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Abstract Floods are the most common and widespread climate-related hazard on Earth.

Flood forecasting can reduce the death toll associated with floods. Satellites offer effective

and economical means for calculating areal rainfall estimates in sparsely gauged regions.

However, satellite-based rainfall estimates have had limited use in flood forecasting and

hydrologic stream flow modeling because the rainfall estimates were considered to be

unreliable. In this study we present the calibration and validation results from a spatially

distributed hydrologic model driven by daily satellite-based estimates of rainfall for
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sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of

remotely sensed precipitation data for hydrologic modeling when the hydrologic model is

calibrated with such data. However, the remotely sensed rainfall estimates cannot be used

confidently with hydrologic models that are calibrated with rain gauge measured rainfall,

unless the model is recalibrated.

Keywords Flood forecasting � Satellite-based rainfall estimates � Remotely sensed

rainfall � Hydrologic modeling � Calibration � Validation � Nile River �
Mekong River

Abbreviations
AMSU-B Advanced Microwave Sounding Unit-B

CCD Cold cloud duration

CN Soil Conservation Service Curve Number

CPC Climate Prediction Center

DEM Digital elevation model

EROS Center for Earth Resources Observation and Science

FAO Food and Agriculture Organizations of the United Nations

FEWS Famine Early Warning System

GDAS Global Data Assimilation System

GeoSFM Geospatial Stream Flow Model

GIS Geographical Information System

GORE Gauge-observed rainfall estimates

GTS Global Telecommunications System

IDW Inverse distance weighted interpolation method

IR Geostationary thermal infrared

ITCZ Inter-Tropical Convergence Zone

MOSCEM-UA Multiobjective Shuffled Complex Evolution Metropolis algorithm

MRC Mekong River Commission

NSCE Nash-Sutcliffe Coefficient of Efficiency

NOAA National Oceanic and Atmospheric Administration

OCHA United Nations Office for the Coordination of Humanitarian Affairs

PET Potential evapotranspiration

PM Passive microwave

RMSE Root mean square error

SBRE Satellite-based rainfall estimates

SSM/I Special Sensor Microwave/Imager

USGS U.S. Geological Survey

USAID U.S. Agency for International Development

WMO World Meteorological Organization

1 Introduction

Floods are the most widespread climate-related hazard in the world, and historically floods

have been the most prevalent cause of death from natural disasters (Jonkman 2005). As
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population grows and urban development encroaches upon traditional flood plain areas, the

potential for loss of life and property will rise in the coming years (Pielke and Downton

2000). Most of the human losses due to floods occur in the tropical regions of Africa, Asia,

and Central America. It has been established that flood early warning systems are the most

effective means to reduce the death toll caused by floods. Operational flood forecasting has

traditionally been driven by a dense network of rain gauges or ground-based rainfall-

measuring radars that report in real time. Until now, the paucity of the ground-based

hydrometeorological data collection networks in tropical regions, significant delays in data

availability in some countries, and the lack of hydrometeorological data sharing across

international borders for trans-boundary basins have made it unfeasible to use traditional

flood forecasting systems across large parts of the developing world.

The availability and global coverage of satellite data offer effective and economical

means for calculating areal rainfall estimates in sparsely gauged regions. The use of

satellite-based rainfall estimates (SBRE) in flood forecasting and hydrologic stream flow

modeling has been limited in the past because of the perceived uncertainty associated with

such data. Furthermore, errors in rainfall estimates may be amplified in flood forecasting

models that rely on such rainfall estimates as inputs. It has been suggested by some

researchers (e.g., McCollum et al. 2000) that in tropical regions the SBRE are more reliable

because precipitation is usually associated with deep convection. In the past few years

there has been some research on the use of SBRE for hydrologic modeling (Guetter et al.

1996; Vicente et al. 1998; Tsintikidis et al. 1999; Grimes and Diop 2003; Hossain and

Anagnostou 2004; Nijssen and Lettenmaier 2004; Hughes 2006; Wilk et al. 2006).

We consider three criteria necessary to quantify the usefulness of SBRE for flood

forecasting: (1) the SBRE data should have historical depth, (2) SBRE data should be

readily available to the wider public, and (3) SBRE data should have a temporal resolution

that is daily or more frequent. Previous studies, except Hong et al. (2006), have not met all

of these criteria simultaneously. Hong et al. (2006) quantified uncertainty in the streamflow

prediction from a conceptual hydrologic model forced with satellite rainfall; they quan-

tified how the uncertainty in precipitation estimates propagates into the hydrological

model. The SBRE data that Hong et al. (2006) have used were calculated with PERSIANN-

