rewritten as follows: 

n-= 63 - 35. 

You have learned how to solve such problems, and i.ow you will see that we can 

use almost the same methods to solve such problems as this: 
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53+ 
 -93
 

3 3. 
Both the left-hand side and che right-hand side are written in terms of thirds. 

The missing addend is the fraction which must be added to 
5 9 

-5 to get 9 . If you 
33think of this problem in them4same way you thought of similar whole number prob5 9 

lems, for example, 5 9, you+ = see that I must be added to to get 9 

just as 4 must be added to 5 to get 9. Hence you can say that the missing
 

addend in the first sentence is  and get the true statement: 
3 

5 4 9 
3 3 3 

Thus we write for these fractions:
 

9 5 4
 
3 3 3
 

in the way that you write 9 - 5 = 
4 for the similar whole number problem. You
 

see in this way that if missing-addend problems have only fractions with the
 

same denominator, you can find the missing addend by using the same approach 

as in whole number problems. Subtraction means finding the missing addend. 

Now let us look at a more complicated missing-addend problem for 

fractions: 

54+ -8
 

To find the fraction to fill the box you can begin in the same way as you did in 

adding fractions. You can see this in a picture: 

5 8 
4 -3 
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You must find what fractional parts of rectangles to adjoin to the picture on the 

left to get the picture on the right. Clearly, the best way to do this is by break

ing up all rectangles so that each has the same number of parts. You can do
 

this in the same way as for addition. The picture will look like this:
 

-T
 

15 32 
2 
 12
 

From this picture you can easily see that an additional 17 twelfth parts
 

are 
needed to make the picture on the left into the same as the picture on the
 

right. Thus you can write:
 

5 + 
 -8
 

4 3
 
as:
 

15 + 32 
12 12 

Just as before you can see that the missing addend can be found by subtraction, 

so that:
 

32 15 
12 12 

Thus you know by subtraction that the missing addend is 12 

Of course you do not actually need to use the pictures to solve such 

problems. You can just rewrite the fractions so that they have the denominsame 

ator. Then treat the problem like a whole number subtraction problem for the 

numerators. In the example above can write:you 

8 - 5 = 32 15 (32- 15)_ 17 
3 4 12 12 12 12 
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When 	both fractions have the same denominator, then subtraction is easy. And 

if the 	denominators are not the same, then rewrite the fractions so that both have 

the same denominator. For any fractions you can write it this way: 

a _ c (ad - bc) 
b d bd 

This is very similar to the statement for addition of fractions. It is similar, of 

course, 	 because addition and subtraction are inverses. 

Exercise 21-7a
 

Find the missing addends in the following sentences. Rewrite the
 

equations as subtraction equations.
 

1. 	 -2+ D+23 16 

23 3 41 
2. 	 X+7=15 6. -- +x

7 4
 

3 1 + 4 7. 	 3- + =7
10 LJ 4 

4. 1.7 	+n= 5.5 7 	 148. 	 c+ 

8 16 

Exercise 21-7b 

Write word problems useful for teaching children how to subtract fractions. 

21-8 	 Subtraction as inverse of addition 

You can see from the above that for fractions addition and subtraction 

are inverses of each other in the same way that for whole numbers addition and 

subtraction are inverses of each other. For example, think of the addition: 

3 +1 -7 
4 8 8 

1 
If you go one step further, and subtract from each side, you get

8 


3 1 .3 

4 8 8 3 
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In the same way you can start with the subtraction:
 

7 1 3
 
8 8 4 

1
 
If you then add - to each side, you get


8 
7 1 1- 7 
8 8 8 

If you try any pair of subtraction and addition facts using the same fractions, 

you 	will find that this works. Thus, for fractions as well as for whole numbers, 

addition and subtraction are inverses of each other. 

Exercise 2.1-8a 

1. 	 Make up some examples showing that subtraction and addition are 

inverses of each other. 

2. 	 Describe pictures which you can draw on the blackboard to show 

primary school children that addition and subtraction of fractions are 

inverses. 

21-9 	 Subtraction problems which cannot be solved with fractions or whole 
numbers 

Think of the following subtraction problem: 

5 	 7 -	 2 " 3 

If you try to do it in the way you learned above, you get: 

] 10 21 (10- 21) 
L 6 6 6 

But you do not yet know how to solve such subtraction problems as 10 - Z1, 

since there is no whole number which you can add to 21 to get 10. Thus there is 

no fraction which will make the sentence 

7.+ 5'
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true, nor any whole number either. 

You can determine when you can or cannot 	solve a subtraction problem 

as follows: rewrite the fractions as fractions with the same denominator; then 

try to solve the subtraction problem given by the numerators. Later you will see 

how to solve such problems. 

Exercise 21-9a 

Tell which of the following subtraction problems you can solve and which 

you cannot solve: 
32 16 

1. 4. 3.2 - 2.75 2 

2. 	 3 6 5. 81 41
 
17 8
 

3. 1 7 2- 6. 	 25 2 
9 2 	 2 25 

21-10 Multiplicatton: a X (m) 
n 

If you think back to multiplication of whole numbers, you will remember 

that you learned about it first in terms of repeated addition, which itself was 

based on successive unions of equivalent sets. It is easy to see that this 

method will help you on the meaning of multiplication of fractions by whole 

numbers. Think of this sum: 

2 2 2 2 

You can picture this sum as follows: 
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It is clear from the picture that: 

2 2 2 2 8 

3 3 3 3 3' 

which can also be written:
 

(2+2+2+2) _ 8
 
3 3 

This in turn can be written: 

(4 x 2) _ 8 
3 3 

But in the same way as in multiplication of whole numbers we would write: 

2 2 2 2 = 4X( 2 
3 3- 3 3 3 

Thus it is easy to decide what meaning to give to multiplication here: 

= (4 X 2)
4X () 

For any whole number a and fraction m we say:
n 

aX (-_1) = 
n 11 

You cin say this in words very simply. To multiply a fraction by a whole 

number, multiply the numerator of the fraction by that whole number and do not 

change the denominator. For another example, take the product 

7X(3) 

In this problem, of course, you first rewrite the mixed number as the improper 
27
 

fraction - . Then you have 

7X(38 -8t -- , =7X7 2378- _ (7 8X 27) 189 
8 8 88 

Another example is 

6 x 3.4 

_14
In this case, you rewrite 3.4 as an improper fraction 10 . Then you have 
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63x 3.4=6x L 204 _ 20.4.10 10 

Exercise 21-10a 

Find the answers to the following multiplication problems: 

1. 7 X 	 5 4. 5X7.28 

2. 	 4X 3 5. 83X 27
 
4 
 4 
2 
 5 

3. 13X3 3 3 	 6. 32X 
8
8 

E;-ercise 21-10b 

Write word problems which will illustrate the multiplication problems 

above. 

21-11 Makinf multiplication simple 

You probably noticed that you can make your work easier in some of the 

problems in Exercise lOa. For example, take problem 6. You can write: 

32X 	I _ (32X 5) _ 160 
8 8 8 

But, if you use the secret of equal fractions for finding new names for the same 

fraction, you will see that 

160 = 20
8 1 -20. 

You can 	get this answer also by seeing that 32 = 4 = You4 	 can look for8 	 1 
common factors in the numerator and denominator of a fraction and divide both 

numbers by these factors. This is just the opposite of what you did when you 

learned to multiply numerator and denominator of a fraction by the factor tosame 

find another name for the fraction. The reason is similar in both cases: the 

property 	of equal fiactions. 
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For another example, think of the product:
 

56 (16 X 5) 80
12 12 12 

You know thdt 80 = 4 X 20, and 12 = 4 X 3, and so you can write: 

8_0 _ (4X20) 
12 (4 X 3) 

20 
3. 

You can get this answer also by noticing that 

16 4 
12 3 

for the same reason, and working the problem from there. 

Exercise 21-la
 

Work these multiplication problems, 
 first using the long method, and then 

using the shortcut mentioned above. 

1. 15X 3 4. 30 X 5.7
5 

2. 18X 16 	 5. 14X3 7 

3. 25X7 1 
 6. 2X5.6 
5
 

Exercise 21-11b
 

Draw pictures (using rectangles, circles 
or the number line) illustiating 

the two ways of finding the answers for problems 1. and 6. in the preceding 

exercise. 

1 m 

21-12 Multiplication: b 	 Xn 
b n 

It is harder to think what a product such as 

1 3 
2 4 
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can mean. But if you begin by remembering what such products as 3 X 
4, 

- and 1 x - mean, you will see what to do. But, even before that, it is
4 4 

useful to remember what it means to take 3 or 2 or 1 or any number of things. Three 

sets of 4 stars look like this: 

Likewise, 2 sets of 4 stars look like this: 

And 1 set of 4 stars looks like this: 

You learned that to find for each picture the number of stars in the union of the 

sets, you must multiply the number of stars in each set by the total number of 

sets. Thus you get these statements -- 3 4 = 12, 2 X 4 = 8, 1 X 4 =4 -

which tell you the number of stars in the successive pictures. 

In the same way you can understand , X-4, 2× 4 1 x 4 ,as telling.- and 

you how many fourth parts are in the following pictures: 

/
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3x~3 

2 x-3 
4 

4 

3 9 3 6 3 3 
You can see from the pictures that 3 X - X 3 and -4. 

4 4' 4 4' 4 4 

Think again of the sets of stars. You understand what 3 sets of 4 stars, 

2 sets of 4 stars, and 1 set of 4 stars all mean. And you know that you find the 

numbers of stars in every case by multiplying. Likewise, you know what - set 
2 

of 4 stars means. You. can see it in the following picture, where the - set of 412
 

stars is circled as a subset. You remember from before that - means 1 part out 
2 

of 2 equal parts of a whole. 

If you look at the picture, you will see that I set of 4 stars contains 2 stars.
2 

You found the number of stars in 3 sets of 4 stars, 2 sets of 4 stars, and 1 set of 

stars by multiplying, and now you can decide that the product - X 4 must be 
2 

the number of stars in set of 4 stars. Thus you get 

122 2 X4=2. 

3 3 3 
In the same way, you know what 3X -, 2 X - and 1 X -2 all mean. 

4 4 4 
Now  set of 3 fourth parts should look like the double-shaded part of the2 
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following: 

1 3 

Thus you can see what you want - X - to mean. It must be the parts of the
2 4
 

whole in the picture drawn above. Thus you must have
 

1 ' 3 -3 
2 4 8' 

1
 
or 

2 
set of 3 fourth parts must contain 3 eighth parts.
 

11
 
This means that multiplication of a number by I and taking a given-

set are related in the same way as multiplication of a number by 2 and taking 2 

of a given set. Thus, for another example, 

1 6 6 
2 5 10' 

which can be drawn as follows: 

You probably have noticed that this can also be written: 

1 6 3 
2 5 5' 

by drawing the picture as follows: 

3 6 

You know that -' and 6 are different names for the same fraction, and5 10 

thus the answer is the same in each case. 

You can do this with other fractions. For example,
 

1 15
5 X -
5 4 
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can be drawn as follows: 

From the picture you can see that 

1 15 15 3 
5 4 20 4 

You can see the general law at this point: If you multiply a fraction m 
1 n 

by a fraction of the form 1 you get a new fraction whose denominator is b 

times that of the first fraction and whose numerator is not changed. In other 

words, 

1 __m) _m 

bX n (b X n) 

Of course, in some cases you can write the answer in simpler form, as in the 

above example. But the fact does not change the basic method. 

Exercise 21-12a 

Draw pictures which show the answers to these multiT 

11 
5 

X2 
3 

3. 1lx3 
2 

1 1 
2 ×< 1.2 

3 
4 

4 
X 21 

2 

Exercise 21-12b 

Make up word problems which you can use to explain such problems as 

those above to primary school children. 

21-13 Multiplication: a X1M 
b n 

From the preceding sections we can now decide what such produefs as 
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3 2 
4 5 

mean. 	 First of all, 

S3"=3X(')1 
44 

so that we must have: 

3 1 _2 
4- =[3x(-) X 5 

Now, whatever meaning multiplication has for fractions, we certainly want the 

associative property to hold. In order to do that, therefore, we must have: 

3 2 1 2 1 24 X =[3X(-)] X5=3X X . 

Now what do you decide? You can write 

1 2 2 
4 5 20' 

so then
 

1 2 2
3X[ 	 X -] = 3x(-). 
4 5 20 

But then you can write 

3 X (2 _6 

20 20• 

Finally, therefore, we decide on the meaning of multiplication: 

3 x2 6 
4 5 20 

You can draw this as follows: 

For any fractions, you can write: 

a m -(a X m) 
b n (b X n) 
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Exercise 21-13a
 

Find the following products:
 

1. 	 " X 94 4. 1. 7X
 
5 4 
 8 

2.5 x1 	 5.51 162.3 8 8 5 
3 1_9 

3. 	 1- x 6. 	 9.2X 3.74 	 5 

Exercise 21-13b
 

Describe teaching aids you 
can use to teach the multiplication of fractions. 

These aids should be ones you can make out of materials available at a rural
 

school.
 

21-14 	 Multiplication on the number line
 

Multiplication of fractions may also be illustrated using the number line.
3 3
 
Think of the product 3 X - on the number line. 
 It must 	mean 3 jumps of - , as 

4 4 
in this 	picture:
 

1 2 3 5 6 7 9 10 11 

Any product of the form a X (m) can be shown in this way, by finding the point
n 

m on the line, and jumping a distance M from 0 a total of a times.n n 
1 m
 

Likewise, you can see what a fraction of the form -i 
 X M means on the 
b n1 7 

number line. For instance, - X -	 can be shown as follows: 
3 5 

1 2 1 4 5 2 7 8 3 to it 4 13 14 16 17 6 i1 20 7 22 3 8 25 26 9 28 290 -F5 T5 5-Y F5 T-5 75 T-5 351g 15- 1 15 1L15 15 535?-! 2 
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In general, you must divide each of the nth parts of the line itself into b parts, 

and show the result as m of these (b X n)th 	parts. In the case above, you have 

7 fifteenth parts. 
a m 

Finally, to show a fraction of the form A X M you must take a such
b n 

patfie m F
 
parts of size bn For example, - X - can be drawn as follows:
 

1 	 1 3 I 5 7 5 3 73 	 9 11 13 150 -8 	 -8 1 -1 -8 - - 8 2 

3
 

13j
 

2 4 	 Exercise 21-14a 

Show the following products on the number 	line: 
1. 	 7X 3 4. 	.IX 2
 

4 _2 

2. 	 5X2.4 5. 3 X 5
 
8 3
 

3.1 	 7 6. 2.5X 2
 
3 2 "~"2
 

21-15 Commutative property of multiplication 

You can see that miltiplication of fraction,, nas the commutative property. 

For instance, you found in the preceding section that 

3 2 6 3 
4 5 20 10' 

and you drew a picture showing the product: 

If you take the product in reverse order, you get the same answer: 
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2 3 6 
5 4 *20 

Moreover, the picture showing this product is similar to the picture showing 

3 2 
4 5* 

It is possible to see the commutative property directly by using the 

equation for multiplication of fractions, 

a m _(aX m) 
b n (b X n) 

If you reverse the order, you get 

a X-(m x a) 
n b (n X b) 

But you know that 

mxa=axm (why?) 

nXb=bXn (why?) 

and thus you can see that 

m a a m 
n b b n 

Exercise 21-15a 

Check the commutative property of multiplication for the following pairs 

:f products: 

5 2 2 5
 
X 7x 3
1. " 7 

3 7 7 3
 
2.1-2- X 3-"=-13- X11 3
 

18 X32 
 2 8 

3. 5.4 X 13.1 = 13.1 X 5.4 

q
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21-16, 	 Associative property of multiplication 

It is also possible to see the 	associative property of multiplication of 

fractions. In fact, we have already used it in deciding on the meaning of multi

plication. Think of the following product: 

1 2 3 1 3 1 (why?). 
2 4 -3 4 4 

Grouping in the other 	way, you can write 

1 (-2 x--) 1 4 wy)-x 3 -zX- 1(why?) 
2 3 4 2 2 4 

You can see easily that for any three fractions you get the same result no matter 

which pair of fractions you group for the first multiplication. 

Exercise 21-16a 

Check the following products to see that the associative property of 

multiplication holds: 
1 	 7
1. 7 	 15 ) _6 15 X16 

1. 	 (11 X --. ) X 1 - 3 X (3 X 4 

3 4 3 42. (1" X 7.3) < "-	 = 1"~X(7.3 X ") 

Exercise 21-16b 

The general statement of the associative property for multiplication of 

any whole numbers is: (a X b) X c = a X (b X c). Give the general statement for 

fractions, and give examples of its use. 

21-17 	 Distributive property 

You remember from the unit on whole numbers that there is a property 

combining addition and multiplication. For any whole numbers, it is stated as 

follows: 

a X (b 	+ c) = (a X b) + (a X c). 
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In words, when multiplying a sum of two whole numbers by a third whole number,
 

you can multiply each of the two numbers by the third number and add the results.
 

Think of the following statement using fractions, to see whether the
 

distributive property holds for fractions 
as well: 

I x + I) = ( x + x 3 

On the left-hand side you get: 
1 2 1

1 X (- + -

17 
- 2 X _L7 (why?). 

On the right-hand side you get: 

2 + 1 3 2 3 

Completing the work on each side you get, on the left: 

1 17 17
 
2 12 24 

and, on the right: 

1 3 17
 
3 8 24
 

The two results are the same. 

You can write, for any three fractions, the distributive property as 

follows: 

a (X + ( a= x g) + (a X e 

Exercise 21-17a
 

Check that the distributive 
property holds for the following: 

1. a =5, b= 3, c=7, d= 2, e= 4, f= 9 

2. a = 1, b= 10, c = 4, d = 5, e = 6, f = 7 

Exercise 21-17b 

Try to check the general statement of the distributive property given 

I \Q 
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above, to see whether the left-hand side results in the same fraction as the 

right-hand side. 

Exercise 21-17c 

Make up word problems showing the use of the distributive property. 

21-18 Properties of one and zero 

You saw earlier that if you multiply any whole number by 1 or multiply 

by any whole number, you do not change that whole number. 

this property of 1 for whole numbers as follows: 

a /\ = 1 Xa =a. 

Of course, this property also holds for multiplication of fractions. You can 

write it as follows: 

a_)X1 a a 
b (-)bli b" 

For example, you have: 

5_ ,5 1
)xl= _ X y (why?) 

(3 xl) 

(5 X 1) (why?) 

= ~(why?).5 

Likewise, you will find that 
3 3

lx(C-) =-5 

For another example, if you take the fraction 1. 8, you get 

18i.8xi= (-)Xl (whyP) 

18 1-1 X (why?) 

10 1 
(18 X il (why?) 
(0oxi1) 
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_18 

- 10 (why?) 

= 1.8 (why?). 

In the same way, you will find that 

1 X 1.8 = 1.8. 

Exercise 21-18a 

Show that the fractions you get by doing the multiplications on the left

hand side and the right-hand side of the following equation are equal: 

(a ) Xi= 1X (a 

Exercise 21-18b 

Give a classroom procedure to explain this property of I to a class of 

primary school children. 

Exercise 21-18c 

One further property of multiplication for whole numbers is the property 

that 

a> 0 = 0 X a = 0. 

State this property for fractions, givB examples and give reasons why it holds. 

21-19 Reciprocals 
3 8 

Think of the two fractions - and 3 " They look very much like each 

other, except that one is upside down. They give a very interesting result when 

multiplied together, as follows: 

3 X 8 = (3X8) 
8 3 (8 X 3) 

24 1
- 24 - 1 =1 (why?). 
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3 8
 
Fractions like 8 and 3 , whose product is 
 1, are called RECIPROCALS. 

You can see that for any two non-zero fractions A and - the product of 
b a 

reciprocals is 1. Thus you can write, if neither a nor b is 0: 

a b (a xb) 
b a (b X a) 

=(a x b)
(a X b) (why?) 

= I (why?).
 

To find the reciprocal of a whole number, 
 such as 3, remember that 3 = 

3 1 
1 I so that the reciprocal of 3 is 3 

Exercise 21-19a 

Find the reciprocals of these fractions, and show that the product of each 

fraction and its reciprocal is 1. 

1. 5 1 
7 
 410
 

2. 3 5. 3.720 

3. 3 1 6.4 
2 4 

Exercise 21-19b 

Write word problems which illustrate this property of reciprocals for 

children. 

21-20 Division as finding the missing factor 

After you learned to multiply whole numbers, you found that you could 

solve problems like the following by division: 

144= 9 E 

The missing factor, of course, is 

-]= 144 - 9 = 16. 
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You found the answer by thinking that 144 is 9 times something, and then realiz

ing that that something must be 16. You found that number by using division. 

You can do problems whose answers are not whole numbers in the same 

vay. For a simple example, think of this problem: 

28 = 13X] . 
Your answer is found in the same way, by thinking what numeral must be put into 

the box to make the sentence true. But clearly, using what you have learned 

about multiplication of fractions, you can see that 

13x = 28.
28
 

Thus it is obvious that 2 
 must be the number which makes the sentence true,
 

so that
 

28113 =28
 
13
 

It is a more difficult problem to find what to put into the box in the 

following sentence: 

2-=3× 

The question can be stated in words in such a way as to suggest the answer.
1 

You can see that " is 3 times something, and the problem is to find that some2 

thing. But clearly = 3 X (X ). Thus - is the fraction which must be 

put into the box. 

A slightly more difficult example is the following: 

5 = 4-- = 4 XLJ3 "1 

You see that 5 is 4 times something. But clearly " is 4 X ( ") Thus 
3 3 4 3

5 is the fraction to be put into the box. 

121
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A still more difficult problem is the following: 

-x 

In this case, the fraction - is I of the missing factor you want. That

7 3
 

5 51
number musL be 3 times 7 , in order for - to be - of it. Thus you can see
 

that the fraction
 

3X-5 x 15
 
7 7
 

completes the sentence given above.
 

The last type of problem to think of is shown by the following: 

5 -- 7 . 

You can clearly combine the methods you used in each of the previous problems 

to solve this one. You know that  times the missing factor is 5 . Thus you
4 5
 

can figure out that i is x (Ax ) 
 The missing factor itself must there
2 8 

fore be 	 I X - or just 8
 
3 5 15
 

You have now solved several problems involving missing fractional 

factors. The division operation on whole numbers was based on problems wher( 

the missing factors were whole numbers. Thus, if division of fractions is to be 

related to division of whole numbers in the same way that the other operations 

on fractions were related to their corresponding operations on whole numbers, 

the answers to these problems with missing fractional factors must be found by 

division. Thus you can write the following statements based on the problems 

you did 	above. 

1 1 1 (why?) 
6 2 -3=2 1 

5 5 5 412 3 3 1 
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15 5 1 
7 7 3 

8 2 3 
15 	 5 4 

Exercise zl-20a 

Find answers to the following problems. Write your answers using divi

sion equations, as shown above. 

1. 5 x 94. 	 5 x7 

2.= X4 5. 4.4= X 3 3 

3. 	 -1 x 6. 17 14*6 3 	 7 Xy 

21-21 	 Another secret 

There is an easy way to put all these answers to division problems into 

simple form. Perhaps you have found the rule by now. Perhaps you can remem

ber it from your school days. If you do not know it yet, you can discover it. 

But remember that your pupils only know what they learn with and from their 

teachers. You must help tfhem discover this secret. It is much better for them 

if they find it for themselves, than if you have to tell it to them, since then it is 

truly their own. 

Look once again at the results of the problems which were worked out in 

the previous section. They are 

1 3 1 
2 1 6 
5 4 5 

3 1 12 

5 1 15 
7 3 7 
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2_3 8 
5 4 15 

Do you see any pattern as you look at these statements? If you do, then perhap 

you know the secret. But, if you do not yet see the pattern, you can rewrite the 

statements as follows: 

1 3 (Lx 1) 
2 1 (2 x 3) 

3 1 (3 X 4) 
5 1 ILx_ 

7 3 (7 X 1) 

2 3 (2X4) 
5 4 (5 X 3) 

If you check these statements, you will see that they are merely new ways of 

writing the statements given above. But what is special about the second way 

of writing them? Do you see the secret? 

If you have looked closely, you see that in each case you have found an 
answer whose numerator is the product of the numerator of the first and denomina

tor of the second of the two fractions, and whose denominator is the product of 

the denominator of the first and numerator of the second. You can write it this 

way: 

a c (axd)X 
d (b X c) 

But this is the same number you would find if you multiplied the first fraction by 

the reciprocal d of the second fraction, as follows: c 
C iL 1a a Xd 

b c (b x c) 

Thus you seecan that to divide one fraction by another, you simply 

multiply the first by the reciprocal of the second. For short, to remember it more 

easily, this is sometimes said in the form: "invert and multiply". But don't 
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teach it that way. Your children can learn it for themselves, and they deserve 

to have the chance to do so. Children can discover much for themselves, and 

they will be better thinkers if you let them do it. 

Exercise 21-21a
 

Solve the following division problems:
 

1. -3 7 = 1 4.	 - l 2 
411.29
1 	 4- 7 -t 

2. 	 " xj= 9 5. 6.6 + 3.3=
 

153 47
 
3. 1.6+a=9.3 	 6. 39 141 -d 

Exercise 21-21b 

Try to give a general argument for the rule that to divide 9 by -2 you 

multiply aby theh reciprocal of Show that this isb eirclo	 the missing factor in the ca 
sentence , X = b. Good luck! 

21-22 Division as inverse of multiplication 

You remember that division is the inverse of multiplication for whole 

numbers. The same thing is true for fractions. For instance, thin 

multiplication facts: 

2 x9 = (zx9)
5 4 (5 X 4) 

18
- 20 (why?) 

18 9 
Then you can divide 18 by 9 and get 

1_ 9 18 4 
20 4 20 9 

72 
180 (why?) 

,5? 
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- (2 36) 
(5 X 36) 

2 (why?). 

Thus you can write 

2 9 9 2 
x 4 - 5. 

Now instead begin with the division fact: 

2 _9 2 4 (2X4) 8 (why?) 
5 495 9 (5 X 9) 45h " 

If you multiply 8 by 
8 9 

9 , you will get back the original -
2 

, as follows: 
455 

9 X 8 = (9 x8) 
4 45 (4 X 45) 

- (why?).5* 

Thus you can write 

S x _2

4 4 - 5.
-x 9 

In general, you can write 

aA X c 
b d d - b 

(a c9) c a
b d ) d -b 

Exercise 21-22a 

Verify the following statements 

1. (i- 1 x 7 )- -7 =1-1 3. (-19 -- 17 ) - 17 193 8 8 3 5 8 8 5 

2. (1.7 X 3.4) +3.4= 1.7 4. (5.8 X 5i)3 5 3 = 5.8 
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21-23 The question of zero again 

3 
What do you think - could mean? A way to think about this question is

0 

to think about the sentence:
 
a
 

b 

Is there any fraction which can be put into the box to make this sentence true? 

You have learned that 
a 

b 
a 

where - is any fraction. Thus no matter what fraction you put into the box, yc
b 

get 0 as a result on the left-hand side and never 3. Thus there is no fraction 
2 5 

which can be multiplied by 0 to get 3. You can see also that - or - or any
0 0 

thing else like that will result in the same difficulty. The only exception is
0 r10 In the sontence 0 X Fi = 0 what fraction can be put in the box to make 

the sentence true? The answer is any fraction at all. This is almost as bad as 
0 

no answer because - can be given no one d- finite meaning. As was said in
0 

the chapter on division of whole numbers, division by zero is not an allowable 

operation. 
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FORWARD
 

This supplementary booklet has been prepared for use with the text Basic
 
Concepts of Mathematics, an Introductory Text for Teachers. 
 In it will be found
 
a glossary and index for the text and the 
answers to lmost all of the exercises,
 
except the answers for Chapters 1, 
 2, 6, 14, 15. The answers to those five
 
chapters were included 
at the end of the chapters in the text. 

The answers are not meant to "give" you the answers to the exercises. 
On the contrary, use them to check the answers to an exercise only after you 
have thoughtfully worked them out for yourself. However, if after trying, you 
are unable to work a problem, looking at the answer might give you a helpful 
clue to a solution. Do not be discouraged if your answers often differ from those 
given here. Very often an answer in this booklet may be simply a different form 
for your answer. Try to see why your answer and the answer in the book]et are 
both correct. If the answer given here is not equivalent to your answer, check 
your work again; you may have made a mistake somewhere or misunderstood the 

problem. 

This supplementary booklet was prepared by Robert B. Brown of the University 
of California, Berkeley, California. 



Chapter 3 

CHAPTER THREE 

Exercise 3-1a 

are of the sets of pawpaws and bananas. These 
three and the three shown at the beginning of Chapter 3 are the only possible 

rmatchings. 

2. 

Set A P Q R S This is just one way of matching 

sets A and B. 

In all there are twenty-four 

different ways. 

Set B KLMN 

Here three other matchings 
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Chapter 3 

Exercise 3-1b 

Answers will vary. 

Exercise 3-Za 

1. F 

SP Q R ST U V 

LAB D E F G H 

<> q 0 

A zzrr I
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Exercise 3-3a 

1. 

This is just one set matching the given set. You will have other ideas. 

This is iust one set matching the given set. You will hav.e other ideas. 

Exercise 3-3b 

1. Any set which you used to answer question 2 in Exercise 3-3a contains 

3 members. 

2. Four 

3. Two 

Here is one such set. You will have other ideas. 
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Chapter 4 

CHAPTER FOUR 

Exercise 4-Za
 

Set 
 Number Numeral 

{ E} one 

{BC) two 2 

{A, B, D} three 3 

{A, B, C, E} four 4
 

Exercise 4-Zb
 

Set 
 Number Numeral 

{A, B, C, D} four 4 

{ D OA} three 3


{ } zero 0
 

{B, C, E, F}I four 4 

4 > 3, 3 < 4, 4 > 0, 0 < 4, 3 > 0, 0 < 3, 

4 = 4, 3 = 3, 0 = 0. 

Exercise 4-4a 

Answers will vary. 

Exercise 4-5a 

1. Sets A and B are not equivalent sets. Set A matches exactly the 
counting set {1, 2, 3, 4, 5, 6} , but the set B does not. 

2. Set A = r, 1, t, n I . Sets A and B are equivalent sets. Each 

matches the counting set { 1, 2, 3, 4 



5 Chapter 5 


CHAPTER FIVE
 

Exercise 5-3a
 

1. 	 Six 1111I1
 
Fourteen n iII
 
Three hundred and fifty-six cee flNnflfl n lmm 
Three 	thousand and twenty on' ()fl 

2. 	 3, 22, 402, 1113, 20211. 

Exercise 5-7a
 

1. 	 52 
 2. 36 
 3. 71 4. 95
 

Exercise 5-7b
 

1. 	 352 2. 555 
 3. 1253
 

Exercise 5-7c
 

1. (a) (b) 	 (c) 
 (d)
 

Ht4- TENS 	 QOJ55 
OREW 

HUN- TENS ONES HUN- TM ONES HUN- TENS ONESDRES DfEDS fPRED5 

2. 	 (a) 2134, 5213, 3048
 

(b) nnnI~, , e ,nnnn
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(a) Ten thousand 

(b) One hundred thousand 

(c) One million 

(d) Ten million 

TEN MILLIONS HUNDRED TFN THOUSANDS HUNDREDS TENS ONES
MILLIONS THOUSANDS TIOU5ANDS 

4. 

5. 

32,915,374
 

3 ten millions, 2 millions, 9 
 hundred thousands, 1 ten thousand, 

5 thousands, 3 hundreds, 7 tens and 4 ones.
 

This is just one example. Answers will vary.
 

A--U
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6. 

7. 	 (a) 276,133 

Two hundred thousands, seven ten thousands, six thousands, one 

hundred, three tens and three ones 

(b) 7,132,432 

Seven million, one hundred thousand, three ten thousands, two 

thousands, four hundreds, three telis and two ones 

(c) 44,444,444 

Four ten millions, four millions, four hundred thousands, four ten 
thousands, four thousands, four hundreds, four tens and four ones. 

(d) 12,345,678 

One ten million, two millions, three hundred thousands, four ten 

thousands, five thousands, six hundreds, seven tens and cfght ones. 

Exercise 	5-8a 

(1) Egyptian numerals (2) Hindu-Arabic numerals 

1. e e e NI I 	 314 

2. 	 A- e4O 
3 3104 

4. 	 3014 
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Exercise 5-8b 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Exercise 5-8c 
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Exercise 5-8d 

(a) Egyptian numerals (b) Hindu-Arabic numerals 

1. 	*nflnflmlfl UI 241,063 

2. 	 e e e e n 60,510 

3. 0e&eeeee 	 10,601 

4. f 	 1,010 

5. ***enoI 	 48,124 

6. 	 e e 


onf ilIiI 30,527
 

Exercise 5-9a 

1. 	 XIV, XIX, XXIII, CCCCLXVIII, MCMLXIV, XLIV, LXXXII. 

2. 	 24, 26, 64, 46, 228, 2979, 1752. 

3. 	 XLVI: L - X = XL, V + I = VI, XL + VI = XLVI. 

LXIX: L +X= LX, X- I =IX, LX+ IX= LXIX. 

LIV: V - I= IV, L + V= LIV.
 

MCM: M-C=CM, M+CM=MCM.
 

Exercise 5-10a 

1. 	 (a) MXXIII (b) MMDCCCXCIV 

2. 	 (a) XXXIV (h) xCv 
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3. 

I V X L C M 

I I V X L C M 

V V XXV L CCL D 

X X L C D M 

L L CCL D MMD 

C C D M 

M M 

(a) MDCXXXVIII (b) MMMMMMMMM 

MMMMMMMMMM 

MMMMMMMMMM 

MMMMMMMMMM 

MMMMDCXVI 

4. (a) X rem. XXIV (b) XXIII rem. XXV 

Exercise 5-11a 

1. 631 

2, 462 

3. (a) 1043 (b) 324 (c) 1024 (d) 2352 

4. (a) 54 rem. 1 (b) 79 

(c) 103 rem. 1 (d) 51 rem. 3 

5. (a) 85101 (b) 47424 (c) 28809 

6. (a) 128 (b) 32 rem. 14 (c) 1000 rem. 2 
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7. The missing key was 'I'. The problem was 

321 

53 
817 

1191 

8. (a) 7 )_138813 (b) 65432 
19830 rem. 3 4 

261728 
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CHAPTER SEVEN
 

Exercise 7-3a
 

(1) 7 (2) 8 (3) 10 (4) 10
 

Pictures will vary.
 

Exercise 7-3b
 

Answers will vary.
 

Exercise 7-3c
 

If A and B are not disjoint sets, then the number of elements in the union of 
A and B is the number of elements in A plus the number of elements ill B 
minus the number of elements that A and B have in common. 

Exercise 7-4a 

A few of the many possibilities are given here. 

6 =5 + 1= 4 + 2 = 3 + 3 

13 = 12 + 1 = 11 + 2 = 10 + 3 = 9 + 4 

22 = 10 + 12 = 13 + 9 = 16 + 6 = 17 5 =+ 21 + 1 
8 =6 + 2 = 5 + 3 =4 + 4=1 + 7
 

Exercise 7-5a 

Answers will vary. 

Exercise 7-5b
 

Answers will vary.
 

Exercise 7-5c
 

1. (a) 
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2. {P Q R S T 0 W}t I I f I 
314,5 6, 7}5j~~ j~. 

{L VF7W A I 
3. The sets involved will vary. Here is one possibility. 

(a) {@ u AELIAL+] 

-- U{A LA L+ 7 

(b) { ] u {AE] A L + 0 7 ) 

={A1JAL} + 0 7) 
4. A few of the many possibilities are given here. 

(a) 2 + 6 = 5 + 3 = 1 + 7 = 4 + 4 = 8 

(b) 25 = 24 + 1 = 22 + 3 = 20 + 5 18 + 7 

(c) 7 + 1 = 2 6 = 5+ + 3 = 4 + 4 = 8 

(d) 17 = 16 + 1 = 15 + 2 = 14 r 3 = 12 + 5 

5. 

(a){ x Vu{ }{xV 
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(b) fz 7juf Vw x Y zJ=fZ LlvwxYz J 
(c) f2-W jux IJ o VxY 

Exercise 7-7a 

1. 	 2 3. 11 5. 2 

2. 	 7 4. 	 8 

Exercise 	 7-7b 

5=0+5= 1 + 4=2 + 3 	 =3 + 2=4+1= 5 + 0 

7 	 = 0 + 7 = 1 + 6= 2 + 5 = 3 + 4 =4 + 3 = 5 + 2 
=6+1=7+0 

8=0+8=1 
 + 7 =2 + 6=3 + 5=4+4=5 + 3 
=6+2=7+1=8+0 

Exercise 7-7c 

1. 	 6 

2. 	 If the sum of the numbers assigned to the pairs is 13, no children 
are left without partners. If the sum is 14, the children assigned 
1 and 7 are without partners. If the sum is 15, the children 
assigned I and 2 are without partners. If the sum is 16, the children 
assigned I, 2, 3 and 8 are without partners. 

11 
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Exercise 7-8a 

1. + 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 10 

2 2 3 4 5 6 7 8 9 10 11 

3 3 4 5 6 7 8 9 10 11 12 

4 4 5 6 7 8 9 10 1i 12 13 

5 5 6 7 8 9 10 11 12 13 14 

6 6 7 8 9 10 11 12 13 14 15 

7 7 8 9 10 11 12 13 14 15 16 

8 8 9 10 11 12 13 14 15 16 17 

9 9 10 11 12 13 14 15 16 17 18 

2. 0 + 8 =8, 1 + 7 =8, 2 + 6 =8, 3 + 5 8 4 + 4 = 8, 

5 + 3 =8, 6 + 2 =8, 7 + 1 =8, 8 + 0 =8 

3. 14 

4. 5, 15 + ] = 20. 

5. The following five pairs could be formed. 

0 + 10, 1 + 9, 2 + 8, 3 + 7, 4 + 6. 

The children with the numbers 5, 11 and 12 would be without partners. 

6. The following pairs could be formed. 

0 + 8, 1 + 7, 2 + 6, 3 + 5. 

The children with the numbers 4, 9, 10, 11 and 12 would be without 
partners.
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7. + 1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 

3 4 5 6 7 8 9 

4 5 6 7 8 9 10 

5 6 7 8 9 10 ii 

6 7 8 9 10 11 12 

8. (a) 0 (d) 0 (g) 0 

(b) 0 (e) 0 

(c) 0 (f) 0 

Exercise 7-9a 

[-+ 0 = 0 + [-]= F 

W + 0= 0 + = [ 

M + 0 =0 + F =] 
M~ + 0 =0 + f =] F-

S+ 0 =0 + F 5= 

R4+ 0 =0 + F4 

[3+ 0 =0 + [ = 3 

+ 0 = 0 + M = F2 
M + 0 = 0 + = 

1-+ *0 = 0 + F1= n 

Exercise 7-9b 

Answers will vary. 
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CHAPTER EIGHT 

Exercise 8-1a
 

Answers will vary.
 

Exercise 8-Za 

I. 2 2. 7 3. 9 

4. Any number may be put into the boxes, provided that the same number 

is put into both boxes. 

Exercise 8-3a 

1. Answers will vary. 

2. 3]+=03 

Exercise 8-3b 

1. 3 + 1 = 1 + 3 

2. 5 + 2 = 2 + 5 

3. 4 + 9 = 9 + 4 

4. 6 + 4 = 4 + 6 

Exercise 8-5a 

1. (1 + 2) + I = I + (2 + i) 

2. (4 + 3) + 0 = 4 + (3 + 0) 

3. (5 + 5) + 2 = 5 + (5 + 2) 

4. (3 + 7) + 6 = 3 + (7 + 6) 

5. (0 + 8) + 6 = 0 + (8 + 6) 

Exercise 8-5b 

1. Answers will vary. 2. Answers will vary. 

Exercise 8-5c 

1. 9 + (7 + 3) = 9 + 10 = 19 

2. (6 + 4) + 7 = 10 + 7 = 17 

3. (4 + 16) + 7 = 20 + 7 = 27 
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4. 9 + (5 + 15) 9 + 20 = 29 

5. 7 + (4 + 6) 7= + 10 = 17 

6. (7 + 3) + 3 = 10 + 3 = 13 

Exercise 8-5d 

Answers will vary. 

Exercise 8-5e 

5 + (4 + ) = (4 + 5) + 6 

Exercise 8-6a 

1. 	 (4 + 3) + 2 = 4 + (3 + 2) associative law 

4 + (3 + 2) = 4 + (2 + 3) commutative law 

4 + (2 + 3) = (2 + 3) + 4 commutative law 

(2 + 3) + 4 = 2 + (3 + 4) associative law 

2. Four numbers can be grouped in any manner when added. The same is 
true of more than four numbers. 

3. 1 + 14 	 1 4 10+ + 4 + 5 + 6 

2 + 13 1 + 5 + 9 
 1 + 2 + 3 + 9 

3 + 12 1 + 6 + 8 
 1 + 2 + 4 + 8
 

4 + 11 	 2 + 3 + 10 1 + 2 + 5 + 7 

5 + 10 2 + 4 + 9 
 1 + 3 + 4 + 7
 

6+9 2+5+8 
 1+3+5+6 

7 + 8 
 2 + 6 + 7 
 2 + 3 + 4 + 6
 

1+2+12 3+4+8 
 1+2 +3+4+5 

1 + 3 + 11 3 + 5 + 7 

4. The first player announces the number 1, 7, 13, 19, 25 and 31 
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Exercise 9-la 

CHAPTER NINE 

5+0= 

1 + 4 = 

5, 

5, 

4+1= 

0 + 5 = 

5, 

5. 

3+2= 5, -2+3= 5, 

8+0= 

4 + 4 = 

8, 

8, 

7+1= 

3 + 5 

8, 

= 8, 

0 + 8 

6+2= 

2 + 6 

= 8. 

= 

8, 

8, 

5+3= 

1 + 7 = 

8, 

8, 

9 + 0 =9, 

5 + 4 =9, 

1+8=9, 

8 + 1 9, 

4 + 5 =9, 

0+9=9. 

7 

3 

+ 2 =9, 

+ 6 =9, 

6 

2 

+ 3 =9, 

+ 7 =9, 

Exercise 9-2a 

7 = 0 + 7 

7 1+6 

L-ooooooo-[1] 

FZDO---ooooooV 

7=3 + 4 

7 4 + 3 

7 =5 -2 

7 =6 + 1 

7 =7 + 0 

EIooo- oo ooF 

ECJooo ooo= 

ZZDoooo ooLIZ 
ZDoooooo- oII 

[ZIIDoooooooO-
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Exercise 9-2b 

6 =0 + 6 

6 =1 + 5 V---ooooo----I 

6= 2 + 4 L--3oo-oooo---
6 =3 + 3 ELIOOO---.-L 
6 =4+2 ooo o -2 

6 =5 + 1 [-- Iooooo- o----rI 
6= 6 + 0 0ioooO-oo =Z 

Exercise 9-2c 

0 and 9, 1 and 8, 2 and 7, 3 and 6, 4 and 5, 5 and 4, 

6 and 3, 7 and 2, 8 and 1, 9 and 0. 

Exercise 9-2d 

Answers will vary, 

Exercise 9-2e 

11 and 5 

Exercise 9-3a 

3 

Exercise 9-3b 

(a) 1 (c) 3 (e) 6 

(b) 2 (d) 0 (f) 7 

Exercise 9-3c 

(a) 0 (c) 5 (e) 4 

(b) 2 (d) 2 (f) 0 

Exercise 9-3d 

Answers will vary. 
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Exercise 

(a) 

(b) 

(c) 

9-4a 

6-4 

7-7 

4-3 

= 

= 

D 
D 
-

(d) 

(e) 

(f) 

9-8 

6-6 

7-2= 

= 

= 

-
D 

L 
Exercise 9-4b 

Answers will vary. 

Exercise 9-4c 

Answers will vary. 

Exercise 9-4d 

(a) 6 + D= 8 

(b) 

(c) 

1-

2 

4 

+ -

= 4 

9 

(d) ]+ 7 = 8 

Exercise 9-4e 

In Exercise 9-4a the answers are 
In Exercise 9-4d the answers are (a) 2, 

Exercise 9-4f 

(a) 

(b) 

2., (b) 

0, (c) 

0, 

7, 

(c) 1, 

(d) 1. 

(d) 1, (e) 0, (f) 5. 

3 

1. 

2. 

+ (5 + 

20 feet 

There are many possible answers, for example, 

R ) 2 + (4 + ) or 3 + (5+F4 )= 2 + (4 +A/ ) 
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Exercise 9-5a 

(a) 0 
 (d) 7
 

(b) no answer (e) 0 

(c) 1 ( no answer
 

Exercise 9-6a
 

(a) 5 -2=3, 5- 3 = 2 

(b) 6-6=0, 6-0= 6 

(c) 8-7= 1, 8-1 = 7 

(d) 7-5= 2, 7- 2= 5 

Exercise 9-6b
 

Answers will vary.
 

Exercise 9-7a
 

1. 6 + D = 9, 9 - 6 = Answer: 3. 

Z. 2 + R = 8, 8 - 2 = Dl Answer: 6. 

3.[- 1 = 7, D] 7-1. Answer: 6. 
4. 5 + [-] = 10, 10-5 = Answer: 5. 

Exercise 9-7b 

{ a, b, c, d, e, fg}- {b, d, f,) {a,= c, e, g}. 

There are 7 members in {a, b, c, d, e, f, g } and 3 members in {b, d, f}. 
There are 7 -3 = 4 members in {a, c, e, g 
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Exercise 9-8a 

S 00000 good eggs 

broken eggs 

7= 2 + 
7 -2 = [ 

7 -2 = 5 

There are 5 more good eggs than broken eggs. 

(b) Ko fi 

Kwesi 

2 =2+ D 
2-2= D 

2- 2= 0 

Kofi and Kwesi caught the same number of fish. 

(c)
 

-~ 
 here 

M.T across the road 

5 =3 + D] 
5 - 3 =- -- ] 

5-3 = 2ii
5-3=2 

There are 2 more houses across the road than there are here. 

.jA),
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2. (a) 
me 

0 0 0 my sister 

9= 6+ 

9 -6 =D 

9-6=3 

My sister has 3 more counters than I have. 

(b) Lucy 

me 

7 =6 +-D 

7 -6 = D 

7 -6 = D 

Lucy has one more button than I have. 

(c) 

J. birds 

chickens 

8 = 4 + D 
8 - 4= D 
8-4 a 

There are 4 more birds than chickens. 

% 
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(d) pots 

spoons 

7 -2 D 
7 -2= 

7 - 2 = 5 

There are 5 more pots than spoons. 

(e) n 4 Ama 

Oi.C Oneeded 

6 =2 + D] 
6 2Z= ]
6 - 2= 4 

Ama needs 4 more oranges. 

(f) Araba 

Lucy 

8 =6 + ] 
8  6 -=-

8 -6 = 2 

Lucy has 2 more pawpaws than Araba. 
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Exercise 

(a), 

(b) 

9-9a 

5+ 
9=3+D 

i9-5= 
-3=D 

Answer-

Answer: 

4 

6 

(c) 

(d) 

2 

8 

+f-

= 4 

= 

+ F 
9 , 

, 

= 

8-

9 

4 

- 2 

= -] 

Answer: 

Answer: 

7 

4 

(e) 

M 
(g) 

(h) 

(i) 

7± = 9, [ 9-

-  + 3 = 5, 1 = 5 -3 

4 = D + 2, 4 -2 

7=4 D,7-4 D 

8 = 4 + f-- , 8 - 4 = 

7 Answer: 

Answer: 

Answer: 

Answer: 

Answer: 

2 

2 

2 

3 

4 

j) 2 + 8, 8 -2 Answer: 6 

Exercise 9-9b 

1. 7 

8 

+ 8 

+ 7 

= 

= 

15 

15 

15 

15 

-

-

8 

7 

= 

= 

7 

8 

2. 3 

11 

+ 11 

+ 3 

= 

= 

14 

14 

14 

14 

-

-

11 

3 

= 

= 

3 

11 

3. 15 + 5 

5 + 15 

= 

= 

?0 

20 

20 

20 

-

-

5 = 

15 = 

15 

5 

4. 1 + 19 

19 + 1 

= 

= 

20 

20 
20 

20 

-

-

19 = 1 

1 = 19 

5. 2 + 10 

10 + 2 

= 

= 

12 

12 

12 

12 

-

-

10 = 2 

2 = 10 

6. 	 Only two different statements are possible. 

6 + 6 = 2 12 -	 6 =6 



Chapter 9 27 

Exercise 9-10a 

1. (15 + 10) - 10 = 15, (15- 10) + 10 = 15 

2. (8 + 3)- 3 =8, (8 -3) + 3 =8 

3. (12 + 0) - 0 = 12, (12 - 0) + 0 = 12 

4. (9 + 9)- 9 =9, (9 -9) + 9 =9 

Exercise 9-10b 

1. (12 + 6) - 6 = 12 

(12 - 6) + 6 = 12 

(5 + 0) -0 =5 

(5 - 0) + 0 =5 

2. Answers will vary. 

Exercise 9-10c 

6 

Y"
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CHAPTER TEN
 

Exercise 10-2a 

1. 18 4. 72 

2. 21 5. 32 

3. 4 

Exercise 10-2b 

Answers will vary. 

Exercise 10-3a 

1. 	 000 
000 
000 
000 
000
 
000
 

3 + 3 + 3 + 3 + 3 + 3 = 18 

The union of 6 sets of 3 things has 18 members. 

3 added 6 times = 18 

6 3's are 18 

2. 0000000 

0000000
 
0000000
 

7 + 7 + 7 = 21 
The union of 3 sets of 7 things has 21 members. 

7 added 3 times = 21 

3 7's are 21 

3. 	 0000 
4 = 4 

The union of 1 set of 4 things has 4 members. 

4 added 1 time = 4 

1 4is4 
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4. 000000000 
000000000
 
000000000
 
000000000 
000000000 
000000000 
000000000 
000000000 

9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 = 72 

The union of 8 sets of 9 things has 72 members. 

9 added 	 8 times =7? 

8 9's 	are 72 

Exercise 	10-4a 

1. 000 
000 
000 
000 
000 
000 
000
 
000
 
000
 

3+3+3+3+3+3+3+3+3 =27 

The union of 9 sets of 3 things has 27 members. 

3 added 	9 times = 27 

9 3's are 27 

9 X3 = 	 27 

2. 	 00000
 
00000
 

5 + 5 = 10 

The union of 2 sets of 5 things has 10 members. 
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5 added 2 times = 10
 

2 5's are 10
 

2X5 = 10 

3. 0000000 
7=7 

The union of 1 set of 7 things has 7 members. 

7 added 1 time = 7 

1 7 is 7 

1 x 7 = 7 

4. 0

0
0
0
0
0
0
 

1+I+-t1+I+1+1 = 7 

The union of 7 sets of 1 thing has 7 members. 

1 added 7 times = 7 

7 l's are 7 

7X1 = 7 

5. 

0 +0 + 0 + 0 + 0 =0
 

The union of 5 sets of 
 0 things has 0 members. 

0 added 5 times = 0 

5 O's are 0 

5 X 0 = 0 

Exercise 10-4b 

Answers will vary. 
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Exercise 10-5a 

1. 

0 + 0 + 0 + 0 = 0 

The union of 4 sets of 0 things has 0 members. 

added 4 times = 0 

4 O's are 0 

4 X0 = 0 

2.
 

0 + 0 + 0 + 0 + 0 +0 + 0= 0 

The union of 7 sets of 0 things has 0 members. 

0 added 7 times = 0 

7 O's are 0
 

7XO 0 

3.
 

0+0 = 0
 

The union of 2 sets of 0 things has 0 members. 

0 added 2 times = 0 

2 O's are 0 

2X0 = 0 

Exercise 10-6a 

1. 	 1 taken 0 times = 0
 

0 l's are 0
 

0 X 1 = 0 

2. 	 5 taken 0 times = 0
 

0 5's are 0
 

0 X5 = 0
 

3. 	 0 taken 0 times = 0
 

0 O's are 0
 

0 xO = 0
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Exercise 	1O-7a 

1. 	 O00000000 
000000000
 

2. 	 000 

000
 
000
 
000
 

3. 	 0000000
 
0000000
 
0000000 
0000000
 
0000000
 
0000000
 
0000000 
0000000 
0000000 

4. 	 000000 

Exercise 	 10-8a 

The sets used for mixing may vary. Some of the possible answers are given 

here. 
1 2 3 4 5 6 7 

2. a (a,1) (a,2) (a,3) (a,4) (a,5) (a,6) (a,7) 

b (b,1) (b,z) (b,3) (b,4) (b,5) (b,6) (b,7) 

c (c,1) (c,2) (c,3) (c,4) (c,5) (c,6) (c,7) 

d (d,1) (d,z) (d,3) (d,4) (d,5) (d,6) (d,7) 

e (e,1) (e,2) (e,3) (e,4) (e,5) (e,6) (e,7) 

3. 1 2 3 4 5 6 7 8 
a (a,l) (a,2) (a,3) (a,4) (a,5) (a,6) (a,7) (a,8) 
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4. 1 

a (a,1) 

b (b,1) 

c (c,1) 

d (d,1) 

e (e,1) 

5. 

a 

b 

6. 	 1 

a (a ,1) 

b (b,1) 

c (c,1) 

d (d,1) 

e (e,1) 

f (f,1) 

g (g ,1) 

Exercise 10-8b 

Answers will vary 

Exercise 10-8c 

35 

2 

(a,2) 

(b, ?) 

(c,2) 

(d,z) 

(e,2) 

3 

(a,3) 

(b,3) 

(c,3) 

(d,3) 

(e,3) 
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Exercise 10-9a 

X 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 10 12 14 16 18 

3 0 3 6 9 12 15 18 21 24 27 

4 0 4 8 12 16 20 24 28 32 36 
5 0 5 10 15 20 25 30 35 40 45 

6 0 6 12 18 24 30 36 42 48 54 
7 0 7 14 21 28 35 42 49 56 63 

8 0 8 16 24 32 40 48 56 64 72 
9 0 9 18 27 36 45 54 63 72 81 

Exercise 10-lOa 

1. 000000000 
2. 0 

0 
000 
 4. 0 
0 
0 00 
0 0 
0 0
0 0

0 0 
0 0
0 0 
0 0
 

0 

3. 

000000000000000000000000 
000000000O0000000oo
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CHAPTER ELEVEN 

Exercise 11-la 

1. 18 

2. 6 and 4 

3. 9 shillings 

4. 34 

5. 14 shillings 

Exercise 11-2a 

1. There are many such pairs. A few of them are 

2. 

0 x 9 = 9x 0 

1X 9 = 9 X 1 

2 X 7 = 7X 2 

5 X 7 = 7X 5 

6 X 5 =5X 6 

3 X< 8 8 X 3, and so on. 

Commutative property of addition: a + b 

Commutative property of multiplication: a 

= 

X 

b 

b 

+ 

= 

a. 

b X a. 

Exercise 11-3a 

1. 

2. 

3. 

4. 

5. 

3 X 9 =9 X 

5 X 5 = 5 X 

0 x1 =i x 

n X 3 =3 X 

n X in = ri X 

3 

5 

0 

n 

n 
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Exercise 11-4a 

a) QD) (D O) a) 0) ( D Q ) a 

0 0 0 0 0 0 0 0 0 

0 0 0 0 00 0 0 0 0 0 0 

U) 

0 

U) 

0 

U) 

0 

ul 

0 

U) 

0 
) 

0 
( 

0 
) 

Ot0 

U) U 

0 
) 

0 
U 

0 0 0 0 0 0 0 0 0 0 0 0 

0 00 0 

0 0 0 0 0 

....\......... 
o o o 
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Exercise 11-4b 

1. 	 -- [ ' 0 
-. 0-0 0 0 '0 

0 0 0 0 

00 	 0 

0 	 0 

Q 	 0 

0 0 

R~~~w30~ 	 0 
2. 	 RwI0OOOOO0000 

Row2 00000OO0Q 

Row'0000000000000QQRow40 


Row4 000000000 
Row 560 O 0 0 	 0 00 

Rw6000000000 

Match the objects in row I with 

the objects in column 1. Match 

the objects in row 2 with the ob-

jects in column 2, and so on. 

0 

0
 

0 

0 

00 000o0 0 0 00 0 

0 0
 

OO O
 
0 0 0 0 

000000
 
000000
 
0 0 0 0 0 0 
O 0 00 0 0 

0 0 0 00 0 

000000
 
000000
 
000000
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3. 
0 0 0 0 0 0 0 0 

0 
0 

0 

-0 

-~-~0 

Exercise 11-5a 

1 
N 

(1,oN) 
G 

(1,G) 
L 

(1,L) 
S 

(1,S) 

2 (2,N) (2,G) (2,L) (2,S) 

3 (3,N) (3,G) (3 ,L) (3,S) 

1 2 3 
N (N,1) (N,z) (N,3) 

G (G,1) (G,2) (G,3) 

L (L,1) (L,2) (L,3) 

S (S,1) (S,2) (S,3) 

Exercise 11-6a 
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Exercise 11-7a 

1. 	 (1 X 2) X 4 =8, 1 X (2 X 4)= 8
 

2. 	 (3 x 0) x 5 = 0, 3 X (0 x 5) = 0
 

3. (4 X 2) X 4 = 32, 4 x (2 X 4) = 32
 

Exercise 11-7b
 

Answers will vary. 

Exercise li-8a 

1. 	 (3 x 1) X 5 = 3 X (1 x 5) 15
 

2. (4 x 2) X 4 4 X (2 x 4) 32
 

3. 	 (7 X 1) X 8 =7 X (1 X 8) 56
 

Explanations will vary.
 

Exercise 11-8b
 

Answers will vary. 

Exercise 11-8c 

1. 	 1, 2, 3; no others possible. 

2. 1, 1, 2, 4; no others possible. 

Exercise 11-9a 

1.
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2.
 

3.
 

1* 
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Exercise 11-10a 

1. 1 	X (3 + 2) = 5, (1 X 3) + (1 X 2) =5 

2. (4 X 1) + (4 X 2) = 12, 4 X (1 + 2) =12 

Exercise 11-10b 

Answers will vary. 

Exercise 11-lla 

1. 	 00000
 

000 
 00 VP 

2. 	 000000 

000000 
000000
 
000 000
 
000 000
 
000 000
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3.
 

Exercise 	 i-12a 

1. 	 1 x (2 + 3) = (1 X 2) + (1 x 3) 

2. 	 0 x (5 + 4) (0x 5) + (0 X 4) 

3. 	 x X (2 + 3) = (x X 2) + (x X 3) 

Exercise 11-12b 

i. 	 (2 + 3) x (2 + 3) = 25, (2 X 2) + (3 X 3) 13 
(2 + 3) X (2 + 3) = (2 X 2) + (3 X 3) is not a case of the 

distributive law. 

2. 	 7; (3 XEJ) + (2. X 35 

3. 	 (30 X 2) + (60 X 2) pence
 

(30 + 60) X 2 pence
 

2 x (60 + 30) pence
 

4. 	 24 

5. 	 27
 

5 4 
 18
 

A B C Di
 

27 
Either 	arrangement is 

-27 	 5 4 possible. 

D A B C 

6. 	 45 

7. 	 4, 5, 6; 4 + 5 + 6 = 15 

5, 6, 7; 5 + 6 + 7 = 18
 

6, 
 7, 8; 6 	 + 7 + 8 = 21, and so on. 
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CHAPTER TWELVE 

Exercise 12-la 

1. 15, 3 x 5 = 5 + 5 + 5 

2. 12; 4 x 3 = 3 + 3 + 3 + 3 

3. 54; 9 x 6 6 + 6 + 6 6 + 6 6 + 6+ + + 6 + 6 

4. 54; 6 X 9 9 9 + 9 9+ + + 9 + 9 

5. 56; 7 X 8 8 + 8 + 8 + 8 + 8 + 8 + 8 

6. 40;8X5=5+5+5+5 +5+5+ + 5 

7. 72; 9 X 8 = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8
 

8. 72; 8 X 9 
 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9
 

9. 49; 7 X 7 = 7 + 7 + 7 + 7 + 7 + 7 + 7 

Exercise 12-Za 

The table of"fives" The "5-times" table 
0 X 5 =0 5 x 0 =0 
1X 5 =5 5 X 1 =5 
2 X 5 = 10 5 x 2 = 10 
3 x 5 = 15 5 X 3 = 15 

4 X 5= 20 5 X 4= 20 
5 X 5 = 25 5 X 5 25 

6 X 5 = 30 5 X 6 =30 

7 X 5 = 35 5 X 7 =o5 
8 X 5 = 40 5 X 8 =40 
9 X 5 = ,.5 5 X 9 45 

IV 
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Exercise 12-3a 

6:0000001x6 000 2X3 
00 000 
00 3X2 0 6x1 
00 0
 

0 
0 
0 
0 

7:0000000 1 X 7 0 7x 1 

0 
0 
0 
0 
0 
0 

9:000000000 1x9 0 9xI 

0 
0 

000 3X3 0 
000 0 
000 0 

0
 
0
 
0
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12: 	 000000000000 

000000 
000000 

000 4x3 
000 
000 
000 

45 

1X12 

2X6 0000 
0000 
0000 

3 X 4 

00 
00 
00 
00 
00 
00 

6x? 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

ozXI 

20: 	00000000000000000000 1x 

0000000000 2X10 
0000000000
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0 ')0 XI 
000004 x 5 00 10 x 2 0
00000 00 0
0000000000 00 0
00 0 

00 0
 
00 0
 
00 0


0000 5X 4 00 0
0000 00 0 
0000 00 00000 0
0000 0 

0 
0 
0 
0 
0 
0 
0 

Exercise 12-3b 

16 = 1X16; 16 = ?.X8; 16 = 4X4; 16 = 8X2; 16 = 16X1. 

18 = 1 X 18; 18 = 2 X9; 18 = 3 X 6; 18 = 6 X3; 18 = 9 X 2; 

18 = 18 X 1. 

23 = 1 X23; 23 = 23 Xl. 

36 = 1 X36; 36 = 2 X18; 36 = 3 X 12; 36 = 4 X9; 36 = 6 X6; 
36 = 9 X 4; 36 = 12 X 3; 36 = 18 X 2; 36 36 x 1. 

40 = 1 X40; 40 = ? x20; 40 = 4 X 10; 40 = 5 x8; 40 = 8 X 5; 
40 = 10 X4; 40 = 20 X 2; 40 = 40 X 1. 

56 = I X 56; 56 = 2 X 28; 56 = 4 X 14; 56 = 7 X8; 56 = 8 X7; 
56 = 14 X4; 56 = 28 X 2; 56 = 56 X 1. 
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Exercise 12-3c 

000000000000000000 

000000000 
2x9

000000000 
00 

0 
0 
0 
000 
0 

18 X I 

000000 
000000 

000000 

006 3 

000 
000 
000000 

3 
3x6 

06x 
00 
00 

00 
00 
00 
00 

0 
0 
0 

0 
0 
0 
0 
0 
00 

Exercise 12-4a 

1. 6 2. 10 3. 54 

Exercise 

1. 

2. 

3. 

4. 

12-5a 

72 

56 

42 ± 

21 

8 

7 

6 

3 

= 

= 

= 

= 

D 
D 
[] 
[ 

quotient is 

quotient is 

quotient is 

quotient is 

9. 

8. 

7. 

7. 

5. 

6. 

7. 

8. 

8 + 

28± 

18 

45 

= 

4=f _ 

18 =LIJ 

5 = 

quotient is 

quotient is 

quotient is 

quotient is 

8. 

7. 

1. 

9. 

Exercise 12-5b 

1. 3 2. 8 
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Exercise 12-5c
 

24 = 6 X 
 W 24 + 6 =
 
Each person will receive 4 oranges.
 

Exercise 12-5d
 

1. 5 pieces 

2. 4 acres 

3. a. 1 shilling 9 pence 

b. 1 shilling 3 pence 

c. 1 shilling 

d. 1 shilling and (x - 9) pence 

if x is greater than 9; 1 shilling if x is 

less than 9 or equal to 9. 

Exercise 12-6a 

1. 48 = 8 X D quotient is 6. 
2. 65 = 9 x no whole number quotient. 

3. 47 = [D] X 5 no whole number quotient. 
4. 63=9 X quotient is 7 
5. 63 = X 8 no whole number quotient. 

Exercise 12-6b 

9 shillings 

Exercise 12-6c 

7 gallons 

Exercise 12-6d 

1. 6 4. no whole number answer. 

2. 8 5. 9 

3. 280 6. no whole number answer. 

Exercise 12-6e 

1. 75 

2. John buys 4 toy dogs and has 3 shillings remaining. 
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Exercise 12-7a 

1. (3 x 5) 5 =3 (15 5) x 5 = 15 
2. (7 X 8) 8 =7 (56 +8) X 8 =56 

3. (10 X 4) + 4 = 10 (40 4) X 4 = 40 

4. (9 X 6) 6 =9 (54 6) x 6 =54 

Exercise 12-8a 

D X 0 = 1 El1X 0 = 4 

FIXr0 = 3 0FIX = s 

Numerals cannot be put into any of the above boxes to make the equations true. 
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CHAPTER THIRTEEN 

Exercise 13-2a 

(a) 9, 9 

(b) 40, 40 

(c) 2, 2 

(d) 2, 0 

(e) 18, 18 

(f) 6, no whole number answer 

(g) 8, 2 

(h) I, 5 

(i) 1, 4 

Answers (a) and (e) are evidence that the associative property might be true 
for addition. Answers (d), (g), and (h) show that the associative property is not 
true for subtraction. Answer (b) is evidence that the associative property might 
be true for multiplication. Although answer (c) suggests that the associative 
property might be true for division, answers (f) and (i) show that it is, in fact, not 

true. 

Exercise L3-3a 

(a) 30, 30 (f) 0, 0 

(b) 32, 32 (g) 5, 1 
(c) 54, 6 (h) 125, 625 

(d) 48, 48 (i) 40, 2 

(e) 50, 50 

Exercise 13-4a 

1. 3 6. 0 

2. 0 7. no whole number answer 
3. 3 8. 100 

4. no whole number answer 9. 0 

5. 0 10. no whole number answer 
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CHAPTER SIXTEEN
 

Exercise 16-1b
 

The set just before is I
 

The set just after = 	 iS 

The set just after = 

is 	 } 

Exercise 16-5a 

There will be more small unit lengths in a given object than there will be larger 

unit lengths. 

Exercise 16-6a 

1.
 
01 3 4 5 6 7 8 9 10 11 12 13 14 

2. 13, 5 

3. 7 whole numbers are marked in red. 

4. 30 

5. 7 steps away 

6 

WEST - ' - - - - " * "EAST 
0 1 2 3 3 5 6 7 8 9 

6. 	 He can return in 5 steps to his starting 
4 

point.
 

3 
 4 

0 1 2 3 4 5 6 7 	 8, 10 11 

2 
5 
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7. (a) 8 

(b) 23 

(c) 2 + 3n 
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CHAPTER SEVENTEEN 

Exercise 17-1a 

Of two whole numbers on the number lines, the number to the left of the other 

number is less. 

Exercise 17-2a 

0 1 2 3 4 5 6 7 8 9 10 11 12 

20 21 22 23 24 25 26 27 28 

- i i S I i I i I i ti 

45 46 47 48 49 50 51 52 53 54 55 

Only statements 1 and 4 are true, 

Exercise 17-2b 

1. There are many possible answers. For example, 

(a) a = 6, c = 7 

(b) a = 6, c = 6 

(c) a = 7, c = 6 

2.
 

c a b d
 

3.
 

n p d f
 

4.
 

n b a q p
 

q > a, b < p, b > n. 
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Exercise 17-3a 

I1. 

2. 

4 I 

0 1 2 3 4 
1 is between 0 and 3 

__ _ _ _ _ _ _ _ _ _ _ 

5 6 7 8 

7is between 5 and 8 

2 3 4 5. 6 7 

3is between 2 and 6 

4. i 

0 

1 is 

i I 
1 2 

between 

i 

3 

0 

I 
4 

and 

5 

9. 

6 7 8 9 la 

5. _ _ 

10 

_S_ 

11 12 13 

_ 

14 

_ _ 

15 

_ 

16 
_ 

17 

14 is between 11 and 16. 

6. 

13 14 15 16 17 18 19 20 21 22 23 24 25 

14 is between 13 and 25 

Exercise 17-3b 

1. 

2. 

3. 

3 

8 

(b-a) - 1 
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Exercise 17- 4 

1. 1 < 3, 2 < 4, 3 < 5, 4 < 6, 5 < 7. 

2. Subtract 4. 0 < 5. 

0 1 2 3 4 5 6 7 8 9 10 

3. To obtain 0 < b - a, subtract a from both sides of the iequality 

a < b. To obtain a < b, add a to both sides of the inequality 0 < b - a. 
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CHAPTER EIGHTEEN 

Exercise 18-la 2, 2 

Exercise 18-2a 

i. 

2. 

0 1 2 3 4 5 6 7 

3. 

0 1 2 3 4 5 6 7 

4. 

0 1 2 3 4 5 6 7 

5. 

0 1 2 3 4 5 6 7 

6. 

0 1 2 3 4 5 6 7 

7. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

8. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
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9. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

10. 

0 1 2 3 4 5 6 7 

Exercise 18-2b 

7 + 4 =11 

Exercise 18-2c 

Answers will vary. 

Exercise 18-2d 

1. possible x + y 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2. 15 sticks 

3. Ninth jump. 

Exercise 18-3a 

1. 	 The commutative property of addition.
 

a + b = b + a
 

2. Answers 	will vary. 
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3. The associative property of addition, and the additive property of zero. 
Examples will vary. 

4. (a) (2 + 3) + 4 = (4 + 3) + 2 

(b) associative, commutative
 

Exercise 18-4a
 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Exercise 18-4b 

The frog is performing subtraction when he jumps to the left and addition 
when he jumps to the right. Addition and subtraction are inverse operations (see 

section 9-.0) 

Exercise 18-4c 

0 1 2 3 4 0 1 2 3 4 

2.
 

0 1 2 3 4 5 0 1 2 3 4 5
 

3.
 

0 1 2 3 4 5 6 
 0 1 2 3 4 5 6 

4. 

0 1 2 0 1 2 

5. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
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6. 

7. 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

8. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Exercise 18-4d 

1.A 

2. 

possible x-y 

0 1 2 3 4 5 6 

After six stops you will arrive at 0. 

7 8 9 10 

3. 2; 12 points are marked. 

Exercise 18-4e 

1. Subtraction is no. commutative. 
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2. 4 - (3 - i) = 2, (4- 3) - 1 = 0. 

Subtraction is not associative. 

Exercise 18-6a 

1. 

O 1 2 3 4 5 6 7 8 9 10 11 12 

2. 

0 1 2 3 4 5 6 7 

3. 

0 I 2 3 4 5 6 7 

4. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

5. 

0 1 2 3 4 5 6 7 8 9 10 11 12 

6. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Exercise 18-6b 

Answers will vary. 

Exercise 18-7a 

01 2 45 \- 78 9/10,11 12 1314 15 
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Exercise 18-8a 

Answers will vary. 

Exercise 18-9a 

1. 	 5 days 

0 1 2 3 4 5 6 7 8 9 10 

2. 	 Answers will vary. 

3. 	 Mulhiplicationand division are inverse operations.
 

Examples will vary.
 

Exercise 18-9b 

10 9 8 7 6 5 4 3 2 1 0 
I p I I I | I I I I I 

- I I I I I I I I | 

0 1 2 3 4 5 6 7 8 9 10 11 

One possibility is shown here. Make two number lines with the numbers in

creasing from right to left on the upper one. To subtract b from a, place the 0 

of the upper line over the number a on the lower line, and read the unswei" on the 

lower line h1.ow Lhe number b on the upper line. The above illustration shows how 

to find 9 - 2 and obtain 7. Notice that with this setting we can read off the 

answer for 9 minus any whole number less than 10. 

( ,0
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CHAPTER NINETEEN
 

Exercise 19-la
 

1. no whole number answer 4. 87 

2. 17 5. no whole number answer 
3. no whole number answer. 6. 25
 

Exercise 19-lb
 

Answers will vary.
 

Exercise 19-Za
 

Answers will vary.
 

Exercise 19-3a
 

1. 1 can be thought of as the result of sharing 1 object among 4 people, 

or as I of the fourth parts of an object. 

2. can be thought of as the result of sharing 5 objects among 8 people, 

or as 5 of the eighth parts of an object. 

3. 2 can be thought of as the result of sharing 2 objects among 10 
people, or as 2 of the tenth parts of an object. 

4. 3 can be thought of as the result of sharing 3 objects among 2 people, 
or as 3 half parts of 2 objects each broken into halves. 

5. 1 can be thought of as the result of sharing 1 object among 100 
people, or as 1 of the hundredth parts of an object. 

6. 2 can be thought of as the result of sharing 2 objects among 1 person, 

or as 2 whole objects. 

Exercise 19-4a 

Answers will vary. 
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Exercise 19-4b 

1. 	 2 8 

2 1 	 1 
753	 5. 8-12. 1 

82 

3. 	 7 6.195
2 	 -6 

Exercise 19-5a 

1 72 2 2176 2441. 	 - or lO- 5. 32or 6 
7 7 	 322 322 

2 13 1 	 625 5 
3-	 6. 60 or 62 52. 	 13 or 


96 83
 
3. 	 -or 16 7. - or 1

6 	 83 

8. 	 1215 or 12 154. 	 147 or 6 3 
24 24 	 1O0 100 

Exercise 19-6a 

1. 	 2.3 3. 8.13 

2. .7 	 4. .22 

Exercise 19-6b 

1. 	 Sixty-one and seven tenths 

2. 	 Eight and eighty-one hundredths 

3. 	 Fifty-four hundredths 

4. 	 One and six hundredths 
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Exercise 19-7a 

2. 

3. 

4. 

--~III 
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5. 	 I 

--- I--- ----
I 	 I 

7 I7, 

63. 

17) 2. I / 

/ I\ 

Exercise 19-7c 

Exercise 19-7c 

A,. nerswill vary. 

Exercise 19-7d 

1. 
113 

2. Answers will 	vary from class to class. 

Exercise 	 19-7e 

There are many possibilities. For example: 

A D 
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3. 5T4
 

Exercise 19-7f 

0 00000 
oO 00000 

2. 0 55. 0 D 
00~0J 

3. 0 ij0

00 0 000 6. 0 0000000000 0 0 

000000000 
000000000 
o- oo.,o o o o o o 
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Exercise 19-8a and 19-8b 
._ 

0I 

,0~I-2 

1I2
012 

12 

12 

0,12 
cao 
1I2 

0 

~c*1 

1I2 

"12 

I2O 

~,II 

%12 

,00 

"NI2 
;;I2 

CI2 

.012-

~i 
2 

'01 

:12 

o12 

~ 

~ 

12 
12 

'ajI2 
C-n 

Lj2 

1I2°l° l. 
C'0 

'.'-0 

MIR 
C412 

-12 
0 

1I2 
C1

1 
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Exercise 19-9a 

1 2 3 4 
. 0 5"5 1 3 3 

3 	 40 

2,
 

-1.1 < 1.2 
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 

3. 
1 	 2 3 4 5 3 5 

66 6 66 

1I 1 	 4 6 

4. 

0~~~ 	 , ~. ~ |o . : 2<, 3 2 

0 - 1 1-	 2! 3 3-! 4S2 2 2 	 2 

5. 

0 1 2 1 1 	 9 

1 II1 I 2I 3I II 4 r I 6 7 I 8 9 12I 	 . II 1 3 < 5 

0 
0 

5 5 	 5 5 g 2

2 

6. 

1 2 3 4 6 7 8 9 2 11 12 13 14 3 16 17 18 19 4 
0555 	 155 5 5 5 5" 55SI , t ,Ii, ,I, , , I , I I,i ,I , , I , I ] ,,,,"I , I 
0 .5 .2 .3 .4 , .6 .7 .8 .9 1 1.1 1.55.1.41.6 1.81.9 2 2.12.22.32 2.52.62.72.82.9 3 3. 3.23.33.4 3.53.63.73.83.941.2 1.7 


3.2< 17 
5 

http:3.53.63.73.83.94
http:2.12.22.32
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Exercise 19-9b 

Answers will vary. 
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CHAPTER TWENTY 

Exercise 20-la 

1. ©(:DD ©D © ©DD 

5
 
20 2
 

I I 
 II
 

I jI - - - - - - - - - .. . .--- i-I ---


S I , 4 3
3 . . . F . . ." . . . 

2. 

17 17
1.77 

10
 

v~ wx 

34

20
 

*IC/ 
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3. 

2 
3 3 

22 
6 3-6 

33 
9 

4. 

7 14 
.7 10 20 

.7. 

28
(E= C= K=U=21 

I I 

- 3 . ,I'I I 

28
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5. 
1.25 

1-4 

I 

6. 

16@1@ @6@
 
4 -8 

T1Eu.. Eu.
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Exercise 20-1b 

Answers will vary. 

Exercise 20-2a 

1. 
0 
 1
o 1 

0 	 2 3 4 5 6 1 

1 .'2 3 4 5 6 7 8 9 10 11 12 
1 2 3 4 5 11 6 

0 -6 
 6 i 6 6 6 6 

. o 1 - 2 2" 3 4 6 7 - a 19 6 "1 5 6- 1 1-i3125 - 1"-10 111 2 
666 	 6 6 6 

- " 9 9 9 9I I"9 u I1 ' " I- 1¥ 1 I 
10 11 12 13 14 15 16 17 18 

1 2 1 999999'9 1 1 	 2o 
3 3-	 3 13- 2
 

o 	 1 2 3 4 5 6 
3 3 3 3 3 3 

3. 

1 2 3 43o 	 1 1E 12 1; 11 2 2 22 2! 21 3 
5 5 5 55 5 5 5 

2 3579 10 11 12 13 14 15
 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.31.4 1.51.6 1.71.8 1.92.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.82.93.0 

0 MO ,-o oTO o o o o-oio o- oTo To ,oTo To To To To ,oo,oooi- f ,o o 	 TO To 
0 4 5 6 7 8 9 1 1 1 151 6 1 0 24 6 8 3 

10 10 10 10 10 10 10 10 1 A- 2 12 210 1111-11--11-2210 10 10 1010 	 52A21 21 110 10010 	 10 1010 1010010100 
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Exercise 20-4a 

There 

1. 

are many possibilities. For example: 

2 4 6 8 10 12 14 
5 = 6 = 9= -2 15 18 21 

16 

24 = 
18 

27 
20 
30 

2. 5 
2 

10 
=4 

15 
- 6 -

20 
8 

25 
10 -12 

30 35 
14 

40 
16 = 

45 
18 

50 
20 

3, 3 
4 

= 6 
8 

9 

12 
12 
16 

15 
20 

18 
24 

21 
28 -

24 
32 -

27 
36 

30 
40 

4. 5 
6 

10 
T-

15 
18 = 

20 
24T-

25 
30 

30 
36 

35 
42 

40 
48 

45 
-54 

50 
60 

25. 11 
5 

1 1 

45 
_ 

4 

1 20 
50 

61 5 8 i01o10 
25 

i121L 
30 

141--L
35 

16 
40 

2 
.0 -

1 4 
40 

3 
15 

5 
25 

6 
30 

7 
35 

8
240 2 95 Z 50. 

Exercise 20-4b 

1. 10 4. b= 3 

2. 27 5. x 100 

3. a = 13 6. n = 20 

Exercise 20-4c 

Answers will vary. 
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Exercise 20-4d
 

4 18 3
 

4. 4
2. 2 

35
 

Exercise 20-5a 

1. 

1 2 3 4 5
 
1 T 1 1 T
 

2. 

4. 

~~11 
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Exercise 20-5b There are many possibilities. For example, 

1. 

3 3 

6 

1 2 3 4 5 60 22 2 22 2 

12
 

10Q9060060006
 
10 

20 

~E 9 WI M M 9M

10 11 12 1 14 15 16 17 18 19 20 21 22 2324252627282930 
3 33 3 3 T T 3 3 3 3 T 3 3 3 3 3 3 3 3 3 3T 

40 
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3. 

7 

7 

14 

2 
0 1 2 3 4 5 6 7 8 9 10 111 12 13 14

2 22 2 2 2 2..- 2 2 2 

213 

28
 

3 
3 

2 
2 

0 
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Exercise 20-6a 

Answers will vary. 

Exercise 20-7a 

182 2154 
1. i31 173" 

451 	 8282. a 22 5. y = 9 

3 625 1253
56 	 15 

Exercise 20-7b 

1. 182 - 14_ 28 42 56 70 
13 1 2 3 4 

2 	 451 41 82 123 164 205 2462 22- 2 4 6 - 8 - 1 - 12 

3. 	 625 25 25 _ 50_ 75 1_00 125 
25 1 2 3 4 5 

2154 4308 2 24 3617 - = 126L 16 = 126217 34 51 

646248
126 
68 51 

5. 	 828 92 = 92 184 276 368 _ 4609 1 2 3 4 5 

1253 _ 2506 = 3759 8 16 24 326 15 30 - 45 15 3 83T-

Exercise 20-7c 

The answers to problems 1, 3, and 5 are whole number answers: 

14, 25, and 92. 
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Exercise 20-7d 

1. 15 40
41 3. 229 i1
 

4. 65 -12. 64 5

T1 42
 

Exercise 20-7e
 

Answers will vary.
 



80 
Chapter 21 

CHAPTER TWENTY-ONE 

Exercise 21-la 

1. 

2 
5 

1 

2.2 

0 -

3 
2 3 
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3. 

0 1 1.2 2 34 

1.2 2.3 

4. 

21 3 
4 

Exercise 21-lb 

Answers will vary. 

Exercise 21-Za
9 

I. or 3 
19 

2 19 3 

5 

Exercise 21-2b 

Answers will vary. 

4or 

5 

3. 

4. 

1i1 
-

8 
or 2 



82 

Chapter 21 

Exercises 21-3a and 21-3b 

105
9-- or 7 	 or 1-1 
4 or 1-4 or 30. 1T8 	 15 

19 1 2 	 38 42 or 	 3 -or 3 12 or - or 3-T 

46 22 11 23 69 

3. 	 -4 or 1T4 or 1- or 
2424 12 12 

or 

59 29 58 87 
4. 	 To or ITo or 1 TO or 19-

65 15 3 13 265. 	 T or I -o or 1 or T- or j"-0 

133 13 
 266 26
6. or 5 _L or 4"8 or 5 4 

Exercise 2 1-3c 

Answers will vary. 

Exercises 21-3d 

Answers will vary. 

Exercise 	 21-4a 

Each statement illustrates the commutative property of addition. 

1. 	 7 +5= 39 5 7 39 
0 	 4 20' 4 10 - 20 

2. 	 1-7 + 9-2 277 2 7 =-T 277 
8 3 24' 3 8 24 

3. 	 2.3 + 15 49 -15 + 2.3 = 49
 
2 5 2
' 	 5 
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4. a 
2+ 

3 
= 

ad + 6 
-2d-

3 
d 

a ad + 6 
2d 

Exercise 

1. 

21-5a 

3 + (2
2 

+ 5 
8 

67 
24' 

3 
2 

2 
3 

+ 5 
8 

67 
24 

2. (1.3 + + 2.7 = 4.4; 1.3 + + 2.7) = 4.4 

3. (i 
1 

8 
+ 

2 

2 
+ 

1 

5 
L3-
40 

' 
1 

8 
+ 

2 
I 
2 

+931 
+ 1 

5 

93 
L3
40 

Exercise 

. 

21-6a 

0 
4+ 

5 
3 

(0x
(4x 

3)
3) 

+ (5
(3 

X 4)
X 4) 

0 
12+ 

20 
12 

20 
12 

(5X
(3 X 

4)
4) 

5 
3 

2. 2
9 +1 

0 (2x15)
(9 X 15) 

( 0 x9) 
(15 X 9) 

30 
135 

0 
135 

30 
135 

(2
(9 

X 
X 

15)
15) 

2 
9 

Exercise 

i. 

21-7a 

3 or11or 1; 5 23 5. 9 [ 161oT 2.3 

2. 

4. 

x = 8; 

7 
88 

n =3.8; 

x = 

n= 

15 - 7 

3-
48 

5.5- 1.7 

6. 

7. 
74 

8. 

195 
28 

77 
20 

0; c 

_ 41 
4 

14 

14 
1-6 

23 
7 

3 

7o 

7 
8 

10 

Exercise 21-7b 

Answers will vary. 

Exercise 21-8a 

Answers will vary. 
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Exercise 21-9a 

1. No fraction or whole number answer 

2. 2-	 3 61 	 2 

3. 	 No fraction 

4. 	 3.2 - 2.7 

5. 	 No fraction 

25 2 

Exercise 21-1Oa 

I . or 43
8 

122. or 3 

0 

or whole number answer 

= .5 

or whole number answer 

621 

4. 	 36 

22415. 4 or 5604 

33. 143- - or 247-
3 

6. 160160 
8 

202 

Exercise 21 -lOb 

Answers will vary. 

Exercise 21-11a 

1. 9 4. 171 

2. --
8 

or 145 
8 

5. 46 

3. 180 6. 11.2 
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Exercise 21-lb 

1. 

3 45
15 X 5

5 5
 

3 15 X 3 15
 

15 x X 3
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56 2 X 56 112 2 
2 X 5.6 = 2X--

10 10 
- - 11-

10 
11.2 

56 28 2 x 28 56 1 
10 5 5 5 5 
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Exercise 21-iZa 

1. 3. 

2
 
15
 

20
 

12
 

i I
S III I
W:Ii___I_ _ 5
I I I i I8
,"T-,,,FllJi
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Exercise 21-12b 

Answers will vary. 

Exercise -13a 
18 9 85 17 1 5. or 102 1080 4. - or or 1 -6 or 1" 16 80 

2. 5 656 82 224 40 or or 16 5 or 16 40 
133 13
 
20 or 6 --0 
 6. 34.04
 

Exercise 21-13b
 

Answers will vary. 

Exercise 21-14a

1. lO 3 13 14 5 4 17 19 5 21 22 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2. 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 

. . ......
........
........
. ..............
....
...............
, ,...
. .,.. .
 

3. 
O  2 6 6 1 6 6 "2 66 2 O 6 62 1 64 A2 66 6 3 2-06-- 69 
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4. 

0 2 4 42 2± 
SIII I I I I I I 1.1 I -I I I- I1 .11I I i 1 * I I I II- 3 

5. 

5 .o.2. 10 2
24 3 4 24 3 3 3

-S lI I I 11 1 1 l I I Ii I -- Ill I l l l lIl l l lI I I It I I lIiII I I I l I II l 

6. 

0 1 s 3 71 2 5 11 3 13 7 1s 4 1l 9 5 21 11 23 6 25 13 
S T 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 

iiI 
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Exercise 21-15a
 

5 2 10 2 5 
 10
1. x = 	 =
-; - 21_

3 7 77 	 3 77 

2. 	 x31 77 3- x 1 3 77
 
8 2 16 ' 8 
 -16
 

3. 5.4 X 13.1 = 70.74; 13.1 X 5.4 = 70.74 

Exercise 21-16a
 

7 15 16 1680 7 15 X.	 16 16803x 9 - 351'X (13 9 351 
2. 1 	 4X 7.3) 	 2044 
 3 (7.3 X 4 2044 

X 40 l X 150
 

Exercise 21-16b
 

= - X,Xf-	 c X ) Examples will vary.
f bf
 

Exercise 21-17a
 

1. 
5 7 4 5 71 355 5 7 5
X (2 = d X 	 4+ ) 1"8 5 4 ( 	3 X -) + ( 3 X 

35 	 20 _ 315 40 355 
+
6+ 27 54 4 54
 

2. 1 4 6 
 1 58 58 1 4
10 	 (5 + ) 1 6
X 35 -	 X +350' ) ( 0X 7) 

4 	 6 28 30 58
50 + 	70 350 350 350 

Exercise 21-17b
 

c
Left-hand side: 
a 

X f + 
e a cf + de _ X(of-+deS , = b Xb_ df b X df 

= _.. cf)+ (a X de)
 
bx df
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Right-hand side: a e (a>(c) 

b ' + ( b F ( bx ) ( b x f) 

_ a X c Xf (a X e)X db X d 	 )x f (b >, f )X d 

Using the commutative and associative properties of multiplication of whole 
numbers, we can see that (b Xd) X f= (b x f) x d = b X df. 

Therefore, ,the right-hand side is 

(aXc)Xf + (axe)xd = [ (aXc)xfI+r (aXe)Xd] 
b X df b x df b x df 

Using the commutative and associative properties of multiplication of whole 
numbers again we can see that 

[ ( a X c ) X f ] + [ ( a X e ) X d ] = ( a X cf ) + ( a X de ) 
Therefore, the left-hand and right-hand sides equal.are 

Exercise 21-17c 

Answers will vary. 

Exercise 21-18a 

a aa1 	 a X 1 _ a 

1b) 	 x ) = (a) (1a ( x ) a
 
b 1 b (1X b b
 

Exercise 21-18b 

Answers will vary. 

Exercise 21-18c 
aa 

Property of zero for fractions: ( ) x 0 = 0 X. ( ) = 0 

Examples will vary. 



92 

Chapter 21 

Xa a X 0 (a xO0 

(b) 	 x = ()x() (b X =
 

a 0b 1 a X a 0b (1 X b l 0 

Exercise 21-19a 

1. 	 75 (5 77 X 353; 7 X 7 X 5 T) 5- = 

2. 	 20 3 20 (.3 X 20) 60 

T; 2-0 X-= ( 20 X 3) 60 

2 2 7 2 14 
7 2 7 2 7 = 14 

.1 1 0 104. 	 10; -0 x 10 = i-- 1 - i0 1 

10 10 37 	 10 37037 37 37 	 370 

6. 	 4 44 16 

4J4 4 =iS
 

Exercise 21-19b 

Answers will vary. 

Exercise 21-20a 

9 	 9 
 14 	 7 51. 	 204"5 4.	 1515 34 

2. 	 A 5. 4 4 	 3.312 	 3 3 

3. 	 15 5 16. 119 17 14 
3 42- T 7 
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Exercise 21-21a 

4. 77351. 3 	 116 

Z. 72 24 5. ZY5 or 

16 5=3. a T3 	 6. d = 15393 13 

Exercise 21-Zlb 

Explanations will vary. 

Exercise 21-22a 

x 7
I 	 7_7 7 7 8 8 2 1 
=3 8 8 	 6X 7 = 1 

2. (1.7 X 3.4 ) 3.4 = 5.78 - 3.4 = 1.7 

3. 	 19 17) X 17_ 152 X 17 = 2584 = (19 X 136) 19 
5 8 8 85 8 680 (5 X 136) 5 

4. (5.8 X 5- ) + 52 986 5 2 986 3 2958 (58x51) 

3 3 30 3 30 17 510 (10 X51) 

58 
- - 5.8 

101
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Addition
 

Addition is an operation which we have defined 
on whole numbers and fractions. 

To two such numbers a and b addition assigns their sum The two numbers being 

added are called addends. 

Addition has several important properties. One is the commutative property 

of addition: a + b b + a a and b.= for any two numbers The associative 
property of addition is also true: (a + b) + c = a + (b + c) for any three numbers 

a, b and c. Zero is a number which behaves in a special way in addition. 

a + 0 = 0 + a = a for any number a. This is the addition property of zero-

Base five 

There are systems other than the decimal system for enumerating the whole 
numbers. One is by use of base five numerals. In the base five system the whole 

numbers in natural order are written as follows: 

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, . . . 43, 44, 100, 101 
and so on. We are counting in groups of five and only the digits 0, 1, 2, 3 and 4 
are used. As in the decimal system, the digit 0 is used as a place holder. 

Decimal system 

A system in wide use among English-speaking people for enumerating the 
whole numbers is the decimal system or base ten system. The whole numbers are 

enumerated in groupings by ten. In their natural order they are written 

0, 1, 2, 3, . . . 9, 10, 11, 12 . . .. 99, 100, 101, 102 

and so on. The digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are used, the digit 0 being 

used in empty places to keep the digits in their correct positions. 

Distributive property 

Addition and multiplication satisfy the distributive property: 

a X (b+ c) = (a X b) + (a Xc) for any three numbers a, b and c. 
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Division 

Division is an operation which we have defined on whole numbers and
 
fractions. To two such numbers a 
 and b - b.division assigns their quotient a 
The quotient is the number which makes the following sentence true: b X-] =a. 
In case b = 0, no quotient is assigned, and a - 0 is meaningless. 

Equation 

We often deal with sentences of the form 5+ = 7 or 8 X ]= 16 - 10, 
which are often called equations. They are commonly written with letters instead 
of boxes: 5 + x = 7 or 8 X p = 16 - 10. The letters in an equation are called 
variables. Not all equations asare simple as these - they may be of great com
plexity. Usually just one (occasionally more) numeral may be substituted into the 
box to make the sentence into a true statement. This number is called a solution 
of the equation. The remaining numbers make the sentence into a false statement 
when they are substituted into the box. 

Fraction 

The attempt to solve any equation b X = a in which b is not zero leads 
to the idea of fractions. If we take a whole object, intobreak it b equal parts
 
and take a 
 of those parts, the number of objects we have is the number which
 
makes the above sentence true.
 

A numeral which we use for the above fraction is a/b or The numeral
 
a 
 above the line is called the numerator, and the numeral b below the line is
 
called the denominator. 
 Other commun numerals for fractions are mixed numbers,
 
which consist of a whole number and a 
 fraction written together. For example,1 1

7 1 is a mixed number. It represents the sum of 

15
 
2 b2 7 + - or 15 The fractions2 

represented by a and - are called reciprocal fractions. The product of a pair ofb a 
reciprocal fractions is always one. 

A special way of writing fractions and mixed numbers whose fractional parts 
have 10, 100, 1000 and so on, as their denominator, is as decimal fractions. 
For example, the decimal fraction for 6 --1 is 6.3, for 63 is 6.37, for 
6 1000 is 6.028 and so on. 
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Identity 

We often deal with sentences of the form a + b = b+ a or (bX c) Xa 

b X (a X c) which 
are true no matter what numbers are substituted for the variables 

a, b and c, just so that the same number is substituted for the same variable
 

each time it occurs. Such sentences are called identities.
 

Intersection of two sets 

For any two sets G arid H, the intersection GnH of G and H is the 

set of all things which are at the same time in G and H. 

Multiplication 

Multiplication is an operation which have definedwe on whole numbers and 
fractions. To two such numbers multiplication assigns their product. The two 

numbers being multiplied are called factors of the product. 

Multiplication has several important properties. One is the commutative 
property of multiplication: a X b = b X a for any two numbers a and b. The 

associative property of multiplication is also true: 

(a Xb) Xc = a X (bX c) for any three numbers a, b and c. 

One is a number which behaves in a special way in multiplication: 

a X 1 = 1 X a = a for any number a. This is the multiplication property of one. 

Natural order 

Sets which contain no members, one member, two members and so on, can 
be placed in an order so that each set has one more member than the preceding set. 

The sets are then in natural order. We also say that their corresponding whole 

numbers are in natural order- The natural order for whole numbers is 

0, 1, 2, 3, 4, 5, 6 

and so on. 

Number 

The abstract idea of number is developed to tell how many members are in a 
set. All sets which can be matched exactly are said to have the same number of 
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members. The number named zero tells how many members are in the empty set. 

Number line 

We can geometrically picture the set of whole numbers and fractions on
 

the number line. The unit piece is the segment from 0 to 1,
 

0 1 A 2 13 3-! 43 5 2 

and the distance between points representing two successive whole numbers is 

always equal to the unit piece. A number a is less than a number b if the 

point for a is to the left of the point for b on the number line. And a is greater 

than b if the point for a is to the right of the point for b on the number line.
 

The fraction represented by L may be located by breaking the unit piece into b
 

equal-sized pieces and measuring a of these pieces to the right of zero,
 

Numeral 

Each number is represented by symbols called numerals. For example, the
 

simplest numeral for the number one is 
 1. However, there is an unlimited number 

of numerals which represent the number one (or any other number): 

3-2, 1,(5X3) - (2X7) and soon.
4
 

Operation
 

If we have a set, we often have a rule which assigns a member of the set 

to two members of the set tLat we may choose. For example, if the set is all 

whole numbers, addition. and multiplication are two different such rules. To 

any two numbers which we choose, the rule of addition assigns their sum, while 

the rule of multiplication assigns their product. Any such rule on a set is called 

an operation on the set, or a binary operation because it yields a member of the 

set for any two members that we choose. 

Set 

Any collection of objects may be called a set. The objects in a set are 

the members or elements of the set. To specify a set we list its members between 
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braces. Thus, the set of counting members is { 1, 2., 3, 4, 5, . . }. A collection 
without any objects at all in it is also regarded as a set and is called the empty set 
{ }. If A and B are two sets and every member of set A is also a member 
of set B, then set A is called subset of set B. In contrast,a set A and set 
B may have no elements at all in common. Then they are called disjoint sets. 

Subtraction 

Subtraction is an operation we have defined on whole numbers and fractions. 
To two such numbers a and b subtraction assigns their difference a - b. The 
difference a - b is the number which makes the following sentence into a true 
statement: b + [- = a. Unlike addition and multiplication, subtraction is not 
commutative: a - b is usually not equal to b - a. Furthermore, if a is less than 
b, then we have not defined a  b as a whole number or fraction. 
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Abacus, 5-9ff 
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Addends, 9-3 
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problems, 9-4 


as inverse of 

subtraction, 9-15, 21-17 


in base five, 6-4, 14-Z0ff
 

of fractions, 21-lff, 21-9 


of multiples of 10, 14-4ff 


of zero, 7-4, 7-11 


on the number line, 17-6, 18-2 


symbol for, 7-2 
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with regrouping, 14-13ff 

without regrouping, 14-8ff 

Addition table 


in base five, 6-8, 14-19 


in base seven, 6-17 


in base ten, 7-9 


in base twelve, 6-21, 14-24 


in base two, 14-23 


Additive property of zero, 13-6 


with fractions, 21-13
 

Associative property 

of addition, 8-6ff, 13-2
 

of fractions, 21-12
 

on the number line, 18-4
 

of multiplication, 1l-8ff, 13-2
 

of fractions, 21-31
 
on the number line, 18-9
 

using pictures, 11-11
 
of set unions, 8-6
 

Base, 6-1
 

change of, 6-9ff
 

five, 6-lff
 

seven, 6-17
 

ten, 14-6
 

twelve, 6-18
 

twenty, 6-22
 

two, 6-22
 

Binary number system, 6-23
 

Binary operation, 2-12
 

Box " D-" in statements
 

and equations, 7-2, 7-6
 

Commutative property
 

of addition, 8-2
 

of fractions, 2l-10ff
 

on the number line, 18-4
 

of mixing sets, 11-5
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(commutative property continued) 

of multiplication, l1-2ff, 13-1 


of fractions, 21-29 


on the number line, 18-8 


using pictures, 11-7, 21-29 


of 	set unions, 8-1, 13-1 


Constant products, 12-3
 

Constant sums, 9-2 


Counting numbers, 4-4 


Counting sets, 4-4 


Decimal fractions, 19-8 


Decimal system, 14-6 


Denominator, 19-4 


Difference, 9-10 


Digit, 5-6 


Distributive property, ll-12ff, 13-3 


of fractions, 21-31ff 


on the number line, 18-9 


using pictures, 11-13
 

Division, I2-5ff 

as finding a missing factor, 

12-5, 21-35ff 
as grouping, 12-7 


as g oup ng,
2 -7addition 
as 	 inverse of multiplication, 


12-14, 21-40 

11 2aig1-0 


as sharing, 12-8
 

by multiples of 10, 15-17 


(division continued) 

by numbers with multidigit 

numerals, 15-18ff 

by numbers with single-digit 

numerals, no regrouping, 

15-11ff 

by 	numbers with single-digit 

numerals, regrouping 

necessary, 15-13ff 

by zero impossible, 12-14,
 

12-15, 21-42
 

in base five, 6-12ff
 
of fractions, 21-38ff
 

on 	the number line, 18-10
 

relation to fractions, 19-6, 20-12
 

symbol for, 12-6
 
using Roman numerals, 5-22
 

with remainders, 12-11
 

Empty rod, 5-15
 

Empty set, 1-8
 

as a subset, 1-12
 

Factors, 12-2
 

missing, in multiplication
 

problems, 12-5
 

Fracticns, 19-2ff 

of, 21-1ff, 21-9
 
aditi of, 21-9
 off 

associative property of, 21-12
 

commutative property of, 21-lOff 

o eo 11
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(fractions continued) Intersection, 2-8
 

(addition of continued) Inverse
 

on the number line, 21-2 of addition, 9-14, 21-17 

using pictures, 21-6 of division, 12-14, 21-40 

and division, 19-6, 20-13 of multiplication, 12-14, 21-40 

and multiplication equations, of subtraction, 9-15, 21-17 

20-12
 

and sharing, 19-2ff Less than, 4-3
 

as arrays of dots, 19-13 Matching, l-23ff
 

as pictures, 19-9ff "minus", 9-5
 

decimal, 19-8
 

equal, 20-lff Mixed number, 19-6 

for zero, 20-11 Multiplication, 10-3ff 

"improper", 19-5 as inverse of division, 12-14, 21-40 

multiplication of, 21-19ff, 21-27 as mixing sets, 10-7 

on the number line, 19-14 as repeated addition, 10-3 

order properties of, 19-15 by multiples of 10, 15-iff 
"proper", 19-5 by numbers with multidigit 

reciprocal, 21-35 numerals, 15-8 

renaming, 20-5ff by numbers with single-digit 

subtraction of, 21-14ff numerals, 15-4ff 

symbols for, 19-4 by one, 10-11 

by zero, 10-4ff, 21-34 
Greater than, 43 in base five, 6-12 

Grouping, 5-7 of fractions, 21-19ff, 21-27 

by fives, 6-1 associative property of, 21-31 

by tens, 14-6 by one, 21-33 

by whole numbers, 21-19 
Identity, 8-3 commutative property of, 21-29 

Index, 5-7 on the number line, 21-28 

using pictures, 21-25ff 
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(multiplication continued) 


on the number line, 18-8 


symbol for, 10-3 


usin.g arrays of dots, 10-6 


using diagrams, 15-5, 15-8 


using Roman numerals, 5-21 


Multiplication property of one, 10-11, 


13-6 


with fractions, 21-33 


Multiplication table 

in base seven, 6-18 


in base ten, 10-9 


in base twelve, o-21 


Natural order 

of sets, 3-6ff 

of whole numbers, 4-1ff 

Number, 3-10, 5-1ff
 

base, 6-1
 

mixed, 19-6 


Number line, 16-Iff, 16-7 


addition on, 17-6, 18-2 


"between" on, 17-4
 

division on, 18-10 


fractions on, 19-14ff 


"greater than" on, 17-2 


illustration of, 16-8 


"less than" on, 17-1
 

multiplication 
on, 18-8
 

repeated addition on, 18-7
 

(number line continued)
 

subtraction on, 17-7, 18-5
 

unit piece of, 16-6
 

using matches, 16-3
 

Numerals, 3-11, 5-3ff
 

Babylonian, 5-5
 

base five, 6-2
 

Egyptian, 5-4
 

Hindu-Ai'abic, 5-6
 

place value of, 5-6
 

Roman, 5-17ff
 

Numerator, 19-4
 

One
 

multiplication property of, 10-11,
 

13-6, 21-33
 

Place value, 5-6
 

'plus", 7-2
 

Power, 5-7
 

Product, 10-3
 

Property of zero in addition, 7-12
 

Quotient, 12-6
 

Reciprocals, 21-35
 

Regrouping, 14-7
 

using an abacus, 14-7
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Repeated addition, 10-1 Subtraction, 9-Iff, 9-5
 
on the number line, 18-7 
 as finding a iaissing addend, 9-5 

Set, 1-2ff as inverse of addition, 9-14, 21-17 

describing a, 1-6 equations, 9-6 
disjoint, 1-17 in base five, 6-Sff, 14-36 
element of, 1-2 of fractions, 21-17 
empty, 1-8 on the number line, 17-6, 18-5 
listing a, 1-4 symbol for, 9-5 
member of, 1-2 using an abacus, 14-29 
notation for, 1-5 using pictures, 21-15 
number of members of, 3-10 using Roman numerals, 5-20 

picturing a, 1-15ff using sets, 9-1ff 
universal, 1-16 which cannot be done, 9-7, 21-18
 

Sets 
with regrouping, 14-31ff
 
without regrouping, 


14-27ff 
comparing, 9-10 

counting, 4-4 Tallying, 5-8
 

equal, 1-21 "times", 10-3
 

equivalent, 1-25ff Union, 2-1ff, 2-4
 

in natural order, 3-6ff Universal set, 1-16
 

intersection of, 2-8 Variable, 8-5
 

matching of, 1-23ff Whole numbers, 4-2
 
union of, 2-4 
 natural order of, 4-2
 

which match exactly, 1-25 Zero
 
with fewer members than another 
 additive property of, 13-6 

set, 3-3 with fractions, 21-13
 
with more members than another 
 division by, impossible, 12-14, 

set, 3-3 12-15, 21-42 

Subset, i-i0 fractions for, 20-11 

symbol for, 5-9 
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ERRATA 

BASIC CONCEPTS OF MATHEMATICS
 

An Introductory Tcxt for Teachers
 

Compiled herein are corrections for Basic Concepts of Mathematics. Some 
known errors of a typographical or otherwise minor nature are not included. Those 
errors which affect the meaning or clarity of the text have been included. It is ex
tremely important, therefore, that these changes be incorporated into this text. 

Without them certain problems and passages will not be clear. 

Printed in red is the page number and location on the page where the error 
occurs. The corrected text is in black ink. Corrections may be made in one of 
two ways. For simple corrections it is easier to cross out the error and write the 
correction above. For others it might be better to c.at the correction (black printing) 
from this booklet and paste it over the error in the textbook itself. 

The editors regret that this inconvenience is necessary. It is hoped that the 
user of this text will agree the inconvenience is not too great a price to pay for 

the dispatch with which the book was produced. 



Errata - 2 

CONTENTS, first page, Chapter 2 title 

Chapter 2 - Operations On Sets 

Contents - 5, Chapter 15 and title of Unit III 

Chapter 15 - Procedures for Multiplication and Division in the Decimal System 

15-1 Reminder of multiplication as repeated addition 15 - 1 
15-2 Multiplication by 10 and by multiples of 10 . 15 - 1 
15-3 Multiplication by a number represented 

by a single-digit numeral 15 - 4 
15-4 Multiplication in which each factor is represented

by a numeral of two -r more digits . 15 - 8 
15-5 Reminder of multiplication and division 

as inverse operations 15 - 10 
15-6 Division by a number represented by a 

single-digit numeral: no regrouping 15 - 11 
15-7 Division by a number represented by a single

digit numeral: regrouping necessary . 15 - 13 
15-8 Division by multiples of 10 15 - 17 
15-9 Division by n number represented by a numeral 

of two or more digits not a multiple of 10 15 - 18 
Answers to Chapter 15 15 - 21 

Unit III - The Number Line 

Introduction - 14, examples of positive fractions 

Is W2& =I+F2? 

Is T XF 
Is~~Fix']\x ~ 



Errata - 3
 

Introduction - 15, bottom figure and last line 

(shown shaded)
1 sf 

in half, we get a rectangleI 

1 by- -. It is easy to see that 6 

3 

Page 1-8, first paraqraph of SPECIAL SETS 

1 - 6 The empty set 

What answer did you give to the question "List the members of all 

cities in Africa with a population of over four million?" Did you say that 

this set had no members? 

Page 1-11 , 	third line 

(b) Set D 	 2, 4, 6, 8, 10J Set E=([4, 6, 81. is a 

Page 1-13, 	 first line under figures 

There are no members in the empty set. { 1, 2, 3}has all the members 

Page 1-22, 	"(g)" at middle of page 

(g) The set 	of letters in the word "bundle" and the set{n, d, 1, e, b} 

57)
 



Errata - 4 

Page 	1-25, Illustration at top should have labels "B" and "C" 

Page 	2-1, chapter title 

OPERATIONS ON SETS 

Page 	2-5, last line 

(b)fm, a Ud , =m,' 	 a, d, g, o, nJ 

Page 	Answers - 5, bottom figure, "B" and "C" should appear 

A= all the books in the classroom 

all the all the 
Maths books English books 

in the in the 
classroom classroom 



Errata - 5 

Page 5-21, 	first sentence after figure should read 

This is obtained by multiplying each number represented in the top row by 

each number represented in the left hand coldmn. Each result 	is entered in its 

Page 6-10, 	 the division example should be just before the last sentence of the paragraph 

1 ring on the second rod and there would be 9 rings on the third rod. 

5 146 
9 fives and 	one left over. 5 rings from the third rod would 

make I ring 	on the fourth rod leaving 4 rings on the third rod. 

Page 6-18, 	 problem 7(b) is division 

(b) 4362 + 21 
seven 	 seven
 

Page 6-23, 	 chart 

I 10 II 100 101 110 III 10001001 1010 

1011 

1100100
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Page 	8-6, illustration of union, delete one banana 

06P 
A B C AU C 

4~ 	 U~(AuB) 


A B C 
 A 
BU C AU( C) 

Page 	9-7 delete last sentence prior to section 9-5 (Exercise 2, 9-4f) 

Pa-qe 	 10-6, change illustration at top of page 

0 0 0 0
 

0 0 00 0 0 0 0
 

Page 10-8, line 6 

combinations of boys and foods. You can see that in this case the first 

Page 	 11-15, add brackets in last problem on page 

2. 	 What numeral must be put into each box to make (3 X LZ) + (2 X [- 3 

into a true statement? 

Page 	14-12, problem (c) at middle of paqe 

(c) 29 + 60 = 1-1 	 Represent 29 as (2 X10) + (9 X 1), etc. 

Page 	14-13, problem (c. near middle of page 

(c) [11 51 + 10 



Errata - 7 

Page 14-14, add word "sticks" to note near middle of the page 

Note that 12 loose 
sticks form 1 bundle 
of 10 and 2 ones. 

Page 14-19, change exercise number
 

Exercise 14-5e
 

Page 14-22, fourth line from bottom 

Twenty-fives: 1 + 4 + 4 = 14 

Page 14-32 , change exercise number 

Exercise 14-9b (Stage I) 

Page 14-34, fourth line, left-hand side 

(8 tens - 7 tens) + (17 ones - 9 ones) 

Page 14-38, answer "(a)", Exercise 14-5e 

(a) 1417 

Page 14-39, last three lines, add equal signs 

40Ttwelve 142twelve = 288twelve 

(c) 67E8twelve - 4TE9twelve = 18EEtwelve 

11516te n - 8493te n = 3 0 2 3ten 



Errata - 8 

Page 15-1, change title of first section
 

15-1 Reminder of multiplication as repeated addition
 

Page 15-2, products near bottom 

13X 10 = 

15 X 10 = 

48 X 10 = 

Page 15-3, last sentence before Exercise 15-2b should be deleted 

Page 15-10, change title of section 15-5 

15-5 Reminder of multiplication and division as inverse operations 

Page 18-8, problem 6 of Exercise 18-6a 

6. 3x5 

Page 19-11, next to the last sentence on the page 

In the same manner as above, you can show mixed numbers and improper fractions 

by using circles cut into pieces. The fraction - can be shown this way: 
4 

Page 19-15, Exercise 19-8a, use word "appropriate" rather than "proper" 

Draw carefully a number line showing each unit piece divided into tenths. 

Label each point with the appropriate fraction. 



Errata - 9 

Page 20-14, 	 lines six and seven, near middle of page 

Thus 451 - 22 gives you 20 with a remainder of 11, that is, 451 = 22 X 20 + 11. 

Using fractions, you can write this as 

Page 21-27, 	 fourth multiplication example 
3 3X i =	 X 2] - _z=3)4 5 3X 4 × =X( 4-) 5 

Page 21-42, the two examples are in error 

21-23 The question of zero again 

What do you think 3 could mean? 
0 

A way to think about this question is 

to think about the sentence: 

0X FD = 3
 

Is there any 	fraction which can be put into the box to make this sentence true? 

You have learned that 

Oa 0 
= 0 

b 

where ais any fraction. Thus no matter what fraction you put Into the box, you 

get 0 as a result on the left-hand side and never 3. Thus there Is no fraction 

which can be multiplied by 0 to get 3. You can see also that -
2 

or 
5 

or any-

0 0thing else like that will result in the same difficulty. The only exception Is 

0 ".In the sentence 0 X U = 0 what fraction can be put In the box to make 

the sentence true? The answer is any fraction at all. This is almost as bad as 

no answer because 0 can be given no one definite meaning. As was said 	in0
 
the chapter on division of whole numbers, 
 division by zero Is not an allowable 

operation. 

le 
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First Page of "Bibliography", next to last entry 

GROSSNICKLE, F. E., 1. RECKZEH, and H. BERNHARDT. Discovering
Structure in Algebra. New York City, New York: Holt, Rinehart 
and Winston, Inc., 1962. $4. 20 
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FOREWORD
 

In this volume of Basic Concepts of Mathematics, the Teacher 

Training Writing Group at the 1964 Entebbe Mathematics Work
shop has completed "Structure of Arithmetic", the first part of 
an experimental text to be used by primary teachers in Training 

Colleges. The text was planned at the 1963 Entebbe Mathematics 

Workshop, and four units were written then and published in a 

preliminary edition. The units now added trcat integers, rational 

numbers, real numbers, and approximations. In these units, the 

number system of arithmetic is further enlarged. The operations 
of arithmetic are studied with particular attention to problems 

arising in everyday situations and to the systematic underlying 

properties of the operations. 

As in the earlier units, the exercises have two purposes: 

to develop and extend the understanding of the mathematical con
tent presented in the text, and to suggest by example kinds of 
exercises the trainee could create for use in his own classes 

when he becomes a teacher. Answers for the more difficult exer

cises in this volume will be found at the end of this book. 

The preliminary edition has been produced under pressure 
of time, and there is still much to be done by way of improving 

exposition and organization as well as adding to the stock of ex

ercises. To all users, therefore, the Teacher Training Writing 

Group directs an earnest request for comments and suggestions 
which can contribute to the work of preparing a more finished 
text. Reports from experimental use of the preliminary edition are 
a source of ideas which will make the next edition of greater 
value to mathematics education. 

The succeeding volume of Basic Concepts of Mathematics, 
also prepared by the Teacher Training Writing Group at the 1964 
Entebbe Mathematics Workshop, is devoted to "Introduction to 

Geometry", the second part of the text planned in 1963. 
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Fractions"UNT IV 

Chapter 22 
ORDER PROPERTIES 
OF FRACTIONS 

22-1 Revision of order 

When you learned about fractions on the number line, you found a way to find out when 

one fraction is greater than another fractieo,. if you draw a number line showing - and 16 

S I I I I # i--- t € I I I I I > 

0 _ " 1 1-1 1-1 1-1 1-2 1 2 
1 1 1 2 5 

0 	 6 3 2 3 66 3 2 3 6 
2 1 2 1 

you will see that -is less than 1- because - is to the left of 1- on the number line. In symbols 
3 6 3 6 

2 <1. Another way of saying the same thing is 1 is greater than or, in symbols, 1> You 
6 is grae or3n3 6 

see that 1 is to the right of on the number line. 

EXERCISE 22-IA 

a number line and locate each pair of points on it. Which fraction in each pair isDraw 

greater?
 

1 5 b.2 1 
a. 2- and - b and

.3 3 *5 3 

c. 1- and d. 2nd11 
*2 3 *4 591859186 

2. Write fractions less than each of the following fractions: 6' 4' 6' 7 

Do you recall that if you have three different numbers
1 1 on the number line, one will be1n 

I is between ! and 1between the other two? Of the three numbers , 1 and I-
2' 2' 2 

0 1 1 11 2
2 2 

1 . This means the same thing as writingIn symbols, you can write < 1 1 


1 1
 

< 1 and 1 < 1-.

2 2* 



1 1What do you see about I and 1-, the two outside points? You 
1 1 1. 

see that - K 1- because-is to1- 2 2' 2 21 2easst
the left of 11. 

EXERCISE 22-IB
 
1. Locate the three fractions in each of the following sets onwhich the number line, and sayone is between the other two. Also say which of the outside two fractions is the 

greater. 
1 3 11a. b. 3- 21 ,1

1 
, 


22 2 2 
C 1 I d. 7 1 4 

2. Make up three sets, each containing three different fractions, and show each set onnumber line. 
a 

22-2 Order and addition and subtraction 

Some properties of order which we know already for whole numbers are also true for fractions. Let us start by locating 2 and 2 on the number line. We see that i is to the left of -
That is,I < . If we add the same fraction . to both and 2,we move each to the right a 

distance 3 

K I I -"I 

0 1 2 2 3 Z 4 2 5
 
2 2 2 2 2

The sums are 2 and 5, and we notice that 2 < 5 because 2 is to the left of 5.The are in the 
sums 

same 1 and Z. We have 
order as the original numbers 

2 2~ v 
1 7 

13732<2' 
1 +3 7 3 

2 2 52 <5.
 

a 0Now think of a and Las 
a 

any 
C 

two fractions with - < _.Thenb d will be to the left of £ onb dthe number line. If we badd the fraction - dto and also to ; the point for 2 is replaced byq 6bd a 
point- units to tie right of and the point for (isreplaced by a point .units to the right of
 

q 
q
c The pointsa + p is still to the left of C + 

2 



Thus: 

if ba < dc , 

a + q-< + .then 

a a p + p 
T d d 

Do you recognize this as one of the properties of order which we knew before only for whole 

numbers? 
Again, let a and b be whole numbers with a < b.We have already that if c is anyseen 

whole number which can be subtracted from a to make a - c a whole number, then 

a - c < b - e. 

The same property is true of fractions. 
' 


N I -- •0 I I Ii I 

4 1 2 1 41 2 3 
5 5 5 5 5 55 5 

For example, from both sides of the true inequality 

4 3
 
5 ,
3< 5

we can subtract - to obtain
5 
4 3<3 3.
 
5 -5 15 -5'
 

that is, 

1. 

We still have to be careful that the number we subtract is not too large. For example, we
 

can not yet subtract 1 from 4
 
5 5* 

be stated as follows:The subtraction property can 


a c
 
b d'
 

p < c p
then a 

EXERCISE 22-2A 

. Is it true that 2 < .2 
3 2 

- < 2,find four more true inequalities.2. By adding 1,, 2, 1 to both sides of 
3 2'32 3 

3 



3. 	 By subtracting , 1' 2, 5 ro
:. B s3'from both sides, find four more
3 2' 33 true inequalities.
4. 
 Can you subtract 2 from both sides of the original inequality?


5 

22-3 Generalized addition property 

Let us start once again from the true inequality < 2.In the last section, we added 3 to
 
both sides to obtain 2 < 5. What will happen if we add a larger number to 	the right side Z2 thanto the i on the left? For example, since <- let us 2 to the 2 on2 	 the left and the larger2 2' add 
number 
 to the Zon the right. Then we obtain the inequality 2 < 6, which is also true. That is, 
we start with 

1K<27 and 3 5'-<K 


2 2 2 2
After adding, we see that the sum of the right-hand sides is greater than the sum o'f the lefthand sides:
 

I1 3 <7 5 

or 

2 < 6.
 
Will this always be the case? 
Let us start with
 

3 4 2 1
3 <Ki and 2<.

4 5 5 '2
 

a the following true?
 

3+2 <41
 

Yes, beca use 32 23 4 1 13 26 
24 = +andA5 5 = -=T and 

23 _ 26
2o20 

erty: 
 The generalized property that these examples illustrate is the generalisedaddition prop-

If a c .vr 
< and - <Ib d 'q.3 

ena p e r 

then 
 _+_B< a+-. 
To see that this is really so, we first add -to both sides of 

q
a c 

g\
 

4 



and obtain 

b) q d q 

We can get another true inequality by adding £ to both sides of <
dq 	 s 

This gives us 

P r C 
q + £ 

or, by using the commutaLive property of addition, 

d q ds 

Looking at the second and fourth inequalities in this paragraph, we see that the order of 

a 0e + and e +r along the number line must be as shown here.b -q'd q 	 -d s 

b+ c 	 C ra p -+ "d+s 
b q d q 

Of course, you 	see 'traightaway that 

a + P < c +r .
 
b qds
 

EXERCISE 22-3A 

What true inequality do you obtain by using the generalized addition property with each 

of the following pairs of inequalities? 
<-and-11 . < an1 

2 4 4 2 5 6 2 3 

2. and 2< 24 < 2 a 1< 
2 4 a 	 4 3 4 8 73 6 

22-4 Order 	and multiplication by I-

You know that 	 - < ?. What can you say about - x - and 1 x 2? Which is greater? To find 
3 3*43 43 

the answer, let 	us use rectangles to show the original fractions. 

12 

3 3 

5 



The set of one of three equal parts is smaller than a1 3"To picture - x set of two of the three equal parts. So3,we divide 1 by lines running from side to side. We can picture x in
 
1 2 

the same way. 

-- K.-

14 3 22
 
Each rectangle is now cut into 12 equal parts. How many twelfth parts is - x 3 How many 
twelfth parts is , x You see that from
 

4 3'
 
1 2
 

3 3 
you can conclude that 

I 1 1 2 

3 4 "3
 
That is,
 

1<2 

12 1-2 

We can show this conclusion on the number line by first locating 	. and 2
1 2 

1
 

12 6 4 3 12 2 12 3 4 121F2 

122
 

3 

It is farther to go from 0 to  than it is to go from 03 	 to 3'So must be farther to the right onmustthe number line than 3"If you onlythat 
is still farther than going3 

3 



1 1 2 1 1
one-fourth of the way to 3" So must be farther

3 4 
-x 

3 
1 to the right than - x :. That is 

3~ 

1 1 A 2 

a c. 

Now you can see the general rule. If " < - is true and you multiply both sides of the
b d 

inequality by I then you get another true inequality, 

1-x 6a I-x 

It is not difficult to see that this general rule must be true. If!'is less than  and we divideb d 

both a and c into n equal parts, one of the parts of will be smaller than one of the parts of 

That is to say, 

I a 1 c 
x < nx;' 

EXERCISE 22-4A 

From the inequality 2 < 3, by drawing rectangles and number lines show that the follow

ing inequalities are true. 

1 3 .2 1 3. 3 
1.3 8 9 4 6 16 

22-5 Order and multiplication by m 

What can we say about multiplying both sides of the inequality 1 < by 5? If we locate 

-13and on the number line, we see that the jump from 0 to is greater than the jump from 0 to2
4-4 

44 4 24 42 4 2 3 1 3 

Then five jumps of the size from 0 to - will carry you farther to the right on the number line
4 

than five jumps of the size 0 to I. So 5 x I < 5 x 3. From the true inequality 
2 2 4 

1 3 
2 

we can conclude that 5 x I < 5 x 3
2 4 

71 



You can guess what the general statement must be. 
It we knott, that 

(1 C 

and m is a counting nrmber,
 
then we can Conclude that
 

a c 

Let us see if this guess is true. Imagine jumps of distances 2 and Con the number line. The 

jump forb is longer than the jump forb. Then 7n jumps of distance will certainly be longer 

than in jumps of distance 	5'That is,

6
 

(I C: 

The general statement is true. 

EXERCISE 22-5A 

1. What new inequalities do you get if you multiply both sides of the inequality < A by the 

following whole numbers? 4 y 

2, 3, 4,5, 6, 12 

2. Explain how you can show that 2 x - < 2 x by "usingrectangles. 

22-6 Order and multiplication by !
n 

Suppose we multiply both sides of the inequality 2 < A by 2? What inequality do younew 

think will be true? Of course, you think 2 x 2 < might be true. But how can you see that it 

is true? One way, of course, is to multiply the fractions and compare the two sides of the ine
4 8quality. You will get 4 < - which is true.
 

There is another way. Suppose you begin by writing 2 2 x-.Since it is true that
 

7 7 
2 4 
3 5
 

you can conclude that 

8 2 1 4 

8
 



After 	further multiplying by the whole number 2, you can conclude that 

2x(4x2)<2 x(4
 
or 2 x 4) 2 <( )X
 

Then 2 2 4
 
7 3 	7 × 5"
 

(What property of multiplication did you use to go from the first inequality on this page to the
 
second inequality?
 

The result about order and multiplication that you now suspect is true is the following:
 

if 	 a c 

then we can conclude that
 

rn a <irn c
 

To see 	this we write down the following list of inequalities. 

a <c
 

1 a 1 c
 

mX a <IX c
 

Ilx x- <nix (I ,
 

(n b) n 

ml a 	<lni ' 

EXERCISE 22-6A 

1. 	 Obtain new inequalities by multiplying both sides of the inequality j< by 155,,52. 

2. 	 From the inequality <2, how can you conclude that 1 < -? Can you conclude that 

9 < 10? 
3. 	 Give the properties of fractions that you use to go from one inequality to the next one in 

showing the general property in this section that n' x a<_ e 
n b n x 

4. 	 Say how you might convince pupils that if - < istrue, then 

a in 	 c£i 
b n < -n
 

dn
is also 	true (unless -= 0).n
 

9 



22-7 Generalized multiplication property 

In the last section, we started with the inequality 2 < 5" Let us do so again, but this
4 3 5* 2 

time multiply the larger number by a greater number than the one we use to multiply -. Let us5 3. 
multiply 	2 by , but multiply 4 by 3, which is greater than5.


3 5' 5 3' 
 5' 

2 < 4From 
3 5
 

and 3 4
 

5 3'
 

we get 

3 2<4 	 4- × -< x or 6"-<l'"-16 
5 3 3 5 15 15' 

which is a true inequality. The product of the left-hand sides is less than the product of the 
right-hand sides.
 

3 4 We can do this problem in another way to see that the conclusion must follow. Since
4 34 4
 
3 we can conclude that 4 x <  x-. That is,
53' 	 5 5 5 3 

12 16 
From the true <2 <43
 

einequality -we can conclude that x 
 < - x . That is, 
53 5 5. 

6 <12 
15 25' 

The last inequality tells us that 2 is to the right of 6 on the number line.
25 15
 

And L2 < L6 tells us that L6 is to the right of R So L 
 must be to 	the right of _L and -< L62515 15 	 25. 11 15 15' 

< I I 	 > 
6 12 16 
15 25 15 

Thus, x < 4
 
5 3 3 "5*
 
The general property that we would like to establish is this generalizedmultiplication 

property: 

a C m, <) 

S n 	 q' 

then 

a Il< Ca.
"x-m< cx P. 

b n d 	 q 

10 



c 

We will follow the plan we have just used in the example. Since M < p,we can conclude thatn q'
 

c m c pJ -< d -. 

From the inequality ,we can conclude that 

7nmxK-a <mx<-x C a x m < c Xn- or - -<K x
,1 b n (I b n d 1,
 

a m c m 
(Where 	 did we use the commutative property of multiplication?) From a x - < x - we know

b n
 
0 m a m m p
c e<
that - - isto the right of × - on the number line. Also X-- X- tells us that xtht--i e m c pa 	 LI n mLIq LI q 

is to the right of xf-.Then - x - must also be to the right of - x n 
dn d q 6 

a i 	 MC 	 >a m c m 	 C p 

That is, 

a m e p
6x--< 
x
 

EXERCISE 22-7A 

1. 	 Using the same plan as the example, show that < by starting from the inequalities 
31I 5 73 and

2. 	 Using the generalized multiplication property, what inequality dn you get from each of 
the following pairs of inequalities? 

I 3 2 5
 

3<- and 2
 

5 <2 1
 

34 8 7
 

.. \
 

11 



Chapter 23 
DECIMAL FRACTIONS 

23-1 Revision of decimal numeration 

You will remember that at school you learned another way of writing fractions, that is,as decimal fractions. These are the same kind of numbers as the fractions that you have just

been studying, but they are written in 
a different way. Just as whole numbers i,ay be written 
as Hindu-Arabic numerals, or as Roman numerals or in the way the ancient Egyptians wrote
them, so the parts of a whole may be written in two ways. You have already studied ways ofintroducing your pupils to fractions which1 are written with a numerator and a denominator, such 
as -. We will, in future, refer to fractions written this way as fractions in common form or com
mon fractions. We do this to 
distinguish them from fractions which are written as an extensionof the decimal notation for whole numbers, such as We"25. will refer to fractions written this
 
way as fractions in decimal 
 form or decimal fractions. Each common fraction has its decimal

fraction equivalent but not every decimal fraction has 
an equivalent common fraction, as you
 
will see in Unit VII.
 

You know already that the notation for decimal fractions was invented as an extensionof the way we write whole numbers. It uses the ideas of base and place value which are the

basis of the Hindu-Arabic notation 
system. If you will always remember this fact, it will be no
harder to understand decimal fractions than it is to understand the decimal notation for whole
 
numbers.
 

The idea of a base 

We will begin by recalling what you know about the decimal notation for whole numbers.
You will remember that the notation for whole numbers is based on counting. When large num
bers of objects have to be counted, 
 it is simpler to group them into equivalent sets, that is,
into sets with the same number of members. They can be grouped into sets of 2 or 3 or 4 members, or any number of members you choose. If you group the objects in threes, then you are using base three. If you group them in sixes, then you are using base six. Traditionally, we groupour numbers in tens; that is, we use base ten. This is why our system of notation is called thedecimal system, from the Latin word decem which means "ten''. When the number of the set to
be counted is large, it is necessary to put groups together 
to make larger groups, still using the same base number. If 5 ones are grouped together, then 5 fives will make the next larger group.
This grouping of groups to make larger groups is continued as far as is necessary. In the deci-

C. 

12 



mal system the groups have special names. They are ones, tens, hundreds, thousands, 
ten-thousands, hundred-thousands, millions and so on. 

You will remember that you can help your pupils to understand the idea of grouping by 
letting 	them practice grouping a set of sticks, using several different bases. tHere is an example 
you could use with them. 

Put out a long row of sticks. Choose a base. We will use base three. First group the 
sticks 	in threes, beginning from the left. 

Then group the threes into larger groups each of 3 threes. 

HIIHIHHH HH HIT I T LW 
Continue in thi.a way until you have no more than 2 of any kind of group. Here is the last pic
ture. You will see that there is I group of 3 groups of 3 threes.
 

1 group of 3 groups of 3 threes + 1 group of 3 threes + 2 groups of three + 1. 
Now you ask your pupils which is the biggest group they have madc? It is 1 group of 3 

groups of 3 threes. It can be written as 3 x 3 x 3. 
Then ask about the next largest group, the group of 3 threes. There is only 1 of this 

group also. Then there are 2 groups of three and 1 one. Put these together and you have 1 
group of 3 x 3 x 3 and 1 group of 3 x , and 2 groups of three and 1 one. Do you remember the 

short way of writing this? You use the index notation and show 3 x 3 x 3 as 33 . It is 1 x 33 + 

1 x3 2+2 x3+ I I. 

EXERCISE 23-IA 

1. 	 Set out 43 sticks or draw 43 strokes. Group them in base six and write the result, using 
index notation showing powers of 6. 

2. 	 Using an equivalent set of sticks, group them in base ten and write the result, using in
dex notation. 

3. 	 A set of sticks has been grouped in fours and the result written as 

1 x43t 2 x 42+ 3x 4 + 0x 1. 

Draw a 	picture to show this grouping. 

13 
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Place value
 

What does the numeral 3243ten mean? low is it different from 3243five ? It is helpful to 
your pupils to make a number chart to show the value of each of the digits in a numeral. Here 
are two number charts, one for base ten and one for base five. 

V) 

U > 

0 C: 
- 4 U. Q 

103 102 10 1 53 52 5 1 

3 2 43 -2 4 3 

The numeral 3243ten can be read from this number chart as three thousand, two hundred and 

forty-three. Without the number chart, how do you know how to read the number? You know the
value of a digit by its position in the row. The place value of the 4 is ten because the 4 is in
the tens place. The place value of the 3 on the left is a thousand because it is in the fourth 
place from the right, the thousands place. Your pupils should be familiar with the value of
these places in the decimal system and should be able to read a number easily.

You will remember from your earlier work how to read a number in another base, such as 
32 4 3five. You will remember that we read this as "three two four three base five" and do not 
attempt to give names to the places. (Why not?) 

Change of base 

You should remember also how to change a numeral from one base to another. If you have
difficulty with the following exercise, look back to Chapter 6. 

EXERCISE 23-IB 

1. Write the following numerals in the expanded form, using the index notation. 
a. 12 13four b. 237 51eigt c.1 2 130 4 five 

2. Rewrite each of the numbers in Question 1 in the decimal notation. 
3. Write the following numbers in base seven. 

a. 65ten b. 77te n c. 36490te n 

4. Make a number chart for base six and show on it the following numbers. 
a. 35002si x b. 2020six c. 13452si x 

5. What is the value in decimal notation of each 2 in the numerals in the last question?
6. Tell in what base each of the following equations is written. 

a. 2+ 1 = 10 b. 13 -4=4 c. 14 x4= 104 d. 26- 4 = 5 
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7. Write the following numbers in the decimal notation. 
a. Five hundred thousand, eight hundred and seventeen. 
b. Six million, 	 ninety-two thousand and twenty-three. 

c. Nineteen thousand, nine hundred and nine. 

Relationship between the digits in a numeral in the decimal system 

Before we introduce the notation for decimal fractions, it is useful to think again about
 
the relationship between one, ten, hundred and so on. Pictures can help your pupils to under
stand and remember what they learn. One and ten are easy numbers to understand. Ten ones
 
make ten and we can see a set of 10 members by looking at our fingers or toes. One hundred 
is harder. Where do you see a hundred? A thousand is a big num3er. Do you ever see a thousand? 
And so you can think also of a million. Ilow many thousands do y,,ineed to make a million? 
Here is one way to help your pupils to gain some idea of th r'2lative sizes of numbers. If you 

have graph paper with small squares whose sides are, for example, each I inch, use it. If you 

have not, then use, oi make, pap.,r with small squares on it. If you use graph paper, then you 
will be able to show ,.asily how a thousand is built up from 10 hundreds, how a hundred is built 
up from 10 tens and how a ten is built up from 10 ones. You are about to make pictures of one, 
of ten, of a hundred and of a thousand. 

Draw round I small square. This is 1 one. 
Draw round 10 small squares. This is a ten-strip. 

So 1 ten = 10 ones. 

1 	 10 

Next, draw round 10 ten-strips.
 
This is a hundred-square. ,
 
So 1 hundred = 10 tens
 

= 100ones. 

100 

Now your pupils can build up a thousand-strip by drawing round ten of these hundred-squares. 
What can they write about this big strip? It is a thousand. 

So 1 thousand 	= 10 hundreds
 
= 100 tens = 1000 ones.
 

You could continue further and build up a ten-tousand-square, a hundred-thousand-strip and 
even a million-square. flow many thousand-strips would be needed for a million-square? 

A ten-thousand-square needs 10 thousand-strips.
 
A hundred-thousand-strip needs 100 thousand-strips.
 

So a million-square needs 1000 thousand-strips.
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Can you 	write a set of equalities for a million as we did for a thousand? Here it is. Were you 
right? 

1 million 	= 10 hundred thousands
 

= 100 ten thousands
 

= 1,000 thousands
 

= 10,000 hundreds
 
= 100,000 tens
 
= 1,000,000 ones
 

If you let your pupils draw pictures like these above, it helps them to see the relationship
between each digit in a numeral. Think of the number 11,111. Each 1 is ten times the value of
the digit to the right of it, 
 or 100 times the value of the digit two places to the right of it. You
 
can think of the 3 in 3641 as
 

3 thousands or
 
30 hundreds or
 

300 tens or
 
3,000 ones. 

EXERCISE 23-IC 

1. Using squares and the method shown above, draw pictures to show the value of 1111 • 
2. Give the value of each of the digits underlined in three different ways. 

a. 32,541 b. 5,678 	 c. 10,327 
3. a. 	 How many tens are there in 362? 

b. How many tens are there in 5,362? 
c. How many hundreds are there in 37,140? 

23-2 Decimal fractions 

Do you remember how to represent numbers on an abacus? Here is an abacus with four 
rods. We 	 label the rods as we label the places in a numeral. 

Thousands 
 Hundreds Tens Ones
 

The bead on the tens rod is worth 10 of the beads on 
 the ones rod. The bead on the hundreds 
rod is worth 10 of the beads on the tens rod or 100 of the beads on the ones rod. 

Thus each bead is worth 10 of the beads on the rod next to it on the right. 
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(a 1 ___ (b)~ (c)f_ __ 

103 103
102 10 1 102 103
10 1 102 10 1
 

Shown above are three numbers, represented on the abacus. Can you write them down? 
Use the index notation first, and then write them in the usual way. Here they are: 

(a) 3 x103+5 x102+6 x10+3x1 =3563 

(b) 2 x 103 + 0 X 102 + 4 x 10 + 5 x 1 =2045 

(c) 5 x10 3+2 x102+4 x10+3x 1=5243 
It will be useful to us now to think of the relationship between the beads the other way

round. To make it easier to write, we will call the rods A, B, C and D.
 

A B C D E F
 

Ten beads on rod B are worth 1 bead on rod A. So a bead on rod B is worth 1 of a bead 
10 

on rod A. The same relationship, "I of", will be true for each bead and a bead on the rod im
10 

mediately to the left of it. 

A bead on rod C is worth 1 of a bead on rod B. 

A bead on rod D is worth 1 of a bead on rod C. 

If we place another rod, E, to the right of rod D, we can say thac a bead on rod E is worth 
of a bead on rod D. But a bead on rod D is worth one, and so a bead on rod E is worth 1 of10O 
 10
 

one, that is, 1 tenth. So we can name rod E the "tenths rod" just as rod D is named the "ones 
rod" and rod B is named the "hundreds rod".You will note that a space has been left between 
rod D .and rod E. This is to remind us that the whole numbers end with rod D. After rod D we 
have tenths, which are fractions, decimal fractions. 

We will now add a rod F to the right of rod E. A bead on rod F must be worth I of a bead 

on rod E. But a bead on rod E is worth ± of one. So a bead on rod F is worth - of of 1. In 10 10 10 
the chapter on multiplication of fractions, you learned how to find that this is 1L. But you can 

help your pupils to understand this more 4i4y--. -working it out on the abacus. 
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How many beads on rod F make 1 bead on rod E? 10. 
How many beads on rod E make 1 bead on rod D? 10. 
So how many F beads make a D bead? 100. So an F bead is -L of a D bead. But a D

100
bead is worth one, so an F bead is worth _ of 1 -j. So now you can name the F rod the100 10 
"hundredths rod". 

Place value of decimal fractions 

You know that the value of a digit in a numeral is shown by its position in the row 
of digits. Each position has a value I of the position next to it on the left. Using the place
value system, we can write the number shown on the abacus above as 1111 11. The last 1 rep
resents 1 hundredth and the 1 to the left of it represents 1 tenth. You can see that you could 
easily mistake this number for 111,111, which has no fractional part. You need some way of 
telling which digits represent whole numbers and w"ich digits represent fractions. That is why 
we use a dot called the decimal poini. The number shown on the abacus is then written 
1,111.11. This, you remember, is spoken as "one thousand, one hundred and eleven point one 
one". 	We do not usually say the value of the decimal fraction when we read it. For another ex
ample, 	we will read 362.54. It is read as "three hundred and sixty-two point five four". 

It will be helpful to your pupils to make a number chart which includes decimal fractions. 
Here is one. 

Decimal 

Point 

(a)' 5 6 9) 	 V) 
(b 1 	 U)

(c ) 	M aC U)~ 	 En C; 0 0 0 0M) V)~- ~ U) QJ) (nV)E . U). 	 ~~~0 

(a) ________5 6 9 1 _ _ _ 

(b) ___1 2 2 3 
(c) 0 0 0 0 0 1 
(d) 1 7 8 9 3 8 4 0 2 
(e) 1 0 0 0 0 0 1 0 0 1 0 0 3 
(f) 1 2 9 6 5 2 4 8 5 3 2 4 

You will notice that the columns have been extended farther to the right to include 
thousandths, ten-thousandths, hundred-thousandths and millionths. The place value of each 

1column is 1-0 of the value of thecolumn next to it on theleft. The column on the fight of the1 	 1 
hundredths column is worth -L of -L, and this is -j0 or 1 thousandth. Can you show the 
value of each of the remaining three columns in the same way? 

18 
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EXERCISE 23-2A 

1. 	 Write in full, as was done above for 362.54, the numbers shown on the chart above. 
2. 	 Write as common fractions or as whole numbers the digits underlined on the chart. 
3. 	 Write each of the numbers (a), (b), (c) and (d) shown above in the expanded form. (For 

example, 23'67wouldbe2×l+3×3 1+6x l-- 002 

Pictures of decimal fractions 

You can show decimal fractions in pictures, using squares as you used them to show 
whole numbers. Last time you used one small square for 1 one. This time you will need one large 

square to represent 1 one. Make a large square with each side 21 inches. Now divide it into 
2 

strips each -
42

inch wide and 2- inches long. There will be ten of these strips, so each one 

1represents .1. TorHow many strips will represent 2? 6? 

10 strips, earh I of 1; 
10 

1 one = 10 tenths. 

(a) 

Now you want to show .01. This is and 1 is I of 101-. So each strip must be di100' and 1f 10 
vided into 10 small squares. One small square represents .01, or -L, as there are 100 small 

squares.
 

.011 
1 one = 10 tenths 

= 100 hundredths. 

(b) 
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If you 	now divide each small square into 10 small strips, each small strip will be of 

1000, or 1 thousandth. An alternative way of writing a decimal fraction which is less than I is 
to put 	a 0 in the ones place; for example, 0'2 or 0.3 5. It is thought that the 0 helps to draw at
tention to the decimal point. 

Regrouping of decimalfractions 

Pictures like those above can help you to see how many tenths or hundredths there are in a number. You can think of 630 as 63 tens and in the same way you can think of *63 as 63 hun
dredths. If you look at picture (b), you can see that this is so; .6 is 6 strips and each strip has 
10 hundredths in it. So altogether there are [(6 x 10) + 31 hundredths. 

So .63 = 63 hundredths. 
You also think of this number in tenths. Therecan are 6 tenths and 3 hundredths. One 

hundredth is 1 of 1 tenth, so you can write "63 as [6 + (3 X tenths. 

So "63 = 6'3 tenths. 
In the 	same way, 630 can be written as 63 tens or as 6"3 hundreds or as 6300 tenths.
You will have found this way of writing numbers in newspapers. Instead of 3,650,000, youwill see 3"65 millions. It is shorter and easier to read. Or you may see 6.5 thousands. This, infu_', would be 6,500. You will read more about 	this way of writing numbers when you come to 

the unit on approximations. 

EXERCISE 23-2B 

1. 	 Draw pictures to show these decimal fractions. 
a. '3 b. .7 c. .02 d. .07 e. .72 f..88 

2. 	 What decimal fractions are represented by the shaded parts of these pictures if the big 
square represents 1 one? 

)(b) 
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,\\~~ ,\",\, 	 X\\'~ X\"\\ \,\\ 

- - -	 . (c) (d) 

3. 	 Write each of the numbers in Question 2 as tenths and then as hundredths. 
4. Write each of these numbers as a decimal fraction of the unit mentioned. 

a. 325 	as tens b. 325 as tenths 
c. 27.56 as tenths 	 d. 394.61 as hundredths 
e. 3,620,000 as millions f. 7,200 as thousands 

g. .037 as thousandths h. 2.37 as tens 
5. 	 Make a number chart stretching from hundreds to thousandths. Then write these numbers 

as decimal fractions on your chart. 

2 b. 3 15 d. 15 

S100110 

1010 	 100 1000h
 
i. Forty-two tenths I. 2'9 hundreds 

k. 327 	 thousandths 
I. Twenty-five, five tenths and three thousandths 

No improper decimal fractions 

There are proper fractions, such as .36, and mixed numbers, such as 2.3, in decimal 
fractions, also, but there are no improper fractions. Try to write an improper fraction such as 
15 
F1-as a decimal fraction and you find that you get a mixed number 1.5. This is because the 

principle of place value makes it impossible to write more than one digit in one column. 

Common fractions as decimal fractions 

You already know how to write some fractions as decimal fractions. A fraction whose 
denominator is 10 or 100 or some power of 10 is easily written a decimal fraction. Examplesas 
are 23 = *23, 718 5718. Some other fractions have denominators which are easily converted 

100 81000 
into powers of 10 by using the procedure you learned for finding fractions equal to a given frac
tion. 
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Do you 	remember how to rewrite 2 in sixths? Why is it true that 2 = ? Look back to3 3 6'
Chapter 20if you have forgotten, because you will need this procedure in the next paragraph.

Here are some fractions which have been rewritten with denominators as powers of 10.
What can you say about all the denominators of the first fractions of all the sets? 

4 8 
 1 25 25; 1 125 =125. 
= i- =0' 4io100 8-1000-

The description is very simple. The denominators are 5, 4 and 8, and these numbers are
all products of powers of 2 or 5. Numbers which are products of powers of 2 or 5 are factors of 
a power of 10 and so can be multiplied by a whole.number to give 10. 

EXERCISE 23-2C 

1. 	 Write each of these fractions as an equal fraction with its denominator a power of 10. 
Then write the corresponding decimal fraction. 
. 

a3 

5. 
b 1 
b.

*2 
c. 

3 d.5
d-.e

8 
3

20
2 

f.21
f. -

25 
31 31 17 5 27 

g.5 0 

M.45 
500 
201 

-5 
0.921 17 

k.-4 8 

20 25 50 P. 1 6 
There is another way to find the decimal fraction equivalent of a common fraction. This 

is by 	division. Think of You first met 2 as the missing factor in the multiplication equation. 

2x 	 ] =1. 

This equation corresponds to the division equation 1 + 2 = Li. So we can divide 1 by 2 

and know that the quotient will be one-half. Let us divide 1 by 2 and see what quotient we can 
find. You will remember how to set this down as a division exercise. 

To find 1 -2: 

Ones: 	There is no whole-number 
answer to 1 ± 2, so we re- , 
group 1 one as 10 tenths. Q 

This we do by simply 0 
putting 	a decimal point after '5 
the 1 and adding a 0 in the 	 2 1 .0 
tenths column. 

Tenths: 10 2 = 5. We 	 write 5 in the tenths column.
1 

So we have shown that 1 = '5. 
It is useful also to work this division in common fractions. 

1 +2= 	(ox l)+2 
10 5 

10 10 
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Can you find 1 as a decimal fraction, using common fractions in this way? = 1 + 4.
 

4 10 ' 
I+ 4=L- 4= + "4
 

We now 	have a digit for the tenths column, so our answer is .2 + a fraction. This fraction 

is (.2 	 4) = -L 4 = . So the decimal fraction which is equal to 1 is *25. You can put all
10' 100 100. 	 4this together and write it as follows: 

1 4=Q-+4) = (+ +4=2 + 2- 4)
 
=1-0 + +14 10) 10-'-10
 
2 +(20 .4)\ 215 10-2
 
To-\100V 10 b100
 

The usual way of working this is very much shorter than this method and when your pu
pils really understand what they are doing, they may use the shorter method. Here it is.
 

oL 	 .25 

4110 	 0 
•__2__ 	 41.0 200 

Ones: 	1 + 4 is not a whole number. Hundredths: 20 + 4 = 5.
 
Regroup 1 one as 10 tenths. Write 5 hundredths.
 

Tenths: 	10 - 4 = 2 + 2 tenths over. 
Write 2 tenths. Regroup 2 
tenths as 20 hundredths. 

1So - = '25. 

You will know this short way. You keep on adding zeros until you find that you have no 

remainder. Here is Z worked out in this way. 2 = 7 8. 
8.8
 

V) 

*8 7 5 
60 40 

8 7 .0 	 0 0 
7 

So t = .875. 

Now try - . Each time v'u divide you have a remainder of 1 and you cannot find a whole 
10 100 1000 

number which is 0, or 10, or -. "The calculation could go on forever. 
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.1 

.3 3 3 3 3...
 
3 1-01 01 01 01 01 01
 

We cannot write all these 3's and so we will agree for the present not to write any digit 
which has a value less than 1 thousandth and we will put three dots ( . . .) after the last digit 
to show that the decimal fraction is unending. We will use three decimal places only. 

1.4 has one decimal place. 
1.67 has two decimal places. 
1.125 has three decimal places. 

So we write - =333... ; the three dots show that there are other digits which we have not 
3 

written down.
 
