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Point Rainfl Frequencies in Convective Storm ' 

MARTIN M. FOGEL AN) LUCIEN DUCKSTEIN 

Universityof Arizona, Tucson, Arizona 857*1 

Abstract. An exponential relation was developed to describe the spatial distribution of 
convective storm rainfall in southwestern United States. Given that a storm center has oc
curred, a geometric distribution was used to describe the frequencies of point rainfall depths. 
A Poisson distribution was assumcd to represent the probability of at least one storm center 
occurring over a given area a specified number of times during a season. Assuming that the 
two probability distributions are independent and uncorrelated, maximal and minimal dis
tributions of point rainfall depths were derived. The minimal distribution indicates that with 
a very high certainty a siLgle rein gage will miss at least one convective storm a year. When 
compared with frequencies determined from long-term historical records, the maximal distri
bution exhibits a similar mean, a greater variance, and lower recurrence intervals for the
 
higher rainfall depths.
 

INTRODUcTION age basin is representative of valley floors in 

In the intermountain areas of southwestern southern Arizona. About 55% of the mean an

storms cause almost nual precipitation of 11.0 inches falls during the 
United States, convective 

summer months. The basic rain gage network 
all of the annual surface runoff from small semi-

These storms area of almost 20 square miles contains 29 gagesarid watersheds [Osborn, 1968]. 
laid out on approximately a 1-mile grid. 

occur as high intensity, short duration, widely 

scattered thundershowers principally during the 
months of July, August, and September. Severe SPATIAL DISTRIBUTION OF CONVECTIVE RAINFALL 
local flooding, which causes heavy damage and Area-depth formulas are attempts at describ

may incluae loss of life, is often the result of ing the spatial distribution of rainfall. Court 

such storms. In designing small hydraulic struc- [1961] reviewed the work of previous investi

tures to control runoff, it is essential that re- gators and compared their area-depth relation

liable forecasts be available since detailed hydro- ships of storm rainfall with one that lie sug

logic investigations are usually not warranted gested. He proposed the use of a bivariate 

in these cases. Current methods for predicting Gaussian distribution of statistics which would 

runoff-producing events generally involve esti- give elliptical isohyets. In this model, rainfall 

mating rainfall frequencies. Osborn and Reyn- depths decrease exponentially away from the 

olds [1963] and Cooper [1967] have concluded point of maximum rainfall (hereafter c.!led a 
storm center) and follow the familiar bellthat point frequencies based on rain gage densi-

ties of 1 or 2 per 100 square miles are inade- shaped curve. Court reasoned that any realistic 

quate for obtaining sufficient hydrologic infer- representation of the distribution of rainfall 

mation for use in planning water control works abcit the storm center should be smooth at the 
lie felt that anon small watersheds. 'fhe procedure presented center. At the other extreme, 

here is an attempt to develop more accurate asymptotic approach to zero rainfall with in

predictions of convective rainfall by using a creasing distance appears to be desirable. For

dense network of rain gages. mulas in which rainfall depths decrease exponen-
The analysis of 12 years of rainfall data eel- tially with area away from the storm center 

lected on the Atterbury experimental watershed meet both of these boundory conditions. 
formed the bilis for this study. Located approx- An example of a convective storm that was 
imately Irmiles southeast from Tucson, Ari- centered over the watershed is shown in Figure 

zona, the long, narrow, and relatively flat drain- 1. Reviewing the pattern of nearly 200 con
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Fig. 1. Isohyetal map of storm, September 9,1900, over Atterbury experimental watershed,. 

vective storms that fell on the experimental 
area, the enclosed isohyets exhibited a marked 
tendency to be elliptical. On the average, how-
ever, the major axis was about one and one half 
times the length of the minor axis. When the 
radius of the circle is computed as the average 
of the axes, the difference between areas en-
closed by a circle and by an ellipse is less than 
10%. Thus a circular pattern which simplifies 
computations appears to be a reasonable ap-
proximation. 

