FINA

INTERNATI@NAL

Programmers’ Technical
Reference Manual

United States Agency
for International Development

N

BOKo~NOoO

Table of Contents

FEF OQUCTION ...ttt h et b bbb et 4
SYSLEIM SCOPE ...ttt e e st e e e st s e e e rer e e e e e aenen e e e n e e e 4
2.1. Hardware & Software REQUITEMENTS........cccciiirieriiereieesee s esesenenas 5
2010 HAIOWAL €.ttt bbb ee et st b bbbt 5
20,2, SOIWAK €.ttt et ettt n e ne 6
21030 INEEWOTK ..ottt 6
2.2. Programming SKillSREQUITEcciiiiiieieiee st 6
2.3. DevelOpMENT ENVIEFONMIENT.......ccc it et 6
2.4, SYStEM DESIGN TOOIS. .. .ottt et 7
FINA FUNCLIONAI DESIGN ...ttt st 8
3L DABEAFTOW ...ttt r e 8
3.2, DALAMOUEL.......coieiece bbb s 10
3.3. BasiC APPIICALION DESIGNcveuiieiieieieiereier ettt 11
3.4, BASIC CIASSDESION ...ovieieieeseesee ettt ep e 11
TeChNICAl SYSLEM DESIGN ...vvveiieiere sttt 11
A1, OVENVIBW oottt b bbb e e 8 Ao et b et b e bt 11
4.2, APPIICALION STIEN'S ettt ettt 12
T U L 1Y - g =T = ST 13
4.4. Menu CuStomMIZation & ACHIONS ..ottt 13
4.5, MESSAGE BUNGIE.......mceiicetiirictetetete sttt e 14
4.6, CONFIGUIBLION ..ottt ettt 15
A.7. BUSINESSLOGIC ...euvereereeieesteisies et sttt eb bbb s b b et es et e ettt 15
A.7.0. OVENVIBW oottt ettt bbbttt b bbb r e s e 15
4.8. FINA ENLErprisSeJaVvaBeaNS. ...ttt sea e s 15
4.9. TraNSACLIONS TYPES....ucurucieuerererererereesssess sttt s s s ese e sttt aes e b bbb bbb b e s e e s 18
.10, SECUFTTY wvvieereiseeeeete ettt ettt bbbt st b bbb e bbb bbb b b s ee e e et 19
4.70.1. ENTILY BEANS.....cocuiiitiiieieresere sttt e e 19
A.00.2. CHBNE.utueieitieteeetere ittt s b bbb bbb s e st s st b bbbt s 19
A.10.3. SEIVEN .ttt ettt b e h R R R R AR bRt n s 19
411, REUIN PrOCESSING....c.ciuieiueuiiereiereteieisieisies ettt st b ettt 20
412, DALADASE. ...ttt e 23
4.12.1. TabIES SLIUCIUN € OVEI VIBIWvirirerreesieesese st sies e r bbb 23
4.12.2. SEOF 0 PrOCEAULI ES.......eiesceecetetsiee sttt et st st b bbb n s s s 25
4.13. Proceduresinvolved in REPOITING. ..ottt 26
404, CONFIQUIALION ..ottt bbbttt 26
S e (4 (= LSS 26
A.15. 0. OVENVIBW .ottt sttt b bbb e ee ettt n b r e s 26
4.15.2. EIBTTEEPAITEN N ...viieesee et s 27
4.15.3. EIBTADIEPAITEN N ..ottt s 28
416, REDOIMTING .veeeeeieieieteiee st ettt e b bbb b b e e e bbb bbb s b st er s 31
4.16.1. OPENOFfICEOIG CAL C ...ttt et 31
407, APPHCALION SEIVES ..ottt b ettt et 32
4.18. CoNfiguration PrOPErTiES.... ..o ieiceieerererrinesetere ettt 33
4.19. Build (VErsion) ManagemMENT.........corrrririniiieeriereee s sesesessies e sse s s sesssesesens 34
4.20. DevelopmeNt ENVIFONMENT. ..ot 34
A T O L = o 0] =TSSP OSSOSO PP 34
4.22. TheBUIlA ProCROUN @c.ciireeecce e 35
Installation PAckage BUIld..........cccueiiriiiriseseeeeese e 35
Database M odifiCation ProCeOUI ...t 39
COOING SLANUAI US......eeeereereseeee ettt sea bbb s s et 39
NAMING CONVENTIONS......coetiiriiirires ettt s b e et es e nebenenas 39
COOE SECUNITY ..vvverereteteiei ettt b bbbt b bbb bbb e s e s e 40
REFEI BINCE. ...t renan 41

List of Figures

FIGURE 2.4.1, GENERATE HTIML ..ottt ettt et sttt st eae e sae e nesae e besnaesbeeasesbesanesbeennesneennenas 7
FIGURE 3.1, FINA-DEPLOYMENT DESIGNccciiitieitieteentieeesteetesseestesseesteseessesssesasessesssessesssessesssessssssssnssseensessssses 8
FIGURE 3.1.1, FINA INTERNATIONAL DATA FLOW DIAGRAMcoctieieticte ettt sttt et esee e ene st enneenes 9
FIGURE 3.2.1, FINA INTERNATIONAL SYSTEM DATA IMODEL ...cccviiitiiieie et ctee e esbeesressresssvessreesssassaessaneas 10
FIGURE 3.2.2, THE BANK REGULATORS OFF-SITE MONITORING SYSTEM DATA MODELccoveeteevecteere e 10
FIGURE, 3.3.1, FINA INTERNATIONAL — ARCHITECTUREccottetesteeitesteesseseessesseessesssessessessessssssessesessessssssesssens 11
FIGURE 4.4.1, ACTION REGISTRATION ...ccuteitiieeitesisestesisesseessessesssessessesssessessssssesssssssssssessesssessesssessessssssesssssssssens 14
FIGURE4.7.1, FINA BUSINESSLOGICccoieuicteetiitecteetieeestestestessesteeeseesesessessssessessesssssestesssssessessessessesensessensenes 15
FIGURE 4.10.3, LOGIC SEQUENCEueeitiiteeiteeteiteeireeeestesteessestessesssessessssssesssesssssasessesssessesssessesssessessesssessssssesssens 20
FIGURE 4.11.1, SEQUENCE DIAGRAM ...ccotteiiitieiteiteesteseesteeresteetesseessesaeesaessesaessesseessesnsesaesnsesssensesssensenssssnnnssens 23
FIGURE 4.15.2.1, EJB TREE PATTERNooiiieiceictecteete et st etesteeeaesaestesaeesseessssssaesnesssssessesaessessessssaessensessessensenes 27
FIGURE 4.15.2.2, AMEND ACTION LOGIC ...c.veeiiiticiecieteeee sttt et e et ssae e stesaaesbesasesbeensesseessesnneseensennnens 28
FIGURE 4.15.3.1, EJB TABLE PATTERNoeiiitieiteitieeeitesteeseeesteeseestessesseessessesssesasessessssnsesassssesssssesssessssesssssesssens 29
FIGURE 4.15.3.2, POP-UP MENU PATTERNccctiiiitieiteiteeteetesteeeeestessesseessesseessesasessesssessessssssessssssessesassnsesnsesssess 30

1. Introduction

The purpose of the United States Agency for International Development (USAID) FinA
Programmers Technical Reference Manual isto guide the programmer with step-by-step
instructions to implement new ideas and make changes into the software package.

All files necessary to read and understand the guide are provided in the Programmers
Guide/DOC subfolder:

/DOC/ClassDiagram_JavaDoc Folder
/DOC/DataBaseDiagram Folder
/DOC/Driver_JavaDoc Folder

/DOC/Sour ceCode Folder

/DOC/Functional Specifications Word Document
/DOC/helloworld_action.zip Java Samples
/DOC/ProgGuide_Apendix1 CamelManual.pdf Appendix
/DOC/ProgGuide_Apendix2_is015408-3.pdf Appendix
/DOC/XIs2Xml.zip Demo Converter
/DOC/XML_Return.dtd Document Type Definition

2. System Scope

FinA International is an information technology (IT) tool that supports the off-site
banking supervision activities of the Supervisor of the Banking System (Supervisor).
FinA isatool that enhances the Regulator’s analytical capabilities and increases the
overall effectiveness of supervisory strategies. One of the key components of effective
bank supervision isthe review and analysis of returns (call reports) that banks are
required to submit periodically to the Supervisor. The content, format, and periodicity of
these returns are defined in the banking laws and regulations of the country.