Decimal fractions which are 
found this way from common fractions often have a pattern 

of recurring digits after the decimal point. You will meet several of these in this chapter. They 
are called recurrinydecimal fractions. There :, an alternative way of writing a recurring deci
mal. You place a dot over the digits which recur with the exception that if more than two digits1 .16.W 
recur the dots are placed over the first and last recurring digits only. Thus = 3 , = We 
will use here the three dots notati., and show the alternative notation in brackets afterward. 

You see that - is not exactly "333. In fact, -= "333 + a fraction. Can you work out what 
33 

common fraction you could write instead of th three dots?
 
Work 1 3 the long way.
 

10 3 (1

1+3 - 03= ( 
 = + -3) 

- ) 10 ( 0 0 

100 " + 3 

1 3 3 3 1 
So we have. = -+ - 103 +10io + - 3000 

3
 

Instead of writing the 3 we write =333... 

EXERCISE 23-2D 

1. Find the decimal fraction equivalent of these common fractions by division. 
1 1 3 3 7 f. 5 a. c. d. . 10 

2. These common fractions that follow all have recurring decimal fraction L'uivalents. 
Work each division far enough to be sure you have fe.und the pattern of recurring digits. 

5 
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Put dots over the digits to show the recurring digits. 
1 1 1 - 5 7 

7 11b. e 2 f.6 g'1 

You will often need to change a common fraction to a decimal fraction and vice versa. 
It is a good thing to remember these equivalent forms in pairs. Your pupils should also re
member them, but be sure that they understand first how to work them out and why they are 
equivalent. It will help your pupils to draw pictures using the big square of a hundred small 
squares so that they can see that the number represented by a common fraction and by its 
decimal equivalent is the same number. 

EXERCISE 23-2E 

1. 	 Fill in the gaps in this table. Do not use more than three places in decimal fractiois. 

Common 

Fraction 

1 

2 

1 

5 

3 

4 

6 

8 

2 

5 

1 

10 

37 

100 

Decimal 

Fraction .25 .2 .07 

2. 	 Draw pictures to show that each of the pairs of numerals above represents the same num
ber. 

3. 	 Give three common fraction names and three decimal fraction names for each of these
 

numbers.
 

a. 	 2 b. 31 tens c. 31 tenths d. 5.7 e.1 f
3 32 

23-3 Fractions in other bases 

You know how to write whole numbers in bases other than ten, and you know how to write 
fractions in base ten. In exactly the same way, you can write fractions in bases other than ten. 
For example, the base six notation can be extended to include fractions formed as a result of di
viding by 6. 

243'i2te n = K2 x 102) + (4 x 10) + (3 x 1) 

te+ 	 in X 1) +(2 X12)]I ten 

And so: 

243.12 • = (2x62)+(4 x6)+(3 x 1) 
+ 1x + (2 x Ite 
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EXERCISE 23-3A 

1. 	 Write each of these numbers in the expanded form in base ten. 
a. 162.5see n b. 325.321 six c. 110.111tw o 

2. 	 Write each cf these numbers as a common fraction (base ten) with the lowest possible
 
numerator and the lowest denominator.
 

a. 37 5ten b. 	 c.4eight 	 .02six d. . two 
3e.1.22three 	 f.2"4twelve g. .2 five h. 1.0 2 four 

3. 	 Find the numeral equivalent to - in each of the following bases. Use three decimal
2 

places 	only. Use three dots to show a non-ending decimal fraction. 
a. base two b. base three c. base four 
d. base five e. base six f. base seven 
g. base eight 

4. 	 Make a third row to the table in Exercise 23-2E, Question 1. Fill this row with the base six 
numerals for these fractions. 

5. 	 Can a non-ending decimal in base ten be an ending numeral in a different base? Give six 
examples to explain your answer to this 	question, using the results of previous exercises. 

Now that you have worked through this chapter on decimal fractions and fractions in other 
bases, 	you will see that there is nothing mysteriois about them. They are simply other names

for the common fractions. You have seen, too, that the fraction shown shaded 
 in the picture can
 
be called by man),different names. Here are some of them.
 

1 2 10
 
2' 4'20' 'ten' ' "three' two'
 

'4 eight' 
 2 four' '222.. five' "3six'
 

A sixteen
 

One-half may be written either anas ending numeral (bases 2, 4, 6, 8...) or as nona 
ending 	numeral (bases 3, 5, 7, 9...). So there is nothing difficult about a non-ending decimal 
fraction. It is the notation which makes it appear more complicated. What could be simpler
than the idea of one-half? Yet in base three it is .111.... While one-third in base ten is the 
non-ending numeral "333.. , in it is.	 base three .1. 
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Chapter 24 
OPERATIONS IN DECIMAL NOTATION 

24-1 Addition and subtraction 

When your pupils thoroughly understand decimal fractions, they sh Uld be able to do 
problems in addition and subtraction with very little difficulty. The methods are exactly the 
same as for addition and subtraction of whole numbers. 

Addition 

You will remember that when you add two whole numbers you take each column in turn 
and add first the ones, then the tens, then the hundreds and so on. If any total is greater than 
nine, it has to be regrouped. In exactly the same way, you regroup 10 hundredths to give 1 tenth 
or 10 tenths to give 1 one. Here are two examples of addition; one is addition of whole numbers, 
and the other is addition of decimal fractions. 

V) 

C: ) C: 

E- 0 1- 0 1

1 6 7 1 6 7 6 
2 9 8 2 1 8 9 
4 6 5 3 8 6 5 

Ones: 	 7 + 8 15 1 ten + Hundredths: 6 + 9 15 = 1 tenth + 5 hundredths. 
5 ones. Write 5 ones. Write 5 hundredths. 

Tens: 6 + 9 + I = 16 = I hundred Tenths: 7 + 8 + 1 = 16 = I one + 6 tenths. 
+ 6 tens. Write 6 tens. Write 6 tenths. 

Hundreds: I + 2+ I = 4. Ones: 6+ 1 + 1 = 8. Write 8 ones. 
Write 4 hundreds. 	 Tens: I+ 2 = 3. Write 3 tens. 

If your pupils are to work a problem in which the addends are written horizontally, you
will need to remind them to think of the value of each digit and then rearrange the addends 
vertically. For example, suppose you give them this problem: "3+ 1.4 1-.0016 ' 29 =-].The 
numbers should be rearranged with the decimal points vertically in line. The first number is 
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3 tenths and so must be written in the tenths column. Here is the setting out of this calculation 
and the thinking which should go with it. 

V)~ 

HO H-- H H.... 
('3) 3 tenths 3 
(1.4) 1 one and 4 tenths 1 4 
(.0016) 0 tenths, 0 h'dredths 0 0 " 6 

1 th'th and 6 t-th'ths. 2 9 
(29) 2 tens and 9 ones 3 0 7 0 1 6 

Pupils who have practiced writing decimal fractions on a number chart should not have 
any difficulty in doing this kind of problem correctly. 

EXERCISE 24-IA 

1. 	 Find the sums of these sets of nambers, setting out the explanation at the side as you 
would do for your pupils. 
a. 294 b. 21"7 c. 29"87 d. 1"815 

519 	 13"5 96"75 12.504 
9"6 9"139 

2. 	 Make up four examples of addition written horizontally and show how you would expect 
your pupils to work these problems. 

Subtraction 

Subtraction without regrouping is very simple. Here are two examples. One is using 
whole numbers and the other is using decimal fractions. 

gV) 

rA (A 
0 0 	 H

3 6 5 3 2 9 
2 2 1 1 0 7 
1 4 4 2 2 2 

Ones: 5- 1 = 4 Hundredths: 9-7= 2 
Tens: 6 - 2 = 4 Tenths: 2 - 0 = 2 
Hundreds: 3-2= 1 Ones: 3- 1 = 2 

If you have the problem 26 - 18 =E], you will see that there are not enough ones in the 
first number 26 to enable you to take 8 from them. 6 - 8 	is not a whole number. So you have to 
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regroup the 	tens to have sufficient ones. 26 can be regrouped. Instead of 2 tens and 6 ones you 
write 1 ten and 16 ones. Now you can find 16 - 8. Here is the calculation and the thinking 
which goes 	with it. 

V) Cd) 

HO 

2 6 Ones: 6 - 8 is not a whole number. Regroup 1 ten and 16 ones: 16 - 8 = 8 
1 8 Tens: I - 1 =0 

8 

The procedure is similar for decimal fractions. Suppose you have to find 3.21 - .08. Here 
is the thinking. 

Hundredths: 	 1 - 8 is not a whole number; think of 2 tenths V) 
+ 1 hundredths - 8 hundredths. 	 U) 
This can be regrouped as I tenth + 11 hundredths O H 
- 8 hundredths. 11 - 8 = 3. Write 3 h'ths. 3 2 1
 

Tenths: This is now 1 -0 = 1. Write 1 tenth. 0 8
 
Ones: 3 - 0 = 3. Write 3 ones. 
 3 1 3 

Because of the relationship, between a column and the column next to it on the left you
 
can always regroup a decimal numeral to make subtraction possible, provided that the first
 
number is greater than the second. Here is another example. Find 6"5 - 3.77. We first rewrite
 
this in the vertical form.
 

Hundredths: 	 Three is no number in the top row from which to 
subtract 7. So regroup 5 enths as 4 tenths U) 

+ 10 hundredths. V r 
10 - 7 = 3. Write 3 h'dths. 0 H : 

Tenths: 4 - 7 is not a whole number. 6 5 
Regroup 6 ones and 4 tenths as 5 ones and 14 tenths. 3 7 7 
14 - 7 = 7. Write 7 tenths. 2 7 3 

Ones: 5 - 3 = 2. Write 2 ones. 

EXERCISE 24-IB 

I. 	 Explain how to work these problems as you would explain them to your pupils. 
a. 231 	 - 98 b. 87.65 - 64.32 
c. 2.35 - l'79 d. 76.84 - 18.92 

2. 	 Which number in each of the following pairs of numbers is the greater and by how much 
is it greater? 
a. 2"3 	 and 1"59 b. 87"32 and 24.118 
C. .0017 and .12 d. '3 and .168 

3. 	 The rainfall in Freetown on a certain week was recorded in inches as follows: Sunday, 
1.40 inches; Monday, 3.20 inches; Tuesday, 3"70 inches; Wednesday, 3.21 inches; 
Thursday, 0.80 inches; Friday, 0.10 inches; Saturday, 0.01 inches. 
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a. How many inches of rain fell in Freetown that week?b. How many more inches of rainfall were there on Wednesday than on Thursday?4. Decimal fractions are used in many ways but chiefly to show the results of measurement.Look at a daily newspaper and make a list of the ways in which decimal fractions areused there. Use this list to make up some story problems for your pupils in addition andsubtraction. Question 3 shows two kinds of questions you can ask them. 

24-2 Multiplication and division by powers of 10 

Whole numbers 

You remember that multiplication by 10 or 100 is very easy. Perhaps you have learnedthat to muiply by 10 you add a zero? This is what it looks like at first, but now that you understand place value and decimal fractions you will know that it is misleading to say "Tomultiply by 10, add a zero after the number". If you add 0 to 23, it means that you add zerotenths and write it 23.0. This is just the same as 23. So you must think carefully about what
really happens when you multiply by 10. Look at the following equation:
 

23 x 10 = 230 
In the product 230, in which place is the 0? In which place is the 3 and in which place is the 2? 

U V (nn
 

E_ 0 

2 3 x 10=2 3 0 

If you make two number charts like these for your pupils to see, they will be able tounderstand what has happened. The digits of the number 23 have each moved 
one place to the
left. Each digit has a value 10 times as great as it had.
 
If you multiply by 100, the digits move 
two places to the left. (Why?) Each digit hasbecome worth 100 times as much as it was. 

(13 ( n V1 

-. * 0 '* Cg 

2 3 x100 = 2 3 0 0 

What task is performed by the zeros in this equation? They show the empty set of ones,or the empty set of tens. They are needed here to keep the other digits in their correct places.Think again about division by 10. Think of 50 + 10; of 560 10. You know already thatthis is the opposite process to multiplication by 10. You remember that we call division theinverse of multiplication. Multiplication by 10 moves the digits one place to the left. Divisionby 10 moves the digits one place to the right. Every digit becomes 10 times as small in value. 
You can show this on a pair of number charts. 
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(12 / W E 

a~ Q) a1 (12 

E- 0 HO4 

5 0 - 10 = 5 
5 6 1 = 5 60 10 
5 00 + 100= 5 

EXERCISE 24-2A 

1. Make number charts and use them to show what happens in these problems. 
a. 7x 10 b. 56x 100 c. 30x 10 
d. 70 + 10 e. 700 100 f. 560 +10 

2. Make up six more examples like those above and show them on a pair of number charts. 

Decimal fractions 

Now that you think of multiplication by a power of 10 as moving digits to the left, you will 
very quickly see how to multiply decimal fractions by powers of 10. It works exactly the same 
way, because decimal fractions are written in the same way as the whole numbers: Each place 
in a decimal fraction is worth 10 times as much as the place immediately to the right. Here are 

some examples written on number charts. 

(n2 -- (n n 

V) (n 1 EnV~0 ) 

0 OF4 0 E

.5 X 10 = 5 
7 5 x 10 = 7 5 

0 6 x 10 = .6 

6 3 1 7 x 10 = 6 3 1 7 

You can also work this out by using the expanded form of a decimal fraction: 

5 x 10= x x 10 5x = 5 x = 5 

Or, much more b-'efly, as: 

.5x10=(5 x 1) x 10 =5 x 1 = 5 

You can show your pupils how to work it out this way with a longer number also. Here 
is the last one on the chart. 

63"17 x 10 = [6 x 10) + (3 x 1) + (1x I)+ (7 x 12 x 10 

=(6x 10) x 10 + (3xl1) x 10 + ( xL)X 10 + (7x L) X10 
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(Note use of distributive property.) 

= (6 x 102) + (3 x 10) + (1 x 1) + (7 x L) = 631.7 

Did you notice on the last line how every digit in the number 63.17 became worth 10times as much and so was moved one place to the left?

If you multiply by 100, the digits are moved 
two places to the left, and so 2.3 x 100 

= 230. You can show this in two stages.
 

2"3 x 100 
= 2'3 x (10 x 10) = (2"3 x 10) x 10 

= 23 x 10 = 230
 
Now you will see that division by 
a power of 10 presents no difficulty whatever. Justmove the digits one place to the right for every 10 by which you divide. 

73 + 10 (7 x 10 + 3 x 1) 10 =(7 x 10) 10 + (3 x 1) 10 

170 + 3 ><r-= 7.3 

73 - 100 =73 + (10 x 10) = (73 10) + 10 7"3 + 10 

= .73 
You can do the last problem in one step by moving two places to the right straightaway. 

73 + 100 = .73 
Your pupils should work these problems in two stages at first and should use a pair ofnumber charts until they really understand what they are doing. Here are some division prob

lems. 

7 3 10 =7 3

9 8 + 100 =9 8
1 6 5 +10 
 1 6 5


2 3 7 7 1 - 100 =2 -


EXERCISE 24-2B 

1. Find the following by moving the digits.a..7 x 10 b. '09 x 10 C. "32 x 10d. 5-72 x 10 e.-.7 + 10 3'09 10 
g. 97132 10 105.72 - 102. Find the following by moving the digits. 

a. 32 x 100 b. 7.5 x 100 c. .012 x 1000d. 19-401 x 100 e. 763 + 100 f. 76-2 + 100 
g. 79,321 + 1000 h. 1 + 100 

(
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3. 	 Choose four different types of problems from Questions 1 and 2 and tell how you would 
help pupils understand how to find the answer to them. 
You will of course have noticed that instead of moving the digits of a number one place 
to the left when multiplying by 10, you can instead move the decimal point one place to 
the right. You can see this in this equation: 

24.81 	x 10 = 248-1 

The point has "jumped" over one digit, the 8. Similarly, when you divide by 100, you 
can move the decimal point two places to the left instead of moving the digits of the 
number two places to the right. In the equation 

52"643 - 100 = .52643 

you see that the point has jumped over two digits, the 2 and the 5.
 
When your pupils thoroughly understand multiplication and division by a power of 10,
 
they will find moving the decimal point a quicker method.
 

24-3 Multiplication and division by whole numbers less than 10 

Multiplication 

You will remember that multiplication is very similar to addition. Whenever you have 
more than 9 in any column, you regroup to make 1 or more for the next column. You multiply 
17 x 8 as follows. 

Ones: 	7 x 8 = 56 = 5 tens and 6 ones. 
WWrite 6 ones. 

Tens: 1 x8=8,8+ 5 = 13 z 1 0 
= 1 hundred and 3 tens. 1 7 

Write 3 tens and 1 hundred. x 8 
1 3 6
 

You will see that tenths may be multiplied in a similar way. 

77
 

10 

f"-0 ' 8 -10 =-0+ = (5 x 1) + (6 x 

= 56 

You need not think this out in this long way, because in the last chapter you practised
56 56 

writing fractions such as L6 as decimal fractions.. You can say that 2-6 = 5'6 straightaway. 

Your pupils, however, will need to think about what they are doing more carefully and will need 
to write their multiplications in a chart at first. Here is .76 x 4 worked out. 
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Hundredths: 6 x 4 = 24. Regroup as 2 tenths and 4 hundredths. 
Write 4 hundredths. 

0 &Tenths: 7 x 4 = 28, 28 + 2 = 30. Regroup as 3 ones and 
 7 6
0 tenths. Write 0 tenths and 3 ones. x 4 

3 0 4 

Division 

Division by a whole number may give a whole-number answeranswer. If the 	 or i. may give a fractionalanswer is not a whole number, 
part 	

then it is often very useful to write the fractionalas a decimal fraction. Decimal fractions can be compared for size more easily than commonfractions can be compared and so are more often used in a practical situation such as measur
ing. 

You remember how to do division to obtain a decimal fraction from a common fraction.You worked many examples in Chapter 23. First, we will work two examples without remainders. 
Here they are. 
Firstexample: 357 - 3. 

Hundreds: 3 -3= 1. Write 1 hundred. 
Tens: 5 -3 = I ten and 2 tens over. C (

Write 1 ten. Regroup tne 2 tens as 20 ones. E 00Ones: 20 4 7=27, 27 +3 =9. 1 1 9•
Write 9 ones. 

3 3 5 7 
So 357 + 3 = 119. 	 3 

0 5 
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Second example: 27.95 -5. 
Tens: 

Ones: 

Tenths: 

2 5 is not a whole number. 
Regroup as 20 ones.7 + 20 = 27, 27 - 5 = 5 and 2 over. 
Write 5 ones. Regroup 2 ones as 20 tenths. 
9 + 20 = 29, 29 +5 = 5 and 4 over. 5 

V 
U 

F 

2 

(n 

0 
5 
7 

5 
9 

-o-

9 
5 

Write 5 tenths. Regroup .1tenths 2 5 
as 40 hundredths. 2 9 

Hundredths: 5 + 40 = 45, 45 + 5 = 9. 2 5 

So 27-95 5 = 5.59. 4
4 

5
5 

In each problem there was no remainder, but in the second problem there werefractions to be divided. 	 decimalYou will see that the problem is no different here. It is better to letyour pupils work problems like these first, before they tackle problems which do not come out
exactly, that is, which have a remainder. 
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EXERCISE 24-3A 

1. 	 Work these problems. 
a. 7.4 	x 6 b. 91"23 x 8 c. 1-005 x 2 

d. 11.642 x 5 e. 1.274 x 10 f. 125 x 8 

2. 	 Find the numbers to put into the boxes to make these statements true. 
a. '5 x0-= 1"5 b..1I x[--I= -I 

c..1 X--= .8 d..7 x1R=7 
e. 5×xI= 25 f. .3 x = 2-4 
.q. '8 x[--= 0 h. 1"2 x['- = 3"6 

i. 1.1 	 XL=- 44. 
3. 	 Work these problems. 

0. 336- 8 	 b. 26"35-5 c. 2900-100 

d. 39"83 - 7 e. 1.01208 + 4 f. 20.712 ± 3 

4. 	 Explain how you would help your pupils understand how to find the answer to Question 

3(b), 26.35 . 5. 
5. 	 Make up four division problems which have no remainders. 

The two division problems which were worked before the last exercise were shown with 

the subtraction set down. Many pupils will, of course, be able to find these differences 

withour writing hem down, and this shorter method of working is shown in the division 

problems which follow. 

Division with remainders 

When you have a problem such as 25 + 2 =L-], you know that there 	is no whole-number 

2 =R true. It is 25a fraction which will make the equation 25 answer but that you can find 
12 

or 121. Now you have another way to work this probiem. You can regroup the remainder of 1 one 
2
 

as 10 tenths and get the number 12"5 to make the equation true.
 

25 + 2 = 12"5 

Here is a longer example, written out in full to show the thinking which goes with it. 

67 5 	=R-

Tens: 6- 5 = 1 and l over. Write 1 ten. 
C Q aRegroup 1 ten as 10 ones. 

Ones: 7 + 10 = 17, 17 5 = 3 and 2 over. H H 

Write 3 ones. Regroup 2 over as 20 tenths. 1 3 • 4 

Insert decimal points. 10 20 

Tenths: 0 + 20 = 20, 2J - 5 = 4. Write 4 tenths. 5 6 7 0 

So 67 	 , 5 - 13"4. 

If there are decimal fractions in the number to be divided, there is no difference in the
 

method. They are added to the regrouped units from the next column on the left in exactly the
 

same way as before. Here is an example.
 

27.1 ± 4 
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Tens: 2 +4 is not a whole number. 

Regroup 2 tens as 20 ones. 
Ones: 7+ 20=27, 27 ±4 

- . 
6and 3 over. Write 6 ones. S a U

Insert decimal point. Regroup 3 ones as 30 tenths. 1 0 HF HTenths: 1 + 30 =31, 31 4 = 7 and 3 over. 6 . 7 7 5Write 7 tenths. Regroup 3 tenths as 30 hundredths. 20 30 30 20Hundredths: 0 + 30 =30, 30 : 4 7 and 2 over. Write 7 hundredths. 4 2 7 1 0 0 
Regroup 2 hundredths as 20 thousandths.

Thousandths: 0 1-20 = 20, 20 " 4 5. Write 5 thousandths. 

So 27.1 : 4 = 6775.
 
Sometimes 
you will find that however long you continue to regroup, you never come to awhole-number answer. This means that the quotient is a non-ending decimal. You met these 

non-ending decimals before when you tried to find a decimal fraction for 1. It was3 "333. 
and the three dots show that it goes on forever. You will remember that this can also bewritten as .3. We could agrtL to srtp after only one decimal place or we could work to four ormore decimal places. There is no special reason to choose any particular decimal place as thelast one. When your pupils first meet non-ending decimals as quotients in division problems,you should always tell them how many decimal places to use. Do not leave them to try to findan answer to 3 " 7 or they will fill pages and pages with a very long division problem and perhaps be very unhappy because it never seems to end. 

" 
You will know that .428 is not exactly thesame as 3 7 and later you will explain to your pupils how to deal with these non-ending decimals to get answers as nearly correct as they need. At lhis stage, it is sufficient for them towork to as many decimal places as you require. Here is the working and thinking for 3 + 7. 

Ones: 3 + 7 is not a whole number. Put in decimal points. V) U 
Regroup 3 ones as 30 tenths. ( r ,
 

Tenths: 0 + 30 
= 30, 7 = 4 and 2 over. 0 H HWrite 4 tenths. Regroup 2 tenths as 20 hundredths. 4 2 8Hundredths: 0 + 20 = 20, 20" 7 =2 and 6 over. 30 20 60Write 2 hundredths. Regroup 6 hundredths as 7 3 0 0 0
 
60 thousandths.
 

Thousandths: 0 + 60 =60, 60 
 , 7= 8 and 4 over.
 
Write 8 thousandths.
 

There 
are three decimal places wanted in the answer, so stop and add three dots to the 
quotient. 

3 ±7= .428...
 
What is the exact answer to the division problem? 
 You have so far arrived at 

3 - 7-= 428 + a fraction. 
This fraction is the remainder divided by 7. The remainder from the thousandths columnthousandths. So was 2you have 4 thousandths ± 7. This we can write as I000 7 = So the cor

4 
7000" 

rect answer to 3 ± 7 is "428 + 4-0 Of course we do not write an answer like this. We do not 
mix common fractions and decimal fractions, but it is useful to think about the error whichoccurs when a quotient is cut off after a certain number of decimal places. 
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EXERCISE 24-3B
 

1. 	 Make up three problems of division of a decimal fraction by a whole number less than 10 

and describe how you would help your pupils to think the working of each problem. 

2. 	 Work each problem given below to three decimal places. 

a. 34.621 "4 	 b. 5.317-3 c. 6-7 

3. 	 Work each problem to the number of places given after it. 
a. 5.276 + 8 	 (to four decimal places) 

b. 37.01 ± 3 	 (to three decimal places)
7 

C. 7 	 (to two decimal places)9 

4. 	 In each problem in Question 3, what is the fraction omitted from the quotient? 

24-4 Multiplication in decimal notation 

You know that 2 x 3 = 6, but what is 2 x "3? You can work this out in two ways. 

1. 	 Since fractions have the commutative property of multiplication, 2 x "3 = "3 x 2, and you 

already know that this is *6. (3 tenths x 2 = 6 tenths.) 

2. 	 Rewrite -3 in the expanded form as 3 x -1 Then:10 

2 x .3=2 x (3 x =(2 x 3) x 0 

(Note use of associative property.) 

=6 x ± .610 

This second method is more useful, because it can be used to show how to multiply any 

two decimal fractions. Let us see whether we can find a rule which works for any two decimal 

fractions we choose. Here are some examples. Can you see what is happening each time? 

1. "3x'.2= (3 I x =L(3 x2) x x 

(Note 	use of commutative property.) 

62=.6x1 3 x 2 = 06
1 

2. .5 x.7= (5 X I X =(5 x7) x 1-0X 1-0 

=35x 1-'35 .5x.7=-35 
10 

1 

=10 x = .010 "5x '02 = "010 
103 
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4. (2 x I x (3 x (2 x 3) x 
.02 x.03. 

1 

= 6 x = *00006 *02 x *003 = "00006Did you notice that in every problem you separated the digits in the two numbers from 

the powers of 10 which show their value? 

"02 x "003 = (2 x 3) x I I(3 3x 03) (omitting one step)
 

Then you found the products of each pair of factors.
 

=6x 1 
105 

This gave you the product of the digits in the original numbers divided by a power of 10which tells you the place value of the 6.
 

= .00006
 

To find where to write the 6, 
 you can think of 6 x 101- as 6 105 anci you will rememberthat this can be worked out with a namber chart. It means that 6 is moved five places to theright and becomes .00006. Now where does this five come from? It is the power of i0 which 
comes from multiplying together the 1 and I But -L tells you that the first number has102 103 1C2
 
two places of decimals and the 10
-L tells you that the second number has three places of decimals. So you can add the number of places in the two factors, that is, in the two numbers you
multiplied.


This is a very important result and you

a 

can help your pupils see this pattern by makingtable of numbers and their products. Your pupils can first workand 1.42 x 3, out such numbers as "3 x 7which they already know how to compute. Thus, theytions such numbers as 
can work out by using frac'3 x .4, 5 x .01, .13 x .04. They then tabulate these results as follows: 

Number of Number ofEquation Number ofdecimal places decimal places decimal places
in first number in second number in product 

1.42 x 3 = 4.26 2 0 2 

13 x 04 = 0052 2 24 

When your pupils have looked at a table like this and thought about the way they find aproduct using fractions, they will understand the rule. Here it i .To multiply two decimal fractions.. Firstmultiply them without the decimal points. Thenmake as many decimal places in your product as the sum of the number of decimal places in the 
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two decimal fractions. Here is an example. 

27.312 x 1.25
 

27312 Number of decimal places in the two decimal fractions 
125 is 3 + 2 = 5. Therefore the number of decimal places in 

136560 the product must be five. 
546240 27-312 x 1.25 = 34.14000 

2731200 = 34.14
 
3414000
 

You will notice that it isvery important to keep any zeros inthe product until the value
 
of the product is decided. Once the decimal point has been put in, the zeros which are not
 
needed can be omitted.
 

EXERCISE 24-4A 

1. Find the product of each pair of numbers. 

a. 2x.3 b. 7x8 c. "3x'1 d. .lx.1 
e. 2x.1 f. 9X1.1 g. 7.9x10 h. 1.2x1.2 
i. .lx.05 j. .6x.25 k. 1.02x.7 I. 12.5x.8 

2. Find the product of each pair of numbers. 
a. 1"142 x 7.3 b. 23.121 x 005 
c. 23.54 x 21.5 d. .087 x .0014 

3. A pupil -rI:ts that .1x .1= -I. Explain how you would help him to see his error. 
4. Show by working in fractions why 

.13 x .04 = .0052. 

5. Make a table like the one on page 38 and show on it six equations such as you could 
use with your pupils to help them discover the rule for multiplication with decimal frac
tions. How would you make sure that they understood why the rule works? 

24-5 Division in decimal notation 

We have already discussed the division of decimal fractions by whole numbers less than 
10. Division by whole numbers greater than 10 is very similar. Your pupils will probably be 
able to tell you how to do it without any further teaching. Ask them a problem like this one. 

144 ± 16= 

They will work itlike this. ,P 

Hundreds: 1 + 16 is not a whole number. 9 
Regroup as 10 tens. 1 6 1 4 4 

Tens: 10 + 4 = 14, 14 - 16 is not a whole number. 1 4 4 
Regroup as 140 ones. 

Ones: 140 + 4 = 144. 144 ± 16 = 9. Write 9 ones. 

Then ask the problem 

14.4 ± 16 = " 
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and help them to set it down in the same way but showing tens, 
ones and tenths this time. They will readily see that the answer 
is 10 times as small and is '9. So the pattern of working is ex-
actly similar to the pattern of division by a whole number less 

M 
U 

V) 
: 

9 
than 10. The only difference is that we needsubtraction instead of working it mentally. 

to set down the 1 6 1 
1 

4 
4.4 

4 

Division of a decimal fraction by a whole number is quite
straightforward and so we turn all division by a decimal fraction into
division by a whole number. low do we do this? Can you remember? If you cannot remember,
can you work it our? Suppose you want to find 24 + "3. You want to have 3 instead of "3. Whatmust we use to make "3x:]= 3? We must multiply by 10. "3x 10 3. But can we= multiply.3 by 10 without altering the result? Of course not, it will be 10 times too small. So we must 
also multiply the 24 by 10. So instead of 24 _ "3, we have 240 + 3. This is 80.

You can check to see whether this gives the same quotient by thinking of a real situation. Let us imagine that you want to share 24 oranges among 3 children. How many oranges
will each child receive? Here is the equation. 

24 3 =8 
Now suppose you have 30 children, that is, as10 times many children. How many oranges will you need in order to give each child the same share as before, that is, 8 oranges?You know that you would need 10 times as many oranges for 10 times as many children. Here 

are the equations. 

n"+30 = 8 

[24x01+30=8 
You can see the pattern of the working if you show both the multiplications by 10. 

(24 x 10) - (3 x 10) = 8 
Examples like this will help your pupils to understand that the quotient of a division

problem is not altered if the two numbers are each multiplied by the same factor.
Another way to make the divisor a whole number is to think of 24 + "3 as a fraction. 

.-24 3 =L4Compare 1 -2= and 1 -3 

24x 10 
.3 x 10 

240 
3 

80 (To make an equal fraction) 

So 24 -.3 = 80. 

Here is another example. Find 7"2 ' "09. 

7'2 -. 0 9 = 7.2 _ 7.2 x 100 = 720 80.09 "09 X 100 9 
7.2 .09 = 80 

Your pupils will probably need some practise in deciding what they must do to a decimal fraction to make it a whole number. They will need problems such as these: 
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-31 xLI = 31 

•002 x = 2 

73"46 x[-] = 7346 

And these: 
What must you do to .7 to make it a wh,,Ie number? 
What must you do to 1-32 to make it a whole number? 
This can be a game in which pupils make up questions such as these and ask each 

other for answers. 

EXERCISE 24-5A 

1. Make up problems like those above to ask your pupils. 
2. Find these quotients: 

a. 16 +.4 b. 21 -3 c. 30 +.05 
d. 5-6 -7 e. 64 +.08 f..032 -.4 
g. 55 1.1 h. 121 +.1l i. 1-32 .04 

3. Find these quotients. Do not work more than two decimal places. 
a. 33-79*23 b. .17 .8 
c. 31-012 ± .56 d. 3-653 ± 3.7 

24-6 Percentage 

There is another way of writing a decimal fraction and that is as a percentage. 23%, read 
23 per cent, means 23 things out of every 100 things. If there are 100 boys in a school, then 
23% of the boys of the school is 23 boys: 23 out of 100. You will remember that wheni you 
learned to think of fractions in terms of sets you said that if a set had 5 members, then the 

fraction of this set represented by 3 of its members is . One member is - and three members 
55 

are . If the set has 100 membe'rs, then 1 member is 1 of the total number of the set and 23 
3 23 

members are 23 of the number of the set. So 23% and 23 are both names for the same number.100 100 23
What decimal fraction can also be used to name the number? is 23 x 1 which is written 

as -23. So we have the relationships 

23% = 23 -23
100
 

and 37% = = -37, 

and 9% = =09. 

/0 100 =.9 

Percentages are frequently used in everyday affairs, in shops, in factories and in gov
ernment. A 10% discount may be allowed off the prices of articles bought in a certain shop. 
Money may be invested and earn interest of 2%. A firm of building contractors may decide that 
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it must make a profit of 50% in order to pay its workers. The final profit will be much less.
These are some of the uses of percencages, and you should look for more examples arid use 
them to make problems for your pupils.

These percentages mentioned above are ones which can be written as very simple fractions. What fractions name the same numbers as 10%, 2% and 50%? It is easy to find out. 

110% = 10 
10- 10 

2% = 2 1
 

100 50
 

50% = 50 50 11
 

1 

2 100 20 = 7 out of 200= out of 100 

Percentages must be rewritten as common or decimal fractions before they can be usedin calculations. The common fraction is generally more convenient for this purpose, but you
should always consider whether using the decimal fraction might reduce the amount of work. 
Here is an example worked in both ways.

Amodu buys some books and his bill is 40 shs. If he is allowed 10% discount off his bill 
how much must he pay? 

By common fractions By decimal fractions 

10% of 40 shs 10% of 40 shs
 
1ix40 shs 
 = -I x 40 shs 

=4shs =,4shs 

So Amodu must pay 40 shs - 4 shs = 36 shs. 
Your pupils should be able to work simple problems like this in their heads. For this,they should have a sound understanding of percentages and their equivalent fractions. 

EXERCISE 24-6A 

1. Fill in the gaps in this table. 

Percentage 50% 25% 121% 75% 20% 10% 5% 33P 60% 35% 

Common
 
Fraction
 

Decimal
 
Fraction
 

2. Work out each of the following percentages in two ways. 

a. 5% of £75 b. 31% of £120 

C. 7% of 720 shs d. 4% of $312.00 
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In all the problems so far, you were given a percentage and asked to find the correspond
ing fraction. Often we need to krc.Gw what percentage of a tot"I is represented by a cer
tain amount. For example, what percentage of the whole class of 40 is a group of 35? 
Now that you know that a percentage is a fraction, you can see that the first step will 
be to find what fraction the group is of the whole class. The group is 35 out of 40, so 

this is L5 of the whole class. We want this as a fraction with a denominator of 100; that
40 

is, we want it in hundredths. How can we do this? First we can make it simpler. 5 7 
40 8 

7Now we want to know how many hundredths there are in -. So we find tie quotient 7 + 8, 

and this is .875. 71his is 87.5 hundredths. Can you explain why .875 is 87.5 hundredths? 
If you have forgotten, y'ou can make a number chart and write .875 on it and you will see 
that you have 

8 tenths 1 7 hundredths + 5 thousandths 
= 87 hundredths t 5 thousandths 

87 hundredths - .5 hundredths 
= 87"5 hundredths. 

Do you see what we have done? 

87"5 is "875 x l0 n and .875 is7 
.7 

So 87.5 is 7 x 100. So instead of dividing by 8 and then reading this as hundredths, we 
8 

can straightaway multiply our fraction by 100. We need not simplify the fraction first. 
Here is the working to find what percentage of 40 is represented by 35. 

35 is of 40. 

35 175 85
 
87

R XNO =2 
2 

So 35 is 87.5% of 40. 

Here is a problem.
 
In an examination there were 70 problems. A boy had 55 right. All problems had equal
 
marks. What percentage did the boy have right? Work to one decimal place only.
 

55Fraction right 70 

Percentage right - x 100 = - 7 - .5 

70 7 

Another kind of problem is one where we know the percentage and what it represents but 
we do not know the total. 
In a certain town, 78% of the electorate voted in an election. There were 5,600 ballot 
papers. flow many people were entitled to vote? (That is, how many people were in the 
electorate?) We can make an equation. The number of the electorate is to be put into 
the box. 

78% ofD7 5,600 
780 x ] =5,600 
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This is 	an equation with a missing factor and you know what this means. It means divi
sion. It can be rewritten as 

5,600 
100 

This is division by a fraction and to divide 	by a fraction we multiply by its reciprocal. 

00 78 100 78 
So the equation becomes
 

5,600 x 10O = 560,000
 

78 78
 

= 7179. 

We did Pot work this proMem further than the ones. (Why not?) So the total electorate is 
7179. 
We can fit most problems about percentages to one equation. Sometimes we have to find one part 	of the equation and sometimes another part. Let us think about an equation 
where we know everything. 

25% of 44 = 11 

This is written as 

25 
= 11.25 of 44 


The three problems that can 
be asked about the situation are: 
i. 	 What is 25% of 44?
 

25 of 44 =L
 
2. Wha: percentage of 44 is 11? 

0 of 44 11 or - x 44=100 100
 

wbich can be written as division as
 

11 -44.1 = 

This we 	saw was E x 100. 

3. 11 	 is 25% of what number? 

25 
100 of 	-j= 11, 

which can be written as division as 

25
 

As long as you understand the meaning of percentage, you can work out any problem by 
using this equation. 

(Iq
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EXERCISE 24-6B
 

1. 	 Write each of these percentages as a common fraction. 

a. 3 % 	 b. 331% c. 65% 

d. 5"5% e. 17% 	 f. 161% 

2. 	 Write each of these fractions as a percentage. 
0.2 b..4 c. 4 	 d. 

3 5 
8e.*32 	 f..01 g" 7 

3. 	 Find each percentage. 
a. 5% of 1 hour, in minutes 
b. 25% of a year, in days 

c. 16% of 200 shs 
4. 	 Find what percentage the first of each pair is of the second of each pair. Work to two 

decimal places only. 
a. 33, 	 300 b. 100, 200 
c. 300, 100 	 d. 4, 5 
e. 45 	shs, 500 shs f. 55 marks out of 80 marks 

5. 	 Find the total amount in each case. Do not work to more than one place of decimals. 
a. When 25% is 4 
b. When 20% is 36 

c. When 65% is 1,500 
d. When 32% is £565 
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UNIT V.Integers 

Chapter 25 
INTRODUCTION TO INTEGERS 

25-1 	 A reminder of subtraction 

You can think of subtraction in several ways. If you have a set of objects, you canseparate it into two subsets. If you remove one of them, subtraction tells you how many areleft. For example, Kwame and his sister Araba have 6 bananas. Kwame takes 4 bananas. How 
many are left for Araba? 

Then you can use subtraction to compare two sets to find 	out which has more members.To find out how much taller the red lily is than the yellow lily, you can subtract the height of
the yellow lily (4 fcet) from the height of the red lily (5 feet) and get the equation 5 - 4 = 1.

Or you can ti ink of subtraction on the number line and work out 8 - 5. You will find outwhere 	your pencil point will be if you start at 8 and then subtract 5; that is, go back from 8 
to the 	left 5 steps.
 

Another kind of problem which 
we solve by using subtraction is one with a missing
addend. Mary has saved 5 shillings"and wants to buy some sandals that cost 9 shillings. How
much more must she save? You write the equation 5 +-= 9 and know that the answer is 4. 
The equation could have been written as 9 - 5 =[1].


Sometimes the answer to a subtraction problem is 0. 
 If Mary's family has 40 bananas 
and they eat 40 bananas, they have 0 bananas left. 

If Kofe is 40 inches tall and Kwame is 40 inches tall, then Kofe is 0 inches taller thanKwame and Kwame is 0 inches taller than Kofe. In each case, we can write the subtraction 
equation 

40 - 40 = 0. 
All these problems have whole-number answers, but sometimes you have a problem

which 	does not have a whole-number answer. In each of the problems above you needed to sub
tract a whole number from a larger number or from an equal number and this is always possible,
but can you find a whole-number answer to 3 -	 5 =[? Look at this next problem.

Kwafi 	owes Kwesi 5 shs and only has 3 shs with which to pay his debt. How much money
has Kwafi? He gives Kwesi the 3 shillings but he still owes some money. He has (3 - 5) shill
ings. You cannot say that this is the same as having 2 shillings. The equation 3 - 5 =[-can berewritten as an addition equation 5 +[= 3. You can see that there is no whole number which 
can be added to 5 to give 3. 

Work the following problems if it is possible to find a whole-number answer. Which prob
lems have no whole-number answer? 
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EXERCISE 25-IA 

1. 7 +F,= 10 2. 3+]=1
3. 11 -4 =E] 4. F-1 +2=9 

5. 4-8=1 6. 2- 11=[ 
7. 13 +[J= 13 

You will have found that Questions 2, 5 and 6 have no whole-number answers. In mathema
tics we do not like to have problems without any answers. You will remember that at first 
you had no answer to the problem 8 - 5 =0, but that by using fractions you could give

B 

the answer -2. In this chapter, you will learn about another kind of number which will 

make it possible to find an answer to 3 - 5 =FT 

25-2 Physical models 

You have learned in geography how the positions of places on the earth are described 

using latitude and longitude. Latitude is measured in degrees (0) north and south of the equa

tor and longitude in degrees east and west of the meridian of longitude which passes through 

Greenwich. On a map of the world you will see, along :he edges of the page, lines which are 

marked to show latitude and longitude. 
Latitude is marked on a line segment down each side of the map, Here is part of one 

such line segment. You can tell which side is north and which side is south by the letter N 
or S marked before the number of degrees. 

N300 

N20 0 

N100 

Latitude 00 at equator 

SIO
 

S20 0 

S30 0 

Longitude is marked on a line segmen, along the top and bottom of the map. Here. is part of 
one of them. 

L ongitude 
t I I 

W40 0 W30' W20' W10 0 00 E10 ° E20 0 E300 

Again, you can e1l which is east and which is west by the letters E or Wwritten before the 
number of degrees. 
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You will have noticed that in each case we measure in two opposite directions from acentral point which is called zero. Zerc degree latitude is on the equator and zero degree
longitude is on the meridian through Greenwich.


There are many other things which are measured in two 
opposite directions. Here aresome of them: the height of land above sea level and the depth of the ocean below sea level;the number of years A.D. (anno domini), and the number of years B.C. (Before Christ).
Time before the hour and time past the hour. Here is a clock-face on which are markedthe times before the hour and after the hour. These are the times which are shown by the 

minute hand. 

HOUR 

5 minst 
 mins.past 

to 15 mins. to past = 15 mins. past 

20mn20 
 mins. past 

I5past 

= 30 mins. past 

You will see that these times are measured in opposite directions from the hour. Thereare the times past the hour and the times to the hour. Both sets of times are measured from thehour. We will draw a line picture for these times. What time shall we choose as zero time? Thismust be-the hour, because the times are measured from the hour. At the hour there are 0 minutespast or 0 minutes before the hour. On one side of 0, we will mark the times past the hour.
On the other side of 0, we will mark the times before the hour, backward (to the left) from 0. 

I p I p 

25t 20t 15t lot 5t 0 5p lop 15p 20p 25p 
HOUR 

To show which side is past the hour and which side is to the hour we have marked each numbereither p (for past) or t (for to). Can you see that our line is like the line around the edge of theclock-face? If you cut the line around the edge of the clock-face and straighten it out, wherewould you make the cut? You want it to look like the number line we have just drawn. You will 
have to cut the line at half-past.


When 
 the time is 20 past the hour, where will the minute hand be on the number line? 
At 20p. What will the time be at lOt? 10 to the hour. 

The seconds before and after firing off a rocket are also measured in this way. This iscalled "countdown" and is spoken, "Ten, nine, eight, seven, six, five, four, three, two, one, 
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zero". At zero the rocket is fired. The count goes on after the rocket is fired, "One, two, 

three" and so on. 

You can think ot gains and losses in a similar way. If you win 6 shs at a game of cards, 

this is not the same thing as losing 6 shs. If you win 6 shs, 2 shs, 3 shs and 1 sh, your wins 

can be shown by dots on a line as shown in the picture. You must first decide where to put 

the dot for a result when you neither win nor lose. This will be the zero point. Then you de

cide on which side of 0 you will mark the line for wins. We usually use the right-hand side 

for this. Then we can mark losses in the opposite direction. 

0 I - 0 i 0 0 	 0 > 

L5 L4 L3 L2 LI 0 Wi W2 W3 W4 W5 W6
 

Wins and Losses 

The dots show the wins 1 sh, 2 shs, 3 shs and 6 shs. What losses are shown? 1 sh, 2 hs, 4 

shs and 5 shs. 

In each of these cases you will see that you can make pictures of the measurements by 

representing them as points on a line. This is how you do it. 

1. 	 Draw a line. 

2. 	 Mark a zero point with 0. 

3. 	 Decide what the zero point represents. 

4. 	 Mark the scale for the measurements in one direction. 

5. 	 Mark the scale for the measurements in the opposite direction. 

6. 	 Give the points on each side ef 0 a letter or symbol to enable you to distinguish between 

them. 

EXERCISE 25-2A 

Each of the sets of measurements described below can be shown on a line. For each one 

(a) draw the lire, (b) mark the zero point and say what it represents, and (c) mark in the 

measurements. 

1. 	 Longitude east and west of the Greenwich meridian. Mark two points on this line to show 

the longitudi: of the most easterly and most westerly parts of the African coast line. 

Find the longitude of six African towns and mark them also. 

2. 	 A hole has been dug in the ground for a mine shaft 100 feet deep. Above it has been buil 

a tower 60 feet high. The tower hai platforms at 20 feet and 50 feet. Mark these on the 

line. Mark also a platform in the mine which is as far below ground as the first platform 

is above ground. 

3. 	 A Centigrade thermometer measures the temperature from 40' below zero to 70' above 

zero. Mark on the line a temperature of 300 above zero. 

4. 	 A shopkeeper has debts of 20 shs, 50 shs, 65 shs and 25 shs. He has credits of 15 shs, 

25 	shs, 50 shs, 70 shs and 35 shs. Show these amounts on a line. 
are5. 	 Some boys are to run a race. As some of them are taller and older and some of them 

shorter and younger, they are to start from different places behind or ahead of the start

ing point. Four young boys stand 3 ft., 5 ft., 2 ft. and 7 ft. in front of the line. Seven 

boys stand at the starting point and three big boys stand behind the starting point at 

distances of 3 ft., 6 ft. and 8 ft. Show these boys as dots waiting to start their race. 

(Yc u will need fourteen lines, side by side, for the fourteen boys to stand on.) 
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Chapter 26 
THE NUMBER LINE AS A PICTURE 
FOR INTEGERS 

26-1 Naming the new numbers 

You will have realized while making th lines in the last exercise that itmaking a number line. When was very like you made a numter line before, in Chapter 16, you first chose apoirt to be zero and marked it 0, and then measured out equal steps to the right. You thenused the counting numbers to name the points at the ends of these steps. But when you madethe line picture for longitude east and west, you used the counting numbers twice. Youthem to the right and to the left of 0. When you 
used 

made the line picture for the mine shaft andits tower, you drew the line going upwards instead of across the page. But you still used thecounting numbers twice, once on each side of the zero point. So you will see that we want anew kind of number line as a picture of any of these things which are measured in two direc
tions. 

Look at the number line below. 

< I I I I I I I . 

4 3 2 1 0 1 2 3 4 

You can see that we must have some way to distinguish between the number 3 to the right of0 and the number 3 to the left of 0. We want names for the two sets of numbers. We want tomake a number line which we can use to show all these situations: right and left, north andsouth of the equator, east and west of the meridian through Greenwich, ahead of and behindthe starting point, above and below sea level, gain and loss,
shortage, after and before and many 

credit and debit, surplus and 
more. What we need is a way to tell apart numbers onopposite sides of zero. In many of these cases, descriptions such as ahead, above, gainand credit seem to suggest "having something" while their opposites below, behind,debit may seem loss andto suggest "lacking something". So we distinguish the first as being positiveand the second as being negative. On the new number line, we label po.sitive numbers on oneside of 0 and label ;ie.alive numbers on the other side of 0. The number 0 at the startingpoint is neither positive nor negative. The positive numbers are conventionally shown to theright of 0 and negative numbers to the left of 0, but we could put the positive numbers above0 and the negative numbers below 0. This whole set of numbers-positive, negative arid zero

we call th,'.SET OF INTEGERS.
 
The numbers 
te the left of zero are negative integers and so we will call the 3 on t. isside ney 3 for short. The numbers to the right of zero are the positive integers and so we will

call the 3 on this side pos 3 for short. 
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Here is a picture of the number line showing some of the negative integers, zero and 
some of the positive integers. 

.. II I 1 I > 

neg 3 neg 2 neg 1 0 pos I pus 2 pos 3 

26-2 Zero 

The number zero has a special position in the middle between these two sets of num
bers. You will remember that you first heardof zero, in Chapter 1, as the number of the empty 
set. You used 0 then to show an empty set. For example, in 202, the number which is equal to 

2 x 102 + 0 x 10 + 2 x 1, the set of tens is empty, and in the number which is equal to 

3 x 102 1- 7 x 10 + 0 x 1, 370, the set of ones it empty. You also used 0 to mark the point on 
the number line from which you started to measure out unit lengths. So in this way you can once 
again think of zero as the number of the empty set, the empty set of unit lengths. This is the 
way we think of zero with the integers. When we think about latitude, 00 is at the equator. For 
minutes past and to the hour we chose 0 to be the hour and in the problem about the mine, 0 
was at ground level. Zero has a very important part to play on this number line. It separates 
the positive integers from the negative integers and later on we shall see how it helps us to do 
addition and subtraction. 

26-3 Opposites 

I I I I I I 

neg 3 neg 2 neg 1 0 pos l pos 2 pos 3 pos 4 

You will see on the number line that the integers can bp matched in pairs. We can match any 
integer and its OPPOSITE. Here are some pairs. They are shown on the line also. 

neg 3 and pos 3
 

pos 2 and neg 2
 
neg 2 and pos 2
 

Such pairs are called "opposites". You will see that the t.vo members of a pair are the same 
distance from 0, but they are on opposite sides of it. To find the opposite of an integer, we 
look for the integer ,li'h is on the opposite side of 0 and at the same distance from 0. We 
can write this in another way. 

The opposite of neg 3 is pos 3.
 
The opposite of pos 2 is neg 2.
 
The opposite of pos 15 is neg 15.
 
The opposite of neg 52 is pos 52.
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The opposite of 0 is itself, because 0 is neither positive nor negative. What is the opposite of 
the opposite of an integer? We can work this out in three stages. 
The opp, of the opp. of pos 6 = the opp. of (the opp. of pos 6) 

= the e pp. of neg 6 

= pos 6. 
So the opposite of the opposite of pos 6 is pos 6 itself. Is this true if we begin with a negativeni,'mber? You can see that it must be so. Can you see this for yourself? Begin with the oppositeof :he opposite of neg 3 and work it out in the same way. You will find that the opposite of theopposite of neg 3 is neg 3 itself. You can see that whether you begin with a positive numberor a negative number or 0, th! opposite of the opposite will be the number itself, the number 
you began with. 

You can prove this for yourself on the number line also. If you want to find she oppositeof any number you begin with that number, you jump to 0 and then you make another jump of the same size and land on the opposite. To find the opposite of this second number, you simplyjump back again the way you So to find tile opposite of the opposite you jump there and
came. 

back again. So you need not jump at all; ycu are at the answer already. 

EXERCISE 26-3A 

1. What are the opposites of the following measurements? 
a. Latitude N30' b. Longitude W45' 
c. Temperature above15' zero d. 10 minutes past the hour 
e. A win of 7 shs f. A debt of 50 shs 

2. What are the following? 
a. the opposite of neg I b. the opposite of pos 11 
c. the opposite of pos 17 d. the opposite of neg 73 
e. the opposite of pos 129 f. the opp. of the opp. of pos 8 
g. the opp. of the opp. of neg 42 h. the opp. of the opp. of neg 9
i. the opp. of the opp. of the opp. of pos 23 j. the opp. of the opp. of pos 14 
k. the opp. of the opp. of 0 

26-4 Order properties 

We now have to decide which of two integers is the greater or the less. You know already that a win of 3 shs is less than a win of 6 shs and that any positive integer is less thanany other positive integer to the right of it on the number line. You will remember that this isthe way to decide the order of two whole numbers: the greater is to the right. Here are someexamples of inequalities between positive integers. You remember that the sign " >" means 
greater than and the sign ".<" means less tMan. 

pos 3 < pos 6 pos 35 > pos 29 
pos 100 < pos 200 pos 1 > 0 

You will see that 0 must be less than any positive integer, because all the positive integers 
are to the right of 0. 

<I I I I I I I I 
neg 4 neg 3 neg 2 neg 1 0 pos I pos 2 pos 3 pos 4 
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Now we want to decide the order of any two integers. Which is greater: neg 2 or neg 3? 
We can decide this in two ways. We already have a rule which says that any positive integer is 

less than any other positive integer to the right of it. It would be useful to have the same rule 

for negative integers. Neg 1 is to the left of 0, so by this rule neg I is less than 0: neg 1 < 0. 

Similarly, neg 2 is to the left of neg I and so neg 2 < neg 1, and neg 3 is to the left of 

neg 2 and so neg 3 < neg 2. You can see that, by this rule, any negative integer is less than 0. 

You can check that this result is reasonable by using gains and losses. Think about the money 

you gain or lose if you have a market stall. If you lose 6 shs, you have less money than if you 

lose 1 sh. Using L for loss and G for gain, you can write this L6 < LI. If you lose 4 shs, you 
have less money than if you gain 3 'is: L4 < G3. If you have neither gains nor losses, you 

have more money than if you had made a loss but less money than if you made a gain. So every 
loss is less than every gain, and every gain is greater than every loss. With a loss of 100 you 

have less money than with a loss of I. So you see that it works out sensibly if you use the 
same scheme you used before: on the number line any integer is less than any integer to the 
right of it. To sum up: If a and b are any two integers, then a < b means that a is to the left 
of b on the number line. 

EXERCISE 26-4A 

1. 	 Put in the inequality sign, , or >, to make each of the following into true sttements. 
a.pos 	6 pos 10 b. neg 6 neg 10 
C. pos 	 15 neg 15 d. neg 15 pos 15 
e. neg 	200 neg 1,000 f. 0 neg 3 
g. 0 pos8 h. neg 11 0 

2. 	 Put inan integer to make each of these inequalities true. 
a.pos I>[F b. pos I<F 
c. neg 	5 > 1] d. neg 5 < n 
e. pos 	 100 f. neg 100< D 
g. 0 	 > h.o < D 
Can you attach a meaning to the order of numbers in the physical models of integers? 
Can you say that one measurement is greater than another? Will this statement always 
have meaning? There must be such an order because the number line can be used for all 
such physical models, but are the words "greater than" and "less than" the best ones 
to use? flow would you compare the latitude of a place A at W27' with the latitude of 
a place B at E19'? You would make one of two statements. 

A is to the west of B,
 
B is to the east of A.
 

You notice that there is no mention of greater than or less than. Here are some more 
comparisons. 
The top of a mountain 1,000 feet high is higher than the top of a ..ouse 10 feet high. The 
top of a house 10 feet high is higher than the bottom of a lake by which it stands. 
The Great Pyramid was built about 1800 B.C. ard the ancient kingdom of Ghana flour
ished about A.D. 900. flow would you compare chese two events? You would say the 
Great Pyramid was built before ancient Ghana flourished, or that ancient Ghana flourished 
after the Great Pyramid was built. 
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EXERCISE 26-4B 

1l. Make two comparative statements about each of the following pairs. 
a. Longitude N29 0 and Longitude S500 
b. The time 10 past 3 P.M. by your watch and the time 5 to 3 P.M. by your friend's 

watch 
c. A man on a platform in the mine shaft 53 feet underground and a man who is on the 

b:ound 
d. The temperature at noon today, which is 950 Fahrenheit, and the temperature yes

terday, which 1020was Fahrenheit 
e. A boy Kofi who starts the race 5 feet ahead of the starting point and a boy Kwesi 

who starts the race 5 feet behind the starting point 
Now we must think about the order of the opposites of integers. You know that 
pos 8 > pos 3. What is the order of the opposites of pos 8 and pos 3? Wethe opposites as neg 8 and neg 3 and see 

can rewrite
that neg 8 <neg 3. You can check this on thenumber line. So the order relation between two positive integers is reversed betweentheir opposites. You can see this is true for other integers also by working through 

the next exercise. 

EXERCISE 26-4C 

Write down the order relationship between each of these pairs followed by the order re
lationship between their opposites. The first one is done for you.

1. neg 3 < pot; 2, pos 3 > neg 2 2. neg 5 neg 8
3. pos 2 pos 11 4. pos 2 neg 11
5. pos 7 0 6. 0 neg 2
7. neg 6 neg 1 8. pos 10 0 

26-5 "Between" 

What do we mean when we say that a whole number is between two other whole numbers?
For example, suppose I say that I am thinking of a whole number between 3 and 7. Youknow that this whole number must be a member of the set of numbers which are greater
than 3 and less than 7. It must be a member of the set 14, 5, 61. You can see thatthis way of finding the set of numbers between two numbers will work for the integersalso. An integer between pos 3 and pos 7 must be greater than pos 3 and less than pos 7.It must be a member of the set Ipos 4, pos 5, pos 61. Can you write the members of the setof integers between neg 3 and pos 1? Each of these integers must be greater than neg 3and less than pos 1. The set is Ineg 2, neg 1, 01. You can check each of these examples
by looking at the number line. 

I between neg 3 and pos I I I between pos 3 and pos 7 1
1 Ineg 2, neg 1, 01 1pos 4, pos 5, pos 61
 
I 
 I
 

neg 3 neg 2 neg 1 0 pos l pos 2 pos 3 pos 4 pos 5 pos 6 pos 7 
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EXERCISE 26-5A 

1. 	 Write the set of integers between these pairs. 

a. pos 20 and pos 25 b. pos 2 and neg 2 

c. neg 3and 0 	 d. neg 5andneg7 

e. pos 8 andpos 9 f. neg 3andneg 4 

g. pos 2 and 0. 
2. 	 Write a description of the following sets using the idea of "between". 

a. lneg 2, neg 11 b. Ipos 19, pos 20, pos 21, pos 221 

c. 1pos 1,O, neg 11 d. 101 e. 1 1 
3. 	 Find how man), integers there are in the following sets. 

a. lintegers between neg 6 and pos 61 
b. lintegers between pos 5 and neg 111 

4. 	 Name a set o.points which is between each of the pairs of points identified in Exer

cise 26-4b. 

26-6 	 Summary 

You have been introduced to a new set of numbers, the integers. This is made up of the 

negative integers, zero and the positive integers. Integers can be represented on a number 

line and can be given an order of greatness. You will have noticed that the least number on any 

number line section you have drawn is always the number on the extreme left. After this, the 

numbers become greater as you move along the number line from left to right. Then you reach 0 

and after 0 the numbers continue to increase. The greatest number on any section of the num

ber line you have drawn is always the number on the extreme right. You are also able to find 

the set of integers between any two integers by using what you know about order on the line. 

You have also seen how to find the opposite of an integer and have discovered that to find the 

opposite of the opposite of a number is to leav the number unchanged. 

You will now he wondering whether you can find ways to add, subtract, multiply and di

vide using these new numbers, and in the next chapters you will see that you can, in fact, do 

th is. 
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Chapter 27 
OPERATIONS ON INTEGERS 

27-1 Addition 

The positive integers pictured on a number line are so like the whole numbers picturednumber line that you will wonder whether you can add integers in the same 
on a 

way as youadded whole numbers on the number line. Before answering this question,think again about what we shall first have towe mean by these integers. In every case, you measured from 0 a num
ber of units along the line. 

To find latitude N23 0 you measured 230 from 00 upward.
°To find longitude W19 you measured 190 to the left of 00.To find 100 feet below sea level you would measure 100 feet downward.


To find pos 3 you *aeasured 3 steps of I unit each to the right of 0.
To find neg 3 you measured 3 steps of 1 unit each to the left of 0. 
So you can think of the sum of two integers as the result of moving twice along the number line. You 
can find pos 3 + pos 5 by taking 3 steps from 0 to the right followed by 5 steps
from pos 3 to the right. This will bring you to pos 8. You can write 

pos 3 1 pos 5 = pos 8. 
Now you have found the sum of two positive integers. You can see that it was found in just thesame way that you found 3 + 5, the sum of two whole numbers, on the number line.You can check the answer by thinking of gains and losses. A gain of 3 shs followedgain of 5 shs gives by aa gain of 8 shs. As gains may be thought of as positive integers you willsee that this is another way of thinking of pos 3 ± pos 5 and that this is the same as pos 8.You can also work out the result of addition and subtraction of integers by using a sliderule. This is how to make it.

You need two strips of ruled paper. Fold each strip into a long strip with the ruled lines across the width like this: 

Along the lower edge of the first strip mark the integers as if the edge were a number 
line. 
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Now mark, in the same way, the upper edge of the second strip. The picture shows you 

how your two strips should look. 

neg 5 neg14 neg]3 neg 2 negl 01 pos 1 pos12 pos 3 pos1 4 posj5 

neg 5 neg 4 neg 3 neg 2 negll 0 pos 1 pos 2 pos 3 pos4 pos 5 

This is a slide rule, but yours should hav many more numbers than there are in the pic

ture. The more integers you write, the more use you will find for your slide rule. 

Now you are ready to find pos 2 + pos 3 on your slide rule. Find Dos 2 on the lower strip. 

Now slide the upper striD along to the right until the zero point of the upper strir) is exactly 

above the point pos 2. Your slide rule should look like this: 

neg 2 neg 1 0 posIl pos 2 pos 3 pos4
 

neg 3 neg 2 neg 1 01 posII pos12 posj3 pos 4 pos 15 pos 6 

75 	 >1 

From the lower zero point, you have moved to the lower pos 2 point. Now you want to add 
pos 3 to the pos 2. To do this, you move 3 more units to the right from pos 2 and you do this 
with the upper strip. The upper zero point is at pos 2 and to add pos 3 you move along the upper 
strip 3 units to the right, that is, to the pos 3 point. Now you have added pos 3 to pos 2 and the 
answer will be on the lower strip below the pos 3. What is the answer? You see that it is pos 5. 
So you have found by using your slide rule that 

pos 2 	+ Pos 3 = pos 5. 

EXERCISE 27-IA 

1. 	 Without moving your slide rule from the position shown above, find the answers to these 
problems: 

a. pos2+pos4 	 b. pos 2+pos 5 
c. pos 2+ pos 2 	 d. pos 2 + pos 1 
e. pos2+0 	 f. pos2+r 

2. 	 Now use your slide rule to find the answers to these problems: 
a. pos 3 + pos I 	 b. pos I + pos 3 
c. pos 	4 + 0 d. pos4 + pos 2 

e. 0+pos6 	 f. 0+0 

3. 	 Make up eight addition problems like these but use greater integers. Check that your 
slide rule gives you the correct answers. 
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You now know a way to add two positive integers.
the same 

Can you add two negative integers inway? First think of the question in terms of losses and then use your slide ruleto see if it gives the same answer. If you have a loss of 3 sh. followed by a loss of 2shs, you have lost the same amount s if you had one loss of 5 shs. Thinking of lossesas negative integers, you write this ascan neg 3 + neg 2 = neg 5. 
What do we mean by addition of negative integers? If it is to have the same meaning asaddition of pos.:,ve integers, it must moan one movement followed by another movement.You can find the sum neg 3 + neg 2 by using your slide rule. Where will you put the 0 ofthe upper strip? Above the first number, that is, above neg 3. You now have moved 3steps, from 0 to neg 3. Look along the upper strip from 0 until you find neg 2. You nowhave added neg 2. What number is in the answer place below neg 2? It will be neg 5. Sowith the slide rule, also, you have found that 

neg 3 1 neg 2 - neg 5. 

You found this sum by moving 3 steps to the left and thea another 2 steps farther to tue 
left. 
You now know how to add 
out how 

two positive integers or two negative integers. Can you workto add one negative integer and one positive integer? You should be able towork this out for yourself in the next exercise. 

EXERCISE 27-IB 

For each of these problems make up a story abo,.t gains and losses and then check your 
answer by using the slide rule. 

1. neg 2± pos 5 2. neg 5+pos3
3. neg3 0 4. pos 2+ neg 5
5. pos 5 - neg 2 6. 0+ neg 4
7. pos 3 + neg 3 8. neg 3 + pos 39. opposite of neg 3 + neg 3 10. pos 3 + opposite of pcs 3 

Did you need to use a 
integer you 

slide rule all the time? Did you discover that to add a positivemove your finger on the number line to the right, and to add a negative integer you move your finger to the left? So that instead of movingcan your slide rule, youuse one strip only as a number line and count along it. Here is an example. To findneg 3 + pos 2, you will first move to neg 3 on the line and then move 2 steps to the rightto add pos 2. This will bring you to neg I. Here is a picture to show what you have done. 

<-H-- I I I I ) 
neg 4 neg 3 neg 2 neg 1 0 pos I poF 2 

Work the next exercise using a number line only. 
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EXERCISE 27-IC
 

1. 	 Make a picture to show how you find each of these sums. 
a. pos 2+pos 4 b. pos 3+neg I 
c. pos 5+neg8 d. pos l+neg I 
e. pos 4+0 	 f. 0- pos 2 
g. neg2+neg6 h. neg3+pos 2 
i. neg4+ pus 5 i. neg4+ pos 4 

k. neg I +0 	 I. 0+neg 1. 
2. 	 Use a number line to find the following. 

a. (pos 3 + neg 5) + pos 4 
b. (pos 4 + neg 4) + neg 4 
c. neg 5 + (.,eg 1 + neg 2) 
d. (neg 3 + neg 3) + pos 4 
e. neg 3 + (neg 3 + pos 4)
 
What do you notice about the answers to d. and e.? Of what property of whole numbers
 
does this remind you?
 

3. 	 An aeroplane is flying across Africa. The pilot finds chat he is at a position whose lon
gitude is E18 °. He then flies 250 to the west. Draw a number line and mark his positions 
on it. Then make an addition equation to show what he did and where he was finally. 

On another day the pilot starts from a place W5' and flies east for 14' of longitude. 
Mark his journey on the number line. Write an addition equation to show what he did. 
Make up two more problems about the pilot and his aeroplane. 

Addition of opposites 

When you worked these problems, did you notice something about the result when you 
added a pair of opposites? What is neg 3 + pos 3? pos 2 + neg 2? pos 100 + neg 100? In each 
case the answer is 0. You can see that this must be so by looking at a picture of the addition 
of a pair of opposites. Think of neg 2 + pos 2. 

< I - I i > 
neg 3 neg 2 neg 1 0 pos I 

Neg 2 is 2 steps to the left from 0. Pos 2 is 2 steps to the right. 2 steps to the left fol
lowed by 2 steps to the right brings you back to where you started. So neg 2 + pos 2 = 0. 

You will find this property of opposites very useful later on. It is very important and so 
we will write it here. 

The sum of an integer and its opposite is zero. 
OR 

4 n integer added to its opposite is zero. 
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EXERCISE 27-ID
 

For each question, draw the number line and show the addition on it. Write also the addi
tion equation. 

1. Arua in Uganda has a latitude of N3'. Lubushi in Zambia is 1010 of latitude due southof Arua. (Due south means that the two towns are on the same meridian of longitudethey both have longitude E310.) What is the latitude of Lubushi?10 of latitude measures a distance of 70 miles on the surface of the earth. How far is it
from Arua to Lubushi? 

2. Make up some problems like this about your country and places north and south of it.3. 	 An aeroplane flying at a height of 3,000 feet above the sea drops a heavy weight whichfalls through 3,300 feet to the bottom of the sea.
4. 	 How deep is the sea at that point?The minute hand of the clock points to 23 minutes to the hour (4 P.M.) What time will it 

be in 35 minutes?
5. Kwasi and Kofe were playing a game in which 10 seeds were worth 1 cent and 10 centswere worth 1 sh. Their wins and losses are given below. How much had each of them 

won at the end of the game?
 
Kwasi: Win 12, 15,
Win Lose 13, Lose 6, Win 7.
 
Kofe: Win 8, Lose 7, Win 23, 
 Win 2, Lose 15.6. Make up an addition problem, suitable for your pupils, about each of the situations de
scribed in Exercise 25-2A. 

27-2 Subtraction 

Now you must think about subtraction of integers. You will remember that you havelearned to think about subtraction of numbers as finding the missing addend in an additionequation. For example, to find 11  5 you would find the missing addend in the equation 

11 = 5 +-.
 
So once you 
can add two integers, y:u should also be able to subtract oneIf you have the problem pos 11 pos 5 =j--], you can 	

from the other. - rewrite the equation as 

pos 11 = pos 5 +j'-. 
You will probably know at once that the missing addend is pos 6, and so you can write 

pos 11 -pos 5=pos
 
For harder problems, 
 the slide rule is very useful so let usthe easy problem we 	 see how to use it first onjust did. Can you do it yourself? Try first and then read what follows here.Find the addend you know, pos 5, on the lower strip and move the upper strip so that thezero point is above pos 5. Your slide rule will look like the next picture. 

i6i n l 0/ pjl p 12 p)3 p14 pi5 p1 6 
nep0/ PiP2 p/ . 4 p5 p 6 p7 p 8 p 9 p110 p 11 
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Now you want to know what you must add (on the upper strip) to pos 5 to get pos 11 on 

the lower strip. So find pos 11 on the lower strip. What number is above it? pos 6. So pos 6 is 

added to pos 5 to give pos 11. 
What is the answer to pos 3 - pos 3? You will know that this is 0 and can check that 

your slide rule also gives this answer. Can you write the equation showing this problem as 

finding the missing addend? It will be 

pos 3 + [= pos 3. 

You know that 0 is the only number which will make the equation true. 

Now we will do subtraction with two negative integers. Think of neg 5 - neg 2. You 

probably know th.": neg 5 can be found by taking a step of aeg 2 followed by a step of neg 3. 
Can you write this as a missing addend problem? What must be added to neg 2 to give 

neg 5? 
Can you work this out with your slide rule? Here is the picture to help you. 

43 n 2 nI 0 p 

n 5 n 4 n 3 n 2 njl 0 p 1 p 2 

The zero point of the upper strip is above neg 2 on the lower strip. What number on the 
upper strip will give you neg 5 on the lower strip? You see that it is neg 3. 

neg 5 =neg 2 +n 
or 

neg 5 -neg2= neg3 

You can see that these answers are reasonable by thinking of some real problems. Sup

po-e you have a credit of 5 shs at a shop and you want to buy a pair of sandals which cost 
1. shs. How much more money do you need? This is a missing addend problem. We can use 
positive integers for credits and write 

pos 11 = pos 5 +R. 

You know that you need another 6 shs and so pos 6 will be put into the box: 

pos 11 = Pos 5 + 

The corresponding subtraction equation is 

pos 11 - pos 5 =0 . 

Now suppose instead of a credit of 5 shs you have a debt of 16 shs at the shop. The 
shopkeeper will not allow you to have so large a debt any longer. He says you must reduce it 

to 6 shs only. What must you give him? 
You --an write negative integers for debts and so the missing addend equation will be 

neg 16 +L-= neg 6. 
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To reduce your debt from 16 shs tu 6 shs, you must give the shopkeeper 10 shs. That is,you add a credit of 10 shs to your account at the shop. Therefore, we have 

neg 16 +p = neg6.
 

The corresponding subtraction equation is
 

neg 6 - neg 16 .

v''ien you studied how to help your pupils understand subtraction, you found that there 

were several different types of problems which subtraction could solve.One problem was to separate a set into two subsets, to remove one subset, and thenfind how many members there were toin the remaining subset. You "tookthe whole set. This way 
away" one subset fromof looking at subtraction is useful to help young children understandwhat they are doing, but it is not 

awkward 
very useful for problems about integers. For instance, it iseven to think about a positive subset of a negative set. So we will notof subtraction. use this ideaWe will think instead of subtraction as comparing

Think of the 
two sets or two measurements.two problems about credits and debits. You found theas missing addend answer by thinking of theseproblems, but they are also comparison problems. In a comparison problem,you find tie difference between two numbers.


In tne first example, 
 you found the difference between two successive credits at the
shop: 

pos 11 - pos 5 
=
 
In the second example, 
 you found the difference between two successive debits at the 

shop: 

neg 6 -neg 16=os1 
Ineach case you wrote the missing addend equation and then used your slide rule tofind the required difference. This is one way to find the difference between two integers.

Later you will find a quicker way. 

EXERCISE 27-2A 

1. 
 Rewrite each of the following subtraction equacions as a
missing addend equation and

find the missing integer. 
a. pos7 - pos 5=J b. pos3-pos I =-j
C. pos3-pos3 =Ej 
 d. pos2-0 =Ej

e. neg7 - neg7 [[j f. neg4-neg2 =Eg. neg3-neg3jl-
i. neg 3 I. neg2-0- neg 1I -


2. A mine shaft 100 feet deep has above it on the ground a tower 60 feet high. A laddergoes from the bottom to the top. Write equations in positive or negative integers whichyou use to find the answers to the following problems.a. A man climbs from the ground to a platform 20 feet high and then climbs another 15 
feet. Ilow high is he now?b. Above his head there is another platform 50 feet from the ground. How much higher
is this platform than the first platform?

c. Another man is 25 feet down the mine. low much farther has he to go to reach the 
bottom? 
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Make up some problems about gains and losses to fit these equations. 

a. pos2+pos4=pos6 b. pos4-pos 3 pos I 
c. neg 4--neg = neg3 d. neg2-neg2O0 

Now we come to harder problems. How can we subtract a positive integer from a negative 

integer, and vice versa? Think of the equation 

pos 2 - neg I =-L. 

If you think of this as comparing pos 2 and neg 1 then you can see chat you are asking 
the question "How much greater is pos 2 than neg 1?" This is a missing addend problem 
again and you can write it 

pos 2 = neg 1 +[E-]. 

How will you find the answer? You may see at once, by thinking of the position of pos 2 

and the position of neg 1 on the number line that the missing addend is pos 3. (Your pu
pils will need to work it out with their slide rules and should not be urged to use only 
the num' er line just yet. Let them see why pos 3 is the only number which will make the 

equation true.) Here are the equations. 

and SO 
pos 2 neg I + pos3 

pos 2 -neg 1 = pos3 

You have now subtracted a negative integer from a positive integer. You could equally 
well use the same method to subtract a positive integer from a negative integer. Suppose 
you have 

nep 5 - pos3 = -. 

This can be written as 
neg 5 = pos 3 +1. 

By using your slide rule, you will discover that neg 8 is needed to make this equation 
true. 

neg 5 =pos 3+ne 

so 

neg 5 -pos3= neg8 

You can check these ansvers by thinking about debits and credits. If you have a credit 

of £2 at the shop and your friend has a debt of £1 at the same shop, then you can com
pare your credit of £2 with your friend's debt of £1 and say that in that shop you are £3 

richer than your friend. You can use positive integers for credits and negative integers 
for debts and write 

pos 2 - neg I = pos 3. 

Perhaps on anoi'her occasion you have a debt of £5 at the shop and your friend has a 
credit of £3 in the same shop. You can compare ycar debt of £5 with your friend's; credit 

of £3 and write 

= neg 5 - pos 3 neg 8. 

The result tells you that in that shop you are £8 poorer than your friend. 
You will be realizing now that it seems as though subtraction is alw lys possible with 
positive and negative integers. From your knowledge of the order of integers, you will 

' ,' 
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have noticed that you can subtract a greater integer from a smaller integer and have an
ansioer. You will remember 

neg 5 - pos 3 = neg 8. 
Neg 5 is less than pos 3 because it is to the left on the number line. Again, you cannotfind a whole-number answer to 3 - 5, but what about pos 3 - pos 5? Try it. 

pos 3 -pos 5= 1] 
pos I = pos 5 + Li 

What must be added to pos 5 to get pos 3? It must be neg 2. 

pos 3 = pos 5 4 -neg2, 

so 

pos 3 -pos 5 = neg 2. 
It looks as if these new numbers will be very useful to us. We ca- do any subtractionproblem with them. We can find an answer when we subtract a larger number from asmaller number and also when we subtract a positive number from a negative number.You know something important now about the operation of subtraction in the set of integers. No matter what two integers a and b you select, it is always true that there is aninteger which is the difference a  b.We say that the set of integers :s CLOSED under 

subtraction. 
What set of numbers is closed under addition? The set oi whole numbers is, becausethere is always a whole number which is the sum a + o, whichever whole numbers a andb we select. But the set of integers is also closed under addition because we can alwaysfind a + b,no matter what integers a and bwe select.
(Which set of numbers is closed under division? Is there always a quotient in the set of 
fractions? If we choose any two fractions a and c, is there always a fraction a "? 

WWe must bc careful here, because we cannot divide by zero. 
b d 

a e ad 

This quotient e can always be found provided that neither b nor c is 0. With this 
condition, the set of fractions is closed under division.) 

EXERCISE 27-2B 

1. Use your slide rule to find these differences. 
a. pos 5-pos2 b. pos5-pos6 
c. pos 2-pos 2 d. pos 5-neg I 
e. 0-neg3 f. 0-pos2 
g. neg 5- pos3 h. neg I -neg7
i. neg.3-neg3 j. neg3-pos 32. Explain how you could use a slide rule to find pos 1 - neg 4.3. Make up a story problem about wins and losses in a game in which the following equa

tion occirs. 
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pos 3 - pos 7 = neg 4 

Let us think again about comparing two integers. Think about debits and credits. If you 

have a debt of £3 in a shop and your friend has a credit of £2, then you can compare your 

inatncial standing in that shop in two ways. You will be £5 poorer in that shop than your 

friend, and your friend will be £5 richer than you. Can you write the two equations? 

neg 3 - pos 2 = neg 5, 

and 

pos 2 - neg 3 = pos 5. 

These two equations are very closely related. The numerical parts of the differences are 

the same, but one difference is neg 5 and the other difference is pos 5. Here pos 5 rep

resents "richer by £5" and neg 5 represents "poorer by £5". 

These results fit in with the way we usually compare two measurements A and B. We 

either say that one, A, is greater than the other, B, or that B i:3less than A. Instead of 

greater than, we may have several different comparisons, such as higher than, later than, 

richer than, to the north of and in front of. For less than, the corresponding comparatives 

are lower :.an, earlier than, poorer than, to the south of and behind. 

In any particular situation, there is no ambiguity. You always know which town of two is 

to the east by looking at their latitudes. You know which of two wins is greater by com

paring the two amounts on a lumber line. There is a convention-an agreement-about the 

operation of finding tile diffe;'ence between two numbers. The number which is mentioned 

second is the number which must be subtracted. Find the difference between neg 1 and 

pos 2 means find neg 1 - pos 2. Find the difference between pos 2 and neg 1 means find 

pos 2 - neg 1. 

We can write this convention as a general rule using a and b to stand for any integers we 

select. 

The difference between a and b is a -. b. 

In comparing the two integers we will, of cour3e, say that 

a is greater than b if the difference is positive, 

or 

a is less than b if the difference is negative. 

You will notice that the first integer in the difference a - b is written first in the sen
tence making the comparison. 

Here is an example. Find the difference between pos 3 and pos 11. The difference is 

pos 3 - pos 11. 

pos 3 = pos 11 [E 

VI'nt must be added to pos 11 to make pos 3? It must be a negative integer, so it will be 

ne,. ". 

pos 3 =pos I n eg 

So we say that pos 3 - Pos I I = neg 8, or the difference between pos 3 and pos 11 is 

neg 8. Now you know th-at pos 3 is less than pos 11. If we had asked for the difference 

between pos 11 and pos 3, we would have 

pos 11 - pos 3 pos 8. 

I; 
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You know that pos 11 is greater than pos 3. 
So if the first integer is greater than the second integer, the difference is a positive integer, and if the first integer is less than the second integer, the difference is a nega
tive integer. 

This property of the difference of two integers give, you a new way to work out the an
swer to a subtraction problem. Here it is. 
Find the distance on the number line between the two points which correspond to theintegers. Then if tile first integer is greater than the second, make the answer a positiveinteger. If the first integer is less than the second, make the answer a ue.alive integer. 
For example, suppose you want to find the difference between neg 4 and neg 7, that is,neg 4 - neg 7. The distance between the points on the number line w' ich correspondto these integers is 3 steps. So the answer- will be either pos 3, or ner, 3. Look at thenumbers. Which is the greater? Which number is to the rigIt on the number line? Neg 4 isto the right and so neg 4 is greater than neg 7. So now you can write 

neg 41- neg 7 _ pos 3. 
Check this by writing it as a missing addend problem: 

neg 7 1p = neg 4 
Similarly, the difference between neg 7 and neg 4, that is, neg 7 - neg 4, would be neg 3: 

neg 7  neg 4 =n 
It is useful at first for your pupils to work subtraction problems in this way also, because it helps them to understand subtraction of integers and the meaning of a negative
integer result. 

EXERCISE 27-2C 
1. Use the missing addend method 

a. pos 3-pos 8 
to find the answers 

b. neg3-neg8 
to the following problems. 

c. pos I -neg I d. pos4- neg 2 

2. 

3. 

e. neg 3-pos 5 f. 0-neg4 
g. pos 2 -pos I h. neg4- neg I 
Write a sentence to describe and explain each result.
Find the difference between the numbers in eachl of the following pairs by using a number line, first finding the distance between the points corresponding to the numbers, andthen writing pos or neg to show whether the first number is greater than or less than thesecond number. Write your result first in an equation and secondly in a sentence.
0. pos 2, pos l b. pos 3, neg 5 
C. 0, neg4 d. neg 1, neg 5 
e. pos 3, 0 f. pos 1, pos 7 
g. neg 3, pos 3 h. neg 11, neg 2Look at the questions in Exercise 26-4B. You were asked to compare pairs of measure
ments by saying which position was higher than, or to the east of, the other and so on.Now find the difference between each of the numbers in these pairs. Show the subtraction
equation and the corresponding addition equation. Write each answer in a sentence com
paring the two measurements. 
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27-3 Relation between addition and subtraction 

Now that you know how to (1o addition and subtraction with these new numbers, the in

useful than the whole numbers alone. With the whole numtegers, you see how they are more 

bers, you can find an answer to 5 1 3, and 5 - 3, but not to 3 -- 5. With the integers, you can 

find the sum of any two integers, and you can also find the difference between an), two inte

- pos 3 and, also, pos 3 - pos 5. With whole numbersgers. For exampjle, you can find pos 5 

you can always do addition, and sometimes subtraction. But with the integers you can always 

do 	addition and ,liia!/s do subtraction. 

Do you remember the mathematical way of writing these properties of the set of whole 

numbers and the set of integers? The set of whole numbers is closed under addition, because 

can always be found which is thewhatever whole numbers a and b we select, a whole number 

The set of inltegers is closed under addition anl Subtraction.sum a b. 

EXERCISE 27-3A 

1. Write a sentence similar to the above about: 

a. 	 the set of integers and addition 

b. 	 the set of integers and subtraction 

2. What set of numbers is closed under division? how would you explain this to your pupils? 

There is another vety useful property of addition and subtraction of integers. Exercise 

27-3C will help you to discover this property, but first work the short Exercise 27-3B to 

remind yourself about some very useful pairs of integers. 

EXERCISE 27-3B 

1. Put an integer into each of these boxes to make the equation true. 

a. 	ps3 i 0 b. neg34I]=0 
C.n-t pos I -0 d. n"i neg5=0 

e. Zli/\ =0 . t0 =0
 

Now answer these questions.
 

g. 	 What are these pairs of integers called? 

h. 	 Draw a number line to show the pair in Question lb. 

i. 	 What is the special property of these pairs of integers? 

J. 	 Write three more pairs. 

Now that you are sure that you remember opposites and their properties, do the next ex

ercise and see what you can discover about their use in addition and subtraction. 

EXERCISE 27-3C 

1. Put an integer into each box to make the equations true. 

a. 	pos 3 - pos I = n
 
pos 3 + neg I = -

pos 3 - pos =pos 3 1-11 
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b. neg 3 + neg I=F]
 
neg 3 - pos 1 = nj-]
 
neg 3 + neg 1 ='neg 3- 

c. 	 pos 2-pos 6 
pos 2 + neg 6-j
 
pos 2 - pos 6 pos 2 +
 

d. 	0- pos 7L=
 
0 + neg 7
 
0 - pos 7 = 0 +
 

e. 	 0 - neg 7 =
 
o + FjI= pos 7
 
0 - neg 7 = 0 +
 

Do you see here a connection between addition and subtraction? Describe it in a sen
tence.

What did you discover in the last exercise? 
Did you find these two properties of addition
and subtraction of integers? 

Discovery 1. To subtract an integer from another integer you can add its opposite.
is shown in the equations below. 

This 

pos 3 - pos 5 = neg 2 
pos 3 + (opp. of pos 5) = pos 3 + neg 5 

= neg 2
 
Therefore,
 

pos 3  pos 5 = pos 3 + (opp. of pos 5). 

Discovery 2. To 	add an integer to another integer you can subtract its opposite. 

neg 3 + pos 4 = pos 1 
neg 3 - (opp. of pos 4) = neg 3 - neg 4 

= pos 1
 
Therefore,
 

neg 3 + pos 4 = neg 3  (opp. of pos 4). 
These two properties, linking addition and subtraction of integers, are really only oneproperty: To add an 
an 

integer to another integer you subtract its opposite, and to subtractinteger from another integer you add its opposite. You will see in the next chapterhow this property is used to make addition and subtraction of negative integers much 
easier.
 
Now let us 
think about subtraction on the number line. We have not yet found whatment on 	 movethe 	number line corresponds to subtraction. We already have movements for addition on the number line: 
To add a positive integer to another integer, move to the right.

To add a negative integer to another integer, 
move to the left.Can you draw the pictures for the two additions neg I + neg 4 and neg 2 + pos 3? 
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Here they are. 

+ neg 4 negI 

n51, n 4 en3 n2 nl 0 pI 

neg 14neneg1 negneg 5 

neg I+neg 4 =neg 5
 

-I i -,__Ap iI pi2 > 
n2 ,1i 0K -/11 p2 

pos 1 

neg 2 + pos 3 = pos 1 

Each of these equations can be rewritten showing subtraction of the opposite. Take the 

first equation. 

neg 1 + neg 4 = neg 5 

becomes 

neg 1 - (opposite of neg 4) = neg 5 

or neg -pos 4 = neg 5. 

So the movement to the left which represents + neg 4 also represents - pos 4. So we 

have found a meaning for subtraction of a positive integer in terms of a movement on the
 

number line.
 
To subtract a positive integer move to the left. Here is a picture.
 

- pos 4 1 

n n 4 n3 n 2 n 1 --"0 pl 

neg 5 

neg I -pos 4 = neg 5 

You will see that this is the same as the first picture above except that - pos 4 has re

placed + neg 4. 
Now consider the second equation, 

neg 2 + pos 3 = pos 1, 

which becomes 

neg 2 - (opp. of pos 3) = pos 1 
= 
or neg 2 - neg 3 pos 1. 
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ou tne movement to the right which represents + pos 3 also represents - neg 3. Nowhave wea movement for subltraction of a negative integer.
To subtract a negative integer move 
 o the right. Here isa picture.
 

- neg 3 
,N I negI 2 

2 n 1 Sn p1 p2 

neg 2 - neg 3 = pos 1
 
You will see 
that this is the same as the second picture above excep, that - neg 3 hasreplaced + pos 3.Put these two discoveries together and you have the movements for subtraction on thenumber line. 
To subtract a positive integer from another integer, move to the !eft.To subtract a negative integer from another integer, moveTo summarize what we 

to the right.now know about addition and subtraction as movements we will
write: 

A mo,e to the riqlht is caused by the 
1. addition of a positive integer, 
2. subtraction of a negative integer. 
A move to the left is caused by the 
1. addition of a negative integer,
2. -;ubtraction of a positive integer.You now have three ways of finding the difference between two integers a and b.: 

a - b_=D 

Method 1. Rewrite the subtraction equation as an addition equation and find the missingaddend c by using a slide rule or the number line: 

a = b + 

Method 2. Find the distance d in units on the number line between the two points.cide whether a > b or b > a. 
De-

If a > b,the difference will be positive: 

a- bd>O 

If a < b,the difference will be negative: 

o - b= d < 0. 

Method 3. Add the opposite of the second integer in the equation a - b=E-: 

a + (opp. of b)= D 
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EXERCISE 27-3D 

Work the following problems in subtraction of integers by adding their opposites in each 
case. 
a. pos 3 - pos 8 b. pos 12-pos7 

c. neg 5-neg 9 d. neg4- neg I 
e. neg 3-pos 7 f. neg 5-pos 2 
g. pos 3-pos 3 h. neg 5- pos 5 
i. pos 7 - neg 10 



Chapter 28 
RELATION OF INTEGERS 
TO WHOLE NUMBERS 

In the last three chapters you have learned much about the integers. You know how theyare used to show measurement in opposite directions; you know how to find which of two integers is the greater and how to do addition and subtraction with integers. Now you will want toknow how they fit in with what you have learned before that. How are the integers related to 
the whole numb,-rs? 

28-1 The positive integers 

Think first about the set of positive integers and the set of counting numbers. You willremember that the counting numbers do not include zero. Each set has a least member, pos 1or 1, and each of these can be matched with the other. All numbers greater than these can bematched in pairs in order of size beginning with pos 2 and 2. aHere is picture of this match
ing. 

Counting 1 2 3 4 5 6Numbers t I I I 
Positive*
 
Integers pos 1 pos 2 pos 3 pos4 pos 5 pos 6
 

The difference between any two successive counting numbers and the difference betweenany two successive positive integers is the same, one unit. Each number in either set is oneunit greater than the number to the left of it and one unit less than the number to the right ofit. If we now consider the set consisting of the counting numbers and zero-that is, the set ofwhole numbers-and compare it with the set consisting of the positive integers and zero, we c'tntake the comparison further. The number one unit less than pos 1 is 0, and the number one unitless than 1 is 0. So you can see that there is a very close resemblance between the set of wholenumbers and the set made up of zero and the positive integers. It is such a close resemblance
that you can show them both on the same number line. 

Whole numbers 0 1 2 3 4 5 
II I-f-t ', I 

Zero and pos. integers 0 pos 1 pos 2 pos 3 pos 4 pos 5 

Now we must ask, "Do the numbers of both sets behave in the same way when you addor subtract with them?" Do they give corresponding results? Is the answer to 2 + 4 the whole 
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number which corresponds to the positive integer which is the answer to pos 2 +pos 4? The an
swers 	are 6 and pos 6 and these are corresponding numbers. You can see that this relationship 
will always be true for addition, but will it be true for subtraction? Work through the next ex
ercise 	and make a note of any cases where there is not a correspondence between the answer 
in whole numbers and the answer in positive integers with zero. 

EXERCISE 28-IA 

1. 	 Find the answers to these problems. 
a. 23 + 65 = D"1 pos 23 + pos 65= 
b. 203 - 129 =-] pos 203 -pos 129=E 

c. 24 	- 79 =-] pos 24 - pos 79 =F] 
d. 17 	 - 25j= pos 17-pos 25 =j 

e. 94 	- 37 = pos 94 -pos 37 = 

Have you found that the whole numbers and the positive integers with zero give cor
responding results for subtraction as long as the first number in the subtraction equation 
is not less than the second number? 25 - 17 has a result 8, and pos 25 - pos 17 has a 
result pos 8. If you have a subtraction equation where the first number is less than the 
second number, then there is a result when you work with integers, but this result is a 
negative integer. For example, pos 17 - pos 25 = neg 8. There is no corresponding an
swer to the whole-number equation. That is, 17 - 25 has no whole-number answer. So if 
you work with the positive integers and 2ero only, you can see that they behave in ex
actly the same way as the whole numbers. Because of this resemblance, we will not con
tinue to give the positive integers their special label "pos". We say that pos 3 behaves 
exactly like 3, and so we will write 3 fof pos 3. 

Instead of pos 1, we write 1
 
Instead of pos 2, we write 2.
 
Instead of pos 3, we write 3.
 
Instead of pos 100, we write 100.
 

Here are some equations. They are written first in the old notation and second in the new 
notation for positive integers. 

pos 3 + pos 2 =pos 5 becomes 3 + 2 = 5.
 
pos 5 + neg 3 = pos 2 becomes 5 + neg 3 = 2.
 
pos 5 -pos 2 = pos 3 becomes 5-2 = 3.
 
pos 3 + 0 = pos 3 becomes 3 + 0 = 3.
 

0+pos 1 = pos I becomes 0+ 1= 1. 
= pos 3 	 - pos 5 neg 2 becomes 3 - 5 = neg 2. 

EXERCISE 28-lB 

1. 	 Find the answers to the following problems. Then rewrite them, putting whole numbers in 
place of the corresponding positive integers. 
a. pos 15 + pos 14 b. 0 - pos 3 c. pos 1 - pos 3 
d. pos 23-pos 7 e. pos 17+neg9 f. pos 3-neg2 

2. 	 Make up four problems like the ones you have just done. 

"j2, 
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28-2 The negative integers 

Draw a number line for the integers and write the counting numbers where you formerly
wrote the positive integers. 

< I I I I I :1: 
neg 5 neg 4 neg 3 neg 2 neg 1 0 1 2 3 4 5 

You have a number line along which you have measured in two opposite directions. You can still know which 3 is on the right of 0 and which 3 is on the left of 0, because the one onthe right is written 3 and the one on the left is written neg 3. You will ask whether there is asimpler way of writing neg 3. What do you know about neg 3? You know that neg 3 names thepoint you reach by taking three steps to the left from 0. You can also think of this movement as 
adding neg 3 to 0. The equation is 

0 + neg 3 = neg 3. 
You have also learned that you can replace + neg 3 by - pos 3, and in the new notation- Pos 3 will be - 3. Instead of adding neg 3, you can subtract the opposite of neg 3; that
is, you can subtract 3. So we can now have two equations 

o + neg 3 = neg 3
 
and 
 0- 3 =neg 3. 

The difference (0 - 3) and the sum (0 + neg 3) are the same number, neg 3: 

0 + neg 3 = 0 - 3 = neg 3 

Because of this equality, we agree to write "-3" for "neg 3". The minus sign now hastwo meanings instead of only one. From now on, every minus sign you meet can have two possible meanings and you should know which one is meant. In 0  3 the minus sign means theoperation of subtraction. In -3 (for neg 3) it means negative. It must mean negative here becauseno other integer is in front of it from which you can subtract it. It is useful to write -3, when itis a negative integer, with brackets enclosing it as (-3) to remind pupils that it does not mean 
subtract 3 but the integer neg 3. 

Instead of neg 1 we now write (-1). 

neg 2 becomes (-2).
 
neg 3 becomes (-3).
 

neg 251 becomes (-251).
 
Each integer except 0 has a 
new name in the new notation, but the set of integers is thesame as before: It consists of the positive integers, zero and the negative integers. The oldcounting numbers are included in the set of integers as the positive integers. The old wholenumbers are now the set of positive integers with zero. Here is the number line labelled with the 

new notation. 

(-4) (-3) (-2) (-1) 0 1 2 3 4 5 

Now you can rewrite equations in the new notation. Here are some examples. 

pos 3 + neg 1 = pos 2 becomes 3 + (-1) =2. 
neg 5 ± neg 8 = neg 13 becomes (-5) + (-8) = (-13). 
neg 5 - neg 7 = pos 2 becomes (-5) - (-7) =2. 
Pos 3 -pos 12=neg9 becomes '- 12 =(-9). 
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pos 	5-pos 2 =pos 3 becomes 5-2 =3. 
0 + neg 5 = neg 5 becomes 0 + (-5) = (-5). 
0-pos 2 =neg 2 becomes 0-2 = (-28). 

Each time the minus sign appears in the second column of equations above, it means
 
either subtract or negative. Car, you say which it is in every case? Here are three equations. In
 
the first equation the minus means negative:
 

3 + (-1) = 2 

In the 	second equation the minus means subtract: 

5-2=3 

In the third equation there are two minus signs. The first means subtract and the second means 
negative: 

=4 -	 (-3) 7" 

EXERCISE 28-2A 

1. 	 Find the answer to each of these problems and then write the complete equation in the
 
new notation.
 
a. neg 13 + neg 71 b. neg 21 - pos 11 
7. neg 	3-0 d. neg 21 - neg 15 
e. pos 13+neg20 f. 0+neg4 
g. pos 14-pos 32 h. pos3-neg7 
i. 0 -	 neg 17 

2. 	 In each of the following equations, decide which of the two possible meanings for the 
minus sign is meant and write the equation in words. Here is an example: 

(-7) - 1 = (-8) in words is "neg 7
 
subtract 1 equals neg 8".
 

a. (-3) + 2 	 b. (-3) - 2 =E1 
c. 	4- (- 5)= d. 4 - 5=1 
e. (-4) - 0=-	 f. (-3) +(-5) 
g. (-3) - (-5) =[-1 h. 0 - 2=E[] 
i. 0-(-2)=R j. (-4)+ 2=D-R 

3. 	 Draw a number line showing the integers written in the new notation. Mark on it the 
points represented by each of the following integers and its opposite. For each pair, 
make an equation; for example, opp. of 3 =R. 

a, 	 3 b. -2 c. 7 
d. pos 9 e. (opposite of 10) f. -5 
g. 0 h. [opposite of (-6)] i. neg 4 

28-3 Opposites 

What can we discover about an integer and its opposite in the new notation? Look at 
these equations. 

V. 
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=Opp. of 3 neg 3 becomes Opp. of 3 = (-3). 
opp. of neg 5 = pos 5 becomes Opp. of (-5) = 5. 

In each pair of opposites, one integer is positive and the other integer is negative. Can yousee that here the minus sign can be thought of in a third 	way, as saying "the opposite of"? 

(-3) is the opposite of 3.
 
-(neg 4) is the opposite of neg 4.
 

-(-4) is the oppositeof (-4).
 

EXERCISE 28-3A 

I. 	 For each of the following, first find the integer to make the equation true, then rewrite
the equation in the new notation for "negative" and for "the opposite of". 
Example: 

opp. of neg 3= 
opp. of neg 3 = 

-(-3) 	 : 3 
a. opp. ofpos 2 =Ej b. cpp. ofneg 5= 
c. Opp. of 0= jj d. opp. of opp. ofpos 1= 
e. opp. of opp. of neg 3= - f. opp. of opp. of 0 = R 

2. 	 Find the integer which is the simplest way of writing ea ch of the following.
a. (-4) b. [-(-2)] 
c. (-0) d. -[-(-6)] 

28-4 Addition and subtraction in the new 	 notation 
You will be wondering how to perform addition and subtraction in the new notation. Perhaps you already know some rules for adding and subtracting integers, but do you understand

how they work? Can you explain them to your pupils?
It will help to think of addition and subtraction on the number line. Think about adding or subtracting a positive integer. The probl-ms are given first in the old notation and then 

in the new notation. 

pos 6 	 + pos 2 = 6 + 2 steps to right = 8 
neg 2 + pos 4 = (-2) + 4 steps to right = 2 
pos 6-pos4 =6+4steps to left =2
 
neg2-pos 4 =(- 2 )+4steps to left =(-6) 

EXERCISE 28-4A 

1. 	 Draw a number line to show each of the following and then write the complete equation. 
a. 2+3 b. 2-3 
c. 0-2 d. (-2)+1 
e. (-3) + 5 f. (-4) + 6 
You see that the addition and the subtraction of positive integers from other integers 
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present no difficulty at all. And in the last chapter we learned that to add an integer we 
can subtract its opposite, and to subtract an integer we can add its opposite. Here are 
two examples showing these procedures in the new notation. 
In the old notation we have 

-pos 3 neg 5 = pos 3 - (opp. of neg 5)
 

= pos 3 - pos 5 =neg 2.
 

In the 	new notation we have 

3 + (-5) = 3 - opp. of (-5)
 

=3-5
 
3 + (-5) = (-2). 

Now we will work another problem, first in the old notation: 

neg 2 - neg 3 	= neg 2 + (opp. of neg 3)
 

=neg 2 + pos 3
 
= pos 1
 

In the 	new notation this becomes 

(-2) - (-3) = (-2) + [opp. of (-3)]
 
= (-2) + 3
 

(-2) - (-3) = 1.
 

EXERCISE 28-4B 

1. 	 Work these problems in the way shown above, first in the old notation and then in the 

new notation. 
a. pos 3+neg4 b. neg 3+neg 3 
c. 0+negi d. 0-neg4 

e. pos 3-neg2 f. neg 5-neg2 
g. neg 2-neg 2 h. neg7+neg3 

2. 	 Work these problems using any method you choose, but explain your method as you would 
explain it to your pupils. 
a. neg 2+pos 1 b. neg6+neg3 
c. pos 1-pos7 d. pos 3-neg3 

3. 	 Think of the physical models of the integers and make up some problems about them 
which need addition and subtraction of integers. 

28-5 Some properties of integers 

Do you remember that when you studied addition of whole numbers and of fractions you 
found that zero played a particular role in addition? It is an identity element. If 0 is added to 
a number, that number is unchanged. For example, 9 + 0 = 9 and 0 + 9 = 9. When you tested to 
see if zero was an identity element for subtraction also, you found that it only "half 
worked". 3 - 0 = 3, but 0 - 3 had no answer. Now you know the answer to 0 - 3: it is (-3), 
neg 3. Try the question again beginning with (-3): (-3) - 0 = (-3), and 0 - (-3) = 3. So zero 
does not act as an identity element for subtraction. Do you know why not? It is because of an
other property which addition possesses and which subtraction does not. 
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You know that 3 + 5 = 8 and 5 + 3 = 8 and also that 5 - 3 = 2 but 3 - 5 / 2. This showsthe commutative property of addition and it shows that subtraction does not possess this prop
erty. 

In general you know that, for all integers a and b, a + b = b + a but that a - b / b - aunless a = b. The commutative property is not a property of subtraction.
 
There is, however, a special relationship between 
a  b and b - a. Can you see what it

is? Look at these results. 

5- 3=2 3- 5=(-2)

12-4=8 
 4- 12=(-8)
 

16- 19=(-3) 19- 16=3
 
In each pair of equations the differences are opposites, 2 and (-2), 8 and (-8) and (-3) and 3. 

So (a - b) and (b - a) are opposites.
 
So (a - b) = opp. (b - a),
 

(a - b)= -(b - a).
 
This is a very useful relationship. If you have, for example, 8 - (3 - 4) in an equation, you can 
replace it by 

8 + (4 - 3) 

which is easier to find. 

EXERCISE 28-5A 

1. Work these problems 
a. (pos 6 + pos 2) - neg 3 
b. neg 3 + (neg 2 + pos 1) 
c. [7 + (-2)] + 8 
d. (-4) + [(-2) + (-1)] 
e. [(-3) -(-5)] - (-3) 

f. (-8) - [(-4) + (-2)]
2. Work these problems in subtraction by "adding the opposite". 

a. (-2) - (3 - 8) 
b. 6-(2-1) 
c. (-4) - [(-2) - 6] 
d. 8 - [5 - (-4)] 
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Chapter 29 
OPERATIONS ON INTEGERS, 
CONTINUED 

29-1 Addition, using the new notation 

You have learned about new numbers, called the integers. You know that they include 
the counting numbers, zero, and the negatives, which are the opposites of the counting num
bers. You have learned what it means to add and subtract these numbers, and you have seen 
that these operations act the same way as addition and subtraction of counting n.,mbers. 

You have also learned an easy way to write these numbers. Instead of writing pos 3, 
for example, you learned that you could write simply 3. The familiar counting numbers are, 
in fact, the positive numbers. But when you use them, you must remember, of course, that 
they are positive, and that they behave as opposites of the negative numbers. And you learned 
also that instead of neg 3, for example, you could simply write (-3). The symbol (-3) seems 
to ask you to subtract 3-and there is a very good reason for that, namely, that subtraction of 
3 is equivalent to addition of (-3). But the number (-3) is as good a number in its own right 
as 3. Both are equally important as numbers and deserve your equal respect. 

It is useful now to recall some of the ways integers act when you add them, and to use 
the new way of writing integers in doing so. Thus, you learned to write, for example, 

pos 3 + pos 4 =pos 7. 

But now you can write simply 

3 + 4 - 7. 

This new equation means the same thing as the one before it, but it is easier to write. It hides 
the fact that the numbers are really positive integers, but you should be able to keep that fact 
in mind by now. You can think of this addition exercise in terms of two successi%e increases 
of money in your pocket, or two successive jumps to the right on the number line, as in the fol
lowing pictures. 

4 3 + 4 

3 -1 0 1 2 3 4 5 6 7 8 

You also saw the same pattern for negative numbers. Instead of 

neg 3 ± neg 4 = neg 7, 
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you can now wr:ce 

(-3) + (-4) (-7), 
wherc the parentheses around (-4) remind you that the minus sign, "-", in (-4) is not a subtraction sign but rather a marker showing that the number is the opposite of whatever followsthe sign. Thus, in this case the "-" changes positive 4 to its opposite, neg 4. You can also 
write this as in the previous chapter 

(-3) - 4 = (-7), 
since addition of (-4) is the same as subtraction of 4. In practice, whenever you add a negative number you do it by subtracting its opposite, which is positive. We will write it both ways.

The sum of two negative integers can be represented in two ways: as the result of successive losses, or as the result of two jumps to the left on the number line. You remember that you learned to think of addition of negative numbers as successive losses or as leftward movements on the number line. We simply reverse our pictures of the addition of positive integers.Thus, we can represent the addition of negative integers in these pictures: 

+ (-3) 

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 
3 WNS. SHS./ 

It is a bit harder to understand the addition of two numbers of opposite sign. Recall thatyou add positive integers by moving to the right on the number line or by considering gainsand that you add negative integers by moving to the left or by considering losses. Thus, 
can easily ste that these equations are correct: 

you 

neg 3 + pos 4 = pos I
 
and pos 3 + neg 4 = neg 1,
 

which can be written more simply as 

(-3) + 4 1
 
and 3 - (-4) (-1),
 

which can be written also as 

3 - 4 = (-1). 
These can be drawn as follows. 

(-3) 

DE BT + 
(u. I I I I > 

-4-3-2-1 0 1 2 3 4? ? 

' ~. / < II I I, I 

? ? -4 -3 -2 -1 0 1 2 3 4 
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EXERCISE 29-lA 

Draw on the number line and use gains and losses to illustrate the following addition 
problems: 

1. 	 5+ (-8) 2. (-2) + 7 
3. 	 [3 + (-2)] -4 4. (-7) + W[(-2) + (-4)] + 81 
5. 	 (pos 2 + neg 4) + [(-1) + pos 1] 6. [(pos 3 + neg 2) + pos 5] + (-() 

Remember to do what is required inside the innermost brackets first and then move to 
the outer brackets. 

EXERCISE 29-lB 

A pupil complains to you, his teacher, that he does not believe you can add negative 
integers to anything, because adding makes a number bigger. What would you tell this 
pupil? 

29-2 	 Subtraction, using the new notation 

You saw that subtraction of integers is closely related to subtraction of the counting 

numbers. Thus, if you consider the problem 

pos 5 - pos 2 =pos 3, 

it can 	be rewritten more simply, using counting numbers, as 

5 - 2 = 3. 

You learned also how to solve the problem, which in a previous section of this book remained 
unsolved, of subtracting a larger counting number from a smaller counting number, as in this 
example: 

5 -7 =-] 
This problem can also be considered as a missing addend problem: 

7 +R-= 5 

It is impossible to solve this problem using only positive integers, but, using both positive and 
negative integers, you can say 

pos 5 - pos 7 = neg 2, 

which 	can be rewritten 

5 - 7 = (-2). 

Such a 	problem can be pictured as follows: 

II 	 7 
/ t Ii 

7 6 5 4 3 2 1 -3 -2 -1 0 1 2 3 4 5 
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2 

In the :,ame way, it is easy to see that 

neg 3 - Pos 5 =neg 8, 

which can be rewritten 

(-3) - 5 (-8) 
and which can be shown, using your slide rule made from two rulers sliding one on the other, 
as in the following picture. 

-10O-9 -8 -7 -6 -5 -4 -3.-2-1 0 1 
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

It is harder to see how to subtract a negative number. This problem can best be understood by looking for a missing addend. Thus, you can write
 

pos 3 - neg 6 =
 

so that
 

"os 3 = neg 6 +/-.
 
Clearly, the result you want to put in the box is pos 9, 
 because
 

pos 3 =neg 6 + po s 9
 

and, thus,
 

pos 3 -neg 6 = pos 9.
 

Using the new notation, you can write
 

3 - (-.6) = 9
 

3 = (--6) + 9.
 

The approach 
 remains the same in the case where both numbers in the subtraction prob
lem are negative integers, as in the following example. 

(-4) - (-7) = 3, 
which is a simplification of the expression 

neg 4 - neg 7 = pos 3. 
You learned, moreover, that subtraction of one integer from another simply means additionof the opposite integer. This result made life much easier for you, so that you could write 

neg 4 - neg 7 = neg 4 + pos 7 = pos 3,
 

which could be written more simply as
 

(-4) - (-7) = (-4) + 7 = 3.
 
This equation can be illustrated as follows, using your slide rule:
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Because subtraction and addition are inverse operations, it is possible to subtractany number
 
by adding its opposite, and to add any number by subtracting its opposite.
 

EXERCISE 29-2A 

Simplify each of the following expressions and find the result. 

1. 4 - (-7) 2. (-5) - (-2) 
3. (-3) - 14 + [(-3) - (-4)11 4. pos 6 + (neg 3 - neg 2) 
5. [- (neg 6) + pos 6] - [(-2) + 3] 6. neg 1[(-2) + (-3)] + [(-2) - neg 611 

EXERCISE 29-2B 

1. A pupil tells you his father has less than nothing in the bank, because the bank put-on 
his account a service charge which was greater than his bank balance. Can you explain 
this situation for the class? 

2. Two men argue as to who is better off: the one who received two gifts of £10 each or 
the one who had two debts of £10 each cancelled. Each started with the same amount of 
money. What do you think? 

3. Make up similar word problems for the use of your primary school class. 

29-3 Multiplication of integers 

When you studied the addition of counting numbers, you met problems where the same 
number was added to itself several times. You found that such addition problems could be 
solved easily by using a new operation, called multiplication. Thus, you learned to replace 

3+3+3+3+3=15 

by the multiplication equation 

5 x 3 = 15. 

You saw that such an equation could be pictured by an array of objects or by repeated mo
tions on the numb!er line, as follows: 

< I I4 I 1 I 1 I I I I I I 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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You can do much the same thing with the integers. Repeated addition of positive integers is the same as the problemi given above. Thus, 

pos 3 + pos 3 + pos +3 pos 3 + pos 3 = pos 15
 

can be written
 

5 x pos 3 =pos 15.
 
In the same way you can 
dq repeated addition of negative integers. In the following series ofequations, the reasons for the successive steps should be clear to you. 

neg 4 + neg 4 + neg 4 = neg 12
 
3 x neg 4 = neg 12
 
3 x (-4) = (-12)
 

This problem can be pictured on the numbe,' line 
as follows: 

I I - II I I I-13 -12 -11 -10 *8 -6 
- >

-9 -7 -5 -4 -2 0 1-3 -1 


In this way, you 
can see that if you multiply successive integers by a positive integer, theanswers form a pattern. Look at the following examples: 

4 x 3 =12
 
4x2=8
 

4x 1=4
 
4xO=O
 

4 >-(.--1) = (-4)
 
4 x (-2) = (-8)
 
4 x (-3) = (-12)
 

It will make ihings clearer both 
 to you and to your pupils if you look at multiplication by integers in this way. There are many patterns in mathematics, and you and your pupils should

look for these patterns.


A pattern like this one can 
help you understand multiplication by negative integers.

Look at the following statements:
 

4 x 3 =12
 

3 x 3=9
 
2x3=6 

1 x3=3 
0x3=0 

Each result is 3 less than the one preceding it. What do you think should come next? Theseproducts can be shown on the number line as follows: 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
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It seems clear, doesn't it, that the next products should bc 

(-1) x 3 (-3) 
(-2) x 3 = (-6) 
(-3) x 3 = (-9) 
(-4) x 3 = (-12), 

which can be shown on the number line as follows: 

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

You should try to think what such a sequence of products might mean, starting from 
4 x 3 = 12 and going to (-4) x 3 =(-12). Imagine you are a shopkeeper and have a book in 
which you keep a record of your cash on hand, your earnings and your expenses. You record 
£3 in the book by writing 3 in the proper place. If you make 2 sales of £3 each, you write 

=2 x 3 6 in the book, and for 3 sales of £3 each, you write 3 x 3 = 9. As a shopkeeper, you 
must buy goods to keep up your stock. If you buy something for £3, you write (-3) in the book, 
since you have spent your money. Two such purchases of £3 each would mean you must write 
2 x (-3) = (-6). 

Imagine now that a customer returns an item for which he paid £3. You must return his 
money and cancel the £3. entry you made in your book. You are back where you were before you 
sold that item. You have removed a £3 entry, and thus you write (-3) in the book. If two cus
tomers each return a £3 item, you must repay them. You have moved back two steps, and thus 
you must write (-2) x 3 = (-6) in your book. In the same way, three items returned at £3 each 
mean you must write (-3) x 3 =(-9) in the book. 

This gives you a real-life situation which can help you interpret the product of a nega
tive number and a positive number, in that order. Let us continue the story of your life as a 
shopkeeper. In order to have enough stock in your shop, you must buy new goods. If you buy 
something for £3 you must write (-3) in the book, since you have spent your money. Two such 
purchases of £3 each would mean you must write 2 x (-3) = (-6). Three £3 purchases would 
be written 3 x (-3) = (-9). No such purchases, of course, would be 0. Thus, you can make a 
sensible interpretation of these products. 

3 x (-3) (-9)
 

2 x (-3) = (-6)
 
1 x (-3) = (-3)
 
0 x (-3) = 0.
 

What do you think comes next? Picturing the produ,.ts on the number line is always useful in 
such a problem: 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 
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clearly, the next set of products should be 

(-1) x (-3) 3, 
(-2) x (-3) 6, 
(-3) x (-3) 9. 

We think of these products, using the same story of your life as a shopkeeper. Imagine that youmade a £3 puichase for your store, but you found it was no good. You returned it and got yourmoney back. You are now in the same position as before you bought the item. Thus, you write3 in your book to cancel the (-3) from before. Suppose you returned two £3 purchases. Then youwould write (-2) x (-3) = 6 in your book, cancelling the two £3 purchases, which you had recorded before as 2 x (-3) = (-6). In the same way, returning three £3 purchases would be writ
ren (-3) x (-3) = 9. 

Look now at all the cases we have considered in this section. They can be summarized 
as follows: 

2x3=6 

2 x (-3) = (-6) 
(-2) x 3 = (-6) 

(-2) x (-3) = 6
 
You should be able to give a general rule by this time. 
But the general rule has to come afteryou have thought about these special cases, rather than before. If you try other cases, you
find similar results, all of which lead you to want to make certain rules. What do you think 
they are? 

Perhaps as a child you were taught to multiply negative and positive numbers by usingrules about the sign of the product. You memorized these rules, without being one bit wiserabout the integers. Bat if you look at all the products in these last pages, and try fewa more
for yourself, you will come to see that these rules must be true. Here they are: 

The product of two numbers of the same siyzq is positive.

AND The product of two 
numbers of opposite si n is neqative. 

You know the rules, and you understand them now. But when you teach, be sure you lead yourpupils to discover them, just as you have been led. Do not just give them the rules and makethem memorize. If you do that, you might spoil whatever mathematical promise a child has.
Let it not be said of you as a teacher that you kept a child from learning by forcing him to re
member that which he does not understand! 

EXERCISE 29-3A 

1. Perform the indicated operations in each of the following, and in at least one case givea detailed description, using the number line as well as gains and losses of money, of 
how you got the answer. 
a. (-5) x 2 b. (-6) x (-4) c. 3 x (-7)
d. (-4) x 13 - [4 - (-3)]1 - 1(-1) x [4 + (-2)]1 
e. 1(-2) + [(-3) x (4 - 1)]I x (2 + 1(-5) + [(-3) x (-4)]1)
 
f, (8 - 14 x [(-2) + 611) 
 x ((-5) + 1(-3) x [(-4) + 811)

Remember 
to do the work inside the innermost brackets first. 

2. Outline a procedure which would help your pupils discover the rules given above for the 
multiplication of integers. 
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3. 	 Suppose a pupil in your class suggested that it is easy to see that (-3) x 4 = (-12),
 
giving as his reason that it must be the same as 4 x (-3), which he knows gives (-12),
 
through repeated addition. You, as his teacher, want to make the best use of his sug
gestion, because you know that he will learn better whatever he has discovered for
 
himself. What property of multiplication of integers has the pupil used, and how would
 
you explain to the rest of the class how he got his answer? Would this perhaps be as
 
good a way for teaching multiplication by a negative integer as that given in the text?
 
Remember that you still have to justify using this property of multiplication. Explain
 
your answer.
 

4. 	 Outline a procedure for explaining multiplication of integers, using arrays of stones 
which you increase and decrease according to the numbers given in problems. 

29-4 	 Division of integers 

You remember from a previous chapter that division can be considered in a number of 
different ways. You thought of it as sharing a collection of objects among several persons; as 
finding the number of sets of a given size that can be taken from a given set; as breaking up 
a segment on the number line into a certain number of equal portions; and as finding a missing 
factor in a multiplication equation. It should be clear to you, as you think about it, that you can 
think about division of integers in the same ways. The only complication is the question of 
"sign", and this is not a serious complication. It merely means that you cannot interpret every 
problem in every one of these ways. 

It is easy Lo see how to divide any integer by a positive integer. Thus, the problem 

4 2-D 

you did before when you studied counting numbers. Moreover, the problem 

'-4) 	 2 = " 

can also be thought of in some of the same ways as before. Assume that a debt of 4 shs must 
be paid by 2 boys. They agree to share the debt evenly, and so each pays 2 shs as his share 
of the debt, which can be shown this way: 

(-4) -	 2 = (-2) 

This problem can also be understood by using a multiplication equation with a missing 
factor. The 2 boys must each pay some number of shillings in order to make up the total debt 
of 4 shs. Thus, we can write 

2 ×F-= (-4), 

and the answer is clearly (-2) because 

2 x (-2) = (-4), 

and thus we can write 

(-4) 	 2 = (-2). 

It is a bit harder to understand division by a negative intcger. Take the following prob
lem, for example: 

4 - (-2) = -

What could it possibly mean to divide 4 by (-2)? It makes the problem easier to think of it as 
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a multiplication equation with a missing factor. Thus, in the above case we can write 

(-2) x [-= 4. 
You remember from before that multiplying by (-2) means to take away 2 of whatever the secondfactor shows. You remember that if you cancel 2 purchases of £2 each, this means a positivegain of £4, since you have back in your possession money you had previously paid out. Thus,the answer to this problem is (-2), because 

(-2) x (-2) = 4.
 

So you can write
 

4 + (-2) = (-2).
 

Problems such as 
this may be confusing-to the teacher as as tothey well the pupil-unlessare considered in terms of multiplication problems with a missing factor. If you do that,then neither you nor your pupils should get into trouble. Look at this next one, for instance: 

(-4) -(-2) =1--
Rewrite it as a multiplication equation, thus getting the following: 

(-4) = E x (-2)
 

In this form the problem seems much easier. How many (-2)s are 
necessary to make (-4)?To put it in a practical situation, how many boys must pay 2 shs each in order to make up aloss of 4 shs? The answer is easy: 2 boys. Thus you get the result which you expected: 2
 
must go in the box to make the equation true.
 

(-4) = 2 x (-2)
 

Thus, we write
 

(-4) +(-2) = 2.
 
Now you can make a summary of the possibilities in division problems just as 
you did beforefor multiplication problems. You find four different cases, as follows: 

4-2=2
 
(-4) + 2 = (-2)
 
4 + (-2) = (-2)
 
(-4) + (-2) = 2
 

Clearly the results are the same as in the case of multiplication. If you think about it, theyhave to be, because division is simply the inverse of multiplication. You give the followcan

ing rules, which you-and thus also your pupils-can discover just as 
we4d2x.
 

The quotient of two numbers of the same sign is positive.

AND 
 The quotient of two numbers of opposite sign is negative. 

Once again, it is very important that you do not teach these rules to the pupils asmysterious, incomprehensible laws that they must simply memorize at the pain of failure.Lead them to discover them, just as you discovered them in this section. The way may seemtricky at times, but don't be discouraged, since it will pay you and your pupils great divi
dends. Good luck! 
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EXERCISE 29-4A 

1. 	 Perform the indicated operations to get the answer in the following problems, and in 
at least one case, give a practical situation in which the problem might have a meaning. 
a. (-6)-3 	 b. 12 (-2) 
c. (-15) (-5) 	 d. 6 + (-1) 
e. [(-3) + 5] x [2 + (-8)11 - 1(-2) + [(-2) x 2]1 
f. 14 + [(-1) +311 x [(-3) x 2] - [4 + (-2)1 
g. 1(-3) + [(-2) x (-6)]1 . 1[(-4) x (-I)] - (3 + 4)1 

EXERCISE 29-4B 

1. 	 A pupil tells you that in a multiplication or division pro 
to forget about the signs and do the problem as he learned it for whole numbers, and then 
count the number of negative signs in the problem. If the number is odd the answer is 
negative, and otherwise the answer is positive. Is the pupil correct? Why? What if there 
were addition and subtraction in the problem also? 

2. 	 Make up several word problems suitable for use in an elementary school class, showing 
the basic principles of multiplication and division of integers. 

EXERCISE 29-4C 

1. 	 Do these problems, and see what pattern appears in the answers. Remember what you 
learned before about inverse operations. 
a. [4 x (-2)] +(-2) 	 b. [(-2) x 3)] 3 
c. [(-2) x (-5)] + (-5) 	 d. [8 x (-1)] (-1) 
e. [(-8) 4] x 4 	 f. [15 (-3)] x (-3) 
g. [(-12) + (-2)] x (-2) 	 h. [1 + (-1)] x (-1) 

It is not necessary to write so many parentheses in our equations. For example, if it will 
not be confusing, we will write -2 instead of (-2), -4 instead of (-4), -259 instead of 
(-259) 	and so on. 

With parentheses 	 Without parentheses 
(-4) -	2 =(-2) -4 - 2= -2 
4 - (-2) =(-2) 4 - (-2) = -2
 
(-5) x 2=(-10) -5 x 2 = -10
 
2 x (-5)=(-10) 2 x (-5) = -10
 
(4) -	 (- 7) = 3 -4 - (-7) = 3 
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UNIT VI.The Rational Numbers 

Chapter 30 
NEGATIVE FRACTIONS 

30-1 Division of integers 

The problems we did in the last chapter when we dividedeasy to understand. We saw 
one integer by another werehow to interpret the answers to all the problems, but we also madeour work easier by only working on problems where the division had a whole-number answer.You might ask now, what about problems like the following? 

(-7) 3 =-R 
We have not done such problems before, and now we must try to find a way of solving them.We know what (-6) + 3 means, and we can give -2 as the answer. What about (-7) + 3?It is always a good idea in doing mathematical problems to look back to easier andsomewhat similar problems which you have solved before. In this case, you should think backto problems of this kind which came up in the discussion of the counting numbers. There we faced the difficulty that the problem 

7 3 = R
 
has no answer 
among the counting numbers. And you remember that we had to find a newof number to solve this problem. That number was 

kind 
called a fraction, and was used toparts of a whole. nameWe found that these new numbers gave us answers to all such otherwise unsolvable division problems.


We will 
 find in the following sections of this chapter that no really new problems arisein dividing one integer by another. If we use what we have already learned about fractions andabout integers, we will find that the answer is right in front of us. This is what mathematiciansalways do when they try to solve a new problem. They look at similar problems they have donebefore, and if they are lucky, the answer will be there. 

EXERCISE 30-IA 

Which of the following problems can be solved using only integers, and which require 
new numbers? 

1. 18 (-3) 2. 16 + (-5)3. (-9) (-3) 4. 2 (-2)
5. 17 -(-3 - 5) 6. [-8 + (-2) x 3]17. [(-8) - (-2 - 4)] - [3 ± 

- 3x (-3) (-2)]
(-3) x 2] 8. [(-7) x (-5) - 35] + 1(-16) - [4 x (-2)]1 
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EXERCISE 30-lB 

When you tell your class that there aresome nui-nberb rhey can't yet divide, a pupil tells 

you that with a sharp enough knife he can divide anything. What do you think you should 

say to this pupil? 

30-2 Division as multiplication with a missing factor 

When you tried to solve such problems as 7 * 3, you found that it helped to change them 

into multiplication equations with missing factors. Thus, you wrote 

3 x ']1 7, 
7 

and you found the fraction - to be the answer. This fraction is, of course, still the answer 
3 

when you think of the counting numbers as positive integers. But the problem is not so easy 

when you have negative integers. For example, take the division problem 

(-7) 3 =--, 

which gives rise to the multiplication equation with missing factor 

3 x ]= -7. 

You can guess what the answer to this problem ought to look like if you remember how you 

solved the two problems 

3 xF] = 6 
and 3 x ]= -6. 

6 
In the one case you can put 6 + 3 = - = 2 in the box, because 

3
 

3 x (6)= 6,
 

and in the other case you would want to put (-6) + =(-6) -2 in the box, because you would 

3 
feel that 

3 [6)1= -6. 

Thus, if che answer to the problem 7 - 3 =-is 

77 

then the answer to the problem (-7) 3 L ought to appear in the form 

(-7) * 3 = (-7)
3 

so that 

-7.3rL-7[ 

In the same way we can think of the other two cases which might come up, as in these 

examples: 

(-3) xi= 7
 

(-3) x -= -7
 

NI 
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As in the previous case, we can solve rhe equati,i:s 

(-3) x- = 6
 
and (-3) xJ- -6,
 

and obtain 

6+ (3) = 6 2
 
(-3)
 

(-6) + (-3) (-6)
-(-36=2.
 

Thus, the answer to our new problems ought to be given in the same 
way, as 

7 + (-3) 7-3--)7
 
and (-7)+ (-3)=(-7)
 

(-3)"
 

We have used the phrases "ought to be" and "ought to appear". You might ask whatkind of mathematics that is. Mathematics, you might say, should tell you what is, not whatought to be. But there is a reason for what we have done. All you hav. seen so far is a jugglingof numerals. We showed you some problems you have already done, -nd then showed you somemore problems you have not done. And we asked you to guess only what the answer might looklike. In the next section of this chapter, however, you will see that what hasbeen done here 
does have a real meaning, after all, and that these numbers, like (-7), refer to real-life situ

ations. 

EXERCISE 30-2A 

Look back at those questions in Exercise 30-IA which did not have integers as answers,
and tell what the answers "ought to be". 

EXERCISE 30-2B 

Make up questions like those in Exercise 30-IA which "ought to give" the following 
answers. 

1. 	 1 5 2. (-7)

8 
 2 

3. 	 (-8) 12

(-4) 
 (-9) 

5. 	 (- ) 6. (-5) 

30-3 	 Interpreting our new numbers on the number line 

The problem that faces us now is 	to decide what a number like L might mean. We know 
what -7 is. and we know how to interpret it. For example, we can place it on the number line as 
follows: 
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N I I I I I I I
 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
 

7 1 (-7)But if we remember that - is - of the way from 0 to 7, then perhaps we can think of L- as 3
 
33 1 3 3
 

of the way from 0 to -7. Is there a point which is - of the way from 0 to -7? Of course there 
3 

is. We just have to take that segment of the number line and break it into three equal parts, and 
Imark the first such point to the left of 0 as - of the way from 0 to -7. On the number line it 

looks like this: (-7) 

I I I I I I I I I I I I I
 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
 

It is just as good a point as - and thus - deserves its place in our collection of numbers.
3' 3 

Clearly this nurroer (s-- is opposite to 3'which is a point to the right of 0 on the num

ber line. In fact, every point to the right of 0 has an opposite point to the-left of 0. There is no 

reason why we should have opposites only for77the integers. We can write this opposite as -Z 

and we can thus see that -- and should mean the same thing. The numbers 7 and -7 are 
3 3

7 (-7) 1 
opposites, and thus the numbers - and ,which show part of that which is represented by

3 3'
7 and -7 respectively, must be opposites. But the opposite of any number x is written -x. 

7 7 (- ) 7 
Thus the opposite of- is -- , and _- and -- are two names for the same number. Thus, we 

3 3' 33 
can begin to fill in the number line in the following way: 

< I I I I I I I I I I I I I> 

8 7 2 5 - I 2 0 1 2 1 5 
3 - 3 - 3 -3 3 3 

This picture shows that each fraction to the right of 0 has its opposite to the left of 0, and thus 
we want to call these new numbers negative fractions. 

The only remaining problems concern and ('7" Before trying to give an answer, we 
-- "(-3) (-3)* 

should think where these symbols, which "ought to" represent num,-,rs, came from. The prob

lem (-3) xFJ = 7 gave rise to the ?ossible answer -L ,and thus we should think what the
(-3), 

problem (-3) x 7 means. This problem is similar to the problem 

(-3)>: ]=6. 
We know the answer to this familiar problem, namely, -2. Think back to the problems 

which arose when you imagined yourself to be a shopkeepe-. To multiply (-3) x (-2) meant to 
return three items which you had purchased for £2 apiece. You went back to your previous 
financial position, and thus gained £6. In the problem (-3) x n = 7, you are returning 3 items 

for a total of £7. Thus, for each, yo i r,ceive back £, and you record in your book
3, 
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Thus, the result which was suggested by the equation, namely (-3)musthave the same mean7 
7

ing as - .We cannot give a direct real-life meaning to F-) as it is written, but we know it is7 
7 1
 

another name for -Z, 
 which we understand to be the fraction opposite to Z, or 1 part of -7. 

Finally, we have to think about (-7). Again we should look at the multiplication equa

tion 
=(-3) x [-] -7.
 

You already know how 
 to do the very similar problem
 

(-3) xR = -6
 

which has as its answer
 

2 = (-6) - (-3).
 

Thus, in the original problem 
we see that 
7
 

(-3) x _7, 

so that 

(-7) - (-3) = (-7) 7
 
(-3) -3'
 

To consider your shop once again, this means 
 that you record in your book that you refunded

tile money for 3 items which were returned to your shop and which you had originally sold far 

7 apiece.
 

Thus, we can see that the answer suggested, namely (-7) has the samecannot giveOnce again, wea directhareal-life rZ meaning rtebu.ekomeaningt iti as as tiOnce again, we cannot give a (-3)direct real-life meaning to (-7) as it is written, but we know it is 

another name for Z, with which we are already familiar. 
3, 

EXERCISE 30-3A 

Locate each of the fractions given in Exercise 30-2B on the number line, and give a 
practical meaning for each of them. 

EXERCISE 30-3B 

If you look back through this section, you will find that there are three ways of writing
a given negative fraction and two ways of writing a given positive fraction. Look for
each of these ways, and write tile fractions in Exercise 30-2B in each of the ways pos
sible for it. What special fact do you notice in Question 5 of that exercise? 

-A7
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EXERCISE 30-3C 

In Chapter 25, some situations were given in which numbers on both sides of 0 were 

given physical meanings. Read that chapter over again, and state for each of those 

situations what negative fractions mean. 

30-4 Interpreting our new numbers with gains and losses 

You know now that each of these numbers which we invented to fill a box in a multi

plication equation actually has a real-life meaning. Thus, they are not merely the result of 

juggling with numerals. And, if you apply what you l2arned in the last section, you can think 
of them in other ways as well. 

We showed, before, that a negative integer re i -esented the loss of some whole number 

of objects, if we were thinking in terms of sets. But there is reason why we must gainno or 

lose only whole numbers. We have found fractions on both sides of 0 on the number line, and 

clearly there are situations in life where these fractions make sense. Think of the case 

where three men who live in a village must jointly pay a tax of £4. They would share the 

debt, and thus each man's share would be 

(-4) 3 (-4) 43 3" 

This is clearly the opposite case to that where the three men share a £4 gift which someone has 

given them, which would be written as 

4 

3' 

If the one makes sense, so does the other. 

EXERCISE 30-4A 

Five men receive a gift of £7 through the mail. They share the money together. Then one 

leaves for a foreign country and cannot be reached, and a letter arrives stating that the gift 

was a mistike, and they must return the whole £7. Thus, the four remaining men divide 

the debt among them and pay it. Write equations showing each step of this process, be

ing careful to use the correct sign at every point. Give a number to show each man's 

final gain or loss. 

EXERCISE 30-4B 

Draw up a series of test questions designed to find out whether your pupils understand 

positive and negative fractions and the relations between them. 
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EXERCISE 30-4C
 

Find the opposite of each of the following fractions. 
terms. 

Put your answer in "simplest" 

. 2. _ 

3. (-5) 
-T-

( 
6. 
6 

(-5) 

(-3) 

7. 8. (-6) 
(-5) 
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Chapter 31 

THE SET OF RATIONAL NUMBERS 

31-1 Fractions, positive and negative 

We should stop briefly ncw. and look at what we have done. You learned about fractions 

in an earlier chapter, and now yoa have found that these fractions have opposites. And if you 

look at the number line, you can see now that it is, or at least seems to be, as crowded as 

you can make it. Actually, you will find later that there are more numbers to be put on the num

ber line. But let us be content for now with what we have, and try to understand these numbers 

fully. 
We call the fractions we originally had positivc fractions, and we call our new numbers 

negative fractions. There are many ways of writing any given fraction, of course, just as there 

are many ways of writing every number. Take the positive fraction and its opposite, the nega
35 

tive fraction - , for example. Here are some other ways of writing each of these fractions: 

3_ 6 150 (-3)_ (-72)
 
5 10 250 - (-5) (-120)
 

3_ (-3)_ 3 (-90) 33 = 3000
 
5 -5 (-5) 150 -55) 5000
 

Do you remember how you could prove that all these fractions are names for the same number? 

If not, check back to the chapter on fractions and find the secret. And remember also that 

one minus sign in the fraction makes the whole fraction a negative fraction, and two make it a 

positive fraction. In every case, the simplest way to write a fraction is the first way given in 

each of the series of equal fractions above. Write it as a positive fraction, without minus signs, 

or2anas the opposite of such a positive fraction. We will call this the standardform, for example, 

- . Of course, the fraction may arise in a problem in oneof the other forms. If that hap

pens, it is useful to reduce numerator and denominator to the smallest whole numbers possible, 

using the secret you found in a previous chapter. Then put the minus sign, if there remains one, 

in front. 
If you write a fraction in standard form, it is easy to see where it belongs on tile number 

line. All positive fractions are, of course, to the right of 0, where they represent gains, or 

steps in the forward direction or increases. Negative fractions, on the other hand, are to the 

left of 0, where they represent losses, or steps in the backward direction or decreases. Every 

fraction thus has a place on the number line, and although not every point on the number line 
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indicates a fraction (We will say more about that later!), there is always a fraction as close 
as you would like to every point on the number line.
 

You may be thinking at this stage that there are 
points on the number line which arenot fractions, points you already know about. You may say that we have not mentioned thecounting numbers and their opposites and 0. After a 	whole series of chapters n which youstudied 	those numbers, which you learned 	to call the integers, we seem to have forgotten
them again. That is a good question-but if you think about it, you will 	see that the integersare still here and that they can be written as fractions also. If you look back to Chapter 20,you will see that the counting numbers were written as special fractions, as in the following 
example: 

6 23 1]=
 

The fraction which has 1 as its denominator or whose numerator is equal 	to the product of thedenominator with some counting number was shown to be simply another name for oneof thecounting numbers. (That is true, of course, because to divide a thing into one part or intosome number of equal parts, each of which contains a whole number of members, is the same 
as division of whole numbers where there is no remainder.)


The same 
fact is true for negative fractions as well. It is easy to see, for instance, 
that 

(-6) 63~ 	 3~2 .32 


If -6 is 	broken into 3 equal parts, each will contain -2. For a practical example, think of adebt of £6 shared among 3 people. Clearly, each will pay £2. 	More complicated examples
be worked in the same 	

can 
way, always remembering first to put the fraction in standard form. 

rhus, we have 

_ (-10) 10 
(-2) 2
 

Thus, the fractions, positive and negative, 
 include all the numbers we have used up tothis point and can even be extended to include 0, which can be written, for instance, as 

0=07" 

These numbers are an interesting set, and we will think much more about their properties inthe following assections of this chapter, well as in the next few chapters. 

EXERCISE 31-IA 

Find each fraction in standard form, and four other fractions equal to each of the follow
ing. Locate each on the number line. 
1. 	 (-32) 2. 73
 

14 
 5 
3. 	 (-20) 4.33 

17 
 [ _F 13 
5. 0-l ) 6. -15.3 

Remember to do the work within brackets first. Thus, for example, 
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(-13) (-13) 13 26 (-26)
 
[-(-17)] 17 17 = T -- 34)'
 

EXERCISE 31-IB 

1. 	 Outline a classroom procedure for teaching that it is often important and useful to reduce 

fractions to standard form and lowest terms when working with tmem. Your procedure 

should show them how to make this reduction. 

2. 	 Prepare word problems which require students to make use of the fact that a given frac

tion can be named in several ways. Include both positive and negative fractions. 

3. 	 Prepare a classroom demonstration designed to show that some fractions, for example,
4 6
 
2or - , are simply other names for positive or negative integers.
 

31-2 	 Definition of the rational numbers 

The set of numbers which is made up of the positive fractions, zero and the negative 

fractions has a special name. W- cali it the set of RATIONAL NUMBERS. You can think of the 

set of rational numbers as a large set with three subsets, namely, the positive fractions (which 

include the positive integers), zero, and the negative fractions (which include the negative 

integers), as in -lie following diagram. 

Each of the two large subsets of fractions thus can be thought of as containing a subset 1he 

positive fractions contain the positi re integers, which are the same as the counting numbers, 

as a subset. And the negative fractions contain the negative integers as a subset. Thus, our 

diagram can be completed in the following way. 

To summarize, the rational numbers contain the positive fractions, zero and the negative 

fractions. The positive and negative fractions and zero, together, contain the integers. And the 

integers contain the counting numbers, which is where we began this course in basic concepts 

of mathematics. 

The rational numbers are not only a set of numbers-they are an orde,'ed set. The most 

obvious fact about their order is shown in the diagrams above. The negative fractions are all 

less than the positive fractions, and the rational numbers to the left of ar. , number on the num

ber line are all less than that number. In a later chapter, you will study the idea of order more 

closely, just as you will study all the other properties of the rational numbers. For now, it is 

enough simply to state that it is possible to dei rmine of any two fractions which is greater 

and which is lesser. 
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I 
7 

For example, consider the two fractions - 3 and 1-. This case is obvious. The first frac
tion is less than 0 and the second is greater than 0. In fact, any negative number x is less than0, not only because it is to the left of 0 on the number line, but because the difference 0 - x ispositive. Look at this example on the number line. 

< I I I I I I I I I I 

6 5
-24 3 2 1 1 2 3 5 6 74 2 

Take another example, 3 and 1. Which is lesser and which is greater? Here is one way in

which you can tell. You can 
draw the number line, place both fractions there and compare them, 
as follows. 

11 12 13 14 
5 511,I \liii
 

2 13 14 15 16 76 6 6 7 3 
Obviously, 7 is tand is, thus, the greater of the ",o 

Take a final example: -- and -2. You can show these on the number line as follows.
 
Remember that you can 
 locate any fraction on the number line easily by changing it into a
 
mixed number, if you need to; thus 
- j = - 11, which is located 11 units to the left of 0. 

< I 33 II 3 I
 

-25 4 2 13 -3 -1 30 

Obviously  is to the left of - 3 and, thus, 

4 <2
3 3' 

You remember, of course, the meaning of the two symbols "<" and ">". The first means
"less than" and the second means "greater than".
 

EXERCISE 31-2A 

Put the following set of fractions in order, from least to greatest, and show their positionson the number line. First simplify each and put it in standard form. Then compare them by
pairs, and place each on the number line.
 

4 (-3) 7 -2)[-(-3) 0
 
4, (-3)~, _-7, 6Z, (-20) L-______ o7' 13 8 (-2)' (-4) ' (-4) 

,co 
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EXERCISE 31-2B 

Draw a large poster useful for picturing the set of rational numbers and all the subsets 

which we have discussed, as on the previous page. 

NOTE. We have used the word fraction to denote sometimes a number and sometimes the 

numeral which is its name. Perhaps, strictly speaking, we should not do this. However, 

it is hard to maintain the dist inction in a consistent way, and it seems better not to insist 

on distinctions which we cannot keep up in practice. It should be clear from the context 

whether the word fraction means a number or a numeral. 

The term rationalnumber, of course, always denotes a number and not a numeral. 
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Chapter 32 
OPERATIONS ON RATIONAL NUMBERS 

32-1 Addition 

!t is not really necessary at this point to say anything new about the meaningsoperations. You should be quite familiar not only with their meanings but with how 
of the 

to teachthem to young children. Very briefly, addition can be thought of in at least two ways: successive motions on the number line, to the right for positive numbers and to the left for negativenumbers; and successive change of the number of objects in a set, increasing it for addition ofpositive numbers and decreasing it for addition of negative numbers. You have carried out athorough and detailed study of this operation for counting numbers, for fractions and for integers. It clearly does not change the picture to include the whole set of rational numbers inthis discussion. The only difficult thing at this point-both for you and for the pupils youteach-is to become quick at finding the correct answer when you are faced with a problem.Let us look at an example, using only positive fractions, to remind ourselves of themethods we learned before. Take the problem 

3 7 

The way you did such a problem before was to draw a picture showing parts of rectangles for
each of the fractions, as follows: 

3 
733 

Then you divided each part into smaller pieces so 
same 

that the resulting small pieces were of tilesize. By counting the number of small pieces for each fraction, you could rename bothfractions so that they had the same denominator. This wasin the second shown by dividing up each rectangledirectioi, using the denominator of the other fraction to tell the number of pieces.For the example given above, the picture becomes as follows: 
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IM...; NEI (X 2 17, 

9 [3 35
1515
 

You count the number of small pieces and find the answer: 

9 35 44 
1. + 15 -15 

You learned in the study of fractions that there is a short way to carry through this proc
ess that saves you having to draw pictures and cut up rectangles. You discovered a rule which 

did the same thing for the general pair of fractions i and . The rule was stated as follows: 

a C (ad + be) 
b+ d bd 

The question at hand is whether this rule works for all rational numbers, including negative 
fractions. Let us look at a couple of examples and then come back to the rule. But as you think 
about the examples, keep the rule in mind. First take this problem: 

+4 ( 4 (-2) 

This addition can be shown on the number line as follows: 

4 

3 

+2 

I I 
-3 

III 

4 2 1 1 2 4 5 7 8 10 
33 33 .3 3 3 3 

2Clearly the answer is 3. If you think back to the problem of cutting bananas into parts, this 

problem speaks of 4 one-third pieces and tells you that 2 of them are removed, leaving 2 one2 
third pieces, or 2 of a banana. 

This was an easy problem. Take a somewhat more difficult one; for example, 
3 3 (-3) + 3 
5 + 2 5 2 

You can look at it on your slide rule in this way: 

1 1 3 
2 12 

21- 2 2 
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You set your 0 mark on the upper strip to the - mark on the lower. And you read your3 answer 
on the lower strip below the mark on the upper strip. That answer is, ot course, 

2 10
You can also think of this problem in terms of rectangles. The fraction 3 can be drawn 

as follows: 

2 
To add - means to remove of a rectangle. Thus, you can redivide each rectangle into 5parts in the usual way, and remove 3 of those parts. You then count the remaining pieces. You 
can picture it as follows: 

3 3 
5+2
 

You can see that 9 one-tenth pieces remain, so that the answer is 9
Where the answer is likely to be a negative fraction, it is not useful to think of dividingrectangles, but you can show such a problem on the number line or the slide rule. Think of the 

example 

153'+ (-3) ,(-5)
 
2+ 3/ 2
 

Look at it on the number line. 

-3 + 23 

7 5 3
 
2 ~ -3 2 
 2 -0- 2 1 

You can see that the result is - 19 by counting to the left of 0, so that 

3+ / '- -3) + (-5) 19 
2 (2 r 
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4 (-2) 2
Let us look for the ptern shown by these examples. In the first case, - + 3 

the denominator 3 remained the same, and the ,czulting a.merator was the sum of the two orig
inal numerators. In the second case, 3+ 9 the dcnominator of the result was 10. If


5 2 10'
 

you rewrite each of - and with denominator 10, you get (-6) and 15. Their sum is, of5 2 10 10
 
course,9. But -6 = (-3)x 2 and 15 = 5 x 3. Thus, you get
 

(-3) 3 [(-3) x 2] + [5 x 3] 9
 
5 +2 5x2 =0*
 

In the same way, you get 

(-3) + (-5) (-9) (-10)
 
2 3 6 6
 

[(-3) x 31 + [2 x (-5)] 
2×3
 

6 

But these are obviously examples of the rule for adding positive fractions which is extended to 
include negative fractions as well. If you think about it, you will see that this must alwa,'s bea c (ad±+be)
 
true, so that the rule a + c a bd 
 must be true for all rational numbers. 

Thus, the same rule you used tor the positive fractions can be extended to include all 
fractions, both positive and negative. But don't forget the principle of good teaching: the pupils 
must learn the general rule only after they have tried out special examples. Then they can see 
that their own work fits the rule, and they will understand it and be able to use it much better. 
Never force anything on your pupils blindly and mechanically, because a bad mathematician is 
likely to be the product! 

EXERCISE 32-1A 

Find the sums of the following pairs of fractions, illustrating at least one of them using 
the number line, the slide rule and rectangles.4 + (3) 2. 2 +(-6) 

5 (-3) (-9)
 
+
3. -- 1 •3 	 4. (-7) 0 

5. 	 3 6 6. (-8) 21 
5 10 (4)(7) 

EXERCISE 32-lB 

What fractions suggest the use of money as examples in addition problems? What about 

fractions 	 like What about fractions like 1? 
5. 
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EXERCISE 32-IC 

In Exercise 32-IA Question 2 presents an important special case. You should, of course,
have found the answer 0. This means that the two numbers are opposites, and they can
cel each other out. Such pairs of numbers, which have the sum 0, are called additive in
verses. Outline a procedure for teaching the meaning of additive inverses to your pupils. 

EXERCISE 32-ID 

In Exercise 32-IA, Question 4 presents another important special case. The answer is 
7 the same as the first number in the sum.6' When you add 0 to any number, you do not 

change that number. The number 0 is called the additive identity element. Outline a 
procedure for teaching the meaning of the additive identity to your pupils. 

32-2 Subtraction 

You remember that subtraction is simply the inverse of addition. To subtract a positive
number from some other number, you move to the left on the number line; and to subtract a neg
ative number from some other number, you move to the right. Subtracting a positive number 
decreases tile total, while subtracting a negative number is like removing a debt from your ac
count books, thus increasing your total. You can think of subtraction in terms of finding the 
missing addend in an addition equation. And you can finally think of subtraction as addition of
the opposite. You have done many exercises and read many pages on these interpretations of 
subtraction. iere you need only rhat yousee can understand subtraction of any rational num
ber from any rational number in the same way. 

Not only can we understand the meaning of subtraction of rational numbers in terms of 
the fractions and the integers, but also we can see how to perform such subtraction problems by
remembering what did withwe integers. There we learned that subtraction of integers meant the 
addition of the opposite. Thus when you subtract -5 from 3, it is the same as adding 5 to 3. 
You write this as follows: 

3 - (-5) = 3 + 5 = 8 

Can you think of rational numbers in the same way? Look at this problem: 

3 7) 

The answer is the missing addend in this equation: 

3E+ (7) -7 

Clearly, if you put 5+ in the box, the equation will be true. Thus, you ge 

- 7) =37 

53 + 
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(3 	 x3)+(5 x7) (Why?)= 5 x 3 	 (h? 

9 	+ 35 44
 
15 15
 

For another example, take the problem 

4 -6 -]
 
3 5
 

64The answer must be the solution to the equation [ ] + hich is clearly 

+ (- = +5) 

[4 x 5] + 13 x (-6)] 
3x 5 

20 	- 18 2 
15 15" 

Once again you added the opposite to find the result, and you used the rule for addition of ra
tional numbers to do so.
 