Radar studies show that a thunderstorm cell 
moves very little during its life span [Acker-
man, 1959]. The fact that a storm does move is 
usually assumed to be the reason for the plotted 
isohyets to depart from circularity. This hori-
zontal movement of a cell tends to support the 
idea of a rather flat distribution of rainfall 
around the storm center. An exponential model 
was therefore selected to represent the spatial 

distribution of convective rainfall. The area
rainfall depth formula in which circular patterns 
are assumed is then of the form 

R Roe.. () 

where R is the depth of rainfall along an isohyet 
which is at a distance r from the storm center, 
R. is the storm center depth, and b is a dis
persion parameter to be determined. 

'When storms were selected for analysis, only 
those of less than two hours duration were 
chosen. Thunderstorms often consist of a group 
of three or more cells adjacent to each other. 
The longer durations provide greater oppor
tunities for the neighboring cells to move over 
the rain gage network and affect the pattern of
the cell inquestion.
h eli usinThe selected storms were grouped according 
to their center depth to determine the value 
of the dispersion parameter for each group of 
storms. A least squares regression analysis was 
performed oi,each group, the results of which 
are presented in Table 1. The calculated re
gressions accounted for at least 80% of the vari
ance of the observations in every instance. 

In an effort to extend the applicability of 
equation 1, available data from three record 
storm events on Agricultural Research Service 
(ARS) experimental watersheds were also an
alyzed. As reported by Osborn and Reynolds 
[1963], two of these exceptional storm events 
were recorded on the Alamogordo Creek water
shed located in New Mexico and the third oc
curred on the Walnut Creek watershed located 
near Tombstone, Arizona. The respective storm 
center depths were 4.09, 3.55, and 2.53 inches; 
their durations were approximately one hour. It 
is of interest to note that Keppel [1903] re
ported that the rainfall intensities for the 4.09-

TABLE 1. Relationship of Parameter b to Storm Center Depth R,as Determined from Regression Analyses 

Storm Center Depth, inches N o 

Range Mean 
No. of 
Storms 

' 
b 

Standard Error 
of the Estimate 

2.00-2.70 
1.50-1.95 
1.25-1.42 

2.31 
1.67 
1.31 

9 
7 
8 

0.069 
.,0.078 

0.092 

0.005 
0.004 
0.007 

-1.00-1.18 
0.75-0.99 

1.08 
0.86' 

8 
10 ' 

'0.129 
0.191 

0.009 
0.016 
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inch storm exceeded the maximums on record
 
for, first order U. S. Weather Bureau stations ,*
 

up to a period of 30 minutes.
 
The analysis indicated that the proposed ex

ponential formula could satisfactorily depict the ' \ . Cami
 
area-depth relationship for the AIRS reported e
 
storms. Values for the parameter b were calcu
lated for each of these storms and plotted with ,
 
Atterbury data (Figure 2). An equation of best a
 
fit was found to be the exponential relationship ------

0 1 3 4 , a 7 
' 

DISTANCE CEWnERb = 0 .2 7 e-0 67R. (2) FROMSTORM IN MILES, r 

Thus the model as given by (1) and (2) depicts Fig. 3. Spatial distribution model of convective 
the spatial distribution of rainfall for a given storm rainfall. 
storm center depth (Figure 3). 

where F.(x) is the cumulative frequency distri-
STORM CENTFEU CHARACTEIUSTICS bution for the hypothetical data and F(x) is 

Storm center locations. MacDonald [1959] that for the observed data. Any wide deviation 
has stated that the locations of air mass thun- between the two distributions would suggest a 
derstorms in fairly level country may be re-	 rejection of the null hypothesis, which states 
garded as almost randomly located. Osborn and that the two sets of data are drawn from the 
Reynolds [1963] have concluded that convec- same population. The probability of rejecting
tive storms are randomly distributed. The Kol- the null hypothesis when it is true is the sig
mogorov-Smimov test was used to test the as- nificance level of the test which for this study 
sumption that a storm center can occur any- is taken to be 0.10. 
where in the rain gage network area with equal The network area was first divided into poly
likelihood. gons by the Thiessen method of determining 

