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THE PERFORMANCE OF INDEX BASED LIVESTOCK 

INSURANCE: EX ANTE ASSESSMENT IN THE 

PRESENCE OF A POVERTY TRAP 
 

 

Abstract 

This paper evaluates the effectiveness of a new index-based livestock insurance (IBLI) 
product designed to compensate for area average predicted livestock mortality loss in 
northern Kenya, where previous work has established the presence of poverty traps. We 
simulate household-specific wealth dynamics based on a model parameterized using rich 
panel and experimental data from the region. The simulations allow us to investigate 
patterns of willingness to pay for asset index insurance that is imperfectly correlated with 
individuals' loss experience. The bifurcated livestock dynamics associated with the 
poverty trap gives rise to insurance valuation that is highly nonlinear in individual herd 
size. Willingness to pay among vulnerable groups who most need insurance are, on 
average, lower than commercially viable rates but subsidization of IBLI premiums 
appears to offer more cost-effective poverty reduction than direct transfers to the poor.   
 

 

Keywords: Index insurance, asset risk, bifurcated wealth dynamics, nonlinear growth, 
poverty traps, safety net, risk preference elicitation, pastoralists, Kenya 

 

 

1.  Introduction 

 

Index insurance has gained widespread interest in recent years as an instrument for 

reducing uninsured risk in poor rural areas that typically lack access to commercial 

insurance products. These financial instruments make indemnity payments based on 

realizations of an underlying index – based on some objectively measured random 

variable – relative to a pre-specified threshold, the “strike” (Barnett et al. 2008). Index 

insurance offers significant potential advantages over traditional insurance. Because 

indemnity payments are not based on individual claims, insurance companies and insured 

clients need only monitor the index to know when payments are due. This sharply 

reduces the transaction costs of monitoring and verifying losses, while also eliminating 
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the asymmetric information problems (i.e., adverse selection and moral hazard) that 

bedevil conventional insurance. These advantages have sparked considerable interest in 

index insurance for poor regions otherwise lacking formal insurance access (Barnett and 

Mahul 2007).   

 The advantages of reduced transaction costs and asymmetric information 

problems, however, come at the cost of increased “basis risk”, the imperfect correlation 

between an insured’s loss experience and the behavior of the underlying index on which 

the index insurance contract is written. A contract holder may experience losses but not 

receive a payout if the overall index is not triggered. Conversely, the aggregate 

experience may trigger indemnity payments even to insurees who experience no loss.   

Given this tradeoff between basis risk and reduced incentive problems and 

transactions costs, the impact of index insurance on well-being remains unknown, 

especially in the case of index insurance on assets that determine the time path of future 

earnings and welfare. And because index insurance is so new, with limited uptake and 

predictable questions about the quality of the initial contracts, there is no empirical 

evidence yet as to the impact of index insurance on the well-being of otherwise-uninsured 

poor populations. This paper offers some initial, ex ante impact assessment findings 

related to a specific index insurance contract that is scheduled to go on sale in early 2010.  

It also offers an innovative approach to establishing the welfare effects of and willingness 

to pay for asset insurance and demonstrates how the presence of asset thresholds 

associated with poverty traps can affect insurance valuation and performance.  

 The arid and semi-arid lands (ASAL) of east Africa are among the poorest regions 

on Earth, with severe (less than $1/day) poverty rates routinely in excess of 75%.  Given 

meager rainfall and infrastructure, the pastoralist populations who inhabit these areas rely 

heavily on extensive livestock grazing for their livelihood. Recent economic research, 

building on extensive prior ethnographic work, finds that east African pastoralists operate 

in an environment characterized by multiple herd size equilibria characteristic of poverty 

traps (Lybbert et al. 2004, Barrett et al. 2006). The prominent role that covariate climate 

risk plays in driving pastoral poverty traps (Santos and Barrett 2007) and growing 

concern that droughts are driving growing numbers of pastoralists into destitution 

(Sandford 2006, Little et al. 2008),  naturally motivated the recent development of index-
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based livestock insurance (IBLI) against catastrophic herd loss in the northern Kenyan 

ASAL (Chantarat et al. 2009a). These IBLI products are being commercially piloted 

beginning in January 2010. 

Like typical insurance, IBLI compensates for livestock loss. But unlike traditional 

insurance, it only compensates for covariate herd losses that are predicted by the 

historical relationship with remotely sensed Normalized Differential Vegetation Index 

(NDVI) measures; an indicator of vegetative cover widely used in drought monitoring 

programs in Africa. These data are publicly available in near-real time and objectively 

verifiable. Chantarat et al. (2009a) explain the details of the IBLI contract design and 

show that it performs extremely well out-of-sample in insuring against catastrophic 

covariate shocks in this region. In this paper we use household-level panel data to 

simulate the impact of IBLI on Northern Kenyan pastoral households’ welfare dynamics.   

This paper makes several novel contributions to the literature. First, IBLI insures 

assets rather than income. Although the overwhelming majority of the global insurance 

market insures assets through property and casualty, life or health insurance products, 

most index insurance on offer in the developing world focus on replacing lost income, 

typically due to rainfall shocks that affect crop production.  The loss of productive assets 

like livestock potentially disrupts future income processes, not just current earnings.  

Furthermore, in the presence of a poverty trap, shocks that push herd sizes below a 

critical threshold at which herd dynamics bifurcate can have especially severe 

consequences. The point of bifurcation is critical because below this threshold the rate at 

which the livestock asset is depleted due to death loss far exceeds any short run 

possibility of rejuvenating the herd. Thus insurance that effectively protects households 

from slipping into the poverty trap can be of especially high value. Conversely, insurance 

that consumes scarce resources and fails to protect the household from catastrophic 

shocks can do damage. Given these considerations, we evaluate IBLI’s performance 

using a dynamic model rather than the usual static approach employed in the existing 

literature. We show that the effectiveness of IBLI depends on initial herd size relative to 

the bifurcation threshold as well as, to a lesser degree, on household-specific basis risk 

and risk preferences. 
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  Second, rather than modeling performance for a representative agent, as is the 

norm in the extant literature (Skees et al. 2001; Turvey and Nayak 2003; Vedenov and 

Barnett 2004; Deng 2007), we explicitly study how IBLI performance varies based on 

variation in household characteristics, such as initial herd size, and key basis risk and risk 

preference parameters. And rather than making assumptions about these parameters, we 

estimate them from panel data and field experiments from the area. Contracts that 

perform well for a representative household may not prove effective for the majority nor 

for target sub-populations. We show that to be the case with IBLI. 

Third and finally, household-level simulation analysis allows us to compare the 

outcomes of various subsidization programs and targeting schemes. Our analysis finds 

that IBLI subsidies targeted toward vulnerable-but-non-poor pastoralists create an 

effective safety net by protecting such households from slipping into a poverty trap after 

a drought. This reinforces prior work suggesting that safety net interventions targeting the 

non-poor can reduce poverty in the long run by stemming the rate of inflow into the ranks 

of the chronically poor following a shock (Barrett et al. 2008).  

 The rest of the paper is organized as follows. Section 2 briefly explains the study 

locations and the data. Section 3 introduces IBLI. Section 4 then describes the dynamic 

model we use in the simulations and introduces the certainty equivalent herd growth rate, 

which we use as a key performance evaluation criterion. Section 5 estimates distributions 

of basis risk, risk preferences and other key household characteristics necessary for the 

simulations. Section 6 reports the estimated IBLI performance and how this varies based 

on identifiable household characteristics. Section 7 estimates households’ willingness to 

pay for the optimal contract and district-level aggregate demand for IBLI. Section 8 then 

explores how alternative approaches to offering IBLI commercially or with safety net 

subsidies affect wealth and poverty dynamics in the system. Section 9 concludes. 

 

2. The Study Area and Data 

 

Extensive livestock grazing represents the key livelihood in the northern Kenyan ASAL. 

Pastoralists move their herds in response to spatiotemporal variability in forage and water 

access. Northern Kenya experiences bimodal rainfall, defined by long rains that fall 
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March-May, followed by a long dry season (June-September) season, then a short rains 

season from October-December followed by a January-February short dry season. We 

henceforth refer to the March-September period as the LRLD season (for long rains and 

long dry), and the October-February period as SRSD (for short rains and short dry).  

When the rains fail, especially over two rainy seasons in a row, catastrophic herd losses 

commonly ensue. 

 We investigate IBLI performance in Marsabit District, Kenya, for which this 

product was developed on a pilot basis. We use data from four locations – Dirib Gombo, 

Logologo, Kargi and North Horr (Figure 1) – from which we have two complementary 

household-level data sets: panel data collected quarterly from 2000-2002 on around 30 

households in each location by the USAID Global Livestock Collaborative Research 

Support Program “Improving Pastoral Risk Management on East African Rangelands” 

(PARIMA) project (Barrett et al. 2008), and a separate survey fielded during May-August 

2008 among 42 households in each location (Chantarat et al. 2009c). The latter survey 

included field experiments to elicit risk preferences.  

