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Proper estimation of model parameters is required for ensuring accurate model predictions and good
model-based decisions. The generalized likelihood uncertainty estimation (GLUE) method is a Bayesian
Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the
closeness-of-fit of modeled and observed data. Various likelihood functions and methods of combining
likelihood values have been used in previous studies. This research was conducted to determine the
effects of using previously reported likelihood functions in a GLUE procedure for estimating parameters
in a widely-used crop simulation model. A factorial computer experiment was conducted with synthetic
measurement data to compare four likelihood functions and three methods of combining likelihood val-
ues using the CERES-Maize model of the Decision Support System for Agrotechnology Transfer (DSSAT).
The procedure used an arbitrarily-selected parameter set as the known ‘‘true parameter set” and the
CERES-Maize model to generate true output values. Then synthetic observations of crop variables were
randomly generated (four replicates) by using the simulated true output values (dry yield, anthesis date,
maturity date, leaf nitrogen concentration, soil nitrate concentration, and soil moisture) and adding a ran-
dom observation error based on the variances of corresponding field measurements. The environmental
conditions were obtained from a sweet corn (Zea mays L.) experiment conducted in 2005 in northern
Florida. Results showed that the method of combining likelihood values had a strong influence on param-
eter estimates. The combination method based on the product of the likelihoods associated with each set
of observations reduced the uncertainties in posterior distributions of parameter estimates most signif-
icantly. It was also found that the likelihood function based on Gaussian probability density function was
the best among those tested. This combination accurately estimated the true parameter values, suggest-
ing that it can be used when estimating CERES-Maize model parameters for real experiments.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Proper estimation of model parameters is required for ensuring
accurate model predictions (Makowski et al., 2002). Modeling of
complex environmental systems generally involves the indirect
identification of model components or parameters by posing an in-
verse problem. Often, such inverse problems involve multiple
parameters and observations that are only indirectly related to
the parameters of interest, or which may be at different scales to
the variables and parameters used in distributed predictions. There
are many methods for estimating parameters using inverse model-
ing methods. Bayesian approaches can be used to estimate param-
eters using two types of information, a sample of data and prior
information about parameter values. Results from a Bayesian
method are probability distributions of parameter values and pre-
dicted outputs (Makowski et al., 2006a).
All rights reserved.

: +1 352 392 4092.
Bayesian methods are becoming increasingly popular for esti-
mating parameters of complex mathematical models (Campbell
et al., 1999). The Generalized Likelihood Uncertainty Analysis
(GLUE) methodology (Beven and Binley, 1992), one such Bayesian
method, allows information from different types of observations to
be combined to estimate probability distributions of parameter
values and model predictions (Lamb et al., 1998). Many parameter
sets are generated from specified prior distributions of parameters
and then used to simulate outputs by Monte Carlo simulation. The
performance of each parameter set in predicting observed model
states is evaluated via a likelihood measure that is used to weight
the predictions from the different parameter sets. The GLUE meth-
od transforms the problem of searching for an optimum parameter
set into a search for sets of parameter values that would give reli-
able simulations for a range of model inputs (Candela et al., 2005).

Parameters estimated using any inverse modeling approach are
uncertain and subject to equifinality (e.g. Beven and Binley, 1992;
Beven and Freer, 2001; Beven, 2006). Equifinality refers to the sit-
uation where the likelihood values are equal for two or more
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parameter values, and one cannot select a best one from these two
or more values. It can be argued on grounds of physical theory that
there may be sufficient interactions among the components of a
system that, unless the detailed characteristics of these compo-
nents are specified independently, many representations may be
equally acceptable. This is particularly true of those parameters
to which the model is not sensitive in a particular environment.
For this reason, a sensitivity analysis is needed to select parameters
to which the model is sensitive for the range of experiments being
used before attempting to estimate them using inverse modeling
methods. One implication of equifinality is that the uncertainty
associated with the use of models might be wider than is usually
considered.

As with any model parameter estimation method, the GLUE
method requires the definition of some measure of goodness-of-
fit or likelihood. Beven and Binley (1992) pointed out that various
likelihood measures might be appropriate in a given application.
For example, Romanowicz et al. (1994, 1996) used a likelihood
measure based on an autocorrelated Gaussian error model; Beven
and Binley (1992) used a likelihood measure based on inverse error
variance with a shaping factor N; Freer et al. (1996) suggested a
likelihood measure based on Nash and Sutcliffe efficiency criterion;
and Keesman and Van Straten (1989, 1990) used a likelihood mea-
sure based on scaled maximum absolute residuals. However, Ste-
dinger et al. (2008) criticized the use of an arbitrary likelihood
function. The choice of a likelihood function is critical and needs
to be a reasonable description of the distribution of model errors
for the statistical inference and resulting uncertainty and predic-
tion intervals to be valid. If an arbitrary likelihood measure is
adopted that does not reasonably reflect the distribution of model
errors, then GLUE may generate arbitrary results without statistical
validity that should not be used in scientific work.

