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' Bagesian Decision Theory Applied to Design in Hydrology

DONALD R. DAVIS,' CHESTER C. KISIEL,' AND LUCIEN DUCKSTEIN®

University of Arizona, Tuwson, Arizona 85721

Abstract. The role of Bayesian decision theory in hydrologic design problems is presented
both in theory and by example. The theory is applied to an actual flood levee design problem
on the Rillito Creek floodpluin in Tucson, Anzona. Computer solutions provide a basis for
judging the costs of overdesign n the face of uncertainty in the parnmeters of the flood
frequency model \Jog normal) nad for determining the worth of hy drologic data. One con-

clusion is that decision theoretic analysms looks at the decision stituation from the standpoint
of the engineer: how can one best decide 1n the face of imited data and the present knowledge

about system behavior?

The purpose of this paper 18 to demonstrate
the case for the use of Bayesian decision theory
in hydrologic design problems; the method 13
illustrated by means of a case study of flood
levee design. As we will discuss later, there has
been constderable mterest recently in studying
the risk involved in design decisions and in
evaluating the benefits of bringing additional
data on design decistons. The problems are
obviously intertwined; additional information
tends to reduce risk. Current practice separates
these problems

Risk is a word that needs defining. Commonly,
risk refers to a hazard or peril and the chance
of loss due to that hazard or peril. We prefer
the definition given by Xlgusner [1969]:
‘.. . risk is considered to be the consequential
effect of possible uncertain outcomes.’ Klausner's
definition encompasses the common definition
and forms a basis for its extension.

Yen [1970] handles nsk by a discussion of
failure or exccedance probability. The concepts
of ‘standard project flood’ and ‘probable mawi-
mum precipitation’ or the concept of the critical
period may be viewed as attempts to eliminate
particular uncertain outcomes. By considering
rish only in terms of failure, cie may overlook
the risk of wasting capital by overdesign. Both
nisks should be evaluated; the theory for doing
so should be able to examine tha ‘consequential
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effect’ (singular) of all ‘possible uncertain out-
comes' (plural). Bayesian decision theory meets
this criterion.

The value of additional data has sometimes
been evaluated by examining long historic
records [Mooley and Crutcher, 1968] to de-
termine when parameter estimates ‘settle down.’
This evaluation is done by abstracting sequences
of various lengths from the lustorie record. Since
this procedure involves samphng from a fimte
population, it is no surprise that the estimates
do settle down {usually within 50-759% of the
historic trace used). A more quantitative ap-
proach [Dardy et al., 1970] nvolves generating
synthetic traces based on the historic record
and ascertmming the average merense 1n value
of a project designed with an increase in record
length. This approach assumes that the param-
cters used in generating the tracc are known
with certainty and enanunes the average results
of different samphing periods Buayesian decision
theory looks at the problem from the engineer's
viewpomnt; sauple statistics are at hand, pos-
sibly from a short record, and the question is:
what 1s the evpected value to the project of
more data? The two viewpoints are not sym-
metrical  Also, Bayesian decision theory pro-
vides an alternate method of handling risk and
the value of additional data by incorporating
them into design decistons.

Bernier [1967) and McGulchrist [1970] im-
proved estimates of streamfow churacteristics
obtained from historic data by incorporating
other types of data into Bayes' thearem, Con-
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over [1971] recommends Bayesian methods for
parameter estimation but concludes that ‘the
methods of Bayes' estimation do not lend them-
gelves to numerical methods as performed on a
computer.! Although the computer 1s of httle
gid in finding the functional form of a Bayes
estimator, results presented later in this paper
show that a computer 1s not just uscful but
indispensable for finding a Bayes solution for a
design problem. Brown [1970] recommends
Bayesian methods for design and gives a simph-
fied example of the use of Bayesian estimation
in spillway design Davis and Dvoranchik
[1971] use Bayesian decision theory to deter-
mine the depth of a bridge pier and the worth
of additional data, without exphetly estimating
the statistical parameters However, a icturn
period is imphed for the flood that undermincs
the piers. Note that Bayesian decision theory
focuses on the decision to be made and not on
the hydrologic parameters as an end result.

