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1. INTRODUCTION
 

Closed-cycle cooling/heating systems using solid adsorbents 
that have been described 1,2,3 are characterized by COP's smaller 
than unity and are generally based on daily cycles or work only 
intermittently. Recently Tchernev 4 suggested that by using the 
concept of regeneration, the COP of closed-cycle adsorption cooling 
/heating systems can be significantly improved. 

The system described by Tchernev 4 which is being developed 
by the Gas Research Institute, consists of two zeolite containers 
which alternatively undergo adsorption and desorption. A reversible 
pump permits the circulation of oil from a boiler at 2000 C through 
the zeolite containers. The oil-air heat exchangers cool the oil to 
the ambient or cold temperature, Tc, before entering the adsorbing 

compartment. Two outside fluid loops remove the heat and the 
cooling effect from the walls of the zeolite containers. Fig. 1 
schematically shows the system described above. 
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2. OERAING PRIIPLE DE A REG ERATIVE ADSORPTION SIE 

The 	 Zeolite-Water pair undergoes a cyclic process very 
similar to other adsorption systems used in solar heating/cooling 
1,2,3. This cycle is conveniently shown on the (Ts,T) diagram as given 

in Fig. 	2. 

2.1 	 The Regeneration Pr.geji. 

Referring to Fig. 3a, this process starts at point (a) of the 

cycle where the vapor phase is at pressure Pev (corrgsponding to the 

evaporator temperature Tev) and the adsorbate mass fraction w is at 

its maximum value of the cycle. The one-way valve, C2, is closed. At 

this moment the pump is reversed and hot oil flows into the 
zeolite-oil heat exchanger. As the temperature of the adsorbent 
increases, desorption starts and the pressure increases closing the 

one-way valve, C1. Before the pressure reaches pco, the process 

continues at constant volume. The amount of water desorbed is 
usually very small and the process can be represented by the isoster 

a-b. When the pressure pco is attained the one-way valve, C2 , opens 
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2.2 Tje AdsorRtion PEr-o.. 

Referring to Fig. 3b, at the end of the desorption process, the 
pump is reversed and cold oil flows to the zeolite container. As the 
temperature decreases, water vapor is adsorbed and the pressure 

drops. The one-way valve, C2, closes and a second constant-volume 

process occurs which is approximated by the isoster c-d. When the 

pressure decreases to Pev the one-way valve, C,, opens allowing a 

liquid film to flow and evaporate on the walls of the zeolite 

container. If the pressure difference (Pco'Pev) is not sufficient an 

auxilliary small pump should be used to bring the liquid adsorbate 
to the top of the zeolite container. The cooling effect, caused by 
evaporation on -he container wall, is brought to the space to be 
cooled by a second outside loop. 
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3 	DETAILED IVATIONQ ETIEGOVERNING EQUATIONS .EAN 

RRNBEGENERATOR
 

The energy equations of one period of solid adsorption 
regeneration operation are somewhat similar to those of classical 
(heat transfer only) regenerator theory 5,6. The difference lies in the 
term corresponding to heat of adsorption in the energy equation of 
the solid adsorbent and the additional difficulty due to the coupling 
with the nonlinear integral equation of the pressure. An element of 

the regenerator of length AZ ( Fig. 4) is used to derive the energy and 
mass balances. The following additional approximations are made to 

simplify the problem: 

1. Negligible cross-stream temperature and uptake gradients. 

2. Negligible heat conductivity in the longitudinal direction. 

3. 	Uniform liquid velocity and time independent flow rate 

Constant densities and specific heats. 

5. Constant heat and mass transfer coefficients. 

6. Uniform gas phase pressure throughout the regenerator. 

3.1 Dimensional Form ofthe g.ulaLLQ.aa.. 

http:g.ulaLLQ.aa
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are obtained by considering the energy exchanged between the small 
differential element and the flowing liquid between times t and 

t+, ...We define: 

80 sa sensible heat gained by adsorbent=[Bma(Ca+wCs)+SmcCc]AT 

6 0 ads heat of adsorption= -qst( 8 ma) Aw 

6 0 tot heat exchanged by convection - (Pf Az) h (Tf - T) 

