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I. Introduction

The interpretation of coefficients estimates from ordinary least square regressions and

other statistical models depends crucially on whether any explanatory variable in the statistical

model is correlated with the “error term” influencing the outcome of interest.  If there is a

relationship between any explanatory variable and the unmeasured determinants of an outcome,

then one usually cannot interpret any of the estimated coefficients as the impact of the

corresponding covariate on the outcome of interest.  In the medical and public health literature,

this is often called the problem of confounding effects. In economics and sociology, one typically

calls this the problem of endogenous regressors. Regardless of the label chosen for this

relationship, the presence of a correlation between the measured and unmeasured determinants of

an outcome results in biased estimators of the impacts of all covariates.

In this paper we explore the severity of the possible biases that can arise when such

correlations are present, and we examine the performance of some simple estimators that have

been developed to reduce the bias. We start out by examining ordinary least square models with

continuous outcomes and continuous regressors because most of the intuition about the problems

and the solutions can be developed simply in that context.  We then examine endogeneity

problems and solutions for three other sets of models that researchers often encounter in practice: 

a continuous outcome influenced by an endogenous binary regressor; a binary (discrete) outcome

determined by an endogenous continuous regressor; and a binary outcome being influenced by an

endogenous binary regressor. In nearly all instances we focus on the estimation of the impact of

the possibly endogenous regressor on the outcome of interest, but it is important to recognize that

estimators for all effects in a model, not just those for the endogenous variables, usually are
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biased when any explanatory variable is endogenous. We also examine the performance of

estimators in situations where the researcher cares about more than just the bias of the estimator. 

II. Endogenity Biases and Solutions for Ordinary Least Squares Regression Models with

Continuous Outcomes and Continuous Explanatory Variables   

II.1.   The Basic Setup

Consider the following ordinary least squares regression model

(2.1)y x x y i Ni i i i i1 0 1 1 2 2 1 2 1 1, , , , , , ,...,� � � � � �� � � � �

We assume the explanatory variable y2,i is a random variable that could be related to the error

term  �1,i .  It is potentially an endogenous explanatory variable in the sense that E( y2,i�1,i)�0. A

convenient way to think about the relationship between y2,i and  �1,i  is to consider  y2,i as being

determined by some of the same unobserved factors that affect y1,i .  For example, �1,i  represents

the combined impact of all of the unobserved or unmeasured factors on y1,i and some of these

same unmeasured factors could also be determinants of y2,i .  This gives rise to y2,i being a

random variable that is potentially correlated with �1,i .  The explanatory variables x1,i and x2,i are

assumed to be independent of this error term.

In matrix terms this system of equations is given by

(2.2)y XB1 1� � �
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Since an intercept is included in this specification, we can always assume that the E(�1)= 0, and

throughout this discussion we focus on the case with homoscedastic, uncorrelated error terms

(i.e., , where I is an NxN identity matrix). While we focus on this specificVar I N N( )� �1 1
2

�
�

model with two exogenous and one endogenous explanatory variables, one could easily adapt the

following discussion to arbitrary numbers of exogenous and endogenous regressors.

Models with both exogenous and endogenous explanatory variables are frequently

encountered in the fields of population and health.  For example, a frequent problem that arises in

the analysis of communications programs is that after an intervention has been introduced,

respondent recall is used to gauge program coverage and then program impact is measured by the

effect of recall on some outcome variable such as ideal family size, modern contraceptive use, or

condom use.  It is well known that highly motivated individuals may be more likely to recall

having heard the communications message and motivation may also affect the ultimate outcome

of interest.  Since motivation is typically not observed, this variable will be part of the error term

in the model which affects both the endogenous explanatory variable (message recall) and the

ultimate outcome (desired family size or contraceptive method choice).  One would typically

expect that simple methods that do not control for the endogeneity of message recall would lead

to an upward bias in the measured impact of the communications program.  In addition, the
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measured impacts of other explanatory variables could also be contaminated by the presence of

this endogenous explanatory variable.

Examples from the health literature are also abundant.  For example, we may be

interested in judging the impact of breast feeding on child weight gain.  It is easy to think of

unobservable factors such as the mother’s level of interest in keeping her child healthy that might

both affect whether or not the mother breast feeds her child and for how long that could also

impact weight gain.  This could, again, lead to an upward bias in the estimated impact of breast

feeding on weight gain.

A final example that could lead to serious errors in the measurement of program impact

could occur when a program is targeted to high need areas. There might be unobserved

community characteristics influencing the level of need of the communities and the health

outcome the program is intended to affect. Simple methods may seriously understate program

impact in this situation. Since it is almost never the case that programs are randomly introduced

in regions or districts of a country, this problem may be the norm rather than the exception when

evaluating the impact of programs.

II.2 Endogeneity Biases 

The ordinary least squares estimator of the parameter vector B is given by

(2.3)b X X X y B X X X� � �
� �( ' ) ' ( ' ) '1 1

1�

where the second equality follows directly (algebraically) from the matrix definition of y given 

in equation (2.2).  From the above algebraic restatement, we see that the least squares estimates

from any sample are equal exactly to the true parameter values plus a factor that depends upon

the relationship of the explanatory variables with the error terms for those observations.  In the
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derivations that follow,  it is necessary to use large sample notation because the explanatory

variable y2 , being a random variable, cannot be considered as a fixed covariate. 

In large samples, the (vector) bias of the OLS estimator is given by 

, (2.4)p b B E X X Cov Xlim( ) [ ( ' )] ( , )� �
�1

1�

Except in quite artificial cases, this bias term will be non-zero whenever any one of the

explanatory variables is correlated with the error term.  The bias, however, is not limited to only

the estimates of coefficients for  those variables that are correlated with the error term. To see

this, note that the matrix [E(X’X)]-1 will only be (block) diagonal in the rare case when all of the

explanatory variables are uncorrelated with each other. So, even if only one of the explanatory

variables is correlated with the error term, the matrix product in (2.4) spreads the correlation of 

y2,i and  �1,i  across all of the estimated effects. This means that every estimator of the slope

parameters in equation (2.1) will be biased.  To reiterate, even if the other explanatory variables

are uncorrelated with the error term (e.g., E(�1,i | x1,i) =  E(�1,i | x2,i) =   0) the OLS estimators of

the impacts of these variables on the outcome y1 will usually be biased whenever E(�1,i | y2,i)�0.

All parameter estimates are contaminated by endogeneity biases even if only one of the

explanatory variables is correlated with the error. 

In terms of the examples given above, this means that not only will the impact of

respondent recall of a message be biased (typically one would expect upward bias) but the impact

of variables traditionally considered to be exogenous such as the respondent’s age and education

will also be biased since these variables are likely correlated with message recall.  In addition, the

impact of other program variables in the model, such as access to clinics, are probably biased as

well.  In the weight gain example, breast feeding is almost certainly correlated with age,

education and socioeconomic status and so the impact of these variables on weight gain will be
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incorrectly measured.  Other policy related variables such as whether or not the mother received a

formula sample will also be biased.

