ACENCY FOR INTERNATIONAL DEVELOPMENT WA INGTON, D. C. 20823 BIBLIOGI APHIC INPUT SHEET				BATCH FOR AID USE ONLY
1. subject CLASSIfication	A. PRIMARY Agriculture			AM40-0000-0000
	B. SECONDARY Aquatic biology SUBTITLE			
2. TITLE AND SUBTITLEEstimation of standing crops and rates of feeding fish in ponds				
3. Authoris).Swingle,H.				
$\begin{aligned} & 9 . \text { DOCUMENT }^{2} 968 \\ & \hline \end{aligned}$	date	5. NUMAER OF PAGES $9 p$.	6. ARC NUMEER Arc	
7. REFERENCE ORGANIZATION NAME AND ADDRESS Auburn				
8. SUPPLEMENTARY NOTES (Sponaoring Oraanizatlon, Publishors, Avallabillty) (In FAO fisheries rpt.44,v.3:III/E-10,p.416-423)				

10. CONTROL NUMBER	11. PRICE OF DOCUMENT
PN-RAA-977	
12. DESCRIPTORS	
Estimates Feeding Ponds Populations	13. PROJECT NUMBER
A1O B00.1 $(4 \cdot 74)$	14. CONTRACT NUMEER
CSD-1581 GTS	

H. S. Swingle
Auburn University Agricultural Experiment Station Auburn, Alabama, USA

Reprinted From

Proceedings of the World Symposium On Warm-Water Pond Fish Culture, Rome, Italy

May 18-25, 1966
FAO Fisheries Report 44, Vol. 3: III/E-10, p. 416-423
1968

by

H. S. Swingle

Auburn University
Agricultural Experiment Station Auburn, Alabama, U.S.A.

CONTENTS

Page
L SOURCES OF ERRORS IN COMPUTATION OF STANDING CROPS AND RATES OF FEEDING 418
2 USE OF AMOUNT OF FEED SUPPLIED FOR ESTIMATES OF STANDING CROPS 418
2.1 Calculation of pond conversion value "S" 418
2.2 Sizes of tilapia and efficient rates of feeding 419
2.3 Sizes of catfish and efficient rates of feeding 419
2.4 Equation for estimation of standing crop from feed supplicd 420
2.5 Equations relating to expected weight of fish 421
3 REFERENCES 423tbstract

Rate of daily feeding is calculated either as a percentage of the total weight of the itanding crop or on the basis of the daily increase in total weight of the standing crop. 3oth methods are subject to two sources of error. The first is the possible error in esti nating the average weight of the population and the second is the error in estimating the umber of individuals in a population at any one time, on the basis of seining samples.

Estimates of standing crops may be made from the total amount of daily feed,added o any one point, from the equation:

$$
\mathrm{W}=\mathrm{mR}^{\mathrm{N}} \text {, where }
$$

$\mathrm{I}=$ initial weight of fish,
$R=$ the rate of change in weight during interval T, and
$N=$ number of intervals " T " at which the daily feeding is readjusted.
For estimation of the rate of change in weight ' R "; it is necessary to know the pond conrersion value " S " for the feed used at the rate it is being fed:
$R_{T}=1+\frac{D P}{S}$, where
$D=$ number of days feed is added during interval T,
$\mathrm{T}=$ intervals at which feeding rate is readjusted,
$\mathbf{P}=$ daily feeding rates from 0.02 to $0.05,!2$ percent to 5 percent of body weight),
$\mathrm{S}=$ pond conversion value at P and T for a particular feed and for a particular species of fish.

Resume

La quantité d'aliments fournie journellement est calculce soit en pourcentage du poids total du stock présent, soit sur la base de l'accroissement journalier du poids total de ce stock. Les deux méthodes peuvent être entachée d erreurs au depart: crreur dans 1'estimation numérique du stock à un moment donné.

