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ABSTRACT
Theoretical Derivation and Economic Evaluation of the
NDouble Centroid and Computer Minimized Cost Methods
Of Calculating Slopes for Land Grading
by
Berbert A. Paul, Doctor of Philosophy
Utah State University, 1973

Major Professor: Dr. Glen E., Stringham
Department: Agricultural and Irrigation Engineering

The Double Centroid and Computer Minimized Cost Methods of calcu-
lating slopes for land grading were developed. The Double Centroid
Method was based on theory of centroids located in each one-quarter of
the field. The cuts and fills balanced in each of these one-quarters.,
This theoretically reduced the cost of grading, as no soil was moved
from one-quarter of the field to another one~quarter. The Computer
Minimized Cost Method selected the optimum slope based on the
economic parameters of the type of land grading equipment to be used.

The newly derived methods were compared economically with the
Least Squafes Method, utilizing computers. There was no general
economical superiority of the Double Centroid Design over the Least
Squares Design or vice versa. The Computer Minimized Cost Method was
equal to or superior, economically, to the Least Squares Method for all
fields. The average savings on 12 fields evaluated was 3.3 percent.
The maximum savings was 9.0 percent.

(159 pages)



INTRODUCTION

Most of the countries of Central and South America are classified
as developing countries. Industrial development, to raise the standard
of living above a subsistence level, must be preceded by modern agricul-
tural development. Intensive agricultural development requires irriga-
tion and drainage.” Land grading is a prerequisite for surface irrigation
and surface drainage. The advantages of land grading, land forming or
land leveling are fourfold. Land grading prepares the field for more
efficient surface irrigation. It improves surface drainage so that
mechanized farming operations can be carried on at or near the proper
time. Land grading prepares the fields so that large farming'equipment
may be used. Land leveling or land grading may also result in increased
yields if proper fertility management is practiced. The writer believes
that grading of land is the most important technical aspect of developihg
irrigated and non-irrigated agriculture in the low elevation humid

tropics.
Problem

Many tropical soils with low organic matter content tend to seal
and become impermeable under cultivation. These soils have poor structural
stability because environmental conditions are ideal for rapid oxidation
of organic matter. During the tropical rainy season, water collects in
depressions, floods growing crops and severely limits production of non-
graded fields (Paul, 1969). The adverse effects of standing water on
the crops are increased because the plants are actively growing during

the rainy season in the tropics.



The water also prevents orderly cultivation of the fields. There-
fore, grading of land for surface drainage under both non-irrigated or
sprinkler irrigation, as well as for surface irrigation, is necessary
for intensive agricultural development in much of the low elevation
humid tropics.

Grading land to a plane where the resulting land surface has a
uniform downfield slope and a uniform cross slope has been the most
common method of modern land grading. Such plane surfaces are
especially adaptable on relatively flat alluvial fans, where most
irrigation projects are developed. Practical variations of the plane
surface include (1) two or more planes with slight grade changes which
more nearly fit the original topography, (2) a field graded to a uniform
irrigation slope and a non-uniform cross slope, (3) different slopes for
each row of stakes, and (4) a field graded to non-uniform slopes which
adhere closely to the original topography. All four forms consist of a
combination of one or more planes or profiles. Thus, in land grading
calculations the determination of the slopés for profiles and planes are
of utmost importarce.

The most widely used methods of determining the slopes for the
planes and profiles have been the Least Squares and the .Imspection
Methods. The Least Squares Method has been used for thirty years
(Givan, 1940). This method is taught in universities and recommended
by governmental agencies. However, the Least Squares Method minimizes
the squares of the cuts and fills which are not normally directly
proportional to costs of land grading. It is a statistical procedure

(Acton, 1959), based on a uniform distribution of data. The variations



of the earth's surfaces are seldom, if ever, uniformly distributed.

The Ingspection Method of determining the slope of best fit has probably
been the most extensively used method because it is very rapid and
simple. However, it can give large error in calculations, especially
if used by inexperienced personnel. The procedure is to "eyeball" the
best slope.

The Least Squares Method and Imspection Method do not fill satis-
factorily the two separate needs for determining the correct slopes.
First, a simple method for determining the slopes 1s needed by techni-
cians in tﬁe fields. These technicians may have little or no training
in irrigation and drainage but have the responsibility for land grading
and development. Usually small acreages in individual experimental
areas are involved. Second, the most economical slope possible is
needed for large irrigation projects. Usually computers and highly
trained engineers are available. The developing countries are
extremely short of development capital and efficient grading equipment.
A small increase in cost of land grading may be relatively unimportant
on a small farm in the Western United States, but it can be nearly

insurmountable in a large irrigation project of a developing country.

Objectives

The purpose of this research is to develop two methods of making
land grading calculations to fit the needs of developing countries
discussed above. The derivations will be based on the economics of
land grading so as to minimize the costs. The two objectives of the

study are: First, to develop theoretically and evaluate economically



with computers a method for determining slopes for land grading which
requires extremely simple calculations in the field. This will hence-
forth be called the Nouble Centroid Method. Secondly, to develop
theoretically, and evaluate economically with computers, a computer
method for determining slopes for land grading which will optimize
costs. This will be henceforth called the Computer Minimized Cost

Method.



REVIEW OF LITERATURE

The remnants of ancient irrigation systems can be found along with
the remains of almost every past civilization. Application of water
from streams and rivers to the land has been a practice followed by
farmers in almost every century for unknown ages. However, the
mathematical calculation of slopes for land forming has only recently
been recorded in literature. The technical literature on the calcula-
tion of slopes for land grading in irrigation and drainage developments
has essentially all been recorded in the United States of America. To
systematically tie together the development of mathematical methods of
determining irrigation and drainage slopes for land grading, the

literature has been reviewed chronologically.

Chronological Review

Woods (1951) gave a brief history of surface irrigation in the
U-dted States of America before the advent of massive land forming
operations,

Irrigation was extensively practiced by the aboriginal tribes in
the Southwest. Near where the city of Phoenix, Arizona now stands,
some ancient race irrigated lands which supported 20 large communities.
More than 150 miles of main canals have been traced. It is believed
that the first extensive irrigation by white men on this continent was
done by the Mormon settlers in the Salt Lake Valley more than 120 years
ago. The waters of what is now City Creek were diverted upon small

areas of land which were later planted to potatoes.



In building these early irrigation systems, little was done to
improve the land surface in order that water application might be done
easier and more effectively. Usually the irrigation system consisted of
ditches and laterals which were designed to fit the existing topography.
With some of the earliest systems little other than wild flooding was
practiced. A portion of the stream was diverted to the high side of
the field with a plow furrow or small ditch, and banks were cut allowing
the water to flgw unevenly over the surface.

The next stage of development in surface irrigation, the scientific
grading of land, was described by Houston (1966, page 565) as: ''One of
the greatest improvements in the history of irrigation."

This program, which started in the latter half of the last century
with horses and mules and the Fresno scraper, has advanced through all
phases of modern mechanization. The major types of earth moving equip-
ment were described by Houston (1966) as crawler tractor or rubber-tired
power units with carrier-type scraper or elevating scraper. With the
advent of modern earth moving equipment, which could form land to any
desired slope, it became necessary to develop a method of calculating
these slopes.

Modern land grading calculations were initiated by Givan (1940).
Previous to this time the literature only revealed that trial and error
methods of determining the slopes of the required planes were used.
Since the trial and error method was not based on any mathematical
criterion, Givan adapted the Least Squares Theory to a practical method
of calculating the plane of balanced cut and fill with a total cut which

was near the minimum. Although Civan understood that the total cut



would be near the minimum, many subsequent investigators thought that
the method gave an absolute minimum of cu&s. It should be noted that
Givan developed the Least Squares Method only for a plane of a
rectangular area.

The equation of the plane may be calculated from the following

eight equations:

H=a+DbX +cY (1]

and
a= Hm - bXﬁ - cYm {2}

and
b= [HX,/1x,° [3]

and
o= 1Y /Ix° [4]

and

{Hlxl = YHX - n X : [5]



and

{H1Y1 = YHY - nd ¥ [6)
and
2
2yl (3x) )
Wy = " Tn [7]
and
, (7)2
W= - = L8]
in which
a 18 the elevation of the plane at the origin
b 18 the slope of the plane in the X direction
e 18 the slope of the plane in the Y direction
n 18 the number of coordinates
Xm 18 the mean distance from the origin in the X direction
Ym 18 the mean distance from the origin in the Y direction
H, i8 the mean elevation of all points above datum

YHX 18 the sum of the products of elevations and X
coordinates

1HY 18 the sum of the products of elevations and Y
coordinates

WX 18 the sume of the squares of the X coordinates

ZYg i8 the sums of the squares of the Y coordinates



Givan stated:

The cuts on the example field are heavier than would ordinarily
be made for irrigation purposes, which indicates the desirability

of subdividing the field into two or more parts, each of which

can be graded to a particular plane. (Givan, 1940, page 12)

The application of the theory of Least Squares to élope calculations
was extended to irregular fields by Chugg (1947). e acknowledged
several methods in use for calculating or obtaining grade lines for
land leveling. ' These, however, had limitations, such as slope approxi-
mations by the Trial and Error or Inspection Methods, or they were
limited to the rectangular area as was the case with the Least Squares
Method in the year 1947. In actual practice many of the fields to be
leveled are irregular in shape. A system utilizing aids of transparent
paper and coordinate paper was described by Chugg (1947) for facilitating
the application of the Least Squares to irregular fields.

Irrigation slopes, as commonly understood, were described by Marr
(1957) to be the amount of fall per length, expressed in feet per 100
feet of length, such as 0.5 foot per 100 feet; or in percent, such as
(0.5 ££/100 ft) x 100 = 0.5 percent.

He stated that although irrigation slope 1is a very important factor
in design, it cannot always be ideal. Adjustments to improve irrigation
performance can be made, however, within slope limitations, by changing
the size of the irrigation stream, length, or width of the strip check.

The Least Squares and Average Profile Method developed by Marr
(1957) 1s probably the most widely used method of 1land grading calcu-

lations. The solution congsists of changing the problem from one of

fitting a plane by the Least Squures Method to a large number of grid
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corner elevations to the simpler computation of determining by the method
of least Squarea the slopes of the lines which most nearly fit the
average profiles in the two coordinate directions. This 1s essentlally
fitting a line to profiles in two directions. Marr (1957, page 32)
stated: '"The slope of these two lines is. used to form a plane which,
when properly placed, fits the contour pattern best."

The first step in the calculations consists of adding fhe elevations
along each line an& in each column on the base map and computing the
average elevation of each line and each column.

The second step consists of locating the centroid and determining
its elevation, ”m' The centroild is the exact center of the grid. TIts
elevation in this case 1s the average of all the grid-corner elevations.

The third step consists of determining slopes of the lines which
most nearly fit the average profiles in the two coordinate directionms.
According to the Least Squares Method, the slope of the line which best

fits the points of a profile is:

(55) (Ia)
Y(SH) -~ ———
Slope = (ZS)Zn (9]
2
Ls)® —

in which
Slope i8 the slope of the line which beet fits the points
which represent the average land slope across the field.
Y(SH) ig the sum of the products of the station distance and

elevation.
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(Y5)(IH) is the product of the sums of the staticn distances and

the elevations of each of the plotted points on each graph.

n 18 the nwmber of plotted points on each graph.

2(5)2 ig the sum of the squares of the station diétances of each

of the plotted points on each graph.

The fourth step consists of using the slopes and the elevations of
the centroid to delineate the plane which best fits all of the grid-
corner elevationé. Equation [1] with the appropriate symbols is used.

Most irrigation fields are suitably shaped for using the methods
of grade calculation so far explained. That is, they are four-sided
with opposite sides approximately parallel. Chugg (1947) described a
method of calculation for also fitting a plane to the topography of an
irregularly shaped field. Unfortunately, his method has proven too
intricate to be adopted generally to land grading and no way has been
found to simplify it. So, as a general practice to follow in such cases
of irregular fields, Marr (1957) recommends: First, that the best
coverage possible, of the land to be graded as one field, be obtained
with one or more of the four-sided areas; second, that the previously
described procedure for determining slopes be employed; third, that the
slopes so determined be extended arbitrarily beyond the four-sided
areas to the boundaries of the property to be leveled; fourth, that
sharp changes in slope, due to subdivision of a field into more than
one part and determination of slopes separately for each part, be
modified by merging the slopes into each other.

It will be found in some instances that slopes calculated by the
Least Squares Average Profiles Method are either too flat or too steep

to suit the crop or preferred method of irrigation. In such cases
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another plane which passes through the centroid but has the different
desired slope may be adopted. Marr (1957, page 37) presents a statement
when changing the calculaced slope: 'It will be understood that any
change of this kind will increase the amount of earth to be moved and
also the length of haul."

The Least Squares Average Profiles Method of calculating land
grades is serviceable only when the lay of the land, depth of soil and
other factors favor grading to a plane or a series of planes which may
be merged with slight grade change one into the other. If it is
necessary to adhere closer to the original topography than can be done
with a plane other methods must be used. This may be accomplished by
using the Crogs-section and Two-way Profile Methods (Marr, 1957).

The cuts need to be increased and the fills need to be decreased
an equal amount until the desired percentage of cuts over fills is
achieved. This finding applies to all soils and conditions of soil,
and thus may not necessarily include the subsidence of freshly
cultivated or naturally loose soil. Essentially, this consists of
lowering the elevation of the line of best fit. This adjustment is
estimated by trial and error. The procedure is (1) an adjustment is
selected, (2) it is applied to all cuts and fills, (3) the adjusted
cuts and fills are totaled, (4) the ratio of the Zcuts and Zfills is
determined and (5) the procedure is repeated until the desired ratio
is obtained.

Marr (1957) proposed various reasons why this adjustment is needed
in land forming. A common opinion often expressed is that fills made
with heavy equipment are compacted to the extent that the extra volume

of cut 1s required to complete them. Perhaps the most likely and more
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important explanation is that a tendency exists to crown slightly the
ground surface between grade stakes.

A study (Saveson, 1958) described land-grading operations in
Louisiana and Mississippi delta areas. The slope to which the area is
to be formed was determined most often by using the Least Squares Method
Average Profile and Inspection Methods. A shrinkage factor was used to
overcome the problem of loosened soil. This shrinkage factor ranged
from .01 to .12-foot, and engineers figured their cut and £fill on a
60-40 basis in most instances. Maximum haul distances ranged from
1,000 feet (with an average of 450 feet) on uniform slopes to 1,500
feet (with an average of 600 feet) in the ridge and slough area.
Maximum yardage per acre was approximately 500 cubic yards with average
yardage about 300 cubic yards per acre.

To help determine the number of planes to use, Phillips (1958)
plotted average profiles (Marr, 1957) giving the natural lay of the
fields. 1In analyzing the plotted profile for breaks in grade, Phillips
(1958, page 465) ncted: "At these larger breaks one design plane stops
and another starts. At this point of the design there is no substitute
for experience."

An extensive, practical study on all aspects of earth moving has
been presented by Heiple (date unknown). The method of determining the
slope of best fit was not presented. The following sample time computa-
tion breakdown was used in the economic evaluation of the different

methods of calculating slopes in this dissertation.
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Computation (sample)

1. FIXED TIME:

Load 1.00 min.
Spread 0.50
Turns 0.50
Accelerate, Shift 0.50
Total fixed time. 2,50 min.
2. HAUL LOADED 2.46 min.
3. RETURN HAUL, EMPTY 1.92 min.
Total Cycle Time = Fixed + Haul + Return [10]

Raju (1966) suggested a direct method for calculating the slope
of the plane surface for the least amount of grading, Fized Volume
Center Method. This method was based on the following hypothesis:
(a) to ensure a balance between "out" and "fill," the total volume of
carth before and after grading shall be the same, and (b) to ensure
least cutting and moving of earth, the center of the volume shall
remain at the same spot before and after grading.

The equations developed for the slopes in the X and Y directions

are:

o
[

12/%5y (YEX - (X+1)/23H) [11]

and

o
]

12/x¢% (Yny - (¥+1)/23H) [12]
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For rectangular fields the equations reduce to

b = (12/%°0)145 [13]
and
3. -
e = (12/XY°)Mx [14]
in which
b i1g the slope along the X axies
e 18 the slope along the Y axies
H 18 the elevation at various stations or coordinates
Mz, My are the moments about the axies passing through the

center of the area, but parallel to X and Y aries,
respectively.

Raju states:

For surface grading or smoothing of any field prior to
irrigation the first step should be to calculate the slope of the
plane surface which will involve the least amount of grading and
which will therefore be least expensive. (Raju, 1966, page 38)

However, a comparison with the Least Squares Method (Shih, 1970) showed
the Fixed Volume Center Method produced larger cuts than the Least
Squares Method in gently rolling topography.

Butler (1961) comments on the Least Squares and Fixed Volume Center
Methods: '"Anyone who has used these mehtods will have to admit that
they are somewhat tedious and involved." He described a mathematical
approach used by Soll Conservation Service personnel in Arkansas. This

method is fairly accurate and relatively simple to use. The slope in each

100 ft. distance on each line in a given direction was determined and
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a plus (+) or minus (~) value to indicate direction. These slopes were
added algebraically and divided by the number of spaces to obtain an
average slope. Butler (l96i) called this an Average Profile Method.

This is one of the methods evaluated in this dissertation and called the
Average Slope Method. This method has apparently never been compared with
the standard Least Squares Method.

Another average slope method was used in the Arkansas delta, The
slope was calculaéed by subtracting only the end figures on each line
and averaging the differences for each line of stakes. The potential for
large errors in this method 1s apparent and the method will not be
evaluated. It was evaluated previously by Shih and Kriz (1970) and found
to be inferior to the Least Squares Method. However, on almost all fields
studied by Butler (1961) slopes obtained by the Average,Slope Method
were within a very few hundredths of a percent of the slopes obtained by
the Least Squares Method.

The Soil Conservation Service of the United States Department of
Agriculture has probably had more experience in grading land than any
other organization in the United States. It's bulletin (SCS, 1961)
lists four basic methods and a great many variations of each method of
land leveling design in common use. The basic methods are:

1. The Plane Method

2. The Profile Method

3. The Plan-inspection Method

4. The Contour-adjustment Method

The procedure for the Plane Method is the same as outlined by
Marr (1957). The Profile Method is so-called because the designer

works with profiles of the grid lines rather than with elevations as
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plotted on a map. It consists of a Trial and Error Method of adjusting
grades on plotted profiles until the irrigation criteria are met and an
earthwork balance is attained. Thus, the resultant land form consists
of variable slopes. The Plan-inspection and the Contour-adjustment
Methods are variable slope methods. The individual slopes are determined
by trial and error.

A method for locating the centroid in a non-rectangular field was
described in a SCS bulletin as follows: '
Irregular fields may be divided into triangles and rectangles
or into rectangles alone, and the distance to the centroid of the
field from any line of reference is equal to the sum of the products
obtained by multiplying the area of each part times the distance
from the line of reference to its centroid, divided by the area of
the entire field. By computing the distance to the centroid from
two lines of reference at right angles to each other, the exact
point of the centroid can be determined. (SCS, 1961, p. 12-9)
Lawhon (1962) described one of the oldest forms of land leveling
which was applied in rice paddies of the orient. Land leveling may not
have been intentional in its original application; it may héve been the
result of some other operation such as seedbed preparation or trans-
planting. However, its present-day use in these areas is considered as
land preparation.

The area to be leveled is flooded to the extent that approximately
70 percent of the area is under water. Then using a blade or scraper
with a hydraulic 1lift, the exposed areas are scraped into the water in
the general diréction of the low areas which flooded first. After the
high areas have been reduced to the point that the entire area is
flooded with a thick "soup" the area is left until sediments have settled
out. The water is then drained off. If high areas appear before most

of the water is drained off, the leveling process may need to be repeated

later. The result is a more nearly level area which requires less
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water to flood it and permits a more uniform depth of flooding as part
of the culture of rice. Water leveling can be an exact method of
leveling, but, of course, a grade is not possible.

Benedict et al. (1964) described five programs that have been
developed for the IBM 650 electronic computer: a warped surface program,
three predesigns of warped surface programs, and a plane surface program.

The plane surface program used an Average Profile (Butler, 1961).
The warped surfdce methods used a trial and error method. Greatly
simplified, the computer moves through the array of elevations. If the
elevations meet the slope limits and design requirements it continues,
If the limits and requirements are not met adjustments are made until
they are met.