This paper presents in a stepwise manner the
procedures involved 1n making a Bayesuin de-
cision analysis The procedures are illustrated
by an actual design problem. The example
chosen will also show that there are situations
that, though yiclding a satisfactory Bayes solu-
tion to a problem, faill to gne an ntwmtively
gatisfactory Bayes estimate of the statistical
parameters involved; thus the Baves cstimate
of the return period of the design fload may be
10* years, whereas the Bayesian decision analysis
leads to a perfectly acceptable engineering de-
sign.

DECISION THEORY

Bayesian decision analysis is a method for
choosing and evaluating design alternatives for a
project, consideration being given to the ecffcct
of uncgrfain parameters on the performance of
the project. Note that three essential ingredients
are present: alternatives, performance entenz,
and uncertainty in the parameters affecting the
project. Decision analy«s 15 not a ngid method
but a serics of signposts. The following ontline
of the method 13 adapted from Howard [1966]:

A. Define the goal. N
B. Define the decision to be made 2ad identify
the alternatives,
C. Analyze the project.
1. Define the goal function.
a. Select the state and decision variubles.

b. Set a time preference.
¢. Include a risk aversion.

2. Make a sensitivity analysis.

3. Develop the stochastic properties of the
knowledge of ihe values of the state vari-
ables as a probability density function.

4. Calculate the outcomes of the various
alternatives and determine the stochastic
properties of these outcomes.

5 Elminate the dominated alternatives.

D. Make the decision.

1 Caleulate the expected value of the goal
function for each alternative.

2. Choose an alternative to minimize the
expected value of the goal function.

E. Evaluate the decision,
1 Determine the cxpected opportunity loss
due to uncertan parameters in the prob-
lem.
2. Evaluateinformation-gatheringprograms.
a. Determine the eapected reduction
in the cxpeeted opportunity loss with
further information.

b. Determme the full cost of obtaining
further information.

¢. Obtamn further information if war-
ranted, and repeat the anelysis.

The outhne shows how Bayesun decision
theory through & design decision unifies the
treatment of rick as defined earlior and the
worth of the data.

Possible uncertmn ontcomes result from the
vagaries of nature. The cffect of these outcomes
on the performance of the project is expressed
by the goal function The uncertainties in our
knowledge of nature (or anytling else) are ex-
pressed as a probability distnibution function
(pdf) for the uncertan parameters.

The conequential effeet of the possible un-
cortam outeomes 15 expressed as the expeeted
value of the goal funetion. The expectation 13
taken with respeet to the pdf of the uncertain
parameters. The design decision minimizes the
consequential effeet 1f the effect 18 undesirable,
The common view of nisk mav be meorporated
into the procedure by heavily weighting the
possibility of loss due to bazards and perils.
Step E of the outhne evaluate. the cffect on
the decision and the munin.m consequential
effect of more knowledge about the unccrtamn
parameters.
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¥LOOD LEVER DESIGN

The problem studied in this paper is flood
control on Rillito Creek in the lightly urbanized
reach through the north side of Tucson, Arizona.
A broad study of the available alternatives has
been made by the TRIW Systems Group (1969);
however, for the purposes of this paper, the set
of alternatives a to be considered are the protec-
tion levels corresponding to the max:mum flows
to be contained by the construction of dikes. The
goal function to be mimmized is g(a, 6), where
a is the decision vanable and 8 1s the vector of
state variables; in this case the goal function
is ~qual to the annual expected costs of flood
damage due to floods higher than the protection
level, plus the annual costs of the protection
system, minus other benefits such as recreatior
and land enbancement (on an annual basis):

g(a, 8) = E; {flood damage (a))
-+ annual costs of protection (a)
— miscellaneous benefits (a)

The goal function represents the expected
annual cost to be incurred by the occupation of
the Rillito Creek floodplain. Some values of these
costs, which: were used by the U.S, Army Corps
of Engineers in their analysis [Davis, 1971], are
shown in Table 1. The components of the state
variable vector 0 are the parameters of the
probability distribution used to obtain the
expected costs of Sood damage. In this case the
pdf of the logarithms £ of the peak annual flows
was assumed to be log normal, a hypothesis
not rejected by a Kolmogorov-Smirnov goodness-
of-fit test based on 45 years of data; thus the
state variables are the mean u and variance o*
of the log transforms, The annual floods are also
independent in time. Estimates of flood damage
are based an {uture values; the time preference