  Table 1 summarizes key characteristics of the four study locations.1 Dirib Gombo, 

on Mount Marsabit, enjoys relatively higher rainfall and is occupied mostly by cattle- and 

smallstock-keeping Boran pastoralists who also rely on town-based livelihood 

opportunities to complement their meager livestock holdings. Logologo is along the main 

road, with a relatively more arid climate and larger cattle and smallstock herds based on 

transhumant pastoralism. Kargi and North Horr are very arid locations on opposite edges 

of the Chalbi dessert, where camel- and smallstock-keeping pastoralists rely on longer 

distance migrations to cope with greater spatiotemporal variability in forage and water 

availability. 

  Sample households rely on livestock and livestock products for 18-87% of their 

income. Severe poverty is widespread and inversely correlated with herd sizes because 

livestock are the main productive asset owned in the region. As a result, livestock 

mortality is considered the main threat to pastoralists’ livelihood. Households’ seasonal 

livestock loss 2000-2002 (including a bad drought in 2000) ranged from the lowest 

average seasonal rate of 7% in North Horr to a high of 21% in Dirib Gombo. The long-

                                                 
1 All summary statistics are weighted by appropriate stratified sampling weights.  
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term consequence of the 2000 catastrophic drought can be seen in the drastic reduction in 

overall mean herd size from 25 TLU at the beginning of 2000 to 15 TLU at the end of 

2008. Extreme (>20%) herd losses occurred in roughly 20% (10-15%) of seasons in Dirib 

Gombo and Logologo (Kargi and North Horr). These catastrophic losses were typically 

due to covariate shocks related to forage and water availability, while modest losses of 

individual animals were more commonly idiosyncratic experiences (e.g., due to predators 

or injury). 

 

3. Index Based Livestock Insurance 

 

Chantarat et al. (2009a) use a large, repeated cross-sectional household data set collected 

by the Kenyan government at monthly frequency, 2000-2008,  to predict area average 

herd mortality rates, M̂ , from satellite-based, remotely sensed vegetation index series, 

the normalized difference vegetation index for different locations l and seasons t 

)( ltndvi : )(ˆˆ
ltlt ndviMM  . The resulting predicted livestock mortality rate serves as the 

index triggering IBLI indemnity payments for that particular location relative to a pre-

specified “strike” level, *M . The IBLI contract  )(ˆ,*
ltndviMM  makes indemnity 

payments  )(ˆ,*
ltlt ndviMM  equal to the difference between predicted losses )(ˆ

ltndviM  

and the strike *M , expressed as a percentage of the insured herd value,  

  

(1)    0,)(ˆ)(ˆ, ** MndviMMaxndviMM ltltlt   . 

  

 For IBLI to be commercially viable, the insurance underwriter adds a premium 

loading 0a  over the actuarially fair rate – i.e., the rate estimated based on the empirical 

distribution of NDVI – to take into account administrative costs, model uncertainty and 

required profit margins.2 The loaded premium rate for coverage season t and location l, 

quoted as a percentage of total insured herd value, can therefore be calculated as  

                                                 
2 The average premium loading for agricultural insurance contracts is in the range of 30-50%.  See, for 
example, the USDA Risk Management Agency’s or the Farmdoc’s Premium Estimator for available 
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  (2)      )(0,)(ˆ)1()1()(ˆ, **
ltltltlt

a
lt ndvidfMndviMMaxaEandviMM  . 

 

The left panel of Table 2 summarizes the predicted mortality index )(ˆ
ltndviM  for 

each of the four study locations constructed using the full NDVI series available from 

1982-2008 and the livestock mortality forecasting model developed by Chantarat et al. 

(2009a). The predicted herd mortality indices average 8-9%. The right panel of Table 2 

also shows the actuarially fair IBLI premium rate, which varies across locations due to 

differences in the distributions of predicted herd mortality index. In what follows, we use 

54 seasons of predicted area average herd mortality and the associated fair premium rates 

to evaluate IBLI performance.  

 

4. Analytical Framework 

 

With this simple background on the region, the data and IBLI behind us, we now develop 

a simple dynamic model that accommodates the nonlinear, bifurcated herd dynamics 

previously observed in the region, with a critical herd size threshold typically in the range 

of 10-20 tropical livestock units (TLU)3 (Lybbert et al. 2004, McPeak 2004, Barrett et al. 

2006, Santos and Barrett 2007).  This model generates multiple welfare equilibria, the 

lowest of which is associated with a poverty trap. As will be clear, the presence of the 

threshold affects the valuation of IBLI conditional on a household’s current herd size.  

 

4.1   A Stylized Model of Bifurcated Livestock Dynamics  

 

Denote the herd size, in TLU, realized by household i in location l at the beginning of 

season t (and so at the end of season t-1, where seasons alternate within a year between 

LRLD and SRSD) as iltH . Herd dynamics are governed by various stochastic processes: 

the rate of biological reproduction, denoted by iltb
~

, the gross non-biological herd 

                                                                                                                                                 
insurance policies for several states and important grain crops in the U.S. 
(http://www.rma.usda.gov/policies/2006policy.html ; http://www.farmdoc.uiuc.edu/cropins/index.html). 
3 1 TLU = 1 cattle = 10 goats or sheep = 0.7 camels. 
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recruitment rate, ilti
~  (which includes purchases, borrowed animals, transfers in, etc.), the 

gross herd offtake rate, ilto~  (which includes slaughters, sales, transfers out, etc.) and the 

herd mortality rate, iltM
~

. Pastoralists face a subsistence constraint that can be 

summarized as a required seasonal livestock offtake level, cH , that covers the minimum 

consumption required for every household member. In this model, we assume households 

have identical membership structures and thus cH  is the same for each household.   

Herd reproduction, mortality and herd offtake and recruitment decisions also 

depend on the risks inherent in the system. The main covariate component in household 

asset risk is related to rangeland conditions, and so is characterized by the vegetation 

index ltndvi  that follows probability distribution )( ltndvif . This covariate risk is covered 

by IBLI. But each household also faces risks, ilt , drawn from probability distribution 

)( ilth  , that are uncorrelated with the covariate component and therefore uncovered by 

IBLI. This latter component includes mainly idiosyncratic shocks experienced by specific 

households – such as conflict, raiding, predation, accidents, etc. – as well as other 

covariate risk unrelated to range conditions – such as disease outbreaks – although we 

find the latter is relatively small compared to the covariate component. Together these 

processes generate the net stochastic herd growth rate in period t, which nets out herd 

offtake and mortality rates from the reproduction and herd recruitment rates so that the 

seasonal herd accumulation can be characterized by 

                              

(3) ilt

iltltilt
ilt

c

iltiltltilt

iltiltltiltiltiltltilt

ilt H
ndviM

H

H
HndvioMax

HndviiHndvib

H 
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





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


















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~

),,,(~

),,(
~

),,(
~

1
~

1 


        

                                          

where the stochastic herd size 1

~
iltH  is realized at the end of period t. The reproduction 

and net offtake rates vary with a household’s beginning herd size, iltH . Note that we 

abstract here from modeling each of these livestock reproduction and transaction choices; 

