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B ... d, ... 5IwfIodCI .. Gn,k TIle ... _ will .. • .... 
~;~~;;!!j pnc:Iically all 'IMi.... 8 aI pUjIIMe -.c.ipioe . cs 

If! includiDa "'''''ips IIKJdca. qwliles. _ ..... ",ted pen.aills. a-. and SUIIdInI_--. quriIe ..... ........., IiaIiIs b 
die ...... sItewtIea and IaftlIis (willi .. leapeaioe SIIlIIIIanI 

;.;.! ..... ____ errors). balllOllie -. pM U.: -. • .. • .." 

specialized desuipift ..... i and ........ s .... b all _ ell' 

brub:n down by 0iIII ell' _ (I 1I,!I'jQ) (&roupiII&) ........ As willi aU Il10' III 01 STA17Sl1CA, • wide 
vrilIy of paphs will lid exploniioiy .-lyses. e. ... vanou. types 0I11oa ....... " r .... ........... 

bivariale disIribuIioiI (3D ell' el' , -bed) ~ 2D and 3D • ..... willi .......... ___ 
half..nonMl. deliended proIJIIality pica, fH2 pica, 1'.,. pica, etc. A I d " •• 01_ is PlIiIIIIIIe b fiIIifII 
die ...... diSIribudon 10 die elm (via die Ko/iIIOIIJiOY..smimo¥.l.iIIidOn. and" ,_o-WiIb' ~ fKiliIies 
for fia.iill. wide vrilIy of IlIhIr dislribulions are also availlble; _ alto STAnsnc:.t AI t r;'. and 
die s.eaion OIl finiII& in die Grlllll'" s.eaion), 

By-G1'OIIp AwI.J= f)InUdowaI), ~ aU desuipliw ..... s • .. • ) .... _ be 
COiIIJlUIed for data ..... are' I, .i2ed (brotm .... ) by 0iIII elI' ................. JW. ,+ ... 
just • few .-.e dicb die .... _ lnaIc .... die data by GoIiIier .. .-. .. __ • -i2ed 
11isIoJi ...... lIoa-and-wbister pica, __ probability .................. etc. If _ ... _ • • 'icaI 
variables me dlo&ea, ~ of die ra;pectiw .... CIIiI be _ ; tIJy £101". eoI C)ptiois 10 • I • ia 
by oonIi_ variables are sao.ided, e.g.. you can ...- ........ iatJk be spIiI_. ... I ~ of 
inIcrvaIs. ell' use die oo-Iine ftCOde faciIiIy 10 ~ die ..., in ........... iatJk will be NtOded 
(cltti _ izaIiou opIions of prIICIicalSy unlimited COiI~ _ be IIpCCiIied It.., ....... ...,. an I ....... WOC 

rdalions iilWllYing 1111 .w'" ia die dIIaseI), lilldditioII, ..... jaI'i t .... c:IiiwI.. '+_ £i'ud e is 
pmvidi:d ..... allows die ...-10 c:aIqOiia die elm by up 10" '. 'icaI __ ' ......... M • --., of 
CIIie£Iliizcd "..".. desuiplioe !!IaIjsrirs, and oom:IIfioiI _ices b rlltan", { ... _ aD' acti..., 
req_1O igIIon: __ &cion in die COIIIflI~le 1natdowR ..... and --...me ... "'. i b.., _ .... .....,. 
N_Oii$ b.-ing and IaIIeIins upIions aJJow die user ID saoduc:e puIIIic .' ... IiIy ....... n:pons ... 
Jooa WIllis and deiuipliuas of .uilbles. Hole ..... aIIIIIIeIy ... __ ..... _ be ..... ted ia die 
~ prottdIae {e.g.. 100.000 poupi for allill&le I ' •. izIlbIwailllle). ........ ilclidllall I.'. 
ANOVA .-i ... {includin& die "'"".- ANOVA ....... of 1111 •• iI_ ....... t-... BIvom-
Fon}'IIIe" for .... , 'II ofvuialll:e, a s~lecliaa of_fIDII-Ittot: -. etc.). As •• 011IIII'_ t 'elol 
STAT/meA. ox""wIHJ pac:isio:l caWaMm (die "qUldnlple'" p"ei"", __ ..... w ..... ) _ ... ., pnwidc 
.. __ hod k:oeI of accoMacY C- die s.eaion Oil AU"'M). .. 01 ... ' active _ of ... 
.... _ ........... of .. is ~asy,JWa ......... ...... _y ..... _ ..... _ .. diiCdlj a-all 
...... Ssalaoa't' II by poirIIina 'lrillldle _10 specific a:IIs ell' ...... oIcd1a. Ca; • 01_.·· .... 
(e.g.. muIIipIe " Mbed) ..... _ be produI::ed willi 1 ~ 01 ... _ ..... iea ... a ... 
show _,III wldilioa 10 __ predd'iltod ""iOlli"l"..".. ......... " '~ .. vi r ... of_ 
.... A.......-y ... iII;':., Jdaiicias belwocn IIIIMIiItici, II ... aU.. • .. = .... I • -jaM'WI _ be 
~ by die user via IIII1i1fJ1b WIld poiIII .d rUd: ,.,.,_" €I 's **1 10 NIIIII:e die .' ) 
JIIIIIIber of _ diets. All ...... MIOiy .apllicalliIC '.Iiq_ (detcrilled iii ... __ oa a , r, I' me 
j'? , .. with ..... '.' 10 faciIitaIe .apIIicaI elm ~ ( ....... ' I .we ..... , ...... IIIIIIict 
;dccIioas. aiiDOllliaz,. lImc:IioII filliaz,. exlllCwi oe "_ill .... ..,... die _ 10 eIIily idwif, IItdIor 
exIIlICt die selected .... etc.), Soe alto die __ OIl ... • $ IF , below. 