II.3 Instrumental Variables Solutions to the Problem of  Endogeneity Bias 

Solutions to the problem of endogeneity bias always require that a researcher provide new

information about the problem under investigation. In the absence of such additional 

information, there are no solutions that can yield unbiased estimators of the impacts of x1,i ,  x2,i ,

and  y2,i on y1,i .  The most common type of information comes from the researcher’s knowledge

about the determinants of  y2,i and y1,i. Usually a researcher has prior knowledge about some

variable(s) that influences y2,i but has no direct impact on y1,i.    Let zi denote the name of this

variable.  For this type of information to help solve the endogeneity problem, it must satisfy four

requirements: 

• Condition 1:  There must be at least one measured variable (zi)  that is a

determinant of y2,i besides x1,i and  x2,i , the exogenous variables

determining y1,i.

• Condition 2:   zi cannot be an exact linear function of  the exogenous

variables determining y1,i (i.e., zi is linearly independent of  x1,i and  x2,i).

• Condition 3:   zi cannot itself be a direct determinant of y1,i . This means

that if  zi were included in equation (2.1) then its true coefficient would be

zero. 

• Condition 4:   zi must be uncorrelated with the unobserved factors

influencing y1,i , namely the �1,i . In more complex models, one will

typically need zi to be independent of the �1,i .
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1If the impact of y2,i on y1,i is not constant and varies across observations, then this
estimated impact of zi on y1,i holding constant x1,i and  x2,i might capture only particular parts of
the impact of y2,i on y1,i.  The literature on local average treatment effects (LATE) discusses the
interpretation of results with such random effects models. See Angrist, Imbens, and Rubin (1997) 
and Angrist and Kreuger (1999).

2A reduced form equation is one that expresses a possibly endogenous variable as a
function of all the exogenous variables under consideration plus an uncorrelated error term. 

If such a variable  zi  exists, then one is said to have a valid instrumental variable. Taken as a

group, these conditions imply that there exists a variable containing new information whose only

possible influence on y1,i takes place through its impact on y2,i .  More than one instrumental

variable, while not necessary, is almost always preferred to having just a single instrument since

additional variables generally add to precision.

If one examined how y1,i is influenced by  the variables   x1,i ,  x2,i , and  zi (without

including y2,i as a determinant of  y1,i ),  the estimated impact of zi on y1,i would incorporate two

effects.  First, since zi  is only  related to y1,i through the effect of y2,i on y1,i ,1  this estimated

impact of  zi on y1,i must incorporate the direct effect of  y2,i on y1,i .  Second, since the impact of 

zi on  y1,i can only take place through y2,i , the estimated effect  of zi on y1,i  must incorporate the

impact of   zi  on  y2,i .  Since it is possible to uncover this impact of zi on  y2,i from a simple

regression of  y2,i on  x1,i ,  x2,i , and  zi , one can usually isolate the direct effect of  y2,i on y1,i.  In

its simplest form, this type of procedure is sometimes called indirect least squares (ILS). ILS is a

special case of both two stage least squares and instrumental variables estimation. We focus on

the ILS in this discussion because it provides a simple and  intuitive explanation for how it can

solve the problem of endogenous explanatory variables.   

A bit more formally, consider the reduced form regression2 of  y1,i on    x1,i ,  x2,i , and  zi :

(2.5)y x x zi i i i i1 10 11 1 12 2 13 1, , , ,� � � � �� � � � �
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By using ordinary least squares estimation it is possible to uncover an estimate of �13, the

expected effect of zi on y1,i holding x1,i and  x2,i constant. An examination of equation (2.1), in

conjunction with the above requirements for z to be a valid instrumental variable implies:

 (2.6)

�
�

�
�

�

�

� �

�

� �
�

�

13
1 1 2

1
2 1 2 1 1 2

13 1
2 1 2
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�

E y x x z
z

E y x x z
z

E x x z
z

E y x x z
z

i i i i

i

i i i i

i

i i i i

i

i i i i

i

( | , , ) ( | , , ) ( | , , )

( | , , )

The last equality sign follows from the requirement that the instrumental variable  zi has no direct

effect on y1,i , as expressed by the requirement that E(�1,i| zi) = 0.   

Next, consider  a regression of y2,i on  x1,i ,  x2,i , and  zi :

(2.7)y x x zi i i i i2 20 21 1 22 2 23 2, , , ,� � � � �� � � � �

Again from a single ordinary least squares estimation one can obtain an estimate of the derivative

of the expectation of y2,i  with respect to zi, �23; this is exactly the derivative on the right hand

side of equation (2.6). One can then take the ratio of these two easily calculable derivatives to

obtain an estimate of �1 , the impact of y2,i on y1,i , i.e., 

(2.8)
�

�

�

�

�

�
�

13

23

1 1 2 2 1 2
1� �

E y x x z
z

E y x x z
z

i i i i

i

i i i i

i

( | , , ) ( | , , )

This expression serves as the basis for the Indirect Least Squares Estimator (ILS) , which is

identical to the Two Stage Least Squares Estimator (TSLS) in this instance because there is only

one right hand side endogenous explanatory variable and exactly one instrumental variable. It is

also an instrumental variables (IV) estimator.  
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II.4 Testing for Exogeneity of the Explanatory Variable y2,i

A simple test for whether the explanatory variable y2,i is exogenous comes from an

examination of whether the “unexplained” part of y2,i, that is the �2,i in equation (2.7), has the

same impact on the outcome y1,i as the “explained” part of y2,i . The rationale behind this test

follows from the observation that the explained part of y2,i  is exogenous since it only depends on

the exogenous variables   x1,i , x2,i , and  zi .   If the impact of the unexplained part of  y2,i differs

from the impact of the exogenous part of the variable, then one would infer that there is a

correlation of part of y2,i and the structural error term in equation (2.1). 

To implement this test, one first estimates the reduced form equation (2.7) by ordinary

least squares and constructs the predicted  y2,i  and predicted error term as

y i x i x i zi
^

,
^ ^

,
^

,
^

2 20 21 1 22 2 23� � � �� � � �

and (2.9)

� �

^
, ,

^
, , ,

^
,

^
,2 2 2 2 2 2i y i y i y i y i i� � � �implying

Next, replace  y2,i  in structural equation (2.1) by the above sum of the estimates of its two

components. Allowing these two components to have separate impacts yields

             (2.10)y x x y i Ni i i i i i1 0 1 1 2 2 1 2 1 2 1 1, , ,

^

,

^

, ,( ) , ,...,� � � � � � � �� � � � � � � �

where � measures how the impact of the predicted reduced for error term for y2,i differs from the

impact of the explained part of y2,i.  Simplifying this expression yields

(2.11)y x x y i Ni i i i i i1 0 1 1 2 2 1 2 2 1 1, , , ,

^

, , , ,..., .� � � � � � �� � � � �� �
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Under the null hypothesis that  y2,i is exogenous, � equals zero. If one estimates (2.11) by

ordinary least squares then when y2,i is exogenous, then a standard t-test for H0 :�=0 versus

HA:��0 provides a valid test of the exogeneity assumption.