CCS algorithm (Hong et al., 2004). Where Hong et al. (2006) used SBRE data with high

spatio-temporal resolution (0.040 - 0.096 of a degree and 30-min time intervals) over large

areas. Guetter et al. (1996) used synthetically produced SBRE. Other studies have reached

conclusions based on the results from hydrologic models forced with SBRE data with a

short time series (e.g., Tsintikidis et al. 1999). A Grimes and Diop (2003) study was based

on SBRE data that were not widely available, and was based solely on cold cloud duration

(CCD) and information from a numerical weather prediction model that employed site-

specific calibration parameters. Hossain and Anagnostou (2004) reported results on a

SBRE application for an event rainfall-runoff model from a small basin (116 km2), and

used passive microwave (PM) data as well as CCD-based rainfall estimates to force their

stream flow model. Nijssen and Lettenmaier (2004) studied the effects of sampling errors

in SBRE has on simulated hydrologic fluxes. While their study has advanced our under-

standing of the effects of the SBRE error, errors that are due to the periodic nature of the

satellite imagery sampling, the results of the study were on a synthetic SBRE (an error field

was imposed on rain measured with rain gauge).

For this study, we have selected four basins that are flood prone or are tributaries to flood

prone rivers. Floods are very common in the downstream flat alluvial plains of both the Gash

and Nyando basins. During 2002, over 48,000 people were displaced by floods in the

Nyando basin in western Kenya (OCHA 2002). The Gash River consistently floods the city
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of Kassala, Sudan, a city with a population of more than a half million. The river flooded

Kassala in 1975, 1988, 1996, 1998, and most recently in July, 2003, when half of the city

was under water, affecting approximately 60-70% of the city’s population (OCHA 2003). In

Southeast Asia, the Nam Ou and Se Done basins contribute large flows to the Mekong River,

and therefore have a significant impact on the recurrent floods that have occurred in the area

along the Mekong River’s main stem. It will be beneficial for the Mekong River Com-

mission (MRC) to be able to simulate in near-real time the runoff of rivers that originate in

Laos, because there are often delays in the transmittal of hydrometeorological data. As

recently as the summer of 2000, the lower Mekong experienced devastating floods, with

estimates of more than 800 fatalities (Plate and Insisiengmay 2002).

In this study, we have investigated the usefulness and uncertainty of remotely sensed

rainfall estimates for hydrologic modeling. We show the feasibility of using a rainfall-

runoff model forced with SBRE for stream flow modeling at a daily time step. We present

calibration and validation results for a spatially distributed hydrologic model driven by

daily SBRE for four basins in East Africa and Southeast Asia. Two basins are tributaries of

the Mekong River and two are tributaries of the Nile River. The four basins cover a wide

range of physiographic and climatic conditions. For the two Mekong tributaries, rain gauge

data were also available. The results demonstrate the usefulness of remotely sensed pre-

cipitation data for hydrologic modeling.

Fig. 1 Mekong River basin, with study areas shown in black: the Nam Ou basin (in the north) and the Se
Done basin (in the south)
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2 Study sites and models

2.1 Study sites

The Nam Ou and Se Done Rivers are tributaries of the Mekong River (Fig. 1). The Nam Ou

River starts at the border between China and Laos, and flows through the rugged mountains of

northern Laos, with slopes exceeding 30% in some parts of the basin. The Nam Ou basin is

located in the northern highlands and has a subtropical climate, with a distinct rainy season

from May through October, and a cool, dry season from November through February. Land

cover is mainly forest with some agricultural land in the river valley floor. The Se Done basin

is located in southern Laos in the Mekong lowland plains. The climate of the basin is tropical:

hot and humid. The rainy season is mainly affected by the summer monsoon and lasts from

mid-May to mid-November; most precipitation comes as short, intense thundershowers.

Most of the heavy rains take place between July and September. The land cover of the basin is

mainly irrigated cropland and deciduous broadleaf forest.

The Gash River is a trans-boundary basin shared among Ethiopia, Eritrea, and Sudan

(Fig. 2). The river originates from the Eritrean and Ethiopian highlands in an area charac-

terized by steep slopes; the upper course of the river in Eritrea is known as the Mareb River.

The upper part of the basin has a cool climate with an average temperature of 168C year round,

whereas the lower section of the basin is dry and hot. Most of the rainfall falls in the upper part

Fig. 2 Nile River basin, with study areas shown in black: the Gash River basin (in the north) and the
Nyando basin (close to Lake Victoria)
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of the basin. The Gash River is discontinuous in Kassala, Sudan, and during the flood season

its water has high silt content, whereas the first 150–200 km of the river in Eritrea is a

perennial river. The Gash River reaches the Atbara, a tributary of the Nile, only during the

flood season. Almost all of the rainfall over the Gash basin falls during the rainy season from

July to September. Figure 3 shows the number of days per year in which water flows in the

Gash River at the Kassala gauging station. The soil in the downstream part of the basin is

composed mainly of thick alluvial deposits of silty clay loam.