With multiple observations and multiple types of observations,
likelihood values for each observation must be combined into an
overall value for each candidate parameter set (Beven and Binley,
1992). Available methods of combining likelihood values include
multiplication (e.g. Beven and Binley, 1992), weighted addition
(Zak et al., 1997), pseudomaximum likelihood measure (Van Stra-
ten, 1983), fuzzy union, fuzzy interaction, and weighted fuzzy
combination (Aronica et al., 1998). Beven and Freer (2001) and
Beven and Binley (1992) suggested that when a likelihood ap-
proach is being considered, the choice of method of combining
likelihood values is subjective. However, when the GLUE method
is used with a model for the first time, it is important to make sure
that the choice of likelihood measure and combination method can
produce reliable model parameters.

The CERES-Maize model (Jones and Kiniry, 1986; Ritchie, 1998;
Hoogenboom et al., 2003) is a maize (Zea mays L.) crop growth
model in the cropping system model (CSM) that is in the Decision
Support System for Agrotechnology Transfer (DSSAT) (Jones et al.,
2003; Tsuji et al., 1998). The DSSAT-CSM incorporates all crops
as modules using a single soil model. Hereafter, CERES-Maize will
be used to refer to the model used in this study. This model has
many parameters that characterize crop and soil processes, a num-
ber of which usually need to be estimated using field experiments.
Over the years, a number of methods have been used to estimate
parameters for the DSSAT models, including the simplex method
(Grimm et al., 1993), simulated annealing (Mavromatis et al.,
2002), sequential search software (Hunt et al., 1993), and even vi-
sual methods. Each of these methods has its own advantages and
limitations. Our main reasons for selecting the GLUE method for
this study were that it can help us understand uncertainties in
the parameters and how those uncertainties affect predictions
and it is relatively simple and straightforward to implement.

In using this method for the first time with the CERES-Maize
model, the question arises as to how much the different likelihood
measures and combination methods influence the results of
parameter estimation. The objective of the study was to answer
this question for this widely-used crop model. We evaluated the
influence of four different likelihood functions and three combina-
tion methods in GLUE on the parameter estimates for the CERES-
Maize model.
2. Materials and methods

2.1. CERES-Maize model

Crop growth and development are simulated by the CERES-
Maize model in DSSAT V4.0 (Hoogenboom et al., 2003) with a daily
time step from planting to maturity using physiological process
relationships that describe the responses of maize to soil and envi-
ronmental conditions. Potential growth is dependent on photosyn-
thetically active radiation and its interception, whereas actual
biomass production on any day is constrained by suboptimal tem-
peratures, soil water deficits, and nitrogen deficiencies (Ritchie and
Godwin, 1989; Ritchie, 1998).

There are four types of input data to the model: weather, plant,
soil, and management. The weather input data are daily sum of
global radiation (MJ m�2), daily minimum and maximum air tem-
peratures (�C), and daily sum of precipitation (mm). Plant parame-
ters and physiological characteristics are given in the form of
genetic coefficients, which describe physiological processes such
as development, photosynthesis, and growth for individual crop
varieties in response to soil, weather, and management during a
season. Soil inputs describe the physical, chemical, and morpholog-
ical properties of the soil surface and each soil layer within the root
zone. The management information includes planting density, row
spacing, planting depth, irrigation, application of fertilizer, etc.
(Ritchie, 1998).
2.2. Soil parameters and genetic coefficients

There are usually many parameters and inputs in complex crop
simulation models. Each of these parameters and inputs is subject
to errors. Ideally, one would directly measure all inputs and
parameters, but this is not possible in many cases (Bechini et al.,
2006). Furthermore, uncertainties in some parameters are likely
to cause more variations in simulated results than others. Thus, a
common strategy is to select a subset of parameters to estimate
using sensitivity analysis, and fixing the others to their nominal
values (Makowski et al., 2006a,b; Monod et al., 2006; Wallach
et al., 2001). Through a global sensitivity analysis with one-at-a-
time (OAT) method (Morris, 1991), He (2008) selected the most
sensitive genetic and soil parameters (Table 1) relative to their
influence on CERES-Maize model predictions of dry matter yield
and cumulative nitrogen leaching for the growing conditions in
this study. Other parameters or inputs may be important for differ-
ent environmental and management conditions, and the sensitivity
analysis would need to be repeated for other experiments.