More recently Smerdon et al. (1966) have developed a method for
plane surface design using an IBM 709 computer. This method calculates
the plane-of-best-fit based on the theory of least squares. By linear
programming, a pattern in the field is developed that minimizes the
average haul distance of earth moved. Linear programming is an itera-
tive mathematical technique for solving transportation problems.

Harris, Wait and Benedict (1966) presented a paper on warped sur-
face methods of land grading. The procedure was essentially the same as
published by Benedict et al. (1964) with Harris as a joint author. An
excellent description of warped surface land grading was presented.

A warped surface method of land grading was defined as a precisely
graded land surface design that allows row grades and side slopes to
vary within prescribed limits. Warped surfaces, as compared to plane
surfaces have two advantages. First, warped surfaces take maximum

advantage of natural topography. As a result, depth of cuts and fills,
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lengths of haul, and construction costs are minimized. Second, warped
surfaces minimize the temporary and/or permanent reduction in crop
production due to construction. Less soil is disturbed in construction
and there is less 1liklehood of cutting into unproductive subsoils.
Trends and costs in land grading in California were developed by
Houston (1966). Estimated land grading costs were given for most

irrigation areas of California in Table 1.

Table 1. Estimated land-grading costs in most irrigated areas of

California
Item Range in dollars
per acre
Surveying, staking, mapping, checking 4-7
Earth moving 500 cu. yd. per acre 50-100
Land planing, three ways 4-5
Total 58-113

When per acre volume is around 1,000 cubic yards, sprinkler
irrigation may be more economical than grading land for surface
irrigation. Most land grading in the main irrigated areas of California
require movement of less than 500 cubic yards per acre. Costs have
increased very little over 15 cents per cubic yard since machines were
introduced.

Paul (1969) published the first equation [15] for calculation of
the adjustment of grade line directly. The need for the adjustment and

the trial and error determination of it were covered by Marr (1957).
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RYF - JC

Y = T2 (3]

in which
bg is the change in the grade line required to produce the
desired ratio. |
R is the desired ratio of JC to )F.

IF i8 the summation of the fills.

3¢ i8 the sumation of the cuts.
Nf 18 the total number of coordinates.

The adjusted cuts and fills are calculated by adding the adjustment to
the cuts and subtracting it from the fills.

This equation is not mathematically exact and will vary with
different soil surface reliefs. However, R is simply an estimate
based on experience that must be checked in the field after the land
forming has proceeded sufficiently so that a check may be made on the
actual ratio obtained in the field.

Equation [15]) is extremely useful if a computer is not available
for the trial and error calculations. Anyone who has attempted to
determine the adjustment by trial and error methéds on a large field’
understands the tedlousness of the calculations and the opportunities
for errors.

Paul (1969) also described variations of a plane surface thaf can
be used when it is desirable to adhere closer to the original topography

(Figures 1, 2, 3, and 4).



/
/ /A
/ {
i |
[y

(T

.

Figure 1. Drawing representing two planes merged with slight grade to
more nearly fit the original topography.

Figure 2. Drawing representing a field graded to a uniform irrigation
slope and nonuniform cross slopes.

21
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Figure 3. Drawing representing a field with different but uniform
irrigation slopes.

In fields with a relatively uniform irrigation slope and 1rregu1ar
cross slope, the variation shown in Figure 2 may be extremely bene-
ficial. The uniform slope in the direction of irrigation is determined.
from the average profile elevations as outlined by Marr (1957). Thus,
resulting irrigation slope is uniform but at different elevations.

This variation is‘esbecially adapted to furrow irrigation, and for all
surface systems if the cross slopes are kept within the limits for the
specific irrigation system.

In Figure 3 uniform slopes can be determined from the soil surface
profile for each row of stakes parallel to the direction of irrigation.
Thus, the irrigation slope will vary across the field. However,

efficient irrigation is possible if the irrigation slopes are kept



23

o - stake locations or
coordinates

Figure 4, Drawing representing a field graded to nonuniform slopes
which adhere closely to the original topography.

within the limits of the irrigation method being used. In many fields
this will greatly decrease the amount of soil to be excavated and the
costs of land grading.

Closer adherance to the original topography may be accomplished
by simply fitting the irrigation and cross slopes along each row of
stakes as close as possible to the original topography (Figure 4).
This system 1s usually referred to as variable slope or warped.surface
land forming. Note Figure 4 is the ultimate situation where the gize of

the individual planes have been reduced to the area between four stakes,
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All four variations consist of a series of planes and profiles.

A graphical method for determining the slope of an average profile
or a single profile along a line of stakes was published in Spanish by
Paul (1969). This simplified method of determining slopes has bheen
used by the Instituto Colomblano Agropecuario and the Rockefeller
Foundation in calculation of slopes and land grading in Colombia.

The procedure i1s to plot the elevations and centroid of each
profile on graph paper using a scale which accentuates the uneveness
of slope. This allows accurate determination of the lines of best
fit. The slope of best fit is determined by placing a transparent
triangle or ruler with an edge passing through the centroid. The straight
edge is rotated about the centroid until the summation of distances 4
(cuts) equals the summation of the distances B (fills) on one side of the

centroid (Figure 5).

8.9 |-
8.8
8.7 r—
8.6 | | | | | 1 |
1 2 3 4 5 6 7
Stations

Figure 5. Average profile, slope of line of best fit and change in eleva-
tion per station from South to North. Data from Marr (1957)
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It is very important that the cuts and fills are added on only one
side of the centroid. TIf both sides of the centroid are considered,
any slope passing through the centrold will produce equal summatlons
of cuts and fills. Tf the centrold is plotted at a station, as shown
in Figure 6, only one-half the distance between the centroid and the
profile is totaled in determining the line of best fit.

This method gives a definite, reproduceable, reasonably accurate
and easily obtainable slope which is impossible to estimate.

Shih (1970) made a computer evaluation of methods of determining
the plane of best fit. Three mathematical methods were compared by
determining the slope of best fit for each of the five types of design.
The methods for calculating slopes were: (1) a Least Squares Method
presented by Givan (1940) for a rectangular field and by Chugg (1947)
for an irregularly shaped field; (2) a Fizxed Volume Center Method
used by Raju (1960); and (3) an Average Slope Method reported by
Butler (1961). The second method proposed by Butler was used, only the
end elevations of any profile were used to calculate the average
slope.

The five types of land forming designs were:

1. Uniform slope (plane surface) with row and cross row

drainage.

2. Variable slope with row and cross row drainage.

3. Uniform slope in the row direction and variable slope in

the cross row direction with row and cross row drainage.

4, Uniform slope with row drailnage and a minimum and maximum

allowable cross row slope (no cross row drainage).
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8.80

] | | ] J

Stations

Figure 6. Average profile, slope of line of best fit and change in eleva-
tion per station from West to East. Data from Marr (1957).

5. Variable slope with row drainage and a minimum and maximum
allowable cross row slope (no cross fow drainage).
The Average Profile Method of design gave a higher earthwork volume
for all types of design than the Least Squares and Fized Volume Center
Methods. The Average Profile Method of design gave a slightly higher earth-

work volumes because only the end points of the field were used and

_elevations differences within the field were not considered. The Fixed

Volume Center Method gave about the same results as the Least Squares
Method except in gently rolling topography.

He concluded that, based on a theoretical view-point, the Least
Squares Method gives a better result than the Fixed Volume Center Method
because the latter method does not assume the same field surface shape

hefore and after eradine.
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oerestive thienretical relatlonship between the Least Squares
AR comd e Mo Velwe Coriep (Raju, 1960) was derived

/?Lf iy /‘/p-/z 0

e
¢

(16]

in which
1o i3 the alope caleulated by fized volume center method
bls 12 the slope calcula’ed by the least squares method
x i3 the number of stations

The report by Shih (1971a) is essentially the same study as
reported in 1970 (Shih, 1970) except for the method of calculating
slopes. 1In the 1970 study the least Squares Method, the Fized Volume
Center Method, and the Average Profile Method were compared. In the
publication (Shih and Kriz, 1971a) only a Symmetrical Residuals Method
was used.  The derivation of the Symmetrical Residuals Methods was not
siven. The final formulas for a rectangular field are Equations [17)
nd [1-;. When the number of stations in a row is even the individual

Ltow slope is determined by

nj nj/z
1) Ay, - T A,
i=(n,/1)+1 Y =1 %
= J (17]
Je 2
nj d

When the number of stations in a row is odd the individual row

slope {s determined by
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, (nj-l)/z

A..-Y A,
i=(n.+3)/2 ¥ =1 VI
. = J [18)
e 2
J (nJ. -1)d

[}
e~

in which
nj 18 the number of stations in the jth row
Aij 18 the original field elevatioms
d 18 the interval between stations

Equations [17] and [18] give the same results as the simplified
graphical method in'use in Colombia (Paul, 1968).

Shih (1972b) published the derivation of the Symmetrical Residual
Method of calculating slopes. Shih and Kriz (1971b, page 1195) stated
they developed the equations based on " ... residual properties,
Newton's divided difference interpolation procedure and statistical
properties of the best statisfic with an unbiased estimate and minimum
variance."

In later work (Shih and Kriz, 1971c) the Symmetric Residual Method
was adopted for an irregular shaped field. The best slope, b, in the

row direction for an irregular shaped field is determined by

m m

e o)
b= )W.,b, + JW,b, [19]
J=1 Jg dg J=1 Jo 90 _

where

3
"
_ e
Wb T om m [20]

e e o 2

Y ns + ) m,+1)%m, -1)

J=1Ye J=1 Ip o
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and
2
fn.+1)"(n, -1)
Jo Jo
WB T om m [21]
0 C 0 9
Inl + ) (n,+1)m, -1)
J=1 Je J=1 Jo Jo
in which
W3 18 a weighting factor in the jth row that has an even
e
number of stations, nj .
e
Wj 18 alweighting factor in the jth row that has an odd
0
number of stations, "j .
0
m, 18 the number of rows that have an even number of stations.
m, 18 the number of rows that have an odd number of statioms.
bj i8 the best slope of the jth row that has an even number
e
of stations.
bj 18 the best slope of the jth row that has an odd number of
)
stations.
nj 18 the number of stations in the jth row.
Aij 18 the original field elevation.
d 18 the grid epacing generally taken as 100 feet.

The values bj and b, are calculated from equations [17] and [18],

e o) :
respectively. Thus, for an irregular field the Symmetric Residual Method
consists of a weighted average of the slopes calculated for the individual

rows. A similar expression to equation [19] was developed for the cross

row direction.
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Sowell (1971) presented a land forming design by.linear programming.
In the formulation of the land forming design problem as a linear
program the objective function was to minimize the sum of cuts in the
field subject to restraints that slopes are within the allowable range,
and the depth ratio of cuts to fills is within the allowable tolerance.

For the four fields designed by linear programming, the reduction
in total depth of cuts, as compared with the Symmetrical Residuals
Design, was from negligible to 20 percent for the twenty designs.

Soweli (1971, page 1) writes about previous methods of calculating

’
slopes. "While each of the existing methods has its own unique way of
determining the best design, none uses a mathematical optimization
technique for minimizing earth moved in the entire field."

Equation [22] was presented by Hung (1972) as a method of calculating

the amount to lower the gradeline to obtain the desired cut volume in

excess of fill volume.

(1+a) 5. - S
e

f
= [22]
Mc + (1+a) Mf + Mo

Y

in which

Sf i8 the sum of fill products.

S, 18 the sum of cut products.
Y i8 the depth to be adjusted for the cut plane.
a 18 the desired excess of cuts over filles in decimal form.

i8 the sum of cut multipliers.

.8 the sum of fill multipliere.

QE ,_,,R QE
[
Y

i8 the sum of non-cut and non-fill multipliers.
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The products and multipliers are simply based on 4 quadrants per
coordinate instead of coordinates in a rectangular field.

Fquation [22] can be shown to be .the same equation as previously
published by Paul (1969) by the use of similar symbols. To facilitate
the comparison a standard rectangular field layout will be used.

Paul's equation [15] 1is

RYF - JC
b = TIRT W72 [23]
Since Paul (1968) assumes
Nf = Nc = Nt/Z [24]
the equation may be written as
R)F - JC
= (25]
g Nc + R Nf
Since
Y=A 26
g [26]
lta = R [27]

M = Nc 4 [28]
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M,=N, 4 29
=N [29]
S,=)F 4 30
s Y [30]
s, =1]C4 [31)
Mé =M4 [32]
in which
M i8 the number of coordinates at which no cuts or fills
are required.
Equation [22] becomes
R)F+d - YC'4
by =W 7= A7+ 4 [33]
or
RYF - )C
A = [34]
g~ W F RN, +H

If M equals zero as is usually the case if the calculations are
accurate to 2 or more decimal places, Equations [22] and [23] are
exactly the same. The difference lies in the number of cuts and fills.
Paul (1969) assumed the number of cuts and fills were the same and
equal one-half the total number of coordinates without a trial dropping

of the grade line. Hung (1972) made a trial estimate of the amount
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to drop the grade line and counted the actual number of cuts, fills and
non cuts and fills obtained.

Powell (unpublished data) has developed a land forming design based
on a number of planes which increase the efficiency of the irrigation.
Tt consists of a computer program which selects the slopes of the

individual planes based on the infiltration function of the soil.
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THEORY

To systematically tie together the methods of determining slopes
derived in this dissertation with previously derived methods, the theory
is developed in the following order: description of profile and planes,
curve fitting, Least Squares Method, Least Cuts Method, Double Centroid
 Method amodnt to lower grade line, and Computer Minimized Cost Method.
The theory of the Double Centroid and Computer Minimized Cost Methods
is developed in relation to the Least Squares Method.

In the development of theory of the Double Centroid Method and the
Computer Minimized Cost Method, maximizing the income of farmers is
stressed. An important component of this optimization is the cost of
land grading.

It is theorized that every possible form of land grading consists
of planes in three dimensions or profiles in two dimensions. Therefore
the theory is developed for both a plane and a profile. These two
derivations will handle the vast majority of calculations as made at the
present time without further adaptation. It is assumed that the theory
as developed for the Double Centroid Method and the Computer Minimized
Cost Method of determining slopes for profiles and planes will be
adapted to warped surface land forming consisting of a series of

profiles and planes.
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Profile and Field

The profile is the normal plot of two variables. Any point P in
the x, » plane has 2 numbers associated with 1t (Figure 7).

In land grading point (P) in the profile should be visualized as
the elevation of the soil surface at the station considered. The first
stake is located 50 feet from the property line. Each station represents
100 feet of the profile with the station located in its center.

The profile may be related to land forming in 3 ways. First, it
may be considered as (1) an average profile of the field to be graded
(Marr, 1957), (2) a single row of grade stakes or (3) a linear land
forming project such as a canal, or highway, where an average cross

profile is used.

El

P(x;,Ei)

Elevation

2 x . i L » x
Stations

Figure 7. Profile of elevations versus stations.
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Slopes for three dimensional planes are determined from field data
(Figure 8). The grid corners on the base map in the x, y plane are
located by a system of coordinates. In this case the point of origin
na" is located 50 feet North and 50 feet West of the Northwest corner
of the field. The locations of grid corners are designated in
gstations (number of 100 feet intervals) Southward along the y axis
and Eastward along the x axis. In rectangular fields each coordinate
represents the center point of a 100 feet by 100 feet square. In an
unsymmetrical portion of the field such as a coordinate (xn yl) (Figure 8)

a coordinate may represent a smaller area.

North

/]
yi/—~ﬁ——v-—v——f--r—-/—
y,/*l

77—
Vo o i 2

Y

Figure 8. Three dimensional layout of irregular field, with £ and ¥
representing coordinates and E representing elevations.
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Curve Fitting

There are generally 2 alternatives for fitting a curve to a set of
data. First, we may desire the curve to pass through each point of a
given set of data. Two of the methods used are Fourier series and an
interpolation formula for polynomial curves. Newton's divided difference
formula is probably the most fundamental of the interpolation formulas.
Secondly, we may desire to select a straight line which comes "as close
as possible" to each point. This will certainly be the case with experi-
mental data which theoretically should fall along a straight line but
which fails to do so because of errors of observation. The necessary
measure of "as close as possible" is almost universally taken to be
the least squares criterion for theoretically straight line data.

In land grading a unique curve fitting is required. We need to

fit a straight line to a naturally occurring smooth curve (Figure 8).

Least Squares Method

In the development of the theory of the method of the Least Squares
for a profile (Figure 9) let us begin by supoosing that we wish to fit a

straight line £ whose equation is
E=a+ bx [35]
to n points, (ml,Ez), (xz,Eg), cee s (xn,En). The coordinates of

the general point (xi’Ei) will not satisfy equation [35]. That is

when we substitute x, into equation [35], we get, not Ei’ but rather
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the ordinate of &, which, as we see in Figure Y, differs from E{ by 6{.
E
(x ,E2)

= E

¢ = (a'f'b.'L' o)
1 1

+ *
a bxt

Figure 9. The fitting of a straight line to a set of points, showing
discrepancy at (xi,E;).

In other words,

O
1l

ks = (a+bxi) [36]

where 6 # 0

If we compute the discrepancy Gi for each point of the set and
form the sum of the squares of these quantities (in order to prevent
large positive and large negative 6's cancelling each other and thereby

giving an unwarranted impression of accuracy) we obtain
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n 2 °
D = Zsi =(E1-a-bx1) +(E2-a-ba32)‘+..

0
+ (hn -a bxn) [37]

The quantity D is obviously a measure of how well the line & fits the

set of points as a whole. For D will be zero if and only if each

of the points lies on £, and the larger D is, the farther the points

are, on the average, from 2. The least squares criterion is now simply

this: that the parameters a and b should be chosen so as to make the

sum of the squares of the deviations D as small as possible.
To do this, we apply the usual conditions for minimizing a function

of several variables and equate to zero the two first partial derivatives,

oD/da and 9D/db. This gives us the two equations:

oD/da = 2(E1 -a- bxl) (-1) + 2(E2 -a- bxg) (-1) + . .

+ 2(En -a- bmn) (-1) = 0 ({38]

and

aD/d3b = 2(E1 -a- bmz) (-xl) + 2(E2 -a- bxz) (-xz) + ..
+ 2(En -a- bxn) (-xn) =0 [39]

or, dividing by 2 and collecting terms on the unknown coefficients

a and b,
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n n '
na+b Jx, =) E, [40]
i=1 i=1"
and
) Tof= ]
a x.+Db x, = x.E, [41]
=1t =1l g= vt
Equations [40] and [41] are two simultaneous linear equations whose
solution for a and b presents no difficulty.
Solving equation [40]) for a
) )
Eo-b xo
P L1
a = 1=1 . 1=1 [42]

Substituting the result into equation [41], simplify and solve for b

et Fap oot Fofon ]
() E.-b x.) x. + nb ., =n x.E. [43)
i=1 " i=1 % i=1"% i=1" i=1 v
or
n n 2
" " n }&E nmb ] a
1B, b Ja =—tzt’® =17 [44]
=1t g=p v v ~
Yz, Lz
1.=1 1=1



or

or

or

n n
wie? ,  nlen
= -b Y a, = ] E.
T i=1" § i=1 "
1z L=
1=1 1=1
noo9 n
ni if”: " ] niz zE,
(b)(EL— - J 2 == -V E
Z z i=1 z z 1=1
i=1" i=1"
3 )
x.E E,
g=1* % i=1"
7{ n
&L
p o 2= t
n 2 n
nl R
e
7§ n
X,
i=1"
n n
" () E;)( ) x,)
2 2.E. = 1=1 1=1
121 171 n
b= T o2 (N
y z,” - ( y x.)
1=1 1=1
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[45]

[46]

[47]

(48]
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Note equation [48] is the same as equation [9] (Marr, 1957). The
derivation of the Least Squares Method for a plane is similar.

A line given by the Least Squares will theoretically pass as
closely as possible to each point for experimental data which theoreti-
cally should fall along a straight line but which fail to do so
because of errors of observations. If the errors are unbiased
observations, we will have near uniformity of positive deviations and
negative deviations in our previous derivation. Therefore, by minimizing
the squares of deviations, we are also minimizing the deviations.