TABLE . Flood Damage and Protection Costs
for Rillito Creek

Flood
Damages to Other
Discharge, Future Con- Annual  Benefits,

cfs ditions, $10* Costs, $10° 8100
78,000 49,000 1580 163
37,000 22,000 1195 1563
24,000 7,400 815 126
18,000 3,400 ces e
14,000 1,100 cer s

is the 4 7/8% interest rate used to discount
future values to present values. Risk aversion
[Mayer and Pralt, 1968), which may be crudely
described as the preference of many small losses
over one large loss, was assumed to be negligible
because the Rillito Creck floodplain occupies a
small part of the total area of Tucson.

A sensiivity analysis indicated that the two
state and the onc decision varables strongly
affectcd the goal function; thus all the variables
were kept in the analysis,

The uncerta'nty 1n the knowledge of the state
variables is embodied in the pdf f(0). In this
case it 1s a normal gamma pdf NG(u, 0% | X, S2, n)
based on the sample mean X, the sample variance
S1, and the sample size n. This distribution
provides the same inforrnation about u and ot
as anes the normal chi square distribution used
to obtain joint confidence intervals for these
parameters and is obtained from 1t by the sub-
stitution of nS?c* for the chi square variable.
The outcomes of the various alternatives are now
calculable and their stochastic properties depend
on the stochastic properties of the state variables.
0 alternatives were eliminated by being found
inferior to some other alternative for all values of
the state vanables. If an alternative of dniling
a tunnel under the city to divert floodwaters
were under consideration, 1t presumably would
be formally rejected at this stage.

FLOOD LEVEE DECISION

The preliminaries are over, and the decision
may be made. The consequential effect (the
expected value of the goal function) may be
calculated for each alternative: R(a) =
[ g(a, 0){(0) d0. The term R(a) is appropriately
called the Bayes risk. The decision is made by
chovsing the alternative a* (the Bayes solution)
that minimizes the Bayes risk:

R(a*) = min f o(a, 0)/(6) do

Next, according to step E of the outline, the
decision is evaluated. If the true values 0p
of the state variables were known, the alterna-
tive chosen a; would be the one that minimized
the goal function for 65:

9(ar, 85) = m‘in 9(a, 07)

The decision has been made to use alternative
a*; it may be a nonoptimal choice. In making &
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nonoptimal choice we suffer an opportunity
loss (OL):

OL(a*, 0;) = g(a*, 07) — o(ar, 07)

e do not know the true valus 0r of the state
variable vector, but we have a pdi 7(6) that
enables us to calculate an expected opportunity
loss (XOL):

xor() = [ lota*, & = min o(a, () do

The XOL represents the expected value of per-
fect information and may be used to judge the
effect of uncertainty as embodied in f(0) on the
performance of the project.

_ Bhould more information be gathered? Should
the decision for the Rillito Creek flood control
problem be delayed 1 or more years to obtain
additional peak flow data? Another sequence of
observation » would give revised knowledge of
the state variable by means of Bayes’ theorem:

!(0 I 2‘) = I(O)-I(.r I 6).___
f 1(6)+1(x | 6) do

where I(z | 0) is the likelihood of the observation
sequence z, f(8) is the prior distribution, und
1(0 | 2) is the posterior distnibution. In the case
studied here, 1(z | 6) is normal N(z { g, o¥), and
the prior and posterior distributions are noymal
gamma. For the observation z, o new XOL may
be calculated. NOL{(/(8 | z)]. However, the
observation z 1s uncertamn. Its pdf, which is the
denominator of the previous equation, may be
caleulated: I(z) = [ I(z | 0)/(0) dO. Term I(x)
is the predictive distribution of z; for Rillito
Creek it is a form of the ¢ distribution [Raiffa and
Schlaifer, 1961, chap. 7]. By means of the
predictive distribution, the evpected expected
opportunity loss XXOL may be caleulated:
XXOL[z} = [ XOL}f(0 | )i(z) dz. The ex-
pected decrease i the expected opportunity loss
is called the expected value of sample information
(XV8I): XV8I £} = XOLl/(0)] — XXOL)zl.

