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EXPLORATORY DATA ANALYSIES. STATISTICA Base offers »
wide selection of methods for explorstory asalyses:

‘| practically all comenon, geoeral-porpose  descriptive  statistics
“waseny inciuding medisns, modes, quartiles, user-specified percestiles.
average and standard devistions, quartile ranges, cosfidence limits for

‘ errors), harmonic  means, goometric messs, a5 well a5 ey

specialized descriptive statistics and disgnostics, either for all cases or

voken down by one or more categarical (grouping) varishies. As with all modules of STATISTICA, & wide
variety of graphs wili aid explorstory snalyses, ¢.g., various types of box-and.whisker plots, histograns,
bivariste distribution (3D or categorized) histograms, 2D and 3D scatwrplots with marked subsets, noswsal.
half-normat, detrended probability plots, $-0 plots, P-P plots, ctc. A selection of wsts is available for fitting
the normal distribution o the data (via the Kolmogorov-Smirnov, Lillicfors, sawd Shapiro-Wilks” scus; facilities
for futing & wide varicty of other distribwtions are aiso availabic; sce also STATISTICA Procsss Anelysis; and

the section on filting in the Genplics section).

By-Growp Asslyses {Breakdowns). Practicaily all descriptive statistics a¢ well as sumswary graphs can be
computed for data that are caregorized (broken dows) by ose or more grouping varisbles. For cxample. with
just & few mouse clicks the user can break down the data by Gender snd Age sad revicw casegorived
histograms, box-and-whisker plots, normal probability plots, scatserpiots, eic. If mawe thes two categorical
variables are chosen, mascades of the respective graphs can be saomatically prodoced. Optiors & casgorize
by continuous varisbles are provided, e.g., you can request that » varisble be split into a requesexd number of
feervals, or use the on-line recode facility 10 custom-define the way in which the variabie will be recoded
{categorization options of practicaily unlimited complexity can be speeified st any poist and they can reference
relations involving all variables in the dataset). In addition, & specialized hicrarchical bwealodown procedure is
provided that allows the user 10 categorize the dats by up to six casegorical variables, sad compase 2 variety of
categorized graphs, descriptive statistics, and correlation owtrices for subgroups (the weer can isseyactively
request to ignore some factors in the complete breakdown table, and examine statistics for any saarginel tables).
Numerous formatting and labeling options sllow the user 1o produce publication-quality tables and reports with
long labels and descriptions of variablcs. Note that extremely large smalysis designs can be specified in the
breakdown peocedure (e.g., 100,000 groups for a single casegorization varisbic), and resalts inclade ol relevent
ANOVA seatistics (including the complete ANOVA table, tests of assamptions sach s the Levens and Brown-
Forsythe tests for homogeneity of vasiance, a selection of seven post-hoc tests, o1c.). As in all odwer modules of
STATISTICA, extended precision calculations (the "quadruple™ precision, where applicable) ave sund w provide
an unmaiched Jevel of accuracy (see the section on Precision). Bocmae of the imteractive matve of te
program, expiovstion of data is very easy. For example, explorssory graphs can be produced divectly from all
resuits Spresdsheets by pointing with the mouse to specific colls or ranges of cells. Casondes of even compiex
{e.g.. multipie categorized) graphs can be produced with a single-click of the souse and reviewexd in 2 slide-
show manner. In addition 10 numerous predefined siatistical graphs, countiess graplicsl vissslizations of raw
data, summary statistics, relations between statistics, as well as all breakdowns amd cmegorizations can be
cugtom-defined by the wer vis straightforward point-and-click facilities designed © reduce the necessary
number of mouse clicks. Al exploratory graphical techmiques (described in the section on Graphvics) are
integrated with statistics w facilitate graphical data analyses (c.g. via imtcractive omtlier remwoval, subset
extract the sclected data, o). See aiso the section on Block Smtietics,  below.
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ECORRELATIONS. A

comprehensive set of options
allows for the exploration of

| correlations and  partial
1| correlations between
i variables. First, practically
w: all common measures of
association can be computed,
" including Pearson r,
_ Spearman rank order R,
= Kendall rau (b, ¢). Gamea,
tetrachoric r, Phi, Cramer V,
contingency coefficient ¢,
Sommer's D, uncertaimy
« coefficients, part and partizl

correlations,
autocorrelations, various
distance  measures, atc.
{nonlincar TEZTEssions,
regressions for censored data
ard other  specialized
measures of correlations are available in Noniinear Estimation, Survival Analysis, and other racdules offered
in STATISTICA Advanced Linear/Non-Linear Modeis). Correlation matrices can be computed using casewise
(listwise) or pairwise deletion of missing data, or mean substitution. As in all other modules of STATISTICA,
extended precision calculations (the "quadruple™ precision, where applicable) are used to yield an vnmartched
level of accuracy (see the section on Precision). Like all other results in STATISTICA, correlation matrices are
displayed in Spreadsheets offering various formatting options (see below) and extensive facilities to visualize
numerical results; the user can "point to” a particular correlation in the Spreadsheet and choose to display a
variety of "graphical suramaries” of the coefficient (e.g., scatierplots with confidence intervals, various 3D

bivariate distribution histograms, probability plots, efc.).

Brushing and outher detection. The extensive brushing facilities in the scatterplots aliow the user o
select/deselect individual points in the plot and assess their effect on the regression line (or other firted function

lines).

Display formats of numbers. A varicty of global display formats for correlations sre supported; significant
correlation coefficients can be sutomaticslly highlighted, each cell of the Spreadsheet can be expanded o
display » and p, or detailed results may be requested that include all descriptive statistics (pairwise means and
standard devistions, B weights, intercepts, efc.). Like all other numerical results, correiation matrices are
displayed in Spreadsheets offering the zoom option and interactively-controlled display formats (e.g., from +.4
10 +.4131089276410193); thus, large matrices can be compressed (via cither the zoom or format-width control
adjustable by dragging) to facilitate the visual search for coefficients which excoed s user-specified magnitude
or significance level (¢.g., the respective cells can be marked red in the Spreadsheet).

Scatterplot, scatterplot matrices, by-group analyses. As in all output selection dialogs, numerous global
graphics options are available 1o further study patterns of relationships between variables, e.g.. 2D and 3D
scatterplots (with or without case labels) designed to identify patterns of relations across subsets of cases or
series of variables. Correlation matrices can be compuied 25 categorized by grouping variables and visualized
via categorized scatierplots. Also "breakdowns of correlation matrices”™ can be generated (one matrix per subset
of data), displayed in queves of Spreadsheets, and saved as stacked correlation matrices (which can later be
used as input inlo the Struclural Equations Modeling and Path Analysis [SEPATH] module offered in
STATISTICA Advanced Linear/Non-Linear Modeis). An entire correlation matrix can be summarized in a
single graph via the Marrix scanterplor option (of practically unlimited density); large scatterplot matrices can
then be reviewed interactively by "zooming in" on selected portions of the graph (or scrolling large graphs in
the zoom mode) [see the illustration]. Also, categorized scatterplot matrix plots can be generated (one matrix
plot for each subset of data). Alternatively, a mudriple-subset scatterplot matrix plot can be created where
specific subsets of data (e.g., defined by levels of a grouping variable or selection conditions of any
complexity) are marked with distinctive point markers. Various other graphical methods can be used two
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visualize matrices of correlations in search of global pattemns (¢.2., conow plots, non-smoothed swiaces. icons.
etc.). All of these operations require only & few mouse clicks and various shortouss are provided © samplify
selections of analyses; any mmmber of Spreadsheets and graphs can be displayod simultsneously on the scroen.
mhxgnmuwwwym;sﬂmmmm

ZARASIC STATISTICS FROM RESULYS SPREADSHEETS
(TABLES). STATISTICA is a single iograed analysis system that
presents all numerical resulis in spreadshect tables that are suitsbie
— T (without any further modification) for inpot im0 subsequent snalyses.
mﬁ "’ Thus, basic statistics {or any other statistical soalysis) can be computed
Wm“’ vt 5 for results tables from previous anelyses; for exampie, you could very

e p—— quickly compute & table of means for 2000 varisbies, and ncxt use this

"'"-:f E— "1 uble as an input daia file % farther snalyze the distribution of those

i eal i Rl . { means across the varisbles. Thus, basic statistics arc available st any

S e emearee time during your amalyses, and cam be applied W sny resss
spreadsheet.

Block Statistics. In addition 10 the detailed descriptive statistics that can be computed for every spresdsheet.
you can also highlight blocks of numbers in any spreadsheet, and produce basic descriptive statistics or graphs
for the respective subset of numbers only. For example, suppose you compused & results spreadsheet with
measures of central iendency for 2000 variables (e.g.. with Means, Modes, and Medisns, Geometric Means.
and Harmonic Means); you could highlight 2 block of, for example, 200 varisbles and dee Meass and Medians,
and then in a single operstion produce a multiple line graph of those wo measures across the subser of 200
varisbles. Statistical anafysis by blocks can be performed by row or by colwmn; for cxample, you could aiso
compute a multipie fine graph for a subset of variables across the different measares of cestral endency. To
summarize, the block statistics facilities aflow you to produce statistics and statisticsl graphs from values in
arbitrarily selected (highlighted) blocks of values in the cument datx spreadsheet or cutput Spreadsheet.

~]: interactive Probability Calculator is accessible from slf wolbers. Jt
o1 §  features 3 wide selection of distributions (incheding Besx, Camchy, Ohi-
gty square, Exponenticl, Extreme valne, F, Gawns, Laplace, Lognormad,
: Logistic, Parets, Rayleigh, 1 (Sindems) Weibnll, sod Z (Normsl)y.
imcractively (in-place) updsied graphs built imo the dialog (a plot of
the dewsity and distribution fonctions) allow the wer w0 visselly
explore distributions taking sdvariage of the flexible STATISTICA
Smart MicroScrolls which alow the weer 10 advance cither e las
eerpreE—— significant digit (press the LEFT-mouse-bovion) or next w0 the ey
significad  digit (press the RIGHT-wowseo-bution). Facilities e
Wﬁmm&,mmdmmw”mmm
calculator allows you w0 interactively explore the distributions {e.g., the respective probubilities depending on

shape prwmeters).
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5. . Ga-TESTS and Other Tests of Group Differences. T-tests for

et dependent and independent samples, as well ss single samples (testing
Z G means agsmst user-specified constants) can be computed, mubtivariate
Hotelling's 7 * tests are also available (see also ANOVA/MANOVA, and
GLM {General Linear Models) offered in STATISTICA Advanced
Linear/Non-Linear Models. Flexible options are provided 1o allow
comparisons between variables (e.g., treating the data in each column
of the input spreadshest as a separate sampie} nd coded groups {e.g.,
<+ if the data includes a categorical variabie such as Gender to identify
i group membership for each case). As with all procedures, extensive
diagnostics and graphics options are available from the results menus.
For example, for the r-test for independent samples, options are provided 10 compute r-tests with separate
variance estimates, Levene and Brown-Forsythe tests for homogeneity of variance. various box-and-whisker
piots, categorized histograms and probability plots, categorized scatterplots, etc. Other (more specialized) tests
of group differences are part of many modules (¢.g., Nonparametrice (below), Survival Anaiysis (available in
STATISTICA Advanced Linear/Non-Linear Models), Reliability/ftem Anslysis (available in STATISTICA
Mudiivariate Exploratory Techniques).

ZAFREQUENCY TABLES, CROSSTABULATION TABLES,
STUB-AND-BANNER TABLES, MULTIFLE RESPONSE
.. ANALYSIS, AND TABLES. Exiensive facilities are provided o
~+x tabulate continuous, categoricai, and multiple response variables, or
= multiple dichotomies. A wide variety of options are offered to control
- the layout and format of the tables. For exampie, for tables involving
>, multiple response variables or multiple dichotomies, marginal counts

' and percentages can be based on the total number of respondents or

; % *,( a&; &% responses, muiliple response variables can be processed in pairs, and
== s VAFiOUS Options are available for counting {or ignoring) missing data.
Frequency tables can also be computed based on user-defined logical
selection conditions {of any complexity, referencing any reistionships between variables in the dataset) that
assign cases 1o categories in the tabie. All tables can be exiensively customized to produce final (publication-
quality) reports. For exampile, unique "multi-way summary” tables can be produced with breakdown-style,
hicrarchical arrangements of factors, crosstabulation tables may report row, column, and total percentages in
each cell, Jong value labels can be used 10 describe the categories in the table, frequencies greater than a user-
defined cutoff can be highlighted in the table, eic. The program can display cumulstive and relative
frequencies, Logit- and Probit-transformed frequencies, normal expected frequencies (and the Kolmogorov-
Smirmov, Lilliefors, and Shapiro-Wilks' tests), expected and residual frequencies in crosstabuiations, etc.
Available statistical tests for crosstabulation tables include the Pearson, Maximum-Likelihood and Yates-
correcied Chi-squares, McNemar's Chi-square, the Fisher exact test (one- and two-tsiled), Phi, and the
tetrachoric r; additional available statistics include Kendsll's 3w (g, b), Gamroa, Spurman r. Sommer's D,
uncenainty coefficients, etc.

Graphs. Graphical options inclade simple, categorized (multiple), and 3D histograms, cross-section histograms
(for any "slices” of the one-, two-, or multi-way tabies), and many other graphs including a uniqoe “interaction
piot of frequencies™ that summarizes the frequencies for complex crosstabuietion tables (similsr to plots of
mezns in ANOVA). Cascades of even complex (e.g., multiple categorized, or interaction) graphs can be
interactively reviewed, Ses also the section on Block Statistics, above, and sections on Log-inear Anslysis
(available in STATISTICA Advanced Linear/Non-Linear Models)y ard Correspondence Anslysts (available in
STATISTICA Multivariate Exploratory Technigues).
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gy exponentisl, log. ex.), Ridge regression, with or without insercept
" (regression through the origin), snd weighted jeast squares wodels;
Mﬁmm“mn&ww
Models (GRM) module (cg. best subwet regression, mwitivariste
stepwise regression for multiple dependent varisbles, for models tha
& may include categorical factor cffocts; stistical sumwraries for
validation and prediction samples, costom hypotheses. exc.). The
Muitiple Regression modale will calculate s comprehensive set of statistics and exseaded disgnostics including
the complete regression table (with standard errors for B, Besa and intercept, R-square and adjussed R-square
for intercept and nos-intercept models, and ANOVA table for the regression). part ssd partial correlntion
Waison d staistic, Mahalanobis and Cook’s distances, deletex] residuals, confidence imorvals v prodiced
values, and many others.

Predicted and residunl valmes. The exiensive residusl and outlier analysis festarcs & large selection of plots,
inclading s wvaricty of scatierplots, hisiograms, normal snd balf-normal probebility ploss, detrended plots.
directly with the resulis Spresdshocts. Residual and predicted scores can be appended 10 the carese dea file. A
forecasting rowtine sllows the user w perform what-if analyses, and 10 interactively compuete predicsed scoves
basod on user-defined values of prediciors.

Bymmb*tmmﬁxm!ywmdawmh“&msh

transformations with graphs. An add-on package, STATISTICA Advanced Linear/Now -Linear Models, also
inciudes genersl wonlinear estimation modules {NonNinear Estimation, Generalised Linsar Models {GLT).
Generalized Additive Models (GAM), Partisl Loast Squares moviels (PLS) thet com et practically sny
user-defined nonlinexr model, including Logit, Probit, and others. The add-on alse incledes SEPATH. the
genexal Srrwctural Equation Modeling and Parh Analysis module, which aliows the secr % asslyar cxirewcly
large correlations, covariances, and moment matrices (for imercept modeds).

Nosparswesi:

Seatistics module features 8 comprebessive scloction of infievewtiel and
descriptive statistics incloding all consmon wats and some special
spplication procedures. Available siatistical procedwres include the
Wald-Wolfowitz rums test, Maon-Whiteey I wet (with exact
2 s probebilities [instead of the Z spprozimstions] for small saamples).
A weme Kolmogorov-Smirnov fests, Wilcoxon sweched peirs sest, Krwskal-
@W Wallis ANOVA by ranks, Modiss test, Sign wst, Frivdmen ANOVA
.~ by ranks, Cochran Q wst, McNemwr test, Kendall coefficiess of

sest, Chi-square wsts, V-aquare statistic, Phi Gawms, Sommer's J,
contingency cocfficients, and others. (Specialized nonparametric tests sad statistics e also part of many add-
on modules, ... Swvival Aralysis, STATISTICA Process Analysis, and others.) Al (rsnk crder) dests can
handie tied ranks and apply corrections for small a or tied renks. The program can hendle extremely larpe
snalysis designs. As in sll other modules of STATISTICA, all wsts arc imegrated with graphe (tha include
varions scatterplots, specialized box-and-whisker plots, line plots, lastograms sad meny other 2D and 3D

displays).



L ANOVA/MANOVA. The ANOVA/MANOVA module includes s subset of the functionality of the
General Linear Models module (part of the Advanced Linear/Non-Linear Models add-on), and can perform
univariate and multivariate analysis of variance of factorial designs with or without one repeated measures
varizble. For more complicated linear models with categorical and continuous predictor variables, random
effects, and muitiple repeated measures factors you need the General Linear Models module (stepwise and
best-subset options are available in the General Regression Models module). In the ANOVA/MANOVA
module, you can specify ail designs in the most straightforward, functional terms of actual variables and levels
(not in technical terms, €.g., by specifying matrices of dummy codes), and even less-cxperienced ANOVA
users can analyze very complex designs with STATISTICA. Like the General Linear Models module,
ANOVA/MANOVA provides three aliernative user interfaces for specifying designs: (1) A Design Wizard,
that will take vou siep-by-step through the process of specifying & design, (2) a simple dialog-based user-
interface that will allow you to specify designs by selecting variables, codes, levels, and any design options
from well-organized dialogs, and (3) a Syntax Editor for specifying designs and design options using keywords
and a common design syntax, Computational methods. The program will use, by default, the sigma restricied
parameterization for factorial designs, and apply the effective hypothesis approach (see Hocking, 19810} when
the design is unbalanced or incomplete. Type I, 11, 111, and IV hypotheses can also be computed, as can Type V
and Type VI hypotheses that will perform tests consistent with the typical analyses of fractional factorial
designs in industrial and quality-improvement applications (see also the description of the Experimental Design
modals). Results statisties. The ANOVA/MANOV A module is not limited in any of its computational routines
for reporting results, so the full suite of detailed analytic tools available in the General Linear Models module
is also available here (please see the dewiled description of the General Linear Models module for details);
results inclode sommary ANOVA tables, univariate amxl multivariate results for repeated measures factors with
more than 2 levels, the Greenbouse-Gieisser and Hoynh-Feldt adjostments, plots of interactions, detailed
descriptive statistics, detailed residual statistics, planned and post-hoc comparisons, testing of custom
hypotheses and custom error terms, detailed diagnostic statistics and plots (e.g., histogram of within-cell
residuals, homogeneity of variance tests, plots of means versus standard devistions, etc.).

P PCDISTRIBUTION FITTING. The Distribution Firting options
- allow the user to compare the distribution of a varisble with a wide
- variety of theoretical distributions. You may {it to the data the Nomwal,
: Rectangular, Exponential. Gamma, Logrormal, Chi-sguare, Weibull,
Gompertz, Binomial, Poisson, Geometric, or Bernoulli distribution.
¢ The fit can be evaluated via the Chi-square test or the Kolmogorov.
Smirnov one-sample test (the fitting paramesters can be controlled): the
. Lilliefors angd Shapiro-Wilks' tests are also supported {see above). In
(. addition, the fit of a particular hypothesized distribution © the
- cmpirical distrilation can be e¢valusted in customized histograms
(standard or cumulative) with overlaid selected functions; line and bar
graphs of expected and observed frequencies, discrepancies and other results ¢an be produced from the output
Spreadsheets. Other distribution fitting options are available in STATISTICA Process Analysis, where the user
can compute maximum-likelihood parameter estimates for the Beta, Exponential, Extreme Value (Type !,
Gumbel), Gamma, Log-Normal, Rayleigh, and Weibull distributions. Also included in that module are options
for automatically selecting and fitting the best distribution for the data, as well as options for general
distribution fitting by moments {via Johnson and Pearson curves). User-defined 2- and 3-dimensional functions
can also be plotted and overlaid on the graphs. The functions may reference a wide variety of distributions such
45 the Beta, Binomial Cauchy, Chi-square, Exponenticl, Extreme value, F, Gomma, Geometric, Laplace,
Logistic, Normal, Log-Normal, Pareto, Poisson, Rayleigh, t (Student), or Weibull distribution, as well as their
integrals and inverses. Additional facilities to fit predefined or user-defined functions of practically unlimited
complexity to the data are available in Nonlinear Estimation (available in STATISTICA Advanced Linear/Non-
Linear Models).
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ESTLE LTSI LG
Data Miner

comprehensiventss,
and ﬂexibtluydﬂwlmiﬁhmm

» Choosc from the largest selecrion of
sigoritlens. on the market (based on
the STATISTICA wxchnology) for
cummcm

and modeling;

o Access and process huge data sets in
remote databeses in-phlace; off-load

* Write predicied values,
classifications, classification probabilities, eic., computed from trained modeds disectly 10 an cxsemal
database; score very large databases using one or more deployed ssodels;

» Access buge data files on your local (deskiop) Windows compoter; ss specislized queries inso cassom
dats warchouses sre sometimes expensive (requiring the services of desigaated comseltants), it con
be more cost effective 1o download even huge databeses to your local maachine; suck data files can
then be processed with snsmaichied speed by STATISTICA Dasa Miner voutines;,

¢ Data mining project templates can be selected from menos; with only a few clicks of te mouse. you
czn apply even advanced methods such as mets-leaming techuigues (voting, bagging. €ic) 10 your
specific snalysis probiems;

* Integraie diverse methods and techaclogics into the data mining projoce, from guality comtrol charting
saud process capability analysis, Weibull analysis, power analysis, or Encar sad soulinesr modcis, w
advanced sutomated searches for neurs! network archisectures; all STATISTICA procedores can be
selected as podes for data mining projects, and no programming or costoms-development work is
required o use these procedures;

Graphicalfvisual data mining: All of STATISTICA’s unique and uomasched praphical capabilities e
svailsble for dats mining: choose from hundreds of graph types 0 vismbine date afier clewning,
shicing, or drilling down;

o Intuitive user interface and foll integration with STATISTICA's sward wisning solstices: you will be

ap-and-running in minoes;

» Complete integration imo StatSoft’s desitop (STATISTICA) sad Web (WebSTATISTICA) applications;
inkeractively expiore, drill down on, chart, erc., all intermedisse resulty;

» Organize resuits in reports, spreadsheets, graphs, eic., or poblish results on the Web:

o Access 10 STATISTICA s comprehensive libeary of analytic facilities;

» Update snalyses and results automatically whee the data change:

« Open architecture design. Fully integrate your own propriciary sigovithes sad methods or third-perty
sigocithme;

» Fally programmable and customizable system (using the industry standard langwages such s the buik-
in Visoal Basic, C++, CH, Java, eic.). Develop highly customized data mining sysesw specifically
txilored 10 your needs:

Aswomatically deploy solutions in seconds using beilt-in fools, or add swtometically gemersted

compuer code for deployment {e.g., in C++, PMML) 10 your ows programs.

Click hare for more informetion on the unique festares Of STATISTICA Dele Miner

Data Miner in the WebSTATISTICA Client-Server instaBiation,
The deskiop version of STATISTICA Data Miner is designed for the Windows enviromment. The Cliem-Sevver

STATISTICE ~ Dot Mining Tools s



version of STATISTICA Data Miner is platform independent on
the Client side and features an Intemet browser-based user
interface; the Server side works with all major Web server
operating systems {(e.g., IUNIX Apache) and Wintel server

compers.

» Seamless integration of desktop and WebSTATISTICA
data mining tools: design models on one platform
{desktop or WebSTATISTICA server), execuie on the
other; train models on one pletform (desktop or
WebSTATISTICA server) and deploy to the other
platform.

» Distributed processing and multi-threaded evaluation of
projects:  the program  will automatically take
advantage of multi-processor and/for multiple-server
architectures, fo evaluate models via multiple simulianeous processes (multithreading, distriboted
processing); hence the ability of WebSTATISTICA Data Miner instaliations to take full advantage of
such architectures provides tremendous flexibility for scaling the system to mine even extremely
large datsbases. _

» Full flexibility of WebSTATISTICA: analyze data in batch mode, receive notification by email when
the results are ready; share resolts in designated folders (repositories) with other stakeholders in the

: dats mining projects; efc.

« Integrate input data, stakeholders, analysts. and users of results of data mining projects from any
location around the world; WedSTATISTICA enables you to connect to data on one server {over the
Interpet}, share analyses with other data mining professionals world wide, and deploy solutions and
results o0 users in even the most remote locations (¢.8., 10 branch managers in small rural aress,
engineers on remote drilling platforms, ships en-rouie across oceans, etc.); as long a3 even slow
Internet access is available, you can include individuals in those locations in your data mining
project)

77 & Tdeal for training (teaching) data mining: provide participanis (students) with the option 1o annlyze data
from home or their office, wherever there is access to the Internet; allow professionals to complete
assignments at the time and place that most conveniently fits their schedules. WebSTATISTICA
allows all course or training participants hands-on experience with the most advanced data mining
iools available today!

Advanced Software Technology = Efficient and Elegant User Interface

STATISTICA snalysis "ohjects’’ and podes. At the heart of STATISTICA Data Miner is a set of over 300
highly optimized, efficient, and extremely fast STATISTICA procedures embedded in user-sciectable nodes,
which is used to specify the refations between the procedures (objects) ankd control the logic of the project (and
the "flow" of data). This flexible, customizable srchitecture delivers the full functionality of all stasistical and
analytic procedures to the data mining environment as self-contained analysis objects. Behind each node, and
accessible to advanced users of the STATISTICA Data Miner system, are simple scripts (aralysis obiccts
encoded in industry-standard Visual Basic) that serve as the “wrappers™ or glue for defining the flow of dana
through the project, while the actual numerical analyses are performed via the extremely fast analytic
procedures of STATISTICA. These objects, which can be nsed as the nodes for data cleaning and/or filtering,
ani for analyzing the data, aret organized in the Node Browser.
The nodes available in the node browser (and, hence, availabie to the data mining project) are:

e Nodes for dala inpit and data acguisition. Here you can create and stoge the scripts necessary to
connect to remole (protecied) data sources on a server. Of course, you can also analyze STATISTICA
data files or place holders for in-place processing of remote databases (see 1DP), in which case no
special nodes {scripts) have to be created.

» Nodes for data filtering, cleaning, verification, feature selection, and sub-sampling. These options are
essential to data mining, 1o detect and correct erroncous information that may bias final conclusions.

STATISTICA - Dala Mining Tesls 9



it

AMOng, cxample,

bundreds of thousands of possible predictors (see also Festurs Selection snd Vesiabie Fillering).
e Nodes for data analyses. These nodes contain the full fonctionslity of alf STATISTICA smalyses and

graphics capabilities; hundreds of procedures are available 10 address cssemtially all anaivtic neods

that can possibly arise in your data mindng project.

Creating the dats mining project. These nodes can simply be comnecied in the: data mining workspace.

The dats mining workspace is a structured, highly efficient, user-friendly dats ssalysis exvironment, where you
can move sroond and interconnect data, analyses, and results by simply dragging icons sad conmecting srrows.
You can simultancously open, modify, and run 35 many data mining workspaces a5 you ke and drag nodes
(objects) between workspaces and node browsers. The workspace area is pre-divided 0 make rooe for:

» Data acquisition. Here is where the data sources can be specified {¢.g., STATISTICA data files, place-holders
for in-place processing of data on remote servers, programs that gencrate dats prograsmaticslly, for me in
advanced modeling).

o  Dain preparation, cleaning,
transformation. The nodes n this
area will accept onc or more data
sources for input, and creste one or
more {filered, cleaned,

» Reports. This area will show the
vesuls of the  analyses.

Cresting a Duts Mining project is casy: first sclect s data source; second, apply sury dats preparstion, clesning,
or transformstion; third, counect the desired analyses o the clicaned deta; and, fomrth, review and/or pabtish the
results. Many users of STATISTICA Daia Miner will never noed 0 go beyond this sisple isseractive, "point and

click™ aser interface.
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Specifying complex models. The simple user interface - based on point-and-click selections from menus and
browsers -- will allow you 1o apply even very sdvanced methods. Several comprehensive and flexible project
“ternplates” can be selected to address common data mining tasks.
For example, in order to find a good model for predicting credit
risk of new clients based on historical data that includes various
potentially useful predictors, you could simply select the template
for the Advanced Comprehensive Regression Models project.

All you need to do next is connect your historical data, specify the
variables of interest, and “train® the project; thus, in just a few
seconds (select data file, select variables, select the arrow tool to
conmect the data), the program will automatically:

s Creale two samples for training and for cross-validation, to avoid over-fitting;

» Apply best subset lincar regression, standard regression trees algorithms, CHAID and exhaustive
CHAID, a 3-layer multilayer perceptron neural network, and a radial basis function neural network
to firkl a good model for predicting credit risk;

« Combine all responses into a meta-learner that picks the best model, or combines the predictions from
muijtiple models.

Afier applying these cutting-edge techniques for modeling lincar, nonlinear, or even chaotic relationships, you
are ready for deployment: simply connect the data source for the new date {new customers) to the Compute Best
Prediction From All Models node, and the program will automatically apply the fally trained models to derive

the best prediction possible.

Speed. The analysis nodes (objects) contain the full functionality of STATISTICA, encapsulated into nodes that
can further be customized using standard Visual Basic syntax. The actual analyses are performed via the highly
optimized STATISTICA analysis modules, which have been refined for almost two decades to deliver maximum
speed, capacity, and accuracy (see also Accuracy Benchmarks),

Large data sets. STATISTICA Daia Miner uses a number of technologies specificaily developed to optimize the
processing of large data sets, and it is designed to handle even the largest scale computational problems and
process very large databases. For example, data sets with over one million variables can be processed and
screened automatically (using a wide selection of methods) to scarch for best predictors or most relevant
varizbles (see #lso Feature Selection and Variable Filtering and Comparative parformance benchmarks |

using large duta sets).

Customizing analyses. The analyses or data clesningffiltering operstions implemented by the nodes of
STATISTICA Data Miner can further be customized by simply double-clicking on the respective icons: Every
icon contains the options to fully customize the respective operations; for example, clicking on 2 neural network
node will bring up 2 dialog (and dizlog bhelp) for customizing the specific analysis (o change the number of
iterations, number of layers in the network, the detai! of reported results, eic.).

Saving the project. The entire project (workspace) can be saved, along with all customization, intermediate
data sources, comments, eic. Routine analyses (e.g.. for regular updating of a mained complex set of models for
voted classification based on various methods) can be saved and later applied by clicking on a single button

("update™).

Technical Note: STATISTICA Date Miner Node Scripts. STATISTICA Data Miner’s computationzl routines
are extremely fast and highly optimized. For exampie, in the WebSTATISTICA Client-Server environment, the
program will automatically take advantage of multi-processor and/or multiple-server architectures (with proper
hardware support), [0 evalugte models via multiple simulianeous processes (muitithreading, distributed

processing). Moreover, the highly optimized routines for processing dats will outperform other software in
head-to-head comparisons (see the benchmarks at www.statsoft.com for details). Yet, advanced users will find
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it very easy to customize the system: each node in STATISTICA Data Miner comsisss of a stmderdised
STATISTICA Visnal Basic script (that calls the respoctive STATISTICA procedures), with scoess 310 addisionsl
functions 1o provide the user intexface 0 further costomize aralyses. It may never be secestary w0 modify or
customize these scripts; however, if your inhouse IT department or consalitants wast %0 issert proprictary
algorithuns into STATISTICA Dain Miner, this can very easily be acoomplished. Any wember of proprictwy or
highly customized numeric operations could be performed inside the script, 10 change practically »ll aspects of
the data, or o apply any of the thousands of smalytic functions available in form of sisaple fanction calls that
can be made from C++ or STATISTICA Vismal Basic. This general open archisectore of STATISTICA D
Miner provides numerous vmique (1o dats mining software) advantages (also further elaborsted in the section on
Unigue Festures).

s Each node can handle multiple data sources on input, and multiple dats sources on owipes; identical
operstions ¢an be applied to multiple dats sources via 2 single node.

+ A data source can be mapped into x database that does not need 10 actally (physicaily) reside on the
machine nmning STATISTICA Data Miner, nor does it have 10 be copied; this is extremely impoross
for the processing of large data sets, as they comsponly occwr in dete mining (see IOF iechaology).

* You can perform operations within snd between dats sourves; for exsmple, you could merge date in
different remote datsbuses into a single dats file, for fiwther processing with STAYISTICA Dem
Miner analytic nodes.

s Visual Basic itsclf is » simple, object-oricoted language, available for most indwsary-stemded
application programs; there is & virnally limitless supply of programming resomces, talemiod and
experienced programmers, and ready-to-use thind-party spplications thet cam be isscprawed with
STATISTICA Data Miner. Likewise, STATISTICA Date Miner con be imegraod with ofwer
applications; for example, © automatically deliver results %0 the Web or cxasil, or 10 expost ressles
it othey applications. Also, a fully Web-based version of STATISTICA Duss Miner, porsered by
WebSTATISTICA is available.

o STATISTICA’s macro recording faciities will swomaticslly recond imweractive anslyses: these
recordings can essily be converted into scripts for custom aodes.

s Where applicable, STATISTICA's analyses contsin optiont for geaerating STATISTICA Viswal Basic
code for depioyment (e.g., of trained neural networks); those scripts can be directly meed in scripss
for custom deployment nodes.

Deploying sobations. The results of snalyses via STATISTICA Dasa Miner cam be deployed {applied &5 new dats
or inside other susomated data processing sysiems) in severs! ways.

o Amtomatic deployment of models. Dats mining wmplses with doploymest for standend types of
analyses can be chosen as options from pull-down menus: selact & template, cossnct traiming deta
estiminie models, and you are ready @ spply the best solution (average solution, vosed solwtion, ¢x.)
1o new dats; the end user only necids o connect new deta 10 the deployment aoile 0 Compaie

& PMML-based rapid deployment of predictive models. The Ropid Deployment of Predictive Models
models; in fact, it is very difficolt © “beat™ the performence {(speed of computations) of this wol.
even if you weve 10 write your own compiled Ci+ code, based on ihe (C, Ci+, or CB) deployment
code genersted by the respective models. The Rapid Deployment of Predictive Models optioss
allows you 1© losd oae or more PMML files with deploymest information, aad 1 compets yery
quickly (in a single pass through the dats) predictions for Iarge nwesbers of cbeervations (for owe or
more models). PMML (Predictive Models Markop Language) files can be generated from practically
all amalytic procedures for predictive dats mining (as well as the Generalived EM & k-Means Cluster
Analysis options). PMML. is an XML-based (Exwasible Markap Langeage) imdustry stwdard set of
syntax convention thet is perticularly well suived % allow sharing of deploymemt mformation i a
Client-Server srchitecture (2.8, via WebSTATISTICA).

o & Cv+, OF Vimol Basic code genmerator oprions. Code-geacrstor options are also available. for
regression (prediction of continvous varisbles), classification (prediction of categorical variables).
m&chmmgtypudpo&mmﬁrm?mmmc“m«?uﬂmmm

the prediction from tree-classification algorithms, linesr discriminest fooction analysis,
generalized linear modeis, neursl networks, MARSplines (rmltivarisse adsplive regression splines).
k-means or EM clustering solutions {unsupervised learning), o, The code geacrsted by these
options can guickly be integrated into custom programs for deployment. For example, the Visuml
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Basic code generated from STATISTICA analysis modules will seamlessly integrate into the
STATISTICA Data Miner architecture; based on the Visual Basic code generated by STATISTICA,
custom deployment nodes can be programmed in minutes, even by inexperienced

Progranuness.

Using STATISTICA Data Miner with Extremely Large Data Sets

The entire STA TISTICA family of products and STATISTICA Data Miner in pamcala:‘ are specifically optimized
1o efficiently process extremely large data sets (see Comparative parformance benchmarks using large data
sets), with millions of observations (records) and millions of variables (ficlds).

Processing databases that are larger than the local storage device, STATISTICA Data Miner {and optionally
other STATISTICA products) can process data in (remote) databases “in-place” via its highly optimized In-place
Database Processing (I0P) tachnology, which combines the processing resources of the database server and
the local computer to (a) perform the querics (using the database server CPU) while simultancously (b)
processing the feiched records “on-the-fly” on the local machine (using the local computer {client} CPU). This

way, databases that are larger than what could fit on the local machine can be processed, and significant 8

performance gains can be achieved by saving the time that would normally be required to first import the data
to the local device and only then process them locally. Practically all common database formats are supported,
and powerful tools are provided for defining the database connection {(query).

Processing databases with extremely large numbers of variables (fleids): The unigue feature selection
and variable screening facilities. When the number of varisbles in the input dats file is extremely iarge,
STATISTICA Dara Miner can avtomatically select subsets of variables from among even over a miliion of
variables (candidates) for predictive data mining. The extremely fast and efficienmt salgorithm will select
variables (features) that are likely to be the most relevant predictors in the current data set, without introducing

biases into subsequent model building for predictive data mining.

Processing data files with extremely large numbers of cases (records): Flexible and efficient random
sampling. STATISTICA products (including STATISTICA Data Miner) can process data files with practically
unlimited numbers of cases (records), and STATISTICA's data sccess procestures are highly optimized.
However, including all records in the anslyses when the number of records i extremely large is (2) entirely
unnecessary, (b} time consuming, and () often impractical or impossible (in extreme cases it could take hours
merely to read all records). In order o speed up the analytic process, STATISTICA Data Miner includes
sophisticated tools for drawing random or stratified random samples from huge data sets (databases). The user
can quickly extract simple or systematic random samples of appropriate sizes, with or without replacement.
from huge data sets (e.g., with many millions of records) for further analyses with sophisticated modeling tools
that may rexquire multiple passes through the data (e.g., neural networks, generalized linear models, etc.), The
random sub-sampling is based on STATISTICA's validated random number generator. Note that STATISTICA is
one of only few commercially available software products that have passed the most advanced and most
recognized tests for randomness (the DIEHARD sulte of tests).

Distributed processing and nmliti-threaded evsluation of projects in the Client-Server environment. The
WebSTATISTICA Client-Server mstallation of STATISTICA Date Miner offers additional advantages for
processing very large datasets. The program will automatically take advantage of multi-processor andior
multiple-server architectures (with proper hardware support), to evaluate models via muitiple simuitaneous
processes (multithreading, distributed processing). Hence, considering the decreasing costs for advanced server
hardware (with muitiple processors, or for muitiple-server installations), the ability of WebSTATISTICA Data
Miner instailations to take full advantage of such architectures provides tremendous flexibility for scaling the

system to mine cven extremnely large databases.

Data Mining Tools
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STATISTICA Data Miner offers the most comprehensive selection of statistical, exploratory, and viswalizstion
techniques available on the market, including leading edge and highly efficient newral nerwork/machine
learning and classification procedures. Also. the complese analytic fanctionality of STATISTICA is svailable for
data mining, cacapsulaied in over 300 nodes that can be selected in & structhwed mnd customizable Node

following five gencral "areas™ {each comprising of a set of STATISTICA modulcs, some of them offered only in

the STATISTICA Data Miner environment):

YeGemeral Skicer/Dicer and Dri-Down Explorer. A lasge oumber of analysis nodes are available for cressing
expkuratory graphs, 0o compute descriptive statistics, tebulstions, etc. These nodes can be consecsed %0 input
dats sources, or 10 all insermediate tesults. A specialized STATISTICA spplication module s available
(STATISTICA Deii-Down Explorer) for interactively exploring yowr data by deilling down om selecwd
variables, and categorvies or ranges of values in those variables. For exampie, you can drill-dows on Geader,
display the distribution for a variable Income for females only; next you could drill dows on # specific mcome
group, 10 explore (e.g., creste graphical summaries for) selected varisbles, for femmles in the sciected income
group only. A unique feature of STATISTICA Drill-Dowa Explorer is the sbility w seloct and deselect dril)-
down variables and catcgories in any order; 30 you could next desclect variable Gemder and thas display

graphs and suatistics for the selected Income group, bot pow for both males and fessales. Another
unique feature of the Drill-Down Explorer is its variety of categorizstion (“shicieg™) methods. Hence, the
STATISTICA Drill-Down Explorer offers tremendous flexibility for “slicing-and-dicing™ the dus. The
STATISTICA Drill-Down Explorer can be applied 10 mw data, danbase comnections for in-place processing of
data in remote databases, or to any intermediste result compoted in a STATISTICA Dotx Miner projecs. {A fully
imegrated OLAP application is also available (as an optional sdd-on module for emerprise instaliations), please
contact StatSoft for details.)

Y General Classifier. STATISTICA Dasa Miner offers the widest selection of wols 10 perform data mining
classification techmiques (and build related deploysbie models) available on the market, inchuding generalized
Hneer models {for binomial and multinomisl responses), classification fress. general clessificstion snd
regression tree modeling (GTrees), general CHAID moadele, ciuster anelysls techaiques (including “large
capacity” implementations of treeclustering as well as k-means and EM clustering wmethods with v-fold
crossvalidation options to determine automatically the best nmamber of clusters), and genessl discriminent
analysis models (inciuding best-subsct sclection of predictors). Also, the namerous sdvamcod sewral setwork
classifiers available in STATISTICA Neural Networks are available in STATISTICA Dess Mimer, snd can be
used in conjunction or competition with other classification iechniques.

o Depioyment. Where applicable, the program includes options for generating C, Cv+, CB, STATISTICA
Vil Basvic, or (XML-symax) PMML code for deploymeat of finel soletions in yowr camtom
programs. Models arc also smomatically available for deployment aficr traiming. 30 all you weed w

do is connect new data 1 the special deployment node 80 compute predicted classifications.

B Genernl Modcler/Muitivariate Explorer. STATISTICA Date Miner offiers the widest selection of wols 1
build deploysble deta mining models, based on linear, nounlincar, or meural network techaiques aad fools W
explore dats; the user can also build predictive modeis based on penersl multivariase sochwinues. In sumemry,
STATISTICA offers the full range of echniques, from Rneer and nonlinesr regression models, acvanced
genersitred iineer and generalized additive models, regression trees and CHAID, w advanced newrsl network
methods snd multivariate adaptive regression splines (MARSplines). STATISTICA Data Miner also inchudes
techniques that are pot usually found in data mining software, such as pertiel least squarss methods (for
featwe selection, W0 reduce large numbers of variables), suvvivel anelysie (for smlyring data containing
studies), structural aquetion modeling techniques (10 build and cvaluste confirmwiory bincar wmodels),
comrespondence snalysis (for amalyzing the structe of complex tables), fector snalysls and
multidimensional scaling (for exploring structure in large sumbers of varisbles), and many others.

» Deployment. Whese applicable, the program includes options for generating C, Co+, CF, STATISTICA
Visual Basic, or (XML-symax) PMML code for deployment of final solutions in yowr custom
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programs; models are also automatically available for deployment after training, so aill you need to
do is connect new datz to the special deployment node, 1o compute predictad values.

X General Forecaster. STATISTICA Data Miner includes a broad selection of traditional (i.e., non-neural
networks-based) forecasting techniques (including ARIMA, exponential smoothing with seasonal components,
Fourier spectral decomposition, seasenal decomposition, regression- and polynomial lags analysis, etc.), as
well as neural metwork methods for time series data. :

o Deployment. Forecasts can sutomatically be computed for multiple models in data mining projects, and
plotied in a single graph for comparative evaluation. For example, you can compute and compare
predictions from multiple ARIMA models, different methods for seasonal and non-seasonal
exponential smoothing, and the best time-series newral network architectures (after searching over

104 different architectures).

R General Neural Networks Expiorer. This tool contains the most comprehensive selection of neural network
methods avzilable on the market. This powerful component of STATISTICA Deata Miner offers iools o
approach virtually any data mining problem {including classification, hidden structure detection, and powerful
forecasting). One of the unigue features of the NN Explorer is the selection of intelligent problem solvers and
automatic wizards that use Astificial inteiligence methods to help you solve the most demanding problems
invalved in advanced NN analysis (such as selecting the best network architecture and the best subset of
variables). The Explorer offers the widest selection of cutting-edge NN architectures and procedures and highly
optimized algorithms that include: muitilayer perceptrons, radial basis function networks, probabilistic neural
networks, gencralized regression ncural networks, self-organizing feature maps, linear models, principal
components network, and cluster networks. Network ensembles of thése architectures can also be evaluated.
Estimation methods include back propagation, conjugate gradient decent, quasi-Newton, Levenberg-Marguardt,
quick propagation, delta-bar-delta, LVQ, pruning algorithms, and more; options are available for cross
validation, bootstrapping, subsampling, sensitivity analysis, etc.

» Deployment. STATISTICA Neursi Neiworks includes code generator options to produce C, C++, CH,
and STATISTICA Visual Basic code for one or more treined networks as well as ensembles of
networks. This code can be quickly incorporated into your own custorn deployment programs. In
addition, fully trained neural networks and ensembles of neural networks can be saved, 1o be applied
later for computing predicted responses or classifications for new data. A deployment node can be
dragged into the data miner workspace to perform prediction and predictive classification based on
trained newral petworks automatically: all you have 10 do (sfter the participating nerwork
architectures are trained} is connect the data for deployment.

Specialized Data Mining Modules

A large portion of analytic functionality used by STATISTICA Data Miner is driven by the computationat
engines of modules that are included in various other STATISTICA products (vefer w0 STATISTICA Products for
detailed information about those modules):

o Neural Networks techniques (the largest sclection of architecthures available, awtomatic problem solver
tools, advanced feature selection technigues).

s All STATISTICA Graphics Tools and interactive exploration/visuslization tools; Descriptive statistics,
breakdowns, and exploratory date analysis; Frequency Tables, Crosstabulations, Tables and Stub-
end-Banner Tables, Multiple Response Analysis; Nonpsrametric Statistics; Distribution Fitting;
Power Analysis Techniques.

» General Linear Models (GLM); General Regression Models (GRM); Generalized Linear Models
(GLZ); General Partial Least Squares Models (PLS); Varisnce Components and Mixed Mode!
ANOVA/ANCOVA; Survival/Failure Time Analysis; General Nonlinear Ectimation with Logit and
Probit Regression; Log-Linear Analysis of Frequency Tables; Time Series Analysis/Forecasting;
Structural Equation Modeling/Path Analysis (SEPATH).
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o Cluster Analysis Techniques; Factor Analysis; Princips) Componeats & Clessification Analysis;
» Quality Control Chants techniques, Process Analysis, snd Experimental Desiga (DOE) provodures.

However, several modules include selections of highly specialized data mining snd duta mining wmodeling
techniques that are offered only as part of STATISTICA Data Miner. The following soctions inchade techmica)
modules,

information about these

» Festure Selection snd Variable Fillering (for very large deln sels)

» Associstion Rules

» Interactive Drili-Down Explorsr

» Generalized EM & i-Means Clusier Anslysis

» Ganerslized Addiive Models (GGAM)

+ Ganersl Classification snd Regression Tress (GTrem)

= General CHAID {Chi-square Atomatic inleracition Delection) Models
» interaciive Classification and Regression Trees

+ Boosted Trees
e o Muitivariste Adeptive Regression Splines (Mer Spliines)

s Goodiesss of Fit Compuntations

» Rapid Deployment of Pradictive Models

BIFEATURE SELECTION AND VARIABLE FILTERING. This

million {7} ioput varisbles canm be scanned 10 sclect prediciors for
regression or classification. Specifically, the program includes seversl
mhMMM‘}Mth&Wm
informative in specific subsequent anslyses. The unique algoriths
implemented in the Feature Selection and Variable Filiering module will
select continpous and categporical predicuor variables which show a
relationship w0 the continuous ov categorical dependest variables of
inierest, regardiess of whether that relationship is simple (.2, linew) or
complex (nonlinear, non-monotone}. Hence, the program does not bias the
selection in favor of any perticular mode) that you may vse w find 5 final
best rule, equation, etc. for prediction or classification. Varions advaaced
feature selection options sre also availsble. This modale & pasticelarly
useful in conjunction with the in-place processing of detebases
{without the need 0 copy or impont the input data 10 the local machine).
when it can be used 0 scan huge lists of input variables, select oely
candidates that contxin informetion relevant to the analyses of amerest,
and sutomatically select those varisbles for further analyses with other
nodes in the dsta miner project. Sobsets of variables based on an initial
scan via this module can be submirted 0 further {post.) featore aelection
methods besed on meural networks, MAR Splines, finexr regression or
classifiers, or CHAID. These options allow STATISTICA Dasa Miner w
handle dats sets in the muliple gigs- and terabyie range (sce Compmsiive parformence heaciwesrks vsing

lorge dats sets).
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EElASSOCIATION RULES. This module contains a compiete implementation of the so-called A-priori
algorithm for detecting (“mining for”) association rules such as e

*customers who order product A, often also order product B or C" or
"employees who said positive things about initiative X, also |-
frequently complain about issue Y but are happy with issue Z7 (see
Agrawal and Swami, 1993; Agrawal and Srikant, 1994; Han and
Lakshmarmsn, 2001; ses also Witten and Frank, 2000). The
Association Rules module allows you o process rapidly huge data
sets for associations (reiationshdps), based on pre-defined "threshold”
values for detection. Specifically, the program will detect |
relationships or associstions between specific values of categorical
variables in large data sets. This is & common task in many data
mining projects applied 10 databases containing records of customer
transactions (e.g., items purchased by each customer), and also in the
arca of text mining. Like all modules of STATISTICA, data in
external databases can be processed by the STATISTICA
Association Rules module in-place (see IDP technology), so
the program is prepared to handle efficiently extremely large
analysis tasks.

The results can be dispiayed in tables, and also in unique 2D | #e
and 3D graphs where strong associations are highlighted by
thick lines connecting the respective items.

INTERACTIVE DRILL-DOWN EXPLORER. A first step of many data mining projects is to explore the
data interactively, to gain a first "impression” of the types of variables in the analyses, and their possible
relationships. The purpose of the Interacsive Drill-Down Explorer is to provide a combined graphical.
exploratory data analysis, and tabulation tool that will allow you to quickly review the distributions of variables
in the analyses, their relationships 10 other variables, and to identify the actual observations belonging to

specific subgroups in the data.
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How the Drili-Dows Explorer Works. The "drill.down™ metaphor within the deta mining comtext sumemarizes
the basic operation of this snsiytic process guite well: The program aliows you 10 select obwervations from
farger data sets by sclecting subgroups based on specific values or ranges of valees of pmticelar variables of
3m(¢&¢m&rma%wmﬂwWM} in & scoee you cam expose the “decper
layers® or "strata” in the dats by reviewing smalier and smaller subsets of cheervations selecsed by increasingly

compicx logical selection conditions.

Drilling "up.” The intevactive sature of the Drill Down Explorer aliows you not caly % deill down into the
m«mtmwxmmmwmmmmxuw
o "drill up™: At any time, you can sclect one of the previously specified variable (casepory) groops and de-
select it from the kst of drill-down conditions; while processing the data the progres will thes only select those
observations that fit the remaining logical (case) selection conditions, and update the resalis acoondagly.

Applications of the Interactive Drill-Down Explorer. The example shown carfier is very sisaple, exposing only
the basic functionality of the program. The real power of the STATISTICA bueractive Drill-Down Explover ties

in the vavious suxilisry results which can sstomatically be updsted daring e teractive drili-dowo/up
exploration: you can select a list of variabies for review, and compute for the sclectel cascs:

« Descriptive statistics and frequency tsblies;

+ Box-and-whiskers plots sumwesarizing the distribations of continnaows variables;

» All of the other statistical and graphical analyses available in STATISTICA by extracting the observations
belonging to the current subset;

For exsmple, you could review the types of purchases that customers made with differest demographic
charscteristics, study the effectivencss of certain drugs within different trestrment £rOups, ages, £iC., OF extract
likely customers for # new product from a database of previous cossomers bused on carefial stady of apperent

(market) segments exposed by the drill-down analysis.
Interactive Drill-Down Explorer and OLAP {On-Line Analytic Processing). On the srface, the operation of

the simplest aspect of the Inveractive Drili-Down Explorer (exploration of multidimensionsl wubles) is very
similar 10 the functionality offered by designated OLAP tools (such as those offered in the opticast OLAP add-



on module for STATISTICA Data Miner). OLAP tools allow users to quickly query a database to extract
observations and summary information about those observations taking advantage of the optimized OLAP
Server facilities offered for a specific database platform {e.g., Oracle, or MS SQL Server), and often providing
significant performance advantages over tools based on traditional (non-OLAP driven) query tools. However.
the man advantages STATISTICA  Imteractive  Drill-Down  Explorer over QOLAP  are:

(a) its tight integration with STATISTICA's flexible categorization tools and explorstory environment (the
analytic capabilities provided in the STATISTICA Interactive Drill-Down Explorer are much more
comprehensive and also general than typical OLAP tools, supporting flexible “drill up” operations, and allowing
you to quickly review custom, complex summary graphs, detailed descriptive statistics, etc.). and

(b} the fact that the STATISTICA Interactive Drill-Down Explorer is not limited 1o any particular database
platform and does not require & designated OLAFP Server (0 be present (e.g., it can operate directly on
STATISTICA data files). At the same time, by connecting to the STATISTICA application 3 (remote) database
for in-place processing, you can efficiently perform drill-down operations on any data source, regardiess of
whather or not designated OLAP tools are available on the server.

SSGENERALIZED EM & K-MEANS CLUSTER ANALYSIS. The STATISTICA Generalized EM
{Expectation Maximization) and k-Means Clustering module is an extension of the techniques available in the
general STATISTICA Cluster Analysis options, specifically designed to hamdle Iarge data sets and to allow
clastering of continuous and/or categorical variables, and to provide the functionality for complete unsupervised
lcamming (clustering) for pattern recognition, with all deployment options for predictive clustering. Various
cross-validation options are provided (including modified v-fold cross-validation options) that wili
automatically choose and eveluate & best final solution for the clustering problem: you do not need to specity
the number of clusters before an analysis; instead the program will use mromatic (cross-validation based)
methods to choose a best cluster solution {number of clusters} for you! The advanced EM clustering technique
available in this module is sometimes referred to as probability-based clustering or statistical clustering. The
program will cluster observations based on continuous and categorical variables, assuming different
distributions for the variables in the anzalyses (as specified by the user), Various cross-validstion options are
provided to ailow you to choose and evaluate 2 best final solution for the clustering problemDetailed output
summaries and graphs {e.g., distribution plots for EM clustering), and detsiled classification statistics are

for each observation. These methods are optimized to handle very large data sets, and various resulis
are provided to facilitate subsequent analyses using the assignment of observations to clusters, Options for
deploying cluster solutions (in €, C++, C#, Visual Basic, or XML syntax based PMML), for classifying new

observations, are 8lso incloded.

ﬁcmmuzsa ADDITIVE MODELS (GAM). The STATISTICA Generalized Additive Models facilities

- tation of methods developed and popularized by Hastie and Tibshirani (1990); additional
detailed tf;mn of these methods can also be found in Schimek (2000]. The program will handle continuous
and categorical predictor variables. Note that STATISTICA includes a comprehensive selection of methods for
fitting non-linear models to data, such as the Nonlinear Estimation module, Generalized Linear Models,

General Cisssification and Regression Treas, e,

Distributions and ok functions. The program allows the user to choose from a wide variety of distributions
for the dependemt variable, and link functions for the effects of the predictor variables on the dependent

variable:

Normal, Gamma, and Poisson distributions:
Log link: f(z} = log(z)
Inverse link: fiz)w 1z
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Idextity link: flz)=2
Binomial distribution:

Logit link: Rz)=log(z/(1-2))

Sestterplot smoother, The program uses the cubic spline smoother with uscr-defined degrees of freedom %
find an optimums transformation (function) of the predictor varisbles.

Results statistics. The program will report & comprehensive set of results statistics 10 aid in the evaluation of
the model-adequacy, model fit, and interpretation of results; specifically, reqults incliode: Gee iscration kissory for
the model fitting computstions, sumnary sististics incloding the overall R-aquare value (computed frove te
deviance statistic) model degrees of freedom, and desailed observations] statistics pertaining w0 the: prediced
response, residuals, and the smoothing of the predictor variables. Results graphs inclode plots of observed
responses vs. residusl responses, predicted values v, residuals, histograms of observed and residenl vabwes,
nonnal probebility plots of residual values, and partial residual plots for each predicsor, indicating the cubic
spline smoothing fit for the final solution; for binary respomses (e.g., logit-models) 5t charts can aiso be

anmmnongmnmmmmm;sa
compreheasive implementation of the methods described as CART® by Breissan, Fricdman, Olsien, sad Swone
{1984). However, the GTreer module contains variows exensions and options that are typically aot found in

provided 10 aliow you %o specify such designs; these sre analogoss 10 the methads provided in GLM (Genevel
Linear Mocdels), GLZ (Generalized Linser Models). GRM (Genersl Regression Models). GOA {Genaral
Dincriminent Anslysis Models), sd PLS (General Partial Lesst Squarss Modeis), ssd sre described in detas]
in the respective sections. In short, ANOVA/ANCOVA-like predicior designs can be specified via dialogs.
Wizads, or (design) command syniax;
moreover, the command Synax B [N
compatible across modules, so you can
quickly apply identical designs w0 very
different anslyses (eg.. compare the
quality of classification wsing GDA vs.
GTrees).

Tree pruming, selection, validation. The
program provides a Isrge wumber of
options for controlling the building of the
wree(s), the pruning of the troe(s), and the

X




selection of the best-fitting solution. For continuous dependent (criterion) variables, pruning of the tree can be
based on the variance, or on FACT-style pruning. For categorical dependent (criterion) variables, pruning of the
tree can be based on misclassification errors, variance, or FACT-style pruning. You can specify the maximum
number of nodes for the tree or the minimum # per node. Options are provided for validating the best decision
tree, using V-fold cross validation, or by applying the decision tree to new observations in a validation sample.
For categorical dependent (criterion) variables, i.¢., for classification problems, various measures can be chosen
to modify the algorithm and to evaluate the quality of the final classification tree: Options are provided to
specify user-defined prior classification probabilities and misclassification costs; goodness-of-fit measures

include the Gini measure, Chi-square, and G-Square.

Missing data and surrogate splits. Missing data values in the predictors can be handled by allowing the
program to determine splits for surrogate variables, i.e., veriables that are similar to the respective variable used

for a particular split (node).

ANOVA/ANCOVA-like designs. In addition to the traditional CART®-style analysis, you can combine
categorical and continuous predictor variables into ANOVA/ANCOVA-like designs and perform the analysis
using a design matrix for the predictors. This allows you to evaluate and compare complex predictor maodels,
and their efficacy for prediction and classification using various analytic techniques (e.g., General Linear
Models, Generalized Linear Models, General Discriminant Analysis Models, etc.).

Tree browser. In addition to simple summary tree graphs, you can display the results trees in intuitive
interactive tree-browsers that allow you to collapse or expand the nodes of the tree, and to quickly review the
most salient information regarding the » - '

respective tree node or classification. For T M

example, you can highlight (click on) a
particular node in the browser-panel and
immediately see the classificaton and
misclassification rates for that particular
node. The tree-browser provides a very
efficient and intuitive facility for reviewing
complex tree-structures, using methods that
are commonly used in windows-based

computer application to review :
hierarchically  structured  information. «= 313006000 153 Duta Boach 1 Tabke |
Multiple tree-browser can be displayed L e
simultaneously, containing the final tree, and 1 ] - B B wepnooy |
F smows |

different sub-trees pruned from the larger

tree, and by placing multiple browsers side-
by-side it is easy to compare different tree structures and sub-trees. The STATISTICA Tree Browser is an

important innovation to aid with the interpretation of complex decision trees.

