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Abstract 

This paper describes a novel index-based livestock insurance (IBLI) product piloted 

among pastoralists in northern Kenya, where insurance markets are effectively absent and 

uninsured risk exposure is a main cause of poverty. We describe the methodology used to 

design the contract and its underlying index of predicted area-average livestock mortality, 

established statistically using longitudinal observations of household-level herd mortality 

fit to remotely sensed vegetation data. Household-level performance analysis based on 

simulated data finds that IBLI removes 25-40% of total livestock mortality risk. We 

describe the contract pricing and the potential risk exposure of the underwriter to 

establish IBLI’s reinsurability on international markets.  

 

 

Keywords: Drought risk management, index insurance, Kenya, livestock insurance, 

livestock mortality, NDVI, pastoralists, remote sensing, vegetation index, weather 

derivatives 

 

 

  



 
 

2

1. Introduction 

Formal insurance contracts are rarely available for the small scale agricultural and 

pastoral households who populate the often highly risky environments found in rural 

areas of low income countries. While a rich literature analyzes the wide array of informal 

social arrangements and diversification strategies that these households employ to 

manage risk, in nearly all cases these mechanisms are highly imperfect and in many cases 

carry very high implicit insurance premia. The net result is that risk contributes 

significantly to the level and persistence of rural poverty. 

In response to this challenge, a small, but growing number of projects are trying 

to fill this insurance void by developing index insurance contracts that offer payoffs 

based on the realization of an aggregate performance indicator, or index, rather than on 

individual-specific outcomes.1 Because it relies on an objectively and cost-effectively 

measured aggregate indicator – not manipulable by insured parties – index insurance is 

potentially viable in low income agriculture, where transactions costs, moral hazard and 

adverse selection typically cripple contracts based on individual-specific outcomes. A 

key challenge in developing effective index insurance revolves around identifying an 

index that minimizes the associated basis risk representing discrepancies between the 

contract’s index-triggered indemnity payments and the insured’s actual loss experience. 

While index insurance principles thus seem to offer a way to reduce the costs of 

uninsured risk, most projects to date have insured stochastic income streams (e.g., crop 

yield insurance), despite the fact that globally most insurance sold is actually asset 

insurance.  This paper designs and implements a methodology for using satellite-based 

information to create asset insurance contracts for some of the poorest and most 

                                                 
1 Alderman and Haque (2007), Barnett et al. (2008) and Skees (2008) offer helpful reviews.  
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vulnerable people on the planet, namely the pastoralist populations of the arid and semi-

arid regions of East Africa. 

Our focus on asset insurance is not accidental. Effective demand appears sluggish 

for the various agriculture index insurance contracts presently on offer to protect rural 

income streams. While there are a variety of reasons for this sluggishness,2 one likely 

reason is that static income insurance offers the farmer a zero sum proposition: Does the 

farmer want to spend a fraction of a given income level on insurance, implying a 

reduction in spending on other goods and services? 

Arguably, demand for insurance will be stronger and more sustainable when it 

offers the farmer a non-zero sum choice. Income insurance can become a non-zero sum 

proposition if it simultaneously underwrites an increase in expected income even as it 

reduces risk exposure. This positive sum game can happen if income insurance crowds in 

the adoption of new, higher-returning technologies, either by improving the supply of 

credit to purchase these technologies or by increasing farmers’ willingness to bear the 

risk to borrow and otherwise adopt these technologies. By preserving productive assets 

for future periods, asset insurance similarly offers not just an effective buffer against 

current risk exposure but also higher expected incomes over time and thereby makes 

insurance a positive sum game. In environments that are characterized by asset-based 

poverty traps, like the East African rangelands, the positive sum nature of asset insurance 

can be especially strong.3  

                                                 
2 Reasons for sluggish demand include poorly designed insurance contracts that offer relatively little 
stability to household income streams; poor understanding of insurance amongst populations who typically 
have never had any form of insurance; credit constraints, and, lack of trust in the reliability of the insurance 
providers and their promise to appear with compensatory payments in an unknown time in the future (see 
for example, Giné et al. 2008, Cole et al. 2009). 
3 As further discussed in Section 2, an asset-based poverty trap occurs when a household becomes 
essentially economically non-viable if its holdings of productive capital fall below a critical threshold level.  
In this context, asset losses that push a household below that threshold can prove irreversible (at least in 
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While the logic of asset insurance for the pastoral regions of East Africa is 

compelling, the design of index insurance contracts for this environment faces a number 

of challenges if there is to be both supply of, and demand for these contracts. For the 

specific case of Marsabit District in Northern Kenya, this paper shows how satellite 

imagery can be used as the basis for contracts that can solve these challenges. 

Specifically, this paper shows how objectively measured satellite-based vegetation data 

available in near-real time can be combined with household-level herd data to create a 

livelihood-focused contract that minimizes basis risk and that seems to find a ready 

demand among pastoral households. We investigate the effectiveness of the contract by 

testing it out-of-sample using complementary household-level panel data from the same 

region as well as simulated household mortality data constructed from these panel data. 

Finally, the paper then analyzes several alternative pricing structures, and calculates the 

risk exposure that an insurance underwriter would face.   

The remainder of the paper is organized as follows. Section 2 presents a brief 

overview of the risk and insurance problem in Northern Kenya, which typifies many 

remote, poor regions where household assets are routinely exposed to natural disaster 

risk. Section 3 proposes a livelihood-focused approach to index insurance design that 

uses micro data on household outcomes to establish an insurance index that minimizes 

uninsured basis risk. Section 4 then implements this design approach for the specific case 

of Northern Kenya, discusses estimation results for the predicted mortality index and 

analyzes the effectiveness of the proposed contract using an out-of-sample prediction 

methodology and household risk decomposition. Section 5 analyzes alternative strategies 

for pricing the proposed contract and performs risk exposure analysis for potential 
                                                                                                                                                 
expectation) and insurance against such losses should be especially valuable to the household (Carter and 
Barrett 2006). 
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insurers. Finally, Section 6 concludes with reflection on the implementation challenges 

that confront efforts to bring this kind of contract to market. 

2. Risk and Irreversible Asset Loss in the Northern Kenya Pastoral Economy 

The more than three million people who occupy northern Kenya’s arid and semi arid 

lands (ASALs) depend overwhelmingly on livestock, which represent the vast majority of 

household wealth and account for more than two-thirds of average income. Livestock 

mortality is the most serious economic risk these pastoralist households face.  

The importance of livestock mortality risk management for pastoralists is 

amplified by the apparent presence of poverty traps in east African pastoral systems, 

characterized by multiple herd size equilibria such that losses that push a household 

below a critical threshold – typically 8-16 tropical livestock units (TLUs)4 – tend to tip a 

household into destitution (McPeak and Barrett 2001, Lybbert et al. 2004, Barrett et al. 

2006). Put differently, livestock losses that push households below this threshold appear 

irreversible in expectation, or to at least have very severe, long-term consequences. 

Uninsured risk appears as the primary driver of such poverty traps amongst east African 

pastoralists (Santos and Barrett 2006).  

Most livestock mortality is associated with severe drought. In the past 100 years, 

northern Kenya recorded 28 major droughts, 4 of which occurred in the last 10 years 

(Adow 2008). The climate is generally characterized by bimodal rainfall with short rains 

falling in October-December, followed by a short dry period from January-February. The 

long rain and long dry spells run March-May and June-September, respectively. 

                                                 
4 The main livestock species in this region are cattle, camel and smallstock (e.g., goat and sheep). TLU is a 
standard measure that permits aggregation across species based on similar average metabolic weight. 1 
TLU = 1 cattle = 0.7 camels= 10 goats or sheep. 



 
 

6

Pastoralists commonly pair rainy and dry seasons, for example observing that failure of 

the long rains results in large herd losses at the end of the following dry season. 

Pastoralist households commonly manage livestock mortality risk ex ante, 

primarily through animal husbandry practices, in particular nomadic or transhumant 

migration in response to spatiotemporal variability in forage and water availability.  

When pastoralists suffer herd losses, there exist social insurance arrangements that 

provide informal inter-household transfers of a breeding cow. But these schemes cover 

mainly the idiosyncratic component of loss, and less than ten percent of household herd 

losses, on average, they do not include everyone and are generally perceived as in decline 

(Lybbert et al. 2004, Huysentruyt et al. 2009, Santos and Barrett forthcoming). Some 

households can draw on cash savings and/or informal credit from family or friends to 

purchase animals to restock a herd after losses. But the empirical evidence that vast 

majority of intertemporal variability in herd sizes in this region is biologically regulated, 

due to births and especially deaths (McPeak and Barrett 2001, Lybbert et al. 2004), 

implies that most livestock mortality risk remains uninsured. 

