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THE USES OF MONTE CARLO TECHNIQUES AND
 

RESPONSE SURFACE METHODOLOGY IN COMPLEX SIMULATION MODELS
 

Motivation
 

In the construction and implementation of a complex simulation model,
 

one very difficult task is specifying values for parameters and coefficients
 

of the model. Two of the difficulties are: first, by fixing values, one
 

may be treating deterministically variables which are actually subject to
 

random variation in the "real world," and secondly, that even in variables
 

which are not so much subject to random variation, the specifications of
 

values are often made with something less than total confidence in their
 

accuracy.
 

In both of these cases it might then be desirable to observe the varia­

tions inc~rr£n outputo of the model as some of these parameters are allowed
 

to vary over a specified range.
 

Once one has delineated the set of parameters which he wishes to subject
 

to variation, he must further subdivide this set into those which will be
 

treated as random within runs and those which will be random between runs.
 

Those parameters which seem to exhibit random variation in the real world
 

should probably be treated as random within runs, while those which are
 

fixed, but with less than total certainty in their accuracy, lend themselves
 

to variation between runs.
 

In order to treat a parameter as random within a simulation run, the
 

model must incorporate the capability for stochastic variation within its
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time loop. In the second case, that of parameters random between runs, the
 

model remains deterministic; within each run the parameters are fixed, but
 

they assume different values for each simulation. It should be noted,
 

paranthetically, that these two sets are not necessarily mutually exclusive;
 

it may well be that one may wish to let a parameter vary over some range
 

about its mean within a run, and let its mean vary between runs.
 

This study is concerned solely with variables random between runs.
 

Monte Carlo Simulation
 

Monte Carlo simulation may be defined as the repeated subjection of a
 

stochastic model to the same set of initial conditions in order to generate
 

a probability distribution of outcomes.
 

It is important to note that it makes no difference whether the model
 

is actually stochastic in nature, i.e., certain variables are drawn from
 

probability distributions within a run, or is actually deterministic, but
 

with random variation of parameters between runs; for the purposes of Monte
 

Carlo studies, it behaves as a stochastic model.
 

Monte Carlo simulation can be a very powerful tool in the analysis of
 

stochastic models. The theory of this method is sufficiently developed so
 

that one obtains error estimates on statistics of the generated distribution
 

of outcomes as compared with the "real" distribution. Surprisingly, this
 

error is a function only of Q, the number of simulation runs, and not the
 

number of random variables involved. This is an added bonus, especially in
 

economic simulations, where one is often treating relatively large numbers of
 

stochastic parameters.
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Thus, if one makes a sufficiently large number of runs, the expected
 

error of the statistics on the outputs may be reduced to any desired level.
 

However, the expected error of the standard deviation is proportional
 

to Q-1/ 2 and therefore reducing error can be a prohibitively expensive pro­

cess if the run time of the simulation model is at all substantial. For
 

example, at the 95 percent confidence level, 100 simulations produce standard
 

deviations of outputs with 14 percent error. To reduce the error to 1.4
 

percent requires 10,000 simulations.[1 ]
 

Itwould then seem to be advantageous to search for another method which
 

would produce comparable statistics with fewer simulations, and thus be more
 

financially feasible in certain instances. 
One way in which this can be
 

accomplished is through the construction of a response surface.
 

Response Surface Designs
 

Ifwe are considering n input statistical variables, a response surface
 

is a function, generally a polynomial, in n+l space yielding an output
 

variable as a function of the n input variables.
 

Since IL is usually orders of magnitude faster to evaluate a polynomial
 

than to make a simulation run, if one could construct a polynomial for each
 

output variable of interest, and substitute evaluations of these polynomials
 

for most of the simulations involved in establishing statistics on the outputs,
 

one could save a considerable amount of computer time in many instances. (A
 

criterion for deciding when it is advantageous to construct such a surface
 

will be discussed later.)
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It is worthwhile to note that the replacement of a simulation run with
 

a response surface polynomial is a process of substituting a static model for
 

a dynamic one, which leads 
to both advantages and disadvantages.
 

One obvious advantage is that optimization of one sort or another becomes
 

much more feasible. Static optimization, even though very possibly non-linear,
 

is a much less demanding task than optimization on a dynamic system.
 

However, one must also consider the major disadvantage--that the response
 

surface adequately represents the simulation model at only one point in time.
 

Therefore, shifting the time horizon of the model requires the construction
 

of a new set of response surfaces.
 

However, given the desirability in many cases of constructing a response
 

surface, how does one go about finding the required polynomials?
 

This problem is really twofold; one must generate data points to which
 

a polynomial may be fitted, and then settle upon a method for fitting the
 

polynbmial. In many instances, when one is concerned with relating one
 

output to two or three inputs, there are well-developed statistical methods
 

for constructing experiments to obtain the data points to which a polynomial
 

may be fitted. Full factorial, fractional factorial, Latin square, Youden
 

square, Greco-Latin square, and split-plot designs may all be applicable at
 

one time or another.
 

However, all of these designs may be overpowered by a large number of
 

input statistical variables, as are often encountered in economic simula­

tions. 
 For example, to conduct a two-level full factorial experiment on a
 

model with 10 random inputs would require 210 = 1024 trials, or simulation
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runs. This is certainly no improvement on Monte Carlo methods. The
 

experimental design itself then becomes a major problem in constructing a
 

response surface when there are a large number of input variables.
 

There are also numerous approaches to fitting polynomials to the data
 

points, once one has generated them. Statistical regression and the con­

struction of an interpolating polynomial are two possible solutions to this
 

problem. The number of statistical inputs and the number of data points may
 

form a basis for the decision of which method to employ.
 

We will now proceed to describe the solutions that we adopted to the
 

problems of experimental design and polynomial construction, in finding
 

response surfaces for the model of the northern Nigerian beef industry.
 

The Nigerian Beef Hodel
 

For the purposes of this investigation the beef model was considered
 

to have thirteen statistical inputs and eight outputs or performance
 

criteria.
 

The thirteen random inputs were as follows:
 

Cl: acres freed of fly/b expenditure on fly eradication
 

C3: #TDII/acre-year on fly-free grazing
 

C4: deterioration coefficient for range condition
 

C5: #TDN/acre-year from food crop residues
 

C6: #TbN/acre-year from cash crop residues
 

C7: #TDN/acre-year in fly region
 

C8: proportion of fly-infested land grazed during dry season
 

C12: proportion of natural deaths which are marketed
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C41: coefficient in birth rate function
 

C42: coefficient in death rate function
 

PAO: normal animal price (in the absence of seasonal and secular
 
factors)
 

ALl: rate of increase of demand for animals
 

AL2: rate of increase of crop land
 

The eight criterion variables were:
 

PFT = 
final female beef population (traditional)
 

PMT ­ final male beef population (traditional) 

RC0N = range condition 

FARNI = farm income 

CF = discounted cash flow criterion function
 

FOREX = foreign exchange earnings
 

YA = income from sale of animals
 

YM = income from sale of milk
 

The probability distribution from which values for the input variables
 

were drawn was chosen to be a "triangular" or 'pseudo-beta" distribution.
 

See figure 1.
 

P(x) 

F ii
 

Figure 1. The "Triangular" or "Pseudo-beta" Distribution 
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Thus, to specify the probability density function (pdf) for any 

variable one needs three values, 

xL : the lower bound on the range of x 

xf: the most likely value of x, (the mode) 

xj! : the upper bound on x. 

There are two reasons why this distribution was chosen: 1) Since the
 

parameters could reasonably be expected to vary over only a finite range,
 

it was desired to have a distribution with finite "tails," as opposed to
 

the normal, for instance, and 2) the triangular type distribution was preferred 

to the beta distribution because it allows for a wider variance than the beta, 

and hence is more "pessimistic" about the behavior of the random variable 

ander construction. 

The three parameters of the distribution for each input variable were 

then specified (see Appendix A) and the distributions were sampled through 

the use of the random number generator on the computer. 

For the purposes of making a set of simulation runs, a policy (initial 

:onditions of the system) was set by specifying four parameters: 

PFT0 - the initial female beef population (traditional) 

PMTo = the initial male beef population (traditional) 

C18 - expenditures on tsetse-fly eradication 

CSFT = a feedback parameter in sales of females (traditional). 