 II.5 A Note on Multiple Instrumental Variables.

In many instances a researcher may have more than one variable that satisfies the

conditions for being an instrumental variable.  When there are R instrumental variables, equation

(2.1) remains the structural relationship of interest. The only change to the above formulation is

that the reduced form equations are now given by

(2.5')y x x zi i i r r i
r

R

i1 10 11 1 12 2 1 2
1

1, , , , , ,� � � � �
�

�

�� � � � �

(2.7')y x x zi i i r r i
r

R

i2 20 21 1 22 2 2 2
1

2, , , , , ,� � � � �
�

�

�� � � � �

Following the same logic as for the single instrumental variable case, each of the zr,i can only

have an impact on y1,i , through its effect on y2,i .  Consequently, there are at least R Indirect Least

Squares estimators, one for each zr,i , that could be used to obtain an estimate of the impact of y2,i

on y1,i , namely:  � � �1 1 2 2 2, , ,/ ,r r r� �
� �

for  r 1,...,R.

This multiplicity of ILS solutions for the single parameter �1 is often referred to as an

over identified model. If structural equation (2.1) and the assumptions for all R instrumental

variables are valid, then in large samples the different estimators of  �1 (i.e., the �1,r’s)  should all
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3If the coefficient �1 is a random variable and not a fixed parameter, then the R  �1,r’s need
not all converge to the same value. In general, for each of the R instrumental variables, there is a
possibly different local average treatment effect (see, Angrist, Imbens, and Rubin, 1995 and
Angrist and Kreuger, 1999.) Two stage least squares, by estimating a single effect, converges to a
weighted average of these local effects.

4Another common approach is to use Generalized Method of Moments Estimators
(GMM). These GMM estimators can be more efficient than TSLS, and they include TSLS as a
special case.  See, for example, Green (1997).

converge to precisely the same value3. In realistic sized  samples researchers often impose the

restriction that the R estimators estimate the same parameter by using the two stage least squares

estimator4. A convenient way to think about this estimator is to suppose one first estimates the

reduced form expression for y2,i , equation (2.7'), and constructs predicted values of  y2,i using all

of the exogenous variables, instrumental variables, and the estimated coefficients. That is, define

(2.12)y x x zi i i r r i
r

R^

,

^ ^

,

^

,

^

, ,2 20 21 1 22 2 2 2
1

� � � � �

�

�� � � �

where the hats indicate that the coefficient is from the OLS regression for equation (2.7').  This 

constitutes the “first stage.”  One then replaces the observed y2,i in equation (2.1) with their

predicted values

(2.1')y i x i x i y i i
i N1 0 1 1 2 2 1 2 1

1,
* *

,
*

,
* ^

, ,
* , ,...,� � � � � �� � � � �

 and estimates the resulting modified model with a second OLS regression. This is the second

stage of the two stage least squares estimator.  Provided that each of the R instrumental variables

satisfies the conditions to be instruments, then in large samples the estimators of the impacts of

the exogenous variables and y2,i on yi,i will be approximately unbiased. Note, however, that the

standard errors reported by an OLS regression package for equation (2.1')  will be incorrect
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because the standard error formulae do not incorporate the fact that one is using an estimate of

the exogenous part of y2,i as an explanatory variable. In nearly all computer packages, two stage

least squares,  instrumental variables, and method of moments estimation procedures will

provide standard error estimators that adjust for such pre-estimation error.  

II.6 Multiple Endogenous Explanatory Variables

One could also have multiple endogenous explanatory variables in the structural equation

(2.1) and use TSLS or IV to obtain asymptotically unbiased estimators of the impacts of all the

covariates. Suppose that there are Q endogenous explanatory variables. Then in general it will be

necessary to have R �Q instrumental variables in order to obtain the TSLS estimators. This

condition that the number of instrumental variables be at least equal to the number of

endogenous explanatory variables  is often referred to as the Order Condition.  Conceptually, one

would estimate a reduced form equation like that in (2.7') by OLS for each of the Q endogenous

explanatory variables and replace the actual values of these endogenous variables with their

predicted values in the structural equation, as in 

(2.1'')y i x i x i q
y q iq

Q

i
i N1 0 1 1 2 2 11 1

1,
* *

,
*

,
* ^

, ,
* , ,...,� � � �

�
�

� � �� � � � �

A sufficient condition for this TSLS estimator to yield asymptotically unbiased estimators for all

effects in the structural equation is for the complete set of explanatory variables in (2.1'’) 

(i.e., )  to be linearly independent (i.e, no perfect multicollinearity). If{ , , ..., }
^

,

^

,

^

,x x y y yi i i i Q i1 2 2 3 1�, ,

this linear dependence holds at the true parameter values, then the model is said to satisfy the

Rank Condition. 
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A failure to satisfy the Rank Condition, even if the necessary Order Condition holds, will

usually mean that none of the coefficient estimators is unbiased. In general no  �q or  � can be

bounded away from either +� or -� without additional information.   In actual data sets, a linear

regression package will usually indicate that this condition is not satisfied by reporting that not

all coefficients can be estimated or that some estimates might be biased due to perfect

collinearity of the explanatory variables. But note that it is quite possible for this condition to

appear to be satisfied in an actual sample but to fail to hold if the sample size becomes large.

This is sometimes referred to as the problem of weak instruments, and its discussion is beyond

the scope of this review.    

II.7 The Concentration Parameter as a Measure of the Accuracy of Instrumental

Variables Estimation

In practice one cannot estimate exactly the true values of the reduced form coefficients

that define the impact from an exogenous change in the right hand side endogenous variable in

(2.7) or (2.7') on the expected value of the outcome of interest.  One must rely upon estimated

values of the reduced form parameters to obtain estimates of the � parameters in equations (2.1)

and (2.1'’).  Holding constant the relationship in structural equation (2.1) (or in  equation (2.1'’) ),

one’s ability to uncover accurate estimators will depend crucially on the accuracy of the

estimation of the reduced form parameters for the instrumental variables. 

