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Summary. Traditional lot quality assurance sampling (LQAS) methods require simple random
sampling to guarantee valid results.However, cluster sampling has been proposed to reduce the
number of random starting points.This study uses simulations to examine the classification error
of two such designs, a 67�3 (67 clusters of three observations) and a 33�6 (33 clusters of six
observations) sampling scheme to assess the prevalence of global acute malnutrition (GAM).
Further, we explore the use of a 67 � 3 sequential sampling scheme for LQAS classification
of GAM prevalence. Results indicate that, for independent clusters with moderate intracluster
correlation for the GAM outcome, the three sampling designs maintain approximate validity for
LQAS analysis. Sequential sampling can substantially reduce the average sample size that is
required for data collection.The presence of intercluster correlation can impact dramatically the
classification error that is associated with LQAS analysis.

Keywords: Acute malnutrition; Emergency; Lot quality assurance sampling; Sequential
sampling; Wasting

1. Introduction

In the last 20 years, development organizations working in international health have increasingly
adopted lot quality assurance sampling (LQAS) to assess health care parameters. Nearly all of
the 805 studies that were identified in a recent review of LQAS implemented between January
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1984 and December 2004 employed traditional LQAS sampling methods (Robertson, 2006), in
which simple random sampling (SRS) is used for data collection. The exceptions are studies in
which a two-stage LQAS design was combined with cluster sampling to assess neonatal tetanus
eradication (World Health Organization, 2001, 2002, 2004), and a study in which small clusters
instead of SRS were used to assess the prevalence of gobal acute malnutrition (GAM) by LQAS
analysis methods (Deitchler et al., 2007).

In the international health setting, small sample sizes (e.g. n= 19) have often been used for
LQAS assessment of service provision indicators (Valadez, et al. 2003). The small samples sizes
have meant that LQAS has been feasible for use by local managers (Valadez, 1991). However,
use of LQAS for assessment of anthropometric indicators requires large sample sizes due to the
increased precision that is needed for hypothesis testing. To use SRS with large sample sizes
means an increase in time and cost, as data collection for each observation in the sample can
require travel to a different site. Sampling observations in batches, or clusters, is an alternative
method which reduces the number of site visits that are needed to complete data collection. How-
ever, if the observations within each cluster are highly correlated with respect to the outcome
being assessed, cluster sampling leads to increased misclassification with the LQAS analysis
method. In contrast, cluster sampling could be a viable option if it does not undermine the
validity of the independence assumption for hypothesis testing, as required by LQAS.

Deitchler et al. (2007, 2008) field tested both a 67×3 and a 33×6 cluster design (67 clusters
of size 3 and 33 clusters of size 6 respectively) for LQAS assessment of GAM prevalence in the
Siraro woreda of Ethiopia in 2003 and in the administrative units of Fur Baranga and Habila in
West Darfur in 2005. The use of a 67×3 sequential sampling design was also investigated in the
Ethiopia study. In comparison with the 67×3 and 33×6 design, the sequential design allowed
for a reduction in the total sample size that was required to assess the prevalence of GAM
by LQAS analysis methods (Deitchler et al., 2007). Similar sequential designs have been used
for categorizing resistance of human immunodeficiency virus to drugs (Bennett et al., 2006).
However, those designs relied on SRS for validity.

The current study uses computer simulations to assess the validity of the small cluster
approach that was used to assess the prevalence of GAM. The principal sampling strategy
uses a cluster model to minimize the number of random sites to visit. We focus on a 67 × 3
and a 33 × 6 cluster design as these were the designs that were tested in Ethiopia and Sudan.
Additionally, we develop and investigate a second strategy which applies a sequential sampling
scheme to the 67 × 3 cluster design. Here, we use more robust statistical assumptions for the
sequential design than had been applied to the work in Ethiopia, to improve the design.

2. Methods

2.1. Traditional lot quality assurance sampling methods
LQAS inference uses the binomial approximation to the hypergeometric distribution to test
whether the prevalence of a parameter of interest is exhibited at a proportion that is greater
than or equal to some prespecified threshold P0. This is equivalent to the hypothesis test

H0 : P �P0 versus Ha : P<P0

where P is the true prevalence in the population and P0, the upper threshold, is the prevalence
level that the data are tested against. In the case of GAM, P0 represents an unacceptable level of
acute malnutrition in the population. It is chosen to reflect the prevalence at which a population
would be considered a priority for humanitarian intervention. The null hypothesis is rejected
if the number of individuals in the sample exhibiting acute malnutrition, s, is less than or equal
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to an a priori defined critical value d .s�d/. This critical value is often referred to as the deci-
sion rule in LQAS literature (Valadez, 1991). In addition, LQAS requires that we define a lower
threshold Pa. The lower threshold reflects the prevalence of GAM at which the population
would not be considered a priority intervention.