Une estimation pondérale du stock pout être faite à partir du poids total de la ration alimentaire quotidienne sommée jusqu'au moment consideré à laide de l'ecquation
suivanle: suivante:

$$
\mathrm{W}=\mathrm{IR}^{\mathrm{N}} \mathrm{ou}
$$

$I=$ poids initial du poisson
$R=$ le taux d accroissement en poids au cours de l^{\prime} intervalle T, et
$\mathrm{N}=$ le nombre d'intervalles 'TI' où la ration quotidicnne a ceté modifiée
Pour estimer le taux d'áccroissement de poids "R", il faut comaitre le taux de conversion "S' applicable a l'etang en fonction des aliments fournis et de la quantité distribuée:

$$
\mathrm{R}_{\mathrm{T}}=1+\frac{\mathrm{DP}}{\mathrm{~S}} \text { ou }
$$

$\mathrm{D}=$ le nombre de jours durant lesquels une ration alimentaire est fournie pendant 1^{\prime} intervalle T
$\mathrm{T}=$ les intervalles auxquels la ration alimentaire est modifiée
$P=$ le taux d^{\prime} alimentation quotidien allant de 0,02 a 0,05 ! 2 a 5 pour cont du poids corporel
$S=$ le taux de conversion de l'ctang en fonction de P et T, pour un aliment détcrminé et une espèce doméc de poisson

SSTIMACION DE LOS RECURSOS POTENCIALES EXiSTENTES Y TASAS DE ALIMENTACIÓN DE JOS PECES EN LOS ESTANQUES

Extracto

La proporción de alimentación diaria se calcula, sea como poreentaje del peso total de los efectivos existentes de la poblacion, sea sobre la base del ineremento diario del peso total de dichos efectivos. Ambos métodos estan sujetos a dos causas de error. El primero es el posible error en la estimacion del peso medio de la población, y^{\prime} ($]$, segundo es el que procede de la estimacion del mumero de individuos en una población en un momento cualguiera sobre la base de muestras obtenidas mediante redes de cerco. La estimacion del efectivo en organismos pucde realizarse partiendo de la cantidad total de alimento anadida en cualguier punto, de la ceuación:
$\mathrm{I}=$ peso inicial del pez, $W=1 R^{N}$, en la que
$R=$ cambio en peso durante el intervalo T, y
$N=$ numero de intervalos " Γ " a los cuales ha sido veajustada la alimentación diaria,
Para la estimación de la tasa de cambio en peso "R", es necesario conocer el valor "S" de conversión en el estanque para el alimento utilizado on la proporción en que se suministro:
$\mathrm{D}=$ numero de $\mathrm{R}_{\mathrm{T}}=1+\frac{\mathrm{DP}}{\mathrm{T}}$, en la que
$D=$ numero de dias en que se ha anadido alimentos durante el intervalo T,
$T=$ intervalos a los que se ha reajustado la proporcion de alimentación,
$\mathrm{P}=$ tasas diarias de alimentacion de 0 , 02 a 0,05 (2_{i}^{c} a $5_{6}^{n}:$) del peso corporal,
$\mathrm{S}=$ valor de conversión del estangue para P y T^{\prime} y para un alimento determinato y una

III/E-10

1 SOURCES OF ERRORS IN COMPUTATION OF STANDIKG CROPS AHD RATES OF FEEDING

The buecessful fish culturist must supply feed to his fish at daily rates that allow efficient food utilization. In American and European fish cultures, amounts to be fed daily are calculated upon the basis of a certain percentage of the body weight of all fish in the pond (the standing crop). The percentage rate used varies with temperature and size of the fish being fed; the ai:ount fed is readjusted weekly, bi-weckly, or monthly as the crop increases in total veight and average gize.

In Israel, Tal (1955) recomomiod bi-keckly seining to determine the average daily growth of the comon carp (crinims carpio). The average daily increase during the past twoweek period expressed as gain in hilos per hectare per day is then multiplied by a factor to give the amount of feed to be given the fish daily during the aext two-veck period. The factors recomended increase with increasiag average size of the carp.

