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SPACE-TIME VALIDATION OF ATHUNDERSTORM RAINFALL MODEL' 

M. M. Fogel, L. Duckstein and C C. KisieI2 

ABSTRACT. A probability model for predicting the occurrence and magnitude of thunderstorm 
rainfall developed in the southwestern United States was tested in the metropolitan Chicago area 
with reasonable success, el 'cially for the moderate to the extreme runoff-producing events. The 
model requires the estimation of two parameters, the mean number of events per year and the 
conditional probability of rain given that an event has occurred. To tic in the data from more than 
one gage in an area, an event can be defined in several ways, such as the areal mean rainfall exceeding 
0.50 inch and at least one gage receiving more than 1.0 inch. This type of definition allows both of 
the model parameters to be obtained from daily warm-season rainfall records. Regardless of the 
definition used a Poisson distribution adequately described the number of events per season. A 
negative binomial distribution was derived as representing the frequency density function for rainfall 
where several gages are employed in defining a storm. Chicago data fit both distributions very well at 
events with relatively high return periods. The results indicate the possibility of using the model on a 
regional basis where limited amount of data may be used to estimate parameters for extensive areas. 
(KEY WORDS: thunderstorm rainfall model; frequency analysis; probability distributions; parameter
estimation) 

INTRODUCTION 

The effective management of urban water resources is contingent on rainfall-runoff-quality 
relationships and on a set of inputs whose time-spatial distributions are adequately repre­
sented. One such major input is the short-duration, high-intensity thunderstorm rainfall that 
produces many of the extreme warm season floods. Knowledge of this type of storm is also 
required for use with watershed moLsJs to determine the effects of various land treatments 
designed to alter the normal water cycle. 

In a previous study, a model for determining point rainfall frequencies in convective-type 
storms was developed using 12 years of record from a dense rain gage network [Fogel and 
Duckstein, 1969]. The model was compared with long-term records of a nearby Weather 
Bureau station in Tucson, Arizona and was found to give good results. Essential parameters of 
the model are the mean number of storms events within a given area per unit of time and the 
conditional probability of rain at a point given that a storm has occurred in the area. This 
paper, as one of its goals, investigates the extension of the model to other geographic areas. A 
restraint placed on the model is that it must be able to use data that isreadily available. 

A second aim of this study concerns the length of record required to estimate the param­
eters of the model. The length of precipitation record deemed necessary to obtain a -table 
frequency distribution has been estimated as ranging from 30 to 50 years for most regions 
[Wiesner, 1970]. 

'Paper No. 71029 of the Water Resources Bulletin (Journal of the American Water Resources Assocla­

tio). Discussions are open until six months from date of publication.
,Professors of Watershed Management, Systems Engineering and Hydrology and Water Resources, re­

spectively, University of Arizona, Tucson, Arizona. 
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Since thunderstorm rainfall is recognized to be more variable in time and space than other 
storm types, it seems likely that 50 years of data may be required for satisfactorily estimating 
the 'return period of a given amount of rain. This investigation, therefore, is concerned with 
the trade-off between the current use of an approximate model which may require only a few 
years of data for calibration and the future use of a possibly more accurate model. 

The question may also be asked as to the value of an additional piece of information. Thus, 
parameter estimation is involved in making statistical inferences as well as in decision theory. 

In summary, this paper sets forth amodel for the prediction of high-intensity summer rain­
fall vhich may become regional in scope. If additional investigation substantiates the assump­
tions made in developing the model, the estimation of two regional parameters would permit 
the forecasting of extreme events within that region. 

THUNDERSTORM RAINFALL MODEL 

The model was developed with the hypothesis that the occurrence of a storm within a 
given area is independent of the maximum amount of rainfall that falls during a storm within 
this area. In addition it is assumed that each storm has a Gaussian spatial distribution of rain­
fall. The hirtorical record of thunderstorm rainfall, therefore, can be considered as the result 
of many storms whose center depth, or point of maximum rainfall, is a random variable as is 
the distance between the storm center and the raingage in question. In other words, there is a 
probability associated with a center over a given area which isindependent of the probability 
that the center will have 'a specified amount of rain. Summing up this joint probability in 
space produces the conditional probability of receiving a certain amount of rain given that a 
storm has occurred. 