There 1s a cost of sampling that usuallv con-
sists of the actual costs of making the obser-
vation and, if the project is delayed, the loss
of benefits for the period of delay. These costs
may be stochastic, as 18 certainly the case in
delaying the construction of a flood levee. These
costs conatitute the expected costs of sampling
XCS({z}. For a flood control project, the actual

cost of samphng a peak flow is relatively low
compared with the evpected cost of delay. The
expected cost of delay for a flood control project
is the Bayes risk for the alternative ‘no project’
minus the Bayes nisk for the optimal alterna-
tive,

The cvpeeted net gan of sampling XNGS is:
XNGS{z} = XVSi{r} — XCS{z}. Ii XNGS
is positive, further samphng 13 mdieated. If
YNGS is negative, cessation of samphng 15 not
categorically ndicated; a larger sampling pro-
gram could still be n order. If more than one
soarce of nformation about the state param-
oters 1> avarlable, the values of the information
they give can be compared by these concepts.

METHOD OF COMPUTATION

The calenlitions indicated in the preceding
section were done for the Rullito Creck case
study with the md of a CDC G400 computer.
The neeessary infegrations, including the double
integration over the two state variables to
obtain the Baves rish, were done by Simpsen’s
rule. The number of points used in cadi integra-
tion wus specificd by the accuracy level re-
quired, The alternatne giving the mimimum
Bayes nish or opportumty loss was found by
wsmg a modified Golden Search procedure, A
notable feature of this method is the use of a
contimous pdf and an infimte sct of alterna-
tives throughont the analvas Discretization
acenrs only at the computational level, where
the use of Simp-on’s rule and the Golden Search
cnables us to carrv out the integration over
the pdf and the nummization to an acceptable
level of accuracev,

The deersion was made in less than 30 sec-
onds of computer time; evaluation of the de-
cision (step E of the method) took another 6
mimntes I procedures tailor-made for this
study had been nsed instead of a fairly gencral
numerical analysis method, these times could
have heen cut considerably.

The cost and damage functions were inter-
polated by using poly nomial and rational fune-
tion=. Iatrapolations were performed linearly.
Details on the preceding procedures ean be
found in Davis [1971].

RESULTS

The results presented in Table 2 were cal-
culated by means of varying lengths of Rillito
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TABLE 2. Decision Analysis of a Flood Protection Project

Bayes Risk, $10?

Years Protection No XoL, XVv8l, XNGS,
from 1915 X S Level, cfs Minimum Protection  $103 $10¢ $100
5 3.96 0.027 72,000 2300 2480 885 323 148
8 3.03 0.049 77,000 1670 1894 505 73 -149
9 . 3.89 0.054 none 1579 1579 479 100 100
10 3.8 0.080 79,000 1737 1830 507 68 -25
1 3.80 0.080 nonw 1478 1478 413 81 81
1 3.72 0.095 none 1053 1053 191 14 14
15 3.76 0.116 79,000 1693 1722 404 41 12
16 3.7% 0.109 none 1473 1473 348 59 59
20 3.75 0.093 none 971 115 2.5 2.6
44 3.7 0.101 none 720 720 12 <0.100 <0.100

X and $* are based on the logarithm of the annual peak flow in cubic feet per second.

Creek data starting in 1915. This procedure
implicitly assumes no prior knowledge about
flocds before 1915. The worth of the decision
analysis procedure can be evaluated by noting
how the results change with additional data
Ay discussed earlier, a positine XNGS in Table
2 corresponds to the desirability of waiting for
more data, whereas a negative XNGS requires
judgment as to the worth of waiting. We will
discuss this point in detail later The XXOL
and XCS are not included in Table 2; they are
implicitly there, however. The XVSI 1s obtained
by subtraction of the XXOL from the XOL.
The XCS may be obtained by subtracting the
minimum Bayes risk from the no protection
Bayes risk.