It was determined to make a series of 200 Monte Carlo simulations for 

!ach of five different policies to serve as a standard by which to judge the 

*esults of our response surface investigations. The number 200 was chosen 
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because that is the number of simulations required to reduce the expected
 

error of standard deviation on outputs to 10 percent at the 95 percent con­

fidence level.[l]
 

At ten-run intervals, the means and standard deviations of the eight
 

outputs were calculated and printed, in order to observe the rates of their
 

convergence.
 

We were now ready to generate a surface to compare with our Monte Carlo
 

results. Actually, since there are eight output variables involved, there
 

are eight distinct surfaces to be constructed, each one yielding one output
 

as a function of the thirteen statistical inputs and/or combinations thereof.
 

After investigating the possibilities of a structured experimental
 

design, it was decided that since we were faced with such a large number of
 

input statistical variables, most of the various factorial methods were not
 

applicable. We then decided to use a series of random runs of the model as
 

data points for the fitting of polynomials.
 

The next question was how to go about fitting a polynomial to these
 

points; what variables to include, etc. As an initial attempt we decided
 

to try the linear terms, their squares, and their cubes. No cross-product
 

terms were included on this trial. Thus we had 39 independent variables,
 

plus a constant term for a total of 40.
 

We took the data from 40 random runs of the model and fed it into the
 

stepwise-addition linear regression routine, LSADD, available on the MSU
 

computer.(2] This routine selects, one at a time, those independent variables
 

which are most significant in "explaining" the variance of a dependent
 

variable, until a preset stopping criterion is satisfied. The routine does
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not calculate least-squares coefficients as it goes, as do many stepwise­

addition routines.
 

Once this set of "significant" variables had been obtained, the coefficienti
 

for the polynomial were calculated as follows, using the Lagrangian approach:
 

If we let yi denote the value of the output variable y on the 

ith trial, and a1 ...aj the coefficients on the j statistical inputs, 

xil ... xjj, where the i again indicates the ith trial, we may write: 

Yl o alx1 1 + a2x12 + ... + ajxlj 

+ +Y2 , alx21 + a2x22 "" ajix 2j 

Yi = alxil + a2xi2 + ... + ajxij
 

Yj= alxj + a2xj2 + ... + a x
 

or in matrix notation:
 

yi = -51 x12 ... xlJ ,ai 

J XJl ... a lX1 2 xj1 

or Y = XA, which implies A - X(IY as long as X is non-singular. 
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The reason for using this matrix inversion approach instead of directly
 

calculating least-squares coefficients is that it is much faster to invert
 

a matrix as long as the rank of the matrix remains within certain bounds.
 

The inversion was done using a generalized matrix inversion routine, MATINV,
 

3
for which the time required is proportional to n , where n is the number of
 

rows in the matrix. 
31
 

When using this matrix inversion technique with random data points,
 

it is possible that two of the rows of the matrix may be almost linearly
 

dependent, or the matrix may be nearly singular. This leads to some very
 

spurious coefficients for the response surface. The problem can usually
 

be solved by using a slightly different set of random runs for data points.
 

Once the a's in the column matrix A are determined, the generation of
 

the y's is simply a matter of inputting a set of values for the x's and
 

multiplying.
 

For the purposes of comparison, the surface was subjected to the exact
 

same set of inputs as the actual model for 200 runs and evaluated on an
 

individual run basis by calculating total sum of squared errors for the eight
 

output criteria:
 

8
 2
 
TSS =I
 

iYl
 

where: 

= value of ith output of surface 

Y= value of ith output of simulation model 
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In addition, the means and standard deviations of all outputs over the
 

200 trials were calculated and compared to the same measures calculated on
 

the outputs of the simulation model.
 

As mentioned before, the first attempt at specification of variables
 

to be included in the set of possibly significant variables was to include
 

the linear terms, their squares, and their cubes. The surface thus
 

generated was highly unsatisfactory and itwas decided to include paired
 

interactions between linear terms also. Thus all terms of the form xixj
 

became part of the set of possible independent variables.
 

This greatly improved the fit of the surfaces generated, and it is
 

very possible the inclusion of higher order interactions may be beneficial
 

also, but a problem arises in evaluating this set of possible independent
 

variables with the statistical routines on the computer. Since we had 13
 

distinct input statistical variables, the inclusion of paired interactions
 

added (i) = 78 variables to the set of possible independent variables. Thus
 

one soon pushes the limits of the capacity of the LSADD routine, which is
 

about 120 variables.
 

Evaluation of Results
 

Since the objective of constructing response surfaces is to reduce
 

computer time while retaining as much as possible the ability to evaluate
 

the effects of random variations in parameters of the model, we should now
 

evaluate the ability of our surface to do just that.
 

Essentially, by making a series of Monte Carlo runs with the simulation
 

model itself, we obtain three kinds of useful information: 1) we can display
 



- 12 ­

the variation in outputs caused by random variation in parameters; 2) we can
 

display the change in output statistics induced by changing the distribution
 

function of an input;.,and 3) we can evaluate the effects of different
 

policies on the output means and standard deviations.
 

These first two functions are a comparison of one group of runs with
 

another under the same policy (or initial condition). In order to make this
 

same type of comparison with a response surface, it is important that the
 

surface "preserve order of runs." 
 That is to say, if a given output criterion
 

is viewed as a random variable, and the set of values of this variable
 

generated by a series of simulation runs as a sample from this random variable,
 

then the order statistics must be preserved between the sample obtained from
 

the model and the sample obtained from the surface. If the jth member of
 

the sample from the model constitutes the ith order statistic of that sample,
 

the jth member of the sample from the response surface must also be the ith
 

order statistic of that sample.
 

The surfaces we constructed proved incapable of reliably preserving order
 

in this sense. 
Some surfaces did fairly well; others failed miserably.
 

Our method of surface construction seems to fall somewhat short in this
 

respect.
 

However, perhaps the most important information is the effect of
 

differen! policies on the output means and standard deviations. The results
 

of the surface in this respect are very encouraging. The surface is capable
 

of very reliably exhibiting the effects of different policies. (See tabu­

lated results in Appendix B.)
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The next question is, "How much computer time can"we save?"
 

In general, we may express the time requirement for a series
 

Carlo runs as:
 

Tl(r) = s + xr 

where:
 

T, E time
 

s E setup time (compilation, loading, etc.)
 

x 2 run time of model
 

r 2 number of runs
 

Typically, the setup time will be about 25-30 seconds for a large
 

FORTRAN model, and the run time may vary from less than a second to several
 

minutes.
 

For the Nigerian beef model, x = 2.6 secs. 
 Thus, 200 runs requires
 

slightly over 9 minutes of time on the CDC 3600.
 

On the other hand, to obtain the same information with a response sur­

face, one must find "significant" independent variables using the LSADD
 

routine, and then calculate coefficients and evaluate polynomials, which
 

we did with a program called SRFCE. (See listing in Appendix C.)
 

The time required to find significant variables on LSADD is primarily
 

a function of the number of outputs, y, and thus the number of times it
 

must go through the list of possible independent variables. As a fairly
 

good approximation we may write:
 

T2 (y)v 70 + lOy
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given a 40 run sample for data points. The time is also dependent upon the
 

number of data points to be considered, but this number is generally con­

stant for a given application and thus its effect is absorbed into the
 

coefficient on y. It is interesting to note that the time for execution of
 

LSADD appears to be relatively insensitive to the total number of independent
 

.
Variab1les specified. Intuitively, it would seem that there should be some
 

dependence here, but its effect seems to be completely swamped out by the
 

dependence on the number of dependent variables which must be regressed
 

against this independent set. It should also be noted, however, that our
 

tests did not incorporate a very wide range of numbers of independent
 

variables, and so even if some relationship is in effect, it may not have
 

been apparent from our results. Thus 8 outputs requires about 2:30 of
 

computer time.
 

The time requirement for SRFCE is again largely a function of the
 

number of runs, r, and may be approximated as:
 

T3(r)= 17 + .06r
 

Thus 200 runs require about 29 seconds. We see that in the case of
 

the Nigerian beef model, the Monte Carlo runs required 9:07 of computer
 

time, while the surface approach required 3:10 for 40 runs of the model,
 

plus 2:30 for LSADD, and :29 for SRFCE, a total of 5:09, a considerable
 

saving.
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It should be obvious that as the model run time increases the potential
 

for saving time becomes greater and greater, and conversely, as the run
 

time decreases, one stands to gain much less. Indeed, if the run time is
 

small enough, it would even be faster to do Monte Carlo analysis.
 