As with any hypothesis test, an α- and β-error are associated with LQAS. The α-error is
the highest probability that the null hypothesis is incorrectly rejected. In the case of GAM, this
would mean concluding that the assessment area does not have a high level of acute malnutrition
when in fact it does. This probability is controlled for at the upper threshold:

α�
d∑

i=0

n!
.n− i/! i!

Pi
0Qn−i

0 , Q0 =1−P0:

The β-error is the highest probability that we incorrectly fail to reject the null hypothesis. This
would mean concluding that the assessment area does have a high level of acute malnutrition
when in fact it does not. The β-error is controlled for at the lower threshold:

β �
n∑

i=d+1

n!
.n− i/! i!

Pi
aQn−i

a , Qa =1−Pa:

The critical value is chosen to approximate the desired α and β given the upper and lower
thresholds, and the sample size. In practice, it is difficult to attain the α- and β-errors exactly
owing to the discrete nature of the binomial distribution. Further, more than one critical value
can achieve the specified constraints. The actual error probabilities for a specific sample size,
and upper and lower thresholds, therefore depend on the critical value d that is chosen.

In this study, we investigate the upper and lower thresholds that were field tested in Ethiopia
and Sudan (Deitchler et al., 2007, 2008). Three couplets (i.e. upper–lower threshold pairs) are
investigated: the upper thresholds of 10%, 15% and 20%, and the respective lower thresholds of
5%, 10% and 15%. The 10%–5% and 15%–10% couplet are of primary concern as these are the
benchmarks that are most commonly used by humanitarian agencies to assess the severity of
GAM prevalence (Food and Agriculture Organization and Food Security Analysis Unit, 2006).
The 20%–15% couplet is of secondary consideration as prevalences of GAM above 20% are
fairly rare, even in emergency settings (Médecins sans Frontières, 1995).

For each upper and lower threshold couplet, we determined the critical value subject to the
constraints of an α-error of approximately 0.10 and a β-error of approximately 0.20 for samples

Table 1. LQAS α- and β-errors, and critical values for samples sizes 198 and
201 for three upper and lower threshold couplets assuming SRS

Sample size Results for the following threshold pairs:

10%–5% 15%–10% 20%–15%

d α β d α β d α β

201 12 0.031 0.208 22 0.061 0.279 32 0.085 0.315
13 0.054 0.134 23 0.091 0.209 33 0.117 0.250
14 0.089 0.081 24 0.131 0.151 34 0.157 0.193

198 12 0.035 0.194 22 0.072 0.255 32 0.101 0.283
13 0.062 0.123 23 0.106 0.188 33 0.138 0.221
14 0.101 0.073 24 0.150 0.134 34 0.183 0.169
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Table 2. Rejection (r ) and acceptance (a) rules for the 67 � 3
sequential design for three upper and lower threshold couplets
assuming complete independence†

Stage Results for the following couplets (P0=Pa):

10%–5% 15%–10% 20%–15%

r a r a r a

1 ND 3 ND 4 ND 5
2 ND 3 ND 5 ND 6
3 ND 3 ND 5 ND 7
4 ND 3 ND 5 ND 7
5 ND 4 ND 6 ND 8
6 ND 4 ND 6 ND 8
7 ND 4 ND 6 ND 9
8 ND 4 ND 7 ND 9
9 ND 4 ND 7 ND 10

10 ND 5 ND 8 ND 10
11 ND 5 ND 8 ND 11
12 ND 5 ND 8 0 11
13 ND 5 ND 9 0 12
14 ND 6 ND 9 1 12
15 0 6 ND 9 1 13
16 0 6 ND 10 2 13
17 0 6 0 10 2 14
18 0 6 0 11 3 14
19 1 7 1 11 3 15
20 1 7 1 11 4 15
21 1 7 1 12 4 16
22 1 7 2 12 5 16
23 1 8 2 12 6 17
24 2 8 2 13 6 17
25 2 8 3 13 7 18
26 2 8 3 14 7 19
27 2 8 4 14 8 19
28 2 9 4 14 8 20
29 3 9 4 15 9 20
30 3 9 5 15 9 21
31 3 9 5 15 10 21
32 3 9 5 16 10 22
33 4 10 6 16 11 22
34 4 10 6 16 11 23
35 4 10 6 17 12 23
36 4 10 7 17 12 24
37 4 11 7 18 13 24
38 5 11 8 18 13 25
39 5 11 8 18 14 25
40 5 11 8 19 14 26
41 5 11 9 19 15 26
42 6 12 9 19 15 27
43 6 12 9 20 16 27
44 6 12 10 20 16 28
45 6 12 10 21 17 28
46 6 13 11 21 18 29
47 7 13 11 21 18 30
48 7 13 11 22 19 30

