
f;{:"ttcm - :J.5~
If c>~'fr

Mahomed Raft BeTa

Juta & Co, Ltd

Acknowledgement:

The authors and publishers wish to thank the following persons and institutions
for their invaluable contribution to the development of this publication:

• The United States Agency for International Development (USAIDJ, for
funding the project. This Materials Development Project formed part of
the Tertiary Education Linkages Project (TELP) which focused on
capacity huilding at Historically Disadvantaged Technikons through the
establishment of linkages with universities in the United States of
America.

• Contributors and moderators from the following South Mrican
institutions: Mangosuthu Technikon, ML Sultan Technikon, Peninsula
Technikon, Technikon Eastern Cape, Technikon Northern Gauteng,
Technikon Southern Africa.

• Contributors and moderators from the United States University
Consortium comprising Howard University, Massachusetts Institute of
Technology, Clark Atlanta University, North Carolina A & T University.

• The Motorola Corporation, Atlanta, USA, for permission to reproduce the
data sheets in Appendix 2.

Note from the author
Special thanks go to Ahmed Moolla (Senior Lecturer, Department of
Electronic Engineering, ML Sultan Technikon) for his support and
assistance, and to Hemant Lalloo (Lecturer, Department of Electronic
Engineering, ML Sultan Technikon) for his willingness to test the
preliminary manuscript in a real work situation and for checking the
answers to exercises.

This publication is dedicated to my wife, without whose patience and
support this project would not have been possible.

Mahomed Rafi Bera

First published 1999
ISBN 0 7021 4405 3

© Juta & Co, Ltd 1999
P.O. Box 14373, Kenwyn 7790

This book is copyright under the Berne Convention. In terms of the Copyright Act 98 of 1978,
no part ofthis book may be reproduced or transmitted in.any form or by any means,
electronic or mechan~l, including photocopying, recording, or by any information storage
and retrieval system, without permission in writing from the Publisher.

Editor: lise von Zeuner
Illustrators: Dennis Bagnall, Renato Balona, Hugh Lane
Book design and typesetting: JK Type & Graphic ee, Roodepoor!
Cover design: Eugene Badenhorst
Printed and bound in South Africa by
The Rustiea Press, Ndabeni, Western Cape
oro"

Table of contents

Preface

Unit 1 Introductory concepts 1

Study objectives 1
1 What is in tbis book? 1
2 Overview 3
3 Analog or digital? 4
4 Representing digital information 7
5 Bits and bytes 8
6 Summary · 9

Self-evaluation 9
Answers to activities 10

Unit 2 Basic logic functions 12
Study objectives 12

1 Introduction 12
2 What are the basic logic functions? ~ 12
3 The AND function 13
4 The OR function 21
5 The NOT function (INVERTER) 25
6 Summary 28

Self-evaluation 28
Answers to activities 30

Unit 3 Working with logic functions 33
Study objectives 33

1 Introduction 33
2 How many rows in a truth table? 34
3 What happens when logic gates are combined? 35
4 Writing the Boolean expression for a logic circuit 37
5 Considering more complex circuits 38
6 Applying digital signals to these logic circuits 41
7 Practical implementation •................................. 43
8 Troubleshooting logic circuits .45
9 Summary ' .46

Self-evaluation 46
Answers to activities .49

c.

Digital Systems for Engineering

Unit 4 The NAND and NOR logic gates 54

Study objectives 54
1 Introduction 54
2 Combining the AND gate with the NOT gate 54
3 Combining the OR gate with the NOT gate 55
4 Applying digital signals 56
5 Practical implementation 58
6 Combining the various logic gates 59
7 Drawing the logic circuit from the Boolean expression 61
8 Troubleshooting logic circuits 64
9 Simple applications of NAND and NOR gates 66

10 Summary 69
Self-evaluation 70
Answers to activities 72

Unit 5 Simplification using Boolean algebra •••••••••••••••••••• 79

Study objectives 79
1 Introduction 79
2 Simple single-variable Boolean laws 80
3 Two other useful Boolean laws 85
4 The weII"known DeMorgan's laws 87
5 Generating Boolean expressions from truth tables 89
6 Summary 93

Self-evaluation 93
Answers to activities 95

Unit 6 Simplification using Karnaugh maps•••••••••••••••••••• 100

Study objectives 100
1 Introduction 100
2 What are Karnaugh maps? 100
3 Generating a Karnaugh map form a truth table 102
4 Simplification using the Karnaugh map 107
5 Summary 117

Self-evaluation 117
Answers to activities 120

Unit 7 Basic combinational logic circuits ••••••••••••••••••••••• 128

Study objectives 128
1 Introduction 128
2 Combinational logic circuits 129
3 Design techniques 130
4 The binary number system 135

Table of contents

5 The Exclusive-OR and the Exclusive-NOR gates 140

6 Comparing binary quantities 143

7 Comparator circuits 145

8 Summary 156
Self-evaluation 156

Answers to activities 158

Unit 8 Application of combinational logic •.....••••••••••••.... 170

Study objectives 170

1 Introduction 170

2 Number systems 170

3 Adders 178

4 Decoders and encoders 185
5 Multiplexers and demultiplexers 191

6 Summary , 195
Self-evaluation 195

Answers to activities 197

Unit 9 Sequential logic circuits 202

Study objectives 202

1 Introduction 202

2 Latches and flip-flops 203

3 Shift registers 216

4 Asynchronous counters 224

5 Summary 229
Self-evaluation ' 230
Answers to activities 231

Appendix 1 Pin outs of digital ICs 234
Appendix 2 Sample data sheets 236
Appendix 3 Glossary 249
Appendix 4 Answers to self-evaluation exercises 251
Appendix 5 Recommended reading 274

Preface

HOW TO USE
THIS BOOK

This book covers the basics of digital systems. It is designed as a one­
semester course for technikon students who are studying electronic en­
gineering.

The language in the text is simple, conversational English. Difficult con­
cepts and technical terms are explained throughout the book. There is
also a glossary at the end of the book in which terminology is explained.

This book has 9 units. Students should start with Unit 1 and systemati­
cally work through the book until they reach the end ofUnit 9. Students
should not move on to a next unit until they understand the unit they
are busy with. Each unit starts with a list of study objectives. These
objectives set out what the student should be able to do at the end of
the unit.

The text is set out in such a way that students should be able to work
through the book by themselves. New concepts are explained and re­
inforced by giving students examples with solutions to work through.
There are also many figures used throughout the text to aid understand­
ing and clarify concepts. The mathematics in this course is thereby made
clear and understandable.

Because this is a problem-solving course, there are also many activities
for the students to work through. These activities allow the students to
make sure that they have understood the work they have just covered.
The answers to the activities appear at the end of each unit.

The summary at the end of each unit enables students to see at a glance
what they should have learnt in the unit. The summary is followed
by a .section with self-evaluation exercises to enable students to assess
their own progress. Answers to the self-evaluation exercises appear in
Appendix 4 at the end of the book.

We have used three icons in this book to help guide the students through
the text. These are as follows.

This is an ACTIVITY icon. When you see this icon you will know that
it is time to DO something! The activities are active and enjoyable and
they help you to understand the subject. Feel free to do them with a
friend or a group of friends. The solutions to the activities are given at
the end of each unit.

This is a DEFINITION icon. Read the definitions carefully
because the details are important.

This NOTE WELL icon appears alongside all the extremely important
information.

Unit 1
Introductory concepts

Study objectives
Mter studying this unit, you should be able to:

<> outline the topics covered in this book

<> relate digital systems to electrical engineering

<> determine the difference between analog circuits and
digital circuits

<> represent digital information

<> differentiate between bits and bytes.

1 What is in this book?

Before we look at some of the elementary concepts of digital sys­
tems and at where digital systems falls in the vast field of electri­
cal engineering, we will look briefly at the topics covered in this
book. Remember that this book is aimed at giving you a fairly good
working knowledge of the first level of a digital systems course.
It will also give you practical experience with some simple digital
circuits. Here is an outline of the topics covered.

Unit 1 Introductory concepts

This unit provides an overview of digital systems with reference
to electrical engineering and an explanation of some elementary
terms and concepts.

Unit 2 Basic logic function

This unit introduces the three simplest circuit elements in digital
systems - the AND gate, the OR gate and the INVERTER.

Unit 3 Working with logic functions

The basic gates which were discussed in Unit 2 are linked together
in various combinations to form larger digital circuits. You will
learn how to write digital expressions and draw up tables for these
circuits, and how to apply digital signals to these circuits.

-r

Digital Systems for Engineering

Unit 4 The NAND and NOR logic gates

The next two logic gates in digital systems (NAND and NOR) are
presented. You will also be shown how to draw complex digital
circuits - based on the logic gates studied so far - from digital
expressions.

Unit 5 Simplification using Boolean algebra

A guiding principle in engineering is to keep things simple. This
also applies to digital expressions and circuits. In this unit you
will learn how to simplify digital expressions and circuits using a
special mathematical technique called Boolean algebra.

Unit 6 Simplification using Karnaugh maps

In this unit you will learn to use another technique to simplify
digital expressions and circuits. This graphical method uses dia­
grams called Karnaugh maps.

Unit 7 Basic combinational logic circuits

Digital circuits can generally be classified into one of two types:
combinational or sequential. In this unit you will learn tech­
niques involved in the design of combinational digital circuits.
At this point it will be important to introduce the concept of bi­
nary numbers. Two other digital gates - the Exclusive-OR and
the Exclusive-NOR - will also be introduced. You will also learn
how to design circuits to compare binary numbers.

Unit 8 Applications of combinational logic

In this unit you will learn various numbering systems as used in
digital electronics. You will use these numbering systems to do
addition using integrated circuits (les) called adders. You will
use decoders to convert one coding system to another, and multi­
plexers to do data selection.

Unit 9 Sequential logic circnits

In this unit you will learn about logic devices that have two sta­
ble states. These devices can maintain their output state after
the input signals which have produced them, have been removed
and, as such, form the basis on digital logic memories. You will
learn about two types of bi-stable devices namely the latch and
the flip-flop, and how to apply the flip-flop to simple sequential
logic circuits, like shift registers and counters.

2

Unit I

Appendix 1 Pin outs of digital ICs

Introductory concepts

To construct and test or troubleshoot a digital circuit it is neces­
sary to know what each pin on a digital component or integrated
circuit (IC) represents. This appendix contains diagrams showing
some popular lCs and what each pin on the lCs represe:o.ts.

Appendix 2 Sample data sheets

In many cases when designing, testing or troubleshooting elec­
tronic circuits, it is necessary to have a lot more information than
just the component pin outs. The manufacturer of the component
supplies comprehensive information on the component in the form
of a data sheet. This section contains a few sample sheets of some
of the ICs discussed in this book.

Appendix 3 Glossary

Appendix 4 Answers to self-evaluation exercises

Appendix 5 Recommended reading

2 Overview

Welcome to the world of digital systems. You are probably aware
that the field of electrical engineering involves dealing with elec­
tronic circuits. Almost all electrical engineering equipment is con­
trolled by some type of electronic circuit. These electronic circuits
are made up of various types of devices (or electronic parts) linked
together to perform a certain task or function. These parts are
called components.

Fig I. I Diagram ofa machine controlled by an electronic circuit.

3

Digital Systems for Engineering

. J 2 Diagram of an electronic circuit board.FIg ,

, t d make a list of items thatLook around in ~ou~ enVlronmen an
have electronic CIrcuits,

Activity 7

~
activities at the end of each uni~.

"V: WI'1l find the answers to the Thi"ll help you to mom-~ou answers s WI ,
Use these to evaluate your d the work. By evaluatmg your
tor how well you have ~~~ersto~Ptsyou find difficult, and spend
progress, you can see w l~ con~be:r you must evaluate your ownextra time revising them, erne ,
progress,

3
Analog or digital? . f two types: ana-

. all divided mto one 0Electronic cirCUIts are usu y

log or digital. . h di 'tal devices and dr-
. b d al'ng only Wit gI

In this book we Will. e e ~ erin subjects you will learn more
cuits. In other electrIcal en~C:its ~n practice there are systems
about analog systems and ~I~ 'tal circuits, These are referred towhich have both analog an gI

as hybrid systems,

Fig J.3

4

Unit I Introductory concepts

At the moment the trend is to use digital circuits, rather that anaw

log, in most technical devices. The commonly-used PC (personal
computer) has a large number of digital circuits.

You will often hear some~
one say that a certain
item or device has been
programmed to perform
a certain task. For a de­
vice to be programmable
it has to be designed with
a great deal of digital cir­
cuitry.

To understand the difference between digital and analog circuits,
we first have to understand the concept of electrical signals.

You have to keep two important points in mind:

1 Every electronic circuit needs electrical power to en­
able it to operate. For example, a portable radio needs
batteries to supply the power.

2 Electronic signals may flow into a circuit, through the
circuit and finally out of the circuit. For example, to
make the radio sound louder, the volume knob must be
turned. This sends a signal into the radio circuitry. The
signal travels through the circuit and finally comes out
as an output signal to the loudspeaker and we hear the
sound louder.

Power to the circuit

14 Signal
5 5 output

13 Q

7474

14
2 0 0 9

12 15 R
Signal 1 7
Input 9 14

..1'l..rtJ1.... 13 74427490
11 12

...
BATIERY

or
PSU 2 7 10

(Power Supply
Unl)

Fig 1.4

5

Oigital Systems for Engineering

Electronic signals, som.etimes referred to as waveforms, may
generally be divided into two types: analog and digital.

Signals in an electronic circuit usually represent a voltage or a
current. We will only look at the concept of voltage.

3. 1 Analog signals

Let's first look at an analog voltage signal. The voltage in an
analog voltage signal will have a certain value. As time goes by, the
voltage may change (i.e. it may increase or decrease). Have a look
at Fig 1.5. The line showing how the voltage changes with respect
to time, is called a voltage signal. You will notice that the signal
may take on any value (within limits, of course). Because there
are no breaks in the signal, we say that the signal is continuous.

LOWER LIMIT

- UPPER LIMIT
+10V

+--+--------\----+----___+_ Time

·5V

Fig /.5 Analog voltage signal

3. Z Digital signals

Fig 1.6 shows a typical digital signal.

Voltage

+5V_ - - - - - - - - -__ HIGH LEVEL

.......:.0-t-__......__....... ..a...:L:::::O.:..;W:..;L::E:..:V.=E::L___+_ Time

Hg /.6 Digital voltage signal

6

Unit I Introductory concepts

Activity Z What do you notice about the digital signal shown in Fig 1.6 when
compared to the analog signal· in Fig 1.5?

A digital signal can usually take only one of two values - either
a high voltage or a low voltage. The signal remains at a specific
level - either high or low - for a fixed time period. In the next
fixed time period, the signal may change to a different specific
level, again either high or low. This level is also called a discrete
level, therefore we say that a digital signal is not continuous, but
discrete.

Analog

continuous

varying level

Digital

discrete

fixed level

Activity 3

~

Table 1.1

Circuits that work with analog signals are called analog circuits,
and circuits that work with digital signals are called digital cir­
cuits.

Devices that contain some sort of alphabetical or numerical dis­
play, for example, a digital wrist watch, usually have digital cir­
cuits.

Remember that many electronic systems may have both digital
and analog circuits.

Make a list of devices which have digital circuits, analog circuits
or a combination of both these circuits.

4 Representing digital information

When analog circuits are analysed or examined, the actual values
of the voltage or current need to be specified, for example, 12V;
220V; 30A etc. However, in digital systems we are more interes­
ted in knowing whether the voltage signal is a high voltage or

7

Digital Systems for Engineering

a low voltage. For example, the actual high voltage may be 5V
and the actual low voltage may be ov. We will say that the signal
is either high or low. Sometimes we will refer to the signal level
as the logic level or logic state. Instead of using the terms high
and low, the usual practice in digital systems is to use 1 and O.
These are read as 'one' and 'zero'. Fig 1.7 shows a simple digital
signal and the various ways we use to specify it.

DIGITAL :-1SIGNAL • t

SIGNAL OV 5V OV
VOLTAGE

LOGIC LOW HIGH LOW

LEVEL 0 0

Fig 1.7

One of the main uses of digital circuits is to process and store
information, for example, in computers. This information is often
referred to as data. The data is actually in the form of digital sig­
nals. As mentioned above, the digital signals may be represented
as zeros and ones. The data that is processed and stored by de­
vices such as computers, can be examined and interpreted in the
form of these numbers. A typical digital signal may then look like
this: 0101000100101010011110.

5 Bits and bytes

Each 0 or 1 of digital data is referred to as a bit of data, or simply
as a bit. Bits are usually grouped together into sets of data. These
sets are termed bytes. The standard practice is to refer to a group
of 8 bits as a byte. Thus 16 bits of data make up 2 bytes, and so
on.

In situations where bytes are used to represent numerical infor­
mation, the position of the bit in the byte is very important. In
Unit 7 you will learn about the concepts of the 'most significant
bit' and the 'least significant bit'. These will be simply called the
MSB and the LSB.

8

Unit I Introductory concepts

Activity 4

"

6 Summary

1 You may have heard people who use computers say that
their computer has a 16MB memory or a 1 gigabyte hard
drive. Find out what these terms mean.

2 Examine the data shown below and rewrite the data in
the form of bytes: 10101000011110101010101OHlll1001
Is it easier to read the data when it is written as above
or when it is written in the form of bytes?

3 Draw a digital waveform corresponding to the following
bits: 10101100

4 Represent the following digital signal in the form ofbits.

Fig 1.8

This unit began with an outline of the topics to be covered in this
book. This unit served to introduce you to the subject of digital
systems and showed where digital systems fit into the vast field
of electrical engineering. Basic concepts on which the rest of this
book is based were explained.

The next unit will begin with the concept of the three basic build­
ing blocks or components on which most of the circuits in digital
systems are based.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring back to the unit.

1 Electronic circuits may be classified into two basic cate­
gories. Name them.

2 Many devices are made up of a combination of the two
types named in number 1. True or false?

3 How would you differentiate between an analog and a
digital signal?

9

Digital Systems for Engineering

4 Sketch an example of each of the following signals:

4.1 a digital signal of which the high level is 12V and
low level is OV

4.2 an analog signal which may vary between the limits
of +5V and -5V.

5 How would you differentiate between a bit and a byte?

6 If a byte is made up of eight bits, how many bytes would
1024 bits represent?

7 A computer consists of 8MB of memory. How many bits
is the memory made up of?

8 Represent the following in the form of bytes:
1010110010100011

9 Represent the following as a digital signal: 1000011010

You will find suggested answers to the self-evaluation exercises
in Appendix 4 at the end of this book. Do not, however, consult
these answers until you have completed all the exercises.

Answers to activities

Activity 1

Watch, clock, radio, television, computer, telephone, burglar
alarm, camera, amplifier, etc.

Activity 2

In the digital signal:

<> the level is only either high or low

<> the signal is at a certain level for a certain minimum
fixed time

<> the signal is made up of distinct or discrete parts.

Activity 3

Without a knowledge ofthe actual signals involved in the circuitry,
it is difficult to say exactly which circuits are analog or digital.
As your knowledge of electronics, digital systems, and electrical
engineering increases, you will be able to determine the extent of
digital and analog circuitry in the various electronic devices.

10

Unit 1 Introductory concepts

ICombination IAnalogDigital

digital watch car speedometer telephone

computer radio radio

television television

camera camera

amplifier amplifier

Activity 4

116MB memory: M stands for mega or 106 • B stands for
bytes. The memory or data storage area consists of 16 x
106 bytes. (Remember that each byte is made up of 8
bits.)

1 gigabyte hard drive: Giga stands for 109 • The data stor­
age capacity of the hard disk drive unit in the computer
is 109 bytes.

2 10101000 01111010 10101010 10111001
It would seem easier to read the data when it is written
in the form of bytes. If the bytes were coded into some
simpler form it would be even easier to work with. You
will learn more about this in Units 7 and 8.

3

Fig 1.9

4 01011001

11

Unit 2
Basic logic functions

Study objectives
After studying this unit, you should be able to:

<> define the three basic logic functions, I.e. AND, OR
and NOT

<> identify the AND, OR and NOT logic symbols

<> draw their truth tables

<> write them as Boolean expressions

<> draw output waveforms for the basic logic gates

<> use data sheets to identify the component pin connec-
tions

<> construct basic logic circuits

<> test the logic circuits to verify their operation

<> use the basic logic gates in simple applications

<> apply digital signals to the basic logic gates

<> identify basic logic gate fault conditions.

1 Introduction

In this unit you will be studying the basic logic functions, and the
various ways in which these logic functions can be represented.
You will then look at ways of practically testing the circuits that
have been described.

2 What are the basic logic functions?

The three basic logic functions are the AND, the OR and the
NOT functions. These will be explained in this unit, and you will
also learn the various ways of representing these logic functions.
Other logic functions, such as the NAND, the NOR, the Exclusive­
OR and the Exclusive-NOR, which may be derived from the basic
logic functions, will be discussed in later units.

3 The AND function

Unit 2 Basic logic functions

This logic function is probably the simplest to understand and use.
Have a look at the example below, which illustrates the principle
underlying the AND function.

Example Z. 7 You want to go out with your friends, but to do so you need the per­
mission of both your parents. Both your father and your mother
must agree that you can go out. If either one or both do not give
their permission, you cannot go out.

Let us summarise the situation in the form of a table.

Can you go out?

Father says Mother says So what do you do?

No No Stay at home

No Yes Stay at home

Yes No Stay at home

Yes Yes Go out, have funl

This table represents the AND function, Le. both your father and
mother must say yes for you to be allowed to go out.

r H

BATTERY LAMP

Fig 2.1

We can apply this principle to other situations. Have a look at the
simple electrical circuit in Fig 2.1 above.
The lamp will turn on only when the switch is closed. When the
switch is open, the lamp will remain off.

Now look at the electrical circuit in Fig 2.2.

When will this lamp
turn ON7

~----~/:-:-:c----,1 SWITCH SWITCH

BATTERY

Fig 2.2

LAMP

13

Digital Systems for Engineering

The lamp will turn on only when both switch A and switch B are
closed. For all other cases the lamp will remain off. Now let's
draw up a table to summarise how this circuit behaves.

Switch A SwitchB Lamp

Open Open Off

Open Closed Off

Closed Open Off

Closed Closed On

Once again you see that the table represents the AND function,
Le. both switch A and switch B must be closed for the lamp to
turn on.

As we explained in Unit 1, we usually represent information in
digital systems in the form of a low and a high level, or by a 0 and
a 1. If we let the open switch be represented by a low level, and
the closed switch by a high level; and the off lamp by a low level,
and the on lamp by a high level, then the table can be rewritten
as follows:

Switch A Switch B Lamp

Low Low Low

Low High Low

High Low Low

High High High

Alternatively, if we use 0 and 1 instead of low and high, we can
rewrite the table in yet another way, as you can see below.

We call a table that shows all the possible cases of inputs and
outputs for a digital circuit in terms of Os and Is a truth table.

Switch A SwitchB Lamp

0 0 0

0 1 0

1 0 0

1 1 1

The AND function can be defined as a circuit that produces a 1
or a high output when all its inputs are at a 1 or high level.

14

Unit 2 Basic logic functions

In digital electronics there is a device that can perform the same
logic functions as the AND function. This device is called the AND
gate. It is usually represented by a special symbol called a logic
symbol. The logic symbol for the AND gate is shown below.

Fig 2.3

This AND gate has two inputs and one output. We can label these
as follows:

AB=[)-XINPUTS OUTPUT

x

Fig 2.4

The truth table for the AND gate will be as follows:

A B X

0 0 0

0 1 0

1 0 0

1 1 1

The inputs are usually shown on the left-hand side of the table,
with the outputs usually shown onthe right'hand side.

In a digital circuit diagram the logic gate may be drawn in any
direction.

Fig 2.5

15

Digital Systems for Engineering

3.1 Representation of the AND function as a Boolean expression

Any logic function or circuit may be represented by a mathema­
tical expression. We refer to the mathematics of logic circuits as
Boolean algebra. The AND function can be written like this:

X=AANDB

or more usually as: X = A . B

Often the dot is left out and the expression becomes: X = AB.

The expression is still read as 'X equals A AND B'.

Activity 1

i'
1 Define the basic AND function.

2 Define the term truth table.

3 Write down the Boolean expression and the truth table
for the following device.

Fig 2.6

As you will remember, we discussed the concept of digital signals
or digital waveforms in Unit 1.

Logic gates may process digital signals according to their partic­
ular logic function.

Take a look at the example below.

Example 2.2 Determine the output signal, X, if the signals shown are fed into
the inputs A and B.

Solution

/6

Fig 2.7

1 In the beginning both A and B are low or o. According to
the AND gate truth table in this case, the output must
be low or O. Draw the output as a low level under the
corresponding input signal part.

Activity 2

i'

Unit 2 Basic iogic functions

AJLJ
B~

x

Fig 2.8

2 Next, A is at a high level and B is at a high level. Accord­
ing to the truth table, the output must be high. Draw a
high level for signal X.

AJLJ
B~

X S

Fig 2.9

3 The rest of the signal can be determined in the same
way.

AJLJ
B~

X~

Figure 2.10

1 For the AND gate shown in Fig 2.7, determine the output
signal X if the inputs A and B were fed with the following
signals.

A~

B I L-
X

Fig 2.11

17

Digital Systems for Engineering

2 Determine the output signal or waveform X from the
AND gate shown in Fig 2.7 given the signals for A and B
as shown below.

A

B_-,

x

Fig 2.12

3.2 Construction and testing of the AND gate

To verify the operation of logic gates the circuit needs to be con­
structed with the actual digital components and tested with real
electronic signals. The detailed description and usage of electronic
(including digital) components are found in manufacturer's cata­
logues, called data books.

You will find sample pages taken from some digital component
data books in Appendix 2 at the end of this book. Data books
consist of a number of data sheets for different components, for
example, logic gates and other digital devices.

The following diagram shows the internal arrangement and the
pin connections for a digital component which contains four AND
gates - each gate in this device has two inputs.

Gnd

7408 quad 2-input
AND gate

Fig 2./3

/8

Unit 2 Basic logic functions

Activity 3

The common term for most digital (and some analog) components
connected as a circuit, is an integrated circuit, or IC for short.
The above component can be called a quad 2-input AND gate
IC. The word 'quad' tells you that there are four gates in the IC.

Two of the pins are usually connected to the power supply or
battery to supply power to the IC. In this case these are pins 7
and 14.

Pins 1 and 2 are the two inputs of one of the AND gates and pin
3 is the output.

Before the actual AND gate IC can be tested, the circuit must
first be constructed on a test board.

The steps listed below are very important. Make sure that you
follow them carefully, as you will need to test more gates later in
this unit.

Items required

<> 1 quad 2-input AND gate IC (for example, 7408)

<> 1 test board

<> some pieces of connecting wire

<> 1 LED and 1 K n resistor.

Method

Always double check the circuit wiring before switching the
power on.

1 Place the IC numbered 7408 on the test board.

2 Connect the output of a gate (pin 3) to a lamp (LED).

3 Connect each of the inputs (pins 1 and 2) of the same
gate to the OV line.

4 Connect the positive power supply pin (Vee) (pin 14) to
the +5V line.

5 Connect the other power supply pin (Gnd) (pin 7) to
the OV line. (NB Connecting a pin to the OV line is
called 'grounding' the pin.)
Precaution: Never let a +5V line touch a OV line!

6 Switch the power to the circuit ON.
Does the lamp remain off or turn on? Record the details
in a table.

19

Digital Systems for Engineering

7 Switch the power to the circuit off.
Disconnect the OV line from one of the inputs. Now con­
nect this input to the +5V line. Does the lamp remain
off or turn on? Continue to record the details in the ta­
ble.

S Switch the power to the circuit OFE
Connect both the input pins to the +5V line. Does the
lamp remain off or turn on? Continue to record the de­
tails in the table.

9 Finally, try the last combination of input switch condi­
tions and record the results.

10 Compare the table obtained with that of the AND gate
truth table.

11 If the theoretical truth table and the truth table you
obtained experimentally do not correspond, you will have
to troubleshoot the circuit.

Precaution: When removing the IC from the test board
on completing the activity, be careful not to bend or
break the IC pins.

Example 2.3 A printer will print only if both the printer cover is closed and
the paper tray is full. A high voltage level is generated when the
printer cover is closed. The paper tray also generates a high level
when it is full. To start printing, the printer needs a high level.
Determine what type of logic gate can be used to make the printer
start printing.

Solution At this stage we have only studied the AND gate. Will it work in
the above application? Before deciding, let us draw a table of all
the possibilities.

Printer cover Paper tray Printer

Open Empty Off

Open Full Off

Closed Empty Off

Closed Full On

If the printer cover is closed, it generates a high level. Therefore
if the cover is open it will generate a low level. Also, if the paper
tray is full, it generates a high level. Therefore if the tray is empty,
it will generate a low level.

20

Unit 2 Basic logic functions

We have already seen that a high can be represented by a 1 and
a low by a O. If we redraw the above table with Os and Is, we get
the following table:

Printer cover Paper tray Printer

0 0 0

0 1 0

1 0 0

1 1 1

Conclusion

This table is the same as that for the AND gate. Thus an AND
gate would be suitable for this application. One input for the AND
gate would come from the printer cover and the other input from
the paper tray. The output would be used to start the printer.

We have now covered the basic theoretical and practical aspects
of the AND function. Our next task is to study the OR function.

4 The OR function

This function can easily be demonstrated by using another switch­
lamp circuit. Examine the parallel circuit shown below.

~.
AS

When will this lamp .. .
turn ONl?

LAMP

Fig 2.14

The lamp will turn on only when:

<> switch A is closed OR

<> switch B is closed OR

<> both switches A and B are closed.

21

Digital Systems for Engineering

However, ifboth the switches are open, then the lamp will remain
off.

Now let us summarise the above information in the form of a
table.

.

Switch A SwitchB Lamp

Open Open Off

Open Closed On

Closed Open On

Closed Closed On

Rewriting the table as a truth table using Os and Is, we get the
following:

Switch A SwitchB Lamp

0 0 0

0 1 1

1 0 1

1 1 1

This table defines the OR function.

The OR function can thus be defined as a circuit which produces
a high output when any of its inputs are at a high level.

4. 1 Representation of the OR function as a Boolean expression

The digital device that performs the OR function is called an OR
gate. The logic symbol for the OR gate is:

Fig 2./5

In Boolean algebra the function for the OR gate is written as
follows: X = A OR B

or more usually as: X = A + B

The expression is still read as 'X equals A OR B'.

22

Unit 2 Basic logic functions

Activity 4

"

This OR sign (+) should not be confused with the normal arith­
metic addition or 'plus' sign.

1 Write down the truth table and draw the logic symbol
for the following expression: K = S + T

2 For the above logic gate, if the input S is kept low and
the input T is fed with the following digital waveform,
what will the output signal X look like?

s _

T~

x.

Fig 2.16

3 Determine the output waveform X for the same logic
gate if the inputs are as shown below:

s
T _

x .
Fig 2.17

4 The following diagram shows the internal arrangement
and the pin connections for a digital component which
contains four OR gates - each gate in this device has two
inputs.

7432 quad 2-input
OR gate

Fig 2.18

23

Digital Systems for Engineering

4.1 What are the functions of·pins numbered 7, 8, 12
and 14?

4.2 The above component represents a quad 2-input OR
gate IC. True or false? Give a reason for your answer.

4.2 Construction and testing of the OR gate

To verify the operation of an OR gate, the circuit needs to be
constructed with the actual components and tested with real elec­
tronic signals as explained in Activity 3. The IC (No. 7432), which
is shown in Fig 2.18 above, must be tested by following the same
procedures as in the case of the AND gate in Activity 3.

Let's do our own construction and testing.

Activity 5

~

24

Items required

<> 1 quad 2-input OR gate Ie (for example, 7432)

<> 1 test board

<> some pieces of connecting wire

<> 1 LED and 1 K n resistor.

Method

1 Wire up the circuit to test the first OR gate found in
the IC 7432. The procedure should be similar to that
described in Activity 3. The table obtained should also
be similar to the truth table for the 2-input AND gate.

2 If the table differs considerably from the truth table for
the 2-input OR gate, check the construction and testing
procedure carefully by following the steps of Activity 3.

Application

In a factory a sensor is used to check the temperature of a liquid.
If the temperature is above 40 degrees celsius an alarm must be
sounded. The alarm must also be sounded if the tank containing
the liquid is empty. What type oflogic gate could we use to sound
the alarm?

Unit 2 Basic logic functions

Let's first consider all the possibilities in the form of a table.

Temperature Tank Alarm

below 40 degrees full orf

below 40 degrees empty On

above 40 degrees full On

above 40 degrees empty On

We could represent the temperature below 40 degrees by a 0 and
that above 40 degrees by a 1. Also, the full tank could be rep­
resented by a 0 and the empty tank by a 1. We could therefore
rewrite the table of possibilities as:

Temperature Tank Alarm

0 0 0

0 1 1

1 0 1

1 1 1

This table looks exactly like the truth table for an OR gate. This
shows that for this application an OR gate would be suitable.

We have now covered the basic theoretical and practical aspects
of the OR function. Our next task is to study the last common
logic function that we will be dealing with in this unit: the NOT
function.

5 The NOT function (INVERTER)

This is the last of the three basic logic functions that we will be
studying in this unit.

The NOT function simply produces a reSl,llt that is always the
opposite of the given or input condition.

If the input is high, the output is low - in other words, if the
input is a 0, the output is a 1.

You will notice that this function has only one input and one
output. A digital device that performs this function is called a
NOT gate, or alternatively, an INVERTER.

25

Digital Systems for Engineering

5. 1 Representation of the NOT function as a Boolean expression

The logic symbol for the NOT gate or INVERTER is:

A-{>-X

Fig 2./9

and the Boolean expression can be written as follows:

X=NOTA

or more usually as: X = A

This is still read as 'X equals NOT A' (or sometimes as 'X equals
A bar').

The truth table of the NOT gate will simply be:

A X

0 1

1 0

Activity 6

'i'

26

1 Write down the Boolean expression and truth table for
the following device in terms of highs and lows.

Z---<J--D
Fig 2.20

2 If two INVERTERS are connected as ,shown below, what
will the output of the second gate be if the input of the
first gate is a O?