8 Qsf sensible heat gained by fluid = (pf Af Az) Cf ATf 

BQadv advective heat gained by fluid= mfCf[tf(z+ Az)-Tf(z)]At 

The energy balances for the adsorbent and the fluid are follows:as 

sQ +8 Q =6Qsa ads tot 

sQ +8Q 
sf adv tot
 

Replacing each of the energy flows by their respective expressions,
 

we obtain:
 
p AC 

p A C [1+(C/C)W+ p c c c T A aw 
aaa sp 
 A C 
 t - a a st at 

= Pf h(Tf-T) (1)
 
"M rp3
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is the difference (Weq-W) and introduce a constant mass transfer 

coefficient hm such that 

PaAa(aw/at) - hm (Weq - w) (3a) 

Weq is the equilibrium value of the uptake at (T,Ts) thus 

Ts = F(TWeq) (3b) 

3.1.3 Relation.Gving a.ELesure Vriation. . A final equation 
is needed which relates the variations of the pressure in the gas 
phase to those of T and w. We will consider the two cases of 
constant pressure and constant-volume processes. 

1. For a constant-pressure process, p (or Ts) is known thus: 

Ts = F(TWeq) = Constant (4) 

2. For a constant-volume process, it is shown 8 that: 
I par w 1 aT 

__s S 0 d (5) 

L(T) s If dz 
0 0 T 

3.1.4 Initial gdBoundaLry Conditio ns. Tc start the 
computations, we can assume uniform temperature and uptake. 
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For the following adsorption period:
 

at z-l Tf(l,t)=TC
 

at t-t 	 T(z,'t) and w(z,t) known from the previous 

period 

3.2 Nondimensional Gov rning Equations. 

The previous equations can be greatly simplified by
 
introducing the following dimensionless parameters and variables:
 

t=z/l where I is the length of the regenerator. 

TI.-[t-(zN)] / to where o=1 /N is a characteristic time 

e=(T-Tc)/(Th-Tc); ef=(Tf-Tc)/(Th-Tc); es=(Ts-Tev)/(Tco-Tev) 

=(P'Pev)/(Pco-Pev); p(0,w) =qst(T,w)/Lo; ,(Os)=L(Ts)/Lo 
0(0,w)=[F(T,w)'Tev]/(Tco-Te); y(,w)=G(T,w). (Th-Tc) 

where Lo is 	a characteristic values of qst and L. 

11h =Thlo the dimensionless time of the hot period 

Ic=cU/o the dimensionless time of the cold period 

Eo - (PcAcCc)/(PaAaCa) EI= CJC,4 Eq= (pfACj)/(p.A.C,) 
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(1 + E0 +E.w)(ae/aTj) - E3 9p,@,w)(aw/an) - E4 (Oe e ) (1*) 

(aOf/arj) = (E4/E 2)(O - Of) (2*) 

(aw/aij) - E4m(Weq-W) (3a*) 

es = cM(OWeq) (3b*) 
0 during adsorption 

0 ( O'weq) M {1 during desorption (4*) 

1a -E aw (E6 	 -1)a(E1)12 ft__ 2a-d 
S[(E 8 -1)+ [ (E7 -1)+1] a [ 0 (E6 -1)+1] a-

X(T)(E8 -1)E x ( )	 
1 

8 10 s 	 f d C; 
0 0(% -1)+1 (" 

The choice of the set of 	equations to solve depends on the type of 
process under consideration. For a constant-volume process, the 

unkowns 0, Of, WWeq and Os are obtained by solving the set of Eqs. 

{(1*,2*,3a*,3b*,5*)) and for a constant-pressure process, the 

unkowns 0,Of, w, and Weq are obtained by solving the set of Eqs. 

