
PN -I1A rn-!1C, 
l,)rJ': d. ~ 3'd. \ 
I 

{P1 

DRAFT MANUSCRIPT: NOT FOR 
QUOTATION OR ATTRIBUTION WITHOUT 

EXPRESS PERHiSSION 

DOING EVALUATION: A HANDBOOK OF PROCEDURES 

Howard E. Freeman 
Peter H. Rossi 
Sonia R. Wright 

March, 1978 

c Copyright 



CHAPTER FIVE 

EVALUATION AND POLICY MAKING 

Final Draft 
March 1978 



5-1 

I. Evaluation in the Larger Context 

The previous chapters of this monograph have been concerned 

primarily with the technical aspects of evaluation., providing guides 

to persons considering attempting evaluations and to those who may 

have ~he responsibility of overseeing evaluation studies. But, as 

must be abundantly clear to readers, evaluation research is not simply 

just a technical activity. By virtue of the fact that it is designed 

to aid in the processes of policy formation and program design, it 

is also a political activity. ~y that phrase, we mean that evaluation 

research is always conducted within a context in which there are many 

interested parties whose stakeR in the outcomes of the research affect 

both the evaluator's ability to carry out evaluations effectively 

and the ways in which evaluation research results are emplcyed by 

Jecisio~ makers. Thid chapter attempts to discuss some of the issues 

arising in the conduct of evaluation research that stem from the 

fact that such redearch ordinarily takes place within a more or less 

politicized environment. 

A. The Interests Engaged by Evaluation 

To evaluate means to make judgments; to conduct evaluation 

research means to provide social science based findings that can 

be used in making judgments. The distinction between making 

judgments and providing facts upon which judgments can be based is 

a valid ~istinction, but one which is often difficult to discern in 

practice. In short, the results of an evaluation research may be 
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seen by the parties involved aR amounting to judgments, and reacted 

to accordingly. 

What are the parties that are typically involved in the results 

of an evaluation? Listed below are some of the groups that typically 

may become parties interested in the evaluation research process: 

1. Policy Makers Agency (or representatives) ultimately 
responsible for decisions on whetner 
program is to be instituted, continued, 
discontinued, enlarged, or decreased. 

2. Evaluation Sponsor The agency or it~ representatives who 
initiates and funds the evaluation research. 

3. Prograa Sponsor The agency (or representative) who initiates 
and fwJ~ the program to be evaluated. 
':Sometimes the evaluation sponsor and the 
program sponsor may be identical.) 

4. Program Administration The agency (or representative) 
responsible for the running of a program. 
(Sometimes identical to 2 above.) 

5. Program Deliverors Persons responsible for ultimate delivery 
of the progrdm (e.g. teachers in an 
educational ?rogram) (Sometimes identical 
with 3 above) 

6. Evaluator Agency (or representative) responsible 
for design and/or of evaluation research. 

7. Clients Persons, households, or other units who 
are targets of program that is being 
evaluated. 

8. Program Competitors Agencies who compete with program admin­
istration for the funds involved. 

9. Context Interests Agencies, groups, individuals and other 
units in the immediate environment of 
a program (e.g. local government officials 
in a community in which a program is placed.) 
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Although these nine groups do not completely exhaust all conceivable 

interests that might be inv.Jlved in the politics of evaluation, 

they do constitute ~roups that typically become involved in one 

~r another way& in an evaluation. Nor is it completely clear how 

the interests of each of the groups would be engaged by c given 

evaluation research's O'Jtcome. In a particular situation, policy 

mak~rs may be more pleased by a positive evaluation than a negative 

one; il' other situations their reactions may be quir:e reversed. 

Perhaps, the main reliable prediction that one could make iB that 

program sponsors, program admdnistrators and program deliverors 

are most likely to regard positive evaluations favorably and to 

have the opposite reaction to negative ones. Such reactions, are, 

of course, quite understandable since they are the ones with the 

most stake in the continuance of a program and whose activities 

appear to be most clearly judged within an evaluation research's 

report. 

All too often the novice evaluator having completed his or her 

report and proudly announced the results may be devastated by a 

torrent of criticisms and negative reactions to the findin~s. While 

it may not help to know that this is a common occurrence, it is 

useful to know that evaluation can be controversial and that the 

evaluator Wly often be at the cp.nter of the cor&troversy involved. 

Knowing this in advance, it is possible to take steps that can reduce 

the amount and intensity of such controversies. 

First, it is important that the major interests that might ~e 
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engaged in an evaluation be brought to understand the terms of the 

evaluation and to understand something about the method that is to 

be employed. This is particularly important with respect to the 

program sponsor, program administration, and program deliverors. 

The evaluator ought to try to develop some consensus with these 

groups over the aims of the program that are to be evaluated, over 

the methods to be employed and the possibility that the evaluation 

may turn out in ways that could refl~~t negatively upon them. This 

process of building consensus (and committment) should begin before 

evaluation is undertaken. 

Secondly, the evaluator is best off when his/her position is 

as independent as possible from ties with program ~dministration and 

program deliverors. Some would go so far as to state categorically 

that evaluation whould not be accomplished within the administration 

of a program but should always be conducted by an outside agency or 

person. While we would not go that far in urging separation of 

evaluation from administration, we would nevertheless urge that such 

"inside" evaluators work out especially clear understandings of 

roles and limits with program administrators. It seems to us to 

particularly appropriate for inside evaluators to conduct the kinds of 
. 

evaluation activ~ties described in Chapter 2, (i.e. defining target 

populations, estimatin& sizes and locations of target populations 

and monitoring program implementation~) all activities of direct 

utility to program administration and useful in fine tuning a program 

to accomplish its objectives. More hazardous is the conduct of 
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• 
program impact studies (as described in Chapter 3) as an "inside" 

evaluator, since the evaluator may find conflicts between his/her 

loyalty to the administration of the program and the demands of 

the task of evaluation. 

Thirdly, one of the major points of conflict ordinarily arises 

out of whether the terms of evaluation were properly chosen, esppcially 

whether the goals of a program were correctly specified. Here it 

is important to note that it is not necessary that a program have 

one goal or a small set of goals in order to be evaluated. The 

criteria we stressed in earlier chapters were only that the goals 

be clear and that they be measurable. It is possible, therefore, 

to evaluate a program from several viewpoints, for example, from the 

vie~~oints of goals set respectively by policy makers, program 

administrators and from the respective viewpoints of clients and even 

other community memberc. Again, this process of deciding upon the 

terms of evaluation and accomodating a range of viewpoints olnto the 

evaluation is an act that should be undertaken before the evaluation 

begins in consultation with the interested parties involved. 

Finally, it is important that the more controver.sial an evalu-

ation may be, the more carefully it should be carried out. 

Anticipated contr.oversy may be a sure sign that the program is 

important at least to some of the interested groups: The more 

important the program th~ more powerful should be the evaluation 

research design so that decision errors (False Positives and/or 

False Negatives, as the case may be) a~e kept to a minimum. 
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Furthermore, the more carefully executed the less vulnerable an 

evaluation may be to carping criticism. 

B. Political Time and Research Time 

Evaluation research, just as other types of research, takes 

time, and the tighter the research design, other things being 

constant, the longer the evaluation will take. For ~~mple, the 

large scale social experiments which gauge the effects of innov6,:ive 

programs ordinarily take from four to eight years to complete and 

produce reports. The political world moves on a much faster time 

scale, however. Out of this disp9rity in time demands grows another 

problem for evaluators. 

The same political atmosphere that makes it possible to do 

evaluations especially of ongoing social programs is usually the 

same atmosphere in which decisions are about to be m~de about such 

programs. Hence, often there is con~idelable prp.ssure for evaluation 

to be done more quickly than the better m~tnt;j~\ can allow. There 

is also often much demand for release of preliminary results, often 

before the researchers are quite certain that their results are 

completely firm. At times, evaluation researchers have been asked 

for their "impressions" of effectiveness even after saying that they 

had not yet produced any firm results. 

It is not at all clear w~~t can be done to reduce the degree 

of pressure arising from the different time schedules of research 

and decision making. It is clear that an evaluation should not be 
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undertaken if the information is needed long before the evaluation 

can be completed. It may be better in such circumstan~es to 

suggest that the judgment of experts be relied upon or that some of 

the more judgmental methods (discussed in Chapter 3) be used for the 

evaluation in question. In short, it would be better to have ~ 

information of the highest technical quality possible, given time 

cc·nstraints, than to have no information at all. 

A more strategic approach is to confine the technically more 

complex evaluations to programs that are not likely to be reviewed 

in the near future or to prog~ams that might be consinered in the 

future as ongoing programs. Thus randomized controlled experiments 

may be most appropriate to evaluate the worth of new proposed programs 

long before such programs appear upon the agendas of decision 

making bodies. Or, extensive cross sectional analyses may be applied 

to programs that have a steady support, e.g. pension plans for the 

aged. 

C. Valu~ Conflicts and Evaluations 

Although traditional views of the social sciences exhort social 

scientists to be value-free, it is not obvious that such a stance 

should be taken to begin with nor that social scientists can be 

completely value free in practice. After all, each one of us 

whether we are evaluation researchers or ordinary citizens lives 

within political systems and has the ordinary obligations of citizen­

ship and possibly additional obligations of public office or public 



employment. It is almost impossible to remain neutral in every 

aspect of public life and hence to require neutrality of anyone 
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who is concerned with social programs is to demand more than usually 

can be expected. 

As a consequence evaluators are not persons without opinions 

concerning whether the programs that they are to evaluate are likely 

to be successfully effective. That such opinions may affect their 

approaches to evaluation goes without saying. But, the evaluator 

also has the obligation to consider not only his/her own estimates 

of now well a pr~gram may be doing, but also the contrary positions. 

Thus an evaluation should always be a test of which of a set of 

possible outcomes comes closest to being true of the working of a 

program. In ~hort, the obligation of the evaluator is not to be 

neutral in thought or opinion, but to be neutral in action. To be 

neutral in action means that the evaluation design should not be 

biassed for or against any particular outcome, whatever the evaluator 

(or other parties to the evaluation) may believe about the worth of 

the program in question. 

Although no actual examples have yet ap~eared, some writers 

on evaluation have advocated that the eValuation of a controversial 

social program ought to be undertaken by several evaluators each 

representing the major interested parti~s. Thus, an evaluation of 

a controversial land resettlement program might be undertaken from 

the viewpoints, respectively, of the settlers, large landholde~3 whose 

holdings were being used for resettlement purposes, and of the central 

government agency sponsoring the program. Each 

evaluator would be presumably examining 



5-9 

those effects that engaged the interests of their particular evalu­

ation sponsors. Under such circumstances, each evaluator would have 

no particular obligation to search for tho( ~ benefits accruing to 

parties other than the particular sponsor that has employed the 

evaluator. 

There are many reasons why such an ap~roach -- called advocacy 

evaluation -- does not yet have any examples. For one th1.ng, the 

costs of doing, say, three evaluations are triple the costs of doing 

one and evaluation costs are heavy enol~gh under present circuu::·stances. 

Secondly, each of the sponsors would have to bear the costs of the 

evaluation taking its point of view, and the resources of the 

inter~sted parties are rarely equal. Thirdly, under such circumstances 

evaluations would become simply ~~other form of political struggle 

and an expensive form at that. Finally, if evaluators take seriously 

the obligation stated above to entertain serioudly the possibility 

of alternatj,ve outcomes and to provide for their testing within the 

context of a single evaluation, the aims of advocacy evaluation 

would be fulfilled witr.out becomlng another form of political struggle. 

Although no code of ethics h,s yet to be adopted by~valuation research 

societies, it seems likely that the code will not be very different 

from those that have been adopted by other researchers. First and 

foremost, the evaluator has an obligation to remain a scientist in 

the sense that his/her first obJ.igation is to see that the research 

design and the analyses of the resulting data conform (within 



budgetary constraints) to current state of the art standards of 

quality. Secondly, the evaluation expert has the obligation to 
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take into account in the design the differing perspectives and 

expectations of major interested parties. Finally, while no evaluator 

may be expected to be neutral entirely in his/her private opinions, 

those opinions should not domiJ~te over the first two considerations 

mentioned above: Neutrality is not to be expected .in opinions, 

but is to be expected in action. 

II. The Role of Evaluation in the Political Process 

As we stated at the outset of this volume, the purpose of 

evaluation research is to aid in the making of rational political 

decisions concerning social progr8ms. All too often, evaluators, 

having completed their as~essments of a social program, have been 

depressed by the slowness with wr.ich the decision making process has 

reacted to their findings. Even more depressing have been the 

numerous occasions when evaluation findings have been seemingly 

ignl red in subsequent political processes with programs being 

either continued or terminated without much explicit regard for 

assessment outcomes. In short, all too often it has appeared that 

the valuable and sometimes expensive information obta1.ned through 

evaluation research has be~n ignored by the political decision 

making process. 

There can be n~ doubt about the feelings of the evaluators 

indeed, 2ach of the authors of this volume has on one occasion 

.... 
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or another felt that his or her labors have b~en expended in vain. 

But, is this a justified feeling? The answer to this question is 

that one can only expect that the results of an evaluation will 

be but one of the inputs into decision making. n,e parties to a 

social program, ss outlined in the opening section of this chapter, 

are ~ny. Program administrators, program sponsors, pL'ogram 

operators and sometimp.s the clients of a program often have very 

strong stakes in the continuation of a program and their represen­

tations to that effect to decision makers may count more than the 

results of an evaluation research. The outcomes of a political 

process may be viewed as balancing the representations of a variety 

of interested parties, with the outcome of an evaluation research 

being simply one more ar~ument on one side or another. 

To imagine otherwise wOlud be to provide to evaluators and 

evaluation researches a special place in the political decision 

making process that amounts to a veto over such decision making, a 

move that would strip from the decision makers degrees of freedom 

in satisfyi?g constituency demands that no one would want to seer 

occur. Indeed, under such circumstances evaluators would become a 

species of philosopher kings whose pronouncements on particular 

programs would over-ride the representations of all the other 

parties involved. In any political system that is sensitive to 

weighing and assessing the conflicting claims of a number of 

constituencies, one can expect that evaluation research outcomes 

will ?lay the role of an expert witness to the effectiveness of 

a program but that, as with other expert witnesses, such testimony 



~y be given more weight than shrewd guesses but not determinative 

weights in deciding an outcome. 

What then can one expect to be the role of evaluation research 

in determining the shape and direction of social policy? There are 

three important roles that have been distinguished: First, 
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evaluation researches have been useful in deciding technical questions, 

e.g. whether a program should take one or another form. Secondly, 

on occasion, evaluation researches have provided definitive informa­

tion upon which d~cision makers have acted in line with the outcome 

of the evaluation, resting their decision on the outcomes in 

question. Thirdly, evaluation researches have had some very general 

impacts on political decision making in the form of changing the 

grounds of political argumentation. These three political roles of 

evaluation are discussed in more detail below: 

A. The Role of Evaluation in Technical Issues 

By definition, a technical issue i3 one which is neutral as far 

as policy and values are concerned: that is, the various parties 

involved in a social program have no stake in whether the issue is 

decided one way or another. For example, it may make little 

difference to any of the parties in an adult literacy program 

whether the teaching method employed is one which relies very 

heavily on teaching persons to recognize whole words or to build 

reading ability on the individual letters of the alphabet. Under 

such circumstances, an evaluation reRearch which could prove the 

clear superiority of one method over the other might have very 
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little difficulty in getting its results adopted by program 

administrators. Or, it may make a considerable difference whether 

one approaches farmers through their local leaders or througJ, the 

mass media, as far as acceptance of the use of fertilizers is 

concerned. In the two cases cited above, the pprties interested 

in the program care little which technical means is employed to 

achieve an end. 

To resolve a technical issue in the implementation of a 

program may be among the most important roles that evaluation 

researches may perform. Most of the activities described in 

Chapter 2 address themselves to what are ordinarily regarded as 

technical issues -- the size, location, and distribution of target 

populations, the means used to recruit participatns in programs, 

the precise means employed to persuade target populations to 

participate, the methods used to teach new techniqufs, and so on. 

Clearly, there are many technical issues to be resolved in the 

design, execution and implementation of social programs and the 

role that evaluation research can play in deciding such issues 

is quite considerable and important in assuring that a program is 

proceeding properly. 

