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Abstract
We propose a re-interpretation of the oceanic influence on the climate of the African Sahel that is
consistent across observations, 20th century simulations and 21st century projections, and that resolves
the uncertainty in projections of precipitation change in this region: continued warming of the global
tropical oceans increases the threshold for convection, potentially drying tropical land, but this ‘upped
ante’ can be met if sufficient moisture is supplied in monsoon flow. In this framework, the reversal to
warming of the subtropical North Atlantic, which is now out-pacing warming of the global tropical
oceans, provides that moisture, and explains the partial recovery in precipitation since persistent
drought in the 1970s and 1980s. We find this recovery to result from increases in daily rainfall intensity,
rather than in frequency, most evidently so in Senegal, the westernmost among the three Sahelian
countries analyzed. Continuation of these observed trends is consistent with projections for an overall
wetter Sahel, but more variable precipitation on all time scales, from intra-seasonal to multi-decadal.

Keywords: regional climate change, precipitation projections, Sahel, drought, character of
precipitation, daily precipitation, frequency of precipitation, intensity of precipitation, Senegal, Burkina
Faso, Niger

1. Introduction

The Sahel, the semi-arid southern edge of the Sahara desert,
has long focused the attention of climate scientists and
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development practitioners. Only 30 years ago in the grip of
multi-decadal drought [1] and recurrent food insecurity [2],
it is now rebounding by building resilient ecosystems and
livelihoods [3–5]. However, persistent poverty and insufficient
investment in agricultural development recurrently raise
concerns about the impact of drought [6], while disagreement
in projections of regional precipitation change [7–9], a
situation common throughout the tropics [10, 11], limits the
practical use of climate information in charting development
on adaptation time scales.
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Table 1. Interannual correlations of indices of Sahel rainfall ([1, 35, 40, 42]; data from [51] is averaged over 10◦–20◦N, 20◦W–40◦E) and
various SST indices averaged over May–October, including the one proposed here—the difference between the subtropical North Atlantic
and the global tropical oceans. NAtl–SAtl is the difference between tropical North (5◦–25◦N, 75◦–15◦W) and tropical South Atlantic
(20◦S–5◦N, 45◦W–15◦E). Eq. Ind. O. is the average over the equatorial Indian Ocean (15◦S–15◦N, 50◦–90◦E). Niño3 is the average over
the central and eastern equatorial Pacific (5◦S–5◦N, 150◦–90◦W).

Sahel index Period NAtl minus global tropics NAtl–SAtl Eq. Ind. O. Niño3

Nicholson [1] 1901–95 0.52 0.46 −0.49 −0.23
Ali and Lebel [35] 1950–2006 0.71 0.47 −0.52 −0.32
Giannini et al [40] 1930–2000 0.68 0.45 −0.60 −0.44
Lamb [42] 1941–2004 0.70 0.48 −0.51 −0.31
CRU TS2p1 [51] 1950–95 0.70 0.50 −0.61 −0.33

Previous investigations of projections of regional rainfall
change in the Sahel took stock of the disagreement in
direction, attempting to discern between ‘good’ and ‘bad’
models on the basis of their representation of climatological
features [7] and to explain such disagreement either on
the basis of disagreement in sea surface temperature (SST)
projections [12], or on the basis of the dominance of
local, land-driven versus remote, ocean-driven processes [13].
Confined to the evaluation of model simulations, these studies
ended in an impasse. We resolve this impasse, and validate
our ‘re-interpretation’ of the role of the oceans in global
coupled model simulations with an analysis of observations.
We proceed in three steps: (i) we identify an SST-based
metric that explains the disagreement in model projections
of future rainfall change, (ii) in light of this metric, we
revisit the historical relationship between oceanic influence
and continental precipitation response that forms the basis
for seasonal-to-interannual prediction, simplifying it in line
with theories of precipitation change in a warming world,
and (iii) we seek dynamical validation of the processes
linking oceanic influence and regional rainfall response in the
character of precipitation in historical records of daily rainfall
in Senegal, Burkina Faso and Niger.