Fig 2.2/

Unit 2 Basic logic functions

5.2 Construction and testing of the NOT gate

To verify the operation of an INVERTER (NOT gate), the IC (No.
7404) shown below may be used. This Ie is termed a hex IN­
VERTER. The circuit needs to be constructed with the actual
components and tested with real electronic signals as explained
in Activity 3.

Why is it a hex INVERTER and not a quad INVERTER? Easy!
Hex means six, and we use six INVERTERS to construct this
particular IC.

7404 hex INVERTER

Fig 2.22

Now let's do our own construction and testing.

ActiVity 7

i'
Construction and testing

Construct the INVERTER test circuit in a similar way to the way
you constructed the AND and OR gate circuits in Activities 3 and
5. However, remember that NOT gates have only one input each.
Mter verifying that the wiring is correct, test the device as you
did in Activity 3 and draw the NOT truth table.

27

Digital Systems for Engineering

6 Summary

This unit introduced you to the theory of the three basic logic
functions, namely the AND, OR and NOT functions. Digital de­
vices or gates to implement these functions were described, and
you learnt that the logic gates are represented in three ways,
namely as logic symbols, in truth tables and as Boolean ex­
pressions. You also learnt how the logic gates respond to input
digital signals or waveforms to produce output waveforms and you
used data sheets to identify the component pin connections. You
constructed practical circuits with these logic gates and tested
them with actual voltages. In addition, you were introduced to
some applications for logic gates.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 Determine the output ofthe gate shown below, given the
inputs as follows.

__--JILJ
1 -

Fig 2.23

2 Draw the output waveform given the inputs shown be­
low for a 2-input OR gate.

inpul1 -----,

inpul2

Fig 2.24

28

Unit 2 Basic logic functions

3 Determine the output of the following circuit if the input
is low.

Fig 2.25

4 An automatic gate needs to be opened by anyone of
two keys. Each key is kept by a different security guard.
What logic gate must be connected to the two keys to
operate the door lock? Explain why you made this choice.

5 For an OR gate wired up for test purposes, the output
pin was connected to the lamp (LED) as shown in Fig
2.26. When one of the inputs was made high the lamp
remained ON no matter what we did to the other input.
Is the OR gate functioning correctly? Explain.

INPUT 1

;HIGH

INPUT 2

LED ON ~

Fig 2.26

6 A certain basic 2-input logic gate was wired up for test
purposes in a circuit similar to the one in exercise 5
above. When one of the inputs was grounded, the lamp
remained off irrespective of what we did to the other
input. Would the gate that you would be testing be an
AND gate, an OR gate or an INVERTER (assuming that
the gate was functioning correctly)? Explain.

29

Digital Systems for Engineering

Answers to activities

Activity 1

1 An AND function can be defined as a circuit that pro­
duces a 1 or a high output when all of its inputs are at
a 1 or high level.

2 A truth table is a table that shows all the possible cases
of inputs and outputs for a digital circuit in terms of Os
and 1s.

3 Z=CD

Activity 2

1

A-n----r-
B~
X~ ~i__

Fig 2.27

2

A

B_---!

x_---J

Fig 2.28

Activity 4

1 Truth table:
S T K

0 0 0

0 1 1

1 0 1

1 1 1

30

2

Logic symbol:

Unit 2

~=C>-K

Fig 2.29

Basic logic fiJnctions

3

s_~~~~~~_

T~

x~

Fig 2.30

s
T ---i_

x

4.1

Fig 2.3/

Pin no. Function

7 ovolt power supply pin

8 output of an OR gate

12 input of another OR gate

14 +5 volt power supply pin

4.2 True. Quad means 'four'.

Activity 6

1 Make sure you identify which are inputs and which are
outputs. In this example D is the input and Z the output.

3/

Digital Systems for Engineering

D Z

low high

high low

2 The output of the second gate will be 0, but the first
INVERTER changes the 0 into a 1. Then the next
INVERTER changes the 1 to a O.

32

Unit 3
Working with logic functions

Study objectives
Mter studying this unit, you should be able to:

<> determine how many possible cases a truth table must
show

<> connect logic gates to perform various tasks
<> derive the Boolean expressions for these functions
<> derive the truth tables for these functions
<> apply digital signals to these logic circuits

<> construct and test these logic circuits
<> identify logic circuit fault conditions.

1 Introduction

Unit 2 introduced the three basic logic functions and the three
simplest logic gates, namely the AND 15<'.te, the OR gate and
the NOT or INVERTER. You learnt various ways of represent­
ing these logic functions: by means of logic symbols, truth tables
and Boolean expressions, and analysed the response of these logic
gates to digital inputs.

In this unit we examine how these basic logic gates can be com­
bined to form more complex functions and logic circuits. We will
determine the truth table and Boolean expression for each circuit,
as well as the response of these logic circuits to digital signals.
You will be gnided through building and testing the correspond­
ing practical digital circuits. Towards the end of the unit you will
be introduced to troubleshooting faulty logic circuits.

However, the most logical way to start this unit is by discussing
how to generate the truth table for circuits or gates that have
more than two inputs.

2 How many rows in a truth table?

In Unit 2, when we drew up the truth table for a 2-input AND
gate, the truth table showed four possible input cases, namely:
00, 0 1, 10 and 11. The truth table had four rows. For the sin-

Digital Systems for Engineering

gle input INVERTER or NOT gate, the truth table showed two
possibilities for the input. In this case the truth table had two
rows.

How many possi"'le
input combinationfi
will a 3~input logic

gate have?

Consider the AND gate shown below.

i~x
Fig 3.1

A, B and C can assume the values 000, 00 1, and so on. So if you
said that there were eight possible cases, you were right! The full
list of input combinations is shown below.

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A quick and easy way to determine how many possible combina­
tions there are for a logic gate is to use the following formula:

number of possible combinations = 2number of inputs

Let's apply the formula for a I-input gate and a 2-input gate,
which we learnt about in Unit 2, as well as a 3-input and 4-input
gate.

For a I-input gate: number of possible combinations = 21

=2

34

Unit 3 Working with logic functions

a the calculation for
a 4-input gate

yourself.

For a 2-input gate:
number of possible combinations = 22

=4
For a 3·input gate:
number of possible combinations = 23

=8
For a 4.input gate:
number qf possible combinations = ...

3 What happens when logic gates are combined?
The calculations we have just done show that for any logic gate,
the "number of possible input combinations depends on the num·
ber of inputs. In fact, the same is true for any simple combina­
tional logic circuit. (We will discuss combinational logic circuits
later in this book.)

We now know that the operation of a logic circuit that has a total
of three inputs can be represented by a truth table showing
eight possibilities or rows.

Have a look at the following logic circuit:

A

B

x

c--------j
y

Fig 3.2

The output X of the first 2-input AND gate is connected to the
input of the second 2-input AND gate, Le. the signal that comes
out of the first gate is fed into the second gate.

Step 7

How aoe6 this logic
circuit function7

The best way of finding out how this logic circuit functions is to
derive its truth table. The table will have eight rows showing logic
states from 000 for A, B and C to 111. We will first write down
the value for X for each combination, and then write down the
value forY.

Write the values for column X.

35

Digital Systems for Engineering

To do this we have to consider the first logic gate. Using the values
ofA and B as inputs to an AND gate, we can determine the value
for X for each row in the table.

For an AND gate, the output will only be a 1 if all the inputs
arel.

A B C X y

0 0 0 0

II 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

y_J
Step Z

36

Write the values for column Y.

To do this we have to consider the second gate. This gate has two
inputs, X and C. To determine Y we therefore have to look at X
and C as two inputs into an AND gate.

A B C X Y

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

yJ

Unit 3 Working with logic functions

Activity 1

"
1.1 Show how you would draw a 2-input, a 3-input, and

a 4-input truth table. Indicate how the Os and Is are
arranged in the columns.

1.2 Determine the truth table for the following circuit,
which consists of two OR gates. Remember, an OR gate
will have an output of 1 if any of the inputs is a 1.

A

B

C-------1

Fig 3.3

z

4 Writing the Boolean expression for a logic circuit

In Unit 2 we saw how a logic gate can be represented as a
Boolean expression. You will also remember that all combina­
tional logic circuits can be represented as Boolean expressions.
The final Boolean expression is written by combining the indivi­
dual Boolean expressions for the gates in the proper form.

Fig 3.4

Look at the same AND gate circuit we studied earlier in this unit.
To write down the final Boolean expression for this circuit we
first have to write down the individual expressions starting at
the input side. At the output of the first AND gate, the Boolean
expression is:

X=AB

The output of the second gate is:

Y=XC

Combining (1) and (2), we arrive at: Y = (AB)C

[equation 1]

[equation 2]

37

Digital Systems for Engineering

Activity 2 Prove that the Boolean expression for the logic circuit shown in
Fig 3.5 is Z = (A + B) + C.

A

B

c-------I

Fig 3.5

z

5 Considering more complex circuits

Let's determine the truth table and Boolean expression for the
following logic circuit consisting of an AND gate, an OR gate and
an INVERTER.

A--------\

B

C

F

Fig 3.6

Make sure that you know the truth table for each of the gates in
Fig 3.6 (see Unit 2).

1 The truth table will have eight rows, as the logic circuit
has three inputs.

2 The input variables are A, B and C. The intermediate
outputs are D and E. F is the final output.

38

Unit 3 Working with logic functions

3 The truth table will therefore begin like this:

A B C D E F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

etermine column D~lumns B and C.

etermine column E
lumns A and D.

etermine column F

First d
using co

Nowd
using co

Thend
using column E.

4 The truth table should then become:

A B C D E F

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 1 0

1 1 1 1 1 0

It is not necessary to show the intermediate columns in the final
answer.

39

Digital Systems for Engineering

Therefore the final truth table will be:

A B C F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

To determine the Boolean expression for the logic circuit in Fig
3.6, the procedure is the same as in section 4 of this unit. The
circuit has been redrawn below.

A--------\

B

C

F

From the AND gate:
From the OR gate:
Using equation 1 and 2:
From the NOT gate:
Combining equation 3 and 4:

Fig 3.7

D=BC
E=A+D
E=A+(BC)
F=E
F = 7"(A'--+"""""(B=C=))

[equation 1]

[equation 2]
[equation 3]

[equation 4]

Activity 3

"
40

1 Determine the truth table for the following logic circuit
consisting of a NOT gate, an OR gate and an AND gate.

s--{) ~ '"

~ ~x

Fig 3.8

Unit 3 Working with logic functions

2 Write down the Boolean expression for the circuit in Fig
3.8 above.

6 Applying digital signals to these logic circuits

In Unit 2, we applied digital signals or waveforms to the inputs
of a logic gate and determined the output waveform. To generate
the output waveform, you had to know how that particular logic
gate behaved, in other words you had to know the truth table
for that specific gate. Digital signals may also be applied to the
types oflogic circuits described in this unit. To determine the final
output waveform, you first have to work out the intermediate
waveforms.

Again, you have to know the truth tables of the logic gates that
make up the logic circuit.

Let's apply the following digital waveforms to the logic circuit
given below.

Step' Determine the intermediate output waveform for the gate to
which the inputs are directly applied, i.e. the AND gate. Signals B
and C are applied to this gate. The intermediate output is already
labelled D. So, to determine D, the AND gate truth table will be
used.

B---
c I,----
D rJ _

Fig 3. /0

4/

Digital Systems for Engineering

Step 2 Signals A and D are applied to the OR gate. The output is labelled
E. To determine E, the OR gate truth table is used.

A-Ill--__
D_~----1nt---r-__
E

Step 3

Fig 3.1/

The last step involves applying the E waveform to the INVERTER
to generate the final output waveform F. In this case the IN­
VERTER truth table is used.

E

F

Activity 4

"
Fig 3.12

Apply the waveforms to the logic circuit in Fig 3.13 and determine
the output waveform X. (Number the outputs as you did for Fig
3.8 in Activity 3.

s

~,
s-j)
T

T

U

U

Fig 3./3

42

7 Practical implementation

Unit 3 Working with logic functions

Consider the circuit shown in Fig 3.14b. You will notice that the
circuit is made up of two similar gates, i.e. two 2·input AND gates.

In Unit 2 the IC numbered 7408 (see Fig 2.13), which contained
four 2-input AND gates, was used. We can use the same IC to test
this circuit. The first step is to construct the logic circuit on the
test board. Let's use the first two AND gates in the IC.

Gnd 7 8

7408 quad 2-input
AND gate

Fig 3./4a

A

8

Y
c

Fig3./4b

Figure 3.15 on page 44 shows the praeticallogic circuit diagram as
implemented for testing. Keep this circuit in mind and follow the
next steps carefully to complete the correct testing procedures.

Insert the IC numbered 7408 into the test board. Connect the pins
labelled Vcc and Gnd to the +5 V and OV lines respectively, as
we did in Unit 2. The output pin of the first AND gate (pin 3)
must be connected with a piece of connecting wire to one of the
inputs of the second AND gate (pin 4).

43

Digital Systems for Engineering

Connect the output pin of the second gate to the test (LED)
lamp. Then test the circuit by connecting the three inputs of the
logic circuit (pins 1, 2 and 5) to the +5 V line and the 0V line
according to the truth table. Record the results of the testing in
a truth table.

Pine; 1ana 2 are not
labelled <:15 such. Laber

them yourself.

A

B

C--- -"P""'N"'l'

y
(PIN 6) Connect to the

test (lED) lamp

Fig 3.15

Now, let's see if you can do the following activity on your own!

Activity 5

"
A

B

C------i z

Fig 3.16

1 Construct and test the logic circuit shown in Fig 3.16 in
the same way as we did with the one outlined in section 7
above.
Which IC is to be used, and why? Don't forget to re­
draw the practica1logic circui.t diagram showing the pin
numbers.
If you find it difficult to decide which IC to use, consult
Appendix 1 on ICs at the end of this book.

2 Consider the logic circuit shown in Fig 3.17.

A--------\

B

c

F

44

Fig 3.17

Unit 3 Working with logic fiJnctions

You will notice that in this circuit three different logic
gates are used, Le. an INVERTER, a 2-input AND gate
and, a 2-input OR gate.
Which ICs should we use to test this circuit? Draw the
practical logic circuit diagram and test the circuit shown
in Fig 3.17.

8 Troubleshooting logic circuits

In this section we will learn how to check faulty logic circuits. We
say that a logic circuit is faulty if it does not behave according to
the truth table.

We use the term 'troubleshooting' to describe the process of iden­
tifying exactly which components are not functioning properly in
any electronic circuit.

hat does trouble:
shootin!::l involve'?

Troubleshooting involves the following:

<> Checking each logic gate from the input side.

<> Applying all the possible logic levels to each gate from
the input side in an orderly manner until the gate that
is not functioning correctly is found.

<> Taking the faulty gate out of the circuit and testing it
on its own to make certain that it is in fact the faulty
component.

<> Replacing the faulty gate with another similar gate and
re-checking the circuit by repeating the troubleshooting
techniques.

In some cases the gate suspected of being faulty is in fact not
faulty at all. The fault may be caused by another gate to which it
is connected.

Troubleshooting involves careful consideration and testing of cir­
cuits and gates. Although most faulty gates are easily detected,
you will find that you have less and less trouble solving relatively
difficult cases as you test more circuits and gain more practical
experience.

In a later unit we will look at more examples of troubleshooting.

45

Digital Systems for Engineering

9 Summary

In this unit we looked at how the basic logic gates (the AND and
OR gates and the INVERTER) could be combined to form var­
ious types of logic circuits. The logic circuits were represented
as Boolean expressions and their behaviour or functioning was
expressed in the form of truth tables. A truth table is usually
drawn to show all the possible values that the inputs can assume,
and the resulting outputs. In this unit we described how to draw
a truth table for any logic circuit showing all the possible input
conditions. We also applied digital signals or waveforms to the
inputs of the logic circuits and determined the response of the
circuit - in the form of an output waveform - with the aid of
truth tables. The logic circuits were practically implemented with
the aid of data sheets. This involved constructing and testing
the logic circuits to verify their operation according to the theory.
Finally, we discussed the important task of analysing faulty prac­
tical logic circuits and described the process of troubleshooting
or identifying the faulty components.

In the next unit you will be introduced to two more Iogic gates,
namely the NAND gate and the NOR gate.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 Examine the logic circuit shown in Figure 3.18.

A

B

C

x

Fig 3./8

1.1 If C is high, determine the level at the output X.

1.2 If we draw a truth table for this logic circuit, how
many rows will it have?

1.3 Draw a truth table for this logic circuit.

1.4 Write down the Boolean expression for this circuit.

46

Unit 3 Working with logic functions

1.5 If the following wavefonns were applied to· the in­
puts, detennine the output signal.

B

c

Fig 3.19

1.6 Which ICs must be used to test this circuit?

2 Consider the logic gate shown in Fig 3.20.

Fig 3.20

2.1 Identify the gate and write down the Boolean expres­
sion for this logic gate.

2.2 Draw the truth table for this logic gate.

2.3 Detennine the output wavefonn if the following
signals were applied to the inputs.

S -SlL...-._'---__
T

u

Fig 3.2/

47

Digital Systems for Engineering

3 Consider the logic circuit shown in Fig 3.22.

S

T

U--------1 z

Fig 3.22

3.1 Write down the Boolean expression for this logic cir­
cuit.

3.2 Draw the truth table for this logic circuit.

3.3 Are the circuits shown in Fig 3.20 and 3.22 equiva­
lent, i.e. do they have similar truth tables? Discuss.

4 Examine the circuits shown in Fig 3.1 and 3.2. Do they
both behave in the same way? Explain your answer.

5 Consider the circuit shown in Fig 3.23.

P

Q

T

R

S

Fig 3.23

5.1 For the circuit shown in Fig 3.23, if a 0 is applied to
input Q, can we determine the level of the output T?
Explain your answer.

5.2 Write down the Boolean expression and draw the
truth table for this circuit.

48

Unit 3

Answers to activities

Activity 1

1.1 2-input truth table

A B X

0 0

0 1

1 0

1 1

Working with logic functions

two Os andJ
two 1s

3-input truth table

L alternating Os and 1s

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

four Os and four 1s J 1
two Os and two 1s ~
alternating Os and 1s ----'

49

Digital Systems for Engineering

4-input truth table

A B C D X

0 0 0 0
0 0 0 1
0 0 1 0

0 0 1 1
0 1 0 0

0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

eight Os and eight 1: t I
four Os and four 1

I t alternating Os and Is

two Os and two 1,s

1.2 The truth table will have eight rows, as the circuit has
three inputs. First obtain the outputs for column V. Then
determine the outputs for column Z.

A B C V Z

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

50

Activity 2

Unit 3 Working with logic functions

From the first OR gate:

From the next OR gate:
Combining equations 1 and 2:

Activity 3

V=A+B

Z=V+C
Z = (A+B)+C

[equation 1]

[equation 2]

[equation 3]

1 You will notice that the outputs from each of the logic
gates have not been labelled. For the sake of conve­
nience, we will label them as follows:
From the NOT: V

From the OR gate: W

Column V must be derived from column S. Then column
W must be determined, using columns V and T. Finally
column X is determined from columns Wand U.

S T U V W X

0 0 0 1 1 0

0 0 1 1 1 1

0 1 0 1 1 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 1 0

1 1 1 0 1 1

2 From the NOT gate:

From the OR gate:

Using equations 1 and 2:

From the AND gate:

Using equations 3 and 4:

V=s

W=V+T

W=S+T
X=WU

x= (S+T)U

[equation 1]

[equation 2]

[equation 3]

[equation 4]

[equation 5]

51

u

Digital Systems for Engineering

Activity 4

sJUUL
T I

,,,
I I I '"

V ---, rr tf1 ~.. UiU:LJ
I I, I I I

w-1 rr~I-I:LJ:
I I I I

X

Fig 3.24

Activity 5

1 The 7432 quad 2-input OR gate IC will be used.

2 As each of the gates is different, three different ICs
must be used. These are the 7408, the 7432 and the
7404, as shown below in Fig 3.25a--e). Once again the
data sheets showing the Ie pin connections must be con­
sulted. The logic circuit showing the pin numbers and
how the pins are wired up is shown below in Fig 25d.

52

7408 quad 2·lnput
AND gate

Fig a

7432 quad 2-lnput
OR gate

Figb

14 Vee

"
"
"
"

GOld ,

7404 hex INVERTER

Fig c

Unit 3

A --"(P"""'-"y

Working with logic functions

E
(PIN 3) (PIN ,1) (PIN 2) F

Fig d

Fig 3.25a-d

Thus we can see that pin 3 of the 7408 IC must be wired up or
connected to pin 2 of the 7432 IC, and so on. Note that each
of the ICs must be individually connected to the power supply
points, i.e. the +5V line and the OV or Gnd line.

The circuit should then be tested with the various level combina­
tions of the inputs A, B and C. The results should be recorded in
a truth table as shown below.

A B C D E F
0 0 0 0 0 1
0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 1 0

1 1 1 1 1 0

The final truth table should look like this:

A B C F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

53

Unit 4
The NAND and NOR logic gates

Study objectives
Mter studying this unit, you should be able to:

<> derive the NAND and the NOR logic functions

<> identify their logic symbols

<> draw their truth tables

<> write them as Boolean expressions

<> apply digital signals to the NAND and NOR logic gates

<> use data sheets to identify the component pin connec-
tions

<> construct and test the logic circuits to verify their opera-
tion

<> connect the various logic gates in different combinations

<> draw logic circuits from Boolean expressions

<> identify NAND and NOR gate fault conditions

<> use the various logic gates in simple applications.

1 Introduction

So far you have been introduced to the three basic logic gates,
namely, the AND gate, the OR gate, and the NOT gate or IN­
VERTER. In this unit we will go one step further and look at two
more simple logic functions or gates - the NAND and the NOR
gates. The study objectives listed above will give you an indication
of all the aspects that this unit will cover. You will also learn to
draw a logic circuit from Ii given Boolean expression.

2 Combining the AND gate with the NOT gate

In the following logic circuit the AND gate is combined with the
INVERTER or the NOT gate. The resulting truth table and the
Boolean expression for the logic circuit are shown in Fig 4.1 on
the next page.

Unit 4 The NAND and NOR logic gates

A B X

0 0 1

0 1 1

1 0 1

1 1 0

x = NOT (AB) which can be

rewritten as X = AB

Fig 4./

In digital systems there is a logic gate that can perfonn the func­
tion of the whole logic circuit shown above. The name of the logic
function is derived from the two gates that are combined: NOT
and AND, which is simplified to NAND. This NAND gate is the
fourth logic function that we will study.

The logic symbol for the NAND gate, together with its truth table
and Boolean expression, are shown in Fig 4.2 below.

A B X

0 0 1

0 1 1

1 0 1

1 1 0

Fig 4.2

A NAND gate can be defined as a digital device that produces a
oor a low output when all of its inputs are at a 1 or high level.

3 Combining the OR gate with the NOT gate

Just as we combined the AND
function with the NOT function to
fonn the NAND function, the OR
and the NOT functions can also be ~:::[)-t>o--x
combined. Fig 4.3 shows the OR
gate connected to a NOT gate or
an INVERTER. Fig 4.3

55

Digital Systems for Engineering

This circuit is represented by the following truth table and
Boolean expression:

A B X

0 0 1

0 1 0

1 0 0

1 1 0

X=NOT(A + B)

=A+ B

In this case too there is a single logic gate that can perform the
function of the above circuit. The name of the logic function is
derived from the names of the two gates combined: NOT and OR,
which is simplified to NOR. This NOR gate is the fifth logic gate
that you have to know.

The logic symbol for the NOR gate, together with its truth table
and Boolean expression, are shown below.

A B X

0 0 1

0 1 0

1 0 0

1 1 0

X=A+B

Fig 4.4

A NOR gate can be defined as a device that produces a 0 or a
low output when any of its inputs is at a 1 or high level.

4 Applying digital signals

We can therefore view the NAND and the NOR gates in the same
way as the AND and the OR gates, which were described in Unit
2. To determine how these gates would respond to digital input
signals, we simply need to remember the relevant truth table.
Consider the following example.

56

Unit 4 The NNVO and NOR logic gates

B

A

x

A B X

0 0 1

0 1 1

1 0 1

1 1 0

Example 4.1 Signals A and B (in Fig 4.5) are applied to the inputs of the NAND
gate shown in Fig 4.2. Using the NAND gate truth table shown
below, the output X was obtained.

X=AB

Fig 4.5

Activity 1

"
1 Define the basic NAND and NOR functions by describ­

ing and completing the truth table for each logic gate.
2 Identify the device illustrated in Fig 4.6, and write down

the Boolean expression and the truth table for it.

u-<t~
Fig 4.6

3 Fig 4.7 shows a 3-input NAND gate. How many rows will
its truth table have? Write down the Boolean expression
and truth table for this device.

ifY-v

Fig 4.7

4 If the following signals were applied to the above gate,
determine theol.ltput waveform..

T

s

j U
u ----,-,-I--,--,--,--~Lr-
V .

Fig 4.8

57

Digital Systems for Engineering

5 Practical implementation

The practical implementation and testing of the NAND and the
NOR gates are very similar to the testing of the AND and OR
gates, which we discussed in Unit 2. You will remember that we
followed the procedure in Activity 3 in Unit 2. Please go back and
make sure that you understand this testing procedure. Study it
carefully, as you will be required to test other logic circuits as you
work your way through the book. The following diagrams taken
from data sheets show the pins of the 7400 and 7402 ICs. The 7400
is a quad 2-input NAND gate IC and the 7402 is a quad 2-input
NOR gate IC. Refer to these diagrams when doing Activity 2.

7400 quad 2-input
NAND gate

Fig 4.9

7402 quad 2-input
NOR gate

Activity Z

Activity 3

58

Following exactly the same procedure as in Activity 3 in Unit
2, construct the circuit and test the NAND and NOR gates, i.e.
verify the functioning of the gates according to their truth tables.
Always refer to the data sheet of the IC and use the correct pins.
Again, pay careful attention to the precautions as indicated.

Examine the ICs shown in Fig 4.10 on the next page. Explain step
by step how these ICs can be tested. (You do not actually have to
test them.)

7420 dual4-lnput
NAND gate

Unit 4 The NAND and NOR logic gates

14 Vee

7427 triple 3-input
NOR gate

Fig 4.10

6 Combining the various logic gates
In Unit 3 we learnt how logic gates can be combined to form logic
circuits.

The logic circuits we used were made up using the AND gate, the
OR gate and the INVERTER, in various combinations. For each of
these circuits we wrote down the Boolean expressions and truth
tables. In this unit we will include the use of the NAND and the
NOR gates in the same way.

Consider the following logic circuit:

Fig 4.11

Let's write down the Boolean expression for this logic circuit,
which consists of an INVERTER, a NOR gate and an AND gate.

First, from the INVERTER we get A.

From the NOR gate the expression will be A +B.

59

Digital Systems for Engineering

Step 1

StepZ

Step 3

Finally, from the AND gate we get (A + B) . C .

This can be rewritten without the dot: X = (A + B)C.

Now let's write down the truth table for this logic circuit. This
circuit has three inputs. Therefore, as you will have worked out,
the truth table will have eight combinations or rows.

Let's start. Remember, the results will be clear from the truth
table.

In this example we will first have to determine the output of the
INVERTER.

Next, we will have to determine the output of the NOR gate.

Finally we will have to calculate the output of the AND gate. To
work out each output we have to know and use the truth table of
each gate in the circuit as shown.

p

A B C A A+B (A+B)C

0 0 0 1 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 0 0

1 1 1 0 0 0

StePl~
Step 2

Ste 3

60

Unit 4 The NAND and NOR logic gates

Activity 4 Examine the logic circuit shown in. Fig 4.12. Determine the
Boolean expression and the corresponding truth table for this cir­
cuit.

x

Activity 5

Activity 6

Fig 4.12

Using Fig 4.11 again, draw the output waveform X if signals A,
Band C (shown in Fig 4.13) are applied to the logic circuit.

A -----;!
B ~'-';--__-:-----:_

Ci r--L
X : ::

. ' "•• , ••••••••••••• J••••••

Fig 4.13

1 What ICs would have to be used if the logic circuit shown
in Fig 4.11 is to be practically implemented and tested,
and why would you use those specific ICs?

2 Implement and test 'the logic circuit shown in Fig 4.11.
(Refer to Unit 3, section 7, if you are not sure how to do
this.)

7 Drawing the logic circuit from the Boolean expression

Can you draw the logic:
circuit Ifyou are given
a Boolean expression'? We will try to do so

by working through
the following series of
simple examples.

61

Digital Systems for Engineering

Example 4.2 X = (A +B) +C

This is read as (A OR B) OR C.

Solution In the brackets the terms A and B are combined by the OR nmc­
tion. So, for this combination, we need a 27input OR gate. The
output of this gate is then combined with the next term, C, by
another OR function. This means that we need another 2-input
OR gate.

As you can see, for A and B we need a 2-input OR gate.

~=D-A+B

Fig4.14a

The output from this OR gate and input C become the two inputs
for another 2-input OR gate. Therefore the fmal circuit would
look like this:

Fig 4.14b

Example 4.3 Y = AB + C

This is read as (A AND B) OR C.

Solution The AND ftmction is done before the OR function. A and B are
fed into a 2-input AND gate (see Fig 4.15a). The output from the
AND gate is then fed into a 2-input OR gate with C as shown in
Fig4.15b.

~=[)-AB

Fig a
Fig 4.15

Fig b

Example 4.4 Z = (A +B)(C +D)

This is read as (A OR B) AND (C OR D).

62

Unit 4 The NIWD and NOR logic gates

Solution In this example, A and B are fed into a 2-input OR gate. The same
applies to C and D. The outputs from these two gates are fed into
an AND gate. The result is the circuit'shown in Fig 4.16.

A----'.....
8-1.-/

C-"--'
D---,'--../

Fig 4./6

z

Example 4.5 V = A + (B + CD)

Solution First of all, A is INVERTED so that it becomes A.

A-j)o-A

Fig 4./7a

C and D are combined with an AND gate.

g=[)---CD

Fig 4./7b

B and the output from the AND gate are fed into an OR gate.

~~8+CD
D CD

Fig 4./7c.

The output from the INVERTER and the output from the OR
gate are fed into another OR gate. The final circuit is shown in
Fig 4.17d.

A

~~'
D CD

Fig 4./7d

63

Digital Systems for Engineering

Now try a few examples yourselfl

Activity 7

i'
Draw logic circuits for each of the following Boolean expressions.

1 R=A+B

2 S= (A+B)C

3 T = (AB)(CD)

4 U = (AB)(C +DE)

8 Troubleshooting logic circuits

We introduced the process of identifying faulty components or
troubleshooting a logic circuit in Unit 3 (section 8). In this unit
we will look at typical examples featuring faulty components.

Example 4.6 A simple circuit is made up of just one 2-input NAND gate. The
NAND gate IC is supplied with a +5V power supply, i.e:

Vcc= +5V.

If the voltages at the inputs are at 0 V; and the output voltage is
oV; is the gate functioning correctly?

Solution NAND gate truth table:
A B X

0 0 1

0 1 1

1 0 1

1 1 0

According to the NAND gate truth table, the output is supposed
to be a 1 or high. Therefore the measured voltage should be ap­
proximately +5V. Therefore this gate seems to be faulty.

Example 4.7 The circuit shown in Fig 4.18 is to be used in an application.

Fig 4.18

64

Unit 4 The NAND and NOR logic gates

In the circuit, ifthe signal at point C is at +5 V and the voltage
at the output (point X) is measured to be +5V, what can we say
about the circuit?

Solution In a NOR gate, if anyone of the inputs is high the output must
be low. Therefore in this circuit the NOR gate must be faulty.

Note: It does not matter what the output from the AND gate is.

Example 4.8 For the logic circuit in Fig 4.19, if the INVERTER is not inverting,
what will the truth table of the circuit look like?

A-t>ol
B~X

Fig 4./9

Solution
A B Z X

0 0 0 0

0 1 0 0

1 0 1 0

1 1 1 1

1 1

Activity 8

~

These columns are the same because the INVERTER is not in­
verting!

1 What would the truth table of Fig 4.19 have looked like
if the INVERTER had been functioning correctly?

2 Consider the following logic circuit which is being tested:

S
T-'-----'

u----j v

Fig 4.20

Inputs S, T and U are made low, i.e. 0 V. The output from the first
gate is measured to be a low, and so is the output from the second
gate. Are these gates functioning correctly? Explain.

65

Digital Systems for Engineering

3 A circuit is made up offour INVERTERs as shown below.
When testing the circuit, it was found that ifA is 0, then
the level at Z is 1, and if the level at A is 1, then the level
at Z is O. The circuit is obviously faulty. How should one
go about finding the faulty gate?

Fig 4.21

9 Simple applications of NAND and NOR gates

The important and interesting thing about NAND and NOR gates
is that they may be used in situations where the basic logic gates
are needed, but where the actual AND, OR or NOT gate ICs are
for some reason unavailable. This means that NAND gates may
be used in place of, say, the AND gate or the OR gate. The same
can be done with NOR gates.

9.7 The NAND gate as an INVERTER

Imagine that an INVERTER is needed for a certain circuit, but
there are none available. Can you use a NAND gate IC to replace
the INVERTER?

Let us feed a signal- say A - into the two inputs of a NAND gate.

~:::[)-x

Fig 4.22a

We can redraw the gate as follows:

A-iL)-X

Fig 4.22b

66

Unit 4 The NNVD and NOR logic gates

Activity 9

"

Using the NAND gate truth table, we can determine that:

<> if A is low, the level at X is high

<> if A is high, the level at X is low.

Thus we can see that X is always the opposite or the inverse of
A, i.e. X = A. This shows us the NAND gate functioning as an
INVERTER. In other words, if an INVERTER is unavailable we
can use one NAND gate instead.