The sample mean decreased, and the sample
variance increased over the period analyzed
The Bayes risk, XOL, XVSI, and XNGS ex-
hibited a downward trend during this time, This
trend may be attnbuted to he reduction of
uncertainty due to an increase n the avalable
data. With 16 or more yecars of data, the alter-
native chosen was no protection. Prior to that
time (1930) the decision fluctuated between no
protection and protection around the 75,000-
cfs (cubic feet per secoud) level Note that this
figure originates from a combination of historic
flow data and cost function values (Table 1):
an action can be taken without worrying about
the physical reahizabiity of a 75,000-cis flood.
Does this fluctuation indicate an instability
and/or an unrehability of Bayesian decision
analysis? With 14 years of data, the decision 15
to provide no protection. Then the largest flood

on record (24,000 cfs) appears during the
fifteenth year (1929) and 1s reflected 1n the
dezision to protect at the 79,000-cfs level. More-
over, 1n 1030 the dectsion 15 again to provide
no protection Note that with 15 vears of cata
the expected net gain of samphng XNGS is
positive, so that the decision n 1929 should
have been to wait for more data. With 8 and
10 years of data, however, the XNGS is nega-
tive, and proteetion around 75,000 cfs 15 indi-
cated The negative YA'GS indicates that delay-
ing the decision just 1 vear would not be
jJustified; a delay of more than 1 year was not
evaluated, as the numerical procedures become
horrendous However, for 8 and 10 vears the
XOL is $300,000, which 15 30% of the optimal
Bayes nsk, and the Bayes risk of the non-
optimal decision of no protection is less than
15% higher than the Baves risk for the optimal
decision On the hasis of this information, a
judgment to delay the decision may have to be
seriously considered If the cost of delay had
been based on pre-ent vasues of the floodplain,
which are smaller than the future (discounted)
values used to compute the Bayes nisk, the XCS
would have been small enough to make the
XNGS positive, thus a delay 1in the decision
would have been called for The evpected cost
of sampling and the expected value of sample
information were e\pressed on an annual basis.
The XCS, the cost of a year's wait, 13 certainly
an annual quantitv On the other hand, the
XVSI 15 a reduction i1n annual cost that may
be evpected to last for the life of the project.
If our ultraconservative treatment of the com-
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ponents of the expected net gain of sampling
were corrected (i.e., if the XCS were lowered
and the XVSI raised), the XNGS would have
been positive for ali lengths of record consid-
ered. Then the decision analysis would con-
sistently call for delaying the project to obtain
more data.

Tne apparent instability in the decisions re-
garding protection level, when the first 16 vears
of data are considered, can be e\plained by
noting the small difference between the Bayes
risks for no protection and for protection at the
75,000-cfs level (Figure 1) This effect results
from the configuration of each particular Bayes
risk curve, which may have two local minimums
The dip in Figure 1 from a peak ut 20-21 X
10* cfs for the 15- and 16-yecar curves indicates
the point at wlich flood protection 13 beginning
to pay off. The dips contamn a local mimmum:
in the 15-year curve the right-hand mimmum
corresponding to protection at 75,000 cfs 18
global; 1n the 16-ycar curve, however, the left-
hand mimmum corresponding to no protection is
global On the other hand, both the 14-year
and the 44-vear curves have only one local
minmum and thus indicate that the Bayes risk
is minimum when no protection is provided
The top three curves start to rise agan at
about 84,000 cfs because the cost of overdesign
becomes higher than the benefits of protection.
Note that the Rillito Creck starts to tlood at
10,000 cfs.

If the values of the Bayes risk at the local
minimums do not differ much, scemingly dif-
ferent decisions will produce very similar results.
This phenomenon looks counterintuitive at first,
but if we realize that the Bayes msk 1s an
expected value, we can sense that the statement
‘protection at 75,000 cfs and no protection cor-
respond to the same Bayes Ri-k,’ reallv means
if many Rillito Crecks are to be protected
against floods, then on the average protecting
all the crecks at 75,000 cfs or none of them
would cost the same’ We could also sav that if
Junds were available to protect at 75,000 cfs
we have nothing to lose to go ahead, on the
other hand, if funds were hmited it 1s better
not to protect than to protect at, sav, 2000
efs. Furthermore, if we want to allocate flood
protection funds between several projects alorg
the same river or along identical streams with
different cost functions, we should frst fund

20- . .
19 YEARS
ISYEARS
18- 14YEARS
44 YEARS
“ |6
°
Qe
3 1a.
4
2
a
a ] 2!
'
| 0.
g !