However, the soil surface can seldom, if ever, be considered as
having uniform deviations from a straight line. Alluvial soils, on
which most irrigation developments occur have general slopes away from
the rivers. 1In addition to the general relief, micro-relief may be
nearly uniform or it may be interrupted by mounds, swales or pits.

The wide nonuniformity in soil surface relief is due to the erosive
forces of wind and water as well as the original deposition of sediments.
In many cases the soils with nonuniform relief are the ones that must

be graded as they are unirrigable by surface methods.

Since soil surfaces are not uniformly distributed, as occurs in
observation of theoretical straight line experimental data, then the
Least Squares cannot give us the minimum cuts and fills. Cuts and
fills are very important in land grading. Although not directly pro-

portional, they are related to the cost of grading.
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Least Cuts Method

To attempt to develop the theory for minimizing cuts we will
proceed using the same notation used in developing the Least Squares
theory (Figure 9). 1If we compute the discrepancy for each point of

the set of data and form the sum of them

D =
1

I &~

léi = (Ez-a-bxl) + (Ez-a-bxz) + oe. * (En-a-bxn) | [49]

Again the quantity D is obviously a measure of how well the line
% fits the set of points as a whole. For D will be zero if and only if
each of the points lie on % regardless whether the discrepencies (§) are
uniformly distributed or not. The least error or cut criterion we are
developing 1s this: the parameters a and b should be chosen so as to
make the sum of the deviations (D) as small as possible.

To do this we attempt to apply the usual conditions for minimizing
a function of several variables and equate to zero the two first partial
derivatives, 9D/3a and 3D/da.

However, an attempt to differentiate gives us an indeterminant

result
aD/3q = -1 =1 - ... =1 = =n [50]

and
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" )
an/ab = ay - Ty = eee = X =-:£ x [51]

Each term of the partial derivative does not contain the parameters
a and b, for the sums of the deviations D are as small as possible.
Attempts to determine a and b where the sum of discrepancies D
are as small as possible by using the absolute values of the deviations
and by squaring the deviations then taking the square root were also
unsuccessful,
Therefore, the sum of cuts and fills cannot be minimized by this
approach. It is assumed that this is the reason the method of Least

Squares was originally developed and gained wide popular use.

Double Centroid Method

One of the factors dictating costs of land grading is the haul
distance between loading and spreading points. It was theorized that by
balancing the cuts and cills on each side of the center lines of a
profile, then no soil would be required to be moved across the center
line of the profile. 1In a sense we were grading 2 profiles sgeparately,
but with one resultant siope. If this theory is applied to a plane,
then there would be four quarters whére the cuts and fills balance and
hence no soil would need to be carried to other field locations. Thus,
the basic theory of the Double Centroid Method is that the average

distance that the soil is moved is reduced with a resultant reduction
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The profile was used to mathematically derive the slope
formulas in which the cuts and fills balanced within each one-half
of the profile. The equations were readily extended to a regular or

irregular shaped field.

Centroid location

The centroid location 1s easily determined for a profile or a
field 1f the field is a square or rectangle. Its location is the
geometric center.

The location of the centroid is more difficult in a nonsymmetrical
field, In physics the product of the mass and its directed distance

from a fixed point is called the moment of the mass about the fixed

point.
Mx = My [52]
or
=M
x =g [53]
in which
M 18 the total mass
z i8 the location of the centroid along the x axis

My 18 the moment of the mass about the y axis

Now consider the system of (q) surveying stakes situated at
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%Y 15 %Y 9> Lilfg oee xnyp as shown in Figure 8.

The location of this system of q masses along the & axis is defined

by
n
) § ey
- i=1_g=1
x = (541
) m,
i=1 =1 "
in which
m; ; ig the individual mass
) is the distance of the individual mass from the y axis

In land grading the locations of elevations, cuts and fills are fixed
by the stakes locations, therefore, the centers of masses must be
located at the individual coordlnate points.

For the theoretical derivations the goil surface is assumed to
be a homogeneous lamina. A lamina is said to be homogeneous if two
pieces of it have equal weight wherever their areas are equal. The

density of a homogeneous lamina is its mass per unit of area

k = g%% [55]
td
in which
k 18 the density
m; ; 18 the individual mass represented by each stake
A%j is the individual area represented by each stake

If we assume the density of the soil surface lamina to be equal
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to 1 then

m,,=A.. [56]

and equation [54] may be written as

i

13553
- _i=1g=1 WY
X =
)
A.. [57]
i=1 j=1"*7
For a profile as described in Figure 7, equation [57] reduces to
n
) Az,
- 1=1 ’
x = [58]
3’
i=1

Thus, the centroid of a nonsymmetrical field may be located.
This is a point such that if the total areas of the surface lamina were
concentrated there, its moments about the y axis would be the same as
the moments of the system of individual areas concentrated at the
coordinate stakes. For irregular fields some coordinate stakes would

represent irregular areas. The same mathematics may be used to locate

the centroid on the field along the y axis.

Centroid elevations

Elevations of soil surface centroids are simply the average
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elevation weighted by the area represented by each coordinate.

Even number of stations - Profile

The centroid locations of the individual halves are simply the
geometric center of each one~-half. The elevation of the centroid of
each one-half is the average elevation of all the grid elevatioﬂs in
that one-half,

By definition the centroid is the center of mass. A line passing
through the centroid will produce a balance of cuts and fills at any
slope such as in positions (a') or (b') in Figure 10, If we desire to
grade the profile to a single plane, we can rotate the grade lines on
each one-half of the profile, until they become colinear, position (ec').
Cuts and fills still balance each side of the profile and soil need not
be moved from one-half of the profile to the other one-half or vice

versa.

Elevation

T | 1 I | .
1 2 3 4 5 6
Stations

Figure 10. Profile, with grade lines creating a balance of cuts and
fills by passing through the respective centroids.
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The logical explanation of slope (e¢') where slope (a') and B"

become colinear will be expanded into a mathematical model.

and

in which
CLH
CRII
n
E.
1

n/a
Y E.,
i=1

Coin = “n73 [59]

_1=(n/2)+1 i

RH =~ n/2 [60]

i8 the elevation of the centroid of the left half of the
profile

18 the elevation of the centroid of the right half of
the profile

18 the number of stations in the profile

18 the elevation at the individual station

Cow = Crn

Slope = —WZ_ [61]

Substitution of equation [59] and [60] into equation [61] gives
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from which

50

n n/
E, JE,
i=(n/2)+1 % 4=1"
____n/2 T n/2
Slope = 73 [62]
n n/2
Slope = ( z Ei(2/h) - ( 2 Ei) 2/n) 2/n [63]
i=(n/2)+1 1=1
n n/2 P
Slope = ( ] E; - )) E;) 4/n [64]

i1=(n/2)+1 1=1

Thus, the Double Centroid Method of calculating slopes for a

profile with an even number of stations is given by equation [64].

The grade line calculated using the Double Centroid Method also

passes through the centroid of the complete profile. This is shown

graphically in Figure 10. The mathematical proof follows:

By definition

in which

C
p

n
1 E
1=1
cp ~ n [65]

18 the elevation of the centroid of the profile



51

also
.- CL”(n/Z) + CRH(n/.?) (661
P n ’
or
n/2 n
PE,+ 1 E.
o - i1t d=tn/2)#1 " (671
p n
or
n
izzEz
Cp == [68]

0dd number of stations - Profile

When the profile has an odd number of stations (Figure 11) the
derivation of the slope equation becomes more complicated as the
center elevation must be figured in each one~half of the profile.

The centroid elevation of each one-half of the profile is the
weighted average of the elevations on the respective one-half of the

profile. Thus

(m-1)/2 o

¥ E; + ((nt1)/2)
¢ == 2 [69]
LH n/2
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Elevations

T B

]
!
|
i
v b———
1
8

,_._
o

Figure 11. Profile with odd number of stations showing areas
represented by stations on right one-half of profile.

ana

n
E, + Eint1)/2)
c = i=(n+3)/2 2 (70]
RH ~ n/2

The slope of the line cannot be calculated by use of equation
[61] as for an even number of stations. It must be remembered that the
one-half of the standard area or mass of the center station is concen-
trated at the station in land grading. The distance between the centroids
may be calculated by first determining the location of the centroid of the

right one-half of the profile from Equation [58].
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n
Longa e, ] A,
¥ - 2 i=(n+3)/2 [71]
Il (A(”+1)f32 . n '
2 i=(n+3)/2A1
and
A 2 (n-l)/2
(rt1)/2 " (n1)/2 Y A,
—_—— L Tt
Xow = 7 2 n-1)72 = [72]
( (n+1)g2)+ ZA
2 e
1=1
in which

XRH i8 the location Of the centroid of the right one-half

in stations

>l

Li is the location o/ the centroid of the left one-half
in stations

In the sample profile (Figure 11) with 5 stations the location of

the centroid of the right half will be

7 = 1/2'? +

1 1°5 _
RH 7o + 7 = 4.20 [73]

D=(X_-X)2 (74]
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in which
D ig the distance between centroids of the respective
one~halves
or
D= (4,20 - 3.00)2 [75]
or
D= 2,40

Note this is different from 2,50 if we simply divided the number of
stations by #/2 as was done for the even number of stations (equation
[61]). The reason 1s that the centroids of m, are located at the stakes
in landgrading. Thus the theory of centroids has been modified to fit
vthe staking procedure in landgrading.

An equation to calculate the distance between the left and right
centroids will be developed in terms of n. This will ease calculations
when large numbers of elevations are involved. Equation [71] may be
written as follows because of the previous assumption that the area

represented by a coordinate stake is equal to unity.

. n
(x(n+1)/22 + ¥ x,
. .2 i=(nt3)/2 ,
R 172 + (n-1)72 [77]

From the identity



n
Y x. = n(nr1)/2
i=1 "

and

n n (n+1)/2
) .= Jax,- Yo
i=(n+3)/2 i=1% =7t

The following equation may be written

Vo p.onlrl)  (m1)/2 ((nt1)/2 + 1)
i=(n+3)/8 * 2 2
or
¥ o ntl) - D)%/ - (me1)ye
i=(n+3)/2 * 2
or
1 e, = dn(nt1) - (1+1)% ~ 2(me1)
i=(nt3)/2 © 5
or

¢ z, = (ntl) (dn-n-1-2)

i=(n+3)/2 ¢ 8

55

(78]

[79]

[80]

[81]

(82]

(83)
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or

n
= (n+1)8(3n-3) (84]
i=(m+3)/2 *
or
¢ 3(nt1) (n-1)
x, = 5 [85]
i=(m+3)/2 *
or
¢ 2
x, = 3/8 (n"-1) (861
i=(m+3)/2 *
Therefore equation [77] becomes
o dmLLy gy 1)
Xy = 772 + (n-1172 [87]
and simplification leads to
¢ o (nt1)/4 + 3/8 (n®-1) (88]

RH n/2
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or
- Int2 + 3n2 - 3
Xen = n (891
or
7 = 3n2 + 2n ~ 1 [90]
RH ~ qn

Next the distance between the respective centroids may be calcu-

lated from equation [74].

sn’ + on-1 _ (n+1)

D= (7 5 2 [91]
or
D = (3n2 + 22;1-2n2-2n) [92]
or
D ”22; ! (93]

Using equations [69], [70] and [93], the slope equation of the Double

Centroid Method for an odd number of stations may be derived
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Slope = ————— [94]

or
(E(n+1)/22 ¢ ] [( (n+1)/22 +(’§ 1)/2
2 i= (n+3)/2 =1"
Slope = n/2 7 n/éi [95]
(n“~1)/2n
or
n (m-1)/2
) £y - 1B
Slope = i=(n+3)/2 5 v=l 4 (961
n -1

Rectangular field

The resultant equations for a rectangular plane are the same as
equations [64]) and [96] except the elevations are summed the width of
the field. Using the notation of Figure 8, the respective equations for

even and odd number of stations are

n n/2
) Ye,- 1 Ye,
lt—(n/2)+1 Jj=1 —1 Jj=1 ]

Slope = (971
(np)
and
n (n-1)/2
. LB § Esg
Slope = [t=("+3)/2 J=1 5 =1 g=1 ]4 [98]
(np)” -
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If the field is irregular (Figure 8) the following equation must

be used:

and

and

and

and

Slope =

RH ~ “LH

RH -~ “LH

>
>l

RH = "n
¥ EA..

T

>qi
]

[99]

(100]

{101]

[102]

[103]



60

Substituting equations [100], [101], [102] and [103] into [99] and

simplification leads to

n o)
I Doy 1 1o
Slope = i=e y=1 =1 g=1 [104]
§ A..xi - § A, ak
~c J=1 g=1%
in which
e 18 the centroid location on stations in the x direction

The derivation of the double centroid slope equation in the y
direction is similar,

Stakes or coordinates representing less than 100 x 100 foot
areas would be accounted for in the area values. These incomplete
coordinates would occur at irregular boundaries and normally at the
center of the field. The centroid of the field will not normally be
located exactly between coordinates for an irregular field.

Equations [64] and [96] are the models for calculating slopes of
profiles containing even and odd number of stations, respectively. For
application to a plane simply include the elevations of all coordinates
on each one-half of the field (equations [97] and [98]). If the plane is
an odd shaped field, then equation [104] must be used as it is impossible
to develop a simple equation in terms of »n and Ei similar to equations

[97] and [98]. However, equation [104] is very adaptable to computer

pProgramming.
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The slopes balance the cuts and fills in each one-half of the profile
or in each one quarter of the field. Theoretically this should reduce
the cost of grading because none of the soil need be moved out of the
individual one-quarter of the field, thus reducing the distances the
soil must be moved and the resultant costs.

Double centroid equations [64] and [96] are exactly the same as
equation [17] and [18] developed by Shih (1972b). The denominators of
equations [64] and [96] do not contain d because they were developed
in terms of stations. The development of these equations was not only
independent, it 1s unrelated mathematically. The Double Centroid Method
was based on the principle of centroids. The Symmetric Residuales Method
(Shih, 1971b, page 1195) was based on " ... residual properties,

Newton's divided difference interpolation procedure, and statistical
properties of the best statistic with an unbiased estimate and minimum
variance." A study of the mathematical concepts between the two separate
derivations but identical results might be a good topic for a masters
thesis in mathematics.

It should be stressed that the equations are only the same for the
special case of a rectangular field with each stake representing a uniform
area. The general double centroid equation [104] for any shaped field
is completely different from the general Symmetrical Residuals Method

(Shih, 1972c).
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Amount To Lower Grade Line

It is the experience in grading land with modern earth-moving
equipment that a gfeater vélume of cut than fill must be allowed in
order to provide a sufficient volume of cut to take care of the called-
for volume of fill.

The amount that the grade line must be lowered, to produce the
desired ratio of Xcuts to zfills, need only be an approximate value for
2 reasons: (1) the estimated ratio of cuts to fills upon which it is
based is only an estimate and (2) the ratio of cuts to fills must be
checked in the field after grading has commenced and adjustments made
(Marr, 1957).

Historically, this adjustment has been estimated by trial and
error. If the total depth of cut is found to be too small to agree
with the desired ratio of cuts to fills, the elevation of the plane is
lowered by trial and error at all grid corners until the desired ratio
of cuts to fills is obtained. Marr (1957) describes this trial and
error technique,

The Computer Minimized Cost Method must select the optimum slope
based on actual cuts moved in the field. This dictates the grade line
must be lowered before the slope can be optimized. However, the
increment to lower the grade line cannot be determined by trial and
error before the slope is determined. Therefore, a theoretical model
has been derived to estimate the amount the grade line should be lowered
based on the desired ratio of cuts tc fills to replace the trial and

error method.
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As the grade line is lowered, the number of cut coordinates is

increased and the number of fill coordinates is decreased. The basic

assumption in the derivation is that the ratio of number of cuts to the

number of fills is equal to the ratio of volume of cuts to volume of

fills,
in which
R
N
e
N
f
or
in which
Nt
or
or

R = Nc/Wf [105]

i8 the ratio of the swmmation cuts to swmation of fills
i8 the number of cut coordinates

18 the number of fill coordinates

Nc
R =5 [106]
t <]
18 the total number of cuts and fills
R(Nt - Nc) = Nc [107]

RN, = N _ + RN [108]
e e



or

and

or

or

or

N, = RNt/(1+R)

N,=0N_ - Nc

t t

N, + RN, - RN

£ 1+R

Nf = Nt/(1+R)
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[109]

[110]

[111]

[112]

[113]

If the assumption that equation [105] is correct then the ratio R after

lowering the grade line any increment is defined exactly by
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Z RN
C+ (—% )A
R = L [114]
IF - (1+R
in which
EC i8 the summation of cut before the lowering of the grade line

ZF 18 the swmation of fills before the lowering of the grade line

A i8 the increment the grade line is lowered.

Rearranging equation [114]

N,
Yo + (1+R) A, =RIF - R (775 R) b,

or
RV, RN,
b P + (R = RIF - I
or
2RN,
(1+R = Rlc - I¢
or
= (2B, . -
By = (ZRNt) (RYF - Jc)

[115]

116]

(117]

(118])

Therefore equation [118] can be used to estimate the amount to

lower the grade line in lieu of the laborious trial and error procedure.

It also permits the Computer Minimi:zed Cost Method to be based on actual

cuts after lowering the grade line,
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Computer Minimized Cost Method

The least squares minimizes the squares of cuts and fills.

Attempts to derive a theoretical formula for minimizing cuts has been
unsuccessful. The Double Centroid Method is a step in minimizing the
cost through minimizing distances indirectly where a computer is not
available.

The theory of the Computer Minimized Cost Method 1is based on
optimizing land grading so as to minimize the costs directly. All
previous notions of minimizing cuts, squares of cuts, or distances will
be disregérded so as to get to the basics of economics. The costs
associated with land forming include: (a) the cost of surveys and
calculations, (b) the cost of initial field preparation and final
smoothing, and (c) the cost of primary earth movement during the land-
forming process. The last item can be subdivided into two costs. These
are: (a) the cost of excavating and spreading the volume of cut, and
(b) the cost of transporting the earth from the areas of cut to the
areas of fi1l. These latter two costs are the bases of the Computer
Minimized Cost Method.

The slopes must be calculated in both directions for a plane.

The starting slopes for the Computer Minimized Cost Method are determined
by the Least Squares Method. The slope ig rotated about the centroid

in one direction then in the perpendicular direction from the starting
slopes. The iteration procedure rotates the plane in slope increments

of 0.01 percent. Greater accuracy is possible with a computer but would

not be practical to apply to land grading.
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At each slope encountered in the iteration process the grade line
is lowered before the cost of grading is calculated. The computer totals
the egts and fills at each slope. These summations are used in equation
[118] to calculate the amount to lower the grade line based on the ratio
desired. The actual ratio of summation of cuts to summation of fills is
calculated so that it may be checked against the ratio desired.

The multiple regression formula
E=a+bx+ cy [119]

in which

E 18 the elevation of the plane
is used to calculate the elevations of the plane which has been lowered
the desired amount. A subroutine subprogram determines the grade eleva-
tions and the resultant cuts and fills from the calculated slopes.

The cost of mcving the soil is also calculated in a subroutine sub-
program. The subprogram theoretically moves the land grading equipment
through the field or array to most nearly represent actual field opera-
tions. The sequence of the equipment movement through the field searching
for cuts is shown by numbers at the coordinates in Figure 12. In the
example a cut is located at (m4,y3). After a cut is located the
equipment theoretically circles the cut in widening circles, as indicated
by letters at the coordinates, to locate the nearest fill. A fill is

located at (x ) in Figure 12,

6*Ys
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o Origin Stations
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Figure 12. Theoretical movement of equipment in field; numbers indicate
gsearch for cut and letters indicate search for fill.

A subroutine subprogram from the previous subprogram is called to
calculate the cost of moving the indlvidual cuts. The distance is
calculated using the Pythagorean theorem. The cost of moving individual
cuts 1s calculated based on the load factor and the distance factor for
the respective equipment being used for grading. The load factor is
the cost of loading and spreading bank yards of soil. Likewise, the
distance factor is the cost of hauling and return for bank yards. Both
factors are based on equation [10]. The load factor is in doilars per
average foot of cut in a 100 feet by 100 feet area. This is the field
surface covered by one grid stake. The distance factor is in dollars

for a similar volume of soil per 100 feet the soil is moved.
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If an excess of cut remains after the fill is completed, it is
deposited in the next fill located. Vice versa, if the cut is insuffi-
cient to complete the fill, it is brought to grade line using the next
cut encountered. The procedure is continued until all cuts and fills
have been made which theoretically grades the field to the plane
desired. The second order subroutine also sums the cost of moving the
individual cuts to produce a value for the total cost of moving soil
in the field. Costs are compared with the cost of grading at the previous
slope to determine if the optimum slope has been obtained or if the
iteration process should continue. Costs of moving soil on a per acre
basis are determined for the optimum slope after returning to the main
program.