When there is only one endogenous explanatory variable (e.g., equation (2.1)) ,  the

accuracy of the reduced form’s instrumental variables’ impacts can be summarized by a scalar
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5With multiple endogenous explanatory variables as in equation (2.1'’), one would use a
matrix version of the concentration parameter to describe the variation in the “predicted values”
not explained by the exogenous variables appearing in the structural equation of interest. See,
Stock, Wright, and Yogo (2002).

measure called the concentration parameter5. This parameter measures the amount of variation in

y2,i that can be explained by the instrument(s) zi, after controlling for x1,i and  x2,i . It is expressed 

as a fraction of the error variance in equation (2.7) or (2.7')  (i.e. ). Higher values of the�
�2

2

concentration parameter imply  more variability for that part of the predicted value of y2,i that is

not linearly related to the exogenous variables in (2.1). Higher values of the concentration

parameter, then, imply more accurate estimates of the impact of �1, the impact of y2,i on y1,i after

holding constant the impacts of x1,i and  x2,i  

Heuristically, the concentration parameter will take on small values when the

instrumental variable(s) zi does little to help explain the endogenous explanatory variable y2,i ,

over and above what can be explained by the exogenous variables x1,i and  x2,i   (which are already

included in the structural equation of interest). In this case, because the  zi contributes little to the

first stage predicted value, the predicted value will be nearly linearly dependent on the included

exogenous variables x1,i and  x2,i  .  Such near perfect multicollinearity will result in imprecise

parameter estimators. The concentration parameter will take on a large value when the

instrument(s) zi  provides more explanatory power, indicating that potential collinearity problems

are less severe.  The concentration parameter is also an increasing function of the sample size,

indicating that additional observations will improve the quality of the estimators. 

Formally, the concentration parameter is defined as the number of  instrumental variables

used to identify the effect of the endogenous explanatory variable  times the theoretical value of

the F-statistic that would be used  for testing the null hypothesis that the instrumental variable(s)
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z in (2.7') have no effect on the outcome y2i.  In an exactly identified model, such as in equation

(2.7), this would equal the square of the “theoretical” value of the T-statistic used for testing the

hypothesis that the instrument has a significant effect on y2,i after controlling for the other

exogenous variables. One can also express the concentration parameter as the sample size times

the increase in the R2 due to the addition of the instrument(s) z in the reduced form regression

function (2.7'), divided by the error variance in the reduced form expression for y2,i.  In practice,

with moderate to large sized samples, a nearly unbiased estimator of the concentration parameter

is given by the computed F-statistic for the “relevance” of the instrumental variable(s) in the first

stage regression minus 1, multiplied by the number of instrumental variables (Stock, Wright, and

Yogo,2002). A value of 10 or lower for the F-statistic in the first stage is often used as the

definition of weak instruments (Staiger and Stock, 1998; Bound, Jaeger, and Baker, 1995).  In

the following Monte Carlo analysis we present the performance of a variety of estimators of the

impact of y2,i on y1,i  as a function of the theoretical concentration parameter. 

III.  Experimental Design

We focus on the two equation system defined by equations (2.1) and (2.7) that we

reproduce here as 

(3.1)y x x yi i i i i1 0 1 1 2 2 1 2 1, , , , ,� � � � �� � � � �

(3.2)y x x zi i i i i2 20 21 1 22 2 23 2, , , ,� � � � �� � � � �

In our experiments we consider three sample sizes: 500, 1000, and 2000.  We always set

, but we allow the coefficient on the instrumental variable in equation (3.2), � � �1 2 1 1� � �

�23 , to differ from the impacts of the two exogenous variables that are included in both equations
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6Note that our normalizations imply that the explained variation in equation (3.1) depends
upon the fraction of the variance for the predicted value of y2,i that is explained by  zi .

( �21   and �22). We impose  �21 =  �22, and we assume that the exogenous variables x1,i, x2,i , and zi  

  follow independent standard normal distributions.  We examine five different correlations for 

�1,i and �2,i, namely 0.00, 0.05, 0.10, 0.20, and 0.33, so on average the error correlation is 0.136. 

In this first set of models we always set the error variance in the structural equation to a constant

that yields an OLS  R2 equal to 0.20 for structural equation (3.1) when the error correlation is

0.00 and each of the exogenous variables has the same impact on y2,i (i.e., when �23=�21 = �22 ),

and the R2 in (3.2) equals 0.20. 

A key question is the ability of the instrumental variable  zi  to explain the endogenous

explanatory variable y2,i . We combine two approaches to do this. The first varies the  R2 in the

reduced form equation (3.2) from 0.01 to 0.05, 0.10, 0.15, 0.20, 0.25, and 0.33. The second

varies the fraction of the variance for the predicted value of y2,i that is explained by  zi (i.e.,

). We choose values for this fraction var( ) / [var( ) var( ) var( )]� � � �23 21 1 22 2 23z x x zi i i i� �

that come from the set {0.05, 0.20, 0.33, 0.50, 0.75, 1.00}.  These specifications about the ability

of the instrumental variable to explain the endogenous explanatory variable determine the

concentration parameter discussed above6.

All told, we use 630 different configurations for the data generating process. (3 sample

sizes; 5 error correlations; 7  R2 values in the reduced form equation; and 6 values describing the

relative importance of the instrumental variable in predicting y2,i .)  We repeat each experimental

configuration 1,000 times. We use Stata to carry out all of the estimations.

Throughout this discussion of the model where a continuous outcome depends on a

possibly endogenous continuous variable we focus on three estimation procedures. The first is
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the simple OLS estimator applied to equation (3.1). It assumes implicitly that the explanatory

variable y2,i is exogenous. When this assumption is invalid, OLS will yield biased estimates. The

second estimator we consider is the instrumental variables (IV) estimator discussed in section 2.

This estimator will yield asymptotically unbiased estimators provided that the variable zi satisfies

the conditions required for it to be a valid instrumental variable.  

In general this IV estimator will be much less efficient than the OLS estimator when the

explanatory variable y2,i is actually exogenous.  This happens for two reasons. First, with cross

section data one would  typically find an R2 of 0.25 or smaller for the reduced form equation

(3.2);  the variation in the “explained” part of y2,i that is used in the “second stage” is

considerably smaller than its total variation. Second, much of the variation in the explained part 

of  y2,i is due to the variables x1,i and x2,i;  the only “linearly independent variation” for  y i

^

,2

comes from the impact of the instrumental variable zi on y2,i  in equation (3.2).  Unless this

impact of the instrumental variable is large, there could be a high degree of multi-collinearity in

the explanatory variables in the second stage regression, and the estimated impact of y2,i could be

quite imprecise.  It is this latter source of linearly independent variation that the concentration

parameter measures.