Financial datafrom banksis sent to the Supervisor in the form specified in the
legal/regulatory framework. The information is then analysed by the Supervisor to ensure
compliance with regulation, to assess the financial stability of the institution, and to
analyse economic trends. Based on the data returned by a credit institution, its financial
condition israted using financial ratios. These ratios are used to compare a bank against
its peers and predefined standards for that country.

The main report generated by the system is the Universal Bank Performance Report
(UBPR), which contains areport for each bank of its current financial position, the
CAMELS analysis, time series analysis of its key financial indicators, and its peer group
and ranking within that group. This report also provides the same analysis for the banking
system as awhole.

The usefulness of off-site supervision is dependent upon the timeliness, accuracy, and
usefulness of the financial data submitted and the timeliness and quality of the analysis

performed. Through automation that delivers improved accuracy and speed of data, the
FinA system can significantly enhance the quality of off-site supervision.

Bank returns are submitted to the Supervisor in avariety of formats (Excel, text files,
etc.). These files must then be converted to XML filesto be used in the FinA system.
Oncethefilesare converted to FinA XML, they can be processed by the system and
placed in the database. DTD of this XML can be found in DOC/return.dtd file. For an
example of such converter from XLSto XML file, seein DOC/XLS2XML.ZIP. The
converter maps data from the existing format (XLS, DBF, TXT, etc) to the FinA structure
described as M etadata.

2.1. Hardware & Software Requirements

2.1.1. Hardware

FinA iswritten in Java and has three-tier system architecture and accordingly has
minimal requirements on hardware for the client machines.

o HardwareFor FinA Client Work Station:

Minimum Configuration: Pentium Il class- RAM 64 MB, 40 MB free disk space,
10/100 Mbps Ethernet NIC, SVGA 800x600

Recommended Configuration: Pentium Il class- RAM 256 MB, 40 MB free disk
space, 10/100 Mbps Ethernet NIC, SVGA 800x600

o HardwareFor FinA App Server:
Minimum Configuration: Pentium |1 class— random access memory (RAM) 128
MB/50 MB for application server files, plus necessary space for database
(approximately 200 MB for one year of datafor smaller Central Banks), 10/100 Mbps
Ethernet NIC, SVGA 800x600

Recommended Configuration: Pentium 1l class- RAM 512MB, 20GB HDD,
10/100 Mbps Ethernet NIC, SVGA 800x600

o HardwareFor Database Server:

For the minimum as well as recommended hardware configuration information,
please go to http://www.microsoft.com/sgl/default.asp

Note: The amount of RAM required for running the Database server depends on the
size of the database and the administration tools being used. A typical installation of a
Database server requires a minimum of 300-400 MB of disk space.

2.1.2. Software

Thelist of software requirements follows:

o Operating system for the client: MS Windows 98/NT/2000/X P

o Softwarefor the client and application server: FinAClient and FinAServer
(included in the install ation package)

o Database Server: MS SQL 7.0/2000

2.1.3. Network

FinA does not need a high-speed network because al logistical calculations take place on
the server. Actually, 1 Mbps IP-based LAN is sufficient to run and maintain the system.
An IP protocol must be installed and properly configured in working environment. (for
more information, see Chapters 4.6, Configuration; and 4.10, Security). Basic
recommendations are for 10 Mbps network from the Workstations to the Application
server and 100 Mbps from the Application server to the database server (if they are
running on different machines).

Note that the current version of FinA, version 0018d7, cannot beinstalled and
configured as standalone. For further information pleaserefer to the FinA
I nstallation and Configuration Manual.

2.2. Programming Skills Required

Programmersthat plan to work on the FinA system should have at least the following
skills:

OS - Windows 2000/XP

Java - Javaz, Forte 4, JSP (preferable)

EJB - JBoss 3.0

Spreadsheets -OpenOffice.org 1.0 Calc

MS SQL Server 2000/7.0 (Maintains, Stored procedures, etc)

2.3. Development Environment

O

The application is written in Java using Forte (community edition) on a Windows
2000/XP platform against a Microsoft SQL Server 7/2000 database.

The Java JDBC driver is used for the interface.

Swing components are used throughout the Ul

JBoss 3.0 isthe application server

DataBase designisdonein Visio 2000

System design was done in the Together Control Center

FinA v0018e was tested only for Windows/M SSQL environment

00000 ODo

2.4. System Design Tools

System design and documentation was done using "Together Soft". For modificationsto
the system, "Rational Rose", "Visio" or any other tool can be used. Below are the
procedures for "Together Soft".

Note: If a programmer does not plan to make any major changes to the system, s’he
will not need to use any system design tools.

To see FinA System design, copy file Finaldoc.zip from the installation CD and unzip it
in C:\TogetherSoft\Together6.0.1\myprojects\ directory. Then run “ Together” and open
C:\TogetherSoft\Together6.0.1\myprojects\FinA\ FinA.tpr.

If aprogrammer wants to add or change something in the programmers’ documentation,
from the "Together Soft" menu s/he should click on Pr oj ect/Documentation/Gener ate
HTML. Then select All under Scope (see Figure 2.4.1, Generate HTML below) and
click OK.

Generate HTML L x|
~ECope =
(| Current package| () Current disgram
() Current package with subpackages (@ Al
—ioptions -
Output folder: [Together SoftTogethers .0 1 wutvweebpublizhiFindi | @
[¥] Inclucte ciagrams [¥] Incluce navigation tree

[Launch HTML broweser

| Ok || Cancel || Options || Help

FIGURE 2.4.1, GENERATEHTML

The system will then begin to create the documentation. It takes approximately three to
five minutes to compl ete the generation process.

3. FinA Functional Design

Refer to/DOC/Functional Specifications for information on the functional
specificationsfor FinA. A design chart in presented on Figure 3.1, FinA-Deployment

Design.
FinA - Deployment Design

Commercial Bank Communications Regulator Other Departments

Banks Back Office

Sytens \
Mnagement | - Generale/; ;
Reports [# Off Site Examiner
Import to NT4/2000/Linux/

Data Matrix Meta-Data-Tre Unix etc Server

Compliane Officer Return Forms §
Reports - Generatg
[— MSSQL Reports
_ -
A ~ / il - Input

Data Server
sign-off and A@ministrator / Designer /A K

submit
On-Site Insped

ley in Interactive
/ entry
import & adjust - %yesfl‘eng Setup

- Import

Disk, FTP, E-Mail _ Process
- - Re]ec!/Accep‘\
5 Monetary Policy ~ Legal Officy

Return Form File
Created j’:/ off Sj Examinef§

Liquidator

Informby telephone or e-mail
that rejeded

FIcUrE 3.1, FINA-DEPLOYMENT DESIGN

3.1. Data Flow

TheFinA system dataflow isillustrated in Figure 3.1.1, FinA International Data Flow
Diagram.

FinA International Data Flow Diagram

COMMERCIAL BANK

Adjustment Data
Entry System

or

Bank Back Office

Systems

Request
]] clarification /
Reject file re-submission
A A
Excel File
Format
‘ OR
XML Converter
Invalid file
INPUTS
FinA client
Invalid Invalid
‘ data data

Normalised Call
Report Data

file

CAMEL Ratios and
other analysis reports

(UBPR's)

interface

| —Y

c T
s cd
£°g
Sog
B 2g
Q_GJO
<0

Static Data Maintenance

Data Transformation
System

-

Call report Definition
(Data tree)

OUTPUTS

Print call Report

Cumulative banking
sector reports i.e. peers,
ranks

Output to paper and / or screen

FIGURE 3.1.1, FINA INTERNATIONAL DATA FLOW DIAGRAM

3.2. Data Modd

The datamodel of FinA is presented on Figure 3.2.1, FinA International System Data
Model and the off-site monitoring system data model is presented on Figure 3.2.2, The

Bank Regulators Off-Ste Monitoring System Data Model.