((1*,2*,3*,3b*)}. 
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4. ANALYSIS QE PERFORMANCE 

If we analyze the overall cooling/heating system and consider 
the quantities of energy exchanged with the outside elements, the 

following global energy balance can be written: 

Qbo + Q eva = Qex + Qco (6) 

The system coefficients of performance for cooling and heating are 

defined as: 

COPcool= Qev/ Qbo (7) 

copheat= Qco/ Qbo (8) 

In order to express both COP's in terms of the profiles of 
temperature and uptake, the following quantities need to be defined 

and calculated: 

- The amount of desorbed species during desorption process: 
h I 

I
 
redes="	 ! [f pa(Dw/at) A adz]dt PaAa f [w(z,O)-w(z,h)]dz (4-9) 

0 0 a 0 

* The cooling effect obtained in the evaporator: 

aev = [L(Tev) - CL(Tco" Tev)]mdes 	 (10) 
* The sensible heat %-inedby the desorbina container: 



h 
I 

~j f Pa (aw/at)Aq ddes 0 0 a St dz]dt (12) 

* The total heat exchanged between the fluid and the solid 

parts of the desorbing container: 
Ih I 

luI[ f hPf(Tf-T)dz]dt (13) 
0 0 

* The energy generated during the adsorption process: 

C 

Q I C Af V f [Th - Tf (O,t)]dt (14) 
0 

The energy balance for the desorption period can be written as: 

Qflu = Qsen + Qdes (15) 
The cycle cooling COP is given by: 

COPcycle v Gev / Qflu (16) 
Similar heat quantities can be defined for the adsorption phase. The 
expressions are exactly similar to Eq.s (9,14) and only a minus sign 
needs to be included. Introducing the non-dimensional integrals 

11,12,13 ,14, P15 and 16 defined by: 
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1
" h
 

3 	 f f (P diiJ)(aw/a 1)d r 	 (I7c) 
o 0 
]'
h 1 

]"h
 

I5 = 	 f f (1,11) dTI (17e) 

0 

Cc
16 = f [ 1 - Of (1,1)] di (17f) 

0 

Eqs. (7) to (15) can be simplified to: 

COPcool = [R(Oev) - const] Ii/ (16/E 3 ) (7*) 

where, const = E11 (E8 -1) / [E3 E8 E9(E6-1)] 

COPheat= O(co) I1/ (16/E3 ) (8*) 

mdes = Ma 11 (9*) 

Qev = MaLo[X(eev) - Const] 11 (10") 

=Qsen MaCa(Th'Tc) 12 MaLo /(12 /E3) (11") 
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5.N OF IDEALREGENERATOR 

The "ideal regenerator" is characterized by infinite heat and 
mass transfer coefficients. Consequently the local temperatures of 

the solid adsorbent T and the liquid Tf are equal, and thermodynamic 

equilibrium axists (w=weq. The governing Eqs. (1) and (2) are 

combined 	to yield a sirnjle energy equation: 

pc Ac Cc aT aw
paAaCa[ +(C/C)VV. A - - paAaqaa a s a p a t a a stat 

aTf aT 
= pfAf Cf (L-- + V ) (18) 

or in dimensionless form: 

(1 + Eo +Elw)(aeial) - E3 (,w)(aw/aln) =. E2 (ae/a ) (18*) 

The boundary conditionc are: 

0(0,"n)=l during the desorption process 

0(0,71)=0 during the adsorption process 

The initial condition at the begining of each period is: 

h('0) = 8c(l- Cc) for the desorption process 

O(' = 0h(l" , h) for the adsorption process 
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6.NUMEBICAL SQLLITII -.EIHE GOVERlNING EMATI 

In this section, the numerical method and difficulties of the 
simulation will be presented first and the results of the numerical 
study will be given in terms of the dimensionless parameters 

introduced in section 3.2. 

6.1 	 Wendroff's Scheme for First 9rder Hyperbolic EguaJtons. 
The governing equations (1) and (2) are of hyperbolic type. A 

general formulation of such system of equations can be made in the 

following matrix form: 

au auA -- + B - =C 	 (9 

where U is the unknown vector and A,B and C are specified functions 

of U, Cand n1.Wendroff's scheme consists of approximating the 

derivatives at point P (see Fig. 5) using the following central 

differences: au
I 1EuU UI 
P 	 H + F 

It II II ai 
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au a u 

I 'I 

Substituting in eq. (19) and rearranging yields the following: 
UC UA + (pA+ B)'-

S(pA- B)( - B 

+ 2(AtI1) (pA + B)"1 C (20) 

where p=At1/AC. This scheme is explicit for initial-boundary value 

problems for which U is specified at t1=0 and C=0 . When no boundary 

condition is prescribed at C=0, an other scheme should be used at the 
first node of the finite-difference mesh before Eq. (20) can be 
implemented. For the case of a single equation with constant 
coefficients, Wendroff's scheme has the advantages of being of 2 nd 
order accuracy, explicit and unconditionally stable.7 