The third estimator we consider attempts to balance the possible bias in the OLS

estimator against the loss in precision that comes from using the IV estimator.  It uses the test for

exogeneity discussed above as a pretest to decide whether one should rely upon the OLS

estimates or the IV estimates.  In particular, we use OLS to estimate equation (2.11) and test the

hypothesis that the explanatory variable  y2,i is exogenous by testing whether the coefficient on

the predicted error term in equation (2.11) equals zero.   If we fail to reject the null hypothesis at

a 5% significance level, we use the estimates from the OLS estimator; and if we reject the null
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hypothesis we use the estimates form the IV estimator.   We refer to this estimator as the pretest

estimator. This type of pretesting as a decision tool for choosing an “appropriate” estimation

strategy corresponds to an approach that many researchers follow in practice.  

IV. Monte Carlo Results for Estimating the Impact of a Possibly Endogenous Continuous

Explanatory Variable on a Continuous Outcome

IV.1 The Bias Due to Correlation of an Explanatory Variable and the Error Term 

We begin our presentation of the Monte Carlo results with a demonstration of the biases

that can be introduced by the correlation of an explanatory variable with the error term. An

examination of equation (2.4) suggests that the asymptotic bias of the OLS estimators should be

a linear function of the correlation of the explanatory variable and the error term. Given that this

is a linear model, there will also be an exact linear relationship between the bias and the

correlation of the errors in equations (3.1) and (3.2).  Figure 1 examines this relationship

graphically for the estimated impact of the possibly endogenous variable  y2,i on y1,i . In this

figure we examine the level of the bias in the OLS estimator as a function of the correlation of

the errors in equations (3.1) and (3.2); it is this correlation in our data generating procedures that

gives rise to the endogeneity of y2,i . For each of the five error correlations examined, we report

the average of the bias of the OLS estimates of �1 across 1,000 sets of estimates for each of 126

different specifications of the data generating process (DGP). Figure 1 clearly indicates that there

is a linear relationship between the bias in the estimator and the level of the error correlation,

with higher levels of correlation leading to larger biases in the estimators.
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IV.2 Performance of the Concentration Parameter as a Summary Measure

In these Monte Carlo experiments we evaluate the performance of the three estimators of

the impact of y2,i on y1,i using a variety of criteria such as bias, power, mean square error, and

probability coverage. As we compiled the Monte Carlo results we found that  the concentration

parameter defined in Section 2 does provide a useful summary measure for capturing the

interactions of sample size and the characteristics of the of the reduced form equation (3.2). This

measure  incorporates  the overall R2 in this reduced form equation and  the fraction of this  R2 

that is due to independent variation in the instrumental variable. Before turning to the more

detailed evaluations of the various estimators, we demonstrate the ability of the concentration

parameter to serve as an index that summarizes information about reduced form equation (3.2)

when examining the performance of the estimators in terms of bias and mean square error. 

Figure 2 presents three graphs, one for each of the three estimation procedures. Each

graph displays the bias of each estimator averaged across all experimental values for the

correlation of the error terms.  Note that the value of the concentration parameter on the

horizontal axis is measured on a logarithmic scale in these graphs. Each of these three graphs

contains three lines that display the bias as a function of the concentration parameter for a

particular sample size. For the OLS estimator it is clear that the concentration parameter

summarizes the various experimental configurations quite well. For the IV estimator and the

estimator with the pretest, the concentration parameter also provides an excellent summary

measure for higher values of the concentration parameter. At low values of the concentration

parameter there is considerable variability in these latter two estimators; even with the average

taken across the 1,000 replications we do not find an accurate measure of the mean for the

estimators. But for concentration parameters of 10 and higher, there is no discernable difference
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in the biases by sample sizes after conditioning on the value of the concentration parameter. This

assessment agrees with that found in Stock, Wright, and Yogo (2002).

Figure 3 examines the performance of the concentration parameter by using the Mean

Square Error (MSE) as a metric instead of the bias. For low values of the concentration

parameter the empirically computed MSE can be quite large for the IV and the pretest estimator,

so we truncate the MSE at a value of 4. Again we see that the concentration parameter provides a

convenient summary measure of the estimators’ performances at most values of the concentration

parameter above 10. We will use the concentration parameter throughout this study to summarize

the model specifications in the reduced form equation. 

IV.3 Average Bias and Mean Square Error for the Three Estimators as a Function

of the Concentration Parameter

The graphs in Figure 4 display the average bias and mean squared error for each of the

three estimation procedures as a function of the value of the concentration parameter. It is

important to note that for each concentration parameter value there are five possible error

correlations: 0.0, 0.05, 0.10, 0.20, and 0.33.  Most importantly, the interpretation of the graphical

results rests crucially on the fact that we are averaging (uniformly) over this configuration of

error correlations. We choose these error correlations, that average to 0.136, to reflect those

frequently encountered in many real micro-level studies.  Hopefully interpretations obtained from

these averages should be applicable when a researcher suspects that there might be a small to

moderate amount of error correlation but is unsure of its exact magnitude.

The top panel of Figure 4 contains the averages of the biases for the three estimators. The

OLS estimator (circles) exhibits a substantial positive bias that is invariant to the level of the
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7In the bias graphs we truncated all averages of bias larger than 2 to have value 2. 

concentration parameter. The instrumental variables (IV) estimator (triangles) appears to have

substantial variability when the concentration parameter is less than five7, but at higher values

this estimator appears to be unbiased. The pretest estimator (squares), in terms of bias, is

comparable to the IV estimator when the concentration parameter is small, and it exhibits more

bias than the IV estimator when the concentration parameter is large.  In terms of bias for these

average error correlation configurations, it appears that a universal application of instrumental

variables dominates the pretest estimator that uses a 5% test of whether the suspected variable is

exogenous. The first graph in Appendix Figure 1 examines this same issue separately for four

different error correlations, and it confirms this dominance of the IV estimator over the pretest

estimator at each of the error correlations examined.   

The second graph in Figure 4 examines the mean square errors of the estimators that are

obtained by pooling across the all error correlations we examined. The calculated mean square

error is defined as
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where R is the total number of experiments performed at that value of the concentration

parameter,  is the estimate from the rth experiment, 1 is the known true value of �1, and   �
^

,1 r �
^
�

1

is the average of the R estimates.   The means square error weighs equally the variance of the

estimator and its squared bias, and it is a commonly used measure of the performance of an

estimator.  It is, however, just one of many possible ways to weigh the relative importance of bias

and variability. 
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This second graph in Figure 4 reveals that both the IV and the pretest estimators perform

worse than the OLS estimator in terms of mean square error whenever the concentration

parameter is twenty-five or less. In fact, since we truncated all  mean square errors at  4.0 in this

graph,  the relative performance of these two estimators at low concentration parameter values  is

much worse than appears in the graph.  There are some advantages in using the pretest estimator

instead of IV at low values of the concentration parameter, but these disappear once the

concentration parameter exceeds 25.  A possible explanation for why the pretest estimator

performs so poorly at low values of the concentration parameter comes from the fact that an

extreme estimate from the IV procedure is often going to yield a rejection of the null hypothesis

of exogeneity.  The pretest estimator, then, will tend to be the same as the IV estimator when the

IV estimator takes on extreme values. 