Analysis of the data from a rain gage network in the Tucson area indicated that an expo­
nential model could explain 75 percent of the variance in the spatial distribution of rainfall. 
The data also tended to substantiate the assumptions by McDonald [19591 and Osborn and 
Reynolds [1963J that the locations of air mpss thunderstorms in fairly level country may be 
regarded as randomly distributed. Using a uniform distribution of storm center locatiorts and 
the exponential spatial distribution model in a deterministic manner, the conditional prob­
ability of point rainfall was found to be in close agreement with a geometric distribution. The 
parameter of this frequency distribation, p, represents the probability tiat given a storm in 
the area, the point in question within that area will receive a measurable amount of rain. 
Mathematically expressed, the frequency density function for x units of rain is 

= f.(x) (I - p) p, x = 0,I....(1 

Although 12 years of record are not sufficient to establish the use of a distribution for an 
annual event, the data indicated a trend towards a Poisson-distributed random variable for the 
number of storm events per season. Asimilar result was obtained in a Etudy by Todorovic and 
Yevjevich [19691 who have concluded that the number of storms in an interval is Poisson­
distributed. The frequency distribution for j storms per year is therefore 

e-m mJ 
' 

fN )- m ! j =0,1 ... (2) 

where the parameter m isthe mean annual number of storms. 

The cumulative maximal distribution function for point rainfall, derived from ,the above 
two distributions, is 
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Jit 
where FR (x) is the cumulative conditional probability of obtaining less than x units of rain. 

EXTRAPOLATION TO OTHER AREAS 

To test the model in another geographic area, tile rain gage network of metropolitan 
Chicago was selected since data for several gages are readily available for an extended period 
of time. While the model generates point rainfall frequencies, data from a network can be used 
to obtain the necessary parameters for the model. To do so required that a storm be defined 
in such a way that all gages are used. In a study of heavy warm-season rainfalls over a 400 
square-mile netwoik in Illinois, Huff 119671 defined a storm as one in which the areal mean 
rainfall exceeded 0.50 inch and/or one or more gages recorded over 1.0 inch. Huff in a later 
paper [19681 used a slightly different definition in which at least one gage had to receive 
more than an amount equal to the 2-year recurrence interval in addition to the requirement 
that the mean exceed 0.50 inch. 

Five rain gages located within approximately a 50 square-mile area in metropolitan Chicago 
with a historical record of 19 years were selected tor the test. In an attempt to simulate lhe 
occurrence of a storm as defined in the original model, several definitions were investigated as 
designating the occurrence of an event. These were as follows: 

1. Network mean greater than 0.50 inch 
2. Network mean greater than 0.50 inch and at icast one gage more than 1.0 inch 
3. Similar to (1) except 0.75 inch used 
4. Similar to (2) except 0.75 inch and 1.25 inch used. 
5. Any gage greater than 0.50 inch and the difference between any two more than 0.50 

inch 

As a means for determining the extent to which an arbitrary definition of the occurrence 
of an event is rplated to that used in the original model, Weather Bureau data in the immediate 
vicinity of the experimental rain gage network were examined. Upon consideration of four 
Weather Bureau stations in the Tucson area, an event was defined as one in which the mean 
areal rainfall exceeded 0.25 inches and at least one gage recorded more than 0.50 inch. With 
this definition, the assumption ismade that the occurrence of an event issimilar to that which 
was used in the development of the original model. The model stated that an event occurred 
when there was at least one storm center (point of maximum rainfall) within the rain gage net. 
work area. The arbitrary definition resulted in values for the parameters m and p of 6.0 and 
0.46, respectively. This compares with 5.3 and 0.48 found in the model's original calibration 
period. 

For the Chicago data, the mean number of yearly occurrences were determined in all cases. 
As in the model, the number of storms in an interval was fit to aPoisson distribution. Using 
the Kolmogoroff-Smirnov test for comparing the observed with the theoretical distribution it 
was found that the Poisson distribution could not be rejected for any of the cases at signifi­
cance levels of at least 10 percent. Figure 1 compares the observed with the Poisson distribu­
tion for the second case, which is essentially the definition of a storm that Huff used. For 
illustrative clarity the theoretical distribution is shown as acontinuous function while in fact 
the Poisson distribution is a discrete function. 