1111_-_ .... II1II I 



~~~~~~~~~~ ~TIONS. A comprehensive set of options 
'J; ,';, allows fur !he exploration of 
!:; lli \. ,_ condations and partial 
= ~~:.! J. ~ correlations between 

It,-,-• ...::! ~J~~~~~~~~~~~ variables. First, practically ~~L: ." , : all common measures of 
l-_.J.=-----._-=<~-' association can be computed. 

in<:luding Pearson r. 
Spearman rank order «­
K.endalJ tau (b, c). Gamma, 
tetracl!oric r. Phi. Cramer V, 
contingency coefficient C, 
Sommer's D. uncertainty 
coefIicienlll. part and partial 

correlations, 
autocom:lations, various 
di_ measures. etc. 
(nonlinear regressions. 
regressions for censored data 
and oilier specialized 

II1eIISIImS of correlations are available in NonIIiHNIr EstlmsfJon. Survlwl AmIIytIIS. and other modules offered 
in STATISTICA A~ LIMM/Noil-LlntIM NIodeIs). Correlation matrices can be computed using casewise 
(Iistwise) or pairwise deletion of missing data. or mean substitution. As in all other modules of STATIST/CA, 
extended precision calculations (!he "quadruple" precision. where applicable) are used tu yield an unmarebed 
level of accurac:y (see !he section on PnICIsIon). Like all oilier results in STAT/S17CA, correlation matrices are 
displayed in Spreadsheets offering various formatting options (see below) and extensive facilities to visualize 
numerical results; !he user can "point to' a particular correlation in !he Spreadsheet and choose to display a 
variety of "graphical summaries" of !he coefficient (e.g .. scatterplots with confidence imervals, various 3D 
bivariale distribution histograms, probability plots. etc.). 

Brusblug and !lUtHer deUctImL The extensive brushing facilities in die scalIeIplots allow die user to 
seIectIdeseIect individual points in tbe plot and assess !heir effect on !he regJesaion Hne (or other fitted funetion 
lines). 

Display roru.ts or numbers. A variety of global display formalS fur correlations ate supported; signifieant 
correlation coefficients can be automatically highlighted. each cell of !he Spleadsheet can be expanded to 
display nand p. or detailed results may be requested that include all descriptive SIaIisties (pairwise means and 
srsndard deviations. B weights, intercepts, etc.). Like all oilier numerical results, correlation matrices are 
displayed in SpreadsbecIs offering !he zoom option and inleractively-controlled display formalS (e.g., from +.4 
to +.4131089276410193); thus, large matrices can be compressed (via either !he zoom or format·width control 
adjusrsble by dragging) to faeilitale !he visual search for coefficienlll which exceed a user-specified magnilUde 
or significance level (e.g., tbe respective cells can be marked red in !he Spreadsheet). 

SeIItterpIot, scatterplot uwtJias, by-croop analyses. As in all output selection dialogs, numerous global 
graphics options are available to further study patterns of relationships betw..en variables. e.g .. 2D and 3D 
scaIIerplots (with or without case labels) designed 10 identify patlerns of rdations across subsets of cases or 
series of variables. Correlation matrices can be computed lIS categorized by grouping variables and visualized 
via categorized scallerplots. Also "breakdowns of correlation matrices" can be generated (one matrix per subset 
of data). displayed in queues of Spreadsheets, and saved lIS stacked correlation matrices (which can later be 
used as input into !he Strut:tunII Equations ~"ng tmd P.th A~ [SEPATH] module offered in 
STAJ1S11CA At:/VtInCtJd LlnetIr/Non·LIMM ~1tI). An entire correlation matrix can be summarized in a 
single graph via the Matrix scQlterpwt option (of practically unlimited density); large scatlerplot matrices can 
then be reviewed inlenlCtiveJy by "zooming in" on selected portions of !he graph (or scrolling large graphs in 
!he zoom mnde) [see the iIIustrationl. Also. categorized scatterplot matrix plots can be generated (one matrix 
plot for eacb subset of data). Alternatively, a muitiple-subset scatterplot matrix plot can be created where 
specific subsets of data (e.g., defined by levels of • grouping variable or selection conditions of any 
complexity) are marked with distinctive point markers. Various other graphical methods can be used to 

• 
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visualize awric::aI of c:ondaIiorIs in -.dI of poo.J .-us (e.a., COIIIOIIr pIoII. • nil 1.1iDs. icoa. 
eIC.). All of ~ qallioal requR only. few __ c:Iicb lIIId __ ........ _ jiowidtid II) . ;lify 
seleclions of IIJ'IIIylCI; III)' mm1ber of Spead:lllecls lIIId gnopIIs ca be diIpIa)'lld .. t ....,._ .... -. 
malcilll i-Ulle ......... ilDiy -'yses lIIId CUiilPliisolls wry asy. 

I ~ STA11S'I1CS I'IlOM 1t.BSID.1S SI'ItE.lDSIII!E 
13:I~~::~ (TABI..IS). STA11STICA is .. lillie . n ..... 1)Iis ~ .... :1 po_G all IlUI'IIericII .... ill. " I ....... _ suiIIIIIe 

(wiIIIouI III)' further mIlCIikMi.) fDr iJIIIIII- ....... 1 maI:i--
Thus. buic: I5IlIIiscies (or iii)' oilier ··"hl en ')sis) _be ... , I d 
for _lis IlIbIe$ hID pomous' ,,-. fDr er :*. J'OU could wry 
quickly compo ... 1liiie of _ b 2000 ............ __ dIis 
1liiie IS III input cilia file II) tunIner .,.,. die r ..... of ..... 
means _ .... YIriIbIes. Thus. lillie 1I"'liu _ IMiWIIe .. III)' 
.. duriDtI ,.,... auIyIeI. ... - be appIiIId II) ..., .-­

$piadsheel. 

BIDet S1 ......... m IC!dicinn II) ....... 11ed de&aiplive .... iMlcs .... _be .., I fDr.-y • • I I 

)'OIl QIIlIlso hi ..... bIocb of IIIUIIIbers in III)' $pi' -k' •• lIIId jiodllce lillie clelciitld- ...... (IF ....... 

fDr tile .Cl15JICiCIille IIUbset of IIIUIIIbers only. For eumpIe. .......,. J'OU .... I .. .... ' I 7 .... 

__ of cennllaIdency fi:Jr 2000 \'Miables (e.g~ wiIh ..... Model, ... Ufo.. ie ..... 
and H ...... oaie Mam); )'OIl could hiah6gIIC .. bIocI< of. fDr en ..... 200 .. iIoIJIoa ............ II r 
lIIId dial in .. smp: opcnIion produce • mubipIe line .,.,. of..... .... au _ die .... of 200 
variables. SlMjsricaI auIysis by blocks can be pel"" .iiIld by trIW or by .... , ;; fDr ... 2 2 • J'OU could aIIo 
cumpuIe .. mullip1e line gnrpII fi:Jr .. IIUbset of \'Miables _ !he diIIiei... u of ~ ..-...:,. To 
~ tile bIocI< Marislies fi,c:ilities allow )'OIl to produce lII .. iFFlit"s lIIId FFlM"jo ......... hID ....:ues m 
ubilnril, seJec!ed (IriahIigllCed) bIocb of values in tile _ dMa •• ' I 1 el or ~ Spr t ' • 

1JIumatAC11VE f'IlOBABIUTY CALaJI .. n'Oa. A IIaiIote. 
ii_active I'ro6uU1IJ C4Ic ! ',. is .. ( ?I ....... " It 
(_ann wide 1111 lioaofdilel1·' -r •• ' '''''''c.do!. (];t. 

:-"-"""""'=". sqacmr. ~ ~ ....r.. F. G '. l"~ ( ,.,151 ...... 
LD8i.1tk. p-. RIIyWaIt. I (Sa« :}. WIT ... Z f""'); 
"-acIi1!dy r~) ..... ,. 1 ....... 1rIrit _ die .... ea plat of 
!he daIsity IIId cIis:ribuIioa 1I.'id:) doIIr die _ II) " My 
expIcn diMrr'bulioat IlItiDc FIIh • of die IIcaiIrIe STA7JS11CA 
s-n MiaoScrtIIb wItidr doIIr die __ II) .. .. ~ ....... 

siJllri6tut diIit (pRIll !he UlFT_ t-a) or _ II) lire ... 
sipificane diIit (pRIll !he lUORI'.. : a), ... - _ 

jiOVidcd fi:Jr ;1 ..... CISh"hel;le, coaFfJOCFlKl JlIIFIlIrs of dileilWw wid; Rq ' ... -. Tltrrrs.1Irir; 
CfIruJalur 15IIoM)'OIl II) i_actiwdy expIcn !he distribullcw (e. ... die .~te ...... T' '1, n. _ 
sbape pM' • s). 



lil:'it-TFSTS aDd Other Tests of Group Dllfe~ T-tests for 
dependent and indepelldent samples. as well as single samples (testing 
means against user-specified constants) can be computed, multivariate 
Hotelling's T 2 tests are also available (see also ANOVAIMANOVA. and 
GUI (GeIl/H'Sl U- ModeItIJ offered in STATlSTICA Advallced 
Lil!earlNon-Unear M0d4Is. Flexible optiOllS are provided to allow 

~!~~~iJ::;::~~ comparisons between variables (e.g., treadng the data in each column 
of the input spreadsheet as a separate sample) aDd roded groups (e.g., 

'~'.,",.", --';;'~" if the data includes a categorical variable such as Gender 10 identify 
!i1iiiiil1!iiIii!l-. .. ..:;.-"lli .. ~ group membership for each case). As with all procedures, extensive 

diagnostics and graphics options are available from the results menus. 
For example. for the t-test for independent samples. options are provided 10 colllptlle t-tests with separate 
variance estimates, Levene aDd Brown-Forsythe tests fur homogeneity of variance, various box-aDd-whisker 
plots, categOrized hislOgmms and probability plots, categorized scalterplots. etc. Other (_ specialized) tests 
of group diffenmces are part of many modules (e.g" Nonparalll/ltm:. (below), SUrvival A/J111y1116 (available in 
STATlSTICA Advanced Lil!earlNon-Unefir Models), ReII8b11ltylltem A/J111y1116 (available in STATlSTICA 
Muilivarime Explcrotory Techniques). 

D.FREQUENCY TABLlS, CROSSTABULATION TABLES, • 
STlJB..AND-BANNER TABLES, MULTIPLE RESPONSE 
ANALYSIS, AND TABLES. Extensive facilities are provided to 
tabulate COIltinuous, categorical, aDd multiple response variables, or 
multiple dichotomies, A wide variety of options are offered 10 COIltrol 
the layout and format of the tables. For example, fur tables involving 
multiple response variables or multiple dichotomies, marginal counts 
and percentages can be based on the total number of respondenlS or 
responses. multiple response variables can be processed in pairs, and 
various options are available for counting (or ignoring) missing dat •. 
Frequency tables can also be computed based on user-defined logical 

selection conditions (of any complexity, referencing any relationships between variables in the dataset) that 
assign cases 10 categories in lite table. All tables can be elItensively customized 10 produce final (publication-
quality) rqlOI1S. For example, unique "multi-way summary" tables can be produced wid! breakdown-style. 
hietarchical ...........-nts of factots, crosstabulation tables may report row. column, aDd total percentages in 
each cell, long value labels can be used 10 describe the categories in the table, frequencies fI"'8IeI' than a user-
defined cutoff can be highlighted in the table, etc. The progmm can display cumulative aDd relati ve 
frequencies. Logit- aDd Probil-transformed frequencies. nonnaI el<)lllClCd frequencies (and the Kolmogorov­
Smimov, Lillicfors. and Sbapiro-Wilks' tests). expected aDd rcsiduaI frequencies in crosstabulalions, etc. 
Available statiaticaJ tests fur crosstabulation tables include the Pea!son, Maximum-Likelihood and Yates- ." 
corrected Chi-sqtJIlres; McNemar's Chi-square, the FISher exact test (one- aDd two-tailed), Phi. and the 
telnlChoric 1; additional available statistics include Kendall's ttlu (a. b), Oamma, Spearman r. Sommer's D. 
uncenainty coefficients, etc. 

Gnplls. 0rapIticaI options include simple, categorized (multiple), and 3D histograms, cross-seclion histogmms 
(fur any "slices" of lite one-, two-, or multi-way tables), and many other gmpbs including a unique "interaction 
plot of frequencies" that summarizes the frequencies for complex crosstabulatioD tables (similar 10 plots of 
means in ANOV A). Cascodes of even complex (e.g .• multiple categorized. or interaction) gmpba can be 
iotera<:tively reviewed. See also the section on Block Statt.tIctI, above, and sections on t..og.IInNr A/J111y1116 
(available in STA17ST1CA Adl'tUlCed UneorlNon-Lil!ear Models) and ConeIIptmdent:e A.nIIIytI/fI (available in 
STA17STICA Mul.tivarime Explc_ry Techniques). 
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Ii!.Mut.TIl'I..E UGRPSfi'ON MImIOIlS. no M" It , 
RqmsiM module iI .....' 'w' t' 8M ol ... 
•• siOll IiI'ICIiniqucs. ....... ....... , .+ .... wile (bWEI. 
~ or in bIocb)' ,.._dJiicII.. r (ie he I ~1iaI. 
expoIICDIiaI. Jos. ac.), Ridte... . CII, .. or widIouI i"tltjlI 
<lqIasioa .. die orIP)' -.I .. ·at , ........ md:Ps: 
additiuMI IIIvucecI •• " •• an powided .. IFIe 0 .. ltq; .• 
Models (aRM) module (q.. Ilat __ •• . ., 1III1IIi~ 

S\I':pWiIIe 'et! asi .. fer "'ip!e., hw ....... b IIIOdcIs u 
~ ;;;. may include ........ ica7 __ c&ca: ..... 4 n wies b 

valiIIIIIioft MIl po,," ,M. • .... _ !lyjd' ac.). no 
MuIcipIe ... :cssion module wiD cab' •• COi¥dwialliw: .. of ••.• ; • ad cu. • I '" : aM' it« Wi. 
IIie .. -•• 'ete •• asioa UibIe (witIJ __ d emn for B. .. MIl ... c:ep. R ...... II1II -Ii , R......, 
for iI .... cept and ~ IIIIOdeIs. and ANOVA UibIe fer _.. • M). '*' -.I .... COi ......... 

• 1l1li--' COl"".,. and cm_ianI:es fer lqIasioa ....... die IWIIIp -u: c-u: iIncne), IIie DIiitIiD,­
WIiIIOR d 1JIIIrisIic. Mehe!!I!!IObjs and Coot's m.._ deIetaI ........ war __ . i. b pll:illQ:d 
~ and lMftyodlen. 

P1 ......... " I ....... De utaIIiw laiclull and 0IIIticr m ')IiI f = • .. , ". ol ..... 
inch"inl! • variety of V 1 p/oII. ............ IIOf"IIII II1II ............. PilJ .................. 
jJfIfIial COIleIIIiOII pIoIs, dilbaa _will: ftlSiduaI and 0IIIticr pIoCIIIIII 11 • , _ c6:n. no SCOla for 
individual _ an be ... ....t via ... plt ..... 1 icoG pIoCI and OIlIer " 5 • ... ....... • ... 
diIecIIy willi IIie -rss Spo« wi", LIIIS ResiduI and plldiaed ___ be W + t tD ___ .. file. A 

foIecasd", rouIine a11ow¥s die __ 10 pelfonll wIt;u-if..".. and 10 • aaiilll)' .... _ pedicllld SCOleS 

IMsIld Oft _-dIIined vaIl* of pecliaOis. 

By ........ ...r".iI; nIIded pn< , .... ExImneIy IarfI; I. , ...... _ lie 'J ' M .... __ 
illCluded to peofolm -"ipIe IqI"IlSSion analyses bnlkcn do-. by _ or _. • icaoI Wi .... ( tij+ 
"'IPasioa anaIysiI by poop); additioll8l add--on p«edui", include • '. 3 x ..... dw ........ " IiIIIIIfd5 
witIJ ~ of ¥IriIl+:s, • n-sm,... L.ut s.,..- I. .CII, ..... I C. _ lItJqr·r .... 
II'1IIISfoImaIi with papIIs. All add--on prhp. STAT7STICA JW I" (b ".,. l.ia_ " ' r.. also 
includes ........ ~ ... i ..... ioIl modules (MllIIIII' E rr I 1 •• , II 7 f 1..IImw .... f&LlJ. 
(}me llIizMI AMiIiwt MotItis (GAM). ,..,., .... .,. .... , , 'F tpUJ dw _' p •• h ..". ..,. 
_-definod nonIiI_ model. inc!udins Loail. Probit, and odIen. no ..... ..., ilK" ..... 1N.!be 
...... SmIt:tIual ~ ~ dIId PmIi ANJlyN ........... wllidllI7Iows IFIe __ tD....,...... ., 
Jqe carrel ......... eIIYIIriIntes, MIl _1IlIIriCeS (for ..... I1IOdeII). 

~ARAMETIUC IrA'I'ISIICS. no N"ooii* 1 ic 
SlIItisbcs module ferlUa • .... I 'w 1111" (1/' F rei_ 
desuipli>fO .n .... , ilKl fi I II ... • .. __ tIpICiIII 
tppIicaIicMI poclld .. A. ? '+ _ .... '" pni J ...... !be 
WaJd.WuIiNiG .- ........ ") , U _ (willi _ 

....... 1iIies ( .... ollFle Z .... d' , I for ... 1+') 
~ ... WiIo:x-. ,.... ....... Kna:eI-
WalliaANOVAbyraab, .............. p,· I AHOV"-
by raab, CocIna Q ... MeN ... JC' ..... ....rIiciw of 
COIII:OOIMII:e, 1C!mrWI_ (b. c). s,.. ...t CIIdar If. FiIIIer's_ 
.... ~ ... V ..... • ',I'JI(C S. 'Sd. 

o ". ~y oocffl' ... odIen. {SprriaIiMd ~ .. -.I -3,k, __ '*' (1/ any add-011 mod I ,q.. SIIItIItttII 'II" I' • STAJ1SlJCA I'rG ,FF AlmJlj $._ c6:n.) All (...t CIIdar) .. '*' 
hIIIIIIIe lied rub and apply COIIec:ti<D for small ,. or lied I1IIIb. n. p .. __ hrraIIc ..... tIUI!Jy .. aMI,. _ens. As in aD OIlIer modules of STItT7ST1CA, aD .... ' , • aaed ..... (u ..... 
~ _pIoIs. speriaJind box-and-whiII<er pIoIs, line pIoIs, I' , • ... ->' OIlIer 2D and 3D 
displays). 

1111_._-___ • 



:"QIANOV AJMANOV A. The ANOV AlMANOV A module includes a subset of the functionality of !he 
GsneI'aJ LIM8I' "".,.,. module (part of the Advanced Unear/Non-Unear Models add-on), and can perform 
univariate and mullivariate analysis of variance of factorial designs with or without one repeated measures 
variable. For _ complicated linear models with categorical and continuous predictor variables, random 
effects. and multiple repeated measures factors you need the General Linll!4r Motkls module (stepwise and 
best-subset options are available in the General Regression AfodeI4I module). In the ANOV AlMANOV A 
module, you CIIJI specify all designs in the most straightforward. funelional terms of actual variables and levels 
(not in technical terms. e.g .• by specifying matrices of dummy codes). and even Iess-expcriellced ANOVA 
users can analyze very complex designs with STATIST/CA. Uke the General Linlll4r Models module. 
ANOV AlMANOVA provides three alternative user interfaces for specifying designs: (l) A Design Wizard. 
that will take you step-by-step through the process of specifying a design. (2) a simple dialog-based user­
interface that will allow you to specify designs by selecting variables, codes, levels, and any design options 
from well-organiand dialogs, and (3) a Syntax Editor for specifying designs and design opIions using keywords 
and a common design syntax. Computational methods. The program will use, by default, the sigms restricted 
parameterization for factorial designs. and apply the effective hypothesis approach (see Hocking, 19810) when 
the design is unbalanced or incomplete. Type I. II, 1Il. and IV hypotheses can also be computed. as can Type V 
and Type VI hypotheses that will perform tests consistent with the typical analyses of fractional factorial 
designs in industrial and quality-improvement applications (see also the description of the Experimental Design 
module). Results statistics. The ANOV AlMANOVA module is not limited in any of its computational routines • 
for reporting results. so the full suite of detailed analytic tools available in the General Linlll4r Models module . 
is also available here (please see the detailed descriptiOil of the Gllllleral LinIII4r Models module for details); 
results include summary ANDV A tables, univariate and multivariate results for repeated measures factors with 
more than 2 levels, the Oreenhousc-Geisser and Huynh-Feldt adjustments. plots of interactions, detailed 
descriptive statislics. detailed residual statistics, planned and post-hoc comparisons, testing of custom 
hypotheses and custom error terms, detailed diagnostic statistics and plots (e.g .. histogram of within-cell 
residuals, homogeneity of variance tests. plots of means versus standanl deviations. etc.). 

~DISTRJBUTlON F11T1NG. The Distribution Fitting options 
allow the user to compare the distribution of a variable wilh a wide 
variety of theoretical distribntions. Y 011 may fit to the data the NONItlJI. 
ReCUUlguJar. Expoflllllllwl, GamJIIQ, Lognormal, Chi-square, Weibul/, 
Gompern. Birwmial, Poisson, Gl!Dmetric. or Benwulli distribution. 
The fit can he evaluated via the Chi-square test or the Kolmogorov­
Smimov one·sample test (the filling p!II'IIIIIeIa'S can be controlled); the 
Lilliefors and Shapiro-Wilks' tests are also supported (see above). In 
addiliOll. the fit of a -riicular h~--' distribution to the 
empirical distribntion ca';be eval~fu customized histngrams •.. 
(standard or cumulalive) wilh overlaid selected functions; line and bar 

graphs of eJqlCCted and observed fn:quencies. discrepancies and other results can be produced from the output 
Spn:adshec:ts. OIlIer distribution filling options are available in BrA TlSTICA Pr-. A~. where the user 
can compute maximum-likelihood parameter estimates for the BeItJ. Expoflll!lllial. &:treme Value (Type I, 
GIUIIbd}. Gamma. Log-Normal, Rayleigh, and Weibull distributions. Also included in that module are options 
for automatically selecting and filling the best distribution for the data, as well as opIions for general 
distribution fitting by IIIOII'Ie1IIs (via Johnson and Pearson curves). User-defined 2- and 3-dimensional funelions 
can also he plotted and overlaid on the graphs. The functions may reference a wide variety of distributions such 
as the BeItJ. Binomial, Cauchy. Chi-square. Exponential. Extreme value, F. Gamma, G-mc. Loplace. 
Logistic. Normal, Log-Normal, Part!lO. Poisson, Rayleigh, t (Student). or WeibIJl distribution. as well as their 
iotegraIs and Inverses. Additional facilities to fit predefined or user-defiDed funcIiona of practically unlimited 
complexity to the data are available in NonJinetIr EsIim8llon (available in STAT/STlCA Advonced Linlll4r/Non· 
LinIII4r Models). 

SI ... IIII-IIII ..... 1... 1 
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version of STATIST/CA /Jato. Miner is platform independent on 
the Oient side and features an Internet browser-based user 
interface; the Server side works with all major Web server 
operating systems (e.g., UNIX Apache) and Wintel server 
computers. 

• Seamless integration of desktop and WebSTATIS77CA 
data mining 10015: design models on one platform 
(desktop or WebSTATISTICA server), execute 011 the 
other; train models on one platform (desktop or 
WebSTATISTtCA server) and deploy to the other 
platform. 

• Distributed processing and multi-threaded evaluation of 
projects: the program will automatically take 
advantage of multi-processor andlor multiple-server 
architectures, to evaluate models via multiple simultAneous processes (multithreading, distributed 
processing); hence the ability of WebSTA TlSTICA Dtua Miner installations to take full advanlage of 
such an:hiteetures provides tremendous flexibility for scaling the system to mine even e)(tremely 
latp databases. 

• Full flexibility of WebS7'ATISTICA: analyze data in balch mode, receive notification by emaiJ when 
the results are ready; shere results ill designated folders (repositories) with other Slakeholders in the 
data mining projects; etc. 

• Integrate input data, stakeholders, analysts. and users of results of data mining projects !Tom any 
location around the world; WebSTATISTICA enables you to connect to data on one server (over the 
~), sbare mWyses with other data mining professionals world wide, and deploy solutions and 
results to users in even the most remote localions (e.g., to branch managers in small rural areas. 
engineers on remote drilling platforms, ships en-route across oceans. eIe.); as Jong as even slow 
Internet access is available, you can include individuals in those locations in your data mining 
project) 

.~ Ideal for training (teaclling) data mining: provide par!itipants(students) witb the option to analyze datd 
from home or their office, whetever there is access to the Internet; allow professionals to complete 
assignments at the time and place that most conveniently fits their sehedules. WebSTA TlSTICA 
allows all course or training participants hands-on experience with the most advanced data mining 
IOOls available today! 

• 

Advanced Software Technology = Efficient and FJeput User Interface 

STAT/STlCA maIysis "oIJjeds" ud aode& At !be heart of STAT/STlCA Dots Miner is a set of 0_ 300 
highly optimized, efficient, and exnemely fast STAT/STlCA procedures embedded in _-electable nodes. 
which is used to specify the relations l!e!ween the procedures (objects) and control !be logic of the project (and 
the "flow" of data). This flexible, customizable architecture delivers the full fUnctionality of all Slatistical and 
mWytic procedures to the data mining environment as self-contained analysis objects. Bebind each node. and 
accessible to advanced users of the STATISTICA Darn Miner system, _ simple scripts (analysis Objects 
encoded in indusuy-standard Visual Basic) tbat serve as the "wrappers" or glue for definin& the flow of data 
through the project, while the actual numerical analyses _ performed via the extremely fast analytic 
procedures of STATISTICA. These objects. which can he used as the nodes for data cleaning and/or filtering, 
and for analyzing the data, are organized in the Node Browser. 
The nodes available in the node browser (and, hence, available to the data mining project)_: 

• Nodes for do.ta /npuJ IJlId do.ta acquisilioll- Here you can create and 3tDre the scripts necessary to 
connect to remote (protected) data sources on a server. Of rourse, you can also analyze STATISTICA 
data files or place holders for in-place processing of remote databases (_ lOP), in which case no 
special nodes (scripts) bave 10 he created . 

• Nodes for do.ta jilJering, cieaning. verification. lealun selllCtifm, and sub-sampling. These options are 
essential to data mining. to detect and correct erroneous infonnation that may bias final conclusions~ 
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Spedf'yillg complex models. The simple user interface -- based on point·anck:lick selections from menus and 
browsers - will allow you to apply even very advanced methods. Several ~ and flexible project 
"templates" can be selected to address common data mining tasIcs. 
For example, in order to find a good rondel for predicting credit 
risk of new clients based on historical data that includes various 
potentially useful prediClms, you could simply select the template 
for the Advanced CompnhensiW! Regression Models project. 

All you ~ to do next is connect your historical data, specify the 
variables of interest. and 'train' the project; thus. in just a few 
seconds (select dara file. select variables, select the arrow tool to 
connect the data). the program will automatically: 

• Create two samples for training and for cross-validation, to avoid over.fittilli; 
• Apply best subset linear regression, standard regression treeS algorithms, CHAm and exhaustive • 

CHAlD, a 3-layer multilayer perceptron neural network, and a radial basis function neural network . . 
to find a good rondel for predicting credit risk; 

• Combine all responses into a meta-learner thaI picks the best rondel, or combines the predictions from 
multiple models. 

After applying Ihese cutting.edge techniques for rondeHng linear, nonlinear, or even chaoIie relationships, you 
are ready for deployment: simply connect the data source for the new data (new customers) to the Compute Best 
Predictioll From AU Models node. and the program will automatically apply the fully trained models to derive 
the best prediction possible. 

Speed. The analysis nodes (objects) contain the full functionality of STATlST1CA, encapsulated into nodes Ihat 
can further be CIISIOIDized using standard Visual Basic syntax. The actual analyses are pedbtmed via the highly 
optimized STATISTlCA analysis modules. which have been refined for almost two deeacIes 10 deliver maximum 
speed. capacity, and accuracy (see also Accuracy 8erIeIImar1uI). 

Large dala sees. STA TlSTlCA Dat4 Miner uses a number of technoJosic:$ specifically developed 10 optimize the 
processing of large dara sets, and it is designed to handle even the largest scale computational problems and 
process very large databases. For example, data sets with over one million variables can be prooessed and 
screened automatically (using a wide selection of methods) In search for best predictors or most relevant • 
variables (see also Feature Selection and Variable Filtering and Comparative perl_nee benchmarks 
using IIIrge daIa HIa). 

CustomIzIaa ~ The analyses or data cleaninglfiltering opaations iq 's tilled by the nodes of 
STATlSTlCA DoIll Miner can furttICIr be CUSIOmized by simply doubJe.cliclting on the tapective icons: Every 
icon contains the options 10 fully customize the respective operations; for example, cliclting on a neural network 
node will bring up a dialot! (and dialog help) for cU5lomizing the specific analysis (to change the number of 
iterarions, number of layers in the network. the detail of reported results. etc.). 

SaviD& the project. The entire project (workspace) can be saved, along with all CUSIOmization. intermediate 
data sources, comments, etc. Routine analyses (e.g., for regular updating of a trained complex set of models for 
voted classification based on various methods) can be saved and later applied by clicking on a single button 
("update"). 

Tedmiral Note: STAT/STlCA DIU Mbur Node Scripts. STATIST/CA Dat4 Miller's computational routines 
are extrcmely fast and highly optimized. For example, in the WebSTATISTlCA Cllent-5erver environment, the 
program will automatically take advantage of multi-processor and/or mullip~ architeclOres (with proper 
hardware support). to evaluate models via multiple simultaneous processes (multithreading, distributed 
processing). Moreover, the highly optimized routines for processing data will outperform other software in 
head-to-head comparisons (see the benchmarks at www.statsoftcom for details). Yet, advanced users will find 
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Basic code generated from STATISTICA analysis modules will seamlessly inlegnlte into the 
STATIS17CA Data Miner architecture; based on the Visual Basic code generated by STATISTICA. 
custom deployment nodes can be programmed in minutes, even by inexperienced 
programmers. 

Using STATlSTlCA DlIIo Miner with Extremely Large Data Sets 

Tbe entire STA TIS17CA family of products and STAT1STlCA Data Minedn particular are specifically optimized 
to efficiently ptOCC$lll extremely large dam sets (see Comparative perfotmance berlchmMb u81ng large data 
sets). with millions of observations (records) and millions of variables (fields). 

Processing databases that are larger than the Joeal sto .... device. STATIS17CA Data Miner (and optionally 
other STATISTICA products) can process daIa in (remote) databases "in-place" via its highly optimized In-place 
Database Procealng (lOP) technology, which combines the processing resources of the database server and 
the local computer to (a) perlorm the queries (using the database server CPU) wbile simultaneously (b) 
processing the fetched records ·o .... the·f1y· on the local machine (using the IocaJ computer (client) CPU). This 
way, databases that are larger than what could fit on the iocal machine can be processed. and significant • 
performance gains can be achieved by saving the time that would normally be required to first impon the data 
to the iocal device and only then process them locally. Practically all common database formats are supported. 
and powerful tools are provided for defining the database connection (query). 

I'roI:essIng data'" willt ex1J If large nwnIlers or variables (fIeIIIs): TIle IIIIIIJae feature 8eIecIIon 
and variabte Mt8eI1Ing fIIdIIIIes. When the number of variables in the input data file is extremely large, 
STA TISTICA Data Miner can automatically select subseta of variables from arnoog even over a million of 
variables (candidates) for predictive data mining. The extremely fast and efficient algorithm will select 
variables (features) that are likely to be the most relevant predictors in the currenl data set. without introducing 
biases into subsequent model building for predictive data mining. 

Proc:essiDl data flies witJt ex1J emel)' large numbers or cases (ncords): Ji1extJtle alld ellic:leut random 
sampllug. STATlS17CA products (including STATISTICA Data Miner) can process daIa files with practically 
unlimited numbers of cases (records), and STATISTICA's data access proeedurres are highly optimized. 
However. including all records in the analyses wben the number of records is extremely large is (a) entirely 
1I1IIIClCesS8fY. (h) time consuming. and (c) often impractical or impossible (in exlnmle cases it could take hoots 
merely to read all records). In order 10 speed up the analytic proeess. STATlS17CA Data Miner includes 
sophisticated lools for drawing random or stratified random samples from huge data sets (databases). The user 
can quickly extract simple or systematic random samples of appropriate sizes. with or without replacement. ." 
from huge daIa sets (e.g., with many millinns of records) for further analyses with sophisticated modeling tools 
that may require multiple passes through the data (e.g., neural networks, generalized linear models, etc.). The 
Illndom sutHampling is based on STATISTICA'$ validated random number generator. Note thaI STATISTICA is 
one of only few commercially available software products thaI have peased the most advanced and most 
recoguized tests for rancIonIIw$ (the DIEHARD suite of teats). 

Dlstrilluted pnM ' I a1Id muJd.tJtnlll4ed evaluation or projeds in lite CUeut& tel em'inmment. The 
WebSTATIS17CA Oient-Server installation of STATlS17CA Data Miner offers additional advantages for 
processing very large datasets. The program will automaticaJly take advantage of multi-processor and/or 
multip~ architectures (with proper hardware support), to evaluate models via multiple simultaneous 
processes (muilithreading. distnbuted processing). Hence. considering the decreasing costs for advanced server 
hardware (with multiple processors, or for multiple-server installations). the ability of WebSTATlS17CA Data 
Miner installations to take full advantage of such architectures provides tremendous flexibility for scaling the 
system to mine even extremely large databases. 

Data Mining Tools 

..,.,.,.-........ '.... . 
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programs; models are also automatically available for deployment aftec trainiJ!s. so all you need to 
do is connect new data to the special deployment node, to compute predicted values. 

~nmd F~. STAl1ST1CA Data Miner includes a broad seleclion of InIditionaI (i.e., non-neural 
networks-based) forecastina techniques (including ARIMA, exponen1lal amooct.19 willi seasonal components, 
Fourier spectral decomposition, ---' decomposHlon, regression- and poIynomlallaga alllllysls, etc.), as 
well as neural network methods for time series data. . 

• Deploymmt. Forecasts can automatically be computed for multiple models in dam mining projects, and 
plotled in a single graph for comparative evaluation, For example. )'OIl can compute and compare 
predictions from multiple AruMA models, different methods for seasonal and non-seasonal 
exponential smoothing. and the best time-series neural network an::hitectures (after searching over 
100 different archirectures). 

"iGenelal NIHmII NIIIMHb ExpIonu'. This 1001 contains the most comprehensive selection of neural netwotk 
meIbods available on the market. This powerful component of STA TlSTICA DaI4 Miner offers tools to 
approach virtually any data mining problem (including classificalion, hidden stracture detection, and powerful 
iorecastina). One of the unique features of lhe NN Explorer is the selection of intelligent problem solvers and • 
auoomatic wizards thai use Artificial Intelligence methods to help you solve the most demanding problems 
involved in advanced NN analysis (such as selecting the best network atChitecture and the best subset of 
variables). The Explorer offers the widest selection of cutting-edge NN atChitectures and procedures and highly 
optimized algorithms that include: multilayer perceplronS, radial baais function networIcs, probabilistic neural 
networb, generalized regression neural networks, self-or~ng feature maps, linear models. principal 
components network, and cluster networks. Network ensembles of these architectures can also be evaluated. 
Estimation methods include back propagation. conjugate gradient decem, quasi-Newton. Levenberg-Marquardt, 
quick propagation, delta-bar-delta, L VQ, pruning algorithms, and more: options are available for cross 
validation, bootstrapping, subsampling, sensitivity analysis. etc • 

• Deployment STA1lSTICA Neural Networlca includes ende generator options to prodoce C. C++. cn. 
and STA TlSTlCA Visual &sic ende for one or more trained networks as wdI as ensembles of 
networks. This code can be quickly incorporated into your own custom deployment programs. In 
addition. fully trained neural networks and ensembles of neural networIcs can be saved, to be applied 
later for computing predicted responses or classifications for new data. A deployment node can be 
dragged into the data miner workspace to perfonn prediction and predictive classification based on 
trained neural networks automatically; all you have to do (after the participating netwotk 
architectures are trained) is connect the data for deployment. 

Spedatmd Data Miniat Modules 

A large po!1ion of anaIydc fimcIionaIity used by STATlSTlCA 1>014 Miner is driven by the computational 
engines of modules that are included in various other STATlSTlCA producta (refer to STA1lSTICA Products for 
detailed information about those modules): 

• Neural Networts techniques (the largest selection of architectures available, automaIic problem solver 
tools. advanced feature selection techniques). 

• AU STATlSTlCA Graphics Tools and interactive exploration/visualization tools; Descriptive statistics, 
breaI<downs. and exploratory data analysis; Frequency Tables, CrosstabuIations. Tables and Stub­
and-Banner Tables, Multiple Response Analysis; Nonparametric Stati.stics; Distribution Fitting; 
Power Analysis Techniques. 

• General Linear Models (GLM); General Regression Models (GRM); OenenIized Linear Models 
(GLZ); General Partial Least Squares Models (PLS); Variance Components and Mixed Mudel 
ANOV AlANCOVA; SurvivallFailure Time Analysis; General Nonlinear Estimation with Logit and 
Probil Regression; Log-Linear Analysis of Frequency Tables; Time Series AnalysislForecasting; 
StruCtural Equation ModelinglPath Analysis (SEP A TH). 

11.1111.-......... '.... 11 
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Ili§kSSOCIA TION RULFA This module comains a complete implementalion of tile so-called A-priori 
algorithm for detecting ("mining for") association rules such as 
'customers who order product A, often also order product B or COO or 
"employees wIJo said positive things about initiative X. also 
frequently complain about issue Y but are happy with issue Z' (see 
Agrawal and Swami, 1993; Agrawal and Srikant. 1994; Han and 
Lakshmanan. 2001; see also Witten and Frank, 2000). The 
Association Ruks module allows you ro process rapidly huge data 
sets for associations (relationships). bused on pre-defined "threshold" 
values for detection. Specifically. the program will delCet 
relationships or associations between specific values of categorical 
variables in large data sets. This is a common task in many data 
mining projects applied ro databases containing records of cusromer 
transactions (e.g .. items purchased by each customer), and also in tile 
area of text mining. Like all modules of STA T1STlCA, data in 
exlem8l databases can be processed by the STA 11STlCA 
ASS<JCiation R"k. module in-place (see lOP technology), so 
tile program is prepared ro handle efficiently extremely large 
analysis tasks. 

The results can be displayed in tables, and also in unique 2D 
and 3D graphs wfIere strong associations are highlighted by 
thick lines conoeeting tile respective items. 

JNTERACJ1VE DRILL-DOWN EXPLORER. A first step of many data mining projects is ro explore the 
data interaCtively. to gain a fil'lIt "impression" of the typeS of variables in tile analyses. and their possible 
relationships. The purpose of the Internetive Drill-Down Explorer is ro provide a combined graphical. 
exploratory data analysis, and tabulation tool that will allow you to quickly review the diSlributions of variables 
in tile analyses. their relationships ro other variables, and to identitY tile actual observations belonging to 
specific subgroups in tile data. 
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00 module for STATISTICII Data Miner). OLAP tools allow users to quickly query a database to extract 
observations and summary information about those observations taIdng advantage of lite optimized OLAP 
Server facilities offered for a specific database platform (e.g., Oracle, or MS SQL Server), and often providing 
significant performance advantages over tools based on traditional (non-OLAP driven) query tools. However. 
the main advantages STATISTlCA Interactive Drill-DoW/! Explorer over OLAP are: 

(a> its tight inleglation with STATIST/CII's flexible categorization 100b and e>lploratOry environment (the 
analytic capabilities provided in the STATIST/CA Imemctive: Drill-DoW/! Explorer are much more 
comprehensive and also general than typical OLAP IOOls. supporting flexible "driD up" operations. and allowing 
you to quickly review custom, complex summary graphs, detailed descriptive statistics, etc.). and 

(b) lite fact that the STA TISTICII Imemctive: Drill-DoW/! Explorer is not limited to any particular database 
platform and does not requiRl a designated OLAP Server to be present (e.g., it can operate diRlctly on 
STATlSTleA data files). At the same time. by connecting to the STATIS17eA application a (remoIe) database 
for In-pIace ~ you can efficiently perform drill-down operations on any data source. regardless of 
wbether or not designated OLAP tools are available on the server. 

~ENERAUZIID EM '" K·MEANS CLUSTER ANALYSIS. The STATIST/CII Generaliwi EM 
(Exp«tatitm MaximilJUionJ tmd k-Means Clustering module is an extension of the techniques available in the 
general STATlSTleA Cluster Analysis options, specifically designed to bandle large data sets and to allow 
clustering of COlItimIous and/or categorical variables, and Ii} provide the fimctionIIity for complete unsupervised 
learning (clustering) for paIIem recognition. with all deployment options for predictive clustering. Various 
cro:ss-validation options are provided (including modified v-fold CI'ON-validation options) that will 
automatically choose and evaluate a best final solution for the clustering problem; you do not need 10 specify 
lite number of cluslers before an analysis; instead the program will use automatic (cross-validation based) 
methods 10 choose a best cluster solution (number of clusters) for you! The udvanced EM clustering tecbnique 
available in this module is sometimes referred to as probability-based clustering or statistical clusterinl' The 
program will cluster observations based on continuous and categorical Variables, assuming different 
dislributions for the variables in the analyses (as specified by the uset). Various cross-validation options are 
provided 10 allow you to choose and evaluate a best final solution for the clustering probIemDetailed output 
summaries and grapbs (e.g.. dislribution plots for EM clustering), and detailed classification statistics arc 
computed for each observation. These methods are optimized to bandIe very IIqe data sets. and various results 
are provided 10 facililalc subsequent analyses using the assignment of observations 10 clusters. Options for 
deploying cluster solutions (in C. C++. CIt. Visual BasiC, or XML syntax based PMML). for classifying new 
observations. II'C also included. 

fJlGENERAUZIID ADDITIVE MODElS (GAM). The STATISTIeA o-lDIked Additiw ModAs facilities 
are an implemenlation of methods developed and popularized by Hastie and Tibshirani (1990); additional 
detailed discussion of these methods can also be found in Schimek. (2000). The program will handle continuous 
and categOIieal predictor variables. Note that STATISTICA inclucJes a comprcbensive selection of methods for 
fitting non-linear models to data. such as the Nonlinear Estimation moctut., GenentIIzfHI U- Models. 
GenenII~IIIId~ n-,etc. 

DistrIbutIoIIs aaclllnk fuI>etIoIIII. The program allows the user to choose from a wide variety of distributions 
for the dependent variable.. and link functions for the effects of the predictor variables 011 lite dependent 
variable: 

Log link: 

Inverse link.: 

f(z) '" log(z) 

f(z) '" liz 
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selection of the best-fitting solution. For continuous dependent (criterion) variables, pruning of the tree can be 
based on the variance, or on FACf-style pruning. For categorical dependent (criterion) variables, pruning of the 
tree can be based on misclassification errors, variance, or FACf-style pruning. You can specify the maximum 
number of nodes for the tree or the minimum n per node. Options are provided for validating the best decision 
tree, using V-fold cross validation, or by applying the decision tree to new observations in a validation sample. 
For categorical dependent (criterion) variables, i.e., for classification problems, various measures can be chosen 
to modify the algorithm and to evaluate the quality of the final classification tree: Options are provided to 
specify user-defined prior classification probabilities and misclassification costs; goodness-of-fit measures 
include the Gini measure, Chi-square, and G-Square. 

MisslDg data and surropte splits. Missing data values in the predictors can be handJed by allowing the 
program to determine splits for surrogate variables, i.e., variables that are similar to the respective variable used 
for a particular split (node). 

ANOV AlANCOVA-6ke deslps. In addition to the traditional CART .. styIe analysis, you can combine 
categOrical and continuous predictor variables into ANOV NANCOVA-Iike designs and perfollll the analysis 
using a design matrix for the predictors. This allows you to evaluate and compare complex predictor models. 
and their efficacy for prediction and classification using various analytic techniques (e.g., General Linesr 
Models, Generallz«l LI,.., Models, General DIscriminant Analysis Models, etc.). 

Tree browser. In addition to simple summary tree graphs, you can display the results trees in intuitive 
interactive tree-browsers that allow you to collapse or expand the nodes of the tree, and to quickly review the 
most salient information reprding the 
respective tree node or classification. For 
example, you can highlight (click on) a 
particular node in the browser-panel and 
immediately see the classification and 
misclassification rates for that particular 
node. The tree-browser provides a very 
efficient and intuitive facility for reviewing 
complex tree-struetures, using methods that 
are commonly used in windows-based 
computer application to review 
hierarchically structured information. 
Multiple tree-browser can be displayed 
simultaneOUSly, containing the final tree. and 
different sub-trees pruned from the larger 
tree, and by placing multiple browsers side­
by-side it is easy to compare different tree structures and sub-trees. The STATISTICA Tree Browser is an 
important innovation to aid with the interpretation of complex decision trees. 

Interac:dve trees. Options are also provided to review trees interactively, either by using STA TISTICA Graphics 
brushing tools or by placing large tree graphs into scrollable graphics windows where large graphs can be 
inspected "behind" a smaller (scrollable) window. 

Results statistics. The STATISTICA GTrees module provides a very larae nmnber of results options. Summary 
results for each node 
are accessible, 
detailed statistics are 
computed perta,mng 
to classification, 
classification costs, 
gain, and so on. 
Unique graphical 
summaries are also 
available, including 
histograms (for 
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efficient summary of patterns of responses for large classification problems. As in all statisticaI procedures of 
STATISTICA. all numerical results can be used as input for further analyses, allowing you to quickly explore 
and further analyze observations classified into particular nodes (e.g .• you could use the GTrees module to 
produce an initial classification of cases. and then use best-subset selection of variables in GOA to find 
additional variables that may aid in the further classification). 

~CTlVE CLASSIF1CA TlON AND REGRESSION TREFS. In addition to the modules for 
automatic tree building (e.g.. General Classification and Regression Trees. GeMral CHAID models). 
STATlSTICA DaM Miner also includes designated tools for building such tn:es intenctively. You can choose 
either the (binary) General Classification and Regression Trees method or the CHAID method for building the 
(decision) tree. and at each step grow the tree either interactively (by choosing the splitting variable and 
splitting criterion) 01 automatically. When growing trees interactively. you have full control over all aspects of 
how to select and evaluate candidates for each split. how to categorize the range of values in predictors. etc. The 
highly intenctive tools available for this module allow you to grow and prune back tn:es to quickly evaluate the 
quality of the tree fOl classification 01 regression prediction and to compute all auxiliary statistics at each stage 
to fully explOte the nature of each solution. This tool is extremely useful fOl predictive data mining as well as 
for exploratory data analysis (EDA). and includes the complete set of options for automatic deployment. for the 
prediction or predicted classification of new observations (see also the description of these options in the 
context of CHAID and the General Classification and Regression Trees modules). 0 
~ TREFS. The most recent research on 
statistical and machine learning algorithms suggests that for 
SOtDe "difficult" estimation and prediction (predicted 
clusification) tasks, using successively boosted simple trees 
can yield more accurate predictions than neural network 
architectures or complex single tn:es alone. STA TISTICA DtJra 
Miner includes an advanced Boosted Trees module for 
applying this technique to predictive data mining tasks. You 
have control over all aspects of the estimation procedure and 
detailed summaries of each stage of the estimation procedures 
are provided so that the progress over successive steps can be 
monitored and evaluated. The results include most of the 
standard summary statistics fOl classification and regression 
computed by the GeMra/ Classification and Regression Trees 
module. Automatic methods for deployment of the final 
hoosted tree solution for classification or regression prediction are also provided. 

""" /"IMULTIVARIATE ADAPTIVE REGRESSION SPUNFS (MAR SpUa.). The STATlSTICA MAR • 
Splines (Mu/tiwJriale Adaptive Regression Splines) module is based on a complete implementation of this 
technique. as originally piOposed by Friedman (1991; Multivariate Adaptive Regression Splines. Annals of 
Statistics. 19. 1-141); in STATISTICA Data Miner, the MARSpiines options have further been enhanced to 
accommodate regression and classification problems, with continuous and categorical predictors. 

The progrun. which in _ of its functionality can be considered a generalization and modification of 
stepwise MIIltipIe Regression and Classification and Regression Trees (GC&RT). is specifically designed 
(optimized) for jHocessing very large data sets. A large number of results options and extended diagnostics are 
available to allow you to evaluate numerically and graphically the quality of the MAR Splines solution. 

CiC++, Ct, STAT/STlCA YU....J Basie, XML syntax hued PMML code ge .... "d .... s. The information 
contained in the model can be quickly incorporated into your own custom programs via the optional ClC++iC#. 
STATlSTICA VislUJl Basic. or (XML-syntax based) PMML code generator options. STATlSTICA Visual Basic 
will be generated in a fOtm that is particularly well suited for inclusion in custom nodes for STATISTICA Data 
Miner. PMML (Predictive Models Markop Language) files with deployment information can be used with the 
Rapid Deployment of Predictive Models options to compute predictions fOl large numbers of cases very 
efficiently; PMML files are fully portable, and deployment information generated via the desktop version of 
STATISTICA Datil Miner can be used in WebSTATISTICA Data Miner (i.e., on the server side of Client-Server 
installations), and vice versa. 
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data and cn:atc a local copy of the data set. Records of data are relrieved and sent to the STATISTICA computer 
asynchronously by the CPU of !be database server, while STATISTICA simulWleOusly proeesses them using the 
CPU of the local computer. 

TIle CHeat-Server Archltectllre. WIlen I Client-Server version of STATISTICA Data MiMT is used, !be local 
computer drives only !be user interface of Data Miner. and all calculations are peiliJrmed on !be server. The 
Client-Server architecture which uses advanced multithreading and distributed processing technology (see 
below) and optionally scales 10 multiple servers which can work in parallel. offers obvious advantages when 
your data mining projects are large (e.g.. computationally intensive or involving processing of extremely large 
data sets). and Ihus when they can be offloaded to the servers. freeing your local computer 10 perform other 
jobs. 
MultitbreadlDg, Dlstributl!d Processing Tecboolo!!Y. Many additional advantages are offered by !be specific 
implementation of the Client-Server archileCture in STATISTICA Data Miller. which is based on the 
WebSTATISTICA IeChnology. The WebSTATISTICA platform is built on advaooed distributed processing and 
multithreading IeChnology 10 support optimal management of large compntalionaI loads. This IeChnology 
enables rapid processing of even very large and computationally intensive projects. laldng full advantage of the 
multiple CPUs on !be server. or even multiple servers working in parallel The illustration below shows a 
project running on a quad processor server, along wi!b 1iI ______ ===::: 
!be server performance monitor demonstrating !be full • ... .• _ : -'; . 
utilization of !be __ of all four CPUs executing in 
the multithrcading mode a single. computationally 
inrensi-e STATISTICA Data Miner project. 

In addition, the WebSTA TISTlCA architecture delivers a 
platfOrm-independent, Web browser-based user 
interface, and provides an ultimate. large enterprise­
level ability 10 manage projects or groups of users 
"across the hall or across continents". 

WIltSTATlSTICA DtIIII Miur llser IrItedKe. The 
WebSTATISTICA implerneotation of STATISTICA Data 
MiMr allows USIIlfS 10 design, modify, and edit data 
mining projects on a client maehine in a Web browser 
interface !bat is essentially identical to tbat available for 
the desktop installation. 

Therefore, the client side of the application (the "front 
end") can be run on any COItIpUIer (even a laptop) as 
long as it is c:omlelCled to the Internet. H~, the 
actual computations and other operations perfOI med on 
the data will remain on the (remote) server with its 

I , ...L p 

• - ..±:,:t- ~:- ~ ~-

.. ., -... -
"'II -

... 

usually more powerlbl processors and storage resouroes (and they wiD be I'IIIIIaged using the optimized. 
multithreading and distributed processing architecture of the system for maximum performanee). 

In essence. the user inll:rface aspects of STATISTIeA Data Miner can be run by one or multiple users front any 
COItIpUIer in the world (as long as they are connected to the Internet. even by a slow connection), while the 
__ peifolillS all computations and data operations, enforcing the proper secwily and access privileges 
applicable to the respecti-e projects lad classes of users, as designed by the network administrator. 

511111 ... -1 ........ '.111 
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iiiiii:::::; '*'-'l<'CANONICAL COKItlLATiON ANALYSIS. This 
module offers a compnoltensive implementation of canonical 
analysis procedures; it can process raw data files or correlation 
matrices and it computes all of the standard CIIIIOIlicaJ 
correlation statistics (including eigenvectors, eigenvalues, 
redundancy coefficients, canonical weiaJds, 1oadillllS, 
extracted variances, significance _ for eacb root, eIl::.) and a 
number of extended diagnostics. The SCORlS of canonical 
variates can he computed for each case. appended to the data 
file. and visualized via integrated icon plots. The Cotwnical 
AI1I1/Ysis module also includes a variety of integrated graphs 

(including plots of eigenvalues, canonical correlations. scauerplots of canonical variates, aud many 
others). Note that confirmatory analyses of structural relationships betweea latent variables can also he 
performed via lhe SEPATH (Struf:turaI EqUllIlon IIodtItIng III'/d Pall! A"."..,.}modu!e in 
STA TlSTlCA Advtznati LineorINon-Unoor Models; advanced stepwise and best-subset selection of 
predictor variables for MANOV AlMANCOVA designs (with multiple dependent variables) is 
available in the ~I RtIgIN$/tm MtxJeIs (GRM) module in STATlSTlCA Advanced UMtulNon­
Linetu Models. 

_tDTop 

=::11----~ fiIhELlABILJTYIITEM ANALYSIs. nis module 
includes a comprehensive selection of procedures b the 
development and evaluation of sutVC)'lI and questionnaires. As 
in all other modules of STATISTICA. exttemely large designs 
can he analyzed. The user can calculate reliability statistics for 
all items in a scale, interactively select subsets, or obtain 
comparisons between subsets of items via the 'split-haIf" (or 
splil-part) method, In a single run,the WICI' can evaluate the 
reliability of a sum-sca1e as well as subscaJes. When 
interactively deleting items, the new reliability is computed 
instantly without processing the data file again. The output 

includes correlation matrices and descriptive statistics for items. Cronbach alpha. the standardized 
alpIw.. the average inler-item correlation. tbe complete ANOV A table for the scale. the complete set of 
ilem-lOtal statistics (including multiple item-total R's). the splil-halfreliability. and the correlation 

• 

betweea the IWO halves corrected for attenuation, A selection of graphs (including various integrated • 
scatterpIoIs. bistograms. line plots aud other plots) and a sel of interactive wlw.t-if procedures are • 
provided to aid in the development of scales. For example. the ~ can caJcuJate the expected 
reliability after adding a particular number of items to the scale. aud can estimate the number of items 
that would have 10 be added to the scale in order to achieve a particular reliability. Also. the user can 
estimate the correlation corrected for attenuation between the current sca1e and another measure (given 
the reliability of the current sca1e). _to Top 

&. 
CLASSIFICA 110N 
'!'REFS. 
STATISTICA's 
C1assification TlWIS 
module provides a 
comprehensive 
implementation of the 
most receotIy 
developed algorithms 

for efficielltJy producing and testing the robustness of 
classificallon trees (a classification tree is • rule for predicting the class of an object from the values of 
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STATfSTfCA Quality Control Cham features a wide selection of quality COOImI analysis tedmiques 
with presentatiOlHjuality charts of unmatched ven;atility and comprehensiveness. It is uDiquely ideal 
for both automated shop-floor quality control systems of all types and levels of complexity (see also 
STATlSl1CA En~ Sy;stema, as well as sophisticated analytic and quality improvement 
research. A selection of automation options and user-interface shottcuts simplify routine work and 
practically all of the numerous graph layout options and specifications can be permancntly modified 
(saved as system default settings or as reusable templates). Finally, STA TlSTICA Quality Control 
Charts includes powerful and easy to use facUities to custom design entirely new analytic procedures 
and add them permanently to the application. and those 
options are particularly useful when quality control analyses 
need to be integrated into existing data collection/monitoring 
systems. 

STATlSTICA Quality Control Cham is compatible with 
Windows 95. Windows 98, Windows NT. Windows 2000. 
Windows XP, Windows Me. 

Studard dw1s. The program offers flcxible 
implemenlalions of Pareto charts, X-bar charts. R charts. S 
charts, S-sqllQl'ed (variance) charts, C charts, Np charts 
(binomial counts), P charts (binomial proportions). U charts. CuS_ (cumulative sum) charts with y­
masks (!be V-mask is automatically moved to detect outliers). 
moving range charts, nms charts (for individual observations), 
~ion control charts, lllllitivariate control charts (Hotelling 
T charts), MA charts (moving avernge), and EWMA charts 
(exponentially-weighted moving average). These charts may !!~Uj~!~~~ ,: : 

l. : be based on user-specified values or on parameters (e .•• , " : ~ ~ 

::,,:~r:-~I ~c:;~ c!:.c:::; i!~.fJf:~~r~~q;"::~f;: :;::: 
single observations (e.g., moving range chart) as well as from " 

samples of multiple observations. Control limits can he i:2~;;:Ii'ilii.· •.• '.,".:i~~ specified in termS of multiples of sigma (e.g., 3 * sigma), in .. 
_ of normal or __ normal (Jolmson-curves) probabilities 
(e.g., ."..01, .99). or as constant values. For unequal sample sizes, control chaItII can be computed with 
variable control limits or based on Standardized values. For most charta, multiple sets of specifications 
can be used in the same chart (e.g .• control limits for all new samples can be computed based on a 
subset ofprcvious samples, etc.). A:;. with all STAT/STICA graplts, QC chaItII in STAT/STICA Quality 
Comrol Chmu are highly customizable; you can add titles. comments, draw lines or marie regions 
dynantically anchored 10 specific scale values, or label the samples with dates, 1D codes, etc. 

lnCeiadjye, analytic hi .... hI I11III Jabellnr of polals. General "intelligent" and comprehensive. 
analytic brushing facilities are availabJe for interactive removal or labeling of outliers (or what-if 
81l11yses) in individual charts or sets of charts. The user can select individual samples or groups of 
samples based on currently specified chart criteria (control limits, nms rules). and exclude them from 
the computations for the chan (but still show them in the chart), or drop them from !be chart altogether. 
Multiple charts can be set up to use the same sample inclusion/exclusion criteria; in this manner several 
charts can be simUltaneously brushed (c.g .• a point excluded from the X-bar and R chart will 
simultaneously be excluded from all histograms). The user can also request to plot all individual 
observations for selected or for all samples. 

A 4;31aJ ca_ aud acdoas. The user can assign causes, actions, and/or commeIlts to outliers or any 
other points in most charts. Labels for causes and actions can be assigned via interactive brushing, or 
the program can detect and select out-of~1 samples. 

FlexIble, customlzable alann notifimtion system. A comprehensive selection of options are provided 

• 

• 
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control limits) or sections of data identifted via runs tests are 
automatically highlighted (marked) in the plots. The user can 
also add to the plot warning lines, moving average or 
exponentially-weighted moving average lines, or lines 
indicating specification _ges. 

~..... eoatroI limits _ad process capability aad 
performance iDdkes. For variable control charts, in addition 
to the customary normal distribution based charts and 
statistics, the program will also compute charts for 
measurements that _ not normally distributed (e.g., are 
highly skewed). These options are particularly important for situations where the sample sizes are small 
and where, as a com;equence, deviations from normality may lead to greatly jnflated or deftated error 
rates if the customary normal distribution based Slalistics wen: used. The program will COIIlpUtc control 
limits based on the Johnson curn:s fit to the firS! four 
momenlS of the observed data; user-specified values for the 
moments can also he supplied. Process capability indices 
can he computed based on the tilling of Johnson curves as 
well as Pean;on curves. Note that capability indices based on • 
specific distributions can also he computed in STA TISTICA 
Process Analysis (an add·;:m product available from StatSoft, 
Inc.). 

OIlIer plots aad Spreadsbcds For most charts (inclnding 
the R-cluut), the user may COIIlpUtc and plot the respective 
opending characteristic curve (OC curve). In addition to the 

..: . , 

chans. the respective values (plotted in the charts) can also be reviewed via 8pl'eadfllleels, allowing the 
user 10 examine the precise values of plotted lines and points. Customized (blank) charls can he printed 
that can laaer be "filled in" by hand by the quality control engineer. Note that as with all other graphs in 
STAT/STlCA, the graphs produced by STATISTICA Q""lity COlllrol Charts can he extensively 
customized and saved for further analysis and/or customization. 

Rea ..... QC ~; exIeI'" data _res. Most graphs and charts in STATlSTlCA QruUity 
Control a-u can be automatically linked to the data, and Updated when the data _ updated To 
facilitate data lumsfelS powerful (optional) STATlSTICA applications _ available (SEWSS and 
SEDAS). 

STATlmCA EnUrpri8e-wide DtIItI AIUIIysis S,*1II (SEDAS). SEDAS is. aroup_ version of _ 
STATlSTlCA WIly iJlUl&nlted with a powerful central data warehouse that providea an efficient general 
interface 10 entaprise-wide repositories of data and a means for collaborative work (extensive 
groupware functionality). 

STATlSTlCA EnUl'priH-wide SPC Splal (SEWSS). SEWSS is an integrated multi-user softwa:re 
packaae that provides wniplete Slatistical process control (SPC) functionality for enterprise 
installations. SE\VSS includes a central database, provides all tools necessary to process and manage 
data from nwltiple cbannels, and coordinate the work of multiple operators, QC engineers and 
sopezvison. 

SEWSS and SEDAS provide very flexible facilities 10 illlegr&le the procedum: in STA TlSTlCA QruUily 
Control CIwts into your enterprise-wide database. and to design elaborate company-wide quality 
moniloring systems. 

SlI1ISTIU-.III .... T.... 11 
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Slatislical Analysis with Excel 

STATISTICS PROCEDURES 

Three chapters teach statistics functions including the use of Excel 

functions for building Confidence Intervals and conducting Hypothesis 

Testing for several types of distributions. The design of hypothesis tests 

and the intermediate step of demarcating critical regions are taught 

lucidly. 

It seems that Microsoft has taken pains to "hide" some of the most 

powerful tools in Excel. These "hidden" tools are called "Add·Ins." These 

tools work on top of Excel, extending the power and abilities of Excel. 

Many Add·Ins are available for specific types of analysis like Risk 

Analysis. I show how to use three Add·lns that install with Excel. 

BASICS 

The fundamental operations in Excel are taught in Volume 1: Exeel For 

Beginners, Volume 2: Charting in Excel, and Volume 3: E_l- Beyond. The 

Basics 

FUNCTIONS 

I teach the writing of formulas and associated topics in Volume 3: Exeel­

Beyond. The Basics. I show, in a step·by·step exposition, the proper way 

for writing cell references in a formula. The book describe tricks for 

copying/cutting and paating in several examples. In addition, I discuss 

special pasting options. 

Finally. diimrent types offunclions are classified under logical categories 

and discussed within the optimal category. The categories include 

financial, Statistical, Text, Information, Logical, and ·Smart" Logical. 

• 

• 
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MANAGING a: TABULATING DATA 

Excel has extremely powerful data entry, data ma ............ rmd 

tabulation tooJa. The combination of tooJe proride N!Nl!!f; damlNlselib 

power to EIcel. Unfbrtunately, the poor qualit;y of the menu IaJout and 

the haJp preclude the poesibilit;y of the _ eelf·Jeam:inc &t.. _twee.. 

These featmes are taught in Volume 4: JlQII.QIlin6 cl ~ Data ill 

E»::el 

CBAllTING 

Sample data 

MoK of the tutoria1s use publicly available data Imm the IDtematioDaI 

labor Organization (fLO). I used a aimp. data set wHIt 0Jd,y a .. 

columna and observations. All the _pie data fiJea are jncluded in the 

zipped file. 

The eamp1ea Cor func:tiona use eevera1 small data eeta that are _ .'iled 

to iBustratmg the power and usefu1n_ of the fuaetioae. 

I haw DOt; included the data set Cor condnetiur atati-ticel .... Wilwa. 

'I'hiB is inteDtirlDaJ; often, readera Cail to int.erualia the few by "'IN. ... 

ofhypotheaia testing because they do not IJUb.jec:& them __ to • "eiDIt-or-

1!'Irim- i.nfennee.dtawi thinking and imbibing proc liB when 
intelptetmg the reaulta of atatiati.eal pl'llC8d_ 

of' 
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CB.IlPt'EB I 

WR-ITING FOR-MULAS 

This chapter discusees the following topics: 

- THE BASICS OF WRITING FORMULAE 

- TOOL FOR USING THIS CHAPTER EFFECTIVELY: VIEWING 

THE FORMULA INSTEAD OF THE END RESULT 

_ The Al VS THE RICI STYLE OF CELL REFERENCES 

- TYPES OF REFERENCES ALLOWED IN A FORMULA 

_ REFERENCING CELLS FROM ANOTHER WORKSHEEl' 

- REFERENCING A BLOCK OF CELLS 

_ REFERENCING NON-ADJACENT CELLS 

_ REFERENCING ENTIRE ROWS 

_ REFERENCING ENTIRE COLUMNS 

_ REFERENCING CORRESPONDING BLOCKS OF 

CELLSIROWSICOLUMNS FROM A SET OF WORKSHEETS 

The most important functionality offered by a epreadsheet application is 

the ease and flexibility of writing formulae. In this chapter, I start by 

showing how to write simple formula and then build up the level of 

complexity of the formulae. 

Within the sections of this chapter, you will find tipa lind notea on 

commonly encountered problems or issues in formula writing. 

• 

• 
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THE BASICS OF WRITING FORMULAE 

Tbi8 aection teaches the basiee of writing funetionL 

a 
TOOL FOR USING THIS CHAPTER EFFECTIVELY: 

VIEWING THE FORMULA INSTEAD OF THE END 

RESULT 

For ease of understandinc this chapter, I 8uaeet you. .. a 'ria-iDe or';"" 
that &howe, ill each cell on a worbheet, the tbrmula iIIat.ead oldie rau1t. 

Follow the menu path TOOUIIOPI'lONSIVIEW. In die area "W"mdow 

Optioua" &elect the option "FormuJaa" B8 8hown ill Ficun 1. 

lb:ecute the djaJoe by clic:kinJ on the butum OK. Go back to tile 

worbheet. The formula will be 8hown iDat.ead of the caJcuJat.ed value. 

Eventwilly you. will want to return to the default of II [ iacdle ~ 
iDat.ead of the tbrmula. Deselect "formula" in the __ "W"mdowa Optinna" 

in TOOUIIOPTIONSIVIEW. 



~--~--~------------~~~~~~~~~ 

1'1 fIIImIIII- P ...--

~ --------'-,.------~----..-.",.".""""'''''''''''''"'''~ I 

t! ... " 
~ ... --~~--~----~--~~~~~-

CPllllO ..... 
1'1 .... ... 

I?: ..... i-:-~~~ 
£lIIDr< I.~ i!l 

PRow ..... ....". 
P~~ 
P ZIorO wlIes 

The effect is only cosmetic; the results will not change. As you shall see 

later, what you have just done will facilitate the understsnding of 

functions. 

In addition, leave the option VIEWI FORMULA BAR selected as shown in 

Figure 2. 

• 
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THE -At" VS. THE -RiC- STYLE OF CELL REFERENCES 

The next ligule shows a simple formula. The formula is WiitIeD iDto eeIl 

G 15. The formula multiplie8 the values inside cen. Fa and n. 

l'Icare a: ~ oeD.. . '. 
1M 

This style of ref8renc:iDc is called the "Ar 8&yIe or • ..... u.· ...... ..,;"1. 

Tbe exact location of the referenced cen. is wriUen. ('!be ceDe ate .. 

in the 6th and 8th rows of column F.) One lyJUcaIJy WOI" with dn. 8&yIe. 

However. there is another style _ ~ the ceDa in. tionaula. 

This style is called the -aICI" style or "nJative· .tefe.t6"","" The same 

formula as in the pteVious ligule but in RICI style is aOOwD in the oem 

figure. 

P\cUIIIC: TIle _ ........ in die pmrioua ....... bat ill ItlCI <otI.I) ...... 
.... i .. wIWe die ,. •• IO""l\Il'IlIllI-.I AI (Ahd .... )...,....u' . • 

l=mRi tRf!lcf1l 

Does not this fOrmula look difl8tent? Tbia atyIe _ telatbe i S "rinc, 
So, the firsi eeIl (F8) is reitrenced relative to itB position in i S ,_ to 

the eeIl that eontaina the formula (eell GIS). Row 8 is 7 __ below .-

15 and column F is I column betore column G. Tberefbre. the eeIl 

refete_ is "minus _u l'OWIl, minus 1 column· or "Rf-7JCI-IJ.· 

If you _ a file or worbheet with aucb relative .tefe.t ........ you can 

switdl all the formulu back to abeolute "AI" style .... ew:inc b:r toinc to 

TOOLSIOPTIONSIGENERAL and deaelectiuc the option "RICI n __ 

atyIe.* 
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statistical Analysis wilt! Excel 

WRITING A SIMPLE FORMULA THAT REFERENCES CELLS 

Open the sample file "File3.xls" and choose the worksheet "main." 

Assume you want to write add the values in cells 02231 and D223 (that is, 

to calculate ·0223 + D223") and place the result into cell F223. 

Click on cell F223. Key·in -="and then write the formula by clicking on 

the cell C223, typing in "+" then clicking on cell "D223.» 

Figure 6: Writing a lbrmuJa 

UoCZl3+0223 I 

After writing in the formula, prese the key ENTER. The cell F223 will 

contain the result for the formula contained in it. 

Figure 7: The......wt io shown in the cell on which you wrote the lbrmuJa 

I 2O,1ffTJX¥J I 

I Cell C223 is the cell in column C and row 223. 

• 
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TYPES OF REFERENCES ALLOWED IN A FORMULA 

REFERENCING CELLS FROM ANO'IHER WOUSIIEET 

You can refimmce ceJls from another worksheet. Chooae eaIIlD36 OIl the 

worbbeet "main.- In the choeen ce1I, type the test abowD in the nat 

ficw.'e. (Do not p_ the ENTER key; the formula is i'lMllllllp)etie and you 

will cat an error ml!ll8llP jf you p_ ENTER.) 

JI'ipN a: WriIUI(lIr .... i .... tile ..... «0 tile tnt. lit .... 

1;3;1 

Then select the worksheet -aec:ond- and click OIl call D236. Now .... the 
ENTER key. The formula in oeD H236 ofworbMet "main- rder __ the 

cell D286 from the worksheet -second". The nat fipre ill"**- thia. 

JI'ipN 9: WriIUI(lIrcb .. .;", tIIe .... _ «0 tile .......... ' ..... wIIicII ___ tile 
_II It, ,t on which,.... -wrifiIII tile ...... .. 

In tbi8 formula. the part -aeccmd'- inCorm8 EBal that the 18111f181 5 ........ 

is from the sheet Caeccmd. 

REFERENCING A BLOCK: Of CEJ I S 

Select the 'tI'Ol'bbeet "main.- ChooIIe call H236. In the dMMel. ceO. type 

the ten abowD in the nat fipre. 



1.S.C 

Slalistical Analysis with Excel 

Use the mouse to highlight the block of cells "E228 to E235." Type in a 

closing parenthesis and press the ENTER key. The resulting function is 

shown in the next figure. 

Figure 11: Formula with a block of <eIIe a. the Nl'e_ 

REFERENCING NON-ADJACENT CELLS 

Choose cell H237. Click in the cell and type the text shown in the next 

figure. 

Figure 12: The core fum:tion is typed first 

L71-m PH) 

As in the previous example, choose cells E223 to E235 by highlighting 

them- the furmula should like the one shown in the next figure. 

Type a comma. The resulting formula should look like that shown in the 

next figure. 

• 

• 
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Birhlipt the block of cells "E210 to £222: Key-in a cIMine panmtlleaia 
_d preu the ENTER key. 

REFERENCING ENTIRE ROWS 

Chooee eeD H238. In thia ceD, type the text; shown in the oaxt &cure. 

Usinc the IDOUN. bjpJjpt the rows 197 to 209. Type in • cJoeinc 
pazent.hesia ~ preas the ENTER key. The I'8fIUltiDc hmula is ebown in 

the oaxt fiIure. 

l'ipnl&: Rd ....... _ 

REFERENCING ENTIRE COLUMNS 

Chooee eeD H239. In thia ceD, type the text; shown in the oaxt fipnI. 

UIIin& the _. bjchligbt the t:OlW11D8 C ~ D. Key-in. dneinc 

pazent.hesia ~ preas the ENTER key. 



1.3.F 

Fipnl17: Referencing entire coJ1IlIIn8 

Lil-mco)" I 

REFERENCING CORRESPONDING BLOCKS OF 

CELLS/ROWS/COLUMNS FROM A SET OF WORKSHEETS 

Assume you have a workbook with six worksheets on similar data from 

six clients. You want to sum cells 'C4 to F56» acroas all six workaheets. 

One way to do this would be to create a formula in each worksheet to sum 

for that worksheet's data and then a formula to add the results of the 

other six formulae. 

Another way is using "3-D references." The row and column make the 

first two dinlensions; the worksheet set is the third dinlension. You can 

use only one formula that references all six worksheets that the relevant 

cells within them. 

While typing the formula, 

• Type the "="sign, 
• Write the formula (for example, ·Sum"), 

• Place an apening parentheais "(," then 

• Select the six worksheets by clicking at the name tsb of the first one 
and then pressing down SHIFT and clieking on the name tab of the 
sixth worksheet, and then 

• Highlight the relevant cell range on any one of them, 

• Type in the closing parenthesis ")" 

• And press the ENTER key to get the formula 

ESUM(Sheetl:Sheet6!"C4:F56"ij 

" 

• 
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COPYING/CUTTING AND 

PASTING FORMULAE 

- COPYING AND PASTING A FORMULA TO 0111JSK CELLS IN 
THE SAME COLUMN 

- COPYING AND PASTING A FORMULA TO 01'H8R CELLS IN 
THE SAME ROW 

- COPYING AND PASTING A FORMULA TO OI'HER CJtIJS IN A 
DIFFERENT ROW AND COLUMN 

- CONTROUJNG CEIL REFERENCE BEHAVIOR WHEN 
COPYING AND PASTING FORMULAE (USE OF THE T 
KEY) 

- USING THE T SIGN IN DIFFERENT PERMtJTATlONSAND 
COMPUTATIONS IN A FORMl1LA. 

- COPYING AND PASTING FORMULAS FROM ONE 
WORB.SBEETTO ANOTHER 

- SPBCIAL PASTE OPTIONS 

- PASTING ONLY THE FORMULA (BUT NOT THE FORMATnNG 
AND COMMENTS) 

- PASTING THE RESULT OF A FORMUI..A. BUT NOT THE 

FORMULA I'MELF 

- CUTI'lNG AND PASTING FORMULAE 

- THE DIFFERENCE BETWEEN ·COPYING AND PASTING" 
FORMULAS AND "CUTTING AND PASTING" FORMULAS 

( 14 I 

• 

• 
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2.1 

-SAVING TIME BY WRITING, COPYING AND PASTING 
FORMULAS ON SEVERAL WORKSHEETS 

SIMULTANEOUSLY 

COPYING AND PASTING A FORMULA TO OTHER 

CELLS IN THE SAME COLUMN 

Often one wanta to write anaiogoUll ibrmulae fOr ... wal_ For 

example, U8UDJe you want to write a ibrmula AnaL..,. to t;be fanrtula in 

F223 into each of t;be eells F224 to F2361. The quick way to do this is to: 

- Click on t;be -copied from- c:eD P'223. 

- Select the option EDIT/coPY. (The menu can aJao be M CTII e II by 
r.icht-clickinC on the mouse or by cticki .... on the ropy icon.) 

- a- the menu option EDITIPASTE. (The menu _ aJao be 
ace. 18 ad by r.ichkJiclrinl on the _ or by eJiclrinc on the 
PASTE icon.) 

- p,.. the ENTER key • 

- The ibrmula is pasted onto the cells F224 to P'236 and the cell 

• The bmw. in Faa adds the vaJuee in ceDe that _ 3 ucI1 ...... - tD the Jea <tIrIt 
it, cen. in eoJumu in C ucI DJ 
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references within each formula are adjusted8 for the location 

difference between the 'pasted on" cells and the 'copied from" cell. 

1es:mo 281t1OOO 0<:224+1)224 

1i!OOX1l 2255000 oC225+0225 

1381l1m 181l2OOO ~ 

117aX) 1550000 -czz1<f1.l27 

951000 1339000 oC22&t022II 

589000 1124000 aC229t0229 

«7000 897000 oC23O+023O 

37500) 544000 --<:231 +0231 

307000 400000 ~ ... -.... 

23a 221000 2liOOQO 319000 ,~ 

.&! JH aka I a; 

COPYING AND PASTING A FORMULA TO OTHER 

CELLS IN THE SAME ROW 

Select the range F223- F235 (which you just created in the previous sub­

section). Select the option EDIT/COPY. Choose the range G223- G235 

(that is, one column to the right) and choose the menu option 

EDlTIPASTE. Now click on any cell in the range G223- G235 and see 

how the column reterence hail adjusted automatically. The formula in 

a The bmuJa in the 'copied cell" F22S is "C2l!S + D22S" while the ibrmula in the 
"pasted on" cell F226 is 'C225 + D226." <Cllcl< on cell F226 to oonfimt thisJ The cell 
F225 is two!'OWs below tbe cell F223, and the copying-and-pasting p:r0ce88 accounts 

for that. 

• 

• 
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G223 ill '"D228 + E223" while the fOrmula in F223 ..... -em + DZ2S'". 

The next &gure illuatntes thi&. Becauee you pasted ODe eohmm flo the 

right, the ceO refere_ automatically shifted ODe collUllD flo the DchL 
So: 

- The reference·C" b""'''M "D; and 

- The reference "D" ........ me "E.-

The examples in 2.1 on pace 36 and 2.2 on pap 31 show tile .. ol"Capy 

and P88te- to quickly replicate fOrmula in iii m_ &hat main __ 

refimtntial paraDe1iam 

COPYING AND PASTING A FORMULA TO OTHER 

CELLS IN A DIFFERENT ROW AND COLUMN 

Select the ceO F223. Select the option EDlTICOPY. Chao. tile nJtIII 

B224 (&hat ill. two columns to the ricbt and ODe _ cbrD ".. tile copied 

eeJI) and cbooee the menu option EDlTlPASTE.. 011 ....... how tile column 

and row referenc::e8 have ebanged automa~ tile bmw. in B224 ill 



2.4 

StaIisIicIII Analysis with Excel 

"E224 + F224H while the formula in F223 was «C228 + D228". 

The next figure illustrates this. Because you pasted two coI.WIlnll to the 

right and one row down, the cell references automatically shifted two 

columns to the right and one row down. So: 

- The reference "0" became "E" (that is, two columns to the right) 

- The reference "no became "F" (that is, two columns to the right) 

- The references "228" became "224" (that is, one row down) 

. a 
CONTROLLING CELL REFERENCE BEHAVIOR 

WHEN COPYING AND PASTING FORMULAE (USE 

OF THE "$" KEY) 

The use of the dollar key "$" (typed by holding down SHlFI' and choosing 

the key "4") allows you to have control over the change of cen references in 

the "Copy and Paste" process. The use of this feature is beat shown with 

some examples. 

- The steps in copy and pasting a formula from one range to another: 

- Click on the ·copied from" cell F223. 

- Select the option EDIT/COPY. (The menu can also be accessed by 
right-clicking on the mouse or by clicking on the COpy icon.) 

• 

• 
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- Choose the "pasted on" cell F2I9 by c1ickinc on it. and 

- Se1ed the menu option EDITIPASTE.. (Tbe menu caD aI80 be 
accessed by right-clicking on the _ or by ctidrinr on the 
PASTE icon.) 

- Preea the ENTER key. 

- The formula ·C219 + D219" will be pasted onto cell n19. (For a 
pictorial reproduction of this, _ Firure 21.) 

Chance the formula by typing the dollar aign8 as ahown Pipre 22. 

Copy cell n19. Paste iDto 0220 (dult ill. one coIuma to die dP& ad one 
row down). The dollar aign8 will eaaure dult the cell wS _ .. 110& 

alijuat8d fbr the row or column clifimmtial fbr the parta of the ... _ 

that have the dollar aim befOre them'- _ the form_ iD ceO F220 

(reproduced iD Firure 23). 

CIn this _mph, the puta_ the "C' __ ud -sIr i [ • ill "'ICIIlr patel. 

the 'anlla. 
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~ -$C$219+D219 
" 

2m -$C$219t£220: 

For the parts of the cell that do not have the dollar sign before them, the 

cell references adjust to maintain referential integrity5. 

USING THE "s" SIGN IN DIFFERENT PERMUTATIONS AND 

COMPUT A nONS IN A FORMULA 

The dolJ.r sip hi the 
"copied from" cell 

Referenee behavior 
with a doDar sign 
before one of the 

column references 

Original cell: 

F%19 = $0219 + D219 

Reference behavior 
with a dollar sign 

before one of the row 
references 

Original cell: 

F%19 = C$219 + D219 

CepyF%19 
and paste 
intoG220. 

CopyF%19 
and paste 
into G220. 

The cell reienmco. hi the "pasted on" cell depend on 
the location of the dollar aia:na in the formula hi the 

on ' ied from" cell 

Figure 26: Only the ,efet ...... to "Ilr (in the formula 
part "C$219'? does not atljut bocauae ~ that "IllS" 

hus 

• Tbe part "Dl!19" adjuats to "E22O" to adjust fur the fact thst the "pasted on" cell is one 
column to the right (so "D~ EO) and one row helow (so '219~220" .) 

• 
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· ...... II _tiJe~fIIi''''''''''''", ........... iatlle . ....,. .. ....... ".. ..... ......actioa die .......... oItiJe ........... tiJe ....... ia tile . . ....... a-..... 
Rdu_ behnior 
with. dollar lip ~18: .. 1 ... to -c.·V MIl to "I1F Cia beJbn all but _ of the ....... part'1D$l1l?_ ... I. II. 
the _/column CopyFll. all ..... 

refimmces and,.. 

;:~ 0riIiDal cell: 
intoG22O. 

~ 
FIll = $ClUJ + 

$1)$21. 

0riIiDal cell: CopyP219 '1'r7it. .. 
Fll9 .. $CPl. + and,.. 

$D$21. intoG22O. G2IO = $C$I19 + $DI219 

0riIiDal cell: CopyP219 '1'r7 it... 
Fll9 = $<:219 + 

aDdpu&e 

$B119 intoGl2O. G2IO"'.-.+_ 

0riIiDal cell: CopyFll9 '1'r7 it... 
.F219= C219 + 

andpu&e 

$D$2d intoG22O. G220 = D2IO + $DI2l. 

COPYING AND PASTING FORMULAS FROM ONE 

WORKSHEET TO ANOTHER 

". ~ -1IICOIId" in die ...... data tile ... the .... data _ die 

worlF:eheet you are currently 011. ("main.' In die wwblwet .. eeIect 
die ceO nI9 and cbooee the menu optiOD. BDlTICOPY. Select die 

worlF:eheet *1IICOIId" and pule the formula into ceO nit. Notice that the 

formula is duplicated. 



2.6 

2.7 

2.8 

Statistical Analysis with Excel 

PASTING ONE FORMULA TO MANY CELLS, 

COLUMNS, ROWS 

Copy the formula. Select the range for pasting and paste or "Paste 

Special" the formula. 

£S .. 

PASTING SEVERAL FORMULAS TO A SYMMETRIC 

BUT LARGER RANGE 

Assume you have different formulas in cells G2, H2, and 12. You want to 

paste the formula: 

- In G2 to G3:G289 

- In H2 to H3:H289 

- In 12 to 13:1289 

Select the range G2:12. Pick the menu option EDIT/COPY. Highlight the 

range G3:1289. (Shortcut: select GS. Scroll down to 1289 without 

touching the sheet. Depress the SHIFf key and click on cell 1289.) Pick 

the menu option EDITIPASTE. 

t. d.. . 2 

DEFINING AND REFERENCING A "NAMED RANGE" 

You can use range names as references instead of exact cell references. 

Named ranges are easier to use if the names chosen are explanatory. 

First, you have to define named ranges. This process involves informing 

Excel that the name, for example, "age_nlf," refers to the range "C2:C19." 

42 
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Pick the menu option -INSERTINAMEIDEFINE.- The cti ...... <_iDput 
form) that opens is shown in the DU.i ficufe. Type the IWDe of the I'8.IIp 

int.o the tut;·box ~ames in workbook" and the "Cell Refeteacw" in the 

box "Refen t.o:~ See the DU.i ficufe for an example. 

li .1:11 tl 1 T 

C iF.; 

~1rI ... "··+· 
~JI' I i! I 

~ a.. I .. I 
.-. I 

..:I 
B.fts1Dl r I ,. III $2:SC$t9 II 

Click on the buUOD -Add: The named I'8Dp is defiued The name of a 

defined I'IUJIII' is displayed in the larce tut;.box in the cIialoc. The oat 

&,me illustrates this ten. 

Setera1 named ranees can be defined. A named rIUIII8 can.. lilt 

multiple bIocb of cells. 



Statistical Analysis with Excel 

F':igu:n! 29: Defining a oeoond named ratlI'!. On clicking • Add." the named ratlI'! is defined. as _m .. w the wox·, DII""" 

You can view the ranges represent by any name. Just c1:ick on the name 

in the central text-box and the range represented by the name will be 

displayed in the bottom box. 

FIcPue ae: 'l'wonamed .................... -"""""""='1'11 
""~~::'f[E1 

----- ~- ----- ." ""-~-.. -~ ,-- .. ~ 

Df t, -,,' J., '-IT j 

~I 
~I 
!lid I -, 

o 

• 
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......... 1: youCU ..... ....,NJIiIIL J..-.... _tIuIl ... __ CIf' , .... 
aatti LJ I. 

I QJ I 
~ I 
~ I 

1It'1 I 

...,..10: 
,..,.. 1I$q182l$C$19!l 

AddiDtr III8VU1lI named raDCea in one step 

46 I 

It the first.IJa8llOWlcolumn in your l'llDIPI8 baa the JabeJ8 _ the lUll. 

then )IOU CIIll define D8JIlt!8 for an the l'llDIPI8 uainc the menu optiaa 

INSERTINAMESICREATE. '!be dialot is reprod.-d in the IIIIId &pre. 

I, ' '. jIj £;1 

OeID_tl---

F1IciP­
rlifti+!i/ r ....... _ 
rlW*--

OK I 0tIII!II 

In our sample data eet, I aeJected cobmms "A" and "B" and _ted die 

namee from the JabeIs in the lirat lOW. 



Slatistical Analysis wiIh Excel 

------.----.-.. -~-----------------
Using a named range 

Named ranges are typically used to make formulas easier to read. The 

named ranges could also be used in other procedures 

Assume you want to sum several of the ranges defined above. One way to 

sum them would be to select them one-by-one from the worksheet. 

I =SUM( 

. Another way is to use the menu option INSERTINAMEIP ASTE to select 

and paste the names of the ranges. The names are explanatory and 

reduce the chances of errors in cell referencing. 

A reference to the named range is pasted onto the rormula as shown 

below. 

I =SUM(ag815.19) II 

• 
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Ok I ~ I 

2.9 SELECTING ALL CELLS WITH FORMULAS THAT 

EVALUATE TO A SIMILAR NUMBER TYPE 

V __ II: Bzr»l- IJe:yo7ld 17ae Basia 

2.10 SPECIAL PASTE OPTIONS 

2.10A PASTING ONLY mE FORMULA (BUT NOT 11IE FORMATTING 

AND COMMENTS) 

, Refer to pap 56 in chapter 3. 

2.10.8 PAS'DNG mE RESULT OF A FOR.MULA. BUT NOT 11IE 

FORMULA ITSELF 

Refer 10 pap 63 in chapter 3. 

47 I 



2.11 

2.11.A 

CUTTING AND PASTING FORMULAE 

THE DIFFERENCE BETWEEN "COPYING AND P ASTINGH 

FORMULAS AND "CUTTING AND PASTING" FORMULAS 

Click: on cell F223. select the option EDIT/CUT. click on cell H224 and 

choose the menu option EDITIPASTE. The formula in the "pasted on" cell 

is the same as was in the "cut from" cell. (The formula "=C228 + D228.j 

Therefore. there is no change in the cell references after cutting-4l1ld­

pasting. While copy-and-paste automaticslly adjusts for cell reference 

differentials, cut-and-paste does not. 

If you had used copy and paste. the formula in H224 would be "=0224 + 
E224.-

After doing this, select the option EDITIUNDO because I want to 

maintain the formulas in F223- F235 (and not because it is required for 

a cut and paste operation). 

• 
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2.12 

2.13 , 

49 f 

CREATING A TABLE OF FORMULAS USING 

DATA/TABLE 

The menu option DATAf1'ABLE 8UJIPOIIIIdJy ofIar8 a tool for c:natiDc an X­

Y table oftOrmula reeults. However, the method.-dell) much data 

arrangement that it is no better than 1I8inc a simple copy aad paaCie 

operation on c:ells! 

SAYING TIME BY WRmNG. COPYING AND PASTING 

FORMULAS ON SEVERAL WORKSHEETS 

SIMULTANEOUSLY 

Refer to Volume 8: EzeeI-Beyoru:l77le Bollia to Jearn how to work with 

multiple worbheets. The eeetion will reqIII!IIt,.. to iJUow OQI'_ple 

of writing a tOrmula Ibr several warier' e ata toptber. 
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ca.p ... ER 3 

PASTE SPECIAL 

- PASTING THE RESULT OF A FORMUlA, BUT NOT THE 
FORMULA 

- OTHER SELECTIVE PASTING OPTIONS 

- PASTING ONLY THE FORMULA (BUT NOT THE FOBMAmNG 
AND COMMENTS) 

-PASTING ONLY FORMATS 

- PASTING DATA VALIDATION SCHEMES 

- PASTING AU. BUT THE BORDERS 

-PASTING COMMENl'S ONLY 

- PERFORMING AN ALGEBRAIC "OPERATION" WHEN PASTING 
ONE COLUMNJROWIRANGE ON TO ANOTHER 

- MULTIPLYINGlDMDINGJSUBTRACTINGlADDING ALL CRUS 
IN A RANGE BY A NUMBER 

-MULTIPLYINGlDMDING THE CELL VALUES IN CEI.JS IN 
SEVERAL "PASTED ON" COLUMNS WITH THE VALUES OF 
THE COPIED RANGE 

-SWITCHING ROWS TO COLUMNS 

Thi8leu a-n feature ofEscel has _ put optima that ..... time 

and reduce IIIlDOy8IlCII8 in copying and pastinc 

1 



3.1 

Statistical Analysis will! Excel 

PASTING THE RESULT OF A FORMULA, BUT NOT 

THE FORMULA 

Sometimes one wants the ability to copy a rormula (ror example, "=C223 + 
D223),,) but paste only the resulting value. (The example that follows will 

make this clear.) 

Select the range "F228:F235" on worksheet ""main." 

Choose the menu option FILElNEW and open a new file. Go to any 0811 in 

this new file and choose the menu option EDITIPASTE SPECIAL. 

In the area "Paste," choose the option "Valuesu as shown in Figure 87. 

Paille --------~ ___ ~~ 

rll 
r~ 
r.&J 
r.~ 

r_1Ifiris 

r~," 
('YaIdIIIIiI& 
(' M"l!.IIIIt IIIniI!.Q 

rt, ..... 
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In Excel XP, the "Paste 
Speei.al" dialog haa time 

additional options: 

• Paate Formulas 
and number 

imDat:8 (and not 

othereeU 
imDatting lib 

blt,hackcround 
color, borders. etc) 

• Paate Valuea and I 
Dumber imData 

(and not other cell 
imDatting lib 

blt, baekground 
color, borders, etc) 

• Puteonly 
"Column widths.-

In Excel XP. the "Pute" icon 
provides quick.- to 801M 

types of"Pute Special» Tbe 

aptions are 8hmm in the neD 

fipre. 

The c:ablated valuea in the 
-copied'" ceDa are puted. The 

jmaula ill not p.... 'by 
the __ ~t usinc 

BDlTIPASTB in8tead of 
BDlTIPASTE SPECIAL. The 
~ofthe fOrmer will 

If. 
r8noiB r,.. r,... 
rg .... 

-.... r,.. r __ 

r • .,... 

r Rr a 
r ............. 
rc.t.a .... 
rFa ........... .... r-... ......... .... 

rTl s _ 

Pipa ............... -.. '. diclWlcOll the __ the ......... 

............. 

41 



Statistical Analysis with Excel 

In Excel XP, the "Paste 
Special" dialog has three 

additional options: 

• Paste Formulas 
and number 

formats (and not 
other cell roil] ('" lIeld11i1oo 

formatting like ('"~ ('" AI..- bertJers 

font, background ('"~ ... 
color, borders, etc) ('"~ 

('"~ 

('" "*---('" ~and""",fenMts 
('" llaUosand ......... fenMts 

• Paste Values and rol\lg/Wl 
number formats ('" .... • (and not other cell ('":iIiltr1Ct 

formatting like 
r_~ 

font, background 
r TranIPOSII. 

color, borders, etc) p--Li1k Ok I c-..I 

• PasteonJy 
"Column widths." 

be apparent. 

64 I 



3.2 

3.2.A 

, 
U8 

56 

OTHER SELECTIVE PASTING OPTIONS 

PASTING ONt Y lHE FORMULA (BUT NOT DIE FORMATITNG 

AND COMMENTS) 

ChooM the option "Formulas- in the area "Paste" of the di .... (u.l'-Dlput 

fOrm) UIIOCiated with the menu "EDITIPASTB SPECIAL." 'flUe feature 

makes the puted values free from aD c:eD refereDcea. The "putBcI ." 

range will cm1y contain pUN numbers. The hia: It advan .... of tIIia 

option ill that it enables the collating of formula N81Ilta in ctifluent 

rangealeheetalworltboob onto one worlteheet without the hoc:her of 
maintaining aD the referenced cells in the same W(R~" the 

collated results. 

~-------------------I ("" 
"'6i+1 
("~ 
(" f'GnoI&J 

PAmNG ONt Y FORMATS 

("g a 
("", , 11 a 
("-.. PIIIIl''''''1 

Choose the option "Formate" in the area "Paste" of t:be dia10c .,noakld 

with the menu "EDITIPASTE SPECIAL use the "Format Painta'" icon. I 

pmer WIiDc the icon. 

Refi:Ir to Volum.e 1: E:it:cel For ~ fOr a diecullllion OIl the fbrmat 

painter. 

.,r 



3.2.C 

3.2.0 

3.~.E 

PASTING DATA VALIDATION SCHEMES 

Pick the option "Validation" in the area ·Paste" of the dialog IIII80ciated 

with the menu "EDITIPASTE SPECIAL." Data validation schemes are 

discussed in Volume 4: Managing & Tabulating Data in. E%CeI. This 

option can be very useful in standardizing data entry standards and rules 

across an institution. 

PASTING ALL BUT THE BORDERS 

Choose the option· All except borders" in the area "Paste" of the dialog 

associated with the menu "EDITIP ASTE SPECIAL" All other formatting 

features, formulae, and data are pasted. Thill option is rarely used. 

PASTING COMMENTS ONLY 

Pick the option "Comments" in the area "Pasta" of the dialog associated 

with the menu "EDITIPASTE SPECIAL." Only the commenta are pasted. 

The comments are pasted onto the equivalently located cell. For example, 

a comment on the cell that is in the third row and second column that is 

copied will be pasted onto the cell that is in the third row and second 

column of the ·pastsd on" range. This option is rarely used. 

I 

56 



3.3 

3.3.A 

I 

, 

I 67 I 

PERFORMING AN ALGEBRAIC "OPERAnON- WHEN 

PASTING ONE COLUMN/ROW/RANGE ON TO 

ANOTHER 

MULTlPL YJNGIDIVIDINGlSUBT'RACI1NG/ADDING ALL CD I S 

IN A RANGE BY A NUMBER 

Assume your data ill e.reaeed in mi11ioaa You aeed to ...... tile UDiIa 

to billion&- that is, divide aD values in the l'IlIIP by 1000. Tbe mmplex 

way to do this would be to create a new l'IlIIP with each ... in tile _ 

ranee contaimnr the formula -cen in old ranpIlOOO.- A madlilimplar 

way ill to use PASTE SPECIAL On any ceD in the wcod> tit, ..me the 

number 1000. Click on that ceD and CIJIlY the number. a.oc- the l'IlIIP 

wm- ceUa Med a reecalinr of units. Go to the menu opticm BDITIPAST'E 
SPECIAL and chooee "Divide- in the area ~ '11Ie l'IlIIP will be 

replaced with a number obtained by dividing each ceD by the clOPied eeIJs 

value! 

The aame method can be need to multiply, aubtraet 01' add. num ...... to aD 

ceDs in a ranee 

q .. ,,---..... ..., 
It".. 
r 
r 

" 



3.3.8 

3.4 

StaIistica! Analysis with Excel 

MULDPLYINGIDIVIDING THE CELL VALUES IN CELLS IN 

SEVERAL "PASTED ON" COLUMNS WITH THE VALUES OF THE 

COPIED RANGE 

You can use the same method to addlsubtractlmultiply/divide one 

column's (or row's) values to the corresponding cells in one or several 

"pasted on" columns (or rows). 

iry this Copy the cells in column E and paste special onto the 

cells in columns C and D choosing the option "Add" in the area 

"Operation" of the paste special dialog. (You can use EDITIUNDO to 

restore the file to its old state.) 

£sus sa&. 
SWITCHING ROWS TO COLUMNS 

Choose any option in the ·Paste" and ·Operations" areal and choose the 

option "Transpose." Ifpasting a range with many columns and rows you 

may prefer to paste onto one cell to avoid getting the error ·Copy and 

Paste areas are in different shapes.» 

58 
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S 5 r .. AnIIIyIIa wllleal 

C ..... E ... 

INSERTING FUNCTIONS 

-A SIMPLE FUNCTION 

- FUNCTIONS THAT NEED MULTIPLE BANGE REFERENCES 

- WRITING A "FUNCTION WITHIN A FUNCTION"' 

- NEW IN EXCELXP 

- RECOMMENDED FUNCTIONS INTBEFUNCl'ION WlZABD 