The test is applied by deriving the cumulative the average precipitation over an area. Each 
frequency distributions for both a hypothetical of the storm centers was located with respect 
or expected distribution and an observed distri- to one of the polygon-shaped areas surrounding 
bution. The maximum discrepancy between the a rain gage. The observed distribution values 
step functions of the two distributions becomes were simply the ratio of the number of storm 
the test statisic D which is defined as 	 centers that occurred within each polygon to 

the total number of such events. Assuming a
D = Ia'jF.(x) - F(x) (3) 	 uniform distribution, the expected distribution 

values were based on the ratio of the polygon 
area to the total area. The Kolmogorov-Smirnov 

o ATTERDURY DATA statistic was calculated and compared to the 
0 * ARS DATA. tabulated value. Since the calculated value was 

I less than the tabulated value at the chosen sig
.IONEQA oF EST FT nificance level, the null hypothesis was not 

b.O1-, -o.",R rejected. 
Storm centers per event. During the 12-year 

WO period of record, 79 storm centers occurred in 
0%%P**1 64 separate events over the 20-square-mile rain 

0o.0 ,.. gage network area. Only 1 center occurred in 
8',% . 52 events, whereas 2 centers were located in 9 

00 - 5 4-- events and 3 centers in 3 events. In this instance 
0 STOM C R D , Ian event is defined as the occurrence of atleast one storm center over the rain gage net-

Fig. 2. Relationship of parameter b in area-rain-	 work area. While a frequency distribution may
fall depth formula to storm center depth. be used to describe the number of storm centers 
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-5 First, however, it must be assumed that all 
summer rainfall is associated with thunder

to storms where the spatial distribution can be 
idealized by using equations 1 and 2. 

. lReferring to Figure 5, the probability that a 

THEORETiCAL point in space (x, y) receives a given amount of 
Li 10.TYPE I EXTREMAL rain R can now be calculated. To obtain R 
,TU inches of rainfall at x, y will require that a 

0storm center Ro(rk-) occur at a distance rh
such that the variate R equals at least R. 
Similarly, another storm with a center at r, will 

o0 1 22C 3 4 require a slightly larger storm center depth to 
STORM CENTER DEPTH, INCHES produce R inches at x,y. By doing so in a 

discrete manner, it is possible to sum up in space 
Fig. 4. Frequency distribution of storm center the joint probabilities of having a storm center 

depths. 	 occur anywhere within the incremental areas 
between rj and rk_1 with the required storm 

per event, insufficient data suggested the use center magnitudes sufficient to give R inches of 
of a simple average of 79/64 or 1.23 centers rain at z, y. Expressed mathematically, this 
per event, becomes
 
IStorm center magnitudes. The type 1 ex

tremal distribution first proposed by Gumbel prob fIR - RI > 0 : x, y)
 
[1941] for estimating flood frequencies was = "[prob [CkC][prob (Dk] (4)
 
assumed to represent the distribution of storm k
 

center magnitudes (Figure 4). Performing a where Ck represents the occurrence of a center
 
chi square test resulted in the null hypothesis' at ri,and Dp, is the depth of the center RO(r,)
 
not being rejected at the 70% level of signif- such that the variate R equals R.For a uniform
 
icance indicating a relatively good fit between distribution, the probability of a center at
 
the observed and the type 1 extremal distribu- rk is
 
tions. The data were also fitted to log normal
 
and log Pearson type 3 distributions with no prob (center at rJ = yir(rk' - r,-t 2) (5)
 
significant improvement in goodness of fit. in which y is the number of storm centers per
 

POINT IAINFALL FREQUENCY 

The probability of an occurrence in which 
there is at least one storm center within a R-RoO• Wrb
 

given area with a storm center depth equal to
 
a specified amount can be considered as a joint ik0
 
probability of the simultaneous occurrence of ,
 

two events [Woolhiser and Schwalcn, 1959]. 00
 
That is, given a storm center occurrence, there
 
is a probability associated with a center over a 0
 
given area combined with the probability that 40
 
the center will have a given magnitude. It is
 
assumed for this study that these two prob
abilities are independent and uncorrelated.
 