The selected soil parameters (SLLL, SDUL, and SSAT) define soil
water holding capacity and influence the amount of available
water in the soil profile on a day to day basis. Parameters SLRO
and SLDR influence the amount of soil water runoff and water
drained from the soil profile. Parameter SLPF represents the effect
of other limiting soil factors that reduce crop growth. Genetic coef-
ficients P1 and P5 control the phenological development of the
crop through their effects on anthesis and maturity dates. Coeffi-
cient PHINT influences both phenological development and yield.
See Jones and Kiniry (1986) and Ritchie (1998) for more details
regarding these parameters in the CERES-Maize model.



Table 1
Soil parameters and genetic coefficients for the CERES-Maize model in DSSAT that were estimated in this study.

Parameter Definition Unit

SLLL Lower limit of soil water available to plants m3/m3

SDUL Drained upper soil water limit m3/m3

SSAT Saturated soil water content m3/m3

SLRO Soil water runoff curve number –
SLDR Soil water drainage rate –
SLPF Growth reduction/fertility factor –
P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature of 8 �C) during

which the plant is not responsive to changes in photoperiod
�C d

P5 Thermal time from silking to physiological maturity (expressed in degree days above a base temperature of 8 �C) �C d
PHINT Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances �C d
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2.3. Field environmental conditions

The synthetic parameter estimation experiment was based on a
sweet corn field experiment conducted at the Plant Science Re-
search and Education Unit, the University of Florida in the spring
of 2005. The research unit is located near Citra (29.4094�N,
82.1777�W, 21 m above sea level), Marion County, Florida, USA.
The variety of sweet corn planted was ‘Saturn SH2’. Although there
were two treatments in this field in 2005, the high-nitrogen treat-
ment (422 kg N ha�1) was used in this study. The experimental
plot was about 1.82 ha. Irrigation was scheduled based on daily
evapotranspiration and water balance in the soil profile. The
weather data were obtained from the Florida Automated Weather
Network (FAWN) weather station located at Citra. See He (2008)
for more details regarding the field experiment.

Six types of field measurement data were collected from the
high-nitrogen treatment, including dry yield (kg ha�1), anthesis
date (ADAT, days after planting), maturity data (MDAT, days after
planting), leaf nitrogen concentration (TKN, %), soil nitrate concen-
tration (mg kg�1) and soil moisture (cm3 cm�3) in four soil layers
(0–15 cm, 15–30 cm, 30–60 cm, and 60–90 cm). These data were
used to estimate measurement standard deviations (Table 2) for
generating the synthetic observations for the GLUE procedure.
Other field data, such as the dates and methods of planting, tillage,
irrigation, fertigation, pesticide, and herbicide application, and har-
vest were also collected for model inputs.

2.4. Synthetic data generation

Although real data from our experiments could have been used
to compare methods (e.g., see He et al., 2009; Casanova et al., 2006,
2007), we chose to use synthetic data generated by the CERES-
Maize model. This was done so that we could compare estimated
parameters obtained using the different GLUE methods with ‘‘true”
values of the parameters. Thus in this study, a parameter set, which
was arbitrarily selected from the parameters estimated by He
(2008), was chosen as the known ‘‘true parameter set” (see the
right-most column in Table 3). The CERES-Maize model was run
with this parameter set for the environmental conditions and man-
Table 2
Generated synthetic measurement data.

2005 Synthetic observation Generated replicates

Meana STDEVb 1 2 3 4

Yield (kg ha�1) 3451 269 3769 3447 3595 3259
ADAT (days) 59 3 57 60 59 62
MDAT (days) 94 4 97 91 91 93

a Mean of the synthetic observation was the simulation results with the ‘‘true
parameter set”.

b STDEV was the standard deviation of the synthetic observation, which was the
real standard deviation of field experiment observation.
agement in the 2005 field experiment. Model outputs (dry matter
yield, anthesis date, maturity date, leaf nitrogen concentration, soil
nitrate concentration, and soil moisture) were tabulated from the
model-simulations on dates when real measurements were taken
in the field study (He, 2008). Four synthetic observations of each
variable were then generated by adding a Gaussian random error
with zero mean and a standard deviation corresponding to that
of the actual field measurements (Table 2) using the following
equation:

X ¼ p� rþ l ð1Þ

where p is the standard normal error, r the standard deviation of
the appropriate field measurements, and l is the ‘‘true” value of
the variable obtained from model simulation outputs generated
from the ‘‘true parameter set”.