1 In a similar way as in 9.1 above, prove that a NOR gate
can function as an INVERTER.

2 Can we use an AND gate as an INVERTER? Explain.

9.2 Replacing an AND gate with two NAND gates

Imagine that for a certain circuit we need a 2-input AND gate, but
the AND gate IC is not available. However, we do have a NAND
gate IC. Can we use the NAND gate IC instead?

Consider the following circuit:

Fig 4.23

Let's draw the truth table for this logic circuit.

A B Z X
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Jable 4./a

The table can be redrawn in a simplified version as:

A B X
0 0 0
0 1 0
1 0 0
1 1 1

Jable 4./b

67

Digital Systems for Engineering

Let's draw the truth table for an AND gate:

A B X

0 0 0

0 1 0

1 0 0

1 1 1

Jable 4./c

Compare tables 4.1b and 4.1c. What do you notice? They are
exactly the same! This means that the circuit given in Fig 4.23 and
the AND gate must function in the same way. Thus, two NAND
gates connected as shown in Fig 4.23 can be used instead of an
AND gate.

ActiVity 10

"
1 In a similar way as in 9.2 above, determine how two

NOR gates can be used to replace one OR gate.

2 Prove that the following circuit made up of NAND gates
can be used to replace a single OR gate.

A

B

x

68

Fig 4.24

The NAND and the NOR gates are sometimes called universal
gates. This is because they can be used to replace any of the
other logic gates, i.e. a NAND gate may be used to replace an
INVERTER, an AND gate, an OR gate, or a NOR gate. Similarly,
a NOR gate can be used to replace an INVERTER, an AND gate,

. an OR gate, or a NAND gate.

Unit 4 The NIWO and NOR logic gates

Watch out for theec
two casesl

Is A· B equivalent to A . B? Do you know how to read this? Easy!
It reads 'Is NOT A AND NOT B equivalent to NOT (A AND B)?'

Let's look at their truth tables:

A B A B A·B A·B A·B

0 0 1 1 1 0 1

0 1 1 0 0 0 1

1 0 0 1 0 0 1

1 1 0 0 0 1 0

r
These two columns are not the same!

r

Draw the logic circuits for these two expressions and you
will see that they are not the same either.

10 Summary

In this unit you were introduced to two new logic functions,
namely the NAND and the NOR functions. We looked at rep­
resenting these logic functions in various familiar ways, Le. using
logic gate symbols, truth tables. and Boolean expressions. These
gates - together with the ba,sic AND, OR and NOT gates - were
combined to form lqgic circuits, We analysed the circuits in terms
of digital waveforms. In addition, we considered the practical im­
plementation and testing of these logic circuits, and discussed the
important aspect of dra\\>ing the logic circuit diagram from a given
Boolean expression. We concluded the unit by troubleshooting cir­
cuits containing NAND and NOR gates, and showed how NAND
and NOR gates can be used to replace other logic gates.

69

Digital Systems for Engineering

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 For the circuit shown in Fig 4.25, write down the
Boolean expression and draw the truth table.

~D-x

Fig 4.25

2 For the logic circuit shown in Fig 4.26a, draw the truth
table and derive the Boolean expression. If the wave­
forms shown below (Fig 4.26b) are applied to the circuit,
determine the output waveform.

:--{)o----~z

Fig 4.26a

F --I

G

H _

Z

Fig 4.26b

3 Name the ICs that should be used if the circuits shown
in Fig 4.25 and 4.26a are to be practically implemented
and tested.

4 Draw the practical circuit diagram which is to be used
to construct and test the circuit in Fig 4.27.

A-I>o--1'
B ---,--L.-/

x

Fig 4.27

70

Unit 4 The NINO and NOR logic gates

5 Are the following functions equivalent?

J +K+L andJ +K+L
Explain your answer using truth tables.

6 Replace each of the following gates with NOR gates
only.

6.1 INVERTER

6.2 a two-input AND gate.

7 Determine the Boolean expression for each of the follow­
ing logic circuits.

7.1

7.2

A-~'

B
C--L-./

D
E-L-./

Fig 4.28

F

Fig 4.29

8 Draw logic circuits to represent the following Boolean
expressions:

8.1 A = (DEr) +GH

8.2 B = (JK) + (JM)

8.3 C = (R+S)(T+ U)V

71

Digital Systems for Engineering

Answers to activities

Activity 1

1 The NAND function is a logic function that produces a
low or 0 output if all of the inputs are at a high or 1.

A B X

0 0 1

0 1 1
1 0 1

1 1 0

The NOR function is a logic function that produces a
low or 0 output if any of the inputs is at a high or 1.

A B X

0 0 1

0 1 0

1 0 0

1 1 0

X=A+B

2 The device is a 2-input NOR gate. Thus the Boolean
expression is U = S + T

S T U

0 0 1
0 1 0

1 0 0

1 1 0

3 Number of rows = 2No. of inputs = 23 = 8 rows

S T U V

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

72

Unit 4 The NAND and NOR logic gates

4

s

T

u

I i

Activity 3

Fig 4.30

Fig-a: This IC contains two NAND gates, each of which has four
inputs.

X=ABCD

Logic voltages (OV and +5V) must be applied to the inputs and
the following truth table must be verified.

A B C D :x
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1

0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Fig b: This Ie contains three NOR gates, each of which
has three inputs.
X=A+B+C
Logic voltages (OV and +5V) must be applied to the
inputs and the following truth table must be verified.

73

Digital Systems for Engineering

A B C X
0 0 0 1
0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0
1 0 1 0
1 1 0 0

1 1 1 0

Activity 4

From the NAND gate the output is AB. The output from the
INVERTER is C. As we can see from the circuit, these two outputs
become the two inputs for the 2-input OR gate. The output of the
OR gate is: AB + C.

A B C AB C AB+C

0 0 0 1 1 1

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 1 0 1

1 0 0 1 1 1

1 0 1 1 0 1

1 1 0 0 1 1

1 1 1 0 0 0

Step 1------'1
Step 2--------'

Step 3------------'

74

Unit 4 The NAND and NOR logic gates

Activity 5

A~

B 11-'-------'----'-

C -----;-7----111­

X _'----'---__--....JIL
Fig 4.31

Activity 6

1 The circuit consists of an INVERTER, a 2-input NOR
gate, and a 2-input AND gate. Ifyou consult data sheets,
you will see that IC 7404 consists of six INVERTERS.
ewe used this Ie in Unit 3.) We can use this Ie here.
The data sheets will show that Ie 7402 consists of four
2-input NOR gates. Therefore we can also use this IC.
The third IC that we can select for our circuit will have
to be 7408 (the quad 2-input AND gate IC).

To summarise, the three ICs to be used are:

7404 (INVERTER IC)

7402 (NOR gate Ie)

7408 (AND gate IC)

Activity 7

1

A

B

Fig 4.32

75

Digital Systems for Engineering

2

:~'
Fig 4.33

3

~:J6:P'D _ CD
D

Fig 4.34

4

Fig 4.35

Activity 8

1
A B Z X

0 0 1 0

0 1 1 1

1 0 0 0

1 1 0 0

2 Gate 1, the first NAND gate, is faulty, as the output
should be high. Gate 2, the second NAND gate, is also
faulty: with both the inputs being at a low, the output
should have been high.

76

Unit 4 The NAND and NOR logic gates

3 Start testing the circuit from the first gate, Le. try in­
putting a low and then a high. If the output from the
first gate is correct, then check the next gate, and so on.

Activity 9

1 Here is a NOR gate with a signal A fed into both inputs:

Fig 4.36a

We can redraw this gate as:

A--tf>-X
Fig 4.36b

Using the NOR gate truth table:

<> X is high if A is low

<> X is low if A is high.

X is always the inverse of A; therefore the NOR gate
functions as an INVERTER.

2 No! If we consider the AND gate as we did above:

~=D-x

Fig 4.37

<> X is low if A is low

<> X is high if A is high.

Therefore we cannot use an AND gate as an INVERTER.

Activity 10

1 The circuit will be:

~~x

Fig 4.38

77

Digital Systems for Engineering

The truth table for this circuit is:

A B Y X

0 0 1 0

0 1 0 1

1 0 0 1

1 1 0 1

The truth table of an OR gate is the same as for the
above circuit (column X). Therefore two NOR gates con­
nected as shown can-.be used to replace one OR gate.

2 Again, draw the truth table for the circuit as shown be­
low. Ifyou compare the truth table you draw, to the truth
table for an OR gate, you will see that the tables are the
same. Therefore the circuit made up of NAND gates and
connected as shown, can be used to replace one OR gate.

A B C D X

0 0 1 1 0

0 1 1 0 1

1 0 0 1 1

1 1 0 0 1

78

Unit 5
Simplification using Boolean algebra

Study objectives
Mter studying this unit, you should be able to:

<> recall the laws of Boolean algebra

<> apply the laws of Boolean algebra to simplify logic ex­
pressions

<> obtain logic expressions from truth tables.

1 Introduction

When you design digital electronic circuits, you may arrive at
a solution that involves a number of logic circuits. These logic
circuits can be represented by Boolean expressions. If a Boolean
expression is too long or .complex the ·logic circuit will consist of
many logic gates· or ICs. All these gates will have to be wired up
or connected with many connections. A large number of gates or
ICs will mean that the circuit will cost more to build. Later in the
course you will also learn that jf an electronic circuit has many
connections, the circuit could be less reliable.

16 there any way we
can make the logic
clrcuit$ 6implet1

Yes! There are ways that logic circuits can be made simpler. In this
unit you will learn how you can simplify logic circdits by simplify­
ing their Boolean·expressions. You will learn aboutB!J!Jlean laws
and how these laws can help you simplify Boolean expressions.

Digital Systems for Engineering

In later units, when you are designing logic circuits for various
applications, one of the main steps will involve deriving the
Boolean expression from the truth table. Therefore this unit will
end with a section that will show you how to derive or generate
Boolean expressions from truth tables.

You can use Boolean laws to help you simplify Boolean expres­
sions. Before you look at the Boolean laws, you should understand
and remember the following common mathematical principles
which also apply to Boolean algebra.

Commutation:

This means that A·B is the same as BoA. And also that A + B =
B+A.

Association:

In this case A· (B· C) = (A·B). C. Also: A+ (B+ C) = (A+ B) + C.

Distribution:

In this case A(B + C) = AB + AC.

Also: (A+ B)(C + D) = AC +AD+BC+BD.

2 Simple single-variable Boolean laws

We can now turn our attention to the Boolean laws. The first set
of Boolean laws consists of nine simple laws - these are called
'single-variable Boolean laws'. By using your knowledge of logic
functions and gates you will be able to work out these laws. How­
ever, the most important part of this section is to understand and
memorise these laws so that you can use them to simplify Boolean
expressions.

Law!

Examine the simple logic gate shown in Fig 5.1. Can you name
this gate? Good, write down the truth table for the AND gate on
a piece of paper. We will need this AND truth table to prove the
Boolean laws which follow.

80

Unit 5 Simplification using Boolean algebra

X=A·A

~D-x

Fig 5./

The signal A is fed into the two inputs of an AND gate. If A is at
a logic 0, what do you think the value of X will be?

Correct! X will be 0. If A is at a logic 1, then X will be 1. Now we
can say that X takes the value of A whether it is a 1 or a 0. If A
is 0, X is 0. If A is 1, X is 1.

Therefore: X = A . A = A.

Law l:A·A=A

Remember that A-A can also be written as AA.

Law 2

Look at Fig 5.2. It is also an AND gate; but have a look at the
inputs.

X=A·l

Fig 5.2

If A is 1, what will X be? X will be 1 AND 1 which will be 1. If A
is 0, X will be 0 AND 1, which will be O.We can see that X follows
A, Le.: If A is 0, X is 0, and if A is 1, X is 1. X is the same as A.

Therefore: X = A . 1 = A.

Law2:A·l=A

Law 3

The following inputs to the AND gate (Fig 5.3) can be used to
determine the third law.

X=A·O

Fig 5.3

8/

Digital Systems for Engineering

In this case no matter what logic value A takes (0 or 1) X will
always be O. (For an AND gate all inputs have to be 1 to get a 1
at the output.)

Therefore: X = A . 0 = O.

Law3:A·O=O

Law 4

The following inputs to the AND gate can be used to determine
the fourth law.

X=A·A

Fig 5.4

If A is 0, A will be 1, and therefore X will be O. If A is 1, A will
be 0, and therefore X will again be O.

Therefore: X = A . A = O.

Law4:A·A=O

What will the following four Boolean laws for OR gates be, if we
analyse them in the same way as we did with the previous four
laws? Keep in mind that we use the OR gate truth table for these
proofs, but we replace the Is and Os with the A or other letters.

Law 5

You will see that if A is 0, X is 0; and if A is 1, X is 1. This means
that X will always be the same as A.

Therefore, Law 5: A +A = A

Law 6

Now let's do the same with the Boolean expression: X = A + 1.

You will see that X is 1 in all cases, Le. it does not matter whether
A is a 1 or a 0, X is always 1.

Therefore, Law 6: A + 1 = 1

82

Law 7

Unit 5 Simplification using Boolean algebra

Do the same with this Boolean expression: X = A + O.

What did you find'?

If A is 0, then X will be 0, and if A is 1, then X will be 1. In other
words, X is the same or equal to A.

Therefore, Law 7: A + 0 = A

Law 8

What would this Boolean expression show: X = A + A?

If A is 0, then A will be 1, so 0 + 1 = 1. If A is 1, then A will be
O. Thus 1 + 0 = 1. In both cases the expression is equal to 1.

Therefore, Law 8: A + A = 1

Law 9

The last law in this series is very simple: X = A [read as 'NOT
(NOT A)'].

A is inverted twice. Therefore if A is 0, and is inverted the result
is a 1. Inverting this result makes it 0 again. This means that if
A is 0, X is 0; and if A is 1, then X is 1. In other words, X is the
same as A.

Therefore, Law 9: A = A

You should memorise these laws. Later you will have to apply
them to simplify Boolean expressions.

Here is a summary of the single-variable Boolean laws.

83

Digital Systems for Engineering

Law 1 A·A=A

Law 2 A·1=A

Law 3 A·O=O

Law 4 A·A=O

Law 5 A+A=A

Law 6 A+1=1

Law 7 A+O=A

LawS A+A=l

Law 9 A=A

Jable 5.1

The Boolean laws can be written with any variable; not only A.
For example: P + P = 1 and Y . Y = Y and so on.

Now try and apply the Boolean laws in Activity 1.

Activity 1

~

84

1 Using the single-variable Boolean laws, simplify the
following expressions.

1.1 (A+A)+A= .

1.2 (B· B) . B = .

1.3 (C + C) + 1 = .
1.4 (D·1)+0= .

1.5 (E + E) . 1 = .
1.6 F + (1 . F) = .
1.7 (G· O).(G + H) = ...

1.8 (J. J) .K = .
1.9 L+1+0= ..

1.10 M+O+M+M = ...

2 Give two reasons why you need to simplify Boolean
expressions.

Unit 5 Simplification using Boolean algebra

3 Two other useful Boolean laws

If you now make use of the nine Boolean laws you have studied,
you will be able to deduce two additional Boolean laws.

Law 10

Examine the following Boolean expression: A + AB. (Have your
nine single-variable Boolean laws ready.)

A+AB=A·l+AB [because A . 1 = A; law 2]

[using simple distribution]

[because B + 1 = 1 + B = 1; law 6]

[because A . 1 = A; law 2]

This can be written simply as:

=Al+AB

=A(1 +B)

=A(I)

=A

This example can then be written in the form of a Boolean law.

Law 10: A+AB =A

Law 11

Consider the following Boolean expression. Using some of the
Boolean laws that you have learnt so far, we can write:

A+AB=(A+AB) +AB

= (AA + AB) +AB

=AA+AB+O+AB

=AA+AB+AA+AB

=A<A+B) +A(A+ B)

=(A+ B)(A+A)

=(A+ B)(l)

=A+B

[law 10]

[law 1]

[simply adding 0]

[law 4]

[distribution]

[distribution]

[law 8]

[law 2]

We can write this in the form of a Boolean law.

Law 11: A +AB = A + B

85

Digitaj Systems for Engineering

Also memorise law 10 and law 11.

Study the following examples to see how the Boolean laws you
have learnt so far can be used.

Example 5. 1 Prove that (A + B)(A + C) = A + BC

There is no need to state which law is used in each step. However,
for the ease of following the example, and to help you to recognise
the laws, the laws are given in brackets.

Solution (A + B)(A + C) = AA + AC + AB + BC

=A+AC+AB+BC [law 1]

=A(l + C) +AB + BC [distribution]

=A(l)+AB+BC [law 6]

=A(l+B)+BC [distribution]

=A(l)+BC [law 6]

=A+BC [P.roved!]

Example 5.2 Prove that AB + AB + ABC = A

Solution AB + AB + ABC = AB(l) + ABC + AB [law 2]

=AB(l + C) + AB [distribution]

=AB(l)+AB [law 6]

=AB+AB [law 2]

=A(B+B) [distribution]

=A(l) [law 8]

=A [Proved!]

Example 5.3 Simplify the following Boolean expression:

ABC+ABC+ABC+ABC

'So!ution ABC+ABC+ABC+ABC

= AB(C +C) +AC(B+ B) [distribution]

=AB(l)+AC(l) [law 8]

=AB+AC [law 2]

This expression cannot be simplified "any further.

86

Unit 5 Simplification using Boolean algebra

Activity 2 'In this activity you do not need to state which Boolean law is used
in each step of the exercises.

1 Prove each of the following:

1.1 ABC+AB+A=A

1.2 A(ABC + ABC) = 0

1.3 (JK + JL)(K + J) + JK(K + L) = JK + JL
1.4 (A + B)(A + C)(B + C) = (A + B)(A + C)

2 SimplifY the following Boolean expressions.

2.1 AB+AC+BC

2.2 X(Y + Z) + y<y + Z)

4 The well-known DeMorgan's laws
To complete the list ofBoolean laws that you need to know and use
in the simplification of Boolean expressions, you have to memorise
two more laws known as DeMorgan's laws. They are laws 12 and
13 below.

LawI2:A·B=A+B

This reads as 'NOT (A AND B) = (NOT A) OR (NOT B)'.

Law 13: A + B = A . B

This reads as 'NOT (A OR B) = (NOT A) AND (NOT B)'.

Each of these laws can be represented by sets of equivalent logic
circuits. For example, Fig 5.5a and 5.5b illustrate the first of these
two DeMorgan's laws, law 12.

Fig 5.5a

Fig 5.5b

87

Digital Systems for Engineering>

Activity 3

"
Draw circuits which represent DeMorgan's second law, law 13.

These laws can also be extended to more than two variables. For
example, with three variables we can write:

A·B·C=A+B+C

Here is a summary of the four new Boolean laws you have learnt.

Law 10

Law 11

Law 12

Law 13

A+AB=A

A+AB=A+B

A·B=A+B

A+B=A·B

Table 5.2

Activity 4

"

88

1 Simplify the following using DeMorgan's laws.

1.1 C·D= ..

1.2 D+E= .
1.3 A+B+C= ..

1.4 C·D·E·F= ..

1.5 X+Y= ..
1.6 A·B·C= .

1.7 E+F·G= .

1.8 A+B+C= .

1.9 J·K·L·M= .

Before you study the rest of this unit, please make sure that you
have memorised all thirteen Boolean laws. Refer to Tables 5.1 and
5.2 if necessary.

The next task involves the simplification of various types of
Boolean expressions. The biggest problem is to recognise and iden­
tify which of the Boolean laws to use. You should also remember
that there could be a number of ways to simplify a Boolean ex­
pression. You can use any of these ways, as long as you stick to

Unit 5 Simplification using Boolean algebra

the laws. The only way that you will be good at the simplification
of Boolean expression is by doing as many examples as possible.

Example 5.4 Prove that AB + AB = AB + AB

Solution Choose the left-hand side of the equation to work with.

AB+AB=AB·AB

=(A+B)(A+B)

=(A+B)(A+B)

=AA+AB+AB+BB

=AB+AB

[apply law 13 once]

[apply law 12 twice]

[apply law 9 twice]

[right-hand side of the equation]

Activity 5

~
1 Prove that: ABC+ABC+ABC =AB+AC

2 Prove that: AB +BC+CA = (A+B)(B+ C)(C +A)

3 Simplify: B = J K(L + M)

4 Simplify: D = (A + B)(C + AB)

5 Generating Boolean expressions from truth tables

When you design a logic circuits for various applications, one of
the main steps would be to derive the Boolean expression from
the truth table. In this section you will learn how to derive or
generate Boolean expressions from truth tables.

A Boolean expression is generated for each output term or vari­
able. The truth table will show this as output columns. The ex­
pression will be written in terms of the inputs or input terms.

Let's look at an example.

89

Digital Systems for Engineering

Example 5.5 Examine the truth table illustrated below.

A B X

0 0 0

0 1 1

1 0 0

1 1 1

In this example the output column or variable is X. The inputs
or input terms are A and B. The Boolean expression is derived as
follows.

Examine the output column. Write down a term corresponding
to each 1 in the output column. Each term is made up of all the
input variables ANDed together. However, if there is a 0 in the
input side, then the term is written with a bar.

A bar sign over a variable or term indicates that the term is in­
verted. For example, A inverted can be written as A. This is read
as 'NOT A' or as 'A bar'. Similarly, AB is read as 'NOT (A AND
B)' or as '(AB) bar'. In a logic circuit the bar can therefore be
represented by means of an INVERTER.

The first term is therefore AB. Note that A and B are ANDed
together, but the bar is on the A.

To obtain the second term the same procedure is followed. Look
for the next 1 in the output column. Then look at the correspond­
ing input side and write down the input variables ANDed together.
If there is a 0 in any of the input terms you have to invert that
variable or write it with a bar.

In this case both the A and B columns have a 1: so there is no
bar. The second term is written as AB.

A B X

0 0 0

0 1 1

1 0 0

1 1 1

-+ AB: first term

-+ AB: second term

Next you will use the terms you have worked out to write down
the expression by combining the terms with the OR symbol, which
is the +.

90

Unit 5 Simpiification using Boolean algebra

This will result in the following expression:

X=AB+AB.
This Boolean expression can sometimes be simplified using the
techniques learnt earlier in this unit. Try simplifYing this expres­
sion. You should get: X = B.

Let's look at another example to make sure you understand the
procedure.

Example 5.6 Write down the Boolean expression for the following truth table.

J K L X

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

<- first term

<- second term

<- third term

<- fourth term

The output column X has four 1s. This means that the final ex­
pression will have four ANDed terms.

The first term, corresponding to J K L being 0 0 1, will be J KL.

The second term, corresponding to J K L being 0 1 0, will be J K L.

The third and fourth terms will be J K L and J K L.

To get the final expression, each of the ANDed terms must be
separated by the OR sign, which is the +.
The.fmal expression will therefore be:

X=JKL+JKL+JKL+JKL.
Once again, note that this expression will not necessarily be in its
simplest form. Simplification techniques can be used to simplify
the expression.

91

Digital Systems for Engineering

Activity 6

'i'
1 Simplify the expression in example 5.6.

2 Write the Boolean expressions for each of these truth
tables.

2.1

2.2

2.3

2.4

A B X

0 0 0
0 1 1

1 0 1
1 1 0

A B C X
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0

1 0 1 0
1 1 0 0

1 ' 1 1 0

X Y Z P

0 0 0 0

0 1 0 1
1 0 0 1
1 0 1 1
1 1 0 0

1 1 1 0

A B· X Y

0 0 0 1

0 1 1 1
1 0 1 1

1 1 1 1

[This table has two out­
puts, therefore you have
to work out two expres­
sions.]

92

3 Simplify the Boolean expressions in 2.1 to 2.4 above, if
it is possible to do so.

6 Summary

Unit 5 Simplificauon using Boolean algebra

To design and implement digital circuits you will often have to
generate the Boolean expression for the circuit. The circuit should
be as simple as possible so that it will have fewer components or
ICs. Fewer components would mean lower cost, quicker imple­
mentation and testing, and quicker troubleshooting.

Fewer components would also mean fewer connections or links
betWeen components. This in turn results in circuits being more
reliable. Therefore the Boolean expressions need to be simplified
as much as possible.

In this unit you were initially introduced to Boolean laws. These
laws were then applied to simplifY expressions. The unit was con­
cluded with a section explaining how Boolean expressions can be
generated from a truth table.

In the next unit you will study a different technique which is often
used to simplifY expressions.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 SimplifY the following Boolean expression using the laws
of Boolean algebra.

1.1 W=xY+X(Z+Y)+XZ

1.2 Z = (A+B)(A+ C)(A+B)

1.3 Q= AB + AB(C + D) + ABC

1.4 R=AB+ABD+BCD+CD

1.5 S = (1\+ B)(A+ C)(B + C+ D)

1.6 A = (X +YZ)(XYZ)

2 Prove or disprove the following expressions.

2.1 A(C+D)+C(A+B) =A+B+C+D

2.2 ABC + AB(A C) = A(C + B)

2.3 xYz + xYz + XYZ ='X(Y + Z)

2.4 AB +A+B = 1

93

Digital Systems for Engineering

3 Generate Boolean expressions for these truth tables.

3.1

3.2

3.3

A B C X

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

J K L Y

0 0 0 1

0 1 1 1

1 0 0 1

1 1 0 1

1 1 1 1

X y L M

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

This table. has two outputs: L and M.

3.4
A B C D Z

0 0 0 0 1

0 1 0 0 1

1 0 0 0 1

1 0 1 1 1

1 1 0 0 1

4 Simplify the expressions generated in question 3 if it is
possible to do so.

94

Answers to activities

Activity 1

Unit 5 Simplification using Boolean algebra

1.1 (A+AHA=A+A

=A

1.2 (B·B)·B=B·B

=B

1.3 (C+C)+I=C+1

=1

1.4 (D·l)+O=D+O

=D

1.5 (E + E) . 1= 1 . 1

=1

1.6 F+ (1 . F) ='F' +F

=1

1.7 (G·O).(G+H)=O·(G+H)

=0
Remember that 0 AND any term always equals O. (See
the AND gate truth table.)

1.8 (J·J)·K=O·K

=0

1.9 L + 1 +0 =L + 1 +0

=1+0

=1

1.10 M+O+M+M=M+M+M

=M+M

=1
2 To enable you to design simpler logic circuits using fewer

components.
To enable you to make circliits with fewer connections
between components.
To make circuits more reliable and easier to test and
troubleshoot.

95

Digital Systems for Engineering

Activity 2

Although you were not asked to give the Boolean laws used in
each step, the answers supplied here will show the actual laws
used, for your benefit.

1.1 ABC+AB+A
= ABC + AB + A(l) [law 2]

= A(BC + B + 1) [distribution]
= A(BC + 1) [law 6]

= A(l) [law 6]

= A [law 2]

1.2 A(ABC + ABC)

= AABC + AABC [distribution]
= O· BC + 0 . BC [law 4]

=0+0 [law 3]

=0

1.3 (JK + JL)(K + J) + JK(K + '1)
= JKK+JJK+JKL+ JJL

+ JKK + JKL [distribution]
= JK+JK+JKL+JL

+ J(O) + JKL [laws 1 and 4]
= JK+JKL+JL+O [laws 3 and 5]
= JK(l + L) + JL [laws 2 and 7]
= JK(l) + JL [law 6]
= JK+JL [law 2]

1.4 (A + B)(A + C)(B + C)

= (AA + AB + AC + BC)(B + C) [distribution]
= (O+AB+AC+BC)(B+C) [law 4]

= ABB+ABC+ABC+ACC
+ BBC + BCC [distribution]

= AB+ABC+ABC+AC
+ BC+BC [law 1]

== AB + BC(A + A) + AC
+ BC + BC [distribution]

= AB+BC+AC [laws 2, 5 and 8]

96

Unit 5 Simplification using Boolean algebra

= O+AB+AC+BC [law 7]

= AA+AB+AC+BC [law 4]
= A(A + B) + C(A + B) [distribution]

= (A + B)(A + C) [distribution]

2.1 AB+AC+BC

= AB + AC + BC(I) [law 2]

= AB+AC + BC(A+A) [law 8]

= AB + AC + ABC + ABC [distribution]

= AB + ABC + AC + ABC [rearranging terms]

= AB(I + C) + AC(I + B) [law 2]

= AB(I) + AC(I) [law 6]

= AB+AC [law 2]
This expression cannot be simplified any further.

2.2 X(Y + Z) + Y('l + Z)

= XY + XZ + IT + YZ [distribution]

=XY+XZ+O+YZ [law 4]

=XY+XZ+YZ [law 7]

= XY(I) + XZ + yz [law 2]

= XY(Z + Z) + XZ + yz [law 8]

= xyz + XYZ + XZ + yz [distribution]

= YZ(X + I) + XZ(Y + I) [law 2]
= YZ(l) + XZ(I) [law 6]

= yz +XZ [law 2]
This expression cannot be simplified any further.

Activity 3

Fig 5.6

Fig 5.7

97

Digital Systems for Engineering

Activity 4

1.1 C+D

1.2 DE

1.3 ABC

1.4 C+D+E+F

1.5 XY

1.6 AB +AC

1.7 EFG

1.8 ABC

1.9 (J +K)(L +M)

Activity 5

1 ABC+ABC+ABC

= ABC+AC(B+B)

=ABC+AC

=A(BC+C)

= A(B+C)

=AB+AC

2 Work with the right-hand side of the equation.

(A + B)(B + C)(C + A)

= (AB+AC+BB+BC)(C+A)

= ABC+ACC+BBC+BCC+AAB+AAC

+ABB+ABC

= ABC+AC+BC+BC+AB+AC+AB+ABC

= ABC+AC+BC+AB

= AC(B + 1) + BC + AB

= AC+BC+AB

= AB + BC + CA [Same as left-hand side of the equation.]

98

Unit 5 Simpiification using Boolean algebra

3 B = JK(L+M)

= JK+ (L+M)

=J+K+LM

= J+K+LM

4 D = (A+ B)(C +AB)

= (A + B) + (C + AB)

= A+B+(CAB)

= A+B+CAB

= A+B+ABC

Aetivity6

1 X = JKL+JKL+JKL+JKL

= JKL+JKL+JL(K+K)

=JKL+JKL+JL

= L(JK+J)+JKL

= L(J + K) +JKL

=JL+LK+JKL

2.1 X=AB+AB

2.2 X=ABC+ABC+ABC+ABC

2.3 P=XYZ+XYZ+XYZ

2.4 X=AB+AB+AB;

Y=AB+AB+AB+AB
3.1 The expression in 2.1 cannot be simplified.

3.2 X = AB(C+C)+AB(C+C)

=AB+AB

= A(B+B)

=A

3.3 P = XY +XYZ

3.4 X=A+B;

Y=1

99

Unit 6
Simplification using Karnaugh maps

Study objectives
Mter studying this unit, you should be able to:

<> draw Karnaugh maps

<> generate a Karnaugh map from a truth table

<> use the Karnaugh map for simplification oflogic circuits.

1 Introduction

One of the main features of a well-designed digital circuit is its
simplicity. You will be able to design simple logic circuits if you
know how to apply simplification techniques to complex expres­
sions. In the previous unit you simplified expressions by using the
laws of Boolean algebra.

In this unit you will be introduced to another simplification tech­
nique. In many cases this technique can be used to simplify logic
expressions easily and relatively quickly. However, before we can
proceed with the simplification, we will have to become familiar
with a new concept: the Karnaugh map. (This is read as 'Car-no
map'.)

2 What are Karnaugh maps?

A Karnaugh map represents a logic circuit in a graphical form.
The map is drawn as a block consisting of a set of smaller blocks
or cells. Each small block corresponds to a row in the associated
truth table. Just as we used truth tables to represent logic circuits,
we can use Karnaugh maps to represent logic circuits. However,
the main function of the Karnaugh map is to enable us to simplify
a logic circuit easily and quickly.

The diagrams on the next page show typical Karnaugh maps. As
you can see, each map consists of small blocks or cells. In this
book we will refer to the small blocks or cells simply as blocks.
Each Karnaugh map is labelled in a particular way. Examine the
diagrams closely and learn how to draw and label them.

Unit 6 Simplification using Karnaugh maps

0 1

0

1

Fig 6.la

00 01 11 10

0

1

Fig 6.lb

00 01 11 10

00

01

11

10

Fig 6.lc

101

Digital Systems for Engineering

The maps in Fig 6.1a--c are blank and therefore not fully labelled.
Fig 6.2 shows an example of a complete Karnaugh map.

Be
A 00 01 11 10

0 0 1 1 1

1 0 0 0 1

Fig 6.2

3 Generating a Karnaugh map from a truth table

You will recall that for a logic circuit with 2-inputs, the truth table
was made up of four rows. In a similar way the Karnaugh map to
represent the same circuit will be made up of four blocks. Each
block in the Karnaugh map corresponds to a particular row in the
truth table.

Example 6. 1 The table below is a simple truth table representing a 2-input logic
circuit. The corresponding Karnaugh map is shown in Fig 6.3.

The second block represents
the case where A is 0 and
B is 1. The output X in this
case is a 1. This 1 is inserted
into this block.

1B
A 0 1 Can you identify this block?

0 1 Yes/It represents the case
0 where A is 1 and B is

also 1. The value of the
output X is O.

1 1 0 V

The first block represents the
case where inputA is 0 and
input B is also 0..The output X
as shown in the truth table is O.
This 0 is inserted into this block.

A B X

0 0 0

0 1 1

1 0 1

1 1 0

I\M"Iat about thIS block? I
Fig 6.3

102

Unit 6 Simplification using Karnaugh maps

A B X

0 0 0

0 1 0

1 0 1

1 1 1

Activity 1

"
1 What does a Karnaugh map represent?

2 Draw a blank Karnaugh map consisting of eight blocks.

3 Draw completed Karnaugh maps corresponding to the
following truth tables.

3.1

3.2
J K Z

0 0 1

0 1 1

1 0 1

1 1 0

Example 6.2 The table below shows a 3·input truth table and Fig 6.4a is the
corresponding Karnaugh map. Note that the same Karnaugh map
may also be drawn as shown in Fig 6.4b.

A B C X

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

This block corresponds to ABC being 0 1O.
Why? According to the truth table the number
inside this box should be 1.