The Nyando River is located in western Kenya and drains into Lake Victoria (Fig. 2). The

climate of the Nyando catchment is classified as sub-humid. Mean annual rainfall varies from

1200 mm close to Lake Victoria to 1500 mm at the foot of the Nyando Escarpment. The

annual rainfall pattern shows no distinct dry season; it is bi-modal with peaks during the long

rainy season of the region (March–May) and during the short rainy season (October–

December). The rainfall in the area is controlled by the northward and southward movement

of the Inter-Tropical Convergence Zone (ITCZ). The soils of the basin are mainly vertisols

and entisols, medium to heavy clay soils with poor drainage; as a result, the drainage capacity

in both the vertical and deep lateral directions is poor. The catchment lies between 1140 m and

1800 m above sea level, with flat topography near the lake. The vegetation of the upper

catchment is mainly forest, while the middle part of basin has been greatly modified by

clearing, cultivation, and burning due to human settlement. Table 1 summarizes the phys-

iographic and climatic characteristics of the four basins in this study.

The basin boundaries and stream networks were delineated from the U.S. Geological

Survey (USGS) GTOPO30 digital elevation database (http://edcdaac.usgs.gov/gtopo30/

gtopo30.html). The GTOPO30 global topographic data set (Gesch et al. 1999) has a 30-arc-

second resolution. In this study we subdivided the Nam Ou and Se Done into three sub-

basins each. The Gash, which covers an area with several distinct climatic conditions, was

divided into 62 sub-basins. The Nyando basin was modeled as 10 sub-basins.

2.2 Rainfall-runoff model

We used the Geospatial Stream Flow Model (GeoSFM) for hydrologic simulation. The

GeoSFM is a physically-based semi-distributed hydrologic model developed by the USGS

(Artan et al. 2001). The GeoSFM simulates the dynamics of runoff processes by using

remotely sensed and widely available global data sets. The model is parsimonious; it has

few parameters and variable input data requirements. The GeoSFM is a catchment-scale

hydrologic model. The model consists of (a) a Graphical User Interface (GUI) component
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run within a Geographical Information System (GIS) for input data preparation and

visualization of model outputs, and (b) a rainfall-runoff simulation component. In the

preprocessing module, the particular basin under consideration is subdivided into several

sub-basins based on the digital elevation model (DEM) data. Model parameters are derived

from continental-scale datasets, and most of the parameters have physical meaning. The

parameterization is accomplished through the use of three datasets describing the Earth’s

surface: topography, land cover, and soils.

The GeoSFM rainfall-runoff component has three main modules: water balance, catch-

ment routing, and distributed channel routing. In the water balance module, the sub-basins are

the subject of a daily water balance calculation. This calculation determines how much water

enters the stream network from each sub-basin. In the water balance module, the soil is

conceptualized as composed of two zones: (a) an active soil layer where most of the soil–

vegetation–atmosphere interaction processes take place, and (b) the groundwater zone. The

active soil layer is divided into an upper thin soil layer where evaporation and transpiration

both occur and a lower soil layer where only transpiration takes place. The catchment runoff

mechanisms considered in the model are excess precipitation runoff, direct runoff from

impermeable areas of the basin, rapid subsurface flow (interflow), and base flow contribution

from groundwater. The model has several excess runoff generation options; in the present

study we used the Soil Conservation Service Curve Numbers (CN) method to model the

surface runoff generation process. CN were estimated from a land use and land cover data

layer, and were dynamically updated to reflect the state of the soil moisture.

The runoff produced by the water balance module is routed in two phases. First, the

catchment runoff is routed at the sub-basin level to its outlet, then the flow is routed

through the main river channel network. In the sub-basins, the subsurface runoff is routed

using a set of two conceptual linear reservoirs. While the surface runoff routing is carried

out using a diffusion wave equation modified for use in a GIS environment (Olivera and

Maidment 1999), the land cover and DEM data are used to determine the rate at which

runoff is transported from the point of generation to the catchment outlet. In the river

channel network, water is routed using a linear Muskingum–Cunge scheme (Chow et al.

1988).

The GeoSFM has an automatic calibration toolset module that employs the Multiob-

jective Shuffled Complex Evolution Metropolis (MOSCEM-UA) algorithm (Duan et al.

1992; Vrugt et al. 2003). Because of uncertainties in the input and output datasets, model

structure error, and quantity or quality of input, it is difficult to determine a best set of

model parameters (Duan et al. 1992). The MOSCEM-UA algorithm uses a global search of

the specified parameter space and has been shown to be effective and efficient. It is

efficient because relatively few model runs are needed to obtain the optimal parameter set,

and it is effective because it successfully deals with difficulties in the search, such as

multiple local optima and derivative discontinuities. The parameter calibration method

uses a complex shuffling probabilistic search procedure and a fitness assignment method

for the objective function.