We assumed that errors in simulated output variables of the
maize model (e.g., sweet corn yield, anthesis date, maturity date,
etc.) follow normal distributions, although there were not enough
measurements in this field experiment to test for normality. In He
et al. (2009), residual errors of these output variables were ana-
lyzed after estimating parameters. These residual errors all fol-
lowed Gaussian distributions. Table 2 shows the synthetic
observations generated for yield, anthesis date, and maturity date.
There were also four replicates of each of the temporally-variable
synthetic variables (leaf TKN concentrations, soil nitrate, and mois-
ture concentrations), each at four depths and on five dates, and
therefore they are not shown in this table for the sake of brevity.

2.5. Generalized likelihood uncertainty estimation method

2.5.1. GLUE implementation
The GLUE procedure as described by Beven and Binley (1992)

was used in this study and is summarized in the following steps:

(1) Develop prior parameter distributions. The soil parameters
and genetic coefficients contained in the database of the
DSSAT model (Hoogenboom et al., 2003) were analyzed.
The means and variances of parameters and covariances
among the parameters were calculated, and normality tests
were conducted to see whether the parameters followed
normal distributions (He, 2008). Based on these results a
multivariate normal distribution was used for all parameter
prior distributions except for SLPF for which a uniform dis-
tribution was used.

(2) Generate random parameter sets from the prior parameter dis-
tributions. A MATLAB (2004) program, ‘mvnrnd.m’, was used
to generate N multivariate normal realizations of parameter
sets with each set containing all parameters shown in Table
1 except for SLPF, which was generated with a uniform dis-
tribution. From the point of view of Monte Carlo sampling in
the GLUE method, more parameter sets lead to more stable
results. The number of parameter set realizations to gener-



Table 3
Means and standard deviations (STDEV) of posterior distributions derived from likelihood functions and combination methods in the first round of GLUE.a

Prior distribution Under C1 Under C2 Under C3 Trueb

Mean STDEV Mean STDEV Mean STDEV Mean STDEV

L1 likelihood function
P1 225.10 67.83 119.95 54.01 116.12 6.27 120.99 55.00 95.12
P5 763.59 98.80 663.78 86.61 634.83 21.92 666.22 85.22 572.04
PHINT 41.17 4.01 40.06 3.65 42.73 0.88 40.17 3.64 39.57
SLDR 0.463 0.192 0.498 0.162 0.661 0.003 0.500 0.159 0.739
SLRO 73.00 11.56 76.36 10.57 84.21 0.96 76.60 10.51 89.45
SDUL 0.263 0.100 0.195 0.113 0.106 0.001 0.191 0.113 0.104
SLLL 0.138 0.084 0.107 0.079 0.070 0.019 0.106 0.078 0.060
SSAT 0.388 0.094 0.327 0.104 0.304 0.006 0.324 0.104 0.319
SLPF 0.962 0.114 0.847 0.077 0.915 0.023 0.849 0.076 0.931

L2 likelihood function
P1 225.10 67.83 124.43 57.53 117.16 4.56 126.54 59.72 95.12
P5 763.59 98.80 667.57 85.14 638.48 15.92 671.35 83.40 572.04
PHINT 41.17 4.01 40.21 4.16 42.88 0.64 40.44 4.15 39.57
SLDR 0.463 0.192 0.510 0.175 0.662 0.002 0.515 0.172 0.739
SLRO 73.00 11.56 76.38 10.73 84.37 0.70 76.83 10.57 89.45
SDUL 0.263 0.100 0.198 0.111 0.107 0.001 0.191 0.111 0.104
SLLL 0.138 0.084 0.105 0.080 0.073 0.014 0.101 0.079 0.060
SSAT 0.388 0.094 0.331 0.103 0.305 0.004 0.325 0.103 0.319
SLPF 0.962 0.114 0.845 0.078 0.918 0.017 0.846 0.077 0.931

L3 likelihood function
P1 225.10 67.83 120.87 54.96 114.03 8.37 122.18 56.30 95.12
P5 763.59 98.80 664.39 86.10 627.52 29.22 667.11 84.52 572.04
PHINT 41.17 4.01 40.08 3.84 42.43 1.18 40.23 3.83 39.57
SLDR 0.463 0.192 0.501 0.166 0.660 0.004 0.504 0.163 0.739
SLRO 73.00 11.56 76.38 10.60 83.89 1.28 76.69 10.51 89.45
SDUL 0.263 0.100 0.197 0.112 0.106 0.001 0.192 0.112 0.104
SLLL 0.138 0.084 0.107 0.079 0.063 0.026 0.104 0.079 0.060
SSAT 0.388 0.094 0.328 0.104 0.302 0.008 0.324 0.103 0.319
SLPF 0.962 0.114 0.847 0.077 0.907 0.030 0.849 0.077 0.931