The procedure is always the same. Reduce the rational numbers to thc -;rnplest form, 
change the second of the pair into its opposite, and add. You understand this now-bt.- don't 
forget this is not an easy trick to understand. When you teach it to your pupils, remember their 
difficulty, and help them in every possible way to understand it. 

EXERCISE 32-2A 

Perform the following subtractions, and for one of the problems show the meaning with 
the number line and the slide rule. 

1. 	 3 _ (_5' 2. (-6) 2
 
(-7) \3/ (-3) (-3)
 
0 (-4) 4. 1.83 47
 

3 (-6) 50
 

EXERCISE 32-2B 

A pupil tells you that 0 is the identity element for subtraction too. Is he correct? Why? 
How would you explain it to your class? 

32-3 	 Multiplication 

You should have no difficulty at this point understanding multiplication of rational num
bers, since it follows the same pattern as did the other operations. You remember both how to 
multiply integers and how to multiply fractions. And if you put this knowledge together, you 
will see how to multiply rational numbers. 
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In the first place, if you multiply two numbers of the same sign, your result will bepositive, and if you multiply two numbers of opposite sign, your result will be negative. This is as true for fractions as it is for integers.

Think back to your experience as a shopkeeper. If you planned 
to sell an item for £3 but 

sold it for half price, you would write j
1 3 

x 3 in your book. If a customer returned a £3 item 
and you refunded half this money, you would write (1) x 3=_ in your book. If you bought 

a £3 item for half price, you would write - x (-3) =  in your book. And if you returned an 
item which you had purchased for £3 and got half the purchase price back, you would write 

x (-3) " in your book. The argument given in this example can be applied for any
 
rational number times any rational number.


The actual result obtained for any product of rational numbers 
can be found by using theprocedure you previously learned for fractions, and then using the rule about signs to find thecorrect sign for your answer. Take the two problems 

x- and 4).
 

The results are clearly
 

I1 4 -4 2
 

2 3 6 3
 

and I x .. 2 " 

These two results can be pictured on the number line as follows: 

<l I I~ j i I iI i-> 

-2 5 
-

4 -1 2 1 0 1 2 4 53 1 2 

In the same way, it is possible to obtain answers for the two problems which use the

opposites to these fractions.
 

(1) x4 ~4 2-×3 '-=
3
 

There are several important and interesting facts worth noting about multiplication ofrational numbers. The first is that the rule for multiplication of fractions is applied in exactlythe same form to rational numbers. You remember that rule:
 

a c ac
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If you will look at the examples just given, you will see that each one of them fits this rule 
perfectly, both in terms of the sign and in terms of the numbers. Thus, for example, take the 
last case and apply the rule: 

( ) ( ) =T )< 

[(-1) x (-4)]
2x3 

4 2 
6 - 3 

You need to change each of the rational numbers into an equivalent form and then perform the 
multiplication, but you get the same answer. 

The second important fact concerns the number 0. You learned before that if you multiply 
any fraction by 0 the result is again 0. The same thing is true for rational numbers, as you can

0 
easily see. You know already that you can write 0 as a rational number, for instance, 1 Thus, 
you can write 

0 (-3) 0 (-3) 
2 2 

0 x (-3) 0 
- 1 x2 x =0. 

The number 0 has the property that its product with any rational number is 0. 
The third important fact concerns the number 1. Again recall what you learned before. If 

you multiply any fraction by 1, the number remains the same. Clearly you can get the same re

sult for rational numbers, since you can write I = 
1 

Thus, for example, 

x (-3) 1 (-3) 
"" 2 1 2 

lx (-3) /'3 
1 x 2 2 

A fourth important fact concerns the product of a number with itself. This product is 
called the square of that number, and can be written as follows: 

(-2) (-2) -] 2 
-3 × 3 3i 

with a 2 as a right-hand superscript indicating that the number is multiplied by itself. The 
square of any number a is a x a and can be written a2 . In the example, the result is clearly 

which is positive. In fact, the square of any rational number is positive. (If you have trouble 
seeing that fact, look at Exercise 32-3D.) 

The fifth important point concerns what was previously called the reciprocal of a frac
tion. If you don't remember what a reciprocal is, look back to Section 21-19 in the chapter on 

fractions. Thus the reciprocal of the fraction 2 is the fraction , where the numerator of the 

first becomes the denominator of the second and vice versa. Question: Does the fraction 
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Ohave a reciprocal? Further question: Is there such a fraction as The first question3 

should be enough if you remember your earlier work, 

h

but the second question is put in to help 

your memory! Consider once again a fraction and its reciprocal and look at the product of 	2 
33and 


223
 3 =6 

You found earlier that it is always true that the product of a fraction and its reciprocal is thenumber 1. Is it always true for any rational number also (except, of course, 0)? Look at this 
example: 

(-2) 3 (-6)
 
3 (-2) (-6)
 

In general, you can write, 
 where neither a nbr b is 0,
 

a b
-× ab 1.-
Xa 	 6(1 

Thus, 	 it is always true that the product of a non-zero fraction and its reciprocal is the number 1.This should remind you of addition, where the sum of a number and its opposite is the number 0. 

EXERCISE 32-3A 

Find the following products of rational numbers and show at least one of them using the
example of the shopkeeper and also the number line. 

1. 2. 2 xl16(-3) 

5. 	 L+ 4 (-8) 1[ F+(
(- 83 J5 (-6) -5)
 

EXERCSE 32-3B 

Give three examples of each of the following.
1. 	 A number and its reciprocal 2. A rational number and its square
3 A number and its opposite 

EXERCISE 32-3C 

Find the squares of the following numbers, and verify that these squares are positive. 
1. 	 3 2. 4
 

5
 

3. 	 (-1) 4. 31(-2)
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32-4 Division 

The final topic in this chapter is division, which you remember is the inverse of multi
plication. If you think of division in these terms, you should have no difficulty understanding 
how to divide numbers. In the first place, you learned that the same rule of signs applies as for 
multiplication, since division can be understood in terms of multiplication problems with misF
ing factors. Thus, if you divide two rational numbers of the same sign, the result is positive, 
and if you divide two rational numbers of opposite sign, the result is negative. 

In the second place, you learned to divide fractions by multiplying the first number by 
the reciprocal of the second, assuming, of course, that the second is not 0. This same rule also 

applies to rational numbers. Thus, for example, to divide ' by is to solve the problem 

and the result is clearly 

3.1 3 2 6 3 

Do you s.e that 3 3 x 1 

The same reasoning applies to the other possible variatiots in sign. 

3=Rl (- 1)
 
(-3)
 

x (- 1)
43) 

The results are clearly obtained the same way: 

3 (-1) 3 2 6 3
 
4 2 " x (-I) = (- I) =

(-3) 1 , 2 (-6) 3
 
4 2 -4 x T 4 =-2
 

(-3) (-1) (-3) 2 (-6) 3
 

4 2 4 F- F-)= (- ) 2
 

Only in the case where the second rational number ;,s 0 is this procedure impossible, You re
member, of course, that you cannot divide by 0-ant if you don't remember why you can't divide 
by 0, look back to Section 12-8 in the first chapter on division. 

EXERCISE 32-4A 

Work out the following division problems. Try to understand at least one problem in 
terms of a physical situation. 

4 + L 2.1
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3 

3. 4. 

5. 26. -. 
x[ 3') _3__ 

EXERCISE 32-4B 

Prepare a set of revision exercises which will test your pupils' understanding of the 
material in this chapter. Include both word problems and strictly numerical problems. 

EXERCISE 32-4C 

Prepare an examination which covers the material in this unit on the rational numbers 
and which would enable you to see how much time you should spend on revision. 

EXERCISE 32-4D 

If one of your fellow students told you that this chapter didn't really teach him anything 
new but that he had learned it all before in earlier parts of the book, would you agree 
with him? Why? 

EXERCISE 32-4E 

Find answers to the following problems, and discuss the relation between multiplication 
and division which these answers show. 

. ( (-4) 2. 1 62x (-5 

1.7 - 2] 4. [(3 - 5) x II] +I-1
 
12 
 10
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Chapter 33
 
REVISION OF NUMBERS
 

33-1 Introduction 

During this course, we have studied about numbers. We have learned about many differ
ent kinds of numbers. And we are not finished yet. Let us look back over the path we have 
travelled, and .see what th: important milestones we have passed have been. 

33-2 Sets and couniting numbers 

We started our study by talking about sets of things. We observed that sometimes the 
members of two sets could ")e placed in one-to-one correspondence with each other. We called 
such sets equivalent. Sometimes it was not possible to place the members of one set in one-to
one correspondence with the members of another set. Such sets are not equivalent. We agreed 
to say that any two sets which were equivalent to each other had the same number of members, 
and that any two sets which were not equivalent had different numbers of members. We agreed 
that if a set A was a subset of a set B and not equivalent to B, then A had a smaller number of 
members than B and B had a larger number of members than A. So every set has a number of 
members which is equal to the number of members of every set equivalent to the given set. 

These numbers associated with sets were called the counting numbers. Because hev 
were curdeced, we were able to picture them on a line by marking equally spaced points, ak'd we 
agreed that if a number a was less than a number b, the point marked a was to the left of the 
point marked b. 

We learned to add numbers by forming the union of two disjoint sets, whose members we 
had previously counted, and counting the members of this union. 

El 0oE 
0 -_~ 01-1"]
 

3 + 4 7 

And we saw that our picture of the number line could be useful in this addition, since we 
could get the sum of two numbers by stepping along to the right of the number line. 
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33-3 The empty set and zero 

The counting numbers were sufficient to take care of our number needs as long as the 
ans %ersto our problems could be represented by sets of things. But if a man has a set of 3
shillings and pays 3 shs for a basket, the money he has left can hardly be described as a set
of shillings. We found it convenient to describe the money he has left as the emoty set. And
then we invented the number 0 to describe the number of members of the empty ,et. We then
had two sets of numbers: the set of counting numbers, and the set whose mnly member is zero. 
The union of these two sets we gave the name of whole numbers. 

On the number line, the point labelled 0 was our starting point and was to the left of all
the points for tile counting numbers. And we found that we could still get the sum of two numbers by stepping to the right on the number line, with the understanding that if we were adding
0, we would step 0 units to the right; that is, we would not take a step.

The set of counting numbers is a subset of the set of whole numbers, and we found that
all the problems involving counting numbers could still be done by working with the set of
whole numbers; also, we could work problems involving the empty set. The extension from
counting numbers to whole numbers was not a large one-the whole numbers include only one 
new member-but it is an important one. 

33-4 Fractions 

We learned to multiply the whole numbers, and interpreted multiplication as repeated
addition. We then defined division in terms of multiplication. We said that if 3 x 1=6, 
F= 6 3 = 2, and more generally, if a x- = b,-- = b a. But sometimes there is no wholenumber answer. For example, in the problem 3 x1"1= 7, there is no whole-number solution. In
such cases, we agreed to invent new numbers, called fractions, which would have the required
properties. In the example 3 x []= 7,F] = 7 +3, and we agreed to call this answer the fraction7 So 3 x 37 7. More generally, ifa=F-] F1b -, and ax -b== . These new num

bers, the fractions, included the whole numbers. For if a is a whole number, 1 xL= a has the 
S (asolution = 1 It also has the solution a. So a = = a, and every whole number is a fraction. 

The set of whole numbers is thus a subset of the set of fractions. Since some fractions are not
whole numbers, the set of fractions is an extension of the set of whole numbers. 

We saw that we could not assign a meaning to division by 0, and so we were not able to 
assign a meaning to the fraction if b= 0. In the fraction Ta can represent any member of 
the set of whole numbers and b any member of the set of counting numbers.
 

But we 
have also seen that not all such fractions are different. In fact, a = k for any 

counting number k. 

a c ad bc ad + bcWe learned to add any two fractions, obtaining T + W = Td + T= bd 
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We were able to assign an order to the fractions, and we were able to picture the frac
tions on the number line, with points between the whole numbers along with the whole numbers 

themselves. Again, a < £ if a is to the left of .
'b d 

aCt ac 

We learned to multiply any two fractions, and saw that x = Td-. And we learned that 

a C a d 

33-5 Integers 

Just as the process of division led to the extension of the whole numbers to the frac
tions, so the process of subtraction also led to an extension of the whole numbers to the in
tegers. If a represents a whole number, we defined a new number, called neg a, and later 
introduced the notation -a to represent it, which had the property that a + (-a) = 6 Since 
a +L] = 0 has, by the definition of subtraction, the solution[= 0 - a, -a is the number ob
tained by subtracting a from 0. 

These new numbers were called the negative integers. The counting numbers were re
labeled the positive integers. The complete set of integers is the union of the negative integers, 
the positive integers and zero. 

We were able to establish an order for the integers. We were able to picture the integers 
on the number line by extending the number line to the left of 0. On the extended line, the 
smaller of two numbers was still pictured to the left of the larger. We were able to use the line 
for adding positive integers, as before, by stepping to the right. But we found that stepping to 
the left on the number line was required for adding negative integers. Since this was the same 
as subtracting positive integers, we concluded that 

a + (-b) = a - b. 

Since negative integers may be added on the number line by stepping to the left of 0 in
 
the same manner that positive integers may be added on the right of 0, we concluded that
 

(-a) + (-b)= -(a + b). 

We saw that the opposite of a negative integer was a positixe integer. 
The statement a + (-b) = a - b assures us that every Lubtrraction problem of the form 

a - b can be changed to an addition problem of the form a +-(-b). 
We learned to multiply the integers, and discovered that a x (-b) = -(ab) ,(-a) x b = -(ab) 

and (-a) x (-b) = ab. 

33-6 Rt-tional numbers 

Just as the fractions permitted the naming of some of the points between the whole num
bers to the right of 0 on the number line, so we rceded te i..,.we points between the negative 
integers to the left of 0. These new numbers, the opposites of the non-zero fractions, we called 
the negative fractions, and, together with the fractions, they make the set of rational numbers. 
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33-7 Summary 

We now have a very large set of numbers to work with-the set of rational numbers. In thenext chapter, we shall revise the properties of operations on these numbers We have seen thatthe set of rational numbers'is composed of several important subsets. Sometimes we do not
need this huge set of numbers when we 
 are solving our problems-sometimes one of the subsetsis big enough to take care of what we need to do. But it is comforting to know that with this
large set of rational numbers, we can now 
 perform any of the four basic operations 'on any num
bers with just one exception: we are not permitted to divide by 0.

In Unit VII we are going to expand our number system again and for the last time in this 
course. But we shall still be unable to give meaning to division by 0. 

EXERCISE 33-7A 

List as many subsets of the set of rational numbers which we have studied and named as 
you can. 
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Chapter 34 
REVISION OF PROPERTIES 
OF OPERATIONS 

In Chapter 13 we gave a summary of the properties of operations when the operations 
were performed with whole numbers. Since that chapter, we have studied operations on numbers 
other than whole numbers; for instance, on integers and rational numbers. We are now, there
fore, in a position to expand our summary to include properties of operations on integers and 
rational numbers. 

34-1 Closure under addition and multiplication 

A set of numbers is closed under addition if the sum of any two of the members is also a 
member of the set. It is closed under multiplication if the product of any two'of the members is 
a member of the set. 

1. Since a + b is a whole number if a and b are whole numbers, the set of whole num
bers is closed under addition. This w2 know already. 

Since a + b is an integer :f a and b are integers, the set of integers is closed under 
addition. For example, (-8) + 12 is an integer. Are the rational numbers closed under addition? 

Is ? + - a rational number whenever P and 'n are rational numbers? You see this is so,q n q n 
because
 

. m =pn + qin an integer rational number. q n qn another integer 

(Of course, we must be sure that the denominator qn cannot be zero. How do we know that q /= 0 
and n := 0? Could qn be 0?) 

2. Since a x b is a whole number whenever a and b are whole numbers, the set of whole 
numbers is closed under multiplication. 

Since a x b is an integer whenever a and b are integers, the set of integers is closed 
under multiplication. 

For example, (-8) x 12 = -96, which is an integer. 

Is the set of rational numbers closed under multiplication? Is E x - a rational number if 

2 and 
_

T are? Yes, because 
_ 

× 
m p

- -. 
an integer
nitg. 

q n 
= a rational number, since qn -

q n q n qn another integer 
3. The set of whole numbers is not closed under subtraction, since, for example, 2 - 7 is 

not a whole number. 
The set of integers is closed under subtraction. So is the set of rational numbers. Can 

you give examples illustrating this? 
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4. The set of whole numbers is not closed under division. For example, 2 + 7 is not a 
whole number. 

Is the set of integers closed under division? Is (-2) integer, for example?7 an 

If we divide any rational number Z- by any non-zero rational number -, It will we alwaysq 
get a rational number? Let us see. 

P _ =P an integer 
q n qm an integer 

Could qm = 0? Only if q = 0 or in = 0. But q = 0 is not allowed and if 7n / 0, m cannot be 0 
either. We conclude, then, that the set of all rational numbers "xcept zero is closed under 
division. 

EXERCISE 34-IA 

1. State under which operations (addition, subtraction, multiplication, division), if any,
each of the following sets is closed. 
a. 12, 4, 6, 8 b. The set of all rational numbers 

c. 112, ,, d. 

e. The set of all integers f. The set of all odd numbers 

34-2 Commutative property of addition and multiplication 

1. The order in which two whole numbers are added will not affect their sum. That is,a + b = b + a is true when a and b are who'e numbers. Is it true when a and b are integers?Yes, it is. For example, -8 + 3 = 3 + (-8), each side being equal to -5. This is not new. Is 
this true for rational numbers? Is is true that p m m p 

P+  - + 
q n n q 

that is, that 

pn + qm mq 4-np ,
 

qn nq
 

Remember that p, q, m and n are integers. (Which of them cannot be 0?) Then qn = nq. Why? 
And pn + qm = mq + np. Why?


So we see that the commutative property of addition holds for rational numbers.

2. The order in which two whole numbers are multiplied does not affect the product.

That is, a x b = b x a when a and b are whole numbers. It is true also for integers, as it is for 
rational numbers. For example, (-8) x 3 = 3 x (-8) since each side is equal to -24, and (8')

22 (_i 1x - = x mn i)_since each side is equal to  " Can you show that × = - x -in allq n n q
cases?
 

We found that subtraction and division do not have the commutative property. Checkthese statements of subtraction and division to see that neither operation has this property. 
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Is H- 5 -5 5) 

34-3 Associative property of addition and multiplication 

1. (a + b) + e = a + (b + e) is true for whole numbers. Is it true for integers? Suppose you 
want to add -8, 7 and -6. How would you proceed? You could add -8 and 7 and then add -6 to 
the sum; or you could add to -8 the sum of 7 and -6. But you know you would get the same sum 
for each: (-8 + 7) + (-6) = -8 + [P + (-6)]. Of course, you would do the same if the given num
bers had been rational numbers. So (a - 6) + c = a + (b + c) if a, b and e are rational numbers. 

2. a x (b x e) = (a x b) x c is true for whole numbers. Is it true for integers? Is (-8) x 
(5 x 11) = [(-8) x 51 x 11? Yes, since each side is equal to -440. 

Is it true for rational numbers? Is x x the same as x x ? Yes, for each 

is equal to 5 

It is not difficult to snow that for rational numbers, 

(L) n=P 

In fact, each is equal to pmr 
qns 

Subtraction and division do not have this property as you can see by answering the 
questions below: 

Is (-8) - 13 - (-2)] = [(-8) -3] - (-2)? 

Is2 -3 - 3) -

Is[ 4 2) -~~[( ) 4] 

Is2 ~) ] [2+(~ +? 

34-4 Distributive property 

1. a x (b + c) = (ax b) + (a x ) is true when a, b and c are whole numbers. Is this same 
distributive property true for integers and rational numbers? Check these statements, which 
illustrate the distributive property of multiplication over addition: 

(-8) x [5 +-(-2)] [(-8) x 5] + [(-8) x (-2)] 

2 L8 

In the first, each side equals -24, so the statement is true. In the second, each side equals j-'1
12 

so the statement is true. 
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2. a x (b - c) = (a x b) - (a x c) is known to be true for whole numbers. Is it true for in
tegers and rational numbers? Check these statements: 

(-8) x [5 - (-2)] = [(-8) x 5] - [(-8) x (-2)] 

In the first, each side equals -56, so the statement is true. In the second, each side equals
33 so this statement is also true. 

Suppose the statement about multiplication and subtraction had been written in general
form. We would like to show that 

If we work out both sides, we find that the left-hand and right-hand sides are, respectively, 

pins - pnr and pmqs - qnpr
 
qns quqs
 

Do you see that these expressions represent the same rational number? Thus the statement is 
true. In a quite similar way, we could prove that the statement of the distributive property is 
true. 

34-5 Properties of zero and one 

We have learned that 0 has the property that 0 + a = a + 0 = a, when a is any whole num
ber, and that 1 has the property that I x a = a x I = a, when a is any whole number. 

Do 0 and 1 have these properties when a is any integer or any rational number? Yes,
they do. We have met these operations when working on integers and rational numbers. For 
example, 

0 + (-8) = (-8) + 0 = -8, 

2 2 2 

1 x (-8) =(-8) x 1 = -8, 

22 -3.22 

In general, 

-2+ 0 =0 + 0 + p (0 x ) + (x p) =p
 

q q q lxq q
 
and Px 1=1 x 1 p _ lp _ p
 

q q q xq q
 

So 0 is called the identity element for addition, and 1 is c, !led the identity element for multi
plication. (Recall that we have seen that 0 is not an identity element for subtraction, nor is 1 
an identity element for division.) 

There is another impertant property of 0. We know that the product of any whole number
and 0 is 0. Is this true when the other factor is an integer or a rational number? Are 0 x (-8) = 0 
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and 	0 + (- 1) = 0 true? From our study of integers and rational numbers, this statement is 

true: Any number multiplied by 0 will give 0 as answer.
 
This property of 0 may be written as follows: If a is any rational number, then
 

a x 0 = 0 x a = 0. 

34-6 Opposites and reciprocals 

Much work has been done with integers and rational numbers on the number line, and
 
you should by now be familiar with such pairs of numbers on the number line as -3 and 3,


1 ad1
 
- and -a and a. One number in each pair is to the right and the other to the
 

left 	of the zero point-unless they are both 0-and both are at equal distances from it. The sum 
of the numbers in each pair is zero. We have called the numbers in such a pair opposites.
 

Given a rational number which is not 0, we can find its reciprocal.For example, the
 
reciprocal of 7 is !' of - is -, of ! is 9. The most important property which we dis

7 	 9 8' 9 
covered about a number and its reciprocal is that the product of the two is always 1. Always 
keep in mind that the number 0 has no reciprocal. 

34-7 Inverse operations 

In Chapters 9 and 12, it was mentioned that addition and subtraction are inverses of
 
each other and that multiplication and division have a similar relation to each other. This 
can
 
be shown to be true for integers and rational numbers as it was found to be true for whole
 
numbers. Here are the statements expressing these relations:
 

(a-	 b)+ b=a and (a+ b)- b=a 

if a 	and b are any rational numbers, and 

(ax b) - b=a and (a +) x b=a 

if a 	and b are any rational numbers (with b =/= 0). 

34-8 Properties summarized 

In this summary, the letters a, b and c represent any rational numbers. Since an inte
ger is a particular kind of rational number, the properties listed will also apply to integers. 

(a) 	 Closure properties 
a + b is a rational number. 
a x b is a rational number. 

(b) 	 Commutative properties of addition and multiplication 
a + bb + a. 
a x b =b x a. 
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(c) Associative properties of addition and multiplication 
a + (b + c) =(a + b) + c. 
a x (bx c) =(a x b)x c. 

(d) 	 Distributive properties 
a x (b + c) (a x b) + (a x c). 
a x (b - c) (a x b)- (a x c). 

(e) 	 Properties of zero 
a + 0 =a. 

a x 0 =0. 

(f) 	 Property of one 

a x I =a. 

(g) 	 Opposites and reciprocals 
a + (-a)= 0.
 

1
 
a 

(h) 	 Inverse operations 
(a - b) + b = a.
 

(a + b)- b= a.
 
(ax b) +b=a (if b 0).
 
(a - b) x b=a (if b 0).
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Chapter 35 
ORDER FOR RATIONAL NUMBERS 

35-1 Order on the number line for positive rational numbers 

Do you remember how we described "order" for the set of whole numbers in Chapter 1" 
and "order" for fractions in Chapter 22? Let us see. Here is a number line. 

< I i I I i I i i i t I I>
5 11 

0 1 2 5 3 4 5 -1 6 7 8 9 10
2 2 

You will remember that we said that a number a is "greater than" a number b if a is 
to the right of b on the number line. For example, 5 is greaterthan 3 and we see on the num

11 .11
 
'er line that 5 is to the right of 3. Similarly, 1 is to the right of 4 and so - is greaterthan 4.


2 2 
.n symbols, we write 

i1
 

a>b, 5>3, 1->4. 
2 

In a similar way we described the idea of "less than" by saying that a number b is 
less than a number a, if b is to the left of a on the number line. Thus 3 is less than 5, because 

it is to the left of 5 on the number line. Similarly 4 is to the left of 11 on the number line and 

so 4 is less than 1-. In symbols, we write 

b<a, 3<5, 4< 11 

You see that a > b and b < a really mean exactly the same thing. Both inequalities say that a 
is to the ri1ht of b on the number line, and this is the same as saying that b is to the left of a 

on the number line. 

EXERCISE 35-IA 

1. Draw a number line and locate on it by dots the following: 
a. six consecutive whole numbers greater than 8 
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b. four even whole numbers 	less than 16 
c. the three smallest fractions greater than 3 and having 3 for a denominator 

2. a. Find the smallest 	whole number greater than 6. 
b. Find the 	greatest whole number less than 10. 

c. Find the 	three largest and the three smallest whole numbers less chan -L2 

3.In Chapters 	 19 and 22, you learned to compare two frL,.tions by putting them on the num
ber line. It is not always easy to locate two fractions accurately on the number line 
when they are very close together. We therefore have to learn another way of finding out 

which of two fractions is the 	greater. Suppose we wish to find 	out which of 2 and 
3is the greater fraction without locating them on the number line. How shall we do it?

4 

One way would be to draw a diagram to represent each fraction and then compare the two 

diagrams. The two fractions 	 - and are shown in the diagrams below. 
3 4 

2 8 3 9 
3 12 4 12 

Clearly the second picture represents the larger fraction, and so we say that is 

greater than 	 2 ; that is, 3>2
 
37 4 3'
 

Another method of comparing two fractions is to express both of them with the same de
nominator and then compare their numerators. Consider the above example where

2 32 	 8 an 3 9 
we 

compared and. We may write 3 
= - 1 2 an . Hence, by comparing the numera

tors we see that 9 > 8 and, therefore, that > 3" Of course we could also have arrived 
4 3 23 2 3 9 8 

at the same result by taking the difference between and 3" That is - 2 1 
4 3' 4 3 f2 1

1 
12 ,which is 	positive. 

EXERCISE 35-lB 

1. For each pair of rational numbers, determine their order by 
(i) locating 	them on the number line; 

(ii) writing each pair with the same denominator; 
(iii) subtracting one from the other. 
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In each case, say which is larger.
 
4 nd-
 b. 	 -and
95 	- 10 55 44 

c. 	 9 and 5 d. - and
23 3
 

2. 	 Arrange the following rational numbers in order, starting with the least and ending with 
the 	greatest in each case.
 

2 1 3 2 5
 
a. 	 3 '2 ' ' 5 ' 6
 

5 3 1 11
b. 	 3 , 21 , 3, 11
 
3 I 2 1 31
 

C. 3 	 + A; 2 + 33; 1 + 41; 5+ 

Order for decimal fractions 

When we wanted to find out which of two fractions was greater, we expressed both frac
tions as new fractions with the same denominator and then compared their numerators. A similar 

method is found useful with decimals. For example, 0.5 may be written as and 0.05 as -- ' 
5 

In order to write 5 as a fractioni50with 100 as a denominator, we have to multiply both numerator 

and 	denominator by 10. This gives 5 - 0 x 10 50 . This means that -00- that is, 

0.5 	> 0.05. 
6 

Here is another example. Which is greater, 0.6 or 0.55? We write 0.6 = and 	0.55 as
55 Sice 6 6x 1 6010 5
 

55--0" ice 6 has 10 for denominator, we write 6 6 x 60 Hence, 5 that
10 > _L5 

Sic 6_ 10 X10 100 100'
0=1 	 f 00 

is0.6 > 0.55.
 

EXERCISE 35-IC 

1. 	 Arrange the following numbers in order, starting with the least and ending with the 
greatest. 
0.35, 1.35, 3'5, 1.035, 10.35, 0.035, 17.5, 2.25, 2. 

2. 	 Insert the correct inequality sign in each box below. 
2. F[ -35 	 b. 1.7 ]1.75 

C. 	01-12.5 d. 3.8 0.38 
e. 	 0.75R 0.7 f. 0.75 [ 0.7 
g. 	2.514 h. 51-14.8 
i. 	 2 R4.2 
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35-2 	 Order on the number line for the set of rational numbers 

Just as we did for whole numbers and for positive fractions, we use the term is greater
than with rational numbers to mean "is to tile right of" on the number line. If a and b are
rational numbers, ''a is greater than b", written a > b, is interpreted to mean that a is "to the 
right of" b on the number line. 

In a similar way, we use is less than for the set of all the rational numbers to mean 
"is to the left of" on the number line. If a and b are rational numbers, "b is less than a" is 
written b < a. 

We may restate the above by saying that if a > b, then on the number line we have to 
move to the right from the point which represents b to get to the point which represents a. This 
represents the addition of a positive number p to b to get a. We ma) write, 

if a> 	b, then a= b +p and a- b=p 

where 	 p is a positive number. 
In a similar way, if a < b, then we have to move to the left from the point which repre

sents 	 b to the point which represents a. That is, 

if a< 	b, then a= b + q anG a- b= q 

where 	 q is a negative number.
 
Here is a number line with 
some rational numbers represented on it. 

<C 1 le 0 0 00 i I -*-- I>-7 -6 -41-3 -2 -1 0 1 2 3 14 5 1 6 7 
-3.5 7 11 

We easily see that 3 is to the right of -1: 3 > -1 	 and 3 = -1 + 4. Similarly, -3.5 > -57  7 11

and -3"5 = -5 + 1.5, but < - and - = L + (-2).


2 2 2 2
On a number line, all negative rational numbers are to the left of 0, and so for any nega

tive number k we may write k < 0. Also, all positive rational numbers are to the right of 0, and 
so for any pnitive number in we may write in > 0. 

EXERCISE 35-2A 
1. 	 Determine which of the following statements are true and which are false. For the true 

statements of the form a > b, find a positive rational number p such that a = b + p. For 
the true statements of the form a< b, find a negative rational number q such that 
a = b + q. 
a. 16<-32 b. -16<32 
c. -1 	 <-3 d. 1.6 <-3.2 
e. -1.6 > 3.2 	 f. 0 > I 
g. 25<-26 h. -25 <26 
i. 36>0 j. -36>0 

k. - 3 	> - 6 0.0 < 3 

2 
m. - <0 n. -4 + (-2)<-2+2 

o. -5 	+ 1 > 2 + 1 
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2. 	 Insert the correct inequality sign in the following statements. 

a. 4 + (-3)D--'4 + 8 
b. 4 + 8F1D-4 + (-8) 
c. 6 + (-1)D]6 F 2 

-- +d. 

e. -6 	 + (-I) n-6 + 2 
f. -3"5 + 3"5 n 3"5 3"5 

g.-1E( ) 
3. 	 For each pair of numbers, determine their order. Write a statement involving the sign > 

for each pair. Then for each statement a > b, find a positive rational number p which 

makes the statement a = b + p true. 

4 and 	_. b. 2"5 and -5.5 
5 

c. - and -d. 	 -- and - 4 
9 

e. - - and -5 	 f. 2.25 and 3.75
2 

4. 	 Locate on different number lines 

a. four negative integers greater than -6, 

b. five negative integers less than -9, 
c. the 	six greatest integers less than 4, 

d. four negative integers less than 0. 

5. 	 From each of the following statements about equality, deduce the corresponding state

ments about order, using first the sign < and then the sign >. For example, from 

-3 = -5 + 2, we see first that -5 < -3, and then that -3 >-5. 

a. 6 	 -3 1 9 b. -2 =-8+6 
c. 0=-4 t 4 	 d. 12=9+3.

3 2 1 
f3 + 1 

e. 3.25 =-3 , 6.25 

g. -9=-12 +3 	 h. 2 =-8+ 10 

35-3 "Between" for rational numbers 

In Chapter 17 we saw that given any three whole numbers a, b and c, we can say which 

ones lies "between" the other two numbers. For example, on a number line we see that 4 is to 

the left of 7 and so 4 < 7; also, 10 is to the right of 7 and so 10 > 7. We can write 4 < 7 < 10. 
What do we mean by "between" for rational numbers? A number line will help us. This 

number line shows that 

-7 -6 -5 -41--3 -21-1 0 1 2 1 3 4 5 6 1 7 
-3"5 -1.5 5 13 

22 
- 6 < -4 and -4 < -2. We therefore say that -4 is between -6 and -2, and we write -6 < -4 

< -2. In a similar way, we see from the number line that 2 is between 0 and 5, and we write 
0 < <5.O< 

2 
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1. 

2. 

3. 

EXERCISE 35-3A 

Arrange the rational numbers a, b,c and d on the number line, on the assumption that ais between b and c, and b is between a and d. Note that there are two possible 
arrangements. 
Wrire the set whose members are 
a. the integers between -5 and 5, 
b. the negative integers greater than -4, 
c. the positive inegers less than 7, 
d. the integers between 0 and -4, 
e. all the fractions between 1 and 3 with a denominator of 5.Find a rational

1 number between each of 
1 
the following pairs of rational numbers. 

a. - and I 
 b. -3 and-1 
3 
 3
 

1
 

5 7 

C. Iand- d. -2 and

5 2
 
e. 5- and 5 
 - 9 and- 8
 
From your answers to Question 3, it will be clear to you that you can find more than onerational number between any pair of rational numbers. For example,1 
 what was the rational3 1 3
number you found between - and 1? One possibility is 3" What about - or i or ? Can 
you find any more rational numbers between - and 1?
 
We have seen 
that given any integer we can always tell which integer precedes it or
comes after it. Given any three integers we can 
always tell which is between the othertwo. The example above seems to suggest that we cannot talk of the rational number
 
between - and 1, because there 
are many such rational numbers.

3

Can we talk of the rational number which follows1 a rational number? For example, can3
 
we find the next rational number after 1 ? Suppose we 
take 5, one of the answers wesuggested above. We represent both these points on the number line. 

<"0 I I I I"-1. _ 1 ,
1// .\ 

1 21 11 6 
 5
 

1 5 3 9 
 6 78
 

We observe that - = - and so- that3 15 are all closer to - than
5 15 15a5'clo5
F t 3
 
3 If we choose - as the 
next rational number after we note that i =,= 10 and
 
6 

315 
11 1 

3, went h T O
12 0n - andi so L is nearer to 1 than 6 Once 1 20
more we observe that1530 and3 15 
 6

11 22 
 21 i 
 a W
60. Is 
 han 
 We may continue this process as long as we wish,
so that there is no rational numbei "next" after a given rational number. A similar argument would show that we cannot identify the rational number "just" before a given 
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rational number. All this suggests to us that between any two rational numbers, no mat
ter how close together they are, there is always a third rational number. 

EXERCISE 35-3B 

Find four rational numbers between each pair of rational numbers in Question 3 of Exer
cise 35-3A. 

35-4 Two basic properties of order for rational numbers 

1. The Comparison (or Trichotomy) Property 

If a and b are any two rational numbers, then one and only one of the following is true: 

aa>5, a =b, a <b. 

This property is one which requires no proof. For, given any two integers, we can locate 
them on a number line and see whether one is to the right or left of the other. That is, we can 
say which is greater than the other. In the case a = b, we iave two different names for the 

20 same number. For example, 2 x 5, 10, -i-, 9 + 1 are all different names for the same number. 

EXERCISE 35-4A 

Put the correct inequality or equality sign into the boxes to make each statement true. 

3 (-9)1. 6 7 
21 12 1 1 

3. 4.- 3.- [o F2 ++ 

5. -7 -- 14 6. o 1-l -1

7. 8n2 -(-6) 8. -6 n 1 

2. The Transitive Property 

Let us look again at the relation 4 < 7 and 7 < 10, which we discussed earlier. What 
conclusion can we draw as to the relation between 4 and 10? Do you see that 4 is less than 
10? You can verify easily that 4 < 10 by looking at the number line. 

Here is another example. We know that -6 < 2 and 2 < 6. Of course, you see straight
away that -6 < 6, and again you can check the conclusion by looking at the number line. 

1 1 1 1 1 1
As another cxample, we have- < and <.< We thus see that- < 

Now choose any three rational numbers a, b and c on the number line in such a way that 
a < b and b < c. Find several sets of rational numbers which satisfy these two relations. What 
can we say as to the relation between a and c? You can see straightaway that a < c. The prop
erty that we have just established we will call the transitive property of order. It states, 
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if a, b and c are any three rational numbers and 
if a< b and b< e, then a <c. 

EXERCISE 35-4B 

1. In each of the following groups of rational numbers, determine their order. 
a. 2.5, -5.2,0 b. - , 1 1 

C. 1'2 
 3 d. 25,4'2.05,2'2.25 

e. 5,-6, 4 T. 
.4 3 3 

3, 4, 4 

The transitiv,-, property often makes it easy for us to compare some pairs of fractions. 
Suppose we 9wish to find out which of the two fractions - and 97-is the greater. By the 
method described earlier in this chapter, 17 19 

we first write the fractions with the same de
nominator and compare the numerators. Thus, 79 1501 97 1649 By comparing the 

97 17 323' 19- 32379 
numerators 1649 and 1501 we see that 7 > L9-.You of course know how we arrived at
this result. It has involved the finding of the three products 19 x 17, 97 x 17 and 79 x 19,
and you will agree that this is a lot of work.
 
Can the transitive property help us? If 
we can find a rational number which is between 9
 

17and - then we can easily compare the two fractions. We note that 9 that is,79 1 97 95 97 79 
517 9 -'; that is, > 5. If in the transitive property we take a = 

b9 n 7 9 <97and 19 ,-we see that a <c; that is,17 19' 

EXERCISE 35-4C 

1. Determine 
2. 

the order of the following fractions.87 0 9and79 97
a. 287 and 34 b. -72 and
17 1916 
 1
 

c. ad19 d. 1 and 190 
357 112. Sometimes it is not so easy to find the order of two fractions by using the transitiveproperty. Try to find the order of and 8 by using the transitive property. 

We shall now sketch a proof of the transitive property, if a, b and c are rational num
bers and if a< band b<c, then a<c. 
It was shown in Section 35-2 that 

a< b means a= b+ I where qI < 0; 
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also, 

<b<c means b= c + 2'where q2 0. 

Hence, 

a b + q 

=(c + q2 ) + ql' by writing b = c + q2 

c + (q2 + qI), by the associative law of addition 

c + q, where q = q2 + ql" 

But we know that the sum of two negative numbers is another negative number, so q is a
 

negative number.
 
Hence,
 

a = e + q, where q is a negative number, 

which means that 

a < C. 

EXERCISE 35-4D 

If a, b and c are rational numbers and if a> b and b > c, then a> e. Prove this property 

as above, giving a reason for each step in your proof. 

35-5 Addition property of order 

We have already considered the addition property of order for whole numbers and for 

fractions in Chapters 17 and 22. Let us now see whether the property is true for the set of all 

rational numbers. 
It will help us to picture addition and order on the number line. Let us first choose two 

rational numbers a and b on the number line with a < b. We remember that the addition of a 

a b 

positive rational number to both a and b means moving to the right, while the addition of a 

negative rational number means moving to the left. 

If we now add the same positive rational number c to a and to b, we see that the point 

for a + c is c units to the right of the point for a and the point for b + c is also c units to 
the right of the point for b. The number line ifidicates that a + c < b + c (see Fig. 1, below). 

If we add a negative rational number c to a and to b, the points for a + c and b + c will each 

be the same distance to the left of the points a and b respectively. The number line still 

suggests that a + e < b + c (Fig. 2). 

C I 

a a+e b b+c 
Fig. 1 
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a+c a b+e b
 

Fig. 2 

Let us see if we can prove the addition property of order. Starting from a < b, we knowthat a = b+ q, where q is some negative rational number. We add c to both sides of the
equality obtaining a + c = (b+ q) + c, or a + c = (b+ c) + q. (Why?) But the last equality tells 
us that 

a + e < b + c. 
The order relation between the numbers is preserved. Hence, we have the addition property of 
order: 

if a, b and c are rationalnumbers and if a < b, 

then 

a + c < b + c. 

EXERCISE 35-5A 

1. Formulate an addition property of order for the relation " >" and write out a proof of it. 
2. Illustrate the truth of the addition property of order by taking b - ,_ a = , and 

2' 2 
with c having successively the values - 6,0,- ,-4. 

2' 2 

35-6 Generalized addition property of order 

In the addition property of order considered above, we saw that the addition of the samerational number to both sides of an inequality preserves the order relation. Naturally we maywant to know whether an order relation is still preserved when the two rational numbers addedto both sides are not equal but have the same order relation between them that the original

rational numbers have.
 

Let us illustrate this with an example on the number line. We know that 2 < 
6 and that-3 < -2. What relation holds between 2+(-3) and 6+(-2)? Add 2 to (-3); this gives -1.The

addition of 6 and -2 gives 4.
 

-3 -2< I I I I II I I 
-7 -6 -5 -4 -3 -2 -1 01 2 3 4 5 6 7 8 

2 + (-3) 6 + (-2) 

What relation exists between -1 and 4? We see that -1 < 4. From this we may write, 
if 2<6 and -3<-2, 

then 2 + (-3)< 6 + (-2). 
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That is, 

-1 < 4, 

which is true. 
Now choose any four rational numbers a, b, c and d with a < b and c < d. Add a to c and 

b to d. Do this with two or more sets of rational numbers. Write in each case the relation which 

exists between a + c and b + d. Your answers will lead you to the generalized addition property 

of order which states, 

if a, b, e and d are rational numbers such that a < b and e < d, then a + c < b + d. 

Let us now give a proof of this property.
 
If a < b, then a + c < b + c (by the addition property of order).
 
If a<d,then 6+ c< b +d.(Why?)
 

Hence, using the transitive property of order, we have
 

a + c < b + d. 

EXERCISE 35-6A 

Write the generalized addition property of order for the relation " >". Try to make a 

proof for it. 

35-7 Numbers and their opposites 

The addition property of otder often helps us to see the truth of some properties of num
bers which are not at once apparent. One such property is the relation bet-v.,en two rational 

numbers and their opposites. 
Bv considering a few numerical examples we can easily see that if a and b are ra

tional numbers and if a < b, then -b < -a. Try to convince yourself of the truth of this property 
by drawing a numher line and by locating several pairs of rational numbers and their opposites 

on it. 

Let us see now whether the addition property of order can help us to give a proof of the 
relation which exists between the opposites of a pair of rational numbers. Let ; and b be 
rational numbers with a < b. Then adding -a to both sides o. the inequality, we have 

a + (-a) < b + (-a) (by the addition property of order). 

That is, 

0 < b + (-a) (by the property of opposites). 

Again, by adding -b to both sides of the inequality, we get 

0 + (-b)< b + (-a)+ (-b). (Why?) 

So -t < -a. (Why?) 

Thus, the relation is proved. 
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35-8 Multiplication property of order 

You will remember from your earlier study of the rational numbers that if a and b arepositive rational numbers, then a x b is a positive rational number and a x (-b) is a negative
rational number. (In fact, it is the opposite of a x b.) That is, the product of two positive rational numbers is always a positive rational number, while the product of a negative rational
number and a positive rational number is always a negative rational number. 

Consider the set of rational numbers { , -4, 3, 5, 6 represented on the number line 
below. Now multiply each element 

K el I I le" I 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

322 5 

of the set by 2, a positive number. We obtain the set 1-3, -8, 5,6, 121. These numbers arerepresented on the number line below. On rhe new number line the points which 

-, (O I III I I I II S 0- I I I I I ". 
-12-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 910 11 12 

correspond to -4 and - are -8 and -3. The relation between -4 and - - is -4 < - -, while22the relation between -8 2'and -3 is also -8 < -3. That is, the order relation is preserved. 

Similarly,
5 5 

since < 3, then 2 x < 2 x 3; 

since 3 < 6, then 2 x 3 < 2 x 6; 

since- < 3, then 2 x (-) 2 x 3. 
These examples suggest that if a and b are rational numbers with a < b,then if c is a

positive whole number, a x c b x c. 

Now let e = .Multiplying the set of rational numbers - ,-4,3, 6 by , which 

is a positive rational number, 3}. 
that-4<- and that-2 <-

we get the set - , -2, , +, From the number line we see 
• That is,since -4 <- ,then 1 x(-4)< 1 x 

Siiary sic 46, the -1 2
Similarly, since -4 < 6,then 1 x (-4) < - x 6. This all suggests the multiplication 

property of order: 

If a, b and c are rational numbers and if a < band c is positive, then 

a x c <b x c. 

A proof of this property will be given in the next section. 
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EXERCISE 35-8A 
1. 	 Complete the following statements using one of the symbols > or < 

a. If9 >7, then9x 3[-D7x3. 
b. If -5 < -3, then -5 x 3 R-3 x 3. 
c. If a> band e>0, then ax cD-bx c. 
d. If7 	>-9, then 7x 4F]-9x4. 
e. If 3>0, then 3x6[]0x6. 
f. If a< b and e> 0, then ax cDbx c. 
9. If -5 < 5, then -5 x4D]5x4. 
h. If0<8, thenOx 2D8x2. 

35-9 	 Proof of the multiplication property of order 

The property states that if a, b and c are rational numbers and if a < b and 0 < c, then 
a x c < b x c. If a < b, then b = a + p, where p > 0. Multiplying by c we obtain 

b x c = 	 (a + p) x c 

= (a x e) + (p x a). 

Now p x e is a positivc rational number, because it is the product of two positive rational
 
numbers.
 

Therefore b x c = (a x c) + positive number. 

Hence ax c< bxc. 

EXERCISE 35-9A 

1. 	 Provethatif a>b and c>0, then axc>bxc. 
2. 	 Choosc any three rational numbers a, b and c with a < b and c negative. Find the prod

ucts a x e and b x c. What is the relation between ax c and b x c? 
3. 	 Repeat Question 2 with three different sets of numbers a, b and c: (i) choose a and b to 

be positive and e negative, (ii) choose b to be positive and a and c negative, (iii) 
choose all three numbers negative. Write down the product a x e and b x e in each case 
and state the order relation between them. 

4. 	 Can you deduce a new multiplication property of order from the answers to Questions 2 
and 3? 
Your answers to Questions 2 and 3 will have shown you that if a, b and c are rational 
numbers and if a< band c<0, thena xc> b xc. 

35-10 Generalized multiplication property of order 

It was 	established in Chapter 22 for positive fractions that if 

a C 	 and - q 

thena 	 m c p 
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This was proved by using the number line. This property is not truc for rational numbers if we 
allow some of the four numbers to be negative. However, we do have the following property: 

If a, b, c and d are rational numbers, with a< b and c <d, and a, b, c 
and d are positive, then a x c < b x d. 

We shall give a proof which uses the multiplication property of order. 

If O<a<b and O<c<d, 

then ax c<bxcand bxc<bxd. (Why?) 

Hence, ax c< bxd. 

EXERCISE 35-IOA 

1. 	 Find three sets, each consisting of four positive rational numbers a, b, c and d satis
fying a < b and c < d. Verify in each case that the generalized multiplication property 
of order is satisfied. 

2. 	 Rewrite the generalized multiplication property of order given above using a > b and 
c > d. What is the relation between a x c and b d? 

35-11 Summary of properties of order 

In the properties of order given below the sign > may replace the sign < as appropriate. 

1. 	 Comparison Property of Order 
For any rational numbers a and b, one and only one of the following is true: 
a < , a = b, a> b. 

2. 	 Transitive Property of Order 
For any rational numbers a, b and c, if a < b and b < c, then a < c. 

3. 	 Addition Propertyof Order 
For any rational numbers a, b and c, if a < b, then a + c < b + c. (NOTE: c 'may be 
positive, negative or zero.) 

4. 	 Order Property of Opposites 
For any rational numbers a and b, if a < b, then -b < -a. 

5. 	 Multiplication Property.of Order 
a. For 	any rational numbers a, b and c, if a < b and c is positive, then a x c < b x c. 
b. If a < b and c is negative, then a x c > b x c. 
c. For 	any positive rational numbers a, b, c and d, if a < b and c < d, then a x c < b x d. 
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Real Numbers . UNIT VII 

Chapter 36 
REAL NUMBERS 

36-1 Introduction 

We have used the decimal fraction .3 as a different way of writing -0. In the same way, 

*2is equal to A. We can 	write an equal fraction with the smallest possible numerator and211 

denominator. We then say that the fraction is written in lowest terms. In lowest terms, 2 = 

1o 3 
so that .2 

These are examples of one-place decimal fractions. The same idea applies if there are 
two, three -r even more decimal places. Thus, 

•.25 --=i ,=i25 1 

• = 1055 = 2-0'1 

12 5 -=112005 20'1§1 
1000 ""8" 

In each case, we have written the fraction in lowest terms. 

Ifwebeinwih ratinslie5' 4' 20 8nl 1 7 ,it is easy to go in the other direction 
and express them in decimal form. For these examples, we write 

1 = 2t f-o 2, 

1 25 	x 1 25
 
x - 100 - 25,
25x4 


7 5x7 35
 
20 5x 20 100
 

3 125 x 3 375
 
8 -125x 8 1000
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36-2 Unending decimal fractions 

Can we find a finite decimal form for any given fraction? It is not hard to see that the 
answer is "No". 

If a fraction 
( 
z isto be written in finite decimal form, it must be possible to "fatten it 

up" so that b becomes 10 or 100 or 1000 or some higher power of 10. 
Except for 1, wvhich is not interesting, the only numbers which divide 10 are 10, 5 and 2. 

Any fraction which is equal to a one-place decimal must, therefore, have a denominator which 
is 10 or 5 or 2. In fact: 

1 2 	 7 
10 	 .4 =0 

•2 2 = 1 	 5 11-0 5 l -2 	 4510 	 . 

*2 10 6 5 	 . 10.3 3 36. 	 9 

Any fraction which is equal to a two-place decimal fraction must have a denominator 
which divides 100. What are the possibilities? The only ones are 100, 50, 25, 20, 10, 5, 4 and 
2. What are the possible denominators for fractions that are equal to a three-place decimal frac
tion? 

Suppose that we have a fraction whose denominator does not divide any power of 10. 
The fraction - is the simplest example. Clearly 3 does not divide 10 or 100 or 1000 or any

3
 
other power of 10. What can we do?
.1
 

If we try to write - as 
a one-place decimal fraction, we find that "3is too small and .4 
3 

too large, because 3('3) = .9 and X('4) = 1.2. We say that 	 - is between 3 and .4 and write 
311
 

*3< 1 < .4.
3 

If we try to write - as a two-place decimal fraction, we soon find tha~t -33 is too small
3
 

and 34 is too large. In fact, R(33) = .99 and 3M34) = 102. So
 

.33 < I < "34. 
31
 

In the same way, it turns out that
 

'333 < I < "334, 

1.3333 < <K 3334, 

and so on forever. The best that we can do is to write 

1_ 

where the three dots are meant to show that the 3's go on without end. We call the right side of 
the equal sign an unending decinalfraction. 
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Let us take another example, 2 . Since 11 does not divide any power of 10, we know 
2 

that 1 cannot be written as a decimal fraction. We expect to find that it can be written as an 

unending decimal fraction. In fact, 

2 -
 = 181818... 
11 

where the digits I and 8 repeat endlessly. 
Let us verify this by doing a long division. 

*1818...
 
2 = 111! ooo11 -.

1 1 
90 
88@0 

11 

9 

We actually went further with the work than we needed to. When we got the remainder 2 after two 
divisions (shown by a circle), we were in the same situation as we were when we started. So 
we know that the later results of division will repeat the earlier ones.

.5 
Let us look at one more example. What decimal fraction is 2 equal to? Does 6 divide any 

powe" of 10? Since it does not, we must get an unending decimal fraction. Let us see what it is: 

83. 
61 5.00
 

48
 

(0
 
18
 

Do you see that because the remainders in the two circles are the same, the 3's in the answer 
must go on endlessly? We write 

52= .8333... 

EXERCISE 36-2A 

1. Find unending decimal fractions for each of the following fractions.1 1 1 
a. - b. 1 c. I d. 5 

9 99 999 11
 

1f. 

7 7 37
 

e. 1 

36-3 Changing unending decimals to common fiactions 

You see from our work that some fractions are equal to decimal fractions which end and 
others to decimal fractions which do not end. How did you learn to tell without dividing out 
whether a fraction is of the first kind or the second? 

139
 



We discovered something else. When the decimal is unending, the digits repeat, at least 
after a while. For example, 

2f - .1818... (repeating 18) 

5= 833. . . (repeating 3 after passing the 8).
6 

It is fairly easy to see why the digits must repeat. Whei, dividing by 6, for example, 
there can be no more than 5 remainders different from 0. (What vould happen if the remainder 
were 0?) Then if we keep on dividing, we must eventually get 2 remainder that appeared be
fore, and then the digits in the answer start repeating. 

Can we go the other way? That is, if we have an unending decimal fraction that repeats, 
can we find the fraction that it is equal to? Let us see. 

What is a common fraction which is equal to "3939. .. 
Let us write 

D'= .3939... 

Notice that two digits repeat. Now if we multiply by 100, we must move the decimal point two 
places to the right. This gives 

100 x[-1 = 100 x 3939. . .) = 39.3939... 

The unending digits on the right of the decimal point are exactly the same in both cases. 
(Remember that the 39's go on forever!) So if we subtract, we get 

99 X ] = 39 (exactly) 

and therefore the fraction which goes in the box is 

39 13
99 -33" 

You can easily verify that 13 + 33 = "3939. 
Let us take another example. We would like to know a common fraction for .027027. 

We write 

R = '027027.. 

Multiply by 1000 (why not 100?). We get 

1000 xDR'= 27.027027. 

999 x -"= 27, 

i= 27 3= _ 1 

999 111 37 

where the fraction on the right has been written in lowest terms. Again, you should check that 
1- =027027... 

37 
As a final example, let us take an unending decimal for which the digits do not repeat 

from the beginning. 
If[z= "1333. . . (repeating 3's), what fraction goes into the box? We multiply by 10. 

Then
 

10 X ]= 1.333. . 
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and subtracting 

9 X 1-= 1.2, 
1 12 12 2
 
9
910-9015 

EXERCISE 36-3A 

1. 	 Write each of tile following unending decimal fractions as a common fraction: 
a. .222. . .	 b. .2323. .. 
c. "234234. . . d. •iiii . 
e. 0101. . .	 f. .001001 . . 
g. •1666. . . h. .1010101... 

2. 	 Show how you can use the results of parts d, e and f of Question I to find the answers 
to parts a, b and c without working with the box 

36-4 	 Irrational numbers and real numbers 

We have learned that common fractions can be written as decimal fractions which either 
end or repeat. We also learned that any decimal fraction which ends or repeats is another name 
for a common fraction. We can show this in a diagram: 

commn 	 decimal fractions whcfrIcommon fractions end or repeat 

Have we left out any possibilities? Could we have a decimal fraction that is unending but not 
repeating? Yes, we could. 

An example is 

1010010001...
 

where each time we move along from a 1 we put in an extra 0 before the next 1. In this example, 
there is no block of digits which repeats. 

Another exrntple is 

•1234567891011...
 

where the scheme of writing digits should be clear. Again there is no repetition in the unending 
digits. 

These decimal fractions cannot represent common fractions. They must correspond to a 
new kind of number, which is called an IRRATIONAL NUMBER. 

So far we have talked only about positive decimals. For every positive decimal, ending 
or unending, there is an opposite written with a minus sign in front of it. Thus, the opposite 
of .101001 ... is -. 101001.. . . The nmbers that we represent in this way are called negative 
numbers. When we include them and the number 0 we have the following scheme. 

decimal fractions that end 
Srational numbers < = 	 or repeat (whether positive,

negative or 0) 
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---_ ______ decimal fractions that do 
Lirrtional numbers.z-z not end and do not repeat 

(whether positive or ncgative) 

If we put the rational numbers and the irrational numbers together, we get the numbers 
which correspond to all decimal fractions. These numbers are called REAL NUMBERS. 

rrational numbers 

irrational numbers 

EXERCISE 36-4A 

Invent some more unending, ion-repeating decimal fractions. 
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Chapter 37 
A GEOMETRY PROBLEM 

37-1 Introduction 

Let ABCD be a square 2 inches on a side. Sup-
pose that E, F, G and H1are the midpoints of its sides. 
If E is joined to G and F to H, ABCD is divided into four 
squares, all alike, each 1 inch on a side. We there
fore see that the area of ABCD is 4 square inches. 

We notice that 4 = 2 x 2. In general, the num

ber of square inches in a square will be the number of 

inch es on its side multiplied by itself. Show that this 
is true for squares having 3, 4 and 5 inches for their 
sides. 

Let us now join E, F, G and t-. Each of the 
one-inch squares is cut into two congruent triangles. 
We see that EFGH is a square consisting of four of 

these triangles. The area of EFGH is therefore 2 
square inches. 

How long is a side of EFGH, for example EF? 
If S is the length of side EF, it must be true that S 

times S is 2. 
Could S be a whole number? Certainly not, be

cause 1 x 1 = 1 is too small and 2 x 2 = 4 is too large. 
Is S equal to some fraction? If so, the fraction must be 
between 1 and 2. Remember that we want 

D 

1-I 

I 
A 

D 

H 

G 

E 

G 

C 

F 

B 

C 

F 

S X S = 2. 

A good guess is 

S =-2 (= 12). Now A E B 

7 7 
5 5 

50 

49 
25 

7 

Because 2 = L-, we see tnat 7 is a little too small. 

Can we do better? Let us divide 2 by 2. We get 
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2 7 102 - T . 

From the meaning of division, this means that 

7 103×y= 2. 
37 

Remember that = was too 	small. 
5 

How about Lo ? Of course 

10 10 100 
7 x7 49 

We want 

S x S 2 = 98 
49, 

10 

so 	 T is too large. Could we have 1seen this without multiplying 10 by !.0 
Clearly we could. We know that 

7 	 10='x 7 2. 

IfZ is too small, 10 must be too large.
5 '7 
What do we know? We know that S is between- and How-. can we do better? We can 

average these fractions; that is, add them and divide by 2. In this way we get 	a new fraction,7 10 
which is between 7 and 1 

5 7 
7 10 49 + 50 

This fraction is 5 _ 35 _ 99 
2 2 70" 

Let us see if S could be 99 
70" 

99 99 9801 
70 70 4900" 

We wantS xS= 9002=49800 

We haven't quite succeeded, but we are close. 29 is too large but not much too large. Suppose 

70 
that we divide 2 by09. Will the result be too large or too small? Can you say without doing the 

arithmetic? 
Let us do the arithmetic anyway. 

2 	 99 140 
70 99 
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140 140 19600
 
99 99 9801 

140 19602 
If -4 had been the required value of S,we should have gotten -- when we multi

99 9801140 

plied -0 by itself. We got a number a trifle smaller. So now we know that S must be between 

140 and 99.
 
99 70'
 

We could average these two results. You should do this and find out whether we have 

finally succeeded in finding a fractional value for S. You will discover that the answer is 
No'. 

A new question comes to mind. Suppose that we kept on in this way, would we ever get 

an absolutely correct answer? It is very surprising that the answer is "No". We shall show 
this in the next section. 

Meanwhile it will be interesting to change our fractions to decimals. In this way, we 
can see how close we are getting to the desired result. 

First we found S between 
7 =10
 
-. 1.4 and L = = 1.428571... 
5 77 

Next we located S between 

9-0= 1.414141 ... and L9= 1.4i42857... 

99 70 

What better result were you able to find? 

EXERCISE 37-1A 

Suppose that S is the side of a square with area 3 so that S x S = 3. Use the scheme of 

this section to get better fractions which approximate S. 

37-2 S x S = 2 has no solution in common fractions 

a 
We have tried some fractions w to see if we could find the side of a square with area 2 

square inches. We did not succeed. Were we unlucky? Or were we lacking in patience? The 

answer to both questions is "No". There is no fraction-awhich makes 

a a 

This is one of the most famous discoveries in mathematics. The discovery was made by a 
Greek, a follower of Pythagoras, who lived approximately 600 years before Christ. It produced 
a crisis in the history of mathematics. Later we shall explain why this was true. 

a 

But first let us prove this very surprising result. Suppose that there is a fraction for 

aa 
which - x 2 = 2, so that 

b b5 



SxS=2 

with S = a 

Now if S x S= 	2,
 

2
S S, 

This means that if S then =2
S a 

or 

a 2b
 
a
 

We must show 	that this is 'mpossible no matter how we choose the whole numbers a 
and b. 

We may surely assume that the fraction which solves our problem (if there is one) iswritten ii lowest terms, because if it were not in lowest terms we could replace it by a fraction 
14
 

that was. For example, if10 were an 
 answer (it isn't, of course), then 7 would have to be an 
answer also. 

a 2b a t a 
Now we suppose that =i- in the lowest"with terms. issupposed to be equal to 

When are two fractions equal? 

Take a definite fraction in lowest terms, say L . What fractions are equal to 1O? 

The possibilities are 

10 2x 10 20 3x10 30
 
7' 2x 7 14' 3x 7 21
 

and so on. It is enough to look 
at the possible denominators. They are 

7, 14, 21 and so on. 

a
Now if T is any fraction written in lowest terms, the fractions which are equal to it 

must have one of the denominators 

b,2b, 3b, 4b and so on. 

This means that if a aea i -f' a must be one of the numbers b,2b, 36, 4 and so on; so that -is 

a
one of the numbers 1, 2, 3, 4 and so on. That is, T must be a whole number. 
But S x S = 2 has no whole-number solution. 

a a 
So no matter what fraction a we choose, 

a Xa cannot be equal to 2. 

EXERCISE 37-2A 

Show that is it 	not possible to find a fraction 9 so thatl x =3. 
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37-3 More about the number line: irrational numbers 

We know how to locate fractions on the number line. For example, we can easily find 

12 5
points to show and -. Can we locate the number S, the side of a square of area 2? We 

can certainly do this geometrically. We showed at the be

ginning of this chapter that S is the length of the diagonal 

of a square of side 1. Let a number line be drawn along the 

base of the square with 0 at the left end and I at the right end. 

You can take 0 ti be the center of a circle of radius S. The 

circle will intersect the number line at a point P between 

1 and 2. So we know on the picture how to locate the point 0 1 P 2 

P which corresponds to the number S. 
7 10 

But we know that S is not a rational number. Of course S is between - and 1' We can
5 7 

locate both of these numbers by points on the number line, and P will lie between these points. 

( I P I>.. 

0 1 2
 
7 10
 

5 7
 

140 99

We can do better. P must lie between the points which show and 7

99 70* 

P 

t 
7 140 99 10 

9 70 7 

These points are much clos,-'r together than the previous pair. The interval between them is 
1407 99 1shorter. Also is to the right of - and - to the left of L So our new interval is inside the 

99 5 70 7 
earlier one. 

The important thing to notice is this. If we continue to get new fractions by the same 

scheme, we can locate P within intervals as short as we please but we never reach P itself. 

There are points like P on the number line which do not cor .pond to common fractions. We 

may call them irrationalpoints because they show irrational numbers. 

Let us say this in a different way.
 

Between 1 and 2 there is a point which divides the interval in 2 equal pieces. There are
 

2 points which separate it into 3 equal pieces, 4 points that separate it into 5 equal pieces and 

so on. There are 99 points which divide the interval into 100 equal pieces, 999 points which di

vide it into 1000 equal pieces. But no matter what measuring stick we choose that divides the 

interval from 1 to 2 into a number of equal pieces, we cannot use this measuring stick ti meas

ure exactly the numbc, whose square is 2. We can say that S and 1 are incommensurable. This 

means that S and 1 have no common measure. This was a discovery that shocked thc Greeks 

when it was first discovered. It showed that the number line as we have met it up to now is 

full of holes. To say it another way, it shows the need of new kinds of numbers, which we call 

irrational numbers. 
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Let us talk about these numbers in terms of decimal fractions. As we learned, rationalnumbers correspond to decim i fractions which either end or repeat, while irrational numberscorrespond to decimal fractions which neither end nor repeat. We saw an example of a decimal 
of this second sort, 

1010010001....
 
Our number S must be of this non-ending, non-repeating kind. We found that S was between 

1'414141... 
and 1"4142857...
 

We can write 1.4141 < S < 1.4143.
 
We have located S within .0002. 
 Of course with patience we could do still better. Weknow that S must be represented by an unending decimal that never endlessly repeats.
ran these unending, non-repeating decimals be treated like the rational numbers?they be ordered? Can they be added, subtracted, multiplied and divided? 

Can 
If so, do addition,subtraction, multiplication and division have the properties with which we are familiar? The 

answers to all of these questions are "Yes".
 
It would take a long discussion 
 to prove in detail that this is true. For our purposes

it is sufficient to give some idea of how it could be done.

Which of the decimal fractions 
 '13275 ... or .13268. .. represents the larger number?The decimal fractions agr2e in the first three digits 1, 3 and 2. They differ in the next decimal place. Since 7 is greater than 6, the first number is greater than the second. Do you seethat •13275 ... locates a point on the number line to the right of that for .13268 ... ? Is italso clear to you th', if a and b are any real numbers, there are just three possibilities:

a = b, a < b and a > b? Could you explain why this must be true?
Do you think that a -i b '- b + a is true for all real numbers a and b ? Suppose not. Then 

for some a and b, it must be true that 

a 4 b > b + a or else a + b < b + a. 
Each of these possibilities will now be shown to lead to a contradiction. 

If a + b > b -i a is true, then a + b = (b + a) + p where p is a positive number. Now pitself must be representable as a decimal fraction, maybe a small one, say '0000012 ...Let us imagine that a and b are written as unending decimal fractions. Let us break offeach of them after i decimal places. Suppose that we add the corresponding rational numbers.
The result does not depend on the order in which we add. Why? It is because the commutative 
property holds for rational numbers. 

Now look at the equation 

a 4 b = (b + a) + p.
 
The first n decimal places of 
 a + b agree with the first n decimal places of b + a. Thenthe first n decimal places of p must be 0. Since this must be true no matter how large n isthat is, for as many decimal places as we like-all of the decimal places of p must be 0. Thiscontradicts the assumption that p is positive. So it is impossible that a + b > b + a be true.

In the same way, it can be seen that it is impossible for a + b < b i a to be true. Con
sequently we know that a b = b 4 a is true.
 

In a quite similar manner 
we could show that all the properties of addition and multiplication for rational numbers hold for real numbers as well. Also, the order properties of the

rational numbers are properties of the real numbers.
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Chapter 38 
THE VIEW FROM THE TOP 

38-1 Looking backward 

We have come a long way from our starring point. We began with numbers which could be 
used to count a set of objects like a herd of cattle. These numbers were known to early man. 
They appear in the oldest records. Since then man has travelled a long, long road. The idea of 
number has grown and grown. It is one of the most important ideas that mankind has ever had 
and one of the most successful. In this book we have tried to show how new kinds of numbers 
have been invented. We learned about the importance of zero, about the uses of fractions so 
that numbers could be used not merely to count but to measure. We learned about negative num
bers, which help us to include not merely the idea of how many or how much but also the idea 
of direction, right or left, up or down. We have just extended the idea of nun,ber once again to 
include unending decimals which do not repeat. We have seen that if we want to measure the 
diagonal of a square of side 1 we need a number of this new kind. Here we have reached the 
end of our journey. (If you go further in mathematics, you will find that this is not really the 
end but that there are still new kinds of numbers wiich man has invented later.) The time has 
come to look back over the road which we have followed. 

We have travelled slowly and patiently. The road has sometimes been dusty and the 
journey may have been tiring. But we have come to the top of a mountain. We should stop and 
enjoy the view. 

At each stage of our journey we have learned to arrange the numbers in order of lesser 
or greater. And we have learned to add them, to subtract them, to multiply them and divide them. 

Let us forget for the moment just how we did this at each stage. These are details-important 
details but still details. Let us ask ourselves what has been accomplished by bringing in new 
kinds of numbers and learning to work with them. Man has invented zero, the fractions, the 
negative numbers, and the irrational numbers. What for? 

At each stage, man has found himself stopped by a difficulty. He wanted to be able to do 
something which he could not do with the numbers that he already had. There was a roadblock 
which stood in the way of going ahead. When old ideas fail or do not help, we seek to invent 
something new. "Necessity is the mother of invention.'' 

For example, we cannot divide 4 by 5 if we have only counting numbers Lo work with. 
After fractions were invented, we coila divide 4 by 5. We cannot subtract 5 from 3 if we have 
only counting numbers to work with. Negative numbers allow us to do so. After the new kinds 
of numbers have been invented, we have more freedom. We can remove restrictions. 

But a very remarkable thing happens. It could be true that the new numbers behave in 
quite a different way from the old ones. If this were true we should always be having to remem
ber what kinds of numbers we were working with, so that we could know what properties of 
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addition, subtraction, multiplication and division to apply. By good luck it turns out that the
propertics are the same for counting numbers, for integers, for rational numbers or for real numbers. We do not have to keep learning new principles. This makes things much easier. 

At this point it will be useful to reread the introduction, in particular the latter partabout the patterns which it was hoped would be discovered. It will be remembered that we
thought of the whole numbers as belonging to a club with certain rules. The new kinds of num
bers could be admitted to this club because they were able to obey the rules. 

38-2 The "club rules" for addition and multiplication 

What are the club rules that all of our members are required to obey? First there are theproperties of addition and multiplication. These properties were summarized very briefly at the
end of Chapter 13, where a, 6 and c stood for any uhole iunbers. These same properties ap
peared in Chapter 34 for rational numbers. Now we shall use a, b and v to stand for any numbersat all, that is, for any real numbers whether rational or irrational. Remember that the set of realnumbers includes all the numbers that we have talked about. Here then are the club rules. First 
are three for addition: 

The Commutative Property of Addilion (CA) 
a i b = b i a
 

The Associative Property of Addition 
 (AA) 
a (b e) = (a ± b) + c
 

The A('Jition Property of Zero 
 (AO) 
a f-0 -=a 

Then there are three corresponding rules for multiplication: 

The Commutative Property of il ultiplication (CM)
 
ai x 6 -- b6x a
 

The Associalive Property of Multiplication (AM)
 
a x (b x c) = (a .66) x c
 

The Multiplication Property of One (Ml)
 
(I x 1 - a
 

Notice that these three rules 
can be found from those for addition simply by changing + to x and
0 to I. Can you see that 1 behaves as a factor the same way that 0 does as an addend? 

There is another rule that connects multiplication and addition:
 

T'ie l)istributive Properly (D)
 
a x (b c) (a x b) i (a. x ) 

Finally, we had 

The iflulliplication Property of Zero (MO) 
a x 0 0 

In all, we have eight properties which we can think of as club rules for numbers. 
Let us look at these rules as requirements that any proposed new members of the numberclub must obey. For example, suppose we propose the negative integers for membership in the

club consisting of 0, 1, 2, 3 . .. . flow must -1 behave if we are going to admit it? 
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What must (-1) x 1 be equal to?
 
Rule MI says that
 

aX 1 a. 

If -1 is to be a good club member, it must therefore be true that
 

(-1)i x I-1.
 

That is, we must be able to use -1 as a particular value of a.
 
What must I x (-1) be equal to? CM says that any members a and b must obey the rule
 

a x b= b x a. 

Then 1 x (-1) must be equal to 

(-1) x 1 

which we know is -1. So we must require that 

1 x (-1)= -1. 

A harder question is to find what (-1) x (-1) must I-e. When we introduced -1, we thought 
of it as the opposite of I, so that 

I f- (-1) = 0. 

So 1 + (-1) and 0 are two names for the same number. Then 

(-1) x [.1 + (-1)] = (-1) x 0. 

Rule D says that the left side is 

[(-1) x<II + [(-I) x (-I)] 

and rule MO says that the right side (-1) x 0 is 0. So we must require that 

[(- 1) x 1I + [(-I) x (- 1)] = O. 

But we know thar (-1) x 1 = -1, so it must be true that 

-1 + [(-1) x (-1)] = 0. 

Then (-1)I (-1) must be the opposite of -1, that is 1. So finally we have the requirement 

(-I) x (-I) = I, 

if -1 is to be allowed in the club. 
We know of course that -1 does indeed pass all these tests. In fact, 

1 x (--I) = -1, 

(-1) >1 -1, 

and (-1) x (-1) = 1, 

as we saw earlier in the book. 
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EXERCISE 38-2A
 

1. Show from the rules that 

(-3) x a - -(3 x a) 
must be true. (HINT: Write [(-3) + 3] x a in two ways.) 

2. Show that if we follow the rules, -- must be equal to L_) (HINT: If( 3) 3 (-3)7 = (-3) x [-by definition of division. Now use Question 1 and conclude that 

=t-, 

3 x R = -7.) 
3. Show from AO that 

0 + 0 = 0. 

38-3 Simplifying the rules 

We have listed some rules that we require numbers to obey to become members of the
number club. Can we perhaps simplify these rules? For example, can we make a shorter listthat would really say the same thing? The answer is "Yes". In fact, we have already shortened 
the list from the one that was given in Chapter 13. 

There we included 0 + a= a, 1 x a = a and 0 x a =0.Can you see why it is not necessary to include them in our present list? Can you see for example that 0 + a = a follows from 
a + 0 = a by using CA? 

We shall now show that we can also leave out MO, which reads 

a x 0 = 0. 

We show that this rule must hold if the other seven rules hold. 
According to rule D 

a x (b+ c) = (a x b)+ (a x c). 

If b=0and c=0, we have 

a x (0 + 0) = (a x 0) + (a x 0). 

But we know that 0 + 0 = 0, so we require that 

a x 0 = (a x 0) (a x 0). 
To simplify the writing, let us call a x 0 by the new name b.Then we must have 

b = b + b. 

We hope to show that b must be 0. 
Rule AA tells us that 

(-b+ b)+ b = -b (b+ b). 

Now -b + b = 0, since -b and b are opposites. Also b + b = b.Therefore, we have 

0 + b = -b + b. 
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We know that 0 + b = b and that -b + b = 0. So finally 

b= 0. 

That is,
 

a x 0 = 0,
 

which is rule MO. 
So in applying tests for new members, it is not necessary to require MO if we have al

rea.y satisfied ourselves about the other rules. 

38-4 The rules of order 

We first met also some properties ot order for the counting numbers: 
01 if a and b are counting numbers, there are only three possibilities: 

a=b, a< b, a>b.
 

Again, if a, b and c are any counting numbers: 
02 if a< bandb<c, then a<c, 
03 if a< b, then a+c < b+ c 
and
 
04 if a < b then a x c < b x c. 
These same rules now apply if a, b and c are any real numbers, except that in 04 we must 
require that c > 0 (which is automatically true when c is a counting number). Again, the real 
numbers ar2 good club members. 

We have learned that 04 can be supplemented by: 
05 if a< band c <0, then axc> bxe. 
There is of course no occasion for this rule with counting numbers, because a counting number 
is never less than 0. 

These rules too can be simplified. If we say that 

a<b 

means that b = a + p where p is a positive number-that is, p > 0-we can replace all the rules 
of order by a new list. 

New Order Rules 

0'l Ifa>Oand b>O, then a+ b>0. 

0'2 Ifa>Oand b>0, then ax b>0. 

0'3 For any real number a, there are exactly three possibilities: 

a=0, a>0, a< 0. 

For example, let us show that 03 follows from our new rules. 03 says that 

if a < b, then a + < b + c. 

If a < b, we can write 

b=a+p (p>0). 
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Then b+ c=(a+p)+c 

= a + (p + c) (Why?) 

= a + (c + p) (Why?) 

= (a + c) + p. (Why?) 

But then finally a + c < b + e. 

EXERCISE 38-4A 

I. Prove 04 from O'1, 0'2 and 0'3. 
2. Prove 02 from O'l, 0'2 and 0'3. 
3. Prove 01 from -'1, 0'2 and 0'3. 

38-5 Summing up 

What we have done in the last two sections is not easy. It is harder than the rest of thebook. We have given some examples of th.u way in which mathematical proofs are constructed. 
The elementary teacher will not use proofs like this in his own classes. But the teacher should
have an idea of what lies ahead for some of his pupils-those who go on in mathematics. 

When we continue the study of mathematics we find that more and more simplifications
occur. The facts that we know about numbers are connected with each other in surprising ways.
The simplifications make mathematics more beautiful and more powerful. But we have to pay a
price. The price is that we have to be prepared to think deeply about our experielce. We must 
not be satisfied with knowing how to get answers in routine ways. We must be willing to ask 
ourselves "Why?" again and again.
 

The knowledge that is 
power is the fruit of our unceasing effort to understand more 
clearly, more fully and more deeply. 
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Approximations UNIT VIII
 

Chapter 39 
APPROXIMATIONS AS RESULTS 
OF COUNTING 

39-1 Introduction 

Once our pupils held a party and we tried to find out how many attended the party. 
This was very difficult because when we were counting, several pupils had already left the 
party, others came after we counted, while many of the people present were moving around. 
After counting, we got the result 137 pupils. Do you think that this was the exact number of 

pupils who attended the party? Is counting really always easy and simple? 
If you are asked to measure the length of your classroom with a foot ruler and you get 

the answer 30 feet, can you be sure that this is the exact length? Or could it be 29 feet and 
some inches, or even 30 feet and some inches? Does measuring give the exact number? 

Suppose a tailor needs 3 yards of fabric to make a dress. flow many dresses can he 

make from a piece of 40 yards of fabric? Dividing 40 by 3, you obtain 13 . It is clear that your 

answer would not be 13- dresses. You will say that the tailor can make 13 dresses. Such round
3 

ing off is often used in everyday life. 
These thre,- examples have something in common. What is it? We are now going to con

sider in detail the use of numbers in instances such as given above. We shall discuss what 
are commonly called "approximate numbers" or "approximations". 

39-2 Approximations in Counting 

We have all learned how to count and how to make use of the set of counting numbers. 
We also kQow the set of whole numbers, which is the set of counting numbers and zero. 

Suppose you ask one of your pupils to count the number of pupils in your class or the 
shillings in his pocket. No doubt his answer will be correct, and he will give you the exact 

number, lie will count tile pupils or shillings one by one or in grr,ps. This will be easy if the 
number of pupils is rather small.. If you asked him to count the nt -2r of windows in a very 
big building, then he can get the exact number if he counts ca " y. You could be quite sure 
about the answer if some other pupils counted tie windows and g t the same number. But 
counting the number of members in a set becomes harder as the set become,!; larger. Even so, 
it is possible in many instances to obtain accurate counts of large sets. Sometimes it is 
quite necessary to obtain accurate counts. For example, a bank teller must count the exact 
amount of money at the end of the day. There are, however, instances when counting the num
ber of members in a set is extremely hard or even impossible. 
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Would it be easy or even possible for the government to count the exact number of people
in your country? The number of people in your country does not stay the -ame even for one day.
For many purposes, however, the government has to know how many people live in various re
gions and in the whole country. Of course, it is practically impossible to count all of these 
people. Besides, doeq the government really need to know the exact number of people?

There is another example in which it is very difficult to count the number of members
in a certain set. Supose you ask a pupil to find the number of trees in a certain park or piece
of land. If he counts and gives the answer 563, do you think his answer is exact? It probably
is not exact for the following reasons. First, it was rather inconvenient and hard to count such 
a large number of trees scattered about without recounting some anI without missing others. 
Next, it was probably difficult for the pupil to decide whether the dead trees or some larger
bushes should be counted or not. In other words, it was difficult for him to determine exactly
what things were members of tile set of trees. If some other pupils count the numbec of trees 
in the park, they will probably obtain different answers, perhaps 559, or 550 or 571. In fact,
it would be interesting to see whether the pupil who first counted would get his original ans
wer if he counted again. In situations like these we areusually quite satisfied with approxi
mate, rather than precise, results. The numbers in the statements below are certainly not exact. 
We will call them approximate numbers. 

The population of Uganda is 6,780,000. 
There were two thousand people present at the lecture. 
Our college library contains 6,700 books. 
Ali has 300 chickens at home. 

EXERCISE 39-2A 

1. Ask your pupils to try to count how many people are in your school in one day. What 
makes it hard to obtain an exact number? Do you think that the number they count would 
change from time to time during the day? Suppose instead you asked them to count how 
many different people in all were in your school on a certain day. Would they still have 
difficulties? 

2. Ask your pupils to count some of the sets in the examples we have given.
3. Find other situations you can use with your pupils to show that the results of counting 

are not always exact. 

39-3 Averages 

By using many examples, you can convince your pupils that we can often obtain only ap
proximate numbers in counting certain large sets. Of course, you will want them to obtain the 
most accurate approximations that they can. We will now see how to make sure that the approx
imate answers are rather accurate. 

If four pupils tried to find out how many chickens Ali has at home, each pupil would prob
ably get a different result by counting. Why is it so? Suppose the first pupil counts 295, the
second 305, the third 304 and the fourth 297. Which answer do you think would be the best? 
You might think that a good answer would be one between 295 and 305. In order to find a good 
answer between 295 and 305 for the number of chickens, we can proceed as follows: we find
what we call the arithmetic mean or average of all results of counting. We first find the sum 
of all the results. Then we divide the sum by the number of terms in the sum. The quotient 
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obtained is called the arithmetic mean or average of the numbers that we started with. For ex
ample, the average of the numbers 17 and 25 is (17 + 25) " 2 = 21.
 

Going back to Ali's chickens, the sum of the counting results is
 

295 4 305 + 304 + 297 = 1201. 

After dividing 1201 by 4 (the number of counts), we get the average 300.25. Taking into ac
count the objects we are dealing with, we may say 300 chickens is the final result. Remember 
that this result is only approximate. We do not claim that it is precise, but it is certainly 
more precise and reliable than any one of the four individual counts. Finding the average is 
a good 	way of obtaining an approximate answer when repeated counting gives different num
bers as results. 

EXERCISE 39-3A 

1. 	 Find the average (arithmetic mean) of each of the following sets of numbers. If the 

quotient is an unending decimal, write the answer to one decimal place and then 
write three dots,..., to show that the answer is unending. 

a. 18, 22, 23 

b. 22, 23, 26, 29 
c. 101, 102, 105, 108 

d. 248, 251, 252, 267
 

e. 61, 63, 64
 

f. 248, 251, 257, 267
 

2. 	 Using fractions, write the averages that were decimals in Question 1. 
3. 	 Make up examples to use with your class of situations in which you would want to find 

averages. 

39-4 	 Deviation 

We have said that the average of several counts of a large set can be taken as a good 
answer for the number of members in the set. However, this number may look somewhat arti
ficial to your pupils, and they may raise questions such as: How does this number correspond 
to the 	reality? How reliable is it as a solution to our problem? 

Let us use the following example to try to see how to answer these questions. Suppose 
you ask your class to determine the number of grains of rice in one ounceof rice. Let five 
pupils weigh five separate heaps of one ounce of rice each, and count the number of grains in 
each heap. Suppose they got the following numbers: 

308, 332, 328, 342, 307. 

The average of these numbers is 1617 5 = 323"4. The digit "3" for the hundreds ap
pears in each of the five counts, and therefore we may conclude that we can rely on the num
ber of hundreds. Thus, we say that the digit 3 is reliable. The digit "2" for the tens in the 
average is questionable, because in the five countings we got various digits in the tens place, 

namely 

0, 3, 	 2, 4, 0. 

The digit "3" in the ones place in the average is clearly not reliable at all and, thus, worth-

A1 

157 



less. Therefore, that digit as well as the digit in the tenths place (.4) ought to be rejected in 
the final result. 

Since the right-hand two digits (3"4) in the average are worthless, the answer 320 would
be just as good an answer. Therefore, we will say that the number of grains of rice in a heapof one ounce is approximately 320. We can be quite sure about the first digit of this number,
which indicates the hundreds of grains. In the second digit (2), which expresses the number of 
tens, there may be a small inaccuracy. About the remaining digits, we just cannot say any
thing.
 

We may summariae our procedure 
as follows: 
1. Find the average. 
2. Compare the average with each separate count.
3. The digits which are the same in every count are reliable and are to be kept in the final re

sult. 
4. Take the next digit in the average even though it is questionable.
5. Replace all remaining digits by zeros, since they are worthless. (More definite instructions 

about replacing rejected digits by zeros will be given in Chapter 40). 

EXERCISE 39-4A 

1. Suppose five pupils in a class counted the number of books in the school library. The re
sults of their five counts were 

275, 274, 278, 279, 271.
 

Find the average of the five counts. 
2. Which digits in the average are reliable, which are questionable and which are worth

less? 
3. What would you say is the final number of books? 

We have used the words reliable, 'juestionableand worthless. You may feel that they
have not been explained sufficiently; perhaps there are still questions in your mind 
about the procedure. Let us now discuss more carefully how we can tell whether a 
given digit is reliable enough to keep. 
We have seen that the numbers obtained in the separate counts of grains of rice are 
different: 308, 332, 328, 342, 307. Each of these numbers is different also from 
the calculated average 323.4. Suppose we find now how much each count differs from
the average. We will call these differences the deviations from the average. In our ex
ample of rice, they are: 

323.4 - 308 = 15.4 
332 - 323.4 = 8.6
 
328 - 323.4 = 4.6
 

342 - 323.4 = 18.6 
323.4 - 307 = 16.4 

(NOTE To find the deviation from the average subtract the smaller number from thewe 

larger.)
 
Now we 
find the average of these deviations by adding them and dividing their sum by
5: 63.6 :- 5 = 12.72. This quotient, 12.72, is called the average deviation. 
In our example the left-most digit (1) in the average deviation 12.72 is in the tens
place. Therefore, the digit in the tens place (2) in the average 323.4 we will call 
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4.6 

1. 

2. 

3. 

4. 

questionable. We keep the digit "2" for tens in the average 323"4 as the first question
able digit. We replace all the digits to the right of the tens place by zeros. As the final 
result, we get 320. In order to avoid misunderstandings, it is sometimes convenient to
 
underline the "2" as the questionable digit in the final result 320.
 
This method can be used in any problem, not keeping any digits beyond the left-most
 
place in the average deviation.
 
We can set out the whole problem as follows:
 

One ounce each Number of grains Deviation from the average 

First counting 308 15.4 
Second couni'ng 332 8.6 
Third counting 328 
Fourth counting 342 18.6 
Fifth counting 307 16.4 

Sum 1617 Average 63.6
 
Average 323.4 deviation 12.72
 

The average number of grains in one ounce is 320. 

EXERCISE 39-4B 

Indicate whether the number appearing in each of the following statements is exact, or
 
approximate.
 
a. According to the class registers, the school has 387 pupils. 
b. The town has 14,700 inhabitants. 
c. John received 125 shs for the work done. 
d. During the month, Ali worked 6 days overtime.

1 
e. The train had been on its way for 31 days. 

f. The sum of the ages of father, mother andson is 112 years. 
g. The store sold 463 pairs of shoes in a week. 
h. 6200 people visited the museum in a month. 
i. The theatre sold 527 tickets yesterday. 
j. The dairy farm produces 430 quarts of milk a day. 

k. The machine weighs 1325 pounds.
 
I. The room is 12 yards, 5 inches long.
 

m. The flight lasted I hour and 17 minutes.
 
You have probably noticed that the average is always between the smallest and the
 
largest of the numbers that you start with. Explain how you might convince a class that
 
this is always so.
 
On five different walks, a pupil counted the number of steps he made in 100 metres,
 
and obtained the following numbers:
 

132, 150, 138, 147, 143.
 

What is his average number of steps in 100 metres? 
Suppose you count the number of people watching a football match. You count six times 
and get a different result each time. Your counts were 

574, 562, 573, 567, 580, 571.
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a. Why do you think you got different results? 
b. Find the average of your six counts. Also find the deviations from the average andthe average deviation. Indicate in the average of your counts the reliable, question

able and worthless digits. 
c. What answer will you finally give for the number of people watching the football 

match? 
5. Make up more problems of this type for your pupils to work out. 
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Chapter 40 
APPROXIMATIONS IN MEASURING 

40-1 	 Approximate measurements 

You saw in the previous chapter that the results of counting the number of members in 
sets are sometimes exact but often they are only approximate numbers. Let us now consider 
what happens when we measure lengths and weights of objects or periods of time. 

Wh~tt do you think will be the standard unit for measuring lengths of main roads and 

railways? If a chart indicates that the distance from Dar es Salaam to Nairobi is 498 miles, 
does it mean that this is an exact number or perhaps that ic may be 498.5 or even 497.5 miles? 
When measuring such great distances, we usually disregard a difference amounting to less 
than a mile in the final results. This means that for our purpose we are quite satisfied if 
we find the approximate number of miles, with a precision to one mile. Parts of a mile are in 
practice neglected. 

Htowever, when measuring material for dresses or curtains, we do realize that a differ
ence of even one inch or half an inch is important and has to be taken into account. In such 

cases, tenths of an inch only can be neglected. 
What would you as a teacher say if a pupil was told to draw in his notebook a line 

segment 2.3 inches long, and his segment was only 2.1 inches long? Would you say that 
the pupil has done it correctly, because a few tenths of an inch do not matter? In such cases 
it does matter, becausc you required him to be precise to the nearest tenth of an inch-the 
pupil's segment 2.1 inches long is not correct. There are even instances where more precision 
is important. For example, those who design precision instruments, such as wrist watches, re
quire precision to lengths so small that we cannot observe them with our eyes. 

From the several examples above, the following conclusion is easily reached: when we 
consider measuring lengths in practical life, we see that in each case there is some desired 
unit of length used, while smaller units are ignored. Measurement of length always gives us 
an approximate Aumber. 

Mea!;urement of time also has different degrees of precision. When an adult is asked to 
give his age, he will do it in terms of whole years. A mother exp.esses the ageof her small 
child in terms of years and months, neglecting days. The length of a class lesson or of a 
football match is usually given in hours and minutes, ignoring seconds. However, in such 
sports as running or swimming, seconds and even tenths of seconds are counted. 

EXERCISE 40-IA 

1. 	 Ina way similar to our discussion of measuring length and time, explain how approxi
mate numbers are obtained when weighing various objects. 
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2. 	 What unit of weight is usually used in each of the following cases? What units can be 
neglected in each case? 
a. A shopkeeper weighing sugar 
b. A postman weighing letters 
c. A nurse weighing a new-born baby 
d. A doctor weighing an adult

3. What is the degree of precision used in railway and airline time-tables? 
We have shown how approximate numbers are obtained when we measure quantitieslengths, weights and periods of time-and how in each case the appropriate unit of ineasurement is chosen according to the need. (In this unit, we will use the term "quantity"
rather 	informally to denote things that can be measured.)

On the other hand, 
 it is also very important to understand that we can never get an exact number from any of //ese nea,ureme.wnt, of quantlitie,. Among the essential reasons 
for this impossibility are 

(a.) the inaccuracy of measuring instruments,
 
and (b.) the inaccuracy of human 
senses. 
In some cases, repeated measurements of the same quantity could not give even the 
same approximate number be.:ause of
 

(c.) the changing 
conditions under which the successive measurements are 
made. 

You should discuss reasons (a) and (b), and give examples. To discuss (c), think, forexample, of the influence of the temperature on the length of an object, or of the
evaporation of a liquid whose weight is to be found. 

Conclusions 

Every 	measurement gives 	only an approximate value 	of what is measured, and it iscarried out with a certain definite precision. When we record the result of measuring, we show
which units have been considered and which ignored.

(REMINDER The results of measuring are always atpproximate numbers. As we 	haveseen in the previous chapter, the numbers obtained as results of counting are sometimes exact
numbers and sometimes approximate numbers.) 

EXERCISE 40-1B 

1. 	 What definite standard unit is used in each of the following, in order to get reasonable 
measurements? What units can be neglected in each case? 
a. An 	architect designing a house 
b. A surveyor mapping a city 
c. A shoemaker taking the size for a pair of shoes 

40-2 Basic agreement for recording approximate numb,:rs 

There 	is a method of recording the results of counting and measuring, showing clearlythe precision of t. -se results. This method will be applied in the following example. 

..
 
,U 
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Problem. To measure with a foot ruler, having marks of tenths of an inch, Lhe length of 

the diagonal of a square whose side is 4 inches. We use the symbol < for "is less than", and 

the symbol for "is approximately equal to", to write he result as follows. 

4 inches 

o
4 inches 	 . 

1112 	 '15lFF3 4 

Ruler 

1. 	 5in. <x <6in. 

2. x= 6in. 

3. 	 5.6 in. < x < 5.7 in. 

4. x - 5"65 in. 

Explanctions. 

1. 	 x, the length to be found, is between 5 and 6 inches to the nearest inch. 

2. 	 Measured to the nearest inch, x appears to be nearer to the 6-inch mark than to the 

5-inch mark. 

3. 	 Measuring to the nearest tenth of an inch, we see from the figure that 7 lies between 

5.6 	inches and 5.7 inches. 

4. 	 From the figure, we arv unable to decide whether x is nearer to 5.6 inches or 5.7 

inches and so we may conclude that x = 5.65 inches, taking the average of 5.6 and 

5.7. 
In our final result, we have two reliable digits: namely, the digit for ones (5) and the digit for 

tenths (6). The third digit (5) for hundredths is questionable. The final result of our measure
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ment does not allow us to say that length x contains exactly 5 hundredths of an inch beyond 
5.6 inches.
 

(Actually, 
 if wc had made a very precise drawing and had used a more accurate andprecise ruler, we might have found that the length x, with a precision to the nearest thousandth of an inch, is equal to 5"657 inches. Therefore, taking a precision to one hundredth 
of an inch, it is correct to write x 5.66 inches.)
 

Let us consider next 
an example of measuring and recording temperature. What doestll. recording "T 37 0 C'' mean? It says that we measured with a precision to one degree.On the other hand, if with a more precise thermometer we record "T - 37.00°C, the "0"
indicates that we measured with a precision to one tenth of a degree.

The examples above of recording approximate numbers are based on the following 
agreement. 

BASIC AGREEMENT 

An approximate result should be recorded in such a way that its last digit to the rightindicates its precision. All digits, except the last, ought to be reliable. Only the last digit
is questionable and may be slightly inaccurate. 

40-3 Repeated measurements 

As we have mentioned before, it often happens that when we measure the same quantity again we get a somewhat different result, even though we use the same instrument eachtime. This happens frequently in measuring long distances. In such situations, we obtain themost precise result by finding the average of all the results of the repeated measurements.(This we do in the same way as when dealing with several counts of a large set.) The average is then rewritten, preserving all reliable digits and only one questionable digit. In orderco know which digits in the ,verage are to be kept, it is useful to find tile average deviation. In the previous chapter, we studied how this is done. Let us illustrate the method by an 
example, measuring length in metres. 

EAxample. We are to measure the length a, of a building, using a metric ruler markedfor centimetres. The results of six successive measurements are as follows. 

Measuring Result in Deviation from 
length x metres average in 

metres 

No. 1 51.63 0.352 
No. 2 52.12 0.138 
No. 3 52.20 0.218 
No. 4 51'87 0112 51"9 in. < x < 52.0 m. 
No. 5 51.91 0.072 52'0 m. 
No. 6 52.16 0.178 

Sum 311.89 1.070 
Average 311.89 6 51.982 0.178 

The highest order digit of the average deviation is the tenths place. We thus concludethat the tenths digit in the number 51.982 is questionable, and therefore the digits of

hundredths and of thousandths 
 are to be rejected as worthless. Moreover, 
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51.9 < x < 52-o. 

Of these two numbers, 52.0 is closer to the average that we calculated, so we accept it as the 

final result: 

x = 	 52.0 m. 

EXERCISE 40-3A 

1. 	 Indicate the reliable, questionable and worthless digits in each of the following approxi

mate numbers. Write down each of these numbers according to the basic agreement. 

a. 	 254.3 with a precision to the nearest one 

b. 	 .2502 with a precision to the nearest hundredth 

c. 	 52.03 with a precision to the nearest tenth 

2. 	 Five weighings of the same object gave the following results (in pounds): 

2.834, 2.832, 2,837, 2.833, 2.835 

a. 	 Find the averagc weight. 

b. 	 Indicate in the average the reliable, questionable and worthless digits. 

c. 	 Write the final result according to the basic agreement. 

3. 	 Four measurements of the same distance have given the following results (in yards): 

2648, 	2656, 2663, 2678
 

a. 	 Find the average of the four numbers. 

b. 	 Find the deviations from the average and the average deviation. 

c. 	 Indicate in the average the reliable, questionable and worthless digits, and write 
the final result according to the basic agreement. 
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Chapter 41 
ROUNDING OFF 

41-1 Introduction 

We have previously discussed two situations in which we obtain approximate numbers:counting and measuring. We will consider now a third way of getting such numbers.You have already done some problems in arithmetic in which you had to record theresulting answer "to the nearest ten" or "to the nearest unit". What 
was you actua.ly had to doto replace your answer (a natural number, decimal fraction or unending decimal) with asimpler number close to it. The simpler number was to have fewer non-zero digits. Such re
placement is called roundiq off.
 

The following examples illustrate the proces!; of rounding off.
Example 1. The census shows that a certain city has 246,143 inhabitants. Suppose afriend of yours asks you how many people live in that city. If you know that he does not needa very precise answer, would you say to him 246,143 people? Of c-iiirse not. You would prob
ably simply answer 246 thousand. 

Example 2. There are certainly cases when results ought to be expressed to the highestdegree of precision possible. For example, the assets of a bank must be recorded in the yearlyreport to the nearest pound. For general infomation, however, it is sufficient to know that theassets of a bank are 57 million pounds rather than 56,967,146 pounds.

In the two examples, certain numbers 
were rounded off. The results of rounding off are

clearly approximate numbers. 

41-2 Rounding up and rounding down 

Rounding off can be done in two ways: we can "round off upwards" (Example 2) or"round off downwards" (Example 1). To avoid long phrases, we shall call these two ways
"rounding up" and "rounding down", respectively.

Rounding off numbers is easy. To round down a number to a digit in a certain place, wereplace all the digits of the number written to the right of that place by zeros. For example,274 rounded down to tens is 270, 27.4 rounded down to ones is 27, 27.4 rounded down to tens 
is 20. 

To rouned up a number to a certain place, we add one to the digit in that place and replace all digits to the right of it by zeros. For example, 

274 rounded up to tens is 280, 
27.4 rounded up to ones is 28, 
27.4 rounded LIp to tens is 30. 
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Consider this complete example of rounding off the number 217.5073: 

217.5073 rounded down to hundreds is 200
 

rounded up to hundreds is 300
 
rounded down to tens is 
 210
 
rounded up to tens is 
 220
 
rounded down to ones is 
 217
 
rounded up to ones is 218
 
rounded down to tenths is 217.5
 
rounded up to tenths 
is 217.6
 
rounded down to hundredths is 217.50
 
rounded up to hundredths is 217.51 
rounded down to thousandths is 217.507 
rounded up to thousandths is 217.508 

It is clear that in all these cases the original number is increased by rounding up and decreased
 
by rounding down.
 

You may ask when we apply rounding up, or rounding down. The answer 
to this question
 
is often suggested by the situation we are dealing with or by the conditions of the problem.
 

lExample 3. We want to divide 50 shs equally among 6 people. How much will each get?
 
To get the answer, you must divide 50 by 6. But the quotient of 50 : 6 results in the
 

unending decimal 8"333... . Rounding down to the order of ones gives us 
8 shs and rounding
 
down to the order of hundredths gives us 8"33 shs. If everyone gets 8 shs, we remain with 2
 
shs. If everyone 
 gets 8"33 shs, there will be 2 cents left over because 8"33 x 6 = 49"98 shs. The
 
latter is no doubt the best we can do, because a cent is tile smallest coin. Rounding down is
 
certainly the only appropriate procedure here, because if we 
 round up 8.333 ... to hundredths
 
we get 8'34 shs. We cannot give everyone 8.34 shs, because 8"34 x 6 50.04 shs and there
-
are only 50 shs to be shared. 

Ex'ample . A group of 141 pupils decided to collect 100 pounds of oranges for the 
children of an orphanage. How many pounds should each pupil collect? 

100 : 1/ = 7.14285714 .. . . Rounding down is not applicable here because less would 
be collected than aimed for. In this case, it is necessary to round up to get a least 100 pounds 
of oranges. Rounding up to ones, we get 8. So if each pupil collects 8 pounds, together they 
get 8 x 14 112 pounds, which is substantially more than wanted. Rounding tip to tenths gives
7.2 pounds for each pupil, and in all they collect 7.2 x 14 = 100.8 pounds, which is quite close 
to the desired 100 pounds and reasonable from the point of view of weighing oranges. A practi
cal answer to our problem is that each pupil should collect at least 7.2 pounds of oranges. If 
100 shs (and not 100 pounds of oranges) were to be collected by the students, it would have 
been proper to round up to hundredths to obtain 7.15 shs for each student. Altogether they 
would then collect 7.15 x 14 - 100.10 shs. 

41-3 Fundamental rules for rounding off 

The examples in the last section illustrate two cases when the conditions of the problem
actually show whether a given number is to be rounded down or rounded up. It was also clear to 
what place the rounding off should be made. The question naturally arises: What kindof round
ing off is to be applied when there is no indication what to do? 

As you have seen, rounding down replaces tile given number by a second number which 
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is smalier than the given number, while rounding tip replaces the given number by a number 
w,,ich is larger. When a given number is to be rounded off and there is no special indication 
wheL.er it should be up or down, it is reasonable to round off so that the number obtained 
differs as little os possible from the original number. For example, the number 17.384 rounded 
down to ones is 17, which is .384 less than the given number. On the other hand, 17.384 
rounded up to ones gives 18, which is .616 greater than the original number. Certainly 17 is 
closer than 18 to the original number. So here it is better to round down. 

Suppose now we want to round off to tenths instead of ones. You see that 17"384 
rounded down to tenths is 17.3, which is .084 less than the given number. But rounding tp 
to tenths gives 17.4, which is only .016 greater than the given numb'er. Therefore, the better 
result in rounding off to tenths is obtained by rounding up.

We see that if it is permissible either to round up or to iound down a given number, it 
is better to round down when the first rejected digit is less 0ian 5 and to round up if the firsr 
rejected digit is greater than 5. In each of these cases, we will obtain a closer approximation; 
that is, the rounded-off number is closer to the original number. 

Suppose you want to round off .2604 to tenths. It is better to round up to -3, because 
that differs from .2604 by "0396. Rounding down results in .2, which differs by .0604 from 
•2604. If, however, we have to round off the same number .2604 to hundredths, we should round 
down since 

•2604 - .26 -0004
 
and .27 - .2604 .0096.
 

You may notice that wehave not said how to roundoff numbers in which the first re
jected digit is 5. We consider here the following two cases. 

1. The first rejected digit is 5 and it is followed by digits some of which are non-zero 
digits. For example, 

round off 43,503 to thousands
 
and round off .257 to tenths.
 

It is easy to see that here we get a closer approximation by rounding up. Show that this is so. 
Thus, to round off 43,503 to thousands, we round up and obtain 44,000. To round off .257 to 
tenths, we round up and get .3. Therefore, if the first rejected digit is 5 and is followed by 
digits, someof which arc aon-zero digits, then we round up. 

2. The first rejected digit is 5 which is followedby zeros only, or the first rejected 
digit is 5 and it is the last digit in our number. For example, 

round off 43,500 to thousands,
 
round off 45 to tens
 

and round off 7.5 to ones.
 

If we round down 43,500 to thousands, we obtain 43,000; if we round up, we get 44,000. Each 
of these rounded-off numbers differs from the original number by 500. We may say that they are 
"equally close" approximations. The same remark applies to rounding off the other two num
bers. In cases like these, we simply agree to round up. Therefore, 

43,500 rounded off to thousands is 44,000,
 
45 rounded off to tens is 50,
 
7.5 rounded off to ones is 8. 
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(In sone treatments of approximate numbers, the following agreement is made, which we 
will not use in this text.
 

If the first rejected digit is 5 which is followed by zeros only, or if the first rejected
 
digit is 5 andit is the last dlgit, then we round down if the digit before 5 is even, and round 
up if the digit before 5 is odd.) 

Here is our fundamental rule for rounding off numbers. We will always apply it if there 
are no 	special reasons to either round down or round up. 

I1it is 	permissible either to round up or to round down a given number, we ; undit down 
when the 	 first rejected digit is 0, 1, 2, 3 or 4, and round itup if the first rejected digit is 5,6, 
, 8 or 	9. 

You should have already seen that the result of rounding off is always a number which 
.epresents an approximate value of the given number. It is an approximate number. The difference 
between the given number and the rounded-off number depends entirely on the way the rounding 
off is 	done. If a given number is to be roundedoff to a certain place and if it is known that we 
have to round down or have to round up, then the difference between the result and the given num
ber does not exceed but may come close to one unit in the last place preserved. If, however, the 
problem does not show us which way to round off, we will use the fundamental rule. Then the dif
ference between the given number and the result will never be more than one-half of the unit in 
the last place kept. If an approximate value of a quantity differs from its exact value by not 
more than 	one-X:alf of a unit in the last place kept, then we say that all digits of the approxi
mation 	are accurate. Therefore, if we obtain an approximation by applying the fundamental rule 
for rounding off, then all the digits in the approximation are accurate. For example: if we 

rounded off the number -2_= 2.7 142 to hundredths, we would get the approximate number
 
-7
 

2.71 with 	all digits accurate. 

EXERCISE 41-3A 

1. 	 Round down to tens ,ach of the follov'ng numbers and find the error of rounding down 
(the difference between the number and ihe rounded-down number). 

503; 817; 4,305; 21,658; 12,814; 1"7,"15 
2. 	 Round off to tens each of the numbc:s _n Question 1 and find the error of rounding off 

(from the larger number, subtract the smaller number). 
3. 	 Round up to thousands each of the following numbers and find the error of rounding up. 

23,458; 17,501; 13,709; 60,500; 100,998; 365,651; 1,349,673 
4. 	 Round off to thousands each of the numbers in Question 3 and find the error of rounding 

off. 
5. 	 Round off to ones each of the following numbers and find the error of rounding off. 

.8; 2.55; 	 3.7; 15.5; 41.4; *379: '49; 1.813 
6. 	 Round off to tenths each of the following numbers. 

8.512; 11.395; '403; 6"15; 4.08; 6.17; 10.0098 
7. 	 Round off to hundredths each of the following numbers. 

9.647; 12.784; .231; 1.054; 19.6723; .455. 
8. 	 a. Indicate the reliable, questionable and worthless digits in each of the following ap

proximate numbers. 

b. Round off each number to the place of its questionable digit. 
c. Write down each number according to the basic agreement of Chapter 40. 
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343 with a precision to the nearest ten;
 

6750 with a precision to the nearest hundred;
 
47.0983 with a precision to the nearest hundredth;
 
9.0015 with a precision to the nearest thousandth.
 

9. Three experiments to find the weight in grams of 1 cubic centimetreof the same piece 
of iron gave the following results: 7.62, 7.80, 7.64. Find the average. Indicate in it 
the reliable, questionable and worthless digits. Round off the average to the place of 
the questionable digit. Write down the final result according to the basic agreement. 
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Chapter 42 
MAXIMUM ERROR AND 
RELATIVE ERROR 

42-1 Maximum error-precision 

We have seen that every measurement of length, weight, time and so on can be made
 
only approximately and the result is an approximate number. Even when it is possible to find
 
an exact number (in counting the members of a set, for example), it is sometimes sufficient 
to know only its approximate value. 

Here is an example. A pupil worked after school and saved money for a holiday. The ex
act amount was 101.30 shs. When asked how much money he had saved, he answered "about
 
100 shs". It is clear that the exact number representing his savings and the approximate 
num
ber he gave are different. The pupil got the approximate number by rounding off. Similarly, the 
exact value of a measured quantity and the result of measuring are different. 

The difference between the exact value of a measured or counted quantity andits ap
proximate value is called the maximum or absolute error. In the quoted example, 
 the maximum
 
error is equal to 1"30 shs.
 

You know already that exact values are known only very rarely, for example, in some
 
cases of counting. This means, of course, 
 that the actual value of the ma:zimum error can very
 
seldom be found exactly. However, in carrying out various measurements we can usually give
 
the bounds or linils of the maximum error. In other words, we can expect to find out that the
 
maximum error does' not eaceed a definite number. 

For example, if you weigh an object on a shop scale, the maximum error will usually not 
be more than one ounce. But on laboratory scales, you can weigh an object so that the maximum

I 
error is no more than one-half of one hundredth of an ounce (that is, 20 of an ounce). 

42-2 Relative error-accuracy 

We must, however, realize that the maximum error does not give us an idea of the quality 
or accuracy of the measurement. In other words, the maximum error does not indicate how ac
curately the measuring has been done. The maximum error tells us only about the precision of 

the measurement. For example, if the maximum error in a measurement is 
1 

yard, then the 
measurement is made with a precision to the nearest yard. Conversely, if a weighing is made 

with a precision to the nearest pound, then the maximum 
1 

error in the weighing is 2 pound. 
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Suppose we made two measurements with a maximum errorof- inch: the first was of the 

length of a room, and we obtained 20 yards; the second 
2 

was of the length of a book, and we ob
tained 12 inches. We say that each measurement was made with a precision to the nearest inch. 

It is clear that the first measurement was done very carefully and is of high quality, but 
the second measurement is quite rough and unsatisfactory. 

The same can be said about weighing. An error of one ounce in 50 pounds is usually not 

important. But an error of one ounce in l pound can seldom be allowed. You can now see that to 
evaluate the quality of a measurement, it is not the maximum error that is important. Instead, it 
is how the maximum error compares with the measured value itself. In other words, we would 
like to know what part of the measured quantity the maximum error represents. Let us go back 
to the measurements of the lengths of the room and the book. 

In measuring 20 yards, an error of 1 inch is only -I part of the length. However, in meas2 .1 

uring the length the book an error of 2f inch is I part of the measured quantity. The fraction ob
tained by dividing the maximum error by the measu;re( value is called the relative error. As we 
have seen before, we do not know how good or accurate a measurement is by knowing the maximum 
error alone. It is the relative error that tells how accurate the measurement is. For example, we 
can compare the relative errors when measuring the room and the length of the book. These are
the numbers and 1, respectively. The first fraction is 60 times smaller than the second 

1440 24'
 
fraction, so the accuracy of the first measurement is much higher than the accuracy of the
 
second.
 

It is usual to express the relative errors as percentages. Then it is easy to compare the 
accuracy of two different measurements. The relative error in measuring the length of the room 
is --- x 100 = "0695%, and the relative error in measuring the length of the book is - x 100 = 

1440 24 
4.17%. Certainly, a measurement with a relative error of .0695% is much more accurate than a 
measurement with a relative error of 4.17%.
 

A special notation is often used to show 
 the precision of a measurement. Suppose we
 
measure 
a certain lengrh d with a precision to the nearest inch, and obtain the result 132 inches. 
This result is then written in the form 

d = 132 (±5) inches, 

since .5 inch is the maximum error here. 

EXERCISE 42-2A 

1. Find the maximum error of the approximate number .66, if its exact value is 2 
2. Find the maximum error for each of the fractions 

2 5 4'
 
7' 13' 19'
 

expressed by the approximations 

•28, "384, '2105,
 

respectively. 

it- , 
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3. 	 Find the relative error (in percentage) of the approximate number 5.47, if its maximum 
error is .005. 

2 

4. 	 Express the number 5 by an approximate decimal fraction with a precision to the near

est hundredth. Find the maximum error and the relative error (in percentage) of the ap
proximate number. 

5. 	 The width of a narrow street measured with a precision to the nearest ten c,.ntimetres 
is 7.6 metres. The length of the street measured with a precision to the nearest metre 
is 76 metres. Which of these measurements is more precise? Is one of the measurements 
more accurate than the other? 

6. 	 Measuring a segment of length 8.75 centimetres, we made an error of .25 centimetres. 
Measuring another segment of length 10.5 metres, we made an error of 25 centimetres. 
Which 	of the two measurements is more accurate? 

7. 	 Measuring a segment 25 inches long, a student obtained 25.2 inches. Find the relative 
error of the measurement. 

8. 	 The volume of a container is 25 cubic inches. A pupil, however, computed the volume as 
24.6 cubic inches. Find his maximum and relative errors. 

9. 	 Using the formula on the relationship between an approximate number, the maximum error 
and the relative error, complete the table. 

Approximate Maximum Relative
 
Number Error Error
 

4.1 	 .05 

•654 	 .001 
48.4 	 .1% 

•348 .5% 
260 5 

3.40 	 .5% 

n\ 
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Chapter 43 
DECIMAL PLACES AND 
SIGNIFICANT DIGITS 

43-1 Decimal places 

We have learned how approximate numbers are obtained from counting, measuringand
rounding off. We have seen that counting sometimes gives exact values, while measuring and 
rounding off always give approximate numbers. 

In order to be able to discuss and understand operations such as addition and multipli
cation of approximate numbers, we have to study in more detail the notion of the precision of an approximate number. From one point of view this was done in Chapter 42. We will n6w con
sider two new ideas which are also closely related to the notion of precision: decimal places 
and significant digits. 

Do you remember what the decimal places of a number are? You studied them in Chapter
23. All digits of a number written to the right of the decimal point are called the decimal places
of the number. For example, the numbers 7.2, 6.03, .417 have one, two and three decimal 
places, respectively. The number 46 has no (or zero) decimal places. 

43-2 Significant digits 

The concept of significant digits is a harder one, and we will have to develop it in
several successive stages. In dealing with exact numbers, you may have heard the term sig
nificant digit. First of all, any digits from 1 to 9 appearing in a number are significant, be
cause each of these digits shows a definite number of units in the place where that digit ap
pears. For example,6~1 in the number 56.71, there four significant digits: 5, 6,seeths, x 0 6~ 1+ are 7 and 1. Tox1 1
 
see this, 56.71 = 5 x 10 + 6 "x I + 7 
x i + 1 x f ' because the 5 shows that the number
 
contains 5 tens, the 6 shows 
 that the number contains 6 ones, and similarly the 7 and the 1 
show 7 tenths and I hundredth. 

In the same way each digit ?ero that is between digits from I to ,9 is also called sig
nificant. In the number 603, tile digit 0 is a significant digit because it indicates that there 
are no, or zero, intens the number which has 6 hundreds and 3 ones. 

On the other hand, tile number '023 has only two significant digits, 2 and 3. You see
that this number has 2 hundredths and 3 thousandths, and this completely describes it. The
digit 0 here is not a significant digit, because it is only used to locate the decimal point. It
performs therole of a place (position) holder only, and we will not regard it as a significant
digit. In a1decimal fraction, all 0 digits to the left of the first lion-zero digit are flot signifi
('aitdigits. The numbers .001, "25, .0305 have one, two and three significant digits, respec
tively. 
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Let 	us now consider the 	di/it 0 and its meaning when it is written at the cn(l of a de(cimal 
fraulion. Ilere it is important to know whether the decimal fraction is an e.xact number, or an ap
prox'imate number. 

If tie decimal fraction is anl exact number, the digits 0 written at the end do not have any 
significance. The decimal fractions 3.8, 3.80, 3.8000 represent the same number. Therefore, a 
digit 0 w/t en written at ticet'd of an ,xact dc imal fraulion is not siyniiall, and it does not
 
make any difference whethet we omit the zero or write it.
 

The situation is completely different 
when the digit 0 is written at the end of a decimal 
fraction which represents an approximate number. We will show that the 0 has in this case a 
definite meaning. Consider, for example, the two approximate numbers 3'8 and 3.80, differing 
only by the digit 0 at the end. These two decimal fractions represent two different approximate
 
numbers for the following reason.
 

The approximate i rnber 3.8 could have been obtained from 
 rounding off to tenths such
 
numbers as 3.81, 3.82, 3.83, 3.84, or 3.75, 3.76, 3.77, 3.78, 3.79. 
 This means that oigi
nally in our number there might hoive been hundredths or thousandths, but the number was 
rounded off to tenths. SuppoSe the approximate number 3'8 was obtained by measuring. Then 
the 	digit on tle right (8) is in the tenths place and shows that the measurement was made with 
a precision to the nearest tenth. 

If, however, an approxilat' number is written as 3.80, it means that the ones (3), the 
tenths (8) and the hundredths (0) are known to us. If 3'80 were obtained by rounding off to 
hundredths, the original number might have had thousandths. Suppose 3.80 is obtained by 
measuring. Then the digit on the right (0) is in the hundredths place and shows that the measur
mient was made with a precision to the nearest huit redth. 

We see that the di.hil 0(iaparilnq at the end'of an approximia, decimal fraution has a 
d('fiiite nicn .anin, to be considered as a sin ificant dig.itand is therefore 

We will now give special attention to approximate values written as whole numbers. An 
approximate whole number may contain zeros at the right-hand end. Such a zero is a signifi
cant digit if it shows the absence of units in its place. But often a zero at the end replaces a 
worthless or unknown digit. Then the zero is not a significant digit. 

Let us look at an example. Suppose the approximate value of a weight is 14.7 kilograms. 
This number has three significant digits. If we express this approximate value in grams, we get 
the number 14700, because there are 1000 grams in a kilogram. This number also has only three 
significant digits, because the two 0 digits at the end replace unknown digits. 

If however the approximate number 14700 grams was obtained by using a more precise 
scale, which weighs with a precision to the nearest grain, then this approximate number 14700 
has five significant digits. To express this approximate number in kilograms, Ne would have 
to write it is 14.700 kilograms. The last zero at the end is written in the thousandths place. 
This says that tle measurement was made with a precision to the nearest thousandth of a 
kilogram; that is, to the nearest grain. 

Thus, there is a difficulty in reading an approximate whole number ending in zeros. We 
know that the number of significant digits in an approximate whole number with digits 0 at the 
end depends on the precision of that number. For example, if we look at the approximate num
ber 2400, as it is written down, we cannot decide in which of the following three ways it was 
obtained. 

1. The number 2,00 may be the result of rounding off to the nearst hundred or of 
measuring with a maximum errol of 50. Then neither zero is a significant digit. 

2. 	 It miay be the result of rounding off to the nearest tell or of measuring with a maxi
mui error of 5. This makes the first zero a significant digit, and the second zero 
not a significant digit. 
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3. It may be the 
1 
result of rounding off to the nearest oneor of measuring with a maxi

mum error of 2. Then both zeros are significant digits. 
We summarize our discussion in the following detailed statement of the meaning of a 

significant digit in an approximate number. 
If an approximate number is written according to tbe basic agreement in Chapter 40, then: 
1. Any of tMe digits I, '2,....., are significant. 
2. Any diyi' 0 at the rifht-hawd end of an approximate de imal fraction is significant.
3. Any digit 0 at the right-han(d end of an approximate wliole number in the place s/how

inq the precision of the approximate number (or of the measurement) is significant.
4. Any digit 0 between significant (iglits is siqnificant. 

43-3 Examples 

The approximate decimal fractions 8.2, 7.06, .1230, .061 have two, three, four and two 
significant digits, respectively. 

250 precise to the nearest one has three significant digits, because the 0 is in the ones 
place showing the precision. 

2500 precise to the nearest ten has three significant digits. The first zero from the left 
is a significant digit, since it is in the place showing the precision. The last zero (in the ones 
place) is not significant. 

2500 precise to the nearest one has four significant digits, because the last zero on the
right is in the place showing the precision; and the zero in the tens place is significant, be
cause it is between two significant digits, the 5 and the 0 at the end. 

2050 precise to the nearest one has four significant digits.
Let us look at some other examples of rounded-off numbers. If we round off the number 

2803 to tens, we obtain the approximate number 2800 with three significant digits. If 2803 is
rounded off to hundreds, we also obtain the approximate number 2800, however with only two 
significant digits. 

Consider a rod measured to be 124 millimetres long with a precision to the nearest 
millimetre (10 millimetres make a centimetre). The number 124 has three significant digits.
If we round it off to tens, we obtain the approximate number 120, containing only two signifi
cant digits. 

In order to avoid any misunderstanding concerning the digits 0 at the end of approxi
mate whole numbe:s, it is better to leave out the 0 digits which replace worthless or rejected
digits (that is, v.hich are not significant) and to change to larger units. For example, when 
rounding off thz number 83,542 to hundreds, it is better to write 835 thousands rather than 
83,500. If the three zeros at the end of 3,569,000 square metres are not significant, it would
be better to write 3.569 square kilometrcis (I square kilometre equals 1,000,000 square metres).

Sometimes it is not convenient to write an app:oximate number in larger units and drop
the non-significant 0 digits. Then it would be impoitant to say which cf the zeros are worth
less. One way of doing this is to underline the questionable digit, as we have done in Chapter 
39. For example, 

if x 36 kilometres, thend'x 36,000 metres 
(two significant digits);
 

if y 8.4 metres, then y : 840 centimetres
 
(two significant digits)
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or 	 y 8400 millimetres 

(two significant digits). 

We would be allowed to write 36 kilometres 36,000 metres only if we measured the distance
 
with a precision to the nearest metre.
 

For a final review of the notions of decimal places and significant digits, look at this
 
list of approximate numbers:
 

7, one significant digit, nodecimal places
 
.7, one significant digit, one decimal place
 
.07, one significant digit, two decimal places
 
•070, two significant digits, three decimal places 
•37, two -.igniticant digit., two OeCi,,II places 

2.037, four significant digits, three decimal places
 

.307, three significant digits, three decimal places
 
2.0370, five significant digits, four decimal places.
 

43-4 Comparison of approximate numbers 

We should now point out that in order to give an ide;. of the precision and accuracy of
 
an approximate number, we can tell the number of its decimal places or the number of its
 
si.qnificant diYits. 

The method of counting the number of decimal places is recommended, when we com
pare approximate values of the same quantity. For example, the first weighing of an object is
 
14.7 grams, and the second weighing, using a more precise scale, is 14.684 grams. The second
 
approximate value is clearly more accurate and more precise than the first, because it has
 
three decimal places, while the first has only one decimal place. 

In changing from one unit of measurement to another in the metric system, the number 
of decimal places changes. But the number of significant digits remains unchanged. For ex
ample, 254 centimetres = 2.54 metres. The number of significant digits in each number is three. 
But the first number has no decimal places, while the other has two. For this reason, iti. a good 
idea to compare the accuracy of various approximate numbers by counting the number of their 
significant digits. For example, if measuring a segment resulted in the number 6.3 centimetres, 
and measuring the length of a field gave the number 254 metres, we must admit that the second 
approximate number is more accurate than the first, since the second has three significant 
digits and the first only two. 

43-5 Exact whole numbers 

The major part of the discussionbin this chapter was devoted to the meaning of signifi
cant digits in approximate numbers. For the sake of completeness, we give now a rather simple 
statement on the meaning of significant digits in eaact numbers. 

In exact whole n unbers, all the difits are siynificant.
 
By the Niflnificant diflits of an exact decimal fraction, we mean all its digits except
 

zeros wrilten to the left of its first n1oni-zero diyit and zeros written at tMe right-hand end. 
The exact whole numbers 45, 305, 27108, 560,000 have two, three, five and six sig

nificant digits, respectively. 
The exact decimal fractions 8.2, 7.06, .1230, .61 have two, three, three and two sig

nificant digits, respecively. 
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EXERCISE 43-5A 

1. 	 flow many significant digits has each of the following approximate numbers, given with 
a precision to the nearest ten? 
230, 480; 2,080; 81,050; 70,190; 13,700; 12,000; 201,000

2. 	 How many significant digits has each of the following exact numbers?
 
230; 480; 
 2,080; 	 81,050; 70,190; 13,700; 12,000; 201,000 

3. How many significant digits has each of the following approximate numbers, given with 
a piccision to the nearest hundred? 
32,400; 70,300; 190,100; 149,000; 10,050,000

4. 	 How many decimal places and how many significant digits has each of the following ap
proximate decimal fractions?
 
8.5; .42; .703; 6.05; 1.003; 201.03; .03; .004; ;0005; 2.60; 8.240; 8.040; .070;

.2080; .300; 2.500; 603.100; 2004.50
 

5. 	 How many decimal places and how many significant digits has each of the numbers listed 
in Question 4, if they are given as exact decimal fractions? 

6. 	 Explain the difference between the two recordings:
"the length of the segment is 12 inches" 
and "the length of the segment is 12.0 ir hes". 

7. 	 Recalling that a kilgram has 1000 grams, express each of the following in kilograms if 
the 0 digits at the end are significant. 
2,860 grams; 8,700 grams; 250 grams; 23,400 grams

8. 	 Express in kilograms each of the numbers in Question 7 if the 0 digits at the end are 
non-significant. 
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Chapter 44 
ADDITION AND SUBTRACTION 
OF APPROXIMATE NUMBERS 

44-1 Introduction 

Let us look at a simple problem from everyday life. Find the length of a fence around
 
a rectangular field. To solve this problem, we must first measure 
the length and the width of 
the rectangle. Suppose we obtain the approximate numbers 225 yards and 112 yards. To find 
the answer to our problem, the perimeter of the rectangle, we must add the lengths of the four 
sides, which are these approximate numbers: 

225 1 225 112 + 112= 674. 

In this way we are led to perform the operation of addition on approximate numbers. We
 
clearly obtain the approximate number 674 yards.
 

If we had to find the 
area of the same field, we would get it by multiplying the two ap
proximate numbers:
 

225 x 112 = 25,200. 

Thus, in the second case we must perform the operation of multiplication on approximate num
bers. The result of 25,200 square yards is clearly also ap approximate number. 

The question naturally arises, what kind of approximate number this area is. In other 
words, which digits of the approximate number 25,200 are reliable and which are not? We ask 
the same question about the length we found for the fence. 

We must thus discuss computations with approximate numbers. The results of such 
operations are also approximate numbers. 

As we have seen before, approximate numbers are obtained from counlinl, measvuring 
and roundin off. We see now that besides these three sources, there is still a fourth source 
for obtaining apprcximate numbers, namely from computations or operations. Whenever we 
calculate with numbers, one or more of which is approximate, the result of the calculation 
is an approximate number. 

We will discover some rules which tell us which digits of such a sum or product are 
reliable, and how to record the answer according to our basic agreement. 

We will study addition and subtraction of approximate numbers in two stages: 
1. Addition and subtraction of approximate whole numbers. 
2. Addition and subtraction of approximate decimal fractions. 

179 



44-2 Addition and subtraction of approximate whole numbers 

In the previous example of the rectangular field whose length and width are 225 and 
112 yards, respectively, we saw that the fence had to be 674 yards long. However, we need 
to find out how reliable the digits of 674 are. We note that the length 225 yards and the width 
112 yards are approximate numbers with a precision to the nearest yard. Thus, the ones digits 
5, 5, 2, 2 of the terms in the sum 

225 1 225t 112 1 112 

are questionable, which leads us to believe that certainly the ones digit 4 in the answer 674 
is questionable. 

Let us now consider a slightly harder problem. In a certain region there are a town with 
720 people (counted with a precision to the nearest ten), two villages with 234 and 88 people 
and farm land with a population of 4,300 people (counted with a precision to the nearest 
hundred). Find the total population of the region.
 

Adding the four numbers in the usual way, we obtain:
 

4,300
 

720
 

234
 
88 

5,342 

Since the terms are approximate numbers obtained by counting various large sets, the number 
5,342 is clearly also an approximate number. The question is which digits of this tosum are 
be kept in the final answer. 

In the first number, 4,300, precise to the nearest hundred, the tens digit and the ones 
digit are unknown to us. We do know the tens digits and the ones digit in the number 88. How
ever, when we add these to unknown digits in the number 4,300, the tens digit and the ones 
digit in the sum 5,342 remain unknown. We simply have to disregard them in the final result. 
When we first add the terms, we will take into account the tens digits and the ones digits in 
those terms in which they are known. But then we will round off the sum obtained to get the 
final result. 

Let us write down the problem as follows. In place of digits unknown to us we will 
write the letter "U" for "anknown". 

43UU 
72U
 

234 

88 
52UU 

Rounding off the sum 5,342 (obtained in the usual way), we reject the worthless digitsof 
tens and of ones and obtain 

5,342 5,300 ,r the final answer. 

We see that in the final result we rejected-that is, replaced by zeros-the digits in 
those places in the sum for which the digits in even one of the addends are unknown. 

We can write down what we have discussed as the following rule: 
In addhin approximate whole numbers, we reject in the final result (accordingto 

the fundamental rule for rounding off) (liis in those place s in the sun for which the digits 

180 



are unknown even in one of the approximate terms. (This rule will be included in a more gen
eral rule later.) 

We use this rule even if there are one or more exact numbers among the terms. (In tile 
example above, 88 was an exact number.) 

Consider now the ollowing simple problem. From a stock of 480 pounds of sugar, 117 
pounds were sold in one day. flow much sugar remained? 

Here we have to subtract approximate numbers. 

(a) 	 480 

-117 

363 

Taking into consideration 

(b) 	 48U
 

-117
 

37U 

the difference 363 obtained in the usual way (a), and the un
known digit in the ones place (b), we round off 363 to tens to obtain the final ,esult, 360 pounds.
 

It is not hard to see that our rule for adding approximate whole numbers will also apply
 
to subtraction.
 

44-3 	 Addition and subtraction of approximate decimal fractions 

Suppose two or more approximate numbers, written according to our basic agreement,
 
have the same number of decimal place. Then all but the last digit of each number is re
liable, the last digit of each being questionable. We will see that if we simply add the 
num
bers, then all digits in the sum except the last are reliable and the last is questionable. The
 
sum obtained is thus automatically recorded according to our basic agreement. For example:
 

18.6 
+ 23.9 

42.5 

We will verify that this procedure give., the correct results by using some rather ex
tensive reasoning based on the meaning of approximate numbers and on properties of inequali
ties. 

From our work on order properties, we know the following statement to be always 
true:
 

If a, b, e, d, e, f are any numbers such that
 

c <a<d
 

and e < b <,
 

then e + e < a + b < d + f.
 

You may read, "If a is between e and d, and b is between e and /, then a + b is between a + e 
and d + f". In other words, if two double inequalities hold, then the double inequality ob
tained by adding the corresponding terms also holds. 

Return now to our example. Let a and b be the approximate numbers that we are repre
senting by 18.6 and 23.9, respectively. 

18.55 < a < 18.65 
and, similarly, 23.85 < b < 23.95 
We 	 add and obtain 42.40 < a + b < 42.60. 

Therefore, a + b = 18.6 + 23.9 42.5. 

We 	 move now to the case when the approximate terms to be added have different num
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bers of dceimal places. We have to be careful here, because the sum obtained in the usual way
will contain worthless digits and will have to be rounded off. Consider tile following example. 

Let a machine weigh 3"507 kilograms, and let a wooden box, in which the machine is
placed, weigh 2.8 kilograms. What is the total weight of the box with the machine inside? 

To find the answer we proceed as follows. 

(a) 3.507 (b) 3"507 (c) 3"507 
4 2.8 	 + ?.8UU ± 2.8 

6.307 	 6.3UIJ 6.307 
6.3
 

We will now explain what we have done. In 
 (a) we added the decimal fractions in the 
usual way, treating the terms as if they were exact, and nct approximate, numbers. In (b) we 
show that such simplified addition of approximate numbers with different numbers of decimal 
places is inappropriate. In the sum in (a), there are worthless digits. Therefore, the answer 
must not be written according to our basic agreement. Actually, in the first term w, know the 
ones, tenths, hundredths and thousandths. In the second term we know only ones and 	tenths,
and nothing about the further decimal places. It is, therefore, clear that in the sum the hun
dredths digit (0) and the thousandths digit (7) do not deserve any confidence at all. They are 
worthless and ought to be rejected. The addition of the approximate numbers should be clone 
as shown in (c). 

Using double inequalities as we (lid before , we can verify that method (c) gives the 
correct result. Let a and b be the approximate numbers that we are representing by 3"507 and 
2.8, respectively. 

3.5065 < a < 3.5075 
2.75 < b < 2-85
 

6-2565 < a t b < 6.3575
 
6.2 	 < a b <6.4
 

a b= 3.507 + 2.8 =6.3
 

Notice that the left-hand sum, 6.2565, is not rounded off according to the fundamental 
rule, but 	is rounded (o/tiv. The reason is this. If 6.2 -- 6.2565 and 6.2565 < a + b, then it fol
lows, by transitivity of "less than", that 6.2 < a i b. But it does not follow that 6-3 < a + b. 
Similarly, the right-hand sum is rounded up. 

Subtraction can be treated in exactly the same way. For example, let us subtract the 
approximate number 14.2714 from the approximate number 42.7. 

42.7 42.7U[JU 42.7
 
-14.2714 
 -1/.2 7 14 -14.2714 

28.4286 28.5UUU 28.4286 

28.4
 

Again 
 the correct way of recording the subtraction is the third one. 
We will verify that this procedure for subtracting approximate numbers is correct by

again using the meaning of approximate numbers and properties of inequalities. To do it, we 
first have to obtain some more facts about inequalities. 

We saw that if c - a .: d/ and e, -: 6).' f are true statements, then c + v < a I b . (I I-
Do you think the corresponding subtraction inequalities are true? Is c - e .1111- b < (I - ? 
In fact, this is not true. To show that the statement is false, it is enough to give one in
stance when it is falsre. Suppose a and 6 are such that
 

..
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2 < a < 3, 
and 1 < b < 3. 

Then the subtraction inequalities would be 

I < a - b < 0. 

But the difference a - b cannot at the same time be greater than 1 and less than 0. So our
 
statement is false.
 

Is there not another way we can use inequalities in subtraction? It is not hard to see
 
that the following statement does hold:
 

If c<a
 
and e > b,
 

then c - e < a - b.
 

The proof is very simple. c < a and e > b mean the same thing as a < a and -e < -b.
 
We can add the last two inequalities and obtain
 

C + (-e) < a + (-6),
 
that is, c - e < a - b.
 

Check this statement by substituting any numbers for a, b, c, e. When the last statement is ex
tended to double inequalities, we obtain the following true statement. 

If a, b, c', d, e, f, are any numbers such that 

C < a<d 
and e > b > f
 

then c - e < a - b <(d - f.
 
On the left, from a number On the right, from a number 
less than a, we subtract 	 greater than a- we subtract 
a number greater than b. 	 a number less than b. 

With the help of our new double subtraction inequality, we can see that our method of 
subtracting approximate numbers is correct. tlere is the previous problem. 

42.65 < a < 42.75
 
14.27145 b > 14.27135
 
28.37855 < a - b < 28.47865
 
28.3 	 < a - b < 28.5
 

a - b 28.4
 

From the discussion of the examples on addition and subtraction of approximate num
bers, it is clear that even one unknown digit in any place makes the digit in that place in the 
answer worthless. Therefore, in addition and subtraction of approximate decimal fractions we 
will use the ,ollowing rule. 

Addition and Subtraction Rulk 

When adding or subtra, 'iing approximate decimal fractions, wve preserve only as many 
decimal places in the result as there are in the approximate term with the least number of 
decimat places. 

We clearly see that our addition and subtraction rule is based on the idea of decimal 
places. 
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The addition rule for approximate whole numbers that we have already discovered is
really contained here. To see this, let us return to the problem in Section 44-2 about the pop
ulation of a region. This time let us use a larger unit, say hundreds, to represent the counts. 
We then have: 

The population of the farm land, 43 hundreds 
Th_- population of the town, 7.2 hundreds 
The population of the first village, 2.34 hundreds 
The population of the second village, .88 hundreds
 

The problem is now reduced to adding approximate decimal fractions, and we 
apply our addi
tion and subtraction rule. 

(a) 43 (b) 43.UU (c) 43 
7.2 7.2U 7.2 
2.34 2.34 2.34 
88 .88
 

53'42 52.UU 53.42 

53 hundreds
 
We round off the sum in (c) to ones because the term 43 has no decimal places.
 

Thus, we 
see that to apply our addition and subtraction rule to approximate whole numbers, we only have to avoid zeros which replace unknown or rejected digits and express the
 
approximate cerms in larger units.
 

EXERCISE 44-3A 

1. Find the sum of the approximate numbers. 
a. .52 b. 2130 c. 2-725 

•038 420 .6482 
35200 .01686
 

2. For Question la, carry out the complete analysis using double inequalities.
3. Find the differences of the approximate numbers. 

a. 1430 5-10b. c. 8.53
 
- 275 
 - .282 - .0065 

4. For Question 3b, carry out the complete analysis using doubie inequalities.
5. A rectangular field has length 1.240 yards and width 136 yards. Find the perimeter 

of the field. 
6. A park had 7300 trees. In one year 860 trees were cut down. How many trees remained 

in the park?
7. A wire was cut up into four parts of lengths 3.54 yards, .756 yards, 8.49 yards, 1.138 

yards. Find the original length of the wire. 
8. A bottle of milk weighs 2.42 pounds. The weight of the bottle is '543 pounds. What is 

the weight of the milk? 

A. 
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Chapter 45 
MULTIPLICATION AND DIVISION 
OF APPROXIMATE NUMBERS 

45-1 Introduction 

In this chapter we will discuss the remaining two operations on approximate numbers
multiplication and division. In Chapter 44 we developed procedure for adding and subtracta 

ing approximate numbers in two stages-first for approximate whole numbers, then for approxi
mate decimal fractions. 
 At the end of the chapter, however, we showed that addition and sub
traction of approximate whole numbers can 
easily be reduced to the same operations on ap
proximate decimal fractions. We will find the 
same situation in multiplication and division.
 
As a matter .f fact, 
we will not even find it important to distinguish between the two types of
 
approximate numbers. Instead, will simply discuss a
we single procedure for multiplying and
 
dividing approximate numbers.
 

45-2 Multiplication 

Consider a very simple problem of the same kind as at the beginning of Chapter 44.
 
Suppose the sides of a rectanguk"-
 field are 254 yards and 194 yards long, measured with a
 
precision to the nearest To find the area
yard. of the field, we multiply 254 and 194 and obtain
 
49,276 square yards. Since the measures of the sides are approximate numbers, it is clear that
 
their product only approximately gives the area and probably has 
to be rounded off. Again,
 
we must ask which digits of this product should be retained in the final result.
 

Because of the precision of the measurement, we know that the unknown 
exact values

of the length and of the width of the field are greater than or equal to 253-5 yards and 193.5
 
yards, respectively. And we know they are less than 254.5 yards and 194.5 yards, respec
tively. Therefore, the rectangular area is greater than 49,052.25 square yards (253.5 x 193.5),
 
but less than 49,500.25 square yards (254.5 x 194.5).
 

As you can see, we 
have just used the following true statement about inequalities: 
If a, b, c, d, e, f are any non-negative numbers such that 

c <a <d
 
and e < b<
 

then cex <ax b<dxf.
 

The assumption that all the numbers involved are non-negative is essential. Can you
give an example that shows that the statement is not necessarily true if you allow some of 
the numbers to be negative? 
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We can now set down the solution to our problem as follows 

253.5 < a < 254.5
 
193"5 < b < 194.5
 

Therefore, 49,052.25 < a x b < 49,500.25 

49,000 < a x b < 49,500
 
a x b-6 49,300.
 

This longer procedure shows us that the first two digits of our original product 49,276 
for the area are reliable (4 and 9), and the third digit (2) is questionable. According to our 
basic agreement, only these first three digits ought to be preserved. This means that we have 
to round off the product 49,276 to hundreds to obtain the final result of 49,300 square yards. 

This problem showed us that if we multiply two approximate numbers, each having 
three significant digits, their product is an approximate number also containing three signifi
cant digits.
 

The use of "U" in place of unknown digits leads to the same result:
 

(a) 254 (b) 254U (c) 254 
194 194U 194 

1016 UUUU 1016 
2286 1016 J 2286
 
254 2286U 254
 
49276 254U 49276
 

492UUUU 49300 
Rounding off the product 49,276 to three significant digits as required by (b), we obtain 

the final answer 49,300 (c). 
In a similar way we can show that if we multiply two approximate numbers, one with 

three significant digits and the other with two significant digits, the product is an approximate 
number with two significant digits. In general, the product of two approximate numbers will be 
an approximate number with as many significant digits as the number of significant digits in 
the factor with the lesser number of significant digits. As we will illustrate later, exactly the 
same can be said about division. 

Multiplication and Division Rule 

When multiplying or dividing approximate numbers, in the result we preserve as many 
significant digits as there are in the originalapproximate number with the lesser number of 
significant digits. 

We see now clearly that our multiplication and division rule is based on the idea of 
significant digits. On the other hand, our rule for addition and subtraction is based on the 
idea of decimal places. 

Here is an additional illustration of the satisfactory results obtained using our multi
plication and division rule. We will consider a problem using common fractions represented 
by decimal fractions. 

10 5 
Find the product of L- and 12, following the instructions below: 

a. Represent the common fractions as decimal fractions. 
10 

b. Roundoff the decimal representing I- to four significant digits. 

c. Round off the decimal representing 15 to three significant digits. 
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10
 
i = 1.9090 ... 1.909 

12 = 1.8333... 1.836 
1.909 x 1.83 = 3-49347 = 3.49. 

The result is rounded off to three significant digits, as many as there are in the factor 
with the lesser number of significant digits. 

Let us now compare the approximate result with the exact value of the product of the 
two fractions. 

10 5 21 11 21 71 = 6 -6-= 3.50 

Our approximate result 3.49 differs fiom the exact product 3.50 by only one unit in the
 
third significant digit. In fact, we expect the last significant digit of an approximate 
number
 
to be questionable. Therefore, the result we 
obtained by rounding off the product to three sig
nificant digits, according to our rule for multiplication and division, is satisfactory. 

45-3 Division 

We now consider a problem leading to division of approximate numbers. Measurements 
show that the weight of a piece of iron is 491 grams and that its volume is 63 cubic centi
metres. Find the weight of one cubic centimetre of this iron. 

491 " 63 = 7.79 .... 7.8. 

Iere the dividend is an approximate number with three significant digits, the divisor 
an approximate number with only two significant digits. Our rule says that we should pre
serve two significant digits in the quotient. 

Let us verify our solution by assuming that the unknown exact weight of the piece of 
iron is greater than or equal to 490"5 grams and less than 491.5 grams, and that its unknown 
exact volume is greater than or equal to 62.5 cubic centimetres and less than 63.5 cubic 
centimetres. 

We know that any quotient of positive numbers decreases if we decrease the dividend 
or increase the divisor. Also, a quotient of positive numbers increases if we increase the 
dividend or decrease the divisor. 

It follows that: 

490-5 " 63'5 = 7.724... is less than the quotient; 
491.5 + 62.5 = 7.4:64... is greater than the quotient. 

Let us make a general statement about the division of double inequalities. 
If a, b, e, d, e, / are any positive numbers such that 

C < a <( 

and [ > b > e 
then c [< a " b< d -e 

A number less r'.an a A number greater than 
is divided by a number a is divided by a number 
greaterthan b. less than b. 
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Do you see a similarity between this statement and the statement invojving subtraction 
of doule inequalities? 

Can you illustrate by an example that this is not necessarily true if any of the numbers 
involved are negative? 

Here is a 3olution of our problem using the statement about division of double inequali
ties. 

490.5 	< a < 491'5
 

63-5 > b > 62.5
 

Therefore, 490"5 63.5 < a b < 491.5 " 62.5; 
that is, 7.724... <a b < 7.864...
 

7.7<a b< 7'9,
 

a-b : 7.8. 

We see that in the quotient 491 + 63 = 7.79. .. , obtained at the beginning of our problem, 
the first digit is reliable, the second digit is questionable and the remaining digits are worth
less. We conclude therefore that our rounding off to two significant digits (7.8) is correct, and 
in accord with our basic agreement for recording approximate numbers. 

We obtain the same result, if we write "U" instead of the unknown digits in the divi
sion. 

7.8U 

63.U [491.UU 
441 U
 

50 UU
 
50 4U
 

UU 

45-4 Operations with one approximate number and one exact number 

We remark that our multiplication and division rule can also be applied in multiplication 
or division when one number is an approximate number and the other is an exact number. For 
example, multiply an approximate number with four significant digits by an exact number. A
 
satisfactory 
answer is obtained by preserving in tlh, product four significant digits, the same
 
number of significant digits as in the approximate 
factor. The number of significant digits in
 
the exact number is simply not taken into account.
 

Multiply the approximate number 24.3 by the 
exact number 34. In the product 826.2 we
 
keep three significant digits, because the approximate factor 24.3 has three significant digits.
 
Therefore, the answer is 

24.3 x 34 - 826. 

We conclude with the following rule. 
When applying our multiplication and division rule to multiplication or division of an ap

proximate number by 
an exact number, we keep in the final answer as many significant digits
 
as in the approximate number (and disregardthe number of significant digits of the 
exact num
ber).
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EXERCISE 45-4A 

1. Fnd the products of the approximate numbers. 
a. 	 .53 b. 4800 C. 1928 

.06 	 523 .00552 
2. For Question la, carry out 	the complete analysis using double inequalities. 
3. Find the product of the approximare number .431 and the exact number 54. 
4. A shop received 183 boxes. Each box contained 24 poundsof oranges. Find the weight 

of 	the oranges received. 
5. Find the quotients 	of the approximate numbers. 

a. 	 .06 2.3 

b. 	 800 35 
c. 	 *385 -27 

6. Find the quotient of the approximate number 2,600 divided by the exact number 165. 
85 8.7. Find the product - x - in two ways. 

a. 	 Represent the common fractions as decimal fractions and take each of them with a 
precision to the nearest thousandth. 

b. 	 Multiply the common fractions and represent the result as a decimal fraction. Then 
take it with a precision to the nearest thousandth. 

8. 	 Find the quotient 16 45 wih a precision to the nearest hundredth in two ways.
3 *4 

a. 	 Represent each common fraction as a decimal fraction with two decimal places. 
Divide the decimal fractions. 

b. 	 Divide the common fractions and represent the quotient as a decimal fraction with 
two decimal places. 
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Chapter 46 
COMBINED OPERATIONS ON 
APPROXIMATE NUMBERS 

46-1 Introduction 

In the previous two chapters we learned how to add, subtract, multiply and divide ap
proximate numbers. Many simple problems, however, require a cotrbinatioi of these operations. 

For example, suppose measurement of the lengths, width and hei;.ht of a parallele
piped gives the following approximate numbers: 

length, 1= 34.7 cm. 
width, w= 26.8 cm. 

height, h 42.1 cm. 

To find the volume, 1', of the parallelepiped we use the known formula 

V = 1 x w x ,h= 34"7 x 26.8 x 42.1 cubic cm. 

We have to perform two multiplications using our rule for multiplying or liviaing ap
proximate numbers. First we 
 find 34.7 x 26.8. Then we multiply the product, an intermediate 
result, by 42.1 to get the final result. Note the distinction we make between the final result, 
obtained after the last operation is performed, and the intermediate results obtained at earlier 
stages. 

If we are asked to find the total surface area of the same solid we have 

S = (I XI) + (1 XIv) (I It) i (I X h) I (?Ix- I) - (, x A) 
=(2 x I x iv) (2x x t) (2 x it, x I) 
= (2 x 34"7 x 26.8) - (2 x 34.7 x 42.1) - (2 x 26.8 x 42.1). 

Here we have to multiply six times and acid twice. 
The rules concerning the order of performing combined operations on exact numbers 

are also valid foi approximate numbers. Thus to find the surface area, 8, we proceed in the 
following ordei. First we perform all multiplications, and then add the three terms of the sum. 
How many intermediate results will we have? 

Could we solve problems involving more than one operation on approximate numbc-s by 
rounding off the intermediate results by our rules? If we did this we would increase the errors 
of our approximate numbers even more by rounding off. The accumulation of rounding-off errors 
could substantially influence the final result. It turns out that in many cases of combined 
operations, this influence is greatly reduced in the final result if in each of the intermediate 
results we preserve one more digit than our rules for operations on approximate numbers tell 

A
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us to preserve. Let us underline these extra digits. In the final result, however, we will reject
 
the extra digit. Here is the rule we will use.
 

Intermediate Result Rule 

In solving problems uhich involve more than one operation on approximate numbers, we 
preserve in the intermediate resultsone more digit than recommended by our rules for opera
lions on approximate numbers. In determining the number of significant digits in an internedi
ate resul', the extra digit is not counted, according to our basic agreement for rounding off ap
proximate numbers.
 