Thus, the theory of the Computer Minimized Cost Method is that by
making iterations of different slopes rotating about the centroid, and
calculating the costs for the glven machine's mode of operation and
characteristics, the optimum slope may be determined. The prime factor
in land grading costs is the type of equipment, which previously has
not been considered in determining slopes. Actual cost figures for
loading and spreading, and hauling and return may be programmed. These
costs will vary tremendously between track laying equipment and rubber
tired equipment. In addition, operating conditions such as rolling
resistance and slopes encountered can be included.

Any equipment operational procedure can be programmed for the
individual contractor. Practical field movement of the equipment or
random movement to minimize average haul distances (Smerdon et al.,

1966) may be used.
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METHODS OF PROCEDURE

The basic procedure was an economic comparison of four methods
of calculating slopes and evaluation of variables. The comparisons
and evaluations were conducted on profiles and planes utilizing compu-
ters. In addition relationships involving standard deviations, and
correlation coefficient squared were studied.

The two methods of calculating slopes derived in this dissertationm,
the Double Centroid and the Computer Minimized Cost Methods were
compared with two standard methods, the Least Squares and the Average
Slope. The Least Squares Method was selected for comparison because
it has been the standard method of calculating slopes for land grading
for over 30 years (Givan, 1940). It is taught in universities and
used by governmental agencies (SCS, 1961). The Average Slope Method
was selected for comparison because it was the only existing method
that had not been proven inferior to the Least Squares Method (Shih,
1970).

Variables which were evaluated include the load factor, distance
factor, cuts, and length of field. In addition the reliability of
equation [118] for calculating the amount to lower the gra&e line

was determined.
Profile

Profiles were used for the theoretical evaluations for two reasonms,

the first being that the sequence of equipment movement was eliminated
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as a variable. If the cuts were moved to the nearest fill, the distance
and the theoretical movement of the soill and equipment is a constant.
Secondly, it 1s possible to describe specific profiles from transducental

functions which have an exact physical description to everyone.

Computer programs

Individual computer programs were written for each of the four
methods of calculating slopes; Average Slope, Least Squares, Computer
Minimized Cost and Double Centroid. The basic simplified flow chart
is similar for all four methods and is shown in Figure 13. The
individual computer programs for the Least Squares, Double Centroid
and Average Slope Methods are included in Appendix I. Appendix II
contains the program for the Computer Minimized Cost Method.

The programs were designed to include as many sets of data or
profiles as desired. The computer calculates the number of stations
after reading in and writing out the elevations of the original profile
data.

The only other data read is in the load factor and the distance
factor for the equipment being used for grading. The respective values
used were 20.797 and 3.154. These factors were based on computer
simulation of earth moving equipment operation haul number 001, Model
33F tractor-elevating scraper (Appendix III). Westinghouse Air Brake
Company Construction Equipment Division of Peoria, Illinois supplied

the data cn the Le Tourneau equipment.
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1-3
[Dimension Statements |
4-37
[Definitions of Variables |
38
— Tterations for Sets of Data »
39-42
[Description of Sets of Data |
43-44
(Input - Elevations |
45-54
[Calculate Number of Elevations |
55-56
| Output - ElengigEi]
57-61

[ calculate Centroid |

62-74
[ Calculate Starting Slope |

15-76 116-144 Subprogram
(input - Equipment Factorgj Calculate Cuts and Fillgj

77-103
| calculate Slope

104
[ Cost of Moving Soil Per Acre |

145-171 Subprogram
Calculate Cost of Moving Soil]

105-112
Output - Results

Figure 13. Basic simplified flow chart of the computer program for
calculating slopes for a profile (Computer Minimized Cost
Method).
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Next, the elevation of the centroid was calculated by obtaining
the average elevation of the individual elevations.

The computer program calculates the design slope. The slope
between each adjoining station was calculated and the average slope
determined in the Average Slope Melhod. Equation [45) was used to
calculate the slope for the Least Squures Method. Equations [64] or
[96] were used to calculate the Double Centroid slope depending on
whether there was an even or odd number of stations. The computer
determines the slope for the Computer Minimized Cost Method by
optimizing the cost of land grading as described under '"Theory."

After the slope has been determined by the appropriate method, the
origin of the line "a" In equation [35], was calculated from the previously
determined centroid and slope. With all the constants known in equation
[35] the calculated elevations of the desired slope are calculated at
each station. The cut or fill at each station is the difference
between the original elevation of the profile and the calculated
elevation.

Once the cuts and fills were determined, the cost of moving the
soll was calculated using the programmed load and distance factors.
Theoretically the equipment moves from station one in an ascending order
searching for a cut. At each cut encountered the soil is moved to a
fi1l which is also searched for from station one in an ascending
order. The appropriate cost of moving the cut is calculated, based
on the load and distance factors. If an excess of cut remains after

the £111 is completed, it is deposited in the next fill located.
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Vice versa, if the cut is insufficient to complete the £ill, it is brought
to grade line using the next cut encountered. The procedure is continued
until all cuts and fills have been made which gives the profile the

slope desired. The summation of costs of moving individual cuts gives the
total theoretical cost of grading the profile. The cost of moving soil is

calculated on a per acre basis for more realistic understanding.

3.00

2.00 |-

Slope = -0.185

Centroid = 1,735
1.00

0.00 | | 1 ]

1 5 10 15 20
Stations (100 ft) or Independent Variahles (x)

Dependent Variable (y) or Elevations (ft)

Figure 14. Natural logarithmic function and slope as calculated by
the Least Squares Mcthod for a length of 13 stationms.



0.00

Dependent Variable (y) or Elevation (ft)

Figure 15.

Dependent Variable (y) or Elevation (ft)

Figure 16.

1.00 - y = sine

cenlroid = 0.28

-1.00 -

10.00 —

5.00 —

|
5

Stations (100 ft)

O-r

90 180 270 360
Independent Variable (Degrees)

Sine function and slope as calculated by Least Squares
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Independent Variable (Degrees)

Cosecant function and slopes as calculated by the Least
Squares Method and Computer Minimized Cost Method for a
length of 13 stations or 260 degrees.
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2000 -

alope = 0.066

centroid = 0,183
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Independent Variables (Degrees)

Dependent Variable (v) or Elevation (ft)

Figure 17. TFunctions y = 0 (%<0) and y = sinx (x>0) and slope
calculated by Leasl Squares Method for length of 13 stationms,

Tn addition the standard deviation of cuts and fills from the
slope as calculated by the Least Squares Methosd is computed. The
correlation coefficient squared is also calculated.

Finally all results are written out as shown in the sample

printout in Appendix I or II.

Transcendental functions

'ranscendental functlions were selected to give a variety of profiles.
They include the natural logarithmic function, sine function, cosecant
function and a fourier expansion function. The dependent variables repre-

sent elevations.
The natural logarithmic function (Figure 14) of 19 different lengths
was evaluated, The lengths varied from 12 to 20 for the independent

function. The independent variable represents the stations. The slope
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calculated by the Least Squares Method for the natural logarithmic
function of the independent variable equal to 13 is shown in Figure 14.

Sine and cosecant functions of lengths from 220 - 380 and 120 -
360 degrees, respectively, were evaluated by the four methods. Each
twenty degrees represents a station. The sine curve of 400 degrees
and the slope calculated for the sine curve of 260 degrees by the
Least Squares Method are shown in Figure 15. The cosecant curve of
360 degrees and the slope calculated for the cosecant curve of 260
degrees are shown in Figure 16. The slope calculated by the Computer
Minimized Cost Method for the same length of the function is also shown.

The fourth transcendental function is shown in Figure 17. Again
each station represents 20 degrees. The profile consists of the

function

y=20 [120]

from -180 to zero degrees and

y = 8ine x [121]

from zero to +180 degrees. The fourier expansion of this function is

_1,8nx 2C82x , Cos dx Cos 6z Cosdcx
flz) = =+ == syt gt Tt gzt e [122]
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The slope calculated by the Least Squares Method is shown for the
function of length -180 to +80 degrees.
The independent variable again represents elevations in the

graph of the profile.

Variables evaluated

The variables analyzed were (1) load factor, (2) distance factor,
(3) length of field and (4) volume of soil moved. The variables to be
analyzed were assigned varying values while all remaining variables were
held constant for selected profiles.

The load factor was assigned the values of 10.00, 15.00, 20.00,
25.00 and 30.00 as well as the load factor, 20.797, of the Le Tourneau
equipment.

The distance factor was varied by increments of 0.5 from 2.00 to
4.00. Included was the distance factor, 3.154, for the elevating
scraper. Field lengths were evaluated simultaneously with the distance
factor because increasing the distance factor is the same as increasing
the distances between stakes or the length of the field.

Cuts were varied by multiplying the functions by factors. For
example, factors of 1.1, 1.0, 0.9, 0.8 and 0.7 were multiplied by the
consecant function of 260 degrees or y=1.1 ese x, y=1 csc &, y=0.9 cse,
y=0.8 csc and y=0.7 csc x (Figure 18). The increase in cuts per factor

is also shown.
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y=1.1 esec x
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Figure 18. Effects of function factor on slopes and cuts calculated by
the Least Squares Method for cosecant function of 260 degrees.
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Relationships studied

The relationship of correlation coefficient squared and the
standard deviation of cuts and fills from the slope to the ratios of
cost of moving soil were studied. The purpose was to be able to predict
the most economical method to use on a specific profile.

Computer runs were made on data to investigate cost of moving soil

versus cuts.
Planes

Field data from 12 previously graded fields were evaluated. A plane
was fitted to the elevations at the grid stakes by the Average Slope,

Least Squares, Computer Minimized Cost and the Double Centroid Methods.

Computer programs

The basic computer program is the same for all methods, except for
slope calculations. Computer programs are reproduced in Appendix IV.
The basic flow chart is shown in Figure 19,

The computer programs for three dimensional planes were in principle
similar to programs for the profiles. Important differences are covered

in the discussion of the Computer Minimized Cost Method in the "Theory."

Field data evaluated

The Double Centroid and Computer Minimized Cost Methods were
compared with the standard methods for three fields each from four
locations. The elevations from these previously graded fields were
supplied by the Soil Conservation Service, United States Department of
Agriculture. The four Soil Conservation Service offices supplying the

data were located at Dickinson, North Dakota; Colusa in Colusa County,
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California; Woodland in Yolo County, California; and Stockton in San
Joaquin County, California. The original field data are listed in
Appendix V and will be henceforth referred to as North Dakota 1, 2, and

3; Colusa 1, 2, and 3; Yolo 1, 2, and 3; and San Joaquin 1, 2, and 3.

Variables evaluated

The ratios of summation of cuts to summation of fills were varied
from 1.0 to 1.4 by increments of 0.10 while holding other variables
constant for field Yolo No. 3. The ratios were compared with the cost
of moving soil and the ratio of the number of cut coordinates to fill

coordinates.
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1-52 Subprogram
Calculate Cuts and Fills

1~73 Subprogram

Calculate Cost of Moving Soil |

1-30 SubprogLam

1-10
[ Dimension Statements |
11-12
[ Description of Method |
13-25
—— Sets of Data »
26-28
(Input - Elevations |
12-56
[ Elevations' Calculations |
57-65
[ Calculate Centroid |
66-71
(Input - Equipment and Soil Factors |
72-103
[ calculate Starting Slopes |
104-259
| Calculate Slopes
260-271
| Output - Cuts and Fills
272-273
ICost of Moving Soil Per Acre]
274-282
| standard Deviation |
283~289

| output - REEEEEiJ

290

Calculate Cost of Moving
Individual Volumes of Soil

Figure 19, Basic simplified flow chart of computer program for
calculating slopes for a plane (Computer Minimized Cost
Method).
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RESULTS AND DISCUSSTION

Results will be discussed for two groups of data; (1) profile and
(2) plane as described in the "Theory." All results have been summarized
in graphs. Tables containing the refined data with the respective

symbols accompany the graphs.

Profile

Transcendental functions

The general relationships of the four methods of slope design for
the natural logarithmic, sine, cosecant and fourier expansion functions
of varying lengths are shown in Figures 20, 21, 22 and 23. Tables 2, 3,
4, and 5 contain the detailed data for the respective graphs.

In all lengths of all functions evaluated, the cost of grading
land to slopes calculated by the Average Slope Method have been too
expensive to evaluate it further. The cost of grading all profiles by
the Computer Minimized Cost Method is equal to or less than the costs
by the other three methods.

In addition, the Double Centroid Method is superior to the Least
Squares Method for all lengths of the natural logarithmic and cosecant
functions except for the cosecant function of 360 degrees. The cost of
grading for the two methods is equal at this length. The reason is that
the function is symmetrical at 360 degrees and both methods design the
same slope.

For the sine and fourier expansion functions, the economic superior-

ity of the Least Squares Method over the Double Centroid Method reverses
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Cost of land grading in dollars per acre for various methods
of calculating slopes and cosecant function of varying

degrees
Method

Degrees Average Least Computer Double
Slope Squares Minimized Cost Centroid

120 119,251 106.426 100. 390 170.172
160 140, 299 109.280 102.066 102.477
200 161.097 108.930 99,360 100.293
240 181,837 108.303 97.256 99,358
280 202.168 109,309 99,020 99.729
320 216.564 114,088 107.548 107.656
360 179.501 179,501 179.501 179.501

Table 3. Cost of land grading in ‘ollars per acre for various methods

of calculating slopes and sine function of various degrees
Method

Degrees Average Least Computer Double
Slope Squares Minimized Cost Centroid

220 24,572 24,066 23.664 23.925
240 27.529 26.184 25.787 25.786
260 30.761 26.901 26.509 26.509
280 34.052 26.512 25.587 25.587
300 38.203 25.024 24.034 24.109
320 43,507 24.264 23.576 24,377
340 50.248 25.351 24,848 26.586
360 57.084 28.238 27.394 - 30,741
380 64.460 32.610 31.832 34.632
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Table 4. Cost of land grading in dollars per acre for various methods
of calculating slopes and matural logarithmic functions of

varying lengths

IET IITT S T 2T

TS ESTETS I £ T ST ST IS

e — Lok g b L o

reeTrmoes X T=a

Independent Method
Variable Average Least Computer Double

Slope Squares Minimized Cost Centroid
12 16.634 13.624 13,216 13.225
13 18.139 14,451 14,041 14,095
14 19.626 15,240 14,743 14.753
15 21,217 16.078 15.359 15.461
16 22,835 16.752 16.137 16.133
17 24,529 17.483 16.906 16.978
18 26.285 18.238 17.695 17.686
19 27.882 19.087 18.422 18.475
20 29,821 19.847 19.085 19,126

Table 5. Cost of land grading in dollars per acre for various methods
of calculating slopes and fourier expansion (equation [122])

Method

Degrees Average Least Computer Double

Slope Squares Minimized Cost Centroid
-180°, 60° 12,349 9.811 9.272 9.275
~180°, 80° 13.647 12,622 12,301 12,301
-180°, 100° 13,911 13.872 13.786 13.651
-180°, 120° 14.121 13.690 13.690 13.690
-180°, 140° 16.313 12.961 12,961 13,058
-180°, 160° 23.070 13.259 13.259 14,210
-180°, 180° 31.062 15.220 15.220 17.117
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at approximately the center of the various lengths studied. The rever-
sal occurred for the sine function when its length slightly exceeded
the minimum value in the second one-half of its cycle. Similarly for
the fourier expansion function the reversal occurred when its length
slightly exceeded the maximum value‘of the one-half cycle of the sine
function. Therefore, it appears in general that the Double Centroid
Method is superior to the Least Squares Method for a general concave
profile. But for a combination concave, convex profile the Least
Squares Method is superior to the Double Centroid Method. WNo mathe-

matical explanation can be given for these observations.

Load factor

Figure 24 and Table 6 verifies that the cost of moving soil as
calculated by the Double Centroid and Least Squares Methods is directly
proportional to the load factor of the cosecant curve of 260 degrees.
The slope is constant for varying load factors for the Double Centroid
and Least Squares Methods. Thus, the load factor and the cost of
grading would increase if an elevating scraper was exchanged for a
standard scraper.

Cost of moving soil is nearly directly proportional to the load '
factor for the Computer Minimized. Cost Method. Changing the load factor
may change the slope with this method which would prevent a direct
proportionality. The load factor is an economic factor and the Computer
Minimized Cost Method selects the most optimum slepe for each load

factor or type of equipmenc that it represents. Similar data were

obtained for other transcendental functions.
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Table 6. Effect of load factor on cost of moving soil by Double Centroid,
Computer Minimized Cost, and Least Squares Methods for cosecant
function of 260 degrees.

Method
Load Least Computer Double
Factor Squares Minimized Cost . Centroid
10.000 72.411 65.996 66.771
15.000 89.141 80.716 82.000
20.000 105.871 95.151 97.229
20.800 108.538 97.452 99.656
25.000 122.601 109.546 112.457
30.000 139.331 123.884 127.686

Table 7. Effect of distance factor on cost of moving soil by Double
Centroid, Computer Minimized Cost and Least Squares Methods
for cosecant function of 260 degrees.

Method
Distance Least Computer Double
Factor Squares Minimized Cost Centroid
2.000 94,286 83.643 86.370
2.500 100. 461 89.644 92.126
3.000 106.636 95.625 97.883
3.154 108.538 97.452 99.656
3.500 112.811 101.556 103.640

4.000 118.986 107.486 109. 396
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Distance factor

The effect of increasing the distance factor is shown in Figure 25
and Table 7 for the cosecant function at 260 degrees. Varying distance
factors give the same effect as varying the length of a profile or
field by varying the distance between stations. Thus the results may
be viewed as the consequence of increasing the distance factor or
increasing the length of the field. The explanation of the results is

the same as in the previous paragraph for load factors.

Cute

Cuts were varied by multiplying the functions by factors (Figure 18).
Cuts or a function's multiplication factor were nearly directly propor-
tional to the cost of moving soll. However, when varying the factor we are
also changing the profile and the resultant slopes will be different.
Thus a direct proportionality is not obtained. The results for the
cosecant function of length equal to 260 degrees are presented in
Figure 26. The refined data may be obtained from Table 8. Similar
results were obtained for other profiles.

Figure 27 and Table 9 illustrate graphically the well proven fact
that costs are not directly proportional to cuts. If they were, all
points would fall in a straight line. Thus slope designs should not

be based on minimizing cuts.
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Table 8. Effect of multiplication factor or cuts on the cost of moving
soil for the cosecant function at 260 degrees

CUTEIT P SIS INCRE T ST T DITSSETR LTINS S OIS I TIT T TERIETETRTIE TN OATET X030 R 2 ITECEAST I ptmmie, Trem

Multip- ) Method

lication Least Computer Double

Factor Squares Minimized Cost Centroid
1.100 119.447 107.218 109.659
1.000 108.538 97.452 99.656
0.900 97.268 87.603 89.653
0.800 86.870 78.052 79.783
0.700 75.976 68.169 69.747

Table 9. Relationship of cost in dollars per acre to cuts in cubic
yards per acre for the various profiles calculated with
Least Squares Method

Profile Cuts Costs
Cubic Yards Per Acre Dollars Per Acre

CsC(0°,120°) 1506.703 106.426
CSC (0°,200°) 1370.512 108.930
CsC(0°,280°) 1208.138 109. 309
CSC (0°,360°) 1744.194 179.501
SIN(0°,220°) 278.647 24.066
SIN(0°,260°) 294,413 26.901
SIN(0°,300°) 267.924 25.024
SIN(0°,340°) 283.776 25.351
SIN(0°,380°) 352.177 32.610
FE*(-180°,60°) 113.887 9.811
FE*(-180°,100°) 148.235 13.872
FE*(-180°,140°) 142,048 12.961
FE (-180°,180°) 175.655 15.220

*FE - Fourler expansion of Figure 17, equation [122].
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Function uniformity

An attempt was made to find a relationship between measures of
uniformity and cost ratios. The ratios were calculated by the Least
Squares Method to the Computer Minimized Cost and Double Centroid
Methods. The purpose was to predict the superior method from the
uniformity of the profile. The two measures of uniformity or dispersion
were the standard deviation and the correlation coefficient squared.