- EXPANDED AtrrOSUM FUNCTIONALITY 

-FORMULA EVALUATOR 

- FORMULA ERROR CHECKING 

& 

BASICS 

ED:elhaallWlY iD-built; functiomJ. The fI.mctioDs may he u--ted into a 

imDuJa. 

(a) aeIect die menu path INSERTIFVNCTION, or 

(b) cJic1r; OIl die function icon <_ Fjpre 42) 

60 I 
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The "Paste Functjon'" dialog (or wiard, beca .. it is a .nee of milap) 

opens. The dialog is shown in Figure 43. 

The equivalent dialog in the XP veraioo ofBBelis eaDacllNSl5ltl' 
FUNCI'lON. (It is npmduced in the nut &pre below.) The dialog ... 

one uew ~ "Search fur a fulJdion" utility. The "Pu ........ 

catejOiy· is DOW available by clicking on the Jist box D8ld; to the JaW "Or 
eaIec:t a cafelOly.· 



CHOOSE 
MAX 
MEDIAN 
AYEJlA(;E 
SUO! 
IF 

Statistical Analysis with Excel 

OATf(,... .. ' tIIttod.,) 

Ie I 

RetI.ms Ihe ....... the!: ."",_Its Ihe dote In ""'Oidt!mll doteoIIme 
tode, 

This dialog has three parts: 

(1) The area "Function category" on the left; half shows the labela of 
each group of functions, The group "Statistical" contains 
statistical functions like "Average" and "Variance," The group 
"Math & Trig" contains algebra and m.onometry functionelike 
"Cosine," When you click on a category name, all the functione 
within the group are listed in the area "Function name," 

(2) The area "Function name" lists all the f\.mctione within the 
category selected in the area "Function category," When you 

click on the name of a function, its formula, and description is 
shown in the gray area at the bottom of the dialog, 

(3) The area with a description of the function 

Step 2 for using a function in a formula 

Click on the "Function category" (in area 1 or the left; half of the dialog) 

• 

• 
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4.2 

, 

, 

I 63 I 

that contaiDs the function, then click 011 the fuadioD DIURe ill the UU 

"FuDctiOD Dame- (in area 2 or the left half of the diaJoc) md then _ute 

the dialog by cJicking 011 the button OK. 

A SIMPLE FUNCTION 

In my &at examp1e, I show how to aeJec:t md 11811 the fi"..-tjoa -A_ace­
which is under the cateaorY "Statistical. -

11 



• 
The dialog (user-input form) for the "Average" function opens. 

For a pictorial reproduction of this, see Figure 47. 

~ ...... '"' ,1)1"1I1'.ur~ .... l\fii'tIil.1iIo 
~.'''''''lNll!lllUln~. 

........... t. ~1,ilUlllbtfll, ••• _l til :l!I.,.... I!IIIl~ 1hII-... • · __ ftlJd-

Step 3 fur inserting a fupcljpn defining the data 

arguments/requirementa for the function 

Figunl4s: SeJeeting the cell re ..... ...,.,' whose value. will be the 

64 I 
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You have to teD Emel which cells contain the data 10 which JOU WllD' to 

apply the ftmct:ion -A VERAGE'- Click on the rich' edge 01 the tut-box 
"Numberl.... (That is, on the red-blue-end-wbite WlU6t 01 the eeIl.) Go 

to the worksheet that baa the data you waut to uae aDd bipJieht the 

l'IlDp "C2 to Ea'- Click on the edge of the test-boL (For a pidorial 

reproduction of tbie. see Figure 48.) 

You will be taken back to the • Average" dialog. Nodce that - __ WD in 

Figure 49 - the cell reference "C2:ES- baa been added.. 

Furthermore. note that the answer is JilO'ided at the .... ' <_ the tiDe 
?ormuJa result = 9973333.333;. 

Execute the dialog by clicking on the button OK. 

............. (wII ..... ., ..... -"'_JJ 

........ ·lllhIt ..... ....... 
I' ' l: ...... l~ ... _l.~I .. ..,i 

.... s • 

..... ..t:-i&JiiW.ISII 

• IlJOll_t to __ -acljaceDt lIIJII86 in the ~ thea _ the 1IOiiit"" -..-­
r IIr die -.l J'IIIIIIL Excel will.deI _ lI!mt-t.. _ JOIl &I aD the naiIIble 

8& I 

_ If die labelllr • lI!mt-bolt is DOt in bold dIeD it is DOt 4 ia1 to &I that lI!mt-
haL In the AVERAGE cIiaIotr sbowD in Fipre _ the labelllrthe tint IIOiiit ... 
("Number 1") is iD bold 110 it has to be lIJIed. The labelllr the __ IIOiiit lIoI: 
("Number r> is DOt iD bold - 80, it can be Ieft~. 

o 



4.3 

Slatistical Analysis will! Excel 

The formula is written into the cell and is shown in Figure 60. 

F:icure 50: The function is written into the cell 

Press the ENTER key and the formula will be calculated. 

You can work with this formula in a similar manner as a simple formula 
_ copying and pastiDg, cutting and pasting, writing on multiple 

worksheets, etc. 

If you remember the function name, you do not have to use 

INSERTIFUNCTION. Instead, you can simple type in the formulas using 

the keyboard. This method is faster but requires that you know the 

function. 

L 3 

FUNCTIONS THAT NEED MULTIPLE RANGE 

REFERENCES 

Some formulas need a multiple range reference. One example is the 

correlation formula ("CORRELj. Assume, in cell Jl, you want to 

calculate the correlation between the data in the two ranges: "D2 to D14-

and "E2 to E14." 

Activate cell Jl. Select the option INSERTIFUNCTION. Chooae the 

function category "Statistical.- In the list of functions that opens in the 

right half of the dialog, cbooae the function "CORREL· and execute the 

dialog by clicking on the button OK. 

66 
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4.4 

Slatistical Analysis wiIh EXCIIII 

Repeat the same for "Array 2," selecting the range "E2:E14- this time. 

Nrarl 

The formula is complete. The result is shown in the dialog in the area at 

the bottom "Formula result." Execute the dialog by clicking on the button 

OK. 

has also been refenmoed 

Once the dialog closes, depress the ENTER key, and the function will be 

written into the cell and its result evaluated/calculated. 

L 22 

FIgum 66: The 1imction .a writlen into the ceIL 

'=eORRE@:D14,E2:E14' 

bl. Laalt SL"jjj $. J . . k b£ w-_ 
WRITING A "FUNCTION WITHIN A FUNCTION" 

I use the example of the CONFIDENCE functinn from the category 

"Statistical: 

Choose the menu option INSERTIFUNCTION. 

68 I 



In the list offunct.iona ihat opena in the right half of the m ...... daooee the 

function CONFIDENCE and execute the dialor by cJiclrinc OIl the buUoa 

OK 

The Confidence dialor (user-input bm) xequtrea' three parametImI: the 

alpha, standard deviation, and sample abe. Fint type in the alpha 

desiJed 88 shown in Fig1ue 58. (An alpha of-.06-cort~ to a.5 
eonfidenee level wbile an alpha value of-:.r corleepmcls to a ,. •• Ii _.­

interval of 90 5.) 

'We ~ that aD tbrw ... necensl'J' beca_ their ......... iD biIId. 
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SIatisticaI AnalysiS with ExatI 

Press the OK button. 

F'igur<!l59: The first part of tile funetion 

I=CONFIDENCE(.!ilJ I 

Type a comma after the ".05- (see Figure 60) and then go to 

INSERTIFUNCTION and choose the formula STDEV as shown in Figure 

61. 

F'igur<!l60: Placing. comma be1bre ent.erint tile second part 

I!l 

Choose the range for which you want to eaIeulate the STDEV (for 

example, the range "E:Ej and execute the dialog by clicking on the button 

OK 

The formula now becomes: 

,...... 62: A funetion witbin. funetion 

'=eONFIDEfflll5· STREV(E:E}l1 

The main formula is still CONFIDENCE. The furmula STDEV provides 

one of the paramete1'8 for this main formula. The STDEV function is 

nested within the CONFIDENCE function. 
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Type a comma. and then go to lNSER'I'IFUNCl'ION IDd ..... ..,. the 

function "Count" from the luneti.on category "Stetietjc:er to Bet the 6DaI 

1brmula. 

Thm !m! two other DB to write tbje imp*' 
Seled the option INSERTIFUNCTlON. chooIe the ''''diem 
CONFIDENCE from the category "Stati8tical" IDd type iD the iInDuIae 

"STDEV{E:E)" IDd ·COUNT(E:E)" .. ehown iD Ficun 64. 

Tbis method is much faster but requiree that you t- the 'medon 

names STDEV and COUNT. 

FlpftfU: U ... blia..,'i· ...... NqUiJediDthe ............... tRn , •• the ... • r_..,.1Iot 
lFPediDtDthe~_ .... afthe·'III'··,· ....... 

The third way to write the formula is to type it in. Tbis is the ....... t 

method. 



4.5 NEW FUNCTION·RELATED FEATURES IN THE XP 

VERSION OF EXCEL 

Searching for a function 

4.S.A 

Type a question (like "estimate maximum value") into the box "Search for 

a function" utility and click on the button "00." Excel will display a list of 

functions related to your query. 

ENHANCED FORMULA BAR 

After you enter a numher or cell reference for the first function 

"argument" (or first "requirement") and type in a comma, Excel 

automaticallY converts to bold format the next argumentirequirement. In 

the example shown in the next figure. Excel makes bold the font for the 

argument placeholder pmt after you have entered a value for nper and a 

comma. 

Similarly. the argument/requirement after pmt has a bold font after you 

have entered a value or reference for the argument pmt 

• 
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The square bracket. around the argumentlrtiqu.irealillllt "tv"' ~ that 
the aqument is optional You need not eater a value or 1 .... _ ... the 

argument. . 

,......a: AD...... . ..... ± rt 

I =:%;;;:~i!il 

ERROR CHECKING AND DEBUGGING 

Tbe baaics oftbia topic are tIIusbt in the next chapter. ~_tuns 

are in Volume a: Ez:cd-&:fontl tM boaia 

, 
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C ...... E.S 

TRACING CELL REFERENCES & 

DEBUGGING FORMULA ERRORS 

This short chapter demoDStraies the f~ topia: 

- TRACING THE CELL REFERENCES USED IN A FORMULA 

- TRACING THE FORMULAS IN WHICH A PARTICULAR CELL 
IS REFERENCED 

- WATCH WINDOW 

- ERROR CHECKING 

- FORMULA EVAWATION 

& 

TRACING THE CELL REFERENCES USED IN A 

FORMULA 

CJiek OIl the eeJI thaI conWDa the i3rmuJa wJac.e 1 __ D88d 10 lie 

viauaD,y b:'a£eIl Pick the meDU option TOOUlfAUDlTINGITBACE 
PRECEDENTS. (For a pictorial reproduction of thia, _ Fipre 70.) 



Statistical Analysis with Excel 

Figun! 70: Tracing preced¥nl •. Th ... options _ from Excel ve1'llil>ns prior to Exee>1 XP. 

QJstomIzII ... 

Figure 71: E_I XP offers so"" .. J el1"""cbeclring and debUftinc woLs. 

.......... ~ • l>- I!' ace l'tee"d",,1$: 

Tools ... the Well ... ~ Trace~"ts 
f!I!a'o • ~ Trace~ 
Addins ... 0 RIOIIIOYeIJl Ai'I'oWs 'I~ 

'P /!I.tOCotrect ~ ... ® Evaluate famo,jo 

QJstomIzII ... s;;I 5how~otch ........... 

QpIIons ... ~ filnIda Audtng I!Ilde 0:11+' 

I!,eta~ ... :iI1OW filnIda Audtng TooiIIw 

As shown in Figure 72, blue arrows will trace the references. 

If a group of cells is referenced, then the group will be marked by a blue 

rectangle. The two rectangular areas are referenced in the formula. 

In Volume 3: ~. Beyond The Basiu. you are taught the simple process 

through which you can select all the cells whose formulas are precedents 

of the active cell. 
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TRACING THE FORMULAS IN WHICH Itt. 
PARTICULAR CELL IS REFERENCED 

You may want to do the opposite- _ which fbrmuJaa 1 ___ • 

particular ce1l 

• Firat, click OIl the cell of intereet.. 

• Then, pick the menu option TOOlSIAUD1'J.1NOI'I'.RACB 
DEPENDENTS B8 ,hOWD in Figw:e 73. Now the ulowawiD.., 
from the active cell to aD the celie that hall'll .... uJaa that _ 
the active cell. 

ct, 



5.3 

Figure 73: Tracing Dept'ruients, Th_ options are from Excel v"mOM prior to Excel xp, 

Remove all the auditing arrows by following the menu path 

TOOLSlAUDITINGIREMOVE ALL ARROWS. 

In Volume 3: EXile!' Beyond The Basics you lesrn the simple process 

through which you can select all the cells whose furmulas are dependents 

of the active cell. 

3.~ J 2222 2 J 

THE AUDITING TOOLBAR 

The "Auditing" toolbar opens automatically when you are using the 

auditing option (TOOLSIAUDITING) to review formula references. 

I Refer to Volume 8: Excel· Beyond The Basics for details on using toolbars. 

In the XP version of Excel, you can launch the toolbar through the menu 

option TOOLSIAUDITINGISHOW FORMULA AUDITING TOOLBAR. 

• 

• 
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WATCH WINDOW (ONLY AVAILABLE IN THE XP 

VERSION OF EXCEU 

Tbe window is aa:eeMd through the menu path TOOISI AUDlTINGI 

SHOW WATCH WINDOW. or vmWI TOOLBABSI WATCH WINDOW. 

F:igu .... 75: '!'be W81cl1 Window may not diopJ.,~. U.!be _ -<Inc !be waiL. of 
w .-awe ...... 

Add one cell on wboee val_ you _t to keep tabs. 

Tbe value will be shown in the Watch W"mdow 10 that you __ the 

value even if you are working on cella or aheeI:a that are far from the cell 

wboee value is beinc "watched. • 

~1he .... Ihet~oo.if"lIO ..... tIw .... tI: 

F'IlIta 10""" II 
IIfI ', ... c.:.. " 

You _ add DlIUl)' cella to the Watch Window. Note that the Watch 

Window proridea precise in1Drmation on the Joeetion oIthe cell beinc 
watched and the bmuJa in the cen. For uample, the ti1'IIt W." Jw-I atD is 

on cell D8 in sheet "Date to serial" in the file "Date and Time ""'. The 

bmuJa in the ceO is "=DATE(F7. E7. mr. 



5.5 

Sl8tistica1 Anaiysis with Excel 

gg 

ERROR CHECKING AND FORMULA EVALUATOR 

(ONLY AVAILABLE IN THE XP VERSION OF EXCEL) 

The tools are acces.eed through TOOLSIERROR CHECKING and 

TOOLSIFORMULA AUDITINGIEVALUATE FORMULA. 

The Error Checking dialog shows the formula in the cell as well as the 

type of error. In this example, these are "=DEGREE(COS(C6»" and 

"Invalid Name Error,n respectively. 

The button ("Help on this error") links to a help file containing assistance 

on understanding and debugging the error; 

The button "Show Ca1cu1ation Stepsn links to a step-by-step debugger thst 

assists in catching the calculation step at which the error occurred. 

This debugger has the same functionality as the Formula Auditor 

(aceessed through TOOLSIFORMULA AUDITINGIEVALUATE 

FORMULA). 
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r:tlcwlD6 

III iiti",=_ I ~C6» 

I p-- ,.. gloM' ':5IIIps. •• 

J .... I Ililw.Emw 
.......... _ ... 11:". 

E"dttle-u.1w I 
!lIIIIaN. .. I eMu I MIll I 

The buUon "Ignore Error" keeps the error ........ Tbe bu&tiau Optiw ... 

opens the dialog fOr setting error-cbecking options. The choicee witmn die 

dialOC 1ft! 1ieted in section 5.S. 

The Formula Evaluator showa the step at wbidl the &rat calculatiGa error 

occurred. This helps in identi:(ying the primary problem In tbia -apia. 
no error hu 0CCIIl"led in the formula part "COS(C6)r. The diaJoc iDbms 
you that "The next evaluation (that is, calculation step), wiD nauIt in an 

error." 

blIP , ... ,1, • _~----.:J 

.... ...... t_llll-.ettl __ • 

~ I _it I _au: I 0- I 



Sllltislical Analysis with Excel 

After clicking on evaluate, you see that the error is in the formula part 

"DEGREE." Excel also informs you of the type of error- "#NAME?" 

suggests that "DEGREE" does not match the name of any Excel function. 

(The correct function is "DEGREES.") 

The "COS" function is nested within the DEGREE function. Clieking on 

"Step In" will evaluate the nested function only. 

To sIo¥ the resUt of the ",.lilll!d elCIlIMlIIOt', dick Evallal:e. The most..-.tresUt 
oppeers taIcIzed. 

Ii Ie I stepln 

The "COS" function is evaluated. The function has no error. 

If a function has more than two levels of nesting, then you can '- the 

"Step Out" button to evaluate the function at the higher level of 

nesting. 

, 

, 
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BtBfa·a:a: 
bto:t Lib ,I,,, 

.:J 
To .... lhe-*aflhe ...... LiiCI_ ' .ddtEwbD.1Ite ___ __ ........ 

II §'*it' I _In I _Otit I 0- I 

.is 2 

FORMULA AUDITING MODE (ONLY AVAILABLE IN 

THE XP VERSION OF EXCEU 

This feature ill ac:ceaaed tbmugh TOOLSIFORMULA 
AUDITINGIFORMUI..AAUDITING MODE, After this __ ill ,ale cW, 

""hen you aelec:t a cen that han or ill ref'ereaced by a ..... BxaaI 
highlights the other reierencedIreferenciDc ceDe. 

In addition, you haft quick _8 (ria die "Fonaula A_tine" woIIIu) IiO 

aU the Auditing toola discueaed earlier in tbia chapter. 



5.7 

Statistical Analysis with Extel 

CELL-SPECIFIC ERROR CHECKING AND 

DEBUGGING 

On every cell whose value evaluates to an error value, you will see II small 

icon with a "!" image and a downward arrow. Click on the arrow to obtain 

assistance for debugging the error. 

Figum 8S: C .. lhpecific Error Cheo-kiug and Debugging 

<1> .1 JllNUMI_1 
"""-, ,,",., 

,..,.,." Error 

I:jeIp on INs ....... 

Show ,*,Uim Steps ... 

l!J'lM! Error 

Edtin~BIIr 

Error CII!Idq ~ ... 

j"KM """"'" ~ locar 

In the example shown in the figure, the options show: 

- the error type ("Number Error"), 

- II link to assistance on understanding and debugging the error ("Help 

on this error"), 

- a step-by-step debugger to catch the calculation step at which the error 

occurred ("Show Calcu1stion Steps"), 

- the option to ignore and thereby keep the error 8S is ("Ignore Error"), 

- a link to directly edit the formula in the cell ("Edit in Formula Bar"), 

• 
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- clireet acceB8 to the Formula Auditing Toolbar ("Sbow Formula 

Auditing Toolbar") and, thereby, to aD the feat;urea of Audi.tiJJc (theN 

featw:es are taught in this chapter) 

ERROR CHECKING OPTIONS 

The Error CheckingoptioDacan be aaaeaBeil. through 

TOOISIOPTIONSIERROR CHECKING or through TOOLSIBRROR 
CHECKINGIOPTIONS. The dialog is reproduced in the ne:n fipte. 

I fmIr Chdtg II 
~-----------------------------------
PINllla ......... _~ 

fmIr...-C*: J ... - 3 
RdB--------------------------------------Ped ..... ID ___ 

p T_ ........ 2d\11t....,. 
P .... 1IIInII_1iIId: 

P bcII ...... '[lnda1ll1llQlan 
P ,.,.. .... ,...1II1IIQIan 
P 1ofiIDdoId ........ ,...., 

r ra.-.""""" ID -"lIlY" 



statisIIcal Analysis with Excel 

• A fol'lJlula that evaluates to an error value 

• A fol'lJlula that refers to an empty cell 

• A fol'lJlula that is not consistent with the other formulas and cell 

references in neighboring cells 

• A two-digit year (like "02") instead of a four-digit year (like "2002") 

• A number stored as text 

The other options are beyond the scope of this book. I recommend sticking 

with the default settings reproduced in the next figure. 

• 

• 
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FUNCTIONS FOR BASIC STATISTICS 

- -AVERAGED'" MEASURES OF CENTBALTENDENCY 

-AVERAGE, TRIMMED MEAN, HARMONIC MEAN. GEOMETRIC 
MEAN 

- LOCATION MEASURES OF CENTBALTENDENCY 

- MEDIAN. MODE 

- O'I'HER LOCATION PARAMETEBS 

- QUARTILE. PERCENTILE 

- MAXIMUM VALUE, MINIMUM VALUE. LARGE. SMALL 

- RANK OR RELATIVE STANDING OF EACH CBLL WI'tBINTHE 
RANGE OF A SERIES 

- MEASURES OF DISPERSION (STANDARD DEVIATION a 
VARIANCE) 

- S'rDEV, VAH, STDEVA. VARA. STDEVP. VARP. STDBVPA. 
VARPA 

- SHAPE A'lTRIBtrI'ES OF THE DENSITY FUNCTION 

-SDWNESS. KURTOSIS 

- FUNCTIONS ENDING WITH AN -A- SUFFIX 

I am pre8'IUIIi.ne ~ die reader is familiar with basic etafleticel ... " ...... 

and/or has IOOBBI to a basic statistics refenmce mr JeamiDr more about 
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6.1 "AVERAGED" MEASURES OF CENTRAL TENDENCY 

6.1.A 

I 89 I 

Theee eet of functions perfOrm some type of aftI'IIIiDI to _11111'8 a 

-mean- value. You may want to UII& the TriDuDed Mean f",dioo to 

estimate an average that excludes the extreme val .. of the clatuu ...... 

The Harmonic Mean estiJDates the averqee of the NCipMcaIB of the 
Jlumbers in. the eerie&. The Geometric Mean ill uaed to _ap ra_ of 

c:hante. 

SaJIlplee will be available at http://www.vjboob.JletlexcellaaJllpltm.. 

AVERAGE 

The function calculates the 8im.ple arithmetic a¥&lap of aD cella in. the 

m-n1'8D&8. 

M.- path to furu:limt: Go to the menu option INSERTIFONCl"ION ud 

ebooee the 1Drmule -AVERAGE the fuqd.jon catecorT STATISTICAL. 

" ' llAi:AJ6!ll !I .. f'Il"JI ......... 
........ r22ilj------.... ~JI;; ...... 

. , ..... . 
.. 1INIh_ ......... .-. 



6.1.B 

Statistical Analysis wi!h Excel 

Dota requirements: The X values can be input as references to one or more 

ranges that may be non-adjacent. The second range can be referenced in 

the first text-box "Numberl" after placing a comma after the first range, 

or it could be referenced in the second text-box "Number2'" If you use the 

second text-box, then a third text-box "NumberSh will automatically open. 

(As you fill the last visible box, another box opens until the maximum 

number of boxes - 30 - is reached.) 

The function does not count invalid cell values when counting the number 

olX values. The X values can take any real number value. 

TRIMMEAN ("TRIMMED MEAN") 

This function is a variation of the average or mean. This function 

calculates the average for a set of X values after removing "extreme 

values" from the set. The excluded cells are chosen by the user based on 

the extremity (from mean/median) of the values in the range. 

TRIMMEAN calculates the mean taken by excluding a percentage of data 

points from the top and bottom tails of a data set. The user decides on the 

percentage of extreme values to drop. For symmetry. TRIMMEAN 

excludes a set of values from the top and bottom of the data set befbre 

moving on to the next exclusion. 

Menu path to functwn: INSERTIFUNCTIONISTATISTICAlIl'RIMMEAN. 

Date. requirements: The X values can be input as references to one or more 

ranges that may be non-adjacent. The function does not count invalid cell 

values when counting the number of X values. The X values can take any 

real number value. 

• 

• 
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0NiW*r6: F~ far IIoIIic 8 II •• 

• • 

In the dialog (shown above), Peramt is the fractional number of data 
poinill to exclude from the caleulatioD. Percent must be pea_ dum _ 

and leas than ODe • 

HARMEAN ("HARMONIC MEAN'") 

The function calcIdatee the harmonic mean of aD cella in the cN.eU 

ranae<s). The harmonic mean is the recip1'OC8l of the arithmetic mean of 

reciproca1s. In the lOrmula below, B is the barmoaie mean, D the 

sample/range size and the Y's are individual data vall.a. 

Mau paIA 10 /rmdion: INSERTIFUNCI'IONISTATlSTICALIlIARMEAN . 

DafG ~1IUrIIt.: The X values can take any real Dumber value except 

1810. 

... .., 



6.1.0 

statistical Analysis with Excel 

Table 10: Comparing the results of the function. Average, Trimmed Mean 
and Harmonie Mean 

Function al s2 xl x2 xS x4 

Averagelmean 7.32 7.23 1173.00 14.55 0.17 1168.45 

Trimmed Mean 7.13 7.00 1173.00 14.42 0.02 1168.71 

Harmonic Mean 3.84 3.18 120.17 13.52 O.oI #NUM! 

Harmonic mean fur x4 is zero because one value of x4 is not positive. 

GEOMEAN ("GEOMETRIC MEAN") 

This function is typicslly used to calculate average growth rate given 

compound interest with series rates. In general, the function is good fur 

estimating average growth or interest rates. 

Menu path to function: INSERTI FUNCTIONI STATISTICAU 

GEOMEAN. Data requirements: All values should be positive . 

• 

- 5.lIIJiI1' .... · 
RI!II.rnS the veomeblc ... II IW\ lIT,,!, or range of posII¥e ru.Ic ..... 

, 
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LOCATION MEASURES OF CENTRAL TENDENCY 

(MODE, MEDIAN) 

The MediaD and -le88 often - the Mode are ahIo ued lbr.timatiDc the 

central tendency of a eeries. The Median ill much beUer in aituationa 

wbere, either: 

<a> A few extreme highs or Iowa are influenciJ.IIJ the MeaD. (note dlat 

the TRIMMEAN or Trimmed Mean fu!l(!f;ion abown in the 

previowl aeetion can reduce the cbaace of extreme .u-over· 

influenciJ.IIJ a Mean estimate). or 

(b) The cantral tendency ill required to obtain the JDid..point 01 
obeerved values of the data aerieIJ as in the "MediAn Voter'" 

mode18, which are ueed to know if the "MediaD VoCieI'" tbneMld is 

Cnl B Bed in support of a point on the JIOIPinee's ... M. (In a t.wo­

per80D ~ any more than the MediaD vote will reault in a 

greater than 60% majority). 

Samples will be available at http://www;¥JDoob De~ 

75- percentile 
(or 3'" 
quIIrttl.e) 



6.2.A 

6.2.B 

6.3 

Statistical Analysis with Excel 

MEDIAN 

The Median is the number in the middle of a aet of numbers. It is the 5()th 

percentile. 

Menu path to function: INSERTIFUNCTIONISTATISTICAUMEDIAN. 

Data requirements: Any array/range with real numbers. 

MODE 

This function returns the most frequently occurring value in a range. 

Menu path to function: INSERTIFUNCTIONISTATISTICAUMODE. 
Data requirements: Any array/range with real numbers. The range has to 

contain duplicate data values . 

. .£.2 L&&L . . L . L 

OTHER LOCATION PARAMETERS (MAXIMUM, 

PERCENTILES, QUARTILES, OTHER) 

Other uaefullocation indicators fur key points in a aeries are the 

quartiles, percentiles, maximum value, minimum value, the Kth largest 

value, and the rank. 

Samples will be available at http://www.vjbooks.netlexcellsamples.htm. 

• 

• 
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QUARmE 

TbiIJ function caleulates a qua.rtiJe of a data aeriee. 

QUARTILE (Data, Quartile) 

Chooae the quartile you desire to obtain. The me quadiIee lIN ehowD in 

the nut table. 

T'aIaIe 11: .. 
Qu4rtile uaIu. 0/ ... Cob,la_cAe.-

0 0.0 ..•. 1" Be 

1 Firat qvaniIe (26tb pel I ....... ) 

2 .Median '981ue (&Odl peI_lliIa) 

3 Thinl qvaniIe (761:h peI.811I i1a) 

4 I Fourth qwu:t;iIe (9I.9diIe) 

Menu path. 10 /uncl.io,,: INSERTIFUNCTIONISTATI8TICAIJQtJAB.'l1I..B. 

DoIII ~ Anyarraylranp with real Dumhe.ra. Now. the data 

aeriea baa to contain between 1 and 8,191 data pointa 

PERCENTILE 

'ftUa ftmction returDa the pill percentile of val_ in a data...... You can 

use this ftmction to estabtisb a threshold of ~ For .............. JOU 

can prefer to examine candidate. who _ abow the 95th pemeutiJe will 

quali(y b- a acholarship. 



6.3.e 

SlBtial:al AnIIySiI'" EiaI 

MeAD pot1& to /imt:Iitn&: 
INSERTIFUNCJ'JONISTATISTICAIJPBRCENT'IL' 

-151111 II 

Data req~ Any arrayJrance with real DUDlben. IUhe data array 

is empty or CODtaina more than 8,191 data points, PERCEN'I'ILB Jetums 

the- #HUM!" error value. UK is not a multiple of(lI(a -l)}. then IbIcel 

interpolates the value at the Kth percentile. 

----~ ......., .. AlA 

ICto:i-ts------"'O-... ··i1iii1.o.. 
,,*-.. Jt.Ih ....... II ...... In ...... 

MAX ("'Mnimpm value") 

MAX and MAXA: The functiona ealcu1ate the lupat value in a aeriee. 

• 

• 
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a..w 6: Func:IioIIII for BIiIIc S " $ • 

Menu path 10 fu,ndioo.: STATISTICALIMAX • II STA'11BI1CAIJMAXA.. 

Dato ~ Any arraylrauge with real numhen. m addilion, 

MAXA may include "True; "False; or numbers in text bmat 

MIN ("Minimum value") 

MIN and MJNA: The functions caleulate the lIIDalM wIue in a ...... 

JImu poth. to /lmcIitm: STATISTICAIJMIN. II STATIS'l'lCALlMlNA 

Dato ~ Any arraylrauge with real numben. 1D additioD, 

MINA include "True; "False.~ or Dumbers in text bmat 

LARGE 

[ 

Dato~ Aayreal number. 

97 I 



S1atistical AnalySiS with Excel 

SMALL 

6.3.0 

This function calculates the Kth smallest value in a range. 

Menu path to function: STATISTICA11SMALL 

Data Requirements: Any real number. 

RANK OR RELATIVE STANDING OF EACH CELL WITHIN THE 

RANGE OF A SERIES 

PERCENTRANK 

The PERCENTRANK function returns the rank of a value in a data set as 

a percentage of the data set. The function can be used to evaluate the 

relative standing of a value within a data set. For example, you can use 

PERCENTRANK to evaluate the standing of a test score among all scores 

for the test. 

! ': 

Menu path to function: INSERTIFUNCTION I STATISTICAL I 

PERCENTRANK. 

98 
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RANK 

The fuac:tioD RANK ca1culate8 the Ielative J.'IUIk of. YIlhw wiibiD • aeries 

of numbe1'8 data. You can chooee to obtain the 1'8JIb OD the haaia of 

a~ding or descending values. X is the data point: whc.e J.'IUIk ill deeired 

within the l'lIDge. Order sets the sorting ~ 1 tor .. :eIMlinc 

nnikiJll, 0 or blank Cor de_ding 1'8nJrinc· CeDe with the _ value 

cel1s 81'8 cmm the same ruk. 

M_ polh 10 frmdion: lNSERT / FUNCl'ION I STATISTICAL/RANK. 

Dato. ~ Anyarraylrange with real numbel'8. 

llbRdiM 

Sample 

MEASURES OF DISPERSION (STANDARD 

DEVIAnON at VARIANCE) 

Table 12: s.. .... ar;( Dmatioa .. Villi 

u-#m witI&iIt 
J:.lDcriptUm lN8Bll'l'1 llIIta ... 

FUNCTION 
... 

dispenIIon: ". fllnc:ti.- STDEV STATIS'l1CAL I _ raJIIII with 
and VAR eetjmate the 

STDEV. VAR IIIUIlPIe .adaN STDEVA .,- . ,(mm_of .. 11- icdUapaiDta.. 
deviation and variance. • STATIS'l1CALI Tat: 8l1li JocicaI""':'-

l ..... tiVllll,r. VARia VARA _ iiiiCllIIIed.. 
f--- the aquare ofSTDEV. 

STDEVA. VARA 'l'1Ieae are 'VIIriaDta of Tat: 8l1li Jap:al""':'-
STA'I1S'I'ICALI r . 

the fuJldiollB above but reach .. TRUE 8l1li , 
r 

I 99 I 
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Statistical Analysis with Excel 

Location within 
Function Description INSERT/ Dolo Requirements 

FUNCTION 
. 

with a wider range of 
STDEVA FALSE are included in 

acceptable data types the calculation. TRUE 
~"-----~-~ --~~--.""'-.---

as input data, & is valued as 1; text or 

STATISTICAL I FALSE is valued as O. 

VARA 

The less often used 
population dispersion 

functions are 
-.~-

Population sometimes also used 
for large sample sizes. 

dispersion: STDEVP assumes that STATISTICAL I 

STDEVP. ita data are the entire STDEVA A 1arp number of 

VARP 
population. Typically. observations. 

you use the sample & , 
i formulae. For large 

, 
Text and logjca1 values , STATISTICAL I 

I 
sample sizes, STDEV are excluded. 

-"-~- and STDEVP return VARA 
approximately equal 

values. V ARP is I 
square of STDEVP 

I 
! 

, Text and logical values 
such lUI TRUE and 

STATISTICAL I FAL8E are included in 
STDEVPA. the calculation. TRUE 

VARPA These are variante of STDEVA is valued aa 1; text or the functions above but 
with a wider range of & FALSE is valued as O. 

acceptable data types Text and logical values 
STATISTICAL I such 88 TRUE and as input data 

FAL8E are included in VARA 
the calculation. TRUE 
is valued as 1; text or 
FALSE is valued as O. 

".: ...... . 
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Ficwe 9Ii= DiaIot'''' STDBVA Note tbat tile a •• ttl -1riIIIdIe -1/." ............ "YU--....... ,.. ...... . 
Ie 

a & 2£S2 

SHAPE ATTRIBUTES OF THE DENSITY FUNCTION 

(SKEWNESS, KURTOSIS) 

SKEWNESS 

S1ew. een _ asymmetzy around the mean. The pane Ilu ia beat 

interpreted 88 relative to the Normal DeDBity F",'dion (whGee Sbwus SI 

equa1s zero). The interpretation of the SkewnEBI fOr a eerie8 (relative to 

the Normal DeDBity Function) is: 

- Skewne II > 0 ~ all,)'lJUlleil:' tail with more val_ abowI die mean.. 

- Skewneee < 0 ~ asymmetric tail with more val_ below the mean. 

The next three ficurea ahowD Density FuDctioaa that hue a saw. > 

0, = 0, and < 0, l'BIIp8Ctively, for three variahlee Y1. Y2 aad Y3. (Y2 ia 

distributed Normally). 



SUaIisticaI Analysis with Excel 

F;,ure 96: Distribution of series Yl. 
Skewness> 0 

/ 
/ 

FiJure 97: n;.tribution of series n. 
Skewness =0. 

FiJure 98: Diatribution of sene. Yll 
Skewness <0 

Samples will be available at http://www.vjbooks.netJexceYsamples.btm. 

• 

• 
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) 

-o.94IIl45f1 
RIlIImsIhe slsdt _Ilf" cIIbtdIIIn: "m.-! I " .Ilflhe ..... ef as , t Ilf" 
~---.. -........... :lUIIberl.IUIIIIer2, ..... 11830 ......... .-. ...... 

' ... IUi5Ih1tClll1tlb ........ far ...... ,...-t1he I 

~ ~ .... -O.946914S47 lOKI c.aI I 

M_pa4h 10 {tmcI.ion.: INSERT I FUNCTION ISTATISTlCAL/SKEW 

KURTOSIS 

Compared with the Normal Density FunctioD (which baa a Kurtoaia or 
zero). the interpretation of the kurtosis fur a aeriee is: 

- Kurtnais:> ~ peaked relative to the Normal Deuaity Pt ....... 

- Kurtnais < ~ flat relative to the Normal Density FuDdiaD 

The next fipre shows three Density PtlDdiolJll. The JleDBily Fnnctima 

lie around the _ Mean and MediaD, but DOte the difIie:t.- in the 

relative flatness of the Density Functiomt: 

Distdbution of se:riee Xl is the flatClest with a Kurtoaia < 0, that orn is 

Jess flat with a Kurtoaia :: 0 (a Normal DeDBity Ptgw:t;iFwa) aacI that« 

aeries XI is the Jeaat Oat with a Kurtoeia :> O. 
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SIatisticaI Analysis with Excel 

Figure 100: of Density Functions with difl'etent Skewuees 

Samples will be available at bttp:/lwww.vjbooks.netlexcellsamples.htm. 

Menu path to function: INSERT I FUNCTION I STATISTICAL I KURT 

FUNCTIONS ENDING WITH AN "A" SUFFIX 

These functions calculates the same statistic 88 their "twinD formula (the 

one without the prefix "A") but include a wider range ofva1id cell values 

in the relevant formula. The"N -suffixed functions include the following 

types of cell values: 

- Logical (and not numeric) like "True" and "False" (valued 88 1 and 0, 

respectively), 

- Blank cells (valued as 0), and 

-Text (valued as 0). 

A text string or a blank cell is valued as zero. The next table lista these 

twin functions: 

• 

104 



Table ]S: Fu ......... OhIIIfiKwith die .1. ....... 

7Jac_ 
2M 'K pn(i:J;ed 

~ c-... , 
{ruu:lioD 

"twin" formula 

A-VERAGE AVERAGEA Simplea-.w-

Coum f1l ftIid..u.. ".. prill&lliid COUNT COUNTA f\JDdian ill ftry -tvl iII-aiDe. 

STDEV STDEVA SWIduIlde,·'"' 
&aadud deriatioD ... P 4:a1t1tioD .. 

STDEVP STDEVPA • ftry ....... MmpIe (nIat:ift to 
popuIatiIa) 

• i VAR VARA V~ 
,I 

I I 
V..n.- '*- papuIatioD (ad DIIt 

VARP VARPA _pie) data, or '*-• ...,. ....... 
l ample (relative to P ",1."1Il) 

I I MIN MlNA J Niaim_wlue ; 

MAX MAXA . I Maxi ...... wlue 

• 
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s . ( .. AnIIyI;is .... ExaI 

caa.IJIIER2 

PROBABILITY DENSITY FUNCTIONS AND 

CONFIDENCE INTER V AlS 

- PROBABILITY DENSITY FUNCTION (PDF) 

- CUMULATIVE DENSITY FUNCTION (CDF) 

- THE CDF AND CONFIDENCE INTERVAlS 

- INVERSE MAPPING FUNCTIONS 

-NORMAL DENSITY FUNCTION 

- STANDARD NORMAL OR Z-DENSITY FUNCl"ION 

-T-DENSlTY FUNCTION 

- F-DENSITY FUNCTION 

-CHI-SQUARE DENSITY FUNCTION 

• 

- OTHER CONTINUOUS DENSITY FUNCTIONS: BBTA. GAMIfA, • 
EXPONENTIAL, POISSON, WEIBULL .. FISHER 

- DISCBETE PROBABILITIES- BINOMIAL, BYPBRG.ROJO:I'RIC 
.. NEGATIVE BINOMIAL 

- UST OF DENSITY FUNCTION FUNCTIONS -PROBASIIJ'I'Y 
DENSITY FUNCTION (PDF). CUMULATIVE DENSITY 
FUNCl"ION (CDF) 

- UST OF SELECT INVERSE FUNCTION 

I 108 I 
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PROBABILITY DENSITY FUNCTIONS (PDF), 

CUMULATIVE DENSITY FUNCTIONS (CDF), AND 

INVERSE FUNCTIONS 

PROBABJUTY DENSITY FUNCDON (PDf) 

0-

'I1le horiroDtal am contaiJ18 the valuea of the _iea'.-_ TIle wrtieal 

he:ittht of the eune at a point on the X-uia ehowa the pmbebitit,y 

all80Ciatad (01' frequency) with that point. ('.I'be totaI_ UDder the eune 

equals 1; 80, an the "heights- add up to 1 01' 100 ".) TIle hicher the 
&equency with which that point ia obaened in a aeriealaeriee, the hil_ 
is its frequency. 

AD often-uaed p .. bitity Density FunctioD - the "NcInur pmhahiIitJ' 

Denaity Ftmction - is shown in the previous fiIare. 'I1lia ~ 
FuDetion baa aome convenient propertiea: 

- its Mean. Mode and Median are the 88JD8 

- it does DOl have a left 01' rieht skew, and 

- the left half is a mirror image oftbe ritht half. 

All tbeae -syJ!IJII8trieaT Plopertiea allow _ to chaw iafImtuaa from ..... 

run on series that are distributed "Normally.-

,,.. 



7.1.8 

Statistical AnalysiS with Excel 

Based on several theorems, postulate, "most data series start bebaving 

more and more like a series that follows a Normal Density Function as 

tbe sample size (or number of data points) increases." (This presumption 

follows from the "Central Limit Theorem.") This has made tbe Normal 

Density Function the bedrock of most statistics and econometrics. 

CUMULATIVE DENSITY FUNCTION (CDF) 

We are typically interested in measuring the area under the curve (a) to 

the left of an X value (b) to the right of an X value. or (e) between two X 

values. The height olthe curve at any X value is not so useful by itself 

because it does not answer any of these questions directly. 

A better graphical tool to measure the "area under the curve" is the 

Cumulative Density Function (CDF). A CDF plota the X categories 

against the "probability of a value taking a value below the chosen X 

value." 

The CDF for the Normal Density Function is reproduced in the next 

figure. The curve increases from left to right (from 0 to 18). The height at 

any X-value tells us ~the probability of a value having a value below this 

X-value equals the Y-axis value ofilie CDF at this X." 

8 The area under any Density Fum:tion curve always equsls 1. The relative 
frequency equals (frequency that X takes on this particular value) divided by (the 
total sample size). Therefore, in a sense, the beight gives the frequen~ weight for 
each X value. If you sum all the relative frequencies, their 8um is "sample size 
divided by sample size" equals 1. This is the area under the curve. It can also be 
expressed in percentage terms; the total percentage area then becomes 100%. 

• 

• 
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Ficwe If)%: The "Cumulalive IIenaiI;l' f'uaI:tioII" (CO,,. .... · ., a willi die .... hiIit;r 
f'uaI:tioIIlPDf') ...... in die 

The CDF ill a better tool for IlIUIWerme the typical q'MIf'th ... eIIuut the 

properties of a data series. CDF ill of areat importaDee for buiMiuc 
Confideuc:e Interva1s and implementin, hypothesis tests. 

In fact, fOr aome Density Functions, Excel 0D1y __ the CDF 0D1y 

(and not the CDF I: PDF). 

The CDF ami Confidence Intervals 

I 111 f 

The concept of a Confidence Interval for a measured panmlla. (typically 

for a mean) ill baaed on the concept ofprobabiJity cIepietad by • Density 

Function curve. A Confidence Interval of96" ill • nmp arx m­
within whoae l'IIlIP the sum of the relatiYe frequenrin ill 0.96 or 96 .... 

J will_ thia property to show how to create ~ Inter ....... 

varioua diatn'"butiona usi.ng the InW!lI8 oftbe CDF. (Yon wiD Jeam more 

on the InVelse in the nut sub-section.) 



statistical Analysis with Excel 

Table 14: Probabili;v Densitv Function (PDF) and Cumulative DeDSitv Function (CDPJ 

Cumulative Density Function (CDF) & 
Is there an option Probability Density Function (PDF): 

to request the Information requirements for 
Function Cumulative parameterization 

Density Function 
(CDF)? Mean SId 1JegreeBo/ 

Other Dev freedom 

TDIST v Tails # 

LOGNORMDIST v v v 

FDIST v 2lIII degree of 
freedom 

BETADIST 
alpha, beta, upper and 

lower bound 

CHIDIST v 

NORMDIST ... v v 
-

NORMSDlST v 

WEIBULL 
A}phaand 

beta 

NEGBINOMDIST (Probability) #of 
successea 

BINOMDIST ./ (Probability) 

EXPONDIST ./ Lambda 

OAMMADIST ./ AJphaand 
beta • 

HYPGEOMDIST 
Sample size, population size, # of 

successes in population 

POISSON ./ v I 
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• 

I IlS , 

INVERSE MAPPING FUNCDONS 

The Cumulative Density Function (CDF) tells us "For any X --. the 
probability of the value of X falling below a 8)HIrific ]I: value can be 
eaIculated from the height of the Cumulative DeDSity Fwviioo (CDF) 

at that ]I: value." 

An :inverse funetion doe8 the reverse mapping: "Far a probehiliV P. the X 

to who'8left the probability oftba data ly:inc C8JI he Mtained by ........ 

reading of tba Cumulative Density Function (CDF). That .. rr­
"Desired Cumulative Probability? unkuow .. X that wID Pte tbia d I bLed 

cumulative probability P.· 

.A1temati¥e1y, "Iuverae- functiona find tba X value that COil ....... to a 

c:enaiD "probability ofvaluea below tba X equsJin'll ~ eumulatn. 

probability :~ 

Fipre lOS! Be n .. __ meppi .... lit8. CuauIaIiw D .... P ,. (alft.". 
_ahow ......... beIow"IIich .... .,.ot ........ ot ............. 

1.000 

.000 Lr--..... 

Inverse Jimctioua permit easy conatruction of Ccmfideuce iDtenala. 

Tbia will he shown aeveral times:in further aeetiona wbwwver I ~ 

the CODBtruetion of Ccmfideuce iDtervala. 



7.2 

Statistical Analysis with Exml 

Table 15: Inverse functiom! (also used 10 create Confidence intervals). Samplee w:ilI be 
available at htto:llwww.viboob.netlexceVaamoles.htDI. 

Infurmation 

IIMIl.'Se F1mction required by all Other information 
(''probability to inverse requirements 

functions 
Function value") of this 

Probability filr Cwnulative Density 
which the Std Degreea 

Function (CDF)? 
correspond.inf 

Mean DeY of Other 

value is sowrht freedom 

TINV TDIST ./ ,f 

LOGINV LOGNORMDIST ./ ,f ,f 

Second 
FINV FDIST ./ ,f degree of 

freedom 
alpha, 
beta, 

BETAINV BETADIST ,f upper 
and 

lower 
bound 

CHIINV CHIDIST ,f ,f 

NORMINV NORMDIST ., ,f ,f 

NORMSINV NORMSDIST ,f 

JI. LLS! $ 

NORMAL DENSITY FUNCTION 

The Normal DeDllity Function has several properties that make it easy to 

make generalized inferences for the attributes of a series whose Density 

Function can be said to be "Normal.» • 
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0II/flIIIr 7: ~ 0ensiIy Func:ticns & 0 .. " ...... 1" ... _ 

Symmetry 

I 116 , 

The mllior measw:es of central tendeDey - the meaD, mediaD, and mode 

- aU lie at the same point right at the place wbere the beD abapad curve 

ill! at its greatest height. 

The DeMity Function ill! perfectly aymmetricalaMtUld thiB -C0D8_-of 

central tendeDeie8. Therefore, the left half of the Denait:y ~.I 

(measured as aU points to the left of the modeimediaDlmea:a) •• minor 

imap of the right half of the DeMity Function. 

Tbia. shown in the next figure - the ¥tar abaded half •• minor 
image of the darker shaded half. So, the frequency of the m-of the 

variables becomes lower (that is, the height of the curve lowllle) .. JUU 

move away from the modelmeanlmedian towarda either exta_. Tbia 

change ill! aradual and oc:cura at the same rats fOr ueptive aDd poaiIi:ft 

devia~ from the mean. 

fIpre 106: Aa ..... fiMd~NonuIDlNit:JP\ .. Iii ............ ' ·0Rb 
tiPtIy~haJf.. ...... ........ .. 

The symmetry al80 implies that: 

(a) The Denaity FuJlCtion ill! not -akewecl'" to the left _ riPt of the 
modeImedianlmean (and, thus. the SkeWC!11 __ = 0) 

(b) The Density FuJlCtion ill! not "too- peaked (which would imply that the 

," 



Statistical Analysis with Excel 

change in probability is very rapid when moving from the 

modelmedian/mean towards an extreme) nor "too" flat (which 

would imply that the change in probability is very slow when 

moving from the mode/median/mean towards an extreme). 

The first property implies that Skewness = 0, and the second 

implies that Kurloaia = O. 

Convenience of using the Normal Density Function 

If a series is Normally distributed, then you just need two parameters for 

defining the Density Function for any series X- the mean and standard 

deviation of the variables values! This is because, once you know the 

mean, you also know the mode and median (as these two atatistics equal 

the mean for a Normal ~nsity Function). 

Once you know the standard deviation, you know the lipread of values 

around the meanlmodelmedian. (A series that follows a Normal Density 

Function is not skewed to the left or right, nor is "too" peaked or "tooH 

flat.) 

Are alliarge-sample series Normally Distributed? 

Some formal mathematical theorems and proofs support the theory that 

"as the sample size gets larger most Density Functions become more like 

the Normal Density Function." Therefore, for example, if a series has a 

left skewed Density Function when a sample of 20 observations is used, it 

may also behave more like a symmetrical (that is, a zero-skewed) Normal 

Density Function if the sample size is. for example, 1000 observations. 

(Even if the Density Function doss not have the classic bell-shape of a 

• 

• 

116 



normal C1U'Ve, it can behave like a Normal DeDBity Function if il .. tiafiea 

- to a su1ficient extent - the conditions that imply normality-

• The fact that the mode, meaD aDd median are Yf!rY doee 10 ucb 
other 

• AD additionalleature is that the DeDBity PuoctioD is mnchlY 
symmetrieal around the modelmedianlmean. 

Statistics" Econometrics: Dependeuee olMethodolO8iea _ the 
• assumption olNormality 

• 

I 117 I 

Assum:iDg that variahle$ are distributed Normally is a pr'IIetice that 

underlies- and even permits- moe! hypoiheaia teetiDg in ..,. •• 'II"Pb::ics 

and statistics. Without this asaumption, statiatic8, as _ ~ it" would 

Ioee much of it. power to estimate eoeflieienta and establillh nIIaQmehipe 

amonpt variabIea. 

Assume you have three variables - Xl. X2. and X3. Xl ia m.11 wed ia 
do1lara with a mean 01$2.30, X2 allIo in doJlan with a mean __ GOO 

and X3 in tona. You asaume that an the variablell are diatribvW 

Normally. This permit. you to make infere_ about the aeriae. 0-

you know the mean and standard deviation tor Xl. you can make 

statementa like -6«* of the valuee of Xl lie below $2.62,- "'t=_ the 

values '24,000 and $28,000. we will find that 18% or the ~ GfX211riD 

lie: or, "Over ~ of the values oeD lie below 14""- (Hale: die 
figures are choMn arbitrari1y). Thia is fine. But the problem ill that the 
relation between the cmean, standard deviatioa, X values and ~ 

must be adculated anew ibr each of the variables becanae they ani 

measured in different UBita (doUars venue toRI) orland 011 diflimlat 

IlC8lea and ranges (Xl venus X2 in our example). 



7.2A 

Statistical Analysis with Excel 

This limits the usefulness of using the Normal Density Function to asseas 

the relation between series values and the probability of values occurring 

leas than, equal to or above them. In practical terms, you would need a 

statistics textbook that lays out the relationship between an X value and 

probability for all possible combinations of mean and standard deviation! 

The Standard Normal and its power 

Luckily, a method removes the need for such exhaustive table listings. 
This method iovolves rescaling all series that follows a Normal Density 

Functions to a common scale such that, on the new scale, the variables 

have a meanlmodelmedian of zero and a standard deviation of one. The 

prooeas is called "standardization" and this standardized Density 

Function is called the standard Normal Density. Function or the Z­

Denaity Function. 

The Z -scores are also used to standardize the Density Functions of the 

means olvanables or the estimates of statistical coefficienta. If the 

standard error of mean for the population from which the sample is 

unknown (as is typically the case), then the T Density Function is used 

instead of the Z Density Function. 

flll: 

THE PROBABILITY DENSITY FUNCTION (PDf) AND 

CUMULATIVE DENSITY FUNCTION (CDf) 

NORMDIST (x, mean, standard deviation. false) ~ probability ofvalues 

taking the value X 

mf: 

• 

• 
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C/11Jp1e17: PI'ObIIbiIy Densily Funclions & COl " ICe ......... 

NORMDISI' (X, mean, standard deviation. true) -+ pmbabilay of m­
lying to the left orx 

Fic'IDa 1116= n. diakJc I>rHlimatmc the ~ ............. wfdI. "...11 ........ 
...... dult lDlIrnra. NaraaI De 'IJ ........ 

X 

Mmar-----------------~ ..... --... 
Oal : '''w 

Fipft 10'1: n. Cwaula_ IlnsiI:1 Flmctiaa (am AIr. __ dial ..... Nanul 
DeUllli1y Paact:ioa. n. ___ ohow the YaIua 10 the JoIlII .......... 11 ... ".... .. the 

D '1:1 p..e.o;,.e 

um 

.:1!.iIl 

.000....,:-------"'7!:'-----...... --T-' 

The Cumulative DeDsity FunctiOil (CDF) ia the iIltepal of the ,. Don .. 
the riPt hand aide ill the above equation. The l'IIDP ofilltilp.tion ill 

negative infinity (or the population minimum) to the X value beinc 
atudied. 

JI'cIu,J paIA If) frmt;tion: INSERT I FUNCI'ION I STATJSl1CALI 

NORMDISI', 

Data ~ The data aeriea should fuUow the _mad DeDaiW 
Function type (Nonnal). 
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7.2.C 

Stalistical Analysi$ WIth Excel 

INVERSE FUNCTION 

This function calculates the inverse of the normal cumulative Density 

Function for a user-specified mean and standard deviation. 

NORMINV (probability below the X, MEAN, STANDARD DEVIATION) ~ X 

r~~",,-=.-,~ ';::11 =======1 
""'en, 

R~_~Ir-------~ 

CONFIDENCE INTERVALS 

Mtlrw path w function: INSERT I FUNCTION I STATISTICAL I 

NORMINV. 

DoI.a ~iremellt8: The data series should fullow the assumed Density 

Function type (Normal). 

95% Confidence Interval 

The Confidence Interval contains all but 2.5% of the extreme values on 

each of the tails of the Density Function (probability Density Function 

(PDF» or is the value that corresponds to 0.025 and 0.976 on the 

Cumulative Density Function (CDF). The 95% Confidence Interval for a 

series that follows a Normal Density Function with mean = f.I and' 

standard deviation'" a is defined by the results of the two inverse 

• 

• 
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functi0D8 at th_ two probabilitiea: 

- NORMINV (0.025. mean, atandard deviation) 

- NORMINV (0.915. mean, standard deviation) for the tow. and 

upper limit 

90% ConlldllDee Interval 

The 90% ConfideDee Interval for a aeriee that iIIlowa • NanDa1 Jleuajt,. 

Function with mean = II and standard deviation :: 0 is defined by the 

results of the two inverse functi0D8 at t.beae two probabilitiea; 

- NORMINV (0.05, mean, standard deviation) 

- NORMINV (0.95, mean, atandard deviation) tor the lower and 

upper limit 

Tabla IS: NarnDaI "".,;, ..... J'\ for .... - ... -
. 

Con~· Formula for lower bmmd FCII'IDUIa ................. 
level 

9m6 
NOBMINV (0.05, meaD, NORMINV (0..8&.-. 

"'.ud.nI deviation)' _adanl deriaIiaD) 

9W 
NOBMINV (0.025, meaD, NOKMlNV (U'15.-. 

I&aDdard deviation) etaDi:bIrd~ 

• Note tbIlt _,. '-b _ the fiIIJowing IIf1JIhoIa arp~ b the _ aad ... adanl 
deviadon-

• "at "mu" b_ 

• ., at "lIipIa ... adanl deviatioalemJr 

• .,.or· .... aq_~ 

I 121 , 
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Statistical Analysis with Excel 

Confidence Formula for lower bound Formula for upper bound 
level 

99% 
NORMINV (0.005. mean, NORMINV (0.995, mean, 

standard deviation) standard deviation) 

2 • 

STANDARD NORMAL OR Z-DENSITY FUNCTION 

The Cumulative Density Function (CDP) ia the integral olthe function on 

the right hand aide in the above equation. The range of integration is 

negative infinity to the Z value being studied . 

.Ql!l: 

NORMSDIST (z) ~ probability of values lying to the left of Z 

1ST 

xl ~ 

-I 3 
st ....... '-""v I ,1 
~I .l 

Menu polh to /unciion: INSERT I FUNCTION' STATISTICAL 

INORMSDIST. 

Data requirements: The data series 'z' should follow the assumed Density 

Function type (Standard Normal). 

• 

• 
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Inverse function 

I 123 , 

This function c:alcuJates the inverse of the Standard Nonnal CDF. The 

inverse function for a Standard Normal DeDlity FUDctiOD requinIe only 

one parameter. 

NORMSINV (probability below the X) -+ X 

JIipN 110: NOJIMSDIV 

t ;." ,:: .~;:~ 

M_poIh", fulldioA: INSERT I FUNCTION I STATISTICAL I 

NORMSINV. Dolo ~ ne data ...... ~ehouJd mDowtbe 
assumed Density Function type (Standard Normal). 

TahIe IT- Stan+ml ..... DeaIit1 ~: .............. ",,,,,Od ' 
Jimita. 
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Statistical Analysis with Exeal 

Confidence level Formula for lower bound Formula for upper bound 

90% NORMSINV (0.05) NORMSlNV (0.95) 

96% NORMSINV (0.025) NORMSINV (0.976) 

99% NORMSINV (0.005) NORMSINV (0.995) 

•. L . . ... .t • .... 
T-DENSITY FUNCTION 

.QDE: 

TDIST (x, degrees of&eedom, tails) ~ probability of values lying to the 

left of X 

In the. box Tails, ~ the number of tails to. return. 

• If tsils :: 1, TDIST returns the one-tailed Density Function. 

• If tails = 2. TDIST returns the two-tailed Density Function. 

For example, TDIST (1.96, 60, 2) equals 0.064645, or 5.46 percent 

Xi-'II -----I 
DegJreedom I 

r .... 'I------1 

Menu path to fimctwll: INSERT !FUNCTION !STATISTICAL fl'DIST. 

JJota Requirements: The data series should follow the T Density Function. 

• 
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C/IIIpter 7_- PrubIbiIIy 0en$IIy H:ncIions & Con_eliea InIIM ". 

Inverse faaction 

This function calculates the t-value of the Studenfs t-DeDllity huctioD 
88 a function of the probability and the detreeaofer-Lml> 

TINY (probability below the X, depN8 ofu-lC!JII) ~ X 

A 0DIHailed t-va1ue can be returned by replldnl probability with 

2*probability. Fora probability oiO.06 aDd dep e ea of fnedc ... of 10. the 

two-tailed value is calculated with T (0.06, 10), wbieh ifltm:D8 2.28139. 

The oae-tailed value fbr the same probability aad dep II of,...., ... C8Jl 

be ca)cu]ated with T (2*0.06, 10), which retuma 1.812C62. 

TINY (0.064646, 60) equala 1.98 

M_ pot" ,., /wu:tion: INSERT !FUNCTION ISTATlS'ftCALI'ftNV. 

Dolo ~ The data seriee abould fbIbr the _GiiNCl Dm-it) 

Function type ('1'). 

-- -----.- - _ .. 

Table J8: T . . .-..... ar."- .... _ • h . 
~ Formula fiIr 1_ bound F..wa ... upper boaud 

hmII 

90" TINY (0.05, deer- of freedca) TINY (0.96, dep_ olhedam) 
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Confidence Formula for lower bound Formula for I.lpper bound 
level 

96% TINY (0.025, degrees of freedom) TINY (0.975, degrees of freedom) 

99% TINY (0.005, degrees of freedom) TINY (0.995, degrees of freedom) 

7.4.A ONE-TAILED CONFIDENCE INTERVALS 

95% Confidence Interval 

A 95 % Confidence Interval contains all hut 5% of the extreme values on 

one-tail of the Density Function (Probability Density Function (pDF» or 

is the value that corresponds to 0.05 or 0.95 on the Cumulative Density 

Function (CDF) (the former for the left tail of 5% and the latter for a right 

tail of 5%). 

The 95% Confidence Interval for a T-distributed series is defined by the 

results of the two inverse functions at this probability: 

Left teil: Negative infinity to TINY (0.05, degrees of freedom). 

Right tnj!; TINV(0.95, degrees of freedom) to positive infinity. 

I :':'(0.05, degrees of freedom) = -T1NV(0.95, degrees offreedom) 

90% Confidence Interval 

A 90 % Confidence Interval conteins all but 10% of the extreme values on 

one-tail of the Density Function (Probability Density Function (PDF» or 

• 
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ill the value that correaponds to 0.1 or 0.9 OD the CumWati:ge DeDeity 

Function (CDF) (tbe former for the left tail of 10% and the Jauer for a 

right tail of 10%). 

The 90% Confidence Interval for a T-di8triImted seriee .. ,,'bM by the 

results of the two inverse functiona at tbilI probability: 

• left tej): Negative iDfinity to TINY (0.1. deptel offirW·f"ID) . 

• Ript. teU' TINV (0.9. dep-m of freedom) to ptWiti.w iDfinity • 

1:(0.1. tieJlIBa of freedom) =-TINV(0.9. _CItsloffreedom) I 
,....1" Tn '«iJhu , .• _ ....................... 0 sf I ..... (npttd ....... 

Confi __ Formula fGr lower left.taiI c,. •• &.te_ ..... limit (tile ...... 
level limit equals • ... Ii .. iDfiDit,y) 

~ TINY (0.9, cJ.- 0I ...... 1'IIl) 

95" TINY (0.96, ..... _ orfr II I 8'1) 

9!Hfi TINY (0.99. dep_ 016 ... -1) 

...... 
Confiderw» Formula fOr ri&ht-Wl Confid.D ....... limit (tile upper limit 

1Imd equalt poooili ... iR&ni.." 

sow. -TINY (0.1. dep ... oIfr La) 

959i -TINY (0.06, depe. or&~ 

9!Hfi -TINY (0.01. ""Ir-of6....tt.) 
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F-DENSITY FUNCTION 

The F test is used for testing model significance and other joint hypothesis 

in ANOV A, Regression Analysis, etc. 

QI£: 
FDIST (x, numerator degrees of freedom, denominator degrees of freedom) 

Menu path to function: INSERT I FUNCTION I STATISTICAL I FDIST. 

x 
.' '~',' "', .\ 

De!L1r ... • 11 
De!Lruu I • 121 

'''. "-,.', ~"T-

Data requ.irements: The data series should follow the assumed Density 

Function type (F). 

Inverse function 

FINV (probability below the X, numerator degrees of freedom. denominator 

degrees of freedom) 7 X 

Menu path to function: INSERT I FUNCTION I STATISTICAL IFINV. 

Data requirements: The data series should follow the F Density Function. 

• 

• 
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PI I tn, 
~--------------~ ~I 

~~------------~ 

ODe-tailed CoDfidence lD&ervaJa 

7.6 

129 I 

Confidence Formula fOr upper Oae-tail ConIdence Jowv limit (the upper limit ...... 
level poaiti". iDfinit;y) 

90" FINV (0.9, numerator ~ of freedma. .... MI.";· .... d IP_ al61 ' ,) 

95" FINV (0.95, numerator d.-of~, denmrinMor 1 1'_ al6 ...... ) 

99" FINV(O.99,numerator~of&Ie"cm. __ m.t.arcle.iCwallrll') 

2 2 " 

CHI·SQUARE DENSITY FUNCTION 

The ChHqu_ test is UMd for teetin, model aipifieence and Gtbtr jaiDt 

hypothesis in Maximum Likelihood estimation, Lopt. PI"", etc. 

." 
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Menu path to function: INSERT !FUNCTION !STATISTICAL ICHIDIST. 

Data requirements: The data series should follow the assumed Density 

Function type (Chi-Square). 

Inverse function 

CHIINV (probability, degrees of freedom) ~ X 

Menu path to function: INSERT !FUNCTION !STATISTICAL ICHIINV. 

Data requirements: The data series should follow the Chi-Square Density 

Function. 

One-tailed Confidence Intervals 

Table Z2! Chi Square Density Function: Formulae /Dr 9O'K, 9MII, od 99% CoIIfidenoe limit$ 
(right tail DIIM. s..m,,_ will lie available at httn:/I, ...... viboolot.""tII .h till. 

Confidence Formula for upper One-tail Confidence lower limit (the upper 
level limit equals positive infinity) 

90% CHIINV (0.9, degrees offreedom) 

95% CHIINV (0.96, degrees of freedom) 

CHIINV (0.99, degrees offreedom) 

• 



7.7 

7.7.A 

• 

• 

I In I 

.cJ2[: 

OTHER CONTINUOUS DENSITY FUNCTIONS: BETA. 

GAMMA, EXPONENTIAL, POISSON, WEIBULL It 

FISHER 

BETA DENSITY FUNCTION 

BETADIST (x. alpha. beta. lower bouml A. upper IIouDII B) ~ ,._hi'ity of 

values Iyinc to the left olX 

Mtmu polh to fu,adion: INSERT I FUNCTION I STATISTICAL I 

BETADIST. 

Dato J"fqUiremtmtr. The data wries 8hoWd fbIJow the Beta Deuit,y 

Function. 

....... nil' BBl'A DaIiIr II II r .. 
iETADIST ~ 

x 31 ..... .3 .... 
i It 

8 
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Figure 119: Note how the DeDllity Function Probability Density Function (PDF) ia llkewed to 
one side and has a 1 ... abarp "hilr at top - compared to • Nanna! Probability Density 

Function (PDF) 

< < 

Figure 120: The Cumulative DeDllity Function (CDF) shows (on tile Y ...uie) the )ItOIIOrtion of 
val_ that lie below 8 certaiD X value of the aeries 

l.lDl 
.",-; 

, .::~ ~ '"'t- . 

. i50 
";' l' 

. ~. ~':~~'~ '--~~~-,~::~ 

< <':~A~~ijri; 
.500 

.250 

Inverse Function 

BETAINV (probability. alpba, beta. lower bound A. upper bound B) ~ X 

Me"," path to fun,ctwll: INSERT / FUNCTION I STATISTICAL / 

BETAINV. 

Data requirements: The data series should fullow the assumed Density 

Function type (Beta). 

• 
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CIIl/(#Jf 7: ProIlebity 0ensiIy Func:oon. & Ccnlid."".I1 __ 

Ficwe lZl Tbt· : 1IlW1'IIII act _" II 

'V," 
1'1 I '·.1 .. 

--I .. , ., .... - ~ leta, 
.",4, . 

AI 
III .. . ... 

CoaJidence Intervals 

• Table za; BETA DeMib hoecw--F.."'- ... - - ... .,. ....... 
Confidence Formula for lower bound Formula .. upper bound lem 

9O'Ji BETAINV (0.06, alpha, beta, A. B) BETAINV (C1.I16. alplIa, beta. A. B) 

8M' BETAINV (0.025, alpha, be~ A. B) BE'l'AINV to..l'l&.lIIpU, beta. A. 
D} 

99" BE'l'AINV (0.005. alpha, beta, A. B) BE'l'AINV to.986, aJpha, beta, A. 
D} 

7.7.8 GAMMA DENSITY FUNCTION 

, 
mE 
GAMMADIST(x. Alpha, Beta. true) -+ probebitil;yolm-""..,dIe JdolX) 

ml: 
GAMMADIST (x. Alpha, Beta. fBlIe) -+ probebi1it.y olm-lakiacdle ...... X) 

M_ path to {wu:tion: INSERT !FUNCTION ISTATIS'ftCAL 
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I"icue ]22: GAMMA Denaity FuDCtion 

rGAf'l'lADllST-;;::::.:==~ 

X" 
*'-,,----1 
Betaj--I_-I 

CUmuIetI¥e I 

Data requirements: The data series should follow the assumed Density 

Function type (Gamma). 

Inverse Function 

GAMMAINV (probability below the X. alpha. beta) ~ X 

Menu path to function: INSERT !FUNCTION !STATISTICAL 

IGAMMAINV. 

Data requirements: The data series should follow the assumed Density 

Function type (Gamma). • 

184 I 
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CIH/pIw 7: PillIllibilV DensiIy FI.IICIions & Collide" .. "" _ 

Confidence Iuterva1s 

Table W 0._ Deasit;J PuacIiaa: r-uIa ...... 11K .... 1ft C II .1iIaiIa. 
&om .. will be aYaiIabIe at b . 

COlllideme FOI'IDuIa fbr lower boWId 
lImII 

F_uIa _upper bouad 

9O'K GAMMAINV (0.05. alpha. beta) GAJOWNV (0.116. ....... bela) 

9M6 GAMMAINV (0.025. alpha, beta) GAMMAINV (0..875. ....... 
beta) 

99 GAMMA1NV 0006. alpha, .... GAMMAlNVOII86, .......... 

If aD inverse fimcti.on does not converge after 100 iterations, the fU....tjnn 

• retuma the tINIA error value. 

• 

7.7.C EXPONENTIAL DENSITY fUNCTION 

185 I 

fDl!: 
EXPONDlST ex. lambda. FaJae) -+ probability of ...... takine the ....... ][ 

.cDE: 
EXPONDlST ex. lambda. True) -+ prohallility of~ 1J:iac to tile left al][ 

Maa path to /u:IIcliDn.: INSERT IFUNCl'ION JSTATISTICAL 

IEXl'ONDIST. 

Dato ~ The data seriea should roDow the EqiQlMlltiai Denait.r 
F1ipetion. 
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Figure 124: Dialoi for the Exponential DistributiQn 

xl 
I.lombda I 

.'-'- ~ 

C~I 

Cumulative F'unctiDn (CDIr) 

.250 

EXPONDIST (0.2, 10, TRUE) equals 0.864665 while EXPONDIST (0.2, 10, 

FALSE) equals 1.353353 

Further detail is beyond the scope of this book. 

• 

• 
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7.7.0 

7.7.E 

• 

7.7.F 

• 

I 181 , 

ChI/fIt&r 7: PrabebiIy Densi!y Functions & Canida" .. ~ .... 

FISHER DENSITY FUNCTION 

This topic is beyond the scope of this book. 

POISSON DENSITY FUNCTION 

This Dlmllity Function is used ibr predic:t;iDc &he number of ....... T 
occurrinc _ a apeeific time. 

1!IJE: 
POISSON (I. expeetecI value, &hie) ~ probability mm- takiDctbe value X 

gw 
POISSON (x, expected ¥Blue, b"ue) ~ probehiIity mm-""lDtbe .. mx 

Further detail is beyond the eoope of thia book. 

WElBULL DENSITY FUNCTION 

m.l: 
WElBULL (x, a, h, &hie) ~ probability ofm- tame tIa ftIue X 

sm: 
WElBULL (I. ., h, we) ~ probability of valua lJ'iat to tIa .. GfX 

Further detail is beyond the eoope of this book. 
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1.7.G DISCRETE PROBABILITIES- BINOMIAL, HYPER GEOMETRIC &. 

NEGATIVE BINOMIAL 

This topic is beyond the scope and aim of this book. 

Binomial Density Function 

This function is used to ascertain the probability of obtaining a "head" in a 

coin toss. X can take only two discrete values. Further detail is beyond 

the scope of this book. 

Hypergeometric Density Funetion 

The Density Function captures event probabilities in problems of 

sampling without replacement. The sample is taken from a discrete finite 

population like a deck of cards. Further detail is beyond the scope of this 

book. 

Negative Binomial 

This function measures the probability of "number of coin tosses before 

first or KIb heads (in a coin toss).» 

138 
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a..pw 7: I'IubItIilY DerIIiIy FIIIICIiI:IM & Col ............ 

7.8 LIST OF DENSrTY FUNCTION 

Table II! PDF ..... co., 
InIlmIIIoII 

Is .... taqUiedbJ at.lnbnllllon ",,' III •• 
in:tianllllt Is ..... albIcIons 

doeS .. 
COIIVIII. ci opionD va.(.) I FIIICIon raquest .. 
lis "_. forwlidl 
1I1II,lso." 

c:tIIIIIaIiwe .. I c§ 
A _ci .. pnDIiIlY1 .1IIIIIIr I 

'15 

in:tian? 
is_ I saught 

• TDIST TlNV ,f' ,f' 

LOGHORMDIST LOGIN ,f' ,f' ,f' ,f' 

FDIST ANY ,f' ,f' 2"'1 .... 
elf. I bll 

BETADIST , BETAINV ,f' ............... 
IIOInI 

CtDST CHUNV ,f' ,f' 

NORIDST NORIIfN ,f' ,f' ,f' ,f' 

NORIISDIST NORMSINV ,f' ,f' ! 

WEIIUlL ,f' ... I , ... , 

• 
NEGBIfOII)IST - • elf ..... (PI_II • ." .eIf Ii 

•• nil 
i ,elf 'I 

8INCJII)IST 1 
,f' (I'll ... .., - , 

SIICC i III 

E)(POtI)IST 
, 

,f' ,f' L ...... - , 

GAMIMDIST i (;A'MIN ! ,f' ,f' ... :1 ... ... 
IHYPGfOIDST I 

,elf S._'p ... II ... 'eIf ,i - SIICC ESlII 
J : SIICC ilpqllh i in __ i 
i PQSSON I ,f' ,f' ,f' I 'i - 'i ! 
. 

I 189 I 
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7.9 SOME INVERSE FUNCTION 

T ble 26· I a . nverse DB 

Information 

Inverse mapping 
required by all Other information 

C'probability to 
inverse requirements 

value") of which functions 
Function cumulative 

probability 
Probability for 

Degrees 
which the Std 

function? Mean of Other corresponding Dev 
freedom 

value is sought 

TINV TDIST '" '" • LOGINV LOGNORMDIST '" '" '" 
2-

FINV FDIST '" ./ degree 
of 

freedom 

BETAINV BETADIST '" 
alpha, beta, Upper and 

lower bound 

CHIINV CHIDIST '" '" 
NORMINV NORMDIST '" '" '" 

NORMSINV NORMSDIST '" 

• 
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Cht!pIw II: Oller ............ & S' If. Func:IionI 

OTHER MATHEMATICS & STATISTICS FUNCTIONS 

I 148 I 

This chapter briefJ;y displays eome other functimuI available in Baa Tbe 

topics in this chapter are: 

- COUNTING AND SUMMING 

- COUNT, COUNTA 

- COUNTBLANK 

- COMPARING COUNT, COUNTAAND COUNTBLANK 

-SUM 

-PRODUCT 

- SUMPRODUCT 

- THE "IF "COUNTING AND SUMMING FUNCTIONS 

-SUMIF 

-COUNrIF 

- TRANSFORMATIONS (LIKE LOG, EXPONEN'J.'1:A4 ABSOLUI'B, 
ETC) 

-STANDARDIZING A SERIES THAT FOLLOWS A NORIIAL 
DENSITY FUNCTION 

-DEVIATIONS FROM THE MEAN 

- CROSS SERIES RELATIONS 

-COVAR.IANCE AND CORRELATION FUNCTIONS 

- SUM OF THE SUM OF THE SQUARES OF TWO VARIABLES 



8.1 

- SUM OF THE SQUARES OF DIFFERENCES ACROSS TWO 
VARIABLES 

- SUM OF THE DIFFERENCE OF THE SQUARES OF TWO 
VARIABLES 

COUNTING AND SUMMING 

-_._--_ .. _--._ .... - ... ~ .. -..... - ....... - .. -.-.. 

COUNT function 

This function counts the number of valid cells in a range. Cells are valid 

only if there value is numeric or II date. 

Menu path to /lmdion: INSERT IOFUNCTION IOSTATISTICAL 

IOCOUNT. 

Data requiremenJs: Numbers and dates are included in the count. Not 

counted cells include those that contain error values, text, blank cells, and 

logical values (like TRUE and FALSE). The X values can be input all 

references to one or more ranges that may be non-ad,jacent. 

The second range can be referenced in the first text-box "Valuer' after 

placing a comma after the first range, or it could be referenced in the 

second text-box "Value2." 

Jfyou use the second text-box, then a third text-box "ValueS" will 

automatically open. (As you :fill the last visible box, another box opens 

until the maximum number of boxes - SO - is reached.) 

• 

• 
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'!'be 

A B 

Y 

.61 24.34 

20.01 24.34 

VALUE! 24.34 

16.28 24.34 

DlVlOl fi'ALUE! 

11.63 24.34 

.86 

REF! 12.00 

.74 22.00 

NAME? 12.00 

.IS 12.00 

NlA! 21.58 

~r-~X~....-_Y.:.-_ t/iJft , 
1.51 ' • - : • • 
~~Z_ 

• 
1~ .: -- ' -- - ---z 
11. : ,-- -, 

• .. : _ I 
.~. ~ ". -'.' , 
~ .-: 

• 
~.l. , 

5.13 : , - '. 

is ill tbe - file "CooIIII dI-

C 

Date 

24-Sep- 2GOO 

25-Sep- 2GOO 

i6-Sep- 2GOO 

27-Sep- 2GOO 

i6-Sep- 2GOO 

29-Sep- 2GOO 

3O-Sep- 2GOO 

1-Oct-2GOO 

3-Oct-2GOO 

4-Oct-2GOO 

6-Oct-2GOO 

R,.·MM""'. 
all ~_. 

l1U! 

rAUl 

D 

Be I .......... , .. ,-

TR1.JB 

FALSE 

fi'ALUE! 

FALSE 

TR1.JB 

IJNIA! 

TR1.JB 

FALSE 

TBUE 

TBUE 

TBUE 

c o 

-



COUNTA function also counts cells with logical or te:l:t values 

This function counts the number ofva.lid cells in a range. Valid valuea 

include cells with numeric. date. text, logical, or error value. COUNTA 

only excludes empty cells. but text and logical valuea are only counted if 

you type them directly into the list of arguments are counted. If an 

argument ia a data array or range reference, only numbers in that data 

array or range reference. 

Figun> 128' The tImd:ion COUNTA is a variantolthe COUNTNIIOtimI. The_pie is in the 
"O:Nnt.xl& • 

Menu path to {unction: INSERT I FUNCTION I STATISTICAL I 

COUNTA. 

Data requirements: Unlike the COUNT function. COUNT A will include 

the label row in the count. (So, if you have one label in the referenced 

range. you may want to use "= COUNTA (A:A) - In.) The X values can be 

input as references to one or more ranges that may be non-adjacent. The 

second range can be referenced in the first text-box "ValuelN after placing 

a comma after the first range. or it could be referenced in the 8eCOnd text­

box "Value2.- If you use the second text-box, then a third text-box 

"ValueS" will automatically open. (As you fill the last viaihle box, another 

box opens until the maximum number of boxes - 30 - ia reached..) The 

function does not count invalid cell values when counting the number of X 

values. 

• 

• 
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0IIrPIIr 8: 0Iwr n._. I r . & S" s: 5 :. f'uncIIIInI 

COUNTBLANK fanction counts the number otempty cells ia the ranp 
reference 

'I'hl8 function COUIlta the number ofblaDk ceDa in a ranae. 

Menu ptB/r.1o {unditm: INSERT !FUNCTION 
IINFORMATIONlCOUNTBlANK. 

SUM fanctiOD 

I 147 , 

'I'hl8 function 1JUJD8 the val_ in the data array. 

SUM=Xt + Xt+ .••. +L 

Mau ptB/r.1o {unditm: INSERT I FUNCTION I MATH I SUM. 

Dolo 1'CIqUiremtmlr. 'I'IWI function don not include Wauk ce)g .. cella w:itII. 
~ that are of the fuUowing formate: text, and 10tPeaJ ..... (that is, 

TRUE and FALSE.) 



PRODUCT function 

This function multiplies all the values referenced. 

PRODUCT = Xl * XJ* .... *Xa 

131: PRODUCT aU the vatu ... in • 

Menu path to function: INSERT I FUNCTION I MATH I PRODUCT. 

SUMPRODUCT function 

This function multiplies corresponding components in two or more data 

arrayslranaes, and then sums the results of these multiplications. The 

data arrayalranges must have the 89me number of data points. 

Menu path to function.: INSERT !FUNCTION IMATH ISUMPRODUCT 

F'ip:nl132= SUMPRODUCT fmultiplying mdivldual data pointa _ data __ aDd then 
the results of aU 

Data Arrayl, data Array2, data Arraya ... are 2 to 30 data arrayelranges 

whose components you desire to multiply and then add. The minimum 

number of arrays is two. The data arrays must have the ssme number of 

data points. Non-numeric cell values are assigned the value of zero. 

• 

• 
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The X values can be input as references to two 01' more raJIIIIII that may 

be DOD-8djacent. The second range IIhould be reImmced in the.,.,. 

text-box· Array2.» H you use the third text-box, then a bIIth text-ba1l 
• Array4- will automaticaDy opeD. (As JUU fill the JaR yiIibJe box, ...... 11el' 

box opens until the maximum Dumber ofboxas - 30 - is ...-c1wl) 

The foIlow:iDg fbrmula multiplies aD the compoaepta oldie two data 

arrays OIl the preceding wor:bheei and then adele the pJOducta that iB. 
3*2+ 4*1 + 8*6+6*7 + 1*6 + 9*3 . 

N.!B: 
SampJea will be available 81 http://www.'¥J'boob.netfuatllwamplee htm.. 

2 

THE "IF" COUNTING AND SUMMING FUNCTIONS: 

STATISTICAL FUNCTIONS WITH LOGICAL 

CONDmONS 

I diBpJay two ":if-then- two-step timctkme in tbiB eectiaD. 'DIe 6 .. .... 

first evaluate a criterion. H. cell in the re6treJad raJII'8 ...... the 
criteria then the IJIlCDDd part of the fuDCtioD jndudee tbiB c:eJL 

'l1IiB fuDCtioD adds the values in a ranee if the cell with the YIIlue aatjefjee 

• ueer-defined criterion. 



evaluated. 

• In the box CriWia, enter the condition (a number. expression, or 
text) that defines which cells values will be summed. For 
example, Criteria can be expressed as 32, "32: ">32". 

• In the box Sum_range, you may reference the actual cells to sum. 
The cells in sum range are summed only if their corresponding 
cells in the entire Range match the criteria. If sum range is 
omitted, all the "criterion-satisfYing" cells in the Range are 

summed. 

Menu path to function: INSERT loFUNCTION IOMATH IOBUMIF. The 

Criteria should be relevant to the type of dsta!text in the queried range. 

--.. ---
COUNTIF function 

This function counts the number of cells in a range that satisfy a user­

defined criterion. 

The dialog for ·COUNTlF" requires two inputs from the user. The 
"Range" is similar to tbe functions shown previously. The ·Criteria" is a 

logical condition set by you. 

• 

• 
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-

~It Oller II 1M Ii & =q ,. FwdanI 

• In the boz Range, enter a reference to the J'8II&'8 oC ceDe JOIl-- to 
evaluate. 

• In the boz CriIsia, enter the c:onditian (a Dumber, tipi on, or 

text) that deli"", which cella will be COludiecl For ...... mple. 
CriteriG can be expressed sa 32, "32,- ">32,."""" 

MeJW potJa 10 /imditm: INSERT /FUNCTION ISTATlSTICALJOOUNTD' • 

.lJoIo ~ TIle nmae can take IDY YBl-. fte Criiaria ....... w 

be relevant to the type of dataltu:t in the queried J'8II&'8. 

asoc- the nmae "1>-.1)" and the conditioD ">1.000.000-. fte 6m.:tion is 

"CowIt the number of ca-. in the nmae D-.D, but onb< if the .... oC the 

cell is peatier than 1 million " 

Par a pictotial reproduction of tbie, _ the next ficme. 



8.3 

onto the cell The next figure illustrates this. Depress the ENTER key. 

Function 

Sign 

Absolute 
number 

Square root 

Figure 136: The f\mction as written into tile cen 
I =COUNTlF(D:O:>l ,IllJ,OO:121 

TRANSFORMATIONS (LOG, EXPONENTIAL, 

ABSOLUTE, SUM, ETC) 

Location within 
De8cription INSERT DotI.J Requirements 

lFUNCTION 

This function outputs the 
sign of a number. 

Returns 1 if the number 
is positive, zero (0) if the 

number is 0, and -1 if 
the number is negative. MATH !SIGN Any real value. 

Useful for red-flagging 
data, or using in 
functions like IF, 

OOUNTIF, SUMIF and 
CHOOSE. 

ABS=IXI MATH/ABS One real number. 

The square root of a MATHlSQRT One poeitive real 
number. number. 

• 
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0NpIIr B: Oller MIIIwnaIICI & S 5'. FurIcIIIM 

tocaIiM~ 
Function ~ IN8BRT !D-"-1ui . .,. 

IFllNCTION 

Y=XIII 

LN(X) 

Tbia funetion calmlatee the 
lllltunllopritbm 01 a 

n_ber. Natural. 
Ioprithme are baaed em 
the COIIIItam e (2.718). MATBILN 0-pGIIiIiw" Locnatural 
LN (86) == 4.464347. D1IIIIb!Il'. • Tbia mean: "If you rai8e the 

bue e to the power 014.46 
you will pt 86. -+ LN (86) 

=4.46. 

ecmvenely. 
up (4.46) == e" (4.46) = 

2.718" (4.46) = 86 • 

. Exponential. Tbia.flmc:ticm IlIIkulatee the -IEXP-~ .. apcment.ial to a a_her. aumhw. 
i 
I 
i 
LOGIO(X) 

Thia funetion ca1euIat.ea the 
bue 10 JGprit.hm at a • ! number. 

i LOGI0 (86) = 1.934 MA'.l'IlILOGIO Loctothe I o-pwili .... 

I 
heca_ the bue at 10 

base 10 .-cia to be raieed l.934 aumhw. 

timea to pt 86: 
10UN=86 

i LOG 10 (10) == 1 heca_ 
I 101= 10 

I LOGI0 (1000) == 3 heca_ 
I 101=1000 

158 I 
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Location within 
Function Description INSERT Data Requirements 

IFUNCTION 

This function calculates the 
logarithm of a number to 
the base you specify. The 

default base is 10. For 
natursllog use base e = 

2.718. 
A poeitiVe real 

Log to a user LOG (X, base) 
number X and the 

MATijILOG. (optional) base of 
defined base the logarithm. 

LOG (100) = 2 ~ base 10. Ifbase is omitted, I . 

(Since 102 = 100). it is assumed = 10. 
LOG (27, 3) = 3 ~ base 3. 

(Since as = 27). 

LOG (86,2.7182818) = 4.46 
~ same as natural log. 

Because- (up (4.46) = 86) . 

. Standardizing a series that follows a Normal Denllity Function 

Converts a value in a series X to its equivalent standard normal 

transformation. 

STANDARDIZE (x, AVERAGE 00, STDEV(X» where X is all the numbers 

in the X data series. 

Menu path to function: 
INSERTIFUNCTIONISTATlSTlCAUSTANDARDIZE. 

Data requirement: The function requires three input numbe1'll: x, mean of 

the X series, and the standard deviation of the X series. The mean and 

standard deviation can be written as a "function within a function." 

• 

• 
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8.4 DEVIATIONS FROM THE MEAN 

The fbrmulas in this and the next; aection proridtt _mates .t"' ....... 
used in fbrmulas mr parameters obtained in advanced ruaa.lJaia lib 
ANOVA, Correlation, Beer lema, etc. 

------- ----------------
DEVSQ 

'Ibia faJlCtioa ca.lcuJatee the sum of Iq1I8NI • deviatioaa of data paiDtII 

from their lI8JJlPle mean 

t ({x -1M8D (x»)' 

PipftU'r. 9o, ••• ';.!Ooftlle .... oftlle·"" "wofiDdi" I ............ _of dIe ___ 

AVEDBV 

116 I 

'1'1UII faJICtioa ea1euJatee the awrap of the abaolulie deriaticma • datil 

poiDta from their mean. A VEDEV ia a IIleII8Uft • the .....,;. ... 1ity in a data 

ast. 



8.5 

8.SA 

8.5.8 

Men.u path to function: STATISTICAUA VEDEV 

Menu path to function: A range(s) of real numbers, inclusive of zero. 

CROSS SERIES RELATIONS 

COVARIANCE AND CORRELATION FUNCTIONS 

The functions are CORREL, COVAR, PEARSON, & RSQ. I recommend 

using the Analysis ToolPak Add-In - refer to 10.3. 

SUM OF SQUARES 

SUMX2FY2 function evaluates the "Sum of the sum of the squares of each 

ease in two variables" 

This function estimates the summation of the squares of individual pointe 

in two series. 

• 

• 
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0tIpIr 8: 0Iw Ul1h ..... & 51 • II • I'uIIcIiana 

Ffpre las: Swnmatioaof&be ........ ofiDdi'idaalpllildaialwD ..... S a' g will .... 
...uIablaat 

• SUMDlYJ funetiOD 

• 

Tbia function est.imatea Sum of the squares of difb_ of eaeb _ ill 

two aelO88 two variables . 

........ tae: S--.... of&be ......... of&be·,.. .ia .......... ,...ia_ ..... -
be .-.ilitble 

Menu poth to {uncIiIm: INSERTIFUNCTIONIMATBISt.JYXIfft. DaIo 
~ Thiafunction __ two data __ 

------~-~"--. 

SUMXJM.YJ Iund:ioD 

157 I 

Thia function est.imatea the Sum of the diBimIDce of the .-of eech 
_ ill two va:riabIea. 



SIaIisticaI Analyl;ls with Excel 

Menu path to {unctwn: INSERTIFUNCTIONIMATHlSUMX2MY2. 

Data requirements: This function needs two data series. 

• 

• 
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9.1 

c ........ . 

ADD-INS: ENHANCING EXCEL 

This chapter cIiecuIRs the tOJ1owiDc topics: 

- WHAT CAN AN ADD-IN DO? 

- WHY USE AN ADD-IN (AND NOT JUST EXCEL 
MACROSIPROGRAMS)? 

-ADD-INS INSTAI.I.ED WITH EXCEL 

- OTHER ADD-INS 

- THE STATISTICS ADD-IN 

- CHOOSING THE ADD-INS 

ADD-INS: INTRODUCTION 

AD -Add-In- is a aoftware application that adde new fuaetionatity to 

EwceJ The Add-In typicaIJ,y _mJeealy lite into the .... interfiw:e,. 

providiDc accessibility to ita functionality tbrouP 

- new optioDB in aiIItiDtr menus 

I 160 I 
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a.1.A 

• 9.1.B 

9.2 

• 

I un I 

- new toolbars aDd specific toolbar icoDs 

WHAT CAN AN ADJ>.IN DOl 

Almost anytbiug aD imaginative aofI;wue deftloper could cnate. 

Usually. aD Add-In provides functionality that.is ueful tbr • pertieuIar 

type of analysisIindustry - statistics, finaJlC'Ail, real ...... *-

WHY USE AN ADJ>.lNl 

The Add·In could haft its hue code wriUan in ... ue .......... 1ib C. 
C++. FORTRAN. PaacaJ, etc. This.is important beca ___ ........... 

and operatioDS (1jke simulations) operate best when w:dtteb in • aped&.: 

Janguaae. Therein. the developer uaes the best ~ to create 

the functionality and then paekape dWt inaide an Add-In. 

2 

ADD-INS INSTALLED WITH EXCEL 

Some Add-lD8 ue .vailable in the MicroeoA Offiae CD-&OM .... ue 

inIItaIJed (but not acti.vated1Cl) alona with EmJl. I show the _ of duee 

Add-iDa. 



9.3 

9.4 

9.4.A 

stalistical Analysis with Ex<:eI 

OTHER ADD·INS 

Many commercially sold Add·Ins can be almost like separate software just 

needing Excel as the "host." Two examples: 

- Crystal Ball"'" risk analysis software 

- UNISTATfM software for conducting advanced statistics and 

econometrics from inside Excel 

Hundreds of software companies construct Add·Ins. The greatest 

contribution of this book, if I succeed in doing so, would be the opening of 

this massive potential functionality to Excel users. 

2 2 ~ > 

THE STATISTICS ADD·IN 

The Analysis ToolPak Add·In that ships with Excel can conduct several 

procedures including descriptives, regression, ANOVA, F·test, correlation, 

T.tests, moving average, and histogram. Let us1earn how to use this 

-Add-In." 

CHOOSING THE ADD-INS 

Choose the menu option TOOLS/ADD·INS. You will sse several Add·Ins 

as shown in Figure 140. (You may not see all the Add-Ins shown in the 

next two figures.) 

• 

• 
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168 I 

,...,. 1.11: IaBllloelXP. dleMd· .... diaIoc ...... iIIw_.·/h! .;. 'Ilia...., • 
....,.. die ... flltIairt ...... 

Ole I 
QnIIII 

I I 

You need the "ADaJyaia TooIPaIt Add·IDa." SelecI; - by elM 'jacm it­
the box to the leA of theM Add·Ina (ebown in Fipw 141). R , ..... the 

dialog by elicking on the button OK and wait fOr __ time while the Add­

Ina are "loaded" or "l:egi8tered" with Excel. An Add.1D hu to be 

Joaded/reciatered befOre it ill available fOr UIe. ". Add.1D ... .... 
loaded _ amioaa. It ill only "unloacJecl" wben JOQ aeIect the .... .. 

I"~ 



TOOLS/ADD-INS and deselect the Add-Inll, 

Figure 142: The Add"In pail' Ibr data an.tIym 

You have activated the "Analysis TooIPak." At the bottom of the menu 

TOOLS, you will see the option "DATA ANALYSIS the bottom.- this 

option was not there before you accelllled the Add-In. (This is illustrated 

in Figure 143.} 

The statistical procedures are sccessed through this new option. 

~: 

Usually Add-Ine expose their functionality by creating new menu 

options or even new menus. The menu option "Data analysis" 

provides the statistics functionality available in "Analysis TooIPak" 

and "Analysis TooIPak VB." The menu options "Optquest" down till 

CB Bootstrap' are linked to the Add-in "Crystal Ball" (not shipped in 

the Office CD-ROM). 

II If too many Add-Ins are Ioach!d. Excel may work too slowly, or even freeze. Hyou find 
dlis problem occurriIIe, then just load the Add-in when you are going to U88 it and 
un10sd it before quitting ExceL 

• 

• 
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PipN Ie ". "DataAllablW'_", 

DID ... QIII 
... 

........ a' •• 
8a11iid1an 

GNlSIIL •• 
Sqoliibs ... 

IIIIItiIII ,... ... 
AIfd.p. •• ". ' ~ .. 
gpIIaM. •• 

!II-' 
0pQ-t 

01 1"'" ct.t 

01 ...... '_ 

(8&.'7 $ 



0 ...... 1: •• e 

STATIST ICS TOOLS 

- DESCRIPl'lVE STATISTICS 

- RANK AND PERCENTILE 

- BIVARIATE RELATIONS- CORRELATION, COVARIANCE 

A proper analysis ofdala must betIin with an auaJ:piaoftheatatieti .... 

attributes of each IIIll'iee in .iaoIation - univariate anab'ai& Flom INCh .. 

anaIyaia. you can learn: 

- How the values of a aeries a:re diatzibuted - DIJl'DIllJ, hi ....... 

etc. 

- 'I"be _tral tendency of the values of • ..nee ( ..... n. madi .. , 

and mode) 

- Di8pe1'llioD of the values (standard deviatioa. varia.Dm, nmae. 
and quartilee) 

_ Presence of oudier8 (extreme values) 

• 

I 118 I 

.. 

• 
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10.1 

0MIpMr 10: S' r U •• Toala 

The IUI8Wel' to these qlmBtioDs iDumiDl!&1e8 and motifldlile fIarther. _ 

compJez, analysis. Moreover. failUJ:e to conduct uiYariate 8II8I.Jsie may 

restrict the ueefWnesa of further proeedune (like IlOII'J'eJaticm and 

recrellllioD). Rea8OD: eYen it improper/iMO!llpiete UDiYuiate .....,..may 

not directly hinder the conducting of more OOIllpia proeed.-. the 

interpretation of output from the latter will become dit&o:uk (beea- J'01I 

will not have an adequate understanding of how each eeriee baha'ilie). 

Note: I do not 10 into the detaila of each BtatilDcl procecl_ PCII' 8IICh 
detaila. rem to your Btati8tic8 tutbook or to "SPSS tbr 'Beaionera­
(available at hUp:lIwww.vjboob.net and amalOll 00Ill) • 

Tbia chapter requiree the Analysis TooIPak Add-IDa; chapter 9 .... how 
to Jeam how to launch the Add-IDS. 

DESCRIPTIVE STATISTICS 

I do _ ~ lIN MIRtple dota for 11UNIt of lIN ...,. .... ia claapf4n .... 

My ~"tAat _.1 n!If.'Ider& 6'-_lIN.......",. -" do.., flO 

tIIrough lIN di{fit:d BIep of dTawiIIg in!-from «I raub if lIN ..,....,. 

dota mmlts are lIN 801M CJ8 tJwse ia lIN "'P'Ipla ia lIN 6oc& 

a.oc.. the meau opiulD TOOLSlDATAANALYSlSI2. TIle cIiaIoc ......... 
in Fipre 1" opeD8. 

IS If,.. do IIIIt _ dUB option, thea _ TOOLS I ADJHNBID IIIitiwde die AIIil-Ja IIr 
data aulpie. Beitr ID ..... 4L4. 
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statistical Analysis with Excel 

Choose the statistical procedure "Descriptive Statistics." The dialog fur 

"Descriptive Statistics" opens. Figure 145 shows this dialog (user-input 

furm). 

1nU-. 
~1IW'l 

Ff .... m..-.·· 

"''''1\1!11111!1 
'!-."..~~. 
C .... ,It· " 

F1 
p tII!IlM .. ~,._ . 
r IIhIfltllb _..:.-........ 

r. 

• 

• 
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ChIIpIer 10: m 1 fi • TocII 

Input (or. "Soyree, data 
Chooee die data aeries wbose deacriptiwa you deeire. aid: _ die edp of 

the box nen to "Input Range- (at the point where the &tIed __ points 

in Figure 145). 

Chooee other options 8hown in P'iIJun 145. Select die ()(l4;'31' "I." in 

first row'" because the names of die three aeries are in the &rat mw of die 

nmge you aelected (the labels are in ceDe Cl, Dl, and El)- tIda WIlY 

Excel picks up the nalDflfl of the variables and ..... tbeee aamee in die 

outputJ1• Execute the diaJIl( by c!jc:kjncon the buttoa OK. 

Output 

Excel plOduces the descriptive atatiatiea and plNee the l8IIulta in • __ 

worksheet. (Tbia is illuatn.ted in P'iIJun 146.) 

.. Noce tIIat ill the output olthie pnud_ 6mown ill Picme MIl the .. __ ... the 
1.tIIIeIa ... the thne ..naN. 1985. 1800, aDd 1010. 
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SlaIislil:al Analysis with Excel 

Figure 146: Output of Descriptive Statislica pl'Olllldw:e 

A F 
1995 2IJ(}(} 

52519l4.9 _ ~,4_ 7«lS944f 
Err _7.3_Err 5041964.7 -1!I'r 3748949.2 

-492000 ModiWt 5e9OOO ModiWt 799000 
25400II_ 51000 

0.. 7731!31134 _0.. 57470302 
'11ft 1 5.988E+15s.npte yoriO 3.303E+15 . 

218.59277 Ko.otosIs 179.18282 'KI.rIosis 219.114937 
14.560358 SIoIwnes$ 13.Q01367 SIoIwnes$ 14.519033 

817798OC1O Range 1,10!1E+09 RIInge 870291000 
7000_ 12001_ 25000~ 

81?805000 -.on 1.10ge+09 -.on B7m1BIDJ 
1236E+09 Sun 2.2111E+09 Sun 1.741E+09' 

235 coo.n 235 coo.n 235 
l 52liOI082 ConIldonce l 9945257,7 ,CaIn .. "". L 738!i1199.6 

This tool generates a report of univariate statistics mr data in tbe input 

range, providing information about the central tendency and variability of 

your data 

Fiumple 2: Adding additional Parameters to the deacriptives table 

Go 10 the menu option TOOI.SIDATA ANALYSIS. Select the option 

"Descriptive Statistics.· In addition to the statistics requested in the 

previous example, I request Excel to report on the fifth largest and fifth 
smallest values for each column/series. 

• 

• 
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Ogtput 

~ 10: 51 II 11 • Tools 

r~RIrIgr. 
tr _ W I Itwt iIlII 
r_ .. n I 
I!a ,_ 

I 

~cu~-~---F·· P' IIhIalllt: ; 
P'1Ih......, _' 

11 = 

The OUtput fbi' the procedure is reproduced in the BUt table. Ia_ 
simple step, you have created a table that cap&uree tile bailie etati8t jceJ 

attributes of aeveal data aeries and the fifth biV • and lowe •• .u-of 

each data aeries. 

Y8I-. 'IlIe _of tile dine ......... _ al. ..... ld. 

al e2 z1 

M-. 7.32 M8811 7.J8 .... 1171.00 

fIt:pdud 
0.44 Standud 0.. 

Stand .... 
61.67 EmIr Error BmIr 

Medi.u 5.81 MediaD 4.81 1I ••• m 1178.00 

Mode LlI4 Mode 28.00 Mode ftUA 

StaDdud 1i.1I Standud 8.38 St.mdIInt 682.78 
J:JreovWicIID Dmatlml Dmatiao 

s. ... pIe 32.68 Sample 40.18 ..... 466119.21 



81 82 xl 

Variance Variance Variance 

Kurtosis -0.22 Kurtosis 0.04 Kuriotlia -1.20 

Skewness 0.95 Skewru!S8 1.06 Skewru!S8 0.00 

Range 19.66 Range 22.00 Range 2844.00 

Minimum 1.34 Minimum 1 Minimum 1 

Maximum 21 Maximum 23 Maximum 2345 

Sum 1229.79 Sum 1215.395 Sum 197064 

Count 168 Count 168 Count 168 

Largest (5) 21 Largest (5) 23 Largeet(5) 2288.86 

Smallest (5) 1.34 Smallest (5) 1 Smallest (5) 57.14 

Confidence 0.87 Confidence 
0.96 

Confidence 
103.99 Level (95.0%) Level (95.0%) Level (95.0%) 

Interpretation of the atatDtical parameters is discussed in chapter 6, and 

of Confidence levels is discussed in 7.1. 

~~£L ~~ 2 ~ L L 

10.2 RANK AND PERCENTILE 

This tool produces a table that contains the ordinal and percentage rank 

of each value in a data set. You can analyze the relative standing of 

values in a data set. The Percentile values can assist in learning about 

the spread of the series across its range. For a series provides information 

on the ranges fur the lowest 25%, the next 25%, the next 25%, and the 

• 
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ChItpIer 10: 5' 7 I TOCIII 

Go t,ol, the JDeIIU option TOOlSIDATAANAL'YSIS16• Select the up4ioa 

"Rank and Percentile." The dialog is ahowD in the aut &pre . 

The result is repmdU(lllC{ in the next table. Each output table ........ ina 

fuur columna: 

- The place olthe data point in the data _dee, 

- The value of the data (with the label fbi' the.nee .. tile label 
on the output column), 

- The rank olthe data point within the 1'811&8. and 

., I do -1lIIPPJ,y tile Ample data _ DlOBt f1ItIIe .......... ill ... £ lEa a..,. t & lEa ... 

M':t'~ iathat muy nade1'8 .... _tIIe ... PIP ..... do_ ... eI' 
tile djfIjrvltatep f1IdrtowiDI idb_ fma. __ if tile .......... ___ _ 
tile _ .. ta-. in tile ....... ill tile boaL 

.. If,- do __ tm. optioD. tileD _ TOOLS I ADD-INS .., 8diftte tile Add-ba _ data""'" JIeIIIr.., NCtioD 41.4. 
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Point 

24 

48 

72 

96 

120 

144 

168 

23 

47 

71 

95 

119 
: 143 

167 

I 22 

46 

: 70 

i 94 

i 118 , 

; 
142 i 

166 

- The percentage rank of the data point. The columns are sorted 

in order of ascending rank. 

Table 30: Output of the Rank and Perce tool ntile 

s1 Rank Percent Point s2 Rank Percent 

21.00 1 96.40% 1 23.00 1 96.40% 

21.00 1 96.40% 25 23.00 1 96.40% 

21.00 1 96.40% 49 23.00 1 96.40% 

21.00 1 96.40% 73 23.00 1 96.40% 

21.00 1 96.40% 97 23.00 1 96.40% 

21.00 1 96.40% 121 23.00 1 96.40% 

21.00 1 96.40% 145 23.00 1 96.40% 

18.63 8 92.20% 2 20.07 8 92.20% 

18.63 8 92.20% 26 20.07 8 92.20% 

18.63 8 92.20% 50 ! 20.07 8 92.20% 

18.63 8 92.20% 74 20.07 8 92.20% 

18.63 8 92.20% 98 , 20.07 8 92.20% 

18.63 8 92.20% 122 20.07 8 92.20% 

18.63 8 92.20% 146 20.07 8 92.20% 

16.58 15 88.00% 3 17.61 15 88.00% 

16.58 15 88.00% . 27 17.51 15 88.00% 

16.53 15 88.00% 51 I 17.51 15 88.00% 

16.68 15 88.00% 75 17.51 : 15 i 88.00% 

16.58 16 88.00% 99 17.51 15 88.00% 

16.58 15 88.00% 123 i 17.61 i 16 88.00% 

16.53 15 88.00% 147 17.51 15 88.00% 

Interpretinlf the output: 

The last row'Blast four columns can be interpreted a_ 

• 

• 
I 
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10.3 

CIIIpIw 10: 51 Ii , • Toall 

The 147di data point in the selected range baa a ft.lue of 11.61, 

which giwa i& rank 16 in the selected nnp, with 88% of the eeDa 

in the range having a value Jesa than or equal to thia data point. 

BIVARIATE RELATION5- CORRELATION, 

COVARIANCE 

'l"bie tool aDd ita Jilrmulas measure the relationaJrip bet •• 8 two data aeta 

thaI; 8l'8 ..Jed to be independenl; of the uniI; of me88UIeIIIaDt. The 

correlation ooefticiwt depicts the baaie reJationebip __ two variabIea: 

"Do two variab1ee have a tendency to increa .. tapI;her or to ebIUIp in 

opposite direction. and, if 80, by how much?" Bmuiate cornIatioaB 

measure the correlation eoeffieiena between two variabIee at a time, 

icnoring the efIIct of aU other variablea. 

00 to the menu opC:ion TOOLSIDATA ANALYSIS". SeIec:i tbe • .,.. joWl 

-Correlation.· 

11 II,.. dD 1IIIt_ &bitIaptiaII. tbeD _ TOOlS I ADD-INS to idiv_ tlleAdd-1D b data......,.. BelIr to ....... 4l.4. 

111 I 



The output is reproduced in the next table. 

Table 31: Outnut!rom Correlation" _.. . tool 

s2 xl x2 x3 x4 

s1 1.00000 

s2 -0.75973 1.00000 

xl -0.13434 0.13226 1.00000 

:t2 0.21428 0.47238 0.01658 1.00000 

x3 0.20122 -0.08459 -0.15748 0.14568 1.00000 

x4 -0.13567 0.12985 0.99998 0.01040 -0.15889 1.00000 

Interpreting the output 

- A high level of correlation is implied by a correlation coefficient 

that is greater than 0.5 in absolute terms (that is, greater than 

0.5 or leas than -().5). 

- A mid level of correlation is implied if the absolute value of the 

coefficient is greater than 0.2 but leas that 0.5. 

- A low level of correlation is implied if the absolute value of the 

coefficient is leas than 0.2. 

• 
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c:to.pIter 10: 61 I I T" 

COVARIANCE TOOL AND FOllM'ULA 

The optioDa are _ as fbr the OORRELATlON'1OOL. The ~ 

is dependent on the ~ of JDe8IR1nIID8D.t of the data IIel'iaa. 'l'betdiie,. 
there is no standard ~ £rom which to inlier if. CIJ9U'iauce n.ba is 

"high- or "low." ThUll, _ the correlation tool that pl'O'ridee. uniiIrm 

seale 01"-1 to I." 

The coeflleient of determiDatiOD caD be rouPl:r iDtI8IpreW .. the 
proportion ofvariance in • aeries that caD lie upJained by the __ of 

the odler aeries. The ooef&cjeut is ealcuJated by equarinc the canelatioQ 

coefIirient. 



C ...... E ••• 

HYPOTHESIS TESTING 

'J'hjs chapter teachee: 

- Z-TESTlNG FOR POPULATION MEANS WBENPOPULATION 

VARIANCES ARE KNOWN 

- PAIBED SAMPLE T-TESTS 

-T-TESTlNG MEANS WHEN THE 1WO SAMPLES ARE P'ROII 
DISTINC1' GROUPS 

-THE PRETEST-F-TFSl'ING FOR EQUALlTY IN VARIANCES 

-T-TES'I': 1WO-SAMPLE ASSUMING UNEQUAL VARIANCBS 

- T-TES'I': 1WO-SAMPLE ASSUMING EQUAL VARIANCES 

-ANOVA 

The etatiatiea Add·In provides some procedu:rea blQrpotb 5 til t5I t ; ... 

The "Inverse Functions'" m Excel t)WIt" sa" ft. <_7.1) ad 

other etatiatiea aoAwue can be uaed to bWld. Con6deDce Interra1'a that 

provide the values fbr the -Critical RePma" fbr concluctinc IQJIOfJ aria 

te8tB. The _ of the fuDctioDa opena up a much wider I'IIDI8 ol~'" 

hypothesis tetts 1imited only by the In'9Vllle function ..... il·Ne in EDlel.. 

I ine1ude a set of"Ceetine ruIee- m several of the unap). ..,.. ruIee 

will blow your mind - it will make hypothesia ....m ... nIIlc1i17 
compreheDSibJe step-:by-etep proc 518 The ruIee will aaaiIIt:rou in an 
hypotheBis tetts m Excel or othenri8e. 
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~11:H_ : T~ 

This chapter requires the Analysis TooIPak Add-lu; chapter • 

shows how to 1eUll how to la1U1Ch the Add-lD&. 

Z·TESTING FOR POPULATION MEANS WHEN 

POPULATION VARIANCES ARE KNOWN 

This tool perlOrma a two-Ample Z-te8t _ mea'" with Jwown """"_ 

This tool is used to teat hypotheses about the ditfereace betwwn two 

population meaDII: 

P!l!!I11i'" bypotheajs - tgtipg 

",1 is the mean of sample OBe: d is the mean _ samp. two: ". c:ritical 

rePmB are baaed on a 6" aigni6cance level (or. eqaiYalentlJ. a." 
Confidence Interval) 

-ILl (NuB Hypotheeie): 11.1- u.I = 1 

- Ba (Altemate hypotbeaie): 11.1- d <> 1 

- "Pail to aecept" the nuB hypodaia if the aIJaollde .... 01 the 
MJc"lated Z is higher than 1.96. Exam", of auch Z ~ am: 

-+2.12'" and --2.12.-

I"~ 
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- "Fail to reject" the null hypothesis if the absolute value of the 

calculated Z is lower than 1.96. Examples of such Z values are: 
"+ 1. 78,~ ·0.00" and «-1.78." 

In sbort, uthe absolute value of the Z is higher than 1.96, then one may 

conclude (with 95% Confidence) that the means of the samples differ by 

the hypothesized difference. 

(b) One-t.Aw.d Oeft-tam 

The hypothesis: 

- Ho (Null Hypothesis): ul- u.2 >= 1 

- Ha (Alternate hypothesis): ul- ua < 1 (one-talled) 

Cripqal region: 

- "Fail to accept" the null hypothesis if the value of the calculated 

Z is lower than "-1.64." Examples ofsuch Z values are: "-2.12" 

and .-1. 78." 

- "Fail to reject" the null hypothesis if left-tail) 

The value olthe calculated Z is greater than "-1.64." Examples ofsuch Z 

values are: "+1.78" and ·0.00." 

In short, if the Z is lower than "-1.64: then one may conclude (with 95% 

Confidence) that the means olthe samples differ by the hypothesized 

difference. 

• 
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a.p!IIr 11: Hwd Ilil r .... 

(e) One tiled (right-tam 

The hypotbe8ia: 

- Ho (NuB Hypothesis): ul- uZ <= 1 

- Ha (Alternate hypothesia): ul- uZ> 1 (ODe mt.d) 

CritiGe) rnriQn: 

- "Fail to accept" the nuB hypothesia if die value ofdle ....... leted 
Z is greater than -+ 1.64: Eumplee of aueh Z valueure: -+2.1r 

and *+1.78.* 

- "Fail to reject" the nuB hypotbeais if die abeol1dle value of die 

celculated Z is lea than -+1.64: Eumplea of aueh Z vaJuea are: 

--1.78" and "0.00: 

In abort, if the Z is greater than -+ 1.64: then ODe may COJdude (witJa 95% 

