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INTRODUCTION

The purpose of this monograph is to pro­
pose procedures needed to support the cre­
ation of carbon contracts and projects for
fanners. While these procedures are gener­
aL OUT goal is to address the particular
needs of fanners in developing countries
where incentives to adopt sustainable fann­
ing practices are needed most. We have
identified three steps to creating carbon
contracts: I) define the contract or project
areas for soil carbon sequestration~ 2) esti­
mate the potential for soil C sequestration:
and 3) verify compliance with contracts.

While storing carbon in soils can counter
rising CO~ levels in the atmosphere. this
public good will very likely be far out­
weighed by the positive benefits that
increased soil organic maner content will
bring: raising agricultural productivity.
alleviating poverty and combating deserti­
fication, especially in the world's poorest
countries. Linking carbon trading to carbon
sequestration will be critical because the
war against desertification and poverty
requires levels of financing that traditional
donors alone cannot provide.

Carbon is a resource. and like income, can
be spent or saved to earn more income.
Subsistence fanners have no option but to
"spend" their carbon supply for fuel. fodder
or fertilizer. They plow their fields. not only
to loosen the soil, but also to expose buried
humus to the elements so that microorgan­
isms can mineralize and release nutrients
locked in the humus. In essence. subsis­
tence fanners mine their soils for carbon
and nutrients and in the process convert
humus to CO:!. This unsustainable practice
provides immediate. short-tenn benefits to
fanners who cannot aftord fertilizers. but is
a major cause of land degradation.

Fanners in the rich. industrialized coun­
tries. on the other hand. have no need to use
crop residue for fuel. fodder or fertilizer. or
even to till their soils. They instead use crop
residue to protect their soil from the ele­
ments. practice no-till conservation agricul­
ture and replace nutrients removed from the
field in the hanested crop with chemical
fertilizers. Rich farmers not only protect
their carbon resen'es. but keep adding to
what they already have. not so much to
increase. as to sustain their already high
yields and to protect the em ironment.

Poor farmers can also benefil from joining
the ranks of consef\'ation agriculturalists.
but lack the price of admission. Carbon
credit can serve this purpose. AI a mini­
mum. fanners need fenilizers. no-liII
planters and access 10 marlc.ets for farm
inputs and produce. Go\'ernments. indiffer­
ent to the needs of poor farmers now. rna"
view them differently when the). see f~­
ers receiving credil for protecting and
improving Iheir land. and generating
income from the nation's natural resource
base. This may convince governments that
agriculture can indeed be an engine for ec0­

nomic growth and begin to develop infra­
structure and formulate policies thai favor
agricultural development. It is for this rea­
son that we need to explain more explicitly
to a larger audience how sustainable agri­
culture in particular. and sustainable de\-el­
opment in general. could be linked to car­
bon sequestration.

CARBON'S LINK TO
SUSTAINABILITY

Organic carbon is the glue thai binds sand.
silt and clay imo large compound soil
aggregates. The bulk of healthy topsoil is
mainly composed of organically-c-ernenled
aggregates rather than individual sand. silt

PREVl0I.IS PAGE BLANK
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and clay particles, interspersed with humus.
If the aggregates are large and stable, the
pores between them wi II also be large and
stable, enabling water, during heavy rains,
to seep into the soil for storage and subse­
quent use by plants rather than to flow over
and erode the land. Thus, the capacity of
sloping land to withstand the erosive forces
of wind and rain depends on the ability of
organic carbon to cement dust into stable
aggregates.

Organic carbon is also the sponge that
absorbs and stores water and nutrients and
releases them to plants for photosynthesiz­
ing fresh organic matter. Soil microorgan­
isms consume and transform litter and dead
root into more glue and sponge. This recy­
cling ofcarbon, water and nutrients through
the soil-biota-atmosphere continuum, if
protected from cultivation, results in a net
annual storage ofcarbon until the soil's car­
bon storage capacity is reached. This
capacity to store carbon varies locally and
globally and is influenced by the character­
istics of the soil-biota-atmosphere continu­
um. A soil high in clay content, for exam­
ple, can store more organic carbon than a
sandy soil, and all things being equal, a
degraded soil depleted of carbon from
decades of carbon and nutrient mining has
a higher potential to store carbon than its
uncultivated, virgin counterpart. For once,
poor farmers with the greatest need have
the most to gain and the best opportunity to
benefit from carbon trading. The benefits
subsistence farmers can expect from carbon
sequestration are shown in Figure 1. Many
food-deficient regions can benefit immedi­
ately from the use of fertilizers alone,
because carbon credits would enable farm
households to purchase fertilizers without
fear of crop failure and debt payment.
Freedom from fear ofrisk can be a decisive
factor in insuring carbon sequestration in

regions with variable rainfall, while simul­
taneously impacting positively on climate
change, desertification and poverty.

The most visible change carbon credits can
bring about, however, may be in the reduc­
tion of cultivated area. Most agronomists
believe that in developing countries crop
yields, because they are so low, can be dou­
bled and even tripled, and it is difficult to
imagine yields not doubling after a decade
ofpracticing conservation agriculture. If this
expectation is realized, marginal lands can
be returned to their natural state to serve as
habitat and refuge for endangered wildlife.

STEP 1: DEFINING
CONTRACT OR PROJECT

AREAS

In order to create economic incentives for
farmers to adopt more sustainable farming
practices, some form of agreement will
have to be reached between the parties to
the agreement. We shall refer to this agree­
ment as a contract. A key issue is whether
these contracts are intended to be traded in
an emissions credit market to meet GHG
emissions standards (similar to the market
for SOz emissions in the United States), or
whether they are an agreement between
the seller and an entity such as a govern­
ment that does not trade the contracts. We
assume that to be a traded asset, a contract
would have to specify the amount of C
being produced and methods for verifica­
tion. In contrast, a contract meeting the
terms of a single buyer (either a govern­
ment agency, or a non-governmental
organization) would not have to specify
the quantity of C produced, e.g., it could
instead specify what land use or manage­
ment practices the seller agreed to adopt.
Thus, this situation is more suited to the
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use of a per-hectare contract similar to the
ones used in existing u.s. government
conservation programs. For example, in
the Conservation Reserve Program, partic­
ipation is established by technical eligibil­
ity criteria based on potential soil erosion,
and management practices are specified,
but changes in environmental outcomes
(actual reductions in erosion) are not
required to be verified as part of the con­
tract.

A key consideration in defining a region
for a carbon contract is the transaction
costs associated with the contract. Since
these transactions costs are in part fixed
per contract, the larger the amount of car~

bon transacted, the lower will be the cost
per tonne as the size of the contract
increases. A large number of farms will be
needed to participate in a single contract if
carbon is traded in units of say 100,000
metric tonnes. A key question in defining
the area for a carbon project is therefore on
what scale farmers can be efficiently
organized into a group that can then be
efficiently monitored for compliance with
the contract as discussed below.

It would be a simple matter to design con­
tracts for carbon sequestration if soil
organic matter were easy to measure, uni­
formly distributed throughout the land­
scape and sequestered each year in
amounts sufficiently high to be measured
and verified. If that were the case, a few
measurements over space and time would
suffice to quantify gains or losses of
sequestered carbon in a parcel of land over
a specified period. It turns out, however,
that soil carbon, like other soil properties,
varies spatially, and changes too slowly in
amount with time to be measured with any
degree of confidence on time steps of less
than five years. This slow, nearly imper-

ceptible change in carbon content, even
under the most favorable conditions, sim­
ply reflects, however, the huge size of the
sink. Most soil laboratories present carbon
analysis to the second decimal place.
Annual carbon gains from conservation
agricultural practices will cause the carbon
content to change at the second decimal
place. For example, an increase in 1.0 Mg
carbon per hectare per year, which is more
than the highest reported carbon sequestra­
tion rate, will raise carbon levels by only
0.05 percent each year, if the increase
occurred in the surface 20 em.

Fortunately, soil science has dealt with
these issues throughout its history. The fact
that soils vary spatially, often over short
distances, is a fact of nature. Two types of
spatial variability are recognizable in the
landscape. The first type is called system­
atic variability and is created by differ­
ences in the underlying rock from which
soils form, differences in the time the rock
has been subjected to weathering and dif­
ferences in climate, vegetation and
drainage. It would be unusual indeed if
two adjacent sites, one limestone and the
other granite, did not produce soils with
very different textures, vegetation and car­
bon contents. These differences are easy to
see and therefore are delineated and
mapped in soil surveys. In developing
countries, where detailed soil surveys are
rarely available, remote-sensing technolo­
gy can be used to stratify lands into rea­
sonably homogenous soil groups.

A second type of soil-spatial variability,
which soil surveys and remote-sensing
technology cannot take into account, is ran­
dom variability. This type of variability
originates from soil processes, many of
which are not fully understood. However,
one can imagine variability in the particle-
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size distribution ofsoils stemming from the
way sediment was deposited in an ancient
flood plain. Today. the landscape. no longer
recognizable as a flood plain. still retains
the mark of ancient depositional processes.
The sand. silt and clay contents still Vary

from JXlint to point in the field. This vari­
ability in texture affects air and water per­
meability, drainage. water and nutrient
retention, shrinkage and swelling. Clays
have greater surface area than sands or silts
and therefore absorb and protect organic
matter from microbial decomposition. (n
the end, organic carbon covaries with clay
content and along with texture. becomes a
random variable.

An important feature of random soil vari­
ables is that their values tend to be more
alike between closely-spaced samples than
between samples separated by great dis­
tances. For this reason. a spatial depend­
ence among values of a particular variable
often exists. This tendency of random vari­
ables to be spatially dependent is the key
that reduces the cost of carbon accounting
in spatially-variable soils. Unlike conven­
tional statistics, in which the mean is the
best estimate of a variable at unsampled
locations. geostatistics, one type of spatial
statistic. takes advantage of the existence
of spatial dependence or structure in the
variance to estimate data at unsampled
locations.

Without the aid of geostatistics or some
other form of spatial statistics. the cost,
time and effort required to obtain baseline­
carbon levels could render carbon trading
impractical. Another technology that sim­
plifies the use of geostatistics is the low
cost and ready availability of global JXlsi­
tioning systems lGPS). Geostatistics
requires georeferenced data. and in a large
project covering thousands of hectares.

GPS will be an invaluable tool for sample
collection and record keeping. Finally.
geographic information systems (GIS)
provide the means to display carbon stocks
over space and time. The application of
remote-sensing technology and geostatis­
tics for carbon trading is more fu II\'
described the chapter by Yost et al. in thi~
monograph.

STEP 2: ESTIMATING
TECHNICAL AND ECONO~tlC

POTENTIAL FOR SOIL C
SEQUESTRATION

Another requirement of a carbon-account­
ing system is the capacity to assess the car­
bon-sequestration potential of a project
area and to forecast the rate of carbon
sequestration over space and time. Since
farmers will have the final say in what prac­
tices they will adopt the projected rate of
carbon sequestration must be based on
farmers' choice of crops. inputs and prac­
tices. It is easy to deduce that the on-farm
cost of producing a metric tonne of carbon
depends on the ratio of two critical pieces
of information: the fanner's opportunity
cost of changing management practices.
and this cost divided by the increase in soil
C per hectare over the relevant time period.
For a project to compete in a market for
carbon. it must have either a suffidenth-­
low opportunity cost to fanners or a suffi­
ciently high biophysical potential for stor­
ing carbon. It is clear that information
about biophysical and economic potentials
cannot be obtained experimentallY and can
only be predicted by using dynamic bio­
physical simulation models that closel\­
mimic key processes in the soil-bio~­
atmosphere continuum. and economic
models that simulate the land use and man­
agement decisions of fanners.
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Models can only be as accurate as the
knowledge of processes used to construct
models, and since our knowledge of
processes is incomplete, our models will
necessarily be imperfect. The question,
therefore, is not about perfection, but
whether the models are sufficiently accu­
rate to meet the accounting requirement for
carbon trading. To meet this requirement,
two well tested biophysical models, the
CENTURY and DSSAT models have been
combined to produce a model that links
processes in the soil-biota-atmosphere con­
tinuum in a systems mode. The CENTURY
model was developed to simulate the bio­
geochemical cycle of carbon in soils,
whereas the DSSAT (Decision Support
System for Agrotechnology Transfer)
model was developed to simulate the
effects of soil, weather, and crop genetics
on crop growth and development. The com­
bined model allows the user to simulate, for
example, the effect of soil characteristics,
climate, and crop type and farm manage­
ment, including crop residue management,
tillage practices, and fertilizer application
on carbon sequestration. The role of bio­
physical modeling is fully discussed in the
chapter by Jones et al. in this monograph.

If the below ground carbon sequestration
rate can only be estimated, the above­
ground biomass can, in addition be
observed, and measured. Good agreement
between measured and estimated biomass
production is necessary to give carbon
traders the confidence they need to rely on
models to forecast the probable success or
failure of a project. An important role of
models is to simulate outcomes of farming
practices farmers are willing to adopt. This
means that model users will need to simu­
late many types of practices and outcomes
from which farmers can choose. Enabling
farmers to exercise choice will be a key

requirement for project success, but the
options available to farmers will obviously
depend on the price of carbon. Fortunately,
economists have developed models that can
realistically simulate farmers' land use and
management decisions. Thus, it is possible
to link the outputs of the biophysical mod­
els and economic models, so that model
outputs appear not only as biomass and
grain yield, but also as profit or loss in local
currency so that farm-opportunity cost can
be estimated. The economics of carbon
sequestration and trading is covered in the
chapter by Antle in this monograph.

STEP 3: VERIFYING
COMPLIANCE WITH

CONTRACTS

Carbon has often been mistakenly described
as a commodity that can be produced by
farmers like wheat and other crops. This
description is inaccurate because soil C is
stored in the soil, and thus is an asset
owned by the owner of the land. The buyer
of a C contract cannot take delivery ofthe
carbon (note the similarity to a futures
contract: the buyer does not want or intend
to take delivery of the commodity). A more
accurate description is that farmers pro­
vide a service in the form of accumulating
and storing soil C. As soon as we recog­
nize that farmers are providing a service,
not selling a commodity, many of the
issues about carbon sequestration that have
been debated recently in the context of the
Kyoto agreement can be resolved. For
example, soil scientists know that soil C
can be either accumulated or released from
soils, and this has led to a debate about
whether C sequestered in soils would be
permanent. The resolution of this debate is
very simple: farmers will maintain carbon
in soils as long as they are being compen­
sated for providing that service.
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Recognizing that contracts for soil C are
service contracts. not commodity contracts.
also provides insight into the types of pro­
cedures that could be used to verit)· com­
pliance with the terms of the contracts. If
the contracts specify services to be per­
formed. such as utilizing specified manage­
ment practices on a specified land unit over
a speci fied time period. then it is these
activities that must be monitored. If the
contract also specifies the amount of car­
bon that is to be accumulated and stored.
then soil C measurements also must be
made. Note, however. that if the contract is
defined over a large number of land units.
then verification need not occur on every
land unit: rather a statistical sampling
scheme can be used to obtain a representa­
tive estimate of the accumulation of soil C.
The determination of the appropriate sam­
ple size is a standard statistical problem that
has well-known solutions.

PROTOCOL FOR ASSESSMENT
OF C ACCRETION POTENTIAL

We assume for the purposes of this exercise
that a country has been identified and sever­
al potential sites have been located therein.

InlTOdlletion. Project tearn meets with in­
country scientists and jointly reviews site
selection criteria and collectively agrees on
sites that appear to directly relate to project
objectives. This will require consideration
of ex.isting maps and data as well as possi­
bly including remotely sensed data. Issues
to consider might be that systems there are
likely to sequester. reasonably representa­
tive of large areas. This should include a
visual inspection of the site with coopera­
tors. This and subsequent activities will be
conducted on a collaborative basis with the
in-country scientist taking increasing
responsibility as appropriate.

Survey. Alarge are3 survey and quantifica­
tion. using remotely sensed and GIS CO\'e1"­

age. of major agriculturnl and natural sys­
tems in the region (likely an area of 50.000
to 100.000 heclareS) will be carried out in
order to identify landuse'cropping systems
for detailed study. Specific fields with exam­
ple landuseJcropping systems and compara­
ble control fields will be selected represent­
ing various periods of time under the select­
ed landuse!cropping systems to develop I to
3 to 10 year calibration curves of soil and
biomass carbon. These fields will be key for
initial intensive measurements that will lead
to characterization of the soils and C pools
used in model prediction and characteriza­
tion of C sequestration potential.

PI.llning Horbltop. A regional workshop
may be useful wherein collaborators pres­
ent the results of the initial S\lJyey and iden­
tification of their sites. The subsequent
methods and steps of the project will be
discussed and project sampling. analysis.
simulation. scaling up and monitoring will
each be discussed and detailed.

Sampling. A two phase-sampling proce­
dure may be required. The first stage sam­
pling will take place in a manner that will
permit characterization of major trends in
variability-likely on the order if 40 to 80
samples per landusc'cropping system will
comprise the initial sampling phase (see

Procedure for Sampling).

Lilboratof)' Antilysis. Samples of soil
and biomass will be analyzed in order to
characterize the landuseicropping system.
Procedures to analyze soil or~anic carbon
for carbon sequestration purposes may be
different from the traditional Walkley­
Black methods. The traditional method
does nOI measure total soil organic car­
bon. may not measure some fractions. and
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releases the environmentally toxic
chromic acid. Methods based on total car­
bon combustion are now recognized as
the best estimate of soil organic carbon.
Initial statistical analyses of these sam­
ples will include 1) determination of
means, medians, and standard deviations,
and 2) semi-variograms will be construct­
ed in order to determine the presence of
spatial dependence for developing effi­
cient sampling.

Statistical Analysis and Local Workshops.
Analysis and interpretation of the phase
one biomass and soil analytical data will be
carried out jointly with the in-country sci­
entists with local knowledge together with
the land managers and farmers in an effort
to establish the long term record of crop­
ping patterns and fallow periods. It is
expected that the selection or rejection of
fields could take place at this step. A local
workshop in each country will be conduct­
ed to assist in the analysis and interpreta­
tion of phase one biomass and soil data and
in preparation for the Regional workshop.

Regional Workshops. Regional workshop
to summarize results of the phase one sam­
pling, design of phase two sampling, and
preparation for simulation studies.

Year Two Sampling. The year two sam­
pling wilt correspond to the second-phase
sampling, which will be based on the low­
cost preliminary soil analysis and the
resulting spatial dependence, if present.
With such information in hand, an efficient
sampling scheme can be designed and car­
ried out. It is expected that no more than
200-500 samples will be needed on the
average, ofa region that is a good candidate
for carbon sequestration to a specified pre­
cision. The second sampling will serve as
the primary input for point estimation of

crop yield, biomass, and soil organic car­
bon and will include the same measure­
ments as indicated above plus the measure­
ment of crop residue (using remote-sens­
ing) during the period immediately before
the typical onset of rains and generation of
new biomass.

Simulation Modeling. Using simulation
models, the data will be used to estimate 5,
10, 15, 20 and 100 year status of C with
accompanying uncertainty analysis.
Analysis with the aid of simulation models
will be undertaken in order to estimate the
'steady state' C levels in biomass and soil
organic carbon will provide an estimate of
carbon sequestration potential.

Scaling Up. After completion of the initial
estimation of biomass and soil organic C at
point locations, these estimates will be
scaled up to the geographical extent of the
initial stratification of landuse/cropping
system at the larger land area scale. Remote
sensing will be used in order to assess the
variation in crop residue remaining after the
end of the dry season among fields within
the 5,000 to 10,000 ha region. Where sys­
tems are too complex for meaningful simu­
lation yet accumulation patterns seem sig­
nificant, estimation of large area accretion
will be carried out by means of kriging and .
co-kriging.

Year Four Samples. Sampling of soils to
assess measured change in soil organic C
using the sample configuration developed
for phase two sampling.

Monitoring. A monitoring evaluation of
landuselcropping systems will be conduct­
ed in two ways: (1) comparing measured
soil and biomass C accretion measured at
24 months with that measured at 48
months, and (2}.oomparip.g p'r~dictions of. . ...... ,.,; .....
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soil and biomass C using remotely sensed
imagery taken at 48 months (near the time
of max. seasonal biomass) with that meas­
ured at 48 months. In the former case. the
results give an indication ofthe change in C
per unit time and the latter gives an esti­
mate of accuracy of the use of remotely
sensed imagery in predicting soil and bio­
mass C change.

Synthesis and Reporting. A s)nthesisl
reporting workshop of project outputs is
recommended to present summary results
and preliminal)' conclusions.

Training tmd C"".dtJ· BIliJding. Another
anticipated barrier to soil carbon trading
will be a shortage of indi\'iduals and organ­
izations. particularly in developing coun­
tries. able to estimate carbon tonnage in
large tracts of spatially variable lands. This
constraint can be removed with a training
program based on a standardized carbon
accounting system approved and certified
by the international carbon trading commu­
nity. It should be possible for buyers to use
this same system for verification of carbon
tonnage in the field.
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INTRODUCTION

In the chapter by Antle and Uehara. a pro­
tocol for developing a carbon accounting
system is introduced. which is comprised
of defining the contract area. estimating
sequestration potential and verifying
compliance. In this chapter. we describe
methods of physically defining a contract
area. Though other concerns are impor­
tant in defining a contract area. such as
the administrative. political. and social
aspects. these are not the focus of this
chapter. One of the challenges in defining
a contract area is identifying a sufficient­
ly large. unifonn area such that large
quantities of soil carbon can be
sequestered with confidence. To meet this
challenge. we propose using remote sens­
ing imagery. Initially. we will discuss
aspects of remote sensing that can assist
in this task. and at the end of this chapter.
we will describe other aspects of remote
sensing that can be useful for modeling
and model validation. as well as for veri­
fication that an accepted contract is being
followed.

USING REMOTE
SENSING FOR LAND USE

CLASSIFICATION AND
MEASUREMENT

To develop a common vision of the carbon
trading/sequestration possibilities. goals
and objectives. study and consideration of
the land-use inventory is needed by all par­
ties involved in the sequestration project. In
defining potential carbon sequestration
areas. it is usually necessary to determine
whether an area is sufficiently large and
uniform to support the measurement and
trading of units of carbon as large as
100.000 tonnes.