Both methods rely lipon estimates of average size of sish made from seining samples and the results are multiplied by the number of fish estinated to be present per hectare, in one case to cstimate the beight of the standiag crop and in the other to estimate gain per hectare per day.

The estimates are thus open to two main sources of error. first, the average veight of fish taken in the seire may not represent the truaverage veight within the population at that time. In experime:ts at huburn, it vas found necessary vith the channel citfish (Ictaluris nunctitug) to weigh a semple of not less than 100 fish fron ponds rating from 0.5 to 10 ha to cbian a relatively accurate avcrage. jespite such cire, averoge veights of fish takea by seinirg have occasionally varjed as mach as eight to 19 percomt froa the

 the averace size. It secened probzble that samicr fich remain in tie shallow water and uare thus nore vulnerable to seiaing. Seinirg shorty arias eceding often gives amormally high weights for latser fish due to their habit of crataing their stomachs with more than their share of feed. Corrections can be riade fo: this by using average veights of fiah of the same lengths in the calculations.

The second sou:ce of error in estinating feed required is that the fish culturist selcom knows accurately the murber of fieh per hectare. fle whally mova the momer ritecked ard
 average survivil in ais calculations. Use of cjeher ofica lends to gerioun craco in calcum lations of the feed to de given deily, Vith the ecalce varicty of comon carp, at this Station survivas normady varicd fren 97 to 10 D percent per year and here wec of the muber
 heavy outfious of water. The mirror varicty of comon carp has given anvivala iron 80 to 90 percent per year, ytereas tilapias had errvivis fros 65 to 90 percent. In these cased estinates of the fish present wy be quite inarcuirte.

2.1 Calcurasion of nond comersion viun":"

 known for a particular seccies and for various riocs of fers...;, ia apocored that this ia-
 from the feed to the weight of fish etocled. Since tle feed and watcs cirectiy or indirect. ly from feeding fill prociace edditical fish-focd orguise..3, it is better to we the pond conversion value (5) which is calculated: 5 a $\} q$ foce adtad

2.2 Sizes of tilapia and efficient rates of feeding

For Java tilapia, Tilapia mossambica, Nile, tilapia, T. aurea, and Congo tilapia, T. $_{\text {. }}$ melanopleura, with Auburn No. 2 pelleted feed during periods when the water temperatures remained above $22^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$, " $\mathrm{S}^{\prime \prime}$ conversions varied from 0.7 to 1.2 with an average of 1.0 when fed at the rate given below for various sizes of fish:

Average total length	
cm	in
$2.4-12.0$	$1-5$
$12.0-24.0$	$5-10$

Rate daily

Percent of body weight
5
3

2.3 Sizes of catfish and efficient rates of feeding

In experiments with both white catfish (Ictalurus catus) and channel catfish, "s" conversion values for the Auburn No. 2 pelleted feed, when water temperatures were above $16^{\circ} \mathrm{C}$, varied from 1.5 to 2.0 with an average of 1.7 when the daily feeding rate for various sizes of fish were:

Average total length		Daily rate of feeding
cm	in	Percent of body weight
$2.4-12$	$1-5$	5
$12.0-15.6$	$5-6.5$	4
$15.6-24.0$	$6.5-10$	3
$24.0-28.5$	$10-12$	2.5
31.2 plus	13 plus	1.5

2.3.1 Variations in "S" values

Results indicated that use of a standard pond conversion value of 1.7 for both channel catfish and white catfish estimated final production satisfactorily, but underestimated the standing orops during spring and summer. This evidently was because natural fish-food organisms furnished a material part of the feed until a weight of approximately 1,000 kilos fish per hectare was reached. Examination of the data indicated that natural feeds were causing growth during summer period of approximately $2 \mathrm{~kg} /$ ha of fish per day. In effect, the "S" pond conversion then becomes a constantly increasing value during this period of growth. The average calculated "S" values for gradually increasing total cumulative feed, using average seining values for standing crops were as follows:

Cumulative feed added, kg

100

200
400
800
1000
1200
1500
1700

Conversion S
0.5

0.7

1 Pelleted dry feed containing 46 percent protein, 25 percent carbohydrates and 5 percent fat (Prather, 1958).

III/E-10

2.3.2. Estimation of the standing crop from feeding records, seining and Prom draining

Following are comparisons of standing crop estimates in $\mathrm{kg} / \mathrm{ha}$ made from seining records, by dividing total cumalative feed by the appropriate 8 conversion, and that found upon draining.