instead we simply calibrate this growth function based on the household-specific 

longitudinal data.  
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The stochastic net growth function (e.g., iltiltiltilt Moib
~~~~

 ) defined in equation 

(3) is assumed to be continuous, equal to zero when the beginning herd size is zero and 

bounded from below at zero. Equation (3) thus imply nonlinearities in herd accumulation 

due to the consumption requirement, cH , which imposes a regressive fixed cost rate – 

inversely proportional to the beginning herd size – on the rate of return on livestock asset. 

Given the fixed subsistence consumption requirement, households with smaller herd sizes 

must consume a larger portion of their herd.  Herd decumulation results where net herd 

growth falls below the minimum consumption rate.  

The resulting nonlinearity in net herd growth implies a bifurcation in herd 

accumulation characterized by at least one (subsistence-driven) threshold )(* cHH  above 

which herd size is expected to evolve toward a high-level equilibrium and below which it 

is expected to fall to a poverty trap equilibrium. Equation (3) can therefore be rewritten as 

a nonlinear net herd growth function )(  such that the expected net herd growth 

conditional on herd size bifurcates at the critical herd threshold )(* cHH :  

 

(4)  iltiltltilt HndviH ,,
~

1         where      0)( 
iltHE   if  )(* c

ilt HHH             

                     0)( 
iltHE   if  )(* c

ilt HHH  .  

 

 Setting the subsistence consumption level at 0.5 TLU per season per household,4 

Figure 2 illustrates the nonlinear expected net herd growth estimated nonparametrically5 

using observed household herd data (birth, mortality, purchase, exchange, sale, slaughter 

and transfer rates) in 2000-2002 and 2007-2008. This pattern implies the bifurcated herd 

threshold at around 15 TLU per household – consistent with previous findings (Lybbert 

et al. 2004, McPeak 2004, Barrett et al. 2006, Santos and Barrett 2007) – below which 

herds collapse over time toward a stable equilibria of 0 TLU, implying an exit from 

                                                 
4 Previous survey work in this region finds average livestock offtake for household consumption averages 
slightly less than one goat a month (McPeak 2004). According to FAO (1992), five goats (each yielding 20 
kilograms of meat equivalent to 5000 grams of protein) gives an average family of three 46 grams of 
protein per day per individual, nearly the recommended daily intake of 50 grams of protein per day per 
individual. 
5 The function is estimated using Epanechnikov kernel with rule-of-thumb optimal bandwidth. 
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pastoralism.  Above that threshold, herds grow toward a high level stable equilibrium size 

of 55-60 TLU.  

 Household i derives intertemporal utility based on a simplified Constant Relative 

Risk Aversion (CRRA) function defined over livestock wealth as 

  

(5)   







 






 )(),...(

~
),...,(

~
, 1 




  il

t

tt
iltiltiltiltilt HuEHHHHHU                 

               where           
i

R
il

il R

H
Hu

i






1

~
)(

1


  

 

10  iR  is the Arrow-Pratt coefficient of relative risk aversion and  1,0  is the 

discount factor. Because of the direct link between herd and welfare dynamics, the 

certainty equivalent growth rate of stochastic herd dynamics provides a direct household 

welfare measure. Define the certainty equivalent herd growth rate as the constant net herd 

growth rate with respect to the initial herd, iltH , that yields the same intertemporal utility 

as the expected intertemporal utility obtained from the stochastic herd dynamics. 

Specifically, the certainty equivalent growth rate, 
c
il , of the stochastic herd dynamics, 

 T

tilH 1

~
 , can be written as6 

 

(6)    )(
~

),...,(
~

),(
~

,..., 21 iltilTiltiltiltiltilt
c
ililt

c
il HHHHHHUHHU           

 

Using this formulation, IBLI increases household welfare if it increases the certainty 

equivalent herd growth rate relative to that of the uninsured herd dynamics. Therefore, a 

risk premium growth rate, 
cNI
il

cI
il

c
il    , provides a measure of dynamic welfare 

improvement due to insurance. This measure has general applicability to dynamic welfare 

analysis with respect to any asset insurance.  

The certainty equivalent growth rate thereby provides a convenient measure of the 

intertemporal welfare impact of IBLI given the underlying herd dynamics, in contrast to 

                                                 
6 If 1 , this can be written more generally as ))(

~
()( ilt

I
iltilt

c
il HHEUHU   . 
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the existing literature, which concentrates on static impact analysis.7 This is important 

because IBLI performance in the initial insured seasons affects performance in later 

seasons through the reinforcing impact of herd dynamics where growth patterns are 

nonlinear, as in this setting. For example, if IBLI fails to protect household from losses in 

the initial seasons that set it on the herd decumulation trajectory, IBLI’s long-term 

performance could be compromised by the initial herd collapse and ensuing dominant 

herd dynamics.  Because the welfare and growth effects of loss vary depending on where 

in the herd size distribution one experiences loss, standard insurance performance 

measures based on induced changes in outcome distributions will not suffice in this 

setting. 

 

4.2   Managing Mortality Risk with IBLI 

 

IBLI compensates for covariate livestock mortality loss based on the predicted herd 

mortality index in each location, )(ˆ
ltndviM . For simplicity, we assume that the 

household insures either all or none of their herd at the start of each season, which 

enables us to compare fully insured herds under several contract specifications against the 

case of no insurance. The insured herd size realized at the end of coverage season t for a 

household in location l can thus be written as 

 

(7)   ilt
a
ltltiltltilt

c
iltiltltilt

I
ilt HndviMHHndvigH   ),(

~
)|,,(~1

~
1  

 

where iltg~  represents the non-mortality component in the net growth rate in (3). 

IBLI thus reduces expected net herd growth in good seasons by the IBLI 

premium, a
lt , but IBLI should at least partially compensate for losses during periods of 

substantial covariate herd mortality through the indemnity payment, lt . Given certain 

cost and uncertain benefit, the household-specific basis risk with respect to the contract 

                                                 
7 Another approach concentrates on measuring changes in the distribution of the insured outcome based on 
mean-variance measures, e.g., coefficient of variation, value at risk and downside risk measures (Skees et 
al. 2001; Turvey and Nayak 2003; Vedenov and Barnett 2004). Since that approach ignores the insuree’s 
risk preferences, it may misestimate the benefit of insurance (Fishburn 1977; Breustedt et al. 2008). 
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 )(ˆ,*
ltndviMM  is thus a key determinant of IBLI performance. According to (1) and (7), 

basis risk depends on the correlation between the predicted area average mortality index, 

)(ˆ
ltlt ndviM , and the individual-specific mortality rate, ),(

~
iltltilt ndviM  . The larger the 

proportion of predictable covariate loss in a household’s individual mortality loss, the 

greater the gains from IBLI. 

We further investigate the basis risk in IBLI by disaggregating the household-

specific mortality rate into a beta representation form of the hedgable predicted mortality 

index. Specifically, household-specific herd mortality ),(
~

iltltilt ndviM   is orthogonally 

projected onto the predicted area average mortality index as8   

 

(8)   iltlltltiililtltilt ndviMndviM   ˆ)(ˆ),(
~

            

      

where 0)( iltE  , 0)),(ˆ( iltltlt ndviMCov   and IVar ililt
2)(   . Here il  reflects 

household i’s long-term average mortality rate, which implicitly reflects household-

specific characteristics that determine their livestock loss (e.g., herding ability),  l̂  is the 

long-term mean of the predicted mortality index for location l and ilt reflects other losses 

that are not correlated with the covariate component captured by the index.  

This beta representation allows us to identify distinct, interrelated household-

specific basis-risk determinants, ililti  ,, . The coefficient i  measures the sensitivity 

of the household’s mortality experience to the predicted herd mortality index in its area. 

1i  represents the case in which deviations of household i’s livestock losses from its 

long-term average are, on average, perfectly explained by variations in the predicted area 

average mortality index, while 0i  corresponds to the case, where these two series are 

independent. If the household-specific mean mortality il  is relatively similar to the 

location-specific mean predicted mortality rate l̂ , then the closer i is to one, the better 

will the predicted mortality index explain household’s losses, and so the lower the basis 

risk. Pastoralists with i  lower (greater) than one or with il  lower (greater) than l̂  

                                                 
8 Miranda (1991) and Mahul (1999) also use variant of this specification. 
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therefore tend to over (under)- insure their herd mortality losses using IBLI. The risk 

component ilt  reflects the relative proportion of household’s overall losses that are not 

manageable by IBLI. The greater its variance, 2
il , the larger the basis risk.  

Our analytical framework thus emphasizes the standard theoretical result that the 

risk management effectiveness of any IBLI contract specification,  a
ltltndviMM ),(ˆ,* , 

measured by ),,,( iiltiltlt
c
il RHndvi    depends on household-specific variation in these 

key basis risk determinants and risk preferences. A critical innovation with this approach 

is that the presence of a threshold-based poverty trap further implies that IBLI 

performance also depends on household herd size. This analytical framework serves as 

the basis for the estimation and simulation in Section 5. 

 

4.3   Threshold-based IBLI Performance  

 

In order to show analytically how IBLI valuation might deviate from the standard 

insurance evaluation in the presence of bifurcated asset dynamics, we discretize the 