Interactive trees. Options are also provided to review trees interactively, either by using STATISTICA Graphics
brushing tools or by placing large tree graphs into scrollable graphics windows where large graphs can be
inspected "behind” a smatller (scrollable) window.

Results statistics. The STATISTICA GTrees moduie pm\ndes a very large number of results opuons Summary
results for cach node — . - .

i e o o e e 3t e p—

are accessible, -- =
- Pe) . T— medeS-L
detailed statistics are O o 24 vt
computed pertaining —7 node 25 - MEDIEH
to classification, - wfxg.w
classification  costs, S rode§. HIOH
gain, and so on 1 ot 26 - HIH
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classificaion problems) for each node, detailed summary plots for contineous dopendent variables (e sormal
probability plots, scatserplots), and parallel coordinate plots for each aode, providing as efficiest summery of
patierns of vespomses for large classification problems. As in sl statistical procedures of STATISTICA, all
numerical results can be vsed as input for further analyses, allowing you ¥ quickly explore snd farther analyze
observations classified imo particular podes (e.g., you could nse the GTrees modale 0 produce an initial
classification of cases, and then use best-subset selection of variables in GDA w find additional varisbles dat

may aid in the further classification).

C, C++, STATISTICA Viswal Basic, SQL. Code geserators. The information comtsined in the final troe can be
quickly incorporated into your owa custom programs or datsbase queries via the aptionsl C, C++, STATISTICA
Visual Basic, or SQL query code pemerstor options. The STATISTICA Visual Basic will be gemcrated in form
that is particularfy weil suited for inclusion in custom nodes for STATISTICA Dasa Miner.

AMGENERAL CHAID (Chi-square Automatic Interaction Detection) MODELS. Like the: implcmensation
of Geneval Classification and Regression Trees GTrees in STATISTICA, the Generol Chi-sguare Awlomatic
Interaction Detection module provides not only 2 comprehensive implementation of the: ariginal technique, but
extends these methods © the anaiysis of ANOVA/ANCOVA - like designs.

Mmmawomm

categovical dependent {criterion) varisbles.
Numerous options sre svailable o control
the construction of hierarchical trees: the
user hag comtrol over the minimssn 2 per
node, maximean pumber of nodes, and
probabilitics for spliting and for merging
categories; the wer can a0 request
exhaustive searches for the best solution
{Ethw: CHAIDY. V-fold validation

Tree browser. Likemmymlnmmdummm&wmme

Resulis statistics. The STATISTICA General CHAID Models modale provides s very lwge nomber of results
classification, classification costs, and so0 on. Unique graphical sunwnsrics are siso availsble, including
histograms (for classification problems) for each node, detailed suommry plots for comtimoous dependent
variables (e.g., normal probability plots, scatterpiots), and parallel coordinate plots for exch node, providing sn



efficient summary of patterns of responses for large classification problems. As in all statistical procedures of
STATISTICA, all numerical results can be used as input for further anaiyses, allowing you to quickly explore
and further analyze observations classified into particular nodes (e.g., you could use the GTrees moduie 10
produce an initial classification of cases, and then use best-subset selection of variables in GDA to find

additional variables that may aid in the further classification).

ABINTERACTIVE CLASSIFICATION AND REGRESSION TREES. In addition to the modules for
automatic tree building (e.g., General Classification and Regression Trees, General CHAID models),
STATISTICA Data Miner also includes designated tools for building such trees interactively. You can choose
either the (binary) General Classification and Regression Trees method or the CHAID method for building the
{decision) tree, and at each step grow the tree either interactively (by choosing the splitting variable and
splitting criterion) or automatically. When growing trees interactively, you have full control over all aspects of
how to select and evaluate candidates for each split, how to categorize the range of values in predictors, etc. The
highly interactive tools available for this module allow you to grow and prune back trees to quickly evaluate the
quality of the tree for classification or regression prediction and to compute all auxiliary statistics at each stage
to fully explore the nature of each solution. This tool is extremely useful for predictive data mining as weil as
for exploratory data analysis (EDA), and includes the complete set of options for automatic deployment, for the
prediction or predicted classification of new observations (see also the description of these options in the
context of CHAID and the General Classification and Regression Trees modules).

wm TREES. The most recent research on
statisticai and machine learning algorithms suggests that for
some “difficult” estimation and prediction (predicted
classification) tasks, using successively boosted simple trees

can yield more accurate predictions than neural network |
architectures or complex single trees alone. STATISTICA Data ¥
Miner includes an advanced Boosted Trees module for ;.
applying this technique to predictive data mining tasks. You
have conirol over all aspects of the estimation procedure and {2
detailed summaries of each stage of the estimation procedures
are provided so that the progress over successive sieps can be
monitored and evaluated. The resuits include most of the §,,1 2.
standard summary statistics for classification and regression | **
computed by the General Classification and Regression Trees
module. Automatic methods for deployment of the final
boosted tree solution for classification or regression prediction are also provided.

7IMULTIVARIATE ADAPTIVE REGRESSION SPLINES (MAR Splines). The STATISTICA MAR
Splines (Multivariate Adaptive Regression Splines) module is based on a complete implementation of this
technique, as originally proposed by Friedman (1991; Multivariate Adaptive Regression Splines, Annals of
Statistics, 19, 1-141); in STATISTICA Data Miner, the MARSplines options have further been enhanced to
accommodate regression and classification problems, with continuous and categorical predictors.

The program, which in terms of its functionality can be considered a generalization and modification of
stepwise Multiple Regression and Classification and Regression Trees (GC&RT), is specifically designed
(optimized) for processing very large data sets. A large number of results options and extended diagnostics are
available to allow you to evaluate numerically and graphically the quality of the MAR Splines solution.

C/C++, CH, STATISTICA Visual Basic, XML syntax based PMML code generstors. The information
comtained in the model can be quickly incorporated into your own custom programs via the optional C/C++/CH,
STATISTICA Visual Basic, or {(XML-syntax based) PMML code generator options. STATISTICA Visual Basic
will be generated in a form that is particularly well suited for inclusion in custom nodes for STATISTICA Data
Miner. PMML. (Predictive Models Markup Language) files with depioyment information can be used with the
Rapid Deployment of Predictive Models options to compute predictions for large numbers of cases very
efficiently; PMML files are fully portable, and deployment information generated via the desktop version of
STATISTICA Data Miner can be used in WebSTATISTICA Data Miner (i.e., on the server side of Client-Server

installations), and vice versa.
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WGOODNESS OF FIT COMPUTATIONS. The
STATISTICA Goodness of Fir wodule will compute vaticos
goodness of fit statistics for cominuous and cmegorical
respoase variables (for regression and classification problems).
This module is specifically designed for daix mining
applications to be included in "competitive evaluation of
models” projects as a wol to choose the best solution. The
program uses as input the predicted values or classifications &
computed from any of the STATISTICA modules for regression and classification, sad cosmpuses a wide
selection of fit statistics as well a3 graphicel summaries for each fitted responee or classification. Goodness of
fit statistics for continuous responses inciude least squares deviation (LSD), average: devistion, relstive souaverd
error, relstive sbeolute error, and the comrelation coefficient. For classification problesss (for casegovical
response variables), the program will compute Chi-square, G-square (maximum kikelibhood clisquare), pevoens
disagreememt (misclassification rate), quadratic ioss, and information loss statistics.

Mnmmmmmmmmmmwmqmm
module allows you to load one or move PMML. (Predictive Models Markup Language) files with deploymens
information, snd 1o compute very quickly (in a single pass through the data) predictions for lape wambers of
observations {for one or more models). PMML. files can be genesated from peactically all modules for prodictive
data mining (a3 well as the Generalized EM & k-Means Cluster Analysis options). PMML is a XML -bused
(Extensible Markup Language) indusiry standard set of syntax convention that is particularfy well suied 10
allow sharing of deployment information in » Client-Server archisecture (¢, via WebSTATISTICA).

The Rapid Deploymery of Predictive Models options provide the fastest, most efficicnt methods for computing
predictions from fully trained models. All models are pre-programmed in generic form in & highly oprimized
compiled program; the PMML code only supplies the parsmeter estimates oic. for the folly treised modelks, 1
allow the Rapid Depicayment of Predictive Models progrsm 1 compute prodictions or prediceed classificanons

{or cluster assignments) in a single pass through the data.

o= Sy
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In fact, it is wery difficult o “best™ the
performance (speed of computations) of this tool,
even if you were 0 writc your own compiled
Co+ code, baved on the (C, C+v, or OF)
deployment code generated by the respective

Noie that the Rapid Deploywent of Predictive
Modely modale will also smomatically compete
sunynary statistics for each model, and if
obwwdvﬁmudmﬁmmmzmhﬂe,

Gains and Lift cherts for one or move
wodels {(overiaid lift and gain charis), for binary
or multinomial (multi-caiegory) classification
probiems.

The Clieni-Sexrver Version of STATISTICA Data Miner and Data Mining Via
WebSTATISTICA

1n the deskiop version of STATISTICA Data Miner, 3ll computations sse performed on the local comper, and
resources of other computers are usexd only in the case when the in-Place Dutsbass Processing DP) imerface
1o external databeses is established. IDP is a technology that reads data ssynchronously directly from resmose
database servers (using distribused processing if supporied by the server), and bypassing the need © “import™
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data and create a local copy of the data set. Records of data are retrieved and sent to the STATISTICA computer
asynchronously by the CPU of the database server, while STATISTICA simuitancously processes them using the

CPU of the local computer.

The Client-Server Architecture. When a Client-Server version of STATISTICA Data Miner is used, the local
computer drives only the user interface of Data Miner, and all cakulations are performed on the server. The
Client-Server architecture which uses advanced multithreading and distributed processing technology (see
below) and optionally scales to multipie servers which can work in parallel, offers obvious advantages when
your data mining projects are large (e.g., computationally intensive or involving processing of extremely large
data sets), and thus when they can be offloaded to the servers, freeing your local computer to perform other

jobs.
Multithreading, Distributed Processing Technology, Many additional advantages are offered by the specific
implementation of the Chient-Server architecture in STATISTICA Data Miner, which is based on the
WebSTATISTICA technology. The WebSTATISTICA platform is built on advanced distributed processing and
multithreading technology to support optimal management of large computationsl loads. This technology
. enables rapid processing of even very large and computationally intensive projects, taking full advantage of the
multiple CPUs on the server, or even multiple servers working in parallel. The illustration below shows a
project running on & quad processor server, along with
the server performance monitor demonstrating the full
utifization of the resources of all four CPUs executing in
the multithreading mode a single, computationally
intensive STATISTICA Daia Miner project. :

in addition, the WebSTATISTICA architecture defivers a
platform-independent, Web  browser-based  user
interfsce, and provides an ultimate, large enterprise-
level ability to manage projects or groups of users
“across the hall or across continents”.

WebSTATISTICA Date Miner User Interface. The

WebSTATISTICA implementation of STATISTICA Daia
Miner ailows users to design, modify, and edit data
mining projects on a client machine in 2 Web browser
interface that is essentially identical o that available for
the desktop instalation.

Therefore, the client side of the application (the "front
end”) can be run on any computer {(even a laptop) as
long as it is connected to the Internet. However, the

T
oty

actual computations and other operations performed on L i ﬂ,~ R ——

the data will remain on the (remote) server with its
usually more powerful processors and storage resowrces {and they will be managed using the optimized.
multithreading and distributed processing architecture of the system for maximum performance).

In essence, the user interface aspects of STATISTICA Data Miner can be run by one or multiple users from any
computer in the world (as jong as they are connected to the Internet, even by a slow connection), while the
server performs all computations and data operations, enforcing the proper security and access privileges
applicable 1o the respective projects and classes of users, as designed by the network administrator.
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F5 CLUSTER ANALYSIS. This module inchudes
comprehensive implementation of clustcring methods (-
53 § can process data from cither raw data files or mnices of

‘) distance measores. The user can cluster cases, varisbies, or
both based on 2 wide variety of distance measwes (inchuding
Euclidean, squared Euclidesn, City-block (Manhwttan),
Chebychev, Power distances, Peroent dissgrecment, and 1-r)
" s weighted and onweighied groog average or ceatroid, Ward's

method, and others). Matrices of digtances cam be seved for

further analysis with other modules of the STATISTICA sysiem. In k-mesns clustering, the weer has foll
control over the initial cluster centers. Extremely large analysis designs can be processed; for example,
hicrarchical {tree) joining can analyze matrices with over 1,000 variables, or with over 1 million
disunces. In sddition % the standard clusier analysis output, 2 comprebensive set of descriptive
statistics and extended diagnostics (e.g., the complese amalgamation schedule with colssion levels in
hicrarchical clhustering, the ANOVA wble in k-means clussering) is available. Cluster mesnbeysiip data
can be appended 10 the current data file for further processing. Graphics optioas in the Clxster Anadysis
module inclade customizable tree diagrnums, discrete contour-style two-way joining matrix plots, plots
of amalgamation schedules, plots of means in -means clustering, and many others.

Buck W Top

SEFACTOR ANALYSIS. The Factor Anslysiz modele
conlains & wide range of statistics and options, and provides »
comprehensive inplementation of fackr (sed bierarchical
factor) analytic techniques with extendod diagnostics and &
wide variety of analytic and explorstory graphs. It will perform
8| principal components, comemon, sad hieravchicsl {obbqgue)
i problems (e.g, with thousands of variables). Condirmatory
i-| factor analysis (as well ss path snaiysis) can alwo be performed
via the Structural Equation Modeling snd Puik Anslysis
{SEPATH) module Found in the sdd-on STATISTICA Advewond

ek W Yy

@ PRINCIPAL COMPONENTS & CLASSIFICATION ANALYSIS. STATISTICA alwo inciudes
a designated program for principal components sad cisssification analysis. The owtpat inchudes
cipenvaloes (regular, cumulative, relative), factor loadings, factor scores (which can be appeaded w0 the
inpet dats file, reviewed graphically as ions, and ineeyactively recoded), ssd & soeber of more
sechnical statistics and diagnostics. Available roations include Varimax, BEquissax, Quertissx,
Biquartimax (cither normalized or raw), and Obiique rotations. The factorial spece cas be plotied and
reviewed “shice by slice™ in either 2D or 3D scatierplots with labeled varishie-points; other inegrated
graphs inchade Scree ploss, various scatierplots, bar and fine graphs, and others. Afier 3 factor solwtion
is determined, the user can recaloulase (i.e., reconstract) the corvelation matrix. from the respective
number of factors 10 evaluate the fit of the factor model. Both raw data filos asd mairices of
correlations can be used as input. Confirmatory factor snalysis and other reimed anslyses can be
performed with the Structural Equation Modeling snd Paiit Anslysis (SEPATH) modole availsble in
STATISTICA Advaswed Linear/Non-Linear Models, where a desigontod Confirmasory Foactor Asolysis
Wigerd will guide you siep by step through the process of specifying the model.

EH Click hare 1 rend a reel-lile applicstion story using STATISTICA s Principsl Components
Anslysis 100ls.



Back o Top

ey THFCANONICAL CORRRLATION ANALYSIS. This
B module offers a comprehensive implementation of canonical
B & analysis procedures; it can process raw data files or correfation
atrices and it computes all of the standard canonical
correlation statistics (including eigenvectors, eigenvalues,
redundancy coefficients, canonical weights, loadings,
extracted variances, significance tests for each root, ete.) and a
number of exiended diagnostics. The scores of canonical
variates can be computed for each case, sppended to the data
4. file, and visualized via integrated icon plots. The Canonical
Analysis module also includes a variety of integrated graphs
(including plots of eigenvalues, canonical correlations, scatterplots of canonical variates, and many
others). Note that confirmatory analyses of structural relationships between latent variables can also be
performed via the SEPATH (Structural Equation Modeling and Path Ansiysis)module in
STATISTICA Advanced Linear/Non-Linear Models; advanced stepwise and best-subset selection of
predictor variables for MANOVA/MANCOVA designs (with multiple dependent variables) is
available in the General Regression Models (GRM) module in STATISTICA Advanced Linear/Non-

Linear Models.
i Back 1o Top

{#PRELIABILITY/ITEM ANALYSIS. This module
inctudes a comprehensive selection of procedures for the
development and evalvation of surveys and questionnaires. As
in all other modules of STATISTICA, extremely large designs
can be analyzed. The user can calcviate reliability smustics for
all items in a scale, interactively select subsets, or obtain
comparisons between subsets of items via the "split-half” (or
split-part) method. In a single rum, the user can svaluate the
reliability of a sum-scale as well as subscales. When
- . interactively deleting items, the new reliability is computed

instantly without processing the data file again. The ouvtput
inciudes correlation mairices and descriptive statistics for items, Cronbach alpha, the standardized
alpha, the average inter-item corvelation, the complete ANOVA table for the scale, the complete set of
jtem-total statistics (inchuding multiple item-total R's), the split-half reliability, and the correlation
between the two halves comrected for attenuation. A selection of graphs {including various integrated
scatterplots, histograms, line plots and other plots) and a set of interactive whar-if procedures are
provided 1o aid in the development of scales. For example, the user can calculate the expected
reliability after adding s particular number of items 1o the scale, and can estimate the number of items
that would have 10 be added to the scale in order 10 achieve a particular reliability. Also, the user can
estimate the correlation correctex] for attenuation between the current scale and another measure (given

the reliability of the current scale).

~ Back 1o Top

NP, most recently

. - developed algorithms
for efficiently producing and testing the robustness of
classification trees {a classification tree is a rule for predicting the class of an object from the values of
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its predictor variables). Advanced methods for tree classifications, including fiexible optioss for model
building snd imeractive tools to explore the trees are also available in the Genernd Classifioation and
Regression Tree Models (GTrees) and Gemeral CHAID ( Chi-sipuare Amomatic Inseraction Desection )
predictor varisbies, or both, and using univarisie splits or finear combination splits. Anelysis options
include performing exhxustive splits (as in THAID and C&RT) or discriminest-besed aplits; anbissed
variable selection (as in QUEST); direct stopping rales (as in FACT) or bottos-up prening (as in
C&RT); praming besed on misclassification rates or on the deviance function; geseralized Chi-sgeare,
G-square, or Gini-index goodness of fit measures. Priors and misclassification costs can be specified s
equal, estimated from the data, or user-specified. The user can alwo specify the v valne for v-fold cross-
validation during tree building, v value for w-fold cross-validation for amor estimmtion, size of the SE
variable sclection. Integraved graphics options are provided 1o explore the input sud output dats.
Sex Also: Generst Cimssification srd Regression Trese (GTrees) Genersl CHAID {Chi-equare
Automatic inleraction Delection) Models

Pai s Top:
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Quality Contrel

STATISTICA Quality Control Charts features a wide selection of quality control analysis technigues
with presentation-quality charts of unmaiched versatility and comprehensiveness. It is uniquely ideaf
for both automated shop-floor quality control systems of all types and levels of complexity (see also
STATISTICA Enterprise-wite Systems, as well as sophisticated analytic and quality improvement
research. A selection of automation options and user-interface shoricuts simplify routine work and
practically all of the numierous graph layout options and specifications can be permancatly modified
{szved as system default settings or as reusable templates). Finally, STATISTICA Quality Controt
Charts includes powerful and easy to use facilities to custom design entirely new analytic procedures
and add them permanently to the application, and those
options are particularly useful when quality control analyses
need to be integrated into existing data collection/monitoring

systems.

STATISTICA Quality Conirol Charts is competible with
Windows 95, Windows 98, Windows NT, Windows 2000,
Windows XP, Windows Me.

Standard charts. The program offers flexible |
implementations of Pareto charts, X-bar charts, R charts, § sdime
charts, S-squared {variance) charts, £ charts, N, charis
{binomial counts), P charts {(binomial proportions), £} charts, CuSum (comulative sum) charts with V-
masks {the V-mask is awtomatically moved 10 detect outliers), 5
moving range charts, runs charts (for individual observations), K ’
rezgessmn control charts, multivariate controt charts (Hotelling
charts), MA charts (moving average), and EWMA charts
(cxpenenuaikywweighwd moving average). These charis may i
be based on user-specified values or on parameters (c.g., =
means, ranges, proportions, eic) computed from the data. |
Most of the variable control charts can be constructed from
single observations (e.g., moving range chart) as well as from
samples of multiple observations. Control limits can be
specified in terms of multiples of sigma (e.g., 3 * sigma), in '
terms of normal or nos-pormal (Johnson-curves) probabilities T '
(e.g., p=.01, .99), or as constant values. For unequal sample sizes, control charts can be computed with
variable control limits or based on standardized values. For most charts, multiple sets of specifications
can be used in the same chart (¢.g., control limits for a)l new samples can be computed based on &
subset of previous samples, etc.). As with alt STATISTICA graphs, QC charts in STATISTICA Quality
Control Charts are highly customizable; you can add titles, comments, draw lines or mark regions
dynamicaily anchored to specific scale values, or label the samples with dates, ID codes, ofc.

ot
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Interactive, analytic brashing and lsbeling of points. Genersl “intelligent® and comprehensive.
analytic brushing facilities are available for intcractive removal or labeling of outliers (or what-if
analyses) in individual charis or sets of charts. The user can select individual samples or groups of
samples based on currently specified chart criteria {control limits, rung rules}, and exclude them from
the computations for the chart (but still show them in the chart), or drop them from the chart altogether.
Multiple charts can be set up to use the same sample inclusion/exclusion criteria; in this manner several
charts can be simultanecusly brushed (e.g., a point excluded from the X-bar and R chart will
simultaneously be excluded from all histograms). The user can also request to plot all individual

observations for selected or for all samples.

Assigning causes and actions. The user can assign causes, actions, and/or comments to outliers or any
other points in most charts. Labels for causes and actions can be assigned via interactive brushing, or
the program can detect and select out-of-control samples.

Flexible, customizable alarm notification system. A comprehensive selection of options are provided
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for specifying user-defined criterin that define an owt-of- §
control condition or "poteworthy event” {e.g.. runs test
violation, individual observation outside specification
limits, etc). The slaerm notification system can be
customized o trigger various types of “responses”™ © a
particular event. For example, you can sef up 2 system 10
respond 0 an out-of-control sample. STATISTICA Quality
Controt Charss will astomatically prompt the operator &0
emier a cause, then Jaunch a STATISTICA Visual Basic
program 0 compuic various other statistics or invoke an
exiernal program, and then ron another extornal program
to (for exampie) call 2 particular pager mumber or sead an

comail 0 the supervising enginsers. The alarm B
notifications setup can be saved in a configaration file
{that can be applied w future chans), or used as the default
for all foture charts.

Supervisor and operanior mode; password prolection.
The chart-editing features for shop-fioor control charts
{including the assignment of causes, actions, brushing,
slarm notification, etc.), chart specifications, a5 well as the
input data file can be password-protecied. © creme a
customized operaior mode with only fimited access 1o the
charts o data. The charts can be saved (c.5., by the Sidi
supervising engineer), and Joaded by the operator in this [} :

Organixation of dats. For most charts, the data can be
organized 10 accommodaie practically all formats in which |
data are gathered for quality control applications. Samples !
ca be klentified by sample identifiers or code numbeas, or |
you can specify » fixed number of messurements per

sampie (and part, see below),

Short res charts. Most standsnd variable control charts (X-bar, R, S5, S-sqwarad, MA, EWMA) wnd
sttribate controd charts (C, U, P. Np) can be used for short prodoction rons (shorr rem cherss for
multiple parts or machines). For short run variable control charts, you can specify aosminsl target values
only (momsinal chart of sarget chars), or trget values and varisbility valwes for standardioed shoer rae
charts. Options are provided for sosting ssmple points in the respective charts, aad for plotting them by
sampie nursber, by part, or in the order in which the respective samphos were taken. Detailed statistics
are computed by perts and samples. The respective sample snd part idestifiers for each measorement
can be specified in the data file, snd/or you can choose 10 assign a fixed nomber of comsecutive cases 10
consecutive samples and/or parts. Note that all chant options snd statistics (¢.g.. process capability and

performance indices, runs rules, ¢tc.) commaonly reported for stamdard chares are aleo svaiieble for shont
on charts.

Chart options and statistics. A wide variety of additional quality control statistics are incleded. The
user can compute the process capability and performance indices (¢.g.. wormml distribation C, P,
eic., non-normal distribution Cu, P, oi¢.), include histograms of the respective quality charscteristics,
or automatically perform any or all of seven differert rans ests (roms rales). The standard varisble
control charts can be produced as compound multigraphic displays; for example, the X-bar and the R
{or 5. or S-squared) chart will be displayed together with optional corresponding kistograems fov the
respective means, rARges, propartions, &ic. also shown in the same chart. Outliers (samples outside the
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control limits) or sections of data identified via runs tests are S
automatically highlighted (marked) in the plots. The user can &
also add o the plot warning lines, moving average or {
exponentially-weighted moving  averape lines, or lines
indicating specification ranges.

Nop-normal control Hmdts and process capability apd we
performmnce indices. For variable control charts, in addition
to the customary normal distribution based charts and
statistics, the program will also compute charts for
measurcients that are not pormally distributed (e.g., are
highly skewed). These options are particularly important for situations where the sample sizes are smail
and where, as a conseguence, deviations from normality may lead w greatly inflated or defisted error
rates if the customary normal distribution based statistics were used. mmmﬁmmmi
limits based on the Johnson curves fit to the first four wu S I

moments of the observed dats; user-specified values for the Ml ) .
moments can also be supplied. Process capability indices
can be computed based on the fitting of Johnson curves a5
well as Pearson curves. Note that capability indices based on
specific distributions can also be computed in STATISTICA
Process Analysis (an add-on product available from StatSoft, |

Inc.).

the R-chart), the user may compute ard plot the respective
operating characteristic curve (OC curve). In addition fo the

charts, the respective values (plotted in the charis) can also be reviewed via Spreadsheeis
ascr 10 examing the ;xecisc values of plotted lines and points. Customized {hlmk) charts can be printed
that can later be “filled in” by hand by the quality control engineer. Note that as with ail other graphs in
STATISTICA, the graphs produced by STATISTICA Quality Control Charts can be extensively
customized and saved for further analysis and/or customization.

Real-time QC sysiems; external data sourres. Most graphs and charts in STATISTICA Quality
Control Charts can be automatically linked to the data, and updated when the data are updsted. To
facilitate data transfers powerful (optiomal) STATISTICA applications are available (SEWSS and

SEDAS).
STATISTICA Enterprise-wide Desta Analysis System (SEDAS). SEDAS is & groupware version of

STATISTICA fully integrated with a powerful central data warehouse that provides an efficient genersl
interface to enterprise-wide repositories of data and 2 means for collsborative work (extensive

groupware functionality).
STATISTICA Enterprise-wide SPC System (SEWSS). SEWSS is an integrated mmiti-user software
package that provides complete smtistical process control (SPC) functionality for enterprise

installations. SEWSYS includes a central database, provides all tools necessary to process and manage
data from multiple channels, and coordinate the work of multiple operators, QC engineers and

SUpCrvisors.
SEWSS and SEDAS provide very flexible facilities to integrate the procedures in STATISTICA Quality
Conrol Charts into your enterprise-wide database, and to design elaborate corapany-wide quality

monitoring systems.
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Statistical Analysis with Excel

STATISTICS PROCEDURES

Three chapters teach statistics functions including the use of Excel
functions for building Confidence Intervals and conducting Hypothesis
Testing for several types of distributions. The design of hypothesis tests
and the intermediate step of demarcating critical regions are taught

Tucidly.

It seems that Microsoft has taken pains to “hide” some of the moat
powerful tools in Excel. These “hidden” tools are called “Add-Ins.” These
tools work on top of Excel, extending the power and abilities of Excel. e

Many Add-Ins are available for specific types of analysis like Rigk
Analysis. I show how to use three Add-Ins that install with Excel.

BASICS

The fundamental operations in Excel are taught in Volume 1: Excel For
Beginners, Volume 2: Charting in Excel, and Volume 3: Excel- Beyond The

Basics

FUNCTIONS |
@

I teach the writing of formulas and associated topics in Volume 3: Excel-
Beyond The Basics. 1 show, in a step-by-step exposition, the proper way
for writing cell references in a formula. The book describe tricks for
copying/cutting and pasting in several examples. In addition, I discuss

special pasting options.

Finaily, different typea of functions are classified under logical categories
and discussed within the optimal category. The categories include
financial, Statistical, Text, Information, Logical, and “Smart” Logieal.

22
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23

MANAGING & TABULATING DATA
Excel has extremely powerful data entry, data management, and
tabulation tools. The combination of tools provide almost database Like

power to Excel. Unfortunately, the poor quality of the menu layout and
the help preclude the possibility of the user self-learning these festures.
These features are taught in Volume 4 Managing & Tobulating Data in

Excel

CHARTING
Please refer to book two in this series. The book title is Charting in Excel.

Sample data
Most of the tutorials use publicly available data from the International
labor Organization ILO). I used a simple data set with only a few

. columns and observations. All the sample dats files are included in the

zipped file.

The samples for functions use several small data sets that are more suited
to illustrating the power and usefulness of the functions.

I have not included the data set for conducting statistical procedures.
‘This is intentional; often, readers fail to internalize the few key concepta
of hypothesis testing because they do not subject themsealves to & “sink-or-
swim"” inference-drawing thinking and imbibing process when
interpreting the results of statistical procedures.

%
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CHAPTER 1

WRITING FORMULAS

This chapter discusses the following topics:

— THE BASICS OF WRITING FORMULAE

— TOOL FOR USING THIS CHAPTER EFFECTIVELY: VIEWING
THE FORMULA INSTEAD OF THE END RESULT

— The Al VS THE R1C1 STYLE OF CELL REFERENCES |
— TYPES OF REFERENCES ALLOWED IN A FORMULA
— REFERENCING CELLS FROM ANOTHER WORKSHEET
— REFERENCING A BLOCK OF CELLS

— REFERENCING NON-ADJACENT CELLS

— REFERENCING ENTIRE ROWS

— REFERENCING ENTIRE COLUMNS

— REFERENCING CORRESPONDING BLOCKS OF
CELLS/ROWS/COLUMNS FROM A SET OF WORKSHEETS

The most importan{ functionality offered by a spreadsheet application is
the ease and flexibility of writing formulae. In this chapter, I start by
showing how to write simple formula and then build up the level of

complexity of the formulae.

Within the sections of this chapter, you will find tipe and notes on
commonly encountered problems or issues in formula writing.

2



Chapter 1; Witing Formutas

11 THE BASICS OF WRITING FORMULAE

This section teaches the basics of writing functions.

1.2 TOOL FOR USING THIS CHAPTER EFFECTIVELY:
VIEWING THE FORMULA INSTEAD OF THE END

RESULT

For ease of understanding this chapter, I suggest you use a viewing option
that shows, in each cell on a worksheet, the formula instead of the result.
Follow the menu path TOOLS/OPTIONS/VIEW. In the area “Window

Options” select the option “Formulas® as shown in Figure 1.

Execut the dialog by clicking on the button OK. Go back to the
worksheet. The formula will be shown instead of the calculated value.

Eventually you will want to return to the default of seeing the results
instead of the formula. Deselect “formula” in the area "Windows Options”

in TOOLS/OPTIONS/VIEW,

25




ead of the formula reult.

The effect is only cosmetic; the results will not change. As you shall see
later, what you have just done will facilitate the understanding of

functions.

In addition, leave the option VIEW/ FORMULA BAR selected as shown in
Figure 2. '

26

Yy



12A

27

Chaplor 12 Wiiling Formnalas

THE "A1™ ¥8. THE "RiC1* STYLE OF CELL REFERENCES

The next figure shows a simple formula. The formula is written into cell
G15. The formula multiplies the values inside cells F8 and F6.

Figure 3= Alstyle osll referanciog

=4

This style of referencing is called the “Al" style or “absclute” referencing.
The exact location of the referenced cells is written. {(The cells are thoee
in the 6th and 8th rows of column F.) One typically works with this style.

However, there is another style for referencing the cells in a formula.
This style is called the "R1C1" style or "relative” referencing. The same
formula as in the previous figure but in R1C1 style is shown in the next

figure.

Figure € The same formula as in the previous figure, but in RIC1 (Offeet) style coll
referencing while the previous figure showsd A1 {(Abslute-} style cell refirencing

Does not this formula look different? This style uses relative referencing.
So, the first cell (F8) is referenced relative to its position in reference to
the cell that contains the formula (cell G15). Row 8 is 7 rows below row
15 and column F is 1 column before column G. Therefore, the cell
reference ia “minus seven rows, minus 1 column® or "Rf— 7)C}— 1}."

If you see a file or worksheet with such relative referencing, you can
switch all the formulas back to absolute "Al”" style referencing by guing to
TOOLS/OPTIONS/GENERAL and deselocting the option "R1C1 reference

style.”
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Figure 5 Settings for Formula Referencing

128 WRITING A SIMPLE FORMULA THAT REFERENCES CELLS

Open the sample file “File3.xls” and choose the worksheet “main.” :
Assume you want to write add the values in cells C223! and D223 (that is, e
to caleulate “C223 + D223") and place the result into cell F223.

Click on cell F223. Key-in “=*and then write the formula by clicking on
the cell C223, t}rpmg in “+” then clicking on cell “D223.”

Figure 6° Writing a formula

After writing in the formula, press the key ENTER. The cell F223 will
contain the result for the formula contained in it.

1 Cell C223 is the cell in column C and row 223.

28
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Chaglar 1: Wiiting Formules

TYPES OF REFERENCES ALLOWED IN A FORMULA

REFERENCING CELLS FROM ANOTHER WORKSHEET

You can reference cells from another worksheet. Choose cell H235 on the
worksheet “main.” In the chosen cell, type the text shown in the next
figure. (Do not press the ENTER key; the formuls is incomplete and you
will get an error message if you press ENTER)

PFigure 8- Writing or choosing the refevence to the first referenced range

m

Then select the worksheet “second”™ and click on cell D235. Now press the
ENTER key. The formuls in cell H235 of worksheet “main™ references the
cell D235 from the worksheet "second”. The next figure illustrates thia.

Figure & Writing or choosing the reference to the second refirenced range which s not oo the
worksheet an which you ave writing the farmula

In this formula, the part “second!” informs Excel that the range referenced
is from the sheet “second.

REFERENCING A BLOCK OF CELLS

Select the worksheet “main.” Choose cell H236. In the chosen cell, type
the text shown in the next figure.
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Figure 10: This formuls requires & block of cells as a reference

Use the mouse to }nghhght the block of cells “E223 to £235.” Typeina
closing parenthesis and preas the ENTER key. The resulting function is
shown in the next figure.

Figure 11 Formula with 2 block of celis as the refarence

1.30C REFERENCING NON-ADJACENT CELLS
Choose cell H237. Click in the cell and type the text shown in the next
figure. '

Figure Iztmwmﬁzm'nistyped&ru

As in the previous example, choose cells E223 to E235 by highlighting
them— the formula should like the one shown in the next figure,

Type a comma. The resulting formula should look like that shown in the
next figure.

30
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Figure 14 Getting the formula ready for the sscond block of cells

Highlight the block of cells “E210 to E222." Key-in & closing parenthesis
and press the ENTER key.

Figure 15 The formuls with reforences (o two non-sdiscent biocks of cells

1.3.D REFERENCING ENTIRE ROWS

Choosee cell H238. In this cell, type the text shown in the next figure.

Using the mouse, highlight the rows 197 to 209. Type in a closing
parenthesis and press the ENTER key. The resulting formuls is shown in

the next figure.

1.3E REFERENCING ENTIRE COLUMNS

Choose cell H239. In this cell, type the text shown in the next figure.
Using the mouse, highlight the columns C and D. Key-in a closing

parenthesis and press the ENTER key.
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Figure 17: Referencing entire columns

REFERENCING CORRESPONDING BLOCKS OF
CELLS/ROWS/COLUMNS FROM A SET OF WORKSHEETS

Assume you have a workbook with six worksheets on similar data from
six clients. You want to sum ceils “C4 to F56" across all six worksheets.

One way to do this would be to create a formula in each worksheet to sum
for that worksheet’s data and then a formula to add the results of the

cther six formulae.

Another way is using “3-D references.” The row and column make the
first two dimensions; the worksheet set is the third dimensgion. You can
use only one formula that references all six workaheets that the relevant

cells within them,

While typing the formula,
e Type the “="gign,
s Write the formula {for example, “Sum”),
s Place an opening parenthesis “(” then

» Select the six worksheets by clicking at the name tab of the first one
and then pressing down SHIFT and clicking on the name tab of the

sixth worksheet, and then
+ Highlight the relevant cell range on any one of them,
+ Type in the closing parenthesis %"
» And press the ENTER key to get the formula

£=SUM{Sheet1:Sheet6!"C4:F56”)
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CHAFTER 2

COPYING/CUTTING AND
PASTING FORMULAE

— COPYING AND PASTING A FORMULA TO OTHER CELLS IN .
THE SAME COLUMN

~ COPYING AND PASTING A FORMULA TO OTHER CELLS IN
THE SAME ROW

— COPYING AND PASTING A FORMULA TO OTHER CELIS INA
DIFFERENT ROW AND COLUMN

— CONTROLLING CELL REFERENCE BEHAVIOR WHEN
COPYING AND PASTING FORMULAE (USE OF THE °§"

KEY)
— USING THE *$¢" SIGN IN DIFFERENT PERMUTATIONS AND
COMPUTATIONS IN A FORMULA.

— COPYING AND PASTING FORMULAS FROM ONE .
WORKSHEET TO ANOTHER

~ SPECIAL PASTE OPTIONS

— PASTING ONLY THE FORMULA (BUT NOT THE FORMATTING
AND COMMENTS)

- PASTING THE RESULT OF A FORMULA, BUT NOT THE
FORMULA ITSELF

— CUTTING AND PASTING FORMULAE

— THE DIFFERENCE BETWEEN “COPYING AND PASTING™
FORMULAS AND “CUTTING AND PASTING” FORMULAS

34
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—- SAVING TIME BY WRITING, COPYING AND PASTING
FORMULAS ON SEVERAL WORRSHEETS
SIMULTANEOUSLY

COFPYING AND PASTING A FO’QMUM TO OTHER
CELLS IN THE SAME COLUMN

21

Often one wants to write analogous formulae for several cases. For
example, assume you want to write a formula analogous to the formula in
F223 into each of the cells F224 to F2352. The quick way to do this is to:

~ Click on the “copied from” cell F223.

— Select the option EDIT/COPY. (The menu can also be acceened by
right-clicking on the mouse or by clicking on the COPY icon.)

— Highlight the “pasted on” cells F224 to F235 and

— Choose the menu option EDIT/PASTE. (The menu can also be
accessed by right-clicking on the mouse or by chicking on the

PASTE icon.)
- Press the ENTER key.

—The formula is pasted onto the cells F224 to F235 and the cell

2 The frmuls in F228 sdds the valaes in cells that are 3 and 2 colnmne to the Jeft (that
i8, cells in columns in C and DJ
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references within each formula are adjusted? for the location
difference between the “pasted on” cells and the “copied from” cell.

COPYING AND PASTING A FORMULA TO OTHER
CELLS INTHE SAME ROW
Select the range F223— F235 (which you just created in the previous sub-
section). Select the option EDIT/COPY. Choose the range G223— G235
(that is, one column to the right) and choose the menu option

EDIT/PASTE. Now click on any cell in the range G223— G235 and see
how the column reference has adjusted automatically., The formula in

8 The formula in the “copied cell” F223 is “(223 + D223” while the formula in the
“pasted on” cell F225 is “C225 + D225.” (Click on cell F225 to confirm this) The cell
F225 is two rows below the cell F223, and the copying-and-pasting process accounts

for that.
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G223 is “D223 + E223” while the formula in F223 was “C223 + D223",

The next figure illusirates this. Because you pasted one column to the
right, the cell references sutomatically shifted one column to the right.

So:
— The reference "C" became "D," and

— The reference “D” became “E."

The examples in 2.1 on page 36 and 2.2 on page 37 show the use of "Copy
and Paste™ to quickly replicate formula in a manner that maintains

referential parallelism.

23
CELLS IN A DIFFERENT ROW AND COLUMN

Select the cell F223. Select the option EDIT/COPY. Choose the range

H224 (that is, two columns to the right and one row down from the copied
cell) and choose the menu option EDIT/PASTE. Observe how the column
and row references have changed automatically— the formuls in H224 is

87
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“E224 + F224” while the formula in F223 was “C223 + D223".

The next figure illustrates this. Because you pasted two columns to the
right and ene row down, the cell references automatically shifted two

columns to the right and one row down. So:
— The reference “C” became “E” (that is, two columns to the right)
—- The reference “D” became “F” (that is, two columns to the right)

- The references “223” became “224” (that is, one row down)

panﬁnga

Wi

2:4 CONTROLLING CELL REFERENCE BEHAVIOR
WHEN COPYING AND PASTING FORMLILAE (USE
OF THE “$” KEY)

The use of the dollar key “$” (typed by holding down SHIFT and choosing
the key “4”) allows you to have control over the change of cell references in
the “Copy and Paste” process. The use of this feature is best shown with

some examples.
— The steps in copy and pasting 2 formula from one range to another:
— Click on the “copied from” cell F223.

— Select the option EDIT/COPY. (The menu can also be accessed by
right-clicking on the mouse or by clicking on the COPY icon.)

38
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-— Choose the "pasted on” cell F219 by clicking on it, and

~— Select the menu option EDIT/PASTE. (The menu can aleo be
acceased by night-clicking on the mouse or by clicking on the

PASTE icon.)
— Press the ENTER key.

— The formula “C219 + D219 will be pasted onto cell F219. (For a
pictorial reproduction of this, see Figure 21.)

Change the formula by typing the dollar signs as shown Figure 22.

Figure 22 mmmwm»«um

Copy cell F219. Paste into G220 (that is, one column to the right and one
row down). The dollar signs will ensure that the cell reference is not
adjusted for the row or column differentisl for the parts of the formula
that have the dollar sign before them*— see the formula in cell F220

{reproduced in Figure 23).

¢ In this example, the parts are the “C” reference and “219" reference in “SC3219" part of
the formula.

39




Statistical Analysis with Excel

Figure 23: The “copied-from” and “pasted-on” cells with the use of the doilsr sign
m—— = =

For the parts of the cell that do not have the dollar sign before them, the
cell references adjust to maintain referential integrity®.

USING THE “$” SIGN IN DIFFERENT PERMUTATIONS AND

ZAA
COMPUTATIONS IN A FORMULA
L. The cell references in the “pasted on” cell depend on
The dollax eigninshe | The 0BY & | the location of the dollar signs in the formula in the
copied from paste action original, “copied from” cell
Reference lox Only the reference to *C*
with a dollar sign Figure: 2¢ o *C” doee not adjust
before one of the and’ y F219 because only “C” has a dollar prefix
umn into G220, .
Originai cell:
F219 = $C219+ D219
ﬁa?amnwbehafim Figure 25° Only the reference to 219" {in the formuia
b:;:thadonght?:w part “C$219") does not adjust because only that “219”
re one o
Copy F219
references and paste
Original cell: into G220.
F219 = C$219 + D219

5 The part “D218” adjusts to “E220” to adjust for the fact that the “pasted on” cell is one
column to the right {so “D->E") and one row below (so *219-»220")

40
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The cell references in the “pested on” coff depend on

The dollar siga in the The copy & the location of the dollar sgne i .
_ " signe in the formuis in the
"copied from" cell paste action sginal, “oopied from" call
Reference behavior
with a dollar sign Figure 25 the references o0 “C,” "I and % 219" Gn
before a1l but one of the formula part “$D$2197) do not adjest becanee they
references and paste
Original cell: into G220.
F219=§C219 +
$D§219
Original cell: Capy F219 Tryit.
_ and paste
les-scgﬁ*' into G220. G220 = $C$219 + §D$219
Original cell: . Copy F219 Try it...
- . and paste
P2 e into G20, G220 = $C220 + $D20
Original cell: Copy F219 Tryit...
- and paste
FZI9 =219 imwGozo. G220 = D220 + $D§219

COPYING AND PASTING FORMULAS FROM ONE
WORKSHEET TO ANOTHER

The worksheet “second” in the sample data file has the same data as the
worksheet you are currently on ("main.”) In the worksheet main, select
- the cell F219 and choose the menu optien EDIT/COPY. Select the
worksheet “second” and paste the formula into cell F219. Notice that the

formuls ia duplicated.
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PASTING ONE FORMULA TO MANY CELLS,
COLUMNS, ROWS

Copy the formula. Select_ the range for pasting and paste or “Paste
Special” the formula.

PASTING SEVERAL FORMULAS TO A SYMMETRIC
BUT LARGER RANGE

Assume you have different formulas in cells G2, H2, and I2. You want to
paste the formula:

— In G2 to G3:G289
— In H2 to H3:H289

— In 12 to 13:1289

Select the range G2:12. Pick the menu option EDIT/COPY. Highlight the
range G3:1289. (Shortcut: select G3. Scroll down to 1289 without
touching the sheet. Depress the SHIFT key and click on cell 1289.) Pick
the menu option EDIT/PASTE.

You can use range names as references instead of exact cell references.
Named ranges are easier to use if the names chosen are explanatory.

First, you have to define named ranges. This process involves informing
Excel that the name, for example, “age_nlf,” refers to the range “C2:C19.”

DEFINING AND REFERENCING A “NAMED RANGE”

42
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Pick the menu option “INSERT/NAME/DEFINE.” The dialog (user-input
form) that opens is shown in the next figure. Type the name of the range
into the text-box “Names in workbook” and the “Cell References” in the
box “Refers to:™ See the next figure for an example.

Figure 17 The DEFINE NAMES dialog

Click on the button "Add.” The named runge is defined. The name of a
defined range is displayed in the large text-box in the dislog. The next
figure illustrates this text.

Figare 28: Once added, the defined named range’s nume can be seen in the lange sexs-bhox
= 1IN

Several named ranges can be defined. A named range can represent
multiple blocks of cells.

g0
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Figure 29: Defining & second named range. Onchchng“A&&.’themme&rammdeﬁmd,as
~ shown in the next figure.

Refers to:

[bome1$CE2 $CH 15+ NamesCs20:$C337

You can view the ranges represent by any name. Just click on the name
in the central text-box and the range represented by the name will be
displayed in the bottom box.

[m;wlmimm L o |
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Figure 31: You can define many ranges. Just maks sure that the memee are sxplanstory and

Adding several named ranges in one step

If the first/1ast row/column in your ranges has the labels for the range,
then you can define names for all the ranges using the menu option
INSERT/NAMES/CREATE. The dialog is reproduced in the next figure.

Figurs 32- CREATE NAMES

Lo

In our sample data set, I selected columns "A” and "B and created the
names from the labels in the first row.
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Figure 33: The named ranges “Country_Name,” and *Series. Name” were defised in one step
using “Create Names®

Using a named range

Named ranges are typically used to make formulas easier to read. The
named ranges could also be used in other procedures

Assume you want to sum several of the ranges defined above. One way to
sum them would be to select them one-by-one from the worksheet.

L=SuM( |

-Another way is to use the menu option INSERT/NAME/PASTE to select
and paste the names of the ranges. The names are explanatory and '
reduce the chances of errors in cell referencing.

A reference to the named range is pasted onto the formula as shown
below.

46
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29 SELECTING ALL CELLS WITH FORMULAS THAT
EVALUATE TO A SIMILAR NUMBER TYPE

Volume & Excel- Beyond The Basics.

zﬂi _ SPECIAL PASTE OPTIONS
210A PASTING ONLY THE FORMULA (BUT NOT THE FORMATTING
AND COMMENTS)
Refer to page 56 in chapter 3.
2108 PASTING THE RESULT OF A FORMULA, BUT NOT THE
FORMULA ITSELF
Refer to page 53 in chapter 3.
47
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CUTTING AND PASTING FORMULAE

THE DIFFERENCE BETWEEN “COPYING AND PASTING”
FORMULAS AND “CUTTING AND PASTING” FORMULAS

Click on cell F223, select the option EDIT/CUT, click on cell H224 and
choose the menu option EDIT/PASTE. The formula in the “pasted on” cell
is the same as was in the “cut from” cell. (The formula “=C223 + D223
Therefore, there is no change in the cell references after cutting—-and-—
pasting. While copy-and-paste automatically adjusts for cell reference
o

differentials, cut-and—paste does not.

If you had used copy and paste, the formula in H224 would be “=D224 +
E2247

Figure 36: Cut from cell F228 _
3 = _ ——

R S—— o

After doing this, select the option EDIT/UNDO because I want to
maintain the formulas in F223— F235 (and not because it is required for

a cut and paste operation)}.

418




Chapler 2 Copying/Culing and pesting fomules

212 CREATING A TABLE OF FORMULAS USING
DATA/TABLE

The menu option DATA/TABLE supposedly offers s tool for creating an X-
Y table of formula results. However, the method needs 80 much data
arrangement that it is no better than using a simple copy and paste
operation on cells!

2.13 SAVING TIME BY WRITING, COPYING AND PASTING
FORMULAS ON SEVERAL WORKSHEETS
SIMULTANEOQUSLY

Refer to Volume & Excel- Beyond The Basics to Jearn how to work with
multiple worksheets. The section will request you to follow our example
of writing a formula for several worksheets together.
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CHRAFPTER 3

PASTE SPECIAL

— PASTING THE RESULT OF A FORMULA, BUT NOT THE
FORMULA

- OTHER SELECTIVE PASTING OPTIONS

~— PASTING ONLY THE FORMULA (BUT NOT THE FORMATTING
AND COMMENTS)

~ PASTING ONLY FORMATS

— PASTING DATA VALIDATION BCHEMES

-~ PASTING ALL BUT THE BORDERS

— PASTING COMMENTS ONLY

— PERFORMING AN ALGEBRAIC “OPERATION™ WHEN PASTING
ONE COLUMN/ROW/RANGE ON TO ANOTHER

— MULTIPLYING/DIVIDING/SUBTRACTING/ADDING ALL CELLS
IN A RANGE BY A NUMBER

— MULTIPLYING/DIVIDING THE CELL VALUES IN CELLS IN
SEVERAL “PASTED ON" COLUMNS WITH THE VALUES OF

THE COPIED RANGE
— SWITCHING ROWS TO COLUMNS

This less known feature of Excel has some great options that save time
and reduce annoyances in copying and pasting.
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PASTING THE RESULT OF A FORMULA, BUT NOT
THE FORMULA

Sometimes one wants the ability to copy a formula {(for example, “=(C223 +
D223)”) but paste only the resulting value. (The example that follows will
make this clear.}

Select the range "F223:F235” on worksheet ““main.”

Choose the menu option FILE/NEW and open a new file. Go to any cell in
this new file and choose the menu option EDIT/PASTE SPECIAL, -

In the area “Paste,” choose the aption “Values” as shown in Figure 37.
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In Excel XP, the “Paste
Special” dialog has three
additional options:

- Paste Formulas
and number
formats (and not
other cell
formatting like
font, background
color, borders, etc)

™ Paste Values and
number formats
{and not other cell
formatting like
font, background
color, borders, etc)

. Paste only
“Column widths.”

provides quick access to some
types of “Paste Special”® The l"‘qmw mmmuhwva
options are shown in the next mmmvﬁﬁtﬂ{?wm
figure. Eormdns
" The calculated values in the :;M
. “copied” cells are pasted. The Trarapces
| formula is not pasted. Try Paste Ligk
§ the same experiment using Pusts Soachl...
 EDIT/PASTE instead of
ﬁmmmsmm The
usefulness of the former will

b3
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In Excel XP, the “Paste
Special” dialog has three
additional options:

. Paste Formulas
and number
formats {(and not

other cell
formatting like
font, background
color, borders, etc)

- Paste Values and
number formats
(and not other cell

formatting like
font, background
color, borders, etc)

. Paste only
“Column widths.”

be apparent.
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OTHER SELECTIVE PASTING OPTIONS

PASTING ONLY THE FORMULA (BUT NOT THE FORMATTING
AND COMMENTS)

Choose the option "Formulas® in the area “Paste” of the dialog (user-input
form) associated with the menu "EDIT/PASTE SPECIAL." This feature
makes the pasted values free from all cell references. The “pasted on”
range will only contain pure numbers. The biggeet advantage of this
option is that it ensbles the collating of formula results in different
ranges/sheets/workbooks onto one worksheet without the bother of
maintaining all the referenced cells in the same workbook/sheet as the

collated results.

PASTING ONLY FORMATS

Choose the option “Formate” in the ares “Paste” of the dialog associated
with the menu “EDIT/PASTE SPECIAL use the “Format Painter” joon. [
prefer using the icon.

Refer to Volume I: Excel For Beginners for a discussion on the format
painter.
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PASTING DATA VALIDATION SCHEMES

Pick the option “Validation” in the area “Paste” of the dialog associated
with the menu “EDIT/PASTE SPECIAL.” Data validation schemes are
discussed in Volume 4 Monaging & Tabulating Data in Excel. This
option can be very useful in standardizing data entry standards and rules

across an institution.

PASTING ALL BUT THE BORDERS

Choose the option “All except borders” in the area “Paste” of the dialog
associated with the menu “EDIT/PASTE SPECIAL.” All other formatting
features, formulae, and data are pasted. This option is rarely used.

PASTING COMMENTS ONLY

Pick the option “Comments” in the area “Paste” of the dialog associated
with the menu “EDIT/PASTE SPECIAL.” Only the comments are pasted.
The comments are pasted onto the equivalently located cell. For example,
a comment on the cell that is in the third row and second column that is
copied will be pasted onto the cell that is in the third row and second
column of the “pasted on” range. This option is rarely used.
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PERFORMING AN ALGEBRAIC “OPERATION" WHEN
PASTING ONE COLUMN/ROW/RANGE ON TO

ANOTHER

MULTIPLYING/DIVIDING/SUBTRACTING/ADDING ALL CELLS
IN A RANGE BY A NUMBER

Assume your data is expressed in millions. You need to change the units
to billions— that is, divide all values in the range by 1000. The complex
way to do this would be to create a new range with each cell in the new
range containing the formula “cell in old range/1000." A much simpler
way is to use PASTE SPECIAL. On any cell in the worksheet, write the
number 1000. Click on that cell and copy the number. Chooee the range
whoee cells need a rescaling of units. Go to the menu option EDIT/PASTE
SPECIAL and choose “Divide” in the area Options. The range will be
replaced with a number obtained by dividing each cell by the copied cells
value!

The same method can be used to multiply, subtract or add a number to all
cells in a range

Figure 41 You can multiply lor addisabtractidivide) all cslls in the “pested ox” rangs by
(tofby/from) the value of

1
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MULTIPLYING/DIVIDING THE CELL VALUES IN CELLS IN
SEVERAL “PASTED ON” COLUMNS WITH THE VALUES OF THE

COPIED RANGE

You can use the same method to add/subtract/multiply/divide one
eolumn’s {or row’s) values to the corresponding cells in one or several

“pasted on” columns (or rows).

TI'Y t his Copy the cells in column E and paste special onto the
cells in columns C and D choosing the option “Add” in the area
“Operation” of the paste special dialog. (You can use EDIT/UNDO to
restore the file to its old state.)

SWITCHING ROWS TO COLUMNS
Choose any option in the “Paste” and “Operations” areas and choose the
option “Transpoee.” If pasting a range with many columns and rows you

may prefer to paste onto one cell to avoid getting the error “Copy and
Paste areas are in different shapes.”
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CHAPTER 4

INSERTING FUNCTIONS

This chapter teaches the following topics:

__ A SIMPLE FUNCTION
— FUNCTIONS THAT NEED MULTIPLE RANGE REFERENCES ¢
— WRITING A “FUNCTION WITHIN A FUNCTION"

— NEW IN EXCEL XP

— RECOMMENDED FUNCTIONS IN THE FUNCTION WIZARD

— EXPANDED AUTOSUM FUNCTIONALITY

— FORMULA EVALUATOR

— FORMULA ERROR CHECKING

4.1 BASICS
Excel has many in-built functions. The functions may be inserted into a .
formula.

Accessing the functions dialogfwizard

(a) select the menu path INSERT/FUNCTION, or

(b) click on the function icon (see Figure 42)
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Figure 42° The Fumetion icon

The *Paste Function” dialog (or wizard, because it is a series of dislogs)
opens. The dialog is shown in Figure 43.

The equivalent dialog in the XP version of Excel is called INSERT
FUNCTION. (li is reproduced in the next figure below.) The dialog has
one pew feature—a "Search for a function” utility. The "Function
category” is now available by clicking on the list box next to the label “Or
select & category.”
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Figure 44: The equivalent dislog in the XP version of Excel is called INSERT FUNCTION

g

finsnit functon,

wa»mmmmmmmmm .

This dza}og has three parts:

(1) The area “Function category” on the left half shows the labels of
each group of functions. The group “Statistical” contains
statistical functions like “Average” snd “Variance.” The group
“Math & Trig” contains algebra and trigonometry functions like
“Cosine.” When you click on a category name, all the functions
within the group are listed in the area “Function name.”

(2) The area “Function name” lists all the functions within the
category selected in the area “Function eategory.” When you
click on the name of a function, its formula, and description is
shown in the gray area at the bottom of the dialog.

(3) The area with a description of the function

Step 2 for using a function in & formuia

Click on the “Function category” (in area 1 or the left half of the dialog)

62
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that contains the function, then click on the function name in the area
“Function name” (in area 2 or the left half of the dialog) and then execute
the dialog by clicking on the button OK.

4.2 A SIMPLE FUNCTION

In my firet example, I show how to select and use the function “Average”
which is under the category “Statistical "

Choose the category “Statistical” as shown in Figure 45.

Choose the formuls "Average” in the area "Function name.”

This is shown in Figure 46.

Execute the dialog by clicking on the button OK.

638
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m&am(mmﬁmm
numbers or raves, arrays, or references that chokai s

The dialog (user-input form) for the “Average” function opens.

For a pictorial reproduction of this, see Figure 47.

Iﬁgure(‘? Thedwlogofthechmenﬁamhm

argumenw!requ;remenm for the function

Figure 48° Sehchngtheeeﬂm&mmswmw}mumﬂhethampmmwﬁw&m
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You have to tell Excel which cells contain the data to which you want to
apply the function “AVERAGE." Click on: the right edge of the text-box
“Numberl™s. (That is, on the red-blue-and-white corner of the cell) Go
to the worksheet that has the data you want to use and highlight the
range “C2 to E3." Click on the edge of the text-box. (For a pictorial

reproduction of this, see Figure 48.)

You will be taken back to the "Average” dialog. Notice that — as shown in
Figure 49 — the cell reference "C2:E3" has been added.

Furthermaore, note that the answer is provided at the bottom (see the Line
“Formula result = 9973333.333").

Execute the dialog by clicking on the button OK.

¢ If you want to vee non-sdjacent ranges in the formuls, then use the text-box “Number

2" for the second range. Excel will add more text-boxes once you fill all the available
ones, If the label for s text-box is not in bold then it is not essential to fill that text-
box. In the AVERAGE dislog shown in Figure 402, the Inbei for the first text-box
(*"Number 17} is in bold—#0 it has to be filled. The label for the sscond text-box
{*Number 2} is not in bald — 80, it can be left empty.
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The formmula is written into the cell and is shown in Figure 50.

PFigure 56- 'l"hefunca’miawriminmthewﬁ

pimsbiiedn

[=AVERAGE(CZE9)

Press the ENTER key and the formula will be calculated.

You can work with this formula in & similar manner as a simple formula
— copying and pasting, cutting and pasting, writing on multiple
worksheets, etc, .

If you remember the function name, you do not have to use
INSERT/FUNCTION. Instead, you can simple type in the formulas using
the keyboard. This method is faster but requires that you know the

function.