B. The Role of Evaluation As Program Validation 

The impact assessments described in Chapter 3 are intended to 

assess whether or not a program is achieving its intended results. 

The experience in the United States in such impact assessments 

is that the expected value of estimated effects is zero. There 
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are many reasons why such is the case, (and can be expected to be 

the typical outcomes for other countries in which social programs 

are highly developed or more highly developed). The programs that 

are tested are ordinarily ones that are slight alterations to or 

small increments to existing programs. Anticipated effects of such 

slight alterations are necessarily slight and therefore hard to 

detect. In addition, program alterations are usually designed to 

meet need~ of target populations that are harder to re~ch than the 

program in question has already been reaching. For ex/.mple, it is 

easier to reduce illiteracy In a country where the literacy rate is, 

say, 30r. than in a country where the corresponding rate is 90%. 

Few social programs have been eliminated because their 

evaluations have shown them to have essentially zero effects. For 

example, the very large program to provide pre-school training in 

reading and the recognition of numbers, Head Start, has been evaluated 

with results that indicate that young children who have gone 

through the Head Start experience do not differ substantially (or 

at all) in their subsequent sch~~t performance. While the results 

of the evaluations have been challenged, neither the partisans of 

the program nor the program's det~actors have ever claimed that at 

best the program's effects are more than slight. The considerable 

partisan support for the Head Start Program has managed to gene4ate 

enough support in the U. S. Congress to keep the program well financed 

for the past few years. 
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When social programs have been discontinu2d after impact 

assessments have shown them to be ineffective, it has often turned 

out to be the case that such programs had little partisan support 

to begin with. For example, the American Experiment in Perform&nce 

Contract Learning was discontinued after a very hasty evaluation 

showed it to be largely ineffective. l The program was a test 

whether private contractors who would be paid on a sliding scale 

depending on how much the students would learn could do a better 

job of teaching elementarJ school children than regular school 

systems. The program met with the opposition of teachers 

associations, local school systems and other parties interested 

in the public schools. Faced with the preliminary findings of no 

effect, testing of the program w~s discontinued abruptly. Had the 

contract learning program achieved the support of school personnel 

and administrators perhaps the decision to terminate the program 

might not have been made 50 abruptly and experimental testing of the 

program might have continued for an additional period of time. 

These experiences illustrate some of the points made earlier 

in this chapter. An impact assessment is only one of the inputs 

to the decision making process. Depending on whether the program 

has a great deal of s~pport or opposition, an evaluation may be set 

lSo~e evaluation exp~rts after reviewing the~avaluation have judged 
that the program was not properly implemented to begin with (e.g. 
in some-4)f the experimental schools, the contractors had extreme 
difficulties in getting the appropriate equ~~~ent, hiring teachers, 
and so on) and that there were some signs in ~chools where it had 
been fully implemented that the contractor!'> wel:e achieving some slight 
iruprovement in learning over the ordinary school experiences in 
those schools. 
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aside or be used to bolster a particular decision. 

It ~hould also be stressed that these experiences are to some 

unknown degree conditioned by the nature of the American political 

system and the stage in which social programs are currently in 

the United States. It may well b~ the case that in political 

systems in which central administrations are stronger and less 

responsive to a variety of constituencies, impact evaluations may 

turn out to be more important elements in decision making. It 

should also turn out to be the case that in countries which are 

just developing their social programs, impact assessments might be 

more likely to show strong pocitive o~ negative effects for new 

Bocial programs, a c1r~umstance that might shift the information 

value of an evaluation research upwards considerably. 

C. Evaluation Research As General Information on Social Problems 

w~ have stressed so far in this volume that ~he main role of 

evaluation research is to provide information on specific social 

programs. However, there is another role that in the long run may 

turn out to be more important in the design and running of social 

programs. This role is that of providing general information on 

how social programs operate and on their effectiveness. Thus, 

while no specific program that is found to be ineffective may be 

discontinued, once started, it may well be the case that these 

negative results affect whether new programs using the same 

philosophy will be started. 
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for example, one of the mejor reasons why manpower training 

programs have received less emphasis in American unemplo~ent 

policy has been the fact that it bas been very difficult to discern 

that they have had any major impact on either participants or the 

general unemployment rate. Similarly, the last decade and a half 

of evaluation researches on educational programs has led the 

American government to invest more bca~ily into basic research on 

lesrning since the proRrams all apparently showed that existing 

innovations at be~~ were marginal improvements over existing 

educational practices. 

One of the major long run effects of evaluation researches, 

we believe, is an increasing sophistication in our knowledge about 

how social programs operate. This general rise in knowledge has 

filtered in the first instance into the administration of social 

programs, to some degree into legislative bodies and to a possibly 

lesser degree to the general populace. It has made special inroads 

into the social science curricula in universities and may well 

serve as the knowledge base for the decision makers (f the future 

whose training will be undertaken in those institutions. 

III. The Future of ~valuation Research 

There are many signs that evaluation research is among the 

fastest growing fields within the social sciences and becoming 

increasingly important within agencies that have re5ponsib1liti~s 
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for social programs. There are many reaCJns for this growth in size 

and fmportance. 

Perhaps the main reason is an increasing skepticism among 

decision makers --legislators, public officials, administ~ators, and 

so on -- that common sense and conventional wisdom can design social 

programs so that they p~hieve their intended goals. Decades of 

experience with attempts to solve the problems represented by an 

exploding population growth, the mdldistribution ~f resources 

within and between societies, with popular discontent, rising crimc 

and delinquency rates, ~pparent weaknesses in traditional 

institutions such as the f~Lly and kinship, and so on, have led to 

a realization that these are obstinate and difficult issues to d~al 

with. This skepticism has led decision makers to scek ways in 

which they can learn more quickly and efficiently from their mistakes 

and to capitalize more rapidly on effective measurp.s. To fund an 

evaluation is to express that ekepticism or at least to state 

implicitly that a proposed social program may not be as effective 

an answer to a problem as hoped. 

A second major reason for the growth of evaluation research 

has been the growth in the knQwledge and technical basp.s of the 

social sciences. The development of the sample survey has provided 

the social sciences with a powerful information gathering method. 

When coupled with the more traditional experimental methods in the 



form of field experiments, the social sciences have developed 

techniques that are peculiarly adapted to the testing of social 

programs. Advances in measurement, statistical theory, and 
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in substantive branches of the social sciences have also added to 

the increased ability of the social sciences to take on the special 

tasks involved in evaluations. 

Finally, there are also changes i~ the political climates of 

our times, that lead to more concern for social program. Increasingl~ 

we have come to believe that social problems are not fixed features 

of the condition of humankind but rather subject to change and 

amelioration through the reconstruction of human institutions. 

We believe oore than our ance9tors did that societies can be 

improved, and that the lot of all can be enhanced by the betterment 

of the disadvantaged and deprived. 

All the above trends appear unlikely to subside, much less 

reverse in the next few decades. This means that we can anticipate 

increasing interest in evaluation research, more persons with 

appropriate social science training being turned out by our 

universities, and mor.e support for evaluative activities in many 

quarters. Of course, evaluatioq research as practiced may fall far 

short of the hopes and aspirations with which we and other social 

scientists have invested evaluation research. Our best strategy is 

to practice evaluation research at the highest possible levei of the 

state of art. We hope that this volume will contribute the wide 

diffusion of current state-of-the-art practices. 
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The purpose of this Appendix is to introduce the logic and 

concepts for some of the basic methodological and statistical 

procp.dures required for evaluation research. For evaluators who 

have not been trained in social sc1ence methods and statistics, 

these notes might provide a starting point and alert for some of 

the principles and problems, 3ince topics are covered only 

sketchily. We strongly urge that additional sources be consulted, 

both by novices and the more experienced researchers, since 

ultimately the quality of the research is a function of the extent 

to which methods are well-executed. 

I. Sampling 

A. DaGic Conceptsl 

For reasons of cost and efficiency, evalu~tions of large-scale 

programs often preclude researching the entire target population 

which received the intervention. Similarly, if the intervention 

includes a number of activities or treatments, it may not be 

feasible to study all. Consequently, unless the program is 

relatively small-scale, evaluation requires that a sample of 

program recipients (and nonrecipients), or a sample of interventions, 

be studied. 

For example, the evaluation of an agricultural development 

program operating in a number of regions and intended to impact 

IAn excellent reference for sampling is Seymour Sudman's Applied 
Sampling (New York: Academic Press, 1976). As its title implies, 
this is a source book with a clear, applied emphasis and invaluable 
for practitioners. An older "classic" is Leslie Kish, Survey 
Sampling (New York: John Wil~y and Sons, 1965). 
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several thousand farmers, reqoires that a sample of the farmers be , 

selected for study, since it would be too costly to study all. tn 

addition, the errors that would arise from gathering, processing and 

analyzing data for a very large population are avoided. A well-

executed sample can therefore be the preferred strategy. Even a 

pilot program in a small number of communities might require sampling. 

When implementation and impact can be studied on all the persons involved 

with the program, a sample of those not involv~d with the program still 

has to be selected (depending on the research design as elaborated 

in Chapter 3), to allow the relative comparisons of output (impact). 

Although samples are almost always studied, the purpose of 

research is to generali~e to (make inferences about) the entire 

population of interest on the basis of sample data, to estimate 

and test hypotheses about population parameters. Therefore, it is 

essential to draw samples such that statistically valid inferences 

can be made about the population. Heuristically what this means 

is that the sample should be representative or reflect with 

"fairness" the population. A biased sample will produce results which 

cannot be validly generalized. Fortunat~ly, a variety of sampling 

techniques have been developed which, if properly executed, allow 

valid inferences about the population or universe of interest 

(the terms are used interchangeably). Which sampling method to 

use is determined by the nature of the population and the available 

resources. 

The first step is to define the population of interest, by 
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specifying whether it is a target pop'~lation of individuals, households, 

groups, institutions or whatever. These constitute the units of 

analysis for the study. In evaluation research the specification of 

units or analysis for the study. In evaluation research the 

specification of units of analY6is should be straightforward: 

whatever the program or interv~ntion specifies as the target 

population becomes the unit of analysis. The decision of what 

units to exclude --that is, establishing the boundaries of the 

population--~an also be derived f~om program rules. Program 

eligibility requirements are often stated in reference to 

geographic, economic and demographic characteristics of the units 

and thus provide boundary definitions. Examples are region~, 

villages, agricultural sectors; age categories, employment status, 

levels of income or education for individuals; size of groups, 

farming methods, and so on for each of the appropriate units. 

The nature and characteristics of the population determine 

(at least in part) which type of sampling method is feasible. The 

major difference is whether or not there exist records or lists of 

the population from which a sample call be drawn, or if such lists 

are unavailable, how they can be constructed. 

For inferential purposes, the most important requirement is 

that random sampling be employed. Probability or random samples 

are those samples in which every element (unit) in the population 
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has a known, nonzero probability of selection. Random does not 

mean "haphazard" or "capric1.ous" but that some well-known 

probability method is used to s~lect the sample. 

B. Simple Random Sampling 

Wil en eve· .. ' there exists a list, or recordF. can be used to geiterate 

a list, (also referred to as the sampling frame), of the entire 

population then simple random sampling can be employed. The pro­

cedures for simple random sampling are easy and inexpensive once 

the list has been assembled. 

A simple random sample is one in which every element in 

the population has an equal probability of being included in the 

sample (hence every sample is also equelly likely to be drawn). 

Furthermore, sampling takes place at one stage, with-elements of the 

sample selected independently of one another. 

Suppose, for example, that an evaluation was requircQ of an 

agricultural training program for adolescents e.g., the Centers 

for Rural Education established 1.n the Upper Volta during the 1960's 

by UNESCO. The project consisted of 2,137 centers capable of handling 

around 30 students each. A monitoring evaluation was to be done, 

with center as unit of analysis; to ascertain how the program wa5 

being implemented, what it consisted of and who was receiving it. 

Subsequently an impact evaluation was to assess the effect of the 

training program on the trainees after returning to their villages, 
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in terms of such outcome measures as farming methods and production 

increases. Detailed investigation could not be conducted on all 

the centers '.lor on the approximately 60,000 students who participated 

in the three-year training program. Since the lists of centers and 

students were complete and available, a random sample of centers was 

first dra,.·n, from which another random sample of students was later 

The most convenient and accurate procedure for obtaining a 

random sample is to use a table of random numbers. Portions of 

the Rand Corporation tables2 are reprinted in many statistics and 

methods texts, are shown in Sudman (1976), and are also available 

in many computer programs. 

The first step is to number the population of elements (units) 

--for the above example, the 2,137 centers. A table of random 

numbers is easy to use in drawing the sample. The numbers are random 

in any direction and from any starting point (they are grouped in the 

tables only for convenience), and therefore it does not matter where 

one starts or in what direction one goes. One way is to start at 

the top (of any page) ~nd move down. All that is required is 

that one work with sufficient columns to give each element in the 

list an equal chance of selection. Thus, in sampling from the list of 

2Rand Corporation, A Million Random Digits ~ith 100,000 Normal 
Deviates, Glencoe, Illinois: The Free Press, 1955. 
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2,137 centers one needs to use 4 columns of digits. Read down the 
.' 

columns of random numbers and keep in the sample any number from 

1 to 2,137 which comes up, discard any number bigger than 2,137. 

The procedure continues until the required sample size is achieved. 

The most comcon error among novices drawing simple random samples 

is to reject the sample obtained because somehow it "does not look 

right" and to start discarding elements, replacing them with new ones 

until a "more likely looking" sample is obtained. The result is 

no longer a simple random sample but a judgment sample. An alternative, 

if indeed the simple random sample exhibits peculiarities (such 

as the 50 centers selected are all from a very small geographical 

area), is to discard the entire sample and start from the heginning 

(from a different random start in the table) and draw another sample. 

It is worth stressing in this context that random sampling 

does not guarantee that any single sample will be "representative" 

of the population, since random sampling can produce peculiar 

samples (recall that in simple random sampling any sample of elements could 

be drawn--e.g., the most effective training centers). For example, 

in tossing a coin 10 times, it is possible to get 8, or 9, or even 

10 "heads." But such "unusual" qutcomes are not as likely to 

occur as, say, 4 or 5 or 6 "heads." This is because if we toss a coin 

only once or a few times, the outcome is less predictable than if 

we tossed it 1,000 times and recorded the outcomes. 

Thus, the merits of random sampling are understood in terms of 
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probability processes: in the long run, if random samples were 

drawn repeatedly from a population, on average all those samples would 

provide rather accurate estimates of che population. Moreover, f0 r 

random sampling the extent of variability or er~0r can be estimated, 

since statistical tests of significance can be applied to address 

the question of whether or not sampling error could have produced 

the results. 3 

c .. Systematic Samplit':& 

An alternative random samplicg method which is particularly 

useful for sampling from a very large listed population is a 

systematic sample, where cases are selected at given intervals. For 

example, if 200 cases are to be selected from a popu1at~nn of 10,000, 

one can select every fiftieth case. Note that the entire list does 

not need to be numbered. Two things are required for systematic 

sampling: the sampling fraction (or its inverse, the sampling interval) 

and a random start. 

The sampling fraction is simply the ratio of the desired sample size, 

say N, to the number of elements in a population. say M: f : N/M. The 

sampling interval i ~ M/N. In the previous example. for a sample of 50 out 

of 2137 centers, the sampling interval is 2137/50 a 42.74. One would 

round up or down, to 43 ~r 42 without any noticeable effects on the 

accuracy of the sample. To obtain a random start, a table of random 

'1 
-These ideas are discussed further in section V. 
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numbers is used to select a number between 1 and i (the sampling 

interval). This ensures that every element in the population has 

an equal chance of selection and avoids th~ small bias that would be 

introduced if the first or last eleme~t in the population were always 

selected. In the sample of 50 from the list of 2137 with a sampling 

interval of 42, suppose one obtains the random start 13. Then the 

selected elements in the ~opulatioL would be 13, 55, 97, 139 and so on 

through 2113. If the centers are not numbered, one would simply 

count and select out every 42nd case, starting with the 13th on the 

list. 