Con&dence) thai the means of die samples differ by die ~ 

difIiuence • 

- HP is lea than 0.10. then the teat ia .... iAo ... at SCM 

Con&deuee (equivalently. die hypothesis that die ....... are 

equal caD be fttjected at the SCM lewd of Om&deace)_ 'l"bia 

criterion is conaidered too -wc-- by aome. 
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- If P is less than 0.05, then the test is significant at 95% 

Confidence (equivalently, the hypothesis that the means are 

equal can be rejected at the 95% level of Confidence). This is the 

standard criterion used. 

- IfP is less than 0.01, then the test is significant at 99% 

Confidence (equivalently, the hypothesis that the means are 

equal can be rejected at the 99"A.level of Confidence). This is the 

strictest criterion used. 

You should memorize these criteria, as nothing is more helpful in 

interpreting the output from hypothesis tests (including all the tests 

intrinsic to every regression, ANOVA and other analysis). 

Go to TOOLSIDATAANALYSIS17. Select the option "Z-test." The dialog 

(user-input form) that opens is shown in the next figure. 

Enter the hypothesized mean difference (that is, the Null Hypothesis) into 

the text-box "Hypothesized Mean Difference." Enter the variances for the 

two populations. 

11 Iiyou do not _ this option. then U8e TOOLS I ADD-INS to activate the Add'In for 
data analysiB. Refer to section 41.4. 

• 
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It;." , ............. 
....... 1 ...... ..... ...... , ....... ..... 
lOt ...... 
... r--::--

• The next table shows the result of a Z-testlll• 

'-'blesa: ilrz ___ .r. ....... ., .... . 
z..teet: Two Sample Ibr M-_ 

alit d 

Mean '1 .... '1.J846 

~ VIU'iImt.e 81 40 

01. vatiODS 
I_ I_ 

~MeanDilfer_ 1.0 

-1.117 

• P (Z< = s) CIIItHaiI o.oBl 

Z Critical OIl e tail lM6 

.. I do DDlIIIJIIPI7 the.ample data i>r __ olthe _ ..... fa ..... lEa 41 liD t It ... 
M7....,.ne-. thatllW\1 raeden" _the ............. do ... du .. 
tile djlfirvlt awp 01 dnlwiDc iDfea_ &om • .-.It if the ...... data ..... are 
the _ .. u-e in tile fIDlIlP" in the book. 

".1 ud d are the IabeIa. pitbd up &om the firet _ in tile,.... 'lWIJ ud cl:ca. 
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Z-test: Two Sample for Means 

p (Z< = z) two-tail 0.163 

Z Critical two-tail 1.960 

Interpreting the output 

11.2 

11.2.A 

The P value (that is up (Z<= or >= z) two-tail") of 0.081 implies that we 

fail to reject the null fur the two one-tail hypothesis. Moreover, Z= -1.397 

implies that we "fail to reject" the null hypothesis becauae the Z is in the 

acceptance region (,,1.96," "-1.96") fur the two-tail hypothesis. 

The P value (that is up (Z<>z) two-tail") of 0.163 implies that we fail to 

reject the null fur the two-tail hypothesis. In addition, ifwe use a one­

tailed (left tail) test, we again fail to reject the null hypothesis because the 

Z is in the acceptance region ("> -1.645") fur the left-tail hypothesis. If 

we use a one-tail (right tail) test, we fail to reject the Null becauae the Z 

is in the acceptance region ("< +1.645") for the right-tail hypothesis . 

. ; 

T·TESTING MEANS WHEN THE TWO SAMPLES ARE 

FROM DISTINCT GROUPS 

THE PRETEST- F-TESTING FOR EQUALITY IN VARIANCES 

The T-test is used moat often to test for differences in means acrollS 

samples from distinct groups. The respondents in the two samples differ. 
An example is a pair of samples from two surveys on earninga, one survey 

in country A and the other in country B. The formula used in estimating 

the T statistic depends on the equaJity of variance for the data aeries 

188 
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acr- 48 • two _plea. In particular, if. varianca of the two .. mph. 

are unequal.lbrmuJa tabs into account thie difL:eoce __ the 

8II.IL _ 'lplea. An F-test is \UI8d to test _ unequal vari.aacee. 

Th "F-test Two-tJamph fur Varia ......... per.bms ... to n ..... ftI. 
var= :::ianee8 8Cr08B two groupe of data. Launch. procedure by au "11 

the menu option TOOLSIDATA ANALYSJ:SIO and ae1ec::tinc the "F-fIBIIt 

Tw-=:HNlMph fur Varia_· 

\lll!llllla1.R.engI: 

....... z.R.engI: 

p ..... 
eM: jo:G5;.,.-,,-

Ch .... -alpha- fur level of Bigni6caJlCe , A O.06leftl .... up •• % 

co' iide_ test. 

Tb 

• II,. III do DOt _thia ~ theJl_ TOOLS I ADD-INS.IIdtra ... .Md-ID ... 
clat _ .. anaIJaie. Rdtr • .-c:doa 41.4. 

I 18. I 
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- H. (Alternate hypothesis): 0'1
2
_ (1 l <> 0, Where 0'1

2 is the variance of 

sample one, and (1 i is the variance for sample two. 

The F has a one-tail test only. 

The next table shows the output of a typical F ·test'!. 

Table sa: OutDut mr F_ tool mr ofvarianees 

s1 82 

Mean 7.3202 7.2346 

Variance 32.6764 40.1809 

ObHrvations 168 168 

Of 167 167 

0.8142 

P (F< = f) one-tail 0.0926 

F Critical one-tail 
j 

0.8747 i 

Interpreting the output 

- The row "Varianoo" shows the estimated variance parameters. 

- Inferences from the P value of "0.0926": 

21 I do not supply the sample datil for moet of the examples in ehapter 42 to chapter 46. 
My experience is thet many readers glaze over the examples and do not 10 through 
the difIieult step of drawing inferences from a result if the sample datil results are 
the same as those in the examples in the book. 

• 
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CIII!*r 11: II)pCII ul T ..... 

-IlP is1eas than 0.10, then the test.ia aipificant at,,", 
CoDtideuce (equivalently, the hypotheeia that the ...na-_ 
equal can be rejected at the 9O'J{, lewl of CoaficIeDca). Tbe P of 

0.0926 implies the test. ill signifiesnt at the ""' ~ Inel. 
Being -significant" implies that the eetjmated P statiM _ in 

the critical region and the -null bypnthaaie CIIDJIOt be 1ICC&pIecl.­

You _ in the .... repre&eJlted by the altiema. h1Pdt ia 
the variaDce8 _ UDequal. 

- IlP is leu thaD 0.05, then the teat; ill aipif'ic:aM at'" 
Confidence (equivalently, the bypotheaia that the varia __ 

equal can be rejected at the 96% level of Con&deDce). Tbe 
hypotbeeia c:aDDOt be rejected at the 0.06 level of aipificoa_ 

- IlP is Ie .. than 0.01, then the teat; is quilt. ant at'" 
Confide_ (equivalently, the hypotbeeia that the...na-_ 
equal can be rejected at the t9% level of CoaficIeDca). Tbe 
bypothesia of equal varia_ c:aDDOt be njeeiJed at the 0.01 level 

of aignifies_. 

Tbe teat; is sipifieant only at the 0.10 level of lianih_. 'Ole oili,.' 

eatimated F of 0.81 is higher than the critia1 P of0Jrl47 ~ that 

the "Dull hypothesis of equal varia:Dces'" carmot be •• epf>Id at a 0.06 level 

of Confideuce . 

Once JOU bow if the null hypotbeeia of equal...na-eaa be .' .. ted. 
JOU can .-he whether to use the "Two-Sample T·teat; AasmaiDe Eqaal 

Varia_" Ol'''Two-Sample T·test.Aa8umiDIJ Unequal Vari_" 



11.2.8 T-TEST: TWO-SAMPLE ASSUMING UNEQUAL VARIANCES 

This T-test form assumes that the variances of both ranges of data are 

unequal. Use this test when the groups under study are distinct. Use a 

paired test (discussed in the next section) when there is one group before 

and after a treatment. 

fusrible" hypothesis for testing 

11,1 is the mean of sample one. u2 is the mean for sample two. The critical 

regions are based on a 5% significance level (or, equivalently, a 95% 

Confidence Interval) 

fa) Twq-t:!i1ed 

Thehypotheais 

- Ho (Null Hypothesis): 11,1- u2 = 0 (or any non-zero value) 

- Ha (Alternate hypothesis): 11,1- 11,2 <> 0 

CritiC" region: 

- "Fail to accept" the null hypothesis if the absolute value of the 

calculated T is higher than 1.96. Examples of such Z values are: 

-+2.12" and "-2.12.-

- "Fail to reject" the null hypothesis if the absolute value of the 

calculated T is lower than 1.96. Examples of such T values are: 

"+1.78,» "0.00" and "-1.78," 

In short. if the absolute value of the T is higher than 1.96, then one may 

conclude (with 95% Confidence) that the meaDS of the samples d:ift'er by 

the hypothesized d:ift'erence. 

• 
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ar.pw 11: 11)poI111" T~ 

(b) 2rH'j"'" QeiH,ID 

The hypntheais. 

- He (NuB Hypotbeais): .,1-uI >= 0 

- Ha (Alternate hypothesis): .,1-uI < 0 (C'IIe tm1ed) 

- "Fail to accept:" the DuB hypotheaia if the value.the caIcnI.ted 

T is lower than "-1.64." ExampJee of ncb T vaIuee 11ft: "4l2" 

and·-l.78." 

- "Fail to reject" the DuB hypotbeais if the aheoIute value of die 
calClllated T is greater than "-1.64." ExampJee oh_ T val_ 

ue: "+1.78" and "0.00." 

In abort, if the T is lower than "-Uw: ODe may ccmdude (with 961fo 

Coofidenee) that die meaD8 of the _PJee cti&r by the Iv.,. ... T .... 

di1&Irem:e. 

(elOpe *r1ml (rjgbt:tejl) 

The hypntheais: 

- He (NuB Hypotbeaia): ,,1- u.r <= 0 

- Ha (Alternate hypotheaia): .,1- uI> 0 (aile tailed) 



SIatisIicaI Analysis with Excel 

Critical region: 

- "Fail to accept" the Dull hypothesis if the value of the calculated 

T is greater than "+ 1.64." Examples of such T values are: ~+2.12" 

and "+1.78." 

- "Fail to reject" the null hypothesis if the absolute value of the 

calculated T is less than "+ 1.64." Examples of such T values are: 
"-1.78" and ·0.00." 

In short, if the T is greater than "+ 1.64; then ODe may conclude (with 95% 

Confidence) that the means of the samples differ by the hypothesized 

difl'erence. 

Go to the menu option TOOLSJDATA ANALYSIS". Select the option "T. 

test: Two-Sample Assuming Unequal Variances." The next table shows a 

sample OUtput23 for a T·test assuming unequal variances. 

Table u: Output of Two Sample T'_ (at:; ~ varianceW I 81 s3 I 

1I2 If you donouee this option. then uae TOOIB I ADD-INS tn activate the Adcl-ln for 
data anaIyaia. Refer t:o section 41.4. 

JlI I do not supply the sample data for most of the examples in chapter 42 tn chapter 46. 
My experience is that many readers glaM over the examples and do not go through 
the di1ficult step of drawing inferences from a result if the sample data re$ulte are 
the same as thoee in the enmples in the book. 

• 
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0IIII*11:HjpClI , T .... 

III d 

Mean 7.H 7.18 

VariaDce 81,68 41U3 

O~'"- 188 188 

Bypott-i_ Mean DifIote_ 5 

Dr 831 

TStat -7.466 

P (I'< = t) ODI WI 3.7JE-18 

TCriticalOll tail 1.841 

p (I'< =- t) t--wt 7.48B-18 

T Critical two WI .987 

IDte~tbe _'put 

I 195 I 

The row "MeaD- &howe the estimated ........ Ibr: the two -mp_ alllDd 

tI2. The next eo1umn -Variance- displays the ca ..... 1ated YIII'iaDce'" theee 

aample meaD val-. "Dt' &howe the "Decree ofFteeJmn" 'l'he" II of 
freedom equal the total aample points (the _ of the aampIe ... oftha 

two aamplea) minWi the one degIee of freedom to _mt fix: tha_ 

equation (the "hypothesized meaD difFereoce" which here is "ul-112 = 5") 

. So, dep 88 of freedom equals -168 + 168 ·1 = 881-. 

The hypothesia wo: 

- Ho(NuJl Bypotheaia}: ,,1- '14= 5 

- Sa (Altemate bypotheaia): uI- '14 <> S. when "I is the mean 

of aample al and '14 the mean of aample d. 



The calculated T statistic is "-7.465.» The P value for the twfrtailed test 

is "3.72 multiplied by the 13th point after the decimal" or 

"0.000000000000372." AIl the P value is less than 0.01, the hypothesis is 

"significantU"at the 99% Confidence level or "alpha = 0.01" level of 

significance. (The natural extension of this inference is that the 

hypothesis is significant at the 95% and 90% Confidence levels also.) 

The region for the two-tailed test is "> 1.967 or < -1.967." In this 

example, the test is significant (at a 0.05 level of significance because the 

estimated T lies in the critical region. (The estimated Tof*-7,465" lies in 

the region"< -1.967".) 

The hypothesis was: 

- Ho (Null Hypothesis): u1- u2 >= 5 

- Ha (Alternate hypothesis): u1- u2 < 5, where u1 is the mean of 

sample B1 and uJ! the mean of sample d. 

The P value for the one--tailed test is "7.45 multiplied by the lath point 

after the decimal" or ·0.000000000000745." The relevant test here is the 

left-tail because the T statistic is a negative value. AB the P value is lese 

If If a telIt ill "significant" the implication ill a "failure to accept" the null hypotbeosis. 
The telIt T statistic lies in the critical region. In informal terms, the alternate 
hypothesis is "correct." 

• 
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than 0.01, the hypotbeaia is -sipificaat" at the .,. Confidence Jnoel ... 
"alpha = O.Ol-1evel of sipifice""" (The IIlItural .......... oftbia 

inkence is thaI; the hypotbeaia is signifieaat at the 95" aDd 9O'lto 

ConfideDce levels also.) 

Another way to teat the hypotbeaia is to compare tile eefun'l" T atatiatic 

to tile critical recion shown in the column 'T Critical ODe tniI.. 'file 

region for the left-tailed teat is "< -1.649". III this example, the teat ill 

"aipificantJl"at a .06 !eYel of significance beca_ the ... 'IM" T ... in 

tile critical regicm. (The estimated T of "-7.8" ... in the !.pm "<-

1.649".) 

eel One teiW (rjebt-Wi)) 

'file hypodJeais waa: 

- Do (Null Hypothesis): ul- uI <= IS 

- Ba (Altemate hypotheaia): 111- uI> 5. whem u1 ill the meen of 

II8.IIIple s1 and WI the mean of _pie d. 

The regioo for the right-tailed teat ill "> 1.649". In tbia example, the teat 

is DOl mgnificaat becauee the estimated T cIoee DOllie in the c::ritical 
regicm. (The estimated T of" -7.466'" ill DOl in the ncioD ">1.6.'.) 

-II a ..... -.;,..u;c.at" the implication ilia "IU1tue to accept' tile II11II JvjICI'tt • 
The teA T lltlltiIItic.liea ill tile critical repm. Ia in ............ tile a1ta ..... 
IaJpothW- .. ·(OIl~t!O 
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11.2.C T-TEST: TWO-SAMPLE ASSUMING EQUAL VAIlIANCES 

11.3 

This tool performs a two-sample student's T-test- under the assumption 

that the variances of both data sets are equal. The hypothesis and 

interpretation of results is the same as for the Two-Sample Assuming 

Unequal Variances. (See previous sub-section). 

The next table shows the result this type of test2e . 

. .. 32-& ~~. 2~ 2 

PAIRED SAMPLE T·TESTS 

This tool performs a paired two-sample T-test to deduce whether the 

difference between the sample means is statistically distinct from a 

hypothesiz.ed difference. This T-test form does not assume that the 

varianceS of both populations are equal. You can use a paired test when 

there is a natural pairing of observations in the samples, such as when a 

sample group is tested twice- before and after an experiment. The tested 

groups form a 'Paired Sample" with the same respondents sampled 

"before" and "after" an event. 

Go to the menu option TOOLSIDATA ANALYSISI1. Select the option "T-

• I do not supply the sample data for mM of the examples in chapter 41 to chapter 46. 
My esperienee is that DIalIY readers glaze over the examples and do not 10 throuch 
too diftieu1t step of drawing inferences from a result if the sample data rseulta are 
the same as thoee in the examples in the book. 

t7lfyou do not see this option, then use TOOLS I AD&INS to activate the Add-In fbr 
date analysis. Refer to section 41.4. 

• 
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0IIPWf1:11)pG11 , T .... 

teat: Two-Sam.ple Aaeuming Unequal Varia ........ ,· The rel_t diaIorJ is 

shown in the nut figure, 

The ra.tlI8 muat COD8iat 01 a aiDgle column or lOW aud COIltaiD the __ 

number 01 data pointe 118 the first rauge, 

Place the hypothesilfed di8'erence in __ into the eN "e 
"Hypotheaised Mean Di.8'erence.· In this example. ODe is 1IIIiue the 

hypothesia: 

"Bo (Null Hypothesis): mean di8'erence > 6". See the nut ficuN ... 
an example 0I1iMIUing the hypothMis b _ti,. Set. 

hypothesill8d mean di8'erence 0I1IItI'O to ... the etedml 

~ that the "Means b the two poupeIsampJee ... 
atat.istieally diBerenl. • 

The left! 01 aipificance for the hypoCheIia .... ahnuJd be placed in 

the checkbm "Alpha.· If you deeire. aic"Unnceleft!oI"aIpha = 
.06" (that is, a Confidence left! 0186"), then write ill ".06" into the 

checkbm Alpha. The nut fipre ill1lllttatea thia. 

"UI 
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Possible hypothesis for testing 

ul is the mean of sample one. u2 is the mean for sample two. The critical 

regions are based on a 5% significance level (or, equivalently, a 95% 

Confidence Interval) 

(al Two--talled 

The hypothesis 

- Ho (Null Hypothesis): ul- u2 = 0 

- Ha (Alternate hypothesis): ul- u2 <> 0 

Crigel region: 

- "Fail to accept" the null hypothesis if the absolute value of the 

calculated T is higher than 1.96. Examples of such T values are: 
"+2.12" and "-2.12.~ 

- "Fail to reject" the null hypothesis if the absolute value of tbe 

caIcu1ated T is lower than 1.96. Examples of such T values are: 

"+1.78," ·0.00" and "-1.7S'" 

In short, if the absolute value of the T is bigher than 1.96, then one may 

conclude (with 95% Confidence) that the means of the samples differ by 

the hypothesized difference. 

(b) QnM.8iled Oeft-tajl) 

The hypothesis: 

- Ho (Null Hypothesis): ul- u3 >= 0 

• 
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- Ha (Alternate bypotheeis): ul- uR < 0 (ODe bled) 

- "Fail to accept" the nuD hypotbesi.& if the value of the CIIImI,ted 

T ielower than *-UW.· Examples of ncb T valuee ant: • ~lr 

IJld *-1.78'-

- "Fail to reject" the nuD bypotheaia if the lheoIute value of the 

caleuJated T ie greater than *-1.6.... Bumples of ncb T m_ 
are: *+1.78" and *0.00'-

In short, if the T is lower than *-1.64: then ODe..,. mndude (wida .'" 

Confidence) that the means of the samples differ by the hjpclCl sriM 

difference. 

Ie) 9pt=Wled (rirbkteill 

- Bo (NuD Hypotheris): ul- 113<= 1 

- Ha (Alternate bypothesis): ul- 113 > 1 (0111 trr1ed) 

- "Fail to accept" the nuD bypotbeais if the value althe ......... ... 

Tie greater thIJl *+1.64'- Bumples of ncb T mue .... : ".2..Ir 
IJld -.1.78. • 

- "Fail to reject" the null bypotheris if the IheoIute YIlue of the 

caleuJated Tielesa than *+1.64'- Eump)esofnch TYIlues are: 

"-1.78" IJld *0.00'-



In short, if the T is greater than "+ 1.64," then one may conclude (with 95% 

Confidence) that the means of the samples differ by the hypothesized 

difference. 

Excel calculates the P or Significance value for each test you run. 

- IfP is less than 0.10, then the test is significant at 90% 

Confidence (equivalently, the hypothesis that the means are 

equal can be rejected at the 90% level of Confidence). This 

criterion is considered too "loose" by some. 

- IfP is less than 0.05, then the test is significant at 95% 

Confidence (equivalently, the hypothesis that the means are 

equal can be rejected at the 95% level of Confidence). This is the 

standard criterion used. 

-IfP is less than 0.01, then the test is significant at 99% 

Confidence (equivalently, the hypothesis that the meana are 

equal can be rejected at the 99% level of Confidence). This is the 

strictest criterion used. 

You Should memorize these criteria, as nothing is more helpful in 

interpreting the output from hypothesis tests (including all the tests 

intrinsic to every regression, ANOVA and other analysis). The output for 

• 

• 

202 



such a teat ia shown in die next tablefl. 

TahJe &fI: Oodpat rr-. ,.... ... hiNd Sa....... ". _ ill iIaIiIII_.... . ......, 
the ...... . 
Find Be._ 
~ ~ 

Maau 162 146 
Variance 126 114 

OI_nlltioNt 44 44 

~ Camllatian 0.999693 

BypothetIiad Maau Difl&_ I) 

• Of I 43 

"'IIi/liNer 
TStat , 26.76 •• ""GIIt" cIato 

0IIII tailed fait 

i P (r< .. i) OIIe tail 0.00 1.f8.IIIII-rC'llk/f i 

T Critieal 011 B tail 1.68 
CriIimI VoW'iDa 

. z:.:fbtht 
Two ~aiJed Teat 

P tJ'< .. t) two-I:aiI 0.00 1.11.II1II -r ad f1/f 

: T Critieal t.wo-WI. 2.02 
CriIimI VoW'iDa 

~:DI.III 

InterpNtat.ion: 

• 0.00 

• I do -1IUPPI7 the ample data ... JIIIlIt ~the .... mp!ee ill ct.p .... 4110 ' ....... 
~aperie.Dca ia that IIlUl7 _dent ... _the......, ... UId do_tID tluoap 
the dif6cult atep 111 dra...m, iDiII_ from. ~ if the ..... data __ _ 
the __ .. tIM. ia the......, ... ia the book. 
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One-tailed test 

T Critical one-tail (positive 1.68 2.02 ill the 'T cuft-Of! Cri.Iiccl Value- from T· 
for positive tail test, negative Tables for aJ.pho :: 0.05 and Dt = 411 

for negative tail) -1.68 

Inferential Analyais: 
_ Fail w reject null (l·tailed for null hypothesizing in a negative direction: Ho (Null 

Hypothesis): mean<5) 
- Fail to IICCept null if HO (Null Hypotheeia): mean>5. 

Two-tailed Test .. 

P (T< = t) two-tail 0.00 1711/.11, ~ at 99% 

T Critical two-tail (compare 
absolute value ofT· stat from 2.02 

17Iis ill the 'T cuft-O/f Critical Value-{rom T· 
the date with thia abaolute Tables for alpM = 0.025 and Dt = 411 

value) 

Inferential Analysis: 

For two-tailed test, fail to accept null at 99'K Confidenat 

.$ EllLE . 2 .~_1 SUSL 

11.4 ANOVA 

Tbis tool peri'orms simple analysis of variance (,ANOV A) to teet the 

hypothesis that means from two or more samples are equal (drawn from 

populations with the same mean). This technique expands on the tests for 

two means. such as the T·test. 

Go to the menu option TOOLSIDATA ANALYSISJ8. Select the option 

"ANOVA: Single Factor." The input range must consist of two or more 

11/ If you do not _ this optioD, then use TOOLSl ADD'INS to activate the Add-In for 
date analysis. Refer to section 41.4. 

• 
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adjacent I'IlIII88 of data ~ in co1UDlD11 or rowa. A eample 0IItpIlt*I 

is shown in the DUt few tables . 

'hbIe36: a- SiMla '--ANOVA • 
ANOVA: SiDeIe Fadm' 

Groupt CoIIDi Sum A~.I" V.--

II 168 l2Z9.8 7.3 31.7 

III 168 1215.4 7.2 40.1 

The tint table shows lOme descriptive statiatic8 for the - i)' 

'hbIe ST- ' .... ANOVA-b 

ANOVA 

Soutw olVariatiaa SS I Of I MS I po Ip--

• I do _ 8UJIPlJ die -mple daea ilrlllllllt oldie ......... ill r ..... 1m CI to ... 1m ... 

M7~. Ulat many .1 de ..... _the ..... "'IJIIee ad do -lDtIaooaiP 
the difIIcult IItep of -wiDe iIII\mmcee "- • .-It if the ...... da&a ___ .. 
the __ as a- ill dleeuwp" ill the book. 
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ANOVA 

Between Groups 0.62 1 0.62 0.017 0.90 

Within Groups 12158.66 334 36.403 

Total 12159.27 335 

Interpreting the output 

The infDrmation on "Between Groups" is derived from the difl'erence in 

means and variances across the groups. In an ANOV A, the number of 

groups may exceed two. 

- The test is analyzing the variance as meaaured by the SS "Sum of 

Squares" of the "dependent" aeries. The total Sum of Squares is 

12159.27. Of this, 0.62 can be explained by the difl'erencea across the 

means of the two groups. The other 12158.65 is explained by the 

difl'erencee across individual values of the "dependent" aeries . 

• Sum of Squarea = Sum of Squares for Between Groupa + Sum of 
Squarea for Within Groups 

- The MS is the "Mean Sum of Squares" and is eat:imated by dividing the 

SS by the degrees of freedom. Therefore, the MS lOr "Between Groups· 

equals (0.6211) = 0.62. (Note that "ANOVA = Analysis of Variance'") 

The MS for "Within Groups" equals (12158.651334) = 86.403. The MS 

may be infDrmally interpreted as ·Sum of Squares Explained per Degree 

of Freedom." 

• Mean Sum of Squares = (Sum of Squares)1 (Degrees of Freedom) 

• 

• 
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CINI*r 11: ~ nil T8IIirG 

- The ANOVA uses an F·test to determine it .. tweeD Ozoape­

infbrmation (the number 0.62 in the column "tweeD GIOIIpIf So.m:e 

of Variation M8) provides sufficient additional iDinlatian to impnne 

the ability of the data to explain the variance in the -depeadent' aeries. 

The ANOVA is asking ""Does the Betwecm Groups Sum afSquana 

Explained per Degree of Freedom- divided by the -WiIAia Groups Sum 

of Squau:ear provide an F that is large enough to jWItif..J the atatament 

-rile uae of Between Groups information aplains a IltatUdicaJly 

significant amount of the Sum of Squares of the dependeDt; ...... 

• F = (Mean Sum of Squares Betwetm Group.)1 (Mean Sum of 

Squares WIIhin Groups) 

- All ANOVA testa (including the ANOVA output from • rep naioa) can 

be interpreted in the same way -

• F = [ (Increaae in ability of model to explain the Sum of 

Squares)l (Depees of Freedom) I 



12.1 

C ...... E.'a 

REGRESSION 

This chapter ttiacusses the following topics: 

-ASSUMPTIONS UNDERLYING REGRESSION MODELS 

- CONDUCTING THE REGRESSION 

This chapter requires the Analysis ToolPak Add-las; chapter • 

shows how to learD how to launch the Add-la&. 

£ 

ASSUMPTIONS UNDERLYING REGRESSION 

MODELS 

The &eld of econometrica uaea regression aua1ysia to create quantitative 

models that can be used to predict the value of a aerie8 if ODe Jmowa the 

value of several other variables. For example, the waae per hour am be 

predicted if one bows the values of the variables that coaatitate the 

regreaaioD equation. This is a big leap of faith from a correlation CR' 

CoDfidenoe interval estimate. In a correlation. the statistician ia DOt 

presnming or implying any causality or deduction of causality. On the 

other hand, regreaaioD ana1yaia is used 80 often (probably nen abaaed) 

becauae of its supposed ability to link cause and efI8ct. Skepticism of 

cauaal relationships is not on1y healthy but a1ao important because na1 
power of regreaaioD liea in a comprehensive interpretation of the renlts. 

110 I 
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CIJapI/Ir 12: Algi -, 

Reg:r:eB8ioD models are used to test the BtatiHical validity of cau.l 

relation presumed in theory or bypotbetPe Beer arion CIID ... be 

diV01'tl8d from the bypotheaia it is testiDc. The tobiItnIctioD of the mocIel 

baa to be baaed 1lpoD the hypotbeais, and not on the pajI.h_ of the 

data. Theretbn, if you believe you haft a valid bypcl41 etie. bat do not 

have the COllect data eerien to rep_t each factor in your h,podweie, 

the heal; practice ia not l"mninc a NiP: #on ~ 

On the other Jumd, the method of throwiD( in aD variabIae into the mocIel 

and making the compute!' select the beet mocIel is a miaJeadinc 1ecImique 

that sadly hse gained popularity beca_ of the belief that the beet mocIel 

ia the one that fite the date the bMt. 

The best models can only be a SURet of "valid modele· ('I'bat ia, JD.CPeI. 

that haft pa8Rd all diagnoetie test tbr preeumptiana ... ".'''miIe to the 
aaaumptiona required by usp arion.) Furthermore, note that if the 

model ia shown to "not fit' the data, or the upected reJaw-hip betw_ 

variables is estimated as !!ftC1igibJe. you etiJl hsYe valid resulla.. The 
variance between the hY)lOtheeis and the resulte is IIlwa7e impcll'&anf; and 
can gift rise to a new perspective relatiYe to the hyp04l __ 

The pl"'C e es of interpretation ia ealled inferential auaI;JIri8 and is ...... 

important than the actual number puuebinc. Inferential a:aaIpis .. 

includes tasting if the data and model have complied with the stmuc 
I188WDptiona undertying a retpssaion mocIel 

The very veracity and validity dependa upon seven! ctiapoetic tIfIete. 

thdi:IrtwIateIy, many econometrieiana do not pe.rbm the ........ ir. 
testing I'll' simply lis about the inferencea and conclusj«me dadoed from the 

model 



12.1A 

12.1.B 

SIII1I$tical AnaIy$III with Excel 

cheat-sbeet for you!) that lists the implications of the invalidity of 

assumptions. (The book can be purchased at bttp:/lwww.vjbooks.net). 

This summary provides, in one page, what other books have spread out 

over many chapters. Please use this table as a checklist betbre you 

interpret any model. Most statistic professors and textbooks teach the 

interpretation of regression results before discussing the issue of validity. 

You will save youreelf a lot of grief if you always perform diagnostics after 

running a regression model. 

Once you have a valid model, interpret the results in the logical sequence 

shown in the table interpreting regression output in our book 

"Interpreting Regression Output." This table will provide a framework 

and flowchart for interpretation thereby enabling a structured and 

comprehensive inferential analysis. 

ASSUMPTION 1: THE REtA TIONSHIP BETWEEN ANY ONE 

INDEPENDENT SERIES AND THE DEPENDENT SERIES CAN BE 

CAPTURED BY A STRAIGHT LINE IN A 2-AXIS GRAPH 

This is also called the 888umption of linearity in the regression 

coefficients. (None of the regression coefficients - the betas - should 

have an exponential power or any other non-linear transformation.) 

ASSUMPTION 2: THE INDEPENDENT VARIABLES DO NOT 

CHANGE IF THE SAMPLING IS REPLICATED 

The independent variables are truly independent- the model assumes is 

using deviations across the X variables to explain the dependent series. 

The regression attempts to explain the dependent series' variations across 

212 
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0\IpIIr 12: RiI(II ! -, 

the OOIIlbiDation of valuee of the independent variabJea. 

Ilrepeaied samples ale used, the model ptedicta the __ pndic:W 

dependent aeries for each combination of X valnw. but-..... the 

_plee- the obeerved Y may differ &eI'088 the same combinatiolll of X 

values. (The gap between the predicted and oIwetved Y val_ is the 

residual or error.) 

ASSUMPTION 3: 11fE SAMPLE SIZE MUST BE GREATER 

THAN THE NUMBER OF INDEPENDENT VAlUABLES (N 

SHOULD BE GREATER THAN It-o 

Thia uaumption eD8UJe8 that a basic mathematical poe&ul •• is ...... 

to by the recrs8Sioo aIgoridun. A system of ainlliltaDeoua equatioaa is 

only "determined.1":if'the number of equatiolJall is pea_ thaD the 

number of UDkDowns. That is, only if the number of rep E pI 

coeJIicieIlta-K minll8 I, the subtraction aocou:ntinc for the ooenw-nt ... 

the intercept) • 

- AD valuee of the independent ""ablet .." Jwown lint. Ia 
theory, the independent variables .." the "expetilDent -

II TIIat ill, it can be eohed to eetUaate the optiJlliaatiall,.,... 1 • - die ..... • 
ccefIW jelda ill the _ 01.. rep .... 

• TIIe.."Je ... N ill the _ 01.. rep • 

liS I 
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- Once the "experiment" is conducted, the values of the dependent 

series Y are known. (Not that this "experiment" analogy holds 

even if the data for the independent and dependent variables are 

obtained from the same data collection survey.) 

- The regression minimizes the sum of the squared residuals, 

which is the same as minimizing the square of the difference 

between the observed and the predicted dependent series. The 

number of residuals equals the number of observations. Thus, 

the number of equations equals the number of observations. 

What information is "unknown" prior to running the regression? 

The regression coefficients - the betas- are unknown. Once tbe 

regreseion coefficients are known. one can estimate the predicted 

dependent variables. errors/residuals. R-aquare, etc. If X does not vary, 

then the series cannot have any role in explaining the variation in Y. The 

number of unknowns equals the number of regression coefficients. 

ASSUMPTION 4: NOT ALL THE VALUES OF ANY ONE 

INDEPENDENT SERIES CAN BE THE SAME 

A model uses the effect ofvariation in X to explain variation in Y. If X 
does not vary, then the series cannot have any role in explaining the 

variation in Y. 

Note that the formulas for estimating the regression coefficients - the 

betas - use the "squared deviations from mean" in the denominator of 

the formula. If the X values do not vary then all the values equal the 

mean impJying that the "squared deviations from mean" is zero. This will 

• 
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0Npw12: ..... '. 

make the repession coefficient indeterminate beca_ tile dencwine_ of 

the furmula equaJa zero, 

ASSUMPTION $: THE RJISIDlIA.L OR DJS1URBANCE 

ERROR TERMS FOLLOW SEVERAL RULES 

This is the moat important aaaumptioD, and moat cti'lll"wAc .... lin! 

cheeki", fur the obeervance ofthia 88IIUIII{ItioD. In ee,.a1 tad,.. )'OU 

w.iD find thia aaaumption broken into parte, but I prefer to lilt the ruIee of 

Assumption 5: 

----_._----
AuumptiO!lIa: The _n/average or expected ".... of die di ....... _ 
equals aero 

IT not, then)'OU k.w that the model baa a syatemic biaa, whicb ..... it 

inaccurate, especi.lly becauee one does not tnricaJly t-what ia ea1lllinc 

tile bias. 

AsaumptiOD Ib: The dilltGrbanee te.nM aD have die __ ...... 

216 I 

This 1III."mptioD is aJso calJed homoeked"ti!d",. GmIa did the eli .. ... 

value of any disturbance equals zero, if one diaturbaace baa a ..... . 

variance than the other one, it impJies that the oIJ.rvatioD udeeJyiUC 

thia high variaDee ebouId be given leu importance becauae ita .... tift 

accuraq is suspect. (Thia ia the N8lIOIl that weiIh'" rep . • ia .-d 

to Wllect fur the DOIIIlOJIfurmit with thia rule.) 



Assumption Sc: A disturbance term for one observation should have no 
relation with the disturbance terms for other observations or with any of 
the independent variables 

The disturbance term muet be truly random - one should not be able to 

predict or gueee the value of any disturbance term given any of the 

information on the model data. The disturbance term is a1eo called the 

error term. This error is assumed random. If this is not the case, then 

your model may have failed to capture all the underlying independent 

variables, incorrectly measured independent variables, or have correlation 

between suceeeeive observations in a series Sorted by one of the 

independent variables. 

Typically, Time Series data series suffers from the problem of disturbance 

terms being related to the values of previous periods. It is for this reason 

that times series analysis requires special data manipulation procedures 

prior to creating any prediction model. 

Assumption lid: There is no specification bias 

This is the most crucial aeeumption because a mistake in specifying the 

equation mr regression is the responsibility of the atatistician. One 

cannot blame the nature of the data mr this problem. One type of 

specification bias is the use of an incorrect functional form. For example, 

you have a specification bias if you use a linear function when a 

logarithmic or exponential function should be used. 

The other type of specification bias is when the model does not include a 

relevant data series. This is the most common type of error of oversight 

by because of the incorrect habit in creating a hypothesis onJy after 

looking at the available data. This approach may result in the exclusion 

of an important series that may not be in the available data set. 

• 
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Bemember that a xegreaaion is baaed OIl a hypotheais -1QtI always defjJ18 

the bypothe8is first. After that, look _ data iba& am capAu!e aD of the 

variablee in the hypothesis. Hyou do not find the data to lej4lll IL aD 

important laeIor. then you should not _ HP a 8n- auaJ:raia. AN.'.' 

had habit is the dropping of variables from a model if the metI'W Mnt i8 

_ to haYe 110 impact OIl the dependent eariea. It i8 beUar to haYe aD 

irre1eYaat or m: aan series, then to drop a &e1Immt..... Ja fac&. the 
result that a factor baa 110 impact on the depeuden~ __ often pmridea 

compellin, ineipt.. 

Assumpdoa Ie: The disturhaDce terms have. Normal DeDlif;y PaaedOD 

'11Ie _ of the F-teet _ validating the model and the T·teaU_ 

validating individual coefIicitmLs is predicated OIl the pre8WDptiaa dlat 

the distu:rba.oce terms follow a NOiJIlal Denmy FnacQm 

12.1.F ASSUMPTION 6: THERE ARE NO STIlONG LINEAR. 

211 I 

RELATIONSHIPS AMONG 1lIE INDEPENDENT VAlUABlES 

H the rekttioDahipa an stioDg. then the HP a ..... w' 'uUdiou 1riD DOt be 
able to iIoIaLs the impact of each iDclepeadeat eariea. Belated to dUe i8 
aDOther rule: there should be 110 endopaity in the model 'l'Iaia _ ... 

that none of the independent variables sbouJd be ........... t OIl oilier 

variabJw.. An iDclependent eerie8 sbouJd .. be a flmrtiora of-po4:her 

inclependeat 118riea. 

Eva&y estimate in a i6iP eillitm is not only a poiDt emmate olthe 

parameter of the upeeLsd value of the)l8llUlletel'. The 1l1li 11"l1li 

_matw the expected value (meaa) of the pai'IIIII8tei". ita 'l'IlJia-. and 

its DeDaity Function (the assumption of normality j4o'lidw the ahape of 



12.2 

the Density Function). The mean and standard error are estimated by the 

model. There is a pair of such estimates for each coefficient (each BETA), 

each disturbance term, and each predicted value of the dependent series. 

Note: The dependent series is that whose values you are trying to predict 

(or whose dependence on the independent variables is being studied). It is 

also referred to as the "Explained" or "Endogenous' series, or as the 

"Regressand .• 

'J'he·independent variables are used to explain the valUeII of the dependent 

series. The values of the independent variables are not being 

explained/determined by the model- thus, they are "independent" of the 

model The independent variables are also called "Explanatory" or 

"Exogenous· variables. They are also referred to as "Regressors.' 

I do not show the details of regression analysis. Please refer to 

our book "Interpreting regression Output" available at 

bttp://www.vjbooks.net. 

2 .L2 

CONDUCTING THE REGRESSION 

Go to the menu option TOOLSIDATA ANALYSIS". Select the option 

"Regression" 8S shown in Figure 154 . 

.. If you do not see this option, then USB TOOLS I ADD-INS to activate the Add-In fOr 
data analysis. Refer to section 41.4. 

• 
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Cbooee the exact eeD references fur the Y aud X nnp. So do DOt ..... .,. 

·C:D;- jnete.d, cbooee Cl:D235, .. ahcnm in Pipre 156 . 

- All the X variables have to be in atljaeent cobmm. 

IUId 
- The data CIIlU10t have mi88jng vab.e 

Cbooee aD other options .. shown in Pipre 166 . 



SIatistk:at Analysis with Excel 

Jnpo.t :t.RarIgII: 1$f$1 :fE$23S ::y 
Jnpo.t ltRarlgll: 1$<:$1 :$D$23S ::y 
1'1 ... r C<rlsbri Is llWo 
1'1 c..(jclehcelewl ~% 

r !l!*It RarIgII: ::y 
~ New WorI<sheet I!IY: 
r New lIP"""'" 

~e1t= 1'1 ReII!lueI Plots ~=-~ecI~ I'1ttoeFtPlots 

I'1IJ1prme/ I'robIII*y Plots 

There should be DO missing values in the range defined. Othenville, you 

get the error message shown in Figure 156. 

Regt_.-I.H5TO ru-...- en"I)I'. PIMse chod<~ 
,engos"" 

I! OK I 

W~f!.rbe statistieaJ. Add-In provided with Excel hae many 

limitations- it does only a few procedures, has bull'll, and cannot handle 

complex dsta. (For example, it cannot do a regression if there are any 

missing values.) Fortunately, some other companies have created Add-Ins 

that provides comprehensive statistics capabilities. Links to such Add-Ins 

can be accessed at the URI.. 
http://www.vjbooks.netlproductslpublicationsIExcellExceLhtm .. 

• 
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Name 0{ What Does It 
Sta.ti8tic1 Measure Or Critical Val_ Comment 
Ghar! Indicate' 

F -test, etc. interpreting the formula that uses RSS 
table, column andESS. 
·Sum of Squares": 

"Total" =TSS, 
-Regression" == 
ESS, and 
"Residual" = ass 

There is no critical 
value. Just You may wish to compare the std. 

comment on the BE, 
SEor The standard error error to the mean especially if it is too large of the predicted 
Regreaeion of the eatimate dependent or small relative to the 

predicted variable. The 
; mean of the 

dependent variable former should be predicted/estimated 

small «HI") values of the dependent 

compared to the 
variable. 

.. 
lstter. 

Proportion of This often mis-used 
variatim in the value should serve only 

-Square dependent variable Between 0 and 1. : as a summary measum of 
that can be A higher value is ! Goodne88 of Fit. Do not 
explsined by the better. use it blindly as a 

! independent criterion for model 
variables selection. 

Proportion of 
VIll'iaDce in the 
dependent variable 

Another sullllDllrY that can be 
Adjusted&- explsined by the measure of Goodness of 
square independent 

Below L A higher Fit. Superior to R-square 
value is better . because it is sensitive to variables or R- the addition of irrelevant square adjusted 

i variables. for # of 

• 
independent 
variables 

Look at the p. For a one-tailed test (at 

The reliability of 
value (in the 96% confide_level), the 

-Ratios eolumn "Sig.") it critical value ie 

I 
our estimate of the must be low: (approximately) 1.65 for 
individual heta testing if the eoef6cient is 

• below .01 for greater than zero and 
99" confidence in (approximately) ·l.65 for 

222 
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Statistical Analysis with Excel 

Name 0( What Does It 
Statisticl Measure Or Critical Values Comment 
Chart Indicate' 

too series) heteroskeda8tieity . 

Make a 
scatter-chart 
manually 
after running 
regression ** . 

Charta: 
Histograms of A Rood way to observe the 
residuals. No actual behavior of our 
need to Provides an idea The diatribution residuals and to observe 
standardize. abouttbe should look like a any severe problem in the 

Make an area 
distribution of the normal residuals (which would 
residuals distribution indicate a breakdown of 

chart after the cla88ical 
running the a88umptions) 
zegression in 
Excel"" I 

... <a) Estimate the series "predicted" by using the regression formula: 

Predicted_Y= constant + BIXI + ... + BaX!.. 

(b) Standardize the series of predicted values uaing the i'unetion 

INSERTI FUNCTIONI STATISTICAU STANDARDIZE. 

(c) Estimate the reeidual, by ueing the formula: 

Residual= Y - Predicted_Y 

(d) Standardi2:e the series of residuals uaing the function INSERTI 

FUNCTIONI STATISTICAU STANDARDIZE 

(e) make the charts using the standardized series. See book two in 

this series - Charting in. Ezcel- for more on making charts. 

• 

• 
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• 

• 

BREAKDOWN OF CLASSICAL ASSUMP1lONS: 

VAUDAnON AND CORREcnON 

Baaic validation can be eonducted using proeeclurea meatirnMI in the 

previous table. Excel does not have procedurea fbr more advuMBd *"tine. 
The conective procedures are not available in Excel. 

The validation and COlletti"" procedures are avaDabie in Add·IDa'" 

atatistics. I..iDb to such Add·1Da can be ao: 'Bd a'the UBI. 
h~:lIwww.vjboob.netlpmductefpubw·:aticllllllilbcaJIBxcell..bb1l. 

For more OD dais ~ic, please refer to our book "IItteJ:predoc 

rearessiOD 0utJnB" available at hUp:l • .www.vj ......... net. 



8 ' 5 IIAnllYlilwIII ED! 

C ••• 'I'lCaI3 

OTHER TOOLS FOR STATISTICS 

-SAMPLING ANALYSIS 

- RANDOM NUMBER GENERATION 

- TlMB SERIES 

- EXPONENTIAL SMOOO'HING, MOVING AVERAGE ANALYSIS 

This chapter requires the ADalysis TooIPakAd~ chapter' 

shows how to learn how to launch the Add-lna. 

2 II 

13,1 SAMPUNG ANALYSIS 

This tool creates a "'""PIe &om a populatioD by treatinl the iDput raJIIII 

as a populatioD. You caD uee a representative Ample when the 

populatioD is too large to process or chart, You caD aJeo create • Ample 

that CODtaiDs only val_ fro a particular put of a CJde if you ........ that 
the input data is periodic &eel draws samplea &om the tirat cohmm. then 

the aec:oad eolUJDJl, and 80 on. 

AcceM the matun throuch the menu path TOOlSIDATAANALYSIS and 

~ the procedure "SampJiDg.-

• 

• 
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SSB I 

aa..-r 13: OIlIer TOOII ill" : I •• 

.... 1I.qa! • 3M 
r",.,. 

r I'!IIDdc 
PIIrIIId: I 
tr~ 

...... ., SIooIIIIs: I 

~ MelIwd.: choc.e Periodic or Random to indicate the 8IUIlPliDc 
interval :poll want. 

PfriHl: Enter the periodic interval at whk:h :poll want ump1inc to .... 

place. The interval vaJue in the input lIIJlI'II and every period'a ..me 
thereafter are copied to the output column. 

Rondom & NuIIllHlr 0/ SGmpla: Number of random va1uee:poll deeint in 

the output eolumn. Excel drawa each vaJue from a ,.. ...... po_tic". in the 

input 1'8JJ8'I. (Conaequeutly, a vaJue ma, be dnnrD __ &ban 0IIIC8.) 

l!fmI.: 
Jf:poll aeJee&ad Periodic, the Dumber ofva1uee in the output; table is 

eqwd to the number ofva1uea in the input l'IIIIP. dmdacllJy tibe 
aampJinc rate. Jf:poll ae1ectecl Bondom, the number ahaluea in tibe 

table is ual to the number of sam 



13.2 RANDOM NUMBER GENERATION 

This tool fills a range with independent random numbers drawn from one 

of several Density Functions. 

You can characterize a population with a Probability Density Function. 

Select the option TOOLSIDATA ANALYSISII4 and choose the procedure 

"Random Number Generation." 

Number of Variables: Number of columns of values you want in the output 

table. If you do not enter a number, all columns in the output will be 

filled. 

...... rI ~arioIlIes: 

...... rlRandom,....: 11500 
~ ~lu-h-m-------3~ 

.~----------------------. 

81Jfyou do not see this option. then use TOOLS I ADD' INS to activate the Add-In fur 
data analysis. Refer to aection 41.4. 

• 
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aa.- 13: QIhw TooIB Ibr S' r s 

Number of Random Numbers: Number 01 data poinlB JOU WUlt to ... 
Each point .ppeen in • row of the output table. If JOU do DOt __ • 

number, aD rows in the output rauae will be filled. 

n:_.....: ...... __ • _1. __ d .. _ De ...... Function It- !lefi' ~ ... - -"'--'- L_ .1._ 
~......,..:: QlUUIRJ IrIIV B_3 wr ~ ""'C UIIf ....-...... -.. ...... 

Random Number generation. 

l\IromeIcrr. Tbe hue parameters 10r the paerat;ioII pIOllI ........ the 

selected Density Function 

~ 1. CbGioe aiD ..,. U • 

~ 
~ . 

.... 1nd"'aboI.~ 

I'iaIIIIIft 
• 

Table J8: Choice aI ".81"" •• 
lMtribuIiDra c-.aat 11ft IIIIIUiR6 paramllC •• far ....... 1111 ...... ,.. liM 

llpal •• .. 
BemouIIi 

'l'bia Denaito:r Funrtioq ill 
1'- Ie I c:hauoctaipd by • ptOhebo1if\r of 

__ (p value> on IIIIYIiwa , ... - I 
~tion. 

llpalll: • i I 
'l'bia IJeaeitT F"' .... ion ill r: o. I eha:nderipd by ....... lp1if\r of ftiwmjal I __ (p vahle) in any_ ~~;-. trial fOr • number of triaIII. I 

DiscJe. 
1'Inre 181= IOr~ 

. 



Distribution. 

OrCustonl 
Density 

Function 

Normal 

Patterned 

Poisson 

Slatislical Analysis with Excel 

Comment on setting parameters {or random. number generation 

The range must contain two Density Function 

columns: The left column contains A 8 
values, and the right column 1 x prob_x 
contains probabilities associated 2 DXI 2.9% 
with the value in that row. The 3 :n:JJ O.B% 
SulD of the probabilities must be 1. 4 ::a;o 4.5% 

5 3)91 6.7% 
Note: You can use the function 6 3121 6.6% 
FREQUENCY (AI, A:A)Jcount 7 3153 7.2% 
(A:A) to generate the probability B 3184 0.1% 
you see in column B. 9 3216 3.0% 

10 3248 6.5% 
11 328) 1.0% 

Filmela:P~ 12 3313 1.9% .-. 13 3346 0.3% 

....... and PrtlbobiI:y lAU R.ange: 

1fA$2:$8$31 3J 

This Density Function ill characterized by a mean and a standard 
devilltion. 

MIIIborof~: It! OK I 
MIIIbor of Random NII'IIt!!Irs: ~11!iOO='-::----- C.-eI I 
1)jslrWIon: ~lIttemed 3 ~ I 
-. 

frcJn 10 !P 111m In PIPs of 15 

This Dermty Function ill 
characterized by a value 
lambda, equal to (lfmean). r=- 1 I 

.. 

• 
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a..w 13: Oller TOOII for m r I • 

.Di8Cribudon ComI1h!1lt OIl settin6 porGIIIIIII/rII (or "*'- 1111111_., I IIIAOII 

'lbia distributing is ebaraeteriad by Ioww IIIIIl uppII' b. ...... 
Uaifiona Ezee] draws variablaa &om aD m-ill the l'IIII&'L ". 

pJ'Obability of drawine. ftJue is equal_ aD ..u_ ill the!ilJlle. 

ao 
13.3 TIME SERIES 

E1pcmential Smoothing 

ThiI.I tool and ita formula predict a value baaed on the b. lit'" the 
prior period. acijusted for the error in that prior b. rt, The tool _ 

the amoothiDg OODstaDt alpha, the mapdtude of which deta::minea how 
atn.mcJy beeaata respoDd to errore in the prior foreeart. 

URing the _. ae1ec:t the meDU path TOOLSIDATAANALYSISI' and 

~ the procedure -ExponeDtial Smoothing: 

lJrJmpi.n6: The factor you WaDt to UII8 aa the e.I~"'81Itial unoothinc 
CODrtaD't. The damping factor ia a COllective factor that minimi the 

instability of data collected BCl'OII8 a population. 

The default value in: the damping factor ia 0.8. Val_ ofo.J to 0.8 .. 

• BOD-Ide 8IJIOIl4:hiDg OODstaDta. Theae valuee indicate that the eurreDt 

m.:-at should be adjuated 20 to 80 percllDt _ error in the prior ...... 

• U,. do DOt _ this aptiaa. then _ TOOLS I ADD-INS til adi .... the AaW-1a ... 
Uta au.1;paie. BelIr til eedioa CU. 
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Slalistic:al Analysis wiIh Excel 

Larger constants yield a faster response but can produce erratic 

projections. Smaller constants can result in long lags fur forecast values. 

But Range: Ii 3J 
~factor: I 
r L/IbIIs 

opIb!s 

~Range' 3J 
New w""""'-t Ply: 

NewWorI<book 

r QlIIto..qu r:ij:...wdEmlrs 

Data Requirement; A single column or row with four or more cells with 

valid data. 

Output: The output range must be on the same worksheet as the data in 

the input range. Enter the range reference fur the uppel'-1eft cen of the 

output table (for example, "AD4"). You can obtain a column of Standard 

Errors by ae1eeting the option "Standard Errors." If you want to chart the 

procedure's output - the actual values and forecasts -, select the option 

MCbart Output." 

This tool projects values in the forecast period based on Mthe average 

value of the series over a specific number of preceding periods." A moving 

average provides trend infurmation that a simple average of all historical 

data would mask. 

• 
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a.pw 13: OIlIer TOGIIs tIDf S 1 ' 

Select the option TOOLSIDATA ANALYSJ.StII and ~ the procedure 

"Moving Average." 

IIIJf!rVtJl: Number of values you want to include in the IDO'riDc ........ 
The default is three . 

.....-----­
Ml "'Irq} A~d l'~ 

hKRqo: I 3J 
r l/1li*" AIt Raw 

w-r. I 

~-- I ::g IlIIIURqo: 
_~PI\., I __ 1iII<dz 

rg.tQollU r .... drn.s 

.DoIo~: A aiDcle column or lOW with mur or man ceDe with 

valid data. 

0I11put: The output l'IIDp mWlt he on the 8IIJII8 ~ _ ... dIda ia 

the iDput l'IIDp. Enter the l'IIDp refel6iloCe _ the upper ',a caD althe 

output table <fOr example, -AD4,,). You CIUl obtain. column ofSta .... mt 
Errors by selectiDg the option "Standard Erron." IfJOU want to dwt the 

procedure'. output - the actual values and h .... s«r • aaIect ... option 

-If,. do DOt _ tIUa qotioD. then _ TOOLS I ADD-1N81D IIdi'Iate tlleAdd-ln ... data""'" Refu to lIedioa 41.4. 



s :r 11 .. AnIII¥* willi ElaI 

You haw activated the -Analysis TooJPak.- llyou go to the 8I8DU 

TOOIB, you will _ the option -SOLVER"- this option was DOt there 

betore you accessed the Add·In. Please define a _pie pJOOlen. ad try it; 

on an Excel workbook". 

Access the mature throuch the menu path TOOLSISOLVER. "l"be ctiakc 
shown in Figure 169 opeDII. The "Target Cell" contaiDa the iJrmuJa _ 

the function you are attamptiDg to optimi ... 

The "Equal to- area is where you chonee the optimiutioo criteduo-

- Mjlrimjution (Min) 

If J do IIIIt 8lIPPI.J the ...... data Ilr IIICI8t of the eump" ill "'''_ 41 to '" ,lei • 
.., upmw- is that IIIU,J' nIIldera clue over the eump ..... do 1IIIt.., tluouch 
the djf!ic:ult .. of cInnriDc ~ Crom a I'8IIlIIt if the ...... data i u. .. 
the __ .. tboee ill the eumplee ill the boot. 

,. 
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Sc!~li f'~1 1-" 1\ f rlE:i 
<~ 

5lIt T __ OIl: ~ I .... I 
fquII To: til' ... r,- r .... 1f: Iii <IIIIIIt I 
fIl'~'* 
I ::sJ a- f , 
-- .., ... a. ... 1II1IS: ort I 

I 
3 II!! f 

a.. I ~M I ... I .:::J !!! I 

The choice parametenl are the numbers the aIaorithm playa around with 

to find the maximin. 

You haw to tell Excel about the ceBa that CODtaiD dI8II8 panIJIl8Cere. ODe 

can do it manuaD:y, or, an easier option ia to ctick 00 the button-o--

Esce1 automatically ch_ all the ceJl refuencea fOr _ in the .... 

in JIO (the target ceIlfobjectiw function). Tbia ia iDWltrated in P.ipJ:e 

170. 



14.2 

Statistical Analysis with Excel 

sa!: Target eel: 1$.1$10 5J liPI\'e 
Equal To: r!!llt< r.~ r~rI, 10 0Dse 

0IangIng OIls, 

I I !i6IISS 
to the eonstr_, 

~ 

I 
::::I 41*' I 

g.,ge I 
I 

BPsotAi 
.::::.l I2!oIote 

/:iIIp 

~~ : ~ 3LUSdi 

ADDING CONSTRAINTS 

The optimization function has been defined, as have the "choice 

parameters.· At this stage, you have to add the constraints. 

I 
I 

I 

Click on the button "Add" and write in a constraint as shown in Figure 

171. 

1$0$13 

After defining the first constraint, click on the button "Add" (see Figure 

171.) Write the second constraint- see Figure 172. 

2.2 

, 
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14.3 

Continue with CI.lJI8traint definition&. After cIefining the last COIIIIIl'aint. 

execute the dialog by clicking on the buUion OK <_ J.i':icurv 172). 

/=--_ ......... __ ..... .......,. 
ehowDinFipre 118 • 

....... 111:'I'I1II. 'IIi, .......... 

5Dlyt I P,lfdf: "" ! fl~ 

58 T4II9It 011: ~ I -- I 
!quIITo: r .... ~MU. t'"YlMfit 10 ca- I rtf (JIIIIGIng CIllo: 

'"ll1.t1'tll~3,_2,,_I_SI a- I 
....... ID ... 0II1i111.1II: ..... I 

r~" 
iI lid I 

a-... I ...... ·1 
>-1_ 

..... I ..:J I .. 
a 

CHOOSING ALGORITHM OPTIONS 

You aeed to chooee the optiona h- the amaJ.y8i8. So. ctick 011 tile buUw 
·Options.- The dialoc abmm in Fipre 174 opcma. 



You may want to increase the iterations to 10,000. If you want to relax 

the requirements for preciseness, increase the value of "Preciai.on" by 

removing some post-decimal zeros. 

"Save Model" is used to save each optimization model You can define 

several optimization problems in one workbook. The other options are 

beyond the scope of this book. Click on the button "Continue." 

___ ._~.____ __ .~_OT_~" _ _ ~ ~ __ _ 
',,,,"- '1ft .,. rI~ 

"""'])lie: 
_ seconds 

01( I ..,._: lu~ Cancel I 
fI-~ 10.000001 IPIId /IIodeI. •• I 
talaronce: 15 :i!We MocIi!I ... I 
~g.iice, 10.001 ~ I 
r AsuIIe IftNlr f!IpdeI r UJe AIkooIIIIlc 5cAIIn; 

r AsuIIe Nor~" (iIjI!M r st-lterattan B/Id:s 

(tTiRIIIlt IF II~=.I rJ:l!,lodrallc r s;.ontral (" ~ 

----------_._---_.- ........ _---------
Running the Solver 

Execute the procedure by clicking on the button ·Solve.» 

The following output can be read from the spreadsheet. 

• the optimized value of the Objective Function (that is, the value of 
the formula in the cell defined in the box "Set Target Cell") 

.. 

• 
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CIwp/IIIr 14: The SoMr TOOl tor Cot ...... OJ:' 2 ; ,. .t 

• is the combination of the c:boice variab1ea (that is, .. wIIoee 
value is obtained f'roJn the eeDs defiaed iD the djalne __ "By 

ChAnging Cella") 

S ", 'P.311"fdl f 1lE:l 

,.T.,..OII: ~ I 81M. I 
fquIf To: r I!IIIIc ~MII r~Gf; Iii 0.. I 
~ChIngJng ClII5: 

1ilii00001.tr1t~3#$l2.tDtU_5J a- I 
-- IDIMCallsb1ll1ls: a-n I 
i'~U d All! I 

a.,. I I 
>-l2OODO ..... 

.:I QJiIIIIt I I In 



statistical Analysis with Excel 

INDEX 

# 

It 122 

02122 

A 

AI •••••••••••••••••••••••••••••••..•. _ ........... 2S.2&.232 

ADS ••••••••••.•.••••.•••••••..•.•..•.••.•.••••..•..•.••.•••. 153 

ADD-IN .................................................. 161 

ADD-INS. 17, 161. 163. 165, 170, 176, 178, 

187,190. 195. 199,205,219.231.234, 

236.240 

ADD-INS INSTAlLED WI11f BXCBL 161 

ANIL ................. 3S.S2, 109, 144.161.169 

ANOVA.I29. 1S6. 163, 183,187.203.205. 

206.207.201 

AUDITING ........... 17, 76.78,79, SO, 11,84 

AUTOCORRECT ............... .-................... 17 

AUTOfORMAT ....................................... 16 

AVEDEV ........................................ 156.157 

A VERAGB .................... 66, 89. 90. 106, ISS 

A VERAOEA ........................................... I06 

B 

BBTADIST ............. 113.115.132, 140.141 

BBTAINV ................ ~ .... 133, 134. 140.141 

BINOMDfST ................................... I13. 140 

BIVARlATE ............. _ ............................ 169 

c 

CDF 109. 110. 111,112, Ill. 114, llS. 119, 

1ZO, 121, 123. 125, 127. 128, 129, 130, 

132, 133, 134,136.137, 138. 140 

CELL ............................................. 2S, 52. 89 

CELL REFERENCE ................................. 25 

CBLLS ........................................... 15, 16. 52 

CENTRAL TENDENCY .......................... 89 

CHIDIST ......... 1l3, liS. 130. 131. 140, 141 

• 
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amNV . __ . ___ .. _ 131, 1010, 141 

CHI-sQUARE DENSl1Y FUNCllON. 109 

CHOOSE __ , _____ .•• _. ____ IS3 

a.EAR_ _ __ . __ ._._. __ 14 

C'OLUMN __ .••. ___ . __ ._._._. 16, 52 

COLUNNS ____ . __ •. _ IS. 52 

COMMENT __ ._. __ ._ 16 

~._, ________ .14,15.S2 

CONDITIONAL FORMA111NG. ___ • 16 

CXlNI'IDENCB_.--'9. 70, 71. 109 

CXlNI'IDENCB JNJ1!ItVAL __ ._ ••. __ 109 

CONSOUDA11ON __ . ______ •.. __ • 11 

CONSTIWNl'S _______ . __ .219 

aJNTROLIJNG C£LL REFI!JU!NCE 

BEHA. VIOR WHEN COPYING AND 

PASTING l'OItMUI.AE (USE OF mE 

_3S 

COPY ____ 13, 36, 37, 31, 39. 42 

COP'YJNG AND PASTING. ___ • 35, l6 

COPYING AND PASTING A FOIOonJLA 

10 OTHER CELLS IN A DIFFERENT 

ROW ANDCOLUMN_, ___ 3S 

COPYING AND PASTING A FOItNULA 

10 OTHER CELLS INTHB SANE 

COLUMN__ 3S 

COPYING AND PASTING A FOItNULA 

10 OTHER a::us INTHB SANE 

ROW _________ lS 

COPYING AND PASTING I'ORMUl.AS 

FROM ONE WOlIICSHEEI'ro 
ANO'IHBII _______ 1S 

COS _____ ,_.I.a:z..IJ.14 

COUNT 106, ,44, .4$, 146" 141 

COUNTA. '~I44,I41 

COlINl'III.ANIC 144, I. 
COUN11F '44, lSI, 1S2. IS] 

OOVAR _________ IU 

OOVAltlANa! I .. 

atOSSSDHlSlUlLA1XlNS ... 

CUMULATlVBIJENSII V f'UNC'I'fONl09 

crnnoMRP _________ 11 
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INSERT •.. 15.44,46.47,61,63,67.69,71, M 

72.90,91.92, 93, 95, 96, 97, 99,100, 

104, lOS. 120. 121. 123, 124, 125, 126, 

129, 131, 132, 133, 134, 135, 136, 145, 

147, 1411,149,151. 152. 153. 155,IS8, 

159.225 

INVERSE MAPPING ............................. 109 

K 

KURT ...................................................... 105 

KURTOSIS ............................................... 89 

L 

I.:ARGB ............................................... 89, 98 

LINKS ....................................................... 14 

LN ..................... · .......... •·· .... · .. ···· ............ ·I54 

LOG ........................................ 115. 144, 155 

LOGI0 .................................................... 154 

LOGINV ......................................... 140. 141 

LOONORMDIST ............ 1I3. 115, 140.141 

MACROS .......................................... 17.161 

MAX ........................................... 97, 98,106 

MAXA ......................................... 97,98. 106 

MEDIAN ............................................. 89. 9S 

MlN ................................................... 98, 106 

MlNA ................................................ 98. 106 

MODB ........................................... 84. 89, 95 

MOVE OR COPY SHEBT ........................ 14 

MOVING AVERAGE ............................ 229 

MUL T1PLf! RANGE RJ!FERENCES ...... 61 

MULTlPL YlNGlDlVIDlNGlSUBTRAcn 

NO/ADDING ALL CELLS IN A 

RANGE BY A NUMBER .................... 52 

N 

N 136, 146, 174.214 

NA ................................... 15, 44, 47. 83. 146 

NEOBINOMDlST .......................... 113, 140 

NORMAL DENSITY FUNCl10N 109. 144 

NORMDlST .... II3, 115. 119,120, 140. 141 

• 

, 
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NORMJNV .~ ••.••. _~~~I22, 123. , ..... 141 

NORMSDIST _~~.113. lIS. 123, I ..... 141 

NOItMSINV ~_~ __ ~ __ 1 ..... 141 

NOT_. ________ ~_._3S.S2.161 

o 

OBJECT ________ 14.16 

• OBJECTIVE F1JNC11ON 239 

0fFJCE ASSISTAN1" ____ . __ . ___ II 

OfFJCECUPBOARD ______ ._ 14 

ONLINE OOI..LABORATION ___ •. _ 11 

OPEN.. • __ 13 

~TION _______ 239 

0P110NS ____ 17, 26, 21, 35. 52 

oa ____ 19 

p 

PAGE BREAK ___ ._. ____ 14. IS 

PAGE BREAK PRJMI!W ._ 14 

PAGE SETUP _ 13 

I 261 I 

PAIRED SAMl'I.E T-TEST ___ IIJ 

PASTE 13,14" 35. 36, 31,31,'" 41. 49, 53. 

S4" S6, 51, $I, 62 

PASTE SI'IlQAL_ 14" S3, S4" S6, 51." 

PASTING ALL BUr'THI BOII'lIla_S2 

PASTING 00II811!HTS ____ S2 

PASTING DATA VAUDATION __ S2 

PASTING ONLY 1JIE J'IIORMULA _35. S2 

PASTING 1JIE DSULTOF A 

FORMULA" BUrNOT1JIE 

J'IIORMULA 1TSIilJ' ____ lS 

PDF .1." 110. 112. Ill" 11'. 121. 127. 133. 

134" 136, 131. Ill, .41 

I'EAJtS(fi 151 

PDa!N'l1IJ! It.""".,,, 
I'I!RCIIN'I1tAN " 
PIVOT ItEI'OIItT 17 

POISSON IO!I, 113. 131, '41 

PRJ!< jillJlNTS 76 

PRlNTARIIA 13 

PRlNTPItIMBW 13 
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PROBABILITY DENSITY FUNCTIONl09 

PRODUCT ...................................... 144, 149 

PROPERTIES ........................................... 13 

PROTECTION .......................................... l6 

R 

RICI ••• _ ............. .-............................. 25, 21 

RANDOM NUMBER GENERA noN .. 229 

RANK ....................................... 89, 100. 169 

REDO ........................................................ 13 

RBFERENCES ALLOWED IN A 

FORMULA .......................................... 2S 

REFERl!NClNG A BLOCK Of CELLS .. 2S 

REFERENCING CELLS FROM 

AN011IER WORKSHEET ................. 25 

REFERENCING CORRESPONDING 

Bl..OCKS OF CELLS I ROWS I 

COLUMNS FROM A SET OF 

WORKSHEIlTS ................................... 25 

REFERENCING ENTIRE COLUMNS .... 25 

REFERENCING ENTIRE ROWS ............ 2S 

REFERENCING NON- ADJACENT 

CELLS .................................................. 25 

REGRESSION ........................................ 211 

REPLACE ................................................. 14 

ROW ................................................... 16, 52 

ROWS ................................................. 15. 52 

ROWS TO COLUMNS ............................. 52 

RSQ ......................................................... 157 

s 

SAMPLING ANALYSIS ........................ 229 
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Opening an EViews Workfile 
GettiDg Data. 

Existing Data files-

Click on 

FlLE-OPEN 

Choose the correct wodcfiie, 
and 

C1iclc OPEN 

EV_ wilJ open the mJUeSIed 
file, and provide a list of 

variables and objects in the file. 

The open box IIIl the scm:n is 
called the world1le bo:L 

(see Figure 2) 

The buIIOOS with the JabeIs 
VIEW. PRoes. SA VB, ell:. 
are refemd to as the toolbar. 

EViews has several di:Ileienl 
tooIbars tbat we wilJ use. 

, 

Figure 2 
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To_a file, 

NaIll: To"!he file 

willi you, JaIl-­!he file 10 a oI.U1'" ill !he 
A:\ drift, iRIIad of!he 

SAVING An EV'JeWS Workrde 

,.-, ....... ckive. 
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Choosing the Observations (Sample Size) 

The portion of the data that 
EViews uses for analysis is 
deIemIined by sample size. 

Sample size can be cbanged 
from the drirults by using the 

QUICK menu. (Figure 4) 

Click on 

QUICK 

tben click 0/1 

SAMPLE 

In the sampJe box (Figure 5) 
fill in the starting 8IId ending 
date. You lI1WIt usc Proper 

EViews date fornL The 
comet funn for a date is: 

AmluiDm 
1960 for the}'em" 1960 

QurterlYDm 
1960: 1 (or 60: 1) fodirst 

quarter in 1960. Use 60:3 for 
third quarter. 

MoadllyDaIa 
1960:4 (or 60:4) for April 
1960. Use 60:10 for Oct. 

1960. 
Uadated Data 

Use observation number.l. 

SIc ....... .,... 
To skip a set of observations, 
use four dales, start date 1, 
cud date I, stan date 2. cud 

dale 2. 

, 

Figure 5 

3 
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To PriDt elm, _die 
QUlCX_ 
(YJ&IR 4).aad~ 

SHOW 

Type die , ... _ ia die 

boaL(YJ&lR6) 

AjIH'llli!idy. click 011 SHOW 
ia die WIIItfile boaL 

.... , ........ bm. 
(Fi&me7) 
TIIiII ia c:aIIcd die $pI' ...... 
boaL 

CIct 011 J'ItINT IO __ this 
iIla- .' ... 10* ..... 
AlIcoIIIi!idy.dIe 
stat ""lied ... will...,.. 
if)IIIU doulIIe-dic:k 011_ 
vlrilble fa die wwIdiJe boaL 

PRINTING DATA 

.. 



TO print more !han one 
variable, choose 
Q1JICK and SHOW 

and then enter !he names 
of!he variables you wish 
10 print. 
(FigureS) 

Use die PRINT button on 
die toolbar 10 send !he 
daIa to die printer. 

FigoreS 

Figure!! 

s 

• 
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t 

Er_docsaneJc .... jaII 
..... mc dIdL To plat m> 
_iabIes ..... "oa;._dIe 
QUICK. --. and dIooIIe 

GRAPH 

FiDiBdIe_Gfdle 
-abb mllle_ 
(fiprc 10) and clid&: ClIl OK 

D'ionoIJ ........ anPDc 
..... 'I1Ir: dcIiIuIt is • ...... 
Hille ...... IhIl,. plat 
...... 'Mj eiawlt .... 

H ......... _difD&d 
iDn .... ", dr, __ ordle 

DUALSCALJ:S.-

(F.-ll) 

PL01*I'ING DATA 

Flpnll 

6 



The resulting Graph can be 
printed using the 

PRINT 

button on the graphic 
toolbar. 

The PrintSetup button 
determines the size and 
attributes of the printed 
graph. 

The AddText button 
(Figure 13) 011 the graphics 
toolbar allow the additiOll of 8 

1itIc or other informatioo to 
thegrapb 

I 
Figure 12 

I 

Figure 13 

7 
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This iDfi.. ,_ wiII_ 
be priDIcd .... willi the 
IIDPh-

ThcI_1JuIIiou GIl the 
tooIIarwill am the ..... 
1l-.,1I!IIl the .... CIII 
be SImId in the woDfiIe 
.... willi the data. 

ThcIAMS' 1* allow tiaIe 
periods to be d'.ifwi ... , 
(PisIRJ5) 

JItpre .4 

• 



One otber graphic option is a 
scaUergIaI1I.. A SC8tteqp'111ll 
plols one variable on the y­
axis and one variable on the 
x-axis. 

To produce a scaltelgtam. 
foDow the SIeflS in fi&uR 10, 
but choose 

SCATI'ER DIAGRAM 

opIKn The click on OK.. 

Note the scaJe options play no 
role if scatter diagram is 
chosen. 

The variable listed finIt wiD 
be plotted 011 the y-axis, and 
the variable listed second wiD 
be plotted on the x-axis. 

Note the AddText button on 
the IIf8IIIIiI:ll tooIbar can be 
used to add wounalion 10 
the graph as dooe in figure 
15. 

• 

• 
Figure ]7 

9 
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'l1Ie", buDoa _tile 
gt.,..mca .... pIIIICIuc:aI. 
_ ofmall)' 51""" 
opIioDIlIO ""fiuc>.fIa"tIIe 
ppb. 1"IIese opIioDI_ 
IIVlIiIIbIe 011 tile _ ppb 
IIKIYe .JIo. 

0. iutu ........ willi. 
ICIIIIer __ is tile 

... lIll .......... 'I1IiI 
apIioo draws alllrli&ht -
dIIt "'bat' describes tile elm. 

1'.IIe ..... ,Ii .. Mh C. be 
pririIIId willi tile 

PIUNT buDoa Oil tile ..... 

Flprel. 

Flpre19 

.0 



To create new variables in 
EViews, start with 

Generate Series 

on !be Quick Menu 
(see Figure 4). 

Enter the equation in !be 
box to describe the 
variable that you wish to 
create. 

Use a • for multiplication, 
use a I for division, use •• 
for raising to a power, and 
+ and - for addition and 
subtraction. The example 
in figure 20 creates an 
inflation rate over a year 

SJIIIII· 

An alternative to the 
QuicIc Menu is to use 
!be GENR button 011 the 
woddiIe toolbar. 

Aftec you compute a 
new series you should 
a1ways plot and print the 
series as a check of your 
computational fannula. 

Creating New Variables 

, 
Figure 20 

Figure 21 

II 

""" 



Estimating Regression Equations" 

To tidi"" • ... f • 
"p.' •• ,1IIIIt willi_ 
Q10CK MENU (fipre4) 
1IId~ 

N' at,l:; ",. 

Ifdle..,.....to be 
ea:' 7 I is: 

EDler ia die box, 

" yex 

t 

wbIftt e ie+ " 1IIen.r 
III iacIude •• egtession 

'... " ot 1be eqUIIiclu CIIIeled ia Ibe bolt 'Cldd" __ 

die RdaaI fiIads ..... 
f'iIncIiIm orlbe .. ."ClUDI !lie. 

Y.- 23 .", iIDiidacl 
en.r ..... "' I1I1IIpI1I. 
TIIis is caIJcd _ R I 21 h • .... 
1be PRINT""". die 
.egt " • bolt IOObrwiU 
IIIIJId Ibe..... • m taaIIs III 
llleJlli*r. 

Hole cIIII: IIId Iime_ 

.h""'" 
1be ......... wiU_ 
.... -.; ..... WOIkfiIC.. 

....... 23 

12 



The Resids button on !be 
regtession box toolhar will 
generate time series gmph of 
!be actual and 
fitted(ptedicted) vaIucs and 
regmsion residuals. The 
PRINT button on !be 
Ioolhar will now print this 
gmphic. To get back to !be 
regression results, clicJc on 
Slats. 

The RSiduals are stored in a 
series called resid. If you 
waIIt 10 use this variable you 
must cakuIatc a new 
variable based upon resid 

Use !be Quid: Menu, choose 
gweuile series, and enter a 
fommIa such as, eal=lesiJ. 
Now err is a variable that 
caD be used in a tep.SSiOII eqvatinD. pritded, plotted, etc. 

13 
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Part III. Basic Single Equation Analysis 

The foDowiDg dIapIers desaibe the lViews fealURS for ba*:: .... equatinD ...,. 

• Chapter n. -Bask: Regn!ssion-. beginniDg on pase 2S9 outIIDes tile b;uics of onIi­
nary \east squam estimation in EViews. 

• Cbapter 12. "AddltioDal Regression Methods". on.,. 279 dllc i IIII W ... ted II!asI 
squares, two-Slage least squares and lIOIIlInear least square """'aMdoD tedmiques. 

• Chapter n. "Time Series Regression". on .,. 303 .... .,.. .... equatioa A!p!I-

&ion tedmiques for the analysis of time teriei daIa: tesdIII for .... COIRIadoB. .. 
rnation of ARMAX and ARlMAX models. usin8 polyuomlal distllbnted L1p. and UDit 
root tests for oonstalionary time series. 

• Chapter 14. "Fon!casllng from an Equation", bePu.I"8 on .,. 343 WI"' .. tile 
fundamentals of using lViews to forec:att from ....... red equadoDI. 

• Chapter IS. "Spedfication and DIagnostic 'R:sts", heg!MlDI OIl.,. 361 dtsulbes 
specification testin8 in EVlews. 

AdditIonal single equadon tedlniques for au~ amcJidooallielUodllllllldt" 
and discme and limited dependent varlable models 1ft deIa1bed in Part Iv. Part V doat­
menlS multiple equation analysis. 
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Chapter 11. Basic Regression 

SiJl8Ie equaliou rep!SIIioIl is one of the IIIOtII venadle aud __ UII!d ... IsI., ill tecIt­
Diques. Here, we describe the use of basic J'e8fft$IOn tedmiques ID EVil!ws: 0ptdf'iD1 Del 
estimatiDg a regmsioD model. performing simple diagnostic --. aud IIIIiIIC your esti­
madon results ID funher aualysis. 

SUbsequent cbapten dIsc:uss lestins and forecasti1J8. .. well .. _ adtaDCtd aDd spe­
daRrell tedmiquel such as weigbled least squares. twIHL1p least squns (TSLS). IIOIIIin­
ear least squares. AlUMA/AlUMAX models, gent!I'IIlIzed mediad of _dJ (GNM). 
GARCH models, Del qualitallve Del Umlted dependent vatUble IDCIdeII T1IeIe tedmiqurs 
and models an buDd upon the basic Ideas presented ID IhII mlJl"'£ 

lbu wID probably find it useful 10 own an econometrics ,e,lI __ .. a ui:uuoc _ the 
tl!dmiques discussed ID Ibis and subsequent documentation. Sf.iIJIdanI .... 'loob IbM _ 
have found 10 be useful are listed below (In generaIIJ InI.'::n!uiDI cmIer of diftindtJ): 

• PIndyc:k and Rubinfeld (l991). F.a.mommtcMotlllls IIIIdliiinonii: R»awfs. 3nf eel-
Iiou. 

• Johnston and DiNardo (1991). F.a.mommtc Jflthadf. 4dllM!Ifm 

• Gn!eoe (1997). EalrImu!tl1c AncIlysi$. 3nf EdlIIon 

• Davidson and MacKInnon (1993) • .l!'sUnuItioIt CDld1t/AS4Df fa lIaJow I !l7'ia:. 

Wbe!"e appropiall!. _ wID also provide you with spedaJtud II II ICeS _Ipldle: topic:s. 

Equation Objects 

SiJl8Ie eqn,tirm 1* ho estimadon ID EViews Is performed UIiaI the!, .... objer:r. "Ib 
creatII m eqnatirm object In EViews: select 0fIjedI/NeIr OIl, rt/Bljj pM. or QIIIdr.II'ad­
male ............. from the main IlleDU. 01' .1mpIy type the .,wauI equati_1D Ibe com­
maDd wiDdow. 

Nat. you wID IpIIdly your equ,tirm ID the EquatIon Spec" I'_ dIaIaB'" IbM '*14 5 .... 
and seJed an IIS!imatirm metbod. Below. we provide dI!taiIs on .tpEdfJintI eII'.atjrms ID 
EVk!ws.. £Views wID esdmate the equadon and display results ID Ibe eqnatirm wiDdow. 

1'he eedmatlon results are stored as part of the eqnatirm abject 10 they can be ac'! ad at 
any lime. SimpIJ opeD the object to display the J1ImmlllJ R!SIIIts. or to access £VIews tools 
for waking with resulls from an equation object. For eumpIe, yon can IttlieJll! the SUiII­

of..squ.iDeII from any equaliou. or you can use the esdmated ecpIaIiou .. piIit of a muIU­
equaIioD model. 
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Specifying an Equation in EViews 

When you create an equation object, a specification dialog box is displayed. 

You need to specify three things 
in this dialog: the equation speci· 
fication, the estimation method, 
and the sample to be used in esti­

mation. 

In the upper edit box, you can 
sPecify the equation: the depen­
dent (left-band side) and inde· 
pendent (right-band side) 
variables and the functional 
form. There are two basic ways 

r~~~~~~~==::~I~: 
~I 

of specifying an equation: "by list" and "by formula" or "by expression". The list method is 
easier but may only be used with unrestricted linear specifications; the formula method is 
more general and must be used to specify nonlinear models or models with parametric 
restrictions. 

Spedfying an Equation by Ust 
The simplest way to sPecify a linear equation is to provide a list of variables that you wish 
to use in the equation. First, include the name of the dependent variable or expression, fo)­
lowed by a list of explanatory variables. Por example. to sPecify a linear consumption func· 
tion, CS regressed on a constant and INC. type the following in the upper field of the 
Equation Specification dialog: 

cs c inc 

Note the presence of the series name C in the list of regressors. This Is a built-in EViews 
series that is used to specify a constant in a regression. EVlews does not automalicaUy 
include a constant in a regression so you must explicItly list the constant (or its equivalent) 
as a regressor. The internal series C does not appear in your workfile, and you may not use 
it outside of sPecifying an equation. If you need a series of ones, you can generate a new 
series, or use the number 1 as an auto-series. 

You may have noticed that there is a pre-defined object C in your workfile. This is the 
default coef(irient ve::tor-when you specify an equation by listing variable names, EViews 
stores the estimated coefficIents in this vector, in the order of appearance In the list. In the 
example above, the constant wiD be stored in C(l) and the coefficIent on INC wDl be held 

in C(2). 

, 

, 
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SpecIfIIng III "g'; •• EVil", 1t1 

LafI8ed series may be included in statlslieal opaatlons usmc die same DOIIIioa .. in .. 
erating a new series wid! a formula-put the Jag in pareutheles der die _ of die 
series. For e:rample. the spedftcation: 

CB cal-1) e inc 

teIJ.s !Views to regress CS on its own Jas8ed value. a constant. and INC. TIIe..aideDt lor 
tasBed CS will be placed in C(1}. tbecoeftidentlor the CfI!1Itanti.C{l). and theudkieDt 
of INC ill C(3). 

1IbU can include a aIIUII!CUtift range of Jas8ed Aries by usmc the wonI -to- bd:ween the 
lap. For eumple • 

ca c ca(-1 to -4) inc 

NgIelles CS on a constant. CS(-t). CS(-2). CS(-3). CS(-4). and INC. If you doll', indude 
the IIIst Jag. it is taken to be zero. For eumple. 

ca c inclto -2) inc (-4) 

regresses CS on a constant. INC. INC(.l1.1NC(·2). and 1NC(-4). 

1IbU may include autcHeries in the IflIt of variables. If the auto II!Iies &pi, ,,' II!I$ contain 
spaces. they' $bouId be endosed in panmtbeses. For 4!JIIIIIIk 

loglca) c loglc8(-1)) Ilinc+incf-l)) 12) 

IIpeCifies a NgJeSSion of the naturallopritbm of CS on a MIlItant, iClOWIl ...... waIat. 
and a two period mo'fiDS averaae of INC. 

lYPin8 the IflIt of Aries may be cumbersome, espedaDy If you lie 1IftiI1IhC ... ..., 
legr J tIl'S. If you wish. !Views caD create the IpI!Cific:adon lilt lor you. Flnrt. ''I' ''I' . the 
depeDdent variable in the workfi)e window by siJIBIe rJIdins 011 the enay. Nat. CTIU.. 
dick on each of the explanatory variables to bJ8I1lip1 them .. weD. WIleD you _ doGe 
seIecIiD8 aU of your variables. double click on aD)' of the h-"'1gIde4 .... and select 
()peD/EIJIaIioI ••• The Equation SpedficalioD dia.Io8 box sbouJd appeiU'''' the Dames 

entered in tbe specIftc.ltion field. The coDStanl C is ItU'«Jatatic.JII hlchaded ia tills lilt you 
ID1ISl delete tbe C If you do DOt wlsb to include the con-ant. 

Specifying an Equation by Fonnula 

1IbU will need to specify your equation WIiD8 a formula wben the lilt IDIIhod is nor ..... 
eDOU(Ih lor your spedficatIon. Many. but DOt aU. estImalioD IIM.tIIodI .,. you to specify 
your equaliOD usiaS a formula. 

AD equaIiOD formula in EViews is a mathematical &pi 1l1li fatui .... II1II'11' 'IS and 
c:oeffidenlS. 1b specify aD equatinD using a formula, simply enter the &pi lion ia the Ilia-

-~ -----.. --~-~~ . --- _._-., - . ~ -_ .. ---- ~- --_ .. 
--------.-~---~ ._------- - . 
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Jog in place of the list of variables. EViews wiD add an implicit additive disturbance to this 
equation and will estimate the parameters of the model using least squares. 

When you specify an equation by list, EViews converts this into an equivalent equation 
formula. For example. the list. 

log (cs) c log{csl-1» log (ina) 

is interpreted by EViews as, 

logIcs} - a(l) + a(2)*log(cS(-1)) + c(3)*loglinc) 

Equations do not have to have a dependent variable followed by an equal sign and then an •. ~ 

expression. The« - • sign can be anywhere in the formula. as In: 

log (urate) + c(l)*dmr • c(2) 

The residuals for this equation are !liven by: 

f = log(urate)-c(l)dmr-c(2). (11.1) 

EVlews will minimize the sum-of-squares of these residuals. 

If you wish, you can specify an equation as a simple expression, without a dependent vari­
able and an equal sign. If there is no equal sign, EViews assumes that the entire expression 
is the disturbance term. For example, if you specify an equation as 

c(ll*x + c(2)*y + 4*% 

EViews will lind the coefficient values that minimize the sum of squares of the !liven 
expression. in this case (C(1)·X +C(2)·Y +4·Z). While EVlews will estimatun expression 
of this type. since there is no dependent variable, some regression statistics (e.g; R-
squared) are not reported and the equation cannot be used for forecasting. This restriction • 
also balds for any equation that Includes coefficients to the left of the equal sign. FOr 
example, if you specify. 

x + a(l)*y - a(2)*z 

EViews finds the values of C(l) and C(2) that minimize the sum of squares of (X +C(I)·Y­
C(2)*Z). The estimated coefficients will be identica.! to those from an equation specified 

using: 

x _ -c(l)*y + C(2)*z 

but some lesression statistics are not reported. 

The two most common motivations for specifying your equation by formula are to esti­
mate restricted and nonlinear models. For example, suppose that you wish to constrain the 



, 

ooeftk:ients on the lap on the variable X to sum to ODe. SOI1rtDc out far .. coefIic:ieDl 
restricIion leads to the folJowing UDear model with parameler IHI.1dIoas: 

y - ell) + e(2)*x + e(3)*x(-1) + e(4)"x(-2) +(1-e(2)-e(3)­
e(4))"x(-l) 

1b estimate a oonUnear model, simply enter the oonUnear formula. EYiI!ws will aUfOlllad.. 
cally detect the IIOIlIinearlty and estimate the model usID8 nonIi!wr IeIIt squua. All" 
details. see "NonUnear Least Squares- on page 289. 

One benefit to spedfyiD8 III equation by formula is that you QiI tied., .. a dlladll 

ooeftk:ient vectOJ". 1b create a new c:ueffklenl vector. dloose 0IIjectIfJNew OIIJret •• ud 
select Matdx-VedoF-c.ef from the maill menu, type ill a name far tile (OI!4Iidl!Dt ftdIDr. 
and elide OIl In the New Matrix dialog bolr. that appears. seIea c. • [_. YecIGI' ud 
specify boW many rows tIIere should be ill the vector. The object 1riIl be Iisfed ill tile wort· 
fiJe directory with the ooelIicient vector leon (the little a). 

\bU may then use this c:oefIicieDt vectOl' ill YOUI' spec:ificIdon. ftlr erampk ... _ you 
aeated c:ueffklenl ftCkmI A and BETA, each with a siIIBJe lOW. TJaea you ma ipCidf, your 
equation using the new coefIIciems ill place of C: 

logIcs) • all) + beta(l)*log{eS(-l)) 

Estimating an Equation In EVIeWS 

Estimation Methods 

HavinS spedfIed your equatloll, you now need to c'- _ .............. medaod. aid: on 
the MedIott: enuy ill the dialog and you will see a drop-doIm -1iIIiIII ......... 
methods. 

StaDdard. siDgIHquaIion teglession Is peIfmmed 
using leal! sq_ The other methods are desaibed 
ill subsequeDt chaptm. 

EquationS estimated by ordinary least squim!I ud 
IWCHf.IIIe /east ICJUIR!S. GMM. and ARCH ma be 
spedfied with a formula. NonUnear equadons are not allowed willi bIDIIy, otdered, em­
sored. and count models. 01' ill equadons with AlMA ieI'IIII. 

Estimation Sample 

\bU sbouJd aIIo specify the sample to be used in estJmation EYiI!ws will til out .. dIaIoc 
with the CIIm!IIt wor:IdiIe sample, but you QiI """'9' the ....... far JIUIJtl m of estima­
tiOII by enterlD8 your sample strin8 OJ" object in the edfl baK (1ft "SampIn- on page r.o for 
deIaIIs). ChIDlJlng the estimation sample does not afIect the cw.dII wor:IdiIe sample 
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If any of the series used in estimation contain missing data, EVlews will temporarily adjust 
the estimation sample of observations to exclude those observations (Iistwise exclusion). 
EViews notifies you that it has adjusted the sample by reporting the actual sample used in 
the estimation results: 

DependenI Variable: Y 
Melhod: ~ Squa/es 
Dale: 0lIl19/97 nne: 10:24 
Sample(adjusted): 1959:011989:12 
~ oIIserIdons: 340 
El<-.od _1VIIIIona: 32 after adjlllllng eI'IdpoinIs 

Here we see the top of an equation output view. EVlews reports that It has adjusted the • 
sample. Out of the 372 observations in the period 1959:01-1989:12. EVlews uses the 340 
observations with observations for all of the relevant variables. 

You should be aware that if you include lagged variables in a regression, !be degree of sam­
ple adjustment will differ depending on whether data for the pre-sample period are avail­
able or not. For example. suppose you have nonmlsslng data for the two series Ml and IP 
over the period 1959:01-1989:12 and specify the regression as 

m1 c ip ip(-ll ip(-2) ip(-3) 

If you set the estimation sample to the period 1959:01-1989:12. EViews adjusts the sample 
to: 

Dopaodo"t_Ul MoIhOd: L.-__ 
Dale: 08119/97 TIIM: 10:49 
Sample: 1960:01 1989:12 
11ICIuded~: 31!0 

since data for lP(-3) are nol available unIll1959:04. However. If you set the estimation 
sample to the period 1960:01-1989:12, EViews will not make any adjustment to the sample 
since aU values of lP(-3) are available during the estimation sample. 

Some operations, most notably estimation with MA terms and ARCH, do not allow missing 
observations in the middle of the sample. When executing these procedures, an error mes­
sage is displayed and execution is halted if an NA is encountered In the middle of the sam· 
pie. EVlews bandies missing data at the very start or the very end of tbe sample range by 
adjusting the sample endpoints and proceeding with the estimation procedure. 

Estimation Options 

EViews provides a number of estimation options. These options allow you to weight the 
estimating equation, to compute beteroskedasticlty and auto-correlation robust covari· 

, 
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ances, and to c:ouIml various features of your esIimatIoD aJpritIuD. 1"bI!R opIiuas _ db­
cussed In deIail In -Estimation Options" 00 pase 292. 

Equation Output 
When you dk:k OK In _ Equation SperIflr»ioo dIaIotI. EViews displays _ eqllation 
window cUsplaJiD8 _ estimation output view: 

D; I. VIIIiIIlIE I.OG(MI} IiIIIIIIICt .... __ 

~"18117 n.: 14:Gt 
&.1*:18511:011.,2 
-....". • m -
A4' 11 t 1>«11 ad 
S.E. "''''II h. 
SUn ........... 
1.00111-
IluIbIIa rom I Wi" 

0._ 
0.11171113 
12.12112 97._ 
P.!!O!I681 

SlIM'" " g 
0. ... -to_ 
00135l1li 4O.IIttI 
000 811 :U7II!! 

...... tilOl. 
S.D. " ... J. 
AIooIoeinlD ........ 
8"'-........ 
F ....... 
P9IF q" 

0..., .0 __ 

00.4'13I2I 
MIll .. 
o !!!!!!!!!! 

Using maoix notation. _ standard resresskm may be wlitIeU as: 

f/ == XfJ+ IE (U.1) 

wilen! J In T -dimensioDal vector containInS obRs .adons OIl _depenll I ~ X 
Is a Tx k maoix of iDdepeIldent variables. fJ Is a k -vector of CXIeftk!e .... mil IE is a 
T -vector of disturbanc:es. Tis_ oumber of obseI vadoos aDd I: Is die i· ..... of JiPl­
band side Jl!IieuotS. 

In _outputallcm!, 1I1s1otl(Ml). X .......... ofduftvarllblel c.kJl{lPl._m. wIreR 
T-372aadk==3. 

CoefficIent Results 

Aegiesslon CoefIk:Ients 
The coIumD IabeJed '"CoeIfId4!llt" depids _ I!jII!pyted ~, The least sqIUI1!S 

lepessioD coefficients" _ computed by _ staDdard OLS bmuIa 

II = (X,X)-lX'f/ (l1.3) 

If your equation Is spedfied by list. tile coeffk:ienIs wfI be laIlelelllll die -v.IabIe" c0l­
umn with tile name of tile correepondlng ... _. If your equation Is IpHllel:lby for· 
mula. JMews lists tile aduaI coeffidents. C(l). C(Z). etc. 
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For the simple linear models considered here, the coefficient meuureII the marginal contri­
bution of the independent variable to the dependent variable, holding all other variables 
fixed. If present, the coeffiCient of the C is the constant or intercept in the regression-It is 
the base level of the prediction when all of the other independent variables are zero. The 
other coefficients are interpreted as the slope of the relation between the corresponding 
independent variable and the dependent variable, assuming all other variables do not 
change. 

Standard Errors 

The ·Std. Error" column reports tbe estimated standard errors of the coefficient estimates. 
The standard errors measure the statistical reliability of the coefficient estimates-the _ 
larger the standard errors, the more statistical noise In the estimates. If the errors are nor-
mally distributed, there are about 2 chances in 3 that the true regression coefficient lies 
within one standard error of the reported coefficient, and 95 chances out of 100 that it lies 
within two standard errors. 

The covariance malIix of the estimated coefficients is computed u, 

var(b) = S2(X'X)-1; 8
2 = t'U(T-k); € = 'II-Xb (11.4) 

where € is the residual. The standard errors of the estimated coefficients are the square 
roots of the diagonal elements of the coefficient covariance matrix. You can view tbe whole 
covariance malIix by cboosing View/Covariance Matrix. 

t-Statlstics 

The t·statlstlc, whicb is computed as the ratio of an estimated coefficient to its standard 
error, is used to test the hypothesis that a coefficient is equal to zero. 1b interpret the t-sta-
tistic. you should examine the probability of observing the t-statistic given that the coeffi- _I 
clent is equal to zero. This probability computation is described below. 

In cases wbere normality can only hold asymptotically, EVlews wID report a 2i-statistic 
instead of at-statistic. 

Probability 

The last column of the output sbows the probability of drawing a &-statistic (or a 2i-statistic) 
as extreme as the one actually observed, under the assumption that the errors are normally 
distributed. or that the estimated coefficients are asymptotically normally distributed. 

This probability is also known as the p-ualue or the margiru!l stgni{icance leue/.. Given a p­
value, you can tell at a glance If you reject or accept the hypothesis that the true coefficient 
is zero against a two-sided alternative that it differs from zero. For example, If you are per­
forming the test at the 5 % significance level, a p-value lower than 0.05 is taken as evidence 



• 

, 

to rejec:t the null hypotbesls of a zero coeftic:IeaL H you WlIIIt to CIOIIduct a OIl! IIided leSt. 
the appropriate probablUty Is one-baH tllat reporIl!d by EVIews.. 

IVr the aboft example outpUt. die bypotbesis dial the coefIIcieaI 0II1B3 b zero b lejected 

at the 5" signjficance level but not at the I" Iew!L Houeva; if tbeory!F'II :lIs that the 
coefficient on TB3 cannot be positive, !ben a one-sided test will reject the zero null b,pudI­

sis at the I" level. 

1be p-values an! computed from a f.distrlbudon WIth T - k dqJItes of ,,_, •• 

summary Statistics 

R-squared 

1be R~ (R2) statisIk: measures die sucxess of the l.essiOIIlII ...... '1,. the 01-
un of the dependeD. variable within the sample. In SfandaN ... II ... R2

.., be iIl_­
pI'EIed as die fraction of die variance of die depeIIdeot variable apIa!ned by the 
indepeDdeDt variables. 1be statisIk: will equal one if die I. '011 fiIIl • ..,d"'dt. and zero 
if it fits DO better than the simple mean of the cJtpeMent variIIbIe. It caa be JIIIPd¥e lOr a 
number of reasons. IVr example. if die R!(!l't$lion clots not hm! aD iDtm:epl or CCJIIstant. if 
the ~n CODIaiDs eoeffident rtSU'icIiollS, or If die etdmation metbod is two-staae 
ItasI squares or ARCH. 

EViews computES die (cemered) R2 as 

2 t't 
R = 1- (Y-I;)'(Y-ti); (U.S) 

where ti Is the mean of the depeodear (1eft-baDd) variable. 

A4tJsted R-squared 

ODe problem WIth 1ISiD& R' as a mtasUIE of JIXW e 5 of fit b dIat die KwllllIIftr 
dec:n!ase as you add lIIOfe.egressors. In the aueme ease. you caa .. oIJaIII aD K of 
one if you lDdude as many independent rep1!IIIOfI as Ibm! an! ........... fiIlIiom;. 

1be adjusted K. commonly denoted as 1i.2• penal". !be K for die I1MdOII of nw­
SOlS wtdcb do not oontrlbute to the aplaDatory power of !be model 1be atjusted Iris 
computed as 

1i.2 = 1-(1-K)!::.! 
T-k (U.6) 

1be 1i.2 
is _larger than die R2. can deen!ase as you atd ",_ESICIIJIUI, and lOr poorly fl· 

tinS models, may be oepthe. 
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Standard Error of the Regression (S.E. of regression) 

The standard error of the regression is a summary measure based on the estimated vari· 
ance of the residuals. The standard error of the regression is computed as 

Sum-of-Squared Residuals 

(7r 
8 = ~"i.'T-k5 (11.7) 

The sum-of-squared residuals can be used in a variety of statistical calculations. and Is pre· 
sented separately for your convenience: 

(U.8) 

Log Ukellhood 

EViews reports the value of the log likelihood function (assuming normally distributed 
errors) evaluated at the estimated values of the coefficients. Likelihood ratio tests may be 
conducted by looking at the difference between the log likelihood values of the restricted 
and unrestricted versions of an equation. 

The log Iikelibood is computed as 

I = -f(1 + log (211') + 10g(l'Un) (lUI) 

When comparing EViews output to that reported from other sources. note that EVlews 
does not ignore constant terms. 

Durbin-Watson Statistic 

The Dwbin-Watson statistic measures the serial correlation in the residuals. The statistic is 
computed as 

(11.10) 

See Johnston and DiNardo (1997. '1llble D.5) for a table of the signlftcance points of the 
distribution of the Durbin-Watson statistic. 

As a rule of thumb, if the DW is less than 2. there is evidence of positive sepal correlation. 
The DW statistic in our output is very close to one, indicating the presence of serial corre­
lation in the residuals. See 'Serial Correlation Theory" beginning on page 303 for a more 

• 

, 



extenSive disc:ussioD of die DuJbin..WaIlOD SIadsdc aDd the ~ of ......, cone­
Iated mriduaII. 

There are bette-a. for serial c:orreIation. In "1I!stIn8 for SerIal ComUdon- 08 pilip 3CM. 
_ disCUss the Q-statisIlc. and the Breusdl-Godfft!y U. test. both of wbidljAowlde a _ 
general testiDg framewOlk dIaD the Dwb!n-WaIlOD test. 

Mean and Standard DevIation {S.DJ oldie DepelldentYarilble 

The mean aDd standard deviation of 'II are WiIIjIidI!d 1IIiD8 die .........., furadae: 

j = f y,/T; 8. = / i (fI,- j)2/ {T_ 1) (U.U) 
t.l ~t-l 

AkaIke hlfomtatton otterIon 

The Akalke Informati08 Criterion (AlC) Is computed u: 
AlC = - 21/T + 21e/T (U.ll) 

wben! I Is the log IlkeIIhood fIIven by Equation (U .9) 08 ... 268). 

The AlC is often used In model selection for DOJHJeSted ~'IUIes of the 
AIC are ptefared. For eumple. you can choose die leoIdI of a lac elba ..... by e" r .. 

the spedficatlon with the lowest value of the Ale. See Appeudls F. -1nf00Dlll0n QUia-. 
on page 683. for addlllonaJ disalssiou. 

Sc.:hwlJrZ CIIbIrfon 

The SchwarZ Criterion (SC) Is an altematlft to die AIC dIat ImpJllEI a ..... peaalJ lor 
addftioMI corfficIentI: 

SC = -21/THJ:Iog7)IT (U.13) 

F-StadstiC 

The F-statisric ftIXII1ed in die RIIessioJI 081pUt Is IIOln a felt of dae IIpjiOII 'dIII'-of 
the slope coelBdents (erduding the constaIIl, or inll!Joepl) In a 'fIl'ssm an! zero. For 
onIiDaIY lent squara models. the F-statistic Is comjAlted as 

2 
F R I(k-l) ( ) 

.. (1- R2)/(T- k) U.I. 

Under die DUll hypoIhesis with normally distributed emn, dds "atiIlic .. an F-dlsailJu. 
don with k-l numerator ~ of freedom and T -Ie dellQIDk·.tfDr dfIl- of free­
dom. 
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The p-value given just below the F-statistic, denoted Prob{F-statilltic). Is the marginal sig­
nificance level of the F-est. If the p-value is less than the significance level you are testing, 
say O.OS, you reject the nuU hypothesis that aU slope coeffidents are equal to zero. For the 
example above, the p-va)ue is essentially zero, so we reject the null hypothesis that all of 
the regression coefficients are zero. Note that the F-est is a joint test so that even if all the 
t-statistics are insignificant, the F-statistic can be highly significant. 

Working With Equation Statistics 

The regresslon statistics reported in the estimation output view are stored with the equa­
tion and are accessible through special "@-functions". You can retrieve any of these statis-
tics for further analysis by using these functinns in gem, scalar. or matrix expressions. If a • 
particular statistic is not computed for a given estimation method, the fonction will return 
anNA_ 

There are two kinds of *@-functinns": those that return a scalar value, and those tbat 
return matt1ces or vectors. 

Keywords that return scalar values 

Oalc Akaike information criterion 

Ocoefcov(l,j} covariance of coefficient estimates i and j 

@coefs(i) i-th coefficient value 

@dw Durbin-Watson statistic 

@f F-statistic 

@hq Hannan-Quinn information criterion 

@jstat J-statistic - value of the GMM objective function 
(forGMM) 

@Jogl value of the log likelihood functinn 

@meandep mean of the dependent variable 

@ncoef number of estimated coefficients 

@r2 R-squared statistic 

@rbar2 adjusted R-squared statistic 

@regobs number of observations in regression 

@schwarz Schwarz informatlon criterion 

@sddep standard deviation of the dependent variable 

@se standard error of the regression 

@ssr sum of squared residuals 

I 
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Etp ...... 0Utput-271 

Ostdem(i) standard error for coeflc:ieot i 
Otstats(l) t-statlstic value for coetfident i 

cO) Hh element of default coetfident ftClGr for t!qWl-

lion (if applicable) 

ocoet:ov mall'ix cont~ tile coeIfL letit amu:iaDa! IIIIIIrix 

ecoets vector of coetfident values 

osldem vector of standard errors for tile COC!Ilc:ieuII 

Otstats vector of t·stadstic values for coeftidellS 

If you use these functions without reference 10 an equation object. EViewI will _ tile 
default equalion. For example. !be command: 

aeri.. y • edv 

antes a series named Yand assigns 10 every obIervaIion. tile v.-of tile DurbfD.Wilsoa 
statistic for the default equatlon. 

We sttongIy recommend,ltowewr. thai you piepmd tile name of an ...... objI!cI and a 
-. - 10 tile statistic keyword. This instructs EVIews to _ tile 8JIIlI1IIIriIIe _ ..... for tile 
DIUIIed equa1ioD. For example: 

.eriea y • eql.edv 

assigN to Y tile value of tile Durbin·watson for tile ...... 1Q1. 

f'undioos that return a vector or mall'ix object should be slgMd 10 die UJl.eop""" .. 
object type.. For eumple. you should allSip the teSUIb from etateta 10 a iFi!CfDt. 

vector tatat •• eql.etatata 

lbu can Usa access iDdtfiduaI elementS of these statiItics: 

aealer pvalue - l-ecPOra(eaha(eql.etatata(C))1 

aealer verI • eql.~.rianceCl.l) 

For rIocumeBtalion on usID8 vectors and matrices ill EVIews. lie 0.., 4. -MaUll: Lan· 
81J118e-, on pase 55 of tile CoIIUIUUtd and ~ _aam. 
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Working with Equations 

Views of an Equation 
• Representations. Displays the equation in three forms: EViews command form, as 

an algebraic equation with symbolic coefficients, and as an equation with the esti­
mated values of the coefficients. 

You can cut -and-paste 
from the representations 
view into any applica­
tion that supports the 
Windows clipboard. 

• Estimation OulpUt. Dis­
plays the equation output 
results described above. 

• Act11al, f1tted, ltelidual. 

.I..l ' n' " - !. "pEa 
~~~JI--:: ~, ~~.-: 