Be 11~10A 00 01

0 1 1 0 1

1 0 1 0 1

Fig 6.4a

103

Digital Systems for Engineering

A

Be 0 1

00 1 0

01 1 1

11 0 0

10 1 1

Fig 6.4b

Try to work out:

1 How each of the other blocks in the map are labelled.

2 How each block corresponds to a specific row in the truth
table.

3 How each block is filled with a value.

Example 6.3 A four-input or four-variable truth table has sixteen rows.
Similarly a four-variable Karnaugh map has sixteen blocks - each
block corresponding to a specific row in the truth table. The table
on the next page shows a typical four-variable truth table and Fig
6.5 shows its corresponding Karnaugh map.

Once again, determine how the Karnaugh map is labelled and
how the blocks are filled in.

104

Unit 6 Simplification using Karnaugh maps

A B C D X

0 0 0 0 0
0 0 0 1 1

0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1

0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1

1 1 1 1 0

CD
AS 00 01 11 10

00 0 1 0 0

01 1 0 1 1

11 1 1 0 1

10 0 1 0 0

Fig 6.5

A B C X
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

1 Draw completed Karnaugh maps for the following truth
tables.

1.1

Activity 2

't

105

Digital Systems for Engineering

1.2

1.3

1.4

106

J K L X
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

A B C D X
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

p Q R S y

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Unit 6 Simplification using Karnaugh maps

4 Simplification using the Karnaugh map

So far you have been able to represent digital information in the
form of a Karnaugh map. The process of simplifying logic circuits
using the Karnaugh map, involves two steps:

1 finding the appropriate groups of Is in the map

2 extracting the simplified Boolean expression from the
identified groups.

4. 1 Finding the appropriate groups

The main aim of this step is to find all the Is that can be grouped.
You have to find the biggest groups first.

How big are these groups?

In a Karnaugh map of 16 blocks:

<> the biggest group consists of 16 Is

<> the next group consists of 8 Is

<> the next group consists of 4 Is

<> the next group consists of 2 Is (in this order)

In a Karnaugh map of 8 blocks:

<> the biggest group consists of 8 Is

<) the next group consists of 4 Is

<> the next group consists of 2 Is (in this order)

In a Karnaugh map of 4 blocks:

<> the biggest group consists of 4 Is

<> the next group consists of 2 Is (in this order)

How are these groups found?

The groups must consist of Is that are adjacent to one another.
This means the ones must be alongside, above or below one an­
other. A group cannot consist of ones that are diagonally across
from one another. The groups should then be marked with a loop
as shown in the figures on the next page. Groups may partly
overlap. The easiest way to understand this grouping process is
by looking at a few examples.

.107

Digital Systems for Engineering

Example 6.4a Karnaugh maps with four blocks.

B
A 0 1

,...,
0 1 0

1 -1- 0

one group
Fig 6.6a

B
A 0 1

0 1 0

1 0 1

no groups
Fig 6.6b

B
A 0 1

0 1 1)

1 0 0

lWo overlapping groups
Fig 6.6c

Example 6.4b Karnaugh maps with eight blocks.

108

BC
A 00 01 11 10

~ ~
0 1 0 1 0

1 -1- 0 -1- 0

lWo groups of 2 Is each
Fig 6.7a

BC
A 00 01 11 10

0 1 1 0 0

1 1 1 0 0

one group of 4 Is
Fig 6.7c

BC
A 00 01 11 10

0 (1 (1) 1) 0

1 0 0 0 1

lWo overlapping groups of 2 Is
Fig 6.7b

BC
A 00 01 11 10

0 (1 1 1 1)

1 0 0 0 0

one group of 4 Is
Fig 6.7d

Unit 6

BC
A 00 01 11 10

0 1 1 0 0

1 1 (1 1) 0

one group of 4 Isand
one group of Z Is

Fig 6.7e

BC
A 00 01 11 10-

""" ~0 1 0 0

1 J-- 0 0
~-

one group of 4 Is
The two sides of the Karnaugh

map are linked.
Fig 6.7g

Simplification using Karnaugh maps

BC
A 00 01 11 10

0 0 1 1 0

1 (1 1 1 1)

two groups of 4 Is
Fig 6.7f

BC
A 00 01 11 10-

'"
0 1 1 1 1

1 1 1 0
~- ../

three group of 4 Is
Fig 6.7h

Example 6.4c Karnaugh maps with sixteen blocks

co
AS 00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

10 0 0 0 0

I group of 8 Is

Fig 6.8a

co
AS 00 01 11 I 10 I

00 0 0 0 \Y
01 1 1 1 0

11 1 1 1 0

10 0 0 0 f1\
Z groups of 4 Is
I group of Z Is

Fig 6.8b

109

Digital Systems for Engineering

CD
AS 00 01 11 10

00 (1 1 0 '1

01 0 -..!... 1 1

11 0 0 1 1

10 0 0 1 1

3 groups of 4 Is
Z'groups of 2 Is

Fig 6.8c

CD
AB' 00 01 11 10 ,

I\l 1)00 1 1-

01 0 1 1- 0

I' '

0 1- " 1 011

10 1/1 1 1 1\

Z groups of81s

1/0

CD
AB' 00 01 11 10 I

1\1
r--

1)00 1 1

01 0 1 0 0

11 0 1 0 0

10 1/1 (!, 1 1\

I group of 8 Is
I group of 4 Is

Fig 6.8d

CD
AB 00 01 11 10

00 0 1 0 0
-

{ '1"01 0 0

11 ,~. 0 0
~-

10 0 0 1 0

I group of 4 Is
2 single Is

Fig 6.8f

Activity 3

"

Unit 6 Simplification using Karnaugh maps

1 Group the 1s in the following Karnaugh maps as shown
in the examples above.

1.1
Be

A 00 01 11 10

1
:

1
,

1 00

1 0 1 1 1

Fig 6.9a

1.2
ST

R 00 01 11 '10, ,,

1 0
,

1 00

0 1
,

0 11

Fig 6.9b

1.3
co

AS ,:00 01 11 10

00 0 0 1 0

.01 ,1 1 1 0

•

11 0 '1 1 1

10 0 1 0 0

,Fig 6.9c

1/1

Digital Systems for Engineering

1.4
TU

RS 00 01 11 10

00 1 0 0 1

01 0 0 1 1

11 0 0 1 1

10 1 0 0 1

Fig 6.9d

2 Group the Is in the Karnaugh maps which you drew for
Activity 2.

4.2 Extracting the simplified Boolean expression

Each loop in the Karnaugh map can be uniquely labelled in a spe­
cial way by a Boolean term. The fInal Boolean expression consists
of all the Boolean terms combined together with the OR sign;
which is the + sign. Again this procedure will best be understood
by studying examples.

Example 6.5 Consider the Karnaugh map shown in Fig 6.10 below. The follow­
ing points should be noted:

~ the simplified Boolean expression may be written in
terms of the two variables: A and B

~ the map consists of one loop; therefore the simplified
Boolean expression will be made up of one term only.

"2

Unit 6 Simplification using Kamaugh maps

B
A 0 1

0 (1 1

1 0 0

Fig 6.10

The loop is labelled as follows: Which variables are common to all
the Is in the loop? In this case A = 0 is common to both Is in the
loop. Thus we label the loop A.

The simplified Boolean expression can then be written as: X = A

Example 6.6 Consider the Karnaugh map shown in Fig 6.11.

B
A 0 1

,...,
0 0 1

1 0 1

Fig 6.11

One loop means one term. B = 1 is common to all the Is in the
loop. Therefore the term is simply: B.
The Boolean expression can be written as: X = B

Example 6.7 Consider the Karnaugh map shown in Fig 6.12. For the single 1:
- A=O; so we have A:

~
- 8= 1;50 we have B
- C= 1; so we have C

Be - 7helWDedterm

A 00 01 11 is therefore: Me

In this loop:
0 0 1 0- A = 1 is common to all the 0

15 in this loop: so we have: A
- 8 = 0 is common to all the

Is in this loop: so we have: B 1 "(1 1) 0 0
- The IWDed term Is therefore: AB

Fig 6.12

113

Digital Systems for Engineering

The simplified Boolean expression can be written as:

X=AB+ABC,

Example 6.8 In each of the following figures the term for each loop has been
indicated, and the simplified Boolean expression appears below
the figure.

X=BC+BC BC

Fig 6./3

BC
A 00 01 11 10

r--,
~0 1 0 0

1 i-'>' 1 0
~

0

---- -- I
BC

ABC

ACABBC

11/A 00 01 10

0 (1 l1) 1 0

0 0 0 11

X=AB+AC+ABC

Fig 6./4

BC
A 00 01 11 10

0 1 1 0 0

1 1 1 0 0
!,

B X=B

Fig 6./5

1/4

Unit 6 Simplification using Karnaugh maps

Be
11 IA 00 01 '0

0 (1 1 1 1)

1 0 0 0 0

Fig 6./6

BCD

CO
.8 00 01 11

,
10

,

00 0 0 0 Iwf-

01 1 1 1 0

!; 1 1 1 0

10 0 0 0 /i\

BD

B
BC

CO
AB 00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

10 0 0 0 0

Fig 6./7
X=BC+BD+BCD'

Fig 6./8

Be
A 00 01 11 '0

0 1 1 0 1

, 0 1 1 0

Activity 4

"
1 Group the Is in each of the following Karnaugh maps.

Then write down the simplified Boolean expression from
each map.

1.1

Fig 6./9a

ST
R 00 0' 11 '0

0 1 1 1 1
.

, 1 1 1 1

Fig 6./9b

115

Digital Systems for Engineering

1.3
CD

AS 00 01 11 10

00 1 0 0 1

01 1 0 0 0

11 0 0 0 1

10 1 0 0 1

Fig6.19c

1.4
CD

AS 00 01 11 10

00 1 0 0 0

01 0 1 0 0

11 0 0 1 0

10 0 0 0 1

Fig 6.19d

(For additional practice in simplification extract the Boolean ex­
pression for the examples in Activity 3.)

Extension task

Can you wor!< out a way to
In6ert the terms of a Boolean
expre55ion into a Karnaueh

map'?

116

Unit 6 Simplification using Karnaugh maps

Consider the Boolean expression of the type that we worked with
in Unit 5. For example: X = ABC+AB +ABC +B. The four terms
of this expression can be inserted into a Karnaugh map in the
form of Is. The map can then be simplified in the usual way to
extract the simplified Boolean expression.

The challenge is for you to work out how it is done!

5 Summary

This unit (together with Unit 5) completes the essential tech­
niques necessary for the simplification of Boolean expressions.
When using simplified Boolean expressions you will be able to
build simpler logic circuits. These circuits will have fewer compo­
nents, fewer connections between components, and therefore be
cheaper and more reliable. The circuits would also be easier and
quicker to troubleshoot.

At this stage you should be equipped with most of the basic logic
circuit concepts and the tools necessary to tackle the problem
of designing logic circuits for various applications. In the next
few units we will look at the design of digital circuits for various
applications.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 Which two techniques can be used to simplify logic ex­
pressions?

2 List the advantages of having simple logic circuits.

3 Draw blank Karnaugh maps for the following:

3.1 three variables: R S and T

3.2 four variables: V W X and Y

4 Extract simplified logic expressions from the following
Karnaugh maps.

117

Digital Systems for Engineering

4.1

4.2

4.3

118

y
x 0 1

0 1 1

1 1 1

Fig 6020a

Be
A 00 01 11 10

0 1 0 1 1

I·

1 0 1 0 1

Fig 6020b

ST
R 00 01 11 10

0 1 1 1 1

1 1 0 0 1

Fig 6020c

4.4

4.5

Unit 6 Simplification using Karnaugh maps

CD
AS 00 01 11 10

00 1 1 1 1

01 1 0 0 1

11 1 0 0 1

10 1 1 1 1

Fig 6.20d

CD
AS 00 01 11 10

00 1 1 0 1

01 0 1 0 1

.11 1 0 1 0
,

10 1 0 0 1

Fig 6.20e

1/9

Digital Systems for Engineering

x:f

00 01 11 10

00 0 0 1 1

01 1 1 0 0

11 1 1 0 1

10 0 0 1 1

vw
4.6

Fig 6.20f

5 Simplify the following Boolean expressions using Kar­
naughmaps.

5.1 X=A+B+AB

5.2 Y =AB+ABC+ABC+BC+AC.

Answers to activities

Activity 1

1 A Karnaugh map represents a logic circuit in a graphical
form. The map is drawn as a block consisting of a set of
smaller blocks or cells. Each small block corresponds to
a row in the associated truth table.

2

Fig 6.21

120

Unit 6 Simplification using Karnaugh maps

3.1 Karnaugh map for X (Fig 6.22a).

3.2 Karnaugh map for Z (Fig 6.22b).

B
A 0 1

0 0 0

1 1 1

Fig 6.22a

Activity 2

1.1

K
J 0 1

0 1 1

1 1 0

Fig 6.22b

1.2

Be
A 00 01 11 10

0 1 1 0 1

1 0 1 0 1

Fig 6.23a

KL
J 00 01 11 10

0 0 0 0 0

1 1 1 1 1

Fig 6.23b

121

Digital Systems for Engineering

1.3

1.4

122

CD
AB 00 01 11 10

00 0 1 0 0

01 1 0 1 1

11 1 1 0 1

10 0 1 0 0

Fig 6.23c

RS

PO 00 01 11 10

00 1 0 0 1

01 1 0 0 1

11 1 0 0 1

10 1 0 0 1

Fig 6.23d

Unit 6 Simplificauon using Karnaugh maps

BC
A 00 01 11 10

0 (1 1) 1 0

1 0 1 (1 1

Activity 3

1.1

Fig 6.24a I group of 4 Is; 2 groups of 2 Is

1.2 ST
R 00 01 11 10

0 1 0 1 0

1 0 1 0 1

Fig 6.24b ,All single Is

1.3 In this case we get four groups of 2 Is only. The
middle group of 4 Is is excluded as all the Is in this
middle group are included in the other four groups.

CD
AB 00 01 11 10

00 0 0 '1 0

01 (1 1 0 0

'111 0 1 1)

10 0 1 0 0

Fig 6.24c

123

Digital Systems for Engineering

1.4

2.1

TU

RS 00 I 01 11 I 10

00)-- 0 0
~-

01 0 0 1 1

11 0 0 1 1
-
~ ~10 1 0 0

Fig 6.24d 2 groups of 4 Is

Be
A 00

o

1 o

01

1

1

11

o

o

2.2

124

Fig 6.25a 3 groups of 2 Is

KL
J 00 01 11 10

0 0 0 0 0

1 (1 1 1 1

Fig 6.25b 1 group of 4 Is

2.3

2.4

Unit 6 Simplification using Karnaugh maps

CD
AS 00 I 01 I 11 10

00 0 I\U 0 0
-
~ ./

01 1 0 (1 1)

11
~

~ 0 Z-
h

10 0 1/ 1 '\ 0 0

Fig 6.25c / group of 4 /S,' 3 groups of 2 /s

RS
pq: 00 01 11 10

~ /"
00 1 0 0 1

01 1 0 0 1

11 1 0 0 1
.
.

10 1 0 0 Z/-
Fig 6.25d / group of8 /s

/25

Digital Systems for Engineering

Activity 4

1.1 BC AC
BC

A '"=:;:-'-"-r--"-'-I'--r-"---r-t'-'10-=-r

o 1

o
X=BC+AC+AC AC

Fig 6.26a

1.2
ST

R 00 01 11 10

0 1 1 1 1

1 1 1 1 1

ACD

BD
CD 00'/AB 01 11 I 10

r--l+ ./.
00
~

0 0
~- -

01 ~ 0 0 0

11 0 0 0 1+I--

- -

"'" /'
10 1 0 0 J..-

The output is always 1,
therefore: X = 1 Fig 6.26b

1.3 ACD

I

X=ACD+ACD+BD
Fig 6.26c

126

1.4

Unit 6 Simplification using Karnaugh maps

CD
AS 00 01 11 10

00 1 0 0 0

01 0 1 0 0

11 0 0 1 0

10 0 0 0 1

X=ABCD+ABCD+ABCD+ABCD
Fig 6.26d

/27

Unit 7
Basic combinational logic circuits

Study objectives
After studying this unit, you should be able to:

<> describe a combinational logic circuit

<> list the techniques involved in the design of combina-
tional logic circuits

<> design simple combinational logic circuits

<> describe and use the binary number system

<> describe the Exclusive-OR and the Exclusive-NOR gates

<> understand the concept of comparing binary quantities

<> design digital comparator circuits.

1 Introduction

In digital systems most circuits can be classified into one of two
types: combinational or sequential circuits. In Units 7 and 8 you
will be introduced to a number of combinational logic circuits. You
will learn to describe, design and apply various types of combina­
tional logic circuits. (In Unit 9 you will learn about sequential
logic circuits.)

In this unit you will also learn about the binary number sys­
tem. You need to know how to deal with and manipulate binary
numbers in order to design logic circuits for all types of digital
applications, including computer systems.

So far you have worked with logic circuits that were made up of
the following logic gates: AND, OR, NOT, NAND and NOR. You
also need to know two additional logic gates: the Exclusive-OR
and the Exclusive-NOR gates. All these gates will then be used in
future aspects of digital systems.

This unit will conclude with a specific type of combinational logic
circuit: the comparator. We will look at how numbers are com­
pared in digital systems, and at how logic circuits can be designed

Unit 7 Basic combinational logic circuits

to compare numbers. The concept of advanced digital les will be
briefly introduced.

Let's first look at combinational logic circuits.

What are combina­
tional logic circuiW?

2 Combinational logic circuits

All the logic circuits that you have learnt about so far are combi­
national logic circuits. A combinational logic circuit is a logic cir­
cuit that has one or more outputs, and many inputs. The outputs
are directly dependent on some logical combination of the inputs.
Each output can therefore be described by a logic or Boolean ex­
pression. Fig 7.1 shows a diagram ofa general combinational logic
circuit.

INPUTS

•GENERAL

I
COMBINATIONAL

I
•

LOGIC
CIRCUIT •

Fig 7.1

OUTPUTS

Fig 7.2 shows an example of a simple combinational logic circuit.

Fig 7.2

129

Digital Systems for Engineering

This circuit has three inputs and one output. The output X can
be written in terms of the inputs. The Boolean expression for this
combinational logic circuit is: X = (8 + T) . U

Combinational logic circuits can be designed for various applica­
tions. In the next section we will look at how these logic circuits
can be designed.

Activity 1

i'
1 What are the two main types of digital circuits?

2 Draw a simple combinational logic circuit that has one
output and four inputs.

3 Draw one combinational logic circuit with the following
Boolean expressions:

X=A+BC;
Y=ABC

4 How many inputs and outputs does the combinational
logic circuit in question 3 have?

3 Design techniques

In most cases where a logic circuit is needed, the problem is set out
in words. This problem needs to be analysed and then simplified
into input and output terms. The design of a logic circuit can be
done in one of two ways: (1) by following a simple method using
a truth table (2) by logical reasoning.

Design

Simple
procedure
using a
truth table

Fig 7.3

Logical
reasoning

In most cases you will.design combinational logic circuits by using
a set method, or series of steps, including the use of a truth table.
In a few cases you will use logical reasoning. You will learn how

130

Unit 7 Basic combinational/ogic circuits

to use the truth table method first. The method of logical reason­
ing will be discussed later, in section 7.2 of this unit.

3. 1 Design method using a truth table

The.diagram in Fig 7.4 summarises the steps you should follow
when using this method.

Analyse the problem

+
Determine the

input and output vartables

+
Draw the truth table

+
Dertve the Boolean expression

+
Simplify the expression

+
Draw the logic circuit

Fig 7.4

The most important step is to carefully and correctly analyse the
problem. If this step is done properly the inputs and outputs will
be determined correctly.: The purpose of drawing the truth table
is to change information from the problem statement into table
form. The steps to derive the Boolean expression, simplify the
expression, and draw the logic circuit, were covered in previous
units. Simplification can'be done by using either the Boolean laws
or the Karnaugh maps..

The best way to understand how you can design combinational
logic circuits using the set method involving truth tables, is by
working through a few examples.

131

Digital Systems for Engineering

Example 7. 1 A computer room has two windows. If one or both of the windows
are broken the alarm must be sounded. Design a logic circuit to
sound the alarm.

Solution Analyse the problem: The circuit should have one output to
sound the alarm. Each of the windows can act as inputs.

Determine the variables: There is one output variable - to
sound the alarm. Let's use X for the output variable. There are
two input variables - window 1 and window 2. Let's use the sym­
bols A and B for the two input variables.

Draw the truth table: Use the following logic states in the truth
table: When X is 1 the alarm is on. When X is 0 the alarm is off.

When a window is broken, A or B is 1 and when a window is not
broken, A or B is O.

A B X

0 0 0

0 1 1

1 0 1

1 1 1

(No windows broken, alarm off)

(Window 2 is broken, alarm on)

(Window 1 is broken, alarm on)

(Both windows are broken, alarm on)

Derive the Boolean expression: From the truth table we can
write the following expression: X = AB+AB+AB. This expression
could be simplified.

Simplify the expression: This could be done by using either
the Boolean laws or a Karnaugh map.

We will use a Karnaugh map in this example. Drawing the Kar­
naugh map from the truth table we get:

B
A 0 1

,-....,
0 0 1 f-

1 (11

B

A

Fig 7.5

/32

Unit 7 Basic combinational logic circuits

Using this Karnaugh map we get the simplified expression:

X = A+B. (You would have got the same answer ifyou had chosen
to use the Boolean laws to simplifY the expression.)

Draw the logic circuit: In this case only one simple logic gate
is necessary - a 2-input OR gate.

Fig 7.6

Example 7.2 In a factory a machine is run by three motors. If two or more of
the motors develop a fault, the chief supervisor must be notified.
Design a logic circuit that will monitor the functioning of the
motors, and will turn on an indicator lamp for the supervisor
should two or more of the motors develop a fault.

Solution Each of the motors can represent inputs to the logic circuit. The
output will go to the indicator lamp. Let the motors be the input
variables, A, B and C. Let the lamp be the output variable, X. If
a motor is running smoothly, let the input be a O. If the motor is
faulty, the input must be a 1. If the output is 0, the lamp will stay
off, but if the output is 1, the lamp will go on.

Truth table:

BC
A 00

A B C X
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

o

1

o

o

01

o

AC

1

1

Be

10

o

1 AB

.Karnaugh map

Fig 7.7

133

Digital Systems for Engineering

Simplified Boolean expression: X = AB +AC +BC

INPUTS
FROM THE
3 MOTORS

C--...-~---L

Logic circuit

Fig 7.8

OUTPUT
X TO

INDICATOR
LAMP

Activity 2

134

For each of the following exercises you do not need to show the
steps in as great detail as shown in example 7.1 above.

1 An aeroplane has two wheels. Before the plane can land,
a warning lamp must come on if the left wheel is down
and the right wheel is up, or vice versa. The. lamp must
not turn on if both wheels are down. A separate alarm
must sound if both wheels stay up. Design a logic circuit
for the warning lamp and the alarm.

2 A lift has two doors and is driven by a drive·motor. In
the lift there is an alarm button that can be pressed by
a person in the lift. The alarm bell of the lift must be
activated under the following conditions:
Either

• the lift is stuck between floors (i.e. the drive mo·
tor is not running) and the alarm button has
been pressed

OR

• the lift has arrived at a floor, but the doors do
not open and the alarm bell is pressed

OR

• the doors of the lift are open when the lift is
between floors. It does not matter whether the
motor is running or not, or whether the alarm
button is pressed or not.

Design a logic circuit for the alarm bell. The. following input vari­
ables can be defined:

A: alarm button (pressed/not pressed)

Unit 7 Basic combinational logic circuits

B:' , drive motor (not ronning/running)

C: lift position (in-between floors/at floor)

D: doors (open/closed)

4 The binary number system

At this point in the unit we are going to introduce a new concept,
the binary number system. This concept may seem unrelated
to logic circuit design, but it is in fact one of the main aspects
of digital systems. Once you understand this concept, the rest of
this course will be easier to understand.
In digital systems, information can only be expressed in terms of
a high or low voltage level, or in numerical terms by a 1 or a 0,
This 1 and 0 are the basis of the binary number system,

Before we look at the binary number system, let's look at a very
familiar number system: the decimal number system, It is the
number system you use every day.

The first number is O. Then we count as follows: 1, 2, 3, 4, 5, 6,
7,8,9. You will notice that we use ten symbols, The next number
is made up of the 1 and the O. We call it ten, which is written as
10,' The counting sequence then continues as follows: 11, 12, 13,
14, 15, 16, 17, 18, 19. To get the next number in the sequence
we have to use the next symbol, 2, in front of the O. This gives
us 20, and the sequence continues as: 21, 22, 23, and so on until
we reach 29, The next number will be 30, followed by 31, 32 and
so on, This process continues until we reach 99. What is the next
number? Of course, we start with a 1 and two Os to get 100. This
may seem very easy, but it is important to understand how the
decimal system works because the same sort of counting process
is applied in the binary number system,

In the binary number system there are only two symbols - the
zero(O) and the one(l). The first number is a 0 and the second
number is a 1. The third or next number is made up of the 1
and the 0, which is called 'one-zero' (not 'ten'), even though we
write it as 10, The next number in the binary sequence is 11, or
one-one, Can you work out the next number? You start with a 1
and two Os, and get 100, which is read as 'one-zero-zero', This is
followed by 101, 110, 111, 1000, 1001, 1010 and so on.

The list below shows the sequence of binary numbers beginning
at 0 and ending at 11111,

135

Digital Systems for Engineering

o 1 10 11 100 101 110 111 1000 1001 1010 1011
1100 1101 1110 1111 10000 10001... 11111

4. 1 Proper labelling in the different number systems

When you work with more than one number system, you could
become confused when writing numbers. How will you know
whether you are writing decimal or binary numbers (or even in
another number system as you will discover in the Unit 8)? For
example, is 10 a ten or a one-zero? You have to be able to differ­
entiate between the different number systems. To do this we use
subscripts. For the decimal system the subscript is 10 because the
system is made up of ten numbers. The binary system has 2 as a
subscript because the system is made up of two numbers. We say
that the decimal system is a base ten system, while the binary
system is a base two system.

The subscript is written immediately after the number, for exam­
ple: 2510 10010 lOh 1010 9910 102 10210 1112

However, to make things easier we do not usually use the sub­
script (10) when we are writing decimal numbe~. Therefore 101
will be one hundred and one, and not one-zero-one.

4.2 Relationship between the binaryand the decimal number systems

Look at table 7.1. The table shows some decimal numbers and
their binary equivalents. You will see that the bigger the decimal
number, the more digits (or bits) are necessary to make up that bi­
nary number. (The word bit is a contraction of the words 'binary'
and 'digit'. Each place in a binary number is called a 'bit'.)

Decimal Binary Decimal Binary
0 0 11 1011
1 1 15 1111
2 10 16 10000
3 11 17 10001
4 100 20 10100
5 101 31 11111
6 110 32 100000
7 111 50 110010
8 1000 99 1100011

9 1001 100 1100100

10 1010 127 1111111

Table 7.1 Sample list of decimal and binary numbers

/36

Unit 7 Basic combinational logic circuits

4.3 Converting decimal numbers into binary numbers

You need to follow a set of simple steps to convert a decimal num­
ber into its binary equivalent. These steps are:

1 Divide the number by 2. Make a note of the r~mainder,

whether it is 1 or O.
2 Divide the answer by 2. Again, make a note of the

remainder.
3 Continue this division by 2 until you are left with 1 + 2

which is then equal to 0, with 1 as the remainder.
4 Write down the remainders from the last one to the first.

This is the binary equivalent.

Here are a few examples to illustrate this conversion.

Example 7.3 Convert 13 to binary form.

Solution 13 2 6 remainder 1 end

6 2 3 remainder 0

3 2 = 1 remainder 1

1 2 = 0 remainder 1 start

Now write the remainders from the last one to the first one: 1101.

The binary equivalent of 13 is 11012.

This series of steps could also be set out like this:

2 13

26reml

23remO

21rem1

o rem 1

137

Digital Systems for Engineering

Example 7.4 Convert 27 to binary form.

Solution 2 27

213rem1

26rem1

23remO

21rem1

o rem 1

Writing the remainders from the last one to the first one we get
11011.

The binary equivalent of 27 is 1101h

Example 7.5 Convert 100 to binary form.

Solution 2 100

2 50 rem 0

225remO

212rem1

2 6 rem 0

2 3 rem 0

2 1 rem 1

o rem 1

Write the remainders from the last one to the first. We get:
1100100.

The binary equivalent of 100 is 11001002.

4.4 Converting binary numbers into decimal numbers

Start on the extreme right of the binary number (Le. at the least
significant bit (LSB» and allocate a power of 2 to each digit in
the binary number. You will start with 2°, then 21, 22 and so on.
Now calculate the power of 2 under each 1 in the binary number.
To work out what the decimal number is, you will add up only the
powers of 2 which were allocated to the 1s in the binary number.
Do not add up the values allocated to the Os.

If you look at a few examples, this method will be a lot easier to
understand.

/38

Unit 7 Basic combinational logic circuits

Example 7.6 Convert 1112 to a decimal number.

Solution 1 1 1

! ! !
22 21 2°

4+2+1=7

Therefore 1112 = 7

Example 7.7 Convert 110012 to a decimal number.

Solution 1 1 0 0 1

! ! !
24 23 2°

16 + 8 + 1 = 25

Therefore 110012 = 25

Example 7.8 Convert 10000002 to a decimal number.

o 0 0 000Solution

Activity 3

"

1

!
26

Therefore 10000002 = 64

To check if your answer is correct you can convert the decimal
number you work out back to the binary form - and vice versa.

1 Convert the following decimal numbers into binary form.
44 356 1010 3 151
(You can check that your answers are correct by convert­
ing the binary numbers back into decimal form.)

2 A decimal number is represented in binary by four bits
A, B, C and D - with A being the most significant bit
(MSB). Design a logic circuit of which the output will be
high only for numbers between 9 and 13 inclusive (i.e.
including 9 and 13).

Besides the decimal and binary number systems, there is another
very important number system that is widely used in digital and
computer systems: the hexadecimal number system. You will learn
about this number system in Unit 8.

139

Digital Systems for Engineering

Extension task Fractional decimal numbers may also be represented in binary
form.

For example: 14,125 = 1110,0012

Consult the recommended texts mentioned in Appendix 5 at the
end of this book and work out how these fractional decimal num­
bers may be converted to binary form, and also how fractional
binary numbers may be converted to decimal form.

5 The Exclusive-OR and the Exclusive-NOR gates

You have so far studied five logic gates, namely the AND, OR,
NOT, NAND and NOR gates. We will now look at two additional
logic gates, called the Exclusive-OR and the Exclusive-NOR gates.

5. 1 The Exclusive-OR gate

Consider the following truth table:

A B X

0 0 0

0 1 1

1 0 1

1 1 0

From this table we can derive the following Boolean expression:
X = AB +AB. This expression cannot be simplified.

The logic circuit for this truth table is shown in Fig 7.9 below.

A---....,...-L>o-...,~

B---+--....L·~'--/

x

Fig 7.9

This logic circuit is made up of five logic gates. How many and
which ICs do you think you would have to use to implement this
logic circuit for testing? There is a single logic gate that can per­
form the function represented in the truth table shown above.
This logic gate is known as the Exclusive-OR gate. The logic
symbol for this gate is shown in Fig 7.10.

140

Unit 7 Basic combinational logic circuits

~=D-x
Fig 7./0

The Boolean expression for this gate is: X = A (lJ B. This is read
as 'X equals A Exclusive-OR B'.

The truth table for this gate will be:

A B X

0 0 0

0 1 1
1 0 1

1 1 0

An easy way of describing the Exclusive-OR function is: The out­
put is high only when the inputs are not .the same. When the
inputs are the same, i.e. 0, 0 or 1, 1 then the output is low.

The Exclusive-OR function, A (lJ B is equivalent to the Boolean
expression: AB +AB.

To implement this Exclusive-OR gate for testing purposes you
should use the Ie shown in Fig 7.12. This is a quad two-input
Exclusive-OR package or Ie and its number is 7486.

Gnd 7 •

7486 quad 2-input
Exclusive-OR package

Fig 7.//

/4/

Digital Systems for Engineering

5.2 The Exclusive-NOR gate

This logic function or gate is the inverse of the Exclusive-OR gate.
It is represented by this truth table:

A B X ,

0 0 1

0 1 0

1 0 0

1 1 1

The logic SYIDbol for the Exclusive-NOR gate is:

~=I>-x

Fig7./2

The Boolean expression is: X = A EB B

The equivalent logic expression is: X = AB + AB

An easy way of describing the Exclusive~NORfunction is: The.
output is high only when the inputs are the same. i.e. 0, 0 or 1,
1. When the inputs are not the same, then the output is low.

To implement this Exclusive-NOR gate for testing purposes you
should use the IC shown in Fig 7.13. This is a quad two-input
exclusive-NOR package or IC and its number is 74810.

Gnd 7 B

74810 quad 2-input
Exclusive-NOR package

Fig 7./3

/42

Unit 7 Basic combinational logic circuits

Actfvity4

"
1 What is an Exclusive-OR gate?

2 What is an Exclusive-NOR gate?

3 Using the basic logic gates (i.e. AND, OR and NOT) draw
the equivalent logic circuit for the following function:
Z=JEBK

4 Which type of exclusive gate can be used for the warning
lamp in the aeroplane example in Activity 2?

5 Write down the truth table for the logic circuit shown in
Fig 7.14a.

~~
c--D-x

Fig 7./4a

6 The following waveforms are applied to the circuit in Fig
7.14a. Determine the output waveform.

A~

B I

c

Fig 7./4b

L

Activity 5 Implement (i.e. wire up on the test board) and test the Exclusive­
OR and the Exclusive-NOR gates. Use the 7486 and the 74810
IGs. If you cannot remember how to. do this, please refresh your
memory by referring to Unit 2, Activity 3.