L4 likelihood function
P1 225.10 67.83 122.08 56.99 115.91 6.54 124.20 59.20 95.12
P5 763.59 98.80 654.41 86.14 634.10 22.86 658.20 84.42 572.04
PHINT 41.17 4.01 39.37 4.21 42.70 0.92 39.60 4.21 39.57
SLDR 0.463 0.192 0.499 0.175 0.661 0.003 0.504 0.172 0.739
SLRO 73.00 11.56 74.72 10.79 84.18 1.00 75.17 10.64 89.45
SDUL 0.263 0.100 0.196 0.110 0.106 0.001 0.189 0.110 0.104
SLLL 0.138 0.084 0.104 0.079 0.069 0.020 0.100 0.079 0.060
SSAT 0.388 0.094 0.326 0.102 0.304 0.006 0.320 0.102 0.319
SLPF 0.962 0.114 0.827 0.079 0.914 0.024 0.829 0.079 0.931

a ‘‘L1 likelihood function” means deriving posterior distribution using likelihood function L1, ‘‘Under C1” uses the method of likelihood value combination C1, etc. (Eqs. (5)–
(8) and (11)–(13)).

b ‘‘True” means the initially selected ‘‘true parameter set”.
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ate depends on the number required for the estimated
parameters and their variances to stabilize. Since the prior
distributions obtained from the DSSAT database in this study
were very broad, only a limited number of parameter sets
had significant likelihood values that could be used to derive
posterior distributions, even though a large number of
parameter sets were generated (30,000). The overwhelming
majority of the generated parameter sets were eliminated
since their likelihood values were near zero. One may need
to run the GLUE procedure two or more times in order to
ensure that a sufficient number of realizations are used to
obtain smooth posterior distributions for the selected
parameters. In this paper, two runs of GLUE were conducted
in sequence.

(3) Run the model with the random parameter sets. The model
was run for each parameter set using MATLAB programs
developed in this study. The standard CERES-Maize soil
input file ‘soil.sol’ and genetic input file ‘MZCER040.cul’,
were changed to simulate each random parameter set
in sequence. Model outputs (dry matter yield, anthesis
date, maturity date, leaf nitrogen concentration, soil
nitrate concentration, and soil moisture) for each param-
eter set were tabulated for use in the GLUE likelihood
calculations.

(4) Calculate the likelihood values. The generated observations (O,
four replicates each for each variable) were used along with
the corresponding simulated outputs to compute the likeli-
hood value, LðhijOÞ; for each of the N generated parameter
vectors hi. Then, the probability pi of each parameter set
was computed with the following equation:
pðhiÞ ¼
LðhijOÞPN
j¼1LðhijOÞ

ð2Þ

where pðhiÞ is probability or likelihood weight of the ith
parameter set hi; LðhijOÞ is the likelihood value of parameter
set hi; given observations O.
(5) Construct posterior distribution and statistics. The pairs of
parameter sets and probabilities, ðhi; piÞ; i ¼ 1; . . . ;N; were
used to construct empirical posterior distributions and to
compute the means and variances of the selected parame-
ters using the following equations:
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l
_

post
ðhÞ ¼

XN

i¼1

pðhiÞ � hi ð3Þ

r
_

post

2ðhÞ ¼
XN

i¼1

pðhiÞ � ðhi � l
_

post
Þ2 ð4Þ

where l
_

post
ðhÞ and r

_

post
2ðhÞ are the estimated mean, variance of the

posterior distribution of parameters h; pðhiÞ is the probability of
the ith parameter set hi calculated by Eq. (2); and N is the number
of random parameter sets.