Systematic sampling is commonly used when choosing a sample 

from directories such as city or telephone. The procedure might 

amount to ~aking every fourth page and the tenth entry down. One 

has to know how many pages the directory contains and how many 

entries there are per page. Sudman (1976) describes how one can 

use length, say on a strip of cardboard, to measure off the 

intervals. Systematic sampling and some of these shortcuts can also 

be used when the population is not listed but is arranged on cards 

or file drawers, making sure that the files are all the same thickness. 

The most serious problem of systematic sarnlling, periodicity, 

occurs when the list is arranged in some order which coincides with 

the sampling interval and thus r~sults in a nonprobability sample. 

The most common example is when sampling through time periods since 

there are oft n seasonal variations in socioeconomic processes. In 

sampling from a large number of years, if the sampling interval 
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happens to be 12, one might end up with the peak unemployment period, or 

the lowest production month. But periodicity does not only occur as a 

function of time. For example, in cities or towns it is often the 

case that corner houses are ~ore expensive. In selecting a systematic 

sample of houses from block maps (e.g., every tenth house), the 

sampling interval ~ight coincide with or oversample corner houses. 

An evaluation of housing quality would thus overestimate ~uality. 

Therefore, lists have to be inspected caref:ully prior to the decision 

to opt for systematic rather than simple random sampling. In 

gen~~alJ alphabetized lists are unlikely to contain periodicities. 

D. Cluster Sampltng 

For many, if not most, evaluation problems, the populations of 

interest are unlisted and it would be much too costly to have to 

gene~ate a complete list. In such cases other probability sampling 

techniques are available which require fewer resources. One is cluster 

sampling, which takes advantage of the fact that even widely dispersed 

population units such as individuals and households can be found in 

geographic or other natural clusters. 

If clusters rather than individuals are sampl~d, then data­

gathering costs are reduced. Individuals or units within clusters 

are obviously much less dispersed than if they are sampled randomly 

from the entire population. Therefore, listing costs and travel 

time for interviewing are greatly reduced, 

In the simplest cluster design (single-stage), clusters are 

randomly selected, and then every individual or unit within each 

cluster is studied. For example, to estimate the adult illiteracy 
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rate in a large city, we mighe draw a random sample of city blocks 

and then interview all the adults in each block. Similarly, in the 

example of the agricultural centers, if we had to assess impact 

on trainees, we might draw a random sample of cen~ers and then 

interview all the trainees from each center. 

But cluster sampling is even ~ore useful when multistage designs 

are used. For the illiteracy rate example, after a random sample 

of blocks has been drawn, a random sample of housing units within 

blocks could be drawn, and then within households a random sample 

of adu1ts,wher~ lists would be constructed at every sampling stage. 

Thus, cluster sampling essentially involves (simple) random sampling 

in stages. If the clusters are geographic, cluster sampling is also 

known as "area sampling." It proves to be the most efficient method 

for obtaining national samples of households or adults. The 

technique can be used whenever the population units are located in 

clusters, such as schools, hospitals, firms, villages, clinics, 

pilot farms, distribution centers and so on. 

The characteristics of a cluster sample and its usefulness 

depend on the heterogeneity of the clusters in terms of the important 

variables being studied. The aim in cluster sampling is to select 

clusters that are as heterogeneous or varied as possible. Otherwise, 

if the clusters are very homogeneous, even very large samples will 

provide little information. For example, there is less variability 

within neighborhoods than within villages or towns or cities in 



terms of the soc1o-demographic characteristics of the residents. 

Similarly, if an intervention is carried out in many different 

localities and a cluster sample ends up with a very small number of 

contexts, then the evaluation would tend to underestimate the 

variation or heterogeneity in program tmplementation and/or targets. 

Sudman (1976) provides useful guidelines and examples of cluster 

sizes and procedures for estimating or measuring homogeneity within 

clusters. 

Cluster sampling does not requ1.re that the first sampling units 

(known as primary sampling unit~) be of the same size. For some 

sampling problems, however, clusters can be defined initially so that 

each cluster contains approximately the same number of elements, in 

which case the sample is "self .. weighting." Where naturally appearing 

clusters are not of the same size--for example, states, counties, 

districts, towns--the recommended procedure is to sample proport1.onal to 

population size. Otherwise, the probability requirements are violated. 

For instance, in drawing a simple random sample of counties or 

municipalities and then a simple random sample of counties or 

households within counties, people living in smaller counties Nould 

have a higher probability of appearing in the sample than those living 

in larger counties. 

E. Stratified Sampling 

Stratified sampling represents a different approach when the 

clustering does not occur naturally in the population under study, 
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but instead, the researcher divides the population into groups or 

categories (called strata.) Independent samples are then drawn 

(usually simple random) from ear.h group or stratum. In evaluation 

problems a common instance is when the strata consist of program 

participants and nonparticipants. Other stratification criteria 

might be early versus later stages of program development and 

implementation, urban versus rural location, or size of center. 

For other evaluation problems it may be important to compare impact 

on program recipients according to an important independ~nt or 

intervening variable, such as ethnicity, employment status, education 

or geographic location. 

Whenever a simple random sample of the population would not 

include a sufficient number of cases from the relevant categories 

(strata) which need to bp. compared, stratified sampling is appropriate. 

For example if a progr~ has been administered to a small proportion of 

the population in a given area (e.g., a fertility control program 

aimed at women under 30) a simple random sample would not be efficient 

because a very large sample would be required to find e&lough eligible 

women. If, on the other hand, a program has been ~dministered to all 

adults (e.g., a literacy program) and aa important research question 

was whether or not ther.e were any differences in program effectiveness 

by sex, a simple random sample would be expected to provide 

approximately equal numbers of men and women. 

Two type~ of stratified samples are possible, proportional or 
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dispro~ortional. If the sampling fractions for each stratum are 

equal. that is, strata are sampled proportional to their rate of 

occurrence in the population, the sample is a proportional (or 

self-weighting) stratified sample. For example. to estimate the 

impact of manpower training programs for urban workers, it may be 

necessacy to stratify by size of urban center. especially if the 

distribution of urban centers by size is highly skewed. A simple 

random sample of urban places would give the same probability of being 

chosen in the sample to the very largest places and the very small 

places. Hence. it would make sense to stratify by size of urban 

place first. picking places at random wlthin each stratum. Area 

probability samples of the United States, for example, ordinarily 

make strata by size of place with the lar,~cst places. e.g. New York. 

Chicago. Los Angeles, etc •• being placed in a stratum by themselves 

in order to insure that such large places are not under-represented in 

the sample of places eventually chosen. 

A more likely rationale for stratifying is in order to obtain 

enough from a group which otherwise would not appear in sufficient 

numbers in proportional sampling, In fact, for statistical analysis 

the opcimum sample is one where the subgroups to be compaced in the 

sample are of equal size. Therefore, one has to sample more units 

from the strata which comprise a smaller proportion of the population. 

This is referred to as a disproportional stratified sample. When 

generalizing to the population, estimates must be weighted by the 

proportion that the strata represent in the population. 
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Such disproportional stratified sampling is typically applied 

to circumstances in which there is some special interest in a 

relatively rare subgroup. For example, in a study of secondary 

schools, if there is a special interest in vocational schools as compared 

with academic schools and in the population only 15% are vocational, 

then it would make sensp. to make two strata of schools and oversample 

among thf vocational to get an equal number of each. Suppose that there 

are 1,000 schools and a sample of 100 is required. To get 50 

voc~tional and 50 academic schools, the sampling fractions for each 

stratum have to be different: 50/150 or 1/3 for vocational schools 

and 50/850 or 1/17 for academic schools. Of course, to make 

generalizations about ~ll schools, it is necessary to weight-up 

the unders~lcd stratum (academic schools): the weights would 

be .15 for vocational and .85 for academic schools, where the 

weights are the proportions of ~ach stratum in the population. 

More simply, we can aimply multiply each stratum by the inverse of 

the sampling fraction used: 3 for vocational and 17 for academic. 

In sum, therp. are many instances in evaluation research where 

stratified sampling is necessary. In effect, the notion of 

disproportionality is important when assigning cases to experimental 

treatments in order to allow the comparisons desired for polic~ 

relev~ce.4 In order for stratified sampling to be feasible, a 

4Kish (l965) is a good reference for the issue of disproportionality. 
Watts and Conlisk (1968) developed an optimal allocation method 
used in designing the New Jersev I~lcome Maintenance Experiment (David 
Kershaw and Jerilyn Fair (eds.), The New Jersey Income-l1aintenance 
Experiment, Vol. I, New York: Academic Press, 1976.) 



population list is required, as well as additional information on 

which the stratification is to be based (e.g., age, education, or 

other characteristics of the units or of the intervention.) The 

net effect of stratification is to decrease the variation within 

strata, (at least in terms of the stratifying variable), which 

requires further statistical adjustments (Sudman, 1976). 

F. Quota Sampling 

Quota sampling is a non-random technique used in the past by 

market researchers and pollsters which provides economical, 
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convenient and fast data. The characteristics desired in the elements 

to be interviewed are specified (e.g •• sex, race, length of program 

participation) and then the selection of elements or respondents 

is left up to the interviewers. Interviewers thus select and int~rview 

a quota of persons who possess the desired characteristics. Such 

procedures are obviously nonrandom, but a series of constraints 

can be imposed on the ultimate selection of uni~s and can be 

combined with prior stages of probability samrling, such as cluster. 

In this conuection is is worth pointing out that, in general, the field 

costs of conducting a survey are roughly one-third for actual interviewing, 

one-half for travel and locating and waiting for respondents, and the rest 

for clerical costs. Hence the appeal of quota sampling (cluster, as well) 

to reduce costs. The most serious problems. however, involve taking respon­

dents who are most conveniently available. More modern approaches attempt 

to rationalize the search procedure by specifying interviewer travel patterns 

for locating respondents, and requiring that interviewers visi"t predesignated 
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households or dwelling units. Slldman (1976) again provides a 

useful discussion of tht! costs and potentials of such quota 

approaches with constraints. 

G. Telephone and Mail Samples , 

Other efforts to reduce field costs involve telephone sa!ples, 

which unfortunately still have lfmited application for eval~ations 

in less developed nations. If telephone directories or lists can 

be used to draw the desired sample, . simple random or systematic 

sampling can be employed. The most common omissions from telephone 

directories, however, are persons or households of lower socio-

economic status who are more likely not to have telephones, and upper 

income households who might choose not to list their numbers. 

The U.S. experience suggests that survey costs can be cut 

substantially and equally valid and reliable information obtained 

by telephone as opposed to face-to-face interviews. The newest 

tech~iques are known as random digit dialing and use tables of 
~ 

random numbers to select numbers. In this way even unlisted numbers 

have an equal probability of being sele~ted. If the evaluation 

problem is amenable to telephone interviewing, a reference such as 

Sudman (1976) should be consulted. Different equipment can be 

purchased which selects the ~andom digits. 

Mail samples also can reduce data-gathering costs substantially. , 

Whenever addresses for the units being sampled are known or can be 

obtained, and the research problem is such that a self~administered 
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questionnaire can provide the necessary data, a mail survey would 

be feasible. In planning mail samples, however, the researcher 

should keep in mind that nonresponse can be high and that several 

follow-up mailings might be necessary for those who do not respond 

initially. Thus, initial postage and printing costs have to be 

augmented . .to include 10110w~.upct.usually as many as 2, and postage 

so that respondents do not incur the cost of return postage. 

Additional costs include the time required to receive all the ques­

tionnaires. 

H. Sample Size 

One of the ~st difficult questions to answer is how big the 

sample should be. In some cases the sample size may be prespecified 

by those funding the evaluation. Tr.e more likely case is that the 

total (C30UrCes, both in terms of funds and time, are set for the 

evaluation, which essentially amounts to a predetermined sample 

size. A useful rule of thumb when rep.erach costs are fixed is to 

spend about half the total amount for data collection and the 

other half for data analysis. This determines the sample size once 

the sample design and data collection procedures are specified. 

When costs have not been fixed and the ~esearcher has to make 

a sample size determination, the precedent of previous research can 

be useful. In large part, the sample size required depends on the 

. nature of the analysis to be performed, the kind and number of 

comparisons that will be made, the number of variables that have 

to be examined simultaneously. For ex~mple, if the key analysis 
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consists of computing averages for experimentals and controls in 

a program and comparjng the differences, then a sample under 100 

might be adequate, provided that experimentals and controls can be 

assumed to be equivalent to each other on all other rele".,nt 

variables because they were assigned to the experimental or control 

group by randomization. S 

However, most often relevant variables have to be controlled 

statistically (as discussed in Chapter 3) because the groups differ by 

factors other then chance. If two groups are compared but 

statistical controls have to be introduced for as few as four 

variables (e.g., sex, education, occupation, urban-rural 

residence) and each of the four variables is only dichotomous (i.e., 

divides the sample in two only), a simple cross-tabulation of 

treated and nontreated groups controlled for the four dichotomous 

characteristics requires a table of 32 cello (25). Obviously 100 

cases would be insufficient for anlaysis. In short, the evaluator 

must establish in advance the mode of analysis to be employed in 

order to determine the required sample size for efficient estimation 

of parameters and for statistical tests. 

Finally, more technical considerations suggest that the required 

, 4 

SRandomization simply assures that the groups differ on the basis of 
chance alone, which can be tested statistically. "Equivalence," 
then, is a by-product of randomization, in the same way "repre-. 
sentativeness" is a product of random sampling, in terms of probability 
processes and not si~~le instances. 
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sample size is a function of the precision of the estimates one 

wishes to achieve, the variability or variance one expects to 

find in the population, and the statistical level of confidence 

one wishes to use. Although the elements of the formula are 

discussed in Section V below, we can give an example: To estimate 

mean (average) earnings following a training program, with an 

accuracy of at least $100 per year, using a 95% confidence interval, 

and ass\~ing that the standard deviation of earnings in the 

population is $1,600, the required sample ~ize N is approximately 

985. 

In general, to estimate a mean: 

IN- (1.96)(a) 
precision 

where a is the population standard deviation for the variable whose mean 

one is interested in estimating, precision refers to the width of the interval 

one is willing to tolerate, and 1.96 reflects the confidence level (in this 

case the value of Z at the .05 level.) 



II. INTERVIEWING 

Interviewing can be thought of as a continuum of types, where the 

polar ends are as follows: 

Unstructured Interviewing: Interviewing tends to resemble conver­
sation style with no set questions, 
following a broad outline of topics. 
Each interview may cover a different 
set of topics within the broad outline. 
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Struc~ured Interviewing: The interJiew follows a strict order of 
set questions with the respondent picking 
his/h~r response from among a series of 
alternatives offered by the interviewer. 

Any given interviewing task, however, is usually somewhere in between the 

two polar types, containing some set questions and some discretionary 

questions to be asked by the interviewer when it appears appropriate. As 

one might suspect there are advantages and disadvantages to each type 

discussed bel~w.6 

A. Unstructured Interviewing 

Unstructured interviewing requires a considerable amount of skill both 

with the language involved and with techniques that encourage respondents 

to talk frankly and at lensth. In ~ddition, unstructured interviewing 

requires considerable knowledge on the part of the interviewer concerning 

the topic under consideration, since it is that knowledge which enables 

the interviewer to direct skillfulry the course of the interview into useful 

and informative channels. 

There are no particular personality features that se~ to determine 

6 
Standard references on interviewing techniques include: Raymond L. 

Gordon, Interviewing: Strategy, Techniques, and Tactics (Homewood, Ill.: 
Dorsey Press, 1969); Stephen A. Richardson et al., Interviewing: Its Forms 
and Functions (New York: Basic Books, Inc., 1965); Claire Selltiz et al., 
Research Methods in Social Relations (New York: Holt, Rinehart & Winston, 
1976). 
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whether a given person "iill make a good unstructured interviewer. Clearly, 

a good interviewer has to have confidence in him or herself, be warm but 

not ingratiating, and :r have the ability to listen attentively and with 

apparent interest to a respondent. 

Given these characteristics, unstructured interviewing is an excellent 

tool in the early stages of a study where the investigator may need to know 

a topic from the point of view of target populations. The skills and 

knowledge needed to conduct good unstructured interviews on a wide scale 

are simply too scarce to make this a good technique for obtaining informa­

tion on a widely defined popu~ation. 

In addition, the data obtained through unstructured interviewing can 

vary somewhat from respondent to respondent depending on the inte~ests and 

needs of the respondent and the particular approach taken by the intervi~wer. 