6 Comparing binary quantities

Because you are very familiar with the decimal number system,
it is very easy for you to look at two numbers and then work out
whiCh number is bigger or greater. However, when looking at two
binary numbers it may not be so obvious which one is greater than
the other. For example, which binary number is greater: 101102
or 110102? One way of finding out is to convert each number to
its decimal form. It is then easy to see which number is greater.

/43

Digital Systems for Engineering

101102 = 22 110102.= 34

34 is greater than 22; therefore 110102 is greater than 101102

However, it is also relatively easy to determine which number is
greater by examining the binary numbers. This can be done by
following these steps:

1 Rewrite both the numbers to be compared with tHe same
number of bits.

2 Start on the side of the most significant bit (MSB), the
left-hand side.

3 Compare the corresponding bits:
• the number with a 1 is greater than the number

with a 0
• if both the bits are the same (Le.a 1 or a 0) then

examine the next bit in each of the two numbers
• again, the number with a 1 is greater than the

number with a o.
4 This process of bit-by-bit comparison must be continued

until you have determined which number is greater.

Let's study some examples where we can apply these steps.

Example 7.9 Compare 1002 to 1102.

Solution Both binary numbers are already written with three bits.

1002 The MSB is a 1.

1102 The MSB is also a 1.

Examine the next bit in each of the two numbers.

1002 The next bit is a O.

1102 The next bit is a 1.

Therefore, 1102 is greater than 1002.

Example 7.10 Compare 101102 to 110102.

Solution

144

Both binary numbers are already written with five bits.

101102 The MSB is a 1.

110102 The MSB is also a 1.

Examine the next bit in each of the two numbers.

101102 The next bit is a O.

110102 The next bit is a 1.

Therefore, 110102 is greater than 101102.

Unit 7 Basic combinational logic circuits

Example 7.11 Compare 111102 to 10112.

Solution 111102 is written with five bits and 10112 is written with four
bits. You will have to rewrite both numbers with five bits: 10112
becomes 010112.

Now compare 111102 to 010112.

111102 The MSB is a: 1.

010112 The MSB is a O.

Therefore 111102 is greater than 0101h

Example 7.12 Compare 011002 to 100002.

Solution

Activity 6

~

Both binary numbers are already written with five bits.

011002 The MSB is a O.

100002 The MSB is a 1.

Therefore 100002 is greater than 011002.

In all cases you might like to check your answer by converting
each number to its decimal form.

1 Compare the following pairs of binary numbers:

1.1 10102 and 10012

1.2 0101012 and 0101002

1.3 11002 and 101002

2 Examine the following list of binary numbers:
100002 110112 010002 10102 01112 010102

2.1 Are any of the numbers equal?

2.2 Arrange the numbers in order from the smallest
to the biggest.

7 Comparator circuits

An electronic circuit that compares two quantities is called a com·
parator. In digital systems a circuit can be designed to compare
two binary quantities or numbers, and to indicate whether the
quantities are equal or whether one is greater or less than the
other.

145

Digital Systems for Engineering

We will begin by comparing just two binary bits, in other words:
one single bit to another single bit. Later we will compare num­
bers which are made up of more than just' one bit, for example,
numbers with two or three bits. We will also discuss a special
comparator Ie.

7. 1 Comparing two binary bits

We are going to try to design logic circuits that will compare
two binary bits, and indicate whether the two bits are equal, or
whether one is greater or less than the other.

First work out whether the two bits are equal.

The two bits will be inputs to a logic circuit. The output will
indicate whether the two bits are equal or not. Let's call the two
bits A and B. The output can be X. A and B can be a 0 or a 1. X can
be a high or a 1 if A = B. All this information can be summarised
in a truth table.

A B X

0 0 1

0 1 0

1 0 0

1 1 1

(A and B are both O. Therefore X must be a 1.)

(A is not the same as B. Therefore X must be a 0.)

(Again, A is not the same as B. So X must be a 0.)

(A and B are both 1. Therefore X must be a 1.)

The simplified Boolean expression will be: X = A B + AB.

The logic circuit will therefore be as shown in Fig 7.15.

A ---.,-l'>O------'l--.:..:::...,
B---r-+----1

x

Fig 7.15

X will be high when A is equal to B.

You will recall that X = AB +AB is equivalent to A $ B. We can
therefore replace the logic circuit shown in Fig 7.15 with a single
Exclusive-NOR gate as shown in Fig 7.16.

146

Unit 7 Basic combinational/ogic circuits

Fig 7.16

Now work out whether one bit is greater than the other.

In this case the two bit will also be inputs to a logic circuit. The
output of the logic circuit must indicate if the one bit is greater
than the other bit. The input bits can again be A and B. However,
we will call this output Y. Y must be high or a 1 if A is greater
than B. In all other cases Y must be O.

Summarising this information in a truth table.

A B Y

0 0 0

0 1 0

1 0 1

1 1 0

(A f B. Therefore Y must be 0.)

(Again, A f B. Therefore Y must be 0.)

(A is 1 and B is O. A> B. So Y must be 1.)

(Again, A f B. Therefore Y must be 0.)

In this case we get a simple Boolean expression: Y = AB.

The logic circuit is shown in Fig 7.17 below.

:~Y

Fig 7.17

Y will be high when A is greater than B.

Ifwe want to, we can combine the two circuits (Fig 7.16 and 7.17)
which we have just designed, into one diagram (Fig 7.18).

Fig 7.18

147

Digital Systems for Engineering

X will be high when A is equal to B. Y will be high when A is
greater than B.

Activity 7 Design a logic circuit that will compare two binary bits A and B.
The output Z must indicate that A is less than B.

Step 1

7.2 Comparing binary numbers

In the previous section we designed logic circuits that compared
single binary bits. In this section we will go one step further and
design circuits that will compare binary numbers. We will start
by looking at simple two-bit binary numbers. We will then look at
circuits which can compare binary numbers which are made up
of more than two bits.

We will first compare two-bit binary numbers. Consider a two-bit
binary number A. Because it has two bits we will label the two
bits Al and AO. (AI will be the most significant bit.)

We will can the second two-bit binary number B. We will label
these bits BI and BO. (BI will be the most significant bit.)

Designing this comparator circuit is a two-step process:

<> Step 1: Circuit for A is equal to B

<> Step 2: Circuit for A is greater than B.

You have to work out when the number A will be equal to the
number B.

We can now use the logical reasoning technique mentioned in
section 3 of this unit. This method simply means that you must
think logically! Doing so, we can say that number A will be equal
to number B when: Al is equal to BI AND AO is equal to BO. Have
you come across a circuit that can look at two bits and indicate
whether the two bits are equal? Yes, you have! Look at Fig 7.16
again.

In Fig 7.I9a we have redrawn the circuit with Al and BI as the
inputs. This circuit compares Al to Bl.

/48

Circuit 1

Unit 7 Basic combinational logic circuits

A1~X
81~

Fig 7./9a

X will be high when A1 is equal to B1.

In Fig 7.19b we have redrawn the circuit with AO and BO as inputs.
This circuit compares AO to BO.

Circuit 2

AO~y
80~

Fig 7./9b

Y will be high when AO is equal to BO.

Circuit 1 indicates whether A1 is equal to Bl. Circuit 2 indicates
whether AO is equal to BO.

For the two-bit binary numbers A1 and AO to be equal to B1 and
BO, we stated that: A1 must be equal to B1 AND AO must be equal
to BO. This means that the AND function or gate must be used
to combine the output from circuit 1 to the output from circuit 2.

We can therefore draw the following logic circuit.

A1=L)O--i81 Lr_____

z

Fig 7.20

Z will be high when both A1 is equal to B1 AND AO is equal to
BO.

Before we continue with the design of other comparator logic cir­
cuits, let's prove that the design is correct by checking the circuit
with some two-bit binary numbers.

/49

Digital Systems for Engineering

Case 1: Compare 102 to 112.

102 Let Al be the 1 and AO be the O.

112 Therefore Bl will be the 1 and BO will also be a 1.

When you apply the bits to the logic circuit shown in Fig 7.20
above:

<> The output of the first Exclusive-NOR gate will be a
O. (Use the Exclusive-NOR truth table shown above
Fig 7.12.)

<> The output ofthe second Exclusive-NOR gate will be a 1.

Therefore, the output of the AND gate must be a O. This 0 or low
level indicates that 102 is not equal to 112.

Case 2: Compare 012 to 012.

012 Al is 0 and AO is 1.

012 Similarly, Bl is 0 and BO is 1.

When you apply the bits to the logic circuit shown in Fig 7.20
above:

<> The output of the first Exclusive-NOR gate will be a 1.

<> The output of the second Exclusive-NOR gate will also
be a 1.

Therefore, the output ofthe AND gate must be a 1. This 1 or high
level indicates that 012 is equal to 012.

ActivityB

Step 2

150

Try designing a 'logic circuit than can compare two three-bit
binary numbers and can indicate if the two numbers are equal.

You have to work out when the number A will be greater than
the number B.

Remember, we are still using the same symbols for the two-bit
binary numbers, i.e. the first number is Al and AO.and the second
number is Bl and BO (with Al and Bl being the MSBs).

To work out when the number A will be greater than the number
B, you will have to recall the techniques learnt in section 7 of this
unit when we compared binary numbers.

Unit 7 Basic combinational logic circuits

From the technique it will appear that number A will be greater
than number B if:

Al is. greater than BI

OR

Al is equal to BI AND AO is greater than BO.

Now try to implement the above condition with logic circuits that
you are familiar with. Have you come across a circuit that can
look at two bits and indicate whether one bit is greater than the
other bit? Yes! Look at Fig 7.17 again. The logic circuit is redrawn
in Fig 7.21 with Al and BI as inputs.

A1~
B1 --J..>o--L-./ x.

Fig 7.21

X will be high when Al is greater than BI.

Now draw a circuit that will check if two bits (AI and BI) are
equal:

A1~y
B1~

Fig 7.22

Y will be high, w.hen Al is equal to BI-.

Draw a circuit that will check if one bit, AO, is greater than the
other bit, BO:

AO~Z
BO ----t><>----L--

Fig 7.23

Z will be high when AOis greater than BO.

You will recall that we said that number A will be greater than
number B if: Al is greater than BI OR Al is equal to BI AND AO
is greater than BO.

151

Digital Systems for Engineering

We will therefore have to combine the three circuits from Fig 7.21,
7.22, and 7.23 into one circuit by using the AND and the OR gate,
as in Fig 7.24.

A1~---r-----,
B1)-------1'

AO ----r-----,
BO

Fig 7.24

V will be high when:

v

<> Al is greater than Bl OR

<> Al is equal to Bl AND AO is greater than BO.

Once again, let's prove that the design is correct by checking the
circuit with some two-bit binary numbers.

Case 1: Compare 102 to Ih

102 Let Al be 1 and let AO be O.

112 Therefore Bl will be 1 and BO will also be a 1.

Apply the bits to the logic circuit shown in Fig 7.24 above.

The circuit is redrawn (in Fig 7.25 below) showing the inputs and
the logic levels at the output of each gate. As you can see the final
output is a low or O. This means that 102 is not greater than 112.

A1 ...:'c..----f-, 0
81 l--"'-------1'

Fig 7.25

152

Unit 7 Basic combinational logic circuits

Activity 9

~

Activity 70

~

Case 2: Compare 102 to 102.

102 Let A1 be 1 and let AO be O.

102 Therefore B1 will be 1 and BO will be a O.

Apply the bits to the logic circuit shown in Fig 7.24 above.

The circuit is redrawn (in Fig 7.26 below) showing the inputs and
the logic levels at the output of each gate. As we can see the final
output is a low or O. This means that 102 is not greater than 102.

Fig 7.26

1 Design a comparator circuit that will indicate if A is less
than B. (Remember that A and B are two-bit binary num­
bers.)

2 IfA and B were three-bit binary numbers, design a circuit
that will compare A and B and indicate whether A is
greater than B.

[Note: In section 3 above we said that the design of a logic circuit
may be done using truth tables or using logical reasoning. The
truth table method was done in great detail in section 3.1. The
process of logical reasoning was applied when comparator circuits
were designed.]

1 What ICs would be required to test the comparator logic
circuit shown in Fig 7.24 above?

2 If the Exclusive-NOR gate IC was not available, which
ICs could be used instead? Explain your choice.

153

Digital Systems for Engineering

3 Implement (Le. wire:qp on the test board) and test the
.'comparator logic circuit shown in Fig 7.24 above. Re­
member to redraw the circuit with the Ie pin numbers
before wiring up the circuit.

7.3 Using a special comparator Ie

Up to this point you have used logicgatesClike the AND, NOT,
Exclusive-OR etc.) to design logic circuits for various applications.
However, it is important to note that in digital systems there are
various advanced devices or ICs that you can use. These devices
can perform the function of entire logic circuits in a single Ie
package. For example, the 7485 Ie shown in.Fig 7.27b below is a
4-bit comparator. This single IC can compare two binary numbers
of up to four-bits each, and indicate whether one number is equal
to, or greater than, or less than the other number.

INPUTA {~
A2

A3

{

Bo

INPUTB B,
B2

B3

7485

A>B A<B A=B
'----v-----'

OUTPUT FOR A>B

OUTPUT FOR A<B

OUTPUT FOR A=B

INPUTS IF MORE THAN
4 BITS ARE TO BE COMPARED

Fig 727a +bit comparator: logiC symbol

154

Unit 7 Basic combinational logic circuits

B. '6 Vee

IA<B • ,. Ag

'... • ,. B.

t.... • 7485 ,. As
0.... • ,. A,

0.:. 6 " B,

°A<B 7 '0 Aa
Gnd • 9 Bo

Fig 7.27b 4-bit comparator: 7485 Ie pin out

The complete details of any electronic component, for example,
a digital IC, are usually found in the device manufacturer's data
book. A few pages taken from a digital Ie data book are shown in
Appendix 2 at the end ofthis book. Data sheets contain full details
regarding the device, for example, the pin outs, the function of the
device, how the device operates and the electrical characteristics
of the device. The information contained in the data sheets is very
useful in the designing, testing and troubleshooting of electronic
circuits.

So instead of designing a 4-bit binary comparator circuit using
a number of logic gates or ICs, the whole logic circuit could be
implemented using a single Ie - the 7485. Using this kind of Ie
has a number of advantages:

<> less time is required for the design

<> fewer components are necessary

<> less space is used on the circuit board

<> the circuit uses less power

<> it is easier and quicker to test and troubleshoot the
circuit.

In the next two units you will be introduced to many other types
of digital ICa.

155

Digital Systems for Engineering

8 Summary

In this unit we described two techniques you can use to design
combinational logic circuits, namely: designing with the aid of
truth tables, and designing by using logical reasoning. The im­
portant concept of the binary number system was also introduced
in this unit. To expand our knowledge of logic gates, two new
gates - the Exclusive-OR and the Exclusive-NOR - were pre­
sented. There are many types of combinational logic circuits; in
this unit the comparator circuits were explained and designed.
The binary number system and the exclusive gates were applied
in the design of comparator circuits. The unit ended with a brief
look at the concept of using advanced digital ICs and component
data sheets.

In the next unit you will learn about other number systems and
about more combinational logic circuits.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 Name the two categories of digital circuits.

2 Draw a combinational logic circuit with two inputs and
two outputs.

3 In this unit two generally used digital design techniques
were applied. Name the techniques.

4 List the steps used to design logic circuits when using
truth table as an aid.

S A Boolean expression may be obtained from the truth
table when designing a logic circuit. What two.methods
may be used to simplify the Boolean expression?

6 After a logic circuit has been designed, how can you test
whether the design will function correctly?

7 A certain application resulted in the following design:

:~v
Fig 7.28

156

Unit 7 Basic combinationai logic circuits

If only NAND gate IGs were available, how could you
implement and test this circuit?

8 A security company has two safes: a large safe and a
small safe. The company has four guards. Each guard
has a different key for the safes. When all four keys are
inserted into the locks only the large safe will open. For
the small safe to open, at least any two keys must be
inserted into the locks. Design a logic circuit to open the
two safes.
Hint: This logic circuit must have two outputs - one for
each safe.

9 A panel of four judges has been asked to test a series of
new food products. Each judge may indicate whether he
or she likes or dislikes the product. The final decision
of all the judge,S together may therefore be: product is
good, product is not good, or there may be a tie. This
final decision can be indicated on a set of three lamps:
good, not good, tie. Design a logic circuit connected to
each of the three lamps.

10 Design a logic circuit in which the output will be high
when any of the input 4-bit binary numbers are greater
than or equal to 5 (i.e. 01012 in binary).

11 A large warehouse has two entrances - each at the op­
posite end of the warehouse. At each entrance there is a
light switch. The lights in the warehouse can be switched
on or off by using either of the switches. This means
that a person could enter the warehouse from the one
entrance, switch on the lights, walk through the ware­
house to the other side, switch off the lights and leave by
the other entrance. Design a logic circuit to control the
warehouse lights.

12.1 Draw the truth table and write down the
Boolean expression for the logic circuit shown
in Fig 7.29.

:~
T~X

Fig 7.29

157

Digital Systems for Engineering

12.2 Use this truth table to design a simplified logic
circuit. This logic circuit will be equivalent to
the logic circuit shown in Fig 7.29 above.

13.1 Arrange the following binary numbers in order
of increasing magnitude.
10012 100112 010012 10000002 111112
010112

13.2 Convert each of the numbers in the above list to
a decimal number and check your answers.

13.3 Design a comparator circuit that will compare
the first two numbers in the above list and indi­
cate whether:

• the one number is equal to the other one
• the one number is greater than the other one.

14 Design a logic circuit that. will compare two 4-bit binary
numbers A and B and indicate whether A is less than B.

Answers to activities

Activity 1

1 combinational and sequential

2 You may draw any type of logic circuit featuring any of
the logic gates you have encountered so far, namely, AND,
OR, NOT, NAND, NOR. Here is a typical example:

~----1~

Fig 7.30

158

Unit 7 Basic combinational logic circuits

3

x
B -+...----r-}.._--l
c -+-h---L~

A~----------I"--'

'--tt=r~---y

Fig 7.31

4 The circuit has 3 inputs: A, B, C, and 2 outputs: X, Y.

Activity 2

A B X Y

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 0

1 Input variables: Right wheel - A
Left wheel - B
Output variable: Warning lamp - X
Alarm-Y
Logic states
Wheel up: 0; wheel down: 1; lamp off: 0; lamp on: 1; alarm
off: 0; alarm on: 1
Truth table:

Boolean expression: X=AB +AB (cannot be simplified)

Y=AB

A----f-i"x>-_-r---­
B---+--+---+-l ~

x

}-----y-'J
Logic circuit

Fig 7.32

159

Digital Systems for Engineering

2 Input variables: Alarm button - A
Drive motor - B
Lift position - C.
Doors-D
Output variable: Alarm bell - X
We have assumed these logic states
Alarm button: pressed: 1; not pressed: 0
Drive motor: not running: 1; running: 0
Lift position: in-between floors: 1; at floor: 0
Doors: open: 1; closed: 0
Alarm bell: on: 1; off: 0
(You may have chosen different logic states. Either way,
your final answer should be of the same form as this one.)

CD

ABO

Karnaugh map

Fig 7.33

CD
AB 00 01 11 10

00 0 0 '1 0

01 0 0 1 0 V
./-

Y et11 0 1
- -
10 0 0 -1- 0

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

Truth table:

Simplified Boolean expression:
X=ABD+CD

Fig 7.34 Logic circuit

160

Unit 7 Basic combinational/ogic circuits

Activity 3

1
244
222 rem 0
211remO
25rem1
22rem1
21remO

o rem 1

2 356
2 178 rem 0
289remO
244rem1
2 22 rem 0
211remO
2 5 rem 1
2 2 rem 1
2 1 rem 0

o rem 1

44 = 1011002

356 = 1011001002

2

2
2
2
2
2
2
2
2
2

1010
505
252
126
63
31
15

7
3
1
0

rem 0
rem 1
rem 0
rem 0
rem 1
rem!
rem 1
rem 1
rem 1
rem 1 1010 = 11111100102

161

Digital Systems for Engineering

~~ rem 1 I
~rem1

2 151
2 75 rem 1
2 37 rem 1
218rem1
2 9 rem 0
2 4 rem 1
2 2 rem 0
2 1 rem 0

o rem 1 151 = 100101112

2 Input variables:
A - MSB of the binary number
B - second bit of the binary number
C - third bit of the binary number
D - fourth bit of the binary number

Output variable: X

A, B, Cand D will take on values from 0000,0001 ... up to
1111. The truth table below shows when X will be high.

Decimal number Binary equivalent Output
A B C D X

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 l' 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0

X will be high for the decimal numbers from 9 to 13.

162

Unit 7 Basic combinational logic circuits

ABCACO

CO

AB 00 01 11 10

00 0 0 0 0

01 0 0 o . 0

L(1
,...

11 1 0 0
/

10 0
~

(1 1
\

j \

ABC

Karnaugh map
Fig 7.35

Simplified Boolean expression: X = ABC +ABC +ACD

0-------1

x

Logic circuit
Fig 7.36

Activity 4

1 Exclusive-OR: This is a logic gate in which the output is
high when the inputs are not the slillle.

2 Exclusive-NOR: This is a logic gate in which the output
is high when the inputs are the same.

3 Z=JEIlK

=JK+JK

163

Digital Systems for Engineering

Fig 7.37

A B C D X
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 0 1

4 The Exclusive-OR gate

I)

6

A

c : :: j i!1 ih-
xLJLJ1J11IL

Fig 7.38

Activity 6

1.1 Both binary numbers are written with four bits.
10102 The MSB is a 1.
10012 The MSB is also a 1.
Therefore, examine the next bit.
10102 The next bit is a O.

10012 The next bit is also a O.
Therefore, examine the next bit.

10102 The next bit is a 1.

10012 The next bit is a O.
Therefore, 10102 is greater than 10012.

/64

Unit 7 Basic combinational logic circuits

1.2 Both binary numbers are written with six bits.
0101012 The MSB is a O.
0101002 The MSB is also a o.
Therefore, examine the next bit.
0101012 The next bit is a 1.

0101002 The next bit is also a 1.
Therefore, examine the next bit.
0101012 Next bit is a O.
0101002 Next bit is also a O.

Continue this comparison until you come to the
last bit in each number.
0101012 The last bit is a 1.
0101002 The last bit is a o.
Therefore, 0101012 is greater than 0101002.

1.3 We have to write both binary numbers with the
same number ofbits, namely five. The first num­
ber is written as 011002. The second number is
101002.

011002 The MSB is a O.
101002 The MSB is a 1.
Therefore, 101002 is greater than 11002.

2 The quick and easy way to do this exercise is to convert
each binary number to its decimal equivalent.

100002 = 16
110112 = 16 + 8 + 2 + 1 = 27

010002 = 8
10102 = 8 + 2 = 10
01112 = 4 + 2 + 1 = 7
010102 = 8 + 2 = 10

2.1 10102 is equal to 010102

2.2 7 8

or

10

or 010102

16

100002

165

Digital Systems for Engineering

Activity 7

Truth table:
A B Z

0 0 0

0 I I
I 0 0

I I 0

-(A is less than B.

Thus Z is high.)

Boolean expression: Z = AB

Logic circuit
Fig 7.39

Activity 8

Let the two binary numbers A and B be represented as follows:
A2, AI, AO and B2, BI, BO - with A2 and B2 being the MSBs.

A will be equal to B when: A2 is equal to B2 AND Al is equal to
BI AND AO is equal to BO.

To check whether A2 is equal to B2 we can use the following
circuit:

Fig7.40a

We can do the same with Al and BI, and AO and BO.

A1~y
B1~

Fig 7.40b

AO~

BO~Z

Fig 7.40c

166

Unit 7 Basic combinational logic circuits

These three gates must then be combined using the AND function
orAND gate.

The final circuit will look like Fig 7.41.

Fig 7.41

Activity 9

1 Let the two binary numbers A and B be represented by
Al and AO, and BI and BO -with Al and BI being the
MSBs.
A will be less than B when: Al is less than BI OR when
Al is equal to BI AND AO is less than BO.

To check whether Al is less than BI we can use the
following circuit:

A1----1>0----1-\
B1~X

Fig 7.42a

To check whether Al is equal to BI we can use the
following circuit:

A1~y
B1~

Fig 7.42b

To check whether AO is less than BO we can use the
circuit in Fig 7.42c.

AO----l>o----l-\
BO~Z

Fig 7.42c

167

Digital Systems for Engineering

These three circuits must then be combined into the
following logic circuit:

A11-CX>---r......l- --.,-......
B11----I "'

AOI-CX>-,-'
BOI----L___

v

Fig 7.43

2 The logic circuit in Fig 7.44 can be designed using the
same logical reasoning technique that was described in
section 7.2 of this unit.

~!-T~:-ll----~

A1----<0----1----

B1IL==~-'

v

AOI----,---i,
BOI--~ ';V-""",-----'

Fig 7.44

Activity 10

1 The circuit consists of:
• one 2-input OR gate

• three 2-input AND gates

• one 2-input Exclusive-NOR gate and

• two NOT gates.

Therefore the following ICs can be used:
• 7432 (Quad 2-input OR gate)

• 7408 (Quad 2-input AND gates)

• 74810 (Quad 2-input Exclusive-NOR gate)

• 7404 (hex INVERTER).

168

Unit 7 Basic combinational logic circuits

2 Solution 1

Use the Exclusive-OR gate Ie together with the IN­
VERTER Ie. (See Fig 7.45 below).

Fig 7.45

Solution 2

Replace the Exclusive-NOR gate with the combination of
the basic logic gates - shown below in Fig 7.46.

Fig 7.46

/69

Unit 8
Application of combinational logic

Study objectives
Mter studying this unit, you should be able to:

<> describe and use the hexadecimal and binary-coded
decimal (BCD) number systems

<> convert hexadecimal to binary and decimal and vice
versa

<> convert binary-coded decimal to binary and decimal and
vice versa

<> perform arithmetic addition using binary and hexa-
decimal numbers

<> define, develop and use a half adder

<> define, develop and use a full adder

<> explain the operation and use of decoders and encoders

<> explain the operation and use of multiplexers and
demultipexers.

1 Introduction

In this unit you will be studying other numbering systems as used
in digital electronics. We will then look at how the adder, which
is the basic arithmetic circuit, performs the addition of numbers.
You will then look at circuits that perform number system conver­
sions. The unit ends with a look at multiplexer and demultiplexer
circuits.

2 Number systems

In Unit 7 you learnt about the decimal and binary number sys­
tems. As you know by now, digital electronic circuits make use of
the binary number system. This system is used because it uses
only two digits, 1 and 0 and can be easily represented with elec­
trical voltage levels. In this section you will find out about a few
other number systems.

UnitB Application ofcombinational logic

2.1 Hexadecimal number system

The hexadecimal number system is used to represent binary num­
bers in a form which is easier to read. Most computers tend to use
word lengths which are multiples of four bits, for example, 8, 16
and 32 bit microprocessors. This has led to the widespread use of
the hexadecimal number system, or base sixteen system. The six­
teen symbols used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and E
Starting at zero we can count up to fifteen items before exhaust­
ing all the hexadecimal symbols. To represent the sixteenth item,
a second digit is needed. We therefore reuse one of the elementary
symbols.

Comparing decimal, binary and hexadecimal numbers, we have:

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A

11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11

30 011110 1E
31 011111 1F
32 100000 20

33 100001 21
:

256 100000000 100

171

Digital Systems for Engineering

Example 8. 1 Count from CF8 to DOO in hexadecimal.

Solution

Activity 1

~

CF8

CF9

CFA (after 9 comes A in hexadecimal)

CFB

CFC

CFD

CFE

CFF (first 2 columns full: both change to 0, C changes to D)

DOO

Write the hexadecimal numbers from EF16 to 10316.

Hexadecimal to decimal conversion

Here we apply the same techniques as was used in Unit 7. Look
at the following example.

Example 8.2 Convert CF8 hexadecimal to decimal.

Solution Hexadecimal CF8 (C x 162) + (F X 161) + (8 x 16°)

= (12 x 256)+ (15 x 16) + (8 x 1)

3072 + 240 + 8

= 3320 decimal

This is written as CF816 = 332010, writing the base number as a
subscript.

Decimal to hexadecimal conversion

Here we will apply the same technique we used in Unit 7 to con­
vert decimal numbers to binary.

To convert to binary, we divided the decimal number by 2. To
convert to hexadecimal we will divide the decimal number by 16.

Example 8.3 Convert 332010 to hexadecimal.

/72

Unit 8 Application ofcombinational logic

Solution

Activity 2

~

16 3320

16 207 rem 8

16 12 rem 15 (which is F) I
o rem 12 (which is C)

'---

Therefore, 332010 = CF816

1 Convert the following hexadecimal numbers to decimal.

1.1 A716

1.2 C3F16

2 Convert the following decimal numbers to hexadecimal.

2.1 4910

2.2 201710

Binary to hexadecimal conversion

You will notice that four binary bits correspond perfectly with one
hexadecimal digit. To represent binary numbers as hexadecimal
numbers, mark off groups offour, starting at the LSB and moving
to the left. Then convert each group into the corresponding hex­
adecimal digit.

Example 8.4 Convert 1011011112 to a hexadecimal number.

Solution 0001 0110 1111 groups of 4, filling left group with zeroes
1 6 F represented as hexadecimal

therefore 1011011112 = 16F16

Activity 3

~
1 Convert the following binary numbers to hexadecimal.

1.1 101112

1.2 111010112

173

Digital Systems for Engineering

Hexadecimal to binary conversion

Convert hexadecimal to binary as follows: For each hexadecimal
digit write the corresponding four binary bits.

Example 8.5 Convert AF916 to a binary number.

Solution A F 9
1010 1111 1001

therefore AF916 = 1010111110012

Activity 4

"
1 Convert the following hexadecimal to binary numbers.

1.1 AF16

1.2 3CD16

2.2 The binary-coded decimal {BCD} number system

The binary-coded decimal number system is a way of representing
each of the decimal digits by using four binary bits, according to
the 8, 4, 2, 1 (binary weights) binary system.

Decimal to BCD conversion

Convert decimal to BCD as follows: For each decimal digit write
the corresponding binary bits.

Example 8.6 Convert 2048 decimal to BCD.

Solution 2
0010

o
0000

4
0100

8
1000

Activity 5

"
174

therefore 204810 = 0010000001001000BCD

To ensure that each decimal digit is represented by four bits, we
add zeros to the front of the binary bits.

1 Convert the following decimal numbers to BCD.

1.1 56710

1.2 38910

UnitB

BCD to decimal conversion

,Application of combinational logic

It is just as easy to convert a BCD number to a decimal number.
Start at the MSB and break up the code into groups of four bits.
Convert each group of four bits into the corresponding decimal
digit.

Example 8.7 Convert 0110100101110101BOD to decimal.

Solution 0110 1001
6 9

0111 0101
7 5

Activity 6

i'

therefore 011010001110101BOD = 697510

1 Convert the following BCD numbers to decimal.

1.1 01110000BOD

1.2 100101110011BOD

Hexadecimal to BCD

Example 8.8 shows you how to convert hexadecimal to BCD.

Example 8.8 Convert C516 to BCD.

Solution First convert C516 to binary.

C 5
1101 0101

C516 = 110101012

Now convert 110101012 to decimal.

1 x 27 + 1 X 26+0 + 1 X 24 +0 + 1 X 22+0 + 1 x 2°

= 128 +64 + 16 + 4 + 1
=25310

Next convert 25310 to BCD.

2
0010

5
1001

3
0011

therefore C516 = 001010010011BOD

175

Digital Systems for Engineering

Activity 7

~
1 Convert the following hexadecimal numbers to BCD.

1.1 E216

1.2 IF216

2.3 Addition using binary and hexadecimal numbers

Binary arithmetic is essential in all digital computers and many
other digital electronic systel)ls.

Binary addition

Binary addition is done in exactly the same way as decimal addi­
tion; except that the rules are simplified because there are fewer
possible combinations of digits.

The four rules for binary addition are:

1 0+0=0

2 0+1=1

3 1+0=1

4 1+ 1 = 10

sum of 0 with carry of 0

sum of 1 with carry of 0

sum of 1 with carry of 0

sum of 0 with carry of 1

Example 8.9 Add the following using binary numbers:

a 1410 + 1910

b 5,2510 + 3,12510

Solution

J76

a

b

Decimal Binary

14 01110
+19 +10011

33 100001

Decimal Binary

5,250 0101,010
+3,125 +0011,001

8,375 1000,011

Unit 8 Application of combinational logic

Activity 8

'i'
1 Add the following binary numbers.

1.1 11010012 + 110112

1.2 110111,1012 + 1001,11112

Hexadecimal addition

Addition with hexadecimal numbers can be done directly if you
keep in mind that the decimal digits 10 to 15 are equivalent to
the hexadecimal digits A to E The rules are as follows:

1 If the sum of the two digits is 1510 or less, write down
the corresponding hexadecimal number.

2 If the sum is greater than 1510, subtract 1610 from the
answer and write down the hexadecimal result; also
carry 1 to the next column.

Example 8. 10 Add the following hexadecimal numbers.

a 8216 + 1516

b 4816 + 3216

C 5C16 + F716

Solution

Activity 9

'i'

a 8216 right column 216 + 516 = 210 + 510 = 716
+1516 left column 816 + 116 = 810 + 110 = 916

9716

b 4816 right column 816 + 216 = 810 + 210 = 1010 = A16
+ 3216 left column 416 + 316 = 410 + 310 = 716

7A16

C 5C16 right column C16 + 716 = 1210 + 710 = 1910
+ F716 1910 - 1610 = 310 = 316 with a carry of 1.

15316 left column 516+F16 + 116 (carry)
= 510 + 1510 + 110 = 2110
2110 - 1610 = 510 = 516 with a carry of 1.

1 Add the following hexadecimal numbers.

1.1 3216+ 2816

1.2 12816+ 6716

'177

Digital Systems for Engineering

3 Adders

A digital system uses only addition and subtraction to do arith­
metic operations. All the other operations, such as multiplication
and division, can be performed by repeated addition or subtrac­
tion. The simplest digital circuit that performs arithmetic opera­
tions is called the adder.
When we are doing addition, the quantities to be added are called
the 'addend' and the 'augend'. When we combine these by addi­
tion, it produces a 'sum'. This is symbolically represented as:

X (augend)

+ Y (addend)
-Z-(sum)

where X and Y are the numerical quantities to be added and Z is
their sum.