46-2 An example 

We will now illustrate this procelure for combined operations. Compute the value of the 
quotient 

13 7 

16 118
 

(213 _17 )2
 

Let us first represent the given common fractions as decimal fractions and then round 
them off to hundredths. We have 

16 

77- 1.3888 ... 1.39, 

2 
-= 2857... .29.
7 

Now we must compute 

2.81 x 1.39 
(2.81 - 1.39) x *29 

(1) Intermediate result: 	 (2) Intermediate result: 

2.81 	 2.81 
1.39 - 1.39
 
2529 1.42
 
843
 

281
 
39059
 

3.906 

(3) Intermediate result: 	 (4) Final result: 

1.42 	 3.906 -412
 
.29 - 9.48 9.5
 

12 78
 
28 4
 

.4118
 

.412 Final answer 9.5
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As the first operation, we multiplied two approximate numbers with three significant
 
digits each. But we rounded off the product to four signigicant digits, underlining the last
 
digit (6) as the extra digit. 

The second operation gave as a difference an approximate number having two decimal 
places 	and three significant digits. Note that there was no extra digit to preserve. 

As the third operation, we multiplied approximate numbers with three and two signifi
cant digits. The product was rounded off to three significant digits, the third digit (2) be
ing marked as an extra digit. 

The fourth operation consisted in dividing an approximate number with three signifi
cant digits by an approximate number with two significant digits (the extra digits do not enter 
into this count). This gives the final result and therefore we reject the extra digit, preserving 
only two significant digits. 

Let us 	check our approximate answer by calculating the exact answer using the original 
common fractions. We obtain 

916 = 9"603... 
164 

We see, therefore, that in the approximate value 9.5 only the last digit was questionable. This 
is in accordance with basic agreementour 	 for recording approximate numbers. 

EXERCISE 46-2A 

1. 	 Perform the operations on the approximate numbers. 
a. 2.98 - (1.4 +- .387) 
b. 23000 - (2645 1 15300 - 1639) 
C. (562 - 87) x 7 
d. 2.75 + (1.2 - .30103) 
e. 36408 - (236 x 28) 
f. 5325 + [(832860 + 211) x 37] 
g. [4.5 - (.03 x 1.5)] + 7.8 

2. 	 Find the volume, V, of the parallelepiped with length, 1 = 34.7 cm., width, w = 26.8 cm., 
and height, h = 42.1 cm. 

3. 	 Find the total surface area of the parallelepiped in Question 2. 
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ANSWERS
 

Structure
 
of Arithmetic 

Only answers for the more difficult problems are given. 

Chapter Twenty-two 

EXERCISE 22-2A 

4. 	 You cannot subtract 2 from both sides of < ,because - - is not yet defined.
5 3 2' 3 5 e efnd 

EXERCISE 22-6A 

4. A somewhat formal way you could use would be this. Since ax n(ifL 0) 

and 
C 1b e it' 

x- the inequality 

* -<an d +~ 

is the same as the inequality 

a n it 

11- d n 

Chapter Twenty-three 

EXERCISE 23-IB 

2. a. 103 b. 10217 c. 4579 

3. a. 122seven b. 140sevenl c. 211246seven 

6. a. base three b. base five 

c. base six d. base seven 

193 



EXERCISE 23-2C 

1. a. .6 
e. .15 
i. 3.4 
m. 2.25 

b. .5 
f. .84 
j. 2.5 
n. 8.04 

c. .75 
g. .62 
k. 6.75 
o. 18.42 

d. .625 
h. .062 
I. 1.125 
p. 1.0625 

EXERCISE 23-2D 

1. 	 a. .5 b. .25 c. .75 d. .6 
e. .7 	 f. .625 g. .3125 

2. 	 a. .16 b. .4285 -. .1 d. .09
 
e..6 f.*83 g. .53846i
 

EXERCISE 23-3A 

3 1 	 12.b. 	 C. 1 
 d. 


.17 f7 	 17 h 2 

3. 	 a. .1 b. .111... c. .2 d. .222... 
e. "3 f. 333 ... g. .4 

5. 	 Yes 

Chapter Twenty-four 

EXERCISE 24-1A 

1. 	 a. 813 b. 44.8 c. 126.62 d. 23.458 

EXERCISE 24-lB 

2. 	 a. 2.3 is greater by 0.71 b. 87.32 is greater by 63.2,52 
c. 0.12 is greater by 0.1183 	 d. 0.3 is greater by 0.132 

3. 	 a. 12.12 inches b. 2.41 inches 

EXERCISE 24-2B 

1. a. 7 
f. 0.309 

b. 0.9 
g. 9.732 

c. 3.2 
h. 10.572 

d. 57-2 e. 0.07 
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2. a. 
e. 

3200 
7.63 

b. 750 
f. 0.762 

c. 12 
g. 79.321 

d. 
h. 

1940.1 
0.01 

EXERCISE 24-3A 

1. 
2. 

3. 

a. 
a. 
g. 
a. 

44.4 
3 
0 
42 

b. 72984 
b. i 
h. 3 
b. 5.27 

c. 2.01 
c. 8 
i. 40 
C. 29 

d. 5821 
d. io 

d. 5.69 e. 

e. 12.74 
e. 50 

0.25302 f. 

f. 1 
f.8 

6.904 

EXERCISE 24-3B 

2. 
3. 

a. 
a. 

8.655 
0.6595 

b. 
b. 

1.772 
12.336 

C. 0.857 
c. 0.77 

EXERCISE 24-4A 

1. 

2. 

a. 
g. 
a. 

0.6 

79 
8.3366 

b. 5.6 

h. 1.44 
b. 0.115605 

c. 
i. 
c. 

0.03 
0.005 
506.11 

d. 0.01 
j. 0.15 
d. 0.0001218 

e. 
k. 

0.2 
0.714 

f. 9.9 
I. 10 

EXERCISE 24-5A 

2. 

3. 

a. 40 
g. 50 
a. 1.46 

b. 70 
h. 1100 
b. 0.21 

c. 
i. 
c. 

600 
33 
55.37 

d. 8 

d. 0.98 

e. 800 f. 0.08 

EXERCISE 24-6A 

1. Percentage 50% 25% 12 5% 75% 20% 10% 5% 

Common 
fraction 

1 
2 

1 
4 

1 
8 

3 
4 

1 
5 

1 
10 

1 
20 

Decimal 
fraction 0.5 0.25 0125 0.75 0.2 0.1 005 

Percentage 

Common fraction 

Decimal fraction 

2 2-% 

1 
TO 

0.025 

33 3% 

1 
3 

0.33 

60% 

3 
5 

0.6 

35% 

7 
206 

0"35 
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2. a. 4! b.£ c. 502 shs d. $12.48 

EXERCISE 24-6B 

1. 

2. 

a. 

a. 

g. 

7 

200 

66 2% 
3 

7% 

b. 

b. 

h. 

40% 

53 ,1 

C. 13 

20 

c. 400% 

d. 11 

2-0 

d. 80% e. 

17 

10O 

32% f. 

U.1 

80 

1% 

3. 
4. 

5. 

a. 
a. 

a. 

3 minutes 
11% 

16 

b. 
b. 

b. 

91 days 
50% 

180 

c. 
c. 

c. 

32 shs 
300% 

2,307.6 

d. 80% 

d. £1765.6 

e. 9% f. 68 marks 

4 

Chapter Twenty-five 

EXERCISE 25-IA 

1. 
2. 
3. 
4. 
5. 
6. 

7. 

3 
No whole-number 
7' 
7 
No whole-number 
No whole-number 

0 

answer 

answer 
answer 

Chapter Twenty-six 

EXERCISE 25-3A 

1. 

2. 

a. Latitude S30' 
b. Longitude E45 0 

c. Temperature 15' below zero 
d. 10 minutes before the hour 
e. A loss of 7 shs 
f. A gain of 50 shs 

a. pos I b. 
d. pos 73 e. 
g. neg42 h. 
j. pos 14 k. 

neg 11 
neg 129 

neg 9 

zero 

c. 
f. 

i. 

neg 17 
pos 8 

neg 23 
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EXERCISE 26-4A 

1. a. 	 pos 6 < pos 10 b. neg 6 > neg 10 
c. pos 15 	 > neg 15 d. neg 15 < pos 15 

e. 	 neg 200 > neg 1000 f. 0 > neg 3 
g. 	 0<pos8 h. neglI<0 

EXERCISE 26-4B 

1. 	 a. The first place is north of second place. 
The second place is south of first place. 

b. 	 My watch is ahead of my friend's watch.
 
My friend's watch is behind my watch.
 

c. 	 The man on the platform is below the man on the ground.
 
The man on the ground is above the man on the platform.
 

d. 	 Noon today is colder than noon yesterday.
 
Noon yesterday was hotter than noon today.
 

e. 	 Kofi starts ahead of Kwesi.
 
Kwesi starts behind Kofi.
 

EXERCISE 26-4C 

2. neg 5 "*neg 8; pos 5 < pos 8 

3. pos 2 < pos 11; neg 2 > neg 11 

4. pos 2 'neg 11; neg 2 < pos 11 

5. poF 7 >0; neg7<0 
6. 0 >neg 2; 0<pos 2 
7. neg 6 < neg 1; pos 6 > pos 1 

8. pos l0 > 0; neg l0 < 0 

EXERCISE 26-5A 

1. a. 	 1pos 21, pos 22, pos 23, pos 241 

b. 	 ipos 1, 0, neg II 
c. 	 Ineg 2, neg 1 
d. 	 Ineg 61 
e. 	 I I 

f. I I 
g. 	 Ipos II 

2. a. 	 Set of integers between neg 3 and 0 
b. Set of 	integers between pos 18 and pos 23 
c. Set of 	integers between pos 2 and neg 2 
d. Set of 	integers between neg I and pos 1 
e. Set of 	integers between pos 101 and pos 1.02 
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Chapter Twenty-seven 

EXERCISE 27-IA 

1. a. pos 6 b. pos 7 C. pos 4 d. pos 3 e. pos 2 f. 	 pos 82. a. pos 4 b. pos 4 c. pos 4 d. 	pos 6 e. pos 6 f. 0 

EXERCISE 27-2B 

1. a. pos 3 b. neg 1 c. 0 d. pos 6 e. pos 3 f. 	 neg2 
g. 	 neg8 h. pos 6 i. 0 j. 	 neg 6 

EXERCISE 27-2C 

2. a. pos 2-pos I -[; pos 2- pos I pos 1 
b. 	 pos 3- neg 5 --[0; neg 5 +pos 8 pos 3 
c. 	 0  neg 	4 =0; neg AI+ pos 4 = 0 
d. 	 neg I - neg 5 /; neg 5 -neg 4 = neg 1 
e. 	 pos 3 -0 -- 3 =; 0 	 f pos Pos 3 
f. 	 pos I - pos 7 E]; pos 7 -pos t 1 Pos I 
g. 	 neg 3-pos 3 Li ] ; pos 3-pos 6 neg 3 
h. neg 11-neg2 neg 2 neg 9 neg 11 
a..	 N29 0 - S50') 1 S500 L = N29°; S50 ° + N790 =N290 

Db. 3.10 P.M. - 2.55 P.M. - 2.55 P.M. - 3.10 P.M.; 2.55 P.M. + 15 min. 3.10 
P.M. 

C. -53 ft.-0= ]oT J= -5 ,53ft.; 0 -53 ft. = -53 ft. 
-d. 	 950 102' =F]; 1020 + 1: = 95'; 102'- 70 = 950 

e. 	 5 ft. ahead - 5 ft. behind - 11;
 
5 ft. behind + n= 5 ft. ahead;
 
5 ft. behind + 10 ft. = 5 ft. ahead
 

EXERCISE 27-3A 

1. a. The set of integers is closed under addition. 
b. 	 The set of integers is closed under subtraction. 

2. The set of fractions, excepting 0, is closed under division. 

EXERCISE 27-3B 

1. a. pos 3 neg3 0 b. neg 3 =0 C. +pos4 1 =0 

d. os 5 neg 5 0
2. e. p9 -C g 0 f. [-6-]0=0 	 g. opposites

.*I I I I I 
h. neg 3 neg2 neg 1 0 pos I pos2 pos 3 i. Their sum is 0. 
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EXERCISE 	 27-3C 

1. 	 a. pos 3-pos pos 
pos 3 4 neg 1 p 
pos 3 -pos 	 1 = pos 3 + 

b. 	 neg 3 + neg 1 =neg 4 

neg 3 - pos 1 =
 
neg 3 + neg I = neg 3 - pos 1
 

C. 	 pos 2-pos6 = ne4
 
pos 2 + neg6=
 
pos 2 - pos 6= pos 2 +
 

d. 	0 - pos 7 = ne- 7
 
0 + neg 7 =n 7
 
0 - pos 7 = 0 +- neg 7
 

e. 	 0 - neg 7 
0 + Fp5 7= 	pos 7 

0 - neg 7 = 	 0 + 

Chapter Twenty-eight 

EXERCISE 	 28-3A 

2. a. 	 -4 b. 2 c. 0 d. (-6) 

EXERCISE 	 28-4B 

1. a. 	 pos 3+neg 4 = pos 3-(opp. ofneg4) 

= pos 3 - pos 4 

= neg 1 
or 3 + (-4) 	 =3 -[opp. of (-4)] 

= 3 -4 = (-1) 
b. 	 neg 3 + neg 3 = neg 3 - (opp. of neg 3) 

= neg 3 -pos 3 

= neg 6 

or (-3)+ (-3) = (-3) - [opp. of (-3)] 
= (-3) -3 
= (-6) 

c. 	 0 + neg 1 = 0 - [opp. of neg 1] 

= 0 - [pos 1] 
= neg 1 

or 0 + (-1) 	 = 0 - [opp. of (-1)] 
= 0-1 

= (-1) 
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d. 	0-neg4=O+ [opp. ofneg 4] 
= 0 + [pos 4] 
= pos 4
 

or 0 - (-4) = 0 + [opp. of (-4)]
 

=4 
e. pos 3 - neg 2 =pos 3 + [opp. of neg 2] 

= pos 3 + [pos 21 

= pos 5 
or 3 - (-2) 3 + [opp. of (-2)] 

3 + 2 
-5 

f. neg 5  neg 2=neg 5 +[opp. of neg 2] 
neg 5 + pos 2 

= neg 3 
or -5 - (-2) = (-5) + [opp. of (-2)] 

= (-5) + 2 

g. neg 2 
= (-3) 

neg 2 =neg 2 + [opp. of neg 2] 
=neg 2 + pos 2 
=0 

or (-2) -(-2) = (-2) + [opp. of (-2)] 

=(-2) + 2 
=0 

h. neg 7 + neg 3 =neg 7  [opp. of neg 3] 
= neg 7 - [pos 3] 
= neg 7 - pos 3 
= neg 10 

or (-7) + (-3) = (-7)  [opp. of (-3)] 

= (-7) -3 

- 10 

EXERCISE 28-5A 

1. a. pos 8-neg3 =8 - (-3)=8+3=11 
b. neg 3 + (neg 2 + pos 1) = neg 3 + neg 1 = neg 4 =(-4) 
c. [7+(-2)]+8=[7-2]+8= 5 +8= 13 
d. (-4) + [(-2) + (-1)] = (-4) + [(-2) - 1] = (-4) + (-3) = (-7) 
e. [(-3) - (-5)] - (-3) [(-3) + 51 + 3 = 2 + 3 = 5 
f. (-8) - [(-4) + (-2)] (-8) - [(-4) - 2] = (-8) - (-6) = (-8) + 6 = (-2) 

2. a. (-2)-(3-8)=(-2)+8-3) =(-2)+ 5 3 
b. 6- (2- i)6 +(1 2) 6- 1 = 5 
c. (-4) - [(-2) - 61 = (-4) + [6 - (-2)] 

= (-4) + [6 + 2] = (-4) + 8 =4 
d. 8 - [5 - (-4)1 = 8 + [(-4) - 51 =8+(-9)=(-1) 
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Chapter Twenty-nine 

EXERCISE 29-2A 

11 2. (-3) 3. (-8) 4. 5 5. 11 6. 1 

EXERCISE 29-3A 

a. (-10) b. 24 c. (-21) d. 18 e. (-99) f. 136 

EXERCISE 29-4A 

a. (-2) b. (-6) c. 3 d. (-6) e. 2 f. (-6) g. -3 

Chapter Thirty 

EXERCISE 30-IA 

Those using integers: 1, 3, 4, 6, 8. 
Those needing new numbers: 2, 5, 7. 

EXERCISE 30-4A 

Each of the five men received £7/5. 
Each of the remaining four men had to pay £7/4. 

Each of the remaining four men finally lost £7/20 =E - EZ 
5 4* 

Chapter Thirty-one 

EXERCISE 31-IA 

1. 16
7 

2. M
5 

3. 20
17 

4. -1 5. 0 6. 1-53 
10 

EXERCISE 31-2A 

27 3 3 4 
10 ' 4' 1i3' 0' 7 ' 

55 
' 10 
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Chapter Thirty-two 

Co
 

EXERCISE 32-IA 

1. 	 2.0 3 4.3.. 

EXERCISE 32-2A 

1. 	 26 2. 8 2 4. 89
 
2 3 100
 

EXERCISE 32-3A 

1. 3 2. 16 3. 7 4. 35
8 
 15 	 4 52.
 

EXERCISE 32-3C 
1. 9 2. 1 6  3. 1 2
 

25 81 4 42
 

EXERCISE 32-4A 
1. 45 2. 1 2 
 12
 

I. 	 - 2. -, 3. - 2 4. 
22 5
 

EXERCISE 32-4E 
2 	 1
 

1. 	 2. 3.-	 1.7 4. -2
3 5
 

Chapter Thirty-four 

EXERCISE 34-IA 

1. 	 a. Not closed under any 
b. Under addition, subtraction and multiplication 
c. Under addition and multiplication 
d. Not close 9 under any 
e. Under 	addition, subtraction and multiplication 
f. Closed under multiplication 

5. 0 6.-i 

5. 6.
 

5. -24 6. 1
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Chapter Thirty-five 

EXERCISE 35-lB 

(ii) a. 8i and 8isame number 
12 15 3 

b. -- and
20 

1-
20' 

3 is larger.
71~ er 

c. 2 and ,5 is larger. 
2 45 

d. 5and 5
3 

is larger. 

(iii) a. 0; b. 3 c. 1, d. 

2 3 5 a. 2 1 

b. - 9 1 1 3.
2' 3' 4' 6 

5;5 + 1; 2 1+3 ; 31+2c. 1 +4 
4 8' 2 3 4 

EXERCISE 35-IC 

0.035, 0.35, 1.035, 1.35, 2, 2.25, 3.5, 10.35, 17.5 

EXERCISE 35-2A 

a. False 
b. True -16 = 32 + (-48) 

c. False 
d. False 
e. False 
f. False 
g. False 
h. True -25 = 26 + (-51) 

i. True 36 = 0 + 36 
j. False 
k. True -3 = -6 + 3 
1. False 3 /_ 3\ 

m. True 0 2 
n. True [-4 + (-2)] = [-2 + 21 + (-6) 

o. False 
4 8 4 8 8 

t
3. a. 5"-1--0; 5 --0 5 

b. 2.5 -5.5; 2.5 -5.5 8 
3.3_ 3 3 3 

c.-55 - -442-0
5 4 
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5. 

d. -j,5. 4 5 1 

e. 2 >-5; - 5 + 1 
22 

f. 3.75 > 2.25; 3.75 = 2.25 + 1.5 
a. 6>-3; -3 <6 
b. -2 > -8; -8 < -2 
c. 0 > 4; -4 < 0 
d. 12>9; 9<12 
e. 3.25 > -3; -3 < 3.25 

S>2; 2 <3 

g. -9 > -12; -12 
h. 2 > -8; -8 <2 

< -9 

EXERCISE 35-4A 

5. 
< 

< 
2. = 
6.< 

3. > 
7.= 

4. > 
8. > 

EXERCISE 

a. -52< 

35-4B 

-

1 
<-

1 

< 

C. < 2 

e. -6<4 <5 
12g. -- <-2 <-

g'-5 
9 
5 

d. 

f. 

2.05<2.25<25 

_ < 4 
4 4 

EXERCISE 

287 340 

29 3116 19 

C. - >-
3 5 

35-4C 

b. 79> 97 

17 19d < 

d. 111 < 190 
7 11 

EXERCISE 35-8A 

1. a.> b. < c.> d.> e. > f.< g. < h. < 

Chapter Thirty-six 

EXERCISE 36-2A 

1. a.b.11111.. . .010101 . . c. .001001. . . d. .4545... 
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9 

e. 	 .142857142857. . . f. .285714285714. .. g. .027027... 

EXERCISE 36-3A 

a. 	 2 b. 23 234 26 d
 

9 9 999- 111 


1 	 h109e.I f 	 1 
99 999 6 	 990
 

2. a. .222. . 2 x(.11. .. 

2
1 


b. 	.2323.... 23 x (.0101...
 

(9) _ 9 

c. 	 .234234...= 234 x (.001001... 

-234 1 234 26
 
=
99-9999
S 11=-


EXERCISE 36-4A 

Some possible answers are: 
a. 	 .2020020002... 
b. 	wo1010 o1011. ...
 
c. 	 .030330333... 

d. •ooooooomo ...
 
(ones at Ist, 4th, 9th, 16th places and so on) 

e. 	 The same as d. with l's replaced by 2, 3, 4i . . . or 9. 
f. 	 .234567891011... 
g. 	 .34567891011... 

Chapter Thirty-seven 

EXERCISE 37-IA 

7 12 12 + 7 97 168
Successive trials might be - _ +_ = 
2 

EXERCISE 37-2A 

a 	 a a 3b aif =3, then --- Also l< <2. 
a 

Let - be in lowest terms. Then a, the denominator on the right, must be one of b,2b, 

3b, 4b and so on. 
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a aThat is, I must equal one of 1, 2, 3, 4, ... This is impossible since must lie 

between 1 and 2. 

Chapter Thirty-eight 

EXERCISE 38-2A 

1. [(-3) + 3]x a [(-3) x a] + (3 x a) 
Ox a 

0 
[(-3)
[(-3) 

x a] + (3 xa) 
x a] + (3 x a) 

Hence, (-3) x a is the opposite of 3 x a, that is, 

(-3) x a -(3 x a). 

2. By Question 1, 

77 

Hence, 3 x = -7 

and 7 (-7) 

3. 	 Since (-1) + 1 = 0, the left side is 

(-1) x (-1) + 0 = (-1) x (--1). 

On the right side, 

[(-1) x (-1)] + (-1) 

= [(-1) x (-1)] + (-1)(1) 
= (-1) x [(-1) + 1] 

-1 x 0 = 0. 

Hence, the right side becomes 1. 

4. 	 a + 0 = a (AO) 

This holds for all values of a, in particular for a = 0. 

Hence, 0 + 0 z-0. 

EXERCISE 38-4A 

1. 	 lfa<b, 
b = a p where p>0. 
Then 
bxc=axc+pxc [D] 

since p>0and c >0, px c>0 [0'21. 
Then by definition, 
a x c b x c. 
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2. Ifa<b 

b=a+p, p>0.
 
If b < c
 
c = b + p', p' > 0.
 
Then c (a + p) . p'
 

a + (p 	+ p'). 
Since p > 0 and p' > 0,
 
p + p' ;"0 [0'lH.
 
Hence, by definition,
 
a < e, as required.
 

3. 	 Given a and b, any two real numbers, consider the real number c = a - b. 
By [0'31, there are three possibilities: 

C >0 

or e<0. 

That is, 

(1) a - b = 0 
(2) a - b > 0
 

or (3) a- b<0.
 

Now a 	= (a - b)+ b. 

(1) If a- b = 0, a= b. 
(2) If a - b > 0, a - b is a positive number p 

so that a = p4- b.
 
This means by definition that a > b.
 

(3) If a - b < 0, b - a > 0.
 
Since (b - a) + a= b,
 
b = a + a positive number.
 

By definition then,
 
a < b. 

Chapter Thirty-nine 

EXERCISE 39-3A 

1. 	 a. 21 b. 25 c. 104 d. 254.5 e. 62.6... f. 255-7... 
1 2 f 5 

2. 	 d. 2541 e. 62-2 2553
2 34 

EXERCISE 39-4A 

1. 	 275.4 
2. 	 The (2) and (7) are reliable. The (5) is questionable, and the (4) is worthless. 
3. 	 275 books 
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EXERCISE 39-4B
 

E means exact, A means approximate.
1. a. E b. A c. E d. A e. A f. A g. E 

h. A i. E j. A k. A I. 	 A m. A 
3. 140 steps 
4. 	 b. Counts Deviation from average
 

574 
 2.8 
562 9.2 
573 1.8 
567 4.2 
580 8.8 
571 .2 

Average 571.2 Average deviation 4.5 
Reliable digit: 5 Questionable: 7 Worthless: 1-2 

Chapter Forty 

EXERCISE 40-3A 

1. a. 254 	 b. *25 c. 52.0 
2. a. 2.8342 	 c. 2.834 pounds 
3. a. 2661.25 c. 2660 

Chapter Forty-one 

EXERCISE 41-3A 

8. c. 340, 6800, 47.10, 	9.002 
9. 7.7 

Chapter Forty-two 

EXERCISE 42-2A 

1. .007 2. .006 .0007 .00003 3. .1% 4. 5'29, 	 .005, .09% 

5. The same 6. The second 7. .8% 8. 1.6% 

Chapter Forty-three 

EXERCISE 43-5A 

1. 2,2,3,4,4,4,4,5 2. 3,3,4,5,5,5,5,6 3. 3,3,4,4,6 
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4. 	 Decimal places 

Significant digits 

Decimal places 
Significant digits 

5. 	 Decimal places 
Significant digits 

Decimal places 
Significant digits 

Chapter Forty-four 

1, 2, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3, 

2, 2, 3, 3, 4, 5, 1, 1, 1,3, 4,4, 

3, 4, 3, 3, 3, 2 
2, 4, 3, 4, 6, 6 

1, 2, 3, 2, 3, 2, 2, 3, 4, 1, 2, 2, 
2, 2, 3, 3, 4, 5, 1, 1, 1, 2, 3, 3, 

2, 3, 1, 1, 1, 1 
1, 3, 1, 2, 4, 5 

EXERCISE 44-3A 

1. a. .56 b. 37800 c. 3.390 
3. a. 1160 b. 4.82 c. 8.52 
5. 2750 yards 
6. 6400 
7. 13.92 
8. 1.88 

Chapter Forty-five 

EXERCISE 45-4A 

1. a. .03 b. 2,500,000 c. 10.6 
3. 23"3 
4. 4400 pounds 
5. a. .03 b. 20 c. .014 

6. 16 
7. 1.848 
8. .47 

Chapter Forty-six 

EXERCISE 46-2A 

1. a. 1.2 b. 7000 c. 50 d. 3.6 
e. 5.5 f. 150,000 g. .57 
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FOREWORD
 

In this volume, the Teacher Training Writing Group at the 
Entebbe Mathematics Workshop presents a preliminary edition 
of "Introduction to Geometry". This is the second part of 
Basic Concepts of Mathematics, an experimental text to be 
used in Training Colleges for primary teachers. (The first part,
"Structure of Arithmetic", has already been published in a 
preliminary edition in two preceding volumes.) The treatment 
of geometry is rather novel. There is an unusual emphasis on 
the basis of geometric concepts in experience and, following 
that, a transition to more abstract ideas of point, line and 
plane. The standard constructions which can be used by the 
teacher in the classroom are first explained in an intuitive way,
and then made tie object of a modest theory which can serve
 
as a suitable introduction' to a deductive system.
 

As in the earlier volumes, the exercises have two pur
poses: to develop and extend the understanding of the mathe
matical content presented in the text, and to suggest by example
kinds of exercises a trainee could later create as a teacher
 
for use in his own classes. Answers for the 
more difficult exer
cises in this volume will be found at the end of tiis book. 

The whole of Basic Concepts of Mathematics has been 
produced under pressure of time, and there is still much to be 
done by way of improving exposition and organization as well 
as adding to the stock of exercises. To all users, therefore, 
the Teacher Training Writing Group directs an earnest request
for comments and suggestions which can contribute to the work 
of preparing a more finished text. Reports from experimental 
use of the preliminary edition are a source of ideas which will 
make the next edition of greater value to mathematics education. 

At the end of this book is a glossary of terms for this 
and the preceding volume. 
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Geometric Figures and Constructions e UNIT IX 

Chapter 47 
SOME ELEMENTARY 
IDEAS AND FIGURES 

47-1 Introduction 

Our world is full of physical objects: sticks and stones, ant hills and trees, bananas and 
oranges, tins and bottles, boards and boxes, huts and houses. All through our lives we learn 
about such objects by observing and touching them, by using them, and by making some of them. 
We learn that these objects have parts with names such as "ends", "corners", "edges",
"sides", "tops", "bottoms" and "insides". Some of these parts are straight, some are flat, 
some are rounded. At play and in school we also learn how to make pictures of certain objects, 
using sticks and strings and paper and pencils and chalk. 

Touching and seeing bring these parts to our minds because of what we learn through the 
-muscles of our hands and eyes. If we move a fing along an edge of a book to a corner, our touch 

tells us we must change the direction if we are to keep moving our finger past the corner to fol
low another edge. The same is true of our eyes if we follow the edges with our sight. So, too, if 
we move our fingers along one side of a box to an edge and then cross the edge to another side, 
we are aware of the flatness of the first side, the feeling of "dropping off" at the edge and of 
the change of muscle action needed to begin feeling the second side. 

It is in the same way that we learn first to tell apart the objects in a set and then to 
count the objects. Children, given a set of two oranges, first learn that the oranges are dis
tinct by observing differences in their positions, by touching them and moving them and by no
ticing differences in how they look and feel. Later they count the oranges by moving them, one 
movement for each orange, and counting the movements. Thus, both counting, the earliest part 
of arithmetic, and simple figures, the earliest part of geometry, arise from "handling" physical 
objects with arm and eye muscles and from the impressions our minds get from these actions. So 
in this discussion of geometry we shall try to develop geometric figures as ideas that come from 
physical objects that we find and make. These ideas begin when, through our observing and 
handling objects, our minds become aware of certain aspects of the objects. We then make draw
ings or images of these aspects, getting figures that we call "point", "line segment", "tri
angle", "circular region", "pyramid" and so on. Finally, through long study of the objects and 
the drawings, there form in our minds the general ideas that are called "geometric figures" and 
have the same names. 

When we said "aspects", we meant certain parts of some objects, such as the point of 
a pin, a side of a house, a corner of a door, the skin of an orange, an edge of this book and so 
(orth, and the shapes and sizes of objects and parts of objects; for example, the roundness of 
the moon, the smallness of a pin point, the straightness of an edge of a table, the flatness of a 
floor, the squareness of a table leg, the largeness of the earth. 

,' V 



When we think about these things, we notice that some seem to go together: the tip of 
a leaf, the point of a needle, a speck of dust, the end of a mosquito leg-all seem very small
 
and quite different from a tree, a bottle, an elephant. 
 For another, the moon, a shilling piece and 
a wheel seem to share something; their shapes have something in common. 3esides these two 
groups there are many others. 

In this first unit of geometry, we shall talk about some of these groups. The first group
is made up of those things that, like the point of a needle, are so small we call them "points".
The next group is of those things that are "straight" and the next those that a.re "flat". From 
these three groups we get the figures that we call "points", ''line segments", "straight lines",
"triangles" and "planes". Then with bricks and coins we discover certain common shapes and 
figures, such as rectangles and circles. 

The second chapter of this first unit di-cusses these figures in more detail and intro
duces some other figures, such as "quadrilateral", "polygon" and "prism". It includes the
 
ideas of straight lines being parallel and being perpendicular and of polygons being congruent

(fitting exactly on each other). It contains 
 constructions of perpendicular lines, bisecting lines 
and rays, congruent figures and so ,n. 

The third chapter discusses measuring line segments, angles, plane regions and solid 
figures; that is, length, area and volume. 

The fourth chapter is a brief introduction to geometric figures as ideas, or how we try
 
to make points, line segments, triangles and so on in our minds.
 

47-2 Points 

Let us begin with the very first and simplest figure in geometry-a point! One of the
 
commonest parts of your experience, as well as the experience of the child, 
 is to see and feel
 
(when possible) things which suggest a point: the tip of a 
leaf or spear or pin or needle, the
 
:,o'i,t of a sharpened stick or pencil, the tip of a corner of a door or of a piece of paper, a
 
stamr as seen in the sky, a dust particle in the light, a grain of sand. There are many such ob
jects in the world, and they all have something in common: they look very small, so small
 
they seem almost to be "places" or "spots" 
 rather than things. So we call them "points".
 
Sometimes, moreover, we give a special point a 
special name. We might call i, for example,
the tip of Fluno's ,ellow pencil; or. the star Arcturus; or, if we wanted to be very brief, we 
might call it simply "the point A'". There could hardly be a shorter or simpler name than that
 
for one of the 
smallest and simplest objects we can find! 

The points we have just mentioned are physical objects; we can see them or feel them.
And we not only can find them; we can make some, for example, by sharpening a stick and by
folding paper. Even better for some purposes, we can make points by drawing of tracing other 
points. If you take a corner of a matchbox (or even one of the harder corners of this book) and 
press it onto a piece of paper, it will make a small dent, a sort of picture, in the paper, of the 
tip of the corner. This (lent is itself a kind of point. For another example, if you put the tip of 
a sharpened pencil down on paper, it will make a small mark, or "dot". This dot is a point 
that is a drawing of the pencil tip. It is a point that we see rather than feel; i- is a physical 
object but its dimensions are too small to be felt. As a la3t example, if you use the point of 
a pin to punch a tiny hole in a piece of paper, the hole is a picture of the pin point, and is 
itself a point. 



Using pencils or pins or even sharpened sticks, we can make as many new points as we 
wish by drawing on paper or tile ground or by punching holes; and we can make them almost 

wherever we wish. All the ones we make will look alike and will almosv fit cach other. You 

could try fitting these to each other: the tip of a sharpened pencil, the tip of a corner of a 

matchbox, a cot on paper made by a sharp pencil, a pin hole in paper. Ai exact fit would be 

two pin holes made by the same pin! 

Thus, we have started with common things such as the sharp ends of leaves and pencils 

and pins, and corner tips of doors and boxes and books. From these, and from the dents, dots 

and holes that are images of them, we have made new points and have developed the idea of 
"points'' as very small things, so small they seem almost to be places rather than measurable 

objects. However made, these points are very much alike and resemble pin points and small 

pencil dots. 

EXERCISE 47-2A 

1. 	 Find some points you can see and feel. Name some that you cannot see or feel at the 

moment 	you read this sentence. 

2. 	 flow many points are at the tip of one corner of this book? flow many points arc at the 

tips of all the corners of this book? flow many points do you think you could find or 

make on tile top cover of this book? flow many on an edge of the top cover? 

47-3 	 Straightness 

Now let us move on to another idea we get from physical objects-that of "straight

ness", 	What objects would you call "straight"? An edge of this book, the path of a stone you 
let fall, the place where one wall of a room meets another, the beam of an electric torch at 

night, your line of sight to a star-would these be straight? They have something which separ

ates them from, say, tile edge of a banana leaf, a bend in a path, the trail of a snail. To try 

to become clear as to what this might be, let us go back to the ideas of feeling and seeing. 

"Feeling straightness" is hard to describe and to test, and pencil drawings are diffi

cult o feel. Perhaps we can do better with ''looking straight". The most natural way of decid

ing whether something "looks straight" is to sight along it. If any of us looked down a string 

that had hanging at the other end a heavy, still object, he would say that the string looked 

straight. And if we stretched a string tightly between two nails (metal nails or thumbnails) and 

you and I took turns sighting along it, we would agree that it was straight. If tile nails were 
steady and we marked on them the spots where the string was tied, we could remove the string 

and still hav,. a "line of sight" between the two spots. The line of sight is our sight directed 

from one spot to the other. We place our eye so that the two nail points coincide in our vision-
one hides the oth r. 

Nail 	 Nail 

Eye Line of sight 

We thought tile stretched string was straight because it fitted the line of sight exactly. 

That is, every part of the string was on the line of sight, and every part of tile line of sight 

3 



between the nails was filled by string. So if we have an object such as a string, an edge or adrawing, we say it is straight if it exactly fits the line of sight between its two ends. In thissense, we are now sure that a stretched string is straight, and that the edges of this book are 
straight (or almost so!) 

Thus, we have one test for straightness-line of sight. But just as important is the factthat we can test an object for straightness by fitting, from one of its ends to the other, anothel
object we already know to be straight (a stretched string or a straight-edge). If tile straightobject fits all along the object being tested, the tested object is straight. Here are pictures of 
some tests. 

straight-edge

stretched string
 

In the third picture from the left, the test is not being made correctly; the straight-edge was notfitted at the ends of the drawing. In the remaining three the test is made correctly, and only the 
first drawing is straight. 

If we have to test a long object with only : short string we can use another fact aboutstraightness: a string or edge or drawing is straight just in case every part of it is straight.This means we can test by sliding our straight-edge or string steadily along the whole length of 
what we are testing. 

To sum up: if A and B are the points at the ends of an object such as a string or edgeor drawing, the object is straight if and only if it fits exactly the line of sight between A andB. Any line of sight is straight and so is any tightly stretched string. An object is straight ifand only if whenever we fit next to it something we know to be straight (line of sight, stretched
string, straight-edge) the two fit each other exactly wherever they overlap.
 

Suppose we have no 
string and no straight-edge. How can we make something that is
straight or has a straight edge? One easy and useful way is to find a piece of paper, no matter 
how ragged at the edges, hold it at two opposite places on the edges, 

fold the paper by bringing these two places together and then press the paper flat by smoothing
out toward the fold. The result will be a folded paper showing a straight edge. 

(If you have a piece of string, you can stretch it and test the edge.) 

4 



Such paper straight-edges are useful, as we shall see: They are particularly useful in mak
ing paper square corners. To make such a corner, put a.dot on the paper straight-edge somewhere 
about midway, dividing the edge into a left-hand part and a right-hand one. Fold the left-hand 
part of the edge over to fit along the right-hand part, and smooth the fold; the corner you have 
just made is called a square corner. 

EXERCISE 47-3A 

1. 	 Name five objects, besides those mentioned in the text, that you would call "straight". 
2. 	 Find three things near you that you believe to be straight. Test them, first by sight

ing and then by using a stretched piece of string. 
3. 	 Test two edges of this book for straightness. 
4. 	 Find or make something you think is not straight. Prove that it is not straight. 
5. 	 Here are some drawings. Judge them for straightness, first by only glancing at them, 

second by sighting, third by using a stretched string. 

6. 	 Find or make something that is almost straight. Why do you think it is almost straight 
but not really straight? 

7. 	 Find a ragged piece of wrapping paper or newspaper and make a paper straight-edge by 
the method in the text. Test it with a stretched string (the thinner the string, the 
better the test). If your paper edge is straight, use it to test the figures in Question 5, 
above. If it is not straight, make a new one that is straight. 

8. 	 Find or make a cardboard straight-edge. Test the edge to be sure it is straight. 
9. 	 Below are two points, J and K. By sighting from J to K, mark two dots on the line of 

sight from J to K and name them M and N. Cover J and K with small pieces of paper. On 
the line of sight from At to N mark another dot and name it P. Do you think P is on the 
line of sight from J to K? (Take away the two pieces of paper and see what you think.) 
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47-4 	 Line segments 

If you take straight-edges and trace them, you will make drawings that may look like
these: 

Straight 	drawings like these we will call line segments. We can be sure a drawing is

straight if we made it by tracing a straight-edge, or if we test it successfully using a

stretched string or a straight-edge or line of sight.
 

Each line segment has a point at each end. These two points are called itsendpoints, and we say the line segment is between these points. On the other hand, if
 
we choose any two points,
 

6 

there is a line of sight between them. If we put a straight-edge to these two points 
p 

and trace along the edge from either point to the other, we have traced the line of sight be
tween the two points. The resulting drawing 
 is a line segment whose endpoints are 

the two 	given points. We knew that any line segment has two endpoints; now we know that between any two point; there is exactly one line segment. If the two points have been named,say P and R, we use the name "P" or "11" for the line segment having these endpoints. 
A line segment conta;ns lots of other points besides its endpoints. Any dot you make 

on a line segment shows a point, and there are many dots that can be made. Another way toshow the points that are on a line 	segment is to place a paper straight-edge along the line seg
ment and then fold the paper over to make a square corner. The tip of the corner marks a pointon the line segment. Each different fold of the paper will mark a different point on the line 
segment. 

Suppose 	we began with a line segment i-B and marked two more points, 	 C and D, on AB, 
as shown: 

A 	 D C B 
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Roth C and D are on AB. We therefore say that each of them is between A and B. But we also 

notice that D is on the line segment AC. If we sight from A to C, V hides C. So /bis between A 

and C. In the same way, C is between 1) and B. And / is not between B and C. 

EXERCISE 47-4A 

I. 	 In the last figure above there are two points that the point C is not between. What are 

they? 

2. 	 Take the paper straight-edge you made in Question 7 of Exercise 47-3A and fold it to 

make a square corner. Then unfold it so that the paper straight-edge has come back. 

I-low many line segments can you see on your paper? 

3. 	 Make another paper straight-edge. Place it edge to edge on top of your first paper 

straight-edge. Do the edges fit each other wherever they are together? Now chv" ige each 

straight-edge into a square corner. Put the two square corners together, one on top of 

the other, with the edges together. Do the edges of one square corner fit exactly on the 

edges of the other as far as they go? 

4. 	 For each of the following drawings, decide whether or not it is a line segment. 

a. 	 b. c. d. e. f. g. 

5. 	 For a point X to be between two otherpoints Y and Z, it must be a point on the line seg

ment Y . Below are seven points. Write down which points are between which other 

points. (For example, T'is between Q and V.) 

OU
S 

P. 0 

Q 	 T V 

R 

6. 	 Here is a drawing made of four line segments. 

B 

A 	 c 

How many of these line segments have one endpoint at A? low many have one endpoint 

at B? at C? I-low many have one endpoint at ) and the other endpoint at C? 
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7. Here is a line segment and four of its points. 

P S R Q
 
How many line segments have each endpoint at one 
of these four points?8. Below are three points. Name the line segments that have their endpoints among these 
three, and draw them. 

Ye 

oZ
 

Xe 

9. Here are four points and two line segments. Each of these two line segments connectstwo points, that is, has its endpoints at two of the four given points. Draw all possible
line segments of this kind. 

10. In the figure below, count the line segments that have their endpoints among the
points H, I, J, K, L. (1K is such a line segment, for example.) 

K 

L 

11. Here are two points C and D. 

0 0C D 

On the line segment C-D, mark with a dot any third point you choose and name it E.Cover E with a small piece of paper. On the line segment CD choose first some pointF between C and E and then some point G between E and D. Do you think E lies onthe line segment F-? (Remove the piece of paper and test to see what the answer is.)
At night when looking at a star, we sometimes think of how far the star's light has cometo meet our eyes. It has travelled over a very long line segment! Sometimes, too, we imaginehow, if the earth had not been in the way, the Light might have kept on going through space, onand on without end. That would be along a line segment that stayed the same at one end but at 
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the other end kept growing and never stopped! To show this idea we can make a drawing like 
this, 

Light path 

Star 	 Where our eye 
would have been 

the arrowhead reminding us that the light goes on and on without end.
 

Given any two points A and B in space, 
we can think of having a star at either point
and our eye at the other; then we can take our eye away from the point and let the light shine 
past endlessly. 

A B
 

Star Eye
 

If now we Piso take away the star from 
 he point where it is, ie are left with 

A B 

a straight figure that has only one endpoint, the arrow at the other end indicating that the figure
con'inues indefinitely in that direction and is always straight. (Our paper stops at its edge, so 
we have to stop drawing; the arrow is just to show what we would like to draw if only we could!) 
Such a figure we call a ray. In this case, it is the ray from A through B, or AB for short (or BA). 

We could have thought of the star being at B and our eye at A; then we would have fin
ished with this drawing, 

A B 

showing the ray from B through A, or BA. 

Thus, any two points A and B in space determine not only one line segment but also two 
rays, the one from A through B and the one from B through A. 

Looking at a star, we might wonder whether there is someone there looking towards us
 
and seeing the Earth as a shining point in his sky. If so, we would have two rays:
 

T 0 

Their eyes Our eyes 

and 

T 0 

Their eyes Our eyes 

Since both may be happening at the same time, we draw this figure, 

T 0 
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and call it a straight line. It is the straight line through T and 0, or, more briefly, T6. IL can be 
thought of as the union, or combination, of the two rays TO and TO. 

We can 	now say that given any two points A and B, there is exactly one line segment be
tween them,, there is exactly one ray through B having A as endpoint and exactly one ray through 
A having B as endpoint, and there is precisely one straight line containing the points A and B. 
The symbols for these are respectively AB, AB (or BA), BA (or 11B), and AB; the first and last 
can also be written BA and BA. The ray AB can be thought of as the combination of all line seg
ments that contain B and have A as one endpoint, and the straight line AB as combining all line 
segments thaL contain both A and B. 

EXERCISE 47-4B 

1. 	 Here are three rays. Give the full name and a short name of each. 

X N 

R 

2. 	 For each of the three pairs of points below, make a drawing that shows the straight line 
determined by them and name the straight line. 

P 
0 K 

0 

oR 

Q 
S 

(a) 	 (b) (c) 

3. 	 Each of the following four figures shows either a line segment, a ray or a straight line; 
say what each figure shows. Each figure contains a named point; on each figure choose 
another point and name it, and make a name for the figure using the names of tl two 
points. 

G 	 E
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4. Here is a ray. 

B A 

What line segments can you combine to make the whole ray? 
5. Make a paper straight-edge and call the endpoints of the edge A and B. Then fold the 

paper over so that A fits exactly on B. Smootl-. down the fold. Now unfold the paper so 
that your straight-edge has come back; ther: will be a straight crease down the middle. 
Mark the point where the crease meets the straight-edge and call it il. Your paper 
should look like this: 

Now trace the straight-edge, making a line segment; on the line segment, mark the points 
that correspond to A, U and B, like this: 

Now move the paper to the right so that if is at the right-hand endpoint of the line seg
ment you just drew and the straight-edge still fits the line segment. 

Trace the rest of the straight-edge, getting this picture: 

Now move the straight-edge to the right again as you did before, 

and trace again. If you kept this up indefinitely, always moving to the right, what old 
acquaintance would you have made? 
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47-5 Flatness, planes 

If we are asked to name some things that we think are flat, we would be likely to men
tion such man-made objects as table tops, walls and book covers, and as a natural object, the 
surface of still water. What do these have in common that makes us say they feel flat and look 
flat? And why do we think the skin on a banana or an orange is not flat and neither is a crumpled 
piece of paper or cloth? 

One way of trying to answer such a question is to ask this: can I make something that I 
think is flat? If I work at this, perhaps I will be clearer about wiior "flkt" means. 

How can we make sor,,ething that we think is flat? As a starter, perhaps we should go 
back to something that we consider to be flat, such as a table top or a book cover. What do we 
see that makes this look flat? Puzzlement. Perhaps we had better contrast it with something that 
doesn't look flat. Try an or'inge. Why does an orange look not flat? Hmmm. Perhaps it is because 
the orange bends or curves, but the table top does not. If something bends or curves, it lacks 
straightness somewhere, and if it doesn't bend or curve, it is because it is full of straightness. 

So now we want tu make something that is "full of straightness". This reminds us of 
how we made straight things; we made our first one by taking string or thread and stretching it. 
Maybe a stretched string is "full of straightness". Yes, but not full enough; it doesn't seem flat. 
It doesn't seem flat because it doesn't "spread". So now we see that we need something "full 
of straightness" that also "spreads". "Spread", when we think about it, seems to mean 
"stretching nore than one way". Now it appears we want something that stretches more than 
one way and is full of straightness. We stretched a string, but in only one direction, and got 
straightness: is there something we could stretch in more than one direction and get flat
ness? We would have to find something that could be stretched in more than one direction and 
would be full of straightness. If string and thread stretch in one direction, what could we stretch 
in two directions? Cloth, perhaps; it's made of thread going in two directions. How can we 
stretch it to make something we feel sure is flat? If we try to stretch a piece of cloth with our 
hands we have difficulty seeing how we might find an answer. But if we continue trying, it soon 
appears that if we could stretch a cloth tightly over the ends of three sticks we would have 
something that spreads and is close to being flat. (Two sticks are not enough; they don't spread 
the cloth. And four sticks are troublesome. Three sticks are just right.) The cloth is not quite 
flat because it curves a little between each pair of stick-ends. We can correct this if we put 
straight-edges between the stick-ends. So we now take three straight-edges and fasten them end 
to end like this, 

then cover them witlh a cloth and pull the edges down so that the part of the cloth covering the 
frame is stretched tighdy. The cloth and frame will look something like this: 
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Now do we have something that spreads anci is full of straightness? 

It certainly spreads. Is it full of straightness, as the table top seemed to be? Perhaps
 
now is the time to see what "full of straightness" could mean. How and where can we see
 
straightness in the cloth? "How?" 
 is answered by sighting or by comparing with a stretched
 
string. As to "Where?", the answer is "wherever we look along the cloth". Whenever we put
 
our eyes at some point on the edge of the stretched cloth and look directly across to any oppo
site edge-point, we find our line of sight running entirely and exactly along the cloth. This hap
pens no matter in what direction we look across the cloth, and no matter from what edge-point 
we look. This is the sense in which the cloth is full of straightness. So now we can say w!hat
 
it means for a surface to De full of straightness:no matter what two points we may choose on
 
the surface, the line segment between them lies entirely on the surface. The test is to put

both ends of a straight-edge on the surface at all sorts of places and particularly where we
think not all of the edge would fit the surface. If no matter where we put the two ends on the 
surface all of the edge fits the surface, then the surface is full of s'traightness. If there is one 
position in which part of the edge does not exactly fit the surface, this is enough for us to say
the surface is not full of straightness. This way we may test any table top and any stretched 
cloth. 

Now that we have something we know is flat and have a test for a surface being "full of 
straightness", we can find or make other flat things. If your table top passes our full-of-straight
ness test, it is certainly flat, and to make something else that is flat you need only to copy
the table top-for example, by laying a piece of paper evenly on the top. Another way is to cut 
a piece of paper or finely woven cloth into a shape like this, 

with three straight edges. If the three corners are each pulled away from the otl-- two, the pa
per or cloth will be stretched flat. 

We have made a !-urface that spreads and is full of straightness. We also remember that 
when we were working with straight things, we went on to discus straight lines: these are 
straight, and each is unbounded in its two directions. Can we invent a surface that spreads, is 
full of straightness, and is unbounded in all of its directions? We remember that straight lines 
can be made from line segments and our flat cloth or paper surface is full of line segments. 
Perhaps if we made straight lines out of all the line segments in our surface, the new figure
(made of all these lines) might be flat. (It certainly spreads and it is certainly unbounded in all 
its directions!) So suppose we start with a figure showing our cloth or paper stretched flat: 
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Then draw some of these lines: 

Do you think, if we could draw all such lines, the surface we would get would be full of straight
ness, and would pass the straight-edge test everywhere? The answer turns out to be "Yes". 
Even better, this surface would pass any test using an "unbounded straight-edge"; this means 
it is "full of straight lines", in the sense that for any two points A and B in the surface, the 
straight line AB will lie entirely in the surface. So our surface not only spreads and is full of 
straightness, it is full of straight lines. A last observation: it cannot be all of space, as you 
no doubt can see easily. It is what is called a plane: any surface that spreads (contains three 
points that are not on any straight line), and is not all of space, and has the property that for 
any two points A and B on the surface the line AB lies entirely on the surface is a plane. 

If we start with any three points that do not lie together on any straight line and draw 
the three line segments connecting them, we will make a figure like this, 

called a triangle. It is like the frame on which we stretched the cloth. Suppose we next draw 
line segments with endpoints on the triangle; here are six examples. 

If we could draw all such line segments we would get this figure, 

a surface that spreads and is full of straightnmess and looks like the stretched cloth. It is flat, 
and has the name triangularregion. If every line segment in the triangular region is extended 
to a straight line, the collection of all these lines together makes a plane. 

Thus, three points in space that do not lie on any straight line determine three figures: 
the triangle and Hie triangt,lar region shown above and the plane just described. The triangular 
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region 	 is full of straightness and the plane is full of straight lines; both spread, but neither 
fills all of space. Both are flat. 

We can now say what a plane figure is. Any figuie, or collection of points, is a plane
 
figure if there is some plane that contains it. Thus, any three points in space form a plane
 
figure. So do any linc segment and any straight line, and so do any triangle and any triangular 
region. But a house is not a plane figure, and neither is this book. A plane region is any plane 

figure that contains somewhere in itself some triangular region. Hfere are two plane figures, 

and * . Do you think they are plane regions? Why? 

EXERCISE 47-5A 

1. 	 Choose several surfaces and test them for being full of straightness. 
2. 	 Can a straight line be a plane? Why? 
3. 	 Can a triangular region be a plane? Can a plane figure be a plane? 
4. 	 In each of the following, find out whether the space figure described is a plane figure 

or not. Answer "Always", or "Sometimes, but not always", or "Never", giving reasons 
each time. 
a. a point b. two points c. four points 
d. two 	lines e. a circle f. a seed 
Is any 	one of these a plane region? 

5. 	 Space is a figure that is full of straight lines but not a plane. Can you name another
 
figure for which these two statements are true?
 

6. 	 On a flat table top, Abu and Ben lay down two pieces of paper looking like these 

M 	 They agree tLac the two paper surtaces are plane figures and there

fore should be called flat. They also think both surfaces are plane regions: do'you 
agree? Tiy decide that the first figure is full of straightness but cannot decide this 
for the second. Can you? 

7. 	 Here are some figures in the plane of the surface of this page. In each case, answer 
these 	 uestions: 
a. Is i a plane region? 
b. Is it full of straightness? 
c. Is it full of straight lines? 

P
 
0
ff 

(1) (2) (3) (4) (5) 	 (6) 

47-6 	 How figures can come from physical objects 

Now let us look at the shapes of some physical objects with which most of us are famil
iar. One group consists of rounded objects, such as eggs, seeds, oranges, clay balls and so on. 
These have no sr'aigh or flat parts. In this group, also, are certain man-made objects that are 
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perfectly rounded and are called balls (footballs and cricket balls, for example). A second 
group is composed of objects that are partly rounded and partly stiaight or flat; tree trunks, 
reeds, stretched vines, leaf spines, fingers, tins, round sticks and poles, coins and bottles are 
examples. A third group is made up of those objects that have no roundness; they are all 
straightness -nd flatness. Most of d:ese are made by rien. 

In this last group, there is one particular kind of object that we shall call a brick. In 
ordinary language a brick is a solid object made of baked clay and looking like this: 

Any solid object like this we shall call a brick, whether made of clay or not. For example, a 
shoe box with no lid but filled with sand or earth is a brick. If you close this book and put it 
flat on the table, it becomes a brick. The outside, or "skin", of a brick, all of it that we can 
see and feel, is called its surface. This surface has six parts, as you can see from the illus
tration above. These are called the faces of the brick. (For this book, they are the front-cover 
face, the back-cover face, and the four side faces between the two covers.) A brick has eight 
corners, and a certain number of edges (how many?). You can see that each face is flat and 
each edge is straight. 

We can make drawings by tracing parts of any brick. We could press one corner into a 
piece of paper and make a dent. When we mark the dent with a pencilled dot, we have a point. 
If we place any brick (this book, for example) so that one face is flat on a piece of paper, there 
are four edges of the brick resting on the paper. Jf we choose an edge and trace along it with a 
ptncil, the resulting drawing is a line segment. 

If we traced all around the face of the brick, we would draw four line segments and our drawing 
would look like this from directly above: 

Such a drawing we call a rectangle. The four line segments that compose the drawing are 
called the sides or edges of the rectangle, and the four points that are endpoints of the sides 
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are the vertices of the rectangle. The rectangle can be thought of as a picture of the edges of 
the face of the brick. If vie fill in the rectangle, 

we have a drawing called a rectangularregion. It is . picture of the face whose edges we 
traced. The region includes the rectangle, and the edges and vertices of the rectangle are also 
considered to be the edges and vertices of the region. 

Some bricks have faces that look like this: 

A figure such as this is called a square region and the four line segments at the edges of the 
figure make a special kind of rectangle called a square. 

Suppose we take a brick and copy onto paper each of its six faces. Suppose we cut out 
these six pieces of paper and then paste them together in the same way that the faces are con
nected on the brick. It is as if we had wrapped the brick in paper and then by magic removed 
the brick without diFrurbing the paper, leaving only a paper shell. This figure we call a box. It 
can be thought of al.:i picture of the surface of a brick, a picture made of six rectangular 
regions. 

Any object in the second group, being partly flat and partly round, can be placed with 
a flat face down on paper, and the edge of the flat face can be traced. For example, a round 
coin such as a shilling piece can be traced to produce a drawing like this: 

This is called a circle, and if we fill in the inside of the circle we get a circularregion, like 
this: 

We could do the zame using the bottom or top face of a round tin, or the bottom of a bottle. If 
we had an empty round tin with a flat bottom and a flat top, we would. have what is called a 
circularcylinder. If the tin were filled, it and its contents, together, would be a solid circular 
cylinder. 

Trying to trace a rounded object is difficult. When we put a ball onto a piece of paper, 
it touches the paper only at a very small spot, and if we trace this we get only a point, which 
is a picture of only a very tiny part of the surface of the ball. But from feeling and seeing the 
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surface 	of a ball, we can imagine what the surface would look like if we could remove all that
is inside it (like removing the inside of an egg leaving only the shell). The shape of what 
would be left is called a sphere. 

EXERCISE 47-6A 

I. 	 How many edges does a brick have? 
2. 	 How many edges has a rectangle? 
3. 	 How man), edges would you say a circle has? 
4. 	 Do you think a circular region has any vertices? If so, how many do you think it has? 
5. 	 How many vertices does a box have? flow many does a brick have? 
6. 	 What would you call the "faces" of a circular cylinder? How many of them are there?

Answer the same two questions, first with the word "faces" replaced by "edges", 
and then by "vertices" 

7. 	 A ball has how many faces? edges? vertices? If these questions were asked about a 
sphere, would your answers be the same? 

By folding paper or by cutting cardboard, we can make flat objects that have not just 
one or two straight edges but three or four or five or more. When we trace with pencil or chalk
along such an object, we have a plane figure called a polygon. If such an object has all its
edges straight and we trace all around it, we get a closed polygon. Thus we might get figures 
like these: 

Line 	 2-sided 3-sided 4-sided 5-sided 	closed 
segment polygon polygon polygon polygon 

We have already seen that a three-sided closed polygon, like this, 

has a shorter name, triangle, and a triangle, together with its inside, 

is called a triangularregion. 

There are three special kinds of triangles that will be discussed in the next chapter:

right-angled triangles, 
 isosceles triangles and equilateral triangles. 
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A four-sided closed polygon that does not cross itself is called a quadrilateral. 

Quadrilateral 	 Not a Not a 

quadrilateral quadrilateral 

Rectangles are a special kind of quadrilateral, and so are squares. There are other special 

kinds that will be mentioned later. A quadrilateral combined with its inside is a quadrilateral 

region. 

There are, as you probably know, othr-r ways of drawing geometrical figures besides 
tracing certain physical objects. Circles, for example, can be drawn using pencil, a drawing 

pin and either string or a piece of cardboard, or a specially constructed instrument called a 

compass. 

So far, we have talked about tracing bricks, coins, bottles, cutouts and so on, and 

about getting special drawings called line segments, angles, polygons, circles and so on. 

If we think vbout it, we can see that anything that can be traced on paper will give a draw
ing that can be looked at as a geometrical figure-the tracing of your foot or your shoe or of 
a ragged piece of paper or cloth is a geometric figure. You may draw one that does not have 
such a standard name as "quadrilateral" or "oval". So we have a general name for all draw

ings made by running a pencil point over paper without making the pencil jump; the name is 
pati. If the pencil comes Lack to its starting point, the figure is a closed path. A path that 
never crosses itself is a simple pati. Thus, any circle is a path that is closed and simple. 

So is this figure. 

And a polygon is a special kind of path. Simply drawing your pencil over paper without jumping 
makes a path. You may do it any way you wish. 

A little earlier we traced a shilling piece and made a figure called a "circle". Other 

objects such as bottles, rounded tins and bottle caps can be found and traced to give the same 
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sort of figure. Can we make an object that can be traced to make a circle? This isn't easy to 
do. But it is easy to make a compass, which will itself trace a circle. 

As children, many of us made and used our first compass when we fixed one heel on the 
ground, turned around on the heel and traccd a rough circle in the dust with the end of our big 
toe. Later we found we could make more and better circles, holding pointed sticks. If we want 
to make circular drawings on paper or blackboard, we use the same idea, but ir place of big 
toes or stick-ends we use pencils or chalk; in place of our heel, pointed metal or wood; and in 
place of a foot or a stick, we use cardboard, wood, metal or stretched string. 

A simple cardboard compass can be made from a narrow piece of cardboard, a tack or a 
pin, and a pencil, by sticking the tack or pin through the cardboard near one end and the pencil
point through a small hole near the other end. If you then stick the pin into a piece of paper 
and move the pencil point on the paper all the way around the pin, the pencil point will make a 
circle on the paper. The hole made in the paper by the pin point is a point called the centre of 
the circle. If we draw on the cardbc.,rd the line segment between the pin hole and the pencil 
hole, the length of this line segment is the radius of the circle. After the circle has been drawn, 
any line segment with one endpoint at the centre and the other endroint on the circle is called 
a radial segment of the circle. The length of each of these radial segments is the same as the 
radius. 

Pin Pencil 

Card board 

Beginning of circle 

Direction of 
pencil motion 

Another kind of compass, called a "string compass", has string in place of cardboard. 
One end of the string is looped around the tack or pin and the other end is looped around the 
pencil point. A circle with a different radius can be made by changing the place of the pencil 
on the string. For blackboard work, you can make a rough string compass by using chalk in
stead of a pencil, and your thumb in place of a pin. If you have no string, a piece of cloth will 
sometimes do. 

More accurate and convenient is the manufactured adjustable compass that many of us 
have seen and used. It is made of two metal or wooden arms hinged together at one end, just as 
a forefinger and a middle finger are hinged together at the knuckles, so that the amount the arms 
are open can be varied. One arm has a sharp metal point at one end, and the other arm has a pen
cil or chalk point at one end: we shall call these the "pin arm" and the "pencil arm". 

Handle 

Hinge, or pivot 

Metal point Pencil point 
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A compass can be used to copy old circles, and to maKe new ones. If you are given a 
point P and a line segment AB 

A 

P 	 B
 

and are asked :., make a circle with centre at P and radius the same as the length of AB, you 
can do so as f'ilows. Put the point of one compass arm at A, and adjust the opening of the 
arms so that the point on the other arm fits at B. (We call this fitting the compass points to A 
and B, or giving the compass the radius AB.) Then stick the point of the pin arm through the 
paper at P and keep it there. Put ihe point of the pencil arm on the paper. Move the pencil 
point over the paper until it has gone all around P; this will trace the circle you want. 

A 

B 

(:D 

EXERCISE 47-6B 

1. 	 Make a cardboard compass. Use it to draw two circles with the same centre but different 
radii. (Note: You can do this by making two different pencil holes in the cardboard.) 

2. 	 Make a string compass and draw three circles. Try to draw two of them to be just touch
ing each other. 

3. 	 Using a compass and thin paper, make a copy of this circle. 

S 

Fit your copy over this circle to see how closely the two fit. 
4. 	 On a piece of paper, mark a point. Draw a circle that has its centre at this point and has 

its radius equal to the length of the following line segment. 

47-7 Review exercises 

1. In a few of your own words, say what you 
der and a solid circular cylinder. Give an 

think is the difference between 
example of each in real life. 

a circular cylin
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2. Leaving aside this book, try to say in your own words what each of the following is:
polygon, closed polygon, triaogle, quadrilateral, path, triangular region, simple path.

3. Give a name for each of the following figures. 

a.b. Q C. d.Z 

oM.
 
i. k. 

4. In Question 3, which figures are fu!l of straightness?
5. Draw on your paper a figure which will represent each of the following. 

a. Circle b. Triangle 
c. Triangular region d. Path 
e. Simple path f. Closed path 
g. Simple closed path h. Square
i. Polygon j. Closed simple polygon 
k. Circular region 1. Quadrilateral 
m. Rectangle n. Line segment 
o. Rectangular region 

6. Does the edge of the tor of a drum remind you of a certain plane figure? Which one? Do 
you think the top of a drum is a plane region? How would you test one to find out?
Suppose you had a drum top that by test was a plane region; how would you describe 
how to make the plane that it determines? 

7. Give answers, and reasons for your answers, to the following questions. 
a. Is every square a quadrilateral? 
b. Is every square a rectangle? 
c. Is every quadrilateral a rectangle? 
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Chapter 48 
PLANE FIGURES 
AND SPACE FIGURES 

48-1 Introduction 

In Chapter 47 certain figures were briefly introduced-among them such plane figures as
 
points, line segments, straight lines, planes, triangles and rectangular regions, and some fig
ures 
in space, such as bricks, boxes and balls, that are not plane figures. In this chapter, we
 
want to discuss more 
fully these figures and some others such as angles and prisms. In par
ticular, we 
want to look at various types of angles, triangles and plane quadrilaterals and see 
how to construct and copy them. For a pair of line segments, a pair of angles, a pair of trian
gles and a pair of quadrilaterals, there will come in the important ideas of congruence (mean
ing "the same size and shape") and of similarity (meaning "the same shape"). We shall also 
learn the constructions of line segments, angles and triangles that are congruent, and of tri
angles that are similar. Brief treatments of plane paths, including circles, and of plane regions 
end the discussion of plane figures in this chapter. 

The rest of the chapter contains a short discussion of certain surfaces and solids in 
space and ends with a view of how lines and planes in space intersect each other and how they 
may be parallel or perpendicular. 

48-2 Plane figures 

In this part we shall talk only about figures that lie in a plane, the plane of any flat 
sheet of paper such as a page of this book ot a piece of your drawing paper. 

In the last chapter when we talked about straightness, we discussed line segments, 
rays and straight lines. Now we want to :alk about pairs of line segments, pairs of rays and 
pairs of straight lines. Please bear in mind that we are thinking now only of a pair lying in one 
plane. The case, for example, of two lines not in the same plane will be looked at later. 

48-3 Pairs of line segments 

Suppose we have a paii of straight-edges; for example, two pieces of cardboard. 

First straight-edge Second straight-edge 
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If we played with these like children, we might put the two straight-edges together and notice
that where they meet they fit closely with no gaps or holes. In other words, there is no differ
ence in their straightness. But if we slide them along until one end of one fits at an end of the
other, the second straight-edge would have a part not fitted to any of the first straight-edge, so 
the two edges are different in some respect. 

Second straight-edge 1 1 7 
First straight-edge 

We say that the second straight-edge is longer than the first, the first is shorter than the sec
ond, and the two straight-edges do not fit exactly. 

If two straight-edges can be fitted together so that endpoints fit endpoints, as in this 
figure, 

then the straight-edgcs are said to fit exactly, or to be congruent. In the same way, we say that 
two line segments are congruent, or fit together exactly, if they can be fitted together so that 
an endpoint of one segment fits on an endpoint of the other segment and the remaining endpoint
of the first segment fits on the remaining endpoint of the other segment. Here, for example, are 
two pairs of congruent line segments. 

This page can be folded over so that the segments in the right-hand pair fit each other; for the
other pair, the page would have to be cut before the line segments could be fitted. This can be
avoided; there is a way to compare the two segments while leaving the page and the segments
undisturbed, and that is to find or make a straight-edge that exactly fits one of the two line 
segments and then compare it with the other line segment. For example, let us see if these two 
line segments are congruent: 

A B C D 

We fit a straight-edge to AB, the left end of the edge fitting at A, and mark the point on the

edge that fits B; let's call it B', and use A' 
 for the left endpoint of the straight-edge. 

A B 

A' 2' 
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The part of the edge that runs from the left endpoint A' to the marked point B' is a copy of Ae. 
If ir fits 6CD, the two segments are congruent; if it does not, then they are not congruent. So we 
try to fit the edge to C-D. 

C D 

In this position the left endpoints of these two fit, but the right endpoints, B' and D, do not; 
the part A'B' of the paper straight-edge fits the segment AB but not -D. So the two segments 
are not congruent. 

We now know how to test two line segments for congruence when the segments are given. 
Can we make a pair of congruent line segments? Quite easily-we can take any straight-edge

and trace it twice. (We can, in fact, regard any congruent pair as having been made this way.)
 

That was easy. Let us try a problem that looks a little more difficult. We start with a
 
line segment,
 

T X 

and try to make another line segment that is congruent to it. One approach-to solving problems 
of this sort is to think backwards, as follows. If we already had such a segment, what would 
we know about it? In this case, we could think of it as another tracing of some straight-edge 
that made FT. It is easy to make such a straight-edge. We saw how to do it when we learned 
just now how to test two line segments for congruence. Take a sufficiently long straight-edge, 
fit the left end to T and mark on the straight-edge the point that fits at X. Then move the edge 
to another position and trace that part of the edge between the left end and the point just marked; 
the line segment so made is congruent to TX. 

Let us ask one more question about congruent line segments. Given a line segment and 
a ray, such as these, 

Q 

p 

can we find a point B on the ray so that AB is congruent to PQ? Yes, fit a straight-edge to PQ 
just as we did to TX, by fitting one end at P and marking on the straight-edge the point that fits 
Q. Then fit the straight-edge to the ray, so that the marked point falls at A and the edge fits 
along the ray. The left end of the edge is at some point on the ray; if we mark it and call it B, 
we shall have found a line segment AB that is congruent to PQ. 

B A 
I 2 
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A compass also could be used to find B. If we fitted the two compass points to P and Q and 
then centred the compass at A and drew an arc cutting the ray, the resulting point of intersec
tion would be B. 

At the beginning of this discussion we compared two straight-edges. Now let us com
pare two line segments in the same fashion, by fitting them together at one end. If they also 
fit at the other end, we know they are congruent. If they don't fit at the other end, we have 
something like this. 

The two right ends do not fit when the left ends do. In this case the top segment is longer than 
the bottom one, and the bottom segment *s shorter than the top one. 

Suppose we have two segments that for some reason cannot be brought together. In this 
cas a, we make a copy of one and carry it to the other to compare. (We know we can make copies
because we have just learned how to construct line segments congruent to a given segment;
congruent means "exact copy".) For example, it is practically impossible to fold this page to 
fit these two segments together: 

H 

V W 

K 

But if on some straight-edge we copy fiK and compare the copy with VW, we will know how the 
two original segments compare. 

H 

V W 

..K
 

Thus, ttK is a little shorter than VIV. 
Sometimes it is easier to make a copy of each and compare the two copies. We could do

this for the two segments above by making a third segment and on it drawing copies of the first 
two segments, in this fashion: 

Copy of VW 

Copy of U1K 
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This is essentially what we do when we use a ruler to compare lengths.-

For a final manoeuvie with line segments, 
see if you can divide any line segment into 

two line segments that are congruent. This means that given a line segment 

A B 

you wish to make two line segments that fit end to end, are congruent, and together make the 
line segment AR. The simplest way is to find on AR a point C between A and B such that TC 
is congruent to CB. You can do it in one way that is easy to understand. You can take the
 
paper on which the line segment is drawn 
 and fold the paper so that the two endpoints are on 
top of each other. The fold in the paper cuts the segment AT at a point. If you call this point
C, you have two congruent segments AC and fBC. That they are congruent is obvious, since 
they match each other in the folding. And if you look at the piece of paper for a minute, you can 
see a way to get the same result without folding. The crease of the fold makes a line segment
that cuts AR at the point you want; we have just seen that it does. flow can you make this line 
segment without folding? 

To do this you can proceed as follows. Using first A, then B, as centres, draw two arcs 
which meet each other at two points. Call these points D and E, and draw the segment DE. The 
line segments 5E and AR will intersect at some point; call it C. 

;D
 

A CB 

You can see from the figure that if you folded the paper along the segment DiE, the two sides of 
the drawing would fit on each other exactly. In particular, BC and AC would fit exactly; they 
are congruent. 

Since AU and i-B are congruent, we can think of C as being halfway between A and B. 
It is therefore called the midpoint of A-. And since D, cuts AR at this midpoint, it is a bi
sector of AB. 

The upper half of the drawing is like a paper straight-edge, the straight-edge of the 
paper being AB. If the paper were folded, the folded upper half would become a paper square 
corner, since the part 9CB would fit exactly on the part ICA. (If you have a square corner 
handy, you can test tile drawing now to see if - and C-') make a square corner and if R and 
CD do.) For this reason, we call DE a perpendicularbisecor of A-: it cuts .,iR at the midpoint 
of AB, and each of the pairs A- and f-, and BC and 5-C, makes a square corner. 

To help develop the idea of one line segment being a perpendicular bisector of another, 
consider these examples: 

27 



/G G G 

A H B A B A B 
H 

H
 

H
 
a. b. C. 

In a, 5-H is a bisector of AT but is not a perpendicular bisector; and AB is a bisector of H
but is not a perpendicular bisector of i!fH. In b, iW7 is a perpendicular bisector of AB; and AB
 
does not bisect Gi'l but does mr.ke square c.,rners with G7. 
 In c, each of the two line segments
is a perpendicular bisector of the other. 

EXERCISE 48-3A 

1. Suppose we have traced a straight-edge and made the following line segment. 

A B 

If we choose another straight-edge and trace it on the same paper, we shall have a sec
ond line segment like this: 

C D 

There are many kinds of positions in which e-D might be drawn. One kind is that in 
which the two line segments have no point in common; they are non-intersecting. 

A B 

C 

Then there are those positions in which the two line segments have one point in com
mon. Here are some examples. 

DD 
DJ 

D 

C
A B A B 

C 
Crossing Touching Connected end to end 

2A 
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A B A B 

C D C 

Alined end to end Making a square corner 

D 

Finally, there are those positions in which they have more than one point in common. 

A B A B 
I I I i 

C D C D 

Use two paper straight-edges to show each of these positions in turn. 
2. In terms of where the points of intersection occur, try to describe accurately in words 

the differences between the three cases "crossing", "touching" and "connected 
end to end". Are "alined 
"'connected end to end"? 

end to end" and "making a square corner" special cases of 

3. Here are some pairs of line segments. In each case, use the phrase from Question 1 
that most accurately describes the relationship of the pair. 

A 

A D A D 

V D 

/CC 

B, 

a. b. 

A 73 

C BA/D 

D d. e. 

4. Test each pair in Question 3 for congruence. 
5. Here is a ray with endpoint T. 

T 
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On the 	ray draw three line segments, with endpoints at T, that are congruent to these 
three line segments. 

o 	 R 

P 	 S 

7 
Q 

Which of these three given segments is the longest? Which is the shortest? (Do not use 
a ruler.) 

6. 	 In the following picture, try to find a line segment that is a perpendicular bisector of 
XY; of DE; of FG. 

x 
D E 

G 

P 	 R 

F 

S 	 Y T 

7. 	 Make a paper straight-edge and bisect it by folding. Bisect each resulting half of the 
straight-edge in the same way. 

8. 	 Copy each of these line segments and use a ruler and compass to construct a perpen
dicular bisector of each copy. 

9. 	 Among these line segments, which pairs are congruent pairs? 

R 	 N 

S A 	 GW 

H 

P 	 1Q 
C 	 N D 
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10. 	 Without using a ruler, compare these line segments for length. Say which is the longest,
 
the next longest and so forth.
 

CJ 
E 

A B3 

D F G 

11. 	 Copy each of these line segments and find the midpoint of your copy: 

a.
 

b.
 

C. 

12. 	 According to the construction in the text, if A and B are any two points whatever, the 
line segment AB contains a third point C midway between A and B. Suppose we start 
with two points A and B and find the midpoint C of AB,getting this: 

A C 	 B 

Suppose as a next step we use our construction to find the midpoint D of A'C and the 
midpoint E of CB. 

SI 	 II
 
A D C E B 

Pressing on, suppose we find and name the midpoints of AD, DC, CE and E-B. 

I 	 II I I I II 
A 	 F D G C H E I B 

We could continue by finding the midpoints of the eight successive segments appearing 
above. 	These new points together with previous ones would divide A-B into sixteen 
segments. At the next step we would run out of alphabet letters when we named the new 
bunch of midpoints. But if we could keep making new names for new points, could we 
keep up this process for as many steps as we wish? If we could, how many different 
points on the line segment AB could we find? 
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48-4 Pairs of straight lines 

With line segments there are many types of intersections possible, as we saw in Question 
1 of Exercise 48-3A. But with straight lines the situation is much simpler (as frequently happens
when we idealize). Two straight lines either have no point in common, or have one point in com
mon, or else are the same straight line. To see this, suppose two straight lines have more than 
one point in common. Choose two of these common points; then each of our lines goes through
these two points. But through two points goes just one straight line. So the two straight lines 
must be the same. 

After this, when we say "two straight lines" we shall mean two that are not the same 
line. We can now say that gliven any two lines in a plane, either they do not intersect or they in
terseci at just one point (called the point of intersection). Note that among the points kn a 
straight line no one is more distinctive than the others, in contrast to the endpoints of rays and 
line segments. 

If two straight lines intersect, we can try to fit a square corner at the intersection. Here 
are three cases: 

>\ 

In each case, we put the tip of the square corner at the point of intersection and fit one straight
edge of the corner to one of the straight lines. We then see whether the other straight-edge fits 
the other straight line. If it does, we call the two straight lines perpendicular.In the right-hand 
case above, the two lines are perpendicular; in the other cases, they are not. So two straight
lines are perpendicular if, first, they inter5'ect and, second, a square corner fits at the intersec
tion in the way just described. If they are perpendicular, and if their point of intersection has 
been named, say, "Q", we say they are perpendicularat Q. 

Now let us ask a type of question we have already asked several times-can we make a 
pair of perpendicular lines? We would have to make a pair at whose intersection a square corner 
would fit. Let us try working this backwards. Could we start with a square corner and find two 
lines that fit it? Here is a square corner. See if you can fit two straight lines to it. 

Now suppose we are not free to draw two perpendicular lines. Suppose we are given
 
one of the lines and 
are asked to find a second line that is perpendicular to the given one.
 
Here is a line; can you use a square corner 
to draw another line that is perpendicular to this
 
one? Draw it anywhere, as long as it is perpendicular to this one.
 

('2 
32 



< 

There is another problem that is a little harder than that one. Here is a line and a point
 
chosen on the line.
 

C
 

Can you draw a line that is perpendicular to this line at this point? If you don't see 
how to do
 
this, would placing a square corner in this position help you to see what you could draw?
 

C
 

The last problem along these lines is this. Given a line and 
a point off the line, draw

another line that is perpendicular to the given line and goes through the given point.
 

0 

C 

The solution to this is not difficult if a square corner is used. We fit one edge of the square
 
corner to the given line, like this,
 

< 

C 

and then slide the square corner along, keeping it fitted to the line, until the other straight
edge of the square corner comes to the given point. 

N -

C. 

Here we stop and trace the edge that is at the point. 
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This makes a line segment, and the line segment determines a straight line that solves our 
problem. What are the two reasons why the line solves the problem?

Work done using a square corner may sometimes not be accurate enough. In the con
structions we just did, perhaps we could use a compass to get better 'igures. We try with the 
.ast two constructions. 

In one we were given a line and a point C on the line. We were to draw through C an
other line perpendicular to the given line. This is fairly simple to do with a compass. (The
idea is a variation of the one we used to bisect a segment.) Put the compass point at C and 
draw two arcs that cut the line on opposite sides of C. Let A and B be the names of the points 
at which these arcs cut the line. 

A C B 

Now open the compass some more and.with A and B as centres draw two arcs (just as we did in 
bisecting a line segniw't). They intersect at two points, D and E. 

D 

< C 
A TEB 

The straight line through D and E is perpendicular to A-B, the given line. For if we folded the 
figure along the line DE, the two sides of the drawing would fit eacA other exactly, as you can 
see. This tells us that the upper half of the drawing is like a paper straight-edge folded to make 
a square corner! So we don't need to fit a square corner at the intersection of the lines; it is al
ready there in the paper, and nothing could fit better! 

When the given point C is not on the given straight line, you can do as follows. With C 
as centre, use your compass to draw an arc that cuts the line in two places; name these A and 
B. 
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C 

> 

< 
\1,n_/ 

Fit the two compass points to .4 and C, and with first A, then B. as centre draw two arcs that 
intersect at two points, oneof which is C. If you draw the linc through these two points, you 
will have a line through C that is perpendicular to the given line. 

There is another important relationship that a pair of lines may have-that of being 
parallel. Two straight lines are parallel if there is another straight line that is perpendicular 
to each of them. Since we know how to construct perpendicular lines, it is easy to construct 
parallel ones. For example, to draw a pair of lines that are parallel we can start with any line 
we wish, 

construct a second line that is perpendicular to it by one of the methods we have just learned, 

Second line 

First line 

and then by the same method draw a third line that is perpendicular to the second line. 

Third line 

Second line 

First line 
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The first and third lines are parallel since the second is perpendicular to each of them.We can do even more; we can be given any straight line and any point not on it and proceed to find another line that is parallel to the given line and goes through the given point. We 
start by constructing through the given point a second line that is perpendicular to the givenline, using one of the methods for doing this that we have recently learned. 

Second line 

Given point 

Given line 

Then we construct a third line that is perpendicular to the second line at the given point; this,
too, we have learned. The result is this, 

Se: ond line 

Third line '-.. Given point 

Given line 

and a little thought shows that the third line and the given line are parallel. 

EXERCISE 48-4A 

1. First by sight, second using a square corner, test each of the following pairs of straight
lines for being perpendicular and for being parallel. 

< c..a. 
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d. 	 e. 

2. 	 In Question 1, which pairs of lines do you think are intersecting? (For example, a is an 
intersecting pair.) Remember that we can never draw all of any straight line; so two 
straight lines may intersect although the parts of them shown in our drawings may not 
intersect. 

3. 	 It is a fact that two straight lines in a plane that are parallel cannot intersect. This
 
being so, try to answer these two questions.
 
a. Can 	 two parallel lines in a plane be perpendicular? 
b. Can 	two perpendicular lines in a plane be parallel? 

4. 	 Draw a line segment ST about half as long as your hand. Choose a point C not on the line 
ST. TIrough C draw a line CD that is perpendicular to IT. Draw a line CE through C that 
is parA lel to ST. What relation do these last two lines have? Through E draw a line EF 
that is perpendicular to M-E. What relation does 0 have with S-I? 

5. 	 a. Which pairs of straight lines in the following figure are pairs of perpendicular lines? 
b. Which are pairs of parallel lines? 

,C
 

'~G
B
 

I 	 Dr 

H
 

L 
 ,1FK
 

48-5 	 Rays and angles 

Now let us move on to pairs of rays in a plane. There are several ways in which a pair 
of rays may intersect; these are taken up *n an exercise below. Very important in mathematics 
is the one in which the two rays have the same endpoint but no other point in common. When 
this happens, we say that the two rays are an angle. That is, an angle consists of, or is a 
combination of, two rays that have the same endpoint but no other point in.common. Here are 
three pairs of rays; only the middle pair is an angle. 
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If two rays are an angle, we shall also say that they arc connected end to end. The commonpoint is called the vertex of the angle, 
end

and the two rays are the sides or edges of the angle.
There are two special cases-the one in which a square corner fits the sides and the 

vertex, 

and the one in which the two rays not only make an angle but also make a straight line. 

The first of these is called a rig/it angle and the second, a straight angle.
In considering angles, we should also think how we should name them. Suppose wehave two rays that are an angle and the rays are already named (if they are not, we can namethem). The vertex has a letter name, perhaps E, and the sides must bear names such as 97Tand E-. We could then say "the angle E- and EM". This is quite all right, but can we be

briefer? Can we make one symbol? How about "E'-EG"? This is all right, but can it too be
shortened? Would "G'ET" do, as a combination of GE and E-? It is a shorter symbol, but itsuggests that the three points G, E and T lie on a line and that it is a name for that line. IfG, E and T do not lie on a line, as they very well may not, this symbol would be misleading.Could we avoid this? Yes-just bend the double-headed arrow! This gives us "GAET", the topof which even looks like an angle! But a!as, we don't stop here; mathematicians cut it downlittle more, to "GPT" (being kindly folk, 

a 

A
they have omitted the barbs). So if you see the symbol

"ZXQ", you will know it stands for an angle that consists of the two rays XU and XQ.
Just as triangles ard rectangles have inside regions, so does any angle that is not astraight angle. Let us look at these three figures and ask what we should regard as the "inside" 

of the one that is an angle. 

inside 

inside 

There are only two candidates, namely: 
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As you may have guessed, it has been agreed that the right-hand one should be the inside. Does 
this choice have anything in common with the inside of a triangle and the inside of a rectangle, 
even though the latter two are "closed" figures and an angle is "open"? All three have sides, 
a fact which gives us a common way of forming the inside: draw all line segments that have 
their endpoints on the sides of the figure. When we do this we will, in all three cases, have
 
drawn the inside region of the figure.
 

Now that we have some ideas about individual angles, re might ask, out a sheer curios
ity, what could we do with a pair of angles? Can we combine Jhem to make something, as some
times two rays can combine to make an angle? Can we combine two angles to make a third? 
Yes, if we can put them together. If we have two angles 

B C 

T
 

0 

A > 

R 

and we move one until it fits next to the other, like this, with 0T fitting exactly on AC, 

C 
T 

A, O R 

clearly we can regard the two rays AW and OR as forming a third angle. More precisely, we say
that two angles are adjoining if they have a common side but nothing else common to their in
sides. Here are examples of adjoining, and not adjoining, angles: 
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4 

Adjoining Not adjoining 

If two angles are adjoining and we take the two sides that are not common, as in the left-hand ex
ample just shown, Re have a third angle that can be thought of as the join of the two adjoining 
angles: 

/
/

/ 
/

/ 

Thus, if 'two angles are adjoining, we can make from them a third angle, called their join.
 
Given two angles, we can also try to compare them. 
 The way to compare is to put them 

together by fitting one side of one angle on one side of the other so that t6e inside of one angle
fits on top of the inside of the other. If we try this with two angles-for example, these shown 
here-

F 

GE 

they will fit together in either of these two ways. 

X GG 

Y, F Y, F 

A AIn either case, it is clear that the inside of EFG is contained in the inside of XYZ, and it is
A A Aclear that we should consider EF as being smaller than XYZ, and XYZ as being larger than 

EFG. In case the fit is exact-that is, if we can place one angle on top of the other so thateach side of one angle coincides exactly with a .side of the other angle-then we say the angles 
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are congruent. As an example, any two right angles are congruent, as we can easily see; and 
an) two straight angles are congruent. 

Suppose you wish to compare two angles that can't be fitted together. How can you com
pare them? What did we do when this problem came up with line segments? We made copies and 
compaeed them. Trying to do this with angles raises a new problem. How can you copy a given 
angle? One way, of course, is to put thin paper over the angle and copy the angle onto the 
paper by tracing. Another way would be to cut a model out of a sheet of paper. But neither of
 
these is satisfactory for our purposes. We would like to be able to copy on any sheet of paper
 
any angle given to us.
 

Let us suppose we have been given an angle on one sheet of paper,
 

A 
C 

and on another sheet of paper a ray, 

D E 
A 

and we want to ccnstruct on the second sheet an angle which is congruent to B4C and has the 
ray D as one side. Take a compass and with vertex A as centre draw an arc of a circle. Be 
sure this arc ci'ts both rays AB and A-. If you now name the points where your arc cuts the 
rays, your drawing should be as follows: 

B 

A > 
1P C 

Leaving your compass unchanged, move it to the second sheet of paper, put the compass point 
at D and draw a circular arc that cuts the ray 'E and looks about as long and in about the same 
position as the arc you drew on the first sheet. The second sheet should now look like this if 
you gave the name R to the point at which the arc cuts the ray i). 

D R E 

Now go back to the first sheet, put your compass point at P, and adjust the other arm of the com
pass so that it fits exactly at 0. Move your compass to the second sheet, put the point at R and 
draw an arc that cuts the first arc you drew. Now draw the ray that starts at D and goes through 
th.- point S, at which the two arcs cross. The rays DE and DS form an angle SPE that is congru
ent to BAC. 
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There is another important construction with angles, called bisection. This means dividing an angle into two adjoining angles that are congruent, just as bisecting a line segment meansdividing it into two end-to-end segments that are congruent. Can any angle be divided in this 
way? That is, if we have any angle BAC, 

A 

can we find a third ray AM so that the two angles BM and CAM are adjoining and congruent and
have the original angle, BAC, as their join? The answer is "Yes", and the method is this. Withthe point A as centre draw an arc that cuts both rays AB and 4C, and give the names F and G 
to the points at which the rays are cut by the arc. 

B 

A 

C'-


Adjust your compass to be open about three-quarters of the way from F to G, and with F and G 
as centres draw two arcs that intersect away from A, such as these. 

B 

A 

~C 

Let M be the nameof the point of intersection of these two arcs, and draw the ray AM. 
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A 

M 

C
 

If you folded the paper along the ray AM, you would find that AC would fit exactly on AB, and 
A'\since the two angles BAM and CAM have the other side AI'in common, clearly the two angles 

are congruent. They are a bisection of BAC. 
Let us 	briefly revise line segments. If two line segments have a common endpoint, the 

pair is not an atyl., because an angle is a pair of rays with common endpoint. But given two 
line segments AB and .4-C" with a common endpoint, 

B\ c 

A 

we can 	make an angle from:'them by drawing the two rays AS and AC. 

A 

This is 	called the angle made by A- and A-C. 
Each line segment lies on just one line, so any pair of li~te segments determines a pair

of straight lines. If this pair of straight lines are perpendicular (or parallel), we say the pair of 
line segments are perpendicular(or parallel). Here are some examples. 

Parallel 	 Perpendicular 

Parallel 

Perpendicular 
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EXERCISE 48-5A 

1. 	 Draw, if you can, a pair of rays that 
a. do 	not intersect; 
b. do not intersect and are not parallel; 
c. intersect at a single point; 
d. intersect at a single point and are not an angle; 
e. intersect at two points only; 
f. have in common a line segment; 
g. are 	a right angle; 
h. have in common a ray; 
i. are 	an angle but do not intersect. 

If in any of these cases, you think there is no such pair, give your reasons for thinking 
SO. 

2. 	 Here are three rays, YX, YZ, YW. How many angles can you make from them? How many
right angles can you make from them? Among these angles list allpairs that are adjoin
ing. 

Z
Y 

z 

x 
A 

3. 	 If in Question 2 the bisector of XYZ were added to the other rays, out of these four rays 
how many right angles and how many straight angles could you make? 

4. 	 Here are seven rays. How many angles do these rays make? Of these angles, how many 
pairs are adjoining? 

I 

G 
H 

JC F 
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5. Draw the inside of MKL and of POQ, below. 

L 0 R 

K 

P Q
rN 

6. Copy the following angle, BAC, by tracing it a piece of thin paper laid overon it. On 
another piece of paper, draw a ray with endpoint D and use a compass to construct an 
angle congruent to BC and having your ray as one side. Put your thin paper copy over 
the compass copy and compare them. 

C 

B 

A 

7. judging only by sight, list the angles in Question 4 in decreasing order of size, starting 

Draw a ray and on it construct an angle congruent to BAC of Question 4. On it construct 
also another angle, this one congruent to 1HJ of Question 4. Which of these two angles in 
Question 4 is the larger? 
In each of the following, say Lrw you could use paper folding to determine whether or 
not ATB and CTB are congruent, and if they are not, which is larger. 

A / 
/ 

//C
B 

A C T 

T 

B 

(a) T (b) 
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10. On paper draw three angles and bisect each. Test each bisection by paper folding.
11. Here are some line segments. Which pairs are perpendicular and which are parallel? 

B G 

F 

A \K
 

E D H J 

L 

48-6 Polygons 

In Chapter 47 we mentioned polygons and showed some examples, and also talked aboutthe special kinds of polygons called "triangles" and "quadrilaterals". Now we will look at 
these more closely. 

If we have drawn two line segments, A- and BC. that are connected end to end, 

A 

B C 

we can make another step and draw a third line segment that is connected end to end with thesetwo, by placing a straight-edge with one end at A or one end at C and tracing the straight-edge. 
Here are some ways of doing this. 

D 
D A A A A 

B C 
B 

B C BBD CC B 
DC
 

D D 

In each case, we have three line segments. !nthe first two cases, the segments are5A, AB,BC; clearly, 5A and AR fit end to end at A, and AR and BC fit end to end at B. What,in the last two cases, are the three line segments? Where do they fit end to end?
When we have drawn two line segments end to end, we say we have a two-sided polygon,

and when we have drawn three line segments end to end, as in the figures just above, we have
three-sidedpolygons. We can keep this up and make lour-sided polygons, like these: 
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A A S N 

E M 
E B D P Q 

B R T 0 

C CT0 

or five-sided ones like these: 

A G A 

BB 

R 
c 

D 
H 

E 

We can go on adding more sides as long as we wish, making forty-sided polygons, thou
sand-sided ones and so on, as long as we have time, energy and patience. This gives us the 
general idea of a polygon: a polygon is a collection of two or more line segments drawn end to 
end in succession: if the number of line segments in the collection is k, we call the polygon 
a k-sided polygon. The line segments that form a polygon are called the sides of the polygon. 
Their endpoints are called the vertices of the polygon. 

Let us look at our original two-sided polygon. 

A 

B ZZC 

This is not an angle because it consists of two line segments instead of two rays. But as we 
have seen we can make an angle from it. All we need do is to draw the ray BA, which we can 
make from the segment B-A, and the ray BC, which we can get from BC; we then have this, 

A 

B> 
C 

which is an angle, the angle made by the two-sided polygon ABC. We remember that the name 
for this angle is ABC. In the same way, this three-sided polygon 
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D A 

B 

C 

A 
makes two angles, ABC and DAB, and this four-sided polygon 

A 

B D 

C 

makes four angles. Can you name them? The angles made this way by a polygon are called the 
angles o the polygon. 

EXERCISE 48-6A 

1. Determine which of the following figures are polygons. 

A B 
C / / 0D DB 

D B B 

c A b. C A AC.' d. C 
C.. 

B C E B- C 

A Be. D A f. F __/E 

g. 

A D>< 

h. L 
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2. 	 For each figure in Question 1 that is a polygon, iame the sides, the angles and thevertices, and say whether the polygon is simple or not, 	and whether it is closed or not.
3. 	 In Question 1 r.tre are five figures that are not polygons. Choose two of them and say

in each case what could be added to or taken away from the figure that would change 
the figure to a polygon. 

48-7 	 Triangles 

When we had our two-sided polygon and added a third side, we fitted the straight-e3ge
so that 	one end was either at A or at C. Suppose instead of doing that we had fitted a straight
edge a! both A and C 

A 

and traced along the edge from A to C: we would have drawn a line segment that had one end
point at A and one at C. The resulting figure 

A 

B 

is closed: we can view ourselves as having come back, in our tracing, to the starting point A.
From Chapter 47 we recall that such a figure is a closed three-sided polygon, and that the special name for it is triangle. This name was chosen long ago because from the figure we car make 
three angles, one of which, for example, is this, BAC." 

A 

The three line segments of a triangle are called the sides of the triangle, and the threeendpoints of these sides are the vertices of the triangle. In the triangle above, the sides are 
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AB, AC and BC; the vertices are A, B and C. There are a number of important special types
of triangles. One type is that in which all three segments aie congruent. We call such a triangle 
equilateral. It is easy to construct sucha triangle even when all its sides must be congruent to 
a given line segment, for instance, AB in the following picture. Using your compass and taking 
A as the centre, and the length of A- as the radius, construct an arc as shown. Then using B 
as the centre, and with the same radius, construct another arc to intersect the first arc at 
point C. Draw the segments AC and BC. Clearly the three segments AB, AC and B-C form a tri
angle all of whose sides are congruent to A-B and therefore are congruent to each other. Thus, 
ABC is an equilateral triangle. 

A B 

Another type of triangle is one in which two sides are congruent and the third side may
be of any size whatever; perhaps it is congruent to each of the other two, perhaps not. We call 
such a triangle isosceles and the third side the base. Clearly an equilateral triangle is a special 
kind of isosceles triangle. The construction of an isosceles triangle is just as easy as that of 
an equilateral triangle. Again, as in the following picture, construct a segment AB. Now choose 
any radius greater than half the length of AB, and draw two arcs with that radius, one with .4 
as the centre and one with B as the centre. Make sure that you draw two arcs that intersect 
(why was it necessary to require that the radius be greater than half the length of AB?) and 
mark the intersection point C. The two segments AC and B-C are congruent, and the triangle ABC 
is isosceles. 

A / 
 ""B
 

A third important kind of triangle is one which has a right angle for one of its angles. 
Such triangles are called right-angled triangles. It is easy to construct right-angled triangles. 
Draw a segment AB, and then construct another segment AC perpendicular -o it at A. Now 
draw the segment BC. The triangle composed of the three segments AB, AC and BC is clearly 
a right-angled triangle. 

C 

A B 
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There are other special names which we can give to triangles, but we will not deal withthem all. In further study of mathematics, you will learn many more properties of triangles as 
well as the relations between the sides and angles of triangles.
 

One important thing remains for us 
 to do, however, and that concerns the relationships
which might exist between two triangles. In the first place, we can have triangles which are 
congruent, that is, triangles which fit each other perfectly. How would you construct a triangle
congruent to a given triangle? One way, of course, would be to cut out the first triangle andtrace around its edge to form a second triangle. Or you could put tracing paper over the triangle
and copy it that way. But we would like to find a way which is like the other constructions we
have done, using the drawing tools and methods with which we have become familiar. 

There are actually several ways of constructing a triangle congruent to a given triangle.Perhaps the easiest is done in the following way. Let ABC denote the given triangle. Construct 
a line segment DE congruent to AB, as we did in Chapter 47. With point D as centre, construct an arc with radius the length of 4C. With point E as centre, construct an arc with radius the
 
length of BC so that it intersects the first arc at point F.
 

A Bm----'D E 

You can see that the segment DE is congruent to the segment Tfl, that the segment DF is con
gruent to the segment AC and that the segment EP is congruent to the segment BC. Moreover,

if you try to fit the two triangles togetlier, 
you will find that the angles also are congruent.
 
The two triangles 
thus fit perfectly and are congruent.


Another way is to 
 take the given triangle ABC, as shown in the following picture. Con
struct segment DE congruent to seAment A-B. 
 Now copy the angle BIC by drawing a segmentDG so that EI)G is congruent to BAC. Then lay off a segment DF on DC congruent to 11C. Join

points E and F to form segment EF. The triangle DEF looks congruent to the triangle ABC. If
 
you traced one caf the triangles, 
 the tracing would fit exactly on top of the other. 

G 

C F 

B DA EA E 

A final construction is that shown in the following picture. Again take triangle ABC.
Construct segment DEcongruent to T§. Construct an angle G/E at D congruent to CAB, and 
construct an angle DElI at E congruent to ABC. Call F the point where the rays )-G and Ell in
tersect each other. The triangle DEF is congruent to the triangle ABC. 
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H G 
C 

FF 

A LjDE 

You have now considered three cases. In the first, you constructed a triangle congruent 
to a given triangle by copying the three sides of the first. In the second case, you constructed 
the new triangle by copying two sides of the first and the angle between them. In the third, you 
used two angles of the first triangle and the side between them. Now think what might happen if 
you made a new triangle by copying the three angles of the given triangle. Could you make a
 
new triangle this way, and would it be congruent to the given triangle?
 

Let us try such a construction, shown in the following words and picture. Let ABC be
 
Aany given triangle. Copy the angle B0C and call it IIDG. On the ray b--, choose any point E and 

construct an angle congruent to ABC, using the ray DE as one side, so that the second side is 
the ray El. The rays El and DGintersect

A A A 
at a point F. Look at the triangle DEF. You know thatA 

EDF is congruent to BAC and that DEF is congruent to ABC. What about the relation between 
ACB and DPE? You can find that these two angles are in fact congruent, either by fitting them 
together or by using the construction for copying angles. 

I G
 

F 

A 

C 

A B D 
E H 

But you will notice by looking at the picture that triangle DEF is much bigger than tri
angIc ABC. So the two triangles are not congruent even though their angles are congruent. We 
say in this case that the triangles are similar,meaning that their angles are congruent, even 
thoug , their sides may not be congruent. But it is wotth checking the relation between the sides 
of one triangle and the sides of the other triangle. If you do so, you will find in this particular 
case that the length of each side in triangle DEF is exactly twice the length of the correspond
ing side in triangle ABC. This should suggest to you that there might exist some such relation 
for every pair of similar triangles. 

You can check for the possibility of such a relation in the following way. Take a tri
angle ABC, as drawn in the following picture. Construct a segment DE which has a length thrre 

A Atimes the length of AB.Now construct an angle GDE which is congruent to CAB, and an angle 
HED which is congruent to CBA. The rays DG and Eli intersect in a point F.You can see that 
the angle DFE is congruent to ACB. And if you check the length, you will find that the length of 
DF is three times the length of AC, and :hat of -Fis three times that of B-C. 
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cG
 
C 

A B DE 

In general you will find that such a relation exists between the lengths of sides of similar triangles. If all the angles of one triangle are congruent to all the angles of a second triangle,
and the length of one side of the first triangle is some number times the length of the correspond
ing side of the second triangle, then the length of each of the other two sides of the first triangle
is that same number times the length of the correspoinding side of the second triangle. 

EXERCISE 48-7A 

1. Any equilateral triangle is isosceles. As an isosceles triangle, how many bases does an 
equilateral triangle have? 

2. Draw line segments AB and XY, with the length of XY greater than half the length of AB.
Construc, a triangle having one side congruent to A- and each of the other two sides con
gruent to XY. What kind of triangle have you constructed? What kind would it be if AR 
and XY were congruent?

3. Finish the construction of these two incomplete right-angled triangles. 

4. Construct a right-angled triangle that has one side congruent to the following line seg
ment. 

5. Here is a right angle. 

Q 

p R 

a. Draw a right-angled triangle that has a side on each of these two rays. 
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b. 	 How many such triangles can be drawn? 
c.. 	 Can you draw an isosceles right-angled triangle that has a side on each of these two 

rays ? 
d. 	 How many of these could be drawn? 

6. 	 Construct, if you can, a triangle with two of its angles right angles; if you cannot, try 
to explain why you cannot. 

7. 	 Can you draw a triangle that is right-i ngled and equilateral? 
8. 	 In Question 4 you drew a triangle that had two sides perpendicular. Can you draw a tri

angle with two sides parallel? If not, give reasons why not. 
9. 	 The construction of a triangle congruent to a given triangle, using two angles and the 

included side of the given triangle, was not given completely in the text. Complete that 
construction in all details. 

10. Construct a triangle whose angles are congruent to those of a given triangle, and whose 
sides are four times as long as the corresponding sides of the given triangle. Then con
struct a triangle whose angles are congruent to those of a given triangle, and whose1
 

sides are 1 times as long as those of the given triangle.
 
11. Construct a triangle similar to a given triang),, but do not fix in advance the relation 

between the lengths of corresponding sides. Find whether or not the relation is the same 
for each pair of corresponding sides. 

48-8 Quadrilaterals 

Do you remember the special kind of polygon called a quadrilateral?Which of these fig
ures is a quadrilateral? 

We remember that a quadrilateral is a four-sided, closed, simple polygon; that is, it is 
made of four line segments that are connected end to end, that.intersect only at endpoints, and 
are such that each endpoint is the end of two of the segments. It can be thought of as four line 
segments drawn one after the other, the second beginning where the first one ended, the third 
beginning where the second one ended and not intersecting the first; the fourth starting where 
the third ended and ending where the first began and not intersecting the second. So these are 
quadrilaterals, 

and these are not. 
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Since a quadrilateral is a polygon, it has sides, angles and vertices. It is easy to see that ithas four of each. Any two sides that have a common endpoint are called adjacent sides. Anytwo sides that are not adjacent are called opposite. In the quadrilateral 

B 

A 

D C 

there are four pairs of adjacent sides (A-B and B-C, C and C'D, CD and VA, 5A and A"B) andtwo pairs of opposite sides (AB and C, BC and AD). Two angles that have a commonare called adjacent angles. Two angles that are 
side 

not adjacent are called opposite. The quadrilateral above, like all other quadrilaterals, has four pairs of adjacent angles (can you name them?)and two pairs of opposite angles (one pair are DAB and BCD, can you name the other pair of
 
opposite angles?).
 

In Chapter 47 we saw 
that if we laid this book on its back on a flat piece of paper and
traced it, we would get a figure like this, 

A C 

B D 

and we said it was called a rectangle. Let us be more precise now about what is meant by"rectangle". First, it is a quadrilateral. Second, the four angles are all right angles. This isenough. But we can also see in the figure that AB and ED are parallel (because AC is perpendicular to both) and they look congruent (but we are not sure-they just look that way).Similarly, AC and B-D are parallel and look as if they may be congruent. (If you take a piece of
paper that has four square comers and you fold it 
over so that one edge fits on the edge opposite to it, do the two edges fit exactly end to end?
 
So a rectangle is a quadrilateral whose four angles 
are all right angles. Oppositesides of a rectangle are parallel, and from paper folding, or comparison by string, we find that

opposite sides are also congruent. 
To construct a rectangle, begin by constructing a line segment. Then at each endpointof the segment, erect a ray perpendicular to the segment. At some point on one of the perpendicular rays construct a line perpendicular to that ray, and find the point where this line meetsthe second perpendicular ray. The rectangle made by this construction is shown in the followingfigure, where A'B is the original segment, AEand VF are the rays erected perpendicular to A-B,C is a point different from A chosen on AE-, C-0 is the line drawn perpendicular to A-E at C, andD is the point where the line CM? meets BF. The rectangle is ABDC. 
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In Chapter 47 we said that a rectangle like this 

is called a square. From looking at the sides of this figure you can easily guess what a square 
really is-it is a rectangle with all four sides congruent to each other. To see how to construct a 
square, go back to the method just given for constructing a rectangle. If you follow that method, 
but choose C so that AC is congruent to A-B, you will make a rectangle that has all four sides 
congruent to A-B. It must be a square. 

We know that a rectangle is a quadrilateral forwhich each pair of opposite sides are 
parallel. Let us give a name to such figures: a quadrilateral for which each pair of opposite 
sides are parallel is a parallelogram. So every rectangle is a parallelogram. Is there any paral
lelogram that is not a rectangle? This is the same as asking if there is a quadrilateral with op
posite sides parallel but with some angle that is not a right angle. Try the following construc
tion. Draw two line segments AB and AC that meet at A but are not perpendicular. At C con
struct a line CE parallel to AB. At B construct a line BF parallel to AC. The lines r and B'' 
will meet at a point D. The quadrilateral ABDC is a parallelogram that is not a rectangle. 

Cz D E 

AX 

It is a quadrilateral with angle Cb not a right tingle. The opposite sides C and T- are 
parallel because C was drawn parallel to A, and the opposite sides E and AC are paral
lel since BF was drawn parallel to AC. These facts show that ABDC is not a rectangle but is 
a parallelogram. 

We have so far mentioned parallelograms, rectangles and squares as interesting special 
cases of quadrilaterals. We have also answered the question "Is there a parallelogram that is 
not a rectangle?" There are other questions of the same kind. You can look back at some of our 
figures and easily answer the following questions; for example, "Is there a quadrilateral that 
has all four angles congruent but does not have all four sides congruent?" 
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EXERCISES 48-8A 

1. Which of these figures are quadrilaterals? 

a. b. c. d. e. 

f. 9. h. i. J
 

k. I. m. n. o. 

2. In Question 1, which figures are squares? Which are parallelograms? Which are 
rectangles?
 

3. Is every square a parallelogram? Give reasons for your answer. 
4. Give examples of quadrilaterals from ordinary life. Divide those you find into four 

groups: squares, rectangles that are not squares, parallelograms that are not rectangles, 
and quadrilaterals that are not parallelograms.

5. Abu has a secret rectangle he will not show to his friend Ben. Ben thinks it is a square
but is not sure, and Abu will-riot tell him. But Ben Fets from Abu the fact that two ad
jacent sides are congruent. Is this enough for Ben .o be sure it is a square? 

6. A square is a quadrilateral that has all four sides congruent to each other. But a quadri
lateral with all four sides congruent to each other may not be a square. Can you find 
such a quadrilateral? If you can, try to construct one using a strF.ight-edge and compass. 

7. Draw a tr'ctangle on paper by the method in the text. Cut out the piece of paper bounded 
by the rectangle and fold it to show that opposite side" of a rectangle are cong'uent. 
Note that when opposite sides are fitted together, the fo'd is smooth and the paper lies 
flat. 

8. We have seen that certain quadrilaterals have all four angles forming right angles; these 
are the rectangles. Can a quadrilateral have exactly one right angle? exactly two? ex
actly three? 

9. In a rectangle, opposite sides ace parallel. Let us turn this around and write, "If oppo
site sides are parallel, we must have a rectangle". Is this true? Is it possible to draw a 
quadrilateral which has opposite sides parallel but which is not a rectangle?

10. Draw a paper parallelogram by the method in the text, and cut it out. Try to fold the 
paper to show that opposite sides of your parallelogram are congruent. Do you think 
every parallelogram has each pair of opposite sides congruent? Do you think opposite 
angles are congruent? Can you fold your paper to find out? 

11. In a rectangle, opposite sides are congruent. Let us turn this around and say, "If 
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opposite sides of a quadrilateral are congruent, the quadrilateral must be a rectangle". 
Is this statement true? Why? 

There are other kinds of quadrilaterals besides parallelograms, rectangles and squares;
and there are many other questions that could be asked about quadrilaterals. We have the ideas
of opposite sides and of adjacent sides. In the same way, there are two pairs of opposite angles
and four pairs of adjacent angles. For a pair of line segments (such as the sides of a quadri
lateral), we have the relations of being perpendicular, parallel and congruent. For a single
angle, we have the idea of being a right angle and that of being a straight angle. And for a pair
of angles, we have the congruence relation. Using these ideas we make a "question-machine" 
as follows: we write down, 

"Is there a quadrilateral with" 

and then we choose one part in each of these columns: 

I 2 pair(s of oppoe dthat are perpendicular 

2 pair~s of adjacent anglesJ 

3 
 congruent 

right angles 

straight angles 

congruent 

For example, "Is there a quadrilateral with one pair of adjacent angles that are right angles?"
Another is, "Is there a quadrilateral with two p.airs ef opposite sides that are parallel?" To reply
"Yes" to one of these questions, we have to draw a quadrilateral that has what the question
calls for. Some of these questions are easily and correctly asSwered "Yes"; others are more 
difficult, including some that have the answer "No".
 

There are other questions we can ask: 
for example, if all four sides are congruent, what 
can we say about the angles? Must all four angles be congruent? three of them? two of them?
 
Ilowmany pairs of angles must be congruent? any at all?
 

Another is: if all four angles are congruent, what can we say about the sides? Can we
 
say anything else about the angles?
 

There are many questions you yourself can 
ask and answer. (Do not be surprised if you
find one you can ask but cannot answer-this happens to all of us at one time or another.)
 

Just as with line segments, angles and triangles, we can define congruence for quadri
laterals: two quadrilaterals are conyruent if one cart be fitted exactly 
on top of the other. One
 
way to make two congruent quadrilaterals is to take or make a cardboard cutout having four
 
edges, 
 all of them straight, andorrace it twice. Just as with triangles, if we have two congruent
 
quadrilaterals, 
 then when we fit one exactly on the other, the fitting makes a correspondence be
tween the sides of one and the sides of the other. To each side of the lower quadrilateral, there 
corresponds the side of the upper quadrilateral that is fitting exactly on it (these two sides are
 
congruent line segments). Similarly, 
 to each angle of the bottom quadrilateral there corresponds

the angle of the top one that fits on it exactly; each of these pairs of angles is 
a congruent pair.
The study of the congruence of quadrilaterals is more complicated than that of triangles and will 
be omitted here except for a few exercises below. 

.)
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EXERCISES 48-8B
 

1. If you are asked, "Is there a quadrilateral with one pair of adjacent angles that areright angles?" you would probably answer immediately, "Yes, any rectangle". But can 
you tell how to draw such a quadrilateral that is not a rectangle?

2. 	 Is there a quadrilateral with one pair of adjacent angles that are straight angles?
3. 	 Is there a quadrilateral with a pair 	of opposite sides that are perpendicular?
4. 	 Draw a quadrilateral that has one pair of adjacent angles congruent and the other two

angles, also, a congruent pair. From your figure can you draw any conclusions about the 
sides? 

5. 	 If all four sides of a quadrilateral are congruent, must all four angles be congruent? If 
not, are there 	any pairs of angles that are congruent?

6. 	 Try to construct a quadrilateral with all four angles congruent. If you do construct one,
what can you say about the angles and sides of your drawing?

7. 	 Construct, using compass and straight-edge, another square congruent to this one. 

8. Construct, using compass and straight-edge, a quadrilateral congruent to the following
quadrilateral. 

9. 	 Construct, using a straight-edge and compass, a quadrilateral congruent to the following 
one. 

10. Tell in your own words 	how you would construct a quadrilateral congruent to this one. 
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48-9 Plane paths, circles and ellipses 

We have been talking about polygons, particularly the special cases of one-, two-, three-, 
and four-sided ones. The three-sided closed polygons were called triangles, and the four-sided 
closed ones that did not cross themselves were called quadrilaterals. But polygons are special 
cases of what in Chapter 47 we called "paths". A path is a drawing made by running a pencil 
or chalk over paper or blackboard without letting the pencil (or chalk) jump or skip. If the draw
ing ends back at its starting point, the path is closed. If a path never crosses itself, it is a 
simple path. So "quadrilateral" is a short (!) name for a simple closed four-sided polygon. Tri
angles and quadrilaterals are simple closed polygons and simple closed paths. Here are other 
examples; some are paths, some are not. 

[000D0 
Simple path Simple Closed Pathclosed path path Simple closedclose pathpathpath (circle) 

Not a path Path Not a path 

It is now time that we became clear as to what a circle is, just as we became clear about 
a rectangle being a quadrilateral with all four angles right angles. At the end of Chapter 47, we 
used a compass to draw a figure we called a "circle". Let us see what we can find about this fig
ure and the way it was made and what it is made of. 

To start with, one compass point stayed fixed. The point on the paper where the compass 
point was fixed we call the centre of the figure and give the temporary name C. The other point 
of the compass moved around; if A is any point on the figure, this compass point has moved over 
it. This tells us that CA is congruent to the line segment that has the compass points as end
p( ints. So for any point A on the figure, the line segment CA is congruent to this compass-points 
line segment. The other way around happens to be true, also; if A is any point on the paper such 
that CA is congruent to the compass-points line segment, then the moving compass point must 
have passed through the point and the point A must be on the figure. 

This gives us our general definition of a circle, as follows. Let C be a point and Y any 
line segment (such as that between the compass points). Lay off all possible line segments that 
are congruent to XY and have one endpoint at C. Draw through the endpoints of all these line 
segments; the figure that results is the circle with centre at C and radiu., the length of X-Y. A 
circle is any figure obtained in this way; it has a centre and a radius. Any line segment that 
has one endpoint at the centre of the circle and the other endpoint on the circle is a radial seg
ment of the circle. The radius of the circle is the length common to all the radial segments. 
Any line segment that has both endpoints on the circle is a chord of the circle; a chord through 
the centre of the circle is a central chord. All central chords are congruent, since each consists 
of two adjoined radial segments. Their common length, which is twice the radius of the circle, 
is called the diameterof the circle. 
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There is one other simple closed path worth mentioning here, namely, the ellipse. The 
ellipse is a round, but somewhat flattened, figure, rather like the circle. 

The method for constructing an ellipse is actually quite simple. Mark out two points on 
paper, and take a piece of string somcwhat longer than the segment joining those two points,
which are called the foci. Put a loop at each end of the string and insert a pin through each 
loop. Then push the two pins into the paper at the two foci. This connects the ends of the 
string to these two points. Stretch this string with a pencil; keeping it stretched, put the pencil 
point on the paper and trace all around the two foci, as shown in the following picture. 

// 

/,j 

If you have done this carefully, your drawing will look somewhat like a flattened circle, or as 
if it were traced from an egg which is the same at both ends. Instead of having a diameter, as
 
a circle has, it has two axes: one of these is the longest line segment 
across the ellipse, and
 
the other is the shortest line segment across the ellipse. You will notice that the longer axis
 
(called the major axis) goes through the two 
foci, while the shorter axis (called the minor axis)
is the perpendicular bisector of the longer axis. This picture shows the ellipse, with its foci and 
its axes. The point at which the two axes intersect is the centre of the ellipse. 

[ ,Minoraxis 
ous 

CMajor axis 

One fact is worth noting about the ellipse. For many years it was thought the sun moved 
about the earth in a circular path. Then people learned that the earth moves about the sun, but 
still they thought the path was a circle. Kepler, a scientist of the 17th century, first discovered 
and showed that the path of the earth as it goes around the sun is an ellipse, with the sun at 
one focus. 

EXERCISE 48-9A 

1. 	 Here are some drawings. Determine which ones are paths; for those that are paths, say
whether they are closed or not and whether they are simple or not. 



2. Draw two points on a piece of paper. Using a straight-edge and compass, try to draw 
a circle that goes through these two points.

3. If you have done Question 2 successfully, try this one. Given any three points in a
plane but not lying together on any straight line, there is exactly one circle goingthrough all three points. Draw three such points and see if you can construct this circle. 

4. Given a point and a circle with its centre, how would you construct a second circle that
is congruent to the given circle and has the given point for its centre? How would youconstruct a third circle that is congruent to the given circle and goes through the given 
point? 

5. Name as many objects from the real world as you can which have the shape of an ellipse.
Tell how those could be used in teaching children about ellipses.

6. Draw an ellipse with a very long major axis and a very short minor axis, and compare it
with an ellipse where the axes are of very nearly the same length.

7. If in drawing an ellipse we used just one point (focus) and one pin, instead of two points
and two pins, but otherwise followed the instructions in the text, what sort of figure
would we make? Perform this construction and see. 

48-10 Regions in the plane 

When we draw a circle on paper, it is clear to us that there is a part of the paper that
is inside the circle and another part that is outside the circle, and that these two parts together
with the circle itself make up all the paper. 

t S i
 
u d
 

0 e
 
Inside 

The part that is inside any circle is called a circularregion: the shaded portion in the next fig
ure is such a region. 
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More generally, any simple closed path has an inside part and an outside part. The inside 
part is called a region. Here are three simple closed paths, 

and here are the three regions that are inside them: 

Whenever we have a special Vnd of simple closed path-say, a circle, a triangle or a 
rectangle-we give to the region inside the path a name like that of the path. The inside of a 
circle is a circularregion, the inside of any triangle is a triangularre ,ion, the inside of any
quadrilateral is a quadrilateralregion and so on. If you invent a special path for yourself and 
call it by some special name, for example, "google", then the inside is a googley region.

For thre special paths called "simple closed polygons"-far example, this "hexagon"-

B C 

A D 

we already have names for certain line segments and points in the figures. This figure is made 
of line segments ItZl, 1C, C'D, l)E, EF and PA-. These are called the erdes: of the hexagonal
region inside the hexagon. Note that A-" and FC are taken to be edges, but IC is not. The end
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points of these edges are called the vertices of the region, just as they are called the vertices
of the polygon. Similarly, this quadrilateral region 

Q 

P R 

S 

lying inside the quadrilateral PQRS has for edges the line segments PQ, QR, RS, SP and for 
vertices the four points P, Q, R, S. 

Each simple closed path divides its plane into three parts: the path itself, the inside ofthe path and the outside. A simple path that is not closed, like this, 

divides its plane into only two parts: thepath, and the rest of the plane. There is no inside re
gion of the path. For closed paths that aren't simple, the questions "Does it have an inside? an
outside? Into how many pieces does it divide its plane?" become difficult to answer.

A line segment in a plane is a simple path that is not closed, and it divides its plane into 
two parts: the line segment, and the rest of its plane. 

of its 

Rest 0 3 plane 
Line segment 

But if we make the entire straight line determined by this line segment, 

oM 
G H eL V 

oZ oT
 

then we have a different story. Into how many pieces is the plane divided? Are V and G points
in the same piece? Are 11 and L? Are Z and M? 

Any straight line in a plane divides the plane into three parts: one is the line itself,
and the other two parts are the sides of the line. Thus H and M lie on one side of the line 
GV,and Z and T lie on one side (the side other than the one H and M lie on). The points L 
and Z lie on opposite sides of GV. 

Just as any, line divides any plane that contains it inLU three parts, any point P divides 
any straight line containing it into three parts. 
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P 

In this case, there is the part to the left of P, the part to the right of P, and P itself. 
What sort of figure would divide all of space into three parts in the same sort of way that 

a point on a line divides the line, and a line in a plane divides the plane? 

48-11 Figures in space 

In Section 47-6 we separatec physical objects into three groups: those whose surfaces
 
have only flatness and straightness, those whose surfaces have no flatness 
or straightne3s and 
those whose surfaces have some flatness or straightness and some roundness. 

As an example of the first group we mentioned what we called a brick. This book when 
closed is a brick. The surface, or "outside" or "skin", of a brick looks like this. 

It has six faces, each consisting of a rectangular region. Each face meets four of the other five 
faces, one at each straight edge of the face. When two faces of a brick do not meet, they are 
called opposite. There are twelve straight edges, each being part of two faces; and there are 
eight corner tips or corner points, each being a common endpoint for three of the straight edges
and each being part of three faces. 

In summary: a b-ick has one surface or skin or outside. This surface is called a box. It 
consists of six parts called faces, each face teing made of a rectangle and the rectangle region
inside. The straight edges making up these rectangles are twelve in number, and their endpoints,
which are the tips of the comers of the brick, total eirht. These points are called the vertices 
of the brick and of the box. The straight edges of the brick are the edges of the brick and of the 
box. The faces of the brick are also the faces of the box. 

The second solid figure whose surface has only flatness and straightness that we wish 
to mention is something we will not name here and now. In discussing the brick and its surface,
.he box, we began with the solid object (the brick), then talked about its surface (the box), and 
then discussed the parts of the box (faces, edges and vertices). For the next figure, we shall 
reverse this order. 

We begin with an equilateral triangle PQI? and its inside region, 

Q 

x y 

z 
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and find, as the drawing shows, the points X, Y, Z that are the midpoints of the line segmentsPQ, QR and RP. We then draw the line segments XY, 1Z and ZY as shown in the figure. Thetriangular region PQR has been subdivided into four smaller triangular regions. Take the re
gion XQY and fold it up along the line segment XY, so that region XQY sticks up from the region PXYR. Do the same with ZYR, folding up along ZY, and with PXZ along XZ. Bring the
points P, Q, I? together. Then FT fits exactly together with XQ, QY exactly together with Y-R,and PZ with ZI7. The result is a shell with four faces, each a triangular region, that looks like 
this, 

P, Q, R 

z 

with the points P, Q, R together forming a top tip that is above the region XYZ. Such a surface,one that has four faces each a triangular region, is called a tetrahedronshell. If we fill the shellwith sand or water so that we have a solid, the solid is called a tetrahedron.Another name for 
this solid is triangularpyramid.

We remember that a circular region is a circle together with the inside, and that we
think of it as 

can 
being made of all line segments reaching from the centre of the circle to the circle. 

Circle with Circle with all 
some radial radial segments 

Circle ( 
segments filled in; result 
filled in is a circular region. 

In the same way we can make tetrahedrons. We begin with any triangular region ABC in 
space and any point D not in the plane of the region. 

eD 

C 

Now we start drawing line segments that have one end at D and the other end in the triangular
region ABC and continue until we have drawn all such segments. 

66 



D
 

A B A B 

C C 
At the beginning At the end 

All such line segments taken together make a tetrahedron. 
To make the tetrahedron above, we began with a triangular region. Could we start with 

other regions? What about a polygonal one? 

G 

Can you imagine this filled in with all possible line segments having one endpoint at 0 and the 
other endpoint in the polygonal region shown? The resulting solid is called a pyramid. (This is 
why a tetrahedron can be called a "triangular pyramid".) Can you see what a quadrilateral 
pyramid would be? a square pyramid? 

If we become more general and change from a polygonal region to any region enclosed 
by a simple closed path in a plane, we have a cone. If the path is a circle, we have a circu
lar cone. Here are examples: 

& cone circular cone 

Thus, pyramids are special cases of cones. 
For our next two figures, we vary the construction. In each we shall have a plane re

gion enclosed by a simple closed curve, but instead of having also a point in position let us 
have a line segment in position, with one endpoint in the region, thus: 

The construction is made by drawing all line segments that have one endpoint in the region, 
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are parallel to and congruent to the given line segment, and lie on the same side of the region
as the given line segment. For the region and line segment just above, the construction gives
this figure: 

The result is a solid called a cylinder. The original plane region is the base of the cylinder
and the original line segment the directrixof the cylinder. If the base is a polygonal region, 
the cylinder is called a prism: 

Quadrilateral prism Triangular prism 

If the simple closed path is a circle, the result is a circularcylinder. 

Circular cylinder Circular cylinder 

The surface or shell of a cylinder is called a cylinder surface; the surface of a prism is 
a prism surface. A cylinder always has a top face and a bottom face that are congruent and
parallel. It always has a "side face" that in the case of a prism can be broken up into three or 
more parallelogram faces. Does a prism always have straight edges? How many? Does every
cylinder have some straight edges?

The final figure we wish to mention starts with a point and a line segment having that 
point as one of its endpoints: 

Point 

Line segment 

Sphere 
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Now draw all line segments iii space thr: have this point as an endpoint and are congruent to 
the original line segment. The result is a solid we call a ba7l.The surface or shell of this 
figure is made up of the other endpoints of all the line segments drawn: this surface is a sphere. 

EXERCISE 48-IIA 

1. 	 A circular cone has one verex, no straight edges, one round edge, one flat face and one 
face that isn't flat. Identify these in the figure in the text. 

2. 	 For each of the following, count the number of vertices, straight edges, edges that are 
not straight, flat faces and faces that are not flat: a. triangular prism; b. ball; 
c. quadrilateral prism; d. circular cylinder. 

3. 	 A cube is a quadrilateral prism all ot whose faces are square regions. 
a. Is every cube a brick? Why? 
b. Try 	to give an argument to show that any two faces of a cube must be congruent. 

4. 	 Is every brick a quadrilateral prism? Give your reasons. 

48-12 Points, lines and planes in space 

Let us return now to the points, lines and planes in space that we described in Chapter 
47. We want to see how lines and planes may intersect in space and how they may be perpendicu
lar or parallel. We recall some facts we learned in Chapter 47. 

The first is that there is an important property shared by any straight line and any plane: 
if either happens to contain two points of some straight line, it contains all of that line. This is 
a useful fact to remember. 

Given any two points A and B in space, there is exactly one line segment AB that has 
endpoints A and B, and exactly one straight line AB going through A and B. The straight line 
A is the combination of two rays, A B and TB. It is also the combination, or union, of all line 
segments in space that coicain AB; that is, it is the combination of all lines of sight through A 
and B. 

Given any three points A, B and C in space, either all three lie on some line, like this: 

A B 
C 

or each 	isoff the straight line that the other two points determine, like this: 

In the first case, there will be many planes that contain the line on which A, B and C lie. You 
can see this by letting your left forefinger be the line and putting the little finger of your 
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flat right hand alongside it. This shows one plane through the line. If you move your righthand back and forth but keep the little finger alongside your left forefinger, you will see manyplanes through the line. In the second case, as sawwe in Chapter 47, there is justthrough these three points; you can 
one plane

see this by spreading three fingers of your left hand andfitting your right hand flat on the tips of these three fingers. The plane of your flat right handis the plane through the three points of your finger tips.
There are other ways of making planes. Given just one line therecontain the line: are many planes thatwe saw this in the paragraph above (when A, B and C were on a line). But suppose we are given a line and a point not on the line, is there a plane that contains both the lineand the point? For example, is there a plane that goes through the bottom edge of this page andthrough the tip of your nose? Put your right hand flat on the page but with your thumb spreadout. Keep your hand flattened this way but move it to the position where your little finger is
along the edge of this page and your thumb is pointing towards your nose.
straight towards your nose you will 

If you move your hand see it tracing part of a plane in the air. From this canwesee that a straight line and a point not on the line are contained together by just onecan plane. Youthink of the plane as consisting of all straight lines through the point that intersect the 
given line.
 

Still another way 
 to make a plane is to start with two intersecting ,traightdetermine a plane, lines. Theseas you can see by looking at the floor of your room and choosing two straightedges of the floor that meet at some corner. The floor shows the plane that contains the lines ofthe two edges. Given two straight lines intersecting at a point C', we can think of the plane theydetermine as 
being madeof the point C together with all straight lines that intersect both lines
 
at points different from C.
 

It is easy to find, or make, 
 a pairof perpendicular lines. There are some on this book;and tracing a square corner shows two perpendicular lines. More than this, we remember how,
given a line and a point on it, 

we can construct a second line to be perpendicular to the given line at the given point: we fitone edge of a square corner to the line so that the tip is at the point, and 

then trace the other edge, 

and extend it below. 
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We can do the same with a line in space, 

except that now there are many positions the square comer can be put in with one edge on the 
line and the corner tip at the point. Three of these are shown in the figure above: there are 
many more. If we visualize how some of these lines would look after they were drawn we would 
see something like this: 

If we filled in all of the lines of this sort, we would get a flat layer of lines forming what looks 
like (and actually is) a plane. 

The next step is to see what could be meant by a line and a plane being perpendicular. 
Let us choose a table top for the plane and on it choose any point P. If you put a pencil point 
down at P and move or rotate the other end of the pencil around in the air, the pencil will show 
many straight lines that intersect the plane at P. Is there one of these that we c3uld think of as 
being "perpendicular to the plane at P"? If there is one, it should be one that "stands up the 
straightest". And there is one that does this. To get a picture of it, take a paper straight-edge 
and fold it to make a square comer. Then ,iKi.01d it half-way. The paper will look like this, 
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with three edges that are straight. These are marked 1, 2 and 3 in the picture above. Edges 1
and 2 are the two parts of the original straight-edge of the paper; edge 3 is the edge made in the 
paper when the paper was folded to make the square corner. The three edges meet at the tip of 
the square comer. 

Stand the paper on the table, with edges 1 and 2 resting on the table and with the tip of 
the square corner resting on P. You will see this picture: 

3 
2 

P 

Edge 3 will then be standing straight up from the table top at P. To see that this is really so,shift the paper around on the table but keep edges 1 and 2 on the table and the square comer
tip at P. You will see that edge 3 occupies the same position it did before. It will, in fact,occupy this same position no matter how you stand the paper on the table, as long as you haveedges I and 2 resting on the table and the square corner tip resting at P. This unique position
shows the straight line that pierces the table at P and "stands straight up". This line is calledthe line perpendicularto the table-top plane at P. There is a shorter name: the normal to the 
plane at P. 

This straight line has an important property: it is perpendicular to every straight line 
that goes through P and lies in the plane. This is easy to see, as follows. Let QP be any linein the plane and going through P. Put the paper on the table so that edge 1 fits on QP, edge 2rests somewhere on the table top, and the square comer tip is at P. Then edge 3 is on the
normal line, and the half of the paper that has 1 and 3 for its edges is a square comer that fitsthe normal line and the line QP! So the two lines are perpendicular: there is a square comer 
fitting at their intersection. 

It is this property that is the precise and real meaning of the words "standing up the 
straightest". 

There is another fact about this particular line. All lines in space that are perpendicular
to this line at P form a fan of lines that taken together are the plane of the table top.

We now see that given any plane there are many lines perpendicular to it, but at eachpoint of the plane there is only one such line, namely, the line normal to the plane at that point.We also see that given any straight line in space, there are many planes perpendicular to the
line, but through each point of the line there goes only one such plane.


Two planes should be considered perpendicular if they intersect and each "stands

straight from the other". 
 If we tried to see what this means, we would 

up 
find this as an answer:

each plane contains a line that is perpendicular to the other plane. To see an example of two
perpendicular planes, we can go back to our table top and the paper resting on it. Open the
 
halves of the paper so that edges 1 and 2 make 
a right angle. Look at the plane containing

edges I and 3 and the plane containing tile table top. They 
are perpendicular because, the line
of edge 3 is in the first plane and perpendicular to the second plane, 
and the line of edge 2 
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is in the second plane and perpendicular to the first plane. If we put this paper down on any

plane, each half of the paper will show a plane perpendictlar to the one the paper is resting on.
Finally we get to parallelism, and briefly: two lines in space are parallel if there is a
plane that contains both and if the lines are parallel in this plane. It is easy to find on 
thisbook two edges whose straight lines are parallel. A line and a plane are parallel if the plane

contains a line parallel to the given line. And two planes are parallel if there is a line that is
 
perpendicular to both.
 

EXERCISES 48-12A 
1. 	 There are many straight-edges around us: edges of books, edges of table tops, of doors,


pencils, papers, cardboards and so on. 
Find some of these, and from them choose a pair
whose straight lines do not intersect. Find two more such pairs.

2. 	 Find a pair of straight-edges whose straight lines do intersect. (There are several such
pairs on this book.) Show the plane that this pair of straight-edges determine. 

Do the same with other pairs of edges. Do the two cutting edges of a pair of scis
sors make two straight lines that intersect? Will opening and closing the scissors show 
the plane these lines make? 

3. 	 A door is a "swinging plane": it swings on the line of its hinges and when it swings, it
shows many planes through that line. Find another swinging plane and point out the line
it swings around; put the swinging plane in several positions to show several different 
planes through that line. 

4. 	 Choose two points on a table top, not too far apart. Fit an edge of a cardboard on thesetwo peints. Swing the cardboard like a door or book cover to show many different planes
that gc through these two points.

5. 	 Open and close a stiff book cover to show another swinging plane. There is a line aroundwhich the cover swings (like the hinge line of a door). Choose two points on this line. 
Hold a pencil tip in the air and open the book cover so that it rests against the pencil tip.
This will show the plane determined by the three points that are the pencil tip and the 
two points on the hinge line. Do this for different positions of the pencil tiD. 

Find another swinging plane and repeat this procedure to show the plane deter
mined by three points.

6. 	 A cardboard is a flat object and so is a table top. If you put an edge of a cardboard
down on a table top, the edge shows the line at which the plane of the cardboard inter
sects the plane of the table top.

Find three other pairs of flat objects and show the lines of intersection of their 
planes.

7. 	 Make two paper square cornets and unfold them halfway so that they will stand up on a
table top. They should be like the unfolded square corner shown in the text. Put them 
on your table top ,nJ bring them together so that their stand-up edges (edge 3 in the 
text illustration) are together. If the papers are stiff enough, the longer stand-up edge
should fir all along the shorter one. Put the two papers in new positions and repeat the
procedure; the stand-up straight edges should again fit together. (If they don't, either 
your table top isn't flat or your square corners weren't properly made!)


What line does the stand-up edge show?
 
8. 	 Swing a stiff bo*ok cover on its hinge. The bottom edge of the cover will trace part of a

plane that is perpendicular to the hinge line of the cover. Is the hinge line perpendicu
lar to the plane? Where? What does the top edge of the cover trace? 

Find another swinging plane and answer the same questions for yourself. 
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Chapter 49 
MEASUREMENT 

49-1 Introduction 

If we have two straight-edges and fit them edge to edge one on top of the other, we re
member that they are congruent if they fit like this: 

Top 

Bottom 

In this case, we say that the top one is exactly as long as the bottom one; we can also say that 
the bottom one is exactly as long as the top one. 

If, however, otir straight-edges fitted like this, 

we would say that the top one is shorter than the bottom one, and the bottom one is longer than 
the top one. 

If we had only these two straight-edges, we would do no more. But if we had another 
straight-edge just like the top one (that is, congruent to the top one), we could place it end to 
end with the top one, getting a picture like this: 

711 

Now we could say that one of the top straight-edges is shorter than the bottom straight-edge
but two of the top ones together are longer than the bottom one. If we decide to use the top
edge as a way of measuring length, we could say that in the last picture the bottom straight
edge has length that is more than one top edge and is less than two top edges. 

If we had many copies of the top edge, we could use them to measure across this page 
by placing an end of one of them at the edge of the page, 
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and then placing another end to end with the first, like this, 

and then others straight across the page until they get close to the other edge, like this: 

Five of these almost reach the edge, and six would go beyond, so we say, "It is more than fivetop edges across the page and less than six top edges', or "The width of the page is more 
than five and less than six top edges'". 

It is easy to lay copies of the top edge across the page of this book when the book is
flat. But that is a hard way to measure the height of a man who is standing. So we make otherthings, like knotted string or a ruler. A knotted string has knots evenly spaced, perhaps one
inch apart, a foot apart, or some other distance, depending on the unit of length we are using: 

A B C D E 
Here the part of the string between one knot and the next is congruent to any other piece be
tween two next-to-each-other knots: piece 4B is congruent to piece C and also to piece fDE. 
How many units long is the string in the picture? 

A foot ruler looks like this, 

-]I I I- I _T TI: I 
1 2 3 4 5 6 7 8 9 10 11 12 

when divided into inches. It is like having 12 little blocks of wood, all congruent to each other,
all 1 inch long, and all glued end to end to make the ruler. The little black marks above the
numbers show where the little blocks would have been stuck together. A ruler is much easier 
to use than little blocks; and we don't have to count, just read numbers.
 

What we have been saying shows how 
we make a way of measuring lengths. We choose 
a particular straight-edge, call it our "unit", give a special name to it (some names used are
inch, foot, metre, yard, mile, furlong), make many copies of the unit, and measure any length or
distance by putting these copies end to end until they stretch from one end of what we aremeasuring to the other end. We may connect the copies end to end in the form of a ruler, knotted
string or tape measure, in order to measure more easily and accurately.

We follow this same idea in every measuring, whether we are measuring time, length,
area or the size of angLs. We choose for unit a particular thing of the kind we are measuring
(a certain interval of time, a certain straight-edge, a certain square region, a certain angle) 
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and make many copies of this unit. Then, to measure something of the same kind (an interval 
of time, the edge of a board, the area of a floor, the size of an angle in a triangle) we put to
gether copies of the unit end to end or edge to edge, until they cover as closely as possible 
the thing we are measuring. We then count the number of copies we have used and call this 
number the measure, in our unit, of what we are measuring. Sometimes the copies are already 
put together, as in a ruler, knotted string, protractor (see the next section) or clock. 

This way of making a system of measuring is the first principle of measuring. The 
second principle is that measuring is additive. This really comes from the first principle, and 
means that if we tie together two strings, A and B, 

A 

A Knot B 

and the length of A from one end to the knot is measured and found to be 5 feet, and the length 
of B is found to be 8 feet, then the length of the whole string when we measure it will be 13 
feet. If five foot rulers end to end stretch exactly along A and eight foot rulers do the same 
along B, then these foot rulers together are all fitted end to end and stretch exactly along the 
whole length of the combined string. Since there are thirteen of them, 13 is the length of the 
string. We can state the second principle thus: if we have a system of measuring a certain kind 
of thing and two of these thing are measured separately and then put together end to end or 
edge to edge to make a third thing of the same kind, then the measure of the third thing will 
turn out to be the sum of the measures of the first two things. 

The third principle is that v; - make our units from material that won't change with time 
or movement; a wooden ruler changes very little in length from day to day and from place to 
place. As a result, our measurements of the length of an object will give the same answers, or 
almost the same, tomorrow that they give today, and the same answers when we measure the 
object in Lagos that they would give if we carried the object to Nairobi and measured it there, 
provided the object being measured doesn't change with movement or time. 

The fourth principle is that any two objects that are congruent will have the same meas
ure when measured with the same unit. 

In this chapter we shall develop informally, and just as described above, some stand
ard ways of measuring line segments, angles, certain plane regions (rectangular, triangular, and 
so on) and certain solids. Although you already know most and perhaps all of what will be said 
here, there might be some new facts or viewpoints for you. 

49-2 Measuring angles in degrees 

Angles can be measured using different units, just as distancer' can be measured using 
feet, miles, metres or furlongs (among ot __). Probably the most common way to measure 
angles is to use degrees. This form of measurement is based on the fact that "a straighr angle 
measures 180011. The symbol " ", at the upper right-hand corner of the number denotes degrees. 
Following our measurement principle, a right angle must measure 900; and if we divide a right 
angle into 90 smaller angles, all congruent to each other, then they should all have the same 
measure (since they are congruent) and the sum of their measures in degrees should be 90. So 
each such angle would measure 1'. Thus, if you want to see an angle measuring 10, divide some 
right angle into 90 angles all congruent to each other! And if you want to measure any angle in 
degrees, get many of these angles that measure 10 and put them together side by side until they 
fill your angle, then count the number you used; this is the measure, in degrees, of your angle. 
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But there is a much more convenient way of measuring angles, and that is to use a pro
tractor. If you want to measure in degrees, you should have a degree protractor. In fact, you
should have a degree protractor for each of the children you teach, as well as a large one for 
the blackboard. If they are not supplied, you can ,make them, as follows. Take a piece of card
board with a straight-edge base. Choose a point on the base near its centre as the centre of a 
circle. Choose a radius which is about half the length of tile base of the piece of cardboard,
and draw an arc from one side of the base to the other. This will be a half-circle. Cut the card
board along the half-circle. Your cutout should look like this: 

At this point you can begin to mark onanglo measures the protractor. Mark 00 at the
 
right-hand side and 1800 
at the left. On a sheet of paper, construct a right angle as you learn .d 
to do above. Mark the correct point on the protractor for 900, using this right angle. Then bisect 
the right angle on each side, to get 450 and 135'. Now you can approximately find the points

for 150, 300, 600, 750' 1050, 120', 1500 and 1650. Your protractor should look like this:
 

3 o90 756 

1059'.75 

"00 

Let us recall how we use a ruler to measure the length of a line segment. We put the 
ruler along the line segment with the "zero" end of the ruler fitting at one end of the segment.
Then, where the other end of the segment touches the raler, we read the number on tl. ruler as 
the length of the segment. (Do you see why this does give the measure of the length of the seg
ment?) We follow the same idea when we measure angles with a protractor. We think of part of 
the protractor as being a base edge, or zero edge, 

go
 

Zero, or base, edge 
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of the protractor. We fit this base or zero edge to one side of any angle we are measuring and 
see where the other side of the angle crosses the edge of the protractor: 

A
 
09
 

Here side BC of angle ABC is fitted to the zero edge; the other side, BA, of the angle crosses
the protractor edge at about the 40 mark, so we say the angle measures 400. 

EXERCISE 49-2A 

1. 	 Construct an angle on a sheet of paper. Using the method described above, copy that
angle on the same sheet of paper. Now put another piece of paper over the first angle,
and cut out a copy of that angle. Use it to test the second angle to see if it is, in fact, 
a copy of the first. 

2. 	 Construct an angle on a sheet of paper. Using the method for bisecting angles, divide 
your angle into two congruent angles. Now bisect each of these two angles, so that 
you have cut the original angle into four congruent angles. Make a protractor as de
scribed 	above, and measure each of the angles you made in the previous exercise as 
carefully as you can. Is the measure of each of the four angles half of the measure of the 
two angles and one-fourth of the measure of the original angles?

3. 	 The method we have described for making a protractor involves guessiig the positions
for 15', 300, 600, 750' 1050, 120', 1500 and 165'. With straight-edge and compass can 
you construct a 600 angle, using the method you know of constructing an equilateral
triangle? Make a protractor using the construction you have found for all of the angles 
that you previously guessed.

4. 	 Make a paper square corner and unfold it once. When you look at it, you can see a straight
angle. You can also see some right angles; how many? If we used a 	right angle as a unit 
to measure angles, how many right angles would a straight angle measure? How many
right angles fit together to make a straight angle?

5. 	 This problem teaches a very important fact. 

From a piece of paper cut any triangle you wish. Let us suppose you have named the 
vertices A, B and C and your triangle looks something like this: 

A
 

B C 
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Fold A straight down onto side BC, like this: 

P Q
 

B Zv ,CA 

so that the line PQ of the fold is as parallel to BC as you can make it. Now fold B over to 
touch A, and C over to touch A. Your paper will look like this, 

P Q 

RMS 
A,B,C 

Underneath is arectangle, and on top a rectangle made of three triangles, P11B, PAQ, QSC.
Sides PA and PB should fit along each other, and QA and QC should do likewise. Unfold your
 
paper to show the original triangle; notice where the three angles of the triangle are. Now fold
 
the paper back to make the two rectangles again. The three angles of the original triangle now
 
fit together. What sort of angle do they make fitted together?
 

This shows that you can join the angles of a triangle to make an angle of what kind?
 
Since a 
straight angle measures 1800, we can say that the sum of the measures in degrees of
 
the angles of any triangle is 180.
 

49-3. Measuring length 

It is clearly possible to measure segments. You remember the number line, which looks
 
as follows:
 

< I I I 
-3 -2 -1 0 1 2 3 4 5 

One of the first uses of the number line was to compare two segments, matching them against
the number line. Each segment is placedon theline, with its left-hand end against zero. The 
number at the right-hand end is given to the segment, and called its length. This process of get
ting this number is called "measuring the length" of the segment. If one of two segments is 
larger than the other, then its length is the larger number, as in this picture where AC is longer 
than AB since it contains AB: 

A B C< I I I I I. I - , I 
-3 -2 -1 0 1 2 3 4 5 

Clearly, the measureof the length of a segment depends on what the unit segment is on 
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the number line. It can be much smaller than that above, or much 	larger, depending on what you
want. You know that you can measure things in miles or in inches or in any other unit you may
choose. It is all a question of what you wish to do. If you measure in miles, your number line
has very big unit pieces. If in inches, the pieces are very small. The important thing is to
choose your unit of length, and then go ahead and measure. 

The measures of two congruent line segments must be the same, if you use the same unitto measure their lengths. Arid if two line segments have the same length when measured on a certain number line, then they must be congruent. They fit the same segment on the number line, sothey must fit each other. Thus,.there are two ways in which you car tell whether t 'o line segments
are congruent. The first is to make the one segment fit on top of the other, so that at each endthe two endpoints coincide. The second is to measure the lengths of the two segments with the 
same measuring stick or ruler and find that their lengths are the same. 

One way of measuring the length of a given line segment is to take line segments of unitlength and place them end to end along the given segment to make a string of segments that 
most closely fits the given segment. By counting the number of unit segments in the strings, we 
get an approximate measureof the length of the given segment. 

EXERCISE 49-3A 

1. 	 Take a cardboard straight-edge and make it into a number line by choosing some point
on the edge as the zero point, another as unit point (1), and marking unit lengths in eachdirection, numbering them as you go. Take another cardboard straight-edge, use the left
hand endpoint as the zero point, and mark to the right, using the positive numbers 1, 2, 3and so on. Which straight-edge would you choose as a ruler? Do you need the negative 
numbers in measuringi

2. 	 Using the second ruler you constructed in Question 1, measure the lengths of straightedges of a number of different objects in the room. Use it also to draw line segments 
congruent to some of these straight edges.

3. 	 Make two rulers with different unit lengths. Draw some line segments, and for each seg
ment compare the two lengths given by the two rulers. Is the ratio of the two lengths
the same for all the segments? 

49-4 	 Measuring area 

In discussing area we begin with the figure we called the square, a quadrilateral whose
four sides are all congruent to each oLneC qnd whose four angles are all right angles. Each square 	encloses a plane region which we called a square 	region. Square regions are important
because we will use them as basic regions in building other regions and measuring area. You

remember that to measure length we 'constructed a ruler, using unit segments 
on a line, and youremember that the number line was the model for such a ruler. Now we will see how to measure
plane regions by using certain square regions that we 	shall call "square units". For example,we sometimes measure length in inches. In this case we use "inch-square units" to measure area. An inch-square unit is a square region as shown in this picttre: each edgeof the region is 
one inch in length. 
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You can use these square units to measure plane regions bounded by squares, rectangles,
triangles and parallelograms. To give a very simple case, look at the rectangular region below. 
You can see that three of our inch-square units will exactly cover it. We therefore say that its 
area is three inch-squareunits or, more briefly, 3 square inches. 

If you compare this rectangular region with the inch-square unit above, you will find that its 
horizontal edge is three times as long as that of the square unit, while its vertical edge has
the same length as that of the vertical edge of the square unit. Putting these facts together, we 

say that the number of inch-square units in the rectangular region is the same as 
can 

the number 
we get by multiplying together the number of inch units in the horizontal edge of the region and 
the number of inch units in the vertical edge of the region.