Table 1 Basins used in this
study

Basin Area (km2) Climate

Se Done 6,044 Tropical

Nam Ou 19,013 Sub-tropical

Nyando 2,646 Sub-humid

Gash 22,150 Semi-arid
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The number of parameters that can be adjusted in a physically based distributed

hydrologic model such as GeoSFM could be excessive. In this study we limited the

parameters that were adjusted during calibration to five model parameters that have shown

the highest sensitivities and uncertainties in previous studies of model use. To avoid model

over-parameterization, the calibration was confined to a range where model parameters

were deemed to have physical meaning.

2.3 Rainfall-runoff model parameterization data and evapotranspiration

Land cover data, in conjunction with soils information, is used by the GeoSFM to

parameterize how the model partitions incident rainfall between surface runoff and water

that infiltrates into the soil. We used a global land cover dataset (Loveland and Belward

1997) that was created from the classification of a 12-month series of 1-km global vege-

tation index imagery. The soil parameters (i.e., soil water holding capacity, saturated soil

hydraulic conductivity, hydrologically active soil layer depth, and soil texture) were ex-

tracted from the Digital Soil Map of the World (FAO 1995). For those attributes missing

from the Food and Agriculture Organizations of the United Nations (FAO) digital soil data

set, relationships described in the literature (Hanks and Ashcroft 1980; Hansen et al. 1979)

were used to create them from the available attributes. The FAO digital soil data were

derived from an original compilation at 1:5,000,000 scale.

Potential evapotranspiration (PET) represents atmospheric demand for water from the

Earth’s surface as a function of solar radiation, air temperature, wind, humidity, and

atmospheric pressure. PET is an essential dataset for calculating water cycle fluxes in

hydrologic modeling. We used PET data that were calculated globally on a cell-by-cell basis

according to the Penman–Monteith equation (Verdin and Klaver 2002; Senay and Verdin

2003). The model is run operationally at the USGS Center for Earth Resources Observation

and Science (EROS). The PET values were calculated from grids of the meteorological

variables that the Penman–Monteith model requires. The meteorological data come from

the Global Data Assimilation System (GDAS) dataset produced by the National Oceanic

and Atmospheric Administration (NOAA) on a 1-degree by 1-degree grid.

2.4 Satellite-based rainfall estimates

In recent years, several SBRE products have been presented in the literature (Guetter et al.

1996; Herman et al. 1997; Xie and Arkin 1997; Vicente et al. 1998; Tsintikidis et al. 1999;

Grimes and Diop 2003; Hong et al. 2004; Joyce et al. 2004, Huffman et al. 2007). In this

research we used an operational SBRE that the National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Center (CPC) has produced since January,

1996; for the Famine Early Warning System (FEWS) project of the U.S. Agency for

International Development (USAID). From 1998 to 2000, the NOAA/CPC produced SBRE

version 1.0, based on the algorithms of Herman et al. (1997). From January 2001, to the

present, SBRE version 2.0 has been in production (Xie and Arkin 1997). A SBRE product

with a spatial resolution of 10 km by 10 km and daily temporal resolution has been

produced for windows that cover Africa, central Asia, and southern Asia (see Fig. 4). The

public can access this SBRE data for the three geographical areas from an anonymous ftp

site at ftp://ftp.cpc.ncep.noaa.gov/fews. The daily SBRE data for the African window

extends as far back as January 1, 1998; for southern and central Asia, the starting date was

January 10, 2001.
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The basic inputs for creation of the SBRE product are geostationary thermal infrared (IR)

satellite imagery, passive microwave (PM) imagery, and daily rain gauge reports from the

Global Telecommunication System (GTS) of the World Meteorological Organization

(WMO). For version 1.0, rainfall was estimated from cold cloud duration (CCD) calculated

with a temperature threshold of 235 K from the IR imagery, ingested on a half-hourly basis

and aggregated on a daily time step, with bias removed from the IR-based rainfall estimates

using interpolated GTS rainfall fields (Herman et al. 1997). Usually the GTS data are sparser

in the areas where benefits from the SBRE product could be the highest. For the southern

Asia window there are up to 1,749 stations that are part of the GTS reporting network, but

for any given day about 600 stations were used to make the SBRE product. There are 2,534

GTS stations for the African window and 4,146 stations for the central Asia window, with

the usable number of stations close to 1,000 and 500 stations, respectively.