Most uninsured herd mortality losses occur in droughts as covariate shocks 

affecting many households at once, sparking a humanitarian crisis (Chantarat et al. 2008, 

Mude et al. 2009). The resulting large-scale catastrophe induces emergency response by 

the government, donors and international agencies, commonly in the form of food aid. As 

the cost and frequency of emergency response in the region has grown, however, 

mounting dissatisfaction with food aid-based risk transfer has prompted exploration for 

more comprehensive and effective policies. One approach is to replace sporadic 

emergency transfers with systematic and reliable cash transfers. One such program is 
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currently underway in Northern Kenya.5 Unfortunately, an implication of herd size 

tipping points in this region is that cash transfers to those who have collapsed into the low 

level poverty trap may prove ineffective in reducing long-run poverty by failing to 

prevent collapses into destitution. In this context, the development of risk transfer 

products to halt the collapse of households into a poverty trap thus has much to 

recommend it.6 The most recent parliamentary campaign in Kenya included widespread, 

highly publicized promises by prominent politicians to develop livestock insurance for 

the northern Kenyan ASALs.   

While there thus at least appears to be political demand for livestock insurance, 

will there actually be effective demand on the part of pastoral households? In an effort to 

gain some insight on this question, from May-August 2008 we undertook extensive 

community discussions in five locations in Marsabit District, surveyed and performed 

field experiments with 210 households in those same locations. Chantarat and Mude 

(2010), McPeak et al. (2010) and Lybbert et al. (2010) describe those studies, which 

confirmed (i) pastoralists’ keen interest in an asset insurance product, (ii) their 

comprehension of the basic features of the index insurance product explained below, and 

(iii) some modest willingness to pay7 for the product at a commercially viable premium – 

sufficient to support commercial implementation and market mediation. While 

experimental game-based and hypothetical willingness-to-pay measures based on survey 

                                                 
5 Funded in part by the U.K. Department for International Development (DfID), and implemented by the 
Kenyan Ministry for the Development of Northern Kenya and other Arid Lands, the Hunger Safety Net 
Program targets indigent households with monthly transfers worth approximately $15. 
6 For a formal analysis, see Barrett, Carter and Ikegami (2008). 
7Willingness-to-pay experiments in five representative locations (each with mean population of 900 
households and mean herd sizes from 2-15 TLU in 2008) in Marsabit suggest that, on average, households 
are willing to insure 68.9% of their herd at 15% mark-up of the actuarially fair rates. Proportions of these 
representative households who are willing to pay at 20%, 30% and 40% mark-up rates reduce to 34%, 16% 
and 9% respectively with relatively lower price elasticity of demand among households with greater than 
30 TLU herd sizes (Chantarat and Mude 2010). 
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responses are an imperfect guide to real-world behavior, these results do further motivate 

efforts to design and implement a real-world asset insurance contract for this region. 

3. Demand-driven Design of Index Insurance 

Index insurance contract design often focuses on obtaining and analyzing data on a 

signal, which we denote , that is related to the assets or income streams in locality l in 

season or period s. Examples of such signals include local rainfall or other meteorological 

information, or average producer yields in the locality. From the perspective of ensuring 

a sustainable commercial supply of the insurance contract, it is vital that the signal be 

reliably measurable at low cost, and that its level not be influenced by the behavior of any 

insured individual nor by which subset of individuals purchase the insurance. 

While these ‘supply side’ considerations are clearly important, so are the 

processing and mapping of this signal into an index that offers the best coverage for the 

insured party. These ‘demand side’ considerations are equally important if insurance is to 

provide a sustainable solution to the development problems created by uninsured risk and 

thereby generated sustainable commercial demand for such products. 

In many cases, general agronomic information is used to process the 

untransformed signal that is used as the basis for a simple linear index. For example, if 

crop yields tend to fall as rainfall over a critical crop growth period falls below 120 

millimeters, then the insurance contract simply states that payments begin and linearly 

increase for every millimeter shortfall in rainfall below 120. 

While there is a clear logic to this approach, it suffers two disadvantages. First, it 

places the insurance index in what might be an exotic or unfamiliar unit of measure for 

the insurable population (e.g., millimeters of rain). Second, the simple linear mapping 
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between the signal and payouts may be a suboptimal use of the information contained in 

the signal in the sense that other mappings may more closely correlate with the 

household’s asset or income that is being insured. 

In an effort to deal with both of these problems, we take a regression-based 

approach to the design of the proposed asset insurance contract. In particular, denote a 

household-level measure of the livelihood outcome variable that is being insured as . 

In our case,  is the livestock mortality (asset loss, measured in aggregate tropical 

livestock units or TLU) experienced by household i in locality l in season s. In other 

cases, this measure might be household output of a particular crop, household income, or 

even household consumption.8 We can then write the realized TLU mortality rate of the 

pastoralist household i in location l over season s as:   

(1)  

where  reflects household i’s long-term average mortality rate,  is the area average 

mortality rate at location l over season s,  is the long-term mean rate in location l and 

 reflects the idiosyncratic component of household i’s herd losses (e.g., from conflict, 

accident, etc.) experienced during season s, i.e., the household-specific basis risk. The 

parameter  determines how closely household i’s livestock mortality losses track the 

area average. If 1 then household i’s livestock losses closely track the area average, 

while 0 means i’s mortality losses are statistically independent of the area average. 

Over the whole location, the expected value of  is necessarily one.   

                                                 
8 Note that household consumption reflects its various income streams as well as net flows of informal 
social insurance and perhaps other stochastic payments. 
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The area average livestock mortality rate can be orthogonally decomposed into 

systematic risk associated with observable signal  and the risk driven by other factors: 

(2)       

where  represents a transformation of the signal and ·  represents the 

statistically predicted relationship between  and , and  is the component of 

area average mortality that is not explained by  – i.e., location-specific basis risk. 

We thus predict area average mortality from observations of , specific to each location 

l and season s, as , which serves as the underlying index for the 

insurance contract. Note that this index is expressed in units that are already known and 

meaningful to the insurable population (aggregate livestock mortality).  

 Equations (1) and (2) also imply that there are thus two sources of basis risk: (i) 

the household’s idiosyncratic losses that are uncorrelated with area average losses 

according to (1) and (ii) area average mortality losses that are not explained by the 

underlying predicted mortality index, according to (2). Note also that the use of standard 

regression methodologies to estimate the relationship in (2) based on reliable household-

level data will necessarily minimize basis risk for the insured party, on average. 

 An index insurance contract based on this predicted mortality index will thus 

function like a put option on predicted area average mortality rate. In the specific case of 

Northern Kenya where there are two distinct seasons per year, we can define a seasonal 

index insurance contract that pays an indemnity beyond the contractually-specified strike 

mortality level, , conditional on the realization of the index  according to9: 

                                                 
9 Note that we can also generalize this linear payoff function to create a non-linear payoff scheme that 
would offer better insurance value (for a given premium) assuming a conventional expected utility 
approach to risk. To keep things simple, we concentrate on the simple linear payoff version here. 
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(3)  Π | , ,  , 0  

where  is the total TLU of livestock insured and  is the pre-agreed value of 1 

TLU, so that their product reflects the total insured livestock value. The expected 

insurance payout thus represents the actuarially fair premium for this contract and so we 

can write the actuarially fair premium rate quoted as percentage of total value of livestock 

insured as  |  , 0 , where ·  is taken over the 

distribution of the observable signal .  

 Using the seasonal payout function in (3), we can further consider a one-year 

contract bundling two consecutive seasonal contracts with total insurance payout – to be 

paid twice at the end of each coverage season s or all at once at the end of year t.  

In this setting, the seasonal payout appears more suitable – in contrast to a yearly payout 

– because pastoralists’ financial illiquidity typically means that catastrophic herd losses 

threaten human nutrition and health in the absence of prompt response (Mude et al. 

2009). The rapid response capacity of seasonal insurance contracts of this approach to 

drought risk management compares favorably with traditional reliance on food aid 

shipments, which typically involve lags of five months or more after the onset of a 

disaster (Chantarat et al. 2007).  