LS l.OG(M,) C LOO(If') TIl3 

These views display the actual and fitted values of the dependent Variable and the 
residuals from the regression in tabular and graphical form. Actual, Fitted, Residual 
Table displays these values in table form. 

Note that the actual value 
is always the sum of the 
fitted value and the resid­
ual . .AetuaI. Fitted. 
Residual Graph displays 

a standard EViews graph I 
of the actual valUes, fit­
ted values, and residu­
als. Residual Graph plots 
only the residuals, whUe 
the Standardized Residual Graph plots the residuals divided by the estimated resid-
ual standard deviation. 

• Gradients and Derivatives ••• Provides views which describe the gradients of the 
objective function and the information about the computation of any derivatives of 
the regression function. DetaOs on these views are provided in Appendix E. "Gradi­
ents and Derivatives", on page 675. 

• Covariance Matrix. Displays the covariance matrix of the coefficient estimates as a 
spreadsheet view. 1b save this covariance matrix as a matrix object, use the .cov 
function. 
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• CoeD:IeDt 'R!IIU, .ee!c!pa1 ...... aDd StabIJIty ...... 'J"best all! 9iews IiIr sperifit. 
tiOD and dI.,.....nc tests and an! described in detail in CIaapter IS. "Spec:IIkatIon 
and Diagnostk: ~ •• bI.'gInmns on page 361. 

Procedures of an Equation 
• Specify /JIHmate .. brings up the EquaIioD SpedfiatIiGD diIIa8 boll: 10 dial you CiIJI 

modify your specification. 1bu CiIJI edit the equatioD IF 1(10 al ....... or ell ... the 

estimation mediad or estimation sample. 

• fbl«lllt. .. forec:asa or fits yaJues usin8the ....... II ~ equaIIGII RIItc '''' ..... 
equations 1$ discussed in Chapter 14. 

• Make......"". Sedes. •• saves the RSiduaill from the • .., loa_ II tedes in the 
woddlIe. Ilt!pendiDs OIl the estimadon method, you 1M)' ~ fmm IIIR:e lype$ of 
&eSiduaIs: ordinary. standardized, and generalized. AIr 0IdiDary JaIl .-. ooIy 
the ordinary residuals 1M)' be saved. 

• Make",! I Ir Group antes an IIDtitled 8JOUII comprilled of althe vadIIJIes 11111!111 
in the equation (with the utepdon of the mOlllanl). 

• Make GradIeat Group antes a 8JOUII amtaining the gndiema althe uIl;tc:d .... 
fuDCtIoa lIIrith lespecl to the coefn. lellts of the model. 

• Make DaINII .... Group aeates a 8JOUII amtaining the clelWaIifts of the ......... 
fmw:don with lespecI to the c:oefficienIS in the JEllleaioil furv1Ioa 

• Make Model aules an IIDtilled model (ODfainI'C a IIDk to the ....... I '9"­
'I1UI model CiIJI be IOlved in the usuaI manner. See Clapter 23. "Models", OIl 

page 601 for iDformaIion on how 10 use models lor be a."11 and "" pi .... 

• Update CoeD hill Equad_ plac:es the estimated mefIic:fents althe equalion in tbe 
roefIIdent vector. 1bu CiIJI use this procelure to inft!d7e -li'C YaIaes _ _ ious 

l!IItimation proc:edun!a. 

Default Equation 

Rlllowing estimation. EViews often holds the estimated c:oeIHi i •• and their ~ 
matrtt. the J1!Siduals, and __ ary SIalIstics in an llDt1t1ed .."...... objec:t. 'J"best 
JeSUIIs are available for 1!SI! in II variety of su~ compuWious I ... """'lithe sper::ifi­
cation and dlapnstic tests described in Chapter 15. -SpedIkAltlaa and D''8flC'StIC ~., 
beginning on page 361, and the computation of fon!c:asts aDd model tlmnbtinn in 
Chapter 14. "Forecasti'C from an Equation". 011 ,. 343 and Chapter 23. "'lfo;ieIs", on 

page 601. 

Untitled equations are not saved lIIrith tbe wodfIIe. 1bu JDIf _ tbe _ botton _ the 
equation toolbar to name your equatiOll. The equation will be II'ft!d with the Wtll'" 
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when the latter is saved. Once named. you can access the Information In the equation at 
any time. even if you have just estimated several other models. or have not worked with 
the workfile for a long period of time. 

For your convenience. EVlews keeps track of a default equotton. The default equation is 
the equation that Is actiVe or was the most recently active equation. The name of the 
default equation is shown at the upper light hand comer of the workfile window. 

ReSiduals from an Equation 
The residuals from the default equation are stored in a series object called RESID. RESlD 
may be used directly as If it were a regular series. except in estimation. 

RESID wlll be overwritten whenever you estimate an equation and will contain the residu­
als from the latest estimated equation. To save the residuals from a particular equation for 
later analysis. you should save them in a different series so they are not Overwritten by the 
next estimation command. For example. you can copy the residuals into a regular EViews 
series caRed RESl by the command 

series resl • resid 

Even if you have already overwritten the RESlD series. you can always create the desired 
series using EViews' built-in procedures If you still have the equation object. If your equa­
tion Is named EOI, open the equation window and select Proes/Make Residual Series. or 
enter 

eql.makeresid reSl 

to create the desired series. 

Regression Statistics 

You may refer to various regression statistics through the O-functions described above. For 
example, to generate a new series equal to FIT plus twice the standard error from the last 
regression, you can use the command 

series plus. fit + 2*eql .• se 

1b get the t-statistic for the second coefficient from equation EOI. you could specify 

eql.ottstats(2) 

1b store the coefficient covariance matrix from EOl as a named symmetric matrix. you can 
use the command 

sym ccovl z eql .ltcov 

See -Keywords that return scalar values R on page 270 for additional details. 

, 
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Storing and Rebieving an Equation 

As with other objects. equations lBay be stored to disk In data bid: or "mbase lies. \bo 
can ako fetch equatloos fIolB these files. 

Equations !Bay also be copied-and-pasred to. or fmIn. woatdles or "mbaws 

EViews even allows you to acceu equations din!ctIy froIIl your dalabuef or .moIIIer work­
file. 1bu can estimate an equation. $toft! illD a database. and tIleD .. fllO btall In Sl'i'­

era! workliles. 

See QapIer 3. ·£\11_ Bask;s., beglnnlDg on page 33 and CbaptI!r 6. -"£Views Ilala­
bases-, btgIDnlDg on page 107 tor addltionallDformatiOD about oIljecIs. dat ..... mel 
object c:ootaiDers. 

Using Estimated Coefficients 

The coefficients of an equation are listed In the repmentatloos Yiew_ By deflluII. IMews 
wi! use the C coeffident vector wben you specify an equation. but you lBay apllc Idy use 
other coeftIciem vectors in defining your equation. 

These ROn!d coefficients JDay be \lied as scaIats In smemIDI data. WbIIe dNIe are eak!f 
ways of pDII!Iatins fitted vaJues (see "ForecasliDlJ from an Equation" on page 343). lor pur­
poses of IlJustration, note that we can use the c:oeIftcients to form the fitted values from an 
equadoII. The command: 

•• ri •• eahat • eql.e(l) + eq1.e(2)*gdp 

for:Iu the ftI.ted ¥aIue of CS. CSHAT. fIolB the OLS .tIldliou ooeftided' mel tile ......... -
deDt YUiabJes fmm the tqualion object 101 . 

Note that while EVIl!WI wi! accept a series pneradns equadoII widell does DOl alA • ., 
refer to a named equation: 

and wi! UIII! the "NiI'8 values in the C coeffIrIenl ftCtOI; we......., pmm mel dill 
you alwap UIII! named equations 10 identify the <ipplllpliate epefIir' .' In ........ C WI! 
contain the COiled coefficienI values only IiDiiIedI.1Iely followh4 estim .... or a codfi. 
dent update. UsiDI a named equation. or selecting ~ eoefIm. .......... 
guarantees thai you are lUling the CUIec:t cuef:tideaI vaIueI. 

Ail allernati1e to referrin8 to the cueffldent vec:tor js in ldueuce tile _f. elements of 
your f'lPMtion (see page 2;00). For _pie. the aampleI abaft may be w.1beD as 

" 
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series cshat=eql.@coefs(1)+eql.4Icoefs(2)*gdp 

EViews assigns an index to each coefficient in the order that it appears in the representa­
tions view. Thus, if you estimate the equation 

equation eqOl.ls y=c(lO)+b(S)*y(-1)+a(7)*inc 

where B and A are also coefficient vectors, then 

• eqOl.@coefs(I) contains C(10) 

• eqOl.@coefs(2) contains B(5) 

• eqOl.@coefs(3) contains A(7) 

This method should prove useful in matching coefficients to standard errors derived from 
the estderrs elements of the equation (see Chapter 3, "Object, View and Procedure Ref­
erence-, beginning on page 19 of the Command and Prog!umming Reference). Tbe ilcoefs 
elements allow you to refer 10 both the coefficients and the standard errors using a com­
monindex. 

If you have used an alternative named coefficient vector in gpecifylng your equation. you 
can also access the coefficient vector directly. For example, if you have used a coefficient 
vector named BETA, you can generate the fitted values by issuing the commands 

equation eq02.1s cs=beta(1)+beta(2)*gdp 

series cshat=beta(1)+beta(2)*gdp 

where BETA is a coefficient vector. Again. however, we recommend that you IlH the 
ecoefs elements to refer to the coefficients of £002. Alternatively, you can update the 
coefficients in BETA prior to use by selecting Proes/Update eoefs from equallon from the 
equation window. Note that EViews does not allow you to refer to the uamed equation ,. 
coefficients EQ02.BETA(1) and EQ02.BETA(2). You must instead use the expressions. 
EQ02.@COEFS(1) and EQ02.@COEFS(2). 

Estimation Problems 

Exact Collinearity 
If the regressors are very highly collinear. EViews may encounter difficulty in computing 
the regression estimates. In such cases, EViews will issue an error message -Near singular 
matrix .• When you get thls error message. you should check to see whether the regressors 
are exnct/y collinear. The regressors are exactly collinear if one regressor can be written as 
a linear combination of the other regressors. Under exact collinearlty, the regressor matrix 
X does not have full column rank and the OLS estimator carmot be computed. 
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Ibn should wardl out for euct ooIllQearity wilen you are IIIiIII ...... ..,. nriaIIIes ill your 
Ieglession. A set of IJII1tually exclusive dummy variables and die consr.mt .... are eac:dy 
collinear. Fbr example, suppose you bave quarterly data and you tty to run a rfIJl!IISiou 
with the specification 

y e :It .... alII ... aaI21 ..... (3) ..... (4) 

£VieWs will re!Um a "Near singular mabill- error mesaplillCe die COIIIWIl.mel die lour 
quarterly dummy variables are aact.I)' c:oIIIneartbnJutb die RIatIan· 

c ... e.all} + ese •• (2) + ..... (3) + ..... (.) 

In this case. simply drop either die COIIStaii! term or one of die dummy varWIIes. 

The textbooks IisIed above provide meusiYl! discussion of die issaI! of coIIne.I". 

Commands 
1b declare a new equation object. follow die equation cxun!lW!d wItb I _ for die equa­
lion object: 

equation eql 

1b estimate an equation by 01.5. follow dle equation DaDle with a clot .mel die liIey.ad "Is" 
or -est-, the DaDle of die dependent variable, and the names of die i~1II variIIbIes. 
eadl separated by a spare: 

eql.l. CB C gdp cpi 

~ cs on a ....... 111, co.. and ~ 

A1tematively, you can specify die equation by a bmuJa with an equal. 
eql.la c •• e(l) + c(2)-gdp + c(3)·cpi 

1Iba can define aud estimate an equation ill one oomm,JMt 

equation 4ICLa.1e.1 ... lB. c tread ~n iDduaUyJP=OWl:h 

estiDWeS die specified equation and SIOreS the R!SUIls ill an equation Need Ji'Q...So\LE. 

See 1. (p. 245) ill the CmnmtUId and .ProgmmmiR,f _tUR ... for IlXJ2IIplite list of ran­
mands and options for single equadon lealt squares estimation iIIlWiI!ws. 



Chapter 12. Additional Regression Methods 

This chapter discusses weighted least squares, heteroskedasticity and autocorrelation COD· 

sistent covariance estimation, two-stage least squares (TSLS). nonlinear least squares, and 
generalized method of moments (GMMl. Note that most of these methods are also avail· 
able in systems of equations; see Chapter 19. 

Parts of this chapter refer to estimation of models which have autoregressive (ARl and 
moving average (MAl error terms. These concepts are discussed in greater depth in 
Chapter 13. 

Weighted Least Squares 

Suppose that you have heteroskedasticity of known form. and that there is a series w • 
whose values are proportional to the reciprocals of the error standard deviations. You can 
use weighted least squares, with weight series w. to correcl for the betemskedasticity. 

EViews performs weighted least squares by first dividing tbe weight series by its mean. 
then multiplying all of the data for each observation by the scaled weight series. The scal· 
ing of the weight series is a normalization Ihal has no effect on tbe parameter results. but 
makes the weighted residuals more comparable to the unweighted residuals. The normal· 
ization does imply. however. that EViews weighted least squares is not appropriate in situ· 
ations where the scale of the weight serles is relevant. as in frequency weighting. 

Estimation is then completed by running a regression using the weighted dependent and 
independent variables to minimize tbe sum-ot-squared residuals 

S({3) .,. ~W~(Yt_x/.B)2 (l2.1) • 

with respect to the k -dimensional vector of parameters .B. In matrix notation, let W be a 
diagonal matrix containing the scaled w along the diagonal and zeroes elsewbere. and let 
11 and X be the usual matrices associated with the left and right-hand side variables. The 
weighted least squares estimator is 

bWLS = (X'W'WXf1 X'W'Wy. (12.2) 

and the estimated covariance matrix is 

!:WLS = i(X'W'WX)-l. (12.3) 

1b estimate an equation using weighted least squares, first 10 to the main menu and select 
QufcltIEstlmate Equation ••• , then choose LS-Least Squares (NLS and AltMA) from the 
combo box. Enter your equation specification and sample in the edit boxes. then push tbe 
Options button and click on the Weighted LS/TSLS option. 
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lS'l'III.S -,=='., ...... --...~ "- ~ • ,.... 
(-'!Ii 4 t.u... r8s's 7 

r.', .. nllfU ... -... --I ~.....,-

==-- r~ 
ru., ... 

• 

Fill in the blank alta- 'WeIpt: With the name of the serIa C'ClIIta!nIQs your. lI'''s. aDd 
click on OK. Click 00 OK again to accept the dIaIoB aDd estimate the equ.atiaa. 

DIp I ... v.tIIIIIa: lOGCXl 
-.od:t..-s.­
IMI: 1GIt5117 ~ 11:10 
S. .... II): tIt11113 
......., It ....... 113 ..... 1'. " , 
'OW' [ rcr 

lIrW!e cg 7·d ee- 1111 
c 0,0IMZS3 CI.0127. om 12 

1.OG(Xf-1» 0.0lIII40 0,112531 UI7'III3 
'SP'Y"" 9'"218 91?111 21"8' nII __ "I RI_ " 0.01GS2 ..... " 1-

' •• JR •• d .0.'- SA IS dS 1_ 
s.e.a( II , , 0.10lI1l5 ~loIItallllDn 
s-............ 1rOa1i212 Sd .zallllDn ..... • J 77,M73 F Sf 
QA"" ' •• ~._, "'_ III 

't ".E q 
R.aqo , .o.CI02I22 ..... $1 p 1-ft. , n I cd -GUl'I. s.D. IItI -S.Ea( •• III •• o.t22177 s-............ 
Q9U' t. 2· 

.. 
0,7. 
0:5774 , .. 
--0.1_ 

·1.11MZ74 
·UI22I77 
0,7_ 

1411dM 

0JI1_ 
G.12t317 ,.-. 

EVltws will open an OUlpUt window displaylDs the aMant c:wfIL !ell i .. aDd bodI 
weighted aDd unwef8bted summary $tistica. TIle weJPted sum • ., ItadIIIrs are billed 
on the fitted residuals. computed usiDg the wftIbted elida. 

(12.4) 

TIle unwei8bted flPDPmPJ mulls are based on the residuals c:umputed he the ~ 
Cunweigbtedl .uta, 
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'tit = Yt - Xt'bWLS' (12.5) 

Following estimation. the unweighted residuals are placed in the RESID series. 

If Ibe residual variance assumptions are correct. Ibe weighted residuals should show no 
evidence of heteros!redasticity. If the variance assumptions are correct. the unweighted 
residuals should be heteroskedastic. with the reciprocal of Ibe standard deviation of the 
residual at each period t being proportional to Wt, 

The weighting option will be ignored in equations containing ARMA specifications. Note 
also that the weighting option is not available for binary. count. censored and truncated. or 
ordered discrete choice models. • 

Heteroskedasticity and Autocorrelation Consistent Covariances 

When Ibe form of heteroskedasticity is not known. it may not be possible to obtain effi­
cient estimates of the parameters using weighted least squares. OLS provides consistent 
parameter estimates in the presence of heteroskedasticity but Ibe usual OLS standard 
errors will be incorrect and should not be used for inference. 

Before we describe the techniques for HAC covariance estimation. note Ibat: 

• Using Ibe White heteroskedasticity consistent or Ibe Newey-West HAC consistent 
covariance estimates does not change the point estimates of the parameters. only the 
estimated standard errors. 

• There is notblng to keep you from combiniog various methods of accounting for het­
eroskedasticity and serial correlation. For example, weighted least squares estima-
tion might be accompanied by White or Newey-West covariance matrix estimates . 

Heteroskedasticlty Consistent Covariances (White) 

White (I980) has derived a heteroskedasticity consistent covariance matrix estimator 
which provides correct estimates of the coefficient covariances in Ibe presence of heterosk­
edasticity of unknown form. The White covariance matrix Is given by: 

T ) T ,-1 :1,,-1 tw = T_k(X X) (:E tlt:!:tXt (X X) , 
t=l 

(12.6) 

where is T Ibe number of observations. k Is Ibe number of regressors, and tit is the least 
squares residual. 

EViews provides you Ibe option to use Ibe White covariance estimator in place of Ibe stan­
dard OLS formula. Open Ibe equation dialog and specify the equation as before, Iben push 
Ibe Options button. Next, click on the cheCK box labeled Heteroskedastidty Consistent 

• 
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CovarIaIIee and ctick on the WIllie radio button. Acc:ept the opdoas and dick _co em­
mate the equadon. 

!Views will estimate your equation and compute the variaDces WIiDI WJdre'. c:ovarii1IIce 
estimator. 'lIbu can alwa,s teD when EViews Is using WIIire covarIuIces. IiDoe the 0U1pUI 

display will Include a IiDe to document Ibis fact: 

D I. I .1IIIIiIIIIIr: I.OGOI) 
lIoiIIIIad: .......... 
D*: 1GtI51117 lIM: 11:11 
S .'I,n$,.,I_ 
~. .1 &13 .... ' 'Ul ., II 
~ •• "'-:POP 

",.. b* .'" t:f' " '3 
Y H' Pd." 

C (1,1)04233 
LOGOq-1J 0: II .0 
'OOM!"'» A'B! 

. T '9 ' 

._ nH 
0.012S18 (1 __ 

11.137282 0.1273111 
BiZ" 9"= 

HAC Consistent Covariances (Ne\1IeJ V.'est) 

-. 
o'nIt 
Jl.4a ,,,, 

The White c:ovariaDce matrix desaibed above ""LIl"S that the ft!lIidlAII of the __ , d 
equation aft! serially unc:oneJated. Newey and West (1987) l:.aft pOjlOMd a -IJIIIIIIRI 
covariance eslimato£ that is consistent in the presence of both lu!I'i!so8edtltidly and aulD­

COI'MIaIion of UDknown form. The Newey·West estimator is IJIW!D by 

1:NW'" L{X,X)-lh{X'X)-l, (11.7) 
T-&: 

h = /: &:{ E U;zrct' 
tal 

+ f ((1- ; 1) E (:J:,u,u,_",,_ . .,' + :r:t-.u,-~t ') )} _-I q ,-.. +1 

and q. the l'IUDC:ation Jag. is a parameter 1. E 11!IL1in8 the nUlllber of ~ .­
in evaina1:InB the dynamics of the OLS residuals u,. FoIIowIDIJ the "'IB , '01 of Newer 
and West. EViews lIeU II CO 

II "" Ooor(4(Tl100)2I1I). (12.9) 

1b use the Nellley West meThod. push the 0pII0as button in the eRlmadaa diaIo8 box. 
Check the box labeled ~Con""""t ~and .... the Neae, 
west llI!Iio button. 
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Two-stage Least Squares 
A fundamental assumption of regression analysis Is that the right-hand side variables are 
uncorrelated with the disturbance term. U this assumption is violated. both OLS and 
weighted LS are biased and inconsistent. 

There are a number of situations where some of the right-hand side variables are corre­
lated with disturbances. Some classic examples occur when: 

• There are endogenously determined variables on the right-hand side of the equation. 

• Right-hand side variables are measured with error: 

Alr simplicity. we will refer to variables that are correlated with the residuals as end0ge­

nous. and variables that are not correlated with the residuals as exogenous or predeter­
mined. 

The standard approach in cases where right-hand side variables are correlated with the 
residuals is to estimate the equation using instrumental wuiables regIesslon. The idea 
behind instrumental variables Is to fmd a set of variables. termed instruments, that are 
both (1) correlated with the explanatory variables in the equation. and {2l uncorrelated 
with the disturbances. These Instruments are used to eliminate the correlation between 
right-hand side variables and the disturbances. 

Two-stage least squares (TSLS) is a special case of Instrumental variables regression. As 
the name suggests, there are two distinct stages in two-stage least squares. In the fitst 
stage. TSLS finds the portions of the endogenous and exogenous variables that can be 
attributed to the Instruments. This stage Involves estimating an OLS regression of each 
variable in the model on the set of instruments. The second stage is a regression of the 
original equation. with all of the variables replaced by the fitted values from the fitst-stage • 
regressions. The coefficients of this regression are the TSLS estimates. 

You need not worry about the separate stages olTSLS since EVIews will estimate both 
stages simultaneously using Instrumental variables techniques. More formally, let Z be 
the matriX of instruments. and let 11 and X be the dependent and explanatory variables. 
Then the coefficients computed in two-stage least squares are given by. 

bTSLS = {X'Z{Z'Zf1Z'X)-IX'Z(Z,Z)-lZ'y, (12.10) 

and the estimated covariance matrix of these coefficients Is given by 

1:TSLS = s2(X'Z(Z'ZrIZ'X)-1. (12.11) 

where l! 
2 

is the estimated residual variance (square of the standard error of the regression). 
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Estimating TSLSIn Mews 

1b use two-stage least squares. open the equation spedftcation boa by ChU"1II 01 J l/ 
New Ob}el:t/EqualioD. .. or Quldvlsu 'le EquaIIoD .... CbooM 11iitI Ina tile Ihlll •• ' 
combo boa and the dialog will change 10 IDdude aa edIl window where you wm Jist the 
iasttUments. In the edit boxes, specify your dependent variable aDd iDdepe ...... t variables 
and the list of insIrumeJIts. 

There are a few thiDg$ 10 I!IIep in 
mind as you enlel' your lnslnl­

ments: 

• In 0iIdeI' 10 calculate TSLS 
estimates. your specification 
must satisfy the I7ItU/r cmdi­
noll for identification. which 
says that there must be at 
least as may instruments ... 
there are coefIidents in your 
equation. There Is an addi­
tiOIIal rank cond.ltioD whlcb 
must also be satisfied. See 
DavfdlIon aDd MacKinnon 
(1994) and JolmslOn and DINan:Io (1997) for addit!onal ......... •• 

I ., I 

• AIr economettk: _ that we will DOt punue hen. any rtgIIt-haad Iide valallles 
that are DOt c:onelateel with the dlsturbances can be used at 1IIIa.. P' 

• The constant. C. is always a suitable instrument, 10 IMewI wm add It to die iDIInI-
ment list If you omit It. 

AIr erample. su~ you are inteIesteel in I!ItimatiDB a aIIIP'mpdoa .. lidloa ftI ..... 
alllsumpt!oo (CONS) to BJ'OISS domestic produI:t (GOP). Jaared _!Ii ..... (CONS(-l)). 
a ttend variable {llME} aDd a constant (C). GOP is mtkS !QUI aad thea*" alii' I 
with the residuals_ lbu may. however;, believe that peUllilent ea ........ ua (G). die Jac of 
the money supply (LM).laged CXlll5umptioD. TIME. aDd C. are eM, III ... aad _,~ 
lated with the dislwballCl!S, 10 that these variables may be used as IIIIa UIilI!IlIS. lbur 
equation specification is then, 

CCIIW c gdp COIUII-l) ti_ 

and the InsIr1IIilenIIist is. 
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c gov cons(-l) time 1m 

This specification satisfies the order condition for identification. which requires that there 
are at least as many instruments (five) as there are coefficients (four) in the equation spec· 
ificatlon. 

Furthermore. aD of the variables in the consumption equation that are believed to be 
uncorrelated with the disturbances. (CONS(-l). TIME. and C), appear both in the equation 
specification and in the instrument list. Note that listing C as an instrument is redundant. 
since BViews automatically adds it to the instrument list. 

Output from TSLS 

Below. we present TSLS estimates from a regresSion of LOG(CS) on a constant and 
LOG{GDP). with the instrument Ust C LOG(CS(·l)j LOG(CDP(-I)): 

0epend0IlI v.tIbIe: LOG(CS) 
_ ~ a.-tSquants 
iloilo: 1W15197 TIme: 11:32 
SanpIa(adj-.l): 1947:21991l:1 
1 __ .ationo: 192 ollar adjusting endpoints 

In"",., 'Ii CL9GfGSf-1U U?Gf00Pf•1U 

meN: GucliFilMi Sid Erp t."'"e 
C ·1.209268 0.039151 -30._ 

IOGlGt?P) 1 WH339 Q?918M pi ?!t7 

R~ 0.996168 Mean~_ 
~R_"'" 0.996148 S.D.dopendent_ 
S.E. of regoeIJIcm 0.028735 Sum squanod reaId 
F«aIi8tic 49399.36 OUlbln-Watson _ 
pmbtft1 . . 1 9 oooogg 

0..0000 
(lOP 

7.4802e6 
0AII2990 
0.158888 
0.10211139 

BViews identifies the estimation procedure. as wen as the list of instruments in the header. tit 
This informatlo.n is followed by the usual coefficient. Wtatistlcs. and asymptotic p-values. 

The summary statistics reported at the bottom of the table are computed using the formu· 
las outlined in Chapter II. Bear in mind that all reported statistics are only asympto.tically 
valid. For a discussion of the finite sample properties of TSLS. see Johnston and DiNardo 
(1997. pp. 355-358) or Davidson and MacKinnon (1984. pp. 221-224). 

BViews uses the mucturaI. residuals Ut = !It - x/bTSLS in calculating an of the sum­
mary stalistics. For example. the standard error of the regression used in the asymptotic 
covariance calculation is computed as 

8
2 = L!u;/(T- k). (12.12) 

t 

These structural residuals should be distinguished from the second SWge residuals that you 
would obtain from the second stage regression if you actually computed the two-stage least 
squares estimates in two separate stages. The second stage residuals are given by 



• 

&, = Ut - ~(~LS. where the it and it are the filled values from the first.tuse ftIRS· 
sioDS. 

We caution you thallOme of the l'I!JIOIted stadslics sbouId be iIIteqlIeIed willi an. For 
example, since different equation specifications will haYe different In.sIrumeut IisIs. die 
reported Jil for TSLS can be negatiYe even when there Is a amstmt in the equatiolJ 

Weighted 1SLS 
YOu can combine TSLS wtb weighted regmsioo. Simply enter your TSLS ... !Ie I'bt .. 
abcme, then p:1!SS the 0pIIDai button, select the W.,1ded LS/1'SI.S opdoD and enter die 

weJBhti08 series. 

WeI8fJted twO-Stap least squares is perfonned by mul1iplyq all «the data. Indo"", the 
iIIstrWIIf!DlS. by the WellJbt variable. and estimati08 TSLS on1be trmsIoImecllIIOdel. 
Equivalently, EVIews then estimates the coefftcIems usiII(I the formula. 

6w.rsLS = (X'WWZ(Z'WWZ)-lZ'WWX)-l (11.13) 

. X'WWZ(Z'WWZ)-l Z'WWlI 

The estimated covadimce maIriX is 

1:wrsLS = i(X·WWZ(Z'WWZ)-l Z1VWX)-I. (l1.14) 

T5l.5 with Aft errors 
YOu can adjust your TSLS estimates 10 acroont for sedal com!IIdoa by ....... AIt __ to 
your equation spedficatIaD. !Views will aulOmadcally tmw •• iiI the model to a ..,..... 
least squares problem. and estimate the model usiD8 iDsttumeDtaI YariabIa ""talk «lids 
pocedure may be found in Fair (1984. pp. 210-214). The oatpul from TSLS wIIII_ MO) 
spedficadon Ioob as follows: 

"LII 



I:leI'endenI VIIriIIbIe: LOG(CS) 
Method: Two SIIip I..eHI Sq ..... 
DaI!I: 10115197 nne: 11:42 
SampIe(~: 1947:2 1995:1 
Induded -..;oM: 112 .... adjusting endpoinIS 
ConwIge/Ice achieved _ 4 iterations 
Instrument list: C LOG(C!!f.1!1 LOGIG£!P(-m 

Variable Coelficlonl SId. E_ 1-!!I!!II\!f 

C -1.420705 0.203286 -6.989390 
lOG(GllP) 1.119658 0.025116 44.58782 

AR(1) 0.930900 0.022267 41.80595 

R~ 0.999611 Mundtlpendenlvar 
Adjueted R__ 0.999607 S.D. dependent_ 
S.E. of regression 0.009175 Sum sqUired resld 
F_ 243139.7 Durbln-WlitlOn sial 
Prob!F1IIdI!I!I!il 0.000000 
_AARooII .93 
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0.0000 
0.0000 
0.0000 

7.480286 
0.4621190 
0.01S909 
1.931027 

The OptionS button In the estimation box may be used to change the Iteration limit and 
convergence criterion for the nonlinear instrumental variables procedure. 

Rrst-order AR errors 
Suppose your specilication is: 

'lit = x/i3 + 'lOa + Ht 

Ht = PIU,-l + EI 
(12.15) 

where Xt is a vector of endogenous variables, and 'lOt Is a vector of predetermined vari­
ables, which, in this context, may include lags of the dependent variable. Zt is a vector of 

Instrumental variables not in 'lOt that is large enough to Identify the parameters of the .-
model. 

In this setting, there are important technical issues to be raised in connection with the 
choice of instruments. In a widely quoted result, Fair (1970) shows that if the model is esti­
mated using an iterative Cochrane..()rcutt procedure, all of the lagged left- and right-hand 
side variables (!It-t, Xt_t. 'lOt-I) must be included In the instrument list to obtain con­
sistent estimates. In this case, then the instrument list should Include 

(12.16) 

Despite tbe fact the EViews estimates the model as a nonlinear regression model, the first 
stage instruments in TSLS are formed as if running Cochrane-Orcutt. Thus, if you choose 
to omit the lagged left- and right-hand side terms from the instrument list, £Views will 
automatically add each of the Jagged terms as instruments. This fact is noted In your out· 

put. 
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HfgherOrder ARerRIIS 

The ARCl} resuJt extends naturally to spedflcalions IDVoIviD& ...... anIer IM!riIl COI'R!Ii­
don. For eumple. if you include a single AR(4) terJII in your model, tile oalUrill iDsIrumml 
list will be 

(111" Z" 11.-. %t-+ 111.-,> 

If you include AI lerms from 1 Ihrougb 4. one poaII.'Iie iDlUUlDeaIilt II 

(111" Z" 11.- It ···.11,- .. %'_1' •••• %t ... 1I1t_l • .... 1I1t _,,> 

(12.m 

(12.18) 

Note that wbile theoretically valid, this iIIsttument list hu a _ maher of OfUIdtDdfy­

iDS insb'UllleOts. wblch IIUIf lead to computational dlft!cultiell and _1DIIe SImple 
biases (Fair (19M. p. 214). Davidson and M.:KiDDoD (1993. pp. 122-224)). in tIleoIy, add­
iDS insb'UllleOfS sbouId always Improve your estimates. but IS a JDCIbl-tte£ tbis may 
not be 50 in small samples. 

Examples 

Suppose that you wish to estimate tbe consumption fuDCdon by ~ 1eaIl..-, 
aUowiD8 for first-order serial contialion. You may then use two-ttase IeaIl squaR'S with 
tile variable list, 

COIUI c: gdp ar I 1) 

and iJIstnuDIIDt list, 

c: gov log(lDl) ti_ conal-l) gdp(-l) 

Notice that tile lap of both tile dependent and endCJ8UlOUl ftI'IabJes (CONS(-l) and 
COP(-I)), are included in tile JnsInJmeDt lilt. e Similarly, c:onsider the COIISUDlplion function. 

COIUI c: COIUI 1-1) gdp ar (1) 

A valid InsIrumeDt list II pen by 

c: gov log/ti) ti_ C'ODal-ll COIUI(-2) gdp(-11 

Heft _1RI1l the Jas8ed left and rIgbt-baIId side variables from tile ...... spec'. atim IS 
pedetumiDed and add tile Jas8ed values to tile intIUumeDIliIl. 

Lastly, c:oask'- tbe specification. 

CCIlII c gdp ar(l) ar(2) ar(3) ar/4) 

.AddbIg aD of tile I1!Iennt iDstrumeIIts in the list, _ have 
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c gov log(ml) time cons(-l) cons (-2) cons (-3) cons (-4) gdp(-l) 
gdp(-2) gdp(-3) gdp(-4) 

TSLS with MA errors 

You can also estimate two-stage least squares variable problems with MA error terms of 
various orders. Th account for the presence of MA errors, simply add the appropriate terms 
to your specification prior to estimation. 

illustration 

Suppose that you wish to estimate tbe consumption function by two-~ least squares. ... 
accounting for first-order moving average errors. You may tben use two-stage least squares • 
with the variable list, 

cons c gdp mall) 

and instrument list, 

c gov log(mll time 

EViews will add both first and second lags of CONS and GOP to the instrument list. 

Technical Details 

Most of the technical details are identical to those outlined above for AR errors. EViews 
transforms the model that Is nonlinear in parameters (employing backcasting, if appropri­
ate) and then estimates the model using nonlinear instrumental variables techniques. 

Note that EViews augments the instrument list appropriately by adding lagged Ieft- and 
right-hand side variables. There is an approximately involved here, however. in a trunca- .. 
lion of the lag structure. in principle, each MA term involves an infinite number of AR • 
terms. Clearly it is impossible to add an infinite number. of lags to the instrument list. 
instead, £Views performs an ad hoc approximation by adding a truncated set of instru-
ments involving the MA order and an additional lag. If for example, you have an MA{5), 
EViews will add lagged instruments corresponding to lags 5 and 6. 

Nonlinear least Squares 
Suppose that we have the regression specification 

Yt = f(x t• fJ) + ft. (12.19) 

where f is a general function of the explanatory variables Xt and the parameters fJ. Least 
squares estimation chooses the parameter values tbat minimize the sum of squared residu­

als: 



• 

2 S(fl) = EhI,- f(z" /1) = (, -/(X, /1)'(,- I(X, /1) (lUG) 
t 

We say that a model 15linttu in pGlWiU!tJ!lS if tile dedvatiws of / with iiijitd flO the 
parameters do not depend upon fl; if the derlvatlves are funcIfoas of II • we say tbat the 
model is nonlimraT in ptl1UJIIetm. 

For eJWDPIe, consider" the model given by 

(l2.2J.) 

it • easy to see that tills model is linear In illl parametelS.lmplyiDs dIat it taD be ""'m,'e" 
usin8 onfInary least squares. 

In contrast. the equation specificalion 

" = fllL~Jtf + (t (lUZ) 

bas derivatives that dtpend upon the elements of fl. TIlen! • 110 war 10 I1IU1'lIII(Ie the 
tenDS In this model so that ordinary least squ_ can be UIed to mlDImiD! the _f.. 
squared residuals. We must use DODlInear least squares tedmiquet flO estimate the param­
eters of the model. 

Nonlinear least IqUatelI mjohpi,.... the sum-of-sqwued raiduall with lesp«t to the cIIoia 
of parameterS fl. WJdIe there • DO dosed fonD solution for the parameter ___ the 
estimates satisfy the first-onler CODditiOIlS: 

(G(/1)'(,- I(X, fI» .. O. (11.13) 

where G(fI) • the matrix of first derlvatiws of f(X, /1) With lespect to fl (to"""" 
DOtation we suppress the dependence of G upon X). The .......... covuiaDI:e IDIIrtx is 
given by 

(l2.24) 

where "NUS are the ~ parameters. FOr additional diIaIsIklD oh,mIfp e;dm. 

lion. see ~ and RubInfeld (1991. pp. 231-245) or DariIaoD and Mad'lnnon (1993). 

Estimating NLS Models In Mews 

It Is easy to tel EYJeWS dIat you wish to estimate the param ItiS of I model DSiuI--­
ear least squares. EVit!wS automatkaUy applies nonlinear least ...... to IIIJ nwtllioD 
equation that. nonlinear In iIlI coefficienIs. Simply select CIIJIec:tINew ~ 
enter the equation in the equation specification dlaIoB box and dic:k OIl. EViews will do aD 
of the work of estimatiDg your model usin8 an iterative aJsoolthm.. 

A fuU teclmk:aI discussion of llelatfve estimation Plocedun!s is Pluvidtd ill Appendbt D. 
-Estimation Algorithms and OptIons·, beginning on page 663. 
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Speclfying Nonlinear Least Squares 

For nonlinear regression models, you will have to enter your specification In equation form 
using EViews expressions that contain direct references to coefficients. YOu may use ele­
ments of the default coefficient vector C (e.g. C(1), C(2), C(34), C(87)), or you can define 
and use other coefficient vectors. For example, 

y • ell) + e(2)*(kAe(3)+lAc (4» 

is a nonlinear specification that uses the first through the fourth elements of the default 
coefficient vector, C. 