(continued)
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Table 2 (continued )

Stage Results for the following couplets (P0=Pa):

10%–5% 15%–10% 20%–15%

r a r a r a

49 7 13 12 22 19 31
50 7 13 12 22 20 31
51 7 14 12 23 20 32
52 8 14 13 23 21 32
53 8 14 13 24 21 33
54 8 14 14 24 22 33
55 8 14 14 24 22 34
56 9 15 14 25 23 34
57 9 15 15 25 23 35
58 9 15 15 25 24 35
59 9 15 15 26 24 36
60 9 16 16 26 25 36
61 10 16 16 26 25 37
62 10 16 16 27 26 37
63 10 16 17 27 26 38
64 10 16 17 28 27 38
65 11 17 18 28 27 39
66 11 17 18 28 28 39
67 14 15 23 24 34 35

†ND signifies that no decision is made and sampling continues.

of sizes 198 .33 × 6/ and 201 .67 × 3/. Table 1 gives the sample size, critical value and associ-
ated α- and β-errors for each upper and lower threshold couplet when traditional SRS is used
for data collection. For the 10%–5% couplet, a critical value of 13 meets the constraints of
α�0:10 and β �0:20 for both sample sizes. For the 15%–10% couplet, the desired error limits
are approximately maintained for a critical value of 23. For the 20%–15% couplet, no critical
value attains or closely approximates the desired α- and β-constraints for samples of size 198
and 201. The critical value 33 minimizes the total error for a sample of size 198 and the critical
value 34 minimizes the total error for a sample of size 201. We chose to use the critical value 33
for this couplet, with a corresponding α of 0.138 and β of 0.221.

2.2. Lot quality assurance sampling methods for sequential cluster designs
In this section we investigate a sequential cluster design to test the same three null hypotheses as
above. The sequential cluster design differs from traditional LQAS as a decision can be made to
reject or accept the null hypothesis after each individual cluster has been observed. In a k ×m

sequential sampling design, there are at most k stages of sampling. At each stage, m sampling
elements are observed for a maximum of n possible observations. At the ith stage of sampling,
we define a rejection rule ri, an acceptance rule ai and the cumulative number of outcomes, si

(in our application, an outcome is a child exhibiting GAM). If si �ai, then we conclude that the
prevalence of GAM is greater than or equal to P0, and sampling stops. Likewise, if si � ri, then
we conclude that the prevalence is less than P0, and sampling stops. Otherwise, if ri < si < ai,
sampling proceeds to the next stage. If no decision is made by the time that the final (kth) stage
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of sampling is reached, then a decision is made to reject if sn � .an + rn/=2 and to accept if
sn >.an + rn/=2.

Wald outlined the calculation of LQAS critical values at each stage of a sequential de-
sign applied to observations that are selected by SRS (Wald, 1947). These critical values are
linear in the individual observations. We adapt this theory to accommodate clusters of size
m .m>1/, under the assumption that observations within each cluster are independent. Namely,
define

ri = log{.1−β/=α}+mi log.Q0=Qa/

log.PaQ0=P0Qa/
,

ai = log{β=.1−α/}+mi log.Q0=Qa/

log.PaQ0=P0Qa/
,

where α and β refer to the target classification errors. These critical values are linear in the
sampling stage and thus reflect a cluster sampling design.

One of the benefits of sequential designs is the potential for reduction of the overall sample
size that is required for data collection. With respect to the outcome of acute malnutrition, a
reduction in sample size could lead to a more rapid response to an emergency situation. The
average sample number ASN, or the average number of clusters that are sampled to reject or
accept the null hypothesis, characterizes this reduction. The average sample size is equal to the
number of sampling elements per cluster times ASN (m ASN) and is given by the formula

ASN=
⌈

k∑
i=1

i{Pr(reject at stage i/+ Pr(accept at stage i/}
⌉

,

where f.x/=�.·/� is the next largest integer function (Aroian, 1976).
The Wald critical values rely on the assumption that the number of possible observations is

unbounded. However, in virtually all applications, this is not so. When the number of possible
observations is bounded, the design is said to be truncated. The use of Wald critical values in
truncated sequential designs does not generally yield the appropriate α and β (Wald, 1947).
Aroian (1965, 1976) suggested treating a sequential sample as a random walk to calculate the
classification error for a truncated design directly. We used Aroian’s direct method to calculate
the true classification error for a range of sequential designs varied over the parameter space of
α and β to arrive within the desired targets of classification error.