Hence, it is difficult to code and use such data in any systematic way: 

rather the main use of unstructured interviewing infort:tation is to provide 

illustrative materials and to g~ve an investigator a sense of the topic 

as seen in more subtle ways through a respondent's eyes. 

B. Structured Interviewing 

A structured interview is only as good as (1) the questions written 

by the investigator and (2) the abilities of the interviewers hired to ask 

the questions and to faithfully record the answers given. Question writing 

is almost an art form, apparently requiring a good sense for language as 

it is spoken and for the ways in which target populations view the topic 

in question. Hence, unstructured interviewing is often used first by an 

investigator to obtain sufficient intu~te knowledge of target persons' 

viewpoints and to tailor the structured questions to the latters' under­

standing of the topic in question. Lhe art of writing questions has not 

been syste~~tically explicated. Thus, the best way for a novice to proceed 
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is to look at questionnaires used by other successf~l investip,ators and 

to copy the style used. Wherever possible, standardized questions should 

be used. 

Structured interviewing requires at a minimum the following skills: 

first, a good command of both the spoken and written language. Consequently, 

skillful interviewers have at least some secondary school education. 

Secondly, structured interviewers need to be impressed with the necessity 

of asking questions as printed in the schedule or questionnaire in order to 

provide the same stimulus to all respondents. Thirdly, interviewers need 

confidence in themselves and in the utility of the study. Finally, they 

need to be precise and thorough. 

The training of interviewing staffs for structured interviewing 

ordinarily involves the following steps: first, hiring and recruiting 

interviewers with the characteristics listed above. Secondly, intensive 

short term training in the purposes of the survey, the intent of questions 

and of the necessity for aaking questions as printed and carefully recording 

respo'lses. A useful training device is setting up role playing simulations 

in which prospective interviewe~s interview each other before a group of 

recruits, with the instructor commenting on proper procedures and mistakes. 

Third, it is useful to send interviewers out with a "practice" interview 

and to thoroughly go over their returned questionnaires noting errors made. 

Finally, while interviewing is in p~ogress, it is necessa~y to set up a 

quality control operation in which the schedules returned by interviewers 

are checked over carefully by a supervisor and errors and inconsistencies 

are brought to the attention of the interviewers. Part of a quality control 

procedure should be interview validation, an independent check with a sub­

sample of respondents to ascertain wheti~er interviewers actually conducted 
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interviews with the right respondent. 

Structured interviews lend themselves easily to systematic treatment. 

Results can be easily transformed into quantitative forms and stored either 

as punched cards or magnetic computer tapes. Clearly for large scale 

evaluation research. structured interviews are most cost effective. 

I I I. MEASUREMENT 

Any research requires that theoretical or conceptual ideas be trans-

lated into research operations which provide empirical evidence bearing on 

those ideas. For example, many development programs are aimed to "improve 

the standard of living" of the people. Obviously, "standard of living" 

is not a directly observable characteristic in the world, and thus an 

evaluation of such development programs requires first that the abstract 

notions be translated into procedures which will allow measurement to 

take place. We might measure standard of living, for example, in terms 

of economic productivity for the community, personal income, education, 

agricultural productivity, type of housing, and so on. Measurement 

involves the transition between concepts and operations, and the outcome 

is daLa which are manipulated statistically to test hypotheses. 

A. 7 Level of Measurement 

In general, what we do when we "measure" something if' to assign numbers 

in some fashion such that the numbers represent the properties of the pheno-

menon of interest: we measure income in terms of the local currency, 

7 Discussions of level of measurement appear in all methods and statis-
tics texts. The classic reference is S.S. Stevens (ed.) Handbook of 
Experimental Psychology. New York: John Wiley & Sons, 1951. 
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education in terms of years of formal schooling attained, agricultural yield 

in terms of liters of given crops, nutritional intake in terms of calories 

or grams of protein, literacy in terms of scores on a reading test, and so 

on. Each of these different ways of operationalizing or measuring phenomena 

results in numbers which themselves have different properties and can be 

subjected to different mathematical operations. This is known as the level 

of measurement and it is essential that researchers be aware of the level 

of measurement attained in the research operations because the level of 

measurement determines almost exclusively the nature of the statistical 

analysis which is appropriate. 

Nominal level of measurement involves the simplest of all scientific 

operations: the categorization of units into classes or categories a~cording 

to a certain characteristic. Nominal measurement ml~ans assigning different 

names to units. For subsequent analysis, the names are replaced by (arbitrary) 

numbers: for example, for measuring sex, we can classify all men • 1 and 

all women ~ O. The assigned numbers could have been 1 and 2, or 1 and 5, 

or 1 anj 500. Nothing other than a difference is implied: men and women 

differ, but one number does not represent more or less than the other. 

Similarly, villages can be classified according to a numbering system 

representing region, but the numbers only stand for different names, in a 

shorthand notation. 

Ordinal measurement implies that the categories of a classification 

system can be ordered or ranked according to some property. Some elements 

possess more or less than others in terms of some characteristic, but it 

is not possible to say exactly how much more or less they possess. Thus, 

individuals vary in terms of socio-economic status; they can be rank­

ordered along a continuum such that some are upper, middle and lower status. 
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At this level of measurement we still do not know the magnitude of differences 

between assigned numbers. For convenience, we might assign the numbers 1, 

2 and 3 to low, medium and high, respectively. But the numbers could also 

have been 1, 20 and 100. Most attitudinal measurement is ordinal in that 

people can be classified in terms of, say, level of self-esteem, degree of 

alienation, level of agreement with certain political issues, or degree of 

satisfaction with a treatment. 

Interval and ratio measurement imply that the units in terms of which 

the measurement is expressed are constant. Not only is it possible to rank 

persons or objects with respect to the degree to which they possess a 

characteristic, but it is now legitimate to indicate the distances between 

them: for example, years of education, dollars of income, number of persons 

in a family. The units which separate the scale of the measure are equal 

at all points on the scale. With interval measures, arithmetic operations 

of adding and subtracting are now meaningful and legitimate. With ratio 

measures it is possible to locate an absolute or nonarbitrary zero point, 

and thus division (taking ratios) and multiplication are also meaningful 

operations. In practice, regearchers usually tLeat interval measures as 

if they were ratio, since once a constant interval scale can be established, 

it is usually possible to assign a nonarbitrary origin. 

The different levels of measurement are obviously cumulative in that 

interval and ratio measurement also implies rank-ordering as well as 

classification, and rank-ordering implies classification. For research 

purposes, whenever there is a choice between alternative ways of measuring 

the same phenomenon, one should choose the highest level of measurement 

possible because more powerful and sophisticated analytical techniques 

can be used. For example, in collecting data about age, it is best to 



ascertain years of age directly (an interval-ratio measure) rather than 

classifying respondents into young, middle-aged, or old (an ordinal 

measure). The first can always be reduced to the second, but not vice 

versa. Fortunate1.y, in evaluation research, many of the critical outcome 

variables of an intervention or program can be measured as counts or by 

enumeration: number of births, income, number of persons vaccinated, 

agricultural production in liters of crops or hectares under cultivation, 

and so on. 

B. 8 Measurement Error 

Measurement error refers to the lack of fit or slippage between the 

measured value that the researcher has at hand and the "true" value of the 
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observation on the phenomenon in question. The general "theory" of measure-

ment error can be expressed in terms of a simple formula: 

M - T + e 

where M js the measured value, T is the true value and e is the measurement 

error, that is, all the stochastic errors that cause the measured value to 

differ from the true value. For example, score on an achievement test (M) 

is a function of ability (T) and measurement error. The obvious problem 

is that researchers never know what the true value is: T is what we want 

to know, M is all we have and what we are forced to use to estimate T, 

and the error is a great unknown, about which many assumptions have to be 

made. What the researcher can do, is to take steps to guard against committing 

some well-known avoidable mistake~ by taking steps which will reduce the 

numbers and kinds of errors in measurement. 

8 A useful reference is GeorgeW. Bohrnstedt. "Reliability and Validity 
A::;sessment in Attitude Measurement." In Gene F. Summers (ed.), Attitude 
Measurement. Chicago, Ill:i.nois: Rand McNally, 1970. 



Errors can occur at any stage of the research~ sampling, ~easurement, 

data coding and processing, and ~~ on. The fundamental distinction i~ 

between random errors and bias. Random errors tend to cancel each other 

out in tp.rms of direction and magnitude (technically, the expected value 

of the error term in the formula is zero). Nonrandom errors are referred 

to as systematic error or bias. Well known examples are the tendency of 

people to under-report their age and in some cases income, the tendency 

to over-report level of education, and all sorts of response sets which 

lead to biased measurement. When we have a biased measurement, we have 

invalid measurement (see the discussion of validity in Chapter 3). Put 

differently, when we expect that the measured value equals the true value, 

the measure is valid--that is, it measures what it purports to measure. 
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A large number of measurement biases have been subsumed under the term 

reoponse effects, which are systematic errors in measurement usually dis­

cussed in the context of surveys. These have been decomposed into three 

major components: intp.rviewer effects, respondent effects and task effects. 

Interviewer effects are all the errors introduced by the interviewer and 

as a result of his or her characteristics. A previous section on inter­

viewer training has noted some of the procedures which enhance interviewing 

quality. In general, the researcher shoulj watch out for any characteristics 

of the interviewer which might affect responses, if the study is related to 

those characteristics. It was believed in the past that interviewer 

characteristics such as sex, race and age would bias responses, but at 

least in the United States, such concerns have not been substantiated by 

methodological research (see Sudman and Bradburn, 1974). The extent and 

nature of the problem in evaluation research in less developed countries 

is unknown. We simply urge the researcher to be conscicus and cautious in 

avoiding the introduction of interview~r effects in surveys. 



Respondent effects are all those systematic errors in measurement 

produced by non-relevant respondent states, traits or characteristics. 

Many are response sets, or tendencies to answer questions in certain ways 

irrespective of their cont~nt. One of the best known forms of response 

se~ is acquiescence, the tendency to agree to an item regardless of con-

tent. It is particularly troublesome in attitude measurem~nt which is 

based on "agree-disagree" items. Care must be taken in item wording such 

that a positive or "agree" response denotes the presence of a trait or 

attitude half the time and absence of the trait the other half. Wherever 

possible, well-developed scales should be used which have been constructed 

9 to guard against tho problem. 

A second form of response set is called social desirability bias, or 

the tendency to give what the respondent feels is the desirable or appro-

priate answer irrespective of his/her own feelings. This may be a problem 

any time there ~re certain strong norms in the society which prevail: for 

example, the UNESCO Experimental World Literacy Program evaluation cites 

an example where in one country it was simply impolite to answer "no" to 

any question. There is a scale (in English) which has been developed for 

the express purpose of measuring the extent of social desirability bias 

in respondents, and which has been used as a correction factor. I" sum, 

each cultural tradition may produce certain respondent effects which the 

researcher should be alerted to. Wherever possible, when measuring some 

characteristic or attitude for which a standardized measure or scale is 
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available (many have been translated into several languages), the researcher 

should use it since most likely some of the methodological properties will 

9There are several compilations of available measures which should be 
consulted before deciding to construct new measures, for example, John P. 
Robinson and Phillip R. Sh~er, Measures of Social Psychological Attitudes, 
Institute for Social Research, University of Michigan, Ann Arbor, Michigan, 
1973. 
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be known and such problems will be avoided. 

Finally, task effects refer to the errors introduced by the nature of 

the task which the respondent is asked to perform. It includes the method 

of the survey (whether it is face-to-face, telephone, mailed), the length, 

degree of structure, and also the nature of the information elicited. Two 

common sources of error (which mayor may not be systematic) are due to 

attempts to retrieve retrospective information. Simply put, peorle tend 

to forget about events and experien~es, occurring in the past, or they 

may remember events but report the data ina~curately (for instance when it 

occurred). The first is sometimes known as memory decay, the second as 

telescoping. For these reasons, we have urged throughout the discussion 

of research design in Chapter 3, that adequate evaluation research which 

requires data at-more than one time point obtain those data without resort 

to recall by respondents. If longitudinal studies are not feasible, then 

documentary evidence may be preferable to asking respondents to r~call 

past events. This, of course, depends on the nature of the variables under 

study: obviously major or critical events in a person's life will be remem­

bered and reported more accurately. 

One final source of systematic error or bias in measurement is 

actually a non-response bias, or the general problem of missing data. 

Data can be missing due to a variety of reasons: respondents refuse to 

be interviewed, respondents don't answer all questions, participants drop 

out of programs, controls who are part of an evaluation but are not parti­

cipating or deriving benefits from a program may drop out, and so on. 

Whatever the source and magnitude, missing data are very problematic in 

the data analysis and may lead to biased results. Imagine an intervention 

program with an experimental design which imparts job training to the 
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unemployed. Partly through the program, some of those who have the least 

skills and most difficulty finding jobs simply drop out of the program. 

An evaluation on the basis of those who remain in the program and complete 

the training will overestimate the impact (positive benefits) of the program. 

In different contexts, differential dropping out of the program (known as 

attrition) can occur among those who benefit the most, and thus results 

would tend to underestimate impact. 

The only entirely satisfactory solution to the problem of missing data 

is to take all possible steps to avoid it, for instance, by monitoring 

participation or by offering incentives to those most likely to drop out 

(such as controls). The problem of data missing intermittently through 

the file can be dealt with in many different ways, none of which is generally 

superior to· any other. Most computer programs or software packages (e.g., 

SPSS) designed for analyzing social science data provide some discussion 

of the problem and offer alternative ways of handling it. 

C. Validity and Reliability of Measures and Multiple Item Scaling 

Whenever a researct.er constructs a measurement instrument, the two 

criteria applied to assessing methodological quality are validity and 

reliability. These properties ~ere discussed briefly in Chapter 3, and 

they ask, essentially: does my instrument measure what it purports to 

measure (i.e., is it valid) a~d does my instrument constitute a reliable--

i.e., a consistent--measure. There is a very large methodological literature 

on how to establish the validity of measures and how to estimate the 

10 reliability. 

10 A very useful summary article in Bohrenstedt's (1970) article, but 
practically any rr.i~~ence on measurement and scaling would be useful: for 
example, any psycnometric handbook, the Hannbook of Social Psychology, most 
advanced metho·"?logy books such as Blalock and Blalock (1968), and a forth­
coming Handbook of Survey Research by P. Rossi and J. Wright (Academic Press). 
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The important thing to know is that there are well known formulas to 

estimate reliability coefficients as well as guidelines on when and how to 

use adjustments for unreliability in statistical analyses (the best summary 

is in Bohrenstedt, 1970). The logic is that reliability can be measured 

by administering the same instrument at two different points, and assuming 

that persons have not changed, the same instrument should produce consistent 

measurement. This is known as test-retest reliability, and it can be com­

puted by a correlation coefficient (see Section IV below). In evaluation 

contexts, test-retest measurement may have to be done prior to t~e program, 

since the whole point of intervention programs is to cause change. Thus, 

a more likely situation is for evaluation researchers to measure a concept 

at a single point in time by means of a number of items. Reliability can 

then be estimated in terms of how consistent the items are: how well 

correlated are they with each other, do they seem to "hang together" and 

measure the same thing? An early method involved dividing the items in 

half and computing the correlation between halves (split-half reliability, 

usually by means of the Spearman-Brown (1910) formula). The most straight­

forward is to compute an average inter-item correlation among the items in 

the instrument, but formulas such as the Kuder-Richardson (1937) and 

Cronbach's alpha (1951) are also available. 

For example, an evaluation of the impact of a housing program on 

quality of housing would have to measure "quality of housing" if no instru­

ments have already been developed or are inappropriate for a particular 

context. Suppose the researcher decides to construct 15 items which all 

together will be combined into a quality of housing indicator. The relevant 

questions, then, are whether or not the indicator actually measures quality 
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of housing (is it valid?) and whether it is reliable. An important considera-

tion is how the 15 items will be combined into a single indicator or summary 

measure, or how the items will be scaled. 

Scaling multiple item indicators could be done at the simplest level 

by adding items or points all the way up to complex scaling procedures 

involving factor analysis. Again, any standard methodology text will be 

11 a useful source for scaling techniques. 