FinA International System Data Model

Metadata
Trees

Return
Schedule

Rt

Return
Forms
Definition

\/

<>

Report
Definitions

_—/

generated based on

generated based on

Image of

Original Return

i

Filed

Report
Aggregates &
Comparatives

1 The Returns
from Credit
Institutions

generated from

generated from

FIGURE 3.2.1, FINA INTERNATIONAL SYSTEM DATA MODEL

The Bank Regulators Offsite Monitoring System Data Model

System . Report Metadata Return Commercial
S Localization L S Data]
Definition Definition Tree Definition Bank Details
Front-End Localized /L
Data Descriptions ’
R;hsns A Returns Bank
Return ums Event Log License
Schedule from Credit (Audit Trail)
Institutions
Localized
Descriptions
R
Report >_ Metadata -< Feturn
ot orms
Definitions Trees .
Definition
~_

FIGURE 3.2.2, THE BANK REGULATORS OFF-SITE MONITORING SYSTEM DATA MODEL

10

3.3. Basic Application Design

The architecture of the system is presented in Figure, 3.3.1, FinA International — Architecture.
FinA International- Architecture

Client Side Java Application Appllc.atlon Server
Side EJB

Presentation Layer Data
Managers

Resource
Management

+“P» & Loading

Balance

Data Base Serve

DataBase
Server

Import/Export

JDBC

Database Connection

Locale Manager and Resources

FIGURE, 3.3.1, FINA INTERNATIONAL — ARCHITECTURE

Client Side contains:

o Presentation layer - user interface coded in Java SWING.

o Locale management tools - font, formats, character sets can be defined in client side
modules.

o Import/export tools - Users can import and export data into the system according to the user
access rights and permissions.

Application server:

Maintains all functionality and calculations, prepares data for presentation.
Creates data connection with database through the JDBC driver

Manages and sorts data, and generates relevant SQL queries.

M anages resources and does |oad balancing.

00D D

All datais stored in the MS SQL 7/2000database server.

3.4. Basic Class Design
For basic class design information refer to file: /DOC/ClassDiagram_JavaDoc

4. Technical System Design

4.1. Overview
All parts of FinA follow similar design patterns. It is necessary to be familiar with these patterns

and rulesin order to understand the architecture of FinA and to be able to modify the code or add
modulesto FinA.

11

This chapter describes all of the basic design patterns, which are necessary to become a FinA
developer.

Technologies used for FinA development:

Java 2 Platform version 1.3.1

Swing

Forte Development Environment 3.0 or later
Enterprise Java Beans (JBoss 3.0)

XML (Apache Xerces)

JDBC

Open Office.org

Sy iy Iy N

JBossis an open source application. Version 3.0 isused for FinA. It isbased fully on J2EE and
supports all of the J2EE stacks. JBossislocated in FINA_INSTALL_DIR/server/jboss and has
the following directory structure:

/bin contains executables to run and stop the server

[catalina Tomcat WEB container

/client classlibraries required for client applications

Nlib JBoss core classlibraries

[server contains sub-folders for different configurations, FinA uses
“default” configuration

[server/default

/server/default/conf configuration files for default JBoss configuration

[server/default/deploy deployment directory

Iserver/default/lib extended libraries for default configuration

/server/default/log contains server logs

[server/default/tmp temporary files

In standard configuration JBoss 3.0. isused as Application Server, but it is possible to port FinA
on any J2EE compatible server. In FinA the JBoss coreis used as the application server. Itisan
Enterprise JavaBeans (EJB) server. JBoss core has minima memory and disk space
requirements. JBoss runs very effectively on a machine with 64 megabytes of RAM, and
requires only afew megabytes of disk space. JBoss also supports ‘hot’ deployment. This means
that deploying aBean isasimple as copying its JAR file into the deployment directory. If thisis
done while the Bean is already |oaded, JBoss automatically unloads it, then loads the new
version.

OpenOffice.org Calc is another open source application used in FinA. See Chapter 4.16.1,
OpenOffice.org Calc for more information on how OpenOffice.org interacts with FinA.

4.2. Application’sTiers
Client application of FinA is based on Swing user interface. In the standard configuration
interaction with the server takes place by the RMI protocol. The application may aso be
configured for working with I1OP or with other protocols, depending on the Application Server.
fina2.Main and fina2.UIManager classes are the core of the FinA Client Application. With the

assistance of these classes, different modules of the program can have access to the resources,
register themselves, and interact with each other.

12

4.3. Ul Manager

UlManager provides ability to manage the following parts of the Client side user interface:

o actions

o message bundles

o configuration

UlManager is available as a“public static” field in fina2.Main class and is accessible from any
part of client application. For example, fina2.Main.ui.getString(key) — returns String with
specified key from current locale’ s message bundle.

4.4, Menu Customization & Actions

Actions are instances of classes implementing javax.swing.Action interface. Top actions, which
must be available globally (generally top menu bar actions) should be registered in UIManager at
program start time (inside initTopActions() method). Actions, which act only in the context of
separate dialog boxes or windows are local actions and should not be added to UIManager.

Thisfeature simplifies menu bar customization process for the user. The user selectstop actions
available in the system from alist and attaches them to menu bar items.

Toillustrate what is necessary to create new FinA action, please review the “Hello World”
example below:
o Create new class HelloWorldAction extended from javax.swing.AbstractAction

public class HelloworldAction extends AbstractAction {
public HelloWworldAction() {

}

public void actionPerformed(java.awt.event.ActionEvent event) {

}
}

o Write initialization, resources allocation, etc., code in constructor of the class (this code will
be executed at program startup)

public HelloworldAction() {
super();

main.setL oadingM essage(ui.getString("fina2.helloworld"));
[* above line allows to show specified message in logo window during program
startup when system loads this action */

putV alue(AbstractAction.NAME, ui.getString("fina2.helloWorld"));
Q dig = new HelloworldDial og(main.getMainFrame(), true);

ui.loadlcon("fina2.helloworld.icon”, "icon.gif");

putV alue(

AbstractAction.SMALL_ICON,
ui.getlcon("fina2.helloworld.icon™)

);

13

ui.addAction("fina2.helloworld.HelloWorld", this);

}

o Write action handler code in actionPerformed method
o Create an instance of the action, for example “new fina2.helloworld.HellowWorldAction();” in
fina2.ui.UIManager.initTopActions method

Full source code and compiled classes of this example can be found in folder

DOC\helloworld_action.zip.

An Action must register itself in the system by calling UIManager.addAction(String key,

javax.swing.Action action) method. The first parameter is a unique key of the action. The action

can be found and accessed from any part of the system with help of UIManager.getAction(key)
method and by using this key. It is recommended to use afull class name of the action as key.
The second parameter is an instance of the action.

The logical sequence for registering an Actionis presented on Figure 4.4.1, Action Registration.

Main

JJ?'
“Program start

1.1 initTopActions

Note: The best way to create new action isto get an existing one and edit or replace

UlManager HellowWorldAction
[[
| |
[[
| |
| |
| |
B=7 4 1.1 new HelloWarldaction |
F_I_

1.1.1.1: getString § loadlcon

1.1.1.2: addAction

I

FIGURE 4.4.1, ACTION REGISTRATION

constructor and handler with your code because most actionsare similar.

4.5. Message Bundle

According to current language settings UlManager |oads the appropriate message bundle from a

filelocated on the client computer and makes it available for the client application.

Message Bundlefileislocated in FINA_INSTALL_DIR/conf directory.

14

Also UlManager.getFont() method returns default font with default size according to current

language settings.

4.6. Configuration

UlManager’s putConfigVaue(key) and getConfigValue(key) methods provide the ability for
different Ul components (such as windows, dialog boxes etc.) to store their own configuration
parameters. For example, awindow must store position and dimension values. The Return

Manager window must store settings of filter bar.

Any Java object implementing java.io.Serializable interface may be stored as a configuration
value. They will be serialized and saved into the configuration file at program finish and restored

at program start time.

4.7. Business L ogic

4.7.1. Overview

Figure4.7.1, FinA Business Logic shows the Business Logic Diagram of FinA, which outlines
the functions performed on the Client, and those functions performed on the Application server

and the Database server.

FinA International- Business Logic Diagram

Client

Different Interfaces to display
data and/or inform ation (T rees,
Spreadsheets, Input/review Screens, etc...)

Locale M anager and Resources I
Export/Im port I <>
M eta Data M anager I

Report Designer and Generator Interface

App Server

Check Permissonson

requeded operatiop,
Prepare relevant
queriesand sored

procedures

Send data/alailatign
requed to DB srer

Manage Resources

Get Data from DB

performalailationsand
format result for nding
to dient

FIGURE4.7.1, FINA BUSINESS LoGIC

4.8. FinA Enterprise Java Beans (EJBS)

The following types of EJBsare used in FinA:

o Entity Beans with Bean Managed Persistence (BMP)

o Stateless Session Beans

DB Server

Data Store

Dynamic
and Static
Stored
procedures

15

All Beansthat have class names that end with “Bean” are the Entity Beans. Beans which have
names that end with “ SessionBean” accordingly are Session Beans.