FUNCTIONS THAT NEED MULTIPLE RANGE
REFERENCES

43

Some formulas need a multiple range reference. One example is the
correlation formula C"CORREL"). Assume, in cell J1, you want to ’
calculate the correlation between the data in the two ranges: “D2 to D14”

and “E2 to E14.7

Activate cell J1. Select the option INSERT/FUNCTION. Choose the
function category “Statistical.” In the list of functions that opens in the
right half of the dialog, choose the function “CORREL” and execute the
dialog by clicking on the button OK.
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| mmam '
mummm&ndﬁﬁ

The CORREL dialog (shown in the next figure) opens. The function needs
two arrays (or series) of cells references. (Because the labels to both the
text-box labels are bold, both text-boxes have to be filled for the function
to be completely defined.) Therefore, the pointing to the cell references
has to be done twice a8 shown in Figure 53 and the next two figures.

Choosing the first array/series

Click on the box edge of “Arrayl” (as shown in Figure 52.) Then go to the
relevant data range (D2 to D14 in this example) and seloct it.

fﬁmw mmwmmhﬁ-m
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Repeat the same for “Array 2,” selecting the range “E2:E14” this time.

Figure 54: The first data

The formula is complete. The msuli; is shown in the dialog in the area at
the bottom “Formula resuit.” Execute the dialog by clicking on the button

OK.

Once the dialog cloaes, depress the ENTER key, and the function will be
written into the cell and its result evaluated/calculated.

Figure 56° The function as writien inte the cell.

T uge the example of the CONFIDENCE function from the category
“Statistical”

Choose the menu option INSERT/FUNCTION.

WRITING A “FUNCTION WITHIN A.F‘UNCTION”
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Chooee the function category "Statistical.”

In the list of functions that opens in the right half of the dialog, choose the
function CONFIDENCE and execute the dialog by clicking on the button
OK.

The Confidence dialog (user-input form) requirea’ three parameters: the
alpha, standard deviation, and sample size. First type in the alpha
desired as shown in Figure 58. (An alpha of ".05" corresponds to a 96%
confidence level while an alpha value of “:.1" corresponds to a confidence
interval of 90 %.)

17'We koow that all three are necessary because their labela are in bold.
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Press the OK button.

Figure 53 The first part of the function

——eecreery

[=CONFIDENCE( S |

Type a comma after the *.056” (see Figure 60) and then go to
INSERT/FUNCTION and choose the formula STDEV as shown in Figure

61.

Figure 80: Piacing a comma before entering the second part °

s
£

Choose the range for which you want to calculate the S’{'ﬁEV (for
. example, the range “E:E"} and execute the dialog by clicking on the button

OK.

i SI:m“utfuncﬁonfurtheofﬁunﬁm

The formula now becomes: ' ’

Figure 62 Athinafunction
[=CONFIDENCE(05, STDEVEE)

The main formula is still CONFIDENCE. The formula STDEV provides
one of the parameters for this main formula. The STDEV function is

nested within the CONFIDENCE function.

10
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Type a comma, and then go to INSERT/FUNCTION and choose the
function "Count” from the function category “Statistical” to get the final
formula.

Select the option INSERT/FUNCTION, choose the function
CONFIDENCE from the category “Statistical” and type in the formulee
"STDEV(E:E)" and "COUNT(E:E)" as shown in Figure 64.

This method is much faster but requires that you know the fanction
names STDEV and COUNT.

Pigure 84° H sub-fonctions are required i the frmuls of a fanction, the sl foactions may be
mm&mmdwwsw
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NEW FUNCTION-RELATED FEATURES IN THE XP
VERSION OF EXCEL

4.5

Searching ‘for a function
Type a question (like “estimate maximum value”) into the box “Search for
a function” utility and click on the button “Go.” Excel will display a list of
functions related to your query.

45A ENHANCED FORMULA BAR

After you enter a number or cell reference for the first function
“argument” (or first “requirement”) and type in a comma, Excel
automatically converts to bold format the next argument/requirement. In
the example shown in the next figure, Excel makea bold the font for the
argument placeholder pmt after you have entered a value for nper and a

comima.

Figure 67 The Formula Bar Assistant is visible below the Formula Bar

RATE(nper, pnt, pv,

Similarly, the argument/requirement after pm! hae a bold font after you
have entered a value or reference for the argument pmt
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Figure 65 The next “expected” argumentirequirement if highlightsd weing a bold ot
LA

The square brackets around the argument/requirement “fv* indicate that
the argument is optional. You need not enter a value or reference for the

argument.
=RA L3.C2,
RATE(rper, ok, pr,
458 ERROR CHECKING AND DEBUGGING

The basics of this topic are taught in the next chapter. Advanced features
are in Volume 3: Excel—Beyond the basics.
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CHAPTERS

TRACING CELL REFERENCES &
DEBUGGING FORMULA ERRORS

This short chapter demonstrates the following topics:

— TRACING THE CELL REFERENCES USED IN A FORMULA

- TRACING THE FORMULAS IN WHICH A PARTICULAR CELL
1S REFERENCED

— WATCH WINDOW

- ERROR CHECKING

— FORMULA EVALUATION

51 TRACING THE CELL REFERENCES USEDIN A
FORMULA

Click on the cell that containa the formuls whose references need to be
visually traced. Pick the menu option TOOLS/AUDITING/TRACE
PRECEDENTS. (For a pictorial reproduction of this, see Figure 70.)
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Figure 70" Tracing precedents. These options are from Excel versions prior to Exes] XP.
"~ Soenaries —Ton ourtan. sssemn

Figure 71 Excel XP offers several error-checking and debugging tools,

| rormuaayiing 2 §Pw Trace Precedents
Tooks on the ‘Web... =¥ Trace Dapendents
Macro r [ <& Trace Error
AaddIns.., HF. Remove pl Arroves
' AutoCorrsct Optiors... @ Evaluate Eormula
Custormize, B Show watch Window
Options. ., 6% Formuds Audting Mode  Ctrk-"
pata Analysss. . Show Formula Auditing Toobar
T — ! ! T

As shown in Figure 72, blue arrows will trace the references.

If a group of cells is referenced, then the group will be marked by a blue
rectangle. The two rectangular areas are referenced in the formula.

In Volume 3: Excel- Beyond The Basics, you are taught the simple process
through which you can select all the celis whose formulas are precedents

of the active cell.
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Figure 7& The arrows define and trace all the celis’ranges referenced in the active cel!
S iy
190000 _ 38) _
e s .
w0

i HIE

1148
songh Jcos0ee
et i
e
e  Wwm . .
t00e  S1000 o
i o
el o
2 4700 640 -

52 TRACING THE FORMULAS IN WHICH A
PARTICULAR CELL IS REFERENCED

You may want to do the opposite— see which formulas reference a
particular cell.

+ First, click on the cell of interest.

« Then, pick the menu option TOOLS/AUDITING/TRACE

DEPENDENTS as shown in Figure 73. Now the arrows will go
from the active cell to all the cells that have formulas that use

the active cell.
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Figure 73! Tracing Dependents. Theae options ave froms Excel versiona prior to Exce]l XP.

Remove all the auditing arrows by following the menu path
TOOLS/AUDITING/REMOVE ALL ARROWS.

In Volume 3: Excel- Beyond The Basics you learn the simple process
through which you can select all the cells whose formulas are dependents -

of the active cell.

53 THE AUDITING TOOLBAR

The “Auditing” toolbar opens automatically when you are using the
auditing option (TOOLS/AUDITING) to review formula references.

Refer to Volume 3: Excel- Beyond The Basics for details on using toolbars. &

In the XP version of Excel, you can launch the toolbar through the menu
option TOOLS/AUDITING/SHOW FORMULA AUDITING TOOLBAR.
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WATCH WINDOW (ONLY AVAILABLE IN THE XP
VERSION OF EXCEL)

The window is accessed through the menu path TOOLS/ AUDITING/
SHOW WATCH WINDOW, or VIEW/ TOOLBARS/ WATCH WINDOW.

Figure 75 The Waich Window may not display correctly, Use the mouse &6 drag the wails of
the disloy w 8 workable size.

Add one cell on whoee values you want to keep tabs.

The value will be shown in the Watch Window so that you can see the
value even if you are working on cells or eheets that are far from the ceil

whose value is being “watched.”

Figure 76° Add Watch

Selact the colls that you woukd e to satth the velue of:
J=Tuite to serialt$0$8)

You can add many cells to the Watch Window. Note that the Watch
Window providea precise information on the location of the cell being
watched and the formula in the cell. For example, the first watched ceH is
on cell D8 in sheet “Date to serial” in the file “Date and Time xls.” The

formula in the cell is “=DATE(¥F?, E7, DT)™.
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Figure 77 You can add many cells to the Wateh Window

AL T e
& Add Watch... 3 Delete Watch

 Book [ stest [name |l | value | Formads

Date and Timexks  Dakte Lo serial [v:] 36988,00 =DATE(F2,E2,07) |
| Date and Thne.xds  Date to saria DIz 0141932870  =TIME(DL1,E1L,F... |
E Date and Time.xls  Date to serial B2 37444264525 wNOW(D
 Date and Tine.xds  Date to serial B3 3744400 =TODAY()

ERROR CHECKING AND FORMULA EVALUATOR %
(ONLY AVAILABLE IN THE XP VERSION OF EXCEL)

55

The toole are accessed through TOOLS/ERROR CHECKING and
TOOLS/FORMULA AUDITING/EVALUATE FORMULA.

The Error Checking dialog shows the formula in the cell as well as the
type of error. In this example, these are "=DEGREE(COS(C6))” and

“Invalid Name Error,” respectively.

The button ("Help on this error”) links t{; a help file containing assistance
on understanding and debugging the error. .

The button “Show Calculation Steps” links to a step-by—step debugger that
assistas in catching the caleulation atep at which the error occurred,

This debugger has the same functionality as the Formula Auditor
(accessed through TOOLS/FORMULA AUDITING/EVALUATE

FORMULA).
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Figure T8 m&m{'}heckmgdsakg Mmﬁ-&mt&uﬂuﬂnt&mﬁm

g{l"

rEmor in col D&
»DEGREE[COS(CE))

Ervvalici Name Error
The Forsnla monkains urrecognized baxt.

The button "Ignore Error” keeps the error "as is.”" The bution Opticns
opens the dialog for setting errorchecking options. The chaoices within the
dialog are listed in section 5.8.

The Formula Evaluator shows the step at which the first calculation error
occurred. This belps in identifying the primary problem. In this example,
no ervar has oocurred in the formula part “COS(C6))". The dialog informs
you that “The next evaluation (that is, caleulation step), will result in an

E

eryor.

Figm ki3 ‘i‘he?ermuh Mmmtmmmatwh&ﬁmm“w

The nest evekiation will resul Iy an svor.
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After clicking on evaluate, you see that the error is in the formula part
“DEGREE.” Excel also informs you of the type of error— “#$NAME?
suggests that “DEGREE” does not match the name of any Excel function.
(The correct function is “DEGREES.”)

The “COS" function is nested within the DEGREE function. Clicking on
“Step In” will evaluate the nested function only.

Pigurs 80: After clicking on evaluate...

Yo show the rasult of the urderined exprassion, cick Evaluats, The most recent rasult -
appears kalicized, i

The *COS“ function is evaluated. The function has no error.

H s function has more than two levels of nesting, then you can uee the
“Step Out” button to evaluate the function at the higher level of
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Figure 81: The “COS" fanction is evaluawd

Yo show the resuk of the underined expression, dick Eveluste. The mest recnt rd
appous Ralichd,

THE XP VERSION OF EXCEL)

This feature is accessed through TOOLS/FORMULA
AUDITING/FORMULA AUDITING MODE. After this mode is nelected,
when you select a cell that has or is referenced by a formula, Excel
highlights the other referenced/referencing cells.

In addition, you have quick access (via the "Formula Auditing” toclbar) o
all the Auditing tools discussed earlier in this chapter.

Figure 82: Pormuls Auditing Mode

FORMULA AUDITING MODE (ONLY AVAIM&LE IN

) .

S>> hiEE BG
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CELL-SPECIFIC ERROR CHECKING AND
DEBUGGING

5.7

On every cell whose value evaluates fo an error value, you will see a small
jcon with a “” image and a downward arrow. Click on the arrow to obtain

assistance for debugging the error.

Figure 83° Cell-specific Error Checking and Debugging
' [ - [ UM R

Number Error

Help on this arror - e

onore Error .
Eclt it Formuls Bar
Show Formda fudiing Tookbar

In the example shown in the figure, the optiona show:
— the error type (“Number Error”),

— a link to assistance on understanding and debugging the error (‘Help _
on this error”), _ .

— a step-by-step debugger to catch the calculation step at which the error
occurred (“Show Calculation Steps”),

— the option to ignore and thereby keep the error as ie (“Ignore Error™),

— & link to directly edit the formula in the cell ("Edit in Formula Bar™),

84
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— the overall error-checking options ("Error Checking Options™), and

— direct acoess to the Formula Auditing Toolbar "Show Formula
Auditing Toolbar™) and, thereby, to all the features of Anditing (theee

features are taught in this chapter)

58 ERROR CHECKING OPTIONS
The Error Checking options can be assessed through

TOOLS/OPTIONS/ERROR CHECKING or through TOOLS/ERROR
CHECKING/OPTIONS. The dialog is reproduced in the next figure.

Figure 84: Error Chacking options

7 Enable heckgraund errcr checking Raset Igroved Bwors |

Ervor Jndcator Color: | tomatic v]

Roles
F Evalustes to wror voue
7 Teon dute with 2 dgr years
W Nuwber stored as tet
W Inconsistent formda iy region
I Formds omits gells in region
¥ uriocked calls containing Foreules
I Fomules referving to gmpty cells

x ] |

You can inform Excel to show as an error any cell: that contains:
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s A formula that evaluates to an error value

o A formula that refers to an empty cell

A formula that is not consistent with the other formulas and cell
references in neighboring cells

A two-digit year (like “02") instead of a four-digit year (like *2002")

e A number stored as text

The other options are beyond the scope of this bock. 1 recommend sticking
with the default settings reproduced in the next figure.
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CHAPTER 6

FUNCTIONS FOR BASIC STATISTICS

This chapter discusses the following topics:

— "AVERAGED" MEASURES OF CENTRAL TENDENCY

— AVERAGE, TRIMMED MEAN, HARMONIC MEAN, GEOMETRIC
MEAN

— LOCATION MEASURES OF CENTRAL TENDENCY

— MEDIAN, MODE

— OTHER LOCATION PARAMETERS

— QUARTILE, PERCENTILE

— MAXIMUM VALUE, MINIMUM VALUE, LARGE, SMALL

— RANK OR RELATIVE STANDING OF EACH CELL WITHIN THE
RANGE OF A SERIES

— MEASURES OF DISPERSION (STANDARD DEVIATION &
VARIANCE)

— STDEV, VAR, STDEVA, VARA, STDEVP, VARP, STDEVPA,
VARPA

— SHAPE ATTRIBUTES OF THE DENSITY FUNCTION

— SKEWNESS, KURTOSIS

— FUNCTIONS ENDING WITH AN "A" SUFFIX
1 am presuming that the reader is familiar with basic statistical functions
and/or has access to a basic statistics reference for learning more about

f 11
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6.1A

Chapier 6 Functions for Basic Stetistics

each function.

“AVERAGED” MEASURES OF CENTRAL TENDENCY

These set of functions perform some type of averaging to measure a
*mean” value. You may want to use the Trimmed Mean function to
estimate an average that excludes the extreme values of the data series.
The Harmonic Mean estimates the averages of the reciprocals of the
numbers in the series. The Geometric Mean is used to average rates of

change.

Samples will be available ot http://www.vibooks.net/excel/sampiles htm.

AVERAGE

The function calculates the simple arithmetic average of all cells in the
choeen range.

Menu path o function: Go to the menu option INSERT/FUNCTION and
choose the formula "AVERAGE the function category STATISTICAL.

Figure 85 AVERAGE function

Momber2 | M-

» ~r 2 e #
Rabure the avorage {arithmelic sean) of & argueents, which cor be rusers or namee,

89
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Data requirements: The X values can be input as references toc one or more
ranges that may be non—adjacent. The second range can be referenced in
the first text-box “Numberl” after placing a comma after the first range,
or it could be referenced in the second text-hox “Number2.” If you use the
second text-box, then a third text-box “Number3d” will automatically open.
(As you fill the last visible box, another box opens until the maximum

number of boxes — 30 — is reached.)

The function does not count invalid cell values when counting the number
of X values. The X values can take any real number value.

TRIMMEAN (*TRIMMED MEAN")

This function is a variation of the average or mean. This function
calculates the average for s set of X values after removing “extreme
values” from the set. The excluded cells are chosen by the user based on
the extremity (from mean/median) of the values in the range.
TRIMMEAN calculates the mean taken by excluding a percentage of data
points from the top and hottom tails of a data set. The user decides on the
percentage of extreme values to drop. For symmetry, TRIMMEAN
excludes a set of values from the top and bottom of the data set before

moving on to the next exclusion.

Menu path to function: INSERT/FUNCTION/STATISTICAL/TRIMMEAN.

Data requirements: The X values can be input as references to one or more
ranges that may be non—adjacent. The function does not count invalid cell
values when counting the number of X values. The X values can take any

real number value,
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Figure 86 TRIMMEAN (Trimmed Moan)
Arvay A "
Percent [0 ot PR Y
ey

In the dialog (shown above), Percent is the fractional number of data
points to exclude from the calculation. Percent must be greater than zero

and less than one.

6.1.C HARMEAN ("HARMONIC MEAN™)

The function calculates the harmonic mean of all cells in the chosen
range(s). The harmonic mean is the reciprocal of the arithmetic mean of
reciprocals. In the formula below, H is the harmonic mean, n the
sample/range size and the Y's are individual data values,

Menu poth to function: INSERT/FUNCTION/STATISTICAL/HARMEAN.

Figure 87: HARMEAN (Harwonic Mean)

__,_,,,.__,__#__a._..h._g

= £%171.961.53098C

' - 2416909
the harmonic mean of a deta set of posktive rusbers: the recprocel of the sithmstic
mm

Data requirements: The X values can take any real namber valoe except

ETO.
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Table 100 Comparing the results of the functions Average, Trimmed Mean

and Harmonic Mean
Function 51 82 x) x2 x3 x4
Average/mean 7.32 7.23 1173.00 1455 .17 1168.45
Trimmed Mean 7.13 7.00 1173.00 14.42 0.02 1168.71
#NUM!

Harmonic Mean 3.84 3.18 120.17 | 1352 | 0.01

Harmonic mean for x4 is zero because one value of x4 is not positive.

GEOMEAN (“GEOMETRIC MEAN”)

This function is typically used to caleulate average growth rate given
compound interest with series rates. In generel, the function is good for

estimating average growth or interest rates.

Menu path to function: INSERT/ FUNCTION/ STATISTICAL/
GEOMEAN. Data requirements: All values should be positive.

mmMMdmﬂwwwdmwm.

Nomberd [A1:A169 , ; E - ﬂi“;l.a@;iﬁimt
s

92

s



Chapler 6 Furlians for Basac Statistics

LOCATION MEASURES OF CENTRAL TENDENCY
(MODE, MEDIAN)

6.2

The Median and — less often — the Mode are alwo used for estimating the
central tendency of a series. The Median is much better in situations

where, either:

{a) A few extreme highs or lows are influencing the Mean (note that
the TRIMMEAN or Trimmed Mean function shown in the
previous section can reduce the chance of extreme values over-
influencing s Mean eatimate), or

(b) The central tendency is required to obtain the mid-point of
ohserved values of the data series as in the “Median Voter”
models, which are used to know if the "Median Voter™ threshold is
crossed in support of a point on the nominee’s agenda. (In a two-
perason face-off, any more than the Median vote will result in a

greater than 50% majority).

Samples will be available at hitp.//www.vjbooks.netéexcel/samples htm.
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MEDIAN

The Median is the number in the middle of a set of numbers. It is the 50th

percentile.

Menu path to function: INSERT/FUNCTION/STATISTICAL/MEDIAN.

Data requirements: Any array/range with real numbers.

MODE | _ : .

This function returns the most frequently oécurring value in a range.

Menu poth to function: INSERT/FUNCTION/STATISTICAL/MODE.
Data requirements: Aoy array/range with real numbers. The range has to

contain duplicate data values.

OTHER LOCATION PARAMETERS {MAX§EUMH,H
PERCENTILES, QUARTILES, OTHER)

Other useful location indicators for key points in a series are the
quartiles, percentiles, maximum value, minimum value, the Kth largest

value, and the rank.

Samples will be available at http:/www.vibooks.net/excel/samples.htm.
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6.3A QUARTILE

This function calculates a quartile of a data series.

QUARTILE (Dxta, Quartile)

Choose the guartile you desire to obtain. The five quartiles are shown in
the next table.

Quartile valuz of .. Calculates the...

0 00....1% ile

1 First quartile (25th percentils)
Median value (50th percentile)
Third quartile (76th percentile)
4 Fourth quartile (99.9x%ile)

W oiw

Menu path to function: INSERT/FUNCTION/STATISTICALAQUARTILE.
Data requirements: Any array/range with real numbers. Nobe: the data
series has to contain between 1 and 8,191 data points

6.3.8 PERCENTILE

This function returns the Pt» percentile of values in a data series. You can
use this function to establish a threshold of acceptance. For example, you
can prefer to examine candidates who score above the 95th percentile will

qualify for a scholarship.
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Figure 90: Estimating the 5th percentiie. K is the percentile value in the rangs Ot 1.

Arrey JAA A=
ﬂem
= 1518910656
Returns the k4l porceritile of vakaes in a rangs,

Daia requirements: Any array/range with real numbers. If the dats array
is empty or contains more than 8,191 data points, PERCENTILE returns
the” #¥#NUMT error value. If K is not a multiple of (14n — 1)), then Excel
interpolates the value st the Kth percentile.

Figure 91: Estimating the 96¢h percentile

&mm
xjoss A -05s

Ratoens the k-th parcentie of vakms i a range.

63C MAXIMUM, MINIMUM AND “KTH LARGEST”

MAX (*“Maximum value™)
MAX and MAXA: The functions calculate the largest value in a series.

WA
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Menu path to function: STATISTICALMAX , & STATISTICAL/MAXA.

Data Requiremenis: Any array/range with real numbers. In addition,
MAXA may include “True,” “False,” or numbers in text format

MIN (“Minimum value™)
MIN and MINA: The functions calculate the amallest value in ¢ series

Menu path to function: STATISTICAL/MIN, & STATISTICAL/MINA

Data Requirements: Any array/range with real numbers. In addition,
MINA include “True,” "False,” or numbers in text format

LARGE
This function caleulates the K largest value in a range.

Menu path to function: STATISTICAL/LARGE

Data Requirements: Any real number.

87
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SMALL

83D

This function calculates the Kth smallest value in a range.
Menu path to function: STATISTICAL/SMALL

Data Requirements: Any real number.

RANK OR RELATIVE STANDING OF EACH CELL WITHIN THE
RANGE OF A SERIES .

PERCENTRANK

The PERCENTRANK function returns the rank of a value in a data set as
a percentage of the data set. The function can be used to evaluate the
relative standing of a value within a data set. For example, you can use
PERCENTRANK to evaluate the standing of a test score among all scores

for the test.

F‘xgmss- Percentrank of the average/mean

mhﬁﬁamhnmﬂ&amﬁ _
i the vake for which you wenk b o i rrk,

Menu path to function: INSERT/FUNCTION / STATISTICAL /

PERCENTRANK.
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Data requirements: Any array/range with real numbers.

RANK

The function RANK calculates the relative rank of a value within a series
of numbers data. You can choose to obtain the ranks on the basis of
ascending or descending values. X is the data point whoee rank is dewired
within the range. Order sets the sorting direction— 1 for ascending
ranking, 0 or blank for descending ranking. Cells with the same value
cells are given the same rank.

Menu path to function: INSERT / FUNCTION / STATISTICAL / RANK.

Data requirements: Any array/range with real numbers.

MEASURES OF DISPERSION (STANDARD
DEVIATION & VARIANCE)

64

Table 12 Standerd Devistion & Varispos

Location withi
; ot INSERT / Doto Reowi
Punction Description ON Requuiremenis
Sampie
dispersion: zwmﬁ STATISTICAL/ Any range with
STDEV, VAR sample standard STDEVA sulbicient muanber of
istion and vari & numeric dats points.
deviation and variance, | opamyoTICALS | Text and logical values |
respectively. VARis | "y p, are excluded.
the square of STDEV
ARA | Theee are variants of Text and logical values
ESTDEVA'V the functions above but | STATISTICAL/ @ suchas TRUEand |
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Location within
Function Deseription F{gﬁ% ;{ Data Requirements
with a wider range of STDEVA FALSE are included in
acceptable data types the calculation. TRUE
e as input data. & is valued as 1: text or
STATISTICAL / FALSE is valued 2z 0.
VARA
The less often used
population dispersion
functions are
sometimes also used
Population for large sample sizes.
dispersion: STDEVP assumes that | STATISTICAL /
P, its data are the entire A large number of
STDEV population. Typically, STDEVA observations.
VARP you use the sample &
formulae. For large Text and logical values
sample sizes, STDEV STATISTICAL/ are excluded.
— and STDEVP return VARA
approximately equal :
values. VARP is
aquare of STDEVP
§ Text and logical values
such as TRUE and
FALSE are included in
STDEVPA, | o | STATISTICAL! | 4 calcuiation. TRUE
VARPA Fe vanan STDEVA is valued aa 1; text or
the functions above but X
: ‘ PALSE is valued as 0.
with a wider range of & ] .
acceptable data types Text and logical values
. STATISTICAL/ such as TRUE and
as input data FALSE incl .
VARA are included in
the calculation. TRUE
is valued as 1; text or
FALSE is valued as 0.
Figure 94: Dialog for STDEV
Nummber.{a1:A169] ] - et ant Sr0mi
Numbor2] - PR
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Figure 95 Diaiog or STDEVA. Note that the functions with the “A” suffix request "Values™
as input while the equivalent non—suffixed fanctions requent “Numbers™

value1 [a1:A169 8]t ovisiong

vahuo2 [ -

SHAPE ATTRIBUTES OF THE DENSITY FUNCTION
(SKEWNESS, KURTOSIS)

6.5

6.5A SKEWNESS

Skewness measures asymmetry around the mean. The parametsr is best
interpreted as relative to the Normal Density Function (whose Skewness
equals zero). The interpretation of the Skewness for & series (relative to
the Normal Density Function) is:
— Skewness > 0 - asymmetric tail with more values above the mean.
-~ Skewness < 0 - agymmetric tail with more values below the mean.

The next three figures shown Density Functions that have a Skewness >
0, = 0, and < O, respectively, for three variables Y1, Y2 and Y3. (Y2is

distributed Normally).
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Figure 96 Distribution of series Y1
Skewness > §

T

ot

Figure 97° Distribution of seriea Y2,
Skewness = 0.

Figure 58° Distribution of series Y3
Skewness <

Samples will be available at http://www.vijbooks net/excel/samples htm.
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= 054691 4547
Rotutre the skewness of a distribution: » charactarteation of the degres of ssyemelry of »

distriixion sroutvi s mean,
Musnberi: ramber ], rumber?, ... are 1 to 30 nuibers OF nassts, wvys, or
reforences that contain rombers For which you went the shewsss.,

B romiarear~osunese [ J cmm |

Menu path to function: INSERT / FUNCTION / STATISTICAL / SEEW

KURTOSIS

Compared with the Normal Density Function (which has a Kurtosis of
zero), the interpretation of the kurtosis for & series is:

- Kurtosis > 0> peaked relative to the Normal Density Function
— Kurtoeis < 0> flat relative to the Normal Density Function

The next figure shows three Density Functions. The Density Functions
ke around the same Mean and Median, but note the difference in the
relative flatness of the Density Functions:

Distribution of series X1 is the flattest with a Kurtosis < 0, that of X2 is
jess flat with a Kurtosis = 0 (a Normal Density Function) and that of
peries X3 is the least flat with a Kurtosis > 0.
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Figure 100° Exampie of Density Functions with different Skewness

D N

Samples will be available at hitp://www.vjbooks.net/excel/eamples.htm.

Menu path io function: INSERT / FUNCTION / STATISTICAL 7/ KURT a

6.6 : FUNCTIONS ENDING WITH AN “A” SUFFIX

These functions calculates the same statistic as their “twin” formula (the
one without the prefix “A™) but include a wider range of valid cell values
in the relevant formula. The “A” —suffixed functions include the following

types of cell values:

— Logical (and not numeric) like “True” and “False” (valued as 1 and 0,
respectively), e

— Blank cells {valued as 0), and
— Text (valued as 0).

A text string or a blank cell is valued as zero. The next table Lists these
twin functions:

104
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Table 13: Functions ending with the "A” suffix,

The non-

The “A” prefixed
prefixed . Comment
fancli “twin” formula
" VERAGE AVERAGEA Simple average/mean
Count of valid cells. The prefixed
COUNT COUNTA function is very useful in counting.
STDEV STDEVA Standard deviation
Standard deviation firom s populstion or
STDEVP STDEVPA 2 very large sampie (relative to
population)
VAR VARA Variancs
Variance from population (and not
VARP VARPA sample) data, or from a very large
sample (relative to population)
MIN MINA Minimwm value
MAX MAXA Maximum valos

105
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CHAPTER 7

PROBABILITY DENSITY FUNCTIONS AND
CONFIDENCE INTERVALS

This chapter teaches the following topics

— PROBABILITY DENSITY FUNCTION (PDF)
— CUMULATIVE DENSITY FUNCTION (CDF)
- THE CDF AND CONFIDENCE INTERVALS
- INVERSE MAPPING FUNCTIONS

— NORMAL DENSITY FUNCTION
~ STANDARD NORMAL OR Z-DENSITY FUNCTION

- T-DENSITY FUNCTION

- F-DENSITY FUNCTION

- CHI-SQUARE DENSITY FUNCTION

- OTHER CONTINUOUS DENSITY FUNCTIONS: BETA, GAMMA,
EXPONENTIAL, POISSON, WEIBULL & FISHER

~— DISCRETE PROBABILITIES— BINOMIAL, HYPERGEOMETRIC
& NEGATIVE BINOMIAL

— LIST OF DENSITY FUNCTION FUNCTIONS — PROBABILITY
DENSITY FUNCTION (PDF), CUMULATIVE DENSITY

FUNCTION (CDF)
— LIST OF SELECT INVERSE FUNCTION

108
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PROBABILITY DENSITY FUNCTIONS (PDF),
CUMULATIVE DENSITY FUNCTIONS (CDF), AND

INVERSE FUNCTIONS

PROBABILITY DENSITY FUNCTION (PDP)

Figure 101 Probability Density Punction (PDI)

The horizontal axis contains the values of the series/series. The vertical
height of the curve at a point on the X—axis shows the probability
associated (or frequency) with that point. (The total area under the curve
equals 1; so, all the "heights” add up to 1 or 100 %.) The higher the
frequency with which that point is observed in a series/series, the higher

is its frequency.

An often—used probability Density Function — the *“Normal® probability
Density Function — is shown in the previous figure. This Density
Function has some convenient properties:

— its Mean, Mode and Median are the same

— it does not have a left or right skew, and
- the left half is 2 mirror image of the right half.

All these “symmetrical” properties allow one to draw inferences from tests
run on series that are distributed “Normally.”

17
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Based on several theorems, postulate, “most data series start behaving
more and more like a series that follows a Normal Density Function as
the sample size (or number of data points) increases.” (This presumption
follows from the “Central Limit Theorem.”) This has made the Normal
Density Function the bedrock of most statistics and econometrics,

CUMULATIVE DENSITY FUNCTION (CDP

We are typically interested in measuring the area under the curve (a) to é
the left of an X value (b) to the right of an X value, or {¢) between two X

values. The height of the curve at any X value is not so useful by itself

because it does not answer any of these questions directly.

A better graphical tool to measure the “area under the curve” is the
Cumulative Density Function (CDF). A CDF plots the X categories
against the “probability of a value taking a value below the chosen X

value.”

The CDF for the Normal Density Function is reproduced in the next

figure. The curve increases from left to right (from 0 to 1%). The height at

any X-value tells us “the probability of a value having a value below this e
X-value equals the Y-axis value of the CDF at this X.”

8 The area under any Density Punction curve always equals 1. The relative
frequency equals (frequency that X takes on this particular value) divided by (the
total sample gize). Therefore, in a sense, the height gives the frequency weight for
each X value. If you sum all the relative frequencies, their sum is “sample size
divided by sample gize” equals 1. This is the area under the curve. It can also be
expressed in percentage terms: the total percentage area then becomes 100%.

110
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Pigure 102: The "Cumnuiative Density Function™ (CDF) aseociated with the Probebility
Density Punction {PDF) shows in the previous figure

1.000

000 .
22010 272%

The CDF is a better tool for answering the typical questions sbout the
properties of a data series. CDF is of grest importance for building
Confidence Intervals and implementing hypothesis tests.

In fact, for some Density Functions, Excel only measures the CDF only
‘(ané not the CDF & PDF).

ek ALy 7 e o b

The CDF and Confidence Intervals

111

The concept of a Confidence Interval for a measured parameter (typically
for a mean) is based on the concept of probability depicted by a Denaity
Function curve. A Confidence Interval of 95% is a range of X valuss
within whose range the sum of the relative frequencies is 0.95 or 95%.

1 will use this property to show how to create Confidence Intervals for
various distributions using the Inverse of the CDF. (You will jearn more
on the Inverse in the next sub-section.)

[t
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Table 14 Probability Density Function (PDF} and Cumuletive Density Function (CDF)
Cumulative Density Function (CDF) &

I¢ there an option| Probability Density Function (PDF):
to request the Information requirements for
Function Cumulative parameterization
Dengity Function
{CDF)Y? Sid | Degrees of
Mean Dev | freedom Other
TDIST v Tails #
LOGNORMDIST v v v
20 dp, of
v gree
FDIST freedom
alpha, beta, upper and
BETADIST lower bound
CHIDIST v
NORMDIST v v v
NORMSDIST v
Alpha and
WEIBULL beta
NEGBINOMDIST (Probability) # of
successes
BINOMDIST v (Probaebility)
EXPONDIST v Lambda
Alpha and
GAMMADIST v beta
Sarnple size, population size, # of
HYPGEOMDIST succeeseg in population
POISSON v v
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INVERSE MAPPING FUNCTIONS

The Cumulative Density Function (CDF) tells us “For any X series, the
probability of the value of X falling below a speaific x value can be
calculated from the height of the Cumulative Density Function (CDF)

at that x value.”

An inverse function does the reverse mapping: “For a probability P, the X
to who's left the probability of the data lying can be obtained by a reverse
reading of the Cumulative Density Function (CDF). That is, from

*Desired Cumulative Probability -» unknown X that will give this desired

cumulative probability F.”

Alternatively, "Inverse” functions find the X value that corresponds to a
certain “probability of values below the X equaling a known cumulative

probahility.”

~  Figure 108° Resding icverse mapping froms s Cumuistive Density Function (CDF}. The
arvows show the valuas below which are 95% of the valuss of the data surion.

1.000;

750

250

m‘
o

L.22210 272235 s 416390

Inverse functions permit easy construction of Confidence intervals.
This will be shown several times in further sections whenever | discuss
the construction of Confidence intervals.

2y
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Table 15: Inverse functions (also used to creste Confidence intervals). Samples will be

available at httpiwww.vibooks. net/excel/samples himg,

Information
I Functi requ’edhyali} (}thexlmm
{“probability to inverse requrements
Function value”) of this Pmmm&;
Cumulative Density | * o 2% ch;f * gea | Deerees
Function (CDF)? ¥ ¢ |Mean of Other
corresponding Dev freedom
value is sought
TINV TDI8T 7 v v
LOGINV LOGNORMDIST v ¥
Second
FINV FDIST s v | degree of
freedom
alpha,
. beta,
BETAINV BETADIST v “f;’;r
lower
bou;zd
CHIINV CHIDIST v v x
NORMINV KORMDIST 4 v
NORMSINV NORMSDIST v

NORMAL DENSITY FUNCTION

The Normal Density Function has several properties that make it easy to
make generalized inferences for the atiributes of a series whose Density
Function can be said to be “Normal.” '

Figure 104: A Norma)l Probability Density Function
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Symmetry

116

The major measures of central tendency — the mean, median, and mode
— all lie at the same point right at the place where the bell shaped curve

is at ita greatest height.

The Density Function is perfectly symmaetrical around this “confluence” of
central tendencies. Therefore, the left half of the Density Function
{measured ag all points to the left of the mode/median/mean) is a8 mirror

image of the right half of the Density Function.

This ia shown in the next figure — the lighter shaded half is a mirror

image of the darker shaded half So, the frequency of the values of the
variables becomes lower (that is, the height of the curve lowers) as you
move away from the mode/mean/median towards either extreme. This
change is gradual and occurs at the same rate for negative and positive

deviations from the mean.

mwwmu.mmammmmw

The symmetry also implies that:

(8) The Density Function is not “skewed” to the left or right of the
mode/median/mean (and, thus, the Skewness measure = ()

{b) The Density Function is not "too” peaked (which would imply that the

1%
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change in probability is very rapid when moving from the
mode/median/mean towards an extreme) nor “too” flat (which
would imply that the change in probability is very slow when
moving from the mode/median/mean towards an extreme).
The first property implies that Skewness = 0, and the second

implies that Kurtosis = 0.

Convenience of using the Normal Density Function

If a series is Normally distributed, then you just need two parameters for 6
defining the Density Function for any series X— the mean and standard

deviation of the variables values! This is because, once you know the

mean, you also know the mode and median (as these two statistics equal

the mean for a Normal Density Function).

Once you know the standard deviation, you know the spread of values
arcund the mean/mode/median. (A series that follows a Normal Density
Function is not skewed to the left or right, nor is “teo” peaked or “tog”

flat.)

Are aﬁ i#rge—sai;xple series Normally Distributed?

Some formal mathematical theorems and proofs support the theory that
“as the sample size gets larger most Density Functions become more like
the Normal Density Function.” Therefore, for example, if a series has a
left skewed Density Function when a sample of 20 cbservations is used, it
may also behave more like a symmetrical (that is, a zero—skewed) Normal
Density Function if the sample size is, for example, 1000 observations.

(Even if the Density Function does not have the classic bell-shape of a

116
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normal curve, it can behave like & Normal Density Function if it satisfies
— to & sufficient extent — the conditions that imply normality —

e The fact that the mode, mean and median are very close 1o each
other

» An additional feature is that the Density Function is roughly
symmetrical around the mode/median/mean.

. assumption of Normality

117

Assuming that variables are distributed Normally is a practice that
underlies— and even permits— most hypothesis teating in econometrics
and statistics. Without this assumption, statistics, as we know it, would
lose much of its power to estimate coefficients and establish relationships

amongst varisbles.

Assume you have three variables — X1, X2, and X3. X1 is measured in
dollars with a mean of $2.30, X2 also in dollars with a mean of $30,000
and X3 in tons. You assume that all the variables are distributed
Normally. This permits you to make inferences about the series. Once
you know the mean and standard deviation for X1, you can make
statements like “60% of the values of X1 lie below $2.62," "Betwoen the
valuea $24,000 and $28,000, we will find that 18% of the values of X2 will
Lie,” ar, “Over 40% of the values of X3 lie below 24 tons.” (MNote: the
figures are chosen arbitrarily). Thia is fine. But the problem is thet the
relation between the “mean, standard deviation, X values and probability”
must be calculated anew for each of the variables because they are
measured in different units (dollars versus tons) or/and on different
scales and ranges (X1 versus X2 in our example).
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This limits the usefulness of using the Normal Denasity Function to assess
the relation between series values and the probability of values occurring
less than, equal to or above them. In practical terms, you would need a
statistics textbook that lays out the relationship between an X value and
probability for all possible combinations of mean and standard deviation!

The Standard Normal and its power

72A

Luckily, a method removes the need for such exhaustive table liatings.

This method involves rescaling all series that follows a Normal Density é
Functiona to a common scale such that, on the new scale, the variables

have a rnean/mode/median of zero and a standard deviation of one. The
process is called “standardization” and this standardized Density
Function is called the standard Normal Density Function or the Z —

Density Function.

The Z —scores are also used to standardize the Density Functions of the
means of variables or the estimates of statistical coefficients. If the
standard error of mean for the population from which the sample is
unknown (as is typically the case), then the T Density Function is used

instead of the Z Density Function.

THE PROBABILITY DENSITY FUNCTION (PDF) AND
CUMULATIVE DENSITY FUNCTION (CDP

PDE:
NORMDIST (x, mean, standard deviation, false) -» probability of values

taking the value X

CDF:

118
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NORMDIST (z, mean, standard deviation, true) -> probability of values
lying tothe leftof X

Figure 106: The dislog for estimating the probability sssocisted with a velue of 2 point in »
sezion thet follows a Normal Density Function

-NORMDIST |
x}
Hean |
Standard_dev |
Cumwiative |

Figuve 107 The Cumujative Density Function {CDF} for a series that follows » Mormal
Density Panction. The arrows shaw the value to the left of which lie 96% of the veloes in the

Density Fonction.
1.000: < el
750 s
m‘ - 'r”.”-......:. A :.“: J M;
B T - .~;;-HL"-':-
000~y T LN

The Cumulative Density Function (CDF} is the integral of the function oa
the right band side in the sbove equation. The range of integration is
negative infinity (or the population minimum) to the X value being

studied.

Menu path to function: INSERT / FUNCTION / STATISTICAL /
NORMDIST.

Data requirements: The data series should follow the assumed Density
Funection type (Normal).
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INYERSE FUNCTION

This function calculates the inverse of the normal cumulative Density
Function for a user—specified mean and standard deviation.

NORMINV (probability below the X, MEAN, STANDARD DEVIATION) > X

Figﬁre 108: The inverse¢ function for 8 Normal Density Function
- NORMINY ~——

| Probabiey |
e @
é Standord_dev |

CONFIDENCE INTERVALS

Menu path to function: INSERT / FUNCTION / STATISTICAL /

NORMINV.

Data requirements: The data series ghould follow the assumed Denaity
Function type (Normal). ‘

95% Confidence Interval

The Confidence Interval contains all but 2.5% of the extreme values on
each of the tails of the Density Function (Probability Density Function
(PDF)) or is the value that corresponds to 0.025 and 0.976 on the

- Cumulative Density Function (CDF). The 35% Confidence Intervzl for a

series that follows a Normal Density Function with mean =pand

standard deviation = o is defined by the results of the two inverse

120
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functions at these two probabilities:

— NORMINYV (0.026, mean, standard deviation)

— NORMINYV (0.975, mean, standard deviation) for the Jower and
upper Limit

90% Confidence Interval

The 90% Confidence Interval for a series that follows a Normal Density
Function with mean = p and standard deviation = o is defined by the
results of the two inverse functions at these two probabilities;

— NORMINYV (0.05, mean, standard deviation)
— NORMINYV (0.95, mean, standard deviation) for the Jower and
upper limit

Tabls 16- Normal Density Punction— Formulse for 90%, $6%. and 99% Confidencs komits

&"ﬁmli Formula for lower bound Formula for apper bound
90% NORMINV (0.05, mean, NORMINV (0.95, mean,
9E% NORMINY (0.025, mesn, NORMINY {0.975, mean,

astandard deviation) standard devistion)

tmmtmyboahwthmuingmh&mp&rushthmmw
’ > w*
* pox "mu” for mean
* o or "sigma standard devistionferror

» o or "sigma square variancs

121




Statistical Analysis with Excel

Go?f‘i‘;nw Formula for lower bound Formula for up per bound
099 NORMINV (0.005, mean, NORMINYV (0.995, mean,
standard deviation) standard deviation)

7.3 STANDARD NORMAL OR Z—DENSITY FUNCTION

The Cumulative Density Function (CDF) is the integral of the funection on
the right hand side in the above equation. The range of integration is
negative infinity to the Z value being studied. e

CDF: ,
NORMSDIST (z) - probability of values lying to the left of Z

Figure 109 The Normal Denaity Function
rNORMDIST

x|

Mean |
Standard_dev |
Curvusiative |

Menu path to function: INSERT / FUNCTION / STATISTICAL
/NORMSDIST.

Dato requiremenis: The data series ‘2’ should follow the assumed Density
Funetion type (Standard Normal),

122
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Inverse function

This function calculates the inverse of the Standard Normal CDF. The
inverse function for a Standard Normal Density Function requires only

one parameter.

NORMSINV (probability below the X) 3 X
Figure 1)0: NORMSINV

Figure 111° The cumulative Standard Normal Density Fanction (r the Probit)
e N S ™

? :

g oy
S S

Mzl B T T s

Menu path to function: INSERT / FUNCTION / STATISTICAL /

NORMSINV. Data requirements: The data series ‘s’ should follow the
assumed Density Function type (Standard Normal).

Confidence Intervals

Table 1T Standerd Normal Density Function: Formulse for 90%, 95% sad 99% Coufidence
Y

Confidence level | Formula for Jower bound | Formula for upper bound
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Confidence level | Formula for lower bound | Formula for uppex bound
90% NORMSINYV (0.05) NGRMSINV (0.95)
95% NORMSINV (0.025) NOEMSINV (0.975)
99% NORMSINV (0.005) NORMSINV (0.995)

4 | T-DENSITY FUNCTION o

TDIST (x, degrees of freedom, tails) -> probability of values lying to the
left of X

In the box Tails, specify the number of tails to return.
» If tails = 1, TDIST returns the one-tailed Density Function.

e [Iftails = 2, TDIST returns the two—tailed Density Function.

For example, TDIST (1.96, 60, 2) equals 0.054645, or 5.46 percent

Figure 112 T-Distribution >
o

]
Deg_freedom |
. Talls|

Menu poih to function: INSERT /FUNCTION /STATISTICAL /TDIST.

Data Requirements: The data series should follow the T Density Function.
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Inverse function

This function calculates the t—value of the Student's t—Density Function
as a function of the probability and the degrees of freedom.

TINV (probability below the X, degrees of freedom) 9 X

Figure 113 The inverse function for a T-Density Fusction

- TINN-

Probabiity |

Deg_freedons |

3

A one-tailed t-value can be returned by replscing probability with
2*probability. For a probability of 0.05 and degrees of freedom of 10, the
two-tailed value is calculated with T (0.05, 10), which retums 2 28139,
The one-tailed value for the same probability and degrees of freedom can
be calculated with T (2*0.05, 10}, which returna 1.812462.

TINV (0.054645, 60) equals 1.96

Menu path to function: INSERT /FUNCTION /STATISTICAL /TINV.

Daia requirements: The data series should follow the assumed Density

Function type (T).
Confidence Intervals
Tuble 18: T Density Punction— Formulas for 0%, 96%, and 89% Confidence Emits (2 taile). __
Confidence | Pormula fur lower bound Formula for uppor bound
20% TINV (0.05, degrees of freedom) | TINV (0.95, degrees of freedom)
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cﬂ!;eﬁ‘i&lnce Formula for lower bound Formula for upper bound
95% TINV {0.025, degrees of freedom) | TINV (0.975, degrees of freedom)
99% TINV (0.005, degrees of freedom) | TINV (0.995, degrees of freedom)

74A ONE-TAILED CONFIDENCE INTERVALS

S ——— S S R e

;5% —i}onﬁdence Interval

A 95 % Confidence Interval contains all but 5% of the extreme values on
one—tail of the Density Function (Probability Density Function (PDF)) or
is the value that corresponds to 0.05 or 0.95 on the Cumulative Density
Function (CDF) (the former for the left tail of 5% and the latter for a righi )

tail of 5%).

The 95% Confidence Interval for a T—distributed series is defined by the
results of the two inverse functions at this probability:

Left {ail: Negative infinity to TINV (0.05, degrees of freedom).

Right tail:  TINV(0.95, degrees of freedom} to positive infinity. .

Note:
TINV(0.05, degrees of freedom) = —TINV(0.95, degrees of freedom)

90% Confidence Interval

A 90 % Confidence Interval contains all buti 10% of the extreme values on
‘one—tail of the Density Function (Probability Density Function (PDF)) or
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is the value that corresponds to 0.1 or 0.8 on the Cumulative Density
Function {CDF) (the former for the left tail of 10% and the latter for a

right tail of 10%).

The 90% Confidence Interval for a T-distributed series ia defined by the
results of the two inverse functions at thias probability:

e Left tail: Negative infinity to TINV (0.1, degrees of freedom).

« Right tail: TINV (0.9, degrees of freedom) to positive infinity.

Note:
(0.1, degrees of freedom) = ~-TINV(0.9, degreea of freedom)

Teble 1% T Density Function-— Formules for 50%, 96%, and 59% Confidence Namits (right tail

Confidence Fm&hmmmmm fthe lower
level limit equals negutive infinity)
90% TINV (0.9, dogrees of freedam)
5% TINV (0.95, degrees of freedom)
99% TINV (0.9, degrees of freadom)
Table 20 TMMM@?MM”W“M%
Confidence | Formuls for right-tail ConBidence lowsr limit (the upper hmit
ufide e anle pocitive fiaity]
90% ~TINV (0.1, degrees of freedom)
95% ~TINV (0.05, degroes af freedom)
99% ~TINV (0.01, degrees of freedom)
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F—DENSITY FUNCTION

The F test is used for testing model significance and other joint hypothesis
in ANOVA, Regression Analysis, etc.

CDF:
FDIST (x, numerator degrees of freedom, denominator degrees of freedom)

Menu path to funetion: INSERT / FUNCTION / STATISTICAL / FDIST.

Figure 114° F-Distribution
FDIST '

X1
Deg_freedomt |

eg fremdomz[ ]

Data requirements: The data series should follow the assumed Density
Function type (F).

Inverse function ' .
FINV (probability below the X, numerator degrees of freedom, denominator
degrees of freedom) > X
Menu path to function: INSERT / FUNCTION / STATISTICAL /FINV.

Data requirements: The data series should follow the F D_enaity Funetion.
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Pigure 115: The inverse function for sn F-Density Fusction

Probabiity §

Deg_freedomi |

Deg_freedom2 |

One-tailed Confidence Intervals

Table 21: F Density Function— Formulas for 90K, 96%, and 99% Confidenes Intervals (right
tail cnly).
Confidence | Formula for upper One-tail Confidence Jower limit (the upper limit equals
Jevel positive infinity)

00% FINV (0.9, pumerator degrees of freedom, denominator degrees of fresdom)
95% FINV (0.95, numerator degroes of freedom, denominator degroes of freedom)
99% FINV (0.99, numerator degrees of freedom, denominstor degrees of freedom)

CHISQUARE DENSITY FUNCTION

The Chi-square test is used for testing model significance and other joint
hypothesis in Maximum Likelihood estimation, Logit, Probit, etc.

CHIDIST (x, degrees of freedom) - probability of values lying to the left of X

129
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Menu path to function: INSERT /FUNCTION /STATISTICAL /CHIDIST.
Data requirements: The data series should follow the assumed Density

Function type (Chi-Square).

Inverse function

CHIINV (probability, degrees of freedom) > X

Menu path to function: INSERT /FUNCTION /STATISTICAL /CHIINV.

Daia requirements: The data series should follow the Chi-Square Density

Function.
Figure 117: CHIINV
CHENY
m&ml
Ome-tailed Confidence Intervals . . .
Table 22: Chi-Square Density Function: Formulae for 90%, 96%, and 99% Confidance Limits
(right teil only). Samples will be available at htip//www.vibooks netioxcellsamples htrm,

Confidence Formula for upper One-tail Confidence lower limit (the upper

level limit equals positive infinity)

90% CHIINV {0.9, degrees of freedom)

95% CHIINV (0.95, degrees of freedom)

99% CHIINV (0.99, degrees of freedom)




Chaplsr 7- Frooabity Dengity Funciions & Corfidence nervals

OTHER CONTINUOUS DENSITY FUNCTIONS: BETA,

1.7
GAMMA, EXPONENTIAL, POISSON, WEIBULL &
FISHER
1.7A BETA DENSITY FUNCTION
CDE:
BETADIST (x, alpha, beta, lower bound A, upper bound B) -> probability of
values lying to the leR of X

Menu poih to function: INSERT / FUNCTION / STATISTICAL /
BETADIST.

Data requirements: The data seriea should follow the Beta Density
Function.

Figure 118: BETA Density Fanction

rBETADISY

x]
sloba
Beta |
Al

Bf
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Figure 119: Note how the Density Punction Probability Density Punction (PDF) is skewed to
one side and has s less sharp “hill” at top — compared v a Norms] Probability Density
Punetion (PDF) :

Figure 120 The Cumulative Density Function {CDF) shows {on the Y ~Axis) the proportion of
values that lie below 8 certain X value of the series

1.000 4

e e . A———— % X C e om o ek b s e s

Inverse Funciion

BETAINV (probability, alpha, beta, lower bound A, upper bound B} » X

Menu path to function: INSERT / FUNCTION / STATISTICAL / .
BETAINV.

Data requirementis: The data series should follow the assumed Density
Function type (Beta).
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Figure 121: The inverss function for & BETA Deusity Fonction

rEETAINY
Probabiiy | __
ml - "'“:ér“ 3
Beta|
al _
of ]
- o
Aeonﬁ_m dence Intéw.ls o T
_ Table 23: BETA Density Function Formules for and S9% Eanite,
c“?ff:im Formuls for lower bound Formuls for upper bound
20% BETAINV (0.05, alpha, beta, A, B) | BETAINV (0.96, alpha, beta, A, B)
95%  [BETAINV (0.025, alpha, beta, A, B)] D o017 (070 slphe. beta, A,
99%  |BETAINV (0.005, alphs, beta, A, B)| DE1 /11" (955 alpha, beta. 4.
778 GAMMA DENSITY FUNCTION

The Gamma Density Function is commonly used in goening analysis.

CDEFE:
GAMMADIST {x, Alpha, Beta, true) - probability of vaiues lying to the left of X)

EDF:
GAMMADIST (x, Alphs, Beta, false) > probability of values taking the value X)

Menu path to function: INSERT /FUNCTION /STATISTICAL
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/GAMMADIST.

Figure 1220 GAMMA Density Function
rGAMMADIST

Data requiremenis; The data series should follow the assumed Density Q
Funetion type (Gamma).

" Inverse Function o
GAMMAINV (probability below the X, alpha, beta) < X

Menu path to function: INSERT /FUNCTION /STATISTICAL
IGAMMAINV,

Data requiremenis: The data series should follow the assumed Density
Function type (Gamma}. ' : ‘

Figure 188 The inverse Fanction for 1« GAMMA Density Function

2
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Confidence Intervals
Table 24° Gammas Density Punction' Formuise for 50%, 58% and 99% Corfidenow limita,
Ssmples will be svailabie at b
S
%f‘:nm Formula for lower bound Formula for upper bound
90% GAMMAINYV (0.05, alpha, beta) | GAMMAINV (0.96, alpha, beta)
5% | GAMMAINV (0.025, alpha, buta)| CGAMMAINY ﬁm""“"
GAMMAINYV 0896, sipha, beta

7.7.C

o9 GAMMAINY 0005, alphe, beta

If an inverse function does not converge after 100 iterations, the function

returns the #N/A error value.

EXPONENTIAL DENSITY FUNCTION

EDF:

EXPONDIST (x, lambds, False} -» probability of values taking the value X

CDE:

EXPONDIST (x, lambda, True) <> probability of values lying to the left of X

Menu poth to function: INSERT /FUNCTION STATISTICAL

/EXPONDIST.

Data requiremenis: The data series should follow the Exponential Density

Function.
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Figure 124 Dialog for the Exponential Distribution

Figure 125° Exponential Probability Density Function (PDF)

DOs . 576 1151 127 pelizl]

000 576 11.51 17.87

EXPONDIST (0.2, 10, TRUE) equals 0.864665 while EXPONDIST (0.2, 10,
FALSE) equals 1.353353

Further detail is beyvond the scope of this book.
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FISHER DENSITY FUNCTION

This topic is beyond the scope of this book.

POISSON DENSITY FUNCTION

This Density Function is used for predicting the number of events X’
occurring over a specific time.

PDF:
POJSSON (x, expected value, false) - probability of values taking the value X

CDE:
POISSON (x, expected vaue, true) -» probability of values lying to the loft of X

Further detail is beyond the scope of this book.

WEIBULL DENSITY FUNCTION

EDF:
WEIBULL (x, 8, b, false) > probability of values taking the value X

CDF:
WEIBULL (x, 8, b, true) -3 probability of values lying to the left of X

Further detail is beyond the ascope of this hook.
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7.7.6 DISCRETE PROBABILITIES~— BINOMIAL, HYPER GEOMETRIC &

NEGATIVE BINOMIAL

This topic is beyond the scope and aim of this book.

Binomial Density Function

This funiction is used to ascertain the probability of obtaining a “head” in a
coin toss. X can take only two discrete values. Further detail is beyond
the scope of this hook.

Hypergeometric Density Function

The Density Function captures event probabilities in problems of

sampling without replacement. The sample is taken from a discrete finite

population like a deck of cards. Further detail ia beyond the scope of this
book.

Negative Binomial

This function measures the probébility of “number of coin tosses beforé
firat or K* heads (in a coin toss).”
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LiST OF DENSITY FUNCTION

Table 25: PDF and CDF functions
Information
Is here a required by | Other informalion requirements
function that al funclions
does the
corverse of Vave (s)
Funclion this mapping for which i
and, if 50, the he ; & s §
name of the probablity -
function? is being g
sought
TDIST TINV v v
LOGNORMDIST|  LOGINV v N
_ 24 degree
FOIST FINV v Y | of eedom
ST | BETANY s | tipha beta, upper and lower
CHIDIST CHINV v v
NORMDIST | NORMINV i A
NORMSDIST | NORMSINV v
| sipha,
WEBULL v bets
\ £of
INEGBINOMDIST ~ — Sofialures|  (ProbebBy) |
tol

BINONDIST - succosseg | (T YODubity)

EPONDIST  — v Lombds |
| GAMMADIST | GAMMAINY v panll
’ #of

EOMDIST - Sample & populalion sbe, # of
in sample n por
v v 4
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SOME INVERSE FUNCTION

Table 26: Inverse Functions

Information
Inverse mapping | required by all Other information
(“probability to inverse requirements
. value”) of which functions
Function cumulative -
probability Proba.blhty for De
. which the Gt | oBrees
function? . |Mean of Other
corresponding Dev
: freedom
value is sought
TINV TDIST v v
LOGINV | LOGNORMDIST v v
ond
FINV FDIST v v dez?e ,
freedom
BETAINV BETADIST v alpha, beta, Upper and
lower bound
CHIINV CHIDIST v v
NORMINV. NORMDIST v v
NORMSINV| NORMSDIST v
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CHAPTER 8

OTHER.  MATHEMATICS & STATISTICS FUNCTIONS

148

This chapter briefly displays some other functions available in Excel. The
topics in this chapter are:

- COUNTING AND SUMMING

— COUNT, COUNTA

~ COUNTBLANK

~— COMPARING COUNT, COUNTA AND COUNTBLANK

— SUM

- PRODUCT

~— SUMPRODUCT

— THE “TF “COUNTING AND SUMMING FUNCTIONS

- SUMIF

- COUNTIF

- TRANSFORMATIONS (LIKE LOG, EXPONENTIAL, ABSOLUTE,
ETO)

— STANDARDIZING A SERIES THAT FOLLOWS A NORMAL
DENSITY FUNCTION

— DEVIATIONS FROM THE MEAN

— CROSS SERIES RELATIONS

- COVARIANCE AND CORRELATION FUNCTIONS

— SUM OF THE SUM OF THE SQUARES OF TWO VARIABLES
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— SUM OF THE SQUARES OF DIFFERENCES ACROSS T'WO
VARIABLES

— SUM OF THE DIFFERENCE OF THE SQUARES OF TWO
VARIABLES

8.1 | o COUNTING AND SUMMING

EB&NT function ‘

This function counts the number of valid cells in a range. Cells are valid
only if there value is numeric or a date.