The sum can be subdivided into its:

<> least significant digit: which is generically referred to
as the 'sum'

<> most significant digit: which is referred to as the
'carry'.

Example 8.11 Using the base ten number system (decimal) as an example:

3
+ 2

05

§(~

3. 1 The half adder

8
+ 9

17

Icarry (~

The same principles as outlined above, apply to the base two num­
ber system, the binary number system. All possible cases for the
addition of two binary digits are illustrated below:

178

o
+ 0

00

o
+ 1

01

1

+ 0
01

1
+ 1

10

Unit 8 Application of combinational logic

Ifwe are now asked to summarise (by means ofa truth table) and
symbolise (by means of a block diagram) the process of addition
described above, we could do it in the following way.

Truth table for two bit binary adder:

A B sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The circuit which would implement the truth table above, is called
a half-adder; often abbreviated to HA.

From the truth table we observe that our system should have two
inputs and two outputs. The logic symbol for the half adder can
therefore be modelled in block diagram form as:

A S

HA
B C

Fig 8.1

To determine the internal construction of this half adder we could
separate the truth table into two parts, as shown below.

A B sum

0 0 0

0 1 1,
1 0 1

1 1 0

A B carry

0 0 0

0 1 0

1 0 0

1 1 1

From the truth table on the left, we can conclude that the sum
output can be implemented by means of an Exclusive-OR gate.
From the truth table on the right, we can conclude that the carry
output can be implemented by means of an AND gate. This is
represented in Fig 8.2 which is the logic circuit of a half adder.

179

Digital Systems for Engineering

A
B

" -A$SII /

I
I '\ A·a
~

Fig 8.2

Sum

Carry

Extension task

3.2 Full adder

1 Drawing on your knowledge of Karnaugh maps, De·
Morgan's laws, and NAND gates, show how you would
implement the logic function for the half-adder using:

1.1 an AND gate and two NOR gates

1.2 only NAND gates.

Computers and calculators do addition by using two binary
words, not by using two binary digits, where each binary word
can consist of several binary digits.

A general representation of the addition of two four-bit words, A
and B, is shown below.

Co 0 carry digits

+ A1 Ao augend

+ B1 Bo addend

C3 81 80 sum

Ifwe consider only a segment of this process (represented by the
shaded area) we will be able to generalise about:

<> how many inputs are required

<> how many outputs are required

<> how to label them.

180

Unit 8 Application ofcombinationai logic

There are 3 inputs.
If we look at the
sUbscripts, we see
that we are adding:
the present augend
to the present addend
to the cany generated
by the summation in
the previous column.

A
2

_

FA
52

There are 2 outputs. If we
(ook at the sUbscripts, we
see that we are generating:
the present sum, and the
present carry (whiCh will be
used when summing the
next column).

Fig 8.3

The circuit which implements the logical function outlined above,
is referred to as a full adder; often abbreviated to FA.

If we are now asked to symbolise (by means of a block diagram),
and summarise (by means of a truth table) the process of ad­
dition for the full adder, we could do it as set out below. Fig 8.4
shows the logic symbol for the full adder.

FA
c..,_

Fig 8.4

The truth table for the full adder is:

c,

Au,end bit Addend bit Carry bit Sum bit Carry bit
mput input input output output

An Bn Cn- 1 Sn Cn

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

For the sum output, we can now express this truth table as a
Karnaugh map and then develop a minimal equation for the sum
output, as shown in Fig 8.5.

181

Digital Systems for Engineering

B. 00 01 11 10COo'

0 0 CD 0 CD
1 CD 0 CD 0

Sn =Cn-iAnBn + Cn-iAnBn + Cn-iAnBn +Cn-iAnBn
=Cn - i EB An EB Bn (this can be proved!)

Fig 8.5

B. 00 01 11 10COo'

/'"""0.
0 0 0 1 0

1 0 (1 [.1 1

For the carry output, we can express this truth table as a Kar­
naugh map and develop a minimal equation for the carry output
as shown in Fig 8.6.

ft."

Cn = Cn-iAn +Cn-iBn +AnBn

Fig 8.6

Using the minimised equations developed above, we can now
implement the complete logic circuitry for a full adder as shown
in Fig 8.7.

182

Unit 8 IIppiication of combinational logic

~-._-------------------------------~, ,, ,. , ,...." -----:-r---'""'--------->r___ i,

Co.,......j,H-I,,,,,,,
J,,,,
: ,, ,: !:u~J_~ J

So

Co

Fig 8.7

The full adder may also be constructed from two half-adders and
an OR gate. Fig 8.8 shows the block diagram, and Fig 8.9 shows
the complete logic diagram required to achieve this. The equations
at the intermediate and final output points are also indicated on
both figures.

AB+BC+AC
A·B \

~ =EJ'-:A=:B....:+:.,A'=B-=-:A-e,...B=--r;:;:::l------;-;(A-:e;:-;::,B),....-;:C,...~-'D_L Co",

C,,---------~ A ED B ED C Sum

Fig 8.8

A
B

r------------------------------r------·----------------------------j
: Half : Half :
1 adder ! adder :
, , '
, A' '
I IEBB : S
I I urn
, I :

L !- . ~~!~J!lJ(A E9 B)

Carry in A • B Carry out

Fig 8.9

3.3 Parallel binary adders

At this stage we must take stock, and remember that the full
adder is the solution to only one step of our original problem of
adding two multi-digit numbers.

/83

Digital Systems for Engineering

Ifwe want to complete all the steps requited to add two four-digit
binary numbers, we would have to use the full adders in the way
shown in Fig 8.10. Here we have a four-bit parallel binary adder
implementation using full adders.

End around
carry or add
1 line. This
line is made
aOwhentwo
intergers are
added.

C,

Full
adder

A, 6,

Full
adder

Cic;
Full

adder

Inputs

Aa 63 A. B,

c;
Full

adder

A 1 on this line
indicates an
overflow when
two intergers
are added.

OUTPUTS

Fig 8./0

To implement the circuit above (a four-bit parallel binary adder)
using discrete logic gates, would be a very labour intensive task,
and because of this you could easily make mistakes. Luckily, many
manufacturers have fabricated circuitry for this function onto an
integrated circuit (Ie).

Typical of this type of integrated circuit is the 7483 4-bit binary
adder.

The logic symbol for the 7483 is shown in Fig 8.11.

1:
5 np3
14

1:{
12 3 4

1
13

6

no 10
2
15
11 3

7483

7 C, Co 9

Fig 8.11

/84

Unit 8 Ilpplication ofcombinationai logic

Activity 10

'i'
1 Use the 7482 two-bit binary full adder, and show how

you would interconnect two of these integrated circuits
to achieve the function of a four-bit binary full adder.

2 Show how two 7483 four-bit parallel adders can be con­
nected to form an eight-bit parallel adder. Show outputs
for the case when:
P7 P6 P5 P4 Pa P2 PI Po 10011011

Q7 Q6 Q5 Q4 Qa Q2 QI Qo = 10101010

4 Decoders and encoders

4. 1 Decoders

A decoder interprets an input binary number to produce a single
output for each number. That is, one unique output will go high
while the others will remain low for that particular number.

Two-bit decoder

A" 'op... A,
, 0

2 2+---,
\7 "\7

"- °0I j"

F 0, (f)

f 5
Q.

I
,- 0. 5
I 0

l "- °3.......J

Fig 8./2

/85

Digital Systems for Engineering

Truth table of a 2-bit decoder:

Inputs Outputs
Au Al 0 0 0 1 O2 03
0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

°0
0,

0,

0, ~
=>n-

O. 5
°

0,

0.

°7

k>o-H>o- f-r>o-

-
-
-

l'

~

~

~

Three-bit decoder

The logic diagram of a 1-of-8 decoder is shown in Fig 8.13. If
you were to increase the size of the binary number input to the
decoder to 3 bits, the number of inputs would be 23, or 8 if the
decoder was to be a full decoder as shown in Fig 8.13. Notice that
as the number ofbits in the input increases, so does the number or
inputs of AND gates used. If the binary number gets very large
a full decoder can become very large. For example, a full 8-bit
decoder would need 256 NAND gates, each with 8 inputs.

Inputs

A, A, A,

Fig 8./3

/86

Unit 8 Application ofcombinational logic

Activity' ,

The logic symbol and logic diagram of a 3-bit decoder is given
above in Fig 8.13. The decoder accepts three binary inputs (Ao,
A1, A2) and it provides eight mutually exclusive active low outputs
(00, .•.,07), The truth table will look like this:

Inputs Outputs
Ao A1 A2 0 0 0 1 O2 0 3 0 4 0 5 0 6 0 7

0 0 0 0 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0

The 7442 is an integrated circuit BCD-to-decimal decoder. The
logic symbol is shown is Fig 8.14. Draw the truth table for the
BCD-to-decimal decoder. If the input waveforms shown are ap­
plied to the inputs of the decoder, sketch the output waveforms.

Ao BCDI
0

DEC 1
A, 2
A2 3

As
4
5

6
7
8
9

7442

Ao! . .
A,,-.!-+-~
A2 ,

A,,! H
. .

,.L. L ! ! l l l:···"j"-'··"j"-'···j··'···i······t"···-t-····+··

2 ~······!····_·!······j·-·-~·J·_·_··t-··'j·····-i'····-1······t·····t :
3 ~ .., !..-.-.!. _ !_ -! "j"'- .. ~ ~ t-·- -'-J"' -:- ":

4 ~-·-···f-·_·_·i····· .; j j j ~._ + + ~ !
5 f-·_···f··_···i·_·_··i······i··_···i····_·~······~······+·····+······~······i

;i::::::::I:::::r::::r::::I:LT::::I
8 f··:···r······l······1······1······1······+·····1·····"1··,···r-,····r·· "1
9 ~ + -+ -+ j + ~ ~ + + +
o ; ; ; : ; ; ; ~ .;. .;. ; :

Fig 8.14

187

Digital Systems for Engineering

The BCD-to-seven-segment code decoder

To display numeric information, a device called a seven-segment
display unit may be used. The device is shown in Fig 8.I5a. It
is made up of seven LEDs. The LED may turn on if it is ac­
tivated. To display a certain number, the appropriate segments
must be activated. The segments are labelled A, B, C, D, E, F
and G. For example, to display a 0, segments A, B, C, D, E and F
must be activated. Segment G must not be activated. The truth
table below shows the relationship between the BCD code and the
seven-segment code.

Decimal BCD Seven-segment code
Bg B:l B1 Bo A B C D E F G

0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 1 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 1 0 1 1

Common Anode

,~ ~ ~ ~, ~ ~ ~,

1

AF8G B
E C

• OP
o

A B C 0 E F G OP

I

~ ~ ~ ~ ~ ~ ~

o123YS61B9
A B c 0 E F

Common cathode

G OP

Fig 8./Sa

Fig 8.I5b shows the circuit diagram of an IC 7447 BCD-to-seven­
segment code decoder, connected to a display unit.

/88

Unit 8 ,Application ofcombinational logic

BCD j~
inputs B"

B3

A A A--- B B

IF G IB-
. C C

D D
- E E -- I--..

IE Ie- F F
G G --.7447 t D

Seven-
segment
code

COMMON
ANODE

4.2 Encoders

Fig 8./5b

An encoder is a combinational logic circuit that essentially per­
forms a 'reverse' decoder function. An encoder accepts an active
level on one of the inputs representing a digit, such as a decimal
or hexadecimal digit, and converts it to a coded output, such as
BCD or binary. Encoders can also be devised to encode various
Symbols and alphabetic characters.

The decimal-to·BCD encoder

This type of decoder has ten inputs - one for each decimal digit
- and four outputs corresponding to the BCD code, as shown in
Fig 8.16.

0 DECI
Ao

1 BCD
2 A,
3 Po.
4
5 As
6
7
8
9

7442

Fig 8.16

/89

Digital Systems for Engineering

BCD code
Decimal digit A a A2 Al Ao

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0

. 7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

The table above shows the BCD coded output for this device.

An encoder application

Fig 8.17 shows a simple keyboard encoder arrangement using a
74L8147 priority encoder. The keys are represented by ten push­
button switches, each with a pull-up resistor. When a key is de­
pressed, the line is connected to ground, and a low is applied to
the corresponding encoder input. The zero key is not connected
because the BCD output represents zero when none of the other
keys are depressed.

+V

HPR1/BCD

,1 7 ,I 8 ,Ie 1
2
3
4 lP-

,1 4 ,I 5 r'8 I L....<: 5
2P-6

7 4 >--
8

8 >--
,1 ' ,1 2 ,I 3

9

74LS147

_.)' 0

FigB.17

190

Unit 8 Application ofcombinational logic

Activity 72

"
Fig 8.18 is the logic diagram of a decimal-to-BCD encoder. Draw
the output with respect to waveforms given.

l' !, Pf-i+-+-+-+-H
2~y-+!-+-+-t:::::i-+-H
3 "" :'; O'---f-H
4;'-:-+--+--+-+-+-+-+!-+'--+--+--;

".;--!-+-+--+--;--~h "1,;

:H-Pf-,~.;'-';;'-';-i-i-i--+--+
8 I I n!--t-,-t-;-t--t--i--i---j

l i [[r---;!-'-"--+--+--+--i
9, ; ; ; ; 1..·..·:

~·L...!.nmL...J...m!_.....Ln:i....uL..._l...ul..m.L..... ~

~[:::[:::J:::::r:::[::i:::·I::t]::I:I:J

9 8 7654 32

Fig 8.18

5 Multiplexers and demultiplexers

5. 7 Multiplexers

A multiplexer is a device that allows data in binary form to be
transferred by means of a single line.' The multiplexer normally
has several inputs, but a single output. The information can be
transferred under the control of the data select lines. Multiplex­
ers are also known as data selectors.

The basic operation of a multiplexer

A multiplexer selects one channel as an input and connects it to
a signal output, as shown in the block diagram in Fig 8.19. The
circuit consists of the input lines, select lines and output lines.
The number of select lines is determine by the number of data
lines, only one output line is normally necessary. In the block
diagram in Fig 8.19, four data lines can be selected by two select
lines.

191

Digital Systems for Engineering

Do

DATA 0, 4-10-1
DATA.
OUTPUT

INPUTS D. MUX

03

S, So

DATA SELECT LINES

Fig 8./9

Data selection for a four-input
Data selection line Input selection

81 80

0 0 Do
0 1 D1
1 0 D2
1 1 D3

A two-bit binary code on the data select lines will allow the data
on the corresponding data input lines to pass through the multi­
plexer.

S,
Do

0,

03

....
I v

I'-..
v

~\

==<

~=/

---I /

'\
/

OUTPUT

Fig 8.20

/92

Unit 8 IIppJication of combinational logic

The AND gates will control the output, which is selected by the
binary number input to the select inputs. The table on the previ­
ous page shows data selection for a four-input multiplexer.

An 8-input multiplexer

The 74L8151 is a high speed 8-input digital multiplexer. It pro­
vides in one package, the ability to select one line of data from up
to eight sources. The logic diagram is shown in Fig 8.21.

s,
s,

74LS151

z z

Fig 8.21

The 74157 quad 2-input multiplexer

The 74157 consists of four 2-input multiplexers. Each of the four
multiplexers shares a common data-select line and a common en­
able. Because there are only two inputs to be selected in each
multiplexer, a single data-select input is sufficient. Fig 8.22 shows
the logic diagram and logic symbol of this multiplexer.

DATA ENABLE
SELECTca"

""""Enable ---,C",,",-l-{)o--'

"
'A

2A

1Y}3A
2Y ~

5 'A 3Y 5
~

D.~
z 74157 ,y

""'" ~
~ ,.

2.

3.,.

Fig 8.22

193

Digital Systems for Engineering

Activity 13 The data-input and data-select waveforms shown below are ap­
plied to the multiplexer in Fig 8.23. Determine the output wave­
form.

y

D' __-+++-H"

D3--t::=t=r

8o~~~
8,
Do---1-+++-l-,

Fig 8.23

5.2 Demultiplexers*' A demultiplexer is a digital switch which allows us to switch oneW' input toone of many possible output lines. The line which we
want the input to be connected to is determined by a binary num­
ber which is input to the demultiplexer. Fig 8.24 shows a 1-to-4
demultiplexer. A demultiplexer uses the input line as a data input.
The data appears on the selected output line when the correspond­
ing binary number is input to the select lines.

{

So
Seloct
lines, '

8,

Do

D,
Data

output
lines

Fig 8.24

Example 8. 12 The data-input waveform (data in) and data-select lines (So and
81) are shown in Fig 8.25. Determine the data-output waveforms
on Do through to D3 for the demultiplexer in Fig 8.24.

194

Unit 8 I\pplication of combinational logic

Activity 74

Data

'"So~

S1~
iii :: 1 i

0o-fil' 10
0, ---l..-J"1iL-;-+-+-=-0-1:1:::::i---i'
O2 1 1 101 t1L
03 1 ' i'i lj1i

Fig 8.25

Draw the output waveforms for the demultiplexer in Fig 8.24 if
the waveforms for So in Fig 8.25 is inverted.

6 Summary

In this unit you looked at various applications of combinational
logic. You began with an introduction to two new number systems,
namely, the hexadecimal and BCD systems. Then you explored
how circuits which can perform binary addition are designed. You
were then shown how combinational logic is used in the design
and implementation of decoders, encoders, multiplexers and de·
multiplexers.

In the next unit you will be introduced to other types of logic
circuits, namely sequential logic circuits.

Self-evaluation
Complete the following self-evaluation exercises without refer·
ring to the unit.

1 Convert 195610 to:

1.1 binary

1.2 BCD

1.3 hexadecimal

2 Convert F2316 to:

2.1 decimal

2.2 BCD

195

Digital Systems for Engineering

3 Work out the sum of:

3.1 2E16 + 4DC16

3.2 10102 + 11112

4 Use half adders and full adders to draw the diagram for
an adder that will add two 3·bit binary numbers.

5 What is the difference between a decoder and an en·
coder?

6 What is a multiplexer used for?

Answers to activities

Activity 1

EF, FO, F1, F2, F3, F4, F5, F6, F7, F8, F9, FA, FB, FC, FD, FE,
FF, 100, 101, 102, 103

Activity 2

1.1 A x 161 +7 x 16° = 10 x 16 + 7 x 1 = 16710

1.2 313510

2.1

16~9
16 3 rem It
16 0 rem 3

4910 = 3116

2.2
16 2017

16 126 rem 1 I
16 7 remD

16 0 rem 7

201710 = 7D116

196

Unit 8 Application ofcombinational logic

Activity 3

1.1 0001 0111
1 7

therefore 101112 = 1716
1.2 EB16

Activity 4

1.1 A F
1010 1111
therefore AF16 = 101011112

1.2 11110011012

Activity 5

1.1 5 6 7
0101 0110 0111
therefore 56710 = 010101100111BcD

1.2 001110001001BCD

Activity 6

1.1 0111 0000
7 0

therefore 01110000BCD = 7010

1.2 97310

Activity 7

1.1 E216 = 22610 = 001000100110BcD

1.2 IF216 ;=49810 = 010010011000acD

Activity 8

1.1 1101001
+ 11011

100001002

1.2 1000001,10012

197

Digital Systems for Engineering

Activity 9

1.2 18F16

Activity 10

1 Fig 8.26 shows two 7482s used as a four-bit adder.
Additional bits can be added by connecting the CO of
the most significant adder to the Cl of the next adder,
and so on. Note that the Cl of the least significant adder
is grounded (0) because there is no carry input to this
stage.

La (MSB)

La

La (LSB)

L,

o (2)
L

(.1)}p L{, (14) (12)

(3)

}a, (13)

(5) CO
(10)

.,j,
CI

7482

2 (2)
L

(1)}p L{3 (14) (12)

(3) }a3 (13)

(5) _ CO
(10)

CI

p

p

a,
a

p

p

a,
a

7482

Fig 8.26

2 The only connection between the two 7483s is the carry
output (CO) of the lower order adder to the carry input
(C1) of the higher order adder as shown in Fig 8.27. The
Cl of the least significant 7483 is grounded. (no input
carry)

198

Unit 8 ,Application o(combinationallogic

~=1

~1 = 1

~=1

~=O

~.= 1

Ls=O

~=1

~,=O

4= 1

}p
~

~{
0

}o1

1

1

CI co

"*"
7483

}p
~

~{

}o
coL- CI

p.. = 1

Ps = 1

Pe=O

P7 = 1

0.= 1

0 5 =0

0.=0

0 1 = 1

Po= 1

P, =0

P2=O

Pa= 1

0.=
0 1 =

O2 =

0 3 =

7483

Fig 8.27

Activity 11

BCD inputs Decimal outputs

Ao Ai A2 As 00 01 02 03 04 05 06 07 08 09
0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1 1 1 1 1 1 1
1 1 0 0 1 1 1 0 1 1 1 '1 1 1
0 0 1 0 1 1 1 1 0 1 1 1 1 1
1 0 1 0 1 1 1 1 1 0 1 1 1 1
0 1 1 0 1 1 1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 1 1 0 1 1
0 0 0 1 1 1 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0

199

Digital Systems for Engineering

Activity 12

As~!+-btt=bbf---tJt1
A,;-.!--+-_
A2 !
As! i--: ' , , . : i ! R
°0 W·_·_·_~-·_·_·i·_·_·-)_··_·_~_·_--·~----··~······~ ..···+······~······i
0, !_-!__!u_!_!_..Ju)uu,;_.uj....j ... ;._.:
°2 l ~...... . ; ;...... ._-_.)_._._.t._._--~ _.-i

03 !uuu!......!uu..! ju ju.u;u_;u_~
°4 D-J-.._._;_ j j: j U .._~._.._.~ i
°5 ~---m~m l h;- 1 1 1)., + ~..m.~ ...!
0. !u_;._;uuu;uuu! W j ju_j__!__!
07 L .i ; U .J L. -l. J.. LO
0. !uu..:u i .)u.... j..m:mu!uuuj__+um!_uU
0. !u.";u.. ; ;.u";uu.j .. ';.u.L,u.juu)uuu!uu.i

Fig 8.28

i i r:::::l.r;'+-+--+--+-+-+­
2 L...J:::1!---+--+---+--+--+-+-+-+­
3 '--HH-+--+-+--+Oj'--+-+---<:- : :

4 >-.-;....--< --+---+---+---+-'--+-'--+---'--"
5 f-;....--< --+--+~p+;--+--+--+---i
• t-'--+---+--+--+--+-+'--+-'--+---+---'--"
:~!-h""... """"".--+--+--+--+---+-"';

•i ! Of-'-+-+-H---l---<
o! : i [

200

Fig 8.29

Unit 8 ,Application of combinational logic

Activity 13

Do!
0, !
O2 f..··...·t........!
0

3
, , ,

80 !
8, '!:J..J5:=i=~EH;-

Ao f--!--+-i---i--!
A, U=:i'--+--+----+-;..--+--iAo! ! .

Ao e.-!---t:=::::f----i-i::=:i-+--L::=!
y

Fig 8.30

Activity 14

DATA IN L L LJ=jL+.--J::::::t=:::;
80 i i. iii

;

8,: : I.......,........ i 1......+...... ;
w=l
= : i 1 i :::o : ., !:!

o :,;..-+.-;-'--+-+--+----i

0, [=11-:----i!-+--+---+-l-+--i
O2 : ! H h ~!........J-!-.-+--;.-__-!.

0 3 ,...1---+-+--+!-+-!-i--!t=U
: !:::

Fig 8.31

201

Unit 9
Sequential logic circuits

Study objectives
Mter studying this unit, you should be able to:

<> use NAND and NOR logic gates to construct basic
latches

<> construct. the timing diagram for a latch

<> eliminate contact bounce using a latch

<> draw the logic circuit for the gated S-R and D Latch as
well as for theJ-K flip-flop

<> recognize the difference between latches and flip-flops

<> apply flip,flops in basic applications

<> define the'basiC-operating modes of shift
registers

<> implement serial to parallel conversion using shift
registers

<> explain how a.bi-directional shift register operates

<> use shift register counters

<> build a 3-bit up/down asynchronous counter using J-K
flip-flops

<> design a modulo-N asynchronous counter

<> eliminate glitches in counter decoding,

1 Introduction

In Units 7 and 8 you were introduced to combinational logic cir­
cuits, You would have noticed that the outputs of those circuits at
any particular time were determined by the state of the inputs at
that instant, In this unit you will be introduced to devices with
outputs,that depend on present as well as past inputs, These are
examples, of memory devices, First you will cover two types of
memory devices, latches and flip-flops, Then you will be shown
how these devices can be connected together to form registers
and counters, The remainder of the unit will be used to examine

Unit 9 Sequential logic circuits

various applications of flip-flops in registers and counters. 8ince
such circuits operate by. shifting data in a particular sequence
from one device to another, they are called sequential circuits.

Can you think of possible applications of sequential circuits? The
most obvious one is the digital watch.

2 Latches and flip-flops

In this section we cover the basic building blocks of sequential
circuits, namely latches and flip-flQps. These devices have two
outputs which are always in opposite states. If the one output Q
is high, the other output, Q, is low. Alternatively, if Q is high, then
Q is low. As you can see, such devices have two stable states and
are therefore called bistable logic devices.

Think of the flip-flop as a seesaw'on a playground. A seesaw also
has two stable states. If the one side is high, the other is low, and
vice versa. The outputs of a flip~flop behave in a similar fashion.

Z. , The S·R latch

Fig 9.1 shows a simple NAND set-reset (8-R) latch, comprising
two NAND gates connected in a crossed configuration. It has two
inputs, S and R, two outputs, Q and Q, and two stable states,
the set state and the reset state. You,Will notice that the input
signals are active low, as denoted by compliment bars over these
signals. This means that the S input must be 0 to set the Qoutput
to 1. When the Q output is I, the latch is set and when it is 0,
the latch is reset.

203

Digital Systems for Engineering

Fig 9./

Fig 9.2 shows the latch in set mode. An active low signal is applied
to the S input and the R input is held at 1. The latch goes to set
condition, with the Q output at 1 and the Q output at O.

Fig 9.2

If the S input goes to a 1 and the R input remains at 1 as in Fig
9.3, the output does not change. This is because the outputs are
fed back into the input of the opposite gate, which makes them
retain their original output states. This is the memory mode of
the latch.

Fig 9.3

An active low signal is applied to the R input, while keeping the S
input at 1, as in Fig 9.4. The latch then goes to the reset condition.

Fig 9.4

204

Unit 9 Sequential logic circuits

The only other possible state for the two inputs is to have them
both 0 at the same time. This is an invalid condition since it
results in both outputs being 1, as shown in Fig 9.5. In terms of
what we said earlier, we never want a latch to have Qand Qwith
the same value.

Fig 9.5

The operation or truth table for the NAND S-R latch can be sum­
marised as shown below.

Inputs Outputs Comments
S R Q Q
1 1 NC NC no change, latch remains in present state
0 1 1 0 latch set
1 0 0 1 latch reset
0 0 1 1 invalid condition

The S-R latch can also be constructed using NOR logic gates as
shown in Fig 9.6. The inputs are now active-high and the Qand
Q outputs are reversed.

R--e-/

Fig 9.6

When the S input goes to 1, and the R input remains at 0, the
latch is set since the Q output goes to a 1 state as in Fig 9.7.

205

Digital Systems for Engineering

0,--...--,

Fig 9.7

When the S input goes to a 0, the R input remaining at a 0, then
the outputs Q and Q do not change as shown in Fig 9.8. This is
the memory mode of the latch.

s 0

0,--...--,

Fig 9.8

The R input is now made 1, while the S input remains at 0 as
shown in Fig 9.9. This is the reset mode of the flip-flop since Q
now becoInes O.

s 0

0.-...../

R-<-,/

'Rig 9.9

Fig 9.10 shows the invalid state for the NOR latch, where both
'inputs are 1, resulting in the outputs both being at O.

0.-...../

0,--...--,

R-<-,/

Fig 9./0

206

Unit 9 Sequential logic citcuits

The operation or truth table for the NOR latchcan be summarised
as shown in the table belo\W.

Inputs Outputs Comments

S R Q Q

0 0 NC NC no change, latcn remains in present state

1 0 1 0 latch set

0 1 0 1 latch reset

1 1 0 0 .invalid condition

Timing diagram for a latch

Timing diagrams provide a useful means of analysing sequential
circuits. A timing diagram for a NAND latch is shown in Fig
9.11. Here the S and R waveforms are applied to the latch with
the truth table for the NAND S-R latch shown earlier. Assume
that Q is initially at O. Using the truth table you can predict the
output Q at any time by simply considering the state ofthe inputs
at that time.

Sf
R f-;--+==;"'-4

Of

Fig 9.11

: ;

W: :

t •

The waveforms in Fig 9.12 below are applied to the NAND latch.
Sketch the resulting output waveform at Q, assuming that Q is
initially at O.

Activity ,

o
:~.·JJi:.'w.! i'.';

: : : :OW ("

Fig 9.12

207.

Digital Systems for Engineering

The latch as a contact bounce eliminator

When a normal switch opens or closes the contacts tend to bounce,
as they do not make or break the circuit smoothly. This input and
output waveform is shown in Fig 9.13.

t
~~

A~

B --------fUlJ
tswnoh

closes here

Fig 9.13

How can we use a latch to eliminate this problem? From what you
have learnt so far, you will know that the output of a latch can
remain unchanged even if the input condition changes. A possible
solution would then be to include a latch in the circuit as shown
in Fig 9.14.

v'"
S 1

~
- 0R-

0_0 _

Activity 2

~

208

Fig 9.14

When the switch makes contact with the S input, the output
changes state and remains there even after the switch bounces.

Look at Fig 9.14. Assume that Q is initially at O. Complete the
timing diagram after the switch closes.

Unit 9 Sequential logic circuits

2.2 The gated S-R latch

In the latches we discussed so far, the state of the outputs (Q and
Q) changed in· response to changes to the state of the inputs (8
and R). This change in output occurred the moment the input
state changed. A gated latch uses an additional input, the enable
input or EN, to control when the output may change. The gated
8-R latch is shown in Fig 9.15. You will notice that the output
cannot change when EN is low irrespective of the state of the
inputs. When EN is high, however (and as long as EN remains
high), the output is controlled by the state of the 8 and R inputs.

s S Q
Q

EN EN

Q
R Q

R

(a) logic diagram (b) Logic symbol

Fig 9.15

The timing diagram of the 8-R Latch is shown in Fig 9.16. You
will notice that the output only changes while EN is high.

s --.lJ-r-~--W-[I------Jl-+-­
R ----+---l~l--W'-i_'----t-

EN ~-'-!

Q _j----------L~~

Fig 9.16

Activity 3

i'
For the gated 8-R latch shown in Fig 9.17, determine the Qoutput
for the inputs shown, assuming Q is initially at o.

209

Digital Systems for Engineering

5 Q 5i
;

EN EN l

Ri
R Q ;

Q ~ 0 l

Fig 9. 17

2.3 The gated D latch

The gated D latch differs from the gated S-R latch in that the S
and the R inputs are connected by·an INVERTER. Therefore the
S and R inputs will always be in opposite states. In effe.et this
latch only has one input, the D (or data) input. The logic diagram
and logic symbol for the D latch are shown in Fig 9.18. You will
notice that the output Q is the same as the input D whenever EN
is high.

D D Q
Q

EN EN

Q Q

(a) Logic diagram (b) Logic symbol

Fig 9.18

ActivIty 4

210

Determine the Q output for a gated D Latch and the waveforms
shown in Fig 9.19.

D

EN

Q-

Fig 9.19

2.4 The edge triggered flip-flop

Unit 9 Sequential logic circuits

In the previous section we dealt with gated latches where the
output responded to changes in the input only while an additional
input, the enable input, remained high (or while the gate was
'open'). This may present a problem if you wanted the output to
respond only at the exact instant the gate opened and not for the
duration of time that it remained open.

In this section we look at devices called flip-flops which allow you
to overcome this problem. When you use a flip-flop the output
changes either at the positive edge (rising edge) or the negative
edge (falling edge) of a triggering input called the clock (eLK).
This 8llows you more precise control over when the outputs
change. The triggering input of the clock is depicted by an ar­
row, as follows:

rising edge-trigger: F
falling-edge trigger: L
It might help you distinguish between the gated latch and a flip­
flop if you think of the gated latch as an ordinary gate, and the
flip-flop as a turnstile.

When the gate is closed (enable (EN) is low): ~

'""~l ~.
Changes in inputs cannot affect output5.