By seining	From feed	Upon draining
235	253	
433	578	
692	690	
-	1170	1303
183	249	
366	378	
501	708	
-	1204	1185
231	370	
363	560	
783	892	
1495	1251	1255
251	320	
531	480	
847	892	
1288	1252	1193
876	835	
764	1020	
1995	1761	
-	3165	3544

While disagreements in estimates of standing crop occurred, that calculated from feed supplied appeared as accurate as that from seining records.

In other experiments in these ponds without feeding or fertilization, the standing crop has averaged $97 \mathrm{~kg} / \mathrm{ha}$ at the end of 210 days. If this correction is applied, the final s conversion would be changed by approximately 0.1 - from 1.7 to 1.8. The same correction cannot be applied to the S conversion for standing crops from 200 to 700 kg and would not help in estimating these standing crops.

2.4 Equation for estimation of standing crop from feed supplied

From these data it would appear that relatively reliable estimates of the standing crop or yield may be made from the equation:
(1) Standing crop = I plus ${ }_{\text {N }} \mathrm{F}$
where I minitial weight of fish stocked
$P=$ weight of feed added
S - pond conversion value for cumulative amount of feed added and for the species of fish stocked.

For example channel catfish, where $I=50 \mathrm{~kg} ; F=2210 \mathrm{~kg}$ Auburn No. 2 pelleted fsed ; and $s=1.7$, with the range $1.5-2.0$.

Standing crop $=50$ plus $\frac{2210}{1.7}=1350 \mathrm{~kg}$
but varying from 50 plus $\frac{2210}{1.5}=1523 \mathrm{~kg}$
to $\quad 50$ plus $\frac{2210}{2.0}=1155 \mathrm{~kg}$
Calculations of standing crops from the feed should be useful in checking the accuracy of estimates from seining. It is evident that both are subject to certain inaccuracies, but from different sources.

2.5 Equations relating to expected veight of fish

From the foregoing results, it also appeared possible to devise equations relating feed supplied to the standing crop of fish to be expected after a certain period of feeding, as follows:
(2) $R_{T}=1+\frac{D P}{S}=$ Rate of change in weight during interval T
when $D=$ number of days on which feed is added during interval T
T e equal intervals at which feeding rate is readjusted (e.g. 1-week, 2-week, and 4-week intervals.);
$P=$ daily feeding rates from 0.02 to 0.05 (2 percent to 5 percent rates); and
S a pond conversion values at P and T for a particular feed and for a particular species of fish.

Example: Where $T=4$ weeks, $D=24$ when feeding is 6 days veekly, then, for the channel catfish where $P=0.03$ and $S=1.6, R=1.0+\frac{(24)(0.03)}{1.6}=1.45$
The general forms of the equations are:
(3) $W=I\left(1.0 \text { plus } \frac{D P}{S}\right)^{N}=I R^{N}$; or $\log V=\log I$ plus $N \log R$
where W. total veight of the standing crop at end of M intervals of feeding;
$\mathbb{N}=$ number of T intervals during which fish have been fed at rate mpn;
$I=$ initial weight of fish, then
Number of "T" intervals of feeding required to reach a certain veight ure:
(4) $N=\frac{\log W-\log I \text {, and }}{\log R}$

Initial weight required to reach a specified total weight is:

$$
\text { (5) } \log I=\log W-N \log R_{0}
$$

The above equations are useful in planning methods of management and in understanding the factors affecting production.
2.5.1 Limits of feeding within which the equations apply.