The second graph in Appendix Figure 1 examines the mean square errors of the

estimators at four specific values of the error correlation.  At values of the error correlation below

0.10,  the OLS estimator dominates the IV and pretest estimators in terms of MSE for all values

of the concentration parameter below 100. At higher values of the error correlation, the bias of

the OLS estimator becomes more important than its low variance, and both the IV and pretest

estimators dominate OLS at lower values of the concentration parameter. Additionally, any MSE

advantage of the pretest estimator over the IV estimator disappears when the OLS estimator is

severely biased.   While not displayed here, we also examined graphs of  the mean absolute

deviation by values of the concentration parameter and error correlation. The implications from

examining those graphs were nearly identical to those for the mean square error displayed in

Figure 4 and Appendix Figure 1. 
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8 In another words, the empirical size of the tests measure the probability the test will
provide incorrect results, leading the analyst to reject the null hypothesis when it is true.

IV. Performance of Standard Error Estimators for the Size of the Tests

Using a 5% test of the null hypothesis for the form

 H0 : �1=C  versus HA : �1 �C

a test is said to have the correct size if it rejects the null hypothesis 5%  of the time when the true

parameter value of the parameter equals C.  In this section we evaluate how well the point and

standard error estimators provide correct probabilities for the chance of rejecting a true null

hypothesis.

Figure 5 presents empirical sizes of the tests from our 630,000 estimations as a function

of the concentration parameter8.  If tests based on these estimators had the correct size, then one

would expect a straight line at 0.05 on the graphs. The first graph on this page indicates that the

bias in the OLS estimator leads to empirical test sizes more than ten times the requested amount. 

It also reveals that the pretest estimator also performs poorly even at concentration parameter

values well above 100.  The two stage instrumental variables estimator has an empirical size

quite close to zero for small concentration parameter values. As the concentration parameter

reaches values exceeding 25, the empirical size for the instrumental variables estimator

approaches its theoretical size.  

The second graph in Figure 5 focuses on the size of the test when the error correlation is

zero and  the OLS estimator is unbiased. The performance of the OLS estimator improves

dramatically, and the performance of the instrumental variables estimator remains basically

unchanged from above.  The size of the pretest estimator, however, appears quite biased even at

large values of the concentration parameter. This happens because the pretest estimator only
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selects the IV estimator over the OLS estimator when there is a statistically significant difference

between these two competing estimators. Since both estimators are unbiased, the IV estimator is

selected only when the noisy IV estimator is quite far from the true value, and this increases its

empirical probability of rejecting the true null hypothesis. While not presented here, when the

error correlation is only 0.05, the tests using the OLS estimator always reject  the true null

hypothesis between 20 and 70 percent of the time for the DGPs examined here. This indicates

that even a small level of correlation can result in exceptionally inaccurate and biased  tests.

IV.5 Alternative Metrics for Comparing the Performance of the Estimators

In this subsection we examine the performance of the estimators under three different

criteria. The first criterion we examine is the proportion of time that an estimate from the

specified estimator is the closest of the three to the true value of the parameter. Since the pretest

estimator is either the OLS or the IV estimator, we count the proportion of times that there are

“ties” as being the closest as well. Figure 6 reveals, after averaging over the five values of the

error correlation, that both the pretest and the OLS estimator are more likely to be closer to the

true parameter value for all values of the concentration parameter below 40. At values above 40

the IV estimator dominates the OLS estimator, but it is not until one reaches a concentration

parameter of about 75 that the IV estimator dominates the pretest estimator.  The second panel in

Figure 6 examines this “closeness” metric as a function of the true error correlation. As one

would expect, the OLS and pretest estimators are superior to the IV estimator at low error

correlations, while the IV estimator dominates more at much lower concentration parameter

values when the error correlation is high.  
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9In general it is difficult to justify this type of decision making approach, and there are
much better ways to use estimates to help make informed choices. We evaluate this approach
here because it is simple to explain and because researchers often use arguments about statistical
significance as a reason to draw particular conclusions (decisions).

A somewhat more useful metric for comparing the performances of estimators is an

examination of the ability of the estimators to help a researcher make a correct decision. Here we

examine a very simple way one can use statistical evidence to help make an informed decision. 

The procedure we evaluate is for the researcher to first carry out a hypothesis test and then to

make one decision if the null hypothesis is “accepted” and make a different decision if the null

hypothesis is rejected.9  

For example, suppose one needs to decide whether to implement a particular health

intervention program throughout a country after observing the benefits of the program for a first

set of villages where the program was instituted.  If the costs of implementing the program are

known, then one might be willing to expand the program if the benefits measured in monetary

terms were to be significantly greater than the cost.  If this were the decision making process,

then on the basis of estimating the benefits from data on the initial villages (e.g., the parameter

�1) one would carry out a hypothesis test of the form

H0 : �1=C  versus HA : �1 �C.

One might decide to stop the implementation of the program if the null hypothesis were not

rejected (“accepted”) because there was no compelling statistical evidence that the benefits

exceed the costs of the program.  One would, alternatively, expand the coverage of the program if

the null hypothesis were rejected because of statistical evidence of a high benefit from the

program relative to its cost.
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10We examined whether the IV estimator had correct size for tests of the form H0 : �1=1.0 
versus   HA : �1 �1.0, where 1.0 is the true value of the parameter in the DGP.  We found no
evidence that these tests based on the IV estimates and standard errors were biased (e.g., on the
basis of an asymptotic t-test we rejected the null hypothesis 5% of the time when we specified
that the test should have size 5%).

In our Monte Carlo experiments we examine two hypothesis tests of this form to help us

evaluate the performance of the three estimators. The results of the experiments for the first test

are displayed in Figure 7, where the hypothesis test is H0 : �1=0.8  versus   HA : �1 �0.8; we use a

standard 5% significance level for the test.  It is important to recall that the true effect in the DGP

is  �1=1.0, so the “correct” decision would be to reject the null hypothesis.  

The top graph in Figure 7 reveals that the OLS estimator almost always leads to the

“correct” decision. This should not be surprising because the OLS estimator is biased upwards

for all experiments and hence favors rejecting the null hypothesis. The instrumental variable

estimator performs quite poorly10. At best it correctly rejects the null hypothesis of 0.8 only 25%

of the time. This happens because the power of the test using these estimates is quite low. To put

this testing performance in perspective, the estimated effect would need to be significantly

different from zero with  a t-statistic of at least 7.84 (= 4x1.96) when the estimate was close to its

true value in order for one to correctly reject the above null hypothesis.  The performance of the

pretest procedure deteriorates with increases in the concentration parameter, and this is due to the

fact that the pretest is more likely to select the IV estimator (that controls for endogeneity) when

there is considerable explanatory power in the reduced form regression (equation 3.2).