Both statistical measures were applied to deviations of the function
from the slope calculated by the Least Squares Method. The correlation
coefficient squared can be interpreted as a measure of dispersion as it
indicates how close data follows a straight line relationship. If all
the data fall on a straight line, the correlation coefficient squared
equals one. As the data become more scattered about a straight line,
the correlation coefficient squared approaches zero.

There were no significant relationships between either statistical
measure and the ratios (Figures 28 and 29). The refined data are shown
in Table 10. Therefore, the superiority of the derived methods over the
Least Squares Method cannot be.predicted from either the standard
deviation or the correlation coefficient squared. However, the ratio
of cost of moving soil as calculated by the Computer Minimized Cost
Method to the Least Squares Method was always less than or equal to
one. This shows clearly the superiority of the Computer Minimized Cost
Method when the analysis is based on costs rather than cuts or squares

of cuts.
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Table 10, Ratio of cost of moving soil for Double Centroid and
Computer Minimized Cost Methods to Least Squares Method
with standard deviation and correlition coefficient squared.

' Standard Correlation Method
Profile Deviation Coefficient Computer Double
Squared Minimized Cost* Centroid*
CSC(0°,120°) 2,132 64.749 0.94 0.94
CSC(0°,160°) 2.200 55.819 0.93 0.94
CSC(0°,200°) 2,198 48.711 0.91 0.92
CSC(0°,240°) 2.174 42.253 0.90 0.92
€SsCc(0°,280°) 2.153 35.162 0.91 0.91
€sC(0°,320°) 2.177 24.465 0.94 0.94
CSC(0°,360°) 3.185 00.000 1.00 1.00
SIN(0°,220°) 0.394 29.858 0.98 0.99
SIN(0°,240°) 0.418 45.160 0.98 0.98
SIN(0°,260°) 0.425 56.428 0.99 0.99
SIN(0°,280°) 0.418 64.428 0.97 0.97
SIN(0°,300°) 0.404 69.495 0.96 0.96
SIN(0°,320°) 0.395 71. 345 0.97 1.00
SIN(0°,340°) 0.405 69.010 0.98 1.05
SIN(0°,360°) 0.439 61.492 0.97 1.09
SIN(0°,380°) 0.492 49.080 0.98 1.06
LN(0,12) 0.235 89.411 0.97 0.97
LN(0,13) 0.245 88.917 0.97 0.98
LN(0,14) 0.252 88.540 0.97 0.97
LN(0,15) 0.259 88.195 0.96 0.96
LN(0,16) 0.266 87.829 0.96 0.96
LN(0,17) 0.273 87.490 0.97 0.97
LN(0,18) 0.279 87.202 0.97 0.97
LN(0,19) 0.284 86.899 0.97 0.97
LN(0,20) 0.289 86.686 0.96 0.96
FE**(-180°,+60°) 0.170 50.297 0.95 0.95
FE (-180°,+80°) 0.202 60.052 0.97 0.97
FE (-180°,+100°) 0.211 68.000 0.99 0.98
FE- (-180°,+120°) 0.206 73.571 1.00 1.00
FE (-180°,+140°) 0.202 75.088 1.00 1.00
FE (-180°,+160°) 0.220 69.006 1.00 1.07

*See Tables 3, 4, 5, and 6 for data used in calculating ratios.
**FE ~ Fourier expansion of Figure 17, equation [122],
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Plane

Ratio (summation cuts/summation fills)

The cost of moving soil is nearly proportional to the ratio of
summation of cuts to fills. An increasing cost would be expected
‘because as the ratio increases the actual volume of cuts that must be
moved increases. This is shown graphically for the field Yolo No. 3 in
Figure 30. The graph was drawn from data presented in Table 1l.

Similar results were obtained for other sets of data. Since slopes

are calculated before lowering the grade line for both the Least Squares
and Double Centroid Methods, the slopes are the same for all ratios.
This would indicate that co.ts should be directly proportional to the
ratio for these two methods. However, when the grade line is lowered
the numbers of cuts are increased and the number of fills are decreased.
This creates a whole new pattern of soil movement which prevents the
relationship from being linear. Slopes are calculated after the grade
line is lowered in the Computer Minimized Cost Method. Thus, the slopes
are changing as the ratio 1s increased, which also prevents direct

proportional relationships.

Ratio (number of cuts/number of fills)

The assumption that as the grade line is lowered the ratio of the
number of cuts to fills is the same as the ratio of the summation of
cuts to fills was uged in the derivation of equation [118]. Figure 31
and Table 12 show the results of an analysis of this assumption. va

the assumption is correct, then the slope of regression line (b) should
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Table 11. Cost of moving soil in dollars per acre for various ratios
of cuts to fills by methods of calculating slopes

‘ Method
Field Jcuts/}fills Least Computer Double
Squares Minimized Cost Centroid
Yolo No. 3 1.0 80.504 75.594 78.212
" 1.1 81.180 77.828 79.136
" 1.2 82.782 79.785 81.201
" 1.3 84.014 82.165 82.408
" 1.4 84.734 81.107 82.849
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Table 12. Number of cuts, number of fills and ratio of Nc/Nf for 12
sets of field data at various ratios of ZC to ZF desired

Ratio Desired Number Cuts Number Fills Ratio

Field Jc/IF Ne NE Nc/NE
North Dakota

1 1.0 55 55 1.000

2 1.0 123 72 1.708

3 1.0 52 48 1.083
Colusa

1 1.0 34 44 0.773

2 1.0 45 39 1.154

3 1.0 44 47 0.936
Yolo

1 1.0 74 106 0.698

2 1.0 91 129 0.705

3 1.0 141 125 1.128
San Joaquin

1 1.0 82 58 1.414

2 1.0 10 8 1.250

3 . 1.0 28 17 1.647
North Dakota

1 1.1 58 52 1.115

2 1.1 126 69 1.826

K] 1.1 53 47 1.128
Colusa

1 1.1 36 42 0.857

2 1.1 46 38 1.210

3 1.1 46 45 1,022
Yolo

1 1.1 79 101 0.782

2 1.1 93 127 0.732

3 1.1 143 123 1.163
San Joaquin

1 1.1 86 54 1.593

2 1.1 10 8 1.250

3 1.1 28 17 1.647
North Dakota

1 1.2 62 48 1.292

2 1.2 128 67 1.910

3 1.2 55 45 1.222
Colusa

1 1.2 36 42 0.857

2 1.2 48 36 1.333

3 1.2 47 44 1.068
Yolo

1 1.2 83 97 0.856 .

2 1.2 98 122 0.803

3 1.2 146 120 1.217
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Table 12. Continued

=

Ratio Desired Number Cuts Number Fills Ratio

Fleld Yc/3F Ne NE Ne/Nf
San Joaquin

1 1.2 87 53 1.642

2 1.2 10 8 1.250

3 1.2 28 17 1.647
North Dakota

1 1.3 63 47 1.340

2 1,3 129 66 1.955

3 1.3 55 45 1.222
Colusa

1 1.3 37 41 0.902

2 1.3 49 35 1.400

3 1.3 49 42 1.167
Yolo

1 1.3 86 94 0.915

2 1.3 98 122 0.803

3 1.3 153 113 1.354
San Joaquin

1 1.3 90 50 1.800

2 1.3 10 8 1.250

3 1.3 28 17 1.647
North Dakota

1 1.4 66 44 1.500

2 1.4 132 63 2.095

3 1.4 57 43 1,326
Colusa

1 1.4 38 40 0.950

2 1.4 51 33 1.545

3 1.4 49 42 1.167
Yolo

1 1.4 91 89 1.022

2 1.4 102 118 0.864

3 1.4 155 111 1.396
San Joaquin

1 1.4 91 49 1.857

2 1.4 10 8 1.250

3 1.4 28 17 1.647
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equal 1. Based on the data plotted in Figure 30, b equals 0.64. A 95
percent confidence limit for b is given by 0.044<b<1.236. Therefore,
the theory that the ratio of Ne/Nf increases as the ratio of Yeut/)£il11
increases is good, but the assumption the two ratios are equal is

relatively inaccurate.

Amount to lower grade line

The ratio of summation of cuts to summation of fills desired versus
the ratio obtained may be seen in Figure 32 and Table 13. The data
evaluated consisted of the 12 fields each at ratios desired of 1.0, 1.1,
1.2, 1.3 and 1.4.

Although the assumption used in its derivation is relatively
inaccurate equation [118] is extremely accurate for determing the amount
to lower the grade line or plane (Figure 32). The reason that the number
of cuts and fills is relatively unimportant may be seen by studying the
denominator of equation [25] and [34]). The number of cuts are
multiplied by 1.0 and the number of fills are multiplied by the ratio
which is normally close to 1.0. For example, if in equation [25]

N=30, R=1.2 and M = 0, a change from Nc = 16, N

f

Nf = 10 would only change the denominator from 33 to 32, approximately

=15 toN_ = 20,
c

3.0 percent.

Methods comparison

Figure 33 presents probably the most important results of this

study (see Table 14 for the original data). The relative economic
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Table 13. Volume of cuts and fills in cubic yards per acre and ratios
of JC to JF obtained for 12 sets of field data at various
ratios of ZC to ZF desired

Ratio Ratio Cuts Fills
Field Desired Calculated Cubic Yard Cubic Yard
Jc/)F c/iF per acre per acre

North Dakota

1 1.0 1.000 322.560 322.560

2 1.0 1.000 831.153 831.153

k] 1.0 1.000 184.702 184.702
Colusa

1 1.0 1.000 199,228 199,228

2 1.0 1.000 490.871 490.871

3 1.0 1.000 465.960 465.960
Yolo

1 1.0 1.000 386.656 386.656

2 1.0 1.000 826.852 826.852

3 1.0 1.000 744,391 744,391
San Joaquin

1 1.0 1.000 324,478 324.478

2 1.0 1.000 156.429 156.429

3 1.0 1.000 83.177 83.177
North Dakota

1 1.1 1.100 338.558 307.780

2 1.1 1.099 881.651 802.230

k] 1.1 1.100 194.034 176.395
Colusa

1 1.1 1.102 207.926 188.680

2 1.1 1.100 516.269 469.335

3 1.1 1.102 487.875 442,718
Yolo

1 1.1 1.101 402.355 365.445

2 1.1 1.101 859.905 781.022

3 1.1 1.100 782.353 711.230
San Joaquin

1 1.1 1,099 343,106 312.198

2 1.1 1.100 164.724 149.749

3 1.1 1.099 88.117 80.179
North Dakota

1 1.2 1.201 353.911 294,680

2 1.2 1.196 929,101 776.840

3 1.2 1.201 202.697 168.774
Colusa

1 1.2 1.204 216.007 179.408

2 1.2 1.200 540.590 450,492

3 1.2 1,202 508.588 423,118



111

Table 13. Continued

= = ==

Ratio Ratio Cuts Fills
Field Desired Calculated Cubic Yard Cubic Yard
XC/ZF ZC/ZF per acre per acre

Yolo

1 1.2 1.204 417.632 346.870

2 1.2 1.205 891.330 739.693

3 1.2 1.200 817.999 681.666
San Joaquin

1 1.2 1.197 360.771 301. 396

2 1.2 1.200 - 172.361 143.634

3 1.2 1.197 92.665 77.414
North Dakota

1 1.3 1.300 368.948 283.806

2 1.3 1.293 972.915 753.221

3 1.3 1.303 211.032 161.959
Colusa

1 1.3 1.310 223.600 170.687

2 1.3 1.301 537.742 433.314

3 1.3 1.305 528.932 198.415
Yolo

1 1.3 1.311 432.534 329.927

2 1.3 1.313 921.551 701.867

3 1.3 1.302 852.371 654.663
San Joaquin

1 1.3 1.295 377.542 291.538

2 1.3 1.301 179.492 137.965

3 1.3 1.295 96.911 74.835
North Dakota

1 1.4 1.405 383.734 273.120

2 1.4 1,389 1017.023 732.198

3 1.4 1.406 219.132 155.855
Colusa

1 1.4 1.420 230.931 162.627

2 1.4 1.402 586.493 418.326

3 1.4 1.411 548.369 388.639
Yolo

1 1.4 1.421 447,316 314.790

2 1.4 1.425 950. 814 667.238

3 1.4 1.405 885.858 630.504
San Joaquin

1 1.4 1.394 393.784 282,485

2 1.4 1.404 186.224 132.638

3 1.4 1.394 100.921 72,397
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advantages or disadvantages in relation to the Least Squares Method

are shown for the Average Slope, Double Centroid and Computer Minimized
Cost Methods. The Average Slope Method is obviously inferior as was
shown with the profile data. There is no general superiority of the
Double Centroid Method over the Least Squares Method or vice versa.
Which of the two methods produces the most economic design depends on
the specific field. However, all methods lead to designs with costs
that are equal to or greater than the Computer Minimized Cost Design.
Sinte the Least Squares Method was used to calculate the original slope
in the Computer Minimized Cost Method, it is impossible for the Least
Squares Method to cost less. An increment of slope is changed only if
it gives a more economic design.

The average weighted percent savings per acre that would have
occurred for the 12 randomly selected fields if the Computer Minimized
Cost Method had been used for design in lleu of the Least Squares
Method is 3.29 percent. This would be equivalent to $745.00 for one-
quarter section of land, with land grading costs of $100.00 per acre.
For the use of the Double Centroid Method instead of the Least Squares
Method the loss would have been 4.66 percent. These average savings
become quite important for a large irrigation project. Also, if you
were the individual owner of a field such as Yolo No. 1, and could save
9.0 percent, the value of the Computer Minimized Cost Method thus

becomes apparent.
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Table 14. Cost of moving soil in dollars per acre for indicated method of calculating slope and
ratio of cost of moving soil of Least Squares Method to indicated method for 12 sets

of field data*

Method
Field Least Squares Average Slope Double Centroid Computer Minimized Cost
$/acre $/acre Ratio $/acre Ratio $/acre Ratio
North Dakota
1 29.215 37.069 1.27 29.115 1.00 29.011 0.99
2 76.214 81.850 1.07 77.093 1.01 76.214 1.00
3 21.219 23.532 1.11 20.258 0.95 20.503 0.97
Colusa
1 16.405 18.811 1.15 17.312 1.06 16. 329 1.00
2 45.325 49.489 1.09 45.663 1.00 44,960 0.99
3 44,452 47.888 1.08 44,207 0.99 43.860 0.99
Yolo
1 42.809 49,872 1.16 54.306 1.27 38.990 0.91
2 88.122 108.236 1.23 96.526 1.10 81.665 0.93
3 81.180 88.520 1.09 79.136 0.97 77.828 0.96
San Joaquin
1 32.565 89.404 2.75 34.114 1.05 - 32.394 0.99
2 12.150 14.791 1.22 12.178 1.00 12.004 0.99
3 8.210 11.176 1.36 8.387 1.02 8.096 0.99

*Ratio desired of )C/)F was 1.1 for all sets of data.

AN
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SUMMARY AND CONCLUSIONS

Two new methods, Double Centroid and Computer Minimized Cost, of
calculating slopes for land grading have been derived and compared
economically with existing methods, Average Slope and Least Squares.
An equation to estimate the increment to lower the grade line based
on the desired ratio of summation of cuts to summation of fills was
derived. This equation is required in the Computer Minimized Cost
Method,

No attempt has been made to cover the complete field of land
grading. Soil suitability, preparation of soil, limits of slopes,
types of earthmoving equipment, warped surface grading, etc., are

covered in many references.

Calculating Drop in Grade Line

The amount to lower the grade line to obtain the desired ratio of
cuts to fills need not be an exact value. The ratio is only an estimate
prior to lowering the grade line.

The three equations proposed (Paul, 1969; Hung, 1972; and equation
[118]) are all sufficiently accurate. Therefore, personal preference
should dictate the one to be used. However since equation [118] is in
general more accurate than the one previously published by Paul (1969)
and it doesn't require a trial of estimating the drop in the grade line
as proposed by Hung (1972), and a computer i1s not required, it should be

the most practical and widely accepted of the three.
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Double Centroid Method

The Double Centroid Method has been shown to be approximately equal
to the Least Squares Method. Both methods are of approximately the same
degree of difficulty to use. Since the Least Squares Method is an
established method, it must be recommended over the Double Centroid
Method when a desk calculator is available.

When the slope must be determined along a number of profiles in
warped surface methods such as the Crogs-gection Method (Marr, 1957) or
the Profile Method (SCS, 1961), the Double Centroid Method is
recommended. However, the graphical solution of the Double Centroid
Method (Paul, 1969) is recommended for speed and accuracy in lieu of
a desk calculator.

The Double Centroid Method is recommended for determining the
starting slope in the Computer Minimized Cost Method for an irregular
field. The Average Slope Method is very inaccurate and would increase
the computer time significantly. The Least Squares Method is not

readily adaptable to an irregular field.

Computer Minimized Cost

The Computer Minimized Cost Method is a superior method of
determining the slopes for land grading. The optimum economic slopes
are selected for the type of land grading equipment being used.
Equipment movement can be programmed in to match the field operation
of the individual contractor. Two programs of equipment movement
suggested would be (1) stan&ard movement of equipment as used in this

dissertation and (2) movement in random directions to minimize average
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haul distances (Smerdon, 1966). If the equipment moves in the prescribed
direction, the only limit to the accuracy of selecting the most
economical slope is based on the accuracy of the load factor and the
distance factor. It would be possible, although not practical, to

optimize the slope to the nearest one-thousanth of a percent.
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APPENDIX I

Computer Programs of the Least Squares, Average Slope

And Double Centroid Methods for a Profile
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103

100
131

400
402
401
403
404
405
406
407
408
409

410

411

412

414

415

LEAST SQUARES METHCD FOR A PROFILE

ELEVATIINS MUST BE GREATER THAN ZERO AND LESS THAX 1000
CJTS AMD FILLS MUST RE LESS THAN 10

MAXIMUM SUM OF CUTS OR FILLS MUST BE LESS THAN 1000 FT
Jy Ky L ARE USED IN PLACE OF STATICNS ON THE X AXIS
DIMENSION S(20), H(2C), CALH(20), CUT(20}, STAL20}
INTEGER Sy Fy Py X, STA

RTAL LF

WRITE(6,103)

FORMAT({1HO,20X,ALEAST SQUARFS METHCD FCR A PRLFILEW/<
F TNUMBFR OF SETS CF DATAL

READ(5,100) F

FORMAT(]4<

WRITE(6,131) F

FORMAT({ JHOGNUMBER CF SETS OF DATAR,5X114<

DESCRIPTIUN OF VALUES PRINTED CUT

WRITE(6, 400)

FORMAT (1HOASTATION TPER 100 FEET ON THE X AXIS<a<
WPITE(6, 402)

FORMAT(1HOQELEVATICNS ZMEASURED IN THE FIELD IN FEETCRC
WRITE(6, 401)

FORMAT( IHOQCALH ZCALCULATED ELEVATIONS IN FEET<aK
WRITE(6, 4013)

FORMAT { LHOACUT o+ FILLS %CUTS PCSITIVE IN FEET<AK<
HRITE(6, 404)

FURMAT{ 1HOQN ?NUMBER QF STATIONS IN PRCFILE<HL
WRITELG, 405)

FORMATIIHOQCEN PELEVATION OF THE CENTRCID IN FEETCAC
WRITE(6, 406)

FORMAT{ 1HOQSLOPE XFEET PER 100 FEET<aK

WRITELH, 40T}

FORMAT[ 1HOQCUTP TSUM OF CUTS IN FEETCaL

WRITE(6, 408)

FORMAT(1HOQCUTN TSUN OF FILLS IN FEET<LaK

WRITEL6,y 409) '

FNRMAT(IHNALF %XLOAL FACTOR IN DOLLARS PER FUOT UF CuT<a<
WRITE(G6, 4101}

122

FORMAT(1HOQDF %DISTANCE FACTCR IN UGLLARS PER FOOT OF CUT PER 100

LFEET MOVEDKaZ

WRITE(G6, 411) .
FORMAT ( LHORCYPA  TCLT IM CUBIC YARDS PER ACRE<a<
WRITE(6, 412)