Point rainfall probability per event. The 
quantity of rain that is measured at a point, 
given the occurrence of an event in which there 
is an average of 1.23 centers per event over 
20 square miles, is a variate whose frequency Fig. 5. Schematic diagram for illustrating devel

distribution can be determined at this time. opment of point rainfall frequency formula. 
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event (1.23) per square mile (20), or 0.062 in this 
case. 

Point rainfall frequencies per event were 
calculated from (4) and (5) for half-inch incre-
ments of rain. Equation 5 was used to determine 
the probability of a center's occurring in the 
incremental area bounded by rh and rk ,, a'"
distance of 0.2 miles. Then assuming the occur

rence of a storm center at the midpoint between 
the two radii, its magnitude required to produce 
the predetermined amount of rain at x, y was 
obtained graphically from Figure 3. The proba-
bility of getting this amount of rainfall was 
determined from the theoretical extremal distri-
bution shown in Figure 4. 

Given that a storm center has occurred, con-
sider rainfall at a point and assuni that its 
amount is an integral number of half-inch inere-
ments of rain to coincide with the calculated 
point rainfall frequencies per event. In this case 
the physical system has two possible states, 
rain or no rain. Treating the amount of rainfall 
per event as a random variable R, it can be shown 
that the calculated rainfall frequencies closely 
fit a geometric distribution with p, the condi-
tional probability of rain having a value of 0.48 
(Figure 6). As no kinwn rain gage in the Tucson 
area has ever recorded more than 4.5 inches per 
short duration storm, it was decided to truncate 
the distribution of R after five inches. Thus, the 
truncated distribution can be written as 

1 - n O,1 ,,10 ( 

Neglecting the truncation constant 1 - pU as 
it is very nearly 1, the cumulative function of 
R is 

PF(a) = (1 - )? = 1 - p", 
,- -,,maximal 

a 1, 0, 1, --- 10 (7) 

Number of yearly occurrencesof events. During 
the 12 years of record there were 64 events in 
which at least one storm center occutred over 
the 20-square-mile network area. The range was 
from 2 to 10 with an average of 5.33 per year. 
Although the number of years of record are 
limited, there appears to be a trend to indicate 
that a Poisson variato N can adequately describe 
the distribution for the number of events per 

'Ao. 
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Fig. 6. Comparison of calculated point rainfall 
probability per event with theoretical geometric 
distribution. 

days in a season when convective storms occur, 
the distribution of N should also be truncated. 
In this case, where there was an annual maximum 
of 10 events, the distribution was truncated after 
12. The frequency distribution for the number 
of events per year is therefore 

=- j 12 

ING)== 0035-- j= 01,"" ,12 (8)where the parameter X is the mean number of 

events per year. 
Development of the maximal distribution. If 

there is one event per year, the frequency dis
tribution of maximum point rainfall is that of 
R and is given by (4). If there are one or two 
events per year, the cumulative distribution of 

rainfall Q is FQ (a), which is obtained 

as follows (derivation suggested by S. Yakowitz, 

University of Arizona, Tucson): 
FQ(a) = prob (Q _5a) 

= prob (R < a) Iprob (N = 1) 
+ prob (R1 < a, R2 ! a)!'prob (N = 2) 

or 
F() - F'",i' + r fvi 2) 

RaJN 1, T LFB(aJ]IN .2J 
year. Since there are only a limited number of Similarly, if there is a random number of N 



1234 FOoEL AND DUCKSTEIN 

events per year with a frequency distribution 
f.(J), then the maximal distribution function 
canm be written as 

Fo(a) -- {[Fp(a)]'fN(}) (9) 

Equation 9 assumes 
£ 
that the distributions for 

R and N are independent. Note -also that 
Fc(-1) = 0 and F0 (o) = 1 so that equation 9 
is a true distribution function. Substituting (7) 
and (8) into (9) results in 