Since January 2001; the NOAA/CPC has produced the SBRE version 2.0, which

incorporates additional satellite data from two instruments, the Special Sensor Microwave/

Imager (SSM/I) of the Defense Meteorological Satellite Program, and the Advanced

Microwave Sounding Unit-B (AMSU-B) on board polar orbiting satellites NOAA-15,

NOAA-16, and NOAA-17. The SSM/I estimates are acquired at 6-h intervals, while

AMSU-B rainfall estimates are made every 12 h. In this method, rainfall is first estimated

separately from the three satellite sources with a maximum likelihood approach that uses

weighting coefficients that are inversely proportional to the squares of the individual data

random errors. Finally, the satellite rainfall estimates are merged with interpolated rainfall

from the available GTS station data so that the satellite data provide the field shape and are

anchored by the GTS data. The PM data strengthen the rainfall estimate because there is a

more direct physical relationship between rainfall and the signal at the satellite, compared

to the IR data. The shortcoming of the PM data is the lower frequency of observation and

coarser spatial resolution compared to the IR images from geostationary satellites. The

NOAA/CPC SBRE products have been previously used to model crop water requirements

(Verdin and Klaver 2002; Senay and Verdin 2003).

Fig. 4 Geographic extent of areas where the NOAA/CPC satellite-based rainfall estimate products are
available
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2.5 Gauge observed data

The rainfall station data and streamflow gauge data for the Nam Ou and Se Done basins

were supplied by the Mekong River Commission (MRC). The MRC is a regional interna-

tional river basin organization created by Cambodia, Lao PDR, Thailand, Vietnam, and

Myanmar. The data covered the period from January 1990 to December, 2003. The gauge-

observed rainfall estimates (GORE) were interpolated onto a 10-km grid using a simple

inverse distance-weighting algorithm (IDW). Tables 2–4 summarize the location and

temporal coverage of the GORE data. Missing data for a particular day were excluded from

the interpolation process, reducing the number of gauges for that day. As shown by Tables 2

and 3, the smaller Se Done basin had more rain gauge coverage than the larger Nam Ou

basin. The number of rain gauges in and around Nam Ou was low and they were poorly

distributed over the basin. All the gauges in Nam Ou Basin, except one gauge at Phongsaly,

Table 2 Location and percent of missing data of the rain gauges used for model forcing for Nam Ou basin

Stations ID Station name Long. Lat. % missing data

190202 Luang Prabang 102.13 19.88 0%

200101 Muong Namtha 101.40 20.93 0%

200201 Muong Ngoy 102.60 20.57 0%

200204 Oudomxay 102.00 20.68 0%

210201 Phongsaly 102.20 21.73 0%

Table 3 Location and percent of missing data of the rain gauges used for model forcing for Se Done basin

Stations ID Station name Long. Lat. % missing data

150504 Pakse 105.78 15.12 0%

150506 Khongsedone 105.80 15.57 0%

150508 Selabam 105.82 15.38 0%

150604 Laongam 106.17 15.47 0%

150607 Nikhom 106.43 15.18 0%

160504 Ban Donghen 105.78 16.00 0%

160601 Muong Tchepon 106.23 16.03 0%

Table 4 Location and percent of missing data of the rain gauges used for model forcing for Nyando basin

Stations ID Station name Long. Lat. % missing data

9035148 Koru Mission 35.27 �0.20 3%

9035075 Kericho 35.38 �0.33 3%

9035020 Lumbwa 35.47 �0.20 3%

9034086 Ahero 34.93 �0.15 3%

9034007 Miwani Sugar 34.95 �0.052 25%

8935159 Ainabkoi 35.33 0.082 25%

8935161 Nandi Hills 35.15 0.08 3%

8935148 Kipkurere 35.43 0.07 3%

8935033 Savani estate 35.10 0.05 3%

8935001 Songhor 35.30 0.032 22%

9034009 Miwani 34.95 �0.051 11%

176 Nat Hazards (2007) 43:167–185

123



were located in the lower part of the basin or close to the lower basin. We had GORE data

for the Nyando basin for the period between January 1986 and December 1988.

GeoSFM-simulated streamflow was calibrated and validated using discharge data col-

lected at station 100102, located in the town of Muong Ngoy on the Nam Ou River (with

an upstream area of around 19,000 km2), and station 390104 at Souvanna Khili for the Se

Done River (upstream area about 6,000 km2). The Gash River stream gauge data were

supplied by the Sudan Ministry of Irrigation and Water Resources, for the period from

January 1998 to December 2002. The Gash stream discharge data were collected at the

Kassala town gauging station. The Nyando River stream gauge data were supplied by the

Kenya Ministry of Water Resources and Development, for the periods January 1986 to

December 1988 and January 1998 to December 2001. The discharge data were from the

gauging station at Ahero Bridge (station ID 1GD03).