Here we investigate a 67×3 sequential sampling design with application to the three upper–
lower threshold couplets of interest. In terms of the above notation, k =67, m=3, n=201 and
the upper bound for ASN is 67. For each upper and lower threshold couplet, we determine the
acceptance and rejection rules by using Wald theory. We calculated critical values for a range of
α- and β-errors around the target levels of 0.10 and 0.20 respectively. The final critical values that
are chosen are those that yield the true α and β nearest to the desired levels as calculated by using
the direct method. For both the 15%–10% and 20%–15% couplets, we could not find a design
that yielded the desired α- and β-targets. For these couplets we selected the design that jointly
minimized the α- and β-errors. For the 10%–5% couplet we expect an α of 0.10 and a β of 0.16.
For the 15%–10% couplet, we expect an α of 0.10 and a β of 0.24. And, for the 20%–15% couplet,
we expect an α of 0.17 and a β of 0.22. The critical values for each couplet are given in Table 2.

2.3. Simulation validation of cluster designs for lot quality assurance sampling analysis
One key assumption in LQAS theory is that SRS is used for data collection of binary outcomes
(Hoshaw-Woodard, 2001; Valadez, 1991). Cluster sampling often results in an intracluster cor-
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relation (correlation between subjects within the same cluster with respect to the outcome of
interest). For the cluster designs that are of concern here, intracluster correlation could result
from within-household correlation (i.e. correlation of GAM between multiple children sampled
in one household) or as correlation of GAM between multiple households sampled within the
same cluster (Deitchler et al., 2007). Intercluster correlation (correlation between subjects in
different clusters) is also possible although this is likely to be minimal for acute malnutrition
and can be assumed to be less than or equal to the intracluster correlation (Fenn et al., 2004;
Reed, 2000). Validation of the 67 × 3, 33 × 6 and sequential cluster design requires assessing
the effect of these potential correlations on the α- and β-errors that are associated with LQAS
hypothesis testing.

For the cluster sampling techniques that are investigated here, we assume that intracluster
correlation is homogeneous and non-negative. Intercluster correlation is also assumed to be
homogeneous and non-negative, and less than or equal to the intracluster correlation. This
study confines the investigation to the intercluster and intracluster correlations of 0.00, 0.05,
0.10, 0.15, 0.20 and 0.25, because these provide a broad set of acceptable alternatives. Kalton’s
work on cluster sampling suggests that intracluster correlation is usually less than 0.15 for most
indicators (Kalton, 1983). The well-documented multiple causes of malnutrition along with the
age dependence vulnerability of children to acute malnutrition (Shrimpton et al., 2001; United
Nations Children’s Fund, 1990) further suggest that a low intracluster correlation is likely.
Moreover, a review of demographic and health surveys that were conducted in 46 developing
countries reported intracluster correlations of less than 0.10 for acute malnutrition in 90% of
the countries that were studied (Fenn et al., 2004) and intracluster correlations of less than 0.05

Table 3. Simulation results for the 67 � 3 and 33 � 6 designs: α- and β-errors for the
10%–5% couplet with varied intercluster and intracluster correlation and d = 13†

Correlation Results for the 67 × 3 design Results for the 33 × 6 design

Intercluster Intracluster α β α β

0.00 0.00 0.054 (0.002) 0.136 (0.003) 0.061 (0.002) 0.124 (0.003)
0.00 0.05 0.064 (0.002) 0.144 (0.004) 0.083 (0.003) 0.147 (0.004)
0.05 0.389 (0.005) 0.247 (0.004) 0.402 (0.005) 0.253 (0.004)
0.00 0.10 0.071 (0.003) 0.159 (0.004) 0.103 (0.003) 0.161 (0.004)
0.05 0.390 (0.005) 0.263 (0.004) 0.393 (0.005) 0.246 (0.004)
0.10 0.491 (0.005) 0.234 (0.004) 0.488 (0.005) 0.245 (0.004)
0.00 0.15 0.077 (0.003) 0.162 (0.004) 0.123 (0.003) 0.188 (0.004)
0.05 0.389 (0.005) 0.246 (0.004) 0.394 (0.005) 0.246 (0.004)
0.10 0.473 (0.005) 0.239 (0.004) 0.495 (0.005) 0.237 (0.004)
0.15 0.552 (0.005) 0.220 (0.004) 0.551 (0.005) 0.216 (0.004)
0.00 0.20 0.086 (0.003) 0.172 (0.004) 0.141 (0.003) 0.197 (0.004)
0.05 0.389 (0.005) 0.258 (0.004) 0.407 (0.005) 0.245 (0.004)
0.10 0.487 (0.005) 0.236 (0.004) 0.491 (0.005) 0.231 (0.004)
0.15 0.550 (0.005) 0.230 (0.004) 0.550 (0.005) 0.221 (0.004)
0.20 0.592 (0.005) 0.208 (0.004) 0.599 (0.005) 0.205 (0.004)
0.00 0.25 0.097 (0.003) 0.179 (0.004) 0.163 (0.004) 0.205 (0.004)
0.05 0.400 (0.005) 0.256 (0.004) 0.409 (0.005) 0.255 (0.004)
0.10 0.478 (0.005) 0.236 (0.004) 0.491 (0.005) 0.239 (0.004)
0.15 0.552 (0.005) 0.225 (0.004) 0.548 (0.005) 0.215 (0.004)
0.20 0.592 (0.005) 0.213 (0.004) 0.595 (0.005) 0.198 (0.004)
0.25 0.628 (0.005) 0.195 (0.004) 0.635 (0.005) 0.187 (0.004)