11 See A.L. Edwards, Techniques of Attitude Scale Construction, (New 
York: Appleton-Century-Crofts, 1957) on scaling and R.J. Rummel, Applied 
Factor Analysis (Evanston, Ill.: Northwestern University Press, 1970) on 
factor analysis. 

http:techniques.11
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IV. DESCRIPTIVE STATISTICS 

Data from evaluation research have to be organized and summarized 

intelligibly and examined systematically to test hypotheses about program 

effects. De~criptive statistics are used to summarize and describe. the 

characteristics of the program, targets and effects. Inferential statis-

tics provide methods for testing hypotheses about the significance of the 

observed results and for estimating population values on the basis of 

sample data. This section gives a very brief introduction to some of the 

more useful descriptive statistics for evaluation, the next discusses in­

ferential methods. 12 

A. Describing a Single Variable 

1 PERCENTS, RATIOS AND RATES 

One way to summarize a variable is to report its percentage distribu-

tion, conv-erting the .frequency distrib~tion into percentages. The f'reguency 

distribution (also known as "marginal distribution" is simply the number of 

cases that fall into each of the categories of the variable.) 

Table A-I. Frequency and Percentage Distributions of Employment after 
Training. 

Employment 
after Training Freguency Percentage 

Farming 150 60.0 =(150 . 250)xlOO -
Industry 65 26.0 
Teaching 11 4.4 
Unemployed 24 9.6 

Total 250 100.0 

The advantage of a percentage over a frequency is that comparisons can be 

made across distributions based on different numbers of total cases (usually 

l_~'------------------------
There are literally dozens of statistics texts which can be consulted. At 
the introductory level one which is widely available is Hubert M. Blalock, 
Social Statistics. New York: McGraw-Hill, 1972. 
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symbolized by the letter N). For exam~le, if we wanted to compare the pro-

portions in Table A-1 with another program that had 300 graduates with 165 

(55%) 1.1 agriculture, the frequencies 165 and 150 are not directly comp3rab1e 

but 55% and 60% are. 

To compute a ratio the frequency in one category is divided by the 

frequency in another category: e.g., from Table A-1, the ratio of those 

in farming to those who are unemployed is 6.25 (a150 7 24). A more common 

e~mp1e is the sex ratio: if 130 of the trainees are males and 120 females, 

the sex ratio is 130 7 120=1.08 (sometimes expressed as 108:100, i.e., 

there are 108 males for every 100 females.) 

A rate is like a percentage in that it divides the frequency of obser-

vations in a given category by the total number of observations, but then 

that proportion is expressed as a multiple of 10 (usually larger than 100.) 

For exam~le, birth rate is usually expressed as the number of births in 

a pupu1ation per 1,000: if there are 9,000 birt~s durin~ a year in a 
. 

population of 200,000, th~ (crude) birth rate = 9,000 7 200,000 x 1,000 

= 45 births per 1,u~0. Similar rate computations can be carried out for 

age-specific female c0horts, for example number of births for the po pula-

tion of women ages 15-50. For events which occur very infrequently, such 

as certain crime rates, rates are expressed in multiples of 10,000 or 

100,000. Examples of other rates in evaluation are: yield or revenue 

divided by hectares cultivated and area cultivated divided by population 

size. (See Chapter 2 for a discussion of prevalence and incidence.) 

A rate of change or rate of gain is useful in comparing the distribHtion 

of a variable through time, say before (time 1) and after (time 2) a pro-

gram: 

Rate of change = Value at time 2 - Value at time 1 
Value at time 1 

http:l20=1.08
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The result can be! multiplied by 100 to remove the decimal and to reflect 

percentage change. F'r example if the population equals 200,000 in one 

year and 250,000 5 years later, the rate of change in population is 

. 
(250,000 - 200,000) 7 200,000 =.25 or 25%. 

2 CENTRAL TENDENCY: MODE, MEDIAN, MEAN 

Another way to summarize the distribution of a variable is _lth one 

of three measures of central tendency, which convey information about the 

"average" value of the variable. The mode is the most frequent value in 

the distribution. For the example, the mode (modal employmen~ of the 

distribution shown in Table A-I is farming. The mode can be reported for 

any level of measurement, and it requires no computation. It can be used 

for grouped or ungrouped data. 

A second kind of 3verage is the median, or the value which divides 

the distribution in half--that i~,. half the cases fall below the median 

and the othe~ half are above it. The median therefore, reflects the 

middle position of the distribution, where the values have been ordered. 

(It is a meaningless statistic for nominal data.) For example, for a hypo-

thetical distribution of size of training centers: 

25 30 32 37 38 42 45 50 56 

the median is 38 becau8e there are four smaller and four larger centers. 

If there had been a tenth center af size 70, the median of that distribution 

would be a value in the middle between 38 and 42: (38 + 42) ~- 2 = 40. The 

median is an important measure of central tendency when the distribution 

is skewed, that is, when there are extreme values in one of its ends. For 

example, if the first center ~nly was of size 5 instead of 25, t.he median 

would still be 38, and likewise if the last one were 150 instead of 56. 

Thus, t~e median is a stable measure of central tendency and is not affected 
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by extreme scores. This is why one often finds the median reported for 

income data, which tend to be skewed. 

The most commonly known measure of central tendency is the arithmetic 

average or ~ (X), computed by adding up all the values and dividing ~y 

the number of cases. For example, for the distribution of center size, 

X • 25 + 30 + 32 + ... + 50 + 56 a 39.4 
9 

A shorthand notation can be introduced to simplify the remainder of 

this discussion: 

Or even simpler, 

X ::0 the "raw" or observed values of a variable 
i 

N a total number of cases or observations 

x .. 

N X 
mean lEI X a l: -2:. 

i-I N 

CI mean 

The symbol t (the Greek capital letter Sigma) simply indicates a sum. It 

directs us to add all the values of Xi appearing to the right of the symbol. 

The notation can be made even simpler by omitting the subscript i: 

X = l:X 
N 

For quantitative (numeric) data the mean is the preferred measure of 

central tendency because it has important arithmetic and other properties 

used in inferential statistics. It is a good summary measure because its 

computation utilizes every value of the distribution. However, extreme 

values do affect the mean (for example, in the above distribution of center 

size, if the largest center were size 100 and not 56, the mean would be 

44.3). Therefore, for skewed distributions, it is be~t to report both the 

mean and the median to avoid misleading interpretations. 
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3 DISPERSION 

The average values of a distribution convey only one kind of informa-

tion about the variable. A second property is the dispersion or variation 

in the values of the distribution -- that is, how spread out the 

values are or how close together. One very simple measure of dispersion is 

the range, or the difference between the highest and lo~est values (in the 

above example, range ~ 56 - 25 ~ 31). So~etimes the highest and lowest 

values are simply given -- for example, progra~ part~cipants range in age 

from 12 to 16 years. But suppose the largest center were size 100 instead 

of 56 in the previous example, and the rest of the distribution was unaltered, 

the range would now be 100 - 25 a 75. Since the range only takes into ac-

count the minimum and maximum values of a distribution, it tells us nothing 

about the distribution of values in the middle. 

Therefore, other distance-based measures of dispersion have been de-

veloped which are more informative about the middle of a distribution. One 

such measure is the interquartile range, which is simply the range of 

values in the middle half (50%) of the distribution. Such a measure is 

more sensitive to the way values are concentrated around the middle, but 

it still amounts to the difference between only two values of the distribu-

tion. 

A more important (in the sense of useful properties and applications 

in other topics in statistics) characterization of dispersion is the extent 

to which each of the values of a distribution differs from the mean. 1~e 

variance of a distribution is defined as the average squared deviation 

from the mean: 

2 rex - X)2 
s = variance 2 ~----~-

N 



Table A-2 shows a distribution of seven cases and the computation of its 

mean and variance: 

Table A-2. Computation of the Mean and Variance for a Simple Distribution. 

x (X - X) 
2 -4 

2 -4 
4 -2 
5 -1 
6 0 
8 2 

15 2 
IX • 42 0 

(X - X)2 

16 

16 
4 
1 
0 
4 

81 
ill 

Computation: 

X - 42 • 6 
7 

2 s 122 ---17.4 
7 

The second column shows the deviations from the mean for each of the values 

of the distribution. Note that the sum of all the deviations from the mean 

13 is zero (it always is, for any distribution), which suggests why the next 

step of squaring the deviations is necessary. 

The formula for variance given above is the definitional formula. In 

practice one does not compute the variance with that formula because sim-

pIer computational procedures are possible which are also less likely to 

14 
introduce,rounding error. A computational formula for the variance is: 

2 
s -

IX'! - (IX)2 I N 
N 

l.~y definition, the mean is that point of the distribution which repre­
sents its center of gravity (often the point is illustrated by analogy 
to a teeter-totter, where the mean is the place where the fulcrum is 
located). 

14 

"For example, if (as is almost always the case) the mean qf a distribution 
is not a whole number, each of the deviations will be a decimal number, 
which when squared will also be a decimal number. So the computations 
get more tedious and more subject to rounding errors. 
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Table A-3 shows the simplified computation of the variance for the 

same distribution in Table A-2. Note that only one additional column 

of squared terms has to be computed, and the calculation does not involve 

the mean X directly: 

Table A-3. Calculating the Variance of a Distribution with the Computa­
tional Formula. 

2 tx2 _ OX)2 / N s. 1:1 

X2 N 
X 

(42)2/ 7 2 4 2 374 -
s· a 

2 4 7 

4 16 374 - 1764/7 .. 
5 25 7 
6 36 
8 64 .. 374 - 252 

15 225 7 
42 374 122 .. --

7 

z:r 17.4 

Note that the first summation term in the formula refers to the sum of the 

squared values. The second summation term is obtained by first summing 

up all the "raw" values of the distributiun, and then squaring that total. 

The rest is -arithmetic, but the result is the same as in Table A-2 when 

the definitional formula was used. 

While variance is an important statistical concept which is used in . . 
different ways, it does not have a direct interpretation for descriptive 

purposes. For one thing, it is given in units which are squared -- for 

example, if the above distribution were of the variable "family size," 

2 and hence in units of individuals, the variance would be 17.4 (individuals) • 

Another measure of dispersion is therefore the standard deviation, which 



is the square root of the variance: 

standard deviation - • - ~- \ ~(X; XJ
2 

Its computational formula is as before: 

IX2 _ (1:X)2/N 
N 

A-40 

The standard deviation is expressed in the original units of measure-

ment of the distribution: the standard deviation for Table A-3 is 

15 
Thus, the mean is 6 and the standard deviation 4.2 persons. 

4 STANDARDIZED SCORES OR Z-SCORES 

The mean and standard deviation can be used to describe individual 

values or scores of a distribution by means of a formula which is called 

the Z-transformation: 

I z_X~X 
A Z-score expresses a raw or observed value X in terms of its distance 

from the mean (X - X), or the numerator of the formula. Dividing by s 

converts that distance to "standard deviation units." For example, we 

might want to know how the observed value of 15 in Table A-3 compares 

wi th the rest of tIle distribution, so we would compute a Zo-score which 

corresponds to the value 15: 

We would say that the value 15 is located 2.14 standard deviations above 

the mean of the distribution. 

Standardizing scores also allows comparing raw scores from two distri-

butions. Suppose we want to compare values (say, test scores) from two 

l5 Many statistics texts include tables of square roots and squares of 
numbers, which can be helpful for the calculations by hand (without 
computers or calculators). 

http:persons.15
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different distributions (say, before and after an educational program. 

One student scores 90 before the program and 80 after the program. With-

out converting those scores to z-scores, comparisons of the two raw values 

would be misleading (one conclusion might even be that the progam is detri-

mental). Instead, the appropriate comparison is in terms of standardized 

scores. Suppose the pre-program distribution of scores had a mean of 75 

and standard deviation of 5; post-program scores have a distribution with 

a mean of 60 and standard deviation of 4. (Note that the second test was 

harder, and there was less variation around the mean than for the first 

test. In fact, they might even have been different tests). We can now 

compute two Z-scores. 

Z 2 90 - 75 Q 3 
before 5 

b ~ 80 - 60 ~ 5 
after 4 

Thus, 80 is a better score than 90, relative to the average score and 

variation in each of the distributions: 90 is equivalent to 3 standard 

deviation units higher than the mean, 90 is equ1v~lent to 5 standard devia-

tion units higher than the mean. Note that it is possibl~ to obtain nega-

tive Z-scores, which would then indicate that a particular score is below 

the mean. 

5 THE NORMAL DISTRIBUTION 

The normal distribution is a mathematical or theoretical distribution 

of great importance in inferential statistics. We introduce it here to 

show another useful application of the standard deviation. The normal dis-

tribution is defined by a mathematical equation and is based on a theore-

tically infinite number of cases -- thus it can only be approximated with 

real data. It is a symmetrical bell-shaped curve. It actually consists 
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of a whole family of distributions where the mean and standard deviation 

can both vary from one curve to the next. An important property is that 

there is always a constant area or proportion of cases between the mean 

and a given number of standard deviation units: 

Figure A-I: Graph of a Normal Distribution and Areas under the Curve. 

-:-ls +ls +2s +3s 

k- 68. 3%~ 

l~ 95.4% )\ 

,~ 99.7% ~\ 

Thus, in a normal distribution, over two-thirds of the cases (68%) can 

be found within one standard deviat:f.on unit in either direction from the 

mean. Over 95% of the cases fall within two standard deviation units 

from the mean, and practically all the cases are within three standard 

deviation units. What the figure shows is that for a normal distribution, 

we can determine the proportion of cases that fall between any two scores, 

between any score and the mean, or above any given score. Statistics texts 

always include a table of "areas under the normal curve," which is given 

for a normal curve that has been standardized such that it has a mean of 

o and standard deviation 1 (This allows that only one table be shown which 
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is applicable for all normal distribution problems when scores are trans-

formed by the Z-transformation.) 

A very important word of caution: using the Z-score transformation 

will not change the shape of a distribution, and will not make a distri-

bution of observed values normal. The reason the normal distribution can 

be used is that many events do occur in ways that their distribution appro-

ximate the normal theoretical distribution. Furthermore, there are guide-

lines provided by mathematical statistics which tell us in what particular 

instances we can use the normal approximation (as we'll see in the inferen-

tial section, having to do among other things with sample size and sampling 

method.) 

B. Examining the Relationship Between Two or More Variables 

1 CROSSTABULATION AND HOW TO PERCENTAGE A TABLE 

In order to analyze the effect of a program, two or more variables 

have to be examined simultaneously. Suppose we have a fertility control 

program and have gathered data on completed family size (number of children) 

for an appropriate sample of women who participated and those who did not. 

A first step is to construct a cross tabulation showing number of children 

by program participation: 

l6An excellent source for the logic and procedures of simple and multi­
variate cross tabular analY9is is James A. Davis, Elementary Survey 
Analysis, Englewood Cliffs, New Jersey: Prentice-Hall, 1971. In 
addition, the book has useful and authoritative advice on many practical 
aspects of research design and analysis. 
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Table A-4: Frequency Table of Number of Children by Program Participation. 

Number of 
Children 

0-3 

4-5 

6 or more 

Total 

Participated 

300 

240 

60 

600 

Did Not 
Participate 

100 

275 

125 

500 

Since the cell entries for participants and nonparticipants are not based 

on the same ~umber of cases, the table has to be percentaged to permit 

comparisons of cell entries across the two different groups. 

Tabla A-5: Percentage Table of Number of Chi1dr~~ by Program Participation. 

Number of 
Children 

0-3 

4-5 

6 or more 

Total 

Participated 

50 % 

40 % 

10 % 

100 % 

Did Not 
Participate 

20 % 

55 i. 

25 i. 

100 % 

There is a rule for percentaging a table: always compute the percentages 

within categories of the independent variable. (In the example, the indepen-

dent variable is program participation.) Another way to phrase the rule in 

more mechanical terms is: set up the table so the independent variable is 

in the columns (the categories of the independent variable are across the 

top) and the dependent variable or effect is down the rows. Then always 

percentage down the columns, to make comparisons across the rows. 
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Table A-5 shows that those women who participated in the program do 

17 
tend to have fewer children than those who did not participate. 

The problem with the results is that family size may be affected by other 

variables besides program participation, and if the sample does not represent 

a sample of randomly assigned women to either of the two groups, we must use 

those other variables as statistical controls (see Chapter 3). For example, 

it may be that level of education changes the nature of the relationship 

shown in the preceding table. Adding education as a control variable pro-

duces the following: 

Table A-6: Number of Children by Program Participation and Education (Cell 
Entries ar~ Frequencies). 