4. Designing an Index-based Livestock Insurance for Northern Kenya 

4.1 Data description 

As our basic signal that forms the backbone for the Northern Kenya asset insurance, we 

employ an objectively, real-time measured Normalized Difference Vegetation Index 

(NDVI). NDVI – sometimes referred to as “greenness maps,” – is a satellite-derived 

indicator of the amount and vigor of vegetation, based on the observed level of 
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photosynthetic activity (Tucker 2005). The NDVI  data that we use are computed reliably 

at high spatial resolution (8 km2 grids) and consistent quality from Advanced Very High 

Resolution Radiometer (AVHRR) on board of the United States National Oceanic and 

Atmospheric Administration (NOAA) satellite, and have been available in real time every 

10 days (called a “dekad”) with the longest temporal profile since late 1981.10 

Because pastoralists routinely graze animals beyond their residential areas, we 

define the grazing range for each aggregate location – within which NDVI observations 

are averaged for each period – by identifying the rectangle that encompasses the 

residential locations and all common animal water points used by herders in that 

community, plus 0.1 decimal degrees (about 11 kilometers) in each direction.11 In bad 

years not observed in the survey data, pastoralists may travel further still, but their need 

to do so should be reflected in pasture conditions within their normal grazing range. 

NDVI data are commonly used to compare the current state of vegetation against the 

long-term average condition in order to detect anomalies and to anticipate drought (Peters 

et al. 2002, Bayarjargal et al. 2006) and have now been used by many studies that apply 

remote sensing data to drought management (Kogan 1990, 1995, Benedetti and Rossini 

1993, Hayes and Decker 1996, Rasmussen 1997). 

                                                 
10 The NDVI images collected by NOAA-AVHRR are then processed by the Global Inventory Monitoring 
and Modeling Studies (GIMMS) group at the National Aeronautical and Space Administration 
(http://gimms.gsfc.nasa.gov/) to produce NDVI data series. The scanning radiometer (comprised of five 
channels) is used primarily for weather forecasting. However, there are an increasing number of other 
applications, including drought monitoring. NDVI is calculated from two channels of the AVHRR sensor, 
the near-infrared (NIR) and visible (VIS) wavelengths, using the following algorithm: NDVI = (NIR - 
VIS)/(NIR + VIS). NDVI is a nonlinear function that varies between -1 and +1 (undefined when NIR and 
VIS are zero). Values of NDVI for vegetated land generally range from about 0.1 to 0.7, with values 
greater than 0.5 indicating dense vegetation. Further details about this NDVI source are available at 
http://earlywarning.usgs.gov/adds/readme.php?symbol=nd. 
11 Georeferenced water point data and locations of representative households are available for the studied 
locations.   
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We rely on NDVI data for two reasons. The first is conceptual. Catastrophic herd 

loss is a complex, unknown function of rainfall – which affects water and forage 

availability, as well as disease and predator pressure – and rangeland stocking rates – 

which affect competition for forage and water as well as disease transmission. Rangeland 

conditions manifest in vegetative cover reflect the joint state of these key drivers of herd 

dynamics. When forage is plentiful, disease and predator pressures are typically low and 

water and nutrients are adequate to prevent significant premature herd mortality. By 

contrast, when forage is scarce, whether due to overstocking, poor rainfall, excessive 

competition from wildlife, or other pressures, die-offs become frequent. Thus a 

vegetation index makes sense conceptually.   

The second reason is practical. Kenya does not have longstanding seasonal or 

annual livestock census surveys of the sort used for computing area average mortality, the 

index used in the developing world’s other IBLI contract, in Mongolia (Mahul and Skees 

2005). The household-level herd mortality data we use in contract design are collected for 

the Government of Kenya, which might have a material interest in IBLI contract payouts, 

thereby rendering those data unsuitable as the basis for the index itself. Consistent 

weather data series at sufficiently high spatial resolution are likewise not available. The 

Kenya Meteorological Department station rainfall data for northern Kenya exhibit 

considerable discontinuities and inconsistent and unverifiable observations. Meanwhile, 

rainfall estimates based on satellite-based remote sensing remain controversial within 

climate science.12 

                                                 
12 Remotely sensed data capture precipitation emergent from cloud cover, not rain that lands on Earth. As a 
result, the validity of those measures remains subject to much dispute within the climate science 
community (de Goncalves et al. 2006, Kamarianakis et al. 2007).   
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In order to implement the demand-driven contract design methodology discussed 

in the prior section, we analyze a combination of household-level livestock mortality data 

collected monthly since 1996 in various representative locations by the Government of 

Kenya’s Arid Land Resource Management Project (ALRMP, http://www.aridland.go.ke/) 

and dekadal (every 10 days) NDVI data. We also employ household-level panel data 

collected quarterly by the USAID Global Livestock Collaborative Research Support 

Program Pastoral Risk Management (PARIMA) project (Barrett et al. 2008) to analyze 

and simulate the IBLI contract’s performance out of sample. The use of NDVI data is 

uncommon in index insurance design, especially in the developing world. The use of 

household-level panel data in index insurance contract design and evaluation is, to the 

best of our knowledge, unique to this contract.  

We focus specifically on what was until recently Marsabit District, where the 

ALRMP data are most complete and reliable, offering monthly repeated household 

survey data from January 2000 to January 2008 in 7 representative locations.13 It is thus 

possible to construct location-averaged seasonal herd mortality rate for each location for 

8 consecutive long rain-long dry seasons (the period from March-September) and 8 short 

rain-short dry seasons (from October-February), providing a minimally adequate sample 

size of 112 location-and-season specific observations.  

 As sample households vary untraceably by survey round, we rely on monthly herd 

mortality average per household for each location, , to construct seasonal location 

average mortality rate,  , according to  

                                                 
13 In 2008 the District was broken into three new Districts: Chalbi, Laisaimis and Marsabit. According to 
1999 census and ALRMP 2000-2008 data, these studied locations situate on areas range from 2,535-5,260 
km2 for the 3 locations in the Chalbi area in the north to 1,160-1,935 km2 for the other 4 in the south (see 
Figure 1). Population sizes range from 556-1,100 households with mean herd sizes from 9-25 TLU. 
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where  is monthly beginning herd size averaged per household for each location, and 

season s represents either the long rains-long dry (LRLD, March-September) or the short 

rains-short dry (SRSD, October-February) paired season. Because the livestock mortality 

data do not distinguish between mature and immature animals, mortality rates are inflated 

for any months in which newborn calves died in large number; hence our use of the 

maximum  in computing the seasonal average. Note that area average mortality rates 

are, by definition, measures of covariate livestock asset shocks within those locations. By 

insuring area average (predicted) mortality rates, IBLI addresses the covariate risk 

problem but leaves household-specific, idiosyncratic basis risk uninsured.  

There is considerable heterogeneity within the Marsabit region, as reflected in 

Table 1. We therefore performed statistical cluster analysis to identify locations with 

similar characteristics, generating two distinct clusters of three to four locations each 

(Figure 1). The Chalbi cluster is characterized by more arid climate, camel- and 

smallstock (i.e., goats and sheep) based pastoralism by the Gabra and Borana ethnic 

groups. The Laisamis cluster enjoys slightly higher (and more variable) rainfall and 

forage, hence its greater reliance on cattle and smallstock by the Samburu and Rendille.  

 Table 1 also reports seasonal mortality rates by location.14 Locations in Chalbi 

(Laisamis) cluster experienced relatively higher and more variable mortality rate during 

the SRSD (LRLD) season. The differences are statistically significant between seasons 

within each cluster and between clusters within each season. Mortality rates are highly 

                                                 
14 For the 7% of missing observations we interpolated monthly average livestock mortality rates using the 
average values of other available locations within the same cluster.  
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correlated within the same cluster (correlation coefficients of 0.80-0.95), while 

correlations between clusters are less. As Figure 2A shows, the 2000 and 2005-06 years 

exhibited the highest mortality losses during this period. Mortality rates are low – 

uniformly less than 20%, typically less than 10% – outside of these severe drought 

periods. Overall the frequency of area average mortality rates exceeding 10% is 

approximately 33% (a 1-in-3 year event) for both Chalbi and Laisamis. However, 

differences between the two clusters’ mortality loss distributions can be shown in Figure 

2B, where probability of extreme (in-between) risk is larger (smaller) for Chalbi 

comparing to Laisamis cluster.  

During the same period as the ALRMP data collection, the PARIMA project 

undertook an intensive household panel survey in northern Kenya and southern Ethiopia, 

interviewing households quarterly. Four PARIMA locations are in our targeted Marsabit 

district with two belonging in each cluster. Two of these locations – Logologo and North 

Horr – exist in both household data sets. Although the shorter duration (4 seasons in 

2000-2002 only) of the PARIMA survey provides insufficient observations to estimate 

the IBLI contract model (described below), we can use the higher quality PARIMA panel 

data to verify the aggregate reliability of the ALRMP data and to evaluate the 

performance of the IBLI contract out-of-sample. 