†Standard errors are given in parentheses.
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Table 4. Simulation results for the 67 � 3 and 33 � 6 designs: α- and β-errors for the
15%–10% couplet with varied intercluster and intracluster correlation and d = 23†

Correlation Results for the 67 × 3 design Results for the 33 × 6 design

Intercluster Intracluster α β α β

0.00 0.00 0.095 (0.003) 0.211 (0.004) 0.107 (0.003) 0.185 (0.004)
0.00 0.05 0.096 (0.003) 0.215 (0.004) 0.137 (0.003) 0.210 (0.004)
0.05 0.407 (0.005) 0.317 (0.005) 0.420 (0.005) 0.310 (0.005)
0.00 0.10 0.111 (0.003) 0.220 (0.004) 0.155 (0.004) 0.230 (0.004)
0.05 0.410 (0.005) 0.324 (0.005) 0.426 (0.005) 0.314 (0.005)
0.10 0.479 (0.005) 0.312 (0.005) 0.488 (0.005) 0.304 (0.005)
0.00 0.15 0.115 (0.003) 0.230 (0.004) 0.173 (0.004) 0.241 (0.004)
0.05 0.393 (0.005) 0.327 (0.005) 0.418 (0.005) 0.317 (0.005)
0.10 0.489 (0.005) 0.315 (0.005) 0.497 (0.005) 0.307 (0.005)
0.15 0.538 (0.005) 0.301 (0.005) 0.525 (0.005) 0.288 (0.005)
0.00 0.20 0.135 (0.003) 0.248 (0.005) 0.192 (0.004) 0.264 (0.004)
0.05 0.407 (0.005) 0.319 (0.005) 0.415 (0.005) 0.316 (0.005)
0.10 0.485 (0.005) 0.308 (0.005) 0.491 (0.005) 0.298 (0.005)
0.15 0.527 (0.005) 0.305 (0.005) 0.537 (0.005) 0.292 (0.005)
0.20 0.562 (0.005) 0.283 (0.005) 0.577 (0.005) 0.279 (0.004)
0.00 0.25 0.138 (0.003) 0.247 (0.004) 0.205 (0.004) 0.270 (0.004)
0.05 0.403 (0.005) 0.328 (0.005) 0.425 (0.005) 0.322 (0.005)
0.10 0.481 (0.005) 0.304 (0.005) 0.488 (0.005) 0.306 (0.005)
0.15 0.525 (0.005) 0.301 (0.005) 0.536 (0.005) 0.290 (0.005)
0.20 0.557 (0.005) 0.285 (0.005) 0.575 (0.005) 0.279 (0.004)
0.25 0.594 (0.005) 0.278 (0.004) 0.597 (0.005) 0.261 (0.004)

†Standard errors are given in parentheses.

were reported for GAM in field applications of the 67×3 and 33×6 designs in Sudan (Deitchler
et al., 2008). With these considerations in mind, we expect intracluster correlations using the
three cluster sampling schemes used here to be less than 0.05 in most field settings. Intracluster
correlation levels equal to and above 0.05 for GAM, although unlikely, are investigated in this
study to understand the effect of unusually high levels of intracluster correlation on LQAS
classification error for these designs.

2.4. Simulation methods
To reproduce the correlation structure arising from the 67 × 3 and 33 × 6 sampling schemes
and the 67×3 sequential sampling scheme, it is necessary to generate correlated binary vectors
D such that D ∼ .P,Σ/ where P is the n × 1 mean vector of Ps and Σ is the n × n variance–
covariance matrix describing the correlation structure. For each couplet, samples of size 201 and
198 were generated under the various intercluster and intracluster correlation constraints. This
procedure was repeated 10000 times for each couplet and intercluster–intracluster correlation
pair for each design. All simulations were performed by using the statistical package R version
2.6.0 (R Development Core Team, 2007). The simulation methodology is described in detail in
Appendix A.