You can think of the following, more complicated casein the same way. Take the follow
ing region enclosed by the outside rectangle: 

I I 
I I 
I I 
I I 
I I
 

I I 
I *81I 
I I 
J C 

I I 
I I 
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As the dashed lines show, you can fit into this rectangular region exactly 12 inch-square units. 
Thus, you can say that the area of the rectangle is 12 square inches. On the other hand, the
base, or horizontal edge, of the rectangle has length 3 inches and the altitude, or vertical edge,
has length 4 inches. And 3 x 4 = 12. 

These two examples should lead you to make a guess about the area of a rectangle. But
before putting that guess on paper, look at one more example, more complicated than the last1 1 
one. Here is a rectangle which is 3 inches at the base and 1 inches at the altitude. 

I I 

--

I
K- -

I 
t . .t1-

I 

I I 
I I 

What can you say about its area? From the drawing you see that you can put in 3 inch-square
units, 4 halves of inch-square units, and 1 quarter of an inch-square unit. Thus, its area must 

be 5 inch-square units, or 511 square inches, which is the same 
21 

as square inches. But 

21 1 1 
S=2 x 

Look at the results you have obtained. For the rectangle 1 inch by 3 inches, the area was 3 square inches. For the rectangle 3 inches by 4 inches,
7 3 

the area was 12 square inches. For 
21
 

the rectangle 1 by inches, the area was T square inches. From this yotu can guess the 
following rule for the area of a rectang.,lar region: the area of the region (measured in inch
square units) equals length of base (measured in inches) times length of altitude (measured in
inches). This rule would still be true if we used feet, or any other unit of length, instead of in
ches. These are the facts that are meant when we say, very briefly, that for a rectangularre
gion, area equals length times height. 

You should lead your students to discover this fact, rather than teaching them right away
to memorize it. Eventually they must learn it by heart, but at the beginning it is better to find it 
out by discovery. 

A very similar problem concerns the region inside a parallelogram. You can proceed in
the same way to find the area, if you notice the following trick. Look at this parallelogram: 

I 

You notice that the right-angled triangle at the right-hand end is congruent to the triangle in
dotted lines at the left-hand end. If you remove the triangle at the right from the parallelogram 
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and place it over the triangle at the left, you change the parallelogram region to a rectangularregion that has the same area. And the two regions have the same length and the same height.But you know that the area of a rectangle is length times height. Thus, all you need to do inthis case is to find the length and the height of the parallelogtam. If you the parallelomeasure 
gram above, you will see that its height is 1 inch and its length is 4 inches, so that its area in 
square inches is I x 4, or 4. 

Finally, you can consider a triangular region in the same way. Look at the triangleABC below. You can see that you can construct a second triangle AB1 congruent to the firstand connected to it on the side I-B. Since triangle ABC and triangle ABI) are congruent,clearly their areas are equal. But the complete figure A'BV is a parallelogram and it has thesame length and the same height as triangle .ACB. You know that for a parallelogram its areais its length times its height. Thus, the area of each triangle must be half that of the parallelogram; that is, it must be half the product of the length of the base of the triangle by tile height
of the triangle. 

D 

C 

You can measure the length of the base of the triangle and the height of the triangle and get the1 1
 
values 2 1 inches and 
 12 inches, respectively. Thus, the area is given by the product, 

7 

so that the area of the triangle is 1§ square inches. 

EXERCISE 49-4A 

I. Construct a rectangle and find its area by marking off the number of inch-square unitswithin the region enclosed by the sides. Then measure the length of each side and find
the area by taking the product of length and height. Are the re.itsu the same?2. Construct inch-square units of cardboard by drawing squares one inch on each side andcutting them out. Measure the area of the cover of this book -y placing the inch-squareunits on it until there is no space left. If you need to, you can cut up your inch-squareunits to fill the edge regions with smaller pieces. Keep count cf the number you
Then measure the 

use. 
lengths of the sides of the book and compute the area as described 

above. Compare the two answers.
3. Use the inch-square units you made for Question 2 to find the area of some irregular

region. Fit as many as you can into the region and cut out pieces of others to fit thesmall edge regions. Keep count of the number you use. Would you have obtained a better 
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~1 1
result if you had used smaller square units, for example, pieces I or even I of an inch 

p 2ce 10 
on a side? Why? 

4. 	 Draw a parallelogram. Then construct a rectangle so that regions inside these two 
quadrilaterals have the same area. Draw a triangle and then construct a parallelogram
whose inside region has twice the area of the region inside the triangle. 

5. 	 Construct a series of triangles and parallelograms and find the area of the region inside 
each. 

The last region for which we wish to find a way to measure area is the region bounded by 
a circle. This region gives us a hard problem, since it turns out that there is no simple way to 
express the area of a circular region. We have to make the best approximation for it that we can. 
Let us attempt to find that approximation by using inch-square units. The circle drawn below 
has a radius of 2 inches and, thus, 	 a diameter of 4 inches. 

We have drawn a set of inch-square 	units, and have attempted to find the area of the circular 
region in this way. If you count up the total number of square units you find 9 wholes, 4 halves 
and 8 quarters, making a total area of 13. This figure is probably too high, since the parts of 
the quarters not covering any of the circular region seem to have more area than the uncovered 
parts of the circular region. However, it does not appear to be a bad approximation to the actual 
area. 

We can 	 try to find a better approximation to the area by using smaller square units. Let 

us take a congruent circle and use 	 -L -of-an-inch-square units. In this way we will get a very
10

small grid, and we will find some difficulty, therefore, in counting the total. This approxima
tion is shown in the following picture: 
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If you add up the total number of square units in the picture, not counting some of thle edge 
pieces because they are too small, and counting other as full pieces to make up, you find a 
total of 1244 unit squares. Obviously 100 such square units make up an inch-square unit, 
and so this gives the area of the circle as 12-44 square inches, instead of the previous esti
mate of 13 square inches. The second estimate is very likely to be more accurate. 

You will notice another circle, with the same centre as the circle we have been discuss
ing. This second circle cas,has radiusge of one inch and a diameter of two inches. If you add up theFrmtemreacrt a w 
total number of square units in this smaller circle, you find a total of 312 unit squares. As 

above, this represents an area of 3.12 square inches, which is approximately - of the area of 
\ II4 

the previous circle. You can see from these results that the area of the circular region seems 
to be multiplied by four when the radius doubles. From this you might guess that the area de

the thtsquareisoseonof the nirtoalis, areahpcue be the squareconisgof appomafthelthe radius multipliedpendsas aondueon radius;ri thatnumberthe n might whosaeuntvalu 3edge 
by some constant. It can be shown that there is actually such a constant. It is so useful and 
famous in mathematics andpiecssciencebcauemall thatantey contigreit has a oherasname,ull maeletteru, "uT",yu calledf8doo special theiecsGreekt 5 
Cipi" in English. From the first calculation, when you used inch-square units, the number 77 

works out to be approximately: 

Area =32_13 

Square of radius - 4 =32 



or more roughly L. Since it is not a rational number, there can be no completely accurate way 
of writing the number irindecimal or fractional form, but we can use either of these two ap
proximations in most cases.
 

It turns out that this same number rtappears when you wish to find the length of the
 
circle itself, and the resulting formula tells you to multiply twice the radius by 
 7Fin order to 
find that length, which is also called the circumference. 

EXERCISE 49-4B 

1. 	 Using a compass, draw as carefully as you can on a large 	sheet of paper a circle whose 
radius is 4 inches. Using a ruler marked in tenths of an inch, construct square units 
I of an inch on a side, in the same way as in the previous drawing. Count the number 

of square units which cover the circular region, and from that number try to find a more 
accurate approximation to 77. 

2. 	 Lay a string or a thread as carefully as you can along the circle which bounds the region
considered in Question 1. Measure the length of the string to the nearest tenth of an 
inch. Remember from above how 1r and the circumference of a circle are related. Use this 
relation to find a value for 17.See if the value you have found is almost the same as that 
found from the area. 

49-5 	 Measuring volumes 

Just as a line segment could be used as a unit for measuring length and a square region
could be used as a unit for measuring area, so a cube can be used as a unit for measuring vol
ume. 	

cube with
In our case we shall choose an inch-cube unit; that is, for our unit we choose a

all edges one inch long. We shall say that the volume of this cube is one cubic inch. The 
drawing below shows a cube 	with each edge 2 inches long, and as you can see it has a volume 
of 8 cubic inches. 
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Other cube units can be used to measure the volume of solids, just as we used squares of
various sizes to measure an area enclosed by given lines. 

Here is a picture showing the six faces of a box. All six faces are rectangular regions.If we filled up the box, we would have a brick. What is the volume of the brick? 

Two of the faces of the box are 1 inch by 3 inches. Two of them are 1 inch by 2 inches. And

two of them are 2 inches by 3 inches. If you atterapt to fit inch-cube units into the box, 
as in
the following picture, you find that 6 such cubes can fill the box, so that 6 of our inch-cube
 
units make the brick, and the volume of the brick is 6 cubic inches.
 

In general, if you study a number of such figures carefully, you will find that the volume of a
brick is given by the product of the lengths of any three edges which meet at one vertex.


"Brick" is a short name for a rectangular prism. Another kind of prism is 
a triangular
i
prism, which has for its faces five plane regions, two of them triangular and three of them U 

rectangular. 
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(You can construct a triangular prism surface by cutting out a copy of the next diagram, folding 
along the dotted lines and pasting or taping the tabs on the adjacent faces to close the figure.) 

It is also possible for a prism to have some slanting sides and edges. However, we will 
not deal with such here. 

The volume of L.triangular prism is the area of the triangular base times the height of 
the prism. 

Another flat-faced figure we shall recall is the tetrahedron. You will remember that it 
looks like this, I4k~ 

and can be constructed if you copy the following drawing on stiff paper, cut out on the solid 
lines, fold on the dotted lines and past or tape the tabs on adjacent surfaces. 
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Another solid is the square pyramid, pictured below. 

A tetrahedron and a square pyramid are both pyramids. The volume of any pryamid is 1 
Lim product of its height by the area of its base. 

EXERCISE 49-5A 

1. Construct out of stiff paper the surfaces of a cube, a rectangular prism, a triangularprism, a pyramid with a triangular base and a pyramid with a square base. The construc
tion diagrams for the triangular prism and the triangular pyramid are given in the text. 
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Using these models, you should be able to make the diagrams for the cube, the rectangu
lar prism and the square pyramid and construct the surfaces from your diagrams. 

2. 	 On a piece of paper draw a picture of a box 2 inches by 3 inches by 4 inches. Show the 
inch-cube units which fill the box. In this way, compute the volume of the brick that 
fills the box. 

3. 	 Using a trick similar to that used for the area of a parallelogram, attempt to find the vol
ume of a prism two of whose faces are parallelogram regions and four of whose faces are 
rectangular regions. Construct the prism surface to help you do the problem. 

4. 	 In the same way as in the previous problem, attempt to find the volume of a prism, two of. 
whose faces are triangles and four of whose faces are rectangles. Again, you slwuld 
construct the prism surface or at least draw a picture of it. 

The final figures which we must consider are those with curved faces. There are three 
of importance. The first we have already looked at, namely, the sphere. The only additional thing 
we need to say about the sphere is that it is possible to find its volume using the same constant,

4. 
u. It turns out that this volume is given by - times r times the cube of the radius. 

3 
We must also think about the figure which we see so commonly as a container for tinned 

food. This is the cylinder. An example is the circular cylinder which, you will remember, looks 
like this. 

It turns out that the volume of a cylinder is the area of its base multiplied by its height. In or
der to find the volume of a circular cylinder, multiply together the height of the cylinder, the 
square of the radius of the base and rr. You should be able to work out a formula for the area 
of the surface of a circular cylinder, including the top and bottom, for yourself. 

The final figure to be considered is the cone, which has the following appearance. 

You are 	familiar with the cone from many objects in the natural world. You can construct a 
cone by taking a circular piece of paper, cutting along one radius from the edge to the centre 
and folding the two halves of that radius across each other. As you continue folding them 
across, 	 the cone will roll into shape. Tape or paste the top side to the bottom when you reach 
the desired shape. 

,'A" 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

EXERCISE 49-5E 

Find the volumes of spheres whose radii are, respectively, 3- inches, 7.5 inches, 13
 

inches, 16 feet, 4000 miles (the last number is approximately the radius of the earth).

Construct a circular cylinder with 
height 6 inches and radius of the base 2 inches.
 
Find the volume and 
 the surface area of this cylinder.
 
Construct a cone as described 
 in the text. Name instances of cones in the natural world
and bring some to class. flow can you use these to teach about cones?
 
Track down in some book the formula that gives the volume of a cone in terms of the
 
height of the cone and 
 the area of the base of the cone.
 
The area of an ellipse is given by the product 7rab where & 
3 half the length of the
 
major axis of the ellipse and 
b is half the length of the r.!'nor axis of the ellipse. A 
manufacturer of electric razors has designed a razor container that is an elliptical cylin
der having height 5 inches and with 6 inches and 4 inches as the lengths of the two 
axes of the ellipse around ,.e base. If the container were solid, what would be its vol
ume? 
A teacher has a box and 150 children's wooden blocks to put in the box. Each block is 
a cube that measures 2 inches on each edge. The inside of the box measures 18 inches 
by 10 inches by 6 inches. Can he fit all the blocks into the box?
Abu and Ben argue as to who is better at guessing volumes. A school teacher says he 
will test them, and shows th'.m a wooden triangular prism. Abu guesses the volume to be 
100 cubic inches, and Ben guesses it to be 150 cubic inches. The teacher measures the 
prism with a ruler and obtains these measurements, 

10" 

and says Ben's guess is better. Was the teacher corect? 
Abu and Ben think the test was not fair. They want to use a box instead of a 

triangular prism. So the teacher chooses a book called Basic Concepts of Malthematies 
and has them guess its volume in cubic inches. Ben looks at it and says, "60 cubic 
inches". Abu thinks a moment, measures t..book by eye and by his handspan, thinks
another moment, and says "90 cubic inches". The teacher then measures the book with 

71
 
a ruler and finds the dimensions to be 9 of an inch, 8i inches and 11 inches. Did 

Ben or Abu make the better estimate? How do you think Abu arrived at his figure? Who 
is the better guesser of volumes? 
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Chapter 50 
IDEALIZED 
GEOMETRIC FIGURES 

50-1 Introduction 

Until now we have talked about points as dots made with chalk or a pencil, or as holes 
made by pinpoints. We as straight marks made onhave thought of line segments the blackboard 
or paper or as stretched strings, and of plane regions as sheets of paper on a flat desk and so 
on. We have thought of them as physical objects. But in geometry "points", "line segments" 
and "planes" are not ihysical objects, but rather are ideas that come from physical objects.
We come to think of lines and planes as sets of points, and we think of points as having no size 
and therefore no shape. How do we do this, and why? It will be the purpose of this chapter to 
discuss our ideas of point, line and plane. 

50-2 Thinking about points 

Let us make a chalk mark C, an actual dot
 
on the blackboard. We ofcen call this a point. But
 
is this really what we want to mean by a point?
 
Suppose that we make a small dot P with a pencil ,
 
inside the chalk mark. Would we want to call P a
 
point? It comes closer to what we want than C p
 
does. Why? For one thing, we could have made
 
the pencil mark somewhere else inside the chalk
 
mark, say at P'. We would then want to say that
 
P" was a different point from P. Then if C is a
 
point, it has other points inside it. This does not
 
seem to be what we want. 

Would we want to call P a point? No, even
 
a dot made with a very sharp pencil is not really a 

point, because with a very sharp needle you could P
 
locate "points" inside it. A prick made with a
 
needle in a piece of paper is probably as close as 
we can get physically to the idea which we have in 
our minds when we think of a point. We use the 
word to express an absolutely precise location. 

C 
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50-3 Thinking about lines 

Le t us begin again with two chalk marks (dots), A and B, and draw the chalk along astraight-edge to join them. We often call AB a line segment. But is this what we really mean by 
a line segment? 

Let P be a pencil point inside A and Q a pencil point inside B. 

Q 

A
 
P 


Draw the pencil along a straight-edge to connect P to Q. Then we have a straight line segmentPQ entirely inside the line segment AB. This does not seem right either, but PQ comes closerto what we want to mean by a line segment. Can we come closer still? Yes. Let P and Q now be
dots made with a sharp pencil on a piece of paper. Connect them with a pencil mark, using astraight-edge as a guide. Now use a needle to prick a hole P' inside P and a hole Q' inside Q.Take a razor blade and with a straight-edge as a guide cut the paper from P' to Q'. This will
separate the previous line segment PQ into two pieces lengthways. Does this fit your idea of
 
what a line segment should be?
 

As a matter of fact, if we now 
push the two cut edges together as tightly as possible,
the cut itself is about as good a realization of a line segment as we can hope for. 

50-4 Thinking about planes 

How can we think of a plane region? We can imagine a piece of paper laid flat on the topof a desk or table. Is this really a plane region? No, because it has thickness. We can imaginea still thinner piece of paper, say a piece of tissue paper. This we feel is more like what we

have in our minds when we think of a plane region.


We can do still better. Take a pan of water. The surface of the water is close to a plane
region. How thick is it? We can think of the surface as separating the water below it from the airabove it. Does the surface have water in it? If so, we could make it thinner. In the same way,if the surface had air in it we could also make it thinner. In imagination, we think of the plane
region as without any thickness. 

You can help your imagination by taking a tiny drop of oil, such as is used to oil a sewing machine, if this drop is placed on the water, it will spread o,:. ovel the top of the water and 
cover the whole of it. It must be very thin. 

With a matchstick remove a little of the oil film and put it o7 the surface of a fresh panof water. This oil will spread out to cover the water in the second pan. It must form a film whichis much thinner than before. If you repeat this experiment in.imagination, you will get a picturewhich comes close to the idea of a plane region that we use in geometry. 
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Chapter 51 
GEOMETRIC FIGURES 
AS SETS OF POINTS 

51-1 Revision of sets 

Do you remember when we talked about sets in Chapter 1? Sets have an important 
place in geometry, as you will soon see. Let us begin by revising the idea of set. A set is any 
collection of objects. They may be mathematical objects, such as numbers, or they may be non
mathematical objects, such as birds or people. The objects in a set are called the members of 
the set. For example, 

11, 3, 5, 7, 91 

is the set whose members are 1, 3, 5, 7 and 9; and 

is the set whose members are a football, a star, a triangle and a man. 
Here is a picture of three points. Remember that this is merely a picture of the three 

points. You have to imagine the ideal points without size. 

Since a set can be a collection of any objects, we can imagine the set of those three ideal 
points. Our set will have these three points as members and it will have no other members. 
Certainly, this is a set of mathematical objects. 

How shall we describe our set? We can say thai it is "the set of the three points pic
tured above". Just to make sure that we know exactly which points we are talking about, it 
might be a good idea to give th points names, such as A, B and C. 

A 

Be 9C 
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Then we can list the names of the points and say that we are thinking of the set of points1A, B, C1. You know that we are thinking of the set of three points which we named A, B and C.
Of course, we are NOT thinking of the set whose members are the letters A, B and C. 

EXERCISE 51-1A 

1. Give a name to each point in the following pictures of sets of points and list the sets. 

0S 
e _T 

oS 

* 0 S 

Let us look at the number line. 

SI I I I I I>) 
-3 -2 -1 0 1 2 3 4 

We can consider the set of points for the integers -3 to 4. How many points are there in this

set of points? We can describe 
our set as "the set of points for the integers -3 to 4". Can youthink of a good way of listing the set? There are many different ways of naming the points, but
 
one of the easiest ways is to name the points -3, -2, -1, 0, 
 1, 2, 3, 4, because the points are

already labelled with those numerals. Then you can write 
our set as the set of points 1-3, -2,-1, 0, 1, 2, 3, 41. And since you know you are talking about a set of points, you will not con
fuse the set with the set of numbers 1-3, -2, -1, 0, 1, 2, 3, 41.
 

All of the examples we 
have had of sets of points have been finite sets. We can alsohave infinite sets of points. The set of points for all counting numbers on a number line is aninfinite set of points, and we can write it the same way we listed the set of counting numbers: 

11, 2, 3, 4, 5, .... 

The set of points for all integers on a number line can be written 

1..., -2, -1, 0, 1, 2, .... 

There are dots at both ends because the list has no beginning and no end. As you know, theorder in which you list the members of a set is unimportant. So another way of writing down the 
set of points for all integers is 

10, 1, -1, 2, -2, 3, -3, ... I. 
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EXERCISE 51-IB 

1. Think of some more examples of infinite sets of points. Which of the sets you thought 
of can you list? Can you find more than ;ne way of listing any of your sets? 

51-2 Straight lines as sets of points 

Can you think of the set of points for all of the fractions between 0 and 1 on a number 
line? You know that this set must be an infinite set because the set of fractions between 0 and 
1 is an infiniteset. You cannot completely list all of the fractions, since you cannot even com
pletely write down all the fractions with 1 as the numerator. Here is the set of fractions with 1 
as the numerator: 

It is necessary to use dots at the end to indicate that the list goes on endlessly. 
It may be difficult for you to imagine the set of points for all fractions between 0 and 1, 

because there are infinitely many points and because some of them are so close together. Be
fore discussing this set of points, let us study the fractions themselves. It is surprising, if you 
have never seen it done, that you can arrange all fractions between 0 and 1 in a list with dots 
at the right-hand end. The way to do this is first to write down all fractions with denominator 
2, then all fractions with denominator 3, then all fractions with denominator 4 and so on: 

112123123412.34512345612345 

,2' 3' 3' 4' 4' 4' 5' 5'5' 5'6' 6' 6 6' 6' 7' 7' 7'7 7' 8' 8'8' 8'8' 

8'8 -"'"18 8 ' '8 

As you write them down, cross off every ffaction which you have already written in a different 

way. For example, you should cross out because it was written down already as 2.You 

should cross out for the same reason. Why should you cross out 6and are? The list you left 

with will begin like this. 

1 2 1Vv 3 1 2 3 4 1 ' 5 1 2 3 4 5 6 1 

Every fraction between 0 and 1 would be in the list (if yon could write it out endlessly), and 
every fraction would appear only once because of all the cross-outs you made. 

Now %ve can return to the set of points for these fractions. To imagine this set, first 
locate the unit piece between 0 and 1 on the number line. 

< I 

->
 

0 
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Remember that we are thinking of the number line as an ideal line without any width. Then im

agine that on to the line we put one of our ideal points at the location for the fraction 2, then 
point for -,then 	one for . By now you have a set of three points, and your number line can3,3

be pictured like this. 

< iI I I > 
01 1 2
 

0 3 
 1 

Keep putting on points one at a time in the same order in which you listed all the fractions. 
When you have arrived at 2, you have a set of twenty-one points and your number line will look 

like this. 

1 	 3 3 3 3 5 7 
7 87 5 4 6 8< I I II,I I III I I,,, II I IIII > 

0 1 1 1 2 1 2 1 4 52 5 4 6
86547 	 5 2 7 8 3 7 5 7 

Since the fractions get very close together, the points on the number line will get quite
close together. If you thought of points as dots you draw with a pencil, the number line wouldbecome 	very crowded and soon the points would begin to overlap. But we do not have this trou
ble now becduse we are imagining the points as being without size, and they will not overlap 
at all. 

EXERCISE 51-2A 

1. 	 If you make the unit piece of your number line 1 inch long, what would be the distance 

between the points for the numbers - and 3 
2. 	 On the same unit piece as 

2 4
in Question 1, what would be the distance between the points 

1 and1 7
 
for t8e numbers a for the numbers 
 and 9 

3. 	 On the same unit piece as in Question 1, what would be the distance between the points 
for the 	numbers  and i---? Can you imagine a distance that small between two points?100 11
Now suppose you could keep putting on points endlessly until there is a point for every

fraction between 0 and 1. Next you could cover the piece from -1 to 0 with points for fractions. 
Then cover the pieces from 1 to 2 and from -2 to -1, then from 2 to 3 and from -3 to -2 and so 
on. If you 	go on you will cover every fraction on the entire number line with points. 
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Of course, you may not have put on a point for every number on the number line. Some 
such numbers were discussed in Chapter 37 on real numbers. For example, there is a number 
for the length of the diagonal of a square with side of length 1, and this number is not equal to 
any fraction. So we must put on a point for that number, too. Then after you have put on a point 
for every other number which is not equal to any fraction, you will have covered the entire num
ber line with points. 

It really doesn't matter whether we think of the number line as the original ideal line 
or whether we agree to think of it instead as simply the set of points which we just construc
ted to cover the line. You may usually think of it in either way that you prefer. But it is often 
convenient in geometry to use the idea that the number line is t1'e set of points. Therefore, for 
the remainder of this chapter let us agree to regard tile number lint -.s the infinite set of points 
which lie in a straight line which we just constructed. 

We have seen how number lines can be thought of as sets of points. This is not our fi
nal goal. We would like to regard all straight lines as sets of points. Do you see how we can 
do this? If we take any straight line, we can freely choose a zero point and a unit piece on it. 

< I I > 
0 1 

Then we regard our straight line as a number line and, thus, as a set of points, as we have just
done. Therefore, we will agree to regard any straight line as a certain infinite set of points 
wht 2h lie in a straight line. 

51-3 Operations on point sets 

Do you recall that we talked about union and intersection of sets? Remember that the 
union of sets A and B is the set of all the things which are members of A or are members of B. 
We write the union as A U B. The intersection of sets C and D is the set of all things that are 
members of C and members of D. We write the intersection as Cfl D. If the sets that we are 
talking about are sets of points, we can consider their unions and intersections. 

For example, let P be the set of points IA, C, El, let Q be the set of points 1B, D, F1 
and let R be the set of points JA, 0, G1. 

oA oB 
Go
 

eC *D 

sE oF 

Then P UQ IA, B, C, D, E, F1. We have drawn a shape around P UQ. Also PAQ II. Do 
you remember that II is the way we write the empty set, which has no members ? 
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EXERCISE 51-3A 

1. 	 List the sets of points P U R, Pfn , QU i?, Qnf?. 
2. 	 Draw shapes around each of the sets that you have found. 

Did you find that PU 17 = IA, C, D, E, GI and Pn it = [AI? Point A is the only point
that is a member of both P and R. Therefore Pn R = IA. But members that the sets have in
 
common (such as the point /1) appear only once in the union.
 

We can also find the unions and intersections of more than two sets. For example,
 
(PU Q) U!? = 1A, B, C, ), E, F, Gland (PN Q)nl i = Hi.
 

Suppose now we let A be the set of points on 
 the number line for the whole numbers
 
from 1 to 10.
 

<I 	 I I I I I I I I 
0 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Let B = 12, 4, 6, 8, 101, the set of even whole numbers between 1 and 11. And let C = 11, 3, 5, 
7, 91 and D = 12, 3, 4, 7, 8, 91. Then (BUD)u(AUC) =11, 2, 3, 4, 5, 6, 7, 8, 9, 101 and 
(BnD)nA = 12,4,81. 

EXERCISE 51-3B 

Find these sets.
 
. A n(B n)) 2. (C nD)OA
 

3. 	 BUC 4. [(BUD)UC]UA 
5. 	 (A U/)) U c 6. [B n(D nA)] n(Anfc) 

We can also find intersections and unions of sets with infinitely many members There 
are m'any examples that we can find of sets of points on the number line. Of course, we will 
not be able to write down complete lists of the sets we are using. Let I be the set of points for 
all integers: I = 1..., -2, -1, 0, 1, 2,...I. Let C be the set of points for the counting numbers: 
C =11, 2, 3, ... 1. Let E be the set of points for even integers: E = 1..., -4, -2, 0, 2, 4, ... I. 
Then Enl C is the set of points for even counting numbers: EF' C = 12, 4, 6, .... E U C is the set 
of points for all even integers and all positive odd integers. 

EXERCISE 51-3C 

Look at the following sets of points:
 
I is the set of points for all integers.
 
E is the set of points for all , n integers.
 
N is the set of points for negative integers.
 
F is the set of points for all fictions between 0 and 1.
 
H is the set of points for all fractions with denominator 2.
 

1. 	 List these sets of points as well as you can and locate them on the number line. 
Find the following sets, list them if you can and locate them on the number line: 

InE Ilfr)F (il n N) nE 
EflN E U (N U 11) (1 UN)U (E U F) 
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Let us 	look at some more difficult examples. If we have infinitely many sets, we may
think of the union of all of these sets and the intersection of all of them. The union of infi
nitely many sets will be the set of all things which are members of any of the individual sets,
and the intersection will be the set of all things which are members of every one of the sets. 
Suppose we let J be the set of points for rational numbers from 0 to 1, inclusive. Let B be the 
set of points for rational numbers from 1 to 2, C the set of points for rational numbers from 2 
to 3 and so on. Do you see what the union of the sets A, B, C and so on will be? It will be the 
set of points for zero and all positive rational numbers on the number line. Can you find the in
tersection of the sets A, B, C and so on? If a point is in the intersection, it must belong to all
of the sets. In particular, it must belong to the set A. Therefore, the point will be on the unit 
piece. Furthermore, it must belong to the set C, for example. This means that the point must be 
one of the points from 2 to 3. Can a point on the unit piece be between 2 and 3? No, this is im
possible. Therefore, the intersection is the empty set, 11. 

As another example, consider the three lines k, rn and n shown here. We have agreed to 
view these lines as sets of points. 

m 

k 

B 

The intersection kn n is just the set consisting of the point B. What are kn n and m nn? Do 
you see that (k f"in)nn = II? The union (k U m) U n is the set of all points making up the ge
ometric figure consisting of the three lines together. 

EXERCISE 51-3D 

1. 	 Imagine ali of the lines passing through a single point P. Each of these lines is a set 
of points. Vthat is the intersection of all of these sets? 

2. 	 What is the union of all the lines in Question 1? 

51-4 	 Planes as sets of points 

One more thing we would like to do is regard planes as sets of points. In an ideal plane
there are infinitely many straight lines. What we would like to do is to consider enough lines 
in the plane so that the union of all the sets of points making up the lines will completely cov
er the entire plane. There are many ways of doing this. One way is as follows. 

Choose one line in the plane and then choose one point which is not on the line. Let 
us call the line k and the point P. 

oP 

k 
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For each point on k we can construct a straight line joining that point with ihe point P. Now 
let us take as our lines all of the lines which join points of k with P. The points making up
these lines will cover almost every point in the plane. Can you find any points which will not 
be covered?
 

Suppose we draw a line m through P which is parallel to the original line k. No point on m 
(other than the point P) will be on a line joining P with a point of k. Do you see why this is so? 
Suppose some point Q on rn is also on a line joining P with k. Then there is a line containing 
P and Q which intersects the line k. But rcinember, only one straight line may contain two dif
ferent given points. Therefore, the line m which contains points P and Q must be none other 
than the line containing P and Q which intersects the line k. Can m be parallel to k and also 
intersect k? 

We have just seen that the lines joining P with all the points on the line k do not 
quite cover the plane. In addition we will take the line m through P and parallel to k. Are you
convinced that the union of the sets of points making up all of these lines completely covers 
the plane? There is a point in the union for every location along the line m because line m was 
taken in the union. There is also a point in the union for every lucation along the line k, be
cause for each point on k, we have a line in the union passing through it, namely, the line join
ing that point with P. What points are left? 

R 

m
 

k 

If any point R is left over, it will surely be on some line containing P, namely, the line join
ing P and R. It cannot be on any line joining P with a point of k. Therefore, R would have to 
be on the line through P parallel to k. This line is m, which is already in the union. Therefore, 
R could not have been left over. 

In the remainder of this chapter, we shall agree to regard a plane as the infinite set of 
points which covers the entire plane. 
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EXERCISE 51-4A
 

1. Find some other ways of choosing infinitely many lines in a plane, so that the union 
of all the sets of points making up the lines covers the entire plane. 

51-5 Subsets 

When discussing sets, we can speak of subsets. Recall that if A and B are two sets 
and every member of set A is also a member of set B, then we say that A is a subset of B.
For example, the set U1,3, 51 is a subset of the set 1, 2, 3, 4, 5, 61. The idea of subset is 
useful in geometry, because if we think of geometric figures as sets of points, we can see 
the parts of the figures as subsets. 

EXERCISE 51-5A 

1. Say which of the following sets of points are subsets of others of the sets. 

a. The set of points for integers on the number line 
b. The number line 
c. The point for zero on the number line 
d. The set of points for rational numbers on the number line 

2. Make up six other subsets of the number line. 
3. Make up six subsets of a plane. 

One of the subsets you could have given for the plane is a straight line. A straight

line in the plane is the subset consisting of those points of the plane that lie on 
 the straight
line. Any two intersecting straight lines intersect in exactly one point, and of course the
 
point is a subset in the: plane that contains just one member.
 

One of our basic geometric figures is the line segment. 
 Can we think of it as a set of
 
points?
 

<I I 
A B k 

Certainly we can. If k is a line and A and B are two different points on k, then the line seg
ment AB is the set whose members are all points on the line between A and B and, in addition,
the points A and B themselves. Then any line segment is also a subset of the plane in which 
it lies. Note that the endpoints of the line segment are also included in the subset. 

Let us look at the following example consisting of two line segments, TB and C"D. 

A D 
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The union of the line segments, AB UC)V, is the figure consisting of the two segments together. 
The intersection, AB MC,is just the single point E. Let p be the plane in which the two 
line segments lie. Then the following statements are true. 

1E1 is a subset of AB.
 

A1B U CD)is a subset of p.
 
AB f-CD is a subset of fI).
 

C) is a subset of A U CD.
 
The empty set, I I, is a subset of ,!AB.
 

Notice that we just said that the empty set is a subset of A-B. Do you see why this is
 
so? AB would have to contain any member which is in the empty set. The empty set has no
 
members, and so there are no members of it which are not members of ARB. Do you see why the
 
same reasoning shows that the empty set is a subset of any set?
 

EXERCISE 51-5B 

1. 	 Name six other pairs consisting of a set and a subset of it that occur in the previous
 
figure.
 

2. 	 Draw a quadrilateral and give the vertices letter names. Express the quadrilateral as
 
the union of its four edges. Express each vertex as the intersection of two edges.
 

3. 	 Suppose k and ni are two straight lines in the same plane. 
a. 	 If k and m are different names for the same straight line, what can you say about 

their intersection? their union? Write your conclusions in symbols using n and U. 
b. If k 	and i are different straight lines, what can you say about k flm? 

4. 	 Suppose k is a straight line in a plane and AT a line segment in the same plane. 
a. If B lies in the straight line k, what can you say about k UAR and k A;B? 
b. If A-B lies in a straight line different from k, what can you say about k U T-B and 

k nAB?
 

In Question 3b you should have seen that if k and miintersect, then their intersection
 
is a single point A: k n m = Al.
 

kk	 m 

m 

On the other hand, k and m might be parallel, so that you would write k N m - I. 
There is another simple fact that we can observe about two straight lines. Their inter

section is a subset of each of the original lines. If k and m intersect, the intersection point A 
lies on both k and i, so that IA I is a subset of k and a subset of in. If the lines are parallel, 
the intersection is the empty set, and IIis certainly a subset of every set in the plane, in
cluding 	k and m. 

Do you see that we can formulate a general property of intersections? if A and B are 
two sets, then their intersection, A n B, is a subset of the set A and a subset of the set B. To 
see that this is always so, just recall what the intersection is. If an object is to be a member 
of 	A n B, it must be a member of A and a member of B. But if every object in A n B must be a 
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member 	of A, A nB must be 	a subset of the set A. Every object in A OB must also be a member of 	B, and so A n B will be a subset of B. 

51-6 	 Paths and circles as sets of points
 

We have not yet thought of other geometric figures, such as 
circles 	and angles, as setsof points. Furthermore, the straight line is the only path we have considered as a set 	of points.We can n'owconsider all paths, because we have the idea of a subset 	of a set of points. Here is 
a picture of a path.
 

Of course, we are thinking of the path as rot having any thickness, just as a straight line hasno thickness. Then we can 	think of the path as a subset 	of the plane consisting of all the pointsin the 	plane which lie on the path. In other words, the path is the set of all points which the
path goes through. This applies, for example, to a circle. 

A circle 	is the subset of the plane consisting of all points lying on the circle.
Since circles and straight lines are sets of points,

their intersections. If you have 	
let us see what we can say about 

a circle C, you can draw a straight line k that does not inter
sect the circle at all. 

B 

k C C 

m 
kl C = 11. m nC=IA, Bi. 

It is also easy to find a straight line m which intersects the circle in two points. You may askif it is 	possible to find a line 	which intersects the circle in only one point. Any line which justtouches the circle but which does not go through the inside of the circle will intersect the circlein only one point. Here is a picture of such a line. 
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C 
m 

F 

in C=IFI. 

A line 	which intersects a circle in only one point is called a tangent to the circle. 

EXERCISE 51-6A 

1. 	 Can you find more than one tangent to a circle? 
2. 	 Discuss the possible sets in which a line segment can intersect a circle. 
3. 	 Picture examples of paths that intersect a circle in the empty set, in a set with one mem

ber, two members, five members. 
4. 	 Picture examples of paths that intersect a straight line in the empty set, in a set with 

one member, four members, ten members. 
5. 	 Can you think of a path that intersects a straight line in an infinite set? 

51-7 	 Ray, half-plane and angle 

We would like to connect our idea of angle with the idea of a set of points. Let us see 
how this can be done. 

If we look at a straight line and a point A on it, ther the set of points consisting of A 
and all points in one direction along the straight line from A will form a ray, and the set of 
points consisting of A and all points in the other direction along the straight line from A will 
form the opposite ray. So we can view a ray as a subset of the straighf line in which the ray 
lies. 

Another subset of the plane that will be useful in thinking of angles will be a half

plane. 

p 

105 



Here is a picture of a straight line in a plane p. The straight line together with all of the pointsof the plane which lie on one'side of it make up a subset of .he plane called a half-plane. Oneof the half-planes formed by the straight line k in the picture is labelled H. Of course,straightaway that k separates you seethe plane into two half-planes, 0 and It. What is the intersection 
G( iit? What is the union G U If? 

Now look at two straight lines k and in which intersect in a point A. Suppose that 1l isa half-plane formed by k and J is a half-plane formed by m. What is the intersection nI nj? 

k 

B 

In the picture, Hand J are shaded. The intersection is the set whose members are elements ofboth H and J. So in the picture, iIn J is shaded twice. Do you see that H n J consists of theangle BAC together with its inside? Earlier in geometry we saw that an angle was the union oftwo rays with the same endpoint. What are the two rays here? What is their common cnidpoint?
One of the rays is AB, and using the union and intersection symbols, you can write AB 
(Hnl) n k. 

EXERCISE 51-7A 

Using the union and intersection1. symbols, write each of the following sets: 

a. AC 
b. 02C 
c. 1A1 

2. Draw a picture of a triangle ABC. Explain how you can express the set consisting ofthe triangle together with its inside as the intersection of three half-planes.
3. Many n-gons and their insides can be expressed as the intersection of n half-planes.

Explain how this can be done.
4. Find an ex'ample of a quadrilateral which cannot be expressed as the intersection of 

four half-planes. 
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Chapter 52 
SYMMETRY 

52-1 Symmetric geometric figures 

Look at the four geometric figures pictured here. What do you notice about them? 

I- I/ 

Do you see that the left half of each figure is just the mirror imag,: of the right half? Here are 
some drawings of figures whose left halves are not mirror images of their right halves. 

EXERCISE 52-IA 

1. 	 Draw six geometric figures whose left halves are mirror images of their right halves. 
2. 	 Draw five geometric figures whose bottom halves are mirror images of their top halves. 

3. 	 Draw four geometric figures whose left halves are not mirror images of their right 
halves. 
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If you have a figure drawn on a piece of paper, there is a way that you can test it tosee if its left half is the mirror image of its right half. Try to fold the figure in half along astraight line. This will fold the left half over on
actly 

to the right half, and if the two halves fit exover each other, then they are mirror images of each other. Trace the first four figures inthis section on pieces of paper and try the folding experiment. If you have carefully traced thefigures, the halves will fit on each other when you fold the paper. Here are some figures withfolds shown as dotted lines. If you trace them and fold each figure along the line, the halves
will fit over each other. 

I JZ //// , / 

If yoy fold a figure into two halves that will fit over each other, the straight line along whichyou make the fold is called a line of symmetry for the figure. We will say that the figure is symmetrical with respect to the line of symmetry. Notice that the circle shown above has more thanone line of symmetry. Can you find other lines of symmetry for the circle? Where do all of its
lines of symmetry intersect?
 

Of course, drawings on paper are 
not ideal geometric figures and you cannotideal geometric figure by folding. test an
You can only imagine ideal geometric figures and lines of symmetry for them. But this work with drawing on paper will be good to use with your pupils, be

cause of the activity that it involves. 

EXERCISE 52-lB 

1. Find all of the lines of symme try for a
2. 

square. How many lines of symmetry are there?Find all of the lines of symmetry for a rectangle that is not a square. How many lines of 
symmetry are there?3. How many lines of symmetry are there for an equilateral triangle? a regular pentagon? a 
regular hexagon? 

52-2 A symmetry test 

One of the simplest of geometric figures is a line segment. You can see that the perpendicular bisector of a line segment is a line of symmetry for it. 
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A B
 

Since the distances AP and 3P are equal, the points A and B coincide when the fold is made.
 
Let us look at one of our earlier figures together with a line of symmetry for it.
 

I 
m 

Suppose a point A is on the figure. If we construct the line m through the point A and perpen
dicular to the line of symmetry, this line will intersect the line of symmetry in a point P. Now 
let us fold the paper again. The two halves of the picture fit exactly on top of each other, so 
that some point B of the figure must be on top of the point A. This will be a point in which the 
line AP intersects the other half of the figure. Trace the figure and try folding it. The points B, 
P and A are all on the straight line m, and since B and A coincide when the paper is folded, the 
distance BP must be equal to the distance AP. The line of symmetry for the entire figure is also 
a line of symmetry for the line segment AB. 

If you are given a figure and a straight line, you can test to see if the line is a line of 
symmetry by folding the paper that the figure is drawn upon. But perhaps the figure is not drawn 
on a piece of paper. Perhaps it is scratched on a flat piece of wood. How would you test it? 
Imagine that these figures are scratched on a flat board. 

This is what you can do. Choose a point A on the figure, as shown below. Then construct the 
straight line segment AB, which is perpendicular to the dotted line, intersects the dotted line in 
a point P and such that the distances AP and BP are equal. If the dotted line is a line of sym
metry, then B must be a point of the figure. 
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A B
 

And if B is always on the figure, no matter 	which point of the figure we choose for A, then theline is 	a line of symmetry. You could not test every point A, bKc.ause the set of points on thefigure 	 is endless. But you can get a gooJ. idea whether or not 	the line is a line of symmetry forthe figure. Of course, if a single pair of points A and B fails the test, the line is not a line ofsymmetry. The figure shown on the left has the dotted line shown as a line of symmetry. The
figure 	shown on the right does not. 

52-3 	 Symmetry of a straight line
 

We can use 
this test for some ideal geometric figures that we cannot 	dra,,For example,consider an ideal straight line. It extends endlessly in two directions, and we cannot put it onto a piece of paper and fold it. But we would 	like to show 	 that any line perpendicular to it is aline of 	symmetry for it. So let k be an ideal line and m be any line perpendicular to k. If A is apoint on the line k, we test 	the line m as a line of 	symmetry by constructing a perpendicular APto the 	line in and extending it to the point B such that BP = AP. 

M
 

A P B k 

Since 	the ideal line k itself is perpendicular to the line m, P and B both lie on the 	line k. Theimportant thing is that B is on k.No matter which point A we try, the 	corresponding point B willbe on 	 k. So m must be a line of symmetry for the straight line k. 

EXERCISE 52-3A 

1. 	 Let k and m be two ideal parallel lines ane n be the line parallel to them which is exactly midway between them. Show that for the geometric figure consisting of the lines k
and m, the line n is a line of symmetry. 

k 

n
 

I0 
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2. 	 Make up more exercises for your pupils involving lines of symmetry for ideal geometric 
figures. 

52-4 	 Making symmetrical figures 

There are some interesting ways that your pupils can make symmetrical geometric fig
ures. Take a piece of paper and fold it in half. 

0 	 0 

Then cut a design in the paper, starting at some point along the fold and returning to the fold 
with the cut. You can even make several cuts. When you open up the paper, the piece will have 
the fold as a line symmetry. (Can you see why this is so by folding the paper together again?) 

Your pupils can make more interesting figures by folding a paper twice or more before 
cutting. Each fold will then be a line of symmetry. 

o 	 fold fold fold 

Another easy way that your pupils can make complicated geometrical figures is this. 
Fold a piece of paper in half. Then put a drop of ink between the halves and press them to
gether. The ink will spread out between the paper and make the same blot on one half as on the 
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other. When you open the paper, the fold will be a line of symmetry for the ink blots. 

I
 
EXERCISE 52-4A 

1. 
2. 

By folding and cutting paper, make some symmetrical cutouts.By folding pieces of paper once in half and using drops of ink, produce some symmetri
cal ink blots. 

112 



UNIT X *Verification of Constructions 

Chapter 53 
GEOMETRIC CONSTRUCTIONS 

53-1 Introduction-bisection of a line segment 

In teaching geometry, we must first teach the pupil to recognize and name certain 
shapes and objects. We also must teach certain properties of these shapes or figures. We must 
devise ways of drawing or making some of these figures. 

We have seen that line segments and circles were used as "building blocks" in drawing 
many figures. We can draw more complicated 
figures by using line segments and circles 
according to certain rules. For example, let us 
recall how to draw a line segment perpendicu- ( p 
lar to a given line segment AB at a point P on A /D B 
A-B. We first locate points C and D on B 
equally distant from P by drawing a circle with Fig. 1(a) 
centre P [Fig. 1(a)]. Then with C and D as cen
tres, we draw two more circles with equal radii 
larger than PC. These intersect at E and P is 
the desired segment [Fig. 1 (b)]. In the figure we E 
made, it seems reasonable that EP is perpen
dicular to AB. But how do we convince the / 
pupil that this method will always give the A P i 
perpendicular we want? Does the method de- C I Dpend upon the radii of the circles we used?\ , 

\ -

Will it work if we use larger radii? It would ....-. 

be unfortunate if the method works on this 
one line but not on another line, or at one Fig. 1(b) 
pL, P but not at another. 

The pupil should also realize that the figures we draw are not really what we want to 
consider as line segments or circles, for they will be "too thick". Does this method work if we 
use th*:ner chalk or pencil marks? 

EXERCISE 53-IA 

Draw three different points P, Q and R on a line iB. By using the method de
scribed, draw lines perpendicular to VP through P, Q and R, in each case using a differ

113 



ent radius to make the drawing. Do all three line segments look perpendicular to V? 
Use your protractor to check. 

In the example we just discussed, the construction of the perpendicular to a given linesegment seems to work and we shall later show that it does work. Here is another construction 
to consider. Let us bisect an angle; that is, divide it into two congruent angles. We first recallthe simple method for finding the midpoint of a segment AB. 
radius, one with centre at 1 and the other with 

We draw two 
C 

circles of the same 

centre at B. If the radius is chosen large 
enough, these intersect at C and /. The seg
ment CD intersects AB at M [Fig. 2(a)].
two segments A,t and BA! seem of equal 

The 
A M B 

length, 
AB. 

so we say that A is the midpoint of 

53-2 A pitfall 

Fig. 2(a) D 
Now let us try to bisect an angle A"C. 

We propose to try the following method. Connect 
A and C with the segment AC [see Fig. 2(b)]. A 
Now use the mnethod given above to find the 
midpoint M!of AC. Since Ml is half-way between
A and C, 'we may surely hope that the ray B
 
bisects the angle ABC. If we measure the two 
angles in Figure 2(b), we shall see that they
do turn out to be congruent, so perhaps the C 
method is a good one. Fig. 2(b)

But we did not say how to select the 
points A and C on the twosides of the angles. Suppose we had not taken them as in Figure 2(b),where they are both the same distance from B. Let us try the same method again using different 

A 

B M 

Fig. 2(c) C 

points A and C, as in Figure 2(c). It looks as though the method works in Figure 2(c), even when
the two points A and C are not taken at the same distance fiom C, for M is again half-way between A and C and 9P should be "half-way" between BA .,nd B-. Measure the angles AfM andC9M with your protractor to see if they are congruent. It looks as though we have found a very
good method for bisecting an angle. 

Let us try it once again with still other points A and C, as in Figure 2(d). 

7t
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B 

Fig. 2(d)C 

Here again we have selected A and C on the two sides and found the midpoint M of AC. Thus, 
M is half-way between A and C, as you, can easily verify by measuring AM and CM. But is AM 
congruent to CBM? It is quite clear that Of is not the bisector of ABC! One does not even have 
to measure it; it is obvious from just looking at it. What went wrong with our "wonderful" 
method? 

Perhaps the trouble is in the way we chose the two points A and C. Maybe C is too far 
from B, or A too close. Try a few more obvious choices of A and C yourself -nd see when the 
method seems to work. Does it seem as though A and C must be nearly the same distance from 
B, as in Figures 2(b) and 2(c)? Perhaps, but then at what distances does the method begin to 
fail? It 	is clear th:,i we have found a method which seems to work in some cases but not in 
others, and it does ,')t seem clear exactly when it begins to go wrong. It shows us that we must 
always be careful not to say that because the method seemed to work in a few cases that we 
try, it will work in all cases. We want to have a way that will enable us to convince ourselves 
and others that the method we are going to use will give us the result we want. That is the ob
ject of this chapter. We are going to study such ways of convincing people that the rules we 
give for constructions give us what we want from them. 

The argument that we use to convince someone that a statement is true is called a 
"proof". When we have given such a convincing argument, we say that the statement has been 
"proved". 

Incidentally, the method given above for bisecting an angle works only when A and C 
are ?,t 6 w'tly the same distance from B. Even though it seemed to work in Figure 2(c), it did 
not, for JiM is very close to the true bisector and we could not easily see the difference. Even 
our measurements with a protractor lack the accuracy to be sure that AfM and CBM are not 
congruent, but it can be proved that they are definitely not congruent unless A and C are 
equally distant from B. This again shows the importance of a method of proof, for sometimes 
our eyes deceive us and we must appeal to logical reasoning to help us out. 

EXERCISE 53-2A 

1. 	 What does "to bisect an angle" mean? Answer in your own words. 
2. 	 With your protractor, draw an angle of 750, and then bisect it using the same instrument. 

Are ! ou sure that you have done a perfect job? Explain. 
3. 	 On a large piece of paper, use a protractor and ruler to draw a right angle ABC. On BA-, 

mark a point P4 four inches from B, P 5 five inches from B and P6 six inches from B. 

Locate, by sliding your ruler along Bf--, points Q4' Q5 and Q6 on B-7 such that PQ4' 
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P 5 Q5 and P6 Q6 each has length 10 inches. Let M4 , M5 and M6 be the respective mid
points of P4 Q4, p 5 Q5 and P6Q6 Draw BfM'4' B-M 5 and B-76 . Are these all different? 

53-3 A strategy of proof 

We have devised ways to copy triangles in Unit I. We showed the method to our pupils ona few triangles. The method seems to work well on the triangles we tried it on, but will it workfor all triangles? We should hope so, but in order to be sure, we must devise some way to prove"once and for all" thV the methods we have used do actually give us what we want in all cases.But how does one prove that something is true for all possible situations that can ever arise?We cannot draw all possible triangles and see if our method of copying them works for everyone. We would never finish. It is certainly a triumph of man's reasoning power that he can devisemethods of proving such far-reaching statements which appiy to all possible situations, without 
having to try each one separately. 

flow is this done? Sometimes one tries to convince people that a statement is true byshowing that it is true for some cases and then claiming that it is always true. Such an argument
is called an inductive argument. It is often used in the physical sciences where natural phenomena are observed many times and then conclusions are drawn. But this kind of reasoning isnot convincing in mathematics, for what works in some cases may not work in all cases. Wegave one example of this in the incorrect riethod for bisecting an angle. Here is another ex
ample from arithmetic. 

Suppose we want to "prove" the statement, "Every positive odd integer different from1 is a prime". We begin with 3; it is a prime. The next one is 5; it is a prime. The next one is7; it is a prime and so on. We have tried several cases and they all seem to work, so we mayfeel confident that the statement is true. But then we try the next odd integer, 9, and find that 
9 = 3 x 3, and we find that our argument fails. 

On the other hand, consider the statement, "Every prime number different from 2 is odd".We begin by looking at some cases: 3 is odd, 5 is odd, 7 is odd, 11 is odd and so on. Have weproved the statement? No! But we can give a proof which does show that ev.ry prime other than2 is odd. For what are the possibilities for an integer? It can be even or odd. If it is even, itcan be divided by 2. But if it has 2 as a factor, then it is not a prime, unless it is 2 itself.
Thus, if a number is a prime different from 2, it must be an odd number. This proof does show 
that all primes exccpt 2 are odd! 

Now we consider how we intend to convince people that the statements we madetrue for all cases under consideration. We begin 
are 

with certain facts that are so simple and ob
vious that no one would question them. These facts are called "postulates" or "axioms",they tell us certain basic things about 

and 
the building blocks of our geometry: points, lines,planes, triangles, circles and so on. These postulates are accepted as being true in all situati( .s. We then proceed from these postulates to other facts which follow from them by logicalreasoning. These facts, which are deduced from the axioms by logical reasoning, are called

theorems. This process ultimately will lead us from the truth of the simple observations, whichwe called postulates, to the truth of much more complicated theorems, which are not at all ob
vious. This was our original goal!


Why will these postulates be necessary? Why can't we 
prove everything? Suppose
wish to 

we 
prove some statement. We say, "This statement is true because . .. " and then we givea second statement as the reason. But then someone asks, "Why is the second statement 

true?" We reply, "The second statement is true because ... " and give a third statement. But 
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why is this third statement true? This can go on endlessly unless we agree to the truth of some 
more obvious statements, so that ultimately the sequenceof questions "Why is that statement 
true?" will be answered by, "It is one of our postulates which we have accepted as true", and 
we can stop what would otherwise be an endless 'hain of questions. 

EXERCISE 53-3A 

I. 	 Answer the following question. Why are you present in this class? Then ask a question 
about the given answer, and so on as far as you can. When you finally decide to stop at 
one answer, ask yourself why you stop. Could you not continue? 

2. 	 State any geometric "fact" you have learned. Can you prove this fact? Could you suc
cessfully answer the question "why" to each statement you make in the proof?
 

Our postulates and theorems will all be about geometrical figures. Since we want to be 
sure that our argument is convincing, we want to be very careful that we all agree about the 
meaning of the things we are talking about. It would make no sense at all if one person thought 
that a triangle had four sides while another thought a triangle had three sides. They certainly 
then could not agree on theorems about triangles. In order to avoid possible confusion, we shall 
very carefully define each of the geometrical figures about which we speak. Once again, we de
fine things us*ng words which themselves iaust be defined in terms of other words, which must 
be defined in terms of ... and so on. Where does this process stop? Here again we shall take 
certain 	words as being so common to our experience that we do not have to define them again. 

In the last few sections, we have been talking about "points", "lines", "planes" and
 
"space". We shall now assume that we 
 know what these words mean. We have also used the 
words "set of points", "union of two sets", "intersection of two sets", "subset of points", 
often enough to know what they mean. We shall as before use capital letters to denote points. 
If two distinct points A and B are on a line, we shall denote the line by AB. We also have seen 
what we mean when A, B and C are on the same line and B is between A and C. In Figure 3, 
B is between A and C, while in Figure 4 and Figure 5, B is not between A and C. 

A B C 
I I Fig. 3 

A C B 
I I I > Fig. 4 

B A C 
< I I 1) Fig. 5 

Thus, we shall begin our more careful study of geometry by agreeing that we know what 
we mean by the following list of words which we refer to as "undefined te-ms". 

1. Point 
2. Line 
3. Plane 
4. Space 
5. Between; that is, "B is between A and C". 
6. Set of points, subset, union and intersection. 
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EXERCISE 53-3B 

A pupil may ask the following questions: 
a. What is a theorem? 
b. What is a postulate? 
c. What does "undefined term" mean? 
d. When can a word be left "undefined" and when does it require a definition ? 
e. When does a statement require a proof and when can we accept it as obviously true? 

How would you answer these questions? 

53-4 Some simple definitions 

We shall now set out to define some of the other geometrical words in terms of these un
defined terms. We are going to begin our own little dictionary. The words will not be in alphabetical order, but in the order we shall need them. They will be preceded by the word "defini
tion". For example: 

DEFINITION 1: A geometrical figure is a set of points.
DEFINITION 2: Points are collinear if they are on the same line and coplanar if they 

are in the same plane. 
DEFINITION 3: A line segment with endpoints A and B consists of A and B and all 

points on AB which are between A and B iLFig. 6(a)].
We shall denote the line segment with endpoints A 
and B by AB. 

How would you now define "ray"? See it your A Fig. 6(a)

definition gives the same points as the one given be-


DEFINITION 
 4: A ray with endpoint A pass-
B 

ing through B is the union of A-B and the set of all 
points C on AB such that B is between A and C. We 
shall write AB for the ray with endpoint A through B 
[Fig. 6(b)]. (The arrow indicates'that AB extends 
endlessly beyond B.) 

Some of the constructions that we shall try to justify in this chapter have to do with
copying figures. What do wewe want when ask for a copy of some figure? In a sense we 
want a figure with the same size and shape. We want one to be an exact duplicate of the other.
We have been using the word "congruent" to describe two such figures. We have then: 

DEFINITION 5: Two figures are congruent if one is an exact duplicate (or copy) of the
other. We use the symbol = to mean "is congruent to". 

For plane figures, one can sometimes place one of the figures on top of the other to seeif they fit together exactly, that is, to see if they are congruent. Sometimes it is more convenient 
to trace a given plane figure and place the tracing over the other figure to see if they are congru
ent. We shall later discuss tests which will enable us to determine whether certain figures are 
congruent just by measuring certain parts of each and comparing these measures. This is very
often easier than moving the whole figure or making a tracing. 

EXERCISE 53-4A 

1. Can you say what it means for two figures not to be congruent? 
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2. 	 Can two solid f'gures be congruent? Can you explain what it would mean for a solid fig
ure to "fit together exactly" with another solid figure? What would it mean for two 
chairs to be congruent? 

53-5 	 The initial postulates 

We can now state our first few postulates. Recall that these are to be facts or state
ments that we are willing to accept as being true. Do you find each of them reasonable? 

POSV;TLATE 1: There is one and only one line segment having two given points as 
endpoints. 

This certainly agrees with our intuitive concept of a line segment. Draw two points on 
a sheet of paper. Take a ruler and join them. Can you have two line segments having the same 
two endpoints? 

We next consider the length of a line segment and observe that when we measure lengths, 
th,! following things are true. 

POSTULATE 2: Lengths of line segments have the following properties. 
(a) 	 After a unit of length has been adopted, the length of any line segment AB is a positive 

real number, which we will write as AB. 
(b) 	 Line segments are congruent if and only if they have the same length. 
(c) 	 If C is between A and B on AB, then AB = AC + CB. 
(d) 	 If .4, B and C are not collinear, then AB < AC + CB. 

The last part says that in going from 
A to B the straight line path from A directly 
to B is shorter than the path which first goes B 
to C and then from C to B (Fig. 7). 

Postulate 2(d) can be "tested" by 
drawing a triangle ABC. Take a string 
which just reaches directly from A to B. 
Now try to make the same piece of string A Fig. 7 
reach from A to C and go around C to B. 
Will it reach from A to C and go around 
C to B? Will it reach from A to C and then on to B? 

It is convenient to define the sum of two segments which have a common endpoill,. 
DEFINITION 6: If C is between A and B on AB, then we say that AB is the sum of AC 

and CB, and write AB = AC + CB. This enables us to rewrite Postulate 2(c) as follows: If 
AB = AC + CB, then AB = AC + CB. 

DEFINITION 7: The distance from A to B is the length of the line segment AB. 
Once we accept what distance means, we can say what we mean by a circle. Try writing 

your own definition of a circle and see if it agrees with the one below. 
DEFINITION 8: A circle with centre at A and radius r is a figure consisting of all 

points which are in a plane containing A and which have distance r from A. A line segmentA-B, where 
A is the centre and B is on the circle is called a radial segment. The figure consisting of all radial 
segments of the given circle is called the circularregion or disc with centre A and radius r. 

EXERCISE 53-5A 
1. 	 Suppose you are asked to do the following: given a line segment AB and a point 0, draw 

a circle with centre C and radius AB. Say in your owa words what this means. Draw a 
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line segment Za,d label its endpoints A and B. Locate a point C. Now carry out the in
structions given above. 

2. Notice that all of the radial segments of a circle have the same le.igth r and will all becongruent to one another. [Postulate 2(b) says segments of the same length are congruent.] Why was it necessary to say that the circle consists of points in a given plane?What figure would one get if one merely took all points in space that are at a distance r from A? Write your own definition for a "sphere" with centre A and radius r. 

53-6 Construction of congruent line segments 

We are now ready to try to "erify that one of our constructions actually gives us what wewanted. "'e bc-in with a very simple one to illustrate the method of writing the argument. Weshall discuss how one copies a given line segment. That is, suppose we are given a line segment AB, and we want to make a segment congruent to AB but having one endpoint at C and theother endpoint on a given ray CD. We shall first describe the construction and then verify that
what we made actually is a segment congruent to AR.
 

CONSTRUCTION 
 1. Given a line segment AfB and a ray CD, construct a line segmentCE with E on Ct so that CE AR-B.
 
Method: With radius AB, draw a circle
 

FG/I with centre C (Fig. 8). This circle inter-
 Asects CD in a point E. 
_B

Then i is the desired A B
 
segment.
 

THEOREM 1. The segment CE con-
 E D
 
structed above is congruent to AB. G Co
 

Prooff: CE is a radial segment of a
 
circle of radius AB, by our construction. Thus, 
 Fig. 8 
CE = AB. 

But since segments of the same length are congruent [Postulate 2(b)], we conclude 
that CE =_A-, and the proof is completed.


We 
 have written this proof in the form of a short paragraph. It consists of several assertions (statements) each supported by a reason. There is a very convenient form for writingsuch arguments which displays more This is what is
clearly the assertions and the reasons.

called the two-column, or formal, style of proof. We shall rewr;, the above proof in

column style and see 

two
if you do not agree that it sets things oft more clearly.
 

Proof (in two-column style):
 

Assertion Reason 
1. CE is a radial segment of the circle 1. The segment CE was so constructed.FGH. 
2. CE = AB 2. All ralial segments of a circle have length 

equal to the radius by Definition 8, and AR 
is the radius of FGH.3. CE -AB 3. Segments of the same length are congruent 

by Postulate 2(b). 
Now that we have finished the verification of this simple construction, let us take alittle closer look into what was involved. We made use of Postulate 2(b) and Definition 8. Buthave we used any more?-You might say that we used Definitions 3 and 4 when we spoke of line 

120 



segments and rays. That is true. We have actually used much more than this when we made the 
actual construction. For in the very first step, we said "Draw a circle of radius AB with centre 
C". Ifwe want to be very careful about all small details, we should now ask, "How do we 
know that we can draw such a circle?" We next said, "The circle FGil intersects the ray CD in 
a point E". How do we know that the circle intersects a ray from its centre in one and only one 
point? Once we have the points C and E, can we draw the segment CE? The answers to these 
questions are all intuitively yes, and one would hardly worry about them. But if one wanted to 
base everything on explicitly stated postulates, he would have to add some postulates to justify 
that the steps in the constructions can actually be carried out as described. In what follogs, we 
shall not worry about this aspect of the problem. We shall assume that the steps of each con
striction can actually be performed as described and then only prove that the resulting construc
tion gives us what we want. 

You may, however, be interested in seeking some of the postulates you would have to 
add to those given already or to be given later to justify the constructions. We shall list a few of 
these here just to give an idea of what is involved. 

(A) There is one and only one line through two given points. 
(B) It is possible to draw a line segment with given endpoints A and B. 
(C) It is possible to draw a circle in a given plane with given centre and radius. 
(D) Given a circle with centre A and a coplanar ray AB, there is a single point where 

4B and the circle intersect. 
(E) If the sum of the radii of two coplanar circles is greater than the distance between 

their centres and the difference of the radii less than that distance, the circles intersect in two 
distinct points. 

(F) If C is any point of AB, then there is a positive integer k such that k x AB > AC. 
These are some of the postulates one would use to justify that the steps described in
 

each construction are possible. The last one assures us that we can extend a 
 line segment as 
far as we wish in either direction. You may enjoy using these postulates yourself to give the 
reason why each step in the following constructions is possible. In the text itself, we shall 
only verify that the end result does what we want it to do. 

53-7 Construction instruments 

One further comment should be made about what we are doing in the next chapters. We 
are going to discuss geometrical constructions-that is, the drawing of certain geometrical fig
ures. We shall try to draw these figurer using only a pencil, a ruler to draw line segments and 
a compass to draw circles. There are many other devices available for drawing geometrical fig
ures and your pupils will be familiar with some of them already and will learn how to use others 
later. 

For many centuries people have been fascinated by the prospect of being able to draw 
a great many figures just using the ruler and compass. It had become somewhat of a game to see 
how far one can go using only these two simple tools. We shall continue to play this game in our 
study. We hope that when you teach this subject, you can help your students to enjoy seeing 
how many figures they crn draw with these two tools. 

Our methods will have an advantage over using measurements with the ruler and the pro
tractor, for with a ruler or protractor, one is limited in accuracy by the markings on the instru
ments. We shall learn to copy line segments and angles without having to rely upon the accuracy 
of a measurement. 

Let us now continue on our way! 
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Chapter 54 

ANGLES AND
 
TRIANGLES
 

54-1 Angle and triangle definitions 

The next figures that we shall construct will involve an-les and triangles. Let us first
define these figures carefully.

DEFINITION 9: An angle is a figure which consists of two distinct rays which have thesame endpoint. The common endpoint is called the vertex of the angle, and the two rays arecalled sides or edges. If the two edges of an angle lie on the same line, the angle is called astraight angle. The symbol APC denotes the angle with vertex B and edges B-A and BC. (Fig. 9)It is sometimes convenient to name an angle with a single letter. In such cases we shall write 
a, and read this as "angle a". 

In Figure 9, the two rays separate

the plane containing them into two pars, 
 A 
one of which we should like to call the in- A
side or interior of the angle and the other
 
part the outside or exterior. For example, 
 ED .Dwe would like to say that D is inside 

AV
ABC and E is outside ABC. Can we give

a rule to help 
us decide in general whether \ 
we should call a given point inside or out- \
side an 
angle? First let us observe that B
 
the straight angle ABC in Figure 
10 also
 
separates any plane containing it into two 
 Fig 9 
parts, D lying in one part and E in the
 
other. But neither of these parts iooks 
 OD 
more "inside" than the other, so we
 
shall not try to define inside and outside

for a straight angle. 


C
We shall merely say that a straight A
angle (or for that matter, a line) separates 

any plane containing it into two parts, 

*E
 
Fig. 10


each of which is called a kalf- lane.
 
DEFINITION 
 10: If ABC is not a straight angle, then a point D not on ABC is inside(or interior to) ABC if the ray B9 intersects the line segment AC. Likewise, when A'C is nota straight angle, a point E not onA -A ABC andin the same plane as AB C is outside (or exterior to)

ABC if BE does not intersect AC. 
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Look back at Figure 9 to see if this definition agrees with the intuitive notion we had of 
inside and outside an angle. Notice that B- does intersect AC whereas BE does not. 

EXERCISE 54-IA 

1. Copy these angles and shade the inside of each of them. 

~C 

6AB 

(a) (b) 

B C
 
Fig. 11
 

Just for completeness, it should be
 
mntioned that there is another way of form- A
 
ulating the definition of the inside or inter
ior of an angle which uses half-planes. For
 
an angle ABC which is not a straight angle,
 
C lies in one half-plane lying on one side of B
 
the line AB. Call this half-plane H. (Fig.
 
12(a).) Similarly A lies in a half-plane K on H
 
one side of the line BC (Fig. 12(b)). The
 
interior of A9C could also have been defined Fig. 12(a)
 
as those points which are common to both Hi
 
and K; that is, i n K (Fig. 12(c)).
 

Just as we describe the size of a line X 
segment when we measure its length, we now 
wish to discuss the size of an angle. You re
call that in Unit I you measured angles with 
a protractor, reading off a certain number of 
degrees. Let us consider what we did. We as
signed a number to an angle to serve as its C 
measure, just as we assigned a number to be 
the length of a segment. In the case of seg- Fig. 12(b) 
ments, we assigned a certain number of units, A 
such as inches, feet or miles. In the case of 
angles, we assigned a certain number of de
grees to each angle. We wrote m(ABC) for 
the measure of the angle ABC. We used the B
symbol o to denote degrees, so that 45' was CC 
read "forty-five degrees". Now what meas
ures did we assign to a given angle? We can Fig. !2(c) 
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agree to assign the measure 1800 to any straight angle. To talk further about measures of other
angles, 	 it is convenient to say what we mean by a ray being between two other rays. 

DEFINITION 11: If ABC is not a 
straight angle, we say that the ray D is 
between BA and BC if BD is inside the \
 
angle A9C (That is,the points of BD, ex
cept for B itself, are inside ABC'. In
 
Figure 	13, BDis between BA 

A
a,d BC, B D 

while BE is not. If ARC is a straightB 
angle, any ray B9, with D not on AABC,
 
is between Bl'and B-". In Figure 14,
 
BD is between BA and BC, and so is
 
BE. Fig. 13 

D 

A B C 

I'E 

Fig. 14 

We can now talk about the sum of two angles. When BD is between BA and B*-'(as in
Figures 13 and 14), we can consider the two angles ABD and DBC. We then say:

DEFINITION 12: If B~D is between BA and BC, then ABC is the sum of A9D and DBCA A Aand we 	write ABC = ABD + DBC.
 
When we measure angles A9D 
 and DPC in either Figure 13 or Figure 14, we get two

numbers, and we would certainly expect that the meacure of ABC 	 would be the sum of thesetwo numbers. Try it and see if this is the case. We can write this fact in the following way.
If ABC 	 =ABD + DPC, then m(APC) = m(APD) + m(DPC). 

EXERCISE 54-IB 

are1. In the figure below, state which rays between which other rays (for example, HE is
between B7 A ). Express as many angles as possible as sums of other angles. 

FE 

D 

C 

B A 
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If two angles are congruent, one is an exact duplicate or copy of the other. We would 
certainly expect congruent angles to have the same measures. Let us now summarize the ob
servations we have made about the measure 
of an angle to give us our next postulate. 

POSTULATE 3: Measures of angles have the following properties: 
(a) The measure of an angle is a positive real number. 
(b) Angles are congruent if and only if their measures are the same. 
(c) If B- is between BA and BC (that is, if AC = ABD + DBC), then m(ABC) = m(ABD) + 

m(DBC). 
(d) The measure of any straight angle is 1800. 

Let us look at straight angles again. 

DEFINITION 13: If two rays AB and AC (with common endpoint A) form a straight
 
angle, they are called opposite rays.
 

The rays AB and AC in Figure 15(a) form a pair of opposite rays.
 

C A B 

Fig. 15(a) 

Now let AB and AC be opposite rays and let AD be between AB and AC. Then AD forms
 
two angles with AB and AC; namely, CI'D and BAD [Fig. 15(b)].
 

DEFINITION 14: The two angles
 
C1D and BtD formed by a ray A-5 and D
 
each of two opposite rays AM and A'7
 
are called a linear pairof angles.
 

Since A-, is between AB and 
AC, we may use Postulate 3(c) to conclude ____,-____ 

that m(CAP) + m(BbZ) = m(CIB). But C A B 
CAB is a straight angle, so m(CAB) = Fig. 15(b) 
180', according to Postulate 3(d). 
Thus we are led to the fact that r(C D) + m(BD) = 1800; that is, the sum of the measures of 
a linear pair of angles is 1800. In general, any two angles whose measures add up to 1800 are 
called supplementary angles. 

DEFINITION 15: If the two angles of a linear pair of angles are congruent, they are 
called right angles. 

A Thus, when the linear pair of angles D 
CAD and BAD are congruent (as in Figure 
16), we say that each of them is a right 
angle. Since congruent angles have the 
same measures [Postulate 3(b)] we have 
m(COD) = m(BD). But their sum is 180', ( p 
so we see that m(CD) = 90' and m(BOD) C A B 
90'. Tf us, the measure of a right angle is Fig. 16 
90'. Since angles with the same measure are congruent [again Postulate 3(b)], we have given a 
simple proof of the theorem that all right angles are congruent to each other. 

DEFINITION 16: If AB and A' are opposite rays, they separate any plane in which they
lie into two half-planes, one on each side of the line B7.Let 4-0 and VE be two distinct rays 
which lie in the same half-plane. Then the three angles BAD, DAE and CAE form a lineartriple 
of angles (Fig. 17). 
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E D 

D 

C A B 

Fig. 17 

EXERCISE 54-IC 

1. Can you add the angles which form a linear triple? Prove that the sum of the measures
of the angles of a linear tripl:. is 1800. Can you formulate the definition of a linear
quadruple of angles? A linear n-tuple of angles? What is the sum of the measures of the 
angles in a linear n-tuple? 

A B 

2. 

CJ - DE 

F\ 

The two rectangles -IB0C and DEGI are placed in such a way that BF and TEare twoline segments intersecting at D. Let T1 be a line segment passing through F such that 
m(JFD) is 45'. Find mUIFtl). 

Let us next turn to triangles. 
DEFINITION 17: Let -1,B and C be C 

three points which are not collinear. Then the 
Irianyle with vertices A,.B and C is the figure
consisting of the thiee line segments ,-', BC 
and CA. The segments A,. ti and CA are 
called the siides or edges of the triangle AB 
(Fig. 18). We write AABC' for this triangle. A
 

In addition to speaking of the three 
 Fig. 18 
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sides of a triangle, it is customary to speak of the three angles of a triangle. Since an angle 
consists of two rays having a common endpoint, and since a triangle does not contain any 
rays, one can only mean that the triangle determines the angles whic, are obtained when the 
sides are suitably extended to be rays. More precisely, we extend side .3 to get the ray AB, 
and we 	 extend side .-1C to get the ray C. These rays form angle B.-tC which we call the angle 
of AtBC at the vertex A, or the angle included by the sides B- and .-1C. Similarly, we call 
ABC the angle at vertex B or the angle included by the sides :-13 and BC(, while BCl is tht 
angle at vertex C, or the angle included by the sides BC and C.-1. 

DEFINITION 18: A point is inside (or interior to) a triangle if it is inside all three 
angles 	of the triangle. If a point is in the plane of a triangle and is neither on the triangle nor 
inside it, then we say the point is outside (or exterior to) the triangle. A triangle together with 
those points which are interior to it form what is called a triangularregion. 

EXERCISE 54-ID 

1. 	 Draw a triangle -IBC. Name a. the vertices, b. the sides, c. the angles. State the loca
tion of each vertex in relation to each side, and each side in relation to each angle. 

2. 	 Extend the sides of .AABCto form the three angles. Shade the interiors of two of 
these angles with different shadings. What is the intersection of these two interiors? 
Compare the result with Definition 18 and state any conclusion which seems appro

priate. 

54-2 	 Congruence-the SSS postulate 

We shall be occupied soon in deciding whether two triangles are congruent, that is, 
whether 	one is a copy of the other. To decide this, we shall set up a one-to-one correspondence 
between the vertices of one and the vertices of the other. For example, if the two triangles are 
AABC 	 and ADEF, we may set up the correspondence 

,-t . D 

B - E
 
C - F.
 

There are other possibilities, for example, 

A - " F 
B - D
 

C - E.
 

The notation for the triangles gives us a convenient way of indicating the correspondence 
between the vertices which we have in mind. The vertices can be written down after the " A" 
symbol so that corresponding vertices occur in the same order. Thus AABC -ADEF 
means A - ) ), B - E and C- F; while ABC -A FDE means 
A - F, B -D and C- E. 

The correspondence between the verticr.s of two triangles also gives us a one-to-one cor
respondence between the sides of the two triangles. For if A -IBC - A1)EF we shall 
take this to mean that F-lB - 1)E, BC-' EF and C- - F); that is, segments 
determined by corresponding vertices also correspond to each other. The same holds for the 

127 



angles of the two triangles. The correspondence AABC. - ADEF means that
 
ABC - DE9F, B A' 
 - EFD and C B --- FDE. 

EXERCISE 54-2A 

1. Write the correspondence between vertices indicated by a. APQ..R ALK;
b. A ABC - ABCA. (Notice that the two triangles need not be distinct.)

2. List the correspondences defined between the sides and angles by a. A ABC-------/APRQ; 
b. A ABC- A ACB. 

It should seem reasonable from what was done in Unit I that two triangles AABC and
ADEF are congruent if there is a correspondence between their vertices, say -ABC----- ADEF,such that all pairs of corresponding sides are congruent (of the same length) and all pairs of 
corresponding angles are congruent (have the same measure).

We also saw in Unit I that in order to copy a triangle (that is, to produce a new triangle
congruent to a given one), it was enough to consider only the sides. That is, to copy AABC, 
we only had to take three segments (for example, made of thin straight sticks) DE, EF and FD, 

F 

C E 

A B D 

Fig. 19 

whose lengths are given by DE = AB, EF = BC, and FD = CA. When we fitted these segments
together, the resulting triangle ADEF was congruent to AABC (Fig. 19). Since we are taking as our postulates some of the facts which seem the simplest, we are led to our next postulate.

POSTULATE 4(a): If there is a one-to-one correspondence between the vertices of twotriangles such that corresponding sides are congruent, then the two triangles are congruent.
Since three sides of one triangle are made congruent to three sides of. the other, this isoften referred to as the SSS postulate. Writing LABC - DEF means that under the correspond

ence ABC- ADEF, all corresponding parts are congruent. 
Congruence plays a very important role in our study of geometry, so let us list some ofthe obvious things that are true of congruent figures. We shall often refer to these properties of 

congruence in later proofs. 

Properties of Congrueice 

1. Any figure is congruent to itself. 
2. If a figure is congruent to a second figure, then the second is congruent to the first.3. If two figures are congruent to the sane figure, they are congruent to each other. 
4. Corresponding parts of congruent triangles are also congruent. 

128 



EXERCISE 54-2B 

1. Decide which of the following statements are true and give reasons. 
a. ANABC - AABC. 
b. If AABC 
c. If A4BC 
d. If !.ABC 

SDEF and ADEF 
-- DEF, then AB _ EF. 

- DEF, then B&A = EFD. 

i = iGHK, then AABC - AGHK. 

54-3 Copying angles and triangles 

We can now proceed to the verification of the methods for copying an angle and a tri
angle. Let us begin with copying an angle.
 

EXERCISE 54-3A 

1. Draw an angle .IBC so that m(ABC) < 900, and BA and BC are about 2 inches. Then 
Iusing B as centre, draw a circle with radius 1- inches. Mark A'and C", the points 

where the circle intersects BA and BC. Answer the following questions. 
a. What is the length of B -(give reasons)? 
b. Put a symbol into the boxec to make the statements true (give reasons). 

B4'0-BC' 

2. A 

D E 

Fig. 20(b) 

SFig. 20(a) 

Given the angle and the circle in Figure 20(a) with BC' = 1! in. and a ray DE [Fig. 
20(b)], draw a circle with centre D and radius BA' intersecting E in point F. Choose 
any point 1l on this circle and draw the line segments D- and 11F. Answer the follow
ing questions. 
a. What is the measure of 5T? 
b. Is ITT congruent to BC'? (Why?) 
c. Is the following statement true? 

F29 
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--

d. Is AA'BC' AMDF?
 
(i) If it is, say why it is.(ii) 

6A'BC'. 
If itis not, say what would be necessary in order for AMDF to be congruent toe. List all iine segments shown which are congruent to N-'. 

3. 

AA
 

B 60D 
F E 

Fig. 21 (a) 
Fi.21b 

Suppose Fig. 21(b)we are given an angle AB^C such that 600 andand rad6iusdacicl a circle with centre BwthcetrI 
and radius 1I inches. Suppose weradius BC' which also haveintersects D- in a ray D- and a circle with centre D andintersecting the circle with 

a point F. Draw a circle of radius A'C' with centre Fcentre D at G and /1. Answer the following questions.a. What is the measure of OF?
b. Give two segments congruent to tIF.C. /A'BC' and z/GDF are congruent. Why?d. Find another triangle congruent to ZAGDF.e. Is ,4'BC,________61HDF? 


Why?f. List all segments shown which are congruent to D711.g. What is the measure of GDF.,
h. What is the measure of D'F?
 
CONSTRUCTION 2. Given an angle A6C andpoints F, G and a ray D inI in the given plane such that F is 

a given plane, locate three
Method.. Draw a on "Eand G F 11Fradius r (Fig. 22). 

AC.circle in the plane of ABC with centre at B and with a convenientThis circle intersects H-A at A' and --C at C'. Now draw a circle of radius r 

G_ 
A' 

B 
D 

E 

C 

Fig. 22 -
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with centre at D in the given plane. This circle intersects D-E at a point F. Now draw a circle 
of radius A'C' with centre at F in the given plane. The circles with centres at D and F inter
sect at the two points G and 1I. Then F, G and II are the desired points. 

We next verify that the construction described above actually gives us two copies of 
ABC. AA 	 A AWe must show that ABC _GDE IFD. It will probably be easier to follow the steps of 
the verification if we write them in two-column form listi,'g the reasons on the right. We aim 
at showing first that AA'BC" = AGVF = AIIDF, using the SSS postulate.
 

A 
THEOREM 2. The three points F, G and I determined by Construction 2 satisfy


A 
GDF IIDF - ABC. 

Proof: 

Assertion Reason 

1. 	 BC' DF 1. 	 Both are of length r since they are radial 
segments of circles of radius r, and seg
ments of equal length are congruent by 
Postulate 2(b).

2. 	 A'B- D - HD 2. 	 Again all are of length r and are hence con
gruent by Postulate 2(b).

3. 	 A'C' F - 3. 	 GF and liE are both radial segments of the 
circle with centre F and radius A'C'. 

4. 	 AA'BC' -AGDF =-AtIVDF 4. The SSS postulate, Postulate 4(a)
A 	 A5. 	 4 'BC' GDF _ IDF 5. Corresponding parts of congruent triangles 

This completes the proof which we 
are congruent. 

set out to give. 

1. 

EXERCISE 54-3B 

C 

A B 
D 

2. 

Given a triangle AABC and a ray_ E such that AB A AC, draw circle of radius AB 
with centre 1) and intersecting DE at F. Choose a point G along the circle you have 
just drawn such that E =CB and draw the segment "D. Is ADFG =AABC? Why? 

C 

D 

A 13 / 
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Suppose we are given a triangle AABC, a ray D"' and a circle with iadius AB and cen
tre D, intersecting D-E at a point F. Draw a circle of radius AC and centre D. Then 
choose a point Mon the circle just drawn and draw I-D and AlF. 
a. What property should M have to make ADF congruent to AABC? 
b. Can you think of an easy 	way of locating this point Al at the proper position? 

The next construction is the problem of copying a given triangle. We want to construct 
a triangle congruent to a given triangle. Stated more precisely, we want the following. 

CONSTRUCTION 3. Given a triangle AABC, and a ray DE in a given plane, locate 
three points F, G and H in the given plane such that F is on DE and the two triangles ADFG 
and ADFHI are congruent to AABC. 

Here, as in the previous construction, one must not only give the ray DE but also a 
plane in which the ray lies, for one can construct triangles in each different plane containing 
the ray. 

Method: 

G 

In E 
r 

C 

D
B 

A 

Fig. 23 

Copy the segment A-Bon DE as in Construction 1; that is, draw a circle (marked I in 
Figure 23) with radius AB and centre D. This intersects D-E at F. Now draw a circle (mac!:cd
k in Figure 23) with radius AC and centre at D. Finally draw a circle (marked m in Figure 23)
which has radius BC and centre at F. The circles k and in intersect at the two points G and 
H. Then F, G and JI are the desired points, for if we draw the segments 5-, TII,iG and F"I, 
we get two triangles ADFG and ADFHI, each congruent to AABC. 

THEOREM 3. Construction 3 gives us two triangles ADFG and ADFII each congru
ent to AABC. 

Proof: 

To prove that the triangles are congruent, we shall show that the three sides of each 
are congruent to the three sides of AABC. 

Assertion Reason 

1. 5- AB 1. 5F is a radial segment of a circle with radius 
AB, so DF = AB. Segments of equal length 
are congruent by Postulate 2(b).

2. D DII AC 2. 	 DG and D11 are both radial scgments of circle 
k which has radius AC. Thus, DC = D1H = AC, 
and Assertion 2 holds by Postulate 2(b). 
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Assertion 	 Reason 

--
3. 	FG FH -BC 3. FG and FH are both radial segments of cir
cle m which has radius BC. Thus, FG = 
FH = BC and Assertion 3 holds by Postu
late 2(b). 

4. ADFG ADFH AABC 4. 	 Postulate 4(a), the SSS postulate, gives us 
this congruence.
 

This completes the proof!
 

EXERCISE 54-3C 

1. 	 Suppose we are given a circle with centre 0 and a diameter AB. Let C and D be points 
on the circle on opposite sides of AB such that m(BOC) = 50' and m(AbD) = 300. 

Construct an angle A F congruent to BOC such that F and C are on the same
 
side of AB.Construct an angle bG congruent to C such that G and D are on the 

same side of AB.
 
What is m(GbB)?
 

54-4 	 The SAS and ASA postulates 

The need will arise very often in the next sections to prove that triangles are congruent. 
The SSS postulate is a very useful tool, but sometimes it is not so easy to show that the three 
sides of one are congruent to the three sides of the other. In such cases, we can try one of the 
other methods of copying a triangle used in Unit I. For example, you may recall that the copy 
can be made using two sides and their included angle (Fig. 24). Another method uses two angles 

C 

A4:CD 

B 

E
 

Fig. 24 

and their common side (Fig. 25). These two methods lead us 

C 	 F
 

BA E
 
Fig. 25 

to take the following as postulates. 
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POSTULATE 4(b): If there is a one-to-one correspondencetriangles such that two sides and 
between the vertices of twotheir included angle in one are congruent to the correspondingtwo sides and their included angle in the other, the two triangles are congruent. (We shall oftenrefer to this as the SAS postulate.)


POSTULATE 4(c): 
 If there is a one-to-one correspondence between the vertices of twotriangles such that two angles and their 
two angles and their commor 

common side in one are congruent to the corresponding
side in the other, then the two triangles are congruent. (We shall

refer to this'as the ASA postulate.)
It should be pointed out here that some geometry books assume only one of the threeparts of Postulate 4, say 4(b), as a postulate and prove the other two, using it and someother postulates which were assumed. In order to speed up 

of the 
our study, we are going to assumemore postulates than are absolutely necessary. This reduces the number of theorems 
we shall
have to prove before we get to the interesting ones for our constructions. 

EXERCISE 54-4A 

1. Determine in which of the following cases AABC -ADEF and state the postulate used 
to justify the conclusion. 
a. AB -DE, B9C -EFand .A"C -D-5. 

c. AB -DE, ABC DEFand BC 5F. 

B. A AAABC =DEF, BCA - EFD and CAB - A
EDE.
 

e. ABC DEF, BC EF and BCA 
AA 
EFD

2. 

C 

DB 

A 0 

E 

Suppose we are given a circle with radius r, centre 0 and diameter AB.Let AADO and/ABOC be two congruent triangles such that m(COB) =35. Let m(BOE) 70.
 
Say whether or not AAOE 
-ADOC and why. 
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Chapter 55 
PERPENDICULAR LINES 

55-1 Constrction of perpendicular lines 

We shall study perpendicular lines in this section. Let us begin with the definitions 
of a few useful words. 

If two lines intersect at a point Q, they form four rays, each with endpoint Q. We can 
label one pair of opposite rays QA and QB, and the other pair of opposite rays QC and QD 
(Fig. 26). There are four angles formed by 
pairs of these rays which are not opposite A 

A A Aeach other. These are AQC, AQD, BQC, 
and BQD. We shall refer to these four 
angles formed by the two intersecting 
lines. 

DEFINITION 19: Two intersecting 
lines are perpendicularif an angle formed C 
by the two lines is a right angle. The sym- B 
boli will mean is perpendicularto. Fig. 26 

Since a line segment or a ray is 
contained in a unique line, we can speak about perpendicularity of any combination of line seg
ments, rays or lines as meaning that the lines containing them are perpendicular. 

In Definition 19, we asked only that one of the four angles formed by the intersecting 
lines be a right angle. But it is not hard to see that if one such angle is a right angle, so are 
the other three. (Can you prove this?) For example, 
if in Figure 27, AQC AAis a right angle, then
 
m(AQC) = 900. But AQC and CQB form a linear
 
pair and their measures add to 180'. Thus, C
 
since one has measure 900, the other must
 
also have measure 900. Thus, CQB is also
 
a right angle. But CQB and BQD form a <
 
linear pair, with m(CQB) = 900, so m(BD) = 90'. B A
 
Applying the same argument to B ̂ D and D A,
 
we find that all four angles are right angles.
 

Remember that when we began this unit, D 
we said we wanted to see how one convinces 
his pupils that the constructions for some of 

Fig. 27 
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the figures actually give what we say they do. One example given there was the constructionof a perpendicular line. We can now look into the problem of raising a perpendicular from a 
given point on a given line. 

EXERCISE 55-IA 

A ' BB
 

Suppose we are given a line segment AB, a circle of radius r with centre Con AB andintersecting AB at A'and B', and two other circles of radius s (s > r) having A'and B' as
 
centres and intersecting each other at D and D'.
 

t
1. What name would you give 
A 

to the sum A' D + BCD? 
2. Complete the following equation by filling in the box with a number of degrees.A A
 

m(A'CD) + m(BCOD) = 3. According to Definition 15, say what condition is required 
A 

so that m(A'CD) = 
m(B'CD) = 900. 

4. Prove that AA'CD = B'CD. 
5. How could you use the fact that AA'CD and AB'CD are congruent to verify the 

condition laid down in Question 3? 
CONSTRUCTION 4. Given a line segment AB and a point C on AB, construct a segment CD in a given plane through AR such that C-D.IA-B. 
Method: Draw a circle of some convenient radius, say r, with centre C.This circleintersects er at A' and C'B at B' (Figure 28). Now take a radius s larger than r and draw two 

D 

A B
 

Dl
 

Fig. 28 
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circles of radius s, one with centre at A'and the other with centre at B'. These circles inter
sect at two points D and D'. Both C-D and C-D'are perpendicular to AB. 

We shall verify that CD is perpendicular to AB. (The proof that CD' is perpendicular to 
AB is exactly the same. One merely replaces D by D'where it appears in the proof.)

THEOREM 4. The segment 
Proof: 

Assertion 

1. 	 A'C B'C 

2. 	 A'D B'D 

3. 	 CD -CD 
4. 	 AA'CD AB'CD 

5. 	 A' CD =-B'CD 

6. 	 A'CD and B'CD are 

7. 	 CD..A-B 

right angles. 

This completes the proof! 

constructed above is perpendicular to AR. 

Reason 

1. 	 A'C and B'C are radial segments of a 
circle of radius r so both segments have 
length r. By Postulate 2(b), segments of 
the same length are congruent. 

2. 	 A'D and B'D are radial segments of 
circles of radius s and hence both have 
length s. By Postulate 2(b), segments of 
the same length are congruent. 

3. 	 Any segment is congruent to itself. 
4. 	 We have shown above that the correspond

ing sides are congruent, so the congruence 
of the triangles follows from the SSS pos
tulate, Postulate 4(a).

5. 	 Corresponding parts of congruent triangles 
are 	also congruent. 

6. 	 A'CD and B' CD are a linear pair of angles 
and they are congruent. But this is ex
actly how we defined right angle in Defi
nition 15. 

7. 	 Two segments are perpendicular if an 
angle formed at the intersection of the 
lines containing them is a right angle. 
(See the remark following Definition 19.) 

We have raised a perpendicular from a line segment at a point on the line. Now we can
take a point not on a given line and drop a perpendicular from that point to the given line. 

EXERCISE 55-lB 
A 

C ED 

B
 



Suppose we are given two line segments AB and CD intersecting at E such that by joining 
the endpoints of the line segments as shown, we obtain 

AC FAD and CBR- D-B 
We shall see if we can prove that 

CEA= DRA 
There will be three steps in the solution: 
(a) List the known data. 
(b) Ask questions about the problem. 
(c) Write a proof. 
Known data: C) n AB = E, 

AC AD, 
CB DB. 

Here are some reasonable questions to ask yourself about the problem. Answer them. 
Questions: 

1. In what triangles should angles CEA and DEA
A 

be considered so as to prove that they 
are congruent? 

2. What property should these triangles have to give CEA DRA? 
3. How can we prove that ACEA ADEA? 
4. In what figures should we consider CAE and DE so as-to prove their congruence?
5. What property should these two triangles have so as to give 

CAE =D'E? 
6. How can we prove that ABCA = BDA? 
7. Does the postulate SSS work? 
8. What proofs need to be written down? 

Actual solution: 
Now do the proofs in order. 
NOTE:When you are solving problems, the question and answers are often done 

mentally or on scrap paper, but listing the known data and the actual proofs 
must be clearly set down on your copy. 

CONSTRUCTION 5. Given a line segment j and a point C not on 'R, construct a 
line segment CD such that CDI AR-B'. 

Method: In the plane containing C and AI, draw a circle with centre C and radius r
large enough so that the circle intersects AB in the two points A'and B'(Fig. 29). Now with 

C 

Ep 

A A B 

Fig. 29 
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radius r, draw two circles, one with centre at A'and the other with centre at B'. These circlesintersect at C and at another point D, on 	the side of the line AR not containing C. CD is then
perpendicular to AR. (It was not necessary to take the radii of the last two circles drawn tobe r. We could have made both radii any number s, chosen large enough so that the two cir
cles intersect in two points. We then take as D the point of intersection on the side of A-B not
Lo ;taining C. The verifications in both cases are essentially the same.) 

THEOREM 5. The segment CD constructed above is perpendicular to AB. 
Proof: 
We shall do this in two steps.
 
We first show that ACA'D -ACB'D.
 

AWe then will be table to show that I/AAEC AB'EC, from which we deduce A
that A'C
B EC. This will tell us that C-D jA. 

Issertion Reason 
I. CA C-' 1. 	 They are radial segments of a circle of 

radius r. Thus, both have the same 
length r and are congruent by Postu
late 2(b).2. 	 A'D B'D 2. 	 Both are radial segments of circles of 
radius r (or s if the alternate construc
tion is used). Thus, they have the same 
length and are congruent by Postulate 
2(b).3. 	 CD - CD 3. 	 A segment is congruent to itself.

4. 	 ACA'D nCB'D 4. 	 The SSS postulate, Postulate 4(a).5. 	 A' CD --B'CD 5. 	 Corresponding angles of congruent tri
angles are also congruent.6. 	 CE CE 6. 	 A segment is congruent te itself.7. 	 AA'EC =AB'EC 7. 	 In steps 1, 5 and 6, we have shown that 
two sides and the included angle of 
AA'EC are congruent to the correspond
ing two sides and the included angle of 
AB'EC. Thus, we get the congruence of 
the two triangles from the SAS postulate, 

A ,A 	 Postulate 4(b).
8. 	 A'EC = B'EC 8. 	 Corresponding angles of congruent tri

angles are also congruent.9. 	 A'EC is a right angle. 9. 	 A'EC ar.d BEC are a linear pair of 
angles which are congruent. They are 
right angles by Definition 18.10. A I CD 10. This follows from Definition 19. 

This completes the proof! 

EXERCISE 55-IC 

Explain why it was not necessary that DB'= CB'. 
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55-2 Midpoints and angle bisectors 

The methods used to construct perpendiculars given above are very similar to methods 
used to make some other figures. We shall look at some of these next. The first of these is 
finding the midpoint of a segment. 

DEFINITION 20: A point C on AB is called the midpoint of A if T-C CB. Thus the 
midpoint divides the segment into two segments of equal length. 

CONSTRUCTION 6. Locate the midpoint C of a segment AB. 
Method; Draw two circles with centres A and B with a radius r so chosen that the cir

cles intersect in two points 1) and F. The segment DE intersects AB in the point C, which is 
the midpoint of A-B (Fig. 30). 

ND 

Fig. 30 

EXERCISE 55-2A 

Divide the page of paper into two columns, heading one "Assertion" and the other 
"Reason". Write the verification that the method described above gives a point C that is the 
midpoint of AB; that is, AlC -R-C . The argument is similar to the one given in the verification 
of Construction 5. 

Construction 6 has actually given us more than we had asked of it. The segment DE 
which we constructed not only intersects -B at its midpoint but it is also perpendicular to 
A4-. A segment that is perpendicular to a given segment A-B and also passes through its mid
point is called a perpendicularbisectorof A-B. 

EXERCISE 55-2B 

Continue the argument which you wrote to verify Construction 6 to show that I-E is 
perpendicular to A-B. 

DEFINITION 21: A triangle is called an equilateraltriangle if its three sides are con
gruent to each other. 

CONSTRUCTION 7. Given AB, construct an equilateral triangle AABC. 
Method: If the radius r used in Construction 6 is taken to be equal to AB, the triangle 

AABD constructed there is equilateral. Verify this! 
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just as we divided a segment into two congruent parts with its midpoint, we shall now 
divide an angle into two congruent parts. This is called bisecting the angle.~A 

DEFINITION 22: A ray BD interior to an angle ABC is called the bisector of the angle 
if AD - CBD. 

EXERCISE 55-2C 

B
 

Suppose we have an angle ABC and points A'on BA and C' on BC. Find a way of con
structing two line segments A'-D and C'D such that A'D C'- and D is inside of ABC. 

-~ ACONSTRUCTION 8. Construct the bisector BD of an angle ABC. 
Method: Select a convenient radius r and draw a circle with centre B. This circle inter

sects BA at A' and B- at C'. Now with a convenient radius s, draw two circles, one with centre 
at A' and the other with centre at C'. These two circles intersect in two points. At least one 

A 

Fig. 31 
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of these two points lies inside ABC. Call this point D and draw the line segment B-D. ThenBD is the bisector of ABC. (Notice that if r = s, the two circles of radius s with centres at A' 
and C' intersect at B and at another point interior to ABC, which we 

A
A then name D.)

We 	 must now Averify that this construction does give us ABD - CED. 
THEOREM 8. Construction 8, ABD CBD. 
Proof: 

Assertion Reason
1. 	 B-A-T- 1. 	 Both are radial segments of a circle of 

radius r and hence both have the same 
length r. But by Postulate 2(b), segments 
of 	the same length are congruent.

2. 	 A'D-C'D 2. 	 Both are radial segments of a circle of 
radius s and hence have the same 
length s. Again by Postulate 2(b), seg
ments of the same length are congruent.

3. 	 BD BD 3. 	 A line segment is congruent to itself. 
4. 	 AA'BD =AC'BD 4. 	 We have shown in steps 1, 2 and 3 that 

three sides of the one triangle are con
gruent to the corresponding three sides 
of 	the other triangle. The SSS postulate, 
(Postulate 4(a), tells us that the two tri
angles are congruent.

5. 	A'BD m-C'BD 5. 	 Corresponding angles of congruent tri
angles are also congruent.

This completes the proof! 

EXERCISE 55-2D 

We 	 have seen how to construct an angle whose measure is 900. (We need only raise a
perpendicular from a given segment.) If this angle of measure 900 is bisected, what is the 
measure of 	each of the two parts? If you bisect one of the resulting angles, what is the meas
ure of each of the angles obtained? What other angles can you construct? Can you construct 

an 	angle whose measure is 671°? 

55-3 Isosceles triangles 

DEFINITION 23: If two sides of a triangle are congruent to each other, the triangle is
called an isosceles triangle. The remaining side is called the base of the isosceles triangle,
and the two angles of the triangle which have the base as a common side are called base 
angles. 

In 	 this definition of isosceles triangle, we 	have stated that two sides are congruent.
We 	have made no statement about the angles. It is interesting to know that we call show that
the base angles are also congruent. We shall now write a proof of this pretty fact, which we 
shall call a theorem. Since we may also consider each of the constructions which we have so 
far verified as theorems, we shall call this Theorem 9. 
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THEOREM 9. The base angles of an isosceles triangle arc congruent.
We are given an isosceles triangle, say AABC with .4-B 

A 
=_AC7. We are asked to prove 

that ABC ACB (Fig. 32) 
Proof. 

1. 
Assertion 

Let ) be the midpoint of the base BC. 
Draw AD. Then B-D CD. 

1. 
Reason 

The midpoint D divides 9C into two con
gruent segments. 

A 

B c
 
D
 

Fig. 32
 

2. 	 AB- AC 2. 	 This was given to us as true since 
AABC is isosceles. 

3. 	 A- A/9 3. 	 A segment is congruent to itself. 
4. 	 AABD =_AACD 4. 	 Assertions 1, 2 and 3 al'ow us to use 

A 	 the SSS postulate, Postulate 4(a).
5. 	 ABD - AbD 5. 	 Corresponding angles of congruent tri

angles are congruent. 
This completes the proof!
 
There is another way to prove this theorem which does use
not make of any additional
 

line segments such as AD. You may be interested in seeing such a proof, so it will be given
 
below.
 

Another proof of Theorem 9.:
 
Assertion 
 Reason 

1. 	 Consider AABC and AACB, tiat is, take 1. This was given to us as being true when 
the same triangle but let the vertices we said that AABC was isosceles.
 
correspond as follows: A--*A, B--C and
 
C-B. We then have A - AC. 

2. 	 AC - AB. 2. 	 Assertion 1 said AR AC, so we also 
have AC - A-B. 

3. 	 BC CB 3. A segment is congruent to itself. 
"4. AABC - AACB 4. Assertions 1, 2 and 3 allow us to use 

the SSS postulate, Postulate 4(a), to con
clude that the triangles are congruent. 
(Notice that Postulate 4(a) does not say 
that the two triangles have to be distinct

5. 	 ABC - ACB 5. 	 Corresponding angles of congruent tri
angles are also congruent.


This completes the proof!
 
DEFINITION 24: If one angle of a triangle is a right angle, the triangle is called a 

right-angledtriangle. 
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EXERCISE 55-3A 

1. Prove that the three angles of an equilateral triangle are congruent to each other.
2. Construct an isosceles right-angled triangle in which each of the two congruent sideshas length 2 inches. Verify that the construction actually gives an isosceles right

angled triangle. 

55-4 Vertical angles 

We shall end this chapter with another interesting and useful fact concerning inter
secting lines. 

DEFINITION 25: Two angles are 	called vertical angles if the edges of one angle are
opposite the edges of the other angle.
 

For example, in Figure 33, A C and 
 D 
BOD are vertical angles, for Q--is opposite A 
QB 	and QC is opposite Q'. It is quite obvi- Q 
ous from the figure that vertical angles are
 
congruent. It is interesting to see how this
 
fact follows immediately from our postulate
 
about the measure of an angle, that is, from
 
Postulate 3. We shall show how one writes Fig. 33 
a proof of this fact based on Postulate 3.
 
We shall call this Theorem 10.
 

THEOREM 10. 
 Vertical angles are congruent.

We shall assume that the angles are named AQC 
 and BQD (as in Figure 33) and that 

QA ts opposite QB and QC is opposite QD. We shall prove that AQ^C BQD.The proof is basedupon the simple observation that AAB and CQD are straight angles. 

Proof:
 
A AAssertion 


A A Reason1. 	 m(AQD) + m(BQD) = 1800 1. 	 AQD and BQD form a linear pair of an
gles. We have already seen how the as
sertion then follows from Postulates 
3(c) and 3(d). 

2. m(AQC) + m(AQD) = 1800 2. 	 AQC and AbD also form a linear pair.
3. m(BQD) AA= 180' - m(AQD)

m(AQC) = 1800 	 3. These are equivalent ways of writing- m(A D) the 	statements in steps 1 and 2.A 	 : A4. 	 m(BQD) = m(AQC) 4. 	 Both are equal to 1800 - m(AQD) by 

5 	 A , step 3. 
5. BQD =-AQC 
 5. 	 Angles having equal measures are con

gruent [Postulate 3(b)].
This completes the proof!
 
If two lines intersect, two pairs of vertical angles 
are formed. We may look at Figure

33 as being two lines AB andnamely, the pair AQC 
D, which intersect at Q. They form two pairs of vertical angles,and BQD and the pair AQD and B^ C. The angles in each pair are thus 

congruent. 
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EXERCISE 55-4A 

1. Draw a lire segment AB, 4 inches long. Locate points C and D on B such that
AD = BC = 1 inch. Construct a perpendicular DE to A-B at the point D such that 
DE = 1 inch. On the same side of AM as E, construct a perpendicular iT to 4 at
C such that CF = 1 inch. Suppose line segments EC and FD intersect at G. 
a. Using triangles zIDEC and ACFD, prove that DE^C CF!).
b. Using AEFC and sFED, as well as the previous triangles, prove that EDF FCE. 
c. Prove that AEGD =-AFGC. 

C 

2. Two of the angles represented on the above figure are supplementary; say which ones. 
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Chapter 56 
SIMILAR TRIANGLES 
AND PARALLEL LINES 

56-1 Similar triangles 

In making a scale drawing, one makes a figure which has the same shape but not nec
essarily the same size as the original. It may be necessary to increase or decrease the size of 
the figure when making the drawing. For example, one may make a scale drawing in which the 
figure in the drawing is one-tenth as large as the original figure. Each segment in the drawing 

1will be -L as large as tile corresponding segment in the original figure. We call "O the scale10 1 
factor. 

Let us look at triangles to fix our ideas somewhat better. When do two triangles have 
the same shape? It is clear that we would say that triangles (a) and (b) of Figure 34 have the 
same shape (are similar) but that (a) and (c) do not. 

Z 
(a) (b) (c) 

Fig. 34 

Each of the angles in (a) is congruent to a corresponding angle of (b), while each side of (a)I 
is as large as the corresponding side of (b). This leads us to the definition of similarity of 

triangles.
 
DEFINITION 26: Two triangles 
are simn'lr if there is a one-to-one correspondence be

tween their vertices such that both of the following conditions hold: 
(a) corresponding angles are congruent, and 
(b) there is a positive real number k (the scale factor) such that the lengths of the 

sides of one triangle are k times the lengths of the corresponding sides of the other triangle. 
The symbol III shall mean is .imilar to. 

When condition (b) holds, we say that the lengths of the sides of one triangle are pro
portional to the lengths of the corresponding sides of the other triangle. The scale factor k is 
often called the con stlnt of proportionality. 
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It is certainly reasonable to think that we can enlarge or decrease the size of a triangleas much as we wish, preserving its shape; that is, that we can choose any scale factor k wewish and find a ,riangle similar to a given triangle but with scale factor k. This fact will be 
our Similarity postulate, which we state below. 

POSTULATF 5: Given AABC and a positive real number k, there is a triangle -A'B'C' 
similar to AABC with A'B'= k x AB. 

EXERCISE 56-IA 

1. Here are three triangles with the measures of some of their parts. 

III 

480 

9ft. 9 ft. 

4"5 ft. 
900 42 0 900 420 

10 ft. 5 ft. 10 ft. 

a. Is triangle III similar to triangle II? Why?
b. According to Postulate 5, can you say immediately that triangle I is also similar to 

triangle II? Why? 
c. If you compare I and III, what can you say about them? (Try to remember all that we 

have said already about tri'rigles.) 
d. Can you say that I 11111? Wh)?
 
In order to prove the similarity oi two triangles, 
 it would appear that we have to prove(a) the corresponding angles congrt',¢n and (b) the lengths of corresponding sides proportional.Actually, we can prove that two triangles are similar by doing much less. We shall nowthat it is enough to prove either (a) 

show 
or (b) and that the other one then follows. We shall firstshow that when (b) is true, then (a) must also be true, and the triangles are similar. This meansthat in order to prove that two triangles are similar, one has only to show that the th.ee sidesof one are proportional to the three sides of the other. This is our next theorem. 

TIEOREM 11. Given AABC and AA'B'C, such that forsome positive real number k,A'B' = k x AB, B'C' = k x BC and A'C' k x AC, then AABC III AAI'B'C'. In other words, ifthe lengths of corresponding sides are proportional, the two triangles are similar. 
Proof: 

(Make your own drawing as you read the proof!) 
Assertion Iee ason1. There is a triangle AA *B'C*such that 1. This is what the Similarity postulate (5)AA*B*C*[lI AABC and A'B* = k x AB. tells us.

2. B*C* = k x BC and C'A* Ikx CA. 2. Since AA*B*C.* III AIBC and A1*B*= k x AB, 
Assertion 2 follows from the fact that corre
sponding sides of similar triangles have pro
portional lengths (Definition 26). 
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A A A A3. A*B*C* ABC, B*C*A* -- BOA and 3. Since AA*B*C* III AABC, this also fol-
A ACIA*B* CAB. lows from Definition 26. 

4. A'B'= A*B*, B'C'=B*C* and C'A'= 4. We were given A'B' = k x AB. Assertion 1 
CA. said A*B* = k x AB. Thus, both are equal 

to the same thing and are, thus, equal to 
each other. The same holds for B'C'and 
C'A'. 

=5. AA'B'C' AA*B*C*A, A A'	 5. SSS postulate [4(a)]. 
6. 	A'T'C' a A*B*C*, B'C A'- B *A* and 6. Corresponding angles of congrtipnt triangles 

C'A 'B' C*A*B*. are also congruent.A A A 	 A A7. 	A ABC, B'C'A'- BOA and 7. From 3 we have ABC = A*B*C* and from 6 
C'A'B' CAB. we have A'B'C- A*B*C*, so both ABC 

A
and A'B'C' are congruent to the same an
gle. They are thus congruent to each other. 
The same kind of argument gives the other 
two parts of Assertion 7. 

8. 	 AA'B'C' I AABC 8. 	 We have proved that corresponding angles 
are congruent and we were originally given 
that the corresponding sides have propor
tional lengths. 
Definition 26 then tells us that the triangles 
are similar. 

This completes the proof! 
Thus, we can prove that the two triangles are similar by showing that their sides are 

proportional. We pointed out already that it is also enough to show that corresponding angles 
are congruent. In fact we can do even better than that. We shall next prove that it is enougi.to
show that only two angles of one triangle are congruent to two angles of the other triangle in 
order to prove that the triangles are similar. This is our next theorem. Before proving it, con
sider the following exercises. 

EXERCISE 56-iB 
1. 	 A 

1400 

A' 
6 	ft. 

3 ft. 40 

900 	 900 500 

B 	 C B' C' 

Here are two triangles ABC and AA'B'C' with some of 	their parts measured. 
a. 	 Construct a third triangle AA*B*C* similar to AA'B'C' with k =A- and such that 

A*R* =k x A'B'. 
b. Since you have constructed AA*B*C* similar to L-A'B'C', what can you say about 

the angles of AA*B*C*? Mark their measures on your figure. 
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c. What is the measure of A*B*? 
d. If you compare AABC to AA*B*C*, what can you say?
e. Does the answer to Question d help you to conclude that AABC II AA'B'C'? 

2. 
A 

A' 

5 ft. 

EB1' \Co
 
B 2 ft. C I ft. 

B'C' 

a.Find the fraction BC' 
A1B1
 

b. Find the fraction-AB * 

C. Can you say from a and b why AA'B'C'is not similar to AABC? 
d. Construct a triangle A*B*C* similar to AABC with k = -Lc- such that B*C* = 

k x BC. (Measure the figure in centimetres.) .... iiart AB ih c=A'B' 
e. Construct a triangle AA B C"similar to AABC with k =A such that A"B" = 
k x A.B. (Make your measurements in centimetres.)

A 
 A 
THEOREM 12: Given AABC and AA'B'C', with ABC - A'B 'C' with CAB CA'B', thenAA'B'C' IIIAABC. In other words, if two angles of one triargle are congruent to two angles of 

another, the triangles are similar. 
Proof.. (Make a drawing as you read the proof.)
The idea of the proof is the following. We first take a new triangle AA*B*C* similar to

A'B'
 
AABC with scalc factor k =---2.We show that AA*B*C* =-A A'B'C', so that AA'B'C' is also
 
similar to AABC with scale factor k.
 

Assertion Reason
 

1. k = AB is a positive real number. There 1. This follows from the Similarity postulate
is a triangle AA*B*C* similar to AABC (5). 
such that A*B* = k x AB. 

2. B*C* = k x BC 2. Definition 26(b)
C*A* = k x CA 

3. A *B*C* ABC,
A A 3. Definition 26(a)


B*C*A* BCA and
 
A AC*A*B* = CAB. 

/ A ABA4. A*B*C* A''C' and 4. We were given that ABC A'B'C' and we
C*A*B* - A'B'. have shown instep 3 that ABC - A*B*C*. 

Angles congruent to the same angle are con
gruent. The other part of Assertion 4 follows 
in the same way. 
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*5. A"B A'B' 5. We have shown in step 1 that A*B* = 
k x AB and k was defined in step 1 so that 
A'B' = k x AB. Since both are equal to 
k x AB,we have A*B* = A'B'. 

6. 	 A'B* A'B' 6. Postulate 2(b) 
7. "\A*B*C*= IA'B'C' 	 7. This follows from steps 4 and 6 and the 

ASA postulate [4(c)]. 
8. 	 B *aC*A* B'C'A-7', 8. Corresponding parts of congruent triangles 

B*C* - B'C' and C'A -l C'A'. are congruent. 
0A
9. 	B'T'A' -B- 9. Steps 3 and 8 show that both angles are 

A 

congruent to B*C*A*. 
10. A'B'= k xAB, 	 10. From steps 1 and 6 we get A'B' 

B'C' = k x BC and k x AB, and from steps 2 and 8 we get 
C'A' = k x CA. B'C' = k x BC and C'A' = k x CA. 

V11. -ABC -A'B'C' 	 1i. This follows from steps 9 and 10 and Defi
nition 26, for we were originally given that 

A A CAA 
ABC A'B C' and CAB =C'A'B'.
 

This completes the proof! 

Let us now revise the method given in Unit IX for constructing a triangle similar to a 
given triangle. 

CONSTRUCTION 13. Given "'IABC and a segment A'B' on a given plane, locate a 
point C'in the given plane such that "-ABC,-A'B'C'. (How man) such points are there?) 

.iethod.: 

C 
 C1 

C' 

A B A' B3 

Fig. 35 

A ADraw ray A'D', so that B'A'D'is a copy of BAC. Then draw ABE'so that A'B'E' is a 
copy of ABC. The rays A''and B'E' intersect at the desired point C'( Fig. 35). 

Before verifying that this construction actually does what we claim, let us do an 
exercise. 

EXERCISE 56-IC 

Draw a triangle "ABC and a line segment A'B' with the measures indicated in the fig
ure. Using Construction 13. locate a point C'in your drawing such that £ABC 
-A'B'C'. 

C 

A 0.l 0 B
 
4 cm. * A' 8 cm. B'
 

I 
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a. Test the similarity of the two triangles by actual measuring.
b. List what conditions are sufficient to make a triangle similar to another. 
c. Are some of these conditions realized here? 
THEOREM 13. Construction 13 gives us P triangle AA'B'C'which is similar to AABC.Proof: In AABC and :_A'B'C', we haveA constructed A'B' A A AABC and BA'C'- BAC.Thus, two angles of one triangle are congruent to two angles of the other triangle, and Theorem

12 then tells us that the triangles are similar. This completes the proof.
Notice that we have written this proof in paragraph style instead of the two-columnstyle. Both ways of writing proofs are acceptable. When writing a proof in paragraph style, youmust also state the reasons for your assertions and be sure that the steps follow one another 

logically. 

EXERCISE 56-ID 

1. One day a man called Olajide went to see one of his friends, Temida, and boasted thathe could measure the height of a building without making an), measurement on the building itself. He wanted to prove it, and they called on their common friend Akpa to be a 
witness. 

A 

- . I 
- I 

- I 

Building 

4 feet 

Peg 

C 
B 

Instrument 

Olajide said that he needed an instrument he had made himself out of two sticks, one
4 feet long and a smaller one, rotating at the end of the long one. More than this heneeded only a peg and a piece of string. He would tie one end of the string to one endof the short stick. Then he would drive the peg into the ground in a position so that
when the other end of the string is tied to the peg, he could sight the top of the build
ing along the short stick.
 

Olajide showed his friend that 
he needed only the following three measurements: 
(1) The height of the instrument (4 feet) 
(2) The length Cl in feet 
(3) The length CB in feet 

And with this he would know the height AB of the building. Can you explain how he is 
able to do this? 

2. For a certain building, Olajide found that CI = 40 feet and CB = 160 feet. What was the 
height of the building? 
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3. 	 Garba says that he has his own way to find the answer to that problem. He would not 
compute with these three figures, but instead make a scale drawing of the situation. 
All he needs is the length CB and the measure of BCA. He would proceed as follows 

(look at the figure). 
(1) On a piece of paper he would draw a segment, C'B' let us say, of a conven

ient length. 
(2) At the endpoint C' he would draw an angle BTC°A' congruent to BCA. 
(3) At endpoint B' he would raise a perpendicular BHD' intersecting C'A' at E'. 

BWE' AB 
(4) Then he would say that c=, AB "He could measure the length of B'E'and 

compute the height AB of the building. 

a. Suppose that C'B' is 4 inches, CB is 160 feet. and m(A'C'B') = 5- .lake the scale 

drawing 	and compute 4B. 
b. Is the answer to part a the same as you obtained by using Olajide's method? Why? 

4. 

Suppose you are on the side of a river and that you want to measure the width of the 
river between points A and B. But you are on the side of point B and you cannot cross 
the river. 

Design 	an instrument somew'.at similar to Oljide's instrument which would help 
you to 	measure the width of the river. Say how you could apply both Olajide's and 
Garba's 	method of computation to find the width AB. 

5. 	 Make up measurements that one might obtain in Question 4, and compute the width of
 
the river.
 

56-2 	 Parallel lines 

DEFINITION 27: Two lines in the same plane are parallel if they have no points in
 
common. The symbol 1 means "isparallel to".
 

How do we decide whether two lines are parallel? Since two lines extend indefinitely
 
in both directions, how can we be sure that they do not intersect very far out. It would be good 
to have a test which we could apply to the two lines, which does not involve inspecting the 
whole of the lines to see whether they intersect. Such a test is easy to find. One observes that 
parallel lines must have the same "direction", so to speak, so that if one of them is perpendic
ular to some line, the other must also be perpendicular to that line (Fig. 36). This leads us to 
our next postulate. 

C\\2 
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POSTULATE 6: Two coplanar lines are parallel if there is a line perpendicular to 
both of 	them. 

Another question we shall ask is how many lines can one draw parallel to a given line 
k and passing through a given point P (Fig. 37). The important fact that there is only one 

Fig. 36
 

such line is called the Parallel postulate. It is our seventh postulate.
 

P 

k 

Fig. 37 

POSTULATE 7 (Parallel postulate): There is one and only one line parallel to a given 
line and passing through a given point not on the given line. 

We shall say that two line segments or rays are parallel if the lines containing them 
are parallel. Postulate 6 gives us a very good way of constructing a line parallel to a given 
line. 

CONSTRUCTION 14. Given a line segment TB- and a point C not on A-B, construct a 
line segment U through C and parallel to .1B. 

.et.od: Drop a perpendicular UE from C to the line AM. Next raise a perpendicular 
C'-D to C- from C. Then C-D II A (Fig. 38). 

THEOREM 14. The line segment CD constructed above is parallel to AB. 
Proof: The line segments AB and CD have both been constructed to be perpendicular 

to CE. Thus Postulate 6 tells us that 	C-D AB, and the proof is finished. 

Al 

D 

C 

E 

B 
Fig. 38 
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Postulate 6 says that two coplanar lines are parallel if there is a line perpendicular
to both of them. Now suppose we take some other line perpendicular to one of the given two
parallel lines. Will it necessarily be perpendicular to the other? Our intuition says that it will. 
We shall now see how this can be proved! 

THEOREM 15. If two lines are parallel, any coplanar line which is perpendicular to 
one is also perpendicular to the other. In other words, given 1"-11 C-9 and EPILAB, then
EEILCD. 

Proof: First of all, how do we know the line E'F which is perpendicular to 74 at E,
actually intersects i5.? If it did not intersect C-1), then T",is parallel to U', for two lines 
which do not intersect are parallel. Furthermore, EP passes through P. But A-"B is also paral
lel to CD and passes through E.By Postulat_ 7, there is only one line parallel to r passing
through E,so AB and EF would have to coincide. But this is impossible, since AB and 
were given to be perpendicular. Thus, the assumption that E" and CD do not intersect leadsto an impossible situation, so they must intersect and we call their point of intersection F. 

F
 

C D 

E 
A B 

Fig. 39 

Now we show that EFICD. From Construction 4 we know that we can construct a line 
segment FG which is perpendicular to PF and passes through F.Then PPF is perpendicular to
both AB and to MG. Postulate 6 tells us that -Gand 11B are parallel. We now have two lines,
FG and CD, both passing through F and parailel to AB. Postulate 7 tells us that these two
lines, F- and C-21, must be tile same line, for there is only one line through F parallel to AM1. 
Since PG was constructed perpendicular to F, the line C) must also be perpendicular to EP
and we have completed the proof that if E-,is perpendicular to AB, it is also perpendicular 
to CD. 

The proof of Theorem 15 has a novel feature that has not appeared in earlier proofs.
In the very first step, we wanted to show that E intersects CD.There are two possibilities:
either it does, or it does not, intersect CD. We first supposed it did not intersect CD'and ar
rived at an impossible situation. What possibiiity did that leave us? Only that PP and CD dointersect. Thus, we conclude tilat they interr.ect. Such a proof which shows that the d'enial of 
what we want to prove leads to a contradiction is called an "indirect proof". It frequently is 
easier to give an indirect proof than to show directly that a statement is true. 

DEFINITION 28: A line which cuts two coplanar lines in exactly two distinct points
is called a transversalof the two lines. 

A transversal makes four angles with each of the two lines. 

./\
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P: D 

C 
Fig. 40 

In Figure 40, PQ is a transversal of the lines A-B and CD. Of the eight angles formed by the
lines PQ, AB and CD, only four of them have FQ on one of their edges, namely APQ, BPQ,
CQP and DQP. These four are called the interiorangles formed by the transversal and the
two lines. Any two interior angles formed by a transversal and two lines are called alternate 
interiorangles if they have different vertices and have no common interior points. 

AA A AB 

(a) (b) 

Fig. 41 

Figure 41 indicates the two pairs of alternate interior angles formed by a transversal and two 
lines. In Figure 41(a) the angles AP Q and DQP are marked, while in Fig. 41(b) BI 4Q and CQP 

are marked. 

EXERCISE 56-2A 
B__'7
 

. Measure in degrees the sizes of thePalternate interior angles APQ and D P in Figure
 
41(a). Do the same for the alternate interior angles BPQ and CQP in Figure 41(b). 
Notice that a pair of alternate interior angles do not always have the same measures! 
Can you draw a case in which the alternate interior-angles do have the same measure? 
If you were able to draw such a case, what could you say a'~out the two lines that 
were cut by the transversal? 
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2. A B
 

C
 

D E 

aD
 

Suppose you know that m(ABC) = 90' and BAC - DPC. Using the postulates, prove that 
DE BA. 

THEOREM 16. If two parallel lines are cut by a transversal, any pair of alternate in
terior angles formed are congruent. 

<, 0 T / 

A P B 

C QS D 

Fig. 42 

Proof: Let the lines AB and CD be parallel and let PQ be a transversal (as in Figure 42). Select a point R between P and Q. Drop a perpendicular RS from R to the line CD.
The ray SUR intersects A-B at a point T. Then P1 is perpendicular to both ABA A and CD by Theorem 15. Then RTP RSQ, since both are right angles and all right angles are congruent. Furthermore TRP a SRQ, since vertical angles are congruent (see Theorem 10). We have now 
shown that two angles of ATRP are congruent to two angles of ASRQ. Theorem 12 enables usto conclude that ATRP IIIASIeQ. But by Definition 26, corresponding angles of similar triangles are congruent, so the alternate interior angles TPI? and SQ1? are congruent.

In order to prove that the other kair of alternate interior angles CQR and BPI? are alsocongruent, we observe that TPR and RPB form a linear pair, and A?AA and RQS form a linearpair. Thus, m(RP3) = 180'- m(TPR), and m(CQR) = 180'_ m(RQS). But TPR" RQS,A A 
A CQ

m(TPR) = m(RQS),and we 
A so 

see that m(RPB) = m(CQR). But angles with the same measure are 
congruent, so RPB = CQR and the theorem is completely proved. 
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EXERCISE 56-2B
 

1. 	 Consider two lines k and n cut by a transversal m. If A a and A are alternate interior an-
A Agles and Ab and A c are vertical angles formed by three lines, then a and c are called cor

responding angles (see Figure 43). Prove the following theorem: If lines k and n are 
parallel and m is a transversal, corresponding angles formed are congruent (Fig. 44). 

n 
 /c 

n mXc
ic

a 

k 

Fig. 43 	 Fig. 44 

2. 	 Measure each of the angles in the triangle in Figure 45. Next add the three measures
 
that you found. Draw three triangles of different shapes and find the sum 
of the meas
ures of the angles of each triangle with a protractor. Are the sums of the measures of 

Fig. 45 

the angles of each triangle near 1800? We are now going to prove that the sum of the 
measures of the angles of any triangle is 180'. If your sums did not turn out to be ex
actly 1800 each time, explain why in terms of the approximate nature of measurements. 
THEOREM 17. The sum of the measures of the angles of any triangle is 1800. 
Proof: 	We may label the vertices of the triangle A, B and C (Fig. 46). Through vertex 

A we can draw -E to FC (see Construction 14). The anglesa line segment which is parallel 

C 
D 

C 

A 	 B 

E 
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CBA and EAB areA alternate interior angles of the transversal A-A A and the parallel linesand DE. Thus, CBA and EAB are congruent. Likewise, BCA DAC, for they are alternate in
terior angles of the transversal AC and the parallel lines DE and BC. These follow from Theorem 16. We next observe that EAD is a A A Astraight angle and that the angles EAB, BAC and CAD
form a linear triple. The sum of their measures is 1800, so we may write m(EAAB) + m(BAC) +
r(CAD) = 1800. But since congruent angles have equal measures, wea= have m(E, P) A 
and m(CAD) = r(BOA). This leads us to m(CBA) m(CBA)+ m(BAC) + m(BCA) = 1800, and we have 
proved our theorem! 

EXERCISE 56-2C 

1. What are the measures of each of the angles of an equilateral triangle? Can you con
struct with straight-edge and compass an angle of 600? Can you construct in angle of
300?. Write again a list of the angles that yoa can construct. Does your list include 
105'? Explain. 

2. What are the measures of each of the angles of an isosceles right-angled triangle?
3. In the following figure, lines k and i, are parallel. Look at angle J and say which 

angle (or angles) is (or are): 

a. Alternate interior with it 
b. - ipplementary to it a 
c. Vertical to it 
d. Adjacent to it 
e. Corresponding to it 

4. In the following figure, lines k, n and m e f n 
are parallel and the measures of certain h 
angles are as marked. What are the meas
ures of a and 

n? 

70 k > 

n 

800 
600 

a 
b 

m > 

5. In the figure at the right, lines k and n 
are parallel. What are the measures of 
AA Aa, b and c if the angles marked have 70' 

60/ 

the given measures? b 

5130 
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6. 	 In the accompanying figure, ACBD is isosceles with DB DC, m(FDC) + m(CDB) 750, 

A B 	 E 
550 	 350 

C 
D 

F 

AE CD, what kind of triangles are AABC, ABED and ACDF? 

56-3 	 Extending and subdividing line segments 

We began this chapter with a few remarks about scale drawings. We shall return to this
 
subject to end this chapter.
 

First of all, if we are 
given a line segment ,T, can we construct a segment 3 times as
 
long? First we draw a segment which is at least 3 times 
as long as ATB" with our straight-edge.

We could then measure the original segment, multiply this length by 3 and measure this 
new
 
length along the longer segment. We have already discussed the inaccuracies that come into
 
measurements and would like to find a better way of doing this. 
Once we have drawn a seg
ment CD/ which is more than 3 times as long as 
iB, we can more accurately draw the segment

which is 3 times as long as AR, as follows. We open our compass so that its two points 
are
 
at A and B. With this, we can accurately draw circles of radius AB. 
 Now with centre C, we
 
draw a circle of radius 4B. This intersects CD in a point P,. Now with center D,, draw
 
the second circle of radius AB. This intersects DD in D2. With D2 as centre, we draw the 
third circle of radius AB, and this intersects DD at D, . Then C-D, is 3 times as long as AB. 

EXERCISE 56-3A 

1. 	 Can you modify the construction given above to get a segment 5 times as long as AB? 
What about n times as long, where n is a positive integer? 
You may also ask how we draw the segment C long enough in the first place. If our

ruler is 	long enough, there is no problem. If it is not long enough, we can 	draw a segment as 
long as 	the ruler and then slide the ruler along the line so that part of it overlaps and continue 
the segment. This may be repeated as many times as necessary. 

Once we have a segment AR drawn, there is a nice way of locating a point C on A-B
beyond B without sliding the ruler along AB. It can be done as follows. First select a conven
ient radius and draw two circles with this radius and centres at A and B. These intersect at D 
and E (Fig. 47). Now we draw two circles of radius s and centres at E and D. 
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DX,
 
IF B 

IF
 

Fig. 47 

If s is sufficiently large, these last two circles intersect in points which are not on ;B. The 
one closer to B will be called C. Then C is on AB, and B is between A and C. By drawing 
BC,we get an extension of u'B. 

EXERCISE 56-3B 

1. Observe that -E_.A-B.(Why?) Observe also that CFIDE. (Why?) Use these facts to 
give a proof that C is on AB.
 

We havc seen how we enlarge a given segment. We next ask how we 
draw a segment 

or 1 as large as a given segment. This is the same as asking how we divide a segment into 3 
or 4 equal parts. Consider first the following exercises. 

EXERCISE 56-3C 

1. 
Fc
 

In the given figure, PG-is parallel to B-C and intersects segments BA and CA of the 
triangle at D and E, respectively.A Furthermore, RD ;DA.
a. What do A we call angles ADE and DBo? 

b. Which of the following equations is true? Why? 
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m(ADE) > in( BC)m(ADL) < m(DBC) 
A A<m(DI3C)m(ADE)m(ADE) --M DBC) 

c. Consider triangle /iADE and triangle AABC. What can you say about their respec
tive angles? 

d. Is AADE III AABC? Why? 

DA 1 Explain why.BA 2"
 
n eS1.IA I 	 E A o 

=since 	 -BA 2,what is the numerical value of 9-?Why? 

g. Which of the following equations is true and why? 

EA = EC
 

EA > EC
 

EA < EC
 

2. 	 Taking into account Question 1, how would you construct the midpoint of each of the
 
segments CA and CR?
 
We can now easily prove the following general theorem.
 
THEOREM 18. If two sides of a triangle AABC are cut by a transver..al DE (Fig. 48)
 

which is parallel to the third side, then AADE III AABC.
 

A 

F D /\E 

B 	 C 

Fig. 48 

A 	 A
Proof: 	First of all DAE - BAC, for they are both names for the same angle. A-B isA aSA 


transversal for the parallel lines E and BC, so the alternate interior angles ABC and BDF 
A A
 are congruent. But the vertical angles BY)F and ADE are congruent, so we conclude that 

A A two angles of AADE congruent to two angles of AABC, soADE 	ABC. We have now shown 

the triingles are similar, and the proof is finished. 

EXERCISE 56-3D 

I. 	 In the triangle in Figure 48, if the transversal DE divides AB so that AD =- 1 AB, what 
3 

can you say about the way AC is divided by the transversal? 
Now let us return to the problem of subdividing a line segment AR into n parts of equal 

length, n being some positive integer. 

CONSTRUCTION 15. Given a line segment AB and a positive integer n, locate a point 

C between A and B such that AC 	 I AR. 
n 
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D 
Dn
 

DD
 

A Z 
C B 

Fig. 49 

Method: Draw a line segment AD making some convenient angle with 41B (Fig. 49).Select a convenient point D, between A and D. Next use the method described above to locate the points 12 , 0, ..., Dn such that AD, = D, D, = D, D ...=Dn-,Dn. That is, draw acircle of radius AD, with centre at D. This intersects AD, at and so on.)2 After locatingDn, draw the line segment DnB. Now draw a line segment through D, and parallel to D-B.
This intersects AR at the point C. 

THEOREM 19. The construction described above locates a point C such that AC nl
 

Proo: Since D,C is a transversal which cuts two sides of sABDn and which is parallel to the thitd side DO, we know that AAC/), I ABDn. 	(What theorem applies?) But sincecorresponding sides of similar triangles have lengths that are proportional, we know that thereis a positive real number k such that AC =k x AB, AD, =k x ADn and CD, =k x BDn. But we 

have constructed ),and 	Dn so that AD, = s k Th AC = 1AB, and we are fin
ished with the proof. 

EXERCISE 56-3E 

1. 	 Locate the point Con 4- such that AC = !AB; such that AC =2AB.Draw a triangle3
ABC. Now construct another triangle ADEF which is similar to 

3 
AABC and for which 

DE = 3AB; for which DE = AB.3 Start with a line segment A" and locate a point C on 

AB such that AC = AB. Can you see how these methods are useful in making scale 
drawings? 
 A

2. 	 In the accompanying figure, A 
B6 I1I DE andB -A-C. 
Prove that BD CE. B C X y

3. 	 In the figure shown, XY and D E
 
Z are each parallel to BC 
 E 
AX = 1	 AB, AX = 1 AZ. Z M 

Find the value of the quo

tie nt 7_jC
BC"
 

o(Q2 
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A
 
In the accompanying figure, 
AE lJB, AD11 BC and BC-

BC-. Show that: 
A 

A 
a. EAD CBD. 

1 A 

b. m(AED) = -m( 'IC)
A 

c. If m (BCI)) = 40', show EA A 

that m(BAI)) + m(ABI)) ; 1100. D C 
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Chapter 57 
RIGHT-ANGLED 
TRIANGLES 

A study of geometry is incomplete unless it includes some discussion of the remark
able properties of right-angled triangles and related topics. We shall close this study with 
some of this material. 

57-1 Revision of polygons 

We shall begin by discussing squares, rectangles and other polygons. We shall first re
vise the definitions of these words. 

DEFINITION 29: A simple closed polygon of n sides (or an n-gon) is a figure consist
ing of n line segments P,P,, P-2 P-3 , PP 4 ,...,P (called sides) in which any two sides intersect only at their endpoints and each endpoint belongs to precisely two sides, which we
shall assume do not lie on the same line. The endpoints P,, P2, ... ,Pn are called vertices of 
the n-gon. 

For example, a 3-gon is a triangle, a 4-gon is also called a quadrilateral,a 5-gon is 
also called a pentagon and a 6-gon is also called a hexagon.

Two sides of an n-gon are called consecutive sides if they meet in a common vertex.
For a quadrilateral, two sides which do not meet are called opposite sides. As in the case of 
a triangle, an angle of an n-gon at a vertex Pk is the angle consisting of the two rays which 
meet at Pk and contain the two sides of the n-gon which also meet at Pk. Thus an n-gon has 
n angles as well as n sides. 

Two vertices of an n-gon are called consecutive if they are endpoints of the same side.
In a quadrilateral, non-consecutive vertices are called opposite vertices. Similarly, in an n-gontwo angles are called consecutive angles if their vertices are consecutive. In a quadrilateral,
two angles are called opposite angles if their vertices are opposite. A diagonalof an n-gon is 
any line segment whose endpoints are non-consecutive vertices. For example, in Figure 50, A 
and C are opposite vertices and B B 
and D are opposite vertices of the 
quadrilateral with vertices A, B, C C / 
and D. We shall write this quadri
lateral as ABCD. The two diagonals 
of ABCOD are ACand 9. A 

D 
Fig. 50 
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EXERCISE 57-1A 

1. 	 How many diagonals does a pentagon have? How many diagonals does a hexagon have? 

Can you figure out how many diagonals an n-gon has? 

2. 	 Draw an equilateral triangle and mark its vertices with capital letters. List all pairs 

of consecutive sides for that triangle. 

3. 	 Draw a pentagon and say how many pairs of consecutive vertices it has. 

4. 	 Can you give a general statement about the number of pairs of consecutive vertices in 

an n-gon? 
A parallelogramis a quadrilateral in which both pairs of opposite sides are parallel. 

A rectangle is a parallelogram all of whose angles are right angles, and finally, a square is a 

rectangle all of whose sides are congruent to each other. 

EXERCISE 57-IB 

1. 	 Construct a square each of whose sides has length 2 inches. 

2. 	 Construct a parallelogram ABOD with AB of length 2 inches, BC of length 1 inch and 

m(VAB) = 45'. (Recall that we can construct a 450 angle by bisecting a right angle.) 

3. 	 Draw a circle k of radius 2 inches. Now select a point A on this circle and with A as 

centre, draw another circle of radius 2 inches which intersects k at two new points which 

are to be labelled B and F. Now with B and F as centres, draw two more circles of ra

dius 2 inches, which intersect k at new points which we label as C and E. Now with 

C and E as centres, draw two circles of radius 2 inches. These should intersect k in 

the same new point, which we can label D. Draw the hexagon ABCDEF. What is true 

about the lengths of each of the sides of this hexagon? What is true about each of the 

angles of this hexagon? By joining each vertex A, B, C, D, E and F to the centre 0 of 

the circle k, draw the six triangles AOAB, AOBC, A0CD, AODE, AOEF and AOFA. 

What can you say about these triangles? Are they all equilateral triangles? Find the 

measure of each of the angles uf the hexagon AB('DEF. A hexagon in which all sides 
and all angles are congruent is called a regularhexagon. In general a polygon all of 

whose sides are congruent and all of whose angles are congruent is called a regular 
polygon. By what other names do you know a regular triangle and a regular quadri

lateral? 

In the preceding chapters, we have assumed enough postulates and proved theorems so 
that you now have the tools to go on and prove some interesting properties of these new fig

ures. For example, write your own proofs in the following exercises based upon the postulates 
and theorems of the preceding chapters. 

EXERCISE 57-IC 

Prove that a diagonal of a parallelogram separates it into two congruent triangles. Then 

prove that opposite sides of a parallelogram are congruent and that opposite angles are 
also congruent. 

One of the reasons that triangles are studied so extensively in our lessons is that they 
form the "building blocks" of more complicated figures. In particular, we can define a 
polygonal region as follows. 
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DEFINITION 30: A polygonal region is the union of a finite number of coplanar triangular regions such that 
a. If any two of these triangular regions intersect, their intersection consists of either 

a point or a line segment, and
b. each triangular region has at least one line segment in common with anoL'er tri

angular region. 
For example, a square region and a rectangular region can be viewed as the union oftwo triangular regions obtained when a diagonal is drawn (as in Figure 51). 

Fig. 51 

Other polygonal regions are illustrated in Figure 52. 

Fig. 52 

Those edges of triangular regions in a polygonal region which belong only to one triangle fromthe boundary of the polygonal region. The boundary consists of a finite number of line segments which form a closed polygonal path. Those points of the polygonal region which are noton the boundary form the inside or interiorof the polygonal region. 

EXERCISE 57-ID 

Consider a quadrilateral ABCD as in Figure 53. By drawing a diagonal such aswe obtain two triangles sABC and AACD. D
 
What can you conclude about the 
sum
 
of the angles of a quadrilateral? Can
 
you do something similar with 
a pen
tagon (5-gon)? with a hexagon? Can 

you figure out what the sum of the
 
angles of an n-gon must be?
 

Fig. 53 

C 
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57-2 Area 

We have already discussed how we measure line segments and angles. We now say a 

few words about ineasuring polygonal regions. The measure that we assign to a polygonal re

gion is its area. The area of a polygonal region has properties very similar to the measures 

of line bcg.nents given in Postulate 2 and of angles given in Postulate 3. We give these prop

erties in the following. 

POSTULATE 8: The areas of polygonal regions satisfy the following properties. 

After a unit of area has b,.en agreed upon: 
(a) 	 The area of any polygonal region is a positive real number, denoting a number of 

square units. 
(b) 	 Congruent polygonal regions have the same area. 

(c) 	 If a polygonal region is the union of non-overlapping polygonal regions, its area is 

the sum of the areas of these polygonal regions. 

(d) 	 The area of a rectangular region with consecutive sides of length a units and b 
units is a x b square units. 

Using this postulate, we can derive the area of any polygonal region. We shall briefly 

sketch how this is done. 
For the parallelogram region ABCD in Figure 54, the area can be found by dropping 

perpendiculars from .4 and B to CD and F D E 
noticing that A.,IDF ABCE. (Prove 
this as an exercise.) Thus, the tri

angular regions ADF and BCE have 

equal areas. When we take the triangu
lar region BCE away from the parallelo

gram region ABC!) and add the triangu
lar region AIDF, we obtain a figure ABEF A B 

with the same area as ABCD. But ABEF Fig. 54 
is a rectangular region whose area is AB x AF. If we call AB the base of ABCD and AF the 

altitude, then we can say that the area of a parallelogramregion is the length of its base times 

the length of its altitude. 

Finally, if we start with a triangular region ABC, we can draw a segment CD para!iel 

to AB, and AD parallel to BC. We then obtain 
(as in Figure 55) a parallelogram region ABCV 

composed of two congruent triangular regions D- ------- - - - - - -- C 
ABC and CDIA. This means that the triangular 

region ABC has just half the area of the paral

lelogram region ABCV. But this means that the 

area of the triangular region is AB x CE, 

where E is the end of the perpendicular dropped \ 

from C to ,TB. Calling CE the altitude and B IN 
the base of the triangle, we get the formula that A Fig. 55 E B 

the area of a triangularregion is one-half the 

length of its base times the length of its altitude. Areas of polygonal regions are found by 
subdividing them into triangular regions. 
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EXERCISE 57-2A 

1. Find the area of the rectangular region whose dimensions are indicated in the diagram
below. 

E [ 3 inches 

5 inches 

2. Find the area of the parallelogram region pictured below. 

S4 feet 

6 feet 

3. Find the area of the right-angled triangular region pictured below. 

2 yards 

4 yards 

4. A farm is in the shape of a rectangular region and is 200 feet long and 150 feet wide.
What is its area in square feet?
Although we have been very careful up to now to speak always of the area of agonal region and not of the polyarea of a polygon, it is often more convenient to useexpression. Since it is actually common 

the shorter 
practice to speak of the area of a polygon whenmeans the area oneof the polygonal region whose boundary is that polygon, we shall also do sofrom now on when there is no possibility for confusion. Thus, instead of saying "the areathe triangular region ABC", of 

we shall merely say "the area of AABC". 

57-3 Right-angled triangles 

We conclude our 
angles. Draw a circle and 

study of geometry with two interesting properties of right-angled tri
circle in two points A and 

a 
B. 

line segment through the centre of the circle, which intersects theThen A and B are called diametricallyopposite points. (The segment AB is called a diameterof the circle and the length AB is also called the diameter of 
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the circle. Which of the two meanings of the word diameter is wanted can always be under
stood from the sentence in which it is used.)

Select any point C on the circle different from A and B. Measure the angle ACB. Youshould find that it is a right angle. This remarkable result will hold whenever the vertices A,B and C of a triangle lie on a circle with A and B diametrically opposite points. We shall 
prove this in the next theorem. 

THEOREM 20. If the three vertices 
A 
A, B and C of a triangle lie on a circle and A andB are diametrically opposite points then ACB is a right angle.


Proof: We wish to prove that ACB 
 is a right angle. The line segments OA, OB and 
0C are all radial segments of the same circle,
and hence are all congruent (Fig. 56). Thus, cAOAC and AOBC are isosceles triangles, and
 
we conclude that OAC OCA and OBC OCB. 

AThis gives us m(OAC) m(OCA) and m(OBC) = 

M(OCB). A 0B 
Now we have m( ICB) m(OCA) +
 

m(OCB) = m(OAC) + m(OBC). But m(ACB) +
 
m(OBC) + m(OAC) = 180', and replacing

A A Am(OBC) + m(OAC) by m(ACB), we get m(ACB) +
m(ACB) = 180', or simply m(ACB) = 900, so that
 
ACB is a right angle. This completes the proof.


Let AABC be a right-angled triangle B
 
with ACB as its right angle; that is, C is the
 
vertex of the right angle (Fig. 57). Then AT,
 
the side opposite the vertex 
C of the right

angle, is called the hypotenuse of the right
angled triangle. The other two sides which 
 A
 
are contained in the right angle 
are called
 
the legs of the right-angled triangle. 
 Fig. 57 

EXERCISE 57-3A 

Construct very carefully a right-angled triangle AABC which has legs 3 inches and 4inches long. Measure the length of the hypotenuse of the right-angled triangle. It should
have length 5 inches. Now construct three squares which have the actual line segments
AB, TC_and 9U as sides and lie outside AABC. What the of each of theare areas 
squares which you drew? They are 9 square inches, 16 square inches and 25 square
inches. Notice that the area of the square which has the hypotenuse as one of its sides
is equal to the sum of the areas of the two squares which have the legs of the right-an
gled triangle as their sides. This fact is true for all right-angled triangles and is known 
as the Pythagorean theorem after the Greek mathematician in whose school it was dis
covered. We shall next prove this theorem. 
THEOREM 21 (The Pythagorean theorem).
The area of the square which has the hypotenuse of a right-angled triangle as its sideis equal to the sum of the areas of the two squares which have the legs as their sides. 
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Proof: Let us name the vertices of the triangle A, B, C with C as the vertex of the 

C a 

Fig. 58 

right angle (Fig. 59). The area of the square with A'B as its side is AB 2, while the areas of 
the squares with AC and 9C as their sides AC 2are and BC', respectively. We want to prove 
that 

AB' = AC 2 + BC'. 
One often simplifies the way of writing this by using the small letter a to denote the length
of the side opposite the vertex A, the small letter b to denote the length of the side opposite 
the vertex B, and the small letter e to denote the length of the side opposite C. Then AB = c, 
BC = a and AC = b. We now want to prove that 

2 .C?2= a2 + 

We begin by drawing two squares, DEFG and D'E'F'G' each having sides of length 
a + b (Fig. 59). On the square DEFG, locate the points H, 1, J and K such that DIH = El = FJ -
GK = a. Then IlE = IF = JG = KD = b. The triangles AKDII, Al/EI, AIFJ and AJGK are all 
right-angled triangles. They each have one leg of length a and the other leg of length b. Thus, 
the SAS postulate enables us to conclude that all four of these triangles are congruent to 
AABC, which also is a right-angled triangle with legs of lengths a and b. Thus, each of the 

F I E F' I' a E' 

b b 

Hc a 	 L' H' 

c a 

G K D 	 G' b K' a D' 
(a) 	 (b) 

Fig. 59 

four triangles AKDH, AHEI, AIFJ and AJGK has the same area as AABC. 
Furthermore, since each of the four triangles is congruent to AABC, we can conclude 

that each has hypotenuse which is congruent to A-B. Thus, IlK = Ill = JI = KJ = c. The quadri
lateral HIJK has all of its sides of length c. We would like to show 	that HIJM is a square, so 
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we must prove that its angles are all right angles. We know that m(lDAK) + m(DK/A/) + mtl9ttK)
A A A 

1800, since this is the sum of the measures 
rtagAle. I 

of the angles of a triangle. But m(tlAK) = 900,) A ')A Tsince it is a right-angle. Thus, it 
A 

11K)= 90'. Since AIJKD AIJIE, we have lAD 
A AIJE, and m(HKI) = m(1ttE). We can A A 

A 
then write m(IIIE) + m(Dlll') 90'. But since DItK, KhI 

Aand IE form a linear triple, we 
A Ahave m(IIIxE) + m(lK) t m(Ktll) 180'. Combining the last 

two equations gives us m(KIII) = 90, So Ktll is a right angle. The same argument shows thattile other angles of the quadrilateral IMd are all right angles and it is thus a square with 
sides of length e.
 