Since Bean Managed Persistenceisused in FinA, all SQL queries are embedded in the Beans
code and are not generated automatically by EJB container. This approach was chosen because
the main part of queries contains complex relations between the tables and therefore could not be
generated automatically. For example, for getting information about separate Metadata Tree
Nodes, it is hecessary to select information about the node from the IN_MDT_NODES table and
itsname from SYS_STRINGS table, which contains text strings based on the selected language.

Thefollowing table contains alist of EJBsused in FinA. See also class diagrams
/DOC/ClassDiagram_JavaDoc/index.html

Name Type Description
Allows creating, finding,
fina2.i18n.LanguageBean Entity and accessing locales
properties.
Contains methods to
. . Stateless manage tables of system
fina2.i18n.L anguageSessionBean Session locales see 5.3.3. EJBTable
pattern.

Allows creating, finding,
and accessing users
fina2.security.UserBean Entity properties. Check
permissions & banks/reports
access rights.

Allows creating, finding,
and accessing user roles
properties. Check roles
permissions.

fina2.security.RoleBean Entity

Contains methods to
manage tree of users/roles
see 5.3.2. EJBTree pattern.

Stateless

fina2.security.UserSessionBean Session

Allows creating, finding,
fina2.ui.menu.MenuBean Entity and accessing menu items
properties.

Contains methods to
manage menu tree see 5.3.2.
EJBTree pattern.

Stateless

fina2.ui.menu.MenuSessionBean Session

Allows creating, finding,
fina2.metadata.MDTNodeBean Entity and accessing metadata
nodes' properties.

Contains methods to
manage Metadata tree see
5.3.2. EJBTree pattern. Find
dependencies between
nodes. Find Return
Definitions where specified
nodeis used.

Stateless

fina2.metadata. M DT SessionBean Session

Allows creating, finding,
fina2.bank.BankTypeBean Entity and accessing bank types
properties.

16

fina2.bank.BankSessionBean

Stateless
Session

Contains methods to
manage tables & hierarchy
of banks, bank types, bank
groups, bank licenses,
branches see 5.3.2. EJBTree
pattern & 5.3.3. EJBTable
pattern.

fina2.bank.BankBean

Entity

Allows creating, finding,
and accessing banks
properties.

fina2.bank.LicenceBean

Entity

Allows creating, finding,
and accessing bank licenses
properties.

fina2.bank.BranchBean

Entity

Allows creating, finding,
and accessing bank
branches’ properties.

fina2.bank.BankGroupBean

Entity

Allows creating, finding,
and accessing bank groups
properties.

fina2.bank.LicenceTypeBean

Entity

Allows creating, finding,
and accessing bank license
types properties.

fina2.period.PeriodTypeBean

Entity

Allows creating, finding,
and accessing period types
properties.

fina2.period.PeriodBean

Entity

Allows creating, finding,
and accessing periods
properties.

fina2.period.PeriodSessionBean

Stateless
Session

Contains methods to
manage tables of periods
and period types see 5.3.3.
EJBTable pattern.

fina2.returns.ReturnTypeBean

Entity

Allows creating, finding,
and accessing return types
properties.

fina2.returns.ReturnDefinitionBean

Entity

Allows creating, finding,
and accessing return
definitions’ and tables
properties.

fina2.returns.ReturnSessionBean

Stateless
Session

Contains methods to
manage tables of returns,
return definitions,
schedules, return types (See
5.3.3. EJBTable pattern).
Change statuses of returns
and get history of return
statuses.

fina2.returns.ProcessSessionBean

Stateless
Session

Contains methods for return
processing, import, file
robot.

fina2.returns.ScheduleBean

Entity

Allows creating, finding,
and accessing schedules

17

properties.

Allows creating, finding,

fina2.reportoo.server.ReportBean Entity and accessing reports
properties.
Contains methods to
. : Stateless manage reportstree. (See
fina2.reportoo.server. OOReportSessionBean Session 5.3.2. EJBTree pattern).
Generate and store reports.
Contains methods to
Stateless manage h? erarchy _of
fina2.reportoo.repository.Repository SessionBean Sesy formulasin reporting
on :
repository (See 5.3.2.
EJBTree pattern).

4.9. Transactions Types

Transaction management in FinA is carried out by the Application Server.
The following types of transactions are used in FinA:

1. Bean Managed Transactions
2. User Transactions
3. Container Managed Transactions

1. Bean Managed Transactions are used for operations that require more time to perform,
such as Return Processing and Report Generation. In these cases selection of source data and
calculation of results occurs before the transaction takes place. The transaction isinitiated inside
of Session Bean method before the results of the calculation must be stored in the database.

For example, the fina2.returns.ProcessSessionBean performs return processing by collecting the
values of the nodesinvolved in the processing of a given return without actually performing the
transaction and therefore does not lock the database for other users. After collection of source
data and calculations are finished, it initiates transaction in the following way:
javax.transaction.UserTransaction tran =
jndiContext.getUserTransaction();

tran.begin();

try {
[* perform database update with calculated values */

fr.én.commi t();
} catch(Exception e) {
tran.rollback();

}

2. User Transactions are used in cases where the transaction must be performed by the
Client application. For example, when Amend Dialog hasto store itsfields by using several
methods of Entity Bean, if an error occurs while using one of these methods, actions which were
already performed by the other methods, must be cancelled. Thistype of transaction is only used
inthe EJBTree & EJBTable patterns.

18

3. Container Managed Transactions are used in all other cases and have the “ Required”
attribute.

Information about which types of transactions are used in Beans can be found in EJB application
file- fina2_server.jarfMETA-INT/gb-jar.xml

4.10. Security

Authorization and users' rights control isrealized with features that are part of the FinA
application and do not use the features of the Application Server or the operating system.

All classes, which are associated with security, are located in the package fina2.security.

4.10.1. Entity Beans

Entity Bean —fina2.security.UserBean is the fundamental component of the FinA security
system. Any part of the program can get a handle (an object that identifies an Enterprise Bean) to
the copy of the UserBean of a currently logged in user and check its rights through the
assistance of UserBean.hasPermission(), UserBean.canAccessBank(), etc.

4.10.2. Client

The Client Application checks the user’ s permissions only when it hasto disable or enable
different buttons and correctly display the user interface. This operation happens through
UserBean.hasPermission() method.

4.10.3. Server

In other cases the control of users rights is performed by the server and the client only has to
catch fina2.PermissionDeniedException to show the appropriate message dial og.

For exampl e fina2.returns.ReturnSessionBean contains the method getReturnDefinitionsRows()
which returnsthe list of return definitions. This method checks who has user rightsto review or
amend return definitions through the assistance of the
UserBean.hasPermission(“fina2.returns.definition.amend”) &
UserBean.hasPermission(“fina2.returns.definition.review”). If the user does not have these
permissions and tries to open the return definitions dialog window which calls
getReturnDefinitionsRows(), the server will throw the message PermissionDeniedException to
the client and the client application must catch it and show dialog window with appropriate error

message.
Usage of UserBean and hasPermission() method is eliminated in EJBTree & EJBTable patterns.

The diagram in Figure 4.10.3, Logic Sequence shows user |ogin sequence.

19

Thelist of permissions availablein the systemis stored in table SYS PERMISSIONS in the

The client side must save a handle
ofthe user ohjectto pass itto

client session heans which regquire authorization.

user.getHandled

UserHaome

1.2 indByLoginPassword Strng, String) . Lisay

.

|
|
|
|
=k
|
|
|

catch{javax ejb. OhjectMotF oundException)

~3.1: Lagin failed

finally

A 1initmenus, dialogs, ete. appropriate to user permissions

1441 hasParmission/sthng) boolagn

1.2.1:

_——]

FIGURE 4.10.3, LOGIC SEQUENCE

database and is accessible through UserSessionBean.

The names of the permissions are based on the name of the package to which they are related.

For example, the right to edit the Metadata Tree will have the key “fina2.metadata.amend”.

4.11. Return Processing

Return processing happens with the assistance of the fina2.ui.ProcessSessionBean. This Stateless
Session Bean has following functionality:

00D D

Calculates the values of “variable” nodes
Controls and updates the statuses of the returns
Controls versions of returns

Checks dependencies between returns and performs necessary calculations of related

variables

See the Sequence Diagram in Figure 4.11.1.