It would then seem reasonable to calculate a "break-even" point for
 

run time of the model as one criterion for deciding whether or not response
 

surface techniques may be helpful.
 

Let us then attempt to express A, the "break-even" run as a
 

function of r, the number of runs desired, y, the number of outputs, and
 

r', the number of data points to be generated:
 

= f(r,y,r') 

Equating total times:
 

Tl(r) = Tl(r') + T2 (y)+ T3 (r) 

or + xr - s + r'x + 70+ 10y + 17 + .06r 

which implies x(r-r') = 87 + 10y + .06r 

A 

which Yields x = 87 + lOy + .06r
 
r-r'
 

Thus, for r = 200, y = 8, and r' = 40, x = 1.05 sec/run 
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Suggestions for Further Vork
 

Almost certainly the weakest area of this investigation was the method
 

used to obtain data points for the LSADD routine. There is certainly a
 

need for much effort in trying to arrive at an experimental design more
 

suitable than 40 random points.
 

The use of the LSADD routine itself may be less than an optimal way
 

of arriving at a set of "significant" independent variables. 
The routine is
 

quite time consuming and is limited to consideration of about 120 candi­

dates for independent variables. 
For larger models, this size restriction
 

is a very real constraint.
 

As it now stands, our method requires the construction of a completely
 

new surface for each policy one wishes to evaluate. If the policy variables
 

themselves could be incorporated into the surface, this would become unnec­

essary, and the response surface would be much better adapted to comparisons
 

of policies than the Monte Carlo method, which requires a whole new set of
 

runs for each policy specification.
 



APPENDIX A
 

Data used for specifying the probability density functions for the
 

statistical inputs:
 

Variable -t*' lower bound 
 mode upper bound
 

Cl 
 .15 .4 .4
 

C3 130. 130. 
 2-48.
 

C4 0. 0. 
 .009
 

C5 150. 325. 
 350.
 

C6 
 40. 
 40. 100.
 

C7 200. 200. 500.
 

C8 .1 .1 
 .4
 

C12 .1 .2 
 .3
 

C41 
 .71 .94 1.4
 

C42 
 .77 .97 
 1.5
 

PAO 12. 
 15. 18.
 

ALl .02 
 .03 .04
 

AL2 
 .02 .035 .05
 



PFT PMT 
 C18 CSFT
 

Policies:
 

1) 5100. 2400. 0.0 0.0 

2) 5100. 2400. 0.0 1.0 

3) 5100. 2400. 1000. 0.0 

4) 5100. 2400. 1000. 1.0 

5) 3825. 1800. 0.0 1.0 

PFT PMT RCON FARmI CF FOREX YA YM 

1. MEAN 

ST DEV 

Model 
Surface 
Model 
Surface 

3835. 
3759. 
780.9 
808.1 

1832. 
1828. 
379.0 
388.5 

.7814 

.7799 

.1557 

.1461 

119400. 
119500. 

7437. 
7114. 

1196000. 
1205000. 
53290. 
52510. 

98420. 
98820. 
4981. 
6026. 

14590. 
13740. 
2974. 
4064. 

28660. 
28210. 
4823. 
4987. 

2. MEAN 

ST DEV 
\ 

Model 
Surface 
Model 
Surface 

3029. 
3012. 
469.2 
477.1 

1591. 
1583. 
279.0 
283.7 

.8494 

.8471 

.1172 

.1130 

114500. 
114200. 
5363. 
5317. 

1141000. 
1143000. 
49130. 
51370. 

99370. 
103300. 

5355. 
11130. 

14720. 
13840. 
3082. 
4272. 

23680. 
23810. 
3069. 
2917. 

3. MEAN Model 4155. 1991. .8176 122200. 1192000. 99510. 15400. 30650. 

ST DEV 
Surface 
Model 
Surface 

4060. 
822.9 

1497. 

2007. 
401.3 
398.5 

.7482 

.1330 

.1415 

122300. 
7839. 
7989. 

1191000. 
53980. 
56110. 

98360. 
5111. 

15810. 

15120. 
3131. 
3996. 

30060. 
5082. 
9110. 

4. MEAN 

ST DEV 

Model 
Surface 
Model 
Surface 

3412. 
3417. 
526.8 
547.0 

1771. 
1754. 
295.5 
499.2 

.8875 

.8737 

.09768 

.09832 

117800. 
109500. 

5667. 
16740. 

1139000. 
1133000. 
50060. 
48000. 

100500. 
108900. 

5574. 
13520. 

15610. 
16120. 
3288. 
4367. 

26040. 
26010. 
3253. 
3352. 

5. MEAN 

ST DEV 

Model 
Surface 
Model 
Surface 

3035. 
3055. 
496.7 
472.5 

1594. 
1585. 
279.1 
285.4 

.8569 

.8740 

.1133 

.1101 

114600. 
105900. 

5365. 
19440. 

1103000. 
1121000. 
47640. 
47620. 

99410. 
103100. 

5385. 
10550. 

14750. 
13950. 
3086. 
4132. 

23710. 
23850. 
3067. 
2908. 

COMPARISON OF OUTPUT STATISTICS OF SIMULATION MODEL
AND RESPONSE SURFACE BASED ON 200 RUNS 
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.!ORlp3A 	 o/21/70_____
 

PROGRAM MCSIM 
_ DI MENS ION ( I (__ _ D__ X(3o )#XV L 3 P-r 00 -- M 0 )R O 0 ?i- -

I KSTC ARMJC20b'CF(200).FOREXC20O),YA(2OO1,YM(200) 

NH :200 
NP
 

11 IREAD x-0
 
-- IPRNT a 0
 

DU 30 !:1,Np
 

READ 1000o cl8B.PMT#PFTCSFT
 
PRIfNT 	 1003s PFTiPMTsCl80CSFT­
IF(KSWTcHEQ,1) GO TO I
 
IF I E DsQv0)-R A - 0 X -
IREAD a I1
 

1-DO 20 I NR
 
* 	 !F(KSWYCH.E~o,) GO TO 3
 

-DO 2 LZ-i#13
 
2 CALL BETA CXVALCL),X(LJI)oX(L,2),X(L,38))
 

Clc*XV AI(I)" - ___ ________
 

PAO m VAL(2)
 
C3XVA.( 3)-

C4UXVAL(4)
 

-CuXAALc(5)
 
* . C6xXVAL(6) 

C7r.XVALc7)
 
CaaX VAL( 8)
 
C12=XVAL(9)
 
C41.:XVAL(10)
 

~~C4
--- =XVAL(i)~---
 ___-----.---

A~i=XVAL(12) 
-­

_ AL2=XVAL(l3) . . . 

PUINCH 1002P 1I,Cl#PAOoC~5.C4,C5pC6#C7 
.. 

PU'JCH 1002, !I#CBC12pC4lC42AL,,A42...... .-. 	 -.-

GO TO 4 
3 READ ±000, C1,PAOC3,C4,C~iC6eC7.C8,-C12aC4IC42.'AL1,AL2, 
4 CAIL, BFEF(Cl'PAO'sC3,C4oC~.C6,C7,C8,C12.C41.C42.A~lAL2,PPFTPMT. 

2 FO4EX(I I)YA(1I)#YMC !)#IlI.NR)___
 
- NRC 	c YRC, *~ I~__.-.-­

_____IF(KSWTCH 
 *EQ, 1) GO TO 30 
PUIJCH 1002, - PFTIC II),#PMT1-(JIIiRCONt-111FARMIU11)jOIiCR )i----

I FO3EX( II)YA( II),YM0II

IPRNT aIPRNT +I1 *--­

____IF(IPRVT 
 9NEv 10) GO TO 20
 

PM TM: X4AN CPMTI, NRC )
 
-- ~-RCONM:RCNMEA(RCONNRC)
 

____ ARMIMaXMEANCFARM~ .NRC)
 
-- CFH=XMEAN(CF'oNRC)..... 

* F'REXMEXMEAN(FOREXoNRC)
 
"YAM1:XMEAN(YAoNRC) ..-	 __________ 

* YM'4aXMEANcYM'mNRC)_______________
 
S PFTS = SQRT(VAR(PFTl1'#PFTMsNRC))-­
* PMTS = SQRTCVARCPMTIaPMTMeNRC)) ________________ 

-ROONS-i--SORT (VAR tPOONiR0ONMiNRO -) 



___ 

----- 

FORll3A 
-

ARMIS S0RT(VAR(FARMJDFARMJMoNRC) )
 
--- CFS = SURTCVARCCF#CFMDNHC)) 

. 

