
 1

F I N A
 INTERNATI NAL

Programmers’ Technical
Reference Manual

United States Agency
for International Development

 2

Table of Contents
1. Introduction.. 4
2. System Scope .. 4

2.1. Hardware & Software Requirements.. 5
2.1.1. Hardware ... 5
2.1.2. Software.. 6
2.1.3. Network .. 6

2.2. Programming Skills Required .. 6
2.3. Development Environment.. 6
2.4. System Design Tools... 7

3. FinA Functional Design .. 8
3.1. Data Flow ... 8
3.2. Data Model...10
3.3. Basic Application Design ...11
3.4. Basic Class Design ..11

4. Technical System Design ..11
4.1. Overview ..11
4.2. Application’s Tiers ...12
4.3. UI Manager..13
4.4. Menu Customization & Actions ...13
4.5. Message Bundle...14
4.6. Configuration ..15
4.7. Business Logic ...15

4.7.1. Overview ..15
4.8. FinA Enterprise Java Beans ...15
4.9. Transactions’ Types ...18
4.10. Security..19

4.10.1. Entity Beans...19
4.10.2. Client...19
4.10.3. Server..19

4.11. Return Processing..20
4.12. Database..23

4.12.1. Tables Structure Overview ...23
4.12.2. Stored Procedures...25

4.13. Procedures involved in Reporting...26
4.14. Configuration ...26
4.15. Patterns..26

4.15.1. Overview ..26
4.15.2. EJBTree Pattern ...27
4.15.3. EJBTable Pattern ...28

4.16. Reporting ..31
4.16.1. OpenOffice.org CALC ...31

4.17. Application Server...32
4.18. Configuration Properties..33
4.19. Build (version) Management..34
4.20. Development Environment...34
4.21. Directories...34
4.22. The Build Procedure ...35

5. Installation Package Build..35
6. Database Modification Procedure...39
7. Coding Standards..39
8. Naming Conventions ...39
9. Code Security ...40
10. Reference...41

 3

List of Figures
FIGURE 2.4.1, GENERATE HTML.. 7
FIGURE 3.1, FINA-DEPLOYMENT DESIGN... 8
FIGURE 3.1.1, FINA INTERNATIONAL DATA FLOW DIAGRAM ... 9
FIGURE 3.2.1, FINA INTERNATIONAL SYSTEM DATA MODEL ...10
FIGURE 3.2.2, THE BANK REGULATORS OFF-SITE MONITORING SYSTEM DATA MODEL10
FIGURE, 3.3.1, FINA INTERNATIONAL – ARCHITECTURE ..11
FIGURE 4.4.1, ACTION REGISTRATION ..14
FIGURE 4.7.1, FINA BUSINESS LOGIC ...15
FIGURE 4.10.3, LOGIC SEQUENCE ...20
FIGURE 4.11.1, SEQUENCE DIAGRAM ...23
FIGURE 4.15.2.1, EJB TREE PATTERN ..27
FIGURE 4.15.2.2, AMEND ACTION LOGIC ...28
FIGURE 4.15.3.1, EJB TABLE PATTERN ..29
FIGURE 4.15.3.2, POP-UP MENU PATTERN..30

 4

1. Introduction

The purpose of the United States Agency for International Development (USAID) FinA
Programmers’ Technical Reference Manual is to guide the programmer with step-by-step
instructions to implement new ideas and make changes into the software package.

All files necessary to read and understand the guide are provided in the Programmers’
Guide/DOC subfolder:

/DOC/ClassDiagram_JavaDoc Folder
/DOC/DataBaseDiagram Folder
/DOC/Driver_JavaDoc Folder
/DOC/SourceCode Folder
/DOC/Functional Specifications Word Document
/DOC/helloworld_action.zip Java Samples
/DOC/ProgGuide_Apendix1_CamelManual.pdf Appendix
/DOC/ProgGuide_Apendix2_iso15408-3.pdf Appendix
/DOC/Xls2Xml.zip Demo Converter
/DOC/XML_Return.dtd Document Type Definition

2. System Scope

FinA International is an information technology (IT) tool that supports the off-site
banking supervision activities of the Supervisor of the Banking System (Supervisor).
FinA is a tool that enhances the Regulator’s analytical capabilities and increases the
overall effectiveness of supervisory strategies. One of the key components of effective
bank supervision is the review and analysis of returns (call reports) that banks are
required to submit periodically to the Supervisor. The content, format, and periodicity of
these returns are defined in the banking laws and regulations of the country.

Financial data from banks is sent to the Supervisor in the form specified in the
legal/regulatory framework. The information is then analysed by the Supervisor to ensure
compliance with regulation, to assess the financial stability of the institution, and to
analyse economic trends. Based on the data returned by a credit institution, its financial
condition is rated using financial ratios. These ratios are used to compare a bank against
its peers and predefined standards for that country.

The main report generated by the system is the Universal Bank Performance Report
(UBPR), which contains a report for each bank of its current financial position, the
CAMELS analysis, time series analysis of its key financial indicators, and its peer group
and ranking within that group. This report also provides the same analysis for the banking
system as a whole.

The usefulness of off-site supervision is dependent upon the timeliness, accuracy, and
usefulness of the financial data submitted and the timeliness and quality of the analysis

 5

performed. Through automation that delivers improved accuracy and speed of data, the
FinA system can significantly enhance the quality of off-site supervision.

Bank returns are submitted to the Supervisor in a variety of formats (Excel, text files,
etc.). These files must then be converted to XML files to be used in the FinA system.
Once the files are converted to FinA XML, they can be processed by the system and
placed in the database. DTD of this XML can be found in DOC/return.dtd file. For an
example of such converter from XLS to XML file, see in DOC/XLS2XML.ZIP. The
converter maps data from the existing format (XLS, DBF, TXT, etc) to the FinA structure
described as Metadata.

2.1. Hardware & Software Requirements

2.1.1. Hardware

FinA is written in Java and has three-tier system architecture and accordingly has
minimal requirements on hardware for the client machines.

q Hardware For FinA Client Work Station:

Minimum Configuration: Pentium II class - RAM 64 MB, 40 MB free disk space,
10/100 Mbps Ethernet NIC, SVGA 800x600

Recommended Configuration: Pentium II class - RAM 256 MB, 40 MB free disk
space, 10/100 Mbps Ethernet NIC, SVGA 800x600

q Hardware For FinA App Server:

Minimum Configuration: Pentium II class – random access memory (RAM) 128
MB/50 MB for application server files, plus necessary space for database
(approximately 200 MB for one year of data for smaller Central Banks), 10/100 Mbps
Ethernet NIC, SVGA 800x600

Recommended Configuration: Pentium III class - RAM 512MB, 20GB HDD,
10/100 Mbps Ethernet NIC, SVGA 800x600

q Hardware For Database Server:

For the minimum as well as recommended hardware configuration information,
please go to http://www.microsoft.com/sql/default.asp

Note: The amount of RAM required for running the Database server depends on the
size of the database and the administration tools being used. A typical installation of a
Database server requires a minimum of 300-400 MB of disk space.