nonlinear net herd growth in (4) into a simple additive form:  

 

(9)        iltiltltiltilt HndviBHAH ),()(
~

1                        with        

          HH

HH

ifn

ifn
HA

ilt

ilt

H

L
ilt 







)(    and   
P

P

yprobabilit

yprobabilit

with

with
ndviB

iltB

iltG
iltlt 






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In (9), )(A  represents the deterministic component of the herd growth rate, which is 

conditional on the initial herd size relative to the critical threshold with 10  L  and 

1H . The relation )(B  is the stochastic component of herd growth written as the sum 

of the insurable covariate component captured by NDVI ( 0G  in a good season with 

probability  )()(ˆ
*

0

lt

M

lt ndvidfndviMP   and  0B  in a bad season with probability 
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( P1 ) and the uncovered component with 0)( iltE  . Assuming, for simplicity, that 

0)1(  BG PP  , this implies the expected herd dynamics: 
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This allows us to derive recursively two stable intertemporal welfare levels: 
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with 10  L  eventually leading those with *HH ilt  into the poverty trap, a long-run 

equilibrium herd size close to zero. 

We consider the expected impact of IBLI when pastoralists can insure all of their 

herds at period t with a contract priced at lt   that pays lt  in a bad season with 

probability P1  and pays nothing during a good season with probability P. Holding risk 

preferences and basis risk determinants constant, we will show that the dynamic welfare 

effect of an IBLI contract varies with initial herd sizes at time t. In particular, four distinct 

cohorts emerge.  

(1) For the first cohort, IBLI cannot alter their herd dynamics.  Their beginning 

herd size is too far beneath the critical herd size threshold to grow past *H  by the end of 

the season since even in a good season and without insurance *)( HH iltGL  . Thus 

IBLI only provides typical insurance in reducing the probability of herd loss during a bad 

season, while the premium payment speeds up herd decumulation during good seasons. 

By (6), the IBLI valuation is the same as that in the standard insurance case without 

bifurcated asset dynamics: 
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For this cohort, the value of IBLI (reflected in a positive risk premium growth rate) 

depends on the extent to which IBLI imperfectly compensates for the insured’s losses and 

household-specific risk preferences. However, since households in this cohort converge 

to the low-level equilibrium with or without insurance, IBLI offers them relatively little 

in the way of economic relief.   

 (2) The second cohort consists of pastoralists expecting to grow their herds. 

Beginning herd sizes are modestly above *H  and grow if the season is good and when 

they do not pay the insurance premium. However, paying the insurance premium drops 

them beneath *H  so that 1
** )( iltltiltGL HHHH    in a good season. Because 

IBLI shifts down their herd growth trajectory, the risk premium growth rate is effectively 

taxed by  1
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, as is evident from the certainty equivalent growth rate:  
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The value of IBLI is therefore lower than it would be absent the bifurcated herd 

dynamics, holding risk preference and basis risk determinants constant. 

(3) The third cohort consists of pastoralists with beginning herd sizes slightly 

above but still vulnerable to the risk of falling below *H . IBLI protects this cohort from 

falling below *H  while their herd size remains above *H after paying the insurance 

premium, iltltiltGL HHH   *)( . For them .)()( ** HHHH iltBLiltltlt    
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Since IBLI preserves their herd growth trajectory, IBLI increases their insurance 

valuation relative to the case without bifurcated asset dynamics by the factor  
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 For this reason, the dynamic welfare impact of IBLI for this cohort is  
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 (4) The last cohort consists of pastoralists with herd sizes so large that even 

without insurance they are not expected to fall below the critical herd threshold after 

covariate shocks; .)( *HH iltBH   Thus IBLI would not alter their herd dynamics, 

just like the first cohort (with the smallest herds). But because these larger herd sizes 

have higher expected net herd growth, H , their valuation of IBLI is significantly more 

than those in the first cohort according to  
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Overall, cohorts three and four – the wealthier segments of this at risk population – 

represent the main source of demand for IBLI in this setting. The expected threshold-

based performance of IBLI in the presence of bifurcated wealth dynamics mirrors the 

patterns found in Lybbert and Barrett (forthcoming) in a different poverty trap model that 

does not consider insurance options. 

 

5. Empirical Estimation and Simulation 

 

In what follows, we simulate households’ herd dynamics and key performance 

determinants – household risk preferences and basis risk – as a first step towards 
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exploring the effectiveness of IBLI contracts over many sets of seasons, with different 

initial seasonal outcomes.  

The main component in estimating and simulating herd dynamics is the net herd 

growth rate in (3). We estimate the non-mortality component separately from the 

mortality component as we are particularly interested in estimating the key basis risk 

determinants directly from the correlations between individual households’ livestock 

mortality and the location-specific predicted herd loss index that triggers IBLI payout.  

 We first estimate non-mortality component of the seasonal livestock growth 

function in (3) by imposing subsistence consumption of 0.5 TLU per household per 

season. We pool four seasons of herd dynamics data from 2000-2002 and two seasons 

from 2007-2008 under the maintained hypothesis that the expected herd growth function 

is stable across 2000-2008. Kernel-weighted local polynomial regression9 is used to 

estimate two nonparametric relationships between the non-mortality herd growth rates10 

and household beginning TLU herd size conditional on whether the observed season is 

good or bad, as defined by seasonal NDVI data according to Chantarat et al. (2009a). The 

two estimated non-mortality growth functions conditional on the vegetation condition are 

then used in the simulation of herd dynamics. They are plotted in Appendix 1.  

Next, we estimate the relationship between household-specific herd mortality 

rates and the location-average predicted mortality index described in (8). We pool four 

seasons of household-specific mortality rates across the four 2000-2 study locations. A 

linear relationship between deviations of the two from their long-term means is then 

estimated using a random coefficient model with random effects on the slope coefficient, 

commonly known as “beta”.  

This model, estimated by maximum likelihood, allows us to take into account 

variations of slope coefficients across households.11 The estimated slope coefficient 

represents the degree of sensitivity of household’s mortality loss to the predicted 

                                                 
9 Epanechnikov kernel function is used and the optimal bandwidth is chosen according to Silverman’s Rule 
of Thumb. 
10 Growth rates were constructed using observations on births, purchases, borrowing and lending of 
animals, exchanges, sales, slaughters and transfers. 
11 Estimation of models of beta-representation (e.g., the CAPM model in financial econometrics) generally 
rely on the seemingly unrelated regressions model for sector-specific equations, which allows for 
unrestricted error structures (e.g., due to potentially cross-sectional correlations). In our case, we do not 
have enough longitudinal observations of individual households to apply that model. 
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covariate mortality index for their location. Of course there may still be other covariate-

but-unpredicted components, in addition to the idiosyncratic component, in the model’s 

disturbances, which can potentially result in cross-sectional correlation. In an attempt to 

disaggregate these two components in the disturbances, the predicted seasonal household-

specific residual ilt̂  is projected onto its location-specific mean each season lt .12 So the 

model we estimate can be summarized as 

 

(16)    iltlltltiililtltilt ndviMndviM   ˆˆ),(
~

                

                             iltltilt e  

 

 

where lt   represents the covariate component in the unpredicted mortality loss with 

degree of co-variation measured by  , and ilte  represents household’s idiosyncratic 

mortality loss with   0ilteE ,   0jltilt eeE  if ji  , and   IeVar ililt
2 . The estimation 

results, which allow us to estimate household’s basis-risk-determining parameters and 

other key characteristics13 in  iltiiltililti eH ,,,,,  , are reported in Appendix 2.  

We show in Figure 3 the distributions of estimated household betas, as well as the 

unpredicted component of mortality losses, ilt  for these four locations.14 Overall, the beta 

distribution centered around 0.8 with considerable variation,15 ranging from -0.35 to 2 

with a standard deviation of 0.5. The distribution of the mean-zero unpredicted 

component of mortality losses also exhibits high variation, ranging from -0.42 to 0.44 

with a standard deviation of 0.12. This dispersion indicates considerable basis risk in 

IBLI in spite of the product’s very strong out-of-sample performance (Chantarat et al. 

                                                 
12 The intercept for this model is zero by construction. 
13 The overall average herd sizes observed from 2000-2002 and 2007-2008 are used as representatives of 
the beginning herd sizes in the four locations. 
14 Though our estimations and simulations from this point on were location-specific, we report overall 
results. Some location-specific results are reported in the Appendices; the rest can be requested from the 
authors. 
15  Because (16) implies the estimated household beta only with respect to the the hedgeable mortality 