FOREXS =SORT(VAR(FOREX#FOREXM#NRC) 
YAS a 3GRTCVAR(YAYAMpNHiC))-
VMS =SofT(VAR(YMsYMM#NHC)) 
PRINT 1004 
PRI14T 10051 PFTM.sPMTMoRCONMFARMJMCMFREXMYAMYmMPrTSe 

I "-ITS* RCONSsFARMSCFSREXSEYSYSl............. -
IPRNT c 0 

20 CUJTINJE 
--. . -.-.­

30 CO'JTINJE 
. .. 


'-'~3.0~FORMATC8Fjn1 3, .
 

1001 FORMArc3FIO.3)..--.
 
02 FORMATC8E106 3)


1003 FORIJAT(*IPFT = *IEIO,3o3xo*pm-r :*,~io, o3x,*c18 
 *m=Uj-x

1 *C3FT =*E0
 

1004 FORMAT( *O*a4X,*PFTM*a9XP *PMTM*,9X,*RCONM*D8Xo*FARMIm*7A1*CFM*s
I IOX,*FOREXM*7X*YAM*D10,*YMM M*/*PFT9XPTSp9 X*
2 *RCONS*.BX*rARMIS*p7XD*CFS*.10X,*FQREXS*#7X#*YAS.,JOXo*YMS*) 

-- 1005- FORMATi±Ho8 (E0--3..3x-)F-----
31 END 

-­



F'ORI.3A. Od/21/70
 

SUBROUTINE OFEF(G2.ePAOuU3DC4,c5,C6aC7FC8*C12,C41,C4LuALleA,2e 
--- ~4 PFTIPMT1DGSFTDC13DPrT.PMTPRCONFARMIGFORXYAY4DIILR). 

REAL L3F#LGLC,LC2LC3;I,.MLGT 
D I ENSI UN VALI (9) pVA42 M iVALZC9)-oVAL4 (9) #OROUTj (3)#CROT2(3), 

I CROUT3(3),IVAL5(9) ____ 

14TS ---- _ _ __ _ _ _ _-- . . .C--CONSTA 

DT,11
 
RL.ENTH. ; 20,
 

NI rOL:RLENTH/CNQPP*DT)
 
IN'IRVL 5----. - .-.
 

-~__ ____ D19850, _ _ _ _ _ _ _. - - . . - -­

---AL3:,O6
 
AL4: 02 
LC'IO:85000 _ _ _ _ _-----.­

09 a 263,l _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

010 = 3700- _____ ____ 

013 c 0. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

IOU. __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _019.:2 

----- -"C20 : 023 - - ____________ 

.29
C2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

--- ~--C22 a 47 
C23 4 3. __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ 

025 45
 
- - C26 1 7'---- _ _ _ _ _ _ _ -.. ­

r.29=60, __ _ _ _ _ __ _ 

..- Cj5o=,035' 
_ _ _ 

C31=;42, ________ ______ _ _ _ _ 

C32=00056-._ _ _ _ ___ 

033:00
 
C034=0 0
035 c .208 ________
 

---~ ELASlat. -


ELAS2a 1. 
GRDEPD=1O, -_ _ _ _ _ _ _ _ _ _ _ _ 

TONJAD=300 0,. __ _ _ _ _ __ _ _ _ _ _ _ _ _ _ 

LG c 37000, -.---... 

RLTT = 0, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

ISPRSUm 0---

GRE 8j
 

C RUN LOOP
 
022 Aq1.NR
 

C2=5,75 
011:1.1.5 

015: 17,
 

C27:;1,5' 

C36=,1 ___ 

http:F'ORI.3A


FORi,3A .. -.-. --- -Oo/21,/70 

c39=,uofl 

C40T=,6 

F1_GDEL23, 
PAD=3. 

VA 1(2)=.IQ 

VAL4i(4)=#33 __ 

VAL,2C2:,2') 

VAL,2(4)=l54 

VAL.3(2)=,22 

VAL3(4)1. 
VA05C5)=, . 

VAL,3(6)=,U9 

VAL.4(7)=,.5 

VA.4 C3:4 

-. ____ _____ 

___ 

-----­

VAL.4(51=,07 
VA4 (6 , 06 
VAL4(7)=,05 

~~___-----

CROUTIM=)0, 

CR OUT 2CS1) :01 
CROUT2(l):0, 
CFROUT2(Q)=01 
CROUT23 )=0, . 

C ROUT%3(2) = 0, 
CROUT3(3):O,$ 
LGiF=74OOO__ 

___ 

___ 

____ 

___ 

..-

__ 

_ _ ..-

-

- - . 

. 

. . 

.­

D4=1, ___ 

PFrCATu ,65 ___________ 

PFCAM=,65 - __ _ _ 

YMAT=95i0, 
Y M AM = 1 0, .- -- -

PR4T=, Al 
PR MM v i0- 1.-.-~ 

TD'JTAR =2700@.___ 
C* INITIA., C0'401)TIN 

PA m 15.0 
PCTPMT-a 

-.-­

- -. 

-

-

_ 

- -

. ---

. 

-

_ 

.. 

---

_ _ _ 

--

_ 

_ _ 

-_____ 

_ 

-. 

_.----.-­

-

-.. 

- .-.-

. 

-­



FOR1,3A _____Ou/21/70 

RC ON=Ia
 

CF20,
 

TD'JMcC9*LGM
 

A21:25,PFT--- --

AIPT:0, 

J.MT=: 4*(!40T.PMT
 
A29:,4I.*PFM"--
 -- -..----. 

AIPM:O,
 
-ER4=92 
DF,4=l07*PFM.
 

ER?:, 08
 

LC2=30001
 

LC20: 30Ohoo
 

...... FOREXAct), - *----------------___. ~ .-

SFT C20* PFT 

GHCAP=0,
 

TDN4T = 14000000,.______
 
1075- DU 224 ijNT~~................
 

DO 236 Jin1,NCPP -- _ _
 

T:;T+eDT
 
C POLICY VARIABLES
 

181 RLC2=CI7/4LC20*AL4*EXPCA.,4*T) -----.--...-.
 

182 RLC3=RLTT",C17
 
183 EF'F:C1!3..
 
184 EXI^R=CI9
 
185 SFT:PF1Tv(C20*ELAS*SFT*(PAPPAO)/(PFT*PA) )*CCSFT*CPF*,TDNT/( (±*C22)
 

I*TDNTAIM)
 
la6, SMT:C21*(PlT.C22*PFT),C 5 PM T-..- .........
 

187 IF (SMI') 188,1l88,1l90
 

190 SF=2*P~TN*1*2), AMDMEA2SM(APO/PA
 
1900 1IF ( S F1 19 01s190It191- - - -.- -.-- ---
 ---- ---- - .-. 

1901 SFM=0,
 
91SM9:C24*(PtM".C25*PFM),!*A2MDMM--


192 IF (SMLI) 193.193,194 -.-- --. 

. 

... 

193 SMM:Q .. . .. . .__ _ _ _ 

194 PA:PAO*c1.*C33.T,C34*SIN(6,28Z6*T) )
 

C MODEL STRJCTURE
 
195 LC3=LC3 +D T*HR L...C.3...... .... 

196 AUX3=EXcGR*C2 
197 CALL--DELAy(A U~AUX~iRUX2*aR UUE~iTl3iGRGIJ.T,3?-----------­



FOR1I.3A-
 Oc/21/70
 

1971 RTDN=AJXAI*C9+RLC3*C1O
 
197? lPAA=RTDN*C16+C36*(T)NAM-TI)NAD) 

1.973 RFrr=RAA*(PFT/cPFT+PMT)) 

- .
 