In the model, a geometric distribution was found to adequately describe the conditional 
.probability of point rainfall given that a storm has occurred. For a network of gages the 
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Figure 1. Distribution of annual number of events where areal mean rainfall 
exceeded 0.50 inch and at least one gage recorded more than 1.0 inch. 

frequency distribution may possibly follow another function. For example the generating 
function for the geometric distribution given in Eq. (1) is 

G(s) 1-pl- ps (4) 

Assuming for the moment that there are r mutually independent gages in a network, the 
problem is to find the probability density function for the mean rainfall or alternatively, that 
of the sum of the rainfall amounts at all the gages. Since the gages are assumed to be 
independent the'sum is a random variable composed of r random variables. The generating 
function for this sum according to Feller [1950] is 

[G(s)] r = ( -p r (5)1- PS 

which is the generating function of the negative binomial distribution. In other words, the 
negative binomial distribution is the r-fold convolution of the geometric distribution and is 
expressed as 

Ax) ff ( r+x- I1]p x 0I- p)r x= O, 1.... (6) 

where x now represents the mean rainfall of r independent gages and p is the same as in the 
geometric distribution. When the daily warm-season rainfall amounts recorded by a network 
such as in the Chicago metropolitan area are not considered as completely independent vari­
ables, r must assume some value between one and the number of rain gages. 

To obtain p the Chicago records for one of the five stations were re-examined and the 
empirical probabilities of given amounts of rain were determined. These were plotted on semi­
logarithric paper and the line of best fit drawn (Figure 2). This line represents the theoretical 
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geometric distribution for given amounts of rainfall. The parameter pis determined from the 
complement of the vertical-axis intercept as this value represents the probability of non­
occurrence of an event as defined above. 
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Figure 2. Distribution of point rainfall. 

Using the definition for a storm as one in which the areal mean rainfall isgreater than 0.50 
inch and at least one gage records more than 1.0 inch, the empirical probabilities for selected 
rainfall amounts were determined. With the parameter p determined from Figure 2 and r set 
equal to 5, the number of gages, the negative binomial distribution was used to calculate the 
theoretical probabilities for given rainfall amounts. The comparison between the observed and 
the theoretical frequency distributions is shown in Figure 3. 

While the theoretical and observed distributions have similar shapes, the agreement at the 
lower values is not too good. At the tail of the distribution, however, or where the probabili­
ties of extreme events are determined, there is close agreement between the two distributions. 
It is this end of the distribution that has important implications in the design of water control 
structures. 

An explanation of the difference between the theoretical and observed distributions can be 
Lund in the original assumption of mutual independence between the rain gages. If there is 
some dependence within the rain gage network, a value for r of three or four may be more 
realistic. Another possible explanation concerns the arbitrary definition of a storm which 
results in distributions that do not include all possible events. 

PARAMETER ESTIMATION 

An important consideration in the development of regional models concerns the period of 
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record, necessary to estimate the parameter of a model. To study this aspect, the historical 
data of the experimental rain gage network in Tucson, Arizona were lumped together into 
three-year periods. Each period was analyzed individually to obtain the model parameters m 
and p. A three-year period was selected because a valid frequency analysis necessitates a 
minimum number of events per time interval. By taking the mean of three years, a normal dis­
tribution for that mean could be assumed even if the yearly distribution was not symmetric. 
As mentioned earlier, the distribution for the annual number of events was assumed to be 
Poisson. The independence of events underlying the Poisson distribution makes the parameter 
m an arithmetic mean of the annual values. The methodology for obtaining the parameters 
was the same for the three-year periods as was used in the development of the original model. 
Table 1 presents the range of values obtained for the two parameters. 
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Figre 3. Distribution of areal mean rainfall. 