Menu path to function: INSERT /OFUNCTION /OSTATISTICAL
/OCOUNT.

Data requiremenis: Numbers and dates are included in the count. Not
counted cells include those that contain error values, text, blank cells, and
logical values (like TRUE and FALSE). The X values can be input as
references to one or more ranges that may be non-adjacent.

The second range can be referenced in the first text-box “Valuel” after .
placing a comma after the first range, or it could be referenced in the
second text-box “Value2."

If you use the second text-box, then a third text-box “Value8” will
automatically open. (As you fill the last visible box, another box opens
until the maximum number of boxes — 30 — is reached.)
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Table 27° Sample data for the “Count” fations.

The is in the file "Count xia.

A B C 5
Y Date Respondent is employed
51 24.34 24— Sep— 2000 TRUE
20.07 24.34 25 Sep-— 2000 FALSE
VALUE!| 24384 | 26— Sep— 2000 SVALUE!
DIVA! | #VALUE! | 28— Sep— 2000 TRUE
1163 24.3¢ | 29— Sep— 2000 ey
> 30— Sep— 2060 TRUE
14 22.00 TRUE
NAME? 22.00 3— Oct— 2000
13 22.00 & Oct— 2000 TRUE
N/A! 2158 | §— Oct— 2000 TRUE
¥ x t H
_.- _x v
j 1, )
4] rvaum }
. ¥
i 2
8} mva )
r] ne
»i.ﬂ o
11. R i
31 s13 !
& mw_ t
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COUNTA function also counts cells with logical or text values

This function counts the number of valid cells in a range. Valid values
include cells with numeric, date, text, logical, or error value, COUNTA
only excludes empty cells, but text and logical values are only counted if
you type them directly into the list of arguments are counted. If an
argument is a data array or range reference, only numbers in that data

array or range reference.

Figure 128° The function COUNTA is a variant of the COUNT funotion. The example is in the
mmpieﬁle“ﬂounm&” &

Menu path to function: INSERT / FUNCTION / STATISTICAL /
COUNTA.

Data requirements: Unlike the COUNT function, COUNTA will include

the label row in the count. (So, if you have one labe! in the referenced

range, you may want to use “= COUNTA (A:A) — 17.) The X values can be

input as references to one or more ranges that may be non-adjacent. The

second range can be referenced in the first text-box “Valuel” after placing

a comma after the first range, or it could be referenced in the second text- .
box “Value2.” If you use the second text-box, then a third text-box

“Valued"” will automatically open. {As you fill the last visible box, another

box opens until the maximum number of boxes — 30 — is reached.) The

function does not count invalid cell values when counting the number of X

values.
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COUNTBLANK function counts the number of empty cells in the range
reference

This function counts the number of blank cells in a range.

Menu path to function: INSERT /FUNCTION
ANFOBRMATION/COUNTBLANK.

SUM fanction
This fanction sums the values in the data array.

SUM=X+Xa+....+Xa

Menu path to function: INSERT / FUNCTION / MATH / SUM.

Data requirements: This function does not include blank cells or cells with
values that are of the following formats: text, and logical values (that is,
TRUE and FALSE.)
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PRODUCT function
This function multiphies all the values referenced.

PRODUCT=X:* X:*...*Xu

PFigure 131 PRODUCT (multiplying all the values in & range)

Menu path to function: INSERT / FUNCTION / MATH / PRODUCT. .

SUMPRODUCT function

This function multiplies corresponding components in two or more data
arrays/ranges, and then sums the results of these multiplications. The
data arrays/ranges must have the same number of data points.

Menu path to function: INSERT /FUNCTION /MATH /SUMPRODUCT

Figure 132: SUMPRODUCT (multiplying individual data points across data series and then
adding up the results of all these multiplications)
v m* s LT

Data Arrayl, data Array?2, data Array3 ... are 2 to 30 data arrays/ranges
whose components you desire to multiply and then add. The minimum
number of arrays is two. The data arrays must have the same number of
data points. Non-numeric cell values are assigned the value of zero.

148




Chapiee & Othet Matbwmatics & Stelistics Funcons

The X values can be input as references to two or more ranges that may
be non—-adjacent. The second range should be referenced in the second
text-box "Array2." If you use the third text-box, then a fourth text-bax
“Array4” will automatically open. {As you fill the last visible box, another
box opens until the maximum number of boxes — 30 — is resched.)

Example

The following formula multiplies all the components of the two data
arrays on the preceding worksheet and then adds the productes— that is,
32+ 4T+ 86+6"T+1*5+9"3.

Note:
Samples will be available at http://www.vjbooks.net/excel/samples htm.

8.2 THE “IF” COUNTING AND SUMMING FUNCTIONS:
STATISTICAL FUNCTIONS WTTH LOGICAL
CONDITIONS

1 display two “if-then™ two-step functions in this section. The functions
first evaluate 8 criterion. If a cell in the referenced range satisfies the
criteria then the second part of the function includes this cell.

SUMIF function
This function adds the values in a range if the cell with the value satisbes
a user-defined criterion.

¢ Inthe box Range, enter a reference to the range of ceils you want
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evaluated.

Figure 133 SUMIF (summing oaly the cells whose value satislies one “if" ooadition)

Criteria |
Sum_range |

e In the box Criieria, enter the condition (a2 number, expression, or
text) that defines which cells values will be summed. For
example, Criteria can be expressed as 32, “32,” “>32".

e In the box Sum_range, you may reference the actusal celle to sum.

The cells in sum range are summed only if their corresponding
cells in the entire Range match the criteria. If sum range is
omitted, all the “criterion-satisfying” cells in the Range are
summed.

Menu path to function: INSERT /OFUNCTION /OMATH /O0SUMIF. The
Criteria should be relevant to the type of data/text in the queried range.

COUNTIF function
This function counts the number of cells in a range that satisfy a user-
defined criterion.

The dialog for “COUNTIF“ requires two inputs from the user. The
“Range” is similar to the functions shown previously. The “Criteria” is a
logical condition set by you.
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151

Pigure 134 mmm&.u&mm i oo " coudition)
Range | -
Criteria | o '

e In the box Range, enter a reference to the range of cells you seek to
evaluate.

» In the box Criteria, enter the condition (s number, expression, or
text) that defines which cells will be counted. For example,
Criteria can be expressed as 32, “32," ">32," “tea.”

Menu path to funciion: INSERT /FUNCTION /STATISTICAL \COUNTIE.

be relevant to the type of data/text in the querisd range.

Example

Choove the range “D:D” and the condition “>1,000,000". The function is
*Count the number of cases in the range D:D, but only if the value of the
cell is greater than 1 million "

For a pictorial reproduction of this, see the next figure.

Pigure 135 Entering the data input and logical criterion
B e i vt - :

AT

Execute the dialog by clicking on the button OK. The formula is written
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onto the cell. The next figure illustrates this. Depress the ENTER key.

Figure 136" The function as written into the cell

8.3 TRANSFORMATIONS (L.LOG, EXPONENTIAL,
ABSOLUTE, SUM, ETC)

Table 28: Common transformation functions
Location within
Function Description INSERT Data Reguirements
/FUNCTION

This function outputs the
gign of & number.
Returns 1 if the number
is positive, zero (0) if the
number iz 0, and -1 if _
Sign the number is negative. | MATH /SIGN | Any real value. ‘
Useful for red~flagging

data, or using in

functions like IF,
COUNTIF, SUMIF and

CHOOSE.

Absolute |apg._ | x| MATH /ABS | One real number.
number

The square root of a

Square root number.

n | One positive real
MATH/SQRT sumber.
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E ln *l! *
INSERT
/FUNCTION

Dato Requirements

Y = Xua

Log natural

LN (X)

This function calculates the
natural logarithm of a
number. Natural
logarithins are based on
the constant e (2.718).

LN (85) = 4.45434".
base e to the power of 4.45
you will get 85. - LN (85)
=445,

Conversely,
exp (4.45) = e* (4.48) =
2.718» {4.45) = 85.

MATH /LN

One positive real

exponential to a number.

Log to the
base 10

LOG10 &X)

base 10 logarithm of a
number.

LOG10 (85) = 1.934
because the base of 10
noeds to be raised 1.934
times to get 85:
1019 = 85

LOG10 (10) = 1 because
n=31o

LOG10 (1000} = 3 bocause

MATH 1.0G10

108 = 1000

One positive
number.

15638
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' Location within
Function Description INSERT Data Requirements
/FUNCTION
This function caleulates the
logarithm of a number to
the base you specify. The
default base is 10, For
natural log use base e =
2.718. .y
. bor X and the
numbex
fl-:g;o e;:::: LOG (X, base) MATH/LOG. | (optional) base of
the logarithm.
LOG (100) = 2 -» base 10. If base is omitted, |
Bince 102 = 100). it is assumed = 10.
LOG (27, 83) = 3 < base 3.
(Sinee 3% = 27).
LOG (86, 2.7182818) = 4.46
- same as natural log.
Because— (exp (4.45) = 85).

%;;;;dizing a geries that follows a Normal Density Funetion

Converts a value in a series X to its equivalent standard normal
transformation.

STANDARDIZE (x, AVERAGE (X), STDEV (X)) where X is all the numbers
in the X date series.

Menu path to function: |
INSERT/FUNCTION/STATISTICAL/STANDARDIZE.

Data requirement: The function requires three input numbers: x, mean of
the X series, and the standard deviation of the X series. The mean and
standard deviation can be written as a “function within a function.”
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84 DEVIATIONS FROM THE MEAN

The formulas in this and the next section provide estimates of fanctions
used in formulas for parameters obtained in advanced analyms like
ANOVA, Correlation, Regression, ete.

DEVSQ
This function calculates the sum of squares of deviations of data paints
from their sample mean

L ((x — mean (x))*

Menu path to function: MATH/DEVSQ

Data Regquirements: A range(s) of real numbers, inclusive of zero.

Figure 137: Somusstion of the squares of the “diffevences of individual points frow. the mees of

AVEDEV

This function calculates the average of the abeolute deviations of data
points from their mean. AVEDEV is a measure of the variability in a data

oat.
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5o
=2 |- 7|
Menu path to function: STATISTICAL/AVEDEV

Menu path to function: A range(s) of real numbers, inclusive of zero,

85 CROSS SERIES RELATIONS | ®

85A COVARIANCE AND CORRELATION FUNCTIONS

The functions are CORREL, COVAR, PEARSON, & RSQ. I recommend
using the Analysis ToolPak Add-In — refer to 10.3.

858 SUM OF SQUARES

SUMXzPY2 function evaluates the “Sum of the sum of the squares of each
case in two variables” .

This function estimatss the summation of the squares of individual points

in two series.

I{x2+ydH
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Figure 138 Summation of the squares of individaal points in two sedies. Samples will be
available st httpfwww.vjibooksnetixcel/saraples him.

 awey_xfcicies
o - Ay |FLF169

Menu path to function: INSERT/FUNCTION/MATH/SUMX2PY2.

Data requirements: This function needs two data series.

SUMXMYS function

This function estimates Sum of the squares of differences of each case in
two acroes two varishles.

I{x—3M

Figure 138 Sommaetion of the squares of the “differences in individual points in twe series™
Samples will be available at http/iwww. vjbooks. set/axcel/asmpion .

e e B

Menu path to function: INSERT/FUNCTION/MATH/SUMXMYZ2. Data

SUMX2MY2 fanction
This function estimates the Sum of the difference of the squaree of each
case in two variahles.
157




Statistical Analysis with Excel

L(x*—y?

Menu path to function: INSERT/FUNCTION/MATH/SUMX2MY 2.

Data requirements: This function needs two data series.
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ADD-INS: ENHANCING EXCEL

This chapter discusses the following topics:

— WHAT CAN AN ADD-IN DO?

— WHY USE AN ADD-IN (AND NOT JUST EXCEL
MACROS/PROGRAMS)?

— ADD-INS INSTALLED WITH EXCEL
— OTHER ADD-INS

— THE STATISTICS ADD-IN

~— CHOOSING THE ADD-INS

8.1 - ADD-INS: lNTRODi.!Cf 1ION
An “Add-In" is a software application that adds new functionality to
Excel. The Add-In typically seamlessly fits into the Excel interface,
providing accessibility to its functionality through
— PEW Inenus

-— new options in existing menus

— pew functions

160
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— new toolbars and specific toolbar icons

8.1A WHAT CAN AN ADD-IN DO?

Usually, an Add-In provides functionality that is useful for a particular
type of analysisfindustry — statistics, finance, real estate, stc.

9.1.B WHY USE AN ADD-IN?

The Add-In could have its base code written in software languagee like C,
C++, FORTRAN, Pascal, etc. This is important because some algorithms
and operations (like simulations) operate best when written in  specific
language. Therefore, the developer uses the best language/tool to create
the functionality and then packages this inside an Add-In.

82 ADD—INS INSTALLED WITH EXCEL

Some Add-Ins are available in the Microsoft Office CD-ROM and are
installed (but not activated'%) slong with Excel. | show the use of three
Add-ins.

¥ Pigure 540 and Figure 542 show how to activate the Add-ins
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0.3 OTHER ADD-INS

Many commercially sold Add-Ins can be aimost like separate software just
needing Excel as the “host.” Two examples:

- Crystal Ball™ rigk analysis software

— UNISTAT™ software for conducting advanced statistics and
econometrics from inside Excel

Hundreds of software companies construct Add-Ins. The greatesﬁ
contribution of this book, if I succeed in doing so, would be the opening of
this massive potential functionality to Excel users.

9.4 THE STATISTICS ADD-IN

The Analysis ToolPak Add-In that ships with Excel can conduct several
procedures including descriptives, regression, ANOVA, F-test, correlation,
T-tests, moving average, and histogram. Let us learn how to use this
“Add-In.”

9.4.A CHOOSING THE ADD-INS

Choose the menu option TOOLS/ADD-INS. You will see several Add-Ins
as shown in Figure 140. (You may not see all the Add-Ins shown in the

next two figures.)
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You need the "Analysis ToolPak Add-Ina.” Select — by clicking on it —
the box to the left of these Add-Ins (shown in Figure 142). Execute the
dialog by clicking on the button OK and wait for some time while the Add-
Ins are “loaded” or “registered” with Excel. An Add-In has to be
loaded/registered before it is available for use. The Add-In remains
loaded acroes sessions. It is only "unloaded” when you select the option

|1e
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TOOLS/ADD-INS and deselect the Add-In!l,

You have activated the “Analysis ToolPak.” At the bottom of the menu
TOOLS, you will see the option “DATA ANALYSIS the bottom~— this
option was not there before you accessed the Add-In. (This is illustrated

in Figure 143.)
| @

The statistical procedures are accessed through this new option.

Note: .
Usually Add-Ins expose their functionality by creating new menu
optiona or even new menus. The menu option “Data analysis”™
provides the statistics functionality available in “Analysis ToolPak”
and “Analysis ToolPak VB.” The menu options “Optquest” down till
CB Bootstrap” are linked to the Add-in “Crystal Ball” (not shipped in

the Office CD-ROM).

1 If too many Add-Ins are loaded, Excel may work too slowly, or even freeze. If you find
this problem occurring, then just load the Add-in when you are going to use it and
unload it before quitting Excel.
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Pigure 143 The “Data Analysis” menn option

Y
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STATISTICS TOOLS

This chapter discusses the following topics:
~ PDESCRIPTIVE STATISTICS
— RANK AND PERCENTILE

— BIVARIATE RELATIONS— CORRELATION, COVARIANCE

A proper analysis of data must begin with an analysis of the sta tistical
attributes of each series in isolation —— univariate analysis. From such an
analysis, you can learn:

— How the values of a series are distributed — normal, binomial,

efc.

— The central tendency of the values of a series (mean, median,
and mode)

— Dispersion of the values (standard deviation, variance, range,
and quartiles)

« Presence of cuthiers (extreme values)
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The answer to these questions illuminates and motivates further, more
complex, analysis. Moreover, failure to conduct univariate analysis may
restrict the usefulness of further procedures (like correlation and
regression). Reason: even if improper/incomplete univariate analysis may
not directly hinder the conducting of more complex procsdures, the
interpretation of output from the latter will become difficult (because you
will not have an adequsate understanding of how each series behaves).

- Note: 1 do not go into the details of each statistics procedure. For such
details, refer to your statistics textbook or to “SPSS for Beginners”
{available at http://www.vibooks.net and amazon.com).

This chapter requires the Analysis ToolPak Add-Ins; chapter 9 shows how
to learn how to launch the Add-Ins.

10.1 DESCRIPTIVE STATISTICS

I do not supply the sample data for most of the examples in chapters 36-40.
My experience iz that many readers glaze over the examples and do not go
through the difficult step of drowing inferences from o resull if the sample
data results are the same ag those in the examples in the book.

Chooee the menu option TOOLS/DATA ANALYSIS!. The dislog shown
in Figure 144 opens.

11 If you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data analysis. Refer to section 41.4.
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Choose the statistical procedure “Descriptive Statistics.” The dialog for
“Descriptive Statistics” opens. Figure 145 shows this dialog (user-input
form).

17¢
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Input for. "Source™ data

Choose the data series whose descriptives you desire. Click on the edge of
the box next to "Input Range”™ (at the paint where the dotted arrow pointa

in Figure 145).

Ovtions

Chooee other options shown in Figure 145. Select the option "Labels in
first row” because the names of the three series are in the first row of the
range you selected (the labels are in cells C1, D1, and E1)— this way
Excel picks up the names of the variables and uses these names in the

output’®. Execute the dialog by clicking on the button OK.

Output
Excel produces the deacriptive atatistics and places the resulta in a new

worksheet. (This is illustrated in Figure 146)

15 Note that in the output of this procedure (shown in Figure 548 the firet row has the
Inbels for the three variables— 1995, 2000, and 2010,

171




Statistical Analysis with Excel

Figure 146° Output of Descriptive Statistics procadure

A B C 1] [ |
1955 2000 2010
440361 4 Moo 7AOBGM 7
S047964.7 Starcerd B 37480492
Z54000 Mode 51000

b arnpie 5.580E+15 Somple Yark 3303E+15
Parosis 24858277 Kurtosis 17016262 Kurosia | 21084937
Skewness  14.560356 Skewness 13001367 Skewness 14519038

Range B17798000 Rarge 1300E+08 Renge 870291000
Mmimean . 617605000 Memum  1.100E+00 Mmxdmum 870316000
= 1.236E+09 Sum 2218E+00 Sum 1 T41E«09

Confidence | 52504802 Confidence | S045257.7 .Confidence | 73853096

This tool generates a report of univariate statistics for data in the input
range, providing information about the central tendency and variability of

your data

Go to the menu option TOOLS/DATA ANALYSIS. Select the option
“Descriptive Statistics.” In addition to the statistics requested in the
previous example, I request Excel to report on the fifth largest and fifth
smallest values for each column/series. ‘
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' pow Werkshest Biy: o
£ dow Yibaok T
7 Gommary satisies e
M Copfdence Level for Mearn: =%
| 7 nh Lgrgmet:
¥ xh Spallest:

Output
The output for the procedure is reproduced in the next table. In one

simple step, you have created a table that captures the basic statistical
attributes of several data series and the fifth highest and lowest values of

each data series.

Table 29 Cutput of the Descriptive Statistics tool including the Kth largest and seseliont
values. The names of the thrwe vexishle are: ol, s& snd x).

sl 52 x1

Mean 7.32 Mean 723 Mean 1173.00
Standard Standard Standard

E 044 E 0.49 B 52.67
Median 5.31 Median 4.81 Median 1173.00
Mode | 134 Mode 28.00 Mode #FNA
Standard . Standard Standard
Deviati 572 Deviation 8.38 Deviati 682.73
Sample 3268 Sample 40.13 Sample 46611922
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sl 82 x1
Variance Variance Variance
Rurtosis ~0.22 Kurtosis .04 Kurtouis -~1.20
Skewness 0.95 Skewness 1.08 Skewness 0.00

Range 19.66 Range 22 00 Range 2344.00

Minimum 1.34 Minimum i Minimum 1
Maximum | 21 | Maximum 23 Maximum 2345
Sum 122079|  Sum . |1215395|  Sum 197064
Count 168 Count 168 Count 168 ®
Largest (5) 21 Largest (5) 23 Largest (5) 2288 86
Smallest 5) | 1.34 | Smallest (5) 1 Smellest 6) | 57.14
gﬁgg} 0.87 Lgf:ﬁggﬁ) 0.96 Igggﬁgfg) 103.99

Interpretation of the statistical parameters is discussed in chapter 6, and
of Confidence levels is discussed in 7.1.

02 RANK AND PERCENTILE ®

This tool produces s table that contains the ordinal and percentage rank
of each value in a data set. You can analyze the relative standing of
values in a data set. The Percentile values can assist in learning about
the apread of the series across its range. For a series provides information
on the ranges for the lowest 25%, the next 26%, the next 25%, and the
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highest 25%.

Go to** the menu option TOOLS/DATA ANALYSIS. Select the option
*Rank and Percentile.” The dialog is shown in the next figure.

Figure 148" Rank and Percentile tool

The result is reproduced in the next table. Each cutput table contains
four columnas:

~— The place of the data point in the data series,

— The value of the data (with the label for the series as the label
on the output column),

— The rank of the data point within the range, and

14 do not supply the sample data for most of the sxamples in chapter 42 to chapler 46.
My experiance is that many readers giaze over the examples and do not go through
the difficult step of drawing inferences from a result if the sample data results are
the same as those in the sxamples in the book.

15 ¥ you do not see this option, then use TOOLS 7/ ADD-INS to activate the Add-In for
date analysia. REsfer to section 41.4.
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— The percentage rank of the data point. The columns are sorted

in order of ascending rank.
Table 30: Qutput of the Rank and Percentile tool
Point sl EBank Percent Point 82 Rank Percent
24 21.00 1 96.40% 1 23.00 1 96.40%
48 21.00 1 96.40% 25 23.00 1 96.40%
72 21.00 1 96.40% 49 23.00 1 96.40%
96 21.00 1 96.40% 73 23.00 1 96.40%
120 21.00 1 96.40% 97 23.00 1 96.40%
144 21.00 1 96.40% 121 | 23.00 1 96.40%
168 2100 | 1 96.40% 145 | 23.00 1 96.40%
23 18.63 8 92.20% 2 20.07 8 92.20%
47 18.63 8 92.20% 26 20.07 8 92.20%
71 18.63 8 92.20% 50 20.07 8 92.20%
95 18.63 8 92.20% 74 20.07 8 92.20%
119 18.63 8 92.20% 98 207 | 8 92.20%
143 18.63 3 92.20% 122 2007 8 92.20%
167 18.63 8 92.20% 146 2007 8 92.20%
22 16.53 16 88.00% 3 17.51 15 88.00%
46 16.53 15 88.00% | 27 17.51 15 88.00%
70 16.53 15 88.00% 51 17.51 15 88.00%
94 16.53 15 88.00% 75 17.51 16 88.00%
118 16.53 15 88.00% 99 17.51 15 88.00%
142 16.53 15 88.00% 123 17.51 15 88.00%
166 16.563 15 $8.00% 147 17.51 15 88.00%
Interpreting the output:

The last row’s last four columns can be interpreted ap—
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The 147t data point in the selected range has « value of 17.51,
which gives it rank 15 in the selected range, with 88% of the cells
in the range having a value less than or equal to thia data point.

103 - BIVARIATE RELATIﬂNS—— CORRELATIOK, |
COVARIANCE
Correlation analysis

This tool and its formulas measure the relationship between two data sets
that are scaled to be independent of the unit of measurement. The
correlation coefficient depicta the basic relationship across two variables:
“Do two variables have a tendency to increase together or to change in
opposite directions and, if so, by how much? Bivariate correlations
measure the correlation coefficients between two varisbles at a time,
ignoring the effect of all other variables.

Go to the menu option TOOLS/DATA ANALYSIS®, Select the option
“Correlation.”

Select the “Input Range” -— it must have more than one data eeries.

1 If you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data soalynis. Rafer to section 41.4.
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__Figure 148: CORRELATION

The output is reproduced in the next tabie.

Table 31 Output from Correlation Analysis tool

'} s2 xl x2 x3 xd

sl 1.00000

g2 | -0.75873 1L.O0NG

x] | -0.13434 0.13228 100000

x2{ 0.21423 0.47238 0.016568 1.00000

x3 | 0.20122 ~0.084569 ~0.15748 0.14568 1.00600

x4 | -0.13567 0.12935 0.99958 (.01040 —06.15838 1.00000
Interpreting the output

— A high level of correlation is implied by & correlation coefficient
that ie greater than 0.5 in absolute terms (that is, greater than

0.5 or less than —0.5).

— A mid level of correlation is implied if the absolute value of the
coefficient is greater than 0.2 but less that 0.5.

— A low level of correlation is implied if the absolute value of the
coefficient is less than 0.2.
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COVARIANCE TOOL AND FORMULA

The options are same as for the CORRELATION TOOL. The covariance
is dependent on the scale of measurement of the data seriss. Thevefore,
there is no standard scale from which to infer if a covariance value is
“high” or “low.” Thus, use the correlation tool that provides a vniform
scale of “-1to0 1.7

The coefficient of determination can be roughly interpreted as the
proportion of variance in a series that can be explained by the values of
the other series. The coefficient is calculated by aquaring the correlation
coefficient.
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CHAPTER 11

HYPOTHESIS TESTING

This chapter teaches:

— Z-TESTING FOR POPULATION MEANS WHEN POPULATION '
VARIANCES ARE KNOWN

-— PATRED SAMPLE T-TESTS
— T-TESTING MEANS WHEN THE TWQ SAMPLES ARE FROM
DISTINCT GROUPS

~— THE PRETEST-- F-TESTING FOR EQUALITY IN VARIANCES
— T-TEST: TWO-SAMPLE ASSUMING UNEQUAL VARIANCES
— T-TEST: TWO-SAMPLE ASSUMING EQUAL VARIANCES
— ANOVA

The mnsmmvhpmdeamepmdm&w’m

ik S (see 7.1) and
other statistics software can be used to build Confidence Interval's that .
provide the values for the “Critical Regions™ for conducting hypothesis
tests. The use of the functions opens up a much wider range of possible
hypothesis tests limited only by the Inveree functions available in Excel.

] include a set of “testing rules” in several of the exampies. Theee rules
will blow your mind — it will make hypothesdin testing a readily
comprehensible step-by-etep process. The rules will assist you in all
hypothesis tests— in Excel or otherwise.
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This chapter requires the Analysis ToolPak Add-Ins; chapter 9
shows how to learn how to launch the Add-Ins.

1.1 Z-TESTING FOR POPULATION MEANS WHEN
POPULATION VARIANCES ARE KNOWN

This tool performs s two-sample Z-test for means with known variances.
This tool is used to test hypotheses about the difference between two

population means.

ul is the mean of sample one. u? is the mean for sample two. The criticsl
regions are based on a 5% significance level (or, equivalently, a 95%
Confidence Interval)

{a) Two-tailed
The hypothesis
— Ho (Null Hypothesis): ul—uf=1
— Ha (Alternate hypothesis): ul—u2 <> 1

Critical region:

— “Fail to accept” the null hypothesis if the absolute value of the
calculated Z is higher than 1.96. Examples of such Z values are:

*+2.127 and *-2.12.7
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« “Fail to reject” the null hypothesis if the absolute value of the
calculated Z is lower than 1.96. Examples of such Z values are:
“+1.78,” “0.00” and “~1.78."

In short, if the absolute value éf the Z is higher than 1.96, then one may
conclude (with 95% Confidence) that the meane of the samples differ by
the hypothesized difference.
d (left-t:
wwe Hp (Null Hypothesis): ul— uZ>=1
- Ha (Alternate hypothesis): ul— u2 < 1 {one—tailed)
Critical region:

—— “Fail to accept” the null hypothesis if the value of the calculated
Z is lower than “-1.64." Examples of such Z values are: “~2,12"

and “-1.78."
— “Fail to reject” the null hypothesis if left-tail)

The value of the calculated Z is greater than “-1.64.” Examples of such Z
values are: “+1.78" and “0.00.”

In short, if the Z is lower than “-1.64,” then one may conclude (with 95%
Confidence) that the means of the samples differ by the hypothesized

difference.
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— Hp {Null Hypothesis): ul— u2 <=1

— Ha {(Alternate hypothesis): ul— u2 > 1 (one-tailed)

Q..] x

— *“Fail to accept”™ the null hypothesis if the value of the caleulated
Z is greater than “+1.64." Examples of such Z valaes are: “+2.12"
and “+1.78."

— “Fail to reject” the null hypothesis if the abeolute value of the
calculated Z is less than "+1.64." Examples of such Z values are:

*~1.78" and “0.00."

In ahort, if the Z is greater than “+1.64," then one may conclude (with 95%
Confidence) that the means of the samples differ by the hypothesized
difference.

Excel calculstes the P or Significance value for each test you run.

w If P in less than 0.10, then the tost is significant at 90%
Confidence (equivalently, the hypothesis that the means are
equal can be rejected at the 90% level of Confidence). This
criterion is considered too “loose” by some.
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— If P is less than 0.05, then the test is significant at 95%
Confidence (equivalently, the hypothesis that the means are
equal can be rejected at the 95% level of Confidence). This is the

standard criterion used.

— If P is less than 0.01, then the test is significant at 9%
Confidence (egquivalently, the hypothesis that the means are
equal can be rejected at the 99% level of Confidence). This is the

strictest criterion used.

You should memorige these criteria, as nothing is more helpful in
interpreting the output from hypothesis tests (including all the tests
intrinsic to every regreasion, ANOVA and other analysis).

Go to TOOLS/DATA ANALYSISY?. Select the option “7. test.” The dialog
{user-input form) that opens is shown in the next figure.

Enter the hypothesized mean difference (that is, the Null Hypothesis) into
the text-box “Hypothesized Mean Difference.” Enter the variances for the
two populations.

17 If you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data analysis. Refer to section 41.4.
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Figare 150 2-iaet for mean differences when population varienos is known

=Test, Two Sompis

rinpuk——

1 ¥ (b
od

The next table shows the result of a Z-test18,

Table 32 for Z-test for mean differences ion veviance is kmows:
Z-toet: Two Sample for Means
si» a2
Moan 13202 1 1.2346
Enown Variance 32 40
Observations 168 168
Hypothesized Mean Difference 1.0
-~1.397
PZ«<=1) one-tail 0.081
Z Critical one—tail 1645

B ] do not mapply the sample date for most of the examples in chapiar 42 to chepter 46.

My experience is that many readers glaze over the examples and do not go throngh
the difficult step of drawing inferences from a result if the sample data results are

the same xe those in the examples in the book.
1% 5] and a2 are the labels, picked up from the first row in the range b1H26 and ¢1:c25.
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Z-test: Two Sampie for Means
P @<=12) two-tail 0.163
Z Critical two-tail 1.960
Interpreting the output

112

11.2A

The P value (that is “P (Z<= or >= z) two-tail”) of 0.081 implies that we

fail to reject the null for the two one-~tail hypothesis. Moreover, Z=-1.397

implies that we “fail to reject” the null hypothesis because the Z is in the

acceptance region (“1.96,” “~1.967} for the two-tail hypothesis. : é

The P value (that is “P (Z<>z) two—tail”) of 0.168 implies that we fail to
reject the null for the two—tail hypothegis. In addition, if we use a one-
tailed (left tail) test, we again fail to reject the null hypothesis because the
Z is in the acceptance region (“>—1.645") for the left—tail hypothesis. If
we use a one—-tail (night tail) test, we fail to reject the Null because the Z
is in the acceptance region ("< +1.645") for the right-tail hypothesis.

T-TESTING MEANS WHEN THE TWO SAMPLES ARE
FROM DISTINCT GROUPS .

THE PRETEST— F-TESTING FOR EQUALITY IN VARIANCES

The T-test is used most often to test for differences in means across
samples from distinct groups. The respondents in the two samples differ.
An example is a pair of samples from two surveys on earnings, one survey
in country A and the other in country B. The formula used in estimating
the T statistic depends on the equality of variance for the data series
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acrc———=88 the two samples. In particular, if the variances of the two samples
are unequal the formula takes into account this difference across the
sanc————ples. An F-test iz used to teat for unequal variances.

The—== "F-test Two-sample for Variances” performs a test to compare the
var— Jances across two groups of data. Launch the procedure by acoessing
the menu option TOOLS/DATA ANALYSIS™ and selecting the "F-test

T'w ssmmc—-8ample for Variances.”

The=—==> relevant dialog is reproduced in the next figure.

Figure 151° F-tost Two-Sample i Varisnces

cormmunn fidence test.

w He (Null Bypothesis): o;*—0 3’ = 0

2 Jf yc——ux do not see thia option, then use TOOLS / ADD-INS to activate the Add-In for
dat  ...a analysis. Bafer to section 41.4.
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— Hi (Alternate hypothesis): 0,°— o ;2 < 0, Where 6,7 is the variance of
sample one, and o »” is the variance for sample two.

The F has a one—tail test only.

The next table shows the output of a typical F-test?l,

Table 33 Output for F-test tocl for equality of variances

sl 82
Mean 7.3202 | T7.2846 “
Variance 32.6764 | 40.1309
Observations 168 168
Df 167 1687
0.8142
P (F<=1 onetail 0.0926
F Critical one-tail 0.8747 |
miix;:pmﬁng the output .
— The row “Variance” shows the estimated variance parameters, .

— Inferences from the P value of “0.0926":

21 | do not supply the sample data for most of the examples in chapter 42 to chapter 46.
My experience is that many readers glaze over the examples and do not go through
the difficult step of drawing inferences from a result if the sample data results are
the same as those in the examples in the book.
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191

— If P is leas than 0.10, then the test ia significant at 90%
Confidence (equivalently, the hypothesis that the variances are
equal can be rejected at the 90% level of Confidence). The P of
0.0926 implies the test is significant at the 90% Confidence level.
Being “significant” implies that the estimated F statistic lies in
the critical region and the "null hypothesis cannot be accepted.”
You are in the area represented by the alternate hypothesis —
the variances are unequsl.

-~ If P is less than 0.05, then the test is significant at 96%
Confidence {equivalently, the hypothesis that the variances are
equal can be rejected at the 95% level of Confidence). The
hypothesis cannot be rejected at the 0.05 level of significance.

~— If P is less than 0.01, then the test is significant at 99%

Confidence (equivalently, the hypothesis that the variances are
equal can be rejected at the 99% level of Confidence). The

hypothesis of equal variances cannot be rejected at the 0.01 level
of significance.

The test is significant only at the 0.10 level of significance. The critical
estimated F of 0.81 is higher than the critical F of 0.8747 implying that
the "null hypothesis of equal variances™ cannot be accepted at a 0.06 level
of Confidence.

Once you know if the null hypothesis of equal variances can be accepted,
you can resolve whether to use the “Two-Sample T-test Assuming Equal
Variances® or “Two-Sample T-test Assuming Unequal Varianoes.”
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T-TEST: TWO-SAMPLE ASSUMING UNEQUAL VARIANCES

This T-test form asgumes that the variances of both ranges of data are
unequal. Use this test when the groups under study are distinct. Use a
paired test (discussed in the next section) when there is one group before

and after a treatment.

ul is the mean of sample one. uZ is the mean for sample two. The critical
regions are based on a 5% significance level (or, equivalently, a 95% '
Confidence Interval) a

(a) Two-tailed
The hypothesis
— Ha (Null Hypothesis): ul— 12 = 0 (or any non—zero value)

— Ha (Alternate hypothesis): uJ— u <> 0

Critical region:
— “Fail to accept” the null hypothesis if the absolute value of the
calculated T is higher than 1.96. Examples of such Z values are: _
“+2.12" and “-2,12.” Q@

— “Fail to reject” the null hypothesis if the absolute value of the
calculated T is lower than 1.96, Examples of such T values are:
“+1.78,” “0.00” and “-1.78."

In short, if the sbsolute value of the T is higher than 1.96, then one may
conclude (with 95% Confidence) that the means of the samples differ by

the hypothesized difference.
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- Hp (Null Hypothesis): ul— u2>=0

— Ha (Alternate hypothesis): ul-— uf < 0 (one-tailed)

. .
Critical region:

—*“Fail to accept” the null hypothesis if the value of the calculated
T is Jower than “-1.64." Examples of such T values are: "--2.12"
and “-1.78."

- “Fail to reject” the null hypothesis if the absoluts value of the

calculated T is greater than "-1.64." Examples of such T values
are: “+1.78" and *0.00.”

I shoxt, if the T is lower than “~1.64,” one may conclude (with 96%

Confidence) that the means of the samples differ by the hypothesized
difference.

90 iled right-tail
The hypothesis:

~— Ho (Null Hypothesis): ul— u2<=0

— Ha (Alternate hypothesis): ul uf > 0 (one-tailed)

LTy
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Critical region:

— “Fail to accept” the null hypothesis if the value of the calculated
T is greater than “+1.64.” Examples of such T values are: “+2.12°

and “+1.78."

- “Fail to reject” the null hypothesis if the absolute value of the
calculated T is less than “+1.64." Examples of such T values are:
“~1.78" and “0.00.” .

In short, if the Tis greater than “+1.64,” then one may conclude (with 95%
Confidence) that the means of the samples differ by the hypothesized

difference.
Go to the menu option TOOLS/MATA ANALYSIS®2. Select the option “T-

test: Two-Sample Assuming Unequal Variances.” The next table shows a
sample output® for a T-test assuming unequal variances.

Tabie 34: Qutput of Two Sample T”m@s!sm%-l;mﬁ.’m
{ sl 82 .

2 [f you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data analysis. Refer to section 41.4.

2T do not supply the sample data for most of the exampies in chapter 42 to chapier 46.
My experience is that many readers glaze over the examples and do not go through
the difficult step of drawing inferences from a result if the sample data resgults are
the same as those in the examples in the book.
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sl 2
Mean 7.52 7.23
Variance 3268 | 40.13
Obeervations 168 168
Hypothesized Mean Difference 5
b as1
T Stat -7.465
P {T<=t) one-tail 8.72E-13
T Critical one-tail 1.649
P(M<=1t) twotail 7.43E-13
T Critical two tail 967

Interpreting the output
The row "Mean" shows the estimated means for the two samples 57 and
s2. The next column “Variance™ displays the calculated variance for theee
sample mean values. “Df* shows the "Degree of Freedom.” The degrees of
freedom equal the total sample points (the sum of the sample sises of the
two samples) minus the one degree of freedom to account for the one
equation (the "hypothesized mean difference” which here is “al — u2 = 5%)
. So, degrees of freedom equals “168 + 168 -1 = 331"

{a) Two-tailed
The hypothesis was:
— Ho(Null Hypothesis); ul--uf=5

— Ha (Aliernate hypothesis): ul-— uf <> 5, where ul is the mean
of sample s and u? the mean of sample s2.
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The calculated T statistic is “~7.465.” The P value for the two—tailed test
is “3.72 multiplied by the 13th point after the decimal” or
“0.000000000000372.” As the P value is less than 0.01, the hypothes:s is
“gignificant®*at the 99% Confidence level or “alpha = 0.01” level of
significance. (The natural extension of this inference is that the
hypothesis is significant at the 95% and 90% Confidence levels also.)

The region for the two-tailed test is *> 1.967 or < ~1.967." In this

example, the test is significant (at a 0.05 level of significance because the

estimated T lies in the critical region. (The estimated T of “~7.465" lies in é
the region “<~1.967".)

The hypothesis was;

— Hg (Null Hypothesis): ul— u2>=5

—- Ha (Alternate hypothesis): ul— u2 < 8, where u7 is the mean of
sample s and u2 the mean of sample 2.

The P value for the one-iailed test is “7.45 multiplied by the 13 point
after the decimal” or “0.000000000000745.” The relevant test here is the
left-tail because the T statistic is a negative value. As the P value is less

# If g test is *significant” the implication ig a “failure to accept” the null hypothesis.
The test T statistic lies in the critical region. In informal terms, the alternate
hypothesis is “correct.”
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than 0.01, the hypotheais is "significant” at the 99% Confidence level or
*alpha = 0.01" level of gignificance. (The natural extension of this
inference is that the hypothesis is significant at the 95% and 90%
Confidence levels also.)

Another way to test the hypothesis is to compare the estimatoed T statiatic
to the critical region shown in the column “T Critical one-tail.” The
region for the lefi-tailed test is “< —1.649". In this example, the test is
“significant®"at a .05 level of significance because the estimated T lies in
the critical region. (The estimated T of "~7.465" Lies in the region "< -
1.6497)

X iled (right-tail)
The hypothesis was:

— Hp (Null Hypothesis): ul—— uf <= §

- Ha {(Alternate hypothesis): uJ- u2 > 5, where ul is the mean of
sample 81 and u2 the mean of sample »2.

The region for the right—tailed test is “> 1.649". In this example, the teet
is not significant because the estimated T does pot lis in the critical
vegion. (The estimated T of "7.465” is not in the region “>1.649")
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T-TEST: TWO-SAMPLE ASSUMING EQUAL VARIANCES

This tool performs a two-sample student's T-test— under the assumption
that the variances of both data sets are equal. The hypothesis and
interpretation of results is the same as for the Two-Sample Assuming
Unequal Variances. (See previous sub-section).

The next table shows the result this type of test?®.

PAIRED SAMPLE T-TESTS

This tool performs a paired two-sample T-test to deduce whether the
difference between the sample means is statistically distinct from a
hypothesized difference. This T-test form does not assume that the
variances of both populations are equal. You can use a paired test when
there is a natural pairing of observations in the samples, such as when a
sample group is tested twice— before and after an experiment. The tested
groups form a “Paired Sample” with the same respondents sampled
“hefore” and “after” an event.

.Go to the menu option TOOLS/DATA ANALYSIS?. Select the option “T-

% T do not supply the sample data for most of the examples in chapier 42 to chapter 46.
My experience is that many readers glaze over the examples and do not go through
the difficult step of drawing inferences from a result if the sample data resuits are
the same a8 those in the examples in the book.

£ 1f you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data analysis. Refer to section 41.4.
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test: Two-Sample Assuming Unequal Variances.” The relevant dislog is
shown in the next figure.

‘The range must consist of a single column or row and contain the same
number of data pointe as the first range.

Place the hypothesized difference in means into the checkbox
“Hypothesized Mean Difference.” In this example, one is using the
hypothesis:

“Ho (Null Hypothesis): mean difference > 5°. See the next figure for
an example of setting the hypothesis for testing. Set a
hypothesized mean difference of sero to test the standard
hypothesis that the “Means for the two groupe/samples are

statistically different.”

The Jevel of significance for the hypothesis tests should be placed in
the checkbox *Alpha* If you desire a significance level of “alpha =
.05 (that is, a Confidence level of 55%), then write in *.06" into the
checkbox Alpha. The next figure illustrates this.
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ib othesi

u] is the mean of sample one. u2 is the mean for sample two. The critical
regions are based on a 5% significance level (or, equivalently, a 95%
Confidence Interval)

(a) Two-tailed

The hypothesis
- Hy (Null Hypothesis): ul— u2=0

- Ha (Alternate hypothesis): ul— u2 < 0 e |

Critical region:
— “Fail to accept” the null hypothesis if the absolute value of the
calculated T is higher than 1.96. Examples of such T values are:
“4+2.12” and “-2.127

— “Fail to reject” the null hypothesis if the absolute value of the
calculated T is lower than 1.96. Examples of such T values are:
“+1.78,” “0.00° and “-1.78."

In short, if the absolute value of the T is higher than 1.96, then one may .

conclude (with 95% Confidence) that the means of the samples differ by
the hypothesized difference.

The hypothesis:

— Hy (Null Hypothesis): ul—u2>=0
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— Ha (Alternate hypothesis): u]— u2 < 0 (one—tailed)

L by

- “Fail to accept” the null hypothesis if the value of the caleulnted
T is lower than “-1.64." Examples of such T values are: "-2.12"

and “~1.78.°

— "Fail to reject” the null hypothesis if the abeclute value of the
calculated T is greater than “-1.64". Examples of such T values
are: "+1.78" and "0.00."

In short, if the T is lower than “~1.64," then one may conclude (with 95%
Confidence) that the means of the samples differ by the hypothesized

difference.

)0 iled (cight-tail
The hypothesis:

— Hp (Null Hypothesis): ul— u2 <=1

— Ha (Alternate hypothesis): ul— ud > 1 (one—tailed)

. .
Critical region:

— "Fail to accept” the null hypothesis if the valuve of the calculated
T is greater than “+1.64." Examples of such T values are: "+2.127

and “+1.78."

— “Fail to reject” the null hypothegis if the abeclute valos of the
calculated T is less than “+1.64." Examples of such T values are:

*~1.78" and *0.00.”
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In short, if the T is greater than “+1.64," then one may conclude (with 95%
Confidence) that the means of the samples differ by the hypothesized

difference.
Excel calculates the P or Significance value for each test you run.

— If P is less than (.10, then the test is significant at 90%
Confidence (equivalently, the hypothesis that the means are
equal can be rejected at the 90% leve] of Confidence). This
criterion is considered too “loose” by some.

— If P is less than 0.05, then the test is significant at 95%
Confidence (equivalently, the hypothesis that the means are
equal can be rejected at the 95% level of Confidence). This is the
standard criterion used.

— If P is less than 0.01, then the test is significant at 99%
Confidence (equivalently, the hypothesis that the means are
equal can be rejected at the 99% level of Confidence). This is the
strictest criterion used.

" You should memorize these criteria, as nothing is more helpful in
interpreting the output from hypothesis tests (including all the tests
intringic to every regression, ANOVA and other analysis). The output for
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such a teat is shown in the next table®®,

Tuble 36: Output from » T test for Paired Samplss. The text in italics has been insnrted by

the suther,
Firmt Second
sampling | sampling
Mean 152 145
Varisnce 126 114
Observations 44 44
Pearson Cozrrelation 0.999698
Hypothesized Mean Difference b
Df 4
2.76istheT
T Stat 26.76 estimated from the
% dain
One-tailed test
P (T<=t) onetail 0.00 1.68 is the “T cut-off
Critical Volue” from
T Critical one-tail 1.68 I-Tubles
Two—tailed Test
P(T<=¢) two-tail 0.00 2.02 is the "T cut-off
iticol Value” from
T Critical two-tail 2.02 T-Toblecs
Interpretation:
One-tailod test
P (T<=1t) one-£ail 0.00 Thus, significant at 99%

= ] do not supply the sample data for most of the sxamples in chapter 42 to chaptar 46.
My sxperience is that many readers glaze over the examples and do not go through
the difficalt step of drawing inferences from a result if the sample data rewalts are
the aame an thoss in the examples in the book.
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T Critical one—tail (positive |  1.88 2.02 is the “T cut~off Critical Value” from T-

for positive tail test, negative ¢ g
for negative tail) . —168 Tables for alpha = 0.05 and Df = 43

Inferential Anaiysis:
— Fail to reject null (1-tailed for null hypothesizing in a negative direction: Ho (Null
Hypothesis): mean<5)
— Fail to aceept null if HO (Nuil Hypothesis): mean>5,

Two-tailed Test

P (T<=t) two-tail 0.00 Thus, significant at 99%

T Critical two—tail (compare : :
absolute value of T- stat from 200 This is the “T cut-off Critical Value” from T-

the data with this absolute * Tables for alpha = 0.025 and Df = 43
value)

Inferential Analysis:
~ For two-tailed test, fail to accept null at 99% Confidence

7$‘17.4 o ANOVA

This tool performs simple analysis of variance (ANOVA) to test the
hypothesis that means from two or more samples are equal (drawn from
populations with the same mean). This technique expands on the testa for
two means, such as the T-test.

Go to the menu option TOOLS/DATA ANALYSIS#. Select the option
“ANOVA: Single Factor.” The input range must consist of two or more

B If you do not see this option, then use TOOLS / ADD-INSB to activate the Add-In for
data analysis. Refer to section 41.4.
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adjacent ranges of data arranged in columna or rows. A sample output®
is shown in the next few tables.

Figure 16& Single Pactor ANOVA

Anows '.‘;t«"li]!z’ Favl

o —
Jrput Range:
Grovped Dyt

IV Lobals s Pout fiom

Table 36 Output from Single Factor ANOVA —a

ANOVA: Single Factor
Groupe Count Sum | Average | Variance
sl 168 1228.8 73 327
82 168 12154 ) 7.2 40.1

The first table shows some descriptive statistics for the saumples.

Teble 37: Outprst froum Single Fuctor ANOVA b
ANOVA

Source of Varistion Ss Df{ MS F | P-value

» 1 do not supply the sample data for most of the examples in chapter 42 to chapter 46.
My experience is that many resders glaze over the examples and do not go through
the difficult step of drawing inferences from & yresult if the sample data results are
the same as those in the examples in tha book.
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ANOVA

Between Groups 0.62 1 062 100171 090
Within Groupa 12158656 | 334 | 36.403 '

Total 12169.27 | 336

Interpreting the output

The information on “Between Groups” is derived from the difference in
means and variances across the groups. In an ANOVA, the number of .
groups may exceed two.

— The test is analyzing the variance as measured by the 88 “Sum of
Squares” of the “dependent” series. The total Sum of Squares is
12159.27. Of this, 0.62 can be explained by the differences across the
means of the two groups. The other 12158.65 is explained by the
differences acrogs individual values of the “dependent” series.

¢ Sum of Squares = Sum of Squares for Between Groups + Sumn of
Squares for Within Groups

— The MS is the “Mean Sum of Squares” and is estimated by dividing the .
SS by the degrees of freedom. Therefore, the MS for “Between Groups”
equals (0.62/1) = 0.62. (Note that “ANOVA = Analysis of Variance.”)
The MS for “Within Groups™ equals (12158.656/334) = 36.403. The MS
may be informally interpreted as “Sum of Squares Explained per Degree

of Freedom.”

s Mean Sum of Sguares = (Sum of Squares) (Degrees of Freedom)
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— The ANOVA uses an F-test to determine if “Between Groups”
information (the number 0.62 in the column “Between Groups” Source
of Variation MS) provides sufficient additional information to improve
the ability of the data to explain the variance in the “dependent” series.
The ANOVA is asking “Does the Between Groups Sum of Squares
Explained per Degree of Freedom” divided by the “Within Groups Sum
of Squares” provide an F that is large enough to justify the statement
“The use of Between Groups information explains a statistically
significant amount of the Sum of Squares of the dependent series.”

e F = (Mean Sum of Squares Between Groups)/ (Mean Sum of
Squares Within Groups)

— All ANOVA tests (including the ANOVA output from a regression) can
be interpreted in the same way —

e F = [ (Increase in ability of model to explain the Sum of
Squares) (Degrees of Freedom) /
(Total Sum of Squares) / (Degrees of Freedom)]
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CHAPTER 12

REGRESSION

This chapter discusses the following topics:

— ASSUMPTIONS UNDERLYING REGRESSION MODELS 0
— CONDUCTING THE REGRESSION

This chapter requires the Analysis ToolPak Add-Ins; chapter 9
shows how to learn how to launch the Add-Ins.

12.1 ASSUMPTIONS UNDERLYING REGRESSION
MODELS

The field of econometrics uses regression analysis to create quantitative
models that can be used to predict the value of a series if one knows the
value of several other variables. For example, the wage per hour can be .
predicted if one knows the values of the variables that constitute the
regression equation. This is a big leap of faith from a correlation or
Confidence interval estimate. In a correlation, the statistician is not
presuming or implying any causality or deduction of causality. On the
other hand, regression analysis is used so often (probably even abused)
because of its supposed ability to link cause and effect. Skepticism of
causal relationships is not only healthy but also important because real
power of regression lies in a comprehensive interpretation of the results.
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Regression models are used to test the statistical validity of causal
relation presumed in theory or hypothesis. Regreasion can never be
divorced from the hypotbesie it is testing. The construction of the model
has to be based upon the hypothesis, and not on the availahility of the
data. Therefore, if you believe you have a valid hypothesis, but do not
have the correct data series to represent each factor in your hypothesis,
the best practice is not running a regression analysis.

On the other hand, the method of throwing in all variables into the model
and making the computer sslect the best model is a misleading technique
that sadly has gained popularity because of the belief that the best model
is the one that fits the data the best.

The best models can only be a subset of “valid models.” (That is, models
that have passed all diagnostic test for presumptions for conforming to the
assumptions required by a regression.) Furthermore, note that if the
model is shown to "not fit” the data, or the expected relationship between
variables is estimated as negligible, you still have valid results. The
variance between the hypothesis and the results is always important and
can give rise to a new perspective relative to the hypothesis.

The process of interpretation is called inferential analysis and is far more
important than the actual number punching. Inferential analysis aleo
includes testing if the data and model have complied with the strong
assumptions underlying a regression model.

The very veracity and validity depends upon several diagnostic tests.
Unfortunately, many econometricians do not perform the diagnostic
testing or simply lis about the inferences and conclusions dexived from the
model.

Qur book "Interpreting Regression Output” provides a summary table {(a
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cheat—-sheet for you!) that lists the implications of the invalidity of
assumptions, (The book can be purchased at http://www.vjbooka.net).
This summary provides, in one page, what other books have spread out
over many chapters. Please use this table as a checklist before you
interpret any model. Most statistic professors and textbooks teach the
interpretation of regression results before discussing the issue of validity.
You will save yourself a lot of grief if you always perform diagnostics after
running a regresaion model.

Once you have a valid model, interpret the results in the logical sequence
shown in the table interpreting regression output in our book
“Interpreting Regression Output.” This table will provide a framework
and flowchart for interpretation thereby enabling a structured and
comprehensive inferential analysis.

ASSUMPTION 1: THE RELATIONSHIP BETWEEN ANY ONE
INDEPENDENT SERIES AND THE DEPENDENT SERIES CAN BE
CAPTURED BY A STRAIGHT LINE IN A 2-AXIS GRAPH

This is also called the assumption of linearity in the regression
coefficients. (None of the regression coefficients — the betas — ghould
have an exponential power or any other non— linear transformation.)

ASSUMPTION 2: THE INDEPENDENT VARIABLES DO NOT
CHANGE IF THE SAMPLING IS REPLICATED

The independent variables are truly iﬁéependent—w the model assumes is
using deviations across the X variables to explain the dependent series.
The regression attempts to explain the dependent series’ variations across

212




121C

Chapler 12 Ragreasion

the combination of values of the independent variablea.

If repeated samples are used, the model predicts the same predicted
dependent series for each combination of X values, but— across the
samples— the observed Y may differ acroes the same combination of X
values. (The gap between the predicted and observed Y values is the

residusl or error.)

ASSUMPTION 3: THE SAMPLE SIZE MUST BE GREATER
THAN THE NUMBER OF INDEPENDENT VARIABLES (N
SHOULD BE GREATER THAN K-0)

This sssumption ensures that a basic mathematical postulate is adhered
to by the regression algorithm. A system of simultanecus equations is
only “determined®*“if the number of equations®® is greater than the
number of unknowns. That is, only if the number of regression
coefficients— K minus 1, the subtraction accounting for the coefficient for

the intercept).
What information is “kmown” prior to running the regreesion?

~— All values of the independent variables are known first. In
theary, the independent variables are the "experiment.”

1 That is, it can be solved to estimate the optimixation parameters — the regression
coefficionts in the case of a regression
2 The sample size N in the case of a regression
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— Once the “experiment” is conducted, the values of the dependent
series Y are known. (Not that this “experiment” analogy holds
even if the data for the independent and dependent variables are
obtained from the same data collection survey.)

—- The regression minimizes the sum of the squared residuals,
which is the same as minimizing the square of the difference
between the observed and the predicted dependent series. The
number of residuals equals the number of observations. Thus,
the number of equations equals the number of observations.

What information is “unknown” prior to running the regression?

The regression coefficients — the betas — are unknown. Once the
regression coefficients are known, one can estimate the predicted
dependent variables, errora/residuals, R—square, etc. If X does not vary,
then the series cannot have any role in explaining the variation in Y. The
number of unknowns equals the number of regression coefficients.

ASSUMPTION 4: NOT ALL THE VALUES OF ANY ONE
INDEPENDENT SERIES CAN BE THE SAME

A model uses the effect of variation in X to explain variationin Y. If X
does not vary, then the series cannot have any role in explaining the

variationin Y.

Note that the formulas for estimating the regression coefficients — the
betas — use the “squared deviations from mean” in the denominator of
the formula. If the X values do not vary then sll the values equal the
mean implying that the *squared deviations from mean” is zero. This will
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make the regression coefficient indeterminate because the denominator of
the formula equals zero.

12.1E ASSUMPTION &: THE RESIDUAL OR DISTURBANCE
ERROR TERMS FOLLOW SEVERAL RULES

This is the most important assumption, and most diagnostic tests are
checking for the observance of this assumption. In several textbooks, you
will find this assumption broken into parts, but I prefer to list the rules of
Assumption 5:

Xssumpti«m Sa: ‘l‘!wmax;lavemgu m:-l!t::peu:tadv-lueaut&t:mlismx-lnn;e;;~
equals zero
If not, then you know that the model has a systemic hias, which makes it
inaccurate, especially because one does not typically know what is causing
the bias.

Assumption 8b: The disturbance terms all have the same variance
This assumption is also called homoskedasticity. Given that the expectsd
value of any disturbance equals zero, if one disturbance has a higher
variance than the other one, it implies that the observation underlying
this high variance should be given less importance because its relative
accuracy is suspect. (This is the reason that weighted regreasion is used
to correct for the nonconformity with this rule.)
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Assumption 5¢: A disturbance term for one observation should have no
relation with the disturbance terms for other observations or with any of

the independent variables

The disturbance term must be truly random — one should not be able to
predict or guess the value of any disturbance term given any of the
information on the model data. The disturbance term is also called the
error term. This error is assumed random. If this is not the case, then
your model may have failed to capture all the underlying independent
variables, incorrectly measured independent variables, or have correlation
between successive observations in a series Sorted by one of the

independent variables, 6 :

Typically, Time Series data series suffers from the problem of disturbance
terms being related to the values of previous periods. It is for this reason
that times series analysis requires special data manipulation procedures
prior to creating any prediction model.

Assumption 5d: There is no specification bias

This is the most crucial assumption because a mistake in specifying the
equation for regression is the.mspémihiliﬁy of the statistician. One
cannot blame the nature of the data for this problem. One type of :
specification bias is the use of an incorrect functional form. For exanipie, .
you have a specification bias if you use a linear function when a
logarithmic or exponential function should be used.

The other type of specification bias is when the model does not include a
relevant data series. This is the most common type of error of oversight
by because of the incorrect habit in creating a hypothesis only after
looking at the available data. This approach may result in the exclusion
of an important series that may not be in the available data set.
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Remember that a regresaion is based on a hypothesia — you always define
the hypothesis first. After that, look for data that can capture all of the
variables in the hypothesis. If you do not find the data to represent an
important factor, then you should not use regression analysis. Another
bad habit is the dropping of variables from a model if the coefficient is
seen to have no impact on the dependent series. It is better to have an
irrelevant or excess series, then to drop a relevant serics. In fact, the
result that a factor has no impact on the dependent series often provides

compelling insight.

. Assumption Se: The disturbaneeumhawaﬁm Density Fanction

The use of the F-test for validating the model and the T-tests for
validating individual coefficients is predicated on the presumption that
the disturbance terma follow a Normal Density Function.

121F ASSUMPTION &: THERE ARE NO STRONG LINEAR
RELATIONSHIPS AMONG THE INDEPENDENT YARIABLES

If the relationships are strong, then the regression estimation will not be
able to isolate the impact of each independent peries. Related to this is
. another rule: there should be no endogenity in the model. This means
) that none of the independent variables should be dependent on other
variables. An independent series should not be a function of another

Every estimate in a regression is not only a point estimate of the
parameter of the expected value of the parameter. The regression
estimates the expected value (mean) of the parameter, its variance, and
its Density Function (the assumption of normality provides the shape of
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the Density Function). The mean and standard error are estimated by the
model. There is a pair of such estimates for each coefficient (each BETA),
each disturbance term, and each predicied value of the dependent series.