Remote sensing methods (see Table I for
some example satellite imagery) can be an
efficient way of iD\"entol')ing and c1assil'}"­
ing a large region into land uses. cropping
systems. topography. transponation. infra­
structure and other features that contribute
to defining a contract area. A reconnais­
sance inventory of a region may be a first
step in a regional soil carbon assessmenl
Such an inventory gives an estimate of the
area within the region that is a candidate for
carbon sequestration by identifYing cr0p­
ping systems. landuses. topography aU of
which provide the broad view and set the
bounds for potential carbon sequestration.

Landuse Classification

A landuse classification and definition of
the specific land covers can be achie\"ed
through image classification. Classification
of large areas can be improved based on
some prior infonnation of the local land­
scape and a general landuse map. Strati­
fication into management units can be
based on Digital Ele\'ation Models (OEMs)
and derived products (e.g.• a slope map).
landuse and topographical maps. and soil
maps or even historical imagel')' data sets
that are grouped based on spectral features.
The a\'ailability of the abo\"e information
can be limited in most regions of the wood.
A minimum dataset of the DEM and some
ancillary' image products can help define
the area. Surface-soil physical features usu­
ally follow the panerns in the OEM. High­
resolution OEMs are more likely to be
available than high-resolution digital-soil
classification maps. Cornbining the avail­
able DEM and derived products from spec­
tral imagery. processed adequately and
developed in geographic infonnation lay­
ers. can be very effecti\e in stratification of
management units for sampling and assess­
ment of soil carbon.
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Table 1. Satellite and image data for landuse classification and stratification of a region into

homogenous areas for sampling and anal~sis.

DGPS Differential Geographical 1m resolution

Positioning System

Ground data:

Soil surface ASD, Analytical Spectral 1 nm band resolution

Devices, Inc. between 350-2500 nm

Ac~ony_m

MSS

ETM

SPOT

IKONOS

ASTER

All

Hyperion

DEM

Name
- -_. --- ,,---

Landsat Multispectral

Landsat Enhanced
Thematic Mapper

SPOT Image

Product of 'Space
Imaging, Inc.'

New satellite, part of
the Terra Platform

Advanced Land Imager

Hyperspectral Imager
EO- I Platform with ALI

Digital Elevation Model

Resolution
- --

60 meters V-NIR*

30 m, 6 visible NIR bands

15 m (Panchromatic)

Pan

20meters, 4 V-NIR bands

10m Pan

4 m- 4 V-NIR band
1m Pan

15 m, 3 V- NIR bands
30 m, 6 Mid-infrared
90 m, 5 Thermal

30 m, 9 V-NIR bands
10 m Pan

30 m, 220 V-NIR bands

60-600 m elevation

contours

Info,:mation/Advantages
Identifies land cover

Represent vegetation,
plant stress, and plant greenness

very well. Soil and Vegetation

classification.

Soil and Vegetation classification

Extremely detailed imagery, some

of the highest resolution com­

mercially available. Very costly.

Acquired from NASA day-buy

program.

Mapping vegetation and soils.

There are 6 thermal bands useful

for emissivity and surface residue.

Landuse mapping, soil and vege­

tation cover.

One of the first examples of

'hyperspectral'data. Large no. of

bands should increase specificity

of detection.

Represents the change in land

scape elevation. The data avail­

ability is dependant on location

Permits precise reflectance meas­

urements on the ground for use in

calibration satellite imagery

Permits precise location of

ground-based ancillary data to

calibrate with satellite imagery.

Provide verification for DEM data.

• V-NIR - Visible and Near Infrared spectral bands

Landuse classification can be accomplished

by a standard procedure known as super­

vised classification. A supervised classifi­

cation uses statistics derived from 'training

datasets'to identify image areas as 'homo­

geneous' and then to group similar areas as

spectral classes. Ground data are collected

to identify the different types of vegetation

and bare soil from training sites. The train­

ing sites identified in the imagery provide

'signatures' for the various classes of land

cover. These are combined into signature

files and a supervised classification is then

performed by matching each pixel of the

image with the signature file using the

Mahalanobis Distance as the criteria for

similarity (Stem et al., 2001). One-third of

the training data set is not included in

developing the signature files used in the

supervised classification. These remaining



17

data are used to validate the classification
accuracy, which is important for estimation
of vegetation biophysical parameters such
as leaf area index (LAI) and biomass. A
complex terrain with a mixture ofland cov­
ers requires the development of training
sites at various locations (Area of Interest­
AOI) within the study area.

Imagery acquired through the period of
active vegetative gro\\1h is necessary to
accurately separate the various land cover
and landuse types, while prior knowledge
of the vegetation phenology permits the
selection of the best window for acquiring
the imagery. The size of the study area dic­
tates the type of imagery that can be used
for the classification. In general. Landsat
and SPOT are used for areas between 300­
3000 Ion:!. However. for regions 100 km1

or smaller, the newer satellite imagery such
as IKONOS (Space Imaging Inc.) can pro­
vide the required resolution. and an option
using imagery collected from aircraft for
smaller areas also exists. Table I shows the
available satellite imagery. based on the
size and extent of the study area. Note that
ground data are required for accurate lan­
duse classification.

As a result of landuse classification. zones
of similar carbon sequestration potential
can be identified as well as the approximate
uniformity of them. This provides informa­
tion for the definition of the contract area.
Once the landuses of a region have been
classified. the representative and candidate
cropping/landuse systems can proceed..

Development of Management Units for
Soil Carbon Sampling

After completing a landuse classification.
land management units can be delineated to
guide soil sampling and carbon measure-

ment. Soil physical propenies including
texture and surface organic carbon has been
correlated to specific spectral responses
(Dalal and Hen!)'. 1986: Shonk el al., 19«)1;

Leone f!l 01.. 19951 but with some condi­
tions. Barnes and Baker (1000) showed that
surface soil textural classes could be delin­
eated only when fields ha\e uniform tillage
conditions. SaIisbu!)· and D'Aria (19«)1).

however. showed that some of the interfer­
ences caused by \'ariation in soil moisture.
organic maner. minerals other than quartz
can be minimized by combining the
reflectance in the \isible. near infrarOO and
thermal infrared bands.

The delineation of management units
serves as a guide to soil sampling. With the
characterization of the spatial dependence
one can minimize the number of samples
needed to represent a given area. The re\er­
salol' this process. using geospatial meth­
ods described later in this chapter. provides
a mechanism for scaling-up soil organic
carbon estimates and predictions as to the
management units and the landu.se classifi­
cations. Figure I is a schematic of the land­
scape classification procedures for <Ie\'el­
oping land management units.

Development of land management units for
agricultural lands would be most suitable
during bare soil conditions. Howe\er. this
may be more challenging in the tropics than
at higher latitudt."'S where the wgetation phe­
nology is more defined for cultivated lands
and natural vegetation. The a\"ailability of
multi-spectral imager)' during specific peri­
ods for bare soil classifications and separa­
tion ofvegetat ion classes is most critical for
developing suitable landuse and sampling
management units. A combination of high­
spatial resolution imagery with high-spec­
tral resolution is optimum for de\eloping
spectral indices that can separate the soil
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High Spatial Resolution Image High Spectral Resolution Image

Data fusion for optimum
Spectral and Spatial Resolution

1
Training data sets from

ground sampling

1
Spectral Indices for Soils and Land Use Classification

Natural Vegetation Bare Soil, Natural Vegetation

I DEM I

I Final Classification I

Sampling Management Units
Bare Soil, Natural Vegetation

Figure 1. Use of remotely sensed data to define soil carbon contract areas through landuse
classification and management unit delineation.

classes as well as vegetation type (Figure
1). The natural vegetation classes could be
further stratified into smaller sampling
management units based on the vegetation
condition, which may be in response to the
differences in soil conditions.

Measurement of soil carbon and nutrient
properties based on management zones
can be developed using geospatial tech­
nology that integrates ground measure­
ments with information derived from
satellite remotely sensed imagery. Soil
physical properties including texture and
surface organic carbon have been corre­
lated to specific spectral responses (Dalal
and Henry, 1986; Shonk et aI., 1991 ;

Leone et aI., 1995). Multi-spectral images
have shown potential for developing soil
classification mapping units. Barnes et al.
(1996) studied the sand and clay content
of soils using remotely sensed data to
complement and enhance spatial assess­
ment of the samples.

Estimating Soil and Crop Properties
with Remote Sensing

We emphasize the use of remotely sensed
data for defining contract areas, but with
technology improvements it is increasingly
used for direct measurement of soil and
crop properties. These direct measurements
are useful in assessing and modeling soil
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organic carbon. In this section we describe
some of those techniques and point out the
importance of monitoring developments in
the field for new methods that can improve
carbon sequestration measurement.

Soil S"rface Text"re. Stoner and
Baumgardner (1981) conducted one of the
earliest investigations on the use ofspectral
reflectance to infer soil surface characteris­
tics. The spectral reflectance in the visible
and near infrared (0.3-2.8 om) was related
to differences in organic matter content
iron content and texture. Others have relat­
ed surface reflectance spectra with fractions
of sand, silt and clay with varying degrees
of success (Suliman and Post, 1988).
Barnes and Baker (2000) showed that sur­
face soil textural classes could be delineat­
ed only when fields have uniform tillage
conditions. The effects of soil moisture,
organic matter. and minerals other than
quartz interfere with textural classification
and can be minimized by combining the
reflectance in the visible, near infrared and
thennal infrared (Salisbury and D'Aria,
1992). The detennination of soil surface
texture may be useful in strntif)ring soils'
carbon sequestration potential.

Soil Orgtulic CII'IJon. As a general rule. a
dark colored soil will have a higher organic
carbon content than a light colored soil.
This rule ofthumb holds for soils ~;th light
colored minerals such as silica sand and sil­
icate clay minerals. In the dry, wann trop­
ics, however, rock weathering results in an
accumulation of dark colored iron and
manganese oxides which also add to dark
soil colors. In the humid tropics. more
intense weathering produces a residue of
brown and yellow hydrated iron oxides.
which interacts with and neutralizes the
dark color of organic carbon to lighten the
color of high organic carbon soils.

Examples of the dark. low organic carbon
soils include the black conon soils of India
the tropi~1 black eanhs of Ausualia. the
Houston black clay and the dark magne­
sium clay of Hawaii. These soils. now aU
classified as Vertisols in the US Soil
Taxonomy (Staff. USDA. 1999). art noted
fOT their dark colors but are general)' low
in organic carbon content (Buol el al..

1989). Another group of soils with dark
colors not unrelated to o~ic carbon are
the manganiferous Oxisols of Hawaii. The
Wahiawa series in Central Oahu. Hawaii is
red when freshly plowed. but turns pur­
plish-black after several weeks of exposure
owing to accumulation and oxidation of
manganese on the soil surface. These dark
colored Vertisols and Oxisols occur in
regions with extremely dry and dl)'. soil
moisture regimes.

Several studies conducted over agricul­
tural fields have related soil reflectance
data with organic carbon (Henderson el

al., 1992; Chen el al.. 2000). The "'isible
wavelengths (0.425- 0.695 nm) were
found 10 have a strong correlation with
soil organic carbon for soils with the
same parent material. The relationship
was. however, sensitive to Fe- and Mn­
oxides for soils from different parent
materials. For soils from the same parent
material. the middle infrared wa\e1engths
were sensitive to organic carbon content
of soils. Chen el al. (2000) accurately
predicted soil organic carbon using area­
specific regression relationships from
true color imagery. The challenge of cor­
rectly estimating organic carbon in soils
of the Tropics using spectral reflectance
data is that the black Vertisols may ha\-c
the least soil organic carbon. while the
red, highly weathered Ulisols and
Oxisols often contain large amounts of
soil organic carbon.
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Most of the relationships developed in the
past have focused on selecting specific
spectral bands and, collectively or individ­
ually, correlating them to soil properties
such as soil texture and organic carbon.
Development of algorithms or indices with
a combination of specific bands would be a
more stable and consistent method for
assessment of soil properties and should be
transferable to other locations with the
same Soil Taxonomy.

With continued development of geospatial
technologies (instrumentation and soft­
ware) and high-resolution spectral and spa­
tial sensors, a revisit to this topic of accu­
rately mapping soil organic carbon is
encouraging. Surface reflectance measure­
ments of bare soils from remotely sensed
platforms should provide a less labor-inten­
sive grid sampling and more accurate
assessment of soil organic carbon maps.

SAMPLING AND
STATISTICALLY ANALYZING
SOIL ORGANIC CARBON IN

LAND MANAGEMENT UNITS

In this chapter, the use of remote sensing to
define the contract area has been described,
as well as landuse classification and the
delineation of land management units. In
this section, we describe statistical aspects
of optimal sample design, the estimation of
spatial dependence in soil organic carbon
data and the scaling up of measurements to
land management units and contract areas.

As indicated in the introductory section,
measurements of soil properties usually
include a component of estimating the spa­
tial dependence of soil properties, which is
the tendency of most soil measurements to
become alike as samples are taken more

closeIy together. We illustrate the use ofspa­
tial dependence, using the methods of geo­
statistics, to extract information and econo­
mize sampling in ways not previously avail­
able in classic experimental statistics.

First thoughts on spatial variability of soil
organic carbon are often negative, as in the
case of experiments where high variability
dilutes significance of results. We will illus­
trate, however, that spatial variability, or
rather the measurement and analysis of spa­
tial variability, can give insight and under­
standing in most cases, or at a minimum
quantify, soil carbon for modeling, summa­
tion or comparison.

Using Systematic and Random
Variability to Improve Estimates of Soil
Organic Carbon

Continuing the discussion of systematic and
random variability of soil properties such as
soil organic carbon, we give examples of
such variability and of the property of spa­
tial dependence, which describes how sam­
ples tend to be similar the closer they are
taken together. We also give examples of
how to use geostatlstics to improve the sam­
pling, interpolating and extrapolating of
point measurements or simulations,
described in succeeding sections. We
describe how these geospatial techniques
can assist in the daunting task ofquantifying
and predicting change in soil organic car­
bon~a critical necessity in developing a
soil carbon accounting system.

Another way of looking at systematic and
random variability is to express it in equa­
tion fonn using statistical tenns such as the
folIowing:

(1) Y = Ili + £



A Soil Carbon Accounting and .\fanagem.·", 5.ntcmfor Emi5si01L~ Trading

where:
• Y = an observed biophysical variable

such as above ground biomass.
• J.1i = what.. in the simplest fonn. can be

considered systematic variability and
represented either as categories. such
as soil types. landuse systems and
cropping systems, or as a continuum.
such as gradients in soil pH. soil car­
bon or clay content. In a somewhat
more complex fonn these systematic
values could be the prediction results
of a multiyear simulation model (see

Jones et al. chapter).
• E = the random variation representing

the fact that samples differ from each
other according to some statistical dis­
tribution. In geology and soils. however,
E is often not random and contains a fur­
ther systematic component beside that
already specified in J.1i' The analysis of
this systematic component has been
important in practical mining and geo­
logic studies leading to geostatistical
science. Cressie (1991) provides an
extensive discussion ofthe often-stormy
relationship between geostatistics and
classic statistics. The introduction of
geostatistics into American soil science.
however. owes a lot to Dr. D. Nielsen.
University ofCalifomia at Davis.

In the earlier discussion on using remote
sensing for landuse classification, we relat­
ed one way of identifying the systematic
variation J.1i of Equation I. We shall now
analyze the data for the spatial dependence
contained therein. Spatial dependence is the
property by which sample values tend to
become similar the closer samples are to
each other. Classical statistics requires that
samples be independent of each other for
the probability statements of significance to
hold. The presence of spatial dependence
invalidates this necessary assumption for

classical statistical methods. Geostatistics..
however. includes the realization of such
lack of independence and. in fact.. quanti­
fies and uses spatial dependence in meas­
ures called variograms. An example \ari­
ogram of soil organic carbon is illustrated
in Figure 2. The spatial dependence illus­
trated in Figure ~ is described by the fol­
lowing equation:

(2) Y = co ... C·1.5(x)a} - O.5(xa)-~

for x < a
= CO ... C for x ~ a

where:
• y = the semivariance.
• CO ;;; the Y intercept..
• CO + C = the "sill." or the sample ,"ari­

ance (E of equation I).
• x = distance between samples.
• a = ""range:' or the point where the

semivariance increases to become
equal to the sample variance (£).

Three features of the variogram are impor­
tant: the sill. the nugget mriance. and the
range. These tenns were coined by early
geostatisticians and represented new c0n­

cepts to statistical science. The sill refers to
the maximum semivariance. which is often
similar to the sample variance that repre­
sents the variability ofa number ofsamples
taken in a field (Figure :!)"1be sill is im~­
tant because. as shown in Figure 2. it usual­
ly is the upper boundary of semi\'ariance
shown in the variogram. When the sill is
exceeded it might indicate that there is a
consistent trend in \"alues across the field.
The nugget Wlriance represents the \·ari­
ance among samples taken at the same
location. Because it is physically impossi­
ble to take more than one sample at a point..
the nugget \"ariance is extrapolated from
samples taken closest together. The nugget
variance in Figure 1 was estimated in this
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0.00014 r-------------------,

0.00012 •• •
other in order to provide the
maximum information.

Sample variance (1.02x10~) •

12

Sample Design. Geostatistics
considers the effect of distance
and location on the statistical
properties of measured phenom-
ena. In effect, it indicates that not
only does it matter how variable
a measurement is but also where
the samples were taken for the
measurement. For example, tak­
ing two samples side by side is
somewhat wasteful if another
part of the field is not sampled.
The importance of this addition­

al information becomes apparent when we
open classic texts of statistics and learn that
we need to take the following number of
samples in order to obtain a desired preci­
sion, This is given by the following equa­
tion or variants of it:

where:
• t) = the tabulated t value for the desired

confidence level and the degree of
freedom of the initial sample, and

• d = the half-width of the desired confi­
dence interval (Steel and Torrie, 1960).

We see that in these cases, the authors of
the classic texts have recognized neither the
spatial dependence nor the fact that location
of the sample strongly affects how much
independent information is obtained.
McBratney and Webster (1981a, b) have
discussed these issues, and computer rou­
tines were developed to assist in the esti­
mation of sample requirements where there
is spatial dependence.

The spatial dependence-the range of the
semivariance, in particular-gives the

10

•

8

•

6

Distance, km

Sphe,ical vanogram model

(If. < a: Y ~ CO + C'1.5(xla) ·0.5(xla)',
else Y = 1), where a = ·.,.ange-
a = 9.6
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Figure 2. Variogram of soil organic carbon, Pearl Harbor
Watershed, Oahu, Hawaii.

way. No samples were taken at exactly zero
distance apart, so the fitted curve was
extrapolated to zero distance for an esti­
mate of nugget variance. The nugget vari­
ance is important in the measurement of
spatial variability because when it is equal
to the sill, often the sample variance, it indi­
cates that samples are behaving independ­
ently with distance; that is the spatial
dependence is zero. The term nugget vari­
ance, derived from the mining industry,
reflects the variogram of gold when the
gold is randomly distributed as nuggets­
one either hits a nugget or not; rather than
finding a smooth trend of gold content in
the deposit.

The third term, the range of a variogram,
differs from the range used in classic statis­
tics, It is the minimum distance between
samples at which they behave independent­
ly. This is represented in the variogram as
the distance at which the semivariance
approximates the sample variance. For
example, the range in Figure 2 was about
9.6 kilometers. The range of the variogram
is important in the measurement of spatial
variability because it gives an indication
how far apart samples should be from each
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distance at which samples give the maxi­
mum information. At sample distances less
than the range, sample values. as indicated
by the semivariance. become dependent
and provide less information than at greater
distances. Thus, estimating the range gives
a suggested grid size for efficient sampling.
In practice, when samples have strong spa­
tial dependence. fewer samples are needed
to characterize the variation. The semivari­
ance provides the data needed to develop
curves that relate number of samples (and
costs) to target sample variances, These
curves give a comparative estimate of how
many samples are needed for a specified
variance and thus an estimate of samples
costs. In the chapter by Antle. sample costs
are described further.

Kriging. So far. the quantification ofspatial
dependence through the estimation of the
variogram has been illustrated. Geostatis­
tics offers still more concepts and methods
in the quantification of spatial variability­
the prediction of spatially-variable proper­
ties across the landscape. To develop and
discuss the principles of kriging is beyond
the purposes of this paper so we refer the
readers to several texts that present this
methodology (Gooverts. 1997: Isaacs and
Srivastava, 1989: Joumel and Huijbregts.
1978: David. 1977).

Kriging uses information about a property's
location and spatial dependence to best
estimate that property at unsampled loca­
tions. As such. it is an ideal method oftak­
ing point data to estimate spatial distribu­
tion Of5Oil properties. or. when extended to
three dimensions. it can be used to estimate
quantities of ore. mineral deposits or con­
centrations of contaminants (Gooverts.
1997). The geostatistics texts listed in the
cited literature section at the end of this
chapter are good references for the details

of the procedures. Perhaps more imponant­
Iy. modem software now includes \'ari­
ograms and kriging as pan of the main­
stream statistical methods for spatial meas­
urement and estimation (Surfer. 200I :
IDRISI32. 2001: ArcGIS. Geostatistics
Extensions. 2001). Geostatistics was recog­
nized as necessary and was developed by
gold miners in South Africa when they hied
to predict the value ofore from samples. as
a tool to guide the costly process of
prospecting the most valuable deposits. and
Mathernn (1955) later developed the statis­
tical basis for the technique. Adoplion in
the US has been surprisingly slow. but
recent texts by Cr'essie ( 1991 ) and papers in
the American Statistical Journals indicate a
gradual penetration into American practice.
Geostatistical methods ha\'e proven to be of
great value in quantifying and managing
other spatially distributed phenomena in
environmental monitoring and measuring
of contaminants. geography. geology. soil
science and other biological sciences.

Following is an illustration of how geosta­
tistical concepts can assist in the daunting
task of quantifying and predicting change
in soil organic carbon using some examples
of studies of soil organic carbon from
Indonesia. Hawaii and West Africa.