 6

2.1.2. Software

The list of software requirements follows:

q Operating system for the client: MS Windows 98/NT/2000/XP
q Software for the client and application server: FinAClient and FinAServer

(included in the installation package)
q Database Server: MS SQL 7.0/2000

2.1.3. Network

FinA does not need a high-speed network because all logistical calculations take place on
the server. Actually, 1 Mbps IP-based LAN is sufficient to run and maintain the system.
An IP protocol must be installed and properly configured in working environment. (for
more information, see Chapters 4.6, Configuration; and 4.10, Security). Basic
recommendations are for 10 Mbps network from the Workstations to the Application
server and 100 Mbps from the Application server to the database server (if they are
running on different machines).

Note that the current version of FinA, version 0018d7, cannot be installed and
configured as standalone. For further information please refer to the FinA
Installation and Configuration Manual.

2.2. Programming Skills Required

Programmers that plan to work on the FinA system should have at least the following
skills:

OS - Windows 2000/XP
Java - Java2, Forte 4, JSP (preferable)
EJB - JBoss 3.0
Spreadsheets -OpenOffice.org 1.0 Calc
MS SQL Server 2000/7.0 (Maintains, Stored procedures, etc)

2.3. Development Environment

q The application is written in Java using Forte (community edition) on a Windows

2000/XP platform against a Microsoft SQL Server 7/2000 database.
q The Java JDBC driver is used for the interface.
q Swing components are used throughout the UI
q JBoss 3.0 is the application server
q Data Base design is done in Visio 2000
q System design was done in the Together Control Center
q FinA v0018e was tested only for Windows/MSSQL environment

 7

2.4. System Design Tools

System design and documentation was done using "Together Soft". For modifications to
the system, "Rational Rose", "Visio" or any other tool can be used. Below are the
procedures for "Together Soft".

Note: If a programmer does not plan to make any major changes to the system, s/he
will not need to use any system design tools.

To see FinA System design, copy file FinaJdoc.zip from the installation CD and unzip it
in C:\TogetherSoft\Together6.0.1\myprojects\ directory. Then run “Together” and open
C:\TogetherSoft\Together6.0.1\myprojects\FinA\ FinA.tpr.

If a programmer wants to add or change something in the programmers' documentation,
from the "Together Soft" menu s/he should click on Project/Documentation/Generate
HTML. Then select All under Scope (see Figure 2.4.1, Generate HTML below) and
click OK.

FIGURE 2.4.1, GENERATE HTML

The system will then begin to create the documentation. It takes approximately three to
five minutes to complete the generation process.

 8

3. FinA Functional Design

Refer to /DOC/Functional Specifications for information on the functional
specifications for FinA. A design chart in presented on Figure 3.1, FinA-Deployment
Design.

FinA - Deployment Design

Commercial Bank RegulatorCommunications

Interactive
entry

Import to
Data Matrix

Compliance Officer

Banks Back Office
Systems

key in

import & adjust

Data Server

Return Form File
Created

sign-off and
submit

Disk, FTP, E-Mail

MSSQL

 - Import
 - Process
 - Reject/Accept

NT4/2000/Linux/
Unix etc Server

Other Departments

Off Site Examiner

 - Generate
 Reports

Mnagement

Inform by telephone or e-mail
that rejected

 - Generate
 Reports
- Input

Monetary Policy Legal Officer

On-Site Inspector

- System Setup
- Define
Meta-Data-Tree
Return Forms &
Reports

Administrator / Designer

Off Site Exa miner

L iqu idator

FIGURE 3.1, FINA-DEPLOYMENT DESIGN

3.1. Data Flow

TheFinA system data flow is illustrated in Figure 3.1.1, FinA International Data Flow
Diagram.

 9

FinA International Data Flow Diagram

OR

FinA client

XML Converter

Reject file

Invalid file

Invalid
data

Request
clarification /
re-submission

A
pp

lic
at

io
n

S
er

ve
r

an
d

D
at

ab
as

e

Normalised Call
Report Data

Print call Report
Cumulative banking

sector reports i.e. peers,
ranks

CAMEL Ratios and
other analysis reports

(UBPR's)

Output to paper and / or screen

C
O

M
M

E
R

C
IA

L
 B

A
N

K

OUTPUTS

INPUTS

 Adjustment Data
Entry System

Static Data Maintenance

Data Transformation
System

Call report Definition
(Data tree)

file
interface

Invalid
data

Bank Back Office
Systems

Excel File
Format

or

FIGURE 3.1.1, FINA INTERNATIONAL DATA FLOW DIAGRAM

 10

3.2. Data Model

The data model of FinA is presented on Figure 3.2.1, FinA International System Data
Model and the off-site monitoring system data model is presented on Figure 3.2.2, The
Bank Regulators Off-Site Monitoring System Data Model.
FinA International System Data Model

Return
Forms

Definition

The Returns
from Credit
Institutions

Report
Definitions

Return
Schedule

Report
Aggregates &
Comparatives

Metadata
Trees

generated from

generated from

generated based on

Image of
Original Return

Filed

generated from

generated based on

FIGURE 3.2.1, FINA INTERNATIONAL SYSTEM DATA MODEL

The Bank Regulators Offsite Monitoring System Data Model

Return
Forms

Definition

The
Returns

from Credit
Institutions

Report
Definitions

Return
Schedule

A Returns
Event Log

(Audit Trail)

Metadata
Trees

Bank
License

Front-End
Data

Localized
Descriptions

Metadata
Tree

Return
Definition Data Commercial

Bank Details
Report

DefinitionLocalizationSystem
Definition

Localized
Descriptions

FIGURE 3.2.2, THE BANK REGULATORS OFF-SITE MONITORING SYSTEM DATA MODEL

 11

3.3. Basic Application Design

The architecture of the system is presented in Figure, 3.3.1, FinA International – Architecture.

FinA International- Architecture

Business
Functions

Presentation Layer

Data Base
Server

Client Side Java Application

JDBC

Locale Manager and Resources

Data
Managers

Da
ta

ba
se

 C
on

ne
ct

io
n

Import / Export

Application Server
Side EJB

Data Base Server

Resource
Management
& Loading
Balance

FIGURE, 3.3.1, FINA INTERNATIONAL – ARCHITECTURE

Client Side contains:

q Presentation layer - user interface coded in Java SWING.
q Locale management tools - font, formats, character sets can be defined in client side

modules.
q Import/export tools - Users can import and export data into the system according to the user

access rights and permissions.