FQ(a)= 1.0035e " (1 - p-'*I) X 

j=0,1,.. ,12- (10) 
be ob-A closed form of equation 10 can 

tained if the summation' cov'ers the interval 
from 0 to oo, since in that case ' 

- X+ e_X -. a(1 s-x ' 

where 
X,' X(1- p), l 

- p~dneglecting 

This closed form can then be used if the tail 
of the distribution from 13 to co is considered. 
Thus' 

° 
F,,(a) =f 1.0035[e- '+N - ro(a)) (11) 

in which r (a) is the tail and is given by 

r0 (a) = 1.,035roa ,Fl 
1-aa.0 

1.or, 

- x  ri(a) 1.0035e' ,- (12) 

Substituting equation 12 into equation 11 yields 

' Fo(a) = 1.0035ea 1- Z (13) 

in which the summation can be evaluated using 
a table of the Poisson distribution. In summary, 
(13) gives the probability that the maximum 
point rainfall in any year be less than or equal 
to a inches. The mean or expected recurrence 
interval T, for rainfall equal to or greater than 
a inches is simply 

Tr -- (a_ 

Development of the minimal distribution. In 
certain instances involving water yield from 
surface runoff it may be desirable to determine 
the distribution of the minimum yearly point 
rainfall. This can readily be done by using a 
procedure similar to the one in which the max
imal distribution was obtained. 

By definition 

Fu(a) = prob (U 5 a) 
But 

prob (U> a) 

and 
a 

irb6 (U a)
Zfl' a) - ]#fR(a)'f)i . , 0, 1,..., 12 

a = 0, 1,..., 10( -- °+') " (15) 

Inserting 	 (7) and (8) into (15) and again
the truncation constant of the geo

metic distribution, we can obtain 

12 (Xpa+l-prob (U > a) = 1.0035 12 e ft (16)- iI 
prob (U > a) = 1.0035e - ' - ru(a) 

with 

ru(a) = 1.0035 
1 1 11 1 

Letting 

we have 

ru(a)-- 1.0035e' F, ex (17) 

Thus the 	 cumulative ,,'minimal distribution" is 
given by 

, , 
Fu(a) I,,- 1.0035e- ' +,ru(a) (18) 

or 

-Fu(a) ' 1 - 1.0035e ' 

,). 
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TABLE 2. Cumulative Probabilities for, Maiimal and Minimal Distributions,, , -

Depth of 
Rainfall, Maximal Distribution, Minimal Distribution, 
R inches 'prob [Q : R] prob lU R 

0 0.9224 0.9342
 
0.5, 0.7061 0.9835 
1.0 0.4446 0.9913 
1.5 0.2459 0.9938 
2.0 0.1265 0.9945
 
2.5 0.0628 0.9948
 
3.0 0.0306 0.9950
 
3.5 0.0148 0.9951
 
4.0 0.0071 0.9951
 
4.5 0.0035 0.9952
 
5.0 0.0016 0.9952 

RESUITS AND DISCUSSION for a given recurrence interval, the ungrouped 

The cumulative probabilities for the maximal historical records were fitted to a type 1 ex

and the minimal distributions were calculated tremal distribution as shown in Figure 8. For 

using (13) and (19), respectively. The results purposes of comparison, the cumulative prob

are shown in Table 2. To compare the maximum abilities of the model shown in Table 2 were 
point rainfall probabilities determined by the also plotted. Since the model was based on an 
model, historical records from a nearby U. S. extremal distribution of storm center depths, 

Weather Bureau station were used. This station, these values tended to plot rs a straight line on 

known as Tucson (University of Arizona), has the extremal probability paper. 
Rainfall amounts for recurrence intervals ofbeen in continuous operation for over 70 years. 