The second panel of graphs in Figure 7 explains why the estimators performed this way

when testing the hypothesis  H0 : �1= 0.8  versus  HA : �1  � 0.8.  When there is no error

correlation,  the OLS estimator is unbiased and its smaller variance allows it to reject the null

hypothesis approximately 25% to 75% of the time. As the error correlation rises, the OLS
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estimator becomes increasingly more biased and it consequently almost always “rejects” the null

hypothesis.  The IV estimator, on the other hand, is close to unbiased for all error correlations. 

Its relatively large variance does decrease with increases in the concentration parameter, but its

sampling variability is invariant to the level of the endogeneity bias. 

The results of the experiments for the second form of the hypothesis  test are displayed in

Figure 8, where the hypothesis test is H0 : �1=1.2  versus   HA : �1 �1.2; we set the probability of

Type I error to 5%.  Here, since the true value is 1.0, the “correct” decision is to fail to reject the

null hypothesis. In terms of the heuristic example of the benefits of the program, the true level of

the benefits is actually lower than the cost. For this test (and the DGPs), the IV estimator almost

never yields a false rejection of the null hypothesis. The OLS estimator, however, would cause

one to reach an incorrect decision about half of the time. The performance of the pretest

estimator, in this instance, improves with increases in the concentration parameter. This is

because the pretest estimator is less likely to select the biased OLS estimator.

IV.6 More Than One Instrumental Variable

It has long been known that TSLS estimators from exactly identified models (one

instrumental variable for each endogenous explanatory variable) can be quite imprecise (Sawa,

1969). This happens in this case because the TSLS estimator is defined by the ratio of two

regression coefficients. The small sample distribution of this estimator does not have well-

defined moments, including the mean. But as the number of identifying restrictions increase, the

TSLS estimator possesses higher and higher order moments. This suggests that there might be

important precision gains from the researcher using additional instrumental variables even if

these additional instruments do not improve the goodness of fit for the first stage regression.  It is
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important to note, however, that adding additional “instrumental variables” that have no

additional explanatory power adds more noise to the first stage predictions, and this might lead to

estimators that are more biased in small samples.

To assess the extent that additional instrumental variables can affect the performance of

the TSLS estimator we designed the Monte Carlo experiments to have different numbers of valid

instrumental variables without changing the explanatory power in the first stage regressions as

defined by equations (2.7) and (2.7'). In particular, we defined 24 independent,  normally

distributed explanatory variables each with mean zero and variance 1/24, w1,i  through  w24,i . We

defined the single instrumental variable zi in the DGP defined by (2.5) and (2.7) as the sum of

these 24 variables. This generates the standard normal variable zi  we used to generate all of the

“data” in all of the above experiments.  

We also defined sets of multiple instrumental variables based upon the same set of

variables  w1,i  through  w24,i .  We did this for experiments using 2, 3, 4, 6, 8, 12, and 24 valid

instruments.  For example, when the number of identifying instruments R in equation (2.7') was

three we defined the first instrument, z1,i as the sum of the first eight w’s, the second instrument,

z2,i , as the sum of the next eight w’s and the third instrument, z3,i , as the sum of the last eight

w’s.  This approach ensures that the true explanatory power of this set of multiple instruments is

identical to the explanatory power of the single instrument used to generate the data and in the

above experiments at the true parameter values.  If one imposed the true restriction that all of the

coefficients on the identifying  instrumental variables in equation (2.7') were identical, one would

obtain exactly the set of estimators already analyzed with only one instrumental variable. This



MEASURE Evaluation 30

11We found nearly identical results to those reported for the “overidentified” models
below when we used as instrumental variables the original exactly identifying instrument zi plus
independently drawn normal random variables. In this case, all of the additional instruments are
clearly irrelevant.

approach, then, allows us to assess the impact of having multiple instrumental variables without

changing the true explanatory power of the instruments as a set.11

Figure 9 summarizes the results of the experiments based on the same “data” as above but

when we have an overidentified model with either 2, 3, 4, 12, or 24 instrumental variables. The

first row of graphs displays the bias of the IV estimators. Even for the lowest values of the

concentration parameter, each of the “overidentified” estimators has a smaller bias than the OLS

estimator. Recall from Figure 4 that the IV estimator for the exactly identified specification was

exceptionally noisy for values of the concentration parameter below 5, so there does appear to be

an important improvement by having an overidentified model when the concentration parameter

is small. The bias does increase appreciably with 12 and 24 instrumental variables. However,

even for these cases there is less bias than with the OLS estimator.

The second row of Figure 9 presents the mean square errors for the estimators with

different numbers of instrumental variables.  At low values of the concentration parameter the

specifications with 2, 3, and 4 instrumental variables do dominate the mean square errors from

the exactly identified model presented in Figure 4, and there are large improvements from using

12 or 24 instrumental variables. For the set of error correlations we examined in these Monte

Carlo experiments, the value of the concentration parameter where the IV estimators appear to

dominate the OLS estimator in terms of MSE does not appear to depend much on the number of

instruments. In all cases in Figures 4 and 9 the OLS estimator appears to dominate each of the 

IV estimators until the concentration parameter reaches a value well over 25. 
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12The review paper by Stock, Wright, and Yogo (2002), and many of the earlier authors
they cite, discuss additional metrics for when the IV estimator performs well in terms of small
bias and correct coverage probabilities (i.e., size of test). These previous studies typically do not
discuss the more realistic situation we attempt to examine here, namely where one finds it
necessary to choose among the point estimates provided by the various estimators.  

Figure 10 examines the empirical sizes of the tests using the instrumental variables and

pretest estimators when there are multiple instrumental variables. The first graph in this table

examines the probability of false rejection of the null hypothesis for the instrumental variables

estimator when the error correlation is zero for models with 4, 8, 12, and 24 instrumental

variables and no additional true explanatory power. According to this graph, using more

instruments helps to raise the low rejection probability to a value closer to the desired 0.05 when

the concentration parameter is low. These extra instruments do not appear to affect the bias in the

empirical size much at higher values for the concentration parameter. The second graph in Figure

10 examines the empirical size for the pretest estimator using 1, 8, 12, and 24 instrumental

variables.  For this estimator, adding additional instrumental variables appears to make the

empirical size exceed the desired size at low values of the concentration parameter, while it has

little effect on the size of the test at higher values of the concentration parameter. 