2. Making sense of 21st century projections of
tropical precipitation

The metric that we propose to resolve the disagreement
among models in projections of Sahel precipitation change is
the difference in temperature between the subtropical North
Atlantic and the global tropical oceans. This relative metric
of SST change is consistent with reasoning used to provide
an alternative interpretation of trends in Atlantic hurricane
activity [14]. While only marginally different from previously
employed indices in the seasonal-to-interannual prediction
problem—indices which reflect current understanding of the
separate influences of the world’s oceans and will be discussed
in greater depth in section 3 (related to that, also see
table 1)—only this metric explains model disagreement in
projections of future change. We posit that this is so, because
it captures the essence of the processes involved: as the
global tropical oceans warm, the temperature threshold for
deep convection rises [15–17]. Continued (transient) warming
alone can cause tropical land to dry, as in the development
stages of an El Niño event [18, 19], or in projections of a
delayed onset of monsoons [20, 21]. However, the higher

convection threshold can be met if sufficient moisture is
supplied. While plausible to conceive that the entire tropical
Atlantic contributes climatological moisture to the West
African monsoon [22, 23], here we pinpoint the subtropical
North Atlantic as the source of the variability in moisture
supply that makes or breaks deep convection at the Sahelian
margin [24–26]. In figure 1, the scatter of CMIP3 [27]
and CMIP5 [28] models aligns along a slope relating
changes in Sahel rainfall, averaged between 10◦ and 20◦N,
20◦W and 40◦E, to the difference between local and global
surface temperature, respectively represented by the North
Atlantic averaged between 10◦ and 40◦N, 75◦ and 15◦W,
and the global tropics averaged between 20◦S and 20◦N. No
other index of Atlantic temperature, whether tropical North
Atlantic (10◦–25◦N, 75◦–15◦W), tropical South Atlantic
(20◦S–10◦N, 75◦W–15◦E), tropical Atlantic (20◦S–20◦N,
75◦W–15◦E) or the difference between tropical North and
South Atlantic, investigated in [12], performs comparably
to our subtropical North Atlantic index. In figure 1, past
change is in green and blue dots in the lower left quadrant,
most coherent in CMIP3 [9]: whether due to natural [29]
or anthropogenic [30–32] causes, late 20th century drought
is consistent with the North Atlantic not keeping pace with
warming of the global tropical oceans. The insufficiently
moist near-surface westerly flow starved the continent of the
humidity needed to trigger vertical instability [33]. Future
change is in yellow and red dots mostly in the upper right
quadrant, signifying that a future wetter outcome is possible if
warming of the North Atlantic continues to exceed that of the
global tropics. Past and future are no longer inconsistent. The
multi-model ensemble behavior is evident—the correlation
between rainfall over land and the temperature difference
over the oceans is 0.33 in CMIP3, and 0.52 in CMIP5 (see
figure 2 for individual model behavior). The lower correlation
in CMIP3 is entirely due to the two ‘outlier’ models projecting
a dry future, the yellow and red dots in the upper, left
corner. When they are removed the correlation value rises
to 0.66. In [34], these same two models develop a Saharan
heat low farther to the east than in observations or other
models, and a consequent low-level circulation over West
Africa that disables the westerly inflow of moisture from
the North Atlantic. Therefore, despite warming of the North
Atlantic Ocean that exceeds global tropical warming, these
two models are unable to converge anomalous moisture to
simulate a wetter Sahel.
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Figure 1. Simulated change in Sahel rainfall in (A) CMIP3 and (B) CMIP5 models against the change in (surface air) temperature
difference between the subtropical North Atlantic and the global tropical oceans. All averages are taken July–September. Green dots
identify the change between the end of the 20th century (CMIP3/20c3m, CMIP5/historical) and the ‘pre-Industrial’ control, blue dots the
change between end and beginning of the 20th century, yellow dots the change between the middle of the 21st century (CMIP3/A1B
scenario, CMIP5/RCP4.5) and the end of the 20th century, and red dots the change between end of the 21st and 20th centuries—we
averaged 100 years of pre-Industrial control, and up to 3 ensemble members of the 20th and 21st century simulations when available. There
are 17 models in the CMIP3 scatter, 15 in the CMIP5 scatter.

3. Oceanic influence in regional variability and
change

The difference in temperature between the subtropical North
Atlantic and the global tropics synthesizes separate measures
of Atlantic and Indo-Pacific influence with roots in the
extensive literature on the 20th century evolution of the
climate of the Sahel, which was characterized by an abrupt
shift from the anomalously wet decades of the 1950s and
1960s to persistently dry conditions in the 1970s and 1980s [1,
35]. The north-south gradient in Atlantic SST has long been
held responsible for variations in the latitudinal location
of the Inter-Tropical Convergence Zone and its continental
extension into West Africa [36]. The cooling of the North
Atlantic relative to the South Atlantic that characterized the
end of the 20th century contributed to the drying of the
Sahel. Such drying was unprecedented in the instrumental
record, though perhaps not on millennial time scales [37], in
magnitude, duration and spatial extent [38], because a cooler
North Atlantic coincided with the emergence of oceanic
warming, whether of the southern compared to the northern
oceans [39], or of the equatorial Indian Ocean as a proxy for
tropic-wide warming [40] (figure 3).