Soil Ol'gilnk Cilrbon ill 11Ulolle.si& In this
example. the presence of spatial depend­
ence over large distances. as large as se\'er­
al kilometers, is iIIUSb'3ted and in this case
is probably related to distance from an
acti,,'e ,,'oJcano. Tbe detection of spatial
dependence helps define a potential soil
carbon contract area.

Soil organic carbon was measured in land
clearing operations in West Sumatra.
Indonesia as one of many properties often
adversely affected by the clearing of land
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Figure 3. Variogram of soil organic carbon, regional
study, Sitiung, West Sumatra, Indonesia (Trangmar,
1984).
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vals for a total of 137 samples in the square
of784 m2. Interestingly the soil organic car­
bon varied from 0.2 to 7.2 percent, with a
sample variance of 0.17 percent OC2, only
slightly less than the variance of the 88 sam­
ples collected in the same province but over
106,000 ha (106,000,000 m2). As shown in
Figure 4, spatial dependence was also
observed in the high resolution data with the
range at about 10 meters and a sill not great­
ly less than the sample variance (Figure 4).

Such distinctions between causes of vari­
ability lead to better understanding of the

Taken together these two studies illustrate
nested variability. This should not be sur­
prising because clearly different processes
are operating at the different resolutions. At
the regional level, large-scale differences in
geology, volcanic activity and river erosion
influence properties and can result in spa­
tial dependence. At the detailed resolution
level, landuse changes, effects ofa bulldoz­
er in clearing land and exposing subsoil and
burning, as part of land clearing, may pre­
dominate.

o

•

0.20
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0.10

One of the issues in the region was the
extreme soil variability at the research plot
level. In many cases strong differences in
the research treatments occurred yet the
experimental variability was extreme and
the experiments were unable to detect dif­
ferences among treatments. Consequently, a
study of soil variability at high resolution
was also conducted. A representative sec­
tion of recently cleared land was selected
that measured 28 meters x 28 meters
(Trangmar et at., 1987). Samples were col­
lected on transects of I to 1.4 meter inter-

(Trangmar et at., 1987). The initial,
regional study covered an area of
about 106,000 ha (ibid, 1984). The
first activity identified five geomor- (')

o 0.18
phic features of the area, which 1ft

included: a dissected peneplain, a ~ 016

transition peneplain-terrace, subre- .~ 0.14

cent terraces, recent floodplain and ~ 0.12
CfJ

granite. While there were no differ-
ences among the geomorphic units in
mean soil organic carbon (it varied
from 3.1 to 3.9 percent), the study
indicated extreme acidity on the
upland, peneplain surfaces (pH 4.3),
while the recent floodplain pH was
still acid (pH 5.1, ibid, 1984).
Analysis of the variograms of soil
organic carbon at the resolution indi-
cated that there was some spatial depend­
ence even at the regional level (Figure 3).
The range of spatial dependence was
almost 3 kIn, with substantial differences
between the nugget variance and the sill.
Such range values suggest a pattern among
the regional units of a recurring distance of
3 lan, possibly related to regional differ­
ences in soil organic carbon. This vari­
ogram illustrates a case where the sill or
maximum value of the semivariance was
less than the sample variance, a somewhat
unusual occurrence,
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underlying processes and give
clues to grouping and stratifYing
fields and regions. These facilitate
modeling by predicting changes ...

~ 020
in soil organic carbon, a topic to "-
be taken up later in this chapter. ~ 0 's r----------".....~----------l

~ --i!:

~ 0'0This example shows that spatial
dependence in soil organic car­
bon can exist at both large dis­
tances (several kilometers) and at
small distances (several meters),
These results quantify the number
and spacing ofsamples needed in
order to estimate soil organic car­
bon with a specified precision or
variance,

Soil Orgtmic Carbon in Hawaii. Variabil­
ity in soil organic carbon was the object of
a study in Hawaii. In this case, however, the
study was prompted by the need to evaluate
soil organic carbon for its role in pesticide
leaching - a severe problem that risks con­
tamination of the drinking water supply in
the islands only aquifer (Yost el 0/.• 1993).
For this study. Equation I was expanded to
quantify variation in soil organic carbon by
considering the systematic variability reJr
resented by the mapping units identified
during the soil survey and the associated
soil taxonomy (Equation 4).

• GreatGrouPk = the variability parti­
tioned by the Great Group of Soil
Taxonomy

• Subgroup! = the variability partitioned
by the Subgroup of Soil Ta,onomy

• FamilYm = the variability partitioned
by the Family le"'el of Soil Taxonomy

• SeriCSn = the variability partitioned by
the Series level of Soil Taxonomy

• MappingUnilo = the variabilily parti­
tioned by the designated Mapping Unit

• E = the remaining variability not
accounted for by any of the preceding
criteria.

(4) Y""I = Order- + Suborder· +lJ.. moo I J
GreatGrouPl + SubgrouPI + FamilYm
+ SeriCSn + MappingUnilo + e

In this way. the criteria of Soil Tnonomy
were shown to effectively stratify "'ariabili­
ty in soil organic carbon (Yost and Fox..
1983).

where:
• Y ijklmoo = the measured phenomena on

each Mapping Unit.
• Orderj = the variability partitioned by

the Order level of Soil Ta,onomy
• Suborderj = the variability partitioned

by the Suborder level of Soil
Taxonomy

Equation 4 can be of use where soils ha\-C

been mapped and classified. Unfortunately.
this approach is not useful unless then: has
been a detailed soil survey. which is usual­
ly the exception rather than rule in the
Tropics. The equation illustrates that ~'S­

tematic variability can be remo"'ed from
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regional variation in natural resource meas­
urements such as soil organic carbon. As
we will illustrate in the case of soil organic
carbon in Mali, the categorical variables are
helpful in removing effects related to crop­
ping, landuse systems and geomorphic
position.

The estimation of soil organic carbon in
Hawaii began with the georeferenced soil
profiles that were part of the original soil
survey (Foote et at., 1972). These num­
bered only 14 for the approximately
736,000-hectare region. The data from the
original 14 samples was modeled with a
variogram (Figure 2), which was far less
than the usual 50 to 75 samples minimum
for a variogram (Joumel and Huijbregts,
1978). Nonetheless, with this reduced num­
ber of samples, considerable spatial
dependence was detected and the informa­
tion was used to select an additional 39
samples at approximately I km distances
along roads in the watershed. With this
additional set of samples, a revised vari­
ogram was estimated and the minimum
variance was estimated from the nugget
variance. This value was compared with the
minimum variance estimated from the use
of Soil Taxonomy to stratify levels of soil
organic carbon in the watershed. The vari­
ances were very similar, indicating that Soil
Taxonomy had nicely stratified variability
in soil organic carbon (Equation 4), but also
that the use of geostatistics gave relatively
similar results. These results suggest that
sampling with the guidance of an initial
variogram permits an efficient sampling of
the long distance variability in the water­
shed. The variogram also indicates that by
selecting approximately 511 samples, the
variance in estimating soil organic carbon
can be reduced to a value 115 of the origi­
nal. The study also suggests that the further
collection of 4,600 samples or even 7.36

million would not substantially reduce the
variance of soil organic carbon measure­
ments. Of importance to the estimation of
soil organic carbon was the relatively good
performance of additional sampling based
on the spatial dependence ofthe initial sam­
ples. The costs of estimating soil organic
carbon using the spatial dependence infor­
mation provided by geostatistical means
would have been substantially less than the
costs of sampling without spatial depend­
ence information. Without knowing the
spatial dependence of soil organic carbon,
one may select too few or too many sam­
ples relative to the relationship between
sample numbers and sample cost.

Estimating regional soil carbon levels
from point samples. Kriging was used to
interpolate and extrapolate the 53-point
measurements of soil organic carbon in
order to estimate the levels of soil organic
carbon throughout the region (Figure 5,
top). This approach to scaling up of point
measurements provides a smooth surface
and illustrates the regional variation of
properties such as soil organic carbon. A
map of the variance in the estimates of soil
organic carbon is shown in Figure 5, bot­
tom. Notice, for example, that the vari­
ance increases at distances further from
the center of the map, where the majority
of the samples were taken (Figure 5, bot­
tom).

Said another way, we demonstrate the
extrapolation of soil organic carbon meas­
urements from point locations to unsam­
pled locations (Figure 6) using geospatial
methods that have been incorporated into
the IDRISJ32 software. As illustrated in
Figure 5, the variances of extrapolation
become large at distances away from the
sample points, reflecting considerable spa­
tial dependence (Figure 7).
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An alternative. perhaps more realistic
method of extrapolating point data. is illus­
trated in Figure 8 (using the IDRIS132 soft­
ware). This method. Gaussian simulation.
gives predictions at unsampled locations
based on existing data plus random variates
generated from the statistical distribution of
the data together with the modeled spatial
dependence from the variograms.

Comparing Figures 6 and 8. it is dear that
the kriging operation. while providing an
optimal estimate. tends to smooth the pre­
dictions perhaps unrealistically. Gaussian
simulation may thus be a preferable method
of extrapolating and estimating values at
unsampled locations. as sho\\n by the com­
parable variance of estimation provided in
Figure 8 as an output from the Gaussian
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Figure 6. Kriged soil organic carbon (% C) and original data points, Pearl Harbor
Watershed, Hawaii. Output from IDRISI32®, Version 2, Geostatistics module (implemen­
tation of the Gstat software).
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Figure 7. Contours of estimation variance, kriged soil organic carbon, Pearl Harbor
Watershed, Hawaii. Output from IDRISI32® Version 2.

simulation. Figure 7, showing the estima·
tion resulting from the kriging operation,
indicates the estimation variance remains
quite low although the measured values
vary from approximately 0.14 percent to I
percent. This illustrates the importance of
location and uniformity on the prediction
uncertainty.

Sampling soil organic carbon in Mali,
West Africa. In the third case, soil organic
carbon was, in fact, the objective of a
reconnaissance sampling in improved crop­
ping systems in Mali, West Africa. This
sampling study is in progress; consequent­
ly, only partial results are available.
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Figure 8. Gaussian simulation of soil orga.k ~rbo.. based OIl rIistiDg data (poi_IS).

spatial dependence and tbe statistical didributioa of origillal data. Part Harbor
Watenbed. Hawaii. Output from IDRlSI32;1> nmoll 2., Geostatktia .....Ie. _lin k
an implementation of tbe Gstat softwan.
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The protocol being tested is to use
remotely sensed data to identify landuse
and land management units and remove
this variability using Equation I with
standard statistical software for example.
A two-stage sampling of the random vari­
ability is then carried out. The first stage
is a minimum sampling. designed to esti­
mate spatial dependence. while the sec­
ond stage is designed to use the optimal
sampling design based on spatial depend­
ence. estimated from the first sampling. to
estimate soil organic carbon. This com­
prises a hierarchical or stratified sampling
design with remotely sensed data as the
first step and then the use of geostatistical
methods to quantify the spatial depend­
ence in preparation for the second.
detailed sampling.

With the assistance of scientists from
fER/Mali. a selection of fanners' fields
were mapped using OOPS (Figures 9 and

10) and sampled for soil organic carbon to
make a comparative study of the traditional
Walkley-Black. combustion and mid­
infrared methods of measuring soil organic
carbon. The preliminary statistical analysis
of the different landuse S)-stems. using
Equation I. shows that the various loca­
tions and cropping systems.. with the last
crop in the rotation indicated in the table.
differed strongly in soil organic carbon
content. Also note that cropping S)'SlemS at
similar levels of soil clay differed in soil
organic carbon (Tables 2 and 3). This sug­
gests that percent clay was not the lone fac­
tor affecting soil organic carbon le\els.
The sample variance ofsoil organic carbon.
containing both systematic and random
variation. was 0.155 percent OC2. After the
removal of the systematic variability_
expressed as location. cropping systems
and the interaction of location by cropping
systems_ it was significant with a probabil­
ity level of 0.0186. indicating that a
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Cotton:
x =0.45
sd =0.084'

Figure 9. The soil carbon content and variability in the 0-20 cm soil depth of fields of Mory Konate,
Koutiala, Mali. Total area: 20.17ha. Fields were traced with DGPS, courtesy lER/Mali. Map by
Abdou Bello, IERIMali.
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Figure 10. Fields of Lassine Dembele, Koutiala, Mali. Total area: 16.9ha.
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Table 2. Pulimioary' estimates of soil organK carbon tents in Mali.. West Africa.
(Doumbia n fIl.. unpublisbed data. 2(01).
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location. rainfall. mm
Konobougou 1800 mm)
Koutiala 11000 mm)
Sikasso II ::!oo mm)
LSD{)5

No. samples
14
:!7
17

Soil organic carbon. 0"
0.26Q

0566
0.~16

0.085

Soil da~. ""
..'-9
6.2
6.~

I.~

Table 3. Preliminary estimates of soil organic arbon lenls for selected crops at
Ibrw locations in Mali. West Africa. (Doumbia n fIl.. unpUblished data. 2001.

Location
Konobougou

Koutiala

Sikasso

Crop No. samples Soil organic C 0" Soil day. ""
Conon 5 0.2~ 5.0
Fallow 3 0.31 55
Millet 3 0.18 3.9

Conon 9 0.55 4.8

Fallow 1 1.0 lO.J
Maize 6 0.68 5..::!

Millet 7 0.48 ItO

Conon 3 0.34 4.Q

Maize 4 0.45 J.O
Millet 3 0.12 55
Rice. flooded 3 0.66 10.3

0.22 ,,"'~. I

substantial amount of the variability was
due to the cropping systems and location
effects. Initial samples were insufficient to
estimate the spatial dependence and subse­
quent sampling will be necessary.

In general. systematic variability (Equation
I) is that which can be identified and asso­
ciated with a known cause. It thus becomes
clear that the more known about a particu­
lar region and the processes operating
therein. the greater a proportion of the vari­
ability is viewed as systematic and the less
as random. In nearly all cases. however.
significant amounts of variability remain as
random and need spatial analysis to detect
spatial dependence. For continuous vari­
ables. such as soil pH and soil organic car­
bon. considerable spatial dependency often
occurs (see examples above). This means
that the processes that have led to the vari-

ation in soil organic CaIbon often apply
over an area of a few meters in the case of
local vegetation to several kilometers in the
case of annual rainfall panems. v3J)ing in
these examples in nearly eveT)' situation. :\
challenge to carbon measurement is identi­
fying the major causes of systematic \'ari­
ability. such as landuse. geologic formation
and soil forming factors of vegetation..
topography. parent material. time and
human management systems. As illustr.uoo
in Figure II and detailed in the SAS analy­
ses of the landuse variation. significant
variation among landuses and cropping
systems exists. Locations also differed
from each other. This ongoing experiment
is now ready for geospatial analysis in
order to determine spatial dependence of
soil organic carbon in the random areas of
cropping systems and locations in the
regIon.
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that illustrated in Figures
9 and 10, where the OGPS
is put into streaming
mode and the technician
walks around the field.
Figures 9 and 10 also
illustrate the variation in
duplicate tracing of the
field boundaries by sepa­
rate technicians. As sug­
gested below, such an
instrument can also be
useful in obtaining eleva­
tion data for fields of high
relief.

location: KBG-Konobougou (800mm)
KLA-KoutiaJa (1000mm), SKO-Sikasso (1200mm)

Figure II. Soil organic carbon across a gradient of rainfall, Mali,
West Africa.

Calculating Carbon Sequestration from
Maps of Carbon Distribution

Calculating total carbon for a portion of
the landscape from point measurements is
fraught with problems similar to those of
spatial variability, described in this chap­
ter. Geospatial methods to estimate maps,
or coverages, of soil organic carbon have
been suggested. This approach provides
maps of both the estimated carbon and the
estimated errors of the map. The next steps
in calculating the amounts of carbon are
not as simple as multiplying the carbon
concentration by the sample depth, for sev­
eral reasons.

Field Area. Firstly, one must calculate the
actual area of the study fields. One of the
easiest approaches is the use of high-reso­
lution remote sensing data such as that
described in Table 1 (lKONOS, for exam­
ple). A less efficient alternative is the meas­
urement of the field using OGPS, such as

Field Topography. If a
field has some relief, the
actual surface area is
greater than that assumed
from simple distance

measures. To illustrate: if a field has a 30
percent slope, then the actual surface area
is more than 15 percent greater than if it
were flat. This can be determined by a sim­
ple trigonometric calculation, available in
software such as Surfer or ArcGIS Spatial
Analyst. Given such a problem, how can
the actual surface over a variable land­
scape be calculated? Our suggestion fol­
lows. Several software packages men­
tioned in this section do this calculation
automatically. However, in order to per­
form the calculation, some elevation data
from the field is needed; i.e., the Z direc­
tion for each of the X and Y measure
points. This is called the Digital Elevation
Model (OEM) for the surface. The
Surfer® software simplifies the calcula­
tion of an interpolated surface given the X,
Y, and Z data. Published OEMs, however,
are rarely sufficiently accurate for small
fields, and while the ideal would be sur­
veyed elevation data obtained by transit,
the reality is that other means are usually
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needed. Obtaining the elevation from dif­
ferentially corrected GPS data is a recent
technology option. but undifferentiated
GPS measurements are rarely sufficiently
accurate for this purpose.

Gi"'en an elevation map of the field, the
calculation of surface volume based on the
actual surface area of the field is again
challenging because of the irregular sur­
face. Volume-estimating techniques. how­
ever. have long been available for goo­
prospecting and the most-used alternatives
are also available in the Surfer software.
These techniques involve the mathemati­
cal integration of the volume over the
irregular surface. defined by the map cov­
erage representing elevation.

Still on the issue of the varying topography
of fields for which C accretion is to be esti­
mated. the elevation data can also provide
some useful calculations based on terrain
ana~l"sis, which is a new field for analyz­
ing regional propenies of surfaces with
varying topography (Moore et al.. 1993).
Some variables expressing amount of land
area above a particular point in the land­
scape (CTI. the compound topographic
index) may be useful in providing covari­
ates for the co-kriging as described else­
where in this chapter (see section. "Scaling
Up of Point Measurements ... ").

A Possible Protocol for C Measurement

Throughout the examples gi..'en above. a
cenain pattern suggests a protocol for esti­
mating soil organic carbon on such a large
scale. which is necessary to provide inven­
tories of sequestered carbon in quantities of
interest to international traders. The proto­
col. also summarized in the chapter by
Antle and Uehara, includes the following
elements:

J. JdentiJj' tire SJstellUltic ~"ri.biIiIj·

BlIdigrollnd inforllltllion. Initially sun-ey
the region to be assessed for carbon
sequestration potential. This includes a
search of existing, background infonna­
tion published in soil survey reports. proj­
ect reports, and consultant reports and
other databases and maps. In addition.
sometimes the persons involved in such
reports may still be accessible and they
often have useful insights for the measure­
ment exercise.

Search to obtain all the av"ailable remotely
sensed imager)'. aerial photography. prop­
erty maps. This is usually one of the most
cost-effective inventories of a region and
even ground surveys may provide infor­
mation and data that can be quantitatively
related to mapped features. usually in
building or updating a map database.

Vse of relllotely sensed illUlge,,' for tire
hiertlrclrktd SllYllijiClltiOn. In the event
that local institulions do not have suffi­
cient remotely sensed image!)". interna­
tional sources of imagery may be used.
Often imagery is available from institu­
tions such as EOSAT. SPOT and others.
All the efforts of the sleps discussed so far
should be focused on the most infonned
category designations of landuse. geology
or land shape. since these are usually ke:lo:
to stratifying the systematic \"ariabilit} in
soil organic carbon.

1. Detection ofSptdilll1JqJellllnta ill tile
"RlIndo"," VllrilIbiJilJ' in .VetIS_rwI Dtu.
InilillJ SlllIIpIe collection. Collcet inilial
samples in the various stralit1ed categories
identified in the previous slep. 11le samples
should be from the plow or tilled layer on
cultivated soil and from the 0 - Scm and lhe
5 - 20cm layer in perennial or natural lan­
duse systems without tillage. The 50-75
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samples are needed in order to adequately
detect and quantify spatial dependence in a
specific region. The accurate laboratory
measurement of soil organic carbon is diffi­
cult and time-consuming and, depending
on the method, can produce hazardous
waste. New methods based on near/mid
infrared hold promise.

Analysis ofsystematic variability. Analyze
the systematic variability in the sample data
using methods that consider the categories
as classes and compare the results of the
stratification (e.g., SAS PROC GLM or
MIXED or equivalent). If the differences
among categories are significant, continue
with the categories: however if not, pool
them and proceed with the spatial analysis
of the random variability. This can proceed
by analysis of the residuals resulting from
removal of the systematic variability from
the original data.

Additional sampling? If, as a result of the
analysis, there appears to he spatial depend­
ence but the sampling density is too sparse
to delineate the variogram, a further sam­
pling may be needed.

Once the categories of landuse/stratifica­
tion are identified as a result of the remote­
ly sensed data, they can be selected for
modeling (see Jones et al. chapter). The
subsequent steps will help scientists to use
the simulation models to better understand
and quantify the dynamics associated with
the farmer's selection of landuse cate­
gories. Results of the simulation exercise
will be useful in identifying the landuse
systems with high potential for reliable C
accretion.

Scaling up. After the potential of selected
landuse systems has been clarified by the
simulation activity, the predicted accretion

rates can be scaled up to the selected lan­
duse areas, identified by remote-sensed
imagery, using techniques such as block or
point kriging. The mean accretion rates of
land categories can be determined as well
as the precision with which the estimates
are obtained (the estimation variances pro­
duced by block or point kriging).

Scaling Up of Point Measurements and
Simulation Results to Regional
Estimates

Scaling up ofmeasurements and simulation
results is necessary for presentation of a
logical, well-characterized contract area.
Extrapolation must be done carefully so
that errors do not jeopardize predictions
and result in faulty contracts.
Extrapolations can be almost mechanical
when carbon gain per hectare in a millet
field, for example, is multiplied by the
hectares of millet in the region under con­
sideration. At another extreme, extrapola­
tions can include auxiliary information
from DEMs and derived parameters from
terrain analysis, such as slope curvature,
wetness index, upslope distance and other
information. Somewhat intermediate
among this range of options, time and
expertise, is the use of kriging, where the
extrapolation is conditioned by measured
data, but spatial dependence is used to
guide the estimates in unsampled regions.
This combination provides an optimal use
of the stratified landuse and the measured
point data.