2.5.2. Likelihood functions
Four likelihood functions were chosen and investigated using

the same model outputs. The four likelihood functions identified
as L1, L2, L3, and L4, are as follows:

L1 : L½hijO� ¼
YM
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

o

p exp �ðOj � PðhiÞÞ2

2r2
o

 !
; ði¼ 1;2;3; . . . NÞ

ð5Þ

L2 : L½hijO� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
o

p � exp �ðO� PðhiÞÞ2

2r2
o

 !
; ði¼ 1;2;3; . . . NÞ

ð6Þ

L3 : L½hijO� ¼ exp � MSEi

minðMSEÞ

� �
ði¼ 1;2;3; . . . NÞ ð7Þ

L4 : LðhijOÞ ¼ exp �MSEi

2r2
o

� �
; ði¼ 1;2;3; . . . NÞ ð8Þ

where hi is the ith parameter set; PjðhiÞ the jth type of model out-
put under parameter set hi; O the observation; Oj the jth observa-
tion of O; r2

o the variance of model errors, assumed to be the
variances of observations for this study; O the mean value of the
observations; MSEi the mean square model prediction error for
the ith parameter set; minðMSEÞ the minimum value of MSEi; N
the number of parameter sets; and M is the number of observation
replicates. The mean square model prediction error and mean va-
lue of the observation replicates were calculated with following
equations:

MSEi ¼
1
M

XM

j¼1

ðPjðhiÞ � OjÞ2 ð9Þ

O ¼ 1
M

XM

j¼1

Oj ð10Þ

The first likelihood measure L1 is the maximum likelihood
function used by Makowski et al. (2002), while L2 is a variant
of L1 that uses the mean value of the observations instead of
calculating the product of likelihood values of each replicate of
the observations. Likelihood measure L3 is based on minimum
mean square error and was used by Wang et al. (2005). L3 is
a special case of L4 in which the minimum MSE produced from
all parameter sets is used as an estimation of model error vari-
ance (Wang et al., 2005).

2.5.3. Methods of combining likelihood values
Another variation of the GLUE procedure that can influence re-

sults is the method of combining likelihood values from different
types of observations. In this study, observations were made for
dry grain yield, anthesis date, maturity date, leaf TKN concentra-
tion, soil nitrate concentration, soil volumetric moisture, dry grain
yield, anthesis date (ADAT), and maturity date (MDAT). Three
methods to combine likelihood values of different types of obser-
vations, identified as C1, C2, and C3 respectively, were investigated
in this study:



Table 5
Mean values and standard deviations (STDEV) of model outputs in the second round
of GLUE.

Outputs Yield Anthesis date Maturity date Average
Unit kg ha�1 Days Days

L1C2 Mean 3325 60 97 –
STDEV 2.45 0.00 0.00 –
ARE (%)a 3.66 1.69 3.19 2.85

L2C2 Mean 3678 62 100 –
STDEV 26.03 0.22 0.22 –
ARE (%) 6.58 5.01 6.33 5.97

L3C2 Mean 3767 60 99 –
STDEV 57.97 0.12 0.51 –
ARE (%) 9.17 1.67 5.20 5.34

L4C2 Mean 3802 60 98 –
STDEV 63.12 0.23 0.11 –
ARE (%) 10.16 1.74 4.27 5.39

True Mean 3451 59 94 –
STDEV 269 3 4 –

a ‘‘ARE” means absolute relative error between mean values of model outputs
and the ‘‘true measurement” resulted from the initial ‘‘true parameter set”.
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C1 : Lcombined½hi� ¼
PK

k¼1Lk½hijOk�
K

ð11Þ

C2 : Lcombined½hi� ¼
YK

k¼1

Lk½hijOk� ð12Þ

C3 : Lcombined½hi� ¼
XK

k¼1

1
K
� Lk½hijOk�2

" #1=2

ð13Þ

where Lcombined½hi� is the combined likelihood value of ith parameter
set hi; Lk½hijOk� indicates the kth type likelihood value conditioned
with the ith parameter set hi and the kth observation type Ok; and
K is the number of observation types.

Method C1 (equation 11) is a special case of the weighted addi-
tion method for likelihood value combination (Zak et al., 1997),
where the weighting coefficients of all terms are equally set as
1=K . Method C2 (equation 12) is the method of Bayes’ multiplica-
tion (e.g. Beven and Binley, 1992; Romanowicz et al., 1994,
1996). Method C3 (equation 13) is a special case of the aggregated
Fig. 1. Measured and simulated leaf TKN concentrations with the parameter set that ha
sweet corn season. The solid and dashed error bars show the standard deviations of syn
function suggested by Wang et al. (2005), where the weighting
coefficients are all set to 1=K .

