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V.1l LONG-TERM INVESTMENT PLANNING FOR THE EGYPTIAN ELECTRIC POWER SYSTEM
Progress Report

June 1, 1977 - September 1, 1977

The basic objective of this project is to help develop profuessional
skills in applying mathematical cconomicas and operations research to analyze
project altematives for Egyptians concermed with planning electric power
projects. The best way to develop autonomous capabilities in cthi; area, as
well as the best way to get answers to important investment questions, 18 to
gtart in right away building simple, practical models, feeding duta into
them, and analyzing the results. Then, 1f everything ascems to be proceeding
smoothly, the models cay be made increasingly complex and elaborate, to
incorporate more and wore featurcs of reality. The emphanis 1s going to be
on developing a handa-on capability for building and analyzing useful, simple,
operational modeln which give answers to some pertinent questions of Invest-
ment planning.

This basic philosophy hau been agreed to by the particisants fronm the
Ministry of Electricity, Calro University and M.I.T. The e¢nvironment {n MOE
and Cairo Un!veraity is favorable for thius sort of applfed ¢coonomic analyiis
because the Egyptian engincers are very able in the technlcal aspects of
their field and are eager to serfounly develop their own capabilicies {n
applying operations research and mathematical economica.

In the first weeks of July, several mectings were held {n the office
of the Firat Undersccretary of State of the Minfatry of } .ztricity and Energy
to discusn {oplementation of the agreement between M. 1.T., Cairo University
and the Miniatry concerning the atudy ot J-term {nventzent planning for
the Egyptiun electric power myntem. The following people attended thedc
meetingn: from M.1.T., Prof. Weltzman; from the Minintry of Electricity and
Energy, Eng. M. Abaza, Dr. F. Taher, Dr., H, El-Shaer, Dr. E. El-Sharkawt,
Dr. M. Swetdan, Eng. El-Gazrar, Eng. K. Yaunin, Eng. 4. Donn; frowm Calro
Univaraicy, Prof. 5. Abu-Hasasein, Prof. 4, El-Sobki, Dr. H. Anils, Log.

H. El-Kolaly, Eng. M. Hahooud,

At thene meetingn, a spectlifc afmple wodel of project evaluation vas
applied to mample data provided by Hintetivy personnel and nome crude petini=
tivity analynis wan performed. Alno, we looked at nusme apeclilc vayn of

formulating the problem of selecting an optimum combination of ateas and gas
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turbine generators. Finally, we discusied the general features which would
be desirable to include in an expanded model of investment planning.

A research strategy was proposed which consists of the following three
projects: (1) a preinvestment survey for investment planning, (2) a study of
the optimum mixture of different types of power sta.lons for variable demand,
and (3) an expanded model for investment planning.

The first project i3 concerned wi:h the following set of issues. The
Ministry of Electricity is confronted with the task of selecting electricity
generating projects from a wide range of options, including hydroelectric,
thermal using various foseil fuels, gas turbine, and nuclear. Many of these
projects are big relative to the demand being served. In such a situation,
it is not clear how to rank projects. Cost per rated kilowatt is not a good
measure because there is a fair amount of excess capacity introduced with a
large project. We have mathematically formulated the problem of expanding
capacity at minimum present discounted cost and, under certain simplifying
assumptions, devised a formula for an '"equivalent cost per kilowatt' which
has a rigorous foundation as the solution to the optimal capacity expansion
problem and automatically corrects for the size of a project. This formula
can be used to rank various investment alternatives and lends itself very
readily to economic analysis whereby the main parameters -- cost of fuel,
rate of interest, growth of demand, etc. -- are varied and the effect is noted.
We have already applied this methodology to some crude cost figures on various
investment alternatives and the results seem to constitute a very useful
preinvestment survey. We have agreed on the following execution steps:

~-- data collection for different types of plants;

== calculations of the "equivalent cost of capacity" for each
type of plant;

== ranking the various investment alternatives;

=~ @conomic analysis (calculating the effects of varying all of
the important parameters;

-=- general conclusions and recommendations.