Now locate the points /'and 
 ' on the square W'E'F'G'suchthat /'lt' = a and E'I' = a[Fig. 59(b)]. Then draw i7'I 57 'and 1'K'L E'F'. It follows then that E'I'= b, 1F'= b,
F'J' b, J'G' = a, G'K' = b and K'D' = a. Draw the diagoials lI'l' and J'K' for the rectangles
E'I'L'Il' and G'K'L'J'. We then get four right-angled triangles AI'E'I, AII'L'I', AJ'G'K' and
L\K'L'd, each having legs of lengths a and b. Thus thc are each congruent to AABC and

each of the triangles Al'E'll', All'L', AJ'G'K' and 
AK'L'J'has area equal to the area of the
AABC. Thus the shaded regions in Figure 59 (a) and in Figure 59 (b) have the same areas,
since each has area four times the area of AABC. (The actual area of AABC is !a x b, but 
we shall not need this in the proof.) 2 

Now we know that the squares DEFG and D'E'F'G'both have the same area (since bothare squares with sides of length a + b). When we remove the shaded regions of each (which we
have shown to have the same areas), we obtain unshaded figures whose areas are the same.
The unshaded region in Figure 59(a) is a square region with side of length c. Thus its area2is c . The unshaded region in Figure 59(b) consists of two square regions, one with sides of
length a and the other with sides of length b. Thus its area is a2 + 62. We have thus shown 

2that a2 + V2 is equal to e , and the theorem is proved.
 
This theorem has played a 
very important role in the further development of mathe

matics and the physical sciences. It is basic for the study of coordinate geometry and higher

dimensional geometry. 
 With this theorem, we shall have to end our brief introduction to geome
try, but you should be aware of the fact that we have really only looked into a small corner of
the field of geometry. It is a fascinating and rewarding study which shows us the power of 
man's reasoning, for from a few simple postulates one is able to produce a vast store of

knowledge, which 
can be used to describe ori universe and chart the way to new and unex
plored regions of knowledge. We hope that this brief introduction will encourage you to go fur
ther in your study of geometry. 

EXERCISE 57-3B 

1. Which of the following triples of numbers can be the sides of a right-angled triangle? 
a. 3, 4,5. 
b. 1, 1, 2. 

c. 6, 8, 10. 
d. 7, 11, 12. 
e. 5, 12, 13. 

2. If a man rides 6 miles north and then 8 miles east, how far is he from his starting
point if we measure directly from his starting point to his terminal point? 
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GLOSSARY
 

Abacus 

An arrangement of rods or grooves which illustrates the place value notation for num
bers is called an abacus. Beads or stones are moved to show the number operations. It is of 
particular value in demonstrating grouping and regrouping. 

Addition 

Addition is an operation which we have defined on numbers. To any two such num
bers, called addends, addition assigns a third number known as their sum.
 

Angle 

Two different rays with a common endpoint form angle. The endpoint isan common 
called the vertex, and the two rays are known as edges. If the two rays are such that one is 
the opposite of the other, that is, part of the same line but on opposite sides of the vertex, 
the angle is said to be a straight angle. Two congruent angles which together form a straight 
angle are called right angles. The edges of a right angle are said to be perpendicular. 

Approximations 

When a count or measurement or rounding off gives a number which does not exactly 
match the original number or quantity, it is said to be given as an approximation. 

Area 

Area is the measure of a region. A square region bounded by line segments of unit
 
length is said to have unit area.
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Associative property 

The associative properties of addition and multiplication state that if a, b, c are num
bers, (i) a + (b + c) = (a + b) + c and (ii) a x (b x c) =(a x b) x c. 

Average 

An average of a set of numbers is the number obtained by dividing the sum of all of 
the members in the set by the number of members in the set. It is also called the arithmetic 
mean of the set. 

Ball 

A ball is a solid figure which consists of a sphere and the set of points the sphere 
encloses. 

Base 

When a large collection of objects has to be counted, they can be grouped using any
number for successive groupings. The decimal system uses groupings of ten, giving ones, 
tens, hundreds, ... for successive groupings. If the collection is grouped in threes, then ones,
threes, nines, ... are used in the count. The number used in the grouping is called the base. 
The binary system uses base two and has successive groupings ones, twos, foirs, eights,.
Fractions in these bases may be written in a form similar to that for decimal fractions. For
 
example, 132.45six means (1 x 62) + (3 x 6) + (2 x 1) + 4 + 5.
 

6 62 

Binary 

Binary means relating to two. See Base and Operation. 

Circle 

The endpoints of the set of all congruent line segments in a plane which have a com
mon endpoint form a circle. The common endpoint is called the centre and the length of the
line segment is the radius. A circle and the points within it together form a circular region 
called a disc. 

Closure 

If a set of numbers is such that an operation on any two of its members produces a
member of the set, that set is said to be closed under the operation. 
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Commutative property 

The commutative properties of addition and multiplication state that if a and b are 
numbers, (i) a +b =b +aand (ii) ax b =b xa. 

Cone 

A cone is a set of line segments with one endpoint in common and their other end
points in a region inside a simple closed path in a plane which does not contain the common 
endpoint. 

Congruent 

Two figures which are in a plane (plane figures) are congruent if it is possible to 
place one of them (or a copy of it) over the other so that they fit exactly. 

Cube 

A solid figure formed from six congruent square regions joined together at their edges 
to form a closed bounded surface is called a cube. 

D ecim al fractions 

See Fractions. 

Deviation 

The difference between any one number in a set and the average of the set is called 
the number's deviation from the average. The average deviation is the arithmetic mean of the 
deviations of all the numbers in a set from their average. 

Disc 

See Circle. 

Distributiveproperty
 

The distributive property states that if a, b, c are 
numbers, a x (b + c) = (a x b) + 
(a x c). 
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Division 

Division is an operation which we have defined on numbers. To two such numbers, a 
and b, known as dividend and divisor, division assigns a third number a - 6, called their
 
quotient. If b = 0, no quotient can 
be assigned and a + 0 is not any number. 

Ellipse 

An ellip,-e is a plane figure consisting of the set of all points, the sum of whose dis
tances from two given points is constant. (For a given sum, the ellipse becomes more like a 
circle as the distance between the two points grows less.) 

Figure 

A geometrical figure is a set of points. 

Fraction 

The attempt to solve any equation b x El = a, in which b is not 0, leads to the idea of
fractions. If we take a whole object, or a set of like objects, and break or separate it into b
 
equal parts, the number which denotes a of such parts makes 
 the given sentence true and is
 
called a fraction.
 

A numeral for the fraction abcve is 1. This is ;he common form; 
 a is called the nuh,a
 
era or and b the denominator. If a > , the numeral can 
also be written in mixed form, that is, 

15as the sum of a whole number and a fractional part. For example, -5 can also be written as1 2 
2' or briefly 7 . Whole numbers can be written in fractional form with demoninator 1. 

For example, 3 can be written . The fractions and b are reciprocalfractions. The product 

of a pair of reciprocal fractions is always 1; for example, x - =1. 

A general definition of fraction can be stated as follows. Given two whole numbers a 
and b (b # o), the quotient is said to be a fraction. 

Any common fraction can be written as a decimal fraction, that is, as a fraction whose 
denominator is a power of ten or as an endless sum of such fractions. A fraction whose denomi
nator cannot be a power of ten forms an endless decimal fraction, one or more of whose digits 
repent. For example,
 

4 36 +36 + 6

11 _f m104 10 + ... 3636.... 
 An endless decimal fraction which neiL.ier ends nor re
peats corresponds to an irrationalnumber. 
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Identity 

When 0 isadded to any number, it leaves the number unchanged; 0 is said to be the 
additive identity element. 

When any number is multiplied by 1, the number remains unchanged; 1 is said to be 
the multiplicative identity element. 

Integer
 

The counting numbers have opposites which are shown to the left of 0 on the number
line. The integers consist of the counting numbers, their opposites and zero. 

Inverses 

Two numbers which give 0 when added are opposites and are called additive inverses. 
Two-numbers which give 1 when multiplied are multiplicative inverses;each is the reciprocal 
of the other. 

ifa and b are nimbers, (i) (a -b) + b = a and (a + b)-v =a; (ii) (a x b)+ b = a and
 
(a + b)x b = a.
 

Substraction and addition are called inverse operations;division and multiplication
 
are also inverse operations.
 

Irrational number 

An unending decimal which does not represent a rational number, is said to represent
 
an irrationalnumber.
 

Length
 

When a line segment is placed against the number line with its left endpoint at 0, the
number at the right-hand endpoint is called the length of the segment. Clearly, this number
 
depends on 
the size of the unit piece used on the number line. 

Line segment 

If any two distinct points A and B are joined by a straight-edge, a line segment is
made which consists of A, B, and all points located on the straight-edge. Straightness is
tested by a tightly stretched string. The line segment is written A-; A and B are the end
points of the segment. AB represents the length of the segment. 

A line segment AT may be extended indefinitely beyond an endpoint; this produces a ray with one endpoint. For example, AB is the ray with endpoint A. If a line segment AB is 
extended indefinitely beyond both endpoints the result is a line, written AB. 

C, 
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Measure 

A measure is the number on the number line which represents any quantity of which
 
the unit is represented by the unit segment on the number line.
 

Multiplication 

Multiplication is an operation which we have defined on numbers. To two such num
bers a and b, multiplication assigns a third number called their product written 
a x b or ab. 

Operation 

Two numbers can be linked in ways each of which would give a certain third number.
 
The process which determines the third number is called a binary operation, because 
two num
bers are needed to produce the third number. Addition, substraction, multiplication and divi
sion are binary operations. For example, 6 + 2 = 8, 6 - 2 = 4, 6 = 
x 2 12, 6 +2 = 3. 

Each operation has its own fules which it obeys. Some properties of operations in
clude closure, the commutative, associative and distributive properties, 
 and the properties of
 
zero, of one, and of inverses.
 

Opposites 

When the number line is extended to the left of 0, a point can be marked on it to cor
respond to each point to the right of 0. For example, 3 to the right of 0 can be written as pos

3 or 3; 3 to the left of 0 is then written as neg 3 or -3; 3 and -3 are opposites. The sum of
 
two opposites is always 0; that is, for any number a, (a) + (-a) = (-a) + (a) = 0. 

Order 

Any two different numbers have an order such that one is less than the other. 
Any three different numbers can be placed in order so that one of them is between the 

other two; that is, a < b < c. For example, on the number line: 
(i) 4 is to the left of 7 and 7 is to left of 12:4 < 7 < 12. 

(ii) 2 is to the left of 14; 1 is to the left of 11: 2 < 1 < 12. 

(iii) -5 is to the left of -3; -3 is to the left of -2: -5 < -3 <-2.
 
Order has the following properties:


(1) Comparison property: for any numbers a and b, one and one only of tfe following is 
true: a <b, a= b, b <a. 

(2) Transitive property: for any numbers a, b, c, if a < b and b < c, then a < c.
(3) Addition property: for any numbers a, 6, c, if a < b, then a + c .< b + c. 
(4) Property of opposites: for any rational numbers a, b, if a < b, then -b .< -a. 
(5) Multiplicationproperties: for any rational numbers a, b, c, 

(i) ifa <b and c>0, then ac <bc; 
(ii) if a < band c <0. then be <ac. 
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Parallel 

Two different straight lines in the same plane are said to be parallel if there can be 
a third line perpendicular to each of them. Parallel lines have no point in common. 

Parallelogram 

A parallelogram is a quadrilateral in which opposite sides are parallel. 

Path 

A path in a plane can be thought of as the trace made by a pencil point without its 
being lifted from the paper. When the pencil returns to its starting point without crossing its 
path, the path is said to be closed. A closed path has an inside and an outside region. A
path may be curved or may consist of line segments successively connected at their end
points. 

Percentage 

Percentage is a way of writing one number as hundredths of another. For example, 
3 is of 12; this can be written as 25 of 12, or 25 percent (25%) of 12.4 	 100Since the second decimal place shows hundredths, a decimal can easily be read as a 

percentage. For example, -375 = 371 hundredths = 37"5%. 

Perpendicular 

Two lines are said to be perpendicularif two adjacent angles at their intersection 
are congruent. See Angle. 

Plane 

An object in space has a surface which may be either flat or rounded. The test for flat
ness is that a straight-edge lies in the surface wherever it is placed. A flat surface indefi
nitely extended is a plane. 

Plane	figure
 

A plane figure is a set of points in one plane.
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Point 

The idea of a point arises from trying to represent the extreme tip of a corner. The 
word point is used to express an absolutely precise location. The intersection of two lines is 
a point. A point is ordinarily named by a capital letter. 

Polygon 

A polyon is a plane figure consisting of line segments placed end to end successively 
so that any consecutive pair have only an endpoint in common. The common endpoints are
 
called vertices (singular: vertex) and the line segments are sides.
 

Quadrilateral 

A quadrilateralis a polygon consisting of four line segments. 

Rational numbers 

The set of numbers which includes the positive fractions, zero and the negative frac
tions is the set of rational numbers. Since any integer can 
be expressed in fractional form,
 
the integers are included in the set.
 

Ray 

See Line segment. 

Real numbers 

The rational numbers and the irrational numbers together make up the real numbers.
 
The real numbers correspond, to all decimal fractions whether they end, repeat 
or neither end
 
nor repeat. Any real number can be represented on the number line.
 

Rectangle 

A parallelogram all of whose angles are right angles is a rectangle. 

Region 

A plane region is a set of points consisting of a simple closed path and all points in
side it. A closed surface has an inside and an outside region. 
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Significant digits 

By the significant digits of an approximate decimal fraction, we mean all its digits ex
cept (a) zeros written to the left of its first non-zero digit and (b) zeros written to the right ofthe non-zero digits if these zeros replace unknown (that is, non-reliable or rejected) digits.
The number of significant digits in an approximate whole number depends on the degree of 
accuracy with which the number has been obtained. 

Similarity 

Two polygons are said to be similar if there is a one-to-one correspondence between 
their vertices such that: 

( i) corresponding angles are congruent and 
(ii) corresponding sides are proportional(that is, there is a positive real number-the 

scale factor-such that the lengths of the sides of one polygon are k times the 
corresponding sides of the other). 

Sphere 

A sphere consists of the endpoints of the set of all congruent line segments in space
which have a common endpoint. The common endpoint is called the centre, and the length of 
the line segment is the radius. 

Square 

A square is a rectangle whose sides are all congruent. 

Subtraction 

Subtraction is an operation which we have defined on numbers. To two such numbers 
a, b, subtraction assigns a third number called their difference and written a - b. 

Symmetry 

Suppose we ca:, divide a geometric figure into two parts by a line through the figure and
that furthermore the parts are mirror images of each other. Then we say that the line is a line
of symmetry for the figure and that the figure is symmetrical with respect to the line. 

Tetrahedron 

A tetrahedron is a solid figure consisting of the set of line segments which have one 
endpoint in common and their other endpoints in a triangular region, the common endpoint lying
outside the plane of the triangle. 
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Transitivity
 

If a, b, c are numbers, an order relation which exists between 
a and b and also be
tween b and c holds also for a and c. Thus, the transitive property of order states that if
 
a <b and b <c, then a < c.
 

Triangle 

A closed polygon consisting of three line segments is a triangle. 

Vertex 

See Angle. 

Volume 

Volume is the measure of a space region bounded by a closed surface. A cubic region
bounded by square6 with sides of unit length is said to have unit volume. 

Zero 

The number which tells how many members are in the empty set is named zero. On the 
number line, 0 marks the empty set of unit lengths. 

The property of zero in operations states that 
(i) a+0=0+a=aand(ii) ax0=0xa=0. 
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ANSWERS 
FOUNDATIONS
 
OF GEOMETRY
 

The answers to the exercises in Chapters 53 to 57 consist mostly of figures to be 
drawn, and therefore no answers are given for these chapters. 

Chapter 47 

EXERCISE 47-2A 

2. 	 One. Eight. As many as you wish. As many as you wish. 

EXERCISE 47-3A 

5. 	 The last two drawings on the right are not straight. The other drawings are straight.
9. 	 The point P shculd be on the line of sight from J to K. 

EXERCISE 47-4A 

1. 	 A and D. 
4. 	 a. No. c. d. No. e. No. f. No.b. Yes No. 	 g. Yes. 
5. 	 Q is between P and R. 7' is between Q and V. 
6. 	 Three. Two. One. None.7. 	 s ix; F-S, P-R, -Q, S-, S-, R-. 

8. 	 XY, XZ, YZ. 
9. 	 There should be six line segments showing in your figure. 

10. Five. 
11. E should lie o,. FG. 

EXERCISE 47-4B 

1. 	 The ray from P through 0, P-0 or OP.
 
The ray from Q through X, QX or XQ.
 

The ray from R through N, RN or N®'R. 

oq,,
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2. a.Q orP. b. i orR. c. OK or KO.
3. The ray CD; the straight line 1G," the line segment MN,; the ray FE. The points D, 11,

At and F on the figures have been chosen and named to provide names for the figures.
4. All line segments that end at B and contain A. 
5. The number line for whole numbers. 

EXERCISE 47-5A 

2. No. It does not contain three points that do not lie any line.on 
3. No; a triangular region cannot contain straight lines. 

Yes; any plane is a plane figure because it is contained in a plane, namely itself.4. a. Always. b. Always. c. Sometimes, but not always. Some four points do lie inno 
any plane. Some four points do lie in a plane. Take three points at three corners of
the floor of a room, and the fourth point at one corner of the ceiling. If these four 
points were in some plane, the ceiling would have to touch the floor! d. Sometimes, 
but not always. e. Always. f. Never. 

None of these is a plane region. 

5. Any straight line. 
6. Yes; papers are flat on flat table tops. The second figure is not full of straightness;

in it, you can find two points whose line segment crosses the bitten-out part, and 
therefore does not lie in the figure. 

7. (1) Yes, yes, no. 
(2) Yes, no, no. 
(3) No, yes, yes. 
(4) No, no, no. 
(5) Yes, no, no. 
(6) No, no, no. 

EXERCISE 47-6A 

1. 12 
2. 4 
3. 1 
4. No. 
5. 8. 8. 
6. The top, bottom and side. 3. 

Edgqes: top circle, bottom circle: 2.
 
Vertices: none: or else every point on 
an edge.
 
"Vertex" 
 has not really been defined here for such a figure.

7. One face; no edge; no vertices. Yes. 

REVIEW EXERCISES 

3. a. Line segment. b. Circle. c. 
e. Triangular region. f. Square. 

47-7 

Line segments making a square corner. d. Triangle. 
g. Circular region. h.Simple closed path. i. Path. 
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j. Polygonal region. k. Closed path. I. Five-sided polygon. m. Four-sided closed 
polygon. n. Five-sided closed polygon (also: pentagon). o. Parallelogram region.

4. 	 0, e . g . i, o . 

6. 	 Yes. Circle. Yes. Test with a straight-edge to see if it is a plane figure. If it is a 
plane figure, it must be a plane region since you can clearly draw a triangular region 
on the drum top. 

7. 	 a. Yes; it is a quadrilateral with all sides congruent. b. Yes; a square is a quadri
lateral and has all four angles right angles. c. No; in section 47-6 there is an illus
tration labelled "Quadrilateral" that is not a rectangle. 

Chapter 48 

EXERCISE 48-3A 

2. 	 They are "crossing", "touching", or "connected end to end" according to whether 
the point of intersection is an endpoint of none, one, or both of them. Yes, they are. 

3. 	 a. Crossing. b. Connected end to end. c. Touching. d. Alined end to end. e. Non
intersecting. 

6. 	 PR; XY; none. 
9. 	 PJ and DA," MS and XC;G AD and 4-W. 

12. As many as we wish. 

EXERCISE 48-4A 

2. 	 a, c, d. 
3. 	 a. No; perpendicular lines intersect and so cannot be parallel. 

b. No, 	 for the reason given in the answer to a. 
4. 	 They are perpendicular. The two lines are perpendicular. 
5. 	 a. Each of IN7 and UK with each of Ci', FE and HG. 

b. 11 and LK; each of CD, E-7"and H6' with each other. 

EXERCISE 48-5A 

1. 	 Cases e and i are impossible. 
2. 	 3 angles. 2 right angles. ZPX and XYW; X9W and WYZ; IVYZ and ZYX. 
3. 	 Four and two. 
4. 	 Seven. Four. 

11. T and CD are perpendicular to EF; KL and ET are parallel. 

EXERCISE 48-6A 

1. 	 b, d, e, g, j. 
2. 	 e, g and j are closed; e and g are simple. 
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3. a. Nothing can be done to change this to a polygon. 
C. Erase any line segment. 
f. Erase arc AB. 
h. Erase all but triangle ABC. 
i. Draw Aor B or 9 or DA. 

EXERCISE 48-7A 

1. Three. 
5. b. As many as you wish. 

d. As many as you wish. 
7. No. 
8. No. Any two sides of a triangle intersect and so cannot be parallel. 

EXERCISE 48-8A 

1. b, d, g, i, j, I, m, o. 
2. Squares - j; parallelograms - b, j, o; rectangles - b, j. 
3. Yes. 
5. Yes. 
6. Yes. 
8. Yes. Yes. No. 
9. No. Yes. 

10. Yes. Yes. Yes, but this is sometimes physically difficult. 
11. No, as explained and illustrated in Section 48-8. 

EXERCISE 48-8B 

2. Yes. 
3. Yes. 
4. The side included between the first pair of congruent angles is parallel to the side 

included between the second pair. 
5. No. Opposite pairs of angles are congruent. 
6. The angles are all right angles. Opposite sides are congruent and parallel. 

EXERCISE 48-9A 

1. The first and last are not paths; the second, third and fourth simple.are
3. Let A, B, C be the three points. Construct the perpendicular bisector of AB, and also 

that of BC. These two will intersect. The point of intersection is the centre of the 
circle. 

7. A circle.
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EXERCISE 48-11A 

2. 	 a. 6 vertices, 9 straight edges, 5 flat faces; 
b. 1 face not flat; C. 8 vertices, 12 straight edges, 6 flat faces; d. 2 round edges, 
2 flat faces, 1 face not flat. 

3. 	 a. Yes, a cube is a rectangular prism. 
4. 	 Yes. 

EXERCISE 48-12A 

2. 	 Yes. Yes. 
7. 	 The stand-up edge shows the line normal to the plane at the point at which the edge 

touches the table. 

8. 	 Yes, at the bottom endpoint of the hinge line. The top edge of the cover traces a 
plane parallel to the one traced by the bottom edge. 

Chapter 49 

EXERCISE 

2. 	 Yes. 
3. 	 Yes. 

EXERCISE 

1. 	 The second. No. 
3. 	 Yes. 

49-2A 

49-3A 

EXERCISE 49-4A 

1. 	 Yes. 
3. 	 Yes; greater accuracy. 

EXERCISE 49-5B 

1. 	 The first two spheres have volumes 36a and 

2. 	 6 x r x (2)2 = 24n7 cubic inches volume. 
Area: 3277 square inches. 
1 

4. 	 - x height x area of base. 
3 

5. 	 5 x 3 x 2 x r = 30u cubic inches. 

2 cubic inches, respectively.
2 

oA\
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6. No; the volume of the box is 1080 cubic inches; the volume of the blocks is 1200 
cubic inches. 

7. 	 The volume of the prism is 120 cubic inches, so Abu's guess was better. Abu made
the better estimate for the volume of the book and is the better guesser. Abu probably
guessed the dimensions of the book to be 1 inch, 9 inches and 10 inches. 

Chapter 52 

EXERCISE 52-IB 

1. 	 There are four lines of symmetry for a square. 

/ I ' 

2. 	 There are two lines of symmetry for a rectanglethat is not ,:square. '--------3. 	 There are three lines of symmetry for an equi-

lateral 	triangle, five for a regular pentagon, six for a regular hexagon. 

SI 	 /I 

/1. 
 /
I 
 II
 

I 	 I . 
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FOREWORD
 

This volume of Basic Concepts is concerned with different aspects of measurem,;nt. 
It is true chat we have talked about measurement in previous volumes. We had something 
to say about measurement in Volume II when we discussed Approximations. We treated 
measurement again in Volume IllI when we discussed the measurement of angles, areas 
and volumes. It would be useful for the reader to revise these sections before reading
this book. Now we want to go further. We want to talk about the measurement of other 
quantities like weight, time, cost or even the amount of information that a student has 
about a subject. There are many, many places where we measure things of one kind or 
another. Modern science and engineering are based on measurement. In ancient times some 
simple measurements were made, but the habit of measuring things really goes back to 
Galileo who around 1600 led the way to the age of science as we know it today. He wrote 
that we should "measure what is measurable and make measurable that which is not". 
We shall soon learn what this puzzling sentence means. 

But measurement is important outside of science and technology. It is important
in everyday life. It is also important in economics and the other social sciences. To plan 
for the future, the economist studies collections of numbers which measure population, 
exports and imports and other features of a country or region. The science of collecting 
and interpreting these numbers is called statistics. 

In this volume of Basic Concepts we shall try to make clear how measurements can 
be used to help us to understand the world about us and to make plans to improve the 
conditions of our lives. We shall do this in Units XII, XIII and XIV. But first we must 
have clear ideas about how quantities can be mea!ured. In Unit XI, then, we shall take a 
closer look at measurement itself. What kinds of things can be measured? How do we go
about measuring a quantity? These are the kinds of questions which we must answer before 
we go on. 
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UNIT XI MEASUREMENT
 

Chapter 58
 
MEASUREMENT
 

58-1 What is Measurement? 

What is it that we do when we measure something, for example, the length of a
 
table? We have something which we want to measure. In this example 
we call the some
thing a length. To have a name for a thing to be measured, whatever it is, we use the word 
"quantity". Length is a quantity. Area is a quantity. Other quantities are the time some
thing takes to happen (for example, the time it takes for the moon to rise), the cost of an 
article which we wish to buy, the speed of a bicycle, and the weight of a bunch of bananas. 

After we have measured one of these quantities, we end up with a number. This 
number is called the measure of the quantity. But it would make no sense to say that the 
length of a thble is 3. If someone told us this we would ask: "3 what?" or "Do you 
mean 3 feet or 3 yards?" So, to report a measurement it is not enough to give a number. 
We must give the unit of measure. We can measure a length in inches, in feet, in yards, or 
in miles. If we use the metric system we can choose such units as metres or centimetres. 
If we measure an area we report the result as a certain number of square inches, square
 
feet, square yards, square miles 
or acres (in the case of land). We may measure time in
 
days or hours or minutes or seconds. We measure cost in shillings and cents, in dollars
 
and cents, in francs and centimes and so on.
 

So every measurement is reported in the form []()where R istobe 
filled by the name of a number and ( ) by the name of a unit, usually in the plural. 

To measure any quantity we first choose a unit of measure and then determine the 
number of these units in the quantity to be measured. For example, we say that the length 
of a certain table is 3 feet. 

58-2 Units 

What exactly do we mean by a unit? First of all, a unit is a quantity of the same 
kind as the one that we wish to measure. We measure a length by a unit of length, an area 
by a unit of area, a time interval by a unit of time, and so on. 

More precisely, we choose a particular example of the kind of quantity that we 
wish to know and agree to give the number 1 to it. That is, we agree to say that the 
measure of this example is 1. We call this example a unit for the quantity. 

But it is also important to be able to use the unit any number of times. One way 
in which this can be done is to make as many copies of the unit as we please. If we 
measure length by using the length of a particular stick as a unit, we can make more 
sticks like it. You will remember how we constructed a number line by putting matches 
end to end. We had a supply of matches any one of which was a unit. We could test the 
equality of these matches so far as length is concerned by laying any two matches side 
by side to see if their ends correspond. 
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A more usual way to measure length is to use a ruler, say a ruler that people
have agreed to call 1 foot long. We can of course make many copies of this ruler. We 
ordinarily do not do this. We use a single ruler and move it about. We assume that it 
does not change its length when we move it. 

The point is that we can either copy our unit or use the same unit over and 
over again. 

Let us turn to the measurement of area and choose for our unit a square 1 foot 
on a side. It is easy enough to make a copy of this unit or to move it
 
about.
 

A certain angle is called a degree. 
 Of course we can use this
 
unit as many times as we like. 
 1 ft. 

How about time? If we have a watch, we call an hour the time 
it takes the large hand to go around once and come back to the same 

.place. This uni of time can be copied. For example, the time it takes 1 ft.
 
to go around once more is equal to the hour just past.


So, too, when 
we measure money in shillings there is no difficulty in making
shillings which are copies of each other. 

Now we come to an interesting case. Can we measure how much a student knows
about some subject which he has studied? Of course we try to do this when we give him 
an examination. Is this a real measurement? What is the unit of measurement? Let us
 
say that a unit is a correct answer to a question so that we 
 try to measure his knowledge
by the number of questions that he answers correctly. But is a correct answer really a
unit? Can we truthfully say that different questions are copies of each other? Obviously 
we cannot ask the student exactly the same question over and over again. That wouldn't 
do any good at all. So we use different questions. But how can we be sure that different
questions are equal to each other as measures of knowledge? Of course we cannot be
 
sure. So you 
see that measurement of knowledge is not entirely satisfactory, because we 
cannot find a unit that can be copied or moved about. It is usual to call it measurement,
nevertheless. It fulfills the general purpose that measurement serves, even if it falls
 
short of the more ideal measurements of length, area and weight.
 

Can we measure how much a 
mother loves her children? Can we measure how 
great a man is, or how important he is to his country? At least it would be difficult. In

what units, however unprecise, could these things be measured?
 

Let us turn back to quantities like length which surely can be measured. How
do we choose the unit? One part of the answer is that we use a unit that will make the

numbers (the measures) come out to be neither too large nor too 
 small. If we want to
 
measure the distance from Nairobi to Mombasa 
 we do not use inches or feet or yards.

The measure would be too large. If we use a mile as a 
unit we do get a convenient
 
number of units. In the other direction, if we measured 
a man's height in miles we would
 
have a very small fraction of a unit for an answer.
 

Occasionally we use numbers of units which are 
very large or very small. For
example, we say that the sun is about 93,000,000 miles away. Surely 93,000,000 is

large number. We use miles here 

a
 
to connect with earth measurements that are familiar.
 

But the astronomer quickly 
chooses a larger and more convenient unit.
 
But before we discuss further the choice of units, 
we must look more closely at 
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the way in which a measurement is made. After we have decided on a unit, what do we 
do with it? We shall discuss this in the next section. 

EXERCISE 58-2 

Explain how you could measure each of the following quantities. In what units 
could they be measured? 

0. The strength of a rope. 
b. The annual rainfall at Lagos. 
c. The strength of a salt solution (brine). 
d. The speed of a bicycJc. 

58-3 The Process of Measurement 

The measurement of length, say the length of a table, is perhaps the simplest 
example of a measurement. It is certainly one of the most important ones. So let us 
begin with it. 

Suppose, then, that we have a stick 1 foot long, which is our chosen unit, and 
also that we can provide ourselves with as many copies of this unit as we wish. 

I ft. I ft. I ft. 

Table 

We place a unit so chat one end is exactly above the end of the table. We then put enough
of our copies end to end to reach the other end of the table. If we are lucky the farther 
edge of the table will be even with the far end of one of our copies. Then we find the 
measure simply by counting the number of units we 
have used. !f not, we must use fractions of a unit. 1 1 2 3 1 4 
When we talked about the number line we 
described how this could be done. We shall not Tablerepeat it here. For simplicity we assume that the 
measure is a counting number. 

What we want to make clear now is that to measure a quantity we must be able 
to put units together in a way which it is reasonable to call addition. 

This will be true for the measurement of any quantity in terms of a given unit U. 
We shall want to write U + U = 2U, U + U + U = 3U, and so on. 

Let us look at the measurement of quantities other than length with this in mind. 
We can surely put together units of area in a natural way. 
We can also fit together units of volume, for example, 
cubes 1 foot on a side. We can combine angle units, two 
or more pound weights and two or more shillings. Time 
units, say hours, can be fitted to each other in succes
sion. In every case we have a way of putting units 
together that it seems natural to call addition. 
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This means that the way that we combine units must have the properties of
 
addition with which we are familiar. We shall want it to be true, for example, that
 

3U + 5U- = 5Ut + 3U 

just as it is true that
 

3 + 5 = 5 + 3. (Commutative Property
 
for Addition)
 

Also we shall expect that
 

(3U + 5U) + 2U 3U + (5U + 2U) 

because (3 + 5) + 2 = 3 + (5 + 2) (Associative Property
 

for Addition)
 

We can see very easily 	that these are true statements. 

3U + 5U = 8U 

and the 8 can be written as 5 + 3 as well as 3 + 5. 

Generally aU + bU = NJ + aU 

and (aU + bU) + cU = all + (bU + cU) 

for any whole numbers a, b and c. These results are just as valid when a, b and c are 
fractions as they are 	when a, b and c are whole numbers. We can describe these facts
 
by saying thut measurements must be additive.
 

EXERCISE 58-3 

1. 	 Give a reason for believing that if U is a chosen unit for any quantity 

1 u +-4 u LI- 5
 

3 3 -3
 

and
 

4 1 5
 
-U + 
 U l 
3 3 3
 

Hint: Take a new unit that is one third of U.
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2. As in Problem 1, show that 

1 1 5 1 1 
I 
2 

U +±I U =-
3 6 

U -U 
3 

+-IU 
2 

58-4 The Need for Standard Units 

Here is an experiment that you can try with your pupils. Let each of them bring 
a stick to class and use this stick at a unit with which to measure the length of the 
schoolroom. Will the pupils get the number of units for ansame answer? Almost certainly 
not. It is very unlikely that all of the measuring sticks would have the same length. 

Again yoa might ask different pupils to measure the length of the school room 
by pacing it off. Will they get the same answer? Probably not, because the unit of 
measure, the pace, for a tall child will be different from that for a short child. 

It makes life simpler if people mean the same thing by the same words. If one 
man used the word "banana" to stand for what another man caJled a "pawpaw" it would 
be hard for them to talk to each other. This is the kind of trouble which people who speak
different languages have in understanding each other. But within a group that speak the 
same language, people mean the same thing or nearly the same thing by the same words. 
This makes it possible for them to understand each other. 

It is very much the same with measurement. If we have to buy and sell from each 
other, it helps to avoid misunderstandings if we can agree upon units of length, volume 
and weight and also agree upon units of money. 

If a tradesman means something different by yard of cloth than you do, youa 
may easily find that you have bought more or less cloth than you need. If different 
tradesmen had different ideas of a yard or of a shilling, it would be very confusing. So 
one of the first things that a government does is to set standards, that is, agreed-upon 
units of measure. 

If groups of people trade with each other, the standards of one group must be 
brought into some kind of agzeement with those of the other. In the course of time it 
usually happens that one of these sets of standards is accepted. As the peoples of the 
world have come closer together, the number of different systems of standards has 
decreased. There are now only two principal sets of standards of measure for length, 
area, volume and weight. They are the English system and the Metric system. Of 
course there are many more than two systems of currency.

When two groups that deal with each other have different systems of measure or 
currency, there must be an agreement upon the way of changing from one to the other. 
For example, now that units have been standardized: 

1 inch 2.54 centimetres 
1 metre 39.37 inches 
1 litre 1.057 liquid quarts 
1 kilogram = 2.2 pounds 

For currency the "rate of exchange" changes somewhat with time. At present 
1 U.S. dollar = 7 East African shillings 

("2' means "is approximately equal to"). 
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The history of the English system isan interesting one. The distance from a
 
man's nose 
to the tip of his middle finger when his ax.n and hand were outstretched was 
called a "yard". An "inch" long ago was the width of a man's thumb and a "foot" the 
length of a man's foot. Even with these crude units of measure, people soon found that 
a foot contained about 12 inches and that about 3 feet made a yard. An early king decreed 
that a yard was the distance from the tip of his nose to the tip of his finger.

The rod was a unit for measuring land, about 16 feet long. Another English king 
declared that a rod was 16 men's feet. To get this rod he ordered his officers to go to a 
certain churcl, and on a particular Sunday take the first 16 men who came out of church,
and measure a rod by having them stand so that the toe of one man just touched the heel 
of the man in front of him. This length was measured by a rope which was divided into 
16 equal parts. One part became the official "foot" of England at that time. Later a yard 
wa- taken to be the length of a certain iron bar and a third of this length was taken to be 
a foot, and a thirty-sixth of it was called an inch. 

The word 'mile" comes from "mille" in the Latin expression "mille passum",
 
which means "a thousand paces" ("mille" 
 is the Latin word for 1,000). A pace was
 
about 5 feet. Today we define a mile as 5,280 feet.
 

You will see that these English measures are more or less associated with the
 
human body. The metric system broke away from these body units. 
 The fundamental unit 
of length, the metre, was defined as one ten-millionth of the distance from the North Pole 
to the Equator. More recently, an international conference of scientists defined the metre 
in terms of the length of certain light waves. The metric system is used by scientists the 
world over. 

In the metric system the connection between the different units for a given 
quantity is very simple. For example, 

1 micrometre (micron) .000001 metre 
1 millimetre .001 metre 
1 centimetre = .01 metre 
1 decimetre .1 metre 
1 kilometre = 1,000 metres. 

It is therefore very easy to change units to get more convenient numbers. For example, 

1,371 metres = 1.371 kilom-tres. 

A statement like 

1 kilogram = 2.2 pounds 

really means that the two sides of the sign "=" name the same measurement. It does 
not mean that 1 equals 2.2! Some people read "=" as "equals", but it is better to read 
it as "isequivalent to" 
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Problem 1. 

A bar measures 1.3 metres. How could this be expressed in feet? 

Solution: 

1 metre 	 = 39.37 in. 

1.3 metres = (1.3) (39.37) in. = 51.181 in 

= 51.181
12 ft.12
 

= 4.265 	ft. 
Problem 2. 

Change 	10 lb. to kilograms (kg.) 

Solution: 

2.2 lb. = 1 kg. 

I lb. = 	 1 
.2 kg. 

10,
10 lb. = 	 2. kg. = 4.55 kg. 

EXERCISE 58-4 

Have 10 pupils measure the length of a desk where each uses the 	width of his 
thumb as 	a unit. Record the results and find the average. Compare this average
with the length of the desk in inches found by using a ruler. 

2. 	 Have 5 pupils measure the length of a room using the length of his right foot 
as a unit of measure. Average the results. Measure the room with a foot rule or 
a yard stick and compare the result with the average found. 

3. 	 Make up other experiments like these to try in your own school. 
4. 	 Fill in the boxes correctly. (Round off the results in a reasonable way.) 

. 15ft. = ] metres. 

b. 5 lb. F--] kg. 

C. 2 	in. = CM. 

d. 100 	sq. ft. = F-1 sq. metres. 

5. 	 Change 15 mi./hr. to ft./sec. 
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58-5 A Backward Look 

We have seen that measurement is a way of tying a number to a quantity by 
seeing how many units of the quantity can be put together to match the quantity. So far 
we have made things simple by assuming that a whole number of units would match the 
quantity that we wish to measure. We know that usually we must use fractions of units, 
but we shall keep on with whole number measures for a bit. What we have done should 
remind us of something. We have said that measurements are additive. Where have we 
met this idea before? In working with sets, of course. If we have two disjoint sets, say 
two sets of bananas, we can tie a number to each set. When we combine these sets to 
form their union we find that the number of members in the union is the sum of the 
numbers of members in each of the sets. We see that we can use the number 
of members in a set as a measure of the set. Measures are additive. We know 
that the sets must be disjoint, otherwise the number of the union would not be the sum of 
the numbers of the sets which are combined. It would be smaller. This is just like the 
case of adding lengths. If we had overlapping units (foot 
rules), we w:uld not get the length of the table by addition. 
The length would be less than the sum of lengths we put
together. ii i 

We begin to understand something else. We see 
why pictures are so useful in studying numbers. For 1 ft. 1 ft. 
example, we have used the number line to help us to 
understand fractions and how they are added. We also cut up circular and rectangular 
regions into equal pieces (of smaller units), again to help us to understand about 
fractions. This is because lengths and areas are additive. They a .t like numbers. For 
example, when we wish to test out the commutative law for fractions we may ask 
ourselves if it is true that 

1 3 3 1 

5 5 5 5 
1 3 

We show I 
5 

and - as length.? and add these lengths first one 
5 

way and then the other. 

We notice that the result is the same both times. What does this 
mean in the language of measurement? It really means that in
stead of using as a unit of length the distance OP from 0 to 1, O p 
we choose OQ as a new unit of length, say U. In terms of this O Q 1 
unit, OP = 5U. We call this new unit a fifth. Then the 
equality that we wish to test can be written 

1 fifth + 3 fifths = 3 fifths + 1 fifth 

and this is true because they both amount to 4 fifths. This trick of choosing a new unit 
means that, if possible, we use whole number measures to make things simple again.

It is the same when we use rectangles. If the area of the figure ABCD is our 
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chosen unit of area we can choose a new unit to go with the shaded region. We call it a 

C D 

A B 

fifth (1 fifth). We verify by counting that 

1 fifth + 3 fifths = 4 fifths 

= 3 fifths + 1 fifth. 
1 

Of course, 5 fifths = 1 original unit. We write 1 fifth as -. Then our statement reads: 

5 

=3 	 1-) +1 
5 5 

which we shorten to 

1 3 4 3 1 
5 5 5 5 5 

In this way everything becomes clear. It is hard to think of numbers but easy to think 
of pictures. Most people are more at home when they can picture what they are 
talking about. 

'In the Exercise you will be asked to use measurement language to talk about 
other properties of fractions. It all comes down to choosing a smaller unit that goes 
a whole number of times into the original one.
 

You will remember that this trick does not always work. There are 
other kinds 
of numbers that are not fractions - numbers that we call irrational numbers. We saw 
that we could not measure the length of the diagonal of a square whose sides have the 
length 1 by choosing any new unit which goes a whole number of times into the side. 
This was a very startling discovery. But this leads us to a new topic that we shall 
talk about in the next section. 

11 



EXERCISE 58-5 

1. Show that 

a. 1- 1 3)=(+/-- 1 1 3 

by choosing 1 fourth as a unit and using the associative property of 
whole numbcrs. 

b. 	 What unit would you choose to show from the associative property of 
whole numbers that 

11_l 1 1 1 1
2+3.+ - +3+ 

2. We know that 

a aTg+ 	 0 =T 

for any fraction -V Choose as a new unit one b th part of 1 to show that the 

result follows from the property of zero for whole numbers, that is, a + 0 = a. 

58-6 Approximations and Models 

Let ABCD be a square I foot on a side and AD one of its diagonals. Now let 
us set out to measure the length AD of this diagonal. If we use a tenth of a foot as a. 

C 	 D 

A 	 B 

unit 	of measure, we find that 14 units do not reach to D, but 15 units extend beyond D. 
We say that 

14 tenths < AD < 15 tenths. 
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If we choose 1 hundredth of AB as our unit and if we are very careful we find that AD 
is more than 141 hundredths and less than 142 hundredths. We write this 

141 hundredths < AD < 142 hundredths. 

In terms of the original unit we would write 

1.41 < AP < 1-42. 

In practice we probably can not do any better than this because it is h -;d to put units 
together precisely. Even if they have been put together for us on a ruler with equally
spaced marks, there is still a point beyond which your eyes are not sharp enough to 
tell two points apart. All measurement is therefore inexact or approximate. We have
 
talked about this before and there is no need to go over the ground again.
 

The point that we should notice is that we 
assume that there is an exact
 
value of the length of the diagonal that our actual measurements approximate. We
 
imagine ideal lines with no thickness but exact lengths. 
 We gave some reasons for
 
doing so in the'volume on geometry. 
The truth is that we replaced lines which have
 
some thickness and lengths which we 
can only estimate with some uncertainty by
 
imaginary lines which are sharp and clear.
 

This is an example of making a mathematical model to replace the somewhat
 
hazy things that we observe. The real reason for doing this is to make 
our lves
 
simpler. It is easier 
to think in terms of the model than the fuzzier reality.
 

The place of mathematics in the world of today can be understood only in
 
terms of this idea of replacing the things and events that we observe by ideas. These
 
ideas are the products of our imagination. They are clear and sharp. We think about
 
them more easily than about the things themselves.
 

It is a little like using money instead of exchanging goods ULectly. Instead
 
of finding someone 
who wants what we have in exchange for what he has, it is easier
 
to find someone who wants what we 
have and will give us so many shillings for it.
 
We can then use 
the shillings to buy what we want. It makes everything easier. 
Mathematics is a kind of coinage which everyone can use for ma/ , many purposes.
Like coinage, it is something that had to be invented. Numbers can be used as 
measures of m-nany, many sorts of things. Mathematics is universal. It applies in all 
countries and at all times. As we go on we shall se- this morc clearly. For now we 
add only one remark. It may seem impractical to talk about unending decimals. For 
who could carry out measurements even to a large number of decimal places?
Suppose, therefore, that we limited ourselves to 4 decimal places. Wouldn't that be 
sensible? There are two arguments against doing this. The improvement of measuring
techniques has already made it possible to measure many quantities with much 
greater accuracy. It is sensible to be ready for these improvements and not be 
unprepared. It is also true that if we multiply two numbers with 4 decimal places we 
get answers with more places so that we have to be able to go farther, even if we 
later throw away some of the digits. Restrictions make things more complicated. In 
mathematics we seek both generality and simplicity. We want a coinage that can be 
used as widely as possible and with as much convenience as possible. 
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58-7 On the Use of Scales
 

Any quantity that can be measured by a unit which can be subdivided into 
smaller ones can be shown on a scale, that is, a line marked with units and subunits 
(a number line). The quantity does not need to be a length to us- lengths to show it. 
For example, we can represent on a scale, inzervals of time or weight or speeds or 
costs. When we do this we should write the name of the unit of measure near the line 
to make it easy to read off the measurement (numbers and units). For example, we
 
might mark a scale in this way:
 

I I I I I I 
0 1 32 seconds 

1 

The dot shows 1 - seconds. 

Of course a time is not a length. But intervals of time act like lengths. They 
add and subtract the way lengths do. So lengths can be used to show time intervals. 
This is a very important fact. Modern science owes much to Galileo who around 1600 
used scales for times and speeds. Before his time people did not represent them as
 
lengths. These quantities obviously are not lengths it took a very original mind
so 

to treat them as if they were. When we study graphs we shall see that by choosing
 
one scale to show one quantity and another scale to show another, can draw
we 

pictures that help us to think about how one quantity depends on another. Graphs
 
are one of the great discoveries of mankind. The first step in making graphs is to
 
construct scales for quantities. So it is important to understand these scales.
 

Look at the following picture in which the scale is marked "ft." 
 to show
 
measures of length.
 

I I I ' I , 
0 1 2 3 4 ft. 

It is obvious that the interval from 0 to 1 is not really a foot long. It does not matter 
that it is not. We use the scale to picture things to ourselves. The picture does not 
need to be as big as what it is a picture of, any more than the picture of a house need 
be as big as the house. (If it were, we could not get it on the paper!) But, as we have 
said, our picture, that is, our scale, may not show lengths at all, but quantities like 
time intervals, speeds, amounts of money, and so on. 

58-8 Direct and Indirect Measurements 

We have seen that we show on acan line with a scale the measures of 
quantities which are not lengths at all. This leads us to notice that when we 
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measure some of these other quantities in practice we actually do find ourselves 
measuring lengths. Le us consider some examples. 

Suppose that we wish to measure weights. There are two ways to do this. 
One is the direct way. We take a bar with pans hanging from its ends and balance this 
bar on a stiarp edge in the middle. We have a set of standard weights (copies of a pound 

Standard 
Weights 

Object 

weight, for example). We put the object to be weighed in one pan and enough standard 
weights in the other so that the bar is level. This method is direct because it compares 
the quantity with a unit of the same kind. 

But we can weigh the object in an entirely different way. We can hang it on a 
spring which stretches a certain amount. A pointer attached to the spring moves along 
a scale beside it. We find that twice as heavy a weight stretches the spring twice as 
much. More generally, the stretch is proportional to the weight. Of course this fact had 
to be discovered before we could use a spring to 
weigh with. That is, we should have to know the 
result of hanging 1 pound, 2 pounds, 3 pounds, 
etc., on the spring. When springs were first 0 
studied this had to be thoroughly investigated, 0 
using not only whole numbers of pounds but 
fractional units as well. But now that we know 
how a spring acts we can use the stretch to 
measure the weight. What we do is to mark the 
scale with 0, 1, 2, and so on, where the point 
marked 0 is at the end of the pointer when there 
is no weight attached and the point marked 1 at 
the end of the pointer whei the weight is 1 pound, 
and so on. When we use the spring to measure the 
weights of objects whose weight is unknown we take advantage of what has been 
learnt with known weights. 

The method of weighing with a spring scale is an example of aa indirect 
measurement. It is easy to think of other exanmples of indirect measureaments which show 
the result of the measurement by a reading on a scale. An ordinary watch or clock 
shows the time on a scale mar:.ed on a circle. The scale 12 
is marked in time units, say minutes, but these marks 1 
correspond of course to lengths along the circle. The i0 2 
fact that time can be measured in this way is the 
result of a long history going back to the early 9 3 
Egyptians. It is too long a story to tell here. 

We find a simpler example of the two kinds of 8 4 
measurement (direct and indirect) if we think about 0 
volume. We pi'ght find the volume of a tank by 6 5 
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pouring water into it from a tin can filled to the brim. We simply count the number of cans of 
water that the tank holds. This is a direct measurement of volume in terms of a unit volume. 

If the tank is of a simple shape we can also get the volume by a calculation.
 
Suppose, for example, that the tank is box-shaped (a rectangular parallelepiped). By
 
measuring the length, breadth and height of the rank in feet and multiplying the three
 
measures together we 
obtain the volume in cubic feet. This is all indirect measurement
 
which relies on geometry to obtain the result.
 

Our last example will be the measurement of speed. How fast is an automobile
 
moving? We assume for simplicity that the motion is a steady one. We commonly say
 
that the speed is so many miles per hour. It is Very hard to think of how this might be
 

measured directly. The "miles per hour" is usually written - which strongly suggests

hr.
 

that we get the speed by dividing the number of miles by the number of hours. If, for
 
1
 

example, it takes-hour to travel 25 miles, we would calculate the speed as

2
 

25 mi. mi.
 
Y hr. - hr
 

Of course, as you probably know, an automobile has an instrument which has a scale
 
and a pointer. This instrument is called a speedometer. We can read the position of the
 
pointer on the scale and get the speed without a calculation. This looks like a direct
 
measurement but it really is not. It depends on knowing how the speedometer works in
 
much the same way that weighing with a spring depends on knowing how a spring
 
works. When we measure speed with a speedometer we do not directly compare the
 
speed with a unit speed that goes into it a certain number of times.
 

EXERCISE 58-8 

1. 	 The ancient Egyptians measured time
 
by a water clock. A large tank was
 
kept filled with water. A small pipe
 
at the bottom could be opened or ............
 

closed. By letting water run into a
 
cup they could measure the amount
 
of water which collected in that time.
 
How could they choose units for
 
measuring the time? Why do you
 
think that the tank was kept full of
 
water?
 

2. 	 Count your pulse or the beats of your heart. Explain how you could measure 
time in this way. Why isn't this a very good way? (What happens when you 
get excited?) 

3. 	 Can you think of a way to measure how clezAy you can see at a distance? 
4. 	 Can you think of a way to measure how good your hearing is? 
5. 	 How could you measure how good a pupil's memory is? 

l"
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6. 	 Have you any idea how to measure the intelligence of a student? (We are not
 
trying to test how well he has studied his lesson.) Are there perhaps
 
different kinds of intelligence?
 

58-9 	 Some Indirect Measurements 

It will be interesting to show how some other quantities can be measured
 
indirectly. These examples 
will make it clear how mathematics is actually used in
 
studying nature and studying ourselves.
 

Example I 

What angle is there between Sun
 
lines from the eye to opposite sides
 
of the sun? How could this angle be
 
measured?
 

Let us imagine that two sticks
 
are nailed together at one end. By
 
opening them so that we could sight Eye
 

one edge of the sun along one stick,
 
and the ,ther edge along the other
 
stick, v,' could measure the angle between the two sticks.
 

But this experiment is not very practical. It is too hard to look at the sun
 
without hurting our"eyes. Also the angle between the two sticks would be so small
 
that it would be very hard to measure.
 

What shall we do? The ancient Babylonians and Egyptians did the following.
 
They started a water clock at the instant when the first light from the sun 
appeared
 
on the horizon at sunrise. 
They let the water run until the sun had completely risen.
 
That is, they timed thL sunrise. The result was about 2 min. = I hr. of a day
 

30 720
But in 	one day the sun reappears at the horizon for a new sunrise. It has therefore1 10 
moved 	3600. It follows that the san is - 360' - wide. Of course it is assumed 

720 2
 
that the sun moves at a uniform rate across the sky.
 

Example 2 

In the 	Introduction we quoted Galileo who said: "Measure what is measurable 
and make measurable that which is not." We are now able to understand the last part
of this sentence. Of course Galileo meant that we should try to measure things which 
most people think cannot be measured. Galileo himself set us an example.

Since ancient times, people had used words like "hot" and "cold" to 
describe the properties of bodies. Bodies were said to have these qualities, but 
before Galileo there was no attempt to measure how hot or how cold a body was. He 

17 

A1,4
 



thought of a quantity which could be measured to tell
 
us how hot or cold a body was. We call this quantity the
 
temperature of the body. And Galileo invented 
an
 
instrument called a thermometer to measure this
 
quantity. 
 -

How can temperature be measured? How
 
does a thermometer work? The first thermometer
 
was a bulb with a stem, partly filled with oil. If
 
you put the bulb in your mouth, the oil will heat
 
up and the oil will rise in the tube. If you put the
 
bulb in cold water, the oil level will fall. By F C
 
placing a scale alongside the stem, we can 212 100
 
measure how much the oil rises. The reading on
 
the scale is a measure of the temperature.
 

The modern thermometer is a development
 
of this idea. The oil is replaced by mercury which
 
expands more than oil. Two scales are commonly
 
used.
 

32- 0On the Centigrade scale the position of
 
the mercury level when the thermometer is in
 
melting ice is marked 0', and the position when
 
it is in boiling water is marked 1000. The interval
 
between these two points is divided into 100 equal
 
parts. As we heat water from the freezing point to the boiling point the mercury level
 
rises steadily.
 

On the Fahrenheit scale the position of the mercury at the freezing point is 
marked 320 and the position of the boiling point is marked 2120. Therefore, 212 - 32
 
180 degrees Fahrenheit are equivalent to 100 degrees Centigrade. A Fahrenheit degree
 
is 18 1
2.9 of a Centigrade degree.5sOO 


Whichever scale we use we see that we have used length along the scale as
 
a measure of temperature. Temperature has been made measurable when before Galileo
 
it was not thought to be measurable.
 

EXERCISE 58-9 

What reading on the Fahrenheit scale corresponds to a reading of 50 degrees
 
on the Centigrade scale?
 

In the last section we asked some questions about measuring how intelligent
 
a pupil is. It will be interesting to discuss these questions because they bring out
 
some important points.
 

It is possible to set an examination to measure, at least roughly, how well a 
pupil has studied his lesson. We must of course ask good questions. Also we try to 
set questions that are as nearly equivalent as possible. It is hard to make a really 
good examination, but teachers learn to do it. 

But sometimes we wish to know how intelligent a pupil is. We may think that 

( 
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he is lazy so that, if he really wanted to, he could do much better school work than 
he does. How can we find out his inborn ability to learn? We imagine that he has 
something that we call intelligence. But this is not something that we can take out and 
look at. We cannot get inside his mind! We must judge in terms of things that he can do, 
things that we can see or hear. 

Of course we can ask him questions. If we think that he does not study 
because he is lazy or lacks interest, it will not do to test how well he has learned 
his lesson. We must ask questions which he can answer if he is bright, whether he 
has studied or not. We must give him a test that he cannot prepare for. We must test 
his ability to reason correctly about things that he has never seen before. We may 
ask him to fill in missing words in a sentence as a test of understanding. We may" 
ask him to put blocks of different shapes together to form a figure like a rectangle, to 
test his ability to see patterns. In brief, we give him some little puzzles to solve. 

Now tests like this have been worked out after much study and experimenta
tion. For children of a certain age from any given cultural background we know rather 
well what an "average child" can do on one of these tests. We know what per cent 
of children of this age group can get what scores. We can measure what is called 
their I.Q. (intelligence quotient). 

Then we can study how well pupils who get such and such scores succeed 
on the average. 

It is not easy to invent satisfactory intelligence tests. Testing has become 
a specialty which takes much time and thought. The point that we wish to make is 
that useful measurements can be made. One of the difficulties is to have a clear idea 
of what it is that we want to measure, that is, what we mean by "intelligence". 

We have twice used the word "average". We spoke of the "average child" 
and "succeed on the average". In Unit XIII we shall have much to say about averages. 
For the present it is enough to notice that in cases like these where there are 
considerable differences in what children do, it is necessary to put together many 
scores (numbers) in some sensible way in order to know what to expect. When we try 
to use numbers in studying people we almost always use the methods of statistics. 
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Chapter 59 

RATIO AND PROPORTION 

59-1 	 Ratios of Numbers 

Suppose that we are asked to compare the sizes of two given sets, that is to
 
compare the numbers of elements of the two sets. For example, let us compare the
 
number of banana trees on Hosea's farm with the number of such trees on Ali's farm.
 
Counting we find that Hosea has 18 banana trees and that Ali has only 6. We may say
that Hosea has 12 trees more than Ali, the number 12 being obtained by subtracting 6
 
from 18. 
 We may also say that Hosea has three times as many trees as Ali, the number 3 
being obtained by dividing 18 by 6. 

Thus a comparison of two numbers is possible by one of the following two 
methods: 

1. 	 By subtracting the smaller number from the larger, we find by how much one 
number is largei than the other. 

2. 	 By dividing the larger number by the smaller, we find how many times greater 
the larger number is than the other. *) 

In mathematics the method of comparing numbers by division is the more
 
important and more accepted one. Instead of saying that we compare two numbers by

division, we say that we find the ratio of one number to the other. In the example just

considered, we look for the ratio of 18 to 
6, denote it with the help of a colon ":" as 
18:6 	and read it "18 to 6".
 

Since ratio indicates comparison by division,
 

18 	: 6 means 18 + 6. 
18 

On 	the other hand, 18 - 6 can he written as --, remembering that a fraction may be 

viewed as 	the quotient of the numerator by the denominator. Thus we have 

18
 
18:6 18+6 1 

ratio quotient fraction 

Simplifying the last fraction, obtainwe 

18 3 
6 1 

*) By dividing the smaller number by the larger, we find what part of the larger number 
the smaller is. 
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In order to emphasize that division is used here to compare numbers, that is, to 
find their ratio and not merely to obtain the result of division, the quotient, we keep two 
numbers in the final form, even if the quotient turns out to be a natural number. Thus it 
is customary to wri:e 

18 3 
18:6 = 6- 3 or 18:6 = 3:1,

T 71 

and we read it "The ratio 18 to 6 is the same as the ratio 3 to 1." But we do not read 
"The ratio 18 to 6 is 3." We may, however, say that 18 is three times 6. In comparing 
the banana trees on the two farms, we say that the ratio of the number of banana trees on 
Hosea's farm to the number of banana trees on Ali's farm equals 3 to 1. 
Expressions like 

The ratio of the number 18 to the number 6,
 
The ratio of the numbers 18 and 6, have the same meaning.
 
Let us take another example. In finding the ratio of the numbers 6 and 21, we
 

have 

6 2 
6:21 =. 2 2:7,21 7 

and read it "6 is to 21 as 2 is to 7", or "6 is related to 21 as 2 is related to 7", rather 

than "6 is-times 21".
 
7
 

In our previous examples we found ratios of natural numbers. The same procedure
 
is applied to find a ratio of two fractions.
 

Examples
 

9 
9 3 14 9 7 9 x7 3 
14 7 3 = × 

4 13x3 2 3:2. 
7 

5 20 100 

5.1 =5 x- =-= 100:1.
20 2 1 1 

We see that the ratio of any two numbers, the second of which is different from 
zero, is a number which we may write as a fraction in lowest terms. 

EXERCISE 59-1 

Express each of the following ratios in the simplest form: 

1 1 
(g) t 2(a) 56 to 7 

21 

6k '" 



(b) 8 to40 	 (h) to 

(c) 	 2 to 1 (j) 3 to 4
 
3
 

(d) 1.3 to 6.5 (j) 13 to 	 3 

(e) 	 Ito "(k) 2 to
 
13 
 2 3kt 9 

4 1 1(f) -to 12 (I) 7-to 	 1
52 4 

59-2 Ratios of like quantities 

You have already learned about quantities. We will now discuss ratios ofquantities. The lengths of two segments, whether expressed in the same unit or not 	in 
the same unit, are called like quantities. 
Thus 

17 inches and 5 inches are like quantities. 
8 inches and 3 yards are like quantities.
 

Similarly each of the pairs
 
5 lb and 16 lb,
 
3 ounces and 4 lb,
 
2 minutes and 7 hours
 

reprf.3ents like quantities. However, 
 4 lb and 3 yards are not like quantities.
In the same way that any two numbers are compared, we may compare any two
like quantities as long 
as they are measured in the same unit. Suppose we want tocompare the lengths of two given straight line segments. We meaE-, e the length of each
and get, for example, 49 inches and 21 inches. To compare these two 
like quantities

expressed in 	the same unit, or more 	precisely: to compare the 	measures of the twoquantities expressed in the same unit, we find the ratio of their measures. That is, we

divide the measure of one quantity by the measure 
of the other quantity.
 
In our case we write:
 

49 inches : 	 21 inches = 2- 3 7:3,21 3 
and read it "The length of the larger segment to the length of the smaller segment is as 
7to 3." 

We thus see how to compare the measures of two like quantities expressed in thesame unit. If we are to compare like quantities such as 6 minutes and 3 hours, which are 
not expressed in the same unit, we cannot write 

( 
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=: 3 hours = z6 minutes 3 1T 

and say that the ratio of 6 minutes to 3 hours is 2:1. We find this ratio as follows: 

6 minutes : 3 hours = 6 minutes : 180 minutes 

6 1 . .6. .1 1:30
 
30
180 

1 

or6minutes 3 hours = -hour : 3hours 10 1 1:30.10 3 30 

In the same way, 

1 yard :18 inches = 36 inches : 18 inches 

36 2 ..... 2:1I, 

81 1 
2 

30 ounces : 5 lb = 30 ounces 80 ounces 

. 30 . . 3..--- 3:8, 

14 3014 16 " 6 6 
or 30 ounces: 5 lb = 114-lb: 5 lb. -1 .- - 16=3 3:8. 

16 5 5 16 8 

We see that to find the ratio of two like quantities, we must express them in the 
same unit of measure. The ratio of two like quantities expressed in the same unit is the 
ratio of their measures, and is obtained by dividing the measure (number) of one quantity 
by the measure (number) of the other quantity. The ratio is a number (not a quantity), and 
no unit is attached to it. 

The antique Greeks already used ratios in the 4th and 3rd centuries before our 
era. A ratio which has occupied mathematicians for over two thousand years is the ratio 
of the circumference (length) of a circle to the length of its diameter. 
This ratio is denoted by the letter 77. 

7r = Length of circumference of a circle : Length of diameter of the circle. 
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EXERCISE 59-2 

Express in the simplest form each of the following ratios of like quantities: 

1. 4 hours to 12 hours 

2. 18 inches to 4 inches 

3. 15 lb. to 70 lb. 

4. 1 ft. to 1 inch 

5. 1 ft. to I yard 

6. 1 lb. to 1 ounce 

7. 1 minute to 1 hour 

8. 1 second to 1 hour 

9. 1 yard to 1 mile 

10. 1 metre to 1 kilometre 

11. 1 square ft. to 1 square inch 

12. 1 square ft. to 1 square yard 

13. 1 square yard to 1 square mile 

14. 1 cubic metre to 1 cubic centimetre 

15. 1 lb. to 4 ounces 

16. 3 hours to 25 minutes 

17. 3 hours to 25 seconds 

18. 2 yards to 15 feet 

19. 2 yards to 15 inches 

20. 1 square ft. to 4 square inches 
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59-3 Properties of ratios 

We have learned what a ratio is and how a ratio of two numbers or of like
 
quantities is found by division. We will now use known facts about the operation of
 
division to state some basic properties of ratios.
 

Since division by zero is impossible, we have
 
I. The members of a ratio may be any two numbers, except that the second 
member must be different from zero. 
Recalling that a fraction may be viewed as the quotient of the numerator by the 

denominator, we have 
II. Any fraction may be viewved as representingthe ratio of its numerator to the 
denominator. 

For example, 

2 
=2 2 2 : 5.+ 5

5 

We will now use the following known property of fractions: 

If c is any number different from zero, then 

a caT-	 (I)

and
 
a
 

a c
T-=T 	 (2) 

c 

Since ratios are expressed by fractions, we have, by (1), 

for c 	 o 

ca: cb= ca 
-

a
- a : b 

cb b 

hence 

ca : cb a : b (3) 

Similarly, 	by (2), 

a 
a b c a 

-:- =-=-= a: b. 
c c 	 b b 

c 

25 
(¢
 



hence a : b = a : b.
 c c ab (4)
 

Equalities (3) and (4) show the following property of ratios:
III. A ratio of two numbers does not change if each of its members is multiplied
by the same nonzero nuzaber or if each of its members is divided by the same 
nonzero number. 

Examples. 

The ratio 4 : 3 is the sameTheraio7 :'5 as the ratio 20 : 21, obtained by multiplying both 

members of the first ratio by 7 x 5 = 35. 
The ratio 46 : 115 is the same as the ratio 2 : 5, obtained by dividing both 

members of the first ratio by their common factor 23.
 
Let us consider the ratio of 10 to 4.
 

10:4 T10 
4 

5 
2
-

This equality may be viewed as indicated 

First member
 
of the ratio " \ 10
 

10.....value of the 

Second membey, 4- \4given ratio 

of the ratio 

Thus 10 may be viewed as the dividend, 4 as the divisor, and 5 the quotient.-as 

Since the product of the quotient by the divisor equals the dividend, we have 

5 X 4 10. 
-

.........
.....
. ......
 

value of Second member First member of
 
the ratio 
 of the ratio the ratio 

We obtain the following property of ratios: 

IV. The product of the ratio of two numbers by the second member of the ratio 
equals the first member. 
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Examples. 

2 2 
2: 7 - ,therefore - x 7 = 2. 

7 

2 
2
3 

7 
15 

3 
-7 

10 
therefore 

10
T x 

7 2 
3 

15 
Ratio second first 

member member 

Property IV is also valid for ratios of like quantities. 

For example, 

5 1 , hs1 
5ft:60ft = -1thus - x 60 ft. -5 ft. 

60 12 12 

ratio 	 second first 
quantity quantity 

As another example, the ratio 

1 metre 1 
1 metre : 1 kilometre -

1,000 metre 1,000 

hence 	 1 metre = x 1 kilometre. 
1,000 

The relationship 

First member 
of a ratio Value of 
Second member the ratio 
of the ratio 

gives us also 	the relationship 

V. 	 First member 
Second member of a ratio 
of a ratio 	 value of
 

the ratio 

Properties IV and V allow us to find one of the members of a ratio if the other 
member and the ratio are given. 
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Example 1. 

The ratio of a number to 3 is as 5 is to 12. 
Find the number. 

We may write it as follows 

3 D_ - 55 	 =y- 52 , hence by IV, j -] 12 x355 

54 
The number is.5 

Example 2. 

Ali is 35 years old. The ratio of Ali's age to his son's age is as 5 to 2. How old 
is Ali's son? 

35 years0- 52 therefore by V, = 35 years5 = 25- 14 years.14yas 

2 

Ali's son is 14 years old. 

EXERCISE 59-3 
1. Express each of the following as a ratio of natural numbers in simplest form: 

(a) 	 4 3 
5 -5 

2 3
 

(b) 2 : 33 
3 4 

(c) 	 1:08 

(d) 	 2 :.125 

(e) 1.2 : 4 1 
5 

2. Express in the simplest form each of the following ratios: 

(a) 114 : 171 

(b) 725 : 375 

(c) 15,000 : 2,100 
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3. Find the unknown member in each of the following ratios: 

3 -5(a)Fi-: 
12 

D 2 33 
3 8
 

(c) 3: E - 4 

(d) 125 FD = 5_ 
2
 

(e) l hour 40 minutes : - 5 : 3 

(f) D : 5 metres = 16 
3
 

(g) 12 ounces : [1= 3 : 7 

59-4 Per cent expression of a ratio 

In some cases it is more convenient and more instructive to represent a ratio as 
a per cent rather than as a fraction. 

Suppose that a school has 288 pupils of whom 117 are boys. The ratio of the 
number of boys to the total student population is 

117 : 288 -- 117- 1
32 

Suppose now that another school has 225 pupils of whom 99 are boys. 

288 

There the 
ratio of the number of boys to the total student body is 

11 
99 : 225 = 25 

If we want to compare the ratios in the two schools, if we want to know, for 
example, in which school this ratio is higher, to say that 

The ratio in The ratio in
 
school I1 is school /2is
 

13 
 11
 
32 
 25
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does not answer the question clearly. In such cases it is convenient to express the
 
ratios as per cents. We shall see that comparison is then very easy.
 

Other instances when ratios are usually expressed in per cents:
 
The ratio of the number of literate people to the total population of a given
 
country.
 
The ratio of the amount L;pent on education in a year to the total budget of a
 
country.
 
The ratio of the number of children attending school to the total number of
 
children of school age.
 
In order to clarify what we mean by the per cent expression of a ratio let us
 

consider the following.
 
Example. A school ordered 200 mathematics textbooks and after a week
 

received 70 books. (The ratio of the number of books received to the number of books
 

ordeed
s 70: 20 =20
ordered is 70 :200 ). What per cent of books-	 were received? 
We have to answer the question: What per cent of the number 200 does 70
 

represent? In other words, if 200 is taken to be 100% then what per cent does 70
 
represent?
 

We reason as follows:
 
200 

If 200 is taken to be 100%, then to 1% there correspond - or 2 books. If 2
 
books correspond to 1%, then 70 books correspond to 35%.
70 + 2 or This means that 35% 
of the books were received. Thus the per cent expression of the ratio 70 200 is 35%. 

In order to see the general procedure of expressing a ratio as a per cent, we will
 
review the operations we just performed.
 

200 = 70 x 100 = 70
 
100 200 200
 

Ratio 	 Per cent 
expression of 

the ratio 

From the last equality we see that 

To find the per cent expression of a ratio we simply multiply the given ratio by 
100. 

Let us now return to our first example. The ratio of the number of boys to the 

total population in school 1 is 	 13 
32 

This ratio represents
 

100 325
13 = 3 =40.625. 
32 
 8
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The same ratio in school #2 is -T- which is 

11 
25 x 100 = 44%. 

We thus see that the ratio of boys to all students in school #2 is higher. 

EXERCISE 59-4 

1. Express each of the following ratios as a per cent. 

(a) 3: 8 

(b) 7:3 

(C) 4.3 : 12.5 

(d) -2- yards : 3 yards 

(e) 12 minutes : 3 hours 

2. Express each of the ratios 6 : 11 and 9 : 14 as a per cent and find which ratio is 
higher. 

3. Mohamed took an arithmetic test of 20 problems and gave 17 correct answers. He also 
took a language test of 25 questions and answered 21 correctly. Use per cent 
expressions of ratios to find on which test his performance was higher. 

59-5 Scale drawings 

On various occasions you have all seen geographical maps of your country,
maybe a map of your capital city, the plan of a house, or the floor plan of your school. 
These are examples of drawings to scale or simply scale drawings. Each of them 
represents a diminished picture of the country, city, or school, respectively. Obviously 
none of the above could be reproduced on paper in its natural size. 

A correct scale drawing or plan must give us the opportunity to e -cimate the 
actual measures of the object which is drawn. That is, the plan should indicate how dnny 
times a straight line segment on the drawing is smaller than the corresponding segment 
in reality. 

If, for example, a window in a house whose plan is drawn is 1 yard wide and the 
window is represented on the plan by a segment of 1 inch, that is, by a segment 36 times 
smaller, then the plan is made in the ratio 1:36. In this case, we say that the scale of 
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the plan is1 to 36, and indicate ina 
corner of the drawing one of the following:
 

Scale 1 : 36
 

Scale 1
 
36
 

1 inch = 1 yard
 

The last statement simply means that to a segment of length 1 inch on the

dr-wing there corresponds a segment of the object in reality of length 1 yard.
 

Quite often this scale is indicated by a segment marked as follows: 

0 1 yard 2 yards 3 yards 4 yards
III I ,I 

Actual length
 

1 inch 

Having the plan of a house and knowing that it is drawn to the scale 1:36, we 
are able to find the actual size of any part of the house by measuring that part on the 
drawing. If, for example, on such a plan we measure the length of a and find it to beroom 

6 inches, then the 
actual length of the room is 36 times larger, that is 216 inches or 6
 
yards.
 

We thus see that the scale of a map or plan is 
 the ratio of the length of any

straight line segment on the drawing to the length of the corresponding line segment in
 
reality.
 

Any scale may be chosen by us in drawing a plan. The choice is usually

determined by the size of the object to be drawn and by the size of the paper on 
which 
we draw. For example, one geographic map of your country may have the scale of 1 inch
 
to 100 miles. A larger map may be drawn to the 
scale of 1 inch to 10 miles. 

If on the map of a country with the scale of 1 inch to 100 miles the straight line
distance between two cities is 3.4 inches, then the actual air distance between the two
 
cities is approximately 340 miles.
 

We discussed maps and plans representing diminished pictures. That means 
that 
the drawings are made to a scale which is less than 1. However in a zoology book we 
may often see a drawing or picture of an insect with an inscription like "Enlarged 30
times", which means that the scale is 30:1. If the length of the insect on paper is 2 

inches, then the insect has the actual length Iinch.
15 

EXERCISE 59-5

1. On a map with the scale 1 inch = 50 miles, two cities are 3- inches apart. 
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Approximately how far is it from one 	city to the other? 

2. Find the scale of a map, if the distance between two signs equals 750 metres,1 
I-c.and 	on the map it is 

3. 	 A pupil is making a scale drawing of his schoolroom floor, which is 32 ft. by
24 ft. What dimensions will his drawing have if he uses the scale 1 inch = 8 ft.? 
If the top of the teacher's table is 3 ft. wide and 5 ft. long, what dimensions will 
it have in his drawing?

4. Modupe wants to make a scale drawing to represent the school's assembly hall1 

64 ft. long. His paper is 81 inches wide. Which of the following scalcS should 

he use?
 

(a) 	 l inch = 1 ft. (b) 1 inch 1 ft. (c) inch 1 ft. 
4T5. 	 On a given map, 1 inch stands for 1 mile. Then each inch on the map stands for 

how many inches on the ground? What is the ratio of the length of any line 
segment on the map to the real distance that it represents? 

6. 	 The scale on a map is 1 inch to 20 miles. 

(a) 	 Express this scale as a ratio. 
(b) 	 On the m-ip how many miles are represented by a segment of length 

41 inches?
 
4
 

7. A science book contains a picture of an insect marked "Enlarged 12 times". If 

the 	insect is - inch long in the picture, what was its real length?
2 

8. 	 In a scale drawing of the floor plan of a house 1 inch represents 6 feet. 

(a) 	 Express this scale as a ratio. 
(b) On the scale drawing how many feet are represented by a segment of 

length 20 ;nches? 
(c) 	 In (b) what is the ratio of the length of the segment on the drawing to 

the number of feet represented by this segment? 
9. 	 Measure with a tape the length and width of your class room and draw its floor
 

plan to the scale 1:96. 
 Measure the doors, windows, etc., and their distances 
from the corners of the room. Indicate clearly the doors, windows, blackboard, 
the teacher's desk, etc. A line segment of length 1 ft. will on this plan be 
represented by a segment of what length?

10. 	 The length and width of a rectangular piece of land are represented on a plan 

thwit 	 scle10,000with 	the scale 1 by 15 cm. and 12 cm., respectively. How many hectares 
does 	the piece of land measure? (1 hectare = 10,000 square metres) 

11. On a map with the scale 5 cm. = 1 km. an island covers 42.25 square centimetres. 
What is the actual area of the island? 
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59-6 Proportion 

In 59-4 we considered an example where we needed to find which of two ratios
 
is the larger one. These were the ratios of the number of boys 
 to the total student
 
population in two schools. Such situations arise quite often. A natural 
way, for example, 
of evaluating the economic, social or educational development of two or more countries 
consists precisely in comparing the values of certain ratios that reflect the country's
achievements in the relevant field. You will study the use of ratios for such purposes in 
Unit XII. 

We have already given one method of comparing ratios with different denominators, 
namely by expressing the ratios as per cents. In case the ratios have different
 
denominators which are rather small numbers, we can easily compare their values 
as
 
follows.
 

3 4 i h agroe

Example. Find which of the ratios 3 and is the larger one. 

Expressing the two fractions in a common denominator, we obtain, respectively, 

21 and 20 
35a 5 

This shows that 4 <3 

In many instance., however, especially in mathematics and in the physical
 
sciences, we deal with equal ratios. Let us take a familiar example. Suppose that 
we
 
measure on a plan of 
a house drawn :o the scale 1:100 the width of a window and find it 
to be 0.7 inches. Then the width of the window in reality is approximately 70 inches. 
Again, if on the plan the length of a bedroom is 1.8 inches, then the length of the 
bedroom in reality is approximately 180 inches. Clearly the ratio of the width of the 
window on the plan to its actual width equals the ratio of the length of the bedroom on 
the plan to the length of the bedroom in reality, for each of these equals the ratio 1:100 
representing the scale. Thus we have 

0.7 inches : 70 inches = 1-8 inches : 180 inches. 

A statement like this is called a proportion. 
More precisely, 

a proportion is a true statement of equality of two ratios. 

Thus 

2 : 5 = 14 :35 

is a proportion, because the ratios are equal and the statement is true. On the other hand, 
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the statement 

4:7 = 3:5
 

is not a proportion, since the ratios are distinct and the statement of their equality is
 
false. We have actually seen that the following statement is true:
 

4:7 < 3:5. 

A proportion may be written with colons as above or in fractional form 

2 14 
5 35 

In this form a proportion simply means that two fractions are equivalent.
 
In the general case, the proportion
 

a:b = c:d 

isread "a is to b as c isto d" or "a isrelated to b as c is related to d." 
Other examples of proportions are 

5 : 2 = 15: 6,
 

4 inches : 3 inches = 28 : 21.
 

4 inches : 3 inches = 12 inches : 9 inches,
 

4 inches : 3 inches = 20 lb. : 15 lb. 

EXERCISE 59-6 

1. Determine which of the following statements is a proportion. 

2 6 (c) 2 30
Ta)5 7- 105 

(b) 37 16 (d)-
1 

, 
4 20 1 71 

3 2 

2. In each case form a proportion from the four given numbers. 

(a) 75 ;45 ; 30; 18. 
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(b) 2-k; 16 ; 3; 4 -.
3 '4' 2 

(c) 	 5.1 ; 1.7 ; 0.9; 0.3.
 

(dI1 1 1
(d) 17-; -; + ; 11o 

59-7 Basic properties of proportions 

Let us take a simple proportion such as 3 : 7 = 9 : 21, ai-1 write it in fractional
 
form
 

3 9 
7- 21 (1) 

Multiplying both sides of this equality by 7 x 21, the product of the two denominators,
 
we obtain
 

37 	 x 7 x 21 = 
9 

X 7 x 	 21 

Simplification gives 

3 x 21 = 9 x 7. (2) 

This means that for our equivalent fractions the products of the nume:ator of one fraction
by 	the denominator of the other are equal. The products obtained in (2) are called cross 
products of (1). The diagram 

39 

explains the name. 
Take some other proportions and see whether the cross products for each of them are equal. You will easily verify that this is true in each case. The statement that for 

any proportion the cross products are equal is always true, and represents a basic 
property of proportions. We state it in general form. 

a c 

Property!. If b 0 	 and d / 0 and a=--, then a x d = b x c. 

We prove this statement by following the procedure of the previous example. 

36 

00Q 



Multiplying both sides of the proportion by b x d 	, we obtain 

a C 

a-x b x d = -c x b x d. 

and after simplification we have 

a x d= c x b, 

which 	asserts the equality of the cross products.
 
Conversely, 
 let us 	now start with two equal products 

3 x 24 = 9 x 8. (3) 

Dividing both sides by 24 x 8 , we obtain 

3 x 24 9 x8 
24 x 8 24 x8 

Simplification gives 

3 98 24' (4 

which is a proportion. We have thus found that if a product of two numbers equals the 
product of two other numbers, then the four numbers form an appropriate proportion. This 
is an instance of the following general statement. 

Property!!. If b 4 0 and d 0 and a x d = b x c (5) 

then 	 a c 

The proof follows the same patterns as in the above numerical example.
If b 0 and d 0, then b x d 0. Dividing both sides of (5) by the 

nonzero number b x d , we have 

a x d b x c 
b x d b x d 

and after simplification we obtain the proportion 

a 	 c 
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Combining Properties I and II, we have the following statement:
 
Property Ill. Let b 0 and d 0. Then
 

a c 
= if and only if a x d = b x c. 

We can use Property III to check whether a given statement of equality of two
 
ratios is a proportion.
 

If the cross products are equal, then we have a proportion. (This follows from
 
Property 11.)
 

I/ the cross products are not equal, then we do not have a proportion. (This
 
follows from Property I.)
 

Example. Determine whether the statement
 

7 5 
0"791 0"565 

is a proportion.
 
The cross products are
 

7 x 0-565 = 3-955, 

and 	 5 x 0-791 = 3.955 

Thus 	the ratios are equal and (6) is a proportion. 
You may note that verification of the truth of equality (6) either by expressing

each ratio as a percent or by representing the fractions with a common denominator would 
be quite tedious. 

On the other hand, the statement 

7 11 

is not 	 a proportion. That is, the statement is false and the fractions are not equivalent,
 
since their cross products are different:
 

7 x 8 11 x 5 

EXERCISE 59-7A 

1. 	 Test by the method of cross products which of the following statements are
 
proportions.
 

(a) 25 : 37 = 75 : 111, 
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(b) 16 : 35 = 48 : 95, 

(C) 0.15 : 0.06 = 0.2 : 0.08. 

2. Can you form a proportion from the given four numbers? 

(a) 13 ; 16 ; 65 ; 80. 

(b) 	 1-5 ; "-,5; 7.5 ; 12.5.
 

()1 1 1 1
 

8 16 ;12 ' 4 

(d) 2 3 4 7 
5 	 ' 10 ' 7 ' 16 

3. Given the three numbers 5 , 25 , 4 . Find a fourth number which forms a proportion
with the given three numbers. Show that there are 	three such fourth numbers. 

Property II states that if the product of two numbers equals the product of two
 
other numbers, then an appropriate proportion 
can be formed with these four numbers. In
 
the particular example, by dividing both sides of the equality
 

3 X 24= 9 x (3) 

by 24 x 8 , we obtained the proportion 

3 9 
8 2" (4) 

The question arises how many proportions can we actually form with these fouz numbers. 
Dividing both sides of equality (3) not by 24 x 8 but by 24 x 9, 

we obtain after simplification 

3 8 
9 24' 

which is again a proporti1i, since its cross products are equal. Proportion (7) is 
obviously different from proportion (4). 

If we divide both sides of equality (3) by 3 x 9 , we get the proportion 

24 8 
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and similarly division of both sides of (3) by 3 x 8 gives the proportion 

24 9 
8 3 

We thus -.. e that from a true statement of equality of two products, each consisting of 
two nonzero numbers, we obtained four different proportions.
 

The same procedure applies to the general 
case, and leads us to the following 
statement: 

Property IV. I/ a , b , c , d are nonzero numbers and 

a x b = c x d, (10) 

then the following four proportions are valid. 

a c T=--if,(11)
 

a d 
c - (12) 

b- d- -, (13) 
c a 

b c 
T a (14) 

That each of the statements (11) - (14) is indeed a proportion can be easily
verified, since the cross pro lucts of each of them are equal by the given equality (10). 

Note, for example, that the statement 

a c 
T T 

"does not follow from (10) and is not a proportion, except for the very special case when 
a =c and b =d, or a =-c and b = -d.
 

We thus see 
that with four given nonzero numbers such that the product of two of
them equals the product of the remaining two, four proportions with different ratios in 
each case can be formed. 

We emphasized that we are dealing with nonzero numbers for the following
reason. If one of the given equal products consists of two zeros, for example, 

3 x 0=0 x0 

then no proportion at all can be formed (Why?). 
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If each of the equal products has one zero factor, for example, 

3 x 0 =0 x 7, 

then only one proportioncan be formed, by dividing both sides by the nonzero product 
3 x 7: 

0 0 
3 7 

EXERCISE 59-7B 

1. Write all possible proportions that can be formed from the equality 

3 x 21 = 7 x 9. 

59-8 Finding an unknown member of a proportion 

We shall consider various problems involving four numbers or pairs of like
 
quantities that form a proportion. If only three of them 
are known, then Property I allows 
us to find the fourth unknown member of the proportion. 

, Suppose, for example, that we measure on a plan of a house drawn to the scale 
1 : 200 the radius of a circular lawn and find it to be 2.6 inches long. Then the lawn 
has in reality a radius of length r inches that appears in the following proportion: 

2.6 inches : r inches = 1: 200 

or in fractional form 

2.6 	inches 1 
r inches = 200" 

By Property I, we have the equality of the cross products 

i inches x 1 = 2.6 inches x 200 
therefore
 

r = 520 inches = 43 ft. 4 inches. 

Note that in finding the unknown member if a proportion, it is convenient first to 
simplify the ratio if possible. For example, to find the unknown member of the proportion 

_i : 4 = 111 : 185, 
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the proportion on the right can be simplified by dividing both members by their common 
factor 37. Thus 

F-1] 3 
4 	 5' 

5 x- 3 x 4, F--]- 3x4 = 2.4. 
5 

The above is simpler than computing the unknown member from the original
 
proportion as
 

-- 4 x 111 
185 

EXERCISE 59-8A 

1. Find the unknown member of each of the proportions. 

(a) 	 F 24 30 5
 
6 16 42 -1
 

(b) 1, 1 	 e) 6
W 4 	 432 E

(C) D 	 (ef 4325 

6
 

3 36 )2
 

2. 	 Write the proportions and find the missing quantity in each case. 

(a) 	 3 inches are to 27 inches as 7 inches are to_ inches. 

(b) 	 6 gallons are to gallons as 38 gallons are to 19 gallons. 

(C) 	 5 lb. are to 45 lb. as 2 ft. are to ft. 

3. 	 On a plan a piece of land is represented by a rectangle of length 7"5 cm. and width 
4.5 cm. It is known that the real width of the piece of land is 900 metres. What is the 
length of the land? What is the scale of the plan?

4. 	 Alma has a picture 4 inches wide and 5 inches long. She wants an enlargement that 
will be 12 inches wide. How long will the enlarged print be? 

5. A road rises 6 feet for every 100 feet of road. How much does it rise in a mile? (Find
the answer to the nearest foot.) 
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6. Complete the entries inthe table.
 

Real length of a 
 Length of the corresponding Scale
 
straight line segment segment on a plan 

240 m. 
 24 cm.
 

15 cm. 1: 500
 

300 m. 
 1: 1,000
 

The first known use of finding an unknown member of a proportion dates back to 
the 6th century before our era. The Greek mathematician Thales then astonished his 
contemporaries by the fact that, while in Egypt, he computed the heights of several 
pyramids by measuring the lengths of their shadows. He did it on the basis of an equality 
of two ratios or a proportion. 

The procedure used by Thales in finding an unattainable height is given in the 
following experiment, which you yourself can easily perform.

On a sunny day Modupo noticed that the shadow cast by his father was longer
than the shadow (castby his younger brother. He measured the length of the shadow cast 
by his father, ',ho is 6 ft. tall, and found it to be 48 inches long. At the same time his 
little brother, whom he measured to be 39 inches tall, cast a shadow 26 inches long. A 
straight pole 5 ft. in length put vertically cast a shadow 40 inches long, and a big tree 
on their farm cast a shadow 16 feet long. Modupe made the following picture of his 
e-xperiment: 

F 

P h 

B 72" 

60" 

39,, 

40" 26" 48" 16' 
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He wrote down all the data in a table as follows: 

Shadow Ratio of shadow 
length Height length to height 

Father 
Brother 

48 inches 
26 inches 

72 inches 
39 inches 

2 3 
2 : 3 

Pole 40 inches 60 inches 2 3 
Tree 16 feet 

Modupe computed first the ratio of the iength of his father's shadow to his 
father's height. 

48 inches : 72 inches = 2: 3 

When he computed the ratio of the length of his brother's shadow to his brother's height 

26 inches : 39 inches , 

he again found it to be equal 2 : 3 , and the same was true for the ratio of the length of 
the shadow of the pole to the length of the pole 

40 inches : 60 inches = 2: 3. 

He thus discovered that, for the given position of the sun, the ratio of the length of the
shadow of an object to the length of the object equals in each case 2 : 3 • 

We know that the length of the shadow of an object changes during the day as
the position of the sun changes. At various times of the day the ratio of the length of the
shadow of an object to the height of the object assumes various values. Have you not 
noticed that soon after sunrise or before sunset the shadow cast by an object is quitelong, and the ratio under consideration may then be 2 : 1 or 3 : 1. On the other hand,
around noon, when the sun is high, the shadow cast by an object is very small, and the 
ratio under consideration may be 1 : 10 or 1 : 20. 

At the time Modupe made his experiment, he found this ratio to be 2 : 3 for
each of the measured objects. He assumed then that this principle holds for all objects
and wrote therefore the following proportion. 

Length of shadow of the tree : unknown height of the tree = 2 : 3 

length of s!iadow 
of the tree 2 or 
unknown height of 3 
the tree 
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Cross 	products give:
 

2 x unknown height 3 length of shadow 
of the 	tree = 3 x of the tree 

2 x unknown height 3of the 	tree - 3 x 16 ft. 

hence unknown height 48 = 24 ft.of the 	tree 2 

A precise explanation of the equality of all the ratios of the length of the

shadow cast to the length of the object at 
a given time, that is for a given position of the
 
sun, and the same place is based on the similarity of the triangles in Modupe's picture
 
(See Chapter 56 of Volume Ill.).
 

EXERCISE 59-8B 

1. 	 By the method used in our example, find the height of a tree, if the shadow of the tree 
is 15 feet long and the shadow of a 10-foot pole is 2 feet long. 
If a water tower casts a shadow2. 	 75 ft. long and a 6-foot man casts a shadow 4 ft.
 
long, how tall is the water tower?
 

3. 	 A monument casts a 6-foot shadow. The shadow of a foot rule perpendicular to the 
ground is 4 inches. Find the height of the monument. 

59-9 	 Directly proportional quantities 

We shall now discuss a special relationship that may exist between two sets of 
numbers or between corresponding values of two quantities. 

Let us start with a simple example:
 
Consider a square, and let 
us make a table of two rows as follows: In the first 

row we write various lengths of che side of a square and in the second row we insert the
corresponding values of the perimeter of the square, that is, the sum of the lengths of all 
its four sides. 

Table I 

The relationship between the length of a side 	and the perimeter of a square 

Length of side 
of a square / 2 3 z E 6 9 9 lo 
(in inches) 

Perimeter of 
the square 0/ T 
(in inches) 
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We have here two quantities: the length of the side of a square and the perimeter of the 
square. These two quantities depend on each other, or as we may say, are related, in the
following way: If a value of the first quantity (the length of the side) is "magnified" a 
given number of times, say from 1 to 8 inches, that is multiplied by 8, then the
corresponding value of the second quantity (the perimeter) is also "magnified" the same
number of times. In our case 4 inches is multiplied by 8 to give 32 inches. On the othei 
hand, if we "minify" a value of the first quantity five times, for example, if we divide 
1 inch by 5, then the perimeter will also be divided by 5 to give inch. 

Having such a relationship, we say that the length of the side and the perimeter of a 
square are directly proportional to each other. 

More precisely: two quantities (or two sets of numbers) are directly proportionalto
each other, if by "magnifying" ("minifying") any value of one of them a given number of 
times, the corresponding value of the second quantity is "magnified" ("minified") the 
same number of times. 

The three following statements have the same meaning. 
1. Two quantities are directly proportional to each other, 
2. Two quantities are directly proportional, 
3. 	 One quantity is directly proportional to another quantity.
 

We will now 
use our knowledge of ratio and proportion to analyze directly
 
proportional quantities further.
 

If 
we take the ratio of any two values of the quantity in the first row (length of
 
side of a square), for example,
 

5 inches : 2 inches, that is the ratio 5 : 2
 
and then take the ratio of the corresponding 
values of the second quantity (perimeter of
 
the square)
 

20 inches : 8 inches, that is, the ratio 20 : 8 , we 
see that the two ratios
 
are equal. Thus the four quantities form the proportion
 

5 inches : 2 inches 
 = 20 inches : 8 inches.
 
The following statement is true in general:
 

Property. If two quantities are directly proportional, then the ratio of any two

values of one quantity equals the ratio of the corresponding values of the second
 
quantity.
 

In our example we had two directly proportional like quantities. Let us now
discuss the following relationship between two unlike quantities.


Example: The cost of 
 1 yard of a fabric is 3 shillings. Find the cost of 2 yards,

3 yards, ... , 10 yards of the given fabric. We compose
 

Table II 
The relationship between the length and the cost of a fabric 

Length of fabric 
(in yards) 1 2 3 q 5 6 7 8/ 
Cost of fabric 
(in shillings) 36 9 /2/5/9 22L2730 
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We have here again an example of directly proportional quantities, this time of 
unlike quantities. If a given length of the fabric is "magnified" an arbitrary number of 
times, say multiplied by 2, 3, ... , 10, then the cost of the fabric is "magnified" the 
same number of times, that is multiplied by 2, 3, ... , 10, respectively. Also, if we take 
the ratio of any two values of the first quantity, say 3 yards : 5 yards, then the ratio of 
the corresponding values of the second quantity is 9 shillings : 15 shillings, and these 
two ratios are equal. We can therefore form the proportion 

3 yards : 5 yards = 9 shillings : 15 shillings. 

We thus see that the length of the fabric and its cost are directly proportional quantities. 
Other examples of pairs of directly proportional quantities are: 

The time of a uniform straight line motion and the distance covered. 
The volume and the weight of a uniform piece of metal (measured under the 

same conditions, like same temperature and same place). 
The number of work hours and the pay received by an employee (earning, 

for example, 1 shilling per hour). 
In order to understand better the relationship of direct proportionality, let us 

consider the following 
Example. 
We start again, as in the first example, with a square and compose a different
 

table of two 
rows. In the first row we write various lengths of the side of a square, and 
in the second row we insert the corresponding values of the area of the square. 

Table III 

The relationship between the length of the side and the area of a square 

Length of side 
of a square 

(in inches) 2 3 1 '/ 
Area of the 36 / 6 1181 00 
square (in /1I9 6 2536+ 4 10 square inches) 

As before, these two quantities depend on each other. Yet their relationship 
differs from those we We easily notice that, if thehave discussed hitherto. as before, 
first quantity increases, then the second quantity increases. However, if the length of 
the side is "magnified" five times (for example, 2 inches are multiplied by 5 to give 10 
inches), then the area of the square is "magnified" 25 times (from 4 to 100 square 
inches) and not the same number of times as required for directly proportional quantities. 
Also, if we take the ratio of any two values of the first quantity, for example 

2 inches : 8 inches, that is, the ratio 1 : 4, 
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then the ratio of the corresponding values of the second quantity is 
4 sqciare inches : 64 square inches, that is, the ratio 1 : 16. 

We thus see that the two ratios are different. 
We have here an example of two quantities which are related, but they are not 

directly proportional quantities. 

We shall now apply what we have learned abov,.c directly proportional quantities 
to solve problems of a kind which you may have enccuntered before. 

Example. 
Ahmed pays 20 shillings and 40 cents for 6 lb. of soap. How much does he have 

to pay for 15 lb. of the same soap? 
In a previous example we saw that the cost of a fabric is directly proportional to

the length of the fabric. Similarly here, the cost of the soap is directly proportional to its 
weight. Applying only the meaning of directly proportional quantities, we solve the 
problem as follows. 

I. Method of reducing to a unit. 
If 6 lb. of soap cost 20.4 shillings, then 1 lb. of soap costs onc sixth as much,

that is, 20-4 + 6 = 3-4, or 1 lb. of soap costs 3.4 shillings. Hence 15 1b. of soap cost 
15 times 3-4 shillings or 

3'4 shillings x 15 = 51 shillings. 
We call this the method of reducing to a unit, since we computed first the cost of 1 lb. of 
soap. We actually solved the problem by performing successively two operations:
1. Division (to find the cost of 1 lb. of soap), and 2. Multiplication (to find the cost of 
15 lb. of soap). 

We may, however, also solve the same problem by recalling the statement that if 
two quantities are directly proportional, then the ratio of any two values of one quantity
equals the ratio of the corresponding values of the second quantity. 

II. Method of proportion. 
In our problem we have two directly proportional quantities: the weight and the 

cost of soap. We can represent it as follows. 

6 lb. of soap cost 20.4 shillings 

15 lb. of soap cost shillings. 

From the above we immediately obtain the proportion 

J shillings : 20.4 shil'igs = 15 lb. : 6 lb. 

Simplification gives 

20"4 2'
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hence x 20.4 = 51 

Thus 15 lb. of soap cost 51 shillings.
 
In this method we are looking for a quantity which forms with three given
 

quantities an appropriate proportion. Problems of this kind 
are therefore called problems
 
on /inding the ourth proportionalquantity (or number). We have already consilered such
 
problems in 59-8 in finding 
an unknown member of a proportion.
 

It is clear that Method II is more convenient than Method I.
 

EXERCISE 59-9 

"1. An airplane has an average velocity of 435 miles per hour. What distance (in miles) 

will the plane fly in 2 hours, 3 hours, 5 hours, 3 1 hours? What is the relationship
2 

between the time of flight and the distance covered? 
2. Five gla-s machines produce 1,900 bottles in 4 hours. How many bottles does one 

machine produce in an hour? 1 

3. On a given plan drawn to the scale I the distance between two points equals 4.8 
inches. Find the distance between the corresponding points on another plan drawn to 

1 
the scale 75 

4. Solve the following problem by the two methods indicated at the end of the section. 
5. A machine pioduces 240 toys "-8 hours. How many toys does the machine produce 

in 35 hours? 

59-10 Inversely proportional quantities 

To discuss another special relationship that may exist between two sets of
 
numbers or between corresponding values of two quantities, 
we start with the following 

Example. 
Consider a rectangle whose area is 10 square inches. Let us compose a table of 

two rows as follows: In the first row write quantities representing various lengths of the 
rectangle, say 1, 2, ... , 10 inches, and in the second row insert the corresponding 
valves of the width of the rectangle having the given fixed area. We obtain 
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Table IV
 
The relationship between the lengths of the sides of 
a rectangle whose 

area is 10 square inches 

Length of /1 	23 I 
rectangle 56 718 9/0(in inches) 

Width 	of 2 
7
(in inches) 

We may notice immediately that, if the quantity in the first row is being
increased, the c,-intity in the second row is being 	decreased (and not increased as in therelationships represented by Tables I and II of the previous section). Further analysis

shows that if the first quantity is "magnified" 
a given number of times (for example,

1 inch is multiplied by 4 to give 4 inches) then the corresponding value of the second

quantity is "minified" the same 
number of times (10 inches are divided by 4 to give 

1 inches). If we "minify" the first 	quantity seven times (say, if we divide 1 inch by 72 1 
to have 	1 inch), then the corresponding value of the second quantity is "magnified"
7
 
seven 	times (from 10 to 70 inches).
 

Having such a relationship, we 
say that the length and the width of a rectangle

with fixed area are inversely proportionalquantities.
 

More precisely: two quantities (or two sets of numbers) are inversely proportional
to each other, if by "magnifying" ("minifying"' ) any value of one of them a given number
of times, 	the corresponding value of the secoid quantity is "minified" ("magnified")
 
the same number o times.
 
The three following statements have the same meaning: 

1. Two quantities are inversely proportional to each other, 
2. Two quantities are inversely proportional, 
3. One quantity is inversely proportional to another quantity.
 
Again, as in the previous section, let 
us use our knowledge of ratio md

proportion to analyze inversely proportional quantities further. 
Take the ratio of any two values of the first quantity in Table IV, for example, 

3 inches 	: 8 inches, that is, the ratio 3 : 8. 

Then 	the ratio of the corresponding values of the second quantity is 
1 1 105 

31 inches 1- inches, that is, -- :-5 or 8 : 3. 
3 4 
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We thus see that the two ratios are not equal. However, they reduce to the same members 
but taken in a reve :sed order. In the general case, if the ratio of two values of the first 
quantity is a : b, then the ratio of the corresponding values of the second quantity 
equals b : a. The ratio b : a is called the inverted ratio of a : b. 

To express in terms of rvr:.)s the relationship existing between the two
 
quantities in Table IV, we denote
 

Value No. 1 of the first quantity by F 1 , 

Value No. 2 of the first quantity by F 2 

Value of the second quantity corresponding to F 1 by S 1 

Value of the second quantity corresponding to F2 by S2 

We saw by the example above that the following proportion holds 

F1 : F2 = S 1 (1) 

Choosing any other two values of the first quantity, you may well verify that proportion 
(1) is correct. The following general statement is true. 

Property I. I/ two quantities are inversely proportional,then the ratio of any 
two values of one quantity equals the inverted ratio of the corresponding values 
of the second quantity. 
Let us now write proportion (1) in fractional form, 

F1 S2 

F2 1 

Since the cross products in any proportion are equal, we have 

F 1 x S1 = F 2 X S2 . 

This shows the following. 
Property II. For a given pair of inversely proportionalquantities the product of 
an arbitraryvalue of one quantity by the corresponding value of the other 
quantity is constant. 
What is the product of an arbitrary value of one quantity by the corresponding 

value of the other quantity in Table IV? 
In the example above we had two inversely proportional like quantities. We will 

now give an example of the same type of relationship between two unlike quantities. 
Example. 
Suppose that two cities are connected by a straight line highway of length 720 

miles. A man walking with an average velocity of 3 miles per hour would need 720 + 3 or 
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240 hours to cover this distance. A young man riding on a bicycle with an averagevelocity of 15 miles per hour needs 720 15 or 48 hours to go from one city to the other.A car traveling on the average 40 miles per hour will cover the distance in 720 + 40 or18 hours. Finally an airplane flying with an average velocity of 300 miles per hour willcover the same distance in 720 + 300 or 2.4 hours or 2 hours and 24 minutes. The obvious
fact is that the higher the velocity of the motion the smaller is the time needed to covera fixed distance. To study the relationship further, we compose a table of the quantities 
discussed. 

Table V 

The relationship between the velocity of a motion and the time 
required to cover a distance of 720 miles. 

Velocity of themotion //I 300 
(in miles per hour) 

Time needed to 
cover the above /2
 
distance 7ab /5
(in hours) 

We could extend this table by considering various other velocities and the corresponding
time required to complete the motion. 

From the table we see that if the velocity is "magnified" five times (for example,from 3 to 15 miles per hour), then the corresponding time is "minified" five times (from
240 to 48 hours). 

Ifwe take the ratio of any two values of the first quantity, say
 
15 miles per hour :300 miles per hour, that is,the ratio 1 
:20,
and the inverted ratio of the corresponding values of the second quantity 
2.4 hours :48 hours, we also obtain the ratio 1 :20. 

We thus have the proportion 

F1 : F 2 = S2 : S1 

The avertge velocity of a moving body and the time rejuired to cover a certain fixed 
distance are inversely proportional quantities.

In view of Property II, what is in this example the pioduct of an arbitrary value
of one quantity by the corresponding value of the other quantity? 

Other examples of inversely proportional quantities:
A.i was asked to buy candy for the school party for 120 shillings.

The amount of candy bought is inversely proportional to the price of the candy.The denominator and the value of a fraction whose numerator is constant are 
inversely proportional numbers. 
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One has to be rather careful in deciding whether two given quantities are
 
inversely proportional to each other. We illustrate this statement by the following.
 

Example. 
Ahmed has earned 40 shillings. If he spe-nds 5 shillings, he has 35 shillings
 

left. If he spends 16 shillings, he has 24 shillings left, and so on. We can compose the
 
following table,
 

MoneyMoe 	spentspen /0 16

by Ahmed 2 5 	 20 2.5 30 3 )
(in shillings)	 

0 / 2( 2J ()3 

Money left 
with Ahmed 38 35 30 2q 20 /5 /0 5 
(in shillings) 

It is clear that if the first quantity increases then the second quantity decreases. 
Yet, as we can easily show, the two quantities are not inversely proportional to each 
other. If the first quantity is "magnified" four times, for example from 5 to 20 shillings, 
then the corresponding value of the second quantity is "minified", but not four times. 
The corresciponding values of the second quantity are 35 and 20 shillings, respectively. 
Obviously, 

35 + 	 20 / 4 

EXERCISE 59-10 

1. 	 A toy factory accepted an order that can be completed by 120 workers in one week. 
How many workers are needed to complete the same order in 5 weeks, in 12 weeks,1
 
in 21 weeks?
 

2
 
Compose a table of the given relationship.
 

2. 	 A given manuscript can be printed on 144 pages if each page contains 32 lines. On 
how many pages will the manuscript be printed, if each page has 36 lines? 
What relationship are you using to solve the problem? 

3. 	 Indicate the pairs of directly proportional quantities (numbers) and of the pairs of 
inversely proportional quantities (numbers). 
a. The time of a uniform motion (constant velocity) and the distance covered. 
b. The velocity of a uniform motion and the time needed to cover a given distance. 
c. Tile volume of a uniform body and its weight. 
d. The length and the width of a rectangle whose area is constant. 
e. The length of the edge and the volume of a cube. 
f. The length and the area of a rectangle whose width is constant. 
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g. 	 The weight of butter and its cost.
h. 	 The number of workers and the amount of accomplished work during a given 

period of time. 
i. 	 The two factors of a product whose value is constant. 
I. 	 The product of two numbers and the value of ,ne of its factors, if the second

factor is constant. 
k. 	 The dividend and the quotient, if the divisor is constant.I. 	The numerator and the value of a fraction whose denominator is constant. 
m. 	 a fraction whose value is constant. 

The numerator and tl:t, denominator of 
n. 	 The two terirs of a sum that has a constant value. 
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UNIT XII FUNCTIONS AND GRAPHS 

Chapter 60
 
FUNCTIONS
 

60-1 Introduction 
We shall now learn about one of the most important ideas in mathematics, the 

idea of a function. We shall lead up to this idea by examples and then make clear what 
we mean by the word. 

Let us consider a square two inches on a 2" 
side, and ask: What is the perimeter? The answer 
is obvious. It is 2" + 2" + 2" + 2'' = 4 x 2'' = 8'1. 
The point is that if the length of the side has been 
chosen, the perimeter is determined. It could not be 
anything else than it is. Similarly if the sides were 
3" the perimeter would necessarily be 4 x 3" 12". 2" 2" 
We can make a little table of values. Of course this 
table is incomplete. We could add to it the results 
for sides of 6, 7, 8 inches and so on. We could also 
find the perimeters of squares with a fra ;onal 
number of inches on a side. What for example is 

1 2 
the perimeter for a side of 2 - inches?

2 Side in Perimeter 

inches in inches 
1 4 
2 8 

3 12 
4 16 
5 20 

There are two ideas here. The first is that given the side there is a definite 
perimeter that goes vith it. The second is that this definite perimeter can be found by a 
rule. 

The first idea is an important one. We shall return to it, but the second is more 
obviously important. So let us talk about it now. We see that there is a rule which 
enables us to calculate the perimeter when we know the side. We do not need to measure 
the perimeter. The single measurement of the length of the side is enough. 

What is this rule? It can be stated in a mathematical sentence: 
The perimeter 44 times the length of the side. 

We can shorten this statement by letting s stand for the number of inches in the side 
and p the number of inches in the perimeter. Then the sentence becomes 

p -4 xs 
or still more briefly 

p 4s, 

.,/ 
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Now we notice that Mhen we have this rule it is no longer necessary to have thetable. The rule takes the
1 

place of the table. If, for example, you want tile perimeter of1 a 
square whose side is 3- in. you can replace s by 3- and get p = 4 x 3-

1 
= 14. 

The result is 14 in. So the rule is a great saver of time and space.

We usually call the mathematical statement an 
equ liou because it contains anequals sign. We also say that p - 4 s is a formula for the perin eter of the square.Does the formula work if s is the number of feet, yards or les in the side of a square? 

EXERCISE 60-1 

Find formulas to express each of the following relations. Choose appropriateunits. Make a short table from each of the formulas.
1. The perimeter of an equ".ateral triangle with a given side.

2 The diameter of a circle with 
a given radius.
3. The circumference of a circle with a given diameter.4. The circumference of a circle with a given radius.5. The distance covered in a given time by an automobile that travels at the constant 

speed of 40 mi./hr. 

60-2 Other Examples 

Let us turn to another example. Instead of talking about the perimeter of asquare, let us talk about its area. Once again it is true that if we are given the length ofthe side, the area is determined. For example if the side is 3", the area must be 9 sq.in. Here too the area is given by a rule that can be expressed in a mathematical sentence

which is an equation. This rule is
 

Area in sq. in. -- length of the side in inches x 
length of the side in inches. 

If s is the number of inches in the side of the square 
and A the number of square

inches in its area 
we can write
 

A s x s
 

2
s
A 


[low much simpler this is than the rule in words! The formula for area replaces a tableof values and makes this table Unnecessary. You could make your own table from it !Let us take another geometrical example. Consider different rectangles whose 
area is 36 sq. in. 
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If the base of the rectangle is 9" the
 
height must be 4". No other height gives the
 
correct area. We could go on and make a table. 36 sq. in. 4"
 
The easy values are those shown. But of course
 
there are many other possibilities. For example,
 
if the base is 10" the height must be 3.6".
 
Actually we cannot make a complete table, 	 length of height
that is, a table that lists all of the possibilities, base in inches in inches 
Can we repl.ce the incomplete table by a rule 36 1 
that includes every Possibilit ,.? Of course ,.,e 18 2
 
can. 
The height is related in a definite way to 	 9 4 
the length of the base. In fact if b is the 6 6
 
length of the base in inches and h the height
 
in inches it must be true that
 

b x h= 36 
and hence
 

h 36
 

b 

Do you see that we can get all of the results of our incomplete table by replacing the 
letter "b" by the numbers 36, 18, 9 and 6? What can you say about the units for b and 
h ? Suppose that b is the measure in inches. Then is also the measureh in inches.
 
Could b be the measure in feet or yards? 
For what units would h then be the measure? 
What then would 36 represent? 

EXERCISE 60-2 

Find formulas to express each of the t1,llowing. Choose appropriate units. Make 
a short table from each of the formulas. 
1. 	 The volume of a cube with a given side. 
2. 	 The surface area of a cube with a given side. 
3. 	 The area of a circle with a given diameter. 
4. 	 The perimeter of a square with a semicircle on 

top, for a given side of the square. 
5. 	 The area of the figure in Problem 4. 

60-3 On Changing Units 

We know that 1 inch - 2.54 centimetres. From this fact we can make a rule 
for changing from centimetres to inches. Let c be the numbr of centimetres in a 
length measurement and i the corresponding number of inches. Then c - 2.54i. 
Check this formula by takig i I and i 2. Note that for eacIh v alIe of i there 
is a single definite value of c and that this Value can be fou1nd from the formula. 
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From this formula we can obtain others. For example, suppose that we wish tochange from area in sq. cm. to area in sq. 	in. The area of a square c cm. on a side has 
the measure 

2

A = c 

in sq. 	cm. Since c = 2'54 i, the area in sq. in. is (2.54 i )2 = (2.54) 2 i2 = 6.45 16 i2 

[Can you show that (2.54 i) x (2.54i) = (2.54)2 i2 ?]

Another example of 
a rule for changing units is the change from Centigrade


degrees to Fahrenheit degrees. The rule is given by the formula
 

F 2=-C + 32 
5 

where C is the number of Centigrade degrees and F the corresponding number of 
Fahrenheit degrees. Let us test this rule with a few numbers. When C - 0 (freezing

point of water) the formula gives F = 32. ' this correct? When C 100 (boiling

point of water) what should F be? Does the result 
come out right?


What is the value of F C = C
when 5? When changes from 0 to 5 how much

does F change? Did you get the answer 9? How much does F change when 
 C changes
10 ? Do you see that you can make a table for changing from Centigrade to Fahrenheit 
measure by using this formula? 

EXERCISE 60-3 

1. 	 Fill in the missing numbers. 

a. The number of yards = times the nu, ber of feet. 

b. The number of feet = times the number of yards. 

c. The number of feet _ _times the number of miles. 

d. The number of quarts = - times 	the number of gallons. 

e. The number of centimetres = - times the number of metres. 

f. The number of metres = times 	the number of centimetres. 

2. 	 Translate each of the sentences in Problem 1 into a formula after choosing suitable 
letters. 

3. 	 For each of the following choose suitable letters and write a formula that relates the 
two numbers: 
a. The number of pounds and the number of tons. 

58 



b. The number of square inches and the number of square feet. 
c. The number of cubic inches and the number of cubic fect. 
d. The number of square centimetres and the number of square metres. 

4. 	 A car averages 30 miles on one gallon of petrol. Write an equation which relates the 
number of miles travelled to the number of gallons. 

5. 	 A man walks at the rate of 4 miles per hour. Write an equation that relates the number 
of hours to the number of miles he walked. 

6. 	 An aeroplane flies at an average rate of 200 miles per hour. Write a formula to show 
this relation. 

60-4 	 Some Experiments 

In the 	examples that we have met so far we have seen how a formula could
 
replace a table of corresponding was
values. The formula easy to write down because of
 
our knowledge of geometry or because we knew how the units of measurement were
 
related to each other. We 
 turn now to some examples where experiment gives us a table
 
of corresponding values and we 
must discover the rule for ourselves.
 

If a stone is dropped from rest it is found
 
that the distance that if falls depends on the time 
 distance
 
since it was let go. Experiment gives us the time in sec. fallen in ft.
 
following table. Can we replace this table by a 1 16
 
rule? 
 2 64
 
If so, what is the rule? The problem is to see how 3 144
 
the numbers in the second column are related to 
 4 256 
those in the first column. Do you notice that each 
of the numbers 16, 64, 144 and 256 is divisible by 16? 
Let us rewrite these numbers as 16 x 1 , 16 x 4, 16 x 9 and 16 x 16 so that 
the table now looks like this. How are the numbers 
1, 4, 9 and 16 related to 1, 2, 3, and 4? Clearly 1 16 x I 
1 z12 , 4 22 , 9 32 and 16=42. 2 16x4 
It looks then as if we could now write the formula. 3 16 x 9 
Let us try. 4 16 x 16 

Let t be the number of seconds and d 
the number of feet that the stone falls in t seconds. Do you see that we seem to have 

d = 16 t 2 

as our rule? At least this rule works for t = 1, 2, 3 and 4. Of course it might not work 
for other times. The truth of the forimula must be te:ted for such values of t as1 1 1 

1-, 2 - and so on, as well as for values of t uhich are greater than 4. Actually 

it is found by experiment that the rule which we have guessed works very well. Since 
this is true we use the rule in place of the incomplete table and we can add to the table 
as many new entries as we please. But the rule is simpler and better than any table. 
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Something new has come in here. We have constructed a mathematicalmodel fornature. We have invented a rule to describe how we think that things r(ally happen. We 
use this rule as a way of thinking about the way falling bodies behave. 

Let us turn to another example. Suppose that we measure the height of a maizestalk each day at noon and make a table of the results. We might get something like this 
(we have left out some of the entries). Can we 
replace this table by a formula from which the days height in inches
heights can be calculated? This is a much harder 1 2
problem. If there is a rule it is not a very simple 5 4 
one. Unless it is fairly simple there is not much 10 7gain. We do not save much time by using it so 15 13 
that it is perhaps easier to work with the table 
of values. 

Even if we could find a formula for the growth of a maize stalk we shouldprobably find that it would not work for another maize stalk. All stones fall in the same 
way but maize stalks differ in the way they grow.

Some aspects of nature can be understood from simple mathematical models and 
some cannot. In the Exercise some experiments are suggested that you can perform.
Sometimes you will be able to discover a simple model and sometimes you will not be 
able to do so. 

EXERCISE 60-4 

1. For each of the following tables invent a simple formula which gives the numbers in
the B column for each of the numbers in the A column. 

a) A 13 b) A B ) A B 
1 2 1 5 1 1 
4 5 3 7 3 27 
2 3 16 20 4 64 
3 4 22 26 2 8 

d) A B e) A B 

1 2 1 2 

4 17 5 30 

3 10 2 6 

2 5 4 20 

3 12 
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Here are a few simple experiments which you can perform. In some cases, you 
can also find a formula to represent the results. 

Experiment 1 
Take and record your classroom temperature at noon each day for the five
 

consecutive days in a school week. Record 
 your findings thus. 

Set A: Day of Week Set B: Temperature 

Monday 
Tuesday 
Wednesday
 

Thursday 
Friday 

Experiment 2 
Stretch a rubber band between two uprights. By means of a light string suspend


from the midpoint of the rubber band weights of 1 oz, 
 4 oz, 8 oz, 12 oz, 14 oz, 16 oz, and 
19 oz, respectively. 

Measure the corresponding sags in the band in inches and record your findings: 

Set A: Weight in ounces 1 oz 4 oz 8 oz 12 oz 14 oz 16 oz 19 oz 

Set B: Sags in inches 

Experiment 3 
Take a graduated yard rule and support it at the mid-point (18" mark) by a
 

suitable upright which has a relatively thin top. By using a light thread hang a penny

from one end of the ruler (0" mark). Then record how many pennies can be placed at 
points 36", 27", 24", 21", 20" to balance the rule. 

Set A: Point on rule 36" 27'' 24" 21" 20" 

Set B: Number of pennies 

Experiment 4 
Arrange the class into age groups and find the average weight of each age group. 

Make a record of your findings, using a table similar to this: 

Set A: Age in years 15 - 16 17 18 19 - 20 21 - 22 23- 24 

Set B: Weight in lbs. 
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Experiment 5 
Get six lengths of thread of the same kind - 3", 6", 9", 12", 15", and 

18". Take one at a time and tie one end to a horizontal bar and a penny at the other end. 

Horizontal Bar 

450 
/ 

18" 

Then pull the stringed penny 450 away from the vertical and let it go. Using a stop watch 
find the number of oscillations the penny makes in 30 seconds. Record your readings as 
follows: 

Set A: 	 Length of string 18" 15" 12" 9" 6" 3" 

Set B: 	 Number of osci'lations
 
in 30 seconds
 

One oscillation may be taken as the complete movement from the start of the penny's
motion from left to right of the vertical and back again to a stop at the left. 

Experiment 6 
Fix firmly and erect on the ground a pole whose total length above the ground is 

about 10 feet. Take readings of the lengths of its shadow from 8:30 a.m. to 12 noon at 
35 minute intervals or at the end of each lesson period. 

Record the readings as in the following example: 

Set A: 	 Time of day 8:30a.m. 9:05a.m. 9:40a.m. 10:15a.m. 10:50a.m. 11:25a.m. 12noon 

Set B: 	 Length of 
shadow in ft. 

Experiment 7 
Repeat 	experiment 6, but continue the measurements after 12 noon. 
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Record 	your findings: 

Set A: 	 Time of day 8:30 9:05 9:40 10:15 10:50 11:25 12noon 12:35 1:10 1:45 2:20 

Set B: 	 Length of
 
shadow in ft.
 

Experiment 8 
In experiment 6 and 7 use the following alternative ways of recording your
 

findings:
 

(a) Experiment 6 

Set A: 	 Time in minutes 0(8:30) 35 70 105 175140 	 210 

Set B: 	 Length of shadow
 
in ft.
 

(b) Experiment 7 

Set A: 	 Time in minutes 0 at 8:30 35 70 	 105 140 175 210 245 280 315 350 

Set B: 	 Length of shadow
 
in ft.
 

Experiment 9 
Ask the 	local meteorological station to supply you with average rainfall figures 

for the month of July for the years 1959 to the present year. 
Record the information in a table. 

Set A: 	 year in which July 1959 1960 1961 1962 	 1963 1964 1965 19... 
rainfall 	measured 

Set B: 	 Rainfall in inches 

60-5 The Idea of Function 

It is time for us to go back over the road that we have travelled and consider 
what we have learned. 

When we discussed the perimeter and the side of a square we made two 
statements: 

(1) Given the side, there is a definite perimeter that goes with it. 
(2) This definite perimeter can be found by a rule. 
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We have been emphasizing the rule or formula in most of the other examples. We haveseen however that there are cases in which there seems to be no rule - at any rate nosimple rule. The first statement therefore is the more fundamental one.
In all of our examples we have really 1st column 2nd columnbeen dealing with two sets of members that can from set A from set Bbe called A and B. Some of the members 1 1of the first set A may be listed in the first 2 4(left-hand) column of a table. Members of the 3 9second set B are then listed in the second 4 16 

(right-hand) column. Opposite each first number
 
is a definite 
second number which belongs
 
with it. 
 We read this table from left to right.

That is, we begin with a number in set A and pair with it 
a certain number in set B. 

We can diagram this in a schematic way as follows.
 
The sets A and B are 
shown by the shadedregions. Let a be a member of set A. We
 
show a by a point inside the region for 
 A. 
We then draw an arrow from this point to the
 
point b 
 inside the B region, where b is
 
the member of set 
 B that corresponds to a.
 
We write a b which 
can be read "a
 
goes into b". We imagine an arrow from
 
every member of A 
 to its corresponding
member in B. No member a can be associatedwith more than one member o/ B. That
is, the following situation: (a - b and a- b') is impossible. 

When we can compare the members of two sets, A and B, in this way we can saythat there is a function from A to B. In all of the examples that we have met there is
indeed a function from a set A to a set B. 

Commonly there are an infinite number of members of set A so that a completetable is impossible. In most of the cases that we are interested in there is a formula orrule that tells us what member of B is at the end of the arrow that begins at any memberof A. If a -, b we call b the value o/ the function at a. 
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Is it possible to have two different
 
members of A lead to the same corresponding
 
member of b as shown in this figure?
 
Consider the set A that consists of all 
integers, positive, negative or zero. Suppose 
that each member of A goes into its square 
so that B consists of the squares of the 
integ ers. 
Then 1 - 1, 2 -- 4, 3- 9 ........ But it is also true that -1-. 1,
-2 -*- 4, -3 --- 9, ...... That is, two different members of A can have the 
same mate in B. Do you think that we could have functions for which more than two 
members of set A go into the b?same 


Suppose that A 0
consists of and all of the positive real numbers and B of 
all the whole numbers. The rule for finding the mate to a number a might be: take the 
whole number part of a. Then 1.32 - 1, 1.428 -- p 1, 1.111.. -i- 1 and so on. 
In fact all real numbers between 1 and 2 (including 1 but not 2) go into 1. 

The idea of function that we have explained is a very broad one, much broader
 
in fact than might be guessed from these examples. But we have said enough for our
 
present needs.
 

EXERCISE 60-5 

In each of the following problems, two sets, A and B, are described so as to 
relate their men.oers to each other. In which of these problems is there a function from 
A to B? 
1. A: the set of all real numbers. 

B: the set of all doubles of real numbers. 
2. A: the set of all whole numbers 

B: the set of the remainders when the members of A are divided by 3. 
3. A: the set of whole numbers 

B: the ;et I I . 

4. A: the set 121 
B: the set of all whole number multiples of 2. 

5. A: the set 121 
B: the set of all real numbers that have 2 as a whole number part. 

6. A: the set of all real numbers 
B: the set of all the cubes of the real numbers of A. 

7. A: the set of all whole numbers of the form 12 + 1 where I is an integer 
B: the set of all integers I. 
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Chapter 61
 
GRAPHS
 

61-1 Introduction 

We have seen that we can use a number line to help us to think about numbers.
In Chapter 60 we studied functions from a A to setset a B. Numbers from set A can
be shown on one number line and numbers from
 
set B on another number line. We need two 
 second axis

number lines. It is customary to use a 
 3 (set B)
horizontal line for set A and a vertical line 
for set B. We shall call the horizontal line II 2 I
 
the first axis and the vertical line thie second
 
axis. It is usual to make the 
 0 points on the 1two number lines agree and to choose the first axis same unit of length on both of them. We shall - 2 -i 0 1 32do this. We show positive numbers on the 

4 
(set A)first axis to the right of the point 0 and - 1 

negative numbers to the left of 0. On the
 
second axis we show positive numbers above III -2 IV
 
0 and negative numbers below 0.
 

The two axes 
divide the plane into four regions called quadrantswhich arenumbered I, II, III and IV as shown in the figure. At first we shall be concernedwith problems where there negative numbers inare no set A or in set B. We can then 
leave out the negative parts of the axes. The 
space on the paper can be used to best 
advantage by drawing the positive first axis 5
 
near 
the bottom and the positive second axis
 
near the left side of the available space as 4
 
in the figure. Suppose that for a certain
 
function, the first number 
 1 goes into the 3 P(1,3)

second number 3. How can we show this?
 
We simply draw a vertical line through the 2
 
point marked 1 on the first axis and 
a
 
horizontal line through the point 
 3 on the 1
 
second 
axis. These lines intersect at a 
point P. We mark this point (1 , 3) to 0show 1 2 3 4 
that it corresponds to a first number 1 and 
a second number 3. P is 1 unit to the right of the second axis and 3 units above the 
first axis. 
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Again if the function takes the first
 
number 
 2 into the second number 4, we can
 
locate the point (2, 4) as the figure shows.
 

4 (2, 4)
 

3 

2 

EXERCISE 	61-1 0 1 2 

Draw a pair of perpendicular lines that intersect near the lower left hand corner 
of a sheet of paper and mark scales on them whose 0 points agree. (Use 1" as a unit.) 
1. 	 Locate the points (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), 

(3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4). 

2. 	 Locate the points (- 1), (- -), (2, 1-). 
3. 	 Locate the points (1, 0), (2, 0), (3, 0), (4, 0) and (0, 1), (0, 2), (0, 3), (0, 4). 

Where is (0, 0) ? 
4. 	 Locate the points (-1, 1), (1, -1), (-1, -1) on a pair of axes. 
5. 	 Let us see if you understand how to find points named by pairs of numbers. 

Find A(1, 5); B(2, 3); draw AB 

Find C(3, 5); draw B-C. 

Find D(2, 1); draw ---B. 

Find E(6, 5); F(4, 5); draw F'E.
 

Find G(4, 1); draw F-,.
 

Find H(4, 3); 1(5, 3); draw H-'.
 

Find 	 J(6, 1); draw J. 

Find K(9, 5); L(7, 5); draw R-.
 

Find M(7, 3); draw ---M.
 

Find N(9, 3); draw NKI.
 

Find 0(9, 1); draw N-O.
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Find P(7, 1); draw O-P. 

If you understand, your answer will show it. 

61-2 The Graph of a Function 

By using the method of the last section we can make a picture of a function.
This picture is called the graph of the function. Our first exampl, described a function
 
from the set of positive numbers s (set A) to the 12
set of positive numbers 
 p (set B) by the formula 
p - 4s. From this formula you can make a little 11
table. Let us locate the points which picture
 
these pai-s of numbers. The points seem to lie 10
on a straight line that passes through the
 
common 0 which we 
call (0, 0). Does p = 0 9
 
correspond to 
 s -- 0? This seems reasonable 
since a square with side 0 can be thought of 8
as a point with perimeter 0. When we draw the s P
 
straight line we are of course going beyond what 7
is in the table. But you can extend the table,
 
and see if the new points come where you expect 6

1 

that they should. For example when s - , 5-

2 8
 

you find that p 2. The point (I 2) has
 
2' 4

been marked with a cross. Similarly you can 

mark the points (-, 6) and (5, 10). They
 
2 210.Te
 

come at the places that you could predict. Later 2
we shall prove that we were right in thinking
 
that all possible points do lie on the straight 1
line. But even without this proof it seems very
 
likely that this is true. 0 

1 

Let us turn to the second example where if x is the length of one 

3 
side of a
 

rectangle of area 36, the length of the other
 

side is given by the formula y - 36.. y
x x1 36
 
The table shows a few corresponding values. 2 18
Now let us locate the points in the way that 3 12 
you have learned. It is clear that you cannot 4 9 
draw a straight line through all of these points. 6 6
You can sketch a smooth curve as the figure 9 4 
shows. Of course when you do this you are 
going beyond the evidence of the table. You 

"/ 
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do not know for sure that the poir s on the 36. 

curve that have been drawn are exactly the
 
right points. But you can add as many sure 30

points as you like. For example, you could 24 

iry 	 x 22, then the corresponding y must Is 

b_ 3	( 36 x - 24. Let us locate the 12
 

3 
 3 
2 6 

new 	point (-, 24) cross.and maik it with a 	 2 I,'S 24 -30 U 6 

2 
Does it come about where you expected that it would? After a reasonable number of 
points have been marked we gain confidence that the curve is about right. We feel that 
we have a good picture of how the y values (numbers) are related to the valuesx 

(numbers). You can say that you have 
a graph of the function described by the formula36 36 
y - x , or a graph of the equation y . x.

How does this graph help? First of all it allows you to see at a glance that as
 
you take larger x values, you get smaller y values. As we usually say: when x
 
increases, y decreases.
 

It also allows you to estimate the value of y for any chosen value of x. The
 
method is as follows. Begin with the point a
 
on the first axis that shows the chosen x
 
value. Then go up to the curve along a vertical
 
line (see the arrow in the figure). From the
 
point P of the curve directly above a, follow
 
the horizontal arrow to the second axis. The b .
 
end of the arrow is the point that shows b.
 
This is the value of the function at a.
 

Of course unless P is a point on the 
graph which has been surely located from the 
table or by using the formula we are guessing a 
the value of b. That is, we are assuming that 
tle curve has been correctly drawn between the 
known points. In practice we are not likely to be far from the truth. Th. bvalue is near 
enough to the correct value to serve our needs. For complete precision you must of 
course go back to the formula. 

Fui example, if you wish the value of the function at 3'2 you can read off the 
result 11.2 or 11.3 from the graph. You should show that the correct value is 11.25. 

EXERCISE 61-2 

1. Draw a graph for A = s2, choosing values of the first number s from 0 to 4 
inclusive at intervals of -. From the graph estimate the value of s 2 when 
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s = 1-2 and s = 2"9. Check your results by using the formula. 
22. 	 Draw a graph of F = C + 32 using C = 0, 2), 40, 60, 80, 100. What kind 
5

of graph does this seem to be? Estimate the value of F at C = 5 and C = 50. 
Check your results from the formula. 

3. Draw a graph of y = x + 2 from x = 0 to x = 5 marking at least eight 
points. Describe the graph. 

4. Draw a graph of y = 	 3x from x - 0 to x = 5 marking at least eight points. 
Describe the graph. 

5. Drawagraph of y = 	 3x + 2 from x = 0 to x = 5 using at least eight
points. Describe the graph. How is it related to the graph in Problem 4? 

61-3 Some Straight Line Graphs 

When we drew the graph for 	 p = 4s we seemed to obtain a straight line 
through the point (0, 0). In Problems 2, 3, 4 and 5 of Exercise 61-2 you should have
 
obtained graphs that look like straight lines. In each of these cases, the graph is
 
really a straight li, e. We shall show that this is true. There i:i no guess work. You can
 
have complete contidence about the position of the points between those that 
were
 
actually found from the formula.
 

Also you will soon be able to recognize
 
from the appearance of these formulas that when
 
you draw the graphs you will certainly get straight
 
lines. Some kinds of formulas always lead to
 
straight line graphs. To be able 
to tell in advance 
that the picture will come out this way is a great 
step forward. Q s,4s) 

Let us turn to our examples. low do we 
know that the graph of p is is a straight 
line through (o, o)? The last part is easy. When 4- P 1, 4) 
s  o, p - o so that 0 - (o, o) is surely 
on the graph. The point P (1, 4) is also 3 
certainly on the graph. Now we want to show 
that the straight line through 0 and P is 2 
really the graph of p 4 s. ]low can wev show 
this? (Actually the straight line extends into 1 
the third uadrant but we are interested only in 
the ra' OP which is in the first quadrant.) 0 
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Let us draw the ray OP and let s be any
number different from 1. You can show s by 
a point S on the first axis. Now draw a vertical 
line through S and let Q be its intersection 

with OP. Since SQ is parallel to RP (why?), 
the triangles ORP and OSQ are similar. 
Therefore you have the proportion 

SQ: OS RP : OR, P 4s 
that is 

SQ: s = 4: 1. 

From what you have learned about proportion you 4 
can write 1 

R S 
SQ = 4s. 

The point Q is therefore the point (s, 4s) = (s, p) and consequently Q is a point on 
the graph of p :- 4s. Therefore all points on OP lie on the graph of p = 4s. 

Furthermore no point of the graph of p = 4s could fail to be on OP. For 
suppose that there were a point Q' of the graph 

that is not on OP. This point Q' will be 
located by two numbers that we may call s and Q (s, 4s)
b. So Q' - (s, b). Draw a vertical line through
Q' and let Q be the point where it intersects 

"T" Q (s, b)
the ray OP. The first number for Q must be s, 
the s. 2 a3:; the first number for Q'. Since Q is 

on OP, its second number must be 4s. Then P (1, 4) 

Q - (s, 4s). If Q' is not on op it must be 
either below it or above it. This means that b 
must be different from 4s. But if b is not equal 
to is, the point is not on the graph. So we have 
a contradiction. There can be no point of the 

graph which is not on OP. 0 
Let us turn to the graph of y -- 3x 

(Problem 4 of Exercise 61-2). The point 0 - (0,0) is on the graph. Also p = (1, 3) 
is a point on the graph. Draw the ray OP. This is the graph of y = 3x. The proof
follows exactly tihe same pattern as before. The equations y =: 3x and p - 4s are 
much alike. If s and P are replaced by x and y, the resemblance is more striking.
You now have y - 3x and y - 41x. These equations have a family resemblance. 
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Other equations of the same
 
family are y = 2x, y = x =
P (1, 3) Y 3x1 / y = 2x
 
and y = -- x. In each case,
 

the graph is a straight line (1, 3) y X 
through (o, o). We draw all
 
of them on the same pair of
 
axes. The straight lines 
 (1, 2) 
differ from each other in 
direction. The direction is (0, 0) y = x 
determined by the second 0 ( 
number that is paired with 
the first number 1. Thus 
y = 3x goes through (0, 0)2 

(0, 0) and 1,3), y = 2x through (0, 0) and (1, 2) and y 1. through (0,0)1 

and (1, ). This second number is 
2 

called the slope because it measures the steepness 

of the line. Notice that the slope is also given by the number by which x is multiplied 
on the right side of the equation. 

All of these equations are of the form 

y = cx 

where c is a number. The graph of such an equation goes through (0, 0) and (1, c)

arid therefore has the slope c. The larger the value of 
 c, the steeper the line. 

There is another way of looking at an equation of the form 

y = cx. 

If x is "magnified" a given number of times (that is, multiplied by a given number),

then y is al.;o "magnified" 
 the same number of times (multiplied by the same number).
You can see this at once, because if x is multiplied by m then cx becomes 
cmx = m(cx) - my so that y is also multiplied by m. We can then say that when 
y cx, y is directly proportionalto x. 

EXERCISE 61-3 

1. Draw graphs of each of the following equations. In each case locate a few points
for which x has negative values as well as points with positive values of x. 

a. y =5x 

b. y 3 
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3y 
4-

C. 

d. y I-X 
3 

2. 	 Follow the pattern of the proof in the text to show that the graph of y = cx (for 
a given number c) is a ray from the point (0, 0) to the point (1, c). Assume that 
the values of x are positive or zero. Show that for negative values of x we 
obtain points on the same straight line. 

3. 	 Look at your graph of y = 3x + 2 from Exercise 61-2. Can you prove that this 
graph is really a straight line? What is its slope? Iint.: How is the graph related 
to the graph of y = 3x? 

4. 	 Look at your graph of y = x + 2. Can you prove that this graph is really a
 
straight line? What is its slope?
 

5. 	 Draw agraph of y = 2x + 1. 

61-4 	 Some Other Straight Line Graphs 

In Problem 3 of the previous Exercise you were asked to show that the graph of 
y = 3x + 2 is a straight line. It was 
suggested that you compare it with the graph
 
of the equation y - 3x. Of course you know
 
that y - 3x graphs into a straight line S (1, 5)
 
through 0 (0,0) and P = (1, 3). The
 
graph of y 3x 1- 2 does not go through
 
(0, 0). To what does x = 0 correspond? To
 
y 2 of course. So you have the point P (1, 3)
 
R - (0, 2) on the required graph. And what
 
number corresponds to the first number 1?
 
The answer is certainly 3 - 2 5 so that (0, 2) R
 
you have another point S 7 (1, 5) on the
 
graph cf y -- 3x t 2. If this graph is to be
 
any straight line, this line must pass through
 
R and S. Can you prove that the shaded 0 (0, 0)
 
figure is a parallelogram so that is parallel to OP? Do you conclude that the
 
graph of y = 3x + 2 is the line parallel to the graph of y = 3x through (0, 2)?
 

In fact, to get the graph of y = 3x + 2 you can simply lift the graph of 
y = 3x by 2 units. The remaining problems in Exercise 61-3 are close relatives to 
this one. All of the equations have the form 

y = cx + b. 
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Their graphs can be found from the graph of y = cx by raising it b units. You obtaina straight line through (0, b) and parallel to the graph of y cx.= Does the slope or 
steepness of the line change when it is raised so as to remain parallel to its original
position? Clearly not. 

You should now be able to draw the 
graphs of -quations in this family very quickly.

For example, suppose that you wish to picture 
 )1 

Y yx + 3. You begin with the points 

R = (0,3) and S = (1, 3-) and draw RS. 10,3) 

(We are now including points for which x is
 
negative.)
 

You are now ready for the graph of 
 2_
 
= ± 32. You locate (0, 32). You

5 
could also locate (1, 33-)4 but these points 

are a bit too close together to allow you to F
draw an accurate picture. Any second point

will do. You could choose (10, 50). Of course 220
you know that 00 C corresponds to 32'F and 200
100'C to 212'F so that the points (0, 32)

and (100, 212) can be marked at once. You 
 180
know from the form of the equation that the graph 160
must be a straight line. Therefore you can join

these points by a ruler and draw the graph 
 140
 
without difficulty. 
 120 

So far we have always remained in the
 
first quadrant. The time has to consider
come 100 
other possibilities. There are Centigrade 80
 
temperatures below 
 00. To what Fahrenheit
 
temperatures do they correspond? 
 60
 

Let us use the formula 
 40 

9C +F F= -5 32 (0,32) 

5 
/1 1-40 -20 20 40 60 80 100for negative values of C. We easily find that -

for C = -10, F = 14 and for C = -20, 
F = -4. 

We have located these points on the 
graph. As you see, they lie on the same straight line as the other points. You can continuethis line further. It has been discovered that it is impossible in nature to have atemperature below "absolutean zero" of about -273'C. So the straight line does not 

C 
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have any physical meaning to the left of the point where C = -273. 

EXERCISE 61-4 

1. Find the Fahrenheit temperature when C = -273. 

2. 	 From the graph of F = 9 C + 32 estimate the value of C when F = 0. Can
5 

you think of a way to find its exact value? 
3. Use the graph to find the value of C when F = 50. Check the accuracy of your

result from the formula. Can you see how to work the formula backwards, that is, 
find the value of C for which 

50 = IC + 32 ? 
5 

61-5 On Going Backward 

In the previous Exercise you met the problem of working back from the value of
 
F to the value of C. This kind of problem comes up in other cases so we shall
 
consider the general problem of which this is an 
example. But first we shall look at
 
some simple cases. In mathematics it is always 
a good plan to begin with as simple
 
problems as we 
can so that we do not get confused with details.
 
Example I Let us look at a straight-line graph with which you are now familiar:
 
the graph of the equation
 

y - x + 2. 	 y x+2 

If you start with a value of x, to get the y 
corresponding value of y you follow the 
vertical arrow unti) you meet the line and 
then go across to the second axis. In terms 
of numbers what do you do? You add 2 to 
the given value of x. For example for 

Xx = 3, you find y = 3 i 2 5. 
Now suppose that you wish to go backwards, that is, find the value of x from 

which a given value of y was obtained. 
You add 2 to an x value to get a y 
value. To go backwards you start with the 
value of y and subtract 2 to get the y 
value of x. That is, x = y - 2. Thus 2 + x 
y = 5 must have come from 
x 5 - 2 = 3. (We remember that 
subtraction is the inverse of addition.) 

The picture is this, where the / 
arrows have been reversed from what we had 	 x = y - 2 
before. 
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Example 2. Let us turn to another simple 
example, the straight-line graph of y = 3x. 
You follow the arrows to go from an x value 
to its y value. In terms of numbers you multiply 
the number x by 3 to get the number y. 

How can you reverse this process,
that is, go from the number y back to the 
number x from which it came? On the picture, 
you simply reverse the arrows. In terms of 
numbers you undo the multiplication by 3 by 
dividing by 3. Then 

=Yx 

3 

y 

x y/3 

Example 3. Consider the equation 
y = 3x + 2 and its straight-line graph. What 
do you do to find the value of y for a given 
value of x? You first multiply x by 3 and 
then add 2. On the picture you first go up 
3x to the dotted line and then go up 2 more. 
Finally you go across to get y 3x + 2. 

/y 3 x 
y 

0 

//
 
Y y=3x+2 

/ , 

2 
d 

, 3x 
/ 
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To go from y back to x you must 
reverse the arrows. You first subtract 2 to / 
get 3x and then divide by 3 to get x. That 

is x = y-23/ y ,2 

For example, given y = 5 you subtract 2 
and then divide by 3 to get 

5-2 3 
1./ 

Let us return to our problem of the ' 
previous section where we had the equation 

F =9C + 32. 	 x y -25 
3 

You wish to go from F back to the C from which it came. You muse reverse the steps 

which led from C to F. To get from C to F you first multiplied by - and then 
9 

added 32. Starting with F you must therefore first subtract 32 and then divide by -.5 

That is, to get C you first find F - 32 then F 32 
9 

F-32 5 

But F-32 is the same as - (F - 32) (Why?)
99 

Thereore finally 

C = (F - 32).
9 

With this new equation you can easily answer the questions that we asked before. 
For what value of C is F = 0? The answer of course is 

C = 	 5 (-32) = -160 = _17 7 

9 9 9 

Compare this exact result with your estimate from the graph. Did you succeed in getting 
the exact value for yourself? 

For what value of C is F = 50? This is now easy to answer. Does it 
correspond to your own result? 
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EXERCISE 61-5 

1. 	 Given =-Tx- 3. 

For what value of x is y = 0? y = 1?
 
Find a formula that gives the value of y.
x for any given 

2. 	 Suppose that y = 3(x - 1). 
For what value of x is y = 0? y = 1? 
Find a fori. ula for the x which leads to any given y. 

3. 	 Draw a graph of y =4 showing at least the points for x = 	 1, 2, 3 and 4. x 
Reverse this equation so that you can find x for a given 	 y.

4. 	 Draw a graph of y = x 2 for values of x between --3 and 3. 
For what value of x is y = 1? Is there more than one answer? 
For what value of x is y = 4? 
How many answers are there? 
Can you write a formula for x in terms of a given y? 

61-6 Can We Always Reverse Our Steps? 4 

Here is part of the graph of y = x2 3 

that we were asked to draw in the last problem 2 
in Exercise 61-5. Notice that when x = 1, 
y = 1. But also y = 1 when x =-1. 
Therefore if we are asked to start with y = 1 
and find the x value from which it came we 
are in doubt. Which x value is wanted, -1 or -2 -1 T 1 2 
1? 

Let us look at this situation in terms of a table. In the first column you will find
listed a few of the numbers from the set A 
which contains all the real numbers (positive, A B 
negative and 0). In the second column you -2 4
will find the corresponding value of the -1 1
function described by the equation y = x2 . 1 1
There is a function from A to B because 2 " 
there is only one member of B for each 0 0
member of A. But we have trouble if we 1 1 
try to reverse the order. Let us try to make 2 4 
a table with members of B in the first 1 1 
column and in the second column the 2 4 
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members of A that correspond to them. Except B A 
in the case of 0, there are two values of set 0 0 
A that correspond to each member of set B. 1 1 1 
So in this case there is no function from B to T "' -
A which is the "inverse" 
function. 

of the or. :iral 1 
4 

1 , 
2,- 2 

If we consider only 0 and the positive members of A, there is no difficulty in 
going backwards. Each member of B goes into 
a member of the restricted A which we may B A+ 
call A+. There is a function from B to A+ 0 0 
which is the inverse of the function from A+ 1 1 
to B. We call it the square-root function. 4 2 

1 1 
4 2 

Of course we could also restrict ourselves to the subset of A which contains 
0 and the negative numbers. If we call this 
subset A- we have a function from B to B A 
A- that is the inverse of the function from 0 0 
A- to B. Here is part of this table. 1 1. 

4
 
1 -1 

4 -2 

Can you tell by looking at the graph of a function from A to B whether there 
is also an "inverse function" from B to A ? 
Yes, very easily. What is the trouble with our 
graph of y = x 2 ? The trouble is that there are 
two points on the graph on a horizontal line. This 
means of course that two different values of x 
lead to the same value of y. This will always 
happen if the graph has a decreasing piece and 
an increasing piece next to each other. 

The graph of the temperature of a patient with a fever might look something like 
this. That is, the temperature goes up for a 
time and then comes down again. At each time temp. 
there is a single temperature, but it is not 
true that for each temperature there is exactly 
one time at which this occurred. For example, 
from the knowledge that the temperature was 
100' F at a certain time we cannot tell what 
that time was. 

time 

N
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Another simple example is this. If a stone is thrown straight up into the air, the 
stone is at a definite height at any given time. 
(We are not concerned with the values of the 
time after the stone hits the ground.) But it is Height (ft.) 
not true that for each height above the ground 
there is only one time at which this occurred. 
A graph of the heights at different times might 16 
look something like this. A horizontal line 
through the point 12 on the second axis cuts 12 
the graph in two points. There are two values 
of the time for which the height is 12 ft. This 8 
height was reached once on the way up and 
once on the way down. 4 

time 

EXERCISE 61-6 
0 1 2 (sec.) 

1. In the example of the stone let h feet be the height at t seconds after the stone 
is thrown. The equation that is pictured in our graph is 

h = 32 t - 16 t 2 

1 3 
From this equation find the heights when t = 0, t t = 1, t = and 

t = 2. 
Draw a graph showing these points. 

2. In Problem 1, let A be the set of times from 0 to 2 and B the set of corre
sponding heights. How can A be restricted so that there is an inverse function 
from B to A? 

3. A ship travels from Mombasa to Aden and returns. Let t be the number of days
after it leaves Mombasa and d its distance from Mombasa in miles. Describe a
function from the set of times to the set of distances. If you reverse the order of 
the sets is there an inverse function? Explain. 

61-7 Graphs of Experimental Results 

In each of the previous examples there has been a formula from which you could 
make a table and then a graph. When the scientist performs an experiment the situation 
is different. He measures two quantities and shows the results in a table. An example
was given in Section 60-4 where there is a table of the distances in feet that a stone 
falls in certain times in seconds. In this case it was easy to guess the formula,
d = 16 t 2 . You can of course draw a graph by using this formula to construct as 
complete a table as you need. 

If you cannot find a formula or at any rate a simple formula, you can use the
table of experimental results to draw a graph. It is true that there is some uncertainty. 
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You do not know for sure how things go between the points that are actually marked. 
It is usual to assume that the true picture is a fairly smooth curve through the known 
points. 

There is, however, a complication. As you know, all actual measurements are 
approximate. You cannot eherefore be certain that the points that you locate from the 
results of measurements are exactly where they ought to be. It usually happens that the 
graph that is drawn does not go exactly through all of the points that have been marked. 
It is always possible to draw a curve through all of the experimental points but the 
curve may not be a very smooth one. The art of fitting curves to experimental points
takes some experience to learn. \'e cannot say much about it here.
 

It is often true that the points obtained from experiment come close to lying on
 
a straight line. This should be true for some 
of the experiments that you performed in 
the last chapter. By marking the experimental 
points and laying a ruler on the paper you should 
be able to find a straight line that fits the points 
as well as possible. This is the sort of thing that 
is meant. The experiments that have been 
described are somewhat crude. Naturally with 
improved apparatus and great care more precise 
results can be nbtained. This usually results 
in better-fitting curves or lines. 

In the last section the graph of d = 32t - 16t 2 was drawn to represent the 
height of the stone thrown up in the air. You may have noticed that different scales were 
used on the two axes. Previously we used the same scale on both axes. The reason for 
the change here is a matter of convenience. The graph should not be too high to fit 
easily on the page. 

In practice when you are drawing graphs of experimental results you should
 
choose the scales on the 
axes very carefully so that you can use the space available on 
the page to best advantage. 