For the months of July, August, and Septem- five to 10 years differ very little between those 

ber the annual maximum 24-hour precipitation given by the model or determined from the 
was assumed to be the result of the short dura- historical records. For recurrence intervals be

tion, high intensity thunderstorm. According to 
Sellers [19(4], 'summer precipitation is defi
nitely of a showery nature, starting abruptly, 
continuing intermittently for a brief period, 30 
usually less than one-half an hour, then slowly 
tapering off until ceasing altogether.' In de- 25 HISTORICAL RECORD 
termining their frequencies, these maximum 24
hour amounts were grouped into one-half-inch O; 
increments as was done in the model. The fre- 20 .MODE. 

qaency densities determined from both the W 
model and the historical records are compared 15 

in Figure 7. For illustrative clarity the model 
frequencies are shown as a continuous func- 10 
tion although they were calculated on a dis- " 
crete basis as indicated by the points shown. 5 

The grouped historical records had a mean 
value for the summer maximum 24-hour rain- 0 1 1 1- _j 
fall of 1.27 inches with a standard deviation o i 2 3 4 5 
of 0.54 inches. Corresponding values for the POINT RAINFALL DEPTH, INCHES 
modal are 1.28 and 0.86 inches. Fig. 7. Frequency distribution of annual mai-

To determine the maximum 24-hour rainfall mum convective rainfall for Tucson, Arizona. 
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low five years, corresponding amounts of rain-
fall given by the model are lower. This may be 
partially due to the fact that the model assumes 
no accumulation of rainfall from more than one 
storm cell. Associated with the higher recurr-

the model exhibits increasinglyence intervals, 
larger 	 rainfall quantities. A clue may be ob-
tained 	by observing the cumulative probabili-
ties of the minimal distribution shown in Table 
2, which indicates that there is a very higha single rain 
probability (about 93%) that 

gage will miss at least one storm during the 
season. Some of these missed storms may well 
be the maximum 24-hour rainfall. This also ac
counts for the model having a greater variance 
than the distribution of the historical records. 

Although the historical records and the model 
agree as far as the mean annual maximum 24-
hour rainfall is concerned, the sensitivity of the 

model 	to the assumptions made in the develop
ment of the model warrants consideration. Given 
that a storm center has occurred, a geometric 
distribution with a parameter equal to 0 48 was 
used to describe point rainfall frequencies. In-
volved in this determination were the assump-
tions 	 of circular isohycts, independence of 
events, uniform distrbution of storm center 
locations, extremal distribution of storm center 
magnitudes, the exponential spatial distribu-
tion of rainfall, and the number of storm cen-
ters per square mile per event. While these all 
appear to be reasonable assumptions, Figure 9 
indicates that point rainfall recurrence inter-
vals are sensitive to values of p, particularly 
for the higher rainfall amounts. Additional cvi-

___in 

MODEL.." - 

. .We 
-t .density 
EXTREMAL ITYPE

TOHITMICAL REORDS 

, ,Ackerman, 
LB0 2 0 10 15 20 0O _ L 4 5_ 

RECURRENCE INTERVAL INYEARS 


Fig; 8. 	- Recurrence intervals for depths of con-
vective rainfall for Tucson, Arizona. 
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Fig. 9. Relationship of parameter p to recurrence 
intervals for convective rainfall depths. 

dence is needed to verify this important param
eter. 

The model is also sensitive to the parameter X, 
the expected number of annual events in which 
at least one storm occurred over the rain gage 
network area. This distribution was assumed to 
be a Poison one with X equal to 5.33. Twelve 
years of records are hai ily sufficient to deter
mine the adequacy of the distribution of an 
annual event. Fortunately, however, the model 
is not as sensitive to Xas it is to p. Truncations 
of the distributions of R and N are relatively 
unimportant. 

Other than more realistic point rainfall proba
bilities primarily for the greater magnitudes, the 

model has an advantage over historical records 
that statistical properties of the distribution 

can be kept, taking into account that we have 
only one random sample out of many possibilities. 
We will also be able to draw statistical inferences 
in ungaged areas if the distributions are known. 

can now begin to determine the required 
of a rain gage network to ascertain 

within prescribed limits the volume of convectivestorm rainfall that falls on a watershed. 
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