1b create a new coefficient vector, seleet Objeets/New Object/Malrlx-Vector-Coef/Coeffi- Iri.& 
dent Vector in the main menu and provide a name. You may now use this coefficient vee· .., 
tor in your specification. For example, if you create a coefficient vector named CF. you can 
rewrite the specification above as 

y _ cf(ll) + cf(12)*(kA cf(13)+l Acf(14» 

which uses the eleventh through the fouIteenth elements of CF. 

You can also use multiple coefficient vectors in your specification: 

y _ 0(11) + C(12)*(kA cf(lJ+I A cf(2» 

which uses both C and CF in the specification. 

It is worth noting that EViews impliCitly adds an additive disturbance to your specification. 
For example, the input 

y • (e(l)*x + c(2)*z + 4)A2 

is interpreted as 1ft = (c(l)Zt + e(2)zt + 4)2 + ft, and EViews will minlmi2:e a 
2 2 

S(e(l), e(2» = Ij(Yt - (c(l)Zt + e(2)zt + 4) ) . (12.25) 
t 

If you wish, the equation specification may be given by a simple expression that does not 
include a dependent variable. For example. the input 

(e(l)*x + C(2)*2 + 4)A2 

is interpreted by EViews as -(e(l)Zt + c(2)zt + 4)2 = ft. and EViews will miuImize 
22 

S(c(l), e(2» = Ij(-(c(l)Zt + c(2)zt + 4) ) . (12.26) 
t 

While EViews will estimate the parameters of this last specification, the equation cannot 
be used for forecasting and cannot be included in a model. This restriction also holds for 



any equation that includes coeffidents to the left of the equal .. F« eumple. If JOU 
specify 

EVlews will find the values of e(l) and C(2) that mlnlml'lA' the sum of squares 01 the 
implicit equation 

(U.l7) 

but the estimated equallon cannot be used in fon!castins or induded In a model, siDce 
there Is DO dependent variable. 

• EstimatIon Options 

StartiD8 Values. ltellitive eslimallon procedures require startiD8 YaJaes for the"""'" .11' 
of the model. 'l'bere are no general rules for teIecIiD8 starIiD8 values for paraJIIiI!IIe!n TIle 
closer to the true values the better. $0 If you bave reasonable guesses for (lilJ'illHll!l'values. 
these can be usefuL In some cases. you can obtain good star'tID(I values by I!JIt!IDIIIinB a 
restricted version of the model usiD8 least squares. In general. bollltia;. JOII will bPe to 
experiment in 0Ida' to find starting values. 

EYIE'WS uses the values in the eoefficient vector at the time JOII bE8In the esdmalloD ~ 
dun! as starting values for the iterative procedure. Ills easy to eumine aDd ....... these 
coeffideDl starting values. 

1b see the startiDg values, double dick on the coeffident wctor ill the .... Idile dIR:duI,. If 
the values appear to be reasonable. you can clote the windOW' aud fIIiJU!Ed WftIIl!JIt!matinC 
your model 

If JOU wisb to mange the starting values, first maIce cenaJn that the ........ ' I!et'" of 
your ooeifjo lentil Is ill edit mode, then enter the ooeffident values. Whm you an: fillli""'d 

settiDs the iDillal values. dote the coefficient wctor window aDd 1!JIt!m .... yaw: model. 

1bu may also set starting coeffidenI values from the command wiDdow ..... the MIlAM 
command. Simply enter the PARAM keywon:I, followlnB by eadl coetfk Ieot aDd desIIed 
value: 

par .. cll) 153 c(2) .68 e(3) .15 

sell Cm -153, C(2) -.68, aDd C(3) - .15. 

See Appendix D. -Estimation AJaorithms aDd Opdoos" on ,. 663. for fuathet .... aiIs 

Dedvalift MedIod8. Estimation in EViews requires computation of the dal.adwes 01 the 
JegIessinn function WftIIlespect to tbe parameteIS. EVIewI fIIUiidts you with the optiorl of 
compuliog analytic expaessioos for these derivatives (If posilliel. or COIIIfIIIIlDI finite dIf· 
ference numeric derivatives in cases wbere the derivative Is DOl CODStanL I'Ui:tbermGI'e. If 
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numeric derivatives are computed. you can choose whether to favor speed of computation 
(fewer function evaluations} or whether to favor accuracy (more function evaluations}. 
Additional Issues associated with ARIMA models are discussed in "Estimation Options" on 
page 318. 

Iteration and Convergence Options. YOu can control the iterative process by specifying 
convergence criterion and the maximum number of iterations. Press the Options bunon in 
the equation dialog box and enter the desired values. 

EVlews will report that the estimation procedure bas converged If the convergence test 
value is below your convergence tolerance. See "Iteration and Convergence Options· on 
page 669 for details. 

In most cases, you will not need to change the maximum number of iterations. However. 
for some difficult to estimate models. the iterative procedure will not converge within the 
maximum number of iterations. If your model does not converge within the allotted num­
ber of iterations, simply click on the Estimate button, and, if desired, increase the maxi­
mum number of iterations. Click on OK to accept the options, and click on OK to begin 
estimation. EViews will start estimation using the last set of parameter values as starting 
values. 

These options may also be set from the global options dialog. See Appendix A, "Estimation 
Defaults- on page 649. 

Output from NLS 

Once your model has been estimated. EViews displays an equation output screen showIog 
the results of the nonlinear least squares procedure. Below Is the output from a regression 
of LOG(CS) 00 C, and the Box-Cox transform of GDP; 

DepeItdenI ~ LOGICS) 
_LealSq_ 
Dale: 1MMIl' Ttme: 11:51 
S8mp1e(adjIIIIed): 1947:11995:1 ___ :193 .... ~~ 

Con./8IlI8'hlI adlIe<ed ..... 8O IIIIl111on1 
L9GlSfS:c en }t9(2tlGl?eCl3l;OOpl 

r..:"M Sir'! Egg bP" 
C(1) 2.851780 0.279033 10.22Q2.4 
C(2) 0.2575112 0.0411<47 8.2110254 

"~I g~82QS1 g g7{)2f)3 a gMA?d 
R«juared 0.997252 Mean dependent var 
Adjusted R-equa18d 0.997223 S.D. dependent _ 
S.E. of regre .... n 0.024532 Akalke Info criterion 
Sum IqUlIlIICI ..sid 0.114350 Schwarz a1terIon 
Loa- 443.2542 F-stlliatlc 
DtJrbin..Watson • II J~SiiIl Problf.,I""' ..... ) 

e$ 
0.0Il00 
0.0Il00 
g.OOQO 

7.478058 
0.0466503 

.... 582220 

.... 511505 
34489.84 
g.oooooo 

• 



If the estimation procedure has COJM!IIt!d. EViewI wID report tills fact. ....... die 
number of iterations &hat were required. If the iteratiYe prlllll!duR! did IlOl amftllll!. 
EViews wID report ·Convergt!1lCl' not achieved after" followed by die IIlIII!ber of iIJI!Iatious 
attempted. 

Below the line describing COI"ergeDCe. EViewI wID npat die JM'M!&!IF ..,...1. at"", so 
that you. caD easily interpn!l the estimated coefIicieDts of your model 

EViews provides you. .... aD of the usual summary IIaIIIIict 81. 'm _ 'rlr JIIu. 
vided that your model has conVl!fBed. the SWIdanI SWfstitIlIftUIts I0Il tellS iftllqfffp> 

toIiaI1ly vaUd. 

• Weighted NLS 

• 

Wl!i8hts caD be used in nODliDear eslimalion in a manJ!e!" apaJapus to 1ft!i(IIltedllDear 
least sqtJi1!1!I. 1b estimate an equation using welflbted nm'frtar least IqIUIn!S, euteI' your 
specification. pms the OptIons button and cIkk on the We'" If. L$fTSI.S opdoo. f1II in 
the blank after WefCbt: with the name of the weight series and then """"Ie the equation. 

EViews mjnjmlps the sum of the welflbted squaaed R!liduals: 
2 2 

S(/I) = EWt(lIt- j(z" P» = (ll-/(X,/1)'W'W(,1- /(X,/1) (12.28) 
t 

with lespecl to the paramete!S jJ. where w, are the values of die weflblll!del I0Il W is 
the mattilt of weights. The lil:st-mler cooditions are sfYI!Il by 

(G(/J)'WW(r-/(X,/J) == 0 (1.1.29) 

and the COYariance esdmate Is computed as 

l:wNLLS == .2(G(bWNu.sJ'WWG(6wNu.s)f1 
I (lUO) 

NLS with AR errors 
EV_ wID esdmate DODIInear R!8Ieaion models wfth ....... II PIe _ ...... ....., 
select 0IJfecIJINew 0bJectIIqna ...... IX" ~ .... '1 •• J" I 1ft your 
model uslng £Views apmsions. followed by an additive term dI!IatbJIDc the All ~ 
lion enc:Josed in square bradras. The AI term $bouId COIIIiIt of • coeJII! ..... ' 'is' !. 
tor each AI term. separated by commas. For example. if you. wish to esdmate 

CSt'" cl+GDPt"'+ut 
(12..J1) 

ut = CSUt_l + C4Ut_2+ fit 
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os • eU) + gdpAe (2) + [arll)-e(3), ar(2)-e(4) J 

See "How EVlews Estimates AR Models· on page 310 for additional details. BViews does 
not currently estimate nonlinear models with MA errors, nor does it estimate weighted 
models with AR terms-if you add AR terms to a weighted nonlinear model. the weighting 
series will be ignored. 

Nonlinear TSLS 

Nonlinear two-stase least squares refers to an instrumental variables procedure for esti­
mating nonlinear regression models involving functions of endogenous and exosenous 
variables and parameters. Suppose we have the usual nonlinear regression model: 

(12.32) 

where tJ is a Ie -dimensional vector of parameters. and Xt contains both exogenous and 
endogenous variables. In matrix form, if we have m :2: k instruments Zt. nonlinear two­
stage least squares minimizes 

S({n = (y- !{X. {3))'Z(Z'Zr1Z'(y- !(X. (;I» (12.33) 

with respect to the choice of (;I. 

While there is no closed form solution for the parameter estimates. the parameter esti­
mates satisfy the first-order conditions: 

G({WZ(Z'Zl-lZ'(y-!(X./3» = 0 (12.34) 

with estimated covariance given by 

!JTSNLLS = 82{G(bTSNLLS)'Z(Z'Zl-lZ'G(bTSNLLS»-1. 02.35) 

Howto Estimate Nonlinear TSLS In EV\ews 

BViews perfonns the estimation procedure in a 5insJe step so that you don't have to per­
form the separate stages yourseH. Simply select ObJec:t/New ObJeetIBquation ... or Quiekl 
Estimate Equadon ... Choose TSLS from the Method: combo box. enter your nonlinear 
specification and the list of instruments. Click OK. 

With nonlinear two-stage least squares estimation. you have a great deal of fJexibility with 
your choice of Instruments. Intuitively you want instruments that are correlated with 
G(m . Since G is noulinear. you may begin 10 think about using more than lust the exog­
enous and predetermined variables as Instruments. Various nonlinear functions of these 
variables, for example, cross-products and powers. may also be valid Instruments. One 
should be aware, however, of the possible finite sample biases resulting from using too 
many Instruments. 

• 



• 

, 

Weighted NonRnear Two-stage least Squares 

Weights can be used in nonlinear two-stage letst squares estimaIIoD. SImply' .wid -waling 
to your aonHnear TSLS spedfic:aUon above by psesslD& theOptI.I. butum. rell .... 
We""" J.SJTStS option, and entedDg the _ of the weIPt III!des. 

The objective fun<:tioD for weiSbted TSLS is, 

S{fJ) - (~-f(X.P»'WWZ(Z'WWZ)-lZ'WW("_/(XtP». (lZ..36) 

The R!(IOI1eIl staDdard errors are based on the aJl/ariaDa! IIWI'i& estimaIe sma by 

1:wrsNLLS = i(G(b)'WWZ(Z'WWZ)-1Z'WWG(6»-1 (11m 

wben' b. "wrsNLLS' Note that if you add AR or IotA terms to a w_eII ..... u-.:a1ioD. 
the wei(!bdng serits will be ignored. 

Nonlinear Two-stage least Squares with AR errors 

WbiIe we wiJl not 110 into much detail here. DOte that lW_ can .......... e -u.--TSl.S 
models wben' t1leR are a\l1mtgloessive error 1em1S. EViews does DOt CUiitiidy __ _ 

nonlinear models with MA errors. 

1b esdmate your model, simply 0JlI!II your equation spedtlc:adou window ... - JOUr 
lIOIIIiDear specification. including ail AR tenDS, aDd provide your IDstiuIDeIIlIIt. AIr 
example, you muId enter the ItgleslllOD spedflcation 

C8 _ exple(l) + gdp·e(2)) + (arll)-e(3)] 

with the lnsIrument Ibt 

EVieWs will uausiam the DODIiDear I. loa model ill dt:ia1becl1D ............. All Y0d-
els- 011 paae 307, aDd thea estima_ nonlinear TSLS 011 the bausiaillll!d ..... Be ... ..... 
the insIrIImeDtS C aDd COY. FOr DOJJIiDear models with All emn. EVieWs _ a cau.s. 
Newum aJpithm. See "OptImIzation AIgorithms- 011 JIIIIe 663 for fUrdte: dehiIs 

Solving Estimation Problems 

EVieWs m" not be able to estimate your noDUnear .... oolbe 8nt .'"IIL SoIJle. 
times, the DOII ..... ar Jeul squares procedure wiIIllOp I~. Odaer times, EVieWs 
mIIJ stop estimation after S4!'f1!I"al iterations without ac:blerinB COiiV I ooe. EViews .... t 
eveD report that it caDDOt improve the sums-of-squares. Wblle t1leR aR DO lIP"" III! rules 
011 how to proceed if you eoeouruer these estimation pmbk!ms, t1leR are a few .-m 
__ you mi8ht want to examine. 
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Starting Values 

If you experience problems with the very first iteration of a nonlinear procedure, the prob­
lem Is almost certainly related to starting values. See the discussion above for how to 
examine and change your starting values. 

Model Identification 

If EVlews goes through a number of iterations and then reports that it encounters a -Near 
Singular Matrix", you should check to make certain that your model is identified. Models 
are said to be non-identified if there are multiple sets of coefficients which Identically yield 
the minimized sum-ot-squares value. If this condition holds, it is impossible to choose .. 
between the coefficients on the basis of the minimum sum-of-squares criterion. • 

For example, the nonlinear specification, 

Yt = Ptf:J2 + p~:r;t + ft (12.38) 

is not identified, since any coeffICient pair (Pl' P2) is indistinguishable from the pair 
(-Pl' -P2) in terms of the sum-of-squared residuals. 

For a thorough discussion of identification of nonlinear least squares models, see DaVidson 
and MacKinnon (1993, Sections 2.3, 5.2 and 6.3}. 

Convergence Criterion 

EViews may report that It is unable to improve the sums-of-squares. This result may be evi­
dence of non-identification or model mlsspeclfication. Alternatively, it may be the result ot 
setting your convergence criterion too low, which can occur if your nonlinear specification 
is particularly complex. 

If you wish to change the convergence criterion, enter the new value in the Options dialog. .. 
Be aware that increasing this value increases the possibility that you will stop at a local 
minimum, and may hide misspecification or non-identification of your model. 

See "Setting Estimation Options· on page 666, for further details. 

Generalized Method of Mements (GMM) 

The starting point of GMM estimation Is a theoretical relation that the parameters should 
satisfy. The idea is to choose the parameter estimates sO that the theoretical relation is sat­
isfied as "closely' as possible. The theoretical relation is replaced by Its sample counterpan 
and the estimates are chosen to minimize the weighted distance between the theoretical 
and actual values. GMM is a robust estimator In that, unlike maximum likelihood estima­
tion, It does not require information of the exact distribution of the disturbances. In fact, 
many common estimators In econometrics can he considered as special cases of GMM. 



• 

, 

Z!l8-Chlpter ll. AdditiulIlllleglessiol. Methods 

The theomk:aI nfation tbat the pMaIIH!terS sbouJd sadsfr 1ft UIIWIJ CA ft. ffly a/ftdi­
lions betWeen some (possibly nonlinear) function of the parametel'I /(9) and a set of 
Instrumental variables %t: 

E(/(8),z) =: 0, (11.39) 

where , ate the paI1IJIIeters to be estimated. The GMM esdJutor .d!CIS paRlIO 11 esti· 
lUteS so tbat the sample correlations between the IDsUumeIIIlI aDd the f"'''1ioD / Ift:_ 
close to zero as possIJle. as defined by the cx:Itedon ful\ctJo1r 

J('l = (m('»' Am(1) , (U.40) 

where m(9) "" f(IJ)'Z aDd A is a welgbtlnglUtrix. Any.,.. I!lricjlOllldwJ s .. 

matrix A will yield a consistent estiInate of q . Howen!, it em be shown ilia a 1+ rr 
(but DOt suffident) condition to obtain an (a.,..ptotlc:ally) effident CIIIiIuIe of II is 10 set 
A equal to the in_ of the covariance manu of the sample JIIOIDfIIIs m . 

Many stmdanJ ertlinatunl. incIucIiDs aU of the system estImatcn IBavidecl ill EVJew.s. till 
be set up as special cares of CMM. I\Jr example, the onIinarr Rast IIQWIIa .......... till 
be viewed as a CMM f'!Itimator, based upon the c:ondJtionr that each of the ............ 'RIi-
abies is uncorrelated with the mldual. 

Estimation by GMM in EViews 

1b estimate an equation by CM.M. eithef create a DeW equation object by J ",. 01 J II/ 
New ObjecllJ!4aalleD. or pn!SS the ",,"mate bunon In the tooJ)ar of an ........ equ"'oiL 
From the Equation SpedficaIIon dialog c:hoose e.nmatioD MedIod: GMII. The ..... ....... 
specificatlon dialog wiI1 dlange _ depicted below. 

1b obtain CMM esti­
!nateS in EVlews, )lUll 

need to write the 
lIJCIIIII$ eondidon as an 
orfhotoD.IIItY conditlon 
between an apcealoD 
indudinfJ the panmeteI'I 
aDdasetofiDStrIImeD­
tal variables. There 1ft 

two ways you can write 
the orthogonality c:ondi­
tiCAl: with and without a 
dependent varlabIe. 

U you spec:ifJ the equa.. 
tiCAl eithef by J.istin8 varf. 
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able names or by an expression with an equal sign. BViews will Interpret the moment 
condition as an orthogonality condition between the instruments and the residuals defined 
by the equation. If you specify the equation by an expression without an equal sign. 
EViews will orthogonalize that expression 10 the set of Instruments. 

You must also list the names of the instruments in the Instrument lbt field box of the 
Equation Specification dialog box. For the GMM estimator to be identified. there must be at 
least as many instrumental variables as there are parameters to estimate. EViews wiD 
always include the constant in the list of instruments. 

For example, if you type 

Equation Specification: y c x 

Instrument list: C % W 

the orthogonality conditions given by 

If you enter an expression 

E(lIt- c(l) :-c(2)xt) = 0 

E(lIt-c(1)-c(2)xt)zt = 0 

E(lIt- c(l) - c(2)xt)wt = 0 

Equation Specification: c (1) *109 (y)+xAc (2) 

Instrument list C iii %(-1) 

the orthogonality conditions are 

E(c(l)logllt + x~2}) = 0 

(12.41) 

• 

E(c(l)Iogfll + x~2})Zt = 0 

E(C(l)logYt+x~2»Zt_l = 0 

(12.42) • 

On the right part of the Equation Specification dialog are the options for selecting the 
weighting matrix A In the objective function. If you select Weighting Matrix: Cross see­
tion (White Cov). the GMM estimates will be robust to heteroskedasticity of unknown 
form. 

If you select Weighting Matrix: Time series (HAC). the GMM estimates will be robust to 
heteroskedasticity and autocorrelation of unknown form. For the HAC option. you have to 
specify the kernel type and bandwidth. 

• The Kernei Optloos determine the functional form of the kernel used to weight the 
autocovariances in computing the weighting mattlx. 



• 

• 

• The Balldwldtlt SeIectioD opdon detenniDes bow the -wall sMn by die IIemeI 
cJtaDce wltb the lags of the autoalYariaJKes ID the c:omputatioD of die wdlfdiic 
matrix. If you $I!Iect I'bed bandwidth, you may either f!II1I!r a IIIQ!!beso for tile band­
widtlt or type nv to use Newey aDd \Vest's fIud baDdwidda sel! IkIII alk:iiou. 

• The Pn!wh.Ik:idDg option runs a preIImiDary VAR(l} prfor to I!!If!maIiou to "soak 
up- tile correlation in the moment condftioDs. 

The tedm.iCaI notes in -Generalized Method of Momen1I (GMN)- OIl,. SIS claaf)e 
these optfOllS in more detail 

Example 

llIucben (1986) coll$lden the problem of estimating tile taste paramel8S /I. "1 fnIIII tile 
Euler equation 

(/lR,+ltif;J.t-1)'a-, == 0 (JU3) 

whce we useinstnJmenls ze == (1, tift> tift_I' rp rt_l)'· 1IH,tfm-theJ!_ "'5/1, 
'Y by GMM. fiB in tile Equation Specifk:ation dIaIo& as 

EquatiOn Specifk:atlon: cll) *rl+l) 'V ( ... 1) AI_c(2) )-1 

Insttumentlist: c v v(-l) r rl-l) 

The eslimalloa result u.sing tlte default HAC W ' ...... MatrIx opdon loeb as ruIows: 

D I ,. IIIIIIiIIoIII: .....".e. h, 
IillllleltGI 7 ................. _ 

DIll: Tll1I8S1' ,...., ~ 
S ,. I , 1 0 ,.1112 
......,. rr • ........ 1 ••• \ '* 
Hop. I ...... 
BaJ .. -(3) 
1C'MIIt ..... 
Ceo ' .... *...,...,7 ...... "'.1:11.7........ • 
C(1J'f!(+1)'W(+1),(-CC2D-1 _wew"",,," 

C(1) 

PI 
8.EOfa# 7 , 

91tr'5". 

p.' • 
o.DIIIfIII ,-
0.1540114 ,,., 

W: PH 
D.01IJS1 __ 
87118 ,,,.. 

Son ........... 
hI" 5 en" 

Hole that wIleD you tpedfy an equaliOll without a depen.1eat Niiallle. EViI!ws does lIIOI 
report some of the fI!8I1!SSkm stalistic:s sucb as tile R-tqUmIII. The ,HI ...... 1Itf)OI1I!d at 
the bottom of the table Is the minlmize<1 value of tile objecltft! ftmcdoD The ~ can 
be used to carry OIIt hypothesis tests from GMM esdmatiOn; see Neny ad \IUest (1987a). 
A simple awJieatiOll of the htalislic: is to test the vaWity of Otelldeudf,_ .WUiLtlOlls 
wIleD you haft mOle lDstnJments titan parameters to estimate. In dais eumpIe, 1ft! haft 
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five instruments to estimate two parameters and so there are three overldentifying restric­
tions. Under the null hypothesis that the overidentifylng restrictions are satisfied. the J-sta­
tistic times the number of regression observations Is asymptotically X2with degrees of 
freedom equal to the number of overidentifying restrictions. You can compute the test sta­
tistic as a named scalar in EViews using the commands 

scalar overid=~gmm .• regobs*e~gmm •• jstat 

scalar overid-psl-occhisq(overid,3) 

where HQ_GMM is the name of the equation contalnlng the GMM estimates. The second 
command computes the p-value of the test statistic as a named scalar OVERID_P. To view 
the value of OVERID_P. double click on its name; the value wID be displayed in the status • 
line at the bottom of the EVIews window. 

Commands 
1b estimate an equation by weighted least squares, specify the weighting series in paren­
theses with the W= option after the 1 s command: 

eq1.1s(w=1/pop) cs c gdp cpi 

1b estimate an equation by two-stage least squares. follow the t sIs command with the 
dependent variable, the Independent variables. an @ sign, and a Itst of instruments: 

equation eq2.tsls cs e gdp • c es(-l) gdp(-l) 

1b estimate an equation by GMM, follow the gmm command with the dependent variable, 
the independent variables, an @ sign, and a list of instruments that define the orthogonal­
ity conditions: 

equation eq3.gmm es e gdp • c c8(-1) gdp(-l) 

You can set the starting values prior to nonHnear estimation by the command 

param c(1) 1.5 c(2) 1 

or 

c(l) • 1.5 

c(2) - 1 

1b declare a coefiicient vector. specify the number of rows in pareatheses and provide a 
name: 

coef (4) beta 

declares a four element coefficient vector named BETA fIDed. with zeros. 

• 



• 

see "Equation" OD page 21 ohlle ComlIuuu1I1l1d ~ .-tsaaal!fuu CXIIIIpIeIe list 
of eommands aDd options for single equation estimation In EVIews. 

)0 



Chapter 13. Time Series Regression 

In this section we discuss single equation regression techniques that are important for the 
analysis of time series data: testing for serial correlation, estimation of ARMA models, 
using polynomial distributed lags, and testing for unit roots in potentially nonstationary 

time series. 

The chapter focuses on the specification and estimation of time series models. A number 
of related topics are discussed elsewhere: standard multiple regression techniques afl! dis­
cussed In Chapters 11 and 12, forecasting and Inference afl! discussed extensively in 
Chapters 14 and 15, vector autoregressions are discussed In Chapter 20, and stale space • 
models and the Kalman filter are discussed in Chapter 22. 

Serial Correlation Theory 
A common finding in time series regressions is that the residuals are correlated WIth their 
own lagged values. This serial comlation violates the standard assumption of regression 
theory that disturbances are not comlated with other disturbances. The primary problems 
associated with serial corfl!lation are: 

• OLS is no longer efficient among linear estimators. Furthermore, since prior residu­
als help to predict cumnt residuals. we can take advantage of this information to 
form a better prediction of the dependent variable. 

• Standard errors computed using the textbook OLS formula are not correct. and are 
generally understated. 

• If thefl! are lagged dependent variables on the right -hand side. OLS estimates are • 
biased and inconsistent. 

EViews provides tools for detecting serial correlatiun and estimation methods that take 
account of its presence. 

In general. we wID be concerned with specifications of the form: 

'lit = x/tJ+ 11., 
(13.1) 

whefl! Xt is a vector of explanatory variables observed at time t. Zt_l Is a vector of vari­
ables known In the previous period, tJ and "y afl! vectors of parameters. Ut Is a distor­
bance term. and Et is the innovation In the disturbance. The vector Zt -1 may contain 
lagged values of 11. , lagged values of e. or both. 
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The disturbance ut is tl!!JDed the ~ rrsfdJulI.. It is die I 'dull bad 011 tile 
structural componeut (Z.,8) but not using the inlormatiOD C'O!!t.i!Ined In Z,-I' TIlriDncJq· 
tlon (t is also Jmowu as the cnre-pf!rlDd tJhetut (oiruut enor or the JI"IiIIitJiRt ma: It 1$ die 
di1fereDce between the actual value of the depeDdent variable and a faIeeaIt made 011 tile 
basis of the Independent variables and the past forecast erma. 

The Ffrst-Order Autoregressive Model 

The simplest and most widely used model of sedaI correIatiOD is die finII..GIder .......... 
sive, or AR(l), model. The AR(l) model is specified as 

lit = %/tJ + ut 

ut = pt.&t-l +EC 
(lU) 

The parameter p is die first-order serial correJatiOD coeflicjral ID effect, die AJ(l) ... 
incorporates the residual from !be past observatiOD IDto the J:I!BIe5IIiOD mocIet _die all· 

rent observatioD. 

Higher-Order Autoregressive Models 

More geueuIIy. a ~D with an auton!gressiYe ~ of ordI!r p, AR(p) enor 1$ 

given by 

11, = ze'tJ + ut 

ut = Ptut-l + PJut-2 + ... + pput-p + Et 
(U.3) 

The autoc:om!IatiODs of a stationary AJ(p) ..-grachMllJ die out 10 -. willie die 
paniaI autcJCOm!latlons for lasslarJer than 11 are zero. 

Testing for Serial Correlation 

Before you use an estimated equation for statisticallDfen!Dte (q.. IayllGd ' .. aaI 
fI:ecastInI), you shoukl generally examine die residuals _ evidera of serial ClIHi rhlion 
EViews provides several methods of testlnS a spedfk'atiOD for tile JAW! Ie of teriaI_ 
Iatlon. 

The Durbin-Watson StatistIc 

EViews nrpxts the Durbin-Watson (OW) statisdI: as a pan of tile ........,. hi' 1m out­
put. TIlr Durbin-WatsoD statistic 1$ a test for fim-cmler serial Wi. 'ation Mole t'onIWIJ. 
the OW statisIk: _ the llnear association btlwem ~ I"'SiduIis from a ....... 
sian modeL The Durbin-WIlSOn is a test of the IIypothesis p == 0 ID tile spedficatIoD; 

ut = Put-I + Et· CU.4) 
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If there is no serial correlation, the OW statistic will be around 2. The OW statistic will fall 
below 2 if there is positive serial correlation (in the worst case,lt will be near zero). If 
there is negative correlation, the statistic wiD lie somewhere between 2 and 4. 

Positive serial correlation is the most commonly observed form of dependence. As a rule of 
thumb, with SO or more observations and only a few independent variables, a OW statistic 
below about 1.5 is a strong indication of positive first order serial conelation. See Johnston 
and DiNardo (1997, Chapter 6.6.1) for a thorough discussion on the Durbin-Watson test 
and a table of the significance points of the statistic. 

There are three main limitations of the OW test as a test for serial correlation. First, the dis-
tribution of the OW statistic under the nuD hypotheSis depends on the data matrix x . The " 
usual approach to handling this problem is to place bounds on the Critical region, creating 
a region where the test results are inconclusive. Second, if there are lagged dependent vari-
ables on the right-hand side of the regression, the OW test is no longer valid. Lastly. you 
may only test the null hypothesis of no serial correlation against the alternative hypothesis 
of first-order serial correlation. 

Two other tests of serial correlation-the Q-statistic and the Sreusch-Godfrey LM test­
overcome these limitations, and are preferred in most applications. 

Correlograms and Q-statistics 

If you select vlew,lResidual Tests/Correlogram-Q-ttatlstla on the equation tooIbar, 
EViews will display the autocorrelation and partial autocorrelation functions of the residu­
als, together with the Ljung-Box Q-statistics for higb-order serial correlation. If there is no 
serial correlation in the residuals, the autocorrelations and partial autocorrelations at all 
lags sbould be nearly zero, and all Q-statistics should be insignificant with large p-values. 

Note that the p-values of the Q-statistics will be computed with the degrees of freedom • 
adjusted for the Inclusion of ARMA terms in your regression. There is evidence that some 
care should be taken in interpreting the results ot a Ljung-Box test applied to the residuals 
from an ARMAX specification (see Dezhbaksb, 1990, for simulation evidence on the finite 
sample performance of the test in this setting). 

Details on the computation of correlograms and Q-statistics are provided in greater detail 
in Chapter 7, -Series", on page 169. 

Serial Correlation lM Test 

Selecting View/ResidualThsts/SeriaI Correlatiou LM 'lat. .. catries out the Breusch-God­
frey Lagrange multiplier test for general, high-order. ARMA errors. In the Lag Specification 
dialog box, you should enter the highest order of serial correlation to be tested. 

The null hypothesis of the test is that there is no serial correlation in the residuals up to the 
specified order. EViews reports a statistic labeled U F-statlstic' and an -Qbs*R-squared" 
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(N R2 -die milD""" of observations times tbe R-tqIWe) IIadIIdc. The NC IfIr.fbIlk bas 
an asymptotic l dlsbibution under tbe null hypotbesIs. ne dlsaibudoo of the F .... dsdc 
is not known, but is often used to conduct an Informal tat of tbe null. 

See -Serial Correlation LM lest· on page 305 for funher discussion of the seriII QJm!IadoD 
LM test. 

Example 

All an exampk! of tbe application of these testing p11Mdm .... '1'DI1lier the Wow", n!IUIIs 
I'nlm esttma .... a simple colJSllllllllion function by 0IdiDary Ieut *IUIftS! 

D; idseJ VIMIIIIIIc cs 
~.---.:..: 0IttII87 lIM: 13:05 
SaIIpII: 1141:31 .... 
•• &1I1a II .'3. 

lI'dt Gd ., ... 'SF ... 
c -11.227824 5MI177 ·1 ..... 

1.1_ 
GrlP omII132 G.CI17l1111 2.251_ O.GII' 

Iai-JI I M2111
- 11111 • ••• I'-_w, 

"'- od 0 11211 _'I, 7 tl_ 1711MS 
Nt' 'R<!q .od 0511121 S.D. 7; ...... ekS41t 
8£ afl.., II II 13.53Im AIIIIIIt InIo aIrIIIIn ,-
SIn ......... 2!I1GU2 Sct..zalrlllln 1.12I22S 
tAg- • all .eG34IJ1 Fill 212IMf,1 

1ZrtttI:! I p- ''RP PC'p 9,.. 
A quidI: glance at the resulIs reveals tbat the LOefflc:IeGtJ lie 1llIIJI1......, ........ apt ... the 
fit is YI!fY dgbt. Hlumel, if tbe error tam is serially CXII'RlalII!d. the atim'led OI.S _""'ani 
errors _invalid and tbe esdmated c:oefticienIs wID be biued atId IIKO' I I • dw to the 
p1esence of a !aged dependent variable on tbe right·hand Iide. The DurtJiD.. .. tIOII ...... 

lie: is DOt appropriate as a tat for seriII coneJation In tills case. since then! is ...... 
cIeperIdm( variable on tile right-hand side of tbe equation 

SeIecdD8 VIew/RelldDal ntWCon:eIopam-Q-tllllllla I'nlm tills equ .... P'''''. the 
foIIowiII8 view: 

:lft 



DIll: OIM SW1 1lmI: 13:20 
_;l~e;31_. 

Int!tJdtdOb&ef,'dons: 1e2 

Amaleu. I • p_e..-

'II 'i" :: := • • · . 
• • • • 
• • · • • , • • 
~ • ~ : • 
• , , 

• 
• , • • , • , • 
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IC PIC Qo8IIl -1 0.183 0.163 4031153 Q.637 
2 UI2 0.181) 11.134 flOfM 
3 0.212 O.18S 1e.m MOO 
~ 0.0<1I.Q.D« la~ 0.001 
, -0.018 -0.092 18.1SB ILDItl: 
e ·0.001 -0.027 Ita 0JI04 
1 -0.040 -0.017 18.226 0.001 
B -6.:;tI1 -O.15M 211.813 0.001 
9 -o.oe3 -0.005 27.5113 0.001 

to -0.02" 0.012 27.861 0.002 
11 ~O.O$O 0.039 28.111 0.003 
12 -0.077 -0.083 21.151 0.004 

The correlogram has spikes at lags up to three and at lag eight. The Q-statistics are signifi· 
cant at all lags, indicating significant serial correlation in the residuals. 

Selecting View /Residual Thsts/Serial Correlation LM ThIIt ... and entering a lag of 4 yields 
the following result: 

F_ 3.654696 ProbIbIIiIY 
'b1t'?':c1 13'M2?' Pmbebi!tr 

0.007109 
PRilZ 

• 

The test rejects the hypothesis of no serial correlation up to order four. The "" statistic and 
the LM test both Indicate that the residuals are serlaDy correlated and the ~tion should • 
be re-speclfied before using it for hypothesis tests and forecasting. 

Estimating AR Models· 
Before you use the tools described in this section, you may first wish to examine your 
model for other signs of mlsspeclficatlon. Serial correlation in the errors may be evidence 
of serious problems with your specification. In particular, you should be on guard for an 
excessively restrictive specification that you arrived at by experimenting with ordinary 
least squares. Sometimes, adding improperly excluded variables to your regression will 
eliminate the serial correlation. 

For a discussion of the efficiency gains from the serial correlation correction and some 
Monte-Carlo evidence, see RaG and Griliches (1969). 
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First-Order Serial Correlation 

1b estimate an AR(1) model in EViews, open an equatIoa by .... ",. ~ 
Equaticr8. •• and enter your spedfic:atlon as usual. addiJI8 the e.rpEllSkm -AR.{1r to the 
end of your list. For example. to estimate a simple conSllmption function with AR.(1) 
etrorS. 

CSt = cl+c,CDp,+Ut 

Uc = p1.It-1 + tt 
you should specify your equation as 

ce c gdp a:.r; (1) 

(13.5) 

EViews automatic:ally adjusts your sample to accoum for the IIged data .- in estima­
tion. estlmates the model. and reports the adjusted sample aJoDa with !be ft!!NIncIts of !be 
estimation output. 

Higher-order SerIal Correlation 

Estimating bigber order AR IIIOdeIs Is only slightly more compIcated 1b I!Idmate an 
AR(k). you should enter your specHkation. fono-l by e.rpee.loD. lor each AR term you 
wisb to include. If you wish to estintate a model with autoc:om!latlons fnJm ODe to five: 

CS, = cl+c,GDP,+uc 
(13.6) 

you should enter 

c. c gdp ar(ll ar(2) arlll ar(4) ar(5) 

By R!Q1.IirinI that you enter d of the autoc:orrelation you wish to \nc:hvIe III your ...... 
EViews aDows you peat flexlbiIiI:y in 1estrittiD81ower Older COIRIatioaI1O be RIO. For 
example, jf you have quaJteJIy data and want to include a siJIIIe term 10 accoum lor __ 
lIOnal autoc:oIIeIation. you conId enter 

ca c gdp ar(.) 

Nonlinear Models with Serial Correlation 

EViews can estlmate oonlinear rejlI'esSion models with addilift AR. enoDI. For er_pie. 
SIIPJlCIR you wI.sb to eelimate the followin8 POnIinear spercifIation wltb III AR(l) error: 

CSt = cl + GDP,C. +Uc 
03.7) 

.t = ~Ut_l +c4Ut-2+tt 
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Simply specify your model using EViews expressions. followed by an additive term 

descnbing the AR correction enclosed in square brackets. The AR term should contain a 
coefficient assignment for each AR lag. separated by commas: 

cs - e(l) + gdp A e (2) + (ar(1)=c(3). ar(2)-c(4) J 

EViews transforms this nonlinear model by differencing. and estimates the transformed 
nonlinear specification USing a Gauss·Newton iterative procedure (see "How EViews Esti­
mates AR Models- on page 310). 

Two-Stage Regression Models with Serial Correlation 

By combining two-stage least squares or two-stage nonlinear least squares with AR terms. 'It 
you can estimate models where there is correlation between regressors and the innovations 
as well as serial correlation in the residuals. 

If the original regression model is linear. EViews uses the Marquardt algorithm to estimate 
the parameters of the transformed specification. If the original model Is nonlinear. EViews 
uses Gauss-Newton to estimate the AR corrected specification. 

For further details on the algorithms and related issues assocIated with the choice of 
instruments. see the discussion in "TSIS with AR errorsft beginning on page 286. 

Output from AR estimation 

When estimating an AR model. some care must be taken in interpreting your results. 
While the estimated coefficients. coefficient standard errors, and t-statistics may be inter­
preted in the usual manner, results involving residuals differ from those computed in OIS 

settings. 

1b understand these differences. keep in mind that there are two different residuals associ- • 
ated with an AR model. The first are the estimated unconditional residuals, 

(13.8) 

which are computed using the original variables. and the estimated coefficients. b. These 
residuals are the errors that you would observe if you tnade a prediction of the value of Yt 
using contemporaneous information. but ignoring the Information contained in the lagged 

residual. 

Normally, there is no strong reason to examine these residuals. and EViews does not auto­
matically compute them following estimation. 

The second set of residuals are the estimated one-pt!11od ahetJd (tmIaut errors. t . As the 
name suggests. these residuals represent the forecast errors you would make if you com­
puted forecasts using a prediction of the residuals based upon past values of your data. in 
addition to the contemporaneous information. In essence. you improve upon the uncondi-

1'(' 
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donal forecasu and residuals by takiD8 advaDrase of the Pledicdft power of the .... 
residuals. 

For AR models. the res1dua1-based rep!SSion stalislics sudla the If. the staDIIIInI 
enor of Iqpession. and the Durbin·Watson statisIic- reported by JMeoin .. baed on the 
one-period ahead forecast enors. l. 

A set of statistics that is unique to AR PIOdeIs Is the estimated AR param 7 'I. IIi' For tile 
simple AR(l} model. the estimated pamneII!r 11 is the serial c:a1I!Iadon c:oefIk leld of tile 
unconditional residuals. For a stadollary AR(l} model. the InIe P lies betWUIl-) (stn!me 
negatite seria1 eorreJation) and + 1 {extteme posItite serial c:a1I!Iadon}. 1'bI! ...... ., 
coodition for geoeral AR(P) proc:esses Is that the inverted roots of the .. polyNniallie 
inside tile unit circle. EVlews n!pOl1s these roots _lDwrIeII AIt ..... at tile borhn of tile 
rqpesskm output. 1bere is no particular problem If the roots aft 1m • ....,. but a staIioJt. 
illY AR model should ba1Ie all roots with modulus Jess than ODe. 

HowEViews EsdmatesAR Models 

1l!xtboob often de$c;n"be Iedmlques for estimalinS AR models TIM! mote Widely .\111 d 
approacbes. the CodJrane.On:utt. Prals-Winsteo, Hatanab, and IfIIdn!dt..Lu pmcedures. 
aft multi-stf!p approac:bes designed so that estimation can be perbtoed .... candvd 
li1II!tIr Iqpesslon. AI of these approac:hes suffer from lmponant dmrbac:b wIIidI occur 
wIleD workiD8 with models containing 1"8Bfd depenlle"t YiII'iabIes a.. • .. or'" Is 
using bJBber-onl« AR spedficallons; see Davidson and M"","- (19M. lIP. 329-341). 
GIftDe (lm. Po 600-607). 

£Views eslimates AR models using nonJinev ft'IiestloD ........... TIlls iIPPI""" .. tile 
advantage of beinS easy to undeIstand, seaeraBY appUcabie. and I!iIIIIIy ftke .... , to _ 
linear spedficallons and models that contain enOOS! DOllS rfBIIt-bmd IIde nriabIes. Noll! 
that the nonJinev least squaie$ estimates aftllJlDptotically equmJent to maci"' .... 1IIrI!Ii­
hood estimates and aftllJlDptotic:aIIy efflrlent. 

1b esIimate an AR(l) model. EVlews tranIfonIIs the IiDear model 

into the nonJ!nnr model. 

'It = s((J + 1It 

1It = Put-I + Et 

Pc == PfIt-l +(s,-PZt_t)'(J+E,. 

(13.9) 

(13.10) 

by subsIiIu1iDI tile lIIICGIld equation into the fint. and I8mIIIIIDI tIenDI. 1'bI! CI"'4ft! ....... 
P and (J ate estimated simulLmeou$ly by 1IJlPlyin& a MaIquanIt _"new least ..­
aJpitbm to the transformed equation. See AppendIx D. -..umatIon AIpithmI and 
Options-. on JliIIe 663 for details on nonHnear estimation. 
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For a nonlinear AR(I) specification, EViews transforms the nonlinear model 

1It = f(Xt, /3) + tit 

into the alternative nonlinear specification 

1It = P1It-l + f(Xt. /3) - pf(:t:t-l. /3) + ft 

(13.11) 

(13.12) 

and estimates the coefficients using a Marquardt nonlinear least squares algorithm. 

Higher order AR specifications are handled analogously. For example, a nonlinear AR(3) is 
estimated using nonlinear least SQuares on the equation ,. 

1It = (PI1lt-l + P211t-2 + Pa1lt-a) + f(x t• /3) - Pt!(Xt_l. /3) (13.13) 
- pd(Xt-2. (3) - Paf(xt-3. (3) + ft 

For details, see Fair (1984, pp. 210-214), and Davidson and MacKinnon (1996, pp. 331-
341). 

ARIMA Theory 

ARIMA (autoregressive integrated moving average) models are generalizations of the sim­
ple AR model that use three tools for modeling the serial correlation in the disturbance: 

• The first tool is the autoregressive, or AR, term. The AR(1) model introduced above 
uses only the first-order term but. in general. you may use additional. higher-order 
AR terms. Each AR term corresponds to the use of a lagged value of the residual in 
the forecasting equation for the unconditional residual. An autoregressive model of 
order p. AR(p) has the form 

(13.14) 

• The second tool is the integration order term. Each integration order corresponds to 
differencing the series being forecast. A first-order integrated component means that 
the forecasting model is designed for the first difference of the original series. A sec­
ond-order component corresponds to using second differences. and so on. 

• The third tool is the MA. or moving average term. A moving average forecasting 
model uses lagged values of the forecast error to improve the current forecast. A 
first-order moving average term uses the most recent forecast error. a second-order 
term uses the forecast error from the two most recent periods. and so on. An MA( q) 
has the form: 

(l3.lS) 

• 
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Please be aware that some authors and software pach. , _die UWII t sip em­
vemion for die , coeflcients so dlat Ibe sips of tbe MA coeffJcie .. ls may be 
reversed. 

The autmegressiW! and IIIOYiDg average spedfiealions OlD be I'IIIIIhined to form aD 

ARMA(p, q) specification 

u, = Pl"t-l + P2"t-2+ ... + Pp"'-'+ Et 
+ '110'_1 + 'JEt-2+ ... + 't/t-t 

(13.16) 

AIthougb eamometridaos typkaJIy Ule ARJMA models applied to the r ' ..... from a 
ll!81ess1on model. tbe specifieatioll OlD also be applied dil1!dIy ID a teriI:s. 1bIs latta 
approadl provides a univariate model, specifying die CODdidoaaI meaa of tbe 8I!I'ies as a 
constam, and measurillldle residuals as differenc:a of die series from its mean. 

Principles of ARIMA Modeling (8ox~Jenkln$lg16) 

In AJUMA forecaSIIng. you assemble a oomplete foIecastiDs model br ..... CQIDhinatIoos 
of Ibe tbree bllikHnl bIocb described abowre. The tint Sb!p in fonDirIs aD AIUMA model for 
a series of residuals Is to look at its autocoaelatioll .. opertles. \bu OlD _die ........... 
view of a series for this PIII'JlOIe, as outlined in -CorrekJtI;ram- on Paae 167. 

1bis pbase of Ibe ARJMA modellog procedure Is called ~ (DOt ID be coDlllsed 
with the same term uaed in die slmultaDeOus equatioDS 1iteratuJe). The WII:IU'e of tile cone­
latioll between cumnt values of residuals and dim past values prorides If'k'a .... in 
seIectiD8 aD AJUMA spedficadon. 

The auIDWIleiadons are easy ID intelpn!t-each one Is tile com!IatIon caef& lent DI tile 
current value of Ihe series with Ibe series !aged a certain IIUIIIber of periods. Tbe partial 
autocXlIlI!:Iadoos are a bit more oompHcated; they _die ..... !JItioa 01 tile a&iEUI 
and !aged series after taking inlD account Ihe pRCIIctift power of aD tbe values of tile 
series with smaIer lap. The pa.niaI autocorlelatioll for las 6, for aampIe. maUd tile 
added }lftIdictIft power of "t-. when 1£1 ••••• "t-I are already in die pedk:tion model 
In fact. tile pa.niaI aurocorrelalioD Is predseIy die II!III!SIion coefllo Ie. 01 u,-. ill a 
Jl!llession wbere the earlier lags are also used as predJetoa of u,. 

If you suspect dlat theft Is a distributed las reIatioosJdp betweea your cIepmcIEUI (leA­
baDd) variable and some other pRdictor, you may WaDI ID look at tbeIr CIOIII WIftIIdoos 
befoIe taliyinl out estimation. 

The Dt!ld Sb!p is ID decide wbat kind of AIUMA modeIlD use. H tbe aillDllOl ....... fuJK-. 
tion dies off smootbIy at a geomettIe rate. and Ihe partial a""A4telationt _ ZII!nl after 
one lag. tbeD a tint-ortier autoregresSIve model Is appmptlate. AItemItiYeJy'. if die autocor­
relatioDS were zero after one las and Ihe partial autClCOlftladolls "'i..-~. a 
first-order IIIO¥inC average process would seem appnIPI'Iate. H the aulOaIit ladoos appNr 
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to have a seasonal pattern, this would suggest the presence of a seasonal ARMA structure 
(see "Seasonal ARMA Thrms' on page 316). 

For example, we can examine the correlogram of the DRI Basics housing series in the 
HS. WF1 workflle by selecting View ICorrelogram ... from the HS series toolbar: 

The ·wavy· cyclical correlo­
gram with a seasonal frequency 
suggests filtlng a seasonal 
ARMA model to HS. 

The goal of ARIMA analysis is a 
parsimonious representation of 
the process governing the resid­
ual. You should use only 
enough AR and MA terms to fit 
the properties of the residuals. 
The Akaike Information crite­
rion and Schwarz criterion pro­
vided with each set of estimates 
may also be used as a guide for 
the appropriate lag order selec­
tion. 

After fittin8 a candidate ARIMA 

• I..... JilPCi 
..;..:;.J_- fC----'-l- ---~-rt'1 

--- --

0aIII: 0IW211f17 11mt: 11:83 
_:11151:8" .. :12 
lnCIudIdob ... lllllDltI.312 

. -

AUlUcorrellion PtrIII ConIIIon N:; PAC. o.s. PnItJ 

, 0._ 0.880 233.15 0.000 
2 0.680 -0.308 370.89 0.000 
3 O.4S" -0.102 438.22 0.000 
.. 0.306 0.108 4ee.00 0.000 
5 0243 0.155 4'4.79 0.000 
II 0.198 -0.118 .. eT.CO 0.000 
7 0.184 0.07' 508.30 0.000 
8 0.183 0.114 520.29 0.000 
• 0.281 0.380 s.c'.eo 0.000 

10 0.436 0225 608.SC 0.000 
11 0.588 0.141 720.31 0.000 
12 0.848 .0.115 857.10 0.000 
13 0.528 .0."" 8 .... 28 0.000 
'4 0.324..(1.25& 883.18 0.000 
15 -0.110 -0.108 887.76 0.000 
18 -0.0415 -0.012 888.U 0.000 
17 .a 111 O. t 21 882.52 0.000 
18 ·(I.1S, ..0.101 1001.5 0.000 

I I 11 -0.188 ..0.002 1013.3 0.000 
20 ..o.1S8 ..0 .• ' 1 D250l 0.000 

SP«ification, you should verify that there are no remaining autocorrelations that your 
model has not accounted for. Examine the autocorrelations and the partial autocorrelations 

• 

of the Innovations (the residuals from the ARlMA model) to see if any important forecast-
ing power has been overlooked. EViews provides views for diagnostic checks after estima- • 

tion. 

Estimating ARIMA Models 

EViews estimates general ARIMA specifications that allow for right-hand side explanatory 
variables. Despite the fact that these models are sometimes termed ARIMAX specifications, 
we wiD refer to this general class of models as ARIMA. 

1b SP«ify your ARIMA model, you will: 

• Difference your dependent variable, If necessary, to account for the order of integra­
tion. 

• Describe your structural regression model (dependent variables and regressors) and 
add any AR or MA terms, as described above. 



• 
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DiCrereflcfng 

The d operator can be used to specify diffaences of series. 1b spedf, first cUfletw- 1'110 
simply Include the series name In parentbeses after d. For example. <I (gdp) speciles the 
first difference of GOP. or GDP-GOP(-l). 

More complicated fOl1ll5 of dlffem1cIng may be specified widI two opdoaaI parameIIm, n 
and ". d (x. nl specifies the n -th order dlffetena: of the series X: 

d(s, n) = (1- L)",z. (lU7) 

where L Is the lag operator. For example, d Igdp. 2) specfIes the secood __ dilltiEUCl! 
ofGDP: 

dlgdp.2) • gdp - 2*gdpl-l) + gdp(-2) 

d Ix. D. 8 I specifies n·th oRler ordinary differencinB of X widI a __ ,, dilltieuoe at 118 
8: 

.. L· d(,z, n, 8) = (1- L) (1- )$. (13.18) 

For _pte. d (gdp. O. 4) specifies zero ordinary dUIeseuc:iu8 widI , I II _rat dilItieu 
at lag 4, or GDP-GDP(-4). 

If you need to work In lop, you can also use the enog operator, wtddt ft!IUIDII dlllaences 
In the log vaIueI. For example. dlog I gdp) specifies the finl cllflttEUCl! fA kJs(GDP) or 
Iog(GDP)-Iog(GDp(-l)). lbu may also specify the nand. opdoas at ..... Ibed for the 
simple d opeJator. dloglx.D. s). 

Theft are two ways to estimate Inlegrated models In EVftI. FIIIt. JOIlmar J ..... , 
.-series cootalnlng the dlffeumced data. and then estimate .. AlMA model UIIiDI die 
.- data. For example, to estimate a Box·}adins AIUMA(1. 1. l} model for MI. )IOU CaD 

enter: 

...-in dill - <1(111) 

Is dill c un) _(1) 

AJtemaI:l'ftly, you may Include the difference operator <I dhc:dyln die ...... arm spedIi­
cation. For eul1lpko. the same AIUMA(l.l.l) model can be .............. II)' the me 'IDe com· 
mand 

18 <1(81) c ar(l) _11) 

The latter method should fJe!II!I'iIIIf be fAetietted for .. importalll J I I I U JOIl defiDe , 
.-variable. such at DWl above, and use it In your esdmatfoo Ploc:eG.ft. then .beD )IOU 

furecut from the estimated model. £Views will make foIecuiI of the dependent variable 
OMI. That is, you wiD get a forecut of the dlffe .. ,uced series. 1f)lOU are n!aIIJ 1DMi!S1ed In 
foIecuts of the level variable. In this case MI. you wiD have to mannaRy tnDSform the 
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forecasted value and adjust the computed standard errors accordingly. Moreover. If any 
other transformation or lags of Ml are included as regressors. EViews will not know that 
they are related to OM 1. If. however, you specify the model using the difference operator 
expression for the dependent variable, d (ml) , the forecasting procedure will provide you 
with the option of forecasting the level variable. in this case MI. 

The difference operator may also be used in specifying exogermus variables and can be 
used in equations without ARMA terms. Simply include them in the list of regressors in 
addition to the endogenous variables. For example, 

d(cs,2) c d(gdp,2) d(gdp(-l),2) d(gdp(-2),2) time 

is a valid specification that employs the difference operator on both the left-hand and right­
band sides of the equation. 

ARMATerms 

The AR and MA parts of your model will be specified using the keywords ar and ma as 
part of the equation. We have already seen examples of this approach in our specification 
of the AR terms above, and the concepts carry over directly to MA terms. 

For example, to estimate a second-order autor~sive and first-order mllV'inlNverage 
error process ARMA(2.1). you would include expressions for the AR(l). AR(2), and MA(l) 
terms along with your other regressors; 

c goy ar(l) ar(2) mall) 

Once again, you need not use the AR and MA terms consecutively. For example, if you 
want to fit a fourth-order autoregressive mndel to take account of seasonal movements, 
youcouJd use AR(4) by itself; 

c gOY ar(4} 

You may also specify a pure moving average model by usiOS only MA terms. Thus, 

c goy mall) ma(2) 

indicates an MA(2) model for the residuals. 

The traditional Box-JenkJns or ARMA models do not have any rf8ht-hand side variables 
except ror the constant. In this case, your Ilst of regressors would just contain a C in addi· 
tion to the AR and MA terms. For example. 

carll) ar(2) mall) ma(2) 

is a standard Box-Jenkins ARMA (2,2). 

• 

• 



• 
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Seasonal ARMA Terms 

Box and Jenkins (1976) reamllnend the use of seasonal aUlOlEifi!Sillw (SAJt) aDd RII ".1 

moving avense (SMA) tmIIS for monthly or quarterly data with SJltHnadc R .. ODII 
movemenlB. A SAR{p ) term can be included in your equatkID specilcatioD for a leas ODII 
autoJ'l!8rt!SSiVe term with lag p. The lag polyDomlal used in estinytinn Is the Ploduc:t of 
the one specified by the AR tmIIS and the one specified by the SAR terms. The purpose of 
the SAR is to allow you to form the product of lag poIyuomiaIs. 

Similarly, SMA(q) can be iDduded in your spedficatloD to opedfJ a .... 1I1iI1 iIIOiq _­
age term With lag q. The lag polyoomiaJ used in estitpation Is the Ploduc:t of the GO! 

defined by the MA tmIIS and the ooe specified by the SMA terms. As ... the SAR. the 
SMA term aIIows you 10 build up a polynomial that is the pmdUd of lIDIIeI:IyiDs lag poly­

IIOIDia1s. 

Ibr er.ample. a sec:ond-order AR process without R"OOl!ity is BPen by 

ftt = PIU,-1 +P211t_z+ f ,. 

whk:b can be repu,scL!ed using the lag operatCJI' L. L -Sf = S, _ _ • 

(1-PtL-~i1lt:;: £,-

(13.19) 

(13.20) 

\bu can estimate tills PlocesII by including ar (11 aDd &r: (21 It!ImIiIl the list of RIp!S­

son. With quanerly data, you might want 10 add a sar (t) eqaessiou to taIrie __ of 
seaJOMIity. H you specify the equatloD as 

sales c U1c uUI ar(21 sar(t) 

then the esIfmated emlr structure would be: 

(l-PIL-p,Li(l-~L">1It = ft· 

The error PlOCEIII is equinlt!Dt 10: 

1It = PtUf-l+P211t-2+~-t-~Pl11t-1-~P2"t-.+ft· 

(lUI) 

(lJ"u) 

The paDmetes' tit is alP'dated with the seasonal pan of the .. ", I Noll!: that tills is an 
AR(6) proc:eIS with DOII.Iioear lestriclions on the ooemclads 

As another ..... ample. a sec:ond-order MA process without ......... Ifty may be writteD 

U, = £,+81£._1 +'zEt-2' (lJ.23) 

(13.24) 

You can estimate tills sec:CJOd.order process by IncIucIin8 both the MA(1) aDd MA(2) tmIIS 

in your equation spt!dfication. 
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With quarterly data. you might want to add sma (4) to take account of seasonalily. If you 
specify the equation as 

as c ad mall) ma(2) sma(4) 

then the estimated model is: 

CSt = PI + t32ADt + tit 
2 " tit ;; (1 + 91L + 92L )(1 + wL )f"t 

(I 3.25) 

The enor process is equivalent to 

tit ;; E't + 0lf"t_l + 02£t-2 + WEt_4 + WOlft_5 + w92£t_6 . (13.26) • 

The parameter tlI is associated with the seasonal part of the process. This is just an MA( 6) 
process with nonlinear restrictions on the coefficients. You can also include both SAR and 
SMA lenos. 

Output from ARIMA Estimation 

The output from estimation with AR or MA specifications Is the same as for ordinary least 
squares. with the addition of a lower block that shows the reciprocal roots of the AR and 
MA polynomials. If we write the general ARMA model using the lag polynomial p( L) and 
O(L) as 

(13.27) 

then the reported roots are the roots of the polynomials 
-1 -I 

p(x ) = 0 arid O(x) = O. (I3.28) 

The roots. which may be imaginary. should have modulus no greater than one. The output • 
will display a warning message if any of the roots violate this condition. 

If p has a real root whose absolute value exceeds one or a pair of complex reciprocal roots 
outside the unit circle (that is. with modulus greater than one). it means that the autore­
gressive process is explosive. 

If 9 has reciprocal roots outside the unit circle. we say that the MA process Is noninuert­
ible. which makes Interpreting and using the MA results difficult. However. noninvertibility 
poses no substantive problem. since as Hamilton (1994a. p. 65) notes, there Is always an 
equivalent representation for the MA model where the reciprocal roots lie inside the unit 
circle. Accordingly. you should re-estimate your model with different starting values until 
you get a moving average process that satisfies invertibility. Alternatively. you !nay wish to 
turn off MA backcasting (see "Backcasting MA terms· on page 320). 



• 
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If the estimated MA poress bas roots with modulus dose to ODe, II is a .. tIIal you may 
have owr-differeftced the data. The process wID be dlftlndt to estime and eW!a _ dif­
ficult to forecast. If possible. you should lMSIimate with one less JOUDd of dItIttaw::iac. 

Consider the following example output from ARMA estimation: 

D; r , v.IIIlII: R 
1II1IIDd: .... ___ 

DIIIr: 01ItI4III7 '11M: 18:53 SM!*I"" ... It ,8154.,113:01 
......... _ ....... 4'10 _ ...... ·Ini.lls....,' all, •• 
CollI .. • __ 211 ....... 

.... 'nm .. • 
D

r

,- rv=" • 
C 8.81 .... 

AJl(1) 0.813011 
SMH} OM18118 
111\(1) 0.513672 wen) :9r= 

R.. Sd o.t81557 
~1 , IRs. I ~ 
S.EflI._ I 'Ii Om12O _ .... _ 317!1i2!i1 

Lag' Pm' ..r7._ 
prt*'Mr ,M 3t ' ..-M_ .III ..-IM_ .III 

-e 

1iId_ '257 
o.tII1511 .... 
O.CIOtI27 1IJ13f117 
11.01..,. .,l1mi 
0.1M0231I 12.111402 ,,.., .•. 

_., .. -$.D.... IIC. 
AIIIII'I" .. aIaIIaIo 
~ ....... 
F ''1 
PtM' ;7 3' 

.8& -.110>_ . .l1li ...... 

Tbls estimatIoD msuJt muespoilds to the foIIowiJIIlI)ei 1CM",1IoII: 

7It = 8.61 + ut 

2.t1IIIG7 
0221. 
011111' 
1a2.111 ,== 

• .51 

(1-0.98L)(l-O.INL~"t = (1+O.51L)(1-OJI6L~Et 
or equlYaIeDtIy. to 

7It = 0.0088+0.98l1t_l +0.IN't_4- 0·92l't_S+Et 
+ 0.5I€t_l - 0.96ft_4 - O.49Et_s 

(13.29) 

(13.30) 

Note that the sips of the MA tenns may be reft'Ded from those ill .... , ..... NOlie also 
that the iIlwrted roots haft moduU ftr}' dose to ODe, whidI ill typIcaIbllWlJ' maao 
time series modeis. 

Estimation OptIons 

ARMA eslimatlon employs the same DODIinear eslimatlon ted!nIqnes cIesc:ribl'.d earIiIs b 
AR eslimadon. Tbese nooJjnNr esdmation tedmlques are dllc:ull,d further In Curpter 12. 
'Additional Repeaion Methods'. OIl pace 290. 
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You may need to use the Estimation Options dialog box to control the iterative process. 
EViews provides a number of options that allow you to control the iterative procedure of 
the estimation algorithm. In general, you can rely on the EViews choices but on occasion 
you may wish to override the default settings. 

Iteration limits and Convergence Criterion 

Controlling the maximum number of iterations and convergence criterion are described in 
detail In aIteration and Convergence Options' on page 669. 

Derivative Methods 

EViews always computes the derivatives of AR coefficients analytically and the derivatives .. 
of the MA coefficients using finite difference numeric derivative methods. For other coeffi-
cients In the model, EViews provides you with the option of computing analytic expres· 
sions for derivatives of the regression equation (if possible) or computing finite difference 
numeric derivatives in cases where the derivative is not constant. Furthermore, you can 
choose whether to favor speed of computation [fewer function evaluations) or whether to 
favor accul'aCY (more function evaluations) in the numeric derivative computation. 

Starting Values for ARMA Estimation 

As discussed above. models with AR or MA terms are estimated by nonlinear least squares. 
Nonlinear estimation techniques require starting values for all coefficient estimates. Nor­
mally. EViews determines its own starting values and for the most part this Is an Issue that 
you need not be concerned about. However, there are a few times when you may want to 
ovenide the default starting values. 

First. estimation will somethnes halt when the maximum number of iterations Is reached, 
despite the fact that convergence is not achieved. Resuming the estimation with starting • 
values from the previous step causes estimation to pick up where it left off instead of start-
ing over. You may also want to try different starting values to ensure that the estimates are 
a global rather than a local minimum of the squared errors. You might also want to supply 
starting values if you have a good idea of what the answers should be, and want to speed 
up the estimation process. 

1b control the starting values for ARMA estimation, click on !be OptiOllS button in the 
Equation Specification dialng. Among the options which EViews provides are sevel'a[ alter· 
natives for setting starting values that you can see by accessing the drop-down menu 
labeled Starting Coefficient Values for ARMA. 

EViews' default approach is OLS/TSLS, which runs a preliminary estimation without the 
ARMA terms and then starts nonlinear estimation from those values. An alternative is to 
use fractions of the OLS or TSLS coefficients as starting values. You can choose .8, .5, .3, or 
yon can start with all coefficient values set equal to zero. 
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The final startiDs value optioD is Ueer SUpplIed. Under this opdoa. IMews IIRS tile aJefti.. 
dent values that are In the c:oeffidenl vector. 1b set the stanin8 v .... opeD a WiDOOw for 
the coefficient vector C by double dicking on the icOII, and edItiDt! the YaIues. 

1b properly set starting values. you wiIJ need a little _ iDformaUoD about bow EVII!ws 
assigns coeffidents for the ARMA Ierms. As with other esthnatloll methods. wIleD you 
specify your equalinn as a list of variables. EVlews uses the built-in C coeIIicieal 'ftdOI: It 
assigns coeffident numbers to tile variables In tile foI1owiDs ClIder: 

• First are tile ooefficieDts of the variables. in order of t!IlI1y. 

• Nat come tile AR terms in tile order you typed them. 

• The SAR. AlA, and SMA ooefficieDts follow. in that Older. 

Thus tile foDowing two spedJk:ations wW bave their coeftL letd, in tile same ClIder: 

y c x .. (2) .. (1) ... (4) &rll) 

Y ... (4)c &rll) .. 121 x .. (1) 

1bu may also assign values in the C vectOl using the par_ mmmanct 

par_ cll) 50 C(2) .8 cll) .2 c(4) .Il c(5) .1 c(6) .5 

The SW1iDI values wiIJ be 50 for the constant. 0.8 for X. 0.2 for AR(l). 0.6 for MA(2). 0.1 
for MAU) and 0.5 for SMAC.). FoIIowins esthnalinn. you can aIwQI_ tile 7 k mUd of 
coefticients by looking at tile 1tepreIenIa~ view of your equatloll. 

1bu can also fiB the C ftCtol' from any estimated equatloll (without tn*I tile munhl!ls) by 
cboosinIl'nIc:s/UpcIIR Coefs fnIm Equatioll in the equatloll tooIbIJ: 

aac" ding MA tenns 

By default. EYiews backI:asts MA terms (Box and JenkIns, 1976). em ... -MAlf) 
model of the form 

lit '" X,' fJ + "'t 

"'t == €t+ 'ltt_l + '~t-2+'" + 'rt-f 
(lU1) 

Given initial values. l:I and ,. EViews fim computeS tile 111M •• Mllliomll""l'dMls it for 
t = 1. 2, ..• , T. and Ufes the backward recunIon: 

It == it - ~1i!t+ 1 - ••• - ;.r.+f (13.32) 

to compute bac:kcut values of € to IE-(t-l)' 1b start this lean ...... the f vUles for the 
Innovations bqorul. the estimation sample are set to _: 

i!T+1 = IT+2 '" ••• '"' IT+t - O. (13.33) 

Next. a fotWard recursion Is used 10 estimate the values of the iIIDcwatIoD$ 
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(13.34) 

using the backcasted values of the innovations (to initialize the recursion) and the actual 
residuals. If your model also includes AR terms. EViews wm p -difference the il.t to elimi­
nate the serial correlation prior to performing the backcast. 

Lastly, the sum of squared residuals (SSR) is formed as a function of the {J and tP, using 
the fitted values of the lagged innovations: 

T 
ssr({3,ifJ) = ~ (Yt-X/(3-ifJltt_l- ... -ifJql:t_i. (13.35) 

t=I'+1 

This expression is minimized with respect to (:J and ifJ· 

The backcast step. forward recursion, and minimization procedures. are repeated until the 
estimates of f3 and ifJ converge. 

If backcasUng is turned off, the values of the pre-sample c are set to zero: 

<-(q_l) = ... = ~o = 0, (I3.36) 

and forward recursion is used to solve for the remaining values of the innovations. 

Dealing with Estimation Problems 

Since EViews uses nonlinear least squares algorithms to estimate ARMA models, all of the 
discussion in Chapter 12, "Solving Estimation Problems· on page 296. Is applicable, espe­
cially the advice to try alternative starling values. 

There are a few other issues to consider that are specific to estimation of ARMA models. 

First, .MA models are notoriously difficult to estimate. In particular, you sbould avoid high • 
order .MA terms unless absolutely required for your model as they are likely to cause esti· 
mation difficulties. For example, a single large spike at lag 57 in tbe correlogram does not 
necessarily require you to include an MA(57) term in your model unless you know there is 
something special happening every 57 periods. It is more likely that the spike in the carre-
Iogram is simply the product of one or more outliers in the series. By Including many MA 
teITUS in your model. you lose degrees of freedom, and may sacrifice stability and reliabil-
ity of your estimates. 

If the underlYing roots of the MA process have modulus close to one, you may encountef 
estimation difficulties, with BViews reporting tbat it cannot improve the sum~f·squares Of 
tbat it faIled to converge in the maximum number of Iteratious. This behaviOf may be a 
sign tbat you bave over-differenced the data. You should check the correlogram of the 
series to determine whether you can re-estimate with one less round of differencing. 

Lastly, if you continue to have problems. you may wish to turn off MA backcasting. 
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TSLS with ARIMA errors 

Two-staae lealll squares or iJ1IIlrumental ftriable etimaIIoa widl AltIMA poses no particu­
lar diftlcuIties. 

For a detailed discussion of bow to estimate TSLS spedficadoas wIIh ARMA emn, see 
"1\¥o-staIe Least Squares- on page 283. 

Nonlinear Models with ARMA errors 

EVieWs wiD estimate nonlinear ordiniuy and ~ least .-JIlCIl'r' widlaatGle­
gressive error terms. For details, see the extended discussion In -NonJiMw Least Squares­
bfoginnlDIJ on pap 289 • 

£Views does not cwrently estimate nonlinear mocIeIs with MAo envm. 1ibu ea. huweva, 
use the IIlaIe space object to specify and estimate these models (see -ARMAX(2. 3) widl a 
RaDdom Coefficient- on page 586}. 

Weighted Models with ARMA errors 

£Views does not bave procedures to automatically estimate weJpted 1DC'd II widl ARMA 
error terms-if you add AR tenDs to a weighted model. the weI(!btIns lilies wID be 
ignOred. lbu can, of course. always construct the weIptl!d series and tbea psfuim ert!rna 

lion usIn8 the weighted data and ARMA terms. 

Diagnostic Evaluation 

If your ARMA model is c:orrectIy specified. the resIduak from the model ...... be ..." 
white noise. Tbis means that there sbouJd be no serial com!IalfcJllleft In the mIduIs. 11le 
Durbln-Watson st.atistic repotted In the legJession output is a felt for AR(I) In the ~ 
of Jaged CIepmdeN ftriables 011 the right-band side. As discus! rilabovlr. _ pIII!!I'al 
tellS for serial c:oneIation In the residuals can be ean1ed out wIIh 'VIeIr/P d .... ...., 
CorreIa._) Q-M ........ and View/Jlelidual1i!lls,lSerJal Ceil ' *- LM 'IiIIL ••. 

For the example seuonaI ARMA model. the residual con ...... Ioob ....... 
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Dolt: 08114181 T1mo: 18:30 
_:115.:061_' 
IntlUdtd ObStt'IIIOM: 410 o-_ ...... __ •• _le~ 

.. 
•• , 
~~ 
• 
• 
• ,. 

.. 
• 

,~ , , 

.. 
, , 
•• .. 

1 ·0.0$1 .0.0$1 , .n81 
1 .0.062 .0.... '.311t 
3 o.oOO.o.ooe Ulto 
• .o.il3! .(I.IMS 5,01 • 
5 0158 0.'55 11.010 1I.lOO 
• ·0.026 .0.011 17.3l5 IlOIlO 
1 .0.12' ..a103 34.720 0 .• 
e 0.118 0.108 31~5 0.000 
, tUm 0J)30 31.847 aooo 

10 0.028 0.021 32.2:13 /lOOO 
t1 0.1.22 0,138 It.428 0.000 
12.(1_ /lO2O '0119 1I.lOO 

The correlogram bas a significant spike at lag 5 and all subsequent Q-statistlcs are highly 
significant. This result clearly indicates the need for respedficatfon of the model. 

Polynomial Distributed Lags (POls) 

A distributed lag is a relation of the type 

Vt = wth + 130zt + {3t Xt-l + ... +{3~t-/:+£t (13.37) 

The coefficients {3 describe the lag in the effect of x on V. In many caaes, the coefficients 
can be estimated directly using this specification. In other cases, the high coUinearity of 
current and lagged values of x will defeat direct estimation. 