Range of use is limited by the maximum safe rates of feeding/hectare/day, which, when using Auburn No. 2 pelleted feed with the following species are:

```
Channel catfish - - - - 39 kg; 34 kg in mid-summer
White catfigh - - - - - 39 kg; 34 kg in mid-summer
Java and Nile tilapia - 55 kg
Congo tilapia - - - - - 38 kg.
```

In addition, feeding must be at vater temperatures above $16^{\circ} \mathrm{C}$.
Since the above are limitations. in the usefulness of equations (3), (4), and (5) it is evident that for channel catfish fed at the three percent rate, we can calculate as follows the maximum W for which the equation holds.

$$
\begin{aligned}
3 x & =39 \mathrm{~kg} \\
100 \% & =\frac{100}{3} \times 39=1,300 \mathrm{~kg} / \mathrm{ha}
\end{aligned}
$$

2.5.2 Examples of calculations

Where 40 kg of channel catfish are stocked and fed Auburn No. 2 pellets six days veekly, with feeding readjustments to three percent of veight of standing crop weekly for a period of 30 weeks, then
$I=40, D=6, T=1$ week, $N=30 \mathrm{~T} ., P=0.03$, and $S=1.7$;
and, $R=1.0+\frac{(6)(0.03)}{1.7}=1.106$, Equation (2);
then, $\log W=\log 40+30 \log 1.106$, Equation (3);
$\log W=2.91486$

$$
W=821 \mathrm{~kg}
$$

If $\|$ exceeds $1,300 \mathrm{~kg} / \mathrm{ha}$, it is necessary first to calculate the weeks of feeding required to reach $1,300 \mathrm{~kg}$ using equation (4),

$$
N=\frac{\log W-\log I}{\log R}=\frac{\log 1,300-\log 40}{\log 1.106}=35{ }^{n T n} \text { intervals }-35 \text { weeks }
$$

If we are attempting to produce $2,000 \mathrm{~kg}$ of catfish, the remainder of the time we cannot feed more than 39 kg of feed per day. If we feed six days per week, the increase in veight of catfish per week is:

$$
\frac{39 \times 6}{1.7}=137 \mathrm{~kg}
$$

Then the added weeks needed to increase from $1,300 \mathrm{~kg}$ to $2,000 \mathrm{~kg}=\frac{700}{137}=5.1$ weeks.

III/E-10

The total time required is then $35+5.1 \times 40.1$ weeks. If we wigh to reduce this time, ve must start with a higher weight of fish: that is, either more fish of the same average size, or the same numbers of fish of larger size.

2.5.3 Calculation of feed required for maintenance

If we use a much larger initial weight of fish, another factor must be congidered. The feeding rate with Auburn No. 2 pellets required to maintain weight of fish without growth is approximately 0.5 percent of their weight per day six days per week. If we start with 50 kg of fish in one case and 200 kg in another and continue feeding (six days weekly) for a 30 week period, the feed required for maintenance of this original weight for the former is:
$50 \times 0.005 \times 30 \times 6=45 \mathrm{~kg}$,
and for the latter:
$200 \times 0.005 \times 30 \times 6=280 \mathrm{~kg}$.
The daily difference in maintenance requirements is first met and only the remainder of the feed is available for growth.

Where small fish (less than 15 cm) are grown to large size, usually no correction is needed in the equations given. However, a correction is necessary when high veights or large fish are fed for a short period of time. Equation (1) then becomes:

Standing crop $=I$ plus $\frac{\mathrm{F}-\mathrm{M}}{\mathrm{S}}$, when
I = initial weight of fish stocked,
$F=$ total weight of feed supplied, and
$M=I \times 0.5 \% \times$ number of days fish were fed.
In equation (2) the correction can be made by subtracting 0.5 percent from the percentage of daily feeding, P.

3 REFFERENCES

Tal, S., A criticism of the methods of calculation of carp feeding, Bamidgeh, 8(3):44-51 1956

Prather, E. E., Further experiments on feeds for fathead minnows. Proc.Confostheast.Ass. 1958 Game Commrs. 12:176-8