Although there are very slight differences in herd data measurement, we can use 

the PARIMA data as a check on the ALRMP data by regressing season-and-location-

specific PARIMA herd mortality rates data (n=8) on ALRMP rates in a simple univariate 

linear model. We cannot reject the joint null hypothesis that the intercept equals zero and 

the slope equals one in that relation (F(2,6) = 0.01 and p-value = 0.99). Thus the ALRMP 

data seem to capture area-average seasonal mortality reasonably well and the PARIMA 
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data permit unbiased out-of-sample evaluation of IBLI contracts based on the ALRMP 

herd mortality data and NDVI measures.  

4.2 Optimizing Contract Design to Minimize Basis Risk 

In order to specify the contract, we now describe how ·  and ·  are specified to 

allow for reasonable out-of-sample forecast performance.15 Because the empirical 

relationship between rangeland conditions and livestock mortality appears to vary 

conditional on the climate regime, as reflected in the cumulative state of the rangeland, a 

regime switching model is used to estimate the relationship ·  for each cluster as 

(5)    
       _         

       _         
  

where a regime switching variable, _  (defined precisely below) determines 

the climate regime into which each season belongs with the   critical threshold 

parameter determined endogenously. This regime switching specification allows us to 

estimate two different relationships conditional on the state of rangeland vegetation. We 

now describe how we construct our vegetation variables, . 

We first control for differences in geography (e.g., elevation, hydrology, soil 

types) across our locations by standardizing the raw NDVI data with pixel- and time-

specific moments into the standardized NDVI: 

6          

                                                 
15 This prevents us from overfitting the data. 
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where  is the NDVI for pixel p for dekad d of year t,  is the long-

term mean of NDVI for dekad d of pixel p taken over 1982-2008 and  is the 

long-term standard deviation of NDVI for dekad d of pixel p taken over 1982-2008. 

Positive (negative)  represents relatively better (worse) vegetation conditions 

relative to the long-term mean. For each location l, the representative  can then 

be derived by averaging all  of all the pixels that fall within the location’s 

boundaries. Figure 3 depicts the NDVI and zndvi series for the Marsabit locations. 

 Unlike crop yields that respond only to current season climate variables, livestock 

mortality can be the result of several seasons’ cumulative effects (Chantarat et al. 2008). 

The lagged effects of exogenous variables raise a difficult tradeoff, however. Price 

stability is appealing from a product marketing perspective. Yet seasonal variation in 

premium rates in response to changing initial conditions enables insurers to guard against 

intertemporal adverse selection problems that may arise if prospective contract 

purchasers understand the state-dependence of livestock mortality probabilities.   

 So as to minimize the tradeoff between price instability and intertemporal adverse 

selection, we model the predictive relationship using the shortest lag structure possible – 

including only results from the preceding season – that still allows us to control for path-

dependence. Therefore, the regime switching variable and some of the multiple 

regressors for estimating (5) are constructed as functions of cumulative zndvi beginning 

during the season before the contract period begins. These variables are constructed as 

follows and depicted in Figure 4A, which matches the seasonal IBLI contract structure 

with these cumulative vegetation index variables. 
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Because we want the regime switching variable, _ , to represent the 

cumulative vegetation state and to be unobserved by all parties when the contract is 

struck, we use the year-long cumulative zndvi that starts from the beginning of the 

preceding rainy season until the end of the coverage season. Thus, with the cumulative 

period ,  covering the first dekad of October (March), until the end of the contract 

period season, i.e., the last dekad of September (February) for s = LRLD (SRSD): 

(7)    _ ∑
,

      

When _ 0, this implies a worse than normal year, so we loosely term it a 

“bad climate regime,” although this could be due to stocking rate or other drivers, not just 

climate conditions. We observe that all past major droughts fell into this regime.16 The 

three constructed cumulative vegetation regressors are now described in turn. 

_  reflects the state of the rangeland at the commencement of the 

contract period. This variable captures cumulative zndvi from the start of the preceding 

rainy season until the start of the contract season. Thus with the cumulative period ,  

covering the first dekad of October (March), until the beginning of the contract period 

season, i.e., the first dekad of March (October) for s = LRLD (SRSD): 

 (8)  _ ∑
,

                                   

Since more degraded initial conditions drive up the likelihood of livestock mortality, this 

variable should negatively affect predicted area average seasonal mortality. Because the 

insurer must set the price before prospective IBLI purchasers make their insurance 

decisions, the latter may have superior information, leading to some level of 

                                                 
16 Estimation of (5) also verified the intuition that 0 by solving for the threshold value   that 
maximizes goodness of fit. 
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intertemporal adverse selection. Because most of the observations are known ex ante to 

both parties, however, that effect should be minimal.  

Analogous to the concept of cooling or heating degree days widely used in 

weather derivatives contracts, _  captures the accumulation of negative zndvi, 

while _  captures the accumulation of positive zndvi over the coverage season. 

And so for the contract season  covering March-September (October- February) for the 

LRLD (SRSD) season, 

(9)  _ ∑ | , 0 |      

(10)  _ ∑ , 0         

These two variables thus capture the cumulative intensity of adverse (favorable) dekads 

within the contract period. Catastrophic drought seasons routinely exhibit a continuous 

downward trend in cumulative zndvi leading to a large value for _ , which 

should have a significantly positive impact on mortality. Similarly, _  permits us 

to control for post-drought recovery, when stocking rates have fallen and thus rangelands 

recover quickly, a phenomenon typically reflected in upward trending cumulative zndvi. 

This was the pattern observed, for example, in the SRSD seasons of 2001 and 2006 

following catastrophic droughts the preceding LRLD seasons. Since these two variables 

capture only observations after the commencement of the contract, there is no 

information asymmetry with respect to these variables.  

Overall, these cumulative vegetation variables17 thus capture not only the adverse 

climate impact resulted from the preceding and current rain season, but also the intensity 

                                                 
17 We also estimated a simple linear trend in the raw NDVI, zndvi data and all the constructed vegetative 
indices using least-squares linear regression. No significant trend was evident in the NDVI series for 6 of 
the 7 locations (Karare is the exception, with a significantly negative trend). We therefore did not attempt 
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of adverse climate. They also effectively capture the myriad, complex interactions 

between climate and stocking rates that are ultimately reflected in rangeland conditions 

and livestock mortality rates. We estimate simple linear regressions within each of the 

two regimes using the most parsimonious specification that fits the data well. With only 

eight years of data available for each location, limited degrees of freedom preclude 

estimating location-specific predictive models.18 We therefore pool locations within the 

same cluster – treating each location’s data as an iid draw from the same cluster-specific 

distribution – to estimate a cluster-specific predictive relationship, which we term a 

“response function”. We also pool data for both LRLD and SRSD seasons but include a 

seasonal dummy to control for the potential differences across the two seasons. Figure 4B 

presents the temporal structure of a seasonal or annual IBLI contract designed using these 

predicted area average mortality indices constructed from these livelihood-linked 

response functions. 

4.3 Estimation Results and Out of Sample Forecasting Performance 

The estimation results for equation (5) are reported in Table 2 in comparison with other 

linear regression specifications.19 The regime-switching models explain area average 

mortality reasonably well especially in the bad-climate regime, with an overall adjusted 

R2 of 52% and 61% for Chalbi and Laisamis clusters, respectively. Livestock mortality 

patterns in the good climate regime are very difficult to explain, with no statistically 

significant relationship between any vegetation regressor and livestock mortality in the 

                                                                                                                                                 
to detrend the data in this study. Descriptive statistics of the constructed NDVI variables and mortality data 
are reported in Appendix Table A1. 
18 Insurance companies would be unlikely to implement contracts at such high spatial resolution anyway, so 
this is not a serious problem. 
19 Table 2 shows that the regime switching specification that allows for different response functions for bad 
and good climate regimes significantly outperforms the model that estimates a uniform response function 
based on pooled data.  



 
 

22

regime switching estimations and with very low adjusted R2 in the regime-specific linear 

regression estimation. This makes intuitive sense as variation in good range conditions 

should not have a systematic effect on livestock survival.20   

In the bad-climate regime, however, we see precisely the patterns anticipated. The 

initial state of the system, as reflected in _ , has a very strong, statistically 

significant negative effect on mortality rates; the “less bad” the recent rangeland 

conditions when the insurance contract period falls into the bad climate regime, the lower 

is observed herd mortality. Similarly, the greater the intensity of positive (negative) spells 

during the season, as reflected in _  ( _ ), the lower (higher) herd 

mortality rates, although those coefficient estimates are statistically significant only in 

Laisamis cluster, where pastoralists are less migratory and thus livestock are more 

sensitive to spells of unfavorable or favorable conditions during the season.    