In our view the first step in the extrapolation
from point measurements or simulations
should be the ordinary kriging of the fields
representing the various locations. This type
of extrapolation or scaling up is illustrated
in our example of the Pearl Harbor
Watershed (Figures 4 to 6). As already indi-
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cated, this type of extrapolation provides
both a map of extrapolated values and a
map of the estimation variances (Figures 5
and 7). For example, in Figure 7. we can see
that the variance remains low (around 0.15)
in the vicinity of the samples, but only
increases to about 0.35 between clusters of
samples. In contrast. on the edges the vari­
ance increases at similar distances to 0.75 or
more (Figure 7). reflecting a lack ofsamples
and the tenuous nature of any extrapolation
in that region. We recommend this approach
for obtaining estimates of amounts of soil
organic carbon in fields and over large
regions necessary for carbon trading.

Additional options for extrapolation may
be possible or more appropriate depending
on the local conditions. One of these is the
use of co-kriging, which builds on ordi­
nary kriging by including the relationship
between the primary variable. likely soil
organic carbon in our case. and an auxil­
iary variable that is easily and cheaply or
accurately measured. but which correlates
very highly with the primary variable.
There are numerous examples of using co­
kriging (Trangmar et al.. 1986 ). One
example use of co-kriging would be to
employ remotely sensed data as compiled
in a vegetation or soil carbon index as the
covariate to estimate soil organic carbon
over a region.

CONCLUSIONS

In summary. there is an emerging protocol
for measuring soil organic carbon that ini­
tially requires an inventory of landuse and
cropping systems. Based on this inventory.
selected systems and regions can be sam­
pled and the status and variability of soil
organic carbon determined. If still favor­
able. either further sampling can be carried
out or the data can be analyzed using

geospatial methods and extrapolated or
scaled up to areas or volumes in the region.
The scaling up requires a quantitative
inventory. The result is an imentory and
estimate of the amount of soil carbon that
can be fixed if a particular cropping system
remains in place.

As described in the chapler by Jones el al.
in this monograph. existing cropping sys­
tems and landuses mayor may not ha'-e
carbon accumulation potential. a factor that
relies on the simulation of the carbon bal­
ance and steady state le\'e1s.
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APPENDIX 1. SOFTWARE
TO ESTIMATE SPATIAL

DEPENDENCE AND USE IT IN
OPTIMAL INTERPOLATION

The sampling protocol for estimating soil
organic carbon can be found in the chapter
by Antle and Uehara. Identification and
preliminary comments on some of the soft­
ware that is available for dealing with the
spatial variability of soil organic carbon ~re

provided in this appendix. Software whIch
might be considered in dealing with the
sampling protocol for estimating soil
organic carbon are described her~: I) :After
identifying the major geomorphIC Ulllts or
landuse systems, whichever is likely to best
stratify soil organic carbon, a standard s~­

tistical analysis can be performed WIth
dummy variables for the different geomor­
phic units or land uses. Software such as
SAS is useful to estimate these large-scale
effects. 2) With the residuals from the
removal of large systematic variation, such
as the observable, discrete units, estimation
of the spatial dependence using typical geo­
statistics software can be made. First the
variograms must be estimated. This can be
done with a variety of software, such as
Variowin, Geo-Eas or Oeo-Pack (DOS
environment), or one of the integrated
packages such as Surfer 7 &. 8. (whic~

includes both variogram and krIgmg estI­
mations of a grid of new points), the
ArcGIS 8.1 Geostatistics Analyst and the
IDRlS132 Geostatistics modules. The krig­
ing-estimation procedure provid~s a quali~

interpolation method together WIth an esti­
mate of the reliability of the estimates. This
is also available in the Surfer 7 & 8, ArcGIS
8.1 and later versions, the IDRIST32
Geostatistics modules, as well as in the
Geo-Eas and Geo-Pack software mentioned
above. The recent GIS software such as

ArcGIS Geostatlsttcs Analyst and
IDRISI32 Geostatistics powerful modules:
1) Spatial Dependence Modeler; 2) Model
Fitting; and 3) Kriging and Simulation.
These modules provide a new level of flex­
ibility, insight and ease of use for explori~g

and quantifying spatial dependence, III

modeling semivariograms, and in provid­
ing a range of options of kriging (simple,
ordinary, universal and co-kriging, ArcGIS
and IDRISJ32) as well as Gaussian and
indicator simulations (IDRIS132). These
packages, integrated with the GIS software,
are some of the most powerful and easy to
use modules available today.

In addition, many years ago, a very simple
DOS version of the variogram and kriging
software was developed at the University
of Hawaii. In the event that such highly
simplified software is useful, we can be
contacted.

The websites/locations of this software are
given below.

ArcGIS 8.1 & 8.2 Geostatistics Analyst
http://www.esri.coml

Geo-Eas
http://www-sst.unil.ch/research/vari­
owinlindex.html

Geostatistical Toolbox
Froidevaux, R., "Geostatistical Toolbox
Primer, version 1.30," FSS
International chemin de Drize 10, 1256
Troinex Switzerland, 1990.
http://www-sst.unil.ch/research/vari­
owin/index.html

GSLIB
Deutsch and Journel, GSLIB-A geosta­
tistical toolbox
http://www.gslib.coml
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Gstat
Stand alone software and choice of
IDRISI32 Geostatistics module
http://....vlw.geog.uu.nl/gstat!

IDRIS132
Clark Labs. Clark University
950 Main Street
Worcester. MA
01610
(508)-793-7526
idrisi@c1arku.edu
http://\\·wvl.c1arklabs.orglO 1home.htrn

SAS. SAS Institute
Academic Software Sales
SAS Worldwide Headquarters
SAS Campus Drive
Cary. NC 27513-2414
USA

SigmaPlot
SPSS Science
233 S. Wacker Drive, II th floor
Chicago, IL 60606-6307
http://www.spssscience.comJcorpinfo
lindex.cfm

Surfer 7 or 8, Golden Software. Inc.
809 14th Street.
Golden, Colorado
80401-1866
303-279-1021
www.goldensoftware.com

VAR5. AKRIGE, COKRIGE
(005 versions only)
University of Hawaii al Manoa
3 190 Maile Way
Honolulu. HI
96822
rsyost@hawaii.edu

Variowin
http://\\ww-ssl.unil.ch/resean:h'\·ari­
owin!index.htrnl
Pannalier. Y.. "VARIOWIN: Software
for Spatial Data Analysis in :!D,"
Springer-Verlag. New York. NY. 1996.
ISBN 0-387-94679-9 (oul of print)
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APPENDIX 2. SOME
EXAMPLE CODE FOR

MODELING VARIOGRAMS
WITH SAS AND SIGMAPLOT

. 'th SAS:Modeling vanograms WI

MODJP.CNTL

00010 *Program for modeling of isotropic
semivariograms;
00020 *Written by B. Trangmar;
00030 Title weighted Spherical,
Mitscherlich and Linear models;
00040 data vsemk;
00050 infile data;
00060 input y x n dir dtol;
00070 *Spherical and Mitscherlich models
for 90+/-90 semivariogram;
00080 data one; set vsemk;
00090 if dir=90 and dtol=180;
00100 ify > 0.129072 Then delete;
00110 if x < 25;
00120 proc nlin best=lO;
00130 parms cO=0.0623 I I C=0.066761
A=25;
00140 _weight_=n;
00150 if x<a then do;
00160 model y=cO+c*(I.5*(X/a)­
0.5*(X**3/a**3));
00170 end;
00180 else do;
00190 model y=cO+c;
00200 end;
00210 output out=e p=yhat r=yresid;
00220 proc plot data=e;
00230 plot y*x='*' yhat*x='p'/overlay;
00240 plot yresid*xlvref=O;
00250 proc nlin best=10;
00260 parms bO=0.1290n bl=0.06231 I
b2=0.3;
00270 weight_=n;
00280 ~odel y=bO-bl *exp(-b2*x);
00290 output out=f p=yhat r=yresid;
00300 proc plot data=f;

00310 plot y*x='*' yhat*x='p'/overlay;
00320 plot yresid*xlvref=O; ..
00330 *linear model for 90+/-90 semlVan­
ogram;
00340 data two; set vsemk;
00350 if dir=90 and dtol=180;
00360 if x < 35 and y < 0.129072;
00370 proc print;
00380 proc glm;
00390 weight n;
00400 model y=x;
00410 output out=d p=yhat r=yresid;
00420 proc plot data=d;
00430 plot y*x='*' yhat*x='p'/overlay;
00440 plot yresid*x/vref=O;

Statistical Analysis System (SAS) instruc­
tions for fitting semivariograms to
output from the variograms programs.

Sigrnaplot code for fitting spherical vari­
ograms models (version 5 and later)

Nonlinear Regression (user defined equa­
tion)

[Variables]
x = col(2)
y = col(l)
[Parameters]
a = 1/3*max(x) "Auto {{previous:
1O.298} }
cO = stddev(y) , {{previous: 0.047238} }
c = stddev(y) , {{ previous: 0.109503} }
[Equation]
f=if(x<=a,line(x),cOc)
line(x) = cO + c*(l.5*(xla) - 0.5*(xlaY'3)
cOc=cO + c
fitftoy
[Options]
tolerance=O.OOO I00
stepsize= I00
iterations= I00
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ABSTRACT

Increasing the amount of carbon in soils
could help counter the rising atmospheric

CO~ concentration as well as reduce soil
degradation and improve crop productivity
in many areas of the world. Participating in
carbon markets could provide farmers in
developing countries the incentives thev
need to improve land management. Carbo~
traders, however. need assurances that con­
tract levels of carbon are being achieved.
Thus. methods are needed to monitor and
verify soil carbon changes over time and
space to determine whether target levels of
carbon storage are being met. Because
measurement of soil carbon changes over
the large areas needed to sequester contract
amounts of carbon is not possible. other
approaches are necessary. An integrated
approach is described in which biophysical
models are combined with soil sampling
and remote sensing to achieve reliable and
verifiable estimates ofsoil carbon over time
and space. Although there are uncertainties
associated with data and models, reliability
in estimates is realized by using observa­
tions to adjust inputs and model parameters
for target areas. An overall framework is
suggested for providing information on
potential soil carbon sequestration rates
before a project area is selected and also for
producing reliable estimates of soil carbon
accretion during a contract.

INTRODUCTION

Carbon sequestration as a means to miti­
gate the increasing atmospheric carbon
dioxide (CO~) concentration is gaining
interest worldwide. Furthermore. there is
increasing interest in compensating land
managers for removing carbon from the
atmosphere through land management

practices that will store carbon for long
periods of time in trees or soils. While stor-
ing carbon in soils can counter risin$!. CO~
levels in the atmosphere. this public benefit
will likely be far outweighed by positiw
benefits thai increased soil organic maner
content could produce for many of the

degraded soils of the world. by raising agri­
cultural productivity. reducing poverty and
combating desertification. But to achic\'c
these benefits. farmers must have econom­
ic incentives to adopt land improvement
practices. Due to a lack of such incenti\'es.
current agricultural practices are causing
depletion of soil carbon and concomitant
reductions in soil fertility and food produc­
tion. Fanners rypically respond by expand­
ing the area of land cultivated or grazed.
thus mining soil organic matter and contin­
uing along an unsustainable pathway.
Participation in carbon markets could pr0­

vide fanners with much needed incenti\·es
if carbon traders can be confidenl thai con­
tracts with farmers in de\'eloping countries
will result in remo\'al of an agreed-upon
amount of atmospheric carbon O\eer an
agreed-upon time period. Before commit­
ting to a contract carbon traders need infor­
mation on the carbon sequestration poren­
tial of agricultural soils. and the,,- need
infonnation during a contract 10' assure
them thai the agreed-upon carbon amounts
are being stored. Unfortunately. howevet".
this infonnation is not easy to obtain. espe­
cially in low input agricultural systems in
developing countries.

If potential carbon sequestration rates could
be predicted accurately for a specific area
under proposed land use and management
practices, this would pro\'ide a basis for
developing contracts. The potential ofsoils
to sequester carbon depends on man\ fac­
tors. including soil physical and chemical
anributes. weather. land use and land man-
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agement practices. These factors vary con­
siderably over space and time and they
interact with each other in highly complex
ways. Biophysical models integrate crop,
soil, weather and management practice
information and predict the consequent bio­
mass and yield components as well as
changes in soil nutrients and carbon (Cole
et al., 1987; Moulin and Beckie, 1993:
Singh et al., 1993; Probert et al., 1995).
Although these models predict biophysical
responses for uniform areas for which soil
properties, weather and management prac­
tices are known, they can also be used to
predict these responses over large, nonuni­
form areas if the models are provided infor­
mation on spatial variability of soil, weath­
er and management inputs, using geograph­
ic information systems (GIS) (Calixte et al.,
1992; Hartkamp et aI., 1999). By simulat­
ing responses for a number of years, it is
possible to estimate the potential changes in
productivity as well as changes in soil car­
bon. Thus, tools are available for predicting
potential soil carbon sequestration. We
emphasize "potential" soil carbon seques­
tration because such predictions would be
based on assumptions about future weather
conditions (usually by using historical
weather patterns for a number of years),
and they would be based on assumptions
regarding socioeconomic conditions as
well as land management over space and
time.

After a contract between a carbon trader
and land managers is made, mechanisms
are needed for monitoring compliance.
Regardless of whether the contract calls for
land managers to adopt specific practices or
for specified amounts of carbon storage,
assessments of changes in soil carbon stor­
age are needed to confirm that the desired
impact of the contract is being achieved.
Direct measurements of soil carbon over

time and space are needed to quantitY car­
bon accretion rates and to confirm that con­
tract amounts are being met. Due to the
costs associated with these measurements,
however, it is necessary to complement
direct measurements with indirect methods
for estimating soil carbon accretion. This
can be done by monitoring actual manage­
ment practices over space and time, using
remote sensing to complement ground
observations, then using biophysical mod­
els to provide estimates of soil carbon
sequestration. By combining direct meas­
urements of soil carbon with spatial statis~

tics and biophysical models, one can obtain
measures of soil carbon sequestration over
space and time in an operational program.

The use of biophysical models must be
combined with direct measurements,
remote sensing and socioeconomic infor­
mation in an overall approach for measur­
ing and assessing soil carbon sequestration
for use in carbon trading. In this paper, we
describe concepts of soil carbon cycling in
agricultural production systems and give
example predictions using the DSSAT­
CENTURY model (Gijsman et aI., 2002)
showing how changes in soils, weather, and
management practices affect potential soil
carbon sequestration. In addition we
describe how the models are integrated into
an overall framework for assessing and
monitoring soil carbon changes.

CARBON CYCLING IN
THE SOIL, PLANT AND

ATMOSPHERE

Organic carbon exists in many forms in ter­
restrial ecosystems. Figure I is a schematic
showing the major forms in which carbon
is stored in managed or unmanaged parcels
of land. Inorganic carbonates are not
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Figure I. Simp6fied scbematk diagram of carboD flcnu (deDoted by .rrolll~) iD 1M soil-pla...........
pbere system.

included in Figure I. although they may be
significant for some soils. because they are
not easy to manipulate in soils. Total carbon
on the land unit is the sum of the C in all of
the components (plants and their roots. sur­
face and soil liller, soil organic maller
(SOM). and microorganisms). Carbon
sequestration can occur if this total carbon
of the parcel of land increases. Carbon
sequestration in forests. for example.
occurs as trees assimilate CO.. from the
atmosphere, com'ert it into biomass and
store large amounts of woody tissue that
accumulates over a number ofyears; with a
forest fire, this carbon is returned to the
atmosphere. Soil carbon sequestration in
agricultural systems occurs when plant
material is returned 10 the soil through nat­
ural or anthropogenic processes and accu­
mulates over time as soil organic maller.

The arrows in the tigure depict the transfor­
mations and flows ofcarbon among the dif-

ferent components. Arrow I between the
atmospheric CO~ and the plant represents
the photosynthesis process. Dead shoot
material is added to the liner on top of the
soil surface (arrow 2) and dead roots add to
the soil liner (arrow 5). Surface liner may
be incorporated to become soil liner Carrow
4). Both the surface and soil liner are
assimilated by microbes (arrow 3 and 6,.
which transform the liner into soil organic
matter (arrow 7 and 8), All these transfor­
mation processes are accompanied by a
release of CO~ back into the atmosphere
(arrow 9), The SOM. finally. is also decom­
posed to CO~ (arrow 10). Arrow II depicts
removal ofplant material by humans or ani­
mals. If animals graze the land. their
manure would also be a source of organic
maner for the soil (not shoun in Figure I).
During a specified time perioo. such as a
year. the net change of carbon on the land
unit is the sum of flows among all compart­
ments. Positive net flows mean that carbon
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has increased, whereas negative net flows
indicate that carbon is lost from the system.
This carbon cycling and the balance sheet
that accounts for carbon are fundamental
concepts underlying the process of soil car­
bon sequestration.

Figure 1 is also useful to discuss factors
that lead to soil carbon accretion or mining.
The processes (arrows) in the figure
include combinations of natural and human
actions. Thus, soil carbon will be increased
or decreased (mined) depending on interac­
tions ofnatural processes and human inter­
ventions. In agricultural systems in which
all above-ground plant material is removed
from the land for consumption or fuel
wood, the net change in the soil carbon
more likely will be negative as microorgan­
isms continue to break down litter and soil
organic matter; root biomass is usually a
small fraction of total plant biomass. Rapid
rates of soil organic matter transformations
are associated with tillage (exposing more
organic matter to microorganisms), soil
texture (more rapid in sandy soils), soil
water content (less decomposition in very
dry or very wet soils) and temperature
(decomposition rate decreases under cold
and very hot conditions), and availability of
nutrients in the soil (transformation rates
decrease when soil nitrogen or phosphorus
are low). In most land units, these condi­
tions change over time due to weather vari­
ations as well as land management.

If crops are grown for grain, the yield will
be removed from the field, but the residue
may be returned to the soil or removed and
used for animal feed or other purposes. In
pasture systems, overgrazing would reduce
grass productivity and thus limit soil carbon
sequestration even though some C would
be returned to the soil in animal manure. If
farmers harvest only the edible yield and

practice limited or no tillage (thus reducing
SOM decomposition rate), the return of
residue to the soil could lead to accretion of
soil carbon, especially under management
practices that lead to high biomass produc­
tion (such as application of nitrogen or
other nutrients that may be limiting).

Predicting soil carbon accretion over time
for a particular land management unit
requires that an accounting of the carbon
flows and storage be made. This accounting
must allow for natural processes of photo­
synthesis and growth of the crop and trans­
formation rates and respiration associated
with organic matter decomposition. These
processes depend on soil characteristics
and weather, which also must be taken into
account. In addition, carbon accounting
must take into account management of the
land (tillage, fertilizer inputs, residue man­
agement, irrigation), as these human inter­
ventions affect carbon assimilation by the
crop, how much is removed for human or
animal uses, and carbon losses by decom­
position of SOM. Biophysical models
incorporate all of these factors and account
for the day-to-day crop growth and organic
matter transformations and the long-term
net changes of soil carbon and other nutri­
ents.

BIOPHYSICAL MODELS FOR
PREDICTING SOIL CARBON

SEQUESTRATION

Biophysical models have been developed
to compute the flows and transformations
depicted in Figure I and the resulting
changes in vegetative biomass and soil car­
bon. However, not all have proven capabil­
ities for predicting productivity and soil
carbon changes under a wide range of soils,
climate and management systems.
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strategies that im"ol\'e crop rotations. irri­

gation. nitrogen fertilization and organic

matter applications. Although crops (or

cultivars) and crop management (e.g..

mechanization) may di ffer from counuylo

country and even from village to village.

the effect of fertilizer or irrigation on crop

production follows similar biophysical

and biochemical pathways. An important

difference. howe"er. between high-input

and low-input agricultural systems is that.

in the fonner. deficits of nutrients required

by crops are supplied b)' chemical feniliz­

ers, whereas in the latter. nutrients become

available through decomposition of soil

organic matter (50\1) and plant residues.

This means that the soil organic matter

component of crop simulation models is
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Figure 2. Comparisoa of sim.latrd maiu gnia ~"idd rill

graiD ~ieId oMened io 1\twimba rlPftimt'8t shldoII (1987­

88 were calibratioD ~'ean a.d 1989-90 uDd."" ~'ean) aM

rarmer fields iD ceD1Ta1 "ala.'i, 1990-1992 (from lltontea

aDd Wilkens. 1998). Crops ,,'ere gro"...siJIg a~~

or fertilizer llitrogen ~'ds. iDdadiDg aoa-f«'f'lilized h'ftl­

mellls.

DSSAT-CENTURY Model

Recently. the most widely used

and tested package of crop pro-

duction models (Decision

Support System for

Agrotechnology Transfer.

DSSAT, Tsuji el al., 1994; Jones

et al., t998) was combined with

one of the most widely used and

tested models of soil carbon

dynamics (CENTURY, Parton el

al., 1988. 1994) for predicting

soil carbon sequestration under

widely varying soils. weather

and crop management systems

(Gijsman et al.. 2002). This

model version. referred to as the

DSSAT-CENTURY model. can

simulate a wide range of crop

rotation systems over long time

periods to estimate biomass pro­

duction and yield as well as

changes in soil organic matter.

The DSSAT fonns a comprehen­

sive model-based decision sup­

port system for assessing agricultural

management options. It is widely used in

both developed and developing countries

(Algozin el al., 1988; Bowen el al.. 1993;

Bowen and Wilkens. 1998: Jagtap et al..

1993; Lal el al.. 1993; Singh el al.. 1993;

Thornton and Wilkens, 1998; Paz el al..

1998: Paz. 2000; Mavromatis el al.. 200 I).