This project is currently underway and it ls anticipated that there
should be concrete results by November or December. An enclosed paper
deacribes the analytic framework being uased. We hope to extend this methodo-
logy to a more sophisticated and complicated model. As of September lst, data
collection for six new power plants ip almost completed, and preliminary

equivalent costa of capncity"” have been calculated.
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The second project ar ‘e out of a practical problem suggested by Ministry
personnel. The demand for electricity varies -- dally, weekly and seasonally.
Some types of plants (steam generators) are relatively cheap per kilowatt
provided they are used at near full capacity. At low capacity utilization,
they are relatively expensive, Other types of plants (gas turbines) are
relatively expensive per peak kilowatt, but the output can be easily and
cheaply varied, and they are relatively cheaper per kilowatt at low output.
The basic question is this: Given the pattern of demand fluctuations, what
is the least cost combination of power station types? We have succeeded in
mathematically formulating a very simple version of this problem, but a more
sophisticated model should be developed, and it should be applied to real
data. The execution steps of this task are:

-- development of a good mathematical model;

data collection;

-- model solution on-a computer;

economic analysis (calculating the effects of varying parameters);
general conclusions and recommendations.

This project is underway &nd we hope to have some results by December.
At the present time, a model has been created of fairly general applicability,
and a complete computer algorithm to determine the minimum cost plant mixture
ratio has been prepared.

The third project area is less well defined than the other two. It
involves constructing a much more complicated complete programming model which
would determine least cost investment combinations for a very general situ-
ation, as contrasted with the piccemeal, partial approaches being undertaken
in the other two projects. In principle, such a model could encompass regional
effects, investment lumpiness, transmission losses, time variable demand, etc.
The drawback is that such a model is hard to formulate, very difficult to
solve on a computer, and cumbersome to analyze parametrically because of its
large size. We hope to work up to more general formulations of the problem
of optimal investment strategies by successively relaxing the constraints in
the existing simple models (after we thoroughly understand those models) in
directions that seem most fruitful. The third project is not completely
defined at this stage, bscause it depends very much on what we learn from the
other two models. As we solve the simpler models, however, we will continually

be thinking of how we would like to formulate a more general model.
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We are hoping the funding of this project can be expanded in the future
because th. project is turning out to be of greater interest and use than was
originaily suspected and the initial budget underestimated project needs. The
original proposal funded sixty (60) hours a month of Egyptian research time,
and 1t now looks as if the project should employ triple that amount 1f it is
to realize its full potential. In addition to developing the third project

area, we would to incorporate several new topics in the future.
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Attachment A: Long-Term Investment Planning for the Egyptian
Electric Power System

Investment Criteria for Lumpy Capacity Expansion

M.L. Weitzman

Summar

Suppose that capacity must be expanded over time in some industry or
sector. If all capacity expanding projects are small, it is easy to rank
them. The next project to be undertaken should have the lowest cost per unit
of capacity. When some investments are large, this simple criterion no longer
works. A large project might have low unit costs and yel be undesirable
because its huge capacity could only be fully utilized at some future time.
The standard approach to investment planning based on an individual evaluation
of eseparate projects doesn't normally work when there are indivisibilities.
* To determine if and when an individual project should be untertaken, the
entire investment strategy must be mapped out in unison. This can.be a very
mesgy combinatoric problem, especially if repetitive étrategies are disallowed
because some ways of increasing capacity are uniquely tied to geographic or
other conditions.

Surprisingly enough, it turns out that even when investment projects are
big and lumpy, the project analysis approach can be made to work. This is a
vtremendoos simplification, since investment priorities can be ranked by the
simple expedient of calculating a single cost-1like number for each project.
The present paper is concerned with explaining this result, which provides a

rigorous theory of investment criteria for choosing among large scale projects.