Note: The dependent series is that whose values you are trying to predict
(or whose dependence on the independent variables is being studied). It is
also referred to as the “Explained” or “Endogenous” series, or as the

“Regressand.”

The independent variables are used to explain the values of the dependent
series. The values of the independent variables are not being
explained/determined by the model — thus, they are “independent” of the
model. The independent variables are also called “Explanatory” or
“Exogenous” variables. They are also referred to as “Regressors.”

I do not show the details of regression analysis. Please refer to
our book “Interpreting regression Output” available at
hitp://www.vibooks.net.

CONDUCTING THE REGRESSION

Go to the menu option TOOLS/DATA ANALYSIS®, Select the option
“Regression” as shown in Figure 154.

# If you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data analysis. Refer tosection 41.4.
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-wwwmm
t-Tast: Two-Sample Assuming Eqgual Verlances

t-Test: Two-Sample Assiming Linegual Variances
j2-Tust: Two Sampls For Mearns

e gy S

Choose the exact cell references for the Y and X ranges. So do not choose
*C:D;" instead, chooee C1:D235, a8 shown in Figure 156.

Ot} e
« All the X variables have o be in adjacvent columns
and

— The data cannot have missing values

Chooee all other options as shown in Figure 165.
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There should be no missing valﬁes in the range defined. Otherwise, you
get the error message shown in Figure 156. '

Ragression - LINEST() Function returns error. Pleass check input

ranges again.

‘Warnim@ e statistical Add-In provided with Excel has many
limitations— it does only a few procedures, has bugs, and cannot handle
complex data. (For example, it cannot do a regreseion if there are any
missing values.) Fortunately, some other companies have created Add-Ins
that provides comprehensive statistics capabilities. Links to such Add-Ins
can be accessed at the URL
http:/fwww.vibooks.net/products/publications/Excel/Excel. htm..
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1 do not show the ouiput or its detailed interpretation. Please
refer to our hook "Interpreting regression Output” availahle at
hitp/iwww.vjbooks.net.

A brief surnmary of interpretation guidelines is presented in the next
section.

REGRESSION OUTPUT

BRIEF GUIDELINE FOR INTERFPRETING

Name Of
SRatistic/
Chart
thedcpuuhat H Sig.-F is invignificant,
- variablo than the: regrension s
whaole has failed. No
;W!;th;mdel - below .05 for move interpretation is
o F sa It 95% comfidence in | necessary (aithough some
Sig-- m”“““““‘i g | theability ofthe | disagres on this point).
is model tomxplain | You must conclode that
'?”‘."ﬁ \ the dependent the “Dependent variable
fifferent from sero variable ummhuphmdky
-~ helow 0.1 for independentioxplanatory
0% conBidence in | varisbles.” The next
the ability of the | steps could be rebuilding
modsl toexplain | the model, using more
the dependent data points, etc.
varishle
RSS & . . The ESS should H the R-agquares of two
mw ?umm be high compared | models are very similar
in caleulating test to the TSS (the or rounded off to zero or
in caler &ﬂu ratio squals the B- | one, then you might
siatistics square). Note for | prefior to use the F-test
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Name Of What Doeg It
Statistic/ Measure Or Critical Values Comment
Chart Indicate?
F-test, etc. interpreting the formula that uses RSS
table, column and ESS.
“Sum of Squares™:
“Total” =TS8,
“Regression” =
ESS8, and
“Ragidual” = RSS
There is no critical _
value. Just
You may wish to
mﬁg&;ﬁ;& comment on the SE,
SE of The standard error of the predicted sspecially if it iz too large
Regression of the estimate dependent | or emall relative to the
predicted | o icble, The  meanofthe
dependent variable former should be predicied/estimated
values of the dependent
small (<10%) iable
compared to the :
latter.
Proportion of This ofien mis-used
variation in the . value should serve only
-Square dependent varisble | Between O snd 1. as a summary measure of
that can be A higher value is Goodness of Fit. Do not
explained by the better, use it blindly as a
independent criterion for model
variables selection.
Proportion of
variance in the
dependent variable
' that can be Anocther summary
Adjusted R- oxplained by the measure of Goodness of
square Sxp . é}e;é' Below 1. A higher | Fit. Superior to R-square
vm&;“@bam or B- value is betier becauss{ if: is sensi itive to
oq adjusted vti;igg;:am of irrelevant
fordt of :
varisbles
Look at the p- For a one-tailed test (st
) L value (in the 96% confidence level), the
-Ratioe The reliability of | column “Sig") it | eritical value is
our estimate of the | gt be low: (approximately) 1.65 for
individual beta testing if the coefficient is
- below .01 for greater than zero and
99% confidence in | (approximately) -1.68 for
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Name OF What Does It
Statistic/ Measure Or Critical Values Comment
Chart Indicatef
the value of the teating if it is below zero.
estimated
coelficient
- balow .06 for
96% confidence in
the vaive of the
| estimated
coefficient
' - below .1 for 90%
- confidence in the
. value of the
' eatimated
E Ficient
i
Confidence The 95% | The upper and Any valoe within the
Interval for e ’hweruimm confidence interval
beta ﬁtmmuchbmbmd ' the 96% cannot be rejected (as the
aatimate : confidence limits | true value) at 95% degree
* for the coefficient | of confidence
Charts: |
avoriv] A rosram: hewor's B0
dependent ' There should be gunehzm
variable and no discernible assumptions, Ls. - for
regidusl pattern. Hithere 0 o ke mie-
(Preferably Pisadiscernible L in e andior
after Mis-specification %&m&mh icity. At
the series) | hetercskedasticity | DW test for mis- mam;
specification or oy i
. the White's test m!mm
scatter chart for o’
heteroskadasticity Some may argue that the
mmm_ | mm&
mma-mmw‘ more importent.
in Excel. **
Charts: plots There should be Comnon in cross-
of residuales no discernible m;:u,
against pattorn. If there
independent | Hetercekedasticity | is a discernible If a partial plot has a
variablee. : pattern, then pattern, then that
(Preferably perform a formal  varighle is a likely
after test, candidate for the cavee of
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Name Of What Doeg It
Statistic/ Measiire Or Critical Values Comment
Chart Indivate?
the series) hetercskedasticity.
Mapke s
acatter chart
manually
after running
regreseion™”
| Charts:
Histograms of A ol
A good way to cbserve the
r‘fe‘:‘dﬂgh‘ No actual behavior of cur
o tardi Providesanidea | The distribution | residuals and to observe
il sbout the should look like a | any severe problem in the
Mak a distribution of the | normal residuals (which would
ke :;em residuals distribution indicate a breakdown of
chart ﬂ: the classical
runm:gﬂn ien assumptions)
Excel*® |

** (o Estimate the series “predicted” by using the regression formula:

Predicted_Y= constant + B, X, +... + BiXy.

(b) Standardize the series of predicted values using‘zhe function
INSERT/ FUNCTION/ STATISTICAL/ STANDARDIZE.

() Estimate the residual, by using the formula:
Residual= Y - Predicted Y

(d) Standardize the series of residuals using the function INSERT/
FUNCTION/ STATISTICAL/ STANDARDIZE

(e) make the charts using the standardized series. See book two in
this series — Charting in Excel — for more on making charts.
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124 BREAKDOWN OF CLASSICAL ASSUMPTIONS:
VALIDATION AND CORRECTION

Basic validstion can be conducted using procedures mentioned in the
previous table. Excel does not have procedures for more advanced testing.
The corrective procedures are not available in Excel.

The validation and corrective procedures are available in Add-Ine for
statistics. Links to such Add-Ins can be accessed at the URL
htip:/fwww vjbooks net/products/publications/Excel/Excel htm.

For more on this topic, please refer to our book “Interpreting
regression Output” available at hitpJfwww.vibooks.net.
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CHAPTER 13

OTHER TOOLS FOR STATISTICS

This chapter briefly touches on the following topics:

— SAMPLING ANALYSIS c
— RANDOM NUMBER GENERATION

- TIME SERIES

— EXPONENTIAL SMOOTHING, MOVING AVERAGE ANALYSIS

This chapter requires the Analysis ToolPak Add-Ins; chapter 9
shows how to learn how to launch the Add-Ins.

13.1 SAMPLING ANALYSIS

This tool creates a sample from a popuiation by treating the input range ‘
as a population. You can use a representative sample when the
population is too large to process or chart. You can also create a sample

that contains only values fro a particular part of a cycle if you believe that
the input data is periodic Excel draws samples from the first column, then

the second column, and so on.

Access the feature through the menu path TOOLS/DATA ANALYSIS and
chooee the procedure “Sampling.”
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Figure 167: Sempling

rnput
I Labels
-Sespling Methad
¢ Periodc

Period: f
& Random

Nsber of Semples: [

Sampling Method: choose Periodic or Random to indicate the sampling
interval you want.

Period: Enter the periodic interval at which you want sampling to take
place. The interval value in the input range and every period’s value
thereafter are copied to the output column,

Random & Number of Samples: Number of random values you desire in

the output column. Excel draws each value from a random position in the
input range. {Consequently, & value may be drawn more than ance.)

Outpué Range: Data is written in a singls column below the cell.

Note:
If you selected Periodic, the number of values in the output table is

equal to the number of values in the input range, divided by the
sampling rate. If you selected Random, the number of values in the
output table is equal to the number of samples.
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RANDOM NUMBER GENERATION

This tool fills a range with independent random numbers drawn from one
of several Density Functions.

You can characterize a population with a Probability Density Function.

Select the option TOOLS/DATA ANALYSIS™ and choose the procedure
“Random Number Generation.”

Number of Variables: Number of columns of values you want in the output
table. If you do not enter a number, all columns in the output will be

filled.

___ Figure 163: Random Number Generator
Randam &

qmbser Gone

Random Sead: I

# If you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for
data analysis. Hefer to section 41.4.
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Number of Random Numbers: Number of data points you want to see.
Each point appears in a row of the output table. If you do not enter a
number, all rows in the output range will be fillad.

Distribution: choose the Density Function for defining the criterion for the
Random Number generation.

Poraometers. The base parameters for the generation procees using the
pelected Dengity Function.

Figury 158 Choics o D R e

Table 35 Choice of Density Pawctions

Distribution | Comment on seiting parameters for random munber generation

Figure 100 Bersoulli
Bernoulli | charscterized by a probability of
success (p value) on any given Ve =~ l
trialiobservation.

Figuw 161 Bincoonie)

This Density Function is o
. . charscterized by a probability
Binomial success (p value) in any one PVahn = I
trial for a number of trials. Smber of Yrais = I

281
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Distribution Commeni on seiting parameters for random number generation
Or Custom | The range must contain two Density Function
Density columns: The left column contains A |l B |
Function | values, and the right column 1x prob_x
contains probabilities associated 2 00 28%
with the value in that row. The 3 K15 1] 0.8%
sum of the probabilities must be 1. 4 3080 45%
5 091 B6.7%
Note: You can use the function B N2 5.6%
FREQUENCY (Al, A:A)/count 7 3863 7.2%
(A:A) to generate the probability a8 3164 0.1%
you see in column B. 9 3216 3.0%
10 3248 85.5%
11 3260 1.0%
Figure 162° Parameters 12 I3 1.8%
Parameters 13 JI46 0.3%
Value arvd Probabilty Irput Range:
[sasz:$0431 Y]

Normal

This Density Function is characterized by a2 mean and a standard

deviation.
i64:
Handomn Numbor Hunneater
Number of Yariabies: il x|
Number of Random Numbers:  [4500 , Cancel ,
Patterned Distribution: [patterned s e |
anebers
From o o flo  ingasof |5 '
repanting sach number [3 Hnes
rapeating the ssquence ii tines
Figure 165: Poissun
Poi This Density Function is rvm-s - -
o800 characterized by a value Lambda = I .
lambda, equal to (1/mean).
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Distribution | Comment on setling parameters for random number generation

This distributing is characterized by lower and upper bounds.
Uniforss | Excel draws variables from sll values in the range. The
probability of drawing a value is aqual for all values in the range.

133

TIME SERIES

Exponential Smoothing

This tool and its formula predict a value based on the forecast for the
prior period, adjusted for the error in that prior forecast. The tool uses
the smoothing constant alpha, the magnitude of which determines how
strongly forecasts respond to errors in the prior forecast,

Using the mouse, select the menu path TOOLS/DATA ANALYSIS™ and
choose the procedure “Exponential Smoothing.”

Damping: The factor you want to use as the exponential smoothing
constant. The damping factor is a corrective factor that minimizes the

instability of data collected acroes a population,

The default value for the damping factor is 0.3. Values of 0.2 to 0.8 are
reasonable smoothing constants. These vaiues indicate that the current
forecast should be adjusted 20 to 30 percent for error in the prior forecast.

233

% If you do not see this option, then use TOOLS / ADD-INS to activate the Add-In for

dats analysia. Refer to section 41.4.
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Larger constants yield a faster response but can produce erratic
projections. Smaller constants can result in long lags for forecast values.

Data Requirement: A single column or row with four or more cells with
valid data.

Output: The output range must be on the same worksheet as the data in
the input range. Enter the range reference for the upper— left cell of the
output table (for example, “AD4”). You can obtain a column of Standard
Errors by selecting the option “Standard Errors.” If you want to chart the
procedure's output — the actual values and forecasts —, select the option

“Chart Output.”

Moving Average analysis
This tool projects values in the forecast period based on “the average
value of the series over a specific number of preceding periods.” A moving
average provides trend information that a simple average of all historical
data would mask.

NPT
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Select the option TOOLS/DATA ANALYSIS* and chooee the procedure
“Moving Average.”

Interval: Number of values you want to include in the moving average.
The default is three.

Figure 167: Moving Average

I~ Labels in First Row.

(gt options:
Quiput Range: I =]
News Workshest Py [

New Workbook:

T Chart Outpt I SavderdErors

- R ik

Data Requirement: A single column or row with four or move cells with
valid dats.

Ouipui: The output range must be on the same worksheet as the data in
the input range. Enter the range reference for the upper—ief call of the
output table (for example, “AD4”). You can obtain a column of Standard
Errors by selecting the option "Standard Errore.” If you want to chart the
procedure's output -— the actual values and forecasts —, select the option

# If you do not see this option, then use TOOLS 7 ADD-INS to activate the Add-In for

B

data anslysis. Refer to section 41.4.
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You have activated the “Analysis ToolPak.” If you go to the menu
TOOLS, you will see the option "SOLVER"— thia option was not there
before you accessed the Add-In. Please define a sample problem and try it
on an Excel workbook®”.

Access the feature through the menu psth TOOLS/SOLVER. The dislog
shown in Figure 169 opens. The “Target Cell” contains the formula for
the function you are attempting to optimize.

The “Equal to” area is where you choose the optimization critevion—

— Maximization (Max)

— Minimization (Min)

37 | do not supply the sample data for moet of the examples in chapter 42 to chapter 46.
My experience is that many readers giaze over the examplos and do not go through
the difficult step of drawing inferences from a result if the sample data results are
the same as those in the examples in the boak

29>
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241

The choice parameters are the numbers the algorithm plays sround with
to find the max/min.

You have to tell Excel about the cells that contain these parameters. One
can do it manually, or, an easier option is to click on the button “Guess.”

Excei automatically chooses all the cell references for use in the formula
in J10 (the target cell/objective function). This is illustrated in Figure
170.
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Figure 170 Selecting the criterion for optimisation

Sotver Parametai

142  ADDING CONSTRAINTS

The optimization function has been defined, as have the “choice
parameters.” At this stage, you have to add the constraints,

Click on the button “Add” and write in a constraint as shown in Figure
171.

?mm 171: t

After defining the first constraint, click on the button “Add” (see Figure
171.) Write the second constraint— see Figure 172,

242
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Continue with constraint definitions. After defining the last constraint,
execute the dialog by clicking on the button OK (see Figure 172).

Note:
The constraints are shown in the area “Subject to the Constraints”™ ss
shown in Figure 178,

Lol

stregmcer  [TEENNE] |
Equel To: Coux wn C Ykeo: ﬁ Cose I
By Changing Calls:

Franei e ez of 0t 8] ges |
Hshgoct bo the Constraints:

S T _w |
S | e |
o ’

o] e |

| * CHOOSING ALGORITHM OPTIONS

You need to chovee the options for the anslysis. So, click on the button
*Options.” The dialog shown in Figure 174 opena.

248




You may want to increase the iterations to 10,000. If you want to relax
the requirements for preciseness, increase the value of “Precision” by
removing some post-decimal zeros.

“Save Model” is used to save each optimization model. You can define
several optimization problems in one workbook. The other options are
beyond the scope of this book. _Click on the button “Continue.”

Figure 174: Options in the Solver Add-In

Running the Solver
Execute the procedure by clicking on the button “Solve.”

The following output can be read from the spreadsheet.

s the optimized value of the Objective Funetion (that is, the value of
the formula in the cell defined in the box “Set Target Cell”)

2%%
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» is the combination of the choice variables (that is, those whoee
value is obtained from the cells defined in the dialog area “By
Changing Cells")

Figure 175: The completed comstreiond optissisution dislog

IANE

setTgucet (RN

Ergond To: Cux Mg e E

By Changing Cells:

oD S0t ] ges |
Fbiect bo the Constraints:

f 2000 d _m |
o ' _gwo |
~| au-]

JHN

2456




Statistical Analysis with Excel

187, 190, 195, 199, 205, 219, 231, 234,

236,240
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Opening an EViews Workfile

Getting Data.
Existing Data files -

Click on

RRIE T —

oy : v’ -4

FILE-OPEN

Choose the correct workfile,

QWWMWW-; wow

e 2IT ety BN -
- gt W :
L i}

Mrw. wincbem ol

and

Click OPEN

EViews will open the requested
file, and provide a list of
varighles and objects in the file,

The open box on the screen is
called the workfile box.
{see Figure 2)

The buttons with the labels
VIEW, PROCS, SAVE, etc.
are referred to as the toolbar.

FViews has several different
toolbars that we will use.

155 st
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£
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SAVING An EViews Workfile




The portion of the data that
EViews uses for analysis is
determined by sample size.

Semple size can be changed
from the defaults by using the
QUICK menu. (Figure 4)
Click on
QUICK
.then click on
SAMPLE

In the sample box (Figure 5)
fill in the starting and ending |}

date. You must usc Proper  fiagey

EViews date form. The
correct form for a date is:

Annusl Dats
1960 for the year 1960
Quarterly Data
1960:1 (or 60:1) for first
quarter in 1960. Use 60:3 for
third quarter.
Monthly Data
1960:4 (or 60:4) for April
1960. Use 60:10 for Oct,

EViews Uscer Guide
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PRINTING DATA




TO print more than one
vanable, choose
QUICK and SHOW

and then enter the names
of the variables you wish
fo print.

(Figure 8)

Use the PRINT button on
the toolbar to send the
data to the printer,




PLOTTING DATA

variables in the box
(figure 10) s click on OK




printed using the

f
The resulting Graph can be
PRINT
|  button on the graphic
toolbar.

The PrintSetup button
determines the size and
attributes of the printed
graph.

j .- The AddText button

}|  (Figure 13) on the graphics
{  toobar allow the addition of a
title or other information to
the graph

EViews User Guide
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One other graphic optionisa
scaftergram. A scatiergram

plots one variable on the y-

axis and one variable on the
X-AXis.

foﬁowdww mﬁsmlﬁ
but choose

SCATTER DIAGRAM
option. The chick on OK.

Note the scale options play no
role if scatter diagram is
chosen.

The variable listed first will
be plotted on the y-axis, and
the variable listed second will
be plotted on the x-axis.

Note the AddText button on
the graphics toolbar can be
used to add information to
the graph as done in figure
15.

EViows Lser Guide

L i
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The option button on the
graphics toolbar produces a
options 1o “fine-tune” the
svailable on the linc graph
shove also.

One interestiog i w~ with »
scatter disgram is the

regression line option. This
option draws a straight line
that “best” describes the data.

. . ¥

e N T Al 159

"w

e 00000
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Creating New Variables

To create new variables in
EViews, start with

Generate Series

on the Quick Menu
(see Figure 4).

Enter the equation in the
box to describe the
variable that you wish to
create.

Use a * for multiplication,
use a/ for division, use **
for raising to a power, and
+ and - for addition and
subtraction. The exampie
in figure 20 creates an

After you compuie a
new series you should
always plot and print the
serics as a check of your
computational formula.

Figure 21

inflation rate over a year =
gure 20

1

!






The Resids button on the
regression box toolbar will
genetateﬁmes&ricsglﬂ?h"f
the actual and

graphic. To get back to the
regression results, click on

Stats.

The residuals are stored ina
series called resid. Hyou
want to use this variabie you
must calculate & new
variable based upon resid.

Use the Quick Menu, choose
generate serics, and enter a
formuls such as, err=resid.
Now err is a variable that
can be used in a regression equation, printed, plotted, etc.

EVicws Usexr Guide
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Part ll. Basic Single Equation Analysis

The following chapters describe the EViews features for basic single equation analysis.

» Chapter 11, “Basic Regression™, beginning on page 259 outlines the basics of ordi-
pary least squares estimation in EViews,

¢ Chapter 12, "Additional Regression Methods”, on page 179 discasses weighted least
squares, two-stage least squares and nonlinear least sguare estimation techniques.

* Chapter 13, “Time Series Regression”, on page 303 describes single equation regres-
sion techniques for the analysis of time series data: testing for sevial correlation, esti-
mation of ARMAX and ARIMAX models, using polynomial distributed lags, and unit
root tests for nonstationary time series.

+ Chapter 14, “Forecasting from an Equation®, beginning on page 343 outlines the
fundamentals of using EViews to forecast from estimated equations.
» Chapter 15, “Specification and Diagnostic Tests™, beginning on page 367 describes
specification testing in EViews.
Additional single equation techniques for autoregressive conditional heteroskedasticity,
and discrete and limited dependent variable models are described in Part IV. Part V docu-
ments multiple equation analysis.

¢



Chapter 11. Basic Regression

Single equation regression is one of the most versatile and widely used statistical tech-
niques. Here, we describe the use of basic regression techniques in EViews: specifying and
estimating a regression model, performing simple diagnostic analysis, and using your esti-
mation results in further analysis.

Subsequent chapters discuss testing and forecasting, as well as more advanced and spe-
cialized techniques such as weighted least squares, two-stage least squares {TSLS}, nonlin-
ear least squares, ARIMA/ARIMAX models, generalized method of moments (GMM),
GARCH models, and qualitative and limited dependent variable models. These techniques
and models all build upon the basic ideas presentad in this chaptec

You will probably find it useful to own an econometrics texthook as 3 refevence for the
techniques discussed in this and subsequent documnentation. Standard textbooks that we
have found to be useful are listed below (in generally increasing order of difficulty):

» Pindyck and Rubinfeld (1991}, Econometric Models and Bconontic Foreoasts, 3rd odi-
tion.

+ Johnston and DiNardo {1997}, Econometric Methods, 4th Edition.

e Greene (1997), Econometric Analysis, 3nd Edition.

» Davidson and MacKinnon (1993), Estimation and Inference in Econometrics.

‘Where appropriate, we will also provide you with specialized references for specific topics.

Equation Objects

Single equation regression estimation in EViews is performed using the egaation olyect. T
create an equation object in EViews: select Objects/New Object/Equation or Quick/Estl-
mate Equation... fom the main menu, or simply type the keyword equation in the com-
mand window.

Next, you will specify your equation in the Equation Specification dialog box that appears,
and select an estimation method. Below, we provide details on specifying equations in
EViews. EViews will estimate the equation and display results in the equation window.

The estimation resulis are stored as part of the equation object so they can be accessed at
any time. Simply open the object to display the summary results, or to access EViews iools
for warking with results from an equation object. For example, you can retrieve the sum-
of-squares from any equation, or you can use the estimated equation as part of a nid-

equation model.
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Specifying an Equation in EViews
When you create an equation object, a specification dialog box is displayed.

You need to specify three things
in this dialog: the equation speci-
fication, the estimation method,
and the sample to be used in esti-

mation.

In the upper edit box, you can e S
specify the equation: the depen- - Etoaation selinge e -
dent (left-hand side) and inde- Moot LS - Lo Suarms NLS and ABMA] | R
pendent (right-hand side} Swrple: ”mm@?‘g - g -—-—-—J; — |
variables and the functional e B yors

form. There are two basic ways

of specifying an equation: “by list” and “by formula” or “by expression”. The list method is
easier but may only be used with unresiricted linear specifications; the formula method is
more general and must be used to specify nonlinear models or models with parametric

restrictions.

Specifying an Equation by List

The simplest way to specify a linear equation is to provide a list of variables that you wish
to use in the equation. First, include the name of the dependent variable or expression, fol-
lowed by a list of explanatory variables. For example, to specify a linear consumption func-
tion, CS regressed on a constant and INC, type the following in the upper field of the
Equation Specification dialog:

cs ¢ inc

Note the presence of the series name C in the list of regressors. This is a buili-in EViews
series that is used to specify a constant in a regression. EViews does not automatically
include a constant in a regression so you must explicitly list the constant {or its equivalent)
as a regressor. The internal series C does not appear in your workfile, and you may not use
it outside of specifying an equation. If you need a series of ones, you can generate a new

series, or use the number 1 as an auto-series.

You may have noticed that there is a pre-defined object C in your workfile. This is the

default coefficient vector—when you specify an equation by listing variable names, EViews
stores the estimated coefficients in this vector, in the order of appearance in the list. In the
example above, the constant will be stored in C(1) and the coefficient on INC will be held

in C(2).
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Lagged series may be included in statistical operations using the same notation as in gen-
erating a new series with a formula—put the lag in parentheses after the name of the
series. For example, the specification:

ce ¢eg{-1} c inc
tells EViews to regress CS on its own lagged value, a constant, and INC. The coefficient for
lagged CS will be placed in C(1), the coefficient for the constant is C(2), and the coefficient
of INC is C(3}.
You can include a consecutive range of lagged series by using the ward “to” between the
lags. For example,

¢s ¢ c8{-1 to -4) inc
regresses CS on a constant, CS(-1), CS{-2}, CS(-3). CS(4), and INC. i you don't include
the first lag, it is taken to be zero. For example,

es ¢ ipc{to -2} inc(-4)
regresses CS on a constant, INC, INC(-1}, INC(-2), and INC(4).

You may include auto-series in the list of variables. If the auto-series expressions contain
spaces, they should be enclosed in parentheses. For example,

logice) ¢ logl(es{-1)) {({inc+inc(-1})) / 2)

specifies a regression of the natural logarithm of CS on a constant, its own lagged value,
and a two period moving average of INC.

Typing the list of series may be cumbersome, especially if you are working with many
regressors. If you wish, EViews can create the specification list for you. First, highlight the
dependent variable in the workfile window by single clicking on the entry. Next, CTRL-
click on each of the explanatory variables to highlight them as well. When you are done
selecting all of your variables, double click on any of the highlighted series, and select
Open/Equation... The Equation Specification dialog box should appear with the names
entered in the specification field. The constant C is automatically included in this list; you
must defete the C if you do not wish to include the constant.

Specifying an Equation by Formula

You will need to specify your equation using a formula when the list method is not general
encugh for your specification. Many, but not all, estimation methods allow you to specify
your eguation using a formula.

An equation formula in EViews is a mathematical expression involving regressors and
coefficients. T specify an equation using a formula, simply enter the expression in the dia-
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log in place of the list of variables. EViews will add an implicit additive clisturbance to this
equation and will estimate the parameters of the model using least squares.

When you specify an equation by list, EViews converts this into an equivalent equation
formula. For example, the list,
log{cs} ¢ log{cs(-1}) log{inc)

is interpreted by EViews as,
log{cs} = c{l) + c{2}*log{ca({-1}) + c{3)*loglinc)

Equations do not have to have a dependent variable followed by an equal sign and then an
expression. The “ =" sign can be anywhere in the formula, as in:

log{urate) + ¢{1l}*dmr = c{2}

The residuals for this equation are given by:
e = log(urate) -~ c(1)dmr - (2). (1.1)

Eviews will minimize the sum~of~s§&ares of these residuais.

If you wish, you can specify an equation as a simple expression, without a dependent vari-
able and an equal sign. If there is no equal sign, EViews assumes that the entire expression

is the disturbance term. For example, if you specify an equation as
c{il*x + c(2)*y + 4*z

EViews will find the coefficient values that minimize the sum of squares of the given
expression, in this case (C{1)"X + C{2)*Y + 4*Z}. While EViews will estimate an expression
of this type, since there is no dependent variable, some regression statistics (e.g. R-
squared) are not reported and the equation cannot be used for forecasting. This restriction
also holds for any equation that includes coefficients to the left of the equal sign. For

example, if you specify,
2+ cl{il*y = o{2)*z

EViews finds the values of C(1) and C(2) that minimize the sum of squares of (X +C(1)*Y~
C{2)*Z]}. The estimated coefficients will be identical to those from an equation specified

using:
x = -Ci{l)*y + c{2}*z
but some regression statistics are not reported.

- The two most common motivations for specifying your equation by formula are to esti-
mate restricted and nonlinear models. For example, suppose that you wish to constrain the

L 3
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coefficients on the lags on the variable X to sum to one. Solving out for the coefficient
restriction leads to the following linear model with parameter restrictions:

y = {1} + c{2}*x + c{3)2x(-3) + c(4)*x{-2) +{1-¢{2)-c{3)-
ci4))*x{-3}

To estimate a nonlinear model, simply enter the nonlinear formula. EViews will antomati-
cally detect the nonlinearity and estimate the model using nonfinear least squares. For
details, see "Nonlinear Least Squares” on page 289,

One benefit to specifying an equation by formula is that you can elect o use a different
coefficient vector. To create a new coefficient vector, choose Objects/New Object... and
select Matrix-Vector-Coef from the main menu, type in 2 name for the coefficient vector,
and click OK. In the New Matrix dialog box that appears, select Coefficient Vector and
specify how many rows there should be in the vector. The object will be listed in the work-
file directory with the coefficient vector icon {the linle o ).

You may then use this coefficient vector in your specification. For example, suppose you
created coefficient vectors A and BETA, each with a single row. Then you can specify your
equation using the new coefficients in place of C:

logica) = a{l) + beta{l)*log{cs{-1))

Estimating an Equation in EViews

Estimation Methods

Having specified your equation, you now need to choose an estimation method. Click on
the Method: entry in the dialog and you will see a drop-down menu listing estimation
methods.

Standard, single-eguation regression is performed
using least squares. The other methods are described

in subsequent chapters.

Equations estimated by ordinary least squares and
two-stage Jeast squares, GMM, and ARCH can be
specified with a formula. Nonlinear equations are not allowed with binary, ordered, cen-
sored, and count models, or in equations with ARMA terms.

Estimation Sample

You should also specify the sample io be used in estimation. EViews will fill out the dialog
with the current workfile sample, but you can change the sampie for parposes of estima-
tion by entering your sample string or object in the edit box {see “Samples™ on page 60 for
details). Changing the estimation sample does not affect the curvent workfile sample.
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if any of the series used in estimation contain missing data, EViews will temporarily adjust
the estimation sample of observations to exclude those observations (listwise exclusion).
EViews notifies you that it has adjusted the sample by reporting the actual sample used in
the estimation results:

Dependent Vesiable: Y

Mathad: Least Squares

Date: 681857 Time: 1024

Sample{adiusted): 1956:01 1589:12
inciuded observations: 340
Excluded observations: 32 sfter adjusiing éndpoinis

Here we see the top of an eguation output view. EViews reports that it has adjusted the ‘
sample. Out of the 372 observations in the period 1959:01-1989:12, EViews uses the 340
observations with observations for all of the relevant variables.

You should be aware that if you include lagged variables in a regression, the degree of sam-
ple adjustment will differ depending on whether data for the pre-sample period are avail-
able or not. For example, suppose you have nonmissing data for the two series M1 and [P

over the period 1959:01-1989:12 and specify the regression as
mi ¢ ip ipi{-1} ip(-2) ip{-3}

If you set the estimation sample to the period 1959:01~1989:12, EViews adjusts the sample
to:

Depeancare Vadisbio: M1
Method: Loast Scusres

Oute: 0BHOST  Tiew: 10:49

Sampie: 1980-01 1988112

Inchucded obsarvations: 380 'i'

since data for IP{-3) are not available until 1955:04. However, if you set the estimation
sample to the period 1960:01-1989:12, EViews will not make any adjustment to the sample
since all values of IP(-3) are available during the estimation sample.

Some operations, most notably estimation with MA terms and ARCH, do not allow missing
observations in the middle of the sample. When executing these procedures, an error mes-
sage is displayed and execution is halted if an NA is encountered in the middle of the sam-
ple. EViews handles missing data at the very start or the very end of the sample range by
adjusting the sample endpoints and proceeding with the estimation procedure.

Estimation Options

EViews provides a number of estimation options. These options allow you to weight the
estimating equation, to compute heteroskedasticity and auto-correlation robust covari-

70
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ances, and to coutrol various features of your estimation algorithm. These options are dis-
cussed in detail in “Estimation Options™ on page 292.

Equation Output
‘When you click OK in the Equation Specification dialog, EViews displays the eguation
window displaying the estimation output view:

Using matrix notation, the standard regression may be written as:
p=XB+e n.2

where y is a T-dimensional vector containing observations on the dependent variable, X
is a Tx k matrix of independent variables, 8 is a k-vector of coefficients, and ¢ is a
T -vector of disturbances. T is the number of observations and k is the number of right-

hand side regressors.
In the output above, y is Jog(M1), X consists of three variables C, log{IP}, and TB3, where
Tw= 372and k = 3.

Coefficient Results

Regression: Coefficients
The column labeled “Coefficient™ depicts the estimated coefficients. The least squares
regression coefficients b are computed by the standard OLS formula

b= (X' X)Xy (11.3)

H your equation is specified by list, the coefficients will be labeled in the “Variable™ col-
umon with the name of the correspanding regressor; if your equation is specified by for-
mula, EViews lists the actual coefficients, C(1), C(2), etc.

Y
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For the simple linear models considered here, the coefficient measures the marginal contri-
bution of the independent variable to the dependent variable, holding all other variables
fixed. If present, the coefficient of the C is the constant or intercept in the regression—it is
the base level of the prediction when all of the other independent variables are zero. The
other coefficients are interpreted as the slope of the relation between the corresponding
independent variable and the dependent variable, assuming all other variables do not

change.

Standard Errors

The “Std. Error” column reports the estimated standard errors of the coefficient estimates.
The standard errors measure the statistical reliability of the coefficient estimates—the
larger the standard errors, the more statistical noise in the estimates. If the errors are nor-
mally distributed, there are about 2 chances in 3 that the true regression coefficient lies
within one standard error of the reported coefficient, and 95 chances out of 100 that it lies

within two standard errors.

The covariance matrix of the estimated coefficients is computed as,
var(hy = s((X'X);  ° = ee/(T-k); &= y-Xb (11.4)

where 2 is the residual. The standard errors of the estimated coefficients are the square
roots of the diagonal elements of the coefficient covariance matrix. You can view the whole

covariance matrix by choosing View/Covariance Matrix.

t-Statistics

The t-statistic, which is computed as the ratio of an estimated coefficient to its standard
error, is used to test the hypothesis that a coefficient is equal to zero. To interpret the {-sta-
tistic, you should examine the probability of observing the t-statistic given that the coeffi-
cient is equal to zero. This probability computation is described below.

In cases where normality can only hold asymptoticaily, EViews will report a 2-statistic
instead of a f-siatistic.

Probability

The last column of the output shows the probability of drawing a ¢-statistic (or a z-statistic)
as extreme as the one actually observed, under the assumption that the etrors are normally
distributed, or that the estimated coefficients are asymptotically normally distributed.

This probability is also known as the p-vaiue or the marginal significance level. Given a p-
value, you can tell at a glance if you reject or accept the hypothesis that the true coefficient
is zero against a two-sided alternative that it differs from zero. For example, if you are per-
forming the test at the 5% significance level, a p-value lower than 0.05 is taken as evidence

#h-
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to reject the null hypothesis of a zevo coefficient. if you want to conduct a one-sided vest,
the appropriate probability is one-half that reported by EViews.
For the above example output, the hypothesis that the coefficient on TB3 is 270 is rejected

at the 5% significance Jevel but not at the 1% level. However, if theory suggests that the
coefficient on TB3 cannot be positive, then a one-sided test will reject the zevo null bypoth-

esis at the 1% level.
The p-values are computed from a t-distribution with T~ k degrees of freedom.

Summary Statistics

R-squared

The R-squared (R’)m&mmmmdmewmmmm
ues of the dependent variable within the sample. In standard settings, B may be inter-
preted as the fraction of the variance of the dependent variable explained by the
independent variables. The statistic will equal one if the regression fits perfectly, and zevo
if it fits no better than the simple mean of the dependent variable. It can be negative for 2
number of reasons. For example, if the regression does not have an intercept or constant, if
the regression contains coefficient restrictions, or if the estimation method is two-stage

Jeast squares or ARCH.
EViews computes the {centered) R® as

Be1-—2tl . §- yyr aLs)
G- D-9 RAd '

where § is the mean of the dependent {left-hand) variable.

Adjusted R-squared
One problem with using Rgasamemmafpemﬁﬁtkmme R will pever
decrease as you add more regressors. In the extrespe case, you can always obtain an Rof

one if you include as many independent regressors as there are samaple ohsexvations.
The adjusted R’.mmmmﬂydemtedas ﬁz,penalimthe R for the addition of

sors which do not contribute to the explanatory power of the model. The adjusted R is
computed as

2 - 1-a-rHIL
R =1-q T—F {11.6)

The J*is never larger than the R?, can decrease as you ackl regressors, and for poorly fit-
ting models, may be negative.
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Standavd Error of the Regression (S.E. of regression)

The standard error of the regression is 2 summary measure based on the estimated vari-
ance of the residuals. The standard error of the regression is computed as

s = |—tf
=5 | .7

sum-of-Squared Residuals
The sum-of-squared residuals can be used in a variety of statistical calculations, and is pre-
sented separately for your convenience:

T 2
28 = E (yz - .X.i,b) {11.8)
te=1

Log Likefthood

EViews reports the value of the log likelihood function (assuming normally distributed
errors) evaluated at the estimated values of the coefficients, Likelihood ratio tests may be
conducted by looking at the difference between the log likelihood values of the restricted

and unrestricted versions of an equation.

The log likelihood is computed as
! = -ga + log(2m) + log(¢'2/T)) (1.9)

When comparing EViews output to that reported from other sources, note that EViews
does not ignore constant terms.

Durbin-Watson Statistic
The Durbin-Watson statistic measures the serial correlation in the residuals. The statistic is

computed as
r

2
) E (ét - gg - 1)
DW = i=2
t=d
2
IR
t=]
See Johnston and DiNardo (1997, Table D.5) for a table of the significance points of the
distribution of the Durbin-Watson statistic.

As a rule of thumb, if the DW is less than 2, there is evidence of positive serial correlation.
The DW statistic in our output is very close to one, indicating the presence of serial corre-
lation in the residuals. See “Serial Correlation Theory” beginning on page 303 for a more

(11.10)
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extensive discussion of the Durbin-Watson statistic and the consequences of serially corre-
iated residuals.

‘There are better tests for serial correlation. In “Testing for Serial Correlation™ on page 304,
we discuss the (-statistic, and the Breusch-Godfrey LM test, both of which provide a more
general testing framework than the Durbin-Watson test.

Mean and Standard Deviation ($.D) of the Dependent Variable
The mean and standard deviation of y are computed using the standard formulae:

T
F= [wT s,= j; (Y~ i?)!f (r-1) (.n)
£ fw}
Akalke information Criterion
The Akaike Information Criterion (AIC) is computed as:
AIC = ~2U/T4 2k/T n.12)

where 1 is the log likelihood (given by Equation (11.9) on page 268).

The AIC is often used in model selection for non-nested alternatives—smaller values of the
AIC are preferred. For example, you can choose the length of a lag distributioa by choosing
the specification with the lowest vatue of the AIC. See Appendix F, “Information Criteria”,
on page 683, for additional discussion.

Schwarz Criterion
The Schwarz Criterion {5C) is an altemative to the AIC that imposes a larger penaky for
additional coefficients:

SC = - 2U/T+ (klog)y/T (1113}

F-Statistic
The F-statistic reported in the regression output is from a test of the hypothesis that all of
the slope coefficients {excluding the constant, or intercept) in a regression are zevo. For
ordinary least squares models, the F-statistic is computed as
2
F= R°/(k~1) (11.14)
(1- ROY/(T- k)

Under the null hypothesis with normally distributed errors, this statistic has an F-distriba-
tion with k-~ 1 numerator degrees of freedom and 7~ k denominator degrees of free-
dam.
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The p-value given just below the F-statistic, denoted Prob{F-statistic), is the marginal sig-
pificance level of the F-est, H the p-value is less than the significance level you are testing,
say 0.05, you reject the null hypothesis that all slope coefficients are equal to zero. For the

‘example above, the p-value is essentially zero, so we reject the null hypothesis that all of
the regression coefficients are zero. Note that the F-est is 2 joint test so that even if all the
{-statistics are insignificant, the F-statistic can be highly significant.

Working With Equation Statistics -

The regression statistics reported in the estimation output view are stored with the equa-

tion and are accessible through special “@-functions”. You can retrieve any of these statis-
tics for further analysis by using these functions in genr, scalar, or matrix expressions. If a
particular statistic is not computed for a given estimation method, the function will return

an NA.

There are 1wo kinds of “@-functions™: those that return a scalar value, and those that
return matrices or vectors. '

Keywords that retumn scalar vaiues

@aic Akaike information criterion

@coefcov(i,j) covariance of coefficient estimates ¢ and j

@coefs(i) #th coefficient value |

@dw Durbin-Watson statistic

o@f F-statistic

@hg Hannan-Quinn information criterion

@jstat J-gtatistic — vaiue of the GMM objective function
(for GMM}

@logl _ value of the log likelihood function

@meandep mean of the dependent variable

@ncoef number of estimated coefficients

@r2 R-squared statistic

@rbar2 adjusted R-squared statistic

@vegobs number of observations in regression

@schwarz Schwarz information criterion

@sddep ' standard deviation of the dependent variable

@se standard error of the regression

@ssr sum of squared residuals

ath
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@ stderrs(i) standard error for coefficient ¢
@tstats(l) t-statistic value for coefficient ¢
¢(i) i-th element of defaukt coefficient vector for eqgua-
tion (if applicable)

Keywords that retum vector or matrix objects
@coefcov matrix containing the coefficient covariance matrix
Ocoefs vector of coefficient values '
@stderrs vector of standard errors for the coefficients
@tstats vecior of I-statistic values for coefficlents

If you use these functions without reference to an equation object, EViews will use the
defauli equation. For example, the command:

series y = 0w
creates a series named Y and assigns to every observation, the value of the Durbin-Watson
statistic for the default equation.

We strongly recommend, howevey, that you prepend the name of an equation object and a
= * to the statistic keyword. This instnucts EViews to use the appropriate statistic for the

named equation. For exampie:
series y = eqgl.#dw
assigns to Y the value of the Durbin-Watson for the equation EQ1.

Functions that return a vector or matrix object should be assigned to the corresponding
object type. For example, you should assign the results from etstats 0 2 vecior:

vector tstats = agl.@tstats

and the covariance matrix to a matrix:
WAtYix mycov = eql.ecov

You can also access individual elements of these statistics:
pcalar pvalue = 1-#cnorm{@abs (eql.etstatsi{4)}]
scalar varl = egl.ecovariance{l,1}

For documentation on using vecters and mairices in EViews, see Chapter 4, "Matrix Lan-
guage”, on page 55 of the Command and Programming Reference.
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Working with Equations

Views of an Equation

e Representations. Displays the equation in three forms: EViews command form, as
an algebraic equation with symbolic coefficients, and as an equation with the esti-

mated values of the coefficients.

You can cut-and-paste
from the representations

view into any applica- 7
tion that supporis the LS LOGMNT) C LOGAP) T83
Windows clipboard. ‘Estimation Equation;

« Estimation Chatput. Dis- LOGHIS = G{T) + CLILOGEPY « C(3TB3

plays the equation output  Subsifulsd Cosficiens
results described above. LOGMM1) = -1.60991 2005 + 1 TA5885411°L000F) - 0011893191 81°TH3 ,:j

e Actual, Fitted, Residual.
These views display the actual and fitted values of the dependent variable and the

residuals from the regression in tabular and graphical form. Actual, Fitted, Residual
Table displays these values in table form.

Note that the actual value

is always the sum of the

fitted value and the resid- ~ ¥ *
ual. Actual, Fitted, ‘ ] & :‘mm :
Residual Gl‘&f’h dxsplays X s '
a standard EViews graph { & peaisss ;
of the actual vaiues, fit- : pptiid f_»g;g; :
ted values, and residu- - ] soemrs ss0008 o :
als. Residual Graph plots | L
only the residuals, while

the Standardized Residual Graph plots the residuals divided by the estimated resid-
ual standard deviation.

s Cradients and Derivatives... Provides views which describe the gradients of the
objective function and the information about the computation of any derivatives of
the regression function. Details on these views are provided in Appendix E, “Gradi-

ents and Derivatives”, on page 675.

Covariance Matrix. Displays the covariance matrix of the coefficient estimates as a
spreadsheet view. To save this covariance matrix as a matrix object, use the @cov

function.
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+ Coefficient Tests, Residual Tests, and Stability Tests. These are views for specifica-
tion and diagnostic tests and are described in detail in Chapter 15, “Specification

and Diagnostic Tests™, beginning on page 367,

Procedures of an Equation

s Specify/Estimate... brings up the Equation Specification dialog box so that you can
modify your specification. You can adit the equation specification, or change the
estimation method or estimation sampie.

+ Forecast... forecasts or fits values using the estimated equation. Forecasting using
equations is discussed in Chapter 14,

« Make Residnal Series... saves the residuals from the regression as a series in the
workfile. Depending on the estimation method, you may choose from three types of
residuals: ordinary, standardized, and generalized. For ordinary least squares, only
the ordinary residuals may be saved.

+ Make Regressor Group creates an untitled group comprised of all the variables used
in the equation {with the exception of the constant).

« Make Gradient Group creates a group containing the gradients of the objective
function with respect to the coefficients of the model.

+ Make Derivative Group creates a group containing the derivatives of the regression
function with respect to the coefficients in the regression function,

+ Make Model creates an untitied model containing a Hnk o the estimated equation.
This model can be solved in the usual manner. See Chapter 23, “Models™, on
page 601 for information on how 10 use models for forecasting and simulations.

* Update Coefs from Equation places the estimated coefficients of the equation in the
coefficient vector. You can use this procedure 10 initialize starting values for various

estimation procedures.

Default Equation

Following estimation, EViews often holds the estimated coefficients and their covariance
matrix, the residuals, and some summary statistics in an untitied equation object. These
results are available for use in a variety of subsequent computations including the specifi-
cation and diagnostic tests described in Chapter 1S, “Specification and Diagnostic Tests”,
beginning on page 367, and the computation of forecasts and mode! simulation in
Chapter 14, “Forecasting from an Equation”, on page 343 and Chapter 23, “Models™, on

page 601.

Untitled equations are not saved with the workfile. You may use the Name button on the
equation toolbar to name your equation. The equation will be saved with the workfile

1y
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when the latter is saved. Once named, you can access the information in the equation at
any time, even if you have just estimated several other models, or have not worked with

the workfile for a long period of time.

For your convenience, EViews keeps track of a default equation. The default equation is
the equation that is active or was the most recently active equation. The name of the
default equation is shown at the upper right hand comer of the workfile window.

Residuals from an Equation
The residuals from the default equation are stored in a series object calied RESID. RESID
may be used directly as if it were a regular series, except in estimation. '

RESID will be overwritten whenever you estimate an equation and will contain the residu-
als from the latest estimated equation. To save the residuals from a particular equation for
later analysis, you should save them in a different series so they are not overwritten by the
next estimation command. For example, you can copy the residuals into a regular EViews

series called RES1 by the command
geyies resl = resid

Even if you have already overwritten the RESID series, you can always create the desired
series using EViews” built-in procedures if you still have the equation object. If your equa-
tion is named EQI, open the equation window and select Procs/Make Residual Series, or

enter
eql.makeresid resl

to create the desired series.

Regression Statistics ‘

You may refer to various regression statistics through the @-functions described above. For
example, to generate a new series equat to FIT plus twice the standard error from the last
regression, you can use the command :

peries plug = fit + 2%eqgl.@se
To get the ¢statistic for the second coefficient fwm equation EQ!, you could specify
eqgl.etstats (2}

To store the coefficient covariance matrix from EQ1 as a named symmetric matrix, you can
use the command

sym ccovl = eqgl.@cov

See “Keywords that return scalar values” on page 270 for additional details.

Ard
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Storing and Retrieving an Equation

As with other objects, equations may be stored to disk in data bank or database files. You
can also fetch equations from these files.

Equations may also be copied-and-pasted to, or from, workfiles or databases,

EViews even allows you to access equations directly from your databases or another work-
file. You can estimate an equation, store it in a database, and then use it w0 forecast in sev-
eral workfiles.

See Chapter 3, "EViews Basics®, beginning on page 33 and Chapter 6, “EViews Data-
bases”, beginning on page 107 for additional information about objects, databases, and
object containers.
Using Estimated Coefficients
The coetfficients of an equation are listed in the representations view. By default, EViews
will use the C coefficient vector when you specify an eguation, but you may explicitly use
other coefficient vectors in defining your equation.
These stored coefficients may be used as scalars in generating data. While there are ecasier
ways of generating fitted values (see “Forecasting from an Equation™ on page 343), for pur-
poses of illustration, note that we can use the coefficients to form the fited valves from an
equation. The command:

series cshat = sgl.c(l) + egl.c{2)*gdp
forms the fited value of CS, CSHAT, from the OLS regression coefficients and the indepen-
dent variables from the eqguation object EQ1.
Note that while EViews will accept a series generating equation which does not explicidy
refer tp a named equation:

series csbat = c{l) + ci{2}*gdp
and will use the existing values in the C coefficient vector, we strongly recommend that
you always use named equations o identify the appropriate coefficients. In general, C will
contain the cotrect coefficient values only immediately following estimation or a coeffi-

cient update. Using 2 named equation, or selecting Procs/Update coefs from equation,
guarantees that you are using the coirect coefficient values.

An alternative to referring to the coefficient vector is to reference the acoefs elements of
your equation (see page 270). For example, the examples above may be written as
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peries cshat=egl.@coefs{l}+egl.@coefs{2)*gdp

EViews assigns an index to each coefficient in the order that it appearé in the representa-
tions view. Thus, if you estimate the equation

equation eqfl.ls y*c(loh—b(s}*y{~1)+a{'?}*inc.
where B and A are also coefficient vectors, then
» eqOl.@coefs(1) contains C({10)
« eq0l. @coefs(2) contains B(S)

= eqU0l. @coefs(3) contains A(7) ' e

This method should prove useful in matching coefficients to standard errors derived from
the @stderrs elements of the equation (see Chapter 3, “Object, View and Procedure Ref-
erence”, beginning on page 19 of the Command and Programming Reference). The @coefs
elements allow you to refer to both the coefficients and the standard errors using a com-
mon index.

if you have used an alternative named coefficient vector in specifying your equation, you
can also access the coefficient vector directly. For example, if you have used a coefficient
vector named BETA, you can generate the fitted values by issuing the commands

equation eg02.1e ce=beta(l)+beta({2) *gdp
series cshat=beta(l)+beta(2)+~gdp

where BETA is a coefficient vector. Again, however, we recommend that you use the

acoefs elements to refer to the coefficients of EQQ2. Alternatively, you can update the

coefficients in BETA prior to use by selecting Procs/Update coefs from eqguation from the A
equation window. Note that EViews does not allow you to refer to the named equation i
coefficients EQO2,BETA(1) and EQ02.BETA(2). You must instead use the expressions,

EQO02.@COEFS(1) and EQO2. @ COEFS(2].

Estimation Problems

Exact Collinearity

If the regressors are very highly collinear, EViews may encounter difficulty in computing
the regression estimates. In such cases, EViews will issue an error message “Near singular
matrix.” When you get this error message, you should check to see whether the regressors
are exactly collinear. The regressors are exactly collinear if one regressor can be written as
a linear combination of the other regressors. Under exact collinearity, the regressor matrix
X does not have full column rank and the OLS estimator cannot be computed.
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regression. A set of mutually exclusive dummy variables and the constant term are exactly
collinear. For example, suppose you have quartesly data and you fry to run a regression

with the specification
¥y © x @seas{l} eseasn(2) @sean(3) oseas{4)

EViews will return a “Near singular matrix” error message since the constant and the four
quarierly dummy variables are exactly collinear through the relation:

c = @seap{l} + @peani2) + osuan{3) + eseanid)
In this case, simply drop either the constant term or one of the dumruy variables.
‘The textbooks listed above provide extensive discussion of the issue of collinearity.

Commands
To declare a new equation object, follow the equation command with a name for the equa-

tion object:
equation eql

b estimate an equation by OLS, follow the equation name with a dot and the keyword ~Is”
or "est”, the name of the dependent variable, and the names of the independent variables,

each separated by a space:
egl.ls cx ¢ gdp cpi
regresses CS on a constant, GDP, and CPL
Alternatively, you can specify the equation by a formula with an equal sign:
eql.les cs = ¢{1) + ¢{2)*gdp + c(3)*cpi
You can define and estimate an ecuation in one command:
equation &g _sale.ls sales c trend orders industry growth
estimates the specified equation and stores the results in an equation named EQ,_SALE.

See 1s (p. 245) in the Command and Programming Reference for a complete st of com-
mands and options for single equation least squares estimation in EViews.

243
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This chapter discusses weighted least squares, heteroskedasticity and autocorrelation con-
sistent covariance estimation, two-stage least squares {TSLS), nonlinear least squares, and
generalized method of moments (GMM). Note that most of these methods are also avail-

able in systems of equations; see Chapter 19.

Parts of this chapter refer to estimation of models which have autoregressive (AR) and
moving average {(MA) error terms. These concepts are discussed in greater depth in

Chapter 13. _ %
Weighted Least Squares | |

Suppose that you have heteroskedasticity of known form, and that there is a series w,
whose values are proportional to the reciprocals of the error standard deviations. You can
use weighted least squares, with weight series w , to correct for the heteroskedasticity.

EViews performs weighted least squares by first dividing the weight series by its mean,
then multipiying all of the data for each observation by the scaled weight series. The scal-
ing of the weight series is a normaiization that has no effect on the parameter results, but
makes the weighted residuals more comparable 1o the unweighted residuals. The normal-
ization does imply, however, that EViews weighted least squares is not appropriate in situ-
ations where the scale of the weight series is relevant, as in frequency weighting.

Estimation is then completed by running a regression using the weighted dependent and
independent variables to minimize the sum-of-squared residuais

S(8) = STwi(ys~ 2, 8)° 120 g
(8 g’w‘t(&'t x5 (12.1 '

with respect to the k-dimensional vector of parameters 8. In matrix notation, let W be a
diagonal matrix containing the scaled w along the diagonal and zeroes elsewhere, and let
y and X be the usual matrices associated with the left and right-hand side variables. The
weighted least squares estimator is

bwrs = (X' WWX) X'WWwy, 22

and the estimated covariance matrix is
Pwis = sAX'WWX). (12.3)

To estimate an equation using weighted least squares, first go to the main menu and select
Quick/Estimate Equation..., then choose LS—Least Squares (NLS and ARMA) from the
combo box. Enter your equation specification and sample in the edit boxes, then push the
Options button and click on the Weighted LS/TSLS option.

2¢4
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Fill in the blank after Weight: with the name of the series containing your weights, and
click on OK. Click on OK again to accep!t the dialog and estimate the equation.

Dependent Varisble: LOGO!)
Mathod: Lesst
Dule: 104597 Tine: 11:10

EViews will open an output window displaying the standard coefficient results, and both
weighted and unweighted summary statistics. The weighted summary statistics are based
on the fitted residuals, computed using the weighted data,

& = wyly— 2, dwrs) - (124}

The unweighted summary results are based on the residuals computed from the original
{unweighted) daia,
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ﬁt "'-"-'-' yt_ xtgbwﬁg. {12.5)
Following estimation, the unweighted residuals are placed in the RESID series. -

1f the residual variance assumptions are correct, the weighted residuals should show no
evidence of heteroskedasticity. If the variance assumptions are correct, the unweighted
residuals should be heteroskedastic, with the reciprocal of the standard deviation of the

residual at each period £ being proportional to w,.

The weighting option will be ignored in equations containing ARMA specifications. Note

also that the weighting option is not available for binary, count, censored and truncated, or
ordered discrete choice models. i

Heteroskedasticity and Autocorrelation Consistent Covariances

‘When the form of heteroskedasticity is not known, it may not be possible to obtain effi-
cient estimates of the parameters using weighted least squares. OLS provides consistent
parameter estimates in the presence of heteroskedasticity but the usual OLS standard
errors will be incorrect and should not be used for inference,

Before we describe the techniques for HAC covariance estimation, note that:

+ Using the White heteroskedasticity consistent or the Newey-West HAC consistent
covariance estimates does not change the point estimates of the parameters, only the
estimated standard errors.

s There is nothing to keep you from combining various methods of accounting for het-

eroskedasticity and serial correlation. For example, weighted least squares estima-
tion might be accompanied by White or Newey-West covariance matrix estimates,

Heteroskedasticity Consistent Covariances (White)

White {1980} has derived a heteroskedasticity consistent 'cevariance matrix estimator
which provides correct estimates of the coefficient covariances in the presence of heterosk-
edasticity of unknown form, The White covariance matrix is given by:

. _
Ew = p 7Y 3 wleay JX0™, (12.6)
| =1

where is 7' the number of observations, & is the number of regressors, and u, is the least
squares residual.

EViews provides you the option to use the White covariance estimator in place of the stan-
dard OLS formula. Open the equation dialog and specify the equation as before, then push
the Options button. Next, click on the check box labeled Heteroskedasticity Consistent

~ Wk
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Covarlance and dick on the White radio button, Accept the options and click OK to esti-
mate the equation.

EViews will estimate your equation and compute the variances using White's covariance
estimator. You can always tell when EViews is using White covariances, since the output
display will include a line 1o document this fact:

Deopendent Visrighie: LOGD)
NMathoct: Lwst Squeres
Owim: 1071587 Tiow: 1111

HAC Consistent Covariances (Newey-West)

‘The White covariance matrix described above assumes that the residuals of the estimated
equation are serially uncorrelated. Newey and West {1987} have proposed a more general
covariance estimator that is consistent in the presence of both hetevoskedasticity and axuw-
correlation of unknown form. The Newey-West estimator is given by

Enw = —---—-{x'X) e, 02.7)

T
fi = é{ o uf::‘z{ (12.8)

+ X ((1"“q+ 1 Z‘ (Fru¥y. Fpny + Tyt Mt'))}

y=] tmypsl

and ¢, the truncation lag, is a parameter representing the number of autocorrelations used
in evaluating the dynamics of the OLS residuals u, . Following the suggestion of Newey
and West, EViews sets ¢ 10

¢ = floor(4(7/100)*"). (12.9)
To use the Newey-West method, push the Options bution in the estimation dialog box.

Check the box labeled Heteroskedasticity Consistent Covariance and press the Newey-
West radio button.
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Two-stage Least Squares

A fundamental assumption of regression analysis is that the right-hand side variables are
uncorrelated with the disturbance term. If this assumption is violated, both OLS and

weighted LS are biased and inconsistent.

There are a number of situations where some of the right-hand side variables are corre-
lated with disturbances. Some classic examples occur when:

* There are endogenously determined variables on the right-hand side of the equation.
¢ Right-hand side variables are measured with error.