• 

You can reduce the number of parameters to be estimated by using polynomial distributed • 
lags (PDLs) to Impose a smoothness condition on the lag coefficients. Smoothness is 
expressed as requiring that the coefficients lie on a polynomial of relatively low degree. A 
polynomial distributed lag model with order p restricts the {3 coefficients to lie on a p ·th 
order polynomial of the form 

13; = '11 + '12(j - c) + 'Y3(j - c)2 + ... + 'Yp+ 1(; - c)p (13.38) 

for j = 1. 2 •...• k. where c is a pre-specified constant given by 

c - { (k)/2 
(k -1)/2 

if P is even 
if p is odd 

(13.39) 

The PDL is sometimes referred to as an Almon lag. The constant c Is Included only to 
avoid numerical problems that can arise from collinearity and does not affect the estimates 
of {J. 
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This specific:atfoe aI10ws JOU to estlm.1te a model with k lap of !II; lIIiDI onIJ 11 pII'lIIDC!­

leIS (if you choose 11 > k. EViews will return a ·Near SQIsuIar MaIrIx" _). 

If you specif1 a PDL. EViews substitutes Equatlon (13.38) Into J!quadon (13.37) JieIdIaB 
tit = Q + '11%1 + '12%2 + ... + '1"+1,,.,+1 + E, (13.40) 

where 

%1 = !ll;t+a"t-l + ... +2:,-l 

~ ,. - c:r:t + (1- c):r:t_l + ••. + (k - c)2:t_l 
(13041) 

%,,+1 = (-cf:r:t+ (l-Cfa"t_l + ... + (k-ct:r'_l 

Once"" estimate '1from Equation (l3.40), .... cau lecova die parameteu of ..... II. 
and their standanI emII1 using die relationsblp described in J!quadon (13.38). This pnx:e­
dure is suaiBbtforward since II is a linear lransfonDation of '1. 

The spedfk:atioll of a polyDomial distributed Us bas dm!e ella If' die IeaIIdt of die .. 
k • the degree of the polyDomial (the higlIest powEll In die poiyn0miai) 11. md die aID­

sttaints that you want to apply. A near end constRlnt JeSttids die one-p!riod INd eI'fI!ct of 
:Ie on 11 to be zero: 

II-I = 71 + '1~-1- (!) + •.• + '1,,+1(-1-ct :: O. (13.42) 

A far aJd COIISIraint l1!StricIJ die effect of :Ie on tI to cUe offbeJaDd die Dumber of ., lAId 
lags: 

(13043) 

Jf }IOU I'I!:SII'Ic:t either the near or far end of die las. die IIIIIDber of '1 paqa lai esJtm II , 
is reduced by one to accounI for the remicUon; 1f}lOU lesIriI:t both die near md far aJd of 
die Us. die IIIIIDber of 7 p;uameteJS Is reduced by IWO. 

B1 default. EVIew5 does DOt inJpose constraints. 

How to Estimate Models Containing POLs 

\bu sp«.if;l a polynomial distributed lag by the pdl term, with die foIIonItJ JIIbm.1doa 
in paII!II~ each separated by a COIDIIIa In dU enter: 

• The name of die series. 

• The lag length (the maher of Jasged values of die __ 10 be induded). 

• The depee of tile polynomial. 

• A nUlllerlcal code to coJlSlrlin the lag polynomial (~: 
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I constrain the near end of the lag to zero. 

2 constrain Ihe far end. 

3 constrain both ends. 

You may omit the constraint code if you do not want to constrain the lag polynomial. Any 
number of pdl terms may be included in an equation. Each one tens EViews to fil dIstrib­
uted Jag coefficients 10 the series and 10 constrain the coefficients to lie on a polynomial. 

Foreumple, 

Is sales c pdl(orders,a,3) 

fits SALES to a constant. and a distributed las of current and elgbt lags of ORDERS. where 
the lag coefficients of ORDERS He on a third degree polynomial with no endpoint con­
straints. Similarly. 

IS div c pdl(rev,12,4,2) 

fits DW to a distributed lag of current and 12 lags of REV, where the coefficients of REV lie 
on a 4th degree polynomial with a constraint at the far end. 

The pdl specification may also be used in two-stase least squares. If the series in the pdl 
Is exogenous, you should include the POL of the series in the instruments as well. For this 
purpose, you may specify pdl (.) as an instrument; all pdl variables will be used as 
instruments. For example, if you specify the TSLS equation as 

sales a ina pdl(orders(-l) ,12,4) 

with instruments 

fed fed(-l) pdl(*) 

the distributed Jag of ORDERS will be used as instruments together witb FED and FED( -I}. 

Polynomial distributed lags cannot be used in nonlinear specifications. 

Example 
The dIstributed lag model of industrial production (IP) on money (MI) yields the following 

results: 

--
•. 
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• 
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elF endent V~ IP 
MeIIlod: .... Squares 
Dale: 08I1M17 TlIIII: 17:53 
Sample(act 11 1),11160:011988:12 

'octrfrJ."Y"iT"P"O"'im , *' •• 
C 40,67311 0.815195 

P0L01 -4,86E4J5 0.055566 
POUI2 -0.015625 0.062884 
PDL03 -0.000160 0.013909 
PIlI.l)4 0.001862 0.007700 
PDL05 2.86E4J5 0.000408 

'7,,_ 
49.89374 

-0.000839 
-0.248419 
-0.011495 
0.241788 
0.053211 

eqT 'MII)'. =OmBl1 
R-squared 
A4JsIed R-squared 
S.E, r:A reglession 
Sum~""" 
Log 111111-
purtritWeeee. _ 

0,852371 
0.849862 
7.567664 
20216.15 

·1235,862 

R9f'9?f 

Mean dependent var 
S.O, dependent .... 
Akalkeinfcerilenon 
S_eriIenon 
F-statiltic 
e!l1!!!f..t! " p t 

0.0000 
0.9993 
0.8039 
0.9908 
0.8091 
0._ 
PtZl15 

71.72679 
19.530S3 
6,904899 
6.96D462 
339.6862 
PfW!Vl 

This portion of the view reports the estimated coefficients 'Y of the polynomial In 
Equation (13.38) on page 323. The terms POLOI, POL02, PDL03, ... , correspond to 
zl, z2, ••• in Equation (13.40). 

The implied coefficients of interest (3 j In equation (1) are reponed at the bottom of the 
table, together with a plot of the estimated polynomial: 

1AII~"1I1 I ~ 
_ a- T _ 

"" :: 

0 6.10210 0.14871 o.e88ro Ii 1 0.01159 0,1_ 0.10587 ;t;: 
2 ·0,00215 6.10131 ·GJI:I123 
3 0.1'01120 0.08150 0.141i5O 

• 0,01766 0.01A35 0.23758 
5 0.01363 a,08tH 0.1115A7 
6 ·4.75005 0,05S57 -0._ 
1 ·M1311i 0.07080 ·0.'97" 
8 -0,01811 0,07531 .Q.2AI59 
9 -0.00788 0,08388 -o.12A15 
10 0.01017 0.10454 0.097211 
11 0.01260 0,1'081 0.113116 
12 ·0.04137 0.'_ -0.30182 

SUm at IAII- 0.08780 0.002$7 28.553-< 

The Sum of Lags reponed at the bottom of the table is the sum of the estimated coefficients 
on the distributed lag and has the interpretation of the IOIl8 run effect of Ml on IP, assum· 
ing stationarity. 

Note that selecting View /Coeffident 'Jests for an equation estimated with POL terms tests 
the restrictions on "{, not on !3. In this example. the coefficients on the fourth· (PDL05) 
and fifth-order (PDL06) terms are individually Insignificant and very close to zero. To test 

• 

• 
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the joint signifIcaDce of these two terms, dick Vkw/COe8ldeat ~ 
Resb lcdIma. •• iJDd type 

c(6)-O, c(71-0 

in the WakI '1l!st diaIoB boll (see "'Wald 1l!st (Coefficient lestdeliollS)- OIl PIlI! 368 for m 
exteDSiw discusSion of WakI tests in £Views}. EViewJ displays the mull of the joint test: 

WIIIIIT_ 
f 7 fIB 
I.; "F 
F ........ 
Pia 

YIN! 
O(l! " 
'1llIlI!f 

Wll ..... ' __ 

«r' 7 
l2.3SS) ... 

2 prr 

Ite" 7 ;' 'It Dt' yep •• 
(;(II 2 _ 011 2oMU27 
em :'R* rrw 

Rues'" ....... In ....... 

There Is DO evidence to reject the null hypothesis, $I fJII ,11'18 that you could haft tit a 
Jower order poIynomlaI to your lag structure, 

Nonstationary TIme Series 

The dIeory beIIiDd ARMA estimation Is based 00 stadonlry time aedI!a. A IIIt!des IlIIid to 
be (weakly 01' amuimce) stlItitmory if the mean iJDd autocul' __ of die IIIt!des do IlOl 

cIepeDd 00 time. lilly series that Is not stationary Is IIid to be _~ 

A common eumpIe of a DODSt1tionary series Is die RIRdGm IIIIIll: 

03044) 

wllse If Is a IItIItioIlary random distudJaDce term. The series 1/ ...... COl.' ........ 
value, ropditjop.aI on t. iJDd the variaDc:e Is irIcrusIDS tM!I' time. The .... h. wdt II • 
dlfl'eleace $IaIioJWy series since the tint diftereace of 1/ II stadoDaIy: 

(IUS) 

A dlfl'eleace stationary series Is said to be ilU41uted iJDd Is denoted /lS1(e} wIIeIe ills Ibe 
order of integration. The order of intesratlon Is the IIUIIIber of wdt lOOts (Oldill • .., In Ibe 
series, or Ibe IIUIIIber of dilfeteDCilltJ OperatiollS it taka to IDIIke die series 1ItIItioIlary. JOt 
the random walk abov\i!. there Is one unit root. fO it Is m 1(1) aedI!a. SJ!D!1mr. a SWkma'Y 
series is I{O). 

Slalldard iIlfeeace pt'Il(edures do !lOt apply to ~ wldcb mnbip m Intepated 
dependent variable or integrated leg! UfOfS, Thelefcu. It Is Imponant to dledt wbelbet a 
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series is stationary or not before using it in a regression. The formal method to test the sta­
tionarity of a series is the unit root test. 

Unit Root Tests 
EVlews provides you with a variety of powerful tools for testing a series {or the first or sec­
ond difference of the series) for the presence of a unit root. In addition to the existing Aug­
mented Dickey-Fuller (l979) and Phillips-Perron (1998) tests, EViews now allows you to 
compute the GLS-detreoded Dickey-Fuller (El1iot. Rothenbe!g. and Stock, 1996). Kwiat­
kowski, Phillips, Schmidt, and Shin {KPSS. 1992), Elliott, Rothenberg, and Stock Point 

Optimal (ERS. 1996). and Ng and Perron (NP.2001) unit root tests. All of these tests are • 
available as a view of a series. 

Performing Unit Root Tests In EViews 

The following discussion assumes that 
you are familiar with the basic forms of 
the unit root tests. and the associated 
options. We provide theoretical back­
ground for these tests in «Basic Unit Root 
Theory" beginning on page 333. and doc­
ument the settlngs used when performing 

these tests. 

1b begin. double click on the series name 
to open the series window, and choose 
View /Unit Root 1l!st ••• 

You must specify four sets of options to .. 
carry out a unit root test. The first three settings (on tbe left-band side of the dialog) deter-
mine the basic form of the unit root test. The fourth set of options (on U!e right-hand side 
of the dialog) consist of test specific advanced settings. You only need concern yourself 
with these settings if you wish to customize the calculation of your unit root test. 

rll'St. you should use the topmost combo box to select the type of unit root test tbat you 
wisb to perform. You may choose one of six tests: ADF. DFGLS. PP. KPSS. ERS. and NP. 

Next, specify whether you wish to test for a unit root in the levef, first difference. or second 

difference of the series. 

Lastly. choose your exogenous regressors. You can choose to include a constant. a constant 

and linear trend. or neither (there are limitations on these choices for some of the tests). 

You can click on OK to compute the test using the specifjed settings. or you can customize 
your test using the advanced settings portion of the dialog. 
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The advanced settiDp for both the ADF and DfCLS tesIS allow you to opecJ(y how Jaaed 
difference terms p are 10 be included In the ADI' test equation lbu IDiIJ' chooIIe to let 
£Views automatically select P. or you may spedfy a fiJ1!d posiIiw h &' value (if you 
choose automatic seJection, you are given the additional opdoo of ..a...-t!DJ bulb the infor· 
matlon criterion and muimum number of lap to be used In the ute t:doa .. ocedtaat!). 

In this case. we laave chosen 10 eslimate an AD, test tlaat Incl"des a CODStaDt In the lest 

rqpesslon and emplaps automatic lag IeDJth seIec:don usin& a Scbwm: IDformadon ~ 
don (BIC) and a maximum lag Jeogtb of 14. AppIyinJ tIaeIIe it!IIII4i to clIta on the U. S. 
one-month 1l'easIIIy bill rate for the period from Man:111953 to Juir 1m ... CIII npliI:ate 
Example 9.2 of Hayashi (2000. p. 596). The results are desaibed below • 

The fitst pan of the unit root oulpUt pmvides information about the bill of die .. (the 
type of tett. the elIOJI.!IIOUS variables. and lag length usedl. and CODf.ains the ... output. 
asSOCiated critical values, and In this case. the p-value: 

... ,..... ' lBIl. ... alllllroot 
e" •. ~ 
LEladF''t:' 7' '.'EWr"t:1' 

PE 
til I .... ne" F .... . T ____ , ... _ 

ft_ 
'.M 

".. 

The ADF mlistlc value Is -1.417 and the associated one Jided p-YaIue (Iar II .. will Ul 
obserVations) Is .573. In addition. EViews MPOIIS the c:ddc:aI values at the ... , 5 .. and 
10" IeYeJs,. Nodc:e hen!tIaat the statistic to value Is JlRAlteF tIaan thecdlicll Rluasodlal 
we do DOl aejef;t the nuB at conveotionaI test sizes. 

The second put of the output sbows the inteFmediate ... equation dial IMI!Ws used to 
caIcuJate the AD, statistic: 

.. ",t' 



AugmelIIad OIc:Iuiy.fuler Tell Equation 
DIpendenI VIINoIIIe: O(lBllil 
MeIhod: I..eesI Squares 
Dale: fY2J01102 To ... ; 12'.29 
Sampie: 1953:031971:07 
M'f'M _mrf' 221 

\IMehtr Cea1DFjenl Ski '5rrpr 
TBIU.{-1) .0.022951 0.016192 

0(lB1I.l.(-1 II .0.203330 0.067007 
-1.417410 
-3.034470 

c 99888 g,95'5M 1 5§2S§ 
~ 0.053856 Meandependentvar 
~R~ 0.045175 S.o."-_\'III' 
S.E. of ~ion 0.371061 Akalce info aittIrion 
Sum~OIOid 30.01892 S_aittIrion 
lAg -.x.d -92.9Il005 F-staIIIIIIc 
J2urbin-Watson Sf 1.91636' Prob('%"!V"i?' 

0.1578 
0.0027 
Ql22Q 

0.013826 
0.379758 
0.868688 
0.914817 
6.204410 
P0923Wi 
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If you bad cboosen to perform any of the other unit root tests (Pp. KPSS. ERS. NP), the 
rigbt side of the dialog would show the different options associated With the specified test. 
The options are associated with the method used to estimate the zero frequency spectrum 
term. fo, that is used in constructiog the particular test statistic. As before. you only need 
pay attention to these settings if you wish to change from the EVlews defaults. 

Here we have selected the PP test in the 
combo box. Note that the right-hand side 
of the dialog has chaoged, and now fea­
tureS a combo box for selecting the spec­
tral estimation method. You may use this 
combo box to choose between various ker­
nel Of AR regression based estimators for 
fo. The entry labeled "Default" will show 
you the default estimator for the specific 
unit root test-here we see that the PP 
default uses a kernel sum-of-covariances 
estimator with Bartlet1 weights. If. instead. 
you had selected a NP test. the default 
entry would be «AR spectral-GLS". 

Lastly. you can control the lag length or bandwidth used for your spectral estimator. If you 
select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dia­
log will give you a choice between using Newey-West or Andrews automatic bandwidth 
seJection methods. or providing a user specified bandwidth. If, instead. you choose one of 
the AR spectral density estimation methods (AR Spectral - OLS. AR Spectral - OLS 
detrended. AR Spectral - GLS detrended), the dialog will prompt you to choose from vari­
ous automatic lag length selection methods (using information criteria) or to provide a 

• 

• 
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user spedIed lag 1eDgth. see "Automatic Bandwldtll and Lag LeJJstII Seledioa- on 
page 340. 

once you llave choRD the appropriate settings for your test. click OIl tile OK buUoo. 
£Views reports the test staIlstIc along with output from the c:onespondIns test •• p'oa 
For tIIese tests, EViews reports the unc:orrec:ted estimate of tile II!SIduaI ~ and the 
estimate of the ftequency zero spectrum fo (labeled as the -HAC aJiiected YaJiaDce1 ill 
additiau to the basic output. RuIll1inll a PP test using the 11IILL series yields: 

..... ,p. . laI. ........ _ 
Egi w-=CU,*,. 
RIt 1 : 7L 3BIAe!br! ,e aw ... 
8' PM",,, 5 5 

Nt • 

.. 1'" 
.... 
oen 

1Lt41a 
9'l1li1' 

As witll the ADF test, we fall to reject the nuB bypothesfl of a unit mot in the 11IILL series 
at conventioual slgnIfIcance levds. 

Note tbat your test output will differ somewllat for aItemItift test..,... ' ...... For 
aample, the KPSS output only provides tile asymp&otie c:ritic:aI .... tltbubud by KPSS: 

.... '1)11. : laI.lI 5 , 
FI, -.c.,._ 
.... ·111' "Mew .. ? 7 r J 

'"'­'91771 
"MI •• III PI 5, ScIU,:IdI SI~" (1_ T ... ,) 

tIOE.=W'_""_ 

liN 

51" 

SimBarlJ, the NP test OUtpUt will contalD results for aD four test stilliIIks, aJoac widI the 
NP tabulated a1Iic:aI values. 

A won! of c:autIon. \bu should DOte tbat the aiIk:al values iepolted by IMews an: valid 
only for unit root tests of a data series, and wi! be iDVaDd If tile series Is baled on estl­
mated YaJues. For eumple. Engle and Granger (1987) fIIopoHd a two-step metIIod to test 
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for cointegration. The test amounts to testing for a unit root in the residuals of a first stage 
regression. Since these residuals are estimates of the disturbance term. the asymptotic dis­
tribution of the test statistic differs from the one for ordinary series. The correct critical val­
ues for a subset of the tests may be found in Davidson and MacKinnon (1993, Thble 20.2). 

Basic Unit Root Theory 

The following discussion outlines the basics features of unit root tests. By necessity. the 
discussion wHi he brief. Users who require detail should consult the original sources and 
standard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamil­
ton. 1994. Chapter 17, and Hayashi, 2000, Chapter 9). 

Consider a slmple ARO) process: 

1It = P1It-l + x/6 + £t. (13.46) 

where Xt are optional exogenous regressors which may consist of constant. or a constant 
and trend. p and 0 are parameters to be estimated. and the £t are assumed to be white 
noise. If IPI ~ 1 • 11 is a nonstationary series and the variance of y increases with time and 
approaches infinity. If ,PI < 1 • II is a (trend-)stationary series. Thus. the hypothesis of 
(trend-)stationarlty can he evaluated by testing whether the absolute value of P is strictly 
less than one. 

The unit root tests that EViews provides generally test the null hypothesis H 0: P = 1 
against the one-sided alternative HI: p < 1 . In some cases, the null is tested against a 
point alternative. In contrast. the KPSS Lagrange Multiplier test evaluates the null of 
Ho: p<l against the a1temative HI: P = 1. 

The Augmented Dlckey-fuller (ADF) Test 

The standard DF test is carried out by estimating Equation (I3.46) after subtracting 1It-1 
fronl both sides of the equation: 

AYt = 0<1It_l+ X/ o+£t. 

where 0< = P - 1 . The null and alternative hypotheses may he written as 

Ho: 0< = 0 

HI: 0«0 

and evaluated using the conventional t -ratio for 0< : 

tOt = er/(se(er» 

where er is the estlmate of 0< , and se( f:t) is the coefficient standard error. 

(13.47) 

(13.48) 

(13.49) 

Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic 
does not follow the conventional Student's t-distribution. and they derive asymptotic 

• 
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results aDd simulate aitk:aJ values for various test aod Ample ... Mole leceudy. 
MacKinnon (1991. 1996) implements a much laqJer set of .",lIh, man dloIIe .... ted 
by Dickey and Fuller. In addition. MacKinnon estimates II!IPfJIIIIf' 1Wfa:es far Ibe simuIa­
h results. permitti.Dc the cakulalion of Didley-Fuller aitk:aJ vahB aDd ,·vahB iIr 
arbitrary sample sizes. The mOn! recent MadCinonn aitlc:al value calculldoas ue IIIfed by 
EViews in ronstruc:tiDs test OII!put. 

The simple Didey.FulJer unit root test described above Is valid 0DIy If Ibe .... Is an 
AR(l) process. If Ibe series is roneJated at hIgIIer order lap. the Ilpm""" of while DOlle 
dlstuJbanc:es t, Is violated. The Augmented Dickey.FulJer (ADF) tell COOIIIliKll a paramet­
ric c:onection for hIgIIer-onier colTl!laoon by assuming that the , .... follows .. AR(,) 
process aDd adding p .ed difference terms of Ibe dependent yariafJle fI to the risbt· 
band side of Ibe test ... ession: 

4" = OfIt-l+St'6+1114pt-l+~'-2+ ••• +I1~-"+,,c. (13.SO) 

This ausmented speciftcatioll is then used to test (13.48) using the t -rado (1U9). All 
importaDt result obtained by Fuller is that the asymplOtic dlstdbuh of Ibe t -IllIio iIr 0 

is iIIcIeptndtIIt of the number of lagged first diffef_ Induded In the ADF ... Ira M_. while tbe assumption that , follows an autot£8l'ESliwe (AR) piOU!iS mar­
resb'iclive. Said and Dickey (1984) demonstrate that tbe ADF test is ~ YiIIid in 
tbe pI1!lIEIlCt! of a moving aYl!D8e (MA) component. provlded that ."lId ..... ~ differ­
CIICE terms are Induded in Ibe test repessIon. 

You wiD face two pracdcaI issues in perfolillill8 an ADF test. fInt. you m.- c'oo­
whether to incIucIe SDB£IIOIIS variables in tbe test ... h.. 1!bu baft the c:IIaiI:e of 
iJIcludin8 a consIam. a aJIIstI ... aod a linear time b'I!Ild. or DtftI!er. In the tell ft'8i 5 ID 

One apptOaCb would be to run tbe test with both a aJIIstant aDd a IIDeIr In!IId IIiIIce die 
otber two _ are just special _ of tbis _ semnJ spec:IfIcatioa. Howeo4li911dad-

iDI hiek,ant ... --in tbe , .. essron wiD reduce the)lOWa' of the tell to ... die null 
of a unit root. The staadaed I1!COmmendaoon is to choose a 5ptdfIcatioD that is a p\P"iNf> 
dna\>1Ion of tbe data under both the nuO and altematiW! hJ'pGdJ! ! I _ JlamiltoD 
(1994a, p. 501) iIr dlscnlllioo. 

Second. you wiD bawe to specify the number of !aged diffeftDCi!' terms (wIdctl_ will 
term tbe "IlIg kJ!8tb j to be added to tbe test repession (0 yields the standard DF lest; 
intep!fS greater !ban 0 CXlUtspOnd to ADF tests). The UIWII (tbouab DOt pacdcuJacly OR­

CuI) advice is to include a number of lass sufficieot to remove serial CCIm!IatioD in die 
residuals. EVIews provides both automatic and manuallafJ JeDsIh .eiectioa 'IPCiuoI Fbr 
details. lift -Automatic Bandwidth aod Lag Len8th Selec:tkm- brP'1IiJ!8 on ,. 340. 

DIcker-fuIIer Test wiIh GIS Detn!nclng CDFGI.S) 

As noted above. you may elect to include a constant. or a C'OJIIIbnt and a linear U- trend. 
in your ADF test legression. For these two cases, ERS (1996) piopoll! a IImpk modifto alion 
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of the ADF tests in which the data are detrended so that explanatory variables are "taken 
out" of the data prior to running the test regression. 

ERS define a quasi-difference of Yt that depends on the value a representing the specific 
point alternative against which we wish to test the null: 

if t = I 

ift>I 
(l3.Sl) 

Next, consider an OLS regression of the quasi-differenced data d(l/tla) on the quasi-dif­
terenced d(3:tla): 

d(Ytl a ) = d(3:tl a),8(a) + fit (13.52) .. 

where :c t contains either a constant, or a constant and trend, and let $( a) be the OLS esti-
mates from this regression. 

All that we need now is a value for a . ERS recommend the use of a = a, where 

_ {I-7IT a-
I-IS.SIT 

if 3:t = {I} 

if3:t= {l,t} 
(13.53) 

VII'e now define the GLS detrended data, yt using the estHnll.tes assodated with the a : 
. ytaYt-3:/3(a) (13.54) 

Then the DFGLS test involves estir.ting the standard ADF test equation. (13.SO). after 
substituting the GLS detrended Yt for the original Yt: 

d d d . d 
AYt "" aYt-l + P1AYt-l + ... + Pp1It-p + VI (13.55) 

Note that since the 11: are detrended. we do not include the :l:t in the DFGLS test equa­
tion. As with the ADF test, we consider the t -ratio for 6; from this test equation. 

While the DFGLS t -ratio follows a Dickey-Fuller distribution in the constant only case, the 
asymptotic distnbution differs wben you include both a constant and trend. ERS (1996, 
llIbJe 1, p. 825) simulate the critical values of the test statistic in this latter setting for 
T = {50, 100, 200, 00 } • Thus, the EViews lower tail critical values use the MacKinnon 
simulations for the no constant case. but are interpolated from the BRS simulated values 
for the constant and trend case. The null hypothesis is rejected for values that faU below 
these critical values. 

The PhIHIps-Perron (pp) Test 

PbilHps and Perron (1988) propose an alternative (nonparametric) method of controlling 
for serial correlation when testing for a unit root. The PP method estimates the non-aug­
mented DF test equation (13.47), and modifies the t -ratio of the a coefficient so that 

• 



• 

• 

(13.56) 

where 6 Is the esdmaIe. and to the t ·ratioof Q, se(6) is(oefBrie .......... lI!mX'.and 
8 is the standanl errw of the testlesJessioD. In addl1ioD, 70 is I OOIIS'· .......... ''ie of the 
errwvarimc:ein (13.41) (cak:ulated as (T-k)s'l/T, wbae Ie IIthem ...... of ..... 
sors). The remaining term, 10. Is an estimator of the l'f'Iiduai spec:tnuD .. h<p-w:y zero. 

There an! two cboices you wiU bave maR when pelformiDs the PI' tell. FInI. you IIIUIl 
choose whe1ber to Include a constant, a constant and a IiDear time 1R!Dd. or nefthet ill the 
test lesressiOO. Second. you wiU have to choose a metbod for esIim ..... 10' EVIews sup­
portS estimators for /0 based on kemel-based sum.of-aJ9ariaaces. or 011 iIUtoiEgi he 
spectral density estimation. See -Frequency Zero Spectrum EtIdIudoll- ..... /81i'1I8 OIl 

page 338 for detaJIs. 

The asymptotic: distribution of the PI' modified f -ratio II the 1liiie II ... of the ADF sta­
tistic. EViews n!pOI'IS Mdlnoon Iower-tail critical and p-vaJues for dill tell. 

The Kwiatkowski. PhIIip5,. SchmIdt. and Shin (I(PSS) Test 

The KPSS (1992) test diffea from the other unit root teItI decalled bn III dI.at the __ 
'lit is assumed to be (tIend-) stationary under the nuIJ. The KPSS Ita1iItic is buI!d OIl the 
the residuals from the 01.5 .esJession of lit on the BCJ8f:DCIUI variables St: 

(13.57) 

The LM statIsIic is be defined as: 

LM = ES(t)2/ (T/o) (13.51) 

• 
where 10' is an esdmator of the RSIduaJ ~ .. freIp_:y aero IIIId wItese 8(t) isl 
cumulative residual function: 

t 
SU) "" E f1,. (13.59) 

""'il 
based OIl the l1!SIduais t, = 1ft - :1:,'&(0). '\.Vi! point out dI.at the eJfIm .... of IIIII!II in 
Ibis cakuJatIon dlffers from the estimator for 6; used by GLS delmidln81iDoe It is buI!d on 
a .esJe6Sion illvolviJC the ori8inal data. andllbt on the ~ data.. 

1b specify the JCPSS test. you must specify tbtlld of "l1li:8 ...... : II'St aDd I 
mediod for estimating /0' See -Frequency 1..eIO Spectrum EtIdIution- on .,. 338 for dis­
cussion. 

Jtf 
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The reported critical values for tbe LM test statistic are based upon the asymptotic results 
presented in KPSS ('llIble 1. p. 166). 

aliot, Rothenberg, and Stock Point Optimal (ERS) Test 

The ERS Point Optimal test is based on tbe quasi-differencing regression defined in Equa­
tions (13_52). Define the residuals from (13.52) as 1)t(a) = d(Ytla) - d(x t la),3(a). and 
let SSR(a) = .Ei7;(a) be the sum-ot-squared residuals function. The ERS (feasible) 
point optimal test statistic of the null that Ct = 1 against the alternative that Q = a. is 

then defined as 

PT = (SSR(ii) - iiSSR(I»1 10 (13.60) 

where fo. is an estimator of the residual spectrum at frequency zero. 

1b compute the ERS test you must specify the set of exogenous regressors 'J:t and a 
method for estimating 10 (see "Frequency Zero Spectrum Estimation" on page 338). 

critiCal values for the ERS test statistic are computed by Interpolating the simulation 
results provided by ERS (l996. Table 1. p. 825) for T = {50, 100,200, co} • 

Ng and Perron (HPJ Tests 

Ng and Perron (2001) constroct four test statistics that are based upon the GLS detrended 
data yt -These test statistics are modified forms of Phillips and Perron ZQ and Zt statis­
tics. the Bbargava (1986) RI statistic. and the ERS Point Optimal statistic. First. define tbe 

term: 

T d 2...2 
K. = .E (Yt-I) IT 

t=2 

The modified statistics may tben be written as 

MZ: = (rlC1/~)2 - 10>/(2K.) 

Mzt = MZQxMSB 

MSBd = (K.llo)1/2 

d I(C2K.-crl(y~2)IIO 
M T = _2 _ Id 2 

(c It + (1- c)r (YT) )110 

where 

if Xt = {l} 

if:l:t = {I, t} 

(13.61) 

(13.62) 

• 

• 
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{ 
-7 c= 

-13.5 

ifz, = {l} 

if s, = {l,t} 
(lU3) 

The NP teSts requite a rpecifiralion for Sf and a choice of method fGr ....... "'iD8 /0 (see 

Frequency Zero Spectrum Estimation 

Many of Ibe unit root teslS described above requite a coa __ ........... 01 the psIdg,1 
spectrum at fnquenc:y :rero.l!Views supportS two duRs of estImatoa for 10: IIlmeI­
based sum-of-c::onriaDces ftIImators. and autORglessM spedlal deosiI:t' """" ..... 

KtemeI~Esti"u'fu, 

The kemeI-based estimator of the frequency zero spet1I'\IIB Is baled OIl a WI fII· ..... sum 01 
the autooonriances, with the weights are defined by a kemeI fn!lCtjm The """" ...... 
takes the form 

T-I 
'Jo = ::E 'W . K(j/l) (lUt) 

j .. -(T-l) 

where I Is a bandwidth parameb!r (which acts as a tnmcalion "10 the conrIIIIIce 
weigbtIDg). K is a kemeI fnDClioD. and where -xi) , the fib s;uupIe .dOcO'lildana! 01 the 
residuals 11,. Is defined as 

T 
-xi) = ::E C11,11,_;1/T (IUS) 

'-j+1 

Note !bat the residua11111, that EViewI uses In estImatlll(l the aU1liCO\'aliaDl: fnnctlollilo 
(l3.6S) wtI differ depeiIdIng on the specified wdt root test: 

Unit root tell Soura! of 11, residuals for kemeI estimator 

ADP.D"iif IIIlt 

PP. I!RS RHDt residuals from Ibe Dic:lrI!y-FuII< tell equaIion. (13.47). 
OptImal. NP 

ICPSS residuals from Ibe OLS test equalion. (13.57). 
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Bartlett: . r- Ixl if Ixl :s; 1 
K(x) = 

otherwise 0 

Panen: r -a,' + '1'1' if o:s;,~ s (112) 

K($} == ~(1_lxI>3 if (112) < Ixl S 1 

otherwise 

Quadratic Spectral 
K(x);: 25 C'ln(6'11"X/5) - C08(6'11"X/5») 

12,ix2 6'11"x15 

The properties of these kernels are described in Andrews (1991). 

As with most kernel estimators. the choice of Ihe bandwidth parameter I is of COIIJlider­
able importance. EViews allows you 10 specify a fixed parameter, or to have EViews select 
one using a data-dependent method. Automatic bandwidth parameter selection is dis­
cussed in -Automatic Bandwidth and Lag Length Selection" beginning on page 340. 

AutoregreSSive Spectral Density Estimator 

The autoregressive spectral density estimator at frequency zero is based upon the residual 
variance and estimated coefficients from the auxiliary regression: 

ADt = allt_l + If" ft/§ + (1tAPt_l + ... + .8"4't-,, + tit (13.66) 

• 

EViews provides three autoregressive spectral methods: OLS, OLS detrending. and GLS 
detrending. corresponding to difference choices for the data 't. The following table sum- •. 
marizes the auxiliary equation estimated by the various AR spectral density estimators: 

AR spectral method Auxiliary AR regression specification 

OLS 't = tit, ilnd If' ;: l.:!lt = Xt· 

OLS detrended fit = tit - x/';(O) • and If' ;: O. 

GLS detrended 't = fit - ${';(a) == fit. and !p = O. 

where ';(0.) are the coefficient estimates from the regression defined in (13.52). 

The AR spectral estimator of the frequency zero spectrum is defined as: 

/0 = u~/(1-l1l-112- ... -11,,) (13.67) 
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where ".! = r:~1T is the residual varlante. and 1:1 are the etlfgyte. from (l3.66). We 
note here that EViews uses the non~f..freedom estimatGr of the r I toal YiII'iIDI:e. 
As a resuJt. spectral estimates comuted in EViews may dIfli!r sIialhd, from tbosI! obt1iDed 
from other soun:es. 

Not swprisingIy. the spedruJII estlmator Is sensItIft to the DUIIb- of !aged clUltteace 
terms in the allllilWy equatton. You may either specify a fixed parllIIf!er. or to haft 
EVIt!WS automatkally select ODe based on an information crilelloD. J\!domI'ic lac IeII&th 
selection is examined in "Automatic Bandwidth and Las Len8III Sell cllon" on PIae 340. 

DefOuIt SefrtJgs 

By default. EViews wID choose the estimator of 10 used by the anthon of a IJi9IID test 

specificatiOn. You may. of course. override the default seUInp and dIoose from either fam­
ily of estimation methods. The default settiJISS are listed beII:Ar. 

Unit root test Frequency zero spedruJI1 default IIK!lhod 

ADF. O"'FffLS not .~ 

PP.KPSS Kernel (BanIeIt) S1DIHIf-cuvadauc:es 

ERS Point 0pdmaI AR spectral Jl!tIreRIon (OLS) 

NP AR spectralll!8lesslon {GI..S-deCn!nded 

Aummatk: Bandwk.llh and lag Length SeIectfon 

There are three distinet situations in which EV_ can automaticaIIJ wmpillf: a bald­
width or a lac Jeusth parameu!f. 

The lim siIuatIon oa:urs wben you are seJecting the bandwidth paraIIlf!II!r I ... the _­
ueI-based estimators of /0' For the kernei estimators. EViews pm9ideI J'OD wtdl the apdon 
of usIn8 the Newey-Wi!st (I994) or the A.ncII:ewII (1991.) daca-based IIdomI'ic bandwidth 
parameter methods. See the original SOUI'Ce$ for deCalI.s. For tbosI! famIUar with die New" 
Wi!st procedure. we note that EViews uses the ... seleetlon parameter formulae tIiftD in 
the correspondins first lines of Thble U-C. The AndrewIIIH!CbocI is based on an Alto} 11ft" 
ificatiOn. 

The Iattu rwo oc:cur when the unit root test requin!s estimation of a ' ... I lOG wiIb a 
par.iIDIt!UiC CUlJection for serial correlatiOn as In the ADF and DJ1GLS test equation ...... 
sioDs, and in the AIt spectral estimator for 10' In aD at these c:aet. p ...... II!. 'ICe 
termS are added to a lI!8Iession equation. The aUlOlllalk: sele lion lIICIhodI er- p (less 
than the specified mufmum) to minimize ODe of the followinc cdlt'llil: 
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Infonnation criterion Definition 

Akaike (AlC) - 2(111') + 2klT 

Schwarz (SIC) - 2(111') + klog(1')IT 

Hannan-Quinn (HQ) - 2(111') + 2klog(log{1')/T 

Modified AlC (MAIC) - 2(l11') + 2( k + 7)/T 

Modified SIC (MSIC) - 2(111') + (k + r)log(1')IT 

Modified Hannan-Quinn - 2(l11') + 2(k + 7)log(log(1)/T 
(MHQ) 

where the modification factor T is computed as 
2 2 2 

T = a .EDt-l/a-u (13.68J 
t 

for tit = 1ft. when computing the ADF test equation, and for Dt as defined in "Autore­
gressive Spectral Density Estimator" on page 339, wben estimating 10' NP {200l} propose 
and examine the modified criteria. concluding with a recommendation of the MAlC. 

For the Information criterion selection methods. you must also specify an upper bound to 
the lag length. By default. EVlews chooses a maximum lag of 

kmax = int(12(TllOO)1/~ (l3.69) 

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound. 

Commands 
The command 

equation e~gdp.ls gdp c arCl) ar(2) mall) ma(2) 

fits an ARMA(2,2) model to the GDP series and stores the results in the equation object 
named EQGDP. 

eql.auto(4) 

tests for serial cOl1l!ialion of up to order four in the residuals from equation E01. 

eql. correlogram: (12) 

displays the correlogram for the residuals in EOI up to lag 12. 

equation eq2.1s gdp c pdllm1.12.3) 

fits a third degree polynomial to the coefficients of MI up to twelve lags. 

• 

• 
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gdp.uroot(lag •• ,conat} 

runs the ADF UDit root test lDduding a constant and four lap of tint diIfe ...... 

gdp.uroot (PP. trend,bac-bt.b ••. :Zl 

runs tbe PhIIIips-Pierroa UDit root test iDdudinS a constant and linear In!IId widI a Banlelt 
b!meI and baDdwldtb of 4.2 . 



Chapter 14. Forecasting from an Equation 

This chapter describes procedures for forecasting and computing fitted values from a single 
equation. The techniques described here are for forecasting with equation objects esti· 
mated using regression methods. Forecasts from equations estimated by specialized tech­
niques, such as ARCH. binary, ordered, tobit, and count methods, are discussed in the 
corresponding chapters. Forecasting from a series using exponential smoothing methods is 
explained in "Exponential Smoothing" on page 190, and forecasting using multiple equa­
tions and models is described in Chapter 23, "Models", on page 601. 

Forecasting from Equations in EViews 
1b illustrate the process of forecasting from an estimated equation, we begin with a simple 
example. Suppose we have data on the logarithm of monthly housing starts (HS) and the 
logarithm of the S&P index (SP) over the period 1959:01-1996:01. The data are contained 
in a workfile with range 1959:01-1998:12. 

We estimate a regresslonof HS on a constant, SP, and the lag of HS, with an AR(1) to cor­
rect for residual serial correlation, using data for the period 1959:01-1990:12, and then use 
the model to forecast housing starts under a variety of settings. FoDowing estimation. the 
equation results are held in the equation object EooI: 

D.p. IdenlIIIuIobIe: 115 -'----~ 10/18191 nne: 12:44 
SImpIe(~ 1959:031990:01 
IncIudod obeeMII!on8: 371_..,...atng eoldpoi1la 

CweS"9It*m''''''''''''' 
VeriM Csdsjppt 

C 0.321924 
115(-1) 0.952653 

SP 0.006222 
..027' 251 
0.861373 
0.8602<10 
0.082618 
2.505050 
400.8830 

-27 

SId Erg '2S7 
0.117278 2.744975 
0.016218 58.74157 
0.007588 0.888249 
PCI§21H ..r;pqp 

Mean depaiidoHll_ 
S.D. depaiideig va' 
Ablb Info CI'IIItion 
S_ c:dIerioo 
F_1le 

PM 
0.00I!3 
0.0000 
O.G17 
gfWt 

7.324051 
0Zi0996 

·2.138453 
-2.096230 
780.1338 
99'R9? 

Note that the estimation sample is adjusted by two observations to account for the first dif­
ference of tbe lagged endogenous variable used in deriving AR{l) estimates for this model. 

• 

• 
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'Ib get a feel fOr the fit of the model, select View/AduI. JIIUed.' , .... us tbm choose 
Actual. 1IHted. ledthal Graph: 

.(. ,,!-; \,.., • ~ -

"~l'.:~ ~ _ ,. _. ___ ~ ;--_ ... 

(-_-_-_1 
The actual and fitted nlues depicted OD the upper portion of the .. are YirtuaIIJ IDdis­
tiDgulsbable. 11ds view provides Utile control over the procesI of (iI'OIhrinC fitted values. 
and does not aIJow you to saw your fitted values. These 1m11idk,..,. are Oll!ltlOlDt ." 'IIIiItJ 
£Views bulIt-in fIncastin8 procedura 10 compute fitted YaIua fclr Ibe ~ QJiabIe. 

How to Perfot"i a Forecast 
'Ib foRc:asI HS from ibis equaIiOD. pusb the RIn!I:iut buaoD OIl the equatiou ..,.,., Ill' 
seI«t~ •. 

'lIbu sIJouJd pro.ide the following information: 

• SerIes- • 

• Alt. I j IIIIII1es. F1II in the edit box 
wIIh Ibe name 10 be given 10 the be­
casted dependent yarfable. EV"JewS sug­
gesCs a name. but you can change it 10 

any YaIId series name. The name should 
be difIaenl from the name of the depen­
dent YariabIe, since the fonIcasl pr0ce­

dure wm ova Wlite the data in Ibe 
spec Ified sales. 

• S.E. (tpIfeIIaI). If desired, you may pr0-

~."" r...., 
r __ 
• n. 
r;:;;.-, 
~ 

vide a name for the series 10 be Oed with the foRc:asI ataDdanI CiVlS. If you do DOl 

ptOYide a lWIIe. no forecast errors will be raved. 

.. 
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• GARCH (optional). For models estimated by ARCH. you will be given a further 
option of saving forecasts of the conditional variances (GARCH terms). See 
Chapter 16 for a discussion of GARCH estimation. 

• Foreeastlng method. You have a choice between the follOWing methods: 

Dynamic-calculates multi-step forecasts starting from the first period in the forecast 
sample. 

Static-calculales a sequence of one-step ahead forectl$ts. using actual. rather than 
forecasted values for lagged dependent variables. 

and you can set the following options; 

1. Structural-instructs EViews to ignore any ARMA terms in the equation when 
forecasting. By default. when your equation bas ARMA terms, both dynamic 
and static solution methods form forecasts of the residuals. If you select Struc­
tural. all forecasts will ignore the residuals and will form predictions using 
only the structural part of the model. 

2. Sample range. You must specify the sample to be used for the forecast. By 
default. EViews sets this sample to be the workfile sample. By specifying a 
sample outside the sample used in estimating your equation (the estimation 
sample). you can instruct EVlews to produce out-of-sample forecasts. 

Note that you are responsible for supplying the values for the independent variables 
in the out-of-sample forecasting period. For static forecasts. you must also supply the 
values for any lagged dependent variables. 

• OUtput. You can choose to see the forecast output as a graph or a numerical forecast 
evaluation. or both. Forecast evaluation is only available If the forecast sample 
includes observations for which the dependent variable is observed. 

Illustration 

Suppose we produce a dynamic forecast using EQ01 over the sample 1959:01 to 1996:01. 
The forecast values wDi be placed in the series HSF. and EViews will display both a graph 
of the forecasts and the plus and minus two standard error bands. as well as a forecast 
evaluation: 

• 

• 
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• ' . " , 
As noted in the output. the f0re­
cast values are Aftd In the 
series liSP. SInc:e HSF is a stan­

daId BVIewS series. you may 
examine your foJKasts usInc an 
of the suondaRllOO1s fO£ work· 
Ing with series objects, 

l .... _ j~ -~~------!. .l 

We can eumlne the actual.,..· 
sus fitted values by creatinB a 
group c:cnt alnin8 HS and HSF. 
aDd PIoUin8 the two series. 
Click on Quk:k/SJIInr ••• and 

~----... ---.~.-.. --"' -•• " 

/ 
'A-v-JJI 

.... '-.-.-~.--.-~-."'---... -------I -I 

=.-• • ---' . • .............. ----............ .-.. ........, ....... ---- .--- --- ---

enter HS and HSF. Then select VIew/GrapII/Liae to display the two series. 

• ! H _. I " 

_ - I.!,..; _ - 1--__ _ _ _._ ~-~ -'-.:!.:E . ~~~ ~~-"1 
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TJds Is a dynamic forecast _ the entire period from 1959:01 tImJuIb 19962Jl. "I'II!IJ 
period. die preriously fonasted values fO£ 8S(·I) are UIed In formiac a bee .. of die 
subsequent value of HS. Noce the conaidenble differ.- betwCUl ibis actual aDd fIUal 
graph and the .AduI. FIUed .......... GRpb depiclrd abaft. 

1b perform a series of one-sk!p ah~d fonoeasts. clidt OIl ....... on the equallOD tooIJar. 
and sdec:t Stade forecasta. EViews will display the forecast n!IIUItI: 
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We can also compare the actual and fitted values from the static forecast by examining a 
line graph of a group containing HS and HSF. 

The one-step ahead static fore­
casts are more accurate than the 
dynamic forecasts since, for each 
period. the actual value of 
HS( -l} is used in forming the 
forecast of HS. These one-step 
ahead static forecasts are the 
same forecasts used in the 
Actual, Fitted, Residnal Graph 
displayed above. 

Lastly. we construct a dynamic 
forecast beginning in 1990:02 
(the first period following the 
estimation sample) and ending 

6,0 

a 

7,6 

7.4 

7,2 

7,0 

U 

HS _I 

in 1996:01. Keep in mind that data are available for SP for this entire period. The plot of 
the actual and the forecast values for 1989:01 to 1996:01 is given by: 

• 

• 
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1.11 
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1be Jl!IJ.IIinder of tills dIapta 
focuses OD the cleWIs aslOdated 

H$ HSFI 

7A~--------------------~ 

12 

1.0 

6.8 

with the amstrucliOD of these fore- 6.6 ..... !!!""""'!I-""!I!'-'.!I!"'-__ -"'!l 
casts, aad the COiiespoadlng f0re­
cast evaJuadolls. l-HS -HSF1! 
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Forecast Basics 
EViews stores the forecast results in the series specified in the Forecast name field. We will 
refer to this series as the forecast series. 

The (orecast sample specifies the observations for which £Views will try to compute lined 
or forecasted values. If the forecast is not computable, a missing value will be returned. In 
some cases, £Views will carry out automatic adjustment of the sample to prevent a lore­
cast consisting entirely of missing values (see "Adjustment for Missing Values" on 
page 350, below). Note that the forecast sample mayor may not overlap with the sample 
of observatious used to esttmate the equation. 

For values not included in the forecast sample, there are two options. By default, EViews 
flUs in the actual values of the dependent variable. If you turn off the Insert actua\s for 
oul-of-sample option, out-of-forecast-sample values will be filled with NAs. 

As a consequence of these rules, aU data in the foreaJ.St serres will be OUetWlitten during the 
~ prcx:etilm>. Existing values in the forecast series will be lost. 

Computing Forecasts 

For each observatioo in the forecast sample, EVlews computes the fitted value of the 
dependent variable using the estimated parameters, the right-hand side exogenous vari­
ables. and, either the actual or estimated values for lagged endogenous variables and resid­
uals. The method of constructing these forecasted values depends upon the estimated 
model and user specified settings. 

1b illustrate the forecasting procedure, we begin with a simple linear resressJon model with 

• 

no lagged endogenous right-hand side variables. and no ARMA terms. Suppose that you •.. 
bave estimated the following equation specification: 

ycxz 

Now click on Forecast. speciiy a forecast period. and click OK. 

For every observatioo in the forecast period, EViews will compute the fitted value of Y 
using the estimated parameters and the corresponding values of the regressors. X and Z: 

1)t = ~(1) H!(2)xt + ~(3)zt· (14.1) 

You should make certain that you have valid values for tbe exogenous right-band side vari­
ables for all observations in the forecast period. If any data are missing in the forecast sam­
ple. the corresponding forecast observation will be an NA. 



• 

3!iO-Cbapblf 14. r-c:asting from III Eqllation 

Adjustmentfor' Missing Values 

There are two cases wIleD a missing value wiD be returDed for the Ioaecatlt YaIue. PInt, If 
any of the ltgiClIOIS have a missiDI vaJue. and IitCGIId. if any of the .. : F lID _ oat 01 
tile range of tile worIdiIe. 1bls includes tile implk:it error terms iFl AR fDO!kI. 

In tile case of I'orecasIs witllllO dynamic componentllin tile spedficalion (Le. witII DO 
Jaaed endogenous 01' ARMA error terms). a milsiDg value iD tile fon!tast series will DOt 

affect subsequeut forecasted values. In tile case wIIere tIIere are dyDamIc <0DJp ...... " 

1Ioweftr. a smgIe missiD8 value iD tile forecasted series wm prop .... dim ....... all 
future values of tile series • 

As a conveniella! feature. EViews wiD move tile &tartIJI8 pniDt of the """"" ...... 
wIIere nee !lfary. untD a valid fon!cast value is ob«ained. WitIIoat tIIeIe adjllll»rillS" the 
user would IIave to figure out tile appropriate number of presample ftIues to .... O!her. 
wise the fORCaSt would CODSisl entltcly of missing values. For en ....... IUp(IOIe you 
wanted to fon!cast dynamicaIIy from tile followlDB equation II'" iRe illk'" 

Y c y(-l) ar{ll 

If you Spt!( i6ed tile bealDni,. of tile fon!cast sample to tile l!etJI"ning of the waddle RJIIe. 
EViews will adjust forwml tile fnrec:ast sample by 2 observations, and will UII! the ... 
forecast-samp!e values of the Ja(I8t!d variables (tile loss of 2 ob&a villoDs OCCUIS 1IeAI_ 
tile residual Joses one observation due to tile Ia&8ed ~ variable 10 that tile 10m­
cast for tile error term can beaID only from tile tIIird observadoD.) 

Forecast Errors and Variances 
Suppose tile -uue- model Is Biven by; 

,I, = z(fJ + to,. nUl 

where tot Is an Independent. and identically distributed. mean ZII!IU JaMom dIIluIbIIIte. 
and fJ is a vector of unblown parcimeferS. Below. we relax tile .-rk:dGD that tile to 's be 
independent. 

The true model geMlilt1n8 II Is not known, but we obtain estfm? .. of tile __ D 

parameters fJ. Then. setIiDg tile error term equal to its mean value of 1l!IO. the {poiurJ 
forecasu of II are obtained as 

(IU) 

~ are made witIIenor. wIIere the error is aimpIr tile dI&tnoce Ills. ! eD tile actual 

and foreeasted YiIIue e, - lit - s,'". AssumiDg tilal tile model Is QJ(itetI, II'" """I. 
tIIere are two _ of forecast error: residual UDCeItaInly and coeft'kienC lUKlI!IIaJDty. 
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Residual Uncertainty 

The first source of error, termed residual or innovation uncertainty, arises because the 
innovations € in the equation are unknown for the forecast period, and are replaced with 
their expectations. While the residuals are zero in expected value, the individual values are 
non-zero; the larger the variation in the individual errors, the greater the overall error In 
the forecasts. 

The standard measure of this variation is the standard error of the regression (labeled ·S.E. 
of regression~ in the equation output). Residual uncertaInty is usually the largest source of 
forecast error. 

In dynamic forecasts, innovation uncertainty is compounded by the fact that lagged depen­
dent variables and AR.MA terms depend on lagged innovations. BVlews also sets these 
equal to their expected values, which differ randomly from realized values. This additional 
source of forecast uncertainty tends to rise over the forecast horizon, leading to a pattern 
of increasing forecast errors. Forecasting with lagged dependent variables and ARMA terms 
is diSCUSsed in more detail below. 

Coefficient Uncertainty 

The second source of forecast error is coefficient uncertainty. The estimated coefficients h 
of the equation deviate from the true coefficients (3 in a random fashion. The standard 
error of the estimated coefficient, given in the regression output, Is a measure of the preci­
sion with whiCh the estimated coefficients measure the true coefficients. 

The effect of coefficient uncertaInly depends upon the exogenous Variables. Since the esti­
mated coefficients are multiplied by the exogenous variables :t in the computation of fore-

• 

casts, the more the exogenous variables deviate from their mean values, the greater is the • 
forecast uncertainty. 

Forecast Variability 

The variability of forecasts is measured by the forecast standard errors. For a single equa­
tion without lagged dependent variables or ARMA terms, the forecast standard errors are 
computed as 

(14.4) 

where s is the standard enor of regression. These standard errors account for both inno­
vation (the first term) and coefficient uncertainty (the second term). Point forecasts made 
from linear regression models estimated by least squares are optimal in the sense that they 
have the smallest forecast variance among forecasts made by linear unbiased estimators. 
Moreover, if the innovations are normally distributed, the forecast errors have a t-distribu­
tion and forecast intervals can be readily formed. 



• 

• 

352-Chapter 14. FOhKastitlg fiom an Equatlon 

If you supply a name for the forecast standard ert'01lI, EVIews eomputlS aDd Uft!I a series 
of forecast standard errors in your woddile. You can use fbese S'aIIdard emu 10 form f0re­
cast Intervals. If you c:boose the Do graph option for output. EVIews wiD plot the foIecasts 
with plus and minus two standard error bands.. These two stawtan:! error buIds provide an 
approximate 95" forecast interval; if you (bypothetk:aIIy) male many foItcaS1s. the actual 
value of the dependent variable w:iII faD inside these bounds 9S peroeDt of the time. 

Additional DetaIls 

EViews accounts for the additional forecast unc:ertalDty ~ wIleD .... di!fet.teDt 
variables are used as explanatory variables (see -Fon!t:asts with I ...... Depmdear Vari­
ables- on pase 355) • 

There are several other spedaI cases. involving dependeut variables that _ defjnfd by 
expiessioD, where coef6cierlt UIlI.lertainty is ipored. These cases _ deialltd in '"FI:Jre. 
castinB Equatioos with Formulas- on page 359. 

fbrecast standard errors derived from equatloDS estimated by _linear least scpun!S and 
equatioos that include POL (polynomial disttfbuted lac) tenns only _IDt for the D!SId­
uaI UDCeItaInty (-fbrecasting with Nonlinear and POL Specifk.1tIoos- on pase 364). 

Forecast Evaluation . 

SuppoIe _ aHlstJuct a dyDamk: forecast for HS OYer' the period 199O:tD 10 1996:01 ... 
our estimated housing equation. If the Forecast eaJuadoa opdon is cbedr.ed. and dIeR 
_ actual data for the forecasted variable for the forecast sample. EViews NPOIts a taIIIe of 
staQstic:aI muIts evaluatin8 the forecast: 

~HSF 
IIit:MII: tIS 
........, 1tIO:GI21818:01 
we; .sB 
Roell ..... ___ EmIr 
..... _EmIr 
..... _ FoNu I ae EmIr 
lIIII. I nq C ...... . 

IlIIIII 1'1.,10 ... .. 
_P ..... lbl 

G .... ,' .' 

G.StIIaO 
II.2Ir.III1 
.fa 
G.IIZ1It7 
o 2 
0 ...... 
PMZ3Jf 

Note IhaJ EViewt cannot compute a forecast evaluatlon if dIeR _110 daa _ the depeu­

dent variable for the f'on!aIst sample. 

The fcm:ast evaluation is saved in ODe of twO formats. If you turn on the Do .... option. 
the forecasts are included along with a graph of fbe foftcasts. If you wiIIllO display the 
evaJuatiOnS in their own table. you sbouJd turn off the Do ...... optiOIII in the AIrec:asl cJia. 

. log box. 
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Suppose the forecast sample is j = T + 1, T + 2, .•.• T + h , and denote the actual and 
forecasted value in period t as Yt and fit. respectively. The reported forecast error statis­
tics are computed as follows: 

Root Mean Squared Error "+/. 2 
E (fit-tit) Ih 

~1"T+l 
Mean Absolute Error T+h 

E IYt-ydlh 
t=T+l 

Mean Absolute Percentage 
T+h I , 

Error 100 E flt-tl Ih 
tcT+1 Yt 

Theil InequaUty coefficient J TH 2 E (f/t-Yt) Ih 
t,.T+l 

J T+k J T+h E flt2lh + E 'Yt2lh 
t=T+l t=T+l 

The first two forecast error statistics depend on the scale of the dependent Variable. These 
should be used as relative measures to compare forecasts for the same series across dlffer­
ent models; the smaller the error, the better the forecasting ability of that model according 
to that criterion. The remaining two statistics are scale invariant. The Theil inequality coef­
ficient always lies between zero and one. where zero indicates a perfect fit. 

The mean squared forecast error can be decomposed as 

E{Yt-tlt)2Ih = ({Etltlh)-ii)2+(s~-s!/+2(1-r)sr, (l4.5) 

wlrere Efltlh. ii. Sft. SIf are the means and (biased) standard deviations of fit and tI. 
and r is the correlation between fI and tI. The proportions are defined as: 

Bias Proportion «Etit1h) _ y)2 
2 ' 

E(tit- tit) Ih 

Variance Proportion 2 (s,- Sr.> 
:I E(Yt- tit) Ih 

Covariance Proportion 2(1 - r)s,(r. 
E(Yt- YI) Ih 

• 

• 



• 

• 

• The bias poportion teJIs us how far the mean of the forecast is from the IDIUI of die 
actual series. 

• The variaIlc:e proportion tells us how far the variatioD of die bl!lCd Is from die viii­
atIon of the actual series. 

• The covariance proportion meaSW1!S the _inlna UIlSJIIltmadc fon!casdng emu. 

Note that the bias, variance, and covariance propor1ioDa add up to ODe.. 

If your bec:ast is -good-. the blu and variance pl'OIICl!ficlu IIIouId be IIBaIl so 1hIt most 
of the bias should be COOa!lltt3ted on the covariance ptOpOItIoDI. ft)r aMiIioNI ........... 
of forec.ut evaluation. see Plndyl:k and Rubinfeld (1991. Cbapler Il) • 

AJr the sample output. the bias proportion is Jarse, IDdlcadns tbal the IDIUI of die __ 
casts does a pClOf job of trac:kins the mean of die dependmt vadlllie. 1b cbtdt 1ItIs, we wiI 
plot the bec:asted series togethEr witb the actual series in the beast SoIIIIpIe willi die 
two standard error bounds. Suppose we saved the fotec.uts and tbelr IItandanI enon as 
HSF and HSF'SE. respectively. Tben the plus and minus two IItandanI error IC!l'ies em be 
generated by the commands 

sapl 1990,02 1996,01 

.eries hat_high - hsf + 2*hats. 

seri.. haf_low • haf - 2*haf.e 

Create a group contalnins !be four 
series. lOu can bi8bHsb( the four 
series US. HSF, HSF _HIGH. and 
HSF _LOw. double dick on !be 
selected _. and select Open 

GrRp. or you em select Qaick/ 
Show ••• and enter the four series 
names. 0Dc:e JUU Jiaft die 8J'OUP 
opeD. aeIecl VIew/GrapllJUlle. 

The foRc:asts compIetriy miss the 
downturn at die stan of the 
1990's. but, sublequent to the 
recmery. traCk the tteDd _ 
ably weIlliom 1992 to 1996. 

8.0 

111 

1Jl ( 
711 

72 

7.0 

... 

... 

HSF+~ 

HSF 
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Forecasts with Lagged Dependent Variables 
Forecasting is complicated by the presence of lagged dependent variables on therigbt-hand 
side of the equation. For example. we can augment the earlier specification to include the 
first lag of Y: 

y c x z y(-l) 

and click on the Forecast button and fill out the series names in the dialog as above. There 
is some question. however. as to how we should evaluate the lagged value of Y that 
appears on the right-hand side of the equation. There are two possibilities: dynamic fore-

casting and static forecasting. • 

Dynamic Forecasting 

If you select dynamic forecaSting, EViews will perform a multi-step !oRcaS! of Y, beginning 
at the start of the forecast sample. For our single lag specification above; 

• The initial observation in the forecast sample will use the actual value of lagged Y. 
Thus, if 8 is the first observation in the forecast sample. EViews will compute 

Ds = eel) + e(2)x9 + e(3)z9 + e( 4)'119_1' (14.6) 

where '119-1 is the value of the lagged endogenous variable in the period prior to the 
start of the forecast sample. This is the one-step ahead forecast. 

• Forecasts for subsequent observations will use the previously (orectuted values of Y: 

YS+k = eel) + e(2)xS+k+ e(3)zS+i:+ e(4)YS+k_l' (l4.1) 

• These forecasts may differ significantly from the one-step ahead forecasts. 

If there are additional lags of Y in the estimating equation. the above algorithm is modlfled • 
to account for the non-availability of lagged forecasted values in the additional period. For 
example. if there are three lags of Y in the equation: 

• The first observation (8) uses the actual values for all three lags. YS-3' YS-2' and 

'liS-I' 

• The second observation (8 + 1) uses actual values for '118-2 and, '/18-1 and the 
forecasted value fI 8 of the first lag of 'II 8 +1 . 

• The third observation (8 + 2) will use the actual values for '118-1 ' and forecasted 
values fI 8 + 1 and Y s for the first and second lags of '/18+ 2 • 

• All subsequent observations wlll use the forecasted values for all three lags. 

The selection of the start of the forecast sample is very important for dynamic forecasting . 
. The dynamic forecasts are true multi-step forecasts (from the start of the forecast sample). 
since they use the recursively computed forecast of the lagged value of the dependent vari-



able. These ba:asts may be iDlerpn!ted as the forewbI for ..... .-pedods .... would 
be computed usiP8 Information available at the start of the farec:u( Ample 

Dynamic b«asling RqUires tIIat data for the ......- ¥II'iabIII!s bit uaIWIJe ..... eMf 
observation in the foIecast sample. and that values for any IatIBed dependepl ¥II'iabIII!s be 
observed at the start of the forecast sample (in our example, lIs- J. but _ ~. 
any lags of'll). If necessary. the foIecast sample wi) be adjustl!cl. 

Any mlsslDIJ values for the aplanatory variables will paerale an NA for .... GtJM.adou 
and in aD subsequent obsetvalions, via the dyDamlc forecasts of the lIBIed d..,....,1 
variable. 

• Static Forecasting 

• 

Static forecasting pewfonns a series of one-step abead fom:.uIs of the depot ... variabII!: 

• For eacb observation In the foIecast sample, IWIII!ws COIIIJ)Ufa 

ts+.I: = e(l) + e(2)zS+k + 1!(3).I's+.I: + e(4)PS+k_l (14.8) 

ahrays usiP8 the adlIal value of the lagged encfo .: IIOIIS ViiIlIabIe. 

Static for«asIing requires that data for both the eIII8' MUS and any ............. eoous 
variables be observed for every observation in the .foI«asI......,. As aboft, EViews will, 
if oecess.aJY. adjust the tor«ast sampJe to aa:ollllt for pre-s"'lple !aged YariabIes. U the 
data ate not avaDable ..... any period. the .foI«asIed value ......... obeeInliuD will be an 
HI.. The .. esenc:e of a .foI«asIed value of NA does not haw any impart OIl b«wts ..... 
subsequent observations. 

A Comparison of Dynamic and Static Forecasting 

JIoIb methods will always yield identk:al results in the first period of III IJIaId.period Ii:n­
call. T1ms, two foIecast series, one dynamic and the other stalk:, mould bit ..... h II ..... 
the lint observation in the fot«ast sample. 

The two methods will differ for subsequent periods only If then! ate lIBIed depeo .... t nri­
abies or ARMA lenDS. 

Forecasting with ARMA Errors 
RJRQIfiDIJ fIOm equations with ARMA components in¥Olges aome Mel_h.' mmpIai­
lies. When you use the AR or MA specifk:ations. you will Deed 10 bit a1I'II1! of bow EViews 
handles the forecasts of the lagged residuals wlUch ate used in fcnoc ....... 
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Structural Forecasts 
By default. EViews will forecast values for the residuals using the estimated ARMA struc­
ture. as described below. 

For some types of work, you may wish to assume that the ARMA errors are always zero. If 
you select the structural forecast option by checking Structural (igBore ARMA). EViews 
computes the forecasts assuming that the errors are always zero_ Ii the equation is esti­
mated without ARMA terms. this option has no effect on the forecasts. 

Forecasting with AR Errors 

For equations with Al errors, EViews adds forecasts of the residuals from the equation to • 
the forecast of the structural model thaI is based on the right-hand side variables. 

In order to compute an estimate of the residual, EViews requires estimates or actual values 
of the Jagged residuals. For the first observation in tbe forecast sample. EViews will use 
pre-sample data to compute the Jagged residuals. If the pre-sample data needed to compute 
the lagged residuals are not available, EViews will adjust the forecast sample. and backfill 
the forecast series with actual values (see the discussion of "Adjustment for Missing Val­
ues- on page 350). 

If you choose the Dynamic option, both the lagged dependent variable and the lagged 
residuals will be forecasted dynamically. If you select Statie. both will be set to the actual 
lagged values. For example, consider the following AI(l) model: 

lit = :C//3 + tit 
(lU) 

tit == Pltlt-l + P2U t-2+ I'.t 

Denote the fitted residuals as et ... lit -:c/b, and suppose the model was estimated using • 
data up to t = S - 1 . Then, provided that the Xt values are available, the static and 
dynamic forecasts for t = S, S + 1, .•. , are given by: 

static dynamic 

Ds xib + fJleS_l + fJ~S-2 xib + fJl eS-l + fJ2eS_2 

Ds+! :CS+l'b + fJleS+ fJ2eS-l xS+l'b + fJlfiS+ fJ2eS-l 

DS+2 xS+2'b + fJl eS+l + fJ2es xS+2'b + fJ1f.t.S+ 1 + /J2f.t.S 

where the residuals f.t.t = fit - x{b are formed using the forecasted values of 'IIf. For sub­
sequent observations. the dynamic forecast wiD always use the residuals based upon the 
multi-step forecasts, while the static forecast will use the one-step ahead forecast residuals. 



Forecasting with MA Errors 

In general. you need not concem yourselves with the detaiJs of MA "«iidkllo siDce 
EVIeWS will do all of the work fm: you. AIr those of you who are IIIIeieslt:d in the details of 
dynamlc forecasrins. bowm!r. the following discussion sbouId lid you In relatinB !VIeWS 
mults with those obtained from other _ 

The first step in computiDs fmecasl5 WIiJl8 MA t_ is to obtaiD lilted qIaes _ the limo­
vations in the prHorecast sample period. AIr example. If you are rorer ..... the YaIues of 
II. beginnins in period S. 1rith a simple MA(1l l. 

;s = ES+ f,lfS_1 + ... + ~tfS-.,. (14.10) 

• you will need values fm: the !aged innoYations. fS_l.fS_2> ••• ,fS_,. 

i 

1b compute these pre-forecast innoYatioos. EViews wID fint ..... qIaes tor the 9 imJID.. 
vatioDS prior to the stan of the estimtltion sample. fo. £_1' £_2> ••• , £"1 .If JOIII' equItioa is 
estimated 1rith b;riras1ins turned 011. EViews wID pelform b;rirastl"'tl to oIJtain these 
values. If your equation is estimated with bac.Iti:astins turned off. or I the falecatl Ample 

precedes the estimation ample. the Initial values will be let to ZI!I'D. 

Given the Initial values. EViews wID 6t the values of subseqt.t.!Dt Iaoofltioat. 
EI' £2> ... , E9' ... , £S-1 .lIlIins forwanJ recursion. The badx:asttns aad 1 .. • ... ·1 pr0ce­
dures are desalbed in detail in the discussion of bKkastins in AlMA IIlOdeIs iD -Back· 
casting MA tel1DS- on paee 320. 

Hole the dIffeI_ between this procedure and the appIOaCb tor AR _ ... dlh .... --. 

in wbieh the forecast sample is adjustaI forwanJ and the pre-1ioRaIt uJues are .. to 
actual values. 

The dIoiee between dyaamic aDd sutic fon!castin8 baa two J,lIiJury ........... 

• Once the II pre-sample values for tbe iJulioqtlans are I .. ", ... cIJDu* bel n· 
ins seflI subsequent innovations to zero. Stalk: becastinB e ....... theb •• d_· 
sion tIIrouJb the end of the estimation _pie. aIlowiJI8 tor a __ of OIl. t Z' 
ahead fon!casts of both the structural model aDd the laoofadoDt. 

• WheII computins sutic foIecasts. EVleWS uses the t!IIIfR estIIIIation Ample to bact· 
cast the inDmratloo$. I« dynamic MA forec:astiJ18. the bar ..... ptOCedme_ 
observations from the bl'ghIQins of the f'SIhnaIioa umpIe iD eIdaer the iH!p.P!"I of 
the becast period. 01 !be end of the estIIIIatIon umpIe. wIIichews: comes Ont. 

~ 
As an sample of forecast!Dc from AlMA modeIt,. coDlider b .. _ li• the......". DeW 

boullJng starts (HS) SEries. The estimation petiod is 1959:01-1984:12 aDd we forecast_ 
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the period 1985:01-1991:12. We estimated the following simple multiplicative seasonal 
autoregressive model: 

hs c ar(l) sar(12) 

1b forecast from this estimated model, click Forecast on the equation toolbar. The forecast 
evaluation statistics for the model are shown below: 

F_HSJ 
AcUaI:HB 
Ban1I>Ie: 1885:0.11891:12 __ :84 

__ SqunClEtTof __ enor 
___ Enot 

1'heiI~CIII.C .. nt 
8Ia$ Ploporlon - """""'"" ~p,OIfOtIW 

28.13385 
23.3912 
2<.22213 
0..113Ol6 
0.108193 
0.&09413 
0..294335 

The large variance proportiOn indicates that the forecasts are not tracking the variation in 
the actual HS series. 1b plot the actual and forecasted series together with the two standard 
error bands, you can type 

amp1 1985:01 1991:12 

plot hs hs_f hS_f+2*hs_se hs_f-2*hs_se 

where HS....F and HS_SE are the forecasts and standard errors of HS. 

As indicated by the large vari­
ance proportion. the forecasts 
track the seasonal movements in 
HS ouly at the beginning of the 
forecast sample and quickly flat­
tens out to the mean forecast 
value. 

Forecasting Equations with 
Formulas 

EViews allows estimation and 
forecasting with equations where 
the left-hand variable is a trans-

-r--------------------, 

• 
.-.~-:-:!:'"-:-:!:'"-:-:!:'"-:-:!:'"-:_~-:_".,,.-I 

I-:J -::=":1 

formation specified by a formula. When forecasting from equations with formulas on the 

.. 

• 



left-band side. tIm!e thiDp determine the forecwm", procedures mel opIioDI that are Dail­
able: 

• wbetber the formula Is linear or llOI1IItIear 

• wbetber the formula iDdudes !aged variables 

• wbetber the formula includes estimated coefIicients 

PoInt Forecasts 

EVieWa always provides you with the option to forecut the mn".IIIM +epen .... YIri­
able. If the mmsformation can be normalized mel solved for the 8nt I1I!ries In the fonauIa. 
then EVieWa also provides you with the option to fotecast the DOf!MIiD'd .nes. 
For example. suppose you estimated an equation with the spedfbtion 

(log (xl+z) c y 

I Ii I 
NoIk:e that the dI.IIog provides you with twO choices for the I1I!ries 10 ..... die.... .. 
ized series, X. mel the depeudent YaJ1abie, LOG{X) + Z. X is the 1MlPDI""*' I1I!ries since • 
Is the first aeries that appeaI5 on the left-band side of the eqlJlllloa 

HOWEVa; If you spedfy the equatiOn as 

x+l/x - c(l) + c(2)., 

EV"1I!WlI willIOI be able to DOJJDaIize the dependent variable aDd die Fa ..... cIiIIoIloc*s 
Bbthit: 
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u~~_:'~·=:· .. :;::. ===11 ~1i, I 
F -,...."' .. "' ...... 