!rimary Level Education Post-Primary Level Education 

Number of 
Children 

Participant Nonparticipant Participant Nonparticipant 

I 
0-3 90 42 210 58 

4-5 128 165 112 110 

6 or more 32 93 28 32 

Total 250 300 350 200 

17 

. 
Again the table must be percentaged before it can be interpreted: 

In a subsequent section we show how to compute a statistic known as chi-
square. This statistic allows an inferential test of the hypothesis that 
the observed results might have occurred by chance (e.g., due to sampling 
variability). 
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Table A-7: Number of Children by Program Participation and Education (Cell 
Entries are Percentages). 

Primary Level Education Post-Primary Level Education 

Number of 
Children 

Participant Nonparticipant Participant Nonparticipant 

J 
0-3 36% 14 % 60% 29% 

51 % 55 % 
.. .. 

32% 55 % 4-5 

6 or more 13 % 31% 8% 16% 

Total 100 % 100% 

The 2ffects of the fertility program are quite different for women of 

different educational levels: the effects are much more pronounced for 

women with higher levels of education, and less pronounced for women with 

only a primary education. For instance, 60% of the more edu~ated participants 

have a small number of children, as compared with 36% of the less educated 

women. More precisely, the difference between participants and nonparti-

cipants in the percentage who have small families is 22% (36 - 14) for the 

less educated and 31% (60 - 29) for the more educated. 

Two points can be noted: it is clear that one could introduce additional 

variables as control variables, but only up to the point where there are 

sufficient cases in the cells. Furthermore, the introduction of several 

control variables simultaneously in a table can result in a very cumbersome 

and clumsy analysis. Hence, other statistics can be employed to summarize 

more succinctly the effects of several variables. 

For example, with the ungrouped or raw data on number of children 

and level of education for participants and nonparticipants, one might 
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start out by reporting the mean or average number of children for partici-

pants and for nonparticipants: 3.5 for partici~ants and 4.6 for non-

participants, a difference of 1.1 children for the aggregate. Suppose 

that the means when controlling for educational level are: 

Table A-8: Mean Number of Children for Program Participants and Nonpartici­
pants by Educational Level (Number of Cases Shown in Parentheses). 

Education Participants Nonparticipants Difference 

Primary 3.9 (250) 4.9 (300) 1.0 

Post-Primary 3.0 (350) 4.3 (200) 1.3 

Total 3.5 (600) 4.6 (500) 1.1 

The computation of means allows a much more parsimonious presentation 

of the data. However, the detail present in the cross tabulations is 

obviously lost by virtue of the summarization which occurs in computing 

means. Note finally that each of the means reported in Table A-a is 

calculated separately from the raw data with the formula given earlier. 

Thus, 3.5, the mean for all participants, is computed by adding up all 

the numbers of children for the 600 participants, then dividing that number 

by 600. 

2 MEASURES OF ASSOCIATION 

A large number of measures of ~ssociation are available which summarize 

in a single statistic the extent to which two variables vary together or 

are related to each other. Which one to usc depends most importantly on 

the level of measurement of the variables in question, although there are 

other considerations such as the sample size and the nature of the distri-

butions. The major distinction about levels of measurement is between the 

nominal level and the rest, since it is misleading to compute a statistic 
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such as a correlation coefficient on nominal data (the equivalent is the 

error of computing an arithmetic average or mean for three categories of 

a nominal variable such as religion, ethnicity, or region). 

If the data are ordinal (categories are just ranks) applied researchers 

have the choice of computing measures of association oeveloped explicitly 

for ordinal data, or they may decide to treat the data aD if they were 

interval and use the ~rocedures described in the next section on regression­

correlation. The advantage of the latter approach is that those techniques 

are considered to be more powerful, result in some very useful summary 

statistics and are capable of handlL~ several variables simultaneously. 

Most of the measures of association for nominal and ordinal data 

have been standardized 50 that they result in an index which .ranges 

from 0 to 1, and in some cases from -1 to +lwhere the sign indicates the 

direction of association (i.e., a negative sign means higher values of 

one value are associated with lower values of another, and vice-versa). 

When the statistic is 0 (or close to 0) we say the variables are uncorrelated; 

the closer the number is to 1.00, the greater the magnitude of correlation 

or association. 

Since the computation of measures of association can be quite tedious, 

and each one is based on somewhat different logic, we will not show how 

to compute such measures. All canned computer programs for social research 

contain several options. For example, SPSS (Statistical Package for the 

Social Sciences, see section VII below) computes several chi-square based 

measures, and others such as lambda, tau and gamma. 
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3 REGRESSION AND CORRELATION 

$uppose we want to evaluate the efZect of an agricultural training 

program (which consists of a series of visits by extension staff) on 

productioll or yield. The amount of treo"tment received is simply the 

number of visits and yield is measured in 1itres. One way to begin 

analyzing the data would be to group the data and present them in a cross-

tabulation. A more useful analysis entails describing the relationship 

between the two variables by means of a linear, mathematical equation known 

as a regression equation. Regression analysis produces estimates of the 

effect of one variable on anot.her (or of several variables on a dependent 

variable) as well as a measure of the extent to which the variables are 

co~re1ated with one another. 

In the two-variable case, regression analysis can be easily ~·isua1ized 

by first constructing a scattergram 04 scatterp10t, that is, a graph of the 

data. Let Y represent the dependent variable (yield) and X the treatment 

(number of ~isits). Hypothetical data for 15 farms are shown in Table A-9 

and graph~d in Figure A-2: 

Table A-9: Raw Data for Bivariate Figure A-2: Scattergram of Data in 
Regression Example (Effect of Visits Table A-9. 
on Yield). 

XcI! of Y"'Yie1d 

~+ Farm Visits (100 liters) • 
1 2 5 • • • 
2 3 4 1 • 
3 3 7 • • 
4 4 7 1 • 

4 8 • • 5 "0 • 
6 5 9 o-i • QI • 
7 6 9 ..-t 

>< • 8 6 10 a • 9 6 11 >< 
10 7 12 
11 7 14 I I 
12 8 11 0 1 2 3 4 5 6 7 8 9 
13 8 13 
14 8 15 X = I! of visi ts 
15 9 14 
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The relationship between number of visits and yield can be summarized 

by a formula or equation describing a straight line fitted through the 

data points. In order to describe any straight line only two pieces of 

information are needed: (1) its tilt or slope and (2) its pivot point or 

the point at which it crosses the X axis, also known as the intercept. Thus, 

an equation for a straight line takes the form Y ~ a + bX, where a is the 

intercept and b is the slope. 

But the observed data points do not all lie on a straight line; rather, 

we find different values of yield for any single number of visits (for 

example, farm #2 has 3 visits and 400 liters, farm #3 has 3 visits and 700 

liters). Therefore, fitting a single straight line to the observed data 

always involves ~ome residual error. No matter where the line is put, there 

will be points which do not fallon it. More precisely, then, the regression 

model is: 

Y '" a + bX + e 

where a is the intercept, b is the· slope and e is a stochastic error term 

(see Chapter 3). The error may be due to sampliny., measurement or other 

factors which produce .Jte observed variability in the data, including 

variables ".hat should be in the model but are not (for example, rainfall 

·s 
and use of fertilizer) .1' Actually, e is defined as the distance from the 

observed point to the regression line • . 
It i~ easy to see from the scattergram in Figure A-2 that there are 

many different lines which can be drawn through the data points. Different 

statistical methods have been developed to solve the problem of how to find 

the "best-fitting" line through a data set. The most often used is known 

l8For inferential tests,·certain assumptions have to be made about e, 
the error term. 
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is ordinary least squares regression, and it is based on the principle of 

minimizing the sum of squar~d errors. This is equivalent to fitting the 

line that minimizes the square of the distance from each point to the 

19 regression line, that is, error as defined above. The least squares 

solution produces formulas for calculating the intercept a and the slope 

b from the data: 

1 - -Nl:(X-X) (Y-Y) 

b - ------~----1 _ 2 
Nl:(X-X) 

a = Y - bX 

The numerator of b is called the covariance of X and Y (covariance X,Y), 

the denominator is the variance of X, as we saw above. 

Let us now return to the previous example and compute a and b. As 

in the case of computing variance, there is a simpler computational formula 

for the regression coefficient b: 

Example A-l: Computation of Regression Coefficient and Intercept for Table A-9. 

Computational formula for b = N(IXY) - (IX)(IY) 
N O:X2) _ (IX) 2 

a = Y -bX 

For the data in Table A-9, all the required terms are: 

IX z:: 86 

IY c 149 

IX2 a 558 

Iy2 = 1637 

IXY CI 936 

N = 15 

X - 5.73 

Y ". 9.93 

b a 15(936) - (86)(148) - 1.35 

15(558) - (86)2 

a - 9.93 - (1.35)(5.73) = 2.20 

1!1 
The notion of sum of squared distances is analogous to the variance 

which calculates the sum of squared deviations from the mean. 

http:1.35)(5.73
http:above.19
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We now have an estimated regression line which describes the data. 

We can summarize our results as follows: 

~ 

Y = 2.20 + 1.35X 

A 
where Y is the predicted value of Y (yield), the intercept is 2.20 

(interpreted as the predicted value of yield when X a 0, that is, when 

there are no visits)20 and the slope is 1.35. Since the measure of yield 

was in hundreds of liters (we dropped the O's for computational ease) we 

shoul-1 now convert our results and interpret them to mean (1) the predicted 

yield without a prog~am (0 visits) is 220 liters, and (2) for eve~J addi-

tiona1 visit paid by an extension representative, the increase in yield 

amounts to 135 liters. We now have a precise estimate of the effect of 

the program cn yield (the regression coefficient b) which has direct policy 

interpretation. 

More generally, the regression coefficient is interpreted as the change 

in Y for a unit change in X. The procedure is referred to as the regression 

of Y on X. If the coefficient is positive, a unit change in X produces an 

increase in Y (that is, the line slopes upward). If the coefficient is 

negative, a unit change in X produces a decrease in Y (the line slopes down--

has a negative slope). 

We are now in a position to ask: How well does the calculated regression 

line fit thE: observed data? In other words, what is the correlation of X 

and Y? We noted that summarizing data will lead to some error. For example, 

the predicted value of yield (9) for 6 visits (X - 6) can be found easily by 
A 

substitution: Y a 2.20 + (1.35)(6) - 10.3. Thus, although we actually 

2~echnica11y, it is incorrect to extend the regression line beyond 
the range.of values of X for which it was estimated. 

http:progr.am
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observed three different values of yield (9, 10 and 11) for 3 different 

farms that had 6 visits (see Table A-9), we have now summarized the data 

and the calculated regression line passes through the point [6, 10.3]. For 

farm 07 which had 6 visits and produced 900 liters (the point [6,9]) our 

predicted value of 10.3 overestimates production by 1.3 (130 liters). For 

farm 09 which had 6 visits and produced 1100 liters, our predicted value of 

10.3 (1030 liters) underestimates by 70 liters. And so on. 

Correlation provides an answer to the question, how good a fit is the 

regression line? How will the line fit the data depends on the extent to 

which X and Yare correlated with each other, how much X and Y covary. If 

all the data points fell precisely on a straight line, the two variables 

would be perfectly correlated, and the regression line would produce 

estimates without any error whatsoever. At the other extreme, if the data 

points were completely haphazard or if they showed no linear pattern what-

soever, the two variables would not be at all correlated. Empirically, 

results fall somewhere between the two extremes. We can compute another 

summary measure which indicates the strength or magnitude of the relationship 

between the two variables. 

The Pearson product moment correlation coefficient (more simply known 

as "r") is defined as the ratio of the covariance to the prod,·.~t of the 

standard deviations of X and Y: 

r .. covariance (X,Y) 
s s 

x y 

Again, a simpler computational formula ~s available: 
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Example A-2: Computation of Correlation Coefficient (r) for Table A-9. 

For the data in Table A-9, and using the.component terms which were already 

calculated (Example A-I) to compute the regression coefficient b: 

15(936)-(86)(148) 
rcz - cz 

~ [15 (558-)- (86) 2] [15 (1637)- (149) 2 

1312 1312 :a _ 

J15l4.20 
.87 

J(974) (2354) 

One way to interpret r is as a measure of the correlation between the 

observed values of Y and the predicted values~. The square of the correla-

2 
tion coefficient, r , can be interpreted as the proportion of the variance 

in Y explained by X. 2 For the example, r a .76, and we would say that the 

linear two-variable model we have used to predict yield from number of visits 

2'1 accounts for or explains 76% of the variance in yield. 

The logic of bivariate regression and correlation can be extended to 

models which include several variables. For example, it would be naive to 

expect that agricultural yield would be a simple function of the program 

variable. There are obviously other important variables known to affect 

yield, such as rainfall, use of fertilizer, size of farm, weeding and others. 

Although the computations for multivariate regression become quite tedious 

when done without a computer, the reg:ession model can be stated as: 

y ~ bo + blXl + b2X2 + b3
X3 + ... + bk~ + e 

where b is the intercept (corresponding to a in the two-variable case) and 
o 

is interpreted as the value of Y when all the other variables are equal to 

0, and the bl through bk are the regression coefficients. The coefficient 

21 In practice, it would be unusual to find such a strong correlation 
between the program ~nd yield. 

http:11514.20
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bl , for example, is interpreted as the predicted change in Y for every unit 

change in Xl' holding all the other variables X2 through ~ constant. If 

~ is the program or treatment variable (as before), then the computed 

coefficient would be a measure of th~ effect of the program on yield, 

22 I controlling for the other variables. I 

In the multiple (multivariate) regression model several useful 

statistics can be computed. First, the bi coefficients are called the 

partial regression coefficients. It is also possible to compute what are 

known as partial correlation coefficients (symbolized as r ij •k ), which 

measure the degree of relationship between the dependent variable Y and any 

of the independent variables Xi' controlling for all the other independent 

variables. (Actually, partial correlation coefficients can be computed for 

any multivariate problem where one needs to examine the extent to which two 

variables are correlated when other variable(s) are held constant.) Finally, 

thc measure of correlation between the observed values of Y and the predicted 

" values Y in a multiple regression model is symbolized as multiple R; in.short, 

R is a measure of how well the model fits the data. The square of the 

multiple correlation coefficient, R2, is a measure of the proportion of the 

variance in Y explained by all the independent variables Xi in the model; 

1 - R2 is the variation in Y which is unexplained by the model. The reader 

is urged to consult a reference on mo~e advanced statistical methods or 

econometric methods for further details and problems encountered in 

multivariate ~egression and correlation applications. 

221 !o'or an example of just such a model, see D. Baltin, Evaluation de Dix 
Ans de Vulgarisation Agricole dans les ORO de Ougadougou, Koudougou et Kaya, 
Paris, SEAE, 1973. The dependent variable was yield, the independent veriables: 
a single weeding, non-tradilional religion, secondary commercial activity, 
neither a village notable nor rich.)saw extension representative regularly, 
use of fertilizer, recent training session, rainfall of more than 600 mm, use 
of fertilizer/land available, and at least 5 helpers. The variables were 
found to explain more than 20% of the variance in yield. 

http:variables.22
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v. INFERENTIAL STATISTICS 

An evaluation researcher has found that a fertility program 
has an important effect. Subjects had been assigned ran­
domly to treatment and control groups; among the treatment 
group, the average number of children was 3.5, whereas among 
the controls, the average was 4.6, a difference of 1.1 chil­
dren (see Table A-8). In presenting these results to the 
Fertility Control Council, a policy-maker asks the following 
question: "How certain are you that the difference of 1.1 
children was the result of the treatment? Is it not possible 
that the difference occurred simply as a result of chance 
differences between the treatment and control groups?" 

In statistical terms, the policy-maker's question involves what is 

called the null hypothesis, in this case, the hypothesis that the treat-

ment in question really had no effect, that the observed difference was 

due solely to the operation of chance factors. Hence, a re-run of the 

same experiment would produce results that tended toward zero differ-

ences. The researcher would find it useful to be able to counter that 

the skeptic's argument that chance was responsible for the observed 

result was rather implausible. Even better, it would be most useful 

to be able to state just how probable (likely) the observed result would 

be if, in fact, the treatment had no true effect but only chance factors 

(resulting from the initial randomization) were operating. 