20 a0 60 80 100
PHOTECTICH LEVEL, 0% ¢ty

Fig. 1. Bavrs risk versus protection level data
starting in 1915,

the project that corresponds to the largest re-
duction m Bayes risk from the no protection
level

The curves in Figure 1 also illustrate the
dificulty of obtammg a meaningful estimate
of the state vanubles, which in the present case
are the parameters of either the log normal
pdf of yearly flouds or the return period 1m-
plied by the <olution of the problem by the
Baves estimation procedures The difficulty
stems from the fact that the estimates are dis-
continuons wath respeet to the sample statisties.
The discontinmity of the decision is mtigated
bv the continmity of the Bayes nisk; no such
amechoration 1s available for the Baves estimate
or & ‘Bayes return period.’ The return period
corre-ponding to the 75,000-cfs protection level
15 orders of magmitude higher than the return
period corresponding to no protection Yet as
we have ~cen, these differences result from a
small change in sample statishies A further
problem in Bavesian estimation 1s the lack of
umque values for u and o' corresponding to the
cho-en deeision. However, such umque values
are important onlv for scientific or ‘under-
standing’ reasons, Practically, the results indi-
cate that the desizn should be chosen from the
available alternatives and not from parameter
estimates.
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'The 44-year curve in Figure 1 may be used

to indicate the cost of a nonoptimal decision.

- A decision to protect at the 75,000-cfs level

will result in an annual excess cost of about

'$700,000, i.e., the nonoptimal Bayes risk (for

protection at 75,000 cfs) minus the Bayes risk
of the optimal solution.

SENSITIVITY ANALYSIS

As demonstrated by James et al. [1969], un-
certainty in the economic parameters of a
project may have a large effect on the decision
reached. To enamine the sensitivity of our
results to changes in the goal function, pro-
tection costs were reduced by 25-509: protec-
tion costs may be reduced by new technology
and errors n earher evaluation. The results
of the calculations are shown n Table 3, where
the data base 15 1940-1949; consequently, these
results are not directly comparable with those
of Table 2. This data base was chosen because
it provided a suitable ilustration. The alter-
native chosen with reduced protection costs was
a high level of protection in both cases, whereas
use of the original costs led to the decision to
provide no protection. Closer examination
shows that a 25¢% reduction 1n protection costs
reduced the mirnimum Bayes nisk by only 3%
A reduction 1n protection costs does not change
the Bayes nisk of the no protection alternative
A change of decision will come about caly when
the right-hand local mimmum becomes a global
minimurn, This change barely happens at a
259% reduction n costs, but a significant dif-
ference dues arise for a 30% reduction,

Next, damage costs were changed by assum-
ing the decision maker to be risk averse. These
costs were raised to the 1.04 power, which

doubles flood damage costs for a 75,000-cfs
flood (three times the historic maximum). The
effect of this operation is to weight large losses
more heavily in the decision-making process.
The alternative chosen was to protect at the
107,000-cfs level, whose physical realizability,
as stated earhier, is of no concern for our
assumptions This decision, which has a 20%
lower Bayes risk than the no protection deci-
sion, is not optimal 1n the case in which there
18 no nisk aversion; 1t costs about $500,000
more per vear Tlus cost may be considered the
msurance premium to be paid for protection
from ¢ large loss. In this sense 1t 1s an actuarial
measure of risk

LIMITATIONS OF THE APPROACH

Bayesian decision analysis evaluates only the
information put nto it. All results must be
viewed with this hmitation in mind In the case
detmiled here, the dectsion and the worth of
more data are for the specific problem of
Riliito Creek flood control and the specific sta-
tistical model of the log normal pdf of floods.
The uncertainties were hydrologic in nature;
uncertainties n structural design, 1n models of
channel hvdrauhes during the presence of levees,
and 1n economic assestncnt were not considered.
The solution would be different 1if a log Pearson
tvpe 3 distribution were assumed or 1f a mai-
mum peak flow (uncertain) were postulated
To obtmin a meaningful decision, all factors
affecting the problem must be mcluded n the
analyss, The results of the analysis should
state the information and models used. In par-
ticular, 1t should be noted that the worth of
additional data 1s not measured on an absolute
seale and 1s valid only within the framework of