Application server:

q Maintains all functionality and calculations, prepares data for presentation.
q Creates data connection with database through the JDBC driver
q Manages and sorts data, and generates relevant SQL queries.
q Manages resources and does load balancing.

 All data is stored in the MS SQL7/2000database server.

3.4. Basic Class Design

For basic class design information refer to file: /DOC/ClassDiagram_JavaDoc

4. Technical System Design

4.1. Overview

All parts of FinA follow similar design patterns. It is necessary to be familiar with these patterns
and rules in order to understand the architecture of FinA and to be able to modify the code or add
modules to FinA.

 12

This chapter describes all of the basic design patterns, which are necessary to become a FinA
developer.

Technologies used for FinA development:

q Java 2 Platform version 1.3.1
q Swing
q Forte Development Environment 3.0 or later
q Enterprise Java Beans (JBoss 3.0)
q XML (Apache Xerces)
q JDBC
q Open Office.org

JBoss is an open source application. Version 3.0 is used for FinA. It is based fully on J2EE and
supports all of the J2EE stacks. JBoss is located in FINA_INSTALL_DIR/server/jboss and has
the following directory structure:

/bin contains executables to run and stop the server
/catalina Tomcat WEB container
/client class libraries required for client applications
/lib JBoss core class libraries
/server contains sub-folders for different configurations, FinA uses
 “default”configuration
/server/default
/server/default/conf configuration files for default JBoss configuration
/server/default/deploy deployment directory
/server/default/lib extended libraries for default configuration
/server/default/log contains server logs
/server/default/tmp temporary files

In standard configuration JBoss 3.0. is used as Application Server, but it is possible to port FinA
on any J2EE compatible server. In FinA the JBoss core is used as the application server. It is an
Enterprise JavaBeans (EJB) server. JBoss core has minimal memory and disk space
requirements. JBoss runs very effectively on a machine with 64 megabytes of RAM, and
requires only a few megabytes of disk space. JBoss also supports ‘hot’ deployment. This means
that deploying a Bean is a simple as copying its JAR file into the deployment directory. If this is
done while the Bean is already loaded, JBoss automatically unloads it, then loads the new
version.

OpenOffice.org Calc is another open source application used in FinA. See Chapter 4.16.1,
OpenOffice.org Calc for more information on how OpenOffice.org interacts with FinA.

4.2. Application’s Tiers

Client application of FinA is based on Swing user interface. In the standard configuration
interaction with the server takes place by the RMI protocol. The application may also be
configured for working with IIOP or with other protocols, depending on the Application Server.

fina2.Main and fina2.UIManager classes are the core of the FinA Client Application. With the
assistance of these classes, different modules of the program can have access to the resources,
register themselves, and interact with each other.

 13

4.3. UI Manager

UIManager provides ability to manage the following parts of the Client side user interface:
q actions
q message bundles
q configuration
UIManager is available as a “public static” field in fina2.Main class and is accessible from any
part of client application. For example, fina2.Main.ui.getString(key) – returns String with
specified key from current locale’s message bundle.

4.4. Menu Customization & Actions

Actions are instances of classes implementing javax.swing.Action interface. Top actions, which
must be available globally (generally top menu bar actions) should be registered in UIManager at
program start time (inside initTopActions() method). Actions, which act only in the context of
separate dialog boxes or windows are local actions and should not be added to UIManager.

This feature simplifies menu bar customization process for the user. The user selects top actions
available in the system from a list and attaches them to menu bar items.

To illustrate what is necessary to create new FinA action, please review the “Hello World”
example below:
q Create new class HelloWorldAction extended from javax.swing.AbstractAction

public class HelloWorldAction extends AbstractAction {
 public HelloWorldAction() {
 }

 public void actionPerformed(java.awt.event.ActionEvent event) {
 }
}

q Write initialization, resources allocation, etc., code in constructor of the class (this code will

be executed at program startup)

 public HelloWorldAction() {
 super();

 main.setLoadingMessage(ui.getString("fina2.helloWorld"));

/* above line allows to show specified message in logo window during program
startup when system loads this action */

 putValue(AbstractAction.NAME, ui.getString("fina2.helloWorld"));

q dlg = new HelloWorldDialog(main.getMainFrame(), true);
q
 ui.loadIcon("fina2.helloworld.icon", "icon.gif");
 putValue(
 AbstractAction.SMALL_ICON,
 ui.getIcon("fina2.helloworld.icon")
);

 14

 ui.addAction("fina2.helloworld.HelloWorld", this);
 }
q Write action handler code in actionPerformed method
q Create an instance of the action, for example “new fina2.helloworld.HelloWorldAction();” in

fina2.ui.UIManager.initTopActions method

Full source code and compiled classes of this example can be found in folder
DOC\helloworld_action.zip.

An Action must register itself in the system by calling UIManager.addAction(String key,
javax.swing.Action action) method. The first parameter is a unique key of the action. The action
can be found and accessed from any part of the system with help of UIManager.getAction(key)
method and by using this key. It is recommended to use a full class name of the action as key.
The second parameter is an instance of the action.

The logical sequence for registering an Action is presented on Figure 4.4.1, Action Registration.

FIGURE 4.4.1, ACTION REGISTRATION

Note: The best way to create new action is to get an existing one and edit or replace
constructor and handler with your code because most actions are similar.

4.5. Message Bundle

According to current language settings UIManager loads the appropriate message bundle from a
file located on the client computer and makes it available for the client application.

Message Bundle file is located in FINA_INSTALL_DIR/conf directory.

 15

Also UIManager.getFont() method returns default font with default size according to current
language settings.

4.6. Configuration

UIManager’s putConfigValue(key) and getConfigValue(key) methods provide the ability for
different UI components (such as windows, dialog boxes etc.) to store their own configuration
parameters. For example, a window must store position and dimension values. The Return
Manager window must store settings of filter bar.

Any Java object implementing java.io.Serializable interface may be stored as a configuration
value. They will be serialized and saved into the configuration file at program finish and restored
at program start time.

4.7. Business Logic

4.7.1. Overview

Figure 4.7.1, FinA Business Logic shows the Business Logic Diagram of FinA, which outlines
the functions performed on the Client, and those functions performed on the Application server
and the Database server.