For simplicity, we will refer o variables that are correlated with the residuals as endoge-
nous, and variables that are not correlated with the residuals as exogenous or predeter-

mined.
The standand approach in cases where righbhand side variables are correlated with the

residuals is to estimate the equation using instrumental variables regression. The idea
behind instrumental variables is to find a set of variables, termed instruments, that are
both (1) correlated with the explanatory variables in the equation, and (2) uncorrelated
with the disturbances. These instruments are used to eliminate the cormrelation between
right-hand side variables and the disturbances.

Two-stage least squares (TSLS) is a special case of instrumental variables regression. As
the name suggests, there are two distinct stages in two-stage least squares. In the first
stage, TSLS finds the portions of the endogenous and exogenous variables that can be
attributed to the instruments. This stage involves estimating an OLS regression of each
variable in the model on the set of instruments. The second stage is a regression of the
original equation, with all of the variables replaced by the fitted values from the first-stage

regressions. The coefficients of this regression are the TSLS estimates.

You need not worry about the separate stages of TSLS since EViews will estimate both
stages simultaneously using instrumental variables techniques. More formally, let Z be
the mairix of instruments, and let ¥ and X be the dependent and explanatory variables.
Then the coefficients computed in two-stage least squares are given by,

- -1 -~
brsps = (X'Z(Z°2)"2'X) X'2(Z'5)" 2'y, (12.10)
and the estimated covariance matrix of these coefficients is given by
~ -1
Srops = sSAX'HZ' 22 XY, (12.11)

where sﬁis the estimated residual variance (square of the standard error of the regression).

238
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Estimating TSLS in EViews

To use two-stage least squares, open the equation specification box by choosing Object/
New Object/Equation... or Quick/Estimate Equation.... Choose TSLS from the Metheod:
combo box and the dialog will change to include an edit window where you will list the
instruments. In the edit baxes, specify your dependent variable and independent variables
and the list of instruments.

There are a few things io keep in
mind as you enter your instru-
ments:

. o In order to calculate TSLS _
' < estinsates, your specification
must satisfy the order condi- - SR - A
tion for identification, which [ ieumsbe— i, ik o s el
says that there must be at 4
least as many instruments as ) =
there are coeflicients in your o —=E _
tional rank condition which ml‘r}:—.ﬁaﬁ—-":hm% _Dwes | |
4 Qs |

-

mustalsobesaﬁsﬁedﬁee L
{1994) and Johnston and DiNardo {I%?}fmaddiﬁma!dm

¢ For econometric reasons that we will not pursue here, any right-hand side variables
that are not correlated with the disturbances can be used as instruments.

* The constant, C, is always a suitable instrument, so EViews will add it to the instru-
ment list if you omit it.
For example, suppose you are interested in estimating 3 constmaption equation relating
consumption (CONS) to gross domestic product {GDP), lagged consumption (CONS(-1)).
a trenw! variable (TIME) and a constant (C). GDP is endogenous and therefore correlaed
with the residuals. You may, however, believe that government expenditures (G), the log of

the money supply (LM}, lagged consumption, TIME, and C, are exogenous and uncorre-
lated with the disturbances, so that these variables may be used as instruments. Your

equation specification is then,

conis ¢ gdp cons{-1} time

and the instrument list is,

—— ™ 3
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¢ gov cons(-1) time lm

This specification satisfies the order condition for identification, which requires that there
are at least as many instruments (five) as there are coefficients (four) in the equation spec-
ification.

Furthermore, all of the variables in the consumption equation that are believed to be

uncorrelated with the disturbances, (CONS(~1), TIME, and C), appear both in the equation
specification and in the instrument list. Note that listing C as an instrument is redundant,

since EViews au:emstmally adds it to the instrument list.

Output from TSLS ‘

Below, we present TSLS estimates from a regression of LOG(CS) on a constant and
LOG(GDP), with the instrument list C LOG{CS(-1)}) LOG{CGDP{-1)):

Dependent Variabie: LOGICS)
Mathod: Least

Two-Stage
Dute: 1011587 Tine: 11:32

Sampie{adjusted): 1847:2 1998:1
lmﬂdad ebmvdions 192 afty m endpoints

EViews identifies the estimation procedure, as well as the list of instruments in the header. ‘
This information is followed by the usual coefficient, #-statistics, and asymptotic p-values,

The summary statistics reported at the bottom of the table are computed using the formu-
las outlined in Chapter 11. Bear in mind that all reported statistics are only asymptotically
valid. For a discussion of the finite sample properties of TSLS, see Johnston and DiNardo
(1997, pp. 355-358) or Davidson and MacKinnon {1984, pp. 221-224). '

EViews uses the structural residuals u; = y;~ z,’bpgr ¢ in calculating all of the sum-
mary statistics. For example, the standard error of the regression used in the asymptotic
covariance calculation is computed as
= Tu/(T-k). (12.12)
t

These structural residuals should be distinguished from the second stage residuals that you
would obtain from the second stage regression if you actually computed the two-stage least
squares estimates in two separate stages. The second stage residuals are given by
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i, = {); £ bygrs. where the §; and £, are the fitted values from the first-stage regres-
sions.
We caution you that some of the reporied statistics should be interpreted with care. For

example, since different equation specifications will have different instrument lists, the
reported R for TSL5 can be negative even when there is 2 constant in the equation.

Weighted TSLS

You can combine TSLS with weighted regression. Simply enter your TSLS specification as
above, then pwess the Options button, select the Weighted LS/TSLS option and enter the
weighting series.

Weighted two-stage least squares is performed by multiplying all of the data, including the
instraments, by the weight variable, and estimating TSLS on the transformed model.
Equivalently, EViews then estimates the coefficients using the formula,

byrsrs = (XWWZZWWI  ZWWwX) (12.13)
- XWWZ(ZWWZ) ' zwwy
The estimated covariance matrix is
Swrsis = S (XWWH(ZWWZY \2Wwwx)". 02.14)
TSLS with AR errors

You can adjust your TSLS estimates to account for sevial correlation by adding AR terms ©
your eqguation specification. EViews will automatically transform the model to a nonlineas
Jeast squares problem, and estimate the model nsing instrumental variables. Details of this
procedure may be found in Fair (1984, pp. 210-214}. The output from TSLS with an AR{1)
specification Jooks as follows:

rJ 11



Two-stage Least Squares—287

Dependent Variable: LOG(CS)
Mathod: Two-Stage Least Squanes
Oate: 10711587 Time: 11:42
Sarnpie{adiusted): 19472 19951
Included cbservations: 192 sfter adiusting endpoinis
achieved after 4 i%sm
AN L P

ariahie Cosfficiant Std. Errer t-m Prob.

-1.420705 02038266 5988300 . 0.0000
0.025116 44 58782  0.0000

-
c
LOGIGDP) 1119858

AR(1) £.930500 (.022287 41 80505 .0000
R-squared 0.999611  Mean dependent var 7480286
Adjustad R-sguared 0999507 5.0 dependent var 0.462890
S.E. of ragression 0.008175  Sum squared rasid 0.018809
F-statistic 2431387 Ourbin-Watson siat $.831027

The Cptions button in the estimation box may be used to change the iteration limit and
convergence criterion for the nonlinear instrumental variables procedure.
First-order AR errors

Suppose your specification is:
W = :L‘t’ﬁ + wey 4 Uy

Uy = Pyt

(12.15)

where z, is a vector of endogenous variables, and w, is a vector of predetermined vari-
ables, which, in this context, may include lags of the dependent variable. z; is a vector of
instrumental variables not in 1w, that is large enough to identify the parameters of the

model.

in this setting, there are important technical issues {6 be raised in connection with the
choice of instruments. In 2 widely quoted result, Fair (1970) shows that if the model is esti-
mated using an iterative Cochrane-Orcutt procedure, all of the lagged left- and right-hand
side variables (y,_y, ;. 1, w;_)) must be included in the instrument list to obtain con-
sistent estimates. In this case, then the instrument list should include

(W 25 Yy 1 Ty Wi 1) - (12.16}

Despite the fact the EViews estimates the model as a nonlinear regression model, the first
stage instruments in TSLS are formed as if running Cochrane-Orcutt. Thus, if you choose
to omit the lagged left- and right-hand side terms from the instrument list, EViews will

automatically add each of the lagged terms as instruments. This fact is noted in your out-

put.

-0
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Higher Order AR errors

The AR(1) result extends naturally to specifications involving higher order sexial correla-
tion. For example, if you include a single AR(4] term in your moded, the natural instrument

list will be
(W 20 Vi 6 Titp Wi g) (1217)
If you include AR terms from 1 through 4, one possible instrament list is
(Wp Zp Yiopr s Vg p Bt b s Bp p Wi br o Wy Q) (12.18)

Note that while theoretically valid, this instrument list has a large nwmber of overidentify-
. ing instruments, which may lead to computational difficuities and lage finite sample
y biases (Fair {1984, p. 214), Davidson and MacKinnon {1993, pp. 222-224}). In theory, add-
ing instruments should always improve your estimates, but as a practical matter this may
not be $o in small samples.
Examples

Suppose that you wish to estimate the consumption function by two-stage least squares,
allowing for first-order serial correlation. You may then use two-stage Jeast squares with

the variable list,
cons ¢ 9dp ar{l)
and instrument list,
¢ gov logi{ml) time cone{-1} gdp{-1)

Notice that the lags of both the dependent and endogenous variables (CONS(-1) and
GOP(-1)), are included in the instrument list.

Similarly, consider the consumption function,
cong ¢ consi{-1}) gdp acil}
A valid instrument list is given by
¢ gov log(ml) time cons(-1) cons(-2) gdp(-1}

Here we treat the lagged left and right-hand side variables from the oviginal specification as
predetermined and add the lagged values to the instrament list.

| Lastly, consider the specification,
cous C gdp axr(l) ar{(2) ar(i} ari4)

Adding ail of the relevant instruments in the list, we have
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c gov logi{ml) time cons(-1) cona(-2] cons{-3] cons{-4) gdpi{-1}
gdp{-2) gdp{-3) gdpi~4)

TSLS with MA errors

You can also estimate two-stage least squares variable problems with MA error terms of
various orders. To account for the presence of MA errors, simply add the appropriate terms
to your specification prior to estimation.

IHustration

Suppose that you wish to estimate the consumption function by two-stage least squares,
accounting for first-order moving average errors, You may then use two-stage least squares

with the variable list,

cong ¢ gdp mallil

and iastrument list,
' o gov log(ml) time
Eviews will add both first and second lags of CONS and GDP to the instrument list,

Technical Details

Most of the technical details are identical to those outlined above for AR errors. EViews
transforms the model that is nonlinear in parameters (employing backcasting, if appropri-
ate) and then estimates the model using nonlinear instrumental variables techniques.

Note that EViews augments the instrument list appropriately by adding lagged left- and
right-hand side variables. There is an approximately involved here, however, in a trunca-
_ tion of the lag structure. In principle, each MA term involves an infinite number of AR '
terms. Clearly it is impossible to add an infinite number of lags to the instrument list.
Instead, EViews performs an ad hoc approximation by adding a truncated set of instru-
ments involving the MA order and an additional lag. If for example, you have an MA(5),
Eviews will add lagged instruments corresponding to lags 5 and 6.

Nonlinear Least Squares
Suppose that we have the regression specification
= flzu B+ ey, (12.19)

where f is a general function of the explanatory variables x,; and the parameters 3. Least
scquares estimation chooses the parameter values that minimize the sum of squared residu-

als:
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S(6) = Twe~ Hze B = (y- IX, B) (- f(X, B) (12.20)

We say that a model is linear in parameters if the derivatives of f with respect to the
parameters do not depend upon B; if the derivatives are functions of 5, we say that the

model is nonlinear in parameters.
For example, consider the model given by

Ve = By + BaylogL,+ Bylog K, + ¢, (12.1)
it is easy to see that this model is linear in its parameters, implying that it can be estimated
using ondinary least squares.

In contrast, the equation specification
_ ﬂﬁ,&
ve = Bl K +¢ (12.22}

has derivatives thai depend upon the elements of 5. There is no way to rearrange the
terms in this model so that ordinary least squares can be used to minimize the sum-of-
squared residuals. We must use nonlinear least squares technitques to estimate the param-
eters of the model.

Nonlinear least squares minimizes the sum-of-squared residuals with respect to the choice
of parameters 5. While there is no closed form solution for the parameter estimates, the
estimates satisfy the first-order conditions:

(G (y- X, 8) = 0, (12.23)
where G() is the matrix of first derivatives of f{ X, /) with respect to § (to simplify
notation we suppress the dependence of G upon X ). The estimated covariance matrix is
given by

Ewirs = sz(Giﬁynw)'Gfbm))-l. {12.24)

where by 1 g are the estimated parameters. For additional discussion of nonlinear estima-
tion, see Pindyck and Rubinfeld (1991, pp. 231-245) or Davidson and MacKinnon {1993).

Estimating NLS Models in EViews

It is easy to tell EViews that you wish to estimate the parameters of a model using ponlin-
ear least squares. EViews automatically applies nonlinear Jeast squares to any regression

equation that is nonlinear in its coefficients. Simply select Object/New Object/Equation,
enter the equation in the equation specification dialog box and click OK. EViews will do all
of the work of estimating your model using an iterative aigorithm.

A foll technical discussion of iterative estimation procedures is provided in Appendix D,
“Estimation Algorithms and Options™, beginning on page 663.
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Specifying Nonlinear Least Squares

For nonlinear regression models, you will have to enter your specification in equation form
using EViews expressions that contain direct references to coefficients. You may use ele-

ments of the default coefficient vector C (e.g. C(1), C(2), C(34), C(87)}}, or you can define
and use other coefficient vectors. For example,

y = c{l) +» c{2)*{k"c(3)+1%c(4)}

is a nonlinear specification that uses the first %:hrsugh the fourth elements of the default
coefficient vector, C.

To create a new coefficient vector, select Objects/New Objeci/Matrix-Vector-Coef/Coeffi-
cient Vector in the main menu and provide a name. You may now use thig coefficient vec-
tor in your specification. For example, if you create a coefficient vector named CF, you can

rewrite the specification above as
vy = cE(11) + of (12)*(k"cE(13)+1"cE(14))
which uses the eleventh through the fourteenth elements of CF.
You can also use multiple coefficient vectors in your specification:
y = ¢(11) + c(12)*(k"ecf(1)+1"ef(2))
which uses both C and CF in the specification.

it is worth noting that EViews implicitly adds an additive disturbance to your specification.
For example, the input
y = {c{l)*x + c(2)*z + 4)"2

is interpreted as ¥, = (c(1)z, + ¢(2)z, + 4)° + ¢,, and EViews will minimize
S(e(1), c(2)) = g(g&— (ef1)zy + c(2)2, + 4)2)2. (12.25)
If you wish, the equation specification may be given by a simple expression that does not
include a dependent variable. For example, the input
(c{1)*x + c(2)*z + 4)“2
is interpreted by EViews as —(c(1)z, + c(2)z, + 4)° = ¢,, and EViews will minimize
S(e(1), 6(2) = F~(eae + ()2 + 032 (12.26)

While EViews will estimate the parameters of this last specification, the equation cannot
be used for forecasting and cannot be included in a model. This restriction also holds for
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any equation that includes coefficients to the left of the equal sign. For example, if you
specify

x + c{l)*y = z"c(2}
EViews will find the values of C(1) and €(2) that minimize the sum of squares of the

implicit equation
z,+ (g -2 = ¢, Q2.2

but the estimated equation cannot be used in forecasting or included in a model, since
there is no dependent variable.

Estimation Options
Starting Values. Herative estimation procedures require starting values for the coefficients

of the model. There are no general rules for selecting starting values for parameters. The
closer to the true values the better, so if you have reasonable guesses for parameter values,

these can be useful. In some cases, you can obtain good starting values by estimating a
restricted version of the model using least squares. In general, however, you will have to

experiment in order to find starting values.

EvViews uses the values in the coefficient vector at the time you begin the estimation proce-
dure as starting values for the iterative procedure. It is easy to examine and change these
coefficient starting values.

To see the starting values, double click on the coefficient vector in the workfile directory. If
the values appear to be reasonable, you can close the window and proceed with estimating

your model.
I you wish to change the starting vaiues, first make certain that the spreadsheet view of
your coefficients is in edit mode, then enter the coefficient valves. When you are finished
setting the initial values, close the coefficient vector window and estimate your model.
You may also set starting coefficlent values from the command window using the PARAM
command. Simply enter the PARAM keyword, following by each coefficient and desired
value:

param ¢{1) 153 c{32) .68 c(3} .15

sets C(1) =153, C(2)=.68, and C(3) = .15.
See Appendix D, "Estimation Algorithms and Options”™ on page 663, for further details.

Derivative Methods. Estimation in EViews requires computation of the derivatives of the
regression function with respect to the parameters. EViews provides you with the option of
computing analytic expressions for these derivatives (if possible), or computing finite dif-
ference numeric derivatives in cases where the derivative is not constant. Furthermare, if
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numeric derivatives are computed, you can choose whether to favor speed of computation
{fewer function evaluations} or whether to favor accuracy {more function evaluations).
Additional issues associated with ARIMA models are discussed in “Estimation Options” on

page 318.

Hteration and Convergence Options. You can control the iterative process by specifying
convergence criterion and the maximum nurnber of iterations, Press the Options button in
the equation dialog box and enter the desired values.

EViews will report that the estimation procedure has converged if the convergence test
value is below your convergence tolerance. See "Iteration and Convergence Options™ on

page 669 for details.

In most cases, you will not need 1o change the maximum number of iterations. However, |
for some difficult to estimate models, the iterative procedure will not converge within the
maximum number of iterations. If your model does not converge within the allotted num-
ber of iterations, simply click on the Estimate button, and, if desired, increase the maxi-
mum number of iterations. Click on OK to accept the options, and click on OK 10 begin
estimation. EViews will start estimation using the Jast set of parameter values as starting

values.
These options may also be set from the global options dialog. See Appendix A, “Estimation
Defaults™ on page 645.

Output from NLS

Once your model has been estimated, EViews displays an equation output screen showing
the results of the nonlinear least squares procedure. Below is the output from a regression
of LOG(CS) on C, and the Box-Cox transform of GDP;

Dependeit Varable: LOG(CS)
Method: Least Squares
Date: 1071557 Time: 14:51
Sample(adjusted): 196? 116851
o) 2851780 0270033 1022024  0.0000
ciz) 0.257 552 0. 041 147 8.200254 0.0000
R-squared 09672582 Maan dopendem var T.47T6058
Adiustad R-equated 0.997223  5.D. dependent var 0.465503

S.E. of regreasion 0.024532  Akalke info criterion 4 562220
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If the estimation procedure has converged, EViews will report this fact, along with the
number of iterations that were required. i the iterative procedure did not converge,
EViews will report "Convergence not achieved after” followed by the number of iterations

attempted.

Below the line describing convergence, EViews will repeat the nonlinear specification so
that you can easily interpret the estimated coefficients of your model.

EViews provides you with all of the usual summary statistics for regression models. Pro-
vided that your model has converged, the standard statistical results and tests are asymp-
toticelly valid.

Weighted NLS

Weights can be used in nonlinear estimation in 2 manner analogous to weighted linear
Jeast squares. To estimate an equation using weighted poniinear Jeast squares, enter your

specification, press the Options button and click on the Weighted LS/TSLS option. Fill in
the blank after Wedght: with the name of the weight series and then estimate the equation.

EViews minimizes the sum of the weighted squared residuais:
S = gw?m ~[zp B = (y- fOX D)WWy~ f(X,8) (2.28)

with respect to the parameters 5, where w, ave the values of the weight series and W is
the matrix of weights. The first-order conditions are given by

(GBAYWW(y-F(X,0) =0 (12.29)
and the covariance estimate is computed as
LwniLs = (Cownir)’WWGC bwnprs) - (1230
P&S with AR errors

EViews will estimate nonlinear regression models with autoregressive evror terms. Skaply
select Objects/New Object/Equation... or Quick/Estimate Equation... and specify your
model using EViews expressions, followed by an additive term describing the AR correc:

tion enclosed in square brackets. The AR term should consist of 3 coefficient assignivent

for each AR term, separated by commas. For exampie, if you wish to estimate

&
CS = ¢;+ GDFP," +u, (1231}
Up = Oyl F Ozt

you should enter the specification
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g = c{l} + gép“afz}l+ [ar{1}=c{3}), ar{2)ec{4})]

See "How EViews Estimates AR Models” on page 310 for additional details. EViews does
not currently estimate nonlinear models with MA errors, nor does it estimate weighted
models with AR terms—if you add AR terms to a weighted nonlinear model, the weighting

series will be ignored.

Nonlinear TSLS

Nonlinear two-stage least squares refers to an instrumental variables procedure for esti-
mating nonlinear regression models involving funciions of endogenous and exogenous
variables and parameters. Suppose we have the usual nonlinear regression model:

- nh= Az, B) + €. (12.32)
where A is a k -dimensional vector of parameters, and z, contains both exogenous and
endogenous variables. In matrix form, if we have m 2 k instruments 2,, nonlinear two-

stage least squares minimizes
S(B) = (v~ (X, BY 222 2 (y- KX, B) (12.33)

with respect to the choice of 3.

While there is no closed form solution for the parameter estimates, the parameter esti-
mates satisfy the first-order conditions:

GBYZZ' 2 Z'(y- fIX,0) =0 (12.39)
with estimated covariance given by
Erenees = s {G(émm;gg}’Z(Z’Z} Z’Gfbmmg;s}) (12.35)

How to Estimate Nonlinear TSLS in EViews

EViews performs the estimation procedure in a single step so thai you da;; t have to per-

form the separate stages yourself. Simpiy select Object/New Object/Eq
Estimate Equation... Choose TSLS from the Method: comba box, enter your nonlinear

specification and the list of instruments. Click OK.

With nonlinear two-stage least squares estimation, you have a great deal of flexibility with
your choice of instruments. Intuitively you want instruments that are correlated with
G{8) . Since G is nonlinear, you may begin to think about using more than just the exog-
enous and predetermined variables as instruments. Various nonlinear functions of these
variables, for example, cross-products and powers, may aiso be valid instruments. One
should be aware, however, of the possible finite sample biases resulting from using too

many instruments.

‘360
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Weighted Nonlinear Two-stage Least Squares

Weights can be used in nonlinear two-stage least squares estimation. Simply add weighting
to your nonlinear TSLS specification above by pressing the Optiens button, selecting
Weighted LES/TSLS option, and entering the name of the weight series.

The objective function for weighted TSLS is,
S5(8) = (y— }X, BYWWZ(ZWWI ' ZWWy- (X, 0). (12.36)

The reported standard errors are based on the covariance matrix estimate given by

SwrsniLs = S(COYWWZ(ZWWI) ‘zwwew))” 0z
’ where b= byreny - Note that if you add AR or MA terms 1o a weighted specification,
the weighting series will be ignored.

Nonlinear Two-stage Least Squares with AR errors

While we will not go into much detail here, note that EViews can estimate non-linear TSLS
models where there are autoregressive errot terms. EViews does not currently estimate
nonlinear models with MA errors.

To estimate your model, simply open your equation specification window, and enter your
nonlinear specification, including all AR terms, and provide your instrument list. For
example, you could enter the regression specification

cs = explicti} + gdp“ciz}) + [ar(1l})=c{3)]
with the instrument list

e gov
EVievws will ransiorm the nonlinear regression model as described in "Estimating AR Mod-
els™ on page 307, and then estimate nonlinear TSLS on the transformed specification using
the instruments C and GOV. For nonlinear models with AR errors, EViews uses a Gansy-
Newton algorithm. See "Optimization Algorithms” on page 663 for further details.

Solving Estimation Problems

EViews may not be able to estimate your nonlinear equation on the first attemapt. Some-
times, the nonlinear least squares procedure will stop immediately. Other times, EViews
may stop estimation after several iterations without achieving convergence. EViews might
even report that it cannot improve the sums-of-squares. While there are no specific rules
on how to proceed if you encounter these estimation problems, there are a few general
areas you might want to examine.
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Starting Values

If you experience probiems with the very first iteration of a nonlinear procedure, the prob-
lem is almost certainly related to starting values. See the discussion above for how to
examine and change your starting values.

Model Identification

If EViews goes through a number of iterations and then reports that it encounters a “Near

Singular Matrix”, you should check to make certain that your model is identified. Models

are said to be non-identified if there are multiple sets of coefficients which identically yield

the minimized sum-of-squares vaiue. If this condition holds, it is impossible to choose _
between the coefficients on the basis of the minimum sum-of-squares criterion, ‘

For example, the nonlinear specification,
2
Yy = Bifig+ fox, + €, {12.38)

is not identified, since any coefficient pair (f,, #,) is indistinguishable from the pair
(—By; —B2) in terms of the sum-of-squared residuals.

For a thorough discussion of identification of nonlinear ieast squares models, see Davidson
and MacKinnon (1993, Sections 2.3, 5.2 and 6.3).

Convergence Criterion
EViews may report that it is unable to improve the sums-of-squares. This resuit may be evi-

dence of non-identification or model misspecification. Alternatively, it may be the result of
setting your convergence criterion too low, which can occur if your nonlinear specification

is particularly complex,

If you wish to change the convergence criterion, enter the new value in the Options dialog. i
Be aware that increasing this value increases the possibility that you will stop at a local
minimum, and may hide misspecification or non-identification of your model.

See “Setting Estimation Options”™ on page 666, for further details.

Generalized Method of Moments (GMM)

The starting point of GMM estimation is a theoretical relation that the parameters should
satisfy. The idea is to choose the parameter estimates so that the theoretical relation is sat-
isfied as “closely” as possible. The theoretical relation is replaced by its sample counterpart
and the estimates are chosen to minimize the weighted distance between the theoretical
and actual values. GMM iz 2 robust estimator in that, unlike maximum likelihood estima-
tion, it does not require information of the exact distribution of the disturbances. In fact,
many common estimators in economettics can be considered as special cases of GMM.
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The theoretical relation that the parameiers should satisfy are usually orthogonality condi-
tions between some {possibly nonlinear) function of the parameters f(#) and a set of
instrumental variables 2,:

E(f(6)Z) = 0, (12.39)

where # are the parameters to be estimated. The GMM estimator selects parameter esti-
mates so that the sample correlations between the instruiments and the function f are as
clase to zero as possible, as defined by the criterion function:

J(8) = (m(6)) Am(0). {12.40)

— where m{0) = f(8)'Z and A is a weighting matrix. Any symmetric positive definite
‘ matrix A will yield a consistent estimate of ¢. However, it can be shown that a necessary
(but not sufficient) condition 1o obtain an (asymptotically) efficient estimate of ¢ is to set
A equal to the inverse of the covariance matrix of the sample moments m .

Many standard estimators, including all of the system estimators provided in EViews, can
be set up as special cases of GMM. For example, the ordinary least squares estimator can
be viewed as a GMM estimator, based upon the conditions that each of the right-hand vari-

ables is uncorrelated with the residual.

Estimation by GMM in EViews

P estimate an equation by GMM, either create a new equation object by selecting Object/
New Objeci/Equation, or press the Estimate bution in the toolbar of an existing equation.
From the Equation Specification dialog choose Estimation Method: GMM. The estimation

specification dialog will change as depicted below.

‘To obtain GMM esti- L
. mates in EViews, you :
- moment condition as an

including the parameters
and a set of mstrumen-
tal variables. There are
WO Ways you can write
the orthogonality condi-
tion: with and without a
dependent variable.

I you specify the equa-
tion either by listing vari-




Generatized Method of Moments (GMM)—299

able names or by an expression with an equal sign, EViews will interpret the moment
condition as an orthogonality condition between the instrurnents and the residuals defined
by the equation. If you specify the equation by an expression without an equal sign,
EViews will orthogonalize that expression to the set of instruments.

You must also list the names of the instruments in the Instrument List field box of the
Equation Specification dialog box. For the GMM estimator to be identified, there must be at
least as many instrumental variables as there are parameters to estimate, EViews will
always include the constant in the list of instruments.

For example, if you type
Equation Specification: y ¢ x
Instrument list: cC 2z W

the orthogonality conditions given by
Ty c(1)~e(2)zy) = 0
Bye—ec()~e@)z)z, = 0 (12.41)
Sy - () - e(Qz)w, = 0

H you enter an expression
Equation Specification: ¢ (1) *log (v} +x"c(2)
Instrument list: ¢z z(-1)
the orthogonality conditions are
2
Te(Dlogy, + 25 ) = 0
Se(Dlogy, + z77)z, = 0 | (12.42)

Te(L)logy, + o5 Nzpq = O

On the right part of the Equation Specification dialog are the options for selecting the
weighting mairix A in the objective function. If you select Weighting Matrix: Cross sec-
tion (White Cov), the GMM estimates will be robust to heteroskedasticity of unknown

form.

If you select Weighting Matrix: Time series (HAC), the GMM estimates will be robust to
heteroskedasticity and autocorrelation of unknown form. For the HAC option, you have to

specify the kernel type and bandwidth.

» The Kemnel Optlons determine the functional form of the kernel used to weight the
autocovariances in computing the weighting matrix.
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s The Bandwidth Selection option determines how the weights given by the kemnel
change with the lags of the autocovariances in the computation of the weighting
matrix. i you select Fixed bandwidth, you may either enter 3 number for the band-
width or type nw 10 use Newey and West’s fixed bandwidth selection criterion.

¢ The Prewhitening option runs a preliminary VAR(1) prior to estimation to “soak
up” the comrelation in the moment conditions.

The technical notes in “Generalized Method of Moments (GMM)” on page 515 describe

these options in more detail.
Example
Tauchen (1986} considers the problem of estimating the taste parameters g, -y from the
Euler equation
(BRy ywii1 =1z = 0 (12.43)

where we use instruments z; = (1, Wy, wy_y, Tp Tpy) . To estimate the parameters 5,
~ by GMM, fill in the Equation Specification dialog as

Equation Specification: c (1) +r{+1) *w(+1}"(-c(2}}-1

instrument list: cwwi-1) r x{(-1)

The estimation result using the default HAC Weighting Matrix option looks as follows:

Dwpendent Varieble: mplick £qualion
Mathod: Generaltzed Melvd of Moments

Savpiafadioved) 1061 1982
lnciuded chasrvalions: 52 sfier scjusting sndpoinis

No prewhilening

Barxiwichhy: Fhaxd (3}
Karmai: Bortioh
schivwed sher: 7 waight mairicies, 7 okl coul Retalions

Convargence
CUrR{« I W N-CO)-1

Note that when you spedify an equation without a dependent variable, EViews does not
report some of the regression statistics such as the R-squared. The J-statistic reported at
the bottom of the tabie is the minimized value of the objective function. The J-statistic can
be used to carry ont hypothesis tests fromn GMM estimation; see Newey and West (1967a).
A simpie application of the J-statistic is to test the validity of overidentifying restrictions
when you have more instruments than parameters to estimate. In this example, we have
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five instruments to estimate two parameters and so there are three overidentifying restric-
tions. Under the null hypothesis that the overidentifying restrictions are satisfied, the J-sta-
tistic times the number of regression observations is asymptotically x“ with degrees of
freedom equal to the number of overidentifying restrictions. You can compute the test sta-
tistic as a named scalar in EViews using the commands

gcalar overid-eq gmm.éregobeteq gumm . distat

scalar overid p=l-@cchisgi{overid,3)
where EQ_GMM is the name of the equation contalning the GMM estimates. The second
command computes the p-value of the test statistic as a named scalar OVERID_P. To view
the value of OVERID_P, double click on its name; the value will be displayed in the status
line at the bottom of the EViews window. _

Commands

To estimate an equation by weighted least squares, specify the weighting series in paren-
theses with the w= option after the 1s command:

eql.ls{ws=l/pop) c= ¢ gdp cpi

To estimate an equation by two-stage least squares, follow the tsls command with the
dependent variable, the independent variables, an @ sign, and a list of instruments:

equation eqg2.tsls ¢z c gdp @ ¢ cs{~1) gdp(-1)

To estimate an equation by GMM, follow the gmm command with the dependent variable,
the independent variables, an @ sign, and a list of instruments that define the orthogonal-

ity conditions:
equation eg3.gmm cg ¢ gdp @ ¢ ca{-1) gdpf-i}
You can set the starting values prior to nonlinear estimation by the command

param c{l) 1.5 c¢{2) 1

or
c{l} = 1.5
ef{2) = 1
To declare a coefficient vector, specify the number of rows in parentheses and provide a
~ name:
coef {4} beta
declares a four element coefficient vector named BETA filled with zeros.

1A
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See “Equation”™ on page 21 of the Command and Programming Reference for a compiete list
of commands and options for single equation estimation in EViews,

R



Chapter 13. Time Series Regression

In this section we discuss single equation regression techniques that are important for the
analysis of time series data: testing for serial correlation, estimation of ARMA models,

using polynomial distributed lags, and testing for unit roots in potentially nonstationary
time series.

The chapter focuses on the speciﬁca?ieﬂ and estimation of time series models. A number
of related topics are discussed elsewhere: standard multiple regression techniques are dis-
cussed in Chapters 11 and 12, forecasting and inference are discussed extensively in
Chapters 14 and 15, vector autoregressions are discussed in Chapter 20, and state space
models and the Kalman filter are discussed in Chapter 22,

Serial Correlation Theory

A common finding in time series regressions is that the residuals are corretated with their
own lagged values. This serial correlation violates the standard assumption of regression
theory that disturbances are not correlated with other disturbances. The primary problems

associated with serial correlation are:

» QLS is no longer efficient among linear estimators. Furthermore, since prior residu-
als heip to predict current residuals, we can take advantage of this information to
form a better prediction of the dependent variable.

» Standard errors computed using the textbook OLS formula are not correct, and are
generally understated.

» If there are lagged dependent variables on the right-hand side, OLS estimates are
biased and inconsistent. ‘

EViews provides tools for detecting serial correlation and estimation methods that take
account of its presence. 7
In general, we will be concerned with specifications of the form:
¥ = 7B+ u
u =2z 1'7+¢

{13.1}

where z; is a vector of expiaxiamry variables observed at time £, z,_; is a vector of vari-
ables known in the previous period, 8 and -y are vectors of parameters, u, is a distur-
bance term, and ¢, is the innovation in the disturbance. The vector z,_; may contain

lagged values of u, lagged values of ¢, or both,
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The disturbance u, is termed the unconditional residual. It is the residual based on the
structural component (z,4) but not using the information contained in z,_ , . The innova-
tion ¢, is also known as the one-period ahead forecast error or the prediction error. It is the
difference between the actual value of the dependent variable and a forecast made on the
basis of the independent variables and the past forecast errors.

The First-Order Autoregressive Model

The simplest and most widely used modei of serial correlation is the first-order anoregres-

sive, or AR(1), model. The AR(1) model is specified as
Y=z B+u
Up = py_1+ €

The parameter p is the first-order serial comelation coefficient. In effect, the AR{1) model
incorporates the residual from the past observation into the regression model for the cur-

rent ohservation.
Higher-Order Autoregressive Models

More generally, a regression with an autoregressive process of order p, AR(p) error is
given by

(13.2)

Y = 28+
t t L3 (13.3)
U = prugy +pguegt . pple_p + &

The autocorrelations of a stationary AR{p ) process gradually die out to zevo, while the
partial amtocorrelations for lags larger than p are zevo.

Testing for Serial Correlation

Before you use an estimated equation for statistical inference {e.g. hypothesis tests and
forecasting), you should generally examine the residuals for evidence of serial correlation.
EViews provides several methods of testing a specification for the presence of sevial corve-

lation.

The Durbin-Watson Statistic

EViews reports the Durbin-Watson (DW) statistic as a part of the standard regression out-
put. The Durbin-Watson statistic is a test for first-order serial correlation. More formally,
the DW statistic measures the linear association between adjacent residuals from a regres-
sion model. The Durbin-Waison is a test of the hypothesis p = 0 in the specification:

U = puy 1+ €. (13.4)
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if there is no serial correlation, the DW statistic will be around 2. The DW statistic will fall
below 2 if there is positive serial correlation {in the worst case, it will be near zero). If
there is negative correlation, the statistic will lie somewhere between 2 and 4.

Positive serial correlation is the most commonly observed form of dependence, As a rule of
thumb, with 50 or more observations and only a few independent variables, a DW statistic
below about 1.5 is a strong indication of positive first order serial correlation. See Johnston
and DiNardo {1997, Chapter 6.6.1) for a thorough discussion on the Durhin—Watson test

and a table of the significance points of the statistic.

There are three main limitations of the DW test as a test for serial correlation. First, the dis-
tribution of the DW statistic under the null hypothesis depends on the data matrix = . The
usual approach to handling this problem is to place bounds on the critical region, creating
a region where the test results are inconclusive, Second, if there are lagged dependent vari-
ables on the right-hand side of the regression, the DW test is no longer valid. Lastly, you
may only test the null hypothesis of no serial correlation against the alternative hypothesis

of first-order serial correlation.

Two other tests of serial correlation—the (}-statistic and the Breusch-Godfrey LM test—
overcome these limitations, and are preferred in most applications.

Correlograms and Q-statistics

If you select View/Residual Tests/Correlogram-Q-statistics on the equation toolbar,
EViews will display the autpcorrelation and partial autocorrelation functions of the residu-
als, together with the Ljung-Box (-statistics for high-order serial correlation. If there is no
serial correlation in the residuals, the autocorrelations and partial autocorrelations at all
lags should be nearly zeto, and all Q-statistics should be insignificant with large p-values.

Note that the p-values of the Q-statistics will be computed with the degrees of freedom -

adjusted for the inclusion of ARMA terms in your regression. There is evidence that some
care should be taken in interpreting the results of 3 Ljung-Box test applied to the residuals
from an ARMAX specification (see Dezhbaksh, 1990, for simulation evidence on the finite

sample performance of the test in this setting).

Details on the computation of correlograms and -statistics are provided in greater detail
in Chapter 7, “Series”, on page 169.

Serial Correlation LM Test

Selecting View/Residual Tests/Serial Correlation LM Test... carries out the Breusch-God-
frey Lagrange multiplier test for general, high-order, ARMA errors. In the Lag Specification
dialog box, you should enter the highest order of serial correlation to be tested.

The null hypothesis of the test is that there is no serial correlation in the residuals up 1o the
specified order. EViews reports a statistic labeled “ F-statistic” and an “Obs*R-squared”

250
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(NRz—&enurgbaMMaﬁaasﬁma!heﬂm)MMNR:ﬂmm
an asymptotic x "~ distribution under the null hypothesis. The distribution of the F-statistic
is not known, but ks often used 10 conduct an informal test of the null.

See “Serial Correlation LM Test™ on page 305 for further discussion of the serial correlation
LM test.

Example

As an example of the application of these testing procedhires, consider the following results
from estimating a simple consumption function by ordinary least aquares:

Depandert Vaviebly: CS
Melhod: Lesst Squees
Dele; ON1997 T, 1300

A quick glance at the results reveals that the coefficients are statistically significant and the
fit is very tight. However, if the error term is serially correlated, the estimated OLS standard
errors are invalid and the estimated coefficients wifl be biased and inconsistent due 0 the
presence of a lagged dependent variable on the right-hand side. The Durbin-Watson statis-
tic is not appropriate as a test for serial correlation in this case, since there is 3 lagged
dependent variable on the right-hand side of the equation.

Selecting View/Residual Tests/Correlogram-Q-statistics from this equation produces the
following view:

3t
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Dl DRI DT D 1320
Sample: 19483 1488:4
Inciudad ohsarvaions: 182

Mgororetalion  Padist Comulalion AC  PAC O-Bit Prob

1 0483 0183 43453 903
2 6202 0180 11134 €004
3 .22 0188 WNEN Nois
4 0040 -0044 189G 0000
§ -0.018 -8D037 18955 0862
& 0081 0027 10.950 S04
7 -pB40 0017 18.726 5.008
B 0.1 0194 26873 DOOY
9 -0.083 -0.005 27.583 Q.60M
10 -0.634 0072 27857 G.002
" 0080 0036 28111 0.003
12 -0.077 -0.083 26151 0.004

The correlogram has spikes at lags up to three and at lag eight. The {)-statistics are signifi-
cant at all lags, indicating significant serial correlation in the residuals,

Selecting View /Residual Tesis/Serial Correlation LM Test... and entering a lag of 4 yields
the following resuit:

The test rejects the hypothesis of no serial correlation up to order four. The {-statistic and
the LM test both indicate that the residuals are serially correlated and the eguation should

be re-specified before using it for hypothesis tests and forecasting.

Estimating AR Models-

Before you use the tools described in this section, you may first wish to examine your
model for other signs of misspecification. Serial correlation in the errors may be evidence
of serious problems with your specification. in particular, you should be on guard for an
excessively restrictive specification that you arrived at by experimenting with ordinary
least squares. Sometimes, adding improperly excluded variables to your regression will
eliminate the serial correlation.

For a discussion of the efficiency gains from the serial correlation comection and some
Monte-Carlo evidence, see Rao and Griliches (1969).
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First-Order Serial Correlation

To estimate an AR{1) model in EViews, open an equation by selecting Quick/Estimate
Equation... and enter your specification as usual, adding the expression "AR(1)" to the
end of your list. For exampile, to estimate a simple consumption function with AR(1)

erTorS,
CS; = c;+ caGDPe+u,
Uy = pUuy 1+ 6 (13:5)
you should specify your equation as

o ¢ gdp ar(l)

EViews automatically adjusts your sample to account for the lagged data used in estima-
tion, estimates the model, and reports the adjusted sample along with the remainder of the

estimation output.
Higher-Order Serial Correlation

Estimating higher order AR models is only slightly more complicated. To estimate an
AR{k }, you should enter your specification, followed by expressions for each AR term you
wish to include. If you wish 1o estimate a model with autocorrelations from one to five:

C'St - CI+C2GDP‘+?3*
(13.6)
By = Pyt Pttt .+ P+ &

you should enter
cs c gdp ar(l) ar{(2) ar(3) ar(4} ar(s)

By requiring that you enter all of the antocorrelations you wish to include in your model,
EViews allows you great flexibility in restricting lower order correlations to be zevo. For
example, if you have quarterly data and want 10 include a single term to account for sea-

sonal autocorrelation, you could enter
ca ¢ gdp ar{4)

Nonlinear Modets with Serial Correlation

EViews can estimate ponlinear regression models with additive AR errors. Rr example,
suppose you wish 10 estimate the following nonlinear specification with an AR{2) emor:

CS, = ¢+ GDP,™ +u, as.7)
Uy = Catiy 3+ Uy gt g

212
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simply specify your model using EViews expressions, followed by an additive term
describing the AR correction enclosed in square brackets. The AR term should contain a
coefficient assignment for each AR lag, separated by commas:

cg = ¢{1} + gdp™ei{2) + flar{l)=c(3), ar{2)=c(4)]

EViews transforms this nonlinear model by differencing, and estimates the transformed
nonlinear specification using a Gauss-Newton iterative procedure {(see “How EViews Esti-

mates AR Models™ on page 310).

Two-Stage Régressim Models with Serial Correlation

By combining two-stage least squares or two-stage nonlinear least sqquares with AR terms,
you can estimate models where there is correlation between regressors and the innovations
as well as serial correlation in the residuals.

If the original regression model is linear, EViews uses the Marquardt algorithm to estimate
the parameters of the transformed specification. If the original mode! is nonlinear, EViews
uses Gauss-Newton 1o estimate the AR corrected specification.

For further details on the algorithms and related issues associated with the choice of
instruments, see the discussion in “TSLS with AR errors” beginning on page 286.

Output from AR Estimation

When estimating an AR model, some care must be taken in interpreting your results.
While the estimated coefficients, coefficient standard errors, and {-statistics may be inter-
preted in the usual manner, results involving residuals differ from those computed in OLS

settings.
To understand these differences, keep in mind that there are two different residuals associ-
ated with an AR model. The first are the estimated unconditional residuals,

which are computed using the original variables, and the estimated coefficients, b. These
residuals are the errors that you would cbserve if you made a prediction of the value of 3,
using contemporaneous information, but ignoring the information contained in the lagged

residual.

Normally, there is no strong reason to examine these residuals, and EViews does not auto-
matically compute them following estimation.

The second set of residuals are the estimated one-period ahead forecast errors, &. As the
pame suggests, these residuals represent the forecast errors you would make if you com-
puted forecasts using a prediction of the residuals based upon past values of your data, in
addition to the contemporaneous information. In essence, you improve upon the uncondi-
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tional forecasts and residuals by taking advantage of the predictive power of the lagged
residuals.

For AR models, the residual-based regression statistics—such as the Rz.ﬂnemndm!
error of regression, and the Durbin-Watson statistic— reported by EViews are based on the

one-period ahead forecast errors, 2.

A set of statistics that is unique 10 AR models is the estimated AR parameters, D, . For the
simple AR{1) model, the estimated parameter p is the serial cormelation coefficienst of the
unconditional residuals. For a stationary AR(1} model, the true p lies between -] {extreme
negative serial correlation) and + 1 (extreme positive serial correlation). The stationarity
condition for general AR{p ) processes is thai the inverted roats of the lag polynomial lie
inside the unit circle. EViews reports these roots as Inverted AR Roots at the bottom: of the
regression output. There is no particular problem if the roots are imaginary, but a station-
ary AR model should have all roots with modulus less than one.

How EViews Estimates AR Models

Textbooks often describe techniques for estimating AR modeis. The most widely discussed
approaches, the Cochrane-Orcutt, Prais-Winsten, Hatanaka, and Hildreth-Lu procedures,
are multi-step approaches designed so that estimation can be performed using standard
linear regression. All of these approaches suffer from important drawbacks which ocour
when working with models containing lagged dependent variables as regressors, or models
using higher-order AR specifications; see Davidson and MacKinnon (1994, pp. 329-341),
Greene (1997, p. 600-607).

EViews estimates AR models using nonlinear regression tecliniques. This approach has the
advantage of being easy 1o understand, generally applicable, and easily extended 0 non-
linear specifications and models that contain endogenous right-hand side variables. Note
that the nonlinear Jeast squares estimates are asymptotically equivalent to maximum lilkeli-
hood estimates and are asymptotically efficient.

To estimate an AR(1) model, EViews transiorms the linear model
Ve=5B+
t t Uy (13.9)
Uy = puy -+ €&

into the nonlinear model,
Ve = P+ (3—p%, VB + ¢, {13.10)

by substiniting the second eqguation into the first, and rearranging terms. The coefficients
p and 8 are estimated simultaneously by applying a Marquardt nonlinear least squares
algorithm to the transformed equation. See Appendix D, “Estimation Algorithms and
Options™, on page 663 for details on nonlinear estimation.

28,
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For a nonlinear AR(1) specification, EViews transforms the nonlinear model
yr = flzy B) + uy

U = pus_1t €&

(13.11)

into the alternative nonlinear specification _
Y= py_y+ f(2, D~ pf(z4-1, B) + & (13.12)

and estimates the coefficients using a Marquardt nonlinear least squares algorithm.

Higher order AR specifications are handled analogously. For example, a nonlinear AR(3}is  _ _
estimated using nonlinear least squares on the equation ﬁ
¥t = (P1¥-1+Po¥i-2+ P3¥:_3) + f(zp B) = p1 f(z_y, B) (13.13)
—pof(zy_0. B)— paf(zy_3 B) + ¢

For details, see Fair (1984, pp. 210-214), and Davidson and MacKinnon (1996, pp. 331-
341).

ARIMA Theory

ARIMA (autoregressive integrated moving average} models are generalizations of the sim-
ple AR model that use three tools for modeling the serial correlation in the disturbance:

» The first tool is the autoregressive, or AR, term. The AR(1) model introduced above
uses only the first-order term but, in general, you may use additional, higher-order
AR terms. Each AR term corresponds to the use of a lagged value of the residual in
the forecasting equation for the unconditional residual. An autoregressive model of

order p, AR(p) has the form
U = p1U_ P ot e Pplly_pt 6 (13.14) ‘

The second tool is the integration order term. Each integration order corresponds to
differencing the series being forecast. A first-order integrated component means that
the forecasting model is designed for the first difference of the original series. A sec-
ond-order component corresponds to using second differences, and so on.

¢ The third tool is the MA, or moving average term. A moving average forecasting
model uses lagged values of the forecast error to improve the current forecast. A
first-order moving average term uses the most recent forecast error, a second-order
term uses the forecast error from the two most recent periods, and so on. An MA(q)
has the form:

u = €+ 016,y + 006, o+ ...+ 056, . (13.15)

s
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Piease be aware that some authors and software packages use the opposite sign con-
vention for the # coefficients so that the signs of the MA coefficients may be

reversed.

The autoregressive and moving average specifications can be combined to form an
ARMA(p, ¢) specification
e = Pty F Patie gt F Ut & (13.16)
+O0e, ¥, ot ...+ 94‘!*!

Although econometricians typically use ARIMA models applied to the residuals from a
regression model, the specification can also be applied directly to a series. This latter
approach provides a univariate model, specifying the conditional mean of the series as a
constant, and measuring the residuals as differences of the sevies from its mean.

Principles of ARIMA Modeling (Box-Jenkins 1976)

In ARIMA forecasting, you assemble a complete forecasting model by using combinations
of the three building blocks described above. The first step in forming an ARIMA moded for
a series of residuals is 10 look at its autocorrelation properties. You can use the correlogram
view of a series for this purpnse, as outlined in “Correlogram™ on page 167.

This phase of the ARIMA modeling procedure is called identification (not to be confused
with the same term used in the simultaneous equations literature}. The nature of the corre-
lation between current values of residuals and their past values provides guidance in
selecting an ARIMA specification.

The autocorrelations are easy to interpret—each one is the correlation coefficient of the
current value of the series with the series lagged a certain number of pesiods. The partial
autocorrelations are a bit more complicated; they measure the correlation of the current
and lagged series after taking into account the predictive power of all the values of the
series with smaller lags. The partial autocorrelation for lag 6, for example, measures the
added predictive power of u,_g when u,, ..., u,_g are already in the prediction model.
In fact, the partial autocorrelation is precisely the regression coefficient of u,_¢ in a
regression where the earlier lags are also used as predictors of u,.

If you suspect that there is a distributed lag relationship between your dependent (left-
hand) variable and some other predictor, you may want to look at their cross correlations
before carrying out estimation.

The pext step is to decide what kind of ARIMA model to use. I the ausocomrefation func-
tion: dies off smoothly at a geometric rate, and the partial autocorrelations weve rero after

one lag, then a first-order autoregressive model is appropriate. Alternatively, if the autocoe-
relations were zero afier ope lag and the partial autocorrelations declined geometrically, a

first-order moving average process would seem appropriate. If the autocorrelations appear

311
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to have a seasonal pattern, this would suggest the presence of a2 seasonal ARMA structure
(see “Seasonal ARMA Terms” on page 316).

For example, we can examine the correlogram of the DRI Basics hon.ising series in the
HS.WF1 workfile by selecting View/Correlogram... from the HS series toolbar:

The “wavy” cyclical correlo-

gram with a seasonal frequency S5 o

suggests fitting a seasonal - e U217 Tame: {€63

ARMA model to HS. | Somole: 195851 190412

The goal of ARIMA analysis is a Auocomeiabon  Parfal Comsiaion  AC  PAC Q-8 Prob

12 0648 -0.115 857.70 0.000

rion and Schwarz criterion pro- 13 0529 0AT6 949.28 0.000

vided with each set of estimates 14 0324 -0256 93378 0.000

" [15 04t0 -0.108 987.76 0.000

parsimonious representation of ' ) Soon sm 13215 2000
the process governing the resid- ‘ i 0306 0108 4853 5000
ual. You should use only - : vias i s dom
enough AR and MA terms to fit . 7 0184 0078 50830 0.000
. N ls ' 8 0183 0114 52029 0.000

the properties of the residuals. . 9 0288 0360 54680 0.000
R . - : ' 10 0436 0225 608.54 0.000

The Akaike information crite- . 11 0588 0341 72038 0.000

L]

may also be used as a guide for ' 18 0048 .otz seces 0000

iate lag order selec- : 18 0184 090 10015 0.000
t!1€ appmpn a8 ' 19 -0.188 0002 10133 0.000
tion. 1 20 -0.188 -0.081 10252 0.000
After fitting a candidate ARIMA

specification, you should verify that there are no remaining autocorrelations that your
model has not accounted for. Examine the autocorrelations and the partial autocorrelations

of the innovations (the residuals from the ARIMA model} to see if any important forecast-
ing power has been overlooked. EViews provides views for diagnostic checks after estima-

tion.

Estimating ARIMA Models

EViews estimates general ARIMA specifications that allow for right-hand side explanatory
variables. Despite the fact that these models are sometimes termed ARIMAX specifications,
we will refer to this general class of modeis as ARIMA.

To specify your ARIMA model, you will:
o Difference your dependent variable, if necessary, to account for the ord_er of integra-
tion.

¢ Describe your structural regression model (dependent variables and regressors) and
add any AR or MA terms, as described above.

-
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Differencing

The A operator can be used to specify difierences of series. 1o specify first differencing
simply include the series name in parentheses after 4. For example, d{gdp) specifies the
first difference of GDP, or GDP-GDP{~1}.

More complicated forms of differencing may be specified with two optional parameters, n
and . d(x,.n) specifies the n -th order difference of the series X:

d(z,n) = (1-L)°z, (13.17)

where L is the lag operator. For example, d (gdp, 2) specifies the second order difference
of GDP:

digdp,2) = gdp ~ 2%gdp(-1) + gdp{-2)

d(x,.n, s) specifies n -th order ordinary differencing of X with a seasonal difference at lag

8.
d(z,n,8) = 1-LY"(01-LYs. (13.18)

For example, d{gdp, 0, 4) specifies zero ordinary differencing with a seasonal difference
at lag 4, or GDP-GDP(-4}.
H you need to work in logs, you can also use the dlog operator, which retuns differences

in the log values. For example, dlog (gdp) specifies the first difference of log(GDP) or
log (GDP)-log(GDP{-1)]. You may also specify the n and s options as described for the

simple d operator, dlogix,n,. s).
There are two ways o estimate integrated models in EViews. First, you may generate a
new series containing the differenced data, and then estimate an ARMA model using the
new data. For example, to estimate a Box-Jenkins ARIMA(], 1, 1} model for M1, you can
entex:

geries dmi = diml}

1ls dml c ar{l) ma{l}
Ahernatively, you may include the difference operator 4 directly in the estimation specif-
cation. For example, the same ARIMA(1,1,1) modd can be estimated by the one-line com-
mand

1s diml} c ar{l) ma(l)

The latter method should generally be preferred for an important resson. If you define 2
new variable, such as DM1I above, and use it in your estimation procedure, then: when you
forecast from the estimated model, EViews will make forecasts of the dependent variable
DM1. That is, you will get a forecast of the differenced series. If you are really interested in
forecasts of the level variable, in this case M1, you will have to manually transform the

ey
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forecasted value and adjust the computed standard errors accordingly. Moreover, if any
other transformation or lags of M1 are included as regressors, EViews will not know that
they are related to DM1. If, however, you specify the model using the difference operator
expression for the dependent variable, d{m1), the forecasting procedure will provide you
with the option of forecasting the level variable, in this case M1.

The difference operator may also be used in specifying exogenous variables and can be
used in equations without ARMA terms. Simply include them in the list of regressors in
addition to the endogenous variables, For example,

d{cs,2) ¢ digdp,2) dl{gdp(-1},2) d(gdp(-2),2) time

is a valid specification that employs the difference operator on both the left-hand and right- é

hand sides of the equation.

ARMA Terms

The AR and MA parts of your model will be specified using the keywords ar and ma as
part of the equation. We have already seen examples of this approach in our specification
of the AR terms above, and the concepts carry over directly to MA terms.

For example, to estimate a second-order autoregressive and first-order moving-average
error process ARMA(2,1), you would include expressions for the AR(1), AR(2), and MA(1)

terms along with your other regressors:
¢ gov ar{l) ar(2) ma(l)

Once again, you need not use the AR and MA terms consecutively. For example, if you
want to fit a fourth-order autoregressive model to take account of seasonal movements,

you could use AR{4]) by itself:
o gov ari4}

You may also specify a pure moving average model by using only MA terms. Thus,
¢ gov ma(l) ma({2)

indicates an MA(2) model for the residualé.

The traditional Box-Jenkins or ARMA models do not have any right-hand side variables
except for the constant. In this case, your list of regressors would just contain a C in addi-
tion to the AR and MA terms. For example,

c ar{l} ar(2) maf{l) ma(2)

is a standard Box-Jenkins ARMA (2,2},



316—Chapter 13. Time Series Regression

Seasonal ARMA Terms

Box and Jenkins (1976) recommend the use of seasonal autoregressive (SAR) and seasonal
moving average (SMA) terms for monthly or guarterly data with systematic seasonal
movements. A SAR(p ) term can be included in your equation specification for a seasonal
autoregressive term with lag p . The lag polynomial used in estimation is the product of
the one specified by the AR terms and the one specified by the SAR terms. The purpose of
the SAR is to allow you to form the product of lag polynomials.

Similarly, SMA{g) can be included in your specification to specify a seasonal moving aver-
age term with lag ¢. The lag polynomial used in estimation is the product of the one

defined by the MA terms and the one specified by the SMA terms. As with the SAR, the
SMA term allows you to build up a polynomial that is the product of underlying lag poly-

nomials.

For example, a second-order AR process without seasonality is given by
Uy = Pylig.y + Potty gt €y,

which can be represented using the lag operator L,L"a:, = Ty.q 35
(I-—p,L-nngz)uf = €. {13.20)

You can estimate this process by including ar (1) and ar (2} terms in the list of regres-
sors. With quarterly data, you might want to add a saxr (4) expression 1o take account of

seasonality. If you specify the equation as
sales ¢ ine ar{l) ari{2} sari{d)

then the estimated error structhure would be:

{13.19)

(1~ pyL—poL Y1 - $LYYuy = ¢, (3.2)
The error process is equivaient to:
Uy = Prlig gt Patig_ ot Uy g~ PP U s Pt g+ €. (13.22)

The parameter ¢ is associated with the seasonal part of the process. Note that this is an
AR(6) process with nonlinear restrictions on the coefficients.

As another example, 2 second-order MA process without seasonality may he written
vy = 6+ 016 +0x, o, 13.23)

or using lag operators,
u, = (1+6,L + 8,L%e,. (13.24)

You can estimate this second-order process by including both the MA(1) and MA({2) terms
in your equation specification.

33!
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With quarterly data, you might want to add sma {(4) to take account of seasonality. If you
specify the equation as
cs ¢ ad ma(l) ma(2) smail4)

then the estimated modei is:

N 4 (13.25)
u, = (L 4+ 0L + 8L7)(1 + wL et
The ervor process is equivalent to _
U = g+ b, 06, ot we g+ whig 5+ whae, g (13.26)

The parameter w is associated with the seasonal part of the process. This is just an MA(6)
process with nonlinear restrictions on the coefficients. You can also include both SAR and

SMA terimns.
Output from ARIMA Estimation

The output from estimation with AR or MA specifications is the same as for ordinary least
squares, with the addition of a lower block that shows the reciprocal roots of the AR and

MA polynomials, If we write the general ARMA model using the iag polynomial p(L) and
#(L) as
p(L)ut = Q(L)ft, (13.27]

* then the reporied roots are the roots of the polynomials
Kz =0 and 8z =0. (13.28)

The roots, which may be imaginary, should have modulus no greater than one. The output
will display a warning message if any of the roots violate this condition.

If p has a real root whose absolute value exceeds one or a pair of complex reciprocal roots
outside the unit circle (that is, with modulus greater than one}, it means that the autore-

gressive process is explosive.