The regression coefficient estimates are themselves of limited interest. The real 

question is whether the predictions of livestock mortality prove sufficiently accurate to 

serve as a reasonable index on which to write livestock insurance contracts for the region. 

In addition to the basis risk portion of livestock mortality in the location that the model 

inherently cannot explain, there is also the possibility of error if the model specification 

and parameters chosen based on the ALRMP sample imperfectly reflect the true state of 

the system in explaining area average livestock mortality. One, therefore, wants to test 

how significant those errors are when new data are taken to the predictive model that 

generates the index on which IBLI is based.  

                                                 
20 In the Chalbi model, the regime switching variable seemed to provide better explanatory power of 
livestock mortality in a bad-climate regime than the set of NDVI regressors. We therefore estimate the 
regime switching model for Chalbi using this switching variable as a regressor in the good climate regime. 
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The limited size of the ALRMP sample, however, precludes setting aside some of 

those data for out of sample performance evaluation. But we can test out of sample 

forecast accuracy using the PARIMA survey data, which cover four seasons (2000-2002) 

in four locations (Kargi and North Horr in Chalbi cluster, and Logologo and Dirib 

Gumbo in Laisamis cluster) in the same region, but were not used to estimate the 

predictive model.  

Predicted seasonal area average mortality rates for studied locations, , 

were first constructed based on the cluster-specific response functions established using 

the ALRMP livestock mortality data and location-specific NDVI data from 1982-2008. 

Figure 5 presents empirical distributions of the indices by cluster. Out-of-sample forecast 

errors reflecting the difference between actual PARIMA area average mortality rate and 

the predicted index (  in (2), which represents both unexplained mortality losses and 

the prediction error from the regression model) were then constructed and shown to 

nicely fall within 10% in absolute magnitude at 88% probabilities (n=8) for each cluster, 

with one single observation off by more than 25% in Dirib Gumbo and North Horr in the 

2000 SRSD season (Appendix Table A2).  

Next, we tested the performance of the IBLI contract in correctly triggering 

insurance payouts at different strike levels. The errors of greatest concern are when the 

insured are paid when they should not have been (type 1 errors) or not paid when they 

should have been (type 2 errors). Table 3 reports those results. The minimum frequency 

of correct decisions out of sample is 75%, with 94% overall accuracy (averaging Chalbi 

and Laisamis clusters) at a strike level of 15% mortality on the IBLI contract.   

As another diagnostic over a longer period, we compare severe drought events 

reported by the communities with the predicted area average mortality indices 
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constructed from 1982-2008. We find the predicted mortality index quite accurately 

captures the regional drought events of 1984, 1991-92, 1994, 1996, 2000 and 2005-06, 

predicting average herd mortality rates of 20-40% during those seasons and never 

generating predictions beyond 10% in seasons when communities indicate no severe 

drought occurred.21 This is a more statistically casual approach to forecast evaluation, but 

encompasses a longer time period and we have found it effective for communicating to 

local stakeholders the potential to use statistical models to accurately capture area 

average livestock mortality experience for the purposes of writing IBLI contracts.  

4.4 Performance of Index-based Livestock Insurance for Individual Households 

Following equations (1) and (2), the performance of IBLI turns on how well the predicted 

mortality index explains the insurable risk at a household level in the presence of both 

individual- and location-specific basis risks. We assess this using simulated seasonal 

livestock mortality data for 2000 households – 500 households for four locations: North 

Horr and Kargi (Dirib Gombo and Logologo) in Chalbi (Laisamis) cluster. The details on 

the household simulations, based on the PARIMA panel data and 53 seasons of NDVI 

data (1982-2008), are presented in Chantarat et al. (2010).22 

Table 4 reports these household-level results. Overall, there is a 82% probability 

that the predicted mortality index also strikes the 10% contract when household’s 

                                                 
21 Figures depicting the time series of predicted mortality indices, by location, are available from the 
authors by request. 
22 Chantarat et al. (2010) uses the PARIMA household-level panel herd mortality data and the  predicted 
mortality index constructed from 1982-2008 dekadal NDVI data to estimate the model: 

, which allowed us to decompose household-specific livestock 

mortality loss into the covariate component explainable by the insurable index and the component that is 
uncorrelated with the index. A vector of household-specific basis risk determinants, , ,  – 
capturing both location- and household-specific basis risk – was then estimated using a random coefficients 
estimator. Household-specific livestock mortality rates were simulated based on the historical distribution 
of NDVI and the estimated location-specific best-fit distributions of these estimated parameters.  



 
 

25

mortality loss exceeds 10%. These probabilities decrease at higher levels of household 

livestock losses, to 40% at a strike level of 20%, and to 54% at a strike level of 30% 

mortality loss. The 10% contract thus seems to provide coverage with the lowest type II 

errors in triggering decision.  

Given that the mortality index correctly triggers indemnity payout, shares of 

households’ insurable losses – beyond a particular strike – explained by the index are 

then estimated using a simple risk decomposition method.23 The results show that as the 

contract strike level rises, the share of households’ actual mortality losses covered by the 

triggered index increases from 25% for the 10% strike contract to 73% for the 30% strike 

one, demonstrating that this index works best for covering catastrophic losses. Combined 

with the probabilities of correct trigger decision, the average share of insurable losses 

explained by the index increases with household’s loss experience, from an average share 

of 21% to 39% for household losses beyond 10% and 30%, respectively. The IBLI 

contract appears most effective in protecting households from more extreme covariate 

livestock mortality losses, which are effectively uninsured under existing informal risk 

management mechanisms (Lybbert et al. 2004, Huysentruyt et al. 2009).  

5.   Pricing and Risk Exposure Analysis    

5.1 Conditional and Unconditional Contract Pricing Options 

The actuarially fair premium of IBLI contracts can be calculated by taking an expectation 

of the indemnity payment function (3) per insured TLU over the historical (burn rate 

approach), estimated or simulated distribution of the underlying NDVI data. The contract 

                                                 
23 If we regress the household individual mortality loss beyond each strike k on the indemnity payout based 
on the predicted mortality index: , we can derive the share of 

insurable losses explained by the index at each strike k as · / . 
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can be designed as a seasonal contract that makes indemnity payouts in either season 

(SRSD or LRLD) or an annual contract that combines two consecutive seasonal contracts 

with two possible payouts per year, as depicted in Figure 4.  

 The top panel of Table 5 reports means (actuarially fair premium rates24) and 

standard deviations of the insurance payout rates (quoted as a percentage of insured herd 

value) for an annual contract calculated using the burn rate approach based on 27-year 

historical NDVI data (1982-2008). Because episodes of high predicted die-offs are more 

frequent in Chalbi than in Laisamis (Figure 5), fair premium rates are likewise higher 

there. Overall, the annual fair premium rates are 8.7% (5.5%), 5.2% (3.3%) and 2.7% 

(1.4%) of the insured livestock value for Chalbi (Laisamis) locations for coverage beyond 

10%, 15% and 20% mortality rates, respectively. Premium loadings (proportional to the 

fair premia or S.D. of the indemnity payment rates) will further be applied to cover an 

insurer’s other risks and transaction costs. Depending on the pastoralist’s location and 

chosen strike rate, a herder needs to sell one goat or sheep to pay for annual insurance on 

1-10 camels or cattle, an expense they appear willing to incur (Chantarat et al. 2010, 

Chantarat and Mude 2010).  

The above contract can be fine-tuned to make pricing season-specific. Because 

expected mortality depends on the state of the system, the probability of catastrophic herd 

loss increases with rangeland vegetation conditions observable prior to the contract 

purchase. In order to guard against intertemporal adverse selection, insurers might adjust 

insurance premia. The bottom panel of Table 5 illustrates the simplest way to do so by 

pricing the contract conditional on the observed cumulative zndvi from the beginning of 

                                                 
24 The US dollar equivalent premia per TLU insured can then be computed using an average value per TLU 
of KSh12,000 (approximately US$150 at November 2008 exchange rates at 79.2KSh/US$), per data we 
collected in these locations in summer 2008. Overall, the premia per TLU range from $13.1 (8.5) for 10% 
contract to $7.8 (5.0) for 15% contract and to $4.1 (2.1) for 20% contract. 
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the last rainy season until the beginning of the sale period, _ , covering the 

preceding October-December (March – July) for LRLD (SRSD) contracts, assuming a 

two month sales period in January-February (August-September).  