As shown on the diagram "Processing” consists of following steps:
Checksif the current user has permission to process returns or not

Q

00D

Findsreturns and all its variable nodes in the database

Finds nodes from other returns on which current return depends
Executes scripts of variable nodes for each return that isinvolved

20

o Updates the status and version of each modified return
o Updates the database with calculated values

21

client return
Return

userHandle
Handle

V¥ process(Handighvold !

I
|
|
1.1 getE JBOBject) javax it EMBO bject

140

returnitem

|
1.2: hasPeupission(Sting):bpoiean

User

]

1.3.1: thraw fina. sec urity. Permis sionDeniedExce ptiary (

1.4 <constructar=r

ifthasPermission == false)

|
1.5 ﬂ'ﬂdﬂyﬂetumPK{ReMmﬁ%K) Collection

|
!
U
|
:
|
|
|
|
|
|
|
|
|
|

1.6: process(Hashiabie) Vﬂm{/ﬂor each ltem returned by indByReturn,
t

1.6.1: wet(ava.lang. Objeciyjava lang. Object

invovedReturns

Hashtable

J

involvedRetums.get(retumPK) == null)

1.6.2.4 findByPrimaryKey(RetumPK). Retumn

1.6.2.2 put(ava lang Object java lang Objectjava lang Object

1.6.2.3: copyTodrchive(.void

|
|
Ll
|
|
|
|
|
|
Ll

ReturnHome

16211

Return

.3 execute equation script

£.6.4: D

1.6.5: process(Hashtabiel void #or each dependent fem (recurs)

)

ReturnitermHome

1641

Retunitern

I
|
|
|
|
|
T
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
i
T
|
|
|
|
|
|
|

7
y

FIGURE 4.11.1, SEQUENCE DIAGRAM

Netscape’ s Java Script interpreter, Rhino, is used for variables calculations during processing. Its
source code, binaries, and documentation are available at http://www.mozilla.org/.

Scripts can be executed by using the fina2.script.Engine class which contains static methods for
that purpose. This class was developed in order that the system would be able to use other Java
Script interpreters. It is possible to replace Rhino with another interpreter.

4.12. Database

Financial information from banks (returns) are submitted in different types of files (Excel, text,
etc.) depending on the regulations in each country. These files must be converted to an XML file
that is compatible with FinA before it can be processed by the system and placed in the database.
The DTD of the FinA version of XML can be found in DOC/XML _Return.dtd file. An
example of aconverter from an XLSfileto FinA XML file can be found in DOC/XIs2Xml.zip.
The converter maps data from existing format (XLS, DBF, TXT, etc.) to the FinA structure
described as M etadata.

Datais stored in the following table: In_Return_ltems.

RETURN RETURN
XLS, DBF, DB, a
TXT, XML, etc FINA
Converter Format
IH @-Mail

4.12.1. Tables Structure Overview

The FinA Database contains three types of tables. Each of these types of tables begins with

different prefixes SYS, IN, and OUT:

o SY Stables contain system information such as menu structure, users' rights, locale
descriptions, and text strings in different languages.

o IN tables contain the meta-structure of input data, information about banks, periods, and
input data.

o OUT tables describe output data of the system — reports and al related information.

Three main types of data stored in the FinA database are:
o structure of the input forms (Returns)

o datafrom returns

o output forms (Reports)

The structure of Returns consists of the metadata tree, return definitions, and return types. This
structure must be created based on the specific banking regulations in each country. The
Metadata Treeis stored in the tables, which have names that start with IN_MDT _...

23

Return definitions are stored in IN. RETURN_DEFINITIONS and IN_DEFINITION_TABLES
tables.

Return types are stored inthe IN_RETURN_TY PES table.

Returns' and their dataare stored in IN. RETURNS and IN._ RETURN_ITEMS tables.

Definition of output reportsis stored in table OUT_REPORTS.

The IN_RETURN_ITEMS table is the largest in the system. It has numerous indices and
requires special attention during the composition of queries. This table continuously collects data

from the returns and its size increases over time more than any of the other tables.

IN_RETURNS containsthe list of returns. Thistable contains only the headers and the values
areintheIN_RETURN_ITEMStable.

IN_RETURN_STATUSES contains the history of modifications to the returns.
IN_RETURN_TYPES containsthe list of return types.

IN_SCHEDULES containsthe list of schedules.

IN_MDT_NODES contains the Metadata tree hierarchy.

IN_MDT_DEPENDENT_NODES contains the dependencies between nodes in the Metadata
tree.

IN_MDT_COMPARISON contains comparison rules for the M etadata tree nodes.
IN_RETURN_DEFINITIONS contains return definitions.
IN_DEFINITION_TABLES contains a description of the return definition tables.
IN_BANKS contains the list of banks and information on these banks.
IN_BANK_GROUPS contains the list of bank peer groups.

IN_BANK_TYPES List of bank types.

IN_BANK_BRANCHES contains information about bank branches.
IN_PERIODS contains alist of the periods for the bank returns.

IN_PERIOD_TY PES containsthe list of period types.

! The data in the returns is submitted by the commercial banks in the format that is specified by
the banking regulations in that country. This data may be received in a number of different
formats and it must be converted to the FinA version of XML in order for it to be processed by
FinA and placed in the database. DTD of this XML can be found in DOC/XML_Return.dtd file.

24

The SYS STRINGSttableis also important because it has relations with many other tables. It
contains text strings that connected to concrete objects and has versionsin different languages.

The SYS_LANGUAGES table describes the languages found in the system.

The SYS MENUS table contains the menu structure.

The SYS_PERMISSIONS table contains the list of permissions that are available in the system.
The SYS ROLES table containsthe list of the user roles.

The SYS ROLE_PERMISSIONS tables contain the permissions for each user role.
The SYS USERS table contains user information.

The SYS_USER_BANKS table contains banks access rights for each user.

The SYS USER_MENUS table contains the menus that are accessible for each user.
The SYS USER_PERMISSIONS table contains the permissions for each user.

The SYS USER_REPORTS table contains the access rights for reports for each user.
The SYS USER_ROLES table contains the roles assigned to each user.

(See database diagram. /DOC/ DataBaseDiagram/index.html)

4.12.2. Stored Procedures

Stored Procedures are used in the two parts of FinA that process large volumes of information
and are performance critical:

Return Processing
Reporting

Procedures involved in Return Processing:

prepare_process_items This procedure creates a temporary table IN_PROCESS ITEMS
and fills it with values from a specified return. This table will be
used by other procedures during processing.

get_all This procedure selects values from the Return and sendsthem to a
result set.

get_dependents This procedure selects the values of the nodes from other Returns
on which variables from the specified Return depend.

get_process _items This procedure selects the whole IN_PROCESS ITEMS table.

calculate_node This procedure cal culates the sum, average, max, min, or count of

sub-nodes according to node’' s “evaluation type” and updates the
IN_RETURN_ITEMS with calculated values.

var_count This procedure cal cul ates the number of variablesin the specified
Return.

deallocate process_items This procedure saves atemporary tableto
IN_PROCESS _ITEMS.

25

4.13. Proceduresinvolved in Reporting
The procedures for Reporting are not full-fledged stored procedures. The proceduresthat are
dynamically generated during report generation are not permanently stored in the database. All
calculations and data groupings performed by these procedures are done by the SQL server. The
results of these calculations are placed in atemporary table called “rep_result”.
The procedures for Reporting perform the following operations as part of a single transaction:
1. Calculate periods offsets and recognize which periods are involved in the report

2. Sort recognized periods and place their IDs and sequence numbers in temporary table
“per_offsets”

3. Select values of return items and place them in temporary table “ middle”

4. Perform data grouping and calculations of PEER/ALL BANKS/PCT aggregates according to
banks, peer groups, periods, etc., with help of cursors and data collected in tables“middie”
and “per_offsets’

5. Placeresultsof thein“rep_result” table

6. Deletetemporary tables by selecting the whole “rep_result” table and deleting it from the
database.

4.14. Configuration

The database connection configuration takes place in the JBoss configuration filesand is
described in the “FinA Site Customization Manual”.

FinA uses JDBC driver from Microsoft for MS SQL Server, which is available at
http://www.microsoft.comy/.

JBoss has built-in connection pool capabilities. The size of the pool and the maximum number of
connections that can be opened at the same time can be configured by the application server
tools. The maximum number of simultaneous connectionsis also related to type and license of
SQL server that is used.