2.5.4. Computer experiment design
A 4� 3 factorial (four likelihood functions and three methods of

likelihood combination) computer experiment was designed
resulting in 12 methods of likelihood value calculations. The
CERES-Maize model was run (N = 30,000 times) with the random
parameter sets generated from the prior parameter distributions.
Subsequently, posterior distributions were derived for each param-
eter using each of the 12 methods. Then, the mean values and stan-
dard deviations of these posterior distributions were compared
with the prior distributions. The likelihood combinations that
failed to significantly reduce uncertainties in input parameters
were eliminated and the remaining strategies were used in a sec-
ond round of GLUE simulations. The probability of generating the
correct parameter sets was very low after the first round of GLUE
and the posterior distributions were not smooth.

In the second round of GLUE procedure, 10,000 new parameter
sets were generated based on the posterior distributions from the
first round. This procedure ensured that a large number parameter
sets contributed to the posterior distribution. A multivariate normal
distribution was again assumed for the second round based on the
pattern of posterior distribution of first round of GLUE. Then the
mean values, maximum likelihood parameters, and standard devia-
tions of the new posterior distributions were compared with the
‘‘true parameter set” values. The best likelihood function and meth-
od of combining likelihood values were selected as the combination
that had the closest mean values to the ‘‘true parameter set” and low-
est variances or uncertainties in the posterior distributions of model
input parameters and predicted yield and phenology dates.

3. Results and discussion

3.1. Comparison of likelihood combination methods

The mean values and standard deviations of the 12 posterior
distributions derived from four different likelihood functions and
three methods of combining likelihood values are summarized in
Table 3. The method of combining likelihood values had a very
strong influence on the corresponding posterior distributions,
d the highest likelihood value under L1C2 in the second round of GLUE during the
thetic measurements and simulations, respectively.
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particularly the standard deviations of parameter estimates. For
example, under combination methods C1 and C3, the standard
deviations of most input parameters did not decrease much rela-
tive to their prior values, and even increased in some cases. When
using the L1 likelihood function, the standard deviation of SDUL in-
creased to 0.113 under C1 and C3; in the prior distribution, it was
0.100. A similar trend occurred for the soil parameter SSAT. The
same results were observed for likelihood functions L2, L3, and
L4 when combinations C1 and C3 were used. These results show
that the combination methods C1 and C3 failed to efficiently re-
duce the parameter uncertainties after 30,000 runs.

The combination methods C1 and C3 failed to eliminate param-
eter sets that simultaneously had very good predictions for some
variables and very poor predictions for others. For example, one
parameter set had a likelihood value of 0.09 in predicting the dry
matter yield, but only 0.0001 in predicting the maturity date,
meaning that this parameter set was better in predicting yield
but was not adequate for predicting maturity date. Under C1 and
C3, the combined likelihood values of this parameter set were high
Fig. 2. Measured and simulated soil nitrate of Layer 1 (0–15 cm) with the parameter set t
the sweet corn season. The solid and dashed error bars show the standard deviations of

Fig. 3. Measured and simulated soil moisture of Layer 1 (0–15 cm) with the parameter
during the sweet corn season. The solid and dashed error bars show the standard devia
enough (0.0451 and 0.0636, respectively) to contribute to the
mean parameter estimate. However under C2, the combined likeli-
hood value of this parameter set was near zero and neglected when
deriving the posterior distribution. If this parameter set was se-
lected as a member of the posterior distribution parameter sets,
the ranges of parameters provided reasonably good corn yield pre-
dictions, but poor predictions of maturity dates. If many such
parameter sets were retained in the posterior distribution set,
the posterior distribution would be broad and the uncertainties
of parameters may not be significantly reduced relative to their
prior distributions, or they could even be increased as shown in
Table 3.

For combination method C2, the uncertainties of input parame-
ters were all dramatically reduced under all likelihood functions.
For example, the uncertainty in the estimated soil parameter SDUL
was reduced to 0.001 (Table 3). In addition, the mean value of SDUL
under L1C2 was 0.106, while the ‘‘true value” of SDUL was 0.104,
an error of only 0.002. The C2 method was the most discriminating
in eliminating unsatisfactory parameter sets. When C2 was used,
hat had the highest likelihood value under L1C2 in the second round of GLUE during
synthetic measurements and simulations, respectively.

set that had the highest likelihood value under L1C2 in the second round of GLUE
tions of synthetic measurements and simulations, respectively.
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posterior distribution differences were quite small regardless of
the likelihood function that was used. For example, the mean value
of the prior distribution of P1 was 225.1. The mean values of the
posterior distributions were 116.12, 117.16, 114.03, and 115.91
under L1, L2, L3, and L4, respectively. These results were not sur-
prising since the forms of these likelihood functions were all vari-
ants based on the probability density function of the normal
distribution. We did not test likelihood functions that are based
on other probability distributions in this study.