3 Performance indicators

We made visual and statistical comparisons between predicted and observed flows, and

between SBRE and GORE averages basin-wide whenever data were available. For the

statistical ‘‘goodness of fit’’ of simulated flows, we used a widely used measure—the

Nash-Sutcliffe Coefficient of Efficiency (NSCE) (Nash and Sutcliffe 1970) and the value

of the Root Mean Square Error (RMSE). The NSCE is an improvement over the Coeffi-

cient of Determination for streamflow comparison, because it accounts for model errors in

estimating the mean of the observed datasets. The NSCE is an indicator of the model’s

ability to predict about the 1:1 line. We used the coefficient of determination to assess the

correspondence between SBRE and GORE data. For both streamflow and rainfall vari-

ables, we calculated the mean bias between gauge-observed and modeled variables. The

bias or mean error of the simulated and observed variable was calculated as:

Bias ¼

Pn

i¼1

Si � Oið Þ

O

where Si and Oi are the simulated and observed variables, for both rainfall and streamflow,

and O is the mean value of the observed variable. The NSCE was calculated as:

NSCE ¼ 1�

Pn

i¼1

Si � Oið Þ2

Pn

i¼1

Oi � O
� �2

4 Results and discussion

4.1 Comparison of satellite and gauge-based rainfall estimates

In this section, we present a comparison of concurrent GORE and SBRE mean-areal

averages over the Se Done and Nam Ou basins. The datasets span the period from January

2002 to December 2003. The two rainfall estimate datasets were projected to a Lambert
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equal-area azimuthal projection. The GORE data were interpolated by using the IDW

interpolation method, a simple and efficient method that is part of widely available

Geographic Information Systems (GIS) software. We compared both daily and monthly

accumulated basin-wide average rainfall.

The coefficient of determination (r2) of the GORE and SBRE fields was 0.51 and 0.35

on a daily time scale for Nam Ou and Se Done basins, respectively. The r2 coefficient was

quite low for both basins, and there were no discernable differences (p = 0.05) between the

mean values of the two rainfall estimates. The Nam Ou basin average daily rainfall was

3.9 mm for the GORE and 3.7 mm for SBRE. For the Se Done basin, the daily mean values

were 5.6 mm and 5.5 mm for GORE and SBRE, respectively. On monthly time scales,

there was a strong correlation between the datasets for both basins (r2 values were 0.96 and

0.85). The correlation between the remotely sensed and gauge measured rainfall was

higher for the larger of the two basins (Nam Ou), despite the poorer rain gauge distribution

in that basin. Our finding of high correlation and low bias from the comparison of the

GORE and SBRE monthly data is consistent with the findings from some previous

researchers on the accuracy of monthly accumulations of remotely sensed precipitation

averaged over large areas (Xie and Arkin 1997; Sorooshian et al. 2000), but our findings

contrast with those reported by Hughes (2006).

We think that the good agreement seen between the GORE and SBRE is due to the

nature of the rainfall in the lower and middle Mekong basin. The spatial-temporal char-

acteristics of the rainfall in the area are monsoonal and well organized with the wet season

lasting from May to November, when it rains almost every day. Figure 5a, b show the time

series for GORE and SBRE for the two basins. Although there was a good agreement

between the SBRE and GORE and a negligible bias for the yearly and monthly
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Fig. 5 Areal basin averages of remotely sensed and gauge-measured rainfall for (a) Nam Ou basin, and (b)
Se Done basin
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accumulated rainfall amounts, there was a small under prediction during the peak. The

SBRE relies on IR and PM imagery for the rainfall estimation, and rainfall estimates made

from IR and PM data have a similar bias (McCollum et al. 2000). The relationship between

rainfall and the remotely sensed imagery is not well defined. Fixed temperature thresholds

are used to estimate the CCD values from the IR imagery, and the PM rainfall estimates are

based on empirical relationships derived by comparison with concurrent radar-estimated

rainfall. The small peak rainfall biases we saw are conjectured to result from the value of

the temperature threshold used to create the CCD being too low during the peak of rainy

season and too high during the later part of the season. The biases in the estimates for high

rainfall are apparent from Fig. 6, showing quantile–quantile (q–q) plots of the SBRE and

GORE data. The plots show that the two rainfall estimate datasets have the same distri-

bution for the lower tail, but that the SBRE has a tendency to underestimate rainfall

compared to the gauges. Table 5 summarizes the results of the evaluation of the streamflow

simulation when the two rainfall datasets were used.