TABLE 1.' Values of Model Parameters for Three-Year Periods 

Parameter 
Mean number Conditional probability 

Period of events, m of rain, p 

1956-58 4.33 0.46 
0.501959-61 7.33" 

1962-64 4.00 0.54 
0.481965-67 5.67 

1968-70 3.00 0.39 

The question arises then, how many three-y'ear periods are needed to have a "good" estima­

tion Xn of the mean. Since it will depend on the'use madi of the mean two cases'can be 
distinguished: 
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(1) a decision will be made on the basis of the estimated Xn of the mean (as well as of p);for example, the size of a flood protection structure will depend on a maximal value ofXn such as Xn + Cgs where Cgs is the 95 percent confidence interval limit; or else, the
size of a reservoir will be chosen to yield enough water even if the mean takes on aminimal value such as Xn - Cgs. Clearly, the value taken on by the parameter p, theprobability of point rainfall conditioned on the presence of aconvective storm will also 
enter into the decision. 

(2) an inference on &~isnecessary for scientific purposes; for example, to check a meteor­ological model describing the occurrence of convective storm cells.

The calculations shown in Table 2 may be used 
 to help answer the above questions ineither casa. Confidence intervals for the means, X. were calculated with the assumption that 

Xn isa normal variate. 

TABLE 2. Confidence Interval About Mean Value of Parameter m
 
for Various Periods of Record
 

Three-year 
 Standard error 95% Confidenceperiods, n m Xn of mean n Interval 

1 4.33 4.33 
2 7.33 5.83 1.50 ± 9.46 
3 4.00 5.22 1.06 ± 3.10
4 5.67 5.33 0.77 ± 1.80
5 3.00 4.87 0.75 ± 1.62 

In the first case, if a decision is to be taken, the questions which come up at agiven point

in time are:


" Can the decision be taken at all, knowing for example that X. = 5.22 ± 3.10 with an 
a priori chance of 0.95 (n = 3)?

" Assuming the decision can be taken, how much is a reduction of uncertainty worth and
what isthe cost of waiting to obtain this reduction in uncertainty?

Note that at the point, n = 3, the extent of the uncertainty reduction is unknown if it isdecided to wait until n = 4. This uncertainty reduction can be estimated either by using a
regional approach (data obtained from another location similar to the one under study) or by
a gross extrapolation, assuming for example that 
R4 = X3 , or by using a Bayesian decision

theory approach [Davis and Dvoranchik, 1970].
For the second case where a statistical inference is to be taken, a scientist desires to esti­
mate a given physical parameter although there is no limit to the precision. Care must betaken to judge the worth of better piecision on m when used in a model that also requires aninference on another parameter p which may be less accurately determinable than m A modelthat takes into account not only the number of events per year but also their magnitude vari­
ation is presently being developed.

In any case, it is most important to examine the sensitivity of either adecision or a modelto the parameters. For the maximal and minimal distributions of point rainfall, the model wasfound to be more sensitive to the value of p than that of m; thus, as these distributions arefundamental for design purposes, more resources should be allocated to studying p than m.Itis hoped that these brief considerations have demonstrated how the parameter estimationproblem can be treated in a goal-oriented framework to provide more .rational answers. 
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CONCLUSIONS 

'1. The annual number of runoff-producing rainfall events is a Poisson variate, irrespective of 

how an event is defined. Being a one-parameter distribution, the only information needed 
is the mean number of events per season. 

2. 	The conditional probability of thunderstorm rainfall at a point is defined by a geometric 

distribution whose parameter is determined by the probability of having rain of at least a 

measurable amount given the occurrence of an event. 

3. 	When a storm event is arbitrarily defined to involve rainfall at several points the frequency 

density function of the amount of rainfall follows a negative binomial distribution. This 

two-parameter distribution requires knowledge of the conditional probability of having 

rain and the number of 'ata collection points or rain gages involved. 

4. 	The use of a probability model for predicting the amount of thunderstorm rainfall on a 

regional basis appears to have some possibility. Frequency distributions concerning the 

number and magnitude of rainfall events developed in a thunderstorm model under south­

westeri United States condit'ons were used on metropolitan Chicago data with satisfactory 

results. Only daily warm seas,.,i rainfall records were needed. 

5. 	 Parameters can be estimated for two purposes, i.e., to make an engineering decision or to 

draw a statistical inference. In either case, the value of obtaining a better estimate gives a 

stopping rule for taking data. That value is relative to economic considerations for the 

decision case and relative to the precision of other model parameters for the inference case. 
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