index, this does not have to be centered at one, unlike the estimated household beta with respect to area-
average losses – such as is commonly used in agricultural finance literature for  measuring basis risk 
(Carter et al. 2007; Miranda 1991). 
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2009a), and the potential for significant, predictable variation in performance across 

households.  

We then estimate parametrically the best fit joint distributions, by location, of the 

estimated household-specific characteristics  iltiiltililti eH ,,,,,   using the @Risk 

program, which allows us to specify a correlation matrix that captures pairwise 

relationships between these variables, and the upper and lower limits of the distributions. 

The best-fit distributions were then chosen based on the χ2 goodness of fit criterion. The 

estimation results are reported in Appendix 2.  

Using these estimated distributions, we then simulate herd dynamics of 500 

representative households in each location as follows. For each location, we randomly 

draw 500 combinations of household-specific  iltilii H,,,    from the joint 

distributions – each of which represents a simulated representative household. For each 

simulated household, we then randomly draw 54 seasons of idiosyncratic components of 

mortality loss, ilte , from the location-specific distribution.16 We also randomly draw 54 

seasons of location-average unpredicted mortality losses, lt , from the values estimated 

according to (16).  
Figure 4 presents the overall cumulative distributions of baseline household herds 

(i.e., without insurance) during various years for these four locations. More than 50% of 

herds collapse toward destitution over time in Dirib Gombo, compared to less than 10% 

in North Horr, reflecting the relatively low beginning herd sizes and high seasonal 

mortality experience in Dirib Gombo relative to other locations. The bifurcated livestock 

growth in the simulated herd dynamics can be shown by simply estimating the 

autoregression in (4) for 10-season (5-year) lags. Figure 5 plots the results, which clearly 

display a critical herd size threshold around 15 TLU.  

We also simulate dynamics for 15 stylized pastoralist households with key 

characteristics, e.g., five different beginning TLU herd sizes  30,20,15,10,5  and three 

levels of beta coefficients  5.1,1,5.0  for each initial herd size. Each is assumed to have a 

long-term mortality rate that resembles the location-specific long-term mean predicted 

                                                 
16 We use the location-specific distribution of ilte  since we do not have enough individual data to simulate 

the individual-specific distributions.  
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mortality index, and a location-specific uncovered risk component. These stylized 

households allow us to better understand how basis risk and initial herd sizes influence 

IBLI’s impact on herd dynamics.  

We are now ready to analyze the effectiveness of IBLI by simply comparing herd 

dynamics with and without IBLI. We construct 54 pseudo sets of 54 consecutive seasons 

from the existing vegetation data letting each observation serve as an initial period once 

in a revolving 54-season sequence with the working assumption that these 54 seasons 

repeat themselves in sequence.17 This allows us to evaluate performance of IBLI taking 

into account different possible initial realizations of stochastic range conditions.  

 We consider five IBLI contracts with five strike levels of five percent increments 

from 10-30%. Households are assumed to insure their entire herd. For each contract, we 

simulate the resulting insured herd dynamics based on (7) using the distribution of 

location-specific seasonal predicted mortality index )(ˆ
ltndviM  and the location-specific 

premium rate shown in Table 2.  

 As we compute the value of insurance based on the expected utility approach, the 

certainty equivalent herd growth depends on household discount rates and risk 

preferences. For simplicity, we assume no discounting, 1 . We calibrate household-

specific CRRA parameters based on a simple experimental lottery game run among the 

households in June-July 2008. Our risk elicitation game follows the simple method used 

in Binswanger (1980, 1981); Eckel and Grossman (2002); Barr (2003) and Dave et al. 

(2007). Households were first given 100 Ksh for participating. Then we introduced five 

lotteries, which vary by risk and expected return. Respondents were invited to use their 

100 Ksh to play one of the five lotteries for a real prize, if they wished. If they decided to 

pay 100 Ksh to play, they were then asked to choose their most preferred lottery to play. 

A fair coin was then tossed to determine their prize. Six categories of risk aversion 

associated with six (geometric mean) coefficients of relative risk aversion,{0, 0.1, 0.3, 

0.4, 0.7, 1}, were derived based on households’ choices (Chantarat et al. 2009c). 

Appendix 4 summarizes the results of this risk preference elicitation experiment. For 

                                                 
17 This is a harmless assumption. In essence, the typical burn rate approach to weather insurance evaluation 
assumes that one year is statistically independent of another and that the universe of possibilities is 
contained within the historical timeframe  represented by the data. Thus in probability the likelihood of 54 
seasons repeating in sequence is the same as any other sequence of 54 non-repeating seasons. 
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each location, we then randomly assign each simulated household with one of the six 

CRRA parameters based on the observed wealth strata specific distributions of CRRA.  

 

6. The Effectiveness of IBLI for Managing Livestock Asset Risk 

 

Figure 6 depicts some key patterns of insured herd dynamics, using Kargi and 1  as 

an example. Panels (a) to (e) each reflect the cumulative distributions of uninsured and 

insured herd sizes for a single household over a set of 54 simulated seasons. 

 Panel (a) shows that IBLI does little for pastoralists with a low beginning herd 

size (e.g., 5 TLU). IBLI cannot prevent these households from falling into destitution 

given how far they are beneath the critical herd growth threshold (~15 TLU). Indeed, 

paying an insurance premium each season without offsetting indemnities slightly 

accelerates herd collapse.18  

Varying patterns of IBLI performance emerge for pastoralists with herd sizes 

around the critical herd threshold, i.e., for those whose herd dynamics are very sensitive 

to shocks. Panel (b) represents a pastoralist with an initial herd size of 15 TLU 

immediately at or slightly below the critical threshold. This pastoralist was hit by large 

covariate shocks that so disrupted his asset accumulation that he ended on a de-

cumulating growth path without insurance. But with IBLI imperfectly compensating for 

the losses, decumulation was averted, and the result was a stabilized growth trajectory. 

Because IBLI changes his herd dynamics by insuring against catastrophic collapse, the 

certainty equivalent herd growth associated with IBLI should be relatively high due to the 

added effect of the bifurcated herd dynamics in the system.  

Panel (c) presents the opposite case, in which a pastoralist with the same initial 

herd size of 15 TLU could slowly climb onto the herd growth trajectory during good 

vegetative seasons if he did not pay an IBLI premium.  If his luck holds, he could escape 

the poverty trap without IBLI; the premium payments in this case actually retard 

                                                 
18 Our model assumes away possible indirect benefits of IBLI, such as its potential to crowd in finance for 
ancillary investment and growth. If IBLI crowds in credit access, it may alter the growth trajectory and the 
critical herd size threshold, opening up the possibility that IBLI benefits the least well-off pastoralists as 
well.  Our data do not permit credible parameterization of such shifts, so we abstract from them in this 
analysis. 
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progress. The difference between panels (b) and (c) purely reflect the ex post effects due 

to random draws of seasonal condition and reflect the great value of insurance when it 

proves to have been needed, and also the adverse effects on those who enjoyed a streak of 

good luck. 

Panel (d) presents the case of a pastoralist with 20 TLU, who would be vulnerable 

to shocks that could knock him onto the decumulation trajectory in the absence of 

effective insurance.  Indeed, we see that for vulnerable households just above the critical 

herd size threshold, well-designed IBLI can effectively move them away from the 

poverty trap, substantially lessening the probability of herd size collapse. This is the 

population that benefits most, in expectation, from IBLI. 

Panel (e) depicts the common pattern of IBLI performance for pastoralists with 

large initial herd sizes – e.g., 30 TLU – who face little immediate danger of falling into 

destitution. IBLI contracts provide typical insurance, reducing the probability of herd 

losses, while seasonal premium payments also reduce the chance of reaching extremely 

large herd sizes. This simply reflects the second-order stochastic dominance of the 

insured herd sizes relative to the uninsured. 
The ex ante wealth impacts on IBLI performance shown in Figure 6, however, 

holds constant other household- and location-specific characteristics that determine a 

household’s basis risk exposure associated with IBLI.19 Holding other things equal, 

pastoralists with low (high) beta will tend to over (under) insure their herd losses with 

IBLI, and so they end up paying higher (lower) prices for IBLI that offer unnecessary 

(insufficient) compensation for their losses, on average. IBLI performance should vary 

based on the location-specific distributions of uncovered asset risk and the distributions 

of covariate shocks. On average, IBLI performance will be higher among households 

with lower dispersion of uncovered risk, i.e., less basis risk. In addition, IBLI 

performance is also expected to be higher among households in the locations with a 

higher probability of insurable covariate losses, i.e., greater risk exposure covered by 

insurance. 

                                                 