6.2 Finite Difference Form ofithe Governing Eguationsgajo 

Ed. Re(enerator. 
Eql. (18) is of the form of En. (191 with ern lr nnatffio, i,'nfe 
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point P us'ng the average values: 

Wp w+w + W )/4
i 1+1 i 

and 
1+1 

op =( +8 + 8 + 0 / 

S i 1+1 i 1+1 

For example A is calculated using:
1 j j1+1 

(w+w +w 
A=[1+E +E + Wi+1 

4 

During a constant-volume process, Eq. (5*) is solved using the 

explicit scheme: 

[0 1 2
 

0S =S + (2
+ -1)(ES + S2 (22)J+(Ee Si 

8 0 s 3 

where the quantities S1 ,S2 and S3 are the approximated integrals: 

SI -E i=N (wJ+1 .w j eei 
1[ (E7 -1)+1] = 

iN-I=N (e0 +10- e)e e
 

S 2 = (E6 -1) I I A
 
i=1 i2
 



17 

During the constant-pressure phase, es is given by: 

0( 0+1 , +l 	 0 during adsorption (23)
1+1 {+1 during desorption 

The equilibrium relation (3b*) is written in the form: 
+1
J J+1 	 j+i

0 c1 (0 W w )s 1+1 	 1+1 (24) 

6.3 Method of Numerical SoluIon. 

A fortran program was written to simulate the behaviour of an 
ideal adsorption regenerator. The grid used for the finite-difference 

solution is shown in Fig. 5 and the flowchart of the program is given 
in Fig. 6a,b. The procedure of calculations for a constant-volume 

phase can be summarized as follows: 

1. 0s 	 at at the (j+l)th TI-step is estimated. 

2. 	0 and w at the (j+l)th ri-step are estimated in order to 

evaluate A,B and C. 

3. A corrected value 	of OJ+l is calculated using the boundary 

condition or Eq. (21). 

Eq. (24) is used to calculate a corrected wJ 1. 
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to calculate a corrected value 8s at step i-step (j+1). If 

the difference is larger than e a "new estimation" is 

made and steps (2-6) are repeated. 

8. If the difference is smaller than e, the solution proceeds to 

the next nI-tep.
 

For a constant-pressure phase, Os is known 
 and the steps (1,6,7,8) 

are not necessary. 

6.4 Intermediate Estimations a.nd. NumericaL Stability. 
The stability of the numerical solution is strongly dependent 

on the estimations needed at steps (5) and (6). A simple use of the 
calculated value is not appropriate to guarantee stability. To 
overcome this problem, procedures of intermediate estimations 
based on the physical arguments are developed. 

6.4.1 Estimation of w+1 dnAJ+1. The term C in Eq. (21), 
corresponding to the heat of adsorption, is very important compared 
to the rest of the terms in the energy balancu. But when wJ+l is 
approximated by wJat step (2), the term C is neglected. This leads 
to an overestimated value of OJ+l (during desorption) and an under 
estimated value of wJ+1 which cannot be used as new estimations. 
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underestimated the calculated value of Oj'I is larger than its
 
equilibrium value. The opposite is true when wJI 1 
 is overestimated.
 
This allows a convergent interval halfing method. 
 Fig. 7a is a
 
graphical illustration of this iterative method.
 

6.4.2 Estimationf .J+lDuringaConstantvolume Phase. Eq. 

(22) is very sensitive to the estimation of the term (wJ+I-wJ). An 
overestimation by a very small amount leads to values of much
 
larger than unity during desorption. These values cannot be used in
 
the following iteration. To guarantee convergence, a similar 
interval-halfing method as in section 6.1 is used. The upper limit 

for OsJ+1 during desorption for example is min( Os,estim J+1 ,1) and its 

lower limit is max(os,estimiJ+1,0). Fig. 7b is a graphical illustration 

of this method. 