FORMAT ( lHOQTCMSPA TCTAL COSY OF MCVING SOIL IN DOLLARS PER ACRE<D

1<

WRITE(G6, 414)

FORMATI1HOASN ZSTANDARD DEVIATION<aA<
WRITE(6, 415}

FORMAT{1HORACCSO ICCRRELATICON COEFFICIENT SQUARED IN PERCENT<CAK

WRITE(6, 413)

FORMAT{L1HOQTCMS ZTOTAL COST CF MOVING SCIL IN OCLLARSL&///7117177/<

GRANCDADDY DO LOOP FOR SETS OF DATA
B0 270 M=1,F

DESCRIPTION OF SETY OF DATA
RFAD(S,113) (SI(N)y N = 1,20)
FORMAT(20A4<

WRITEL6,115) (SIN}y, N = 1,20}
FORMAT(LH ,20X20A4/<

H FELEVATIONS AT STATIONSK
READ(S.119) (H(.1}. d=1.0010
FORMAT {207 4,24

N INUMBER QF STATICAS IN PROFILEC
N=20

DO 141 J=1,20
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51 IF (H(J) JLE. 0) GC TO 141}
52 N = N+l
53 141 CONTINUE
c STA T THE NUMBER NF THE INDIVIGUAL STATION UN THE X AXIS¢C
54 CO 142 X = I,N
55 STA(X) = X
56 142 CUNTINUE
57 WRITE(6,112) (STA(X)y X=1,N)
58 112 FORMAT(1HOaSTATION @,2016<
C H ZELEVATIONS AT STATIONS IN FEETC
59 WRITE(6,104) (HIJ), J=1,N}

60 104 FORMAT(1HOQELEVATICNS 2,20F6,2¢<

c CEN PCENTROIDC
c SUMH ZSUM OF ELEVATIONSZ
c SUMH2 ZSUM OF ELEVATICNS SOUARED¢
61 SUMH = 0
62 SUMH2 = 0
63 CN 140 J=1,N
64 SUMH = SUMH + HI(J)
65 SUMH2 = SUMH2+H(J)*$2.0
66 140 CONTINUE
67 CEN = SUMH/N
o SLOPE ZLEAST SQUARES METHOD IN FEET PER 100 FFET<C
c SUMS 2SUM DF STATIONSC
68 SUMS = 0
69 0N 110 I=1yN
70 SUMS = SUMS + 1
71 110 CONTINUE
c SUMSH ZSUM OF STATICNS TIME ELEVATICNSC
12 SUMSh = 0
73 DO 130 J=1,N
T4 SUMSH = SUMSH + J*H(J)
15 130 CONTINUE
C SUMS2 %SUM OF STATICAS SQUAREDK
76 SUMS2 = 0
17 DD 180 I=1,N
78 SUMS2 = SUMS2 + [##2
79 180 CNNTINUE
80 SLOPE = (SUMSH-(SUMS*SUMH)/N}/(SUMS2-(SUMSHSUMS)/N)
c CCSQ YCURRELATION COEFFICIENT SQUARED IN PERCENTC
81 CCSQ =(( (N*SUMSH=SUMS*SUMH) / [SQRT((N*SUMS2=SUMS® %2 ) % (N*SUMH2~SUMH*
1%2)) ) )*x2)*100,
c CALH  YCALCULATED ELEVATIONS IN FEET<
82 14 IF{MOD(N)2) .NE.OQ) GO TN 16
c CALCULAED ELEVATIONS EVEN NO. STATIONS
c BEGIZBEGINING ELEVATICN OF LINE RSTAT{ON 1<
83 BEGI = CEN =-SLOPE/2 = (N/2)*SLOPE
84 D0 151 K=1,4N
as CALH{K) = BEGI ¢ SLCPE*K
86 151 CUNTINUE
87 GO 1O 18
c CALCULATED ELEVATICNS UDD NO STATIGNS
c BEGIZBEGINING ELEVATION OF LINE ¥STATION 1<
88 16 BEGI = CEN -~ ((N+1)/2)*SLOPE
89 DO 150 K=1,N
90 CALH(K) = BEGI + SLCPE*K

91 150 CONTINUE
92 18 CONT INUE

93 WRITE(69118) (CALHUK), K=1,N)
94 118 FORMAT{1HOACALH @9 20F6,2<
c CUTS ZPOSITIVEL FILLS INEGATIVEL
95 DN 160 L=1,N
96 J=L

97 K=L
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29
100
101

102
103
104
105
106

107
108
109
1o
111
112
113
114

116
117

118
119
120

121
122
123

124
125

126

127
128
129
130
131
132
133
134
135
136
138

139
140
141

142

143
144
145
146

160

‘122

10
170

261

46

250

102

101
2170

124

CUTIL) = HUJ) - CALKI(K])

CONT INUE

WRITE(6,122) (CUTIL)s L=14N)

FORMAT(LHOJCUTS o FILLS3420F6.3,/<

SO TSTANDARD DEVIATIONS

SUMC2 TSUM NF CUTS AND FILLS SCUAREDZ

SUMC2 = 0

DO 190 L=]1,N

SUMC2 = SUMC2 ¢ (CLT{L))**2

CONT INUE

SD = SORT(SUMC2/ N)

CUTP ZSUM OF THE CUTS IN FEETK

CUTN 25UM OF THE FILLS IN FEETZ

cure = 0

CUTN = 0

DN 170 L=1,N

IFICUT(L) +GT. 0) GC TO 10

CUTN = CUTN ¢ CUuTIL)

GO TO 170

CUTP = CUTP +CUT(L)

CONT IMNUE

CYPA %SUM NF CUTS IN CURIC YARDS PER ACREC

CYPA = ((CUTP*10000.0)/27.0)/(110000,C*N)/435L0.0)

LF TLOAD FACTDR IN CCLLARS PER FQUT CF CuT<

DF ZDISTAMCE FACTCR IN OOLLARS PER FOOT OF CUT PER 100 FEET MOVEDKZ

REAN(5,129) LF, DF

FORMAT(2F10,3<

TCMS ¥TOTAL COSY CF MOVING SOIL IN CCLLARSK

TCMS = 0

00 250 L=1,N

IF (CUTI(L) oLE., 0) GO YO 250

CUTHYLCUTS TO BE MCVEDK

CUTM = CUT(L)

DO 261 P=1,N

IF (CUT(P) .Gt. 0.0) GO TO 261

DIFF ¥THE DIFFERENCE BETWEEN THE CUT TO BE MOVED AND THE FILL LOCATEDL

CIFF = CUT(P)+CUT™

IFINIFF JLE. O) GC TO 46

CUTAM ZCUT ACTUALLY MCVEDK

CUTAM = ABS(CUTI(P))

CMS %COST OF MOVING INDIVIGUAL PIECES CF SOIL IN DOLLARSK

CMS = CUTAM®LF + (1ABS{P~L))*DF*CUTAM

cCuTtP) = 0

CUTM = DIFF

TCMS = TCMS + CMS

CONT INUF

GO TO 250

CUTAM = CUTM

CMS = CUTAM®LF + (1ABSIP-L))*DF*CUTAM

CuTi{P) = DIFF

Cut{L) = 0

COMT INVE

TCMSPA ZTOTAL COST CF MOVING SOIL PER ACREK

TCMSPA = TCMS/1(10000.0*N)/43560.0)

WRITE(6, 102)

FORMAT(1HOd N CEN SLOPE curp CUTN
LF DF CYPA TCMSPA TCMS S0 CCsQ

1a/<

WRITE(6, 101) N, CEN, SLOPE, CUTP, CUTN, LF, DF, CYPA, TCMSPA, TCM

1Sy SO, CCSQ

FORMATUIX1T10,11F10.3//77777<
CONT INUE

RETURN

END
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16
r
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80
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82
a1
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a8
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49
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180

107

140

190

12

220

125

TMTEGER Sy Fy Py Xy Ds STA

IFAL LF

HRITFLE,10)

FAOLMATIIHO, 2NY , DAVETAGE SLOPF METHM) FO0 A PTCFLILY /e

SLTOC YAVFRAGE SLOPE METHOD IN FEETY PFR 100 FFETC
SUMSL ¥SUM IF SLOPCS WETWEEN STATILNSC

MSLYE INUMREP IF SLCPESK

SuMsL = 9

NSLO

SUMSL = SUMSL ¢ (HIJ)=HID))
NSLY = 4SLO ¢ )

COT INYF

SLOPE = SUMSL/NSLO

INTEGEP Sy Ay By Cy Dy £, Fy, P, X, STA

REAL LFy, LHH, LHHHCH

WRITE(6,103)

FOPMAT{1HN, 20X, IDOURLE CENTROID METHOD FCR A PRIFILFa/ ¢

SLIPE ENNURLE CFNTRCIN METHOD IN FEET PER 1J0 FEEIC
IFCACDIM, PV aNELO) GC TO 12

SLOPE WITH EVFN NUMHFR OF STATIONS

FYH  25)M OF FIRST HALF OF ELEVATIONSC
FiiH = Q

A= N/2

DI 180 J=1,A

FHUR = FHH + H{J)

CrNT INUT

LUK %SUM NF LAST HALF OF ELFVATIONSK
LHH = 0

B = N/2¢)

D) 190 J=8,N

LHYH = LHH + H(J)

CONT [MUE

SLNPF = (LHH=FH4H)#4,00/N*%2

GY TN 14

SLOPE WITH NDD NUMAER OF STATIONS

HCH YUNF HALF OF THE CENTER ELFVATIUJNC

C = (Mel)/?
HCH = HIC)/2
FYH = 0

D = (N&]1)/72-)

) 210 J=1,0

FHH = FHH ¢ H(J)

C INT INLIE

FrHHCH  ZF IRST HALF OF ELEVATIONS PLUS CNE=-HALF OF CENTEP ELEVATIUNC
FUHHCH = FHH + HCH

LHH = 0

E = (H+1)/72+]

NN 220 J=E,N

LHH = LHH + H(J)

CONT THNUF

LHHHCH  TLAST  HALF OF ELEVAYIONS PLUS GNE=HALF OF CENTEP fLFVATIONC
LHHHCH = LHH ¢ HCH

SLOPE = ({LHHHCH=-FHHBHCH}/{N/2.00))/((N*42,00~-1.90)/12.00%N)}
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APPENDIX II

Computer Program of the Computer Minimized

Cost Method for a Profile



23

9
47
L3
427

3
44

45

47
LY
49

a4
51
52
63
54

55
56

57
8J

(e ¥ NaNalal

409
4n2
401\
401
404
495
4«06
w07
408
409

410

411

41

4113

141

142
112

104

CIIMPUTER MINIMIZEQ COST METHOD FAOR A PRCFILE

ELFVATI NS MUST BE GREATER THAN ZERU AND LESS THAN 10u0
CUTS aND FILLS MUST BE LESS THAN 10

MAXTMUM SUM OF CUTS OR FILLS MULST BE LESS THAN 1000 FT
Jr Ky L ARE USED IN PLACE OF STATICNS QN THE X AXIS
DIMENSION S(20), E(20), STA(20)}, CALEL20}, CUF{20)
INTEGER Sy Fy Py Xy STA, Q

REAL LD

WeITFH{6,107)

FAKMAT{ 1HD 4 20X ,@COMPUTER MINIMIZED COST METHUI. FUR A PRCFILEA/K
F TNUMBER OF SETS OF NDATAL

PEAD(S,100) F

FORMAT( 14<

WRITEIG6,131) F

FPQUAT( LHODNUMBER CF SETS OF NATAQR,5X1]4<

DESCRIPTION OF VALUES PRINTED UT

WRITE(6, 400)

FIORMAT(IHOQSTATION ?TPER 100 FEET GN THE X AX]S<a<
WRITE(L, 402)

FORMAT(LLHOQELEVATICAS TMEASURED IN THE FIELD 1IN FFLT<a<
WRITE(6, 401}

FIPMAT(IHOJCALE ZCALCULATFD ELEVATIONS IN FEETC 2K
WRITE(G6, 403)

FORMAT(LHNACUF TCLTS POSITIVE AND FILLS NEGATIVE IN FEERTCSC
WPITEL(6y 404)

FORMAT(IHOZD EZNUMBFR OF STATIOAS IN PROFILECAC

W2lTE(6, #05}

FIRMAT(LHODCEM ZELEVATION OF THE CENTROIC IN FFETCAC
WEITElG, 406}

FIFYAT(IHOASLOPE %FEET PEF 100 FEET<CAL

WRITELG, 40T7)

FORYAT(1IHOICUTM ZSUVY OF CUTS IN FEET<CaL

WRITF(b, 408)

FORMAT(LHOAFILL TSUM OF FILLS IN FE(TLEK

wWPITEl6, 409)

FORMAT(IHIRLD ZL0OAN FACTOR IN DCLLARS PER FQOT OF CUT<Cuw<
WelTeElse, 410)

FORMAT{ IHOADD XODISTANCE FACTOR [N UDGLLARS PER + 00T LF Cul PER 100
LFEET MOVEDCAL

WRITFIO, 411)

FIRMAT(IHDACYPA  TCUT M CUBIC YARDS PER ACRE<AK
WRITE(S, 412)

FNRUAT (LHOQTCMSPA STOTAL COST OF MOVING SOIL IMN DDLLARS PER ACRE<2
1<

WRITE(6, 413)

FCRMAT({LHIGTCYS TCTAL CDST OF MOVING SGIL IN NULLARSK®/ /1111171177
X271777728720420170010200800027721177<

GRAMENANDY DO LOOP FNR SETS OF DATA

Di} 270 M=1,F

CESCRIPTION OF SET CF DATA

READ(5+113) (S(N}y N = }1,20)

FIRMAT(20484<

WRITE(6H,115) (SIN)y, N = 1,20)

FIRMAT(IH ,20X20A4/<

E ZFLEVATIONS AT STATIONSK

QEAD{S,119) (EtLJ), Js1,20])

FNRMAT( 20F 4 ,2<

Q TNUMBER QOF STATICAS IN PROFILEKC

N=20

DY 141 JU=1,20

IF (F{J) «LEe 0) GO TO L4l

Q = Q+1

CONTINUF

STA * THE NUMBER QOF THE INDIVIGUAL STATICN UN THE X AXIS<
DO 142 X = 1,0

STA(X) = X

CONT INUE

WRITE(6,112) (STA(X),y X=1,Q})
FORMAT(1HOQSTATION 952016¢

F XFLEVATIONS AT STATIONS IN FEETK
WRITELO104) (ELJ), J=1,0)

FURMAT({ LHOQELFVATICNS Q,20F6,.2¢
CEM CENTROIDL

SUMH SUM OF ELEVATIGONS<

SUMH = O

f1 140 J=1,Q

127


mailto:FI.RmATlIH0@FILL

64
6i)
61

62
63
)
65

(o
o1
o
A9

70
71
77
13
T4

15
16

7
78
1)

948
100

101
102
103

104
105
106
107
o8
109
1to

112
11
114
115

140

110

130

180

o

124

o

[aFaNaNa¥aXx}

17
13

190

19

ite
122

102

101
210

SUMH = SUMH ¢ E(J)

COANT [NYF

CEM = SUMH/N

SLOPE YLEAST SQUARES METHND IN FEFT PER 100 FrLIC
SUMS *SUM OfF STAT[ONSC

SUMS = 0

N0 110 [=1,9

SUMS = SUMS ¢

COANT THUE )

SUMSH ZSUM JF STATIUNS TIME ELEVATIUNSC
SUMSH = @

£CO 130 J=1,9

SUMSH = SUMSH ¢ JwE(J)

CONT INUE

SUMS2 #SUM JF STATICNS SQUARELKC

SUMS2 = 0

0N 180 1=1,9

SUMSZ = SUMS2 ¢ [aw?

CONT INUE

SLOPF = [ SUMSH=(SUMS2SUMH I /Q) /[ SUMS2~( SUNSSSUNS) 70}

LO “LPAN FACTOR IN NCLLARS PER FUUT OF CUTC

DD rOISTANCE FACTCR IN DOLLARS PER FDOT OF CYT PER 100 FEFT “OVEDC

REAINS,129) Lo, DB .
FIRMATI2F10,3¢

TCMS TIOTAL COST CF MOVING SOIL IN DCLLARS = LEAST SQUA?ES “ETHDLKC

SLOPEN = SL7IPE
CALL CULICEM FySLOPLN)Q)CALE yCUF yCUTM,FILL,CYPA)
CALL SPTCMS(Q,LD,NN,TCYSN,CUF)

128

TCMS PITITAL CUST OF MOVING SOIL IN OOLLARS COFPYTES MINIMIZED COST YETHUDC
SLOPE *SLOPr IN FFET PER )00 FEET COMPUTER MILIMIZED CCST “eTHODZ
TCUSP YPREVIQUS TTITAL CNST CF MOVING SCIL 1IN DOLLARSK

TEMSN THEW TOTAL CCST OF MOVING SCIL IN DCLLARSK
SLOPEP ZPREVIOUS SLCPE IN FEET PLR 100 FECIC
SLOPEN TNEW SLDPE IN FELT PER 100 FEETC

SLOPE = SLOPEN

TCMS = TCusH

SLNPEY = SLIPE ¢+ 0.C]

CALL CULEC LMy E)SLOPEN, )y CALE ¢CUF s CUTM, FILL ,CYPAY}
CALL SPTCMSIQ4LD¢DD TCUSN,CUF)

[FLICMSY ,GT. TCMS) GO TO 17

A = 0,0t

6N TC 1

A= «0,01

TCMSN = TCMS

Ny 190 §=1,20

TCMSP = TCMSN

SLOPEN = SLUPE+[®A

SLOPEP = SLIPEN-A

catL CULECEMIEoSLOCPFN,QCALE yCUF ¢ CUTM, FILL,CYPA)
CALL SPTCMS{Q,LD D0, TCMSN,CUF)

IFITCYSN 6T, TCMSP) 63 TO 19

CONT IHNUE

NEED TO 60 TU THE SLA RNOUTINE THE SECCND TIME 10 CALCULATE THE TCMS FOR

SLOPEP WHICH GIVES THE MINIMUM CDSTC

SLOPEN = SLIPEP

CALL CULICEM ) EySLEPEN,QCALE yCUF yCUTM,FILL,CYPA)
CALL SPTCMS{Q,LD,DN,TCMSN4CUF)

NEED TO CLL CUL AGAIN FUR PRINT OUT BECAUSE THE CUTS ARE CHANGED IN SPTCMS

CALL CULICEMyEsSLOPEN,Q,CALE,CUF,CUTM¢F ILL,CYPA)
TCMS =TCMSN

SLOPE = SLPEN

TCMSPA JTOTAL CNST CF MOVING SOIL PER ACREC
TCMSPA = TCMS/((10000,0%Q)/43560,0)

WRITE({6,118) (CALE(K), K=1,0Q)

FURMAT( 1HORCALE @920Fb42¢<

WRITF164122) (CUFILY, Lal,C)

FORMAT( LHOACUF @420F643y/¢

WRITE(6, 102)

FORMAT( LHO® Q CEM SLOPE CUTH FiILL
1 Lo Do CYPA TCMSPA TCMSa /<

WRITELG, 101) Gy CEMy SLOPE, CUTM, FILL, LD, 0D,
. 1Ms

FORMATULIX1I10,9FL0,3/22/777¢

CONT INUE

RETHRN

END

CYPA, TCLYSPA, TC



116
17

119
120
121
122
123

124
125
126
127
128

129
130
131
132
133

134
135
136
137
128
129
140
141

142
144
144

145
146
147
148

149
150
151

152
153
154

155
156

157

158
159
160
161
162
163
164
165
166
167
168
169
170
171

14

151

16

150
18

161

10
170

261

46

250

129

SUBFOUTINE CUL(CEN)H,SLOPE N, CALH,CUT,CUTP,CUYL,CYPAL )
CIMUNSION H{20), CALHE20), CUT(20])