4.15. Patterns

4.15.1. Overview

In order to unify the overal development process, similar functions in the system follow the
same patterns. These patterns were devel oped based on an analysis of the system's functionality.

The user interface of FinA is based on three main types of windows, which display following
types of information:

a Tree

o Table

o List

26

Appropriate patterns are designed for each of these types of windows.

4.15.2. EJBTree Pattern

The EJBTree Pattern describes collaboration between the Client side GUI and server side EJBs.
All datain the system that must have atree representation should be processed using this pattern.
A chart is presented on Figure 4.15.2.1.

client

userHandle
MDTreeSession Handle

|
1: getTreeNodesiHandie, Handie) . Mode |

S
fii==

1.4 getEJaDbiect]) javax afb EJBDbect

==

1.2: hasPermizsioniString) . hoolean

1.1.1:

tree
EJBTree

ifthasPermission == false)

1.3.1: throw fina.security. PermissionDeniedExceptio [

2 initTreeiModeivoid

[]

3 addlcan{Ohject lean)waid

¥

]

S

L]

4 addMenu{Object JPopuphenu)void

L

:

FIGURE4.15.2.1, EJB TREE PATTERN

¥

:

For each datatype (such Metadata Tree, Menu Tree, Users/Roles Tree, etc.) an appropriate

Session Bean exists. For example the diagramsin this chapter illustrate the

fina2.metadata.M DT SessionBean for Metadata Tree.

These Statel ess Session Beans have the getTreeNodes() method which allows for the retrieval of

the structure of a given tree from the database and the returns of itsroot node. The root nodeis
then passed as a parameter to fina2.ui.tree. EJBTree.initTree() and atree is displayed.

The fina2.ui.tree.Node class contains primary key and type properties. It is possible to specify
different icons and pop-up menus for different types of nodesin the EJBTree.

For example, after an amend action is performed in a pop-up menu or button, the action listener

should

trigger the following operations:
obtain selected node from the tree
find appropriate Entity Bean by node’ s primary key

show Amend dialog box for the Entity Bean and get/set itsfields

27

client tree AmendDialog
EJBTree

T

il |
%:AmendAcnon performed }

|

|

1.1 obtain selected node

selectedNode
M

|
1.2 getPrimaryKey): Object } |
w .
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
T
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|

1.3 flndﬂyFNma/yKey{MDTNOdEF!%) MOT Node MOTModeHome
|
nodeEntiy
\; 1.31 o MDTHode

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ea\ngﬂe\ds modification perfarmed by user
|
1

|
|
|
|
|
|
|
1.4: set dialog fields with values from the nodeEntity object
|
|
|
|
|
1
|
|

3.1 jndfiContextlookup UserTransaclion

T

|

|

3.2: begingvoid |
ry }

0 |

3.4: set entity properties with values ftom dialog fields

T
|
satchiException)

51 show errar message

|
|
|
|
3.5.2: roliback{) void #dont close !fﬂ‘e dizlog

|
|
finally }
36.1: commi) void #iand close the ldialog
|
|
|
|
|
|
|
I

-

FIGURE 4.15.2.2, AMEND ACTION LOGIC

Entity Beans perform validation of values passed to them using “set” method and in case the
value is not acceptable they throw java.beans.PropertyV etoException with description message.

Parts where EJB Tree pattern is used:

Name Package Client classes Server classes

Metadata Tree fina2.metadata MDTAmendFrame MDT SessionBean
MDTInputAmendDiaog MDTNodeBean
MDTNodeAmendDialog
MDTVariableAmendDialog

Banks fina2.bank BanksFrame BankSessionBean
BankAmendDialog BankBean

User Manager fina2.security UsersFrame UsersSessionBean
UserAmendDialog UsersBean
RoleAmendDialog

Report Manager fina2.reportoo ReportM anagerFrame ReportSessionBean
Designer ReportBean
Generator
FolderAmendDialog

4.15.3. EJBTable Pattern

This pattern should be applied to data which must be represented as rows of atable or list.

28

Similar to the EJBTree Pattern, for each data type (such as Return Definitions, Returns, Periods,
etc.) a specific Session Bean exists which retrieves the table s data as collection of rows.

The collection of fina2.ui.table. TableRow objects returned by Session Bean should be passed to
fina2.ui.table.EJBTable.initTable() method.

client

|1 getRetunDefinitionsRowsHandia) Callection B-I

ReturnSession

1.3.1: throwe fina.security. PermissionDeniedExceptio |-

userHandle
Handle

1.4 getE JBORec) javax el E. JBObie_'_ct

table
EJETable

1.2 hasPermissionf String) boolean

¥

User

ifthasPermission == false)

]
=u}

1

2 iniTable(Collection)yvoid

-

| 3 setColumnsMames(Collection)void

¥

.

4; setPopuphenuilPopupkeny)void

-
{iim=

A sethultiSelectenulPopupMenu)void

e et I S i S

FIGURE4.15.3.1, EJB TABLE PATTERN

¥

Y
it I S S

29

Pop-up menus for table rows may be set by EJBTable.setPop-upMenu() method.

Processing of actions in this pattern happensin same manner asin EJBTree Pattern.

client table

EJBTable

T T
| |
M ;' !
Amend action performed |
|
1.1: obtain selected row |

= selectedRow

111 TahleRow

1.2 geiPrimanskey)) Objert |
t
!

13 fincByPrimanKeytRetumDen hitionFK) ReturmDetiniion

| RetunDefinitionHome

1.4: setdialog flelds with walues frpm the rowEntity object

TowEntity
\; 1.3.1: — ReturnDefinition

AmendDialog

)

[]E‘alng fieldls modification performed by user

|
3 OK button pressed |

3.1: jndiContext lookup UserTransaltion

3.2: begin(vold

| YserTransaction

i

t
|
|
|
t
try |
|
|
3.47 set antity properties with va\uasllrnm dialog fields

ol
]

calch(Exception)
5.1 show error message

|
|
|
|
|
352 roliback() vold #iont close the ciaiog

t
|
finally :
36.1: commit) void #and ciose m+ dialog
!
|
!
!
|
!
!
1

i
b

E

i
.

FIGURE 4.15.3.2, PoP-uP MENU PATTERN

Functions of FinA that use the EJBTable pattern:

Name Package Client classes Server classes

Periods Fina2.period PeriodFrame PeriodSessionBean
PeriodAmendFrame PeriodBean

Locaes Fina2.i18n LanguagesFrame L anguageSessionBean
LanguageAmendDialog LanguageBean

Comparison Rules | fina2.metadata ComparisonsAmendFrame MDT SessionBean
NodeComparisonAmendDial og

Return fina2.returns ReturnDefinitionsFrame ReturnSessionBean

Definitions ReturnDefinitionAmendDialog | ReturnDefinitionBean
ReturnDefinitionTableDialog

30

Schedules fina2.returns SchedulesFrame ReturnSessionBean
Schedul esAutol nsertFrame ScheduleBean
SchedulesAmendDialog

Return Manager | fina2.returns ReturnManagerFrame ReturnSessionBean
ReturnAmendDialog ReturnBean

4.16. Reporting

Reporting is performed by OpenOffice Calc. The entire report generation process takes
place on the server and is placed in the fina2.reportoo package.

The Report generation process contains following steps:

o Insert necessary number of columns and rows for iterators

o Replaceal CURNODE(), CURBANK() and other CUR...() functions with
appropriate values from iterators or parameters

o Execute calculation of spreadsheet formulasto collect information about all
combinations of nodes/banks/peer groups/periods/functions which are used in report

o Generate and execute SQL procedures based on information collected during the
previous step which selects source data from database

o Perform final formulas cal culations with existing source data

o Return generated spreadsheet to client

The main classes of reporting used on client are fina2.reportoo.Designer and
fina2.reportoo.Generator.

The fina2.reportoo.ReportSessionBean is used on server for report management and
generation purposes.

4.16.1. OpenOffice.org CALC

OpenOffice.org is the open source project through which Sun Microsystems has rel eased
the technology for the StarOffice[tm] Productivity Suite. OpenOffice.org CALC isfully
integrated with the FinA client. Therefore the user will not need to install OpenOffice
Calc. separately. Theinstallation and start-up will be part of the FinA client installation.

OpenOffice.org has been built for Linux (RedHat 6.2), Solaris (Sparc 2.6) and Windows
platforms Languages for the OpenOffice-API: OpenOffice implements the API with
UNO (Universal Network Objects). Currently there are language bindings for Java and
C++. See www.openoffice.org for further information on Open Office.org Calc.