It was found that the combination method C2 was the most effi-
cient one among the three tested methods. However, it was diffi-
cult to determine which likelihood function was the best one in
estimating the parameter values. Thus, the methods L1C2, L2C2,
L3C2, and L4C2 were used in a second round of analysis, while
the other methods that used either C1 or C3 were eliminated to
simplify the study.

3.2. Comparison of likelihood functions

The mean values and standard deviations of posterior distribu-
tions obtained in the second round of GLUE analysis are summa-
rized in Table 4. The method L1C2 had the lowest average
absolute relative error (ARE) value of 5.2% between the mean val-
ues of posterior distribution and the initially selected ‘‘true param-
eter set”. In addition, the ARE values of input parameters were all
lower than 10% for the L1C2 method. Methods L4C2, L3C2, and
L2C2 ranked second through fourth, respectively, with average
ARE values of 5.3%, 6.5%, and 7.4%. Though, method L4C2 also
had a small average ARE value, it had higher standard deviation
(STDEV) values relative to L1C2. For example, the STDEV value
for P1 was only 0.266 under L1C2, but it was 1.581 under L4C2.
Similar results were observed for all other parameters except for
the soil parameter SDUL.

Under each likelihood function and combination method, the
parameter set that had the highest likelihood values had parameter
values close to the ‘‘true parameter set”. After two rounds of GLUE,
the uncertainties in parameter estimates were reduced to a very
low level. Thus it was concluded that the LlC2 method was the best
one for minimizing both ARE values and standard deviations of
posterior distributions, i.e. likelihood function L1 was the best
one among the four likelihood functions evaluated.

3.3. Comparison of model outputs

To further evaluate the reliability of the likelihood function and
method of combing likelihood values, model outputs from differ-
ent posterior distributions (Table 4) were also compared in Table
5. Outputs from L1C2 most precisely matched the synthetic field
observations with the lowest average ARE value of 2.85%. The esti-
mated anthesis and maturity dates (60 and 97 days) under L1C2
were within the range of synthetic observations presented Table
2. However, the estimated maturity dates under L2C2, L3C2, and
L4C2 were all greater than the 97 days that was the maximum gen-
erated observed maturity date listed in Table 2. The simulated
mean value of dry grain yield under L4C2 was also greater than
the maximum observation of yield in Table 2. Based on model out-
put comparisons, L1C2 produced outputs closest to the ‘‘true obser-
vations”. Since leaf TKN concentration, soil nitrate and moisture
concentration were both temporally and/or spatially variable, they
are compared in Figs. 1–3. In these figures, the parameter set that
had the highest likelihood value under L1C2 was used to simulate
the daily results shown by the solid line. The points are mean val-
ues of the generated synthetic data of leaf TKN, soil nitrate concen-
tration of layer 1 (0–15 cm), and soil moisture content of layer 1
(0–15 cm), which represent the measured means of field observa-
tions. The solid and dashed error bars about the points show mea-
surement and simulation standard deviations, respectively. In
general, the simulations using the highest likelihood parameters
identified using the L1C2 method matched the measurements very
well, except for sporadic outliers in leaf TKN and soil nitrate con-
centrations (Figs. 1 and 2).
4. Summary and conclusions

Although many likelihood functions and methods of likelihood
combination have been suggested in the literature, arbitrary selec-
tion of likelihood function is likely to produce unreliable parameter
estimates. In this study, it was found that the likelihood function
and method of combing likelihood values had a very strong influ-
ence on parameter estimation results for the CERES-Maize model.

The likelihood function that was directly derived from the prob-
ability density function of normal distribution (L1) performed best
in this study and produced model outputs from the posterior dis-
tribution that were closest to the ‘‘true measurements” obtained
from the initial ‘‘true parameter set”, with an average ARE value
of 2.85%. The likelihood combination method using the mathemat-
ical product (C2) efficiently reduced the uncertainties in posterior
parameter distributions. This method avoided the extreme random
parameter sets that simultaneously predicted some outputs very
well and other outputs very poorly. The methods based on mathe-
matical addition and mean square failed to efficiently reduce the
uncertainties, since they did not eliminate extreme parameter sets.
The best likelihood function and method of combining likelihood
values for this study was determined to be L1C2 (Eqs. (5) and
(12)). The approach for combining likelihood values from different
types of measurements was more important than the choice of
likelihood function in this study. Although these results are specific
to the data used to estimate the parameters and the model that we
used, our study clearly demonstrated the need to avoid using arbi-
trary relationships as criteria for estimating model parameters.
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