Introduction

The present paper can be viewed as an exercise in trying to strongly

characterize an optimal policy for expanding capacity when investments must be
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made in discrete or lumpy projects. Although the theory is developed at an
abstract level, perhaps the easiest way to convey its flavor is by starting
with a specific example.

Suppose planners are considering the best way to expand electricity gener-
ation in some country or region. A more or less steady expansion of the sys-
tem is contemplated, far into the future. Assume that all electricity must
be domestically produced (later we consider the possibilities of exports or
imports).

Generating capacity is expanded by investing in individual projects. There
may be many alternatives of various sizes. Some projects are repeatable -~
like thermal or perhaps nuclear power plants of various sizes. Other projects,
frequently very large ones, are by their very nature once and for all invest-
ments because they are tied to a specific location. Hydro-electric installa-
tions readily come to mind. Many of the newer exotic technology projects are
also noa~repeatable - harnessing tidal flows (Fundy, Britainy), diverting
wvater into natural depressions (Quattara), etc.

The basic question is: which project should be undertaken next? This
question is more difficult to answer then might be'supposed. Among small
projects it would suffice to develop next that generating source offering the
lovest (present discounted) cost per rated kilowatt of capacity. But when
a project is large, initial excess capacity is almost inevitable. Nor is it
clear how to correct the "lowest cost per kilowatt" formula for excess capacity.
Indeed, there is no reason to expect that one lumpy investment project may
be analyzed in isolation from the alternatives by assigning to it a single
number which can meaningfully be compared with the other assigned numbers. In

a world of lumpy projects, optimal investment strategies can usually only be



analyzed as an entire (mixed integer) programming problem formulated over

some large time horizon. The solution typically involves a complicated inter-
dependence1 among all the projects which defies any simple analysis. Such
problems are combinatoric in nature and they are frequently difficult or
expensive to solve.

Of course, if the least cost capacity expansion problem has special
features, these may be advantageously utilized in characterizing and finding
an optimal solution. Thus, for example, in the Chenery-Manne capacity expansion
nodelg infinite repeatability of all projects and a linearly growing demand
limits the strategy space to capacity expansion of one size plant only. An
optimal strategy is easily found by locating that size plant which gives
lowest present discounted cost when it alone is always expanded to meet new
demand. The situation is fundamentally different when non-repetitive projects
are considered, and a seemingly messy combinatoric problem immediately emerges.

The basic conclusion of the present paper is that under certain assump-
tions it is possible to assign each project a ''recovery cost" which gives a
correct ordinal ranking of when it should be undertaken relative to the other
projects. Thus, all the advantages of a single rate of return criterion apply
in an unfamiliar context. That project should be next undertaken which has
the lowest recovery cost. The formula giving a project's recovery cost is
a8 relatively straightforward adjustment of the cost per kilowatt which takes
account of the project's size; it is easy to apply and has an elementary
economic interpretation.

While the conclusions of the present paper are based on a simplified

model, it is hoped they may be of some use in a wider context. For example,
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the notion of recovery cost might prove helpful in providing a rough screening
criterion for large projects technically not covered by this paper's formal

model.

The Model

We consider a planning situation where the demand for a certain commodity
is prescribed at each time and must always be fulfilled. For analytic con-
venience, the fixed final demand schedule D(t) is taken to be a linear func-

tion of time:
D(t) = A + Bt (1)

Formula (1) might be defended as a first order approximation holding for at
least the near future. It represents a key assumption which greatly simpli-
fies the analysis.

Demand is met by investing in discreﬁe projects which expand capacity.

A typical pattern of capacity expansion is depicted in Fig. 1.

output

rated system capacity

final demand A + Bt

time

FIGURE 1
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Let there be a total of n different projects. The first.m of these are
unique and non-repeatable. Projects mtl through n are repeatable and can be

invested in over and over again.