TABLE 3. Change in Goal Function for Flood Pr'otection Project for Decision Based on 1940-1949

Protection Costs, ¢

100 75 30 100
+Damage cost exponent 1 1 1 1.04

Sample mean X 3.60 3.60 3.60 3.60
Sample variance S? 0.140 0.140 0.140 0.140
Minimum Bayes risk, $10 1,633 1,603 1,157 2,718
No protection Bayes risk, 810 1,633 1,633 1,633 3,338
Optimal protection level, cfs none 108,000 136,000 107,000
XoL, 8100 428 583 405 918
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the specific project confronting the hydrologist,
engineer, or decision maker.

Thus decision theoretic analysis essentially
gives specific results conditioned on specific
information and model assumptions. These im-
itations may be adsantageous since the analysis
has integrated the cconomie, engincering, sta-
tistical, and scientific aspects of the problem
and has provided a pomnt of focus for commu-
nication between the various groups working
on a problem. Decision analysis 1s obviously a
form of systems analysis,

The method can be extended to cover un-
certainties in the choice of a model and in the
economic parameters; the computer time re-
quired would be the only limitation,

Although the results are for a particular case,
the method 15 very general in appheation. The
computer prograin used [Davis, 1971] is easly
adaptable to other goal functions, provided that
the uncertain parameters originate from a (log)
normal distribution Other distnbutions would
require a more extensive adaptation of the
yrogram,

Interestingly enough, the questions asked in
the particular framework of the Rillito Creek
flood control project may be important queries
for research of a more scientific and gencral
nature,

CONCLUSIONS

Decision theoretic analysis provides a umfied
and rational method for making decisions,
handling risk, and evaluating the worth of addi-
tional data in the face of uncertainty. The con-
cepts of expected opportumty loss and expected
expected opportumty loss enable the deciston
maker to see how uncertainty 1s affecting the
problem by evaluating the deciston made and
by deducing the worth of an information-
gathering program. The concepts of risk and
risk aversion enable the decision maker to eval-
uate the hazards of the project and the costs
of heavily weighting some hazards. Sensitivity
analyses are readily provided by the method to
determine the effects of changes in the prob-
lem statement,

Decision theoretic analysis examines a design
problem from the viewpoint of the design
engineer; decisions are made for the speaific
problem of concern by using the data on hand,

The computer can satisfactorily handle the

computations nvolved mn decision theoretic
analyais. Decisions can be made with more than
one uncertain parameter. Realistic goal fune-
tions of a compheated functional form may be
handled Continuous probability density fune-
tions need not be discretized before the com-
putational step

Bayes estimation may not be a satisfactory
parameter estimation method when the Bayes
nisk has more than one local mimimum, owing
to problems of eontimnty and uniqueness, These
problems are circumvented by deciding among
alternatives

Bayesian decision analysis gives specifie re-
sults for specific information and assumptions.
It 18 & form of sy~tems analysis and promotes
communication,

Although specific results come from decision
analysis, its informational needs may require
that much genernlized scientific knowledge be
brought to bear on a problem. As a focus of
communication 1t will pomnt out research needs.

NOTATION
a*, optimal design decision,
El+}, expected value;
J(0), !
0= lwal; ‘
posterior distnibution of 6, given z;
g(*),
i(z), predictive distribution of z;
hikelihood of the observation sequence =,
OL, opportunity loss,
pdf, probability density function;
St estimate of o;
T, subscpt identifying true value of u
z, logarithm of the annual peak how
(called observation or data);
expected cost of sampling;
expected net gain 1n sampling mforma-
expected opportunity loss;
expected value of sample mformation;
8, parameter vector;
# mean of the logarithms of annual peak
o%, variance of the logarithms of annual
peak flow.
search was received from the Office of Water
Resources Research, US. Department of the In-

a, design alternative;
prior pdf on unceitnin parameters
J(e/z),
goal function;
l(z/0), |
given 0,
R(*), Bayes risk;
end of;
X, estimate of u;
tion;
expected expected opportunity loss;
flow;
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