For example, Figure 2 shows results from

Thornton and Wilkens (1998) of testing

one of the DSSAT models (maize) in

Africa. The present version 3.5 incorpo­

rates 16 crops (maize. wheat. rice.

sorghum. millet. barley. bean. soybean,

peanut. chickpea. cassava. potato. sugar­

cane. tomato. grass and sunflower). with

several more being implemented. The

models in DSSAT handle management
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Figure 3. Comparison of simulated and measured soil organic carbon
for a long-term bare fallow treatment in Rothamsted (Gijsman et al.,
2(02).
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more important for accurate simulations
of crop productivity in low-input systems,
as well as for accurate simulations of
changes in soil carbon.

1600014000

bias, and was able to simulate both low­
and high-N treatments (Smith et aI., 1997).
Figure 3 demonstrates the ability of the
combined DSSAT-CENTURY model to
accurately simulate measured depletion of
soil carbon under a long-term experiment
where periodic measurements of soil car­
bon were made in a bare-fallow treatment
(Gijsman et aI., 2002).

Potential options for increasing soil carbon
in Africa include rotations of crops with
natural vegetation fallow or converting
degraded land back into natural ecosys­
tems. The dominant natural ecosystems in
Africa are savanna systems where both

trees and grasses con­
tribute to the system­
level plant production,
aboveground carbon
levels and soil carbon
storage (Scholes and
Walker, 1993). African
savanna systems
include a substantial
amount of wood with
up to 2000 g [C] m·2

contained in above­
ground woody bio­
mass. Total carbon lev-
els are greatly influ­
enced by human man­
agement of savanna
systems. For example,
intense grazing of tree
and grass biomass by
goats and cattle,

increased fire frequency and fire wood col­
lection can greatly reduce both wood bio­
mass and soil carbon levels. Data from
Kruger National Park in South Africa
(Jones et al., 1990) showed that 50 years of
annual burning reduced soil carbon levels
by 300 g m-2 and reduced wood biomass
levels. Eliminating fire for a 50-year period
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long-term datasets, including inorganic
fertilizer, organic manures and different
rotations. Measured and simulated data
were compared, using an array of statisti­
cal-analysis tools. Among the models that
performed best, the CENTURY model pro­
duced consistently low errors for all
datasets but one, showed the lowest overall

The CENTURY model (Parton et aI., 1988,
1994) has proven its value in both temper­
ate and tropical systems (Carter et aI.,
1993; Cole et al., 1989; Kelly et aI., 1997;
Metherell et aI., 1995; Parton et al., 1989,
1993, 1994; Paustian et aI., 1992; Seastedt
eta!., 1992; Woomer, 1992, 1994). In a spe­
cial issue of Geoderma 81 (1997), nine
SOM models were evaluated with twelve
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in Kruger National Park increased soil car­

bon levels by 800 g m-1 and increased live

wood carbon by 500 g m~1. The CENTURY

soil organic matter model (Parton el al..

1988, 1994; Metherell et al.. 1993. 1995)

can simulate the impact of management

practices on the soil carbon levels and stor­

age of carbon in the woody biomass. The

CENTURY model simulates the carbon

and nutrient dynamics of both trees and

grasses and the cycling ofsoil nutrients and

organic matter. The model has been tested

extensively for grassland systems in Africa

(Parton et aJ.. 1993) and is currently being

tested using observed wood growth. grass

plant production and soil carbon and nitro­

gen data from savanna systems in Africa

and Australia (Beale. 1973, Jones el al..

1990, Dye and Spear, 1982 and Scholes.

1987). Comparison of the model dynamics

with observed data shows that the model

correctly predicts the growth of wood bio­

mass, the impact of fire on soil and wood

carbon levels and the influence of wood

biomass on grassland plant growth. Recent

CENTURY model results from a Senegal

Carbon Sequestration workshop (Woomer

el al.. 2001) show that one of the most

promising ways to increase carbon storage

in the Sahel region is to re-establish natural

savanna systems on degraded cropland.

Information Needs for Predicting

Potential Soil Carbon Sequestration

The DSSAT~ENTURY and CENTURY

biophysical models operate at a land man­

agement unit or field scale. They simulate

crop productivity and changes in soil car­

bon over many years for individual land

management units in which management

practices are knO\l\o'n or assumed. In a for­

ward-looking approach to estimate soil car­

bon sequestration, the models are used to

simulate each land management unit using

historical weather data over a number of

years. This approach. demonstrated in the

next section. assumes that future weather

conditions will be statistically the same as

those in the past. These estimates could also

be made using other furure weather condi­

tions. such as those produced for climate

change scenarios. In order to make these

forward-looking estimates. a minimum set

of information is needed. Input require­

ments for the DSSAT models are well

defined for each land management unit at

which predictions are to be made (Jones.

1984: Hunt and Boote. 1998). These same

inputs. summarized in Table I. are also nec­

essary for backward-looking simulations

performed for calibrating and c\aluating

the models for local soil and cropping sys­

tem situations and for obtaining area-wide

estimates of soil C sequestration. However.

additional inputs are necessary for these

later uses; they will be described in later

sections. Weather. soil and management

characteristics described briefly below are

the absolute minimum requirements for

using the biophysical models to simulate

soil C sequestration potential of different

land management options for selected land

management units in a carbon contract area.

WftIIhu 1JtIt& Daily weather data required

are maximum and minimwn temperatures,

rainfall, and solar radiation. For estimating

soi I caIbon sequestration potential, histori­

cal daily data are needed for a number of

years (i.e.• 20 or more) to provide an assess­

ment of climate and its variability for the

locations under consideration. Using these

data in the model will allow one to evaluate

the annual variability in crop production and

carbon sequestration as well as to assess

uncertainty due to weather panems O\'er dif­

ferent periods of time (i.e.. 5. 10 or ~o

years). In most countries. historical rainfall

and temperature data are 3,'ailable for this
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parameters from data
measured in the past is not
possible. For those cases,
the use of soil texture
information to parameter­
ize the water-retention
estimation method is rec­
ommended. Information is
also needed on initial soil
water, C, and N conditions
of the soil in the land man­
agement unit where pre­
dictions are to be made.
Geostatistical methods
will be essential for pro-
viding inputs to models at
the land management unit

for such uses (see chapter by Yost et al.).

Land Management For estimating potential
soil carbon sequestration, descriptions of the
main farming systems in use in the region, as
well as optional systems aimed at maintain­
ing productivity while increasing soil C
sequestration are essential to properly define
the systems to be analyzed with the model.
Crop or fallow rotations should be known
(Table 1). Crop management practices, such
as the cultivars used, the planting window,
planting method (broadcast/in rows/ridge
planting), planting density and depth are all
needed. Also, harvesting and residue man­
agement must be defined for each system.
For example, which part of the crops is har­
vested and removed from the field, which
part is added to the soil as residues (left on
top of the soil or incorporated), and how
much residue is eaten by animals? If fertiliz­
ers are applied, their application dates, appli­
cation method (broadcast/banded, applica­
tion depth), types and amounts need to be
known. For organic residues (crop residues,
manure) a similar set of characteristics is
needed, supplemented by the lignin, and N
concentration of the residue.

Table l. Minimum information required to simulate productivity
and_sCJiI carbon_~eque!!!atiCJ~!or a land mana~':!'1entunit.
Daily Weather Data: Management
Precipitation (mm) Crops grown in Rotation
Temperature Maximum (0C) For each crop:
Temperature Minimum (OC) Cultivar (length of season)
Solar Radiation (MJ m-2d- 1 Planting date or window

Planting method
Soil Data:' Plant density
Texture (each soil horizon) Fertilizer (kg ha-1 N, P, K)
Initial soil C (each soil horizon) Crop residue management
Initial inorganic nutrients (kg ha- I N) Tillage
Slope Har:ve~__ __ _ _
IThe models require much more soil infonnation as direct inputs (Jones and Ritchie.
1990; Gijsman el aI., 2002). However, the lisl in this table are the absolute minimum
infonnation required for estimating the additional inputs for simulations, such as soil
water holding limits (lower limit, drained upper limit. and saturation), bulk density, pH.
albedo, soil water evaporation, drainage and runoff parameters. Published relationships
are used to estimate more detailed inputs if necessary_

use, although solar radiation data are rarely
available in less-developed countries.
Methods have been developed to approxi­
mate daily solar radiation from hours of
sunshine, which is sometimes available, or
from latitude, altitude and daily values of
rainfall and maximum and minimum tem­
perature (Donatelli and MarIetta, 1994).

Soil Data. Soil data inputs to the models
are basic profile characteristics for the
surface, such as color and slope, and for
each soil layer, such as texture, water
holding characteristics (wilting point,
field capacity, saturation), SOM content
and its N concentrations, bulk density and
pH. For predicting potential soil carbon
sequestration, at minimum, soil texture
information is needed for a land manage­
ment unit (Table I), so that the required
soil properties can be estimated using
pedotransfer functions (e.g., Pachepsky et
al., 1999;Saxtonetal., 1986; Rawlsetal.,
1982). However, these estimates will
introduce uncertainty in the simulations
(Gijsman et al., in press) and should be
used only if field samples cannot be taken
for evaluating the model or if estimating
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SENSITIVITY OF SOIL
CARBON SEQUESTRATION

TO CLIMATE, SOIL AND
MANAGEMENT FACTORS

Simulations were done to illustrate the

importance of various factors and their

interactions on the amount of carbon

retained in the soil as soil organic matter

(SOM). Factors that affect the SOM level

include soil type. climate. cropping system.

residue management and soil disturbance

(tillage). The results presented here are

from a provisional series of calculations.

The predictive models must be calibrated

for local conditions and used with field

observations in projects for measuring and

assessing soil carbon sequestration.

Metbods and ProcedUrei

For the climate data. existing long-term

measured data sets were used. combined

with "generated" daily weather data that

were based on the limited set of measured

data. The data were taken from a relative­

ly dry area. low-rainjiJlJ. {Maradi. Niger.

616 mm) and a somewhat welter medium­

rainfall site (Samaro, Nigeria. 989

mmlyr). All simulations were done for a

25-year period.

The soil types were I) a 97-cm deep

Chromi-Epifernc Luvisol from Nigeria.

which varied in texture across the vertical

profile from 40 to 60 percent sand and in

SOM content. from 0.30 to 0.0 I percent

and 2) an unclassified sandy soil from

Zambia of 167 em deep. with about 90 per­

cent sand across the entire profile and a

SOM content declining from 0.84 percent

in the topsoil to 0.09 percent at depth. To

get a sufficiently wide range of soil-weath­

er combinations for the analysis, the

Nigeria and Niger weather were combined

with both soil types. Although the combi­

nation of these soil and weather conditions

do not represent a real location. it is likely

that a similar combination of soil and

weather conditions can be found at se\,ernl

locations in Africa.

For the medium-rainfall site. two crops

were grown in the wet season. followed by

bare fallow during the remaining pan ofthe

year. For the low-rainfall site. only one crop

could be grown per season. By default

(unless indicated otherwise) the soil type

was the Nigerian Luvisol. "The following

simulation treatments were applied.

For the MedilUlf-rtlinflllJ HNth~r:

I. Bare soil fallow. In this case. no \"egeta­

tion was allowed to grow. This treatment

is needed to determine the baseline

decomposition of SOM in a soil \.\ith no

new C additions.
2. A rotation of bean-bean·bare fallow

each Year. in which the beans are har­

vested and the h3f\,est residues returned

to the soil (not plowed in). The bean

crop fixes nitrogen if N is limiting (no

fertilizer was added). This would be

similar to growing cowpea for grain.

3. As No.2. but with the harvest residues

removed from the field. as is common in

Africa. This would be similar to grow­

ing cowpea for grain and fodder.

4. As No.2. but with the complete bean

crop returned to the soil as a grttn

manure.
S. Permanent pasture Brachioria den,m­

hens. with 10. 25. 50 or 100 kg N per

hectare per year.
6. The same as No. I through 4. but with

the soil from Zambia.

7. The same as ~o. I through 4. with the

Nigerian soil. but with its texture

replaced by either 10°0 sand 50" 0
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Figure 4. Time pattern of SOM for the legume crop treatments 1-4 of the medium-rainfall weather
from Nigeria with the default soil (Luvisol). 111 bare fallow; 121 Complete shoot harvested; 131 Only
beans harvested; 141 Bean crop as green manure.

clay/40% silt, or 95% sand/5% clay/O%
silt across the whole profile. The water­
retention data (wilting point, field
capacity, saturation) belonging to these
textures were calculated using the
method of Saxton et al. (I 986).

For the Low-rainfall Weather:
8. The same as No. I through 4, but with a

bean-bare fallow rotation each year
instead ofa rotation with two bean crops
per year.

9. The same as No.5.

Effects of Soil Properties

The default soil (Luvisol) with the medi­
um-rain regime showed a decline in SOM
from 16.5 to 10.3 tonnes[C]lha if it were
maintained under bare fallow for 25 years
(Figure 4). Cropping the field with a bean­
bean-bare fallow rotation resulted in an
increase of the SOM level to 21.5
tonnes[C]lha, if only the bean grains were
harvested and the harvest residues were
returned to the soil. The harvest residues
plus the roots were enough to result in an

increased SOM level. A greater increase
may be expected with crops, such as maize,
that leave larger amounts of residues.

If the complete shoot of the bean was
removed from the field (no crop residues
were returned to the soil besides roots and
shoot parts that senesced during the sea­
son), the soil C was near a steady state
level; it dropped by only 0.6 tonnes[C]/ha
over the 25 year time period (Table 2;
Figure 4). At the other extreme, if the
complete shoot was left in the field
(including the grain)-thus with the bean
crop as a green manure-the SOM
increase was considerably larger (to 27.4
tons[C]/ha). Though a common bean may
not be used as a green manure, other
legumes are widely used to enhance soil­
fertility (e.g., Mucuna pruriens in Central
America and parts of Africa). In the
beans-as-green-manure case presented
here, organic N increased by about 450
kg[N]/ha (1582 to 2030 kg[N]lha), which
is a 30 percent increase in this soil's fertil­
ity factor.
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Figure 5. Time pattern of SOM for the legume treatments 1-4 of the medium-rainfall (Nigerian)
weather with the deep sandy soil (about 90% sand across the profile) from Zambia. Treatments are:
[11 bare fallow; [21 Complete shoot harvested; [310nly beans harvested; [41 Bean crop as green
manure.

Using the deep sandy soil from Zambia
with the same weather resulted in a decline
of SaM in all treatments (Figure 5).
Several factors are involved in why this
may be so different, though not all favor a
stronger SaM decline in the sandy soil:

1. The initial SOM level was higher
(0.84% vs. 0.30% in the topsoil) and
may have been recently taken out of for­
est. If so, its SaM may have been above
the steady state level for this soil
type/management system combination.

2. This soil is much deeper (167 em) than
the Luvisol (97 em), hut the root input is
mainly in the topsoil; SaM at depth will
decompose, but probably at a lower rate
than in the topsoil and with little
replacement by new material.

3. On the other hand, the sandy soil is
much drier, particularly in the topsoil,
which favors a slowing down of the
SOM decomposition.

4. SOM decomposition is generally slower
in a clayey soil, because clay offers
organic particles protection from
decomposer microbes. This deep sandy

soil is very low in clay and silt, and
SOM decomposition is thus expected to
go relatively fast.

To gain insight on which factors may have
been most important, we used the Zambian
deep sandy soil, but changed its texture
and related water-retention parameters to
60% clay and 10% sand. Of course this
results in an artificial soil, but it illustrates
the importance of different factors. In this
'artificial' soil, factors 1 and 2 were unaf­
fected compared to the original deep sand;
thus, differences in SOM level would
relate to factors 3 and 4. Table 2 shows the
results of these simulations. One notices
that decreasing the sand fraction and
increasing the clay fraction leads to a
greater conservation of SOM in all treat­
ments. The fact, though, that there still was
no build-up of SaM in any of the treat­
ments shows that initial SOM level (factor
1) and deep soil (factor 2) are important in
determining whether soil C will increase
or decrease if all other factors are constant.
The SOM level per soil layer (data not
shown) suggests that both factors 1 and 2
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contributed to decreases in soil C under all
combinations tested. Whereas the 0-5-cm
layer, which is affected by the surface­
deposited shoot. increased in SOM from
6.7 to 7.1 tonnes[C]/ha in the beans-as­
green manure treatment. the remaining
layers together decreased from 30.4 to
22.2 tonnes[C]/ha.

Climate Effect Simulations

A comparison of the SOM level after 25
years of medium-rainfall weather (Figure
4) with that after an equal period of low­
rainfall weather (Figure 6) also shows a
clear difference. The drier weather resulted
in a smaller build-up of SOM in the grain­
only harvests and beans-as-green manure
treatments. This is easily understood
because in the low-rainfall weather. the
production of dry matter by a bean crop in
the grain-only harvested treatment was
about half of what it was in the medium­
rainfall regime. Since the medium-rainfall
regime can have two crops per season. the
annual dry matter production differs con­
siderably between the t\l,'O rainfall

regimes: 2.9 vs. 6.6 kg[DM]fba for the
low-rainfall versus the medium-rainfall
weather.

With the low-rainfall weather. the SOM
decrease under bare fallow was similar to
that under medium-rainfall conditions
(respectively. 6.3 \'s. 6.2 tonnes[C]ha)
(Table 2). This is remarkable. as one would
expect that SOM decomposition rate to be
lower under dry conditions. However. with
the imposed bare soil condition. soil mois­
ture is conserved in both soils in the model
because there was no water loss by a crop.
resulting in fa"orable conditions for SOM
decomposition most of the year in both
rainfall types.

Crop Management

Figure 4 suggests that it makes a big differ­
ence when part of the crop is hanested. A
slight decrease (O.6-tonnes[C]ha) in SOM
occurred if the complete shoot was har\est­
ed. a 5-tonnes[C]ha increase if only the
grains were harvested. and an almost 11­
tonnes[CJiha increase ifall of the bean crop
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Figure 7. Time pattern of SOM for the Brachiaria pasture treatments of (A) the medium-rainfall
weather, and (B) the low-rainfall weather, both with the default soil (Luvisol). Treatments are [51 10
kg[NI/ha; [61 25 kgINI/ha; 171 50 kg[NI/ha; [81100 kg[NI/ha.

were incorporated into the soil as if it were
a green manure (Table 2).

Two primary examples of the many other
possibilities of how crop management may
affect SOM content are fertilization and
irrigation. We show here an example offer­
tilization, a pmctice that is within reach for
many small farmers. The grass Brachiaria
decumbens is a popular species for
improved pastures in the tropics. It origi­
nates from Africa and could potentially be
of interest for building up the SOM level

across the soil profile, as it is a deep-root­
ing grass. Since this grass does not fix
nitrogen (like the bean crops), it has to be
fertilized. This was simulated at four levels:
10, 25, 50 and 100 kg[ N]/(ha.yr). The
highest two fertilization levels resulted in
SOM increases to, respectively, 20.4 and
26.7 tonnes[C]fha for the medium-rainfall
location (Table 2). The 25-kg[N]fha treat­
ment resulted in almost no change in SOM
( a decrease of 1.1 tonnes[C]/ha) and the
lowest N application resulted in a Jarge
decline in SOM (to 12.8 tonnes[C]fha).
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Figure 7 shows simulated changes on soil
carbon over time for these pasture simula­
tions in the two rainfall locations.

The shoot weight for the 10-kg[N]/ba
application treatment peaked at about 4
tOMes[dry matter]!ba for the medium rain­
fall case, but it went down soon after reach­
ing its peak (results not shown). The high­
est N level reached 10.0 tonnes[DM]/ha
and was able to maintain a high shoot mass
for several weeks during each season. A
fine-tuning of the fertilization during the
season when maximum gro\\1h occurs is
likely to result in a higher production and.
possibly. a steeper SOM increase.

UNCERTAINTIES IN
BIOPHYSICAL MODEL

PREDICTIONS

Estimating soil C sequestration for a land
management unit is complicated by many
factors. The use of biophysical models is
necessary. but great care must be taken in
making these estimates and interpreting
results from the analyses. There are a num­
ber of uncertainties associated with this
approach, and procedures must be imple­
mented to help one understand these uncer­
tainties in order to produce reliable and
credible estimates. We first give an
overview ofsources ofuncertainty and then
suggest procedures for combining measure­
ments with biophysical model simulations
to make reliable predictions of soil C
sequestration.

Uncertainties in Inputs

The above example simulations illustrate
the large effects of soil properties, initial
SOM. weather and management factors in
the soil C balance. Thus. it should be clear

that uncertainties in the input data repre­
senting these factors would lead to uncer­
tainties in predictions of soil C sequestra­
tion. This implies that measurements are
needed to provide accurate inputs of these
factors so that accurate predictions ofsoil C
sequestration can be made for each selected
location. Since these soil. weather and
management inputs Val)' considerabl~:o~er

space and time. measurement of these
inputs for each land management unit in an
area is not possible. The use of tile so-called
pedolransfer functions (Gijsman el a/.. ill
press) to estimate soil inputs from texture
information introduces uncertainties. as do
assumptions about uniformity of rainfall in
an area. Historical weather data and soil
properties measured in the past can be used
for estimating potential soil C sequestra­
tion. but initial soil carbon measurements
are needed to establish baseline le,-els.
Uncertainty also exists in management.
since decisions are made by individual
farmers. For example. uncertainties in how
much crop residue is put back into the soil
will lead to large variations in soil C
sequestration estimates. Therefore. uncer­
tainties in estimates depend on uncertain­
ties in soil properties over space as well as
uncertainties in future weather conditions
and land management.

Uncertainties in Models

There are also uncertainties due to the
imperfect models that are used in the pre­
dictions. For example. increasing soil C
requires that crop residues be returned to
the soil. Uncertainties in predicting crop
biomass cause uncertainties in fresh organ­
ic matter input to the soil and thus in soil C
sequestration. In addition. the soil models
have empirical relationships that modify
the rates of mineralization of SOM under
different temperatures. soil water condi-
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tions, and soil texture. Inherent uncertain­
ty is present in each of these relationships,
which may lead to variations in accuracy
depending on environmental conditions.