3. Results

3.1. Cluster sampling strategy: the 67�3 and 33�6 designs
Tables 3–5 contain the results of the simulations for the 67×3 and 33×6 designs along with the
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Table 5. Simulation results for the 67 � 3 and 33 � 6 designs: α- and β-errors for the
20%–15% couplet with varied intercluster and intracluster correlation and d D33†

Correlation Results for the 67 × 3 design Results for the 33 × 6 design

Intercluster Intracluster α β α β

0.00 0.00 0.118 (0.003) 0.248 (0.004) 0.135 (0.003) 0.227 (0.004)
0.00 0.05 0.129 (0.003) 0.256 (0.004) 0.165 (0.004) 0.244 (0.004)
0.05 0.401 (0.005) 0.361 (0.005) 0.423 (0.005) 0.342 (0.005)
0.00 0.10 0.138 (0.003) 0.266 (0.004) 0.190 (0.004) 0.262 (0.004)
0.05 0.409 (0.005) 0.357 (0.005) 0.422 (0.005) 0.343 (0.005)
0.10 0.475 (0.005) 0.358 (0.005) 0.481 (0.005) 0.339 (0.005)
0.00 0.15 0.154 (0.004) 0.276 (0.004) 0.210 (0.004) 0.281 (0.004)
0.05 0.415 (0.005) 0.366 (0.005) 0.425 (0.005) 0.344 (0.005)
0.10 0.474 (0.005) 0.350 (0.005) 0.487 (0.005) 0.338 (0.005)
0.15 0.510 (0.005) 0.339 (0.005) 0.525 (0.005) 0.336 (0.005)
0.00 0.20 0.159 (0.004) 0.274 (0.004) 0.223 (0.004) 0.283 (0.005)
0.05 0.418 (0.005) 0.364 (0.005) 0.421 (0.005) 0.352 (0.005)
0.10 0.481 (0.005) 0.348 (0.005) 0.484 (0.005) 0.334 (0.005)
0.15 0.511 (0.005) 0.328 (0.005) 0.527 (0.005) 0.334 (0.005)
0.20 0.547 (0.005) 0.329 (0.005) 0.544 (0.005) 0.323 (0.005)
0.00 0.25 0.168 (0.004) 0.282 (0.004) 0.239 (0.004) 0.291 (0.005)
0.05 0.408 (0.005) 0.365 (0.005) 0.435 (0.005) 0.353 (0.005)
0.10 0.481 (0.005) 0.353 (0.005) 0.477 (0.005) 0.353 (0.005)
0.15 0.511 (0.005) 0.340 (0.005) 0.523 (0.005) 0.337 (0.005)
0.20 0.540 (0.005) 0.335 (0.005) 0.553 (0.005) 0.322 (0.005)
0.25 0.561 (0.005) 0.314 (0.005) 0.574 (0.005) 0.313 (0.005)

†Standard errors are given in parentheses.

estimated standard errors. As expected, those simulations with an intercluster and intracluster
correlation equal to 0 for GAM demonstrate α- and β-errors that are approximately equal to
the binomial α- and β-errors that are presented in Table 1, as this situation corresponds to SRS.

In the correlated samples, the least effect on α- and β-error occurs when the intercluster cor-
relation equals 0. For example, in the case of the 67 × 3 design, if the intercluster correlation
is equal to 0 and the intracluster correlation is less than or equal to 0.25, the 10%–5% couplet
maintains the desired error limits of α� 0:10 and β � 0:20 (Table 3). With intracluster correl-
ations less than 0.10 the 15%–10% couplet performs approximately within the desired error
limits (Table 4). Although the 20%–15% couplet has errors that are slightly above the desired
limits at this correlation level, these were expected from the outset as the targets were untenable
under SRS (Table 5).

In the case of the 33×6 design, assuming an intercluster correlation equal to 0, the 10%–5%
couplet conforms to the desired error limits of α�0:10 and β �0:20 for intracluster correlations
up to 0.10 (Table 3); the 15%–10% couplet conforms approximately to the desired error limits
when the intracluster correlation equals 0, and, as expected, the 20%–15% couplet does not
attain the desired performance (Tables 4 and 5).

In cases where both the intercluster and the intracluster correlation are greater than 0, there
is a substantial increase in the α-error for both the 67 × 3 and the 33 × 6 designs, though the
β-error is less affected. This result suggests that, when intercluster correlation is greater than 0,
larger samples may be required to attain the desired α- and β-levels. On use of random methods
for selection of clusters to sample, it is, however, reasonable to assume an intercluster correlation
equal to 0 for LQAS assessment of GAM prevalence with the 67×3 or 33×6 design.
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3.2. Sequential sampling strategy: the 67�3 sequential design
Table 6 shows the simulation results for the 67 ×3 sequential design. As expected, when inter-
cluster and intracluster correlations are equal to 0, the results closely approximate the α- and
β-errors that were calculated under SRS. Additionally, the least effect on the α- and β-errors
occurs in simulations where the intercluster correlation is equal to 0. Assuming an intercluster
correlation equal to 0 and an intracluster correlation as high as 0.25, the α-error is 0.16 or less
and the β-error is 0.25 or less for the 10%–5% couplet. For the 15%–10% couplet, the α- and
β-errors are 0.14 or less and 0.30 or less respectively. The errors for the 20%–15% couplet are
slightly higher with the α-error 0.211 or less and the β-error 0.284 or less.