Using the pre-conditional threshold 0 analogous to that found in 

our earlier estimation, the two conditional annual premia are shown to vary markedly.  

For contracts with a 15% strike (currently piloted in northern Kenya), when the ex ante 

rangeland state is favorable, premia are only 3.1% (0.5%) for Chalbi (Laisamis) 

locations. But when the state of nature is bad, those rates jump to 6.6% (5.2%). Given 

marketing and political considerations, it is unclear whether insurers will be willing to 

vary IBLI premia in response to changing ex ante range conditions, leaving open a real 

possibility of intertemporal adverse selection with respect to the actual product offered.  

5.2 Risk Exposure of the Underwriter 

As we discussed in the introduction to this paper, covariate risk exposure is a major 

reason why private insurance fails to emerge in areas like northern Kenya, where climatic 

shocks like droughts lead to widespread catastrophic losses. IBLI to provide covariate 

asset risk insurance can effectively address the uninsured risk problem faced by 

pastoralists only if underwriters can manage the covariate risk effectively, perhaps 

through reinsurance markets or securitization of risk exposure (e.g., catastrophe bonds). 

We now explore the potential underwriter risk exposure of the proposed IBLI contract.  

 We estimate underwriter risk exposure under the following assumptions. First, we 

assume equal insurance participation covering 500 TLU in each of ten locations25 in 

Marsabit for a total liability of $75,000/location. A standard insurance loss ratio for this 

                                                 
25 These ten locations are the seven used for index construction plus three others in which we have gathered 
household and NDVI data; Balesa and Kargi in Chalbi cluster and Dirib Gumbo in Laisamis cluster .  
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portfolio in any insured year can be calculated by dividing total indemnity payments by 

pure premium collected for the total liability in the portfolio. The loss ratio thus provides 

a good estimate of the covariate risk that remains after pooling risk across locations.  

 Figure 6 illustrates cumulative distributions of the loss ratios26 for this particular 

portfolio at 15% strike by pricing method and years of portfolio risk pooling. Over the 

full period, the loss ratio exceeds one roughly one year in three. State-conditional pricing 

and a longer-term commitment are shown to each reduce extreme outcomes sharply 

despite the fact that the reduced loss exposure risk necessarily comes at the cost of lower 

probability of large profits from the contract. With premium loadings, underwriter risk 

exposure would be reduced further relative to these estimates based on pure premia.  

We now consider a simple reinsurance strategy where the loss beyond 100% of 

the pure premium is transferred to a reinsurer. For contracts with unconditional 

(conditional) premia, actuarially fair stoploss reinsurance rates quoted as percentage of 

IBLI premium would range from 49-68% (32-49%) for 10-30% strike contracts and with 

the rates of 53% (35%) for the piloted 15% strike contract (Appendix Table A3). These 

estimated pure reinsurance rates only take into consideration the local drought risk 

profile, however, and should fall as international reinsurers are better able to diversify 

these risks as part of their global insurance portfolio and in international financial 

markets. Indeed, this diversification opportunity through international risk transfer is one 

of the key benefits of developing IBLI products.  

6. Conclusions and implementation challenges 

                                                 
26 Temporal profiles of yearly loss ratios for various strike levels and under conditional and unconditional 
pricing can be provided by the authors upon request. 
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This paper has laid out why index based livestock insurance (IBLI) is attractive as a 

means to fill an important void in the risk management instruments available to 

pastoralists in the arid and semi-arid lands of east Africa. It then explained and evaluated 

the design of an IBLI product that was recently commercially piloted in northern Kenya 

to insure against covariate livestock mortality risk. The resulting index performs very 

well out of sample, both when tested against other household-level herd mortality data 

from the same region and period and when compared qualitatively with community level 

drought experiences over the past 27 years. Household-level performance analysis also 

indicates that IBLI is most effective in protecting households from otherwise-uninsured 

catastrophic covariate risks. Finally, we established that IBLI should be readily 

reinsurable on international markets.  

The development of the IBLI contract opens up the opportunity to deliver 

commercially sustainable insurance in a place where uninsured risk remains a main driver 

of persistent poverty. The basic design should be replicable in other locations where 

covariate risk exposure is significant and existing insurance products do not adequately 

meet households’ insurance needs. Extended time series of remotely sensed data are 

available worldwide at high quality and low cost.27 Wherever there also exist longitudinal 

                                                 
27 We acknowledge that extending the insurance design outlined in this paper to other settings will require 
further considerations. First, though AVHRR NDVI series used here have the longest available time series 
data, several other new NDVI products are available at higher spatial resolution (see 
http://modis.gsfc.nasa.gov/). Second, while NDVI products appears to work well in the ASAL of northern 
Kenya, various factors (e.g., cloud mask, altitude, vegetation types) could contribute to geographical 
variations in effectiveness of NDVI (Box et al 1989). Third, methodologies to transform satellite imagery 
into representative NDVI data series require careful attention. Ineffective corrections for atmospheric 
conditions could result in inconsistent reflection of vegetation states. Fourth, as most NDVI products  
depend on specific satellite platforms, they are prone to temporal discontinuity due to sensor degradation 
(Tucker et al. 2005). It is thus critical to also establish a back up data series source – calibrated with 
reasonably high accuracy to the main series – that could substitute for the main series in case of unexpected 
disruption of data availability. Toward this end, there is particular promise in exploring other new remotely 
sensed products that are potentially more effective and less dependent on a specific platform, for example, 
the sensor-independent fraction of Absorbed Photosynthetically Active Radiation (fAPAR) (see 
http://modis.gsfc.nasa.gov/).  
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household-level data on an insurable interest (livestock, health status, crop yields, etc.), 

similar types of index insurance can be designed using the basic techniques outlined here.  

A range of implementation challenges nonetheless remain and are the subject of 

future research. First, the existence of household-level data permit direct exploration of 

basis risk, looking in particular for systematic patterns so that prospective insurance 

purchasers can be fully informed as to how well (or poorly) suited the index-based 

contract might be for their individual case. Chantarat et al. (2010) explores this issue in 

some detail for this IBLI product.  

Second, and relatedly, experience with other index insurance pilots has shown 

that a carefully designed program of extension to appropriately educate potential clients 

is necessary for both initial uptake and continued engagement with insurance (Giné et al., 

2008; Sarris et al., 2006). Complex index insurance products can be difficult to 

understand, especially for populations with low levels of literacy and minimal previous 

experience with formal insurance products. Preliminary field experiments using 

simulation games played by prospective insurance purchasers show significant promise 

as a means of both explaining how index insurance products work and generating 

demand for the product (Lybbert et al. 2010, McPeak et al. 2010).  

Third, despite the key advantage of no required costly verifications of individual 

claims,28 the infrastructure deficiencies in remote rural areas could still drive up the costs 

                                                 
28 One might argue for the need to verify the ownership of insured livestock upon signing the contract. 
Theoretically, this verification is not necessary. As the premium rates are already calibrated to the 
underlying risk distribution per unit insured (and so one makes payments relative to the insured herd size), 
whether or not the insured actually owns the livestock or not will not affect the distribution of the insurer’s 
portfolio returns. Practically, however, there may be regulations in the insurance sector that require the 
demonstration of insurable asset. In Kenya, where a pilot of this product was launched in January 2010, the 
regulators adopted a wait-and-see approach and allowed sales without verification. If ex-ante verification of 
insurable asset becomes necessary, one common cost effective practice widely adopted in local developing 
regions involves the use of community-based mechanism, where the insured livestock unit can be 
collectively certified by local leaders and government officials. 
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of product marketing and claims settlement. Development of cost-effective agent 

networks for reliable, low-cost product marketing and service remains a challenge. In the 

northern Kenya IBLI case described here, our commercial partners can tap into a network 

of local agents equipped with electronic, solar rechargeable point-of-sale (POS) devices 

being extended throughout northern Kenya by a commercial bank working with the 

central government and donors on a new cash transfer program. These POS devices can 

be easily configured to accept premium payments and to register indemnity payments for 

certain insurance contracts. Financial sector interests are attracted by the potential 

economies of scope involved in introducing another range of products for devices 

otherwise used purely for government transfers and debit payments.  

Fourth, as already mentioned, IBLI underwriters and their commercial partners 

must make difficult choices in balancing the administrative simplicity and marketing 

appeal of offering IBLI contracts priced uniformly over space and time (which we termed 

“unconditional” pricing in the preceding analysis) versus more complex (“conditional”) 

pricing to guard against the possibility of spatial or intertemporal adverse selection. 