1974 RmTT=RAA-RFTT 

-


1975 RFTM=-4FTT 
- ­

1.976 	 R M TMR mTT
 
AUXI FFE*Ci1rC7/C3


.199 	CALL DELAYCALJX1,AUX2,CRUUTIDF'EGDEL,0TD3)-.­
200 DLM:1JI*EXP(ALi*T)
 
201 RLCI=AL2*LCIO*FXP(AL2*T) 

202 LG=LG+4D*(URLC1-RLC2UPRLu3*AUX2) 

--­

-203 LGM=LGqI.,DT*AUX4 
­

204 LGT=LG-.LGM
 
205 GRT=I.Gr/(PFT*PMT)

206 RCON=NZUN+DT*C4*(GRTmGRt;)
 

2061 IF(RCO'V. LT. .1) f(CONm q

207 TUNhGT3CON*G3*LTj
 
208 TiJMRS=C5*LCi+c,6*LC2
 
209 Tij'JT=TDNGTTflNRES+C7*C8*4.GF 

-210 
 TD'IAT=TDNT/CPFT+Pt*1T) 

211. TONGM=,oM*C9	 

-- ­

212 TONhFC=LC3.C1o
 
213 TD1:-IT)NGM+TDNFC
 
214 TONAM=TD'4f1/(fFM+.PMM)

215 CALL D=-hDG'(SFTDSMTTDNATDPFTDPMTPERTVA.4,680O a680,,3oVAL3,680,,34
 

216 CALL D01%OG(SFM'DSMND*TDNAMDPF1MDPMMsERMDVA 2I68OD68oWD-3,VAL4Db80if 34
lOG 6,DI., 
 2,D3, M,'D5, DMM, DFMA2M, AIPM, RFTMIRMTM, DT BMDrk1,ERPM AIM
 

2161 SIRT=PMT/PFT
 
2162 SN~1=PfIl/PrPl

2163 TM=*R/BM2DMSM
 
2164 TF~1;2/(8Rtia2*DRM)
 
217 SUPT=S?"T+SMT+C12*(DFT+DmT)
 

2171 SUPM:=C1.1W(SF'Mi+SMM)+CI3* DFM*JDMM)---­
2172 SUP=SUD1'.SJPM
 
218 CI 1P=DFMSUtP
 

211b1 YAT=SLUDr.PA+PAD*(DMT*DFT)
 
2132 	YA=L2l*A+A*DMDA 
219 YA=YAT4YAM
 

2191. YMr-YMT4.YMM 

2192 QM=QrT.QMM 

­

220 CUGR=LGM*Cl4
 
225 LC14LCI,4DT*RLC±
 
221 LC?=LC?+DIT*RLC2
 
223 YCC=C15*LC2
 

2231 CALL D-ZLAY(EXGRGRDEPCHOUT~3,GRDEPDDT,3) - . ­

226 CFC+l*(AYCY-OREE-f]E*XR*X(m 
­

*)

2261. CFI=CF14.DT*((YAM+YMM)-*EiP(opeO6*T))----­
2262 CF2=Yil
 
2263 CF4:C36*CF14r037*CF2 -- ~
 

227 C0:EFE*COGR
 
.228 CAPE=EX(JR 

--­

229 FARMI=YA+YM*eYCC
 
230 FAR;1IAzFARtIA+DT*FARML--.-­

http:Tij'JT=TDNGTTflNRES+C7*C8*4.GF
http:FOR1I.3A


I 

FOR1,3A 
 O/21/7D
 

SUqROUTJNE SIMIARY (MNNRPT, W1,W2,W3,W4W5,W6oWI, FiW9,lJO,1_ :.11, A2,f$1 O?, 3, 4,Ot,Q6, J7,U, Qg9 O10O11 O .2,Ii 1 415,I2, 13, 14 

2 16pI7, I8,I9,loII1"2,J,J2,J3,4,JJ5J6J7J8pJyJl Jll,J12,
 
3 'vN:))

DI,"1ENSYON IIl(3u) V1(30),V2(30), V3(30 ,V4(6 ) V5(30o),V6(. O),V7(30 
1 V8(30 ,VO(3()3V10( )fV.11 (30) .V12(30),P(30),P2(3U) 0P.5(30)'p
2 P4(30) ,P5(3) ,P6(30), P7(30),P8(3o? ,P9(30)P1O(30 1,p11(30), 
3 P12(3G)3.C. ..

M1 = (0lN-1)/lO 

M MN-1O*M1.
 
Ifl M N NV2I(M)=.N
V1 M)14Al-	 .. . ­VL(CM)=s3. ...... ... ... .............. 	 .
V2(M) = 2 

V 6 MV4(M)=.4.4)4 
V6(M) 6
V9(M):A;9 ..................... .......... . .
 

Vd(M)=48 

V19 (m) :42.vg1(I)=N11............ 	 ................
 

VP1.(M):....-.....V12(t:) :ck112	 ... .. ~.......
 
P21( m ) 2-W 
P2(;'M)= 2 
P6(h)=.3 .
 .. ..
 
Pl(M=:05
 
P5(M)=D6
 
P7C ii):,7"
 
PS(M):.18
 

Plr (1-) GJlO 
p I I( m ) = l1 ... .I. -..... 

P12 (m) :zj12
 
IF(MN .ED, NR) GO TO 9
 
IF'(M ,VE. ±0) RETURN
 

9 	 PRINT 1, T ...
 
GO TO( tOp10l,E1'$2,l3,1 4 flS,16,17,lp80±9 )NV
 

10 PRINT 2, ,1,2 	 IUD...
TO 21
 
11 PRINT 2,I1l12 4s13 $jO TO 21
 
'.2 PRINT 2,11p.12 13, 14. . ................. $UO TO 21
 
13 PHI NT P,II,12 13o 14,15 	 sO To 21 
14 PRINT 2,1'4,12 s13,14,15,16 $GO TU 21 
15 PRINT 2,11',12 13,14i15p1617 %,.i0 TO 21 
16 PRINT ,11, 12 ,3, 14l 15, 16, 17,18 %,0 TO 21 
17 PRINT 2,11p12 ,13,14,15,16,17,18a19 $;Oi TO 21 
18 PRINT ,11,12- ,13,14,15ploo17,18,19p,10 $G0 TO 21 
19 PRINT .,11,12 *13,14,l5,Ib, 17, 18#19,l 11,Ill $0 TO 21 
20 PRINT 2,11,12 13,14I5, 6,17,18,1,I910, I.1.4±2
 
21 GO TO(22,22,23,24,25'p2627,28,29e3OO3's32)NP

22 PRINT 3,J J2 ........ . . ...... SUO TO 33 
23 PRINT 3,JlpJ2 ',J3 sU0 TO 33 
24 PRINT 3,J1,J?. J3,J4.. ....... -.--.. . . $0 TO 33
 
25 PRINT 3,J1.J2 ,J3,J4J5 	 SdO TO 33
 
26 PRINT-,,JIJ2 'sJ3,j'JJ5sJ6 ............ 	 $.... 33
.. 	 GO TO ­

http:2,11p.12
http:PS(M):.18


YORl.3A 

0/17
 

27 	 PRINT 3.JloJ2 ,J3,J4pJ5oJ~oj7 TjO TO 6S28 	PRINT 3,J1,J2 , J3 sJ4,oJ5iJ0 .9J7pJ8 ; O TO 6
29 	PRINT 3,dl,J2 sJ3,J4o.J5oJbJ7,JblJ9 
 % O TO 3
 
30 	PRINT :3,JlJ2 ',J3,J4oJ5pJbsJ7oJJj9,Jjo 
 %jO TO 6
31 	PRINT 3,J1,j2 s,3,J4oJ5,J6,J7,jbpj9ljo,%JlI30T

32 	PRINT 3, J ,J2 ,j31J4lj5,4J~,j7,,j9tilolill;JI2 OT

33 	 0u 60 T1,1


GO TO( 3'13 413S5*3613 7,38ip39140141,42a43o44)NV
 
34 	PHINT 1,1M (I),V1(I)V2(l ) %O TO 435 	 PR I NT 4, 1Ill(I) ,Vl.( 1)V2( ±) aV3(1 $.30 TO0 4
36 	PRINT 4,1IM(I),V1(I),V2()),V,3(I),V4(I) 
 s TO 4
37 	P81INT 4 ,!M(I),VI.(1),V2(J),V3(j),V4(l),V5(i)


4	 SjO TO 4-36 PR INT . 1MINC),Vl(Do).V ),V3 ( I)#V4(I),V5(I),V6(I) 110T 04
39 	PRINT 4,IM(I),V1( I),V2( I),V3CI),V4(1 IV5(I)1V6( I),
7(I)
"1 	 sjO TO 440 	PRINT 4.JM(I),V1(I),V2(J ),V3(1).V4(l),V5(i),V6(I),

I 	V/(i),,V8U) 
 $jO TO 4!