19 And so it is possible for some pastoralists with as high as 40 TLU to still be vulnerable to shock, and so 
can benefit greatly from IBLI in preserving their growth trajectory. 
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We now consider the performance of actuarially fair IBLI contracts conditional 

on contract specifications and household characteristics. Table 3 reports the change in 

certainty equivalent herd growth rate (also referred to as the positive risk premium 

growth rate) associated with IBLI for 15 stylized households (with individual mean 

mortality fixed at the location-averaged mean predicted mortality index) in each of the 

four locations.20 Various interesting results emerge.  

First, we observe that IBLI performance varies with beginning herd sizes, 

confirming the patterns shown in Figure 6. IBLI gains are negligible for pastoralists with 

the lowest herd sizes (5 TLU) and highest for those with the herd sizes around the critical 

herd threshold (e.g., 15-20 TLU). IBLI does not seem well suited for the poorest herders, 

whose low endowments leave them trapped by the underlying dynamics of the system, 

not by uninsured risk exposure. By contrast, those with marginally viable herd sizes are 

especially susceptible to shocks thus insurance is potentially of considerable benefit to 

them. 

Second, IBLI performance tends to improve as beta increases, holding other 

things equal. This implies that over-insuring tends to have far larger adverse impact on 

herd dynamics than does underinsuring. Indeed, IBLI typically benefits most those with 

beta=1.5 rather than those whose herd sizes tend to move one-for-one with local 

averages. Households with greater-than-average risk exposure (e.g., beta>1) find IBLI 

especially valuable, despite only-partial coverage from IBLI.  

Finally, these simulations suggest that the IBLI contract with a 10% strike level 

outperforms other contracts, on average, even though the 10% strike contract is more 

costly than the others. The greater protection apparently is worth it given the risk of 

falling beneath the critical herd size threshold.  This effect is most pronounced for those 

with initial herd sizes just above the threshold (at 20 TLU), whose vulnerability to shocks 

is best addressed with a low strike insurance contract.   

Having observed how variations in household-specific characteristics could affect 

individual-level IBLI performance, we now explore how the observed location-specific 

distributions of those characteristics affect IBLI performance at a more aggregate scale. 

                                                 
20 For simplicity, Table 3 only reports certainty equivalent results calculated with respect to a CRRA value 
of 0.7. Results for other degrees of CRRA are similar and are available by request. Location-specific results 
are available by request.  
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Table 4 first reports the overall performance of actuarially fair IBLI contracts among 

2000 simulated pastoralists across the four locations. 
The 10% strike contract appears to have the highest performance holding other 

things equal. On average, actuarially fair IBLI contracts with a 10% strike level result in 

a 17% increase in the long-term mean herd size, and a reduction in downside risk of 

12%.21 On average, certainty equivalent herd growth increases only modestly with 

increasing risk aversion.   

In general, effective demand for IBLI (e.g., positive risk premium herd growth 

rate) exists in all locations for IBLI contracts with less than a 30% strike, with the highest 

demand for the 10% strike contract. But not everyone benefits. Figure 7 presents the 

cumulative distributions of the improvement in certainty equivalent growth rates with 

respect to three different IBLI contracts in these four locations. At least half the 

households benefit from an IBLI contract with a 10% strike (slightly lower proportions 

for other strike levels) with the positive risk premium growth rates associated with the 

contract ranging up to almost 100%. The distribution of valuations for the 10% contract 

clearly dominates that of the other contracts in these locations.  

 

7. Willingness to Pay and Potential Demand for IBLI 

 

The preceding analysis offers a glimpse into prospective demand patterns for IBLI.  So 

far, we have explored the performance of IBLI contracts sold at actuarially fair premium 

rates. But an insurer needs to add a commercial loading.  This will change the impact of 

IBLI on herd dynamics by changing the premium paid for insurance. We can use this 

same simulation model to estimate demand for IBLI by searching for the a
lt  that drives 

the risk premium growth rate to zero. In this section, we explore demand for the 10% 

strike IBLI contract previously shown to have the greatest expected benefit for most 

pastoralists in the region. 
                                                 
21 These two measures are used widely in the mean-variance evaluation approach of agricultural insurance. 
Downside risk reduction is measured by semi-variance reduction of the insured herd dynamics with IBLI 
relative to the uninsured herd.  Specifically, semi-variance of the insured herd dynamics over a set of 

consecutive seasons Tt,...,  , denoted by  T t
I
ilH 1

~
  ,  relative to some threshold, for example, household’s 

long-term mean herd size ilH   , can be well written as 2)0,
~

()
~

( I
ilil

I
ilH HHEMaxHSV

il
  . 
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 We first estimate the maximum willingness to pay (WTP) for IBLI of each 

simulated pastoralist by searching for the maximum premium loading )(a  according to 

(2) that still yields a non-negative risk premium growth rate. The expected maximum 

willingness to pay conditional on household initial herd size is then estimated 

nonparametrically across 2000 simulated pastoralists. The average herd-conditional WTP 

is shown in Figure 8, plotted against the observed herd size distribution. 

WTP for IBLI above the actuarially fair rate is only attained at herd sizes of at 

least 15 TLU, just around the threshold at which herd dynamics bifurcate. Since most 

households’ herds fall below the threshold level, this implies limited potential demand for 

even actuarially fairly priced IBLI. Expected WTP increases at an increasing rate for 

those with herd sizes between 15-20 TLU and then continues to increase significantly 

toward its peak at an average 18% loading at the herd sizes around 40 TLU – just below 

the high-level herd size equilibrium – after which there is no statistically significant 

change in WTP as herd size increases. The clear implication is that WTP may not be high 

enough for a commercially viable IBLI absent subsidies. 

Based on these estimated distributions of households’ WTP for IBLI in each 

location, we now study potential aggregate demand. Specifically, we construct a district-

level aggregate demand curve for Marsabit District as follows. Assuming that the 2000 

simulated households in the four study locations are randomly drawn from the total 

population of 27,780 households in 28 locations in Marsabit District,22 we treat each 

simulated household as representing approximately 14 households in the District 

population. We then order the WTP across the population and plot the premium loadings 

(a) against the cumulative herd sizes of the population whose WTP would support 

commercial demand at that loading level. 

Figure 9 displays the estimated aggregate demand curve for IBLI in Marsabit 

District and disaggregates it for each of three herd size groups: (i) the low herd group 

(with < 10 TLU) representing the 26% of the population that currently finds itself on a 

herd decumulation trajectory into a stockless poverty trap, (ii) vulnerable pastoralists 

(with 10-30 TLU) representing the 47% of the population who risk collapsing into the 

                                                 
22 Per the Administrative Census of Marsabit district (1999) produced by Kenya National Bureau of 
Statistics and International Livestock Research Institute. 
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poverty trap with the next uninsured shock to their herd size,  and (iii) the better off 

pastoralists (with > 30 TLU) who represent the 27% of population that control most of 

the District’s livestock herd and who, in the absence of an unusually severe shock or 

series of such shocks, should be securely on a growth path.  
Aggregate demand for IBLI seems very price elastic with reduction in quantity 

demanded by 55% as the fair premium rate is loaded by 20%, and a further 26% 

reduction with an additional 20% premium loading. If the commercially viable IBLI 

contract rate is set at a 20% loading, these highly elastic aggregate demand patterns show 

potential aggregate demand of approximately 210,000 TLU in Marsabit District alone. 

These patterns highlight several points. First, large herd owners will be the key drivers of 

a commercially sustainable IBLI product. Second, the apparent price elasticity of demand 

in these locations implies that a small premium reduction (e.g., through subsidization) 

can potentially induce large increases in quantity demanded. For example, as Figure 9 

shows, a decrease in premium loading from 40% to 20% could potentially induce more 

than a doubling of aggregate demand. Third, while IBLI appears most valuable for the 

most vulnerable pastoralists (those with herd sizes around 10-30 TLU) as it could protect 

their herd dynamics from catastrophic shock, most of their WTP lies well below the 

commercially loaded IBLI premium (i.e., at least a 20% loading). This, as we showed in 

Figure 6 panel (c), is due to the possibility that high premium payments will impede herd 

accumulation across the herd growth threshold.  

Premium subsidization may therefore be important if it is socially desirable to 

stimulate IBLI uptake among vulnerable populations. Might IBLI subsidies provide a 

cost-effective and productive safety net in broader social protection programs sponsored 

by governments or donors?  That is the final question we explore using these simulation 

models.  

 

8. Enhancing Productive Safety Nets Using IBLI 

 

In order to investigate whether IBLI subsidies might effectively provide a productive 

safety net for pastoralists in northern Kenya, we first explore herd and poverty dynamic 