If # has reciprocal roots outside the unit circle, we say that the MA process is noninvert-
ible, which makes interpreting and using the MA results difficult. However, noninvertibility
poses ne substantive problem, since as Hamilton (19%4a, p. 65) notes, there is always an
eqjuivalent representation for the MA mode! where the reciprocal roots lie inside the unit
circle. Accordingly, you should re-estimate your model with different starting values until
you get a moving average process that satisfies invertibility. Alternatively, you may wish to
turn off MA backcasting (see “Backeasting MA terms” on page 320).

228~
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If the estimated MA process has roots with modulus close to one, it is a sign that you may
have ogver-differenced the data. The process will be difficult to estimate and even more dif-
ficult to forecast. If possible, you should re-estimate with one less round of differencing.

Consider the following example output from ARMA estimation:

Deperdent Variabiy, Rt
Method: Lesst Squares

Dol GO15407T Timw: 1853
Sanmple(adisind). 195406 1993:07

Included ohearvalions: 470 after acjusiing encipoints
Comvergence achiswsd alter 25 Rerations

This estimation result corresponds to the following specification:
?t = 8.611‘1&;

(13.29)
(1-0.98L)(1~0.84LYn, = (1+0.51L)(1-0.96L%¢,
or equivalently, to
¥: = 0.0088 + 0-%:&_ 1+ B.Qtlytﬂp- 0,92%.,5 + & {13.30)

-f—&&lq_lmt}.&)ﬁqm‘“&ﬂq,s
Note that the signs of the MA terms may be reversed from those in textbooks. Note also
that the inverted roots have moduli very close to one, which is typical for many macro
time series models.

Estimation Options

ARMA estimation employs the same nonlinear estimation techniques described eartier for
AR estimation. These nonlinear estimation technigues are discussed further in Chapeer 12,
“Additional Regression Methods™, on page 290.
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You may need to use the Estimation Options dialog box to contro] the iterative process.
EViews provides a number of options that allow you te conirol the iterative procedure of
the estimation algorithm. In general, you can rely on the EViews choices but on occasion

you may wish to override the default settings.

Iteration Limits and Convergence Criterion

Centréiiiag the maximum number of iterations and convergence criterion are described in
detail in “Iteration and Convergence Options™ on page 669,

Derivative Methods

EViews always computes the derivatives of AR coefficients analytically and the derivatives
of the MA coefficients using finite difference numeric derivative methods. For other coeffi-
cients in the model, EViews provides you with the option of computing analytic expres-
sions for derivatives of the regression equation (if possible} or computing finite difference
nurneric derivatives in cases where the derivative is not constant. Furthermore, vou can
choose whether to {avor speed of computation {fewer function evaluations) or whether to
favor accuracy (more function evaluations} in the numeric derivative computation.

Starting Values for ARMA Estimation

As discussed above, models with AR or MA terms are estimated by nonlinear least squares.
Nonlinear estimation techniques require starting vaiues for all coefficient estimates. Nor-

mally, EViews determines its own starting values and for the most part this is an issue that
you need not be concerned about, However, there are a few times when you may want to

override the default starting values.

First, estimation will sometimes halt when the maximum number of iterations is reached,

despite the fact that convergence is not achieved. Resuming the estimation with starting

" yalues from the previous step causes estimation to pick up where it left off instead of start-
ing over. You may also want to try different starting values to ensure that the estimates are
a global rather than a local minimum of the squared errors. You might also want to supply

starting values if you have a good idea of what the answers should be, and want to speed

up the estimation process.

To control the starting values for ARMA estimation, click on the Options button in the
Equation Specification dialog. Among the options which EViews provides are several alter-
natives for setting starting values that you can see by accessing the drop-down menu
labeled Starting Coefficient Values for ARMA.

Eviews’ default approach is OLS/TSLS, which runs a preliminary estimation without the
ARMA terms and then starts nonlinear estimation from those values. An alternative is to
use fractions of the OLS or TSLS coefficients as starting values. You can choose .8, .5, .3, or
you can start with all coefficient values set equal to zero.
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The final starting value option is User Supplied. Under this option, EViews uses the coeffi-
cient values that are in the coefficient vector. To set the starting values, open a window for
the coefficient vector C by double clicking on the icon, and editing the valoes,

To properly set starting values, you will need a Etile more information about how EViews
assigns coefficients for the ARMA terms. As with other estimation methods, when you
specify your equation as a list of variables, EViews uses the built-in C coefficient vector. It
assigns coefficient numbers to the variables in the following order:

« First are the coefficients of the variables, in order of entry.
* Next come the AR teyms in the order you typed them.
e The SAR, MA, and SMA coefficients follow, in that order.
‘Thus the following two specifications will have their coefficients in the same order:
y o x mal(2) wma(l) swa{4) ar(1)
y sma{4)c ar{l} ma{2} x wa(l}
You may also assign values in the C vector using the param command:
param c(1) 50 c©(3) .8 c{3) .2 ci4) .6 ci(5) .1 ¢i{s8) .5
The starting values will be 50 for the constant, 0.8 for X, 0.2 for AR(1), 0.6 for MA(2). 0.1
for MA(1) and 0.5 for SMA{4). Following estimation, you can always see the assignment of
coefficients by looking at the Representations view of your equation.
You can also fill the C vector from any estimated equation (without typing the numbers) by
choosing Procs/Update Coefs from Equation in the equation toolbar.

Backcasting MA terms
By default, EViews backcasts MA termns {(Box and Jenkins, 1976). Consider an MA(q)
model of the form

W= Xy 8+,

{13.31)
Uy == £ 4 ﬁlfg_l + sﬂ‘th + . ¥ ﬂ,t‘“'

Given initial values, & and ¢, EViews first computes the unconditional residuais G, for
t = 1,2, .., T, and uses the backward recursion:

2‘ == ﬁ““al!t*,l*‘“u-“&k*,‘ {13-32}
to compute backcast valves of € 10 €_,_;y. To start this recursion, the ¢ values for the
innovations beyond the estimation sample are set 10 zevo:

Eryg = ¥ppg = ... = ¥y, = 0. (13.33)

Next, a forward recursion is used to estimate the values of the innovations

3
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8 = Gy~ P18, — ...~ Dyfy_ g (13.34)

using the backcasted values of the innovations (to initialize the recursion) and the actual
residuals. If your model also includes AR terms, EViews will p difference the 4, to elimi-

nate the serial correlation prior to performing the backcast.

Lastly, the sum of squared residuals (S5R} is formed as a function of the 5 and ¢, using
the fitted values of the lagged innovations:

T _
SHB,8) = T (U= X/ B-biteo1— - S8 (13.35)
i=p+1

This expression is minimized with respectto § and ¢.

The backcast step, forward recursion, and minimization procedures, are repeated until the
estimates of 2 and ¢ converge.

If backcasting is turned off, the values of the pre-sampie ¢ are set to zero:
€~{q- 1} oL, W gg = 8, {23.36}

and forward recursion is used to solve for the remaining values oi the innovations.

Dealing with Estimation Problems

Since EViews uses nonlinear least squares algorithms to estimate ARMA models, all of the
discussion in Chapter 12, “Solving Estimation Problems” on page 296, is applicable, espe-
cially the advice to try alternative starting values.

There are a few other issues 1o consider that are specific to estimation of ARMA models.

First, MA models are notoriously difficult to estimate. In particular, you should avoid high
order MA terms unless absolutely required for your model as they are likely 1o cause esti-
mation difficulties. For example, a single large spike at lag 57 in the correlogram does not
necessarily require you to include an MA{57) term in your model unless you know there is
something special happening every 57 periods. It is more likely that the spike in the corre-
logram is simply the product of one or more outliers in the series. By including many MA
terms in your model, you lose degrees of freedom, and may sacrifice stability and reliabil-

ity of your estimates.

If the underlying roots of the MA process have modulus close to one, you may encounter
estimation difficulties, with EViews reporting that it cannot improve the sum-of-squares or
that it failed to converge in the maximum number of jterations. This behavior may be a
sign that you have over-differenced the data. You should check the correlogram of the
series to determine whether you can re-estimate with one less round of differencing.

Lastly, if you continue to have problems, you may wish to tumn off MA backcasting.
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TSLS with ARIMA errors

Two-stage Jeast squares or instrumental variable estimation with ARIMA poses no partico-
lar difficulties.

For a detailed discussion of how to estimate TSLS specifications with ARMA errors, see
*Two-stage Least Squares™ on page 283.

Nonlinear Models with ARMA errors

EViews will estimate nonlinear ordinary and two-stage least squares models with aotore-
gressive error terms. For details, see the extended discussion in “Nonlinear Least Squares”
beginning on page 289.

EViews does not currently estimate nonlinear models with MA errors. You can, howeves,
use the state space object to specify and estimate these models (see "ARMAX(2, 3) witha

Random Coefficient™ on page 586).
Weighted Models with ARMA errors
EViews does not have procedures to automatically estimate weighted models with ARMA

erTor terms—if you add AR terms to 3 weighted model, the weighting series will be
ignored. You can, of course, always construct the weighted series and then perform estimma-

tion using the weighted data and ARMA terms.

Diagnostic Evaluation
If your ARMA model is correctly specified, the residuals from the model should be nearly
white noise. This means that there should be no serial correlation left in the residuals. The

Durbin-Watsen statistic reporied in the regression output is a test for AR{1) in the absence
of lagged dependent variables on the right-hand side. As discussed above, more general
tests for serial correlation in the residuals can be carried out with View/Residual Tests/

Correlogram-Q-statistic and View/Residual Tests/Serial Correlation LM Test....
For the example seasonal ARMA model, the residual comrelogram looks as follows:

-
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Do OR1ES7 Time: 130
Semple: 1954:05 199307
intipaat shsetvations: 470
S-sislistic probabiities adjusied for & ARMA lormn(s)

Autneirrsiation Pariisl Comrelasion AC  PAC O-Bum Pk

1 005 051 1.2299

2 -0.082 -0.004 43778

3 0h00 0008 43789

4 -0.837 .0.045 50102

§ 0388 CaES 17010 0000
6 0028 0T 17325 0000
F o124 0083 24720 0006
B 0118 0408 31885 adog
#6035 003 3647 0000
10 988 0022 32733 Ao606
1% 0.127 D138 30428 0000
12 0038 0820 40119 0000

The correlogram has a significant spike at lag 5 and all subsequent Q-statistics are highly
significant. This result clearly indicates the need for respecification of the model.

Polynomial Distributed Lags (PDLs)

A distributed lag is a relation of the type
Y = wtéﬁ"ﬂﬁxt'l”ﬁlxt“l""‘ e +ﬂk¢t-k+€t (133?}

The coefficients £ describe the lag in the effect of £ on y. In many cases, the coefficients
can be estimated directly using this specification. In other cases, the high collinearity of
current and lagged values of z will defeat direct estimation.

You can reduce the number of parameters to be estimated by using polynomial distributed
lags (PDLs) to impose a smoothness condition on the lag coefficients. Smoothness is

expressed as requiring that the coefficients lie on a polynomial of relatively low degree. A
polynomial distributed lag model with order p restricts the J coefficients to lieona p-th

order polynormial of the form
. . _\2 -
Bi = M+ m(i-8)+ -8+ ... + 710~ {13.38)

for j = 1,2, ..., k, where € is a pre-specified constant given by

&= { (k)/2 if p is even (13.39)
(k—-1)/2 ifpisodd

The PDL is sometimes referred to as an Almon lag. The constant ¢ is included only to
avoid nurperical problems that can arise from collinearity and does not affect the estimates

of 8.
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This specification allows you io estimate 2 model with & lags of z using only p parame-

ters (if you choose p> k, EViews will retumn a *Near Singular Matrix* eror).

I you specify a PDL, EViews substitutes Equation (13.38) into Equation (13.37) yielkling
B = R+lel+7232'i'-"+7p+lzp+! + £ {13.40)

where
=L+ gt .. oI

2g = X+ (1 -8z 1+ ... +(k-8)zs;
{13.41)

241 = (82 + (1 -8z + .. +(k-8zy_,

Once we estimate = from Equation (13.40), we can recover the paramneteys of interest 3,
and their standand errors using the relationship described in Equation (13.38). This proce-
dure is straightforward since £ is a linear transformation of 7.

The specification of a polynomial distributed lag has three elements: the length of the lag

k , the degree of the polynomial (the highest power in the polynomial} p. and the con-
straints that you want to apply. A near end constraint restricts the one-period lead effect of

x on y to be zero:

By=nm+T-1-8+ ...+ 7 (-1-8 = 0. (13.42)

A far end constraint restricts the effect of z on y to die off beyond the numbex of specified
lags:

Biv1 = N+ 72k +1-8+ . Yk +1-8" = 0. {13.43)

If you restrict either the near or far end of the lag, the number of -y parameters estimated
is reduced by one to account for the restriction; if you restrict both the near and far end of

the lag, the number of -y parameters is reduced by two.
By default, EViews does not impose constraints.
How to Estimate Models Containing PDLs
You specify a polynomial distributed lag by the pdl term, with the following Information
in parentheses, each separated by a comma in this order:
+ The name of the series.
» The lag length {the number of lagged values of the series to be included).
¢ The degree of the polynomial.
« A numerical code to constrain the lag polynomial (optional):
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1 constrain the near end of the lag to zero.
constrain the far end.
3 constrain both ends,

You may omit the constraint code if you do not want to constrain the lag polynomial. Any
number of pdl terms may be included in an equation. Each one tells EViews to fit distrib-
uted lag coefficients to the series and to constrain the coefficients 1o lie on a polynomial.

For example,
1s sales ¢ pdl{orders,8,3)

fits SALES to a constant, and a distributed lag of current and eight lags of ORDERS, where
the lag coefficients of ORDERS lie on a third degree polynomial with no endpoint con-

straints. Similarly,
ls div ¢ pdlirev,12,4,2}

fits DIV to a distributed lag of current and 12 lags of REV, where the coefficients of REV lie
on a 4th degree polynomial with a constraint at the far end.

The pdl specification may also be used in two-stage least squares. H the series in the pdl
is exogenous, you should include the PDI. of the series in the instruments as well. For this
purpose, you may specify pdl (*) as an instrument; all pdl variables will be used as

instruinents. For example, if you specify the TSLS equation as
gales ¢ inc pdl {orders ;l) (12,4)
with instruments |
fed fed{-1) pdl{*)
the distributed lag of ORDERS will be used as instruments together with FED and FED{-1).

Polynomial distributed lags cannot be used in nonlinear specifications.
Example

The distributed lag model of industrial production (IP) on money (M1) yields the following
results:

>
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Taken individually, none of the coefficients on lagged M1 are statistically different from
m.ﬁ&mmnaawmm;mmkzﬂamwp’w
(though with a very low Durbin-Watson statistic). This is a typical symptom of high col-
linearity among the regressors and suggests fitting a polynomial distributed lag model.
To estimate a fith-degree polynomial distributed lag mode] with no constraints, enter the
commands:

smpl 59.1 89.12

ls ip ¢ pdlis1,12,5)

The following result is reported at the top of the equation window:
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POLO1 -4 §6E.05
POLO? 0.015625
PDLO3 -0.000160

. Gtatieh

0.815185 4988374 0.0000
0055566  -0.00083% 0.9043
0.082884  -0.248470 0.8038
0.013808 0011485 0.9808
0.007700 0.241788 0.8091

This portion of the view reports the estimated coefficients -y of the polynomial in
Equation (13.38} on page 323. The terms PDLO1, PDLOZ, PDLO3, ..., correspond to

zy, 29, ... in Eguation (13.40}.

The implied coefficients of interest 3, in equation (1) are reported at the bottom of the
table, together with a plot of the estimated polynomial:

Lad Distribuion of Mt

I Costiciant Std Emor

9 g
R R
SH0NS
0.00920
0.01766
0.01363
-4.7E-05
~0.0130¢
-0.03821
-0.007 08
10 o.01017
1 0.01260
12 004737

LR R - T A

014877
10948
010138
0.08150
0.07435
oosard
0.08687
407080
0.0r537
0.08359
BAGA54
.11088
815882

Bumoflage  0.08788

oooam?

The Sum of Lags reported at the bottom of the table is the sum of the estimated coefficients
on the distributed lag and has the interpretation of the iong run effect of M1 on IP, assum-

ing stationarity.

Note that selecting View/Coefficient Tests for an equation estimated with PDL terms tests
the restrictions on -, not on 3. In this example, the coefficients on the fourth- (PDL05)
and fifth-order (PDL06) terms are individually insignificant and very close to zero. To test
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the joint significance of these two terms, click View/Coefficient Tests/Wald-Coeflicient
Restrictions... and type
c{§)=0, c(7)=0

in the Wald Test dialog box (see "Wald Test (Coefficient Restrictions)” on page 368 for an
extensive discussion of Wald tests in EViews). EViews displays the result of the joint test

Wald Teat:

Ct8) 2S0E05  M4R82T

Restrictions are loser in conllicints.

There is no evidence to reject the null hypothesis, suggesting that you could have fit a
Jower order polynomial to your lag structure.

Nonstationary Time Series

The theory behind ARMA estimation is based on stationary time series. A series Is said to
be (weakly or covariance) stationary if the mean and autocovariances of the series do not
depend on time. Any series that is not stationary is sald to be nonstationary.

A common example of a nonstationary series is the mandom walk:
Yt = -1t 4.

where ¢ is a stationary random disturbance term. The series y has a constant forecast
value, conditional on £, and the variance is increasing over time. The random walk is a
difference stationary series since the first difference of y is stationary:

V=t = (1-L)y, = ¢. {13.45)

A difference stationary series is said to be integratad and is denoted as I{d ) where d is the
order of integration. The order of integration is the number of unit roots contained in the
series, or the number of differencing operations it takes to make the sevies stationary. For
the random walk above, there is one unit root, so it is an I(1) series. Sirnilarly, a stationary

series is 1{0).

Standard inference procedures do not apply to regressions which contain an integrated
dependent variable or integrated regressors. Therefore, it is important to check whether a

(13.44)
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series is stationary or not before using it in a regression. The formal method to test the sta-
tionarity of a series is the unit root test.

Unit Root Tests

EViews provides you with a variety of powerful tools for testing a series {or the first or sec-
ond difference of the series) for the presence of a unit root. In addition to the existing Aug-
mented Dickey-Fuller {1979} and Phillips-Perron (1998) tests, EViews now aliows you to
compute the GLS-detrended Dickey-Fuller (Elliot, Rothenberg, and Stock, 1996), Kwiat-
kowski, Phillips, Schmidt, and Shin (KPSS, 1992), Elliott, Rothenberg, and Stock Point
Optimal (ERS, 1996), and Ng and Perron (NP, 2001) unit root tests. All of these tests are

available as a view of 2 series.
Performing Unit Root Tests in EViews

The following discussion assumes that
you are familiar with the basic forms of
the unit root tests, and the associated
options. We provide theoretical back-
ground for these tests in “Basic Unit Root
Theory~ beginning on page 333, and doc-
ument the settings used when performing
these tests.

To begin, double click on the series name
to open the series window, and choose
View/Unit Root Test...

You must specify four sets of options to
carry out a unit root test. The first three settings (on the left-hand side of the dialog) deter-

mine the basic form of the unit root test. The fourth set of options {on the right-hand side
of the dialog) consist of test specific advanced seitings. You only need concern yourself
with these settings if you wish 1o customize the calculation of your unit root test.

First, you should use the topmost combo box to select the type of unit root test that you
wish to perform. You may choose one of six tests: ADF, DFGLS, PF, KPSS, ERS, and NP.
Next, specify whether you wish to test for a unit root in the level, first difference, or second
difference of the series.

Lastly, choose your exogenous regressors. You can choose to include a constant, a constant
and linear trend, or neither (there are limitations on these choices for some of the tests).

You can click on OK to compute the test using the specified settings, or you can customize
your test using the advanced settings portion of the dialog.

'sa " i

s 4
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The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged
difference terms p are to be included in the ADF test equation. You may choose to let
EViews automatically select p, or you may specify a fixed positive integer value (if you
choose automatic selection, you are given the additional option of selecting both the infor-
mation criterion and maximum number of lags to be used in the selection procedure).

In this case, we have chosen 10 estimate an ADF test that includes a constant in the test
regression and employs automatic lag length selection using a Schwarz Information Crite-

rion (BIC) and a maximum lag length of 14. Applying these settings to dataon the U. S.
one-month Treasury bill rate for the period from March 1953 to July 1971, we can replicate

Example 9.2 of Hayashi (2000, p. 596). The resuits are described below.

The first part of the unit root cutput provides information about the form of the test (the
type of test, the exogenous variables, and lag length used), and contains the test output,
associated critical values, and in this case, the p-value:

The ADF statistic value is -1.417 and the associated one-sided p-value (for a test with 221

observations) is .573. In addition, EViews reports the critical values at the 1%, 5% and
10% levels. Notice here that the statistic ¢, value is greater than the critical values so that

we do not reject the null at conventional test sizes.

The second part of the output shows the intermediate test equation that EViews used to
calculate the ADF statistic:
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Augmentad Dickey-Fuller Test Equation

Dependeant Verighie: I{TBILL)

Method: Least Squares

Date: (2107602 Time: 12:28

Ssmple: 195303 197107
DS By ghans.

4, 1Y

P L. v
TBILLET) 0
D(TBILLE-1) 0203330 0087007 -3.034470 0.

If you had choosen to perform any of the other unit root tests (PP, KPSS, ERS, NP}, the
right side of the dialog would show the different options associated with the specified test.
The options are associated with the method used to estimate the zero freguency spectrum
term, fg. thatis used in constructing the particular test statistic. As before, you only need
pay attention to these settings if you wish to change from the EViews defaults.

Here we have selected the PP test in the
combo box. Note that the right-hand side
of the dialog has changed, and now fea-
tures a combo box for selecting the spec-
tral estimation method. You may use this
combo box to choase between various ker-
nel or AR regression based estimators for
fo. The entry labeled “Default” will show
you the default estimator for the specific
unit root test—here we see that the PP
default uses a kernel sum-of-covariances
estimator with Bartlett weights. if, instead,
you had selected a NP test, the default
entry would be “AR spectral-GLS".

Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you
select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dia-
log will give you a choice between using Newey-West or Andrews automatic bandwidth
selection methods, or providing a user specified bandwidth. If, instead, you choose one of
the AR spectral density estimation methods (AR Spectral - OLS, AR Spectral - OLS
detrended, AR Spectral - GLS detrended), the dialog will prompt you to choose from vari-
ous automatic lag length selection methods (using information criteria) or to provide a

23
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user specified lag length. See “Automatic Bandwidth and Lag Length Selection™ on

page 340.

Once you have chosen the appropriate settings for your test, click on the OK button.
EViews reports the test statistic along with output from the comesponding test regression.
For these tests, EViews reports the uncorrected estimate of the residual variance and the
estimate of the frequency zeru spectrum f, (labeled as the “HAC corrected variance™) in
addition to the basic cutput. Running a PP test using the TBILL series yields:

As with the ADF test, we fail to reject the null hypothests of a unit reot in the TBILL series
at conventional significance leveis.

Note that your test output will differ somewhat for alternative test specifications. For
example, the KPSS output only provides the asympéotic critical values tabulated by KPSS:

Null Hypolhasia: TR is stalionary
Exogentus: _

Asyonpiol cribics values®: 1:«-1 073000
5% Jovel 0483000
M

"Kuintowsid-Philips-Schidt-Shin (1922, Tebila 1)
2415080

Reskiusl varimnoe (10 comaciion)

Similarty, the NP test output will contain results for all four test statistics, along with the
NP tabulated critical values.

A word of caution. You should note that the critical vahies reported by EViews are valid
only for unit root tests of a data series, and will be invalid if the series is based on esti-
mated values. For example, Engle and Granger (1987) proposed a two-step method to test
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for cointegration. The test amounts to testing for a unit root in the residuals of a first stage
regression. Since these residuals are estimates of the disturbance term, the asymptotic dis-
tribution of the test statistic differs from the one for ordinary series. The correct critical val-
ues for a subset of the tests may be found in Davidson and MacKinnon {1993, Table 20.2).

Basic Unit Root Theory

The following discussion outlines the basics features of unit root tests. By necessity, the
discussion will be brief. Users who require detail should consult the original sources and
standard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamil-

ton, 1994, Chapter 17, and Hayashi, 2000, Chapier 9).

Consider a simple AR{1) process:
Yo = Py + 2,84 €, {13.46)

where z, are optional exogenous regressars which may consist of constant, or a constant
and trend, p and § are parameters to be estimated, and the ¢; are assumed 10 be white
noise. if |p} 2 1, v is a nonstationary series and the variance of ¥ increases with time and
approaches infinity. If {pl < 1, y is a (trend-)stationary series. Thus, the hypothesis of
{trend-)stationarity can be evaluated by testing whether the absolute value of p is strictly

less than one.

The unit root tests that EViews provides generally test the null hypothesis Hy: p = 1
against the one-sided alternative H;: p < 1. In some cases, the null is tested against a

point alternative. In contrast, the KPSS Lagrange Multiplier test evaluates the null of
Hy: p<1 against the alternative Hy: p = 1.

The Augmented Dickey-Fuller (ADF) Test _
The standard DF test is carried out by estimating Equation (13.46) after subtracting y,
from both sides of the equation:

Ay, = ayy + 30+ g, (13.47)
where a = g~ 1. The null and alternative hypotheses may be written as
Hy a =10
Hy a<0 (1348}
and evaluated using the conventional ¢ -ratio for « :
i, = &/(se(&)) {13.49]

where & is the estimate of o, and se(&) is the coefficient standard error.

Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic
does not follow the conventional Student’s ¢-distribution, and they derive asymptotic

338
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results and simulate critical values for various test and sample sizes. More recently,
MacKinnon (1991, 1996) implements a much larger set of simulations than those tabulated
by Dickey and Fuller. In addition, MacKinnon estimates response surfaces for the simula-
tion results, permitting the cakulation of Dickey-Fuller critical values and p -values for
arbitrary sample sizes. The more recent MacKinnon critical value calculations are used by
EViews in constructing test output.

The simple Dickey-Fuller unit root test described above is valid only if the sevies is an
AR(1) process. If the series is correlated at higher order lags, the assumption of white noise

disturbances ¢, is violated. The Augmented Dickey-Fuller (ADF) test constructs a paramet-

ric correction for higher-order correlation by assuming that the y series follows an AR(p)
process and adding p lagged difference terms of the dependent variable ¢ o the right-

hand side of the test regression:
Ay, = ays..1+ % ‘4 B8y, 1+ Ml'*?.!” O o ﬁ,ﬁﬂg-p"l' LD (13.50)

This augmented specification is then used to test (13.48] using the ¢ -ratio (13.49). An
important result obtained by Fuller is that the asymptotic distribution of the £ -ratio for o
is independent of the number of lagged first differences included in the ADF regression.
Moreover, while the assumption that y follows an autoregressive (AR) process may seem
restrictive, Said and Dickey (1964) demonstrate that the ADF test is asymptotically valid in
the presence of a moving average (MA) component, provided that sufficient lagged differ-

ence terms are included in the test regression.

You will face two practical issues in performing an ADF test. First, you must choose
whether to include exogenous variables in the test regression. You have the choice of
including a constant, a constant and a linear time trend, or neithes, in the test regression.
One approach would be to run the test with both a constant and a near trend since the
other two cases are just special cases of this more general specification. However, includ-
ing irrelevant regressors in the regression will reduce the power of the test 1o reject the nuil
of a unit root. The standard recommendation is to choose a specification that is a plausible
description of the data under both the null and alternative hypotheses. See, Hamilton

(1994a, p. 501} for discussion.

Second, you will have to specify the number of lagged difference terms (which we will
term the "lag length™) to be added to the test regression (0 yields the standard DF test;
integers greater than 0 correspond to ADF tests). The usual (though not particularly use-
ful) advice is to include a number of lags sufficient to remove serial correlation in the
residuals. EViews provides both automatic and manual lag length selection options. For
details, see “Antomatic Bandwidth and Lag Length Selection” beginning on page 340.

Dickey-Fuller Test with GLS Detrending (OFGLS)
As noted above, you may elect to include a constant, or a constant and a linear time trend,
in your ADF test regression. For these two cases, ERS (1996) propose a simple wodification

237
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of the ADF tests in which the data are detrended 3o that ExpianawW variables are “taken
out” of the data prior to running the test regression.

ERS define a quasi-difference of y, that depends on the value a representing the specific
point alternative against which we wish 10 test the nulk:
() ift =

13.51
Y~ Y- ifet>1 (351

d{&‘z]a) = {

Next, consider an OLS mgresswn of the quasi-differenced data d( yt[a} on the quasi-dif-
ferenced d(z,[a): o
d{y,|e) = d(z.|a)'é(a) + 7, (13.52)

where z, contains either a constant, or a constant and trend, and let 3(a) be the OLS esti-
mates from this regression.
All that we need now is a value for a. ERS recommend theuseof o = &, where

_ {1-—7/11' ifz, = {1}

13.53
1-13.5/T  ifz, = {1, ¢} (13.533

We now define the GLS detrended data, y‘: using the estimates agsociated with the & :
’ d -
Y EY— T, &) {13.54)

Then the DFGLS test involves estimating the standard ADF test equation, (13.50), after
substituting the GLS detrended y, for the original y,:

d d d d
Ay, = oy +B1AY 1+ F By pt vy {13.55)

Note that since the gf are detrended, we do not include the z, in the DFGLS test equa-
tion. As with the ADF test, we consider the £ -ratio for & from this test equation.

While the DFGLS ¢ -ratio foilows a Dickey-Fuller distribution in the constant only case, the
asymptotic distribution differs when you include both a constant and trend. ERS (1996,
Table 1, p. 825) simulate the critical values of the test statistic in this latter setting for

T = {50, 100, 200, e} . Thus, the EViews lower tail critical values use the MacKinnon
simulations for the no constant case, but are interpolated from the ERS simulated values
for the constant and trend case. The null hypothesis is rejected for values that fall below

these critical values.

The Phillips-Perron (PP} Test _ )
Phillips and Perron (1988) propose an aliematzve (nenparametm} method of controiling
for serial correlation when testing for a unit root. The PP method estimates the non-aug-
mented DF test equation {13.47), and maodifies the ¢ -ratio of the o coefficient so that

2¢6
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serial correlation does not affect the asympiotic distribution of the test statistic. The PP test
is based on the statistic:

V2 Tfo- ‘Yn)(#i!(&}}
sa( fo) ” f; (13.56)

where & is the estimate, and £, the t -ratio of a, 8e(&) is coefficient standard error, and

8 :smestanéardmofthemm maddiﬁon.vu is 2 consistent estimate of the
error variance in (13.47) (calculated as {7~ k}a fT where k is the number of regres-
sors). The remaining term, fy, is an estimator of the residual spectrum at frequency zevo.

There are two choices you will have make when performing the PP test. First, you must
choose whether to inchxde a constant, a constant and a linear time trend, or neithey, in the

test regression. Second, you will have to choose a method for estimating f;, . EViews sup-
ports estimators for f, based on kernel-based sum-of-covariances, or on autoregressive
spectral density estimation. See "Frequency Zero Spectrum Estimation™ beginning on
page 338 for details.

The asymptotic distribution of the PP modified £ -ratio is the same as that of the ADF sta-
tistic. EViews reports MacKinnon lower-tail critical and p-values for this test.

The Kwiatkawski, Phillips, Schmidt, and Shin (KPSS) Test
The KPSS (1992) test differs from the other unit root tests described here in that the sevies
Vi is assumed to be (trend-) stationary under the null. The KPSS statistic is based on the

the residuais from the OLS regression of y, on the exogenous variables z,:
w= 0+ {13.57)

The LM statistic Is be defined as:
LM = gsm*/a’fo) (13.58)

where fo,BmMMﬁwmmaﬁwmmm S(t) isa
cumaulative resideal function:
S(t) = f_; @i, (13.59)

based on the residuals §, = g, - 2,'5(0). mmmmwmaamh
mmmmmmamm é: used by GLS detrending since it is based on
a regression involving the original data, and‘mnutheqwéﬁam&u.

mwmfymemmymmwwiymmﬁmwx, and a
method for estimating fj . See *Frequency Zero Spectrum Estimation® on page 338 for dis-

cussion.
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The reported critical values for the LM test statistic are based upon the asymptotic results
presented in KPSS (Table 1, p. 166).

Elliot, Rothenberg, and Stock Point Optimal (ERS) Test

The ERS Point Optimal test is based on the quasi-differencing regression defined in Equa-
tions (13.52). Defin% the residuals from (13.52) as fy(a) = d(y;j6) - d(x,la]’é{a} , and
let SSR(a) = Y #;(a) be the sum-of-squared residuals function. The ERS {feasibie)
point optimal test statistic of the null that o = 1 against the alternative that ¢ = &, is
then defined as

Pp = (S5R(3)~-aSSR(1))/ fy {13.60)

where fp. is an estimator of the residual spectrum at frequency zero.

To compute the ERS test you must specify the set of exogenous regressors r, and a
method for estimating f; {see “Frequency Zero Spectrum Estimation” on page 338).

Critical values for the ERS test statistic are computed by interpolating the simulation
results provided by ERS {1996, Table 1, p. 825) for T = {50, 100, 200, «} .

Ng and Perron (NP) Tests

Ng and Perron (2001) construct four test statistics that are based upon the GLS detrended
data yf- These test statistics are modified forms of Phillips and Perron Z, and Z, statis-
tics, the Bhargava (1986) H,; statistic, and the ERS Point Optimal statistic. First, define the

term:
T, o -2
k= % (4.1 7 (13.61)
t=2

The modified statistics may then be written as
d.2
MZ4 = (T7D" - f)/(25)
M2Z% = MZ_xMSB

MSB® = (nffo}ljg (13.62)

M‘pd (ézs—éfl(y%z}ﬁfa if z, = {1}
7= . L
@+ Q- hh,  Hm =L

where

i
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- -7 ifz, = {1}

©= {-13.5 it 7, = {1,} (13.63)

The NP tests require a specification for 2, and a choice of method for estimating f, (see

Frequency Zero Spectrum Estimation

Many of the unit root tests described above require a consistentt estimate of the residual
spectrur at frequency zero. EViews supports two classes of estimators for fo: kernel-
based sum-of-covariances estimators, and autoregressive spectral density estimarors.

Kemnel Sum-of-Covariances Estimation
The kernel-based estimator of the frequency zero spectrun is based on 2 weighted sum of
the autocovariances, with the weights are defined by a kerpel function. The estimator

takes the form
r-t
Jo= T % K@ {13.64)
Fe~T-1)

where | is a bandwidth parameter {(which acts as a truncation lag in the covariance
weighting), K is a kernel function, and where %(7) , the j-th sample autocovariance of the
residuals a,, is defined as

T
¥i) = % (a8, MT (13.65)
Tt il

Note that the residuals @, that EViews uses in estimating the autocovariance functions in
(13.65) will differ depending on the specified unit root test:

Unit root test Sowrce of &, residuals for kernel estimator

ADF, D not '

PP, ERS Foint residuals from the Dickey-Fuller test equation, (13.47).
Optimal, NP

KPSS kmiduak from the OLS test equation, {13.57).

EViews supporis the following kemnel functions:

3¢
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Bartiett: ' 1-lz]  ifld<1
K(z) =
0 otherwise
Parzen:  f1-ez?+8iz® ifosiel <(1/2)
K(z) = {9(1 - Ja))® if (172) <jzl <1
0 otherwise
Quadratic Spectral = T
- K@) = —B(IETE) _ g (6r0/5))
1oniz\ 6mz/b

The properties of these kernels are described in Andrews (1991},

As with most kernel estimators, the choice of the bandwidth parameter ! is of consider-
able importance. EViews allows you to specify a fixed parameter, or to have EViews select
one using a data-dependent method. Automatic bandwidth parameter sejection is dis-
cussed in “Automatic Bandwidth and Lag Length Selection” beginning on page 340.

Aurtoregressive Spectral Density Estimator
The autoregressive spectral density estimator at frequency zero is based upon the residual
variance and estimated coefficients from the auxiliary regression:

Ay = alyy+ @ 2/5+ Bidl_ g+ o+ BAB_p+ (13.66)
EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS

detrending, corresponding to difference choices for the data §,. The following table sum-
marizes the auxiliary equation estimated by the various AR spectral density estimators:

AR spectral method |Auxiliary AR regression specification
oLs =y mde = 1,2, = 2.

etrended ’
oLSd ﬁzwi&“%gie),mfp’-e-

GLS detrended oy d :
‘ §, = Y~ T,/ 3E) = y;.and ¢ = 0.

where 3(a) are the coefficient estimates from the regression defined in {13.52),

The AR spectral estimator of the frequency zero spectrum is defined as:
.2
Jo= 6i/(1-B1-Ba~...- Bp) (13.67)

°

W
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where &3 = Eﬁf/Tisthemﬂua!vadanm,andB are the estimates from (13.66). We
note here that EViews uses the non-degree-of-freedom estimator of the residual variance,
As a result, spectral estimates comuted in EViews may differ slightly from those obtained

from other sources.

Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference
terms in the auxiliary equation. You may either specify a fixed parameter, or to have
EViews automatically select one based on an information criterion. Automatic lag length
selection is examined in "Automatic Bandwidth and Lag Length Selection™ on page 340.

Defoult Settings

By default, EViews will choose the estimator of f used by the authors of a given test
specification. You may, of course, override the defauit settings and choose from either fam-
ily of estimation methods. The default settings are listed below:

ERS Point Optimal AR spectral regression (OLS)
NP AR spectral regression {CLS-detrended)

Automatic Bandwith and Lag Length Selection
There are three distinct situations in which EViews can automatically compute a band-
width or a lag length parameter.

The first situation occurs when you are selecting the bandwidth parametey [ for the ker-
nel-based estimators of fq. For the kernel estimators, EViews provides you with the optioa
of using the Newey-West (1994) or the Andrews (1991) data-based automatic bandwidth
parameter methods. See the original sources for details. For those familiar with the Newey-
West procedure, we note that EViews uses the lag selection parameter formulae given in
the corresponding first lines of Table II-C. The Andrews method is based on an AR(1) spec-
ification.

The latter two occur when the unit root test requires estimation of a regression with a
parametric correction for serial correlation as in the ADF and DRGLS test equation regres-
sions, and in the AR spectral estimator for f,. In all of these cases, p lagged difference
terms are added to a regression equation. The automatic selection methods choose p (less
than the specified maximum) 1o minimize one of the following criteria:
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Information criterion Definition

Akaike (AIC) - 2(L/Ty + 2k/T —
Schwarz (SIC} -2(1/T) + klog(T)/T

Hannan-Quinn (HQ) - 2(1/T) + 2klog(log(T)/T

Modified AIC (MAIC}) ~ 20/ + 2k + VT

Modified SIC (MSIC) =2(1/T) + (k + Dlog(TY/T

?;;o?g%]ed Hannan-Quinn ~ 2(i/T) + 2(k + log(og(D)/T

where the modification factor r is computed as
7= a'ypl_ e, (13.68)
t

for §; = Yy, when computing the ADF test equation, and for §, as defined in “Autore-
gressive Spectral Density Estimator” on page 339, when estimating f, . NP (2001} propose
and examine the modified criteria, concluding with a recommendation of the MAIC.

For the information criterion selection methods, you must also specify an upper bound to
the lag length. By default, EViews chooses a maximum lag of
= int(12(T/100)"% (13.69)

Kmax

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound.

Commands

‘The command
equation eq gdp.ls gdp ¢ ar{l) ar{2) ma{l} ma{2}

fits an ARMA(2,2) model to the GDP series and stores the results in the equation object
named EQ_GDP.

eql.auto (4)

tests for serial correlation of up to order four in the residuals from equation EQ1.
eql.corxelogram(12)

displays the correlogram for the residuals in EQ1 up to lag 12.
ecuation eq2.1ls gdp ¢ pdl(ml,12,3)

fits a third degree polynomial to the coefficients of M1 up to twelve lags.

3%
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gdp . uroot {lage4, const )
runs the ADF unit root test including a constant and four lags of first differences.
gdp . uroot (pp, trend, hacebt ,bwd . 2}

runs the Phillips-Perron unit root test including a constant and linear trend with a Bartent
kernel and bandwidth of 4.2.

1917
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This chapter describes procedures for forecasting and computing fitted values from a single
equation. The techniques described here are for forecasting with equation objects esti-
mated using regression methods. Forecasts from equations estimated by specialized tech-
niques, such as ARCH, binary, ordered, tobit, and count methods, are discussed in the
corresponding chapters. Forecasting from a series using exponential smoothing methods is
explained in “Exponential Smoothing™ on page 190, and forecasting using multiple equa-
tions and models is described in Chapter 23, “Models”, on page 601.

Forecasting from Equations in EViews

To illustrate the process of forecasting from an estimated equation, we begin with a simple
example. Suppose we have data on the logarithm of monthly housing starts (HS) and the
logarithm of the S&P index (SP) over the period 1959:01-1996:01. The data are contained
in a workfile with range 1959:01-1998:12.

We estimate a regression of HS on a constant, SP, and the lag of HS, with an AR(1) to cor-
rect for residual serial correlation, using data for the period 1959:01~-1990:12, and then use
the model to forecast housing starts under a variety of settings. Following estimation, the
equation results are held in the equation object EQGL:

Inchuded obsarvations: 371 sfier sdiusling endpoints
i . w...‘..‘ B 'E: L

L]

0.0063

c 0321924 017278 2744975

HS¢-1) 0.852853 {.0168218 58.74157 0.0000
sp 0.005222 0.007588 0.6882 0.4817

Note that the estimation sample is adjusted by two observations to account for the first dif-
ference of the lagged endogenous variable used in deriving AR{1) estimates for this model.
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To get a feel for the fit of the model, select View/Actual, Fitted, Residual..., then choose
Actual, Fitted, Residual Graph:

1960 1965 1570 1975 1960 1985 1990
jr— RENOuN — At —— Fiied |

The actual and fitted values depicted on the upper portion of the graph are virtually indis-
tinguishable. This view provides litthe control over the process of producing fitbed values,

and does not allow you to save your fitted values. These limitations are overcome by using
EViews built-in forecasting procedures to compute fitted values for the dependent variable.

How to Perform a Forecast

To forecast HS from this equation, push the Forecast bution on the equation toolbar, or

select Procs/Forecast...

You should provide the following information:
o Series names.

¢ Forecasted serles. Fill in the edit box
with the name to be given to the fore-
casted dependent variable. EViews sug-
gests a name, but you can change it to
any valid series name. The name should
be different from the name of the depen-
dent variable, since the forecast proce-
dure will overwrite the data in the

specified series.

s S.E. (optional}. i desired, you may pro-
vide a pame for the series to be filled with the forecast standard errors.  you do not

provide a name, no forecast errors will be saved.
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» GARCH (optional}. For models estimated by ARCH, you will be given a further
option of saving forecasts of the conditional variances (GARCH terms). See

Chapter 16 for a discussion of GARCH estimation.
» Forecasting method. You have a choice between the following methods:

Dynamic——calculates multi-step forecasts starting from the first period in the forecast
sample.

Static—calculates a sequence of one-step ahead forecasts, using actual, rather than
forecasted values for lagged dependent variables.

and you can set the following options:

1. Structural—instructs EViews to ignore any ARMA terms in the equation when
forecasting. By default, when your equation has ARMA terms, both dynamic
and static solution methods form forecasts of the residuals. If you select Strue-
tural, all forecasts will ignore the residuals and will form predictions using
only the structural part of the model.

2. Sample range. You must specify the sample to be used for the forecast. By
default, EViews sets this sample to be the workfile sample. By specifying a
sample outside the sample used in estimating your equation (the estimation
sample}, you can instruct EViews to produce out-of-sample forecasts,

Note that you are responsible for supplying the values for the independent variables
in the out-of-sample forecasting period. For static forecasts, you must also suppiy the
values for any lagged dependent variables.
» Output. You can choose to see the forecast ouiput as a graph or a numerical forecast
- evaluation, or both. Forecast evaluation is only available if the forecast sample
includes observations for which the dependent variable is observed.

lilustration

Suppose we produce a dynamic forecast using EQO! over the sample 1959:01 to 1996:01.
The forecast values will be placed in the series HSF, and EViews will display both a graph
of the forecasts and the plus and minus two standard error bands, as well as a forecast

evaluation:

1%



346-—Chapter 14. Forecasting from an Equation

As noted in the output, the fore-
cast values are saved in the
series HSF. Since HSF is a stan-
dard EViews series, you may
examine your forecasts using all
of the standard tools for work-
ing with series objects.

We can examine the actual ver-
——, T
and plotting the two series, ==

Click on Quick/Show... and
enter HS and HSF. Then select View/Graph/Line to display the two series

T2+

704

5.8

L] LI ¥ Ty vy -y Wiy
1960 1985 1970 WIS 1900 98 1080

This is a dynamic forecast over the entire period from 1959:01 through 1996:01. For evexy
period, the previously forecasted values for H5(-1) are used in forming a forecast of the
subsequent value of HS. Note the considerable difference between this actual and fitted
graph and the Actual, Fitted, Residual Graph depicted above.

T perform a series of one-siep ahead forecasts, click on Forecast on the equation tookbar,
and select Static forecasts. EViews will display the forecast results:
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fotanmb HEF

Ackust HS

Foranael sample: 105001 10851
Adpasted sampty; OGS WRGLY
Ingiudad o bswevallome: 574

Raol Misan Byusmd Ewer  OERIEYZ
Maxn Absilibs Ewer [ X i
hean Abx. Paroant Erver LY il

Bl Papadtisn ©
Vassnok Fropodien 007201
Covastanns Pispriien  D0027208 .

We can also compare the actual and fifted values from the static forecast by examining a
line graph of a group containing HS and HSF.

The one-step ahead static fore-

casts are more accurate than the

dynamic forecasts since, for each 84

period, the actual value of ' 784

HS${-1) is used in forming the -

forecast of HS. These one-step

ahead static forecasts are the 74+

same forecasts used in the S £ 2

Actual, Fitted, Residual Graph - L
~ displayed above. o )

Lastly, we construct a dynamic -

forecast beginning in 1990:02 ' 1960 1965 197 1885 1990

(the first period following the

estimation sample) and ending
in 1996:01. Keep in mind that data are available for SP for this entire period. The plot of

the actual and the forecast values for 1989:01 to 1996:01 is given by:

363
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%32+

T84
884

™ T E TR,

EViews backfills the forecast series prior to the forecast sample (up through 1990:01) and
then dynamically forecasts HS for each subsequent period through 1996:01. This is the
forecast that you would have constructed if, in 1990:01, you predicted values of HS from
1990:02 through 199601, given knowledge about the entire path of SP over that period.

The corresponding static forecast is displayed below:

Again, EViews backiills the values
of the forecast sevies, HSF1,
through 1990:01. This forecast is
the one you would have con-
structed ff, in 1990:01, you used all
available data to estimate a2 model,
and then used this estimated
model to perform one-step ahead
forecasts every month for the next
six years.

The remainder of this chapier
focuses on the details associated
with the construction of these fore-
casts, and the corresponding fore-

cast evaluations. s - HsF1)




Forecast Basics——349

Forecast Basics

EViews stores the forecast resalts in the series specified in the Forecast name field. We wili
refer to this series as the forecast series.

The forecast sample specifies the observations for which EViews will try to compute fitted
or forecasted values, If the forecast is not computable, a missing value will be returned. In
some cases, EViews will carry out antomatic adjustment of the sample to prevent a fore-
cast consisting entirely of missing values (see "Adjustment for Missing Values™ on

page 350, below). Note that the forecast sample may or may not overlap with the sampie
of observations used to estimate the equation.

For values not included in the forecast sample, there are two options. By default, EViews
fills in the actual values of the dependent variable. If you turn off the Insert actuals for
out-of-sample aption, out-of-forecast-sample values will be filled with NAs.

As a consequence of these rules, all data in the forecast series will be overwritten during the
forecast procedure, Existing values in the forecast series will be lost.

Computing Forecasts

For each observation in the forecast sample, EViews computes the fitted value of the
dependent variable using the estimated parameters, the right-hand side exogenous vari-
ables, and, either the actual or estimated values for lagged endogenous variables and resid-
- uyals. The method of constructing these forecasted values depends upon the estimated

model and user specified settings.

To illustrate the forecasting procedure, we begin with a simple linear regression model with
no lagged endogenous right-hand side variables, and no ARMA terms. Suppose that you

have estimated the following equation specification:
yocxz

Now click on Forecast, specify a forecast period, and click OK.

For every observation in the forecast period, EViews wili compute the fitted value of ¥

using the estimated parameters and the corresponding values of the regressors, X and Z:
9 = (1) + &)z, + 2(3) 2. (14.1)

You should make certain that you have valid values for the exogenous right-hand side vari-

ables for all observations in the forecast period. If any data are missing in the forecast sam-
ple, the corresponding forecast observation will be an NA,

IS
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Adjustment for Missing Values

There are two cases when a missing value will be returned for the forecast value. First, i
any of the regressors have a missing value, and second, if any of the regressars are out of
the range of the workfile, This includes the implicit error terms in AR models.

In the case of forecasts with no dynamic components in the specification {i.¢. with no
lagged endogenous or ARMA error terms), a missing value in the forecast series will not
affect subsequent forecasted values. In the case where there are dynamic components,
however, a single missing value in the forecasied series will propagate throughout all
future values of the series.

As a convenience feature, EViews will move the starting point of the sample forward
where neoessary, until a valid forecast value is obtained. Without these adjustinents, the
user would have o figure out the appropriate number of presample values to skip, other-
wise the forecast would consist entirely of missing values. For example, suppose you
wanted to forecast dynamically from the following equation specification:

y ¢ yi{-1} ar{l}

If you specified the beginning of the forecast sampie to the beginning of the workiile range,
EViews will adjust forwand the forecast sample by 2 observations, and will use the pre-
forecast-sample values of the lagged variables {the loss of 2 observations occurs because

the residual loses one observation due to the lagged endogenous variable so that the fore-
cast for the error tesm can begin only from the third observation.)

Forecast Errors and Variances

Suppose the “true” model is given by:
Ve = 2B+ ¢, (14.2)

where ¢, is an independent, and identically distributed, mean zero random disturbance,
anxl 8 is a vecior of unknown parameters. Below, we relax the resiriction that the ¢ s be

independent.
The true model generating y is not known, but we obtain estimates & of the unknown
parameters . Then, setting the error term equal to its mean value of Tero, the (poing)
forecasts of y are obtained as

b = 2b. (14.3)

Forecasts are made with ermor, where the error is simply the difference between the actual
and forecasted valoe ¢, = y, - z,'b. Assuming that the model is correctly specified,
there are two sources of forecast error: residual uncertainty and coefficient uncertainty.
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Residual Uncertainty

The first source of error, termed residual or innovation uncertainty, arises because the
innovations ¢ in the equation are unknown for the forecast period, and are replaced with
their expectations. While the residuals are zero in expected value, the individual values are
non-zero; the larger the variation in the individual errors, the greater the overall error in
the forecasts. '

The standard measure of this variation is the standard error of the me {labeled “S.E.
of regression” in the equation output]. Residual uncertainty is usually the largest source of

forecast eryor,

In dynamic forecasts, innovation uncertainty is compounded by the fact that lagged depen-
~ dent variables and ARMA terms depend on lagged innovations. EViews also sets these
equal to their expected values, which differ randomly from realized values. This additional
source of forecast uncertainty tends o rise over the forecast horizon, leading to a pattern
of increasing forecast errors. Forecasting with lagged dependent variables and ARMA terms

is discussed in more detail helow.

Coefficient Uncertainty

The second source of forecast error is coefficient uncertainty. The estimated coefficients b
of the equation deviate from the true coefficients @ in a random fashion. The standard
error of the estimated coefficient, given in the regression output, is a measure of the preci-
-sion with which the estimated coefficients measure the true coefficients.

The effect of coefficient uncertainty depends upon the exogenous variables. Since the esti-
mated coefficients are multiplied by the exogenous variables z in the computation of fore-
casts, the more the exogenous variables deviate from their mean values, the greater is the

~ forecast uncertainty.

Forecast Variability
The variability of forecasts is measured by the forecast standard ervors. For a single equa-
tion without lagged dependent variables or ARMA terms, the forecast standard errors are

computed as

forecast se = s.,/l + 2, (X' X )_zzt (14.4)

where s is the standard error of regression. These standard errors account for both inno-
vation (the first term) and coefficient uncertainty (the second term). Point forecasts made
from linear regression models estimated by least squares are optimal in the sense that they
have the smallest forecast variance among forecasts made by linear unbiased estimators.
Moreover, if the innovations are normally distributed, the forecast errors have a t-distribu-

tion and forecast intervals can be readily formed.

x5%
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If you supply a name for the forecast standard errors, EViews computes and saves a series
of forecast standard errors in your workfile. You: can use these standard errors to form fore-
cast intervals. I you choose the Do graph option for output, EViews will plot the forecasts
with plus and minus two standard error bands. These two standard error bands provide an

approximate 95% forecast interval; if you (hypothetically) make many forecasts, the actual
value of the dependent variable will fall inside these bounds 95 percent of the time.

Additional Details

EViews accounts for the additional forecast uncertainty generated when lagged dependent
variables are used as explanatory variables (see “Forecasts with Lagged Dependemt Vari-
ables” on page 35%).

There are several other special cases, involving dependent variables that are defined by
expression, where coefficient uncertainty is ignored. These cases are described in “Fore-
casting Equations with Formulas® on page 359.

Forecast standard errors devived from equations estimated by nonlinear Jeast squares and

equations that include PDL (polynomial distributed lag) tenmns only account for the resid-
ual uncertainty ("Forecasting with Nonlinear and PDL Specifications™ on page 364).

Forecast Evaluation

Suppose we construct a dynamic forecast for HS over the period 1990:02 to 1996:01 using
our estimated housing equation. If the Forecast evaluation option is checked, and there
are actual data for the forecasted variable for the forecast sample, EViews reports a table of

statistical results evaluating the forecast:
Forecast: HSF
Actust: HS
Sampis: 1900:02 1906:01
%
Root Meen Souwed Eror OLY18700
Mean Absohiie Ervor 029728
Nenn Absolute Percantage Esror 42085086
Toell inequallly Cosllicient
Biss Proportion 0.000002
Variance Proporion 0053004
DY 1 3t . 174~
Note that EViews cannot compute a forecast evaluation if there are no data for the depen-
dent variable for the forecast sample.

The forecast evaluation is saved in onpe of two formats. If you turn on the Do graph option,
the forecasts are included along with a graph of the forecasts. If you wish to display the
evaluations in their own table, you should turn off the Do graph option in the Forecast dia-

" log box.
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Suppose the forecast sampleis 7 = T+ 1, T+ 2, ..., T+ h, and denote the actual and
forecasted value in period £ as y; and §,, respectively. The reported forecast error statis-

tics are computed as follows:

Root Mean Squared Error % -
S G- w) /R
_ t=Te1
Mean Absolute Error T4 h
v e-vd/k
te=T41
Mean Absolute Percentage T+h gy~
Error 100 3 _.L_i'ixh
teT+ll ¥t '
Theil Inequality Coefficient Tk ol
J Y ($e-w)/h
t=T+1
+ 2 + 5
S %R+ | % w /A
t=T+1 t=T+1

The first two forecast error statistics depend on the scale of the dependent variabie. These

should be used as relative measures to cormnpare forecasts for the same series across differ-

ent models; the smaller the errar, the better the forecasting ability of that model according

to that criterion. The remaining two statistics are scale invariant. The Theil inequality coef-

ficient always lies between zero and one, where 2ero indicates a perfect fit.

The mean squared forecast error can be decomposed as

T@- 1)k = (D8R =)+ (55~ 3,)" + 21 = )83,

where $3§./h, §. 8¢, 8, are the means and (biased} standard deviations of §j, and y.,
and r is the correlation between § and y . The proportions are defined as:

Bias Proportion ((Eﬁth) _ g)z
% (- vk
Variance Proportion (sp— 3;;)2
2 ?it}zf k
Covariance Proportion 2(1 ~r)a
T G- y) /A

{14.5)

3538
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» The bias proportion tells us how far the mean of the forecast is from the mean of the
actnal series.

o The variance proportion tells us how far the variation of the forecast s from the vari-
ation of the actual series.

» The covariance proportion measures the remaining unsystematic forecasting errors.
Note that the bias, variance, and covariance proportions add up to one.

If your forecast is “good”, the bias and variance proportions should be small s0 that most
of the bias should be concentrated on the covariance proportions. For additional discussion
of forecast evaluation, see Pindyck and Rubinfeld (1991, Chapter 12}.

For the example cutput, the bias proportion is large, indicating that the mean of the fore-
casts does a poor job of tracking the mean of the dependent variable. To check this, we will
plot the forecasted series together with the actual series in the {orecast sample with the
two standard error bounds. Suppose we saved the forecasts and their standard errors as
HSF and HSFSE, respectively. Then the plus and minus two standard error series can be
generated by the commands

smpl 1990:02 1296:0]1

series hsf high = haf + 2+hsfage

series haf_ low = hsf - 2*hsfse

Create a group containing the four ke de e -
series HS, HSF, HSF_HIGH, and 80
HSF_LOW, double click on the . TSR T
selected area, and select Open
Group, or you can select Quick/ 78 /

HSF

Show... and enter the four series 744 ‘...a-*-*"'”"""_

names. Once you have the group

open, select View/Graph/Line. 724 \ W
704

The forecasts completely miss the

downturn at the start of the 85-

1990’s, but, subsequent to the 65-
recovery, track the trend reason- R R

ably well from 1992 to 1996.

354"
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Forecasts with Lagged Dependent Variables

Forecasting is complicated by the presence of lagged dependent variables on the right-hand
side of the equation. For example, we can augment the earlier specification to inclhude the

first Jag of V:
y ¢ xz y(-1}

and click on the Forecast button and fill out the series names in the dialog as above. There
is some question, however, as to how we should evaluate the lagged value of Y that
appears on the right-hand side of the equation. There are two possibilities: dynamic fore-

casting and static forecasting.
Dynamic Forecasting

If you select dynamic forecasting, EViews will perform a mutti{sie? forecast of Y, beginning
at the start of the forecast sample. For our single lag specification above:

¢ The initial observation in the forecast sample will use the actual value of lagged Y.
Thus, if S is the first observation in the forecast sample, EViews will compute

fig = &(1) + &(2)xg+ &(3)zg + 2(d)ys.1., (14.6)
where yg_, is the value of the lagged endogenous variable in the period prior to the
start of the forecast sample. This is the one-step ahead forecast,

» Forecasts for subsequent ohservations will use the previously forecasted values of Y:
g0 = 1)+ 8(2)zg  +8(2g,  + (45,01 1 (14.7)
« These forecasts may differ significantly from the one-step ahead forecasts.

if there are additional lags of Y in the estimating equation, the above algorithm is modified
to account for the non-availability of lagged forecasted values in the additional period. For

example, if there are three lags of Y in the equation:
* The first observation (5') uses the actual values for all three lags, yg_ 3', Yg_»,and
¥s-1-
* The second observation (S + 1) uses actual values for yg_, and, yg_; and the
forecasted value §¢ of the first lag of yg., 1.

+ The third observation {5 + 2} will use the actual values for yg_;, and forecasted
values g, 1 and §g for the first and second lags of yg o.

« All subsequent observations will use the forecasted values for all three lags.

The selection of the start of the forecast sample is very important for dynamic forecasting.
_The dynamic forecasts are true multi-step forecasts {from the start of the forecast sample},

since they use the recursively computed forecast of the lagged value of the dependent vari-
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able. These forecasts may be interpreted as the forecasts for subsequent periods that would
be computed using information available at the start of the forecast sample.

Dynamic forecasting requires that data for the exogenous variables be available for every
observation in the forecast sample, and that values for any lagged dependent variables be
observed at the start of the forecast sample (in our exampie, yg_. 1. but more generally,
any lags of y ). If necessary, the forecast sample will be adjusted.