Our new metric compares favorably with indices
computed using [41] to represent oceanic influence on Sahel
rainfall [1, 35, 40, 42] on interannual time scales, in table 1.
The performance of our metric supports a re-interpretation of
oceanic influence on the climate of the Sahel, one in which we
seek to make sense of processes at intra-seasonal, interannual
and multi-decadal time scales. The two ingredients are

tropical mean sea surface temperature, which reflects the top
of the atmosphere energy constraint imposed by greenhouse
gas warming through deep convection [15, 33], and is
responsible for setting vertical stability globally from the top
down, and local sea surface temperature, which can modulate
stability from the surface up, through the effect that changes in
evaporation and atmospheric moisture content have on local
moisture supply. In figure 4 we explore the relative roles of
North Atlantic, on the y axis, and global tropical SSTs, on the
x axis, as proxies for local/moisture and global/temperature
conditions, respectively, at interannual to multi-decadal time
scales. If our hypothesis were valid, i.e., that it is the warming
of the North Atlantic relative to the global tropical oceans
that holds the key to Sahel precipitation, then we would
expect wet anomalies to dominate when the North Atlantic is
warmer than the global tropics, i.e., for points above the y = x
diagonal line. Conversely, we would expect dry anomalies to
dominate points below the same y = x diagonal line. Indeed,
precipitation anomalies become more coherent in sign as one
moves perpendicularly away from the diagonal y= x line. Dry
years, in open circles, are the norm sufficiently below such
line, towards the lower right corner. Wet years, in filled circles,
are the norm sufficiently above such line, towards the upper
left corner.

4. Oceanic influence from sub-seasonal to
multi-decadal time scales

We seek further evidence in support of our dynamical
argument using daily data from 31 stations in Senegal, made
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Figure 2. Individual model scatter of Sahel precipitation, in mm/day on the x-axis, against the difference in surface air temperature
between the subtropical North Atlantic and the global tropics, in ◦C on the y-axis, in the (A) CMIP3 and (B) CMIP5 simulations: green
indicates data points from the pre-Industrial control, blue from the 20th century (20c3m in CMIP3, historical in CMIP5), and red from the
21st century (A1B in CMIP3, RCP4.5 in CMIP5) simulations. Individual model correlation values, computed on the ensemble of
simulations, range between −0.16 and 0.61 in CMIP3 and between −0.17 and 0.55 in CMIP5.

available by the Institut Sénégalais de la Recherche Agricole
(ISRA) and the Agence Nationale de l’Avion Civile et de la
Météorologie (ANACIM), 51 stations in Burkina Faso, made

available by the International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT), in Bamako, Mali, and 12
stations in Niger, made available by the Direction Nationale
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Figure 2. (Continued.)

Table 2. Correlations of number of rainy days, and median intensity, by country, with indices of SST variability.

Country Period SST index Frequency of rainy days Median intensity

Burkina Faso (51 stations) 1941–2008 Global tropical −0.30a
−0.06

NAtl minus global tropical 0.31a 0.34b

Niger (12 stations) 1960–2000 Global tropical −0.25 −0.12
NAtl minus global tropical 0.45b 0.27

Senegal (31 stations) 1950–2010 Global tropical −0.49b 0.00
NAtl minus global tropical 0.70b 0.39b

a Denotes statistical significance at 95% level.
b Denotes statistical significance at 99% level.

de la Météorologie, in Niamey, Niger (table 2). At each station
and for any given year, we exclude missing values from the
computation of frequency of rainy days and median rainfall
intensity during rainy days. Frequency is computed as the ratio
of number of days with rainfall greater than 1 mm to the total

number of days in which an observation was reported. Median
daily intensity is computed over rainy days only, i.e., it is the
median value for days with rainfall greater than 1 mm. We
standardize each station’s time series over the years of record,
and average over all stations to obtain one single normalized
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Figure 3. 21 yr running averages of Sahel rainfall (10◦–20◦N,
20◦W–40◦E) in solid green, North Atlantic (0◦–60◦N, 60◦W–0◦E)
minus global mean (60◦S–60◦N) SST, in dotted blue, and equatorial
Indian Ocean SST (15◦S–15◦N, 50◦–90◦E) with sign reversed, in
dashed red. Precipitation is from UEA/CRU/TS2p1 [51], SST from
Kaplan/Extended [52, 53].

time series [43] for frequency of rainy days, and for median
intensity, for each country.