41 PR INT 4, I M( I ),VI( I oV2 ( I ) sV3 ( I )1V4( ~pVI )oV6( I),
1 	%/7(I1), V8( I ) ,V9 ( I) 

-

Si TO 4!A2 PRINT 4,111(1I ),Vl (I #V2( I )V3 (I )oV4(I )pV5(I)#V6(I )f
1 VI7( I ),V8( I),V9 I, V10(I SO TO 4!43 PRINT 1,111(1),VIc 1),V2 ;).V3(1I),V4( 1),V5c1),Vb( !);
1 V/( I),V'8( I),V9(I ),V1O(I V11(I) SJO TO 4!44 PHINI 4,IM(I),V1(l )DV2(I ),V3(j )1 V4(J ),V5(I ),V6(i ),
I 	 V7( I 6 9 -4 ~~l()V2l

45 GO TO( 46,46,417,48,49, E0 1±52,531 54,55,5)NP46 PRINT 5, P1';I),P2 I) SJO TO 6(47 	PRINT 5.19i I)P2( 1) P3( I) SoO4P 	PRINjT 
lj9 Pitl!NT 
50 PR INT 
51 PR 1,NT 
52 PRINT 
1 18 (1I 

53 PHINT 

TO 	6(5,PI1( I ) P2( I ) P3C ) ,P4( 1 37O Tb 6(
5,Pl(I),P2(I)oP3Cflp4(I)oP5SU) 
 Sj TO 6C

5 PI(I.P2(I),P6(),P4(I) p5C I)P6U( 1$5 TO 	b(5 PI(I)P2 CI),P3()P4 CI )oP5(I),p 6 (1)#P 7(1 ) $ O TO OC
5,Pic I),P2(I),P3CW)P4c±),P5cI )1P6(1),P7(1)#
 

$o TO bG
5 PI1)P2 ( l)#P6( I)P4(I)pP5 ( ),P6(I),P7(I)o

1 	 P&CI),P9(c ilo 	TO 6054 	 PRINT 5,Plc flP2(flP3(fl.P4flip5(I),p6(I)
5 P7(Z)1
1 	R8CI),Pgc I),Pio(1) 
 $j TO 60
 

55 	PRINT 5,P1(I) P2( I) P3( 1).P4C I) P5( I) P6( l),P7( ),

1 ~ 1IP 9(I1),PJ0(I) oPi1(I) S~O TO 6056 	PRINT 5,P.( I),P2cI)P3W1,,p4cI),P5( I),P6( i) 1 P7W 5)& 	R8(I),p9(I)oPlaUI) ,P1l(I) IP12(I)


60 	 CONJTINJE 

1 FO*ThAT(1HU,24X*SUllMARY OF' OUTPUT FOR KEY VARIA6BESsAT TIME T 
 *o
 
I F"4.,8 YE~ARS*/)
 
2 FO.TAT1HOl,*RUN*o2XA8,11(4XA8))
 
3 FURMATC6XA8s1±C3XA8))
 
4 FURMAT(1HO,1,IXE1Oa3,11(.XE.O,3) )

5 FO-RNAT(5X~l0.3sl±(1Xo~luo3) )


REiTURN
 
END 



FOR1.3A 
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231 FOREFX:"27*YGCCC28*CIMP*JA
 
232 FORFXA=FRXA,.flT*(FOREX)
 
233 ANjPROT=C29*SLlP+C30*QM
 
234 CERPROTC31*LCl
 
235 GRAP=^RCAP+lT*(EXGRmGRvEP)
 
236 VALCAP;(PFT+PMT,Cll*(PFM*pPMM))*PAAGRCAP
 

-C 
 PREDARE SUMMARY TABLE
 
1392 IF(I.Ij-=.NITOL) GO TO 22q
 

CALL SJMMARV (II,LR,RLENTH,PFTr,PMT,RCONjFARMI,CF,FONEX,
 
I YADYMIPA',TDNATPFM,(31C41C5106,07,C8,C12,C41.C4e, ALIAL2'iPFCAM
 

*21 8,4PFT ,8HPMT p6HRCON----.,8HFARMI o8HL;F
 
3 8"4FORE.X ,BHYA j3HYM o8HCl o8HPAf
 
4 8'1TDNAT 8,HPFM- *8HC3 ~8HC4 #8HaS
 

5 84'C6 o8HC7 08HC8 18HC3.2 o8H 41: 
0 6-C42 s8HALl ---,8HA, - 1 8H'PFCAM 15±: 

* 224 CONJTINUE
 

22 CO'UrINJE
 
C.
 

RETURN
 
END
 

Foi~1,3A 00/21/70
 

SU3iROUTENE DEMIOGCSFSMoTDN'APFPMERVALBSMALLBDlfF3, 'B,VALDSMA
 
lLLf,DIFFDol(DD,D2D3,D'i5DMi)FA?APRToRMT*DT;HisRER~PAlsi3
 
2RUEL,A3,A4,VAL5,QMPFCAYMAPM,YtiI3,BMC40,C41.C4~,)
 
DPIENS ION %lALB(9),VALD(9)PVA45C9)
 

A. 
BRiC4±*,TAfJLII(VALBSMALLBPIFFBKB, TDNA)
 
2 DRC42TAHLI(VALjSMALLDDIFFDDKDTDNA)
 
3 EHP=PF*EHR(prpM,-DR
 
4 AI-1F3R*:F..
 
5 AlP=A13-r(DT/,3)*(Al"AlP)
 
6 IF (A1-AIP) 7,7j9 . . .-. 

7 BRREL=Dl
 
8 GOTO 10
 
9 RrWEfL=D2 

10 A2:A2.COT/BRDEL)*(AlwA2) ~--.--*-­
11 BF=,5*A2
 
12 HM1=3F .*- -*-­

13 AJS=PF*DR 
14 IF~i).(LiT/f3)*(A3-DF)­
15 A4:=Pt4*DR *C,40
 
16 DmcDm+cDT/n4)*(A4-D)M) 

17 EH=[ER.(DT/D5)*ERP-ER) 

. .
 

18 PFzfPFflT*fIF"DF-SF..RPT) - ..... 

19 PMcPtM+Dl*(RM-DMwSM.RMT)
 
20 QM:PF*PFCA*YMA*TAB3L-1E(VAL5.±360,,136O,,-.TpNA)­
21 YM=UM*PRM
 

END
 

http:2RUEL,A3,A4,VAL5,QMPFCAYMAPM,YtiI3,BMC40,C41.C4
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SU31001NE I)F-LAY(RINIpRUUTRICROUTRIIELoDTOK)
 
D14ENSION CROUTRO)
 
DELI DEL/(FLOAT(K)*DT)
 
RIV RINR
 
DU 1 1 = IsK
 
A860 
 ',MOUTR( I 
CHOUTR(l) = ABC + (RIN-ABC)/DELI 

I Rllv = 4BC 
ROJTR = CROUTR(K) 
RETURN
 
END
 

FORI..3A 

Oa/21/70
 

FUNCTI')N TA[31.IF(VALoSMAL oDIFFKootimmy)
 
D14-ENSIOV VAl,(9)
 
DU',;:AtilNl(AMAXI(DU IMY-RSMA4LOtO),F OAT(K)*DIFF)
 
1=1,0+DUM/DIFF
 
IF(IEIPK+I) I=K
 
TA3LIE=(VAL(I+I)PVAL(l))*(DWM-FLOAT(101)*
 

!DlFF)/DjFF*VAL(l)
 
RETURN
 
END
 



FOR1.,3A _______ ~21170 00__ 

FUNJCTION XN1EAN (A#NRI 

ASUMmol 
-_. -_D0 I Jo INR-

I. ASUMOAS(JM *4 A(J) 

--- - MEAN u-ASUM/LOA(-NR)-
RETURN 

________ 

___ 

-

FOR1,3A - ____oe/23170 D__ 

FUV'CTION VAR (AAMNR) 
DPIENSION A(200) ------ ---­ _ _ _ _ _ 

DO1 

I VSL.M 
J1.DNR 

= VSUM 
-- --

C(ABS(A(J,.AM))**2,) 
_ _ _ 

_ 

VARq VSUM/CRnu1.) 
-RETURN-_ _ _ _ _ 

E_ND _ _ _ _ 

_ 

_ 

_ 

_ 

_ 

__ 

_ _ 

_ 

_______ 

_ _ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 



* Oa/21/70 

% iL ii Er'A (Xi XL, XMI..# XH) 6ETA 

-. C 'IL-XL.)/3 / i J. 