Any missing values for the explanatory variables will generate an NA for that observation
and in all subsequent observations, via the dynamic forecasts of the lagged dependent
variable.
Static Forecasting
Static forecasting performs a series of one-step ahead forecasts of the dependent variable:
¢ For each observation in the forecast sample, EViews computes
s = A+ x5, .+ U zg )+ U)W g 4 k1 (14.8)

always using the actval value of the lagged endogenous variable.

Static forecasting requires that data for both the exogenous and any lagged endogenous
variables be observed for every observation in the forecast sample. As above, EViews will,
if necessary, adjust the forecast sample (0 account for pre-sample lagged variables. If the
data are not available for any period, the forecasted value for that obsetvation will be an
NA. The presence of a forecasted value of NA does not have any impact on forecasts for
subsequent observations.

A Comparison of Dynamic and Static Forecasting

Both methods will always yield identical results in the first period of & multi-period fore-
cast. Thus, two forecast series, one dynamic and the other static, should be identical for
the first observation in the forecast sample.

The two methods will differ for subsequent periods only if there are lagged dependent vari-
ables or ARMA 1erms,

Forecasting with ARMA Errors

Forecasting from equations with ARMA components involves some additional complexi-
ties. When you use the AR or MA specifications, you will need to be aware of how EViews
bandles the forecasts of the lagged residuals which are used in forecasting.
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structural Forecasts

By defauli, EViews will forecast values for the residuals using the estimated ARMA struc-
ture, as described below.

For some types of work, you may wish to assume that the ARMA errors are always zero. If
you select the structurai forecast option by checking Structural (ignore ARMA), EViews
computes the forecasts assuming that the errors are always zero. If the equation is esti-
mated without ARMA terms, this option has no effect on the forecasts.

Forecasting with AR Errors

. For equations with AR errors, EViews adds forecasts of the residiiafs from the equation to
the forecast of the structural model that is based on the right-hand side variables.

In order t0 compute an estimate of the residual, EViews requires estimates or actual values
of the lagged residuais. For the first observation in the forecast sample, EViews will use
pre-sample data to compute the lagged residuals. If the pre-sample data needed to compute
the lagged residuals are not available, EViews will adjust the forecast sample, and backfill
the forecast series with actual values {see the discussion of "Adjustment for Missing Val-
ues” on page 350).

If you choose the Dynamic option, both the lagged dependent variable and the lagged
residuals will be forecasted dynamically. If you select Static, both will be set to the actual
lagged values. For example, consider the following AR(2} model:

v = 2B+ u,

. (14.9)
Up = Pry_qt poty gt &

Denote the fitted residuals as e, = y, — ,’b, and suppose the model was estimated using
" dataupto { = S§=1.Then, provided that the z, values are available, the static and
dynamic forecasts for £ = 5,5+ 1, ..., are given by:

static dynamic

U5 r5b+ preg 1+ Poeg g [TSE+ Preg.yt+ Preg s
fis41 |Tse1 b+ P1egt Dgegy |Tge1'b+ iyt Dreg_y
D542 [(Tse2'bt Pregi1+ Poes [Tgea'b+ Pifigyy + Pofip
where the residuals &, = §, — z,'b are formed using the forecasted values of ;. For sub-

sequent observations, the dynamic forecast will always use the residuals based upon the
multi-step forecasts, while the static forecast will use the one-step ahead forecast residuals.

Wwr
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Forecasting with MA Errors

In general, you need not concern yourselves with the details of MA forecasting, since
EViews will do all of the work for you. For those of you who are interested in the details of
dynamic forecasting, however, the foliowing discussion should aid you in relating EViews
results with those obtained from other sources.

The first step in computing forecasts using MA terms is to obtain fitted values for the inno-
vations in the pre-forecast sample period. For example, if you are forecasting the values of
y , beginning in period S, with a simpie MA(q),

ﬁs = €s+ $!€S-i + ..+ a‘es-gy (ll.lﬂ)

you will need values for the lagged innovations, €g_3, €52 «vs €5 4-

To compute these pre-forecast innovations, EViews will first assign values for the ¢ inno-
vations prior o the start of the estimation sample, €q, €_y, €., ...,tm,.!fmaqaabnis
estimated with backcasting turned on, EViews will perform backcasting 1o oblain these
values. If your equation is estimated with backcasting turned off, or if the forecast sample
precedes the estimation sample, the initial values will be set to zevo.

Given the initial valves, EViews will fit the values of subsequent iInmovations,

€1> €35 -5 € -o-y €g_1 - USing forward recursion. The backcasting and recursion proce-
dures are described in detail in the discussion of backcasting in ARMA models in “Back-
casting MA terms” on page 320.

Note the difference between this procedure and the approach for AR errors outlined above,
in which the forecast sample is adjusted forward and the pre-forecast values are set to
actual values.

The choice between dynamic and static forecasting has two primary implications:

» Once the g pre-sample values for the innovations are computed, dynamic forecast-
ing sets subsequent innovations to zero. Static forecasting extends the forward recus-
sion through the end of the estimation sample, allowing for a series of one-step
ahead forecasts of both the structural model and the innovations.

» When computing static forecasts, EViews uses the entire estimation sample to back-
cast the innovations. For dynamic MA forecasting. the backcasting procedure uses
observations from the beginning of the estimation: sample to either the beginning of
the forecast period, or the end of the estimation sample, whichever comes first.

Example
As an example of forecasting from ARMA models, consider forecasting the monthly new
housing starts (HS) series. The estimation period is 1959:01-1984:12 and we forecast for
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the period 1985:01-1991:12. We estimated the following simple multiplicative seasonai
autoregressive model:
he o ar{l) sari{l)

To forecast from this estimated model, click Forecast on the equation toolbar. The forecast
evaluation statistics for the model are shown below:

© RostMeen Squseed Emor - 28.13285
Moar: Absolute Emmor 23.35682
Mnan Abnoluln Perconiags Error N3
“Theil inequsilly Coeficlent 2193026

Bias Proporon B HagTEs
Yadance Proparien SHEO94T3
Covartance Prophrion 0.26433%

The large variance proportion indicates that the forecasts are not tracking the variation in
the actual HS series. To plot the actuai and forecasted series together with the two standard
error bands, you can type

smpl 1985:01 1991:12

plot he hs_f ha_f+2*hs se hs f-2+hs_ge

where HS_F and HS_SE are the forecasts and standard ervors of HS.

As indicated by the large vatl-
ance proportion, the forecasts
track the seasonal movements in

HS only at the beginning of the
forecast sample and quickly flat-
tens out to the mean forecast

value.

Forecasting Equations with
Formulas : T
EViews allows estimation and e e

forecasting with equations where

the left-hand variable is a trans-
formation specified by a formula. When forecasting from equations with formulas on the

3L ¥
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left-hand side, three things determine the forecasting procedures and options that are avail-
able:
« whether the formmula is linear or nonlinear

& whether the formula includes lagged variables
* whether the formula includes estimated coefficients

Point Forecasts

EViews always provides you with the option to forecast the transformed dependent vari-
able. If the transformation can be normalized and solved for the first series In the formula,
then EViews also provides you with the option to forecast the normalized series.

For example, suppose you estimated an equation with the specification

{logix}+z} ¢ ¥
If you press the Forecast bution, the Forecast dialog Jooks like this:

- T
X € e
L‘W ~ Sl
S 1 g
8Lt |

L
ot |

Notice that the dialog provides you with two choices for the sevies 10 forecast: the nonmal-
ized series, X, and the dependent variable, LOG(X) + Z X is the normalized series since it
is the first series that appears on the left-hand side of the equation.

Howeves, if you specify the equation as
xel/x = {1} + cl2}*y

EViews will not be able to normalize the dependent variable and the Forecast dialog Jooks
like this:

15
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The dialog only allows you te forecast the transformed dependent variable, since EViews
does not know how to normalize and solve for X. Note also that only static forecasts are
available for this case. This restriction holds since EViews will not be able to solve for any

lagged values of X on the right hand-side.

If the formula can be normalized, EViews will compute the forecasts of the transformed
dependent variable by transforming the forecasts of the normalized series. This has impor-
tant consequences when the formula includes lagged series. For example, consider the fol-

lowing two models:
serieg dy = d{y} ‘
eguation egl.ls diy) e x
equation eg2.1s dy ¢ x

The dynamic forecasts of the first difference D(Y} from the first equation will be numeri-
cally identical to those for DY from the second eguation. However, the static forecasts for
D(Y) from the two equations will not be identical, This is because in the first equation,
EViews knows that the dependent variable is a transformation of Y, so it will use the actual
lagged value of Y in computing the static forecast of the first difference D(Y). In the second
equation, EViews simply views DY as an ordinary series, so that C and X are used to com-

pute the static forecast.

Plotted Standard Errors

When you select Do graph in the forecast dialog, EViews will plot the forecasts, along with
plus and minus two standard error bands. When you estimate an equation with an expres-
sion for the left-hand side, EViews will plot the standard error bands for either the normal-
* ized or the unnormalized expression, depending upon which term you elect to forecast.

B o
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If you elect to predict the normalized dependent variable, EViews will automatically
account for the nonlinearity in the standard error trangformation. The next section pro-
vides additional details on the procedure used to normalize the upper and lower bounds.

Saved Forecast Standard Ermrors

If you provide a name in this edit box, EViews will store the standard exrors of the underly-
ing series or expression that you chose to forecast.

‘When the dependent variable of the eguation is a simple series ar a formula involving only
linear wansformations, the saved standard envors will be exact (except where the forecasts
do not account for coefficient uncertainty, as described below). If the dependent variable
involves nonlinear ransformations, the saved forecast standard errors will be exact if you
choose to forecast ihe entire formula. If you choose to forecast the underlying endogenous
series, the forecast uncertainty cannot be computed exactly, and EViews will provide a lin-
ear (first-order] approximation to the forecast standard errors.

Consider the following equations involving a formula dependent variable:

d{y) ¢ x

logily) ¢ x
For the first equation you may choose to forecast either ¥ or D{Y}. In both cases, the fore-
cast standard errors will be exact, since the expression involves only Enear wransforma-
tions. The two standard errors will, however, differ in dynamic forecasts since the forecast
standard errors for Y take into account the forecast uncertainty from the lagged value of Y.
In the second example, the forecast standard errors for Jog{Y) will be exact. i, however,
you request a forecast for Y itself, the standard errors saved in the sevies will be the

approxirate (linearized) forecast standard errors for Y.
Note that when EViews displays a graph view of the forecasts together with standard esror
bands, the standard error bands are always exact. Thus, in forecasting the underlying

dependent variable in a nonlinear expression, the standard ecror bands will not be the
same a5 those you would oblain by constructing series using the linearized standard errors

saved in the workfile.

Suppose in our second exampie above that you store the forecast of Y and its standard
errors in the workfile as the series YHAT and SE_YHAT. Then the approximate two stan-

dard exror bounds can be generated manually as:
series yhat highl = yhat + 2*se_yhat
geries vhat_lowl » yhat - 2+se_vhat
These forecast error bounds will be symmetric about the point forecasts YHAT.
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On the other hand, when EViews plots the forecast error bounds of ¥, it proceeds in two
steps. It first obtains the forecast of log(Y) and its standard errors (say LYHAT and

SE_LYHAT) and forms the forecast error bounds on log(Y):

lyhat + 2%zs lvhat

iyhat - 2%se lyhat 4
It then normalizes {inverts the transformation) of the two standard error bounds to obtain
the prediction interval for Y:

series yhat high2 = exp{lyhat + 2*se_lyhat)

series yhat_low2 = exp(lyhat - 2*se lyhat)

Because this transformation is a non-linear transformation, these bands will not be sym-
metric around the forecast.

To take a more complicated example, suppose that you generate the series DLY and LY, and
then estimate three equivalent models:

geries dly =dlogly)

peries ly = logiy)
eguation eql.ly dlogly) ¢ x
equation eg2.ls dily) ¢ x
equation egi.leg dly ¢ x

The estimated equations from the three models are numerically identical. If you choose to
forecast the underlying dependent (normalized) series from each model, EQ1 will forecast
Y, EQ2 will forecast LY (the log of Y}, and EQ3 wili forecast DLY (the log of the first diifer-
ence of Y, log(Y)-log¥(-1)). The forecast standard errors saved from EQ1 will be linearized
approximations to the forecast standard error of Y, while those from the latter two will be
exact for the forecast standard error of log Y and the log of the first difference of Y.

Static forecasts from all three models are identical because the forecasts from previous
perieds are not used in calculating this peried's forecast when performing static forecasts.
For dynamic forecasts, the log of the forecasts from EQ1 will be identical to those from EQ2
and the log first difference of the forecasts from EQ1 will be identical to the first difference
of the forecasts from EQ2 and to the forecasts from EQ3. For static forecasts, the log first
difference of the forecasts from EQ1 will be identical to the first difference of the forecasts
from EQ2. However, these forecasts differ from those obtained from EQ3 because EViews
does not know that the generated series DLY is actually a difference term so that it does

not use the dynamic relation in the forecasts.

A final word of caution: when you have lagged dependent variables, you should avoid
referring to the lagged series before the current series in a dependent variable expression.

For example, consider the two equation specifications:

33
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di{y) o x

~y{~1li+y € x
Both models have the first difference of Y as the dependent variable and the estimation
results are identical for the two models. However, if you forecast Y from the second model,

EViews will try to calculate the forecasts of Y using leads of the actual sevies Y. These fore-
casts of Y will differ from those produced by the first model, and may not be what you

expected.

Forecasting with Nonlinear and PDL Specifications

As explained above, forecast esrors can arise from two sources: coefficient uncertainty and
for both ceefficient and innovation uncertainty. However, if the model is nonlinear in the
parameters (or if it contains a PDL specification}, then the standard errors ignore coeffi-

cient uncertainty. EViews will display a message in the status line at the bottom of the
EViews window when forecast standard errors only account for innovation uncertainty.

For example, consider the three specifications

logiy) ¢ x

y = cli}) + ci2i*x

y = exp{c{i)*x)

y e x pdl(e, 4, 2)
Forecast standard errors from the first and second models account for both coefficient and
innovation uncertzinty since both models are linear in the coefficients. The third and
fourth specifications have forecast standard errors that account only for residual uncer-
tainty.
One additional case requires mention. Suppose you have the specification:

y-c{1) = c(3}) + cli)*x

Despite the fact that this specification is linear in the parameters, EViews will ignore coef-
ficient uncertainty. Forecast standard errors for any specification that contains coefficients
on the Jeft-hand side of the equality will only reflect residual uncertainty.

Commands

To obtain static {one-step ahead) forecasts, follow the name of the estimated equation, a
dot, the command £it, a name for the fitted series, and optionally a name for the standard

errors of the fitted values:

21
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egl,.fit yhat yvhat _se

"To obtain dynamic forecasts, follow the name of the estimated eqm, a period, the com-
mand forecast, a name for the forecasts, and optionally a name for the standard errors

of the forecasts:

eql.forecast yh vh_se

See the Command and Programming Reference for a complete list of commands and
options available for forecasting.

310
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Empirical research is usually an interactive process. The process begins with 2 specifica-
tion of the relationship to be estimated. Selecting a specification usually involves several
choices: the variables to be inckuded, the functional form connecting these variahles, and if
the data are time series, the dynamic structare of the relationship between the variables.

Inevitably, there is uncertainty reganding the appropriateness of this inftial specification.
Once you estimate your equation, EViews provides tools for evaluating the guality of your
specification along a number of dimensions. In tun, the results of these tests influence the
chosen specification, and the process is repeated.

This chapter describes the extensive menu of specification test statistics that are available
as viewrs or procedures of an equation object. While we attempt to provide you with suffi-
cient statistical background to conduct the tests, practical considerations ensure that many
of the descriptions are incomplete. We refer you to standard statistical and econometric ref-

erences for further details.

Background

Each test procedure described below invoives the specification of a null hypothesis, which
is the hypothesis under test. Output from a test command consists of the sample values of
one or more test statistics and their associated probability numbeys {p-values). The latter
indicate the probability of obtaining a test statistic whose absolute value is greater than or
equal to that of the sample statistic if the null hypothesis is true. Thus, low p-valves iead t0
the rejection of the null hypothesis. For example, if a p-value lies between 0.05 and 0.00,

the null hypothesis is rejected at the S percent but not at the 1 percent jevel.

Bear in mind that there are different assumptions and distributional results associated with
each test. For example, some of the test statistics have exact, finite sample distributions

(usually t or F-distributions). Others are latge sample test statistics with asympeotic
xatﬁsﬂmmMﬁommtmwm&eandmmm&hdm

tion of each test.

Types of Tests

The View button on the equation toolbar gives you a choice among three categories of
tests 1o check the specification of the equation.
Additional tests are discussed elsewhere in the User's Gaide. These

tests include unit root tests (“Performing Unit Root Tests in EViews”
on page 329), the Granger causality test {"Granger Causality” on
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page 222}, tests specific to binary, order, censored, and count models (Chapter 17, “Dis-
crete and Limited Dependent Variable Models™, on page 421}, and the Johansen test for
cointegration {“How to Perform a Cointegration Test” on page 538).

Coefficient Tests

These tests evaluate restrictions on the estimated coefficients, including the special case of
tests for omitted and redundant variables.

Wald Test {Coefficient Restrictions)

The Wald test computes a test statistic based on the unre-
stricted regression. The Wald statistic measures how close
‘the unrestricted estimates come to satisfying the restrictions under the null hypothesis. If
the restrictions are in fact true, then the unrestricted estimates should come close to satis-

fying the restrictions.
How to Perform Waid Coefficient Tests

To demnonstrate the calculation of Wald tests in EViews, we consider simpie examples. Sup-
pose a Cobb-Douglas production function bas been estimated in the form:

logQ = A+ alogL + BlogK + ¢, (15.1)

where @, K and L denote value-added output and the inputs of capital and labor
respectively. The hypothesis of constant returns to scale is then tested by the restriction:

a+fg=1.
Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971
provided the following resuit:

Dependent Varabla: LOG(O)
Methoo: Lasst Squans
Date: 0841197 Time: 16:56

Sample: 1947 1871

c 2327039 0410601  -5689565  0.0000
LOGH) 1SO1175 0167740 9485670 0.0000
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The suin of the coefficients on LOG(L) and LOG(K) appears to be in excess of one, but to
determine whether the difference is statistically relevant, we will conduct the kypothesis

test of constant refurns.
‘To carry out a Waid test, choose View/Coefficient Tests/Wald-Coeflicient Restrictions...
from the eguation tookbar. Enter the restrictions into the edit box, with multiple coefficient
restrictions separated by commas. The restrictions should be expressed as equations
involving the estimated coefficients and constants {you may not include series names).
The coefficients should be referred to as C(1), C(2), and 30 on, unless you have used a dif-
ferent coefficient vecior in estimation.
To test the hypothesis of constant retums to scale, type the following restriction in the dia-
Jog box:

c{Z) + c{3) =1
and click OK. EViews reports the following result of the Wald test:

Rusiricions sre lnoar ins conficianis.

EViews reports an F-statistic and a Chi-aquare statistic with associated p-values. See "Wald
Test Details™ on page 371 for a discussion of these statistics. In addition, EViews reports

the value of the normalized (homogeneous) restriction and an associated standard error In
this example, we have a single linear restriction so the two test statistics are identical, with
the p-value indicating that we can decisively reject the null hypothesis of constant returns
1o scale.

To iest more than one restriction, separate the restrictions by commas, Ror example, 10 test
the hypothesis that the elasticity of output with respect to labor is 2/3 and the elasticity
with respect o capital is 1/3, enter the restrictions as

c{2)=2/3, c(3)=1/3
and EViews reports
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Note that in addition to the test statistic summary, we report the values of both of the nor-
malized restrictions, along with their standard errors (the square roots of the diagonal ele-
ments of the restriction covariance matrix),
As an example of a nonlinear model with a nonlinear restriction, we estimate a production
function of the form

l0gQ = B + Bolog (BsK™ + (1-BL™) + ¢ 15.2)

and test the constant elasticity of substitution (CES) production function restriction
By = 1/0,. This is an example of a nonlinear restriction. To estimate the (unrestricted)

nonlinear model, you shouid select Quick/Estimate Equation... and then enter the follow-
ing specification:
log({q) = c(1l) + c{2)*loglei3)*k c{d)+{1-c(3})*1%c(4))
To test the nonlinear restriction, choose View/Coefficient Tests/Wald-Coefficient Restric-
tions... from the equation toolbar and type the following restriction in the Wald Test dialog .
box:
c{2)=1/c{4)

‘The results are presented below:

Waid Test:

31y
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Since this is a nonlinear equation, we focus on the Chi-square statistic which fails 10 reject
the null hypothesis. Note that EViews reports that it used the delta method {with analytic
derivatives) to compute the Wald restriction variance for the nonlinear restriction.

It is well-known that nonlinear Wald tests are not invariant to the way that you specify the
nonlinear restrictions. In this example, the nonlinear restriction Sy = 1/, may equiva-
lently be written as foff; = 1 or 84 = 1/, (for nonzero By and 8,). For example,
entering the restriction as

ci{2)}*cl(a)=]

yields:

-4 Qm sm sm

Daits mathod computed ysing snplylic darvalives.

so that the test now decisively rejects the null hypothesis. We hasten 1o add that type of
inconsistency is not unique to EViews, but is a more general property of the Wald test.
Unfortunately, there does not seem to be a general solution to this problem (see Davidson

and MacKinnon, 1993, Chapter 13}.

Wald Test Details
Consider a general nonlinear regression model

v=f(B+e (15.3)
where y and ¢ are T-vectars and £ is a k-vector of parameters to be estimated. Any

restrictions on the parameters can be written as
Hy: o(ffy = 0, {i5.4)

where g is a smooth function, g: R* ~» RY, imposing g restrictions on 8. The Wakd sta-
tistic is then computed as

W= ﬁﬁ)‘(afw-@ff(b)%ﬂ))ﬁﬂlp,; (15.5)

W
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where T is the number of observations and b is the vector of unrestricted paramster esti-
mates, and where ¥ is an estimate of the b covariance. In the standard regression case, ¥/
is given by

) = sg(mm)d (15.6)

o8 of

where u is the vector of mxgestziezed residuals, and s° is the usual estimator of the unre-
stricted residual variance, 5° = (u'u)/(N— k), but the estimator of V may differ. For
exampie, ¥ may be a robust variance matrix estimator computing using White or Newey-

West techniques.

More formally, under the null hypothesis H,, the Wald statistic has an asymptotic xz( q)
distribution, where g is the number of restrictions under Hy.

p=b

For the textbook case of a linear regression model ‘
y=XpB+e (15.7)
and linear restrictions
Hy: Rf-r =0, (15.8}
where R is a known g x k& matrix, and r is a g-vector, respectively. The Wald statistic in
Equation (15.5) reduces to
W = (Rb~ r)’(Rsz(X'X)“IR‘)-}(Rb -7r), | (15.9)
which is asymptotically distributed as xz(q} under Hy.
If we further assume that the errors ¢ are independent and identically normally distrib-

uted, we have an exact, finite sample F-statistic: .
W ’ — ’ B
=% _(@8-uug (15.10)

g (Wu)/(T-k)’

where f1 is the vector of residuals from the restricted regression. In this case, the F-statis-
tic compares the residual sum of squares computed with and without the restrictions
imposed.

We remind you that the expression for the finite sample Festatistic in (15,10} is for stan-
dard linear regression, and is not valid for more general cases (nonlinear models, ARMA
specifications, or equations where the variances are estimated using other methods such
as Newey-West or White). In non-standard settings, the reported F-statistic {which EViews
always computes computes as W/ g}, does not possess the desired finite-sample proper-
ties. In these cases, while asymptotically valid, the F-statistic results should be viewed as
illustrative and for comparison purposes only.
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Omitted Variables

This test enables you to add a set of variabies to an existing equation and to ask whether
the set makes a significant contribution to explaining the variation in the dependent vari-
able. The null hypothesis H is that the additional set of regressors are not jointly signifi-
cant.
The output from the test is an F-statistic and a likelihood ratio (LR) statistic with associ-
ated p-values, together with the estimation resuits of the unrestricted model under the
alternative. The Fostatistic is based on the difference between the residual sums of squares
of the restricted and unrestricted regressions and is only valid in linear regression based
settings. The LR statistic is computed as

LR = ~2(l.-1) {15.11)

where I, and I, are the maximized values of the (Gaussian] log likelihood function of the

umtﬁﬁwda?dmicmmms. respectively. Under Hy, the LR statistic has an
asympiotic x distribution with degrees of freedom equal to the number of restrictions
(the number of added variables).

Bear in mind that:

» The omitted variables test requires that the same number of observations exist in the
original and test equations. If any of the series to be added contain missing observa-
tions over the sample of the original equation (which will ofien be the case when
you add lagged variables), the test statistics cannot be constructed.

+ The omitted variables test can be applied to equations estimated with linear LS,
TSLS, ARCH (mean equation only), binary, ordered, censored, truncated, and count
models. The test is available only if you specify the equation by listing the regres-
sors, not by a formula.

To perform an LR test in these settings, you can estimate a separate equation for the unre-

stricted and restricted models over a common sample, and evaluate the LR statistic and p-
value using scalars and the ecchisq function, as desaribed above.

How 1o Perform an Omitted Variables Test

To test for omitted variables, select View/Coefficient Tesis/Omitted Variables-Likelthood
Ratio... In the dialog that opens, list the names of the test variables, each separated by at

least one space. Suppose, for example, that the initial regression is
1= logigl c log(l} logik)
if you enter the list
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log im) logle)

in the dialog, then EViews reporis the results of the unrestricted regression containing the
two additional explanatory variables, and displays statistics testing the hypothesis that the
coefficients on the new variables are jointly zero. The top part of the output depicts the

test results:

F-statistic 426‘?4?5 P 0028611

Fo

The F-statistic has an exact finite sample F-distribution under H, for linear models if the
errors are independent and identically distributed normal random variables. The numera-
tor degrees of freedom is the number of additional regressors and the denominator degrees
of freedom is the number of observations less the total number of regressors. The lcg like-
lihood ratio statistic is the LR test statistic and is asymptotically distributed as a x wath
degrees of freedom equal to the number of added regressors.

In our example, the tests reject the null hypothesis that the two series do not belong 1o the
equation at a 5% significance level, but cannot reject the hypothesis at a 1% significance

level.

Redundant Variables

The redundant variables test allows you to test for the statistical significance of a subset of
your included variables. More formally, the test is for whether a subset of variables in an
equation all have zero coefficients and might thus be deleted from the equation. The
redundant variables test can be applied to equations estimated by linear 1S, TSLS, ARCH
(mean equation only), binary, ordered, censored, truncated, and count methods. The test

is available only if you specify the equation by listing the regressors, not by a formula,

How to Perform a Redurdant Variables Test

To test for redundant variables, select View/Coefficient Tests/Redundant Variables-Like-
likood Ratio... In the dialog that appears, list the names of each of the test variables, sep-
arated by at least one space, Suppose, for example, that the initial regression is

i logigl ¢ log{l) loglk) logim} logle)

If you type the list
" log(m) logte)

in the dialog, then EViews reports the results of the restricted regression dropping the two
regressors, followed by the statistics associated with the test of the hypothesis that the

coefficients on the two variables are jointly zero.
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The test statistics are the F-statistic and the Log likelihood ratic. The F-statistic bas an
exact finite sample F-distribution under Hy, if the errors are independent and identically
distributed normal random variables and the mode] is linear. The mmmerator degrees of
freedom are given by the number of coefficient restrictions in the null hypothesis. The
mmmammmw?tmwmﬁﬁm.m
LR test is an asymptotic test, distributed as a )~ with degrees of freedom equal 10 the num-
ber of excluded variables under H. In this case, there are two degrees of freedom.

Residual Tests

EViews provides tests for serial corvelation, normality, heteroskedasticity, and autoregres-
sive conditional heteroskedasticity in the residuals from your estimated equation. Not all

of these tests are available for every specification.

Correlograms and Q-statistics

This view displays the autocorrelations and partial auto-
correlations of the equation residuals up to the specified
number of lags. Further details on these statistics and the
Ljiung-Box Q-statistics that are also computed are pro-
vided in Chapter 7, "Q-Statistics™ on page 169.

This view is available for the residuals from least squares, 1wo-stage least squares, nonlin-
ear least squares and binary, ordeved, censored, and count models. In calculating the prob-
ability values for the Q-statistics, the degrees of freedom are adjusted to account for
estimated ARMA terms.

‘B display the comrelograms and Q-statistics, push View/Residnal Testa/Corvelogram-Q-
statistics on the equation toolbar. In the Lag Specification dialog box, specify the number
of lags you wish to use in computing the correlogram.

Correlograms of Squared Residuals

This view displays the autocorrelations and partial autocorrelations of the squared resido-
als up to any specified number of lags and computes the Ljung-Box (}statfstics for the cor-
responding lags. The correlograms of the squared residuals can be used w check
autoregressive conditional heteroskedasticity (ARCH) in the residuals; see also “ARCH LM
Test” on page 377, below. «

M there is no ARCH in the residuals, the sutocorrelations and partial autocarrelations

should be zero at all lags and the Q-statistics should not be significant; see Chapter 2,
page 167, for a discussion of the correlograms and Q-statistics. -
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This view is available for equations estimated by least squares, two-stage least squares,
and nonlinear least squares estimation. In calculating the probability for -statistics, the
degrees of freedom are adjusted for the inclusion of ARMA terms.

To display the correlograms and (}-statistics of the squared residuals, push View/Residual
Tests/Correlogram Squared Residuals on the equation toolbar. In the Lag Specification
dialog box that opens, specify the number of lags over which to compute the correlograms.

Histogram and Normality Test

This view displays 2 histogram and descriptive statistics of the residuals, including the

Jarque-Bera statistic for testing normality. If the residuals are normally distributed, the his-

togram should be bell-shaped and the Jarque-Bera statistic should not be significant; see 9
Chapter 7, page 153, for a discussion of the Jarque-Bera test. This view is available for

residuals from least squares, two-stage least squares, nonlinear least squares, and binary,

ordered, censored, and count models.

To display the histogram and Jarque-Bera stagistic, select View/Residual Teéts/mstogrm-
Normality. The Jarque-Bera statistic has a x~ distribution with two degrees of freedom
under the null hypothesis of normally distributed errors.

Serial Correlation LM Test

This test is an alternative to the (}statistics for testing serial correlation. The test belongs
to the class of asymplotic {(large sample} tests known as Lagrange multiplier (LM) tests.

Unlike the Durbin-Watson statistic for AR(1) errors, the LM test may be used to test for
higher order ARMA errors and is applicable whether or not there are lagged dependent
variables. Thereiore, we recommend its use (in preference to the DW statistic) whenever

you are concerned with the possibility that your errors exhibit autocorrelation, .

The null hypothesis of the LM test is that there is no serial correlation up to lag order p,
where p is a pre-specified integer. The local alternative is ARMA(r, ¢) errors, where the
number of lag terms p = max(r, ¢ }. Note that this alternative includes both AR(p )} and

MA(p) error processes, so that the test may have power against a variety of alternative
antocorrelation structures. See Godfrey {1988}, for further discussion.
The test statistic is computed by an auxiliary regression as follows. First, suppose you have

estimated the regression _
¥ = XB+ e (15.12)

where b are the estimated coefficients and € are the errors. The test statistic for lag order
p is based on the auxiliary regression for the residuals e = gy~ X A

380
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P
ey = Xg-&( 5 oae, -ty {15.13)
F 20 §

Following the suggestion by Davidson and MacKinnon {1993), EViews sets any presample
values of the residuals to 0. This approach does not affect the asymptotic distribution of
the statistic, and Davidscn and MacKinnon argue that doing so provides a test statistic
which has better finite sampie properties than an approach which drops the initial obser-
vations.
This is a regression of the residuals on the original regressors X and lagged residuals up o
order p. EViews reporis two test statistics from this test regression. The F-statistic is an
omitted variable test for the joint significance of all lagged residuals. Because the omitted
variables are residuals and not independent variables, the exact finite sample distribution
of the F-statistic under H; is still not known, but we present the F-satistic for compari-

son purposes. _
The Obs*R-squared statistic is the Breusch-Godfrey LM test statistic. This LM statistic is
computed as the number of observations, times the {uncentered) R’mwmm
%UMW;@MM@M,&tWMKW&MM asa
x(p).

The serial correlation LM test is available for residuals from either least squares or two-

stage least squares estimation. The original regression may include AR and MA terms, in
which case the test regression will be modified to take account of the ARMA werms. Testing

in 2SLS settings involves additional complications, see Wooldridge (1990} for details.

b carry out the test, push View/Residual Tests/Serial Correlation LM Test... on the
equation toolbar and specify the highest order of the AR or MA process that might deacribe
the sevial correlation. If the test indicates serial correlation in the residuals, LS standard
erTors are invalid and should not be used for inference.

ARCH LM Test

This is a Lagrange muktiplier (LM} test for autoregressive conditional beteroskadasticity
{ARCH) in the residuals (Engle 1982). This particular specification of heteroskedasticity
was motivated by the observation that in many financial time series, the magnitode of
residuals appeared to be related to the magnitde of recent residuals. ARCH in itself does

not invalidate standard LS inference. However, ignoring ARCH effects may result in loss of
efficiency; see Chapter 16 for a discussion of estimation of ARCH modets in EViews.

The ARCH LM test statistic is computed from an auxiliary test regression B test the null
hypothesis that there is no ARCH up to order ¢ in the residuals, we run the regression
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' q
el = bo+( T Bl + (15.19)

g =]

where e is the residual. This is a regression of the squared residuals on a constant and
lagged squared residuals up to order ¢ . EViews reports two test statistics from this test
regression. The F-statistic is an omitted variable test for the joint significance of all lagged
squared residuals. The Obs*R-squared statistic is Engle’s LM test statistic, computed as the
number of observations times the R*from the test regression. The exact finite sample dis-
tribution of the F-statistic under Hy; is not known but the LM test statistic is asymptoti-

cally distributed xz( q) under quite general conditions. The ARCH LM test is available for
equations estimated by least squares, two-stage least squares, and nonlinear least squares. '

To carty out the test, push View/Residual Tests/ARCH LM Test... on the equation toolbar
and specify the order of ARCH o be tested against.

White's Heteroskedasticity Test

This is a test for heteroskedasticity in the residuals from a ieast squares regression (White,
1980). Ordinary least squares estimates are consistent in the presence heteroskedasticity,
but the conventional computed standard errors are no longer valid. If you find evidence of
heteroskedasticity, you should either choose the robust standard errors option to cormrect
the standard etTors (see “Heteroskedasticity Consistent Covariances (White)” on page 281)
or you should modetl the heteroskedasticity to obtain more efficient estimates using

weighted least squares.
White’s test is a test of the null hypothesis of no heteroskedasticity against heteroskedas-
ticity of some unknown general form. The test statistic is computed by an auxiliary regres-

sion, where we regress the squared residuals on all possible (nonredundant) cross O
products of the regressors. For example, suppose we estimated the following regression:

y: = b+ bozy + b3z + € (15.15)

where the b are the estimated parameters and e the residual. The test statistic is then

based on the auxiliary regression:

ef = O+ 0T, + G2y + zxgxf + a4zf + GgT2, + Vg . (15.16)
EViews reports two test statistics from the test regression. The F-statistic is an omitted
variable test for the joint significance of all cross products, excluding the constant. It is pre-
sented for comparisen purposes.
The Obs*R-squared stansﬂc is White’s test statistic, computed as the number of observa-

tions times the centered R° from the test regression. The exact finite sample distribution
of the F-statistic under H is not known, but White’s test statistic is asymptotically dis-
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tributed as a x with degrees of freedom equal 10 the number of slope coefficients (exciud-
ing the constant} in the test regression.

White also describes this approach as a general test for model misspecification, since the
pull hypothesis underlying the test assumes that the errors are both hornoskedastic and
independent of the regressors, and that the linear specification of the model is correct. Fail-
ure of any one of these conditions could lead to a significant test statistic. Conversely, a
non-significant test statistic implies that none of the three conditions is violated.

When there are redundant cross-products, EViews automatically drops them from the test
regression. For exampie, the square of a dummiy variable is the dummy variable itself, so
that EViews drops the squared term 1o avoid perfect collinearity.

To carry out White's heteroskedasticity test, select View/Residual Tests/White Heterosk-
edasticity. EViews has two options for the test: cross terms and no cross terms. The cross
terms version of the test is the original version of White's test that includes all of the cross
product terms {in the example above, z,2, ). However, with many right-hand side vari-

ables in the regression, the rumber of possible cross product terms becomes very large so
that it may not be practical to include all of them. The no cross terms option runs the test

regression using only squares of the regressors.

Specification and Stability Tests

EViews provides a number of test statistic views that examine whether the paramesers of
your model are stable across various subsamples of your data.

One recommended empirical technique is to split the 7'
observations in your data set of observations into T observa-
tions to be used for estimation, and T; = T~ T observa-
tions 10 be used for testing and evaluation. Using all availabie
sample observations for estimation promotes a search for a specification that best fits that
specific data set, but does not allow for testing predictions of the model against data that
have not been used in estimating the model. Nor does it allow one 1o test for parameter
constancy, stability and robustness of the estimated relationship. In time sevies work you
will usually take the firt T} observations for estimation and the last T3 for testing. With
cross section data you may wish to onder the data by some variable, such as housebold
income, sales of a firm, or other indicator variables and use a sub-set for testing.

There are 0o hard an fast rules for determining the relative sizes of T, and 7. In some
cases there may be obvicus points at which a break in structure might have taken place—
a war, a piece of legislation, a switch from fixed to floating exchange rates, or an oil shock.
Where there is no reason a priori to expect a structural break, 2 commonly used rule-of-

thumb is to use 85 to 90 percent of the observations for estimation and the remainder for

testing.
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EViews provides built-in procedures which facilitate variations on this type of analysis.

Chow's Breakpoint Test

The idea of the breakpoint Chow test is to fit the equation separately for each subsample
and to see whether there are significant differences in the estimated equations. A signifi-
cant difference indicates a structural change in the relationship. For example, you can use
this test to examine whether the demand function for energy was the same before and after
the oil shock. The test may be used with least squares and two-stage least squares regres-
sions.

To carry out the test, we partition the data into two or more subsamples. Each subsample ‘
must contain more observations than the number of coefficients in the equation so that the
equation can be estimated. The Chow breakpoint test compares the sum of squared residu-
als obtained by fitting a single equation to the entire sample with the sum of squared resid-
uals obtained when separate equations are fit to each subsample of the data,

EViews reports two test statistics for the Chow breakpoint test. The F-statistic is based on
the comparison of the restricted and unrestricted sum of squared residuals and in the sim-

plest case involving a single breakpoint, is computed as
_(a'a - (uyuy + ug'ug)) 'k 7 (15.12)
(4y Uy + tig ug)/ (1~ 2k) )

where @'t is the restricted sum of squared residuals, u;"u, is the sum of squared residu-
als from subsample i, T is the total number of observations, and & is the number of
parameters in the equation. This formula can be generalized naturally to more than one
breakpoint. The F-statistic has an exact finite sample F-distribution if the errors are inde-

pendent and identically distributed normal random variables, ‘

The log likelihood ratio statistic is based on the comparison of the resiricted and unre-
stricted maximum of the (Gaussian) log likelihood function. The LR test statistic has an

asymptotic x2disn'ibuﬁan with degrees of freedom equal to (m — 1}k under the null
hypothesis of no structural change, where m is the number of subsamples.

One major drawback of the breakpoint test is that each subsample requires at least as
many observations as the number of estimated parameters. This may be a problem if, for
example, you want to test for structural change between wartime and peacetime where
there are only a few observations in the wartime sample, The Chow forecast test, discussed

below, should be used in such cases.

To apply the Chow breakpoint test, push View/Stability Tests/Chow Breakpoint Test...
on the equation toolbar. In the dialog that appears, list the dates or observation numbers
for the breakpoints. For example, if your original equation was estimated from 1950 to

1994, entering

28
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1560
in the dialog specifies two subsamples, one from 1950 10 1959 and one from 1960 to 1994.
Typing

1960 1970
specifies three subsamples, 1950 to 1959, 1960 to 1969, and 1970 to 1994.

Chow's Forecast Test

The Chow forecast test estimates two models—one using the full set of data T, and the
other using a long subperiod Ty . A long difference between the two models casts doubt on
the stability of the estimated relation over the sample pericd. The Chow forecast test can
be used with Jeast squares and two-stage least squares regressions.

EViews reports two test statistics for the Chow forecast test. The F-statistic is computed as

” (a'a — ﬁ-’i(}frg

where @'t is the residual sum of squares when the equation is fitted to all T sampie
observations, u”u is the residual sum of squares when the equation is fitted w0 T} obser-
vations, and k is the mumber of estimated coeflicients. This Fostatistic foflows an exact

finite sample F-disiribution if the errors are independent, and identically, normally distrib-
uted.

The log likelihood ratio statistic is based on the comparison of the restricted and unre-
siricted maximum of the (Gaussian) log likelihood function. Both the restricted and unre-
stricted Jog likelihood are obtained by estimating the regression using the whole sample.
The restricted regression uses the original set of regressors, while the unrestricted regres-
mad&aénmmyumbkfaeachfomastpdm The LR test statistic has an asymptotic
X dﬁmbuﬁmwﬁhéegmofﬁtedome@ulmthenwbe'oimm T, under

the null hypothesis of no structural change.

‘To apply Chow's forecast test, push View/Stability Tests/Chow Fovecast Test... on the
equation tookbar and specify the date or observation number for the beginning of the fore-
casting sample. The date should be within the current sample of cbservations.

As an example, suppose we estimate a consumption function osing quanterly data from
1947:1 to 1994:4 and specify 1973:1 as the first observation in the forecast period. The test

reestimates the equation for the period 1947:1 to 1972:4, and uses the result 10 compute
the prediction errors for the remaining quarters, and reports the following results:
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Neither of the forecast test statistics reject the null hypothesis of ne structural change in
the consumption function before and after 1973:1.

If we test the same hypothesis using the Chow breakpoint test, the result is

Note that both of the breakpoint test statistics decisively reject the hypothesis from above.
This example illustrates the possibility that the two Chow tests may yield conflicting

results.

Ramsey's RESET Test

RESET stands for Regression Specification Error Test and was proposed by Ramsey (1969).
The classical normal linear regression model is specified as
y= XB+e, (15.19)

where the disturbance vector ¢ is presumed to follow the mulivariate normal distribution
N(0, 0 I) Specification error is an omnibus term which covers any departure from the
assumptions of the maintained model. Serial correlation, heteroskedasticity, or non-nor-
mality of all violate the assumption that the disturbances are distributed N(0, ¢°I) . Tests
for these specification errors have been described above. In contrast, RESET is a general

test for the following types of specification errors:
¢ Omitted variables; X does not inclhude all relevant variables.

» Incorrect functional form; some or all of the variables in ¥ and X should be trans-
formed to logs, powers, reciprocals, or in some other way.

¢ Correlation between X and ¢, which may be caused, among other things, by mea-
surement error in X , simultaneity, or the presence of lagged y values and serially

correlated disturbances.

Under such specification errors, LS estimators will be biased and inconsistent, and conven-
tional inference procedures will be invalidated. Ramsey (1969} showed that any or all of
these specification errors produce a non-zero mean vector for ¢. Therefore, the nuli and

alternative hypotheses of the RESET test are
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. 2
Hy: e~ N(0,06°]) (15.20)
Hy: e~ N(z, aaf) p+0

The test is based on an augmented regression
y= Xf+Zr+e. (1s.21)

The test of specification error evaluates the restriction -y = 0. The crucial guestion in
constructing the test is to determine what variables should enter the Z matrix. Note that
the Z matrix may, for example, be comprised of variables that are not in the original spec-
ification, so that the test of ¥ = 0 is sirnply the omitted variables test described above.

In testing for incommect functional form, the nonlinear part of the regression model may be
some function of the regressors included in X . For exampile, if a linear relation

y= ﬂg“i'.@lX'?-é. {15.22)
is specified instead of the true relation
y = Bo+ B X+ B X4 ¢ (15.23)

the augmented model has Z = X and we are back to the omitted variatile case. A more
general example might be the specification of an additive relation

y=Fg+ B X1+ B Xyte (15.24)
instead of the (true) multiplicative relation
¥ = BoXP X3 4. (15.25)

A Taylor series approximation of the multiplicative relation would yield an expression

involving powers and cross-products of the explanatory variables. Ramsey's suggestion is
to include powers of the predicted values of the dependent varisble (which are, of coarve,
linear combinations of powers and cross-product terms of the explanatory variables) in Z:

Z= [ﬁzs 931 ﬁ‘t o | (15.26)

where ff is the vector of fitted values from the regression of y on X . The superscripts
indicate the powers to which these predictions are raised, The first power is not included
since it is perfectly colfinear with the X matrix.

Qutput from the test reports the test regression and the F-statistic and Jog likelibood ratio
for testing the hypothesis that the coefficients on the powers of fitted values are all 2er0. A
study by Ramsey and Alexander (1984) showed that the RESET test could detect specifica-
tion error in an equation which was known a priori to be misspecified but which nonethe-
less gave satisfactory values for all the more traditional test criteria—goodness of fit, test
for first order serial comrelation, high f-ratios.
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To apply the test, select View/Stabllity Tests/Ramsey RESET Test... and specify the num-
ber of fitted terms to include in the test regression. The fitted terms are the powers of the
fitted values from the original regression, starting with the square or second power. For
example, if you specify 1, then the test will add §~ in the regression and if you specify 2,
then the test will add §° and §” in the regression and so on. If you specify a large number
of fitted terms, EViews may report a near singular matrix error message since the powers
of the fitted values are likely to be highly collinear. The Ramsey RESET test is applicable

only to an eqguation estimated by least squares.

Recursive Least Squares

In recursive least squares the equation is estimated repeatedly, using ever larger subsets of
the sample data. If there are k coefficients to be estimated in the b vector, then the first &
ohservations are used to form the first estimate of b. The next observation is then added to
the data set and &k + 1 observations are used to compute the second estimate of & . This
process is repeated until all the T sample points have been used, yielding 7'~ k + 1 esti-
mates of the b vector. At each step the last estimate of b can be used to predict the next
value of the dependent variable, The one-step ahead forecast error resulting from this pre-
diction, suitably scaled, is defined to be a recursive residual

More formally, let X, _; denote the (¢ - 1) % k matrix of the regressors from period 1 to
period £ - 1, and y,_, the corresponding vector of observations on the dependent vari-
able. These data up to period ¢ — 1 give an estimated coefficient vector, denoted by b, _, .
This coefficient vector gives you a forecast of the dependent variable in period ¢ . The fore-
cast is z,b, where z; is the row vector of observations on the regressors in period £ . The
forecast error is y, — z,b, and the forecast variance is given by:

i1+ 2 (XX 2y). (15.27)

The recursive Tesidual w, is defined in EViews as
(¥e—2¢'b)
- (15.28
(14 x_;(Xt’Xt} :Ct}

W, ==

These residuals can be computed for ¢ = &k + 1, ..., T'. If the maintained model is valid,
the recursive residuals will be independently and normally distributed with zero mean and

constant varjance ¢ .
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To calculate the recursive residuals, press
View/Stability Tesis/Recursive Estimates
{OLS only)... on the equation toolbar.

There are six options available for the recur-
sive estimates view. The recursive estimates £ fpabilg Fanowt Tou
view is only available for equations esti- € M Frmncas Yout
mated by ordinary least squares without AR | e e
and MA termns. The Save Resuilts as Serles T S Fundie o Savioe
option allows you to save the recursive
residuals and recursive coefficients as
named series in the workfile; see “Save Resulis as Series™ on page 388.

L) o]

Recursive Residuals
This option shows a plot of the recursive residuals about the zero line. Plus and minas two
standard errors are also shown at each point. Residuals outside the standand error bands

suggest instability in the parameters of the equation.

CUSUM Test

‘The CUSUM test (Brown, Durbin, and Evans, 19795) is based on the cumulative sum of the
recursive residuals. This option plots the cumulative sum together with the $% critical
lines. The test finds parameter instability if the camulative sum goes outside the area

between the two critical lines.
The CUSUM test is based on the statistic

¢
W,= Y wl/s, {15.29)

rak4]
fort = k+1,...,T, where w is the recursive residaal defined above, and s is the stan-
dard error of the regression fitted to all T sample points. If the 7 vector remains constant
from period to period, E(W,) = 0, but if § changes, W, will tend t0 divege from the

zero mean value line. The significance of any departure from the zero line is assessed by
reference to a pair of 5% significance lines, the distance between which increases with ¢.

The 5% significance lines are found by connecting the points
[k, +-0948(T-k)%]  and  [T.$3x0.M48(T-k)'3. (1530

Movement of W, cutside the critical lines is suggestive of coefficient instability. A sample
CUSUM test is given below.
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{— CUSUM -~ E% Significence |
The test clearly indicates instability in the equation during the sample period.

CUSUM of Squares Test
The CUSUM of squares test (Brown, Durbin, and Evans, 1975} is based on the test statistic
P LA
wo=( 5 B § o) asan
r=k+1 r=k+1

The expected value of 5 under the hypothesis of parameter constancy is
E(S) = (t~k)/(T-k) {15.32}

which goes from zero at ¢ = k tounity at £ = 7. The significance of the departure of S
from its expected value is assessed by reference to a pair of parallel straight lines around
the expected value. See Brown, Durbin, and Evans (1975) or Johnston and DiNardo (1997,
Table D.8) for a table of significance lines for the CUSUM of squares test.

The CUSUM of squares test provides a plot of S; against ¢ and the pair of 5 percent criti-
cal lines. As with the CUSUM test, movement outside the critical lines is suggestive of

parameter or variance instability.

240
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The cumulative sum of squares is gener-
ally within the 5% significance lines, sug-
gesting that the residual variance is
somewhat stabie.

One-Step Forecast Test

H you look back at the definition of the
recursive residuals given above, you will
see that each recursive residual is the error
in a one-step ahead forecast. To test
whether the value of the dependent vari-
able at time t might have come from the
model fitted to all the data up to that

P EEEER R R R %
(=i of Sqweres —— % Sguiicance |

point, each error can be compared with its standard deviation from the full sample.

The One-Step Forecast Test option produces a plot of the recursive residuals and standard
evrors and the sample points whose probability value is at or below 15 percent. The plot

can help you spot the periods when your equation is least successful. Rur example, the
one-step ahead forecast test might look like this:

The upper portion of the plot (right verti-
cal axis) repeats the recursive residuals
and standard errors displayed by the
Recursive Residuals option. The lower
portion of the piot {left vertical axis)
shows the probability values for those
sample points where the hypothesis of
parameter constancy would be rejected at
the 5, 10, or 15 percent jevels. The points
with p-values less the 0.05 correspond to
those points where the recursive residuals
go outside the two standard error bounds.

For the test equation, there is evidence of
instability early in the sample period,

N-Step Forecast Test

This test uses the recursive calculations to carry ot a sequence of Chow Forecast tesis. In
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conirast to the single Chow Forecast test described earlier, this test does not require the

specification of a forecast period— it automatically computes all feasible cases, starting
with the smallest possible sample size for estimating the forecasting equation and then

adding one observation at a time. The plot from this test shows the recursive resiluals at

3t
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the top and significant probabilities (based on the F-statistic] in the lower portion of the
diagram.

Recursive Coefficient Estimates _
This view enables you to trace the evolution of estimates for any coefficlent as more and
more of the sample data are used in the estimation. The view will provide a plot of
selected coefficients in the equation for all feasible recursive estimations. Also shown are
the two standard error bands around the estimated coefficients.

if the coefficient displays significant variation as more data is added to the estimating
equation, it is a strong indication of instability. Coefficient plots will sometimes show dra-
matic jumps as the postulated equation tries to digest a structural break.

To view the recursive coefficient estimates, click the Recursive Coeificients option and list
the coefficients you want o plot in the Coefficient Display List field of the dialog box. The
recursive estimates of the marginal propensity to consume (coefficient C{2)), from the
sample consuraption function are provided below:

The estimated propensity to consume rises 1.4
steadily as we add more data over the sam-
ple period, approaching a value of one.

1.24,

Save Resuits as Series

The Save Resulis as Series checkbox will
do different things depending on the plot
you have asked to be displayed. When ‘
paired with the Recursive Coefficients M
option, Save Results as Series will instruct [
EViews to save all recursive coefficients and

their standard errors in the workfile as [=— Recursive 81¢2) Estimstes— ¢ 2 5.E|
named series. EViews will name the coeffi- '

cients using the next available name of the form, R_C1, R_C2, ..., and the corresponding

standand errors as R_CISE, R_C2SE, and so on.

TETrTTTTT
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If you check the Save Results as Series box with any of the other ¢ptions, EViews saves
the recursive residuals and the recursive standard errors as namex series in the workfile.
EViews will name the residual and standard errors as R_RES and R_RESSE, respectively.
Note that you can use the recursive residuals to reconstruct the CUSUM and CUSUM of
squares series. _
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Applications
In this section, we show how to carry out other specification tests in EViews. For brevity,
the discussion is based on commands, but most of these procedures can also be carried out
using the menu system.
A Wald test of structural change with unequal variance
The F-statistics reported in the Chow tests have an F-distribution only if the evrors are
independent and identicaily normally distributed. This restriction implies that the residual
variance in the two subsamples must be equal.
Suppose now that we wish to compute a Wald statistic for structural change with unequal
subsample variances. Denote the parameter estimates and their covariance matrix in sub-
sample i as b; and V; for ¢ = 1, 2. Under the assumption that &; and by are indepen-
dent normal, the difference b, ~ b, has mean zero and variance Vy + V,. Therekore, a
Wald statistic for the pull hypothesis of no structural change and independent samples can

be constructed as
W = (b-by)'(Vy + V) (B - by). {15.33)

which has an asymptotic x’mmmmdmmwmmof
estimated parameters in the b vector.

R cairy out this test in EViews, we estimate the model in each subsample and save the
estimated coefficients and their covariance matrix. For example, suppose we have a quar-

terly sample of 1947:1-1994:4 and wish to test whether there was a stractural change in
the consumption function in 1973:1. First, estimate the model in the first sample and save

the results by the commands
coef {2} bl
ompl 1947:1 1973:4
egquation eg 1.1s log{cs)=bl(1l)+bi(2)+*log(gdp)
sym viseqg 1.6covV

The first line declares the coefficient vector, Bl, into which we will place the coefficient
estimates in the first sample. Note that the equation specification in the third line explicitly
refers to dlements of this coefficient vector. The last line saves the coefficient covariance

matrix as 2 symmetric matrix named V1. Similarly, estimate the model in the second sam-
ple and save the results by the commands

coef {(2) b2

smpl 1973.1 1994.4

equation eq 2.1s logics)=b2(1)+b2(2) *log(gdp}

sym vimeqg 2. @00V

k] &
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To compute the Wald statistic, use the command

matrix wald=@transpose (bl-b2)*einverse (v1+v2)*({bi-b2)

The Wald statistic is saved in the 1 x 1 matrix named WALD. To see the value, either dou-
ble click on W;%LD or type “show wald”. You can compare this value with the critical val-
ues from the x distribution with 2 degrees of freedom. Alternatively, you can compute the

p-value in EViews using the command
scalar wald _pel-e@cchisg{wald(1l,1),2)

The p-value is saved as a scalar named WALD_P. To see the p-value, double click on
WALD_P or type “show wald_p". The p-value will be displayed in the status line at the bot-

tom of the EViews window.

The Hausman test

A widely used class of tests in econometrics is the Hausman test. The underlying idea of
the Hausman test is to compare two sets of estimates, one of which is consistent under
both the null and the alternative and another which is consistent only under the null
hypothesis. A large difference between the two sets of estimates is taken as evidence in

favor of the alternative hypothesis.

Hausman {1978} originally proposed a test statistic for endogeneity based upon a direct
comparison of coefficient values. Here we illustrate the version of the Hausman test pro-
posed by Davidson and MacKinnon (1989, 1993), which carries out the test by running an

auxiliary regression.
The following equation was estimated by OLS:

Dapendetit Vardable: LOGM1)
Mathod: Least Squeres

Date: 08/1397 Time: 14:12
Bample(atiusiad): 1559:02 1085.04
IHCRICE] DRSSP OIS 45 JEIY (RSHNG

R

Forrdi M r bl

¢ -0.022099 0.00M443 5108528  0.0000
LOGHP) 0.011630 0.002585 4489706 - 0.0000

R-squansd 0.999853 Mean dependent var §.8044581

Adjuste] R-squarsd 0.999953 S.D. dependent var 0.870586
S.E. of regression 0.004601 Akaike info criterion 7.813744
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Suppose we are concerned that industrial production (IP) is endogenously determined
with money (M1) through the money supply function. }f this were the case, then OLS esti-
mates will be biased and inconsistent. To test this hypothesis, we need to find a set of
instromental variables that are correlated with the “suspect” variable IP but not with the
error term of the money demand equation. The choice of the appropriate instrument is a
crucial step. Here we take the unemployment rate {URATE) and Moody’s AAA corporate
bond yield (AAA) as instruments.
o carry out the Hausman test by artificial regression, we run two OLS regressions. In the
first regression, we regress the suspect variable (log} IP on all exogenous variables and
instruments and retrieve the residuals:

1 log{ip} c dlog{ppi) tb3 log(mi{-1}) urate aas

series res iperesid
Then in the second regression, we re-estimate the money demand function including the
residuzals from the first regression as additional regressors. The result is:

If the OLS estimates are consistent, then the coefficient on the first stage residuals should
not be significantly different from zero. in this example, the test {marginally) rejects the
hypothesis of consistent OLS estimates (to be more precise, this is an asymptotic test and
you should compare the ¢-statistic with the critical values from the standard normat].

Non-nested Tests

Most of the tests discussed in this chapter are nested tests in which the null hypothesis is
obtained as a special case of the alternative hypothesis. Now consider the problem of
choosing between the following two specifications of a consumption function:
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Hy: CS: = a1+ ayGDFP +a3GDP,_;+¢,

15.34
.HQ: GS; b ﬁl + ﬁgGDPt -+ ﬁsc‘st-i + £y { )

These are examples of non-nested models since neither model may be expressed as a
restricted version of the other. ‘

The J-test proposed by Davidson and MacKinnon (1993) provides one method of choosing
between two non-nested models. The idea is that if one model is the correct model, then

the fitted values from the other model should not have explanatory power when estimating
that model. For example, to test model H, against model H,, we first estimate model H,

and retrieve the fitted values:
equation eg _c¢s82.1s cs ¢ gdp ¢s(-1)
eq _cg2.fit cs2

The second line saves the fitted values as a series named CS2. Then estimate model K 1
including the fitted values from model H,. The result is:

GOP(-1) 0314540 0020287 -1073678  0,0000

The fitted values from model H, enter significantly in model H; and we reject model
Hy. : _

We must also test model H, against model H, . Estimate model H, retrieve the fitted
values, and estimate model H, including the fitted values from model H,; . The results of
this “reverse” test are given by:

e



The fitted values are again statistically significant and we reject model H,.

in this example, we reject both specifications, against the alternatives, suggesting that
another model for the data is needed. It is also possible that we fail to reject both models,
in which case the data do not provide enough information to discriminate between the two

models.

Commands

All of the specification and diagnostic tests explained in this chapter are available in com-
mand form as views of a named equation. Follow the equation name with a dot and the
view name of the test. For example, 10 carry out the Wald test of whether the third and

fourth coefficients of the equation object EQ1 are both equal to zevo, type
egl.wald c{3}=0,c(4}=0
To canry out the serial correlation LM test of the residuals in equation EQ_Y up to 4 lags,

type
eg_ y.auto(d)

To display the recursive residuals of equation EQM]1, type
egul.rls{r)

See "Equation™ on page 21 of the Command and Programming Reference for a complete Est
of commands and options available for equation objects.