There are also simplifications for repre­
senting SOM in the models. For example,
SaM is often divided into several fractions
of different decomposability. The most­
easily-decomposable is generally a micro­
bial fraction, followed by a fraction of
intermediate decomposability, and lastly a
recalcitrant fraction. In reality, there is a
continuum of fractions, but the three-pool
concept is widely used (e.g., the CENTU­
RY model; Parton et af., 1988, 1994). An
important question is how to distribute the
SaM over the three pools. The microbial
pool is very small (only a few percent of
the total SaM), while the intermediate
pool and recalcitrant pool together make
up the large majority. It makes a big differ­
ence, though, in how these pools are set up
at initialization of the simulations. It is
likely that in a highly degraded soil in a
warm climate, much of the intermediate
pool has been decomposed and most SaM
would thus be recalcitrant. In the simula­
tion results shown, the SOM pool fractions
were assumed to be 0.02: 0.54: 0.44 for
microbial: intermediate: recalcitrant pools.
To illustrate the effect of this uncertainty
on predictions, we also initialized the
SaM with a higher fraction of recalcitrant
SaM (i.e., 0.64 or 0.74); the microbial
fractions stayed the same (0.02). Increases
in soil Cover 25 years in the only-beans­
harvested treatment changed from 1212
kg[C]lha for the 0.44 recalcitrant fraction
to 3269 and 4299 kg[C]lha for the 0.64 and
0.74 recalcitrant fractions, respectively,
because less of the original SaM decom­
posed.

Dealing with Uncertainties: Combining
Measurements with Predictions

Uncertainties will always exist in any pro­
cedures for monitoring and predicting soil
C sequestration. The best way to deal with
these uncertainties is to combine measure­
ments with models, taking advantage of the
strengths ofeach. There are two steps in our
recommended procedures: 1) calibrating
the biophysical models to simulate data
already collected from on-station experi­
ments and on-farm trials, and 2) feedback
adjustment of model parameters using data
monitored during the course of a C seques­
tration project. These adjustments would be
done initially so that potential predictions
are realistic and credible, and done during
the contract to verify that estimates of soil
carbon are reliable. The quality of the veri­
fication process will be enhanced by inte­
grating direct measurements of soil carbon
at selected sites with model predictions,
which use weather, soil properties and
management information in this comple­
mentary approach.

Adapt Models to Soil, Climate, Crops and
Management of the Area. Existing data
from experiments on research stations and
from on-farm trials should be assembled
and used to adapt the biophysical models
for soil, weather, crop and management sys­
tems that are to be considered in the soil C
sequestration project. The minimum weath­
er, soil and management information must
be available for each of these experiments
(Table 1. AIso, measurements of crop pro­
ductivity and season length are necessary
for calibrating the models for local uses. For
calibrating model parameters, measure­
ments of crop growth and yield are needed
for traditional as well as target production
systems. At minimum, data are needed on
grain yield, above ground biomass and crop
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maturity. Ideally. one would have access to
some experiments in which detailed soil
measurements were made and in which in­
season samples of biomass are available.
Because of the differences that exist

between on-station and on-fann manage­
ment and levels of productivity. data from
both are needed to make sure that predic­
tions of biomass and yield represent on­
farm levels. Protocols for in-field sampling
are provided in the DSSAT documentation
(Tsuji el al.. 1994). Procedures for calibrat­
ing models using data from on-station
research plots are described by Boote el al.
(2001). from on-station yield trials in a
region by Mavromatis el al. (200 I). from
on-farm trials by Welch el al. (2002). and
from county records of farmer yields
(Jagtap and Jones, 2(02). These procedures
adjust soil and crop parameters so that the
models predict biomass. grain yield and
crop development (flowering and maturity
dates) across all trials with minimum root
mean square errors between simulated and
observed. Parameters adjusted usually
include genetic coefficients for the crop and
soil parameters (soil water holding limits.
root depth. runoff characteristics and soil
fertility factor). Our recent experience has
demonstrated good accuracy when more
than 15 field-year combinations are used
(Mavromatis el al.. 2002).

long-term experiments in which changes
in soil C vs. time were measured should be
used to evaluate the ability of the biophysi­
cal models to simulate soil C accurately for
climate. soil and management systems in
the region of study. These data may be use­
ful for adjusting parameters in the soil C
module to achieve greater accuracy.

Feedback Adjustment of Model
Predictions over 1i1lU!. During the course
ofa carbon contract one must have reliable

estimates of soil carbon changes for what­
ever weather and land management prac­
tices occurred up to any point in time.
Reliable estimates can best be obtained by
combining information on land manage­

ment practices and weather with measure­
ments of biomass production and soil car­
bon at selected land management units in
the contract area Direct measurements of
soil carbon at sample sites and geostatisti­
cal procedures can be used to obtain esti­
mates of total soil carbon sequestration for
selected land management units (see chap­
ter by Yost et al.). The biophysical models.
calibrated to local climate. soil and man­
agement systems. can estimate soil carbon
sequestration at the same sites where direct
measurements are made. Model predictions
will provide a consistency check for meas­
urements and thus help ensure that quality
measurements are being made. Measure­
ment procedures may be impro\'ed over
time through this process.

A number of fields (e.g.. 30-40) should be
selected in a contract area for monitoring
management. productivit)' and soil C
changes over time. Soil. rainfall and man­
agement data from these fields would be
used as model inputs to models. An evalua­
tion of model predictions of biomass.. grain
yield and soil C changes would be used first
to estimate errors of prediction. and then to

adjust parameters in the models to reduce
prediction errors. Adjustments o\'er time
may be essential. as the models may not
accurately predict dry matter production or
soil organic matter transformations for the
conditions in the contract area. Direct
measurements of dry matter producti\'il)c'
and soil carbon at selected sites can be used
in a feedback loop 10 fine tune crop and soil
model parameters in order to reduce errors
of prediction. Improved predictions. \er1­
tied at measurement sites. can then be used
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for new forward-looking predictions for the
selected land management units. New pre­
dictions of soil carbon changes over the
remaining term of the contract will thus
also be improved. Such feedback adjust­
ments to biophysical models have been
shown to greatly improve predictions in a
number of studies (Swaney et al., 1986;
Hansen and Jones, 2000; Jagtap and Jones,
2001; Paz et al., 1998; Irmak et al., 2001).

It is this combination of direct measure­
ments and model predictions that will pro­
vide the greatest confidence in verifying
soil carbon sequestration. Neither direct
sampling of soil carbon at selected sites
(which has its own uncertainties and prob­
lems, see chapter by Yost et al.) nor model
predictions alone (based on observed prac­
tices, weather and soil inputs) are adequate
by themselves. However, the combination
ofthe measurements and model predictions,
using site measurements, remote sensing
and spatial statistics for model inputs, pro­
vide the necessary quality control, consis­
tency checks, and feedback adjustments
needed for successfully verifying soil car­
bon sequestration relative to target levels.

SCALING UP PREDICTIONS
OVER SPACE

Crop-soil biophysical models predict bio­
mass production, yield and soil carbon
changes over time for a uniform land man­
agement unit, subjected to specific weather,
soil and management practices. Soil carbon
sequestration predictions are needed for
large areas under contract. Applications of
crop models at scales greater than a homo­
geneous plot require spatial aggregation.
Aggregation error, model imperfections and
limitations of data quality and coverage
complicate the task of obtaining good pre-

dictions of spatially-aggregated crop and
soil responses. Hansen and Jones (2000)
presented two different approaches for scal­
ing up crop model results for providing
aggregated predictions over space. The
most rigorous, referred to as geographic
space integration, is to characterize the spa­
tial distribution of all model inputs, then
simulate over each small increment ofspace
and sum up or average the results. This
approach may work well for areas where
intense sampling is done in a geo-refer­
enced way, such as in precision agriculture.
This approach, however, is not practical for
large areas because it would require soil,
weather and management information for
perhaps thousands of land units. A second
approach described by Hansen and Jones
(2000) was to incorporate heterogeneity of
inputs using the relative frequencies of
combinations of soils, management systems
and weather. For example, one can obtain
detailed information on management prac­
tices for each land management unit and,
through the use of remote sensing, identify
similar land management units using super­
vised classification procedures (e.g., Barnes
and Baker, 2000; Seidl et al., 2000; Jones
and B'ames, 2000).

Scaling up is needed to estimate potential
soil C sequestration (i.e., before a contract is
made) and to estimate area-wide amounts of
C sequestered by soil during a contract peri­
od. Before the contract, predictions of
potential soil C sequestration can be made
for a number of land management units.
Aggregate estimates can be obtained by
determining the area of each land manage­
ment unit and multiplying it by the soil C
estimates for each unit. Similarly, during a
contract, area-wide estimates will be needed
annually. The problem becomes one of
identifYing land management units and the
area ofeach in the contract area. We propose
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the use of remote sensing to identify land
management units based on crops. tillage
systems. topography and productivity lev­
els. A number of these land management
units will be selected for monitoring over
time (i.e., about 8-10 of each type of 4 or 5
land management units to be considered in
the contract program). Data from these loca­
tions will be used for comparison with
model estimates of productivity and soil C
changes. and possibly for feedback adjust­
ments to the models (see above. "Feedback
Adjustments of Model Predictions over
Time"). It may not be practical to monitor
each combination of land management unit
identified. but the locations selected for
sampling should represent the range ofvari­
ability that exists in the area. Scaling up pre­
dictions of soil C sequestration will be done
by estimating soil C for each of the land
management units and multiplying that esti­
mate by the area identified for each via
remote sensing. Estimates of soil C seques­
tration for each land management unit will
include variations in management practices
based on variations observed in the selected
locations by running the models for each
management combination within the
observed variability.

BIOPHYSICAL MODELS IN
OVERALL INTEGRATED

APPROACH

For biophysical models. such as DSSAT­
CENTURY. there are two major uses in
assessing and monitoring soil carbon
sequestration. The first use is in determin­
ing whether an area and candidate manage­
ment systems have sufficient potential for
sequestering soil C. and the second use is
for integration with direct measurements
for computing soil C sequestration in an
active program. The sampling. input data

and modeling procedures to meet each of
these needs differ. as noted in the summary
below.

Predicting Potential Soil Carbon
Sequestration for an Area

I. Initial survey to identify candidate areas
and management systems for soi I C
sequestration. Identify land manage­
ment units using remote sensing and
surveys.

2. Select subset of selected land manage­
ment units for sampling and monitoring
(e.g.. 30-50). Measure baseline soil car­
bon for the fields under consideration.
Procedures include stratified sampling
and the use ofgeostatistics to interpolate
soil carbon le\"els for all land manage­
ment units of interesL (See chapler by
Yost el a/.)

3. Collect information on crop productivi­
ty. soils. weather. fanning practices and
socio-economic conditions for the area
under consideration. Identify candidate
land management systems for soil C
sequestration.

4. Estimate the biophysical potential for
soil carbon sequestration for each soil
type and weather conditions in the
selected area. The biophysical potential
soil carbon sequestration level is based
on soi I properties. weather. and current
soil carbon levels as well as the growth
and yield ofcandidate cropping systems.
For this step. the DSSAT-CENTURY
crop-soil models are used to simulate
rainfed crop biomass and grain produc­
tion for a period of 20 to 50 years. TIle
CENTURY soil organic matter model
will be used for simulating natural sys­
tems. if they are to be considered in a C
contract.

5. Scale up estimates using the remote
sensing classification of existing land
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management units. Assumptions will be
necessary for levels of adoption and
compliance with agreed-upon practices.
Maps and summary statistics are pre­
pared to provide upper limit estimates of
soil carbon sequestration without con~

sidering socioeconomic limitations or
actual land management. The potential
for soil carbon sequestration is then
computed by subtracting from these pro­
jected levels of soil carbon the simulat­
ed estimates of soiI carbon over the 20 to
50 years, assuming that current practices
are continued.

6. Estimate economic potential for soil car­
bon sequestration under most-likely,
optimistic and pessimistic scenarios of
biophysical and economic conditions.
Key economic parameters include the
prospective price of carbon, and prices
for principal crops and inputs used in the
baseline and more sustainable systems
(see chapter by Antle for more details).
This procedure integrates models of
land use and management decisions of
the farmers (considering their capabili­
ties and limitations) with DSSAT-CEN­
TURY and CENTURY models and data
on soils, weather and baseline soil-car­
bon levels. This integrated analysis sim­
ulates the potential impacts of farmers
changing land use and crop management
practices in response to economic incen­
tives provided by soil C contracts. The
analysis assesses the impacts of these
changes on the economic well being of
farmers, on the long-term sustainability
of farming systems and the impacts of
these more sustainable systems on soil
carbon. These analyses are done with
different assumptions regarding compli­
ance to produce optimistic, likely and
pessimistic scenarios. Maps are pro­
duced with statistics that summarize soil
carbon sequestration over the selected

area at any selected year. A critical
analysis of assumptions and risks is
made. One should also analyze the pos­
sible increases in soil productivity lev­
els, brought about by increased soil-car­
bon levels, a critical issue relative to
acceptance of practices aimed at
increasing soil carbon levels in low
input agricultural systems.

Procedures for Monitoring and
Verifying Compliance

1. Prepare target soil carbon levels vs. time
for the overall contract area. This step
implicitly assumes that specific land
management practices have been agreed
upon between agricultural community
leaders/farmers and carbon traders.
These practices will be used to estimate
the most likely amounts of soil carbon
sequestration vs. time, using historical
weather data. This analysis will provide
estimates ofuncertainty in the most like­
ly trajectory of soil carbon sequestration
associated with uncertainty in weather.
Since it is essential that any agreements
will allow for changes in production
technology as improvements are made,
these targets will be updated over time
as agreed upon by both parties. This step
requires all of the information collected
previously for assessing potential soil
carbon sequestration, such as initial soil
carbon levels, soil and weather data.

2. Monitor compliance. During some
agreed-upon time interval, compliance
to a contract is determined by monitor­
ing compliance to agreed-upon land use
and land management practices.
Verification of practices is accomplished
by remote sensing combined with visits
to selected sites. Remote sensing will be
used to observe aboveground biomass at
critical periods of time, and images
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taken at other times of the year wi II con­
fmn land preparation and residue man­
agement practices.

3. Measure crop productivity in selected
fields annually (e.g., 8-10 fields for each
land management unit). Verify that pre­
dicted dry matter levels are reached for
the agreed-upon practices. Adjust crop
model parameters if needed to ensure
correct predictions ofdry matter produc­
tion in all calculations.

4. Measure soil carbon. Every two years or
other agreed-upon time interval (see

above). soil carbon is measured in a
selected sample of fields in the area
based on geosparial and biophysical
simulation considerations, stratified
across soils and weather conditions.
These measurements should be carried
out in a manner to provide accurate esti­
mates of soil carbon changes at these
locations over the agreed-upon time
period.

5. Estimate changes in soil carbon for the
measurement sites. using the soil-crop
models, soil. weather and management
data for the sites and time period that
actually occurred. These estimated
changes in soil carbon are compared
with measured changes to determine if
model adjusunents are needed for accu­
rate prediction. Soil model parameters
are adjusted based on feedback informa­
tion on dry matter productivity and
residue remaining on the fields being
monitored.

6. Extrapolate estimates of soil carbon
changes as well as changes in biomass
production and grain yield over the
entire area, using the biophysical models
with adjustments that were necessary for
accurately predicting the land manage­
ment unit responses. This step will
require information on distributions of
land management units from remote

sensing as well as spatial analyses ofsoil
carbon and other propenies (see chapter
by Yost et a'-). Compare these estimates
with target levels: readjust target levels
for future years as needed.

7. Estimate impacts of changes in land
management practices on both subsis­
tence and commercial crop production
and socioeconomic conditions in addi­
tion to soil carbon sequestration.
Summarize results in maps and tables
for farmers. contractors and others.

8. Continue these procedures until the end
of the contract, at which time an o\·erall
assessment will be made for the contrac­
tor. farmers. and go\'emment agencies.

Practical Issues

It is important to recognize that in addition
to these procedures. significant institutional
support (either private or public) will be
needed to implement carbon contracts in
developing countI)' agriculture. Fanners
will require information about the 0pportu­

nity to participate in carbon cont:raet.s. yet
many extension services are inelfecth>c and
local researchers often lack the resources to
work directly with fanners. In addition.
some institutional mechanism will be need­
ed to reduce transaction costs between the
large numbers of small land units that will
be required to produce carbon in quantities
that are commercially tradable. A point of
entry could be through commercial crop
production and the related private extension
agents. scouts or traders that provide infor­
mation and resources to farmers producing
these commercial crops. An additional chal­
lenge in many developing countries is polit­
ical risk and lack of legal institutions to
enforce contracts and property rights. All of
these factors present an enormous challenge
to those who wish to provide opportunities
to poor farmers in de\"eloping countries.
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However, the risks of not investing in more
sustainable agriculture are also enormous
for these farmers and for the global com­
munity.

Methods are needed to help guide those
who wish to make carbon trading available
to developing countries that address the
social, institutional and political issues
related to large-scale carbon trading con­
tracts. In our opinion, this can best be done
by having or developing technology and
methods that clearly have shorHerm bene­
fits to farmers (e.g., by increasing produc­
tion, decreasing risks, increasing quality of
life, reducing hunger, etc.), while seques­
tering soil carbon. This strategy will pro­
vide long-term benefits as well, such as
increased soil fertility and possible reversal
of desertification.
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INTRODUCTION

A meaningful assessment of the potential

for soil carbon sequestration requires the

integration of the technical and economic

information that is needed by two types of

decision makers: those government or

private entities that would like to

sequester soil C to offset green-house gas

emissions (demanders of C emissions

credits or offsets). and farmers who

would take actions to increase soil C
(suppliers of C emissions credits or off­

sets).

Farmers will be willing to enter into

agreements or contracts to sequester soi I

C if they believe the benefits of doing so

justify the costs of the actions that they

must take. To illustrate. suppose either a

government agency or a priyate emity

otTered a farmer SP for each tonne of cac­

bon the fanner could sequester. Suppose

further the fanner knew that ifhe changed

from a crop-fallow rotation to a conti"Ou­

ous-crop rotation. he would earn on aver­

age $L less each year but would sequester

C tonnes of carbon each year. It follows

that to produce these C tonnes of carbon

each yeac. it costs the farmer SL/e per

tonne. Clearly. if PC - L > 0 or equiva­

lently P > LlC. the farmer is better otT in

economic terms by entering into a con­

tract to change practices and thus earn an

additional income of$(PC-L).

This same information is likewise relevant

to the potential buyer of the soil C agree­

ment or contract. If the best alternative way

is to reduce C emissions costs SP per tonn~.

then the buyer wishing to minimize the cost

of the carbon would only offer contracts to

farmers if P > LC. If P < LC. the entity

then would rather buy reductions in emis­

sions from the alternative sources.

BEST ,"VA/LABLE COpy

Thus. potential buyers and sellers of soil

C need both technical information (how

much C can be sequestered) and econom­

ic information (how much e sequestra~

tion costs) integrated to suppon decision­

making. Broader economic. eO\'ironmen­

tal or social consequences of carbon

sequestration activities-such as the

impacts on the long-term sustainabili~-of

agricultural systems. or impacts - on

regional economic development-are

also considered rele~ant to the assessment

of agricultural production systems by

many private and public interests.

Therefore. information about those

impacts also needs to be incorporated into

the analysis of a production system to

support informed decision-making. In
short both private and public decision

makers need the type of information that

is provided by integrated assessment of

agricultural production systems to evalu­

ate soil C sequestration potential.

The first section of this chapter describes

the economic basis for analvsis of the

benefits and costs of sequestering C in

agricultural soils. The next section

describes site-specific economic simula­

tion models that can be linked to the

DSSAT/CENTURY crop models (des­

cribed in the chapter by Jones el 0'- in this

monograph) for integrated assessment of

the potential for agricultural production

systems to sequester carbon in soil. The

third section describes the Tradeoff

Analysis Model software that can be used

to implement an integrated assessment of

agricultural production systems in order

to assess the potential economic and en,-i­

ronmental implications of soil C seques­

tration.
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ECONOMIC ANALYSIS OF
AGRICULTURAL SOIL

CARBON SEQUESTRATION]

The atmosphere is a public good---every­
one benefits from it without having to
"pay" for it. This fact means th.at pr~vate
individuals and finns, and even mdividual
countries, have little incentive to take
actions to prevent the accumulation of
greenhouse gases (GHGs) in th~ a~~os­
phere. Therefore, the demand for mdivIdu­
als to reduce emissions must derive prima­
rily from collective action, i.e.,.fr~m gov­
ernment policies aiming to hmit GHG
emissions. One policy mechanism to
reduce GHG emissions is direct govern­
ment intervention. Several examples of
government policies exist which are
designed to reduce environmental imp~cts
ofhuman activity through direct regulatIOn.
Many governments have tried, and largely
failed, to mandate adoption of soil and
other conservation practices in agriculture,
whereas policies based on economic incen­
tives have achieved considerable success.
In the United States, for example, the
Conservation Reserve Program provides
payments to farmers who take actions th~t
reduce soil erosion. In a similar way, polI­
cies could be designed to sequester soil car­
bon. Indeed, the U.S. Congress and other
governments around the world are consid­
ering a number of such proposals.

An alternative mechanism to reduce pollu­
tion is for governments to limit emissions
through a tradable emissions allowance
system. Under a carbon cap and trade sys­
tem, firms would be allocated the rights to
emit GHGs in the form of emissions
allowances, and these allowances could be

IThis section is based on Antle and McCarl (200 I).

traded. This system provides an incentive
for finns that emit a relatively high rate of
cO2 per dollar of output to sell their emis­
sions allowances to finns that emit a rela­
tively low rate of CO2 per doll.ar of ou~ut.
Thus, because it creates incentIves for mef­
ficient firms (ones that emit a high rate of
cO2 unit of output) to reduce production
and for efficient FInns (ones that emit a low
rate of CO2 per unit of output) to increase
production, the emissions allowance mar­
ket provides an efficient mechanism to
meet a given total emissions target. Another
way for emitting firms to obtain emissions
allowances or offsets would be for them to
enter into agreements with landowners to
manage their land as carbon sinks. These
contracts would guarantee that landowners
would sequester a specified quantity of car­
bon in soils or in biomass such as trees over
a specified period of time.