CALH  ZCALCULATEND ELEVATIONS IN FEETC
IFIMAD(H,2) «NELO) GC TN 16

CALCULAED ELEVATIONS EVEN NJ. STATIUNS
HEGIINCGINING ELEVATION OF LINFE ¥£STATION 1<
ARGl = CEN ~SLOPE/2 - (N/2)#SLCPE

CN 151 Kal,N

CALMIK) = RAEGI + SLCPEL#K

CANT INUF

GO 1C 18

CALCULATEND ELEVATIONS UDD NO STATIONS
BEGIIRESINTIIG ELEVATICN OF LINF PSTATICA 1<
REGI = CEH = (IN#1)/2)%SLOPF

DU 150 K=1,N

CALMIK) = HBFGI + SLCPE=*K

CONT INUE

CUNT INUE

CUTS TPISITIVEC FILLS TNEGATIVEC

LN 160 L=1,N

J=L

K=l

CUTIL) = HUJ) < CALHIK)

CONT INUE

CuUTP rSyYM IF THE CUTS [N FFETC

CUTH *SUM OF THE FILLS IN FEETKZ

Cute = 0
CUTN = 0
€A 170 L=1,N

IELCYUTIL) «GT. O) GL TO 10

CUTH = CUTh + CUT(L)

GU 10 170

CUTP = CUTP +CUTIL)

CUNT INUE

CYPAL #SUY NF CUTS [N CUBIC YARDS PER ACR(C

CYPALl= ((CUTP#10000.0)/27.,01/((10000,0*N)/43560,0)
AETURN

EMD

SUBRCUTINE SPTCMSIN,LF,OF ¢ TCMS,CUT)
INTEGEK P

REAL LF

DIMENSION CuT(20)

TCMS *TOTAL CUST CF MOVING SOIL IN DCLLARS<
TCMS = 0

CJ 250 L=1,N

IF (CUT(L) .LEs O) GC TO 250

CUTM2ZCUTS T:) BE MOVEDC

CUTM = CUTI(L)

DN 261 P=1,N

IF (CUT(P) LGE. 0.0) GO TQ 261

OIFF YTHE DIFFERENCE BETWEEN THE CUT TC 8E MOVED AND ThE FILL LNCATEDC
CIFF = CUT(P)+CUTHM

IF(DIFF .LE. D) GC 10 46

CUTAM ZCUT ACTUALLY MOVEDK

CUTAM = ARS(CUTIP})

CMS 2COST OF MOVING INDIVIGUAL PIECES CF SOIL IN DOLLARSC
CMS = CUTAMSLE + (1ABS(P=~L))*0F*CUTAM
cutTtP) = 0

CUtTv = NIFF

TCMS = TCMS ¢ CMS

CUNT INUE

GL TQ 250

CUTAM = CUTM

CMS = CUTAMSLF + ([ABS(P~L))*DF*CUTAM
CutiP) = OIFF

CUT{L) = 0

TCHS = TCMS + CMS

CONT INUE

RETURN

END



COCMPUTER MINIVIZED C2ST METHID FOR A Pk ILF

NUMBER OF SETS CF DATA 1

STATION ¥0EP 100 FEET IN THE X AXIS<
SLEVATIONS ZMEASURED IN THE FIELD IN FEETL
CALE ZCALCULATED ELEVATIUNS IN FEETL

CUF YCUTS P3SITIVE AND FILLS NEGATIVE IN FEETC
) TNUMRER 0OF STATIONS IN PRGFILEL

CEM ZELEVATION OF THE CENTROID IN FEETKC

SLCPt ZFEET PER 100 FEETL

CUTM ISUM OF CUTS IN FEETL

FILL ZSUM CF FILLS IN FEETL

L0 TLOAD FACTOR IH DCLLARS PER FCLT OF CUTK

DD ZDISTANCE FACTOR IN DOLLARS PER FCCT OF CUT PER 100 FEET MOVFEKL

CYPA %CUT [N CUuBIC YARDS PER ACPRE<
TCYSPA 2TOTAL CCST CF MOVIHNG SCIL IN DOLLAPS PER ACREL
TCMS 2ZTOTAL C3ST OF MOVING SOIL IN DOLLARS<C

CSC 2&0 CFGREES

STATICH 1 2 3 4 5 6 7 3 Y 10
ELEVATIOUNS 11,47 3486 2437 1le74 le4l 1.22 1.10 1.03 1.00 1.90
CALE ;.20 3,88 3,56 2.24 2.91 2.59 2.27 1.95 1.62 1.3l
CuF 7.271-0.013-1.187-1.466~1.505-1.374-1,173-C.922-0.621-0.310
Q CFM SLOPE cuTt™ FILL Lo (]
13 2.273 -0.321 8.616 -8.016 2C.797 3.154

12
1.10

0.€7

0.C41 0,422 0.8173

cyPa

1109, 240

TCMSPA

57.452

TCMS

90.3323

OtT
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APPENDIX III

Data for Simulation of Le Tourneau

Earthmoving Equipment Operation



132

SIMULATION OF EARTHMOVING EQUIPMENT OPERATION
HAUL NUMBER 001

MODEL {HF TRACTOR-ELEV. SCR.

ENGINE GM 12V-71N HORSEPOWER 475
TRANSMISSION ALLISON VCLBT-5965 FINAL REDUCTION 25.09
TIRES 33.5-33, 38 PR ROLLING RADIUS 3.691 FEET

TRANS VEL TIME DIST PER CENT PER CENT GRADE SPEED WEIGHT
RATIO MPH MIN FEET GRADE ROL RES LENGTH LIMIT LBS

0.00 8.00 1200.0 25.00 173000
2.01 7.05 1.716 1194.8
2.01 5.00 1.725 1200.0
HAUL TIME = 1.725 MINUTES
0.00 €.00 1200.0 25.00 95500

1.32 15.20 0.941 1153.0
1.35 1.50 1.005 1200.0
RETURN TIME = 1.005 MINUTES

LOAD TIME 1.000 MINUTES
HAUL TIME 1.725 MINUTES
SPREAD TIME 0.500 MINUTES
RETURN TIME 1.005 MINUTES
SPOT TIME 0.000 MINUTES
TOTAL CYCLE TIME 4.231 MINUTES
TRIPS PER 50.0 MIN. HR. 11.817 TRIPS

AVG. SPEED (50.0 MIN. HR.) 5.371 MPH

PAYLOAD PER TRIP 25.0 CUBIC YARDS
PROD. PER 50.0 MIN. HR. 295.4  CUBIC YARDS
FUEL PER 50.0 MIN. HR. 18.80 U.S. GAL.

TIRE CALCULATIONS

LOADED FRONT TIRE LOAD 123.39 PCT. OF 30 MPH RATING
LOADED REAR TIRE LOAD 119.51 PCT. OF 30 MPH RATING
AVERAGE FRONT TIRE LOAD 18.26 SHORT TONS

AVERAGE REAR TIRE L.OAD 15.29 SHORT TONS

FRONT TIRE TMPH 91.9

REAR TIRE TMPH 77.0

ESTIMATED TIRE LIFE 5297.0 HOURS

COST CALCUTAT ONS

TOTAL HOURLY OWNERSHIP COSTS $15.27 .
HOURLY OPERATING COSTS

FUEL AT 16.0 CENTS PER GALLON § 3.00
PREVENTATIVE MAINTENANCE, LUBE. 0.68

MAINTENANCE AND REPAIR 10.59
TIRES 2.24
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OPERATOR $ 7.20
TOTAL HOURLY OPERATING COSTS 23.73
TOTAL HOURLY O AND O COSTS $39.00

COST PER UNIT OF PRODUCTION (CENTS) 13.20

NOTES

ALL TIRE LOAD RATINGS ARE BASED ON 45 PSI INFLATION PRESSURE
ALL TIRE TMPH CALCULATIONS ARE BASED ON 7.50 WORKING HOURS PER
8.0 HOUR SHIFT.
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APPENDIX IV

Computer Programs of the Computer Minimized Cost,
Double Centroid, Least Squares and

Average Slope Methods for a Plane
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103
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(AWUTFD MINIVYIZFN COST METHOND FOR & PLANE C(RECTANGLE ONLY)
CUHTS aND F ILLS MUST RE LEST THAN 11

€1 FYATTANS MUST AF GRFATER THAN ZERQO ANND LFSS THAN Y10
HAXT MUY SUM OF CUTS 0P FILLS MUST RE LESS THAN 100N T
X AYJIFS IS 10

ALl CUTS SUM OF FILLS FTC, &RE IN FFET
NaYTA TS IN FEFT CXCFPT FOR CURIC YARNS
RIMNSTION H 201y 2000 CALH (20 20)e CUT {20, 2004 S (21
INTFGIP Xe Yo F

RE AL LF

WRITE(R IO

FORVATIIHU'COMPYTF? MINIMI?F (b COST METHOD FOR & PLANF )
FISFTIS NF NDATA)

FEAYISIN2Y F

fFeouar(lul

WPTITE(RIQUY

FOPMATLIHOPSET S OF NAT AY)

WRTITE(FO102) F

GP AIONANQDY N0 LDOP FOR SETS (F NDAT A

N 29y g = 1. F

PFECRIPTION GUF SET OF NATA

PFAD (Se 1)) (SHID)e T = Qe2m

FODVYAT (PuRuy

WPITELRWINSY (S0 1)e 1 = 1e20)
FODMAT (1 HEs \X208U7)

H (FLEVATIANS AY STAKES)

OF AN (Ko lUR) (LHIXsY)s X = 1e2ude Y = 1020}
FROMAT (2UF 4, 2)

NY {NUMPFQ OF | FYATJONS IN ¥ DIRFCTIOM
NY - n

00 2pp X = fe 1

Pe 201 Y = e 20

IF (HiYe Y) 6T, N) GO TO G0

o "0 201

coNT INUF

NY Z NY ¢}

coMT INYF

roNTINUF

NX (NUMRER OF FLEVATIONS IN X DIRFCTIONY
MY U

rPn g9y v 1e 1

po 191 x 1e 20

IFIHiXe Y) J0OT . Da1Y GO TO &)

G0 10 19)

CNMT INUF

X S MY ¢)

CONT TMUF

CORT INUE

WPTTE(R10R)

FOPUAT(LHIJ*FLEVATIONS AT STAKFS®*)

N0 126 Y = 1s NY

WRITE(H 1D (HE{Xe¥Y)e X = 1eNX)
FORMAT (7 1X21FR «7)

CONT INUE

N{NUMALR OF ELEVATIONS IN ARRAY)

N = NX eNY

(FLFVATION OF THF CFNTROIOD?

SUMH (SUM OF ELEVATIONSY

SUMH - n

DO TAU X = 1. NY

o 1AL Y = e NY
SUMH = SUHH ¢ HIX. Y)
COMNT INUE

COMT INUE

CFM = SUMH/N

LF (LOAD FACTIOR IN NOLLARS PF? FOOT OF CUT HASED ON RANK YARQDS)
NF COISTANCFE FACTOR IN NOLLARS PFR FOOT OF CUYT PER 10n FEET MOVEDN)

RASF D NN RANK YARDS

RN (RATIO OF CUTS To FILL DFSTRED

RE AN (Ss J6u) LFe DFe RD

FARMAT(3IFIN. 3)

COMPYUTER MINIMIZED COST HETNOD FOR A PLANF

DFIFRMINE STARTING SLOPF WITH THE LEAST SOQUARES MFTHOD
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SLAPEX (SLRPE IN X NIRFCTION}
SHY (SUM OF THF PRANUCT OF TH ELEVATION TIMES THF ¥ COORDIMATF)

SHY =z i

SXS (SUM OF x Snysnrn)
sx< = 0

Sx (SyMm OF x}

SY = N

N0 170 ¥ = 1eNX

D0 J7) ¥ = LeNY

SHY = SHXeH(IXe YIeoY

XS 2 CxXSeXeo

SY = S¥yex

CONT INUF

CAuT INUF

CLAPEXY 2 (SHX-MNOLENe ({NY1 /2,000 2(SXS~SKee2/N)

SELATEY (SLOPE IN Y NDIRFCTION)

SHY (SUM OF PRONUCT OF THE FLFVATION TINES THE Y CODRDINATEY

SHY = n

SYS (SUM OF v SGUARFD)
SYS 0

SY (SUM OF v

SY - u

DE 180 ¥ = JeNX

0N 181 ¥ 2 JeNY

SHY = SHYe¢HIXe Yhey

SYS = SYSevYes?

SY = Svey

cout [NUF

COMT INUF

SUPAPEY = (SUHY-NeCFNe {{NY¢1}/72.0N)) /{SYS-SYee2/N)

CALCULATE TC0¥S USING SLOPES C(ALCULATED AY LEAST SQUAAFS HE THGD
DFTFAMINF CUTN oNN CUTP SO THAT GRADL CAN RF CALULATE RASER ON RD

GPAIL -
CALI CNF(CENGHoSLOPF Xy SLOPEY oNX o NY o CUTP, CUTNSCUYPALC AL HeCUTo P ADL o
1IN}

(P8O (AMOUNT (P ADF LINF IS LOWFRED 10 INCREASE RATIO OF CUTS 10 FILLS )
FRADL 2 (11,00¢20)702.000RN0 N} Vo (RN ABSICUTNI-CUTP )

DETFRMINE CUTS AND FILLS AFTER LOWFPING GRADE LINF

COLL CNF ICTN oH sSLOPF X o SLOPEY oNX o NY o CUTPs CUTNoCUYPACT AL HoCU Te GO OPL o
(R3]

RC (RATIO OF CUTS TO FILLS ORTAINED

RC = ARSICUTPZININ)

TCYS (TNTAL COST OF MOVING SOIL IN DOLLARS)

K (USED TO SET FQUAL TO 1| REFORF ENTFRING THE SUBPROGHAM SPTCNMS

K -

weHs - n

CALL SPTCMSUNX WM Yo LF sOF s TCHS oK o CUT WRED

PPACFED MITH T+ COMPUTFR MINI MIZED COST MPY HOD

SLAMEX (SLCPE POST RECENTLY CALCULATED IN THE X OJRECT JON)

SLAYLS (SLPPF T4 X NIRECTION PY LEAST SOUARFS METHGN )

TCUS (HOST RECIYILY CALCULATED TOTAL COST OF MOVING SOIL )

TESCLS (TCMS UTTNG LEAST SQUARES SLOPE)

SLoxes T SLapfy

TevsLs Toms

SLAPEX = SLOXLS o (.01

OCIFRMINF CUTN AND CUTP SO THAT GRADL CAN BE CALULATE RASEN ON RD
6RaNL =

CALL CNFACINOHSLOPF X o SLOPEY oNX o NY «CUTPoCUTNSCUYPALC AL HoCUTs GRANL ¢
1N

[PANL (AMOUNT 2 ANF LINE IS LOWFRED TO INCOFASE RATIO OF CUTS 10 FILLS )
GPANL = (11.0D01/(2.000800K) e (RNOABSICUTINI=CUTP)

NETFRMINE CUTS OND FILLS AFTFR LOWFRING GRANE LINE

CALL CNF(CENOH SLOPF X« SLOPEY «NXo NY ¢ CUTPo CUTNY CUYPASC AL HoCUTe GRANL ¢
1N)

RC (RATIO OF CUTS TO FILLS OBTAINFD}

Rf = ARSCUTP/ZPYTIN)

TCVS (TDTAL COST OF MOVING SOTL IN DOLLARS )

¥ USED TO SET FOUAL TO | BF FORE ENTERING THE SURPROGH AM SPTCHS
Kz

ews <o

CALL SPTCMSINXNYoLF oDFeTCHS oK o CUT 9RCH

IFITERS 6T TCUSLSY GO 10 37

A T e
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137

147 Gh T0 14

1u2e 117 8 T -g.)

140 18 TCHMS = TCMS S

16N NN 93 1:1,20

161 r TCYSP (PREVIOUS ¥ CALCULATED TOTAL cost OF MOVING SO N NOLL ARS)
182 TCYSP = TCMS

I3 SLOPEX = SLOXLSe o

18U r SLNoYP (st QP MEVIoUSLY caaiarep In THE X DIRECTTUN

156 SLNPXP 2 SLnPEx-a

1S5Re [ DFTFRMINE CUTN aND CUTP SO THaT GRADL CAN BF CALULATE RASEN ON RD
1687 GRant = p

1SR CaLL CNFleN'H-RLODFx-SLOPFVvN!-NV-CU!P.CU!N'CUVPloCALHoCUY.GRAan
159, 1N)

1hNe (g GRPanL cavoum1 roaApfF LINE IS (OWEREF TO INCRCAST RATIO OF Curs 10 FILL )
1K) GRanL : l(l.UU'PD)/(?.UU-RD'N)lO|RDOAH§1Cu1N)-Cu1P)

162 r DFTF RMINF CUTS aND FILLS AFTFR LOWFRING GRADF LINE

1R%s [WERN CNFlcrNcH-ﬂLOPF!.SLOPfV.N!'Nv-Cu!P.CUTN:CUVPA.CALHcCUY:GRADL:
1Rye 1N

1RS e c PC LRATIO OF CUrS 10 FILLS ORTAINEM

1RAe RC =~ ABS(CUTP/CUTN)

1R7 c TCH“S (T0TAL CONT Of MOVING SOTL IN DULLARS)

1RAe c K (USED 10 s¢r FOUAL TG 1 REFORF ENTLRING THF SUBPROGRAM SPICrMS
1R LI |

17ne Te4s =

171 caty sPrrMs(Nx.NV.LF.Dr.!CMQ.x-cur.RCl

172 IFATCHS 5T, TOMSP) (0 T0 19

17% 193  cowvT INyr

V74 r SLOPXP WHICH GIVES THE MINIMUM COS1T

175 19 SLAPEXY = SLopPxp

17he TCHYS = 1CeMSP

177 r SLNANEY (SLOPE My RECENTLY CBLCULATFD IN THE x DIRECT 10 N)

172 [ SLAYLS (sLeof oy DIRFCIION Fy LEAST SQUARES METHON)

179, o TCMS (MORT RECENTLY CALCULATED TOTaAL COST OF MOVING SOIL)

1A r TCHMSLS (T1CMS USTNG LEAST SOUARES SLoPE)

1A SLOYLS = sinery

1A TEWSLS = TCMS

1A% SLPPEY 2 SLOYLS o N.ul

184 r OFIFRPU INF CUTN AND CyTPp SO THAT GRANL CAN RE CALULATF RASEN ON RD
1R e GRaANL =

196 Calt CNFleN-HnﬁLOFFx:SLOPFV-NX.NvoCU!P-CUIN.CUVPA.CALH-CUToGPADLv
1R7e 1M)

1ARe r CRANL (AMOUNT P aNF L INF IS LOWFRED TO INCREASF RATIO OF cutc 70 FILLS )
1R9. GRANL = l(l.UOO”DlI(?.Dﬂ‘RD'N)DO(Rn~GBSICU1Nl-CUIP)

191 c NETFRMINF CuTS AND FILLS AFTER LOWFRINE GRADF LINE

191 CatlL CNF(CFN-H-SLOPFX.SLOPEY-Nx-NVoCu!P'CUIN-CuVPAnCALHvCUYnGRAnL.
197 1N

19%. [d PC tRATID OF Ccurs T0 FILLS ORTAINFD)

19ue PC = ARS{CUTP/ZrUTN)

195 r TCYS (TOTAL COST oF MOVING SOIL IN NOLLARS)

19fe ¢ K IUSED 10 SET FouaL TO 1 BFFORF ENTFRING THE SUBPROGRAM SPTCMS
197, LI |

19Re TCus =

199 CALL. SPYCNS(NX.NV-LFoor.YCMS-K.cur-RC)

r4101] IF(TCMS 6T, TrMSLS) Go 10 27

200 A = .0}

202 G0 To 24

20)Te 27 A T -g.0

20 e A TCUS = TCMSLS

208 N0 392 [=1,20

20R ¢ r TCHS P (PRFVIOUN. ¥ CALCULATED TOTAL rOST OF MOVING SODL |  DOLLARS)
207 TCMSP = ICMS

LYY SLOOEY = SLOYLSe Jea

209 SLOPYP = SLOPEY-A

21N c DETERMINE CUTN AND CuTPp SO THAT GRADL CAN Bf CALULATE RASEP ON RD
211 GRADL =

212 catt CNF«CEN.H'ELoPrx.SLOPtv-Nx.lﬂ.curP.CUIN'CUVPA.CALucCuT.GnlnL-
21%e L]

2ue c GRADL (AMOUNT R aADF LINF IS LOWNFRFD 10 INCREASE RATIQ OF Curs 10 FILIS)
215 GRANL = ((l.Uﬂ‘"Dl/(?.DO‘RD'NlIOIRDOAHS(CUTN)-CUYP)