EXERCISE 61-7 

In the previous Chapter you were asked to perform a number of experiments and 
report the results in a table. For each of these experiments choose scales on the first 
and second axes so that most of a page will be filled. Mark all of the points from your
table and draw a as 
cases do you appear to get a straight-line graph ? 

as smooth curve you can through or near these points. In which 
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Chapter 62
 
MATHEMATICAL SENTENCES
 

62-1 Introduction 

In this chapter we shall be concerned with mathematical sentences. You have
 
met such sentences in the last two chapters, but we shall now 
consider them from a
 
somewhat broader point of view. In particular you will learn how to change one
 
mathematical sentence into another 
o.ne which is equivalent to it. Even though you

will meet some problems that you already know how to solve, it will givL 
you more
 
insight if you look at these problems in a new way.
 

You have used the statement
 

F =-C	9 +32
 
5
 

for converting degrees Centigrade to degrees Fahrenheit. Let us assume that the
 
temperature is known to be 25 degrees Centigrade. What would this be in degrees
 
Fahrenheit? Replacing C by 25 we have
 

F = (25) + 32 

= 45 + 32 

= 77 

and our answer is, of course, 77 degrees.
 
Now suppose that we were asked a 
somewhat different type question such as: 

If the temperature is 86 degrecs Fahrenheit, what would this be in degrees Centigrade? 
In this case we cannot apriy the formula directly.

We should like to develop a systematic approach for answering questions of 
this sort. Such an approach will also enable us to solve a variety of other problems. 

Returning to the question of how many degrees Centigrade would correspond 
to 86 degrees Fahrenheit, we note that the formula 

F =5C+9 32 

now becomes 
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9 
86 =-C + 32

5 

orC + 32 = 86.
 
5
 

From this we see that our question could be put in the following form: For what value9 

of C will the statement, !C + 32 = 86, be true? 
5 

How would you work out a scheme for answering this type of question? The
 
method we are 
about to explore involves a very important and very useful mathematical 
process known as 

"Solving an equation" 

or "Finding the truth set of an open sentence.
 
You have already encountered many examples of so-called mathematical
 

sentences. These include such statements as
 

3 + 5 = 8. 2 x 7 = 14. 18+ 3 = 6 

and so forth. These are all examples of true sentences. We can say this because in
 
every case the numerals on both sides of the "=" sign represent the same number.
 

On the other hand mathematical sentences such as
 

7 + 5 = 10, 16 - 4 = 11, and 7 x 8 = 45 

are clearly examples of false sentences.
 
What about the following?
 

N + 7 = 12 

Is it a true sentence? Or is it false? You will probably agree that there is no 
way to answer this question as it stands. In other words, we cannot give a correct 
answer until we know what number N is supposed to represent. Since the question of 
whether or not the sentence is true remains "open" we call an expression like 
N + 7 = 12 an open sentence. 

Is the sentence true if N = 5? Is it true if N = 6, or 8, or 4? Are there any 
numbers other than 5 which when added to 7, give a sum of 12? Since the answer 
is "no", we say that 5 is the truth value of the sentence N + 7 = 12. 

If the connecting mathematical symbol is an "=" sign, we call the sentence 
an equation. Thus N + 7 - 12 is an equation. The number 5 is also referred to 
as the solution of the equation. 

An open sentence, like x < 5 , is called an inequality. Here the sentence is 
true if x represents any number less than 5. Is it true if x = 5? Is it true if n = 6? 
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If in this problem we restrict the possible values of x to be the set of whole
numbers, what numbers in this set make the sentence true? Under these conditions the 
set 0, 1, 2, 3, 4 is called the truth set of the open sentence (inequality), x < 5.
 

For the truth set of the sentence N + 7 = 12, we have the set 51 that
 
consists of the single number 5.
 

In the sentences in the two examples shown, 
 the letter N and the letter x
 
are called variables. For open sentences a variable can be thought of as a symbol,

usually a letter, used to represent any number in a given set. The given set is called
 
the domain of the variable. In the previous example, 
 x < 5, we restricted the possible
values of x to be members of the set of whole numbers. Thus the domain of the
 
variable in this case was the set
 

10,1, 2, 3, 4,5,6, 7,. . . 1. 

Do you see that the truth set 10, 1, 2, 3, 4 is a subset of this domain?
 
In both of the sentences, N + 7 = 12 and 
 x < 5, we could determine the
 

respective truth sets without any difficulty.
 
There are many problems, however, which 
 lead to more complicated open


sentences, sentences 
whose truth sets cannot be easily determined by inspection.
 
One such is our Centigrade equation
 

9C + 32 = 86.5 

As another example suppose that we are asked the following question. Three
 
more than six times a certain number is 45. What is the number? To begin with how
 
can you translate this into a mathematical open sentence? It should be clear that
 
such a sentence is
 

6N + 3 45. 

For what value of N will this sentence be true? With a bit of trial and error the
 
answer 7 will probably come to mind. To test this we note that 
 6 (7) + 3 = 45
 
is a true sentence. If we replace N by any number other than 7, 
 the result will be
 
a false sentence. Can you give the reason?
 

62-2 Equivalent Sentences 

The solution to the previous problem may have involved some experimentation, 
or guesswork. Let us see how such guesswork might be eliminated. To do this we nee 
a basic concept which applies to open sentences in general. This is the concept of 
equivalence. To illustrate the idea, we return to the problem under discussion. For 
the equation 6N + 3 = 45 we have already obtained the solution 7. To state this, 
we write N - 7. Do you see that such a statement is itself an open sentence? The 
truth set of this sentence is also 171. We note then that the two open sentences 
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6N + 3 45
 
and 

N= 7 

have the same truth sets. Under these conditions we say that the two sentences are 
equivalent. In other words, any two open sentences are equivalent if, and only if, 
they have the same truth set. To fix this idea, check each of the following pairs of 
open sentences to see if they are equivalent. 

c. 3x + 4 = 10. x = 2 

b. 5x -2 = 18. x =4 

c. l N- 7 = 81. N = 8 

d. 12x + 14 = 26. x = 1 

e. 13x-20 = 71. x = 7 

In every case the above pairs of sentences are, in fact, equivalent. Comparing 
the sentences on the right, however, with those on the left, what basic difference 
suggests itself? It should be clear that for the sentences on the right, the truth sets 
are obvious. No guesswork or trial and error is needed. On the other hand for the 
sentences on the left this may not be the case. These sentences, in other words, do 
not show their truth sets in a self-evident manner. 

Does this suggest how one might go about "solving" an equation? Suppose 

that we are given a complicated sentence. Can we make this into a simple sentence 
which is equivalent to the first (has the same truth set), but which is written in such 
a form as to enable us to determine immediately what its truth set is? For the problems 
that we shall be considering, the answer is "yes". 

To see how this can be done, let us begin by working backwards. Suppose 
that we start with the simple form of sentence 

N = 7. 

For a certain value of N (namely 7) this sentence is true. For other values of N the 
sentence is false. Now suppose that we add 3 to N and 3 to 7. This gives us 
N + 3 and 7 -1 3. Here again we note that when N has the value 7, then the 
expression N + 3 represents the same number as 7 4 3. Thus N + 3 = 7 + 3 
is a true sentence when N is 7. For other values of N, the sentence is false. 
What can you say, then, about these two sentences? 

N =7 
and 

N + 3 = 7 +3 
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Are they equivalent?
 
In this instance we 
may say that we have added 3 to both 'sides" of thesentence, or equation. It should be clear, however, that the argument for equivalencedoes not depend on the choice of the particular number 3. What about the following

sentences? 

N = 7 

N + 5 =7+5 

N + 100 = 7 + 100 

N-6= 7-6 

Are they equivalent? In the last case we subtracted 6. Since we have seen thatsubtracting 6 is the same as adding -6, we can think of all of the sentences ,afterthe first as having been obtained by adding the same number to both sides of N
A rule now suggests itself. If the 

= 7. 
same number is added to both sides of anopen sentence (equation) the result will be an equivalent open sentence.

Does the same rule apply to multiplication? For the sentence N = 7,multiply N by 6 and 7 by 6. Consider them, the expressions 6N and 6 x 7. If thevalue of N is 7, then 6N names the same number as 6 x 7 and for this value= 6 x 7 is a true sentence.6N For any other value of N the sentence N = 7 isfalse, and the sentence 6N = 6 x 7 is false also. Are the sentences N = 7 and
 
6N = 42 equivalent?


Again the argument does not require that the number that we multiply by be
specifically 6. Before we state the rule in general terms, however, we should lookat one special case. Take the sentence N = 5. Its truth set is clearly 151. Nowsuppose that we multiply both sides by zero. This gives us 0 x N = 0 x 5 or
0 x N = 0. 
 For what values of N is this last sentence true? By the specialproperty of zero, we can see that the sentence is true when N is any number at all.What, then, can we say about the two sentences N = 5 and 0 x N = 0? Are they

equivalent?
 

Can we 
now state a general rule? If a second equation is obtained from a
 
given first equation by
 

1) Adding the same number to both sides 

2) Multiplying both sides by any number other than zero 

the resulting second equation will be equivalent to the first.
We are now ready to apply the rule to some of the equations that we havebeen discussing. For the first example we can write the following sequence of 

equivalent equations: 
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N + 7 = 12 

N + 7- 7 = 12 - 7 

N =5 

The last one clearly proclaims its truth set. In the second step we have added - 7
 
or, what amounts to the same thing, subtracted 7 from both sides.
 

It is often necessary to apply the rule several times. As an example consider
 
the following sequence of equivalent equations.
 

6N + 3 = 45 

6N - 42 (subtract 3) 

1 1 1 
T-x 42 (multiply by-x 6N = 


N = 7
 

The step involving multiplication by I could be more conveniently thought of as 

division by 6. Can you explain why? 
Finally let us look at the Fahrenheit-Centigrade problem. We form equivalent 

equations as follows. 

9-9C + 32 = 86
5 

9C = 54 (subtract 32) 
5 

9 
5 x -C = 5 x 54 (multiply by 5. Why?)

5 

9 C = 270 

C = 30 (div;de by 9) 

All of these results are reassuringly consistent with our earlier findings! 

EXERCISE 62-2A 

1. Extend the rule for equivalent equations to include subtraction and division. 
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2. Solve the following equations. 

a. 

c. 

e. 

3x + 5 = 26 

14x + 23 =219 

3x- 8 = 1 
34 

b. 

d. 

f. 

17x + 1 52 

4 2 + 25x =292 

x5 
Tx 5 

3. 

4. 

9. -x - 5 - (Hint: Multiply both sides by 6)3 2 

h. 1 1 14 X + =8 (Hint: Multiply both sides by 
24. Why did we choose 24?) 

The temperature in degrees Fahrenheit is 41. 
Find the corresponding temperature in degrees Centigrade.
If 7 more than 5 times a certain number is 52, what is the number? 

If a variable appears on both sides of an equation, the rule may be applied in
the same manner using the distributive law. For example in the equation
8x - 2 = 50 - 5x, we may consider 5x as a number which can be added 
to both sides. Adding this and adding 2, we get 8x + 5x = 52. Since 
8x + 5x = (8 + 5)x = 13x, we have 
13x = 52 or x = 4. 

EXERCISE 62-2B 

1. Solve the equations: 

a. 

b. 

17x 

3 x 

+ 12 

- 15 

= 

= 

lOx 

6 -

+ 117 

x (Hint: add1 x first) 

2. a. 2 - 3x = 2x - 8 

3. 

b. 

a. 

b. 

C. 

1x 

5m 

11t 

5 

y 

- 14 = 16 3 
T 4 

+ 3m = 24 

- 9 =4t + 12 

3 

+ 1 3--y + 2 
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4. 	 If 4 times a number is decreased by 5, the result will be 70 more than the 
original number. Find the number. 

5. 	 A and B have 120/- between them. If A has x/- how many shillings has 
B? If it is also given that A's money is twice B's, what is x?

6. 	 When A and B sit down to play, A has 2x/- and B x/-. A then wins 
5/- from B and then has three times as much money as B. How much had 
each at first? 

7. 	 Two men starting from two points P and Q 60 miles apart ride toward one 
another. When they meet, A has done 3x miles to B's 2x miles. How far 
has the faster man travelled from his starting point?. f 3x1 

8. 	 If - - 12 and 9 -- x stand for the same number what is that number?5 	 10 

9. 	 John is x years old. Half John's age plus - of his age is 39 years. What is 
4 

John's age?
10. The perimeter of a rectangular field is 24 ft. The longer side of the rectangle 

is three times the length of the shorter side. What are the dimensions of the 
field? 

11. If you multiply a certain number by 3 and 	 subtract 12 from the product you
would get the same result as if you had divided the same number by 2 and 
added 58 to the quotient. What is that number?

12. A man keeps a number of weights for use in his grocery shop. The number of 

I oz. 	weights is twice the number of - oz. weights and half the number of 

2 lb. weights, while the number of 1 lb. weights is three times the number of1 
I oz. weights. The combined weights total 11 

1 
lb. 2 	 -oz. How many of each 

kind has he? 

62-3 Changing the subj -t of the sentence 

The sentence F = 	 9 C + 32 offers, as we have seen, a convenient device 
5

for determining the Fahrenheit temperature when the Centigrade temperature is given.
We have also observed that when the situation is reversed, a difficulty arises. Given 
F, how do we find C? 

The ideas in section 62-2 should now provide the answer. Since F is assumed 
to be given, we may regard it as a fixed 	number and the sentence 

9C + 32 	 = F
5 

can be thought of as an open sentence in the variable C. A procedure for developing
a "chain" of equivalent sentences now suggests itself. 
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9 
TC + 32 = F 

9VC = F - 32 (subtract 32) 

9 C = 5F - 160 (multiply by 5) 

C = 5F - 160 (divide by 9) 

9 

We now have a new sentence, which is equivalent to the original one in the following
 
sense. For any specified F, say 50, the sentence
 

C _ 5 (50) - 160 

is equivalent to the sentence 

9
 
50 =-C + 32
 

5 

In both cases the truth set is 1101.
 
We now have the statement
 

1605F 
9 

which provides a formula for determining the degrees Centigrade for any given number of 
degrees Fahrenheit. 

Take another example. A man buys a radio on the hire-purchase plan. He makes 
a down payment of 150 shillings and must pay 24 shillings a month for 18 months. If P 
represents the total amount paid at the end of m months, we have the formula 
P = 18m + 150. At the end of 5 months he has paid P = 18 (5) + 150 or 240 shillings. 
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How would you find out how many months it will take before the man has paid,
 
say 456 shillings? We can change the subject of the as
sentence follows. 

18m + 150 = P 

18m = P - 150 

m = 	 P - 150 

18
 
Can you describe the steps used in forming the equivalent sentences?
 

For P = .456 we have
 

m.. 	456 - 150
18 

and the answer is 17 monchs. 

EXERCISE 62-3 

1. 	 A tank already holds 5 gallons of water and a tap puts in 2 gallons of water
 
every minute. 
 The number of galions in the tank after any number of minutes can 
be found by G = 5 + 2m where G is the number of gallons and m stands 
for any number of minutes. 
Find the number of gallons in the tank after 1 hour; next rewrite the formula so 
that you could use it to find when the tank will hold a given number of gallons
of water. Use this to find in how many minutes the tank will hold 185 gallons. 

2. 	 People say that to make good tea we must take a teaspoonful of tea for each person drinking the tea and one more for the pot in which the tea is to be made 
and this is the equation they use: T = 1 + n where T is the number of 
teaspoons of tea in the teapot and n the number of people for whom the tea is 
made. 
Use this equation to find the number of teaspoonsful required to make tea for 
12 people. 
Now write the equation so that it could bi! used to find the number of people for
whom tea could be made if the number oit teaspoonfuls of tea is given. Use this 
last equation to find for how many people tea has been made if 14 teaspoonsful 
of tea were put in the pot. 

N' 

91 



3. 	 The volumes of several square prisms with congruent square bases each of side 
4" are given by the equation V = 16h where h is the height in inches and V 
represents the volume in cubic inches. 
Use the equation to find the volume of one of these square prisms whose height 
is 1 yd.
 
Next write the equation so that it could be used to find the height of on( such
 
square prism when its volume is known. Use it to find the height of one such
 
square prism when its volume is 192 cu. inches.
 

4. 	 Several right cylinders have congruent bases each of area 154 sq. inches. The 
total surface area of each can be determined by the equation S = 308 + 44h 
where S is the total surface area in square inches and h is the height in 
inches.
 
Determine the total surface 
area of such a right cylinder vvhose height is 8 
inches. 
Find an equation which can be used to find the height when the total surface 
area of such a right cylinder Is given. 
Use this equation to find the height of such a cylinder whose total surface area 
is 1892 square inches.
 
Assume that eich of the following equations is derived from some actual
 
physical situation. Then work as directed.
 

1 

5. 	 E = -n + 8
2 

Find E when n = 15.
 
Then write the equation to find n. Find n when E is 12.
 

6. 	 S=a + 3t 

Find S when a -- 3, t = 2.
 
Rewrite the equation to determine t. Use it to find t when S = 24, a = 6.
 

7. 	 y=5x-z 

Find y when x = 2, z = 3.
 
Rewrite the equation to find z and use the result to find when x
z = 12 and 
y = 5. 
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8. R + r
T= R 

Find T. when R 20, r = 8.
 
Find an equation which will give r and use it to find r when T = 2, R = 16.
 

9. v 77 r 
3 

Find V when r 3. 3
 
Then write the equation to find r 3 .Find r3 when V = 38808.
 
Can you then find r? 

62-4 Inequalities 

We have already considered the open sentence x < 5, which as you remember, 
is called an inequality. When x is any number less than 5, the sentence is true. For 
any other value of x the sentence is false. 

Given a slightly more complicated inequality, however, it might not be so easy 
to find the truth set. Take, for example, the sentence 

3x - 5 < x + 5. 

Can we see at a glance what its truth set is? The answer is probably "no". A second 
question might now be raised: Is this sentence equivalent to the first one, x < 5? 
To answer this, you might be tempted to use the rules that we had for forming equivalent 
equations and proceed as follows: 

3x - 5 < x + 5 

3x < x + 10 (add 5) 

2x < 10 (subtract x) 

x < 5 (divide by 2) 

A plausible answer, then, might be "yes". It turns out .liat the answer is correct. There 
is a rule for equivalence of inequalities which follows the same pattern as the one for 
equations. This time we shall first state the rule, then see why it works. The rule 
follows: 

If a second inequality is obtained from a given first inequality by 
1) Adding the same number to both sides 
2) Multiplying both sides by a positive number 

the resulting second inequality is equivalent to the first. 
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On the basis of this rule we may be sure that the sentences 

x < 5 and 3x - 5 < x + 5 

are indeed equivalent.
 
We 
 should perhaps note that the step "dividing by 2" can also be thought of 

as multiplying by -1. Thus the conditions of the rule are strictly fulfilled. 

Note also the significant change. In place of multiplication by any number
other than zero, we now have multiplication by any positive number. What, then,

happens when we multiply by a negative number? We shall 
soon find out. But first let 
us see if the given rule is justified. 

In an earlier study (Chapter 25) we considered the so-called addition and

multiplication properties of order. 
 These stated that if a, b, and c are any numbers 
and if a < b then a + c < b + c. Furhermore if c > 0, then 
a x c < b x c, or by the commutative property of multiplication 

c x a < c x b 

You also learned in Chapter 25 that if a < b and c < 0 then 

c x a > c x b 

It is not true that c x a < c x b ! The inequality is reversed!
 
It will be worthwhile to convince ourselves of this important fact.
 

If a < b 

we may write b = a + p 

where p is some positive number. Now let us multiply each side of this equation

by c. We obtain the equivalent equality
 

c x b = c x (a + p) = (c x a) + (c x p) (Why?) 

What is the sign of c x p? Negative of course. Therefore c x b = c x a minus 
a certain positive number. In other words, c x a is c x b plus a positive number. 
Therefore 

c x a> c x b 

as we wished to prove. Notice that this proof reduces the problem to one that concerns 
an equality. 

When we apply these principles to equivalent inequalities we have the 
following results. 

If we have a given ineyiality, we obtain an equivalent inequality if we 
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1. 	 Add the same number to both sides. 

2. 	 Multiply both sides by the same positive number. 

3. 	 Multiply both sides by the same negative number and reverse the 
direction of the inequality sign. 

Let us use this result to find the truth set of 

4 - 3x < 7 

An 	equivalent inequality is 

3x < 3 (Why?) 

If we multiply by (- -3) we get another equivalent inequality, namely
 
)fwemux)iplyby 3
 

3 	 3 

which means that 

x > -1 

is also an equivalent sentence. Its truth set is the set of all numbers greater than -1. 
We can obtain this result in a different way. We start again with 

4 - 3x < 7. 

Add 3x to both sides. The result is the equivalent inequality 

4 < 7 + 3x. 

This in turn is equivalent to 

-3 < 3x (Why?) 

which is equivalent to 

-1 < x (Why?) 

EXERCISE 62-4 

Describe the truth set of 	each of the following inequalities. 

1. 	 3x+ I > 4 
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2. 	 1- 3x < 

4 

3. 	 5x-3 < 1 

4. 	 2- c<5 

5. 	 8-3x < 11 

6. 	 -3 < 2x < 1 

7. 	 3>x>12 

8. 	 A rectangle is to be constructed such that its area shall be less than 400 square
inches. If one side of the rectangle must be 25 inches, the length of the other 
side must be less than what number of square inches? 

9. 	 A train should cover a distance of 600 miles. Its speed must be less than
 
100 m.p.h. The number of hours it takes will be greater than what number?
 

10. 	 A man wanting to build a pen cannot spend more than 100/- to get sticks for 
the job. If he must use 40 such sticks, he must pay less than how much per 
stick? 

62-5 	A New Kind of Inequality 

We often encounter sentences of the form x = 5, where the symbol =
 
stands for ''is less than or equal to." 
 The truth set of this sentence consists of all
numbers which are less than 5, and also the number 5 itself. Actually th! sentence 

< may be broken down into two sentences (a) x 	 < 5 and (b) x = 5. In this<
 
sense the truth set of x = 
 5 may be regarded as the set of all numbers satisfying
 
either (a) or (b).
 

Suppose that we 
are asked to solve the sentence 3x - 2= 10. Again we may break
this down into two sentences (a) 3x - 2 < 10 and (b) 3x - 2 = 10. From what has 
gone before we know that these are equivalent to x < 4 and x = 4 respectively. 
Putting the two together again we have x < 4. The truth set is the set of all numbers 
less than or equal to 4. In practice one may apply the multiplication and addition rules 
directly. To solve the sentence 

< 
5x - 3 = 27 
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we may write the equivalent sentences 

5x= 30
 

and
 

K 
x = 6. 

Care must be taken when multiplying by a negative. In this case it may be safer to 
separate the sentences as we did originally. For example, to solve the sentence 

5 - 3x= 23,
 

we consider the two sentences
 

5 - 3x < 23 and 5 - 3x = 23.
 

An equivalent sentence to the first is
 

x > 6 and to the second x = 6.
 

Thus we obtain x = 6, whose truth set consists of all numbers greater than or equal 
to 6. 

EXERCISE 62-5 

Repeat Problems I through 7, in Exercise. 62-4, in each case replacing 

> by =, or < by 
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UNIT XIII STATISTICS 

Chapter 63
 
COLLECTION AND PRESENTATION OF DATA
 

63-1 Introduction 

In this unit we shall learn about an important branch of mathematics called
 
statistics. Sometimes 
we use the word statistics to mean number facts such as vital
 
statistics, population statistics, rainfall statistics but often by statistics we mean 
the
 
branch of knowledge which deals with the collection and interpretation of data.
 

Another important use of statistics is the prediction of future events. For
 
example, 
 a weather forecaster collects information about the weather over a long period

of time, and from past experience he can use the analysis of his data to predict what
 
the r-eather is going to be like. 
 Of course his prediction may not always be correct
 
since the conditions on which he bases the prediction are 
subject to sudder changes.

We shall not concern ourselves here with the use of statistics for prediction.

Rather 
we shall learn about descriptive statistics. We shall study how best to present

data in tabular form and how to represent data by a suitable graph. We shall learn the
 
different meanings of the word "average" 
 and in what way each kind of average may

be used. Finally, we shall include a short discussion on measure of spread of a set
 
of data.
 

Our examples to illustrate each of these ideas will be drawn from the classroom
 
and from official records such 
as the Statistical Abstract and Annual Departmental

Reports from different African countries. Whenever 
a table is used or a graph is drawn
 
the source of the data will be indicated. This is good practice since it enables anyone

who desires further details to go to the 
source of the information. 

63-2 Collection and Presentation of Data 

(a) Presenting Facts in Tabular Form 
Often when we open our newspapers or books we finu' information presented to 

us in a form which is not easy to absorb at a glance. Here is an example. Below is 
given in each subject the number of candidates who took the University of London 
General Certificate of Education Examination at the Advanced Level in Sierra Leone, 
West Africa, in June 1963: 
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Biology 22 Geography 7 
Botany 17 History 37 
British Constitution 44 History 
Chemistry 53 (English Economic) 10 
Economics 55 Pure Mathematics 12 
English Literature Applied Mathematics 7 
(Home Syllabus) 7 Mathematics (Pure & Applied) 6 
English Literature Physics 40 
(African Syllabus) 17 Religious Knowledge 6 
French 23 Zoology 22 
Source: The West African Examinations Council Annual Report for the year ended 
31 March, 1964. 

You will notice that the subjects are arranged in alphabetical order. If we 
wished to find out the most popular subject (in the sense that it was taken by the 
largest number of candidates) we would have to go carefully over the above data. 

The data might be rearranged in order starting with the most popular subject 
and ending with the least popular. This rearrangement will help us to present the 
data in a form that is easier to absorb. Here it is. 

Subject Namber of Candidates 
Economics 55 
Chemistry 53
 
British Constitution 
 44
 
Physics 
 40
 
History 
 37 
French 
 23
 
Biology 22
 
Zoology 
 22
 
Botany 17 
English Literature (African Syllabus) 17 
Latin 12 
Pure Mathematics 1_2 
History (English Economic) 10 
English Literature (Home Syllabus) 7 
Geography 7 
Applied Mathematics 7 
Mathematics (Pure and Applied) 6 
Religious Knowledge 6 

In the above form it is easier to see at a glance that the most popular subject 
(in the sense described above) was Economics and the two least popular ones were 
Mathematics (Pure and Applied) and Religious Knowledge. We can also answer much 
more quickly other questions on the data. 

(b) The Frequency Table 
Here is another example. Fifty pupils in a school were selected. Their 
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heights were measured to the nearest inch and recorded as follows: 
56 50 62 54 59 60 62 55 56 59
 
60 59 56 63 58 59 58 62 59 54
 
54 60 58 56 59 63 56 55 60 59 
62 55 
 59 60 56 58 59 59 55 60
 
60 58 55 58 59 55 58 56 59 60
 

As in the previous example we could arrange the names of the fifty pupils in
 
order in 
one column and their heights in another column starting with the name of the 
tallest pupil. You will agree that this will indeed be a long column since there are
 
fifty names altogether.
 

How best can we show this information without writing every name? Another
 
look at the table shows that several pupils have the same height. In fact, it is in
 
only one 
case that we find one pupil in a class all by himself.
 

This suggests that we arrange the heights in order from the tallest to the
 
shortest and show in each 
case how often each height occurs. We may do this by going
through the table and making a stroke (a tally mark) each time a height occurs; when a 
height occurs five times we stroke across This makesdraw Lhe fifth as shown below. 

it easier to count the tally marks in groups of five at 
a time. The number of times that 
each height occurs is the frequency of the height. 

Height in Inches Tally Marks Frequency 
50 / 1 
54 3 
55 
56 7-/// 

6 
7 

58 7/A'!/ 7 
59 7/-% // 12 
60 71/-//// 8 
62 //// 4 
63 // 2 

Total frequency = Total number of pupils 50 
From this table we see how a pupil who is 55 inches tall com~pares with other 

pupils in the class. We can say how many pupils are of the same height, or are taller 
or shorter. It would be more difficult to extract this information from the raw data which 
we had originally. 

(c) Grouping of Data 
It was stated above that the heights of the pupils were measured to the nearest 

inch. This means that if we had a height of 55.5 or 55.6 inches we would express
either of them as a height of 56 inches while a height of 55-3 or 55.4 inches would 
each be expressed as 55 inches. 

Marks (Scores) are also often expressed to the nearest whole number. For 
example a mark of 661 may be expressed as 67 to the ncarest whole numbLr while a 
mark of 372 out of 50 would be expressed as 75 out of 100. 

The following is a record of scores out of 100 obtained by 100 candidates in 
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an Arithmetic examination; the scores are all expressed to the nearest whole number. 
50 100 66 52 36 56 68 64 52 88 
18 96 56 44 30 50 50 40 10 36 
20 54 64 50 58 44 12 60 46 56 
74 34 50 82 51 59 54 34 30 48 
52 60 18 50 46 20 42 16 68 48 
40 58 73 32 56 52 52 58 44 66 
82 62 52 28 38 76 86 30 72 54 
12 52 21 33 54 58 58 62 52 21 
30 50 58 27 24 27 66 48 32 29 
28 23 19 64 29 48 36 70 42 89 

In setting out the information contained in the above we could adopt the same 
approach as was used in dealing with the heights of the pupils. It would be found, 
however, that there are nearly fifty different scores represented in the data, and we 
shall thus need a column of about fifty rows to analyse the marks as was done with 
the heights. It would be convenient to group the scores so that it is easier to digest 
the data. We could group in tens: 0 - 9, 10 - 19, 20 - 29, etc. or in fives: 0 - 4, 
5 - 9, 10 - 14, 15 - 19, etc. 

A look at the scores shows that the lowest is 10 and that 10, 12,12, 16, 18,
18, 19 fall in the interval 10 - 19. Thus we have seven strokes in the Tally Marks 
column. 

We call 0 - 9, 10 - 19, 20 - 29 or 0 - 4, 5 - 9, 10 - 14 etc. the class 
intervals because they mark the groups or classes. As we stated above, the scores 
were expressed to the nearest whole number. This means that a score recorded as 
20 could really have been anywhere between 19"5 and 20-5. Therefore the class that 
contains all the scores recorded 10 andas between 19 inclusive will contain all the 
scores which in fact lay between 9"5 and 19"5. That is, the class interval 10 - 19 
has the class boundaries 9"5 - 19"5. Similarly the class interval 20 - 29 has the 
class boundaries 19"5 - 29-5 and so on. The mid-point of the class interval is equal
to the average (arithmetic mean) of the class boundaries. Thus the mid-point of the 
interval 10 - 19 is 10 + 19 29 

2 14.5. 
Since the class boundaries are 9"5 and 19"5 the mid-point of the interval is also 
9"5 + 19-5

2= 14 5.2 

The above scores have been tabulated below: 
Class intervals Class boundaries Mid-point of Tally marks Frequency 

interval
 
10 - 19 9"5 - 19.5 14.5 2// 7 
20 - 29 19.5 - 29.5 24.5 7 7// 12 
30 - 39 29.5 - 39.5 34.5 7 7// 13
40 - 49 39.5 - 49.5 44-5 7/A/Al /// 13 
50 - 59 49.5 - 59.5 54.5 -/31 
60 - 69 59"5 - 69.5 64-5 71/W// /// 12 
70 - 79 69"5 - 79.5 74.5 7//. 5 

101
 
( 



Class intervals Class boundarics Mid-point of Tally marks Frequency 

interval 
80 - 89 79-5 - 89-5 84.5 7 5 
90 - 99 89"5 - 99"5 94"5 / 1 
100 
- 109 99"5 - 109-5 104.5 / 1 

Total number of scores = Total frequency = 100 

Look again at the table above. It presents information in a concise form. 
Can you think of any disadvantage of this particular form? Can you tell by looking at 
the table whether any of 16, 17, 18, 19 occurs in the interval 10 - 19 and with what 
frequency? 

Although the table is concise we note that some information is lost. From the 
table we know that seven scores fall in the interval 9"5 - 19"5 but we do not know, 
without looking at the original data, what these scores are. 

In general, in grouping data into classes, we should not have too many or too 
few classes; the usual nun~ber of classes is between 10 and 25 depending upon the 
data with which we are working. We should also avoid intervals which are not of the 
same length. For example we should not have intervals of length five mixed up with 
intervals of length ten; for example, 0 - 4, 5 - 9, 10 - 14, 15 - 19,and 20 - 29, 
30 - 39, 40 - 49 etc. 

EXERCISE 63-2 

1. 	 Below are the scores in an Arithmetic test. Arrange them in order from the 
highest to the lowest: 

90, 63, 66, 76, 83, 66, 66, 56, 
52, 25, 54, 11, 30, 51, 61, 51, 
54, 14, 54, 64, 30, 52, 58, 51, 
13, 2, 28, 6, 14, 68, 6, 28, 
24, 4, 6, 18 

(a) What is the sixth score from the lowest? 

(b) 	 What percentage of the scores is above 25? 

(c) 	 What is the difference between the highest and lowest scores? 

2. 	 Set out the scores below in a form which is easy to absorb, without grouping 
the data. 

87, 	 91, 82, 88, 87, 85, 92, 84, 81, 85, 86, 90 
83, 85, 82, 86, 88, 85, 88, 87, 90, 86, 83, 85 

3. 	 The table below, which is partly completed, gives the frequency distribution 
of the scores obtained by 100 students in a mathematics test. Complete the 
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table. 

Score 	interval Tally marks Score boundaries Mid-point of Frequency 

interval
 
96-100 /
 
91 - 95 // 
86 - 90
 
81 - 85 //
 
76-80 7// 
71 - 75 /////
 
66 - 70 77//
 
61 - 65
 
56 - 60 - 7//7
 
51 - 55 
46 - 50
 
41 - 45 /7/!
 
36 - 40 /!
 

(a) What is the mid-point of the interval with the most common score? 

(b) How many students scored at most 70 marks? 

(C) In which interval would a mark of 76"5 be recorded? 

4. 	 The average values in pounds per ton of Ghana cocoa in the London market for 
the twenty-four months of 1961 and 1962 are given as: 

183, 171, 160, 180, 180, 175, 177, 170, 167, 181, 
204, 208, 183, 166, 170, 171, 172, 171, 171, 167, 
162, 164, 170, 171
 

Display this information by grouping with 160 164,
- 165 - 169 etc. as 
intervals. Show the tally marks. 
(Source: 1962 Statistical Year Book - Central Bureau of Statistics, Accra, 
Ghana). 

5. 	 The table below gives the number of pupils enrolled for each of the seven 
years in Primary Schools in Northern and Eastern Nigeria in 1963. 

Northern Nigeria Eastern Nigeria
1st Year 91,567 346,126 
2nd Year 83,082 279,120 
3rd Year 73,409 247,169 
4th Year 62,291 129,435 
5th Year 42,010 110,602 
6th Year 33,502 89,926 
7th Year 24,845 76,328 
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(Source: Statistics of Education in Nigeria, 1963 Series, No. 1 Vol. III; 
published by the Federal Ministry of Education, Lagos) 

(a) What is the general trend that you can see in both sets of data? 
(b) What proportion of the pupils in each Region is enrolled in the first year? 

6. 	 Ask 100 pupils in your school their ages. Write down the age of each child
 
as he tells you. Arrange the ages in order starting with the youngest child.
 
Group 	these ages at intervals of 6 months as follows: 

6 years 0 months - 6 years 6 months,
 
6 years 7 months - 7 years 0 months,
 
etc.
 

Use tally marks and find the total frequency for each age group.
 

7. 	 Collect from each class in your school the number of pupils present every day 
for a week. Arrange the data in a suitable manner. 

8. Count the number of cars passing a particular point on a busy road at 5 minute
intervals for one hour on a Monday morning. Do the same at the same hour on 
a Tuesday morning and compare your data. 

9. 	 List the most common cars and commercial vehicles in your town. Repeat the

exercise in question 8 but state how many of each kind of vehicle passes the
 
given 	point in one hour. (Prepare a frequency distribution.) 

10. Find out from the police in your town the number of new vehicles registered
in each category for the past three years 

(a) 	 Motor - Cars; 

(b) 	 Buses; 

(c) 	 Lorries; 

(d) 	 Motor - Cycles. 

11. 	 Play a game of ludo with your friends and make a table showing the number of
 
sixes thrown in one hour by each player.
 

12. 	 Find out the scores obtained in three different tests by a class at the end ofthe Term. Arrange the scoies in order in each test; then find out by how many 
marks the first pupil in each test beat the last pupil. 

13. 	 Hold an election for a school captain of football in your school. Count the 
votes and show how each candidate stands. 

14. 	 Find out the weights of all the pupils in a Primary Three class. Group the 
weights. 
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15. 	 Find out the heights of all the pupils in a Primary Four class. Group the 
heights. 

63-3 Rounding off. 

In Unit VIII of 13asic Concepts o/ Alalhematics you learned how to deal with 
approximations. It was pointed out in the unit :hat in some 	measurements exact results 
are required while in others it is sufficient to give an approximate result. For example, 
if we were to estimate the population of Kenya at any particular moment it would be 
sufficient to express the result to the nearest thousand persons. 

In Chapter 41 you learned hov, to round off numbers to the nearest whole 
number, tens, hundreds or thousands. We use approximate numbers when we wish to 
get a general impression and if the error involved in the approximation is not great. 

The table below shows the number of Out-Patients treated in Government 
Hospitals in the ten year period 1953 - 1962 in Kenya. 
Year Out-Patients Out - Patients 

Expressed to the Expressed to the 
Nearest thousand nearest 100,000 

1953 1,256,511 1,257,000 
1954 1,246,330 1,246,000 
1955 1,216,912 1,217,000 
1956 1,313,041 1,313,000 
1957 1,034,209 1,034,000 
1958 931,924 932,000 
1959 1,030,319 1,030,000 
1960 1,166,765 1,167,000 
1961 1,176,432 1,176,000 
1962 1,316,631 1,317,000 

(Source: Statistical Abstract 1963. Published by the Economics and Statistics 
Division, Ministry of Finance and Economic Planning, Kenya. The figures 
in the second column are those recorded in the Statistical Abstract.) 

You will notice that the actual numbers are given. We may, however, be interested 
in getting a general impression rather than an exact picture. The third column gives 
the same figures expressed to the nearest thousand. 

EXERCISE 63-3 

1. 	 As an exercise fill in the details in the fourth column of the above table, 
giving the number of out-patients correct to the nearest one hundred 
thousand patients in each case. 

2. 	 The total value of Postal Orders issued in East Africa for each year of the 
ten year period 1953-1962 is given in the table below. 
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1953 
1954 

19- 5 
1956 
1957 
1958 

1959 
1960 
1961 
1962 

Round off the above figures 

1,975,813 
2,055,243 
2,344,964 
2,402,413 
2,446,669 
2,327,144
 
2,154,417 
2,139,895 
2,253,302 
2,285,532 

(a) to the nearest thousand pounds
(b) to the nearest ten-thousand pounds


(Source: Statistical Abstract 1963, 
 Published by the Economics and Statistics 
Division, Ministry of Finance and Economic Planning, Kenya.) 

3. The value of the domestic exports of Nigeria for each of the years 1957 - 1963 
is given in the table below. 

1957 
1958 
1959 
1960 
1961 
1962 
1963 

£. thousand 

10,348 
11,066 
13,375 
13,802 
14,172 
13,668 
15,405 

The figures have been rounded off to the nearest thousand pounds. Round off 
further 

(a) to the nearest one hundred thousand pounds;
(b) to the nearest miliion pounds. 
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Chapter 64
 
GRAPHICAL REPRESENTATION OF DATA
 

64-1 Introduction 

There are many ways of presenting data resulting from experiment or aan 

statistical investigation. One of these is the presentation of data in the form of 
a table. 
We have seen in Chapter 63, Section 63-2, that we can obtain a lot of useful information 
from a table if it is properly presented. However, some people find it difficult to get a 
mental picture of the impression that a table is supposed to convey. They find it easier 
to compare statistical information if it is presented in the form of a picture or illustration. 
Pictures, illustrations or charts which are used to help us to absorb statistical
 
information readily are called graphs.
 

In this chapter, we shall learn about the most common types of graphs and how

they can be used to convey information. There are good and bad graphs; we shall point

out some of the characteristics of 
a good or a bad graph. Some graphs, especially in 
advertisements and in political propaganda leaflets, ar: often misleading, and often
 
create the wrong impression. When we see such graphs we should be able to detect the
 
error. Also when we are given 
a set of data we should be able to decide the most suitable 
type of graph to use. 

Graphs, however, have a limitation. While they afford us a quick way of seeing the
relationship between two quantities they often lack the detailed information which we can 
get from a table. 

It is sometimes good practice to show the table from which the graph or chart is
drawn so that anyone who wants the detailed information will have it ready at hand. 

64-2 Choosing a Scale 

The choice of a suitable scale is important in graphical work. One guiding

principle is to choose a scale 
which will make the diagram large enough to be easily

appreciated. The diagram should neither be too 
small nor too large. The data to be 
represented in the form of a graph will usually dictate the choice of scale. For 
example, in drawing a bar chart (this will be explained later), the scale must be 
chosen so that the longest bar fits conveniently on the paper on which it is drawn. 
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In most graphs we first draw a horizontal and a vertical line which meet at thelower left hand corner of the space in which the graph is to be drawn, like this: 

These are the reference lines or axes. The scales are clearly marked along the axes. Forexample, if one inch on the graph represents five inches of rainfall, the interval between
5 and 10 as well as that between 12 and 17 on the graph should each be one inch. One 
error in drawing graphs is that people sometimes use one scale for one part of the graphand a different scale for another part. It is easy to draw the wrong conclusion from such 
a graph. It is not necessary, however, to use the same scale on both axes. The important
point is that the scale on each axis should be included in every graph. 

64-3 Characteristics of a Good Graph 

The purpose of a graph is to give information in a quick and meaningful manner. Ifit does not do this it is not a good graph. In other words we should get from a graph the
 
same impression that a table is intended to give but much more quickly than from the
 
table. It is important to mark the scale clearly so that anyone reading the graph will

experience no difficulty. Ordinarily the units should be equally spaced and there should
 
be a clear indication of what is shown along each axis. The graph should have a title

and the base line chosen suitably ;o that there is ample room 
left at the top. There
should be no change of scale along any one axis and the scale used should be well
 
chosen. As far as possible the origin, 
 thac is, the point where the two axes meet, should 
appear on the graph. Where this is not possible care should be exercised to avoid
distortion. In graphical work simplicity is absolutely important. If the information is too 
complicated to interpret then the purpose of the graph will have been defeated. 

64-4 Bar Graphs 

One of the simplest kinds of graphs to draw and read is the bar graph. It is also
somet.mes called a column graph or a block graph and is used to compare data. 

The bars may be vertical or horizontal depending on preference. The bars should
be of the same width and should be evenly spaced; the spaces between the bars do not 
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need to be the same as the width of the bars themselves. The height (or length, when 
drawn across the page) of each bar is drawn in proportion to the size of the quantity it 
represents. Before drawing the graph it is important to work out a scale so that the 
height (or length) of the highest (longest) bar will conveniently fit on the page. 

15 Number of Rainy Days per 
month - Nairobi - 1962 

10-

Ci) 

cl1 

>' 5 

0 

OL 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Doc 

Months of the Year 
Fig. 1. 

Example 1 
Figure 1 shows a bar graph of the number of rainy days in each month of the year 

1962 in Nairobi. Study the graph carefully and answer the following questions: 

EXERCISE 64-4A 

1. 	 Which was the wettest month of the year in Nairobi in 1962? 
On how many days did the rain fall during that month? 

2. 	 Name the two driest months. On how many days did the rain fall in each of these 
months? 

3. 	 Which half of the year was the wetter: January to June or July to December? 
4. 	 How miany dry days were there in Nairobi in 1962? 
5. 	 List the pairs of months in which the number of rainy days was exactly the same. 

State the number of rainy days in each case. 
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The following table gives the enrolment of boys aad girls in the Nigerian Primary
Schools for 1957, 1960 and 1963.
 

Source: Statistics of Education in Nigeria 1963. 
 Published by the Federal
 
Ministry of Education, Lagos, Nigeria.


The figures in the original table have been rounded off to the nearest thousands of 
pupils. 

Year Male pupils in thousands Female pupils in thousands 

1957 1,594 854
1960 1,829 1,083
1963 1,772 1,125 

The reason for rounding off to the nearest thousand is that we want to be able to choose a suitable scale for the graph. You will see that as the figures now stand they are still
 
too large for a graph. It would therefore help to express the number of pupils enrolled in

each category to the nearest million and the table will 
now look like this: 

Year Male pupils in millions Female pupils in millions 

1957 1.6 0.8
1960 1.8 1.1
1963 1.8 1.1 

You will notice that the final rounding off has obscured the differences between

1960 and 1963. This gives the impression that theLe 
was no growth between those two
 years whereas the original table shows a decrease of about 50.000 pupils for the males
and an increase of about 40,000 pupils for the females. In order to correct 
this impression
the final rounding off may be made to the nearest ten thousand pupils. This gives 

Male pupils in Female pupils inYear tens of thousands tens of thousands 

1957 15.9 8.5
1960 18.3 10.8 
1963 17.7 11.3 

Suppose that we wish to use a graph to compare the above data. There are twopossible choices open to us depending on what we wish to compare. Figure 2 is a bargraph which compares the enrolment for boys with that of girls for the three years,

whereas Figure 3"features the growth of the enrolment for boys separately and girls

separately 
over the three year period. The general rule is that values which are to be
compored should be, as far as possible, adjacent to each other. 

1\0 
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From Figure 3 it is not as easy to compare the enrolment of boys and girls for 1957 
or any of the other years whereas this is clearly brought out in Figure 2. Figure 3,
however, compares the years very well. What is the scale used for this graph? 

Example 2 
The three longest rivers in Africa are the Nile 4,000 miles, ,e Congo 3,000 miles

and the Niger 2,600 miles. If we wish to represent the lengths of these rivers, horizontal
bars would be preferred to vertical bars. Figure 4 has been drawn to compare the lengths
of these rivers. Vertical bars could tell the same story effectively. 

THE THREE LONGEST RIVERS IN AFRICA 

The Nile ......*.. 

The Congo 

The Niger jjIz 1111 Fig. 4 

1000 2000 

Length in miles 

3000 4000 

\oV 
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Example 3 
Another important use of horizontal bar graphs is comparison by subdivision of a 

graph into parts. 
The 1960 Census in Ghana showed that the population of Ghana could be divided 

into the following categories: 

Age group 	 Percentage 

0 - 14 years 44.5 
15 - 44 43.0 
45 and 	over 12-5
 

Source: 1962 Statistical Year Book, Central Bureau of Statistics, Accra, Ghana. 

In the original table the population of Ghana was divided into eight different 
categories, some of which were merged to produce the table above. The first group 
(0-14 years) shows the percentage of the population in the pre-working age. 

The data can be represented on a single bar graph which we may divide into three 
parts in the ratio of the given percentages. This is done in Figure 5(a). For purposes of 
comparison a vertical bar graph has also been drawn below the horizontal one. Note that 
Figure 5(b) is not on the same scale as Figure 5(a). Which of the two graphs do you 
think better illustrates the data? Why? 

DISTRIBUTION OF POPULATION IN GH'NA - 1960 CENSUS. 

025 	 50 75 100 
Percentages in the different age groups. 
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EXERCISE 64-4B 

1. 	 The daily attendance for a week in a primary school was: 

Mon. Tues. Wed. Thurs. Fri. 

18 17 24 26 29 

Draw a bar graph to illustrate the above data. What scale have you used ? Is 
your graph properly labelled ? 

2. 	 The mean number of hours per day of sunshine for 1962 in Kisumu is given as: 

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 
9.0 10.5 9.8 8.2 7.8 8.0 8.5 8.3 7.1 7.7 8.6 9.0 

Draw a bar graph to show the data choosing one inch to represent two hours on 
the vertical axis. 
Ensure that your bars are evenly spaced. 

Source: 	 Statistical Abstract 1963, Published by the Economics and 
Statistics Division, Ministry of Finance and Economic Planning, 
Nairobi, Kenya.

3. 	 How many pupils are there in your class ? How many are boys ? How many are
girls ? Draw a horizontal bar graph to show the relation between the number of 
boys and girls in the class and shade appropriately. 

4. 	 How many pupils are there in your school ? Find out the number of pupils in 
each class. Draw a bar graph using the information you have collected. For the 
whole school draw a bar graph to show how many of the pupils are boys and how 
many are girls. 

5. 	 Imports into Sierra Leone from various Sterling Area countries for the quarter 
October 	to December 1964 are given as: 

United Kingdom 
Eire 
Hong Kong 

India 
Malawi 

Other 	countries 

Source: 	 Sierra Leone Trade Journal, 

(Le) 

6,364,766 
160,368 
246,509 

399,174 
174,524 

349,857 

Vol. 5 No. 2, April/June 1965 

Round off the figures in whatever way you think appropriate and then draw a bar 
graph to illustrate the data. (Le = Sierra Leone pounds) 

11.4 



6. 	 Find out from the police in your area the number of fatal accidents for each
 
month of the previous year. Draw a bar graph of this information.
 

7. 	 Find out how many pupils are absent in your school for a week. Then draw a bar 
graph based on the data yot, have collected. 

8. 	 In 1964 the Nigerian Federal Government current revenue was derived from the 
three sources shown below: 

Source of Revenue 	 Value in £ 

Customs and Excise 87,561,000 
Direct Taxes 7,437,000 
Other 29,5 78,000 

Source: Digest of Statistics, Vol. 13, No. 4, Oct., 1964, Lagos: Federal 
Office of Statistics 

The figures have already been rounded off to the nearest thousand pounds. 
Round off to the nearest million pounds and draw a horizontal bar graph divided 
into three part:, as appropriate. 

9. 	 Draw a bar graph to show the number of pupils present in each class for one day 
in yott s:hool. 

10. 	 The table below gives the enrolment in Primary Schools in Ghana by sex in 1955 
and 1960. 

Year Boys 	 Girls 

1955 	 280,216 139,146 
1960 311,857 	 166,285 

Source: 1962 Statistical Year Book: Central Bureau of Statistics, Accra 
Round off the figures. Then draw a bar graph to compare 
(a) 	 Enrolment of boys and girls 
(b) 	 Enrolment in the two years for boys and girls separately. 

11. 	 The graph in Figure 6 shows the number of schools in some African countries in 
1959. Look at the graph carefully and answer the following questions: 
(a) 	 Which country had the largest number of schools? 
(b) 	 Which had the least number of schools? 
(c) 	 Read as accurately as you can from the graph the number of schools in 

Ghana and Congo (Leopoldville) in 1959. 

115 



Number of Primary Schools in some African Countries - 1959 
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12. Ile results of the West African School Certificate Examination in two schools in 
Ghana in June, 1964 were 

No. Presented Grade I Grade 11 Grade Ill Failures 

Achimot a School 102 43 38 17 4 
Mfant sipim School 93 26 22 29 17 
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Source: Report prepared by the Research and Statistics Branch of the 
West African Examinations Council, Accra 

Draw bar graphs to compare the data. Which is the better school? 
13. 	 Keep a record, during the rainy season, of the quantity of rain that falls on each 

school day for a week. Draw a bar g.aph of the information choosing an 
appropriate scale. 

64-5 	Histogram 

Another method of representing data graphically is by the histogram in which the 
quantities to be represented are shown by the heights of columns next to each other as 
in a column graph. The histogram is often used when the data consist of grouped 
measurements each with a given frequency. 
Example 4 

Suppose that we have the following frequency distribution of marks in a 
Mathematical test. 

Mid-point Cumulative 
Score Score boundaries of interval Frequency frequency 

51-55 50.5 - 55.5 53 	 10 10 
56-60 55.5 - 60.5 58 20 30 
61-65 60.5 - 65.5 63 20 50 
66-70 65.5 - 70.5 68 	 10 60 
71-75 70.5 - 75"5 73 5 65 

You will notice an additional column headed "cumulative frequency". In the 
second row of this column you will find 30, which is the sum of the frequencies 10 and 
20 in the first and second rows of the previous column. In a similar way 50 in the 
third 	row is the sum of 10, 20, 20 in the previous column, and so on. 

In order to represent the data by a histogram we first draw a horizontal scale and 
mark on it the boundaries of the intervls, making the width of all the intervals the 
same. We then show the frequencies on the vertical scale. 

Distribution of Scores in a Mathematics Test. 
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Here we note that the height of each rectangle represents the frequency. (This will 
always be true as long as the widths of the intervals are kept the same. However, if the 
widths of the intervals are different the height of each rectangle should no longer be 
made to represent the actual frequency. Instead of comparing the heights we should then 
compare the areas of the rectangles.) 

64-6 Frequency Polygon 

A frequency polygon is a slight modification of the histogram, and its construction 
is exactly the same as that of a histogram so far as the vertical and horizontal scales 
are concerned. We do not draw a rectangle over each interval. Instead, we join the 
mid-points of the tops of the rectangles that would have been drawn over the intervals. 
The result is the same as if we had joined the mid-points of the tops of the rectangles 
in a histogram and then erased the histogram itself. 

The figure below shows the frequency polygon for the above data. 
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Two points are worthy of note in the above figure. First, the graph has been 
extended one interval beyond both lower and upper extremes and the polygon has been 
drawn to the middle of these intervals on the horizontal axis. Second, a jagged line is 
shown on the horizontal scale to indicate that the scale is not uniform between 0 and 
45.5. 

64-7 Cumulative Frequency Histogram and Polygon 

Suppose that we wish to find the number of candidates who score not more than a 
given mark. How do we represent this on a graph? From the cumulative frequency 
table we know that 10 candidates scored not more than 55 marks, 30 candidates 
scored not more than 60 marks, 50 scored not more than 65 marks, and so on. 

To represent this information on a graph we choose the horizontal axis to 
represent the scores as before but the vertical axis to represent the cumulative 
frequency. 

Cumulative Frequency Histogram and 
Polygon for the distribution of the 

Scores in a Mathematics test. 
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For the cumulative frequency polygon we join as before the middle points of the 
cumulative frequency histogram. 

64-8 Dot Frequency Graph 

The histogram and the frequency polygon are useful for grouped data. If the 
-requency has not been grouped in intervals, the data may be represented by a dot 
frequency graph. This is very easy to draw. 
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Example 5 
You will recall that we had a frequ.ency distribution for the heights of 50 pupils

in a school. This is reproduced below. 

Height in inches Frequency 

50 
 1
 
54 
 3
 
55 
 6
 
56 
 7
 
58 
 7
 
59 
 12
 
60 
 8
 
62 
 4
 
63 
 2
 

The data in the above Lable are illustrated by a dot frequency graph below. The
number of times each height occurred is represented by the same number of dots. For
example 56 	 inches occurred seven times and it is represented by seven dots. 

Distribution of 
* 	 Heights in a 

Primary School. 
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Suppose that we wish to classify test scores into groups. Then a dot frequency
 
graph i' very useful. We first write the scores in a row from the smallest to the largest.
 
We then indicate by a dot every time a particular score comes up. From such a graph we
 
see at a glance how the class has performed and we can group the scores as we wish.
 

EXERCISE 64-8 

1. 	 Draw a histogram to represent the grouped frequency distribution of the scores 
obtained by 100 candidates in the arithmetic test given in Sectiou 6"-2 of 
Chapter 63. 

2. 	 Use a dot frequency graph to represent the data in question 2 of Exercise 
63-2 of Chapter 63. 

3. 	 Draw a histogram to show the data in question 4 of Exercise 63-2 of Chapter 
63. 

4. 	 Draw a cumulative histogram and corresponding frequency polygon for the table 
in question 3 of Exercise 63-2 of Chapter 63. 

5. 	 The results in Additional Mathematics at the West African School Certificate 
Examination for Adisadel College, Ghana, in 1964 were: 

Excellent 	 3 
Very good 2 
Good 6 
Credit 19 
Pass 2 
Fail 

Draw a dot frequency graph to illustrate the data. 

64-9 	 Circle Graphs (Pie Charts) 

You will recall that the percentage in each age group as given by the 1960 census 
of population in Ghana was shown on a horizontal bar graph divided into three parts in 
proportion to the percentage of persons in each age group. This information may also be 
conveniently represented by a circle graph (or pie chart). 
Example 6 

A circle graph is used when the number of things we wish to compare is not large 
and when our main interest is in comparing proportions and not actual numbers. In the 
distribution of the population of Ghana mentioned above the total population was divided 
into three age groups: 

0 - 14 years 	 44"5% 
15 - 44 years 43.0% 
45 and over 12.5% 
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You will notice that these percentages add up to 100%. The total population may berepresented by the area of a circle and our problem is to divide up the circular region in 
the same ratio as the percentages in the different age groups.


We know that we 
can divide the circle into 360 equal parts by drawing 360 angles
of I degree, each with its vertex at the centre of the circle. The fraction of the circular
region which represents the number of persons in each age group can be calculated as 
follows: 

FractionofAge group Percentage total population Number of degrees 

0- 14 44.5 x 3600 = 160.20 
100 100 

15- 44 43.0 43 
 43 X 360' = 154.8'100 100 

45 and over 12.5 
 12.5 12.5 3600 450100 
 100
 

With our ordinary protractor we cannot measure accurately fractions of a degree.
We therefore express our answers to the nearest degree. Thus 160.20 will be expressed
as 160' while 154.80 will be expressed as 1550. The data are shown below by a circlegraph. We draw angles of 450, 1600 and 1550 respectively at the centre of the circle.
Since the area of a sector is proportional to the angle between its radii the sectors intowhich these angles divide the circle represent the percentage of persons in each age 
group.
 

Distribution of the population of Ghana. 1960 Census
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A circle graph is sometimes called a pie chart because the circle is divided into 
p.te-shaped sections, each of which is proportional to the percentage of the sections into 
which the whole group has been divided. The graph is shaded or coloured and -he 
percentage that each sector represents is often written in the appropriate portion. 
Example 7 

In the example above the percentages were given but often this has to be worked 
out. For example, suppose that we are given that the total number of Primary School 
pupils in Northern Nigeria in 1963 was 410,706 and that there were 295,644 boys and 
115,062 girls, and suppose that we wish to represent the data by a circle graph. First we 
express 295,644 as a percentage of 410,706. 

That is, 	 295,644 x 1007 - 29,564,400410,706 410,706 

= 71.98% 

The ratio of the percentage of boys to girls is 71'98% to 28.02%.
 
(Note: The percentage for girls should be worked out in the normal way in order to act
 
as a check. A possible error would be missed if we merely subtract 71"98% from 100o%
 
to get the percentage of girls.)
 

Sex Number Percentage Degrees 

Boys 295,644 72 .72 X 3600 	 = 259.20 

= 259 (to the nearest degree) 

Girls 115,062 28 .28 X 360' 	 = 100.80 

= 1010 (to the nearest degree) 
Distribution of Primary School Pupils in Northern Nigeria by Sex in 1963 

. ...
 Fig..12
 

72% Boys 
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In constructing circle graphs always make sure that the percentages add up to 100%
and the degrees add up to 3600. Use an independent means of checking. 

The examples given above showed circles divided into three and two parts
respectively. It is of course possible to divide a circle into several more parts but when 
the number of parts becomes large a pie chart is no longer suitable for comparing the
 
data.
 

EXERCISE 64-9 

1. A father left £1,800 to his three sons and instructed that the money be shared 
in the ratio of their ages. If the boys were 16, 12, 8 years old respectively,
find how much went to each son. Draw a circle graph tc show how the money was 
div;ded. Draw 	also a bar graph to show the same information. 

2. 	 Draw a circle graph to show 	the ratio of boys to girls in your class. 
3. 	 Three pupils in your class are nominated for election as Class Prefect. Draw a 

circle graph to show how the votes were distributed. Draw also a bar graph.4. 	 In 1962 there were 2,430 Arab boys and 1,073 Arab girls in Primary Schools
 
in Kenya. Illustrate with a circle graph.
 

5. 	 According to the Report on "The Pattern of Expenditure and Consumption of
 
Africans in Nairobi, 1957/58" 
 published by the Fast African Statistical 
Department, May 1959, the average African in Nairobi spent 58% of his salary 
on food, 13% on rent and water charges, 7% on clothing and the rest on 
"Miscellaneous". Draw a pie chart to illustrate the data. 

6. 	 Find out from the local police the number of accidents caused by motor vehicles 
in the previous twelve months. Divide into fatal and non-fatal. Draw both a 
circle graph and a bar graph to illustrate the data you have collected. 

64-10 Pictogram 

If, in 	the age distribution of the population of Ghana in 1960, we were interested 
in comparing actual numbers and not proportions we would not use a circle graph. We 
could use instead a pictogram (an idec.gram). This is a graph in which we draw a row of
pictures or symbols representing the data, Each little picture or symbol is used to stand 
for a fixed number of the given population and all Lhe little pictures are of the same size. 
The little pictures should also be the same distance apart. 
Example 8 

The table gives the number of persons in each age group in Ghana according 
to the 1960 population census. 
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Distributionof the Populationof Ghana: 1960 Census 

Age Group Number of persons in thousands 
0 - 14 2,996"5 

15 - 44 2,308.2 
45 and over 836"1 

Source: 1962 Statistical Year Book. Central Bureau of Statistics, Accra, 
Ghana 

In order to represent the data in the above table by a pictogram we have to choose 
a scale which will enable us to fit the longest row of symbols conveniently on the page. 
We could use one stick-man to represent 200,000 persons. Thus those in the age group 
0 - 14 will be represented by 2,996'5 _ 29,965 14.9825 stick-men. Similarly

200 2 

11.541 stick-men will represent those in the 15 - 44 age group arid 4.1825 stick-men 
will represent the age group 45 and above. However, it is difficult for us to show 
accurately a fraction of a stick-man and so we may express our answers to the nearest 
half stick-man, or perhaps, to the nearest stick-man. Thus we have 15, 11.5, 4 
stick-men respectively. 

Age Distribution of the Population of Ghana 
1960 Census 

Age Group 

0-14 

15 -44 *t*tt* f~ 

45 & over
 

fKey: represents 200,000 persons 

Fig. 13 
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The graph is not very easy to interpret especially so far fraction of aas a symbol
is concerned. To simplify matters we may decide to use only complete stick-men but in 
doing this some information is lost. 
Example 9 

The distribution of the pupils in Secondary Schools in Western Nigeria by sex in 
1963 was: 

Boys 104,411 
Girls 46,277 

This information can be illustrated by a pictogram. suitable scale would be one symbolA 
to represent 8,000 boys or girls. 

Distributiono/ pupils by sex in Secondary Schools in Western Nigeria in 1963 

Boys 

Girls 
Fig. 14 

fKey: represents 8,000 boys 

Srepresents 8,000 girls 

Pictograms, if drawn in a particular way, m,-y be misleading. We have already seen
that the heights of bar graphs and histograms are used to compare two quantities. Can 
we say the same about pictograms? Suppose that we usewish to a pictogram instead of 
a bar graph to represent the production of palm oil in two different years. Let 1,000
tons be the production in one year and 2,000 tons the production in another year. We 
may represent the production for the first year by an oil cask one inch high and that for 
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the second year by an oil cask two inches high. 

1st Year 	 2nd Year 

Fig. 15 

In order to keep the same proportions, we have represented the production for the 
second year by an oil cask tle radius of whose base is twice that of the first one. In 
doing 	this, however, the volume which represents the second year is eight times that for 
the first year, which of course is misleading. 

In looking at the pictogram one would not know whether it is the area covered or 
the volume or the height that is being compared. For this reason, in using pictograms for 
illustrations we use little pictures all of the same size, using enough of these to 
represent the data. In the example above the correct thing to do would be to draw two 
casks 	of the same size to represent the production in the second year. 

EXERCISE 64-10 

1. 	 How many pupils are there in your school ? How many are boys ? How many are 
girls ? Draw a pictogram to illustrate your data, choosing an appropriate scale. 

2. 	 What are the principal exports of your country ? Find out from the trade journal 
of your country the value of the principal ones for the previous year. (Name the 
four principal ones and put alJ the remaining ones 
together as 'others'.) Using the symbol to 
represent £1 million, draw a pictogram of your data. 

3. 	 How many members are there in the Central Legislature of your country ? How 
many political parties are represented in the Legislature ? How many members 
of the House belong to the different parties ? Illustrate your data with a 
pictogram and a pie chart. 
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64-11 Broken Line Graphs 

A broken 	line graph often shows a trend. This is the kind of graph we find above a 
patient's bed in a hospital showing how the patient's temperature rises and falls. It can 
also be used to show how exports rise and fall over the years or whether school 
population in a country increases or decreases. 
Example 10 

The table below shows the value of the domestic export trade in Kenya for the
 
years 1959 - 1964.
 

(f) 
1959 33,306,000 
1960 35,191,000 
1961 35,326,000 
1962 37,913,000 
1963 43,832,000 
1964 47,115,000 

Source: 	 Statistical Abstract 1963, Economics and Statistics Division, 
Ministry of Finance and Economic Planning. 

Domestic Exports of Kenya 1959-1964 
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As in the other kinds of graphs that we have drawn we choose a suitable scale to 
show the information contained in the table above. We first round off the figures to the 
nearest million. Then we show the year on the horizontal axis and the value of the 
exports on the vertical axis. (See Figure 16.) 

Note that the years are spaced out evenly. Three-fourths inch on the vertical axis 
stands for ten million pounds. The points are placed at the appropriate positions and 
then joined by broken line segments. From the graph we see that the value of Kenya's 

-exports has been steadily increasing ov, the years.
 
Can we, from the graph, find the value of the exports at the end of tile six month
 

period between 1959 and 1960, or between any other two years? The answer is No. This 
is because it is the crosses on the graph which really mark tile value of tile exports for 
each year and we join these crosses by broken lines only to help us get a better picture. 

_ExamplI 11 
Broken line graphs may also be used to compare not only the treni in the trade of 

one country but in that of two or more countries. If we wish to compare the trend in the 
domestic exports of Ghana and Kenya for the years 1959 - 1964, we may do this on the 
same broken line graph.
 

The graph below is such a graph. Look at it carefully and answer the questions
 
which follow.
 

100 Domestic Exports of Ghana and Kenya 1959-1964 
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1. 	 What is the scale on the vertical axis ? 
2. 	 Describe the trend in the domestic exports for Ghana for the years 1958 1963.-
3. 	 Compare the graph for the trend in Kenya with the graph for Ghana. Do you 

notice any difference ? Comment. 
4. 	 Read off as accurately as you can the value of the exports fo, 1960 in Ghana. 
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Chapter 65
 
AVERAGES OR MEASURES OF
 
CENTRAL TENDENCY
 

65-1 Introduction 

What do we mean when we say that the average attendance of a class for a week is 
29 ? Do mean that 29 pupils ac-ually attended every day for five days ?we Again, what 
does it mean to say that a pupil has an average score of 84 in six tests ? If a geography 
teacher says that the average monthly rainfall for ibadan (Nigeria) is 5-5 inches, does he 
mean that this amount of rain falls every month ? 

Your experience with the school anregister tells you that average attendance of 29 
does not mean that 29 pupils came to school every day. In fact, it may happen that on 
none of the five days were 29 pupils present. If the attendances were: Monday 28,

Tuesday 30, Wednesday 30, Thursday 30, Friday 27 we would have 
an average attendance 
of 29 even though the attendance was never 29 on any day. We could even have an 
average attendance of 28.4. Does this imply that we have a decimal fraction of a pupil 
attending ? 

The scores in the six tests mentioned above could have been: Arithmetic 90,
English 98, History 66, Geography 95, Nature Study 75, Religious Knowledge 80. This 
would give an average score of 84. 

It is known that the rainfall in Ibadan is distributed over the whole year in such a 
way that for seven months of the year there is less than five inches of rain in any month, 
yet enough rain falls in the remaining five months to bring the average monthly rainfall 
to 5.5 inches. 

In a similar way when we say that a car is travelling at an average speed of 30 
miles per hour we mean that it could do the journey from Nairobi to Mombasa, a distance 
of about 300 miles, in ten hours. Some of the time it may be travelling at a speed of 40 
or 50 miles per hour; at other times the speed may be 20 or 25 miles per hour. When it is 
going up hill it will naturally travel at a slower speed than whe:. it is going down hill or 
is on level ground. 

65-2 The Arithmetic mean 

The idea of an average is not strange to you; you are familiar with at least one
 
kind of average. As a teacher you are using averages all the time.
 

In each of the above examples we have chosen a single number to represent the
 
whole group. This representative of the group is an average and we 
call it the arithmctic 
mean (or simply the mean). We find the mean of a set of numbers by adding all tile items 
in the set and dviding the total by the number of items in the set. For instance, the 
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mean attendance in the above example is given by: 

28 + 30 + 30 + 30 + 27 = 145 
Mean attendance = - - 295 5 

The arithmetic mean is not the only kind of average in which we are interested 
even though it is perhaps more commonly used than other types of averages. Averages 
are often called measures of central tendency because they tell us numbers around 
which the? group appears to cluster. Frequently an average is chosen as a typical value 
for some purpose. 

We shall now discuss two other kinds of averages which often prove useful. 

65-3 The Mode 

Suppose that you were a tailor and you were asked to make school caps for a 
secondary school class of 30 boys and suppose that the head measurements were given 
as: 

Measurement in inches Frequency 

61 
4 

63
8 

6 1 22 

58
8 

63 5
4 

7 
8 

7 3 

1 
7- 5 

Total ........ .. 30
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It can easily be shown that the mean head measurement is 6- inches. 

If, for one reason or other, you could make only one 
5

size of cap, what size would 
you choose as a representative of the group of the sizes of the boys' head measurements? 

You would probably not choose size 6 - which is the average. Why would you not do 
5 

this ? Although size 6 - is an average we note that the size will not fit very many of 
5 

the 30 boys. The size which seems to represent the group better is 6- because more 
8 

boys wear that size cap than any other. That is, 6- occurs the most number of times 
8

and since it is the most popular size cap we call it the mode. 
You will agree that this is a useful kind of average or measure of central tendency

in some situations even though it does not mark the middle point of the set of data in the 
same way as the mean. Of course there are situations in which the mode may be 
completely useless. 
Look again at the table in Section 64-8 showing the distribution of the heights of 50 
pupils in a primary school. Which height occurs more often than any other? Yes, a height
of 59 inches is the modal height, that is, the height which occurs most often. We call 59 
the mode of the distribution of the heights. 

The scores out of 100 obtained by a teacher in the final Teachers' Certificate 
Examination were: English 95, History 90, Geography 75, Arithmetic 100, Rural Science 
80, School Method 80, Eleme-itary Mathematics 97, Practical Teaching 78, Health
 
Education 80, Physical Education 85.
 
The scores could be re-arranged thus:
 

Subject Score 

Arithmetic 100 
Elem. Mathematics 97 
English 95 
History 90 
Physical Education 85 
Health Education 80 
Rural Science 80 
School Method 80 
Practical Teaching 78 
Geography 75 

860 

The mean score -- 10 - 86. The mode is 80 since this score occurs more times 

than any other score. 
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We may have more than one mode in a set of data. For instance, the scores of ten 
pupils in a mathematics test were: 

100 } Mode 

95 
90 
76 

75 
70 
70 Mode 
65 
64 

805
 
805
 

The mean score - 10- 80.5.
 

For the mode, we note that two scores are equally "popular"; these are 100 and 70. 
Thus we have two modes; the scores are therefore bimodal (meaning 'having two modes'). 
It is possible to have three or more modes in a set of numbers. 

65-4 The Median 

If a pupil gets a score of 79 in an arithmetic test, would this be considered an 
excellent, good or average score? We cannot answer this question without more 
information. We may want to know how he compares with other pupils who took the same 
test. Does his score fall above or below the average mark? If we arrange the scores in 
order of magnitude, where would he fall? Is his score above or below the middle score? 

Suppose the scores of all eleven pupils taking the test were: 

99 
98 
88 5 scores are greater than 70 
86 

79 
70 -middle score
 

66
 

65 5 scores are less . '70 
55
 
46
 

828 

The mean score 82 74.5, whereas the middle score is 70. A score of 79 is not 
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only greater than the average or mean score of 74.5 but it is also greater than the 
middle score of 70 and hence may be considered as a good but not an excellent score. 
If on the other hand, the scores were 79, 64, 62, 61, 60, 58, 55, 48, 45, 43, 40 a score of 
79 is the highest score and so would be regarded as excellent; it is 39 marks higher
than the lowest score .-. 15 marks higher than the next highest.


Let us have another look at the middle score 
in the above example. We notice that
five scores are greater than 70, while five scores are less than 70. This middle
 
score represents the whole group in special way and is thus
a a kind of average or a 
measure of central tendency. We call it the median. Thus, the median of a set of numbers 
is that number which is such that half the numbers in the set are greater and half are
less than the number. When the data are not grouped both the median and the mode are 
easier to calculate than the mean. In fact, we have nothing to calculate; we merely
 
arrange the numbers 
 in order of size and then pick the middle one ft r the median or the 
most common one (or ones) for the mode (or modes.) The examples above illustrate this 
fact. 

The mean of a set of numbers, we found, need not be a member of the set. This is 
also true of the median. For example, if there are an even number of items in the set,
the median . defined as the mean of the two middle numbers. In the mathematics scores 
discussed above the two middle scores are 75 and 76 and their average, 75.5, is not 
a number in the set of scores. However, if the two middle scores are equal then the
 
median is one of the two equal scores and is a memher of the set.
 

EXERCISE 65-4 

1. 	 Find the arithmetic mean of the sets of counting numbers 1 to 3; 1 to 4;
 
1 to 5; 1 to 6; 1 to 7; 1 to 8; 
 1 to 9; 1 to 10. Can you find asimple
rule for finding the mean of a set of consecutive counting numbers, beginning 
with 1 ? 

2. 	 What is the median of each set of numbers in problem 1 ? 
3. 	 The scores in an arithmetic test were:
 

17, 15, 16, 18, 13, 17, 13, 11, 14, 16, 15, 10, 11, 14, 5, 12, 14, 11, 12, 6.
 
Find
 
(a) the mean 

(b) the median 
(c) the modes 
of the scores.
 
(First arrange the scores from the smallest to the largest.) How many scores are
 
(i) greater than the mean 
(ii) less than the mean (iii) greater than the median 
(iv) less than the medi:in? 

4. 	 The attendances for a four week period in a class were 

First 	Week Second Week Third Week Fourth Week 

Boys 31 31 30 32 32 32 32 32 32 32 31 32 31 31 31 31 32 32 32 32
 
Girls ,3 3 3 3 3 13 3 3 3 3_ 3 
 3 3 3 3 3 3 3 3 3 
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5. 

6. 

7. 

8. 

Find: 
(a) the mean daily attendance for boys; 
(b) the mean daily attendance for girls; 
(c) the mean daily attendance for boys and girls together.
 
Find (a) the mode (b) the median (c) the mean of the following sets of data:
 
(i) 4, 6, 8, 14, 10, 14, 6, 6, 27, 8, 18
 
(ii) 30, 27, 26, 31, 26, 34
 
(iii) 13, 13, 11, 12, 12, 13, 12, 14, 15, 14, 13, 14, 12, 13, 13, 14.
 
The number of passengers who landed at Nairobi airport for each quarter of 1963
 
was:
 

1st Quarter ... ... ... 32,100
 
2nd Quarter . . . ... ... 31,200
 
3rd Quarter ... . . . 38,500
 
4th Quarter .. . . . . 34,500
 

Find the 	average (mean) number of passengers who landed per quarter. 
(Source: 	 Kenya Statistical Digest Vol. III - No. 1 - Published by the Statistics 

Division of the Ministry of Economic Planning and Development, 
Nairobi) 

The number of reported cases of smallpox in Ghana for each of the years 1956" 
1962 was 

1956 ... 259
 
1957 ... ... ... .. . 184
 
1958 .*.. ... ... ... 160
 
1959 ... ... ... ... 105
 
1960 ... ... ... ... 139
 
1961 ................ 	 .. 131
 
1962 
 ... . . . .. ... 231. 

Find (a) the average number of reported cases for the seven year period. 
(b) the median number. 

(Source: 1962 Statistical Year Book Published by the Central Bureau of 
Statistics, Accra.) 

The mean hours per day of sunshine in Nairobi over a number of years and the 
1962 mean hours per day of sunshine are given below: 
Jan PJ.-b Mar Apr May June July Aug Sept Oct Nov Dec 
Mean hours per day of sunshine: 
8.8 9.4 8.7 7.3 5.9 5.9 4.4 4.2 5.8 7.1 7.0 8.1 
1962 mean hours per day of sunshine: 
7.8 10.5 9.4 8.1 5.7 6.6 4.2 5.0 4.9 6.7 6.7 7.7 
(a) In what months was the 1962 mean hours per day of sunshine: 

(i) greater than 
(ii) less than
 
the mean hours per day over many years.
 

(b) Find the mean monthly number of hours of sunshine over many years and 
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for the year 1962. Was 1962 a year of above average monthly sunshine or 
below average ? 

Source: Statistical Abstract 1963 published by the Economics and Statistics 
Division, Ministry of Finance & Economic Planning, Nairobi. 

9. The 1962 mean maximum temperature figures for Mombasa were: 

Jan 	 Feb Mar Apr May June July Aug Sept Oct Nov Dec 
88.9 	 91.6 90.1 88.7 	 84.7 84.6 82.2 83.1 85.1 86.5 88.7 88.9 

Find the mean of these mean maximum monthly temperatures for Mombasa in 1962.
10. 	 The scores of twelve pupils in a Geography test were: 90, 60, 90, 50, 30,
 

90, 90, 45, 90, 85, 55, 65.
 
Find the mean, mode and median of this distribution. How many scores are
 
(a) greater than (b) less than, the mean? 

65-5 	Averages for grouped Data 

In question 5 (iii) above you were asked to find the mean of:
 
13, 13, 11, 12, 12, 13, 12, 14, 15, 14, 13, 14, 12, 13, 13, 14.
 
From what we already know the mean is given by:
 

Mean 13+13+11+12+12+13+12+14+15+14+13+14+12+13+13+14
 
16
 

208 =
 
- 16 - 13.
 

We note, however, that 12, 13, 14 each occurs a number of times and weso could have 
written the mean as 

11 + 	 12 (4) + 13 (6) + 14 (4) + 15 20816 
 16
 

The above calculation may be set out as shown below. Let X represent the 
values and f the corresponding frequencies. Let N be the sum of all frequencies, that 
is, the total number of measurements. Then fX is the product of each number and the 
frequency with which it occurs. 

Number (X) 	 Frequency (f) fX 

11 	 1 11 
12 4 48 
13 6 78
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14 4 56 
15 1 15 

Total freq. = N = 16 Total fX = 208 

Total fX _ 208
 
Mean = Total frequency 16=13.
 

You will recall that in the previous section the mean hat size was found to be 6.4 

Did you wonder how this was obtained?
 
Try and see if you can compute the mean hat size using this new method.
 

When a set of data is grouped in intervals, as in the example of the 100 candidates 
in the arithmetic examination, the scores are considered to have the value at the 
mid-point of the interval. For example, all the seven scores which fell in the interval 
10-19 are cons;idered to have the value 14.5. The mean may be found as shown below. 

Interval Mid-point (X) Frequency (f) fX 

10-19 14.5 7 101.5 
20-29 24.5 12 294.0 
30-39 34.5 13 448.5 
40-49 44.5 13 578.5 
50-59 54.5 31 1689.5 
60-69 64.5 12 774.0 
70-79 74.5 5 372.5 
80-89 84.5 5 422.5 
90-99 94.5 1 94.5 
100-109 104.5 1 104.5 

Total freq. = N = 100 Total fX = 4880.0 

Mean = Total fX 4880.0 = 48.8Total Frequency 100 

The sum of all the 100 scores is actually 4,835 and thus the mean is 48-35 which 
is quite close to the result obtained above. The problem above would of course be 
simpler if the end points of the interval were both even or both odd numbers, in which 
case the mid-point would be a whole number. The results obtained by the method of 
grouped data in finding averages described above will not always be as close as we 
have found since in grouped data we assume that all the scores are concentrated at the 
mid-point. We of course know that this is not really the case. 

For grouped data the mode is defined to be the mid-point of the interval with the 
greatest frequency. In our example above the mode is 54.5 since it is the mid-point of 
the interval with the greatest frequency. The interval 50-59 is called the modal interval, 
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that is, the interval in which the mode occurs. 
The median, on the other hand, is a little more complicated to calculate in the 

case of grouped data with intervals. It is sufficient, for the time being, to find the 
interval in which the median lies. This, you will recall, score.is the middle Since there 
are 100 candidates, the middle score will lie between the 50th and the 51st. Now 
counting m the top of the table, up to 45 (i.e. 7 + 12 + 13 + 13) candidates score 
marks below 49.5. We need five more candidates to make up the 50 and these five 
must be in the group of 31 candidates whose scores lie in the interval 50-59. This 
then is the interval in which the median lies. 

EXERCISE 65-5 

1. 	 The scores out of 100 in a Science test in a school in Mombasa were: 

95, 81, 78, 67, 78, 84, 60, 72, 66, 60, 33, 36, 
60, 72, 72, 63, 42, 18, 42, 36, 27, 66, 54, 27, 
42, 63, 27, 18, 33, 30, 24, 39, 45, 24, 39, 30, 
33, 30, 30, 33, 45, 9 

First arrange the scores in order of magnitude starting with the smallest. Group the 
scores 0-9, 10-19, 20-29, etc. Find the mean score, the modal and thescore 
interval which contains the median score 	by the method of the above example. 

2. 	 Find the mean for the scores in Problem 1 without grouping the data and compare 
your answer with the result obtained with the grouped data. 

3. 	 Find the mode and the mean of the following distribution 
20, 18, 20, 22, 16, 24, 20, 22, 16, 22, 20, 18, 24, 20, 18. 

4. 	 For the distribution given below find the mean and modal values. 

Score 	 Frequency 

48 
 3
 
46 
 4
 
44 
 6
 
42 9
 
40 
 5
 
38 
 4
 
36 
 2
 

5. 	 The scores obtained by 42 pupils in a Health Education test were: 

25, 20, 18, 34, 26, 10, 17, 15, 15, 35, 30, 10, 16, 19, 35, 
20, 11, 10, 10, 5, 7, 25, 10, 23, 8, 5, 15, 5, 13, 26, 
20, 10, 5, 13, 7, 22, 6, 5, 10, 9, 12, 15. 

\x/ 
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Group the data 5-9, 10-14, etc. and complete the following table. 

Interval Mid-point (X) Frequency (f) fX 

5-9 
10-14 

Find (a) the mean 
(b) the mode 
(c) the interval in which the median lies. 

65-6 Some Important Properties of the Mean 

In Exercise 65-4, question number 5, you were asked to find the mean of the 
following sets of data: 

(i) 4, 6, 8, 14, 10, 14, 6, 6, 27, 8, 18 
(ii) 30, 27, 26, 31, 26, 34 

(iii) 13, 13, 11, 12, 12, 13, 12, 14, 15, 14, 13, 14, 12, 13, 13, 14 

We shall now use these exercises to discuss some important properties of the 
mean. You will recall that for (i) you found the mean to be 11. If we now add 6 to 
each number we shall get 10, 12, 14, 20, 16, 20, 12, 12, 33, 14, 24. What is the 
mean of this new set of data ? 

10 + 3(12) + 2(14) + 16 + 2(20) + 24 + 33New mean= 
11 

10 + 36 + 28 + 16 + 40 + 24 - 33 18711- - 17. 
11 11 
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This may also be written in the form: 

(4+6) + 3 (6+6) + 2 (8+6) 	 + (10+6) + 2(14+6) + (18+6) + (27+6)New mean=
 
11
 

(4 + 18 + 16 + 10 + 28 	 + 18 + 27) + (11 x 6) 
11 

121+ 66 =11+6=17.
 
11
 

What do you notice about the 	mean of the new set of data ? By how much did you 
increase each item in the original set of data ? By how much is the mea, increased ?
 

If we now subtract 4 from each item we shall get: 0, 2, 4, 10, 6, 10, 2, 2,
 
23, 4, 14. The mean of this 	set of data is given by: 

Mean 0 + 3(2) + 2(4) + 	 6 + 2(10) + 14 + 23
 
11
 

77 - - 7.
 
11
 

By how much was each item decreased? By how much is the mean less thannow 
the original mean of 11 ? 

It would appear from these two examples that if we add or subtract the same amount 
from each observation in a set of data the mean of the new set of data is equal to the 
mean of the original set of data plus or minus the amount added or subtracted. In the 
first example we added 6 to each item and the new was 17 which is 6mean more 
than the original mean. In the second example we decreased each set of data by 4 and 
the mean we got was the old mean decreased by 4. 

Consider the two sets of data (i) and (ii) above. We know that the mean of (i)
is 11 and of (ii) is 29. Suppose that we multiply each item of (i) by 2 and each 
item of (ii) by 3. Then the sets of data become: 

(a) 8, 12, 16, 28, 20, 	 28, 12, 12, 54, 16, 36, 
(b) 90, 81, 78, 93, 78, 	 102. 

Mean of Set (a) 8 + 3(12) + 2(16) + 20 + 2(28) + 36 + 54 
11 

8 + 36 + 32 + 20 + 56 + 36 + 54 
11 

242 
= = 22. 

11 
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By what number did we multiply each item of (i) ? The mean of set 
(a) = 22 = 2 x 11 = 2 x Mean of (i). Is this an accident?
 
Let us find the mean of (b) in order to see whether we find a similar relation.
 

Mean of (b) 2(78) + 81 + 90 + 93 + 102
 
6
 

522_ 
- 6 -87 = 3 x 29 

Here we see that the mean of (b) is 3 times the mean of (ii). From these examples it 
would appear that if each item of a set of data is multiplied by the same number, the
 
mean of the new set is the mean of the original set of data multiplied by the given
 
number. In the examples above we see that this is true. In order to convince yourself
 
that it holds in general apply the principle to some of the examp!es you have worked 
in Exercise 64 - 4. 

After showing that the principle holds for many examples we may guess that it will 
hold in general. But the general principle must still be rigorously proved. 

Suppose that we are given two sets of data: 

Set I: 34, 31, 30, 27, 26, 26
 
Set II: 98, 95, 90, 80, 75, 66 

and suppose that we wish to find the mean of the sum of the two sets. Let us first find 
the mean of each set. 

Mean of Set I 2 (26) + 27 +6 30 + 31 + 34 
6 

S52 + 27 + 30 + 31 + 34 174 
6 6 = 29. 

Mean of Set II 66 + 75 + 80 	 +6 90 + 95 + 98 
6 

504 = 84. 
6 

Sum of the two sets = (26+66) + 	(26+75) + (27+80) + (30+90) + (31+95) + (34+98) 

= 92 + 101 + 107 + 120 + 126 + 132 = 678 

678 
Mean of the two sets - 678 113. 

But Mean of Set I + Mean of SetI1 = 84 + 29 . 113. 
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Let us look back for a moment at the set of numbers 4, 6, 8, 14, 10, 14, 6, 6, 
27, 8, 18. 

You will recall that we added 6 to each member of this set. We may think of our 
result as adding the corresponding members of the two different sets below: 

Set (c) 4, 6, 8, 14, 10, 14, 6, 6, 27, 8, 18
 
Set(d) 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6.
 

Notice that the mean of Set (c) = 11 and that of Set (d) = 6. Thus
 
mean of (c) + mean of (d) = 11 + 6 = 17.
 
But we found that mean of (c + d) = 17. That is, the two means are equal.
 

These examples lead us to guess that the mean of the 
sum of two sets of numbers 
is the sum of the two separate means. As an exercise try this out with several examples 
so that you may convince yourself that the general rule holds. 

Finally we shall look at another important principle of the mean by considering the 
sets of numbers (i) and (ii) 

These sets are: 

Set (i) 4, 6, 8, 14, 10, 14, 6, 6, 27, 8, 18
 
Set (ii) 30, 27, 26, 31, 26, 34.
 

You will remember that we found the mean of set (i) to be 11 and the mean of
 
set (ii) to be 29. Let us now calculate the difference between each member of the set
 
and the mean first for set (i) and then for set (ii).
 
Let X represent each member of the set and let M represent the mean. 
 We may set out 
the calculation as follows: 

Deviation from the Mean 

X X-M 

4 4-11 =-7 
6 6-11 =-5 
6 6 -11 =-5 
6 6-11 =-5 
8 8-11=-3 
8 8-11 =-3 

10 -11 =-1 
14 14 -11= 3 
14 14 -11= 3 
18 18 - 11= 7 
27 27 - I' = 16 

Notice that some of the deviations from the mean are positive while others are 
negative. The sum of these deviations = -29 + 29 = 0. 
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Similarly for 	set (ii) we have 

Deviationfrom the Mean 

X 	 X-M 

26 -3 
26 -3 
27 -2 
30 + 1 
31 + 2 
34 + 5 

The sum of the deviations = - 8 + 8 = 0. These two examples suggest that if 
the mean is subtracted from each measurement, some of the differences will be positive
and some will be negative but their sum will always be equal to zero. Since the sum of 
the deviations is zero it follows that their average is also equal to zero. In the next 
chapter when we talk about measure of spread we shall say a little more about these 
deviations. 

Let us summarize these properties of the Mean: 
1. 	 If the same number is added to or subtracted from each observation in a set of 

data, 	the mean of the new set of data is equal to the mean of the original set of 
data plus the number added or minus the number subtracted. 

2. 	 If each number in a set is multiplied by a constant, then the mean of the new set
 
of data is that constant times the mean 
of the original set of data. If X represents 
the set of data and if c is a constant, Mean (c X) = c x Mean X. 

3. 	 Let X represent one set of data and Y another. Then
 
Mean (X +Y) = Mean ofX + Mean of Y.


4. 	 If the mean of a set of data is subtracted from every number in the set and if we 
take note of the plus and minus signs, the sum of the deviations from the mean is 
always zero. 

EXERCISE 	65-6 

1. 	 (a) Add 10 to each number in question 3 of Exercise 65-4. Find the mean 
of the new set of data. 

(b) Subtract 5 from each of: 30, 27, 26, 31, 26, 34. Find the mean of the 
new set of numbers so formed and compare with the mean of the original 
set. 

2. 	 Multiply each of the following set of numbers by 3, and find the mean of the new 
set of numbers.
 
13! 13, 11, 12, 12, 13, 12, 14, 15, 14, 13, 14, 12, 
 13, 13, 14 

3. 	 After you have found the mean in 1(b), find the deviation of each number from the 
mean and hence show that sum of the deviations from the mean is zero. 
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4. Make up an example to illustrate the fact that Mean (X + Y) = Mean X + Mean Y. 

65-7 A Short Method of Calculating the Mean 

When we work with large numbers, especially with grouped data, it is sometimes 
tedious to calculate the mean. The work is often simplified if we work with an assumed 
mean. That is, we guess what the mean is likely to be and later we make the necessary 
correction after working with the mean that we have guessed. 

The principle of working with an assumed mean is quite simple. Let M be the 
true mean, A the assumed mean and C the correction. Then we may express the 
relationship between them as 

M =A + C. 

If, by a stroke of luck, the assumed mean that we choose is the true mean then it 
is clear that C will be zero. If, on the other hand, A is greater than M, then C will 
be negative, while if A is less than M, C will be positive. From one of the properties 
of the mean we know that the average deviation from the true mean is zero. Our correction 
is thus seen to be the average deviation from the assumed mean. 

We may now write 
True mean value = Assumed mean + average deviation. 
Suppose that we wish to find the average height of 8 men whose heights are given 

to be 5ft. 9in., 6ft. Oin., 6ft. 3in., 6ft. 2in., 5ft. 11in., 6ft. lin., 5ft. 10in., and 
5ft. 8in. 

Let us assume that the mean height is 5ft. llin. We may set out the calculation as 
follows: 

Height Deviation /rom Assumed mean 
in inches 

5ft. 8in. - 3 
5ft. 9in. - 2 
5ft. 10in. - I 
5ft. Ilin. 0 
6ft. Oin. I 
6ft. lin. 2 
6ft. 2in. 3 
6ft. 3in. 4 

Sum of deviation = 4 in. 

4. 1. 
Mean deviation = 4 in. =--in. 
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Mean height* = assumed mean + mean deviation = 5ft. Ilin. + 2in. 

mean height = 5ft. 11-in.
 
2
 

The mean height may also be found by the long method thus:
 

Mean height 5ft. Bin. + 5ft. 9in. + 5ft. 10in. + ... + 6ft. 3in.
 
8
 

47ft Sin
 
8
 

5ft 111in 
2
 

We obtain the correct mean no matter which height 
we choose for the assumed mean. 
For example, we could just as well have chosen 6 ft. 1 in. 

Height Deviation from assumed mean 

5ft Sin - 5
 
5ft 9in 
 -4
 
5ft lOin 
 - 3
 
5ft Ilin 
 - 2
 
5ft Oin 
 -1
 
6ft 1in 
 0 
6ft 2in + 1
 
6ft 3in 
 + 2 

Sum of deviation = -15 + 3 = -12 

Mean deviation - 12 1in. 
8 - 2 

True mean height = assumed mean + mean deviation
 

6ft 1in -1-in

2
 

1
 

= 5ft 11- -in, as before.
 

The value of the method of an assumed mean becomes apparent when we work with 
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large numbers in grouped data. As an illustration of the method let us look once more at 
the problem of finding the mean score of the 100 candidates in an arithmetic test 
discussed earlier in this chapter. We have 

Mid-point o/ interval deviation from assumed mean frequency Product 
X d f fd 

14.5 -40 7 -280 
24.5 -30 12 -360 
34.5 -20 13 -260 
44-5 -10 13 -130 
54.5 0 31 0 
64.5 
 10 
 12 120
 
74.5 
 20 
 5 100
 
84.5 30 5 150 
94.5 40 1 40 

104.5 50 1 50 

Total = 100 Sum of fd = -570 

We have assumed that the mean score is 54.5. Then in the second column we 
found the deviations from the assumed mean. The fourth column is the product of the 
deviations from the assumed mean and the frequencies. The of this column issum -570. 

Mean of fd - - - 5-7
100 

Mean Score = 54.5.- 5.7 48.8 

You will notice that this is simpler than the method used when the problem was
first considered. A further simplification may be made if the deviation of the mid-point
of each class interval from the assumed mean is measured in units of the class interval. 

In our grouped frequency table the class interval is 10. This means that deviations 
that read -40, -30, -20, -10 will now be expressed as -4, -3, -2, -1. The 
positive deviations will similarly be 1, 2, 3, 4, 5. 

Let Xo be the assumed mean and X the mid-point of the class interval. Then if 
t be the units in which we measure the deviations we will have X- Xo = 10t. In 
general, 10 will be replaced by c, where c is the class interval. The correct value of 
the mean will now be given by: 

true mean = assumed mean + 10 average deviation. 
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The tabie above will now appear as 

Mid-point of 
interval 

X 

Deviation from 
assumed mean divided by 10 

t 

Frequency 

f 

Product 

ft 

14.5 - 4 7 -28 
24.5 - 3 12 -36 
34.5 - 2 13 -26 
44.5 - 1 13 -13 
54.5 
64.5 

0 
1 

31 
12 

0 
12 

74.5 2 5 10 
84.5 3 5 15 
94.5 4 1 4 

104.5 5 1 5 

Total ft -103 + 46 

=- 57
 

True Mean = 54"5 + 10 (-57 545 5.7 = 48.8, as before.
\1I 00/ 

EXERCISE 65-7 

1. As an exercise choose 44.5 as the assumed mean. Measure the deviation from the 
assumed mean first i. the original unit, and then in terms of the cell interval. 

2. Do problems 3 and 5 of Exercise 65 - 4 of this chapter by the short method. 

65-8 Which Average? 

When we use the word average in its general sense, we have seen that it may 
refer to the mean, the mode or the median. It is therefore necessary, when we speak, to 
state quite clearly which average we are talking about. Some of the examples that we 
have considered and the exercises that you have done will have shown you that, in 
general, the three averages are quite distinct. In one or two of the exercises you found 
that the three averages coincided. 

Let us look again at the averages we have discussed. 
The Managing Director of a firm earns a salary of £11,000 per annum. His 

assistant earns £5,000, while two branch office managers each receive £3,000 per 
annum. Other posts are: two on a salary of £2,000 per annum, three on £1,500, three 
on £1,000, one on £600 and twelve on £400 per annum. The Managing Director, in 
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order 	to impress a visitor to the firm, says that the average salary paid by his firm is 
£1,716 per annum. This figure is in fact the arithmetic mean of the set of salaries. On 
the other hand the Secretary of the Workers' Union who earns only £!100 per annum puts 
the average salary at £400 per annum since this figure represents the most common
 
salary earned by any one group; it is the mode of the earnings. Also, £600 may be
 
regarded 
as the average earning since there are twelve persons who earn more than this 
sum and twelve who earn less. £600 is the median salary. 

It is clear that only six persons earn more than £1,716 and twice that number 
earn only £400 per annum. In spite of this, the arithmetic mean is a good representative 
of the data on salaries, it tells us that if all the money available for salaries were 
distributed so that each person received the same amount, each employee of the firm 
would get £1,716. In calculating the arithmetic mean we take account of all the
 
salaries. However, our average of £1,716 
 is not typical of the earnings of the employees 
of the firm because of the high salaries earned by a few persons and the low salaries 
earned by many. 

If you score very high marks in one or two subjects in an examination your poor

performance in one or 
two othcr subjects is sometimes obscured when the arithmetic
 
mean of the scores is taken.
 

The mean is found useful in many situations. We use the mean for finding the
 
average attendance, the average monthly rainfall or temperature, the average mark in an
 
examination, the average population density per square mile, the average speed of a
 
car, etc.
 

The Secretary of the Workers' 
 Union of the firm chose £400 as the average earning 
because it occurs more frequently than any other salary. Also he chooses this low figure
because it is better for his propaganda purposes. He ignores the fact that there are other 
salaries on the payroll which are quite high. We have already found in the case of the 
school cap that the mode is sometimes the most appropriate average to use. 

The median salary of £600 represents the middle salary. In considering the 
median salary, our main interest is whether or not a salary is higher or lower 
than this salary; we do not appear to care whether a salary is very much higher or vcry
much lower than the salary of £600. If the saiaries are evenly spread out on either side 
of the median salary of £600 then the median would certainly be the best measure of 
central tendency and in this case would coincide with the mean. We can use the median 
score to determine whether or not a student is above or below the average; in most cases 
the scores in a test are evenly spread out and so the median is a good measure of the 
way in which the scores are distributed. The median is not influenced as much as the 
mean 	by a few extreme scores. 

Thus we see that some averages are useful in some situations and others in other 
situations. Our choice of an average will be dictated by the problem we have in hand. On 
the whole the mean is the most important measure of central tendency; as you will find 
out later on if you study more statistics the mean plays an important part in the theory of 
sampling and in tests of statistical hypotheses. 

-9\ 
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Chapter 66 
MEASURE OF SCATTER 

66-1 Introduction 

In Section 63-2 of Chapter 63, we considered the distribution of scores in an 
arithmetic examination. We grouped the scores in tens: 10 - 19, 20 - 29, 30 - 39, . 

100 - 109 and found the frequencies of scores in these intervals. Later, in chapter 65 
we found the mean of the scores to be 48.8. In exercise 63-2, question 3, you were 
asked to complete a table showing the scores of candidates in a mathematics 
examination. You will recall that the scores were grouped in intervals of five: 36 - 40, 
41 - 45, . . 96 - 100. The mean of this distribution of scores can be shown to be 
62.8 (to one decimal place). Look carefully at the two distributions once more. 

These two distributions differ not only in the position of the mean but also in the 
way in which the scores are grouped about the mean. It would appear that the scores in 
the arithmetic test are more spread out than those in the mathematics test. It would be 
good for us to have some quantitative way of measuring the spread or scatter of these 
scores. This is what we shall discuss in this chapter. There are several measures of 
scatter, each of which is good for a particular purpose, and none best in all situations. 

66-2 The Range 

One of the simplest ways of measuring the spread of a distribution is the use of 
the range. We shall illustrate this with some examples. 

The scores of two candidates in ten tests at the end of term were: 

Candidate I: 100, 100, 99, 97, 85, 84, 75, 75, 75, 60 
Candidate II: 90, 89, 88, 87, 85, 85, 83, 82, 81, 80 

We may illustrate these scores by a dot frequency diagram as shown below. 
1001 

90 

70 

iO,
 

CandidateI CandidateII 
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This diagram makes the scores stand out more clearly than the table did. We need 
to know all the ten scores for each candidate to be able to say everything about them. 
Suppose that you wanted to say as much as possible about each set of these ten scores 
with just two numbers. As you have already seen we could choose for one number any of 
the three measures of central tendency which we discussed in Chapter 65. Apart from 
these measures could you choose some measure of the scatter of the scores? Let us con
sider some possible measures of scatter and see what they tell us about the distribution. 

Look again at the scores and the diagram. Whac is the mean score for each 
candidate? Did you find that both candidates had the same mean score? Which of the
 
two candidates 
would you regard as being more consistent in his performance? Why

have you chosen one candidate 
rather than the other? Notice that candidate I had full
 
marks in two tests but in one test his score 
was only 60; the difference between his
 
highest and 
 lowest scores is 40. What is the difference between the highest and lowest
 
scores for candidate II?
 

When we have a set of data, the difference between the largest and smallest
 
numbers is known as the range. Thus the range 
for candidate I is 40 while that for
 
candidate II is 10. These two numbers 10 and 40 give 
us some idea of the way in which
 
the scores spread. The example also tells
are us that it is not sufficient for us to know
 
the mean we
score; would get a much better picture if we knew also how the scores were 
spread out. The range does give us some idea of how the scores are spread, but it is
determined only by the highest and the lowest scores, and is not changed by changes in 
the other scores. 

The range is not a completely satisfactory measure of spread because it is 
possible for us to have two distributions with the same range but which are scattered 
quite differently. Suppose that we have four candidates who took ten subjects each at
both the Ordinary and the Advanced Levels in the General Certificate of Education 
Examination and suppose that their scores in corresponding subjects were distributed as 
follows: 

Candidate A Candidate B CandidateC CandidateD 

100 100 60 100 
90 100 60 100 
80 100 60 100 
70 100 60 90 
60 100 60 80 
50 10 50 30 
40 10 50 20 
30 10 50 10 
20 10 50 10 
10 10 50 10 
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The diagram below illustrates how these scores are distributed. 

100 • e . Se• 

80 0 

60 • ooooo 

0 *S0.0. 

40 o 

0 0 

20 0 0 

0 0 0... 0 0 

A B C D 

What is the mean score for each candidate? What is the range in each case? Did you 
find that all the candidates had a mean score of 55 and that candidates A, B and D each 
had a range of 90? Would you say then that the range measures the spread adequately? 
If your answer is No, then we shall have to seek some other measure of spread. 

66-3 Mean Deviation from the Mean 

Let us consider the distributions of the scores of the four candidates A, B, C, D 
at the General Certificate of Education Examination from another stand-point. We may get 
some useful information by looking at the deviation of each score from the mean. 
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CandidateA Candidate B Candidate C Candidate D 

deviation deviation deviation deviation 
Score (X) from 

mean (X-M) 
Score (X) from 

mean (X-M) 
Score (X) from 

mean (X-M) 
Score (X) -from 

mean (X-M) 

100 45 100 45 60 5 100 45 
90 
80 

35 
25 

100 
100 

45 
45 

60 
60 

5 
5 

100 
100 

45 
45 

70 
60 
50 

15 
5 

- 5 

100 
100 

10 

45 
45 

-45 

60 
60 
50 

5 
5 

-5 

90 
80 
30 

35 
25 

-25 
40 -15 10 -45 50 -5 20 -35 
30 -25 10 -45 50 -5 10 -45 
20 -35 10 -45 50 -5 10 -45 
10 -45 10 -45 50 -5 10 -45 

We shall illustrate these deviations from the mean for candidates A and C 
graphically. (You may do the same for the other two candidates as an exercise.) 

Spread o/ CandidateA's Scores 

100

80

60Mean 55' 

Score 

40

20

0 
1 2 3 4 5 6 7 8 10 
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Spread of Candidate C's Scores 

100
 

80
 

Mean 60 
55Score 

40 

20 

0 II I I I I 

1 2 3 4 5 6 7 8 9 10 

The uprights in the diagrams above represent the deviations of individual scores 
from the mean of 55. The uprights above the mean line represent positive deviations 
while those below the mean represent negative deviations. 

We cannot use the average of these deviations to measure the spread since, as we 
found in Chapter 65, the sum of the deviations from the mean is zero. In order to 
overcome this difficulty we may agree to ignore all minus signs and treat every deviation 
as though it were positive. The sum of the deviations of A's scores from the mean, 

250ignoring negative signs, will thus be 250 and so the average or mean deviation - 25. 

The corresponding value for candidate C is 50= 5. This result is not unexpected 
5 

since, from the diagrams above, we see that the scores for A are more spread out than 
those for C. If all C's scores were equal to 55 then the spread would be zero. 

The average of the absolute values of the deviations from the mean is thus another 
measure of spread and is usually called mean absolute deviation from the mean. For the 
two sets of scores for A and C we find that both the range and the mean absolute 
deviation are greater for A than for C; the range for A was found to be 90 and that for C 
was 10. 

Let us find the mean absolute deviations for candidate I and candidate II that we 
discussed in section 66-2 above. First the mean score of 85 is the same for both 
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candidates. Hence we have 

CandidateI Candidate11 

Score (X) Deviation from Score (X) Deviation from 
mean (X-M) mean (X-M) 

100 15 90 5 
100 15 89 4 
99 14 88 3 
97 12 87 2 
85 0 85 0 
84 - 1 85 0 
75 -10 83 -2 
75 -10 82 -3 
75 -10 81 -4 
60 -25 80 -5 

Sum of absolute values of deviations = 112 for candidate I
 
Sum of absolute values of deviations = 28 for candidate II
 

Mean absolute deviation for candidate I = 112 = 11.2 
10
 

Range for candidate I = 40 
Mean absolute deviation for candidate II = 28 = 2.8 

10
 
Range for candidate If = 10 
Here again both measures of spread are greater for candidate I than for candidate 

II as was to be expected from a look at the diagram. 
The mean absolute deviation has some uses in statistics; it is easy to understand 

and each reading affects it about as much as any other and so it is not strongly
influenced by some values and ignored by others as casein the of the range. However,

it is not a very satisfactory measure 
of spread especially for later work in statistics. 

66-4 Standard Deviation 

In our searcii f,;r a suitable measure of spread our guess is that we could do 
something with the deviations from the mean other than ignoring the minus signs. We 
could square all the deviations from the mean, thus gecting rid of all the minus signs.
We then add up all these squares and take their mear. In order to express such a 
measure in linear units, and not square units, we take the square root of the mean 
square deviation. This gives measureus a of spread which we call the standard 
deviation. 

The standard deviation provides a quantitative basis for comparing how spread
out a distribution is in relation to another. It has many important uses in more advanced 
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work in statistics. If the standard deviation is relatively small then we may expect a
 
close clustering of the scores about the mean. On the other hand, a relatively large
 
value of the standard deviation suggests wide scattering about the mean.
 

We shall now calculate the standard deviations for the two distributions of scores
 
for candidates A and C.
 

Calculation of the Standard Deviation for Candidate A's Scores 

Scores Deviations from Squared deviations 
the mean from mean 

X X - M (X - M)2 

100 45 2025
 
90 35 1225 
80 25 625 
70 15 225 
60 5 25 
50 - 5 25 
40 -15 225 
30 -25 625 
20 -35 1225 
10 -45 2025 

Total ..... .8250 

Mean Squared deviations = 8250 = 82510
 

Standard deviation = V2= 28.8 

Calculation of StandardDeviation /or Candidate C's Scores 

Scores Deviations from Squared deviations 
mean from mean (X -M) 2 

60 5 25 
60 5 25 
60 5 25 
60 5 25 
60 5 25 
50 -5 25 
50 -5 25 
50 -5 25 
50 -5 25 
50 -5 25 

Total ..... .250 
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Mean squared deviation 250 2510
 

Standard deviation V2-5= 5 

We see that the standard deviation for the scores of candidate C is very much 
smaller than that for the scores of candidate A. This confirms the general impression 
gained from the diagrams. 

Let us summarise the values of these three measures of spread that we have found 
for the two sets of scores. 

Candidate A Candidate C 

Range 90 
 10
 
Mean absolute deviation from mean 25 5 
Standard deviation 28.8 5 

We see from this analysis that all these n, isures of spread or scatter are useful;
 
each is preferred to the others for some situations. They tend to be small for closely
 
bunched data and large for widely spread data. None of them tell anything about
 
individual values. One is often preferred to the other depending on how easy it is to 
calculate, how well it does the job on hand, or how useful it is in more advanced work 
in statistics. 

66-5 Standard Deviation for Grouped Data 

So far we have talked about finding the standard deviation for ungrouped data. We 
shall now look first at ungrouped data, in which each number has a frequency and later 
we shall consider distributions grouped into intervals. 

Let us consider the distribution: 13, 13, 11, 12, 12, 13, '2, 14, 15, 14, 13, 
14, 12, 13, 13, 14 which we have met before. The distribution may be tabulated as 
shown below 

Number (X) Frequency fX Deviation from Squared deviation f(X-M 2 ) 

mean (X - M) from mean (X-M) 2 

11 1 11 -2 4 4 
12 4 48 -1 1 4 
13 6 78 0 0 0 
14 4 56 1 1 4 
15 1 15 2 4 4
 

Total = 16 208 16 
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Average of f(X -M) 2 16 _ 116
 

Standard deviation = \F= 1 

If we have a distribution grouped into intervals, the only difference in the above 
set up is that the column headed "Number (X)" will be replaced by "Mid-point of 
Interval" and the procedure is then exactly the same as above. 

EXERCISE 	66-5 

1. 	 Calculate the range and the standard deviation of 
(a) 2, 4, 6, 8, 10, 12, 14. 

(b) 9, 10, 11, 12, 13, 14, 15, 16, 17. 
2. 	 Find the range and the standard deviation of these scores. 

(a) 100, 	 100, 99, 97, 85, 84, 75, 75, 75, 60 
(b) 90, 89, 88, 87, 85, 85, 83, 82, 81, 80
 
Which of these two sets of scores is more scattered than the other?
 

3. 	 (a) Draw diagrams to show the deviation from the mean for each of the scores 
for B and D, in Section 66-3. 

(b) Find the mean absolute deviation from the mean for each distribution. 
(c) Calculate the standard deviation for each set of scores. 

4. 	 Multiply each number in 1(a) above by 2. Find the standard deviation of the new 
set of numbers and compare your answer with the answer for 1 (a). 

5. 	 (a) Add 3 to each number in 1 (b) above. Find the standard deviation of the 
new set of numbers. Compare with your previous answer for 1 (b). 

(b) Subtract 4 from each number in I (b) above. Find the' ztauiiard deviation 
of the new set of numbers so formed. Compare your answer with the 
previous result in 1 (b) and 5 (a). 
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UNIT XIV PROBABILITY 

Chapter 67 
PROBABILITY 

67-1 Introduction 

We cannot be sure of many things we do each day. When we leave home for school, 
we cannot be sure we will arrive on time. When we give advice to pupils, we cannot be 
sure it will have a good result even if our advice is followed. When we play a game of
 
snakes and ladders or ludo, we cannot be 
 sure of the number that will show when we roll 
the die. When we choose sides at the start of a football game by tossing a coin we
 
cannot know with 2ertainty whether the coin will show heads 
or tails. When we plant our 
seed, we cannot be sure of the size of the crop we will harvest. 

The things we do often have uncertain outcomes. Whether we arrive at school on
 
time depends on the weather, 
on our state of health, perhaps on the mechanical condition 
of the bus or bicycle that transports us, and on many other things. When we roll our die 
we know it will fall with its face showing one of the numbers 1, 2, 3, 4, 5, 6, but we 
do not know in advance which particular number will show up. Similarly for the toss of a 
coin: we cannot know before we toss the coin whether it will fall heads or tails. Our
 
harvest depends on the quality of our 
seed, the amount of sunshine and rainfall, the
 
fertility of our soil, and on our care in warding off weeds and insect pests. Our world is
 
full of uncertainty and risk. 

The theory of probability is a branch of mathematics that deals with and shows 
how to measure risk and uncertainty. We will learn how to compute or measure the chance 
or probability of an uncertain event. We will perform simple experiments to become
familiar with uncertain outcomes and we will study the way probability theory helps us 
understand how to analyze such experiments. If we know something about probability, 
we will understand our world better. 

To develop the theory of probability we will need to recall some things we 
learned about sets and functions in our earlier work. We will revise old topics as we 
learn new ones. 

Let us start by doing some experiments. First, we shall toss a coin and keep a 
record of which side of the coin shows as it lands. For each experiment, toss the coin 
at least 20 times. Perform at least five experiments and enter your results in a table 
like this: 
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Experiment 

Coin-Tossing Experiments 

Number of Coin Tosses Number of Heads Obtained 

1 

2 

3 

4 

5 

Total 

2. 

3. 

EXERCISE 67-1 

Do you feel that the two possibilities "heads" and "tails" are equally likely 
outcomes? Do your experimental results seem to support this feeling? What 
ratio of number of heads to number of tosses did you get in each experiment? 
What ratio do you get when you total all your tosses? 
If other students have done the coin-tossing experiments, combine all of the 
totals and determine the ratio of number of heads to total number of tosses. 
Find a drawing pin and toss it. When it lands it will either have its head flat 

( I ) or it will fall on its side ( 6 ) .Throw the drawing pin on a 
flat table and keep a record of whether it falls flat or on its side. For each 
experiment, toss the pin at least 20 times. Perform at least five experiments 
and record your results in a table like this: 

Experiment 

1 

Drawing-Pin Tossing-Experiments 

Number of Times the 
Number of Drawing Pin Tosses Drawigiel t 

Drawing Pin Fell Flat 

2 

3 

4 

5 

Total 
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Do you feel that the two possibilities "falling flat" and "falling on a side" are 
equally likely outcomes? Do your experimental results seem to support this 
feeling? 

67-2 Experiments 

We want now to describe some simple experiments with uncertain ot-tcomes. We 
car, imagine these experiments repeated again and again under identical conditions. We 
begin our mathematical theory of probability by using the idea of a set to say precisely 
what we mean by such an exDeriment. At this time, you may wish to re-read Unit t 
"Basic Concepts and Language of Sets"  in the first volume of Basic Concepts of
 
Mlathematics.
 

A set, you will recall, is just a collection of things. The things we now are
 
interested in ate all the different possible outcomes when 
we actually do (or only
 
imagine doing) an experiment. Let us consider some examples.
 

Example 1. We toss a 
coin. The set of possible outcomes has two members:
 
"heads" and "tails." (Let us agree that the coin will 
never iand on its edge.) If we
 
let H stand for "heads" and T for "tails," we can write this set as I H, T I.
 
You will recall that one way to describe a set is to list all the members of the set and
 
to enclose this list in curly brackets, using commas to separate the members. So the
 
set I H, T I is used to describe the coin-tossing experiment. This set is called the
 
universe set of the experiment and is denoted by the capital letter U
 

U = I H, T . 

Example 2. We throw a die to determine our first move in a game of ludo. The set
 
of possible outcomes has six members: 1, 2, 3, 4, 5, 6 . Each numeral stands for
 
the outcome 
in which the die falls with that numeral showing on its uppermost face. So
 
the universe set for this die-throwing experiment is the set
 

U = 1 1, 2, 3, 4, 5, 6 . 

Example 3. We buy one lottery ticket. Let us assume that 1000 tickets are sold and 
that these tickets are numbered 1, 2, 3, .-. . , 1000 . Then our ticket can have: any 
one of these numbers on it. Therefore we take the set 

U = 1 1, 2, 3, .... , 10001 

as the universe set for the experiment in which we hy)' a lottery ticket. This set has 
1000 members and we read "U is the set consisting of tickets numbered 1, 2, 3, and 
on up to 1000." Recall that we use three dots when the members of a set are clearly 
indicated by some pattern, but when we cannot or do not want to list all the members 
of the set. 
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Example 4. We toss a shilling coin and then toss it again. The possible outcomes 
are given in the table: 

First Toss Second Toss 
H H 
H T 
T H 
T T 

So we can take the set 

U= HH, HT, TH, TT 

as the universe set for this experiment. Here we write HH to stand for the first toss 
resulting in heads and the second toss resulting in heads, we write HT for the first 
toss resulting in heads and the second in tails, and so on. 

Example 5. We ask a friend to tell us his month of birth. His answer may be any 
one of the 12 months of the year. So we have 12 possible outcomes of this expoeriment. 
Therefore 

U Jan., Feb., March, ... , Dec. 1 

can serve as universe set for this experiment. 
Example 6. Suppose we are with two friends and ask each of them to tell us his 

month of birth. We can see the possible outcomes of this experiment by studying the 
chart. 

Second Friend's Birth Month 

Jan Feb March April May June July Aug Sept Oct Nov Dec 
Jan x 

First Friend's Feb x 
Birth Month March * x 

April x 
May x ,_ 
June x 

CHART I July x 
Aug x 
Sept x 
Oct x 
Nov x 
Dec x 
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Each box in the chart stands for one of the answers we can hear when both our friends
tell us their birth months. For example, the box marked with an asterisk (*) stands for 
the first friend having March and the second friend having February as birth month. The 
box marked with a check (,/) stands for the first friend born in May and the second 
friend in July. What do the boxes marked with a cross ( x ) have in common? 

How many boxes are there in this chart? There are 12 rows and 12 columns so we 
see there are 12 x 12 - 144 boxes. We have an experiment with 144 possible

outcomes. Instead of listing all 
 144 members of this set, it is more convenient to give a 
verbal description. We say that the universe set for this experiment is 

U = the set of all possible pairs of birth months of 

our two friends. 

Example 7. We play a game of draughts. We can win the game, iuoe the game, or 
the game can end in a draw (tie). So the universe set for this game can be the set 

U = I win, lose, draw I 

Example 8. An insurance company that writes a policy for a man aged 20 is
interested in whether the man will survive one year or will die within the year. We can 
think of an experiment lasting one year and having the two possible outcomes given in 
the universe set: 

U - man survives one year, man dies within the year 

To summarize, each time we talk of a real or imaginary experiment, we must be

preparedto describe the universe -et of this experiment. This universe set has as its
 
members all the possible outcomes that can occur when 
we perform the experiment.


You will notice thot all of the experiments in our examples have finite universe
 
sets. Can you think of an experiment which has an infinite (unending) number of

possible outcomes? We shall restrict 
our study to experiments whose universe sets are
 
finite.
 

EXERCISE 67-2 

1. For each of the following experiments, define a suitable universe set U 
(a) Play a game of snakes and ladders with your friend.
(b) From a hat containing 10 slips of paper numbered 1, 2, 3, ... 10,, 

we select one slip of paper.
(c) From the hat as in part (b), we select one slip of paper, return it to the hat, 

then again select one slip of paper.
(d) From the hat as in part (b), we select one slip of paper, then select 
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another slip of paper without returning the first to the hat. 
(e) We ask our friend to choose a prime number between ten and thirty.
(f) We choose a day of the week. 
(g) We throw a green die and then throw a red die.
 
() We toss a drawing pin on a flat table.
 
(i) We toss a drawing pin on a flat table, then toss it again.

[ Note: Compare with Example 4 of the text. ]

(j) A survey of families with two children is made and the sexes of the 

children (in order of age, older child first) are recorded.
 
[ Note: Compare with ExNample 4 of the text. I
 
(k) A survey of families with three children is made and the sexes of the 

children (in order of age, oldest child first) are recorded.
(I) We toss a shilling, then toss it again, then toss it a third time. 
[ Note: Compare with part (k). ] 
(M) We are with three friends and ask each to tell us his month of birth.


2 For each universe set in Exercise 
 I , state how many members U has. 
3. Describe two experiments that have an infinite (unending) number of possible 

outcomes. 

67-3 Events 

When we do (or just think of doing) an experiment, we have learned that a

universe set U must 
be defined for this experiment. This set U has as members all 
the possible outcomes of the experiment. But we may be interested in only some of the 
outcomes. For example, we die inwhen throw a a game of ludo, we may be interested 
in whether we get a five or a six. When we buy one lottery ticket, we are keenly
interested in whether it has a winning number. When we ask two friends to tell us their 
birth months, we may want to know if they were born in the same month. When we survey
families with two children, we can ask whether the parents have both son and aa 
daughter. 

In each of these examples, we ca., write the universe set U for the entire 
experiment and then pick out of U those outcomes that are of special interest to us. 
These will form a set B. Each member of set B is also a member of the corresponding
universe set U . In such a case, you recall that we say set B is a subset of set U. 
In the theory of probability, any subset of the universe set is called an event. 

Let us look at some examples of events (or subsets of the universe sets U ) for 
some of the experiments we have already studied. 
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Experiment Universe Set U Event B (described 

in words and then as 
a subset of U ) 

a. Throw a die. U = 1 1, 2, 3, 4, 5, 6 1 die shows five or six: 
B =1 5, 6 

b. Buy a lottery U = 1 1, 2, 3,..., 1000 you win: B W= 
ticket. (Assume 1,000 w2 ) w 
sold of which 10 are Wi 0 1 :where w 
selected as winning denotes the first 
numbers.) winning number, w2 

denotes the second 
winning number, and 
so on. (w is read "w 
sub one", w 2 is read 
"w sub two" and so on.) 

c. Ask two friends to U the set containing both friends have same 
tell you their birth month. 144 members, as given birth months: B = the 

in Chart 1, page 161. 	 set containing those 12 
members of U that 

correspond to the main 
diagonal entries 
(marked by crosses, x) 
in Chart 1 

d. Survey families U - BB, BG, GB, GG parents have son and 
with two children. daughter: B BG, 

GB I 

Do you see that each member of the events B on the right is also a member of the 
corresponding universe set U? This must be sinceso an event is defined as a subset 
of the universe set. 

Now try to write down all the events that can be found if the universe set 
U = win, lose , as in a game of snakes and ladders. Did you find all four events? 
They are: 

The subset with no members: the empty set I 

The subsets with one member: win I , I lose 

The subset with two members: win, lose I = U itself. 

Did you recall from your previous study that every set has the empty set and the whole 
set itself as subsets? In probability theory, any event represented by the empty set is 
called an impossible event. And any event represented by the whole universe set U is 
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called a 	sure event. For example, suppose we roll a die and have U = 1 1, 2, 3, 4,
 
5, 6 1 as universe set. Then the event "the number showing is greater than 9" is an
 
impossible event since it is represented by the empty set: there are no members of U'
 
that are greater than 9. At the other extreme, we have for example the event "the number
 
showing is less than 9." This is a sure 
event since it is represented by the entire set U:
 
every member of U is less than 9.
 

Can you find all eight events if the universe set U = win, lose, draw I as in
 
a game of draughts? Here is a list of these events:
 

The impossible event: 	 the empty set 

The events with one member: I win 1,1 lose ,1 draw I 

The events with two members: win, lose , win, draw 
lose, draw 

The sure event: 	 win, lose, draw the 
universe set U 

How many events are there if the universe set U has just one member? Then the 
impossible event I I and the sure event U are the only subsets. So there are two 
events if U has one member. And we have already seen that there are four events if U 
has two members, and eight events if U has three members. Let us make a little table 
summarizing these results: 

Number of members in U Total Number of Events 
1 2 
2 4 
3 8 

Can you 	see the pattern here? Guess how many events there are if the universe set U 
has four members. Did you guess that there 24are = 16 events? That is the correct 
answer. In fact, it can be proved that if U has n members where n is any counting 
number, then there are a total of 2n different events. 

EXERCISE 67-3 

1. For each of the following experiments, first write the universe set U and then 
write the event (subset of U ) for which the verbal description is given. [ Note: 
The universe sets have been described in Section 67-2 and in the Answers to 
Exercise 67-2. 1 
(a) 	 Experiment: larow a die in a ludo game.
 

Events: (i) die shows an even number.
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(b) 

(c) 

(d) 

(e) 

(0 

(g) 

(h) 

(ii) 	 die shows an odd number. 
(iii) 	 die does not show an even number. 
(iv) 	 die shows an even number or an odd number. 
(v) 	 die shows both an even number and an odd number. 

Experiment: Toss a shilling coin and then toss it again.
 
Events: (i) obtain exactly one head in the 
two 	tosses. 

(ii) 	 obtain at least one head in the two 	tosses. 
(iii) 	 obtain at most one head in the two tosses.
 

Experiment: Ask friend to tell us 
his month of birth.
 
Events: (i) friend was born in first six months.
 

(ii) 	 friend was born in month whose name begins with the 
letter "J". 

(iii) 	 friend was born in month whose name begins with the 
letter "B".
 

Experiment: Ask two friends to tell 
us their birth months. 

Events: (i) first friend born in January 
(ii) 	 second friend born in January 

(iii) 	 first friend born in January and second friend born in 
August or September. 

(iv) 	 first friend born in January and second friend born in month 
whose name begins with the letter "B".
 

Experiment: Select one slip of paper from a 
hat containing 10 slips 
numbered 1, 2, 3, .-. . 10, 

Events: (i) slip has an even number 
(ii) 	 slip has an odd number 

(iii) 	 slip does not have an even number 
(iv) 	 slip has an even or an odd number 
(v) 	 slip has a number bigger than 10 

(vi) 	 slip has a number less than 5 
(vii) slip has a number less than or equal to 5.
 

Experiment: From same hat as in (e), select one slip, then select
 
another after replacing first slip.
 

Events: (i) first slip has the number 1
 
(ii) 	 second slip has the number 1 

(iii) 	 both slips have number 1 
(iv) first slip has even number and second has number 2 

Experiment: From same hat as in (e), select one slip, then select another 
without replacing first slip.
 

Events: (i) first slip has number 1
 
(ii) 	 second slip has number 1 

(iii) 	 both slips have number 1 
(iv) 	 first slip has even number and second has number 2 

Experiment: Survey family with three children and record the sexes of 
the children in order of age, oldest child first. 
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Events: (i) family har three boys 
(ii) family has at least two boys 

(iii) family has exactly two boys 
(iv) family has at most two boys 

(v) family has exactly one boy 
(vi) family has at least one boy 
(vii) family has at most one boy 

(viii) 	 family has more girls than boys 

For each part of the preceding problem, state how many members are in the 
universe set U and how many are in each of the events described in the 
problem. 

3. 	 Consider the experiment in Problem 1, part (b). How many events (subsets of U) 
are there all together? List these events. 

4. 	 Consider the experiment in Problem 1, part (e). How many events are there all 
together?

5. 	 Consider the experiment in Problem 1, part (h). How many events are there all
 
together? How many 
events are there that contain no members? Exactly one 
member? Can you think of a way to count the number of events that contain 
exactly two members? 

67-4 	Combination of Events 

In this section, we wish to revise what you have learned about sets, about
 
picturing 
sets and subsets, and about operations on sets. But we shall now introduce 
examples and language that are part of the theory of probability. 

First let us illustratL by means of a picture that the event B: "family has exactly 
one son" isa subset of the set 

U = 	 I BBB, BBG, BGB, BGG, GBB, 	GBG, GGB, GGG I. 

This set U is the universe set for the experiment in which we survey families with 
three children and write the sex of each child, oldest child first.
 

You will recall that we 
can picture the universe set by a rectangle and think of 
all points inside the rectangle as members of the U. we can picture theset Then 
members of the event B by the set of points within a circle labeled E, as in 
Diagram (a). 
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U = universe set U = universe set 

Eve nt E Event noi-E Event E 

Diagram (a) Diagram (b) 

Event E is the subset I BGG, GBG, GGB I containing three of the eight members of 
the universe set U. The circle representing event E therefore lies entirely within the 
rectangle representing U. 

Someone may be ircerested in the event "not-E,"'that is, in the event that the 
family does not have e.%actly one son. This new event contains a., members all of the 
members of the universe set U that are not in event E. So we find 

not-E = I BBB, BBG, BGB, GBB, GGG . 

We have pictured this new event in Diagram (b). The points within the rectangle but 
outside the circle represent the members of not-E. Do you see that each member of the 
universe set U is in either E or in not-E and that no member can be in both E and not-E? 
We have called two sets that have no members in common disjoint sets. So event E and 
event not-E are disjoint events. 

Now suppose we think of a new event F that the family's oldest child is a girl. 
Then F = I GBB, GBG, GGB, GGG I and we can picture the universe set U with event 
E and with event F as in Diagram (c). 

U = universe set 

SEvent E Diagram (c) 
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Do you see why the circles for events E and F overlap? Event E and event F are not 
disjoint events for they have common members. In fact, E and F both have GBG, GGB as 
members. This is indicated by the overlapping circles in Diagram (c). 

Do you recall that the set of members common to two sets is called their 
intersection? The event I G3G, GGB I is the set of members common to both event E 
and event F. Hence I GBG, GGB is the intersection of event E and event F. We shall 
write this new event as E and F. So GBG, GGB I = E and F and is pictured in 
Diagram (c) as the little section with both vertical lines (belonging to event E) and 
horizontal lines (belonging to event F). 

We now have introduced two ways of combining events to get new events. One way 
is to take an event E and form the new event not-E. Another way is to take the event E 
and the event F and form the new event E and F. Let us now consider one other way of 
combining two events to get another event. 

What are the members that belong to event E or event F? We find that BGG, GBG, 
GGB, GGG are the members in either event E or event F or in both. Do you recall that
 
this new set is called the union of set F. and 
set F? We shall write this new event as
 
E or F. So
 

E or F IBGG, GBG, GGB, GBB, GGG . 

It may help you understand this use of the word "or" to remember that a member in E
 
or F is in at least one of the two sets E, F. We can picture the union as in Diagram (d):
 

Diagram (d) BGG GBB GG GBG 

GBG GBG GGB GBB 

GGB GGB GGG 

G G 

event E event F event E or F 

We could also refer to Diagram (c) and note that the event E or F is pictured by the 
region that has either horizontal lines or vertical lines or both. 

Let us consider another example to see how we can combine events to obtain new 
everts of interest. We select a slip from a hat containing ten slips of paper with the 
numbers 1, 2, 3 ... , 10 on them. The universe set is 

U - 1, 2, 3, 4, 5, 6, 7, 8, 9,10 

Now consider these two events (subsets of U): 
E - 1, 3, 5, 7, 9 the event "number selected is odd" 

F = 7, 8, 9, 10 re event "number selected is greater 
than six". 
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Here are some new events we have learned how to form from the given events E, F
 
and the universe set U:
 

not-E = 1 2, 4, 6, 8, 10 - the event "number selected is not 
odd" or equivalently, "number 

selected is even." 

not-F = 1 1, 2, 3, 4, 5, 6 1 the event "number selected is not 
greater than six" or equivalently,
"number selected is at most six." 

E and F - I 7, 9 1 = the event "number selected is odd and is 

greater than six". 

E or F - 1, 3, 5, 7, 8, 9, 10 1 = the event "number selected 
is odd or is greater than 

" six 

There are still other events that can be formed. 	 For example, 

not-E and not-F 1 2, 4, 6, 8, 10 1 	and 

1 1, 2, 3, 4, 5, 6 =1 2, 4, 6 = 	event "number selected is 
neither odd nor greater than 
six". 

not-(EorF) = not- { 1,3,5,7,8,9, 10 = 2,4,6 1. 

We see that not-E and not-F is the same set as not-(E or F). This is true for all events
 
and expresses the fact that in English the following sentences are equivalent:
 

"Neither E nor F occurs". 

"It is not true that at least one of the 	events E, F occurs". 

In the next section we finally arrive at the meaning of the phrase "the probability
 
of an event".
 

EXERCISE 67-4 

1. We throw a die in a game of ludo. 
(a) Write the universe set U for this experiment. 
(b) Suppose E is the event "die shows number greater than four" and F is the 

-N 
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event "die shows odd number". Identify the members of event E and of 
event F and picture these events in a diagram. 

(c) Are E and F disjoint events? 
(d) Identify the members of not-E, not-F, E an(d F, E or F, and picture these 

events in diagrams. 
(e) Show that the event not- (not-E) is the same as event E. 
(f) Show that the event not-E and not-F is the same event as not-(E or F). 
(g) Show that not-E or not-F is the same event aF' not-(E and F). 

2. We ask a friend to tell us his month of birth. 
(a) Write the universe set U for this experiment. 
(b) Suppose E is the event "friend is born in first six months" and F is the 

event "friend is born in month whose name begins with the letter J". 
Identify the members of event E and of event F and picture these events 
in a diagram. 

(c) Are event E and event F disjoint sets? 
(d) Identify the members of not-E, not-F, E and F, E or F, and picture these 

events in diagrams. 

67-5 First Definition of Probability 

If 1,000 lottery tickets are sold and ten have winning numbers, then the ticket we 
buy has ten chances in 1,000 of being a winning ticket. We can put this differently by 
recalling that the universe set for the experiment in which we buy one lottery ticket is 
U = 1 1, 2, 3, • . . , 1000 1 and the event E: "our ticket is a winner" is the subset 
SW 1, W2 , . . . , Wl0 I where W, is the first winning number, W2 is the second winning 

number, and so on. Let us introduce "probability of event E" as the technical phrase for 
the "chance" or "likelihood" of our ticket being a winner. The universe set U has 1,000 
members and the event E has ten members. So our intuitive answer of ten chances in 
1,000 is the ratio of the number of members in E to the number of members in U. That is, 

Probability of Event E Number of members in Event E 
Number of members in universe set U 

10 1 
1,000 100" 

Let us see if equation ( * ) gives reasonable results when applied to some other 
experiments. Suppose we select one slip from ten slips numbered 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10. What is the probability of the event E: "the number selected is odd"? The 
universe set U for this experiment is U = 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1 and the event 
E is the subset I 1, 3, 5, 7, 9 1. Applying formula (* ), we find 

Probability of Event E - _ 1 
10 2 
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a reasonable answer since there are an equal number of odd and even integers among the 
ten slips. And any one slip is as likely to be selected as any other. 

As another example, suppose we toss a die in a game of ludo. What is the 
probability that we will get a six? Since there are six possibilities, no one of which is 
more likely to occur than any other, we feel 	intuitively that the chance or probability of 
getting a six is the ratio 1:6. To use equation ( * ) we need to recall that the universe 
set U 1, 2, 3, 4, 5, 6 1 and t:.e event "die falls six" is the subset E = 6 .. Then 

Probability of "six Number of members in 
Number of members in 

6 
1 1, 2, 3, 4, 5, 6 1 

61 as expected. 

As a final example, consider the experiment in which we ask two friends their month 
of birth. We wish to calculate the probability of Event E that both friends were born in the 
same month. We have seen (refer to Chart 1, page 161) that there are 144 members in the 
universe set U for this experiment and that event E has 12 members (corresponding to 
those boxes in Chart 1 marked with an x). Intuitively we would guess that nc, one of the 
144 possible outcomes is preferred or more likely that any other. (This would, of course, 
not be true if our two friends were twins!) So it seems reasonable to say that there are 12 
chances in 144 of both friends having the same birth month. From equation ( * ), we get 

12 1Probability of event E = -=144- -12 asa expected.xetd 

It appears from these examples that equation ( * ) would be a reasonable definition 
for the probability of an event E provided we feel that no outcome of the experiment 
(that is, no -member of the universe set U) is preferred over any other. Under these 
circumstances we do indeed adopt equation ( * ) as our definition. This is the classic 
definition of probability given by the French philosopher-mathematician Laplace (1749
1827), one of the first and most important contributors to the mathematical theory of 
probability. In a later section we shall suggest a modification of formula ( * ) to make it 
apply to even those experiment. whose outcomes are not equally likely. 

EXERCISE 67-5 

1. 	 Refer to Exercise 67-3, Problem 1, and now find the probability of each event 
described in parts (a) - (h). Assume that Definition ( * ) applies. 

'V 
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67-6 Some Properties of Probability 

For the time being we assume that Definition ( * ) applies to our experiments. It is 
convenient to introduce the following symbols in order to write this definition in more
 
c&ncise form:
 

(i) For any event E, we let n(E) denote the number of members in E. 
(ii) For any event E, we let P(E) denote the probability of event E.
 

Now Definition ( * ) becomes
 

= n(E)P(E) 
n(U) 

The quantity on the left and the numerator and denominator of the fraction on the right 
were previously written using English words; all we have done is write the same defining 
equation using symbols. 

Let us now turn to some properties of probability. 
Property 1: If E is an impossible event, then P(E) = 0. 
proof: If E is impossible, then it is the empty subset of the universe set U of the 

experiment. Since the empty set has no members, Definition ( * ) yields 

P(E)= n(E) = 0 = o.
n(U) n (U) 

Property 2: If E is a sure event, then P(E) = 1. 
proof: If E is sure, then it is the entire universe set U. Therefore 

n(E) _ n(U) 1 

n(U) n(U) 

Property 3: If E is any event, then 0 < P(E) < 1. 

proof: (First, let us be sure that we understand the conclusion. You know that 
P(E) < 1 means that the number P(E) is less than the number 1. We write P(E) < 1 to 
mean that the number P(E) is less than or equal to 1. Similarly 0 < P(E) means that 
P(E) is greaterthan or equal to zero. So 0 _< P(E) __ 1 means that P(E) is both 
greater than or equal to zero anti less than or equal to on-. In other words, the probability 
P(E) is represented on the number line by a point that lies within the interval from 0 to 1 
or at one of its end points.) 

To prove Property 3, we have only to note that the number of members in Event E 
cannot be negative [ in symbols, 0_< n(E) I . Also, since E is a subset of the universe 
set U, n(E) cannot be larger than the number of members in U [ in symbols, n(E) < n(U) ] 
Dividing the first inequality by n(U), a positive number, we get 

0 n(E) 

n(U) - n(U) 
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or 0 _<P(E). Dividing the second inequality by n(U), we get 

n(E) n(U)
P(E) = n(U) n(U) 1 

or P(E) < 1. Putting our results together, we have 0 < F(E) < 1 and the proof of 
Property 3 is complete. 

We can think of Property 3 as establishing a probabil,'ty scale. At one extreme are 
impossible events with probability zero. At the other extreme are sure events with 
probability one. All other events have probabilities between zero and one, with the 
likelihood or chance of an event increasing as its probability moves to the right on the 
number line from 0 to 1. 

Property 4: If E is any event, then P(not-E) = 1 - P(E).
 
proo/: All members in the universe set U are in either the subset E 
or tile subset
 

not-E. Also, you recall that E and not-E are disjoint events (that is, have no common
 
members). It follows that we 
count all the members in the Universe set U by first counting 
the members of E and then counting the members of not-E. We get 

n(U) = n(E) + n(not-E). 

Do you see how this equation is related to Diagram (b) in Section 67-4? Dividing by the
 
nonzero number n(U), we get
 

n(U) n(E) + n(not-E) n(E) n(not-E)-R0Y n(U) n(U n(U) 

Using Definition ( * ), we have 

1 = P(E) + P(not-E), 

which is equivalent to 

P(not-E) = 1 - P(E). 
1 

This is not a surprising result. We know that if the probability of an event E is- let 

us 3,say, then the probability that E does not occur is given by 

1 2 
P(not-E) = 1 

Property 5: Let E and F be any events (subsets of the same universe set U). Then 

P(E or F) = P(E) + P(F) - P(E and F). 

In words, the probability that at least one of the events E, F occurs is found by adding 
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the probability that E occurs and the probability that F occurs, aad then subtracting the 
probability that both E and F occur. 

proof: It is convenient to refer to Diagram (c) in section 67-4. We count all the 
members of the event E or F (the striped region in the Diagram) as follows: First count 
all the members of set E (the region with vertical stripes) and obtain n(E). Next count 
all the members of set F (the region with horizontal stripes) and obtain n(F). But the 
members belcnging to the region with both vertical and horizontal stripes have now been 
counted twice: once in n(E) and again in n(F). So we count all these duplicates and
 
obtain n(E and F) since the region with both horizontal and vertical stripes is the event
 
E and F. From the number n(E) + n(F) we must subtract this number of duplicates.
 
Therefore all members of the event E or F counted once
are and only once when we
 
compute n(E) + n(F) -
 n(E and F). Since the number of members in E or F is 
n(E or F),we have proved n(E or F)= n(E) + n(F) - n(E and F) and the conclusion of 
Property 5 results by dividing this equation by n(U). 

Before illustrating how we use these properties of probability, should stop towe 
mention a corollary of Property 5: 

Property 6: If E and F are disjoin:; evenzin, then P(E or F) = P(E) + P(F). 
proof: Since E and F are disjoint events by hypothesis, we know that E and F is 

the empty set. Therefore, by Property 1 we get P(E and F) = 0. Now we have only to 
substitute in Property 5 to obtain our result. 

Do you see that this result is a special case of Property 5? The probability of the
 
occurrence 
of at least one of two disjoint events is just the sum of their individual 
probabilities. You must be sure the events E, F are disjoint before using Property 6, 
but Property 5 holds for any two events. 

Let is consider two examples that illu.,trate how some of these properties of 
probability are used to solve problems. 

Example 1. If the probability of winning a game is 0.7 and no ties are possible, 
what is the probability of losing this game? 

We let E be the event that we win the game. We are given P(E) = 0.7. Do you 
see that the problem asks us to compute P(not-E)? This is so because the event "not-win" 
is the same as "lose" since the game cannot end in a tie. 

From Property 4, we have 

P(not-E) = 1 - P(E) 

= 1 -0.7 

- 0.3 

We find that our chance of losing the game is 0.3 
Example 2. We throw a die in a game of hdo. What is the probability of getting an 

even number or a number bigger than four? 
It is convenient to call E the event that the die shows an even number and to call F 

the event that the die shows a number bigger than four. The problem asks us to compute 
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P (E or F) and 	so Property 5 comes to mind. There are 6 members in the universe set U 
for this experiment. (You should list the members of U.) Also we recall that E - 2, 
4,6 1 and F = 1 5,6 .Hence E and F are not disjoint: in fact E andF 6= . 
By counting the members of these sets we find 

P()_6 =-L , P(E and F) =P(E) = -L, '6 P(F) 'T 

Now it 	 is a simple natter to substitute these values in Property 5 and obtain our answer 

3 2 1 	 4 2
P(E or 	F) =-6 + 6 3 

EXERCISE 67-6 

1. 	 The probability that your team wins a football game is 0.7. There is only a 0.1
 
probability of a tie. What is the probability that your team loses?
 1 

2. 	 The probability that your friend was born in January, June or July is I What is 
the probability that he was not born in month whose begins with thea name 

letter "J?"
 

3. 	 (a) Suppose event E is an impossibie event. What can you say about event
 
not-E?
 

(b) Suppose event E is a sure event. What can you say about the event 
not-E? 

4. 	 We choose one number from among the first 20 counting numbers 1, 2, ... , 20. 
What is the probability that the chosen number is divisible by 6 or by 8? [Hint. 
Let E be the event that the number is divisible by 6 and let F be the event that 
the number is divisible by 8. Do you see that we must calculate P(E or F)? ]

5. 	 We choose one number from among the first 30 counting numbers 1, 2, . . . , 30. 
What is the probability that the chosen number is divisible by 6 or by 8? 
[Compare with 	Problem 4 ] 

6. 	 A club with five male and five female foundation members elects two other men 
and three other women to membership. From the 15 members, select onewe 
person. What is the probability that the person selected is a foundation membei 
or a man? 

7. 	 A student takes two examinations, one in Mathematics and one ill Physics. He es
timates that his probability of passing Mathematics is 0.7, that he will fail Physics
with probability 0.4, and that the probability of failing at least one of the examin
ationsis 0.6, What is the probability that he will pass at least one of the examinations? 

8. 	 Suppose E and F are two events (subsets of U) and that E is a subset of F. 
(G) 	 Draw a diagram to illustrate this situation. 
(b) 	 Do you see that event F occurs whenever event E occurs? 
(C) 	 Use Definition ( * ) to show that P(E) < P(F). In words, we say that if F 
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occurs whenever E occurs, then the probability of F is at least as large 
as the probability of E. 

67-7 A Counting Principle 

We have seen that the probability of event E Is the ratio of the number of members 
in E to the number of members in the universe set U. Tht::t is, in symbols, 

n(E)P(E) 
n(U) 

To find n(E) and n(U) we count the number of members in each of the sets E and U. When 
this number is small, we can easily count by listing all the members. But what if the number 
of members is very large? Then it is no longer practical to list all members: we need 
another method. In this section we present a fundamental method that is used very often 
in many counting and probability problems. 

Consider first an example. Suppose we can go from city A to city B in three ways 
(by car, by train, by airplane) and from city B to our home in two ways (by car, by
bicycle). In how many ways can we go from city A to our home? We can count the ways 
with the help of a picture known as a tree-diagram. Starting from a point that represents 
city A we draw 3 lines, one for each way we can go from A to B. From each of these 
lines, we can continue in two ways so we draw two lines. The total number of ways of 

~~car..---- 3
2 

4 

6 

going from A to our home is found to be 3 x 2 6. This is the total number of"branches" in the tree-diagram. Now suppose you could go from your home to your 
school in three ways (by walking, by bicycle, by bus). Do you see how to continue the 
tree-diagram? Do you also see that there are 3 x 2 x 3 = 18 ways of going from 
A to your school with stops at B and your home? The Tree-diagram now looks like this: 
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bus~bicycle bicycle_

This example illustrates the first part of the following fundamental principle of 
counting:
(a) If one task can be done in A different ways and, following this, a second 

task can be done in B different ways, then both tasks can be done in the 
given order in A x B different ways.

(b) If one task can be done in A different ways and following this, a second 
task can be done in B different ways and following this, a third task can 
be done in C d'fferent ways, then all three tasks can be done in the given 
order in A x B x C different ways. 

Can you see the pattern here? What if you had four different tasks to do in order? 
If the first could be done in A ways, then the second in B ways, then the third in C ways,
and finally the fourth in D ways, do you see that there are A x B x C x D ways of 
doing all four tasks in the given order? And this pattern continues for any number of
 
tasks.
 

We will now use this principle to solve three illustrative problems. 
Problem 1. A telephone number consists of four digits, the first of which cannot
 

be zero. 1-ow many different telephone numbers are possible? We think of writing 
a 
telephone number by writing the first digit, then the second digit, then the third digit,

and finally the fourth digit. We can 
write the first digit (task 1) in 9 different ways since 
it can be any of the numbers 1, 2, . . . , 9. Then we can write the second digit (task 2)
in 10 different ways, the third digit (task 3) in 10 different ways and the fourth digit 
(task 4) in 10 different ways. By the fundamental principle of counting, do allwe can 
four tasks in 

9 x 10 x 10 x 10 = 9,000 

different ways. There are therefore 9,000 possible four-digit telephone numbers. 
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Problem2. "The World of Mathematics" is a 4-volume set of books. If one places 
these books on a shelf in a random fashion, what is the probability that they will be in 
exactly the correct order? 

Each outcome of this experiment consists of an arrangement of the books on the 
shelf. How many such arrangements are there? We can choose any volume for the first 
book we put on the shelf. Therefore this task can be done in four ways. Having done 
this, we have only three choices for the second book we put on the shelf. Then there 
remain two volumes from which we choose the third book on the shelf. Finally, we put 
the last available volume on the shelf. By the fundamental principle of counting, there 
are 4 x 3 x 2 x 1 = 24 such arrangements. So the universe set U for this 
experiment has 24 members and no arrangement is preferred over any other. (This is 
actually what we mean when we say the books are placed on the shelf in a random 
way.) 

If we let E denote the event that the volumes are in exactly the correct order, 
then n(E) = I since there is only one correct order. Therefore, by our definition of 
probability, 

P(E) -n(E) _ 1 
n(U) 24 

We have only one :hance in 24 of placing the four volumes on the shelf in the correct 
order. 

Problem 3. You ask three friends to tell you their month of birth. Find the 
probability that all three have different birth months. 

When your friends give you their answers, how many possible answers are there? 
The first friend can be born in any month so there are 12 ways that he may answer (task 1).
There are also 12 ways for your second friend to answer (task 2) and 12 ways for your 
third friend to answer (task 3). Therefore, the universe set contains 12 x 12 12x 
= 1,728 members, one for each possible outcome of our experiment. That is, n(U) 
= 1,728. 

Now let E be the event that all three friends have different birth months. How many 
members of the 1,728 in the universe set are in the subset E? We shall use the 
fundamental principle of counting again to arrive at this number. To write an outcome of 
our experiment that belongs to E we have 12 choices for the first friend's birth month 
(task 1), 11 choices (Why?) for the second friend's birth month, and 10 choices (Why?) for 
the third friend's birth month. Therefore, there are 12 x 11 x 10 = 1,320 members in 
event E. That is, n(E) = 1,320. 