FinA International- Business Logic Diagram

Different Interfaces to display
data and/or inform ation (T rees,

Spreadsheets, Input/review Screens, etc…)

Client

Im port / Export
different files

App Server DB Server

Locale M anager and Resources

Report Designer and Generator Interface

M eta Data M anager

Check Permissions on
requested operat ion,

Prepare relevant
queries and stored

procedures

Send data/ca lculat ion
request to DB server

Manage Resources

Get Data from DB
perform ca lculat ions and
format result for send ing

to cl ient

Data Store

Dynamic
and Static

Stored
procedures

Export/Im port

FIGURE 4.7.1, FINA BUSINESS LOGIC

4.8. FinA Enterprise Java Beans (EJBs)

The following types of EJBs are used in FinA:
q Entity Beans with Bean Managed Persistence (BMP)
q Stateless Session Beans

 16

All Beans that have class names that end with “Bean” are the Entity Beans. Beans which have
names that end with “SessionBean” accordingly are Session Beans.

Since Bean Managed Persistence is used in FinA, all SQL queries are embedded in the Beans’
code and are not generated automatically by EJB container. This approach was chosen because
the main part of queries contains complex relations between the tables and therefore could not be
generated automatically. For example, for getting information about separate Metadata Tree
Nodes, it is necessary to select information about the node from the IN_MDT_NODES table and
its name from SYS_STRINGS table, which contains text strings based on the selected language.

The following table contains a list of EJBs used in FinA. See also class diagrams
/DOC/ClassDiagram_JavaDoc/index.html

Name Type Description

fina2.i18n.LanguageBean Entity
Allows creating, finding,
and accessing locales’
properties.

fina2.i18n.LanguageSessionBean Stateless
Session

Contains methods to
manage tables of system
locales see 5.3.3. EJBTable
pattern.

fina2.security.UserBean Entity

Allows creating, finding,
and accessing users’
properties. Check
permissions & banks/reports
access rights.

fina2.security.RoleBean Entity

Allows creating, finding,
and accessing user roles’
properties. Check roles’
permissions.

fina2.security.UserSessionBean Stateless
Session

Contains methods to
manage tree of users/roles
see 5.3.2. EJBTree pattern.

fina2.ui.menu.MenuBean Entity
Allows creating, finding,
and accessing menu items’
properties.

fina2.ui.menu.MenuSessionBean Stateless
Session

Contains methods to
manage menu tree see 5.3.2.
EJBTree pattern.

fina2.metadata.MDTNodeBean Entity
Allows creating, finding,
and accessing metadata
nodes’ properties.

fina2.metadata.MDTSessionBean Stateless
Session

Contains methods to
manage Metadata tree see
5.3.2. EJBTree pattern. Find
dependencies between
nodes. Find Return
Definitions where specified
node is used.

fina2.bank.BankTypeBean Entity
Allows creating, finding,
and accessing bank types’
properties.

 17

fina2.bank.BankSessionBean Stateless
Session

Contains methods to
manage tables & hierarchy
of banks, bank types, bank
groups, bank licenses,
branches see 5.3.2. EJBTree
pattern & 5.3.3. EJBTable
pattern.

fina2.bank.BankBean Entity
Allows creating, finding,
and accessing banks’
properties.

fina2.bank.LicenceBean Entity
Allows creating, finding,
and accessing bank licenses’
properties.

fina2.bank.BranchBean Entity
Allows creating, finding,
and accessing bank
branches’ properties.

fina2.bank.BankGroupBean Entity
Allows creating, finding,
and accessing bank groups’
properties.

fina2.bank.LicenceTypeBean Entity
Allows creating, finding,
and accessing bank license
types’ properties.

fina2.period.PeriodTypeBean Entity
Allows creating, finding,
and accessing period types’
properties.

fina2.period.PeriodBean Entity
Allows creating, finding,
and accessing periods’
properties.

fina2.period.PeriodSessionBean Stateless
Session

Contains methods to
manage tables of periods
and period types see 5.3.3.
EJBTable pattern.

fina2.returns.ReturnTypeBean Entity
Allows creating, finding,
and accessing return types’
properties.

fina2.returns.ReturnDefinitionBean Entity

Allows creating, finding,
and accessing return
definitions’ and tables’
properties.

fina2.returns.ReturnSessionBean Stateless
Session

Contains methods to
manage tables of returns,
return definitions,
schedules, return types (See
5.3.3. EJBTable pattern).
Change statuses of returns
and get history of return
statuses.

fina2.returns.ProcessSessionBean Stateless
Session

Contains methods for return
processing, import, file
robot.

fina2.returns.ScheduleBean Entity Allows creating, finding,
and accessing schedules’

 18

properties.

fina2.reportoo.server.ReportBean Entity
Allows creating, finding,
and accessing reports’
properties.

fina2.reportoo.server.OOReportSessionBean Stateless
Session

Contains methods to
manage reports tree. (See
5.3.2. EJBTree pattern).
Generate and store reports.

fina2.reportoo.repository.RepositorySessionBean Stateless
Session

Contains methods to
manage hierarchy of
formulas in reporting
repository (See 5.3.2.
EJBTree pattern).

4.9. Transactions’ Types

Transaction management in FinA is carried out by the Application Server.
The following types of transactions are used in FinA:

1. Bean Managed Transactions
2. User Transactions
3. Container Managed Transactions

1. Bean Managed Transactions are used for operations that require more time to perform,
such as Return Processing and Report Generation. In these cases selection of source data and
calculation of results occurs before the transaction takes place. The transaction is initiated inside
of Session Bean method before the results of the calculation must be stored in the database.

For example, the fina2.returns.ProcessSessionBean performs return processing by collecting the
values of the nodes involved in the processing of a given return without actually performing the
transaction and therefore does not lock the database for other users. After collection of source
data and calculations are finished, it initiates transaction in the following way:
 javax.transaction.UserTransaction tran =
 jndiContext.getUserTransaction();

 tran.begin();
 try {
 /* perform database update with calculated values */
 …
 tran.commit();
 } catch(Exception e) {
 tran.rollback();
 }

2. User Transactions are used in cases where the transaction must be performed by the
Client application. For example, when Amend Dialog has to store its fields by using several
methods of Entity Bean, if an error occurs while using one of these methods, actions which were
already performed by the other methods, must be cancelled. This type of transaction is only used
in the EJBTree & EJBTable patterns.

 19

3. Container Managed Transactions are used in all other cases and have the “Required”
attribute.

Information about which types of transactions are used in Beans can be found in EJB application
file - fina2_server.jar/META-INT/ejb-jar.xml

4.10. Security

Authorization and users’ rights control is realized with features that are part of the FinA
application and do not use the features of the Application Server or the operating system.

All classes, which are associated with security, are located in the package fina2.security.