OpenOffice Calc is used by the Client and Server side of FinA in different ways.

31

The FinA Client uses OpenOffice Calc for data presentation such Review, Print, Return,
Amend, etc., and also for report design.

GUI isnot necessary on server side. The server uses OpenOffice Calc for calculations at
report generation time.

OpenOffice Calc provides two ways to access its functionality from an external
application with help of UNO API by two ways:

1. Using native pipes of Operational System

2. Using TCP/IP sockets

See http://www.openoffice.org/

The first way alows for the manipulation of OpenOffice GUI and the embedding of its
GUI into the external application’s GUI. The second way does not allow access to the
GUI but permits using spreadsheet’ s data manipulation functionality.

o Client
The Client uses the Openofficebean to access the OpenOffice AP
(http://whiteboard.openoffice.org/OOBean/). The Openofficebean contains two parts:
Javaand the native libraries for all platforms supported by OpenOffice. This
simplified the development of the interaction between FinA and OpenOffice asthe
native part of code was already written for the use of the OpenOffice GUI in FinA.

o Server
The Server accesses OpenOffice with help of the UNO API and uses sockets for this
purpose. FinA uses the Java class library to access Open Office Calc services through
the UNO API. This library contains Java interfaces and its specifications are
available at http://www.openoffice.org/. The JAR file containing thislibrary is placed
in the server’ sdeploy directory and in client’ s lib/ext directory.

OpenOffice does not alow running more than one instance on a single machine and can
use only one method of interaction (native pipes or sockets) in oneinstance. Therefore,
with the current version of OpenOffice Calc, it isnot possible to run client and server
together on a single machine.

FinA uses “driver” -based architecture (FinA — driver — spreadsheet). The samedriver is
used by client and server. (See driver specificationsin
Doc/Driver_JavaDoc/index.html).

4.17. Application Server
The JBoss 3.0 Application Server isin the FinA system. It is possible to switch to other
Java 2 Enterprise Edition compatible Application Server without changesin the FinA
source code.

To replace JBoss:

32

ar®

Build fina2_server.jar with help of jar build tool provided with the specific App
Server

Configure database connection “Fina2DS’ with appropriate tools and/or
configuration files (depends on App Server)

Deploy fina2_server.jar into server (also depends on App Server)

Modify configuration file (conf/jndi.properties) on client workstation

Place client class libraries provided by App Server vendor to lib/ext folder on client
workstation

This process completely depends on App Server and not on FinA code.

Currently fina2_server.jar contains the FinA application server and is located in
FinA_Install_Dir/server/jboss/server/default/deploy folder. The database connection
configuration file mssgl-service.xml isalso located in this folder.

The Server application starts automatically after JBoss is started on command line using
the following batch file:
FinA_Install_Dir/server/jboss/bin/run.bat.

For additional information please see sourcecode.zip

a

4.18. Configuration Properties
Client properties

All configuration files of client workstation are placed in the conf/ folder.
o jndi.properties

O messages xxX_XX.properties

o fina2.conf

jndi.properties file contains parameters of INDI connection which are used to make
the connection to the server. These parameters are not specific to FinA. They are part
of INDI specification (http://java.sun.com/products/jndi/).

messages Xx_XX.properties is amessage bundle. It can be modified according to the
“FinA Installation & Configuration Manual 5.4.2".

fina2.conf contains configurations parameters such windows' positions, dimensions,
and other values which are stored by different parts of FinA. Thisfileis binary and
contains serialized classes.

Server Properties

There are no FinA specific configuration files on the server. The configuration of the
application Server configuration must be performed according to its manual.

33

4.19. Build (version) Management

This section outlines the build procedures used in the development of the FinA software.

4.20. Development Environment

O

The application has been written entirely in Java using Forte 4 on a Windows 2000

platform against a Microsoft SQL Server 7/2000 database

[W W)

The Java JDBC drivers are used to interface with the database engine
Swing components are used throughout the Ul

The"Install anywhere" software was used to build the installation package
Visio was used as database modeling and structure control tool

4.21. Directories

The following are directories under C:\FinA\current live build:

For Client

a

a
a
a
a

C:\Program Files\fina2client\

C:\Program Files\fina2client\conf - For Configuration Files
C:\'\Program Files\fina2client \fina2 - Main class directory
C:\Program Files\fina2client\import - for imported files

C: \Program Files\fina2client\lib - Library folder

For Server

Ry ey

C:\Program Files\FinA2Client\

C:\Program Files\FinA2Client\server

C:\Program Files\FinA2Client\servenaudit

C:\Program Files\FinA2Client\server\jre

C:\Program Files\FinA2Client\server\jboss

C:\Program Files\FinA2Client\server\jboss\bin

C:\Program Files\FinA2Client\server\|boss\catalina
C:\Program Files\FinA2Client\server\jboss\client

C:\Program Files\FinA2Client\server\jboss\lib

C:\Program Files\FinA2Client\server\jboss\ooconf
C:\Program Files\FinA2Client\server\jboss\server

C:\Program Files\FinA2Client\server\jboss\servenall
C:\Program Files\FinA2Client\server\jboss\server\minimal
C:\Program Files\FinA2Client\server\jboss\server\default
C:\Program Files\FinA2Client\server\|boss\server\defaul t\conf
C:\Program Files\FinA2Client\server\jboss\server\defaul t\db
C:\Program Files\FinA2Client\server\jboss\server\defaul t\depl oy
C:\Program Files\FinA2Client\server\jboss\server\defaul t\lib
C:\Program Files\FinA2Client\server\jboss\server\defaul t\log
C:\Program Files\FinA2Client\server\jboss\server\defaul t\tmp

34

There will also be adirectory C\ FInAXXX and C:\ FinAServerXXX, where XXX is
the current live build number. For instance "C:\FinA0018b4", C:\FinAServer0018b4" or
"C:\FinA0018c5", "C:\FinA Server0018c5" etc. Thisdirectory is constructed from the
live build directories and contains all the files and directories on the CD for the specific
release of FinA.

4.22. TheBuild Procedure
The build procedures are as follows:

1. Before copying the new build backup (copy) c\finafolder to the c:\FinAxxx
folder where xxx is build number.

2. Copy the new source code received from the software engineers into the C:\FinA\
directory and the new version is compiled completely with Forte (see Forte 4.0
documentation).

3. Oncethe build manager is satisfied that the new software does not compromise
the system, then the C:\FinA\ source directory is backed up by creating a zip file
of that directory. Thisfileis called xxxSource.zip , where xxx stands for the build
version number. Thisisthen copied to the C:\FinA\ builds directory.

4. Run Forte and compile source code (see Forte 4.0 Documentation for directions).
5. Runc:\FinA\deploy.bat. It will create fina_server.jar file, which must be copied to

C:\FinA Serverdeploy directory. FinA Server isready to run or to build
installation package (FInASXX XXX X.exe where X XX XXX is build number).

5. Installation Package Build

The folder c:\FinAinst is needed to build the installation package for FinA Server
(finasX XXX XX.exe) and the FinA Client (FInACXXXXXX.exe). It containsthe
following folders:

o C:\FinAinst\finac for FinA Client
o C:\FinAinst\finasfor FinA Server

1. Backup existing version of installation directory to C:\FinAinstXXXXXX where
XXXXXX isbuild number.

2. Copy al files except the source code from c\FinA to C:\ FinAinst\finac and
C:\FinAServen to C:\ FinAinst\finas.

35

3. RunInstall Anywhere, open project finac.

ST - = il 2|
Doen Praject... | leed i prg et froem thee (1=t of recere projects, or dick*Open
ﬂ_,l' (e, b browe e far other proescie.
" Create hew Projac &+ Open Exising Frmojeck

& e R -
Lok by | (3 lina_ire! fa o = s A e
| Boicinstabizteng 1 Fnn2_ciecale KA finaz_sere
|Ipicinstaber e 1 Fmez_servmr_web_nstebers [Ainaz_sera
| Ipicinscaler ttarm 1 Fine2_ser vmriocskes Open Other...
B dctinatalar St g v
" Ickent
| I _chien_wiet_Inssles Mnad_cle niEsdupsp
4 | il
Flannret [fnad dinlisg Dpan
Flosalppa: |4 Fiex 2] = Cancal bt I I J

4. Updateit with new files. Y ou can click on the™ Add Files' button, find the
relevant directory, and then add the necessary filesor al of thefiles.