Even without government policies to limit
GHG emissions, private entities also may
be motivated to take individual or collec­
tive actions to mitigate GHG emissions.
Interest groups might organize concerned
individuals to raise funds to purchase car­
bon credits or to enter directly into con­
tracts with individuals or groups to
sequester carbon. Business firms wanting
to demonstrate environmental concern also
may be motivated to buy carbon, whether
or not their emissions are constrained by
government policy. Further, ?usin~s~ fir.ms
might buy carbon contracts III antIcipatIOn
of emissions standards or to preempt the
possibility of emission standards being
imposed. This type of behavior may
explain why there have already been some
C sequestration agreements even though
most countries do not have policies regulat­
ing GHG emissions (CAST, 2000).
However, it would be surprising to see
large-scale investment in carbon sinks
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without a government policy requiring
finns to limit emissions.

from an economic perspective, soil Cp~
vides value in three dimensions: first. as an
essential component of soil that affects
agricultural productivity; second. as a way
to offset cO2 emissions from other sources:
and third. as an indirect source of benefits
involving improved environmental quality.
Research shows that many fanners do not
manage their soils so as to maximize its
productivity. Using economic principles.
we can explain why farmers are also not
likely to manage soils to maximize the pub­
lic benefits of increasing soil C levels.

The first component of soil C value is the
private benefit to the fanner in the fonn of
increased agricultural productivity (see the
chapter by Jones et al. for a discussion of
these agronomic benefits). An economical­
ly-rational fanner who understands the pro-­
ductive value of soil C can be expected to
make management decisions that optimize
the value of the soil C stock in economic
tenns. Yet it is evident that many fanners­
particularly fanners in developing coun­
tries who lack an understanding of basic
agronomy and soil science---do not under­
stand the role of soil C in production. and
lack the tools to measure it and manage it.
The result is that fanners often use prac­
tices that deplete soil organic matter and
result in a level ofsoil C that is sub-optimal
for sustaining agricultural productivity and
maximizing economic returns over time.
Even when fanners in developing countries
do understand the adverse effects of their
management decisions on soil C. they often
lack the resources and incentives needed to
implement better practices.

The second dimension of soil C-the miti­
gation ofGHG emissions-involves a ben-

efit that is external to the farmer's 0"'"11

economic well-being. Therefore. we cannot
ex.pect fanners to optimally manage soil C
to mitigate GHGs unless some mechanism
exists to provide fanners with appropriate
incentives to do so. Likewise. fanners can-

not be expected to manage their S()ils to
maximize other environmental benefits that
accrue off-fann. Again. an incentive mech­
anism is needed to induce fanners to take
account of the value ofem·ironmental qual­
ity improvement in their decision-making_

To analyze soil C from an economic per­
spective. we shall assume as a first-order
approximation that agricultural producers
are economically rational and thus utilize
those land and management practices that
they believe yield the highest economic
returns. slIbjecTto The limiTaTions creOled by
the ami/able Technology and farmers'
knmdedge of efJiden! soil managemenl
pracTices. The analysis can be generalized
in a straightforward manner to account for
non-economic objectives. Experience
shows. hO\l.'ever. that maximization of eco­
nomic returns provides a good approxima­
tion to behavior in most cases (an imponant
exception may be when farmers are pr0­

ducing solely for their own subsistence).
Thus. economically rnotiuted producers
are likely to adopt alternative practices that
increase soil C when there is a pen:ei~ed

economic incenti"e to do so. If indeOO
farmers are under-investing in the stock of
soil C from either a private or public per­
spective, then a policy that provides addi­
tional incentive to increase the stock ofsoil
C should move them towards a more effi­
cient resource allocation.

Incenti"es and Contract Design

Fanners could be provided economic
incentives to sequester C in soil through
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direct government payments or through
incentives provided by private markets.
Direct government programs would include
efforts such as the Conservation Reserve
Program in the United States and various
other government conservation programs
throughout the world where government
provides farmers incentives to change man­
agement practices. Alternatively, private
markets could arise if the government
imposes GHG emissions standards on
industry and permits trading of emission
credits (however, see the discussion below
about the viability of emissions markets in
developing countries). In the latter case,
industry could buy emissions credits from
farmers. In either case, contracts between
firms emitting GHGs (buyers of emissions
credits) and the farmers (sellers of emis­
sions credits) would specify the payment
mechanism and other terms for a govern­
ment program or for sales in a market for
carbon credits.

Two classes of costs exist that are associat­
ed with implementing contracts for the pro­
vision of an environmental amenity
through changes in agricultural practices:
farm opportunity costs and contract costs.
The first is the opportunity cost of
resources expended on the farm to produce
the amenity, including the returns forgone
from more profitable activities. The second
is the costs associated with negotiating and
implementing contracts and involves bro­
kerage fees and monitoring compliance
with the terms of the contract (in terms of
changing practices or carbon accumula­
tion), and any other transaction costs.
Below we discuss how these costs can be
measured and incorporated into analysis of
soil C sequestration potential.

Contracts for soil C could be designed in
several ways. Aper~hectare payment mech-

anism would give producers a fixed pay­
ment per hectare of land switched from a
cropping system with a relatively low equi­
librium level of soil C to a system that pro­
duces a higher equilibrium level of soil C,
similar to existing conservation programs
such as the Conservation Reserve Program
(below we discuss whether this is an effi­
cient way to design contracts). Per-hectare
contracts would specify management prac­
tices that the farmer agrees to follow, and
the farmer would receive this payment
regardless of the amount of C that is
sequestered on the contracted land unit as
long as the specified practices are followed.
A per-tonne payment mechanism would
pay farmers for each tonne ofC sequestered
when they change land use or management
practices, so the payments per land area
would vary according to how much C was
sequestered. A per-tonne contract would be
based on the agreed-upon price per tonne of
C, and on an annual carbon rate that would
be established for each agroecozone and
each type of practice. Both types of con­
tract would involve similar conventional
transaction costs for contract negotiation,
legal fees, etc.

Because the per-hectare contract is based
on practices rather than the amount of C
accumulated, this type of contract is most
likely to be used for government programs
where the actual amount of C stored does
not necessarily need to be determined for
government purposes, at least not to a high
degree of accuracy (note that in other con­
servation programs such as the
Conservation Reserve Program, site-specif­
ic measurements of erosion reduction and
other benefits are not a required part of the
program). The per-tonne contract would
require establishing the soil C rates for each
type of contract and monitoring C accumu­
lation to a degree of accuracy specified in
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the contract. These contracts would be more
suitable for the creation of an emissions
credit that was to be a traded asset. Thus, as
long as monitoring practices are less costly
than measuring carbon. per-hectare con­
tracts have the advantage that contract costs
may be lower than per-tonne contacts.
However, per-hectare contracts have the
disadvantage of not targeting incentives to
those land units where soil C can be prcr
duced most efficiently. Therefore, deter­
mining the most suitable type of contract
depends on whether the goal is to create a
tradable asset, and it also involves trading
off the two components of cost.

Designing Contracts for Farmers in
Developing Countries

Recent experience with attempts to create
market economies in former Soviet states
has demonstrated clearly what economists
have long kno\\o'Tl: namely, that markets
function well only when suitable institu­
tions exist. The most fundamental institu­
tions are the rule of law and private proper­
ty rights. Transportation and communica­
tions infrastructure are also critical in order
to reduce transaction costs (transportation
costs, costs of acquiring market informa­
tion) to the level that buyers and sellers can
profitably interact over space and time, as
are financial institutions to lower the cost of
financial transactions and provide financial
capital to facilitate transactions. We know
that the lack of suitable institutions and
infrastructure in developing countries hin­
ders the effective operation of markets for
com"entional agricultural commodities, and
this will also be true for attempts to create
markets for C emissions allowances. The
market for SO, emissions in the United
States~the first such market to exist in the
world-operates with the support of long­
standing legal and financial institutions. In

any country lacking such institutions. it is
unlikely that a market for emissions credits
will be able to operate effectively.

These considerations suggest m'o likely
scenarios for C sequestration programs in
developing countries. 'The first scenario is
for C sequestration to be promoted through
government institutions such as a miniSll)­
ofagriculture. as part ofexisting agricultur­
al research. extension and development
programs. In this case. there would not be
any necessary link to a market for C emis­
sions. either nation or international. A sec­
ond scenario is for C sequestration to oper­
ate through projects that would coordinate
activities with enough farmers to create a
marketable C contract. If a national emis­
sions credit market did not exist. these con­
tracts could be marketed directly to buyers
in other countries. either through individual
negotiations with buyers or through an
international C emissions market.

Farm-Level Decision Making

We now consider the farmer's decision
regarding the participation in a contr3Ct

(either with a government agency or a pri­
vate entity) to sequester C in soil. In order to
increase the stock of C in the soil on a land
unit, the farmer must make a change from
production system; (e.g.• a specified crop
rotation) that had been followed over some
previous period (the historical land-use
baseline), to some alternative system s. As
illustrated in Figure l. we can assume that
utilization of management practice ; up to
time 0 results in a soil C le\'el of C', and
adoption of practice s at time 0 causes the
level to increase to 0 at time T. At rime T,
the soil reaches a new level (that has been
referred to as a stead'r statt' len?! or sarum·
tion point by different researchers) at which
the level of soil C stabilizes until funher
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changes in management occur. The solid
curve represents a possible logistic-shaped
trajectory for soil C, whereas the dashed line
represents the annual average change from
time 0 to T. The data in Watson et at. (2000)
and in the Jones et al. chapter suggest that
these curves may have a nearly linear shape,
so that the linear path is in fact a good
approximation. Note that before time 0, the
soil C level could have been on a positive or
negative trajectory as well.
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Changes in management practices may
involve both fixed costs (e.g., for the con­
struction of a terrace, or acquisition of
new machinery or tools) and variable
costs (terrace maintenance, changes in
input use, etc.). In addition, the farmer
receives a financial payment for participa­
tion in the contract. In the case of a per­
hectare contract, the farmer receives gt
dollars per hectare per period. In the case
of a per-tonne contract, the farmer
receives a payment of $Pt per tonne of C
sequestered each time period, so if the
farmer changes from practice i to practice
s and soil C increases by L1c t(i,s) tonnes
per hectare per period, the farmer receives
a payment of PtL1ctCi,s) per hectare per
period. The net present value (NPV) of
changing from system i to system s for T
periods is given by:

T
(I) NPV(i,s) = r Dt[NR(pt, Wt'~, s) +

t = I
gtCi,s) - MtU,s)] - I(i,s)

where:
• Dt = (1/(1+r))t and r is the interest rate

per unit time
• NR(pt, Wt, ~, s) = net returns for sys­

tem S in period t, given product price
Pt' input prices wt and capital services
~ ($/ha/yr)

• gt(i,s) = gt if a per-hectare contract, or

Figure 1. Time path and saturation point for
soil C in response to a change in land use or
management practices.

PtL1ct(i,s) if a per-tonne contract
($/ha/yr)

• Mt(i,s) = maintenance cost per period
for changing from system i to s
($/ha/yr)

• I(i,s) = fixed cost for changing from
system i to system S ($/ha).

If the farmer does not participate in the
contract and continues producing with sys­
tem i, then gt(i,s) = Mt(i,s) = I(i,s) = 0 and
the farmer earns NPV(i). The farmer enters
the contract if and only if NPV(i,s) >
NPV(i), and does not enter the contract
otherwise.

In the special case where NR(p, w, Z, s), P,
L1c(i,s), and M(i,s) are constant over time,
the above analysis can be simplified signif­
icantly. Let the fixed investment be con­
verted into an equivalent annuity of feU,s)
dollars per period. With these assumptions
the expression NPV(i,s) > NPV(i) is equiv­
alent to NR(p, W, Z, s) + g(i,s) - M(i,s) ­
fc(i,s) > NR(p, w, z, i). Rearranging, this
equation becomes

(2) g(i,s) > NR(p, W, z, i) - NR(p, w, Z, s)
+ M(i,s) + fc(i,s)
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The expression on the right-hand side is the
farm opportunity cost for switching to sys­
tem s from system i. The farmer will switch
practices when the farm opportunity cost is
less than the payment per period. In the case
ofa per-tonne contract g(i.s) = P.1c(i,s) and
therefore the condition for participation in
the contract can be expressed as P > (NR(p.
w. z. i) - NR(p. w. z. s) + M(i.s) +
fc(i.s))/.1c(i.s). The term on the right-hand
side is now the farm opportunity cost per
tonne C. and thus the fanner will participate
when the price per tonne C is greater than
the fann opportunity cost per tonne.

As we shall discuss further below. the con­
tracts are expected to require certain moni­
toring and measurement activities and ass0­

ciated costs. If the farmer is required to pay
these costs. then they can be incorporated
into the terms M(i.s) and I(i.s). These costs
would increase the per-tonne price of car­
bon that farmers would have to receive in
order to be willing to participate in a carbon
contract. Alternatively. if the buyer has to
pay these costs. then they will reduce the
net price the buyer would be willing to pay
to the farmer, in the same way that trans­
portation costs reduce the net farm-gate
price farmers receive for other products
they sell.

Tbe Marginal Cost of Soil C and
Spatial Heterogeneity

Agricultural land is spatially heterogeneous
with respect to physical. climatic and eco­
nomic characteristics. To account for spa­
tial land and climatic heterogeneity, we
introduce a site-specific vector of environ­
mental characteristics ej . for j = I .... J land
units in the region. To account for econom­
ic heterogeneity we index prices and capital
services by land unit. The net returns for
each land unit can be written as NRj =

NR(p,. wr Zj. ej' s) to indicate that returns
vary spatially for system s. The equilibrium
soil C per hectare can be expressed as a
function Cj = C(Xj' ej' Zj. s). where xJ is a
vector of the quantity of inputs used. The
average rate ofC sequestration for a change
from practice i to practice s over T years is

(3) acj(i.s) = [C(Xj' ej' Zj. s) ­
C(Xj' ej' ~. ill'T.

Thus. in a spatially heterogeneous region.
the farm opportunity cost and the carbon
rates both vary across land units. hence the
opportunity cost per tonne of C ~·aries spa­
tially.

At the level of the indi~iduaJ land unit (the
field). farmers make discrete land use deci­
sions involving tillage system choices. land
retirement choices. etc. The marginal cost
curve for soil C can be construCted by
ordering all land units according to their
opportunity cost and then ag",2feg3ting the
quantity of soil C produced at each margin­
al opportunity cost. Antle et al. (100la)
showed that the regional marginal cost
curve is upward sloping because some land
units can produce soil C al a lower margin­
al opportunity cost than other land units.
Figure 2 shows marginal cost cUO'es
derived from recent studies of soil C
sequestration in the Vniled States.

Antle el 01. (200lb) showed that for each
quantity of C sequestered the marginal
opportunity cost of the per-hectare payment
mechanism (MCH) is greater than or equal
to the marginal opportunity cost of the per­
tonne mechanism (MCT). i.e.. MCH 2:: MCr .
with equality holding at the saruration point
where the ma~imum amount of C is being
produced (as illustrated in Figure ~). In
addition. they showed that the efficieocy of
the per-hectare payment mechanism relati~e
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Figure 2. Marginal cost of soil C sequestration under a per
tonne payment scheme for conservation tillage in Iowa and
for crop intensification in Montana (Source: Antle et al.,
2001c).

2,5

amount of soil C that can be
stored in the soil for a given soil,
climate and set of management
practices (Watson et aI., 2000;
West et al., 2000). In addition,
soil research has shown that
sequestered carbon is volatile and
it has been found that if practices
sequestering soil C are discontin­
ued the C stored in the soil can be
released back in to the atmos­
phere in a short period of time.
For example, if a farmer practic­
ing reduced tillage reverts to con­
ventional plowing, the accumulat­
ed soil C may be released over a
few years, and the soil C level can

return to the level before the reduced tillage
was adopted.

One way to address the permanence issue is
to view farmers who enter into soil C con­
tracts as providing a service in the form of
accumulating and storing soil C. During the
time period in which C is being accumulat­
ed, the farmer is providing both accumula­
tion and storage services. Once the soil C
level reaches the saturation point, the
farmer is providing only storage services.
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to the per-tonne mechanism, as measured by
the quantity MCTIMCH, is a decreasing
function of a region's spatial heterogeneity
of economic and environmental conditions.
This result derives from the fact that the
opportunity cost per tonne is equal to the
ratio of the opportunity cost divided by the
C rate. When spatial heterogeneity is high,
farmers with very low C rates can partici­
pate under a per-hectare payment contract,
yielding higher cost for each amount of C
sequestered than with a per-tonne payment
contract. In their analysis of the marginal
cost of soil C sequestration in Montana,
Antle et af. (200Ib) found that a per-hectare
payment scheme is as much as four times
more costly than the per-tonne payment
mechanism. They concluded that there
could be high payoffs to implementing car­
bon contracts that account for spatial vari­
ability in biophysical and economic condi­
tions.
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Figure 3. Marginal cost functions for soil C
contracts that pay farmers per hectare of land
(MCH) and that P3)' farmers per tonne of soil C
sequestered (MCT).

Saturation, Permanence and Contract
Duration

Soil science has established that there is a
steady state level or saturation point for the

()
------------ c

Cs



ASoil Carbon Accollnting and Management Sysfem{or Emissions Trading 79

The key point, however. is that both accu­

mulation and storage sen"ices depend on

the farmer continuing to maintain the land

use or management practices that make the

accumulation possible. This means that if
saturation is reached in Ns years but socie­

ty wants to store the carbon for No > Ns

years., the duration of the contract will have
to be for ND years. Clearly. if society wants

to sequester soil C and this takes Ns = 20

years, but wants this C to remain in the soil

for ND = 50 years. fanners will have to be

paid for 50 years. This implies a much

higher cost than if farmers only have to be

paid during the accumulation period. For

example. a payment of $1 per acre over 20

years has a present value (at 5 percent inter­

est) of about $12.50. v."hereas the present

value of S I for 50 years is about $18.30.

about 50 percent higher.

Another way to approach the permanence

issue in designing contracts is to impose a

penalty for failure to comply with the terms

of the contract. including penalties for sub­

sequent release of the C after the contract

expires. But since this would increase the

cost to the farmer of complying with the

contract and farmers would demand greater

compensation. this contract provision

would also have the effect of raising the

cost of the contract.

Some have referred to soil C as a 'commodi­
ty' that fanners can produce and sel1like c0n­

ventional agricultural commodities (USDA

and others., W1dated). The issues ofsaturation

and permanence show that contracts between

buyers and sellers of emironmental services

are different from contrnets for conventional

agricultural commodities. The buyer never

actually takes delivery of the commodity:

rather the commooity is stored in the soil that

belongs to the landowner. The discussion

above shows it is more accurate to describe

the fanner as providing a service for a speci­
fied period of time.

Other Greenhouse Gases: Global
Warming Potential

Agriculture is both a sink for C as well as a

major emitter of carbon dioxide and two
other potent greenhouse gases. nitrous

oxide and methane (Watson ef 01.• 2000).

Ideally. policies to mitigate GHG emissions

would reward sinks and tax sources accord­

ing to their 100 year globaJ wanning poten­

tial (GWP). wherein methane is estimated

10 be about 21 times more potent than a unit

ofCO,. and nitrous oxide is estimated to be

about 310 times more potent (lPCc. 1996).

Both methane and nitrous oxide are also

likely to be influenced by land use and

other management practices. An efficient

GHG policy would provide fanners with

incentives not only to sequester C but more
generally to reduce the net GWP ofagricul­

ture. To incorporate GWP into the econom­

ic analysis presented above. one simply

replaces the carbon rate with a measure of

GWP. The payment mechanism would pr0­

vide a positive payment for a reduction in

GWP and would impose a ta'<. on an

increase in GWP. While this generalization

is straighfforward in principle. implement­

ing it poses additional measurement~

lems because methods and models to quan­

tify nitrous oxide and methane emissions

are not as well developed as those for car­

bon. Nevenheless. this does appear to be

the direction that policy will 111O\-e as the
needed science and data are developed.

Co-Benefits and Costs

Many soil consen'arion practices and other

management practices that would increase

soil C have not been developed and pr0­

moted to increase soil C per se but rather to
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increase agricultural productivity, reduce
soil erosion and reduce off-farm impacts of
soil erosion on water quality. In the context
of agricultural development, particularly in
regions with predominantly subsistence or
semi-subsistence agriculture, the various
soil management practices that contribute
to C sequestration also will likely have
important impacts on the level and stability
of farm production and food consumption.
These impacts translate into improvements
in health and nutrition of rural households
and ultimately to improvements in rural
economic development. Measuring these
impacts requires analysis that goes beyond
the models of agricultural production con­
sidered in this discussion. For example,
additional data would be needed to charac­
terize the farm and non-farm rural house­
holds, and to analyze market and non-mar­
ket effects of improvements in agricultural
production. Partial or general equilibrium
economic models would be needed to fully
assess rural development impacts in eco­
nomic terms.

However, the integrated assessment frame­
work that will be presented below can
address the on-farm and immediate off­
farm environmental consequences of adop­
tion ofmanagement practices that sequester
soil C, with the caveat that the broader eco­
nomic and rural development impacts will
require the use of additional data and ana­
lytical tools.

Program Eligibility and Perverse
Incentives

A critical issue in designing any policy that
provides subsidies to farmers is determining
which producers are eligible for payments.
A program that pays farmers to increase soil
C on land that has been degraded can be
viewed as penalizing those fanners who had

adopted environmentally beneficial land
use and management practices before the
program began. This issue is particularly
relevant where government or non-govern­
mental organizations have previously pro­
moted adoption of soil conservation and
related practices without subsidies, if those
who did adopt conserving practices would
not be able to receive soil C payments to the
extent that their soil was already saturated
with C. Likewise, under a per-tonne soil C
contract, farmers whose soil was saturated
with C would not be able to receive pay­
ments for sequestering additional soil C.
Some observers have argued that programs
with this type of design would create the
perverse incentive for producers using soil
conservation practices, such as reduced
tillage, to plow their land, release the car­
bon, and then enter the program.