outcomes (using an asset poverty line of 10 TLU) of these 2000 simulated pastoralists 
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under four different scenarios: (i) without insurance, (ii) with commercially loaded IBLI 

(assuming a 20% premium), (iii) with an optimally targeted premium subsidization 

scheme that maximizes asset poverty reduction outcomes, and (iv) with comparable, 

needs-based subsidization targeted to the poorest households with less than 20 TLU.  

The targeted premium subsidization scheme is optimized by searching for the 

combination of subsidized premium rates targeted to different herd groups – (a) the 

poorest (<10 TLU), (b) the non-poor likely to fall into poverty in the longer run (10-20 

TLU), (c) the vulnerable non-poor (20-30 TLU), (d) the secure pastoralists (30-50 TLU) 

and (e) the large-scale pastoralists with >50 TLU – that yields the lowest poverty 

outcomes. The results (details available by request) imply that the optimal premium 

subsidization scheme would provide IBLI free to group (b) and at the actuarially fair 

premium rate for the vulnerable non-poor groups (c) and (d), with no subsidization to 

groups (a) and (e). We compare this with two needs-based schemes: subsidized to the fair 

rate %)0( a  and free provision targeted to the less well off pastoralists with herd sizes 

less than 20 TLU.  

In each of these scenarios, the simulated household herd at the end of each season 

reflects the household’s optimal insurance choice – i.e., insure if (induced) WTP exceeds 

the (subsidized) premium rate, do not insure otherwise. Therefore, the herd outcomes for 

the case of strictly commercial IBLI, for example, largely represent the outcomes of the 

insured herds of the well off pastoralists who demand WTP even at commercial rates and 

the uninsured herds of the rest of the population. Figure 10 depicts these herd dynamic 

outcomes in the form of mean household herd size and asset poverty (<10 TLU) 

headcount measures estimated from the 2000 simulated household over the 54 seasons of 

available NDVI data, 1982-2008. 

The commercially loaded IBLI without subsidization, which only attracts a 

majority of the well-off pastoralists, has very limited effect on poverty.  Average herd 

sizes under this scenario closely track the no-insurance case, with only modest increases 

largely among insured, well-off pastoralists partially protected from shocks by IBLI.  

By contrast, under the optimal subsidy scheme, mean herd sizes increase more 

than 80%, relative to the no insurance case, over the course of a quarter century.  

Likewise, the asset poverty headcount decreases slightly over time and stabilizes at a 
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level about 10% lower than without insurance. Subsidized IBLI protects many targeted 

pastoralists herds against collapse beneath the critical growth threshold.   

The most distributionally progressive, strictly need-based schemes achieve less 

than half of these optimal outcomes. While they follow similar (herd size increasing and 

poverty decreasing) patterns, we still observe increasing poverty headcounts even with 

free IBLI for the poorest. This simply reflects the fact that IBLI provides little benefit for 

pastoralists with low herd sizes or with high basis risk exposure. Perhaps counter-

intuitively, allocating scarce resources to subsidize the vulnerable non-poor may do more 

to keep long-term poverty headcount rates down than allocating the same resources to the 

poorest.   

In this simple simulation, the average cost of the optimal targeted subsidization 

scheme, which reaches 20%-50% of the population over 54 historical seasons, is roughly 

$50 per beneficiary per six-month season.23 This implies a $20 per capita cost per one 

percent reduction in the poverty headcount rate, in contrast to $38 for the needs-based 

scheme. An effective safety net can be both cheaper and more effective in stemming 

long-run poverty than traditional transfer programs (Barrett et al. 2008). 

 

9. Conclusions 

 

Covariate livestock mortality is a key source of vulnerability among east African 

pastoralists and often drives households into extreme persistent poverty.  In the presence 

of poverty traps resulting from well-documented nonlinear herd growth dynamics in the 

region, effective risk management becomes potentially important as a means of reducing 

long-term poverty rates.  This paper offers novel dynamic estimates of the welfare effects 

of a new index-based livestock insurance (IBLI) product developed to address precisely 

this problem; IBLI is scheduled for pilot sales in early 2010 in northern Kenya.  

 Our analysis adds to the current literature because of our focus on asset risk – 

rather than income risk – and the existence of bifurcated asset dynamics in the northern 

Kenyan pastoral system. These two characteristics require important innovations in ex 

                                                 
23 One TLU is valued at 12,000 Ksh, approximately $160 based on October 2009 exchange rates 
(75.05Ksh/US$). 
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ante impact assessment of insurance. We develop a dynamic simulation model and a 

modified expected utility-based evaluation criterion in order to take into account the 

potential dynamic impact of IBLI. We use  household-level parameter estimates 

including household-specific risk preferences elicited from field experiments as well as 

basis risk parameters estimated from panel data from the region  to explore a) key 

patterns of variation in IBLI performance, b)  patterns of willingness to pay, and c) the 

aggregate demand for IBLI. 

 We find that household initial herd size – i.e., ex ante wealth – is the key 

determinant of IBLI performance, more so than household risk preferences or basis risk 

exposure.  IBLI works least well for the poorest, whose meager endowments effectively 

condemn them to herd collapse given prevailing herd dynamics. By contrast, IBLI is 

most valuable for the vulnerable non-poor, for whom insurance can stem collapses onto a 

trajectory of herd decumulation following predictable shocks. 

We find that a 10% strike contract consistently outperforms higher strike level 

contracts.  District-level aggregate demand appears highly price elastic with potentially 

limited demand for contracts with commercially viable premium loadings. Because 

willingness to pay is especially price sensitive among the most vulnerable pastoralists 

(i.e. those not currently caught in a poverty trap, but on the verge of falling into one)  for 

whom the product is potentially most beneficial, subsidization of asset insurance as a 

safety net intervention may prove worthwhile. Simple simulations find that relatively 

inexpensive, partial subsidization targeted to households with herd sizes in specific 

ranges can significantly increase average wealth and decrease poverty, at a rate of just 

$20 per capita per one percent reduction in the poverty headcount rate.  
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Location

Mean S.D. P(M>10%) P(M>20%) 10% 15% 20% 25% 30%

Dirib Gombo 8% 8% 28% 9% 2.5% 1.3% 0.6% 0.3% 0.1%
Logologo 9% 8% 34% 15% 3.4% 1.8% 0.7% 0.1% 0.1%
Kargi 9% 9% 38% 11% 3.3% 1.6% 0.9% 0.4% 0.2%
North Horr 9% 11% 34% 21% 4.3% 2.8% 1.5% 0.7% 0.3%

Contract Strike
Fair Premium Rate (% Herd Value) Predicted Mortality Index 

(M) (%)

Variables/Location

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Climate
Annual Rainfall (mm) 290 185 366 173 297 137 270 115 227 86
Livestock per household, composition and seasonal loss
Livestock in 2008 (TLU) 15 18 2 4 16 22 17 10 25 19
Camel (%) 6% 8% 0% 4% 3% 9% 10% 5% 9% 8%
Cattle (%) 14% 22% 28% 34% 26% 18% 2% 3% 2% 3%
Small stock (%) 80% 21% 72% 34% 71% 19% 88% 6% 89% 9%
Migration (%) 71% 38% 6% 21% 87% 21% 88% 16% 88% 17%
Seasonal livestock loss (%) 9% 15% 3% 8% 15% 22% 5% 6% 11% 15%
Income per capita
Income/day/capita (KSh) 35 89 8 18 32 31 18 28 78 163
Livestock share (%) 59% 40% 18% 31% 61% 35% 87% 24% 67% 34%
Poverty Incedence
Headcount (1$/day) 90% 99% 85% 97% 79%
Headcount (10 TLU) 49% 97% 52% 30% 18%
Statististics from 2000-2002 data (with catastrophic drought in 2000)
Livestock in 2000 (TLU) 25 28 14 10 19 16 40 45 26 16
Seasonal livestock loss (%) 13% 21% 21% 29% 15% 19% 11% 12% 7% 10%

Kargi North HorrDirib Gombo
Overall Location-Specific

Logologo

Table 1: Descriptive Statistics, 2007-2008 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: % Migration represents the percentage of the household herd that moves at least once over the year. 1 TLU is worth 
approximately 12,000 KSh, equivalent to roughly US$160 based on October 2009 exchange rates (75.05Ksh/US$). Income is 
calculated from the sum of market value of milk and meat production, crop production, livestock trading, business, salary earnings, 
casual labor wage and other petty trading. 

 

 

 

Table 2: Summary of IBLI Contracts (from Chantarat et al. 2009a) 
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Strike
Beta 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

Beginning Herd 
5 0% 0% 0% 0% 0% 0% 0% 0% 0%

10 -8% 4% 11% -1% 7% 9% -3% -1% 0%
15 18% 24% 40% 8% 14% 23% -1% 1% 5%
20 9% 29% 37% 8% 18% 21% 0% 2% 3%
30 2% 15% 29% 2% 11% 17% -1% 0% 3%

10% 20% 30%

Stat. Beta Beginning L-T Mean Strike Increase Decrease
Herd Herd L-T Mean SV(mean)

(TLU) (TLU) Herd (%) (%) 0.9 0.7 0.4 0.1 Simulated

Mean 0.8 16 33 10 17.4% 11.7% 6.4% 6.3% 6.0% 5.7% 6.1%
Median 0.7 14 31 20 6.7% 7.8% 2.7% 2.5% 2.3% 2.1% 2.5%

S.D. 0.5 28 30 30 0.2% 0.3% -0.3% -0.4% -0.5% -0.6% -0.4%

CRRA

Without IBLI With IBLI
Increase in CER Growth Rate (%)

Table 3: Change in Certainty Equivalent Growth Rate, by Household Parameter 

 

 

 

 

 

 

 

 

Note: The cell content reflects the certainty equivalent growth rate of the insured herd dynamics minus that 
of the uninsured herd dynamics in percentage terms. 

 

 

 

 

 

Table 4: Simulated IBLI Performance, Four Locations 
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Survey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern Kenya

Chalbi

Laisamis

Survey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern Kenya

Chalbi

Laisamis

Chalbi

Laisamis

Figure 1: Study Areas in Northern Kenya 
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Figure 2: Nonparametric Estimation of Expected Net Herd Growth Rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Estimated Household-Specific Beta and Non-Drought-Related Mortality 