The dialog only alloWl! you to forecast the transformed dependent variable, since EVieWll 
does not know how to normalize and solve for X. Note also that only static forecasts are 
available for this case. ThIs restriction holds since EViews wlll not be able to solve for any 
lagged values of X on the right hand-side. 

If the formula can be normalized. EViews will compute the forecasts of the transformed 
dependent variable by transforming the forecasts of the normalized series. This has Impor­
tant consequences when the formula includes lagged series. For example, consider the fol­
lowing two models: 

series dy • dly) 

equation eql.ls d(y) c x 

equation eq2.1s dy c x 

• 

The dynamic forecasts of the first difference D(y) from the first equation wlll be numerl- • 
caJIy identical to those for DY from the second equation. However, the static forecasts for 
D(YJ from the two equations will not be identical. This is because In the first equation. 
EViews knOWl! that the dependent variable is a transformation of Y. so it wiD use the actual 
lagged value of Y in computing the stalic forecast of the first difference D(Y). In the second 
equation. EVieWll simply views DY as an ordinary series, so that C and X are used to com-
pute the static forecast. 

Plotted Standard Errors 

When you select Do graph in the forecast dialog. EVieWll wiD plot the forecasts. along with 
plUS" and minus two standard error bands. When you estimate an equation with an expres­
sion for the left-band side. EViews will plot the standard error bands for either the normal­
ized or the unnormalized expression, depending upon which term you elect to forecast. 



• 

If you eJect to predict the normalized dependent YII'IabIe. JMews wm.............., 
account for the uonUnearily in the standard error II'mIIfonutIoD. The De!'Jtt _11l1li ... 
vide additional detalls on the procedure used to normalize the upper aDd IoII'er bouads. 

saved Forecast Standard Errors 

If you provide a name in this edit box. EViews will store the standal1ll _ of the underly­
ing series or expression that you chose to foreeast. 

When the dependent variable of the equation is a simpJe aeries (II" a fDnauIa iatoIwiIC 0DIy 
li.nI!aT traosformations. tile saved standard enors wIl be euet (emept wilen! !he beeasu 
do not account for coefIlcIent uncenalnty. as desalled below). If !he cIeprncIa. nriable 
involves nonlinear transformations. the saved forecast standa!d _ wiI be aaa If you 
choose 10 forecast the enlft fonnula. If you choose to forecast the 1IIIderIyIDc end! I _ 
series, the foIecasl uncertainty cannot be computed aacdy. aDd EV"JeWI will &Moville a liD­
ear (tim-ordel") approximation to the foRcast standard errors. 

Consider the foIIowin8 equations involving a formula depellllent vadabIe: 

d(y) c x 

log(y) c x 

A>r the tim equation you may choose to forecast either Y or D(Y}. In boIb cues. !he Ion!­
cast standard _ will be SICt, since the expresUIIII iImIha 0DIy ... trausfouu­
lions. The two standard enors will. boweYer. differ in dyuamic fllll!cast:l1iuce !he becast 
standard er:rors for Y take Into account the forecast uncenaiuty flvm the ..... yaiue 01 Y­
In the second aample. the forecast standard _ for Jos(Y) wftI be l!!.UCl. U. lIIII.ti«. 
you request a forecast for Y Itself. the standard errors laved In the aeries wm be !he 
appio.dmate (linearized) forecast standard errors for Y. 

Note that when EViews dispIap a FlPb Yiew of the fIIII!cast:Il~a Iber w:Ith standa!d_ 
bands, the standard error bands are always eDCl. 'fhus, In forecaIdnI the UlldalyiIC 
dependenl variable In a nonlinear expression. the standlrd error bmdI wm DOl be the 
same IS those you would obtain by construCIIng series WIiIII the IiDearWld standa!d enors 
saved In the WCII"kflIe. 

SUppose in 0lIl" second elIIIIIpIe above that you store the fcneut 01 Y aDd as standa!d 
errors In the wortftJe as the series YHAT and SIt.YHAT. Then the UfiIN"dn .... two staD­

dard error bounds can be (It!lIeRted manually as: 

seri .. ybat_lIighl - ybat + 2*s • ..;ybat 

series ybat_lowl • yhat - 2*se..;ybat 

These forecast error bounds wIl be symmetric about the poInt imi:castI YHAT. 
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On the other hand, when EVlews plots the forecast error bounds of Y, it proceeds in two 
steps. It first obtains the forecast of 10g(Y) and its standard errors (say LYHAT and 
SEJ.YHAT) and forms the forecast error bounds on log(Y): 

lyhat + 2*se_lyhat 

lyhat - 2*se_lyhat 

It then normalizes (InVErts the transformation) of the two standard error bounds to obtain 
the prediction interval for Y: 

series yhat_high2 • expllyhat + 2*se_lyhat) 

series yhat_low2 • exp(lyhat - 2*se_lyhat) 

Because this transformation Is a non-linear transformation, these bands will not be sym­
metric around the forecast. 

1b take a more complicated example, suppose that you generate the series DIY and LY, and 
then estimate three equivalent models: 

series dly .dlogly) 

series ly - log(y) 

equation eql.ls dlogly) c x 

equation eq2.1s dlly) c x 

equation eq3.1s dly c x 

• 

The estimated equaoollJ from the three models are numerically identical. If you choose to 
forecast the underlying dependent (normalized) series from each model, EQl will forecast 
y, EQ2 will forecast IY (the log of Y). and EQ3 will forecast DIY (the log of the first differ­
ence of Y, 1og(Y)-logY(-l)}. The forecast standard errors saved from EOl will he linearized 
approximations to the forecast standard error of Y, while those from the latter two will be • 
exact for the forecast standard error of log Y and the log of the first difference of Y. 

Static forecasts from all three models are Identical because the forecasts from previous 
periods are not used in calculating this period's forecasl wben performlll8 static forecasts. 
For dynamic forecasts, the log of tbe forecasts from EQ 1 will be identical to those from EQ2 
and the log first difference of the forecasts from EQl will be identical to the first difference 
of the forecasts from EQ2 and to the forecasts from EQ3. For static forecasts, the log first 
difference of the forecasts from EQI will be identical to the first difference of the forecasts 
from EQ2. However, these forecasts differ from those obtained from EQ3 because EViews 
does not know that the generated series DIY Is actually a difference term so that it does 
not use the dynamic relation in the forecasts. 

A final word of caution: when you have lagged dependent variables. you sbould avoid 
referring to the lagged series before the current series in a dependent variable expression. 
For example, consider the two equation specifications: 



• 

dry) e x 

-y(-1)+y e :It 

Both models baft the lint diffetenoe of Y as the depeW"".1 variable aDd die """""on 
results are ldentil:al for the two models. HO"tll!f. jf)'Oll foreQut Y flom die .......... .-111. 
EVIews will try to caIc:uIate the forecasts of Y using Jeads of the actua1Ndes y: These f_ 
easts of Y will cllifer &om those produced by the first model. aDd may DOt be whit you 
expec:red. 

Forecasting with Nonlinear and POL Spedftcations 

As explained above. fOIecast errors can arise &om two _: a-tft 'eul1IDt'eItoIiIIty aDd 
innoVatioD UIII.:eI1aiDty. For Ilnear regressioD models, the foIeeast standard errors account 
for both ooeffident and lruIoYation uncertaillty. Hawe ,er;, If the .-III Is _Itqear ill the 
parameters (or If it contains a PDL spedftcation). then the standard etnlB ipIR ooeffi.. 
cient UJICe'ftaInty. EViews wiI display a message In the status line at die botmm of the 
E\'"JeWS window wben fOIecast standard errors only account for imIor.diDII1IDt'eItoIiIIty. 

For exampk!, CODSider the three spedfications 

lO9(Y) e x 

y - e(l) + c(2}*x 

y _ exp(C(l) *X) 

y C :It p41(z, ., 2} 

Forecast staadan:I errors &om the lint and second models account for bodl c.fi jenI and 
IruIoYation uncertainty $Ince both models ale linear In the coeflIdesd. 11le IbinI and 
fourth speclfkations baft fom:ast standard errors that account emir for r 'hll_­
taInty. 

One additional case I1!qUin!s metltion. Suppose)'Oll baft the spedlkatloD-

y-e(1) • e(l) + e(2)*x 

Despile the fact that this spI!cification is Ilnear ill the paramet.eD. EViewa wOI ipIR CI'JI&. 
fideDt uncertainty. ForecaIt standard errors for any spedfication that COIIIaiDs a>eftIe ""liS 
CD the left-band side of the equality wiI only Jeft«t residual _1iIint,_ 

Commands 
1b obtaiD stade: (onHtep abead) fon!casts. toJJow the name of die eltimattd equatloD. a 
dot. the command fit. a name for the fitted series, and optionaIy a name for the standlll'll 
errors of the fitted values: 
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eql.fit yhat yhat_se 

1b obtain dynamic forecasts. folIbw the name of the estimated equation, a period. the com­
mand forecast, a name for the forecasts, and optionally a name for the standard errors 
of the forecasts: 

eql.forecast yh yh_se 

See the Command and Programming Reference for a complete list of commands and 
options available for forecasting. 

• 

• 



Chapter 1 S. Specification and Diagnostic Tests 

Empirical researcb is usually an intmlctive process. Tbe .. oc:ew beaIas willi it specIk:a­
lion of the relationship to be estimated. SeIec1iD& it spedfk:adoa UIIIIIIJ IutoItts several 
choices: the Yarlables 10 be included. the func:tlonal form (OnIW11!,'I tbeIe YaIiatlIes. and if 
the data are time series, the dynamic struc:hI1'e of the relatlooship betwEen the ViIIiabII!s. 

InmtabIy. there is uncertainty regardins the appiGpriat_ of tbIIldiaIsptC HIe "doD. 
Once you estimate your equation. EViews provides tools for evaIuatbc dle quaIIy of your 
specification along a numbet of dimensions. In tum. dle resultI of tbfte ... ""'.we the 
chosen specification. and the proa!SS Is repeated. 

This chapter dlsalbes the extensive menu of spec:lfication test ........ :1 Ibat are ..... 
as views or procedures of an equation object. WbIIe we _lit to pm.1dt you willllUffi­
dent statistical badqpound 10 conduct the tests. pncdcaI CODSIderalioDs _Ibat IIIiID)' 

of the descriptions are incomplete. We refer you to lItandanlll1.ildllllail and e .......... 1c ref· 
deuces for further delalIs. 

Background 

Each test proc:edure deIIaibed below involves the sptdfic:ation of a mdlhtJiOlh Ills, which 
is the hypothesis UDder test. Output &om a test Q)IIImand CO? ' II of dle vmp!e .,.... of 
one or _ test statistics and tbtIr aI"'OCiilled probability ...,....,.,. tp..,....). Tbe IiIIHr 
indicate the probability of obIainin& a lest stalislk wboIe ablolute ".. is 8I'JIIl8" than or 
equal to tbal of the Silmple statistic if the null bypodIllis is IIUe. 'I"IDD, low p-YaIues lead to 
the rejec:tiorl of the null hJpotbesis. For example. If a p-nlue Jies belW[I!ft 0.05 and om, 
the nuD byporbesis is rejected at the 5 pelQ!Ilt but DOt ill dle 1 ptrCilIIlleftl. 

Bear iD lIIiDd that there are dlffetent assumptions and distI ......... .-III iI.1OCia1ed ... 
eaeb test. For example, some of the test statistic:s have uaet. IiDite Ample distll'''doos 
(~ t or F-distribuIions). Others are IaqJe sample test Slatillics 1IriIh asympIOdc 
x2 dlsIrIbution& Details vary &om one test to another and at!! __ below iD the deiaip­

tioD of eaeb test. 

Types of Tests 
Tbe VIew buttoo on the equation toolbar gives you a c:Iloice a!I!O!I8 tbret ..... ies of 
tests to c:beck the spedfIc:ation of the equadon. 

Mditlollal teSII at!! dllCUSsed eJsewbere in the u.s Gatde. TbeIe 
tesIS include UDit root tests (-PerformIng Unit Root 1l!sIs Ia EVIewII­
on page 329). the Granger causallty test (-Granter Causallty- on 

• • • 

.,1f 
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page 222), tests specific to binary, order, censored, and count models (Chapter 17, "DIs­
crete and limited Dependent Variable Models", on page 421), and the Johansen test for 
cointegration ("How to Pedorm a Cointegration Test" on page 538). 

Coefficient Tests 

These tests evaluate restrictions on the estimated coefficients, Including the spedal case of 
tests for omitted and redundant variables. 

ward Test {Coefficient Restrictions} 

The Wald test computes a test statistic based on the unre­
stricted regression. The Wald statistic measures how close 
the unrestricted estimates come to satisfying the restrictions under the nuD hypothesis. If 
the restrictions are in fact true, then the unrestricted estimates should come close to satis­
fying the restrictions. 

How to Perform Ward Coefficient Tests 

1b demonstrate the calculation of Wald tests in EVlews. we consider simple examples. Sup­
pose a Cobb-Douglas production function has been estimated in the form: 

logQ = A + O'logL + /:1logK + £, (IS.1) 

where Q • K and L denote value-added output and the Inputs of capital and labor 
respectively. The hypothesis of constant returns to scale Is then tested by the restriction: 

0'+/:1= l. 
Estimation of the Cobb-Douglas production function using annual data from 1947 to 1971 
provided the following result: 

Depei.~ vadIibII: t.ClG(Q) 
MeIhOCI: ..-5qI.a 
Dale: 013111197 Tine: 16:56 
Sample: 1904711171 
M*1Rmtm· 2§ 
~. CoetIidMI 

c -2.327Il39 
lOG(L} 1.5111175 
~~tiI g23QM4 

R-aquaAld 0.983672 
Adjusled R..,.- Q.982187 
S.E. of tegnIIIIIion 0.043521 
Sum squared I'IISid 0.041669 
Loglblhood 44.48748 
Ourbin-Watsgg. g§;1300 

~Ii. 11l1li11 ella 
0.410601 -5.fl69595 0.0000 
0.167740 9.465Il7O 0.0000 
gJ~ am. a 1'la.11 

_ dependent var 4.767586 
S.D. dependent_ O.32flllll8 _ Info crIerion -3.3161l1l7 
~crilerion -3.112732 
F-static 8112.6819 
PI!Jb(F-siallotl9 QOOODOO 

• 
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The sum of the coefficieDts 011 LOG(L) and LOG{K) apfdlI to be in I!I'I.':ess of one. but to 
determine wheth« the diffemlce is stallstically relevant, we wIIJ conduct the bypGCIM sis 
test of constant returns.. 

1b carry out a WaId test. choose VInr/Cc>efIkim1t ~. ticUI 
from the equation tonIbar. Enter the restrictions Into the edII Ilea.. With multiple coefticienI 
restrictions separated by commas. The resll1ctiollS sIlonId be eq:w ed .. equations 

InvoJving the estimated coeIDcients and COnstalllS (yoo may DOt 1IldI. series _1. 
The coeffidents sbouId be refelled to as em. C(l). and 10 GIl. UDIess JOII line used " dIf· 
ferent coeIIideDt vector In estimation. 

1b test the hypothesb of COllStallt returns to scale. type the .......... £ bicliuo In £be cHit­
Jog box: 

c(21 + e(3) • 1 

and dick OK. EVIews n!p011S the followillg result of the WaId b!II: 

WilllfTIIII: 

En " 'WI 
TWS ;; We 

12110177 'leWn 
M ",,'" • r ti 

AsslF • ... ~fn Tn a. 

«P , tz 
1 UUIID 

11m 9" 

W' _fa 
gem ge= 

EVJews lepmts aD F-1ItaIIstic and a CbI-IIquut .. dItic willa .11Jf""11 It w' I See '"WaId 
'R!st Details- GIl pap 371 for a discullioD ofdlele .......... In ..... IoaD. JMI!IrJ iEpiMts 
£be value of the I1OfIJIlIIil:ed (bomogeneous) restrIc:tioD and aD aSlOClidied ........ _111 
this eumple, we have a singlfllinear restrkIioD 10 £be two test stadIIfcs -1rIentbI, wid! 
£be p-vaIUe iIIcIiI:atIDC that we tan decisively reject £be DUll bypod I of .......... retums 

to SQJe. 

1b test more thau one zestrk:tioII. separate the lestIic:1IcIDs.., COllI ... Few enmpIe. to test 
the hypothesis that the elutidty of output willa Japed to labor is l/3 and £be eIasUdt, 
with respect to capIat is 1/3. enter the resuieIIoDs .. 

c(21-2/3, c(31-1/3 
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WeklTeot 
~gp.tiMt'~ 

1111 §bdidc ¥- III f'robII>i!!!y 
CI1kqo.on 53.99105 2 0.0000 
F:!ttOtis 21.., f222! pqgoo 

tIIIItb I •. lummarv" 
!:Pm I ~ RAsUidion '= II v_ IilllIiI 
·213 + C(2) 0.924508 0.167740 
-lQ+"n iiiBliZi 51£:10601 

~ .... _in~. 

Note that in addition to the test statistic summary, we report the values of both of the nor­
malized restrictions, along with their standard errors (the square roots of the diagonal ele­
ments of the restriction covariance matrix). 

As an example of a nonllnear model with a nonlinear restriction, we estimate a production 
function of the form 

logQ = fil + fi21og(fiaK" + (1- fia)LA) + E (lS.2) 

and test the constant elasticity of substitution (eES) production function restriction 
fi2 = 1/ fi 4' This is an example of a nonllnear restriction. 1b estimate the (unrestricted) 
nonllnear model, you should select Quick/Estimate Equation ... and then enter the follow· 
ing specification: 

log(q) • a(l) + a(2)*log(a(31*kA a{4)+(1-c(3»*lAc {4» 

1b test the nonlinear restriction, choose View/Coefficient 'niIIbI/WlIId-coerflcient Restrte-

• 

lions ... from the equation toolbar and type the following restriction in the Wald 'lest dialog • 

box: 

a(2)-1/c(4) 

The results are presented below: 

WeklT_ 
Em rI ¥ ESI2 T., E" 
~ 
fA!!ds 

11M 
0,(1285011 
0W'R! 

"'fir 'Swrpe'Y' 

, 
1 

n 21) 

Pn,.. 
0._ 
98fl§ 

'ienn"m' n M1i'I (: m \1M. Err 

q21 .. 1fC{.' 1'212'. 7.", 
Cella method ~ using """Iytic~. 

l1¥ 



Since tbis is a non'inNr equation. we focus on the Cbi-squ.ue staIlstic: wIddl Uik 10 Rjed 
the nul JrppothesIs. Note dlat EVJeWSll!pOl1s dial it UHd the delta mediad (with IUIydc 
derindves) 10 compute the WaId I'I!SIIictiOD variance for the nmh e .. resak.1ion. 

It is well-known dial DODIiJIear WaId tesIs an! not lnvarlaDt 10 !be ."., 1bat JVU spedfJ the 
nonlinear restrictions.. In Ibis example. the llOIIiDear lestllt1ion ~ = 1/ fl. IUJ equlva· 
lently be written as tJ,II, == 1 or fl4 = 11 fJ, (for IIOlI7.eI'O ~ aad fl,). Rr .... mpIe. 
enteriDg tile lestIlction as 

c(2)*c(f)-1 

yiekls: 

X.775 
eN .... 
f 57 -104.51l1l8 

P" 
"nf" 7 J. '; 

«p' 7 
1 0._ 

gin 9" 

rei 7 '3 ,,' (:0 Y , • fI 
w
1+smcttl 9am oem 
DllllIIIIIIad--' UIIng .....,., ........ 

so dial die test IIOW decislve1y rejects the nuB hypodIesis. We IsastII!D 10 add duIllype of 
iDc:omIIsteDty is not unique to EVIews, but is a more general .. opal, of the WIld leSt. 
Unfortunately. there does not seem to be a general soIudon to Ibis .. oIliem (_ Davidson 
aDd MacKlnDon, 1993. 0Iapter 13). 

WaId Test D le.as 
Consider a general DODIiJIear legn!lslon model 

'11= I({J) +£ (lS.3) 

where 'II and £ an! T ·vectcn aDd fl is a ,t.veclOl' of paEIDIettn 10 be ........... ,.", 
mttlcdons on the parameress can be written as 

Ho: g({J) - O. (15.4) 

when! 9 is a SlIIOOlh function. g: R" -+ R' • tmposIDs lJ lestlidluDi on fl. lbe Wild SIll· 

tiatic is dIen computed as 

W == g({J),(8$~~6)¥p).c{J)1.t9a. (15.5) 
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where T Is the number of observations and b Is the vector of unrestricted parameter esti· 
mates, and where iT is an estimate of the b covariance. In the standard regression case, iT 
is given by 

'V{b) = s2(8f ({3)8f ({3))-lj 
8(J 8(f {J-b 

(1S.6) 

where u is the vector of unrestricted residuals, and 8
2 

is the usual estimator of the unre-
stricted residual variance. 8

2 = (u'u)/(N - k). but the estimator of V may differ. For 
example. V may be a robust variance matrix estimator computing using White or Newey· 
West techniques. 

More formally. under !be null hypothem Ho, the Wald statistic has an asymptotic i(q) .., 
distribution, where q is !be number of restrictions under H o. 

For the textbook case of a linear regression model 

11 = X(J+e 

and linear restrictions 

Ho: RfJ-r = D. 

(lS.7) 

(1S.8) 

where R is a known q x k matrix. and r is a q -vector, respectively. The Wald statistic in 
Equation (15.5) reduces to 

W = (Rb~r)'(R82(X'XflR')-\Rb-r). (15.9) 

which is asymptotically distributed as i(q) under Ho. 

If we further assume that the errors E are independent and identically normally distrib-
uted, we have an exact, finite sample F-statistic: • 

F = W = (tl'tl-u'u)/q (IS.IO) 
q (u'u)/(T- Ie)' 

where t1 is the vector of rsiduals from !be restricted regression. In this case, the F-statis· 
tic compares the residual sum of squares computed with and without the restrictions 
imposed. 

We reotind you that !be expression for the finite sample F-statistic in (IS.IO) is for stan­
dard linear regression, and Is not valid for more general cases (nonlinear models, ARMA 
specifications. or equations where the variances are estimated using other methods such 
as Newey-West or White). In non-standard settings. the reported F-statistic (whlch EViews 
always computes computes as W / q J, does not possess the desired finite-sample proper­
ties. In these cases, while asymptotically valid, the F·statistic results should be viewed as 
illustrative and for comparison purposes only. 



• 

Omitted Variables 

This test enables you to add a set of varlablet to an n111t1ng equadon _ to .. whether 
the set maJi:es a signific:ant conlrlbution to expiainIDB the QriatioD in the depa"1eut vari­

able. The nuD bypothesIs H 0 is that tile additional set of 'ear 1111 an! not joiDdy siBnifi­
canL 

The output from the test is an F-stalistic and a l!I!e!ihood Rdo (1.1) mdttic widl..,a.. 
ated p-vahles. together witIIthe estlmatlon resuIIs 0( tile watiUided IDOdII!I UDder the 
alternative. The F-stallslic is based on the diffeIence between tile ft'SIdual sums 0( squms 
of the ,estJided and IIIIIeJIricted regmslons aDd Is only valid in linear II!p8Iiun based 
settings. The LR stallslic is computed as 

LR = -2(1,.-1.) (15.11) 

where lr and I,. all! tbe maximized values of the (Gaussian) Jog aeJ!bood fnarUon of tile 
unrestrieted aDd mmicted legIessinnS, respectively. Under Ho. the LR tptItdr lias III 

asymptotic X 
2 

distribution with degrees of freedom equal to the DDDlber of iauiaitms 
(the Dumber of added variables). 

Bear in mind that; 

• The omitted variables test requires that the AiDI! munber 0( ~aiIl ill the 
original and test equations. If any of tile III!Iies to be added CODt.aia ...... obiaN­
lions over the sample of tbe original equation (which wID oftm be the aIM wbeD 
yon add )aged variables). the test st.atisdas cannot be COIIIIrUI:II!d. 

• The omltted variables test can be applied to equadolll esdmated willa ...... LS. 
TSLS. ARCH (mean equation only). binary. ontered. c:eIIIMll'ed. II.... 1 L _ COIIDI 
models. The test is available only if you spedfJ the equadon by ...... the ..... 
son. not by a formula. 

1b pelfolm an LR test in these settinp. you can estIniate a aepIIiIte equadon lor the __ 
SIIkted and restrided models over a common sample. and ft'alualie the LR stadsIIc _ po 
value using scalais aDd the ltcehi8q funetioo ... desaIbed ___ 

How to Perform an OmItted Variables Test 

1b test lor omitted variables, select ViewfCoellk:lent'D!lll/OlDlttel VarW' !fIr ....... 

Ratio ••• in the dialog that opI!II5, list the PaIIles of the test YiIiiabIes, eKh aepIIiIted by at 
least one space. Suppose. for _pie. that tile initial ,ep' hn is 

1. log(q) e logll) log(kl 

If you enter the list 
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log(m) logle) 

in the dialog, then EViews reports the results of the unrestricted ~sion containing the 
two additional explanatory variables, and displays statistics testing the hypothesis that the 
coefficients on the new variables are jointly zero. The top part of the output depicts the 
test results: 

F~ 4.267478 PIIlbabiIiIy 
be'" 1. 8,1*919 "".., 

0.0281111 
99'lW 

The F-statistlc has an exact finite sample F-distribution under H 0 for linear models if the 
errors am independent and identically distributed normal random variables. The numera­
tor degrees of freedom is the number of additional regressors and the denominator degrees 
of freedom is the number of observations less the total number of regressors. The I~ like­
lihood ratio statistic is the LR. test statistic and is asymptotically distributed as a X 2 with 
degrees of freedom equal to the number of added regressors. 

In our example. the tests reject the null hypothesis that the two series do not belong to the 
equation at a S % significance level, but cannot reject the hypothesis at a 1 % significance 
level. 

Redundant Variables 

• 

The redundant variables test allows you to test for the statistica1signlfl.cance of a subset of 
yom included variables. More formally, the test is for whether a subset of variables in an 
equation all have zero coefficients and might thus be deleted from the equation. The 
redundant variables test can be applied to equations estimated by linear LS, TSLS, ARCH 
(mean equation only), binary. ordered, censored, truncated, and count methods. The test • 
is available only if you specify the equation by listing the regressors, not by a formula. 

How to Perform a Redundant Variables Test 

1b test for redundant variables, select View ICoeffictent1ests/Jleduruiant variables-Uke­
IiIwod Ratio ••. In the dialog that appears, list the names of each of the test variables, sep­
arated by at least one space. Suppose, for example, that the initial ~sion is 

ls log{q) c log{l) log(k) log(m) log!e) 

If you type the list 

log(m) loglel 

in the dialog, then EViews reports the results of the restricted regression dropping the two 
regressors, ioBowed by the statistics associated with the test of the hypothesis that the 
coefficients on the two variables am jointly zero. 



• 

1-»' .. Tesb-175 

The test statislfcs are die F-statistic and die 1.08 II ............. AlIo. The F-ShililUc bas aD 

exad finiIe sample F-distribution UDder H 0 If die emxs are 'Mept1 ...... ' and iIJIootieally 
distributed normal raadom variables and the model is 1iIIiNr. The DU1IIII!ft1tOr __ of 
freedom are given by the number of ooefficieDt .eslJictious in the mdllIypochesis The 
deDomlnator detPees of freedom are given by die toW.l!I1essioQ __ of r-dom. The 

L.R test is an asymptotic test. distributed as a X
2 

with detP- of fn!edom equal to the num· 
ber of ucluded variables under H o. In this case, there are two cIepees of fn:edom. 

Residual Tests 

EViews provides tests Wr serial coneIation. 1torIIIaIity. bell!l~ rli e 1,,", I,. aDd 4UlOItIft!S­
live c:ondidonal hetel'osIledastidty in the lI!Siduais from your esdmated equ.atioo. Not an 
of these tests are available fIX' every sptdfication. 

CorreIogIillm5 and Q-statistics 

This view displays the autocom!lations and partial auto­
c:oneIations of the equation residuals up to the spedfjed 
number of lap. Further delalls on these statistk:s aDd the 
liung-Box Q-slatislics that are also computed are pr0-

vided in Chapter 7. "Q-Statistics· on pase 169. 

This view is available Wr the resklllals from least squares. two«i8t a-t1flll"H'S, IIOIIIiD 
ear least squares aDd bIIwy. ordered. amsored. aDd count mocIeJI Ill .......... the pr0b-

ability values for the Q.s!atistlcs, the dI!IIees of r-dom are adjuRed to .' ..... tor 
estifnated .AJtMA terms. 

1b display the conelopam and Q-statistfcs, push Ylelrlll r' •• 1 ~ 
......... on the equation toc.lIbu: III the Lag SpecifirWion dialoB bal......." the m""'" 
of lap you wiIb to ute in COIIIp\Itb:IB the coneIf:I8ram. 

CorreIograms of Squared Residuals 

This view displays die autocom!lations and panialIUtocorie' ..... of the- tqIIIR!d resldu­
als up to any specified number of lap and computes the l4UD811oJ: QstadIdc:s tor the- CIlI'­

~ lap. The c:orJ'1!Io(Iram of the squated nMluals c:.ta be DIed to daect 
autcJn!greslive conditional hetenvedastidty (AIICH) in the mkiDals; It!(! aJao -AJICH LM 
_to on pap 3n. below. 

If there is no ARCH in the residuals. the autocorrelatioal aDd pardal4Utocoraelations 
sbouId be ZI!lO at an lap aDd the- Q-statistic:s should DOl be "'!lOran&; It!(! Cbapler 7. 
page 167. for a disoJIISiOD of the c:oneIOtp'IDIS aDd Q-statistks 
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This view is avallable for equations estimated by least squares, two-stage least squares, 
and nonlinear least squares estimation. In calculating the probability for Q-statistics, the 
degrees of freedom are adjusted for the inclusion of ARMA terms. 

1b display the correlograms and Q-statistics of the squared residuals. push View/ReSidual 
Tests/Correlosram Squared Residuals on the equation toolbar. In the Lag Specification 
dialog box that opens, specify the nmnber of lags over which to compote the correlosrams. 

Histogram and Normality Test 
This view displays a histogram and descriptive statistics of the residuals. including the 
JaIque-Bera stalistic for testing normality. If the residuals are normally distributed. the his­
togram should be beU-shaped and the Jarque-Bera statistic should not be significant; see 
Chapter 7. page 153. for a discussion of the Jarque-Bera test. This view is available for 
residuals from least squares, two-stage least squares, nonlinear least squares, and binary, 
ordered, censored, and count models. 

1b display the histogram and JaIque-Bera statistic, select Vlew/ReSlctual1ests/Hlstogram­
Normality. The Jarque-Bera statistic has a X 

2 
distribution with two degrees of freedom 

under the null hypothesis of normally distributed errors. 

Serial Correlation LM Test 

This test is an alternative to the Q-statistics for tesling serial correlation. The test belongs 
to the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests. 

Unlike the Durbin-Watson statistic for AR(1) errors, the LM test may be used to test for 
higher order ARMA errors and is applicable whether or not there are lagged dependent 
variables. Therefore, we recommend its use (in preference to the DW statistic) whenever 

• 

you are concerned with the possibDlty tbat your errors exhibit autocorrelation. __ 

The null hypothesis of the LM test is that there is no serial correlation up to lag order p. 
where p is a pre-specified integer. Tbe local alternative is ARMA(r, q) errors, where the 
number of lag terms p = max(r, q). Note that this alternative includes both AR(p) and 
MA{p) error processes. so that the test may have power against a variety of alternative 
autocorrelation structures. See Godfrey (l988), for further discussion. 

The test statistic is computed by an auxiliary regression as follows. Fil1t. suppose you have 
estimated the regression 

(15.12) 

where b are the estimated coefllclents and £ are the errors. The test statistic for lag order 
p is based on the auxiliary regression for the residuals e = 11 - x'/3 : 



e. = X t1 + ( E Q.et-_) + tit· _-t 

Iter" , Ti!sts-37J 

(1S.13) 

FoIlowio8 the sugestion by Davidson and MacKlnDon (1993), EVIews ... my ........... 
YCIIues of the residuals to O. This approach does DOl affect tile asy.upI.oIic .1w!'1hoJdoD of 
the statiStic. and Davidson and MacKinnon atgUe tbat IkIUIII so pnwides a ISIlbtistic 

wbicb bas better finil:e sample properties than an approach which dnJps the iDiIiaI olIIc!r­
vatloDs. 

This is a ,egression of the residuals on tile origIDaI.., ! llDlI X ud ...... ' ' "M" up lID 
Older p. EViews repoi IS two tesl statlsdcs from tbis lSI'" pi IrQ Tbe F-«"'is'k is an 
omllted variable test for the joint signilkaMe of aD !aged A!SIdIta 'k!euwe die omjItpd 

variablls are residuals and not Independent variables, die aaclluite .ampIe dbIrblIicm 
of tile F-statistic umJer So is stDl nOI known, but we puent the F-statistic lor mmpari-

The Obs*R-squaRd staIisdc Is the Breusch-Codfrey LM lSI SlatItIIk TJds LM SIIIIistk is 
mmputed as tile DUmber of observations, limes tile (une ellteiied) rfrom die lSI ...... 
sioJL Under quite general OODdiIioos, tile LM test staIisdc is asyiIipWCic:.IIIJ disalbuted as a 

2 
X (P). 

1be serial correlation LM test is avaBable for resldnals from eidrer Ieal ..... _two­
stage least squares estimation. The orIginaI'egtasion may IDducIe ARud lolA --. ill 
wbicb ease the test legtesslon will be modified to take au .... nt of the AI.MA tenDS. 1ftdaC 
In 2SLS settlnp Involves additional oompJications, see Woaldlld. (1990) for .... 

1b cany out the test. push VIew/ReSidnal 'n!IIlIISerIaI Cal I " r 1M 'I!!It,., CJD tile 
equation toofbar and specify the hIgbest order of the AR or lolA POOteW tlUltllllgllldeli,l .. 
the serial correlation. If tile test indicates serial coneIadollln the ll!lIIduaIs. LS .... anI 
etlGrI are invalid and should not be used for lnferea-. 

ARQILMTest 

TJds is a I.aSfaDIe JlI'dtipIler (LM) test for aUllDltjjieuift ( .. 1thW .1'," 'sla'. II, 
(ARal) In the residua (Enale 1982). This particuJal Sp!' Ifir ..... ofheae .. uedaJlicil, 
was motinted by the observation that in manr financial time series. die ma.,...,.. of 
residuals appeared to be reJaled to tile magnitude of reomt res!dua" AICH In itself does 
not lnYaIIdate standanlLS infermce. Howeler, /gnoI1ng AICH eIIeclJ ..., mull In loss of 
efflrieJq; see Chapter: 16 for a dJscussion of esIimadml of ARCH JDOOeIs In !Mews. 

The ARCH LM test statistic is oompuled from an auxlllaly lSI... II III 1b test tile mill 
bppothesIS that tIIere Is no ARCH up to order q in the RlIiduaJI. we nIB the I" lion 
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(15.14) 

where e is the residual. This is a regression of the squared residuals on a constant and 
Jagged squared residuals up to order q . EViews reports two test statistics from this test 
regression. The F·statistic is an omitted variable test for the joint Significance of all lagged 
squared residuals. The Obs·R-squared statistic is Engle's LM test statistic, computed as the 
number of observations times the R2 from the test regression. The exact finite sample dis­
tribution of the F-statistic under Ho is not known but the LM test statistic Is asymptoti-
cally distributed X2(q) under quite general conditions. The ARCH LM test is available for • 
equations estimated by least squares, two-stage least squares, and nonlinear least squares. 

10 carry out the test, push View/Residual Thsts/ ARCH LM Thst •.• on the equation toolbar 
and specify the order of ARCH to be tested against. 

White's Heteroskedastidty Test 

This is a test for heteroskedasticity in the residuals from a least squares regression (White, 
1980). Ordinary least squares estimates are consistent in the presence heteroskedasticity, 
but the conventional computed standard errors are no longer valid. If you find evidence of 
beteroskedasticity, you should either choose the robust standard errors option to correct 
the standard errors (see "Heteroskedasticity Consistent Covariances (White)- on page 281) 
or you should model the heteroskedasticity to obtain more efficient estimates using 
weighted least squares. 

White's test is a test of the null hypothesis of no heteroskedasdcity apInst heteroskedas­
ticily of some unknown general form. The test statistic is computed by an auxiliary regres-
sion. where we regress the squared residuals on all possible (nonredundant) cross • 
products of the regressors. For example, suppose we estimated the following regression: ' 

fit = bl + b2X t + b3zt + et (15.15) 

wbere the b are the estimated parameters and e the residual. The test statistic is then 
based on the auxiliary regression: 

:I 2 2 
et = 0.0 + o.lXt + o.2zt + o.SZt + Q4.zt + "'SXtZt + tit· (15.16) 

EViews reports two test statistics from the test regression. The F-statlstlc is an omitted 
variable test for the Joint Significance of all cross products, excluding the constant. It is pre­
sented for comparison purposes. 

The Obs·R-squared statistic is White's test statistic, computed as the number of observa­
tions times the centered R2 from the test regression. The exact finite sample distribution 
of the F-statistic under HO is not known. but White's test statistic is asymptotically dis-



" 

I 

tributed as a X 
2 

with degrees of fMdom equal 10 the number of slope coeftlc jpnts (a:Jud­
ms the CODSIaut) in the test R!8Iession. 

Wbite also describes this approadlas it general test for model ml"l. D ...... sa- the 
nuB hypothesis UIIderIying the test assumes that the emn are boIb hamoIbdllllc and 
independeIIt of the resressors, and that the IiDear specification of dle model is QlII«I. Fai1-
ure of any ODe of these conditions could lead 10 a sipilbpt lilt lfadsdl:. Comasel,. a 
non-sigDiIic:an test statisdc: implies that none of the thn!e COIlIdidam is 1'ioI I .1 

When there are redundant cros&-produc:ts. !Views auto.matIcaIIJ drops dlem fmm dle lilt 
legression. For cumpie, the square of a dUJJlJll)' variable is dle cIuIauIy ftIi.abko iIRIf. so 
that EViews drops the squared term 10 avoid pedied CDlliaatitp. 

1b cmy out Wbite's heteroskedastid test, select VIew" d 'wi,.,.... BE' ••• 
edastldty. EVIews has two OpOOllS for the test: cross tenDS and DO ClOD fIenDL The cmss 
tenDS version of the test is the original VClSioa of White's test that iDe' ..... aD of the cross 
produet tenDS Cm the cumpIe above. Ztzt J. Howe va; with IIWIJ dBbt..Jland side vari­
ables in the R!8Iession. the number of possible cross product tenDS becomes wry IaqJe so 
thai It map DOt be pradIc:aI to indude aD of them. The DO ClOD terms opdOD lUIII the test 
regression using only squares of the II!1JIl!lISOI'l 

Spedfication and Stability Tests 

EV'-. pmrides a number of test statlsdc views that """""'" wbedter the ptAI .. IS of 
your model are stable across various subsamplea of your data. 

ODe reCDmmended empirical tedmIqtJe is 10 split the T 
observations in your data set of observations into Tl obIerA­
tions 10 be used for estimation. and T2 = T-T1 obitIvii' 
lions 10 be used 1m: testbJS and evaluation. U*" aD ilValabie 
Silmple observations for estimation promotes .. se.treh for a ..... lIiI oM"'" daM bell fits dut 
spedfIc data set. but does not allow for lestms pn!dIdions of the IIIOdeI II 'I" dahl that 
haft not been used in estimating the model. Nor does It aIow ODe 10 test for .... IE 

eoostancy. stability and robustness of the estimated n!I.aticmsIdp. in dille __ ~ JOU 
lriIlllSUillly tHe the first Tl observaliollS for estimation and tbe IasI TJ for........ \Vida 
cross scclion data you lIIiIY wisb 10 order the data by' _ ViII'iabIr. IUd! u boA elJiold 
fnQlIoe, sales of a firm, or other inItiI:.1lOr variables and UJe it sub let for IUUIIC 

1'hen! are DO hatd and fast rules for desermin". the ft!Iadft sizes of Tl and T2• In _ 
c:ases there map be obvious polnlS <II wbich a break in IIrUclUn! mfBht haft tabu pIaa-
a war. a pi«:e of JesisIation. a switch from bed to floating m:biIIIIE AleS, or au oil sIJock.. 
WIIere there is DO reason 4 priori 10 Spect a structural bnat. it cum........, used J'IdI!.of. 
thumb is 10 use IS 10 90 percent of the observations for estjmaticm and tbe f'I'III.jnder for 

testing. 
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EViews provides built·in procedures which facilitate variations on this type of analysis. 

Chow's Breakpoint Test 

The idea of the breakpoint Chow test is to fit the equation separately for each subsample 
and to see whether there are significant differences in the estimated equations. A signifi­
cant difference indicates a structural change in the relationship. For example, you can use 
this test to examine whether the demand function for energy was the same before and after 
the oil shock. The test may be used with least squares and two-stage least squares regres­
sions. 

1b carry out the test, we partition the data into two or more subsamples. Each subsample • 
must contain more observations than the number of coefficients in the equation so that the 
equation can be estimated. The Chow breakpoint test compares the sum of squared residu-
als obtained by fitting a single equation to the entire sample with the sum of squared resid-
uals obtained when separate equations are fit to each subsample of the data. 

EViews reports two test statistics for the Chow breakpoint test. Tbe F-statistic is based on 
the comparison of the restricted and unrestricted sum of squared residuals and In the sim­
plest case involving a single breakpoint, is computed as 

F _ (f1./fI. - (uI/ul + U2/U2»1 k 
- (ul'ul + u2'U2)/(T- 2k) , 

(15.17) 

where e'f! is the restricted sum of squared residuals, u/u; is the sum of squared residu­
als from subsample i. , T is the total number of observations, and k is the number of 
parameters in the equation. This formula can be generalized natutally to more than one 
breakpoint. The P·statistic has an exact finite sample P-distrlbution if the errors are inde­
pendent and identically distributed normal random variables. 

The log likelihood ratio statistic Is based on the comparison of the restricted and unre­
stricted maximum of the (Gaussian) log likelihood function. The LR test statistic has an 
asymptotic i distribution with degrees of freedom equal to (m -l)k under the null 
hypothesis of no structural change, where m is the number of subsamples. 

One major drawback of the breakpoint test is that each subsample requires at least as 
many observations as the number of estimated parameters. This may be a problem if. for 
example, you want to test lor structural cbange between wartime and peacetime where 
there are only a few observations in the wartime sample. The Chow forecast test, discussed 
below, should be used In such cases. 

1b apply the Chow breakpoint test, push View!Stability 1\1stI/Chow BreakpoiDt 1\lst •• _ 
on the equation toolbar. In the dialog that appears. list the dates or observation numbers 
for the breakpoints. For example. if your original equation was estimated from 1950 to 

1994. entering 

• 



I 

Spedfbtiun II1d Stat 'Iy leIb-Jll 

IHO 

in the diaIos specifies two subsamples. one from 1950 to 1959 aDd ODI! tnJm 19CiO to 19M. 

1YPin8 
1'60 1970 

specifies three subsamples, 1950 to 1959, 1960 to 1969. aDd 1910 to 19M. 

ChoWs Fon!cast Test 
The Chow fonJc:ast tell estimates two models ODI! usiDS die IuD 8el Gl dIr.a T. aDd die 
other using a tong subpertod T1• A long difIen!nce belaem the two mo' : calIS douIlt on 
the stabDfty of the estimated relation over the sample period. The Cbow fon!ast tell c.m 
be UICd with least squares and twcHtase least squares tetYa.kIIII. 

EViews ItpOll$ two test statistics for the Chow fon!cast tell. The F .... tIIIk: is ClOIIIputed as 

F - (G'f! - u'U)/T2 (15.18) 
- U/V/(Tl - k) • 

when! fl'fl is the residual sum of squares when the equatloa Is flaed to all T sample 
observations. u'v is the residual sum of squares wIleD the eqnldoa Is flaed to Tl obser· 
vations. aDd k Is the number of estimated coefIidents.. This F-statisdc: follows an euct 
finite sample F-dlstribution if the em:n are indepeDdEIIt. aDd !dei ...... : DIII1IIaIlJ dlsnJb. 
uted. 

The loB IIbIihood Ado statistic is based on the CUlnpI'isou of die IftUIaed aDd __ 
SIrkted maximtJm of tile (Gaussian) tog UketiboOO fnlld!on BotII die 'M,t11td aDd 111ft­

SIrkted 108 6wboOO are obta1oed by estimatin8 the 1E8I ROIl ..... die wilGle sn ... 
The iCSlricted 1E8Iessio.1 uses the original set of .e&lesson. wbile die waElbkttd ...­
lion adds a dUlDDlf variable for each forecast point. The La tell sWIsdc ba .. ..,iiipIOIiC 
X 2 dlstributloa with de&Jees of freedom equaJ to tile number of foreaIt poiDII T2 UDder 
the nun hypothesis of 110 sttuc:IUIlII change 

1b agIIy Chow', foItcaIl test, pusb VIew/SfabOlly'R!lllJQaw .............. OIl die 
equaIioD too!b;,r aDd specify the date or obtei vatloa oomber tor die 11 ghmf'll of die __ 
cast"" sample. The date sbouId be wltIIln the current sample of obIerYatiODs. 

As an example. suppose we estimate a consllmptloa fuJM'1iOD ... quII'ttdJ daIa tnJm 
1947:1 to 19M:4 and spedfy 1973: 1 as the fInt observation in die foItcaIl period. The tell 
iCdliwatts die equatioa for the period 1947:1 to 1972:4. and uses the result to compute 
the pitdk:tion errors for tile remal .... quarters. aDd itpOIl$ the follow" results: 
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F .. _tic:: 0.708348 Probelllly 
boo ,jkei'Wi'!!Me 91 5ZQ88 ProbabW'Y 

0.951073 

93711• 

Neither of the forecast test statistics reject the null hypothesis of no structural change in 
the consumption function hefore and after 1973:1. 

If we test the same hypothesis using the Chow breakpoint test, the result is 

F .. _ 38.39198 ~I\y 

Loa 'ikIIhDDd '* 65 !5fi Pr9babilty 
0.000000 gmm 

Note that both of the breakpoint test statistics decisively reject the hypothesis from above. 
This example illustrates the possibility that the two Chow tests may yield conflicting 
results. 

Ramsey's RESET Test 

RESET stands for Regression Specification Error Thst and was proposed by Ramsey (1969). 
The classical normal linear regression model is specified as 

11 = XJ3 + E, (15.19) 

• 

where the disturbance vector E is presumed to foHow the multivariate normal distribution 
N(O, O'2I). Specification error Is an omnibus term wblch covers any departure from the 
assumptions of the maintained model. Serial correlation, heteroskedasticity, or non-nor-
mality of aU violate the assumption that the disturbances are distributed N(O, 0'2 I) . Thstse 
for these specification errors have been described above. In contrast, RESET is a general 
test for the following types of specification errors: 

• OmItted variables; X does not include aU relevant Variables. 

• Incorrect functional form; some or all of the variables in 11 and X should be trans­
formed to logs, powers, reciprocals, or in some other way. 

• Correlation between X and £, which may be caused, among other things, by mea­
surement error in X, simultaneity, or the presence of lagged 11 values and serially 
correlated disturbances. 

Under such specification errors, LS estimators wUl be biased and inconsistent, and conven­
tional inference procedures will be invalidated. Ramsey (1969) showed that any or aU of 
these specification errors produce a non-zero mean vector for E • Therefore, the null and 
alternative hypotheses of the RESET test are 



• 

Ho: f - N(O, 0'21) 

HI: f- N(p., 0'21) 1'*0 
(15.20) 

The test is based on an augmented regression 

11 = XP+Z..,+E. (15.2]) 

The test of speclfication error evaluates the restrk:doo .., = 0. The C31IdaI ........ 1n 
CODStrUCtiDg the test is to determine what vanables should enter the Z IIIIIIriL N«e IbIt 
the Z matrix may, for example, be comprised of variables IbIt are DOt In Ibe CJri8InId spec­
lficadon. so that the test of 7 = 0 is simply the omitted variables test de:tulbed above.. 

In testiD8 for Inconect fuDctioDaI form, the nonlinear pan of Ibe 'EIIISiOD model may be 
some funcIion of the 'Ell' 51 DIS Included In X. For example. f a linear n!la1ioD 

II = Po + PIX + E • (15.22) 

is spedfIed Instead of the true reladoD 

" = 110 + IItX + tJ"X' + E (15.23) 

the alJlllleDted model bas Z = r and we are biII:k to the omitted variIbIe case. A _ 
gener.al example might be the spedfication of an additift relation 

II = 110 + PIXt + ~2 + E (15.24) 

Inslead of the (true) multiplicative relation 

II = P.xtxt+E. (15..2S) 

A 1lIyIor series approxiJUtlOD of the muitipUcative relation wouJd yII!Id an &pi , .. 

iDYoIYiDS poNGS and CI'OIIIS products of the apIanatory variables. Jbm !!J' •• a IIw.1I 
to Indude POWElS of the predicted values of the dependent qdIbJe (whicb are. of coune, 
linear combiDatlons of poWG. and crosI-pIOduc:t lUiII$ of the expInatory nriabIs) .. Z: 

2 S « Z == (j • t • t , .55) (IS..26) 

wheR t is the vector of fitted values from the ~ of If Oil X. The PipUIClIpI$ 
iDdicate the powu$ to wbleh these predictions are raised.. The first JlOWU' is DOt iDe lulled 
stnce it is perfectly collinear with the X matrix. 

Ouiput from the test reports the test rqressIon and the F .... atIIdr and loB hlrelihood ratio 
for testiD8 the bypotbesis that the coefIk:ientl Oil the poWGS of filled YU- are aD RIO. A 
studr by Ramsey and AIaaDder (1984) showed IbIt the RESET test could dl!Iect spa MM 01-

doD error In an equation wbII:h was known a priori to be mlapeci6erJ but wbich IlIDDethe­
less save satisfadory va.lues for aD the more traditional test cdIeria 8IJOdnc!ss of fit. test 
for first order serial correlation. blgb t-ratios. 
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Th apply tbe test, select View/Stability 'ft!sts/Ramsey RESET 'lest ••• and specify the num­
ber of fitted terms to include in the test regression. The fitted terms are the powers of the 
fitted values from the original regression, starting with the square or second power. For 
example, jf you specify 1, then the test will add fl in the regression and if you specify 2, 
then the test will add fJ2 and fJ3 in the regression and so on. If you specify a large number 
of fitted terms, EViews may report a near singular matrix error message since the powers 
of the fitted values are likely to be highly collinear. The Ramsey RESET test is applicable 
only to an equation estimated by least squares. 

Recursive least Squares 

In recursive least squares the equation Is estimated repeatedly, using ever larger subsets of • 
the sample data. If there are Ie coefficients to be estimated In the b vector, then the first Ie 
observations are used to form the first estimate of b. The next observation Is then added to 
the data set and Ie + 1 observations are used to compute the second estimate of b . This 
process is repeated until all the T sample points have been used, yielding T - Ie + 1 esti-
mates of the b vector. At each step the last estimate of b can be used to predict the next 
value of the dependent variable. The one-step ahead forecast error resulting from this pre-
diction, suitably scaled, is defined to be a recursive residuaL 

More formaUy, let X t -1 denote the (t - 1) x Ie matrix of the regressors from perind I to 
period t - 1 , and 1It -1 the corresponding vector of observations on the dependent vari­
able. These data up to period t - 1 give an estimated coefficient vector, denoted by bt _ 1 . 
This coefficient vector gives you a forecast of the dependent variable In period t . The fore-, , 
cast Is Xtb, where Xt is the row vector of observations on the regressors in period t . The 
forecast error is 1It - xtb , and the forecast variance is given by: 

(72(1 + x/eXt' X/fIxt) . (15.27) 

The recursive residual Wt is defined in EViews as 

(1It- x / b) 
wt = 1 2' , , -1 / 

(1 + XI (Xt X,) X t ) 
(15.28) 

These residuals can be computed for t = k + 1, ••• , T. If the maintained model is valid, 
the recursive residuals will be independently and normally distributed with zero mean and 

2 
constant variance t:r • 

• 



1b caJc:uJate the l1!CIIISive residuals. press 
View/Stabilily ~ Eadmates 
(01.5 0DIr) ••• on the equation toolbar: 
There are six options available for the recur· 
siw estimates view. The l1!CIIISive estimates 
view is only available for equations esti­
mated by ordiIIary least squares without AI. 
and MA tenDS.. The Sne Results as SerIes 
option allows you to save the l1!CIIISiw 
residuals and l1!CIIISiw coeffic:ienIs as 

, ............ , ... , ...... -..-
named series in the wmdiJe; see -Save ResuIIs as Series- 011 pap 388. 

Recursive Residuals 

TIlls option sbows a plot of the l1!CIIISive residuals about the zem IDe.. Plus UId mIDus two 
standaRI errors are also shown at eacb point. Residuals outside the staDdard _ b.mds 
sugsest insIability in the parameeen of the equation. 

CUSUMTest 

The CUSUM test (Brown. DmbIn. UId Evans. 1915) Is hued 011 the QRIlullltte sum of the 
u,ullsive residuals. 1bIs opdoD plots the cumulative sum to, rifler With tile S5 afdcaI 
lines.. The test finds parameter instabDity if the cumulative -10ft .. "'kIt tile __ 
betateD the two criIicallines.. 

The CUSUM lest is bued 011 the statistic 

ns.z9) 

lor I = k + 1 ..... T, where UI is the n!CUIIIi'n! I lilt •• del .... hba ....... , • die stall­
daid _ of the Rgn!!55ioD fitted 10 III T sample poinII. If die {J __ pmaiM (11 8171'" 

from period to period, E(W,) = 0, but If {J cbal9""> W, will tend 10 II ....... die 
zero mean value line. The siplflcance of any departun! from the zem line is all d by 
Jefeeuce to a pair of 5" slgnifk:anct' lines, the distllIct' beta m wIdch iDa !II II With t. 
The 5" stplfiallct' Ilnes are found by c:onnectIJI8 the poiDlS 

[k,:t-O.948(T-k)li'2] and [T,:l:3xOJN8(T-k)~. (15..30) 

Mowment of Wt outsJde the ai1icallines is .. 'fIt dive of c:oeft'!! k!D' 1mtahQity. A sample 
CUSUM test is &fven below. 
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300~----------------------, 

150 

100 

50 ... _._~ __ *-.-----w .... 
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4D~~~~~~~~~~~~~ 
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CUSIJM·· . 5% SiQI_"", I 

The test clearly indicates instability in the equation during the sample period. 

CUSUM of Squares Test 

The CUSUM of squares test (Brown, Durbin. and Evans. 1975) Is based on tbe test statistic 

Wt = ( E w;);( f w;). (15.31) 
r=k+l r=k+l 

The expected value of S under the hypothesis of parameter constancy is 

B{St) = (t-k)/(T-k) (15.32) 

which goes from zero at t = k to unity at t = T. The significance of the departure of S 
from its expected value Is assessed by reference to a pair of paranel straight lines around 

• 

the expected value. See Brown, Durbin, and Evans (1975) or Johnston and DINardo (1997. • 
Thble 0.8) for a table of significance lines for the CUSUM of squares test. 

The CUSUM of squares test provides a plot of St against t and the pair of 5 percent criti· 
cal lines. As with the CUSUM test. moveml!Il! outside the critical lines is suggestive of 
parameter or variance instability. 



The cumulative sum of squares Is gener­
ally witbln the 5" sigDifIcance lines, mg­
gestin8 that the l'I!Sidual variance Is 
~stabIe. 

One-Step faec:ast Test 

If yoolook bact at the definldon of the 

t.2-r------------, 
t.O 

lUI 

U 

rec:ursift residuals pven above. you will u+-:::~::'----------1 
see that each l1!CUIlIift residual Is the error 
In a one step ahead fonlc:asl. 1b test 
whether the value of the dependent varI­
able at time t mi&bt haft come from the 
model fitted to all the data up to that 

- ...... - .. 
point, each error CID be compared with iIs standard deriIdon from the fuR sample. 

The ODe ...., ..... 'D!sI option produces a plot of the I_sift f"IkIqals ___ ani 

1!110111 and the sample points whose probabiJi1y value Is at or below 15 pem!DL The plot 
em help yoo spot the periods when your equation Is least succeufaL RIf eDIIIpk\. the 
0DMtep abead fon!cast test mlgbt look like this: 

The upper portion of the plot (rliht vertf. 
cal ads) repealS the l1!CUIlIlft residuaJs 
and standa 1!110111 displayed by the 
Luuslft III!sIduII option. The lower 
ponion of the plot (left vertical ads) 
shows the pnIbabIllty values for those 
sample poinIJ where the hypotbesis of 
parameter conlfancy would be rejected at 
the 5. 10. or IS pen::ent Iew!Is. The points 
witb p-YaIues ... the o..OS conespond to 
those points where the recuasive residuaJs 
80 outside the two standaJd error bounds. 

lOr the tell eqllat!oo, there is evideDce of 
instablJlty early in the sample period. 

N-Step faecast Test 

'---------------,~ 

• 
O'1f>.1....l!!""I!' .. ~· "'!I''"!J'!"'!li!-!I''''''''I!'""'I'"''...t 

! . OneapP . 7. n II an '? iii 

This test uteS the recuasive calculations to carry out a sequeuce of OIOW PoIEUIIIt tellS. III 
contrast to the sIJI8Ie Chow Forecast tell delIcribed adler. tbia test does DOIII.'qIdIe the 
specilicltfm of a foRc:ast period- it automadcaIIy CODijIiIIIt:s all fie ....... cues. st.u:tiaB 
with the am"' .... possible sample size for estimaliDl the fon!c • .".. equatloll and tbeIl 
addiD& one observation at a time. The plot from this test sbows the recuasive n!SIduals at 
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the top and significant probabilities (based on the F-statistic) In the lower portion of the 
diagram. 

Recursive Coefficient Estimates 

Tbis view enables you to trace the evolution of estimates for any coef8clent as more and 
more of the sample data are used in the estimation. The view will provide a plot of 
selecled coefficients in the equation for all feasible recursive estimations. Also shown are 
the two standard error bands around the estimated coefficients. 

If the coefficient displays significant variation as more data Is added to the estimating 
equation, it is a strong indication of instability. Coefficient plots wUl sometimes show dra· 
matic jumps as the postulated equation tries to digest a structural break. 

1b view the recursive coefficient estimates. click the Recursive Coeffk:ients option and list 
the coefficients you want \0 plot In the Coefficient Dlllplay List field of the dialog box. The 
recursive estimates of the marginal propensity to consume (coefficient C(Z)). from the 
sample consumption function are provided below: 

The estimated propensity to consume rises 
steadily as we add more data over the sam· 
pie period. approaching a value of one. 

Save Results as Series 

The Save Results as Series checkbox will 
do different things depending on the plot 
you have asked to be displayed. When 
paired with the Recursive Coefficients 
option. Save Results as Series will instruct 
EViews to save all recursive coefficients and 
their standard errors in the workfile as 
named series. EViews will name the coeffi-

1.4-r--------------, 

cients using the next available name of the form. R_CI. R_CZ ..... and the corresponding 
standard errors as R_CISE. R_aSE. and so on. 

lf you check the Save Results as Series box with any of the other options. EViews saves 
the recursive residuals and the recursive standard errors as named series in the workfile. 
EViews will name !he residual and standard errors as R_RES and R_RESSE. respectively. 

Note that you can use !he recursive residuals to reconstruct the CUSUM and CUSUM of 
squares series. 

• 

• 
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Applications 

In this sec:tioIl. we show bow to em)' out otber specification b!RS In 1Mews. fbr 1li61tr. 
the discussion is based on COIIlIIWIds. but most of tbae proc:edmll!l can_ be emted out 
usiJI8 the meDU syStem. 

A Wald test of structural change with unequal variance 

The F-statistics 11!JI011ed in the Chow tests baR an F-distdbulion _ if the erma 1ft 

independent and identically normally distributed. ThIs iesuic:don implies dYt the III!IiduIl 
variance in die two SI'bsamples must be equal. 

Suppose now that we wish to compute a WaJd staIIsde lor 1IIrIII:turaI ........... uaequ.aI 
subsample variances. Denote the parameter estimates and their COftdIIIc:e malIk iD sub­
SaDipie i as b; and V; for i = 1, 2 . Under the assumption dYt '" and ", 1ft indeI ...... 
dent normal. the dlffaence bl - b2 has mean zero and variance VI + V2• 'l'htteille. a 
WllId statistic for the nuD bypothesis of no structural eha,.. and 1ndei .... -'enI samples can 
be construc:ted as 

(lU3) 

which has an asymplOtic X2 
distribution with c1qpetS of ftedom equal 10 the number of 

estimated parameters In the b vector. 

1b carry out tbIs test In EVIe'WS. we esdmate the model in ed ......... ud _ the 
estimated c:oefJk:!4!nts and their covariance matrix. For ew' ............ _1IiIR a quar-
terly santpleof 1947:1-1994:4 and wish to test wlle:l.b« there was a ................... In 
the consumption "mellon in 1973:1. FIrst. esdmate the model in the 8nt sampie ud_ 
the results by the commands 

coef(2) III 

.-pI 1947,1 1972:4 

equation ~1.1. log(c.).bl(1)+1l1(2)Wlog(gdp) 

.}IIl v1-efl..l. ecov 

The fInt b declares the weffident vector;. 81. Into which _ will pica the ~ 
estimates In the fInt sample. Note that the equation spedftcatIon in the dlII:d IDe ." ... ., 
tefeD to elements of tbIs coeflidl!'Dl vector. The last b AYeS the coefld". covariance 
mattix as a symmetric matrix named VI. Slml1arIy. esdmate the model In the -.t SaDi­

pie and save the results by the Ctlmmandl 

_f(2) 112 

aspl 1973_1 1994.4 

.quation ~2.1. loglc.)-1l2(1)+b2(2)*log(gdp) 

8}'Il v2 ... ~2.ecov 
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10 compute the Wald statistic, use the command 

matrix wald_etranspose(bl-b2)*.inverse(vl+v2)* (bl-b2) 

The Wald statistic is saved in the 1 x 1 matrix named WALD. 10 see the value, either dou­
ble click on WALD or type 'show wald». You can compare this value with the critical val­
ues from the X

2 
distribution with 2 degrees of freedom. Alternatively, you can compute the 

p-value In EViews using the command 

scalar wald-p-l-ecchisqlwald(l,l) ,2) 

The p-value is saved as a scalar named WALD..J>. To see the p-value, double click on 
WALD_P or type ·show wal!l.p". The p-value will be displayed In the status line at the bot- • 
tom of the EViews window. 

The Hausman test 

A widely used class of tests In econometrics is the Hausman test. The underlying idea of 
the Hausman test is to compare two sets of estimates, one of which il consistent under 
both the null and the alternative and another which is consistent only under the null 
hypothesis. A large difference between the two sets of estimates is taken as evidence in 
favor of the alternative hypothesis. 

Hausman (1978) originally proposed a test statistic for endogeneity baled upon a direct 
comparison of coefficient values. Here we illustrate the version of the Hausman test pro­
poled by Davidian and MacKinnon (1989, 1993), which carries out the test by running an 
auxiliary regression. 

The following equation was estimated by OLS: 

I)ocIInc/IIIII VIIIIIlIe: 1.OG(M1) 
UeIItod: .... ~ 
DIIIt: 08113197 TIme: 14:12 
San.-<~ 1859:02 tII8Ii:!l4 

lmtr1rtslr ... ·135$ .""12 .* y"""" 9 - el!! • "R I 2' res 
c -C.022eIII9 G.OO+443 -5.1G11528 

lOG(IPJ 0.011630 O.OO25IIIi 4.4l19708 
DlOG(PPl) .0.02485 0.042754 .0.582071 

TB3 .o.1lIlO366 9.911!.()5 -3.692675 
lOOIM" .. l" 0"W' pflt1219 12311'2 

R___ 0.999Q53 Mean dependent VII' 
Aqo~ R.....,ared 0.999953 S.D. dependent_ 
S.E. of regnII8ion 0.004lI01 _ info _lion 
S .... squ8I8d I8IkI 0.009102 Schwan eriIerIon 
Log li<elhood 1726.233 F~ 
pyrtm"W!tsOf! • 1:2§§82{} P!l?bfF-""., 

... 
0.0000 
0.0000 
0.56IlII 
0.0003 
pPPl 

5.844581 
0.870598 

-7.913714 
-7.866871 
2304897. 
prwm 

• 
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Suppose we are IXIIlCI!I1Ied that industrial producdoa (lP) is eM-. "NIIy dm!rmioed 
rib JDOJIef (Ml) tbrougb the JDOJIef supply fUnction. If tbis wen! the CIIe. droeD OLS esti­
mates will be biased and inconsistent. 1b test tbis hypocbesis, _ Deed to lind a set of 
insIrumeDtaI variables that are eorrelated with the ·SUspect" variable IP but DOl with the 
error term of the IDOQI!y demand equation. The c:hoIce of the IJIPlOIldIIie IIIsIrummt is a 
crucial step. Here we taJce the unemploymem rate (URATE) and Moody's AltA CUipGl_ 

bond yield (AM) as insU'IIments. 

1b carry out the Hausman test by artifldal iejpessloo. _run two OLS .181 [ II. IJl the 
first tegteuioo. _ iegR!SS the suspect variable (los} IP on aD eA. !QUI vadIbIes and 
IilsttUmentS and ietde., the residuals: 

111 lO9(ipl C d1og{ppi) tb3 109(181(-1)) urate au 

lIeries res_ipoorellid 

Then in the second IegteSSioD. we re-estimate the money demand fuuctioIIlndlldlrw the 
residuals from the first .ejpES$km as additioDaJ .ejpeucn. The RRIt is: 

D" "1t'V8lllllle: IDG(IItII II!IIIIIad: ~ __ 

0.: GIltWI' n-11:21 
Saf\i*'1 , I II ~ tfII5:OI 
wnW ""Sa 5 .... ' '[ 

lI'dnMe NI" 1 '" F '3 57 
C -0.0II7145 CUlll'47J .....,. 

I.OG(I') 0-00I!iII0 G.aMI12 0 "'IR 
DI.OG(PPQ 0.Q21R33 0.0 mil D MCMII 

T83 -D.DDD155 o.DDD121 .IJ11Z71l1 
LOG(II1f-I. 1.00101l3 CI.OO2tD 471 ..... 

'Ii' r 2211fP att ' ':mr 
R ; cd 0._ ...... '1.1 I 1_ 
.., .. IRIC Id 0._ s.D.1; 11_ 
s.E. '" I..' 0.0IM571 AIIeIot IIIIocdlldalt ........... _ 0-00IIIIII3 S"'-zcdlldalt 
..... IhoOcI 1721.1151 F~ 
'Wit\'" ". up. !'PtIF 'S F' 

-u.s 
0;1311' 
ilia 
0.1273 
OJIIID .. 

II ... ' 
~ 

·7.1N1t2 
-7 ..... 
-.n, 
Ott 

If the OLS eslimates are _lsIem. then the coeJBdeot on the first ... RIIduIIs sIIouId 
IIOt be sIplfic:antIy dlffeeut Iiom zero, 10 tbis eRmpIe. the test (nwp By) rejects the 
hypothesis of consisten' 01.5 eslimates (to be more pn!!CiIe, tills is u .,IIIPllldo: test and 
you sbouId IXllilpare the ktadsdc with the aitIeaJ values fmm the ,....,... DOi1IIlII). 

Non-nested Tests 

Most of the tests discussed in tbis claapter are nested tesblia wbII:h the IIIJ8 hypoIhesis is 
obtained as a spedaI c:ase of the allema~ IIypDthesIs. Now CODttder the pvbIem of 
cboosiD8 between the foIowiDB two spedfieations of a CUiI""IIfI"hl function: 
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CSt = 0<1 + 0<2GDPt + 0<3GDPt_l + ft 
CSt = 131 + 132GDPt + 13SCSt _ I + ft 

(15.34) 

These are examples of non·nested models since neither model may be expressed as a 
restricted version of the other. 

The J-test proposed by Davidson and MacKinnon (1993) provides one method of choosing 
between two non-nested models. The idea is that if one model is the correct model. then 
the fhted values from the other model should not have explanatory power when estimatlng 
that model. For example. to test model HI against model H 2' we first estimate model H 2 

and retrieve the fitted values: 

equation e~cs2.1s cs c gdp cs(-l) 

e~cs2.fit cs2 

The second Une saves the fitted values as a series named CS2. Then estimate model HI 
Including the fitted values from model H 2' The result Is: 

Oopet ... ~ v_ cs 
MeIhod: '--~ 
Dale: 8/13197 Tlmr. 00:49 
SampIo(""->: 1947:2 1994:4 

'PS':fm!l'm""'!1-"YiRR ""r'P" 
yrri..... I?t?e!IsIm! SId 'iW t? 7 7 

C 1.313232 4.391305 1.665389 
GOP 0.218749 0.029278 9.520694 

GOP(-I) .().31Mi4D 0.029287 -10.73978 
CS2 10wm 99196M M?PI 

R..........,.t 0.9991133 Mean depeI ... dY.r 
A ... ....., R-tqU8IIId 0.999830 S.D. depeI .... \/fit 
S.E. of I ••• Iion 11.05357 AlaI ... Info crtIarion 
Sum ~ IIIIIcI 22847.93 SehwalZ cIIIeriaI'I 
Leg IikeIhOod -721.9219 F .. _tic 
pyrtjtWat!5IlM 2 253186 pmbff-en lin 

0.0!I7!I 
0.0000 
0.0000 
9£Wl 

1953.966 
848.4387 
7.664104 
7.732215 
313074.4 g.me 

The fitted values from model H 2 enter significantly in model HI and we reject model 

H 1• 

We must also test model H2 against model H1 . Estimate model HI' retrieve the fitted 
values. and estimate model H 2 including the fitted values from model H 1 . The results of 
this -reverse" test are given by: 

• 

• 
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c, :ods m 

Do! 
, 

I VIdIIIIif: CS 
IIIIIIaIt L.-s.-
a.:.,.3187 1lne: .. 
SMIpII( , I I) 1117:2 1 .. :4 

Her. I.'W • III • I I 
Y p, peb' W" '777 re 

c -1421.716 132.03CI -1o.at:t1ll 0JIIIIl0 
GDP 5.17U1543 0A'I8IIrS '10:14411 0JIIIIl0 

CSfr1) 0JI772IIe G.OM:I48 a._ 
0JIIIIl0 

a3 ~Z2mnt Mlw", .... ,.. • 'AU_ 

R1II .. 0,8118833 .....1$ I 1- ..... 
Att I IReqr Id omnn SA I 1 .il ... MGI1 
UGh .. 

, • 11.CJ6357 AIaIIIIt ..... aIIIIIDII 7.184104 
SIIm~"'" ZllMU3 sa-CIIIIIIIan 7,7:SZ2tI 
Loe· llUCtd -127.9219 F 

, .. 
37SJ14A 

9Ait'11' •• ZiIll. ~ III l,wIiICI_., 

The fitted values are apIn statistically $iplficaat and we mjecl model H2 -

tn tills example, we re;ect both specificalions. apIDst tile ~ • • Ins dill 
anodJer model for the data is needed, It is also possible that we laO 10 mjecl both models" 
in wbich case the data do DOt plVVlde euougb iJIfonution 10 disc:dminlte bittweeo the two 
models, 

Commands 
All of tile specIf:Icatkm and diagoosIic: tests apia!""'" ID this rhaptrr .. ftdaI3Ie ID _ 
maod form as views of a named equation. RlIIow the equatkm _1rith a dot and the 
view _ of the test, For example, to cany out the WaJd tell of whetber the thinllDd 
fourth c:oeffidems of the equation object EQI are both..w to _. type 

eql ... 1d cel,.o,ce.,.o 

1b cany out the serial correlation LM test of the JedduaIs ID equatkm Bl,.Y up 10 4 .... 
type 

'"'LY • auto (. I 

1b dbpIay the recwslve miduaJs of equation EQMl. type 

&qIU.rls(r) 

See -Equation- on pace 21 of tile Commandoo.d ~ _t ..... a _pIete 1st 
of comma""s and opIions available for equation obfects. 