4.10.1. Entity Beans

Entity Bean – fina2.security.UserBean is the fundamental component of the FinA security
system. Any part of the program can get a handle (an object that identifies an Enterprise Bean) to
the copy of the UserBean of a currently logged in user and check its rights through the
assistance of UserBean.hasPermission(), UserBean.canAccessBank(), etc.

4.10.2. Client

The Client Application checks the user’s permissions only when it has to disable or enable
different buttons and correctly display the user interface. This operation happens through
UserBean.hasPermission() method.

4.10.3. Server

In other cases the control of users rights is performed by the server and the client only has to
catch fina2.PermissionDeniedException to show the appropriate message dialog.
For example fina2.returns.ReturnSessionBean contains the method getReturnDefinitionsRows()
which returns the list of return definitions. This method checks who has user rights to review or
amend return definitions through the assistance of the
UserBean.hasPermission(“fina2.returns.definition.amend”) &
UserBean.hasPermission(“fina2.returns.definition.review”). If the user does not have these
permissions and tries to open the return definitions dialog window which calls
getReturnDefinitionsRows(), the server will throw the message PermissionDeniedException to
the client and the client application must catch it and show dialog window with appropriate error
message.

Usage of UserBean and hasPermission() method is eliminated in EJBTree & EJBTable patterns.

The diagram in Figure 4.10.3, Logic Sequence shows user login sequence.

 20

FIGURE 4.10.3, LOGIC SEQUENCE

The list of permissions available in the system is stored in table SYS_PERMISSIONS in the
database and is accessible through UserSessionBean.

The names of the permissions are based on the name of the package to which they are related.
For example, the right to edit the Metadata Tree will have the key “fina2.metadata.amend”.

4.11. Return Processing

Return processing happens with the assistance of the fina2.ui.ProcessSessionBean. This Stateless
Session Bean has following functionality:
q Calculates the values of “variable” nodes
q Controls and updates the statuses of the returns
q Controls versions of returns
q Checks dependencies between returns and performs necessary calculations of related

variables

See the Sequence Diagram in Figure 4.11.1.

As shown on the diagram "Processing" consists of following steps:
q Checks if the current user has permission to process returns or not
q Finds returns and all its variable nodes in the database
q Finds nodes from other returns on which current return depends
q Executes scripts of variable nodes for each return that is involved

 21

q Updates the status and version of each modified return
q Updates the database with calculated values

 22

 23

FIGURE 4.11.1, SEQUENCE DIAGRAM

Netscape’s Java Script interpreter, Rhino, is used for variables calculations during processing. Its
source code, binaries, and documentation are available at http://www.mozilla.org/.

Scripts can be executed by using the fina2.script.Engine class which contains static methods for
that purpose. This class was developed in order that the system would be able to use other Java
Script interpreters. It is possible to replace Rhino with another interpreter.

4.12. Database

Financial information from banks (returns) are submitted in different types of files (Excel, text,
etc.) depending on the regulations in each country. These files must be converted to an XML file
that is compatible with FinA before it can be processed by the system and placed in the database.
The DTD of the FinA version of XML can be found in DOC/XML_Return.dtd file. An
example of a converter from an XLS file to FinA XML file can be found in DOC/Xls2Xml.zip.
The converter maps data from existing format (XLS, DBF, TXT, etc.) to the FinA structure
described as Metadata.

Data is stored in the following table: In_Return_Items.

Converter

@-Mail

XLS, DBF, DB,
TXT, XML, etc

RETURN

FINA
Format

RETURN

4.12.1. Tables Structure Overview

The FinA Database contains three types of tables. Each of these types of tables begins with
different prefixes SYS, IN, and OUT:
q SYS tables contain system information such as menu structure, users’ rights, locale

descriptions, and text strings in different languages.
q IN tables contain the meta-structure of input data, information about banks, periods, and

input data.
q OUT tables describe output data of the system – reports and all related information.

Three main types of data stored in the FinA database are:
q structure of the input forms (Returns)
q data from returns
q output forms (Reports)

The structure of Returns consists of the metadata tree, return definitions, and return types. This
structure must be created based on the specific banking regulations in each country. The
Metadata Tree is stored in the tables, which have names that start with IN_MDT_...

 24

Return definitions are stored in IN_RETURN_DEFINITIONS and IN_DEFINITION_TABLES
tables.

Return types are stored in the IN_RETURN_TYPES table.

Returns1 and their data are stored in IN_RETURNS and IN_RETURN_ITEMS tables.

Definition of output reports is stored in table OUT_REPORTS.

The IN_RETURN_ITEMS table is the largest in the system. It has numerous indices and
requires special attention during the composition of queries. This table continuously collects data
from the returns and its size increases over time more than any of the other tables.

IN_RETURNS contains the list of returns. This table contains only the headers and the values
are in the IN_RETURN_ITEMS table.

IN_RETURN_STATUSES contains the history of modifications to the returns.

IN_RETURN_TYPES contains the list of return types.

IN_SCHEDULES contains the list of schedules.

IN_MDT_NODES contains the Metadata tree hierarchy.

IN_MDT_DEPENDENT_NODES contains the dependencies between nodes in the Metadata
tree.

IN_MDT_COMPARISON contains comparison rules for the Metadata tree nodes.

IN_RETURN_DEFINITIONS contains return definitions.

IN_DEFINITION_TABLES contains a description of the return definition tables.

IN_BANKS contains the list of banks and information on these banks.

IN_BANK_GROUPS contains the list of bank peer groups.

IN_BANK_TYPES List of bank types.

IN_BANK_BRANCHES contains information about bank branches.

IN_PERIODS contains a list of the periods for the bank returns.

IN_PERIOD_TYPES contains the list of period types.

1 The data in the returns is submitted by the commercial banks in the format that is specified by
the banking regulations in that country. This data may be received in a number of different
formats and it must be converted to the FinA version of XML in order for it to be processed by
FinA and placed in the database. DTD of this XML can be found in DOC/XML_Return.dtd file.

 25

The SYS_STRINGS table is also important because it has relations with many other tables. It
contains text strings that connected to concrete objects and has versions in different languages.

The SYS_LANGUAGES table describes the languages found in the system.

The SYS_MENUS table contains the menu structure.

The SYS_PERMISSIONS table contains the list of permissions that are available in the system.

The SYS_ROLES table contains the list of the user roles.

The SYS_ROLE_PERMISSIONS tables contain the permissions for each user role.

The SYS_USERS table contains user information.

The SYS_USER_BANKS table contains banks access rights for each user.

The SYS_USER_MENUS table contains the menus that are accessible for each user.

The SYS_USER_PERMISSIONS table contains the permissions for each user.