For all simulated sequential samples, ASN is substantially less than the maximum of 67. For
the 10%–5% couplet, the maximum ASN is approximately 23 under the null hypothesis and 34
under the alternative (n=69 and n=102 respectively). For the 15%–10% couplet, the maximum
ASN is approximately 35 under the null hypothesis and 50 under the alternative (n= 105 and
n = 150 respectively) and, for the 20%–15% couplet, the maximum ASN is 40 under the null
hypothesis and 47 under the alternative (n=120 and n=141 respectively). This result suggests
that the 67×3 sequential design could be utilized to decrease the total number of clusters sam-
pled, and thus the overall sample size that is required for data collection. A slightly elevated
level of misclassification, beyond α � 0:10 and β � 0:20, would need to be acceptable for the
15%–10% and 20%–15% couplets but, in cases where uncorrelated clusters and a low intracluster
correlation can be assumed for GAM, the design may be appropriate to use.

4. Discussion

This study uses computer simulations to assess three cluster sampling schemes that were field
tested in Ethiopia to assess the prevalence of GAM by LQAS analysis methods (Deitchler et al.,
2007). The simulation results show that the 67 × 3 and 33 × 6 cluster designs conform to the
desired error limits of α�0:10 and β �0:20 for the 10%–5% and 15%–10% couplet at numerous
intracluster correlation levels when the intercluster correlation is equal to 0. It stands to reason
that the 67×3 design conforms to the desired α- and β-limits at higher intracluster correlation
levels than the 33 × 6 design for both the 10%–5% and 15%–10% couplet. For the 10%–5%
couplet, the 67×3 design maintains the desired error limits when the intercluster correlation is
0 and the intracluster correlation is as high as 0.25. For the 15%–10% couplet, the 67×3 design
maintains α and β approximately equal to 0.10 and 0.20 when the intercluster correlation is
equal to 0 and the intracluster correlation is less than 0.10. Therefore, when clusters can be
assumed independent and correlation within the clusters can be assumed to be less than 0.10,
the 67×3 design can be an effective method to reduce the number of sites that would otherwise
need to be visited by SRS of the same size. In cases where the clusters can be assumed indepen-
dent and correlation within the clusters less than 0.15, the 33×6 design can also be an effective
method for assessing the prevalence of GAM, allowing for LQAS inference within the desired
error limits for the 10%–5% couplet. To maintain the same error limits for the 15%–10% couplet
with the 33×6 design, there can be no intracluster correlation. Intuitively, we expect the 67×3
design to perform within the desired error limits at higher levels of intracluster correlation than
the 33×6 design, as smaller clusters would suffer less from intracluster correlation.

The simulation results for the 67 × 3 sequential design indicate a potential time advantage
over the 67×3 and 33×6 cluster designs because the total sample required for data collection
is likely to be smaller. However, notwithstanding two exceptions, the simulation results indicate
that the α- and β-errors for all intercluster and intracluster correlation levels, for each threshold
couplet, exceed the desired α- and β-limits of 0.10 and 0.20 respectively. Use of the sequen-
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tial design with these maximal sample sizes would therefore be recommended only when it is
acceptable to deviate slightly from the above-stated limits of α and β.

The results of this simulation study demonstrate that information about the intracluster
correlation of GAM is needed to use the 67×3, 33×6 and 67×3 sequential sampling designs
reliably for LQAS assessment of the prevalence of GAM. The review of demographic and health
surveys by Fenn et al. (2004) suggests that most field settings will have an acute malnutrition
intracluster correlation of less than 0.10, whereas the field application of the 67×3 and 33×6
designs in Sudan of Deitchler et al. (2008) suggests that an intracluster correlation of less than
0.05 is likely. These studies provide useful information about the plausible upper limit of intra-
cluster correlation for acute malnutrition. However, investigators rarely know in advance the
exact intracluster correlation that exists in a field setting where a malnutrition assessment will
be conducted. Until there is more clarity about the conditions in which the upper levels of 0.05–
0.10 intracluster correlation of GAM would be expected, or possibly exceeded, investigators
desiring strict adherence to the stated LQAS error limits of α�0:10 and β �0:20 may prefer to
err on the side of caution by using the better performing 67 × 3 design, whereas investigators
who require data rapidly may prefer instead to use the 67 × 3 sequential design. Finally, those
investigators seeking a balance between limited classification error and potential expediency of
data collection may find that the 33×6 design meets their data requirements best.