4.2 Effects of satellite rainfall estimates on simulated streamflow

Initially, GeoSFM model parameters were estimated using digital datasets of soil, land

cover, and elevation. We calibrated the GeoSFM with the GORE data for the period from

1990 to 2001 for the Nam Ou and Se Done basins, and used data from 2002 to 2003 for

validation. We lacked PET data for the Mekong basin for the period before 2000. For PET

during the calibration period, we used an average daily PET created by averaging the
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Fig. 6 Quantile–quantile (q–q) plot of the satellite-estimated and rain gauge-measured rainfall for (a) Nam
Ou, and (b) Se Done basins

Table 5 Statistical summary of the comparison between simulated and observed streamflow. (a) SBRE1
model calibrated with rain gauge data and run with SBRE from a different period; (b) SBRE2 calibration
output from model forced with remotely sensed rainfall estimates; and (c) GORE validation

Basin SBRE1 SBRE2 GORE

NSCE Bias (%) RMSE NSCE Bias (%) RMSE NSCE Bias (%) RMSE

Se Done 0.39 37.0 13.99 0.40 0.00 12.62 0.77 11.0 7.91

Nam Ou 0.64 �29.0 14.30 0.81 �6.00 11.43 0.82 7.00 10.5

Nyando 0.46 �18.0 0.20 0.74 7.40 0.18 0.75 �8.00 0.42

Gash 0.67 �12.0 0.79
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USGS global PET datasets from 2001 to 2005. The model parameter calibration was first

accomplished by trial and error and subsequently with an automatic calibration. The

automatic parameter calibration routine was based on the MOSCEM-UA algorithm (Duan

et al. 1992; Vrugt et al. 2003), with minimization of the RMSE as the objective function.

After the calibration, the GeoSFM was forced with GORE and SBRE data for the period

from January 2002 to December 2003.

The GORE calibrated model was forced with 2 years of SBRE (hereafter labeled run

SBRE1). Hydrographs showing simulated and observed flows of the Se Done and Nam Ou

are shown in Fig. 7a, b. The graphs show that for both basins the model was able to capture

the observed hydrograph quite well when forced with GORE rainfall, simulating both the

timing and the magnitude of the streamflow of the basins. The few discrepancies observed

in the Nam Ou hydrograph can be explained in part by the insufficiencies of rainfall station

data in the upper sections of the basin highlands. There are few noticeable differences

between the hydrographs simulated with the GORE and SBRE data for the Nam Ou basin.

There was poor agreement between observed and SBRE simulated streamflows for the Se

Done basin.

Although the overall agreement between the SBRE and GORE accumulated rainfall was

high, with only a small bias, apparently that bias was amplified in the simulated streamflow

when the hydrologic model was calibrated using the GORE data. The bias of the simulated

flows changed from +11% with GORE to +37% with SBRE1 for the Se Done and from

+7% with GORE to �29% with SBRE1 for the Nam Ou (see Table 5). The bias of GORE-

forced simulated streamflows was +12% and +11% for the two basins. Such high increases

of bias and drops in prediction efficiency were present when the bias of the remotely sensed
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Fig. 7 Streamflow simulation obtained when the hydrologic model was calibrated with rain gauge data
from the period between January 1990 and December 2001. The model was forced with mean areal rainfall
from gauges and estimated from satellite imagery. The top panel (a) is for the Nam Ou basin and the lower
panel (b) is for the Se Done basin

180 Nat Hazards (2007) 43:167–185

123



rainfall was only �2% (Se Done) and �6% (Nam Ou), a mean rainfall bias that is much less

than what has been reported for other areas (Guetter et al. 1996; Wilk et al. 2006).

We conclude that there was a large amplification of the rainfall bias in the simulated

streamflow with SBRE1 for the Nam Ou because of the wet soil conditions expected in this

area during the rainy season; any negative rainfall bias would be transformed into a larger

negative bias in the simulated streamflow. In the case of Se Done basin there was a small

underestimation of peak rainfall but there was a consistent overestimation of rainfall during

the later part of the monsoon season (Fig. 5a). The SBRE1 run produced several peak flows

in the later part of the rainy season that were not seen in the observed streamflow.

The GeoSFM was recalibrated using the SBRE as a rainfall forcing (data were from

2002 to 2003, hereafter labeled run SBRE2). Comparisons between the observed and

simulated hydrographs from model run SBRE2 are summarized in Fig. 8a, b and Table 5.

The bias of the simulated streamflow for Se Done decreased from +37% when the model

was calibrated with GORE to 0% when the model was calibrated with SBRE, but the Nash-

Sutcliffe efficiency did not increase significantly. While there was an improvement of the

simulated flows in the first year, there was a deterioration of model predictive skills during

the second year. The lack of improvement in efficiency indicates that the SBRE2 contains

large uncertainties at the daily level that the model parameter calibration was unable to

reduce significantly. The SBRE2 simulated flows for the recalibrated Nam Ou basin

compared well with the observed flows. The SBRE2 runs for the Nam Ou were less biased

(�6%) than the simulated flow when the model was calibrated with GORE of the same

period, and the simulation efficiency was similar to the flows simulated with GORE data.