ST 
,H Sr' ( (1,-R)*13*iXH-XML)) 

T 1 149 -47 
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FOR1..3A 
 10/23/70
 

19 STDDEV(K) SQRT(VS.Ufi(K)/FLOATUl-.))
 

191 PRINT .010 
.PRINT 1011s.XMEAN*.STDD.EV...----

20 CONTINUE 
---­

1002 FORMAT(8(A8o?X))
 

1004 FORMAT(815)
 

1006 FORMAT (1HG ,l10(5XA8)) 
- 1007 FORFWAT(1HA,-n5Y,1OCE1O.3,.3X)) -.. 

1008 FORMIATc1H41,*RUMl* 2X,~p, 8,X,*PrlTrw8.x*RCON,7X,*FARMI*,6XD,*CF*, 

2 *C4*,QX8,*C5*, 9X,*C6*,9X,*C7*, 9X, *C8*.9X,*C12*,BX,'*C41*,aX# 
* C42* ,8X, wALI* t 8X o*AL-2* ,8 X.,*T SS* ) .

*-

1009 FORMAT(lIIUI.,11t1l(XE),n.3)/'1X,11(.XEI.0.3).) 
-1010-a FORMATIH ,5x o tF.TM*, 9X #*PMTM* ,9,*.RCONM*.BX,* *ARM t1* A.7X *cFVV,

1 lIOX, *F'OREXM*,7X,*yAX*, 10XWYMI*/6XD*PFTS*D9X,*PMTS*D 9XI 
- *RC0NrS* 4 .8X...-tEAHJ4I S*.-X CE .RFLfEX YAS*..1 OX,CS *p .X,-Px St7X # * 

3 *Yt1S*) 

31 END 

http:9,*.RCONM*.BX
http:FORFWAT(1HA,-n5Y,1OCE1O.3,.3X
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SUBROUTINE ?ITINV(ADNN'MAX,BMP,PIVOT, IPIVUT, INPEXDETERll) 
-- _ _F- .CODA -A-T.IN.V-.-MAT HIX- O .... ..C___ NVElS 
C MIATRIX INVFRSION WITH ACCOMPANYING SULUTION OF LINEAR EQUATIONS 

C MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
 

DIMENSION IPIVOT(N),A(NtiAXNMAX),B(NMAX,1)PINDEX(N,2),PIVOT(N)
 

C 
 INITIALIZATION
 

10 F)ETERM=1,0
 
.. 5- D0 20 _J =I
 

20 IPIVOT(J)=O
 
__ 0L-D 0- 55 0_ -- I 4,N _ 

C
 
-..-C--- -- SEARCH -FOR- PIV.O-T-ELENENT--


C 
.._ _40 ..AiAX=0,0 .......
 

45 nO 105 J=%iN
 
_ 50( F..(IPIVOT-(J4-1)-60.-4.O5,--60
 

60 DO 100 K=i,N
 
-. 70-.IF (IPIVOT(K-,,)--80, 100, 740 ..­

80 IF (A8SF(AIAX)-ARSF(A(J,K))) 85, 100, o100
 
. . 5--I nfW-= j 

9r, IC0LHiM=K 
... .. .. 95-AtAX=A (J K-) 

100 CONTINUE
 
. 105 CONT I N----...... . .. .... . ....
 
110 IPIVOT( ICOL.Um)IPIVOT(ICOLUM)+
 

C INTERCHANGF ;'OwS TO PUT PIVOT ELEMENT ON DIAGONAL 

130 IF (IROW-ICOL.UM) 140, 260, 140 
.... -.-140- nETERH=,DETEP M 

150 DO 200 L:i,N 
160-SWAP=A IROW,I) -_ 

170 A(IROWL)=/%(!COLUML)
 
.. .----. 0 ---A( I COLU- L ) =r.W AP-. 

205 IF(m) 260, 260, 210
 
... . 10.DO. 250. L=I, 11..... 

220 SWAP=8(IRUW,I) 
..............-230 R(IROWL)=H(ICOLUM.L)......
 

250 R(ICOLUM,L)L4;AP 
........ 260 --1INDEX ( I , 1 )= IPOW
 

270 INDEX(I,2)=ICOLUM
 
-.310- PIVOT ( I) =A.(.1 OLU,_lCOLUM)_
 
320 DETERM=DETERM*PIVOT(I)
 

C DIVIDE PIVOT ROW BY PIVOT ELEMENT 

330 A(ICOLUt-,ICOLUM)z1an
 
---340--O- 350 -L-1-,-N
 

350 A(ICOLUML)=A(ICOLUM,L)/PIVOT(I)
 
.355I(M) .380.,--30-.36 ­360 DO 370 L=1,M 

-.. ..... 370.. 2U-ICOLUM, L-):=R(.LCOLUM-,.L-)-IP4 -(-I. .)~ -- ..- - ­

http:IROW-ICOL.UM
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FOR1.3A 

10/23/7
C .. . ... . . . . . ........ 
 . . . . .... . . . . . . .-

.. ... C . ..... REDUCE NON,.PI.V.O.T._.R.OwS .C 

. ........	380 0 0 550 LI =loN-.. . . .....
 
390 IF(Ll-ICOLUM) 4l0p 550o 4n. 
 . 
400 T=A (Li, ICOLUM) -- . .......... 
420 A(L , ICOL.UN)=O,.
430..n0 	450 L=I,N 
 .............
 

450 A(LIL)=A(L' L)-A( ICOLUML)*T
455 1FCM) 55(, .550 -,.--,,6 ...... 
460 PO 500 L=J#M
 
..00 A (LIL) (L'',.L)!B(..I
COLUM, L)*T.­
550 CONTINUE
 

C 	 INTERCHANGE COLUMNS
 

600 D0 710 1=1,N 
610 L=Nt+l- I
 
62n IF (INDFX(L,.oI INDEX(L,2)) 630, 710# 630
 
630- JROWg I N EX (L,..
 
640 JCOLUtJi=P)EX(L,2)
 

. . 650 00 705 K IPN .
 ...... ....
 
66n .qWAP=A(KOJROw)
 

. ...670 A(KJROW)=A(K#JCQLUM)-.._____
 
700 A(I<,JCOLUM)=SWAP
 
.705-CONTINUE 
710 CONTINUE
 
...... .7O
ETURN
 
750 END
 

http:INDFX(L,.oI
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SUBROUTINE TPANSI( IsMV) 
COI*ION.IBLKJ-/-(4.-.C-4a.fl a4LX Ui(A nl4 0) 
DO 10 Jz1DNV 

SO TO (1s,3,#4#5'6*7.8)I 

XOUT(J,3) =YIN(Jol) * XIN(J*5)
 
X0UTU sA ) -:jYl -NtLj,.3.)-.*-.X. I NC(J*_)
 
XOUT(J#5) IN(J,5) *XTN(Jo13)
 

XO0UT (J *6 ) Y.N.WA*..XIN (J s )._______________
 
)OUT(JP7) X!N(J#5) *XIN(Jol,)
 
XO0UTCj s-8) Y1N(.j p4.)*-XIN (J o13)-____
 
XOUT(J*9) )CIN(4D4) * XIN(J*B)
 

.KOUT(4J .*- 04---) NJ'.W. (, I 1)
.. LL*-N 

XOLIT(J 1 ±1)c YIN(Jo6) * XI'J(J#12)
 

XOIJTCJ#13)= YIN(J#7) * XIN(J,,10) 

GO TO 1.0 

XOUT(Jo3) = IN(J#5) *XIIN(Jo10)
 
-- -- - X UT J 4 --- Y N J 3 -* X N J 7-_ 

X0UT(JPi) cYIN(J#5) *XIN(J,1.1)
 

)COLT(J*7) cYIN(J*4) *XT'J(J#8)
 

_ _~XOUT (-Jo-8-).) --Y.NC-#6)_ _XINC J, J2)
 
XOUT(Jo9) cYIN(JP13)**3
 

_A0U.T( J,10 ),_ .IN ( is ).-.*...4IN(J,# 3____
 
XOLJT(Jo11)= YIN(Jo7) * XIN(J#1O)
 

GO TO 10 

XO[UT(J#3) YIN(Jo3) *XIN(J#5) 

)XOUT(J#5) WJN(J,3) * ;qI(Jllo) 
)(__--OUT( jo6)----T-N(J 14-*-XIN(-Jo-2)
 
GO TO 10
 

YOUTCJP3) = IN(Jo2) * XIN(J#10)
 