The SYS_USER_REPORTS table contains the access rights for reports for each user.

The SYS_USER_ROLES table contains the roles assigned to each user.

(See database diagram. /DOC/ DataBaseDiagram/index.html)

4.12.2. Stored Procedures

Stored Procedures are used in the two parts of FinA that process large volumes of information
and are performance critical:

• Return Processing
• Reporting

Procedures involved in Return Processing:
prepare_process_items This procedure creates a temporary table IN_PROCESS_ITEMS

and fills it with values from a specified return. This table will be
used by other procedures during processing.

get_all This procedure selects values from the Return and sends them to a
result set.

get_dependents This procedure selects the values of the nodes from other Returns
on which variables from the specified Return depend.

get_process_items This procedure selects the whole IN_PROCESS_ITEMS table.
calculate_node This procedure calculates the sum, average, max, min, or count of

sub-nodes according to node’s “evaluation type” and updates the
IN_RETURN_ITEMS with calculated values.

var_count This procedure calculates the number of variables in the specified
Return.

deallocate_process_items This procedure saves a temporary table to
IN_PROCESS_ITEMS.

 26

4.13. Procedures involved in Reporting

The procedures for Reporting are not full-fledged stored procedures. The procedures that are
dynamically generated during report generation are not permanently stored in the database. All
calculations and data groupings performed by these procedures are done by the SQL server. The
results of these calculations are placed in a temporary table called “rep_result”.

The procedures for Reporting perform the following operations as part of a single transaction:

1. Calculate periods’ offsets and recognize which periods are involved in the report

2. Sort recognized periods and place their IDs and sequence numbers in temporary table

“per_offsets”

3. Select values of return items and place them in temporary table “middle”

4. Perform data grouping and calculations of PEER/ALL BANKS/PCT aggregates according to
banks, peer groups, periods, etc., with help of cursors and data collected in tables “middle”
and “per_offsets”

5. Place results of the in “rep_result” table

6. Delete temporary tables by selecting the whole “rep_result” table and deleting it from the
database.

4.14. Configuration

The database connection configuration takes place in the JBoss configuration files and is
described in the “FinA Site Customization Manual”.

FinA uses JDBC driver from Microsoft for MS SQL Server, which is available at
http://www.microsoft.com/.

JBoss has built-in connection pool capabilities. The size of the pool and the maximum number of
connections that can be opened at the same time can be configured by the application server
tools. The maximum number of simultaneous connections is also related to type and license of
SQL server that is used.

4.15. Patterns

4.15.1. Overview

In order to unify the overall development process, similar functions in the system follow the
same patterns. These patterns were developed based on an analysis of the system's functionality.

The user interface of FinA is based on three main types of windows, which display following
types of information:
q Tree
q Table
q List

 27

Appropriate patterns are designed for each of these types of windows.

4.15.2. EJBTree Pattern

The EJBTree Pattern describes collaboration between the Client side GUI and server side EJBs.
All data in the system that must have a tree representation should be processed using this pattern.
A chart is presented on Figure 4.15.2.1.

FIGURE 4.15.2.1, EJB TREE PATTERN

For each data type (such Metadata Tree, Menu Tree, Users/Roles Tree, etc.) an appropriate
Session Bean exists. For example the diagrams in this chapter illustrate the
fina2.metadata.MDTSessionBean for Metadata Tree.

These Stateless Session Beans have the getTreeNodes() method which allows for the retrieval of
the structure of a given tree from the database and the returns of its root node. The root node is
then passed as a parameter to fina2.ui.tree.EJBTree.initTree() and a tree is displayed.

The fina2.ui.tree.Node class contains primary key and type properties. It is possible to specify
different icons and pop-up menus for different types of nodes in the EJBTree.

For example, after an amend action is performed in a pop-up menu or button, the action listener
should trigger the following operations:

• obtain selected node from the tree
• find appropriate Entity Bean by node’s primary key
• show Amend dialog box for the Entity Bean and get/set its fields

 28

FIGURE 4.15.2.2, AMEND ACTION LOGIC

Entity Beans perform validation of values passed to them using “set” method and in case the
value is not acceptable they throw java.beans.PropertyVetoException with description message.

Parts where EJB Tree pattern is used:

Name Package Client classes Server classes
Metadata Tree fina2.metadata MDTAmendFrame

MDTInputAmendDialog
MDTNodeAmendDialog
MDTVariableAmendDialog

MDTSessionBean
MDTNodeBean

Banks fina2.bank BanksFrame
BankAmendDialog

BankSessionBean
BankBean

User Manager fina2.security UsersFrame
UserAmendDialog
RoleAmendDialog

UsersSessionBean
UsersBean

Report Manager fina2.reportoo ReportManagerFrame
Designer
Generator
FolderAmendDialog

ReportSessionBean
ReportBean

4.15.3. EJBTable Pattern

This pattern should be applied to data which must be represented as rows of a table or list.

 29

Similar to the EJBTree Pattern, for each data type (such as Return Definitions, Returns, Periods,
etc.) a specific Session Bean exists which retrieves the table’s data as collection of rows.

The collection of fina2.ui.table.TableRow objects returned by Session Bean should be passed to
fina2.ui.table.EJBTable.initTable() method.

FIGURE 4.15.3.1, EJB TABLE PATTERN

 30

Pop-up menus for table rows may be set by EJBTable.setPop-upMenu() method.

Processing of actions in this pattern happens in same manner as in EJBTree Pattern.

FIGURE 4.15.3.2, POP-UP MENU PATTERN

Functions of FinA that use the EJBTable pattern:

Name Package Client classes Server classes
Periods Fina2.period PeriodFrame

PeriodAmendFrame
PeriodSessionBean
PeriodBean

Locales Fina2.i18n LanguagesFrame
LanguageAmendDialog

LanguageSessionBean
LanguageBean

Comparison Rules fina2.metadata ComparisonsAmendFrame
NodeComparisonAmendDialog

MDTSessionBean

Return
Definitions

fina2.returns ReturnDefinitionsFrame
ReturnDefinitionAmendDialog
ReturnDefinitionTableDialog

ReturnSessionBean
ReturnDefinitionBean

 31

Schedules fina2.returns SchedulesFrame
SchedulesAutoInsertFrame
SchedulesAmendDialog

ReturnSessionBean
ScheduleBean

Return Manager fina2.returns ReturnManagerFrame
ReturnAmendDialog

ReturnSessionBean
ReturnBean

4.16. Reporting

Reporting is performed by OpenOffice Calc. The entire report generation process takes
place on the server and is placed in the fina2.reportoo package.