6.5 General Asp cti -fLh Numerical S-Q iutin. 
6.5.1 Stability ndConveraence. The procedure discussed in 

section 6.4 made the iterative method to converge to some solution 
of the governing equations. An other question is to know how this 
solution is affected by the size of the steps (At) and (An). To check 

this dependency, several combinations of these parameters have 
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with (A )=1/40 0.0625 < (A1) 16 < 0.125 

This suggests that a stability condition exists and is approximately 

expressed by: (Ail/A) > 2.5 . Table 1 shows that when (Ari)=0.25 no 

major change in the solution is obtained by decreasing (AC) from 

1/40 to 1/60 

For the constant-pressure phase the step (AnI) can be made 

much smaller. With AC=1/40 the results given in table 2 show that 

the profiles of temperature obtained corresponding to A1i=0.025 and 

Ai1=0.0125 agree to about 10% and evenan better agreement is 

obtained when integral quantities such as the desorbed mass or the 

cooling effect is calculated. 

Based on the above observations, we retained the following 
steps in the study of the influence of different parameters on the 

systen performance: 

For a constant-volume phase: A =1/40 A71=0.25 

For a constant-pressure phase: A =1/40 ATI=0.025 

6.6 An lExaml. 

To discuss the profiles of temperature, uptake , energy and 
mass quantities...etc, the following example have been chosen: 

http:A71=0.25
http:Ari)=0.25
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[-8.0 

Adsorption pair: Synthetic zeolite 13X-Water (data of [10])
 
Starting from an initial state at which 0.0, a number of 
 iterations 
are performed (3 to 4) before the periodic regime is reached. Fig. 8 
shows the profiles of temperature as function of C as the wave 

travels along the regenerator. Fig. 9 shows the variations with ij of 
the temperature at the ends of the reactor. The areas under these 
curves is directly related to the regenerated energy and the energy 
lost at the air/oil heat exchanger. Fig. 10 plots the cooling/heating 

effects versus time for r[=10. It is seen that after the temperature 
wave has crossed the regenerator, the desired effect doesn't 
increase while the heat lost at the heat exhanger increases causing 

the system COP to decline as seen in Fig. 11. 
The follwing dimensionless energy quantities have been calculated: 

=Qco 0 .0 98358 Qev=0.09385 

Qbo=0.04583 Qex=0.036458 

Qco + Qex =0.13482 aev+ Qbo-0.13968 

We verify that the global energy balance is satisfied to about 3.5% 

6.7 Influence of the OerL~tjn Conditions. 



22 

evaporator has a relatively important effect on the system 
performance since a 50C decrease of this parameter causes 16-20%
 

improvement of the system cooling COP. 
 The effect of Tc is not as 

important and decreasing it by 5°C leads to an increase of the 
system cooling COP by only 5%. Fig. 12 is a plot of the system 

cooling COP as function of the dimensionless period l. As expected 

the curve shows a value of i for which the performance is 
optimum. The effect of the thermal capacity of the inert parts of 

the reactor which is expressed by E0 is studied the transienton 

first period to minimize the computing time. The results show a 

very weak decrease in the system cooling COP from 2.00 with Eo=0 

to 1.90 with Eo=0.96. 

6.8 ThCase of Actual R-eenerator with Finite Heat 

Transfer Coefficient. 

In actual systems, heat transfer coefficient is finite and the 
temperature of the solid adsorbent is not equal to that of the fluid. 
If we assume that mass transfer is infinitely fast (which is a valid 
assumption in heat transfer controlled adsorption) then w is equal 

to w..,, and the unknowns to be determined are A. A.- w nnd A Tha 
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1 during desorption
f,l 0 during adsorption 

1+ + +~ -e )+ 


1 


j ,A0 l+1 + ( Jf,1 jf, I1 0j E3q(P( j+l ww1 

A+B 

where, 
j+l j 

A=1+E +E (w1 )/21 W , 

B= E (A1i)/2
 

For 1 < i< (n-l)
 

All 1 + A12 0 j Cli+1f'i+l 

A21 + A22 f = 021+1 f'I+1 

where, 

All=1+E +EE wp + (Ail)/2E4 

A12 =- E4 (Ai)/2 

A21 =- E 4 (AC)/(2E 2 )
 

A22= 1 + E (A)/(2E 2
 

(Wj+ l j j+1 j
C1E 3 ( (1w - W+ 1 I i 
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C2 - [1- E4221f,-E4(A )/(2E )] (eJ+ +02 + f,I 

- [1+ E (A)/(2E 2 )] fj+10j +0 

4 i++ ) 

The equations governing the pressure and uptake variations are 
similar to those of the ideal regenerator case. 