When the gate is open (enable (EN) is high); ~

Input 4 Output

~~~
Changes In inputs can affect output!;1.

211



Digital Systems for Engineering

When the turnstile turns (at the rising-edge or falling-edge of the
clock CLK):

Input Output

Only the inp.ut state at that instant affect£; 'the out:put.

The flip-flop is a synchronous bistable device. We use the term
synchronous here because changes to the output of such a device
are synchronised to the triggering edge of the clock input. The
logic symbols for three types of edge-triggered flip-flops are shown
in Fig 9.20. Notice that the CLK input is indicated differently on
the positive edge-triggered and negative edge-triggered flip-flops.

s

ClK

Q D

ClK

Q J

ClK

Q

Positive edge
triggered

R K

212

S Q D Q J Q

ClK ClK ClK Negative edge
triggered

R Q Q K Q

(.)8-A (b) 0 (c)J-K

Fig 9.20



Unit 9 Sequentiallogie circuits

The truth tables for each of these flip-flops is shown below.

Truth table for a positive edge-triggered S-R flip-flop.

Inputs Outputs Comments
S R CLK Q Q
0 0 X Qo Qo no change
0 1 i 0 1 reset
1 0 i 1 0 set
1 1 i ? ? invalid

i= clock transition low to high

X = irrelevant ('don't care')

Qo = output level prior to clock transition

Truth table for a positive edge-triggered D flip-flop.

Inputs Outputs Comments
D CLK Q Q
1 i 1 0 set
0 i 0 1 reset

i= clock transition low to high

Truth table for a positive edge-triggered J-K flip-flop.

Inputs Outputs Comments
J K CLK Q Q
0 0 i Qo Qo no change
0 1 i 0 1 reset
1 0 i 1 0 set
1 1 i Qo Qo toggle

i= clock transition low to high

Qo = output level prior to clock transition

The J-K flip-flop is the most widely used type of flip-flop. You will
notice that the J-K flip-flop differs from the S-R flip-flop in that it
has no invalid state (which occurs when both the S and R inputs
are 1). Instead, when both the J and K inputs are 1, the outputs
toggle, in other words both the Q and Q outputs change state.
Fig 9.21 shows a circuit diagram for the J-K flip-flop.

213



Digital Systems for Engineering

K ----=+==LG(3:2'J>---<:C.:;.;

ClK
Pulse

transition
detector

Fig 9.21

Q

Activity 5

'i'

214

The timing diagram of a negative edge-triggered J-K flip-flop is
shown in Fig 9.22.

ClK

J -~L-+-rj'---_f--_+-'~

K -iL_~----i---.l

Q ---..Jr-'---r---r----:i-----J---.Jr-
Toggle No Set Reset No Sel

change change

Fig 9.22

For the J-K flip-flop and waveforms shown in Fig 9.23 determine
the Q output relative to the clock.

J Q ClK

ClK
J L.JI
K L-J

K Q Q _0_

Fig 9.23



Unit 9 Sequential logic circuits

2.5 An application of flip-flops

Flip-flops can be used to divide the frequency of a periodic wave­
form. The J-K flip-flop in Fig 9.24 is connected in the toggle
mode, with both the inputs high. The output Q only changes its
state on the positive edge of the clock input. As can be seen from
the timing diagram, the output changes at half the frequency of
the input. This flip-flop can therefore be used as a divide-by-two
device.

HIGH

..-J -Q

ClK -+--;>ClK
ClK

Q

'--K

Fig 9.24

Activity 6 Assume that the output of the flip-flop in Fig 9.24 was used to
provide the clock input to a similar flip-flop, like the one shown
in Fig 9.25. Determine the timing diagram showing the output of
the second flip-flop relative to the clock input.

f-J lO f-J -
lK

ClK ClK

'-- K '-- K

Q, ClK

C Qo _ .

Q, _ .

Fig 9.25

2/5



Digital Systems for Engineering

3 Shift registers

Shift registers consist of an arrangement of flip-flops, and are
used primarily for the storage and transfer of digital data (Is and
Os). The shift register is therefore an important type of memory
device.

3. 1 Basic shift register functions

The storage capacity of a register is the number of bits (Is and
Os) of digital data that can be held in the register. Each flip-flop in
the register represents one bit of storage capacity. The flip-flops
are usually referred to as 'stages in the register'. A clock pulse is
used to move data into and out of a register, or to shift data from
stage to stage in a register. The four basic modes of shift register
operation are shown in Fig 9.26.

~
1 1 0 1

(b) Serial in - Parallel out

1 1 0 1

oata~

1 1 0 1

D"a~-­time

Clock J1.JU1.fL

1 1 0 1

Dala~-­lime

Clock JlJUUL

(a) Serial in - Serial oul

0"

1 1 0 1

Data~
-,

J1.nfifL

eLK (e) Paraltel in - serial out

Data

1 1 0 1

~

216

1 1 0 1

Data~

eLK
J1.. ---'~-'--,--'-.,-L.,--'

~
1 1 0 1

(d) Parallel in - Parallel out

Fig 9.26



Unit 9 Sequential logic circuits

While the registers in Fig 9.26 only show serial data being shifted
from left to right, serial data may in fact be shifted in both direc­
tions (left to right, and right to left).

3.2 Serial to parallel data conversion

Data bits are entered serially into this type of register. Once all
the data has been stored, each bit appears on its respective output
line. All bits on the parallel output lines are now available to be
used at the same time.

Fig 9.27 shows a 4-bit serial in/parallel out shift register.

- - ,...- -
~~- 0 0 0 0

Data
Input D

eLK >ClK >ClK I>ClK >ClK

a, D, 0,0, - - ~ -
ClK

0 0 a, O2 0 3

Fig 9.27

Serial entry of data into the shift register happens as is set out
below, at the rising edge of each clock pulse. Let's assume that
the register is initially clear and the 4-bit 1011 is to be entered
into the register, beginning with the rightmost bit.

The 1 is put onto the data input line, making D = 1 for flip-flop 0
(FFO). When the first rising edge of the clock pulse is applied,
flip-flop 0 is set, thus storing the 1. Next the second bit, which is
also a 1, is applied to the data input, making D = 1 for FFO, and
D = 1 for FF1, since the D input of FF1 is connected to the Qo
output of FFO. When the rising edge of the next (second) clock
pulse occurs, both FFO and FF1 are now set. The third bit, a 0,
is now put on the data line, and a clock pulse is applied. The 0 is
entered into FFO, the one stored in FFO is shifted to FF1 and the
1 stored in FF1 is shifted to FF2. Finally, the last bit, a 1, is now
applied to the data input, and a clock pulse is applied. All bits are
now shifted to the right to adjacent flip-flops. Serial entry of data
is now complete and the register can store this information. Data
is available at the 4 parallel outputs Qo to Q3 for later retrieval.
The state of the outputs after each clock pulse is shown in Fig
9.28.

217



Digital Systems for Engineering

After CLK4, the 4-bIt
number is completely
stored in f8{jst&r.

0 0 0, O2 0,
FFO

Data Dinput

1011- ~~~r initially

ClK

D 0 D 0 D o 0,First data bit., 1

ClK ClK ClK

MereU<1

ClK1...fL

0 D o 0,2ndt data bit ;; 1

ClK ClK

AfterClK2

ClK2...fL

3rdt data bit., 0 o 0,

ClK

AfterCLK3

ClK3...fL

4th data bit =1 1 0,

ClK4...fL--+----t+---+~---+

00 0, 0,

Fig 9.28

2/8



Unit 9 Sequentiai logic circuits

Activity 7 A 4-bit register has data inputs and a clock waveform as shown
in Fig 9.29. Show the states of the register for each clock pulse.
The register initially contains all Is. Note the order in which the
data is entered.

+-
Dala 0

'0
elK

Qo ---,---- ----------------------------------- -----------------

Q,---,-----------------------------------------------------------­

Q, ---,------------------------------------------------------------­

Q3 ---,-------------------------------------------------------------

Fig 9.29

1-;; r
D
-------,

Activity 8 Show the states of the 3-bit register shown in Fig 9.30 for the
given data input. Assume that the register is initially cleared.

.­
01011

D

Qo Q,

ClK -~--,--~-~----'

Dala
input

ClK

Fig 9.30

219



Digital Systems for Engineering

3.3 Bi-directional shift registers

A bi-directional shift register allows data to be shifted in both
directions, either towards the left or towards the right. You will
notice that the basic principle of shift register operation is that
the output of one stage should be connected to the input of the
next stage. To allow data to be shifted in both directions, we would
have to introduce logic circuitry to connect a flip-flop to both the
stage following it, as well as to the stage preceding it. The circuit
in Fig 9.31 achieves this operation. You will notice that a high
on the rightJ1eft control input enables gates G1 to G4, effectively
connecting the output of a particular stage to the input of the
following stage. On the other hand, a low on the right/left input
enables Gs to Gs, connecting the output of a particular stage to
the input ofthe preceding stage.

o,=::t==~__J.::-==-__~l-==-__~ -ClK

Fig 9.31

The 74LS194A bi-directional universal shift register

By now you may be concerned that the circuitry of these shift
registers are becoming more and more complex. You may also
be wondering whether you will ever be able to construct such
devices from flip-flops and logic gates. Fortunately the 74LS194A
has come to our rescue. This is a 4-bit universal shift register,
which has both serial and parallel input and output capability
and allows you to perform all the basic shift register operations
we have discussed so far. The logic block symbol for this universal
shift register is shown in Fig 9.32.

220



ClR (')
So (9)

8
1

(10)

SRSER (2)

SlSER (7)

ClK (11) ClK

Unit 9

Do D, D2 D3

Qo Q, Q2 0.

Sequential logic circuits

Fig 9.32

In Fig 9.3200,01, O2 and 0 3 refer to parallel data inputs, while
Qo, Ql, Q2 and Q3 refer to parallel data outputs. SR SER is the
serial data input when shifting from right to left, while SL SER
is the serial data input when shifting from left to right. (SL SER
and SR SER will serve as the corresponding outputs.)

So and SI refer to mode-control inputs and are activated to operate
the shift register as follows:

S1 So operation
high high load parallel data
high low shift data left (input serial data)

low high shift data right (input serial data)

low low hold mode (existing data is retained)

The transfer of parallel and serial data

Parallel data can be transferred very rapidly, because all data
bits are moved simultaneously. However, one data line is required
for each data bit. Serial data requires only one data line for
all bits because all the data is moved sequentially, one bit at a
time. However, it takes longer to transfer the data. For example,
it takes only one clock cycle to parallel transfer eight data bits.
For serial transfer of eight data bits, it takes eight clock cycles,
but only one data line.

221



Digital Systems for Engineering

It is more efficient to use combinations of both serial and parallel
data transfers. For example, when data has to be transferred over
a long distance, it could be more economical to convert parallel
data to serial data, then transmit it in that format, and then
convert it back to parallel data at the receiving end. Although
there is a saving in data lines, the speed of transmission will be
slower.

3.4 Shift register counters

In the previous section we used shift registers to shift data from
one flip-flop to another. If the data is shifted in a particular se­
quence, the shift register also acts as a counter. Shift register
counters are registers with the serial output connected back to
the serial input, thereby producing a specific counting sequence.
The two most common types of shift register counters are the
Johnson counter and the ring counter.

The Johnson counter

A 4-bit Johnson counter is shown in Fig 9.33, where the comple­
ment of the output of the last flip-flop stage is fed back into the
D input of the first flip-flop.

l FFO FF1 FF2 FF3
- 0. c---- a c---- a -
o --:.0 ~D ~D

I>ClK I>ClK >ClK >ClK

0
~ ~ ~ -

ClK _O___---+__-+--_----J

Fig 9.33

The 4-bit Johnson sequence will look like this:

Clock pulse Qo Ql Q2 Qa
0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0
4 1 1 1 1
5 0 1 1 1·
6 0 0 1 1
7 0 0 0 1

222



Unit 9 Sequential logic circuits

Activity 9

"

Notice that the 4-bit Johnson counter has eight states, or bit
patterns. In general a Johnson counter will have 2N count states,
where N is the number of flip-flop stages in the counter.

The timing sequence for a 4-bit Johnson counter is shown in Fig
9.34.

Q, ----'

Q2 -----'

Q3 ~-----'L

Fig 9.34

The ring counter

A ring counter is similar in inter-stage connections as a Johnson
counter, except that Q rather than Q is fed back from the last
stage.

Derive the timing sequence of a 4-bit ring counter if the output
of the first stage flip-flop is 1 and all the other stages are set at O.

elK

Qo '---- -- - - - - - - - - - - - - - - - - -- - - - - - _

Q, ~-------------------,------------------
Q

2
__0 , _

Q
3

__0 _

Fig 9.35

Shift register application

The serial in/serial out shift register can be used as a time-delay
device. Data at the input of a shift register will be shifted from
stage to stage on successive clock pulses until it appears at the
output. The time delay between output and input will therefore

223



Digital Systems for Engineering

be equivalent to the number of stages, multiplied by the period
of the clock signal. Fig 9.36 demonstrates how an four-stage shift
register using a IMHz-clock pulse can be used to introduce an
4 j),S time delay.

--...lL Dalal"~ r4-bil 00
elK eLK Data 0,1

1 MHz .

elK ,

Data In --fI-----c:-­
Data out -'---c--,..,....--r--L

time delay

Fig 9.36

4 Asynchronous counters

In the previous section you saw how flip-flops in shift registers
may be connected together to perform counting operations. In
general, counters can be classified into two broad categories,
asynchronous and synchronous counters, depending on the
way they are clocked. In asynchronous counters, also called
ripple counters, the first flip-flop is clocked by an external clock
pulse. The output ofthis flip-flop then clocks the subsequent flip­
flop and so on. That is why we use the term ripple, because the
change of state in one flip-flop causes changes in the next flip-flop
(a ripple effect). In synchronous counters the external clock sig­
nal is connected to all the flip-flop stages. It therefore clocks all
stages at the same time. Synchronous counter analysis and design
will be dealt with in a subsequent course.

4. 1 A 3-bit asynchronous binary (ripple) counter

Fig 9.37 shows a 3-bit ripple counter and the waveform it gener­
ates. The counter has 8 states due to its 3 flip-flops. Notice that
the counter progresses through a binary count of zero through
seven and then starts the sequence again from zero. The circuit
uses J-K flip-flops. Both the J-K inputs are tied high. The flip­
flops are therefore in the toggle mode. This means that the flip­
flop changes state or toggles when triggered by the clock signal.

224



Unit 9 Sequential iogic circuits

HIGH

ClK

- Jo -00 f- J, -0, f- J2 -

ClK ClK ClK

~ UL- Ko L- K, - K2

O2

FFO FF1 FF2

ClK

Q1001, 110011 1l.L-

Fig 9.37

Notice also that the output frequency of each flip-flop is one-half
the frequency of the previous flip-flop. The same is true for each
succeeding flip-flop. In the 3-bit binary counter, the third flip-flop
stage divides the input frequency by 23 or 8. We therefore call this
counter a divide-by-8 ripple counter. Should you add another
flip-flop stage, it would become a divide-by-16 counter, since
24 = 16.

TUne delays in ripple counters

The last flip-flop stage in a ripple counter must wait for the in­
put signal to ripple through each preceding flip-flop stage before
it can change. Consider the timing diagram of a 3-stage ripple
counter in Fig 9.38. This .cumulative delay of a ripple counter
is a major disadvantage in counter applications because it lim­
its the frequency or rllte at which the counter can be clocked. It
also creates counter decoding problems, giving rise to glitch con­
ditions. Glitch conditions are unwanted logic levels that last for a
very short duration. The 'maximum cumulative delay in a counter
must be less than the period of the clock waveform.

225



f+-,,-O_-"Il

Digital Systems for Engineering

elK

00 -H 1

0 1 i iO

O2 ! ;0
-.ii_td

i! I

.. 0

~~:~

o

i L..1..L
!! lli­
i!!r,

-i~1dl
---+-t i--!- td2

~M-td3

Fig 9.38

If we are assuming typical propagation delay times, tpHL = tpLH is
equal to 25 nanoseconds. It would therefore take 3 x 25 nanosec­
onds for the counter to change from 011 to 100 after the positive
going edge of the clock pulse.

4.2 Divide-by-N ripple counter

The previous section dealt with ripple counters that count in
binary to a number equal to (2N - 1), where N is the number
of flip-flops - since the largest binary number that can be dis­
played for a given number of N flip-flops is equal to (2N -1). For
instance the 3-bit counter in Fig 9.37 could count up to 7 (111 in
binary) since the next state, 000, would reset all the flip-flops, and
the count would start once again. Likewise a 4-bit .counter would
count up to 15 (1111 in binary) before restarting, and so on.

How do we design a ripple counter that can count in binary to
any particular number? Suppose we wish to design a counter that
would count through five stages from 000 to 100. Such a counter is
referred to as a divide-by-5 or modulo-5 ripple counter. Clearly
we need three flip-flop stages in our design since we are working
with a 3-bit number. The method we will use to design such a
counter makes use of the clear input to the flip-flop. The clear
input is an additional input that will reset the flip-flop when an
appropriate signal is applied to it.

The count stages are 000, 001, 010, 011, and 100 after which the
sequence starts from 000 again. Note that 000 is the first count
state and 100 is the fifth state. We need to reset or clear the
counter after we have identified or decoded the occurrence of the
counter output state, 100. It is important that we do not reset
or clear the counter when 100 occurs, since this state will then
only last for the duration it takes to decode the state and clear

226



Unit 9 Sequential logic circuits

the flip-flops. This could take only nanoseconds, which effectively
means that the final stage (100) will be missed. We therefore need
to reset the counter at the next number in the sequence, namely
5 (or 101 in binary). We now have to identifY the count state 101
using suitable combinational logic.

The count sequence is as follows:

Q2 Ql Qo
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

* * *
* * *

We need a way to identifY the state 101 uniquely from the previous
count states, keeping in mind the reset signal for the flip-flop
stages is active low.

A simple truth table can be drawn up for this problem and the
solution then becomes apparent.

Q2 Ql Qo reset
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0

* * * X

* * * X

The last two states are denoted 'don't care' (X) states as these
will not occur since the counter is reset on 101. It is also assumed
that the counter always starts up in state 000.

227



Digital Systems for Engineering

Inspection of the table above, reveals that Qo = Q2 = 1 is unique
for the state 101 and therefore can be used to distinguish it from
the counter states 000 to 101. The truth table can be simplified
as follows:

Q2 Qo reset
0 0 1
0 1 1
1 0 1
1 1 0

Inspection of the table above shows that the decoding of the
counter state 101 can be implemented by using a 2-input NAND
logic gate. This circuit and the timing diagram for this counter
is shown in Fig 9.39. This method of designing counters is also
referred to as the decode-and-clear method, as it uses logic cir­
cuitry to decode the count and reset the flip-flops once the maxi­
mum count has been reached.

Qo Q, Q,

228

ClK

FFA FFB FFC
I1-J Q - 1_ J Q - 1-J Q

A B C

,- K CLR
1_

KClR ,- KClR
Y Y Y

CJlLJ

Qo

0 1 0011 11oioio 0

O2 00 0 o~o 0

Fig 9.39



Unit 9 Sequential logic circuits

4.3 Decoding glitches

From the timing diagram for the counter in Fig 9.39 you will
see that it produces a small spike at the 101 count on the FFA
stage. This unwanted logic level of very short duration is called
a glitch. The output of FFC is also a bit longer than it should
be. Because they are counted as an extra pulse, the spikes can
cause problems when they are used as inputs to other counters
or decoders. One way to overcome the problem of glitches is to
ensure that the counters or decoders into which these glitches
feed, are only enabled after the glitches have disappeared. This
method is known as strobing.

By way of example: If the counter in Fig 9.39 were connected to a
decoder as in Fig 9.40, the effect of the glitches could be eliminated
by using the low level of the clock to enable the decoder.

MOD-5 Decoder
Counter

QO

Q,

Q2
--< >C

EN

IROBECLK/ST

Fig 9.40

Activity 10 Design an asynchronous decade counter. Such a counter is also
referred to as a modulus 10 counter as it counts through ten
states from 0000 (decimaI 0) to 1001 (decimal 9). Show both the
logic diagram and the timing diagram of this counter.

5 Summary

In this unit you learnt that:

<> Latches and flip-flops are logic devices with two outputs,
which are always in opposite states. They are aIso re­
ferred to as one-bit memory elements.

229



Digital Systems for Engineering

<> A simple latch can be constructed by interconnecting two
NAND gates in a cross coupled manner.

<> A gated latch operates in a similar manner to a latch,
except that an enable signal has to be applied in order
for the (lutputs to respond to any changes in the input
levels.

<> Flip-flops such as the D and J -K flip-flop can change
their state only at the rising or falling edge of a clock
input. Such devices are synchronised to changes in the
clock input.

<> Flip-flops can be connected together (or cascaded) to
form shift registers which are very useful in parallel­
to-serial conversion, serial-to-parallel conversion, and as
simple counters.

<> Flip-flops, counters and shift registers are called se­
quential circuits as they sequence through a number
of different states in response to a clock input.

<> Unlike combinational logic circuits, sequential circuits
can retain their state after the inputs which brought
about the state, are removed.

<> Sequential circuits are subject to propagation delays that
should be taken into account in designing high-speed
sequential circuits.

Self-evaluation

Complete the following self-evaluation exercises without refer­
ring to the unit.

1 Using two T flip-flops, design a frequency divider that
generates two output signals for these frequencies:
h = ~ and 12 = i, where f is the input frequency.

2 Design a 2-bit register that will accumulate data from
a previous operation and hold the output data for later
use by logic circuits.

3 Design a 2-bit serial-to-parallel shift register using D
flip-flops.

4 Design a modulo-8 synchronous counter.

230



Answers to activities

Activity 1

Activity 2

Activity 3

Unit 9

Fig 9.41

Fig 9.42

Sequential logic circuits

s _.---Jr-~-~_L__
EN
R-~L-~__~ _

O ---l

Fig 9.43

Activity 4

D

EN

o

Fig 9.44

231



Digital Systems for Engineering

Activity 5

ClK

J ~,-----~r-!

K ! L-Ji
o -L.-Jr-'--L------L----lr-

Toggle Toggle Reset Sel

Fig 9.45

Activity 6

ClK

00

0,

Fig 9.46

Activity 7

ClK~

0 0 i 1~ 1;
Q1~

Activity 8

0,

0 3

"'~

Fig 9.47

232

Do"
10

ClK

0 0

0,~--t--r-~
0, ~

Fig 9.48



Activity 9

Unit 9 Sequential logic circuits

ClK

00 11!-:--+-+---1Hi-+--+-----f­
0, ...J-l 'hi-'---j--j-,
O2 01 n ~!-:-+_

0 3 0' H r---L
Fig 9.49

Activity 10

ClK

--l '}

00 0, O2

l-J 11-J
1-J 0

1
1-J 0 I~ 0 3

--<~ C C

1- K ClR ,- K ClR 1- K ClR ,- KClR
'( '( '( T Cl

Fig 9.50

ClK

0, -,o'--f-"-0~ ° : ° ri""7
,

- if-,-,l--,-o-+--,-o_t.LJ
02 -,o,-->--=-o-+-..::.0-+-..::.o-tTj1't'i'--;-t-.2.o+2.0~:o!~o~i
0 3 JOLUOU...!OU--2..0 ...L2.o-LJ!oJ..-!oUi...!oLl--;-T'1i"W
Cl ------------U--

Fig 9.5/

233



Appendix 1
Pin outs of digital ICs

To construct and test or troubleshoot a digital circuit it is neces­
sary to know what each pin on a digital component or integrated
circuit (IC) represents. This appendix contains diagrams showing
some popular rcs and what each pin on the rcs represents.

Gnd Gnd

Gnd

•

Gnd

7400 quad 2-input
NAND gate

7408 quad 2-input
AND gate

Gnd

7402 quad 2-input
NOR gate

7410 triple 3-input
NAND gate

Gnd

7404 hex INVERTER

14 Vee

7411 triple 3-input
AND gate



Gnd

3

14 Vee

"
"

Appendix 1

Gnd

Pin outs of digital ICs

Gnd

7420 dual4-input
NAND gate

•

7432 qued 2-input
ORgete

7427 triple 3-input
NOR gate

Gnd 7

7486 quad 2-input
Excluslve-OR gate

Gnd

74810 quad 2-input
Exclusive-NOR

(ccincldence) gate

235



Sample data sheets

® MOTOROLA

DUAL JK FLIP-FLOP
WITH SET AND CLEAR

The SN54174LS76A offers individual J, K. Clock Pulse, Direct Set and Di­
reet Clear inputs. These dual flip-flops are designed so that when the clock
goes HIGH, the inputs are enabled and datawill be accepted. The Logic Level
of the J and K inputs will perlonn according to the Truth Table as long as minI­
mum set-up times are observed. Input data is transferred to the outputs on the
HIGH-to-LOW clock transitions.

MODE SELECT - TRUTH TABLE

INPUTS OUTPUTS
OPERATING MODE

So Co J K Q Q

sel L " X X " L
Reset (Clear) " L X X L "·Undetermined L L X X ~ "Toggle " " h h q q
Load "0" (Resel) " " I h L "Load ~1n (Set) " " h I " L
"old " " I I q q

aPth outll!ltS Will be HIGH while both So and Co are LOW, bUt the output states areu~Jctablp
if So and Co go HIGH simultaneously.

H,h:: HIGH Voltage Level
L,I = LOW Voltage Level
X =Immaterial
I, h (q) = Lower case letters Indicate the state of the referenced input (oroutput) one setup time prior
to the HIGH-to-LOW clOCk transition

LOGIC DIAGRAM

AePendix 2

SN54174LS76A

DUAL JK FLIP·FLOP
WITH SET AND CLEAR

LOW POWER SCHOTTKY

JffI!!!v J SUFRX
CERAMIC

CASE62Q-09

1

,,- NSUFFIX
PLASTIC

CASE 648-08

1

"#
DSUFAX

SOIC

1 CASE 7518-03

ORDERING INFORMATION

SN54LSXXJ Ceramic
SN74LSXXN Plastic
SN74LSXXD SOIC

LOGIC SYMBOL

Q 2 7

,. K SD Q 15 12 K SD Q 11

CP CP
SET (SO)

K 4 CD Q 14 9 CoO 10

3
CLOCK (CP) VCC=PIN5

GNo= PIN 13

Copyright of Motorola, used by permission



,Appendix 2 Sample data sheets

® MOTOROI.A

QUAD 2-INPUT AND GATE
SN54174LS08

GUARANTEED OPERATING RANGES

QUAD 2-INPUT AND GATE

LOW POWER SCHOTTKY

,- J SUFFIX
CERAMIC

CASE632..Q8

1

,. N SUFFIX
PLASTIC

CASE 646-06

1

14~
DSUFFIX

SOlO

1 CASE 751A·02

ORDERING INFORMATION

SN54LSXXJ Ceramic
SN74LSXXN Plastic:
SN74lSXXO SOIC

Symbol Parameter Min Typ Max UnO

Vce Supply Voltage 54 4.5 5.0 5.5 V
74 4.75 5.0 5.25

TA Operating Ambient Temperature Range 54 -55 25 125 ·C
7. 0 25 70

'OH Outpul Current High 54,74 0.4 rnA

'OL Output Current Low 54 4.0 mA
7. 8.0

Copyright of Motorola, used by permission 237



Digital Systems for Engineering

® MOTOROLA

4-BIT MAGNITUDE
COMPARATOR

SN54174LS85

The SN54/74LS85 is a 4-Bit Magnitude Camparator which compares two
4-bitwords (A, B), each word having four Parallel Inputs (AD-A3. So-83); AS,
83 being the most significant inputs. Operation is not restricted to binary
codes, the device will work with any monotonic code. Three Outputs are
provided: ~A greater than B~ (OA>S). "A less than BM (OA<S). "A equal to,8"
(OA=S)· Three Expanderlnputs, IA>B, IA<B,IA=B, allowcascading without
external gates. For proper compare operation, the Expander Inputs to the
leastsignificant position mustbe connected as follows: IA <B= lA >B= L, IA=B
= H. For serial (ripple) expansion, the OA>B, OA<B and 0A=B Outputs are
connected respectively to the IA> e, JA<B. and JA= B Inputs of the next most
significant comparator. as shown in Figure 1. Refer to Applications section of
data sheet for high speed method of comparing large words.

The Truth Table on the following page describes the operation of the
SN54174LS85 underall possible logic conditions. The upper 11 lines describe
the normal operation under all conditions that will occur in a single device or
in a series expansion scheme. The lower five lines describe the operation
under abnormal conditions on the cascading inputs. These conditions occur
when the parallel expansion technique is used.

• Easily Expandable
• Binary or BCD Comparison

• OA>B, 0A<B. and 0A=B Outputs Available

NOTE:
The Flatpak version has the
same pinouts (Connection
Diagram) as the Dualln·UneP_.

4-BIT MAGNITUDE
COMPARATOR

LOW POWER SCHOTTKY

,,,If/II/1ti J SUFFIX
CERAMIC

CASE 62().()9

1

,,- N SUffiX
PLASTIC

CASE 646-08

1

", DSUFFIX
SOIC

1 CASE 751 B.Q3

ORDERING INFORMATION

SN54lSXXJ Ceramic
SN74lSXXN Plastic
SN74LSXXD SOIC

LOGIC SYMBOL

4
2
3

Vee =PIN 16
GND =PIN 8

1.5U.1. 0.75U.l.
1.5U.L. 0.75U.L.
0.5 U.l. 0.25 U.l.
10 U.l. 5 (2.5) U.L.
10 U.l. 5 (2.5) U.l.
10 U.l. 5 (2.5) U.l.

HIGH LOW

LOADING (Note a)

Parallel Inputs
A= B Expander Inputs
A < B, A > B, Expander Inputs
A Greater Than B Output (Note b)
B Greater Than A Output (Note b)
A Equal to B Output (Note b)

PIN NAMES

Ao-A3. BO-B3
IA=B
IA<B,IA>B
OA>B
OA<B
°A=B

NOTES:
a) 1 TTL Unit Load (UL) = 40~ HIGH/l.6 rnA LOW.
b) The Output LOW drive factor is 2.5 UL for Military (!>4) and 5 U.L. for Commerdal (74)

Temperature Ranges.

238 Copyright of Motorola, used by pennission



LOGIC OIAGRAM
A3(15)

B3 (1)

A' (12)

81 (11)

AO(10j

80 (9)

IIppendix 2

SN54/74LS85

TRUTH TABLE

Sample data sheets

(6)
°A",B

COMPARING INPUTS CASCADING
OUTPUTSINPUTS

As.Ba A2,B2 At,St Ao." IA>B IA<B IA=B CbB °A<B °A=B
As>B3 X X X X X X H L L
As<"" x x x x x X L H L

.,="" A2>B2 X X X X X H L L
A3=B3 A2<B2 X X X X X L H L
A3=Ba A2=B2 A1>B1 X X X X H L L
A3=B3 A2=B2 A1<B1 x X x X L H L
"=B3 A2=62 A1=B1 Ao>So X x X H L L
As=B3 A2=B2 A1=B1 Ao<So X x X L H L
"=B3 A2=62 Al":B1 Ao=So H L L H L L
A3=B3 A2=B2 A1=B1 Ao=Bo L H L L H L
.,=B3 A2=B2 A1=B1 Ao=So X X H L L H

.,="" A2=B2 A1=B1 "o=BO H H L L L L
A3=83 A2=B2 A1=B1 A(i=sO L L L H H L

GUARANTEED OPERATING RANGES

H = HIGH level
l= LOW Level
X= IMMATERIAL

Symbol Parameter Min lYP Mox Unit

Vee Supply Voltage 54 4.5 5.0 5.5 V
74 4.75 5.0 5.25

TA Operating Ambient Temperature Range 54 -55 25 125 "e
74 0 25 70

'OH Output Current - High 54,74 -0.4 rnA
IOL Output Current Low 54 4.0 rnA

74 8.0

Copyright of Motorola, used by permission 239



Digital Systems for Engineering

® MOTOROI.A

SN54174LS47
BCD TO 7-SEGMENT
DECODER/DRIVER

ORDERING INFORMATION

BCD TO 7·SEGMENT
DECODER/DRIVER

LOW POWER SCHOTTKY

""SUFRX
PLASTIC

CASE648-DS

JSUFFIX
CERAMIC

CASE620-D9

DSUFFJX
SOIC

CASE 751 8-03

The SN54174LS47 are Low Power Schottky BCD to 7-Segment Decod­
er/Drivers consisting of NAND gates, input buffers and seven AND-OR-1N­