Let project 1 (1 € 1 < n) have a full capacity output of K Without

4
significant loss of generality, we allow projects to begin producing only
when no excess capacity exists in the system (all previous projects are pro-
ducing at full capacity). If project 1 18 chosen to increase the rated
capacity of the system by coming on line at T (a time when there is zero

excess capacity in the system), it is restricted to do so according to the

following prearranged prod ction schedule. At time t, TS t S T + 51, the out-

B
put of project 1 is B(t-T), leaving excess capacity Ki - B(t-T). At

time T + Ei, the output of project 1 reaches its full rated capacity level,

B
Ki’ and it remains there forever (every capacity expanding project is as-
sumed fdr simplicity to be infinitely durable). l'l'hus, t:hé output stream

of project 1 coming on line at time T would look as follows:

output

T X time

i
T+ B

FIGURE 2



V=232

1f project 1 is chosen to begin coming on line at T, it forces out-
lays to be made at time t as given by the project cost function Fi(c-T);
When t<T, project i is in the primary construction phase. It is during
this phase that are incurred the major construction costs associated with

creating an installation of size Ki' At times from T to T + Ei, basic

overhead installations have already been compieted and secoudgry capacity
is filled in according to the prescribed linear schedule. Finally, for
times after T + 51. all construction has been completed and the only out-
lays are variablg operating costs.

To use an example from hydro-electric generation, the first phase
would be concerned with constructing a dam and creating the basic overhead for
a transmission system and other installations. The second phase would in-
volve £illing in the eiisting system with more generators and transmission
lines until full capacity is reached. At that time the third phase begins,
with full capacity operating costs being the only outlays. For a small

thermal plant, the aecond phase is of minor consequence, the first and

third phases being dominant.

Optimal Capacity Expansion

The basic problem is to schedule capacity expanding projects to come

on line meeting final demand at minimum present discounted cost. Let the

th

h”" plant installed (h=1l,2,...) be a project of type j(h) and let it

.begin operating at time Th' Mathematically, the problem is to 1ntfoduce projects

in the .optimal order j*(1),j*(2),... which minimize

LF (t-T.) e
0 hel 3(h) h

Tt ge, (2)
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subject to Tl - Ei (3)
T, . =T 1) (4)
h+l h B
for i=1,..., m, and £ # h, J(h) =4 => 3§(2) * 1, (s5)

The objective function (2) is the present discounted vqlue of all costs
incurred in expanding capacity. Time T1 (= T&,given) is the first time when
no excess capacity exists in the system and a new plant must begin operating.
Thercafter, as expressed by equation (4), new capacity comes on line at times
whgn the old capacity just exactly covers demand. Condition (5) precludes
using any of the non-repeatable projects i=1l,..., m more than once. Note
that we are implicitely assuming there is enough start up time to complete

project j*(h) before time T So long as there is at least one repeatable

h
project, a solution of (2)-(5) must exist.‘

Because projects are indivisible, proBlem (2)~(5) possesses a complicated
combinatoric structure which seemingly defies easy solution. Surprisingly,
it turns out that the model as it is formulated has enough structure to
induce a very simple characterization of an optimal solution. A "recovery
cost" is assigned to each project. That project is next undertaken which has
the lowest recovery cost among all remaining alternatives. Thus, we have the
unexpected result that lumpy projects can be meaningfully ranked as investment
-priorities.

Many of the underlying assumptions of formulation (2)=-(5) -- arithmetic

growth of demand, infinite project lifetime, etc. -- may ibpear to be un-
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realistic. Yet the model as a whole captures cnough essential aspects of
reality that its solution i8 likely to be relatively robust over the near
future. What we are really interested in knowing is not so much the complete
solution to an infinite horizon problem, so much as the identification of the
next project, or the next few, to be built (after that, the data will change
anyvay). Identifying the next few projects to be built is easily and quickly
done for the model (2)-(5). The optimality of this choice is unlikely to be
much sensitive to the shortcomingc of the present formulation. 1In other
words, my feeling is that if a more complicated and realistic model were con-
structed, the investment program for the near future obtained by numerically
solving it would not differ appreciably from the present model's recommenda-
tiénl.