A solution to this problem in the case of a
government program would be to give
credit for those who could document that
they had changed practices previously. In a
developing country setting, this solution
would be of limited value because most
farmers would lack such documentation.
Alternatively, following the earlier discus­
sion of contract duration, a government
could justify providing payments to farm­
ers both to adopt conserving practices and
to continue using them. In the case of a pri­
vate market for C that was driven by an
international agreement requiring increases
in soil C from a fixed baseline, it would be
necessary to include provisions that would
allow credit to be given for prior actions or
for actions that would prevent the loss of
soil C. If this type of provision were not
included in international agreements, an
individual government could still prevent
the perverse incentive problem by purchas­
ing credits from those farmers who had
already adopted soil C-increasing practices
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(although the government itself might not

be able to take credit internationally for this

soil C as additions to its net emissions

reductions).::

Transaction and Measurement Costs of

Implementing Soil C Contracts

The chapter by Jones et oJ. in this mono­

graph provides an outline of procedures

that could be used to measure soil C to

implement contracts. In this section we

consider issues related to the costs of

implementing soil C contracts.

Few data are available to estimate transac­

tion costs associated with soiI C contracts.

and these costs are likely to vary widely

depending on the type of contract and loca­

tion. In established financial markets. trans­

action costs are typically a few percent of

the value of the transaction. In the case of

soil C contracts with fanners. however.

intermediaries will need to aggregate agree­

ments from large numbers of individuals to

construct a commercial contract of. for

example. 100.000 tonnes. If a practice is

expected to sequester 10 tonnes C per

hectare over the life of a twenty-year con­

tract (as would be the case for a practice

that yields 0.5 tonnes C per hectare per year

on average over twenty years). and if the

average farm size were 5 hectares. then it

would take 2000 fanns to make up a

100,000 tonnes contract. While C contracts

would not necessarily ha\'e to be in units of

100.000 tonnes. it is clear that large groups
of farmers would be needed to create com­

mercially tradable contracts. An important

:.~nother solution that has been suggestc:d b~' «on<>­

mists is a subsi~ payment for soil Ci~ com­

bined ,-,"itll a ta, on losses. 11l1s is a way to pre\ent the

pe1"'erse incentlH problem but does nO' address the

equity issue of penalizing those larmers who preo.iously

adopted conser.alion practices.

question is how large num~ of farmers

could be organized to panicipate in soil C

contracts. It seems likely that existing gO\'­

eroment institutions could play the role of

intermediary. as they already do to imple­

ment other agricultural policies. Another

possibility would be for non-governmental

agricultural institutions. such as agricultural

cooperative organizations or banks. to act

as intermediaries and coordinate fanners'

participation in soil C contracts.

A key feature of transaction costs is that

thev are fixed costs in the sense that the" do. .
not vary with the amount of C sequestered.

Some activities. such as contract negotia­

tion between an intermediary and a buyer.

may be independent of both the amount of

C in the contract and the number of fanners

participating on the seller side. Howewr.

because soil-C contracts would in\:olve

many indi\'idual fanners as sellers. the cost

of negotiations between the intennediary

and fanners would be likely to increase

with the number of fanners participating in

the contract. and we would expect this

component ofcost to increase at an increas­

ing rate. Thus, we can assume that transac­

tion costs take the form TRAN = to ... tiN"

where to > 0 is the cost of negotiation with

buyers. and (t IN~ is the cost of negotiation

with fanners. where t I > 0 and y> I. It fol­

lows that the average transaction cost per

tonne of carbon sequestered is TRANiC =

tole + t lNI/e Following the discussion

above. the number of tonnes sequestered is

approximately proponional to the number

ofsellers. i.e.. C =chN. where c is the 3\Cer_

age number of tonnes sequestered per

hectare. h is the average numberof~

per farm participating in the contraet. and N

is the number of fanns. II follows that the

a\'erage cost of negotiation with fanners is

likely to increase with N and C. whereas

the average cost of negotiation with buyers
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will decrease with C. The optimal size of
the contract, from the point of view of min­
imizing transaction costs, will depend on the
relative importance of these two terms.

The parameters of the transaction cost func­
tion (to, t(, and y) are likely to depend sig­
nificantly on the location where the soil C
is being sequestered and the institutional
factors discussed above, and will be known
with some confidence only after pilot proj­
ects have been implemented and data have
been gathered on these two cost compo­
nents.

We assume that to implement either per­
hectare or per-tonne contracts, relatively
homogeneous agroecozones, m = I, ... ,A,
are identified using baseline bio-physical
data, as discussed in the chapter by Jones et
at. These data are combined with existing
estimates of soil C from the literature and
simulation models such as the DSSATI
CENTURY models to obtain ex ante esti­
mates of baseline carbon levels E[CP)] =0

C(Xj' ej' Zj, i) (we recognize that variable
input decisions Xj and fixed factor Zj also
may vary with production system). The ex
ante average annual rate of C sequestration
for a change from system i to system s over
T years is then estimated to be E[6.cjU,s)] =

{C(Xj, ej' Zj' s) - C(Xj' ej' Zj' i)}/T. This is the
carbon rate used to establish a per-hectare
or per-tonne contract and is the basis for
estimation of the value of the contract and
payments to farmers.

In the case of a per-hectare contract, we
assume that the practices specified in the
contract are monitored to assure compli­
ance with the contract. These monitoring
costs will depend on the type of monitoring
used (e.g., use of remotely sensed data ver­
sus on-the-ground observation), but that
additional measurements of carbon in the

field are not made (this assumption can be
modified as discussed below). These moni­
toring costs will be a function of the cost
per observation, co' and the number of
observations over the life of the contract,
na' so MON = Ncana.

For per-tonne contracts, we assume that
statistical methods are used to measure
carbon levels, to validate the model esti­
mates, and to verifY compliance with the
contracts within each agroecozone. Let the
measured baseline carbon stock for a
hectare under the ith system be C/ = C(Xj'
ej' Zj' i) + Vi where Vi is a random meas­
urement error. The estimated carbon rate
for changing from system i to system s
over T years is therefore a random variable
6.cp,s) = (C/Xj' ej' Zj' s) - CiXj' ej' Zj' i»/T
with mean E[6.cjU,s)] and a variance that is
a function of the variances and covariances
ofthe Vi. Following Mooney et al. (2002),
these measurement costs in a given region
under a per-tonne contract are calculated
as MEA = nsnmcmfm where ns is the num­
ber of different types of practices or sys­
tems that farmers can adopt to increase soil
C, nm denotes the sample size needed to
estimate C to the accuracy specified in the
contract for each practice or system, cm
denotes the cost of each sample, and fm is
the frequency of sampling during the con­
tract. The sample size is determined using
conventional statistical procedures for
stratified random sampling (Mooney et al.,
2002) and depends on the estimated meas­
urement error variances discussed above.
The cost per sample can be estimated
based on the time and materials costs asso­
ciated with the measurement methods
used. As discussed in the chapter by Yost
et al., the number of observations required
to achieve a desired sampling error is a
function of the spatial variability of envi­
ronmental conditions.
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In summary, the transaction. measurement,
and monitoring costs can be represented as:

(4) TCOST = TRAN + MON + MEA
= to + tINY + Ncono + nsnmcmfm.

where:
• to = fixed transaction costs per con­

tract ($)

• t I = transaction costs associated with
number of participants ($/farm)

• N = number of farms participating in
contract

• y = transaction costs parameter (greater
than I)

• Co = cost per monitoring observation ($)
• no = number of monitoring observa­

tions per contract
• ns = number of practices or systems

that farmers can adopt to sequester C
• nm = sample size for carbon measure­

ments
• cm = measurement cost per sample
• fm = frequency of measurements.

ECONOMIC MODELS FOR
INTEGRATED ASSESSMENT

OFSOILC

Farmer decision-making is a central organ­
izing concept of the integrated assessment
of agricultural production systems. In the
approach described here. farm decision­
making is represented as a sequence of
decisions about land use (or crop choice).
and associated management decisions (e.g.•
land preparation. tillage. fertilization. pest
management, harvest). In the application of
this approach. an econometric production
model for each production activity is esti­
mated and used to simulate expected
returns to crop and livestock production.
the quantity and timing of management
decisions. pesticide applications. and the

value of production realized at the end of
the growing season. The econometric pro..
duction models are estimated using fann­
level data. and these models are used to
parameterize an econometric-process simu­
lation model that represents shon-run land
use and management decisions on a site­
specific basis. This type of model is
described as an econometric-process simll­
lation model and is discussed in detail in
Antle and Capalbo (2001).

The econometric-process models introduce
an explicit link between econometric pr0­

duction models and the biophysical produc­
tion models for crop and livestock produc­
tion (such as the DSSAT:CENTURY mod­
els). The biophysical models are used to
represent the effects of spatial variations in
biophysical conditions (soils and climate)
on what is defined as the inJrefYnt produc­
tM,y of a management unit la fanTl\.,.-·s
field). The econometric models incorporate
this inherent productivity into the estima­
tion of behavioral relationships that are uti­
lized in the simulation model to represent
the spatial variation in land use and man­
agement decisions.

In an econometric-process simulation
model. land use decisions are based on the
comparison of expected returns across alter­
native activities. Econometric production
models are used to simulate expected returns
for the land use decision. These econometric
production models can be fonnulated in se\­
eral equivalent ways. For example. the re\­
enue component of expected returns can be
represented with the supply function deri\OO
fiom the restricted profit function. and the
cost component can be represented b~· the
restricted cost function. These two relation­
ships can be used 10 compute eXJ'k."'Cted
returns as the difference between ex~"'Cted

revenue and expected cost.
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In applying this approach, the total quanti­
ty of a crop produced, for example, is spec­
ified as log-linear function of field size,
input and output prices (with linear homo­
geneity in prices imposed), and other vari­
ables representing effects such as the previ­
ous crop (a rotation effect). This supply
function is estimated jointly with a log-lin­
ear cost function that is a function of quan­
tity supplied, input prices, previous crop,
and field size. The system is estimated
jointly with the first-order conditions for
cost minimization to increase estimation
efficiency.

Note that in the approach described here, a
single output is produced on each field. In
some cases, however, multiple crops are
grown on a single field, i.e., the fanner uses
inter-cropping. Another multiple-output
case is created when farmers use crop
residues for livestock feed. In these cases,
the approach described above which uti­
lizes a supply function and cost function is
complicated by the existence of the jointly
produced outputs. An alternative approach
that can be used in this case is to specify
and estimate a revenue function jointly
with a system of factor demand functions.

Static factor demand functions can be
derived from a cost function or can be rep­
resented explicitly in the system of equa­
tions representing production decisions. In
some cases, a static representation of input
use is adequate, e.g., in low-input systems
few purchased inputs are used and there
may be little variation across farmers in the
timing of input use. In other cases, particu­
larly in systems with intensive management
of pests, a large number of applications
may be made and the timing of applications
may be critical. In such cases, the input
demand functions can be estimated as a
dynamic system representing the quantity

applied and the time intervals between
applications (Antle, Capalbo and Crissman,
1994). For example, for each type of pesti­
cide used in a system, a two-equation
reduced-form model can be estimated rep­
resenting quantity and timing of pesticide
applications. These functions depend on
input and output prices, field size, fertilizer,
application time and lagged quantity and
timing variables to incorporate the dynam­
ics of the sequential applications. This type
of dynamic-factor demand model requires
highly detailed data on the quantity and
timing of individual input applications.

The value of production realized at the end
of the season is estimated using a revenue
function specified in terms of quantities of
inputs applied during the season, previous
crop, and field size. To simulate the realized
value of output, the estimated models are
used to predict the mean value of output
and estimated error variances for the mod­
els are used to construct random compo­
nents of the output value.

Incorporating Spatial Soils and
Climate Data into Production Models

A problem facing empirical production
economics research is how to incorporate
effects of soils and climate on productivity
into economic production models.
Production economists have long specified
production functions in the general form
qj = f(vi' Zi, ej), where output on the ith field
(qj) is a function of a vector of: variable
input quantities (Vi) such as fertilizer appli­
cations, pesticide applications and labor; a
vector of services from capital inputs and
other fixed factors (zi); and a vector ofbio­
physical factors such as soils and climate
(eJ. In practice, the biophysical factors ej
are represented in models by using ad hoc
indicators of soil quality and climate
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(e.g., dummy variables for soil types, or
measures of weather such as average rain­
fall during the growing season). This
approach ignores the systematic knowledge
embedded in crop growth models about the
relationships between management bio.
physical conditions and crop growth. We
can describe the knowledge embedded in
crop gro~1h models as implying a relation­
ship in the general form qj '= g(Vj' Zj, ei)' We
know that farmers base their management
decisions on their knowledge of soil and
climate conditions in each field as it relates
to the expected or inherent productivity of
each field. Crop gro~1hmodels can be used
as a tool to represent this inherent produc­
tivity. To do this, we can specify a typical or
average input use. v and z, and then define
the inherent productivity as qi '= g(Vj, Zj, ei)'
Now we can redefine the production
process as qj = flvj' zi' ej) = h(vj. zi. qj) =
h("i' Zj, g(v, z, ej». This result shows how
the crop gro~1h model's estimate of yield
with representative management (what we
call inherent productivity) can be used to
formulate a production function model
used in economic analysis.

Econometric-Process Simulation
Models for Analysis of Soil C
Sequestration

Figure 4 presents the linkages among data
and models used to estimate and simulate
an econometric-process simulation model
(Antle and Capalbo, 2(01). In the estima­
tion component. crop (and/or livestock)
models are used to estimate the inherent
productivity of each activity on each land
unit in the available data being used for
model estimation. The econometric models
for each activity are then estimated. In the
simulation step. a field is sampled from the
population of fields in the region being ana­
lyzed. and characteristics of the field are

assigned (size. inherent producti\·ity. etc.).
Each sampled field is then simulated
through time. Each production period.
prices and other input \'ariables are sam­
pled from distributions. and the economet­
ric production models (supply and demand
functions) are simulated to estimate expect­
ed returns for each acti\"il)'. Expected
returns are compared. and the acti\il)' with
the highest expected returns is selected. For
the activity selected. a sequence of man­
agement decisions is then simulated using
the system of static- or dynamic-factor
demand equations. At the end of the input
decisions. a harvest date is selected and the
value of production is generated using the
revenue function.

The econometric-process model approach
is well suited for analysis of C sequestra­
tion in agricultural soils (see Antle el oJ..
200 Ia.b for applications to C.S. agricul­
ture). The standard econometric-process
model reads a file containing the character­
istics of the fields to be simulated (e.g..
field size. inherent producti\'il)"). To ana­
lyze soil C sequestration. the DSSATCEN­
TURY model can be used to estimate inher­
ent productivi!)' on each field and also the
C level associated with the types of crops
and management practices used. The
DSSATiCENTURY model can be executed
for each management alternative to pr0­

duce estimates of the carbon le\'e\s C( i)

associated with each practice. and these
values can be stored in the data file descri~

ing each field to be simulated. The econo­
metric-process model reads this field file
and calculates the average annual change in
soil C. ~c(i.s) = IC(s) - C(i),T. associated
with changing management practices o\'er
a time horizon ofT years. The econometric­
process model then uSt."'S this information to
simulate the land use decision. based on
equation (~). taking into account both the
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Figure 4. Structure of an econometric-process simulation model.

Site-specific economic
outcomes
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payments that the farmer would receive for
participating in the specified soil C contract
and the opportunity costs ofchanging prac­
tices. If the fanner chooses to participate in
the contract. the model uses &c( i.s) to cal­
culate the soil C sequestered. and includes
that infonnation in the model's output.

THE TRADEOFF ANALYSIS
MODEL: A TOOL FOR

INTEGRATED ASSESSMENT
OFSOILC

In this section we describe a software tool.
the Tradeoff Analysis Model, which was
developed as a decision support tool for
agricultural and environmental policy
analysis and policy decision-making
(Stoorvogel et aI., 2001). This software
allows an interdisciplinary research team to
integrate GIS-based data. bio-physical
models of production, models of other
environmental processes such as soil C
dynamics, and economic models of farmer
decision-making. To incorporate the spatial
heterogeneity of soil conditions, climate.
and farmer behavior. these data and models
are linked on a site-specific basis. By repli­
cating the simulations for a statistically rep­
resentative sample of land units in a region.
the outcomes of this analysis can be aggre­
gated to represent a larger spatial unit such
as an agro-ecozone or other spatially­
defined unit. In the case of an analysis for
soil C sequestration. the simulations can
represent a group ofland units participating
in a soil-C contract.

Tradeoff Analysis is a process designed to
integrate public-policy decision makers and
other stakeholders with a scientific team
that provides quantitative infonnation to
support policy decision making (Crissman.
AntIe and Capalbo. 1998). In this process.

input from stakeholders (the general public.
policy makers. other interested groups) and
scientists is used to identify the critical
dimensions of social concern. i.e.. criteria
for assessment of the sustainability of the
system. As we noted in the introductory
section of this chapter. the stakeholders for
analysis of soil-C sequestration range from
the fanners who would sequester C in their
soils, to buyers of soil-C contracts. to gO\­
ernmental and non-governmental organiza­
tions and the general public who have an
interest in soil management. Research
teams can use the TradeotT Analysis
process and the software to implement the
soil C sequestration protocols described in
this monograph.

(h'eniew of tbe Tradeoff AD.~"Sis
Model Structure

The Tradeoff Analysis Model can be bro­
ken down into se\<eral components
(Stoorvogel el 01.• 200 I):

Datil. The model begins with three types
of data: environmental data. farm SUf\'ey
data and experimental data. Em<ironmental
data describe the spatial variation in soils
and climate and is organized in a GIS for­
mat. It is used as input to the bio-physical
models and to stratify the study area. Farm
survey data describe the wav fanners take
decisions about land man~gemenl. This
decision-making process is described in
the econometric production models. The
Tradeoff Analysis uses crop models to
describe the inherent productivity of farm­
ers' fields (as an important factor in their
decision-making process) and en\'iron­
mental impact models to estimate the
impact on soil and water resources, These
mechanislic models need to be calibraled
to local conditions using experimental
data.
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Crop Models. Crop (and if appropriate,
livestock) models in the DSSAT format
(including the DSSATICENTURY model
discussed in the chapter by Jones et al.) can
be used to estimate the spatial and temporal
variation in inherent productivity of the
land that is driven by soil and climate vari­
ations. These measures of inherent produc­
tivity are inputs into the economic models
to explain variation in management deci­
sions of farmers. In the use of the
DSSATICENTURY model, soil-C values
are also are passed to the economic analy­
sis.

Economic Models, Econometric produc­
tion models are estimated using the farm
survey data and the inherent productivity
indexes derived from the crop models.
Parameters for distributions of prices and
other exogenous variables in the production
models are estimated using the survey data.
These parameters are input into an econo­
metric-process simulation model, with the
indexes of inherent productivity from the
crop models.

Environmental Process Models. As appro­
priate to the analysis, the management deci­
sions from the economic simulation model
(e.g., land use, pesticide applications) can
be used as inputs into environmental
process models to estimate impacts on soil
quality, pesticide fate, and other environ­
mental processes of interest.

Scenario Definition, Model Execution
andAnalysis ofOutcomes. For each policy
or technology scenario of interest to policy
decision makers, the simulation model is
executed for a series of price or other
parameter settings. Changes in prices and
other parameters can be used to induce
changes in management that in tum induce
tradeoffs between economic and environ-

mental outcomes. In the analysis of soil-C
sequestration, key parameters are the pay­
ments made to farmers who enter into soil­
C programs or contracts. Economic out­
comes from the econometric~process simu­
lation model (e.g., value of crop and live­
stock production) and environmental out­
comes from the environmental process
models (e.g., pesticide loadings to the envi­
ronment, soil erosion) can be aggregated to
represent a spatial unit made up of many
fields. For analysis of soil-C sequestration,
results can be aggregated to represent agro­
ecozones used for setting up soil-C con­
tracts.

Application of the Tradeoff Analysis
Model to Analysis of Soil-C
Sequestration

The Tradeoff Analysis Model can be used
to analyze the potential for soil-C seques­
tration contracts as shown in Figure 5. The
first step is to assemble the needed data,
including the data for implementation of
the DSSATICENTURY models and the
econometric-process simulation model for
the region to be analyzed. In addition, any
relevant scenarios regarding alternative
production technologies that could be used
to sequester soil C and the types of con­
tracts that would be used would need to be
assembled. The DSSATICENTURY mod­
els would be executed for the set of fields
that was being used in the analysis (this
could be a set of fields randomly sampled
from the region being analyzed, or a set of
fields for which data were available from a
production survey). Crop yields and soil-C
values would be saved in a file that would
then become an input into the economet­
ric-process simulation model. This eco­
nomic model would simulate farmer's land
use and management decisions for the
baseline case of no carbon contracts, and
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Figure S. Key steps in use of the Tradeoff An.i)"sis :\Iodel for .nal)-sis of soil C HqllntntioL

for the types of contracts that farmers
could be offered. For example. an analysis
could consider a per-hectare contract for
adoption of specific sets of practices and a
range of payment le\'"e1s that might be
offered to farmers. Alternatively. an analy­
sis could consider a per-tonne contract (see
Antle el 01.. 200 Ia.b for examples of this
type of analysis). The economic model
would create an output file containing the
farmer's land use and management deci­
sions. and the changes in soil C associated
with those decisions. This information
could be passed to other environmental
process models to analyze other environ­
mental impacts such as soil erosion or fate
ofpesticides. Finally. the results of the var-

ious models are combined into an output
file that can be aggregated to represent the
region and used for various types of analy­
sis. For the analysis of soil.c sequestra­
tion. a principal use of this output would
be to construct a supply CUf\"e for soil C
(see Figures 1 and 3) corresponding to
each type of contract that was simulated.
These supply curvcs show the amount of C
that would be sequestered for each type of
contract. given the available management
options. If other environmental process
models were included in the analysis. it
would also be possible to assess tradeoffs
with other environmental impacts. such as
soil erosion. water quality. and future soil
productivity.
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