VERT gates. They offer active LOW, high sink current outputs for driving
indicators directly. Seven NAND gates and one driver are connected in pairs
to make BCD data and its complement available to the seven decoding
AND·OR·INVERT gates. The remaining NAND gate and three input buffers
provide lamp test, blanking input/ripple-blanking output and ripple-blanklng
input.

The circuits accept 4-bit binary-cooed-decimal (BCD) and, depending on
the state of the auxiliary inputs, decodes thisdata todrive a 7-segment display
indicator. The relative positive-logic output levels, as well as conditions
required at the auxiliary inputs. are shown in the truth tables. Output
configurations of the SN54/74LS47 are designed to withstand the relatively
high voltages required for 7-segment indicators.

These outputs will withstand 15 V with a maximum reverse current of
250 ~. Indicator segments requiring up to 24 mA of current may be driven
directly from the SN74LS47 high performance output transistors. Display
patterns for BCD input counts above nine are unique symbols to authenticate
input conditions.

The SN54174LS47 incorporates automatic leading and/or traiJing-edge
zero-blanking control (ABI and ABO). Lamp test (LT) maybeperformed atany
time which the BI/ABO node is a HIGH level. This device also contains an
overriding blanking input (BI) which cal) be used to control the lamp intensity
by varying the frequency and duty cycle of the Bl input signal or to inhibit the
outputs.

• Lamp Intensity Modulation Capability (BI/ABO)
• Open Collector Outputs
• Lamp Test Provision
• Leading/Trailing Zero Suppression
• Input Clamp Diodes Limit High-Speed Termination Effects

Ceramic
Plastic
SOle

vcc'" PIN 16
GNO"PIN8

ABCDLTABI

LOGIC SYMBOL

712635

13 12 11 10 9 1514 4

SN54LSXXJ
SN74lSXXN
SN74LSXXD

7

A

LOADING (Note a)

HIGH lOW

0.5 U.l. 0.25 U.l.
0.5 U.l. 0.25 U.l.
0.5 U.l. 0.25 U.L.
0.5 U.l. 0.75 U.L.
1.2 U.l. 2.0 U.L.

Open-Collector 15 (7.5) U.L.

BCD Inputs
Ripple-Blanking Input
lamp-Test Input
Blanking Input or
Ripple-Blanking Output
Outputs

PIN NAMES

M.C.D
WI
!.L­
Sl/RBO

a, tog

NOTES:
a) 1 Unit Load {U.L.) ,,40 I1A HIGH, 1.6 rnA LOW.
b) Output current measured at VOUT:: 0.5 V

The Output LOW drive factor is 7.5 U.L. for Military (54) and 15 U.L. for CommerCial (74) Temperature Ranges.

240 Copyright of Motorola, used by pennission



Appendix 2 Sample data sheets

SN54174LS47

OUTPUT

OGle DIAGRAM
~
~. •

A L ~ ~
b b

8 ~

C , ,
D

~

~ , ,

• •
,J,.,.

tr ~

f f

I-- , 9

L

-j
LAMP·TEST
INPUT

RIPPLE-BLANKING
INPUT

BlANKING INPUT OR
RIPPLE·BlANKING
OUTPUT

, 10 11 12 13 14 15

NUMERICAL DESIGNATiONS - RESULTANT DISPLAYS

TRUTH TABLE

r-.1NPUTS~,---0l1TPUTS~

DECNAL - - - d - i -., LT ,m • c B A 811RBO • , • • • NO'"
FUNCTION

0 H H L L L L H L L L L L L H A, H , L L L H H H L L H H H H A, H , L L H L H L L H L L H L, H , L L H H H L L L L H H L, H , L H L L H H L L H H L L, H , L H L H H L H L L H L L, H , L H H L H H H L L L L L, H , L H H H H L L L H H H H

8 H , H L L L H L L L L L L L

• H , H L L H H L L L H H L L

" H , H L H L H H H H L L H L

" H , H L H H H H H L L H H L

" H , H H L L H H L H H H L L

" H , H H L H H L H H L H L L

" H , H H H L H H H H L L L L

" H , H H H H H H H H H H H H

"
, , , , , , L H H H H H H H B

'" H L L L L L L H H H H H H H C

" L , , , , , H L L L L L L L •
H " HIGH Voltage Level
L '" LOW Vollage Level
X = Immaterial

NO~ _

(Al BVRBO is wire-AND logic serving as blanking Input (BI) and/or ripple-blanking oulput (R!Kll.The blanking out (BI) must be open or held
ataH1GH lavelwhenoutpUllunclionsO through 15aradesired, and ripple'bIankinginpul (RBI) mUSlbeopenoralaHIGH level ifblanking
of a cleclmal 0 is not desired. X = input may be HIGH or lOW.

(8) When a LOW level is applied to the blanking input (forced condition) all segment outputs goto a lOW level regardless 01 the state 01
any other input condition. _

(e) Wnen ripple-blanking input (ABI) arid inputs A, B. C. and Dare at lOW level, with the lamp test input al HIGH level, all segment outputs
9Oto a HIGH level and the ripple'blanking outPuJ..I.BBQ) goes to a lOW level (response eond~ion).

(D) When the blanking inpuVripple·blanking output (BIIRBO) is open or held al a HIGH level. and a lOW level is applied to lamp tesl input,
all segment outputs go to a lOW level.

Copyright of Motorola, used by permission 241



Digital Systems for Engineering

® MOTOROI.A

DUAL D-TYPE POSITIVE
EDGE-TRIGGERED FLIP-FLOP

SN54/74LS74A

The SN54174L$74A dual edge-triggered flip-flop utilizes Schottky TIL cir­
cuitry to produce high speed D-type flip-flops. Each .flip-flop has individual
clear and set inputs, and also complementary a and Q outputs.

Infoonation at input D is transferred to the 0 output on the positive-going
edge of the clock pulse. Clock triggering occurs at a vortage Jevel of the clock
pulse and is not directly related to the transition time of the positive-going
pulse. When the clock [npulis at either the HIGH orthe LOW Jevel, the D input
signal has no effect.

DUAL OoTYPE POSmVE
EDGE·TRIGGERED FUp·FLOP

LOW POWER SCHOTTKY

LOGIC DIAGRAM (Each Flip-Flop)

SET ISo~(0lO-)----=d;::;=~--1

CLEAR(CD) ~-lRf~k~d:==~1 (13)

CLOCK ,,;;--f-I~=i'=t.:JO-I---'
3(11)

o o---!=:::::::::{Y--'
2 (12)

'.1

J SUFFIX
CERAMIC

CASE 632·Q8

NSUFAX
PLASTIC

CASE 646-06

DSUFAX
SOle

CASE 751A-02

ORDERIN(lINFORMATlDN

Lomc SYMBOL

Ceramic
Plastic
SOIC

SN54lSXXJ
SN74LSXXN
SN74lSXXO

VCC=PIN 14
GNO=PIN7

10

o So a

CP

13

CD Q

5 12

11

6

4

Co Q

CP

o So a2

3

MODE SELECT - TRUTH TABLE

INPUTS OUTPUTS
OPERATING MODe

So SD D Q Q

Sel L H X H L
Reset (Clear) H L X L H
·Undetermined L L X H H
Load "1" (Set) H H h H L
load"(J' (Reset) H H I L H
6Q.th outp.u.ts will be HIGH while both So and Co are LOW, but the output states are unpredietable
ifSo and Co go HIGH Simultaneously. II the levelS at these! and clearare nearVIL maximum then
we cannol guarantee to meet the minimum level lor VOH'

H, h= HIGH Voltage Level
L. I = LOW Voltage Level
X = Don't Care
i, h (q) = Lower case letters indicate the slale 01 the referenced input (Of output) one set-up lime

prior to Ihe HIGH 10 LOW clock transition.

242 Copyright of Motorola, used by permission



IIppendix 2 Sample data sheets

SN54/74LS74A

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ - UnO

VCC Supply Voltage 54 4.5 5.0 5.5 V
74 4.75 5.0 5.25

TA Operating Ambient Temperature Aange 54 -55 25 125 'C
74 0 25 70

'OH Output Current High 54,74 -0.4 mA

10L Output Current Low 54 4.0 mA
74 8.0

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

limits

Symbol Parameter Min Typ Max Unit Test Conditions

V,H Input HIGH Voltage 2.0 V
Guaranteed Input HIGH Voltage for
All Inputs

I 54 0.7 Guaranteed Input lOW Voltage for
VIL Input lOW Voltage V All InputsI 74 0.8

V,K Input Clamp Diode Voltage 0.85 -1.5 V Vee - MIN, liN - '8mA

54 2.5 3.5 V Vee'" MIN. IOH =MAX, VIN = VIH
VOH Output HIGH Voltage

74 2.7 3.5 V or VIL per Truth Table

54.74 0.25 0.4 V IOL c 4.0mA Vee = Vee MIN,
VOL Output LOW VOltage VIN =Vll or VIH

7. 0.35 0.5 V IOL =B.amA per Truth Table

Input High Current
Dala, Clock 20 "" Vee = MAX, V'N = 2.7 V

'IH
Set, Clear 40

Data, Clock 0.1
mA Vee = MAX, VIN = 7.0 VSet, Clear 0.2

Input LOW Current
III Data, Clock -0.4 mA Vee = MAX, VIN = 0.4 V

set, Clear -0.8

lOS Output Short Circuit Current (Note 1) -20 -100 mA VCC-MAX

'CC Power supply Current 8.0 mA VCC = MAX

Note 1. Not more than one output should be shorted at a lime. nor lor mora than 1 second.

AC CHARACTERISTICS ITA. 25'C Voc. 5 0 V)

Umlts

Symbol Parameter Min Typ Max UnO Test Conditions

'MAX Maximum crock Frequency 25 33 MHz Figure 1

tpLH 13 25 ns VCC=S.OV

tPHL
Clock, Clear. set to Output Figure 1 CL=1SpF

25 40 ns

AC SETUP REQUIREMENTS ITA - 25'C)-
Limits

Symbol Parameter Min Typ Max UnO Test Conditions

'w(H) Clock 25 ns Figure 1

'w(L) Clear, Set 25 n. Figure 2

Data Setup Time - HIGH 20 "' Vcc = S.O v
Is LOW 20

Figure 1
n.

Ih Hold Time 5.0 n. Figure 1

Copyright of Molorola, used by pennission 243



Digital Systems for Engineering

SN54174LS74A

AC WAVEFORMS

cp ..J

a

a_____J

fplH

1.3V

1

'MAx

1.3 V

~(HJ

1.3 V

"The shaded areas Indicate when Ih& Input is permitted 10change lor predictable oulput perlormance.

Figure 1. Clock to Output Delays, Data
set-Up and Hold TImes. Clock Pulse Width

v

I---tw~

R V-
1.3V I.'

'PLH IPHl

i 1.3 V \1.'Va

'PHLr 'PLH

a ~ 1.3V 1.3Y

SET

ClEA

Figure 2. Set and Clear to Output Delays,
set and Clear Pulse Widths

244 Copyright of Motorola, used by permission



Ilppendix 2 Sample data sheets

® MOTOROLA

4-BIT BINARY FULL ADDER
WITH FAST CARRY

SN54/74LS83A

The SN54/74LS83A is a high-speed 4·Bit binary Full Adder with internal
carrylookahead. It accepts two 4-bit binary words (Al""'A4" 81-84) and a
Carry Input (CO)./t generates the binary Sum outputs Ll-L4) and the Cany
Output (C4) from the most significant bit, The LS83A operates with either
active HIGH or active LOW operands (positive or negative logic). The
SN54/74LS28S is recommended for new designs since it is identical in
function with this device and features standard comer power pins.

4-BIT BINARY FULL ADDER
WITH FAST CARRY

LOW POWER SCHOTTKY

JSUFAX
CERAMIC

CASE 62Q-09

NSUFFIX
PLASTIC

CASE 648-08

JtIf!ff!f~
1

LOADING (NOle a)

HIGH LOW

NOTE:
The Flalpak version has the
same pinouts (Connection
Diagram) as the Dual In·Une
Package.

2

"3

PIN NAMES

CONNECTION OIAGRAM OIP (TOP VIEW)

C4 Co
14 13

DSUFFIX
SOIC

CASE 7518-03

Ce<amlc
PI­
sale

SN54LSXXJ
SN74LSXXN
SN74LSXXO

ORDERING INFORMATION

vee =PINS

GND =PIN 12o .PIN NUMBERS ,.--------------,

1.0 U.L. 0.5 U.L.
1.0 U.L. 0.5 U.L
0.5 U.L. 0.25 U.L.
10 UL 5 (2.5) U.L.
10 U.L. 5 (2.5) U.L

'" .,
Q) ®

LOGIC DIAGRAM
A3 .,

00

Operand A Inputs
Operand B Inputs
Carry Input
Sum Outputs (Note b)
Carry Output (Note b)

A2 .,
o 0

Co Al B1
@@>®

A1-"A4
81-84
Co
L1-l4
C,

NOrES:
a) 1 TIL Unit Load (U.L.) =40/lAHIGHl1.6mALQW.
b) The Output LOW drive lactor Is 2.5 U.L. for Militaly (54) and 5 U.L. tor Commercial (74)

Temperature Rangos.

LOGIC SYMBOL

®c,

13

101187"34116

9621514

14

Copyright of Motorola, used by parmission 245



Digital Systems for Engineering

SN54/74LS83A

FUNCTIONAL DESCRIPTION

The LS83A adds two 4-bit binary words (A plus B) plus the incoming carry. The binary sum appeflrs on the sum outputs CE1-I.4)
and outgoing carry (C4) outputs.

Co + (A1 +B1 )+2(A2+B2)+4(A3+Bs)+8(A4+B4) = L1+2L2+4L3+8L!+16C4

Where: (+) = pius

Due to the symmetry of the binary add function the LS83A can be used with either'all inputs and outputs active HIGH (positive
logic) orwith all inputs and outputs active LOW (negative logic). Note that with active HIGH Inputs, Carry Inputcan not be left open,
but must be held LOW when no carry in is intended.

Example:

Co A, A2 A3 .. B, B2 B3 B4 L' L2 13 14 C4

Logic Levels L L H L H H L L H H H L L H

Active HIGH 0 0 , 0 , , 0 0 1 , , 0 0 , (

Active LOW , , 0 , 0 0 , , 0 0 0 , 1 0 (

10+9= 19)

carry+5+6 = 12)

Interchanging inputs of equal weight does not affect the operation, thus CO, A1, 81. can be arbitrarily assigned to pins 10, 11,
13. etc.

FUNCTIONAL TRUTH TABLE

C{n-1) An Bn l:n Cn

L L L L L
L L H H L
L H L H L
L H H L H
H L L H L
H L H L H
H H L L H
H H H H H

C1 Cs are generated Internally
Co - is an external iflpuI
C4 - is an output generated internally

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ Max Unit

VCC Supply VOltage 54 4.5 5.0 5.5 V
74 4.75 5.0 5.25

TA Operating Ambient Temperature Range 54 -55 25 125 ·C
74 0 25 70

'OH Output Current - High 54,74 -0.4 rnA

'OL Output Current - Low 54 4.0 rnA
74 B.O

246 Copyright of Motorola, used by permission



.Appendix 2 Sample data sheets

® MOTOROI.A

a·INPUT MULTIPLEXER

The nUMSI SN54/74LS151 is a high speed a·input Digital Multiplexer.
It provides, in one package, the ability to select one bit of data from up to eight
sources. The LS151 can be used as a universal function generator to
generate any logic function of ·four variables. Both assertion and negation
outputs are provided.

• Schottky Process for High Speed
• Multifunction Capability
• On-Chip Select Logic Decoding

• FUlly Buffered Complementary Outputs
• Input Clamp Diodes Limit High Speed Termination Effects

SN54/74LS151

B-INPUT MULTIPLEXER

LOW POWER SCHOTTKY

,,-
t

J SUFFIX
CERAMIC

CASE 62Q.09

NSUFFlX
PLASTIC

CASE 648-0B

DSUFFlX
SOIC

CASE 751 8-03

PIN NAMES LOADING (Note a)

HIGH lOW

ORDERING INFORMATION

SN54LSXXXJ Cemmie
SN74LSXXXN Plastic
SN74LSXXXD SOle

NOTES:
a) 1 TTL Unit Load (U.L.) '" 4O).lA HIGHl1.6 mA LOW.
b) The OUtput LOW drtve lactor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)

Temperature Ranges.
z z

Select Inputs
Enable (Active LOW) Input
Multiplexer Inputs
Multiplexer Output (Note b)
Complementary Multiplexer Output

(Naleb)

0.5 V.L. 0.25 V.L.
0.5 V.L 0.25 V.L.
0.5 V.L. 0.25 V.L.
10 U.L. 5 (2.5) V.l.
10 V.L. 5 (2.5) Vol.

11­
10­
9-

LOGIC SYMBOL

iiill'fYTi
E 10J, 121314151617

80
8,
8,

! !

Vee = PIN 16
GND= PIN 8

Copyright of Motorola, used by pennission 247



Digital Systems for Engineering

SN54/74LS151

LOGIC DIAGRAM
10 12 I, 15

z z

® 10 ® ® 0 @l 1.9 @l @l

@l

®
0

v

~
-'

v t J ~ , ,-

= PIN 16 g~

=PIN8 ®

E

Vee
GND
O=PINNUMBERS

FUNCTIONAL DESCRIPTION
The LS151 is a logical implementation of a single pole,

a·position switch with the switch position controlled by the
state of three Select inputs, SO, 51, 52. Both assertion and
negation outputs are provided. The Enable input (E) is active
LOW. When it is not activated, the negation output is HIGH
and the assertion output is LOW regardless ofall other inputs.
The logic function provided at the output is:

Z·E· (10.8",-8,.82..+. h· 80.8,. 82+.l2· 80· 8,·S2
+13,50.51'52+14-50.51-$2+15,50.51,52+[6 So

.8,.82+17 ·80' 8,·82)'
The LS151 provides the ability, in one package. to select

from eight sources of data or control information. By proper
manipulation of the inputs. the LS151 can provide any logic
function of four variables and its negation.

TRUTH TABLE

H _ HIGH Voltage Level
L <0 LOW Voltage Level
X= Don't Care

E So " So 10 I,
" " "

Is '. " Z Z

H X X X X X X X X X X X H L
L L L L L X X X X X X X H L
L L L L H X X X X X X X L H
L L L H X L X X X X X X H L
L L L H X H X X X X X X L H
L L H L X X L X X X X X H L
L L H L X X H X X X X X L H
L L H H X X X L X X X X H L
L L H H X X X H X X X X L H
L H L L X X X X L X X X H L
L H L L X X X X H X X X L H
L H L H X X X X X L X X H L
L H L H X X X X X H X X L H
L H H L X X X X X X L X H L
L H H L X X X X X X H X L H
L H H H X X X X X X X L H L
L H H H X X X X X X X H L H
-

248 Copyright of Motorola, used by permission



AePendix 3
Glossary

Adder - A digital device that adds binary data.

Analog cireuit - An electronic circuit that processes analog signals.

Analog signal - An electrical signal that is continuous and varies be­
tween certain limits.
AND gate - A logic circuit component that produces a 1 or a high
output when all its inputs are at a 1 or high level.

Astable - Having no stable state.

Asynchronous - Having no fixed time relationships.

Binary number system - A number system in which only two symbols
(1 and 0) are used to represent any quantity, for example, 1001, 100010.

Bistable - Having two stable states.

Bit - A single part of binary or digital data, such as, a 1 or a O.

Boolean algebra - A mathematical notation in which digital circuits
may be represented and manipulated.

Boolean expression - An equation in Boolean algebra representing a
digital circuit.

Byte - A set of bits; usually eight bits make up one byte.

Combinational logic circuit - A logic circuit with many inputs and
one or more outputs; the outputs are directly dependent on some logical
combination of the inputs.
Comparator - A digital circuit that looks at different digital inputs
and indicates whether one may be equal to, greater than, or less than
the other.
Data - Information that is processed in a digital system or computer
system.

Data sheet - Sheets of data from electronic component manufactur­
ers. These sheets give detailed information on a particular electronic
component. Data. sheets may be compiled into data books or put onto
CD-ROM.
Decoder - A digital device that converts coded information to another
form.
Demultiplexer - A digital device that distributes digital data from one
source or line to several lines.
Digital circuit -An electronic circuit that processes digital signals.

Digital signal- An electrical signal that has distinct levels for certain
fIXed time periods.
Encoder - A digital device that conv.erts information into a coded form.



Digital Systems for Engineering

Exclusive-NOR gate - A logic circuit component that produces a 1 or
a high output when the inputs are not at the same logic level.

Exclusive-OR gate - A logic circuit component that produces a 1 or a
high output when the inputs are at the same logic level.

Feedback - A portion of the output is connected back to the input.

Flip-flop - A synchronous bistable device.

Integrated circuit (Ie) - Electronic component made of semiconduc­
tor material. The device consists of a plastic or ceramic package with
pins that are internally linked to the various input and output points
of the circuitry found within the package.

INVERTER (or NOT gate) - A logic circuit component that produces
the opposite binary level to the input level.

Karnaugh map - A chart representing the functioning of a combina­
tional digital circuit. It is used for the simplification Of logic circuits.
Latch - A bistable digital device.

Least Significant Bit (LSB) - The bit of a binary number that carries
the least value.
Logic level (or logic state) - The state of a digital signal at a certain
point in time - it may be high or low.

Logic symbol - Graphical sketch or diagram of a logic circuit compo­
nent, for example, of an AND gate.

Monostable - Having only on stable state.

Most Significant Bit (MSB) - The bit of a binary number that carries
the highest value,

Multiplexer - A digital device that can convert data from several lines
into a single line.

NAND gate - A logic circuit component that produces a 0 or a low
output when all its inputs are at a 1 or high level.

NOR gate - A logic circuit component that produces a 0 or a low output
when any its inputs is at a 1 or high level.

OR gate - A logic circuit component that produces a 1 or a high output
when any of its inputs is at a 1 or high level.

Parity bit - A bit that is attached to a group of information bits to
make the total number of Is even or odd.
Synchronous - Having a fIXed time relationship.

Troubleshooting - The process of testing a faulty practical electronic
circuit and locating the fault.

Truth table - A table representing the functioning of a digital cir­
cuit. The table shows the various inputs and corresponding output logic
states of that particular digital circuit.

Universal gates - These logic gates may be used to replace any other
logic gate in a digital circuit. These are the NAND and the NOR gates.

Waveform (or signal) - A representation of an electrical quantity as
it varies over time, for example, voltage or current.

250



Appendix 4
Answers to self-evaluation exercises

Unit 1

1 analog and digital

2 true

3 An analog signal is continuous and has a range ofvalues,
within limits. A digital signal is discrete and has fIxed
values.
4.1

v

......---...,-----_.
o

4.2

v
~ ---------------------------

~ --------------------------

5 bit: a single digital logic level
byte: a set of eight bits

6 1024 + 8 = 128 bytes

7 8MB=8 X 106 bytes

= (8 x 106) x 8 bits

=64 x 106 bits

8 Two bytes: 10101100 10100011

1,51



Digital Systems for Engineering

9

1000011010

Unit 2

1

A !LJ
B==+-iU
x 11 t-:--

2

""'. -----
....'

3 high

4 OR gate;
The door lock can be opened by key 1 OR key 2.

5 The OR gate is functioning correctly. To turn the LED
on, a high level must be output from the OR gate. For
the output to be high, anyone of the inputs must be
high.

6 This gate cannot be an INVERTER as an INVERTER
has only one input.

OR gate truth table

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 1

252



Appendix 4 Answers to self-evaluation exercises

AND gate truth table

Input 1 Input 2 Output
0 0 0
0 1 0
1 0 0
1 1 1

With Input 1 at 0 level, the output is at a 0 level. There­
fore the gate must be an AND gate.

Unit 3

A B C X
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

1.1 x= high

1.2 23 = 8 rows

1.3

1.4 X=A+B+C

1.5

A -----lr-L i ,-
~==r='1='1/::f===;-
x---L+-+----l=====i==

1.6 7404, 7432

2.1 3-input ORgate: Z = S + T + U

253



Digital Systems for Engineering

2.2
S T U Z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

2.3

s n u ,
T

,

u
I . L

z h I

S T U Z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

3.1 Z = (8 +T)+ U

3.2

3.3 Yes. Functionally they are equivalent as they have
the same truth table. However, different Ies are
used: (1) a 3-input OR gate (2) two 2-input OR gates.

4 Yes. They have the same truth table and are functionally
equivalent.

5.1 Yes. If Q is 0, then the output of the first AND gate
must be 0 (irrespective of what the other input is).
This 0 is then the input for the second AND gate.
The output of the second AND gate must also be 0
(again, irrespective of the other input to this AND
gate).

254



Unit 4

Appendix 4 Answers to self-evaluation exercises

5.2 T = (p. Q)(R+S)

p Q R S T
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

1 X=A+B+C

A B C X
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

2 .Z= (F+G)H

F G H Z

0 0 0 1
0 0 1 1
0 1 0 0

0 1 1 1
1 0 0 0

1 0 1 1
1 1 0 0

1 1 1 1

255



Digital Systems for Engineering

G

H--+-----'------i-1
z I

3 Fig 4.25: 3-input NOR gate IC no. 7427

Fig 4.26a:2-input OR gate IC no. 7432

2-input NAND gate IC no. 7400

INVERTER IC no. 7404

4 IC 1 pin 14: +5V; pin 7: OV
IC 2 pin 14: +5V; pin 7: OV

A prn 1 pin 2 pin 1
prn3

IC1
7404

B
pin 3 pin 4

IC1
7404

5 No.

pIn 4 pln6

r-~PI"~5-LJ)----X

IC'
7400

J K L J+K+L J+K+L
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 0

r r
These two columns are not the same!
6.1 INVERTER

A---j)o--X
X=A

A-Q>--X
X =A+A

=A

256



UnitS

Appendix 4 Answers to self-evaluation exercises

6.2 AND gate

:=D--x
X=AB

A
X

B

X =A+B
=A-8
=AB

7.1 F=ABC+DE

7.2 V = (R + S)(TU)

8.1

i~'
8.2

:~B
8.3

;~,

1.1 W=X

1.2 Z=A

1.3 Q= I

257



Digital Systems for Engineering

1.4 R=AB+CD

1.5 S = BC+AB+AC

1.6 A=XYZ

2.1 left-hand side = A + B + C + D
right-hand side = A + B + C + D
Proved!

2.2 left-hand side = AB
right-hand side = AC + AB
Disproved!

2.3 left-hand side = XZ
right-hand side = XY + XZ
Disproved!

2.4 left-hand side = 0
right-hand side = 1
Disproved!

3.1 X=ABC+ABC+ABC+ABC+ABC

3.2 Y=JKL+JKL+JKL+JKL+JKL

3.3 L = XY +XY;
M=XY+XY

3.4 Z=ABCD+ABCD+ABCD+ABCD+ABCD

4.1 X=AC+B

4.2 Y=KL+KL+JK

4.3 The expression in 3.3 cannot be simplified

4.4 Z=CD+ABCD

Unit 6

1 Use of Boolean algebra, or use of Karnaugh maps.

2 • fewer components used

• fewer connections between components

• cheaper

• more reliable

• easier to troubleshoot

258



Appendix 4 Answers to self-evaluation exercises

3.1
ST

R 00 01 11 10

0

1

3.2
Xi

00 01 11 10

00

01

11

10

vw

4.1 Z = 1
y

x 0 1

0 1 1

1 1 1

o 1

11

1

o

10

1

1

259



Digital Systems for Engineering

ST
R 00 01 11 10- ...... r

0 (1 1 1 1)

1 .) 0 0 1
"--

CD
AB_ I 00 01 11 10 I

00I\{ 1 1 ~)

01 1 0 0 1

11 1 0 0 1

10 It) 1 1 ~

4.5 X=ABC+ACD+ACD+ACD+ABD+ABCD
There are also other possible answers.

CD
AS 00 01 11 10

'100 1 1 0

01 0 1 0 0
I ,..--..

11 1 0 1 0
-
10 ~ 0 0 (~-

260



Appendix 4 Answers to self-evaluation exercises

4.6 Z =WX+ WX+ VXY
Xy

00 01 I 11 10 I

00 0 0 1\1 1/

01 1 1 0 0

11 1 1 0 l'

10 0 0 1(1 J..,\

vw

5.1 X=A+B
B

A 0 1

0 0 '1'

(1
'\

1 1.4

Be
A 00 01 11 10

0 1 1 1 1

1 1 1 1 0

261



Digital Systems for Engineering

Unit 7

1 combinational, sequential

2
A --'-l)...__ X
B ~r-+-LJ

LU--Y

3 Use of truth tables, and logical reasoning.

4 • analyse the problem

• determine the input and output variables

• draw the truth table

• derive the Boolean expression

• simplify the expression

• draw the logic circuit

5 Simplification using Boolean algebra, or using Karnaugh
maps.

6 • Wire up the circuit on a test board using actual lCs.

• Check the wiring.

• Power up the circuit.

• Test the circuit (using LEDs for the outputs).

• Compare the truth table of the tested circuit with
the theoretical truth table.

7 Replace all the logic gates with NAND gates. The circuit
redrawn with NAND gates only will look like this:

~""""""""""""i

x

Y-----i-L.->
Replacing AND gate

z------+:.-L[ J .
Replacing OR gala

This circuit may be constructed with two quad NAND
lCs (7400), and can then be tested.

262



I\ppendix 4 Answers to self-evaluation exercises

8 Input variables:
Guard 1 key - A
Guard 2 key - B
Guard 3 key - C
Guard 4 key - D
Key inserted: logic 1
No key: logic 0

Output variables:
Small safe - X
Large safe - Y

Safe locked: logic 0
Safe opened: logic 1
Truth table:

A B C D X Y

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 1 0

1 0 0 0 0 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 0

1 1 0 0 1 0

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 1 1

263



Digital Systems for Engineering

Karnaugh map for X

CD
S 00 01 11 10

~
00 0 0 1 0

01 0 1 11 1

11 1 1 1 1

10 0 1 1 1

A

X =AB +AC +AD + BC+ BD+ CD
Y=ABCD
Logic circuit

x

y

l AS

"1 AC·

1 8~1

1 -
I CD

~ ABCD

o

A
S

C

9 Input variables:
Judge I-A
Judge 2 - B
Judge 3 - C
Judge 4 - D
Product liked: logic 1
Product disliked: logic 0
Output variables:
Lamp 1 good - X
Lamp 2 not good - Y
Lamp 3 tie-Z

Lamp on: logic 1
Lamp off: logic 0

264



I\ppendix 4 Answers to self-evaluation exercises

Truth table:

A B C D X Y Z

0 0 0 0 0 1 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 0 1

0 1 0 0 0 1 0

0 1 0 1 0 0 1
0 1 1 0 0 0 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0
1 0 0 1 0 0 1
1 0 1 0 0 0 1

1 0 1 1 1 0 0

1 1 0 0 0 0 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 1 0 0

Karnaughmap for X

co
AS 00 01 11 10

00 0 0 0 0

,-..

01 0 0 1 0

11 0 (1 1 1)

10 0 0 ~ 0

.

X = BCD + ABD +ABC +ACD

265



Digital Systems for Engineering

Karnaugh map for Y

CD
AB_ I 00

, 01 11 10

----.

((00 1) 1 0
- /'

01 1 0 0 0

11 0 0 0 0

10 fi\ 0 0 0

Karnaugh map for Z

CD
AS 00 01 11 10

00 0 0 1 0

01 0 1 0 1

11 1 0 0 0

10 0 1 0 1

No looping possible
Another solution for Z would be: The decision is a tie if it
is: NOT [(good) OR (not good)], i.e. Z = NOT (X OR Y)
Therefore, Z = X+Y

266



Appendix 4

Logic circuits

Answers to self-evaluation exercises

:=1H=':===;H=:[yA~B~CI
C---f~-1

o-HH-;----rl++-LJ

10 Input variables:
LSB of binary number - Bo
Next bit of binary number - B1

Third bit of binary number - B2
MSB of binary number - B3

Output variables:
X - high if binary number
B3 B2 B1 Bo 2': 01012

B. B. Bl Bo X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

x

y

267



Digital Systems for Engineering

Karnaugh map for X

B,Bo
B2

00 01 11 10

00 0 0 0 0

01 0 1 1 1

11 1 1 1 1

10 1 1 1 1

X = B3 +B2Bl +B2Bo
Logic circuit

~=_-==_-=i32-L •
B' __~

11 Input variables:
Switch I-A
Switch 2 - B
Output variables:
Light-X
Truth table

A B X
0 0 0
0 I 1
I 0 1
I 1 0

X=AB+AB
Logic circuit

light off
light on
light on
light off

268

A -...--1:»-'-,
B -f---1--'--l-l x



Appendix 4 Answers to self-evaluation exercises

12.1
R S T X
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

X=RST+RST+RST+RST

=R$S$T

12.2 X=ABC+ABC

13.1 Rewrite all the binary numbers with seven bits: ­
00010012
00100112
00010012
10000002
00111112
00010112

Now arrange them in order of increasing magnitude:
00010012
00010012
00010112
00100112
00111112
10000002

13.2 00010012 = 910
00100112 = 1910
00010012 = 910
10000002 = 6410
00111112 = 3110
00010112 = 1110
In order of increasing magnitude:
910 910 1110 1910 3110 and 6410

269



Digital Systems for Engineering

13.3 First number 10012: A
Second number 100112: B
To compare the numbers, use 5 bits each.
A written as~ As A2 Al Ao with~ the MSB.
B written as B4 B3 B2 Bl Bo with B4 the MSB.
A=Bif:
~ = B4 and As = B3 and A2 = B2 and Al = Bl and
Ao=Bo

Logic circuit

A. "1IB. /

A3 1I "B3 /

IA, II " '\
B2 / J X

I HJGHif
A,

1I "
A.'

B, /

Ao .-
IIBo ,~

A>Bif:
(~> B4) or
(~ = B4) and (As > B3) or
(~ = B4) and (As = B3) and (A2 > B2) or
(~ = B4) and (As = B3 ) and (A2 = B2) and (Al > Bl )

or
(~ = B4) and (A3 = B3) and (A2 = B2) and (Al = Bl )

and (Ao > Bo).

270



I1ppendix 4 Answers to self-evaluation exercises

Logic circuit

A"
B,

Aa
B,

Aa
B,
A,
B,
A,
Bo

A,
B,
A,
B,
A,
B,
A,
B,

--[:; I 'I
/

~.~
'I
/v

"- I 'I
/ }-v

--f'» J 'I

}-v
~

-1>0- ~
'I

II )0--

II

II "

II "

y
HIGH If
A,B

14 Number A written as A<, A2 Al Ao with A<, the MSB.
Number B written as B3 B2 BI Bo with B3 the MSB.
A<Bif:
(A<, < B3) or
(A<, = B3) and (A2 < B2) or
(A<, = B3) and (A2 = B2) and (AI < BI) or
(A<, = B3) and (A2 = B2) and (AI = BI) and (Ao < Bo)

Logic circuit

z
HIGHll
A<B

~=±~=r---~~
A, _-''''~s---''
B, r----"
A, _-''''~s---''
B,~-LJ-~D

~==3?tt~c
B,--~1I-/

~==:=j[>~

A, ===V<r-----lB,

271



Digital Systems for Engineering

Unit 8

1.1 1011001002

1.2 0001 1001

1.3 16416

2.1 377510

2.2 0011 0111

3.1 50A16

3.2 110012

4 Po"
80

0101 0110 (BCD)

0111 0101 (BCD)

A, --=:r:FA~~- Sum,
82 Carry oul

5 Decoder: Converts a code, for example, binary to a
specific value like decimal.
Encoder: Converts a number like decimal to a code like
binary.

6 Data selection

Unit 9
1

11 f2

272

1

r0- T 0 T 01---

ClK Op- ClK 0 I:>-



Appendix 4 Answers to self-evaluation exercises

2 Tie preset and clear input to Vce.

01----<0 a Al

CLK a
CLR

02 --1----1 0 a A2

C --I---l>CLK a
CLR

3 Tie preset and clear inputs to Vce.

Al AO

Input

C

1 1
PRE PRE

0 a 0 af--

CLK 00- ~ >CLK 00-

CLR CLR
'I' 'I'

4 Tie preset and clear input to Vce.
AO Al A2

C

I 1 V 1
PRE PRE PRE

J J f-Ja I-- a al-
i- />CLK ~ />CLK ~ />CLK_

I- Op.... '- I-K
apo- K a p....

K Lf-
CLR CLR CLR
Y Y Y

273



AePendix 5
·Recommended reading

<) Digital Fundamentals by Thomas L. Floyd.
Macmillan College Publishing Company / Prentice Hall
International
ISBN 0-13-228677-7

<) Introduction to Digital Circuits by Theodore F. Bogart, Jr.
Glencoe Macmillan / McGraw-Hill
ISBN 0-02-819941-3

<) Schaum's Outline of Theory and Problems of Digital
Principles by Roger L. Tokheim
McGraw Hill
ISBN 0-07-065012-8