The SBRE provides an adequate and comparable data source to the GORE data for flood

forecasting and hydrologic modeling for the Nam Ou basin, whereas the same could not be

said about the Se Done basin.
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Fig. 8 Observed and simulated hydrographs obtained when the model was calibrated with SBRE data for
(a) Nam Ou and (b) Se Done
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We calibrated the Nyando basin with GORE and stream gauge data collected from

January 1986 to December 1988 at the Ahero Bridge gauge. We did not compare GORE

and SBRE because we did not have concurrent datasets from the two sources. After the

model was calibrated with the GORE, we simulated flows with the GeoSFM forced with

SBRE input from January 2000 to December 2001. Then we calibrated the model with

SBRE data from January 1996 to June 1997. Results of the simulated hydrograph when the

model was forced with rainfall data from SBRE and GORE are illustrated in Fig. 9a, c.

Simulated and observed flows agreed well most of the time (especially for the peak flows)

when the model was run with GORE. There was less agreement between simulated and

observed flows with SBRE1 (Fig. 9b). The hydrograph was simulated for two very dif-

ferent years, a wet year and a below-average flow year. The shape of the simulated

hydrograph was close to the observed hydrographs during the wet year (2000) but model
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Fig. 9 Observed and simulated hydrographs of the Nyando River. (a) calibration run obtained with model-
forced with rain gauge observed data; (b) validation run when model input rainfall was SBRE; and (c)
simulated and observed flows when the model was calibrated with SBRE
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performance was poor for the dry year. The lower performance of the model for the drier

year was attributed to the way the hydrologic model was calibrated. During calibration, the

RMSE of the difference between simulated and observed flows was minimized; models

calibrated in such a manner places a higher value on matching the high flow than the

average flows. The overall water balance agrees to within 18% of the observed flows. The

hydrologic model calibrated with GORE data could be driven with SBRE as input rainfall

for the Nyando with a notable loss of predictive skills, in contrast to when GORE data were

used. We recalibrated the hydrologic model with SBRE data from January 1996 to June

1997. Simulated streamflow with the model driven with the SBRE had comparable skills

with the GORE-forced simulations (NSCE = 0.74 and NSCE = 0.75, and RMSE = 0.18 and

0.42, respectively). GeoSFM SBRE-calibrated simulated flows had a minor positive bias

(+7.4%), whereas the GORE-calibrated model flows were significantly negatively biased

(�18.0%). This suggested that for the Nyando basin the hydrologic model should be

calibrated with remotely sensed rainfall estimates if the model is to be used with such data.

The Gash River is seasonal, and it is located in an area that is dryer than the other three

basins that were modeled for this study. In the case of the Gash River we had only SBRE

data for both model calibration and validation. We had 6 years of observed streamflow data

collected at the Kassala town gauging station. We used data from January 1998 to

December 2001 to calibrate the model and we used the remaining 2 years of streamflow

data for the validation. Figure 10a, b show modeled and observed hydrographs for the Gash

River at Kassala for the calibration and validation periods. The agreement between sim-

ulated and observed flows obtained during the verification period was comparable to the

agreement during the model calibration period. That suggests that the SBRE is an

acceptable rainfall dataset for input to hydrologic and flood forecasting models for the

Gash River.
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Fig. 10 Gash River observed and simulated hydrographs obtained when the model was calibrated with
remotely sensed rainfall data (a) the calibration period, and (b) the validation period
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5 Conclusion

Global coverage of remotely sensed rainfall estimates is becoming available. We have

investigated the fitness of such data for streamflow modeling. Four basins that cover a wide

range of hydro-climatic and physiographic conditions (from arid to tropical environments)

were investigated. Streamflow was simulated with the GeoSFM, and calibrated using

combinations of rain gauge measured and remotely sensed rainfall estimates. We also

compared remotely sensed and gauge-estimated basin-wide mean areal precipitation. On

daily time scales, the two rainfall estimates were weakly correlated, whereas the match

between monthly accumulated rainfall values was excellent. Overall the remotely sensed

rainfall estimates had only a small under-estimation bias. This suggests that the remotely

sensed rainfall estimates are an excellent source of rainfall data for modeling processes

with monthly and longer time scales.

A distributed hydrologic model was calibrated for three basins using daily GORE data

and forced with daily SBRE data. Simulated streamflow for the basins showed that a slight

rainfall bias was amplified into a much larger streamflow bias for one basin (Se Done). In

the Nam Ou and Nyando basins there was no significant difference between streamflow

simulated with GORE or SBRE. Our results concur with the point presented by other

researchers (e.g., Hughes 2006) that SBRE cannot be used with confidence with GORE-

calibrated hydrologic models without a model recalibration with SBRE. The performance

of the hydrologic model, when calibrated with SBRE, was comparable to the simulated

streamflow obtained when the model was calibrated with GORE. It is therefore justifiable

to suggest that SBRE can be used to drive hydrologic models for streamflow prediction if

the hydrologic model is calibrated with SBRE.
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