By our definition of probability, we find 

n(E) 1,320 55 x 24 55P(E) n(U) - 1,728 - 72 x 24 - 72 

Suppose we had asked for the probability that at least two of your three friends 
had the same birth month. Do you see that we then want the probability of the event 
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not-E? For to say that all three of your friends do not have different birth months is 
equivalent to saying that at least two have the same birth month. Therefore, the 
probability that at least two of your three friends have the same birth month is 

P(not-E) = l-P(E) 
55 17 

=1- 72 - 7 = 0.24, approximately. 

The same method could be used to find the probability that at least two of your
friends have the same birth month when you ask four friends, five friends, and so on. The 
table below gives the results of such calculations. 

Number of Friends Probabilitythat At Least Tw' Have 

Same Birth Month 

112 - 0.08 (to two decimal places) 

3 177 - 0-24 

123 -42 

288 

5 	 89 = 0.62 

13 	 1 

It appears that we have about a 62% chance of finding at least two people with the same
 
birth month whenever there are five people in the room. 
 Of course, in using our definition 
of probability you will recall that we need to assume that all outcomes are equally
 
likely. In 
our example, this assumption means that births are equally distributed am-ng 
the 12 calendar months. Altbough statistics of births indicate that this assumption is not 
completely true, it is close2 enough to make our calculations reasonably accurate. 

EXERCISE 67-7 

1. 	 A school c!ub with 15 members has to select a President, a Secretary, and a 
Treasurer. In how many different ways can this selection be made? 

.N 
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2. 	 A restaurant offers two choices of soup, two different fish dishes, four different 
meat dishes, and three desserts. How many different meals consisting of soup, 
fish, meat, and dessert are there? Draw a tree-diagram to illustrate your answer. 

3. How mi:ny three-digit numbers can be formed using the digits 1, 2, 3, 4, 5, if 
(a) 	 no digit can be repeated? 

(b) 	 digits can be repeated? 
(c) 	 the number must begin with an even number? 
(d) 	 the number must be an even number? 

4. 	 In how many different ways can a coach assign Alli, Kizza, Kofi and Sozi to
 
positions on a football team so they can all play at the same time?
 

5. 	 A three-digit number is selected at random. (That is, each of the numbers 100, 
101, . . , 999 is equally likely.) Find the probability that the number selected 
(a) 	 begins with an even number. 
(b) 	 is an even number. 
(c) 	 begins and ends with an even number. 

6. 	 A shilling coin is tossel five times. 
(a) 	 How many different outcomes are there for this experiment? 
(b) 	 Assuming all outcomes are equally likely, find the probability that you 

get exactly one head among the five tosses. 
7. 	 In the table, the prcbability that at least two people have the same birth month 

when 	there are five people in a room is listed as 89 Verify that this value is 
144 y

correct. 

67-8 	 Another Look at the Definition of P(E) 

Let us briefly revise what we have learned so far. An experiment is described 
mathematically by a universe set U. The members of U represent all the possible 
outcomes of the experiment. We have seen that events are subsets of de universe set U. 
If E is 	any event and if ie assume /hai t/he outcomes o/ th.' experiment are all equally 
likely, 	then the probability of event E, denoted by P(E), is defined by the equation 

_n(E..)
P(E) -n(F)n(U)' 

where n(E) is the number of members in event E and n(U) is the number of members in 
the universe set U. We have proved some properties of probability .and we have also 
studied the fundamental principle of counting to help us determine the numbers n(E) and 
n(U) in some problems where it is not easy or not possible simply to list the members 
of E and U. 

Let us look more closely at what we mean by n(E) and n(U). When we count the 
members of a set, we give each member a weight of I unit and then add the weights of 
all the members of the set. For example, if n(U) = 4 , we give each member of U the 
weight of I and then add the weights. Since there are four ones, we get the expected 
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result: 

n(U) = 1 + 1 + 1 + 1 = 4 

So our definition of probability can be rewritten in the following equivalent form: If E is 
any event and if each member of the universe set is assignedthe same weight of I, 
then 

P(E) =sum of weights of members in E 
sum of weights of members in U 

Do you see that this is merely another way of writing our definition? This is so because 
the numerator equals n(E) and the denominator equals n(U). 

Now suppose that we think of an illustrative example in which n(U) = 4 and
 
n(E) 3 . Then P(f-) - and we know that 
we can arrive at this answer by giving
each member of U the same weight of 1 unit. (Of course, each member of E also gets 
weight I since it is necessarily a member of U.) Then we add weights to get 

P(E) sum of weights of members in E 
sum of weights of members in U 

1 + 1+ 1 3 

What would happen if we gave each member of U the same weight, but changed it 
from 1 unit to 2 units? Then 

P(E) 2+2+2 6 3 
2 + 2 + 2 + 2 8 4' 

1 
the same answer as before. Suppose we gave each member of U the weight Then 

1 1 1 3 

P(E) T 3+I T T 3 3I IF' =-4 
3+T+T+T T
 

again the same answer. Before reading further try assigning some other weight to each
 
member of U and check 
to see whether you get P(E) = 3 , as before.
 

That we 
will always get the same answer, no matter what weight we assign to each 
member of U, follows from what you know about fractions. Do you recall that 

n(E) w x n(E)n(U - w Y,n(U) 

for any nonzero number w? This means that assigning weight 1 or any other weight, say 
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w, to each member of U keeps the ratio or fraction 

sum of weights of members in E 
sum of weights of members in U 

constant. In our example, where P(E) = 4-, we could get this answer using weight 1 as 
before, or using any nonzero weight w for each member of U. This is so because 

1+1+1 3 
1+1+1+1 4' 

and also 

w+w+ w 3 xw 3 
w + w + w + w 4 x w 4 

Since our answer for P(E) is the same no matter what weight we assign to each 
member of E, we may as well use a weight that makes everything as simple as possible. 
First of all, we shall avoid negative weights. If we choose our weight so that 1! 
nonnegative and so that the sum of the weights of the members in U is I, then the 
fraction 

P(E) = 	 sum of weights of members in E sum of weights of members in E 
sum of weights of members in U 1 

simplifies since its denominator is 1. We then get 

P(E) = sum of weights of members in E 

In our example, where n(U) 4 , we would assign weight to each of the four members 
of U. This assignment meets the above conditions since 4 is a nonnegative weight and 
the sum of the weights of all four members in U is indeed 1. If n(E) = 3 , we would have 

P(E)= 1 + 1 +4-41 3 
44 44 

as before. 
Let us summarize what we have learned in this section. An experiment is described 

in terms of a universe set U with n(U) members. Suppose an event E (subset of U) has 
n(E) members and we wish to determine P(E), the probability of event E. We are still 
assuming that the outcomes of the experiment (members of U) are all equally likely. We 
then assign a nonnegative weight to each member of U so that the sum of all the weights 
is 1. Then our new definition is 

P(E) = sum of weights of members in E 
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1 

Of course, if there are n(U) members in U and each samemust get the weight then 
the requirement that the weights sum to 1 forces us to choose the fraction 

as the weight assigned to each member of U. 
n(U)astewihasindteahmmeofU
 

You should understand that this is just another 
way of writing and thinking about 
our previous definition. Both definitions will give the same answer for P(E) in any

problem. We can see 
this by realizing that the first definition (in Section 67-5) asked
 
us to compute
 

= n(E
P(E) n(U)" 

We know from the rules for multiplication of fractions that this is equivalent to 

P(E) = n(E) x I 

n(U) 

But now we apply our understanding of the meaning of multiplication. Multiplying1 a 

number (in this case n(U ) by the positive integer n(E) is equivalent to addng that 
number n(E) times. So we can write 

P(E) + 1+1
n(U) n(U) n(U) 

n(E) :erms in sum 

But this last expression is what the definition asks us to compute sincenew 1
n(UJ)
 

is the weight assigned to each member of U and since there are n(E) terms when one
 
sums the weights of members in event E. 
 So we see that the two definitions are 
equivalent. The reason for preferring the new definition is that it can easily be
modified to apply to experiments whose outcomes are not equally likely. We shall make 
this modification in the next section. But now let us see how a problem is done using 
our new definition. 

Examp/l: We throw a die in game of Judo.a What is the probability of event E:

"even number shows on 
 die"?
 

The universe set U = 1 1, 2, 3, 4, 5, 6 1 has n(U) = 6 members. Since we1 
are assuming that all six are equally likely outcomes, we assign weight -L to each. This 
weight is nonnegative and the sum of all the weights in U is indeed 1. Now event E = 

2, 4.6 1 so adding the weights of members in E, we arrive at our answer: 
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2 

11 1(E) 

3 1 
-6=-2 

EXERCISE 67-8 

1. 	 Suppose that the outcomes of an experiment are equally likely. What weight would 
you assign to each member of the univers;e set U if (a) n(U) = 2 ? (b) n(U)
 
36 ? (c) n(U) = 981 ?
 
Use the new definition of probability to find P(E). (First write the universe set
 
U, then assign weight- to each member of U, and then determine P(E). )
 
(a) We toss a coin and then toss it again. Let E be the event that we get one
 
head and one tail.
 
(b) We buy one lottery ticket. Assume 1000 tickets are sold and that there are
 
ten winning tickets. Let E be the event that we win.
 
(c) We ask two friends to tell us their birth month. Let E be the event that they
 
are born in the same month.
 

3. 	 Return to the experiments described in Examples 1-8 in the text of Section 67-2. 
For which of these does the assumption that the outcomes of the experiment are 
equally likely seem reasonable and for which does the assumption seem wrong? 

4. 	 Same question as in preceding problem but for the experiments described in 
Exercise 67-2, Problem I (a)-(m). 

67-9 A 	General Definition of P(E) 

As you have seen in the last two problems, there are experiments in which our 
assumption that all outcomes are equally likely is not reasonable. We must generalize 
our definition of the probability of an event to such experiments. The way of defining 
P(E) that was discussed in the preceding section will be most helpful. 

Suppose that you throw a drawing-pin on a flat surface and watch to see if it falls 
flat or on its side. You will recall that we did such an experiment and found (for our 

1 
drawing-pin) that about I of the tosses resulted in the pin falling flat. So the two 

outcomes of the experiment are not equally likely. It would therefore be unreasonable to 
assign the same weight to the two members of the universe set U = I falls flat, falls 
on side I for this experiment. If we wish to keep our requirement that the weights be 
nonnegative and that the sum of the weights of all members in U be 1, but are willing to 
drop our previous requirement that the weights all be equal, then what weights should we 
choose?
 

We are helped to answer this question by our expcrimental results. It seems from 

\V
 

185 



these that the weight assigned to the outcome "falls flat" should be 1 - and the weight
4assigned to the oitcome "falls on side" should be 

3 
4. (Look back at the results of 

your drawing-pin tossing experiment (Exercise 67-1, Problem 3) and determine what 
weights you would assign to these two outcomes.)
 

Consider another example. Suppose you ask 
a person to name a prime number
between 10 and 30. Let us also assume that among the people in your area, it is twice as likely for a person to choose the smallest prime 13 as to choose any one of the otheravailable primes 17, 19, 23, 29. What weights would you assign to the members of the
universe set U - 13, 17, 19, 23, 29 1 ? Remember that we want nonnegative weights
whose sum is 1. So we can proceed as follows: let w be the (unknown) weight assigned
to the outcome 29. Then w is also the weight assigned to each of the outcomes 17, 19,and 23 . And since the prime 13 is twice as likely to be chosen as each of the others,
the weight assigned to outcome 13 is 2w. The sum of all weights is then 

2w + w + w + w + w 

which equals 6w. But this sum must be 1. Therefore 

6w-- 1
 
1 211 1 1
and w = -. So the weights of the outcomes 13, 17, 19, 23, 29 are - 1 1 1 1
6 6 16 ' 6'16 16
 

respectively.
 
Now that we 
have learned that the outcomes of an experiment do not have to beassigned equal weights we can return to our definition of probability and formulate it
 

for any experiment.
 

An experiment is described in terms 
of a universe set U. We wish to 
determine P(E), the probability 
of event E. We assign to each member 
of U a nonnegative number (called the 
weight) so that the sum of all weights 
is 1. Then we define 

P(E) = sum of weights of members in 

event E. 

Notice that we have dropped the requirement that the weights must all be equal. That is
 
now only one of many acceptable sets of weights for the members of U.
 

Do you know why we kept the requirements that each weight must be nonnegative 
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and the 	sum of all weights must be 1 ? The first requirement is necessary because we 
want P(E) to be nonnegative for every event E. The second requirement guarantees that 
our probability scale will be restricted to the number line from 0 to 1, inclusive, since 
it makes the probability of a sure event equal to 1. In this way we automatically carry 
over to 	the general situation properties 1-3 of probability which were proved in Section 
67-6 only for experiments with equally likely outcomes. 

In fact, all of the properties of probability proved in Section 67-6 still hold true
 
with our new definition. To see this we have only to re-do the proofs given in that
 
section, being careful to replace "number" of members in event E by "sum of weights" 
of members in Event E and to use our new general definition. We illustrate by 
paraphrasing the proof of Property 4. You should carefully compare this proof with that 
given in Section 67-6. 

Property 4: If E is any event, then P(noi-E) = 1 - P(E) 
Proof: All members in the universe set U are either in the subset E or the subset 

not-E. Also, you recall that E and not-E are disjoint events (that is, have no common 
members.) It follows that we get the sum of the weights of all members in U (which is 
P(U) by our general definition) by first taking the sum of the weights of members in E 
(which is -(E) by our definition) and then the sum of the weights of members in not-E 
(which is P(,ot-E) by our definition.) We have in this way shown that 

P(U) = P(E) + P(not-E). 

But P(U) = 1, as we have already learned. Hence 

1 = P(E) + P(not-E) 

which is equivalent to the equation to be proved. 
From now on we shall use our new definition of probability sitice it applies to all 

experiments with a finite number of possible outcomes, whether these outcomes are 
equally likely or not. 

EXERCISE 67-9 

1. 	 An experiment has universe set I a, b, c, d I . Weights are assigned to the 
members of U to satisfy the following equatiori: 

weight 	of a = weight of b 

weight 	of c = weight of d 

weight 	of d = 3 x weight of a 

Find the weights and then determine the probability of event E = a, c 
2. 	 A die is thrown so that we have universe set U= 1, 2, 3, 4, 5, 6 . 
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Suppose 	we assign weights in such a way that the weight of any member of U is 
proportional to its value. That is, the weight of 1 is k x 1, the weight of 2 is 
k x 2, the weight of 3 is k x 3, andsoon, wherekis the constant of proportionality. 
Find the weights of each member in U and then deermine the probability that an 
odd number turns up when this loaded die is tossed. 

3. 	 Discuss how you might go about assigning weights to the members of the universe 
set U for each of the following experiments. 
(a) You play a game of draughts with your friend. 

U = I 	you win, you lose, tie I 

(b) An insurance company writes a 1-yr. policy for a man ag d 20. 

U = I man survives 1 yr., man dies within year I 

(C) You ask twins for their month of birth. Take as universe set the set 
U with 144 members as given in Chart 1, page 161. 
(d) A person is selected from the population and asked the question, "Do 
you think that there will be another world war?" Let the universe set U consist 
of three members corresponding to the possible answers "yes", "no", and 
"don't know". Suppose that you are told that 20% of the population expect 
another 	world war, 70% do not expect another world war and 10% are uncertain. 

4. 	 We give two solutions to the following problem: two coins are tossed. We let 
U =-- Hl, HT, TH, TT I be the universe set for this experiment. The problem 
is to find the probability for the event E that at least one head occurs. 

Solution 1 Assign weight - to each member of U. The event E = HH, HT, 

TH .	 Applying the definition of P(E), we add the weights of the members in 
E to get 

1 1 1 3 
T T -z3P(E) 

Solution 2 Assign weight I to 1-H1i Assign weight to TH andand to I-IT. 	 zero 
2 

to TT. (Do you see that this is an assignment of weights that is permitted by 
our definition? This is so because each weight is nonnegative and Lhe sum of 
all four weights is 1.) The event E is still the subset I HH, HT, TH I . 
Applying the definition of P(E), we add the weights of the members in E to getI~)=1 1 0 1 

P7) -+ -- 0 = I 

Explain 	the different answers obtained for P(F) in these two solutions. Can both 
be correct solutions? 
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67-10 Conditional Probability; Independent Events 

Suppose that an experiment is performed and we have a universe set U with weights 
assigned to its members. You recall that the probability of event E is then given by 

( * ) P(E) = sum of the weights of members in E. 

Now suppose that we are given the additional information that another event, say F, has
 
occurred. How does this news affect the likelihood of event E?
 

Let us first consider an example. Our experiment is selecting one slip from a hat
 
containing ten slips numbered 1, 2, . . . , 10. Then the universe set is U -- 1 1, 2,
 
• . . , 10 1 and let us suppose that each member of U is assi'ned the weight 

10 that is, each slip is as likely to be chosen as any other. Let E be the event that the 

number selected is greater than 5. Then E = 6, 7, 8, 9, 10 1 and we easily find 

1 1 
P(E) = 5 x I

10 2 

Now suppose that we are told that event F: "slip selected has an even number" 
has occurred. Then we knou, that the slip selected has one of the numbers 2, 4, 6, 8, 10 
on it. No longer is U our universe set: the slips numbered 1, 3, 5, 7, 9 could not have 
been chosen once we know F has happened. The set of possible outcomes is smaller 
than U now. The probability of E when we take into consideration the occurrence of 
event F is called the conditional robabilit'y of E given F and is represented by the 
symbol P(EIF). The vertical bar separates the event E whose probability is to be found 
from the event F which is given, that is, from the event known to have occurred. 

Stop for a moment and try to calculate P(EIF) in our example. How likely is it for 
the number to be greater than 5 if you know that an even number was selected? It seems 
reasonable to find P(EIF) by noting there are the five possibilities 2, 4, 6, 8, 10 after 
the occurrence of event F is taken into account. Of these five, there are three that are 
greater than 5. Since all slips were assumed to be equally likely, our intuition would have 
us say that 3 

P(EIF) 
5 

Notice that P(E) but P(EIF) 3 : the information that F has occurred increases 

the likelihood of event E. 
Our answer is better written in the equivalent form 

3 

P(EI F) 10
 
5
 

10
 

Do you recognize the numerator as P(E and F) and de denominator as P(F)? It appears
3 

that we can get our answer of - by using the equation
5 

189 



* ) = P(E and F)P(TZI 
P(F)
 

This equation is easy to picture in a diagram and can be interpreted as follows:The conditional probability of event E given event F is the ratio of the total weight of
those members of E that are also in F to the total weight of F. In the diagram below, wehave pictured events E (vertical stripes) and F (horizontal stripes), with the event E 
and F having both vertical and horizontal stripes. 

U = universe set 

Before we know that F has occurred, tie probability of E is the ratio of the total weight
of members in E to the total weight of members in the universe set U. But the weights

have been chosen to make the total weight of U equal to 
 1. So this ratio is just another 
way of thinking about our definition (1). After we are told that event F occurred, then werestrict our attention to the new set of possible outcomes (those in F) and take the ratio 
of the weight of members in E an(d F to the weight of the new universe set F. 

lWe sall take equation ( ** ) ais our definition of the conditionalProbability
o/any event E, given an event F. Of course, since division by zero is not allowed, this 
conditional probability is not defined if P(F) = 0 

Let us consider two more examples. 
Example i. You play a game of draughts with a friend. Suppose the members of theuniverse set U - I you win, you lose, tie I are assigned weights 0.3, 0.6, 0.1

respectively. Let E be the event that you do not lose. Then E you win, tie I and, 
according to definition ( * ), 

P(E) = 0-3 + 0.1 = 0.4. 
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Now suppose at some point in the game it becomes clear that a tie is no longer possible. 
What is your revised estimate of the probability of E given event F: "no tie" ? The 
event F = you win, you lose I so, again using (* 

P(F) = 0.3 + 0.6 = 0.9 . 

To use definition ( ** ) to compute the conditional probability of E given F, we need 
P(E and F). But E and F = you win I so P(E and F) = 0.3. Now definition (**) 
gives 

03 1
P(EIF)  0-9 -3
 

So here we have an example where information that F has occurred decreases the
 
2 1


E from - to likelihood of event 
5 t 3 

Example 2. We toss a shilling coin and then toss it again. What is the conditional 
probability of a head on the second toss given that the first toss resulted in heads? We 
have the universe set 

U = HH, HT, TH, TT 

and let us assume that these outcomes are equally likely. Then each gets weight 

Let E be the event "head on second toss" and F the event "head on first toss". 
We are asked to find P(EIF). Now E = I HH, TH I, F = I HH, HTI, E andF 
= { HH I so, using definition ( * ), we get 

2 2 1 
P(E) = 2 P(F) = 2 P(EandF) 

Applying our definition of conditional probability, we have the answer 

1 
-4- 1

P(E[F) =T
 
T 

Notice that in this example, the information that F occurred did not change the likelihood 
of event E. 

This last example illustrates a very important possibil-..Y. If P(EIF) = P(E) then 
the information that F occurred has no effect on the probability of E. In this case, we have 

1 (EIF) = P(E and F) P(E) 

P(F) 
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2 

so that cross-multiplying produces the equation
 

( *** ) P(E and F) = P(E) x P(F).
 

Two events E and F are said to be independent (sometimes called independent in
the probability sense) if and only if equation ( *** ) holds, that is, if and only if theprobability of the joint occurrence of both 	E and F is the product of the probability of E 
by the probability of F. 

If we assume that E and F are independent events, then canwe 	 show that P(EIF) 
= P(E) and P(FIE) = P(F) . Can you carry out a demonstration of these facts? We see 
that for two independent events, the knowledge: that either one has occurred does not
 
change the probability of the other.
 

The idea of independent events is 
one of the most important ideas in the
 
mathematical theory of probability. We cannot develop it any further in this brief
 
introduction to the subject. But 
we shall be using the multiplication rule ( * ) for
 
independent 
events 	when we study a decision problem in Section 12. 

EXERCISE 67-10 

1. 	 You toss a die in a game of ludo. Find the conditional probability that you get
 
a sx if you are given the information that your number is greater than three.
 
We buy a lottery ticket. Assume that there are 
1000 tickets numbered 1, 2, . 

1000. 
(a) 	 What is the probability that our ticket has a number whose first digit is 1?
(b) 	 What is the conditional probability that our ticket has a number whose 
first digit is 1 given that the number is greater than 250? 

3. 	 We ask our friend to tell us his birth month. Compare the probability that the name 
of his birth month begins with a "J" before and after you receive the information 
that he was born in the first six months of the year. 

4. 	 We throw a green die and then red die.a Find 
(a) 	 the conditional probability that the red die results in 5, given that the 
green die resulted in 3. 
(b) 	 The conditional probability that the green die results in 3, given that the 
red die resulted in 5. 
(c) 	 The conditional probability of obtaining sum 7 given that the green die 
resulted in a number less than 4. 

5. 	 In the preceding problem, are the events "5 on red die" and "3 greenon die" 
independent? Are the events "sum 7" and "number less than 4 on green die" 
independent? 

6. 	 A shilling coin is tossed and then tossed again. Let E be the even "not more 
than 1 head" and F the event "at least one of each face". Are E and F 
independent events? 
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7. Person A has probability 0.9 of surviving one year and person B has probability 
0.8 of surviving that year. Assume that the events "A survives year" and "B 
survives year" are independent. Find the probability that 
(a) A and B both survive the year. 
(b) A survives the year, but B does not. Do you know what assumption you 
had to make to solve this part (b)? 

8. An election with three candidates A, B, C is about to be held. A's probability of 
winning is 0.6, B's probability is 0.3, and C's probability is 0.1. Candidate C 
suddenly withdraws. Find the conditional probability for each of A and B to win 
the election, given this new information. 

67-11 Mean Value 

When we perform an experiment, we often are interested not in the particular 
outcome that occurs, but rather in some number associated with that outcome. For 
example, if we toss a coin 50 times we may be interested in the number of heads 
obtained and not in the particular sequence of heads and tails recorded as they occurred; 
in a survey of families, we may be more interested in the total family income than in the 
particular makeup of the family; in selecting a sample of students in a college, we may 
want to study the proportion of students studying mathematics; and so on.
 

As an example, suppose that we toss a fair die and are offered one shilling if we
 
get a 1, 2, or 3, two shillings if we get a 4 or 5, and three shillings if we get a 6. If we 
let X stand for the number of shillings we get, then we cannot say in advance what value 
X will have. All we can say is thac the value of X is 1, 2, or 3 and we can determine the 
probability of each of these values. For example, we get one shilling with probability
1 . 1. 

- since - is the probability that the die shows 
2 2 

a 1, 2, or 3. In this way, we complete 

the following table: 

Value of X 1 12 3 

Probability of this value 1 - 1 1 

As another example, consider a survey of families with two children so that U
 
BB, BG, GB, GG I is the universe set. Let us give each member of U the same
 

1
weight of 7 . Let X stand for the number of boys in the family. Again we cannot be sure 

of the value of X before taking the survey. Vhat we do know is summarized in the following 
table: 
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Valueof X 0 1 2 

Probability of this value -4 - -1 

You will recall from your study of statistical data that when are given a set ofwe 

numbers it is often useful to have 
a measure of their central tendency, their average. The 
most important number used for this purpose is the arithmetic mean of the numbers. 

We can also define and make use of the arithmetic mean of the possibl. values of
X in the above examples. This mean value is also called the mathematicalexpectation of 
X or just the mean of X and the symbol E(X) is used for this value. 

The mean of X is defined in the following way: one first forms the product of each 
possible value of X by the probability of this value. Then one adds all these products.

In our first example, E(X) would be the mean number of shillings we get. Following 
the definition, we find 

1 1 1 
E(X) 1 xI- + 2 x -+ 3 x 

2 3 T 
1 2 3
2+T+
 

2
 
1 2 shillings.

1 1 1 

In the second example, E(X) 0 x -+ I x -+ 2 x 

0 1 1
 

1boy. 

There is much more that we can learn about E(X) and its interpretation. This too, 
like the topic of independent events in the preceding section, forms an important chapter
in probability theory. We have merely introduced you to these ideas, discussing only 
those fundamentals needed in the next section. 

EXERCISE 67-11 

1. 	 A thousand tickets are sold in a lottery in which there is one top winner of £ 50,
four winners of £ 10 each and five winners of £ 5 each. A ticket costs £ 1. Let X 
stand for your net gain when you buy one ticket. (IL is understood that a negative 
gain means a loss.) Find E(X), the mean net gain (in E's). 
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2 	 Let X stand for the number showing when you throw a die in a ludo game. Find
 
E(X).


3. 	 One slip is selected from a hat containing ten slips numbered 1, 2, . . . , 10. Let 
X stand for the number obtained. Find E(X). 

4. 	 A student must guess on two questions in a multiple choice examination. Each
 
question has three posoible answers (a), (b), (c), only one of which is correct.
 
The student answers both questions with (a). Let X stand for the number of 
correct answers the student gets. Find E(X). 

67-12 A Decision Problem 

You wish to buy a camera in a shop. The shop owner has the camera you want 
available in two models: A and B. Model A costs 200 shillings, model B 250 shillings. 
Model A cameras are not quite as carefully inspected at the factory and so there is a 
chance 	that a camera of model A will be defective (perhaps with a faulty shutter or a 
scratched lens). Let p be this probability that a model A camera is defective. Model B 
cameras differ from model A only in their careful testing at the factory. They cost more, 
but when you buy a model B camera you are certain that it will not be defective. 

If you buy the less expensive camera, you cannot return it to the shop if it turns 
out to be defective. You must spend 80 shillings to have it repaired and it is then 
guaranteed to be perfect. 

A camera can be tested before you decide to purchase it. The test is foolproof
 
and you will definitely learn whether the camera is defective or not. But this test costs
 
20 shillings to perform. 

What would you do in this situation? Would you buy a camera of model A and take 
a chance on it not being a defective? Would you spend the 20 shillings to test a camera 
of model A before deciding whether to buy it? Let us consider a number of possible plans 
that you might follow. 

Plan I 	 Buy the more expensive model B camera. 
Plan 2 Buy the less expensive model A camera without testing it. (You then take 

the chance of having to spend an additional 80 shillings to repair it if it turns out to be 
defective.) 

Plan 3 Select a model A camera and test it. If it proves to be good, buy it. But 
if it proves to be defective, then buy a model B camera. 

Plan I Select a model A camera and test it. If it proves to be good, buy it. But if 
it proves to be defective, then select another model A camera and test it. If this second 
camera is good, then buy it. But if this second one is also defective, then buy a model 
B camera. 

How shall we determine which of these plans is better? First we have to understand 
what "better" means. Because of our uncertainty about the quality of model A camera, 
we cannot be sure of our cost unless we adopt plan 1. For plan 1 we know for sure that 
our total cost is 250 shillings. Let us compute for each of the plans the possible values 
of our cost and the probability with which each value occurs. Then we can calculate the 
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average or mean cost for each of these plans. We shall be interested in making the mean 
cost as small as possible. Let us carry out these computations and then we shall be in 
a better position to understand what is meant by one plan being "better" than another. 
And perhaps we can then determine the "best" plan.

Plan I We have already remarked that the only possible value of the cost is 250 
shillings. So this value occurs with probability 1 and our definition of mean value gives 

mean cost = 250 x 1 = 250 

Plan 2 Our cost will be 200 shillings if the camera is not defective, but will be 
(200 + 80) = 280 shillings if we have to repair a defective camera. The probability of 
a defective camera is p and the probability that the camera is not defective is therefore 
i-p. So we have the following table: 

possible value of cost 200 280 

probability of this value i-p p 

Our definition of mean value now gives 

mean cost = 200 x (l-p) + 280 x p 

which is equivalent to 

mean cost = 80p + 200 

(Can you justify this last step by using the distributive and associative properties?) 
Plan 3 Our cost will be (20 + 200) shillings if the model A camera passes the 

Lt:st, but will be (20 + 250) shillings if it proves to be defective. So we have the 
following table: 

possible value of cost 220 270 

probability of this value i-p p 

By our definition of mean value: 

mean cost = 220 x (1-p) + 270 x p 

which is equivalent to 

Lmean cost = 50p + 220 

Plan 4 Our cost will be (20 - 200) shillings if the model A camera passes the 
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test. It will be (20 + 20 + 200) shillings if the first camera tested is defective and 
the second one tested is good. And the cost will be (20 + 20 + 250) shillings if both 
model A cameras fail the test. Let us assume that the test results for two different 
cameras are independent. Then the events "first camera defective" and "second camera 
defective" are independent and so the multiplication rule ( *** ) of Section 67-10 applies. 
The probability that both cameras tested are defective is therefore p x p or p2 
Similarly, the events "first camera defective" and "second camera good" are independent 
and so the probability of tie first camera being defective and the second camera being 
good is p (1- p) or (p-p2). So we have the entries of our table for plan 4: 

possible value of cost 220 240 290 

probability of this value 1-p p-p 2 p 2 

(As we check on our work, we see that these probabilities sum to 1, as they should.) By 
our definition of mean value: 

2mean cost - 220 x (l-p) + 240 x(p-p 2 ) + 290 x p 
which is equivalent to 

mean cost = 50 p2 + 20 p + 220 

or 

mean cost = 10(5p 2 + 2p + 22) 

(Can you justify the steps in this simplification of the expression for the mean cost?) 
Now we notice that the mean cost for each of plans 2, 3, and 4 is a function whose 

value depends on the unknown probability p that a camera of model A is defective. 1/ we 
knew the value of p, then we could simply calculate the mean cost for each plan and then 
choose the plan which produces the lowest mean cost. For example, if p = 0.1, then the 
mean cost is: 

for Plan 1: 250 shillings 
for Plan 2: 208 shillings 
for Plan 3: 225 shillings 
for Plan 4: 222 - shillings, 

so we would adopt plan 2 if we knew that p = 0.1. On the other hand, if p = 0"9 (an 
unlikely event since a manufacturer who produces 90% defectives would not survive in 
business very long!) then the mean cost is 

for Plan 1: 250 shillings 
for Plan 2: 272 shillings 
for Plan 3: 265 shillings 
for Plan 4: 278 4 shillings, 
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so we would now choose plan 1. 
Our choice of plan becomes clearer if we draw on the same piece of graph paper the
 

graphs showing the dependence of the mean 
cost for each plan as a function of the
 
unknown probability p. (See Figure.) From the figure it is easy to 
see that Plan 4 always

(that is, for every value of p) leads to a higher mean cost than Plan 2. We would therefore
 
never choose to adopt Plan 4. But among plans 1, 2, 
 and 3 there is no one graph that is
 
always below the other. For values of p from p = 0 to p = J- we see that plan 2 is
 

8 eetayln2i

best since its mean cost curve is lowest. But for p from p = 5 to p = 1, plan 1 is
 
best. (You should verify that the graphs for plans 1 and 2 intersect when p =-)
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We could go on to discuss this problem further. But this would lead us into 
statistical decision theory. Instead we close this unit on probability with the hope that 
your interest has been aroused and that you will study other books and learn even more 
about probability and its applications. 

( 
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UNIT XV THE THEORY OF NUMBERS
 

Chapter 68 
PRIME NUMBERS, PRIME FACTORIZATION 
AND ELEMENTARY NUMBER THEORY 

68-1 Introduction 

This unit is supplementary to Volumes I and II. Its purpose is to give an
 
introduction to the Theory of Numbers. By "numbers" we shall here mean "whole
 
numbers". No other kinds of numbers will be considered. This work should generate an 
interest in primes, divisibility, least common multiples and greatest common factors. It 
gives an opportunity to explore and experiment in a fascinating field of study. 

68-2 Prime Numbers 

As you are aware, our system of writing numerals is based on place value. But 
numerals can also be written in many different ways. Thus 15, which is 1 ten and 5 
units, represents the same number as 30 + 2, 19 - 4, 7 + 8, 3 x 5, etc., etc. 
In this chapter .,e shall be concerned chiefly with the representation of numbers in 
factored form, that is, numbers written as products. When 15, for example, is written as 
3 x 5, we say that 

3 and 5 are factors of 15. 
15 is the product of 3 and 5. 
15 is a multiple of 3. 
15 is a multiple of 5. 

Note also that 15 = 5 x 3. However, the factored form 5 x 3 will be regarded 
as essentially the same as 3 x 5 because we are concerned with the factors 3 and 5 
and not with the order in which they occur. 

It should be clear that every whole number can be written as the product of itself 
and 1. What property makes this possible? On the other hand, if we examine the numbers 
14, 26, 35, 56, 63, 17, we see that each of these except 17 can be written as the product 
of two other numbers, The number 17, however, can be written in product form only as 
1 x 17. Thus 17 seems to be in a different class from the others. 

EXERCISE 68-2A 
Which of the following numbers can be written in factored form w'lly as the product 

of itself and 1? 
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61, 115, 7, 53, 94, 31, 49, 83, 43, 1, 
45, 57, 0, 129, 79. 

A whole number like 5, 13, or 17 that can be written in factored form only as 
the product of itseli and 1 is called a prime number. 

More precisely: A whole number is called a prime number nr simply a prime, if it 
is greaterthan I and if it can be written in factoredform only as the product of itself 
and 1. 

Note that we do not consider 0 and 1 to be prime numbers. Although 0 :1 x 0, 
it is equally true that 0 = 3 x 0, 0 = 15 x 0, and so forth. That is, zero multiplied 
by any number results in zero. On the other hand, 1 can be multiplied only by itself to 
give 1. These two numbers, as we have seen in previous work, have special properties. 
In respect to factoring also they appear to be special, and we put them in a class by
 
themselves.
 

A whole number that is greater than I and is not a prime is called a composite
 
numb er.
 

Examples of composite numbers: 4, 9, 12, 45.
 
We thus classify whole numbers 
 in terms of the ways in which they can be
 

presented in factored form as follows:
 

The set S of special whole numbers, S = 10, 1 1.
 
The set P of prime numbers.
 
The set C of composite numbers.
 

It is clear that S, P, and C are mutually disjoint sets (that is, no two of them
 
have any numbers in common) and their union is the set 
 W of all whole numbers: 

w = SUPUC. 

Diagrammatically, 

S P FC 

How can you tell whether or not a given number is a prime? 
One way, as we shall see, is to attempt to divide the given number by successive
 

primes starting with the least, that is, 2, 
 3, etc. We shall also examine a device
 
known as the Sieve of Eratosthenes, named for the Greek mathematician.
 

The sieve furnishes an interesting method of finding all primes less than a given
 
number, say 100. We construct the sieve as follows:
 

a. 	 Set out the numbers from 2 to 100 in an array. 
b. 	 Draw a circle around 2, which is the first prime. Then draw a slant line 

through every alternate number obtained by counting by two's, that is, 
4, 6, 8, and so forth. This will eliminate all the multiples of 2 greater 
than 2. 
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C. 	 Draw a circle around 3, the next prime. Then draw a line slanting in an
 
opposite direction through every third number: 6, 9, 12, 15, and so forth.
 
We thus line out the multiples of 3.
 
The first two steps are shown below:
 

11 13 IN, 1f4, 17 )< 19 ' 

X 23 X 25 . Xg 29 

31 Y X" 35 X 37 X 9 

41 )< 43 4 4, .Y/'1"6, 47 ) 49 " 

X 	 X,53 )< 55 Y7' 59 
61 k §Y'X65 (67 4 

71 >"( 73 Nt, 7X' /, 77 79 

)dk 83 85b§4' 	 89< 

91 931 < 	 , "'95 	 97 

d. 	 Circle the next prime, which is 5. Then, counting by 5's, draw a line through 
all other multiples of 5 not previously lined out. 

e. 	 Circle the next prime, which is 7. This time, counting by 7's, draw a line 
through all other multiples of 7 not previously lined out. 

f. 	 Finally circle all the remaining numbers which do not have lines through 
them. These circled numbers are all the primes less than 100. 
The end result is shown below: 

00 \X0 	 ,(D\ 

®@(©44 	 40>@(0X, X © X@ 
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In constructing the sieve, we lined out multiples of prime numbers only. Why were 
we not concerned with multiples of numbers other than primes? 

To answer this, consider one of the numbers which is not a prime, say 6. Since 
6 is composite, it must be a multiple of some prime number smaller than itself. Hence, 
by the time we reach 6 in the sieving process it will already have been lined out. The 
same argument holds for all composite numbers. 

EXERCISE 68-2B 

1. 	 The pairs of primes (3, 5), (11, 13), (17, 19), (29, 31), (41, 43) are sometimes 
referred to as twin primes. What special characteristic earns them this name? Pick 
out the other pairs of twin primes less than 100. Find 3 pairs of twin primes 
between 100 and 200. 

2. 	 You noticed that the sieve process stopped after lining out multiples of 7. Do 
you think we should have gone on to eliminate multiples of 11? Give reasons for 
your answer. (Note: 11 x 11 = 121. Therefore, if any of the numbers left are 
multiples of 11, then any other factor of such a number must be less than 11.)

3. 	 Copy the following array and cross out all multiples of 2, 3, and 5.
 
(Hint: You may use the counting-off process of the sieve.)
 

301 	 302 303 304 305 306 307 308 309 310
 

311 	 312 313 314 315 316 317 318 319 320
 

321 	 322 323 324 325 326 327 328 329 330
 

331 	 332 333 334 
 335 	 336 337 338 339 340
 

341 	 342 343 344 345 346 347 348 349 350
 

If the 	crossing-out process is correctly carried out, 14 numbers should remain
 
uncrossed. We shall now illustrate a method of testing one of these, 
 349, to see if it
 
is a prime.
 

We already know that 349 is not a multiple of 2, 3, or 5. Our next step is to
 
determine whether or not 349 is a multiple of the next prime, namely 
 7. We can, of
 
course, do this by ordinary division. In this case, however, we shall examine an
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alternative approach to illustrate certain number patterns. 
If 7 	 is a factor of 349, how large must the other factor be? Since 7 x 40 = 280, 

we need look 	only at factors greater than 40. What units digit must this other factor 
have? 	The multiplication table for 7's shows 7 x 7 as the only entry ending in 9. 
Thus we are 	limited to factors over 40 with units digit 7. 

Try 47, 57: 	 7 x 47 = 329 (too small) 
7 x 57 = 399 (too large) 

Thus 7 is not a factor of 349.
 
The next prime, 11, must have as its other factor a number less than 40 with
 

units digit 9. (Why?)
 

Try 39, 29: 	 11 x 39 = 429 (too large) 
11 x 29 = 319 (too small) 

Thus 11 is 	not a factor of 349. 

The Case for 13: Again the other factor must be less than 40 and its units digit must 
be 3. (Why?) 

Try 33, 23: 	 13 x 33 = 429 (too large) 
12 x 23 = 299 (too small) 

The Case /or 	 17: This time we can estimate that the other factor must be less than 
30, and have 7 as its units digit. 

Try 27, 17: 17 x 27 = 459 (too large) 
17 x 17 = 	 289 (too small) 

It is worth-while to stop at this point and ask a question. Do we need to test the 
case for 19, the next prime? Note that 19 x 19 = 361. If 19 divides 349, the 
other factor must be less than 19. We may conclude, then, that 349 is a prime. 

On the basis of what has gone before, we can now make the following general 
statement. Given the number N; if p is a prime such that p > N and if no prime2 

number less 	than p is a divisor of N, then N is a prime number. 

EXERCISE 	68-2C 

1. 	 Find two prime numbers other than 349 in the previous array. 
2. 	 Find the prime numbers in the set of numbers listed below. If they are not primes, 

list their factors. 

163, 251, 287, 203, 401, 529. 
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Let us examine the following numbers: 

23 - 1 = 7: 24 - 1 = 15: 25 - 1 31. 

Note that 

23 - 1 isaprime 
24- 1 is not a prime 
25 - 1 is a prime. 

Do you think that the rt. ult of subtracting 1 from an odd power of 2 will always 
be a prime number from here on? 

EXERCISE 68-2D 

Which of the following are primes? 

26-1, 27-1, 28-1, 29-1, 210 -1, 211 -1. 

(Hint: 29-1 =511, 2101 = 1023, 211 -1 =2047.) 

Do you still think that the result of subtracting 1 from an odd power of 2 will 
always be prime? 

68-3 Composite Numbers and Prime Factorizations 

Suppose that we now turn our attention to the set C of composite numbers. Let
 
us take, for example, the composite number 42.
 

We can write 42 in factored form in several ways. For example, 42 may be
 
written 
as 2 x 21, or 3 x 14, as well as 7 x 6. If we examine these three forms, 
we note that in each case one of the factors is a prime, but the other is composite.

Since the numbers 21, 14, and C are composite, they too can be written in factored
 
form. That is,
 

21l 3 x 7, 14 = 2 x 7, and 6 = 2 x 3.
 

Itfollows that we may write 42 
as the product of three factors. That is, 

42 2 x 21 = 2 x (3 x 7), 
42 = 3 x 14 = 3 x (2 x 7), 
42 = 7 x 6 = 7 x (2 x 3). 

If we remove the brackets, the three "ffactorizations" are 
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2 x 3 x 7, 3 x 2 x 7, 7 x 2 x 3 

(What properties of multiplication have we used?) 
There are two important things to notice about these factorizations: (1) All factors are 
primes; (2) Except for the order in which the factors appear, all three factorizations
 
are alike.
 

Because we are concerned with the set of prime factors and not their order, 
we
 
shall regard these factorizations as being essentially the same. For convenience 
we
 
usually write the factors in ascending order as in 2 x 3 x i.
 

A significant point has come 
out here. We started with three different factorizations 
of 42. We then found that if we continued to factor the remaining composite numbers 
until all factors were primes, the final results were no longer different. 

Let us examine carefully the factorizations of 72. Some possibilities are: 

72 = 6 x 12 = (2 x3) x (2 x6) = 2 x 3 x 2 x (2 x3)
7 2 = 8 x 9 = (2 x4) x (3 x3) - 2 x (2 x2) x 3 X 3 
72 = 4 x 18 = (2 x2) x (3 x6) = 2 x 2 x 3 x (2 x3) 

Note that the final factorizations on the right are the same, except for order. A
 
factored form containing only prime factors is called a prime factorization.
 
Thus
 

2 x 2 x 2 x 3 x 3 is a prime factorization of 72. Since all such prime
 
factorizations are alike (except for order), we say that prime factorization is unique.
 

EXERCISE 68-3 

Give the prime factorizations of the following numbers: 

70, 108, 180, 196, 231 

68-4 The Greatest Common Factor 

What is the greatest common factor of 9 and 12? Your answer is probably 3. 
This is correct, since 3 is the largest number that divides both 9 and 12. 

I.et us a. k the same question about 30 and 42. With a little thought you can 
see that the correct number in this case is 6. For reasonably small numbers we could 
probably find the greatest common factor (GCF) by experiment, first listing all of the 
common divisors, then selecting the largest in the list. We should like, however, to 
develop a systematic mcthod for calculating the GCF using the concept which we have 
just been discussing, namely, the concept of prime factorization. 

Recall that 30 = 2 x 3 x 5 and 42 = 2 x 3 x 7, where the factors are 
all primes. Though the number 1 is not a prime, we shall write 

30 = 1 x 2 x 3 x 5 and 4 2 = 1 x 2 x 3 x 7. 
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The reason for including 1 will be seen shortly. Now construct sets P and Q
 
consisting of the prime factors and 1 
 for each of the given numbers. Thus 

P = 11,2,3,51, Q = 11,2,3,71. 

We next determine the intersection of these two sets. It should be clear that in this
 
case the intersection PA Q = 11, 2, 31. 
 The product of the elements in PA Q is
 
1 x 2 x 3 = 6. This, as you recall, is the GCF of 30 and 42.
 

What is the GCF of 70 and 105?
 

70 = 1 x 2 x 5 x 7 
105 = I x 3 x 5 x 7 

P = 11, 2, 5, 71 
Q = 11, 3, 5, 71 

PQ =[1, 5, 71 GCF = 1 x 5 x 7 = 35 

For the numbers 35 and 66 we have: 

35 = 1 x 5 x 7, 6 6 = 1 x 2 x 3 x 11 
P = 11, 5, 71 Q = 11, 2, 3, 111 

PQ = 11 GCF = 1 

Since PA1 Q contains only the element we1, this is the GCF. Under these conditions 
say that 35 and 66 are relatively prime. In general, two whole numbers whose GCF is 
I are called relatively prime. We now see the reason for including 1 in the 
factorization. 

In order that this method may apply in all cases, we need a special device for 
those numbers whose prime factorizations contain repeated factors. For example, to 
find the GCF of 72 and 108 we note that 

72 = 1 x 2 x 2 x 2 x 3 x 3 
and 108 = 1 x 2 x 2 x 3 x 3 x 3. 

Using letters to distinguish like factors from each other, we write 

P = 11, 2a, 2b, 2c, 3a, 3bI 
and Q = 11, 2a, 2b, 3a, 3b, 3cl 

The intersection is P(1Q = 1, 2a, 2b, 3a, 3bI and the 
GCF = 1 x 2 x 2 x 3 x 3 = 36. Do you see the reason for including exactly two 
2's and two 3's? 

Though we can verify by experiment that in all the given cases the result is, in 
fact, the GCF, we have not yet shown why this is so. 

To discover this, we need to re-examine the relation between prime factors and 
divisibility. If we write 60, for example, in the form 60 = 1 2 x 2 3 x 5, itx x 
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is clear that each factor is a divisor of 60. Furthermore, we know that the product of 
any combination of these factors is also a divisor of 60. For instance, 4, 6, 10, 15, 
20, 30 are all products of certain of the given factors. They are therefore divisors of 
60. 

We can also see that products of these given factors are the only divisors of 60. 
How do we know this? Remember that factorization is unique! In a sense, this means 
that there are no "hidden" factors, factors which do not appear in the prime 
factorization. Clearly, then, 7 is not a factor, nor is 3 x 3 = 9. 

Now, go back to the question of GCF. Let us look at 60 and 72 where
 
60 = 1 x 2 x 
 2 x 3 x 5 and 72 = 1 x 2 x 2 x 2 x 3 x 3. Using letters to 
distinguish like factors from each other and omitting a few steps, we have 
P/IQ = 11, 2a, 2b, 31, whence the GCF = 1 x 2 x 2 x 3 = 12. Since both 60 
and 72 contain the product 1 x 2 x 2 x 3, we can be sure that 12 is a common 
factor. 

Is it the greatest? Suppose that we include an additional factor, say a third 2,
 
or a second 3, or a 5. Will the resulting product still divide 60 and 72? For
 
example, does 1 x 2 x 2 x 3 x 3 = 36 divide 60?
 

EXERCISE 68-4 

Use prime factors to find the GCF of each of the following pairs of numbers. 

a. 12, 18 b. 15, 36 c. 60, 84 
d. 108, 117 e. 35, 44 f. 31, 32 
g. 38, 140 h. 164, 200 i. 51, 119 
j. 39, 91 k. 64, 81 I. 72, 85 

68-5 The Least Common Multiple 

The notion of the least common multiple of two given numbers has already been 
used in the process of adding fractions. It is interesting to see how closely this concept 
can be related to the GCF of the previous section by using sets and prime 
factorizations. 

Given the numbers 60 and 72, you can verify by experiment that the LCM is 
360. This, in other words, is the smallest number which is both a multiple of 60 and a 
multiple of 72. 

It is possible, and more direct, to get this information from prime factorizations. 
We proceed, to start with, in the same way as we did in finding the GCF. From the fact 
that 60 = 1 x 2 x 2 x 3 x 5 and 72 = 1 x 2 x 2 x 2 x 3 x 3 we obtain 
the sets P = 11, 2a, 2b, 3, 51 and Q = U1, 2a, 2b, 2c, 3a, 3bl. 

This time, however, we form the UNION, P()Q of the two sets, instead of their 
intersection. Thus PU Q = 1, 2a, 2b, 2c, 3a, 3b, 5 1. The product of these elements is 

1 x 2 x 2 x 2 x 3 x 3 x 5 = 360. 
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Do we know that this process will always yield the LCM of a given pair of 
numbers? Let us re-examine the three factorizations 

60 = 1 x 2 x 2 x 3 x 5 
72 = 1 x 2 x 2 x 2 x 3 x 3 

360 = 1 x 2 x 2 x 2 x 3 x 3 x 5 

The factored form of 360 contains all the factors of 60. It also contains the factors of 
72. Hence, 360 is a multiple of both 60 and 72. It is certainly, then, a common 
multiple of the two numbers. 

Is it the least? If one of the factors of 360, other than 1, were dropped, would 
the result still be a common multiple? Suppose, for example, that we omitted one of the 
2's. Does 1 x 2 x 2 x 3 X 3 x 5 contain all of the factors of 72? 

EXERCISE 68-5 

Using prime factorizations and set union, find the LCM of each of the following 
pairs. 

a. 12, 20 b. 30, 45 c. 27, 36 d. 28, 49 
e. 17, 51 f. 32, 48 g. 18, 63 h. 35, 56 
i. 66, 99 j. 144, 160 

68-6 Divisibility Tests 

The problem of determining primes and prime factors involves a considerable 
amount of division. We have already seen how often we need to know whether a given 
number is divisible by 2, or 3, 5, 7, or 11, and so forth. 

It is always jossible, of course, to find this out by performing the actual division. 
There are certain aspects of our "place value" system of notation, however, which 
enable us to tell at a glance whether or not a number is a multiple of 2 or 5. With a very 
small amount of quick manipulation, we can also detect whether or not a number is 
divisible by 3, 7 or 11. 

These tests o/ divisibility are useful in actual practice. They also provide some 
valuable insights into the nature of numbers and the special properties of a place value 
notation system. 

In the next ftw sections we shall examine some of these tests in detail. Once the 
general principle is understood, it is hoped that the student may be able to discover new 
tests for himself. 

Th" fundamental idea which underlies all the tests for divisibility is based on the 
following statement: 

Let A and B be any two numbers and let N = A + B. 
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If a given number d is a divisor of A, then d will divide the number N if and 
only if d is also a divisor of B. 

In other words, suppose that N = A + B ar-I we know that A is divisible by 
d. Then only two situations are possible. 

1. Both B and N are divisible by d. 
2. Neither B nor N is divisible by d.
 

Let us first show that if d divides B, then it must divide N. Since we know
 
that d is a divisor of A, we can write A = d x a, for some whole number a. If, 
then, we assume that d divides B, we can write B = d x b, for some whole 
number b. Thus we have 

N =A +B 
(d xa) + (d xb) 

= d x (a + b) (Distributive property). 

This shows us that d is a factor (divisor) of N. 
We now wish to show that if d divides A, then it is not possible for d to divide 

N and not divide B. To do this we first note that N = A + B. We can write this as 
a subtraction statement 

N - A = B. 

Since we know that d divides A, we can again write A = d x a. Farthermore, 
if d divides N, we can write N = d x n and our equation becomes 

(d xn) - (d xa) = B 
or d x (n-a) = B. 

We see, then, that it is not possible to have d divide both A and N without 
also dividing B. 

We have now shown that in a situation where N = A + B and d divides A, 
(1) If d divides B it must also divide N; (2) If d does not divide B, then it 
cannot divide N. 

We use this property in the following way: We are given a number N and wish to 
know whether or not N is divisible by a certain number d. The procedure is to break 
N into two parts A and B where N = A + B. Using decimal place value concepts 
we arrange it so that part A is always known to be a multiple of d. 

We next examine B to see if it is also a multiple of d. Since B is a small 
number (by design), we can usually tell this by inspection. If B is divisible by d, 
then the property tells us that the original large number N will also be divisible by d. 
Similarly, if B is not a multiple of d, N is also not athen multiple of d. 

To illustrate the point let us first consider whether or not a given number is 
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divisible by 2 or 5. You no doubt know the answer to this one from past experience. 
But it is good to understand the reason for the rules we use. 

Let us consider the number 98275. Because we are using decimal notation, the 
number can be written as 

(9827 x 10) + 5 

Since the quantity on the left is a multiple of 10, it is certainly divisible by 2, and 
also by 5. The key to the situation is clearly the units digit. If this is divisible by 2, 
then the original number is also divisible by 2. Otherwise not. Since the units digit is, 
in this case, 5, it follows that 98275 is not divisible by 2. 

On the other hand, the units digit is divisible by 5. This means that the original 
number must be divisible by 5 also. 

If a number ends in zero, it must be a multiple of 10. Such a number is therefore 
clearly divisible by both 2 and 5. 

We may conclude from all this that a number is divisible by 2 if, and only if, the 
units digit is a member of the set 10, 2, 4, 6, 81. Similarly, a number is divisible by 5 
if, and only if, its units digit is in the set 10, 51. 

EXERCISE 68-6 

1. Determine by inspection which of the following numbers are divisible by 2, and 
which are divisible by 5. 

a. 367 b. 295 c. 72460 
d. 12986 e. 34295 f. 2591 
g. 37264 h. 12865 i. 149278 
j. 34713 

68-7 A Divisibility Test for 3 

We have just seen how the decimal notation system can provide a quick and 
effective way to test divisibility by 2 or 5. The key lies in the fact that the base 10 
itself is a multiple of both 2 and 5. 

The question we now face is: How can this same system furnish a convenient 
means for testing divisibility by 3? Since 10 is not a multiple of 3 - nor is any
other power of 10, such as 100, 1000, etc., - we must look about for a somewhat 
different procedure. 

Can we use the fact that 10 = 9 1 1, 100 = 99 + 1, 1000 = 999 + 1, 
etc., where the quantities 9, 99, 999, and so forth, are clearly multiples of 3? 

Let us look at an actual case. Take the number 453. We may write this as 
(4 x 100) + (5 x 10) + 3, which in turn may be written as 
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14 x (99 + 1)1 + 15 x (9 + 1)1 + 3 

Applying the distributive property we see that this is equal to 

1(4x99) + (4x1)1 + (5 x9) + (5 x1)1 + 3 

Some regrouping gives us 

1(4x99) -1 (5 x9)1 + 1(4x1) + (5 xl) + 31 
= 1(4xl x19) + (5 x9) + 14 + 5 + 31 
= 1(4 xl) x 9 + (5) x 91 + 14 + 5 + 31 
= 1(4x11) + 51 x 9 + 14 -+ 5 + 31 

We now have the familiar set-up N = A + B, where 

A = 1(4 x 11) + 51 x 9 

is clearly a multiple of 3. The question, then, of whether or not N is divisible by 3
 
depends on B = 14 + 5 + 3 1. If B is divisible by 3, then so is the original
 
number N; otherwise not. Now what about the sum 
 4 + 5 + 3? Since this is the 
sum of the digits of 453, we have discovered a "test" for divisibility by 3. Can you 
summarize the above results in the form of a rule? 

To make sure that you understand the test for divisibility by 3, we strongly 
advise you to apply exactly the above procedure to the number 9875 to decide whether 
or not it is divisible by 3. 

We are now in a position to ossert, with confidence, that a whole number is 
divisible by 3 if, and only if, the sum of its digits is divisible by 3. 

EXERCISE 68-7 

1. Use the "test" to determine which of the following numbers are divisible by three. 

a. 285 b. 3415 c. 2718 d. 4860 
e. 1902 f. 16241 g. 8041S h. 21178 
i. 35124 j. 16125 

2. On the basis of the discussion in this section, formulate a rule for divisibility by 
9. Use the rule to find which numbers in Question 1 are divisible by 9. 

3. Tests can be made for certain numbers by combining two other tests. Can you 
suggest a rule for divisibility by 6? Divisibility by 15? Which numbers in 
question I satisfy either of these tests? 

4. A test for divisibility by 4 might be based on the following: 

98232 = (982 x 100) + 32 
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Can you finish the presentation? 

68-8 A Test for Divisibility by 11 

In the previous section we noted that the numbers 9, 99, 999, etc., were all 
divisible by 3. We also used the fact that 10 = 9 A 1, 100 = 99 + 1, 
1000 = 999 t 1, and so on, tc set up our test for divisibility by 3. Can we apply a 
similar approach in the case of 11 ? First we note that 99 and 9999 are both 
divisible by 11. So far so good! But what about 9 and 999? Since these are not 
multiples of 11, we need to explore an alternative. The number 999 will not be of 
any use. What about 1000 1 1 : 1001? This is a multiple of 11. So is 
10 + 1 - 11. If we write 1000 as 1001 - I and 10 as 11 - 1, we should be
 
able to construct a test similar to the test for 3.
 

Let us try the number 3927.
 
First, 3927 = (3 x 1000) + (9 x 100) + (2 x 10) + 7 which we
 

nowwriteas 13 x (1001-1)1 + 19 x (99+1) 1 + 12 x (11-1)1 7 

= 1(3 x1001) - (3x 1)1 1(9x99) + (9x1)l + 1(2x11) - (2 x1) 1 + 7 

= 1(3 x1001) - 31 + 1(9x99) +91 + 1(2 xl) - 21 + 7 

= [(3 xl001) + (9x99) +(2 x11)] + (9-3 +7-2) 

= [(3 x91) x 11 + (9x9) x I1 + (2) x 11] + (9-3+7-2).
 
The quantity on the left in braclkecs is divisible by 11. Why? By the property that 
we 
have been using, we can again say that divisibility by 11 depends on the remaining part
9 - 3 + 7 - 2. If this quantity is divisible by J1, then so is 3927: otherwise not. 
In this case 9 - 3 + 7 - 2 is not the sum of the digits. It is surely related to the
 
digits, however. From the way in which the form is set up, we see that the signs
 
alternate. The quantity 9 - 3 + 7 - 2 can therefore be obtained by adding 9 and
 
7, then subtracting 3 and 2. Another way of describing this is to call it the
 
difference of the sums of the alcternate digits.
 

Let us try another example.
 
Is the number 3927 divisible by 11? We add the alternate digits 3 A- 2 = 5,
 
9 -1 7 -- 16. Then find the difference 16 - 5 n- 11. If the result is a multi ,le of
 
11 or zero,* then the answer is "yes", otherwise no! Try 91718. Add alternate
 
digits: 9 + 7 + 8 - 24; 1 + 1= 
 2; 24 -2 = 22. Is 22 a multiple of 11?
 
Check by division to see if 11 divides 91718.
 

Let us look at 2384. Note that
 

2 1 8 - 10 3 + 4 7 10 - 7 =- 3. 

*Note that the number zero is divisible by any nonzero whole number. For example, 
0 +1 0,0 0 + 3 = 0, 0 + 15 = 0, since 0 =1 x 0, 0 = 3 x 0, 
0 15 x 0, resl-ectively. 
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Is 3 	 a multiple of 11? What do we conclude about 2384? 

EXERCISE 68-8 

1. 	 Determine which of the following numbers are divisible by 11. 

a. 	 825 b. 7832 C. 1546 d. 9471 
e. 68324 f. 94655 g. 98082 h. 416234
 
i. 545655 i.213824
 

2. 	 Using the idea of combining two tests, formulate a iule for divisibility by 22, by 
33, by 55. 

3. 	 Apply the rules from Problem 2 to the list in Problem 1. 
4. 	 If you were setting up a demonstration for a six-digit number, say 416234, the
 

first step would be to write
 

416234 = (4 x 100000) + (1 x 10000) + (6 x 1000) + (2 x 100) + (3 x 10) + 4. 

For the next step, how would you represent 100000? How would you represent 
10000?
 

68-9 	A Test for Divisibility by 7 

We turn now to a more challenging problem. Can we find a convenient method for 
determining whether or not a given whole number is divisible by 7? For most two-digit 
numbers, we can deal with the question simply by recalling the multiplication table. 
Numbers like 14, 21, 28, 35, 42, 49, 56, 63, . . ., are easily spotted. 

What about a three-digit ni.nber, say 483? Try the following! Remove the 3. 
Double it (2 x 3 6). Subtract 6 from 48. The scheme looks like this: 

483 
-6 3 x2 =6 
42 

Is 42 divisible by 7? The answer is "yes". Then so is 483. Check this by division! 
Now try 672. Is this a multiple of 7? Apply the test! 

67
 
-4 2 x2 =4 
63 

Success again. 
For a larger number the test may be used a second time, or a third. Take 4564. 
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As before, we have 

4564 
-8 4 x 2 =8 

448 

We can apply the same test to 448. 

440 
-16 8 x 2 =16 

28 

What does this say about 4564? 
To illustrate the negative, let us look at one more number. Take 594. For the 

test we have 

594 
-8 4x2 = 8 
51 

Is 51 a multiple of 7? What about 594? 
Now that we know how to use the test, we face the usual probing question. Why 

does it work? 
To give a satisfactory mathematical answer, we shall have to examine our testiag 

device in a more formal way. 
Let us look again at the firs, example, 483. 3 x 2 = 6. 48 - 6 = 42. In 

terms of mathematical operations, we could describe this as follows: 

1) Subtract the units digit: 483 - 3 = 480 
2) Multiply the units digit by 20: 3 x 20 = 60 
3) Subtract this result from 480: 480 - 60 = 420 

The question here is: Does 7 divide 420? If the answer is "yes", then 7 also 
divides 483. We shall soon see why this is true. 

First, however, we shall establish the connection between the formal mathematical 
approach and the original short cut. In the short version we, in a sense, ignored a zero 
and ended up with 42 rather than 420. Normally one cannot casually "drop" a zero. 
But in this case we are not concerned with the value of a number, only the question of 
whether or not it is a multiple of 7. 

It should be clear that if 42 is a multiple of 7, then 420, which 42 x 10, is 
also a multiple of 7, and vice versa. Furthermore, it can be shown generally that ;f a 
number, say d, is not a multiple of 7, then 10 times d will not be either. In short, 
the property of divisibility by 7 is the same for 42 as for 420. Similarly with other 
numbers. 

Finally, then, we must show why the original number 483 is divisible by 7 if 
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and only if the derived number 420 has the same property. In applying the "formal" 
test we had 

483 - 3 = 480, 3 x 20 = 60, 480 - 60 = 420. 

Can we describe this process in one step? First we subtract 3, then subtract 
20 x 	 3. Is this the same as subtracting 21 x 3? It should be clear that we obtain 
the derived number by subtracting 21 times the units digit. That is, 
483 - (21 x 3) = 420. 

Now suppose, as before, that we call the original number N. Call B the number 
obtained after testing. Let D stand for the units digit of N. In our example N = 483, 
D=3, B =420.Weseethat N-(21 xD) =B, and N= (21x D)+B. 
Now if B is a multiple of 7, then B = 7 x b for some whole number b. Under 
these conditions 

N = 	 (21 x D) + (7 x b) 

= 17 	 x (3 x D) I + 17 x b 

Thus we can say, finally, that N is a multiple of 7, if B is. Otherwise not. 
As a special case, we should realize that if our short-cut process results in zero, 

the original number is also divisible by 7. Examples: 147, 126, 168, etc. 
We have seen why our test works. The reasoning is complicated. You :;hould read 

this part very carefully, to be sure of the ideas involved. 

EXERCISE 68-9 

1. 	 Apply the test for this section to determine which of the following numbers are 
divisible by 7.
 

a. 483 b. 301 C. 594 d. 945 e. 854 
f. 1365 g. 1938 h. 2541 i. 21854 I. 25305 

2. 	 Devise tests for determining what numbers are divisible by 14, by 21, by 35. 
3. 	 Apply these tests to the list of Question 1. 
4. 	 Use the divisibility tests to cross out all multiples of 2, 3, 5, 7, and 11 in 

the following array. This would help in the determination of primes. 

761 762 763 764 765 766 767 768 769 770 
771 772 773 774 775 776 777 778 779 780 
781 782 783 784 785 786 787 788 789 790 
791 792 793 794 795 796 797 798 799 800 
801 802 803 804 805 806 807 808 809 810 
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68-10 Exploring and Experimenting with Numbers 

Often one thinks of numbers merely as an aid in counting, measuring, making

change, and the like. Actually, aside from their usefulness in everyday affairs, numbers
 
themselves have 
many surprising properties (one might almost say "mysteries") which
 
have never ceased to provide fascination and challenge.
 

In this section we shall look at some 
of the ways in which numbers can be 
experimented with. We shall see how theories about numbers may be. tested, how new
 
ideas can be created.
 

As a start, let us look at the 
 LCM and GCF of given pairs of numbers.
 
Construct a table as follows:
 

Pairs of Numbers GCF LCM 

8 12 4 24 
9 15 3 45 
6 9 3 18 

10 15 5 30 
5 7 1 35 

12 18 6 36 
30 45 15 90 

5 8 1 40 

For a first experiment see if you can find a relationship between the numbers in
 
the two columns on the 
 left and the numbers in the two columns on the right. Does
 
8 + 12 = 4 + 24? Does 9 + 15 = 3 + 45, 
 or 6 + 9 = 3 + 18? Though
 
the answer 
is "no" in all cases, perhaps this suggests a similar experiment. Look at
 
some of the smaller pairs.
 

Stop! Do not continue reading until you have come up with an idea!
 

By now you hr.ve probably observed that the product of the two numbers in each 
pair is equal to the product of the GCF and LCM. 

Do you think that this will always be true? Try some other numbers! 
As a way of exploring the reason why, let us look again at 60 and 72. In 

factored form we have 60 lI x 2 x X 3 x 52 and 72 -1 x 2 x 2 x 2 x 3 
x 3. The product 60 x 72 = (I x 2 x2 x 3 x 5) x G x 2 x 2 x 2 x 3 x 3). 
Rearranging the factors and us' ng 1 only once, we have 
60 x 72 - I x 2 x 2 > 2 x 2 x 2 3 xx 3 x 3 x 5 -- 4320.
 

Recall, now, 
 that the GCF is formed from tile intersection set 
A n B = 1 1, 2a, 2b, 3 1 giving us I x 2 x 2 X 3 - 12. 

The LCM is formed from the union set 
A U B = 1 1, 2a, 2b, 2c, 3a, 3b, 51 giving us I x 2 x 2 x 2 x 3 x 3 x 5 = 360. 
We have already seen that the product of the two numbers, in primes, contained five 2's, 
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three 	3's, and one 5. It should be clear that the product of the GCF and the LCM will 
also contain exactly five 2's, three 3's, and one 5. 

EXERCISE 68-10 

1. 	 Test the above relationship using the pairs of numbers in the Problems in Sections 
5 and 6. 

2. 	 From the table, can you find any pairs a, b which have the relation
 
a + b = LCM - GCF? List all such pairs. Can you find a common pattern?
 

3. 	 Note that for the pair 3, 5 we have 2(3 A 5) =: 1 + 15, that is, 
2(a + b) = GCF + LCM. Is this true for 6, 10? What about 12, 20? List 
other pairs for which this same rule will apply. 

68-11 Divisibility in Other Bases 

You have seen that the divisibility tests and the special property of 9 all 
depend on the fact that 10 is the base of our decimal notation system. 

Suppose that we now look at some other systems of notation. Take, for example, 
the base 2. The numeral 110 represents the number six. This numeral certainly

two 

ends in zero. But is six divisible by five? 
Now recall the test for divisibility by 3 in the decimal system. 
A number in base 10 is divisible by 3 if, and only if, the sum of its digits is 

divisible by 3.
 
Take the binary numeral 110 . The number six, which it represents, istwo 

certainly divisible by three. But what about the sum of the digits? 
These examples clearly illustrate the fact that the tests for divisibility which we 

have been using do not generally apply for bases other than ten. It should be interesting 
to see what ideas on divisibility tests we can come up with in connection with notation 
in different bases. 

Before doing this, however, we should re-examine the notion of divisibility in 
general and the related concept of prime numbers. 

One often hears the question: "What about prime number-. in other bases?" To 
answer this question we should emphasize the fact that a number greater than 1 is 
prime if it cannot be represented as the product of two numbers other than itself and one. 
We can see from this that the condition of being prime is a property of number that does 
not depend on the particular notation in which a number is written. For example, we 
have said that the number 13 is a prime number, since it can be factored only in tile 
form 1 " 13. Now let us consider the number thirteen as it would be written ill otherbae.W 	 ae1 1101 = 16 =:11-23iv 

bases. We have 13ten two five seven twelve' 
Is it possible to represent this number as tile product of two numbers other than 

itself and one in any of the other bases? Try iti 
Now take the number twenty. In our earlier discussion we classified this as a 

N\ 
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composite number, since 20 could be written as 4 x 5. Now let us look at the 
various representations in other baes. 20 = 10100 = 40 f 26ten two five seven 
18 twelve* We can see that 

10100 
two 

= 100 
two 

x 10J 
two 

40 = 4fiv1 
five five 

26 =4 x5 
seven seven 
 seven
 

18 ~ =4 x5twelve twelve twelve 

Thus, twenty remains a composite number regardless of the base in which it is 
represented. 

The fundamental notion of divisibility is also a property of number that does not 
depend on a particular base. 

In the previous example the various factorizations in the different bases all show 
that both four and five are divisors of twenty regardless of the bases in which these 
numbers are written. 

The point to bring out here is that divisibility itself does not depend on a
particular base notation. On the other hand, the various tests for divisibility do, indeed, 
depend on the choice of base. 

Let us look again at base two. A sequence of counting numbers can be written as 

1, 10, 11, 100, 101, 110, 111, 1000, 1001, . 

Here we have omitted the subscript "two". 
In this notation, can you suggest a very simple rule for rec gnizing all even 

numbers? It is easy to see that a number written in base two ii a multiple of four if,
and only if, its last two digits are zeros. What can you say about divisibility by eight? 
by sixteen? 

Let us now consider a notation system in base seven. First, we should remember 
that in decimal notation the number nine had the following special property. 

A number in decimal notation is divisible by t.ine if, and only 
if, the sum of its digits is also divisible by nine. 

We note that nine is one less than the base ten. What does this suggest in connection 
with base seven? 

Let us examine some numbers written in this notation. 
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15 = 12 
seven ten 

33 = 24 
seven ten 

51 = 36 
seven ten 

105 = 54 
seven ten 

These numbers, as can be seen on the right, are all multiples of six. What can be said 
about the sum of the digits in the base seven notation on the left? To consider a larger 
quantity, thenumber522 

ten is a multiple of six. (Check this by the test in Section 7, 

Problem 	3.) Its representation in base seven is 1344 seven. What about the sum of 

the digits? We note that th( sum is equal to the number twelve, which is certainly a 
multiple of six. 

It is interesting to see what the results of adding these digits would be if we use 
base seven addition. Here we have 1 + 3 + 4 x 4 seven seven seven seven
15 and I + 5 is equal to 6 . seven seven 
 seven 	 seven
 

From this discussion we can make a general statement about divisibility tests 
with respect to numbers in all bases. This will be developed in the exercises. 

EXERCISE 68-11 

1. 	 Fill in the missing parts in the following rule. 
If numbers are written in a place value system using base n, where n is a 
counting number greater than 1, then a number in this system is divisible 

by if, and anly if, the 	 of the -is 

divisible 	by
 
2. 	 The following numbers are wzitten in base five. Apply a rule to determine which 

of these numbers is divisible by four. Rewrite the numbers in base ten and 
check the results by division. 

a. 44 	five b. 103 five c. 123 five d. 202 five 

e. 341 	 five f. 312 five g. 141 five 

h. 1102 	five i. 2011 five I. 3011 five 

3. 	 The following numbers are written in base twelve. Apply a rule to determine 
which of these is divisible by eleven. Check your result as in Problem 2. 
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a. 44 twelve b. 65 twelve C. 58 	twelve 

d. 128 twelve e. 245 twelve 

68-12 The Theory of Numbers 

In the previous eleven sections we have opened for you a small door to an old and 
important branch of mathematics called the Theory of Numbers. Already Greek 
mathematicians proved the validity of the following two statements: 

I. The set C of all composite numbers is infinite, 
II. The set P of all prime numbers is infinite. 

In other words, there is no largest composite number and there is no largest prime 
number. 

We shall show the truth of both statements by a method called "Proof by 
contradiction." 
I. The set C o/composite numbers is infinite. 

Suppose on the contrary that there are a finite number of composite numbers. Then 
they can all be arranged in ascending order, and we obtain a largest composite number, 
say N. However, 2 x N is greater than N and is also composite. Thus there is no 
largest composite number, and C is infinite. 
II. The set P of prime numbers is in/ini.e. 

The proof of this statement was given by Euclid in the 3rd century before our era. 
Suppose on the contrary that the set P of all 	prime numbers is finite, that is 

P = 	12, 3, 5, 7, 11, 13, 17, ... ,p 

has a 	 largest prime number, say p.
 
To show that P is an infinite set, it is enough to show that there is always 
a 

prime greater than the assumed largest prime p. To this end we form a new number,
 
obtained by multiplying all members of 
 P and adding 1. That is, we consider the
 
number n such that
 

n = (2 x 3 x 5 x 7 x 11 x ... x p) + 1. 

There 	are only two possibilities for the number n: 

1. n is a prime number,
 
or
 

2. n 	 is a composite number. 

1. 	 If n is a prime number, then n is a prime 	number that, by its construction, is 

220 



greater than the supposed largest prime p. In this case we have a contradiction 
with the assumption that p is the largest prime.

2. 	 If n is a composite number, the structure of n indicates that n kaves the
 
remainder 1 after division by any prime number not greater than p. This means
 
that no prime number less than or equal to p is a divisor of n. But n is a
 
composite number. Therefore, it must have a prime divisor that is greater than p.
 
We have thus proved that there is a prime greater than the supposed largest prime
 
number p, namely the prime divisor of n.
 
This completes the proof of II.
 
Since antiquity prime numbers have been an object of fascination for
 

mathematicians. Some of these mathematicians have tried to discover a rule for
 
constructing primes. For example, the famous French mathematician Fermat (17th
 
century), who has contributed much to the theory of numbers, noticed that the formula
 

2n + 1 

gives 	prime numbers for some 'values of n that are powers of 2. He indicated that 

2 nfor n = 20 = 1, + 1 = 21 + 1 = 3 is aprime, 

for n = 21 = 2, 2n + 1 = 22 + 1 = 5 is aprime, 

for n = 22 = 4, 2n + 1 = 24 + 1 = 17 is a prime, 

2 3for n = = 8, 2' + 1 = 28 + 1 = 257 is aprime. 

Fermat believed that this formula would always produce primes. In the 18th 
century, however, Euler disproved this conjecture by showing that for 
n = 25 = 32, the formula 211 + 1 gives a number divisible by 641. 

Thanks to the invention of high-speed electronic computers, larger and larger 
plmc numbers have been discovered. For example, the number 23217 - 1, which in 
its full form contains 1,000 digits (!), was proved to be a prime number. 

Another conjecture has occupied mathematicians from the time it was suggested 
(1742) by Goldbach. He stated that 

Ever), even number greater than 2 can be representedas a sum of two prime 
numbers. 

For example, 
4 =2 + 2, 6= 3 + 3, 8 = 3 + 5 

10 = 3 + 7, 48 = 7 + 41, and so forth. 

Take several even numbers and try to write each of them as a sum of two primes. 
Nobody has ever found an even number for which this could not be done. This 

means that Goldbach's conjecture was never disproved. However, no mathematical 
proof has yet been invented to show that this is a generally true statement. 
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EPILOGUE
 

Some Last Words - Mathematics, the Great Adventure. 

We are coming to the point where we must bid the reader good-bye.
 
Before doing 
so we shall look back over the road that we have traveled together
 
from 'lie beginning. We stand on a mountain from which we 
can take a long view.
 

This volume has been largely concerned with ways in which numbers are used
 
to help us to understand the world around us and to handle 
some of the problems of 
living together. We have looked at measurements which come out of experiment and we 
have seen how these measurements are often related to each other in simple ways. We 
have also seen how the results of many measurements can be treated so that useful in
formation can be obtained from them. But now we shall take a look back to the very begin
ning of Volume 1. 

As we do so we shall try to see how mathematics helps us to understand our 
world. We shall try to be clear about what mathematics is. Mathematics is one of the 
really great inventions of mankind. But it is not an invention which is completed. It is
 
always being improved and added to. 
 The story of its growth from small beginnings is 
an adventure story. Unfortunately we must bring the story to an end long before the 
present heights of development. We have had to confine ourselves to the simpler parts.
Mathematics is such a vast subject that people spend their whole lives studying it. 
There seems to be no end to what can be learned. 

We have said that mathematics is an invention. It is really a suc.:ession of inven
tions. Each of these inventions was first of all an idea in someone's mind. Somebody
 
was the first one to have this idea.
 

Arithmetic. 

Probably the first mathematical ideas were the ideas of sets of things and the 
counting numbers which go with them. This is where we began our story. The ideas are 
so old that no one knows who invented them. They go.back to prehistoric times. But they 
are ideas, not things like bananas or palm trees or houses. These ideas help us to think 
about things like bananas, palm trees and houses, but they are not things. "Three", for 
example, is an idea. It cannot be seen or heard or touched. But numbers like three do 
help us to work with things that can be seen or heard or touched. They help us to handle 
things more easily. 

Let us imagine ourselves present on that very important day many thousands of 
years ago when someone first had the idea of making a tally by notches in a stick, one 
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for each animal in his herd. What a discovery! For now it was easy to know whether any
of the animals were lost. It must have been a long time before anyone thought of making 
tallies of days to keep a calendar. But think of the difference this idea made. The days 
had gone by but the marks were still there. There was a record. 

Or think of the genius who invented numerals to replace tallies so that instead of 
% ////one could write 9, and the greater geniuses who thought of the abacus, the 
place system and zero. How much easier it is to add 328 and 154, for example, than to 
combine two scts with these numbers and count the number of members in their union. A 
further step was to simplify repeated addition as a multiplication. 

A big Advance came when new symbols wete invented to represent parts of objects 
or sets. Later, rules were devised to handle fractions, so that habits could be set up to 
work with them. Mankind learned to treat marks on paper as things. 

It is so much easier to work with the marks than the ideas for which tl~ey stand. In 
time these symbols or marks took on a life of their own. We are now as familiar with them 
as with the objects of everyday life. 

We come to notice how numbers behave, and discover, for example, the commutative 
and associative properties. We make a new world out of numbers, a world of our own 
creatior which helps us to deal with the world around us. 

When we work in this world of numbers that we have created we keep noticing 
things. For example we notice that we can keep on adding to get new numbers. 

A small child who had just learned to count asked his father: "Is a thousand the 
largest number there is?" His father could have said "No! A million is larger". But 
he was a good teacher. He answered simply "A thousand and one is larger". The child 
came back after half an hour and said "There is no largest number, is there?" He was 
right. He had made the discovery that the counting numbers go on without end. 

Geometry. 

Let us turn from arithmetic to another invention of mankind-to geometry. From 
dots, stretched strings and stretched cloth or leather man created points, lines and planes. 
These are ideas, that is creations of the human imagination that exist only in the human 
mind. No one has ever seen a point without length, breadth or thickness or a line with 
length but no width or thickness but these products of our imagination make life simpler.
They make it possible to think more clearly and precisely. And we think of a line seg
ment as extended without end in both directions and a plane as extended without end in 
all directions. How does this make things simpler? We give an 
find the altitude of a triangle it may happen that the P 
perpendicular from the vertex P to the base fails 

example. If you wish to 

to intersect the base. However, when the base is 
extended endlessly in both directions, the perpen
dicular always intersects the base line. In geometry 
we build up a world in which the rules are very simple base 
and clear. This world too leads a life of its own which grows as people work with it. 
This creation, geometry, helps us to think about real things in a remarkable way. This 
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fact comes out most clearly after we combine arithmetic with geometry, that is, use num
bers to measure geometric figures. 

Numbers and Geometry. 

Geometry and arithmetic were brought together by the invention of the number line. 
That is, the idea of marking a line with a scale was brought into mathematics. This was 
done by the ancient Greeks. In this way they could measure lengths, angles, areas and 
Solumes. To see how this was useful a few examples will be helpful. 

We have seen how Thales measured the height of a pyramid by using similar tri
angles. By proportion, the height of the pyramid: length of its shadow = height of a pole: 
length of the shadow of the pole. Three of these measurements 
were known so that the fourth could be found. This was an 
indirect measurement. It had to be since the line segment 
whose length was to be measured was inside the pyramid. 
It should be noticed how geometry helps us here. We imagine that the real pyramid is 
replaced by an ideal one. We draw a picture which leaves out everything that is not es
sential for the purpose of measuring the height. We forget the fact that the actual pyra
mid is made of blocks of stone with a certain color and the fact that these stones are 
yery heavy. We neglect the fact that there are certain passages into the tombs in the 
interior. We repi ice the actual object by a simplified idea of the object. 

Let us turn to another problem. For various reasons the Greeks were led to the 
idea that the earth is a sphere. The question arose "flow large is this sphere?" The 
question was answered by making some very simple measurements and using a picture. 
On a certain day the sun was directly overhead at noon at a place on the Nile called 
Syene. That is, at this place a vertical stick cast no noon shadow. At noon of the same 
day at Alexandria, 5000 stadia north of Syene, a vertical stick cast a shadow so that the 
sun was 70 12 'south of the point directly overhead. Here is the picture. The vertical stick 
at S (Syene) points away from 0, the centre 
of the earth, and toward the sun. The ver
tical stick at A (Alexandria) points away 
from 0 but the line from A to the sun makes A SUN 
an angle of 7' 12' with the stick. (The arrows 
which show the direction to the sun are prac
tically parallel because the sun is very far 
away). The angle at the centre of the earth 10 

between the rays & and 0 must be 70 12' 0 SUN 
1 

that is, - of the 3600 around 0. 
50 1 

Therefore 

5000 stadia is - of the circumference of the earth, and this circumference is 

50 (5000)= 250,000 stadia. The 'details are interesting but the important thing for us to 
notice is that Eratosthenes, who first made this calculation, thought in terms of a pic
ture which took the place of the real thing. That is, he used a mathematical model to 
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think with. Indeed when we say that the earth is a sphere we already use a math
ematical model - a geometrical one - to replace the earth in our thinking. This example 
is typical of how mathematics is put to work. It is an important example because without 
the idea that the earth is a sphere, Columbus would not have thought that he could 
reach the Indies by sailing west from Spain, and the new world, America, would not 
have been discovered. 

We have seen that the arithmetic of numbers is a sort of world of its own that can 
be explored. The same is true of geometry. When the two were joined some surprising 
things happened. It was natural to assume that any two line segments could be measured 
in terms of some unit. We saw in Volume 2 that the attempt to measure the diagonal of
 
a square led to the conclusion that there could be no common unit of measure for the
 
side and diagonal. This means that a new kind of number had to be invented. Finally
 
mankind invented a set of numbers, the real numbers, that satisfy all the needs of
 
measurement. These numbers obey a very simple set of rules.
 

Measurement in General. 

In the present volume we have seen how numbers can be attached to other quanti
ties than those that occur in geometry. An example is the quantity weight. This too is 
an idea. That is, we imagine that bodies have a property called weight to which we can 
give a number (after the choice of a unit). Similarly, temperature is another quantity that 
we imagine and set out to measure. The history of modern science and technology is a 
history of the invention o. mathematical models that we use to understand nature. 
When a successful model has been discovered we can understand and master a new as
pect of nature. We think in the language of these models which are clear and easy to 
work with. 

Certaintyand Uncertainty. 

There is one feature of mathematics that we must emphasize. This is the fact that 
mathematical statements seem so certain, so sure. When people are asked for an example 
of a statement that is absolutely certain they usually give "Two plus two equals four". 
No one who understands the meaning of the words can possibly doubt it. Mathematical 
ideas are so clear-cut and the arguments so convincing that everyone who understands 
what is being said agrees with them. This feeling of certainty is carried over to science 
as successful mathematical models of nature are invented. 

The fact is that it is possible to invent successful mathematical models of na
ture, mathematical pictures of nature that really work. By using these pictures and ideas 
we come to understand nature. As we come to understand we gain increasing control. In 
the present volume we have been able only to introduce you to the elements of scientific 
measurement and the mathematics that goes with it. Like Newton we stand on the sea
shore picking up pebbles while the boundless ocean of truth lies before us. Since New
ton's day man has sailed far out into this ocean but the adventure has only begun. 
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In talking of functions and formulas we have given only a hint of the mathematics of 
the last 300 years. 

These ideas have proved to be very powerful but they are only a part of modern 
mathematics. We can only invite the reader to look elsewhere for further chapters of the 
great adventure. A bibliography has been added to suggest where he may turn for addi
tional information. We hope that like all good teachers you will constantly strive to 
learn more. If you do go on you will share in the great adventure and be able to pass on 
to your pupils some of your knowledge and your enthusiasm. For i c is in this way that 
each generation stands on the shoulders of the one that came before. 

All of our scientific progress has been made on the basis of a certain faith, a 
certain belief. Modern man has believed that nature must make mathematical sense. That 
is, he has believed that with sufficient imagination we can invent mathematical models 
which represent nature. Nature must be mathematically reasonable. This is our faith. 
All experience seems to bear this out, up to and including the exciting work with sat
ellites and outer space exploration now going on. The world being opened by scientific 
investigation seems to have no limits. As the certainty of mathematics is carried into 
our knowledge of nature by the invention of successful models we gain increasing 
mastery and control of the circumstances of our lives. 

What of human nature ai.l the problems of living together? What can mathematics 
do to help? Certainly a great deal. Of course, the problems are different from those in 
the physical sciences. One stone falls in almost the same way as another but human 
beings are individuals that act differently. Variety is the rule more than regularity. For 
this reason the mathematics we use is often that of probability and statistics. Math
ematical models are more difficult to invent and only the first steps have been taken. 
But attempts to make them are quite recent. It is hard to predict how successful they 
will be. 

The hope of the world is that more understanding can be introduced into human af
fairs. There are, of course, other ways of understanding than the mathematical way, but 
we should not reject any method that leads to greater understanding. It seems to us that 
the greatest contribution that mathematics can make is the spirit in which it is conducted. 
Mathematics is universal. It appeals to the good sense of all mankind. Its truths are 
equally open to everyone. It is a common coinage of understanding. The world has some
thing to learn from the fellowship of mathematicians who are united in a common cause 
of understanding. 

And now finally we wish you all success in your chosen profession. Yours is a 
great calling. You can shape the attitudes of new generations and open to them the tre
mendous opportunities ald responsibilities of a rapidly changing world. The future is 
in your hands and theirs. 
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ANSWERS 	 to EXERCISES 

Chapter 58 

EXERCISE 58-2 

a. 	 By tying one end of the rope, and hanging weights on the other end until the rope 
breaks. Pounds or kilogrammes. 

b. 	 By collecting water in a vessel, measuring the depth after each rain, and adding
the measures of depth for a year. Usually measured in inches. 

C. 	 By the weight of salt dissolved in a unit of volume. Pounds per cubic foot, or
 
grammes per litre.
 

d. 	 By dividing the distance covered in a given time (assuming that the speed is
 
uniform) by the time. 
 Miles per hour, or feet per second. 

EXERCISE 58-3 

1 . 1 third + 4 thirds = 5 thirds
 
4 thirds + 1 third = 5 thirds
 

2. 	 Choose a new unit which is one sixth of U. 

1 12 U +-IU = 3 sixths + 2 sixths = 5 sixths
 
1 1
 
1'U + IU = 
 2 sixths + 3 sixths = 5 sixths 

EXERCISE 58-4 

4. 	 a. 15 ft. 4,57 metres, 
b. 51b. 2.27 Kg. 
C. 2 in. 5.08 cm. 
d. 100 sq. ft. 93 sq. metres 

5. 	 15 mi./hr. = 22 ft./sec. 

EXERCISE 58-5 

1. 	 a. 2 fourths + (I fourth + 3 fourths) = (2 fourths + 1 fourth) + 3 fourths 
since 2 + (1 + 3) = (2 + 1) + 3 by the Associative Property of 
Addition of Whole Numbers. 

b. One twelfth. The result follows since (6 + 4) + 3 = 6 + (4 + 3).
2. 	 In terms of the new unit 

a + 0 = a. 
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EXERCISE 58-8
 

1. 	 We could measure the time by the volume or weight of water which collects in 
that time. The rate of flow from the tanks must remain constant. This will be 
true if the tank remains full, but if not, the water will flow slowly as themore 

water level falls.
 

2. 	 You could mearuie an interval of time by the number of beats of the heart or 
pulse. (Galileo timed a pendulum in church in this way.) The pulse rate may 
vary. If one becomes excited, for example, the pulse will speed up.

3. 	 You might have someone hold up one, two or three fingers and determine how 
far away he would have to walk in order for you to be certain to know how many 
fingers he held up. 

4. 	 Take a watch and find out how far away it can be held so that you can still 
hear it tick. 

5. 	 You might give him a list of unfamiliar words and see how many he could 
remember the next day or week or month. 

Again, you could have him look at a large number of pictures of people in 
a short time and see how many he recognized the next week or month. 

There are, however, differences in people in the kinds of things they 
remember, so that these two tests would not be equivalent. 

6. 	 You should devise a test with questions which require ability to reason on 
unfamiliar material. See the discussion in Section 58-9. 

EXERCISE 58-9 

122°F corresponds to 50'C. Reason: 500 C is half-way from 0°C to 100'C. 
Half-way from 320 F to 212°F is 32 + 90 = 122°F. 

Chapter 59 

EXERCISE 59-i 

a. 8:1, b. 1:5, c. 1:5, d. 1:5, e. 13:6, 
f. 1:15, g. 2:3, h. 9:10, i. 9:4, j. 7 : 12, 
k. 21:4, 1. 6:1. 



EXERCISE 59-3 

1. 
2. 

3. 

a. 
a. 

a. 

4:1, 
38: 57,5 

4' 

b. 
b. 

b. 

32:45, 
29: 15,1 
T 
4 

c. 
c. 

25:2, 
50: 7. 

3_d 

3-
4' 

d. 

d. 

8:5, 

1 
2' 

e. 

e. 

2:7. 

I hour, 

f 26 metres g. 2 8 ounces. 

EXERCISE 59-4 

1. 
2. 
3. 

a. 37.5%, 

Second. 
First. 

b. 233.33%, c. 34.4%, d. 88.89%, e. 6.67%. 

EXERCISE 59-5 

1. 
2. 

3. 

4. 
5. 
6. 

7. 
8. 

9. 

10. 
11. 

175 miles. 
1 : 50,000. 

3 5 
4 in. by 3 in.; -- in. by-5 in. 

C. 
63,360 inches; 1:63,360. 
a. 1:1,267,200, b. 

7. 1 
-- inch. 
a. 1:72, b. 120ft.,1 

-1 inch. 

180 hectares. 
16 9 hectares. 

85 miles. 

c. 1:72. 

EXERCISE 59-6 

1. b. No, d. No. 

2. a. 

C. 

75:45 = 30:18, 

5.1 : 1.7 = 0.9 : 0.3, 

b. 

d. 

22-: 16 
3 

I 1 
4T2= 

3 
4. 

11 
To253 
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EXERCISE 59-7A 

1. b. No. 
2. d. No. 

125 4 
4 -; 20. 

EXERCISE 59-7B 

1. 3:9 = 7:21; 3:7 = 9:21; 21:9 7:3; 21:7 9:3. 

EXERCISE 59-8A 

1. a. 9, b. 6, c. 132, d. 7, e. 48, f. 1.44. 
2. a. 63, b. 3, c. 18. 
3. 1,500 metres; 1:20,000. 
4. 15 in, hes. 
5. 317 ft. 
6. 1:1,000; 7 5m.; 30cm. 

EXERCISE 59-8B 

1. 75 ft. 

2. 1121 ft. 

3. 18 ft. 

EXERCISE 59-9 

1. 870 miles; 1,305 miles; 2,175 miles; 1,522.5 miles. Direct proportionality. 
2. 95 
3. 2.56 inch. 
4. 1,050 

EXERCISE 59-10 

1. 24; 10; 48. 
2. 128 
3. Direct proportionality: a., c., f., g., h ., k.,, 

I. m, 
Inverse proportionality: b., d., i. 
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Chapter 60 

EXERCISE 60-2 

1. Let s inches be the length of the 
s 
1 

V 
1 

side of the cube and V cubic inches 2 8 
the volume. Then V = s 3 . The same 
formula applies for s feet and V 
cubic feet, or s cm. and V cu. cm. 3 27 

2 8 

2 8 

3 27 

2. Let s inches be the length of the s S 
side of the cube and S square inches 1 3 
the surface area. Then S = 6s 2 . 2 2 

1 6 

3 27 
2 2 

2 24 

3. If d cm. is the diameter of the circle 
d 
1 

A 
77 

and A sq. cm. its area 4 

A = d2S=-T ( 22= -7.) 2 77 

4 

4. If s units is the length of the side of s p 
the ::quare and p units the perimeter 7t 

of the figure 1 3 + -2 

2 6+r 
p = 3s+- = (3+-Z)s 3 377 

2 

233 



5. If s units is the length of the side s A 
of the square and A square units the 
area of the figure 8
 

2r2 88i 2 	 2 4 -1
A r=s - (1 +-s 	 2s 

9ir 
3 9+

8
 

EXERCISE 60-3
 

1
l.a. 
3
 

b. 3
 
C. 5280
 
d. 4
 
e. 100
 

100
 1

2. a. 	 yr =yf 

b. f = 	3y 
C. f = 	 5280 m 
d. q = 	4g 
e. c = 	100m 
f. 	 i 

100
 

3. a. 	 p = 2000 t 
2 f2
 

= 144fi
b. 

C. i3 = 	 1728 f 3 

10,000 md. c = 

4. m 	 30g 
5. 	 h m
 

4
 
6. m = 	 200 h (The number of miles is 200 times the number of hours.) 
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EXERCISE 60-4 

1. 	 Let n be the number in column A. Then the numbers in
 
column B are given by the formulas
 

a. 	 n+l 

b. 	 n +4 
n3C. 

d. 	 n'+1 

e. 	 n(n+ 1) or n 2 + n. 

Experiment 3 

Set A: Point on rule: 36" 27" 24" 21" 20" 

Set B: Number of pennies: 1 2 3 6 9 

Experiment 5 

Set A: Length of string: 18" 15" 12" 9" 6" 3" 

Set B: Number of oscillations
 
in 30 seconds: 6.4 7' 7.75 9" 11 
 15.6 

The results of the remaining experiments will depend upon circumstances 
the rubber band (amount stretched) - the location and the time of year. 

EXERCISE 60-5 

1. 	 A function 
2. 	 A function 
3. 	 A function 
4. 	 Not a function 
5. 	 Not a function 
6. 	 A function 
7. 	 Not a function. (For example, 2 in set A corresponds to 

I = 1 and I = -1 in setB.) 
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Chapter 61 

EXERCISE 61-1 

1. 2 

4 

3 

2 

(1,4) 

0 
(1,3) 

(1.2) 

(1,1) 

1 

0 
(2,4) 

0 
(2,3) 

(2,2) 

(2,1) 

2 

0 
(3,4) 

0 
(3,3) 

(3,2) 

(3,1) 

I 

3 

0 
(4,4) 

0 
(4,3) 

(4,2) 

(4,1) 

I 

4 

3 

2 

1) 

(T 

0 

0I 

1 

2i 

o(2 

2 

") 

3 

3. 4. 

(0,4) 

(0,3) 

(-1,1)0 

-1 

(,1,-1)o. _ 

1 

- 1. (1,-i) 

(0,2) 

(0,1) 

(0,0) 
(1,0) (2,0) (3,0) (4,0) 
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5. 9 

8 

7

6 

5 ---
A C F E L K 

4 

3-H I 
N 

2

0 I 

1 

D 

2 3 

G 

4 5 

J 

6 

P 

7 8 

0 

9 

EXERCISE 61-2 

1. 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

(1.2)2:= 1.4 

22(2.9)2= 8.5 

(1.2) = 1.44 

(2.9) 2 = 8.41 

0 1 2 34 
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2 3. 

Straight Line
 
220 F 
 y=x+ 2 
2107
 
200
 

190
 
180
 
1704 
160 
150
 
1402
 

130
 

120
 
110
 
100 
90 	 I 

70 	 4. and 5. 
60 
50 C = 5 F 40 (F =41) 115
 
40 C = 50 F 120 (F = 122)
 

30
 
y = 3x-+ 	22 

0 '-+-- I ', I I I ', 4 C 

10 20 30 40 50 60 70 80 90 100 
10
 

y = 3x 

5 	 Straight line 
through (0,0). 
Graph of 
y = 3x + 2 is 
parallel to the graph 
of y = 3x and 2 
units above it. 

0 1 2 3 4 5 
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EXERCISE 61-3 

1. 

5
y =5x y 2

4 

3

y = 3 

2-
y --X 

-2 1 2 3 

2. The point P (l,c) is on the graph. 
So is the point 0(0,0). Draw ray V. Let 
x be any positive number 1. Draw a (x, cx) 1 
vertical line through the point (x,0) = S. 
The triangles ORP and OSQ are similar. 

Hence, SQ
OS 

RP 
- OR' that is, 

SQ c (1, c) 
x T cx 

and SQ = cx. 
The point Q is therefore the point 
(x,cx) = (x,y). Hence Q is on the graph c 
of y = cx. 

If a point Q'off this ray were part (0,0) 1 
of the graph, let Q' = (x,b). Now Q = O R S 
(x,cx) is on the graph. If Q" L Q, we 
have a contradiction. 
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3. 	 See the discussion at the beginning of Section 61-4. 
4. 	 y =-x + 2 is parallel to
 

y = x and therefore has the 

slope 1. The shaded figure is 

a parallelogram.
 

,(1,2) 
(0,2) 

Q 

(0,0) 

5. 

5--


4-

y= 2x + 1
 

3

2
 

1
 

01 	 2 3
 

EXERCISE 61-4
 

1. 	 Since F =9C + 32 when 
5 
 9(273)

C =-273, F =- 5 + 32
 

2457
- + 32
 
5
 

- 491- + 32 = -459 2
 
5 	 3
 

X,
 
+ 

P(.1,1) 

OR liPS
 
OR = PS
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2. 	 00F = -180C. If 9 C + 32 0 
5
 

9-c =-32 
5C 

C 5 (-32) 160 177 
-3 	 179 = == 


3. 	 From the graph C 10 
Chc! 9 x 0+3-90
 

Check! x 10 + 32 -+32 = 18 + 32 = 50

5 	 5 93C9 


50 =-9 C +32 18 =-C 2- C =10 

EXERCISE 61-5 

1. 	y =0 if x=6
 
y = I if x= 8 8
 
x -	 2 (y + 3) 

2. 	 y=0 if x =1 7 
y = 1 if x 1"=1-	 y =x22 

x =-y-+ 1 	 6 

3. 

2
 
4 
 4
 

x1 

3
 

= 	 -3 -2 -1 0 1 2 3 
y

2
 
y = 1 ifx = 1 or x
 

-1/(Two answers)
 
y = 4 ifx = 2 or x =
 -2/(Two answers)
 

x = V/7 or 	x = -V-y 
/(Two formulas)

0I 	 I I Ix 

1 2 3 4 
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EXERCISE 61-6 

1. 

16 

15 

2. We can restrict the time t to values from 0 to 1 
inclusive, or from 1 to 2 inclusive. 

3. The distance d increases from 0 to about 1300 (miles) 
then decreases to 0. There is not an inverse function 

-,hole time of the trip. 

14 

13 

12 

11 

10 

9 
h 32t - 16t 2 

8 

7 

6 

t= , 

1 
t=-. 2 

t =1 

t= 3 
2' 

t= 2 

h =0 

h =12 

h 16 

h 12 

h 0 

4 

3 

1 2 t 
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EXERCISE 62-2A 

2. a 7 b. 3 c. 14 d. 10 

e. 12 f. 30 g. 8- h. 

3. C = 5 degrees 

4. 9 

EXERCISE 62-2B 

1. a. 15 5. (120 - x)/- 10. 9 ft. and 3 ft. 

b. 21 80/- 11. 28 

2. 

3. 

(a) 

(b) 

(a) 

(b) 

(c) 

2 

24 

3 

3 

4 

6. 

7. 

8. 

9. 

A. 40/-

B. 20/

36 miles 

30 

52 years 

12. 1 × I oz. 
2 

2 x 1 oz. 

3 x 1 lb. 

4 x 2 lb. 

4. 25 

. 

EXERCISE 62-3 

125 gallons 
3. 576 cu. ins. 

2. 

m 

m 

13 

n 

G  5 
2 

= 90 mi",utes 

teaspoons of tea 

- 1n =44 

4. 

16 

12 inches 

660 sq. inches 

h S - 308 

13 people n 36 inches 
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5. 5.1 
E =15-1 8. T= 

2 
2-when R= 20, r= 8 

n 2E - 16 r = RT - R 

n =8 when E is 12 r= 16 when T =2, R =16 

6. S 9 when a = 3, t 2 . V 36,whenr=3 

S -
3 

a 3 
r 

3V 
477 

t=6when S =24, a 6 r=9,261 when V= 38,808 

7. y= 7 when x 2, z =3 r =41 

z= 5x - y 

z = 55 when x = 12, y = 5 

1. 

2. 

4. 

EXERCISE 62-4 

x > 1 

x >1 

4 

4 

5 

x < -9 

7. 

8. 

9. 

10. 

x lies between 

16 

6 

22 

-1 and 3 

5. x > -1 

6. x lies between -11-
2 

and 1 
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EXERCISE 62-5 

1. 

2. 

3. 

4. 

3x + 1 > 4 

11l 3 xK ,T<7 

5x-3<1 

1 
2 -- C< 5 

3x > 3 

3 < 3x--

7 4

x< 

1 
-C > -3 

x > 1 

x>1 

C > -9 

5. 8-

-3 

3x < 11 

< 3x 

x > -1 

6. 

7. 

- 3 < 2x 

3> x > 

< 1 3 < x <1 

Chapter 63 

EXERCISE 63-2 

] . 90, 83, 76, 68, 66, 
56, 54, 54, 54, 52, 
28, 28, 25, 24, 16, 

6, 4, 2. 
(a) 11 (b) There are 

24 
Hence the percentage - 24 x 100% 

(c) 90 - 2 = 88. 

66, 66, 64, 
52, 51, 51, 
14, 14, 13, 

24 scores above 25. 

= 66 2/3%. 

63, 
51, 
11, 

61, 
30, 

6, 

58, 
30, 

6, 
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2. Score 

92 

91 


90 

88 

87 


86 

85 


84 

83 

82 

81 


3. Score interval 

96- 100 
91- 95 
86- 90 

81 - 85 
76- 80 
71 - 75 
66- 70 
61 - 65 
56- 60 
51- 55 
46- 50 
41- 45 
36- 40 

(a) 58 

Tally marks 

/ 
// 

7 
7"//-//// 
7"//-7/-/, 
7K hf- hW 

7/-/--/1 

7/A!!! 
//-/ 
/// 

(b) 10 + 18 
(c) In the interval 76 - 80. 

4. Price Interval 
160- 164 
165 - 169 
170 - 174 
175 - 179 
180- 184 
185- 189 
190- 194 
195- 199 
200- 204 
205 -209 

Tally Marks 
/ 
/ 
// 


/// 


/ 
// 

// 

/ 


Score boundaries 

95.5-
90.5-
85.5-

80.5-
75.5-
70.5 
65.5 
60.5. 

7N %///-/#/W 55.5 
50.5 
45.5 
40.5-
35.5-

100.5 
95.5 
90.5 


85.5 

80.5 
75.5 
70.5 
65.5 
60.5 
55.5 

50.5 
45"5 
40.5 

Frequency 

1 
1 
2 
3 
3 
3 
5 
1 
2 
2 
1 

Total frequency =24 

Mid-point Frequency 

98 1 
93 2 
88 4 
83 4 
78 5 
73 8 
68 10 
63 18 
58 20
 
53 12
 
48 8 
43 5 
38 3 

Total Frequency 1100 

+ 20 + 12 + 8 + 5 + 3 =76 

Tally Marks Frequency 
3 

/ 3 
/ //// 9 
// 2 
7"/-4 5 

0 
0 
0
 

/ 1 
/ 1 

Total Frequency 24 
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6 

5. 


7. 

8. 

(a) 	 In both Northern Nigeria and Eastern Nigeria the number of pupils 
is largest in the first year of the Primary School course and this 
decreases gradually until the seventh year. 

(b) 	 Total number of Primairy School pupils in 
Northern Nigeria in 1963 - 410,706 
Number of pupils in the first year - 91,567 
Ratio of those enrolled in the first year 
to the total school population - 91,567 

410,706 
Total number of Primary School pupils 
in Eastern Nigeria in 1963. , 1,278,706 
Number of pupils in the first year - 346,126 
Ratio of those enrolled in the first year 
to the 	total -. nool population -346,126 = 27% approx. 

1,278,706 
Answers will vary. The question assumes that there will be no 
pupils under six years of age. If the assumption is wrong a necessary 
adjustment should be made. 
It may be advisable to draw up a table showing: 
Age group Tally marks Frequency 
The tally marks should be put in the appropriate place as each pupil is asked 
to state his age. Alternatively the ages may be first recorded and sorted out 
later. 
A suggested table is the following: 

Monday Tuesday Wednesday Thursday Friday 
Primary 1 
Primary 2 
Primary 3 
Primary 4 
Primary 5 
Primary 6 
The number of pupils present in each class should be entered in the 
appropriate column. 
This exercise could be done by two persons. One person could count the number 
of cars and commercial vehicles going in a certain direction while the other 
counts the number travelling in the opposite direction. Each person should 
mncro n 	 crnL- pn-, rm ni nr no c cc i4,t: ..- ; Tti. t-nm- r nnr4c c11,^1r k



10. 

11. 
12. 
13. 
14. 

2. 

Jaguar / 1 
Hillman Minx 7 7% 10 
Chevrolet 5 
Ford Consul 7Y/. 141/-/- 7_A 20 

Your table will probably look like this: 

Type of Vehicle
 
Year Motor-cars Buses 
 Motor-cycles Lorries Total 
1964 
1965 
1966 1 

Make a frequency distribution of the number of sixes thrown.
 
Tabulate appropriately.
 
Tabulate chowing (a) name of candidate (b) number of votes received.
 

and 15. Tabulate as suggested in the answer to question 6. 

EXERCISE 63-3
 

Year Number of 
Out-Patients 

1953 1,300,000 
1954 1,300,000 
1955 1,200,000 
1956 1,300,000 
1957 1,000,000 
1958 900,000 
1959 1,000,000 
1960 1,200,000 
1961 1,200,000 
1962 1,300,000 

Year Value of Postal 
Orders 

£ 

1953 1,975,8.13 
1954 2,055,243 
1955 2,344,964 
1956 2,402,413 
1957 2,446,669 
1958 2,327,144 
1959 2,154,417 
1960 2,139,895 
1961 2,253,302 
1962 2,285,532 

(Expressed to the 
nearest 100,000.) 

Value of Postal Value of Postal 
Orders Orders 

gto nearest) to nearest(kthousand ] ten thousand/ 

1,976,000 1,980,000 
2,055,000 2,060,000 
2,345,000 2,340,000 
2,402,000 2,400,000 
2,447,000 2,450,000 
2,327,000 2,330,000 
2,154,000 2,150,000 
2,140,000 2,140,000 
2,253,000 2,250,000 
2,286,000 2,290,000 



3. 	 Value of Domestic Exports 
Year £ Expressed to Nearest Expressed to Nearest 

100,000 Pounds Million Pounds 
1957 10,348,000 10,300,000 10.,000,000 
1958 11,066,000 11,100,000 11,000,000 
1959 13,375,000 13,400,000 13,000,000 
1960 13,802,000 13,800,000 14,000,000 
1961 14,172,000 14,200,000 14,000,000
 
1962 13,668,000 13,700,000 14,000,000
 
1963 15,405,000 15,400,000 	 15,000,000 

Chapter 64 

EXERCISE 64-4A 

1. 	 May was the wettest month in Nairobi in 1962. Rain fell on 17 days. 
2. 	 February and July were the two driest months. Rain fell on two days in each 

month. 
3. 	 The number of rainy days from January to June was 56 and from July to December 

was 49. January to June was therefore wetter than July to December. 
4. 	 There were 105 rainy days and hence 260 dry days. 
5. 	 (a) January and October; 11 days. 

(b) 	 February and July; 2 days. 
(c) 	 March and June; 6 days. 
(d) 	 April and December; 14 days. 

EXERCISE 64-4B 

1. 	 See Graph for question 1 of Exercise 64-4B. 
2. 	 See Graph for question 2 of Exercise 64-4B. 
3. 	 Answers will vary from school to school. This question applies to a 

co-educational school. 
4. 	 Answers will vary. 
5. 	 See Graph for question 5 of Exercise 64-4B. Note that we have rounded to 

nearest hundred thousand Le. Note also that highest bar is broken to indicate 
that it would Lo off the na e if all nf it annporol Fnr ,rioprl eInr;tr,, r 



Others ... .. .. £30 million 
'The total of £125 million is divided into parts of 70.4% (Customs and Excise), 5.6% 
(Direct Taxes), and 24.0% (Others). These percentages are indicated as parts of 
the entire bar which represents the total 100%. The £-value of each source of income 
is also added to the graph.
 

(See Graph for question 8 of Exercise 74-4B.)
 
9. 	 Space out the classes along the horizontal axis and the number of pupils
 

present along the vertical axis.
 
10. 	 If the figures are rounded off to the nearest hundred thousand pupils we should 

get 
Year Boys Girls
 
1955 2.8 1.4
 
1960 	 3.1 1.7
 
(See Graph for question 10 of Exercise 64-4B.)


11. 	 (a) Of the four countries shown on the graph, Congo (Lecpoldville) had 
the largest number of schools in 1959. 

(b) Ivory 	Coast had the least number of schools. 
(c) 	 Ghana: 3,700 schools.
 

Congo (Leopoldville): 16,000 schools.

12. 	 See Graph for qut.stion 12 of Exercise 64.-4B. Find the percentage of passes in 

each school. Achimota school will be found to be the better school if the school 
having the higher percentage of passes is regarded as tbetter".

13. 	 As the quantity of rain on any one day is likely to be small you will have to 
choose a scale which will make the graph stand out. 

Graph 	for Question 1 of 

EXERCISE 64-4B 
3030 

U
 
0 25
0 
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Graph for Question 2 of 

EXERCISE 64-4B 

Mean Number of Hours Per Day of Sunshine in Kisumu 
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Graph for Question 5 of EXERCISE 64-4B 
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Graph for Question 8 of 

EXERCISE 64-4B 

Source of Nigerian Federal Government Revenue - 1964 

£ 88 million £ 7 million £ 30 million 

0 25 50 75 100 

Percentage due to different sources 

Z j Customs Direct Other 
and Excise Taxes 
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Graph for Question 10 of 

EXERCISE 64-4B 

Enrollment of Pupils by Sex in Ghana Primary Schools
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Graph for Question 12 of 

EXERCISE 64-4B 

Results of West African School Certificate Examination 
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Graph for Question I of 

EXERCISE 64-8 
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Graph for Question 2 of 

EXERCISE 64-8 
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Graph for Question 3 of 

EXERCISE 64-8 
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Graph for Question 4 of 

EXERCISE 64-8 
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Graph for Question 5 of 

EXERCISE 64-8 
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EXERCISE 64-9 

1. 	 The boys received £800, £600, and £400 respectively. The circle graph is
 
divided into three sectors, with central angles 1600 , 1200, and 800.
 

800. 

200-

Cd 20G-- ~ '* 

0 
Son Son Son
 

1 2 3
 

4. 	 The total number of boys and girls is 3,503. Therefore the percentage of 
boys is 

2,430 243,000353x 100% - 95 
3,503 3,503 6

Therefore, the boy: are represented by a sector having central angle equal to 

69.5% x 3600 = 250.20 (= 2500 to the nearest degree). 

..............- :;.
 



5. 	 Item Percentage Degrees in Pie Chart 

(to nearest degree) 

Food 58% .58 x 3600 2090
 
Rent and
 
Water 13% .13 x 	 3600 470
 

Clothing 7% .07 x 	 360' 25'
 
Misc. 22% .22 x 	 360' 79 °
 

..........
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Chapter 65
 

EXERCISE 65-4 

1. 2; 2.5; 3; 3"5; 4; 4.5; 5; 5.5. The sum of the first n counting numbers is 

n(n+l).
2
 

Therefore the mean of the first n counting numbers is n+l
 

2. The median of the first n counting numbers is 
3. a. mean = 13 

b. 	 median = 13.5 
C. 	 modes are 11 and 14 
i. 10 scores are greater than the mean 

ii. 8 scores are less than the mean 
iii. 10 scores are greater than the median 
iv. 10 scores are less than the median 

4. a. 31.55 
5. i. mode = 

ii. 	 mode = 
iii. 	 mode = 

b. 3 c. 34.55 
6 median = 8 mean = 
26 median = 28.5 mean = 
median = mean = 13 

equal to their mean. 

11 
29 

7. a. 
Mean number of pass

1209 
engers landing per quarter 34,075.was 

mean = 7 = 172.6, approximately. 

b. median = 160 
8. a. i. Feb., March, April, June, Aug. 

ii. Jan., May, July, Sept., Oct., Nov., Dec. 

6. 


6. 	 Mean monthly number of hours of sunshine over many years = 

82.6 
= 6.88, approx. 

Mean monthly number of hours of sunshine in 1962 = 

1-	 694, approx.12
 

Therefore, 1962 was a year of above average monthly sunshine. 
9. ean 1043.1 

9. Mean = 1212 86.9, approx. 

10. 	 mean = 70 
mode = 90 
median = 75 
There are six scores greater than and six scores less than the mean. 
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EXERCISE 65-5
 

Interval Mid-point (x) Frequency (f) fx 
0-9 4"5 1 4"5 

10-19 14"5 2 29"0 
20-29 24,5 5 122,5 
30-39 34-5 12 414,0 
49-49 44"5 5 222,5 
50-59 54'5 1 54"5 
60-69 64"5 8 516"0 
70-79 74"5 5 372"5 
80-89 84'5 2 169"0 
90-99 94"5 1 94"5 

1999 
Total frequency N = 42 Total fx = 1999.0 

Mean score 942 47.6, approx. 

Modal score = 34.5 
Median interval = 40-49 

2 Mean =19834 

42 47.2, approx. 

3. Mode = Mean = 20 
4. Modal score = 42 

1394 
Mean score 33 42.24, approx. 

5. Interval Mid-point (x) Frequency (f) fx 
5-9 7 10 70 

10-14 12 11 132 
15-19 17 8 136 
20-24 22 5 110 
25-29 27 4 108 
30-34 32 2 64 
35-39 37 2 74 

Total freq. N = 42 Total fx 694 
a. Mean - 64 16-5, approx. 

42 
b. Mode = 12 
c. Median interval = 10-14 

EXERCISE 65-6 

1. a. New mean = 23 
b. Original mean = 29 

New mean = original mean - 5 = 24 
2. New mean = 39 

\'
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3. number number minus mean
 
25 1
 
22 -2
 
21 -3
 
26 2
 
21 -3
 
29 5
 

sum 	of deviations from mean (1+2+5) + (-2-3-3) 
= 8 + (-8) 

0 

EXERCISE 65-7 

Deviation from 
1. Mid-point of Deviation from Assumed Mean Frequency Product Product 

Interval Assumed Mean Divided by 10 
x d t f fd ft 

14-5 -30 -3 7 -210 -21 
24-5 -20 -2 12 -240 -24 
34"5 -10 -1 13 -130 -13 
44"5 0 0 13 0 0 
54'5 10 1 31 310 31 
64'5 20 2 12 240 24 
74"5 30 3 5 150 15 
84"5 40 4 5 200 20 
94"5 50 5 1 50 5 

104"5 60 6 1. 60 6 
100 430 43 

430 
True mean = 44-5 + 100 - 48.8 

True mean = 44.5 + 10(4-4) 48.8 

Chapter 66 

EXERCISE 66-5 

1. 	 a. range = 14-2= 12 
mean = 8 

sum 	of squared deviations from mean (2 8)2 + (4.-8)2 + 
+  -(6-8)2 (8- 8)2+ (10-8)2+(12 8)2+(14 8)2 = 112 
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Average of squared deviations from mean 112/7 16 

Standard deviation = 1/i--= 4 
b. 	 range = 17-9=8 

mean - 13 
Average of squared deviations from mean = 60/9 = 20/3 

Standard deviation \/N2-0/3 = 2.6, approx. 
2. 	 a. range 100-60= 40 

mean = 850/10 = 85 
Average of squared deviations from mean = 1716/10 = 171.6 

Standard deviation = V71.6 = 13-1, approx. 
b. 	 range = 90-80 = 10 

mean = S50/10 = 85 
Average of squared deviations from mean = 108/10 = 10.8 

Standard deviation = 10.8 = 3-3, approx.
 
The data in (a) are more scattered about the mean t&an the data in (b).
 

Spread of B's scores 

3. a. 
100 

90 

80 

70 

Mean 
Score 

60 

50

40

30

20-

10

0 
2 3 4 5 6 7 8 9 10 
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Spread of D's scores 

100 

90 

80 

70 

Mean 60
 
Score 50
 

40 

30 

20 

10 

0 
1 2 3 4 5 6 7 8 9 10 

b. For 	Candidate B : deviations from mean are 45, 45, 45, 45, 45, -45, -45, 
-45, -45, -45 
sum of absolute deviations is 10 x 45 = 450 
Mean absolute deviation = 450/10 = 45 

For Candidate D : deviations from mean are 45, 45, 45, 35, 25, -25, -35, 
-45, -45, -45
 
sum of absolute deviations is 6(45) + 2(35) + 
2(25) = 390 

Mean 	absolute deviation = 390/10 = 39 

C. 	 For Candidate 3: 
Average of squared deviations from mean = 20250/10 = 2025 

Standard deviation = V225 = 45 
For Candidate D: 

Average of squared deviations from mean = 15850/10 1585. 

Standard deviation = 1585 = 39.8, approx.
4. New 	standard deviation is twice the original standard deviation. 
5. 	 0. New standard deviation is same as old. 

b. 	 New standard deviation is same as old. The general principle is the 
following: If the same number is added to (or subtracted from) each 
number in a set of measurements, then the standard deviation of the 
new set is the same as the original standard deviation. 

267 



Chapter 6 7 

EXERCISE 67-1 

Most people feel that "heads" and "tails" are equally likely outcomes. Here 
is the result of one series of coin tossing experiments with the ratio of number of 
heads to number of tosses computed for each experiment and for the total of all 
five experiments: 

Number of Heads Ratio of Heads to 
Experiment Number of Coin Tosses Obtained Tosses 

1 20 51 -9 = 0.45
20
 

2 25 10 10 = f25 0'40
 

3 20 12 12=
20 

0-60 

4 30 18 18 = 0"60 
30 

5 25 14 1 
25 

= 0"56 

Total 120 63 63 = 0.542120 
Notice the different ratio of heads to tosses obtained in each experiment. Did 
your results show this variation due to chance? We used an East African 50 cent 
coin. Perhaps different coins have different chances of landing heads. It is 
difficult to decide whether our experimental results support or oppose our feeliags 
that heads and tails are equally likely outcomes. The method of making such a 
decision is part of the theory of mathematical statistics. 

.2. When you combine the experiments of all students you will be able to compute the 
overall ratio of heads to total tosses. For example, perhaps there are 2,000 tosses 
of which 1,084 are heads. Then the over-all ratio of heads to total tosses of the 
coin would be 

1,084 
2,000 = 0-542 

3. For the drawing pin tossing experiment, we obtained the following results: 

Ratio of Tosses 
When Pin Falls

Number o/ Drawing Number o/ Times Flat to Total 



These results do not support the hypothesis that the two possibilities "falling flat" 
and "failing on a side" are equally likely outcomes. It appears that our drawing pin 
has only about one chance in four of falling flat. Experimental results will vary with 
the kind of drawing pin used and the table upon which it is tossed. How do your ex
perimental results compare with ours? 

EXERCISE 67-2 

. a. U = [you win, you lose I 
b. U = 11,2, 3, 4, 5,6, 7, 8, 9, 101 
C. 

'SecondFirst 
Slip 1 2 3 4 5 7 8 10 

1 * 

2
 

3 _
 

4
 

6 * 

7 * 

8 * 

9 * 

10 * 

We can list 10 x 10 - 100 possible outcomes of this experiment. These
 

correspond to the 100 boxes of the above figure. For example, the box
 
marked with a check (\/) indicates that the first slip had number 6 on it
 
and the second slip had number 3 on it. The boxes marked with asterisks
 
(*) correspond to those outcomes in which a slip is selected, returned to
 
the hat, and then this same slip is again selected.
 



9. red 

green 1 2 

1 1 

2 

3 

4 

6 
Each of the 6 x 6 36 boxes represents one possible outcome of this experiment. 

h. [falls flat, falls on sideI
I.*econ 	 d 

pin 
nfirst 

pin flat side 

flat 

on side 

Each of the 2 x 2 = 4 boxes represents one possible outcome of this experiment. 
j. 	 First Child Second Child 

Boy Boy 
Boy Girl 
Girl Boy 
Girl Girl 

So we can take U = IBB, BG, GB, GGI where B stands for boy, G for girl. We 
could also see this from the following table: 

S e c nd o hild 

_irst Child 	 B G 

B BB BG 

G GB GG 
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k. First Child Second Child Third Child 
B B B 
B B G 
B G B 
B G G 
G B B
 
G B G
 
G G B
 
G G G
 

So we can take U - {BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGGI as universe set
 
for this experiment.
 

I. First Toss Second Toss Third Toss 
H H H 
H H T 
H T H 
H T T 
T H H 
T H T 
T T H 
T T T
 

This universe set is the same as the one for part (k) except that H replaces B and
 
T replaces G. 

m. First Friend Second Friend Third Friend 
Jan. Jan. Jan. 
Jan. Jan. 
 Feb.
 

Jan. Jan. Dec. 
Jan. Feb. Jan. 

Dec. Dec. Jan. 

Dec. Dec. Dec.
2. a. 2 h. 2 

b. 10 I. 4 
C. 100 j. 4 
d. 90 k. 8 
e. 6 I. 8 
f. 7 m. 12 x 12 x 12 = 1,728 
g. 36
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3. Toss 	a coin until it falls heads for the first time. This first head can occur 
at the first, second, third . . . toss, or at any toss. For example we 
could conceivably have 953 straight tails and the first head at the 954th toss. 
So there are as many possible outcomes for this experiment as there are 
counting numbers. Since there is arl unending sequence of counting numbers, 
we have an infinite (unending) number of outcomes in the universe set of this 
experiment. 
As another example, think of throwing a very pointed dart at the part of the 
number line between 1 and 10. We could imagine the dart falling at any point 
of this line segment and the set of all these points is not finite. So the 
universe set for this experiment would have to have as many members as theie 
there are points on the line segment. U is therefore an infinite (unending) set. 

EXERCISE 6/-3 

1 a. U = 11, 2, 3, 4, 5, 61 
i. 	 12, 4, 61 

ii. 	 I1,3, 51
iii. 	 11, 3, 51 

iv. 	 11, 2, 3, 4, 5, 61 U 
V. 	 I I = the -mpty set 

b. U = 	 IHH, HT,TH, I'll 
i. 	 IHT, THI 
ii. IHH, 	 HT, TH I 

ii. IHT, 	TH,TTI 
C. 	 U = IJan., Feb., March, April, May, June, July, Aug., Sept., Oct., 

Nov., Dec. I 

i. IJan., 	 Feb., March, April, May, Junel 
i. 	 IJan., June, Julyl 

iii. 	 I - empty set since there is no month whose name begins 
with the letter "B" 

d. 	 The universe set U is described in the text, page 161. We shall refer to 
Chart 1 on that page. 
i. 	 This event consists of those outcomes corresponding to the boxes 

in the first row of Chart 1, i.e. 1jan.- Jan., Jan.-Feb., Jan.-March, 
Jan.-April, Jan.-May, Jan.-June, Jan.-July, Jan.-Aug., Jan.-Sept., 
Jan.-Oct., Jan.-Nov., Jan.-Dec.1 



ii. I1, 3, 5, 7, 91 
iii. 1, 3, 5, 7, 91 
iv. U, since every member of U is either even or odd. 

v. 	 I I - empty set, since no member of U is larger than 10. 
vi. 11, 2, 3, 41 

vii. 1, 2, 3, 4,51 
f. 	 U is described in the answer to Exercise 67-2 Problem 1, part (c). 

We shall refer to the Chart given in that answer. 
i. 	 This event contains as members those outcomes corresponding 

to the boxes in the first row of the Chart, i.e., the event is 
equal to 11-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-101i. 11-1, 2-1, 3-1, 4-1, 5-1, 6-1, 7-1, 8-1, 9-17 10-11 

iii. ti-il 

iv. 12-2, 4-2, 6-2, 8-2, 10-21 
g. U is described in answer to Exercise 67-2 Problem 1, part (d). 

11-2, 1-3, 1-4, 1-5, 1-6, 1-7 1-8, 1-9, 1-101i. 12-1, 3-1, 4-1, 5-1, 6-1, 7-1, 8-1, 9-1, 10-11 
iii. I I = Empty '3et since we cannot have the same slip withdrawn 

twice.
 

iv. 14-2, 6-2, 8-2, 10-21 
h. U = IBBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG1 

i. 	 1BB13 I 
ii. IBBB, BBG, BGB,GBBI 

iii. IBBG, BGB, GB31 
iv. 1BBG, BGB, GBB, BGG, GBG, GGB, GGG1 
v. IBGG, GBG, GGB 

vi. IBB13, I3BG, 13GB, I3GG, GBB, GBG. GGBI 
vii. IBGG, G13G, GG13, GGGI 

viii. IBGG, GGB, GBG,GGGI
2. a. U has 6 members. i. 3, ii. 3, iii. 3, iv. 6, v. 0. 

b. 	 U has 4 members. i. 2, ii. 3, iii. 3. 
C. 	 U has 12 members. i. 6, ii. 3, iii. 0. 
d. U has 144 members. i. 12, ii. 12, iii. 2, iv. 0. 
e. 	 U has 10 members. i. 5, ii. 5, iii. 5, iv. 10, v. 0, vi. 4, vii. 5. 
f. U has 100members. i. 10, ii. 10, iii. 1, iv. 5. 
g. 	 U has 90 members. i. 9, ii. 9, iii. 0, iv. 4. 
h. 	 U has 8 members. i. 1, ii. 4, iii. 3, iv. 7, v. 3, vi. 7, vii. 4, 

viii. 4.
3 If U = HlH, HT, TH, TTI, then there are 24 = 16 events in all. These events 

are
 
The subset with no [I r_
members: pmp t.



JHH, TH, TTI, JHT, TH, TTJ 
The zubset with four members: 1HH, HT, TH, TTI = U itself 

4. 	 Since U has 10 members, there are 210 = 1,024 events in all. 
5. Since 	U has 8 members, there are 28 = 256 events in all. There is just the 

empty set which has no members. There are eight events containing 
exactly one member. There are 28 events containing exactly two members. 
We can count these by noting that there are 
a. 7 	 of these events containing BBB 
b. 	 6 of these events containing BBG and not already
 

counted in a.
 
C. 	 5 of these events containing BGB and not already
 

counted in a. or b.
 
d. 	 4 of these events containing BGG and not already
 

counted in a. or b. or c.
 
e. 	 3 of these events containing GBB and not already
 

counted in a. or b. or c. or d.
 
f. 	 of thesc events containing GBG and not already
 

counted in a. or b. or c. or d. or e.
 
g. 	 1 of these events containing GGB and not alicadiy
 

counted in a. or b. or c. or d. or e. or f.
 
Total: 28 events containing exactly two members. It may take a little time, 
but there is much to be learned by writing down all these events in the 
systematic way indicated in a. - g. 

EXERCISE 67-4 

1. a. 	U = 11, 2,3, 4, 5, 61 
b. E = 	15, 61, F 11, 3, 51, 

U = universe set 

F 	 I Eor equivalently 1 

c. 	 E and F are not disjoint events since they have the
 
common member 5.
 

d. 	not - E = 11,2,3,41 
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e. 
f. 

not 
not 

- (not-E) = 

- E and not 
not-I1, 2, 3, 41 15, 61 

F = I1, 2, 3, 41 and 
= E 
12, 4, 61 = 12, 41 

not (E or F) not I1, 3, 5, 61 = 12, 41 
g. not E or not F = I1, 2, 3, 41 or 12, 4, 61 = I1, 2, 3, 4, 61 

not (E and F) = not - 151 - 11, 2, 3, 4, 61 
2. a. U = Jan., Feb., March, April, May, June, July, Aug., Sept., Oct., Nov., 

Dec. I 
b. E )Jan., Feb., March, April, May, Junel 

F Ijan , June, Julyl 

Oct 

EvntEvnrFbh a July Nov 
or equivalently aril 

Aug Sept Dec 

c. E and F are not disjoint since they have the common members Jan., June. 
d. not -E -= IJuly, Aug., Sept., Oct., Nov., Dec.1 

not - F t7 Feb., March. ADril. Mav Au. qrtnr- O N-N- , n-



EXERCISE 	67-5 

In Problem 2 of Exercise 67-3 we have counted the number of members in each 
universe set and in each event (subset). We have only to use the answers
 
obtained there to obtain the required probabilities by means of Definition (*).
 
Do you agree that in each experiment all possible outcomes (members of U) are
 
equally likely so that Definition (*) does indeed apply? The required
 
probabilities are:
 

3 1 	 3 1 ...a. 	. T -2 i. 6 -2 l. 63 -21
 

6 0 0

iV.T: 	Iv . T-o
 

b. 	 . . 2 - 12 ii 3- ... 4.3 

6 1 3 1 0C2. 12 - 0 

d. 	 12 1 12 1 ... 2 1T44 44- 1-2 	 144 7 2_21 

1440 =iv. 0 	 0 

e. i 	 5 1 H. 5 1 iii. 5 1
10 210 	 2 10 2 

iv. T1o 	 I V. 0 0 Vi. 4 210 10 10 5
 

Vii. 5 1
 
To- -f2 

f .	 10 1 10 1 ... 1iI00 = TO ii i0-O TO 1~.0"-0 

5 1 
10--0 	 To 

i. 909 	 I0i.1 90 - 1 0 0g. -	 9 I0ii O0 

iv. 	 4 2
 
TO 5
 

1 	 .. 4 1 ... 3 . 7. 8 2 	 8 

-	 4 - 2 ... 2V. -3 vi. 7 	 VII. 8 1 VIII. 48- 1 
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1

2. 

3. 

4. 

5. 

6. 

7. 

EXERCISE 67-6
 

By Property 4, P (lose) = 1-P (not-lose). 
By Property 6, P (not-lose) = P (win) + P (tie) = 0.7 + 0.1 = 0.8 
Therefore P (lose) = 0.2 
Let E be the event that friend was born in January, June, or July. We are 

given P(E) - +-and asked to find P (not-E). 

By Property 4, P (not-E) = 1- 1 3
 

a. If E 	is impossible, then not-E is a sure event. 
b. If E

3.
is sure, then not-E is an impossible event. 

P (E) = j since E = 16, 12, 181
20
 

P (F) = 2 - since F = 18, 161
 

We see that E, F are disjoint sets. Therefore, by Property 6,
 

P (E or F) 20 20 20
 

P (E) 	 5 since E 16, 12, 18, 24, 301
 
3
 

(F) = T since F = 18, 16, 241
 

1

P (E and F) =- since E and F = 1241
 

We use Property 5 to find P (E or F) - 7 

Let E be the event that person selected is a foundation member. Let F 
be the event that person selected is male. Then we want to find P (E or F). 
We have 

10 7 5
 
P (E) = 10 P (F) - 7 P (EandF)


12_4 
P (E or =5Therefore, 	 using Property 3, F) = 4-

Let E be the event that he passes Mathematics and F the event that he 
passes Physics. We are asked to compute P (E or F). We are given 
P (E) =- 0.7, P (not-F) = 0.4, P (not-E or not-F) = 0.6. 
By Property 4, 

P (F) - 1-P (not-F) - 0.6 
and P (E and F) =1-P (not-E or not-F) = 0.4 
since the event not- (E and F) is the same event as not-E or not-F. 
Therefore, by Property 5, 

P (E or F) - 0.7 + 0.6 - 0.4 = 0.9. 
The student has probability 0.9 to pass at least one of the two examinations. 
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8. a.
 

U = universe set 

b. 	 The circle for event E is entirely contained in the circle for event F. This 
pictures the situation when event E implies event F, that is, if E occurs, 
then F also occurs. 

C. 	 We have by hypothesis that n (E) < n (F). Therefore, by Definition (*) we 
get P (E) < P (F). 

EXERCISE 67-7 

15 x 14 x 13 = 2,730ways
 
2
2. x 2 x 4 x 3= 48 meals 

3. 	 a. 5 x 4 x 3 = 60 
b. 	 5 x 5 x 5 = 125 
C. 	 2 x 5 x 5 = 50 
d. 	 5 x 5 x 2 = 50 

4. 	 There aie 11 positions on a football team. 
Hence there are 11 x 10 x 9 x 8 = 7,920
 
ways for the coach to assign the four boys soup
 
t',, the team.
 

5. 	 There are 900 three-digit numbers that can be
 
selected. (Since therc are 9 choices for the
 
first digit, and 10 choices for each of the
 
second and third digits.)fish
 
a. 	 There are 4 x 10 x 10 = 400 of
 

these numbers that begin with 
an even 
number. Therefore this probability is meat 

400 _4 

900 9 	 dessert 
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b. There are 9 x 10 x 5 = 450 of these numbers that are even, that is 

450 45 1 
end with an even number. Therefore this probability is - 4 - 1

900 90 2' 

C. There are 4 x 10 x 5 = 200 of these numbers that begin and end with 

200 20 2an even number. Therefore this probability is - - 900 90 9' 

6. 	 a. There are 2 outcomes for each toss. Head and Tail. Therefore, by the 
Fundamental Principle, there are 2 x 2 x 2 x 2 x 2 = 32 different 
outcomes for the entire experiment. Can you write all the members of the 
universe set U? 

b. The event E: "exactly one head in the five tosses" has n (E) members. 
If we can count n (E), then the required probability is the ratio of n (E) ro 
n (U) : 32. We see that E- 1HTTTT, THTTT, TTHTT, TTTHT, TTTTH1 
since every member in E must represent the outcome in which you get one head 
and four tails. 

5P (E) 	 -35Hence n (E) -- 5 and 32"
 

7. 	 There are now 12 x 12 x 12 x 12 x 12 different answers when you ask the 
five people to tell you their birthmonths. So n (U) = 125. 
If E stands for the event that all five people have different birthmonths, than 

n (E) = 12 	 x 11 x 10 x 9 x 8. 

Therefore 

P (E) 12 	x 11 x 10 x 9 x 8
 

125 
12 x 9 x 8 x 2 x 55 55 
12 x 9 x 8 x 2 x 144 144 

The probability that at least two people among the five have the birthmonthsame 
is P 	 (nut-E) I-P (E) 

1-55 
144 

89 
- as claimed. 
144
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EXERCISE 67-8 

1. a. weight is b. weight is 1 
1 

C. 	 weight is
 
981
 

2. a. U = {HH, IT, TH, TTI. Assign weight 
1 
- to each member of U. The 

1 1 1 
event F -- IHT, TH. Therefore P(E) 

4 4 2 
b. u -- , 	2, 3.......OOO. Assign weight 
 0 to each member of U. 

The event E 'w 1, w2 , . . . . wl . Therefore 

P(E) 1 1 	 1 
1000 1000 1000 

10 terms in sum 

1 1 
or P(E) -10 1x
 

1 00 - 100
 

c. There are 12 x 12 = 144 possible outcomes of this experiment, as we 
observed in Chart I of Section 67-2. 

i 
We assign weight , to each member in U. Since E has 12 members, 

we get 

P( E ) - 1 4 1 - ' 
M4+ f- +.T4 

12 terms in sum 

or P(E) =12 x I
144 12
 

3. It seems reasonable to assume equally likely outcomes in Examples 1-6, but not in 
Examples 7-8. 

4. Parts (a) - (d), (g), (j) - (m) describe experiments where the assumption of
equally likely outcomes seems reasonable. In parts (j), (k), (m) this assumes 
that each baby has an equal chance of being boy or a girl and that births are 
spread evenly over the 12 months. Vital statistics when carefully collected show
these assumptions to be only approximate. But they are reasonable as a first 
approximation to the more complicated true state of affairs. 
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In part (e) we cannot be sure that our friend is equally likely to choose any prime 
between ten and thirty or whether he is more likely to choose some prime numbers than 
others. We would have to conduct an experiment among our friends to see which kind of 
assumption is reasonable. Similarly, our choice of a day of the week in part (f) is not 
likely to be easy to analyze. People probably have some preferences when they think of 
the names of the days and these are likely to show up in more choices of one day than 
another. Here too one would have to ask people to choose a day of the week and see 
how they respond. 

In parts (h) and (i) it seems clearly unreasonable to assume that the outcomes of 
the experiment are equally likely. 

EXERCISE 67-9 

1. Let weight assigned to a be w. Then the weight of b is also w from the first 
equation. From the third 	equation the weight of d is 3w and from the second 
equation the 	weight assigned to c must also be 3w. So the sum of all the 
weights is 

w + w i 3w + 3w 

1 
or 8w. And this sum must equal 1. Hence w 8 

The P(E) is, by definition, the sum of the weights of the members in E. 
Therefore 

P(E) --
1 
--8 . 

3 
.8 . 

4 
8 . 

1 
2 

2. 	 The sum of all weights must be 1, so 
k + 2k 3k + 4k ± 5k + 6k = 1 

I 
or 21k = 1. Therefore k -:--. The probability that an odd number turns up is 

the probability of event 	 E 1, 3, 51. From the definition. 

1 3 5 9 	 3
P(E) 21' 21 21 21 7 

3. 	 a. If you have played draughts with your friend many times and have won half 
the time, tied 20% of the games, and lost the remaining 30%, then you 
- :-tl. _,I_:_ .. .. :--. 1 .. ...t .*..1 . 3 ... ... . I 



b. Statistics of mortality are collected by insurance companies. Suppose
100,000 people were followed from birth and each year the number dying was 
recorded.
 
Suppose there were 70,000 alive at age 20 and 1,000 of these died within the 

next year. Then we would assign weight L to "Iman survives one year" and 
70 

weight to "man dies within year". Of course, one has to be sure that the 

mortality statistics apply to the population being insured since conditions of 

health, medical facilities, food supply, and so on, vary from one group to another. 
C. Twins are born in the same month, but it seems reasonable to suppose that 
no month is more likely than any other month for the birth of twins. So we assign 

1weight u-to each of the twelve outcomes marked with an X in Chart 1, and assign 

weight zero to each of the other 132 outcomes. 
d. Assign weight 0.2 to "yes," weight 0.7 to "no," and weight 0.1 to "don't 
know. " 

4. The probability of an event, according to our definition, depends on the assignment
of weights to the members of the universe set U. With different assignments of 
weights, as in Solutions 1 and 2, we should not be surprised if an event E turns 
out to have different probabilities. Both correct mathematicalare solutions. The 
situation here is like that in plane geometry. The conclusions "sum of angles of 
a triangle is 180 degrees" and "stim of angles of a triangle is less than 180 
degrees" are different, but both can be correct mathematical conclusions from 
different hypotheses. The first conclusion is correct in Euclidean geometry, the 
second if we accept the postulate of Lobachewskian geometry. The different 
assignments of weiehts to the members of II nrA-n- rh ...
ire. , ,.-.1....; 



2 	 a. The numbers beginning with the digit I are 1, 10, 11, . . . , 19, 100, 101,
 
199, 1000, a total of 112 numbers in all. Therefore the probability is
 

112 
1000 

10001	 1 

b. 	 P(EIF) 750 75
750- 750 

1000
 

Let E 	be "birthmonth begins with J" and F be "birthmonth in first six months." 

Then 
3 1 

-P(E) 

and 

2 
12 2 1

P(EIF) 6 6 3 

12 

4. 	 Refer to the universe set of 36 members described in answer to Problem 1, part (g) 

of Exercise 	67-2. (a) 1 (b) 1 (c) I 

5. 	 Events "5 on red die" and " 3 on green die" are independent. Events "sum 7" and 
"number 	 less than 4 on green die" are also independent.
 

32 2
 

6. 	 P(E) = 3, p (F) -- - P(E and F) = - Therefore the product rule (***) is 

not satisfied and so E and F are not independent events. 
7. 	 a. 0.9 x 0.8 = 0.72 

b. 0"9 x 0.2 = 0.18. Here we used the fact that the events E and not-F are 
independent, that is, we used the equation 

P(E andnot-F) = P(E) x P (not-F) 

It can be proved (try it!) that if E and F are independent events, then E and not-F 
are also independent events. 

2 
8. 	 Conditional probability that A wins is 2 and the conditional probability that B 
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.1 
-wins is 
3. 

EXERCISE 67-11 

value of X (in C's) 49 9 4 1--1 
probability of this value 1 b 5 90--60 

1 4 1 5 990 
E(X) = 49 9 00 (-1) x 000 

, (-0.885) 

2. Value ofX 1 2 3 4 5 6S1 1 1 1 1 1 
probability of this value - - - _ 

11 1 1E(x) 1 2 " 6- 4 , 611+ 6 x 

3.5 

3. Value ofX 1 2 3 4 5 6 7 8 9 10 

Probability ofthis value 1 1 1 1 1 1 
10 0 0 10 10 10 10 10 10 10 

1.-(X) -- 5.5 

4. Value ofX 0 1 2 

Probability of this value 4' 1 

4 4 1E(X) 0 x - i I Ai 2 x 
9 9 9 

22 of a question
3 

Note that here, in Problems 2 and 3, we get a value for F(X) that is not one of the 
values of X. This often happens when you average test scores, too. The average of 
scores 60, 70, 95 is 75 and so'the average test score is not one of the scores actually 
obtained. 
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Answers to CHAPTER 68 

EXERCISE 68-2A 

61, 7, 	53, 31, 83, 43, 1, 79 

EXERCISE 68-2B 

L. 	 (59, 61), (71, 73); (101, 103) or (107, 109) or (137, 139) or (149, 151) or 
(179, 181) or (191, 193) 
Twin primes are those which have only one number between them. 

3. 	 Numbers not crossed out are 
301, 307, 311, 313, 317, 319, 323, 329, 331, 337, 341, 343, 347, 349 

EXERCISE 6L-2C 

The primes are: 307, 311, 313, 317, 331, 337, 347, 349 
2. 	 The primes are: 163, 251, 401 

203 = 7 x 29 529 = 23 x 23 287 = 7 x 41 

EXERCISE 68-2D 

Primes: 27 1 - 127, 29- 1 = 511, 

211 1 = 2047 is not a prime since 2047 = 23 x 89. 

EXERCISE 68-3 

70 = 	 2 x 5 x 7; 108 =2 x 2 x 3 x 3 x 3; 
180 = 2 x 2 x 3 x 3 x 5; 196 = 2 x 2 x 7 x 7; 
231 = 3 x 7 x 11 

EXERCISE 68-4 

a. 6 b. 3 c. 12 	 d. 9 
e. 1 f. 1 g. 2 	 h. 4 
i. 17 j. 13 	 k. 1 I. 1 

285 



EXERCISE 68-5 

a. 
e. 
i. 

60 
51 

198 

b. o 
f. 96 
j. 1440 

c. 108 
g. 126 

d. 196 
h. 280 

EXERCISE 68-6 

Divisible by 2: c, d, g, i; divisible by 5: b, c, e, h 

EXERCISE 68-7 

I. 

2 

3. 

4. 

The following numbers are divisible by 3: 
a. 285 c. 2718 d. 4860 e. 1902 
g. 80415 h. 35124 j. 16125 
A whole number is divisible by 9 if and only if the sum of its digits is a multiple 
of 9. Numbers divisible by 9: c. 2718, d. 4860, g. 80415 
A number is divisible by 6 if it satisfies both the test for 2 and the test for 3. 
That is, it must end in 0, 2, 4, 6, 8, and the sum of its digits must be a multiple 
of 3. We may thus select the even numbers from the answers to Exercise 1. 
These are 
c. 2718, d. 4860, e. 1902, i. 35124. 
Numbers divisible by 15 must satisfy the tests for both 3 and 5. These would be 
the numbers ending with 0 or 5 in the answers to Exercise 1, i.e., 285, 4860, 
80415, 16125. 
A number is divisible by 4 if and only if the number represented by the last 2 
digits is a multiple of 4. 

EXERCISE 68-8 

1. The numbers divisible by 11 are: 
a. 825 b. 7832 
f. 94655 g. 918082 

d. 9471 
i. 545655 

3. Divisible by 22: b. 7832 g. 918082 

Divisible by 33: a. 825 d. 9471 i. 545655 

Divisible by 55: a. 825 f. 94655 i. 545655 

4. 100000 
10000 

= 
= 

100001 
9999 

- 1 
+ 1 
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EXERCISE 68-9 

1. 

3. 

Numbers divisible by 7: 

Divisible by 14: 

a. 483 
e. 854 
i.21854 

e. 854 

b. 301 
f. 1365 
j.25305 

i. 21854 

d. 945 
h. 2541 

Divisible by 21: 

Divisible by 35: 

a. 483 
h. 2541 

d. 945 

d. 945 
j. 25305 

f. 1365 

f. 

j. 

1365 

25305 

4. Numbers not crossed out: 761, 767, 769, 773, 779, /87, 793, 797, 799, 809. 

EXERCISE 68-10 

2. 

3. 

(8, 12), (6, 9), (10, 15), (12, 18), (30, 45) 

These numbers are all in the ratio of 2 to 3. 
The formula 2(a + b) = GCF + LCM is good for all pairs in the ratio of 3 to 
Other pairs are (15, 25), (18, 30), (21, 35), (24, 40) and so forth. 

5. 

EXERCISE 68-11 

1. n - 1 sur digits n- I 

2 a. 4 + 4 = 8. yes. 44 five - 24 ten 

b. 1 + 0 + 3 = 4. yes. 103 five 28 ten 

C. 1 + 2 + 3 = 6. no. 123 fivefive 38 ten 

d. 2 + 0 + 2 = 4. yes. 202 five = 52 ten 

e. 3 + 4 + 1 = 8. yes. 341 five = 96 ten 

f. 3 + I + 2 = 6. no. 312 fivefive 82 ten 

g. 1 + 4 + 1 = 6. no. 141 five = 46 ten 

h. 1 + 1 + 0 + 2 = 4. yes. 1102 five 152ten 

i. 

j. 

2 

3 

+ 0 

+ 0 

+ 1 

+ 1 

+ 1 

+ 1 

= 

= 

4. 

5. 

yes. 

no. 

2011 

3011 

five 

five 
five =8 

256ten 

ten 

ten 
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3. a. 4 + 4 = 8. no. 44 twel ve = 52 ten 

b. 6 + 5 = 11. yes. 65 twelve 77ten 

C. 5 + 8 = 13. no. 58 twelve = 68 ten 

d. 1 + 2 + 8 = 11. yes. 128 twelve 176 

e. 2 + 4 + 5= 11. yes. 245 
twe2e 

= 341 
ten 
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