A computer program was developed to obtain a numerical 
solution to the above equations. The numerical procedure used is 
similar in most aspects to the ideal case. The effect of the heat 
transfer coefficient is analyzed by changing the parameter E4 for a 
fixed set of data (the other data are those given in the example of 
section 6.4). It was in particular verified that by increasing the 
value of E4 , the solution tends in the limit to the ideal case 

solution. Table 4 gives the variations of the cooling/heating effects 
and the system COP's with increasing E4 . 
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NOMENCLATURE
 

Abbreviation 	 Term 

A Area
 
C Specific heat
 
COP Coefficient of performance
 
Ei Dimensioless parameter defined in section 3.2
 
F Equilibrium function defined in equation (3b)
 
G Absorptivity function defined as (dw/dT)
 
h coefficient of heat transfer
 
Ii Dimensionless integral defined by equations (17)
 
I 	 Dimensional length of the regenerator 
L(T) 	 Latent heat of vaporization at temperature T 

written in 
the form L(T)=L o + aLT 

m (or M) 	 Mass 
qst 	 Isosteric heat of adsorption 
p 	 pressure 
P Perimeter 
Q Heat quantity 
R Ideal gas constant 
t Time 
T Temperature 
V Velocity of the fluid 
w Uptake (mass of adsorbate/Mass of dry adsorbent) 
z Space cordinate along the regenerator 

Greek Symbols: 

EEmissivity 	 or void fraction 
0) 	 Dimensionless F 
r 	 Dimensionless G 
11 	 Dimensionless time 

Dimensionless heat of adsorption 
xL 	 Dimensionless latent heat of vaporization 
X 	 Dimensionless pressure 
0 	 Dimensionless temperature 
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P 

,Su_ scrio~ts 

a 
boi 
ad 
c 
co 

des 
ev 

eq 

exc 

f or flu 
h 
L 
0 
re 
s 
sen 


Mass density 
Period 
Dimensionless space coordinate 

"Dry" adsorbent 
at the boiler 
Adsorption 
Inert parts of the regenerator or "cold" period 
Condenser
 
desorbed
 
evaporator 
at equilibrium 
at the heat exchanger 
fluid 
"hot" period 
Liquid phase 
Characteristic value 
Regeneration 
Sorbed species or saturation 
sensible heat 
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Fig. 6b 	 Flowchart for the Simulation of a Constant-Pressure 
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Fig. 7a 	 Method of Estimating the Intermediate Values of 0J8land 
wj+1 on the Iterative Method Shown in the (0s,o) Diagram 

Fig. 7b 	 Method of Estimating the Intermediate Values of 0sJ+lon the 
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Fig. 9 	 Profiles of the Temperature at the Two Ends of the Zeolite 
Container During One Complete Period 
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Fig. 10 Dimensionless Heating/Cooling 
Dimesionless Time (n.-i10) 

Effect as Functions of the 

Fig. 11 Variations of the 
Dimesionless Time 

System 
(H=10) 

and Cycle COP's with the 

Fig. 12 Effect 
COP 

of the Dimensionless Period Hon the System Cooling 
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Table 4-1 : Comparison of results obtained with A =1/40 
and At . 1/60 (An -0.25) 



0(0.1,11) 9(0.5, '1) 0(1.0, TI) Desorbed mass/M a 
0 0- - Ar..025 .0125 At,.025 .0125 AC,.025 .0125 AC-.025 .0125 