Harmonized pricing is a common practice among Kenyan insurance companies that have 

ventured into the agricultural sector, using the less risky areas to cross-subsidize 

premiums for the more risky areas. As indicated in our analysis, the potential 

intertemporal or spatial adverse selection issues could be greater with index-based 

products and thus merit attention as this market develops.29  

These implementation challenges notwithstanding, IBLI shows considerable 

promise in the pastoral areas of east Africa. By addressing serious problems of covariate 

                                                 
29 Other common insurance contractual agreements, e.g., no claim bonus, are under consideration among 
our research community and industry as a way to implicitly impose state-contingent insurance pricing to 
reduce demand fluctuation due to intertemporal adverse selection. 



 
 

32

risk, asymmetric information and high transactions costs that have precluded the 

emergence of commercial insurance in these areas to date, IBLI offers a novel 

opportunity to use financial risk transfer mechanisms to address a key driver of persistent 

poverty. Hence the widespread interest shown in IBLI by government, donors and the 

commercial financial sector. The design detailed in this paper overcomes the significant 

challenges of a lack of reliable ground climate data (e.g., from meteorological stations) or 

seasonal or annual livestock census data, as well as the need to control for the path 

dependence of the effects of rangeland vegetation on livestock mortality. As the product 

goes into the field, the true test of IBLI viability and impact will come from monitoring 

households in the test pilot areas and the financial performance of the institutions 

involved in offering these new index-based livestock insurance contracts. 
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Table 1: Descriptive Statistics 

Cluster Location Annual rain 
(mm) 

NDVI Herd size 
(TLU) 

Herd 
composition 

Seasonal Mortality Rates, 2000-08 
Overall LRLD SRSD 

Mean S.D. Mean S.D. Mean S.D. Camel Cattle Mean S.D. Mean S.D. Mean S.D.

Chalbi North Horr 237 105 0.11 0.03 13 12 10% 3% 9% 15% 6% 9% 11% 20%

 Kalacha 236 105 0.12 0.03 25 10 14% 0% 13% 22% 7% 10% 18% 29%

 Maikona 235 96 0.11 0.04 9 5 11% 2% 10% 11% 8% 7% 13% 15%

Laisamis Karare 367 159 0.34 0.11 13 9 0% 74% 15% 16% 17% 19% 12% 12%

 Logologo 326 138 0.24 0.12 21 28 5% 31% 8% 14% 10% 16% 6% 12%

 Ngurunit 255 135 0.26 0.08 19 24 7% 19% 8% 11% 11% 14% 5% 8%

 Korr 255 125 0.17 0.07 11 7 5% 3% 11% 13% 13% 12% 9% 14%

Note: Rainfall data from Famine Early Warning System RFE2.0, NDVI from NOAA-AVHRR and livestock data from ALRMP 

 
Table 2: Linear Regression Estimations of Area Average Livestock Mortality 

Model (1) Regime Switching Model (2) Pooled (3) Bad Regime (4) Good Regime
  _ 0  _ 0   _ 0  _ 0  

Chalbi Model       (i) (ii) 

_  -0.0187*** -0.0077*** -0.0187*** 0.0012   
  (0.0051) (0.0023) (0.0064) (0.0032)   

_  0.0019 0.0042 0.0019 -0.0086   
  (0.0033) (0.0033) (0.0042) (0.0084)   

_  -0.0064 0.0032 -0.0064 0.0030*   
  (0.0087) (0.0028) (0.0110) (0.0016)   

 0.0354 0.1058*** 0.0354 0.0356   
  (0.0564) (0.0342) (0.0713) (0.0583)   

_  0.0024 0.0024***
    (0.0018)       (0.0007) 

Adjusted R2 0.5187 0.4421 0.5112 0.2469 0.3419 
N 48   48 29 19 19 

Laisamis Model           

_  -0.0093*** -0.0003 -0.0029* -0.0093*** -0.0003   
  (0.0024) (0.0028) (0.0016) (0.0029) (0.0012)   

_  0.0117*** 0.0087 0.0133*** 0.0117*** 0.0087**   
  (0.0022) (0.0080) (0.0022) (0.0027) (0.0036)   

_  -0.0111** 0.0014 0.0006 -0.0111* 0.0014   
  (0.0048) (0.0024) (0.0020) (0.0060) (0.0011)   

 -0.0446 0.0147 -0.0032 -0.0446 0.0147   
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  (0.0299) (0.0402) (0.0237) (0.0368) (0.0179)   

Adjusted R2 0.6062   0.5436 0.6250 0.4012   
N 64   64 38 26   

Note: *, **, *** for statistical significance at the 10%, 5% and 1% levels respectively. 
Table 3: Out of Sample Testing of Indemnity Payment Error 

 
Cluster Strike Proportion of Sample  

    Correct decision Type I error Type II error 

Chalbi 10% 0.75 0.00 0.25 

(N=16) 15% 0.88 0.13 0.00 

  20% 0.75 0.25 0.00 

  25% 0.88 0.13 0.00 

  30% 0.88 0.13 0.00 

Laisamis 10% 1.00 0.00 0.00 

(N=16) 15% 1.00 0.00 0.00 

  20% 0.75 0.00 0.25 

  25% 0.75 0.00 0.25 

  30% 0.75 0.00 0.25 

 
Note: Out-of-sample errors are based on PARIMA data, which include 4 seasonal area mortality data from 
long rain long dry 2000 to that of 2002 in North Horr and Kargi (Dirib Gombo and Logologo) in Chalbi 
(Laisamis) cluster.  

 
 
 

Table 4: Simulated Shares of Household’s Insurable Losses Explained by Mortality Index 
 

Strike Frequency of 
true loss 

beyond strike 

Frequency of IBLI indemnity 
payment when true loss was 

beyond strike 

Share (%) of Insurable Losses 
Explained by Mortality Index 

 

   |  when  
and  

when   
.. 

10% 22% 82% 25% 21% 
20% 13% 40% 59% 23% 
30% 6% 54% 73% 39% 

 
 Note: 500 households are simulated for 4 locations based on 2000-2 PARIMA panel data and 
1982-2008 NDVI data. See Chantarat et al. 2010 for more details. Note that column 5 is the 
product of columns 3 and 4. 
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Survey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern Kenya

Chalbi

Laisamis

Survey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern KenyaSurvey Sites in Marsabit, Northern Kenya

Chalbi

Laisamis

 
 
 
 

Table 5: Unconditional Vs. Conditional Fair Annual Premium Rates 
 

Indemnity Payment Rate (% of insured TLU value)  
  Mean (actuarially fair premium rates) S.D. 

Strike 10% 15% 20% 25% 30% 10% 15% 20% 25% 30% 

Unconditional           

Chalbi 8.7% 5.2% 2.7% 1.1% 0.3% 9.5% 6.5% 3.8% 2.0% 0.8% 
Laisamis 5.5% 3.1% 1.4% 0.5% 0.1% 5.5% 3.1% 1.4% 0.5% 0.1% 

Conditional on observed good pre-condition            

Chalbi 5.1% 3.1% 1.7% 0.7% 0.2% 6.9% 5.1% 3.4% 1.9% 0.7% 
Laisamis 1.3% 0.5% 0.1% 0.0% 0.0% 3.1% 1.3% 0.2% 0.0% 0.0% 

Conditional on observed bad pre-condition           

Chalbi 11.2% 6.6% 3.4% 1.3% 0.4% 10.5% 7.2% 4.4% 2.4% 1.1% 
Laisamis 8.8% 5.2% 2.4% 0.9% 0.2%   9.3% 6.5% 4.2% 2.2% 0.7% 

 
Note: Cluster-specific statistics are based on equally weighted average of location-specific payment rates. This pricing thus is 
based on the assumption that contracts are priced per cluster while indemnity payments are made per coverage location. Mean 
and S.D. are calculated over all possible combinations of 2 consecutive coverage seasons during historical NDVI period. 