B installbrmbiere HOW! - Tinac gﬂ_ﬂl

Add Fifes. .. |Gk Add Flles. " o add Tes 10 your prolect. To remowa.a Nia,
|==leci the file.in the free and clck " Remove”

ug

= Fllg/FHEer Hieranchy
=] & Irztall Folder (BU3ER_INSTALL_CIR)

* :'_i conf

o3 tinaz

=3 new A Files..
w0 impan

- b T

Edl] atbesnced Desigrer..] -pse | T R)

Click Next. The next step isto define the main classes. Put fina2.main in the Main

classfield of Install Anywhere.

36

I~ £

Choose Main_. Chck sdomaiicabFind Msin Classes” i bocaie al man
ClAE=s, OF TR0R B P Oy Fresn DA e in e ik Clitk
Inl -] *Chanpe. "o choes=an {con o vour Laonchhmwhe s
lancal

-~ Chooss Your Mam Clase

EOIM 1 i J B0k ii
cam. i M| ffamessa i version

cam i ami spalrerFoinierParar
Anal.ddnTest

Main Class [Ful Packaps Nama):
|ﬁna?.hlar|

o s ece o b e e, P e

orp Aress e va ban s Pracees

0D e b cm ban ged S LPRO e esorders:
O e b vl a5 e e D Y B e nnJJ

Lausthlamassne on

LR b
5

Changs:.

oAl
Autcrnaticall Fnd Wan Claz=as I ’g Dl I

Dizplaye sl sanmatcs b-iond mar clazses i yaur projest

| e | i

Click onthe" Next" button and define the classpath.
LI ot ataremhors oW -l o=

qu-ﬂ Classpath.., |5'ck Aulomaticliy g Classpatt o da this 132K aulamalicaly,
oF Thanaa s ibame an the 15t and setert e ®|n Classpath®
STVICE.) checkang 1o add e i e class path,

| Chas apal v
=] u kistall Foider (FUSER_IMSTALL_DIRE)

PG ort

@ G fnaz

& [neip il

@ Ef mpon

a0 io i ¥ Indicatas itam ks
an the claszgpath.

areEfial

g = PR R I

Click to-autarmatiesd by deter mihe which ficemarchives snolabe on e tlasspath.

Eat I fctwancad Designar. I = Back J’

Click onthe" Next" button. Choose the platform and JVM for package.

37

B trstallsrmwhers Mow - finac : = 5|

Buﬂn'!nsfaﬂec.': (Balectall desirad pistiorms and click *Build® {0 creaie the
iinst=lier(sl. To chooga specific.aya vwis to bebundled wih
QUooe wour instalar, go b the Sdvanced Designer

Build Installer for,,
Il Wl
Windos
e D581 -84
[LE)=
Uit gal0
Al
HF-LE
LinLo
Salariz
Cthardavs-Enabled Flaforms L]

w‘é
|z

w1 1R

| baw e g

Esll ! Achanced Deslgaes... | ~Dack ! Bl I

Click on the Build button and a progress bar will appear:
IS

o InstallAnywhere ~cw:

Meed Morz Features? Wisif Zero G at hitpe\twwow. Zerol.com
& Wore Aelioess, Ruls ined pasels = Complets Inalaller Cictomintias
& Wy Bipls Decdipiin e & Plathyrm Spesialic Featuies
= Featorn Subs wed Comparents = bomatonabaed icssalers
= {1pen Exben 5idie AFY = aif mech man!

=

ICRO
e T e

Aszemiing Cammon Rasauras:

After the build procedure is finished, click on the[Try it] button and test the
installation package.

(B beatabirrutoe Wiie-Enac alnisi
"_-_mﬁm” - Bum,wmllmIhﬁm-calmsm’-umurr:lamnmmuw.u .
Ty ' | ekl et r ey e

pUouoe
Builld Completel

* Iestaley Lo
our e Irvstaker 15 Lacated at
| cna_mshinae:_Weki_ircrlaices
¥our Frak e s Sepved ot
[= ma_n e
i b AT P Tt

Bt | aweredoespe | smk | [T

5. Repeat the same procedure with FinAS for FinA Server

Installation packages (files: finac.exe and finas.exe) will be created into folder
c:\FinAinst.

6. Database M odification Procedure

On the FinA CD that contains the new build, the user can find the scripts for updating the
database. The names of the scripts have following construction:
dbupdNNXN_NNXNN.sgl where NNXN is build numbers; for instance:

dbupd18b5 18c6.sql isascript which will update database version 0018b5 to version
0018c6. Y ou have to run that script through Query Analyzer. (See MS SQL Server 2000
manual)

7. Coding Standards

In the development of FinA, Java Coding Standards as put forth by Doug Lea were used.
See
http://gee.cs.oswego.edu/dl for afull copy of these standards.

Structure and Documentation

Packages: Create anew java package for each self-contained project or group of
related functionality. Create and use directories in accord with java package conventions.
Consider writing an index.htmi filein each directory briefly outlining the purpose and
structure of the package.

Program Files: Place each classin a separate file. This applies even to non-public
classes (which are allowed by the Java compiler to be placed in the same file as the main
class using them) except in the case of one-shot usages where the non-public class cannot
conceivably be used outside of its context.

Classesand Interfaces. Writeall/** ... **/ comments using javadoc
conventions. (Even though not required by javadoc, end each/ ** comment with**/ to
make it easier to read and check.)

Preface each classwitha/** ... **/ comment describing the purpose of the class,
guaranteed invariants, usage instructions, and/or usage examples. Also include any
reminders or disclaimers about required or desired improvements. Use HTML format,
with added tags. author-name, version number of class, string, URL
classname#methodname

M ethods. Use javadoc conventions to describe nature, purpose, preconditions,
effects, algorithmic notes, usage instructions, reminders, etc.

Use Running // comments to clarify non-obvious code, but try to make the code as
obvious as possible.

8. Naming Conventions

Packages - | ower case.
Classes: Capi t al i zedW t hl nt er nal Wor dsAl soCapi tal i zed
Exception class. C assNanmeEndsW t hExcept i on.

39

Interface. When necessary to distinguish from similarly named classes:
I nt erf aceNaneEndsW t hl f c.
Class. When necessary to distinguish from similarly named interfaces:

d assNaneEndsW t hi npl OR
Gl assNaneEndsW t hObj ect

constants (finals):
UPPER_CASE_W TH_UNDERSCORES

private or protected: (pick onel)
firstWrdLower CaseBut | nt er nal Wr dsCapi tal i zed OR
trailingUnderscore_, OR
t hi svar (i.e. prefix withthis), OR
nyVar (i.e. prefix with my), OR
f var (i.e. prefix withf)
static private or protected:

firstwWrdLower CaseBut | nt er nal Wr dsCapi tal i zed OR
twoTrailingUnderscores__

local variables:
firstWrdLower CaseBut | nt er nal Wr dsCapi tal i zed OR
| ower _case_wi t h_underscores
methods:
firstWrdLower CaseBut | nt er nal WrdsCapi talized()
factory method for objects of type X:
newx

converter method that returns objects of type X:
t 0X

method that reports an attribute x of type X:
X x() or X get X() .
method that changes an attribute x of type X:
voi d x(X val ue) orvoid set X(X val ue).

See http://gee.cs.oswego.edu/dl for more details.

9. Code Security

FinA isdesigned using Java Code Security Guidelines. These guidelines are aimed at
assisting programmers to write code so that it will not be vulnerable to security attacks.
However, achain only isas strong as its weakest link, and when new system code is
added, so also isanew link to the security chain.

Java Code Security Guidelines: The Programmer should use following guidelines: Static
fields; Reducing scope; Public methods and fields; Protecting packages; The equals
methods; Make objects immutable if possible; Never return areference to an internal
array that contains sensitive data; Never store user-supplied arrays directly; Serialization;
Native methods; Clear sensitive information; see

http://java.sun.com/security/seccodegui de.html#gcg2.

40

For more details see /DOC/ProgGuide_Apendix2_is015408-3.pdf.

10. Reference

agkrowdpE

Forte 4.0 documentation http://www.sun.com

Install Anywhere manual http://www.zerog.com/goto/iamanuals

SQL Server documentation http://www.microsoft.com

JBoss Documentation http://www.jboss.org

Security Code Guidelines http://java.sun.com/security/seccodeguide.html#gcg2

41