The Report generation process contains following steps:
q Insert necessary number of columns and rows for iterators
q Replace all CURNODE(), CURBANK() and other CUR…() functions with

appropriate values from iterators or parameters
q Execute calculation of spreadsheet formulas to collect information about all

combinations of nodes/banks/peer groups/periods/functions which are used in report
q Generate and execute SQL procedures based on information collected during the

previous step which selects source data from database
q Perform final formulas calculations with existing source data
q Return generated spreadsheet to client

The main classes of reporting used on client are fina2.reportoo.Designer and
fina2.reportoo.Generator.

The fina2.reportoo.ReportSessionBean is used on server for report management and
generation purposes.

4.16.1. OpenOffice.org CALC

OpenOffice.org is the open source project through which Sun Microsystems has released
the technology for the StarOffice[tm] Productivity Suite. OpenOffice.org CALC is fully
integrated with the FinA client. Therefore the user will not need to install OpenOffice
Calc. separately. The installation and start-up will be part of the FinA client installation.

OpenOffice.org has been built for Linux (RedHat 6.2), Solaris (Sparc 2.6) and Windows
platforms Languages for the OpenOffice-API: OpenOffice implements the API with
UNO (Universal Network Objects). Currently there are language bindings for Java and
C++. See www.openoffice.org for further information on Open Office.org Calc.

OpenOffice Calc is used by the Client and Server side of FinA in different ways.

 32

The FinA Client uses OpenOffice Calc for data presentation such Review, Print, Return,
Amend, etc., and also for report design.

GUI is not necessary on server side. The server uses OpenOffice Calc for calculations at
report generation time.

OpenOffice Calc provides two ways to access its functionality from an external
application with help of UNO API by two ways:
1. Using native pipes of Operational System
2. Using TCP/IP sockets
See http://www.openoffice.org/

The first way allows for the manipulation of OpenOffice GUI and the embedding of its
GUI into the external application’s GUI. The second way does not allow access to the
GUI but permits using spreadsheet’s data manipulation functionality.

q Client

The Client uses the Openofficebean to access the OpenOffice API
(http://whiteboard.openoffice.org/OOBean/). The Openofficebean contains two parts:
Java and the native libraries for all platforms supported by OpenOffice. This
simplified the development of the interaction between FinA and OpenOffice as the
native part of code was already written for the use of the OpenOffice GUI in FinA.

q Server
The Server accesses OpenOffice with help of the UNO API and uses sockets for this
purpose. FinA uses the Java class library to access Open Office Calc services through
the UNO API. This library contains Java interfaces and its specifications are
available at http://www.openoffice.org/. The JAR file containing this library is placed
in the server’s deploy directory and in client’s lib/ext directory.

OpenOffice does not allow running more than one instance on a single machine and can
use only one method of interaction (native pipes or sockets) in one instance. Therefore,
with the current version of OpenOffice Calc, it is not possible to run client and server
together on a single machine.

FinA uses “driver”-based architecture (FinA – driver – spreadsheet). The same driver is
used by client and server. (See driver specifications in
Doc/Driver_JavaDoc/index.html).

4.17. Application Server

The JBoss 3.0 Application Server is in the FinA system. It is possible to switch to other
Java 2 Enterprise Edition compatible Application Server without changes in the FinA
source code.

To replace JBoss:

 33

1. Build fina2_server.jar with help of jar build tool provided with the specific App

Server
2. Configure database connection “Fina2DS” with appropriate tools and/or

configuration files (depends on App Server)
3. Deploy fina2_server.jar into server (also depends on App Server)
4. Modify configuration file (conf/jndi.properties) on client workstation
5. Place client class libraries provided by App Server vendor to lib/ext folder on client

workstation

This process completely depends on App Server and not on FinA code.

Currently fina2_server.jar contains the FinA application server and is located in
FinA_Install_Dir/server/jboss/server/default/deploy folder. The database connection
configuration file mssql-service.xml is also located in this folder.

The Server application starts automatically after JBoss is started on command line using
the following batch file:
FinA_Install_Dir/server/jboss/bin/run.bat.

For additional information please see sourcecode.zip

4.18. Configuration Properties

q Client properties

All configuration files of client workstation are placed in the conf/ folder.
q jndi.properties
q messages_xx_XX.properties
q fina2.conf

jndi.properties file contains parameters of JNDI connection which are used to make
the connection to the server. These parameters are not specific to FinA. They are part
of JNDI specification (http://java.sun.com/products/jndi/).

messages_xx_XX.properties is a message bundle. It can be modified according to the
“FinA Installation & Configuration Manual 5.4.2”.

fina2.conf contains configurations parameters such windows' positions, dimensions,
and other values which are stored by different parts of FinA. This file is binary and
contains serialized classes.

q Server Properties

There are no FinA specific configuration files on the server. The configuration of the
application Server configuration must be performed according to its manual.

 34

4.19. Build (version) Management

This section outlines the build procedures used in the development of the FinA software.

4.20. Development Environment

q The application has been written entirely in Java using Forte 4 on a Windows 2000

platform against a Microsoft SQL Server 7/2000 database
q The Java JDBC drivers are used to interface with the database engine
q Swing components are used throughout the UI
q The "Install anywhere" software was used to build the installation package
q Visio was used as database modeling and structure control tool

4.21. Directories

The following are directories under C:\FinA\current live build:

For Client

q C:\Program Files\fina2client\
q C:\Program Files\fina2client\conf - For Configuration Files
q C:\ \Program Files\fina2client \fina2 - Main class directory
q C:\Program Files\fina2client\import - for imported files
q C: \Program Files\fina2client\lib - Library folder

For Server

q C:\Program Files\FinA2Client\
q C:\Program Files\FinA2Client\server
q C:\Program Files\FinA2Client\server\audit
q C:\Program Files\FinA2Client\server\jre
q C:\Program Files\FinA2Client\server\jboss
q C:\Program Files\FinA2Client\server\jboss\bin
q C:\Program Files\FinA2Client\server\jboss\catalina
q C:\Program Files\FinA2Client\server\jboss\client
q C:\Program Files\FinA2Client\server\jboss\lib
q C:\Program Files\FinA2Client\server\jboss\ooconf
q C:\Program Files\FinA2Client\server\jboss\server
q C:\Program Files\FinA2Client\server\jboss\server\all
q C:\Program Files\FinA2Client\server\jboss\server\minimal
q C:\Program Files\FinA2Client\server\jboss\server\default
q C:\Program Files\FinA2Client\server\jboss\server\default\conf
q C:\Program Files\FinA2Client\server\jboss\server\default\db
q C:\Program Files\FinA2Client\server\jboss\server\default\deploy
q C:\Program Files\FinA2Client\server\jboss\server\default\lib
q C:\Program Files\FinA2Client\server\jboss\server\default\log
q C:\Program Files\FinA2Client\server\jboss\server\default\tmp

 35

There will also be a directory C:\ FinAXXX and C:\ FinAServerXXX, where XXX is
the current live build number. For instance "C:\FinA0018b4", C:\FinAServer0018b4" or
"C:\FinA0018c5", "C:\FinAServer0018c5" etc. This directory is constructed from the
live build directories and contains all the files and directories on the CD for the specific
release of FinA.