To make statements of this general sort -- i.e., to state how pro-

bable a given observed result would be, given an initial assumption of 

no true effect -- is the purpose of inferential statistics. The example 

can be expanded to research involving sampling: whenever evaluation 

data are gathered for a sample and not the entire population to which 

oue is interested in generalizing, inferential statistics are useful 
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in addressing the question: "Could the results obtained be due to 

chance -- that is, due to sampling variability?" If a different sample 

had been drawn, the results would probably have been somewhat different. 

Isn't it plausible, then, that an intervention really did not have an 

effect? 

In short, the issue arises because in every experiment or sample 

survey the argument can b~ put forth that the observed results arise 

from sampling or randomization variability and not from the interven-

23 tion. However, if we are able to rule out "chance" (sampling or ran-

domization variability) as likely explanation of our findings, the 

alternative hypothesis that the intervention did produce the results 

becomes more plausible. 

Unfortunately, we never can be totally certain that the interven-

tion actually did produce the observed differences. Put differently, 

the logic of science is such that we are never able to prove that one 

thing caused another; we can only state that some explanations are im-

plausible and can therefore be rejected. For this reason, the logic 

of inference often seems counterintuitive as researchers first en-

ccunter it. Thus, inference does not allow US to prove that hypo the-

ses are correct or true, but it does provide tools for rejecting hypo-

theses which sample data render implausible, such as the Fertility 

Control Council critic's null hypothesis. Finally, in addition to 

23 Note that this does not refer to other plausible, substantive vari-
ables known or presumed to affect the outcome variables of interest, 
and which need to be included as statistical controls whenever ran­
domization or random sampling have not been carried out. For this 
reason, we have stressed throughout this volume the desirability of 
using random procedures in the evaluation design. Then even the pos­
sibility that chance fluctuations are responsible for the observed 
outcomes can be tested with inferential statistics. The only plau­
sible conclusion that cannot be rejected is that the intervention 
caused the observed outcomes. 
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tests of hypotheses, inference also provides methods for estimation of 

population parameters based on sample data. 

A. The Logic of Inference and Basic Concepts 

1. SAMPLING DISTRIBUTION 

In order to test the hypothesis that our observed results are simply 

due to chance, that is, random fluctuations in sampling or randomization, 

we must first know how chance operates. Such chance fluctuations are 

24 known as random error. A sampling distribution can be thought of as 

the distribution of random error, and it is an essential element of 

inferential statistics because it serves as a standard of comparison 

against which empirical results are checked to determine whether or not 

random error could have produced them. Sampling distributions are 

derived mathematically with the use of probability theory, but the logic 

can be understood intuitively by first considering a sampling problem 

and then a randomization problem. 

The basic notion is: "What would happen if we drew random samples 

repeatedly from a (fixed) population?" Imagine the following scenario: 

there is a very large population list, we draw a random sample of size 

N, compute the mean (X) age for that sample, and throw the sample back. 

24 
In the vocabulary of statistics, "error" does not imply "mistake," 

but means the eyt.ent to which a given measurement departs from the "true" 
measurement. "Random errors" are those fluctuations that arise arche­
typically from random sampling or from randomization. Their characteristic 
is that ir, probability terms, their expected or long-rull' value is zero-­
that is, some errors will be positive, some will be negative, and so on, 
but in t~p. long run they will all average out to zero. 

http:error.24
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We draw another random sample of size N, compute their mean age, and 

so on. We do this over and over again, in fact, an almost infinite 

number of times. Now we have a set of numbers which are average ages 

of different samples from a single population. That set of numbers 

has a distribution, we can compute its mean (the average of all those 

averages), and we can compute its standard deviation (known as the 

standard error). It is a sampling distribution of means which shows 

how sampling error operates (we have done nothing to affect the mean 

age of all those samples, but each time we draw a different sample, 

the mean is likely to vary, just because different people make up each 

particular sample). 

Consider the fertility example again as a context to illustrate 

the notion of sampling distribution in reference to randomization 

error. Imagine a population of females whose true fertility averages 

4.0 children (the population parameter). Imagine further that this 

population was randomly divided into two halves and the mean fertility 

of each half was found to be 4.0. Then a second random division is 

dOlle, and the fertility of one group is measured as 3.9 children while 

the fertility of the second group is measured as 4.1 children. Yet 

another division results in scores of 3.8 and 4.2; a fourtl. again 
. 

produces means of ~.O for each group, and so on for a large number of 

divisions. If this were done over and over again, and each time we 

calculated the difference between the two means, we would end up with 

a sampling distribution of differences between means. What we would 

find is that the random division of the population into groups will 

produce a wide variety of outcomes: in some cases the fertility 



A-60 

averages for each group are exactly the same (the difference between 

them is zero); in other cases the averages differ by a substantial 

amount; but in all cases, the observed difference between one group 

25 
and the other results only from the randomization itself. 

The policy-maker on the Fertility Control Council who asked whether 

the observed difference between means could have occurred just by chance 

was saying: "We know that random division of a population into two 

groups will in some cases produce fairly large differences between the 

two groups, just because of chance factors alone._ Is it possible that 

the researcher's reported difference is just one of those cases?" 

Obviously, researchers would never carry out such exercises to 

construct sampling distributions; they usually draw only one sample 

or perform one randomized experiment from which they wish to generalize. 

Thus, we rely on mathematical derivations based on probability theory 

for the important sampling distributions needed for inferential appli-

cations. There are also theorems which serve as guides in knowing 

which sampling distributions are appropriate. It turns out, for 

example, that those me~n ages for all the different samples will tend 

to cluster around the mean age for the entire population (that is, the 

average of all those sample averages will tend to equal the population 

average). The shape of the distribution is normal when the sample 

size is large and regardless of the shape of the entire population--

that is, the distribution of means (also of differences between means 

2S Actually, the smaller the sample size, the more likely that 
the differences will be large--differences due to chance alone. 

http:itself.25
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as in the randomization example) is a normal distribution. Furthermore, 

the amount of variation around the mean of the sampling distribution 

(i.e., the standard error of the sampling distribution)3lso depends on 

the sample size: the smaller the size of the samples being drawn 

repeatedly, the more likely that sample means will tend to be farther 

26 away from the population mean. . For example, in drawing small samples, 

a sample comprised of mostly old people is r~latively more likely to' 

appear, as well as one of mostly young people, as opposed to the case 

where large samples are being drawn, since unusual ages would be 

averaged in with all the rest. Similarly, differences between cwo 

sample means based on small samples can also be quite large as a 

result of sampling or randomization error alone. 

These characteristics of a sampling distribution imply that we 

now have a standard of comparison with known properties, with known 

relationships to population, distributions, and which can be used 

to test hypotheses based on data from samples. When a null hypothesis 

is_ stated, sampling distribution properties are used. Put differently, 

we can take observed data from a single sample, or from a single 

randomized experi~ent, and because of the known properties of sampling 

distributions we can assess the likelihood that ran~~m error or sampling 

error could have pr~1uced the observed results. Inferences about a 

26 These three characteristics of a sampling distribution are known from 
the Central Limit Theorem--perhaps the most powerful theorem of inferential 
statistics--which states that the sampling distribution of means will 
be normally distributed as the sample size g~ts large, will have a 
mean equal to the mean in the population, and a standard deviation equal 
to the population standard deviation divided by the square root of the 
sample size. 
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~pulation based on samples, in other words, are possible because sampling 

distributions show how sampling or randomization error operates, and 

because the characteristics of sampling distributions are known and 

stated in terms of the (unknown) but hypothesized population parameters. 

Finally let us consider the relationship between sample size and 

standard error (sampling or randomization error) and its relevance to 

a sampling issue raised in a previous section: How large should a 

sample be? Even an intuitive understanding of what a sampling distri-

bution is helps us understand that sampling error increases with small 

samples (the instance where a small sample could be made up of all 

older people, therefore have a large mean age). Conversely, as the 

sample size increases, sampling error decreases. This relationship 

holds regardless of the size of the entire population: interestingly, 

the relative proportion of the population represented by the sample is 

not crucial. Rather, larger samples will always have smaller sampling 

errors, regardless of population sizes. Hence, it is best to take 

large samples whenever feasible. 

2. DECISION ERRORS AND STATISTICAL SIGNIFICANCE 

Statistical tests are based on probability theory and make use of 

sampling distributions, and are subject to what are known as decision 

errors. There are two types of errors which can occur when a statistical 

decision is made on the basis of sample data to either reject or accept 

a null hypothesis. V Let us return again to the fertility program with 

V7Technically, we never "accept" an hypothesis--we "fail to reject" it. 
The language, however, becomes so confusing that we will use the terms 
accept and reject for simplicity. 

http:hypothesis.27
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the diff(lrence of 1.1 children. We wHntto test statistically whether 

or not this difference could be the cesult of randomizr.tion. The 

null hyPothesis is that the ~wo groups have the same number of children 

on average, that the true difference between the two groups is zero. 

The null is therefore a hypothesis of no difference: what we are 

asking is whether 1.1 children as an observed difference is so large 

that it is unlikely to have been produced by random error. A sampling 

distribution of random error will in f.1ct have some extreme values 

(we might have randomly assignee more women with small families to the 

treatment group), but extreme or unusual values are not as likely to 

occur--that is, they occur infrequently. 

We ask: what is the probability ~f finding a difference this large 

or larger if the null hypothesis is true? Or: is this observed 

difference of 1.1 a big enough difference that is is very unlikely that 

chance or random error produced it'! "Big enough" j.s in reference to 

the appropriate sampling distribution. 28 But we must make an arbitrary 

decision as to what constitutes "big enough"--in more general terms, 

what criterion to use in deciding what constitutes an Lnusual outcome. 

That criterion is known 2S the level of significance. In order to be 

useful as a general criterion, the level is set not in terms of an 

absolute magnitude (e.g., a ctfference of 5 children Is big) but in 

terms of a .E,!!lbabili ty leve~.. For example, we consider a difference 

or program effect to be big enough ~o represent an unusual outcome if 

such a difference (or an even larger difference) would onlv occur 5 

times out of 100 due to r:mdom error (probability is .(15) if the null 

28 In this case, the sampling distribution of differences ,;between means. 

http:distribution.28
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hypothesis of no difference is true. The level of significance of a 

statistical test is ustt.llly set at .05 or .01, aud someti:'les at .10. 

There are two types of decision errors, shown 10 the diagram below: 

Figure A-3: Decision Errors Involved in a Statistical Test. 

Decision 

Reject ~~ll 

I\ccept Null 

Null Eypothesis Is: 

True 

I TYPE I error 

correct 
decision 

(Program has 
no effect) 

False 

correct 
decision 

TYPE II 
error 

(Program has 
an effect) 

(Data show a 
significant 
difference) 

(Data show no 
significant 
diffel'ence) 

Ir the rows we see that a statistical test of a null hypothesis 

results in one of two outcomes: either we reject or we accept the null 

hypothesis. In the columns we see that in the real world, the null 

hypothesis is either true or false. If the null hypothesis is false 

(there is a real difference) and we reject it (because our data show 

a large differpnce), our decision is a correct one. If the null is 

true (there is no difference betwe~n our groups) and we accept the 

null (because our sample data show small differences) our decision is 

also correct. 

Type I error occurs when we reject the null hypothesis (because 

we find a large difference between the ~o groups), but acutally the 

program had no effect. The observed difference is due to random error. 

And large differences, that is, unusual events, do occur as a result 
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of random error. If a difference as large as the one we observe 

(or one even larger) can occur by chance only 5 times out of 100, 

we conclude that our effect is statistictAlly sign.!ficant-i.e., we 

reject the null hypothe9is of no differencb at the .05 level--i.e., 

we are WTong one in twenty times. But if chance produced the 

d~fference, we ~ave made an erroneous decision, unknowi~gly, to be 

sure, since we never know what the real effect is. nIUS, a Type I 

error con~ists of concluding that a program produced an effect, when 

in fact it did not; our study showed a statistically significant 

difference, but we have capitalized on random error. For this reason 

Type I error is also called a "false.positive" error or conclusion. 

The probability of making a Type I error is equ~l to the level of 

significance which was chosen. 

The second type of decision error, Type II error, occurs because 

it is possible that a program has a real effect, but we fail to detect 

it. In this case, the null hypothesis is false because there is a real 

difference, but we fail to reject the null (we accept it). In short, 

we have a "false n~gative." Unfortunately, the probability of making 

a Type II error is ne"fer known precisely, although we do know what 

affects that probability. Fo~ example, if the level of significance 

i~ set very low (e.g., .001), we are more likely to make a Type II error, 

because our criterion for tJhat constitutes a real effec\. is so strict 

(one that occurs only 1 time 1-.1 1,000 by chance) that real but small 

differences will simply not meet the criterion. In short, real differences 

will go und'~tected. Type II error is affected by other factors, such 
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as the sample size, the amount of variability there is in the population 

and the magnitude of the true program effect in the population. 

Equipped now with some of the basic concepts of inference, we turn 

to some examples of statistical tests, show their applicutions and how 

to compute them. 

B. Confidence Intervals 

Estimation is the problem, quite literally, of estimating or 

ascertaining the value of a parameter (say the mean) for a population 

on t.he basis of data from a single sample. Suppose we want to estimate 

the effect of a program in a population, but we only have the resources 

to study a sample. The sample provides us with only one "best guess" 

about the effect: we might compute a mean and wish to infer that it 

represents the true of real effect in the population. But we just saw 

that the average effect obtained from a sample reflects the population 

effect plus a random error component associated with sampling variation. 

Thus, we might construct a confidence interval around the estimate, 

and state that the true effect in the population falls within an inte~val 

constructed around the sample mean. By using the appropriate sampling 

distribution we can construct such an interval, and we can attach a 

probability value which reflects the proportion of times (say 95 out 

of 100) that we will capture within the range of the interval the real 

effect in the population. Put differently, a 95% confidence interval 

is interpreted to mean that if we repeatedly drew samples of a given 

size, in 95% of the samples the real or true program effect would fall 

within the range indicated by the confidence interval. 
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The formula for computing a 95% confidence interval for the 

mean (X) is: 

C.!. 95% • X + 2 slJ N - 1 

where s is the standard deviation (of the variable whose mean has been 

computed) and N the sample size. This is an approximation and not a 

precise formula~29 appropriate for a sample size (N) from about 20 

to 100. For a sample larger than 500, the appropriate formula is 

X:!:, 1. 96 s/{N. For small sc:mples, the term "2" or "1. 96" in the 

formula actually varies between "2" and upwards to about "2.5" as 

the sample size gets smaller. The appropriate value should therefore 

be obtained by consulting a table of the "t-distribution," which can 

be fOlmd in any statistics text. An example of the computation of 

a confidence interval for a mean is shown below: 

Example A-3: Computation of a Confidence Interval for a Mean. 

A researcher needs to estimate the nutritional level of II population 
in order to implement a supplement program. A randOM sam~le of 122 
cases was drawn from the population, and was found to have a mean 
calorie intake of 1,500 calories per day, with a standard deviation of 
500 calories. A 95% confidence interval to estimate the caloric intake 
of the population is: 

C.l. 95% • X + 2 slJN - 1 

... 1,500 ! 2 (5001 J 122 - 1) 

... 1,500 ! 2 (500/11) 

c:a 1,500 ! 90.9 

The conficlence interval is therefore (1409.1, 1590.9) 

Based on the sample data, we estimate that the mean caloric intake for 
the population falls in the interval. If we drew repeated samples of 
size 122 from the population, in 95% of the samples the real popUlation 
mean caloric intake would fall within the range indicated. 

29 The exact formula is: X + t a- , where t is the value of the t-distributj 
above which 5% of the cas;s fafl, i.e. the .05 level of significance, 
and a- is the standard deviation of the sampling distribution of means, 
appro:imated by 5/ J N - 1 or 31 IN is N is l~rge. 

http:formula.29
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Confidence intervals can also be computed for proportions, by 

using the following formula: 

... p + 1.96 Jp q 1 N 

where p is the observed proportion around which an interval is being 

set, q - 1 - p, and N is the sample size. An example is given below, 

using the data shown in Table A-1: 

Example A-4: Computation of a Confidence Interval for a Proportion. 