 
 

Figure 1: Clustered Sites in Marsabit, Northern Kenya  
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Figure 2: Seasonal TLU Mortality Rate by Clusters 
 

              (A) Temporal Profiles                                               (B) Empirical Distributions  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: NDVI and zndvi for Locations in Marsabit, by Clusters 
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Figure 4: Temporal Structure of Vegetation Regressors and IBLI Contract 
 
 

(A) Vegetation Regressors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                  (B) IBLI Contract 
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 Figure 5: Empirical Distributions of Predicted TLU Mortality Indices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Loss Ratio Cumulative Distributions, by Pricing and Years of Risk Pooled (15% Strike) 

 

             Unconditional Pricing                                                    Conditional Pricing 
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Cluster/ Variable % Bad-

Location Climate

Mean S.D. Min Max Mean S.D. Mean S.D. Mean S.D. Mean S.D. Regime

Chalbi Mortality rate 0.1 0.2 0.0 0.7 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.2
(Pooled) Czndvi_pos -1.5 15.9 -26.3 25.9 -1.8 15.7 -1.2 16.5 15.8 7.4 -12.9 7.3 60%

Czndvi_pre -0.7 9.9 -19.6 21.8 -0.3 13.2 -1.1 5.1 8.6 7.4 -6.8 5.7
Czndvi_n 6.4 4.6 0.1 18.6 5.2 3.0 7.6 5.6 2.5 1.6 8.9 4.1
Czndvi_p 5.5 6.0 0.0 21.4 3.6 2.7 7.4 7.7 9.9 7.0 2.6 2.7

North Horr Mortality rate 0.1 0.2 0.0 0.6 0.1 0.2 0.1 0.1 0.0 0.0 0.2 0.2
Czndvi_pos -4.8 14.3 -26.2 17.4 -4.9 14.3 -4.7 15.3 9.0 5.7 -15.5 7.9 56%
Czndvi_pre -2.5 9.5 -19.6 18.3 -2.6 12.9 -2.4 5.2 5.0 6.7 -8.4 7.0
Czndvi_n 6.9 5.0 1.6 18.6 5.4 2.9 8.4 6.4 3.3 1.3 9.7 5.1
Czndvi_p 4.4 5.3 0.0 20.7 3.0 2.5 5.8 7.0 7.3 6.6 2.2 2.7

Kalacha Mortality rate 0.1 0.2 0.0 0.7 0.2 0.3 0.1 0.1 0.0 0.0 0.2 0.2
Czndvi_pos -1.5 17.9 -26.3 25.9 -2.1 18.6 -0.9 18.5 19.3 5.9 -14.0 7.4 63%
Czndvi_pre -0.6 10.9 -16.5 21.8 -0.4 15.0 -0.8 5.5 10.2 8.4 -7.1 5.9
Czndvi_n 6.6 5.0 0.6 16.3 5.3 3.7 7.9 5.9 2.1 1.5 9.4 4.2
Czndvi_p 5.6 6.7 0.0 21.4 3.5 2.7 7.7 8.9 11.3 7.9 2.2 2.4

Maikona Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Czndvi_pos 1.8 15.7 -17.4 24.4 1.5 15.3 2.0 17.1 20.3 4.5 -9.3 5.8 63%
Czndvi_pre 1.0 9.5 -10.8 18.7 2.1 12.9 0.0 5.0 11.2 6.7 -5.1 4.0
Czndvi_n 5.6 4.0 0.1 11.1 4.8 2.7 6.4 5.0 1.9 2.0 7.8 3.1
Czndvi_p 6.3 6.1 0.0 19.9 4.2 3.0 8.5 7.7 11.4 6.8 3.3 3.0

Laisamis Mortality rate 0.1 0.1 0.0 0.6 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.2
(Pooled) Czndvi_pos -3.5 16.5 -35.3 34.9 -3.8 16.7 -3.2 16.6 12.9 9.0 -14.7 9.7 59%

Czndvi_pre -1.9 10.1 -20.3 23.0 -1.7 12.1 -2.2 7.8 6.0 7.9 -7.4 7.7
Czndvi_n 6.7 5.1 0.0 19.6 5.8 4.1 7.7 5.9 2.5 2.1 9.6 4.6
Czndvi_p 4.8 5.8 0.0 24.1 3.4 4.3 6.3 6.8 9.3 5.7 1.8 3.6

Karare Mortality rate 0.1 0.2 0.0 0.6 0.1 0.1 0.2 0.2 0.1 0.0 0.2 0.2
Czndvi_pos -5.8 12.7 -26.8 19.1 -6.2 13.8 -5.4 12.5 7.3 7.4 -13.6 7.5 63%
Czndvi_pre -3.1 7.8 -16.0 12.3 -3.4 8.5 -2.7 7.7 2.5 6.2 -6.4 6.9
Czndvi_n 6.5 4.4 0.3 16.3 6.0 4.4 7.0 4.7 2.4 1.2 8.9 3.8
Czndvi_p 3.4 3.7 0.0 13.4 2.9 3.1 3.9 4.4 6.8 4.1 1.3 1.2

Logologo Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.2
Czndvi_pos -2.5 17.4 -26.3 26.5 -2.7 19.3 -2.3 16.5 13.1 7.5 -18.1 5.6 50%
Czndvi_pre -1.4 10.5 -14.9 17.2 -1.1 13.0 -1.8 8.3 6.1 8.7 -8.9 5.7
Czndvi_n 6.2 4.9 0.2 14.6 5.4 4.0 7.0 5.9 2.3 1.4 10.1 3.9
Czndvi_p 4.8 6.3 0.0 18.7 3.6 4.6 6.1 7.7 9.3 6.3 0.4 0.5

Ngurunit Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1
Czndvi_pos -4.3 16.8 -35.3 22.8 -4.7 16.8 -3.9 17.9 11.8 7.7 -14.0 12.6 63%
Czndvi_pre -2.3 10.2 -20.3 16.1 -2.1 13.1 -2.6 7.2 5.4 6.2 -7.0 9.5
Czndvi_n 7.0 6.0 0.2 19.6 5.7 4.8 8.3 7.1 2.5 2.5 9.7 5.8
Czndvi_p 4.6 5.0 0.0 17.1 2.7 2.7 6.6 6.2 8.7 4.6 2.2 3.6

Korr Mortality rate 0.1 0.1 0.0 0.4 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.2
Czndvi_pos -1.4 19.8 -30.1 34.9 -1.5 19.3 -1.3 21.6 19.2 11.4 -13.7 11.4 63%
Czndvi_pre -1.0 12.3 -17.7 23.0 -0.2 15.3 -1.7 9.5 9.9 9.5 -7.5 8.8
Czndvi_n 7.2 5.5 0.0 17.2 6.0 4.2 8.4 6.6 2.9 3.4 9.8 4.9
Czndvi_p 6.5 7.7 0.0 24.1 4.3 6.4 8.6 8.7 12.2 7.0 3.0 6.0

Overall SRSD Season Bad Year

Czndvi_pos<0

LRLD Season Good Year

Czndvi_pos>=0

 
 
 

Appendix Table A1: Descriptive Statistics for Vegetation Index Regressors and 
Area-Average Seasonal Mortality, by Location and Regime (2000-2008) 
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Appendix Table A2: Out of Sample Forecasting Errors 
 
 

Error Magnitude 
(absolute value) 

Proportion of Sample  
Chalbi (N=8) Laisamis (N=8) 

Under prediction     

< 5% 0.13 0.50 

5-10% 0.25 0.25 

10-15% 0.00 0.00 

15-20% 0.00 0.00 

20-25% 0.00 0.00 

>25% 0.00 0.13 

Over prediction     

< 5% 0.38 0.13 

5-10% 0.13 0.00 

10-15% 0.00 0.00 

15-20% 0.00 0.00 

20-25% 0.00 0.00 

>25% 0.13 0.00 

Total  1.00 1.00 
 

 
Note: Out-of-sample errors are based on PARIMA data, which include 4 seasonal area mortality data from 
long rain long dry 2000 to that of 2002 in North Horr and Kargi (Dirib Gombo and Logologo) in Chalbi 
(Laisamis) cluster. Mean and variance tests are performed to compare the distributions between these out-
of-sample errors and the predictive error from each cluster-specific model. In all cases, t and F statistics 
cannot reject the null hypotheses of equal mean/variance, resulting in t(54) = 0.5992 and F(47,7) = 1.3164 
for Chalbi cluster; t(70) = -1.3326 and F(63,7) = 0.9972 for Laisamis cluster. 

 
 
 

Appendix Table A3: Mean Reinsurance Rates for 100% Stop Loss Coverage 
 
 

Strike Stop-loss Reinsurance Coverage at 100% of Pure Premium 
  Unconditional Premium Conditional Premium 
  Mean S.D. Mean S.D. 

10% 49% 83% 32% 53% 

15% 53% 95% 35% 60% 

20% 56% 108% 36% 66% 

25% 59% 134% 42% 85% 

30% 68% 162% 49% 115% 
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