 

V. Summary of the Evidence on the Performance of the Estimators

Perhaps the most important result from this analysis of the estimators of the impact of a

possibly endogenous continuous explanatory variable on a continuous outcome is that the choice

of estimator that one would prefer depends on what one wants to do with the estimates.12   If the

criterion is that one wants an estimator whose average is the closest to the true value across all

possible values of the error correlation we examined, then according to Figure 4 one would

almost certainly want to choose the instrumental variables estimator instead of the OLS or the
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13Recall, we used possible error correlations of 0.0, 0.05, 0.10, 0.15, 0.20, and 0.33. With
equal probabilities like we used to summarize our DGPs this yields a  “mean” error correlation of
0.136.

pretest estimator since it has the smallest bias of all of the estimators we considered.  Figures 9

and 10 suggest that one might even want to include some “superfluous” instrumental variables in

order to reduce the extreme variability of the instrumental variables estimator when the value of

the concentration parameter is below 5 or 10. As a rough rule of thumb, in an exactly identified

model where the t-statistic for the single instrument is less than 2.5 (6.25 for the F-statistic), if all

one cares about is bias and size of the test, then one should consider adding some noise to first

stage regression by adding several  irrelevant (and hence invalid) instrumental variables to the

model. While such an augmented  IV estimator does have appreciable bias at very low

concentration parameter values, its bias is still well below that of the OLS estimator. Almost as

important, in terms of bias we found no evidence that a pretest estimator dominated the IV

estimator, even at low values of the concentration parameter.

If instead one cares about the mean square error of the estimator as the sole  measure of

the usefulness of the estimator, then one should use  much different criteria for selecting an

“appropriate” estimator. Our experiments showed that the concentration parameter, an estimate

of which is easy to obtain, was very useful in choosing among estimators.  In particular, for the

array of possible error correlations we investigated, if the concentration parameter is below 25

one should only rely on the biased OLS estimator. If the concentration parameter falls between

25 and 50, then the IV, OLS, and pretest estimators have about the same performance in terms of

MSE. When the concentration parameter exceeds 50, the IV estimator provides the smallest

mean square errors. Of course if one’s prior beliefs about the possible values of the error

correlation were different from those that we used in our experiments,13  then one should
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consider different cutoff values for selecting the estimator. For example, if one thought that the

error correlation was high, then one should select the IV estimator at lower values of the

concentration parameter. The results displayed in Figure 5 suggest that one should use roughly

the same cutoff points as for the MSE criterion when selecting an estimator that is most

frequently going to be closest to the true value of the parameter. 

There are two important implications from these results for the bias, MSE, and testing

size metrics. The first is that we found almost no evidence of situations where the pretest

estimator would dominate both the OLS and the IV estimators. In general, it inherited most of 

the worst properties of each of the other two estimators. This finding coincides with Greene’s

(1997 p. 408-411) dismissal of pretest estimators as a method for deciding whether to include an

additional regressor in an ordinary least squares regression model.

The second major implication from these Monte Carlo results concerns the limited

usefulness of the IV estimator in situations where one cares about obtaining an estimator that is

likely to be close to the true parameter value, as opposed to looking for an estimator that is only

close to the truth “on average.” For the moderate levels of error correlation that we examined, for 

either the MSE criterion or the “closest to the truth” criterion, one would not want to use an IV

estimator unless the t-statistic on the identifying instrumental variable were at least 5 or 6 in the

first stage regression (or, stated differently, with p-values smaller than 6�10-6 or 2�10-9). Such large

values of the t-statistic are quite uncommon in micro-empirical studies that attempt to control for

endogeneity.

A third and somewhat surprising conclusion is that the pretest estimator appears to do

little to improve the properties of the estimators.  For the most part using a simple exogeneity test

based upon sample data to choose between the OLS and IV estimators provides a “composite”
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estimator that does little to minimize the worse features of each estimator. For many of the

outcomes we considered and for our range of data generating processes, there would seldom be a

reason to use a simple statistical test to help one choose between the naive OLS estimator and the

IV estimator. Many researchers who carry out such pretests might need to reassess whether this is

a viable model selection rule. 

Our two examinations where the metric for assessing the estimators was the proportion of

time one would make a correct decision based upon a test statistic reveal how important it is that

one understand the precise reason for the need to choose one estimator over another. It also

highlights how important out-of-sample information can be in assisting a researcher to reach a

“correct” conclusion. For the results summarized in Figure 7, if one knew the truth one would

certainly want to make the decision implied by the “rejection” of the null hypothesis H0 : �1=0.8 

in favor of the alternative  HA : �1 �0.8.  But even with concentration parameters as high as 500

(i.e., a t-statistic over 20 on the instrumental variable), the IV procedure would yield a correct

conclusion only about 25% of the time.  In Figure 8, for the case of the null hypothesis H0 :

�1=1.2 and the alternative  HA : �1 �1.2, the situation is almost the reverse, with the IV estimator

almost always yielding the “correct” decision and the OLS estimator missing the mark about

50% of the time. 

In these all or nothing situations, just a small amount of external information about the

magnitude of the likely bias and a likely range for the true impact could help the researcher to

choose the estimator that might yield the better conclusion. An even better approach might be to

re-evaluate the use of the hypothesis test as a criterion for making a particular decision. A more

decision-theoretic or Bayesian framework could yield much better decisions, but that is beyond

the scope of this paper.  But what is clear from this analysis is that one really cannot decide
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which estimator will in general be “best” without an explicit statement about the gains from

making a correct decision and the costs from making an incorrect decision for the possible values

of the impact of  y2,i on y1,i . In general there is no “best”estimation  procedure that one can

choose without an explicit recognition of the costs and benefits from making each possible

decision as a function of the possible values that the parameter of interest might take. 
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Figure 1
Average Bias of OLS Estimator by Level of the Error Correlation 
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Figure 2
Biases of Three Estimators as a Function of Sample Size and Concentration Parameter Value
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Figure 3
Mean Square Error of Three Estimators as a Function of Sample Size

and Concentration Parameter Value
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Figure 4

Biases and Mean Square Errors of Three Estimators for a Continuous Outcome 
Depending on a Potentially Endogenous Continuous Regressor
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Figure 5

Empirical Calculations of the Size of Hypothesis Tests

Size of 5% Tests; Average Across Error Correlations
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Figure 6
Proportion of Experiments where each Estimator’s Estimate Lies Closest to the True Value

Fraction of Time Estimates are Closest to the True Value
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Figure 7
Proportion of Correct Rejections of  H0 : �1=0.8 versus HA : �1 �0.8 

 (Truth is �1=1.0) 
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Figure 8
Proportion of False Rejections of  H0 : �1=1.2 versus HA : �1 �1.2  

(Truth is �1=1.0) 
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Figure 9 

Additional Instruments Having No Additional Explanatory Power
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Figure 10

Size of Tests with More than One Instrumental Variable

Size of 5% Test When Error Corr=0.00
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Appendix Figure 1

Biases and Mean Square Errors of Three Estimators for a Continuous Outcome 
Depending on a Potentially Endogenous Continuous Regressor by Error Correlation

Biases as Functions of the Concentration Parameter
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