4.22. The Build Procedure

The build procedures are as follows:

1. Before copying the new build backup (copy) c:\fina folder to the c:\FinAxxx
folder where xxx is build number.

2. Copy the new source code received from the software engineers into the C:\FinA\

directory and the new version is compiled completely with Forte (see Forte 4.0
documentation).

3. Once the build manager is satisfied that the new software does not compromise
the system, then the C:\FinA\ source directory is backed up by creating a zip file
of that directory. This file is called xxxSource.zip , where xxx stands for the build
version number. This is then copied to the C:\FinA\ builds directory.

4. Run Forte and compile source code (see Forte 4.0 Documentation for directions).

5. Run c:\FinA\deploy.bat. It will create fina_server.jar file, which must be copied to

C:\FinAServer\deploy directory. FinA Server is ready to run or to build
installation package (FinAsXXXXXX.exe where XXXXXX is build number).

5. Installation Package Build

The folder c:\FinAinst is needed to build the installation package for FinA Server
(finasXXXXXX.exe) and the FinA Client (FinAcXXXXXX.exe). It contains the
following folders:

q C:\ FinAinst\finac for FinA Client
q C:\ FinAinst\finas for FinA Server

1. Backup existing version of installation directory to c:\FinAinstXXXXXX where
XXXXXX is build number.

2. Copy all files except the source code from c:\FinA to C:\ FinAinst\finac and

C:\FinAServer\ to C:\ FinAinst\finas.

 36

3. Run Install Anywhere, open project finac.

4. Update it with new files. You can click on the "Add Files" button, find the

relevant directory, and then add the necessary files or all of the files.

Click Next. The next step is to define the main classes. Put fina2.main in the Main
class field of InstallAnywhere.

 37

Click on the "Next" button and define the classpath.

Click on the "Next" button. Choose the platform and JVM for package.

 38

Click on the Build button and a progress bar will appear:

After the build procedure is finished, click on the [Try it] button and test the
installation package.

5. Repeat the same procedure with FinAS for FinA Server

 39

Installation packages (files: finac.exe and finas.exe) will be created into folder
c:\FinAinst.

6. Database Modification Procedure

On the FinA CD that contains the new build, the user can find the scripts for updating the
database. The names of the scripts have following construction:
dbupdNNXN_NNXNN.sql where NNXN is build numbers; for instance:
dbupd18b5_18c6.sql is a script which will update database version 0018b5 to version
0018c6. You have to run that script through Query Analyzer. (See MS SQL Server 2000
manual)

7. Coding Standards

In the development of FinA, Java Coding Standards as put forth by Doug Lea were used.
See
http://gee.cs.oswego.edu/dl for a full copy of these standards.

Structure and Documentation

Packages: Create a new java package for each self-contained project or group of
related functionality. Create and use directories in accord with java package conventions.
Consider writing an index.html file in each directory briefly outlining the purpose and
structure of the package.

Program Files: Place each class in a separate file. This applies even to non-public
classes (which are allowed by the Java compiler to be placed in the same file as the main
class using them) except in the case of one-shot usages where the non-public class cannot
conceivably be used outside of its context.

Classes and Interfaces: Write all /** ... **/ comments using javadoc
conventions. (Even though not required by javadoc, end each /** comment with **/ to
make it easier to read and check.)
Preface each class with a /** ... **/ comment describing the purpose of the class,
guaranteed invariants, usage instructions, and/or usage examples. Also include any
reminders or disclaimers about required or desired improvements. Use HTML format,
with added tags: author-name, version number of class, string, URL
classname#methodname
 Methods: Use javadoc conventions to describe nature, purpose, preconditions,
effects, algorithmic notes, usage instructions, reminders, etc.
 Use Running // comments to clarify non-obvious code, but try to make the code as
obvious as possible.

8. Naming Conventions

Packages - lowercase.
Classes: CapitalizedWithInternalWordsAlsoCapitalized
Exception class: ClassNameEndsWithException.

 40

Interface. When necessary to distinguish from similarly named classes:
InterfaceNameEndsWithIfc.

Class. When necessary to distinguish from similarly named interfaces:
ClassNameEndsWithImpl OR
ClassNameEndsWithObject

constants (finals):
UPPER_CASE_WITH_UNDERSCORES

private or protected: (pick one!)
firstWordLowerCaseButInternalWordsCapitalized OR
trailingUnderscore_, OR
thisVar (i.e. prefix with this), OR
myVar (i.e. prefix with my), OR
fVar (i.e. prefix with f)

static private or protected:
firstWordLowerCaseButInternalWordsCapitalized OR
twoTrailingUnderscores__

local variables:
firstWordLowerCaseButInternalWordsCapitalized OR
lower_case_with_underscores

methods:
firstWordLowerCaseButInternalWordsCapitalized()

factory method for objects of type X:
newX

converter method that returns objects of type X:
toX

method that reports an attribute x of type X:
X x() or X getX().

method that changes an attribute x of type X:
void x(X value) or void setX(X value).

See http://gee.cs.oswego.edu/dl for more details.

9. Code Security

FinA is designed using Java Code Security Guidelines. These guidelines are aimed at
assisting programmers to write code so that it will not be vulnerable to security attacks.
However, a chain only is as strong as its weakest link, and when new system code is
added, so also is a new link to the security chain.

Java Code Security Guidelines: The Programmer should use following guidelines: Static
fields; Reducing scope; Public methods and fields; Protecting packages; The equals
methods; Make objects immutable if possible; Never return a reference to an internal
array that contains sensitive data; Never store user-supplied arrays directly; Serialization;
Native methods; Clear sensitive information; see
http://java.sun.com/security/seccodeguide.html#gcg2.

 41

For more details see /DOC/ProgGuide_Apendix2_iso15408-3.pdf.

10. Reference

1. Forte 4.0 documentation http://www.sun.com
2. Install Anywhere manual http://www.zerog.com/goto/iamanuals
3. SQL Server documentation http://www.microsoft.com
4. JBoss Documentation http://www.jboss.org
5. Security Code Guidelines http://java.sun.com/security/seccodeguide.html#gcg2