Even for complicated investment situations, the project ranking which
emerges as a solution to the simplified model (2)-(5) might serve as a rough
screening device or as a starting point for more sophisticated analyses, like
integer programming? The fact that it is poasible to sharply characterize
an optimal solution makes problem (2)-(5) a natural preliminary to any more
general analysis. And the present model may even be a reasonable description

of some situations.

Solving the Problem

Define the recovery cost of a project to be the hypothetical payment

. per unit of output which would make the project just break even. The recovery

cost for project i, ci' is defined as the solution to:

11/3

fo

c, s e % 4 + ¢ / €, K, o s = g P,(s) "7 ds. (6)

4/8 e
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The right hand side of equation (6) is the total cost of project i, dis-
counted back to the time when it first starts coming on line. The left hand
side is the hypothetical discounted revenue accumulated by charging a price

of C, per unit of output (the first integral covers the expansion phase and

i
the second full capacity operation).

Integrating out the left hand side of (6) yields the formula

- rz 4 ?1(8) e '8 4

B(l—e-rKiIB)

. ¢)

Although the notion of recovery cost has intuitive appeal, the following
theorem gives it a rigorous basis as a criterion for seclecting among discrete
projects of differing aizes.

Theorem: A necessary and sufficient condition for an optimal solution
of problem (2)-(5) {8 the rule:

alvayn select next the project with lowest recovery cost.

At time Tl. that project 1% (**j*(1l)) should come on line which satisfies:

Cia ™ min C,s (8)
i*  ge,...n b

If 4% {s a non-repeatable project (1 S 4% S m), it 18 deleted off the list
from which the next projcct j*(2) io sclected (by the criterion of lowest

K
*
recovery cont) to come on line at time Tz - Tl + ﬁl . Note that cnce a

repeatable project (t=m+l,...,n) 1 selected by the criterion of minimum

recovery coat, it will continua to be selected by that same criterion (so
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long as a project with lower recovery cost is not added to the list of avail-
able projects).

Because it is so easy to calculate recovery costs, sensitivity analysis
is made especially simple. The effects on project ranking of changing such.
parameters as the interest rate, growth of demand, plant capacity or cost
cltimnte; is easily determined. It is also easy to say how an optimal in-
vestment strategy changes when certain projects are added to or deleted from
the list of proaspective candidates.

That such an elementary decision rule as (8) is optimal depends more
‘crucially than might be supposed on the simplifying assumptions of the model.
There does not seem to be available a sharp characterization of an optimal solu~
tion when, for example, demand varies non-linearly with time, projects depreci-
ate, or the discount rate is not constant. About all that might be said of
a general character in such situations is that a limiting urgument could be
used to show the results presented here are valid as an approximation when

the stipulated preconditions are close to being met.

Proof of Optimality

For completeness, we prove the optimality of decision rule (8) from
first principles. An alternative approach would be to demonastrate that (2)-(5)

is a particular cxample of a resource pool problem and then to apply the general

theory developed in Weitzman [1976] to this special case.
The following monotonicity property is important:

In an optimal policy,

C4thy S Gy £
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for all h=1,2,...

proof: Consider an alternative policy that reverses the order of in-
vestment in projects j(h) and j(h+l) but leaves unchanged the rest of the

program. That is, at time Th project j(h+l) comes on line and at time Th +

Ky (htl
B

same. The differencce in present discounted cost between the old policy

project j(h) comes on line - otherwise cverything else remains the

and the new variation is

-rT -r (T, 4K /B)
e hvygy e TRTIMTT vy,
~r (T, +X /B)
-rT h 3§ (h+l)
e h Yy toe Yy ()
I -t'l'h[ (1- 'rKJ(h+1)/B (1- -IKJ(h)/B lo
o lYypy(L-e ) = Yy (1-e )1, (10)
vhere
Y, [ P, (s) e T® ds. (11)

Inequality (9) must hold becaune othervise, from formulas (7) and (l1),
expression (10) {8 ponitive and the original policy is non-optimal,

The main body of proof now proceedn by contradiction with the melection
rule based on (8). Suppone that it in optimal to choose as the firat invest~

ment some project J(1l)(#4*) satialying

Cy(1) ” Cyo (12)
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Let the present discounted cost of this allegedly optimal policy be

-rT
h (13)

a=L Y e
h- j (h) .