0 0000 0.0000 0.0000 0.0000 0.0000 0.0000 6.143e-4 6.143e-4 
O u o 0.25 0.0159 0.0159 0.0158 0.0158 0.0158 0.0158 -4.5873-4 -4.587e-43 0.50 0.0666 0.0666 0.0639 0.0639 0.0639 0.0639 5.437e-4 5.437e-40 0.75 0.1524 0.1524 0.0916 0.0916 0.0916 0.0916 2.283e-3 2.283e-31.00 0.5599 0.5599 0.1135 0.1135 0.1135 C.1135 3.471e-3 3.471e-35 o 1.50 1.0081 1.0080 0.0777LM: 2.00 1.0001 0.0912 0.0891 0.0880 0.0124 0.01221.0001 0.1494 0.1433 0.1400
C CD=" 0.1471 0.0218 0.02162.50 1.0000 1.0000 0.1344 0.1227 0.1021 0.1194 0.0312 0.0310-- 3.00 1.0000 1.0000 0.1953 0.1924 0.1348 0.1290 0.0406 0.0403a 3 3.50 1.0000 1.0000 0.0045CD 1'- 0.0024 0.0905 0.0843 0.0500 0.0499 

D 4.00 1.0000 1.0000 0.2974 0.3003 0.0789 0.0762 0.0595 0.0593•L ­v,4.50 1.0000 1.0000 0.6160 0.6150 0.0961 0.0825 0.0688 0.0686 
w, D 5.00 1.0000 1.0000 0.9941 0.9937 0.1457 0.1403 0.0782% 5.50 1.0000 1.0000 1.0000 0.07791.0000 0.1438 0.1412 0.0879 0.0876
." 6.00 1.0000 1.0000 1.0000 1.00003 6.50 0.0555 0.0515 0.9720 0.09691.0000 1.0000 1.0000 1.0000 0.1926 0.1957 0.1065 0.1063S- 7.00 1.0000 1.0000 1.0000 1.0000 0.0350 0.0291 0.1159.. 0.1156ft 7.50 1.0000 1.0000 1.0000 1.0000 0.0975 0.0972 0.1261 0.1259 -, 8.00 1.0000 1.0000 1.0000 11.0000 0.3107 0.3161 0.1344 0.1342 
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T T 

CO C 

300.8 276.3 310.8 

310.8 276.3 310.8 

310.8 281.3 310.8 

305.8 281.3 310.8 

310.8 281.3 310.8 

310.8 281.3 315.8 

(a) 

Eo 0.00 0.239 

COPcool 1.82 1.75 

CORheat 2.00 1.97 

(b) 

COP ()P 

coo heat 

2.13 2.17 

1.61 1.67 

2.05 2.15 

2.39 2.48 

2.05 2.15 

2.03 2.06 

0.478 0.957 

1.69 1.69 

1.92 1.90 

Table 4-3: Effect of different parameters on the system 
performance (a) Effect of T , T and Tc (b) Effect 
of Eo 



E4 COPool COPheat Qev/(MoLo) Qco/(MoLo) 

10 0.89 0.92 0.0736 0.0761 

102 1.43 1.48 .08588 0.0888 

103 1.8t' 1.95 0.0922 0.0962 

10 4 2.03 2.13 0.0937 0.0984 

0 2.05 2.15 0.0938 0.0986 

Table 4-4: Effect of heat transfer coeffitcient on the system 
performance 
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Figure 4-1: Operating principle of a regenerative cooling
or heating system: While valces are in position 1
 

container-i is desorbing and container-2 adsorbing
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Figure 4-2: Adsorption cycle. The equilibrium data are 
for the pair Zeolite 13X-Water [4] 
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Figure 4-3a :Regeneration phase :The walls of the 
container act as condenser 
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Figure 4-3b : Adsorption phase: The walls of the 
container act as evaporator 
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Figure 4-4 : Elements of the mathematical model for the 
adsorption regenerator 
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Figure 4-5: Grid used for the explicit numerical method. The initial and 
boundary conditions and the principle of the method are shown 
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Figure 4-7a: Method of estimating the intermediate values of 
elj w j land In the iterative numerical method 

shown on the (0, 0 ) diagram 
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Figure 4-8: Profiles of dimensionless temperature vs 
space coordinate for different values of -n 

during the transient regime of a desorption phase 
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Figure 4-9: Profiles of Temperature at the two ends of each 
container during one complete period. 
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Figure 4-10 : Dimensionless Heating/Cooling Effect as 
Function of Dimensionless Time (n.10) 
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Figure 4-11: Variation of the system and Cycle cooling COP's 
with dimensionless time (H = 10 ) 
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Figure 4-12 : Effect of the dimensionless period x
 
on the system cooling COP
 