If warming increases vertical stability, we expect it may
manifest in a delay in the onset of the rainy season [20,
44], an increase in the frequency of long dry spells [45],
or more generally a reduction in frequency of rainy days.
If, on the other hand, the moisture supplied from a warmer
ocean can overcome this upped ante, or increased threshold
for convection, then more intense rainfall becomes possible,
reflected in the potential for a higher median intensity [46].
In figure 5 we plot rainy day frequency and median intensity
for Senegal against the same scatter of SST indices used
in figure 4, i.e. subtropical North Atlantic SST on the
y axis, global tropical SST on the x axis. These plots
broadly reflect the same asymmetry discussed in the case
of figure 4, that perpendicular to the diagonal y = x line,
with increased frequencies or intensities above it, consistent
with above average seasonal rainfall, and reduced below
it, consistent with below average rainfall. In addition, we
note a complementary asymmetry, along the same y = x
line. This asymmetry is most apparent when North Atlantic
temperatures are higher than the global tropical mean,
i.e. when we find ourselves above the y = x line, in a situation
when North Atlantic moisture supply meets the threshold set
by the global tropical oceans. The larger positive anomalies
in rainy day frequency occur towards the lower left corner,
i.e. at lower temperature anomalies, when the relatively low
thresholds for deep convection set by the global tropical
oceans can be met more frequently by convergence of North
Atlantic moisture. Conversely, the larger positive anomalies in
median intensity occur towards the upper right corner, i.e. at
higher temperature anomalies, when warmer global tropical
oceans make it possible to attain higher intensities.

5. Conclusion: from past drought to partial recovery
and beyond

The drought years between 1968 and 1984 were dominated
by negative values in frequency of rainy days [47, 48],

Figure 4. The Ali and Lebel (2009) index of standardized Sahelian
precipitation [35] against May–October SST indices averaged over
the subtropical North Atlantic (y-axis) and the global tropics
(x-axis): open circles represent negative anomalies of the rainfall
index, filled circles positive anomalies, and the size of the circle is a
measure of amplitude of the anomaly, in units of standard deviation.
SST anomalies, in ◦C, are computed with respect to the 1961–90
climatology.

and in median intensity (figure 6). Conversely, recent
years have been marked by the relative predominance
of values in frequency of rainy days typical of drought
years, but combined with significant variation in median
intensity, including large positive values coincident with
positive anomalies in global tropical and North Atlantic SST.
Therefore, the character of precipitation during the recent
recovery appears to have had a distinctly different flavor if
compared to the wet period around the middle of the 20th
century: fewer rainy days, as during persistent drought, made
up for in the seasonal totals by an increase in median intensity
of daily rainfall.

Despite the scatter around the origin in the panels in
figure 1, which could reflect variations among models in
how they balance local/land and remote/oceanic influence
of greenhouse gas-induced warming [13], the multi-model
ensembles of CMIP3 and CMIP5 projections that point
towards the possibility of a wetter future for the Sahel
are consistent with the current trend towards a recovery of
the rains. We can begin to root these projections in the
understanding of the influence of the oceans on the climate
of this region that has matured over the past quarter century.
Therefore, the more plausible, near-term scenario is that the
Sahel will continue to stay wet if North Atlantic warming
continues to out-pace the global tropical oceans. If the Sahel
were to get wetter through a more marked increase in intensity
rather than in frequency of precipitation, as discussed here,
sound adaptation would have to contend with increased

6



Environ. Res. Lett. 8 (2013) 024010 A Giannini et al

Figure 5. Standardized anomalies in (A) frequency of rainy days and (B) median intensity of rainy days in Senegal over 1950–2010 against
the same scatter of SST anomalies in the subtropical North Atlantic, on the y-axis, and in the global tropics, on the x-axis, used in figure 4.
Open circles represent negative anomalies, filled circles positive anomalies. The size of the circle is a measure of amplitude of the anomaly,
in units of standard deviations.

Figure 6. Time series of standardized frequency of rainy days
(solid line) and median intensity (dashed line) in Senegal and
Burkina Faso over the common period 1950–2008.

variability on all time scales, as already recognized on the
ground [49, 50].
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Muller B 2013 Oceanic influence on the sub-seasonal to
interannual timing and frequency of extreme dry spells over
the West African Sahel Clim. Dyn. doi:10.1007/
s00382-013-1673-4

[46] Lodoun T, Giannini A, Traoré P S, Somé L, Sanon M,
Vaksmann M and Rasolodimby J M 2013 Changes in the
character of precipitation in Burkina Faso associated with
late 20th century drought and recovery in the Sahel
Environ. Dev. 5 96–108
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