21R c DETFRMINE CUTS anD FILLS AFTER LOWFRING GRADE LINF

217 catL CNFICEN.H-SLODFXvSLOPEVoNX.NY-CUIP-CUVN-CUVPI-CALH-CuloGnlﬂLo
7219 (1]

219 r RC (RATIO OF Ccuvs 19 FILLS ORTAINEM
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?2NMe AC * ARASICUTP/TUTN)
27 r TCUS (TOTAL COST OF MOVING SOIL IN QOLLARS)
2770 [ K (USED TO SET FQUBL TO 1 REFORE ENTFRING THT SURPROGCRAM SPYCHS
?2?7%e w1
27 cws = 0
2780 CALL SPTCMSUINXINYLF+DFoTCHS oK e CUTWRCH
27 e TFITCMS JiTe TCMSPY GO TO 29
227 192 (CONT INUE
270 (o SLOPYP WHICH GIVFS THF MINIMUM COST
2729¢ ?9 SLOPEY - SLOPYD
FA LD TeMS = TCMSP
231 60 10 340
217 c N0 MOT WANT CONTANL TO REACH THF NEXT STATEMFNT WITH COMPUTER MINIMIZFD
23t r CNST MFTHOD
ra UK] c DFTICAMINE CUTN AND CUTP SO THATY GRANL CAN RF CALULATE RASEN ON RD
215 r CUTP (SUM NF Curs)
210 (o CUTN (SUM OF FDLS)
237 r rfuyra {(CHURIC YAPNS PFR ACRF)
FA LYY r CAtHM (CALCULATFO ELFVATIONS IN FFET)
230 r CUT (CUTS AND FILLS IN FEETY
oDIAGHASTICe CMNTRM CAN NEVFR PEACH THF NEXT STATEMENT
2uNs RANL = U
2ule CAtl CNFICFNoH SLOPF XeSLOPFY «NXeNY o CUTPosCUTNSCUYPAWZCALHCUToGRANL
2420 1%
24 ¢ GRENL (AMOUNT (P aDF LINF [S LOWCRED 1O INCREASF RATIO OF CUTC TO FILL, )
U4 RRANL = ((1.000¢2ND)72(2.000RDeN) )e (RDe ABSICUTNI-CUTP)
2uG e c NETFRMINE CUTS AND FILLS AFTER LOWERING GRADF LINF
2UR e CALL CNF (CENoH oSLOPF X s SLOPEY eNXoeNY s CUTPoCUTNICUYPALCALHeCUToGRANL
247 1M
2400 (o RC (PATIO OF COTS 10 FILLS ORTAINED)
247 PC = ARSHICUTP/ZCUIND
26N c TCMS (TNTAL COST OF MOVING SOIL IN DNOLLBARS)
261 r K (USFD TO SFT fQUAL TO 1| REFORE ENTFRING THF SUHRPROGR &M SPTCMS
257 K 21
?53% YCMS = N
264 CALL SPTCMSUINX MY eLFsDF o TCHS Ko CUTWRCH
286 c CONTINUE 3400 IS USEND WITH COMPUTER MINTIHMIZED COST METHOR ONLY
2GR e W CoMT INUF
287 (o MUST CALL ONF MR AIN OF CAUSE QIT ARE CHANGED IN SPTCMS
259 CALL CNFLCENOIH «SLOPF X o SLOPEY sNX o NY o CUTPICUTNoCUYPACC AL HiCUTIGRADL ¢
759 1\
26Ne WRITE(R149)
?2R) e 149 FAOMATELHO'CAL H (CALCULATED ELEVATIONS)®*)
2R2e PO 121 Y = 1s NY
?Rhte WRTITE(ReIUL) C(CALHIX Y de X = 1oNX)
EUR 140 FORYAT(/1X20F6.2/)
265 ¢ 121  CONTINUF
2R WRITE(RIUD)
2RTe 142 FORMAT(IHO*CUTS (POSITIVE) FILLS INEGATIVEDY*)
Jh0e DO 122 ¥ = 1+ WY
726Me WRITELReJUU) (CUTIXsY)e X = 1sNXD
210 tua FOPYATL/IX?2NFR «3/)
271 122 CONTINUF
?27%e c TCYSPA (TOTAL COST OF MOVING SOTL PFR ACRE)
AL TCUSPA = TCMS/ZHL100N0.UsN) 703560 .0}
2Ty ¢ SD (STANDARD NEVIATION OF CUTS AND FILLS FROM THF CALCULATED GRANE L INE)
2750 (o SUvr2 I1SUM OF ryYTS AND FILLS SQUARED)
27k Su¥r2 = 1
77T DO 4R X = 1e NX
2730 DO 4Rl Y = 1. NY
279 SUMC?2 = SUMC2¢ (CUTIXeY ))ee?
2RNe Whl  CONWT INUF
2RLe 46y  CONT INUF
287 SN = SORT(SUNC?2/ NI
7Rt WRITE(Rs 112)
2Ry e 112 FOPMAT(IHD® N NX NY FN cure CUTN LF nf
2885 16RADL  SLOPEFX SLOPFY RC /D SD  TCHSPA TCHS
28R 2 CUYPA /)
287 WRTTE(Gs 111) No NXe NYo CENs CUTPs CUTNs LFe DFe GRADLe SLOPEX.e S
289 1LOPFYe RCe RDe SDe TCMSPAs T(MS, CUYPA
2R%e 111 FOPMAT(IXSIU12FA,342F104377 2/ 7)
2911 290 CONTINUE
29t e STNn

297 END
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SURRQOUTINF CNF (CEY1»F oSLOPX1e L OPYLoNX)JoNY1oCUP] ¢ CUNI «CYPAL+CALLY CU
1)1eMADL1eNTY

DIMENSION F (200e 20 s CALL (200 20)¢ CUL (20, 20)

INTEGFR Xo Y

MULTIPLE RFGRESS ION FORMUL A

TFIMADINXLe?2)e NF ,0) GO TO 17

IF(MONDINYLe2)4NE LO) GO TO 18

X FVEN Y EVEN

AFGL = CE1l ~ SLAPY1/2-(NXLI/2wSLOPX] - SLOPYL/2-(NY]1/2)eSLOPY]
GO0 TO 2%

X FVEN Y 000

AFGT = CE]l -~ SLOPX1/72-(NXL/2)eSLOPX]L = ((NYL#11/72)eSLOPY]
on o "3

IFtMODINYLIe2)NE L) GO TO 2)

Y Mo Y EVEN

ARF AT = CEYl = ( OINX1901)/72)eSLOPX] - SLOPY1/72-INY]/72)eSLOPY]
G0 T0 23

X AN Yy 000

REAT = CEL = ( (NXL1#11/72)eSLOPYT - (INYLlel)/2)eSLOPY]

CONT INUF

caLl (CALCULATFD EVEVATIONS)

Mo 2310 X = 1. NX]

DO 211 ¥ = 1+ NY)

CALL(Xs Y) = BFGIeSLOP X1aX oS (OPY]leY-GRADLI

CONT INUF

CONT INUE

CiHTY (CUTS POSTIVE AND FILLS NEGATIVE VALUES)

PN 220 ¥ = 1e NX]

ne 221 Y = 1« NY]

CUNEXe YI = ECXe YI-CALYIX. YI

CONT TNUE

CONT INUF

CYPl (SUMMATION OF CUTS)

cuPlL = 0

00 222 X = 1. NX)

DO 224 Y = 1. NY]

IF {CULtXy YI LT, D) GO TO 224

CUPY = CUP] + CULIXeY)

CONTY INUC

CONT INUFE

CUN1 (SUMMATION OF FILLS)

CuNl = 0
DO 240 X = le NX1

Do 241 Y = 1. NY)

IF (CUL(Xy Y) T, N) GO TO 241

CUNY = CUN1 + CUltX.Y)

CONT INUE

CONT INUE

rypa (SUM OF CUTS IN CUBIC YARDS PER ACRE)
CYPALZ ((CUP1e1000N.N}/27.0) 7 110000 +0eN1 1 /743560.0)
RE TURN

END
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1
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190
Me
21 e
Poe
2%
24
25
76 e
27
2R ¢
e
INe
3 e
32
It
Iu e
1ce
Ihe
37e
IRe
Qe
une
yle
uz2e
ugle
uye
usSe
URe
47e
yune
Yae
fNe
Sle
Q2
G1e
B4 e
LU
Rhe
LY R
LLES
KQs
RNe
Rle
h?e
Rl
('R}
RS e
R e
RTe
RR e
R
e
Tl
T2
73

271
270

n
276

273
272

275
274
7?50
7?61
7260

SUBROUTINE SPTCMSINXLoNY Lo L1 oD1¢TCHMIoK1sCULRCI)
DINF NS ION CUL (20 200

INTFGER Ve We Xo Yo Ale A29 A3y B4s ASe ARe AT. A
REAL L1}

€NST OF HOVING SOIL

LOCATING ACUT

CANT INUE

N0 2R0 W = 1eNY]

DO 261 V = 1.NX1

IF tCUltVe W) L Fe O) GO TO 2?61

CUM)l (CUTS TC HF MOVED OR POSITIVE CUTS)

CUML = CUultve W)

LOCATING A FILL FOR FACH CUTHM

DO LOOP FOR [NLARGING RADIUS OF CIRCLE AROUND CUT
npe 2an I = 1. 20

A 10 A7 &RF LIMTIS TO CONTROL CIRCLE

A 2 ve]-1
a1 - vl
82 = Wel-1
A3 = Wel
a4 = v-le}
as = v-I
Ah = W=}
A7 = W-l

JITFPATIONS ON ONE SIDE OF CUY

DO 270 Y = ATe 87

DO 271 X = AS, &

RFSTRICTS SFARCH FOR FILL TO THF FIFLD

IF (X oLTe 1 «ORe % oGTe NX1 JOR. Y oLTe 1) GO TO 271
IF  LNOT, ICULIXs ¥ LT, ) GO YO 2N

CALL FLYFLYUVeWsXo¥eTCHMYLoCUL oL 1o DLeKEoCUMLRCL)

DEPENN IF CUTS NEEDS MORE CUTTING OR IF FILL NFFDS MORE FILL
GO YD (1Ne Sle 261)¢ K1

CONT INUE

CNNTY INUE

1TFRATTONS ON ONE SIUVE OF Curt

NN 276 X = A&, AN

DO 277 Y = ARy 8%

QFCTRECTS SFARCH FOR FILL 10 THF FIELOD

JF Y oLTse 1 «ORP. ¥ ,GTe NY1 «ORe X JLT. 1} GO VO 277
IF CNOT, (CULIXs Y) (LT. NV) GO TO 277

CALL FUXFLY(VeWoXe Yo TCHLICULLTIsDP1oK]1oCUMLIWRCL)

NFOFND  IF CUTS NFEDS MORE CUTTING OR IF FILL NFEDS MORF FILL
60 T0 (10« 51¢ 2610e¢ K1

CONT INUF

CONT THUE

ITIMATIONS ON ONE SIODE OF (Ut

nn 272 x = Ale A}

NO 273 Y = ATe A2

RFESTRICTS SFARCH FOR FILL T0 THF FIELD

IF €Y LTa 1 ¢0P, ¥ .GTe NY1l 4O0Re X 4GTe NX1) GO TN 273
IF ( NOT, fCULIXe Y) LT, OV) GO TO 27%

CALL FLYFLY(VoWeXeYe TCMLosCULL1¢DIoK1+CUMLoRCY1)

NCOFND  IF CUTS NEFNS MORE CUTTING OR IF FILL NEEDS MORE FILL
GO TO {10« S1e 26139 K1

CONT INUF

CONT INUF

TTFRATIONS ON ONE SIDE OF CU1l

Nnn 274 vy = A%, A3

N0 275 X = Ate Al

RFSTRICTS SFARCH FOR FILL T0 THE FIELD

IF {% JLTe 1 o0P4 X oGV, NX! 4O0Re Y oGTs NY1) GO TO 275
TF ( NOT . (CULIXe ¥) LT M3 GO TO 275

CALL FLXFLY(VeMeXo¥sTCMLoCUI WL Lo D1eK] o CUMLIRCY)

DFPENN IF CUTS NEEDS MORE CUTTING OR IF FILL NEFDS MORF FILL
GO TO (10¢ Sle 261D KI

CONT INUF

CONT INUE

CONT INUF

CONT INUF

CONT INUE

RE TURN

END

140
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I1e
12
1%
lae
15
16
17«
1%
19+ ar
MNe
1.
e
7te
2ue
2. 55
e
2Te
28
29
30

A aAan

TOLD NG

E1F VATIONS at
T 6.20
7T.00 T.NO
Y10 T.10
Teull 7.0
T.T01 TR0
2«10 T.oD
9.1n .7y
2.0 .30
TS50 FoTH
LA N LD R4}
N0 1030
P.T0 1120
w00 .84

M.80 1%.50

SUPQUTINE FLIM YL e CoPeEeTC M2 oCU2eL 2+ NPe K2 CUTR L)

INISGFO R, Co N, ¢

PEa L2

DI NS LON CUZ (2U. 20

HAUT LCCATEN a CILL DP NEGAT IVF CQuY

PEPOSIT SOIL ANO NFTERMINE [F WE MAVE &1 EYCTSS OP %FED MORFE SOIL
OTFF (GIFFERENIF 1FTufFEN CUTH AND FILL OR FCRTIVFE fut)

DIFT [S NFZATIVT TS a0NITION A Cutw IS PFAUIREr

THE FILLS “UST S€ s TIPLIFN 9Y THE QATIO S0 CUTS AND FILLS wILL AAL ANCF

CIFY < CU2tDe F)e@C2eCUTH

IF COIFF LY. 't GO TO u§
CUTem : Cyt™ - AIFF

CIST 2 SORTLIC-F 1e(f-F Ve (N-A Jo {0-01])
%S = CUTAMel PeruTAMeD[STeN?
cun. €1 T u

Cu2ta., €)1 = OIFF

X2 = 2

GO 0 S5

Cytav = Cymm

DIST = SORTI(C-F1etr-C1e (DA te (N-AN)
™S 2 CUTAMet2+CUTANSDISTeD2
Cu?igs €1 z @

CU21D. €1 = DIFF

X2 = 3

CONT INUF

TC%2 = TEMZ o O»S

CUL? = CUTAvmeL 2

BISTN? = DISTen?

RE TURN

END
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& .30
7.20

7 S50

8,90
PL0
.70
noan
I at
11 &P
12 up
1Y aels

te 3p

QLRAL
lu.9n
190 S0
111t
11.0L
V2
13%.04

13.%

LI § )

LN = o

T.90

Taun

€ on

Rk

.82

n.2n

1C .1

1.t

1.8

12.%

13.2u

1%.5

S

[N 17
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C'Lw (CALCULATFD FLEZATINYT)

S.7Ta R.C%
T.2% 2.1
T .72 T.43
a.21 a.l1
? .09 8.0
9.1F %.09
A.hRT S.58
Mell INNE
N.ha 1055
.13 1100
B R2 11573
Pall 17.01
P59 12.50

RN.QR 12.9%

Curs wosIvIves

-258 250
~280 -.1%8
~ 617 -.S25%
~e 805 -.R13
~= ¥ 1.00)
- LOSU 1.1t
~Sap -4 776
~l.086 -, 788
~leleu -.059
~l13} -,939
-~ 39 .77
+51Y -. 15
&l -. 702
718 .S510
N ONTY NY

A6 19 s

.58 FR.uT F_.37 £.78
T-U08% R.Q¢ K. Ra K.77
2.8% 7 .84 7,58 T .28
07 7.9T Y.As T.Ts
R.51 AN2 a,.32 «23
Q.0 @.9n 2,81 8.72
Q.4 .30 .36 9.71
9.97 ©.AR 3,72 9,7y
10.3€ 10.37 10.22 10.18
1025 1098 MN.THA 10.R7
11.8% 11.30 11.25 11.16
1192 1123 11.78 11.RS
12.81 12.312 17,23 12.13
1290 12.5. 12.7) 12.R2
FILLS (N GATIVE)

«82 L 1I8 ~.N78 -, N2
~e28F =¢ 354 -a3R2 ~.270
~=833 -, 081 -,8389 -.857
“e 821 - f29 -.537 -.uas
e WY -4 51T -2225 -a1%3
~e 89F -, R0& -, 412 -.12u
-« 2R ., 108 .300 .8&92
“e 772 -, &AN ~, 7R3 _[INs
~eRRl: =e R - 176 ..MG
b8BT L2u5 L2%7 279
-« G358 -. WY L5493 ,aa}
~e 42T -, 131 LRR]1 2,683
=210 ~« IR . 778 L.9RF
«eND2 ~. Wk 6BE 157K
[a 24 cnre Cuts

W17 123.98%1-112.Fue

.18 B.1D
fRF RS9
Tal? T.07
7% 7.5
*.ls 8.0S
R.RY  A.Su
a.1? 9.02
TR0 .51
W.0% lu.00
T1.58 10.49
11067 10.97
11 .5% 11 .86
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THMIFGER X+ Yo Fo Q% Ale B2¢ R3s B4y B%e 87

RFAL LHYCe LHXCe LFy LHEs LHY
WRITELR)0D0)
FOPMATC1HO*DOUM £ CENTROIO MFTHOD FOR A PLANF®)

0NUBLF CENTROT D METHOD FQOR A PLANE -RECTANGLE ONLY

SLAPEXY (SLOPE IN X NIRFCTION

TEAMODINX 221, F0.N) GO 10 5%

oND NUMRER IN X DJIRFCYION

FHXC (SUM OF FIRST HALF OF FLF VATI ON IN X DIRECY JON EXCFPT CFNTER RO w
FHXC = y

A2 2 (NY =1V72

N0 181 X = |y P2

N0 1R2 ¥ = L. NY

FHYE = FHXC o WX, ¥)

CONT INUF
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LHYC (SIUM OF L AST HALF OF ELFVATIONS IN X DIRECT JION CXCFPT CFNTER ROW)
LHYr = ()

R = (INK 911/72) ¢}
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Dh 1AR v le NY

LHYC 2 LHIC ¢ HiXe Y)
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CANT INUF

SLOPEX = (L HXC- FHXCho U NAONX) 2 Ne (NXeoD=11)
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CONT INUE
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CONT INUE
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TRe o SX (SUM OF x)
77 Sx = g
LG DO 17N X = 1eNX
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Q7 SHY = SHYeH{Xy Y)ev
ag e SYS = SYSevVeo)
Q9. SY = SYey
10Me 181 COMTINUF
1Nte 1811 CONTINUE
11)7e SLOPFY = (RHV-N°CFN0llNY'lll?.On))/(ﬁVS-SVtOPIN)
Qs INTEGER Xo Yo Fo D
1M PF AL NSLOX. NSLOY, LF
Ie WRITL(R 10U
12 100 FORMAT(1HN AVERSAGE SLOPF MFTHOD FOR A PLANF*)
X r SLPPES USLOPFS IN FEFT PER 1UD FFET RY AVWRAGF SLGPF METHOD)
73 r SUMSLX  (SUM OF SLOPES RETWFEN STAKFS IN X DIRFCIION)
Tue c NSLOY (NUMEFR OF SLOPFS IN TH X DIRECTION)
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TR NStNX = 0
77 NO 171 ¥ = 2,4 NY
73 Nt 17U Y = 1 NY
79 D = x-1
ANe . SUMSLX = SuMSL X ¢ (HIXy Y) = H(Dy ¥))
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A2 170 CONTINUE
Rl 171 CONTINUE
Aue r SLNPEX CAVFRAGF SLOPE IN VW€ X DIRECTION)
ARG e SLNPEX = SUMSL X/ NSLO X
RR e o SUMSLY (SUM OF SLOPES BETWFFN STAKES IN ¥ NIRECT 10N}
a7 r NSLOY (NUMBRER OF SLOPES IN Y DIRECTION)
LY SuMsSLY = @
e NSLOY = ¢
ane DO 180 X = 1, NX
) e DO 181 Y = 2, NY
92 (1B S |
ate CUMSLY = SUMSLY ¢ (H(XsY) - HIXs D))
Qe NELOY = NSLOYed
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ARe 180 CONTINUE
97 r SLAPEY (AVEPAGE SLOPF IN TWF Y DIRECTION)

LLRY SLOPEY = SURSL Y/NSLOY
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APPENDIX V
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