1

Equation (13) can be rewritten as

® y -rK /B -rT
amr AB——p (e W, (14)
ST

vhere, making use of (4),

o -rK /B -rT L) ~-rT © ~rT ~-rT
L (e M) o hayp o B_gp o hag 1 (15)
hel hel h=2

It follows from the monotonicity property (9) that since project i*
satisfying (12) does not comc on line at time Tl in the allegedly optimal
policy, it never does. Consider an alternative policy of commencing with
project i* and postponing to a starting date of Tl + girthe allegedly op-
tional policy which had previously begun at Tl. in other words, what was
policy over [Tl,w) now becomes policy over ['r1 + Eiz,w) and project i#

nov begins at Tl. The present discounted cost of this alternative policy is

] -!‘T -I'K /B
a 2e i Yi* +e i L« 1 (16)
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From (12), (9), (11), and (7),

_ Yi(h) ]
-tK, /B < Kj(h)/B h=1,2,.., 17

-r
l-e l-e

Combining (17) with (14), (15),

-rT
e

1
Yo%
-rK,,/B

l-e i

< a,

which can be rewritten as

-rKi*/B )
c Yi* + e o a ,

By (16), this implies

a' < a.

The alternative policy has lower prasent discounted cost than the proposed
optimum, a contradiction. Hence, the surposition (12) is false. The seléc-
tion rule based on (8) is a necessary condition for an optimum.

This concludes our proof of the form of an optimal policy. Strictly
speaking, we have proved the necessity of the selection rule based on (8)
for a project coming on line at Tl’ The extension to Th for all h 18 im-
mediate. The selection rule (8) specifies a unique choice of j*(h) for
,each h (except in the case of ties, for which it is easy to show that how
the tie is broken makes no difference to the value of the objective function).
Thus, since an optimum exists, sufficiency of the selection rule based on

(8) has also been demonstrated.
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A Few Brief Extensions

It is easy to extend the model to cover the case where imports are
available at price P and exports can be sold at price p(<P). To make the
problem irteresting, p should be higher than variable production costs (other-
wise there is no exporting) and P should be high enough to ward off a stategy
of importing everything and producing nothing domestically.

When impoxts and exports were disallowed, the output stream of project
i coming on line at time T was as depicted in Fig. 2. Now the corresponding

output stream would be as depicted in Fig. 3.

output
FIGURE 3
xi P o= B an on e e G o . v g " d
!
i i
[}
‘ |
i '
T !
4 P
T - ] +.E£ time
B

For T periods of time, the commodity is imported to help meet final de-
mand. Then, when plant i comes on line at time T + T, it immediately pro-
duces at full capacity, exporting the excess production over domestic demand.

K
At time T +-—£, there is no excess capacity.

B
Thé time vt is selected to minimize net present discounted project costs,
taking into account import costs, export revenues, and all production costs
for project i coming on line with full capacity at time t. Except for these

nevw net present discounted costs replacing the previous {Yi} in formula (7)
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and elsewhere, the analysis based on equation (8) remains the same. The
effect of having import or export possibilities is generally to increase the
relative desirability of large scale projects.

With a slightly different interpretation, the same analysis covers the
case of a plecewise linear benefit function kinked at time t around the
target demand level A + Bt. In this interpretation, the import price is
the welfare loss of falling short a unit from target and the export price
is the welfare gain of delivering an extra unit above target.

Some other generalizatiors of the model are possible, but it would

be tedious to go on listing them.
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Footnotes
1, See, for example, Chenery [1959].
2. See Chenery [1952] or Manne [1967].

3. See, for example, Westphal [1971].
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