The data shown in Table A-1 indicate that 9.6% of a random sample of 
250 persons who received a training program are still unemployed after 
the training. The 95~ confidence inte~va1 around that estimate 
(p = .096) is: 

.. p + 1. 96 J p q 1 N 

p = .096 

q m 1 - .096 • .904 

Jp q 1 N = [<.096)(.904)/250 = ).087/250 - J.000347 - .019 

1.96Jp q 1 N D (1.96)(.019) a .037 

= .096 + .037 

The 95% confidence inter.va1 is therefore (.059, .133) or (5.9%, 13.3%). 

Based on this samp1p. of program trainees, we estimate that the proportion 
of unemployed pro~·t"am graduates among all these perscns who received the 
training falls wil;hin the interva1--Le., the percent unemployed is 
between 5.9 and 13.3. 
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Similarly, confidence intervals can also be computed for 

differences between means or for differences between proportions 

(i.e .• percentage differences). The ~ogic is the same. the calculations 

somewhat more complicated because more terms are involved in the 

arithmetic. A statistics text should be consulted for the formulas. 

as different ones may be appropriate depending on the nature of the 

estimation problem and the cha~acteristics of the samples. 

The 954 confidence interval for c difference between two means 

from large samples is: 

C.I· 95% • + 1.96 

where Xl and X2 are the two sample means, 0diff is the estimated 

standard error of the difference between means and equals 

2 2 
sl s2 

--- + ----
Nl N2 

2 
, where sl 

An example is shown below: 

are the variances of the two samples. 
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Example A-5: Computation of a Confidence Interval for a Difference 
Between Means for Large Samples. 

Suppose that the fertility program mentioned throughout this section 
had provided the following information: 

Group 1 (Nonparticipants): 

~ - 4.6 children 

sl - 1.2 children 

Nl = 500 

Group 2 (Participants): 

X2 - 3.5 children 

s2 • 1.0 children 

N2 • 600 

The 95% confidence interval for the difference in means is: 

adiff .. = 

.. ).003 + .002 

= .071 

1.96 adiff a (1.96)(.071) 

C.I.9~% ~ 1.1 ± .139 

.. 

(1. 2) 2 
500 + 

.139 

(1.0)2 
600 

.. 

The confidence interval is therefore: (.961, 1.239). 

1.44 1 
500 + 600 

The fertility program has an estimated effect of 1.1 children less 
for the participants, and our estimate is that the real effect is a 
difference which can range from .961 to 1.239 children. We are 
confident that these calculated bounds capture the real program 
effect, since in 95% of all replications of the experiment, the 
real effect would fall within the indicated ranee of values. 
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Note that the Fertility Council skeptic's hypothesized value of 

zero difference between the two groups does not fall within the 

estimated confidence interval, since the lower boundary of the interval 

is .961. We can therefore show the skeptic that even when we take into 

account randomization variability which could occur in 95% of all 

possible randomizations, the estimated program effect for the population 

falls well above the value of zero. 

What if anothe~ critic had said: "Previous research has shown that 

su~h a program does have an effect, but never as large as one child. 

The largest effect reported previously was .8 children." A second 

null hypothesis that can be tested with the sample data, that the 

difference or effect equals .8, can also be rejected on the basis of 

the observed data because the value .8 falls outside the calculated 

confidence interval. Phrased differently, the confidence interval amounts 

to all the plausible null hypotheses which cannot be rejected on the basis 

of data from this sample (experiment), at a 95~ leve~ of confidence. 

Finally, note that the width of a confidence interval is affected 

by the sample size: larger samples yield interval estimates, another 

reason why larg~ samples are desirable. 30 The particular level of 

significance chosen also a~fects the size of the interval. More precise 

estimates (narrower intervals) can be constructed if the confidence level 

is reduced (e.g., to 90%); conversely, tncreasing the confidence level 

(e.g., to 994) \:ill result in less prec~se estimates (wider intervals). 

In sllort, confidence level and preCision are inversely related. 

30 For Example A-4 which calculated a confidence interval (5.9%, 13.34) 
around an observed unemployment of 9.64, had the sample size been 1,000 
instead of 250, the confidence interval would have been (7.84, 11.44). 

http:desirable.30


A-72 

c. Tests for Differences Between Means and Proportions 

Here we ask the question: does my observed difference between 

two sample means, i.e., roy observed program effect, represent a statis-

tical1r significant difference? Is it a large enough difference that 

it is very unlikely that randomization error produced it? What is the 

probability that error produced the effect we found? To answer the 

question we test the null hypothesis that the real difference is actually 

zero (i.e., there is no program effect), hoping to reject the null hypo-

thesis in favor of an alternative (substantive) hypothesis that the 

program did have an effect. We use the same data as shown in the pre-

vious page when we calculated the confidence interval around the differ-

ence. But nuw the problem is set up in a slightly different way. We 

must compute a test-statistic, which allows us to, in a sense, trans-

late our sample data to sampling distribution units, in order to find 

out the likelihood that the observed difference represents random error. 

The test-statistic for a significant test for a difference between two 

means is: 

t 

Where Xl and X2 are the observed means and a diff is the standard error 

of the sampling distribution of the difference between means, estimated 

for large samples as before: 



We determine in advance of the test the level of significance we 

are willing to use as a criterion -- for example a .05 probability level. 

This implies that a computed t-value greater than or equal to 1.96 will 

in fact represent a "statistically significant difference," tested 

against the null hypothesis that the difference is zero. 

All the terms we need were computed for Example A-5: 

- 1.1 
.071 

- 15.49 

The t-value is obviously greater than the value required (1.96) to reject 

the null. We conclude, therefore, that the observed difference of 1.1 

children is a statistically significant difference, contrary to the 

skeptic's argument. A difference as large as this or larger is extremely 

unlikely to have been produced by random error (we can verify ·ttis state-

ment by examining a table of probability values of the t-distribution.) 

A significance test for the difference between two proportions re-

quires the same logic. The test-statistic is 

z c. 

adiff 

where PI and P2 are the proportions (from random samples) being compared 

and as before, adiff c the estimated standard error of the s?mpling dis-

tribution of differences between proportions, calculated by 
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where ql .. I-PI and q2 • l-P2· The null hypothes1.s being tested 1s 

that there is no difference in the population. 

Example A-6: Computation of a Test of Differences Between Sample Propor­
tions. 

The agricultural training program evaluation mentioned previously seems to 
~ndicate that the tmpact of the centers varies by region. Thus, in one 
region there is a smaller percentage of trainees who are engaged in agri­
culture after the program. The data are based on random samples of train­
ing graduates from the two regions and show: 

Region 1: Region 2: 

PI '" .55 P2 .. .4A (p = proportion in agriculture) 

Nl .. 400 N • 2 300 

Cfl 
.. 1 - p a .45 q2 .. 1 - p '" .52 1 2 

Set the level of significance at .05; the required Z value must 
be 1.96 or greater to reject the null hypothesis that the impact 
of the centers does ~ vary by region. 

z .. Pl- P2 

Plql + P2q2 -- -
Nl N2 

~55 .48 
a 

~.55~(.45~ + (. 48~ (. 52~ 
400 300 

.07 .07 .07 .. • ::a 

.248 + .250 . ).001 + .001 /-002 400 300 

.07 
"'-.045 

Z a; 1.56 

We conclude that we cannot reject the null hypothesis of no difference 
between regions, since the Z value is less than 1.96. Therefore, we 
continue to hold as tenable the hypothesis that program impact does not 
differ by region. 
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D. The Chi-square Test for Independence Between Two Variables 

Whenever we have a crosstabulation (contingency table) of two vari-

ables, the question we most want to ask is: are the two variables 

related to each other, or are they independent? In other words, does 

one variable affect another? Once again the statistical model for tnfer-

ence requires that a null hypothesis be tested; in this case, the null 

hypothesis is that the two variables are statistically independent, that 

sampling (randomization) variability could have produced the observed 

results. 

Consider a cross tabulation from an agricultural training program 

evaluation. Table A-IO shows what appears to be an effect on employment 

for program participants: 

Table A-lO: Frequency Table of Employment After an Agricultural Training 
Program by Program Participation. 

Program Participation 

Employment Participant Nonparticipant Total 

Agriculture 200 145 365 

Other 140 100 240 

Unemployed 40 55 95 

Total . 400 300 700 

2 The computation of chi-square (symbolized as X ) requires a frequency 

(not a percentage) cable. Essentially a chi-square test involves com-

paring the observed frequency table with what is called the expected 

frequency table, or the table we would expect to find :i.! the two variables 

were independent, i.e., unrelated to one another. 



2 The computation of X is carried out with the following formulas: 

2 
2 c:r E(O-Q:. 

X E 

E = (R)(C) 
T 

dofo m (r-l)(c-l) 

Where 0 m the observed frequency for a given cell 

E ,.. the "expected" frequency for a given cell 

R = the row total frequency 

c ~ the column total frequency 

T = total number of cases in the table 
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2 
dof. - degrees of freedom (needed to consult a X distribution 

table) 

r = number of rows in the table 

c = number of columns in the table 

For simplicity in the computation, let us name each of the four cells 

in Table A-In as follows: 

a d 

b e 

c f 

The computation of the chi-square statistic is shown below: 
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Example A-7: Computation of Ctd-square for Table A-10. 

cell 0 E o - E (0 - E)2 (0 - E22 
E 

a 220 (365)(400)/700~208.57 1i.43 130.64 .63 

b 140 (240)(400)/700=137.14 2.86 8.18 .06 

c 40 (95)(400)/700- 54.29 -14.29 204.20 3.76 

d 145 (365)(300)/700-156.43 -11. 43 130.64 .84 

e 100 (240) (300)/700m102.86 - 2.86 8.18 .08 

f 55 (95)(300)/700= 40.71 14.29 204.20 5.02 
"X

2 10.39 

Degrees of freedom (d.f.) m (r - l)(c - 1) ~ (3 - 1)(2 - 1) - 2, since the 
table has 3 rows and 2 columns. 

All that remains is that we consult a table of the probability values 

associated with the chi-square distribution, to determine whether or not 

the obtained v~lue of 10.39 for d.f. = 2 is too large to have been produced 

by chance if the program and employment are independent of one another. 

A portion of the chi-square distribution table is reproduced in Table A-II: 

Table A-II: Values of Chi-square Corresponding to Given Probabilities. 

d. f. P ~ .05 P ~ .01 

1 3.84 6.64 
2 5.99 9.21 
3 7.81 11. 34 
4 9.49 13.28 
5 11.07 15.09 

http:240)(300)/700-102.86
http:365)(300)/700-156.43
http:240)(400)/700=137.14
http:365)(400)/700=208.57
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For the example, we can therefore reject the null hypothesis of in-

• dependence or no relationship between program participation and employ-

ment, since the required value of chi-square at the .05 level, for a 3 

by 2 table or 2 degrees of freedom, is 5.99. In fact, we can reject the 

null even at the .01 level of significance, since the calculuted value 

of chi-square is 10.39 and therefore exceeds the required 9.21. We 

conclude, therefore, that there does appear to be a relationship be~een 

program participation and employment, because the probability is less 

than 1 in 100 that chance fluctuations in the data would have produced 

Table A-IO if the two va~iables were unrelated. 

In sum, the logic of a chi-square test involves two-steps: (1) 

determining what the table would have looked like H there were no rela-

tionship between the two variables, i.e., if the two variables were 

statistically independent. The expected frequency table is calculated 

from the marginal frequency totals only and represents a "theoretical" 

frequency table showing no relationship between the variables. (2) Once 

we determine what the table would have looked like, had there been no 

relationship between the variables, we simply compute a chi-square 

measure which gives the amount of discrevan~y between the observed and 

expected frequencies for each cell in the table. 
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E. Other Tests of Significance 

Numerous other ~ests of significance can be performed other than the 

ones we have discussed. The logic is always the same, but the calcula-

tions involve different test-statistics and sometimes different sampling 

distributions. Tests of significance are available, for example to com-

pare the differences among a set of group means and variances (Analysis 

of Variance), to test the significance of a correlation coefficien~ r 

(against the null hypothesis that r .. 0), to test the 9ignificr..~ce of a 

regression coefficie~t (also against the null that the coefficient ~ 0), 

and so on. The computations involved can be quite complicated and tedi~us, 

and wherever feasible, we recommend that computer packages be employed (see 

Section VII below.) 

Mo£t of the tests of significance which we have reviewed technically 

require one or more assumptieJOs about the population from which the sample 

has been drawn. As we saw previously, random sampling or random assign-

ment to experimental and control groups was also a requirement for infer-

ential tests. Perhaps thE most frequently encountered assumption for 

such tests (for example, t-tests for means) is that the population dis-

tribution is normal. Several tests have been developed, referred to 

as nonparametric tests (or distribution-free tests), which do not require 

the assumption of a normal population. Although other assumption~ are 

still required, they tend to be less restrictive than those required 

in parametric tests. In practice, the normality assumption obviously 

cannot be met when the data represent only nominal or ordinal levels of 

measurement. Hence, if llonparametric tests are appropriate, other sources 

should be consulted for further details. 3l 

31At minimum, Blalock (1972) can be consulted. Other .references are: 
Sidney Siegel, Nonparametric Statistics f~l' the Behavioral Sciences. 
New York: McGraw-Hill, 1956, and J.V. Bradley, Distribution-free 
Statistical Tests. Englewood Cliffs, New Jersey: Prentice-Hall, 1968. 

http:details.31
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VI. Data Reporting Techniques 

In this section we briefly comment on the important features to 

consider when the statistical results of an evaluation are reported. 

Whenever tables are reported, it is necessary that they br presented 

clearly, with a precise title and labels so that anyone reading the 

table would be able to understand what the table is about. The title 

can be as long as is necessary, so long as it is absolutely clear what 

the table reports. All of the tables in this appendix ~ave been labeled 

with sufficient detail to clarify what the cell entries are. 

Besides the title and labels, every table should sho~ what the 

relevant sample size is: even if a p'ercentage table is reported, at 

least the marginal frequencies should a1f l ;) 11(1. reported. When reporting 

tests of significance, the table should contain the probability level 

chosen (e.g., p u .05), wher~ appropriate, the number of degrees of 

freedom, and so on. In short, the rule of thumb is that a table should 

stand by itself: it ought to be possible to read and understand an 

entire table without having to refer to the text that s~rrounds it. 

If this rule is followed, each table will be reported with all the 

necessary detail. 

The same rule applies to repor~ing any other data which are 

summarized. For example, it may be useful ~o show results graphically 

(e.g., as a histogram, line graph, or whatever). Graphic presentation 

of the data may show differences more dranatica11y. But the researcher 

must take care not to distort the findings when showing them graphically. 

And, again, any graph should contain sufficient labels and title informa­

tion so that it can be understood without reference to the text. 
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VII. Computer Software Packages 

A number of co~puter software packages are available which have been 

designed to process and analyze Docial science data. Many of these 

computer packages (programs) are widely disseminated and have been written 

in several computer languages and for practically all ~xisting computer 

systems (e.g., IBM, CDC, Univac, Honeywell, Burroughs, etc.). The 

addresses where additional information can b~ obtained for three commonly 

used packages are given below: 

SPSS (Statistical Package for the Social Sciences) 

SBSS "Incorporated" 
Suite 1234 
111 East Wacker Drive 
Chicago, Illinois 60601 
USA 

BMD (Biomedical Computer Programs) 

BMD Program Librarian 
Health Sciences Computing Facility 
AV-lll Health Sciences Center 
University of California 
Los Angeles, California 90024 
USA 

OSIRIS III (Organized Set of Integrated Routines for 
Investigation with Statistics) 

Inter-University Consortium for Political and Social Rese~rch 
University of Michigan 
Box 1248 
Ann Arbor, Michigan 

Nor.-IBM OSIRIS Distributors: 

UNIVAC OSIRIS: CHI Corporation 
11000 Cedar Avenue 
Cleveland, Ohio ~4l06 
USA 



CDC OSIRIS: Universitaet zu Koe1n 
Rechenzentrum 
OSIRIS DISTRIBUTION 
5 Koe1n 41 
Robert--Koch--Strasse 10 
West Garmany 

Siemens OSIRIS: Ms. Carol A. Cassidy 
Zentrum fuer Umfragen, Methoden und 

Analysen (ZUMA) 
68 Hannheim 1 
B2, 1 
West Germany 
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