Rate, Random Coefficient Model (2000-2002) 
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Figure 4: Cumulative Distributions of Simulated Herds by Key Years 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Simulated Herd Accumulation Dynamics, 1982-2008 
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Figure 6: IBLI Performance Conditional on Beginning Herd Size 

(Simulations for Kargi, based on 54 seasons)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
b

ili
ty

0 1-0.5 0.50.25 0.75-0.25

Certainty Equivalent Growth Rate with IBLI (%) - Certainty Equivalent Growth Rate without IBLI (%)

10% IBLI
20% IBLI
30% IBLI

2000 Households in 4 Locations

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
b

ili
ty

0 1-0.5 0.50.25 0.75-0.25

Certainty Equivalent Growth Rate with IBLI (%) - Certainty Equivalent Growth Rate without IBLI (%)

10% IBLI
20% IBLI
30% IBLI

2000 Households in 4 Locations

Fair premium rate

0%

10%

20%

30%

P
ro

b
ab

ili
ty

 D
en

si
ty

100

-25%

-50%

0%

25%

50%

75%

W
T

P
 in

 te
rm

 o
f p

re
m

iu
m

 lo
a

di
ng

 (
a)

0 20 6040 80 120100

Herd size (TLU)

WTP Density of herd size
kernel = epanechnikov, degree = 0, bandwidth = 4.08

Willingness to Pay for One-Season IBLI

Fair premium rate

0%

10%

20%

30%

P
ro

b
ab

ili
ty

 D
en

si
ty

100

-25%

-50%

0%

25%

50%

75%

W
T

P
 in

 te
rm

 o
f p

re
m

iu
m

 lo
a

di
ng

 (
a)

0 20 6040 80 120100

Herd size (TLU)

WTP Density of herd size
kernel = epanechnikov, degree = 0, bandwidth = 4.08

Willingness to Pay for One-Season IBLI

Fair premium rate

0%

10%

20%

30%

P
ro

b
ab

ili
ty

 D
en

si
ty

100

-25%

-50%

0%

25%

50%

75%

W
T

P
 in

 te
rm

 o
f p

re
m

iu
m

 lo
a

di
ng

 (
a)

0 20 6040 80 120100

Herd size (TLU)

WTP Density of herd size
kernel = epanechnikov, degree = 0, bandwidth = 4.08

Willingness to Pay for One-Season IBLI

Figure 7: Cumulative Distributions of Change in Certainty Equivalent Growth Rate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Willingness to Pay for IBLI by Initial Herd Size 
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Figure 9: Estimated District-level Aggregate Demand for IBLI  
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Figure 10: Dynamic Outcomes of Alternative IBLI Subsidy Schemes 
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Appendix 1: Non-mortality Component of Herd Growth Function  

 

Chantarat at al. (2009a) defines good seasons as those with positive cumulative deviation of NDVI observed at the end of the 

season and bad seasons as those with non-positive cumulative deviation of NDVI. Below we plot the two nonparametrically 

estimated non-mortality growth functions conditional on vegetation conditions, which we use as the basis for the simulations. 

The conditional herd mortality rates are also plotted here to illustrate that during the good seasons, more households enjoy 

positive net growth rates (i.e., mortality rate below non-mortality growth rate), while those above the critical herd size 

threshold of 12-20 animals maintain just slightly above zero growth during the bad seasons. Santos and Barrett (2007) report 

similar findings. 
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Regression of individual mortality on predicted mortality index

Location Variable Obs. Variable
(Best-fit distn) Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Household-specific βi Household-specific non-drought related loss εilt (%)

Dirib ExtValue(0.7,0.6) 20 1.08 0.66 1.05 0.60 (Based on the model estimations) -0.02 0.20 -0.01 0.18
Kargi Logistic(0.7,0.2) 25 0.71 0.39 0.70 0.34 0.00 0.08 0.00 0.08
Logologo Normal(1.1,0.4) 27 1.13 0.38 1.13 0.38 0.00 0.11 0.00 0.13
North Horr Logistic(0.3,0.1) 22 0.37 0.18 0.36 0.16 0.00 0.08 0.00 0.07

Regression of predicted residual on location averged residual

Location Variable Obs. Variable
(Best-fit distn) Mean S.D. Mean S.D. (Best-fit distn) Mean S.D. Mean S.D.

Household-specific βεi Idiosyncratic loss eilt (%)

Dirib ExtValue(0.6,0.7) 20 1.01 0.77 1.02 0.80 LogLogistic(-1,1,17.7) 0.00 0.12 0.00 0.14
Kargi Normal(1,0.3) 25 1.00 0.27 1.01 0.26 LogLogistic(-0.3,0.3,6.9) 0.00 0.07 0.00 0.06
Logologo Logistic(1,0.1) 27 1.00 0.26 1.00 0.26 LogLogistic(-1.4,1.4,27.1) 0.00 0.10 0.00 0.11
North Horr ExtValue(0.9,0.2) 22 1.01 0.32 1.00 0.29 Lognorm(0.4,0.04,RiskShift(-0.4)) 0.00 0.04 0.00 0.04

Other key household characteristics

Location Variable Obs. Variable
(Best-fit distn) Mean S.D. Mean S.D. (Best-fit distn) Mean S.D. Mean S.D.

Household-specific long-term mean mortality rate μil (%) Houehold's beginning herd size Hilt (TLU)

Dirib Logistic(0.2,0.1) 20 0.22 0.14 0.23 0.11 Lognorm(30.2,9.6,RiskShift(-15.3) 12 10 12 8
Kargi Logistic(0.1,0.02) 25 0.11 0.05 0.11 0.05 InvGauss(37.5,60.8,RiskShift(-4.3) 33 31 34 29
Logologo Logistic(0.1,0.04) 27 0.15 0.07 0.15 0.06 InvGauss(19.8,33.7,RiskShift(-2)) 18 15 17 14
North Horr Logistic(0.06,0.03) 22 0.07 0.05 0.07 0.05 Normal(29.6,15.1) 26 17 30 15

Estimated Simulated

Estimated SimulatedEstimated Simulated

Estimated Simulated

Estimated Simulated Estimated Simulated

Appendix 2: Summary of Estimated and Simulated Household Characteristics 
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Household-specific mortality rate (%) Milt

Location
Mean S.D. Min Max Mean S.D. Min Max

Dirib 0.21 0.29 0.00 1.00 0.19 0.20 0.00 1.00
Kargi 0.11 0.12 0.00 0.50 0.11 0.10 0.00 0.95
Logologo 0.15 0.19 0.00 0.74 0.14 0.15 0.00 1.00
North Horr 0.07 0.10 0.00 0.37 0.07 0.08 0.00 0.54

Household-specific non-mortality growth rate in (%) gilt

Location
Mean S.D. Min Max Mean S.D. Min Max

Dirib -0.05 0.12 -0.22 0.14 -0.07 0.14 -0.84 0.38
Kargi 0.05 0.07 -0.22 0.22 0.04 0.12 -0.23 0.38
Logologo 0.02 0.10 -0.22 0.30 0.01 0.14 -0.23 0.38
North Horr 0.07 0.11 -0.22 0.22 0.08 0.07 -0.23 0.38

Household-specific herd size Hils

Location

Mean S.D. Min Max Mean S.D. Mean S.D.
Dirib 5 8 0 30 6 10 6 16
Kargi 21 39 0 224 20 43 43 38
Logologo 15 17 1 64 16 21 14 23
North Horr 24 32 0 53 24 33 68 37

Beginning 1982-2008

Simulated (1982-2008)

Simulated 

Observed in PARIMA (2000-2002) Simulated (1982-2008)

Estimated (2000-2002, 2007-2008)

Observed (2000-2002, 2007-2008)

Appendix 3: Summary of Baseline Simulation Results 
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Appendix 4: Summary of Risk Preference Elicitation 

 

The left panel of Table A4 presents the gambling choice set with 50% probability of 

yielding either a low or high payoff. The first gamble choice reflects the situation if the 

pastoralist chooses instead not to play the game, i.e., to keep the certain 100 Ksh 

compensation. For gamble choices 2-5, expected returns24 increase by 5 Ksh while the 

risk (standard deviation) increases by 2 Ksh. Gamble choice 6, however, involves only an 

increase in risk with the same expected return as gamble choice. Extreme risk averse 

pastoralists would sacrifice expected return to avoid risk and choose the sure bet (Gamble 

1). A moderately risk averse household would choose an intermediate bet (Gamble 2-4). 

Risk neutral pastoralist would choose gamble choice 5 or 6, which have the highest 

expected returns. A risk seeker would choose gamble 6 in search of a higher potential 

payoff. This experiment was designed to be as simple as possible, while retaining 

reasonable ranges of risk choices.  

Though this simple elicitation method produces coarse categorical estimates of 

risk aversion, they work well compared to more complicated methods, especially among 

subjects with little or no literacy (Dave et al. 2007; Dohmen et al. 2007; Anderson and 

Mellor 2008). We estimate the range of coefficients of relative risk aversion implied by 

each possible choice of gambles under the assumption of constant relative risk aversion 

(CRRA) according to: 

 

(A4)       












k

R
k

kk kk R

P
PUPUE

1

1

     , ,0)(  PU  10    and k=1,2. 

 

  represents probability of each possible payoff P and R is the CRRA coefficient. In 

each case, the upper (lower) bound of R  can be calculated as the value of R that 

generates same utility level for the payoffs associated with the preferred gamble and the 

                                                 
24 For gamble 2-5, the sample numbers are linearly related to the properties of the gamble in term of 
expected return and variance. The relationship between expected return and variance can be summarized by 
  .2.0100 SDRE   The gamble number (G) can be written as   192.0  REG . The gamble number is 

therefore a reasonable parametric summary index of risk preference. 
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Cumulative Distribution of CRRA
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Gamble High Low Expected S.D. CRRA Interval Geometric mean Risk aversion class
Choice Payoff Payoff Payoff Payoff CRRA

1 100 100 100 0 R>0.99* 1.0 Extreme
2 130 80 105 25 0.55<R<0.99* 0.7 Severe
3 160 60 110 50 0.32<R<0.55 0.4 Intermediate
4 190 40 115 75 0.21<R<0.32 0.3 Moderate
5 220 20 120 100 0<R<0.21 0.1 Low/Neutral
6 240 0 120 120 R<0 0.0 Neutral/risk seeking

less (more) risky adjacent. A value of R є (0,1) reflects a risk averse household.25 The 

value R = 0 is associated with a risk neutral household, while R <0 indicates a risk seeker. 

Following Binswanger (1980), we assign a mean CRRA measures to each of the ranges 

using the geometric mean of the two end points.26 In the case of gamble 6, a value of zero 

is given to the CRRA measure to represent a class of risk neutral or risk seeker. The value 

of one is then assigned to the case of gamble 1 to represent the extremely risk averse 

class. We then assign each household to one of the six risk aversion classifications 

(extreme, severe, intermediate, moderate, low/neutral and neutral/risk seeker). 

Table A4: Summary of Risk Preference Elicitation Set-Up 

 

 

 

* Without assumption of 1R , the actual value of R is 1.67. 

 

Below are plots the cumulative distributions of CRRA associated with each of 
the three livestock wealth strata used in the 2008 survey.   
 

 

 

 
 
 
 
 
 
 
 
 

                                                 
25 In our setting, we truncated R at the maximum value of 1 as we only consider CRRA class utility 
function that is increasing. Value of R greater than 1 will yield negative value of utility. 
26 For the case of gamble 5 with one of the end point at zero, arithmetic mean was chosen in this case. 