The results of this study support use of the cluster designs that were used in Ethiopia and
Sudan (Deitchler et al. 2007, 2008) for detecting threshold levels of GAM prevalence by LQAS
analysis methods. Further, the findings from this study provide useful information to investi-
gators who need to decide which design (i.e. a 67 × 3, 33 × 6 or 67 × 3 sequential design) best
suits their analytic needs, with respect to expediency of data collection, and desired limits of
classification error. The cluster sampling schemes that were analysed here offer both time effi-
cient and statistically valid alternatives to the conventional methodology for assessment of acute
malnutrition in emergency settings.
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Appendix A

This appendix details the methodology that was used for simulating binary random vectors with a correl-
ation structure that reflects that which we might expect when applying the 67×3 and 33×6 cluster designs.
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There are few discrete probabilistic distributions which easily lend themselves to simulation of correlated
binary observations. We outline a specific method for generating binary random vectors that is based on
truncation of multivariate normal random variables.

A.1. Simulation
For a k ×m cluster sample (k is the number of clusters and m is the size of each cluster for a total sample
of size n), it is necessary to generate clusters with specific intercluster and intracluster correlation subject
to the constraint that the intercluster correlation is less than or equal to the intracluster correlation. Let
τ 1 = τ111T + .1− τ1/I and τ 2 = τ211T, where 1 is an m×1 column vector of 1s and I is the m×m identity
matrix. Then the desired correlation structure A is a block diagonal matrix of dimension n×n with τ 1 on
the diagonal blocks and τ 2 on the off-diagonal blocks.

To achieve this structure for a binary random vector, first generate a realization Y from the multivariate
normal distribution of dimension n with mean equal to the zero vector and variance–covariance matrix
equal to the above-described correlation matrix A. Each component of the multivariate normal realization
Y (Yi, i=1, . . . , n) is marginally distributed as a normal random variable with mean 0 and unit variance,
and the correlation between any two components Yi and Yj is given by the .i, j/th entry of A.

To attain the binary sample with the desired correlation structure, let

Di =
{

1 if Yi �Φ−1.P/,
0 otherwise, for i=1, 2, . . . , n,

where Φ.·/ denotes the cumulative distribution function of the standard normal distribution and P is
chosen to reflect the prevalence of malnutrition (P = P0 when simulating under the null hypothesis and
P = Pa when simulating under the alternative hypothesis). Then Di is a Bernoulli random variable with
mean P{Yi �Φ−1.P/}= P for i = 1, . . . , n and D = .D1, D2, . . . , Dn/ is the resulting correlated sample of
binary outcomes.

The correlation between any two of the resulting binary components D and D′ is given by

corr.D, D′/=

∫ y′

−∞

∫ y

−∞
f.y, y′; τ / dy dy′ −P2

P.1−P/
.1/

where f.·/ is the probability density function of a bivariate normal distribution with mean 0 and variance–
covariance matrix given by I.1−τ /+11Tτ , where I is the 2×2 identity matrix and 1 is a 2×1 vector of 1s.
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,
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Fig. 1. Approximation of the Bernoulli correlation as a function of bivariate normal correlation and
prevalence: , P D0:05; -------, P D0:1; . . . . . . ., P D0:15; � - � - � -, P D0:2
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Table 7. Values of τ needed to simulate binary
outcomes with correlation ρ and mean P

Correlation ρ Values of τ for the following prevalences P:

0.05 0.10 0.15 0.20

0.05 0.177 0.131 0.110 0.098
0.10 0.305 0.242 0.210 0.191
0.15 0.407 0.339 0.301 0.277
0.20 0.493 0.424 0.385 0.359
0.25 0.568 0.501 0.462 0.435

The goal is to choose τ and P such that the resulting correlation is a specific value ρ. Define the function
ρ.P , τ /≡ corr.D, D′/. Fig. 1 plots ρ.P , τ / against τ for a range of P. Although no closed form solution to
the double integral exists in equation (1), numerical integration yields highly precise approximations and
can be implemented in many software packages. Here, numerical integration was performed by using the
mvtnorm library in R version 2.6.0.

This approximation is used to simulate binary outcomes with correlation ρ and mean P. For example,
to simulate binary outcomes with correlation ρ=0:05 and mean P =0:10 requires simulation in the mul-
tivariate normal with correlation τ = 0:131. Table 7 outlines the values of τ that were used to simulate
binary outcomes with correlation ρ and mean P in this study.
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