---OUT(J,4)-=-.YINC-.-3)-.*-X-tNC.J,5)
 
Y~OUT(J*5) YIN(Jol) *XJNCJ#7)
 

YOUTCJ#7) YIN(4,2) *XIN(J#4)
 

XOUTCJo9) XIN(Jolfl)**3
 

5YOLITCJD2)-:-YNJ)*XNJ,0)
 

XOUT(J#3) = YJN(J#3) * XINCJ#7) 

YOUT(J#5) WJN(J#5) *XIN(JPIO)
 

YOUT(J#7) YIN(J*3) *XIN(J#10)
 

YOUT(J,9) cXIN(J*5) *XIN(J#9)
 

http:COI*ION.IBLKJ-/-(4.-.C-4a.fl


FOR1*3A.10/23/70 

XOUT(Jp11)= YIN(J#9) XIN(Jol1)
 
---- XOUT(J,12)..i IN(J2)-*-~XIN(J,9)-____

GO TO 10
 

XOUT(J*3) YIN(J,5) *XIN(J*12)
 

XOtJT(JLi) )YJN(J#2) *XIN(Joll) 
-- XOUT (J#6 -- 3)--XIN( -1 

XOLJT(Jo7) XINCJo7) XXIN(Jo9)

.~~O TO 10 ..-.---­

7 XOUTCJ#2) cXIN(.Jo2) *XIN(J*10)
 

XOIJT(.J#4) = IN(J#3) *XIN(J,&i) 

)OUTCJP6) zYJN(J#7) *XIN(J,9)
 

XOUT(J,8) XINCJ#8) *XIN(J*11) 

GO TO 10
 

XOUT(J,5) YIN(Jo1) *XIN(J#5) 

XOU)T(jp5) X(IN(jp5) *XIN(Jo10)
 

XOUT(J*7) YIN(J,4) *xliNCJo,)
 

XOUT(J,11)m YiN(J*6) *XIN(J,8)
 

10 CONTINUE
 
-.- RE-T-R44-

END
 



MOA .10/23/70
 

SUBROUTINE TRANS2
 
COMMON -.113LK2-/-VARVL(4ZI#-VAROU-T-CA( o8) 
DO 1 1=108
 
VAROUT(It 1.) 
VAPOUT(2,I) VARINM * VAfIN(8,)
 
VAROUTC31-J-) V-AR-IN-(-j-)_*-VAR-1N(--5.) 
VAROUT(4pl) x VARIN(3) * VARINM
 

AROU-T.(.5-p-l-')--r.-VARI-N-(-5.)--*-VARLN(-;13) 
VAROUT(601) a VARIN(4) * VARINt7)
 

-VAROUT.(-7o.l)---r.-VARIN-C-5-)-.*.--VARIN(J.0) 
VAROUT(8#1) c VARIN(11)* VARIM13)


-VAR.OUT(-9ol)--.--V.AR.ltIL4-)-*-VARIN(.8.) 
VAROUT(10#1)c VARIN(l) *.VARIN(II)
 

R.OUT.(.11.o, 14-z-VAR I N_(_6.)__*_VARLN (-12) 
VAROUT(12ol)z VARIN(2) * VARIN(8)
 
VAROUT (13 *.I)-c-VAR I N.( 7_)_*_VAH I N C1.0). 
VAROUT(14,I)c VARIN(7) * VARIN(13)
 
VAROUT ( 2 #2-)-=-..V ARINC.7)__* _..V ARI N ( 8) 
VAROUT(3p2) a VARIN(5) * VAHIN(10)
 

AROUT (4 #2-) _=_V.AR I.N-(-3)-* ..VAR.1 N-(-7-)-
VAROUT(5o2) VARIN(5) * VARIN(11)


-VAROUT (6 #2 )-=.-VAR IN,(-I)-*--.VAR I N (.8) 
VAROUT(7p2) a VARINM * VARIN(8)
 

-VAROUT-(.8o2)--=--V.ARIN(-6).-*- VARIN.(.12) 
VAROUT(9?2) a VARIN(13)**3
 
VAF?.OU-T-(l 0 p-2.) =-V.ARI VAli I-N GD 
VAPOUT(11#2)c VARINM VARIN(ID)
 

_ VAROUT.( 12, 21 =-VAR I N_(.5) VARI N(11) 
VAROUT('2#3) c VAR'IN(4) VARIN(B)
 

-V-AR-OUT(-3o.3.)-=-V-ARI.N(.3-)-*-VAR.I.N(-5-)-
VAROUT(4o3) c VARINM * VARIN(13)


A-ROUT-(-5-t-3-)-=-VAR-I.N.(3)-*- V.AR.IN(-104 
VAROUT(6*3) c VARIN(l) * VARIN(12)
 
VAPOUT-(2t4)--m--V-ARIN(7-) * VAF?.IN(8-) 
VAROUT(3sit) 2 VARIN(2) * VAHIN(10)
 
VAR OUT ( 4-,P.4 )----VARVI (-3.)--.*- VAR.J.N (.5)-
VAROUT(5#4) a VARIN(l) * VARIN(.7)­

--..:-VAROUT(6o-4)--=-V-AR-lk(.,3-)-*--VAR.Ilq.(-Il) 
VAROUT(7p4) = VARIN(2) # VARINM
 

-VAPOUT(8o.4-)-=-V.AR-LN.(.4)--*- VARIN.(13) 
VAROUT(9#4) a VARIN(ln)**3

VAROUT (10,-4).=-VARI-N-C-3.)-*--VAR.I.N(.9) 
VAROUT(2s5) a VARIN(8) * VARIN(ID)
 
IIAROUTC-3o5-)-=-V.ARLN-O)-*-V-A".NI-7) 
VAROUT(4#5) c VARIN(2)**3

VAROUT-(5.p5)--x-VARIN(-5)--*--V.ARIN(-I.O) 
VAROUT(6t5) c VARIN(7).* VARIN(8)

VAqOUT(-7#5)-r--VAR-1-N.(-3-)--*-VAR.I.N.(-JB) 
VAROUT(8#5) c VARIN(11)
 

'_VA R0 UT( 9 o5-)- -=-V ARI N-(-r-)-*-V AKI N(-9-) 
VAROUT(10#5)c VARIN(2) * VARINM
 

_ VAROIJ R.1 N.0_)_*_V ARI N_( I I -)
 
VAROUT(12o5)c VARIN(2) * VARIN(9)


-VAROUT-C.2.o-6-L-c-V-AR.LN-(-S-)-*-VARI-N.CIO) 
VAROUT(306) a VARIN(S) * VARIN(12)
 
VAR011MA-s-61-n-VAR 1AU)_*_._V ARIN.U.) 

http:VARIN.(.12


FORI,3A 
 LO0/23/70
 

VAROUTC(j1 6) aVARINM2 VARIN(il)
 
VAR.OUT(6v 6 )-z-V ARINC3)*-.VAR IN(-11.)}
 
VAROUT(7#6) aVARIN(7) * VARINC9)
 

--VAROUT(2,.7)-a-VARIN()-...VARIN( 1O)
 
VAROUT(3o7) cVARIN(7) * VARINa)
 
VAROUJT-(4*.7-)-=---VARN(3)-*-VAR IN( ).-______
 
VAROUT(5o7) c VARIN(2) * VARIN(11) 

VAROUT(. 7) . A- ARIN(7) *_ VARHIN((9)_ 

VAROUT(.97) cVARIN(8) * VARIN(9)
 
--. VAROUT( Be )-.VAR N( )-..VARIN( 1).-


VARQUT(3,87) n VARIN(1) * VARIN(5)
 
-VARUUT(48)-VARN3)*-VARIN().-

VAROUT(5,) c VARIN(5) * VARIN(13)
 
VAROUT (4,.)VAR .(4)*..VAR IN(1
 
VAROUT(,o8) m VARIN(5) * VAHIN(1O) 

-. ~~VAROUT(,.a.-..VARIN(1i-...VARIN(±3)_______________ 
VAROUT(9,8) aVARIN(5) * VARINCO) 

__________VAR OU.TAJ.8 AINM1O8h.VAR IN i.V 

VAROUT(11e8)a VARIN(6) *VARIN(8) 

* .VAROUT-A2-..- AR.I.NL2. ..VARI.N.UI,2)__ _ _ _ _ j 1
RETURN
 

,HUNo2,o,2100
 

EXECUTION STARTED AT 1532 v~43
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